
Copyright

Copyright	?	Made	by	the	Asta	Xie.	This	material	may	be	distributed	only	subject
to	the	terms	and	conditions	set	forth	in	the	Creative	Commons	Attribution	3.0
License	or	later.	A	copy	of	the	Creative	Commons	Attribution	3.0	license	is
distributed	with	this	manual.	The	latest	version	is	presently	available	at
?	http://creativecommons.org/licenses/by/3.0/.

If	you	are	interested	in	redistribution	or	republishing	of	this	document	in	whole
or	in	part,	either	modified	or	unmodified,	and	you	have	questions,	please	contact
the	Copyright	holders	at	xiemengjun@gmail.com.

http://creativecommons.org/licenses/by/3.0/
mailto:xiemengjun@gmail.com

The	CHM	Manual	is	Made	By	AstaXie													xiemengjun@gmail.com

Go	is	an	expressive,	concurrent,	garbage-collected
programming	language.

The	Go	home	page	is	the	primary	source	of	information	about	Go.	It	contains
installation	instructions,	a	tutorial,	and	more.

This	repository	holds	the	gc	compilers	and	Go	packages.	Changes	to	the	code
are	reviewed	before	being	committed.

The	gccgo	front	end	for	GCC	is	hosted	as	a	branch	on	the	GCC	Subversion
server.	See	the	gccgo	installation	instructions.

http://golang.org/
http://golang.org/doc/install.html
http://tour.golang.org
http://golang.org/doc/contribute.html#Code_review
http://golang.org/doc/gccgo_install.html
http://golang.org/

Getting	Started

Introduction

Go	is	an	open	source	project	with	a	BSD-style	license.	There	are	two	official	Go
compiler	toolchains:	the	gc	Go	compiler	and	the	gccgo	compiler	that	is	part	of
the	GNU	C	Compiler	(GCC).

The	gc	compiler	is	the	more	mature	and	well-tested	of	the	two.	This	page	is
about	installing	a	binary	distribution	of	the	gc	compiler.

For	information	about	installing	the	gc	compiler	from	source,	see	Installing	Go
from	source.	For	information	about	installing	gccgo,	see	Setting	up	and	using
gccgo.

Download	the	Go	tools

Visit	the	Go	project's	downloads	page	and	select	the	binary	distribution	that
matches	your	operating	system	and	processor	architecture.

Official	binary	distributions	are	available	for	the	FreeBSD,	Linux,	Mac	OS	X
(Snow	Leopard/Lion),	and	Windows	operating	systems	and	the	32-bit	(386)	and
64-bit	(amd64)	x86	processor	architectures.

If	a	binary	distribution	is	not	available	for	your	OS/arch	combination	you	may
want	to	try	installing	from	source	or	installing	gccgo	instead	of	gc.

http://code.google.com/p/go/downloads

Install	the	Go	tools

The	Go	binary	distributions	assume	they	will	be	installed	in	/usr/local/go	(or
c:\Go	under	Windows),	but	it	is	possible	to	install	them	in	a	different	location.	If
you	do	this,	you	will	need	to	set	the	GOROOT	environment	variable	to	that
directory	when	using	the	Go	tools.

For	example,	if	you	installed	Go	to	your	home	directory	you	should	add	the
following	commands	to	$HOME/.profile:

export	GOROOT=$HOME/go

export	PATH=$PATH:$GOROOT/bin

Windows	users	should	read	the	section	about	setting	environment	variables
under	Windows.

FreeBSD	and	Linux

On	FreeBSD	and	Linux,	if	you	are	upgrading	from	an	older	version	of	Go	you
must	first	remove	the	existing	version	from	/usr/local/go:

rm	-r	/usr/local/go

Extract	the	archive	into	/usr/local,	creating	a	Go	tree	in	/usr/local/go:

tar	-C	/usr/local	-xzf	go.release.go1.tar.gz

(Typically	these	commands	must	be	run	as	root	or	through	sudo.)

Add	/usr/local/go/bin	to	the	PATH	environment	variable.	You	can	do	this	by
adding	this	line	to	your	/etc/profile	(for	a	system-wide	installation)	or
$HOME/.profile:

export	PATH=$PATH:/usr/local/go/bin

Mac	OS	X

Open	the	package	file	and	follow	the	prompts	to	install	the	Go	tools.	The
package	installs	the	Go	distribution	to	/usr/local/go.

http://code.google.com/p/go/downloads/list?q=OpSys-FreeBSD+OR+OpSys-Linux
http://code.google.com/p/go/downloads/list?q=OpSys-Darwin

The	package	should	put	the	/usr/local/go/bin	directory	in	your	PATH
environment	variable.	You	may	need	to	restart	any	open	Terminal	sessions	for
the	change	to	take	effect.

Windows

The	Go	project	provides	two	installation	options	for	Windows	users	(besides
installing	from	source):	a	zip	archive	that	requires	you	to	set	some	environment
variables	and	an	experimental	MSI	installer	that	configures	your	installation
automatically.

Zip	archive

Extract	the	zip	file	to	the	directory	of	your	choice	(we	suggest	c:\Go).

If	you	chose	a	directory	other	than	c:\Go,	you	must	set	the	GOROOT	environment
variable	to	your	chosen	path.

Add	the	bin	subdirectory	of	your	Go	root	(for	example,	c:\Go\bin)	to	to	your
PATH	environment	variable.

MSI	installer	(experimental)

Open	the	MSI	file	and	follow	the	prompts	to	install	the	Go	tools.	By	default,	the
installer	puts	the	Go	distribution	in	c:\Go.

The	installer	should	put	the	c:\Go\bin	directory	in	your	PATH	environment
variable.	You	may	need	to	restart	any	open	command	prompts	for	the	change	to
take	effect.

Setting	environment	variables	under	Windows

Under	Windows,	you	may	set	environment	variables	through	the	"Environment
Variables"	button	on	the	"Advanced"	tab	of	the	"System"	control	panel.	Some
versions	of	Windows	provide	this	control	panel	through	the	"Advanced	System
Settings"	option	inside	the	"System"	control	panel.

http://code.google.com/p/go/downloads/list?q=OpSys-Windows+Type%3DArchive
http://code.google.com/p/go/downloads/list?q=OpSys-Windows+Type%3DInstaller

Test	your	installation

Check	that	Go	is	installed	correctly	by	building	a	simple	program,	as	follows.

Create	a	file	named	hello.go	and	put	the	following	program	in	it:

package	main

import	"fmt"

func	main()	{

				fmt.Printf("hello,	world\n")

}

Then	run	it	with	the	go	tool:

$	go	run	hello.go

hello,	world

If	you	see	the	"hello,	world"	message	then	your	Go	installation	is	working.

What's	next

Start	by	taking	A	Tour	of	Go.

For	more	detail	about	the	process	of	building	and	testing	Go	programs	read	How
to	Write	Go	Code.

Build	a	web	application	by	following	the	Wiki	Tutorial.

Read	Effective	Go	to	learn	about	writing	idiomatic	Go	code.

For	the	full	story,	consult	Go's	extensive	documentation.

Subscribe	to	the	golang-announce	mailing	list	to	be	notified	when	a	new	stable
version	of	Go	is	released.

http://code.google.com/p/go-tour/
http://groups.google.com/group/golang-announce

Community	resources

For	real-time	help,	there	may	be	users	or	developers	on	#go-nuts	on	the
Freenode	IRC	server.

The	official	mailing	list	for	discussion	of	the	Go	language	is	Go	Nuts.

Bugs	should	be	reported	using	the	Go	issue	tracker.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://freenode.net/
http://groups.google.com/group/golang-nuts
http://code.google.com/p/go/issues/list
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

How	to	Write	Go	Code

Introduction

This	document	demonstrates	the	development	of	a	simple	Go	package	and
introduces	the	go	command,	the	standard	way	to	fetch,	build,	and	install	Go
packages	and	commands.

Code	organization

GOPATH	and	workspaces

One	of	Go's	design	goals	is	to	make	writing	software	easier.	To	that	end,	the	go
command	doesn't	use	Makefiles	or	other	configuration	files	to	guide	program
construction.	Instead,	it	uses	the	source	code	to	find	dependencies	and	determine
build	conditions.	This	means	your	source	code	and	build	scripts	are	always	in
sync;	they	are	one	and	the	same.

The	one	thing	you	must	do	is	set	a	GOPATH	environment	variable.	GOPATH	tells	the
go	command	(and	other	related	tools)	where	to	find	and	install	the	Go	packages
on	your	system.

GOPATH	is	a	list	of	paths.	It	shares	the	syntax	of	your	system's	PATH	environment
variable.	A	typical	GOPATH	on	a	Unix	system	might	look	like	this:

GOPATH=/home/user/ext:/home/user/mygo

(On	a	Windows	system	use	semicolons	as	the	path	separator	instead	of	colons.)

Each	path	in	the	list	(in	this	case	/home/user/ext	or	/home/user/mygo)
specifies	the	location	of	a	workspace.	A	workspace	contains	Go	source	files	and
their	associated	package	objects,	and	command	executables.	It	has	a	prescribed
structure	of	three	subdirectories:

src	contains	Go	source	files,
pkg	contains	compiled	package	objects,	and
bin	contains	executable	commands.

Subdirectories	of	the	src	directory	hold	independent	packages,	and	all	source
files	(.go,	.c,	.h,	and	.s)	in	each	subdirectory	are	elements	of	that	subdirectory's
package.

When	building	a	program	that	imports	the	package	"widget"	the	go	command
looks	for	src/pkg/widget	inside	the	Go	root,	and	then—if	the	package	source
isn't	found	there—it	searches	for	src/widget	inside	each	workspace	in	order.

Multiple	workspaces	can	offer	some	flexibility	and	convenience,	but	for	now
we'll	concern	ourselves	with	only	a	single	workspace.

Let's	work	through	a	simple	example.	First,	create	a	$HOME/mygo	directory	and
its	src	subdirectory:

$	mkdir	-p	$HOME/mygo/src	#	create	a	place	to	put	source	code

Next,	set	it	as	the	GOPATH.	You	should	also	add	the	bin	subdirectory	to	your	PATH
environment	variable	so	that	you	can	run	the	commands	therein	without
specifying	their	full	path.	To	do	this,	add	the	following	lines	to	$HOME/.profile
(or	equivalent):

export	GOPATH=$HOME/mygo

export	PATH=$PATH:$HOME/mygo/bin

Import	paths

The	standard	packages	are	given	short	import	paths	such	as	"fmt"	and
"net/http"	for	convenience.	For	your	own	projects,	it	is	important	to	choose	a
base	import	path	that	is	unlikely	to	collide	with	future	additions	to	the	standard
library	or	other	external	libraries.

The	best	way	to	choose	an	import	path	is	to	use	the	location	of	your	version
control	repository.	For	instance,	if	your	source	repository	is	at	example.com	or
code.google.com/p/example,	you	should	begin	your	package	paths	with	that
URL,	as	in	"example.com/foo/bar"	or
"code.google.com/p/example/foo/bar".	Using	this	convention,	the	go
command	can	automatically	check	out	and	build	the	source	code	by	its	import
path	alone.

If	you	don't	intend	to	install	your	code	in	this	way,	you	should	at	least	use	a
unique	prefix	like	"widgets/",	as	in	"widgets/foo/bar".	A	good	rule	is	to	use	a
prefix	such	as	your	company	or	project	name,	since	it	is	unlikely	to	be	used	by
another	group.

We'll	use	example/	as	our	base	import	path:

$	mkdir	-p	$GOPATH/src/example

Package	names

The	first	statement	in	a	Go	source	file	should	be

package	name

where	name	is	the	package's	default	name	for	imports.	(All	files	in	a	package
must	use	the	same	name.)

Go's	convention	is	that	the	package	name	is	the	last	element	of	the	import	path:
the	package	imported	as	"crypto/rot13"	should	be	named	rot13.	There	is	no
requirement	that	package	names	be	unique	across	all	packages	linked	into	a
single	binary,	only	that	the	import	paths	(their	full	file	names)	be	unique.

Create	a	new	package	under	example	called	newmath:

$	cd	$GOPATH/src/example

$	mkdir	newmath

Then	create	a	file	named	$GOPATH/src/example/newmath/sqrt.go	containing
the	following	Go	code:

//	Package	newmath	is	a	trivial	example	package.

package	newmath

//	Sqrt	returns	an	approximation	to	the	square	root	of	x.

func	Sqrt(x	float64)	float64	{

								//	This	is	a	terrible	implementation.

								//	Real	code	should	import	"math"	and	use	math.Sqrt.

								z	:=	0.0

								for	i	:=	0;	i	<	1000;	i++	{

																z	-=	(z*z	-	x)	/	(2	*	x)

								}

								return	z

}

This	package	is	imported	by	the	path	name	of	the	directory	it's	in,	starting	after
the	src	component:

import	"example/newmath"

See	Effective	Go	to	learn	more	about	Go's	naming	conventions.

Building	and	installing

The	go	command	comprises	several	subcommands,	the	most	central	being
install.	Running	go	install	importpath	builds	and	installs	a	package	and	its
dependencies.

To	"install	a	package"	means	to	write	the	package	object	or	executable	command
to	the	pkg	or	bin	subdirectory	of	the	workspace	in	which	the	source	resides.

Building	a	package

To	build	and	install	the	newmath	package,	type

$	go	install	example/newmath

This	command	will	produce	no	output	if	the	package	and	its	dependencies	are
built	and	installed	correctly.

As	a	convenience,	the	go	command	will	assume	the	current	directory	if	no
import	path	is	specified	on	the	command	line.	This	sequence	of	commands	has
the	same	effect	as	the	one	above:

$	cd	$GOPATH/src/example/newmath

$	go	install

The	resulting	workspace	directory	tree	(assuming	we're	running	Linux	on	a	64-
bit	system)	looks	like	this:

pkg/

				linux_amd64/

								example/

												newmath.a		#	package	object

src/

				example/

								newmath/

												sqrt.go				#	package	source

Building	a	command

The	go	command	treats	code	belonging	to	package	main	as	an	executable

command	and	installs	the	package	binary	to	the	GOPATH's	bin	subdirectory.

Add	a	command	named	hello	to	the	source	tree.	First	create	the	example/hello
directory:

$	cd	$GOPATH/src/example

$	mkdir	hello

Then	create	the	file	$GOPATH/src/example/hello/hello.go	containing	the
following	Go	code.

//	Hello	is	a	trivial	example	of	a	main	package.

package	main

import	(

								"example/newmath"

								"fmt"

)

func	main()	{

								fmt.Printf("Hello,	world.		Sqrt(2)	=	%v\n",	newmath.Sqrt(2))

}

Next,	run	go	install,	which	builds	and	installs	the	binary	to	$GOPATH/bin	(or
$GOBIN,	if	set;	to	simplify	presentation,	this	document	assumes	GOBIN	is	unset):

$	go	install	example/hello

To	run	the	program,	invoke	it	by	name	as	you	would	any	other	command:

$	$GOPATH/bin/hello

Hello,	world.		Sqrt(2)	=	1.414213562373095

If	you	added	$HOME/mygo/bin	to	your	PATH,	you	may	omit	the	path	to	the
executable:

$	hello

Hello,	world.		Sqrt(2)	=	1.414213562373095

The	workspace	directory	tree	now	looks	like	this:

bin/

				hello														#	command	executable

pkg/

				linux_amd64/	

								example/

												newmath.a		#	package	object

src/

				example/

								hello/

												hello.go			#	command	source

								newmath/

												sqrt.go				#	package	source

The	go	command	also	provides	a	build	command,	which	is	like	install	except
it	builds	all	objects	in	a	temporary	directory	and	does	not	install	them	under	pkg
or	bin.	When	building	a	command	an	executable	named	after	the	last	element	of
the	import	path	is	written	to	the	current	directory.	When	building	a	package,	go
build	serves	merely	to	test	that	the	package	and	its	dependencies	can	be	built.
(The	resulting	package	object	is	thrown	away.)

Testing

Go	has	a	lightweight	test	framework	composed	of	the	go	test	command	and	the
testing	package.

You	write	a	test	by	creating	a	file	with	a	name	ending	in	_test.go	that	contains
functions	named	TestXXX	with	signature	func	(t	*testing.T).	The	test
framework	runs	each	such	function;	if	the	function	calls	a	failure	function	such
as	t.Error	or	t.Fail,	the	test	is	considered	to	have	failed.

Add	a	test	to	the	newmath	package	by	creating	the	file
$GOPATH/src/example/newmath/sqrt_test.go	containing	the	following	Go
code.

package	newmath

import	"testing"

func	TestSqrt(t	*testing.T)	{

	 const	in,	out	=	4,	2

	 if	x	:=	Sqrt(in);	x	!=	out	{

	 	 t.Errorf("Sqrt(%v)	=	%v,	want	%v",	in,	x,	out)

								}

}

Now	run	the	test	with	go	test:

$	go	test	example/newmath

ok			 example/newmath	0.165s

Run	go	help	test	and	see	the	testing	package	documentation	for	more	detail.

Remote	packages

An	import	path	can	describe	how	to	obtain	the	package	source	code	using	a
revision	control	system	such	as	Git	or	Mercurial.	The	go	command	uses	this
property	to	automatically	fetch	packages	from	remote	repositories.	For	instance,
the	examples	described	in	this	document	are	also	kept	in	a	Mercurial	repository
hosted	at	Google	Code,	code.google.com/p/go.example.	If	you	include	the
repository	URL	in	the	package's	import	path,	go	get	will	fetch,	build,	and	install
it	automatically:

$	go	get	code.google.com/p/go.example/hello

$	$GOPATH/bin/hello

Hello,	world.		Sqrt(2)	=	1.414213562373095

If	the	specified	package	is	not	present	in	a	workspace,	go	get	will	place	it	inside
the	first	workspace	specified	by	GOPATH.	(If	the	package	does	already	exist,	go
get	skips	the	remote	fetch	and	behaves	the	same	as	go	install.)

After	issuing	the	above	go	get	command,	the	workspace	directory	tree	should
now	now	look	like	this:

bin/

				hello																	#	command	executable

pkg/

				linux_amd64/	

								code.google.com/p/go.example/

												newmath.a					#	package	object

								example/

												newmath.a					#	package	object

src/

				code.google.com/p/go.example/

								hello/

												hello.go						#	command	source

								newmath/

												sqrt.go							#	package	source

												sqrt_test.go		#	test	source

				example/

								hello/

												hello.go						#	command	source

								newmath/

												sqrt.go							#	package	source

												sqrt_test.go		#	test	source

http://code.google.com/p/go.example

The	hello	command	hosted	at	Google	Code	depends	on	the	newmath	package
within	the	same	repository.	The	imports	in	hello.go	file	use	the	same	import
path	convention,	so	the	go	get	command	is	able	to	locate	and	install	the
dependent	package,	too.

import	"code.google.com/p/go.example/newmath"

This	convention	is	the	easiest	way	to	make	your	Go	packages	available	for
others	to	use.	The	Go	Project	Dashboard	is	a	list	of	external	Go	projects
including	programs	and	libraries.

For	more	information	on	using	remote	repositories	with	the	go	command,	see	go
help	remote.

http://godashboard.appspot.com

Further	reading

See	Effective	Go	for	tips	on	writing	clear,	idiomatic	Go	code.

Take	A	Tour	of	Go	to	learn	the	language	proper.

Visit	the	documentation	page	for	a	set	of	in-depth	articles	about	the	Go	language
and	its	libraries	and	tools.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://tour.golang.org/
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Effective	Go

Introduction

Go	is	a	new	language.	Although	it	borrows	ideas	from	existing	languages,	it	has
unusual	properties	that	make	effective	Go	programs	different	in	character	from
programs	written	in	its	relatives.	A	straightforward	translation	of	a	C++	or	Java
program	into	Go	is	unlikely	to	produce	a	satisfactory	result—Java	programs	are
written	in	Java,	not	Go.	On	the	other	hand,	thinking	about	the	problem	from	a
Go	perspective	could	produce	a	successful	but	quite	different	program.	In	other
words,	to	write	Go	well,	it's	important	to	understand	its	properties	and	idioms.
It's	also	important	to	know	the	established	conventions	for	programming	in	Go,
such	as	naming,	formatting,	program	construction,	and	so	on,	so	that	programs
you	write	will	be	easy	for	other	Go	programmers	to	understand.

This	document	gives	tips	for	writing	clear,	idiomatic	Go	code.	It	augments	the
language	specification,	the	Tour	of	Go,	and	How	to	Write	Go	Code,	all	of	which
you	should	read	first.

Examples

The	Go	package	sources	are	intended	to	serve	not	only	as	the	core	library	but
also	as	examples	of	how	to	use	the	language.	If	you	have	a	question	about	how
to	approach	a	problem	or	how	something	might	be	implemented,	they	can
provide	answers,	ideas	and	background.

http://tour.golang.org/

Formatting

Formatting	issues	are	the	most	contentious	but	the	least	consequential.	People
can	adapt	to	different	formatting	styles	but	it's	better	if	they	don't	have	to,	and
less	time	is	devoted	to	the	topic	if	everyone	adheres	to	the	same	style.	The
problem	is	how	to	approach	this	Utopia	without	a	long	prescriptive	style	guide.

With	Go	we	take	an	unusual	approach	and	let	the	machine	take	care	of	most
formatting	issues.	The	gofmt	program	(also	available	as	go	fmt,	which	operates
at	the	package	level	rather	than	source	file	level)	reads	a	Go	program	and	emits
the	source	in	a	standard	style	of	indentation	and	vertical	alignment,	retaining	and
if	necessary	reformatting	comments.	If	you	want	to	know	how	to	handle	some
new	layout	situation,	run	gofmt;	if	the	answer	doesn't	seem	right,	rearrange	your
program	(or	file	a	bug	about	gofmt),	don't	work	around	it.

As	an	example,	there's	no	need	to	spend	time	lining	up	the	comments	on	the
fields	of	a	structure.	Gofmt	will	do	that	for	you.	Given	the	declaration

type	T	struct	{

				name	string	//	name	of	the	object

				value	int	//	its	value

}

gofmt	will	line	up	the	columns:

type	T	struct	{

				name				string	//	name	of	the	object

				value			int				//	its	value

}

All	Go	code	in	the	standard	packages	has	been	formatted	with	gofmt.

Some	formatting	details	remain.	Very	briefly,

Indentation
We	use	tabs	for	indentation	and	gofmt	emits	them	by	default.	Use	spaces
only	if	you	must.

Line	length
Go	has	no	line	length	limit.	Don't	worry	about	overflowing	a	punched	card.
If	a	line	feels	too	long,	wrap	it	and	indent	with	an	extra	tab.

Parentheses
Go	needs	fewer	parentheses:	control	structures	(if,	for,	switch)	do	not
have	parentheses	in	their	syntax.	Also,	the	operator	precedence	hierarchy	is
shorter	and	clearer,	so

x<<8	+	y<<16

means	what	the	spacing	implies.

Commentary

Go	provides	C-style	/*	*/	block	comments	and	C++-style	//	line	comments.
Line	comments	are	the	norm;	block	comments	appear	mostly	as	package
comments	and	are	also	useful	to	disable	large	swaths	of	code.

The	program��and	web	server��godoc	processes	Go	source	files	to	extract
documentation	about	the	contents	of	the	package.	Comments	that	appear	before
top-level	declarations,	with	no	intervening	newlines,	are	extracted	along	with	the
declaration	to	serve	as	explanatory	text	for	the	item.	The	nature	and	style	of
these	comments	determines	the	quality	of	the	documentation	godoc	produces.

Every	package	should	have	a	package	comment,	a	block	comment	preceding	the
package	clause.	For	multi-file	packages,	the	package	comment	only	needs	to	be
present	in	one	file,	and	any	one	will	do.	The	package	comment	should	introduce
the	package	and	provide	information	relevant	to	the	package	as	a	whole.	It	will
appear	first	on	the	godoc	page	and	should	set	up	the	detailed	documentation	that
follows.

/*

				Package	regexp	implements	a	simple	library	for

				regular	expressions.

				The	syntax	of	the	regular	expressions	accepted	is:

				regexp:

								concatenation	{	'|'	concatenation	}

				concatenation:

								{	closure	}

				closure:

								term	['*'	|	'+'	|	'?']

				term:

								'^'

								'$'

								'.'

								character

								'['	['^']	character-ranges	']'

								'('	regexp	')'

*/

package	regexp

If	the	package	is	simple,	the	package	comment	can	be	brief.

//	Package	path	implements	utility	routines	for

//	manipulating	slash-separated	filename	paths.

Comments	do	not	need	extra	formatting	such	as	banners	of	stars.	The	generated
output	may	not	even	be	presented	in	a	fixed-width	font,	so	don't	depend	on
spacing	for	alignment—godoc,	like	gofmt,	takes	care	of	that.	The	comments	are
uninterpreted	plain	text,	so	HTML	and	other	annotations	such	as	_this_	will
reproduce	verbatim	and	should	not	be	used.	Depending	on	the	context,	godoc
might	not	even	reformat	comments,	so	make	sure	they	look	good	straight	up:	use
correct	spelling,	punctuation,	and	sentence	structure,	fold	long	lines,	and	so	on.

Inside	a	package,	any	comment	immediately	preceding	a	top-level	declaration
serves	as	a	doc	comment	for	that	declaration.	Every	exported	(capitalized)	name
in	a	program	should	have	a	doc	comment.

Doc	comments	work	best	as	complete	sentences,	which	allow	a	wide	variety	of
automated	presentations.	The	first	sentence	should	be	a	one-sentence	summary
that	starts	with	the	name	being	declared.

//	Compile	parses	a	regular	expression	and	returns,	if	successful,	a	Regexp

//	object	that	can	be	used	to	match	against	text.

func	Compile(str	string)	(regexp	*Regexp,	err	error)	{

Go's	declaration	syntax	allows	grouping	of	declarations.	A	single	doc	comment
can	introduce	a	group	of	related	constants	or	variables.	Since	the	whole
declaration	is	presented,	such	a	comment	can	often	be	perfunctory.

//	Error	codes	returned	by	failures	to	parse	an	expression.

var	(

				ErrInternal						=	errors.New("regexp:	internal	error")

				ErrUnmatchedLpar	=	errors.New("regexp:	unmatched	'('")

				ErrUnmatchedRpar	=	errors.New("regexp:	unmatched	')'")

				...

)

Even	for	private	names,	grouping	can	also	indicate	relationships	between	items,
such	as	the	fact	that	a	set	of	variables	is	protected	by	a	mutex.

var	(

				countLock			sync.Mutex

				inputCount		uint32

				outputCount	uint32

				errorCount		uint32

)

Names

Names	are	as	important	in	Go	as	in	any	other	language.	In	some	cases	they	even
have	semantic	effect:	for	instance,	the	visibility	of	a	name	outside	a	package	is
determined	by	whether	its	first	character	is	upper	case.	It's	therefore	worth
spending	a	little	time	talking	about	naming	conventions	in	Go	programs.

Package	names

When	a	package	is	imported,	the	package	name	becomes	an	accessor	for	the
contents.	After

import	"bytes"

the	importing	package	can	talk	about	bytes.Buffer.	It's	helpful	if	everyone
using	the	package	can	use	the	same	name	to	refer	to	its	contents,	which	implies
that	the	package	name	should	be	good:	short,	concise,	evocative.	By	convention,
packages	are	given	lower	case,	single-word	names;	there	should	be	no	need	for
underscores	or	mixedCaps.	Err	on	the	side	of	brevity,	since	everyone	using	your
package	will	be	typing	that	name.	And	don't	worry	about	collisions	a	priori.	The
package	name	is	only	the	default	name	for	imports;	it	need	not	be	unique	across
all	source	code,	and	in	the	rare	case	of	a	collision	the	importing	package	can
choose	a	different	name	to	use	locally.	In	any	case,	confusion	is	rare	because	the
file	name	in	the	import	determines	just	which	package	is	being	used.

Another	convention	is	that	the	package	name	is	the	base	name	of	its	source
directory;	the	package	in	src/pkg/encoding/base64	is	imported	as
"encoding/base64"	but	has	name	base64,	not	encoding_base64	and	not
encodingBase64.

The	importer	of	a	package	will	use	the	name	to	refer	to	its	contents	(the	import
.	notation	is	intended	mostly	for	tests	and	other	unusual	situations	and	should	be
avoided	unless	necessary),	so	exported	names	in	the	package	can	use	that	fact	to
avoid	stutter.	For	instance,	the	buffered	reader	type	in	the	bufio	package	is
called	Reader,	not	BufReader,	because	users	see	it	as	bufio.Reader,	which	is	a
clear,	concise	name.	Moreover,	because	imported	entities	are	always	addressed
with	their	package	name,	bufio.Reader	does	not	conflict	with	io.Reader.
Similarly,	the	function	to	make	new	instances	of	ring.Ring—which	is	the

definition	of	a	constructor	in	Go—would	normally	be	called	NewRing,	but	since
Ring	is	the	only	type	exported	by	the	package,	and	since	the	package	is	called
ring,	it's	called	just	New,	which	clients	of	the	package	see	as	ring.New.	Use	the
package	structure	to	help	you	choose	good	names.

Another	short	example	is	once.Do;	once.Do(setup)	reads	well	and	would	not	be
improved	by	writing	once.DoOrWaitUntilDone(setup).	Long	names	don't
automatically	make	things	more	readable.	If	the	name	represents	something
intricate	or	subtle,	it's	usually	better	to	write	a	helpful	doc	comment	than	to
attempt	to	put	all	the	information	into	the	name.

Getters

Go	doesn't	provide	automatic	support	for	getters	and	setters.	There's	nothing
wrong	with	providing	getters	and	setters	yourself,	and	it's	often	appropriate	to	do
so,	but	it's	neither	idiomatic	nor	necessary	to	put	Get	into	the	getter's	name.	If
you	have	a	field	called	owner	(lower	case,	unexported),	the	getter	method	should
be	called	Owner	(upper	case,	exported),	not	GetOwner.	The	use	of	upper-case
names	for	export	provides	the	hook	to	discriminate	the	field	from	the	method.	A
setter	function,	if	needed,	will	likely	be	called	SetOwner.	Both	names	read	well
in	practice:

owner	:=	obj.Owner()

if	owner	!=	user	{

				obj.SetOwner(user)

}

Interface	names

By	convention,	one-method	interfaces	are	named	by	the	method	name	plus	the	-
er	suffix:	Reader,	Writer,	Formatter	etc.

There	are	a	number	of	such	names	and	it's	productive	to	honor	them	and	the
function	names	they	capture.	Read,	Write,	Close,	Flush,	String	and	so	on	have
canonical	signatures	and	meanings.	To	avoid	confusion,	don't	give	your	method
one	of	those	names	unless	it	has	the	same	signature	and	meaning.	Conversely,	if
your	type	implements	a	method	with	the	same	meaning	as	a	method	on	a	well-
known	type,	give	it	the	same	name	and	signature;	call	your	string-converter
method	String	not	ToString.

MixedCaps

Finally,	the	convention	in	Go	is	to	use	MixedCaps	or	mixedCaps	rather	than
underscores	to	write	multiword	names.

Semicolons

Like	C,	Go's	formal	grammar	uses	semicolons	to	terminate	statements;	unlike	C,
those	semicolons	do	not	appear	in	the	source.	Instead	the	lexer	uses	a	simple	rule
to	insert	semicolons	automatically	as	it	scans,	so	the	input	text	is	mostly	free	of
them.

The	rule	is	this.	If	the	last	token	before	a	newline	is	an	identifier	(which	includes
words	like	int	and	float64),	a	basic	literal	such	as	a	number	or	string	constant,
or	one	of	the	tokens

break	continue	fallthrough	return	++	--)	}

the	lexer	always	inserts	a	semicolon	after	the	token.	This	could	be	summarized
as,	“if	the	newline	comes	after	a	token	that	could	end	a	statement,	insert	a
semicolon”.

A	semicolon	can	also	be	omitted	immediately	before	a	closing	brace,	so	a
statement	such	as

				go	func()	{	for	{	dst	<-	<-src	}	}()

needs	no	semicolons.	Idiomatic	Go	programs	have	semicolons	only	in	places
such	as	for	loop	clauses,	to	separate	the	initializer,	condition,	and	continuation
elements.	They	are	also	necessary	to	separate	multiple	statements	on	a	line,
should	you	write	code	that	way.

One	caveat.	You	should	never	put	the	opening	brace	of	a	control	structure	(if,
for,	switch,	or	select)	on	the	next	line.	If	you	do,	a	semicolon	will	be	inserted
before	the	brace,	which	could	cause	unwanted	effects.	Write	them	like	this

if	i	<	f()	{

				g()

}

not	like	this

if	i	<	f()		//	wrong!

{											//	wrong!

				g()

}

Control	structures

The	control	structures	of	Go	are	related	to	those	of	C	but	differ	in	important
ways.	There	is	no	do	or	while	loop,	only	a	slightly	generalized	for;	switch	is
more	flexible;	if	and	switch	accept	an	optional	initialization	statement	like	that
of	for;	and	there	are	new	control	structures	including	a	type	switch	and	a
multiway	communications	multiplexer,	select.	The	syntax	is	also	slightly
different:	there	are	no	parentheses	and	the	bodies	must	always	be	brace-
delimited.

If

In	Go	a	simple	if	looks	like	this:

if	x	>	0	{

				return	y

}

Mandatory	braces	encourage	writing	simple	if	statements	on	multiple	lines.	It's
good	style	to	do	so	anyway,	especially	when	the	body	contains	a	control
statement	such	as	a	return	or	break.

Since	if	and	switch	accept	an	initialization	statement,	it's	common	to	see	one
used	to	set	up	a	local	variable.

if	err	:=	file.Chmod(0664);	err	!=	nil	{

				log.Print(err)

				return	err

}

In	the	Go	libraries,	you'll	find	that	when	an	if	statement	doesn't	flow	into	the
next	statement��that	is,	the	body	ends	in	break,	continue,	goto,	or
return��the	unnecessary	else	is	omitted.

f,	err	:=	os.Open(name)

if	err	!=	nil	{

				return	err

}

codeUsing(f)

This	is	an	example	of	a	common	situation	where	code	must	guard	against	a

sequence	of	error	conditions.	The	code	reads	well	if	the	successful	flow	of
control	runs	down	the	page,	eliminating	error	cases	as	they	arise.	Since	error
cases	tend	to	end	in	return	statements,	the	resulting	code	needs	no	else
statements.

f,	err	:=	os.Open(name)

if	err	!=	nil	{

				return	err

}

d,	err	:=	f.Stat()

if	err	!=	nil	{

				f.Close()

				return	err

}

codeUsing(f,	d)

Redeclaration

An	aside:	The	last	example	in	the	previous	section	demonstrates	a	detail	of	how
the	:=	short	declaration	form	works.	The	declaration	that	calls	os.Open	reads,

f,	err	:=	os.Open(name)

This	statement	declares	two	variables,	f	and	err.	A	few	lines	later,	the	call	to
f.Stat	reads,

d,	err	:=	f.Stat()

which	looks	as	if	it	declares	d	and	err.	Notice,	though,	that	err	appears	in	both
statements.	This	duplication	is	legal:	err	is	declared	by	the	first	statement,	but
only	re-assigned	in	the	second.	This	means	that	the	call	to	f.Stat	uses	the
existing	err	variable	declared	above,	and	just	gives	it	a	new	value.

In	a	:=	declaration	a	variable	v	may	appear	even	if	it	has	already	been	declared,
provided:

this	declaration	is	in	the	same	scope	as	the	existing	declaration	of	v	(if	v	is
already	declared	in	an	outer	scope,	the	declaration	will	create	a	new
variable),
the	corresponding	value	in	the	initialization	is	assignable	to	v,	and
there	is	at	least	one	other	variable	in	the	declaration	that	is	being	declared
anew.

This	unusual	property	is	pure	pragmatism,	making	it	easy	to	use	a	single	err
value,	for	example,	in	a	long	if-else	chain.	You'll	see	it	used	often.

For

The	Go	for	loop	is	similar	to—but	not	the	same	as—C's.	It	unifies	for	and
while	and	there	is	no	do-while.	There	are	three	forms,	only	one	of	which	has
semicolons.

//	Like	a	C	for

for	init;	condition;	post	{	}

//	Like	a	C	while

for	condition	{	}

//	Like	a	C	for(;;)

for	{	}

Short	declarations	make	it	easy	to	declare	the	index	variable	right	in	the	loop.

sum	:=	0

for	i	:=	0;	i	<	10;	i++	{

				sum	+=	i

}

If	you're	looping	over	an	array,	slice,	string,	or	map,	or	reading	from	a	channel,	a
range	clause	can	manage	the	loop.

for	key,	value	:=	range	oldMap	{

				newMap[key]	=	value

}

If	you	only	need	the	first	item	in	the	range	(the	key	or	index),	drop	the	second:

for	key	:=	range	m	{

				if	expired(key)	{

								delete(m,	key)

				}

}

If	you	only	need	the	second	item	in	the	range	(the	value),	use	the	blank
identifier,	an	underscore,	to	discard	the	first:

sum	:=	0

for	_,	value	:=	range	array	{

				sum	+=	value

}

For	strings,	the	range	does	more	work	for	you,	breaking	out	individual	Unicode
characters	by	parsing	the	UTF-8.	Erroneous	encodings	consume	one	byte	and
produce	the	replacement	rune	U+FFFD.	The	loop

for	pos,	char	:=	range	"�ձ��Z"	{
				fmt.Printf("character	%c	starts	at	byte	position	%d\n",	char,	pos)

}

prints

character	��	starts	at	byte	position	0
character	��	starts	at	byte	position	3
character	�Z	starts	at	byte	position	6

Finally,	Go	has	no	comma	operator	and	++	and	--	are	statements	not
expressions.	Thus	if	you	want	to	run	multiple	variables	in	a	for	you	should	use
parallel	assignment.

//	Reverse	a

for	i,	j	:=	0,	len(a)-1;	i	<	j;	i,	j	=	i+1,	j-1	{

				a[i],	a[j]	=	a[j],	a[i]

}

Switch

Go's	switch	is	more	general	than	C's.	The	expressions	need	not	be	constants	or
even	integers,	the	cases	are	evaluated	top	to	bottom	until	a	match	is	found,	and	if
the	switch	has	no	expression	it	switches	on	true.	It's	therefore	possible—and
idiomatic—to	write	an	if-else-if-else	chain	as	a	switch.

func	unhex(c	byte)	byte	{

				switch	{

				case	'0'	<=	c	&&	c	<=	'9':

								return	c	-	'0'

				case	'a'	<=	c	&&	c	<=	'f':

								return	c	-	'a'	+	10

				case	'A'	<=	c	&&	c	<=	'F':

								return	c	-	'A'	+	10

				}

				return	0

}

There	is	no	automatic	fall	through,	but	cases	can	be	presented	in	comma-
separated	lists.

func	shouldEscape(c	byte)	bool	{

				switch	c	{

				case	'	',	'?',	'&',	'=',	'#',	'+',	'%':

								return	true

				}

				return	false

}

Here's	a	comparison	routine	for	byte	arrays	that	uses	two	switch	statements:

//	Compare	returns	an	integer	comparing	the	two	byte	arrays,

//	lexicographically.

//	The	result	will	be	0	if	a	==	b,	-1	if	a	<	b,	and	+1	if	a	>	b

func	Compare(a,	b	[]byte)	int	{

				for	i	:=	0;	i	<	len(a)	&&	i	<	len(b);	i++	{

								switch	{

								case	a[i]	>	b[i]:

												return	1

								case	a[i]	<	b[i]:

												return	-1

								}

				}

				switch	{

				case	len(a)	<	len(b):

								return	-1

				case	len(a)	>	len(b):

								return	1

				}

				return	0

}

A	switch	can	also	be	used	to	discover	the	dynamic	type	of	an	interface	variable.
Such	a	type	switch	uses	the	syntax	of	a	type	assertion	with	the	keyword	type
inside	the	parentheses.	If	the	switch	declares	a	variable	in	the	expression,	the
variable	will	have	the	corresponding	type	in	each	clause.

switch	t	:=	interfaceValue.(type)	{

default:

				fmt.Printf("unexpected	type	%T",	t)		//	%T	prints	type

case	bool:

				fmt.Printf("boolean	%t\n",	t)

case	int:

				fmt.Printf("integer	%d\n",	t)

case	*bool:

				fmt.Printf("pointer	to	boolean	%t\n",	*t)

case	*int:

				fmt.Printf("pointer	to	integer	%d\n",	*t)

}

Functions

Multiple	return	values

One	of	Go's	unusual	features	is	that	functions	and	methods	can	return	multiple
values.	This	form	can	be	used	to	improve	on	a	couple	of	clumsy	idioms	in	C
programs:	in-band	error	returns	(such	as	-1	for	EOF)	and	modifying	an	argument.

In	C,	a	write	error	is	signaled	by	a	negative	count	with	the	error	code	secreted
away	in	a	volatile	location.	In	Go,	Write	can	return	a	count	and	an	error:	“Yes,
you	wrote	some	bytes	but	not	all	of	them	because	you	filled	the	device”.	The
signature	of	File.Write	in	package	os	is:

func	(file	*File)	Write(b	[]byte)	(n	int,	err	error)

and	as	the	documentation	says,	it	returns	the	number	of	bytes	written	and	a	non-
nil	error	when	n	!=	len(b).	This	is	a	common	style;	see	the	section	on	error
handling	for	more	examples.

A	similar	approach	obviates	the	need	to	pass	a	pointer	to	a	return	value	to
simulate	a	reference	parameter.	Here's	a	simple-minded	function	to	grab	a
number	from	a	position	in	a	byte	array,	returning	the	number	and	the	next
position.

func	nextInt(b	[]byte,	i	int)	(int,	int)	{

				for	;	i	<	len(b)	&&	!isDigit(b[i]);	i++	{

				}

				x	:=	0

				for	;	i	<	len(b)	&&	isDigit(b[i]);	i++	{

								x	=	x*10	+	int(b[i])-'0'

				}

				return	x,	i

}

You	could	use	it	to	scan	the	numbers	in	an	input	array	a	like	this:

				for	i	:=	0;	i	<	len(a);	{

								x,	i	=	nextInt(a,	i)

								fmt.Println(x)

				}

Named	result	parameters

The	return	or	result	"parameters"	of	a	Go	function	can	be	given	names	and	used
as	regular	variables,	just	like	the	incoming	parameters.	When	named,	they	are
initialized	to	the	zero	values	for	their	types	when	the	function	begins;	if	the
function	executes	a	return	statement	with	no	arguments,	the	current	values	of
the	result	parameters	are	used	as	the	returned	values.

The	names	are	not	mandatory	but	they	can	make	code	shorter	and	clearer:	they're
documentation.	If	we	name	the	results	of	nextInt	it	becomes	obvious	which
returned	int	is	which.

func	nextInt(b	[]byte,	pos	int)	(value,	nextPos	int)	{

Because	named	results	are	initialized	and	tied	to	an	unadorned	return,	they	can
simplify	as	well	as	clarify.	Here's	a	version	of	io.ReadFull	that	uses	them	well:

func	ReadFull(r	Reader,	buf	[]byte)	(n	int,	err	error)	{

				for	len(buf)	>	0	&&	err	==	nil	{

								var	nr	int

								nr,	err	=	r.Read(buf)

								n	+=	nr

								buf	=	buf[nr:]

				}

				return

}

Defer

Go's	defer	statement	schedules	a	function	call	(the	deferred	function)	to	be	run
immediately	before	the	function	executing	the	defer	returns.	It's	an	unusual	but
effective	way	to	deal	with	situations	such	as	resources	that	must	be	released
regardless	of	which	path	a	function	takes	to	return.	The	canonical	examples	are
unlocking	a	mutex	or	closing	a	file.

//	Contents	returns	the	file's	contents	as	a	string.

func	Contents(filename	string)	(string,	error)	{

				f,	err	:=	os.Open(filename)

				if	err	!=	nil	{

								return	"",	err

				}

				defer	f.Close()		//	f.Close	will	run	when	we're	finished.

				var	result	[]byte

				buf	:=	make([]byte,	100)

				for	{

								n,	err	:=	f.Read(buf[0:])

								result	=	append(result,	buf[0:n]...)	//	append	is	discussed	later.

								if	err	!=	nil	{

												if	err	==	io.EOF	{

																break

												}

												return	"",	err		//	f	will	be	closed	if	we	return	here.

								}

				}

				return	string(result),	nil	//	f	will	be	closed	if	we	return	here.

}

Deferring	a	call	to	a	function	such	as	Close	has	two	advantages.	First,	it
guarantees	that	you	will	never	forget	to	close	the	file,	a	mistake	that's	easy	to
make	if	you	later	edit	the	function	to	add	a	new	return	path.	Second,	it	means
that	the	close	sits	near	the	open,	which	is	much	clearer	than	placing	it	at	the	end
of	the	function.

The	arguments	to	the	deferred	function	(which	include	the	receiver	if	the
function	is	a	method)	are	evaluated	when	the	defer	executes,	not	when	the	call
executes.	Besides	avoiding	worries	about	variables	changing	values	as	the
function	executes,	this	means	that	a	single	deferred	call	site	can	defer	multiple
function	executions.	Here's	a	silly	example.

for	i	:=	0;	i	<	5;	i++	{

				defer	fmt.Printf("%d	",	i)

}

Deferred	functions	are	executed	in	LIFO	order,	so	this	code	will	cause	4	3	2	1
0	to	be	printed	when	the	function	returns.	A	more	plausible	example	is	a	simple
way	to	trace	function	execution	through	the	program.	We	could	write	a	couple	of
simple	tracing	routines	like	this:

func	trace(s	string)			{	fmt.Println("entering:",	s)	}

func	untrace(s	string)	{	fmt.Println("leaving:",	s)	}

//	Use	them	like	this:

func	a()	{

				trace("a")

				defer	untrace("a")

				//	do	something....

}

We	can	do	better	by	exploiting	the	fact	that	arguments	to	deferred	functions	are
evaluated	when	the	defer	executes.	The	tracing	routine	can	set	up	the	argument
to	the	untracing	routine.	This	example:

func	trace(s	string)	string	{

				fmt.Println("entering:",	s)

				return	s

}

func	un(s	string)	{

				fmt.Println("leaving:",	s)

}

func	a()	{

				defer	un(trace("a"))

				fmt.Println("in	a")

}

func	b()	{

				defer	un(trace("b"))

				fmt.Println("in	b")

				a()

}

func	main()	{

				b()

}

prints

entering:	b

in	b

entering:	a

in	a

leaving:	a

leaving:	b

For	programmers	accustomed	to	block-level	resource	management	from	other
languages,	defer	may	seem	peculiar,	but	its	most	interesting	and	powerful
applications	come	precisely	from	the	fact	that	it's	not	block-based	but	function-
based.	In	the	section	on	panic	and	recover	we'll	see	another	example	of	its
possibilities.

Data

Allocation	with	new

Go	has	two	allocation	primitives,	the	built-in	functions	new	and	make.	They	do
different	things	and	apply	to	different	types,	which	can	be	confusing,	but	the
rules	are	simple.	Let's	talk	about	new	first.	It's	a	built-in	function	that	allocates
memory,	but	unlike	its	namesakes	in	some	other	languages	it	does	not	initialize
the	memory,	it	only	zeros	it.	That	is,	new(T)	allocates	zeroed	storage	for	a	new
item	of	type	T	and	returns	its	address,	a	value	of	type	*T.	In	Go	terminology,	it
returns	a	pointer	to	a	newly	allocated	zero	value	of	type	T.

Since	the	memory	returned	by	new	is	zeroed,	it's	helpful	to	arrange	when
designing	your	data	structures	that	the	zero	value	of	each	type	can	be	used
without	further	initialization.	This	means	a	user	of	the	data	structure	can	create
one	with	new	and	get	right	to	work.	For	example,	the	documentation	for
bytes.Buffer	states	that	"the	zero	value	for	Buffer	is	an	empty	buffer	ready	to
use."	Similarly,	sync.Mutex	does	not	have	an	explicit	constructor	or	Init
method.	Instead,	the	zero	value	for	a	sync.Mutex	is	defined	to	be	an	unlocked
mutex.

The	zero-value-is-useful	property	works	transitively.	Consider	this	type
declaration.

type	SyncedBuffer	struct	{

				lock				sync.Mutex

				buffer		bytes.Buffer

}

Values	of	type	SyncedBuffer	are	also	ready	to	use	immediately	upon	allocation
or	just	declaration.	In	the	next	snippet,	both	p	and	v	will	work	correctly	without
further	arrangement.

p	:=	new(SyncedBuffer)		//	type	*SyncedBuffer

var	v	SyncedBuffer						//	type		SyncedBuffer

Constructors	and	composite	literals

Sometimes	the	zero	value	isn't	good	enough	and	an	initializing	constructor	is

necessary,	as	in	this	example	derived	from	package	os.

func	NewFile(fd	int,	name	string)	*File	{

				if	fd	<	0	{

								return	nil

				}

				f	:=	new(File)

				f.fd	=	fd

				f.name	=	name

				f.dirinfo	=	nil

				f.nepipe	=	0

				return	f

}

There's	a	lot	of	boiler	plate	in	there.	We	can	simplify	it	using	a	composite	literal,
which	is	an	expression	that	creates	a	new	instance	each	time	it	is	evaluated.

func	NewFile(fd	int,	name	string)	*File	{

				if	fd	<	0	{

								return	nil

				}

				f	:=	File{fd,	name,	nil,	0}

				return	&f

}

Note	that,	unlike	in	C,	it's	perfectly	OK	to	return	the	address	of	a	local	variable;
the	storage	associated	with	the	variable	survives	after	the	function	returns.	In
fact,	taking	the	address	of	a	composite	literal	allocates	a	fresh	instance	each	time
it	is	evaluated,	so	we	can	combine	these	last	two	lines.

				return	&File{fd,	name,	nil,	0}

The	fields	of	a	composite	literal	are	laid	out	in	order	and	must	all	be	present.
However,	by	labeling	the	elements	explicitly	as	field:value	pairs,	the	initializers
can	appear	in	any	order,	with	the	missing	ones	left	as	their	respective	zero
values.	Thus	we	could	say

				return	&File{fd:	fd,	name:	name}

As	a	limiting	case,	if	a	composite	literal	contains	no	fields	at	all,	it	creates	a	zero
value	for	the	type.	The	expressions	new(File)	and	&File{}	are	equivalent.

Composite	literals	can	also	be	created	for	arrays,	slices,	and	maps,	with	the	field
labels	being	indices	or	map	keys	as	appropriate.	In	these	examples,	the

initializations	work	regardless	of	the	values	of	Enone,	Eio,	and	Einval,	as	long
as	they	are	distinct.

a	:=	[...]string			{Enone:	"no	error",	Eio:	"Eio",	Einval:	"invalid	argument"}

s	:=	[]string						{Enone:	"no	error",	Eio:	"Eio",	Einval:	"invalid	argument"}

m	:=	map[int]string{Enone:	"no	error",	Eio:	"Eio",	Einval:	"invalid	argument"}

Allocation	with	make

Back	to	allocation.	The	built-in	function	make(T,	args)	serves	a	purpose
different	from	new(T).	It	creates	slices,	maps,	and	channels	only,	and	it	returns
an	initialized	(not	zeroed)	value	of	type	T	(not	*T).	The	reason	for	the	distinction
is	that	these	three	types	are,	under	the	covers,	references	to	data	structures	that
must	be	initialized	before	use.	A	slice,	for	example,	is	a	three-item	descriptor
containing	a	pointer	to	the	data	(inside	an	array),	the	length,	and	the	capacity,
and	until	those	items	are	initialized,	the	slice	is	nil.	For	slices,	maps,	and
channels,	make	initializes	the	internal	data	structure	and	prepares	the	value	for
use.	For	instance,

make([]int,	10,	100)

allocates	an	array	of	100	ints	and	then	creates	a	slice	structure	with	length	10	and
a	capacity	of	100	pointing	at	the	first	10	elements	of	the	array.	(When	making	a
slice,	the	capacity	can	be	omitted;	see	the	section	on	slices	for	more
information.)	In	contrast,	new([]int)	returns	a	pointer	to	a	newly	allocated,
zeroed	slice	structure,	that	is,	a	pointer	to	a	nil	slice	value.

These	examples	illustrate	the	difference	between	new	and	make.

var	p	*[]int	=	new([]int)							//	allocates	slice	structure;	*p	==	nil;	rarely	useful

var	v		[]int	=	make([]int,	100)	//	the	slice	v	now	refers	to	a	new	array	of	100	ints

//	Unnecessarily	complex:

var	p	*[]int	=	new([]int)

*p	=	make([]int,	100,	100)

//	Idiomatic:

v	:=	make([]int,	100)

Remember	that	make	applies	only	to	maps,	slices	and	channels	and	does	not
return	a	pointer.	To	obtain	an	explicit	pointer	allocate	with	new.

Arrays

Arrays	are	useful	when	planning	the	detailed	layout	of	memory	and	sometimes
can	help	avoid	allocation,	but	primarily	they	are	a	building	block	for	slices,	the
subject	of	the	next	section.	To	lay	the	foundation	for	that	topic,	here	are	a	few
words	about	arrays.

There	are	major	differences	between	the	ways	arrays	work	in	Go	and	C.	In	Go,

Arrays	are	values.	Assigning	one	array	to	another	copies	all	the	elements.
In	particular,	if	you	pass	an	array	to	a	function,	it	will	receive	a	copy	of	the
array,	not	a	pointer	to	it.
The	size	of	an	array	is	part	of	its	type.	The	types	[10]int	and	[20]int	are
distinct.

The	value	property	can	be	useful	but	also	expensive;	if	you	want	C-like	behavior
and	efficiency,	you	can	pass	a	pointer	to	the	array.

func	Sum(a	*[3]float64)	(sum	float64)	{

				for	_,	v	:=	range	*a	{

								sum	+=	v

				}

				return

}

array	:=	[...]float64{7.0,	8.5,	9.1}

x	:=	Sum(&array)		//	Note	the	explicit	address-of	operator

But	even	this	style	isn't	idiomatic	Go.	Slices	are.

Slices

Slices	wrap	arrays	to	give	a	more	general,	powerful,	and	convenient	interface	to
sequences	of	data.	Except	for	items	with	explicit	dimension	such	as
transformation	matrices,	most	array	programming	in	Go	is	done	with	slices
rather	than	simple	arrays.

Slices	are	reference	types,	which	means	that	if	you	assign	one	slice	to	another,
both	refer	to	the	same	underlying	array.	For	instance,	if	a	function	takes	a	slice
argument,	changes	it	makes	to	the	elements	of	the	slice	will	be	visible	to	the
caller,	analogous	to	passing	a	pointer	to	the	underlying	array.	A	Read	function

can	therefore	accept	a	slice	argument	rather	than	a	pointer	and	a	count;	the
length	within	the	slice	sets	an	upper	limit	of	how	much	data	to	read.	Here	is	the
signature	of	the	Read	method	of	the	File	type	in	package	os:

func	(file	*File)	Read(buf	[]byte)	(n	int,	err	error)

The	method	returns	the	number	of	bytes	read	and	an	error	value,	if	any.	To	read
into	the	first	32	bytes	of	a	larger	buffer	b,	slice	(here	used	as	a	verb)	the	buffer.

				n,	err	:=	f.Read(buf[0:32])

Such	slicing	is	common	and	efficient.	In	fact,	leaving	efficiency	aside	for	the
moment,	the	following	snippet	would	also	read	the	first	32	bytes	of	the	buffer.

				var	n	int

				var	err	error

				for	i	:=	0;	i	<	32;	i++	{

								nbytes,	e	:=	f.Read(buf[i:i+1])		//	Read	one	byte.

								if	nbytes	==	0	||	e	!=	nil	{

												err	=	e

												break

								}

								n	+=	nbytes

				}

The	length	of	a	slice	may	be	changed	as	long	as	it	still	fits	within	the	limits	of
the	underlying	array;	just	assign	it	to	a	slice	of	itself.	The	capacity	of	a	slice,
accessible	by	the	built-in	function	cap,	reports	the	maximum	length	the	slice
may	assume.	Here	is	a	function	to	append	data	to	a	slice.	If	the	data	exceeds	the
capacity,	the	slice	is	reallocated.	The	resulting	slice	is	returned.	The	function
uses	the	fact	that	len	and	cap	are	legal	when	applied	to	the	nil	slice,	and	return
0.

func	Append(slice,	data[]byte)	[]byte	{

				l	:=	len(slice)

				if	l	+	len(data)	>	cap(slice)	{		//	reallocate

								//	Allocate	double	what's	needed,	for	future	growth.

								newSlice	:=	make([]byte,	(l+len(data))*2)

								//	The	copy	function	is	predeclared	and	works	for	any	slice	type.

								copy(newSlice,	slice)

								slice	=	newSlice

				}

				slice	=	slice[0:l+len(data)]

				for	i,	c	:=	range	data	{

								slice[l+i]	=	c

				}

				return	slice

}

We	must	return	the	slice	afterwards	because,	although	Append	can	modify	the
elements	of	slice,	the	slice	itself	(the	run-time	data	structure	holding	the
pointer,	length,	and	capacity)	is	passed	by	value.

The	idea	of	appending	to	a	slice	is	so	useful	it's	captured	by	the	append	built-in
function.	To	understand	that	function's	design,	though,	we	need	a	little	more
information,	so	we'll	return	to	it	later.

Maps

Maps	are	a	convenient	and	powerful	built-in	data	structure	to	associate	values	of
different	types.	The	key	can	be	of	any	type	for	which	the	equality	operator	is
defined,	such	as	integers,	floating	point	and	complex	numbers,	strings,	pointers,
interfaces	(as	long	as	the	dynamic	type	supports	equality),	structs	and	arrays.
Slices	cannot	be	used	as	map	keys,	because	equality	is	not	defined	on	them.	Like
slices,	maps	are	a	reference	type.	If	you	pass	a	map	to	a	function	that	changes	the
contents	of	the	map,	the	changes	will	be	visible	in	the	caller.

Maps	can	be	constructed	using	the	usual	composite	literal	syntax	with	colon-
separated	key-value	pairs,	so	it's	easy	to	build	them	during	initialization.

var	timeZone	=	map[string]	int	{

				"UTC":		0*60*60,

				"EST":	-5*60*60,

				"CST":	-6*60*60,

				"MST":	-7*60*60,

				"PST":	-8*60*60,

}

Assigning	and	fetching	map	values	looks	syntactically	just	like	doing	the	same
for	arrays	except	that	the	index	doesn't	need	to	be	an	integer.

offset	:=	timeZone["EST"]

An	attempt	to	fetch	a	map	value	with	a	key	that	is	not	present	in	the	map	will
return	the	zero	value	for	the	type	of	the	entries	in	the	map.	For	instance,	if	the
map	contains	integers,	looking	up	a	non-existent	key	will	return	0.	A	set	can	be
implemented	as	a	map	with	value	type	bool.	Set	the	map	entry	to	true	to	put	the

value	in	the	set,	and	then	test	it	by	simple	indexing.

attended	:=	map[string]	bool	{

				"Ann":	true,

				"Joe":	true,

				...

}

if	attended[person]	{	//	will	be	false	if	person	is	not	in	the	map

				fmt.Println(person,	"was	at	the	meeting")

}

Sometimes	you	need	to	distinguish	a	missing	entry	from	a	zero	value.	Is	there	an
entry	for	"UTC"	or	is	that	zero	value	because	it's	not	in	the	map	at	all?	You	can
discriminate	with	a	form	of	multiple	assignment.

var	seconds	int

var	ok	bool

seconds,	ok	=	timeZone[tz]

For	obvious	reasons	this	is	called	the	“comma	ok”	idiom.	In	this	example,	if	tz
is	present,	seconds	will	be	set	appropriately	and	ok	will	be	true;	if	not,	seconds
will	be	set	to	zero	and	ok	will	be	false.	Here's	a	function	that	puts	it	together	with
a	nice	error	report:

func	offset(tz	string)	int	{

				if	seconds,	ok	:=	timeZone[tz];	ok	{

								return	seconds

				}

				log.Println("unknown	time	zone:",	tz)

				return	0

}

To	test	for	presence	in	the	map	without	worrying	about	the	actual	value,	you	can
use	the	blank	identifier	(_).	The	blank	identifier	can	be	assigned	or	declared	with
any	value	of	any	type,	with	the	value	discarded	harmlessly.	For	testing	just
presence	in	a	map,	use	the	blank	identifier	in	place	of	the	usual	variable	for	the
value.

_,	present	:=	timeZone[tz]

To	delete	a	map	entry,	use	the	delete	built-in	function,	whose	arguments	are	the
map	and	the	key	to	be	deleted.	It's	safe	to	do	this	this	even	if	the	key	is	already
absent	from	the	map.

delete(timeZone,	"PDT")		//	Now	on	Standard	Time

Printing

Formatted	printing	in	Go	uses	a	style	similar	to	C's	printf	family	but	is	richer
and	more	general.	The	functions	live	in	the	fmt	package	and	have	capitalized
names:	fmt.Printf,	fmt.Fprintf,	fmt.Sprintf	and	so	on.	The	string	functions
(Sprintf	etc.)	return	a	string	rather	than	filling	in	a	provided	buffer.

You	don't	need	to	provide	a	format	string.	For	each	of	Printf,	Fprintf	and
Sprintf	there	is	another	pair	of	functions,	for	instance	Print	and	Println.
These	functions	do	not	take	a	format	string	but	instead	generate	a	default	format
for	each	argument.	The	Println	versions	also	insert	a	blank	between	arguments
and	append	a	newline	to	the	output	while	the	Print	versions	add	blanks	only	if
the	operand	on	neither	side	is	a	string.	In	this	example	each	line	produces	the
same	output.

fmt.Printf("Hello	%d\n",	23)

fmt.Fprint(os.Stdout,	"Hello	",	23,	"\n")

fmt.Println("Hello",	23)

fmt.Println(fmt.Sprint("Hello	",	23))

As	mentioned	in	the	Tour,	fmt.Fprint	and	friends	take	as	a	first	argument	any
object	that	implements	the	io.Writer	interface;	the	variables	os.Stdout	and
os.Stderr	are	familiar	instances.

Here	things	start	to	diverge	from	C.	First,	the	numeric	formats	such	as	%d	do	not
take	flags	for	signedness	or	size;	instead,	the	printing	routines	use	the	type	of	the
argument	to	decide	these	properties.

var	x	uint64	=	1<<64	-	1

fmt.Printf("%d	%x;	%d	%x\n",	x,	x,	int64(x),	int64(x))

prints

18446744073709551615	ffffffffffffffff;	-1	-1

If	you	just	want	the	default	conversion,	such	as	decimal	for	integers,	you	can	use
the	catchall	format	%v	(for	“value”);	the	result	is	exactly	what	Print	and	Println
would	produce.	Moreover,	that	format	can	print	any	value,	even	arrays,	structs,
and	maps.	Here	is	a	print	statement	for	the	time	zone	map	defined	in	the

http://tour.golang.org

previous	section.

fmt.Printf("%v\n",	timeZone)		//	or	just	fmt.Println(timeZone)

which	gives	output

map[CST:-21600	PST:-28800	EST:-18000	UTC:0	MST:-25200]

For	maps	the	keys	may	be	output	in	any	order,	of	course.	When	printing	a	struct,
the	modified	format	%+v	annotates	the	fields	of	the	structure	with	their	names,
and	for	any	value	the	alternate	format	%#v	prints	the	value	in	full	Go	syntax.

type	T	struct	{

				a	int

				b	float64

				c	string

}

t	:=	&T{	7,	-2.35,	"abc\tdef"	}

fmt.Printf("%v\n",	t)

fmt.Printf("%+v\n",	t)

fmt.Printf("%#v\n",	t)

fmt.Printf("%#v\n",	timeZone)

prints

&{7	-2.35	abc			def}

&{a:7	b:-2.35	c:abc					def}

&main.T{a:7,	b:-2.35,	c:"abc\tdef"}

map[string]	int{"CST":-21600,	"PST":-28800,	"EST":-18000,	"UTC":0,	"MST":-25200}

(Note	the	ampersands.)	That	quoted	string	format	is	also	available	through	%q
when	applied	to	a	value	of	type	string	or	[]byte;	the	alternate	format	%#q	will
use	backquotes	instead	if	possible.	Also,	%x	works	on	strings	and	arrays	of	bytes
as	well	as	on	integers,	generating	a	long	hexadecimal	string,	and	with	a	space	in
the	format	(%	x)	it	puts	spaces	between	the	bytes.

Another	handy	format	is	%T,	which	prints	the	type	of	a	value.

fmt.Printf("%T\n",	timeZone)

prints

map[string]	int

If	you	want	to	control	the	default	format	for	a	custom	type,	all	that's	required	is
to	define	a	method	with	the	signature	String()	string	on	the	type.	For	our
simple	type	T,	that	might	look	like	this.

func	(t	*T)	String()	string	{

				return	fmt.Sprintf("%d/%g/%q",	t.a,	t.b,	t.c)

}

fmt.Printf("%v\n",	t)

to	print	in	the	format

7/-2.35/"abc\tdef"

(If	you	need	to	print	values	of	type	T	as	well	as	pointers	to	T,	the	receiver	for
String	must	be	of	value	type;	this	example	used	a	pointer	because	that's	more
efficient	and	idiomatic	for	struct	types.	See	the	section	below	on	pointers	vs.
value	receivers	for	more	information.)

Our	String	method	is	able	to	call	Sprintf	because	the	print	routines	are	fully
reentrant	and	can	be	used	recursively.	We	can	even	go	one	step	further	and	pass
a	print	routine's	arguments	directly	to	another	such	routine.	The	signature	of
Printf	uses	the	type	...interface{}	for	its	final	argument	to	specify	that	an
arbitrary	number	of	parameters	(of	arbitrary	type)	can	appear	after	the	format.

func	Printf(format	string,	v	...interface{})	(n	int,	err	error)	{

Within	the	function	Printf,	v	acts	like	a	variable	of	type	[]interface{}	but	if	it
is	passed	to	another	variadic	function,	it	acts	like	a	regular	list	of	arguments.
Here	is	the	implementation	of	the	function	log.Println	we	used	above.	It
passes	its	arguments	directly	to	fmt.Sprintln	for	the	actual	formatting.

//	Println	prints	to	the	standard	logger	in	the	manner	of	fmt.Println.

func	Println(v	...interface{})	{

				std.Output(2,	fmt.Sprintln(v...))		//	Output	takes	parameters	(int,	string)

}

We	write	...	after	v	in	the	nested	call	to	Sprintln	to	tell	the	compiler	to	treat	v
as	a	list	of	arguments;	otherwise	it	would	just	pass	v	as	a	single	slice	argument.

There's	even	more	to	printing	than	we've	covered	here.	See	the	godoc
documentation	for	package	fmt	for	the	details.

By	the	way,	a	...	parameter	can	be	of	a	specific	type,	for	instance	...int	for	a
min	function	that	chooses	the	least	of	a	list	of	integers:

func	Min(a	...int)	int	{

				min	:=	int(^uint(0)	>>	1)		//	largest	int

				for	_,	i	:=	range	a	{

								if	i	<	min	{

												min	=	i

								}

				}

				return	min

}

Append

Now	we	have	the	missing	piece	we	needed	to	explain	the	design	of	the	append
built-in	function.	The	signature	of	append	is	different	from	our	custom	Append
function	above.	Schematically,	it's	like	this:

func	append(slice	[]T,	elements...T)	[]T

where	T	is	a	placeholder	for	any	given	type.	You	can't	actually	write	a	function
in	Go	where	the	type	T	is	determined	by	the	caller.	That's	why	append	is	built	in:
it	needs	support	from	the	compiler.

What	append	does	is	append	the	elements	to	the	end	of	the	slice	and	return	the
result.	The	result	needs	to	be	returned	because,	as	with	our	hand-written	Append,
the	underlying	array	may	change.	This	simple	example

x	:=	[]int{1,2,3}

x	=	append(x,	4,	5,	6)

fmt.Println(x)

prints	[1	2	3	4	5	6].	So	append	works	a	little	like	Printf,	collecting	an
arbitrary	number	of	arguments.

But	what	if	we	wanted	to	do	what	our	Append	does	and	append	a	slice	to	a	slice?
Easy:	use	...	at	the	call	site,	just	as	we	did	in	the	call	to	Output	above.	This
snippet	produces	identical	output	to	the	one	above.

x	:=	[]int{1,2,3}

y	:=	[]int{4,5,6}

x	=	append(x,	y...)

fmt.Println(x)

Without	that	...,	it	wouldn't	compile	because	the	types	would	be	wrong;	y	is	not
of	type	int.

Initialization

Although	it	doesn't	look	superficially	very	different	from	initialization	in	C	or
C++,	initialization	in	Go	is	more	powerful.	Complex	structures	can	be	built
during	initialization	and	the	ordering	issues	between	initialized	objects	in
different	packages	are	handled	correctly.

Constants

Constants	in	Go	are	just	that—constant.	They	are	created	at	compile	time,	even
when	defined	as	locals	in	functions,	and	can	only	be	numbers,	strings	or
booleans.	Because	of	the	compile-time	restriction,	the	expressions	that	define
them	must	be	constant	expressions,	evaluatable	by	the	compiler.	For	instance,
1<<3	is	a	constant	expression,	while	math.Sin(math.Pi/4)	is	not	because	the
function	call	to	math.Sin	needs	to	happen	at	run	time.

In	Go,	enumerated	constants	are	created	using	the	iota	enumerator.	Since	iota
can	be	part	of	an	expression	and	expressions	can	be	implicitly	repeated,	it	is	easy
to	build	intricate	sets	of	values.

type	ByteSize	float64

const	(

				_											=	iota	//	ignore	first	value	by	assigning	to	blank	identifier

				KB	ByteSize	=	1	<<	(10	*	iota)

				MB

				GB

				TB

				PB

				EB

				ZB

				YB

)

The	ability	to	attach	a	method	such	as	String	to	a	type	makes	it	possible	for
such	values	to	format	themselves	automatically	for	printing,	even	as	part	of	a
general	type.

func	(b	ByteSize)	String()	string	{

				switch	{

				case	b	>=	YB:

								return	fmt.Sprintf("%.2fYB",	b/YB)

				case	b	>=	ZB:

								return	fmt.Sprintf("%.2fZB",	b/ZB)

				case	b	>=	EB:

								return	fmt.Sprintf("%.2fEB",	b/EB)

				case	b	>=	PB:

								return	fmt.Sprintf("%.2fPB",	b/PB)

				case	b	>=	TB:

								return	fmt.Sprintf("%.2fTB",	b/TB)

				case	b	>=	GB:

								return	fmt.Sprintf("%.2fGB",	b/GB)

				case	b	>=	MB:

								return	fmt.Sprintf("%.2fMB",	b/MB)

				case	b	>=	KB:

								return	fmt.Sprintf("%.2fKB",	b/KB)

				}

				return	fmt.Sprintf("%.2fB",	b)

}

The	expression	YB	prints	as	1.00YB,	while	ByteSize(1e13)	prints	as	9.09TB.

Note	that	it's	fine	to	call	Sprintf	and	friends	in	the	implementation	of	String
methods,	but	beware	of	recurring	into	the	String	method	through	the	nested
Sprintf	call	using	a	string	format	(%s,	%q,	%v,	%x	or	%X).	The	ByteSize
implementation	of	String	is	safe	because	it	calls	Sprintf	with	%f.

Variables

Variables	can	be	initialized	just	like	constants	but	the	initializer	can	be	a	general
expression	computed	at	run	time.

var	(

				HOME	=	os.Getenv("HOME")

				USER	=	os.Getenv("USER")

				GOROOT	=	os.Getenv("GOROOT")

)

The	init	function

Finally,	each	source	file	can	define	its	own	niladic	init	function	to	set	up
whatever	state	is	required.	(Actually	each	file	can	have	multiple	init	functions.)
And	finally	means	finally:	init	is	called	after	all	the	variable	declarations	in	the
package	have	evaluated	their	initializers,	and	those	are	evaluated	only	after	all
the	imported	packages	have	been	initialized.

Besides	initializations	that	cannot	be	expressed	as	declarations,	a	common	use	of
init	functions	is	to	verify	or	repair	correctness	of	the	program	state	before	real
execution	begins.

func	init()	{

				if	USER	==	""	{

								log.Fatal("$USER	not	set")

				}

				if	HOME	==	""	{

								HOME	=	"/usr/"	+	USER

				}

				if	GOROOT	==	""	{

								GOROOT	=	HOME	+	"/go"

				}

				//	GOROOT	may	be	overridden	by	--goroot	flag	on	command	line.

				flag.StringVar(&GOROOT,	"goroot",	GOROOT,	"Go	root	directory")

}

Methods

Pointers	vs.	Values

Methods	can	be	defined	for	any	named	type	that	is	not	a	pointer	or	an	interface;
the	receiver	does	not	have	to	be	a	struct.

In	the	discussion	of	slices	above,	we	wrote	an	Append	function.	We	can	define	it
as	a	method	on	slices	instead.	To	do	this,	we	first	declare	a	named	type	to	which
we	can	bind	the	method,	and	then	make	the	receiver	for	the	method	a	value	of
that	type.

type	ByteSlice	[]byte

func	(slice	ByteSlice)	Append(data	[]byte)	[]byte	{

				//	Body	exactly	the	same	as	above

}

This	still	requires	the	method	to	return	the	updated	slice.	We	can	eliminate	that
clumsiness	by	redefining	the	method	to	take	a	pointer	to	a	ByteSlice	as	its
receiver,	so	the	method	can	overwrite	the	caller's	slice.

func	(p	*ByteSlice)	Append(data	[]byte)	{

				slice	:=	*p

				//	Body	as	above,	without	the	return.

				*p	=	slice

}

In	fact,	we	can	do	even	better.	If	we	modify	our	function	so	it	looks	like	a
standard	Write	method,	like	this,

func	(p	*ByteSlice)	Write(data	[]byte)	(n	int,	err	error)	{

				slice	:=	*p

				//	Again	as	above.

				*p	=	slice

				return	len(data),	nil

}

then	the	type	*ByteSlice	satisfies	the	standard	interface	io.Writer,	which	is
handy.	For	instance,	we	can	print	into	one.

				var	b	ByteSlice

				fmt.Fprintf(&b,	"This	hour	has	%d	days\n",	7)

We	pass	the	address	of	a	ByteSlice	because	only	*ByteSlice	satisfies
io.Writer.	The	rule	about	pointers	vs.	values	for	receivers	is	that	value	methods
can	be	invoked	on	pointers	and	values,	but	pointer	methods	can	only	be	invoked
on	pointers.	This	is	because	pointer	methods	can	modify	the	receiver;	invoking
them	on	a	copy	of	the	value	would	cause	those	modifications	to	be	discarded.

By	the	way,	the	idea	of	using	Write	on	a	slice	of	bytes	is	implemented	by
bytes.Buffer.

Interfaces	and	other	types

Interfaces

Interfaces	in	Go	provide	a	way	to	specify	the	behavior	of	an	object:	if	something
can	do	this,	then	it	can	be	used	here.	We've	seen	a	couple	of	simple	examples
already;	custom	printers	can	be	implemented	by	a	String	method	while	Fprintf
can	generate	output	to	anything	with	a	Write	method.	Interfaces	with	only	one	or
two	methods	are	common	in	Go	code,	and	are	usually	given	a	name	derived
from	the	method,	such	as	io.Writer	for	something	that	implements	Write.

A	type	can	implement	multiple	interfaces.	For	instance,	a	collection	can	be
sorted	by	the	routines	in	package	sort	if	it	implements	sort.Interface,	which
contains	Len(),	Less(i,	j	int)	bool,	and	Swap(i,	j	int),	and	it	could	also
have	a	custom	formatter.	In	this	contrived	example	Sequence	satisfies	both.

type	Sequence	[]int

//	Methods	required	by	sort.Interface.

func	(s	Sequence)	Len()	int	{

				return	len(s)

}

func	(s	Sequence)	Less(i,	j	int)	bool	{

				return	s[i]	<	s[j]

}

func	(s	Sequence)	Swap(i,	j	int)	{

				s[i],	s[j]	=	s[j],	s[i]

}

//	Method	for	printing	-	sorts	the	elements	before	printing.

func	(s	Sequence)	String()	string	{

				sort.Sort(s)

				str	:=	"["

				for	i,	elem	:=	range	s	{

								if	i	>	0	{

												str	+=	"	"

								}

								str	+=	fmt.Sprint(elem)

				}

				return	str	+	"]"

}

Conversions

The	String	method	of	Sequence	is	recreating	the	work	that	Sprint	already	does
for	slices.	We	can	share	the	effort	if	we	convert	the	Sequence	to	a	plain	[]int
before	calling	Sprint.

func	(s	Sequence)	String()	string	{

				sort.Sort(s)

				return	fmt.Sprint([]int(s))

}

The	conversion	causes	s	to	be	treated	as	an	ordinary	slice	and	therefore	receive
the	default	formatting.	Without	the	conversion,	Sprint	would	find	the	String
method	of	Sequence	and	recur	indefinitely.	Because	the	two	types	(Sequence	and
[]int)	are	the	same	if	we	ignore	the	type	name,	it's	legal	to	convert	between
them.	The	conversion	doesn't	create	a	new	value,	it	just	temporarily	acts	as
though	the	existing	value	has	a	new	type.	(There	are	other	legal	conversions,
such	as	from	integer	to	floating	point,	that	do	create	a	new	value.)

It's	an	idiom	in	Go	programs	to	convert	the	type	of	an	expression	to	access	a
different	set	of	methods.	As	an	example,	we	could	use	the	existing	type
sort.IntSlice	to	reduce	the	entire	example	to	this:

type	Sequence	[]int

//	Method	for	printing	-	sorts	the	elements	before	printing

func	(s	Sequence)	String()	string	{

				sort.IntSlice(s).Sort()

				return	fmt.Sprint([]int(s))

}

Now,	instead	of	having	Sequence	implement	multiple	interfaces	(sorting	and
printing),	we're	using	the	ability	of	a	data	item	to	be	converted	to	multiple	types
(Sequence,	sort.IntSlice	and	[]int),	each	of	which	does	some	part	of	the	job.
That's	more	unusual	in	practice	but	can	be	effective.

Generality

If	a	type	exists	only	to	implement	an	interface	and	has	no	exported	methods
beyond	that	interface,	there	is	no	need	to	export	the	type	itself.	Exporting	just	the
interface	makes	it	clear	that	it's	the	behavior	that	matters,	not	the
implementation,	and	that	other	implementations	with	different	properties	can
mirror	the	behavior	of	the	original	type.	It	also	avoids	the	need	to	repeat	the
documentation	on	every	instance	of	a	common	method.

In	such	cases,	the	constructor	should	return	an	interface	value	rather	than	the
implementing	type.	As	an	example,	in	the	hash	libraries	both	crc32.NewIEEE
and	adler32.New	return	the	interface	type	hash.Hash32.	Substituting	the	CRC-
32	algorithm	for	Adler-32	in	a	Go	program	requires	only	changing	the
constructor	call;	the	rest	of	the	code	is	unaffected	by	the	change	of	algorithm.

A	similar	approach	allows	the	streaming	cipher	algorithms	in	the	various	crypto
packages	to	be	separated	from	the	block	ciphers	they	chain	together.	The	Block
interface	in	the	crypto/cipher	package	specifies	the	behavior	of	a	block	cipher,
which	provides	encryption	of	a	single	block	of	data.	Then,	by	analogy	with	the
bufio	package,	cipher	packages	that	implement	this	interface	can	be	used	to
construct	streaming	ciphers,	represented	by	the	Stream	interface,	without
knowing	the	details	of	the	block	encryption.

The	crypto/cipher	interfaces	look	like	this:

type	Block	interface	{

				BlockSize()	int

				Encrypt(src,	dst	[]byte)

				Decrypt(src,	dst	[]byte)

}

type	Stream	interface	{

				XORKeyStream(dst,	src	[]byte)

}

Here's	the	definition	of	the	counter	mode	(CTR)	stream,	which	turns	a	block
cipher	into	a	streaming	cipher;	notice	that	the	block	cipher's	details	are
abstracted	away:

//	NewCTR	returns	a	Stream	that	encrypts/decrypts	using	the	given	Block	in

//	counter	mode.	The	length	of	iv	must	be	the	same	as	the	Block's	block	size.

func	NewCTR(block	Block,	iv	[]byte)	Stream

NewCTR	applies	not	just	to	one	specific	encryption	algorithm	and	data	source	but
to	any	implementation	of	the	Block	interface	and	any	Stream.	Because	they
return	interface	values,	replacing	CTR	encryption	with	other	encryption	modes
is	a	localized	change.	The	constructor	calls	must	be	edited,	but	because	the
surrounding	code	must	treat	the	result	only	as	a	Stream,	it	won't	notice	the
difference.

Interfaces	and	methods

Since	almost	anything	can	have	methods	attached,	almost	anything	can	satisfy	an
interface.	One	illustrative	example	is	in	the	http	package,	which	defines	the
Handler	interface.	Any	object	that	implements	Handler	can	serve	HTTP
requests.

type	Handler	interface	{

				ServeHTTP(ResponseWriter,	*Request)

}

ResponseWriter	is	itself	an	interface	that	provides	access	to	the	methods	needed
to	return	the	response	to	the	client.	Those	methods	include	the	standard	Write
method,	so	an	http.ResponseWriter	can	be	used	wherever	an	io.Writer	can	be
used.	Request	is	a	struct	containing	a	parsed	representation	of	the	request	from
the	client.

For	brevity,	let's	ignore	POSTs	and	assume	HTTP	requests	are	always	GETs;	that
simplification	does	not	affect	the	way	the	handlers	are	set	up.	Here's	a	trivial	but
complete	implementation	of	a	handler	to	count	the	number	of	times	the	page	is
visited.

//	Simple	counter	server.

type	Counter	struct	{

				n	int

}

func	(ctr	*Counter)	ServeHTTP(w	http.ResponseWriter,	req	*http.Request)	{

				ctr.n++

				fmt.Fprintf(w,	"counter	=	%d\n",	ctr.n)

}

(Keeping	with	our	theme,	note	how	Fprintf	can	print	to	an
http.ResponseWriter.)	For	reference,	here's	how	to	attach	such	a	server	to	a
node	on	the	URL	tree.

import	"net/http"

...

ctr	:=	new(Counter)

http.Handle("/counter",	ctr)

But	why	make	Counter	a	struct?	An	integer	is	all	that's	needed.	(The	receiver
needs	to	be	a	pointer	so	the	increment	is	visible	to	the	caller.)

//	Simpler	counter	server.

type	Counter	int

func	(ctr	*Counter)	ServeHTTP(w	http.ResponseWriter,	req	*http.Request)	{

				*ctr++

				fmt.Fprintf(w,	"counter	=	%d\n",	*ctr)

}

What	if	your	program	has	some	internal	state	that	needs	to	be	notified	that	a
page	has	been	visited?	Tie	a	channel	to	the	web	page.

//	A	channel	that	sends	a	notification	on	each	visit.

//	(Probably	want	the	channel	to	be	buffered.)

type	Chan	chan	*http.Request

func	(ch	Chan)	ServeHTTP(w	http.ResponseWriter,	req	*http.Request)	{

				ch	<-	req

				fmt.Fprint(w,	"notification	sent")

}

Finally,	let's	say	we	wanted	to	present	on	/args	the	arguments	used	when
invoking	the	server	binary.	It's	easy	to	write	a	function	to	print	the	arguments.

func	ArgServer()	{

				for	_,	s	:=	range	os.Args	{

								fmt.Println(s)

				}

}

How	do	we	turn	that	into	an	HTTP	server?	We	could	make	ArgServer	a	method
of	some	type	whose	value	we	ignore,	but	there's	a	cleaner	way.	Since	we	can
define	a	method	for	any	type	except	pointers	and	interfaces,	we	can	write	a
method	for	a	function.	The	http	package	contains	this	code:

//	The	HandlerFunc	type	is	an	adapter	to	allow	the	use	of

//	ordinary	functions	as	HTTP	handlers.		If	f	is	a	function

//	with	the	appropriate	signature,	HandlerFunc(f)	is	a

//	Handler	object	that	calls	f.

type	HandlerFunc	func(ResponseWriter,	*Request)

//	ServeHTTP	calls	f(c,	req).

func	(f	HandlerFunc)	ServeHTTP(w	ResponseWriter,	req	*Request)	{

				f(w,	req)

}

HandlerFunc	is	a	type	with	a	method,	ServeHTTP,	so	values	of	that	type	can
serve	HTTP	requests.	Look	at	the	implementation	of	the	method:	the	receiver	is
a	function,	f,	and	the	method	calls	f.	That	may	seem	odd	but	it's	not	that

different	from,	say,	the	receiver	being	a	channel	and	the	method	sending	on	the
channel.

To	make	ArgServer	into	an	HTTP	server,	we	first	modify	it	to	have	the	right
signature.

//	Argument	server.

func	ArgServer(w	http.ResponseWriter,	req	*http.Request)	{

				for	_,	s	:=	range	os.Args	{

								fmt.Fprintln(w,	s)

				}

}

ArgServer	now	has	same	signature	as	HandlerFunc,	so	it	can	be	converted	to
that	type	to	access	its	methods,	just	as	we	converted	Sequence	to	IntSlice	to
access	IntSlice.Sort.	The	code	to	set	it	up	is	concise:

http.Handle("/args",	http.HandlerFunc(ArgServer))

When	someone	visits	the	page	/args,	the	handler	installed	at	that	page	has	value
ArgServer	and	type	HandlerFunc.	The	HTTP	server	will	invoke	the	method
ServeHTTP	of	that	type,	with	ArgServer	as	the	receiver,	which	will	in	turn	call
ArgServer	(via	the	invocation	f(c,	req)	inside	HandlerFunc.ServeHTTP).	The
arguments	will	then	be	displayed.

In	this	section	we	have	made	an	HTTP	server	from	a	struct,	an	integer,	a
channel,	and	a	function,	all	because	interfaces	are	just	sets	of	methods,	which
can	be	defined	for	(almost)	any	type.

Embedding

Go	does	not	provide	the	typical,	type-driven	notion	of	subclassing,	but	it	does
have	the	ability	to	“borrow”	pieces	of	an	implementation	by	embedding	types
within	a	struct	or	interface.

Interface	embedding	is	very	simple.	We've	mentioned	the	io.Reader	and
io.Writer	interfaces	before;	here	are	their	definitions.

type	Reader	interface	{

				Read(p	[]byte)	(n	int,	err	error)

}

type	Writer	interface	{

				Write(p	[]byte)	(n	int,	err	error)

}

The	io	package	also	exports	several	other	interfaces	that	specify	objects	that	can
implement	several	such	methods.	For	instance,	there	is	io.ReadWriter,	an
interface	containing	both	Read	and	Write.	We	could	specify	io.ReadWriter	by
listing	the	two	methods	explicitly,	but	it's	easier	and	more	evocative	to	embed
the	two	interfaces	to	form	the	new	one,	like	this:

//	ReadWriter	is	the	interface	that	combines	the	Reader	and	Writer	interfaces.

type	ReadWriter	interface	{

				Reader

				Writer

}

This	says	just	what	it	looks	like:	A	ReadWriter	can	do	what	a	Reader	does	and
what	a	Writer	does;	it	is	a	union	of	the	embedded	interfaces	(which	must	be
disjoint	sets	of	methods).	Only	interfaces	can	be	embedded	within	interfaces.

The	same	basic	idea	applies	to	structs,	but	with	more	far-reaching	implications.
The	bufio	package	has	two	struct	types,	bufio.Reader	and	bufio.Writer,	each
of	which	of	course	implements	the	analogous	interfaces	from	package	io.	And
bufio	also	implements	a	buffered	reader/writer,	which	it	does	by	combining	a
reader	and	a	writer	into	one	struct	using	embedding:	it	lists	the	types	within	the
struct	but	does	not	give	them	field	names.

//	ReadWriter	stores	pointers	to	a	Reader	and	a	Writer.

//	It	implements	io.ReadWriter.

type	ReadWriter	struct	{

				*Reader		//	*bufio.Reader

				*Writer		//	*bufio.Writer

}

The	embedded	elements	are	pointers	to	structs	and	of	course	must	be	initialized
to	point	to	valid	structs	before	they	can	be	used.	The	ReadWriter	struct	could	be
written	as

type	ReadWriter	struct	{

				reader	*Reader

				writer	*Writer

}

but	then	to	promote	the	methods	of	the	fields	and	to	satisfy	the	io	interfaces,	we
would	also	need	to	provide	forwarding	methods,	like	this:

func	(rw	*ReadWriter)	Read(p	[]byte)	(n	int,	err	error)	{

				return	rw.reader.Read(p)

}

By	embedding	the	structs	directly,	we	avoid	this	bookkeeping.	The	methods	of
embedded	types	come	along	for	free,	which	means	that	bufio.ReadWriter	not
only	has	the	methods	of	bufio.Reader	and	bufio.Writer,	it	also	satisfies	all
three	interfaces:	io.Reader,	io.Writer,	and	io.ReadWriter.

There's	an	important	way	in	which	embedding	differs	from	subclassing.	When
we	embed	a	type,	the	methods	of	that	type	become	methods	of	the	outer	type,
but	when	they	are	invoked	the	receiver	of	the	method	is	the	inner	type,	not	the
outer	one.	In	our	example,	when	the	Read	method	of	a	bufio.ReadWriter	is
invoked,	it	has	exactly	the	same	effect	as	the	forwarding	method	written	out
above;	the	receiver	is	the	reader	field	of	the	ReadWriter,	not	the	ReadWriter
itself.

Embedding	can	also	be	a	simple	convenience.	This	example	shows	an	embedded
field	alongside	a	regular,	named	field.

type	Job	struct	{

				Command	string

				*log.Logger

}

The	Job	type	now	has	the	Log,	Logf	and	other	methods	of	*log.Logger.	We
could	have	given	the	Logger	a	field	name,	of	course,	but	it's	not	necessary	to	do
so.	And	now,	once	initialized,	we	can	log	to	the	Job:

job.Log("starting	now...")

The	Logger	is	a	regular	field	of	the	struct	and	we	can	initialize	it	in	the	usual
way	with	a	constructor,

func	NewJob(command	string,	logger	*log.Logger)	*Job	{

				return	&Job{command,	logger}

}

or	with	a	composite	literal,

job	:=	&Job{command,	log.New(os.Stderr,	"Job:	",	log.Ldate)}

If	we	need	to	refer	to	an	embedded	field	directly,	the	type	name	of	the	field,
ignoring	the	package	qualifier,	serves	as	a	field	name.	If	we	needed	to	access	the
*log.Logger	of	a	Job	variable	job,	we	would	write	job.Logger.	This	would	be
useful	if	we	wanted	to	refine	the	methods	of	Logger.

func	(job	*Job)	Logf(format	string,	args	...interface{})	{

				job.Logger.Logf("%q:	%s",	job.Command,	fmt.Sprintf(format,	args...))

}

Embedding	types	introduces	the	problem	of	name	conflicts	but	the	rules	to
resolve	them	are	simple.	First,	a	field	or	method	X	hides	any	other	item	X	in	a
more	deeply	nested	part	of	the	type.	If	log.Logger	contained	a	field	or	method
called	Command,	the	Command	field	of	Job	would	dominate	it.

Second,	if	the	same	name	appears	at	the	same	nesting	level,	it	is	usually	an	error;
it	would	be	erroneous	to	embed	log.Logger	if	the	Job	struct	contained	another
field	or	method	called	Logger.	However,	if	the	duplicate	name	is	never
mentioned	in	the	program	outside	the	type	definition,	it	is	OK.	This	qualification
provides	some	protection	against	changes	made	to	types	embedded	from	outside;
there	is	no	problem	if	a	field	is	added	that	conflicts	with	another	field	in	another
subtype	if	neither	field	is	ever	used.

Concurrency

Share	by	communicating

Concurrent	programming	is	a	large	topic	and	there	is	space	only	for	some	Go-
specific	highlights	here.

Concurrent	programming	in	many	environments	is	made	difficult	by	the
subtleties	required	to	implement	correct	access	to	shared	variables.	Go
encourages	a	different	approach	in	which	shared	values	are	passed	around	on
channels	and,	in	fact,	never	actively	shared	by	separate	threads	of	execution.
Only	one	goroutine	has	access	to	the	value	at	any	given	time.	Data	races	cannot
occur,	by	design.	To	encourage	this	way	of	thinking	we	have	reduced	it	to	a
slogan:

Do	not	communicate	by	sharing	memory;	instead,	share	memory	by
communicating.

This	approach	can	be	taken	too	far.	Reference	counts	may	be	best	done	by
putting	a	mutex	around	an	integer	variable,	for	instance.	But	as	a	high-level
approach,	using	channels	to	control	access	makes	it	easier	to	write	clear,	correct
programs.

One	way	to	think	about	this	model	is	to	consider	a	typical	single-threaded
program	running	on	one	CPU.	It	has	no	need	for	synchronization	primitives.
Now	run	another	such	instance;	it	too	needs	no	synchronization.	Now	let	those
two	communicate;	if	the	communication	is	the	synchronizer,	there's	still	no	need
for	other	synchronization.	Unix	pipelines,	for	example,	fit	this	model	perfectly.
Although	Go's	approach	to	concurrency	originates	in	Hoare's	Communicating
Sequential	Processes	(CSP),	it	can	also	be	seen	as	a	type-safe	generalization	of
Unix	pipes.

Goroutines

They're	called	goroutines	because	the	existing	terms—threads,	coroutines,
processes,	and	so	on—convey	inaccurate	connotations.	A	goroutine	has	a	simple
model:	it	is	a	function	executing	concurrently	with	other	goroutines	in	the	same

address	space.	It	is	lightweight,	costing	little	more	than	the	allocation	of	stack
space.	And	the	stacks	start	small,	so	they	are	cheap,	and	grow	by	allocating	(and
freeing)	heap	storage	as	required.

Goroutines	are	multiplexed	onto	multiple	OS	threads	so	if	one	should	block,
such	as	while	waiting	for	I/O,	others	continue	to	run.	Their	design	hides	many	of
the	complexities	of	thread	creation	and	management.

Prefix	a	function	or	method	call	with	the	go	keyword	to	run	the	call	in	a	new
goroutine.	When	the	call	completes,	the	goroutine	exits,	silently.	(The	effect	is
similar	to	the	Unix	shell's	&	notation	for	running	a	command	in	the	background.)

go	list.Sort()		//	run	list.Sort	concurrently;	don't	wait	for	it.	

A	function	literal	can	be	handy	in	a	goroutine	invocation.

func	Announce(message	string,	delay	time.Duration)	{

				go	func()	{

								time.Sleep(delay)

								fmt.Println(message)

				}()		//	Note	the	parentheses	-	must	call	the	function.

}

In	Go,	function	literals	are	closures:	the	implementation	makes	sure	the	variables
referred	to	by	the	function	survive	as	long	as	they	are	active.

These	examples	aren't	too	practical	because	the	functions	have	no	way	of
signaling	completion.	For	that,	we	need	channels.

Channels

Like	maps,	channels	are	a	reference	type	and	are	allocated	with	make.	If	an
optional	integer	parameter	is	provided,	it	sets	the	buffer	size	for	the	channel.	The
default	is	zero,	for	an	unbuffered	or	synchronous	channel.

ci	:=	make(chan	int)												//	unbuffered	channel	of	integers

cj	:=	make(chan	int,	0)									//	unbuffered	channel	of	integers

cs	:=	make(chan	*os.File,	100)		//	buffered	channel	of	pointers	to	Files

Channels	combine	communication—the	exchange	of	a	value—with
synchronization—guaranteeing	that	two	calculations	(goroutines)	are	in	a	known
state.

There	are	lots	of	nice	idioms	using	channels.	Here's	one	to	get	us	started.	In	the
previous	section	we	launched	a	sort	in	the	background.	A	channel	can	allow	the
launching	goroutine	to	wait	for	the	sort	to	complete.

c	:=	make(chan	int)		//	Allocate	a	channel.

//	Start	the	sort	in	a	goroutine;	when	it	completes,	signal	on	the	channel.

go	func()	{

				list.Sort()

				c	<-	1		//	Send	a	signal;	value	does	not	matter.	

}()

doSomethingForAWhile()

<-c			//	Wait	for	sort	to	finish;	discard	sent	value.

Receivers	always	block	until	there	is	data	to	receive.	If	the	channel	is
unbuffered,	the	sender	blocks	until	the	receiver	has	received	the	value.	If	the
channel	has	a	buffer,	the	sender	blocks	only	until	the	value	has	been	copied	to
the	buffer;	if	the	buffer	is	full,	this	means	waiting	until	some	receiver	has
retrieved	a	value.

A	buffered	channel	can	be	used	like	a	semaphore,	for	instance	to	limit
throughput.	In	this	example,	incoming	requests	are	passed	to	handle,	which
sends	a	value	into	the	channel,	processes	the	request,	and	then	receives	a	value
from	the	channel.	The	capacity	of	the	channel	buffer	limits	the	number	of
simultaneous	calls	to	process.

var	sem	=	make(chan	int,	MaxOutstanding)

func	handle(r	*Request)	{

				sem	<-	1				//	Wait	for	active	queue	to	drain.

				process(r)		//	May	take	a	long	time.

				<-sem							//	Done;	enable	next	request	to	run.

}

func	Serve(queue	chan	*Request)	{

				for	{

								req	:=	<-queue

								go	handle(req)		//	Don't	wait	for	handle	to	finish.

				}

}

Here's	the	same	idea	implemented	by	starting	a	fixed	number	of	handle
goroutines	all	reading	from	the	request	channel.	The	number	of	goroutines	limits
the	number	of	simultaneous	calls	to	process.	This	Serve	function	also	accepts	a
channel	on	which	it	will	be	told	to	exit;	after	launching	the	goroutines	it	blocks

receiving	from	that	channel.

func	handle(queue	chan	*Request)	{

				for	r	:=	range	queue	{

								process(r)

				}

}

func	Serve(clientRequests	chan	*Request,	quit	chan	bool)	{

				//	Start	handlers

				for	i	:=	0;	i	<	MaxOutstanding;	i++	{

								go	handle(clientRequests)

				}

				<-quit		//	Wait	to	be	told	to	exit.

}

Channels	of	channels

One	of	the	most	important	properties	of	Go	is	that	a	channel	is	a	first-class	value
that	can	be	allocated	and	passed	around	like	any	other.	A	common	use	of	this
property	is	to	implement	safe,	parallel	demultiplexing.

In	the	example	in	the	previous	section,	handle	was	an	idealized	handler	for	a
request	but	we	didn't	define	the	type	it	was	handling.	If	that	type	includes	a
channel	on	which	to	reply,	each	client	can	provide	its	own	path	for	the	answer.
Here's	a	schematic	definition	of	type	Request.

type	Request	struct	{

				args								[]int

				f											func([]int)	int

				resultChan		chan	int

}

The	client	provides	a	function	and	its	arguments,	as	well	as	a	channel	inside	the
request	object	on	which	to	receive	the	answer.

func	sum(a	[]int)	(s	int)	{

				for	_,	v	:=	range	a	{

								s	+=	v

				}

				return

}

request	:=	&Request{[]int{3,	4,	5},	sum,	make(chan	int)}

//	Send	request

clientRequests	<-	request

//	Wait	for	response.

fmt.Printf("answer:	%d\n",	<-request.resultChan)

On	the	server	side,	the	handler	function	is	the	only	thing	that	changes.

func	handle(queue	chan	*Request)	{

				for	req	:=	range	queue	{

								req.resultChan	<-	req.f(req.args)

				}

}

There's	clearly	a	lot	more	to	do	to	make	it	realistic,	but	this	code	is	a	framework
for	a	rate-limited,	parallel,	non-blocking	RPC	system,	and	there's	not	a	mutex	in
sight.

Parallelization

Another	application	of	these	ideas	is	to	parallelize	a	calculation	across	multiple
CPU	cores.	If	the	calculation	can	be	broken	into	separate	pieces	that	can	execute
independently,	it	can	be	parallelized,	with	a	channel	to	signal	when	each	piece
completes.

Let's	say	we	have	an	expensive	operation	to	perform	on	a	vector	of	items,	and
that	the	value	of	the	operation	on	each	item	is	independent,	as	in	this	idealized
example.

type	Vector	[]float64

//	Apply	the	operation	to	v[i],	v[i+1]	...	up	to	v[n-1].

func	(v	Vector)	DoSome(i,	n	int,	u	Vector,	c	chan	int)	{

				for	;	i	<	n;	i++	{

								v[i]	+=	u.Op(v[i])

				}

				c	<-	1				//	signal	that	this	piece	is	done

}

We	launch	the	pieces	independently	in	a	loop,	one	per	CPU.	They	can	complete
in	any	order	but	it	doesn't	matter;	we	just	count	the	completion	signals	by
draining	the	channel	after	launching	all	the	goroutines.

const	NCPU	=	4		//	number	of	CPU	cores

func	(v	Vector)	DoAll(u	Vector)	{

				c	:=	make(chan	int,	NCPU)		//	Buffering	optional	but	sensible.

				for	i	:=	0;	i	<	NCPU;	i++	{

								go	v.DoSome(i*len(v)/NCPU,	(i+1)*len(v)/NCPU,	u,	c)

				}

				//	Drain	the	channel.

				for	i	:=	0;	i	<	NCPU;	i++	{

								<-c				//	wait	for	one	task	to	complete

				}

				//	All	done.

}

The	current	implementation	of	the	Go	runtime	will	not	parallelize	this	code	by
default.	It	dedicates	only	a	single	core	to	user-level	processing.	An	arbitrary
number	of	goroutines	can	be	blocked	in	system	calls,	but	by	default	only	one	can
be	executing	user-level	code	at	any	time.	It	should	be	smarter	and	one	day	it	will
be	smarter,	but	until	it	is	if	you	want	CPU	parallelism	you	must	tell	the	run-time
how	many	goroutines	you	want	executing	code	simultaneously.	There	are	two
related	ways	to	do	this.	Either	run	your	job	with	environment	variable
GOMAXPROCS	set	to	the	number	of	cores	to	use	or	import	the	runtime	package	and
call	runtime.GOMAXPROCS(NCPU).	A	helpful	value	might	be	runtime.NumCPU(),
which	reports	the	number	of	logical	CPUs	on	the	local	machine.	Again,	this
requirement	is	expected	to	be	retired	as	the	scheduling	and	run-time	improve.

A	leaky	buffer

The	tools	of	concurrent	programming	can	even	make	non-concurrent	ideas	easier
to	express.	Here's	an	example	abstracted	from	an	RPC	package.	The	client
goroutine	loops	receiving	data	from	some	source,	perhaps	a	network.	To	avoid
allocating	and	freeing	buffers,	it	keeps	a	free	list,	and	uses	a	buffered	channel	to
represent	it.	If	the	channel	is	empty,	a	new	buffer	gets	allocated.	Once	the
message	buffer	is	ready,	it's	sent	to	the	server	on	serverChan.

var	freeList	=	make(chan	*Buffer,	100)

var	serverChan	=	make(chan	*Buffer)

func	client()	{

				for	{

								var	b	*Buffer

								//	Grab	a	buffer	if	available;	allocate	if	not.

								select	{

								case	b	=	<-freeList:

												//	Got	one;	nothing	more	to	do.

								default:

												//	None	free,	so	allocate	a	new	one.

												b	=	new(Buffer)

								}

								load(b)														//	Read	next	message	from	the	net.

								serverChan	<-	b						//	Send	to	server.

				}

}

The	server	loop	receives	each	message	from	the	client,	processes	it,	and	returns
the	buffer	to	the	free	list.

func	server()	{

				for	{

								b	:=	<-serverChan				//	Wait	for	work.

								process(b)

								//	Reuse	buffer	if	there's	room.

								select	{

								case	freeList	<-	b:

												//	Buffer	on	free	list;	nothing	more	to	do.

								default:

												//	Free	list	full,	just	carry	on.

								}

				}

}

The	client	attempts	to	retrieve	a	buffer	from	freeList;	if	none	is	available,	it
allocates	a	fresh	one.	The	server's	send	to	freeList	puts	b	back	on	the	free	list
unless	the	list	is	full,	in	which	case	the	buffer	is	dropped	on	the	floor	to	be
reclaimed	by	the	garbage	collector.	(The	default	clauses	in	the	select
statements	execute	when	no	other	case	is	ready,	meaning	that	the	selects	never
block.)	This	implementation	builds	a	leaky	bucket	free	list	in	just	a	few	lines,
relying	on	the	buffered	channel	and	the	garbage	collector	for	bookkeeping.

Errors

Library	routines	must	often	return	some	sort	of	error	indication	to	the	caller.	As
mentioned	earlier,	Go's	multivalue	return	makes	it	easy	to	return	a	detailed	error
description	alongside	the	normal	return	value.	By	convention,	errors	have	type
error,	a	simple	built-in	interface.

type	error	interface	{

				Error()	string

}

A	library	writer	is	free	to	implement	this	interface	with	a	richer	model	under	the
covers,	making	it	possible	not	only	to	see	the	error	but	also	to	provide	some
context.	For	example,	os.Open	returns	an	os.PathError.

//	PathError	records	an	error	and	the	operation	and

//	file	path	that	caused	it.

type	PathError	struct	{

				Op	string				//	"open",	"unlink",	etc.

				Path	string		//	The	associated	file.

				Err	error				//	Returned	by	the	system	call.

}

func	(e	*PathError)	Error()	string	{

				return	e.Op	+	"	"	+	e.Path	+	":	"	+	e.Err.Error()

}

PathError's	Error	generates	a	string	like	this:

open	/etc/passwx:	no	such	file	or	directory

Such	an	error,	which	includes	the	problematic	file	name,	the	operation,	and	the
operating	system	error	it	triggered,	is	useful	even	if	printed	far	from	the	call	that
caused	it;	it	is	much	more	informative	than	the	plain	"no	such	file	or	directory".

When	feasible,	error	strings	should	identify	their	origin,	such	as	by	having	a
prefix	naming	the	package	that	generated	the	error.	For	example,	in	package
image,	the	string	representation	for	a	decoding	error	due	to	an	unknown	format	is
"image:	unknown	format".

Callers	that	care	about	the	precise	error	details	can	use	a	type	switch	or	a	type

assertion	to	look	for	specific	errors	and	extract	details.	For	PathErrors	this
might	include	examining	the	internal	Err	field	for	recoverable	failures.

for	try	:=	0;	try	<	2;	try++	{

				file,	err	=	os.Create(filename)

				if	err	==	nil	{

								return

				}

				if	e,	ok	:=	err.(*os.PathError);	ok	&&	e.Err	==	syscall.ENOSPC	{

								deleteTempFiles()		//	Recover	some	space.

								continue

				}

				return

}

The	second	if	statement	here	is	idiomatic	Go.	The	type	assertion	err.
(*os.PathError)	is	checked	with	the	"comma	ok"	idiom	(mentioned	earlier	in
the	context	of	examining	maps).	If	the	type	assertion	fails,	ok	will	be	false,	and	e
will	be	nil.	If	it	succeeds,	ok	will	be	true,	which	means	the	error	was	of	type
*os.PathError,	and	then	so	is	e,	which	we	can	examine	for	more	information
about	the	error.

Panic

The	usual	way	to	report	an	error	to	a	caller	is	to	return	an	error	as	an	extra
return	value.	The	canonical	Read	method	is	a	well-known	instance;	it	returns	a
byte	count	and	an	error.	But	what	if	the	error	is	unrecoverable?	Sometimes	the
program	simply	cannot	continue.

For	this	purpose,	there	is	a	built-in	function	panic	that	in	effect	creates	a	run-
time	error	that	will	stop	the	program	(but	see	the	next	section).	The	function
takes	a	single	argument	of	arbitrary	type—often	a	string—to	be	printed	as	the
program	dies.	It's	also	a	way	to	indicate	that	something	impossible	has	happened,
such	as	exiting	an	infinite	loop.	In	fact,	the	compiler	recognizes	a	panic	at	the
end	of	a	function	and	suppresses	the	usual	check	for	a	return	statement.

//	A	toy	implementation	of	cube	root	using	Newton's	method.

func	CubeRoot(x	float64)	float64	{

				z	:=	x/3			//	Arbitrary	initial	value

				for	i	:=	0;	i	<	1e6;	i++	{

								prevz	:=	z

								z	-=	(z*z*z-x)	/	(3*z*z)

								if	veryClose(z,	prevz)	{

												return	z

								}

				}

				//	A	million	iterations	has	not	converged;	something	is	wrong.

				panic(fmt.Sprintf("CubeRoot(%g)	did	not	converge",	x))

}

This	is	only	an	example	but	real	library	functions	should	avoid	panic.	If	the
problem	can	be	masked	or	worked	around,	it's	always	better	to	let	things
continue	to	run	rather	than	taking	down	the	whole	program.	One	possible
counterexample	is	during	initialization:	if	the	library	truly	cannot	set	itself	up,	it
might	be	reasonable	to	panic,	so	to	speak.

var	user	=	os.Getenv("USER")

func	init()	{

				if	user	==	""	{

								panic("no	value	for	$USER")

				}

}

Recover

When	panic	is	called,	including	implicitly	for	run-time	errors	such	as	indexing
an	array	out	of	bounds	or	failing	a	type	assertion,	it	immediately	stops	execution
of	the	current	function	and	begins	unwinding	the	stack	of	the	goroutine,	running
any	deferred	functions	along	the	way.	If	that	unwinding	reaches	the	top	of	the
goroutine's	stack,	the	program	dies.	However,	it	is	possible	to	use	the	built-in
function	recover	to	regain	control	of	the	goroutine	and	resume	normal
execution.

A	call	to	recover	stops	the	unwinding	and	returns	the	argument	passed	to	panic.
Because	the	only	code	that	runs	while	unwinding	is	inside	deferred	functions,
recover	is	only	useful	inside	deferred	functions.

One	application	of	recover	is	to	shut	down	a	failing	goroutine	inside	a	server
without	killing	the	other	executing	goroutines.

func	server(workChan	<-chan	*Work)	{

				for	work	:=	range	workChan	{

								go	safelyDo(work)

				}

}

func	safelyDo(work	*Work)	{

				defer	func()	{

								if	err	:=	recover();	err	!=	nil	{

												log.Println("work	failed:",	err)

								}

				}()

				do(work)

}

In	this	example,	if	do(work)	panics,	the	result	will	be	logged	and	the	goroutine
will	exit	cleanly	without	disturbing	the	others.	There's	no	need	to	do	anything
else	in	the	deferred	closure;	calling	recover	handles	the	condition	completely.

Because	recover	always	returns	nil	unless	called	directly	from	a	deferred
function,	deferred	code	can	call	library	routines	that	themselves	use	panic	and
recover	without	failing.	As	an	example,	the	deferred	function	in	safelyDo
might	call	a	logging	function	before	calling	recover,	and	that	logging	code
would	run	unaffected	by	the	panicking	state.

With	our	recovery	pattern	in	place,	the	do	function	(and	anything	it	calls)	can	get
out	of	any	bad	situation	cleanly	by	calling	panic.	We	can	use	that	idea	to
simplify	error	handling	in	complex	software.	Let's	look	at	an	idealized	excerpt
from	the	regexp	package,	which	reports	parsing	errors	by	calling	panic	with	a
local	error	type.	Here's	the	definition	of	Error,	an	error	method,	and	the
Compile	function.

//	Error	is	the	type	of	a	parse	error;	it	satisfies	the	error	interface.

type	Error	string

func	(e	Error)	Error()	string	{

				return	string(e)

}

//	error	is	a	method	of	*Regexp	that	reports	parsing	errors	by

//	panicking	with	an	Error.

func	(regexp	*Regexp)	error(err	string)	{

				panic(Error(err))

}

//	Compile	returns	a	parsed	representation	of	the	regular	expression.

func	Compile(str	string)	(regexp	*Regexp,	err	error)	{

				regexp	=	new(Regexp)

				//	doParse	will	panic	if	there	is	a	parse	error.

				defer	func()	{

								if	e	:=	recover();	e	!=	nil	{

												regexp	=	nil				//	Clear	return	value.

												err	=	e.(Error)	//	Will	re-panic	if	not	a	parse	error.

								}

				}()

				return	regexp.doParse(str),	nil

}

If	doParse	panics,	the	recovery	block	will	set	the	return	value	to	nil—deferred
functions	can	modify	named	return	values.	It	then	will	then	check,	in	the
assignment	to	err,	that	the	problem	was	a	parse	error	by	asserting	that	it	has	the
local	type	Error.	If	it	does	not,	the	type	assertion	will	fail,	causing	a	run-time
error	that	continues	the	stack	unwinding	as	though	nothing	had	interrupted	it.
This	check	means	that	if	something	unexpected	happens,	such	as	an	array	index
out	of	bounds,	the	code	will	fail	even	though	we	are	using	panic	and	recover	to
handle	user-triggered	errors.

With	error	handling	in	place,	the	error	method	makes	it	easy	to	report	parse
errors	without	worrying	about	unwinding	the	parse	stack	by	hand.

Useful	though	this	pattern	is,	it	should	be	used	only	within	a	package.	Parse
turns	its	internal	panic	calls	into	error	values;	it	does	not	expose	panics	to	its
client.	That	is	a	good	rule	to	follow.

By	the	way,	this	re-panic	idiom	changes	the	panic	value	if	an	actual	error	occurs.
However,	both	the	original	and	new	failures	will	be	presented	in	the	crash	report,
so	the	root	cause	of	the	problem	will	still	be	visible.	Thus	this	simple	re-panic
approach	is	usually	sufficient—it's	a	crash	after	all—but	if	you	want	to	display
only	the	original	value,	you	can	write	a	little	more	code	to	filter	unexpected
problems	and	re-panic	with	the	original	error.	That's	left	as	an	exercise	for	the
reader.

A	web	server

Let's	finish	with	a	complete	Go	program,	a	web	server.	This	one	is	actually	a
kind	of	web	re-server.	Google	provides	a	service	at	http://chart.apis.google.com
that	does	automatic	formatting	of	data	into	charts	and	graphs.	It's	hard	to	use
interactively,	though,	because	you	need	to	put	the	data	into	the	URL	as	a	query.
The	program	here	provides	a	nicer	interface	to	one	form	of	data:	given	a	short
piece	of	text,	it	calls	on	the	chart	server	to	produce	a	QR	code,	a	matrix	of	boxes
that	encode	the	text.	That	image	can	be	grabbed	with	your	cell	phone's	camera
and	interpreted	as,	for	instance,	a	URL,	saving	you	typing	the	URL	into	the
phone's	tiny	keyboard.

Here's	the	complete	program.	An	explanation	follows.

package	main

import	(

				"flag"

				"log"

				"net/http"

				"text/template"

)

var	addr	=	flag.String("addr",	":1718",	"http	service	address")	//	Q=17,	R=18

var	templ	=	template.Must(template.New("qr").Parse(templateStr))

func	main()	{

				flag.Parse()

				http.Handle("/",	http.HandlerFunc(QR))

				err	:=	http.ListenAndServe(*addr,	nil)

				if	err	!=	nil	{

								log.Fatal("ListenAndServe:",	err)

				}

}

func	QR(w	http.ResponseWriter,	req	*http.Request)	{

				templ.Execute(w,	req.FormValue("s"))

}

const	templateStr	=	`

<html>

<head>

<title>QR	Link	Generator</title>

http://chart.apis.google.com

</head>

<body>

{{if	.}}

{{html	.}}

{{end}}

<form	action="/"	name=f	method="GET"><input	maxLength=1024	size=70

name=s	value=""	title="Text	to	QR	Encode"><input	type=submit

value="Show	QR"	name=qr>

</form>

</body>

</html>

`

The	pieces	up	to	main	should	be	easy	to	follow.	The	one	flag	sets	a	default	HTTP
port	for	our	server.	The	template	variable	templ	is	where	the	fun	happens.	It
builds	an	HTML	template	that	will	be	executed	by	the	server	to	display	the	page;
more	about	that	in	a	moment.

The	main	function	parses	the	flags	and,	using	the	mechanism	we	talked	about
above,	binds	the	function	QR	to	the	root	path	for	the	server.	Then
http.ListenAndServe	is	called	to	start	the	server;	it	blocks	while	the	server
runs.

QR	just	receives	the	request,	which	contains	form	data,	and	executes	the	template
on	the	data	in	the	form	value	named	s.

The	template	package	is	powerful;	this	program	just	touches	on	its	capabilities.
In	essence,	it	rewrites	a	piece	of	text	on	the	fly	by	substituting	elements	derived
from	data	items	passed	to	templ.Execute,	in	this	case	the	form	value.	Within	the
template	text	(templateStr),	double-brace-delimited	pieces	denote	template
actions.	The	piece	from	{{if	.}}	to	{{end}}	executes	only	if	the	value	of	the
current	data	item,	called	.	(dot),	is	non-empty.	That	is,	when	the	string	is	empty,
this	piece	of	the	template	is	suppressed.

The	snippet	{{urlquery	.}}	says	to	process	the	data	with	the	function
urlquery,	which	sanitizes	the	query	string	for	safe	display	on	the	web	page.

The	rest	of	the	template	string	is	just	the	HTML	to	show	when	the	page	loads.	If
this	is	too	quick	an	explanation,	see	the	documentation	for	the	template	package

for	a	more	thorough	discussion.

And	there	you	have	it:	a	useful	web	server	in	a	few	lines	of	code	plus	some	data-
driven	HTML	text.	Go	is	powerful	enough	to	make	a	lot	happen	in	a	few	lines.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Command	go
Go	is	a	tool	for	managing	Go	source	code.

Usage:

go	command	[arguments]

The	commands	are:

build							compile	packages	and	dependencies

clean							remove	object	files

doc									run	godoc	on	package	sources

env									print	Go	environment	information

fix									run	go	tool	fix	on	packages

fmt									run	gofmt	on	package	sources

get									download	and	install	packages	and	dependencies

install					compile	and	install	packages	and	dependencies

list								list	packages

run									compile	and	run	Go	program

test								test	packages

tool								run	specified	go	tool

version					print	Go	version

vet									run	go	tool	vet	on	packages

Use	"go	help	[command]"	for	more	information	about	a	command.

Additional	help	topics:

gopath						GOPATH	environment	variable

packages				description	of	package	lists

remote						remote	import	path	syntax

testflag				description	of	testing	flags

testfunc				description	of	testing	functions

Use	"go	help	[topic]"	for	more	information	about	that	topic.

Compile	packages	and	dependencies

Usage:

go	build	[-o	output]	[build	flags]	[packages]

Build	compiles	the	packages	named	by	the	import	paths,	along	with	their
dependencies,	but	it	does	not	install	the	results.

If	the	arguments	are	a	list	of	.go	files,	build	treats	them	as	a	list	of	source	files
specifying	a	single	package.

When	the	command	line	specifies	a	single	main	package,	build	writes	the
resulting	executable	to	output.	Otherwise	build	compiles	the	packages	but
discards	the	results,	serving	only	as	a	check	that	the	packages	can	be	built.

The	-o	flag	specifies	the	output	file	name.	If	not	specified,	the	name	is
packagename.a	(for	a	non-main	package)	or	the	base	name	of	the	first	source	file
(for	a	main	package).

The	build	flags	are	shared	by	the	build,	install,	run,	and	test	commands:

-a

	 force	rebuilding	of	packages	that	are	already	up-to-date.

-n

	 print	the	commands	but	do	not	run	them.

-p	n

	 the	number	of	builds	that	can	be	run	in	parallel.

	 The	default	is	the	number	of	CPUs	available.

-v

	 print	the	names	of	packages	as	they	are	compiled.

-work

	 print	the	name	of	the	temporary	work	directory	and

	 do	not	delete	it	when	exiting.

-x

	 print	the	commands.

-compiler	name

	 name	of	compiler	to	use,	as	in	runtime.Compiler	(gccgo	or	gc)

-gccgoflags	'arg	list'

	 arguments	to	pass	on	each	gccgo	compiler/linker	invocation

-gcflags	'arg	list'

	 arguments	to	pass	on	each	5g,	6g,	or	8g	compiler	invocation

-ldflags	'flag	list'

	 arguments	to	pass	on	each	5l,	6l,	or	8l	linker	invocation

-tags	'tag	list'

	 a	list	of	build	tags	to	consider	satisfied	during	the	build.

	 See	the	documentation	for	the	go/build	package	for

	 more	information	about	build	tags.

For	more	about	specifying	packages,	see	'go	help	packages'.	For	more	about

where	packages	and	binaries	are	installed,	see	'go	help	gopath'.

See	also:	go	install,	go	get,	go	clean.

Remove	object	files

Usage:

go	clean	[-i]	[-r]	[-n]	[-x]	[packages]

Clean	removes	object	files	from	package	source	directories.	The	go	command
builds	most	objects	in	a	temporary	directory,	so	go	clean	is	mainly	concerned
with	object	files	left	by	other	tools	or	by	manual	invocations	of	go	build.

Specifically,	clean	removes	the	following	files	from	each	of	the	source
directories	corresponding	to	the	import	paths:

_obj/												old	object	directory,	left	from	Makefiles

_test/											old	test	directory,	left	from	Makefiles

_testmain.go					old	gotest	file,	left	from	Makefiles

test.out									old	test	log,	left	from	Makefiles

build.out								old	test	log,	left	from	Makefiles

*.[568ao]								object	files,	left	from	Makefiles

DIR(.exe)								from	go	build

DIR.test(.exe)			from	go	test	-c

MAINFILE(.exe)			from	go	build	MAINFILE.go

In	the	list,	DIR	represents	the	final	path	element	of	the	directory,	and
MAINFILE	is	the	base	name	of	any	Go	source	file	in	the	directory	that	is	not
included	when	building	the	package.

The	-i	flag	causes	clean	to	remove	the	corresponding	installed	archive	or	binary
(what	'go	install'	would	create).

The	-n	flag	causes	clean	to	print	the	remove	commands	it	would	execute,	but	not
run	them.

The	-r	flag	causes	clean	to	be	applied	recursively	to	all	the	dependencies	of	the
packages	named	by	the	import	paths.

The	-x	flag	causes	clean	to	print	remove	commands	as	it	executes	them.

For	more	about	specifying	packages,	see	'go	help	packages'.

Run	godoc	on	package	sources

Usage:

go	doc	[packages]

Doc	runs	the	godoc	command	on	the	packages	named	by	the	import	paths.

For	more	about	godoc,	see	'godoc	godoc'.	For	more	about	specifying	packages,
see	'go	help	packages'.

To	run	godoc	with	specific	options,	run	godoc	itself.

See	also:	go	fix,	go	fmt,	go	vet.

Print	Go	environment	information

Usage:

go	env	[var	...]

Env	prints	Go	environment	information.

By	default	env	prints	information	as	a	shell	script	(on	Windows,	a	batch	file).	If
one	or	more	variable	names	is	given	as	arguments,	env	prints	the	value	of	each
named	variable	on	its	own	line.

Run	go	tool	fix	on	packages

Usage:

go	fix	[packages]

Fix	runs	the	Go	fix	command	on	the	packages	named	by	the	import	paths.

For	more	about	fix,	see	'godoc	fix'.	For	more	about	specifying	packages,	see	'go
help	packages'.

To	run	fix	with	specific	options,	run	'go	tool	fix'.

See	also:	go	fmt,	go	vet.

Run	gofmt	on	package	sources

Usage:

go	fmt	[packages]

Fmt	runs	the	command	'gofmt	-l	-w'	on	the	packages	named	by	the	import	paths.
It	prints	the	names	of	the	files	that	are	modified.

For	more	about	gofmt,	see	'godoc	gofmt'.	For	more	about	specifying	packages,
see	'go	help	packages'.

To	run	gofmt	with	specific	options,	run	gofmt	itself.

See	also:	go	doc,	go	fix,	go	vet.

Download	and	install	packages	and	dependencies

Usage:

go	get	[-a]	[-d]	[-fix]	[-n]	[-p	n]	[-u]	[-v]	[-x]	[packages]

Get	downloads	and	installs	the	packages	named	by	the	import	paths,	along	with
their	dependencies.

The	-a,	-n,	-v,	-x,	and	-p	flags	have	the	same	meaning	as	in	'go	build'	and	'go
install'.	See	'go	help	build'.

The	-d	flag	instructs	get	to	stop	after	downloading	the	packages;	that	is,	it
instructs	get	not	to	install	the	packages.

The	-fix	flag	instructs	get	to	run	the	fix	tool	on	the	downloaded	packages	before
resolving	dependencies	or	building	the	code.

The	-u	flag	instructs	get	to	use	the	network	to	update	the	named	packages	and
their	dependencies.	By	default,	get	uses	the	network	to	check	out	missing

packages	but	does	not	use	it	to	look	for	updates	to	existing	packages.

When	checking	out	or	updating	a	package,	get	looks	for	a	branch	or	tag	that
matches	the	locally	installed	version	of	Go.	The	most	important	rule	is	that	if	the
local	installation	is	running	version	"go1",	get	searches	for	a	branch	or	tag
named	"go1".	If	no	such	version	exists	it	retrieves	the	most	recent	version	of	the
package.

For	more	about	specifying	packages,	see	'go	help	packages'.

For	more	about	how	'go	get'	finds	source	code	to	download,	see	'go	help	remote'.

See	also:	go	build,	go	install,	go	clean.

Compile	and	install	packages	and	dependencies

Usage:

go	install	[build	flags]	[packages]

Install	compiles	and	installs	the	packages	named	by	the	import	paths,	along	with
their	dependencies.

For	more	about	the	build	flags,	see	'go	help	build'.	For	more	about	specifying
packages,	see	'go	help	packages'.

See	also:	go	build,	go	get,	go	clean.

List	packages

Usage:

go	list	[-e]	[-f	format]	[-json]	[packages]

List	lists	the	packages	named	by	the	import	paths,	one	per	line.

The	default	output	shows	the	package	import	path:

code.google.com/p/google-api-go-client/books/v1

code.google.com/p/goauth2/oauth

code.google.com/p/sqlite

The	-f	flag	specifies	an	alternate	format	for	the	list,	using	the	syntax	of	package
template.	The	default	output	is	equivalent	to	-f	'{{.ImportPath}}'.	The	struct
being	passed	to	the	template	is:

type	Package	struct	{

				Dir								string	//	directory	containing	package	sources

				ImportPath	string	//	import	path	of	package	in	dir

				Name							string	//	package	name

				Doc								string	//	package	documentation	string

				Target					string	//	install	path

				Goroot					bool			//	is	this	package	in	the	Go	root?

				Standard			bool			//	is	this	package	part	of	the	standard	Go	library?

				Stale						bool			//	would	'go	install'	do	anything	for	this	package?

				Root							string	//	Go	root	or	Go	path	dir	containing	this	package

				//	Source	files

				GoFiles		[]string		//	.go	source	files	(excluding	CgoFiles,	TestGoFiles,	XTestGoFiles)

				CgoFiles	[]string		//	.go	sources	files	that	import	"C"

				CFiles			[]string		//	.c	source	files

				HFiles			[]string		//	.h	source	files

				SFiles			[]string		//	.s	source	files

				SysoFiles	[]string	//	.syso	object	files	to	add	to	archive

				//	Cgo	directives

				CgoCFLAGS				[]string	//	cgo:	flags	for	C	compiler

				CgoLDFLAGS			[]string	//	cgo:	flags	for	linker

				CgoPkgConfig	[]string	//	cgo:	pkg-config	names

				//	Dependency	information

				Imports	[]string	//	import	paths	used	by	this	package

				Deps				[]string	//	all	(recursively)	imported	dependencies

				//	Error	information

				Incomplete	bool												//	this	package	or	a	dependency	has	an	error

				Error						*PackageError			//	error	loading	package

				DepsErrors	[]*PackageError	//	errors	loading	dependencies

				TestGoFiles		[]string	//	_test.go	files	in	package

				TestImports		[]string	//	imports	from	TestGoFiles

				XTestGoFiles	[]string	//	_test.go	files	outside	package

				XTestImports	[]string	//	imports	from	XTestGoFiles

}

The	-json	flag	causes	the	package	data	to	be	printed	in	JSON	format	instead	of
using	the	template	format.

The	-e	flag	changes	the	handling	of	erroneous	packages,	those	that	cannot	be

found	or	are	malformed.	By	default,	the	list	command	prints	an	error	to	standard
error	for	each	erroneous	package	and	omits	the	packages	from	consideration
during	the	usual	printing.	With	the	-e	flag,	the	list	command	never	prints	errors
to	standard	error	and	instead	processes	the	erroneous	packages	with	the	usual
printing.	Erroneous	packages	will	have	a	non-empty	ImportPath	and	a	non-nil
Error	field;	other	information	may	or	may	not	be	missing	(zeroed).

For	more	about	specifying	packages,	see	'go	help	packages'.

Compile	and	run	Go	program

Usage:

go	run	[build	flags]	gofiles...	[arguments...]

Run	compiles	and	runs	the	main	package	comprising	the	named	Go	source	files.

For	more	about	build	flags,	see	'go	help	build'.

See	also:	go	build.

Test	packages

Usage:

go	test	[-c]	[-i]	[build	flags]	[packages]	[flags	for	test	binary]

'Go	test'	automates	testing	the	packages	named	by	the	import	paths.	It	prints	a
summary	of	the	test	results	in	the	format:

ok			archive/tar			0.011s

FAIL	archive/zip			0.022s

ok			compress/gzip	0.033s

...

followed	by	detailed	output	for	each	failed	package.

'Go	test'	recompiles	each	package	along	with	any	files	with	names	matching	the
file	pattern	"*_test.go".	These	additional	files	can	contain	test	functions,
benchmark	functions,	and	example	functions.	See	'go	help	testfunc'	for	more.

By	default,	go	test	needs	no	arguments.	It	compiles	and	tests	the	package	with
source	in	the	current	directory,	including	tests,	and	runs	the	tests.

The	package	is	built	in	a	temporary	directory	so	it	does	not	interfere	with	the
non-test	installation.

In	addition	to	the	build	flags,	the	flags	handled	by	'go	test'	itself	are:

-c		Compile	the	test	binary	to	pkg.test	but	do	not	run	it.

-i

				Install	packages	that	are	dependencies	of	the	test.

				Do	not	run	the	test.

The	test	binary	also	accepts	flags	that	control	execution	of	the	test;	these	flags
are	also	accessible	by	'go	test'.	See	'go	help	testflag'	for	details.

For	more	about	build	flags,	see	'go	help	build'.	For	more	about	specifying
packages,	see	'go	help	packages'.

See	also:	go	build,	go	vet.

Run	specified	go	tool

Usage:

go	tool	[-n]	command	[args...]

Tool	runs	the	go	tool	command	identified	by	the	arguments.	With	no	arguments
it	prints	the	list	of	known	tools.

The	-n	flag	causes	tool	to	print	the	command	that	would	be	executed	but	not
execute	it.

For	more	about	each	tool	command,	see	'go	tool	command	-h'.

Print	Go	version

Usage:

go	version

Version	prints	the	Go	version,	as	reported	by	runtime.Version.

Run	go	tool	vet	on	packages

Usage:

go	vet	[packages]

Vet	runs	the	Go	vet	command	on	the	packages	named	by	the	import	paths.

For	more	about	vet,	see	'godoc	vet'.	For	more	about	specifying	packages,	see	'go
help	packages'.

To	run	the	vet	tool	with	specific	options,	run	'go	tool	vet'.

See	also:	go	fmt,	go	fix.

GOPATH	environment	variable

The	Go	path	is	used	to	resolve	import	statements.	It	is	implemented	by	and
documented	in	the	go/build	package.

The	GOPATH	environment	variable	lists	places	to	look	for	Go	code.	On	Unix,
the	value	is	a	colon-separated	string.	On	Windows,	the	value	is	a	semicolon-
separated	string.	On	Plan	9,	the	value	is	a	list.

GOPATH	must	be	set	to	build	and	install	packages	outside	the	standard	Go	tree.

Each	directory	listed	in	GOPATH	must	have	a	prescribed	structure:

The	src/	directory	holds	source	code.	The	path	below	'src'	determines	the	import
path	or	executable	name.

The	pkg/	directory	holds	installed	package	objects.	As	in	the	Go	tree,	each	target
operating	system	and	architecture	pair	has	its	own	subdirectory	of	pkg
(pkg/GOOS_GOARCH).

If	DIR	is	a	directory	listed	in	the	GOPATH,	a	package	with	source	in
DIR/src/foo/bar	can	be	imported	as	"foo/bar"	and	has	its	compiled	form	installed
to	"DIR/pkg/GOOS_GOARCH/foo/bar.a".

The	bin/	directory	holds	compiled	commands.	Each	command	is	named	for	its
source	directory,	but	only	the	final	element,	not	the	entire	path.	That	is,	the
command	with	source	in	DIR/src/foo/quux	is	installed	into	DIR/bin/quux,	not
DIR/bin/foo/quux.	The	foo/	is	stripped	so	that	you	can	add	DIR/bin	to	your
PATH	to	get	at	the	installed	commands.	If	the	GOBIN	environment	variable	is
set,	commands	are	installed	to	the	directory	it	names	instead	of	DIR/bin.

Here's	an	example	directory	layout:

GOPATH=/home/user/gocode

/home/user/gocode/

				src/

								foo/

												bar/															(go	code	in	package	bar)

																x.go

												quux/														(go	code	in	package	main)

																y.go

				bin/

								quux																			(installed	command)

				pkg/

								linux_amd64/

												foo/

																bar.a										(installed	package	object)

Go	searches	each	directory	listed	in	GOPATH	to	find	source	code,	but	new
packages	are	always	downloaded	into	the	first	directory	in	the	list.

Description	of	package	lists

Many	commands	apply	to	a	set	of	packages:

go	action	[packages]

Usually,	[packages]	is	a	list	of	import	paths.

An	import	path	that	is	a	rooted	path	or	that	begins	with	a	.	or	..	element	is
interpreted	as	a	file	system	path	and	denotes	the	package	in	that	directory.

Otherwise,	the	import	path	P	denotes	the	package	found	in	the	directory
DIR/src/P	for	some	DIR	listed	in	the	GOPATH	environment	variable	(see	'go
help	gopath').

If	no	import	paths	are	given,	the	action	applies	to	the	package	in	the	current
directory.

The	special	import	path	"all"	expands	to	all	package	directories	found	in	all	the
GOPATH	trees.	For	example,	'go	list	all'	lists	all	the	packages	on	the	local
system.

The	special	import	path	"std"	is	like	all	but	expands	to	just	the	packages	in	the
standard	Go	library.

An	import	path	is	a	pattern	if	it	includes	one	or	more	"..."	wildcards,	each	of
which	can	match	any	string,	including	the	empty	string	and	strings	containing
slashes.	Such	a	pattern	expands	to	all	package	directories	found	in	the	GOPATH
trees	with	names	matching	the	patterns.	As	a	special	case,	x/...	matches	x	as	well
as	x's	subdirectories.	For	example,	net/...	expands	to	net	and	packages	in	its
subdirectories.

An	import	path	can	also	name	a	package	to	be	downloaded	from	a	remote
repository.	Run	'go	help	remote'	for	details.

Every	package	in	a	program	must	have	a	unique	import	path.	By	convention,	this
is	arranged	by	starting	each	path	with	a	unique	prefix	that	belongs	to	you.	For
example,	paths	used	internally	at	Google	all	begin	with	'google',	and	paths
denoting	remote	repositories	begin	with	the	path	to	the	code,	such	as
'code.google.com/p/project'.

As	a	special	case,	if	the	package	list	is	a	list	of	.go	files	from	a	single	directory,
the	command	is	applied	to	a	single	synthesized	package	made	up	of	exactly
those	files,	ignoring	any	build	constraints	in	those	files	and	ignoring	any	other
files	in	the	directory.

Remote	import	path	syntax

An	import	path	(see	'go	help	importpath')	denotes	a	package	stored	in	the	local
file	system.	Certain	import	paths	also	describe	how	to	obtain	the	source	code	for
the	package	using	a	revision	control	system.

A	few	common	code	hosting	sites	have	special	syntax:

BitBucket	(Mercurial)

	 import	"bitbucket.org/user/project"

	 import	"bitbucket.org/user/project/sub/directory"

GitHub	(Git)

	 import	"github.com/user/project"

	 import	"github.com/user/project/sub/directory"

Google	Code	Project	Hosting	(Git,	Mercurial,	Subversion)

	 import	"code.google.com/p/project"

	 import	"code.google.com/p/project/sub/directory"

	 import	"code.google.com/p/project.subrepository"

	 import	"code.google.com/p/project.subrepository/sub/directory"

Launchpad	(Bazaar)

	 import	"launchpad.net/project"

	 import	"launchpad.net/project/series"

	 import	"launchpad.net/project/series/sub/directory"

	 import	"launchpad.net/~user/project/branch"

	 import	"launchpad.net/~user/project/branch/sub/directory"

For	code	hosted	on	other	servers,	import	paths	may	either	be	qualified	with	the
version	control	type,	or	the	go	tool	can	dynamically	fetch	the	import	path	over
https/http	and	discover	where	the	code	resides	from	a	<meta>	tag	in	the	HTML.

To	declare	the	code	location,	an	import	path	of	the	form

repository.vcs/path

specifies	the	given	repository,	with	or	without	the	.vcs	suffix,	using	the	named
version	control	system,	and	then	the	path	inside	that	repository.	The	supported
version	control	systems	are:

Bazaar						.bzr

Git									.git

Mercurial			.hg

Subversion		.svn

For	example,

import	"example.org/user/foo.hg"

denotes	the	root	directory	of	the	Mercurial	repository	at	example.org/user/foo	or
foo.hg,	and

import	"example.org/repo.git/foo/bar"

denotes	the	foo/bar	directory	of	the	Git	repository	at	example.com/repo	or
repo.git.

When	a	version	control	system	supports	multiple	protocols,	each	is	tried	in	turn
when	downloading.	For	example,	a	Git	download	tries	git://,	then	https://,	then
http://.

If	the	import	path	is	not	a	known	code	hosting	site	and	also	lacks	a	version
control	qualifier,	the	go	tool	attempts	to	fetch	the	import	over	https/http	and
looks	for	a	<meta>	tag	in	the	document's	HTML	<head>.

The	meta	tag	has	the	form:

<meta	name="go-import"	content="import-prefix	vcs	repo-root">

The	import-prefix	is	the	import	path	correponding	to	the	repository	root.	It	must
be	a	prefix	or	an	exact	match	of	the	package	being	fetched	with	"go	get".	If	it's
not	an	exact	match,	another	http	request	is	made	at	the	prefix	to	verify	the
<meta>	tags	match.

The	vcs	is	one	of	"git",	"hg",	"svn",	etc,

The	repo-root	is	the	root	of	the	version	control	system	containing	a	scheme	and
not	containing	a	.vcs	qualifier.

For	example,

import	"example.org/pkg/foo"

will	result	in	the	following	request(s):

https://example.org/pkg/foo?go-get=1	(preferred)

http://example.org/pkg/foo?go-get=1		(fallback)

If	that	page	contains	the	meta	tag

<meta	name="go-import"	content="example.org	git	https://code.org/r/p/exproj

https://example.org/pkg/foo?go-get=1
http://example.org/pkg/foo?go-get=1
https://code.org/r/p/exproj

the	go	tool	will	verify	that	https://example.org/?go-get=1	contains	the	same	meta
tag	and	then	git	clone	https://code.org/r/p/exproj	into	GOPATH/src/example.org.

New	downloaded	packages	are	written	to	the	first	directory	listed	in	the
GOPATH	environment	variable	(see	'go	help	gopath').

The	go	command	attempts	to	download	the	version	of	the	package	appropriate
for	the	Go	release	being	used.	Run	'go	help	install'	for	more.

Description	of	testing	flags

The	'go	test'	command	takes	both	flags	that	apply	to	'go	test'	itself	and	flags	that
apply	to	the	resulting	test	binary.

The	test	binary,	called	pkg.test,	where	pkg	is	the	name	of	the	directory
containing	the	package	sources,	has	its	own	flags:

-test.v

				Verbose	output:	log	all	tests	as	they	are	run.

-test.run	pattern

				Run	only	those	tests	and	examples	matching	the	regular

				expression.

-test.bench	pattern

				Run	benchmarks	matching	the	regular	expression.

				By	default,	no	benchmarks	run.

-test.cpuprofile	cpu.out

				Write	a	CPU	profile	to	the	specified	file	before	exiting.

-test.memprofile	mem.out

				Write	a	memory	profile	to	the	specified	file	when	all	tests

				are	complete.

-test.memprofilerate	n

				Enable	more	precise	(and	expensive)	memory	profiles	by	setting

				runtime.MemProfileRate.		See	'godoc	runtime	MemProfileRate'.

				To	profile	all	memory	allocations,	use	-test.memprofilerate=1

				and	set	the	environment	variable	GOGC=off	to	disable	the

				garbage	collector,	provided	the	test	can	run	in	the	available

				memory	without	garbage	collection.

-test.parallel	n

				Allow	parallel	execution	of	test	functions	that	call	t.Parallel.

https://example.org/?go-get=1
https://code.org/r/p/exproj

				The	value	of	this	flag	is	the	maximum	number	of	tests	to	run

				simultaneously;	by	default,	it	is	set	to	the	value	of	GOMAXPROCS.

-test.short

				Tell	long-running	tests	to	shorten	their	run	time.

				It	is	off	by	default	but	set	during	all.bash	so	that	installing

				the	Go	tree	can	run	a	sanity	check	but	not	spend	time	running

				exhaustive	tests.

-test.timeout	t

	 If	a	test	runs	longer	than	t,	panic.

-test.benchtime	n

	 Run	enough	iterations	of	each	benchmark	to	take	n	seconds.

	 The	default	is	1	second.

-test.cpu	1,2,4

				Specify	a	list	of	GOMAXPROCS	values	for	which	the	tests	or

				benchmarks	should	be	executed.		The	default	is	the	current	value

				of	GOMAXPROCS.

For	convenience,	each	of	these	-test.X	flags	of	the	test	binary	is	also	available	as
the	flag	-X	in	'go	test'	itself.	Flags	not	listed	here	are	passed	through	unaltered.
For	instance,	the	command

go	test	-x	-v	-cpuprofile=prof.out	-dir=testdata	-update

will	compile	the	test	binary	and	then	run	it	as

pkg.test	-test.v	-test.cpuprofile=prof.out	-dir=testdata	-update

Description	of	testing	functions

The	'go	test'	command	expects	to	find	test,	benchmark,	and	example	functions	in
the	"*_test.go"	files	corresponding	to	the	package	under	test.

A	test	function	is	one	named	TestXXX	(where	XXX	is	any	alphanumeric	string
not	starting	with	a	lower	case	letter)	and	should	have	the	signature,

func	TestXXX(t	*testing.T)	{	...	}

A	benchmark	function	is	one	named	BenchmarkXXX	and	should	have	the
signature,

func	BenchmarkXXX(b	*testing.B)	{	...	}

An	example	function	is	similar	to	a	test	function	but,	instead	of	using	*testing.T
to	report	success	or	failure,	prints	output	to	os.Stdout	and	os.Stderr.	That	output
is	compared	against	the	function's	"Output:"	comment,	which	must	be	the	last
comment	in	the	function	body	(see	example	below).	An	example	with	no	such
comment,	or	with	no	text	after	"Output:"	is	compiled	but	not	executed.

Godoc	displays	the	body	of	ExampleXXX	to	demonstrate	the	use	of	the
function,	constant,	or	variable	XXX.	An	example	of	a	method	M	with	receiver
type	T	or	*T	is	named	ExampleT_M.	There	may	be	multiple	examples	for	a
given	function,	constant,	or	variable,	distinguished	by	a	trailing	_xxx,	where	xxx
is	a	suffix	not	beginning	with	an	upper	case	letter.

Here	is	an	example	of	an	example:

func	ExamplePrintln()	{

	 Println("The	output	of\nthis	example.")

	 //	Output:	The	output	of

	 //	this	example.

}

The	entire	test	file	is	presented	as	the	example	when	it	contains	a	single	example
function,	at	least	one	other	function,	type,	variable,	or	constant	declaration,	and
no	test	or	benchmark	functions.

See	the	documentation	of	the	testing	package	for	more	information.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

FAQ

Origins

What	is	the	purpose	of	the	project?

No	major	systems	language	has	emerged	in	over	a	decade,	but	over	that	time	the
computing	landscape	has	changed	tremendously.	There	are	several	trends:

Computers	are	enormously	quicker	but	software	development	is	not	faster.
Dependency	management	is	a	big	part	of	software	development	today	but
the	“header	files”	of	languages	in	the	C	tradition	are	antithetical	to	clean
dependency	analysis—and	fast	compilation.
There	is	a	growing	rebellion	against	cumbersome	type	systems	like	those	of
Java	and	C++,	pushing	people	towards	dynamically	typed	languages	such
as	Python	and	JavaScript.
Some	fundamental	concepts	such	as	garbage	collection	and	parallel
computation	are	not	well	supported	by	popular	systems	languages.
The	emergence	of	multicore	computers	has	generated	worry	and	confusion.

We	believe	it's	worth	trying	again	with	a	new	language,	a	concurrent,	garbage-
collected	language	with	fast	compilation.	Regarding	the	points	above:

It	is	possible	to	compile	a	large	Go	program	in	a	few	seconds	on	a	single
computer.
Go	provides	a	model	for	software	construction	that	makes	dependency
analysis	easy	and	avoids	much	of	the	overhead	of	C-style	include	files	and
libraries.
Go's	type	system	has	no	hierarchy,	so	no	time	is	spent	defining	the
relationships	between	types.	Also,	although	Go	has	static	types	the
language	attempts	to	make	types	feel	lighter	weight	than	in	typical	OO
languages.
Go	is	fully	garbage-collected	and	provides	fundamental	support	for
concurrent	execution	and	communication.
By	its	design,	Go	proposes	an	approach	for	the	construction	of	system
software	on	multicore	machines.

What	is	the	origin	of	the	name?

“Ogle”	would	be	a	good	name	for	a	Go	debugger.

What's	the	origin	of	the	mascot?

The	mascot	and	logo	were	designed	by	Ren��e	French,	who	also	designed
Glenda,	the	Plan	9	bunny.	The	gopher	is	derived	from	one	she	used	for	an
WFMU	T-shirt	design	some	years	ago.	The	logo	and	mascot	are	covered	by	the
Creative	Commons	Attribution	3.0	license.

What	is	the	history	of	the	project?

Robert	Griesemer,	Rob	Pike	and	Ken	Thompson	started	sketching	the	goals	for	a
new	language	on	the	white	board	on	September	21,	2007.	Within	a	few	days	the
goals	had	settled	into	a	plan	to	do	something	and	a	fair	idea	of	what	it	would	be.
Design	continued	part-time	in	parallel	with	unrelated	work.	By	January	2008,
Ken	had	started	work	on	a	compiler	with	which	to	explore	ideas;	it	generated	C
code	as	its	output.	By	mid-year	the	language	had	become	a	full-time	project	and
had	settled	enough	to	attempt	a	production	compiler.	In	May	2008,	Ian	Taylor
independently	started	on	a	GCC	front	end	for	Go	using	the	draft	specification.
Russ	Cox	joined	in	late	2008	and	helped	move	the	language	and	libraries	from
prototype	to	reality.

Go	became	a	public	open	source	project	on	November	10,	2009.	Many	people
from	the	community	have	contributed	ideas,	discussions,	and	code.

Why	are	you	creating	a	new	language?

Go	was	born	out	of	frustration	with	existing	languages	and	environments	for
systems	programming.	Programming	had	become	too	difficult	and	the	choice	of
languages	was	partly	to	blame.	One	had	to	choose	either	efficient	compilation,
efficient	execution,	or	ease	of	programming;	all	three	were	not	available	in	the
same	mainstream	language.	Programmers	who	could	were	choosing	ease	over
safety	and	efficiency	by	moving	to	dynamically	typed	languages	such	as	Python
and	JavaScript	rather	than	C++	or,	to	a	lesser	extent,	Java.

Go	is	an	attempt	to	combine	the	ease	of	programming	of	an	interpreted,
dynamically	typed	language	with	the	efficiency	and	safety	of	a	statically	typed,
compiled	language.	It	also	aims	to	be	modern,	with	support	for	networked	and
multicore	computing.	Finally,	it	is	intended	to	be	fast:	it	should	take	at	most	a

http://reneefrench.blogspot.com
http://plan9.bell-labs.com/plan9/glenda.html
http://wfmu.org/
http://creativecommons.org/licenses/by/3.0/

few	seconds	to	build	a	large	executable	on	a	single	computer.	To	meet	these
goals	required	addressing	a	number	of	linguistic	issues:	an	expressive	but
lightweight	type	system;	concurrency	and	garbage	collection;	rigid	dependency
specification;	and	so	on.	These	cannot	be	addressed	well	by	libraries	or	tools;	a
new	language	was	called	for.

What	are	Go's	ancestors?

Go	is	mostly	in	the	C	family	(basic	syntax),	with	significant	input	from	the
Pascal/Modula/Oberon	family	(declarations,	packages),	plus	some	ideas	from
languages	inspired	by	Tony	Hoare's	CSP,	such	as	Newsqueak	and	Limbo
(concurrency).	However,	it	is	a	new	language	across	the	board.	In	every	respect
the	language	was	designed	by	thinking	about	what	programmers	do	and	how	to
make	programming,	at	least	the	kind	of	programming	we	do,	more	effective,
which	means	more	fun.

What	are	the	guiding	principles	in	the	design?

Programming	today	involves	too	much	bookkeeping,	repetition,	and	clerical
work.	As	Dick	Gabriel	says,	“Old	programs	read	like	quiet	conversations
between	a	well-spoken	research	worker	and	a	well-studied	mechanical
colleague,	not	as	a	debate	with	a	compiler.	Who'd	have	guessed	sophistication
bought	such	noise?”	The	sophistication	is	worthwhile—no	one	wants	to	go	back
to	the	old	languages—but	can	it	be	more	quietly	achieved?

Go	attempts	to	reduce	the	amount	of	typing	in	both	senses	of	the	word.
Throughout	its	design,	we	have	tried	to	reduce	clutter	and	complexity.	There	are
no	forward	declarations	and	no	header	files;	everything	is	declared	exactly	once.
Initialization	is	expressive,	automatic,	and	easy	to	use.	Syntax	is	clean	and	light
on	keywords.	Stuttering	(foo.Foo*	myFoo	=	new(foo.Foo))	is	reduced	by
simple	type	derivation	using	the	:=	declare-and-initialize	construct.	And	perhaps
most	radically,	there	is	no	type	hierarchy:	types	just	are,	they	don't	have	to
announce	their	relationships.	These	simplifications	allow	Go	to	be	expressive	yet
comprehensible	without	sacrificing,	well,	sophistication.

Another	important	principle	is	to	keep	the	concepts	orthogonal.	Methods	can	be
implemented	for	any	type;	structures	represent	data	while	interfaces	represent
abstraction;	and	so	on.	Orthogonality	makes	it	easier	to	understand	what	happens
when	things	combine.

Usage

Is	Google	using	Go	internally?

Yes.	There	are	now	several	Go	programs	deployed	in	production	inside	Google.
A	public	example	is	the	server	behind	http://golang.org.	It's	just	the	godoc
document	server	running	in	a	production	configuration	on	Google	App	Engine.

Do	Go	programs	link	with	C/C++	programs?

There	are	two	Go	compiler	implementations,	gc	(the	6g	program	and	friends)
and	gccgo.	Gc	uses	a	different	calling	convention	and	linker	and	can	therefore
only	be	linked	with	C	programs	using	the	same	convention.	There	is	such	a	C
compiler	but	no	C++	compiler.	Gccgo	is	a	GCC	front-end	that	can,	with	care,	be
linked	with	GCC-compiled	C	or	C++	programs.

The	cgo	program	provides	the	mechanism	for	a	“foreign	function	interface”	to
allow	safe	calling	of	C	libraries	from	Go	code.	SWIG	extends	this	capability	to
C++	libraries.

Does	Go	support	Google's	protocol	buffers?

A	separate	open	source	project	provides	the	necessary	compiler	plugin	and
library.	It	is	available	at	http://code.google.com/p/goprotobuf/

Can	I	translate	the	Go	home	page	into	another	language?

Absolutely.	We	encourage	developers	to	make	Go	Language	sites	in	their	own
languages.	However,	if	you	choose	to	add	the	Google	logo	or	branding	to	your
site	(it	does	not	appear	on	golang.org),	you	will	need	to	abide	by	the	guidelines
at	http://www.google.com/permissions/guidelines.html

http://golang.org
http://code.google.com/appengine/
http://code.google.com/p/goprotobuf/
http://golang.org/
http://www.google.com/permissions/guidelines.html

Design

What's	up	with	Unicode	identifiers?

It	was	important	to	us	to	extend	the	space	of	identifiers	from	the	confines	of
ASCII.	Go's	rule—identifier	characters	must	be	letters	or	digits	as	defined	by
Unicode—is	simple	to	understand	and	to	implement	but	has	restrictions.
Combining	characters	are	excluded	by	design,	for	instance.	Until	there	is	an
agreed	external	definition	of	what	an	identifier	might	be,	plus	a	definition	of
canonicalization	of	identifiers	that	guarantees	no	ambiguity,	it	seemed	better	to
keep	combining	characters	out	of	the	mix.	Thus	we	have	a	simple	rule	that	can
be	expanded	later	without	breaking	programs,	one	that	avoids	bugs	that	would
surely	arise	from	a	rule	that	admits	ambiguous	identifiers.

On	a	related	note,	since	an	exported	identifier	must	begin	with	an	upper-case
letter,	identifiers	created	from	“letters”	in	some	languages	can,	by	definition,	not
be	exported.	For	now	the	only	solution	is	to	use	something	like	X�ձ��Z,	which	is
clearly	unsatisfactory;	we	are	considering	other	options.	The	case-for-visibility
rule	is	unlikely	to	change	however;	it's	one	of	our	favorite	features	of	Go.

Why	does	Go	not	have	feature	X?

Every	language	contains	novel	features	and	omits	someone's	favorite	feature.	Go
was	designed	with	an	eye	on	felicity	of	programming,	speed	of	compilation,
orthogonality	of	concepts,	and	the	need	to	support	features	such	as	concurrency
and	garbage	collection.	Your	favorite	feature	may	be	missing	because	it	doesn't
fit,	because	it	affects	compilation	speed	or	clarity	of	design,	or	because	it	would
make	the	fundamental	system	model	too	difficult.

If	it	bothers	you	that	Go	is	missing	feature	X,	please	forgive	us	and	investigate
the	features	that	Go	does	have.	You	might	find	that	they	compensate	in
interesting	ways	for	the	lack	of	X.

Why	does	Go	not	have	generic	types?

Generics	may	well	be	added	at	some	point.	We	don't	feel	an	urgency	for	them,
although	we	understand	some	programmers	do.

Generics	are	convenient	but	they	come	at	a	cost	in	complexity	in	the	type	system
and	run-time.	We	haven't	yet	found	a	design	that	gives	value	proportionate	to	the
complexity,	although	we	continue	to	think	about	it.	Meanwhile,	Go's	built-in
maps	and	slices,	plus	the	ability	to	use	the	empty	interface	to	construct
containers	(with	explicit	unboxing)	mean	in	many	cases	it	is	possible	to	write
code	that	does	what	generics	would	enable,	if	less	smoothly.

This	remains	an	open	issue.

Why	does	Go	not	have	exceptions?

We	believe	that	coupling	exceptions	to	a	control	structure,	as	in	the	try-catch-
finally	idiom,	results	in	convoluted	code.	It	also	tends	to	encourage
programmers	to	label	too	many	ordinary	errors,	such	as	failing	to	open	a	file,	as
exceptional.

Go	takes	a	different	approach.	For	plain	error	handling,	Go's	multi-value	returns
make	it	easy	to	report	an	error	without	overloading	the	return	value.	A	canonical
error	type,	coupled	with	Go's	other	features,	makes	error	handling	pleasant	but
quite	different	from	that	in	other	languages.

Go	also	has	a	couple	of	built-in	functions	to	signal	and	recover	from	truly
exceptional	conditions.	The	recovery	mechanism	is	executed	only	as	part	of	a
function's	state	being	torn	down	after	an	error,	which	is	sufficient	to	handle
catastrophe	but	requires	no	extra	control	structures	and,	when	used	well,	can
result	in	clean	error-handling	code.

See	the	Defer,	Panic,	and	Recover	article	for	details.

Why	does	Go	not	have	assertions?

Go	doesn't	provide	assertions.	They	are	undeniably	convenient,	but	our
experience	has	been	that	programmers	use	them	as	a	crutch	to	avoid	thinking
about	proper	error	handling	and	reporting.	Proper	error	handling	means	that
servers	continue	operation	after	non-fatal	errors	instead	of	crashing.	Proper	error
reporting	means	that	errors	are	direct	and	to	the	point,	saving	the	programmer
from	interpreting	a	large	crash	trace.	Precise	errors	are	particularly	important
when	the	programmer	seeing	the	errors	is	not	familiar	with	the	code.

We	understand	that	this	is	a	point	of	contention.	There	are	many	things	in	the	Go
language	and	libraries	that	differ	from	modern	practices,	simply	because	we	feel
it's	sometimes	worth	trying	a	different	approach.

Why	build	concurrency	on	the	ideas	of	CSP?

Concurrency	and	multi-threaded	programming	have	a	reputation	for	difficulty.
We	believe	this	is	due	partly	to	complex	designs	such	as	pthreads	and	partly	to
overemphasis	on	low-level	details	such	as	mutexes,	condition	variables,	and
memory	barriers.	Higher-level	interfaces	enable	much	simpler	code,	even	if
there	are	still	mutexes	and	such	under	the	covers.

One	of	the	most	successful	models	for	providing	high-level	linguistic	support	for
concurrency	comes	from	Hoare's	Communicating	Sequential	Processes,	or	CSP.
Occam	and	Erlang	are	two	well	known	languages	that	stem	from	CSP.	Go's
concurrency	primitives	derive	from	a	different	part	of	the	family	tree	whose
main	contribution	is	the	powerful	notion	of	channels	as	first	class	objects.

Why	goroutines	instead	of	threads?

Goroutines	are	part	of	making	concurrency	easy	to	use.	The	idea,	which	has
been	around	for	a	while,	is	to	multiplex	independently	executing	functions—
coroutines—onto	a	set	of	threads.	When	a	coroutine	blocks,	such	as	by	calling	a
blocking	system	call,	the	run-time	automatically	moves	other	coroutines	on	the
same	operating	system	thread	to	a	different,	runnable	thread	so	they	won't	be
blocked.	The	programmer	sees	none	of	this,	which	is	the	point.	The	result,	which
we	call	goroutines,	can	be	very	cheap:	unless	they	spend	a	lot	of	time	in	long-
running	system	calls,	they	cost	little	more	than	the	memory	for	the	stack,	which
is	just	a	few	kilobytes.

To	make	the	stacks	small,	Go's	run-time	uses	segmented	stacks.	A	newly	minted
goroutine	is	given	a	few	kilobytes,	which	is	almost	always	enough.	When	it	isn't,
the	run-time	allocates	(and	frees)	extension	segments	automatically.	The
overhead	averages	about	three	cheap	instructions	per	function	call.	It	is	practical
to	create	hundreds	of	thousands	of	goroutines	in	the	same	address	space.	If
goroutines	were	just	threads,	system	resources	would	run	out	at	a	much	smaller
number.

Why	are	map	operations	not	defined	to	be	atomic?

After	long	discussion	it	was	decided	that	the	typical	use	of	maps	did	not	require
safe	access	from	multiple	threads,	and	in	those	cases	where	it	did,	the	map	was
probably	part	of	some	larger	data	structure	or	computation	that	was	already
synchronized.	Therefore	requiring	that	all	map	operations	grab	a	mutex	would
slow	down	most	programs	and	add	safety	to	few.	This	was	not	an	easy	decision,
however,	since	it	means	uncontrolled	map	access	can	crash	the	program.

The	language	does	not	preclude	atomic	map	updates.	When	required,	such	as
when	hosting	an	untrusted	program,	the	implementation	could	interlock	map
access.

Types

Is	Go	an	object-oriented	language?

Yes	and	no.	Although	Go	has	types	and	methods	and	allows	an	object-oriented
style	of	programming,	there	is	no	type	hierarchy.	The	concept	of	“interface”	in
Go	provides	a	different	approach	that	we	believe	is	easy	to	use	and	in	some	ways
more	general.	There	are	also	ways	to	embed	types	in	other	types	to	provide
something	analogous—but	not	identical—to	subclassing.	Moreover,	methods	in
Go	are	more	general	than	in	C++	or	Java:	they	can	be	defined	for	any	sort	of
data,	even	built-in	types	such	as	plain,	“unboxed”	integers.	They	are	not
restricted	to	structs	(classes).

Also,	the	lack	of	type	hierarchy	makes	“objects”	in	Go	feel	much	more
lightweight	than	in	languages	such	as	C++	or	Java.

How	do	I	get	dynamic	dispatch	of	methods?

The	only	way	to	have	dynamically	dispatched	methods	is	through	an	interface.
Methods	on	a	struct	or	any	other	concrete	type	are	always	resolved	statically.

Why	is	there	no	type	inheritance?

Object-oriented	programming,	at	least	in	the	best-known	languages,	involves	too
much	discussion	of	the	relationships	between	types,	relationships	that	often
could	be	derived	automatically.	Go	takes	a	different	approach.

Rather	than	requiring	the	programmer	to	declare	ahead	of	time	that	two	types	are
related,	in	Go	a	type	automatically	satisfies	any	interface	that	specifies	a	subset
of	its	methods.	Besides	reducing	the	bookkeeping,	this	approach	has	real
advantages.	Types	can	satisfy	many	interfaces	at	once,	without	the	complexities
of	traditional	multiple	inheritance.	Interfaces	can	be	very	lightweight—an
interface	with	one	or	even	zero	methods	can	express	a	useful	concept.	Interfaces
can	be	added	after	the	fact	if	a	new	idea	comes	along	or	for	testing—without
annotating	the	original	types.	Because	there	are	no	explicit	relationships	between
types	and	interfaces,	there	is	no	type	hierarchy	to	manage	or	discuss.

It's	possible	to	use	these	ideas	to	construct	something	analogous	to	type-safe
Unix	pipes.	For	instance,	see	how	fmt.Fprintf	enables	formatted	printing	to
any	output,	not	just	a	file,	or	how	the	bufio	package	can	be	completely	separate
from	file	I/O,	or	how	the	image	packages	generate	compressed	image	files.	All
these	ideas	stem	from	a	single	interface	(io.Writer)	representing	a	single
method	(Write).	And	that's	only	scratching	the	surface.	Go's	interfaces	have	a
profound	influence	on	how	programs	are	structured.

It	takes	some	getting	used	to	but	this	implicit	style	of	type	dependency	is	one	of
the	most	productive	things	about	Go.

Why	is	len	a	function	and	not	a	method?

We	debated	this	issue	but	decided	implementing	len	and	friends	as	functions
was	fine	in	practice	and	didn't	complicate	questions	about	the	interface	(in	the
Go	type	sense)	of	basic	types.

Why	does	Go	not	support	overloading	of	methods	and	operators?

Method	dispatch	is	simplified	if	it	doesn't	need	to	do	type	matching	as	well.
Experience	with	other	languages	told	us	that	having	a	variety	of	methods	with
the	same	name	but	different	signatures	was	occasionally	useful	but	that	it	could
also	be	confusing	and	fragile	in	practice.	Matching	only	by	name	and	requiring
consistency	in	the	types	was	a	major	simplifying	decision	in	Go's	type	system.

Regarding	operator	overloading,	it	seems	more	a	convenience	than	an	absolute
requirement.	Again,	things	are	simpler	without	it.

Why	doesn't	Go	have	"implements"	declarations?

A	Go	type	satisfies	an	interface	by	implementing	the	methods	of	that	interface,
nothing	more.	This	property	allows	interfaces	to	be	defined	and	used	without
having	to	modify	existing	code.	It	enables	a	kind	of	"duck	typing"	that	promotes
separation	of	concerns	and	improves	code	re-use,	and	makes	it	easier	to	build	on
patterns	that	emerge	as	the	code	develops.	The	semantics	of	interfaces	is	one	of
the	main	reasons	for	Go's	nimble,	lightweight	feel.

See	the	question	on	type	inheritance	for	more	detail.

How	can	I	guarantee	my	type	satisfies	an	interface?

You	can	ask	the	compiler	to	check	that	the	type	T	implements	the	interface	I	by
attempting	an	assignment:

type	T	struct{}

var	_	I	=	T{}			//	Verify	that	T	implements	I.

If	T	doesn't	implement	I,	the	mistake	will	be	caught	at	compile	time.

If	you	wish	the	users	of	an	interface	to	explicitly	declare	that	they	implement	it,
you	can	add	a	method	with	a	descriptive	name	to	the	interface's	method	set.	For
example:

type	Fooer	interface	{

				Foo()

				ImplementsFooer()

}

A	type	must	then	implement	the	ImplementsFooer	method	to	be	a	Fooer,	clearly
documenting	the	fact	and	announcing	it	in	godoc's	output.

type	Bar	struct{}

func	(b	Bar)	ImplementsFooer()	{}

func	(b	Bar)	Foo()	{}

Most	code	doesn't	make	use	of	such	constraints,	since	they	limit	the	utility	of	the
interface	idea.	Sometimes,	though,	they're	necessary	to	resolve	ambiguities
among	similar	interfaces.

Why	doesn't	type	T	satisfy	the	Equal	interface?

Consider	this	simple	interface	to	represent	an	object	that	can	compare	itself	with
another	value:

type	Equaler	interface	{

				Equal(Equaler)	bool

}

and	this	type,	T:

type	T	int

func	(t	T)	Equal(u	T)	bool	{	return	t	==	u	}	//	does	not	satisfy	Equaler

Unlike	the	analogous	situation	in	some	polymorphic	type	systems,	T	does	not
implement	Equaler.	The	argument	type	of	T.Equal	is	T,	not	literally	the	required
type	Equaler.

In	Go,	the	type	system	does	not	promote	the	argument	of	Equal;	that	is	the
programmer's	responsibility,	as	illustrated	by	the	type	T2,	which	does	implement
Equaler:

type	T2	int

func	(t	T2)	Equal(u	Equaler)	bool	{	return	t	==	u.(T2)	}		//	satisfies	Equaler

Even	this	isn't	like	other	type	systems,	though,	because	in	Go	any	type	that
satisfies	Equaler	could	be	passed	as	the	argument	to	T2.Equal,	and	at	run	time
we	must	check	that	the	argument	is	of	type	T2.	Some	languages	arrange	to	make
that	guarantee	at	compile	time.

A	related	example	goes	the	other	way:

type	Opener	interface	{

			Open(name)	Reader

}

func	(t	T3)	Open()	*os.File

In	Go,	T3	does	not	satisfy	Opener,	although	it	might	in	another	language.

While	it	is	true	that	Go's	type	system	does	less	for	the	programmer	in	such	cases,
the	lack	of	subtyping	makes	the	rules	about	interface	satisfaction	very	easy	to
state:	are	the	function's	names	and	signatures	exactly	those	of	the	interface?	Go's
rule	is	also	easy	to	implement	efficiently.	We	feel	these	benefits	offset	the	lack	of
automatic	type	promotion.	Should	Go	one	day	adopt	some	form	of	generic
typing,	we	expect	there	would	be	a	way	to	express	the	idea	of	these	examples
and	also	have	them	be	statically	checked.

Can	I	convert	a	[]T	to	an	[]interface{}?

Not	directly,	because	they	do	not	have	the	same	representation	in	memory.	It	is
necessary	to	copy	the	elements	individually	to	the	destination	slice.	This
example	converts	a	slice	of	int	to	a	slice	of	interface{}:

t	:=	[]int{1,	2,	3,	4}

s	:=	make([]interface{},	len(t))

for	i,	v	:=	range	t	{

				s[i]	=	v

}

Why	is	my	nil	error	value	not	equal	to	nil?

Under	the	covers,	interfaces	are	implemented	as	two	elements,	a	type	and	a
value.	The	value,	called	the	interface's	dynamic	value,	is	an	arbitrary	concrete
value	and	the	type	is	that	of	the	value.	For	the	int	value	3,	an	interface	value
contains,	schematically,	(int,	3).

An	interface	value	is	nil	only	if	the	inner	value	and	type	are	both	unset,	(nil,
nil).	In	particular,	a	nil	interface	will	always	hold	a	nil	type.	If	we	store	a
pointer	of	type	*int	inside	an	interface	value,	the	inner	type	will	be	*int
regardless	of	the	value	of	the	pointer:	(*int,	nil).	Such	an	interface	value	will
therefore	be	non-nil	even	when	the	pointer	inside	is	nil.

This	situation	can	be	confusing,	and	often	arises	when	a	nil	value	is	stored
inside	an	interface	value	such	as	an	error	return:

func	returnsError()	error	{

	 var	p	*MyError	=	nil

	 if	bad()	{

	 	 p	=	ErrBad

	 }

	 return	p	//	Will	always	return	a	non-nil	error.

}

If	all	goes	well,	the	function	returns	a	nil	p,	so	the	return	value	is	an	error
interface	value	holding	(*MyError,	nil).	This	means	that	if	the	caller	compares
the	returned	error	to	nil,	it	will	always	look	as	if	there	was	an	error	even	if
nothing	bad	happened.	To	return	a	proper	nil	error	to	the	caller,	the	function
must	return	an	explicit	nil:

func	returnsError()	error	{

	 if	bad()	{

	 	 return	ErrBad

	 }

	 return	nil

}

It's	a	good	idea	for	functions	that	return	errors	always	to	use	the	error	type	in
their	signature	(as	we	did	above)	rather	than	a	concrete	type	such	as	*MyError,	to

help	guarantee	the	error	is	created	correctly.	As	an	example,	os.Open	returns	an
error	even	though,	if	not	nil,	it's	always	of	concrete	type	*os.PathError.

Similar	situations	to	those	described	here	can	arise	whenever	interfaces	are	used.
Just	keep	in	mind	that	if	any	concrete	value	has	been	stored	in	the	interface,	the
interface	will	not	be	nil.	For	more	information,	see	The	Laws	of	Reflection.

Why	are	there	no	untagged	unions,	as	in	C?

Untagged	unions	would	violate	Go's	memory	safety	guarantees.

Why	does	Go	not	have	variant	types?

Variant	types,	also	known	as	algebraic	types,	provide	a	way	to	specify	that	a
value	might	take	one	of	a	set	of	other	types,	but	only	those	types.	A	common
example	in	systems	programming	would	specify	that	an	error	is,	say,	a	network
error,	a	security	error	or	an	application	error	and	allow	the	caller	to	discriminate
the	source	of	the	problem	by	examining	the	type	of	the	error.	Another	example	is
a	syntax	tree	in	which	each	node	can	be	a	different	type:	declaration,	statement,
assignment	and	so	on.

We	considered	adding	variant	types	to	Go,	but	after	discussion	decided	to	leave
them	out	because	they	overlap	in	confusing	ways	with	interfaces.	What	would
happen	if	the	elements	of	a	variant	type	were	themselves	interfaces?

Also,	some	of	what	variant	types	address	is	already	covered	by	the	language.
The	error	example	is	easy	to	express	using	an	interface	value	to	hold	the	error
and	a	type	switch	to	discriminate	cases.	The	syntax	tree	example	is	also	doable,
although	not	as	elegantly.

Values

Why	does	Go	not	provide	implicit	numeric	conversions?

The	convenience	of	automatic	conversion	between	numeric	types	in	C	is
outweighed	by	the	confusion	it	causes.	When	is	an	expression	unsigned?	How
big	is	the	value?	Does	it	overflow?	Is	the	result	portable,	independent	of	the
machine	on	which	it	executes?	It	also	complicates	the	compiler;	“the	usual
arithmetic	conversions”	are	not	easy	to	implement	and	inconsistent	across
architectures.	For	reasons	of	portability,	we	decided	to	make	things	clear	and
straightforward	at	the	cost	of	some	explicit	conversions	in	the	code.	The
definition	of	constants	in	Go—arbitrary	precision	values	free	of	signedness	and
size	annotations—ameliorates	matters	considerably,	though.

A	related	detail	is	that,	unlike	in	C,	int	and	int64	are	distinct	types	even	if	int
is	a	64-bit	type.	The	int	type	is	generic;	if	you	care	about	how	many	bits	an
integer	holds,	Go	encourages	you	to	be	explicit.

Why	are	maps	built	in?

The	same	reason	strings	are:	they	are	such	a	powerful	and	important	data
structure	that	providing	one	excellent	implementation	with	syntactic	support
makes	programming	more	pleasant.	We	believe	that	Go's	implementation	of
maps	is	strong	enough	that	it	will	serve	for	the	vast	majority	of	uses.	If	a	specific
application	can	benefit	from	a	custom	implementation,	it's	possible	to	write	one
but	it	will	not	be	as	convenient	syntactically;	this	seems	a	reasonable	tradeoff.

Why	don't	maps	allow	slices	as	keys?

Map	lookup	requires	an	equality	operator,	which	slices	do	not	implement.	They
don't	implement	equality	because	equality	is	not	well	defined	on	such	types;
there	are	multiple	considerations	involving	shallow	vs.	deep	comparison,	pointer
vs.	value	comparison,	how	to	deal	with	recursive	types,	and	so	on.	We	may
revisit	this	issue—and	implementing	equality	for	slices	will	not	invalidate	any
existing	programs—but	without	a	clear	idea	of	what	equality	of	slices	should
mean,	it	was	simpler	to	leave	it	out	for	now.

In	Go	1,	unlike	prior	releases,	equality	is	defined	for	structs	and	arrays,	so	such
types	can	be	used	as	map	keys.	Slices	still	do	not	have	a	definition	of	equality,
though.

Why	are	maps,	slices,	and	channels	references	while	arrays	are
values?

There's	a	lot	of	history	on	that	topic.	Early	on,	maps	and	channels	were
syntactically	pointers	and	it	was	impossible	to	declare	or	use	a	non-pointer
instance.	Also,	we	struggled	with	how	arrays	should	work.	Eventually	we
decided	that	the	strict	separation	of	pointers	and	values	made	the	language
harder	to	use.	Introducing	reference	types,	including	slices	to	handle	the
reference	form	of	arrays,	resolved	these	issues.	Reference	types	add	some
regrettable	complexity	to	the	language	but	they	have	a	large	effect	on	usability:
Go	became	a	more	productive,	comfortable	language	when	they	were
introduced.

Writing	Code

How	are	libraries	documented?

There	is	a	program,	godoc,	written	in	Go,	that	extracts	package	documentation
from	the	source	code.	It	can	be	used	on	the	command	line	or	on	the	web.	An
instance	is	running	at	http://golang.org/pkg/.	In	fact,	godoc	implements	the	full
site	at	http://golang.org/.

Is	there	a	Go	programming	style	guide?

Eventually,	there	may	be	a	small	number	of	rules	to	guide	things	like	naming,
layout,	and	file	organization.	The	document	Effective	Go	contains	some	style
advice.	More	directly,	the	program	gofmt	is	a	pretty-printer	whose	purpose	is	to
enforce	layout	rules;	it	replaces	the	usual	compendium	of	do's	and	don'ts	that
allows	interpretation.	All	the	Go	code	in	the	repository	has	been	run	through
gofmt.

How	do	I	submit	patches	to	the	Go	libraries?

The	library	sources	are	in	go/src/pkg.	If	you	want	to	make	a	significant	change,
please	discuss	on	the	mailing	list	before	embarking.

See	the	document	Contributing	to	the	Go	project	for	more	information	about
how	to	proceed.

http://golang.org/pkg/
http://golang.org/

Pointers	and	Allocation

When	are	function	parameters	passed	by	value?

As	in	all	languages	in	the	C	family,	everything	in	Go	is	passed	by	value.	That	is,
a	function	always	gets	a	copy	of	the	thing	being	passed,	as	if	there	were	an
assignment	statement	assigning	the	value	to	the	parameter.	For	instance,	passing
an	int	value	to	a	function	makes	a	copy	of	the	int,	and	passing	a	pointer	value
makes	a	copy	of	the	pointer,	but	not	the	data	it	points	to.	(See	the	next	section	for
a	discussion	of	how	this	affects	method	receivers.)

Map	and	slice	values	behave	like	pointers:	they	are	descriptors	that	contain
pointers	to	the	underlying	map	or	slice	data.	Copying	a	map	or	slice	value
doesn't	copy	the	data	it	points	to.	Copying	an	interface	value	makes	a	copy	of	the
thing	stored	in	the	interface	value.	If	the	interface	value	holds	a	struct,	copying
the	interface	value	makes	a	copy	of	the	struct.	If	the	interface	value	holds	a
pointer,	copying	the	interface	value	makes	a	copy	of	the	pointer,	but	again	not
the	data	it	points	to.

Should	I	define	methods	on	values	or	pointers?

func	(s	*MyStruct)	pointerMethod()	{	}	//	method	on	pointer

func	(s	MyStruct)		valueMethod()			{	}	//	method	on	value

For	programmers	unaccustomed	to	pointers,	the	distinction	between	these	two
examples	can	be	confusing,	but	the	situation	is	actually	very	simple.	When
defining	a	method	on	a	type,	the	receiver	(s	in	the	above	examples)	behaves
exactly	as	if	it	were	an	argument	to	the	method.	Whether	to	define	the	receiver
as	a	value	or	as	a	pointer	is	the	same	question,	then,	as	whether	a	function
argument	should	be	a	value	or	a	pointer.	There	are	several	considerations.

First,	and	most	important,	does	the	method	need	to	modify	the	receiver?	If	it
does,	the	receiver	must	be	a	pointer.	(Slices	and	maps	are	reference	types,	so
their	story	is	a	little	more	subtle,	but	for	instance	to	change	the	length	of	a	slice
in	a	method	the	receiver	must	still	be	a	pointer.)	In	the	examples	above,	if
pointerMethod	modifies	the	fields	of	s,	the	caller	will	see	those	changes,	but
valueMethod	is	called	with	a	copy	of	the	caller's	argument	(that's	the	definition
of	passing	a	value),	so	changes	it	makes	will	be	invisible	to	the	caller.

By	the	way,	pointer	receivers	are	identical	to	the	situation	in	Java,	although	in
Java	the	pointers	are	hidden	under	the	covers;	it's	Go's	value	receivers	that	are
unusual.

Second	is	the	consideration	of	efficiency.	If	the	receiver	is	large,	a	big	struct	for
instance,	it	will	be	much	cheaper	to	use	a	pointer	receiver.

Next	is	consistency.	If	some	of	the	methods	of	the	type	must	have	pointer
receivers,	the	rest	should	too,	so	the	method	set	is	consistent	regardless	of	how
the	type	is	used.	See	the	section	on	method	sets	for	details.

For	types	such	as	basic	types,	slices,	and	small	structs,	a	value	receiver	is	very
cheap	so	unless	the	semantics	of	the	method	requires	a	pointer,	a	value	receiver
is	efficient	and	clear.

What's	the	difference	between	new	and	make?

In	short:	new	allocates	memory,	make	initializes	the	slice,	map,	and	channel
types.

See	the	relevant	section	of	Effective	Go	for	more	details.

Why	is	int	32	bits	on	64	bit	machines?

The	sizes	of	int	and	uint	are	implementation-specific	but	the	same	as	each
other	on	a	given	platform.	The	64	bit	Go	compilers	(both	gc	and	gccgo)	use	a	32
bit	representation	for	int.	Code	that	relies	on	a	particular	size	of	value	should
use	an	explicitly	sized	type,	like	int64.	On	the	other	hand,	floating-point	scalars
and	complex	numbers	are	always	sized:	float32,	complex64,	etc.,	because
programmers	should	be	aware	of	precision	when	using	floating-point	numbers.
The	default	size	of	a	floating-point	constant	is	float64.

At	the	moment,	all	implementations	use	32-bit	ints,	an	essentially	arbitrary
decision.	However,	we	expect	that	int	will	be	increased	to	64	bits	on	64-bit
architectures	in	a	future	release	of	Go.

How	do	I	know	whether	a	variable	is	allocated	on	the	heap	or	the
stack?

From	a	correctness	standpoint,	you	don't	need	to	know.	Each	variable	in	Go
exists	as	long	as	there	are	references	to	it.	The	storage	location	chosen	by	the
implementation	is	irrelevant	to	the	semantics	of	the	language.

The	storage	location	does	have	an	effect	on	writing	efficient	programs.	When
possible,	the	Go	compilers	will	allocate	variables	that	are	local	to	a	function	in
that	function's	stack	frame.	However,	if	the	compiler	cannot	prove	that	the
variable	is	not	referenced	after	the	function	returns,	then	the	compiler	must
allocate	the	variable	on	the	garbage-collected	heap	to	avoid	dangling	pointer
errors.	Also,	if	a	local	variable	is	very	large,	it	might	make	more	sense	to	store	it
on	the	heap	rather	than	the	stack.

In	the	current	compilers,	if	a	variable	has	its	address	taken,	that	variable	is	a
candidate	for	allocation	on	the	heap.	However,	a	basic	escape	analysis
recognizes	some	cases	when	such	variables	will	not	live	past	the	return	from	the
function	and	can	reside	on	the	stack.

Concurrency

What	operations	are	atomic?	What	about	mutexes?

We	haven't	fully	defined	it	all	yet,	but	some	details	about	atomicity	are	available
in	the	Go	Memory	Model	specification.

Regarding	mutexes,	the	sync	package	implements	them,	but	we	hope	Go
programming	style	will	encourage	people	to	try	higher-level	techniques.	In
particular,	consider	structuring	your	program	so	that	only	one	goroutine	at	a	time
is	ever	responsible	for	a	particular	piece	of	data.

Do	not	communicate	by	sharing	memory.	Instead,	share	memory	by
communicating.

See	the	Share	Memory	By	Communicating	code	walk	and	its	associated	article
for	a	detailed	discussion	of	this	concept.

Why	doesn't	my	multi-goroutine	program	use	multiple	CPUs?

You	must	set	the	GOMAXPROCS	shell	environment	variable	or	use	the	similarly-
named	function	of	the	runtime	package	to	allow	the	run-time	support	to	utilize
more	than	one	OS	thread.

Programs	that	perform	parallel	computation	should	benefit	from	an	increase	in
GOMAXPROCS.

Why	does	using	GOMAXPROCS	>	1	sometimes	make	my	program
slower?

It	depends	on	the	nature	of	your	program.	Problems	that	are	intrinsically
sequential	cannot	be	sped	up	by	adding	more	goroutines.	Concurrency	only
becomes	parallelism	when	the	problem	is	intrinsically	parallel.

In	practical	terms,	programs	that	spend	more	time	communicating	on	channels
than	doing	computation	will	experience	performance	degradation	when	using
multiple	OS	threads.	This	is	because	sending	data	between	threads	involves

http://blog.golang.org/2010/07/share-memory-by-communicating.html

switching	contexts,	which	has	significant	cost.	For	instance,	the	prime	sieve
example	from	the	Go	specification	has	no	significant	parallelism	although	it
launches	many	goroutines;	increasing	GOMAXPROCS	is	more	likely	to	slow	it	down
than	to	speed	it	up.

Go's	goroutine	scheduler	is	not	as	good	as	it	needs	to	be.	In	future,	it	should
recognize	such	cases	and	optimize	its	use	of	OS	threads.	For	now,	GOMAXPROCS
should	be	set	on	a	per-application	basis.

Functions	and	Methods

Why	do	T	and	*T	have	different	method	sets?

From	the	Go	Spec:

The	method	set	of	any	other	named	type	T	consists	of	all	methods	with
receiver	type	T.	The	method	set	of	the	corresponding	pointer	type	*T	is	the
set	of	all	methods	with	receiver	*T	or	T	(that	is,	it	also	contains	the	method
set	of	T).

If	an	interface	value	contains	a	pointer	*T,	a	method	call	can	obtain	a	value	by
dereferencing	the	pointer,	but	if	an	interface	value	contains	a	value	T,	there	is	no
useful	way	for	a	method	call	to	obtain	a	pointer.

Even	in	cases	where	the	compiler	could	take	the	address	of	a	value	to	pass	to	the
method,	if	the	method	modifies	the	value	the	changes	will	be	lost	in	the	caller.
As	a	common	example,	this	code:

var	buf	bytes.Buffer

io.Copy(buf,	os.Stdin)

would	copy	standard	input	into	a	copy	of	buf,	not	into	buf	itself.	This	is	almost
never	the	desired	behavior.

What	happens	with	closures	running	as	goroutines?

Some	confusion	may	arise	when	using	closures	with	concurrency.	Consider	the
following	program:

func	main()	{

				done	:=	make(chan	bool)

				values	:=	[]string{"a",	"b",	"c"}

				for	_,	v	:=	range	values	{

								go	func()	{

												fmt.Println(v)

												done	<-	true

								}()

				}

				//	wait	for	all	goroutines	to	complete	before	exiting

				for	_	=	range	values	{

								<-done	

				}

}

One	might	mistakenly	expect	to	see	a,	b,	c	as	the	output.	What	you'll	probably
see	instead	is	c,	c,	c.	This	is	because	each	iteration	of	the	loop	uses	the	same
instance	of	the	variable	v,	so	each	closure	shares	that	single	variable.	When	the
closure	runs,	it	prints	the	value	of	v	at	the	time	fmt.Println	is	executed,	but	v
may	have	been	modified	since	the	goroutine	was	launched.

To	bind	the	value	of	v	to	each	closure	as	they	are	launched,	one	could	modify	the
inner	loop	to	read:

				for	_,	v	:=	range	values	{

								go	func(u	string)	{

												fmt.Println(u)

												done	<-	true

								}(v)

				}

In	this	example,	the	value	of	v	is	passed	as	an	argument	to	the	anonymous
function.	That	value	is	then	accessible	inside	the	function	as	the	variable	u.

Control	flow

Does	Go	have	the	?:	operator?

There	is	no	ternary	form	in	Go.	You	may	use	the	following	to	achieve	the	same
result:

if	expr	{

				n	=	trueVal

}	else	{

				n	=	falseVal

}

Packages	and	Testing

How	do	I	create	a	multifile	package?

Put	all	the	source	files	for	the	package	in	a	directory	by	themselves.	Source	files
can	refer	to	items	from	different	files	at	will;	there	is	no	need	for	forward
declarations	or	a	header	file.

Other	than	being	split	into	multiple	files,	the	package	will	compile	and	test	just
like	a	single-file	package.

How	do	I	write	a	unit	test?

Create	a	new	file	ending	in	_test.go	in	the	same	directory	as	your	package
sources.	Inside	that	file,	import	"testing"	and	write	functions	of	the	form

func	TestFoo(t	*testing.T)	{

				...

}

Run	go	test	in	that	directory.	That	script	finds	the	Test	functions,	builds	a	test
binary,	and	runs	it.

See	the	How	to	Write	Go	Code	document,	the	testing	package	and	the	go	test
subcommand	for	more	details.

Where	is	my	favorite	helper	function	for	testing?

Go's	standard	testing	package	makes	it	easy	to	write	unit	tests,	but	it	lacks
features	provided	in	other	language's	testing	frameworks	such	as	assertion
functions.	An	earlier	section	of	this	document	explained	why	Go	doesn't	have
assertions,	and	the	same	arguments	apply	to	the	use	of	assert	in	tests.	Proper
error	handling	means	letting	other	tests	run	after	one	has	failed,	so	that	the
person	debugging	the	failure	gets	a	complete	picture	of	what	is	wrong.	It	is	more
useful	for	a	test	to	report	that	isPrime	gives	the	wrong	answer	for	2,	3,	5,	and	7
(or	for	2,	4,	8,	and	16)	than	to	report	that	isPrime	gives	the	wrong	answer	for	2
and	therefore	no	more	tests	were	run.	The	programmer	who	triggers	the	test
failure	may	not	be	familiar	with	the	code	that	fails.	Time	invested	writing	a	good

error	message	now	pays	off	later	when	the	test	breaks.

A	related	point	is	that	testing	frameworks	tend	to	develop	into	mini-languages	of
their	own,	with	conditionals	and	controls	and	printing	mechanisms,	but	Go
already	has	all	those	capabilities;	why	recreate	them?	We'd	rather	write	tests	in
Go;	it's	one	fewer	language	to	learn	and	the	approach	keeps	the	tests
straightforward	and	easy	to	understand.

If	the	amount	of	extra	code	required	to	write	good	errors	seems	repetitive	and
overwhelming,	the	test	might	work	better	if	table-driven,	iterating	over	a	list	of
inputs	and	outputs	defined	in	a	data	structure	(Go	has	excellent	support	for	data
structure	literals).	The	work	to	write	a	good	test	and	good	error	messages	will
then	be	amortized	over	many	test	cases.	The	standard	Go	library	is	full	of
illustrative	examples,	such	as	in	the	formatting	tests	for	the	fmt	package.

Implementation

What	compiler	technology	is	used	to	build	the	compilers?

Gccgo	has	a	C++	front-end	with	a	recursive	descent	parser	coupled	to	the
standard	GCC	back	end.	Gc	is	written	in	C	using	yacc/bison	for	the	parser.
Although	it's	a	new	program,	it	fits	in	the	Plan	9	C	compiler	suite
(http://plan9.bell-labs.com/sys/doc/compiler.html)	and	uses	a	variant	of	the	Plan
9	loader	to	generate	ELF/Mach-O/PE	binaries.

We	considered	writing	gc,	the	original	Go	compiler,	in	Go	itself	but	elected	not
to	do	so	because	of	the	difficulties	of	bootstrapping	and	especially	of	open
source	distribution—you'd	need	a	Go	compiler	to	set	up	a	Go	environment.
Gccgo,	which	came	later,	makes	it	possible	to	consider	writing	a	compiler	in	Go,
which	might	well	happen.	(Go	would	be	a	fine	language	in	which	to	implement	a
compiler;	a	native	lexer	and	parser	are	already	available	in	the	go	package.)

We	also	considered	using	LLVM	for	gc	but	we	felt	it	was	too	large	and	slow	to
meet	our	performance	goals.

How	is	the	run-time	support	implemented?

Again	due	to	bootstrapping	issues,	the	run-time	code	is	mostly	in	C	(with	a	tiny
bit	of	assembler)	although	Go	is	capable	of	implementing	most	of	it	now.	Gccgo's
run-time	support	uses	glibc.	Gc	uses	a	custom	library	to	keep	the	footprint	under
control;	it	is	compiled	with	a	version	of	the	Plan	9	C	compiler	that	supports
segmented	stacks	for	goroutines.	The	gccgo	compiler	implements	segmented
stacks	on	Linux	only,	supported	by	recent	modifications	to	the	gold	linker.

Why	is	my	trivial	program	such	a	large	binary?

The	linkers	in	the	gc	tool	chain	(5l,	6l,	and	8l)	do	static	linking.	All	Go	binaries
therefore	include	the	Go	run-time,	along	with	the	run-time	type	information
necessary	to	support	dynamic	type	checks,	reflection,	and	even	panic-time	stack
traces.

A	simple	C	"hello,	world"	program	compiled	and	linked	statically	using	gcc	on

http://plan9.bell-labs.com/sys/doc/compiler.html

Linux	is	around	750	kB,	including	an	implementation	of	printf.	An	equivalent
Go	program	using	fmt.Printf	is	around	1.2	MB,	but	that	includes	more
powerful	run-time	support.

Can	I	stop	these	complaints	about	my	unused	variable/import?

The	presence	of	an	unused	variable	may	indicate	a	bug,	while	unused	imports
just	slow	down	compilation.	Accumulate	enough	unused	imports	in	your	code
tree	and	things	can	get	very	slow.	For	these	reasons,	Go	allows	neither.

When	developing	code,	it's	common	to	create	these	situations	temporarily	and	it
can	be	annoying	to	have	to	edit	them	out	before	the	program	will	compile.

Some	have	asked	for	a	compiler	option	to	turn	those	checks	off	or	at	least	reduce
them	to	warnings.	Such	an	option	has	not	been	added,	though,	because	compiler
options	should	not	affect	the	semantics	of	the	language	and	because	the	Go
compiler	does	not	report	warnings,	only	errors	that	prevent	compilation.

There	are	two	reasons	for	having	no	warnings.	First,	if	it's	worth	complaining
about,	it's	worth	fixing	in	the	code.	(And	if	it's	not	worth	fixing,	it's	not	worth
mentioning.)	Second,	having	the	compiler	generate	warnings	encourages	the
implementation	to	warn	about	weak	cases	that	can	make	compilation	noisy,
masking	real	errors	that	should	be	fixed.

It's	easy	to	address	the	situation,	though.	Use	the	blank	identifier	to	let	unused
things	persist	while	you're	developing.

import	"unused"

//	This	declaration	marks	the	import	as	used	by	referencing	an

//	item	from	the	package.

var	_	=	unused.Item		//	TODO:	Delete	before	committing!

func	main()	{

				debugData	:=	debug.Profile()

				_	=	debugData	//	Used	only	during	debugging.

			

}

Performance

Why	does	Go	perform	badly	on	benchmark	X?

One	of	Go's	design	goals	is	to	approach	the	performance	of	C	for	comparable
programs,	yet	on	some	benchmarks	it	does	quite	poorly,	including	several	in
test/bench/shootout.	The	slowest	depend	on	libraries	for	which	versions	of
comparable	performance	are	not	available	in	Go.	For	instance,	pidigits.go
depends	on	a	multi-precision	math	package,	and	the	C	versions,	unlike	Go's,	use
GMP	(which	is	written	in	optimized	assembler).	Benchmarks	that	depend	on
regular	expressions	(regex-dna.go,	for	instance)	are	essentially	comparing	Go's
native	regexp	package	to	mature,	highly	optimized	regular	expression	libraries
like	PCRE.

Benchmark	games	are	won	by	extensive	tuning	and	the	Go	versions	of	most	of
the	benchmarks	need	attention.	If	you	measure	comparable	C	and	Go	programs
(reverse-complement.go	is	one	example),	you'll	see	the	two	languages	are	much
closer	in	raw	performance	than	this	suite	would	indicate.

Still,	there	is	room	for	improvement.	The	compilers	are	good	but	could	be	better,
many	libraries	need	major	performance	work,	and	the	garbage	collector	isn't	fast
enough	yet.	(Even	if	it	were,	taking	care	not	to	generate	unnecessary	garbage	can
have	a	huge	effect.)

In	any	case,	Go	can	often	be	very	competitive.	There	has	been	significant
improvement	in	the	performance	of	many	programs	as	the	language	and	tools
have	developed.	See	the	blog	post	about	profiling	Go	programs	for	an
informative	example.

http://gmplib.org/
http://blog.golang.org/2011/06/profiling-go-programs.html

Changes	from	C

Why	is	the	syntax	so	different	from	C?

Other	than	declaration	syntax,	the	differences	are	not	major	and	stem	from	two
desires.	First,	the	syntax	should	feel	light,	without	too	many	mandatory
keywords,	repetition,	or	arcana.	Second,	the	language	has	been	designed	to	be
easy	to	analyze	and	can	be	parsed	without	a	symbol	table.	This	makes	it	much
easier	to	build	tools	such	as	debuggers,	dependency	analyzers,	automated
documentation	extractors,	IDE	plug-ins,	and	so	on.	C	and	its	descendants	are
notoriously	difficult	in	this	regard.

Why	are	declarations	backwards?

They're	only	backwards	if	you're	used	to	C.	In	C,	the	notion	is	that	a	variable	is
declared	like	an	expression	denoting	its	type,	which	is	a	nice	idea,	but	the	type
and	expression	grammars	don't	mix	very	well	and	the	results	can	be	confusing;
consider	function	pointers.	Go	mostly	separates	expression	and	type	syntax	and
that	simplifies	things	(using	prefix	*	for	pointers	is	an	exception	that	proves	the
rule).	In	C,	the	declaration

				int*	a,	b;

declares	a	to	be	a	pointer	but	not	b;	in	Go

				var	a,	b	*int

declares	both	to	be	pointers.	This	is	clearer	and	more	regular.	Also,	the	:=	short
declaration	form	argues	that	a	full	variable	declaration	should	present	the	same
order	as	:=	so

				var	a	uint64	=	1

has	the	same	effect	as

				a	:=	uint64(1)

Parsing	is	also	simplified	by	having	a	distinct	grammar	for	types	that	is	not	just
the	expression	grammar;	keywords	such	as	func	and	chan	keep	things	clear.

See	the	article	about	Go's	Declaration	Syntax	for	more	details.

Why	is	there	no	pointer	arithmetic?

Safety.	Without	pointer	arithmetic	it's	possible	to	create	a	language	that	can
never	derive	an	illegal	address	that	succeeds	incorrectly.	Compiler	and	hardware
technology	have	advanced	to	the	point	where	a	loop	using	array	indices	can	be
as	efficient	as	a	loop	using	pointer	arithmetic.	Also,	the	lack	of	pointer	arithmetic
can	simplify	the	implementation	of	the	garbage	collector.

Why	are	++	and	--	statements	and	not	expressions?	And	why
postfix,	not	prefix?

Without	pointer	arithmetic,	the	convenience	value	of	pre-	and	postfix	increment
operators	drops.	By	removing	them	from	the	expression	hierarchy	altogether,
expression	syntax	is	simplified	and	the	messy	issues	around	order	of	evaluation
of	++	and	--	(consider	f(i++)	and	p[i]	=	q[++i])	are	eliminated	as	well.	The
simplification	is	significant.	As	for	postfix	vs.	prefix,	either	would	work	fine	but
the	postfix	version	is	more	traditional;	insistence	on	prefix	arose	with	the	STL,	a
library	for	a	language	whose	name	contains,	ironically,	a	postfix	increment.

Why	are	there	braces	but	no	semicolons?	And	why	can't	I	put	the
opening	brace	on	the	next	line?

Go	uses	brace	brackets	for	statement	grouping,	a	syntax	familiar	to	programmers
who	have	worked	with	any	language	in	the	C	family.	Semicolons,	however,	are
for	parsers,	not	for	people,	and	we	wanted	to	eliminate	them	as	much	as
possible.	To	achieve	this	goal,	Go	borrows	a	trick	from	BCPL:	the	semicolons
that	separate	statements	are	in	the	formal	grammar	but	are	injected
automatically,	without	lookahead,	by	the	lexer	at	the	end	of	any	line	that	could
be	the	end	of	a	statement.	This	works	very	well	in	practice	but	has	the	effect	that
it	forces	a	brace	style.	For	instance,	the	opening	brace	of	a	function	cannot
appear	on	a	line	by	itself.

Some	have	argued	that	the	lexer	should	do	lookahead	to	permit	the	brace	to	live
on	the	next	line.	We	disagree.	Since	Go	code	is	meant	to	be	formatted
automatically	by	gofmt,	some	style	must	be	chosen.	That	style	may	differ	from
what	you've	used	in	C	or	Java,	but	Go	is	a	new	language	and	gofmt's	style	is	as

good	as	any	other.	More	important—much	more	important—the	advantages	of	a
single,	programmatically	mandated	format	for	all	Go	programs	greatly	outweigh
any	perceived	disadvantages	of	the	particular	style.	Note	too	that	Go's	style
means	that	an	interactive	implementation	of	Go	can	use	the	standard	syntax	one
line	at	a	time	without	special	rules.

Why	do	garbage	collection?	Won't	it	be	too	expensive?

One	of	the	biggest	sources	of	bookkeeping	in	systems	programs	is	memory
management.	We	feel	it's	critical	to	eliminate	that	programmer	overhead,	and
advances	in	garbage	collection	technology	in	the	last	few	years	give	us
confidence	that	we	can	implement	it	with	low	enough	overhead	and	no
significant	latency.

Another	point	is	that	a	large	part	of	the	difficulty	of	concurrent	and	multi-
threaded	programming	is	memory	management;	as	objects	get	passed	among
threads	it	becomes	cumbersome	to	guarantee	they	become	freed	safely.
Automatic	garbage	collection	makes	concurrent	code	far	easier	to	write.	Of
course,	implementing	garbage	collection	in	a	concurrent	environment	is	itself	a
challenge,	but	meeting	it	once	rather	than	in	every	program	helps	everyone.

Finally,	concurrency	aside,	garbage	collection	makes	interfaces	simpler	because
they	don't	need	to	specify	how	memory	is	managed	across	them.

The	current	implementation	is	a	parallel	mark-and-sweep	collector	but	a	future
version	might	take	a	different	approach.

On	the	topic	of	performance,	keep	in	mind	that	Go	gives	the	programmer
considerable	control	over	memory	layout	and	allocation,	much	more	than	is
typical	in	garbage-collected	languages.	A	careful	programmer	can	reduce	the
garbage	collection	overhead	dramatically	by	using	the	language	well;	see	the
article	about	profiling	Go	programs	for	a	worked	example,	including	a
demonstration	of	Go's	profiling	tools.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://blog.golang.org/2011/06/profiling-go-programs.html
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Updated	Apr	6,	2012	by	kev...@google.com

Project	Home	Wiki
Search	 	Current	pages 	for	

	 Search

	GOPATH		
The	GOPATH	environment	variable	and	its	uses

Introduction
The	GOPATH	environment	variable	is	used	to	specify	directories	outside	of
$GOROOT	that	contain	the	source	for	Go	projects	and	their	binaries.

GOPATH	is	used	by	goinstall	and	the	"go"	tool	as	a	destination	for	the	binaries
it	builds	and	a	location	to	search	for	imports.

GOPATH	is	a	path	list	-	multiple	directories	can	be	specified	by	separating
them	with	a	":"	(on	os	x	or	linux)	or	a	";"	(on	windows).	When	multiple
directories	are	listed,	and	goinstall	or	"go"	are	used	from	outside	any	of	them,
the	first	directory	is	used	as	the	installation	destination.	When	using	either	tool
from	within	one	of	the	listed	directories,	the	containing	directory	is	used	as	the
installation	destination.

For	most	of	this	document,	$GOPATH	will	refer	to	whichever	of	the	listed
directories	is	the	currently	active	one.

Integrating	GOPATH

On	os	x	or	linux,	adding	the	following	expression	to	PATH	will	add	all	$GOPATH/bin	directories.

${GOPATH//://bin:}/bin

Adding	the	following	block	to	a	standard	Go	makefile	will	bring	in	all	$GOPATH	pkg	directories.

GOPATHSEP=:

ifeq	($(GOHOSTOS),windows)

GOPATHSEP=;

endif

GCIMPORTS+=-I	$(subst	$(GOPATHSEP),/pkg/$(GOOS)_$(GOARCH)	-I	,	$(GOPATH))/pkg/$(GOOS)_$(GOARCH)

LDIMPORTS+=-L	$(subst	$(GOPATHSEP),/pkg/$(GOOS)_$(GOARCH)	-L	,	$(GOPATH))/pkg/$(GOOS)_$(GOARCH)

goinstall	and	the	"go"	tool	already	know	about	GOPATH.

Directory	layout

The	source	for	a	package	with	the	import	path	"X/Y/Z"	is	in	the	directory

$GOPATH/src/X/Y/Z

The	binary	for	a	package	with	the	import	path	"X/Y/Z"	is	in

$GOPATH/pkg/$GOOS_$GOARCH/X/Y/Z.a

The	binary	for	a	command	whose	source	is	in	$GOPATH/src/A/B	is

$GOPATH/bin/B

repository	integration	and	creating	"goinstallable"
projects

goinstall,	when	fetching	a	package,	looks	at	the	package's	import	path	to
discover	a	URL.	For	instance,	if	you	attempt	to

goinstall	code.google.com/p/gomatrix/matrix

goinstall	will	get	the	source	from	the	project	hosted	at
http://code.google.com/p/gomatrix,	and	it	will	clone	the	repository	to

$GOPATH/src/code.google.com/p/gomatrix

As	a	result,	if	(from	your	repository	project)	you	import	a	package	that	is	in	the
same	repository,	you	need	to	use	its	"full"	import	path	-	the	place	goinstall	puts
it.	In	this	example,	if	something	else	wants	to	import	the	"matrix"	package,	it
should	import	"code.google.com/p/gomatrix/matrix"	rather	than	"matrix".

If	you	prefer	to	use	makefiles	to	build	on	your	own	machine	and	you	still	want
your	project	to	work	well	with	goinstall,	set	the	TARG	variable	to	the	long
import	path.	goinstall	will	ignore	this	makefile,	but	as	long	as	TARG	matches
the	package's	location	relative	to	the	repository,	goinstall	will	choose	the	same
import	path.

http://code.google.com/p/gomatrix

Tips	and	tricks

Third-party	Packages

It	is	useful	to	have	two	GOPATH	entries.	One	for	a	location	for	3rd	party
goinstalled	packages,	and	the	second	for	your	own	projects.	List	the	3rd	party
GOPATH	first,	so	that	goinstall	will	use	it	as	a	default	destination.	Then	you
can	work	in	the	second	GOPATH	directory	and	have	all	your	packages	be
importable	by	using	the	"go"	command,	goinstall,	or	a	GOPATH-aware	3rd
party	build	tool	like	gb.

http://code.google.com/p/go-gb

FAQ

Why	won't	$GOPATH/src/cmd/mycmd/*.go	build?

When	the	go	command	is	looking	for	packages,	it	always	looks	in	$GOROOT
first.	This	includes	directories,	so	if	it	finds	(as	in	the	case	above)	a	cmd/
directory	in	$GOROOT	it	won't	proceed	to	look	in	any	of	the	GOPATH
directories.	This	prevents	you	from	defining	your	own	math/matrix	package	as
well	as	your	own	cmd/mycmd	commands.

Terms	-	Privacy	-	Project	Hosting	HelpPowered	by	Google	Project	Hosting

http://www.google.com/privacy.html
http://code.google.com/projecthosting/

Updated	Apr	5,	2012	by	bradfitz@golang.org

Project	Home	Wiki
Search	 	Current	pages 	for	

	 Search

	SQLDrivers		
SQL	database	drivers	database,	sql

SQL	database	drivers
The	database/sql	and	database/sql/driver	packages	are	designed	for	using
databases	from	Go	and	implementing	database	drivers,	respectively.

See	the	design	goals	doc:

http://golang.org/src/pkg/database/sql/doc.txt

http://golang.org/src/pkg/database/sql/doc.txt

Drivers
Drivers	for	Go's	sql	package	include:

MS	ADODB:	https://github.com/mattn/go-adodb
MySQL:	https://github.com/ziutek/mymysql
ODBC:	https://bitbucket.org/miquella/mgodbc
Postgres	(uses	cgo):	https://github.com/jbarham/gopgsqldriver
Postgres	(pure	Go):	https://github.com/bmizerany/pq
SQLite:	https://github.com/mattn/go-sqlite3
Oracle:	https://github.com/mattn/go-oci8
DB2:	https://bitbucket.org/phiggins/go-db2-cli

Terms	-	Privacy	-	Project	Hosting	HelpPowered	by	Google	Project	Hosting

https://github.com/mattn/go-adodb
https://github.com/ziutek/mymysql
https://bitbucket.org/miquella/mgodbc
https://github.com/jbarham/gopgsqldriver
https://github.com/bmizerany/pq
https://github.com/mattn/go-sqlite3
https://github.com/mattn/go-oci8
https://bitbucket.org/phiggins/go-db2-cli
http://www.google.com/privacy.html
http://code.google.com/projecthosting/

Updated	May	23,	2011	by	a...@golang.org

Project	Home	Wiki
Search	 	Current	pages 	for	

	 Search

	WindowsDLLs		
calling	Windows	DLLs	from	Go	windows,	syscall,	dll,	sample

Calling	a	Windows	DLL
A	sample	program	that	calls	Windows	DLLs	from	Go:

package	main

import	(

							"syscall"

							"unsafe"

							"fmt"

)

func	abort(funcname	string,	err	int)	{

							panic(funcname	+	"	failed:	"	+	syscall.Errstr(err))

}

var	(

							kernel32,	_	=	syscall.LoadLibrary("kernel32.dll")

							getModuleHandle,	_	=	syscall.GetProcAddress(kernel32,	"GetModuleHandleW")

							

							user32,	_	=	syscall.LoadLibrary("user32.dll")

							messageBox,	_	=	syscall.GetProcAddress(user32,	"MessageBoxW")

)

const	(

							MB_OK																						=	0x00000000

							MB_OKCANCEL																=	0x00000001

							MB_ABORTRETRYIGNORE								=	0x00000002

							MB_YESNOCANCEL													=	0x00000003

							MB_YESNO																			=	0x00000004

							MB_RETRYCANCEL													=	0x00000005

							MB_CANCELTRYCONTINUE							=	0x00000006

							MB_ICONHAND																=	0x00000010

							MB_ICONQUESTION												=	0x00000020

							MB_ICONEXCLAMATION									=	0x00000030

							MB_ICONASTERISK												=	0x00000040

							MB_USERICON																=	0x00000080

							MB_ICONWARNING													=	MB_ICONEXCLAMATION

							MB_ICONERROR															=	MB_ICONHAND

							MB_ICONINFORMATION									=	MB_ICONASTERISK

							MB_ICONSTOP																=	MB_ICONHAND

							MB_DEFBUTTON1														=	0x00000000

							MB_DEFBUTTON2														=	0x00000100

							MB_DEFBUTTON3														=	0x00000200

							MB_DEFBUTTON4														=	0x00000300

)

func	MessageBox(caption,	text	string,	style	uintptr)	(result	int)	{

							ret,	_,	callErr	:=	syscall.Syscall9(uintptr(messageBox),

															0,

															uintptr(unsafe.Pointer(syscall.StringToUTF16Ptr(text))),

															uintptr(unsafe.Pointer(syscall.StringToUTF16Ptr(caption))),

															style,

															0,

															0,

															0,

															0,

															0)

							if	callErr	!=	0	{

															abort("Call	MessageBox",	int(callErr))

							}

							result	=	int(ret)

							return

}

func	GetModuleHandle()	(handle	uintptr)	{

							if	ret,	_,	callErr	:=	syscall.Syscall(uintptr(getModuleHandle),	0,	0,	0);	callErr	!=	0	{

															abort("Call	GetModuleHandle",	int(callErr))

							}	else	{

															handle	=	ret

							}

							return

}

func	main()	{

							defer	syscall.FreeLibrary(kernel32)

							defer	syscall.FreeLibrary(user32)

							

							fmt.Printf("Retern:	%d\n",	MessageBox("Done	Title",	"This	test	is	Done.",	MB_YESNOCANCEL))

}

func	init()	{

							fmt.Print("Starting	Up\n")

}

Terms	-	Privacy	-	Project	Hosting	HelpPowered	by	Google	Project	Hosting

http://www.google.com/privacy.html
http://code.google.com/projecthosting/

Updated	Mar	6,	2012	by	a...@golang.org

Project	Home	Wiki
Search	 	Current	pages 	for	

	 Search

	GoForCPPProgrammers		
Go	for	C++	Programmers

Go	is	a	systems	programming	language	intended	to	be	a	general-purpose
systems	language,	like	C++.	These	are	some	notes	on	Go	for	experienced	C++
programmers.	This	document	discusses	the	differences	between	Go	and	C++,
and	says	little	to	nothing	about	the	similarities.

For	a	more	general	introduction	to	Go,	see	the	Go	Tour,	How	to	Write	Go	Code
and	Effective	Go.

For	a	detailed	description	of	the	Go	language,	see	the	Go	spec.

http://tour.golang.org/
http://golang.org/doc/code.html
http://golang.org/doc/effective_go.html
http://golang.org/doc/go_spec.html

Conceptual	Differences

Go	does	not	have	classes	with	constructors	or	destructors.	Instead	of	class
methods,	a	class	inheritance	hierarchy,	and	virtual	functions,	Go	provides
interfaces,	which	are	discussed	in	more	detail	below.	Interfaces	are	also
used	where	C++	uses	templates.

Go	uses	garbage	collection.	It	is	not	necessary	(or	possible)	to	release
memory	explicitly.

Go	has	pointers	but	not	pointer	arithmetic.	You	cannot	use	a	pointer	variable
to	walk	through	the	bytes	of	a	string.

Arrays	in	Go	are	first	class	values.	When	an	array	is	used	as	a	function
parameter,	the	function	receives	a	copy	of	the	array,	not	a	pointer	to	it.
However,	in	practice	functions	often	use	slices	for	parameters;	slices	hold
pointers	to	underlying	arrays.	Slices	are	discussed	further	below.

Strings	are	provided	by	the	language.	They	may	not	be	changed	once	they
have	been	created.

Hash	tables	are	provided	by	the	language.	They	are	called	maps.

Separate	threads	of	execution,	and	communication	channels	between	them,
are	provided	by	the	language.	This	is	discussed	further	below.

Certain	types	(maps	and	channels,	described	further	below)	are	passed	by
reference,	not	by	value.	That	is,	passing	a	map	to	a	function	does	not	copy	the
map,	and	if	the	function	changes	the	map	the	change	will	be	seen	by	the	caller.
In	C++	terms,	one	can	think	of	these	as	being	reference	types.

Go	does	not	use	header	files.	Instead,	each	source	file	is	part	of	a	defined
package.	When	a	package	defines	an	object	(type,	constant,	variable,	function)
with	a	name	starting	with	an	upper	case	letter,	that	object	is	visible	to	any	other
file	which	imports	that	package.

Go	does	not	support	implicit	type	conversion.	Operations	that	mix	different
types	require	casts	(called	conversions	in	Go).

Go	does	not	support	function	overloading	and	does	not	support	user	defined
operators.

Go	does	not	support	const	or	volatile	qualifiers.

Go	uses	nil	for	invalid	pointers,	where	C++	uses	NULL	or	simply	0.

Syntax

The	declaration	syntax	is	reversed	compared	to	C++.	You	write	the	name	followed	by	the
type.	Unlike	in	C++,	the	syntax	for	a	type	does	not	match	the	way	in	which	the	variable	is
used.	Type	declarations	may	be	read	easily	from	left	to	right.

Go																											C++

var	v1	int																//	int	v1;

var	v2	string													//	const	std::string	v2;		(approximately)

var	v3	[10]int												//	int	v3[10];

var	v4	[]int														//	int*	v4;		(approximately)

var	v5	struct	{	f	int	}			//	struct	{	int	f;	}	v5;

var	v6	*int															//	int*	v6;		(but	no	pointer	arithmetic)

var	v7	map[string]int					//	unordered_map<string,	int>*	v7;		(approximately)

var	v8	func(a	int)	int				//	int	(*v8)(int	a);

Declarations	generally	take	the	form	of	a	keyword	followed	by	the	name	of	the	object	being
declared.	The	keyword	is	one	of	var,	func,	const,	or	type.	Method	declarations	are	a	minor
exception	in	that	the	receiver	appears	before	the	name	of	the	object	being	declared;	see	the
discussion	of	interfaces.

You	can	also	use	a	keyword	followed	by	a	series	of	declarations	in	parentheses.

var	(

				i	int

				m	float64

)

When	declaring	a	function,	you	must	either	provide	a	name	for	each	parameter	or	not	provide
a	name	for	any	parameter;	you	can't	omit	some	names	and	provide	others.	You	may	group
several	names	with	the	same	type:

func	f(i,	j,	k	int,	s,	t	string)

A	variable	may	be	initialized	when	it	is	declared.	When	this	is	done,	specifying	the	type	is
permitted	but	not	required.	When	the	type	is	not	specified,	the	type	of	the	variable	is	the	type
of	the	initialization	expression.

var	v	=	*p

See	also	the	discussion	of	constants,	below.	If	a	variable	is	not	initialized	explicitly,	the	type

must	be	specified.	In	that	case	it	will	be	implicitly	initialized	to	the	type's	zero	value	(
etc.).	There	are	no	uninitialized	variables	in	Go.

Within	a	function,	a	short	declaration	syntax	is	available	with	:=	.

v1	:=	v2

This	is	equivalent	to

var	v1	=	v2

Go	permits	multiple	assignments,	which	are	done	in	parallel.

i,	j	=	j,	i				//	Swap	i	and	j.

Functions	may	have	multiple	return	values,	indicated	by	a	list	in	parentheses.	The	returned
values	can	be	stored	by	assignment	to	a	list	of	variables.

func	f()	(i	int,	j	int)	{	...	}

v1,	v2	=	f()

Go	code	uses	very	few	semicolons	in	practice.	Technically,	all	Go	statements	are	terminated
by	a	semicolon.	However,	Go	treats	the	end	of	a	non-blank	line	as	a	semicolon	unless	the	line
is	clearly	incomplete	(the	exact	rules	are	in	the	language	specification).	A	consequence	of	this
is	that	in	some	cases	Go	does	not	permit	you	to	use	a	line	break.	For	example,	you	may	not
write

func	g()

{																		//	INVALID

}

A	semicolon	will	be	inserted	after	g(),	causing	it	to	be	a	function	declaration	rather	than	a
function	definition.	Similarly,	you	may	not	write

if	x	{

}

else	{													//	INVALID

}

A	semicolon	will	be	inserted	after	the	}	preceding	the	else,	causing	a	syntax	error.

Since	semicolons	do	end	statements,	you	may	continue	using	them	as	in	C++.	However,	that
is	not	the	recommended	style.	Idiomatic	Go	code	omits	unnecessary	semicolons,	which	in

practice	is	all	of	them	other	than	the	initial	for	loop	clause	and	cases	where	you	want	several
short	statements	on	a	single	line.

While	we're	on	the	topic,	we	recommend	that	rather	than	worry	about	semicolons	and	brace
placement,	you	format	your	code	with	the	gofmt	program.	That	will	produce	a	single	standard
Go	style,	and	let	you	worry	about	your	code	rather	than	your	formatting.	While	the	style	may
initially	seem	odd,	it	is	as	good	as	any	other	style,	and	familiarity	will	lead	to	comfort.

When	using	a	pointer	to	a	struct,	you	use	.	instead	of	->.	Thus	syntactically	speaking	a
structure	and	a	pointer	to	a	structure	are	used	in	the	same	way.

type	myStruct	struct	{	i	int	}

var	v9	myStruct														//	v9	has	structure	type

var	p9	*myStruct													//	p9	is	a	pointer	to	a	structure

f(v9.i,	p9.i)

Go	does	not	require	parentheses	around	the	condition	of	an	if	statement,	or	the	expressions	of
a	for	statement,	or	the	value	of	a	switch	statement.	On	the	other	hand,	it	does	require	curly
braces	around	the	body	of	an	if	or	for	statement.

if	a	<	b	{	f()	}													//	Valid

if	(a	<	b)	{	f()	}											//	Valid	(condition	is	a	parenthesized	expression)

if	(a	<	b)	f()															//	INVALID

for	i	=	0;	i	<	10;	i++	{}				//	Valid

for	(i	=	0;	i	<	10;	i++)	{}		//	INVALID

Go	does	not	have	a	while	statement	nor	does	it	have	a	do/while	statement.	The	
may	be	used	with	a	single	condition,	which	makes	it	equivalent	to	a	while	statement.
Omitting	the	condition	entirely	is	an	endless	loop.

Go	permits	break	and	continue	to	specify	a	label.	The	label	must	refer	to	a	for,	
select	statement.

In	a	switch	statement,	case	labels	do	not	fall	through.	You	can	make	them	fall	through	using
the	fallthrough	keyword.	This	applies	even	to	adjacent	cases.

switch	i	{

case	0:		//	empty	case	body

case	1:

				f()		//	f	is	not	called	when	i	==	0!

}

But	a	case	can	have	multiple	values.

switch	i	{

case	0,	1:

				f()		//	f	is	called	if	i	==	0	||	i	==	1.

}

The	values	in	a	case	need	not	be	constants--or	even	integers;	any	type	that	supports	the
equality	comparison	operator,	such	as	strings	or	pointers,	can	be	used--and	if	the	
is	omitted	it	defaults	to	true.

switch	{

case	i	<	0:

				f1()

case	i	==	0:

				f2()

case	i	>	0:

				f3()

}

The	++	and	--	operators	may	only	be	used	in	statements,	not	in	expressions.	You	cannot	write
c	=	*p++.	*p++	is	parsed	as	(*p)++.

The	defer	statement	may	be	used	to	call	a	function	after	the	function	containing	the	
statement	returns.

fd	:=	open("filename")

defer	close(fd)									//	fd	will	be	closed	when	this	function	returns.

Constants

In	Go	constants	may	be	untyped.	This	applies	even	to	constants	named	with	a
const	declaration,	if	no	type	is	given	in	the	declaration	and	the	initializer
expression	uses	only	untyped	constants.	A	value	derived	from	an	untyped
constant	becomes	typed	when	it	is	used	within	a	context	that	requires	a	typed
value.	This	permits	constants	to	be	used	relatively	freely	without	requiring
general	implicit	type	conversion.

var	a	uint

f(a	+	1)		//	untyped	numeric	constant	"1"	becomes	typed	as	uint

The	language	does	not	impose	any	limits	on	the	size	of	an	untyped	numeric
constant	or	constant	expression.	A	limit	is	only	applied	when	a	constant	is	used
where	a	type	is	required.

const	huge	=	1	<<	100

f(huge	>>	98)

Go	does	not	support	enums.	Instead,	you	can	use	the	special	name	iota	in	a
single	const	declaration	to	get	a	series	of	increasing	value.	When	an
initialization	expression	is	omitted	for	a	const,	it	reuses	the	preceding
expression.

const	(

				red	=	iota			//	red	==	0

				blue									//	blue	==	1

				green								//	green	==	2

)

Slices

A	slice	is	conceptually	a	struct	with	three	fields:	a	pointer	to	an	array,	a	length,
and	a	capacity.	Slices	support	the	[]	operator	to	access	elements	of	the
underlying	array.	The	builtin	len	function	returns	the	length	of	the	slice.	The
builtin	cap	function	returns	the	capacity.

Given	an	array,	or	another	slice,	a	new	slice	is	created	via	a[i:j].	This	creates
a	new	slice	which	refers	to	a,	starts	at	index	i,	and	ends	before	index	j.	It	has
length	j-i.	If	i	is	omitted,	the	slice	starts	at	0.	If	j	is	omitted,	the	slice	ends	at
len(a).	The	new	slice	refers	to	the	same	array	to	which	a	refers.	That	is,
changes	made	using	the	new	slice	may	be	seen	using	a.	The	capacity	of	the	new
slice	is	simply	the	capacity	of	a	minus	i.	The	capacity	of	an	array	is	the	length
of	the	array.

What	this	means	is	that	Go	uses	slices	for	some	cases	where	C++	uses	pointers.
If	you	create	a	value	of	type	[100]byte	(an	array	of	100	bytes,	perhaps	a
buffer)	and	you	want	to	pass	it	to	a	function	without	copying	it,	you	should
declare	the	function	parameter	to	have	type	[]byte,	and	pass	a	slice	of	the	array
(a[:]	will	pass	the	entire	array).	Unlike	in	C++,	it	is	not	necessary	to	pass	the
length	of	the	buffer;	it	is	efficiently	accessible	via	len.

The	slice	syntax	may	also	be	used	with	a	string.	It	returns	a	new	string,	whose
value	is	a	substring	of	the	original	string.	Because	strings	are	immutable,	string
slices	can	be	implemented	without	allocating	new	storage	for	the	slices's
contents.

Making	values

Go	has	a	builtin	function	new	which	takes	a	type	and	allocates	space	on	the
heap.	The	allocated	space	will	be	zero-initialized	for	the	type.	For	example,
new(int)	allocates	a	new	int	on	the	heap,	initializes	it	with	the	value	0,	and
returns	its	address,	which	has	type	*int.	Unlike	in	C++,	new	is	a	function,	not
an	operator;	new	int	is	a	syntax	error.

Perhaps	surprisingly,	new	is	not	commonly	used	in	Go	programs.	In	Go	taking
the	address	of	a	variable	is	always	safe	and	never	yields	a	dangling	pointer.	If
the	program	takes	the	address	of	a	variable,	it	will	be	allocated	on	the	heap	if
necessary.	So	these	functions	are	equivalent:

type	S	{	I	int	}

func	f1()	*S	{

	 return	new(S)

}

func	f2()	*S	{

	 var	s	S

	 return	&s

}

func	f3()	*S	{

	 //	More	idiomatic:	use	composite	literal	syntax.

	 return	&S{0}

}

Map	and	channel	values	must	be	allocated	using	the	builtin	function	make.	A
variable	declared	with	map	or	channel	type	without	an	initializer	will	be
automatically	initialized	to	nil.	Calling	make(map[int]int)	returns	a	newly
allocated	value	of	type	map[int]int.	Note	that	make	returns	a	value,	not	a
pointer.	This	is	consistent	with	the	fact	that	map	and	channel	values	are	passed
by	reference.	Calling	make	with	a	map	type	takes	an	optional	argument	which	is
the	expected	capacity	of	the	map.	Calling	make	with	a	channel	type	takes	an
optional	argument	which	sets	the	buffering	capacity	of	the	channel;	the	default
is	0	(unbuffered).

The	make	function	may	also	be	used	to	allocate	a	slice.	In	this	case	it	allocates
memory	for	the	underlying	array	and	returns	a	slice	referring	to	it.	There	is	one

required	argument,	which	is	the	number	of	elements	in	the	slice.	A	second,
optional,	argument	is	the	capacity	of	the	slice.	For	example,	make([]int,	10,
20).	This	is	identical	to	new([20]int)[0:10].	Since	Go	uses	garbage
collection,	the	newly	allocated	array	will	be	discarded	sometime	after	there	are
no	references	to	the	returned	slice.

Interfaces

Where	C++	provides	classes,	subclasses	and	templates,	Go	provides	interfaces.	A	Go
interface	is	similar	to	a	C++	pure	abstract	class:	a	class	with	no	data	members,	with
methods	which	are	all	pure	virtual.	However,	in	Go,	any	type	which	provides	the	methods
named	in	the	interface	may	be	treated	as	an	implementation	of	the	interface.	No	explicitly
declared	inheritance	is	required.	The	implementation	of	the	interface	is	entirely	separate
from	the	interface	itself.

A	method	looks	like	an	ordinary	function	definition,	except	that	it	has	a	receiver.	
receiver	is	similar	to	the	this	pointer	in	a	C++	class	method.

type	myType	struct	{	i	int	}

func	(p	*myType)	Get()	int	{	return	p.i	}

This	declares	a	method	Get	associated	with	myType.	The	receiver	is	named	p	in	the	body
of	the	function.

Methods	are	defined	on	named	types.	If	you	convert	the	value	to	a	different	type,	the	new
value	will	have	the	methods	of	the	new	type,	not	the	old	type.

You	may	define	methods	on	a	builtin	type	by	declaring	a	new	named	type	derived	from	it.
The	new	type	is	distinct	from	the	builtin	type.

type	myInteger	int

func	(p	myInteger)	Get()	int	{	return	int(p)	}	//	Conversion	required.

func	f(i	int)	{	}

var	v	myInteger

//	f(v)	is	invalid.

//	f(int(v))	is	valid;	int(v)	has	no	defined	methods.

Given	this	interface:

type	myInterface	interface	{

	 Get()	int

	 Set(i	int)

}

we	can	make	myType	satisfy	the	interface	by	adding

func	(p	*myType)	Set(i	int)	{	p.i	=	i	}

Now	any	function	which	takes	myInterface	as	a	parameter	will	accept	a	variable	of	type
*myType.

func	GetAndSet(x	myInterface)	{}

func	f1()	{

	 var	p	myType

	 GetAndSet(&p)

}

In	other	words,	if	we	view	myInterface	as	a	C++	pure	abstract	base	class,	defining	
and	Get	for	*myType	made	*myType	automatically	inherit	from	myInterface.	A	type	may
satisfy	multiple	interfaces.

An	anonymous	field	may	be	used	to	implement	something	much	like	a	C++	child	class.

type	myChildType	struct	{	myType;	j	int	}

func	(p	*myChildType)	Get()	int	{	p.j++;	return	p.myType.Get()	}

This	effectively	implements	myChildType	as	a	child	of	myType.

func	f2()	{

	 var	p	myChildType

	 GetAndSet(&p)

}

The	set	method	is	effectively	inherited	from	myType,	because	methods	associated	with
the	anonymous	field	are	promoted	to	become	methods	of	the	enclosing	type.	In	this	case,
because	myChildType	has	an	anonymous	field	of	type	myType,	the	methods	of	myType
also	become	methods	of	myChildType.	In	this	example,	the	Get	method	was	overridden,
and	the	Set	method	was	inherited.

This	is	not	precisely	the	same	as	a	child	class	in	C++.	When	a	method	of	an	anonymous
field	is	called,	its	receiver	is	the	field,	not	the	surrounding	struct.	In	other	words,	methods
on	anonymous	fields	are	not	virtual	functions.	When	you	want	the	equivalent	of	a	virtual
function,	use	an	interface.

A	variable	that	has	an	interface	type	may	be	converted	to	have	a	different	interface	type
using	a	special	construct	called	a	type	assertion.	This	is	implemented	dynamically	at	run
time,	like	C++	dynamic_cast.	Unlike	dynamic_cast,	there	does	not	need	to	be	any
declared	relationship	between	the	two	interfaces.

type	myPrintInterface	interface	{

	 Print()

}

func	f3(x	myInterface)	{

	 x.(myPrintInterface).Print()		//	type	assertion	to	myPrintInterface

}

The	conversion	to	myPrintInterface	is	entirely	dynamic.	It	will	work	as	long	as	the
underlying	type	of	x	(the	dynamic	type)	defines	a	print	method.

Because	the	conversion	is	dynamic,	it	may	be	used	to	implement	generic	programming
similar	to	templates	in	C++.	This	is	done	by	manipulating	values	of	the	minimal
interface.

type	Any	interface	{	}

Containers	may	be	written	in	terms	of	Any,	but	the	caller	must	unbox	using	a	type
assertion	to	recover	values	of	the	contained	type.	As	the	typing	is	dynamic	rather	than
static,	there	is	no	equivalent	of	the	way	that	a	C++	template	may	inline	the	relevant
operations.	The	operations	are	fully	type-checked	at	run	time,	but	all	operations	will
involve	a	function	call.

type	Iterator	interface	{

	 Get()	Any

	 Set(v	Any)

	 Increment()

	 Equal(arg	Iterator)	bool

}

Note	that	Equal	has	an	argument	of	type	Iterator.	This	does	not	behave	like	a	C++
template.	See	the	FAQ.

Goroutines

Go	permits	starting	a	new	thread	of	execution	(a	goroutine)	using	the	go
statement.	The	go	statement	runs	a	function	in	a	different,	newly	created,
goroutine.	All	goroutines	in	a	single	program	share	the	same	address	space.

Internally,	goroutines	act	like	coroutines	that	are	multiplexed	among	multiple
operating	system	threads.	You	do	not	have	to	worry	about	these	details.

func	server(i	int)	{

	 for	{

	 	 fmt.Print(i)

	 	 time.Sleep(10	*	time.Second)

	 }

}

go	server(1)

go	server(2)

(Note	that	the	for	statement	in	the	server	function	is	equivalent	to	a	C++
while	(true)	loop.)

Goroutines	are	(intended	to	be)	cheap.

Function	literals	(which	Go	implements	as	closures)	can	be	useful	with	the	go
statement.

var	g	int

go	func(i	int)	{

	 s	:=	0

	 for	j	:=	0;	j	<	i;	j++	{	s	+=	j	}

	 g	=	s

}(1000)		//	Passes	argument	1000	to	the	function	literal.

Channels

Channels	are	used	to	communicate	between	goroutines.	Any	value	may	be	sent
over	a	channel.	Channels	are	(intended	to	be)	efficient	and	cheap.	To	send	a
value	on	a	channel,	use	<-	as	a	binary	operator.	To	receive	a	value	on	a	channel,
use	<-	as	a	unary	operator.	When	calling	functions,	channels	are	passed	by
reference.

The	Go	library	provides	mutexes,	but	you	can	also	use	a	single	goroutine	with	a
shared	channel.	Here	is	an	example	of	using	a	manager	function	to	control
access	to	a	single	value.

type	Cmd	struct	{	Get	bool;	Val	int	}

func	Manager(ch	chan	Cmd)	{

	 val	:=	0

	 for	{

	 	 c	:=	<-ch

	 	 if	c.Get	{	c.Val	=	val;	ch	<-	c	}

	 	 else	{	val	=	c.Val	}

	 }

}

In	that	example	the	same	channel	is	used	for	input	and	output.	This	is	incorrect
if	there	are	multiple	goroutines	communicating	with	the	manager	at	once:	a
goroutine	waiting	for	a	response	from	the	manager	might	receive	a	request
from	another	goroutine	instead.	A	solution	is	to	pass	in	a	channel.

type	Cmd2	struct	{	Get	bool;	Val	int;	Ch	<-	chan	int	}

func	Manager2(ch	chan	Cmd2)	{

	 val	:=	0

	 for	{

	 	 c	:=	<-ch

	 	 if	c.Get	{	c.ch	<-	val	}

	 	 else	{	val	=	c.Val	}

	 }

}

To	use	Manager2,	given	a	channel	to	it:

func	f4(ch	<-	chan	Cmd2)	int	{

	 myCh	:=	make(chan	int)

	 c	:=	Cmd2{	true,	0,	myCh	}			//	Composite	literal	syntax.

	 ch	<-	c

	 return	<-myCh

}

Terms	-	Privacy	-	Project	Hosting	HelpPowered	by	Google	Project	Hosting

http://www.google.com/privacy.html
http://code.google.com/projecthosting/

Updated	Mar	30,	2012	by	minux...@gmail.com

Project	Home	Wiki
Search	 	Current	pages 	for	

	 Search

	cgo		
Tips	for	interfacing	with	C	code	and	libraries	using	cgo.

Introduction
First,	http://golang.org/cmd/cgo	is	the	primary	cgo	documentation.

There	is	also	a	good	intrduction	article	at
http://golang.org/doc/articles/c_go_cgo.html.

http://golang.org/cmd/cgo
http://golang.org/doc/articles/c_go_cgo.html

The	basics

If	a	Go	source	file	imports	"C",	it	is	using	cgo.	The	Go	file	will	have	access	to
anything	appearing	in	the	comment	immediately	preceding	the	line	import
"C",	and	will	be	linked	against	all	other	cgo	comments	in	other	Go	files,	and	all
C	files	included	in	the	build	process.

Note	that	there	must	be	no	blank	lines	in	between	the	cgo	comment	and	the
import	statement.

To	access	a	symbol	originating	from	the	C	side,	use	the	package	name	C.	That
is,	if	you	want	to	call	the	C	function	printf()	from	Go	code,	you	write
C.printf().

package	cgoexample

/*

#include	<stdio.h>

#include	<stdlib.h>

void	myprint(char*	s)	{

	 printf("%s",	s);

}

*/

import	"C"

import	"unsafe"

func	Example()	{

	 cs	:=	C.CString("Hello	from	stdio\n")

	 C.myprint(cs)

	 C.free(unsafe.Pointer(cs))

}

Calling	Go	functions	from	C

It	is	possible	to	call	both	top-level	Go	functions	and	function	variables	from	C	code	invoked	from	Go	code	using	cgo.

Global	functions

Go	makes	its	functions	available	to	C	code	through	use	of	a	special	//export	comment.

package	gocallback

import	"fmt"

/*

#include	<stdio.h>

extern	void	AGoFunction();

void	ACFunction()	{

	 printf("ACFunction()\n");

	 AGoFunction();

}

*/

import	"C"

//export	AGoFunction

func	AGoFunction()	{

	 fmt.Println("AGoFunction()")

}

func	Example()	{

	 C.ACFunction()

}

Function	variables

The	following	code	shows	an	example	of	invoking	a	Go	callback	from	C	code.	Go	passes	the	function	variable	to	the	CGo	code	by	calling
CallMyFunction().	CallMyFunction()	invokes	the	callback	by	sending	it	back	into	the	Go	code,	with	the	desired	parameters,	for	unpacking	and	calling.

package	gocallback

import	(

	 "unsafe"

	 "fmt"

)

/*

extern	void	go_callback_int(void*	foo,	int	p1);

void	CallMyFunction(void*	pfoo)	{

	 go_callback_int(pfoo,	5);

}

*/

import	"C"

//export	go_callback_int

func	go_callback_int(pfoo	unsafe.Pointer,	p1	C.int)	{

	 foo	:=	*(*func(C.int))(pfoo)

	 foo(p1)

}

func	MyCallback(x	C.int)	{

	 fmt.Println("callback	with",	x)

}

//we	store	it	in	a	global	variable	so	that	the	garbage	collector	doesn't	clean	up	the	memory	for	any	temporary	variables	created.

var	MyCallbackFunc	=	MyCallback

func	Example()	{

	 C.CallMyFunction(unsafe.Pointer(&MyCallbackFunc))

}

Go	strings	and	C	strings

Go	strings	and	C	strings	are	different.	Go	strings	are	the	combination	of	a
length	and	a	pointer	to	the	first	character	in	the	string.	C	strings	are	just	the
pointer	to	the	first	character,	and	are	terminated	by	the	first	instance	of	the	null
character,	'\0'.

Go	provides	means	to	go	from	one	to	another	in	the	form	of	the	following	three
functions:

func	C.CString(goString	string)	*C.char

func	C.GoString(cString	*C.char)	string

func	C.GoStringN(cString	*C.char,	length	C.int)	string

One	important	thing	to	remember	is	that	C.CString()	will	allocate	a	new	string
of	the	appropriate	length,	and	return	it.	That	means	the	C	string	is	not	going	to
be	garbage	collected	and	it	is	up	to	you	to	free	it.	A	standard	way	to	do	this
follows.

//	#include	<stdlib.h>

import	"C"

import	"unsafe"

...

	 var	cmsg	*C.char	=	C.CString("hi")

	 defer	C.free(unsafe.Pointer(cmsg))

	 //	do	something	with	the	C	string

Of	course,	you	aren't	required	to	use	defer	to	call	C.free().	You	can	free	the	C
string	whenever	you	like,	but	it	is	your	responsibility	to	make	sure	it	happens.

Turning	C	arrays	into	Go	slices

C	arrays	are	typically	either	null-terminated	or	have	a	length	kept	elsewhere.

Go	provides	the	following	function	to	make	a	new	Go	byte	slice	from	a	C	array:

func	C.GoBytes(cArray	unsafe.Pointer,	length	C.int)	[]byte

To	create	a	Go	slice	backed	by	a	C	array	(without	copying	the	original	data),	one	needs	to
acquire	this	length	at	runtime	and	use	reflect.SliceHeader.

import	"C"

import	"unsafe"

...

								var	theCArray	*TheCType	:=	C.getTheArray()

								length	:=	C.getTheArrayLength()

								var	theGoSlice	[]TheCType

								sliceHeader	:=	(*reflect.SliceHeader)((unsafe.Pointer(&theGoSlice)))

								sliceHeader.Cap	=	length

								sliceHeader.Len	=	length

								sliceHeader.Data	=	uintptr(unsafe.Pointer(&theCArray[0]))

								//	now	theGoSlice	is	a	normal	Go	slice	backed	by	the	C	array

It	is	important	to	keep	in	mind	that	the	Go	garbage	collector	will	not	interact	with	this	data,
and	that	if	it	is	freed	from	the	C	side	of	things,	the	behavior	of	any	Go	code	using	the	slice
is	nondeterministic.

Common	Pitfalls

Struct	Alignment	Issues

As	Go	dosen't	support	packed	struct	(e.g.,	structs	where	maximum	alignment	is
1	byte),	you	can't	use	packed	C	struct	in	Go.	Even	if	you	program	passes
compilation,	it	won't	do	what	you	want.	To	use	it,	you	have	to	read/write	the
struct	as	byte	array/slice.

//export	and	definition	in	preamble

If	your	program	uses	any	//export	directives,	then	the	C	code	in	the	comment
may	only	include	declarations	(extern	int	f();),	not	definitions	(int	f()	{
return	1;	}	or	int	n;).

Terms	-	Privacy	-	Project	Hosting	HelpPowered	by	Google	Project	Hosting

http://www.google.com/privacy.html
http://code.google.com/projecthosting/

Writing	Web	Applications

Introduction

Covered	in	this	tutorial:

Creating	a	data	structure	with	load	and	save	methods
Using	the	net/http	package	to	build	web	applications
Using	the	html/template	package	to	process	HTML	templates
Using	the	regexp	package	to	validate	user	input
Using	closures

Assumed	knowledge:

Programming	experience
Understanding	of	basic	web	technologies	(HTTP,	HTML)
Some	UNIX/DOS	command-line	knowledge

Getting	Started

At	present,	you	need	to	have	a	FreeBSD,	Linux,	OS	X,	or	Windows	machine	to
run	Go.	We	will	use	$	to	represent	the	command	prompt.

Install	Go	(see	the	Installation	Instructions).

Make	a	new	directory	for	this	tutorial	inside	your	GOPATH	and	cd	to	it:

$	mkdir	gowiki

$	cd	gowiki

Create	a	file	named	wiki.go,	open	it	in	your	favorite	editor,	and	add	the
following	lines:

package	main

import	(

	 "fmt"

	 "io/ioutil"

)

We	import	the	fmt	and	ioutil	packages	from	the	Go	standard	library.	Later,	as
we	implement	additional	functionality,	we	will	add	more	packages	to	this	import
declaration.

Data	Structures

Let's	start	by	defining	the	data	structures.	A	wiki	consists	of	a	series	of
interconnected	pages,	each	of	which	has	a	title	and	a	body	(the	page	content).
Here,	we	define	Page	as	a	struct	with	two	fields	representing	the	title	and	body.

type	Page	struct	{

				Title	string

				Body		[]byte

}

The	type	[]byte	means	"a	byte	slice".	(See	Slices:	usage	and	internals	for	more
on	slices.)	The	Body	element	is	a	[]byte	rather	than	string	because	that	is	the
type	expected	by	the	io	libraries	we	will	use,	as	you'll	see	below.

The	Page	struct	describes	how	page	data	will	be	stored	in	memory.	But	what
about	persistent	storage?	We	can	address	that	by	creating	a	save	method	on
Page:

func	(p	*Page)	save()	error	{

				filename	:=	p.Title	+	".txt"

				return	ioutil.WriteFile(filename,	p.Body,	0600)

}

This	method's	signature	reads:	"This	is	a	method	named	save	that	takes	as	its
receiver	p,	a	pointer	to	Page	.	It	takes	no	parameters,	and	returns	a	value	of	type
error."

This	method	will	save	the	Page's	Body	to	a	text	file.	For	simplicity,	we	will	use
the	Title	as	the	file	name.

The	save	method	returns	an	error	value	because	that	is	the	return	type	of
WriteFile	(a	standard	library	function	that	writes	a	byte	slice	to	a	file).	The
save	method	returns	the	error	value,	to	let	the	application	handle	it	should
anything	go	wrong	while	writing	the	file.	If	all	goes	well,	Page.save()	will
return	nil	(the	zero-value	for	pointers,	interfaces,	and	some	other	types).

The	octal	integer	constant	0600,	passed	as	the	third	parameter	to	WriteFile,
indicates	that	the	file	should	be	created	with	read-write	permissions	for	the
current	user	only.	(See	the	Unix	man	page	open(2)	for	details.)

We	will	want	to	load	pages,	too:

func	loadPage(title	string)	*Page	{

				filename	:=	title	+	".txt"

				body,	_	:=	ioutil.ReadFile(filename)

				return	&Page{Title:	title,	Body:	body}

}

The	function	loadPage	constructs	the	file	name	from	Title,	reads	the	file's
contents	into	a	new	Page,	and	returns	a	pointer	to	that	new	page.

Functions	can	return	multiple	values.	The	standard	library	function	io.ReadFile
returns	[]byte	and	error.	In	loadPage,	error	isn't	being	handled	yet;	the	"blank
identifier"	represented	by	the	underscore	(_)	symbol	is	used	to	throw	away	the
error	return	value	(in	essence,	assigning	the	value	to	nothing).

But	what	happens	if	ReadFile	encounters	an	error?	For	example,	the	file	might
not	exist.	We	should	not	ignore	such	errors.	Let's	modify	the	function	to	return
*Page	and	error.

func	loadPage(title	string)	(*Page,	error)	{

				filename	:=	title	+	".txt"

				body,	err	:=	ioutil.ReadFile(filename)

				if	err	!=	nil	{

								return	nil,	err

				}

				return	&Page{Title:	title,	Body:	body},	nil

}

Callers	of	this	function	can	now	check	the	second	parameter;	if	it	is	nil	then	it
has	successfully	loaded	a	Page.	If	not,	it	will	be	an	error	that	can	be	handled	by
the	caller	(see	the	language	specification	for	details).

At	this	point	we	have	a	simple	data	structure	and	the	ability	to	save	to	and	load
from	a	file.	Let's	write	a	main	function	to	test	what	we've	written:

func	main()	{

				p1	:=	&Page{Title:	"TestPage",	Body:	[]byte("This	is	a	sample	Page.")}

				p1.save()

				p2,	_	:=	loadPage("TestPage")

				fmt.Println(string(p2.Body))

}

After	compiling	and	executing	this	code,	a	file	named	TestPage.txt	would	be

created,	containing	the	contents	of	p1.	The	file	would	then	be	read	into	the	struct
p2,	and	its	Body	element	printed	to	the	screen.

You	can	compile	and	run	the	program	like	this:

$	go	build	wiki.go

$./wiki

This	is	a	sample	page.

(If	you're	using	Windows	you	must	type	"wiki"	without	the	"./"	to	run	the
program.)

Click	here	to	view	the	code	we've	written	so	far.

Introducing	the	net/http	package	(an	interlude)

Here's	a	full	working	example	of	a	simple	web	server:

package	main

import	(

				"fmt"

				"net/http"

)

func	handler(w	http.ResponseWriter,	r	*http.Request)	{

				fmt.Fprintf(w,	"Hi	there,	I	love	%s!",	r.URL.Path[1:])

}

func	main()	{

				http.HandleFunc("/",	handler)

				http.ListenAndServe(":8080",	nil)

}

The	main	function	begins	with	a	call	to	http.HandleFunc,	which	tells	the	http
package	to	handle	all	requests	to	the	web	root	("/")	with	handler.

It	then	calls	http.ListenAndServe,	specifying	that	it	should	listen	on	port	8080
on	any	interface	(":8080").	(Don't	worry	about	its	second	parameter,	nil,	for
now.)	This	function	will	block	until	the	program	is	terminated.

The	function	handler	is	of	the	type	http.HandlerFunc.	It	takes	an
http.ResponseWriter	and	an	http.Request	as	its	arguments.

An	http.ResponseWriter	value	assembles	the	HTTP	server's	response;	by
writing	to	it,	we	send	data	to	the	HTTP	client.

An	http.Request	is	a	data	structure	that	represents	the	client	HTTP	request.	The
string	r.URL.Path	is	the	path	component	of	the	request	URL.	The	trailing	[1:]
means	"create	a	sub-slice	of	Path	from	the	1st	character	to	the	end."	This	drops
the	leading	"/"	from	the	path	name.

If	you	run	this	program	and	access	the	URL:

http://localhost:8080/monkeys

the	program	would	present	a	page	containing:

Hi	there,	I	love	monkeys!

Using	net/http	to	serve	wiki	pages

To	use	the	net/http	package,	it	must	be	imported:

import	(

	 "fmt"

	 "net/http"

	 "io/ioutil"

)

Let's	create	a	handler	to	view	a	wiki	page:

const	lenPath	=	len("/view/")

func	viewHandler(w	http.ResponseWriter,	r	*http.Request)	{

				title	:=	r.URL.Path[lenPath:]

				p,	_	:=	loadPage(title)

				fmt.Fprintf(w,	"<h1>%s</h1><div>%s</div>",	p.Title,	p.Body)

}

First,	this	function	extracts	the	page	title	from	r.URL.Path,	the	path	component
of	the	request	URL.	The	global	constant	lenPath	is	the	length	of	the	leading
"/view/"	component	of	the	request	path.	The	Path	is	re-sliced	with	[lenPath:]
to	drop	the	first	6	characters	of	the	string.	This	is	because	the	path	will	invariably
begin	with	"/view/",	which	is	not	part	of	the	page	title.

The	function	then	loads	the	page	data,	formats	the	page	with	a	string	of	simple
HTML,	and	writes	it	to	w,	the	http.ResponseWriter.

Again,	note	the	use	of	_	to	ignore	the	error	return	value	from	loadPage.	This	is
done	here	for	simplicity	and	generally	considered	bad	practice.	We	will	attend	to
this	later.

To	use	this	handler,	we	create	a	main	function	that	initializes	http	using	the
viewHandler	to	handle	any	requests	under	the	path	/view/.

func	main()	{

				http.HandleFunc("/view/",	viewHandler)

				http.ListenAndServe(":8080",	nil)

}

Click	here	to	view	the	code	we've	written	so	far.

Let's	create	some	page	data	(as	test.txt),	compile	our	code,	and	try	serving	a
wiki	page.

Open	test.txt	file	in	your	editor,	and	save	the	string	"Hello	world"	(without
quotes)	in	it.

$	go	build	wiki.go

$./wiki

With	this	web	server	running,	a	visit	to	http://localhost:8080/view/test
should	show	a	page	titled	"test"	containing	the	words	"Hello	world".

http://localhost:8080/view/test

Editing	Pages

A	wiki	is	not	a	wiki	without	the	ability	to	edit	pages.	Let's	create	two	new
handlers:	one	named	editHandler	to	display	an	'edit	page'	form,	and	the	other
named	saveHandler	to	save	the	data	entered	via	the	form.

First,	we	add	them	to	main():

func	main()	{

				http.HandleFunc("/view/",	viewHandler)

				http.HandleFunc("/edit/",	editHandler)

				http.HandleFunc("/save/",	saveHandler)

				http.ListenAndServe(":8080",	nil)

}

The	function	editHandler	loads	the	page	(or,	if	it	doesn't	exist,	create	an	empty
Page	struct),	and	displays	an	HTML	form.

func	editHandler(w	http.ResponseWriter,	r	*http.Request)	{

				title	:=	r.URL.Path[lenPath:]

				p,	err	:=	loadPage(title)

				if	err	!=	nil	{

								p	=	&Page{Title:	title}

				}

				fmt.Fprintf(w,	"<h1>Editing	%s</h1>"+

								"<form	action=\"/save/%s\"	method=\"POST\">"+

								"<textarea	name=\"body\">%s</textarea>
"+

								"<input	type=\"submit\"	value=\"Save\">"+

								"</form>",

								p.Title,	p.Title,	p.Body)

}

This	function	will	work	fine,	but	all	that	hard-coded	HTML	is	ugly.	Of	course,
there	is	a	better	way.

The	html/template	package

The	html/template	package	is	part	of	the	Go	standard	library.	We	can	use
html/template	to	keep	the	HTML	in	a	separate	file,	allowing	us	to	change	the
layout	of	our	edit	page	without	modifying	the	underlying	Go	code.

First,	we	must	add	html/template	to	the	list	of	imports:

import	(

	 "html/template"

	 "http"

	 "io/ioutil"

	 "os"

)

Let's	create	a	template	file	containing	the	HTML	form.	Open	a	new	file	named
edit.html,	and	add	the	following	lines:

<h1>Editing	{{.Title}}</h1>

<form	action="/save/{{.Title}}"	method="POST">

<div><textarea	name="body"	rows="20"	cols="80">{{printf	"%s"	.Body}}</textarea></div>

<div><input	type="submit"	value="Save"></div>

</form>

Modify	editHandler	to	use	the	template,	instead	of	the	hard-coded	HTML:

func	editHandler(w	http.ResponseWriter,	r	*http.Request)	{

				title	:=	r.URL.Path[lenPath:]

				p,	err	:=	loadPage(title)

				if	err	!=	nil	{

								p	=	&Page{Title:	title}

				}

				t,	_	:=	template.ParseFiles("edit.html")

				t.Execute(w,	p)

}

The	function	template.ParseFiles	will	read	the	contents	of	edit.html	and
return	a	*template.Template.

The	method	t.Execute	executes	the	template,	writing	the	generated	HTML	to
the	http.ResponseWriter.	The	.Title	and	.Body	dotted	identifiers	refer	to
p.Title	and	p.Body.

Template	directives	are	enclosed	in	double	curly	braces.	The	printf	"%s"
.Body	instruction	is	a	function	call	that	outputs	.Body	as	a	string	instead	of	a
stream	of	bytes,	the	same	as	a	call	to	fmt.Printf.	The	html/template	package
helps	guarantee	that	only	safe	and	correct-looking	HTML	is	generated	by
template	actions.	For	instance,	it	automatically	escapes	any	greater	than	sign	(>),
replacing	it	with	>,	to	make	sure	user	data	does	not	corrupt	the	form	HTML.

Now	that	we've	removed	the	fmt.Fprintf	statement,	we	can	remove	"fmt"	from
the	import	list.

While	we're	working	with	templates,	let's	create	a	template	for	our	viewHandler
called	view.html:

<h1>{{.Title}}</h1>

<p>[edit]</p>

<div>{{printf	"%s"	.Body}}</div>

Modify	viewHandler	accordingly:

func	viewHandler(w	http.ResponseWriter,	r	*http.Request)	{

				title	:=	r.URL.Path[lenPath:]

				p,	_	:=	loadPage(title)

				t,	_	:=	template.ParseFiles("view.html")

				t.Execute(w,	p)

}

Notice	that	we've	used	almost	exactly	the	same	templating	code	in	both	handlers.
Let's	remove	this	duplication	by	moving	the	templating	code	to	its	own	function:

func	viewHandler(w	http.ResponseWriter,	r	*http.Request)	{

				title	:=	r.URL.Path[lenPath:]

				p,	_	:=	loadPage(title)

				renderTemplate(w,	"view",	p)

}

func	editHandler(w	http.ResponseWriter,	r	*http.Request)	{

				title	:=	r.URL.Path[lenPath:]

				p,	err	:=	loadPage(title)

				if	err	!=	nil	{

								p	=	&Page{Title:	title}

				}

				renderTemplate(w,	"edit",	p)

}

func	renderTemplate(w	http.ResponseWriter,	tmpl	string,	p	*Page)	{

				t,	_	:=	template.ParseFiles(tmpl	+	".html")

				t.Execute(w,	p)

}

The	handlers	are	now	shorter	and	simpler.

Handling	non-existent	pages

What	if	you	visit	/view/APageThatDoesntExist?	The	program	will	crash.	This
is	because	it	ignores	the	error	return	value	from	loadPage.	Instead,	if	the
requested	Page	doesn't	exist,	it	should	redirect	the	client	to	the	edit	Page	so	the
content	may	be	created:

func	viewHandler(w	http.ResponseWriter,	r	*http.Request)	{

				title,	err	:=	getTitle(w,	r)

				if	err	!=	nil	{

								return

				}

				p,	err	:=	loadPage(title)

				if	err	!=	nil	{

								http.Redirect(w,	r,	"/edit/"+title,	http.StatusFound)

								return

				}

				renderTemplate(w,	"view",	p)

}

The	http.Redirect	function	adds	an	HTTP	status	code	of	http.StatusFound
(302)	and	a	Location	header	to	the	HTTP	response.

http://localhost:8080/view/APageThatDoesntExist

Saving	Pages

The	function	saveHandler	will	handle	the	form	submission.

func	saveHandler(w	http.ResponseWriter,	r	*http.Request)	{

				title	:=	r.URL.Path[lenPath:]

				body	:=	r.FormValue("body")

				p	:=	&Page{Title:	title,	Body:	[]byte(body)}

				p.save()

				http.Redirect(w,	r,	"/view/"+title,	http.StatusFound)

}

The	page	title	(provided	in	the	URL)	and	the	form's	only	field,	Body,	are	stored
in	a	new	Page.	The	save()	method	is	then	called	to	write	the	data	to	a	file,	and
the	client	is	redirected	to	the	/view/	page.

The	value	returned	by	FormValue	is	of	type	string.	We	must	convert	that	value
to	[]byte	before	it	will	fit	into	the	Page	struct.	We	use	[]byte(body)	to	perform
the	conversion.

Error	handling

There	are	several	places	in	our	program	where	errors	are	being	ignored.	This	is
bad	practice,	not	least	because	when	an	error	does	occur	the	program	will	crash.
A	better	solution	is	to	handle	the	errors	and	return	an	error	message	to	the	user.
That	way	if	something	does	go	wrong,	the	server	will	continue	to	function	and
the	user	will	be	notified.

First,	let's	handle	the	errors	in	renderTemplate:

func	renderTemplate(w	http.ResponseWriter,	tmpl	string,	p	*Page)	{

				t,	err	:=	template.ParseFiles(tmpl	+	".html")

				if	err	!=	nil	{

								http.Error(w,	err.Error(),	http.StatusInternalServerError)

								return

				}

				err	=	t.Execute(w,	p)

				if	err	!=	nil	{

								http.Error(w,	err.Error(),	http.StatusInternalServerError)

				}

}

The	http.Error	function	sends	a	specified	HTTP	response	code	(in	this	case
"Internal	Server	Error")	and	error	message.	Already	the	decision	to	put	this	in	a
separate	function	is	paying	off.

Now	let's	fix	up	saveHandler:

func	saveHandler(w	http.ResponseWriter,	r	*http.Request)	{

				title,	err	:=	getTitle(w,	r)

				if	err	!=	nil	{

								return

				}

				body	:=	r.FormValue("body")

				p	:=	&Page{Title:	title,	Body:	[]byte(body)}

				err	=	p.save()

				if	err	!=	nil	{

								http.Error(w,	err.Error(),	http.StatusInternalServerError)

								return

				}

				http.Redirect(w,	r,	"/view/"+title,	http.StatusFound)

}

Any	errors	that	occur	during	p.save()	will	be	reported	to	the	user.

Template	caching

There	is	an	inefficiency	in	this	code:	renderTemplate	calls	ParseFiles	every
time	a	page	is	rendered.	A	better	approach	would	be	to	call	ParseFiles	once	at
program	initialization,	parsing	all	templates	into	a	single	*Template.	Then	we
can	use	the	ExecuteTemplate	method	to	render	a	specific	template.

First	we	create	a	global	variable	named	templates,	and	initialize	it	with
ParseFiles.

var	templates	=	template.Must(template.ParseFiles("edit.html",	"view.html"))

The	function	template.Must	is	a	convenience	wrapper	that	panics	when	passed
a	non-nil	error	value,	and	otherwise	returns	the	*Template	unaltered.	A	panic	is
appropriate	here;	if	the	templates	can't	be	loaded	the	only	sensible	thing	to	do	is
exit	the	program.

A	for	loop	is	used	with	a	range	statement	to	iterate	over	an	array	constant
containing	the	names	of	the	templates	we	want	parsed.	If	we	were	to	add	more
templates	to	our	program,	we	would	add	their	names	to	that	array.

We	then	modify	the	renderTemplate	function	to	call	the
templates.ExecuteTemplate	method	with	the	name	of	the	appropriate	template:

func	renderTemplate(w	http.ResponseWriter,	tmpl	string,	p	*Page)	{

				err	:=	templates.ExecuteTemplate(w,	tmpl+".html",	p)

				if	err	!=	nil	{

								http.Error(w,	err.Error(),	http.StatusInternalServerError)

				}

}

Note	that	the	template	name	is	the	template	file	name,	so	we	must	append
".html"	to	the	tmpl	argument.

Validation

As	you	may	have	observed,	this	program	has	a	serious	security	flaw:	a	user	can
supply	an	arbitrary	path	to	be	read/written	on	the	server.	To	mitigate	this,	we	can
write	a	function	to	validate	the	title	with	a	regular	expression.

First,	add	"regexp"	to	the	import	list.	Then	we	can	create	a	global	variable	to
store	our	validation	regexp:

var	titleValidator	=	regexp.MustCompile("^[a-zA-Z0-9]+$")

The	function	regexp.MustCompile	will	parse	and	compile	the	regular
expression,	and	return	a	regexp.Regexp.	MustCompile	is	distinct	from	Compile
in	that	it	will	panic	if	the	expression	compilation	fails,	while	Compile	returns	an
error	as	a	second	parameter.

Now,	let's	write	a	function	that	extracts	the	title	string	from	the	request	URL,	and
tests	it	against	our	TitleValidator	expression:

func	getTitle(w	http.ResponseWriter,	r	*http.Request)	(title	string,	err	error)	{

				title	=	r.URL.Path[lenPath:]

				if	!titleValidator.MatchString(title)	{

								http.NotFound(w,	r)

								err	=	errors.New("Invalid	Page	Title")

				}

				return

}

If	the	title	is	valid,	it	will	be	returned	along	with	a	nil	error	value.	If	the	title	is
invalid,	the	function	will	write	a	"404	Not	Found"	error	to	the	HTTP	connection,
and	return	an	error	to	the	handler.

Let's	put	a	call	to	getTitle	in	each	of	the	handlers:

func	viewHandler(w	http.ResponseWriter,	r	*http.Request)	{

				title,	err	:=	getTitle(w,	r)

				if	err	!=	nil	{

								return

				}

				p,	err	:=	loadPage(title)

				if	err	!=	nil	{

								http.Redirect(w,	r,	"/edit/"+title,	http.StatusFound)

								return

				}

				renderTemplate(w,	"view",	p)

}

func	editHandler(w	http.ResponseWriter,	r	*http.Request)	{

				title,	err	:=	getTitle(w,	r)

				if	err	!=	nil	{

								return

				}

				p,	err	:=	loadPage(title)

				if	err	!=	nil	{

								p	=	&Page{Title:	title}

				}

				renderTemplate(w,	"edit",	p)

}

func	saveHandler(w	http.ResponseWriter,	r	*http.Request)	{

				title,	err	:=	getTitle(w,	r)

				if	err	!=	nil	{

								return

				}

				body	:=	r.FormValue("body")

				p	:=	&Page{Title:	title,	Body:	[]byte(body)}

				err	=	p.save()

				if	err	!=	nil	{

								http.Error(w,	err.Error(),	http.StatusInternalServerError)

								return

				}

				http.Redirect(w,	r,	"/view/"+title,	http.StatusFound)

}

Introducing	Function	Literals	and	Closures

Catching	the	error	condition	in	each	handler	introduces	a	lot	of	repeated	code.
What	if	we	could	wrap	each	of	the	handlers	in	a	function	that	does	this
validation	and	error	checking?	Go's	function	literals	provide	a	powerful	means
of	abstracting	functionality	that	can	help	us	here.

First,	we	re-write	the	function	definition	of	each	of	the	handlers	to	accept	a	title
string:

func	viewHandler(w	http.ResponseWriter,	r	*http.Request,	title	string)

func	editHandler(w	http.ResponseWriter,	r	*http.Request,	title	string)

func	saveHandler(w	http.ResponseWriter,	r	*http.Request,	title	string)

Now	let's	define	a	wrapper	function	that	takes	a	function	of	the	above	type,	and
returns	a	function	of	type	http.HandlerFunc	(suitable	to	be	passed	to	the
function	http.HandleFunc):

func	makeHandler(fn	func	(http.ResponseWriter,	*http.Request,	string))	http.HandlerFunc	{

	 return	func(w	http.ResponseWriter,	r	*http.Request)	{

	 	 //	Here	we	will	extract	the	page	title	from	the	Request,

	 	 //	and	call	the	provided	handler	'fn'

	 }

}

The	returned	function	is	called	a	closure	because	it	encloses	values	defined
outside	of	it.	In	this	case,	the	variable	fn	(the	single	argument	to	makeHandler)	is
enclosed	by	the	closure.	The	variable	fn	will	be	one	of	our	save,	edit,	or	view
handlers.

Now	we	can	take	the	code	from	getTitle	and	use	it	here	(with	some	minor
modifications):

func	makeHandler(fn	func(http.ResponseWriter,	*http.Request,	string))	http.HandlerFunc	{

				return	func(w	http.ResponseWriter,	r	*http.Request)	{

								title	:=	r.URL.Path[lenPath:]

								if	!titleValidator.MatchString(title)	{

												http.NotFound(w,	r)

												return

								}

								fn(w,	r,	title)

				}

}

The	closure	returned	by	makeHandler	is	a	function	that	takes	an
http.ResponseWriter	and	http.Request	(in	other	words,	an
http.HandlerFunc).	The	closure	extracts	the	title	from	the	request	path,	and
validates	it	with	the	TitleValidator	regexp.	If	the	title	is	invalid,	an	error	will
be	written	to	the	ResponseWriter	using	the	http.NotFound	function.	If	the
title	is	valid,	the	enclosed	handler	function	fn	will	be	called	with	the
ResponseWriter,	Request,	and	title	as	arguments.

Now	we	can	wrap	the	handler	functions	with	makeHandler	in	main,	before	they
are	registered	with	the	http	package:

func	main()	{

				http.HandleFunc("/view/",	makeHandler(viewHandler))

				http.HandleFunc("/edit/",	makeHandler(editHandler))

				http.HandleFunc("/save/",	makeHandler(saveHandler))

				http.ListenAndServe(":8080",	nil)

}

Finally	we	remove	the	calls	to	getTitle	from	the	handler	functions,	making
them	much	simpler:

func	viewHandler(w	http.ResponseWriter,	r	*http.Request,	title	string)	{

				p,	err	:=	loadPage(title)

				if	err	!=	nil	{

								http.Redirect(w,	r,	"/edit/"+title,	http.StatusFound)

								return

				}

				renderTemplate(w,	"view",	p)

}

func	editHandler(w	http.ResponseWriter,	r	*http.Request,	title	string)	{

				p,	err	:=	loadPage(title)

				if	err	!=	nil	{

								p	=	&Page{Title:	title}

				}

				renderTemplate(w,	"edit",	p)

}

func	saveHandler(w	http.ResponseWriter,	r	*http.Request,	title	string)	{

				body	:=	r.FormValue("body")

				p	:=	&Page{Title:	title,	Body:	[]byte(body)}

				err	:=	p.save()

				if	err	!=	nil	{

								http.Error(w,	err.Error(),	http.StatusInternalServerError)

								return

				}

				http.Redirect(w,	r,	"/view/"+title,	http.StatusFound)

}

Try	it	out!

Click	here	to	view	the	final	code	listing.

Recompile	the	code,	and	run	the	app:

$	go	build	wiki.go

$./wiki

Visiting	http://localhost:8080/view/ANewPage	should	present	you	with	the	page
edit	form.	You	should	then	be	able	to	enter	some	text,	click	'Save',	and	be
redirected	to	the	newly	created	page.

http://localhost:8080/view/ANewPage

Other	tasks

Here	are	some	simple	tasks	you	might	want	to	tackle	on	your	own:

Store	templates	in	tmpl/	and	page	data	in	data/.
Add	a	handler	to	make	the	web	root	redirect	to	/view/FrontPage.
Spruce	up	the	page	templates	by	making	them	valid	HTML	and	adding
some	CSS	rules.
Implement	inter-page	linking	by	converting	instances	of	[PageName]	to	
PageName.	(hint:	you	could	use
regexp.ReplaceAllFunc	to	do	this)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

JSON-RPC:	a	tale	of	interfaces
Here	we	present	an	example	where	Go's	interfaces	made	it	easy	to	refactor	some
existing	code	to	make	it	more	flexible	and	extensible.	Originally,	the	standard
library's	RPC	package	used	a	custom	wire	format	called	gob.	For	a	particular
application,	we	wanted	to	use	JSON	as	an	alternate	wire	format.

We	first	defined	a	pair	of	interfaces	to	describe	the	functionality	of	the	existing
wire	format,	one	for	the	client,	and	one	for	the	server	(depicted	below).

type	ServerCodec	interface	{

	 ReadRequestHeader(*Request)	error

	 ReadRequestBody(interface{})	error

	 WriteResponse(*Response,	interface{})	error

	 Close()	error

}

On	the	server	side,	we	then	changed	two	internal	function	signatures	to	accept
the	ServerCodec	interface	instead	of	our	existing	gob.Encoder.	Here's	one	of
them:

func	sendResponse(sending	*sync.Mutex,	req	*Request,

	 reply	interface{},	enc	*gob.Encoder,	errmsg	string)

became

func	sendResponse(sending	*sync.Mutex,	req	*Request,

	 	 reply	interface{},	enc	ServerCodec,	errmsg	string)

We	then	wrote	a	trivial	gobServerCodec	wrapper	to	reproduce	the	original
functionality.	From	there	it	is	simple	to	build	a	jsonServerCodec.

After	some	similar	changes	to	the	client	side,	this	was	the	full	extent	of	the	work
we	needed	to	do	on	the	RPC	package.	This	whole	exercise	took	about	20
minutes!	After	tidying	up	and	testing	the	new	code,	the	final	changeset	was
submitted.

In	an	inheritance-oriented	language	like	Java	or	C++,	the	obvious	path	would	be
to	generalize	the	RPC	class,	and	create	JsonRPC	and	GobRPC	subclasses.
However,	this	approach	becomes	tricky	if	you	want	to	make	a	further

http://code.google.com/p/go/source/diff?spec=svn9daf796ebf1cae97b2fcf760a4ab682f1f063f29&r=9daf796ebf1cae97b2fcf760a4ab682f1f063f29&format=side&path=/src/pkg/rpc/server.go

generalization	orthogonal	to	that	hierarchy.	(For	example,	if	you	were	to
implement	an	alternate	RPC	standard).	In	our	Go	package,	we	took	a	route	that
is	both	conceptually	simpler	and	requires	less	code	be	written	or	changed.

A	vital	quality	for	any	codebase	is	maintainability.	As	needs	change,	it	is
essential	to	adapt	your	code	easily	and	cleanly,	lest	it	become	unwieldy	to	work
with.	We	believe	Go's	lightweight,	composition-oriented	type	system	provides	a
means	of	structuring	code	that	scales.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Go's	Declaration	Syntax
Newcomers	to	Go	wonder	why	the	declaration	syntax	is	different	from	the
tradition	established	in	the	C	family.	In	this	post	we'll	compare	the	two
approaches	and	explain	why	Go's	declarations	look	as	they	do.

C	syntax

First,	let's	talk	about	C	syntax.	C	took	an	unusual	and	clever	approach	to
declaration	syntax.	Instead	of	describing	the	types	with	special	syntax,	one
writes	an	expression	involving	the	item	being	declared,	and	states	what	type	that
expression	will	have.	Thus

int	x;

declares	x	to	be	an	int:	the	expression	'x'	will	have	type	int.	In	general,	to	figure
out	how	to	write	the	type	of	a	new	variable,	write	an	expression	involving	that
variable	that	evaluates	to	a	basic	type,	then	put	the	basic	type	on	the	left	and	the
expression	on	the	right.

Thus,	the	declarations

int	*p;

int	a[3];

state	that	p	is	a	pointer	to	int	because	'*p'	has	type	int,	and	that	a	is	an	array	of
ints	because	a[3]	(ignoring	the	particular	index	value,	which	is	punned	to	be	the
size	of	the	array)	has	type	int.

What	about	functions?	Originally,	C's	function	declarations	wrote	the	types	of
the	arguments	outside	the	parens,	like	this:

int	main(argc,	argv)

				int	argc;

				char	*argv[];

{	/*	...	*/	}

Again,	we	see	that	main	is	a	function	because	the	expression	main(argc,	argv)
returns	an	int.	In	modern	notation	we'd	write

int	main(int	argc,	char	*argv[])	{	/*	...	*/	}

but	the	basic	structure	is	the	same.

This	is	a	clever	syntactic	idea	that	works	well	for	simple	types	but	can	get
confusing	fast.	The	famous	example	is	declaring	a	function	pointer.	Follow	the
rules	and	you	get	this:

int	(*fp)(int	a,	int	b);

Here,	fp	is	a	pointer	to	a	function	because	if	you	write	the	expression	(*fp)(a,	b)
you'll	call	a	function	that	returns	int.	What	if	one	of	fp's	arguments	is	itself	a
function?

int	(*fp)(int	(*ff)(int	x,	int	y),	int	b)

That's	starting	to	get	hard	to	read.

Of	course,	we	can	leave	out	the	name	of	the	parameters	when	we	declare	a
function,	so	main	can	be	declared

int	main(int,	char	*[])

Recall	that	argv	is	declared	like	this,

char	*argv[]

so	you	drop	the	name	from	the	middle	of	its	declaration	to	construct	its	type.	It's
not	obvious,	though,	that	you	declare	something	of	type	char	*[]	by	putting	its
name	in	the	middle.

And	look	what	happens	to	fp's	declaration	if	you	don't	name	the	parameters:

int	(*fp)(int	(*)(int,	int),	int)

Not	only	is	it	not	obvious	where	to	put	the	name	inside

int	(*)(int,	int)

it's	not	exactly	clear	that	it's	a	function	pointer	declaration	at	all.	And	what	if	the
return	type	is	a	function	pointer?

int	(*(*fp)(int	(*)(int,	int),	int))(int,	int)

It's	hard	even	to	see	that	this	declaration	is	about	fp.

You	can	construct	more	elaborate	examples	but	these	should	illustrate	some	of
the	difficulties	that	C's	declaration	syntax	can	introduce.

There's	one	more	point	that	needs	to	be	made,	though.	Because	type	and
declaration	syntax	are	the	same,	it	can	be	difficult	to	parse	expressions	with
types	in	the	middle.	This	is	why,	for	instance,	C	casts	always	parenthesize	the
type,	as	in

(int)M_PI

Go	syntax

Languages	outside	the	C	family	usually	use	a	distinct	type	syntax	in
declarations.	Although	it's	a	separate	point,	the	name	usually	comes	first,	often
followed	by	a	colon.	Thus	our	examples	above	become	something	like	(in	a
fictional	but	illustrative	language)

x:	int

p:	pointer	to	int

a:	array[3]	of	int

These	declarations	are	clear,	if	verbose	-	you	just	read	them	left	to	right.	Go
takes	its	cue	from	here,	but	in	the	interests	of	brevity	it	drops	the	colon	and
removes	some	of	the	keywords:

x	int

p	*int

a	[3]int

There	is	no	direct	correspondence	between	the	look	of	[3]int	and	how	to	use	a	in
an	expression.	(We'll	come	back	to	pointers	in	the	next	section.)	You	gain	clarity
at	the	cost	of	a	separate	syntax.

Now	consider	functions.	Let's	transcribe	the	declaration	for	main,	even	though
the	main	function	in	Go	takes	no	arguments:

func	main(argc	int,	argv	*[]byte)	int

Superficially	that's	not	much	different	from	C,	but	it	reads	well	from	left	to	right:

function	main	takes	an	int	and	a	pointer	to	a	slice	of	bytes	and	returns	an	int.

Drop	the	parameter	names	and	it's	just	as	clear	-	they're	always	first	so	there's	no
confusion.

func	main(int,	*[]byte)	int

One	value	of	this	left-to-right	style	is	how	well	it	works	as	the	types	become
more	complex.	Here's	a	declaration	of	a	function	variable	(analogous	to	a
function	pointer	in	C):

f	func(func(int,int)	int,	int)	int

Or	if	f	returns	a	function:

f	func(func(int,int)	int,	int)	func(int,	int)	int

It	still	reads	clearly,	from	left	to	right,	and	it's	always	obvious	which	name	is
being	declared	-	the	name	comes	first.

The	distinction	between	type	and	expression	syntax	makes	it	easy	to	write	and
invoke	closures	in	Go:

sum	:=	func(a,	b	int)	int	{	return	a+b	}	(3,	4)

Pointers

Pointers	are	the	exception	that	proves	the	rule.	Notice	that	in	arrays	and	slices,
for	instance,	Go's	type	syntax	puts	the	brackets	on	the	left	of	the	type	but	the
expression	syntax	puts	them	on	the	right	of	the	expression:

var	a	[]int

x	=	a[1]

For	familiarity,	Go's	pointers	use	the	*	notation	from	C,	but	we	could	not	bring
ourselves	to	make	a	similar	reversal	for	pointer	types.	Thus	pointers	work	like
this

var	p	*int

x	=	*p

We	couldn't	say

var	p	*int

x	=	p*

because	that	postfix	*	would	conflate	with	multiplication.	We	could	have	used
the	Pascal	^,	for	example:

var	p	^int

x	=	p^

and	perhaps	we	should	have	(and	chosen	another	operator	for	xor),	because	the
prefix	asterisk	on	both	types	and	expressions	complicates	things	in	a	number	of
ways.	For	instance,	although	one	can	write

[]int("hi")

as	a	conversion,	one	must	parenthesize	the	type	if	it	starts	with	a	*:

(*int)(nil)

Had	we	been	willing	to	give	up	*	as	pointer	syntax,	those	parentheses	would	be
unnecessary.

So	Go's	pointer	syntax	is	tied	to	the	familiar	C	form,	but	those	ties	mean	that	we
cannot	break	completely	from	using	parentheses	to	disambiguate	types	and
expressions	in	the	grammar.

Overall,	though,	we	believe	Go's	type	syntax	is	easier	to	understand	than	C's,
especially	when	things	get	complicated.

Notes

Go's	declarations	read	left	to	right.	It's	been	pointed	out	that	C's	read	in	a	spiral!
See	The	"Clockwise/Spiral	Rule"	by	David	Anderson.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://c-faq.com/decl/spiral.anderson.html
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Defer,	Panic,	and	Recover
Go	has	the	usual	mechanisms	for	control	flow:	if,	for,	switch,	goto.	It	also	has
the	go	statement	to	run	code	in	a	separate	goroutine.	Here	I'd	like	to	discuss
some	of	the	less	common	ones:	defer,	panic,	and	recover.

A	defer	statement	pushes	a	function	call	onto	a	list.	The	list	of	saved	calls	is
executed	after	the	surrounding	function	returns.	Defer	is	commonly	used	to
simplify	functions	that	perform	various	clean-up	actions.

For	example,	let's	look	at	a	function	that	opens	two	files	and	copies	the	contents
of	one	file	to	the	other:

func	CopyFile(dstName,	srcName	string)	(written	int64,	err	error)	{

				src,	err	:=	os.Open(srcName)

				if	err	!=	nil	{

								return

				}

				dst,	err	:=	os.Create(dstName)

				if	err	!=	nil	{

								return

				}

				written,	err	=	io.Copy(dst,	src)

				dst.Close()

				src.Close()

				return

}

This	works,	but	there	is	a	bug.	If	the	call	to	os.Create	fails,	the	function	will
return	without	closing	the	source	file.	This	can	be	easily	remedied	by	putting	a
call	to	src.Close	before	the	second	return	statement,	but	if	the	function	were
more	complex	the	problem	might	not	be	so	easily	noticed	and	resolved.	By
introducing	defer	statements	we	can	ensure	that	the	files	are	always	closed:

func	CopyFile(dstName,	srcName	string)	(written	int64,	err	error)	{

				src,	err	:=	os.Open(srcName)

				if	err	!=	nil	{

								return

				}

				defer	src.Close()

				dst,	err	:=	os.Create(dstName)

				if	err	!=	nil	{

								return

				}

				defer	dst.Close()

				return	io.Copy(dst,	src)

}

Defer	statements	allow	us	to	think	about	closing	each	file	right	after	opening	it,
guaranteeing	that,	regardless	of	the	number	of	return	statements	in	the	function,
the	files	will	be	closed.

The	behavior	of	defer	statements	is	straightforward	and	predictable.	There	are
three	simple	rules:

1.	A	deferred	function's	arguments	are	evaluated	when	the	defer	statement	is
evaluated.

In	this	example,	the	expression	"i"	is	evaluated	when	the	Println	call	is	deferred.
The	deferred	call	will	print	"0"	after	the	function	returns.

func	a()	{

				i	:=	0

				defer	fmt.Println(i)

				i++

				return

}

2.	Deferred	function	calls	are	executed	in	Last	In	First	Out	order	after	the
surrounding	function	returns.

This	function	prints	"3210":

func	b()	{

				for	i	:=	0;	i	<	4;	i++	{

								defer	fmt.Print(i)

				}

}

3.	Deferred	functions	may	read	and	assign	to	the	returning	function's	named
return	values.

In	this	example,	a	deferred	function	increments	the	return	value	i	after	the
surrounding	function	returns.	Thus,	this	function	returns	2:

func	c()	(i	int)	{

				defer	func()	{	i++	}()

				return	1

}

This	is	convenient	for	modifying	the	error	return	value	of	a	function;	we	will	see
an	example	of	this	shortly.

Panic	is	a	built-in	function	that	stops	the	ordinary	flow	of	control	and	begins
panicking.	When	the	function	F	calls	panic,	execution	of	F	stops,	any	deferred
functions	in	F	are	executed	normally,	and	then	F	returns	to	its	caller.	To	the
caller,	F	then	behaves	like	a	call	to	panic.	The	process	continues	up	the	stack
until	all	functions	in	the	current	goroutine	have	returned,	at	which	point	the
program	crashes.	Panics	can	be	initiated	by	invoking	panic	directly.	They	can
also	be	caused	by	runtime	errors,	such	as	out-of-bounds	array	accesses.

Recover	is	a	built-in	function	that	regains	control	of	a	panicking	goroutine.
Recover	is	only	useful	inside	deferred	functions.	During	normal	execution,	a	call
to	recover	will	return	nil	and	have	no	other	effect.	If	the	current	goroutine	is
panicking,	a	call	to	recover	will	capture	the	value	given	to	panic	and	resume
normal	execution.

Here's	an	example	program	that	demonstrates	the	mechanics	of	panic	and	defer:

package	main

import	"fmt"

func	main()	{

				f()

				fmt.Println("Returned	normally	from	f.")

}

func	f()	{

				defer	func()	{

								if	r	:=	recover();	r	!=	nil	{

												fmt.Println("Recovered	in	f",	r)

								}

				}()

				fmt.Println("Calling	g.")

				g(0)

				fmt.Println("Returned	normally	from	g.")

}

func	g(i	int)	{

				if	i	>	3	{

								fmt.Println("Panicking!")

								panic(fmt.Sprintf("%v",	i))

				}

				defer	fmt.Println("Defer	in	g",	i)

				fmt.Println("Printing	in	g",	i)

				g(i	+	1)

}

The	function	g	takes	the	int	i,	and	panics	if	i	is	greater	than	3,	or	else	it	calls
itself	with	the	argument	i+1.	The	function	f	defers	a	function	that	calls	recover
and	prints	the	recovered	value	(if	it	is	non-nil).	Try	to	picture	what	the	output	of
this	program	might	be	before	reading	on.

The	program	will	output:

Calling	g.

Printing	in	g	0

Printing	in	g	1

Printing	in	g	2

Printing	in	g	3

Panicking!

Defer	in	g	3

Defer	in	g	2

Defer	in	g	1

Defer	in	g	0

Recovered	in	f	4

Returned	normally	from	f.

If	we	remove	the	deferred	function	from	f	the	panic	is	not	recovered	and	reaches
the	top	of	the	goroutine's	call	stack,	terminating	the	program.	This	modified
program	will	output:

Calling	g.

Printing	in	g	0

Printing	in	g	1

Printing	in	g	2

Printing	in	g	3

Panicking!

Defer	in	g	3

Defer	in	g	2

Defer	in	g	1

Defer	in	g	0

panic:	4

	

panic	PC=0x2a9cd8

[stack	trace	omitted]

For	a	real-world	example	of	panic	and	recover,	see	the	json	package	from	the
Go	standard	library.	It	decodes	JSON-encoded	data	with	a	set	of	recursive
functions.	When	malformed	JSON	is	encountered,	the	parser	calls	panic	to
unwind	the	stack	to	the	top-level	function	call,	which	recovers	from	the	panic
and	returns	an	appropriate	error	value	(see	the	'error'	and	'unmarshal'	methods	of
the	decodeState	type	in	decode.go).

The	convention	in	the	Go	libraries	is	that	even	when	a	package	uses	panic
internally,	its	external	API	still	presents	explicit	error	return	values.

Other	uses	of	defer	(beyond	the	file.Close	example	given	earlier)	include
releasing	a	mutex:

mu.Lock()

defer	mu.Unlock()

printing	a	footer:

printHeader()

defer	printFooter()

and	more.

In	summary,	the	defer	statement	(with	or	without	panic	and	recover)	provides	an
unusual	and	powerful	mechanism	for	control	flow.	It	can	be	used	to	model	a
number	of	features	implemented	by	special-purpose	structures	in	other
programming	languages.	Try	it	out.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Go	Concurrency	Patterns:	Timing
out,	moving	on
Concurrent	programming	has	its	own	idioms.	A	good	example	is	timeouts.
Although	Go's	channels	do	not	support	them	directly,	they	are	easy	to
implement.	Say	we	want	to	receive	from	the	channel	ch,	but	want	to	wait	at	most
one	second	for	the	value	to	arrive.	We	would	start	by	creating	a	signalling
channel	and	launching	a	goroutine	that	sleeps	before	sending	on	the	channel:

				timeout	:=	make(chan	bool,	1)

				go	func()	{

								time.Sleep(1	*	time.Second)

								timeout	<-	true

				}()

We	can	then	use	a	select	statement	to	receive	from	either	ch	or	timeout.	If
nothing	arrives	on	ch	after	one	second,	the	timeout	case	is	selected	and	the
attempt	to	read	from	ch	is	abandoned.

				select	{

				case	<-ch:

								//	a	read	from	ch	has	occurred

				case	<-timeout:

								//	the	read	from	ch	has	timed	out

				}

The	timeout	channel	is	buffered	with	space	for	1	value,	allowing	the	timeout
goroutine	to	send	to	the	channel	and	then	exit.	The	goroutine	doesn't	know	(or
care)	whether	the	value	is	received.	This	means	the	goroutine	won't	hang	around
forever	if	the	ch	receive	happens	before	the	timeout	is	reached.	The	timeout
channel	will	eventually	be	deallocated	by	the	garbage	collector.

(In	this	example	we	used	time.Sleep	to	demonstrate	the	mechanics	of
goroutines	and	channels.	In	real	programs	you	should	use	time.After,	a
function	that	returns	a	channel	and	sends	on	that	channel	after	the	specified
duration.)

Let's	look	at	another	variation	of	this	pattern.	In	this	example	we	have	a	program

that	reads	from	multiple	replicated	databases	simultaneously.	The	program	needs
only	one	of	the	answers,	and	it	should	accept	the	answer	that	arrives	first.

The	function	Query	takes	a	slice	of	database	connections	and	a	query	string.	It
queries	each	of	the	databases	in	parallel	and	returns	the	first	response	it	receives:

func	Query(conns	[]Conn,	query	string)	Result	{

				ch	:=	make(chan	Result,	1)

				for	_,	conn	:=	range	conns	{

								go	func(c	Conn)	{

												select	{

												case	ch	<-	c.DoQuery(query):

												default:

												}

								}(conn)

				}

				return	<-ch

}

In	this	example,	the	closure	does	a	non-blocking	send,	which	it	achieves	by
using	the	send	operation	in	select	statement	with	a	default	case.	If	the	send
cannot	go	through	immediately	the	default	case	will	be	selected.	Making	the
send	non-blocking	guarantees	that	none	of	the	goroutines	launched	in	the	loop
will	hang	around.	However,	if	the	result	arrives	before	the	main	function	has
made	it	to	the	receive,	the	send	could	fail	since	no	one	is	ready.

This	problem	is	a	textbook	of	example	of	what	is	known	as	a	race	condition,	but
the	fix	is	trivial.	We	just	make	sure	to	buffer	the	channel	ch	(by	adding	the	buffer
length	as	the	second	argument	to	make),	guaranteeing	that	the	first	send	has	a
place	to	put	the	value.	This	ensures	the	send	will	always	succeed,	and	the	first
value	to	arrive	will	be	retrieved	regardless	of	the	order	of	execution.

These	two	examples	demonstrate	the	simplicity	with	which	Go	can	express
complex	interactions	between	goroutines.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

https://en.wikipedia.org/wiki/Race_condition
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Slices:	usage	and	internals
Go's	slice	type	provides	a	convenient	and	efficient	means	of	working	with
sequences	of	typed	data.	Slices	are	analogous	to	arrays	in	other	languages,	but
have	some	unusual	properties.	This	article	will	look	at	what	slices	are	and	how
they	are	used.

Arrays

The	slice	type	is	an	abstraction	built	on	top	of	Go's	array	type,	and	so	to
understand	slices	we	must	first	understand	arrays.

An	array	type	definition	specifies	a	length	and	an	element	type.	For	example,	the
type	[4]int	represents	an	array	of	four	integers.	An	array's	size	is	fixed;	its
length	is	part	of	its	type	([4]int	and	[5]int	are	distinct,	incompatible	types).
Arrays	can	be	indexed	in	the	usual	way,	so	the	expression	s[n]	accesses	the	nth
element:

var	a	[4]int

a[0]	=	1

i	:=	a[0]

//	i	==	1

Arrays	do	not	need	to	be	initialized	explicitly;	the	zero	value	of	an	array	is	a
ready-to-use	array	whose	elements	are	themselves	zeroed:

//	a[2]	==	0,	the	zero	value	of	the	int	type

The	in-memory	representation	of	[4]int	is	just	four	integer	values	laid	out
sequentially:

Go's	arrays	are	values.	An	array	variable	denotes	the	entire	array;	it	is	not	a
pointer	to	the	first	array	element	(as	would	be	the	case	in	C).	This	means	that
when	you	assign	or	pass	around	an	array	value	you	will	make	a	copy	of	its
contents.	(To	avoid	the	copy	you	could	pass	a	pointer	to	the	array,	but	then	that's
a	pointer	to	an	array,	not	an	array.)	One	way	to	think	about	arrays	is	as	a	sort	of
struct	but	with	indexed	rather	than	named	fields:	a	fixed-size	composite	value.

An	array	literal	can	be	specified	like	so:

b	:=	[2]string{"Penn",	"Teller"}

Or,	you	can	have	the	compiler	count	the	array	elements	for	you:

b	:=	[...]string{"Penn",	"Teller"}

In	both	cases,	the	type	of	b	is	[2]string.

Slices

Arrays	have	their	place,	but	they're	a	bit	inflexible,	so	you	don't	see	them	too
often	in	Go	code.	Slices,	though,	are	everywhere.	They	build	on	arrays	to
provide	great	power	and	convenience.

The	type	specification	for	a	slice	is	[]T,	where	T	is	the	type	of	the	elements	of
the	slice.	Unlike	an	array	type,	a	slice	type	has	no	specified	length.

A	slice	literal	is	declared	just	like	an	array	literal,	except	you	leave	out	the
element	count:

letters	:=	[]string{"a",	"b",	"c",	"d"}

A	slice	can	be	created	with	the	built-in	function	called	make,	which	has	the
signature,

func	make([]T,	len,	cap)	[]T

where	T	stands	for	the	element	type	of	the	slice	to	be	created.	The	make	function
takes	a	type,	a	length,	and	an	optional	capacity.	When	called,	make	allocates	an
array	and	returns	a	slice	that	refers	to	that	array.

var	s	[]byte

s	=	make([]byte,	5,	5)

//	s	==	[]byte{0,	0,	0,	0,	0}

When	the	capacity	argument	is	omitted,	it	defaults	to	the	specified	length.	Here's
a	more	succinct	version	of	the	same	code:

s	:=	make([]byte,	5)

The	length	and	capacity	of	a	slice	can	be	inspected	using	the	built-in	len	and	cap
functions.

len(s)	==	5

cap(s)	==	5

The	next	two	sections	discuss	the	relationship	between	length	and	capacity.

The	zero	value	of	a	slice	is	nil.	The	len	and	cap	functions	will	both	return	0	for
a	nil	slice.

A	slice	can	also	be	formed	by	"slicing"	an	existing	slice	or	array.	Slicing	is	done
by	specifying	a	half-open	range	with	two	indices	separated	by	a	colon.	For
example,	the	expression	b[1:4]	creates	a	slice	including	elements	1	through	3	of
b	(the	indices	of	the	resulting	slice	will	be	0	through	2).

b	:=	[]byte{'g',	'o',	'l',	'a',	'n',	'g'}

//	b[1:4]	==	[]byte{'o',	'l',	'a'},	sharing	the	same	storage	as	b

The	start	and	end	indices	of	a	slice	expression	are	optional;	they	default	to	zero
and	the	slice's	length	respectively:

//	b[:2]	==	[]byte{'g',	'o'}

//	b[2:]	==	[]byte{'l',	'a',	'n',	'g'}

//	b[:]	==	b

This	is	also	the	syntax	to	create	a	slice	given	an	array:

x	:=	[3]string{"���ѧ���֧ ����� ",	" ���֧ ��� ",	" ���"}
s	:=	x[:]	//	a	slice	referencing	the	storage	of	x

Slice	internals

A	slice	is	a	descriptor	of	an	array	segment.	It	consists	of	a	pointer	to	the	array,
the	length	of	the	segment,	and	its	capacity	(the	maximum	length	of	the	segment).

Our	variable	s,	created	earlier	by	make([]byte,	5),	is	structured	like	this:

The	length	is	the	number	of	elements	referred	to	by	the	slice.	The	capacity	is	the

number	of	elements	in	the	underlying	array	(beginning	at	the	element	referred	to
by	the	slice	pointer).	The	distinction	between	length	and	capacity	will	be	made
clear	as	we	walk	through	the	next	few	examples.

As	we	slice	s,	observe	the	changes	in	the	slice	data	structure	and	their	relation	to
the	underlying	array:

s	=	s[2:4]

Slicing	does	not	copy	the	slice's	data.	It	creates	a	new	slice	value	that	points	to
the	original	array.	This	makes	slice	operations	as	efficient	as	manipulating	array
indices.	Therefore,	modifying	the	elements	(not	the	slice	itself)	of	a	re-slice
modifies	the	elements	of	the	original	slice:

d	:=	[]byte{'r',	'o',	'a',	'd'}

e	:=	d[2:]	

//	e	==	[]byte{'a',	'd'}

e[1]	==	'm'

//	e	==	[]byte{'a',	'm'}

//	d	==	[]byte{'r',	'o',	'a',	'm'}

Earlier	we	sliced	s	to	a	length	shorter	than	its	capacity.	We	can	grow	s	to	its
capacity	by	slicing	it	again:

s	=	s[:cap(s)]

A	slice	cannot	be	grown	beyond	its	capacity.	Attempting	to	do	so	will	cause	a
runtime	panic,	just	as	when	indexing	outside	the	bounds	of	a	slice	or	array.
Similarly,	slices	cannot	be	re-sliced	below	zero	to	access	earlier	elements	in	the
array.

Growing	slices	(the	copy	and	append	functions)

To	increase	the	capacity	of	a	slice	one	must	create	a	new,	larger	slice	and	copy
the	contents	of	the	original	slice	into	it.	This	technique	is	how	dynamic	array
implementations	from	other	languages	work	behind	the	scenes.	The	next
example	doubles	the	capacity	of	s	by	making	a	new	slice,	t,	copying	the
contents	of	s	into	t,	and	then	assigning	the	slice	value	t	to	s:

t	:=	make([]byte,	len(s),	(cap(s)+1)*2)	//	+1	in	case	cap(s)	==	0

for	i	:=	range	s	{

								t[i]	=	s[i]

}

s	=	t

The	looping	piece	of	this	common	operation	is	made	easier	by	the	built-in	copy
function.	As	the	name	suggests,	copy	copies	data	from	a	source	slice	to	a
destination	slice.	It	returns	the	number	of	elements	copied.

func	copy(dst,	src	[]T)	int

The	copy	function	supports	copying	between	slices	of	different	lengths	(it	will
copy	only	up	to	the	smaller	number	of	elements).	In	addition,	copy	can	handle
source	and	destination	slices	that	share	the	same	underlying	array,	handling
overlapping	slices	correctly.

Using	copy,	we	can	simplify	the	code	snippet	above:

t	:=	make([]byte,	len(s),	(cap(s)+1)*2)

copy(t,	s)

s	=	t

A	common	operation	is	to	append	data	to	the	end	of	a	slice.	This	function
appends	byte	elements	to	a	slice	of	bytes,	growing	the	slice	if	necessary,	and
returns	the	updated	slice	value:

func	AppendByte(slice	[]byte,	data	...byte)	[]byte	{

				m	:=	len(slice)

				n	:=	m	+	len(data)

				if	n	>	cap(slice)	{	//	if	necessary,	reallocate

								//	allocate	double	what's	needed,	for	future	growth.

								newSlice	:=	make([]byte,	(n+1)*2)

								copy(newSlice,	slice)

								slice	=	newSlice

				}

				slice	=	slice[0:n]

				copy(slice[m:n],	data)

				return	slice

}

One	could	use	AppendByte	like	this:

p	:=	[]byte{2,	3,	5}

p	=	AppendByte(p,	7,	11,	13)

//	p	==	[]byte{2,	3,	5,	7,	11,	13}

Functions	like	AppendByte	are	useful	because	they	offer	complete	control	over
the	way	the	slice	is	grown.	Depending	on	the	characteristics	of	the	program,	it
may	be	desirable	to	allocate	in	smaller	or	larger	chunks,	or	to	put	a	ceiling	on	the
size	of	a	reallocation.

But	most	programs	don't	need	complete	control,	so	Go	provides	a	built-in
append	function	that's	good	for	most	purposes;	it	has	the	signature

func	append(s	[]T,	x	...T)	[]T	

The	append	function	appends	the	elements	x	to	the	end	of	the	slice	s,	and	grows
the	slice	if	a	greater	capacity	is	needed.

a	:=	make([]int,	1)

//	a	==	[]int{0}

a	=	append(a,	1,	2,	3)

//	a	==	[]int{0,	1,	2,	3}

To	append	one	slice	to	another,	use	...	to	expand	the	second	argument	to	a	list
of	arguments.

a	:=	[]string{"John",	"Paul"}

b	:=	[]string{"George",	"Ringo",	"Pete"}

a	=	append(a,	b...)	//	equivalent	to	"append(a,	b[0],	b[1],	b[2])"

//	a	==	[]string{"John",	"Paul",	"George",	"Ringo",	"Pete"}

Since	the	zero	value	of	a	slice	(nil)	acts	like	a	zero-length	slice,	you	can	declare
a	slice	variable	and	then	append	to	it	in	a	loop:

//	Filter	returns	a	new	slice	holding	only

//	the	elements	of	s	that	satisfy	f()

func	Filter(s	[]int,	fn	func(int)	bool)	[]int	{

				var	p	[]int	//	==	nil

				for	_,	i	:=	range	s	{

								if	fn(i)	{

												p	=	append(p,	i)

								}

				}

				return	p

}

A	possible	"gotcha"

As	mentioned	earlier,	re-slicing	a	slice	doesn't	make	a	copy	of	the	underlying
array.	The	full	array	will	be	kept	in	memory	until	it	is	no	longer	referenced.
Occasionally	this	can	cause	the	program	to	hold	all	the	data	in	memory	when
only	a	small	piece	of	it	is	needed.

For	example,	this	FindDigits	function	loads	a	file	into	memory	and	searches	it
for	the	first	group	of	consecutive	numeric	digits,	returning	them	as	a	new	slice.

var	digitRegexp	=	regexp.MustCompile("[0-9]+")

func	FindDigits(filename	string)	[]byte	{

				b,	_	:=	ioutil.ReadFile(filename)

				return	digitRegexp.Find(b)

}

This	code	behaves	as	advertised,	but	the	returned	[]byte	points	into	an	array
containing	the	entire	file.	Since	the	slice	references	the	original	array,	as	long	as
the	slice	is	kept	around	the	garbage	collector	can't	release	the	array;	the	few
useful	bytes	of	the	file	keep	the	entire	contents	in	memory.

To	fix	this	problem	one	can	copy	the	interesting	data	to	a	new	slice	before
returning	it:

func	CopyDigits(filename	string)	[]byte	{

				b,	_	:=	ioutil.ReadFile(filename)

				b	=	digitRegexp.Find(b)

				c	:=	make([]byte,	len(b))

				copy(c,	b)

				return	c

}

A	more	concise	version	of	this	function	could	be	constructed	by	using	append.
This	is	left	as	an	exercise	for	the	reader.

Further	Reading

Effective	Go	contains	an	in-depth	treatment	of	slices	and	arrays,	and	the	Go
language	specification	defines	slices	and	their	associated	helper	functions.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Error	Handling	and	Go
If	you	have	written	any	Go	code	you	have	probably	encountered	the	built-in
error	type.	Go	code	uses	error	values	to	indicate	an	abnormal	state.	For
example,	the	os.Open	function	returns	a	non-nil	error	value	when	it	fails	to
open	a	file.

func	Open(name	string)	(file	*File,	err	error)

The	following	code	uses	os.Open	to	open	a	file.	If	an	error	occurs	it	calls
log.Fatal	to	print	the	error	message	and	stop.

				f,	err	:=	os.Open("filename.ext")

				if	err	!=	nil	{

								log.Fatal(err)

				}

				//	do	something	with	the	open	*File	f

You	can	get	a	lot	done	in	Go	knowing	just	this	about	the	error	type,	but	in	this
article	we'll	take	a	closer	look	at	error	and	discuss	some	good	practices	for	error
handling	in	Go.

The	error	type

The	error	type	is	an	interface	type.	An	error	variable	represents	any	value	that
can	describe	itself	as	a	string.	Here	is	the	interface's	declaration:

type	error	interface	{

				Error()	string

}

The	error	type,	as	with	all	built	in	types,	is	predeclared	in	the	universe	block.

The	most	commonly-used	error	implementation	is	the	errors	package's
unexported	errorString	type.

//	errorString	is	a	trivial	implementation	of	error.

type	errorString	struct	{

				s	string

}

func	(e	*errorString)	Error()	string	{

				return	e.s

}

You	can	construct	one	of	these	values	with	the	errors.New	function.	It	takes	a
string	that	it	converts	to	an	errors.errorString	and	returns	as	an	error	value.

//	New	returns	an	error	that	formats	as	the	given	text.

func	New(text	string)	error	{

				return	&errorString{text}

}

Here's	how	you	might	use	errors.New:

func	Sqrt(f	float64)	(float64,	error)	{

				if	f	<	0	{

								return	0,	errors.New("math:	square	root	of	negative	number")

				}

				//	implementation

}

A	caller	passing	a	negative	argument	to	Sqrt	receives	a	non-nil	error	value
(whose	concrete	representation	is	an	errors.errorString	value).	The	caller	can
access	the	error	string	("math:	square	root	of...")	by	calling	the	error's	Error
method,	or	by	just	printing	it:

				f,	err	:=	Sqrt(-1)

				if	err	!=	nil	{

								fmt.Println(err)

				}

The	fmt	package	formats	an	error	value	by	calling	its	Error()	string	method.

It	is	the	error	implementation's	responsibility	to	summarize	the	context.	The
error	returned	by	os.Open	formats	as	"open	/etc/passwd:	permission	denied,"	not
just	"permission	denied."	The	error	returned	by	our	Sqrt	is	missing	information
about	the	invalid	argument.

To	add	that	information,	a	useful	function	is	the	fmt	package's	Errorf.	It	formats
a	string	according	to	Printf's	rules	and	returns	it	as	an	error	created	by
errors.New.

				if	f	<	0	{

								return	0,	fmt.Errorf("math:	square	root	of	negative	number	%g",	f)

				}

In	many	cases	fmt.Errorf	is	good	enough,	but	since	error	is	an	interface,	you
can	use	arbitrary	data	structures	as	error	values,	to	allow	callers	to	inspect	the
details	of	the	error.

For	instance,	our	hypothetical	callers	might	want	to	recover	the	invalid	argument
passed	to	Sqrt.	We	can	enable	that	by	defining	a	new	error	implementation
instead	of	using	errors.errorString:

type	NegativeSqrtError	float64

func	(f	NegativeSqrtError)	Error()	string	{

				return	fmt.Sprintf("math:	square	root	of	negative	number	%g",	float64(f))

}

A	sophisticated	caller	can	then	use	a	type	assertion	to	check	for	a
NegativeSqrtError	and	handle	it	specially,	while	callers	that	just	pass	the	error
to	fmt.Println	or	log.Fatal	will	see	no	change	in	behavior.

As	another	example,	the	json	package	specifies	a	SyntaxError	type	that	the
json.Decode	function	returns	when	it	encounters	a	syntax	error	parsing	a	JSON
blob.

type	SyntaxError	struct	{

				msg				string	//	description	of	error

				Offset	int64		//	error	occurred	after	reading	Offset	bytes

}

func	(e	*SyntaxError)	Error()	string	{	return	e.msg	}

The	Offset	field	isn't	even	shown	in	the	default	formatting	of	the	error,	but
callers	can	use	it	to	add	file	and	line	information	to	their	error	messages:

				if	err	:=	dec.Decode(&val);	err	!=	nil	{

								if	serr,	ok	:=	err.(*json.SyntaxError);	ok	{

												line,	col	:=	findLine(f,	serr.Offset)

												return	fmt.Errorf("%s:%d:%d:	%v",	f.Name(),	line,	col,	err)

								}

								return	err

				}

(This	is	a	slightly	simplified	version	of	some	actual	code	from	the	Camlistore
project.)

http://camlistore.org/code/?p=camlistore.git;a=blob;f=lib/go/camli/jsonconfig/eval.go#l68
http://camlistore.org

The	error	interface	requires	only	a	Error	method;	specific	error
implementations	might	have	additional	methods.	For	instance,	the	net	package
returns	errors	of	type	error,	following	the	usual	convention,	but	some	of	the
error	implementations	have	additional	methods	defined	by	the	net.Error
interface:

package	net

type	Error	interface	{

				error

				Timeout()	bool			//	Is	the	error	a	timeout?

				Temporary()	bool	//	Is	the	error	temporary?

}

Client	code	can	test	for	a	net.Error	with	a	type	assertion	and	then	distinguish
transient	network	errors	from	permanent	ones.	For	instance,	a	web	crawler	might
sleep	and	retry	when	it	encounters	a	temporary	error	and	give	up	otherwise.

								if	nerr,	ok	:=	err.(net.Error);	ok	&&	nerr.Temporary()	{

												time.Sleep(1e9)

												continue

								}

								if	err	!=	nil	{

												log.Fatal(err)

								}

Simplifying	repetitive	error	handling

In	Go,	error	handling	is	important.	The	language's	design	and	conventions
encourage	you	to	explicitly	check	for	errors	where	they	occur	(as	distinct	from
the	convention	in	other	languages	of	throwing	exceptions	and	sometimes
catching	them).	In	some	cases	this	makes	Go	code	verbose,	but	fortunately	there
are	some	techniques	you	can	use	to	minimize	repetitive	error	handling.

Consider	an	App	Engine	application	with	an	HTTP	handler	that	retrieves	a
record	from	the	datastore	and	formats	it	with	a	template.

func	init()	{

				http.HandleFunc("/view",	viewRecord)

}

func	viewRecord(w	http.ResponseWriter,	r	*http.Request)	{

				c	:=	appengine.NewContext(r)

				key	:=	datastore.NewKey(c,	"Record",	r.FormValue("id"),	0,	nil)

http://code.google.com/appengine/docs/go/

				record	:=	new(Record)

				if	err	:=	datastore.Get(c,	key,	record);	err	!=	nil	{

								http.Error(w,	err.Error(),	500)

								return

				}

				if	err	:=	viewTemplate.Execute(w,	record);	err	!=	nil	{

								http.Error(w,	err.Error(),	500)

				}

}

This	function	handles	errors	returned	by	the	datastore.Get	function	and
viewTemplate's	Execute	method.	In	both	cases,	it	presents	a	simple	error
message	to	the	user	with	the	HTTP	status	code	500	("Internal	Server	Error").
This	looks	like	a	manageable	amount	of	code,	but	add	some	more	HTTP
handlers	and	you	quickly	end	up	with	many	copies	of	identical	error	handling
code.

To	reduce	the	repetition	we	can	define	our	own	HTTP	appHandler	type	that
includes	an	error	return	value:

type	appHandler	func(http.ResponseWriter,	*http.Request)	error

Then	we	can	change	our	viewRecord	function	to	return	errors:

func	viewRecord(w	http.ResponseWriter,	r	*http.Request)	error	{

				c	:=	appengine.NewContext(r)

				key	:=	datastore.NewKey(c,	"Record",	r.FormValue("id"),	0,	nil)

				record	:=	new(Record)

				if	err	:=	datastore.Get(c,	key,	record);	err	!=	nil	{

								return	err

				}

				return	viewTemplate.Execute(w,	record)

}

This	is	simpler	than	the	original	version,	but	the	http	package	doesn't	understand
functions	that	return	error.	To	fix	this	we	can	implement	the	http.Handler
interface's	ServeHTTP	method	on	appHandler:

func	(fn	appHandler)	ServeHTTP(w	http.ResponseWriter,	r	*http.Request)	{

				if	err	:=	fn(w,	r);	err	!=	nil	{

								http.Error(w,	err.Error(),	500)

				}

}

The	ServeHTTP	method	calls	the	appHandler	function	and	displays	the	returned

error	(if	any)	to	the	user.	Notice	that	the	method's	receiver,	fn,	is	a	function.	(Go
can	do	that!)	The	method	invokes	the	function	by	calling	the	receiver	in	the
expression	fn(w,	r).

Now	when	registering	viewRecord	with	the	http	package	we	use	the	Handle
function	(instead	of	HandleFunc)	as	appHandler	is	an	http.Handler	(not	an
http.HandlerFunc).

func	init()	{

				http.Handle("/view",	appHandler(viewRecord))

}

With	this	basic	error	handling	infrastructure	in	place,	we	can	make	it	more	user
friendly.	Rather	than	just	displaying	the	error	string,	it	would	be	better	to	give
the	user	a	simple	error	message	with	an	appropriate	HTTP	status	code,	while
logging	the	full	error	to	the	App	Engine	developer	console	for	debugging
purposes.

To	do	this	we	create	an	appError	struct	containing	an	error	and	some	other
fields:

type	appError	struct	{

				Error			error

				Message	string

				Code				int

}

Next	we	modify	the	appHandler	type	to	return	*appError	values:

type	appHandler	func(http.ResponseWriter,	*http.Request)	*appError

(It's	usually	a	mistake	to	pass	back	the	concrete	type	of	an	error	rather	than
error,	for	reasons	discussed	in	the	Go	FAQ,	but	it's	the	right	thing	to	do	here
because	ServeHTTP	is	the	only	place	that	sees	the	value	and	uses	its	contents.)

And	make	appHandler's	ServeHTTP	method	display	the	appError's	Message	to
the	user	with	the	correct	HTTP	status	Code	and	log	the	full	Error	to	the
developer	console:

func	(fn	appHandler)	ServeHTTP(w	http.ResponseWriter,	r	*http.Request)	{

				if	e	:=	fn(w,	r);	e	!=	nil	{	//	e	is	*appError,	not	os.Error.

								c	:=	appengine.NewContext(r)

								c.Errorf("%v",	e.Error)

								http.Error(w,	e.Message,	e.Code)

				}

}

Finally,	we	update	viewRecord	to	the	new	function	signature	and	have	it	return
more	context	when	it	encounters	an	error:

func	viewRecord(w	http.ResponseWriter,	r	*http.Request)	*appError	{

				c	:=	appengine.NewContext(r)

				key	:=	datastore.NewKey(c,	"Record",	r.FormValue("id"),	0,	nil)

				record	:=	new(Record)

				if	err	:=	datastore.Get(c,	key,	record);	err	!=	nil	{

								return	&appError{err,	"Record	not	found",	404}

				}

				if	err	:=	viewTemplate.Execute(w,	record);	err	!=	nil	{

								return	&appError{err,	"Can't	display	record",	500}

				}

				return	nil

}

This	version	of	viewRecord	is	the	same	length	as	the	original,	but	now	each	of
those	lines	has	specific	meaning	and	we	are	providing	a	friendlier	user
experience.

It	doesn't	end	there;	we	can	further	improve	the	error	handling	in	our	application.
Some	ideas:

give	the	error	handler	a	pretty	HTML	template,
make	debugging	easier	by	writing	the	stack	trace	to	the	HTTP	response
when	the	user	is	an	administrator,
write	a	constructor	function	for	appError	that	stores	the	stack	trace	for
easier	debugging,
recover	from	panics	inside	the	appHandler,	logging	the	error	to	the	console
as	"Critical,"	while	telling	the	user	"a	serious	error	has	occurred."	This	is	a
nice	touch	to	avoid	exposing	the	user	to	inscrutable	error	messages	caused
by	programming	errors.	See	the	Defer,	Panic,	and	Recover	article	for	more
details.

Conclusion

Proper	error	handling	is	an	essential	requirement	of	good	software.	By
employing	the	techniques	described	in	this	post	you	should	be	able	to	write	more
reliable	and	succinct	Go	code.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Directory	/src/pkg
Name 				 Synopsis

archive 				
					tar 				 Package	tar	implements	access	to	tar	archives.

					zip 				 Package	zip	provides	support	for	reading	and	writing	ZIParchives.

bufio 				

Package	bufio	implements	buffered	I/O.	It	wraps	an	io.Reader
or	io.Writer	object,	creating	another	object	(Reader	or	Writer)
that	also	implements	the	interface	but	provides	buffering	and
some	help	for	textual	I/O.

builtin 				 Package	builtin	provides	documentation	for	Go's	predeclaredidentifiers.

bytes 				 Package	bytes	implements	functions	for	the	manipulation	ofbyte	slices.
compress 				
					bzip2 				 Package	bzip2	implements	bzip2	decompression.

					flate 				 Package	flate	implements	the	DEFLATE	compressed	dataformat,	described	in	RFC	1951.

					gzip 				 Package	gzip	implements	reading	and	writing	of	gzip	formatcompressed	files,	as	specified	in	RFC	1952.

					lzw 				

Package	lzw	implements	the	Lempel-Ziv-Welch	compressed
data	format,	described	in	T.	A.	Welch,	``A	Technique	for
High-Performance	Data	Compression'',	Computer,	17(6)	(June
1984),	pp	8-19.

					zlib 				 Package	zlib	implements	reading	and	writing	of	zlib	formatcompressed	data,	as	specified	in	RFC	1950.
container 				

					heap 				 Package	heap	provides	heap	operations	for	any	type	thatimplements	heap.Interface.
					list 				 Package	list	implements	a	doubly	linked	list.
					ring 				 Package	ring	implements	operations	on	circular	lists.
crypto 				 Package	crypto	collects	common	cryptographic	constants.

					aes 				
Package	aes	implements	AES	encryption	(formerly	Rijndael),
as	defined	in	U.S.	Federal	Information	Processing	Standards
Publication	197.

					cipher 				
Package	cipher	implements	standard	block	cipher	modes	that
can	be	wrapped	around	low-level	block	cipher
implementations.

					des 				

Package	des	implements	the	Data	Encryption	Standard	(DES)
and	the	Triple	Data	Encryption	Algorithm	(TDEA)	as	defined
in	U.S.	Federal	Information	Processing	Standards	Publication
46-3.

					dsa 				 Package	dsa	implements	the	Digital	Signature	Algorithm,	asdefined	in	FIPS	186-3.

					ecdsa 				 Package	ecdsa	implements	the	Elliptic	Curve	DigitalSignature	Algorithm,	as	defined	in	FIPS	186-3.

					elliptic 				 Package	elliptic	implements	several	standard	elliptic	curvesover	prime	fields.

					hmac 				
Package	hmac	implements	the	Keyed-Hash	Message
Authentication	Code	(HMAC)	as	defined	in	U.S.	Federal
Information	Processing	Standards	Publication	198.

					md5 				 Package	md5	implements	the	MD5	hash	algorithm	as	defined
in	RFC	1321.

					rand 				 Package	rand	implements	a	cryptographically	securepseudorandom	number	generator.

					rc4 				 Package	rc4	implements	RC4	encryption,	as	defined	in	BruceSchneier's	Applied	Cryptography.

					rsa 				 Package	rsa	implements	RSA	encryption	as	specified	inPKCS#1.

					sha1 				 Package	sha1	implements	the	SHA1	hash	algorithm	as	definedin	RFC	3174.

					sha256 				 Package	sha256	implements	the	SHA224	and	SHA256	hashalgorithms	as	defined	in	FIPS	180-2.

					sha512 				 Package	sha512	implements	the	SHA384	and	SHA512	hashalgorithms	as	defined	in	FIPS	180-2.

					subtle 				
Package	subtle	implements	functions	that	are	often	useful	in
cryptographic	code	but	require	careful	thought	to	use
correctly.

					tls 				 Package	tls	partially	implements	TLS	1.0,	as	specified	in	RFC
2246.

					x509 				 Package	x509	parses	X.509-encoded	keys	and	certificates.

										pkix 				
Package	pkix	contains	shared,	low	level	structures	used	for
ASN.1	parsing	and	serialization	of	X.509	certificates,	CRL
and	OCSP.

database 				

					sql 				 Package	sql	provides	a	generic	interface	around	SQL	(or	SQL-like)	databases.

										driver 				 Package	driver	defines	interfaces	to	be	implemented	bydatabase	drivers	as	used	by	package	sql.
debug 				

					dwarf 				

Package	dwarf	provides	access	to	DWARF	debugging
information	loaded	from	executable	files,	as	defined	in	the
DWARF	2.0	Standard	at	http://dwarfstd.org/doc/dwarf-
2.0.0.pdf

					elf 				 Package	elf	implements	access	to	ELF	object	files.

					gosym 				
Package	gosym	implements	access	to	the	Go	symbol	and	line
number	tables	embedded	in	Go	binaries	generated	by	the	gc
compilers.

					macho 				 Package	macho	implements	access	to	Mach-O	object	files.

					pe 				 Package	pe	implements	access	to	PE	(Microsoft	Windows
Portable	Executable)	files.

encoding 				

					ascii85 				
Package	ascii85	implements	the	ascii85	data	encoding	as	used
in	the	btoa	tool	and	Adobe's	PostScript	and	PDF	document
formats.

					asn1 				 Package	asn1	implements	parsing	of	DER-encoded	ASN.1data	structures,	as	defined	in	ITU-T	Rec	X.690.

					base32 				 Package	base32	implements	base32	encoding	as	specified	byRFC	4648.

					base64 				 Package	base64	implements	base64	encoding	as	specified	byRFC	4648.

					binary 				 Package	binary	implements	translation	between	numbers	andbyte	sequences	and	encoding	and	decoding	of	varints.

					csv 				 Package	csv	reads	and	writes	comma-separated	values	(CSV)
files.

					gob 				
Package	gob	manages	streams	of	gobs	-	binary	values
exchanged	between	an	Encoder	(transmitter)	and	a	Decoder
(receiver).

					hex 				 Package	hex	implements	hexadecimal	encoding	and	decoding.

					json 				 Package	json	implements	encoding	and	decoding	of	JSONobjects	as	defined	in	RFC	4627.

					pem 				 Package	pem	implements	the	PEM	data	encoding,	which
originated	in	Privacy	Enhanced	Mail.

					xml 				 Package	xml	implements	a	simple	XML	1.0	parser	that
understands	XML	name	spaces.

errors 				 Package	errors	implements	functions	to	manipulate	errors.

expvar 				 Package	expvar	provides	a	standardized	interface	to	publicvariables,	such	as	operation	counters	in	servers.
flag 				 Package	flag	implements	command-line	flag	parsing.

fmt 				 Package	fmt	implements	formatted	I/O	with	functionsanalogous	to	C's	printf	and	scanf.
go 				

					ast 				 Package	ast	declares	the	types	used	to	represent	syntax	treesfor	Go	packages.
					build 				 Package	build	gathers	information	about	Go	packages.

					doc 				 Package	doc	extracts	source	code	documentation	from	a	GoAST.
					parser 				 Package	parser	implements	a	parser	for	Go	source	files.
					printer 				 Package	printer	implements	printing	of	AST	nodes.
					scanner 				 Package	scanner	implements	a	scanner	for	Go	source	text.

					token 				
Package	token	defines	constants	representing	the	lexical
tokens	of	the	Go	programming	language	and	basic	operations
on	tokens	(printing,	predicates).

hash 				 Package	hash	provides	interfaces	for	hash	functions.
					adler32 				 Package	adler32	implements	the	Adler-32	checksum.

					crc32 				 Package	crc32	implements	the	32-bit	cyclic	redundancycheck,	or	CRC-32,	checksum.
Package	crc64	implements	the	64-bit	cyclic	redundancy

					crc64 				 check,	or	CRC-64,	checksum.

					fnv 				
Package	fnv	implements	FNV-1	and	FNV-1a,	non-
cryptographic	hash	functions	created	by	Glenn	Fowler,
Landon	Curt	Noll,	and	Phong	Vo.

html 				 Package	html	provides	functions	for	escaping	and	unescapingHTML	text.

					template 				
Package	template	(html/template)	implements	data-driven
templates	for	generating	HTML	output	safe	against	code
injection.

image 				 Package	image	implements	a	basic	2-D	image	library.
					color 				 Package	color	implements	a	basic	color	library.
					draw 				 Package	draw	provides	image	composition	functions.
					gif 				 Package	gif	implements	a	GIF	image	decoder.
					jpeg 				 Package	jpeg	implements	a	JPEG	image	decoder	and	encoder.
					png 				 Package	png	implements	a	PNG	image	decoder	and	encoder.
index 				

					suffixarray 				 Package	suffixarray	implements	substring	search	inlogarithmic	time	using	an	in-memory	suffix	array.
io 				 Package	io	provides	basic	interfaces	to	I/O	primitives.
					ioutil 				 Package	ioutil	implements	some	I/O	utility	functions.
log 				 Package	log	implements	a	simple	logging	package.

					syslog 				 Package	syslog	provides	a	simple	interface	to	the	system	logservice.

math 				 Package	math	provides	basic	constants	and	mathematicalfunctions.

					big 				 Package	big	implements	multi-precision	arithmetic	(bignumbers).

					cmplx 				 Package	cmplx	provides	basic	constants	and	mathematicalfunctions	for	complex	numbers.
					rand 				 Package	rand	implements	pseudo-random	number	generators.
mime 				 Package	mime	implements	parts	of	the	MIME	spec.

					multipart 				 Package	multipart	implements	MIME	multipart	parsing,	as
defined	in	RFC	2046.
Package	net	provides	a	portable	interface	for	network	I/O,

net 				 including	TCP/IP,	UDP,	domain	name	resolution,	and	Unix
domain	sockets.

					http 				 Package	http	provides	HTTP	client	and	serverimplementations.

										cgi 				 Package	cgi	implements	CGI	(Common	Gateway	Interface)	asspecified	in	RFC	3875.
										fcgi 				 Package	fcgi	implements	the	FastCGI	protocol.
										httptest 				 Package	httptest	provides	utilities	for	HTTP	testing.

										httputil 				
Package	httputil	provides	HTTP	utility	functions,
complementing	the	more	common	ones	in	the	net/http
package.

										pprof 				 Package	pprof	serves	via	its	HTTP	server	runtime	profilingdata	in	the	format	expected	by	the	pprof	visualization	tool.
					mail 				 Package	mail	implements	parsing	of	mail	messages.

					rpc 				 Package	rpc	provides	access	to	the	exported	methods	of	anobject	across	a	network	or	other	I/O	connection.

										jsonrpc 				 Package	jsonrpc	implements	a	JSON-RPC	ClientCodec	andServerCodec	for	the	rpc	package.

					smtp 				 Package	smtp	implements	the	Simple	Mail	Transfer	Protocol
as	defined	in	RFC	5321.

					textproto 				
Package	textproto	implements	generic	support	for	text-based
request/response	protocols	in	the	style	of	HTTP,	NNTP,	and
SMTP.

					url 				 Package	url	parses	URLs	and	implements	query	escaping.

os 				 Package	os	provides	a	platform-independent	interface	tooperating	system	functionality.
					exec 				 Package	exec	runs	external	commands.
					signal 				 Package	signal	implements	access	to	incoming	signals.
					user 				 Package	user	allows	user	account	lookups	by	name	or	id.

path 				 Package	path	implements	utility	routines	for	manipulatingslash-separated	paths.

					filepath 				
Package	filepath	implements	utility	routines	for	manipulating
filename	paths	in	a	way	compatible	with	the	target	operating
system-defined	file	paths.

reflect 				 Package	reflect	implements	run-time	reflection,	allowing	a

program	to	manipulate	objects	with	arbitrary	types.
regexp 				 Package	regexp	implements	regular	expression	search.

					syntax 				 Package	syntax	parses	regular	expressions	into	parse	trees	andcompiles	parse	trees	into	programs.

runtime 				 Package	runtime	contains	operations	that	interact	with	Go'sruntime	system,	such	as	functions	to	control	goroutines.

					cgo 				 Package	cgo	contains	runtime	support	for	code	generated	bythe	cgo	tool.

					debug 				 Package	debug	contains	facilities	for	programs	to	debugthemselves	while	they	are	running.

					pprof 				 Package	pprof	writes	runtime	profiling	data	in	the	formatexpected	by	the	pprof	visualization	tool.

sort 				 Package	sort	provides	primitives	for	sorting	slices	and	user-defined	collections.

strconv 				 Package	strconv	implements	conversions	to	and	from	stringrepresentations	of	basic	data	types.

strings 				 Package	strings	implements	simple	functions	to	manipulatestrings.

sync 				 Package	sync	provides	basic	synchronization	primitives	suchas	mutual	exclusion	locks.

					atomic 				 Package	atomic	provides	low-level	atomic	memory	primitivesuseful	for	implementing	synchronization	algorithms.

syscall 				 Package	syscall	contains	an	interface	to	the	low-leveloperating	system	primitives.

testing 				 Package	testing	provides	support	for	automated	testing	of	Gopackages.

					iotest 				 Package	iotest	implements	Readers	and	Writers	useful	mainly
for	testing.

					quick 				 Package	quick	implements	utility	functions	to	help	with	blackbox	testing.
text 				

					scanner 				 Package	scanner	provides	a	scanner	and	tokenizer	for	UTF-8-encoded	text.

					tabwriter 				
Package	tabwriter	implements	a	write	filter	(tabwriter.Writer)
that	translates	tabbed	columns	in	input	into	properly	aligned

text.

					template 				
Package	template	implements	data-driven	templates	for
generating	textual	output.

										parse 				 Package	parse	builds	parse	trees	for	templates	as	defined	bytext/template	and	html/template.

time 				 Package	time	provides	functionality	for	measuring	anddisplaying	time.

unicode 				 Package	unicode	provides	data	and	functions	to	test	someproperties	of	Unicode	code	points.

					utf16 				 Package	utf16	implements	encoding	and	decoding	of	UTF-16sequences.

					utf8 				 Package	utf8	implements	functions	and	constants	to	supporttext	encoded	in	UTF-8.

unsafe 				 Package	unsafe	contains	operations	that	step	around	the	typesafety	of	Go	programs.

Need	more	packages?	Take	a	look	at	the	Go	Project	Dashboard.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://godashboard.appspot.com/
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Directory	/src/pkg/archive
Name 				 Synopsis
tar 				 Package	tar	implements	access	to	tar	archives.
zip 				 Package	zip	provides	support	for	reading	and	writing	ZIP	archives.

Need	more	packages?	Take	a	look	at	the	Go	Project	Dashboard.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://godashboard.appspot.com/
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	tar
import	"archive/tar"

Overview
Index

Overview	?

Overview	?

Package	tar	implements	access	to	tar	archives.	It	aims	to	cover	most	of	the
variations,	including	those	produced	by	GNU	and	BSD	tars.

References:

http://www.freebsd.org/cgi/man.cgi?query=tar&sektion=5

http://www.gnu.org/software/tar/manual/html_node/Standard.html

http://www.freebsd.org/cgi/man.cgi?query=tar&sektion=5
http://www.gnu.org/software/tar/manual/html_node/Standard.html

Index

Constants
Variables
type	Header
type	Reader
				func	NewReader(r	io.Reader)	*Reader
				func	(tr	*Reader)	Next()	(*Header,	error)
				func	(tr	*Reader)	Read(b	[]byte)	(n	int,	err	error)
type	Writer
				func	NewWriter(w	io.Writer)	*Writer
				func	(tw	*Writer)	Close()	error
				func	(tw	*Writer)	Flush()	error
				func	(tw	*Writer)	Write(b	[]byte)	(n	int,	err	error)
				func	(tw	*Writer)	WriteHeader(hdr	*Header)	error

Package	files

common.go	reader.go	writer.go

Constants
const	(

				//	Types

				TypeReg											=	'0'				//	regular	file

				TypeRegA										=	'\x00'	//	regular	file

				TypeLink										=	'1'				//	hard	link

				TypeSymlink							=	'2'				//	symbolic	link

				TypeChar										=	'3'				//	character	device	node

				TypeBlock									=	'4'				//	block	device	node

				TypeDir											=	'5'				//	directory

				TypeFifo										=	'6'				//	fifo	node

				TypeCont										=	'7'				//	reserved

				TypeXHeader							=	'x'				//	extended	header

				TypeXGlobalHeader	=	'g'				//	global	extended	header

)

Variables
var	(

				ErrWriteTooLong				=	errors.New("archive/tar:	write	too	long")

				ErrFieldTooLong				=	errors.New("archive/tar:	header	field	too	long")

				ErrWriteAfterClose	=	errors.New("archive/tar:	write	after	close")

)

var	(

				ErrHeader	=	errors.New("archive/tar:	invalid	tar	header")

)

type	Header
type	Header	struct	{

				Name							string				//	name	of	header	file	entry

				Mode							int64					//	permission	and	mode	bits

				Uid								int							//	user	id	of	owner

				Gid								int							//	group	id	of	owner

				Size							int64					//	length	in	bytes

				ModTime				time.Time	//	modified	time

				Typeflag			byte						//	type	of	header	entry

				Linkname			string				//	target	name	of	link

				Uname						string				//	user	name	of	owner

				Gname						string				//	group	name	of	owner

				Devmajor			int64					//	major	number	of	character	or	block	device

				Devminor			int64					//	minor	number	of	character	or	block	device

				AccessTime	time.Time	//	access	time

				ChangeTime	time.Time	//	status	change	time

}

A	Header	represents	a	single	header	in	a	tar	archive.	Some	fields	may	not	be
populated.

type	Reader
type	Reader	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Reader	provides	sequential	access	to	the	contents	of	a	tar	archive.	A	tar
archive	consists	of	a	sequence	of	files.	The	Next	method	advances	to	the	next
file	in	the	archive	(including	the	first),	and	then	it	can	be	treated	as	an	io.Reader
to	access	the	file's	data.

Example:

tr	:=	tar.NewReader(r)

for	{

	 hdr,	err	:=	tr.Next()

	 if	err	==	io.EOF	{

	 	 //	end	of	tar	archive

	 	 break

	 }

	 if	err	!=	nil	{

	 	 //	handle	error

	 }

	 io.Copy(data,	tr)

}

func	NewReader

func	NewReader(r	io.Reader)	*Reader

NewReader	creates	a	new	Reader	reading	from	r.

func	(*Reader)	Next

func	(tr	*Reader)	Next()	(*Header,	error)

Next	advances	to	the	next	entry	in	the	tar	archive.

func	(*Reader)	Read

func	(tr	*Reader)	Read(b	[]byte)	(n	int,	err	error)

Read	reads	from	the	current	entry	in	the	tar	archive.	It	returns	0,	io.EOF	when	it
reaches	the	end	of	that	entry,	until	Next	is	called	to	advance	to	the	next	entry.

type	Writer
type	Writer	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Writer	provides	sequential	writing	of	a	tar	archive	in	POSIX.1	format.	A	tar
archive	consists	of	a	sequence	of	files.	Call	WriteHeader	to	begin	a	new	file,	and
then	call	Write	to	supply	that	file's	data,	writing	at	most	hdr.Size	bytes	in	total.

Example:

tw	:=	tar.NewWriter(w)

hdr	:=	new(Header)

hdr.Size	=	length	of	data	in	bytes

//	populate	other	hdr	fields	as	desired

if	err	:=	tw.WriteHeader(hdr);	err	!=	nil	{

	 //	handle	error

}

io.Copy(tw,	data)

tw.Close()

func	NewWriter

func	NewWriter(w	io.Writer)	*Writer

NewWriter	creates	a	new	Writer	writing	to	w.

func	(*Writer)	Close

func	(tw	*Writer)	Close()	error

Close	closes	the	tar	archive,	flushing	any	unwritten	data	to	the	underlying	writer.

func	(*Writer)	Flush

func	(tw	*Writer)	Flush()	error

Flush	finishes	writing	the	current	file	(optional).

func	(*Writer)	Write

func	(tw	*Writer)	Write(b	[]byte)	(n	int,	err	error)

Write	writes	to	the	current	entry	in	the	tar	archive.	Write	returns	the	error
ErrWriteTooLong	if	more	than	hdr.Size	bytes	are	written	after	WriteHeader.

func	(*Writer)	WriteHeader

func	(tw	*Writer)	WriteHeader(hdr	*Header)	error

WriteHeader	writes	hdr	and	prepares	to	accept	the	file's	contents.	WriteHeader
calls	Flush	if	it	is	not	the	first	header.	Calling	after	a	Close	will	return
ErrWriteAfterClose.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	zip
import	"archive/zip"

Overview
Index
Examples

Overview	?

Overview	?

Package	zip	provides	support	for	reading	and	writing	ZIP	archives.

See:	http://www.pkware.com/documents/casestudies/APPNOTE.TXT

This	package	does	not	support	ZIP64	or	disk	spanning.

http://www.pkware.com/documents/casestudies/APPNOTE.TXT

Index

Constants
Variables
type	File
				func	(f	*File)	Open()	(rc	io.ReadCloser,	err	error)
type	FileHeader
				func	FileInfoHeader(fi	os.FileInfo)	(*FileHeader,	error)
				func	(h	*FileHeader)	FileInfo()	os.FileInfo
				func	(h	*FileHeader)	ModTime()	time.Time
				func	(h	*FileHeader)	Mode()	(mode	os.FileMode)
				func	(h	*FileHeader)	SetModTime(t	time.Time)
				func	(h	*FileHeader)	SetMode(mode	os.FileMode)
type	ReadCloser
				func	OpenReader(name	string)	(*ReadCloser,	error)
				func	(rc	*ReadCloser)	Close()	error
type	Reader
				func	NewReader(r	io.ReaderAt,	size	int64)	(*Reader,	error)
type	Writer
				func	NewWriter(w	io.Writer)	*Writer
				func	(w	*Writer)	Close()	error
				func	(w	*Writer)	Create(name	string)	(io.Writer,	error)
				func	(w	*Writer)	CreateHeader(fh	*FileHeader)	(io.Writer,	error)

Examples

Reader
Writer

Package	files

reader.go	struct.go	writer.go

Constants
const	(

				Store			uint16	=	0

				Deflate	uint16	=	8

)

Compression	methods.

Variables
var	(

				ErrFormat				=	errors.New("zip:	not	a	valid	zip	file")

				ErrAlgorithm	=	errors.New("zip:	unsupported	compression	algorithm")

				ErrChecksum		=	errors.New("zip:	checksum	error")

)

type	File
type	File	struct	{

				FileHeader

				//	contains	filtered	or	unexported	fields

}

func	(*File)	Open

func	(f	*File)	Open()	(rc	io.ReadCloser,	err	error)

Open	returns	a	ReadCloser	that	provides	access	to	the	File's	contents.	Multiple
files	may	be	read	concurrently.

type	FileHeader
type	FileHeader	struct	{

				Name													string

				CreatorVersion			uint16

				ReaderVersion				uint16

				Flags												uint16

				Method											uint16

				ModifiedTime					uint16	//	MS-DOS	time

				ModifiedDate					uint16	//	MS-DOS	date

				CRC32												uint32

				CompressedSize			uint32

				UncompressedSize	uint32

				Extra												[]byte

				ExternalAttrs				uint32	//	Meaning	depends	on	CreatorVersion

				Comment										string

}

func	FileInfoHeader

func	FileInfoHeader(fi	os.FileInfo)	(*FileHeader,	error)

FileInfoHeader	creates	a	partially-populated	FileHeader	from	an	os.FileInfo.

func	(*FileHeader)	FileInfo

func	(h	*FileHeader)	FileInfo()	os.FileInfo

FileInfo	returns	an	os.FileInfo	for	the	FileHeader.

func	(*FileHeader)	ModTime

func	(h	*FileHeader)	ModTime()	time.Time

ModTime	returns	the	modification	time.	The	resolution	is	2s.

func	(*FileHeader)	Mode

func	(h	*FileHeader)	Mode()	(mode	os.FileMode)

Mode	returns	the	permission	and	mode	bits	for	the	FileHeader.

func	(*FileHeader)	SetModTime

func	(h	*FileHeader)	SetModTime(t	time.Time)

SetModTime	sets	the	ModifiedTime	and	ModifiedDate	fields	to	the	given	time.
The	resolution	is	2s.

func	(*FileHeader)	SetMode

func	(h	*FileHeader)	SetMode(mode	os.FileMode)

SetMode	changes	the	permission	and	mode	bits	for	the	FileHeader.

type	ReadCloser
type	ReadCloser	struct	{

				Reader

				//	contains	filtered	or	unexported	fields

}

func	OpenReader

func	OpenReader(name	string)	(*ReadCloser,	error)

OpenReader	will	open	the	Zip	file	specified	by	name	and	return	a	ReadCloser.

func	(*ReadCloser)	Close

func	(rc	*ReadCloser)	Close()	error

Close	closes	the	Zip	file,	rendering	it	unusable	for	I/O.

type	Reader
type	Reader	struct	{

				File				[]*File

				Comment	string

				//	contains	filtered	or	unexported	fields

}

?	Example

?	Example

Code:

//	Open	a	zip	archive	for	reading.

r,	err	:=	zip.OpenReader("testdata/readme.zip")

if	err	!=	nil	{

				log.Fatal(err)

}

defer	r.Close()

//	Iterate	through	the	files	in	the	archive,

//	printing	some	of	their	contents.

for	_,	f	:=	range	r.File	{

				fmt.Printf("Contents	of	%s:\n",	f.Name)

				rc,	err	:=	f.Open()

				if	err	!=	nil	{

								log.Fatal(err)

				}

				_,	err	=	io.CopyN(os.Stdout,	rc,	68)

				if	err	!=	nil	{

								log.Fatal(err)

				}

				rc.Close()

				fmt.Println()

}

Output:

Contents	of	README:

This	is	the	source	code	repository	for	the	Go	programming	language.

func	NewReader

func	NewReader(r	io.ReaderAt,	size	int64)	(*Reader,	error)

NewReader	returns	a	new	Reader	reading	from	r,	which	is	assumed	to	have	the
given	size	in	bytes.

type	Writer
type	Writer	struct	{

				//	contains	filtered	or	unexported	fields

}

Writer	implements	a	zip	file	writer.

?	Example

?	Example

Code:

//	Create	a	buffer	to	write	our	archive	to.

buf	:=	new(bytes.Buffer)

//	Create	a	new	zip	archive.

w	:=	zip.NewWriter(buf)

//	Add	some	files	to	the	archive.

var	files	=	[]struct	{

				Name,	Body	string

}{

				{"readme.txt",	"This	archive	contains	some	text	files."},

				{"gopher.txt",	"Gopher	names:\nGeorge\nGeoffrey\nGonzo"},

				{"todo.txt",	"Get	animal	handling	licence.\nWrite	more	examples."},

}

for	_,	file	:=	range	files	{

				f,	err	:=	w.Create(file.Name)

				if	err	!=	nil	{

								log.Fatal(err)

				}

				_,	err	=	f.Write([]byte(file.Body))

				if	err	!=	nil	{

								log.Fatal(err)

				}

}

//	Make	sure	to	check	the	error	on	Close.

err	:=	w.Close()

if	err	!=	nil	{

				log.Fatal(err)

}

func	NewWriter

func	NewWriter(w	io.Writer)	*Writer

NewWriter	returns	a	new	Writer	writing	a	zip	file	to	w.

func	(*Writer)	Close

func	(w	*Writer)	Close()	error

Close	finishes	writing	the	zip	file	by	writing	the	central	directory.	It	does	not
(and	can	not)	close	the	underlying	writer.

func	(*Writer)	Create

func	(w	*Writer)	Create(name	string)	(io.Writer,	error)

Create	adds	a	file	to	the	zip	file	using	the	provided	name.	It	returns	a	Writer	to
which	the	file	contents	should	be	written.	The	file's	contents	must	be	written	to
the	io.Writer	before	the	next	call	to	Create,	CreateHeader,	or	Close.

func	(*Writer)	CreateHeader

func	(w	*Writer)	CreateHeader(fh	*FileHeader)	(io.Writer,	error)

CreateHeader	adds	a	file	to	the	zip	file	using	the	provided	FileHeader	for	the	file
metadata.	It	returns	a	Writer	to	which	the	file	contents	should	be	written.	The
file's	contents	must	be	written	to	the	io.Writer	before	the	next	call	to	Create,
CreateHeader,	or	Close.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	bufio
import	"bufio"

Overview
Index

Overview	?

Overview	?

Package	bufio	implements	buffered	I/O.	It	wraps	an	io.Reader	or	io.Writer
object,	creating	another	object	(Reader	or	Writer)	that	also	implements	the
interface	but	provides	buffering	and	some	help	for	textual	I/O.

Index

Variables
type	ReadWriter
				func	NewReadWriter(r	*Reader,	w	*Writer)	*ReadWriter
type	Reader
				func	NewReader(rd	io.Reader)	*Reader
				func	NewReaderSize(rd	io.Reader,	size	int)	*Reader
				func	(b	*Reader)	Buffered()	int
				func	(b	*Reader)	Peek(n	int)	([]byte,	error)
				func	(b	*Reader)	Read(p	[]byte)	(n	int,	err	error)
				func	(b	*Reader)	ReadByte()	(c	byte,	err	error)
				func	(b	*Reader)	ReadBytes(delim	byte)	(line	[]byte,	err	error)
				func	(b	*Reader)	ReadLine()	(line	[]byte,	isPrefix	bool,	err	error)
				func	(b	*Reader)	ReadRune()	(r	rune,	size	int,	err	error)
				func	(b	*Reader)	ReadSlice(delim	byte)	(line	[]byte,	err	error)
				func	(b	*Reader)	ReadString(delim	byte)	(line	string,	err	error)
				func	(b	*Reader)	UnreadByte()	error
				func	(b	*Reader)	UnreadRune()	error
type	Writer
				func	NewWriter(wr	io.Writer)	*Writer
				func	NewWriterSize(wr	io.Writer,	size	int)	*Writer
				func	(b	*Writer)	Available()	int
				func	(b	*Writer)	Buffered()	int
				func	(b	*Writer)	Flush()	error
				func	(b	*Writer)	Write(p	[]byte)	(nn	int,	err	error)
				func	(b	*Writer)	WriteByte(c	byte)	error
				func	(b	*Writer)	WriteRune(r	rune)	(size	int,	err	error)
				func	(b	*Writer)	WriteString(s	string)	(int,	error)

Package	files

bufio.go

Variables
var	(

				ErrInvalidUnreadByte	=	errors.New("bufio:	invalid	use	of	UnreadByte")

				ErrInvalidUnreadRune	=	errors.New("bufio:	invalid	use	of	UnreadRune")

				ErrBufferFull								=	errors.New("bufio:	buffer	full")

				ErrNegativeCount					=	errors.New("bufio:	negative	count")

)

type	ReadWriter
type	ReadWriter	struct	{

				*Reader

				*Writer

}

ReadWriter	stores	pointers	to	a	Reader	and	a	Writer.	It	implements
io.ReadWriter.

func	NewReadWriter

func	NewReadWriter(r	*Reader,	w	*Writer)	*ReadWriter

NewReadWriter	allocates	a	new	ReadWriter	that	dispatches	to	r	and	w.

type	Reader
type	Reader	struct	{

				//	contains	filtered	or	unexported	fields

}

Reader	implements	buffering	for	an	io.Reader	object.

func	NewReader

func	NewReader(rd	io.Reader)	*Reader

NewReader	returns	a	new	Reader	whose	buffer	has	the	default	size.

func	NewReaderSize

func	NewReaderSize(rd	io.Reader,	size	int)	*Reader

NewReaderSize	returns	a	new	Reader	whose	buffer	has	at	least	the	specified
size.	If	the	argument	io.Reader	is	already	a	Reader	with	large	enough	size,	it
returns	the	underlying	Reader.

func	(*Reader)	Buffered

func	(b	*Reader)	Buffered()	int

Buffered	returns	the	number	of	bytes	that	can	be	read	from	the	current	buffer.

func	(*Reader)	Peek

func	(b	*Reader)	Peek(n	int)	([]byte,	error)

Peek	returns	the	next	n	bytes	without	advancing	the	reader.	The	bytes	stop	being
valid	at	the	next	read	call.	If	Peek	returns	fewer	than	n	bytes,	it	also	returns	an
error	explaining	why	the	read	is	short.	The	error	is	ErrBufferFull	if	n	is	larger
than	b's	buffer	size.

func	(*Reader)	Read

func	(b	*Reader)	Read(p	[]byte)	(n	int,	err	error)

Read	reads	data	into	p.	It	returns	the	number	of	bytes	read	into	p.	It	calls	Read	at
most	once	on	the	underlying	Reader,	hence	n	may	be	less	than	len(p).	At	EOF,
the	count	will	be	zero	and	err	will	be	io.EOF.

func	(*Reader)	ReadByte

func	(b	*Reader)	ReadByte()	(c	byte,	err	error)

ReadByte	reads	and	returns	a	single	byte.	If	no	byte	is	available,	returns	an	error.

func	(*Reader)	ReadBytes

func	(b	*Reader)	ReadBytes(delim	byte)	(line	[]byte,	err	error)

ReadBytes	reads	until	the	first	occurrence	of	delim	in	the	input,	returning	a	slice
containing	the	data	up	to	and	including	the	delimiter.	If	ReadBytes	encounters	an
error	before	finding	a	delimiter,	it	returns	the	data	read	before	the	error	and	the
error	itself	(often	io.EOF).	ReadBytes	returns	err	!=	nil	if	and	only	if	the	returned
data	does	not	end	in	delim.

func	(*Reader)	ReadLine

func	(b	*Reader)	ReadLine()	(line	[]byte,	isPrefix	bool,	err	error)

ReadLine	tries	to	return	a	single	line,	not	including	the	end-of-line	bytes.	If	the
line	was	too	long	for	the	buffer	then	isPrefix	is	set	and	the	beginning	of	the	line
is	returned.	The	rest	of	the	line	will	be	returned	from	future	calls.	isPrefix	will	be
false	when	returning	the	last	fragment	of	the	line.	The	returned	buffer	is	only
valid	until	the	next	call	to	ReadLine.	ReadLine	either	returns	a	non-nil	line	or	it
returns	an	error,	never	both.

func	(*Reader)	ReadRune

func	(b	*Reader)	ReadRune()	(r	rune,	size	int,	err	error)

ReadRune	reads	a	single	UTF-8	encoded	Unicode	character	and	returns	the	rune
and	its	size	in	bytes.	If	the	encoded	rune	is	invalid,	it	consumes	one	byte	and
returns	unicode.ReplacementChar	(U+FFFD)	with	a	size	of	1.

func	(*Reader)	ReadSlice

func	(b	*Reader)	ReadSlice(delim	byte)	(line	[]byte,	err	error)

ReadSlice	reads	until	the	first	occurrence	of	delim	in	the	input,	returning	a	slice
pointing	at	the	bytes	in	the	buffer.	The	bytes	stop	being	valid	at	the	next	read
call.	If	ReadSlice	encounters	an	error	before	finding	a	delimiter,	it	returns	all	the
data	in	the	buffer	and	the	error	itself	(often	io.EOF).	ReadSlice	fails	with	error
ErrBufferFull	if	the	buffer	fills	without	a	delim.	Because	the	data	returned	from
ReadSlice	will	be	overwritten	by	the	next	I/O	operation,	most	clients	should	use
ReadBytes	or	ReadString	instead.	ReadSlice	returns	err	!=	nil	if	and	only	if	line
does	not	end	in	delim.

func	(*Reader)	ReadString

func	(b	*Reader)	ReadString(delim	byte)	(line	string,	err	error)

ReadString	reads	until	the	first	occurrence	of	delim	in	the	input,	returning	a
string	containing	the	data	up	to	and	including	the	delimiter.	If	ReadString
encounters	an	error	before	finding	a	delimiter,	it	returns	the	data	read	before	the
error	and	the	error	itself	(often	io.EOF).	ReadString	returns	err	!=	nil	if	and	only
if	the	returned	data	does	not	end	in	delim.

func	(*Reader)	UnreadByte

func	(b	*Reader)	UnreadByte()	error

UnreadByte	unreads	the	last	byte.	Only	the	most	recently	read	byte	can	be
unread.

func	(*Reader)	UnreadRune

func	(b	*Reader)	UnreadRune()	error

UnreadRune	unreads	the	last	rune.	If	the	most	recent	read	operation	on	the	buffer
was	not	a	ReadRune,	UnreadRune	returns	an	error.	(In	this	regard	it	is	stricter
than	UnreadByte,	which	will	unread	the	last	byte	from	any	read	operation.)

type	Writer
type	Writer	struct	{

				//	contains	filtered	or	unexported	fields

}

Writer	implements	buffering	for	an	io.Writer	object.	If	an	error	occurs	writing	to
a	Writer,	no	more	data	will	be	accepted	and	all	subsequent	writes	will	return	the
error.

func	NewWriter

func	NewWriter(wr	io.Writer)	*Writer

NewWriter	returns	a	new	Writer	whose	buffer	has	the	default	size.

func	NewWriterSize

func	NewWriterSize(wr	io.Writer,	size	int)	*Writer

NewWriterSize	returns	a	new	Writer	whose	buffer	has	at	least	the	specified	size.
If	the	argument	io.Writer	is	already	a	Writer	with	large	enough	size,	it	returns	the
underlying	Writer.

func	(*Writer)	Available

func	(b	*Writer)	Available()	int

Available	returns	how	many	bytes	are	unused	in	the	buffer.

func	(*Writer)	Buffered

func	(b	*Writer)	Buffered()	int

Buffered	returns	the	number	of	bytes	that	have	been	written	into	the	current
buffer.

func	(*Writer)	Flush

func	(b	*Writer)	Flush()	error

Flush	writes	any	buffered	data	to	the	underlying	io.Writer.

func	(*Writer)	Write

func	(b	*Writer)	Write(p	[]byte)	(nn	int,	err	error)

Write	writes	the	contents	of	p	into	the	buffer.	It	returns	the	number	of	bytes
written.	If	nn	<	len(p),	it	also	returns	an	error	explaining	why	the	write	is	short.

func	(*Writer)	WriteByte

func	(b	*Writer)	WriteByte(c	byte)	error

WriteByte	writes	a	single	byte.

func	(*Writer)	WriteRune

func	(b	*Writer)	WriteRune(r	rune)	(size	int,	err	error)

WriteRune	writes	a	single	Unicode	code	point,	returning	the	number	of	bytes
written	and	any	error.

func	(*Writer)	WriteString

func	(b	*Writer)	WriteString(s	string)	(int,	error)

WriteString	writes	a	string.	It	returns	the	number	of	bytes	written.	If	the	count	is
less	than	len(s),	it	also	returns	an	error	explaining	why	the	write	is	short.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	builtin
import	"builtin"

Overview
Index

Overview	?

Overview	?

Package	builtin	provides	documentation	for	Go's	predeclared	identifiers.	The
items	documented	here	are	not	actually	in	package	builtin	but	their	descriptions
here	allow	godoc	to	present	documentation	for	the	language's	special	identifiers.

Index

func	append(slice	[]Type,	elems	...Type)	[]Type
func	close(c	chan<-	Type)
func	delete(m	map[Type]Type1,	key	Type)
func	panic(v	interface{})
func	recover()	interface{}
type	ComplexType
				func	complex(r,	i	FloatType)	ComplexType
type	FloatType
				func	imag(c	ComplexType)	FloatType
				func	real(c	ComplexType)	FloatType
type	IntegerType
type	Type
				func	make(Type,	size	IntegerType)	Type
				func	new(Type)	*Type
type	Type1
type	bool
type	byte
type	complex128
type	complex64
type	error
type	float32
type	float64
type	int
				func	cap(v	Type)	int
				func	copy(dst,	src	[]Type)	int
				func	len(v	Type)	int
type	int16
type	int32
type	int64
type	int8
type	rune
type	string
type	uint
type	uint16
type	uint32

type	uint64
type	uint8
type	uintptr

Package	files

builtin.go

func	append
func	append(slice	[]Type,	elems	...Type)	[]Type

The	append	built-in	function	appends	elements	to	the	end	of	a	slice.	If	it	has
sufficient	capacity,	the	destination	is	resliced	to	accommodate	the	new	elements.
If	it	does	not,	a	new	underlying	array	will	be	allocated.	Append	returns	the
updated	slice.	It	is	therefore	necessary	to	store	the	result	of	append,	often	in	the
variable	holding	the	slice	itself:

slice	=	append(slice,	elem1,	elem2)

slice	=	append(slice,	anotherSlice...)

func	close
func	close(c	chan<-	Type)

The	close	built-in	function	closes	a	channel,	which	must	be	either	bidirectional
or	send-only.	It	should	be	executed	only	by	the	sender,	never	the	receiver,	and
has	the	effect	of	shutting	down	the	channel	after	the	last	sent	value	is	received.
After	the	last	value	has	been	received	from	a	closed	channel	c,	any	receive	from
c	will	succeed	without	blocking,	returning	the	zero	value	for	the	channel
element.	The	form

x,	ok	:=	<-c

will	also	set	ok	to	false	for	a	closed	channel.

func	delete
func	delete(m	map[Type]Type1,	key	Type)

The	delete	built-in	function	deletes	the	element	with	the	specified	key	(m[key])
from	the	map.	If	there	is	no	such	element,	delete	is	a	no-op.	If	m	is	nil,	delete
panics.

func	panic
func	panic(v	interface{})

The	panic	built-in	function	stops	normal	execution	of	the	current	goroutine.
When	a	function	F	calls	panic,	normal	execution	of	F	stops	immediately.	Any
functions	whose	execution	was	deferred	by	F	are	run	in	the	usual	way,	and	then
F	returns	to	its	caller.	To	the	caller	G,	the	invocation	of	F	then	behaves	like	a	call
to	panic,	terminating	G's	execution	and	running	any	deferred	functions.	This
continues	until	all	functions	in	the	executing	goroutine	have	stopped,	in	reverse
order.	At	that	point,	the	program	is	terminated	and	the	error	condition	is
reported,	including	the	value	of	the	argument	to	panic.	This	termination
sequence	is	called	panicking	and	can	be	controlled	by	the	built-in	function
recover.

func	recover
func	recover()	interface{}

The	recover	built-in	function	allows	a	program	to	manage	behavior	of	a
panicking	goroutine.	Executing	a	call	to	recover	inside	a	deferred	function	(but
not	any	function	called	by	it)	stops	the	panicking	sequence	by	restoring	normal
execution	and	retrieves	the	error	value	passed	to	the	call	of	panic.	If	recover	is
called	outside	the	deferred	function	it	will	not	stop	a	panicking	sequence.	In	this
case,	or	when	the	goroutine	is	not	panicking,	or	if	the	argument	supplied	to	panic
was	nil,	recover	returns	nil.	Thus	the	return	value	from	recover	reports	whether
the	goroutine	is	panicking.

type	ComplexType
type	ComplexType	complex64

ComplexType	is	here	for	the	purposes	of	documentation	only.	It	is	a	stand-in	for
either	complex	type:	complex64	or	complex128.

func	complex

func	complex(r,	i	FloatType)	ComplexType

The	complex	built-in	function	constructs	a	complex	value	from	two	floating-
point	values.	The	real	and	imaginary	parts	must	be	of	the	same	size,	either
float32	or	float64	(or	assignable	to	them),	and	the	return	value	will	be	the
corresponding	complex	type	(complex64	for	float32,	complex128	for	float64).

type	FloatType
type	FloatType	float32

FloatType	is	here	for	the	purposes	of	documentation	only.	It	is	a	stand-in	for
either	float	type:	float32	or	float64.

func	imag

func	imag(c	ComplexType)	FloatType

The	imag	built-in	function	returns	the	imaginary	part	of	the	complex	number	c.
The	return	value	will	be	floating	point	type	corresponding	to	the	type	of	c.

func	real

func	real(c	ComplexType)	FloatType

The	real	built-in	function	returns	the	real	part	of	the	complex	number	c.	The
return	value	will	be	floating	point	type	corresponding	to	the	type	of	c.

type	IntegerType
type	IntegerType	int

IntegerType	is	here	for	the	purposes	of	documentation	only.	It	is	a	stand-in	for
any	integer	type:	int,	uint,	int8	etc.

type	Type
type	Type	int

Type	is	here	for	the	purposes	of	documentation	only.	It	is	a	stand-in	for	any	Go
type,	but	represents	the	same	type	for	any	given	function	invocation.

func	make

func	make(Type,	size	IntegerType)	Type

The	make	built-in	function	allocates	and	initializes	an	object	of	type	slice,	map,
or	chan	(only).	Like	new,	the	first	argument	is	a	type,	not	a	value.	Unlike	new,
make's	return	type	is	the	same	as	the	type	of	its	argument,	not	a	pointer	to	it.	The
specification	of	the	result	depends	on	the	type:

Slice:	The	size	specifies	the	length.	The	capacity	of	the	slice	is

equal	to	its	length.	A	second	integer	argument	may	be	provided	to

specify	a	different	capacity;	it	must	be	no	smaller	than	the

length,	so	make([]int,	0,	10)	allocates	a	slice	of	length	0	and

capacity	10.

Map:	An	initial	allocation	is	made	according	to	the	size	but	the

resulting	map	has	length	0.	The	size	may	be	omitted,	in	which	case

a	small	starting	size	is	allocated.

Channel:	The	channel's	buffer	is	initialized	with	the	specified

buffer	capacity.	If	zero,	or	the	size	is	omitted,	the	channel	is

unbuffered.

func	new

func	new(Type)	*Type

The	new	built-in	function	allocates	memory.	The	first	argument	is	a	type,	not	a
value,	and	the	value	returned	is	a	pointer	to	a	newly	allocated	zero	value	of	that
type.

type	Type1
type	Type1	int

Type1	is	here	for	the	purposes	of	documentation	only.	It	is	a	stand-in	for	any	Go
type,	but	represents	the	same	type	for	any	given	function	invocation.

type	bool
type	bool	bool

bool	is	the	set	of	boolean	values,	true	and	false.

type	byte
type	byte	byte

byte	is	an	alias	for	uint8	and	is	equivalent	to	uint8	in	all	ways.	It	is	used,	by
convention,	to	distinguish	byte	values	from	8-bit	unsigned	integer	values.

type	complex128
type	complex128	complex128

complex128	is	the	set	of	all	complex	numbers	with	float64	real	and	imaginary
parts.

type	complex64
type	complex64	complex64

complex64	is	the	set	of	all	complex	numbers	with	float32	real	and	imaginary
parts.

type	error
type	error	interface	{

				Error()	string

}

The	error	built-in	interface	type	is	the	conventional	interface	for	representing	an
error	condition,	with	the	nil	value	representing	no	error.

type	float32
type	float32	float32

float32	is	the	set	of	all	IEEE-754	32-bit	floating-point	numbers.

type	float64
type	float64	float64

float64	is	the	set	of	all	IEEE-754	64-bit	floating-point	numbers.

type	int
type	int	int

int	is	a	signed	integer	type	that	is	at	least	32	bits	in	size.	It	is	a	distinct	type,
however,	and	not	an	alias	for,	say,	int32.

func	cap

func	cap(v	Type)	int

The	cap	built-in	function	returns	the	capacity	of	v,	according	to	its	type:

Array:	the	number	of	elements	in	v	(same	as	len(v)).

Pointer	to	array:	the	number	of	elements	in	*v	(same	as	len(v)).

Slice:	the	maximum	length	the	slice	can	reach	when	resliced;

if	v	is	nil,	cap(v)	is	zero.

Channel:	the	channel	buffer	capacity,	in	units	of	elements;

if	v	is	nil,	cap(v)	is	zero.

func	copy

func	copy(dst,	src	[]Type)	int

The	copy	built-in	function	copies	elements	from	a	source	slice	into	a	destination
slice.	(As	a	special	case,	it	also	will	copy	bytes	from	a	string	to	a	slice	of	bytes.)
The	source	and	destination	may	overlap.	Copy	returns	the	number	of	elements
copied,	which	will	be	the	minimum	of	len(src)	and	len(dst).

func	len

func	len(v	Type)	int

The	len	built-in	function	returns	the	length	of	v,	according	to	its	type:

Array:	the	number	of	elements	in	v.

Pointer	to	array:	the	number	of	elements	in	*v	(even	if	v	is	nil).

Slice,	or	map:	the	number	of	elements	in	v;	if	v	is	nil,	len(v)	is	zero.

String:	the	number	of	bytes	in	v.

Channel:	the	number	of	elements	queued	(unread)	in	the	channel	buffer;

if	v	is	nil,	len(v)	is	zero.

type	int16
type	int16	int16

int16	is	the	set	of	all	signed	16-bit	integers.	Range:	-32768	through	32767.

type	int32
type	int32	int32

int32	is	the	set	of	all	signed	32-bit	integers.	Range:	-2147483648	through
2147483647.

type	int64
type	int64	int64

int64	is	the	set	of	all	signed	64-bit	integers.	Range:	-9223372036854775808
through	9223372036854775807.

type	int8
type	int8	int8

int8	is	the	set	of	all	signed	8-bit	integers.	Range:	-128	through	127.

type	rune
type	rune	rune

rune	is	an	alias	for	int	and	is	equivalent	to	int	in	all	ways.	It	is	used,	by
convention,	to	distinguish	character	values	from	integer	values.	In	a	future
version	of	Go,	it	will	change	to	an	alias	of	int32.

type	string
type	string	string

string	is	the	set	of	all	strings	of	8-bit	bytes,	conventionally	but	not	necessarily
representing	UTF-8-encoded	text.	A	string	may	be	empty,	but	not	nil.	Values	of
string	type	are	immutable.

type	uint
type	uint	uint

uint	is	an	unsigned	integer	type	that	is	at	least	32	bits	in	size.	It	is	a	distinct	type,
however,	and	not	an	alias	for,	say,	uint32.

type	uint16
type	uint16	uint16

uint16	is	the	set	of	all	unsigned	16-bit	integers.	Range:	0	through	65535.

type	uint32
type	uint32	uint32

uint32	is	the	set	of	all	unsigned	32-bit	integers.	Range:	0	through	4294967295.

type	uint64
type	uint64	uint64

uint64	is	the	set	of	all	unsigned	64-bit	integers.	Range:	0	through
18446744073709551615.

type	uint8
type	uint8	uint8

uint8	is	the	set	of	all	unsigned	8-bit	integers.	Range:	0	through	255.

type	uintptr
type	uintptr	uintptr

uintptr	is	an	integer	type	that	is	large	enough	to	hold	the	bit	pattern	of	any
pointer.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	bytes
import	"bytes"

Overview
Index
Examples

Overview	?

Overview	?

Package	bytes	implements	functions	for	the	manipulation	of	byte	slices.	It	is
analogous	to	the	facilities	of	the	strings	package.

Index

Constants
Variables
func	Compare(a,	b	[]byte)	int
func	Contains(b,	subslice	[]byte)	bool
func	Count(s,	sep	[]byte)	int
func	Equal(a,	b	[]byte)	bool
func	EqualFold(s,	t	[]byte)	bool
func	Fields(s	[]byte)	[][]byte
func	FieldsFunc(s	[]byte,	f	func(rune)	bool)	[][]byte
func	HasPrefix(s,	prefix	[]byte)	bool
func	HasSuffix(s,	suffix	[]byte)	bool
func	Index(s,	sep	[]byte)	int
func	IndexAny(s	[]byte,	chars	string)	int
func	IndexByte(s	[]byte,	c	byte)	int
func	IndexFunc(s	[]byte,	f	func(r	rune)	bool)	int
func	IndexRune(s	[]byte,	r	rune)	int
func	Join(a	[][]byte,	sep	[]byte)	[]byte
func	LastIndex(s,	sep	[]byte)	int
func	LastIndexAny(s	[]byte,	chars	string)	int
func	LastIndexFunc(s	[]byte,	f	func(r	rune)	bool)	int
func	Map(mapping	func(r	rune)	rune,	s	[]byte)	[]byte
func	Repeat(b	[]byte,	count	int)	[]byte
func	Replace(s,	old,	new	[]byte,	n	int)	[]byte
func	Runes(s	[]byte)	[]rune
func	Split(s,	sep	[]byte)	[][]byte
func	SplitAfter(s,	sep	[]byte)	[][]byte
func	SplitAfterN(s,	sep	[]byte,	n	int)	[][]byte
func	SplitN(s,	sep	[]byte,	n	int)	[][]byte
func	Title(s	[]byte)	[]byte
func	ToLower(s	[]byte)	[]byte
func	ToLowerSpecial(_case	unicode.SpecialCase,	s	[]byte)	[]byte
func	ToTitle(s	[]byte)	[]byte
func	ToTitleSpecial(_case	unicode.SpecialCase,	s	[]byte)	[]byte
func	ToUpper(s	[]byte)	[]byte
func	ToUpperSpecial(_case	unicode.SpecialCase,	s	[]byte)	[]byte

func	Trim(s	[]byte,	cutset	string)	[]byte
func	TrimFunc(s	[]byte,	f	func(r	rune)	bool)	[]byte
func	TrimLeft(s	[]byte,	cutset	string)	[]byte
func	TrimLeftFunc(s	[]byte,	f	func(r	rune)	bool)	[]byte
func	TrimRight(s	[]byte,	cutset	string)	[]byte
func	TrimRightFunc(s	[]byte,	f	func(r	rune)	bool)	[]byte
func	TrimSpace(s	[]byte)	[]byte
type	Buffer
				func	NewBuffer(buf	[]byte)	*Buffer
				func	NewBufferString(s	string)	*Buffer
				func	(b	*Buffer)	Bytes()	[]byte
				func	(b	*Buffer)	Len()	int
				func	(b	*Buffer)	Next(n	int)	[]byte
				func	(b	*Buffer)	Read(p	[]byte)	(n	int,	err	error)
				func	(b	*Buffer)	ReadByte()	(c	byte,	err	error)
				func	(b	*Buffer)	ReadBytes(delim	byte)	(line	[]byte,	err	error)
				func	(b	*Buffer)	ReadFrom(r	io.Reader)	(n	int64,	err	error)
				func	(b	*Buffer)	ReadRune()	(r	rune,	size	int,	err	error)
				func	(b	*Buffer)	ReadString(delim	byte)	(line	string,	err	error)
				func	(b	*Buffer)	Reset()
				func	(b	*Buffer)	String()	string
				func	(b	*Buffer)	Truncate(n	int)
				func	(b	*Buffer)	UnreadByte()	error
				func	(b	*Buffer)	UnreadRune()	error
				func	(b	*Buffer)	Write(p	[]byte)	(n	int,	err	error)
				func	(b	*Buffer)	WriteByte(c	byte)	error
				func	(b	*Buffer)	WriteRune(r	rune)	(n	int,	err	error)
				func	(b	*Buffer)	WriteString(s	string)	(n	int,	err	error)
				func	(b	*Buffer)	WriteTo(w	io.Writer)	(n	int64,	err	error)
type	Reader
				func	NewReader(b	[]byte)	*Reader
				func	(r	*Reader)	Len()	int
				func	(r	*Reader)	Read(b	[]byte)	(n	int,	err	error)
				func	(r	*Reader)	ReadAt(b	[]byte,	off	int64)	(n	int,	err	error)
				func	(r	*Reader)	ReadByte()	(b	byte,	err	error)
				func	(r	*Reader)	ReadRune()	(ch	rune,	size	int,	err	error)
				func	(r	*Reader)	Seek(offset	int64,	whence	int)	(int64,	error)
				func	(r	*Reader)	UnreadByte()	error
				func	(r	*Reader)	UnreadRune()	error

Bugs

Examples

Buffer
Buffer	(Reader)

Package	files

buffer.go	bytes.go	bytes_decl.go	reader.go

Constants
const	MinRead	=	512

MinRead	is	the	minimum	slice	size	passed	to	a	Read	call	by	Buffer.ReadFrom.
As	long	as	the	Buffer	has	at	least	MinRead	bytes	beyond	what	is	required	to	hold
the	contents	of	r,	ReadFrom	will	not	grow	the	underlying	buffer.

Variables
var	ErrTooLarge	=	errors.New("bytes.Buffer:	too	large")

ErrTooLarge	is	passed	to	panic	if	memory	cannot	be	allocated	to	store	data	in	a
buffer.

func	Compare
func	Compare(a,	b	[]byte)	int

Compare	returns	an	integer	comparing	the	two	byte	arrays	lexicographically.	The
result	will	be	0	if	a==b,	-1	if	a	<	b,	and	+1	if	a	>	b	A	nil	argument	is	equivalent
to	an	empty	slice.

func	Contains
func	Contains(b,	subslice	[]byte)	bool

Contains	returns	whether	subslice	is	within	b.

func	Count
func	Count(s,	sep	[]byte)	int

Count	counts	the	number	of	non-overlapping	instances	of	sep	in	s.

func	Equal
func	Equal(a,	b	[]byte)	bool

Equal	returns	a	boolean	reporting	whether	a	==	b.	A	nil	argument	is	equivalent
to	an	empty	slice.

func	EqualFold
func	EqualFold(s,	t	[]byte)	bool

EqualFold	reports	whether	s	and	t,	interpreted	as	UTF-8	strings,	are	equal	under
Unicode	case-folding.

func	Fields
func	Fields(s	[]byte)	[][]byte

Fields	splits	the	array	s	around	each	instance	of	one	or	more	consecutive	white
space	characters,	returning	a	slice	of	subarrays	of	s	or	an	empty	list	if	s	contains
only	white	space.

func	FieldsFunc
func	FieldsFunc(s	[]byte,	f	func(rune)	bool)	[][]byte

FieldsFunc	interprets	s	as	a	sequence	of	UTF-8-encoded	Unicode	code	points.	It
splits	the	array	s	at	each	run	of	code	points	c	satisfying	f(c)	and	returns	a	slice	of
subarrays	of	s.	If	no	code	points	in	s	satisfy	f(c),	an	empty	slice	is	returned.

func	HasPrefix
func	HasPrefix(s,	prefix	[]byte)	bool

HasPrefix	tests	whether	the	byte	array	s	begins	with	prefix.

func	HasSuffix
func	HasSuffix(s,	suffix	[]byte)	bool

HasSuffix	tests	whether	the	byte	array	s	ends	with	suffix.

func	Index
func	Index(s,	sep	[]byte)	int

Index	returns	the	index	of	the	first	instance	of	sep	in	s,	or	-1	if	sep	is	not	present
in	s.

func	IndexAny
func	IndexAny(s	[]byte,	chars	string)	int

IndexAny	interprets	s	as	a	sequence	of	UTF-8-encoded	Unicode	code	points.	It
returns	the	byte	index	of	the	first	occurrence	in	s	of	any	of	the	Unicode	code
points	in	chars.	It	returns	-1	if	chars	is	empty	or	if	there	is	no	code	point	in
common.

func	IndexByte
func	IndexByte(s	[]byte,	c	byte)	int

IndexByte	returns	the	index	of	the	first	instance	of	c	in	s,	or	-1	if	c	is	not	present
in	s.

func	IndexFunc
func	IndexFunc(s	[]byte,	f	func(r	rune)	bool)	int

IndexFunc	interprets	s	as	a	sequence	of	UTF-8-encoded	Unicode	code	points.	It
returns	the	byte	index	in	s	of	the	first	Unicode	code	point	satisfying	f(c),	or	-1	if
none	do.

func	IndexRune
func	IndexRune(s	[]byte,	r	rune)	int

IndexRune	interprets	s	as	a	sequence	of	UTF-8-encoded	Unicode	code	points.	It
returns	the	byte	index	of	the	first	occurrence	in	s	of	the	given	rune.	It	returns	-1
if	rune	is	not	present	in	s.

func	Join
func	Join(a	[][]byte,	sep	[]byte)	[]byte

Join	concatenates	the	elements	of	a	to	create	a	single	byte	array.	The	separator
sep	is	placed	between	elements	in	the	resulting	array.

func	LastIndex
func	LastIndex(s,	sep	[]byte)	int

LastIndex	returns	the	index	of	the	last	instance	of	sep	in	s,	or	-1	if	sep	is	not
present	in	s.

func	LastIndexAny
func	LastIndexAny(s	[]byte,	chars	string)	int

LastIndexAny	interprets	s	as	a	sequence	of	UTF-8-encoded	Unicode	code
points.	It	returns	the	byte	index	of	the	last	occurrence	in	s	of	any	of	the	Unicode
code	points	in	chars.	It	returns	-1	if	chars	is	empty	or	if	there	is	no	code	point	in
common.

func	LastIndexFunc
func	LastIndexFunc(s	[]byte,	f	func(r	rune)	bool)	int

LastIndexFunc	interprets	s	as	a	sequence	of	UTF-8-encoded	Unicode	code
points.	It	returns	the	byte	index	in	s	of	the	last	Unicode	code	point	satisfying
f(c),	or	-1	if	none	do.

func	Map
func	Map(mapping	func(r	rune)	rune,	s	[]byte)	[]byte

Map	returns	a	copy	of	the	byte	array	s	with	all	its	characters	modified	according
to	the	mapping	function.	If	mapping	returns	a	negative	value,	the	character	is
dropped	from	the	string	with	no	replacement.	The	characters	in	s	and	the	output
are	interpreted	as	UTF-8-encoded	Unicode	code	points.

func	Repeat
func	Repeat(b	[]byte,	count	int)	[]byte

Repeat	returns	a	new	byte	slice	consisting	of	count	copies	of	b.

func	Replace
func	Replace(s,	old,	new	[]byte,	n	int)	[]byte

Replace	returns	a	copy	of	the	slice	s	with	the	first	n	non-overlapping	instances	of
old	replaced	by	new.	If	n	<	0,	there	is	no	limit	on	the	number	of	replacements.

func	Runes
func	Runes(s	[]byte)	[]rune

Runes	returns	a	slice	of	runes	(Unicode	code	points)	equivalent	to	s.

func	Split
func	Split(s,	sep	[]byte)	[][]byte

Split	slices	s	into	all	subslices	separated	by	sep	and	returns	a	slice	of	the
subslices	between	those	separators.	If	sep	is	empty,	Split	splits	after	each	UTF-8
sequence.	It	is	equivalent	to	SplitN	with	a	count	of	-1.

func	SplitAfter
func	SplitAfter(s,	sep	[]byte)	[][]byte

SplitAfter	slices	s	into	all	subslices	after	each	instance	of	sep	and	returns	a	slice
of	those	subslices.	If	sep	is	empty,	SplitAfter	splits	after	each	UTF-8	sequence.	It
is	equivalent	to	SplitAfterN	with	a	count	of	-1.

func	SplitAfterN
func	SplitAfterN(s,	sep	[]byte,	n	int)	[][]byte

SplitAfterN	slices	s	into	subslices	after	each	instance	of	sep	and	returns	a	slice	of
those	subslices.	If	sep	is	empty,	SplitAfterN	splits	after	each	UTF-8	sequence.
The	count	determines	the	number	of	subslices	to	return:

n	>	0:	at	most	n	subslices;	the	last	subslice	will	be	the	unsplit	remainder.

n	==	0:	the	result	is	nil	(zero	subslices)

n	<	0:	all	subslices

func	SplitN
func	SplitN(s,	sep	[]byte,	n	int)	[][]byte

SplitN	slices	s	into	subslices	separated	by	sep	and	returns	a	slice	of	the	subslices
between	those	separators.	If	sep	is	empty,	SplitN	splits	after	each	UTF-8
sequence.	The	count	determines	the	number	of	subslices	to	return:

n	>	0:	at	most	n	subslices;	the	last	subslice	will	be	the	unsplit	remainder.

n	==	0:	the	result	is	nil	(zero	subslices)

n	<	0:	all	subslices

func	Title
func	Title(s	[]byte)	[]byte

Title	returns	a	copy	of	s	with	all	Unicode	letters	that	begin	words	mapped	to
their	title	case.

func	ToLower
func	ToLower(s	[]byte)	[]byte

ToUpper	returns	a	copy	of	the	byte	array	s	with	all	Unicode	letters	mapped	to
their	lower	case.

func	ToLowerSpecial
func	ToLowerSpecial(_case	unicode.SpecialCase,	s	[]byte)	[]byte

ToLowerSpecial	returns	a	copy	of	the	byte	array	s	with	all	Unicode	letters
mapped	to	their	lower	case,	giving	priority	to	the	special	casing	rules.

func	ToTitle
func	ToTitle(s	[]byte)	[]byte

ToTitle	returns	a	copy	of	the	byte	array	s	with	all	Unicode	letters	mapped	to	their
title	case.

func	ToTitleSpecial
func	ToTitleSpecial(_case	unicode.SpecialCase,	s	[]byte)	[]byte

ToTitleSpecial	returns	a	copy	of	the	byte	array	s	with	all	Unicode	letters	mapped
to	their	title	case,	giving	priority	to	the	special	casing	rules.

func	ToUpper
func	ToUpper(s	[]byte)	[]byte

ToUpper	returns	a	copy	of	the	byte	array	s	with	all	Unicode	letters	mapped	to
their	upper	case.

func	ToUpperSpecial
func	ToUpperSpecial(_case	unicode.SpecialCase,	s	[]byte)	[]byte

ToUpperSpecial	returns	a	copy	of	the	byte	array	s	with	all	Unicode	letters
mapped	to	their	upper	case,	giving	priority	to	the	special	casing	rules.

func	Trim
func	Trim(s	[]byte,	cutset	string)	[]byte

Trim	returns	a	subslice	of	s	by	slicing	off	all	leading	and	trailing	UTF-8-encoded
Unicode	code	points	contained	in	cutset.

func	TrimFunc
func	TrimFunc(s	[]byte,	f	func(r	rune)	bool)	[]byte

TrimFunc	returns	a	subslice	of	s	by	slicing	off	all	leading	and	trailing	UTF-8-
encoded	Unicode	code	points	c	that	satisfy	f(c).

func	TrimLeft
func	TrimLeft(s	[]byte,	cutset	string)	[]byte

TrimLeft	returns	a	subslice	of	s	by	slicing	off	all	leading	UTF-8-encoded
Unicode	code	points	contained	in	cutset.

func	TrimLeftFunc
func	TrimLeftFunc(s	[]byte,	f	func(r	rune)	bool)	[]byte

TrimLeftFunc	returns	a	subslice	of	s	by	slicing	off	all	leading	UTF-8-encoded
Unicode	code	points	c	that	satisfy	f(c).

func	TrimRight
func	TrimRight(s	[]byte,	cutset	string)	[]byte

TrimRight	returns	a	subslice	of	s	by	slicing	off	all	trailing	UTF-8-encoded
Unicode	code	points	that	are	contained	in	cutset.

func	TrimRightFunc
func	TrimRightFunc(s	[]byte,	f	func(r	rune)	bool)	[]byte

TrimRightFunc	returns	a	subslice	of	s	by	slicing	off	all	trailing	UTF-8	encoded
Unicode	code	points	c	that	satisfy	f(c).

func	TrimSpace
func	TrimSpace(s	[]byte)	[]byte

TrimSpace	returns	a	subslice	of	s	by	slicing	off	all	leading	and	trailing	white
space,	as	defined	by	Unicode.

type	Buffer
type	Buffer	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Buffer	is	a	variable-sized	buffer	of	bytes	with	Read	and	Write	methods.	The
zero	value	for	Buffer	is	an	empty	buffer	ready	to	use.

?	Example

?	Example

Code:

var	b	Buffer	//	A	Buffer	needs	no	initialization.

b.Write([]byte("Hello	"))

b.Write([]byte("world!"))

b.WriteTo(os.Stdout)

Output:

Hello	world!

?	Example	(Reader)

?	Example	(Reader)

Code:

//	A	Buffer	can	turn	a	string	or	a	[]byte	into	an	io.Reader.

buf	:=	NewBufferString("R29waGVycyBydWxlIQ==")

dec	:=	base64.NewDecoder(base64.StdEncoding,	buf)

io.Copy(os.Stdout,	dec)

Output:

Gophers	rule!

func	NewBuffer

func	NewBuffer(buf	[]byte)	*Buffer

NewBuffer	creates	and	initializes	a	new	Buffer	using	buf	as	its	initial	contents.	It
is	intended	to	prepare	a	Buffer	to	read	existing	data.	It	can	also	be	used	to	size
the	internal	buffer	for	writing.	To	do	that,	buf	should	have	the	desired	capacity
but	a	length	of	zero.

In	most	cases,	new(Buffer)	(or	just	declaring	a	Buffer	variable)	is	sufficient	to
initialize	a	Buffer.

func	NewBufferString

func	NewBufferString(s	string)	*Buffer

NewBufferString	creates	and	initializes	a	new	Buffer	using	string	s	as	its	initial
contents.	It	is	intended	to	prepare	a	buffer	to	read	an	existing	string.

In	most	cases,	new(Buffer)	(or	just	declaring	a	Buffer	variable)	is	sufficient	to
initialize	a	Buffer.

func	(*Buffer)	Bytes

func	(b	*Buffer)	Bytes()	[]byte

Bytes	returns	a	slice	of	the	contents	of	the	unread	portion	of	the	buffer;
len(b.Bytes())	==	b.Len().	If	the	caller	changes	the	contents	of	the	returned	slice,
the	contents	of	the	buffer	will	change	provided	there	are	no	intervening	method
calls	on	the	Buffer.

func	(*Buffer)	Len

func	(b	*Buffer)	Len()	int

Len	returns	the	number	of	bytes	of	the	unread	portion	of	the	buffer;	b.Len()	==
len(b.Bytes()).

func	(*Buffer)	Next

func	(b	*Buffer)	Next(n	int)	[]byte

Next	returns	a	slice	containing	the	next	n	bytes	from	the	buffer,	advancing	the
buffer	as	if	the	bytes	had	been	returned	by	Read.	If	there	are	fewer	than	n	bytes

in	the	buffer,	Next	returns	the	entire	buffer.	The	slice	is	only	valid	until	the	next
call	to	a	read	or	write	method.

func	(*Buffer)	Read

func	(b	*Buffer)	Read(p	[]byte)	(n	int,	err	error)

Read	reads	the	next	len(p)	bytes	from	the	buffer	or	until	the	buffer	is	drained.
The	return	value	n	is	the	number	of	bytes	read.	If	the	buffer	has	no	data	to	return,
err	is	io.EOF	(unless	len(p)	is	zero);	otherwise	it	is	nil.

func	(*Buffer)	ReadByte

func	(b	*Buffer)	ReadByte()	(c	byte,	err	error)

ReadByte	reads	and	returns	the	next	byte	from	the	buffer.	If	no	byte	is	available,
it	returns	error	io.EOF.

func	(*Buffer)	ReadBytes

func	(b	*Buffer)	ReadBytes(delim	byte)	(line	[]byte,	err	error)

ReadBytes	reads	until	the	first	occurrence	of	delim	in	the	input,	returning	a	slice
containing	the	data	up	to	and	including	the	delimiter.	If	ReadBytes	encounters	an
error	before	finding	a	delimiter,	it	returns	the	data	read	before	the	error	and	the
error	itself	(often	io.EOF).	ReadBytes	returns	err	!=	nil	if	and	only	if	the	returned
data	does	not	end	in	delim.

func	(*Buffer)	ReadFrom

func	(b	*Buffer)	ReadFrom(r	io.Reader)	(n	int64,	err	error)

ReadFrom	reads	data	from	r	until	EOF	and	appends	it	to	the	buffer.	The	return
value	n	is	the	number	of	bytes	read.	Any	error	except	io.EOF	encountered	during
the	read	is	also	returned.	If	the	buffer	becomes	too	large,	ReadFrom	will	panic
with	ErrTooLarge.

func	(*Buffer)	ReadRune

func	(b	*Buffer)	ReadRune()	(r	rune,	size	int,	err	error)

ReadRune	reads	and	returns	the	next	UTF-8-encoded	Unicode	code	point	from
the	buffer.	If	no	bytes	are	available,	the	error	returned	is	io.EOF.	If	the	bytes	are
an	erroneous	UTF-8	encoding,	it	consumes	one	byte	and	returns	U+FFFD,	1.

func	(*Buffer)	ReadString

func	(b	*Buffer)	ReadString(delim	byte)	(line	string,	err	error)

ReadString	reads	until	the	first	occurrence	of	delim	in	the	input,	returning	a
string	containing	the	data	up	to	and	including	the	delimiter.	If	ReadString
encounters	an	error	before	finding	a	delimiter,	it	returns	the	data	read	before	the
error	and	the	error	itself	(often	io.EOF).	ReadString	returns	err	!=	nil	if	and	only
if	the	returned	data	does	not	end	in	delim.

func	(*Buffer)	Reset

func	(b	*Buffer)	Reset()

Reset	resets	the	buffer	so	it	has	no	content.	b.Reset()	is	the	same	as
b.Truncate(0).

func	(*Buffer)	String

func	(b	*Buffer)	String()	string

String	returns	the	contents	of	the	unread	portion	of	the	buffer	as	a	string.	If	the
Buffer	is	a	nil	pointer,	it	returns	"<nil>".

func	(*Buffer)	Truncate

func	(b	*Buffer)	Truncate(n	int)

Truncate	discards	all	but	the	first	n	unread	bytes	from	the	buffer.	It	panics	if	n	is
negative	or	greater	than	the	length	of	the	buffer.

func	(*Buffer)	UnreadByte

func	(b	*Buffer)	UnreadByte()	error

UnreadByte	unreads	the	last	byte	returned	by	the	most	recent	read	operation.	If

write	has	happened	since	the	last	read,	UnreadByte	returns	an	error.

func	(*Buffer)	UnreadRune

func	(b	*Buffer)	UnreadRune()	error

UnreadRune	unreads	the	last	rune	returned	by	ReadRune.	If	the	most	recent	read
or	write	operation	on	the	buffer	was	not	a	ReadRune,	UnreadRune	returns	an
error.	(In	this	regard	it	is	stricter	than	UnreadByte,	which	will	unread	the	last
byte	from	any	read	operation.)

func	(*Buffer)	Write

func	(b	*Buffer)	Write(p	[]byte)	(n	int,	err	error)

Write	appends	the	contents	of	p	to	the	buffer.	The	return	value	n	is	the	length	of
p;	err	is	always	nil.	If	the	buffer	becomes	too	large,	Write	will	panic	with
ErrTooLarge.

func	(*Buffer)	WriteByte

func	(b	*Buffer)	WriteByte(c	byte)	error

WriteByte	appends	the	byte	c	to	the	buffer.	The	returned	error	is	always	nil,	but
is	included	to	match	bufio.Writer's	WriteByte.	If	the	buffer	becomes	too	large,
WriteByte	will	panic	with	ErrTooLarge.

func	(*Buffer)	WriteRune

func	(b	*Buffer)	WriteRune(r	rune)	(n	int,	err	error)

WriteRune	appends	the	UTF-8	encoding	of	Unicode	code	point	r	to	the	buffer,
returning	its	length	and	an	error,	which	is	always	nil	but	is	included	to	match
bufio.Writer's	WriteRune.	If	the	buffer	becomes	too	large,	WriteRune	will	panic
with	ErrTooLarge.

func	(*Buffer)	WriteString

func	(b	*Buffer)	WriteString(s	string)	(n	int,	err	error)

WriteString	appends	the	contents	of	s	to	the	buffer.	The	return	value	n	is	the
length	of	s;	err	is	always	nil.	If	the	buffer	becomes	too	large,	WriteString	will
panic	with	ErrTooLarge.

func	(*Buffer)	WriteTo

func	(b	*Buffer)	WriteTo(w	io.Writer)	(n	int64,	err	error)

WriteTo	writes	data	to	w	until	the	buffer	is	drained	or	an	error	occurs.	The	return
value	n	is	the	number	of	bytes	written;	it	always	fits	into	an	int,	but	it	is	int64	to
match	the	io.WriterTo	interface.	Any	error	encountered	during	the	write	is	also
returned.

type	Reader
type	Reader	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Reader	implements	the	io.Reader,	io.ReaderAt,	io.Seeker,	io.ByteScanner,	and
io.RuneScanner	interfaces	by	reading	from	a	byte	slice.	Unlike	a	Buffer,	a
Reader	is	read-only	and	supports	seeking.

func	NewReader

func	NewReader(b	[]byte)	*Reader

NewReader	returns	a	new	Reader	reading	from	b.

func	(*Reader)	Len

func	(r	*Reader)	Len()	int

Len	returns	the	number	of	bytes	of	the	unread	portion	of	the	slice.

func	(*Reader)	Read

func	(r	*Reader)	Read(b	[]byte)	(n	int,	err	error)

func	(*Reader)	ReadAt

func	(r	*Reader)	ReadAt(b	[]byte,	off	int64)	(n	int,	err	error)

func	(*Reader)	ReadByte

func	(r	*Reader)	ReadByte()	(b	byte,	err	error)

func	(*Reader)	ReadRune

func	(r	*Reader)	ReadRune()	(ch	rune,	size	int,	err	error)

func	(*Reader)	Seek

func	(r	*Reader)	Seek(offset	int64,	whence	int)	(int64,	error)

Seek	implements	the	io.Seeker	interface.

func	(*Reader)	UnreadByte

func	(r	*Reader)	UnreadByte()	error

func	(*Reader)	UnreadRune

func	(r	*Reader)	UnreadRune()	error

Bugs

The	rule	Title	uses	for	word	boundaries	does	not	handle	Unicode	punctuation
properly.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Directory	/src/pkg/compress
Name 				 Synopsis
bzip2 				 Package	bzip2	implements	bzip2	decompression.

flate 				 Package	flate	implements	the	DEFLATE	compressed	data	format,described	in	RFC	1951.

gzip 				 Package	gzip	implements	reading	and	writing	of	gzip	formatcompressed	files,	as	specified	in	RFC	1952.

lzw 				

Package	lzw	implements	the	Lempel-Ziv-Welch	compressed	data
format,	described	in	T.	A.	Welch,	``A	Technique	for	High-
Performance	Data	Compression'',	Computer,	17(6)	(June	1984),	pp	8-
19.

zlib 				 Package	zlib	implements	reading	and	writing	of	zlib	formatcompressed	data,	as	specified	in	RFC	1950.

Need	more	packages?	Take	a	look	at	the	Go	Project	Dashboard.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://godashboard.appspot.com/
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	bzip2
import	"compress/bzip2"

Overview
Index

Overview	?

Overview	?

Package	bzip2	implements	bzip2	decompression.

Index

func	NewReader(r	io.Reader)	io.Reader
type	StructuralError
				func	(s	StructuralError)	Error()	string

Package	files

bit_reader.go	bzip2.go	huffman.go	move_to_front.go

func	NewReader
func	NewReader(r	io.Reader)	io.Reader

NewReader	returns	an	io.Reader	which	decompresses	bzip2	data	from	r.

type	StructuralError
type	StructuralError	string

A	StructuralError	is	returned	when	the	bzip2	data	is	found	to	be	syntactically
invalid.

func	(StructuralError)	Error

func	(s	StructuralError)	Error()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	flate
import	"compress/flate"

Overview
Index

Overview	?

Overview	?

Package	flate	implements	the	DEFLATE	compressed	data	format,	described	in
RFC	1951.	The	gzip	and	zlib	packages	implement	access	to	DEFLATE-based
file	formats.

Index

Constants
func	NewReader(r	io.Reader)	io.ReadCloser
func	NewReaderDict(r	io.Reader,	dict	[]byte)	io.ReadCloser
type	CorruptInputError
				func	(e	CorruptInputError)	Error()	string
type	InternalError
				func	(e	InternalError)	Error()	string
type	ReadError
				func	(e	*ReadError)	Error()	string
type	Reader
type	WriteError
				func	(e	*WriteError)	Error()	string
type	Writer
				func	NewWriter(w	io.Writer,	level	int)	(*Writer,	error)
				func	NewWriterDict(w	io.Writer,	level	int,	dict	[]byte)	(*Writer,	error)
				func	(w	*Writer)	Close()	error
				func	(w	*Writer)	Flush()	error
				func	(w	*Writer)	Write(data	[]byte)	(n	int,	err	error)

Package	files

deflate.go	huffman_bit_writer.go	huffman_code.go	inflate.go	reverse_bits.go	token.go

Constants
const	(

				NoCompression	=	0

				BestSpeed					=	1

				BestCompression				=	9

				DefaultCompression	=	-1

)

func	NewReader
func	NewReader(r	io.Reader)	io.ReadCloser

NewReader	returns	a	new	ReadCloser	that	can	be	used	to	read	the	uncompressed
version	of	r.	It	is	the	caller's	responsibility	to	call	Close	on	the	ReadCloser	when
finished	reading.

func	NewReaderDict
func	NewReaderDict(r	io.Reader,	dict	[]byte)	io.ReadCloser

NewReaderDict	is	like	NewReader	but	initializes	the	reader	with	a	preset
dictionary.	The	returned	Reader	behaves	as	if	the	uncompressed	data	stream
started	with	the	given	dictionary,	which	has	already	been	read.	NewReaderDict
is	typically	used	to	read	data	compressed	by	NewWriterDict.

type	CorruptInputError
type	CorruptInputError	int64

A	CorruptInputError	reports	the	presence	of	corrupt	input	at	a	given	offset.

func	(CorruptInputError)	Error

func	(e	CorruptInputError)	Error()	string

type	InternalError
type	InternalError	string

An	InternalError	reports	an	error	in	the	flate	code	itself.

func	(InternalError)	Error

func	(e	InternalError)	Error()	string

type	ReadError
type	ReadError	struct	{

				Offset	int64	//	byte	offset	where	error	occurred

				Err				error	//	error	returned	by	underlying	Read

}

A	ReadError	reports	an	error	encountered	while	reading	input.

func	(*ReadError)	Error

func	(e	*ReadError)	Error()	string

type	Reader
type	Reader	interface	{

				io.Reader

				ReadByte()	(c	byte,	err	error)

}

The	actual	read	interface	needed	by	NewReader.	If	the	passed	in	io.Reader	does
not	also	have	ReadByte,	the	NewReader	will	introduce	its	own	buffering.

type	WriteError
type	WriteError	struct	{

				Offset	int64	//	byte	offset	where	error	occurred

				Err				error	//	error	returned	by	underlying	Write

}

A	WriteError	reports	an	error	encountered	while	writing	output.

func	(*WriteError)	Error

func	(e	*WriteError)	Error()	string

type	Writer
type	Writer	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Writer	takes	data	written	to	it	and	writes	the	compressed	form	of	that	data	to
an	underlying	writer	(see	NewWriter).

func	NewWriter

func	NewWriter(w	io.Writer,	level	int)	(*Writer,	error)

NewWriter	returns	a	new	Writer	compressing	data	at	the	given	level.	Following
zlib,	levels	range	from	1	(BestSpeed)	to	9	(BestCompression);	higher	levels
typically	run	slower	but	compress	more.	Level	0	(NoCompression)	does	not
attempt	any	compression;	it	only	adds	the	necessary	DEFLATE	framing.	Level
-1	(DefaultCompression)	uses	the	default	compression	level.

If	level	is	in	the	range	[-1,	9]	then	the	error	returned	will	be	nil.	Otherwise	the
error	returned	will	be	non-nil.

func	NewWriterDict

func	NewWriterDict(w	io.Writer,	level	int,	dict	[]byte)	(*Writer,	error)

NewWriterDict	is	like	NewWriter	but	initializes	the	new	Writer	with	a	preset
dictionary.	The	returned	Writer	behaves	as	if	the	dictionary	had	been	written	to	it
without	producing	any	compressed	output.	The	compressed	data	written	to	w	can
only	be	decompressed	by	a	Reader	initialized	with	the	same	dictionary.

func	(*Writer)	Close

func	(w	*Writer)	Close()	error

Close	flushes	and	closes	the	writer.

func	(*Writer)	Flush

func	(w	*Writer)	Flush()	error

Flush	flushes	any	pending	compressed	data	to	the	underlying	writer.	It	is	useful
mainly	in	compressed	network	protocols,	to	ensure	that	a	remote	reader	has
enough	data	to	reconstruct	a	packet.	Flush	does	not	return	until	the	data	has	been
written.	If	the	underlying	writer	returns	an	error,	Flush	returns	that	error.

In	the	terminology	of	the	zlib	library,	Flush	is	equivalent	to	Z_SYNC_FLUSH.

func	(*Writer)	Write

func	(w	*Writer)	Write(data	[]byte)	(n	int,	err	error)

Write	writes	data	to	w,	which	will	eventually	write	the	compressed	form	of	data
to	its	underlying	writer.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	gzip
import	"compress/gzip"

Overview
Index

Overview	?

Overview	?

Package	gzip	implements	reading	and	writing	of	gzip	format	compressed	files,
as	specified	in	RFC	1952.

Index

Constants
Variables
type	Header
type	Reader
				func	NewReader(r	io.Reader)	(*Reader,	error)
				func	(z	*Reader)	Close()	error
				func	(z	*Reader)	Read(p	[]byte)	(n	int,	err	error)
type	Writer
				func	NewWriter(w	io.Writer)	*Writer
				func	NewWriterLevel(w	io.Writer,	level	int)	(*Writer,	error)
				func	(z	*Writer)	Close()	error
				func	(z	*Writer)	Write(p	[]byte)	(int,	error)

Package	files

gunzip.go	gzip.go

Constants
const	(

				NoCompression						=	flate.NoCompression

				BestSpeed										=	flate.BestSpeed

				BestCompression				=	flate.BestCompression

				DefaultCompression	=	flate.DefaultCompression

)

These	constants	are	copied	from	the	flate	package,	so	that	code	that	imports
"compress/gzip"	does	not	also	have	to	import	"compress/flate".

Variables
var	(

				//	ErrChecksum	is	returned	when	reading	GZIP	data	that	has	an	invalid	checksum.

				ErrChecksum	=	errors.New("gzip:	invalid	checksum")

				//	ErrHeader	is	returned	when	reading	GZIP	data	that	has	an	invalid	header.

				ErrHeader	=	errors.New("gzip:	invalid	header")

)

type	Header
type	Header	struct	{

				Comment	string				//	comment

				Extra			[]byte				//	"extra	data"

				ModTime	time.Time	//	modification	time

				Name				string				//	file	name

				OS						byte						//	operating	system	type

}

The	gzip	file	stores	a	header	giving	metadata	about	the	compressed	file.	That
header	is	exposed	as	the	fields	of	the	Writer	and	Reader	structs.

type	Reader
type	Reader	struct	{

				Header

				//	contains	filtered	or	unexported	fields

}

A	Reader	is	an	io.Reader	that	can	be	read	to	retrieve	uncompressed	data	from	a
gzip-format	compressed	file.

In	general,	a	gzip	file	can	be	a	concatenation	of	gzip	files,	each	with	its	own
header.	Reads	from	the	Reader	return	the	concatenation	of	the	uncompressed
data	of	each.	Only	the	first	header	is	recorded	in	the	Reader	fields.

Gzip	files	store	a	length	and	checksum	of	the	uncompressed	data.	The	Reader
will	return	a	ErrChecksum	when	Read	reaches	the	end	of	the	uncompressed	data
if	it	does	not	have	the	expected	length	or	checksum.	Clients	should	treat	data
returned	by	Read	as	tentative	until	they	receive	the	io.EOF	marking	the	end	of
the	data.

func	NewReader

func	NewReader(r	io.Reader)	(*Reader,	error)

NewReader	creates	a	new	Reader	reading	the	given	reader.	The	implementation
buffers	input	and	may	read	more	data	than	necessary	from	r.	It	is	the	caller's
responsibility	to	call	Close	on	the	Reader	when	done.

func	(*Reader)	Close

func	(z	*Reader)	Close()	error

Close	closes	the	Reader.	It	does	not	close	the	underlying	io.Reader.

func	(*Reader)	Read

func	(z	*Reader)	Read(p	[]byte)	(n	int,	err	error)

type	Writer
type	Writer	struct	{

				Header

				//	contains	filtered	or	unexported	fields

}

A	Writer	is	an	io.WriteCloser	that	satisfies	writes	by	compressing	data	written	to
its	wrapped	io.Writer.

func	NewWriter

func	NewWriter(w	io.Writer)	*Writer

NewWriter	creates	a	new	Writer	that	satisfies	writes	by	compressing	data	written
to	w.

It	is	the	caller's	responsibility	to	call	Close	on	the	WriteCloser	when	done.
Writes	may	be	buffered	and	not	flushed	until	Close.

Callers	that	wish	to	set	the	fields	in	Writer.Header	must	do	so	before	the	first	call
to	Write	or	Close.	The	Comment	and	Name	header	fields	are	UTF-8	strings	in
Go,	but	the	underlying	format	requires	NUL-terminated	ISO	8859-1	(Latin-1).
NUL	or	non-Latin-1	runes	in	those	strings	will	lead	to	an	error	on	Write.

func	NewWriterLevel

func	NewWriterLevel(w	io.Writer,	level	int)	(*Writer,	error)

NewWriterLevel	is	like	NewWriter	but	specifies	the	compression	level	instead
of	assuming	DefaultCompression.

The	compression	level	can	be	DefaultCompression,	NoCompression,	or	any
integer	value	between	BestSpeed	and	BestCompression	inclusive.	The	error
returned	will	be	nil	if	the	level	is	valid.

func	(*Writer)	Close

func	(z	*Writer)	Close()	error

Close	closes	the	Writer.	It	does	not	close	the	underlying	io.Writer.

func	(*Writer)	Write

func	(z	*Writer)	Write(p	[]byte)	(int,	error)

Write	writes	a	compressed	form	of	p	to	the	underlying	io.Writer.	The
compressed	bytes	are	not	necessarily	flushed	until	the	Writer	is	closed.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	lzw
import	"compress/lzw"

Overview
Index

Overview	?

Overview	?

Package	lzw	implements	the	Lempel-Ziv-Welch	compressed	data	format,
described	in	T.	A.	Welch,	“A	Technique	for	High-Performance	Data
Compression”,	Computer,	17(6)	(June	1984),	pp	8-19.

In	particular,	it	implements	LZW	as	used	by	the	GIF,	TIFF	and	PDF	file	formats,
which	means	variable-width	codes	up	to	12	bits	and	the	first	two	non-literal
codes	are	a	clear	code	and	an	EOF	code.

Index

func	NewReader(r	io.Reader,	order	Order,	litWidth	int)	io.ReadCloser
func	NewWriter(w	io.Writer,	order	Order,	litWidth	int)	io.WriteCloser
type	Order

Package	files

reader.go	writer.go

func	NewReader
func	NewReader(r	io.Reader,	order	Order,	litWidth	int)	io.ReadCloser

NewReader	creates	a	new	io.ReadCloser	that	satisfies	reads	by	decompressing
the	data	read	from	r.	It	is	the	caller's	responsibility	to	call	Close	on	the
ReadCloser	when	finished	reading.	The	number	of	bits	to	use	for	literal	codes,
litWidth,	must	be	in	the	range	[2,8]	and	is	typically	8.

func	NewWriter
func	NewWriter(w	io.Writer,	order	Order,	litWidth	int)	io.WriteCloser

NewWriter	creates	a	new	io.WriteCloser	that	satisfies	writes	by	compressing	the
data	and	writing	it	to	w.	It	is	the	caller's	responsibility	to	call	Close	on	the
WriteCloser	when	finished	writing.	The	number	of	bits	to	use	for	literal	codes,
litWidth,	must	be	in	the	range	[2,8]	and	is	typically	8.

type	Order
type	Order	int

Order	specifies	the	bit	ordering	in	an	LZW	data	stream.

const	(

				//	LSB	means	Least	Significant	Bits	first,	as	used	in	the	GIF	file	format.

				LSB	Order	=	iota

				//	MSB	means	Most	Significant	Bits	first,	as	used	in	the	TIFF	and	PDF

				//	file	formats.

				MSB

)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	zlib
import	"compress/zlib"

Overview
Index

Overview	?

Overview	?

Package	zlib	implements	reading	and	writing	of	zlib	format	compressed	data,	as
specified	in	RFC	1950.

The	implementation	provides	filters	that	uncompress	during	reading	and
compress	during	writing.	For	example,	to	write	compressed	data	to	a	buffer:

var	b	bytes.Buffer

w,	err	:=	zlib.NewWriter(&b)

w.Write([]byte("hello,	world\n"))

w.Close()

and	to	read	that	data	back:

r,	err	:=	zlib.NewReader(&b)

io.Copy(os.Stdout,	r)

r.Close()

Index

Constants
Variables
func	NewReader(r	io.Reader)	(io.ReadCloser,	error)
func	NewReaderDict(r	io.Reader,	dict	[]byte)	(io.ReadCloser,	error)
type	Writer
				func	NewWriter(w	io.Writer)	*Writer
				func	NewWriterLevel(w	io.Writer,	level	int)	(*Writer,	error)
				func	NewWriterLevelDict(w	io.Writer,	level	int,	dict	[]byte)	(*Writer,
error)
				func	(z	*Writer)	Close()	error
				func	(z	*Writer)	Flush()	error
				func	(z	*Writer)	Write(p	[]byte)	(n	int,	err	error)

Package	files

reader.go	writer.go

Constants
const	(

				NoCompression						=	flate.NoCompression

				BestSpeed										=	flate.BestSpeed

				BestCompression				=	flate.BestCompression

				DefaultCompression	=	flate.DefaultCompression

)

These	constants	are	copied	from	the	flate	package,	so	that	code	that	imports
"compress/zlib"	does	not	also	have	to	import	"compress/flate".

Variables
var	(

				//	ErrChecksum	is	returned	when	reading	ZLIB	data	that	has	an	invalid	checksum.

				ErrChecksum	=	errors.New("zlib:	invalid	checksum")

				//	ErrDictionary	is	returned	when	reading	ZLIB	data	that	has	an	invalid	dictionary.

				ErrDictionary	=	errors.New("zlib:	invalid	dictionary")

				//	ErrHeader	is	returned	when	reading	ZLIB	data	that	has	an	invalid	header.

				ErrHeader	=	errors.New("zlib:	invalid	header")

)

func	NewReader
func	NewReader(r	io.Reader)	(io.ReadCloser,	error)

NewReader	creates	a	new	io.ReadCloser	that	satisfies	reads	by	decompressing
data	read	from	r.	The	implementation	buffers	input	and	may	read	more	data	than
necessary	from	r.	It	is	the	caller's	responsibility	to	call	Close	on	the	ReadCloser
when	done.

func	NewReaderDict
func	NewReaderDict(r	io.Reader,	dict	[]byte)	(io.ReadCloser,	error)

NewReaderDict	is	like	NewReader	but	uses	a	preset	dictionary.	NewReaderDict
ignores	the	dictionary	if	the	compressed	data	does	not	refer	to	it.

type	Writer
type	Writer	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Writer	takes	data	written	to	it	and	writes	the	compressed	form	of	that	data	to
an	underlying	writer	(see	NewWriter).

func	NewWriter

func	NewWriter(w	io.Writer)	*Writer

NewWriter	creates	a	new	Writer	that	satisfies	writes	by	compressing	data	written
to	w.

It	is	the	caller's	responsibility	to	call	Close	on	the	WriteCloser	when	done.
Writes	may	be	buffered	and	not	flushed	until	Close.

func	NewWriterLevel

func	NewWriterLevel(w	io.Writer,	level	int)	(*Writer,	error)

NewWriterLevel	is	like	NewWriter	but	specifies	the	compression	level	instead
of	assuming	DefaultCompression.

The	compression	level	can	be	DefaultCompression,	NoCompression,	or	any
integer	value	between	BestSpeed	and	BestCompression	inclusive.	The	error
returned	will	be	nil	if	the	level	is	valid.

func	NewWriterLevelDict

func	NewWriterLevelDict(w	io.Writer,	level	int,	dict	[]byte)	(*Writer,	error)

NewWriterLevelDict	is	like	NewWriterLevel	but	specifies	a	dictionary	to
compress	with.

The	dictionary	may	be	nil.	If	not,	its	contents	should	not	be	modified	until	the
Writer	is	closed.

func	(*Writer)	Close

func	(z	*Writer)	Close()	error

Calling	Close	does	not	close	the	wrapped	io.Writer	originally	passed	to
NewWriter.

func	(*Writer)	Flush

func	(z	*Writer)	Flush()	error

Flush	flushes	the	Writer	to	its	underlying	io.Writer.

func	(*Writer)	Write

func	(z	*Writer)	Write(p	[]byte)	(n	int,	err	error)

Write	writes	a	compressed	form	of	p	to	the	underlying	io.Writer.	The
compressed	bytes	are	not	necessarily	flushed	until	the	Writer	is	closed	or
explicitly	flushed.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Directory	/src/pkg/container
Name 				 Synopsis

heap 				 Package	heap	provides	heap	operations	for	any	type	that	implementsheap.Interface.
list 				 Package	list	implements	a	doubly	linked	list.
ring 				 Package	ring	implements	operations	on	circular	lists.

Need	more	packages?	Take	a	look	at	the	Go	Project	Dashboard.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://godashboard.appspot.com/
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	heap
import	"container/heap"

Overview
Index
Examples

Overview	?

Overview	?

Package	heap	provides	heap	operations	for	any	type	that	implements
heap.Interface.	A	heap	is	a	tree	with	the	property	that	each	node	is	the	highest-
valued	node	in	its	subtree.

A	heap	is	a	common	way	to	implement	a	priority	queue.	To	build	a	priority
queue,	implement	the	Heap	interface	with	the	(negative)	priority	as	the	ordering
for	the	Less	method,	so	Push	adds	items	while	Pop	removes	the	highest-priority
item	from	the	queue.	The	Examples	include	such	an	implementation;	the	file
example_test.go	has	the	complete	source.

?	Example

?	Example

This	example	pushes	10	items	into	a	PriorityQueue	and	takes	them	out	in	order
of	priority.

Code:

//	This	example	demonstrates	a	priority	queue	built	using	the	heap	interface.

package	heap_test

import	(

				"container/heap"

				"fmt"

)

//	An	Item	is	something	we	manage	in	a	priority	queue.

type	Item	struct	{

				value				string	//	The	value	of	the	item;	arbitrary.

				priority	int				//	The	priority	of	the	item	in	the	queue.

				//	The	index	is	needed	by	changePriority	and	is	maintained	by	the	heap.Interface	methods.

				index	int	//	The	index	of	the	item	in	the	heap.

}

//	A	PriorityQueue	implements	heap.Interface	and	holds	Items.

type	PriorityQueue	[]*Item

func	(pq	PriorityQueue)	Len()	int	{	return	len(pq)	}

func	(pq	PriorityQueue)	Less(i,	j	int)	bool	{

				//	We	want	Pop	to	give	us	the	highest,	not	lowest,	priority	so	we	use	greater	than	here.

				return	pq[i].priority	>	pq[j].priority

}

func	(pq	PriorityQueue)	Swap(i,	j	int)	{

				pq[i],	pq[j]	=	pq[j],	pq[i]

				pq[i].index	=	i

				pq[j].index	=	j

}

func	(pq	*PriorityQueue)	Push(x	interface{})	{

				//	Push	and	Pop	use	pointer	receivers	because	they	modify	the	slice's	length,

				//	not	just	its	contents.

				//	To	simplify	indexing	expressions	in	these	methods,	we	save	a	copy	of	the

				//	slice	object.	We	could	instead	write	(*pq)[i].

				a	:=	*pq

				n	:=	len(a)

				a	=	a[0	:	n+1]

				item	:=	x.(*Item)

				item.index	=	n

				a[n]	=	item

				*pq	=	a

}

func	(pq	*PriorityQueue)	Pop()	interface{}	{

				a	:=	*pq

				n	:=	len(a)

				item	:=	a[n-1]

				item.index	=	-1	//	for	safety

				*pq	=	a[0	:	n-1]

				return	item

}

//	update	is	not	used	by	the	example	but	shows	how	to	take	the	top	item	from

//	the	queue,	update	its	priority	and	value,	and	put	it	back.

func	(pq	*PriorityQueue)	update(value	string,	priority	int)	{

				item	:=	heap.Pop(pq).(*Item)

				item.value	=	value

				item.priority	=	priority

				heap.Push(pq,	item)

}

//	changePriority	is	not	used	by	the	example	but	shows	how	to	change	the

//	priority	of	an	arbitrary	item.

func	(pq	*PriorityQueue)	changePriority(item	*Item,	priority	int)	{

				heap.Remove(pq,	item.index)

				item.priority	=	priority

				heap.Push(pq,	item)

}

//	This	example	pushes	10	items	into	a	PriorityQueue	and	takes	them	out	in

//	order	of	priority.

func	Example()	{

				const	nItem	=	10

				//	Random	priorities	for	the	items	(a	permutation	of	0..9,	times	11)).

				priorities	:=	[nItem]int{

								77,	22,	44,	55,	11,	88,	33,	99,	00,	66,

				}

				values	:=	[nItem]string{

								"zero",	"one",	"two",	"three",	"four",	"five",	"six",	"seven",	"eight",	"nine",

				}

				//	Create	a	priority	queue	and	put	some	items	in	it.

				pq	:=	make(PriorityQueue,	0,	nItem)

				for	i	:=	0;	i	<	cap(pq);	i++	{

								item	:=	&Item{

												value:				values[i],

												priority:	priorities[i],

								}

								heap.Push(&pq,	item)

				}

				//	Take	the	items	out;	should	arrive	in	decreasing	priority	order.

				//	For	example,	the	highest	priority	(99)	is	the	seventh	item,	so	output	starts	with	99:"seven".

				for	i	:=	0;	i	<	nItem;	i++	{

								item	:=	heap.Pop(&pq).(*Item)

								fmt.Printf("%.2d:%s	",	item.priority,	item.value)

				}

				//	Output:

				//	99:seven	88:five	77:zero	66:nine	55:three	44:two	33:six	22:one	11:four	00:eight

}

Index

func	Init(h	Interface)
func	Pop(h	Interface)	interface{}
func	Push(h	Interface,	x	interface{})
func	Remove(h	Interface,	i	int)	interface{}
type	Interface

Examples

Package

Package	files

heap.go

func	Init
func	Init(h	Interface)

A	heap	must	be	initialized	before	any	of	the	heap	operations	can	be	used.	Init	is
idempotent	with	respect	to	the	heap	invariants	and	may	be	called	whenever	the
heap	invariants	may	have	been	invalidated.	Its	complexity	is	O(n)	where	n	=
h.Len().

func	Pop
func	Pop(h	Interface)	interface{}

Pop	removes	the	minimum	element	(according	to	Less)	from	the	heap	and
returns	it.	The	complexity	is	O(log(n))	where	n	=	h.Len().	Same	as	Remove(h,
0).

func	Push
func	Push(h	Interface,	x	interface{})

Push	pushes	the	element	x	onto	the	heap.	The	complexity	is	O(log(n))	where	n	=
h.Len().

func	Remove
func	Remove(h	Interface,	i	int)	interface{}

Remove	removes	the	element	at	index	i	from	the	heap.	The	complexity	is
O(log(n))	where	n	=	h.Len().

type	Interface
type	Interface	interface	{

				sort.Interface

				Push(x	interface{})	//	add	x	as	element	Len()

				Pop()	interface{}			//	remove	and	return	element	Len()	-	1.

}

Any	type	that	implements	heap.Interface	may	be	used	as	a	min-heap	with	the
following	invariants	(established	after	Init	has	been	called	or	if	the	data	is	empty
or	sorted):

!h.Less(j,	i)	for	0	<=	i	<	h.Len()	and	j	=	2*i+1	or	2*i+2	and	j	<	h.Len()

Note	that	Push	and	Pop	in	this	interface	are	for	package	heap's	implementation
to	call.	To	add	and	remove	things	from	the	heap,	use	heap.Push	and	heap.Pop.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	list
import	"container/list"

Overview
Index

Overview	?

Overview	?

Package	list	implements	a	doubly	linked	list.

To	iterate	over	a	list	(where	l	is	a	*List):

for	e	:=	l.Front();	e	!=	nil;	e	=	e.Next()	{

	 //	do	something	with	e.Value

}

Index

type	Element
				func	(e	*Element)	Next()	*Element
				func	(e	*Element)	Prev()	*Element
type	List
				func	New()	*List
				func	(l	*List)	Back()	*Element
				func	(l	*List)	Front()	*Element
				func	(l	*List)	Init()	*List
				func	(l	*List)	InsertAfter(value	interface{},	mark	*Element)	*Element
				func	(l	*List)	InsertBefore(value	interface{},	mark	*Element)	*Element
				func	(l	*List)	Len()	int
				func	(l	*List)	MoveToBack(e	*Element)
				func	(l	*List)	MoveToFront(e	*Element)
				func	(l	*List)	PushBack(value	interface{})	*Element
				func	(l	*List)	PushBackList(ol	*List)
				func	(l	*List)	PushFront(value	interface{})	*Element
				func	(l	*List)	PushFrontList(ol	*List)
				func	(l	*List)	Remove(e	*Element)	interface{}

Package	files

list.go

type	Element
type	Element	struct	{

				//	The	contents	of	this	list	element.

				Value	interface{}

				//	contains	filtered	or	unexported	fields

}

Element	is	an	element	in	the	linked	list.

func	(*Element)	Next

func	(e	*Element)	Next()	*Element

Next	returns	the	next	list	element	or	nil.

func	(*Element)	Prev

func	(e	*Element)	Prev()	*Element

Prev	returns	the	previous	list	element	or	nil.

type	List
type	List	struct	{

				//	contains	filtered	or	unexported	fields

}

List	represents	a	doubly	linked	list.	The	zero	value	for	List	is	an	empty	list	ready
to	use.

func	New

func	New()	*List

New	returns	an	initialized	list.

func	(*List)	Back

func	(l	*List)	Back()	*Element

Back	returns	the	last	element	in	the	list.

func	(*List)	Front

func	(l	*List)	Front()	*Element

Front	returns	the	first	element	in	the	list.

func	(*List)	Init

func	(l	*List)	Init()	*List

Init	initializes	or	clears	a	List.

func	(*List)	InsertAfter

func	(l	*List)	InsertAfter(value	interface{},	mark	*Element)	*Element

InsertAfter	inserts	the	value	immediately	after	mark	and	returns	a	new	Element
containing	the	value.

func	(*List)	InsertBefore

func	(l	*List)	InsertBefore(value	interface{},	mark	*Element)	*Element

InsertBefore	inserts	the	value	immediately	before	mark	and	returns	a	new
Element	containing	the	value.

func	(*List)	Len

func	(l	*List)	Len()	int

Len	returns	the	number	of	elements	in	the	list.

func	(*List)	MoveToBack

func	(l	*List)	MoveToBack(e	*Element)

MoveToBack	moves	the	element	to	the	back	of	the	list.

func	(*List)	MoveToFront

func	(l	*List)	MoveToFront(e	*Element)

MoveToFront	moves	the	element	to	the	front	of	the	list.

func	(*List)	PushBack

func	(l	*List)	PushBack(value	interface{})	*Element

PushBack	inserts	the	value	at	the	back	of	the	list	and	returns	a	new	Element
containing	the	value.

func	(*List)	PushBackList

func	(l	*List)	PushBackList(ol	*List)

PushBackList	inserts	each	element	of	ol	at	the	back	of	the	list.

func	(*List)	PushFront

func	(l	*List)	PushFront(value	interface{})	*Element

PushFront	inserts	the	value	at	the	front	of	the	list	and	returns	a	new	Element
containing	the	value.

func	(*List)	PushFrontList

func	(l	*List)	PushFrontList(ol	*List)

PushFrontList	inserts	each	element	of	ol	at	the	front	of	the	list.	The	ordering	of
the	passed	list	is	preserved.

func	(*List)	Remove

func	(l	*List)	Remove(e	*Element)	interface{}

Remove	removes	the	element	from	the	list	and	returns	its	Value.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	ring
import	"container/ring"

Overview
Index

Overview	?

Overview	?

Package	ring	implements	operations	on	circular	lists.

Index

type	Ring
				func	New(n	int)	*Ring
				func	(r	*Ring)	Do(f	func(interface{}))
				func	(r	*Ring)	Len()	int
				func	(r	*Ring)	Link(s	*Ring)	*Ring
				func	(r	*Ring)	Move(n	int)	*Ring
				func	(r	*Ring)	Next()	*Ring
				func	(r	*Ring)	Prev()	*Ring
				func	(r	*Ring)	Unlink(n	int)	*Ring

Package	files

ring.go

type	Ring
type	Ring	struct	{

				Value	interface{}	//	for	use	by	client;	untouched	by	this	library

				//	contains	filtered	or	unexported	fields

}

A	Ring	is	an	element	of	a	circular	list,	or	ring.	Rings	do	not	have	a	beginning	or
end;	a	pointer	to	any	ring	element	serves	as	reference	to	the	entire	ring.	Empty
rings	are	represented	as	nil	Ring	pointers.	The	zero	value	for	a	Ring	is	a	one-
element	ring	with	a	nil	Value.

func	New

func	New(n	int)	*Ring

New	creates	a	ring	of	n	elements.

func	(*Ring)	Do

func	(r	*Ring)	Do(f	func(interface{}))

Do	calls	function	f	on	each	element	of	the	ring,	in	forward	order.	The	behavior
of	Do	is	undefined	if	f	changes	*r.

func	(*Ring)	Len

func	(r	*Ring)	Len()	int

Len	computes	the	number	of	elements	in	ring	r.	It	executes	in	time	proportional
to	the	number	of	elements.

func	(*Ring)	Link

func	(r	*Ring)	Link(s	*Ring)	*Ring

Link	connects	ring	r	with	with	ring	s	such	that	r.Next()	becomes	s	and	returns	the
original	value	for	r.Next().	r	must	not	be	empty.

If	r	and	s	point	to	the	same	ring,	linking	them	removes	the	elements	between	r
and	s	from	the	ring.	The	removed	elements	form	a	subring	and	the	result	is	a
reference	to	that	subring	(if	no	elements	were	removed,	the	result	is	still	the
original	value	for	r.Next(),	and	not	nil).

If	r	and	s	point	to	different	rings,	linking	them	creates	a	single	ring	with	the
elements	of	s	inserted	after	r.	The	result	points	to	the	element	following	the	last
element	of	s	after	insertion.

func	(*Ring)	Move

func	(r	*Ring)	Move(n	int)	*Ring

Move	moves	n	%	r.Len()	elements	backward	(n	<	0)	or	forward	(n	>=	0)	in	the
ring	and	returns	that	ring	element.	r	must	not	be	empty.

func	(*Ring)	Next

func	(r	*Ring)	Next()	*Ring

Next	returns	the	next	ring	element.	r	must	not	be	empty.

func	(*Ring)	Prev

func	(r	*Ring)	Prev()	*Ring

Prev	returns	the	previous	ring	element.	r	must	not	be	empty.

func	(*Ring)	Unlink

func	(r	*Ring)	Unlink(n	int)	*Ring

Unlink	removes	n	%	r.Len()	elements	from	the	ring	r,	starting	at	r.Next().	If	n	%
r.Len()	==	0,	r	remains	unchanged.	The	result	is	the	removed	subring.	r	must	not
be	empty.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	crypto
import	"crypto"

Overview
Index
Subdirectories

Overview	?

Overview	?

Package	crypto	collects	common	cryptographic	constants.

Index

func	RegisterHash(h	Hash,	f	func()	hash.Hash)
type	Hash
				func	(h	Hash)	Available()	bool
				func	(h	Hash)	New()	hash.Hash
				func	(h	Hash)	Size()	int
type	PrivateKey

Package	files

crypto.go

func	RegisterHash
func	RegisterHash(h	Hash,	f	func()	hash.Hash)

RegisterHash	registers	a	function	that	returns	a	new	instance	of	the	given	hash
function.	This	is	intended	to	be	called	from	the	init	function	in	packages	that
implement	hash	functions.

type	Hash
type	Hash	uint

Hash	identifies	a	cryptographic	hash	function	that	is	implemented	in	another
package.

const	(

				MD4							Hash	=	1	+	iota	//	import	code.google.com/p/go.crypto/md4

				MD5																							//	import	crypto/md5

				SHA1																						//	import	crypto/sha1

				SHA224																				//	import	crypto/sha256

				SHA256																				//	import	crypto/sha256

				SHA384																				//	import	crypto/sha512

				SHA512																				//	import	crypto/sha512

				MD5SHA1																			//	no	implementation;	MD5+SHA1	used	for	TLS	RSA

				RIPEMD160																	//	import	code.google.com/p/go.crypto/ripemd160

)

func	(Hash)	Available

func	(h	Hash)	Available()	bool

Available	reports	whether	the	given	hash	function	is	linked	into	the	binary.

func	(Hash)	New

func	(h	Hash)	New()	hash.Hash

New	returns	a	new	hash.Hash	calculating	the	given	hash	function.	New	panics	if
the	hash	function	is	not	linked	into	the	binary.

func	(Hash)	Size

func	(h	Hash)	Size()	int

Size	returns	the	length,	in	bytes,	of	a	digest	resulting	from	the	given	hash
function.	It	doesn't	require	that	the	hash	function	in	question	be	linked	into	the
program.

type	PrivateKey
type	PrivateKey	interface{}

PrivateKey	represents	a	private	key	using	an	unspecified	algorithm.

Subdirectories

Name 				 Synopsis

aes 				
Package	aes	implements	AES	encryption	(formerly	Rijndael),	as
defined	in	U.S.	Federal	Information	Processing	Standards
Publication	197.

cipher 				 Package	cipher	implements	standard	block	cipher	modes	that	can	bewrapped	around	low-level	block	cipher	implementations.

des 				
Package	des	implements	the	Data	Encryption	Standard	(DES)	and
the	Triple	Data	Encryption	Algorithm	(TDEA)	as	defined	in	U.S.
Federal	Information	Processing	Standards	Publication	46-3.

dsa 				 Package	dsa	implements	the	Digital	Signature	Algorithm,	as	definedin	FIPS	186-3.

ecdsa 				 Package	ecdsa	implements	the	Elliptic	Curve	Digital	SignatureAlgorithm,	as	defined	in	FIPS	186-3.

elliptic 				 Package	elliptic	implements	several	standard	elliptic	curves	overprime	fields.

hmac 				
Package	hmac	implements	the	Keyed-Hash	Message	Authentication
Code	(HMAC)	as	defined	in	U.S.	Federal	Information	Processing
Standards	Publication	198.

md5 				 Package	md5	implements	the	MD5	hash	algorithm	as	defined	in
RFC	1321.

rand 				 Package	rand	implements	a	cryptographically	secure	pseudorandomnumber	generator.

rc4 				 Package	rc4	implements	RC4	encryption,	as	defined	in	BruceSchneier's	Applied	Cryptography.
rsa 				 Package	rsa	implements	RSA	encryption	as	specified	in	PKCS#1.

sha1 				 Package	sha1	implements	the	SHA1	hash	algorithm	as	defined	inRFC	3174.

sha256 				 Package	sha256	implements	the	SHA224	and	SHA256	hashalgorithms	as	defined	in	FIPS	180-2.

sha512 				 Package	sha512	implements	the	SHA384	and	SHA512	hashalgorithms	as	defined	in	FIPS	180-2.
Package	subtle	implements	functions	that	are	often	useful	in

subtle 				 cryptographic	code	but	require	careful	thought	to	use	correctly.

tls 				 Package	tls	partially	implements	TLS	1.0,	as	specified	in	RFC	2246.
x509 				 Package	x509	parses	X.509-encoded	keys	and	certificates.

					pkix 				 Package	pkix	contains	shared,	low	level	structures	used	for	ASN.1parsing	and	serialization	of	X.509	certificates,	CRL	and	OCSP.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	aes
import	"crypto/aes"

Overview
Index

Overview	?

Overview	?

Package	aes	implements	AES	encryption	(formerly	Rijndael),	as	defined	in	U.S.
Federal	Information	Processing	Standards	Publication	197.

Index

Constants
func	NewCipher(key	[]byte)	(cipher.Block,	error)
type	KeySizeError
				func	(k	KeySizeError)	Error()	string

Package	files

block.go	cipher.go	const.go

Constants
const	BlockSize	=	16

The	AES	block	size	in	bytes.

func	NewCipher
func	NewCipher(key	[]byte)	(cipher.Block,	error)

NewCipher	creates	and	returns	a	new	cipher.Block.	The	key	argument	should	be
the	AES	key,	either	16,	24,	or	32	bytes	to	select	AES-128,	AES-192,	or	AES-
256.

type	KeySizeError
type	KeySizeError	int

func	(KeySizeError)	Error

func	(k	KeySizeError)	Error()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	cipher
import	"crypto/cipher"

Overview
Index

Overview	?

Overview	?

Package	cipher	implements	standard	block	cipher	modes	that	can	be	wrapped
around	low-level	block	cipher	implementations.	See
http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html	and	NIST
Special	Publication	800-38A.

http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html

Index

type	Block
type	BlockMode
				func	NewCBCDecrypter(b	Block,	iv	[]byte)	BlockMode
				func	NewCBCEncrypter(b	Block,	iv	[]byte)	BlockMode
type	Stream
				func	NewCFBDecrypter(block	Block,	iv	[]byte)	Stream
				func	NewCFBEncrypter(block	Block,	iv	[]byte)	Stream
				func	NewCTR(block	Block,	iv	[]byte)	Stream
				func	NewOFB(b	Block,	iv	[]byte)	Stream
type	StreamReader
				func	(r	StreamReader)	Read(dst	[]byte)	(n	int,	err	error)
type	StreamWriter
				func	(w	StreamWriter)	Close()	error
				func	(w	StreamWriter)	Write(src	[]byte)	(n	int,	err	error)

Package	files

cbc.go	cfb.go	cipher.go	ctr.go	io.go	ofb.go

type	Block
type	Block	interface	{

				//	BlockSize	returns	the	cipher's	block	size.

				BlockSize()	int

				//	Encrypt	encrypts	the	first	block	in	src	into	dst.

				//	Dst	and	src	may	point	at	the	same	memory.

				Encrypt(dst,	src	[]byte)

				//	Decrypt	decrypts	the	first	block	in	src	into	dst.

				//	Dst	and	src	may	point	at	the	same	memory.

				Decrypt(dst,	src	[]byte)

}

A	Block	represents	an	implementation	of	block	cipher	using	a	given	key.	It
provides	the	capability	to	encrypt	or	decrypt	individual	blocks.	The	mode
implementations	extend	that	capability	to	streams	of	blocks.

type	BlockMode
type	BlockMode	interface	{

				//	BlockSize	returns	the	mode's	block	size.

				BlockSize()	int

				//	CryptBlocks	encrypts	or	decrypts	a	number	of	blocks.	The	length	of

				//	src	must	be	a	multiple	of	the	block	size.	Dst	and	src	may	point	to

				//	the	same	memory.

				CryptBlocks(dst,	src	[]byte)

}

A	BlockMode	represents	a	block	cipher	running	in	a	block-based	mode	(CBC,
ECB	etc).

func	NewCBCDecrypter

func	NewCBCDecrypter(b	Block,	iv	[]byte)	BlockMode

NewCBCDecrypter	returns	a	BlockMode	which	decrypts	in	cipher	block
chaining	mode,	using	the	given	Block.	The	length	of	iv	must	be	the	same	as	the
Block's	block	size	and	must	match	the	iv	used	to	encrypt	the	data.

func	NewCBCEncrypter

func	NewCBCEncrypter(b	Block,	iv	[]byte)	BlockMode

NewCBCEncrypter	returns	a	BlockMode	which	encrypts	in	cipher	block
chaining	mode,	using	the	given	Block.	The	length	of	iv	must	be	the	same	as	the
Block's	block	size.

type	Stream
type	Stream	interface	{

				//	XORKeyStream	XORs	each	byte	in	the	given	slice	with	a	byte	from	the

				//	cipher's	key	stream.	Dst	and	src	may	point	to	the	same	memory.

				XORKeyStream(dst,	src	[]byte)

}

A	Stream	represents	a	stream	cipher.

func	NewCFBDecrypter

func	NewCFBDecrypter(block	Block,	iv	[]byte)	Stream

NewCFBDecrypter	returns	a	Stream	which	decrypts	with	cipher	feedback	mode,
using	the	given	Block.	The	iv	must	be	the	same	length	as	the	Block's	block	size.

func	NewCFBEncrypter

func	NewCFBEncrypter(block	Block,	iv	[]byte)	Stream

NewCFBEncrypter	returns	a	Stream	which	encrypts	with	cipher	feedback	mode,
using	the	given	Block.	The	iv	must	be	the	same	length	as	the	Block's	block	size.

func	NewCTR

func	NewCTR(block	Block,	iv	[]byte)	Stream

NewCTR	returns	a	Stream	which	encrypts/decrypts	using	the	given	Block	in
counter	mode.	The	length	of	iv	must	be	the	same	as	the	Block's	block	size.

func	NewOFB

func	NewOFB(b	Block,	iv	[]byte)	Stream

NewOFB	returns	a	Stream	that	encrypts	or	decrypts	using	the	block	cipher	b	in
output	feedback	mode.	The	initialization	vector	iv's	length	must	be	equal	to	b's
block	size.

type	StreamReader
type	StreamReader	struct	{

				S	Stream

				R	io.Reader

}

StreamReader	wraps	a	Stream	into	an	io.Reader.	It	calls	XORKeyStream	to
process	each	slice	of	data	which	passes	through.

func	(StreamReader)	Read

func	(r	StreamReader)	Read(dst	[]byte)	(n	int,	err	error)

type	StreamWriter
type	StreamWriter	struct	{

				S			Stream

				W			io.Writer

				Err	error

}

StreamWriter	wraps	a	Stream	into	an	io.Writer.	It	calls	XORKeyStream	to
process	each	slice	of	data	which	passes	through.	If	any	Write	call	returns	short
then	the	StreamWriter	is	out	of	sync	and	must	be	discarded.

func	(StreamWriter)	Close

func	(w	StreamWriter)	Close()	error

func	(StreamWriter)	Write

func	(w	StreamWriter)	Write(src	[]byte)	(n	int,	err	error)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	des
import	"crypto/des"

Overview
Index

Overview	?

Overview	?

Package	des	implements	the	Data	Encryption	Standard	(DES)	and	the	Triple
Data	Encryption	Algorithm	(TDEA)	as	defined	in	U.S.	Federal	Information
Processing	Standards	Publication	46-3.

Index

Constants
func	NewCipher(key	[]byte)	(cipher.Block,	error)
func	NewTripleDESCipher(key	[]byte)	(cipher.Block,	error)
type	KeySizeError
				func	(k	KeySizeError)	Error()	string

Package	files

block.go	cipher.go	const.go

Constants
const	BlockSize	=	8

The	DES	block	size	in	bytes.

func	NewCipher
func	NewCipher(key	[]byte)	(cipher.Block,	error)

NewCipher	creates	and	returns	a	new	cipher.Block.

func	NewTripleDESCipher
func	NewTripleDESCipher(key	[]byte)	(cipher.Block,	error)

NewTripleDESCipher	creates	and	returns	a	new	cipher.Block.

type	KeySizeError
type	KeySizeError	int

func	(KeySizeError)	Error

func	(k	KeySizeError)	Error()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	dsa
import	"crypto/dsa"

Overview
Index

Overview	?

Overview	?

Package	dsa	implements	the	Digital	Signature	Algorithm,	as	defined	in	FIPS
186-3.

Index

Variables
func	GenerateKey(priv	*PrivateKey,	rand	io.Reader)	error
func	GenerateParameters(params	*Parameters,	rand	io.Reader,	sizes
ParameterSizes)	(err	error)
func	Sign(rand	io.Reader,	priv	*PrivateKey,	hash	[]byte)	(r,	s	*big.Int,	err
error)
func	Verify(pub	*PublicKey,	hash	[]byte,	r,	s	*big.Int)	bool
type	ParameterSizes
type	Parameters
type	PrivateKey
type	PublicKey

Package	files

dsa.go

Variables
var	ErrInvalidPublicKey	=	errors.New("crypto/dsa:	invalid	public	key")

ErrInvalidPublicKey	results	when	a	public	key	is	not	usable	by	this	code.	FIPS	is
quite	strict	about	the	format	of	DSA	keys,	but	other	code	may	be	less	so.	Thus,
when	using	keys	which	may	have	been	generated	by	other	code,	this	error	must
be	handled.

func	GenerateKey
func	GenerateKey(priv	*PrivateKey,	rand	io.Reader)	error

GenerateKey	generates	a	public&private	key	pair.	The	Parameters	of	the
PrivateKey	must	already	be	valid	(see	GenerateParameters).

func	GenerateParameters
func	GenerateParameters(params	*Parameters,	rand	io.Reader,	sizes	ParameterSizes)	(err	error)

GenerateParameters	puts	a	random,	valid	set	of	DSA	parameters	into	params.
This	function	takes	many	seconds,	even	on	fast	machines.

func	Sign
func	Sign(rand	io.Reader,	priv	*PrivateKey,	hash	[]byte)	(r,	s	*big.Int,	err	error)

Sign	signs	an	arbitrary	length	hash	(which	should	be	the	result	of	hashing	a
larger	message)	using	the	private	key,	priv.	It	returns	the	signature	as	a	pair	of
integers.	The	security	of	the	private	key	depends	on	the	entropy	of	rand.

Note	that	FIPS	186-3	section	4.6	specifies	that	the	hash	should	be	truncated	to
the	byte-length	of	the	subgroup.	This	function	does	not	perform	that	truncation
itself.

func	Verify
func	Verify(pub	*PublicKey,	hash	[]byte,	r,	s	*big.Int)	bool

Verify	verifies	the	signature	in	r,	s	of	hash	using	the	public	key,	pub.	It	reports
whether	the	signature	is	valid.

Note	that	FIPS	186-3	section	4.6	specifies	that	the	hash	should	be	truncated	to
the	byte-length	of	the	subgroup.	This	function	does	not	perform	that	truncation
itself.

type	ParameterSizes
type	ParameterSizes	int

ParameterSizes	is	a	enumeration	of	the	acceptable	bit	lengths	of	the	primes	in	a
set	of	DSA	parameters.	See	FIPS	186-3,	section	4.2.

const	(

				L1024N160	ParameterSizes	=	iota

				L2048N224

				L2048N256

				L3072N256

)

type	Parameters
type	Parameters	struct	{

				P,	Q,	G	*big.Int

}

Parameters	represents	the	domain	parameters	for	a	key.	These	parameters	can	be
shared	across	many	keys.	The	bit	length	of	Q	must	be	a	multiple	of	8.

type	PrivateKey
type	PrivateKey	struct	{

				PublicKey

				X	*big.Int

}

PrivateKey	represents	a	DSA	private	key.

type	PublicKey
type	PublicKey	struct	{

				Parameters

				Y	*big.Int

}

PublicKey	represents	a	DSA	public	key.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	ecdsa
import	"crypto/ecdsa"

Overview
Index

Overview	?

Overview	?

Package	ecdsa	implements	the	Elliptic	Curve	Digital	Signature	Algorithm,	as
defined	in	FIPS	186-3.

Index

func	Sign(rand	io.Reader,	priv	*PrivateKey,	hash	[]byte)	(r,	s	*big.Int,	err
error)
func	Verify(pub	*PublicKey,	hash	[]byte,	r,	s	*big.Int)	bool
type	PrivateKey
				func	GenerateKey(c	elliptic.Curve,	rand	io.Reader)	(priv	*PrivateKey,	err
error)
type	PublicKey

Package	files

ecdsa.go

func	Sign
func	Sign(rand	io.Reader,	priv	*PrivateKey,	hash	[]byte)	(r,	s	*big.Int,	err	error)

Sign	signs	an	arbitrary	length	hash	(which	should	be	the	result	of	hashing	a
larger	message)	using	the	private	key,	priv.	It	returns	the	signature	as	a	pair	of
integers.	The	security	of	the	private	key	depends	on	the	entropy	of	rand.

func	Verify
func	Verify(pub	*PublicKey,	hash	[]byte,	r,	s	*big.Int)	bool

Verify	verifies	the	signature	in	r,	s	of	hash	using	the	public	key,	pub.	It	returns
true	iff	the	signature	is	valid.

type	PrivateKey
type	PrivateKey	struct	{

				PublicKey

				D	*big.Int

}

PrivateKey	represents	a	ECDSA	private	key.

func	GenerateKey

func	GenerateKey(c	elliptic.Curve,	rand	io.Reader)	(priv	*PrivateKey,	err	error)

GenerateKey	generates	a	public&private	key	pair.

type	PublicKey
type	PublicKey	struct	{

				elliptic.Curve

				X,	Y	*big.Int

}

PublicKey	represents	an	ECDSA	public	key.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	elliptic
import	"crypto/elliptic"

Overview
Index

Overview	?

Overview	?

Package	elliptic	implements	several	standard	elliptic	curves	over	prime	fields.

Index

func	GenerateKey(curve	Curve,	rand	io.Reader)	(priv	[]byte,	x,	y	*big.Int,
err	error)
func	Marshal(curve	Curve,	x,	y	*big.Int)	[]byte
func	Unmarshal(curve	Curve,	data	[]byte)	(x,	y	*big.Int)
type	Curve
				func	P224()	Curve
				func	P256()	Curve
				func	P384()	Curve
				func	P521()	Curve
type	CurveParams
				func	(curve	*CurveParams)	Add(x1,	y1,	x2,	y2	*big.Int)	(*big.Int,
*big.Int)
				func	(curve	*CurveParams)	Double(x1,	y1	*big.Int)	(*big.Int,	*big.Int)
				func	(curve	*CurveParams)	IsOnCurve(x,	y	*big.Int)	bool
				func	(curve	*CurveParams)	Params()	*CurveParams
				func	(curve	*CurveParams)	ScalarBaseMult(k	[]byte)	(*big.Int,	*big.Int)
				func	(curve	*CurveParams)	ScalarMult(Bx,	By	*big.Int,	k	[]byte)
(*big.Int,	*big.Int)

Package	files

elliptic.go	p224.go

func	GenerateKey
func	GenerateKey(curve	Curve,	rand	io.Reader)	(priv	[]byte,	x,	y	*big.Int,	err	error)

GenerateKey	returns	a	public/private	key	pair.	The	private	key	is	generated	using
the	given	reader,	which	must	return	random	data.

func	Marshal
func	Marshal(curve	Curve,	x,	y	*big.Int)	[]byte

Marshal	converts	a	point	into	the	form	specified	in	section	4.3.6	of	ANSI	X9.62.

func	Unmarshal
func	Unmarshal(curve	Curve,	data	[]byte)	(x,	y	*big.Int)

Unmarshal	converts	a	point,	serialized	by	Marshal,	into	an	x,	y	pair.	On	error,	x
=	nil.

type	Curve
type	Curve	interface	{

				//	Params	returns	the	parameters	for	the	curve.

				Params()	*CurveParams

				//	IsOnCurve	returns	true	if	the	given	(x,y)	lies	on	the	curve.

				IsOnCurve(x,	y	*big.Int)	bool

				//	Add	returns	the	sum	of	(x1,y1)	and	(x2,y2)

				Add(x1,	y1,	x2,	y2	*big.Int)	(x,	y	*big.Int)

				//	Double	returns	2*(x,y)

				Double(x1,	y1	*big.Int)	(x,	y	*big.Int)

				//	ScalarMult	returns	k*(Bx,By)	where	k	is	a	number	in	big-endian	form.

				ScalarMult(x1,	y1	*big.Int,	scalar	[]byte)	(x,	y	*big.Int)

				//	ScalarBaseMult	returns	k*G,	where	G	is	the	base	point	of	the	group	and	k

				//	is	an	integer	in	big-endian	form.

				ScalarBaseMult(scalar	[]byte)	(x,	y	*big.Int)

}

A	Curve	represents	a	short-form	Weierstrass	curve	with	a=-3.	See
http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html

func	P224

func	P224()	Curve

P224	returns	a	Curve	which	implements	P-224	(see	FIPS	186-3,	section	D.2.2)

func	P256

func	P256()	Curve

P256	returns	a	Curve	which	implements	P-256	(see	FIPS	186-3,	section	D.2.3)

func	P384

func	P384()	Curve

P384	returns	a	Curve	which	implements	P-384	(see	FIPS	186-3,	section	D.2.4)

func	P521

http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html

func	P521()	Curve

P256	returns	a	Curve	which	implements	P-521	(see	FIPS	186-3,	section	D.2.5)

type	CurveParams
type	CurveParams	struct	{

				P							*big.Int	//	the	order	of	the	underlying	field

				N							*big.Int	//	the	order	of	the	base	point

				B							*big.Int	//	the	constant	of	the	curve	equation

				Gx,	Gy		*big.Int	//	(x,y)	of	the	base	point

				BitSize	int						//	the	size	of	the	underlying	field

}

CurveParams	contains	the	parameters	of	an	elliptic	curve	and	also	provides	a
generic,	non-constant	time	implementation	of	Curve.

func	(*CurveParams)	Add

func	(curve	*CurveParams)	Add(x1,	y1,	x2,	y2	*big.Int)	(*big.Int,	*big.Int)

func	(*CurveParams)	Double

func	(curve	*CurveParams)	Double(x1,	y1	*big.Int)	(*big.Int,	*big.Int)

func	(*CurveParams)	IsOnCurve

func	(curve	*CurveParams)	IsOnCurve(x,	y	*big.Int)	bool

func	(*CurveParams)	Params

func	(curve	*CurveParams)	Params()	*CurveParams

func	(*CurveParams)	ScalarBaseMult

func	(curve	*CurveParams)	ScalarBaseMult(k	[]byte)	(*big.Int,	*big.Int)

func	(*CurveParams)	ScalarMult

func	(curve	*CurveParams)	ScalarMult(Bx,	By	*big.Int,	k	[]byte)	(*big.Int,	*big.Int)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.

http://code.google.com/policies.html#restrictions

Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Package	hmac
import	"crypto/hmac"

Overview
Index

Overview	?

Overview	?

Package	hmac	implements	the	Keyed-Hash	Message	Authentication	Code
(HMAC)	as	defined	in	U.S.	Federal	Information	Processing	Standards
Publication	198.	An	HMAC	is	a	cryptographic	hash	that	uses	a	key	to	sign	a
message.	The	receiver	verifies	the	hash	by	recomputing	it	using	the	same	key.

Index

func	New(h	func()	hash.Hash,	key	[]byte)	hash.Hash

Package	files

hmac.go

func	New
func	New(h	func()	hash.Hash,	key	[]byte)	hash.Hash

New	returns	a	new	HMAC	hash	using	the	given	hash.Hash	type	and	key.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	md5
import	"crypto/md5"

Overview
Index
Examples

Overview	?

Overview	?

Package	md5	implements	the	MD5	hash	algorithm	as	defined	in	RFC	1321.

Index

Constants
func	New()	hash.Hash

Examples

New

Package	files

md5.go	md5block.go

Constants
const	BlockSize	=	64

The	blocksize	of	MD5	in	bytes.

const	Size	=	16

The	size	of	an	MD5	checksum	in	bytes.

func	New
func	New()	hash.Hash

New	returns	a	new	hash.Hash	computing	the	MD5	checksum.

?	Example

?	Example

Code:

h	:=	md5.New()

io.WriteString(h,	"The	fog	is	getting	thicker!")

io.WriteString(h,	"And	Leon's	getting	laaarger!")

fmt.Printf("%x",	h.Sum(nil))

Output:

e2c569be17396eca2a2e3c11578123ed

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	rand
import	"crypto/rand"

Overview
Index

Overview	?

Overview	?

Package	rand	implements	a	cryptographically	secure	pseudorandom	number
generator.

Index

Variables
func	Int(rand	io.Reader,	max	*big.Int)	(n	*big.Int,	err	error)
func	Prime(rand	io.Reader,	bits	int)	(p	*big.Int,	err	error)
func	Read(b	[]byte)	(n	int,	err	error)

Package	files

rand.go	rand_unix.go	util.go

Variables
var	Reader	io.Reader

Reader	is	a	global,	shared	instance	of	a	cryptographically	strong	pseudo-random
generator.	On	Unix-like	systems,	Reader	reads	from	/dev/urandom.	On	Windows
systems,	Reader	uses	the	CryptGenRandom	API.

func	Int
func	Int(rand	io.Reader,	max	*big.Int)	(n	*big.Int,	err	error)

Int	returns	a	uniform	random	value	in	[0,	max).

func	Prime
func	Prime(rand	io.Reader,	bits	int)	(p	*big.Int,	err	error)

Prime	returns	a	number,	p,	of	the	given	size,	such	that	p	is	prime	with	high
probability.

func	Read
func	Read(b	[]byte)	(n	int,	err	error)

Read	is	a	helper	function	that	calls	Reader.Read.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	rc4
import	"crypto/rc4"

Overview
Index

Overview	?

Overview	?

Package	rc4	implements	RC4	encryption,	as	defined	in	Bruce	Schneier's	Applied
Cryptography.

Index

type	Cipher
				func	NewCipher(key	[]byte)	(*Cipher,	error)
				func	(c	*Cipher)	Reset()
				func	(c	*Cipher)	XORKeyStream(dst,	src	[]byte)
type	KeySizeError
				func	(k	KeySizeError)	Error()	string
Bugs

Package	files

rc4.go

type	Cipher
type	Cipher	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Cipher	is	an	instance	of	RC4	using	a	particular	key.

func	NewCipher

func	NewCipher(key	[]byte)	(*Cipher,	error)

NewCipher	creates	and	returns	a	new	Cipher.	The	key	argument	should	be	the
RC4	key,	at	least	1	byte	and	at	most	256	bytes.

func	(*Cipher)	Reset

func	(c	*Cipher)	Reset()

Reset	zeros	the	key	data	so	that	it	will	no	longer	appear	in	the	process's	memory.

func	(*Cipher)	XORKeyStream

func	(c	*Cipher)	XORKeyStream(dst,	src	[]byte)

XORKeyStream	sets	dst	to	the	result	of	XORing	src	with	the	key	stream.	Dst
and	src	may	be	the	same	slice	but	otherwise	should	not	overlap.

type	KeySizeError
type	KeySizeError	int

func	(KeySizeError)	Error

func	(k	KeySizeError)	Error()	string

Bugs

RC4	is	in	common	use	but	has	design	weaknesses	that	make	it	a	poor	choice	for
new	protocols.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	rsa
import	"crypto/rsa"

Overview
Index

Overview	?

Overview	?

Package	rsa	implements	RSA	encryption	as	specified	in	PKCS#1.

Index

Variables
func	DecryptOAEP(hash	hash.Hash,	random	io.Reader,	priv	*PrivateKey,
ciphertext	[]byte,	label	[]byte)	(msg	[]byte,	err	error)
func	DecryptPKCS1v15(rand	io.Reader,	priv	*PrivateKey,	ciphertext
[]byte)	(out	[]byte,	err	error)
func	DecryptPKCS1v15SessionKey(rand	io.Reader,	priv	*PrivateKey,
ciphertext	[]byte,	key	[]byte)	(err	error)
func	EncryptOAEP(hash	hash.Hash,	random	io.Reader,	pub	*PublicKey,
msg	[]byte,	label	[]byte)	(out	[]byte,	err	error)
func	EncryptPKCS1v15(rand	io.Reader,	pub	*PublicKey,	msg	[]byte)	(out
[]byte,	err	error)
func	SignPKCS1v15(rand	io.Reader,	priv	*PrivateKey,	hash	crypto.Hash,
hashed	[]byte)	(s	[]byte,	err	error)
func	VerifyPKCS1v15(pub	*PublicKey,	hash	crypto.Hash,	hashed	[]byte,
sig	[]byte)	(err	error)
type	CRTValue
type	PrecomputedValues
type	PrivateKey
				func	GenerateKey(random	io.Reader,	bits	int)	(priv	*PrivateKey,	err
error)
				func	GenerateMultiPrimeKey(random	io.Reader,	nprimes	int,	bits	int)
(priv	*PrivateKey,	err	error)
				func	(priv	*PrivateKey)	Precompute()
				func	(priv	*PrivateKey)	Validate()	error
type	PublicKey

Package	files

pkcs1v15.go	rsa.go

Variables
var	ErrDecryption	=	errors.New("crypto/rsa:	decryption	error")

ErrDecryption	represents	a	failure	to	decrypt	a	message.	It	is	deliberately	vague
to	avoid	adaptive	attacks.

var	ErrMessageTooLong	=	errors.New("crypto/rsa:	message	too	long	for	RSA	public	key	size")

ErrMessageTooLong	is	returned	when	attempting	to	encrypt	a	message	which	is
too	large	for	the	size	of	the	public	key.

var	ErrVerification	=	errors.New("crypto/rsa:	verification	error")

ErrVerification	represents	a	failure	to	verify	a	signature.	It	is	deliberately	vague
to	avoid	adaptive	attacks.

func	DecryptOAEP
func	DecryptOAEP(hash	hash.Hash,	random	io.Reader,	priv	*PrivateKey,	ciphertext	[]byte,	label	[]byte)	(msg	[]byte,	err	error)

DecryptOAEP	decrypts	ciphertext	using	RSA-OAEP.	If	random	!=	nil,
DecryptOAEP	uses	RSA	blinding	to	avoid	timing	side-channel	attacks.

func	DecryptPKCS1v15
func	DecryptPKCS1v15(rand	io.Reader,	priv	*PrivateKey,	ciphertext	[]byte)	(out	[]byte,	err	error)

DecryptPKCS1v15	decrypts	a	plaintext	using	RSA	and	the	padding	scheme	from
PKCS#1	v1.5.	If	rand	!=	nil,	it	uses	RSA	blinding	to	avoid	timing	side-channel
attacks.

func	DecryptPKCS1v15SessionKey
func	DecryptPKCS1v15SessionKey(rand	io.Reader,	priv	*PrivateKey,	ciphertext	[]byte,	key	[]byte)	(err	error)

DecryptPKCS1v15SessionKey	decrypts	a	session	key	using	RSA	and	the
padding	scheme	from	PKCS#1	v1.5.	If	rand	!=	nil,	it	uses	RSA	blinding	to	avoid
timing	side-channel	attacks.	It	returns	an	error	if	the	ciphertext	is	the	wrong
length	or	if	the	ciphertext	is	greater	than	the	public	modulus.	Otherwise,	no	error
is	returned.	If	the	padding	is	valid,	the	resulting	plaintext	message	is	copied	into
key.	Otherwise,	key	is	unchanged.	These	alternatives	occur	in	constant	time.	It	is
intended	that	the	user	of	this	function	generate	a	random	session	key	beforehand
and	continue	the	protocol	with	the	resulting	value.	This	will	remove	any
possibility	that	an	attacker	can	learn	any	information	about	the	plaintext.	See
“Chosen	Ciphertext	Attacks	Against	Protocols	Based	on	the	RSA	Encryption
Standard	PKCS	#1”,	Daniel	Bleichenbacher,	Advances	in	Cryptology	(Crypto
'98).

func	EncryptOAEP
func	EncryptOAEP(hash	hash.Hash,	random	io.Reader,	pub	*PublicKey,	msg	[]byte,	label	[]byte)	(out	[]byte,	err	error)

EncryptOAEP	encrypts	the	given	message	with	RSA-OAEP.	The	message	must
be	no	longer	than	the	length	of	the	public	modulus	less	twice	the	hash	length
plus	2.

func	EncryptPKCS1v15
func	EncryptPKCS1v15(rand	io.Reader,	pub	*PublicKey,	msg	[]byte)	(out	[]byte,	err	error)

EncryptPKCS1v15	encrypts	the	given	message	with	RSA	and	the	padding
scheme	from	PKCS#1	v1.5.	The	message	must	be	no	longer	than	the	length	of
the	public	modulus	minus	11	bytes.	WARNING:	use	of	this	function	to	encrypt
plaintexts	other	than	session	keys	is	dangerous.	Use	RSA	OAEP	in	new
protocols.

func	SignPKCS1v15
func	SignPKCS1v15(rand	io.Reader,	priv	*PrivateKey,	hash	crypto.Hash,	hashed	[]byte)	(s	[]byte,	err	error)

SignPKCS1v15	calculates	the	signature	of	hashed	using	RSASSA-PKCS1-
V1_5-SIGN	from	RSA	PKCS#1	v1.5.	Note	that	hashed	must	be	the	result	of
hashing	the	input	message	using	the	given	hash	function.

func	VerifyPKCS1v15
func	VerifyPKCS1v15(pub	*PublicKey,	hash	crypto.Hash,	hashed	[]byte,	sig	[]byte)	(err	error)

VerifyPKCS1v15	verifies	an	RSA	PKCS#1	v1.5	signature.	hashed	is	the	result	of
hashing	the	input	message	using	the	given	hash	function	and	sig	is	the	signature.
A	valid	signature	is	indicated	by	returning	a	nil	error.

type	CRTValue
type	CRTValue	struct	{

				Exp			*big.Int	//	D	mod	(prime-1).

				Coeff	*big.Int	//	RCoeff		1	mod	Prime.

				R					*big.Int	//	product	of	primes	prior	to	this	(inc	p	and	q).

}

CRTValue	contains	the	precomputed	chinese	remainder	theorem	values.

type	PrecomputedValues
type	PrecomputedValues	struct	{

				Dp,	Dq	*big.Int	//	D	mod	(P-1)	(or	mod	Q-1)	

				Qinv			*big.Int

				//	CRTValues	is	used	for	the	3rd	and	subsequent	primes.	Due	to	a

				//	historical	accident,	the	CRT	for	the	first	two	primes	is	handled

				//	differently	in	PKCS#1	and	interoperability	is	sufficiently

				//	important	that	we	mirror	this.

				CRTValues	[]CRTValue

}

type	PrivateKey
type	PrivateKey	struct	{

				PublicKey										//	public	part.

				D									*big.Int	//	private	exponent

				Primes				[]*big.Int

				//	Precomputed	contains	precomputed	values	that	speed	up	private

				//	operations,	if	available.

				Precomputed	PrecomputedValues

}

A	PrivateKey	represents	an	RSA	key

func	GenerateKey

func	GenerateKey(random	io.Reader,	bits	int)	(priv	*PrivateKey,	err	error)

GenerateKey	generates	an	RSA	keypair	of	the	given	bit	size.

func	GenerateMultiPrimeKey

func	GenerateMultiPrimeKey(random	io.Reader,	nprimes	int,	bits	int)	(priv	*PrivateKey,	err	error)

GenerateMultiPrimeKey	generates	a	multi-prime	RSA	keypair	of	the	given	bit
size,	as	suggested	in	[1].	Although	the	public	keys	are	compatible	(actually,
indistinguishable)	from	the	2-prime	case,	the	private	keys	are	not.	Thus	it	may
not	be	possible	to	export	multi-prime	private	keys	in	certain	formats	or	to
subsequently	import	them	into	other	code.

Table	1	in	[2]	suggests	maximum	numbers	of	primes	for	a	given	size.

[1]	US	patent	4405829	(1972,	expired)	[2]
http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf

func	(*PrivateKey)	Precompute

func	(priv	*PrivateKey)	Precompute()

Precompute	performs	some	calculations	that	speed	up	private	key	operations	in

http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf

the	future.

func	(*PrivateKey)	Validate

func	(priv	*PrivateKey)	Validate()	error

Validate	performs	basic	sanity	checks	on	the	key.	It	returns	nil	if	the	key	is	valid,
or	else	an	error	describing	a	problem.

type	PublicKey
type	PublicKey	struct	{

				N	*big.Int	//	modulus

				E	int						//	public	exponent

}

A	PublicKey	represents	the	public	part	of	an	RSA	key.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	sha1
import	"crypto/sha1"

Overview
Index
Examples

Overview	?

Overview	?

Package	sha1	implements	the	SHA1	hash	algorithm	as	defined	in	RFC	3174.

Index

Constants
func	New()	hash.Hash

Examples

New

Package	files

sha1.go	sha1block.go

Constants
const	BlockSize	=	64

The	blocksize	of	SHA1	in	bytes.

const	Size	=	20

The	size	of	a	SHA1	checksum	in	bytes.

func	New
func	New()	hash.Hash

New	returns	a	new	hash.Hash	computing	the	SHA1	checksum.

?	Example

?	Example

Code:

h	:=	sha1.New()

io.WriteString(h,	"His	money	is	twice	tainted:	'taint	yours	and	'taint	mine.")

fmt.Printf("%	x",	h.Sum(nil))

Output:

59	7f	6a	54	00	10	f9	4c	15	d7	18	06	a9	9a	2c	87	10	e7	47	bd

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	sha256
import	"crypto/sha256"

Overview
Index

Overview	?

Overview	?

Package	sha256	implements	the	SHA224	and	SHA256	hash	algorithms	as
defined	in	FIPS	180-2.

Index

Constants
func	New()	hash.Hash
func	New224()	hash.Hash

Package	files

sha256.go	sha256block.go

Constants
const	BlockSize	=	64

The	blocksize	of	SHA256	and	SHA224	in	bytes.

const	Size	=	32

The	size	of	a	SHA256	checksum	in	bytes.

const	Size224	=	28

The	size	of	a	SHA224	checksum	in	bytes.

func	New
func	New()	hash.Hash

New	returns	a	new	hash.Hash	computing	the	SHA256	checksum.

func	New224
func	New224()	hash.Hash

New224	returns	a	new	hash.Hash	computing	the	SHA224	checksum.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	sha512
import	"crypto/sha512"

Overview
Index

Overview	?

Overview	?

Package	sha512	implements	the	SHA384	and	SHA512	hash	algorithms	as
defined	in	FIPS	180-2.

Index

Constants
func	New()	hash.Hash
func	New384()	hash.Hash

Package	files

sha512.go	sha512block.go

Constants
const	BlockSize	=	128

The	blocksize	of	SHA512	and	SHA384	in	bytes.

const	Size	=	64

The	size	of	a	SHA512	checksum	in	bytes.

const	Size384	=	48

The	size	of	a	SHA384	checksum	in	bytes.

func	New
func	New()	hash.Hash

New	returns	a	new	hash.Hash	computing	the	SHA512	checksum.

func	New384
func	New384()	hash.Hash

New384	returns	a	new	hash.Hash	computing	the	SHA384	checksum.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	subtle
import	"crypto/subtle"

Overview
Index

Overview	?

Overview	?

Package	subtle	implements	functions	that	are	often	useful	in	cryptographic	code
but	require	careful	thought	to	use	correctly.

Index

func	ConstantTimeByteEq(x,	y	uint8)	int
func	ConstantTimeCompare(x,	y	[]byte)	int
func	ConstantTimeCopy(v	int,	x,	y	[]byte)
func	ConstantTimeEq(x,	y	int32)	int
func	ConstantTimeSelect(v,	x,	y	int)	int

Package	files

constant_time.go

func	ConstantTimeByteEq
func	ConstantTimeByteEq(x,	y	uint8)	int

ConstantTimeByteEq	returns	1	if	x	==	y	and	0	otherwise.

func	ConstantTimeCompare
func	ConstantTimeCompare(x,	y	[]byte)	int

ConstantTimeCompare	returns	1	iff	the	two	equal	length	slices,	x	and	y,	have
equal	contents.	The	time	taken	is	a	function	of	the	length	of	the	slices	and	is
independent	of	the	contents.

func	ConstantTimeCopy
func	ConstantTimeCopy(v	int,	x,	y	[]byte)

ConstantTimeCopy	copies	the	contents	of	y	into	x	iff	v	==	1.	If	v	==	0,	x	is	left
unchanged.	Its	behavior	is	undefined	if	v	takes	any	other	value.

func	ConstantTimeEq
func	ConstantTimeEq(x,	y	int32)	int

ConstantTimeEq	returns	1	if	x	==	y	and	0	otherwise.

func	ConstantTimeSelect
func	ConstantTimeSelect(v,	x,	y	int)	int

ConstantTimeSelect	returns	x	if	v	is	1	and	y	if	v	is	0.	Its	behavior	is	undefined	if
v	takes	any	other	value.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	tls
import	"crypto/tls"

Overview
Index

Overview	?

Overview	?

Package	tls	partially	implements	TLS	1.0,	as	specified	in	RFC	2246.

Index

Constants
func	Listen(network,	laddr	string,	config	*Config)	(net.Listener,	error)
func	NewListener(inner	net.Listener,	config	*Config)	net.Listener
type	Certificate
				func	LoadX509KeyPair(certFile,	keyFile	string)	(cert	Certificate,	err
error)
				func	X509KeyPair(certPEMBlock,	keyPEMBlock	[]byte)	(cert
Certificate,	err	error)
type	ClientAuthType
type	Config
				func	(c	*Config)	BuildNameToCertificate()
type	Conn
				func	Client(conn	net.Conn,	config	*Config)	*Conn
				func	Dial(network,	addr	string,	config	*Config)	(*Conn,	error)
				func	Server(conn	net.Conn,	config	*Config)	*Conn
				func	(c	*Conn)	Close()	error
				func	(c	*Conn)	ConnectionState()	ConnectionState
				func	(c	*Conn)	Handshake()	error
				func	(c	*Conn)	LocalAddr()	net.Addr
				func	(c	*Conn)	OCSPResponse()	[]byte
				func	(c	*Conn)	Read(b	[]byte)	(n	int,	err	error)
				func	(c	*Conn)	RemoteAddr()	net.Addr
				func	(c	*Conn)	SetDeadline(t	time.Time)	error
				func	(c	*Conn)	SetReadDeadline(t	time.Time)	error
				func	(c	*Conn)	SetWriteDeadline(t	time.Time)	error
				func	(c	*Conn)	VerifyHostname(host	string)	error
				func	(c	*Conn)	Write(b	[]byte)	(int,	error)
type	ConnectionState

Package	files

alert.go	cipher_suites.go	common.go	conn.go	handshake_client.go	handshake_messages.go
handshake_server.go	key_agreement.go	prf.go	tls.go

Constants
const	(

				TLS_RSA_WITH_RC4_128_SHA												uint16	=	0x0005

				TLS_RSA_WITH_3DES_EDE_CBC_SHA							uint16	=	0x000a

				TLS_RSA_WITH_AES_128_CBC_SHA								uint16	=	0x002f

				TLS_ECDHE_RSA_WITH_RC4_128_SHA						uint16	=	0xc011

				TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA	uint16	=	0xc012

				TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA		uint16	=	0xc013

)

A	list	of	the	possible	cipher	suite	ids.	Taken	from
http://www.iana.org/assignments/tls-parameters/tls-parameters.xml

http://www.iana.org/assignments/tls-parameters/tls-parameters.xml

func	Listen
func	Listen(network,	laddr	string,	config	*Config)	(net.Listener,	error)

Listen	creates	a	TLS	listener	accepting	connections	on	the	given	network
address	using	net.Listen.	The	configuration	config	must	be	non-nil	and	must
have	at	least	one	certificate.

func	NewListener
func	NewListener(inner	net.Listener,	config	*Config)	net.Listener

NewListener	creates	a	Listener	which	accepts	connections	from	an	inner
Listener	and	wraps	each	connection	with	Server.	The	configuration	config	must
be	non-nil	and	must	have	at	least	one	certificate.

type	Certificate
type	Certificate	struct	{

				Certificate	[][]byte

				PrivateKey		crypto.PrivateKey	//	supported	types:	*rsa.PrivateKey

				//	OCSPStaple	contains	an	optional	OCSP	response	which	will	be	served

				//	to	clients	that	request	it.

				OCSPStaple	[]byte

				//	Leaf	is	the	parsed	form	of	the	leaf	certificate,	which	may	be

				//	initialized	using	x509.ParseCertificate	to	reduce	per-handshake

				//	processing	for	TLS	clients	doing	client	authentication.	If	nil,	the

				//	leaf	certificate	will	be	parsed	as	needed.

				Leaf	*x509.Certificate

}

A	Certificate	is	a	chain	of	one	or	more	certificates,	leaf	first.

func	LoadX509KeyPair

func	LoadX509KeyPair(certFile,	keyFile	string)	(cert	Certificate,	err	error)

LoadX509KeyPair	reads	and	parses	a	public/private	key	pair	from	a	pair	of	files.
The	files	must	contain	PEM	encoded	data.

func	X509KeyPair

func	X509KeyPair(certPEMBlock,	keyPEMBlock	[]byte)	(cert	Certificate,	err	error)

X509KeyPair	parses	a	public/private	key	pair	from	a	pair	of	PEM	encoded	data.

type	ClientAuthType
type	ClientAuthType	int

ClientAuthType	declares	the	policy	the	server	will	follow	for	TLS	Client
Authentication.

const	(

				NoClientCert	ClientAuthType	=	iota

				RequestClientCert

				RequireAnyClientCert

				VerifyClientCertIfGiven

				RequireAndVerifyClientCert

)

type	Config
type	Config	struct	{

				//	Rand	provides	the	source	of	entropy	for	nonces	and	RSA	blinding.

				//	If	Rand	is	nil,	TLS	uses	the	cryptographic	random	reader	in	package

				//	crypto/rand.

				Rand	io.Reader

				//	Time	returns	the	current	time	as	the	number	of	seconds	since	the	epoch.

				//	If	Time	is	nil,	TLS	uses	time.Now.

				Time	func()	time.Time

				//	Certificates	contains	one	or	more	certificate	chains

				//	to	present	to	the	other	side	of	the	connection.

				//	Server	configurations	must	include	at	least	one	certificate.

				Certificates	[]Certificate

				//	NameToCertificate	maps	from	a	certificate	name	to	an	element	of

				//	Certificates.	Note	that	a	certificate	name	can	be	of	the	form

				//	'*.example.com'	and	so	doesn't	have	to	be	a	domain	name	as	such.

				//	See	Config.BuildNameToCertificate

				//	The	nil	value	causes	the	first	element	of	Certificates	to	be	used

				//	for	all	connections.

				NameToCertificate	map[string]*Certificate

				//	RootCAs	defines	the	set	of	root	certificate	authorities

				//	that	clients	use	when	verifying	server	certificates.

				//	If	RootCAs	is	nil,	TLS	uses	the	host's	root	CA	set.

				RootCAs	*x509.CertPool

				//	NextProtos	is	a	list	of	supported,	application	level	protocols.

				NextProtos	[]string

				//	ServerName	is	included	in	the	client's	handshake	to	support	virtual

				//	hosting.

				ServerName	string

				//	ClientAuth	determines	the	server's	policy	for

				//	TLS	Client	Authentication.	The	default	is	NoClientCert.

				ClientAuth	ClientAuthType

				//	ClientCAs	defines	the	set	of	root	certificate	authorities

				//	that	servers	use	if	required	to	verify	a	client	certificate

				//	by	the	policy	in	ClientAuth.

				ClientCAs	*x509.CertPool

				//	InsecureSkipVerify	controls	whether	a	client	verifies	the

				//	server's	certificate	chain	and	host	name.

				//	If	InsecureSkipVerify	is	true,	TLS	accepts	any	certificate

				//	presented	by	the	server	and	any	host	name	in	that	certificate.

				//	In	this	mode,	TLS	is	susceptible	to	man-in-the-middle	attacks.

				//	This	should	be	used	only	for	testing.

				InsecureSkipVerify	bool

				//	CipherSuites	is	a	list	of	supported	cipher	suites.	If	CipherSuites

				//	is	nil,	TLS	uses	a	list	of	suites	supported	by	the	implementation.

				CipherSuites	[]uint16

}

A	Config	structure	is	used	to	configure	a	TLS	client	or	server.	After	one	has	been
passed	to	a	TLS	function	it	must	not	be	modified.

func	(*Config)	BuildNameToCertificate

func	(c	*Config)	BuildNameToCertificate()

BuildNameToCertificate	parses	c.Certificates	and	builds	c.NameToCertificate
from	the	CommonName	and	SubjectAlternateName	fields	of	each	of	the	leaf
certificates.

type	Conn
type	Conn	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Conn	represents	a	secured	connection.	It	implements	the	net.Conn	interface.

func	Client

func	Client(conn	net.Conn,	config	*Config)	*Conn

Client	returns	a	new	TLS	client	side	connection	using	conn	as	the	underlying
transport.	Client	interprets	a	nil	configuration	as	equivalent	to	the	zero
configuration;	see	the	documentation	of	Config	for	the	defaults.

func	Dial

func	Dial(network,	addr	string,	config	*Config)	(*Conn,	error)

Dial	connects	to	the	given	network	address	using	net.Dial	and	then	initiates	a
TLS	handshake,	returning	the	resulting	TLS	connection.	Dial	interprets	a	nil
configuration	as	equivalent	to	the	zero	configuration;	see	the	documentation	of
Config	for	the	defaults.

func	Server

func	Server(conn	net.Conn,	config	*Config)	*Conn

Server	returns	a	new	TLS	server	side	connection	using	conn	as	the	underlying
transport.	The	configuration	config	must	be	non-nil	and	must	have	at	least	one
certificate.

func	(*Conn)	Close

func	(c	*Conn)	Close()	error

Close	closes	the	connection.

func	(*Conn)	ConnectionState

func	(c	*Conn)	ConnectionState()	ConnectionState

ConnectionState	returns	basic	TLS	details	about	the	connection.

func	(*Conn)	Handshake

func	(c	*Conn)	Handshake()	error

Handshake	runs	the	client	or	server	handshake	protocol	if	it	has	not	yet	been	run.
Most	uses	of	this	package	need	not	call	Handshake	explicitly:	the	first	Read	or
Write	will	call	it	automatically.

func	(*Conn)	LocalAddr

func	(c	*Conn)	LocalAddr()	net.Addr

LocalAddr	returns	the	local	network	address.

func	(*Conn)	OCSPResponse

func	(c	*Conn)	OCSPResponse()	[]byte

OCSPResponse	returns	the	stapled	OCSP	response	from	the	TLS	server,	if	any.
(Only	valid	for	client	connections.)

func	(*Conn)	Read

func	(c	*Conn)	Read(b	[]byte)	(n	int,	err	error)

Read	can	be	made	to	time	out	and	return	a	net.Error	with	Timeout()	==	true	after
a	fixed	time	limit;	see	SetDeadline	and	SetReadDeadline.

func	(*Conn)	RemoteAddr

func	(c	*Conn)	RemoteAddr()	net.Addr

RemoteAddr	returns	the	remote	network	address.

func	(*Conn)	SetDeadline

func	(c	*Conn)	SetDeadline(t	time.Time)	error

SetDeadline	sets	the	read	and	write	deadlines	associated	with	the	connection.	A
zero	value	for	t	means	Read	and	Write	will	not	time	out.	After	a	Write	has	timed
out,	the	TLS	state	is	corrupt	and	all	future	writes	will	return	the	same	error.

func	(*Conn)	SetReadDeadline

func	(c	*Conn)	SetReadDeadline(t	time.Time)	error

SetReadDeadline	sets	the	read	deadline	on	the	underlying	connection.	A	zero
value	for	t	means	Read	will	not	time	out.

func	(*Conn)	SetWriteDeadline

func	(c	*Conn)	SetWriteDeadline(t	time.Time)	error

SetWriteDeadline	sets	the	write	deadline	on	the	underlying	conneciton.	A	zero
value	for	t	means	Write	will	not	time	out.	After	a	Write	has	timed	out,	the	TLS
state	is	corrupt	and	all	future	writes	will	return	the	same	error.

func	(*Conn)	VerifyHostname

func	(c	*Conn)	VerifyHostname(host	string)	error

VerifyHostname	checks	that	the	peer	certificate	chain	is	valid	for	connecting	to
host.	If	so,	it	returns	nil;	if	not,	it	returns	an	error	describing	the	problem.

func	(*Conn)	Write

func	(c	*Conn)	Write(b	[]byte)	(int,	error)

Write	writes	data	to	the	connection.

type	ConnectionState
type	ConnectionState	struct	{

				HandshakeComplete										bool

				CipherSuite																uint16

				NegotiatedProtocol									string

				NegotiatedProtocolIsMutual	bool

				//	ServerName	contains	the	server	name	indicated	by	the	client,	if	any.

				//	(Only	valid	for	server	connections.)

				ServerName	string

				//	the	certificate	chain	that	was	presented	by	the	other	side

				PeerCertificates	[]*x509.Certificate

				//	the	verified	certificate	chains	built	from	PeerCertificates.

				VerifiedChains	[][]*x509.Certificate

}

ConnectionState	records	basic	TLS	details	about	the	connection.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	x509
import	"crypto/x509"

Overview
Index
Subdirectories

Overview	?

Overview	?

Package	x509	parses	X.509-encoded	keys	and	certificates.

Index

Variables
func	CreateCertificate(rand	io.Reader,	template,	parent	*Certificate,	pub
interface{},	priv	interface{})	(cert	[]byte,	err	error)
func	MarshalPKCS1PrivateKey(key	*rsa.PrivateKey)	[]byte
func	MarshalPKIXPublicKey(pub	interface{})	([]byte,	error)
func	ParseCRL(crlBytes	[]byte)	(certList	*pkix.CertificateList,	err	error)
func	ParseCertificates(asn1Data	[]byte)	([]*Certificate,	error)
func	ParseDERCRL(derBytes	[]byte)	(certList	*pkix.CertificateList,	err
error)
func	ParsePKCS1PrivateKey(der	[]byte)	(key	*rsa.PrivateKey,	err	error)
func	ParsePKCS8PrivateKey(der	[]byte)	(key	interface{},	err	error)
func	ParsePKIXPublicKey(derBytes	[]byte)	(pub	interface{},	err	error)
type	CertPool
				func	NewCertPool()	*CertPool
				func	(s	*CertPool)	AddCert(cert	*Certificate)
				func	(s	*CertPool)	AppendCertsFromPEM(pemCerts	[]byte)	(ok	bool)
				func	(s	*CertPool)	Subjects()	(res	[][]byte)
type	Certificate
				func	ParseCertificate(asn1Data	[]byte)	(*Certificate,	error)
				func	(c	*Certificate)	CheckCRLSignature(crl	*pkix.CertificateList)	(err
error)
				func	(c	*Certificate)	CheckSignature(algo	SignatureAlgorithm,	signed,
signature	[]byte)	(err	error)
				func	(c	*Certificate)	CheckSignatureFrom(parent	*Certificate)	(err	error)
				func	(c	*Certificate)	CreateCRL(rand	io.Reader,	priv	interface{},
revokedCerts	[]pkix.RevokedCertificate,	now,	expiry	time.Time)	(crlBytes
[]byte,	err	error)
				func	(c	*Certificate)	Equal(other	*Certificate)	bool
				func	(c	*Certificate)	Verify(opts	VerifyOptions)	(chains	[][]*Certificate,
err	error)
				func	(c	*Certificate)	VerifyHostname(h	string)	error
type	CertificateInvalidError
				func	(e	CertificateInvalidError)	Error()	string
type	ConstraintViolationError
				func	(ConstraintViolationError)	Error()	string

type	ExtKeyUsage
type	HostnameError
				func	(h	HostnameError)	Error()	string
type	InvalidReason
type	KeyUsage
type	PublicKeyAlgorithm
type	SignatureAlgorithm
type	UnhandledCriticalExtension
				func	(h	UnhandledCriticalExtension)	Error()	string
type	UnknownAuthorityError
				func	(e	UnknownAuthorityError)	Error()	string
type	VerifyOptions

Package	files

cert_pool.go	pkcs1.go	pkcs8.go	root.go	root_unix.go	verify.go	x509.go

Variables
var	ErrUnsupportedAlgorithm	=	errors.New("crypto/x509:	cannot	verify	signature:	algorithm	unimplemented")

ErrUnsupportedAlgorithm	results	from	attempting	to	perform	an	operation	that
involves	algorithms	that	are	not	currently	implemented.

func	CreateCertificate
func	CreateCertificate(rand	io.Reader,	template,	parent	*Certificate,	pub	interface{},	priv	interface{})	(cert	[]byte,	err	error)

CreateCertificate	creates	a	new	certificate	based	on	a	template.	The	following
members	of	template	are	used:	SerialNumber,	Subject,	NotBefore,	NotAfter,
KeyUsage,	BasicConstraintsValid,	IsCA,	MaxPathLen,	SubjectKeyId,
DNSNames,	PermittedDNSDomainsCritical,	PermittedDNSDomains.

The	certificate	is	signed	by	parent.	If	parent	is	equal	to	template	then	the
certificate	is	self-signed.	The	parameter	pub	is	the	public	key	of	the	signee	and
priv	is	the	private	key	of	the	signer.

The	returned	slice	is	the	certificate	in	DER	encoding.

The	only	supported	key	type	is	RSA	(*rsa.PublicKey	for	pub,	*rsa.PrivateKey
for	priv).

func	MarshalPKCS1PrivateKey
func	MarshalPKCS1PrivateKey(key	*rsa.PrivateKey)	[]byte

MarshalPKCS1PrivateKey	converts	a	private	key	to	ASN.1	DER	encoded	form.

func	MarshalPKIXPublicKey
func	MarshalPKIXPublicKey(pub	interface{})	([]byte,	error)

MarshalPKIXPublicKey	serialises	a	public	key	to	DER-encoded	PKIX	format.

func	ParseCRL
func	ParseCRL(crlBytes	[]byte)	(certList	*pkix.CertificateList,	err	error)

ParseCRL	parses	a	CRL	from	the	given	bytes.	It's	often	the	case	that	PEM
encoded	CRLs	will	appear	where	they	should	be	DER	encoded,	so	this	function
will	transparently	handle	PEM	encoding	as	long	as	there	isn't	any	leading
garbage.

func	ParseCertificates
func	ParseCertificates(asn1Data	[]byte)	([]*Certificate,	error)

ParseCertificates	parses	one	or	more	certificates	from	the	given	ASN.1	DER
data.	The	certificates	must	be	concatenated	with	no	intermediate	padding.

func	ParseDERCRL
func	ParseDERCRL(derBytes	[]byte)	(certList	*pkix.CertificateList,	err	error)

ParseDERCRL	parses	a	DER	encoded	CRL	from	the	given	bytes.

func	ParsePKCS1PrivateKey
func	ParsePKCS1PrivateKey(der	[]byte)	(key	*rsa.PrivateKey,	err	error)

ParsePKCS1PrivateKey	returns	an	RSA	private	key	from	its	ASN.1	PKCS#1
DER	encoded	form.

func	ParsePKCS8PrivateKey
func	ParsePKCS8PrivateKey(der	[]byte)	(key	interface{},	err	error)

ParsePKCS8PrivateKey	parses	an	unencrypted,	PKCS#8	private	key.	See
http://www.rsa.com/rsalabs/node.asp?id=2130

http://www.rsa.com/rsalabs/node.asp?id=2130

func	ParsePKIXPublicKey
func	ParsePKIXPublicKey(derBytes	[]byte)	(pub	interface{},	err	error)

ParsePKIXPublicKey	parses	a	DER	encoded	public	key.	These	values	are
typically	found	in	PEM	blocks	with	"BEGIN	PUBLIC	KEY".

type	CertPool
type	CertPool	struct	{

				//	contains	filtered	or	unexported	fields

}

CertPool	is	a	set	of	certificates.

func	NewCertPool

func	NewCertPool()	*CertPool

NewCertPool	returns	a	new,	empty	CertPool.

func	(*CertPool)	AddCert

func	(s	*CertPool)	AddCert(cert	*Certificate)

AddCert	adds	a	certificate	to	a	pool.

func	(*CertPool)	AppendCertsFromPEM

func	(s	*CertPool)	AppendCertsFromPEM(pemCerts	[]byte)	(ok	bool)

AppendCertsFromPEM	attempts	to	parse	a	series	of	PEM	encoded	certificates.	It
appends	any	certificates	found	to	s	and	returns	true	if	any	certificates	were
successfully	parsed.

On	many	Linux	systems,	/etc/ssl/cert.pem	will	contain	the	system	wide	set	of
root	CAs	in	a	format	suitable	for	this	function.

func	(*CertPool)	Subjects

func	(s	*CertPool)	Subjects()	(res	[][]byte)

Subjects	returns	a	list	of	the	DER-encoded	subjects	of	all	of	the	certificates	in
the	pool.

type	Certificate
type	Certificate	struct	{

				Raw																					[]byte	//	Complete	ASN.1	DER	content	(certificate,	signature	algorithm	and	signature).

				RawTBSCertificate							[]byte	//	Certificate	part	of	raw	ASN.1	DER	content.

				RawSubjectPublicKeyInfo	[]byte	//	DER	encoded	SubjectPublicKeyInfo.

				RawSubject														[]byte	//	DER	encoded	Subject

				RawIssuer															[]byte	//	DER	encoded	Issuer

				Signature										[]byte

				SignatureAlgorithm	SignatureAlgorithm

				PublicKeyAlgorithm	PublicKeyAlgorithm

				PublicKey										interface{}

				Version													int

				SerialNumber								*big.Int

				Issuer														pkix.Name

				Subject													pkix.Name

				NotBefore,	NotAfter	time.Time	//	Validity	bounds.

				KeyUsage												KeyUsage

				ExtKeyUsage								[]ExtKeyUsage											//	Sequence	of	extended	key	usages.

				UnknownExtKeyUsage	[]asn1.ObjectIdentifier	//	Encountered	extended	key	usages	unknown	to	this	package.

				BasicConstraintsValid	bool	//	if	true	then	the	next	two	fields	are	valid.

				IsCA																		bool

				MaxPathLen												int

				SubjectKeyId			[]byte

				AuthorityKeyId	[]byte

				//	Subject	Alternate	Name	values

				DNSNames							[]string

				EmailAddresses	[]string

				//	Name	constraints

				PermittedDNSDomainsCritical	bool	//	if	true	then	the	name	constraints	are	marked	critical.

				PermittedDNSDomains									[]string

				PolicyIdentifiers	[]asn1.ObjectIdentifier

}

A	Certificate	represents	an	X.509	certificate.

func	ParseCertificate

func	ParseCertificate(asn1Data	[]byte)	(*Certificate,	error)

ParseCertificate	parses	a	single	certificate	from	the	given	ASN.1	DER	data.

func	(*Certificate)	CheckCRLSignature

func	(c	*Certificate)	CheckCRLSignature(crl	*pkix.CertificateList)	(err	error)

CheckCRLSignature	checks	that	the	signature	in	crl	is	from	c.

func	(*Certificate)	CheckSignature

func	(c	*Certificate)	CheckSignature(algo	SignatureAlgorithm,	signed,	signature	[]byte)	(err	error)

CheckSignature	verifies	that	signature	is	a	valid	signature	over	signed	from	c's
public	key.

func	(*Certificate)	CheckSignatureFrom

func	(c	*Certificate)	CheckSignatureFrom(parent	*Certificate)	(err	error)

CheckSignatureFrom	verifies	that	the	signature	on	c	is	a	valid	signature	from
parent.

func	(*Certificate)	CreateCRL

func	(c	*Certificate)	CreateCRL(rand	io.Reader,	priv	interface{},	revokedCerts	[]pkix.RevokedCertificate,	now,	expiry	time.Time)	(crlBytes	[]byte,	err	error)

CreateCRL	returns	a	DER	encoded	CRL,	signed	by	this	Certificate,	that	contains
the	given	list	of	revoked	certificates.

The	only	supported	key	type	is	RSA	(*rsa.PrivateKey	for	priv).

func	(*Certificate)	Equal

func	(c	*Certificate)	Equal(other	*Certificate)	bool

func	(*Certificate)	Verify

func	(c	*Certificate)	Verify(opts	VerifyOptions)	(chains	[][]*Certificate,	err	error)

Verify	attempts	to	verify	c	by	building	one	or	more	chains	from	c	to	a	certificate
in	opts.Roots,	using	certificates	in	opts.Intermediates	if	needed.	If	successful,	it
returns	one	or	more	chains	where	the	first	element	of	the	chain	is	c	and	the	last
element	is	from	opts.Roots.

WARNING:	this	doesn't	do	any	revocation	checking.

func	(*Certificate)	VerifyHostname

func	(c	*Certificate)	VerifyHostname(h	string)	error

VerifyHostname	returns	nil	if	c	is	a	valid	certificate	for	the	named	host.
Otherwise	it	returns	an	error	describing	the	mismatch.

type	CertificateInvalidError
type	CertificateInvalidError	struct	{

				Cert			*Certificate

				Reason	InvalidReason

}

CertificateInvalidError	results	when	an	odd	error	occurs.	Users	of	this	library
probably	want	to	handle	all	these	errors	uniformly.

func	(CertificateInvalidError)	Error

func	(e	CertificateInvalidError)	Error()	string

type	ConstraintViolationError
type	ConstraintViolationError	struct{}

ConstraintViolationError	results	when	a	requested	usage	is	not	permitted	by	a
certificate.	For	example:	checking	a	signature	when	the	public	key	isn't	a
certificate	signing	key.

func	(ConstraintViolationError)	Error

func	(ConstraintViolationError)	Error()	string

type	ExtKeyUsage
type	ExtKeyUsage	int

ExtKeyUsage	represents	an	extended	set	of	actions	that	are	valid	for	a	given	key.
Each	of	the	ExtKeyUsage*	constants	define	a	unique	action.

const	(

				ExtKeyUsageAny	ExtKeyUsage	=	iota

				ExtKeyUsageServerAuth

				ExtKeyUsageClientAuth

				ExtKeyUsageCodeSigning

				ExtKeyUsageEmailProtection

				ExtKeyUsageTimeStamping

				ExtKeyUsageOCSPSigning

)

type	HostnameError
type	HostnameError	struct	{

				Certificate	*Certificate

				Host								string

}

HostnameError	results	when	the	set	of	authorized	names	doesn't	match	the
requested	name.

func	(HostnameError)	Error

func	(h	HostnameError)	Error()	string

type	InvalidReason
type	InvalidReason	int

const	(

				//	NotAuthorizedToSign	results	when	a	certificate	is	signed	by	another

				//	which	isn't	marked	as	a	CA	certificate.

				NotAuthorizedToSign	InvalidReason	=	iota

				//	Expired	results	when	a	certificate	has	expired,	based	on	the	time

				//	given	in	the	VerifyOptions.

				Expired

				//	CANotAuthorizedForThisName	results	when	an	intermediate	or	root

				//	certificate	has	a	name	constraint	which	doesn't	include	the	name

				//	being	checked.

				CANotAuthorizedForThisName

				//	TooManyIntermediates	results	when	a	path	length	constraint	is

				//	violated.

				TooManyIntermediates

)

type	KeyUsage
type	KeyUsage	int

KeyUsage	represents	the	set	of	actions	that	are	valid	for	a	given	key.	It's	a
bitmap	of	the	KeyUsage*	constants.

const	(

				KeyUsageDigitalSignature	KeyUsage	=	1	<<	iota

				KeyUsageContentCommitment

				KeyUsageKeyEncipherment

				KeyUsageDataEncipherment

				KeyUsageKeyAgreement

				KeyUsageCertSign

				KeyUsageCRLSign

				KeyUsageEncipherOnly

				KeyUsageDecipherOnly

)

type	PublicKeyAlgorithm
type	PublicKeyAlgorithm	int

const	(

				UnknownPublicKeyAlgorithm	PublicKeyAlgorithm	=	iota

				RSA

				DSA

)

type	SignatureAlgorithm
type	SignatureAlgorithm	int

const	(

				UnknownSignatureAlgorithm	SignatureAlgorithm	=	iota

				MD2WithRSA

				MD5WithRSA

				SHA1WithRSA

				SHA256WithRSA

				SHA384WithRSA

				SHA512WithRSA

				DSAWithSHA1

				DSAWithSHA256

)

type	UnhandledCriticalExtension
type	UnhandledCriticalExtension	struct{}

func	(UnhandledCriticalExtension)	Error

func	(h	UnhandledCriticalExtension)	Error()	string

type	UnknownAuthorityError
type	UnknownAuthorityError	struct	{

				//	contains	filtered	or	unexported	fields

}

UnknownAuthorityError	results	when	the	certificate	issuer	is	unknown

func	(UnknownAuthorityError)	Error

func	(e	UnknownAuthorityError)	Error()	string

type	VerifyOptions
type	VerifyOptions	struct	{

				DNSName							string

				Intermediates	*CertPool

				Roots									*CertPool	//	if	nil,	the	system	roots	are	used

				CurrentTime			time.Time	//	if	zero,	the	current	time	is	used

}

VerifyOptions	contains	parameters	for	Certificate.Verify.	It's	a	structure	because
other	PKIX	verification	APIs	have	ended	up	needing	many	options.

Subdirectories

Name 				 Synopsis

pkix 				 Package	pkix	contains	shared,	low	level	structures	used	for	ASN.1parsing	and	serialization	of	X.509	certificates,	CRL	and	OCSP.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	pkix
import	"crypto/x509/pkix"

Overview
Index

Overview	?

Overview	?

Package	pkix	contains	shared,	low	level	structures	used	for	ASN.1	parsing	and
serialization	of	X.509	certificates,	CRL	and	OCSP.

Index

type	AlgorithmIdentifier
type	AttributeTypeAndValue
type	CertificateList
				func	(certList	*CertificateList)	HasExpired(now	time.Time)	bool
type	Extension
type	Name
				func	(n	*Name)	FillFromRDNSequence(rdns	*RDNSequence)
				func	(n	Name)	ToRDNSequence()	(ret	RDNSequence)
type	RDNSequence
type	RelativeDistinguishedNameSET
type	RevokedCertificate
type	TBSCertificateList

Package	files

pkix.go

type	AlgorithmIdentifier
type	AlgorithmIdentifier	struct	{

				Algorithm		asn1.ObjectIdentifier

				Parameters	asn1.RawValue	`asn1:"optional"`

}

AlgorithmIdentifier	represents	the	ASN.1	structure	of	the	same	name.	See	RFC
5280,	section	4.1.1.2.

type	AttributeTypeAndValue
type	AttributeTypeAndValue	struct	{

				Type		asn1.ObjectIdentifier

				Value	interface{}

}

AttributeTypeAndValue	mirrors	the	ASN.1	structure	of	the	same	name	in
http://tools.ietf.org/html/rfc5280#section-4.1.2.4

http://tools.ietf.org/html/rfc5280#section-4.1.2.4

type	CertificateList
type	CertificateList	struct	{

				TBSCertList								TBSCertificateList

				SignatureAlgorithm	AlgorithmIdentifier

				SignatureValue					asn1.BitString

}

CertificateList	represents	the	ASN.1	structure	of	the	same	name.	See	RFC	5280,
section	5.1.	Use	Certificate.CheckCRLSignature	to	verify	the	signature.

func	(*CertificateList)	HasExpired

func	(certList	*CertificateList)	HasExpired(now	time.Time)	bool

HasExpired	returns	true	iff	now	is	past	the	expiry	time	of	certList.

type	Extension
type	Extension	struct	{

				Id							asn1.ObjectIdentifier

				Critical	bool	`asn1:"optional"`

				Value				[]byte

}

Extension	represents	the	ASN.1	structure	of	the	same	name.	See	RFC	5280,
section	4.2.

type	Name
type	Name	struct	{

				Country,	Organization,	OrganizationalUnit	[]string

				Locality,	Province																								[]string

				StreetAddress,	PostalCode																	[]string

				SerialNumber,	CommonName																		string

				Names	[]AttributeTypeAndValue

}

Name	represents	an	X.509	distinguished	name.	This	only	includes	the	common
elements	of	a	DN.	Additional	elements	in	the	name	are	ignored.

func	(*Name)	FillFromRDNSequence

func	(n	*Name)	FillFromRDNSequence(rdns	*RDNSequence)

func	(Name)	ToRDNSequence

func	(n	Name)	ToRDNSequence()	(ret	RDNSequence)

type	RDNSequence
type	RDNSequence	[]RelativeDistinguishedNameSET

type	RelativeDistinguishedNameSET
type	RelativeDistinguishedNameSET	[]AttributeTypeAndValue

type	RevokedCertificate
type	RevokedCertificate	struct	{

				SerialNumber			*big.Int

				RevocationTime	time.Time

				Extensions					[]Extension	`asn1:"optional"`

}

RevokedCertificate	represents	the	ASN.1	structure	of	the	same	name.	See	RFC
5280,	section	5.1.

type	TBSCertificateList
type	TBSCertificateList	struct	{

				Raw																	asn1.RawContent

				Version													int	`asn1:"optional,default:2"`

				Signature											AlgorithmIdentifier

				Issuer														RDNSequence

				ThisUpdate										time.Time

				NextUpdate										time.Time

				RevokedCertificates	[]RevokedCertificate	`asn1:"optional"`

				Extensions										[]Extension										`asn1:"tag:0,optional,explicit"`

}

TBSCertificateList	represents	the	ASN.1	structure	of	the	same	name.	See	RFC
5280,	section	5.1.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Directory	/src/pkg/database
Name 				 Synopsis

sql 				 Package	sql	provides	a	generic	interface	around	SQL	(or	SQL-like)databases.

					driver 				 Package	driver	defines	interfaces	to	be	implemented	by	databasedrivers	as	used	by	package	sql.

Need	more	packages?	Take	a	look	at	the	Go	Project	Dashboard.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://godashboard.appspot.com/
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	sql
import	"database/sql"

Overview
Index
Subdirectories

Overview	?

Overview	?

Package	sql	provides	a	generic	interface	around	SQL	(or	SQL-like)	databases.

Index

Variables
func	Register(name	string,	driver	driver.Driver)
type	DB
				func	Open(driverName,	dataSourceName	string)	(*DB,	error)
				func	(db	*DB)	Begin()	(*Tx,	error)
				func	(db	*DB)	Close()	error
				func	(db	*DB)	Driver()	driver.Driver
				func	(db	*DB)	Exec(query	string,	args	...interface{})	(Result,	error)
				func	(db	*DB)	Prepare(query	string)	(*Stmt,	error)
				func	(db	*DB)	Query(query	string,	args	...interface{})	(*Rows,	error)
				func	(db	*DB)	QueryRow(query	string,	args	...interface{})	*Row
type	NullBool
				func	(n	*NullBool)	Scan(value	interface{})	error
				func	(n	NullBool)	Value()	(driver.Value,	error)
type	NullFloat64
				func	(n	*NullFloat64)	Scan(value	interface{})	error
				func	(n	NullFloat64)	Value()	(driver.Value,	error)
type	NullInt64
				func	(n	*NullInt64)	Scan(value	interface{})	error
				func	(n	NullInt64)	Value()	(driver.Value,	error)
type	NullString
				func	(ns	*NullString)	Scan(value	interface{})	error
				func	(ns	NullString)	Value()	(driver.Value,	error)
type	RawBytes
type	Result
type	Row
				func	(r	*Row)	Scan(dest	...interface{})	error
type	Rows
				func	(rs	*Rows)	Close()	error
				func	(rs	*Rows)	Columns()	([]string,	error)
				func	(rs	*Rows)	Err()	error
				func	(rs	*Rows)	Next()	bool
				func	(rs	*Rows)	Scan(dest	...interface{})	error
type	Scanner
type	Stmt

				func	(s	*Stmt)	Close()	error
				func	(s	*Stmt)	Exec(args	...interface{})	(Result,	error)
				func	(s	*Stmt)	Query(args	...interface{})	(*Rows,	error)
				func	(s	*Stmt)	QueryRow(args	...interface{})	*Row
type	Tx
				func	(tx	*Tx)	Commit()	error
				func	(tx	*Tx)	Exec(query	string,	args	...interface{})	(Result,	error)
				func	(tx	*Tx)	Prepare(query	string)	(*Stmt,	error)
				func	(tx	*Tx)	Query(query	string,	args	...interface{})	(*Rows,	error)
				func	(tx	*Tx)	QueryRow(query	string,	args	...interface{})	*Row
				func	(tx	*Tx)	Rollback()	error
				func	(tx	*Tx)	Stmt(stmt	*Stmt)	*Stmt

Package	files

convert.go	sql.go

Variables
var	ErrNoRows	=	errors.New("sql:	no	rows	in	result	set")

ErrNoRows	is	returned	by	Scan	when	QueryRow	doesn't	return	a	row.	In	such	a
case,	QueryRow	returns	a	placeholder	*Row	value	that	defers	this	error	until	a
Scan.

var	ErrTxDone	=	errors.New("sql:	Transaction	has	already	been	committed	or	rolled	back")

func	Register
func	Register(name	string,	driver	driver.Driver)

Register	makes	a	database	driver	available	by	the	provided	name.	If	Register	is
called	twice	with	the	same	name	or	if	driver	is	nil,	it	panics.

type	DB
type	DB	struct	{

				//	contains	filtered	or	unexported	fields

}

DB	is	a	database	handle.	It's	safe	for	concurrent	use	by	multiple	goroutines.

If	the	underlying	database	driver	has	the	concept	of	a	connection	and	per-
connection	session	state,	the	sql	package	manages	creating	and	freeing
connections	automatically,	including	maintaining	a	free	pool	of	idle	connections.
If	observing	session	state	is	required,	either	do	not	share	a	*DB	between	multiple
concurrent	goroutines	or	create	and	observe	all	state	only	within	a	transaction.
Once	DB.Open	is	called,	the	returned	Tx	is	bound	to	a	single	isolated
connection.	Once	Tx.Commit	or	Tx.Rollback	is	called,	that	connection	is
returned	to	DB's	idle	connection	pool.

func	Open

func	Open(driverName,	dataSourceName	string)	(*DB,	error)

Open	opens	a	database	specified	by	its	database	driver	name	and	a	driver-
specific	data	source	name,	usually	consisting	of	at	least	a	database	name	and
connection	information.

Most	users	will	open	a	database	via	a	driver-specific	connection	helper	function
that	returns	a	*DB.

func	(*DB)	Begin

func	(db	*DB)	Begin()	(*Tx,	error)

Begin	starts	a	transaction.	The	isolation	level	is	dependent	on	the	driver.

func	(*DB)	Close

func	(db	*DB)	Close()	error

Close	closes	the	database,	releasing	any	open	resources.

func	(*DB)	Driver

func	(db	*DB)	Driver()	driver.Driver

Driver	returns	the	database's	underlying	driver.

func	(*DB)	Exec

func	(db	*DB)	Exec(query	string,	args	...interface{})	(Result,	error)

Exec	executes	a	query	without	returning	any	rows.

func	(*DB)	Prepare

func	(db	*DB)	Prepare(query	string)	(*Stmt,	error)

Prepare	creates	a	prepared	statement	for	later	execution.

func	(*DB)	Query

func	(db	*DB)	Query(query	string,	args	...interface{})	(*Rows,	error)

Query	executes	a	query	that	returns	rows,	typically	a	SELECT.

func	(*DB)	QueryRow

func	(db	*DB)	QueryRow(query	string,	args	...interface{})	*Row

QueryRow	executes	a	query	that	is	expected	to	return	at	most	one	row.
QueryRow	always	return	a	non-nil	value.	Errors	are	deferred	until	Row's	Scan
method	is	called.

type	NullBool
type	NullBool	struct	{

				Bool		bool

				Valid	bool	//	Valid	is	true	if	Bool	is	not	NULL

}

NullBool	represents	a	bool	that	may	be	null.	NullBool	implements	the	Scanner
interface	so	it	can	be	used	as	a	scan	destination,	similar	to	NullString.

func	(*NullBool)	Scan

func	(n	*NullBool)	Scan(value	interface{})	error

Scan	implements	the	Scanner	interface.

func	(NullBool)	Value

func	(n	NullBool)	Value()	(driver.Value,	error)

Value	implements	the	driver	Valuer	interface.

type	NullFloat64
type	NullFloat64	struct	{

				Float64	float64

				Valid			bool	//	Valid	is	true	if	Float64	is	not	NULL

}

NullFloat64	represents	a	float64	that	may	be	null.	NullFloat64	implements	the
Scanner	interface	so	it	can	be	used	as	a	scan	destination,	similar	to	NullString.

func	(*NullFloat64)	Scan

func	(n	*NullFloat64)	Scan(value	interface{})	error

Scan	implements	the	Scanner	interface.

func	(NullFloat64)	Value

func	(n	NullFloat64)	Value()	(driver.Value,	error)

Value	implements	the	driver	Valuer	interface.

type	NullInt64
type	NullInt64	struct	{

				Int64	int64

				Valid	bool	//	Valid	is	true	if	Int64	is	not	NULL

}

NullInt64	represents	an	int64	that	may	be	null.	NullInt64	implements	the
Scanner	interface	so	it	can	be	used	as	a	scan	destination,	similar	to	NullString.

func	(*NullInt64)	Scan

func	(n	*NullInt64)	Scan(value	interface{})	error

Scan	implements	the	Scanner	interface.

func	(NullInt64)	Value

func	(n	NullInt64)	Value()	(driver.Value,	error)

Value	implements	the	driver	Valuer	interface.

type	NullString
type	NullString	struct	{

				String	string

				Valid		bool	//	Valid	is	true	if	String	is	not	NULL

}

NullString	represents	a	string	that	may	be	null.	NullString	implements	the
Scanner	interface	so	it	can	be	used	as	a	scan	destination:

var	s	NullString

err	:=	db.QueryRow("SELECT	name	FROM	foo	WHERE	id=?",	id).Scan(&s)

...

if	s.Valid	{

			//	use	s.String

}	else	{

			//	NULL	value

}

func	(*NullString)	Scan

func	(ns	*NullString)	Scan(value	interface{})	error

Scan	implements	the	Scanner	interface.

func	(NullString)	Value

func	(ns	NullString)	Value()	(driver.Value,	error)

Value	implements	the	driver	Valuer	interface.

type	RawBytes
type	RawBytes	[]byte

RawBytes	is	a	byte	slice	that	holds	a	reference	to	memory	owned	by	the
database	itself.	After	a	Scan	into	a	RawBytes,	the	slice	is	only	valid	until	the
next	call	to	Next,	Scan,	or	Close.

type	Result
type	Result	interface	{

				LastInsertId()	(int64,	error)

				RowsAffected()	(int64,	error)

}

A	Result	summarizes	an	executed	SQL	command.

type	Row
type	Row	struct	{

				//	contains	filtered	or	unexported	fields

}

Row	is	the	result	of	calling	QueryRow	to	select	a	single	row.

func	(*Row)	Scan

func	(r	*Row)	Scan(dest	...interface{})	error

Scan	copies	the	columns	from	the	matched	row	into	the	values	pointed	at	by
dest.	If	more	than	one	row	matches	the	query,	Scan	uses	the	first	row	and
discards	the	rest.	If	no	row	matches	the	query,	Scan	returns	ErrNoRows.

type	Rows
type	Rows	struct	{

				//	contains	filtered	or	unexported	fields

}

Rows	is	the	result	of	a	query.	Its	cursor	starts	before	the	first	row	of	the	result
set.	Use	Next	to	advance	through	the	rows:

rows,	err	:=	db.Query("SELECT	...")

...

for	rows.Next()	{

				var	id	int

				var	name	string

				err	=	rows.Scan(&id,	&name)

				...

}

err	=	rows.Err()	//	get	any	error	encountered	during	iteration

...

func	(*Rows)	Close

func	(rs	*Rows)	Close()	error

Close	closes	the	Rows,	preventing	further	enumeration.	If	the	end	is
encountered,	the	Rows	are	closed	automatically.	Close	is	idempotent.

func	(*Rows)	Columns

func	(rs	*Rows)	Columns()	([]string,	error)

Columns	returns	the	column	names.	Columns	returns	an	error	if	the	rows	are
closed,	or	if	the	rows	are	from	QueryRow	and	there	was	a	deferred	error.

func	(*Rows)	Err

func	(rs	*Rows)	Err()	error

Err	returns	the	error,	if	any,	that	was	encountered	during	iteration.

func	(*Rows)	Next

func	(rs	*Rows)	Next()	bool

Next	prepares	the	next	result	row	for	reading	with	the	Scan	method.	It	returns
true	on	success,	false	if	there	is	no	next	result	row.	Every	call	to	Scan,	even	the
first	one,	must	be	preceded	by	a	call	to	Next.

func	(*Rows)	Scan

func	(rs	*Rows)	Scan(dest	...interface{})	error

Scan	copies	the	columns	in	the	current	row	into	the	values	pointed	at	by	dest.

If	an	argument	has	type	*[]byte,	Scan	saves	in	that	argument	a	copy	of	the
corresponding	data.	The	copy	is	owned	by	the	caller	and	can	be	modified	and
held	indefinitely.	The	copy	can	be	avoided	by	using	an	argument	of	type
*RawBytes	instead;	see	the	documentation	for	RawBytes	for	restrictions	on	its
use.

If	an	argument	has	type	*interface{},	Scan	copies	the	value	provided	by	the
underlying	driver	without	conversion.	If	the	value	is	of	type	[]byte,	a	copy	is
made	and	the	caller	owns	the	result.

type	Scanner
type	Scanner	interface	{

				//	Scan	assigns	a	value	from	a	database	driver.

				//

				//	The	src	value	will	be	of	one	of	the	following	restricted

				//	set	of	types:

				//

				//				int64

				//				float64

				//				bool

				//				[]byte

				//				string

				//				time.Time

				//				nil	-	for	NULL	values

				//

				//	An	error	should	be	returned	if	the	value	can	not	be	stored

				//	without	loss	of	information.

				Scan(src	interface{})	error

}

Scanner	is	an	interface	used	by	Scan.

type	Stmt
type	Stmt	struct	{

				//	contains	filtered	or	unexported	fields

}

Stmt	is	a	prepared	statement.	Stmt	is	safe	for	concurrent	use	by	multiple
goroutines.

func	(*Stmt)	Close

func	(s	*Stmt)	Close()	error

Close	closes	the	statement.

func	(*Stmt)	Exec

func	(s	*Stmt)	Exec(args	...interface{})	(Result,	error)

Exec	executes	a	prepared	statement	with	the	given	arguments	and	returns	a
Result	summarizing	the	effect	of	the	statement.

func	(*Stmt)	Query

func	(s	*Stmt)	Query(args	...interface{})	(*Rows,	error)

Query	executes	a	prepared	query	statement	with	the	given	arguments	and	returns
the	query	results	as	a	*Rows.

func	(*Stmt)	QueryRow

func	(s	*Stmt)	QueryRow(args	...interface{})	*Row

QueryRow	executes	a	prepared	query	statement	with	the	given	arguments.	If	an
error	occurs	during	the	execution	of	the	statement,	that	error	will	be	returned	by
a	call	to	Scan	on	the	returned	*Row,	which	is	always	non-nil.	If	the	query	selects
no	rows,	the	*Row's	Scan	will	return	ErrNoRows.	Otherwise,	the	*Row's	Scan
scans	the	first	selected	row	and	discards	the	rest.

Example	usage:

var	name	string

err	:=	nameByUseridStmt.QueryRow(id).Scan(&name)

type	Tx
type	Tx	struct	{

				//	contains	filtered	or	unexported	fields

}

Tx	is	an	in-progress	database	transaction.

A	transaction	must	end	with	a	call	to	Commit	or	Rollback.

After	a	call	to	Commit	or	Rollback,	all	operations	on	the	transaction	fail	with
ErrTxDone.

func	(*Tx)	Commit

func	(tx	*Tx)	Commit()	error

Commit	commits	the	transaction.

func	(*Tx)	Exec

func	(tx	*Tx)	Exec(query	string,	args	...interface{})	(Result,	error)

Exec	executes	a	query	that	doesn't	return	rows.	For	example:	an	INSERT	and
UPDATE.

func	(*Tx)	Prepare

func	(tx	*Tx)	Prepare(query	string)	(*Stmt,	error)

Prepare	creates	a	prepared	statement	for	use	within	a	transaction.

The	returned	statement	operates	within	the	transaction	and	can	no	longer	be	used
once	the	transaction	has	been	committed	or	rolled	back.

To	use	an	existing	prepared	statement	on	this	transaction,	see	Tx.Stmt.

func	(*Tx)	Query

func	(tx	*Tx)	Query(query	string,	args	...interface{})	(*Rows,	error)

Query	executes	a	query	that	returns	rows,	typically	a	SELECT.

func	(*Tx)	QueryRow

func	(tx	*Tx)	QueryRow(query	string,	args	...interface{})	*Row

QueryRow	executes	a	query	that	is	expected	to	return	at	most	one	row.
QueryRow	always	return	a	non-nil	value.	Errors	are	deferred	until	Row's	Scan
method	is	called.

func	(*Tx)	Rollback

func	(tx	*Tx)	Rollback()	error

Rollback	aborts	the	transaction.

func	(*Tx)	Stmt

func	(tx	*Tx)	Stmt(stmt	*Stmt)	*Stmt

Stmt	returns	a	transaction-specific	prepared	statement	from	an	existing
statement.

Example:

updateMoney,	err	:=	db.Prepare("UPDATE	balance	SET	money=money+?	WHERE	id=?")

...

tx,	err	:=	db.Begin()

...

res,	err	:=	tx.Stmt(updateMoney).Exec(123.45,	98293203)

Subdirectories

Name 				 Synopsis

driver 				 Package	driver	defines	interfaces	to	be	implemented	by	databasedrivers	as	used	by	package	sql.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	driver
import	"database/sql/driver"

Overview
Index

Overview	?

Overview	?

Package	driver	defines	interfaces	to	be	implemented	by	database	drivers	as	used
by	package	sql.

Most	code	should	use	package	sql.

Index

Variables
func	IsScanValue(v	interface{})	bool
func	IsValue(v	interface{})	bool
type	ColumnConverter
type	Conn
type	Driver
type	Execer
type	NotNull
				func	(n	NotNull)	ConvertValue(v	interface{})	(Value,	error)
type	Null
				func	(n	Null)	ConvertValue(v	interface{})	(Value,	error)
type	Result
type	Rows
type	RowsAffected
				func	(RowsAffected)	LastInsertId()	(int64,	error)
				func	(v	RowsAffected)	RowsAffected()	(int64,	error)
type	Stmt
type	Tx
type	Value
type	ValueConverter
type	Valuer

Package	files

driver.go	types.go

Variables
var	Bool	boolType

Bool	is	a	ValueConverter	that	converts	input	values	to	bools.

The	conversion	rules	are:

-	booleans	are	returned	unchanged

-	for	integer	types,

					1	is	true

					0	is	false,

					other	integers	are	an	error

-	for	strings	and	[]byte,	same	rules	as	strconv.ParseBool

-	all	other	types	are	an	error

var	DefaultParameterConverter	defaultConverter

DefaultParameterConverter	is	the	default	implementation	of	ValueConverter
that's	used	when	a	Stmt	doesn't	implement	ColumnConverter.

DefaultParameterConverter	returns	the	given	value	directly	if	IsValue(value).
Otherwise	integer	type	are	converted	to	int64,	floats	to	float64,	and	strings	to
[]byte.	Other	types	are	an	error.

var	ErrBadConn	=	errors.New("driver:	bad	connection")

ErrBadConn	should	be	returned	by	a	driver	to	signal	to	the	sql	package	that	a
driver.Conn	is	in	a	bad	state	(such	as	the	server	having	earlier	closed	the
connection)	and	the	sql	package	should	retry	on	a	new	connection.

To	prevent	duplicate	operations,	ErrBadConn	should	NOT	be	returned	if	there's
a	possibility	that	the	database	server	might	have	performed	the	operation.	Even
if	the	server	sends	back	an	error,	you	shouldn't	return	ErrBadConn.

var	ErrSkip	=	errors.New("driver:	skip	fast-path;	continue	as	if	unimplemented")

ErrSkip	may	be	returned	by	some	optional	interfaces'	methods	to	indicate	at
runtime	that	the	fast	path	is	unavailable	and	the	sql	package	should	continue	as	if
the	optional	interface	was	not	implemented.	ErrSkip	is	only	supported	where
explicitly	documented.

var	Int32	int32Type

Int32	is	a	ValueConverter	that	converts	input	values	to	int64,	respecting	the
limits	of	an	int32	value.

var	ResultNoRows	noRows

ResultNoRows	is	a	pre-defined	Result	for	drivers	to	return	when	a	DDL
command	(such	as	a	CREATE	TABLE)	succeeds.	It	returns	an	error	for	both
LastInsertId	and	RowsAffected.

var	String	stringType

String	is	a	ValueConverter	that	converts	its	input	to	a	string.	If	the	value	is
already	a	string	or	[]byte,	it's	unchanged.	If	the	value	is	of	another	type,
conversion	to	string	is	done	with	fmt.Sprintf("%v",	v).

func	IsScanValue
func	IsScanValue(v	interface{})	bool

IsScanValue	reports	whether	v	is	a	valid	Value	scan	type.	Unlike	IsValue,
IsScanValue	does	not	permit	the	string	type.

func	IsValue
func	IsValue(v	interface{})	bool

IsValue	reports	whether	v	is	a	valid	Value	parameter	type.	Unlike	IsScanValue,
IsValue	permits	the	string	type.

type	ColumnConverter
type	ColumnConverter	interface	{

				//	ColumnConverter	returns	a	ValueConverter	for	the	provided

				//	column	index.		If	the	type	of	a	specific	column	isn't	known

				//	or	shouldn't	be	handled	specially,	DefaultValueConverter

				//	can	be	returned.

				ColumnConverter(idx	int)	ValueConverter

}

ColumnConverter	may	be	optionally	implemented	by	Stmt	if	the	the	statement	is
aware	of	its	own	columns'	types	and	can	convert	from	any	type	to	a	driver	Value.

type	Conn
type	Conn	interface	{

				//	Prepare	returns	a	prepared	statement,	bound	to	this	connection.

				Prepare(query	string)	(Stmt,	error)

				//	Close	invalidates	and	potentially	stops	any	current

				//	prepared	statements	and	transactions,	marking	this

				//	connection	as	no	longer	in	use.

				//

				//	Because	the	sql	package	maintains	a	free	pool	of

				//	connections	and	only	calls	Close	when	there's	a	surplus	of

				//	idle	connections,	it	shouldn't	be	necessary	for	drivers	to

				//	do	their	own	connection	caching.

				Close()	error

				//	Begin	starts	and	returns	a	new	transaction.

				Begin()	(Tx,	error)

}

Conn	is	a	connection	to	a	database.	It	is	not	used	concurrently	by	multiple
goroutines.

Conn	is	assumed	to	be	stateful.

type	Driver
type	Driver	interface	{

				//	Open	returns	a	new	connection	to	the	database.

				//	The	name	is	a	string	in	a	driver-specific	format.

				//

				//	Open	may	return	a	cached	connection	(one	previously

				//	closed),	but	doing	so	is	unnecessary;	the	sql	package

				//	maintains	a	pool	of	idle	connections	for	efficient	re-use.

				//

				//	The	returned	connection	is	only	used	by	one	goroutine	at	a

				//	time.

				Open(name	string)	(Conn,	error)

}

Driver	is	the	interface	that	must	be	implemented	by	a	database	driver.

type	Execer
type	Execer	interface	{

				Exec(query	string,	args	[]Value)	(Result,	error)

}

Execer	is	an	optional	interface	that	may	be	implemented	by	a	Conn.

If	a	Conn	does	not	implement	Execer,	the	db	package's	DB.Exec	will	first
prepare	a	query,	execute	the	statement,	and	then	close	the	statement.

Exec	may	return	ErrSkip.

type	NotNull
type	NotNull	struct	{

				Converter	ValueConverter

}

NotNull	is	a	type	that	implements	ValueConverter	by	disallowing	nil	values	but
otherwise	delegating	to	another	ValueConverter.

func	(NotNull)	ConvertValue

func	(n	NotNull)	ConvertValue(v	interface{})	(Value,	error)

type	Null
type	Null	struct	{

				Converter	ValueConverter

}

Null	is	a	type	that	implements	ValueConverter	by	allowing	nil	values	but
otherwise	delegating	to	another	ValueConverter.

func	(Null)	ConvertValue

func	(n	Null)	ConvertValue(v	interface{})	(Value,	error)

type	Result
type	Result	interface	{

				//	LastInsertId	returns	the	database's	auto-generated	ID

				//	after,	for	example,	an	INSERT	into	a	table	with	primary

				//	key.

				LastInsertId()	(int64,	error)

				//	RowsAffected	returns	the	number	of	rows	affected	by	the

				//	query.

				RowsAffected()	(int64,	error)

}

Result	is	the	result	of	a	query	execution.

type	Rows
type	Rows	interface	{

				//	Columns	returns	the	names	of	the	columns.	The	number	of

				//	columns	of	the	result	is	inferred	from	the	length	of	the

				//	slice.		If	a	particular	column	name	isn't	known,	an	empty

				//	string	should	be	returned	for	that	entry.

				Columns()	[]string

				//	Close	closes	the	rows	iterator.

				Close()	error

				//	Next	is	called	to	populate	the	next	row	of	data	into

				//	the	provided	slice.	The	provided	slice	will	be	the	same

				//	size	as	the	Columns()	are	wide.

				//

				//	The	dest	slice	may	be	populated	only	with

				//	a	driver	Value	type,	but	excluding	string.

				//	All	string	values	must	be	converted	to	[]byte.

				//

				//	Next	should	return	io.EOF	when	there	are	no	more	rows.

				Next(dest	[]Value)	error

}

Rows	is	an	iterator	over	an	executed	query's	results.

type	RowsAffected
type	RowsAffected	int64

RowsAffected	implements	Result	for	an	INSERT	or	UPDATE	operation	which
mutates	a	number	of	rows.

func	(RowsAffected)	LastInsertId

func	(RowsAffected)	LastInsertId()	(int64,	error)

func	(RowsAffected)	RowsAffected

func	(v	RowsAffected)	RowsAffected()	(int64,	error)

type	Stmt
type	Stmt	interface	{

				//	Close	closes	the	statement.

				//

				//	Closing	a	statement	should	not	interrupt	any	outstanding

				//	query	created	from	that	statement.	That	is,	the	following

				//	order	of	operations	is	valid:

				//

				//		*	create	a	driver	statement

				//		*	call	Query	on	statement,	returning	Rows

				//		*	close	the	statement

				//		*	read	from	Rows

				//

				//	If	closing	a	statement	invalidates	currently-running

				//	queries,	the	final	step	above	will	incorrectly	fail.

				//

				//	TODO(bradfitz):	possibly	remove	the	restriction	above,	if

				//	enough	driver	authors	object	and	find	it	complicates	their

				//	code	too	much.	The	sql	package	could	be	smarter	about

				//	refcounting	the	statement	and	closing	it	at	the	appropriate

				//	time.

				Close()	error

				//	NumInput	returns	the	number	of	placeholder	parameters.

				//

				//	If	NumInput	returns	>=	0,	the	sql	package	will	sanity	check

				//	argument	counts	from	callers	and	return	errors	to	the	caller

				//	before	the	statement's	Exec	or	Query	methods	are	called.

				//

				//	NumInput	may	also	return	-1,	if	the	driver	doesn't	know

				//	its	number	of	placeholders.	In	that	case,	the	sql	package

				//	will	not	sanity	check	Exec	or	Query	argument	counts.

				NumInput()	int

				//	Exec	executes	a	query	that	doesn't	return	rows,	such

				//	as	an	INSERT	or	UPDATE.

				Exec(args	[]Value)	(Result,	error)

				//	Exec	executes	a	query	that	may	return	rows,	such	as	a

				//	SELECT.

				Query(args	[]Value)	(Rows,	error)

}

Stmt	is	a	prepared	statement.	It	is	bound	to	a	Conn	and	not	used	by	multiple
goroutines	concurrently.

type	Tx
type	Tx	interface	{

				Commit()	error

				Rollback()	error

}

Tx	is	a	transaction.

type	Value
type	Value	interface{}

A	driver	Value	is	a	value	that	drivers	must	be	able	to	handle.	A	Value	is	either	nil
or	an	instance	of	one	of	these	types:

int64

float64

bool

[]byte

string			[*]	everywhere	except	from	Rows.Next.

time.Time

type	ValueConverter
type	ValueConverter	interface	{

				//	ConvertValue	converts	a	value	to	a	driver	Value.

				ConvertValue(v	interface{})	(Value,	error)

}

ValueConverter	is	the	interface	providing	the	ConvertValue	method.

Various	implementations	of	ValueConverter	are	provided	by	the	driver	package
to	provide	consistent	implementations	of	conversions	between	drivers.	The
ValueConverters	have	several	uses:

*	converting	from	the	Value	types	as	provided	by	the	sql	package

		into	a	database	table's	specific	column	type	and	making	sure	it

		fits,	such	as	making	sure	a	particular	int64	fits	in	a

		table's	uint16	column.

*	converting	a	value	as	given	from	the	database	into	one	of	the

		driver	Value	types.

*	by	the	sql	package,	for	converting	from	a	driver's	Value	type

		to	a	user's	type	in	a	scan.

type	Valuer
type	Valuer	interface	{

				//	Value	returns	a	driver	Value.

				Value()	(Value,	error)

}

Valuer	is	the	interface	providing	the	Value	method.

Types	implementing	Valuer	interface	are	able	to	convert	themselves	to	a	driver
Value.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Directory	/src/pkg/debug
Name 				 Synopsis

dwarf 				
Package	dwarf	provides	access	to	DWARF	debugging	information
loaded	from	executable	files,	as	defined	in	the	DWARF	2.0	Standard
at	http://dwarfstd.org/doc/dwarf-2.0.0.pdf

elf 				 Package	elf	implements	access	to	ELF	object	files.

gosym 				 Package	gosym	implements	access	to	the	Go	symbol	and	line	numbertables	embedded	in	Go	binaries	generated	by	the	gc	compilers.
macho 				 Package	macho	implements	access	to	Mach-O	object	files.

pe 				 Package	pe	implements	access	to	PE	(Microsoft	Windows	Portable
Executable)	files.

Need	more	packages?	Take	a	look	at	the	Go	Project	Dashboard.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://godashboard.appspot.com/
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	dwarf
import	"debug/dwarf"

Overview
Index

Overview	?

Overview	?

Package	dwarf	provides	access	to	DWARF	debugging	information	loaded	from
executable	files,	as	defined	in	the	DWARF	2.0	Standard	at
http://dwarfstd.org/doc/dwarf-2.0.0.pdf

http://dwarfstd.org/doc/dwarf-2.0.0.pdf

Index

type	AddrType
type	ArrayType
				func	(t	*ArrayType)	Size()	int64
				func	(t	*ArrayType)	String()	string
type	Attr
				func	(a	Attr)	GoString()	string
				func	(a	Attr)	String()	string
type	BasicType
				func	(b	*BasicType)	Basic()	*BasicType
				func	(t	*BasicType)	String()	string
type	BoolType
type	CharType
type	CommonType
				func	(c	*CommonType)	Common()	*CommonType
				func	(c	*CommonType)	Size()	int64
type	ComplexType
type	Data
				func	New(abbrev,	aranges,	frame,	info,	line,	pubnames,	ranges,	str
[]byte)	(*Data,	error)
				func	(d	*Data)	Reader()	*Reader
				func	(d	*Data)	Type(off	Offset)	(Type,	error)
type	DecodeError
				func	(e	DecodeError)	Error()	string
type	DotDotDotType
				func	(t	*DotDotDotType)	String()	string
type	Entry
				func	(e	*Entry)	Val(a	Attr)	interface{}
type	EnumType
				func	(t	*EnumType)	String()	string
type	EnumValue
type	Field
type	FloatType
type	FuncType
				func	(t	*FuncType)	String()	string
type	IntType

type	Offset
type	PtrType
				func	(t	*PtrType)	String()	string
type	QualType
				func	(t	*QualType)	Size()	int64
				func	(t	*QualType)	String()	string
type	Reader
				func	(r	*Reader)	Next()	(*Entry,	error)
				func	(r	*Reader)	Seek(off	Offset)
				func	(r	*Reader)	SkipChildren()
type	StructField
type	StructType
				func	(t	*StructType)	Defn()	string
				func	(t	*StructType)	String()	string
type	Tag
				func	(t	Tag)	GoString()	string
				func	(t	Tag)	String()	string
type	Type
type	TypedefType
				func	(t	*TypedefType)	Size()	int64
				func	(t	*TypedefType)	String()	string
type	UcharType
type	UintType
type	VoidType
				func	(t	*VoidType)	String()	string

Package	files

buf.go	const.go	entry.go	open.go	type.go	unit.go

type	AddrType
type	AddrType	struct	{

				BasicType

}

An	AddrType	represents	a	machine	address	type.

type	ArrayType
type	ArrayType	struct	{

				CommonType

				Type										Type

				StrideBitSize	int64	//	if	>	0,	number	of	bits	to	hold	each	element

				Count									int64	//	if	==	-1,	an	incomplete	array,	like	char	x[].

}

An	ArrayType	represents	a	fixed	size	array	type.

func	(*ArrayType)	Size

func	(t	*ArrayType)	Size()	int64

func	(*ArrayType)	String

func	(t	*ArrayType)	String()	string

type	Attr
type	Attr	uint32

An	Attr	identifies	the	attribute	type	in	a	DWARF	Entry's	Field.

const	(

				AttrSibling								Attr	=	0x01

				AttrLocation							Attr	=	0x02

				AttrName											Attr	=	0x03

				AttrOrdering							Attr	=	0x09

				AttrByteSize							Attr	=	0x0B

				AttrBitOffset						Attr	=	0x0C

				AttrBitSize								Attr	=	0x0D

				AttrStmtList							Attr	=	0x10

				AttrLowpc										Attr	=	0x11

				AttrHighpc									Attr	=	0x12

				AttrLanguage							Attr	=	0x13

				AttrDiscr										Attr	=	0x15

				AttrDiscrValue					Attr	=	0x16

				AttrVisibility					Attr	=	0x17

				AttrImport									Attr	=	0x18

				AttrStringLength			Attr	=	0x19

				AttrCommonRef						Attr	=	0x1A

				AttrCompDir								Attr	=	0x1B

				AttrConstValue					Attr	=	0x1C

				AttrContainingType	Attr	=	0x1D

				AttrDefaultValue			Attr	=	0x1E

				AttrInline									Attr	=	0x20

				AttrIsOptional					Attr	=	0x21

				AttrLowerBound					Attr	=	0x22

				AttrProducer							Attr	=	0x25

				AttrPrototyped					Attr	=	0x27

				AttrReturnAddr					Attr	=	0x2A

				AttrStartScope					Attr	=	0x2C

				AttrStrideSize					Attr	=	0x2E

				AttrUpperBound					Attr	=	0x2F

				AttrAbstractOrigin	Attr	=	0x31

				AttrAccessibility		Attr	=	0x32

				AttrAddrClass						Attr	=	0x33

				AttrArtificial					Attr	=	0x34

				AttrBaseTypes						Attr	=	0x35

				AttrCalling								Attr	=	0x36

				AttrCount										Attr	=	0x37

				AttrDataMemberLoc		Attr	=	0x38

				AttrDeclColumn					Attr	=	0x39

				AttrDeclFile							Attr	=	0x3A

				AttrDeclLine							Attr	=	0x3B

				AttrDeclaration				Attr	=	0x3C

				AttrDiscrList						Attr	=	0x3D

				AttrEncoding							Attr	=	0x3E

				AttrExternal							Attr	=	0x3F

				AttrFrameBase						Attr	=	0x40

				AttrFriend									Attr	=	0x41

				AttrIdentifierCase	Attr	=	0x42

				AttrMacroInfo						Attr	=	0x43

				AttrNamelistItem			Attr	=	0x44

				AttrPriority							Attr	=	0x45

				AttrSegment								Attr	=	0x46

				AttrSpecification		Attr	=	0x47

				AttrStaticLink					Attr	=	0x48

				AttrType											Attr	=	0x49

				AttrUseLocation				Attr	=	0x4A

				AttrVarParam							Attr	=	0x4B

				AttrVirtuality					Attr	=	0x4C

				AttrVtableElemLoc		Attr	=	0x4D

				AttrAllocated						Attr	=	0x4E

				AttrAssociated					Attr	=	0x4F

				AttrDataLocation			Attr	=	0x50

				AttrStride									Attr	=	0x51

				AttrEntrypc								Attr	=	0x52

				AttrUseUTF8								Attr	=	0x53

				AttrExtension						Attr	=	0x54

				AttrRanges									Attr	=	0x55

				AttrTrampoline					Attr	=	0x56

				AttrCallColumn					Attr	=	0x57

				AttrCallFile							Attr	=	0x58

				AttrCallLine							Attr	=	0x59

				AttrDescription				Attr	=	0x5A

)

func	(Attr)	GoString

func	(a	Attr)	GoString()	string

func	(Attr)	String

func	(a	Attr)	String()	string

type	BasicType
type	BasicType	struct	{

				CommonType

				BitSize			int64

				BitOffset	int64

}

A	BasicType	holds	fields	common	to	all	basic	types.

func	(*BasicType)	Basic

func	(b	*BasicType)	Basic()	*BasicType

func	(*BasicType)	String

func	(t	*BasicType)	String()	string

type	BoolType
type	BoolType	struct	{

				BasicType

}

A	BoolType	represents	a	boolean	type.

type	CharType
type	CharType	struct	{

				BasicType

}

A	CharType	represents	a	signed	character	type.

type	CommonType
type	CommonType	struct	{

				ByteSize	int64		//	size	of	value	of	this	type,	in	bytes

				Name					string	//	name	that	can	be	used	to	refer	to	type

}

A	CommonType	holds	fields	common	to	multiple	types.	If	a	field	is	not	known
or	not	applicable	for	a	given	type,	the	zero	value	is	used.

func	(*CommonType)	Common

func	(c	*CommonType)	Common()	*CommonType

func	(*CommonType)	Size

func	(c	*CommonType)	Size()	int64

type	ComplexType
type	ComplexType	struct	{

				BasicType

}

A	ComplexType	represents	a	complex	floating	point	type.

type	Data
type	Data	struct	{

				//	contains	filtered	or	unexported	fields

}

Data	represents	the	DWARF	debugging	information	loaded	from	an	executable
file	(for	example,	an	ELF	or	Mach-O	executable).

func	New

func	New(abbrev,	aranges,	frame,	info,	line,	pubnames,	ranges,	str	[]byte)	(*Data,	error)

New	returns	a	new	Data	object	initialized	from	the	given	parameters.	Rather
than	calling	this	function	directly,	clients	should	typically	use	the	DWARF
method	of	the	File	type	of	the	appropriate	package	debug/elf,	debug/macho,	or
debug/pe.

The	[]byte	arguments	are	the	data	from	the	corresponding	debug	section	in	the
object	file;	for	example,	for	an	ELF	object,	abbrev	is	the	contents	of	the
".debug_abbrev"	section.

func	(*Data)	Reader

func	(d	*Data)	Reader()	*Reader

Reader	returns	a	new	Reader	for	Data.	The	reader	is	positioned	at	byte	offset	0	in
the	DWARF	“info”	section.

func	(*Data)	Type

func	(d	*Data)	Type(off	Offset)	(Type,	error)

type	DecodeError
type	DecodeError	struct	{

				Name			string

				Offset	Offset

				Err				string

}

func	(DecodeError)	Error

func	(e	DecodeError)	Error()	string

type	DotDotDotType
type	DotDotDotType	struct	{

				CommonType

}

A	DotDotDotType	represents	the	variadic	...	function	parameter.

func	(*DotDotDotType)	String

func	(t	*DotDotDotType)	String()	string

type	Entry
type	Entry	struct	{

				Offset			Offset	//	offset	of	Entry	in	DWARF	info

				Tag						Tag				//	tag	(kind	of	Entry)

				Children	bool			//	whether	Entry	is	followed	by	children

				Field				[]Field

}

An	entry	is	a	sequence	of	attribute/value	pairs.

func	(*Entry)	Val

func	(e	*Entry)	Val(a	Attr)	interface{}

Val	returns	the	value	associated	with	attribute	Attr	in	Entry,	or	nil	if	there	is	no
such	attribute.

A	common	idiom	is	to	merge	the	check	for	nil	return	with	the	check	that	the
value	has	the	expected	dynamic	type,	as	in:

v,	ok	:=	e.Val(AttrSibling).(int64);

type	EnumType
type	EnumType	struct	{

				CommonType

				EnumName	string

				Val						[]*EnumValue

}

An	EnumType	represents	an	enumerated	type.	The	only	indication	of	its	native
integer	type	is	its	ByteSize	(inside	CommonType).

func	(*EnumType)	String

func	(t	*EnumType)	String()	string

type	EnumValue
type	EnumValue	struct	{

				Name	string

				Val		int64

}

An	EnumValue	represents	a	single	enumeration	value.

type	Field
type	Field	struct	{

				Attr	Attr

				Val		interface{}

}

A	Field	is	a	single	attribute/value	pair	in	an	Entry.

type	FloatType
type	FloatType	struct	{

				BasicType

}

A	FloatType	represents	a	floating	point	type.

type	FuncType
type	FuncType	struct	{

				CommonType

				ReturnType	Type

				ParamType		[]Type

}

A	FuncType	represents	a	function	type.

func	(*FuncType)	String

func	(t	*FuncType)	String()	string

type	IntType
type	IntType	struct	{

				BasicType

}

An	IntType	represents	a	signed	integer	type.

type	Offset
type	Offset	uint32

An	Offset	represents	the	location	of	an	Entry	within	the	DWARF	info.	(See
Reader.Seek.)

type	PtrType
type	PtrType	struct	{

				CommonType

				Type	Type

}

A	PtrType	represents	a	pointer	type.

func	(*PtrType)	String

func	(t	*PtrType)	String()	string

type	QualType
type	QualType	struct	{

				CommonType

				Qual	string

				Type	Type

}

A	QualType	represents	a	type	that	has	the	C/C++	"const",	"restrict",	or	"volatile"
qualifier.

func	(*QualType)	Size

func	(t	*QualType)	Size()	int64

func	(*QualType)	String

func	(t	*QualType)	String()	string

type	Reader
type	Reader	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Reader	allows	reading	Entry	structures	from	a	DWARF	“info”	section.	The
Entry	structures	are	arranged	in	a	tree.	The	Reader's	Next	function	return
successive	entries	from	a	pre-order	traversal	of	the	tree.	If	an	entry	has	children,
its	Children	field	will	be	true,	and	the	children	follow,	terminated	by	an	Entry
with	Tag	0.

func	(*Reader)	Next

func	(r	*Reader)	Next()	(*Entry,	error)

Next	reads	the	next	entry	from	the	encoded	entry	stream.	It	returns	nil,	nil	when
it	reaches	the	end	of	the	section.	It	returns	an	error	if	the	current	offset	is	invalid
or	the	data	at	the	offset	cannot	be	decoded	as	a	valid	Entry.

func	(*Reader)	Seek

func	(r	*Reader)	Seek(off	Offset)

Seek	positions	the	Reader	at	offset	off	in	the	encoded	entry	stream.	Offset	0	can
be	used	to	denote	the	first	entry.

func	(*Reader)	SkipChildren

func	(r	*Reader)	SkipChildren()

SkipChildren	skips	over	the	child	entries	associated	with	the	last	Entry	returned
by	Next.	If	that	Entry	did	not	have	children	or	Next	has	not	been	called,
SkipChildren	is	a	no-op.

type	StructField
type	StructField	struct	{

				Name							string

				Type							Type

				ByteOffset	int64

				ByteSize			int64

				BitOffset		int64	//	within	the	ByteSize	bytes	at	ByteOffset

				BitSize				int64	//	zero	if	not	a	bit	field

}

A	StructField	represents	a	field	in	a	struct,	union,	or	C++	class	type.

type	StructType
type	StructType	struct	{

				CommonType

				StructName	string

				Kind							string	//	"struct",	"union",	or	"class".

				Field						[]*StructField

				Incomplete	bool	//	if	true,	struct,	union,	class	is	declared	but	not	defined

}

A	StructType	represents	a	struct,	union,	or	C++	class	type.

func	(*StructType)	Defn

func	(t	*StructType)	Defn()	string

func	(*StructType)	String

func	(t	*StructType)	String()	string

type	Tag
type	Tag	uint32

A	Tag	is	the	classification	(the	type)	of	an	Entry.

const	(

				TagArrayType														Tag	=	0x01

				TagClassType														Tag	=	0x02

				TagEntryPoint													Tag	=	0x03

				TagEnumerationType								Tag	=	0x04

				TagFormalParameter								Tag	=	0x05

				TagImportedDeclaration				Tag	=	0x08

				TagLabel																		Tag	=	0x0A

				TagLexDwarfBlock										Tag	=	0x0B

				TagMember																	Tag	=	0x0D

				TagPointerType												Tag	=	0x0F

				TagReferenceType										Tag	=	0x10

				TagCompileUnit												Tag	=	0x11

				TagStringType													Tag	=	0x12

				TagStructType													Tag	=	0x13

				TagSubroutineType									Tag	=	0x15

				TagTypedef																Tag	=	0x16

				TagUnionType														Tag	=	0x17

				TagUnspecifiedParameters		Tag	=	0x18

				TagVariant																Tag	=	0x19

				TagCommonDwarfBlock							Tag	=	0x1A

				TagCommonInclusion								Tag	=	0x1B

				TagInheritance												Tag	=	0x1C

				TagInlinedSubroutine						Tag	=	0x1D

				TagModule																	Tag	=	0x1E

				TagPtrToMemberType								Tag	=	0x1F

				TagSetType																Tag	=	0x20

				TagSubrangeType											Tag	=	0x21

				TagWithStmt															Tag	=	0x22

				TagAccessDeclaration						Tag	=	0x23

				TagBaseType															Tag	=	0x24

				TagCatchDwarfBlock								Tag	=	0x25

				TagConstType														Tag	=	0x26

				TagConstant															Tag	=	0x27

				TagEnumerator													Tag	=	0x28

				TagFileType															Tag	=	0x29

				TagFriend																	Tag	=	0x2A

				TagNamelist															Tag	=	0x2B

				TagNamelistItem											Tag	=	0x2C

				TagPackedType													Tag	=	0x2D

				TagSubprogram													Tag	=	0x2E

				TagTemplateTypeParameter		Tag	=	0x2F

				TagTemplateValueParameter	Tag	=	0x30

				TagThrownType													Tag	=	0x31

				TagTryDwarfBlock										Tag	=	0x32

				TagVariantPart												Tag	=	0x33

				TagVariable															Tag	=	0x34

				TagVolatileType											Tag	=	0x35

				TagDwarfProcedure									Tag	=	0x36

				TagRestrictType											Tag	=	0x37

				TagInterfaceType										Tag	=	0x38

				TagNamespace														Tag	=	0x39

				TagImportedModule									Tag	=	0x3A

				TagUnspecifiedType								Tag	=	0x3B

				TagPartialUnit												Tag	=	0x3C

				TagImportedUnit											Tag	=	0x3D

				TagMutableType												Tag	=	0x3E

)

func	(Tag)	GoString

func	(t	Tag)	GoString()	string

func	(Tag)	String

func	(t	Tag)	String()	string

type	Type
type	Type	interface	{

				Common()	*CommonType

				String()	string

				Size()	int64

}

A	Type	conventionally	represents	a	pointer	to	any	of	the	specific	Type	structures
(CharType,	StructType,	etc.).

type	TypedefType
type	TypedefType	struct	{

				CommonType

				Type	Type

}

A	TypedefType	represents	a	named	type.

func	(*TypedefType)	Size

func	(t	*TypedefType)	Size()	int64

func	(*TypedefType)	String

func	(t	*TypedefType)	String()	string

type	UcharType
type	UcharType	struct	{

				BasicType

}

A	UcharType	represents	an	unsigned	character	type.

type	UintType
type	UintType	struct	{

				BasicType

}

A	UintType	represents	an	unsigned	integer	type.

type	VoidType
type	VoidType	struct	{

				CommonType

}

A	VoidType	represents	the	C	void	type.

func	(*VoidType)	String

func	(t	*VoidType)	String()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	elf
import	"debug/elf"

Overview
Index

Overview	?

Overview	?

Package	elf	implements	access	to	ELF	object	files.

Index

Constants
func	R_INFO(sym,	typ	uint32)	uint64
func	R_INFO32(sym,	typ	uint32)	uint32
func	R_SYM32(info	uint32)	uint32
func	R_SYM64(info	uint64)	uint32
func	R_TYPE32(info	uint32)	uint32
func	R_TYPE64(info	uint64)	uint32
func	ST_INFO(bind	SymBind,	typ	SymType)	uint8
type	Class
				func	(i	Class)	GoString()	string
				func	(i	Class)	String()	string
type	Data
				func	(i	Data)	GoString()	string
				func	(i	Data)	String()	string
type	Dyn32
type	Dyn64
type	DynFlag
				func	(i	DynFlag)	GoString()	string
				func	(i	DynFlag)	String()	string
type	DynTag
				func	(i	DynTag)	GoString()	string
				func	(i	DynTag)	String()	string
type	File
				func	NewFile(r	io.ReaderAt)	(*File,	error)
				func	Open(name	string)	(*File,	error)
				func	(f	*File)	Close()	error
				func	(f	*File)	DWARF()	(*dwarf.Data,	error)
				func	(f	*File)	ImportedLibraries()	([]string,	error)
				func	(f	*File)	ImportedSymbols()	([]ImportedSymbol,	error)
				func	(f	*File)	Section(name	string)	*Section
				func	(f	*File)	SectionByType(typ	SectionType)	*Section
				func	(f	*File)	Symbols()	([]Symbol,	error)
type	FileHeader
type	FormatError
				func	(e	*FormatError)	Error()	string

type	Header32
type	Header64
type	ImportedSymbol
type	Machine
				func	(i	Machine)	GoString()	string
				func	(i	Machine)	String()	string
type	NType
				func	(i	NType)	GoString()	string
				func	(i	NType)	String()	string
type	OSABI
				func	(i	OSABI)	GoString()	string
				func	(i	OSABI)	String()	string
type	Prog
				func	(p	*Prog)	Open()	io.ReadSeeker
type	Prog32
type	Prog64
type	ProgFlag
				func	(i	ProgFlag)	GoString()	string
				func	(i	ProgFlag)	String()	string
type	ProgHeader
type	ProgType
				func	(i	ProgType)	GoString()	string
				func	(i	ProgType)	String()	string
type	R_386
				func	(i	R_386)	GoString()	string
				func	(i	R_386)	String()	string
type	R_ALPHA
				func	(i	R_ALPHA)	GoString()	string
				func	(i	R_ALPHA)	String()	string
type	R_ARM
				func	(i	R_ARM)	GoString()	string
				func	(i	R_ARM)	String()	string
type	R_PPC
				func	(i	R_PPC)	GoString()	string
				func	(i	R_PPC)	String()	string
type	R_SPARC
				func	(i	R_SPARC)	GoString()	string
				func	(i	R_SPARC)	String()	string
type	R_X86_64

				func	(i	R_X86_64)	GoString()	string
				func	(i	R_X86_64)	String()	string
type	Rel32
type	Rel64
type	Rela32
type	Rela64
type	Section
				func	(s	*Section)	Data()	([]byte,	error)
				func	(s	*Section)	Open()	io.ReadSeeker
type	Section32
type	Section64
type	SectionFlag
				func	(i	SectionFlag)	GoString()	string
				func	(i	SectionFlag)	String()	string
type	SectionHeader
type	SectionIndex
				func	(i	SectionIndex)	GoString()	string
				func	(i	SectionIndex)	String()	string
type	SectionType
				func	(i	SectionType)	GoString()	string
				func	(i	SectionType)	String()	string
type	Sym32
type	Sym64
type	SymBind
				func	ST_BIND(info	uint8)	SymBind
				func	(i	SymBind)	GoString()	string
				func	(i	SymBind)	String()	string
type	SymType
				func	ST_TYPE(info	uint8)	SymType
				func	(i	SymType)	GoString()	string
				func	(i	SymType)	String()	string
type	SymVis
				func	ST_VISIBILITY(other	uint8)	SymVis
				func	(i	SymVis)	GoString()	string
				func	(i	SymVis)	String()	string
type	Symbol
type	Type
				func	(i	Type)	GoString()	string
				func	(i	Type)	String()	string

type	Version
				func	(i	Version)	GoString()	string
				func	(i	Version)	String()	string

Package	files

elf.go	file.go

Constants
const	(

				EI_CLASS						=	4		/*	Class	of	machine.	*/

				EI_DATA							=	5		/*	Data	format.	*/

				EI_VERSION				=	6		/*	ELF	format	version.	*/

				EI_OSABI						=	7		/*	Operating	system	/	ABI	identification	*/

				EI_ABIVERSION	=	8		/*	ABI	version	*/

				EI_PAD								=	9		/*	Start	of	padding	(per	SVR4	ABI).	*/

				EI_NIDENT					=	16	/*	Size	of	e_ident	array.	*/

)

Indexes	into	the	Header.Ident	array.

const	ARM_MAGIC_TRAMP_NUMBER	=	0x5c000003

Magic	number	for	the	elf	trampoline,	chosen	wisely	to	be	an	immediate	value.

const	ELFMAG	=	"\177ELF"

Initial	magic	number	for	ELF	files.

const	Sym32Size	=	16

const	Sym64Size	=	24

func	R_INFO
func	R_INFO(sym,	typ	uint32)	uint64

func	R_INFO32
func	R_INFO32(sym,	typ	uint32)	uint32

func	R_SYM32
func	R_SYM32(info	uint32)	uint32

func	R_SYM64
func	R_SYM64(info	uint64)	uint32

func	R_TYPE32
func	R_TYPE32(info	uint32)	uint32

func	R_TYPE64
func	R_TYPE64(info	uint64)	uint32

func	ST_INFO
func	ST_INFO(bind	SymBind,	typ	SymType)	uint8

type	Class
type	Class	byte

Class	is	found	in	Header.Ident[EI_CLASS]	and	Header.Class.

const	(

				ELFCLASSNONE	Class	=	0	/*	Unknown	class.	*/

				ELFCLASS32			Class	=	1	/*	32-bit	architecture.	*/

				ELFCLASS64			Class	=	2	/*	64-bit	architecture.	*/

)

func	(Class)	GoString

func	(i	Class)	GoString()	string

func	(Class)	String

func	(i	Class)	String()	string

type	Data
type	Data	byte

Data	is	found	in	Header.Ident[EI_DATA]	and	Header.Data.

const	(

				ELFDATANONE	Data	=	0	/*	Unknown	data	format.	*/

				ELFDATA2LSB	Data	=	1	/*	2's	complement	little-endian.	*/

				ELFDATA2MSB	Data	=	2	/*	2's	complement	big-endian.	*/

)

func	(Data)	GoString

func	(i	Data)	GoString()	string

func	(Data)	String

func	(i	Data)	String()	string

type	Dyn32
type	Dyn32	struct	{

				Tag	int32		/*	Entry	type.	*/

				Val	uint32	/*	Integer/Address	value.	*/

}

ELF32	Dynamic	structure.	The	".dynamic"	section	contains	an	array	of	them.

type	Dyn64
type	Dyn64	struct	{

				Tag	int64		/*	Entry	type.	*/

				Val	uint64	/*	Integer/address	value	*/

}

ELF64	Dynamic	structure.	The	".dynamic"	section	contains	an	array	of	them.

type	DynFlag
type	DynFlag	int

DT_FLAGS	values.

const	(

				DF_ORIGIN	DynFlag	=	0x0001	/*	Indicates	that	the	object	being	loaded	may

							make	reference	to	the

							$ORIGIN	substitution	string	*/

				DF_SYMBOLIC	DynFlag	=	0x0002	/*	Indicates	"symbolic"	linking.	*/

				DF_TEXTREL		DynFlag	=	0x0004	/*	Indicates	there	may	be	relocations	in	non-writable	segments.	*/

				DF_BIND_NOW	DynFlag	=	0x0008	/*	Indicates	that	the	dynamic	linker	should

							process	all	relocations	for	the	object

							containing	this	entry	before	transferring

							control	to	the	program.	*/

				DF_STATIC_TLS	DynFlag	=	0x0010	/*	Indicates	that	the	shared	object	or

							executable	contains	code	using	a	static

							thread-local	storage	scheme.	*/

)

func	(DynFlag)	GoString

func	(i	DynFlag)	GoString()	string

func	(DynFlag)	String

func	(i	DynFlag)	String()	string

type	DynTag
type	DynTag	int

Dyn.Tag

const	(

				DT_NULL									DynTag	=	0		/*	Terminating	entry.	*/

				DT_NEEDED							DynTag	=	1		/*	String	table	offset	of	a	needed	shared	library.	*/

				DT_PLTRELSZ					DynTag	=	2		/*	Total	size	in	bytes	of	PLT	relocations.	*/

				DT_PLTGOT							DynTag	=	3		/*	Processor-dependent	address.	*/

				DT_HASH									DynTag	=	4		/*	Address	of	symbol	hash	table.	*/

				DT_STRTAB							DynTag	=	5		/*	Address	of	string	table.	*/

				DT_SYMTAB							DynTag	=	6		/*	Address	of	symbol	table.	*/

				DT_RELA									DynTag	=	7		/*	Address	of	ElfNN_Rela	relocations.	*/

				DT_RELASZ							DynTag	=	8		/*	Total	size	of	ElfNN_Rela	relocations.	*/

				DT_RELAENT						DynTag	=	9		/*	Size	of	each	ElfNN_Rela	relocation	entry.	*/

				DT_STRSZ								DynTag	=	10	/*	Size	of	string	table.	*/

				DT_SYMENT							DynTag	=	11	/*	Size	of	each	symbol	table	entry.	*/

				DT_INIT									DynTag	=	12	/*	Address	of	initialization	function.	*/

				DT_FINI									DynTag	=	13	/*	Address	of	finalization	function.	*/

				DT_SONAME							DynTag	=	14	/*	String	table	offset	of	shared	object	name.	*/

				DT_RPATH								DynTag	=	15	/*	String	table	offset	of	library	path.	[sup]	*/

				DT_SYMBOLIC					DynTag	=	16	/*	Indicates	"symbolic"	linking.	[sup]	*/

				DT_REL										DynTag	=	17	/*	Address	of	ElfNN_Rel	relocations.	*/

				DT_RELSZ								DynTag	=	18	/*	Total	size	of	ElfNN_Rel	relocations.	*/

				DT_RELENT							DynTag	=	19	/*	Size	of	each	ElfNN_Rel	relocation.	*/

				DT_PLTREL							DynTag	=	20	/*	Type	of	relocation	used	for	PLT.	*/

				DT_DEBUG								DynTag	=	21	/*	Reserved	(not	used).	*/

				DT_TEXTREL						DynTag	=	22	/*	Indicates	there	may	be	relocations	in	non-writable	segments.	[sup]	*/

				DT_JMPREL							DynTag	=	23	/*	Address	of	PLT	relocations.	*/

				DT_BIND_NOW					DynTag	=	24	/*	[sup]	*/

				DT_INIT_ARRAY			DynTag	=	25	/*	Address	of	the	array	of	pointers	to	initialization	functions	*/

				DT_FINI_ARRAY			DynTag	=	26	/*	Address	of	the	array	of	pointers	to	termination	functions	*/

				DT_INIT_ARRAYSZ	DynTag	=	27	/*	Size	in	bytes	of	the	array	of	initialization	functions.	*/

				DT_FINI_ARRAYSZ	DynTag	=	28	/*	Size	in	bytes	of	the	array	of	terminationfunctions.	*/

				DT_RUNPATH						DynTag	=	29	/*	String	table	offset	of	a	null-terminated	library	search	path	string.	*/

				DT_FLAGS								DynTag	=	30	/*	Object	specific	flag	values.	*/

				DT_ENCODING					DynTag	=	32	/*	Values	greater	than	or	equal	to	DT_ENCODING

							and	less	than	DT_LOOS	follow	the	rules	for

							the	interpretation	of	the	d_un	union

							as	follows:	even	==	'd_ptr',	even	==	'd_val'

							or	none	*/

				DT_PREINIT_ARRAY			DynTag	=	32									/*	Address	of	the	array	of	pointers	to	pre-initialization	functions.	*/

				DT_PREINIT_ARRAYSZ	DynTag	=	33									/*	Size	in	bytes	of	the	array	of	pre-initialization	functions.	*/

				DT_LOOS												DynTag	=	0x6000000d	/*	First	OS-specific	*/

				DT_HIOS												DynTag	=	0x6ffff000	/*	Last	OS-specific	*/

				DT_VERSYM										DynTag	=	0x6ffffff0

				DT_VERNEED									DynTag	=	0x6ffffffe

				DT_VERNEEDNUM						DynTag	=	0x6fffffff

				DT_LOPROC										DynTag	=	0x70000000	/*	First	processor-specific	type.	*/

				DT_HIPROC										DynTag	=	0x7fffffff	/*	Last	processor-specific	type.	*/

)

func	(DynTag)	GoString

func	(i	DynTag)	GoString()	string

func	(DynTag)	String

func	(i	DynTag)	String()	string

type	File
type	File	struct	{

				FileHeader

				Sections	[]*Section

				Progs				[]*Prog

				//	contains	filtered	or	unexported	fields

}

A	File	represents	an	open	ELF	file.

func	NewFile

func	NewFile(r	io.ReaderAt)	(*File,	error)

NewFile	creates	a	new	File	for	accessing	an	ELF	binary	in	an	underlying	reader.
The	ELF	binary	is	expected	to	start	at	position	0	in	the	ReaderAt.

func	Open

func	Open(name	string)	(*File,	error)

Open	opens	the	named	file	using	os.Open	and	prepares	it	for	use	as	an	ELF
binary.

func	(*File)	Close

func	(f	*File)	Close()	error

Close	closes	the	File.	If	the	File	was	created	using	NewFile	directly	instead	of
Open,	Close	has	no	effect.

func	(*File)	DWARF

func	(f	*File)	DWARF()	(*dwarf.Data,	error)

func	(*File)	ImportedLibraries

func	(f	*File)	ImportedLibraries()	([]string,	error)

ImportedLibraries	returns	the	names	of	all	libraries	referred	to	by	the	binary	f
that	are	expected	to	be	linked	with	the	binary	at	dynamic	link	time.

func	(*File)	ImportedSymbols

func	(f	*File)	ImportedSymbols()	([]ImportedSymbol,	error)

ImportedSymbols	returns	the	names	of	all	symbols	referred	to	by	the	binary	f
that	are	expected	to	be	satisfied	by	other	libraries	at	dynamic	load	time.	It	does
not	return	weak	symbols.

func	(*File)	Section

func	(f	*File)	Section(name	string)	*Section

Section	returns	a	section	with	the	given	name,	or	nil	if	no	such	section	exists.

func	(*File)	SectionByType

func	(f	*File)	SectionByType(typ	SectionType)	*Section

SectionByType	returns	the	first	section	in	f	with	the	given	type,	or	nil	if	there	is
no	such	section.

func	(*File)	Symbols

func	(f	*File)	Symbols()	([]Symbol,	error)

Symbols	returns	the	symbol	table	for	f.

type	FileHeader
type	FileHeader	struct	{

				Class						Class

				Data							Data

				Version				Version

				OSABI						OSABI

				ABIVersion	uint8

				ByteOrder		binary.ByteOrder

				Type							Type

				Machine				Machine

}

A	FileHeader	represents	an	ELF	file	header.

type	FormatError
type	FormatError	struct	{

				//	contains	filtered	or	unexported	fields

}

func	(*FormatError)	Error

func	(e	*FormatError)	Error()	string

type	Header32
type	Header32	struct	{

				Ident					[EI_NIDENT]byte	/*	File	identification.	*/

				Type						uint16										/*	File	type.	*/

				Machine			uint16										/*	Machine	architecture.	*/

				Version			uint32										/*	ELF	format	version.	*/

				Entry					uint32										/*	Entry	point.	*/

				Phoff					uint32										/*	Program	header	file	offset.	*/

				Shoff					uint32										/*	Section	header	file	offset.	*/

				Flags					uint32										/*	Architecture-specific	flags.	*/

				Ehsize				uint16										/*	Size	of	ELF	header	in	bytes.	*/

				Phentsize	uint16										/*	Size	of	program	header	entry.	*/

				Phnum					uint16										/*	Number	of	program	header	entries.	*/

				Shentsize	uint16										/*	Size	of	section	header	entry.	*/

				Shnum					uint16										/*	Number	of	section	header	entries.	*/

				Shstrndx		uint16										/*	Section	name	strings	section.	*/

}

ELF32	File	header.

type	Header64
type	Header64	struct	{

				Ident					[EI_NIDENT]byte	/*	File	identification.	*/

				Type						uint16										/*	File	type.	*/

				Machine			uint16										/*	Machine	architecture.	*/

				Version			uint32										/*	ELF	format	version.	*/

				Entry					uint64										/*	Entry	point.	*/

				Phoff					uint64										/*	Program	header	file	offset.	*/

				Shoff					uint64										/*	Section	header	file	offset.	*/

				Flags					uint32										/*	Architecture-specific	flags.	*/

				Ehsize				uint16										/*	Size	of	ELF	header	in	bytes.	*/

				Phentsize	uint16										/*	Size	of	program	header	entry.	*/

				Phnum					uint16										/*	Number	of	program	header	entries.	*/

				Shentsize	uint16										/*	Size	of	section	header	entry.	*/

				Shnum					uint16										/*	Number	of	section	header	entries.	*/

				Shstrndx		uint16										/*	Section	name	strings	section.	*/

}

ELF64	file	header.

type	ImportedSymbol
type	ImportedSymbol	struct	{

				Name				string

				Version	string

				Library	string

}

type	Machine
type	Machine	uint16

Machine	is	found	in	Header.Machine.

const	(

				EM_NONE								Machine	=	0		/*	Unknown	machine.	*/

				EM_M32									Machine	=	1		/*	AT&T	WE32100.	*/

				EM_SPARC							Machine	=	2		/*	Sun	SPARC.	*/

				EM_386									Machine	=	3		/*	Intel	i386.	*/

				EM_68K									Machine	=	4		/*	Motorola	68000.	*/

				EM_88K									Machine	=	5		/*	Motorola	88000.	*/

				EM_860									Machine	=	7		/*	Intel	i860.	*/

				EM_MIPS								Machine	=	8		/*	MIPS	R3000	Big-Endian	only.	*/

				EM_S370								Machine	=	9		/*	IBM	System/370.	*/

				EM_MIPS_RS3_LE	Machine	=	10	/*	MIPS	R3000	Little-Endian.	*/

				EM_PARISC						Machine	=	15	/*	HP	PA-RISC.	*/

				EM_VPP500						Machine	=	17	/*	Fujitsu	VPP500.	*/

				EM_SPARC32PLUS	Machine	=	18	/*	SPARC	v8plus.	*/

				EM_960									Machine	=	19	/*	Intel	80960.	*/

				EM_PPC									Machine	=	20	/*	PowerPC	32-bit.	*/

				EM_PPC64							Machine	=	21	/*	PowerPC	64-bit.	*/

				EM_S390								Machine	=	22	/*	IBM	System/390.	*/

				EM_V800								Machine	=	36	/*	NEC	V800.	*/

				EM_FR20								Machine	=	37	/*	Fujitsu	FR20.	*/

				EM_RH32								Machine	=	38	/*	TRW	RH-32.	*/

				EM_RCE									Machine	=	39	/*	Motorola	RCE.	*/

				EM_ARM									Machine	=	40	/*	ARM.	*/

				EM_SH										Machine	=	42	/*	Hitachi	SH.	*/

				EM_SPARCV9					Machine	=	43	/*	SPARC	v9	64-bit.	*/

				EM_TRICORE					Machine	=	44	/*	Siemens	TriCore	embedded	processor.	*/

				EM_ARC									Machine	=	45	/*	Argonaut	RISC	Core.	*/

				EM_H8_300						Machine	=	46	/*	Hitachi	H8/300.	*/

				EM_H8_300H					Machine	=	47	/*	Hitachi	H8/300H.	*/

				EM_H8S									Machine	=	48	/*	Hitachi	H8S.	*/

				EM_H8_500						Machine	=	49	/*	Hitachi	H8/500.	*/

				EM_IA_64							Machine	=	50	/*	Intel	IA-64	Processor.	*/

				EM_MIPS_X						Machine	=	51	/*	Stanford	MIPS-X.	*/

				EM_COLDFIRE				Machine	=	52	/*	Motorola	ColdFire.	*/

				EM_68HC12						Machine	=	53	/*	Motorola	M68HC12.	*/

				EM_MMA									Machine	=	54	/*	Fujitsu	MMA.	*/

				EM_PCP									Machine	=	55	/*	Siemens	PCP.	*/

				EM_NCPU								Machine	=	56	/*	Sony	nCPU.	*/

				EM_NDR1								Machine	=	57	/*	Denso	NDR1	microprocessor.	*/

				EM_STARCORE				Machine	=	58	/*	Motorola	Star*Core	processor.	*/

				EM_ME16								Machine	=	59	/*	Toyota	ME16	processor.	*/

				EM_ST100							Machine	=	60	/*	STMicroelectronics	ST100	processor.	*/

				EM_TINYJ							Machine	=	61	/*	Advanced	Logic	Corp.	TinyJ	processor.	*/

				EM_X86_64						Machine	=	62

				/*	Non-standard	or	deprecated.	*/

				EM_486									Machine	=	6						/*	Intel	i486.	*/

				EM_MIPS_RS4_BE	Machine	=	10					/*	MIPS	R4000	Big-Endian	*/

				EM_ALPHA_STD			Machine	=	41					/*	Digital	Alpha	(standard	value).	*/

				EM_ALPHA							Machine	=	0x9026	/*	Alpha	(written	in	the	absence	of	an	ABI)	*/

)

func	(Machine)	GoString

func	(i	Machine)	GoString()	string

func	(Machine)	String

func	(i	Machine)	String()	string

type	NType
type	NType	int

NType	values;	used	in	core	files.

const	(

				NT_PRSTATUS	NType	=	1	/*	Process	status.	*/

				NT_FPREGSET	NType	=	2	/*	Floating	point	registers.	*/

				NT_PRPSINFO	NType	=	3	/*	Process	state	info.	*/

)

func	(NType)	GoString

func	(i	NType)	GoString()	string

func	(NType)	String

func	(i	NType)	String()	string

type	OSABI
type	OSABI	byte

OSABI	is	found	in	Header.Ident[EI_OSABI]	and	Header.OSABI.

const	(

				ELFOSABI_NONE							OSABI	=	0			/*	UNIX	System	V	ABI	*/

				ELFOSABI_HPUX							OSABI	=	1			/*	HP-UX	operating	system	*/

				ELFOSABI_NETBSD					OSABI	=	2			/*	NetBSD	*/

				ELFOSABI_LINUX						OSABI	=	3			/*	GNU/Linux	*/

				ELFOSABI_HURD							OSABI	=	4			/*	GNU/Hurd	*/

				ELFOSABI_86OPEN					OSABI	=	5			/*	86Open	common	IA32	ABI	*/

				ELFOSABI_SOLARIS				OSABI	=	6			/*	Solaris	*/

				ELFOSABI_AIX								OSABI	=	7			/*	AIX	*/

				ELFOSABI_IRIX							OSABI	=	8			/*	IRIX	*/

				ELFOSABI_FREEBSD				OSABI	=	9			/*	FreeBSD	*/

				ELFOSABI_TRU64						OSABI	=	10		/*	TRU64	UNIX	*/

				ELFOSABI_MODESTO				OSABI	=	11		/*	Novell	Modesto	*/

				ELFOSABI_OPENBSD				OSABI	=	12		/*	OpenBSD	*/

				ELFOSABI_OPENVMS				OSABI	=	13		/*	Open	VMS	*/

				ELFOSABI_NSK								OSABI	=	14		/*	HP	Non-Stop	Kernel	*/

				ELFOSABI_ARM								OSABI	=	97		/*	ARM	*/

				ELFOSABI_STANDALONE	OSABI	=	255	/*	Standalone	(embedded)	application	*/

)

func	(OSABI)	GoString

func	(i	OSABI)	GoString()	string

func	(OSABI)	String

func	(i	OSABI)	String()	string

type	Prog
type	Prog	struct	{

				ProgHeader

				//	Embed	ReaderAt	for	ReadAt	method.

				//	Do	not	embed	SectionReader	directly

				//	to	avoid	having	Read	and	Seek.

				//	If	a	client	wants	Read	and	Seek	it	must	use

				//	Open()	to	avoid	fighting	over	the	seek	offset

				//	with	other	clients.

				io.ReaderAt

				//	contains	filtered	or	unexported	fields

}

A	Prog	represents	a	single	ELF	program	header	in	an	ELF	binary.

func	(*Prog)	Open

func	(p	*Prog)	Open()	io.ReadSeeker

Open	returns	a	new	ReadSeeker	reading	the	ELF	program	body.

type	Prog32
type	Prog32	struct	{

				Type			uint32	/*	Entry	type.	*/

				Off				uint32	/*	File	offset	of	contents.	*/

				Vaddr		uint32	/*	Virtual	address	in	memory	image.	*/

				Paddr		uint32	/*	Physical	address	(not	used).	*/

				Filesz	uint32	/*	Size	of	contents	in	file.	*/

				Memsz		uint32	/*	Size	of	contents	in	memory.	*/

				Flags		uint32	/*	Access	permission	flags.	*/

				Align		uint32	/*	Alignment	in	memory	and	file.	*/

}

ELF32	Program	header.

type	Prog64
type	Prog64	struct	{

				Type			uint32	/*	Entry	type.	*/

				Flags		uint32	/*	Access	permission	flags.	*/

				Off				uint64	/*	File	offset	of	contents.	*/

				Vaddr		uint64	/*	Virtual	address	in	memory	image.	*/

				Paddr		uint64	/*	Physical	address	(not	used).	*/

				Filesz	uint64	/*	Size	of	contents	in	file.	*/

				Memsz		uint64	/*	Size	of	contents	in	memory.	*/

				Align		uint64	/*	Alignment	in	memory	and	file.	*/

}

ELF64	Program	header.

type	ProgFlag
type	ProgFlag	uint32

Prog.Flag

const	(

				PF_X								ProgFlag	=	0x1								/*	Executable.	*/

				PF_W								ProgFlag	=	0x2								/*	Writable.	*/

				PF_R								ProgFlag	=	0x4								/*	Readable.	*/

				PF_MASKOS			ProgFlag	=	0x0ff00000	/*	Operating	system-specific.	*/

				PF_MASKPROC	ProgFlag	=	0xf0000000	/*	Processor-specific.	*/

)

func	(ProgFlag)	GoString

func	(i	ProgFlag)	GoString()	string

func	(ProgFlag)	String

func	(i	ProgFlag)	String()	string

type	ProgHeader
type	ProgHeader	struct	{

				Type			ProgType

				Flags		ProgFlag

				Off				uint64

				Vaddr		uint64

				Paddr		uint64

				Filesz	uint64

				Memsz		uint64

				Align		uint64

}

A	ProgHeader	represents	a	single	ELF	program	header.

type	ProgType
type	ProgType	int

Prog.Type

const	(

				PT_NULL				ProgType	=	0										/*	Unused	entry.	*/

				PT_LOAD				ProgType	=	1										/*	Loadable	segment.	*/

				PT_DYNAMIC	ProgType	=	2										/*	Dynamic	linking	information	segment.	*/

				PT_INTERP		ProgType	=	3										/*	Pathname	of	interpreter.	*/

				PT_NOTE				ProgType	=	4										/*	Auxiliary	information.	*/

				PT_SHLIB			ProgType	=	5										/*	Reserved	(not	used).	*/

				PT_PHDR				ProgType	=	6										/*	Location	of	program	header	itself.	*/

				PT_TLS					ProgType	=	7										/*	Thread	local	storage	segment	*/

				PT_LOOS				ProgType	=	0x60000000	/*	First	OS-specific.	*/

				PT_HIOS				ProgType	=	0x6fffffff	/*	Last	OS-specific.	*/

				PT_LOPROC		ProgType	=	0x70000000	/*	First	processor-specific	type.	*/

				PT_HIPROC		ProgType	=	0x7fffffff	/*	Last	processor-specific	type.	*/

)

func	(ProgType)	GoString

func	(i	ProgType)	GoString()	string

func	(ProgType)	String

func	(i	ProgType)	String()	string

type	R_386
type	R_386	int

Relocation	types	for	386.

const	(

				R_386_NONE									R_386	=	0		/*	No	relocation.	*/

				R_386_32											R_386	=	1		/*	Add	symbol	value.	*/

				R_386_PC32									R_386	=	2		/*	Add	PC-relative	symbol	value.	*/

				R_386_GOT32								R_386	=	3		/*	Add	PC-relative	GOT	offset.	*/

				R_386_PLT32								R_386	=	4		/*	Add	PC-relative	PLT	offset.	*/

				R_386_COPY									R_386	=	5		/*	Copy	data	from	shared	object.	*/

				R_386_GLOB_DAT					R_386	=	6		/*	Set	GOT	entry	to	data	address.	*/

				R_386_JMP_SLOT					R_386	=	7		/*	Set	GOT	entry	to	code	address.	*/

				R_386_RELATIVE					R_386	=	8		/*	Add	load	address	of	shared	object.	*/

				R_386_GOTOFF							R_386	=	9		/*	Add	GOT-relative	symbol	address.	*/

				R_386_GOTPC								R_386	=	10	/*	Add	PC-relative	GOT	table	address.	*/

				R_386_TLS_TPOFF				R_386	=	14	/*	Negative	offset	in	static	TLS	block	*/

				R_386_TLS_IE							R_386	=	15	/*	Absolute	address	of	GOT	for	-ve	static	TLS	*/

				R_386_TLS_GOTIE				R_386	=	16	/*	GOT	entry	for	negative	static	TLS	block	*/

				R_386_TLS_LE							R_386	=	17	/*	Negative	offset	relative	to	static	TLS	*/

				R_386_TLS_GD							R_386	=	18	/*	32	bit	offset	to	GOT	(index,off)	pair	*/

				R_386_TLS_LDM						R_386	=	19	/*	32	bit	offset	to	GOT	(index,zero)	pair	*/

				R_386_TLS_GD_32				R_386	=	24	/*	32	bit	offset	to	GOT	(index,off)	pair	*/

				R_386_TLS_GD_PUSH		R_386	=	25	/*	pushl	instruction	for	Sun	ABI	GD	sequence	*/

				R_386_TLS_GD_CALL		R_386	=	26	/*	call	instruction	for	Sun	ABI	GD	sequence	*/

				R_386_TLS_GD_POP			R_386	=	27	/*	popl	instruction	for	Sun	ABI	GD	sequence	*/

				R_386_TLS_LDM_32			R_386	=	28	/*	32	bit	offset	to	GOT	(index,zero)	pair	*/

				R_386_TLS_LDM_PUSH	R_386	=	29	/*	pushl	instruction	for	Sun	ABI	LD	sequence	*/

				R_386_TLS_LDM_CALL	R_386	=	30	/*	call	instruction	for	Sun	ABI	LD	sequence	*/

				R_386_TLS_LDM_POP		R_386	=	31	/*	popl	instruction	for	Sun	ABI	LD	sequence	*/

				R_386_TLS_LDO_32			R_386	=	32	/*	32	bit	offset	from	start	of	TLS	block	*/

				R_386_TLS_IE_32				R_386	=	33	/*	32	bit	offset	to	GOT	static	TLS	offset	entry	*/

				R_386_TLS_LE_32				R_386	=	34	/*	32	bit	offset	within	static	TLS	block	*/

				R_386_TLS_DTPMOD32	R_386	=	35	/*	GOT	entry	containing	TLS	index	*/

				R_386_TLS_DTPOFF32	R_386	=	36	/*	GOT	entry	containing	TLS	offset	*/

				R_386_TLS_TPOFF32		R_386	=	37	/*	GOT	entry	of	-ve	static	TLS	offset	*/

)

func	(R_386)	GoString

func	(i	R_386)	GoString()	string

func	(R_386)	String

func	(i	R_386)	String()	string

type	R_ALPHA
type	R_ALPHA	int

Relocation	types	for	Alpha.

const	(

				R_ALPHA_NONE											R_ALPHA	=	0		/*	No	reloc	*/

				R_ALPHA_REFLONG								R_ALPHA	=	1		/*	Direct	32	bit	*/

				R_ALPHA_REFQUAD								R_ALPHA	=	2		/*	Direct	64	bit	*/

				R_ALPHA_GPREL32								R_ALPHA	=	3		/*	GP	relative	32	bit	*/

				R_ALPHA_LITERAL								R_ALPHA	=	4		/*	GP	relative	16	bit	w/optimization	*/

				R_ALPHA_LITUSE									R_ALPHA	=	5		/*	Optimization	hint	for	LITERAL	*/

				R_ALPHA_GPDISP									R_ALPHA	=	6		/*	Add	displacement	to	GP	*/

				R_ALPHA_BRADDR									R_ALPHA	=	7		/*	PC+4	relative	23	bit	shifted	*/

				R_ALPHA_HINT											R_ALPHA	=	8		/*	PC+4	relative	16	bit	shifted	*/

				R_ALPHA_SREL16									R_ALPHA	=	9		/*	PC	relative	16	bit	*/

				R_ALPHA_SREL32									R_ALPHA	=	10	/*	PC	relative	32	bit	*/

				R_ALPHA_SREL64									R_ALPHA	=	11	/*	PC	relative	64	bit	*/

				R_ALPHA_OP_PUSH								R_ALPHA	=	12	/*	OP	stack	push	*/

				R_ALPHA_OP_STORE							R_ALPHA	=	13	/*	OP	stack	pop	and	store	*/

				R_ALPHA_OP_PSUB								R_ALPHA	=	14	/*	OP	stack	subtract	*/

				R_ALPHA_OP_PRSHIFT					R_ALPHA	=	15	/*	OP	stack	right	shift	*/

				R_ALPHA_GPVALUE								R_ALPHA	=	16

				R_ALPHA_GPRELHIGH						R_ALPHA	=	17

				R_ALPHA_GPRELLOW							R_ALPHA	=	18

				R_ALPHA_IMMED_GP_16				R_ALPHA	=	19

				R_ALPHA_IMMED_GP_HI32		R_ALPHA	=	20

				R_ALPHA_IMMED_SCN_HI32	R_ALPHA	=	21

				R_ALPHA_IMMED_BR_HI32		R_ALPHA	=	22

				R_ALPHA_IMMED_LO32					R_ALPHA	=	23

				R_ALPHA_COPY											R_ALPHA	=	24	/*	Copy	symbol	at	runtime	*/

				R_ALPHA_GLOB_DAT							R_ALPHA	=	25	/*	Create	GOT	entry	*/

				R_ALPHA_JMP_SLOT							R_ALPHA	=	26	/*	Create	PLT	entry	*/

				R_ALPHA_RELATIVE							R_ALPHA	=	27	/*	Adjust	by	program	base	*/

)

func	(R_ALPHA)	GoString

func	(i	R_ALPHA)	GoString()	string

func	(R_ALPHA)	String

func	(i	R_ALPHA)	String()	string

type	R_ARM
type	R_ARM	int

Relocation	types	for	ARM.

const	(

				R_ARM_NONE										R_ARM	=	0	/*	No	relocation.	*/

				R_ARM_PC24										R_ARM	=	1

				R_ARM_ABS32									R_ARM	=	2

				R_ARM_REL32									R_ARM	=	3

				R_ARM_PC13										R_ARM	=	4

				R_ARM_ABS16									R_ARM	=	5

				R_ARM_ABS12									R_ARM	=	6

				R_ARM_THM_ABS5						R_ARM	=	7

				R_ARM_ABS8										R_ARM	=	8

				R_ARM_SBREL32							R_ARM	=	9

				R_ARM_THM_PC22						R_ARM	=	10

				R_ARM_THM_PC8							R_ARM	=	11

				R_ARM_AMP_VCALL9				R_ARM	=	12

				R_ARM_SWI24									R_ARM	=	13

				R_ARM_THM_SWI8						R_ARM	=	14

				R_ARM_XPC25									R_ARM	=	15

				R_ARM_THM_XPC22					R_ARM	=	16

				R_ARM_COPY										R_ARM	=	20	/*	Copy	data	from	shared	object.	*/

				R_ARM_GLOB_DAT						R_ARM	=	21	/*	Set	GOT	entry	to	data	address.	*/

				R_ARM_JUMP_SLOT					R_ARM	=	22	/*	Set	GOT	entry	to	code	address.	*/

				R_ARM_RELATIVE						R_ARM	=	23	/*	Add	load	address	of	shared	object.	*/

				R_ARM_GOTOFF								R_ARM	=	24	/*	Add	GOT-relative	symbol	address.	*/

				R_ARM_GOTPC									R_ARM	=	25	/*	Add	PC-relative	GOT	table	address.	*/

				R_ARM_GOT32									R_ARM	=	26	/*	Add	PC-relative	GOT	offset.	*/

				R_ARM_PLT32									R_ARM	=	27	/*	Add	PC-relative	PLT	offset.	*/

				R_ARM_GNU_VTENTRY			R_ARM	=	100

				R_ARM_GNU_VTINHERIT	R_ARM	=	101

				R_ARM_RSBREL32						R_ARM	=	250

				R_ARM_THM_RPC22					R_ARM	=	251

				R_ARM_RREL32								R_ARM	=	252

				R_ARM_RABS32								R_ARM	=	253

				R_ARM_RPC24									R_ARM	=	254

				R_ARM_RBASE									R_ARM	=	255

)

func	(R_ARM)	GoString

func	(i	R_ARM)	GoString()	string

func	(R_ARM)	String

func	(i	R_ARM)	String()	string

type	R_PPC
type	R_PPC	int

Relocation	types	for	PowerPC.

const	(

				R_PPC_NONE												R_PPC	=	0	/*	No	relocation.	*/

				R_PPC_ADDR32										R_PPC	=	1

				R_PPC_ADDR24										R_PPC	=	2

				R_PPC_ADDR16										R_PPC	=	3

				R_PPC_ADDR16_LO							R_PPC	=	4

				R_PPC_ADDR16_HI							R_PPC	=	5

				R_PPC_ADDR16_HA							R_PPC	=	6

				R_PPC_ADDR14										R_PPC	=	7

				R_PPC_ADDR14_BRTAKEN		R_PPC	=	8

				R_PPC_ADDR14_BRNTAKEN	R_PPC	=	9

				R_PPC_REL24											R_PPC	=	10

				R_PPC_REL14											R_PPC	=	11

				R_PPC_REL14_BRTAKEN			R_PPC	=	12

				R_PPC_REL14_BRNTAKEN		R_PPC	=	13

				R_PPC_GOT16											R_PPC	=	14

				R_PPC_GOT16_LO								R_PPC	=	15

				R_PPC_GOT16_HI								R_PPC	=	16

				R_PPC_GOT16_HA								R_PPC	=	17

				R_PPC_PLTREL24								R_PPC	=	18

				R_PPC_COPY												R_PPC	=	19

				R_PPC_GLOB_DAT								R_PPC	=	20

				R_PPC_JMP_SLOT								R_PPC	=	21

				R_PPC_RELATIVE								R_PPC	=	22

				R_PPC_LOCAL24PC							R_PPC	=	23

				R_PPC_UADDR32									R_PPC	=	24

				R_PPC_UADDR16									R_PPC	=	25

				R_PPC_REL32											R_PPC	=	26

				R_PPC_PLT32											R_PPC	=	27

				R_PPC_PLTREL32								R_PPC	=	28

				R_PPC_PLT16_LO								R_PPC	=	29

				R_PPC_PLT16_HI								R_PPC	=	30

				R_PPC_PLT16_HA								R_PPC	=	31

				R_PPC_SDAREL16								R_PPC	=	32

				R_PPC_SECTOFF									R_PPC	=	33

				R_PPC_SECTOFF_LO						R_PPC	=	34

				R_PPC_SECTOFF_HI						R_PPC	=	35

				R_PPC_SECTOFF_HA						R_PPC	=	36

				R_PPC_TLS													R_PPC	=	67

				R_PPC_DTPMOD32								R_PPC	=	68

				R_PPC_TPREL16									R_PPC	=	69

				R_PPC_TPREL16_LO						R_PPC	=	70

				R_PPC_TPREL16_HI						R_PPC	=	71

				R_PPC_TPREL16_HA						R_PPC	=	72

				R_PPC_TPREL32									R_PPC	=	73

				R_PPC_DTPREL16								R_PPC	=	74

				R_PPC_DTPREL16_LO					R_PPC	=	75

				R_PPC_DTPREL16_HI					R_PPC	=	76

				R_PPC_DTPREL16_HA					R_PPC	=	77

				R_PPC_DTPREL32								R_PPC	=	78

				R_PPC_GOT_TLSGD16					R_PPC	=	79

				R_PPC_GOT_TLSGD16_LO		R_PPC	=	80

				R_PPC_GOT_TLSGD16_HI		R_PPC	=	81

				R_PPC_GOT_TLSGD16_HA		R_PPC	=	82

				R_PPC_GOT_TLSLD16					R_PPC	=	83

				R_PPC_GOT_TLSLD16_LO		R_PPC	=	84

				R_PPC_GOT_TLSLD16_HI		R_PPC	=	85

				R_PPC_GOT_TLSLD16_HA		R_PPC	=	86

				R_PPC_GOT_TPREL16					R_PPC	=	87

				R_PPC_GOT_TPREL16_LO		R_PPC	=	88

				R_PPC_GOT_TPREL16_HI		R_PPC	=	89

				R_PPC_GOT_TPREL16_HA		R_PPC	=	90

				R_PPC_EMB_NADDR32					R_PPC	=	101

				R_PPC_EMB_NADDR16					R_PPC	=	102

				R_PPC_EMB_NADDR16_LO		R_PPC	=	103

				R_PPC_EMB_NADDR16_HI		R_PPC	=	104

				R_PPC_EMB_NADDR16_HA		R_PPC	=	105

				R_PPC_EMB_SDAI16						R_PPC	=	106

				R_PPC_EMB_SDA2I16					R_PPC	=	107

				R_PPC_EMB_SDA2REL					R_PPC	=	108

				R_PPC_EMB_SDA21							R_PPC	=	109

				R_PPC_EMB_MRKREF						R_PPC	=	110

				R_PPC_EMB_RELSEC16				R_PPC	=	111

				R_PPC_EMB_RELST_LO				R_PPC	=	112

				R_PPC_EMB_RELST_HI				R_PPC	=	113

				R_PPC_EMB_RELST_HA				R_PPC	=	114

				R_PPC_EMB_BIT_FLD					R_PPC	=	115

				R_PPC_EMB_RELSDA						R_PPC	=	116

)

func	(R_PPC)	GoString

func	(i	R_PPC)	GoString()	string

func	(R_PPC)	String

func	(i	R_PPC)	String()	string

type	R_SPARC
type	R_SPARC	int

Relocation	types	for	SPARC.

const	(

				R_SPARC_NONE					R_SPARC	=	0

				R_SPARC_8								R_SPARC	=	1

				R_SPARC_16							R_SPARC	=	2

				R_SPARC_32							R_SPARC	=	3

				R_SPARC_DISP8				R_SPARC	=	4

				R_SPARC_DISP16			R_SPARC	=	5

				R_SPARC_DISP32			R_SPARC	=	6

				R_SPARC_WDISP30		R_SPARC	=	7

				R_SPARC_WDISP22		R_SPARC	=	8

				R_SPARC_HI22					R_SPARC	=	9

				R_SPARC_22							R_SPARC	=	10

				R_SPARC_13							R_SPARC	=	11

				R_SPARC_LO10					R_SPARC	=	12

				R_SPARC_GOT10				R_SPARC	=	13

				R_SPARC_GOT13				R_SPARC	=	14

				R_SPARC_GOT22				R_SPARC	=	15

				R_SPARC_PC10					R_SPARC	=	16

				R_SPARC_PC22					R_SPARC	=	17

				R_SPARC_WPLT30			R_SPARC	=	18

				R_SPARC_COPY					R_SPARC	=	19

				R_SPARC_GLOB_DAT	R_SPARC	=	20

				R_SPARC_JMP_SLOT	R_SPARC	=	21

				R_SPARC_RELATIVE	R_SPARC	=	22

				R_SPARC_UA32					R_SPARC	=	23

				R_SPARC_PLT32				R_SPARC	=	24

				R_SPARC_HIPLT22		R_SPARC	=	25

				R_SPARC_LOPLT10		R_SPARC	=	26

				R_SPARC_PCPLT32		R_SPARC	=	27

				R_SPARC_PCPLT22		R_SPARC	=	28

				R_SPARC_PCPLT10		R_SPARC	=	29

				R_SPARC_10							R_SPARC	=	30

				R_SPARC_11							R_SPARC	=	31

				R_SPARC_64							R_SPARC	=	32

				R_SPARC_OLO10				R_SPARC	=	33

				R_SPARC_HH22					R_SPARC	=	34

				R_SPARC_HM10					R_SPARC	=	35

				R_SPARC_LM22					R_SPARC	=	36

				R_SPARC_PC_HH22		R_SPARC	=	37

				R_SPARC_PC_HM10		R_SPARC	=	38

				R_SPARC_PC_LM22		R_SPARC	=	39

				R_SPARC_WDISP16		R_SPARC	=	40

				R_SPARC_WDISP19		R_SPARC	=	41

				R_SPARC_GLOB_JMP	R_SPARC	=	42

				R_SPARC_7								R_SPARC	=	43

				R_SPARC_5								R_SPARC	=	44

				R_SPARC_6								R_SPARC	=	45

				R_SPARC_DISP64			R_SPARC	=	46

				R_SPARC_PLT64				R_SPARC	=	47

				R_SPARC_HIX22				R_SPARC	=	48

				R_SPARC_LOX10				R_SPARC	=	49

				R_SPARC_H44						R_SPARC	=	50

				R_SPARC_M44						R_SPARC	=	51

				R_SPARC_L44						R_SPARC	=	52

				R_SPARC_REGISTER	R_SPARC	=	53

				R_SPARC_UA64					R_SPARC	=	54

				R_SPARC_UA16					R_SPARC	=	55

)

func	(R_SPARC)	GoString

func	(i	R_SPARC)	GoString()	string

func	(R_SPARC)	String

func	(i	R_SPARC)	String()	string

type	R_X86_64
type	R_X86_64	int

Relocation	types	for	x86-64.

const	(

				R_X86_64_NONE					R_X86_64	=	0		/*	No	relocation.	*/

				R_X86_64_64							R_X86_64	=	1		/*	Add	64	bit	symbol	value.	*/

				R_X86_64_PC32					R_X86_64	=	2		/*	PC-relative	32	bit	signed	sym	value.	*/

				R_X86_64_GOT32				R_X86_64	=	3		/*	PC-relative	32	bit	GOT	offset.	*/

				R_X86_64_PLT32				R_X86_64	=	4		/*	PC-relative	32	bit	PLT	offset.	*/

				R_X86_64_COPY					R_X86_64	=	5		/*	Copy	data	from	shared	object.	*/

				R_X86_64_GLOB_DAT	R_X86_64	=	6		/*	Set	GOT	entry	to	data	address.	*/

				R_X86_64_JMP_SLOT	R_X86_64	=	7		/*	Set	GOT	entry	to	code	address.	*/

				R_X86_64_RELATIVE	R_X86_64	=	8		/*	Add	load	address	of	shared	object.	*/

				R_X86_64_GOTPCREL	R_X86_64	=	9		/*	Add	32	bit	signed	pcrel	offset	to	GOT.	*/

				R_X86_64_32							R_X86_64	=	10	/*	Add	32	bit	zero	extended	symbol	value	*/

				R_X86_64_32S						R_X86_64	=	11	/*	Add	32	bit	sign	extended	symbol	value	*/

				R_X86_64_16							R_X86_64	=	12	/*	Add	16	bit	zero	extended	symbol	value	*/

				R_X86_64_PC16					R_X86_64	=	13	/*	Add	16	bit	signed	extended	pc	relative	symbol	value	*/

				R_X86_64_8								R_X86_64	=	14	/*	Add	8	bit	zero	extended	symbol	value	*/

				R_X86_64_PC8						R_X86_64	=	15	/*	Add	8	bit	signed	extended	pc	relative	symbol	value	*/

				R_X86_64_DTPMOD64	R_X86_64	=	16	/*	ID	of	module	containing	symbol	*/

				R_X86_64_DTPOFF64	R_X86_64	=	17	/*	Offset	in	TLS	block	*/

				R_X86_64_TPOFF64		R_X86_64	=	18	/*	Offset	in	static	TLS	block	*/

				R_X86_64_TLSGD				R_X86_64	=	19	/*	PC	relative	offset	to	GD	GOT	entry	*/

				R_X86_64_TLSLD				R_X86_64	=	20	/*	PC	relative	offset	to	LD	GOT	entry	*/

				R_X86_64_DTPOFF32	R_X86_64	=	21	/*	Offset	in	TLS	block	*/

				R_X86_64_GOTTPOFF	R_X86_64	=	22	/*	PC	relative	offset	to	IE	GOT	entry	*/

				R_X86_64_TPOFF32		R_X86_64	=	23	/*	Offset	in	static	TLS	block	*/

)

func	(R_X86_64)	GoString

func	(i	R_X86_64)	GoString()	string

func	(R_X86_64)	String

func	(i	R_X86_64)	String()	string

type	Rel32
type	Rel32	struct	{

				Off		uint32	/*	Location	to	be	relocated.	*/

				Info	uint32	/*	Relocation	type	and	symbol	index.	*/

}

ELF32	Relocations	that	don't	need	an	addend	field.

type	Rel64
type	Rel64	struct	{

				Off		uint64	/*	Location	to	be	relocated.	*/

				Info	uint64	/*	Relocation	type	and	symbol	index.	*/

}

ELF64	relocations	that	don't	need	an	addend	field.

type	Rela32
type	Rela32	struct	{

				Off				uint32	/*	Location	to	be	relocated.	*/

				Info			uint32	/*	Relocation	type	and	symbol	index.	*/

				Addend	int32		/*	Addend.	*/

}

ELF32	Relocations	that	need	an	addend	field.

type	Rela64
type	Rela64	struct	{

				Off				uint64	/*	Location	to	be	relocated.	*/

				Info			uint64	/*	Relocation	type	and	symbol	index.	*/

				Addend	int64		/*	Addend.	*/

}

ELF64	relocations	that	need	an	addend	field.

type	Section
type	Section	struct	{

				SectionHeader

				//	Embed	ReaderAt	for	ReadAt	method.

				//	Do	not	embed	SectionReader	directly

				//	to	avoid	having	Read	and	Seek.

				//	If	a	client	wants	Read	and	Seek	it	must	use

				//	Open()	to	avoid	fighting	over	the	seek	offset

				//	with	other	clients.

				io.ReaderAt

				//	contains	filtered	or	unexported	fields

}

A	Section	represents	a	single	section	in	an	ELF	file.

func	(*Section)	Data

func	(s	*Section)	Data()	([]byte,	error)

Data	reads	and	returns	the	contents	of	the	ELF	section.

func	(*Section)	Open

func	(s	*Section)	Open()	io.ReadSeeker

Open	returns	a	new	ReadSeeker	reading	the	ELF	section.

type	Section32
type	Section32	struct	{

				Name						uint32	/*	Section	name	(index	into	the	section	header	string	table).	*/

				Type						uint32	/*	Section	type.	*/

				Flags					uint32	/*	Section	flags.	*/

				Addr						uint32	/*	Address	in	memory	image.	*/

				Off							uint32	/*	Offset	in	file.	*/

				Size						uint32	/*	Size	in	bytes.	*/

				Link						uint32	/*	Index	of	a	related	section.	*/

				Info						uint32	/*	Depends	on	section	type.	*/

				Addralign	uint32	/*	Alignment	in	bytes.	*/

				Entsize			uint32	/*	Size	of	each	entry	in	section.	*/

}

ELF32	Section	header.

type	Section64
type	Section64	struct	{

				Name						uint32	/*	Section	name	(index	into	the	section	header	string	table).	*/

				Type						uint32	/*	Section	type.	*/

				Flags					uint64	/*	Section	flags.	*/

				Addr						uint64	/*	Address	in	memory	image.	*/

				Off							uint64	/*	Offset	in	file.	*/

				Size						uint64	/*	Size	in	bytes.	*/

				Link						uint32	/*	Index	of	a	related	section.	*/

				Info						uint32	/*	Depends	on	section	type.	*/

				Addralign	uint64	/*	Alignment	in	bytes.	*/

				Entsize			uint64	/*	Size	of	each	entry	in	section.	*/

}

ELF64	Section	header.

type	SectionFlag
type	SectionFlag	uint32

Section	flags.

const	(

				SHF_WRITE												SectionFlag	=	0x1								/*	Section	contains	writable	data.	*/

				SHF_ALLOC												SectionFlag	=	0x2								/*	Section	occupies	memory.	*/

				SHF_EXECINSTR								SectionFlag	=	0x4								/*	Section	contains	instructions.	*/

				SHF_MERGE												SectionFlag	=	0x10							/*	Section	may	be	merged.	*/

				SHF_STRINGS										SectionFlag	=	0x20							/*	Section	contains	strings.	*/

				SHF_INFO_LINK								SectionFlag	=	0x40							/*	sh_info	holds	section	index.	*/

				SHF_LINK_ORDER							SectionFlag	=	0x80							/*	Special	ordering	requirements.	*/

				SHF_OS_NONCONFORMING	SectionFlag	=	0x100						/*	OS-specific	processing	required.	*/

				SHF_GROUP												SectionFlag	=	0x200						/*	Member	of	section	group.	*/

				SHF_TLS														SectionFlag	=	0x400						/*	Section	contains	TLS	data.	*/

				SHF_MASKOS											SectionFlag	=	0x0ff00000	/*	OS-specific	semantics.	*/

				SHF_MASKPROC									SectionFlag	=	0xf0000000	/*	Processor-specific	semantics.	*/

)

func	(SectionFlag)	GoString

func	(i	SectionFlag)	GoString()	string

func	(SectionFlag)	String

func	(i	SectionFlag)	String()	string

type	SectionHeader
type	SectionHeader	struct	{

				Name						string

				Type						SectionType

				Flags					SectionFlag

				Addr						uint64

				Offset				uint64

				Size						uint64

				Link						uint32

				Info						uint32

				Addralign	uint64

				Entsize			uint64

}

A	SectionHeader	represents	a	single	ELF	section	header.

type	SectionIndex
type	SectionIndex	int

Special	section	indices.

const	(

				SHN_UNDEF					SectionIndex	=	0						/*	Undefined,	missing,	irrelevant.	*/

				SHN_LORESERVE	SectionIndex	=	0xff00	/*	First	of	reserved	range.	*/

				SHN_LOPROC				SectionIndex	=	0xff00	/*	First	processor-specific.	*/

				SHN_HIPROC				SectionIndex	=	0xff1f	/*	Last	processor-specific.	*/

				SHN_LOOS						SectionIndex	=	0xff20	/*	First	operating	system-specific.	*/

				SHN_HIOS						SectionIndex	=	0xff3f	/*	Last	operating	system-specific.	*/

				SHN_ABS							SectionIndex	=	0xfff1	/*	Absolute	values.	*/

				SHN_COMMON				SectionIndex	=	0xfff2	/*	Common	data.	*/

				SHN_XINDEX				SectionIndex	=	0xffff	/*	Escape	--	index	stored	elsewhere.	*/

				SHN_HIRESERVE	SectionIndex	=	0xffff	/*	Last	of	reserved	range.	*/

)

func	(SectionIndex)	GoString

func	(i	SectionIndex)	GoString()	string

func	(SectionIndex)	String

func	(i	SectionIndex)	String()	string

type	SectionType
type	SectionType	uint32

Section	type.

const	(

				SHT_NULL											SectionType	=	0										/*	inactive	*/

				SHT_PROGBITS							SectionType	=	1										/*	program	defined	information	*/

				SHT_SYMTAB									SectionType	=	2										/*	symbol	table	section	*/

				SHT_STRTAB									SectionType	=	3										/*	string	table	section	*/

				SHT_RELA											SectionType	=	4										/*	relocation	section	with	addends	*/

				SHT_HASH											SectionType	=	5										/*	symbol	hash	table	section	*/

				SHT_DYNAMIC								SectionType	=	6										/*	dynamic	section	*/

				SHT_NOTE											SectionType	=	7										/*	note	section	*/

				SHT_NOBITS									SectionType	=	8										/*	no	space	section	*/

				SHT_REL												SectionType	=	9										/*	relocation	section	-	no	addends	*/

				SHT_SHLIB										SectionType	=	10									/*	reserved	-	purpose	unknown	*/

				SHT_DYNSYM									SectionType	=	11									/*	dynamic	symbol	table	section	*/

				SHT_INIT_ARRAY					SectionType	=	14									/*	Initialization	function	pointers.	*/

				SHT_FINI_ARRAY					SectionType	=	15									/*	Termination	function	pointers.	*/

				SHT_PREINIT_ARRAY		SectionType	=	16									/*	Pre-initialization	function	ptrs.	*/

				SHT_GROUP										SectionType	=	17									/*	Section	group.	*/

				SHT_SYMTAB_SHNDX			SectionType	=	18									/*	Section	indexes	(see	SHN_XINDEX).	*/

				SHT_LOOS											SectionType	=	0x60000000	/*	First	of	OS	specific	semantics	*/

				SHT_GNU_ATTRIBUTES	SectionType	=	0x6ffffff5	/*	GNU	object	attributes	*/

				SHT_GNU_HASH							SectionType	=	0x6ffffff6	/*	GNU	hash	table	*/

				SHT_GNU_LIBLIST				SectionType	=	0x6ffffff7	/*	GNU	prelink	library	list	*/

				SHT_GNU_VERDEF					SectionType	=	0x6ffffffd	/*	GNU	version	definition	section	*/

				SHT_GNU_VERNEED				SectionType	=	0x6ffffffe	/*	GNU	version	needs	section	*/

				SHT_GNU_VERSYM					SectionType	=	0x6fffffff	/*	GNU	version	symbol	table	*/

				SHT_HIOS											SectionType	=	0x6fffffff	/*	Last	of	OS	specific	semantics	*/

				SHT_LOPROC									SectionType	=	0x70000000	/*	reserved	range	for	processor	*/

				SHT_HIPROC									SectionType	=	0x7fffffff	/*	specific	section	header	types	*/

				SHT_LOUSER									SectionType	=	0x80000000	/*	reserved	range	for	application	*/

				SHT_HIUSER									SectionType	=	0xffffffff	/*	specific	indexes	*/

)

func	(SectionType)	GoString

func	(i	SectionType)	GoString()	string

func	(SectionType)	String

func	(i	SectionType)	String()	string

type	Sym32
type	Sym32	struct	{

				Name		uint32

				Value	uint32

				Size		uint32

				Info		uint8

				Other	uint8

				Shndx	uint16

}

ELF32	Symbol.

type	Sym64
type	Sym64	struct	{

				Name		uint32	/*	String	table	index	of	name.	*/

				Info		uint8		/*	Type	and	binding	information.	*/

				Other	uint8		/*	Reserved	(not	used).	*/

				Shndx	uint16	/*	Section	index	of	symbol.	*/

				Value	uint64	/*	Symbol	value.	*/

				Size		uint64	/*	Size	of	associated	object.	*/

}

ELF64	symbol	table	entries.

type	SymBind
type	SymBind	int

Symbol	Binding	-	ELFNN_ST_BIND	-	st_info

const	(

				STB_LOCAL		SymBind	=	0		/*	Local	symbol	*/

				STB_GLOBAL	SymBind	=	1		/*	Global	symbol	*/

				STB_WEAK			SymBind	=	2		/*	like	global	-	lower	precedence	*/

				STB_LOOS			SymBind	=	10	/*	Reserved	range	for	operating	system	*/

				STB_HIOS			SymBind	=	12	/*			specific	semantics.	*/

				STB_LOPROC	SymBind	=	13	/*	reserved	range	for	processor	*/

				STB_HIPROC	SymBind	=	15	/*			specific	semantics.	*/

)

func	ST_BIND

func	ST_BIND(info	uint8)	SymBind

func	(SymBind)	GoString

func	(i	SymBind)	GoString()	string

func	(SymBind)	String

func	(i	SymBind)	String()	string

type	SymType
type	SymType	int

Symbol	type	-	ELFNN_ST_TYPE	-	st_info

const	(

				STT_NOTYPE		SymType	=	0		/*	Unspecified	type.	*/

				STT_OBJECT		SymType	=	1		/*	Data	object.	*/

				STT_FUNC				SymType	=	2		/*	Function.	*/

				STT_SECTION	SymType	=	3		/*	Section.	*/

				STT_FILE				SymType	=	4		/*	Source	file.	*/

				STT_COMMON		SymType	=	5		/*	Uninitialized	common	block.	*/

				STT_TLS					SymType	=	6		/*	TLS	object.	*/

				STT_LOOS				SymType	=	10	/*	Reserved	range	for	operating	system	*/

				STT_HIOS				SymType	=	12	/*			specific	semantics.	*/

				STT_LOPROC		SymType	=	13	/*	reserved	range	for	processor	*/

				STT_HIPROC		SymType	=	15	/*			specific	semantics.	*/

)

func	ST_TYPE

func	ST_TYPE(info	uint8)	SymType

func	(SymType)	GoString

func	(i	SymType)	GoString()	string

func	(SymType)	String

func	(i	SymType)	String()	string

type	SymVis
type	SymVis	int

Symbol	visibility	-	ELFNN_ST_VISIBILITY	-	st_other

const	(

				STV_DEFAULT			SymVis	=	0x0	/*	Default	visibility	(see	binding).	*/

				STV_INTERNAL		SymVis	=	0x1	/*	Special	meaning	in	relocatable	objects.	*/

				STV_HIDDEN				SymVis	=	0x2	/*	Not	visible.	*/

				STV_PROTECTED	SymVis	=	0x3	/*	Visible	but	not	preemptible.	*/

)

func	ST_VISIBILITY

func	ST_VISIBILITY(other	uint8)	SymVis

func	(SymVis)	GoString

func	(i	SymVis)	GoString()	string

func	(SymVis)	String

func	(i	SymVis)	String()	string

type	Symbol
type	Symbol	struct	{

				Name								string

				Info,	Other	byte

				Section					SectionIndex

				Value,	Size	uint64

}

A	Symbol	represents	an	entry	in	an	ELF	symbol	table	section.

type	Type
type	Type	uint16

Type	is	found	in	Header.Type.

const	(

				ET_NONE			Type	=	0						/*	Unknown	type.	*/

				ET_REL				Type	=	1						/*	Relocatable.	*/

				ET_EXEC			Type	=	2						/*	Executable.	*/

				ET_DYN				Type	=	3						/*	Shared	object.	*/

				ET_CORE			Type	=	4						/*	Core	file.	*/

				ET_LOOS			Type	=	0xfe00	/*	First	operating	system	specific.	*/

				ET_HIOS			Type	=	0xfeff	/*	Last	operating	system-specific.	*/

				ET_LOPROC	Type	=	0xff00	/*	First	processor-specific.	*/

				ET_HIPROC	Type	=	0xffff	/*	Last	processor-specific.	*/

)

func	(Type)	GoString

func	(i	Type)	GoString()	string

func	(Type)	String

func	(i	Type)	String()	string

type	Version
type	Version	byte

Version	is	found	in	Header.Ident[EI_VERSION]	and	Header.Version.

const	(

				EV_NONE				Version	=	0

				EV_CURRENT	Version	=	1

)

func	(Version)	GoString

func	(i	Version)	GoString()	string

func	(Version)	String

func	(i	Version)	String()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	gosym
import	"debug/gosym"

Overview
Index

Overview	?

Overview	?

Package	gosym	implements	access	to	the	Go	symbol	and	line	number	tables
embedded	in	Go	binaries	generated	by	the	gc	compilers.

Index

type	DecodingError
				func	(e	*DecodingError)	Error()	string
type	Func
type	LineTable
				func	NewLineTable(data	[]byte,	text	uint64)	*LineTable
				func	(t	*LineTable)	LineToPC(line	int,	maxpc	uint64)	uint64
				func	(t	*LineTable)	PCToLine(pc	uint64)	int
type	Obj
type	Sym
				func	(s	*Sym)	BaseName()	string
				func	(s	*Sym)	PackageName()	string
				func	(s	*Sym)	ReceiverName()	string
				func	(s	*Sym)	Static()	bool
type	Table
				func	NewTable(symtab	[]byte,	pcln	*LineTable)	(*Table,	error)
				func	(t	*Table)	LineToPC(file	string,	line	int)	(pc	uint64,	fn	*Func,	err
error)
				func	(t	*Table)	LookupFunc(name	string)	*Func
				func	(t	*Table)	LookupSym(name	string)	*Sym
				func	(t	*Table)	PCToFunc(pc	uint64)	*Func
				func	(t	*Table)	PCToLine(pc	uint64)	(file	string,	line	int,	fn	*Func)
				func	(t	*Table)	SymByAddr(addr	uint64)	*Sym
type	UnknownFileError
				func	(e	UnknownFileError)	Error()	string
type	UnknownLineError
				func	(e	*UnknownLineError)	Error()	string

Package	files

pclntab.go	symtab.go

type	DecodingError
type	DecodingError	struct	{

				//	contains	filtered	or	unexported	fields

}

DecodingError	represents	an	error	during	the	decoding	of	the	symbol	table.

func	(*DecodingError)	Error

func	(e	*DecodingError)	Error()	string

type	Func
type	Func	struct	{

				Entry	uint64

				*Sym

				End							uint64

				Params				[]*Sym

				Locals				[]*Sym

				FrameSize	int

				LineTable	*LineTable

				Obj							*Obj

}

A	Func	collects	information	about	a	single	function.

type	LineTable
type	LineTable	struct	{

				Data	[]byte

				PC			uint64

				Line	int

}

func	NewLineTable

func	NewLineTable(data	[]byte,	text	uint64)	*LineTable

NewLineTable	returns	a	new	PC/line	table	corresponding	to	the	encoded	data.
Text	must	be	the	start	address	of	the	corresponding	text	segment.

func	(*LineTable)	LineToPC

func	(t	*LineTable)	LineToPC(line	int,	maxpc	uint64)	uint64

func	(*LineTable)	PCToLine

func	(t	*LineTable)	PCToLine(pc	uint64)	int

type	Obj
type	Obj	struct	{

				Funcs	[]Func

				Paths	[]Sym

}

An	Obj	represents	a	single	object	file.

type	Sym
type	Sym	struct	{

				Value		uint64

				Type			byte

				Name			string

				GoType	uint64

				//	If	this	symbol	if	a	function	symbol,	the	corresponding	Func

				Func	*Func

}

A	Sym	represents	a	single	symbol	table	entry.

func	(*Sym)	BaseName

func	(s	*Sym)	BaseName()	string

BaseName	returns	the	symbol	name	without	the	package	or	receiver	name.

func	(*Sym)	PackageName

func	(s	*Sym)	PackageName()	string

PackageName	returns	the	package	part	of	the	symbol	name,	or	the	empty	string
if	there	is	none.

func	(*Sym)	ReceiverName

func	(s	*Sym)	ReceiverName()	string

ReceiverName	returns	the	receiver	type	name	of	this	symbol,	or	the	empty	string
if	there	is	none.

func	(*Sym)	Static

func	(s	*Sym)	Static()	bool

Static	returns	whether	this	symbol	is	static	(not	visible	outside	its	file).

type	Table
type	Table	struct	{

				Syms		[]Sym

				Funcs	[]Func

				Files	map[string]*Obj

				Objs		[]Obj

}

Table	represents	a	Go	symbol	table.	It	stores	all	of	the	symbols	decoded	from	the
program	and	provides	methods	to	translate	between	symbols,	names,	and
addresses.

func	NewTable

func	NewTable(symtab	[]byte,	pcln	*LineTable)	(*Table,	error)

NewTable	decodes	the	Go	symbol	table	in	data,	returning	an	in-memory
representation.

func	(*Table)	LineToPC

func	(t	*Table)	LineToPC(file	string,	line	int)	(pc	uint64,	fn	*Func,	err	error)

LineToPC	looks	up	the	first	program	counter	on	the	given	line	in	the	named	file.
Returns	UnknownPathError	or	UnknownLineError	if	there	is	an	error	looking	up
this	line.

func	(*Table)	LookupFunc

func	(t	*Table)	LookupFunc(name	string)	*Func

LookupFunc	returns	the	text,	data,	or	bss	symbol	with	the	given	name,	or	nil	if
no	such	symbol	is	found.

func	(*Table)	LookupSym

func	(t	*Table)	LookupSym(name	string)	*Sym

LookupSym	returns	the	text,	data,	or	bss	symbol	with	the	given	name,	or	nil	if
no	such	symbol	is	found.

func	(*Table)	PCToFunc

func	(t	*Table)	PCToFunc(pc	uint64)	*Func

PCToFunc	returns	the	function	containing	the	program	counter	pc,	or	nil	if	there
is	no	such	function.

func	(*Table)	PCToLine

func	(t	*Table)	PCToLine(pc	uint64)	(file	string,	line	int,	fn	*Func)

PCToLine	looks	up	line	number	information	for	a	program	counter.	If	there	is	no
information,	it	returns	fn	==	nil.

func	(*Table)	SymByAddr

func	(t	*Table)	SymByAddr(addr	uint64)	*Sym

SymByAddr	returns	the	text,	data,	or	bss	symbol	starting	at	the	given	address.
TODO(rsc):	Allow	lookup	by	any	address	within	the	symbol.

type	UnknownFileError
type	UnknownFileError	string

UnknownFileError	represents	a	failure	to	find	the	specific	file	in	the	symbol
table.

func	(UnknownFileError)	Error

func	(e	UnknownFileError)	Error()	string

type	UnknownLineError
type	UnknownLineError	struct	{

				File	string

				Line	int

}

UnknownLineError	represents	a	failure	to	map	a	line	to	a	program	counter,
either	because	the	line	is	beyond	the	bounds	of	the	file	or	because	there	is	no
code	on	the	given	line.

func	(*UnknownLineError)	Error

func	(e	*UnknownLineError)	Error()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	macho
import	"debug/macho"

Overview
Index

Overview	?

Overview	?

Package	macho	implements	access	to	Mach-O	object	files.

Index

Constants
type	Cpu
				func	(i	Cpu)	GoString()	string
				func	(i	Cpu)	String()	string
type	Dylib
type	DylibCmd
type	Dysymtab
type	DysymtabCmd
type	File
				func	NewFile(r	io.ReaderAt)	(*File,	error)
				func	Open(name	string)	(*File,	error)
				func	(f	*File)	Close()	error
				func	(f	*File)	DWARF()	(*dwarf.Data,	error)
				func	(f	*File)	ImportedLibraries()	([]string,	error)
				func	(f	*File)	ImportedSymbols()	([]string,	error)
				func	(f	*File)	Section(name	string)	*Section
				func	(f	*File)	Segment(name	string)	*Segment
type	FileHeader
type	FormatError
				func	(e	*FormatError)	Error()	string
type	Load
type	LoadBytes
				func	(b	LoadBytes)	Raw()	[]byte
type	LoadCmd
				func	(i	LoadCmd)	GoString()	string
				func	(i	LoadCmd)	String()	string
type	Nlist32
type	Nlist64
type	Regs386
type	RegsAMD64
type	Section
				func	(s	*Section)	Data()	([]byte,	error)
				func	(s	*Section)	Open()	io.ReadSeeker
type	Section32
type	Section64

type	SectionHeader
type	Segment
				func	(s	*Segment)	Data()	([]byte,	error)
				func	(s	*Segment)	Open()	io.ReadSeeker
type	Segment32
type	Segment64
type	SegmentHeader
type	Symbol
type	Symtab
type	SymtabCmd
type	Thread
type	Type

Package	files

file.go	macho.go

Constants
const	(

				Magic32	uint32	=	0xfeedface

				Magic64	uint32	=	0xfeedfacf

)

type	Cpu
type	Cpu	uint32

A	Cpu	is	a	Mach-O	cpu	type.

const	(

				Cpu386			Cpu	=	7

				CpuAmd64	Cpu	=	Cpu386	+	1<<24

)

func	(Cpu)	GoString

func	(i	Cpu)	GoString()	string

func	(Cpu)	String

func	(i	Cpu)	String()	string

type	Dylib
type	Dylib	struct	{

				LoadBytes

				Name											string

				Time											uint32

				CurrentVersion	uint32

				CompatVersion		uint32

}

A	Dylib	represents	a	Mach-O	load	dynamic	library	command.

type	DylibCmd
type	DylibCmd	struct	{

				Cmd												LoadCmd

				Len												uint32

				Name											uint32

				Time											uint32

				CurrentVersion	uint32

				CompatVersion		uint32

}

A	DylibCmd	is	a	Mach-O	load	dynamic	library	command.

type	Dysymtab
type	Dysymtab	struct	{

				LoadBytes

				DysymtabCmd

				IndirectSyms	[]uint32	//	indices	into	Symtab.Syms

}

A	Dysymtab	represents	a	Mach-O	dynamic	symbol	table	command.

type	DysymtabCmd
type	DysymtabCmd	struct	{

				Cmd												LoadCmd

				Len												uint32

				Ilocalsym						uint32

				Nlocalsym						uint32

				Iextdefsym					uint32

				Nextdefsym					uint32

				Iundefsym						uint32

				Nundefsym						uint32

				Tocoffset						uint32

				Ntoc											uint32

				Modtaboff						uint32

				Nmodtab								uint32

				Extrefsymoff			uint32

				Nextrefsyms				uint32

				Indirectsymoff	uint32

				Nindirectsyms		uint32

				Extreloff						uint32

				Nextrel								uint32

				Locreloff						uint32

				Nlocrel								uint32

}

A	DysymtabCmd	is	a	Mach-O	dynamic	symbol	table	command.

type	File
type	File	struct	{

				FileHeader

				ByteOrder	binary.ByteOrder

				Loads					[]Load

				Sections		[]*Section

				Symtab			*Symtab

				Dysymtab	*Dysymtab

				//	contains	filtered	or	unexported	fields

}

A	File	represents	an	open	Mach-O	file.

func	NewFile

func	NewFile(r	io.ReaderAt)	(*File,	error)

NewFile	creates	a	new	File	for	accessing	a	Mach-O	binary	in	an	underlying
reader.	The	Mach-O	binary	is	expected	to	start	at	position	0	in	the	ReaderAt.

func	Open

func	Open(name	string)	(*File,	error)

Open	opens	the	named	file	using	os.Open	and	prepares	it	for	use	as	a	Mach-O
binary.

func	(*File)	Close

func	(f	*File)	Close()	error

Close	closes	the	File.	If	the	File	was	created	using	NewFile	directly	instead	of
Open,	Close	has	no	effect.

func	(*File)	DWARF

func	(f	*File)	DWARF()	(*dwarf.Data,	error)

DWARF	returns	the	DWARF	debug	information	for	the	Mach-O	file.

func	(*File)	ImportedLibraries

func	(f	*File)	ImportedLibraries()	([]string,	error)

ImportedLibraries	returns	the	paths	of	all	libraries	referred	to	by	the	binary	f	that
are	expected	to	be	linked	with	the	binary	at	dynamic	link	time.

func	(*File)	ImportedSymbols

func	(f	*File)	ImportedSymbols()	([]string,	error)

ImportedSymbols	returns	the	names	of	all	symbols	referred	to	by	the	binary	f
that	are	expected	to	be	satisfied	by	other	libraries	at	dynamic	load	time.

func	(*File)	Section

func	(f	*File)	Section(name	string)	*Section

Section	returns	the	first	section	with	the	given	name,	or	nil	if	no	such	section
exists.

func	(*File)	Segment

func	(f	*File)	Segment(name	string)	*Segment

Segment	returns	the	first	Segment	with	the	given	name,	or	nil	if	no	such	segment
exists.

type	FileHeader
type	FileHeader	struct	{

				Magic		uint32

				Cpu				Cpu

				SubCpu	uint32

				Type			Type

				Ncmd			uint32

				Cmdsz		uint32

				Flags		uint32

}

A	FileHeader	represents	a	Mach-O	file	header.

type	FormatError
type	FormatError	struct	{

				//	contains	filtered	or	unexported	fields

}

func	(*FormatError)	Error

func	(e	*FormatError)	Error()	string

type	Load
type	Load	interface	{

				Raw()	[]byte

}

A	Load	represents	any	Mach-O	load	command.

type	LoadBytes
type	LoadBytes	[]byte

A	LoadBytes	is	the	uninterpreted	bytes	of	a	Mach-O	load	command.

func	(LoadBytes)	Raw

func	(b	LoadBytes)	Raw()	[]byte

type	LoadCmd
type	LoadCmd	uint32

A	LoadCmd	is	a	Mach-O	load	command.

const	(

				LoadCmdSegment				LoadCmd	=	1

				LoadCmdSymtab					LoadCmd	=	2

				LoadCmdThread					LoadCmd	=	4

				LoadCmdUnixThread	LoadCmd	=	5	//	thread+stack

				LoadCmdDysymtab			LoadCmd	=	11

				LoadCmdDylib						LoadCmd	=	12

				LoadCmdDylinker			LoadCmd	=	15

				LoadCmdSegment64		LoadCmd	=	25

)

func	(LoadCmd)	GoString

func	(i	LoadCmd)	GoString()	string

func	(LoadCmd)	String

func	(i	LoadCmd)	String()	string

type	Nlist32
type	Nlist32	struct	{

				Name		uint32

				Type		uint8

				Sect		uint8

				Desc		uint16

				Value	uint32

}

An	Nlist32	is	a	Mach-O	32-bit	symbol	table	entry.

type	Nlist64
type	Nlist64	struct	{

				Name		uint32

				Type		uint8

				Sect		uint8

				Desc		uint16

				Value	uint64

}

An	Nlist64	is	a	Mach-O	64-bit	symbol	table	entry.

type	Regs386
type	Regs386	struct	{

				AX				uint32

				BX				uint32

				CX				uint32

				DX				uint32

				DI				uint32

				SI				uint32

				BP				uint32

				SP				uint32

				SS				uint32

				FLAGS	uint32

				IP				uint32

				CS				uint32

				DS				uint32

				ES				uint32

				FS				uint32

				GS				uint32

}

Regs386	is	the	Mach-O	386	register	structure.

type	RegsAMD64
type	RegsAMD64	struct	{

				AX				uint64

				BX				uint64

				CX				uint64

				DX				uint64

				DI				uint64

				SI				uint64

				BP				uint64

				SP				uint64

				R8				uint64

				R9				uint64

				R10			uint64

				R11			uint64

				R12			uint64

				R13			uint64

				R14			uint64

				R15			uint64

				IP				uint64

				FLAGS	uint64

				CS				uint64

				FS				uint64

				GS				uint64

}

RegsAMD64	is	the	Mach-O	AMD64	register	structure.

type	Section
type	Section	struct	{

				SectionHeader

				//	Embed	ReaderAt	for	ReadAt	method.

				//	Do	not	embed	SectionReader	directly

				//	to	avoid	having	Read	and	Seek.

				//	If	a	client	wants	Read	and	Seek	it	must	use

				//	Open()	to	avoid	fighting	over	the	seek	offset

				//	with	other	clients.

				io.ReaderAt

				//	contains	filtered	or	unexported	fields

}

func	(*Section)	Data

func	(s	*Section)	Data()	([]byte,	error)

Data	reads	and	returns	the	contents	of	the	Mach-O	section.

func	(*Section)	Open

func	(s	*Section)	Open()	io.ReadSeeker

Open	returns	a	new	ReadSeeker	reading	the	Mach-O	section.

type	Section32
type	Section32	struct	{

				Name					[16]byte

				Seg						[16]byte

				Addr					uint32

				Size					uint32

				Offset			uint32

				Align				uint32

				Reloff			uint32

				Nreloc			uint32

				Flags				uint32

				Reserve1	uint32

				Reserve2	uint32

}

A	Section32	is	a	32-bit	Mach-O	section	header.

type	Section64
type	Section64	struct	{

				Name					[16]byte

				Seg						[16]byte

				Addr					uint64

				Size					uint64

				Offset			uint32

				Align				uint32

				Reloff			uint32

				Nreloc			uint32

				Flags				uint32

				Reserve1	uint32

				Reserve2	uint32

				Reserve3	uint32

}

A	Section32	is	a	64-bit	Mach-O	section	header.

type	SectionHeader
type	SectionHeader	struct	{

				Name			string

				Seg				string

				Addr			uint64

				Size			uint64

				Offset	uint32

				Align		uint32

				Reloff	uint32

				Nreloc	uint32

				Flags		uint32

}

type	Segment
type	Segment	struct	{

				LoadBytes

				SegmentHeader

				//	Embed	ReaderAt	for	ReadAt	method.

				//	Do	not	embed	SectionReader	directly

				//	to	avoid	having	Read	and	Seek.

				//	If	a	client	wants	Read	and	Seek	it	must	use

				//	Open()	to	avoid	fighting	over	the	seek	offset

				//	with	other	clients.

				io.ReaderAt

				//	contains	filtered	or	unexported	fields

}

A	Segment	represents	a	Mach-O	32-bit	or	64-bit	load	segment	command.

func	(*Segment)	Data

func	(s	*Segment)	Data()	([]byte,	error)

Data	reads	and	returns	the	contents	of	the	segment.

func	(*Segment)	Open

func	(s	*Segment)	Open()	io.ReadSeeker

Open	returns	a	new	ReadSeeker	reading	the	segment.

type	Segment32
type	Segment32	struct	{

				Cmd					LoadCmd

				Len					uint32

				Name				[16]byte

				Addr				uint32

				Memsz			uint32

				Offset		uint32

				Filesz		uint32

				Maxprot	uint32

				Prot				uint32

				Nsect			uint32

				Flag				uint32

}

A	Segment32	is	a	32-bit	Mach-O	segment	load	command.

type	Segment64
type	Segment64	struct	{

				Cmd					LoadCmd

				Len					uint32

				Name				[16]byte

				Addr				uint64

				Memsz			uint64

				Offset		uint64

				Filesz		uint64

				Maxprot	uint32

				Prot				uint32

				Nsect			uint32

				Flag				uint32

}

A	Segment64	is	a	64-bit	Mach-O	segment	load	command.

type	SegmentHeader
type	SegmentHeader	struct	{

				Cmd					LoadCmd

				Len					uint32

				Name				string

				Addr				uint64

				Memsz			uint64

				Offset		uint64

				Filesz		uint64

				Maxprot	uint32

				Prot				uint32

				Nsect			uint32

				Flag				uint32

}

A	SegmentHeader	is	the	header	for	a	Mach-O	32-bit	or	64-bit	load	segment
command.

type	Symbol
type	Symbol	struct	{

				Name		string

				Type		uint8

				Sect		uint8

				Desc		uint16

				Value	uint64

}

A	Symbol	is	a	Mach-O	32-bit	or	64-bit	symbol	table	entry.

type	Symtab
type	Symtab	struct	{

				LoadBytes

				SymtabCmd

				Syms	[]Symbol

}

A	Symtab	represents	a	Mach-O	symbol	table	command.

type	SymtabCmd
type	SymtabCmd	struct	{

				Cmd					LoadCmd

				Len					uint32

				Symoff		uint32

				Nsyms			uint32

				Stroff		uint32

				Strsize	uint32

}

A	SymtabCmd	is	a	Mach-O	symbol	table	command.

type	Thread
type	Thread	struct	{

				Cmd		LoadCmd

				Len		uint32

				Type	uint32

				Data	[]uint32

}

A	Thread	is	a	Mach-O	thread	state	command.

type	Type
type	Type	uint32

A	Type	is	a	Mach-O	file	type,	either	an	object	or	an	executable.

const	(

				TypeObj		Type	=	1

				TypeExec	Type	=	2

)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	pe
import	"debug/pe"

Overview
Index

Overview	?

Overview	?

Package	pe	implements	access	to	PE	(Microsoft	Windows	Portable	Executable)
files.

Index

Constants
type	File
				func	NewFile(r	io.ReaderAt)	(*File,	error)
				func	Open(name	string)	(*File,	error)
				func	(f	*File)	Close()	error
				func	(f	*File)	DWARF()	(*dwarf.Data,	error)
				func	(f	*File)	ImportedLibraries()	([]string,	error)
				func	(f	*File)	ImportedSymbols()	([]string,	error)
				func	(f	*File)	Section(name	string)	*Section
type	FileHeader
type	FormatError
				func	(e	*FormatError)	Error()	string
type	ImportDirectory
type	Section
				func	(s	*Section)	Data()	([]byte,	error)
				func	(s	*Section)	Open()	io.ReadSeeker
type	SectionHeader
type	SectionHeader32

Package	files

file.go	pe.go

Constants
const	(

				IMAGE_FILE_MACHINE_UNKNOWN			=	0x0

				IMAGE_FILE_MACHINE_AM33						=	0x1d3

				IMAGE_FILE_MACHINE_AMD64					=	0x8664

				IMAGE_FILE_MACHINE_ARM							=	0x1c0

				IMAGE_FILE_MACHINE_EBC							=	0xebc

				IMAGE_FILE_MACHINE_I386						=	0x14c

				IMAGE_FILE_MACHINE_IA64						=	0x200

				IMAGE_FILE_MACHINE_M32R						=	0x9041

				IMAGE_FILE_MACHINE_MIPS16				=	0x266

				IMAGE_FILE_MACHINE_MIPSFPU			=	0x366

				IMAGE_FILE_MACHINE_MIPSFPU16	=	0x466

				IMAGE_FILE_MACHINE_POWERPC			=	0x1f0

				IMAGE_FILE_MACHINE_POWERPCFP	=	0x1f1

				IMAGE_FILE_MACHINE_R4000					=	0x166

				IMAGE_FILE_MACHINE_SH3							=	0x1a2

				IMAGE_FILE_MACHINE_SH3DSP				=	0x1a3

				IMAGE_FILE_MACHINE_SH4							=	0x1a6

				IMAGE_FILE_MACHINE_SH5							=	0x1a8

				IMAGE_FILE_MACHINE_THUMB					=	0x1c2

				IMAGE_FILE_MACHINE_WCEMIPSV2	=	0x169

)

type	File
type	File	struct	{

				FileHeader

				Sections	[]*Section

				//	contains	filtered	or	unexported	fields

}

A	File	represents	an	open	PE	file.

func	NewFile

func	NewFile(r	io.ReaderAt)	(*File,	error)

NewFile	creates	a	new	File	for	accessing	a	PE	binary	in	an	underlying	reader.

func	Open

func	Open(name	string)	(*File,	error)

Open	opens	the	named	file	using	os.Open	and	prepares	it	for	use	as	a	PE	binary.

func	(*File)	Close

func	(f	*File)	Close()	error

Close	closes	the	File.	If	the	File	was	created	using	NewFile	directly	instead	of
Open,	Close	has	no	effect.

func	(*File)	DWARF

func	(f	*File)	DWARF()	(*dwarf.Data,	error)

func	(*File)	ImportedLibraries

func	(f	*File)	ImportedLibraries()	([]string,	error)

ImportedLibraries	returns	the	names	of	all	libraries	referred	to	by	the	binary	f
that	are	expected	to	be	linked	with	the	binary	at	dynamic	link	time.

func	(*File)	ImportedSymbols

func	(f	*File)	ImportedSymbols()	([]string,	error)

ImportedSymbols	returns	the	names	of	all	symbols	referred	to	by	the	binary	f
that	are	expected	to	be	satisfied	by	other	libraries	at	dynamic	load	time.	It	does
not	return	weak	symbols.

func	(*File)	Section

func	(f	*File)	Section(name	string)	*Section

Section	returns	the	first	section	with	the	given	name,	or	nil	if	no	such	section
exists.

type	FileHeader
type	FileHeader	struct	{

				Machine														uint16

				NumberOfSections					uint16

				TimeDateStamp								uint32

				PointerToSymbolTable	uint32

				NumberOfSymbols						uint32

				SizeOfOptionalHeader	uint16

				Characteristics						uint16

}

type	FormatError
type	FormatError	struct	{

				//	contains	filtered	or	unexported	fields

}

func	(*FormatError)	Error

func	(e	*FormatError)	Error()	string

type	ImportDirectory
type	ImportDirectory	struct	{

				OriginalFirstThunk	uint32

				TimeDateStamp						uint32

				ForwarderChain					uint32

				Name															uint32

				FirstThunk									uint32

				//	contains	filtered	or	unexported	fields

}

type	Section
type	Section	struct	{

				SectionHeader

				//	Embed	ReaderAt	for	ReadAt	method.

				//	Do	not	embed	SectionReader	directly

				//	to	avoid	having	Read	and	Seek.

				//	If	a	client	wants	Read	and	Seek	it	must	use

				//	Open()	to	avoid	fighting	over	the	seek	offset

				//	with	other	clients.

				io.ReaderAt

				//	contains	filtered	or	unexported	fields

}

func	(*Section)	Data

func	(s	*Section)	Data()	([]byte,	error)

Data	reads	and	returns	the	contents	of	the	PE	section.

func	(*Section)	Open

func	(s	*Section)	Open()	io.ReadSeeker

Open	returns	a	new	ReadSeeker	reading	the	PE	section.

type	SectionHeader
type	SectionHeader	struct	{

				Name																	string

				VirtualSize										uint32

				VirtualAddress							uint32

				Size																	uint32

				Offset															uint32

				PointerToRelocations	uint32

				PointerToLineNumbers	uint32

				NumberOfRelocations		uint16

				NumberOfLineNumbers		uint16

				Characteristics						uint32

}

type	SectionHeader32
type	SectionHeader32	struct	{

				Name																	[8]uint8

				VirtualSize										uint32

				VirtualAddress							uint32

				SizeOfRawData								uint32

				PointerToRawData					uint32

				PointerToRelocations	uint32

				PointerToLineNumbers	uint32

				NumberOfRelocations		uint16

				NumberOfLineNumbers		uint16

				Characteristics						uint32

}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Directory	/src/pkg/encoding
Name 				 Synopsis

ascii85 				 Package	ascii85	implements	the	ascii85	data	encoding	as	used	in	thebtoa	tool	and	Adobe's	PostScript	and	PDF	document	formats.

asn1 				 Package	asn1	implements	parsing	of	DER-encoded	ASN.1	datastructures,	as	defined	in	ITU-T	Rec	X.690.

base32 				 Package	base32	implements	base32	encoding	as	specified	by	RFC4648.

base64 				 Package	base64	implements	base64	encoding	as	specified	by	RFC4648.

binary 				 Package	binary	implements	translation	between	numbers	and	bytesequences	and	encoding	and	decoding	of	varints.
csv 				 Package	csv	reads	and	writes	comma-separated	values	(CSV)	files.

gob 				 Package	gob	manages	streams	of	gobs	-	binary	values	exchangedbetween	an	Encoder	(transmitter)	and	a	Decoder	(receiver).
hex 				 Package	hex	implements	hexadecimal	encoding	and	decoding.

json 				 Package	json	implements	encoding	and	decoding	of	JSON	objects	asdefined	in	RFC	4627.

pem 				 Package	pem	implements	the	PEM	data	encoding,	which	originated
in	Privacy	Enhanced	Mail.

xml 				 Package	xml	implements	a	simple	XML	1.0	parser	that	understands
XML	name	spaces.

Need	more	packages?	Take	a	look	at	the	Go	Project	Dashboard.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://godashboard.appspot.com/
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	ascii85
import	"encoding/ascii85"

Overview
Index

Overview	?

Overview	?

Package	ascii85	implements	the	ascii85	data	encoding	as	used	in	the	btoa	tool
and	Adobe's	PostScript	and	PDF	document	formats.

Index

func	Decode(dst,	src	[]byte,	flush	bool)	(ndst,	nsrc	int,	err	error)
func	Encode(dst,	src	[]byte)	int
func	MaxEncodedLen(n	int)	int
func	NewDecoder(r	io.Reader)	io.Reader
func	NewEncoder(w	io.Writer)	io.WriteCloser
type	CorruptInputError
				func	(e	CorruptInputError)	Error()	string

Package	files

ascii85.go

func	Decode
func	Decode(dst,	src	[]byte,	flush	bool)	(ndst,	nsrc	int,	err	error)

Decode	decodes	src	into	dst,	returning	both	the	number	of	bytes	written	to	dst
and	the	number	consumed	from	src.	If	src	contains	invalid	ascii85	data,	Decode
will	return	the	number	of	bytes	successfully	written	and	a	CorruptInputError.
Decode	ignores	space	and	control	characters	in	src.	Often,	ascii85-encoded	data
is	wrapped	in	<~	and	~>	symbols.	Decode	expects	these	to	have	been	stripped	by
the	caller.

If	flush	is	true,	Decode	assumes	that	src	represents	the	end	of	the	input	stream
and	processes	it	completely	rather	than	wait	for	the	completion	of	another	32-bit
block.

NewDecoder	wraps	an	io.Reader	interface	around	Decode.

func	Encode
func	Encode(dst,	src	[]byte)	int

Encode	encodes	src	into	at	most	MaxEncodedLen(len(src))	bytes	of	dst,
returning	the	actual	number	of	bytes	written.

The	encoding	handles	4-byte	chunks,	using	a	special	encoding	for	the	last
fragment,	so	Encode	is	not	appropriate	for	use	on	individual	blocks	of	a	large
data	stream.	Use	NewEncoder()	instead.

Often,	ascii85-encoded	data	is	wrapped	in	<~	and	~>	symbols.	Encode	does	not
add	these.

func	MaxEncodedLen
func	MaxEncodedLen(n	int)	int

MaxEncodedLen	returns	the	maximum	length	of	an	encoding	of	n	source	bytes.

func	NewDecoder
func	NewDecoder(r	io.Reader)	io.Reader

NewDecoder	constructs	a	new	ascii85	stream	decoder.

func	NewEncoder
func	NewEncoder(w	io.Writer)	io.WriteCloser

NewEncoder	returns	a	new	ascii85	stream	encoder.	Data	written	to	the	returned
writer	will	be	encoded	and	then	written	to	w.	Ascii85	encodings	operate	in	32-bit
blocks;	when	finished	writing,	the	caller	must	Close	the	returned	encoder	to
flush	any	trailing	partial	block.

type	CorruptInputError
type	CorruptInputError	int64

func	(CorruptInputError)	Error

func	(e	CorruptInputError)	Error()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	asn1
import	"encoding/asn1"

Overview
Index

Overview	?

Overview	?

Package	asn1	implements	parsing	of	DER-encoded	ASN.1	data	structures,	as
defined	in	ITU-T	Rec	X.690.

See	also	“A	Layman's	Guide	to	a	Subset	of	ASN.1,	BER,	and	DER,”
http://luca.ntop.org/Teaching/Appunti/asn1.html.

http://luca.ntop.org/Teaching/Appunti/asn1.html

Index

func	Marshal(val	interface{})	([]byte,	error)
func	Unmarshal(b	[]byte,	val	interface{})	(rest	[]byte,	err	error)
func	UnmarshalWithParams(b	[]byte,	val	interface{},	params	string)	(rest
[]byte,	err	error)
type	BitString
				func	(b	BitString)	At(i	int)	int
				func	(b	BitString)	RightAlign()	[]byte
type	Enumerated
type	Flag
type	ObjectIdentifier
				func	(oi	ObjectIdentifier)	Equal(other	ObjectIdentifier)	bool
type	RawContent
type	RawValue
type	StructuralError
				func	(e	StructuralError)	Error()	string
type	SyntaxError
				func	(e	SyntaxError)	Error()	string

Package	files

asn1.go	common.go	marshal.go

func	Marshal
func	Marshal(val	interface{})	([]byte,	error)

Marshal	returns	the	ASN.1	encoding	of	val.

func	Unmarshal
func	Unmarshal(b	[]byte,	val	interface{})	(rest	[]byte,	err	error)

Unmarshal	parses	the	DER-encoded	ASN.1	data	structure	b	and	uses	the	reflect
package	to	fill	in	an	arbitrary	value	pointed	at	by	val.	Because	Unmarshal	uses
the	reflect	package,	the	structs	being	written	to	must	use	upper	case	field	names.

An	ASN.1	INTEGER	can	be	written	to	an	int,	int32,	int64,	or	*big.Int	(from	the
math/big	package).	If	the	encoded	value	does	not	fit	in	the	Go	type,	Unmarshal
returns	a	parse	error.

An	ASN.1	BIT	STRING	can	be	written	to	a	BitString.

An	ASN.1	OCTET	STRING	can	be	written	to	a	[]byte.

An	ASN.1	OBJECT	IDENTIFIER	can	be	written	to	an	ObjectIdentifier.

An	ASN.1	ENUMERATED	can	be	written	to	an	Enumerated.

An	ASN.1	UTCTIME	or	GENERALIZEDTIME	can	be	written	to	a	time.Time.

An	ASN.1	PrintableString	or	IA5String	can	be	written	to	a	string.

Any	of	the	above	ASN.1	values	can	be	written	to	an	interface{}.	The	value
stored	in	the	interface	has	the	corresponding	Go	type.	For	integers,	that	type	is
int64.

An	ASN.1	SEQUENCE	OF	x	or	SET	OF	x	can	be	written	to	a	slice	if	an	x	can
be	written	to	the	slice's	element	type.

An	ASN.1	SEQUENCE	or	SET	can	be	written	to	a	struct	if	each	of	the	elements
in	the	sequence	can	be	written	to	the	corresponding	element	in	the	struct.

The	following	tags	on	struct	fields	have	special	meaning	to	Unmarshal:

optional	 	 marks	the	field	as	ASN.1	OPTIONAL

[explicit]	tag:x	 specifies	the	ASN.1	tag	number;	implies	ASN.1	CONTEXT	SPECIFIC

default:x	 	 sets	the	default	value	for	optional	integer	fields

If	the	type	of	the	first	field	of	a	structure	is	RawContent	then	the	raw	ASN1
contents	of	the	struct	will	be	stored	in	it.

Other	ASN.1	types	are	not	supported;	if	it	encounters	them,	Unmarshal	returns	a
parse	error.

func	UnmarshalWithParams
func	UnmarshalWithParams(b	[]byte,	val	interface{},	params	string)	(rest	[]byte,	err	error)

UnmarshalWithParams	allows	field	parameters	to	be	specified	for	the	top-level
element.	The	form	of	the	params	is	the	same	as	the	field	tags.

type	BitString
type	BitString	struct	{

				Bytes					[]byte	//	bits	packed	into	bytes.

				BitLength	int				//	length	in	bits.

}

BitString	is	the	structure	to	use	when	you	want	an	ASN.1	BIT	STRING	type.	A
bit	string	is	padded	up	to	the	nearest	byte	in	memory	and	the	number	of	valid
bits	is	recorded.	Padding	bits	will	be	zero.

func	(BitString)	At

func	(b	BitString)	At(i	int)	int

At	returns	the	bit	at	the	given	index.	If	the	index	is	out	of	range	it	returns	false.

func	(BitString)	RightAlign

func	(b	BitString)	RightAlign()	[]byte

RightAlign	returns	a	slice	where	the	padding	bits	are	at	the	beginning.	The	slice
may	share	memory	with	the	BitString.

type	Enumerated
type	Enumerated	int

An	Enumerated	is	represented	as	a	plain	int.

type	Flag
type	Flag	bool

A	Flag	accepts	any	data	and	is	set	to	true	if	present.

type	ObjectIdentifier
type	ObjectIdentifier	[]int

An	ObjectIdentifier	represents	an	ASN.1	OBJECT	IDENTIFIER.

func	(ObjectIdentifier)	Equal

func	(oi	ObjectIdentifier)	Equal(other	ObjectIdentifier)	bool

Equal	returns	true	iff	oi	and	other	represent	the	same	identifier.

type	RawContent
type	RawContent	[]byte

RawContent	is	used	to	signal	that	the	undecoded,	DER	data	needs	to	be
preserved	for	a	struct.	To	use	it,	the	first	field	of	the	struct	must	have	this	type.
It's	an	error	for	any	of	the	other	fields	to	have	this	type.

type	RawValue
type	RawValue	struct	{

				Class,	Tag	int

				IsCompound	bool

				Bytes						[]byte

				FullBytes		[]byte	//	includes	the	tag	and	length

}

A	RawValue	represents	an	undecoded	ASN.1	object.

type	StructuralError
type	StructuralError	struct	{

				Msg	string

}

A	StructuralError	suggests	that	the	ASN.1	data	is	valid,	but	the	Go	type	which	is
receiving	it	doesn't	match.

func	(StructuralError)	Error

func	(e	StructuralError)	Error()	string

type	SyntaxError
type	SyntaxError	struct	{

				Msg	string

}

A	SyntaxError	suggests	that	the	ASN.1	data	is	invalid.

func	(SyntaxError)	Error

func	(e	SyntaxError)	Error()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	base32
import	"encoding/base32"

Overview
Index

Overview	?

Overview	?

Package	base32	implements	base32	encoding	as	specified	by	RFC	4648.

Index

Variables
func	NewDecoder(enc	*Encoding,	r	io.Reader)	io.Reader
func	NewEncoder(enc	*Encoding,	w	io.Writer)	io.WriteCloser
type	CorruptInputError
				func	(e	CorruptInputError)	Error()	string
type	Encoding
				func	NewEncoding(encoder	string)	*Encoding
				func	(enc	*Encoding)	Decode(dst,	src	[]byte)	(n	int,	err	error)
				func	(enc	*Encoding)	DecodeString(s	string)	([]byte,	error)
				func	(enc	*Encoding)	DecodedLen(n	int)	int
				func	(enc	*Encoding)	Encode(dst,	src	[]byte)
				func	(enc	*Encoding)	EncodeToString(src	[]byte)	string
				func	(enc	*Encoding)	EncodedLen(n	int)	int

Package	files

base32.go

Variables
var	HexEncoding	=	NewEncoding(encodeHex)

HexEncoding	is	the	“Extended	Hex	Alphabet”	defined	in	RFC	4648.	It	is
typically	used	in	DNS.

var	StdEncoding	=	NewEncoding(encodeStd)

StdEncoding	is	the	standard	base32	encoding,	as	defined	in	RFC	4648.

func	NewDecoder
func	NewDecoder(enc	*Encoding,	r	io.Reader)	io.Reader

NewDecoder	constructs	a	new	base32	stream	decoder.

func	NewEncoder
func	NewEncoder(enc	*Encoding,	w	io.Writer)	io.WriteCloser

NewEncoder	returns	a	new	base32	stream	encoder.	Data	written	to	the	returned
writer	will	be	encoded	using	enc	and	then	written	to	w.	Base32	encodings
operate	in	5-byte	blocks;	when	finished	writing,	the	caller	must	Close	the
returned	encoder	to	flush	any	partially	written	blocks.

type	CorruptInputError
type	CorruptInputError	int64

func	(CorruptInputError)	Error

func	(e	CorruptInputError)	Error()	string

type	Encoding
type	Encoding	struct	{

				//	contains	filtered	or	unexported	fields

}

An	Encoding	is	a	radix	32	encoding/decoding	scheme,	defined	by	a	32-character
alphabet.	The	most	common	is	the	"base32"	encoding	introduced	for	SASL
GSSAPI	and	standardized	in	RFC	4648.	The	alternate	"base32hex"	encoding	is
used	in	DNSSEC.

func	NewEncoding

func	NewEncoding(encoder	string)	*Encoding

NewEncoding	returns	a	new	Encoding	defined	by	the	given	alphabet,	which
must	be	a	32-byte	string.

func	(*Encoding)	Decode

func	(enc	*Encoding)	Decode(dst,	src	[]byte)	(n	int,	err	error)

Decode	decodes	src	using	the	encoding	enc.	It	writes	at	most
DecodedLen(len(src))	bytes	to	dst	and	returns	the	number	of	bytes	written.	If	src
contains	invalid	base32	data,	it	will	return	the	number	of	bytes	successfully
written	and	CorruptInputError.	New	line	characters	(\r	and	\n)	are	ignored.

func	(*Encoding)	DecodeString

func	(enc	*Encoding)	DecodeString(s	string)	([]byte,	error)

DecodeString	returns	the	bytes	represented	by	the	base32	string	s.

func	(*Encoding)	DecodedLen

func	(enc	*Encoding)	DecodedLen(n	int)	int

DecodedLen	returns	the	maximum	length	in	bytes	of	the	decoded	data
corresponding	to	n	bytes	of	base32-encoded	data.

func	(*Encoding)	Encode

func	(enc	*Encoding)	Encode(dst,	src	[]byte)

Encode	encodes	src	using	the	encoding	enc,	writing	EncodedLen(len(src))	bytes
to	dst.

The	encoding	pads	the	output	to	a	multiple	of	8	bytes,	so	Encode	is	not
appropriate	for	use	on	individual	blocks	of	a	large	data	stream.	Use
NewEncoder()	instead.

func	(*Encoding)	EncodeToString

func	(enc	*Encoding)	EncodeToString(src	[]byte)	string

EncodeToString	returns	the	base32	encoding	of	src.

func	(*Encoding)	EncodedLen

func	(enc	*Encoding)	EncodedLen(n	int)	int

EncodedLen	returns	the	length	in	bytes	of	the	base32	encoding	of	an	input	buffer
of	length	n.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	base64
import	"encoding/base64"

Overview
Index

Overview	?

Overview	?

Package	base64	implements	base64	encoding	as	specified	by	RFC	4648.

Index

Variables
func	NewDecoder(enc	*Encoding,	r	io.Reader)	io.Reader
func	NewEncoder(enc	*Encoding,	w	io.Writer)	io.WriteCloser
type	CorruptInputError
				func	(e	CorruptInputError)	Error()	string
type	Encoding
				func	NewEncoding(encoder	string)	*Encoding
				func	(enc	*Encoding)	Decode(dst,	src	[]byte)	(n	int,	err	error)
				func	(enc	*Encoding)	DecodeString(s	string)	([]byte,	error)
				func	(enc	*Encoding)	DecodedLen(n	int)	int
				func	(enc	*Encoding)	Encode(dst,	src	[]byte)
				func	(enc	*Encoding)	EncodeToString(src	[]byte)	string
				func	(enc	*Encoding)	EncodedLen(n	int)	int

Package	files

base64.go

Variables
var	StdEncoding	=	NewEncoding(encodeStd)

StdEncoding	is	the	standard	base64	encoding,	as	defined	in	RFC	4648.

var	URLEncoding	=	NewEncoding(encodeURL)

URLEncoding	is	the	alternate	base64	encoding	defined	in	RFC	4648.	It	is
typically	used	in	URLs	and	file	names.

func	NewDecoder
func	NewDecoder(enc	*Encoding,	r	io.Reader)	io.Reader

NewDecoder	constructs	a	new	base64	stream	decoder.

func	NewEncoder
func	NewEncoder(enc	*Encoding,	w	io.Writer)	io.WriteCloser

NewEncoder	returns	a	new	base64	stream	encoder.	Data	written	to	the	returned
writer	will	be	encoded	using	enc	and	then	written	to	w.	Base64	encodings
operate	in	4-byte	blocks;	when	finished	writing,	the	caller	must	Close	the
returned	encoder	to	flush	any	partially	written	blocks.

type	CorruptInputError
type	CorruptInputError	int64

func	(CorruptInputError)	Error

func	(e	CorruptInputError)	Error()	string

type	Encoding
type	Encoding	struct	{

				//	contains	filtered	or	unexported	fields

}

An	Encoding	is	a	radix	64	encoding/decoding	scheme,	defined	by	a	64-character
alphabet.	The	most	common	encoding	is	the	"base64"	encoding	defined	in	RFC
4648	and	used	in	MIME	(RFC	2045)	and	PEM	(RFC	1421).	RFC	4648	also
defines	an	alternate	encoding,	which	is	the	standard	encoding	with	-	and	_
substituted	for	+	and	/.

func	NewEncoding

func	NewEncoding(encoder	string)	*Encoding

NewEncoding	returns	a	new	Encoding	defined	by	the	given	alphabet,	which
must	be	a	64-byte	string.

func	(*Encoding)	Decode

func	(enc	*Encoding)	Decode(dst,	src	[]byte)	(n	int,	err	error)

Decode	decodes	src	using	the	encoding	enc.	It	writes	at	most
DecodedLen(len(src))	bytes	to	dst	and	returns	the	number	of	bytes	written.	If	src
contains	invalid	base64	data,	it	will	return	the	number	of	bytes	successfully
written	and	CorruptInputError.	New	line	characters	(\r	and	\n)	are	ignored.

func	(*Encoding)	DecodeString

func	(enc	*Encoding)	DecodeString(s	string)	([]byte,	error)

DecodeString	returns	the	bytes	represented	by	the	base64	string	s.

func	(*Encoding)	DecodedLen

func	(enc	*Encoding)	DecodedLen(n	int)	int

DecodedLen	returns	the	maximum	length	in	bytes	of	the	decoded	data

corresponding	to	n	bytes	of	base64-encoded	data.

func	(*Encoding)	Encode

func	(enc	*Encoding)	Encode(dst,	src	[]byte)

Encode	encodes	src	using	the	encoding	enc,	writing	EncodedLen(len(src))	bytes
to	dst.

The	encoding	pads	the	output	to	a	multiple	of	4	bytes,	so	Encode	is	not
appropriate	for	use	on	individual	blocks	of	a	large	data	stream.	Use
NewEncoder()	instead.

func	(*Encoding)	EncodeToString

func	(enc	*Encoding)	EncodeToString(src	[]byte)	string

EncodeToString	returns	the	base64	encoding	of	src.

func	(*Encoding)	EncodedLen

func	(enc	*Encoding)	EncodedLen(n	int)	int

EncodedLen	returns	the	length	in	bytes	of	the	base64	encoding	of	an	input	buffer
of	length	n.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	binary
import	"encoding/binary"

Overview
Index
Examples

Overview	?

Overview	?

Package	binary	implements	translation	between	numbers	and	byte	sequences	and
encoding	and	decoding	of	varints.

Numbers	are	translated	by	reading	and	writing	fixed-size	values.	A	fixed-size
value	is	either	a	fixed-size	arithmetic	type	(int8,	uint8,	int16,	float32,
complex64,	...)	or	an	array	or	struct	containing	only	fixed-size	values.

Varints	are	a	method	of	encoding	integers	using	one	or	more	bytes;	numbers
with	smaller	absolute	value	take	a	smaller	number	of	bytes.	For	a	specification,
see	http://code.google.com/apis/protocolbuffers/docs/encoding.html.

http://code.google.com/apis/protocolbuffers/docs/encoding.html

Index

Constants
Variables
func	PutUvarint(buf	[]byte,	x	uint64)	int
func	PutVarint(buf	[]byte,	x	int64)	int
func	Read(r	io.Reader,	order	ByteOrder,	data	interface{})	error
func	ReadUvarint(r	io.ByteReader)	(uint64,	error)
func	ReadVarint(r	io.ByteReader)	(int64,	error)
func	Size(v	interface{})	int
func	Uvarint(buf	[]byte)	(uint64,	int)
func	Varint(buf	[]byte)	(int64,	int)
func	Write(w	io.Writer,	order	ByteOrder,	data	interface{})	error
type	ByteOrder

Examples

Read
Write
Write	(Multi)

Package	files

binary.go	varint.go

Constants
const	(

				MaxVarintLen16	=	3

				MaxVarintLen32	=	5

				MaxVarintLen64	=	10

)

MaxVarintLenN	is	the	maximum	length	of	a	varint-encoded	N-bit	integer.

Variables
var	BigEndian	bigEndian

BigEndian	is	the	big-endian	implementation	of	ByteOrder.

var	LittleEndian	littleEndian

LittleEndian	is	the	little-endian	implementation	of	ByteOrder.

func	PutUvarint
func	PutUvarint(buf	[]byte,	x	uint64)	int

PutUvarint	encodes	a	uint64	into	buf	and	returns	the	number	of	bytes	written.	If
the	buffer	is	too	small,	PutUvarint	will	panic.

func	PutVarint
func	PutVarint(buf	[]byte,	x	int64)	int

PutVarint	encodes	an	int64	into	buf	and	returns	the	number	of	bytes	written.	If
the	buffer	is	too	small,	PutVarint	will	panic.

func	Read
func	Read(r	io.Reader,	order	ByteOrder,	data	interface{})	error

Read	reads	structured	binary	data	from	r	into	data.	Data	must	be	a	pointer	to	a
fixed-size	value	or	a	slice	of	fixed-size	values.	Bytes	read	from	r	are	decoded
using	the	specified	byte	order	and	written	to	successive	fields	of	the	data.

?	Example

?	Example

Code:

var	pi	float64

b	:=	[]byte{0x18,	0x2d,	0x44,	0x54,	0xfb,	0x21,	0x09,	0x40}

buf	:=	bytes.NewBuffer(b)

err	:=	binary.Read(buf,	binary.LittleEndian,	&pi)

if	err	!=	nil	{

				fmt.Println("binary.Read	failed:",	err)

}

fmt.Print(pi)

Output:

3.141592653589793

func	ReadUvarint
func	ReadUvarint(r	io.ByteReader)	(uint64,	error)

ReadUvarint	reads	an	encoded	unsigned	integer	from	r	and	returns	it	as	a	uint64.

func	ReadVarint
func	ReadVarint(r	io.ByteReader)	(int64,	error)

ReadVarint	reads	an	encoded	unsigned	integer	from	r	and	returns	it	as	a	uint64.

func	Size
func	Size(v	interface{})	int

Size	returns	how	many	bytes	Write	would	generate	to	encode	the	value	v,	which
must	be	a	fixed-size	value	or	a	slice	of	fixed-size	values,	or	a	pointer	to	such
data.

func	Uvarint
func	Uvarint(buf	[]byte)	(uint64,	int)

Uvarint	decodes	a	uint64	from	buf	and	returns	that	value	and	the	number	of
bytes	read	(>	0).	If	an	error	occurred,	the	value	is	0	and	the	number	of	bytes	n	is
<=	0	meaning:

	 n	==	0:	buf	too	small

	 n		<	0:	value	larger	than	64	bits	(overflow)

													and	-n	is	the	number	of	bytes	read

func	Varint
func	Varint(buf	[]byte)	(int64,	int)

Varint	decodes	an	int64	from	buf	and	returns	that	value	and	the	number	of	bytes
read	(>	0).	If	an	error	occurred,	the	value	is	0	and	the	number	of	bytes	n	is	<=	0
with	the	following	meaning:

	 n	==	0:	buf	too	small

	 n		<	0:	value	larger	than	64	bits	(overflow)

													and	-n	is	the	number	of	bytes	read

func	Write
func	Write(w	io.Writer,	order	ByteOrder,	data	interface{})	error

Write	writes	the	binary	representation	of	data	into	w.	Data	must	be	a	fixed-size
value	or	a	slice	of	fixed-size	values,	or	a	pointer	to	such	data.	Bytes	written	to	w
are	encoded	using	the	specified	byte	order	and	read	from	successive	fields	of	the
data.

?	Example

?	Example

Code:

buf	:=	new(bytes.Buffer)

var	pi	float64	=	math.Pi

err	:=	binary.Write(buf,	binary.LittleEndian,	pi)

if	err	!=	nil	{

				fmt.Println("binary.Write	failed:",	err)

}

fmt.Printf("%	x",	buf.Bytes())

Output:

18	2d	44	54	fb	21	09	40

?	Example	(Multi)

?	Example	(Multi)

Code:

buf	:=	new(bytes.Buffer)

var	data	=	[]interface{}{

				uint16(61374),

				int8(-54),

				uint8(254),

}

for	_,	v	:=	range	data	{

				err	:=	binary.Write(buf,	binary.LittleEndian,	v)

				if	err	!=	nil	{

								fmt.Println("binary.Write	failed:",	err)

				}

}

fmt.Printf("%x",	buf.Bytes())

Output:

beefcafe

type	ByteOrder
type	ByteOrder	interface	{

				Uint16([]byte)	uint16

				Uint32([]byte)	uint32

				Uint64([]byte)	uint64

				PutUint16([]byte,	uint16)

				PutUint32([]byte,	uint32)

				PutUint64([]byte,	uint64)

				String()	string

}

A	ByteOrder	specifies	how	to	convert	byte	sequences	into	16-,	32-,	or	64-bit
unsigned	integers.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	csv
import	"encoding/csv"

Overview
Index

Overview	?

Overview	?

Package	csv	reads	and	writes	comma-separated	values	(CSV)	files.

A	csv	file	contains	zero	or	more	records	of	one	or	more	fields	per	record.	Each
record	is	separated	by	the	newline	character.	The	final	record	may	optionally	be
followed	by	a	newline	character.

field1,field2,field3

White	space	is	considered	part	of	a	field.

Carriage	returns	before	newline	characters	are	silently	removed.

Blank	lines	are	ignored.	A	line	with	only	whitespace	characters	(excluding	the
ending	newline	character)	is	not	considered	a	blank	line.

Fields	which	start	and	stop	with	the	quote	character	"	are	called	quoted-fields.
The	beginning	and	ending	quote	are	not	part	of	the	field.

The	source:

normal	string,"quoted-field"

results	in	the	fields

{`normal	string`,	`quoted-field`}

Within	a	quoted-field	a	quote	character	followed	by	a	second	quote	character	is
considered	a	single	quote.

"the	""word""	is	true","a	""quoted-field"""

results	in

{`the	"word"	is	true`,	`a	"quoted-field"`}

Newlines	and	commas	may	be	included	in	a	quoted-field

"Multi-line

field","comma	is	,"

results	in

{`Multi-line

field`,	`comma	is	,`}

Index

Variables
type	ParseError
				func	(e	*ParseError)	Error()	string
type	Reader
				func	NewReader(r	io.Reader)	*Reader
				func	(r	*Reader)	Read()	(record	[]string,	err	error)
				func	(r	*Reader)	ReadAll()	(records	[][]string,	err	error)
type	Writer
				func	NewWriter(w	io.Writer)	*Writer
				func	(w	*Writer)	Flush()
				func	(w	*Writer)	Write(record	[]string)	(err	error)
				func	(w	*Writer)	WriteAll(records	[][]string)	(err	error)

Package	files

reader.go	writer.go

Variables
var	(

				ErrTrailingComma	=	errors.New("extra	delimiter	at	end	of	line")

				ErrBareQuote					=	errors.New("bare	\"	in	non-quoted-field")

				ErrQuote									=	errors.New("extraneous	\"	in	field")

				ErrFieldCount				=	errors.New("wrong	number	of	fields	in	line")

)

These	are	the	errors	that	can	be	returned	in	ParseError.Error

type	ParseError
type	ParseError	struct	{

				Line			int			//	Line	where	the	error	occurred

				Column	int			//	Column	(rune	index)	where	the	error	occurred

				Err				error	//	The	actual	error

}

A	ParseError	is	returned	for	parsing	errors.	The	first	line	is	1.	The	first	column	is
0.

func	(*ParseError)	Error

func	(e	*ParseError)	Error()	string

type	Reader
type	Reader	struct	{

				Comma												rune	//	Field	delimiter	(set	to	','	by	NewReader)

				Comment										rune	//	Comment	character	for	start	of	line

				FieldsPerRecord		int		//	Number	of	expected	fields	per	record

				LazyQuotes							bool	//	Allow	lazy	quotes

				TrailingComma				bool	//	Allow	trailing	comma

				TrimLeadingSpace	bool	//	Trim	leading	space

				//	contains	filtered	or	unexported	fields

}

A	Reader	reads	records	from	a	CSV-encoded	file.

As	returned	by	NewReader,	a	Reader	expects	input	conforming	to	RFC	4180.
The	exported	fields	can	be	changed	to	customize	the	details	before	the	first	call
to	Read	or	ReadAll.

Comma	is	the	field	delimiter.	It	defaults	to	','.

Comment,	if	not	0,	is	the	comment	character.	Lines	beginning	with	the	Comment
character	are	ignored.

If	FieldsPerRecord	is	positive,	Read	requires	each	record	to	have	the	given
number	of	fields.	If	FieldsPerRecord	is	0,	Read	sets	it	to	the	number	of	fields	in
the	first	record,	so	that	future	records	must	have	the	same	field	count.	If
FieldsPerRecord	is	negative,	no	check	is	made	and	records	may	have	a	variable
number	of	fields.

If	LazyQuotes	is	true,	a	quote	may	appear	in	an	unquoted	field	and	a	non-
doubled	quote	may	appear	in	a	quoted	field.

If	TrailingComma	is	true,	the	last	field	may	be	an	unquoted	empty	field.

If	TrimLeadingSpace	is	true,	leading	white	space	in	a	field	is	ignored.

func	NewReader

func	NewReader(r	io.Reader)	*Reader

NewReader	returns	a	new	Reader	that	reads	from	r.

func	(*Reader)	Read

func	(r	*Reader)	Read()	(record	[]string,	err	error)

Read	reads	one	record	from	r.	The	record	is	a	slice	of	strings	with	each	string
representing	one	field.

func	(*Reader)	ReadAll

func	(r	*Reader)	ReadAll()	(records	[][]string,	err	error)

ReadAll	reads	all	the	remaining	records	from	r.	Each	record	is	a	slice	of	fields.	A
successful	call	returns	err	==	nil,	not	err	==	EOF.	Because	ReadAll	is	defined	to
read	until	EOF,	it	does	not	treat	end	of	file	as	an	error	to	be	reported.

type	Writer
type	Writer	struct	{

				Comma			rune	//	Field	delimiter	(set	to	to	','	by	NewWriter)

				UseCRLF	bool	//	True	to	use	\r\n	as	the	line	terminator

				//	contains	filtered	or	unexported	fields

}

A	Writer	writes	records	to	a	CSV	encoded	file.

As	returned	by	NewWriter,	a	Writer	writes	records	terminated	by	a	newline	and
uses	','	as	the	field	delimiter.	The	exported	fields	can	be	changed	to	customize
the	details	before	the	first	call	to	Write	or	WriteAll.

Comma	is	the	field	delimiter.

If	UseCRLF	is	true,	the	Writer	ends	each	record	with	\r\n	instead	of	\n.

func	NewWriter

func	NewWriter(w	io.Writer)	*Writer

NewWriter	returns	a	new	Writer	that	writes	to	w.

func	(*Writer)	Flush

func	(w	*Writer)	Flush()

Flush	writes	any	buffered	data	to	the	underlying	io.Writer.

func	(*Writer)	Write

func	(w	*Writer)	Write(record	[]string)	(err	error)

Writer	writes	a	single	CSV	record	to	w	along	with	any	necessary	quoting.	A
record	is	a	slice	of	strings	with	each	string	being	one	field.

func	(*Writer)	WriteAll

func	(w	*Writer)	WriteAll(records	[][]string)	(err	error)

WriteAll	writes	multiple	CSV	records	to	w	using	Write	and	then	calls	Flush.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	gob
import	"encoding/gob"

Overview
Index

Overview	?

Overview	?

Package	gob	manages	streams	of	gobs	-	binary	values	exchanged	between	an
Encoder	(transmitter)	and	a	Decoder	(receiver).	A	typical	use	is	transporting
arguments	and	results	of	remote	procedure	calls	(RPCs)	such	as	those	provided
by	package	"rpc".

A	stream	of	gobs	is	self-describing.	Each	data	item	in	the	stream	is	preceded	by	a
specification	of	its	type,	expressed	in	terms	of	a	small	set	of	predefined	types.
Pointers	are	not	transmitted,	but	the	things	they	point	to	are	transmitted;	that	is,
the	values	are	flattened.	Recursive	types	work	fine,	but	recursive	values	(data
with	cycles)	are	problematic.	This	may	change.

To	use	gobs,	create	an	Encoder	and	present	it	with	a	series	of	data	items	as
values	or	addresses	that	can	be	dereferenced	to	values.	The	Encoder	makes	sure
all	type	information	is	sent	before	it	is	needed.	At	the	receive	side,	a	Decoder
retrieves	values	from	the	encoded	stream	and	unpacks	them	into	local	variables.

The	source	and	destination	values/types	need	not	correspond	exactly.	For	structs,
fields	(identified	by	name)	that	are	in	the	source	but	absent	from	the	receiving
variable	will	be	ignored.	Fields	that	are	in	the	receiving	variable	but	missing
from	the	transmitted	type	or	value	will	be	ignored	in	the	destination.	If	a	field
with	the	same	name	is	present	in	both,	their	types	must	be	compatible.	Both	the
receiver	and	transmitter	will	do	all	necessary	indirection	and	dereferencing	to
convert	between	gobs	and	actual	Go	values.	For	instance,	a	gob	type	that	is
schematically,

struct	{	A,	B	int	}

can	be	sent	from	or	received	into	any	of	these	Go	types:

struct	{	A,	B	int	}	 //	the	same

*struct	{	A,	B	int	}	 //	extra	indirection	of	the	struct

struct	{	*A,	**B	int	}	 //	extra	indirection	of	the	fields

struct	{	A,	B	int64	}	 //	different	concrete	value	type;	see	below

It	may	also	be	received	into	any	of	these:

struct	{	A,	B	int	}	 //	the	same

struct	{	B,	A	int	}	 //	ordering	doesn't	matter;	matching	is	by	name

struct	{	A,	B,	C	int	}	 //	extra	field	(C)	ignored

struct	{	B	int	}	 //	missing	field	(A)	ignored;	data	will	be	dropped

struct	{	B,	C	int	}	 //	missing	field	(A)	ignored;	extra	field	(C)	ignored.

Attempting	to	receive	into	these	types	will	draw	a	decode	error:

struct	{	A	int;	B	uint	}	 //	change	of	signedness	for	B

struct	{	A	int;	B	float	}	 //	change	of	type	for	B

struct	{	}	 	 	 //	no	field	names	in	common

struct	{	C,	D	int	}	 	 //	no	field	names	in	common

Integers	are	transmitted	two	ways:	arbitrary	precision	signed	integers	or	arbitrary
precision	unsigned	integers.	There	is	no	int8,	int16	etc.	discrimination	in	the	gob
format;	there	are	only	signed	and	unsigned	integers.	As	described	below,	the
transmitter	sends	the	value	in	a	variable-length	encoding;	the	receiver	accepts
the	value	and	stores	it	in	the	destination	variable.	Floating-point	numbers	are
always	sent	using	IEEE-754	64-bit	precision	(see	below).

Signed	integers	may	be	received	into	any	signed	integer	variable:	int,	int16,	etc.;
unsigned	integers	may	be	received	into	any	unsigned	integer	variable;	and
floating	point	values	may	be	received	into	any	floating	point	variable.	However,
the	destination	variable	must	be	able	to	represent	the	value	or	the	decode
operation	will	fail.

Structs,	arrays	and	slices	are	also	supported.	Strings	and	arrays	of	bytes	are
supported	with	a	special,	efficient	representation	(see	below).	When	a	slice	is
decoded,	if	the	existing	slice	has	capacity	the	slice	will	be	extended	in	place;	if
not,	a	new	array	is	allocated.	Regardless,	the	length	of	the	resulting	slice	reports
the	number	of	elements	decoded.

Functions	and	channels	cannot	be	sent	in	a	gob.	Attempting	to	encode	a	value
that	contains	one	will	fail.

The	rest	of	this	comment	documents	the	encoding,	details	that	are	not	important
for	most	users.	Details	are	presented	bottom-up.

An	unsigned	integer	is	sent	one	of	two	ways.	If	it	is	less	than	128,	it	is	sent	as	a
byte	with	that	value.	Otherwise	it	is	sent	as	a	minimal-length	big-endian	(high
byte	first)	byte	stream	holding	the	value,	preceded	by	one	byte	holding	the	byte
count,	negated.	Thus	0	is	transmitted	as	(00),	7	is	transmitted	as	(07)	and	256	is
transmitted	as	(FE	01	00).

A	boolean	is	encoded	within	an	unsigned	integer:	0	for	false,	1	for	true.

A	signed	integer,	i,	is	encoded	within	an	unsigned	integer,	u.	Within	u,	bits	1
upward	contain	the	value;	bit	0	says	whether	they	should	be	complemented	upon
receipt.	The	encode	algorithm	looks	like	this:

uint	u;

if	i	<	0	{

	 u	=	(^i	<<	1)	|	1	 //	complement	i,	bit	0	is	1

}	else	{

	 u	=	(i	<<	1)	 //	do	not	complement	i,	bit	0	is	0

}

encodeUnsigned(u)

The	low	bit	is	therefore	analogous	to	a	sign	bit,	but	making	it	the	complement	bit
instead	guarantees	that	the	largest	negative	integer	is	not	a	special	case.	For
example,	-129=^128=(^256>>1)	encodes	as	(FE	01	01).

Floating-point	numbers	are	always	sent	as	a	representation	of	a	float64	value.
That	value	is	converted	to	a	uint64	using	math.Float64bits.	The	uint64	is	then
byte-reversed	and	sent	as	a	regular	unsigned	integer.	The	byte-reversal	means	the
exponent	and	high-precision	part	of	the	mantissa	go	first.	Since	the	low	bits	are
often	zero,	this	can	save	encoding	bytes.	For	instance,	17.0	is	encoded	in	only
three	bytes	(FE	31	40).

Strings	and	slices	of	bytes	are	sent	as	an	unsigned	count	followed	by	that	many
uninterpreted	bytes	of	the	value.

All	other	slices	and	arrays	are	sent	as	an	unsigned	count	followed	by	that	many
elements	using	the	standard	gob	encoding	for	their	type,	recursively.

Maps	are	sent	as	an	unsigned	count	followed	by	that	man	key,	element	pairs.
Empty	but	non-nil	maps	are	sent,	so	if	the	sender	has	allocated	a	map,	the
receiver	will	allocate	a	map	even	no	elements	are	transmitted.

Structs	are	sent	as	a	sequence	of	(field	number,	field	value)	pairs.	The	field	value
is	sent	using	the	standard	gob	encoding	for	its	type,	recursively.	If	a	field	has	the
zero	value	for	its	type,	it	is	omitted	from	the	transmission.	The	field	number	is
defined	by	the	type	of	the	encoded	struct:	the	first	field	of	the	encoded	type	is
field	0,	the	second	is	field	1,	etc.	When	encoding	a	value,	the	field	numbers	are
delta	encoded	for	efficiency	and	the	fields	are	always	sent	in	order	of	increasing

field	number;	the	deltas	are	therefore	unsigned.	The	initialization	for	the	delta
encoding	sets	the	field	number	to	-1,	so	an	unsigned	integer	field	0	with	value	7
is	transmitted	as	unsigned	delta	=	1,	unsigned	value	=	7	or	(01	07).	Finally,	after
all	the	fields	have	been	sent	a	terminating	mark	denotes	the	end	of	the	struct.
That	mark	is	a	delta=0	value,	which	has	representation	(00).

Interface	types	are	not	checked	for	compatibility;	all	interface	types	are	treated,
for	transmission,	as	members	of	a	single	"interface"	type,	analogous	to	int	or
[]byte	-	in	effect	they're	all	treated	as	interface{}.	Interface	values	are
transmitted	as	a	string	identifying	the	concrete	type	being	sent	(a	name	that	must
be	pre-defined	by	calling	Register),	followed	by	a	byte	count	of	the	length	of	the
following	data	(so	the	value	can	be	skipped	if	it	cannot	be	stored),	followed	by
the	usual	encoding	of	concrete	(dynamic)	value	stored	in	the	interface	value.	(A
nil	interface	value	is	identified	by	the	empty	string	and	transmits	no	value.)
Upon	receipt,	the	decoder	verifies	that	the	unpacked	concrete	item	satisfies	the
interface	of	the	receiving	variable.

The	representation	of	types	is	described	below.	When	a	type	is	defined	on	a
given	connection	between	an	Encoder	and	Decoder,	it	is	assigned	a	signed
integer	type	id.	When	Encoder.Encode(v)	is	called,	it	makes	sure	there	is	an	id
assigned	for	the	type	of	v	and	all	its	elements	and	then	it	sends	the	pair	(typeid,
encoded-v)	where	typeid	is	the	type	id	of	the	encoded	type	of	v	and	encoded-v	is
the	gob	encoding	of	the	value	v.

To	define	a	type,	the	encoder	chooses	an	unused,	positive	type	id	and	sends	the
pair	(-type	id,	encoded-type)	where	encoded-type	is	the	gob	encoding	of	a
wireType	description,	constructed	from	these	types:

type	wireType	struct	{

	 ArrayT		*ArrayType

	 SliceT		*SliceType

	 StructT	*StructType

	 MapT				*MapType

}

type	arrayType	struct	{

	 CommonType

	 Elem	typeId

	 Len		int

}

type	CommonType	struct	{

	 Name	string	//	the	name	of	the	struct	type

	 Id		int				//	the	id	of	the	type,	repeated	so	it's	inside	the	type

}

type	sliceType	struct	{

	 CommonType

	 Elem	typeId

}

type	structType	struct	{

	 CommonType

	 Field	[]*fieldType	//	the	fields	of	the	struct.

}

type	fieldType	struct	{

	 Name	string	//	the	name	of	the	field.

	 Id			int				//	the	type	id	of	the	field,	which	must	be	already	defined

}

type	mapType	struct	{

	 CommonType

	 Key		typeId

	 Elem	typeId

}

If	there	are	nested	type	ids,	the	types	for	all	inner	type	ids	must	be	defined	before
the	top-level	type	id	is	used	to	describe	an	encoded-v.

For	simplicity	in	setup,	the	connection	is	defined	to	understand	these	types	a
priori,	as	well	as	the	basic	gob	types	int,	uint,	etc.	Their	ids	are:

bool								1

int									2

uint								3

float							4

[]byte						5

string						6

complex					7

interface			8

//	gap	for	reserved	ids.

WireType				16

ArrayType			17

CommonType		18

SliceType			19

StructType		20

FieldType			21

//	22	is	slice	of	fieldType.

MapType					23

Finally,	each	message	created	by	a	call	to	Encode	is	preceded	by	an	encoded
unsigned	integer	count	of	the	number	of	bytes	remaining	in	the	message.	After
the	initial	type	name,	interface	values	are	wrapped	the	same	way;	in	effect,	the
interface	value	acts	like	a	recursive	invocation	of	Encode.

In	summary,	a	gob	stream	looks	like

(byteCount	(-type	id,	encoding	of	a	wireType)*	(type	id,	encoding	of	a	value))*

where	*	signifies	zero	or	more	repetitions	and	the	type	id	of	a	value	must	be
predefined	or	be	defined	before	the	value	in	the	stream.

See	"Gobs	of	data"	for	a	design	discussion	of	the	gob	wire	format:
http://golang.org/doc/articles/gobs_of_data.html

http://golang.org/doc/articles/gobs_of_data.html

Index

func	Register(value	interface{})
func	RegisterName(name	string,	value	interface{})
type	CommonType
type	Decoder
				func	NewDecoder(r	io.Reader)	*Decoder
				func	(dec	*Decoder)	Decode(e	interface{})	error
				func	(dec	*Decoder)	DecodeValue(v	reflect.Value)	error
type	Encoder
				func	NewEncoder(w	io.Writer)	*Encoder
				func	(enc	*Encoder)	Encode(e	interface{})	error
				func	(enc	*Encoder)	EncodeValue(value	reflect.Value)	error
type	GobDecoder
type	GobEncoder

Package	files

decode.go	decoder.go	doc.go	encode.go	encoder.go	error.go	type.go

func	Register
func	Register(value	interface{})

Register	records	a	type,	identified	by	a	value	for	that	type,	under	its	internal	type
name.	That	name	will	identify	the	concrete	type	of	a	value	sent	or	received	as	an
interface	variable.	Only	types	that	will	be	transferred	as	implementations	of
interface	values	need	to	be	registered.	Expecting	to	be	used	only	during
initialization,	it	panics	if	the	mapping	between	types	and	names	is	not	a
bijection.

func	RegisterName
func	RegisterName(name	string,	value	interface{})

RegisterName	is	like	Register	but	uses	the	provided	name	rather	than	the	type's
default.

type	CommonType
type	CommonType	struct	{

				Name	string

				Id			typeId

}

CommonType	holds	elements	of	all	types.	It	is	a	historical	artifact,	kept	for
binary	compatibility	and	exported	only	for	the	benefit	of	the	package's	encoding
of	type	descriptors.	It	is	not	intended	for	direct	use	by	clients.

type	Decoder
type	Decoder	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Decoder	manages	the	receipt	of	type	and	data	information	read	from	the
remote	side	of	a	connection.

func	NewDecoder

func	NewDecoder(r	io.Reader)	*Decoder

NewDecoder	returns	a	new	decoder	that	reads	from	the	io.Reader.	If	r	does	not
also	implement	io.ByteReader,	it	will	be	wrapped	in	a	bufio.Reader.

func	(*Decoder)	Decode

func	(dec	*Decoder)	Decode(e	interface{})	error

Decode	reads	the	next	value	from	the	connection	and	stores	it	in	the	data
represented	by	the	empty	interface	value.	If	e	is	nil,	the	value	will	be	discarded.
Otherwise,	the	value	underlying	e	must	be	a	pointer	to	the	correct	type	for	the
next	data	item	received.

func	(*Decoder)	DecodeValue

func	(dec	*Decoder)	DecodeValue(v	reflect.Value)	error

DecodeValue	reads	the	next	value	from	the	connection.	If	v	is	the	zero
reflect.Value	(v.Kind()	==	Invalid),	DecodeValue	discards	the	value.	Otherwise,
it	stores	the	value	into	v.	In	that	case,	v	must	represent	a	non-nil	pointer	to	data
or	be	an	assignable	reflect.Value	(v.CanSet())

type	Encoder
type	Encoder	struct	{

				//	contains	filtered	or	unexported	fields

}

An	Encoder	manages	the	transmission	of	type	and	data	information	to	the	other
side	of	a	connection.

func	NewEncoder

func	NewEncoder(w	io.Writer)	*Encoder

NewEncoder	returns	a	new	encoder	that	will	transmit	on	the	io.Writer.

func	(*Encoder)	Encode

func	(enc	*Encoder)	Encode(e	interface{})	error

Encode	transmits	the	data	item	represented	by	the	empty	interface	value,
guaranteeing	that	all	necessary	type	information	has	been	transmitted	first.

func	(*Encoder)	EncodeValue

func	(enc	*Encoder)	EncodeValue(value	reflect.Value)	error

EncodeValue	transmits	the	data	item	represented	by	the	reflection	value,
guaranteeing	that	all	necessary	type	information	has	been	transmitted	first.

type	GobDecoder
type	GobDecoder	interface	{

				//	GobDecode	overwrites	the	receiver,	which	must	be	a	pointer,

				//	with	the	value	represented	by	the	byte	slice,	which	was	written

				//	by	GobEncode,	usually	for	the	same	concrete	type.

				GobDecode([]byte)	error

}

GobDecoder	is	the	interface	describing	data	that	provides	its	own	routine	for
decoding	transmitted	values	sent	by	a	GobEncoder.

type	GobEncoder
type	GobEncoder	interface	{

				//	GobEncode	returns	a	byte	slice	representing	the	encoding	of	the

				//	receiver	for	transmission	to	a	GobDecoder,	usually	of	the	same

				//	concrete	type.

				GobEncode()	([]byte,	error)

}

GobEncoder	is	the	interface	describing	data	that	provides	its	own	representation
for	encoding	values	for	transmission	to	a	GobDecoder.	A	type	that	implements
GobEncoder	and	GobDecoder	has	complete	control	over	the	representation	of	its
data	and	may	therefore	contain	things	such	as	private	fields,	channels,	and
functions,	which	are	not	usually	transmissible	in	gob	streams.

Note:	Since	gobs	can	be	stored	permanently,	It	is	good	design	to	guarantee	the
encoding	used	by	a	GobEncoder	is	stable	as	the	software	evolves.	For	instance,
it	might	make	sense	for	GobEncode	to	include	a	version	number	in	the	encoding.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	hex
import	"encoding/hex"

Overview
Index

Overview	?

Overview	?

Package	hex	implements	hexadecimal	encoding	and	decoding.

Index

Variables
func	Decode(dst,	src	[]byte)	(int,	error)
func	DecodeString(s	string)	([]byte,	error)
func	DecodedLen(x	int)	int
func	Dump(data	[]byte)	string
func	Dumper(w	io.Writer)	io.WriteCloser
func	Encode(dst,	src	[]byte)	int
func	EncodeToString(src	[]byte)	string
func	EncodedLen(n	int)	int
type	InvalidByteError
				func	(e	InvalidByteError)	Error()	string

Package	files

hex.go

Variables
var	ErrLength	=	errors.New("encoding/hex:	odd	length	hex	string")

ErrLength	results	from	decoding	an	odd	length	slice.

func	Decode
func	Decode(dst,	src	[]byte)	(int,	error)

Decode	decodes	src	into	DecodedLen(len(src))	bytes,	returning	the	actual
number	of	bytes	written	to	dst.

If	Decode	encounters	invalid	input,	it	returns	an	error	describing	the	failure.

func	DecodeString
func	DecodeString(s	string)	([]byte,	error)

DecodeString	returns	the	bytes	represented	by	the	hexadecimal	string	s.

func	DecodedLen
func	DecodedLen(x	int)	int

func	Dump
func	Dump(data	[]byte)	string

Dump	returns	a	string	that	contains	a	hex	dump	of	the	given	data.	The	format	of
the	hex	dump	matches	the	output	of	`hexdump	-C`	on	the	command	line.

func	Dumper
func	Dumper(w	io.Writer)	io.WriteCloser

Dumper	returns	a	WriteCloser	that	writes	a	hex	dump	of	all	written	data	to	w.
The	format	of	the	dump	matches	the	output	of	`hexdump	-C`	on	the	command
line.

func	Encode
func	Encode(dst,	src	[]byte)	int

Encode	encodes	src	into	EncodedLen(len(src))	bytes	of	dst.	As	a	convenience,	it
returns	the	number	of	bytes	written	to	dst,	but	this	value	is	always
EncodedLen(len(src)).	Encode	implements	hexadecimal	encoding.

func	EncodeToString
func	EncodeToString(src	[]byte)	string

EncodeToString	returns	the	hexadecimal	encoding	of	src.

func	EncodedLen
func	EncodedLen(n	int)	int

EncodedLen	returns	the	length	of	an	encoding	of	n	source	bytes.

type	InvalidByteError
type	InvalidByteError	byte

InvalidByteError	values	describe	errors	resulting	from	an	invalid	byte	in	a	hex
string.

func	(InvalidByteError)	Error

func	(e	InvalidByteError)	Error()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	json
import	"encoding/json"

Overview
Index
Examples

Overview	?

Overview	?

Package	json	implements	encoding	and	decoding	of	JSON	objects	as	defined	in
RFC	4627.

See	"JSON	and	Go"	for	an	introduction	to	this	package:
http://golang.org/doc/articles/json_and_go.html

http://golang.org/doc/articles/json_and_go.html

Index

func	Compact(dst	*bytes.Buffer,	src	[]byte)	error
func	HTMLEscape(dst	*bytes.Buffer,	src	[]byte)
func	Indent(dst	*bytes.Buffer,	src	[]byte,	prefix,	indent	string)	error
func	Marshal(v	interface{})	([]byte,	error)
func	MarshalIndent(v	interface{},	prefix,	indent	string)	([]byte,	error)
func	Unmarshal(data	[]byte,	v	interface{})	error
type	Decoder
				func	NewDecoder(r	io.Reader)	*Decoder
				func	(dec	*Decoder)	Decode(v	interface{})	error
type	Encoder
				func	NewEncoder(w	io.Writer)	*Encoder
				func	(enc	*Encoder)	Encode(v	interface{})	error
type	InvalidUTF8Error
				func	(e	*InvalidUTF8Error)	Error()	string
type	InvalidUnmarshalError
				func	(e	*InvalidUnmarshalError)	Error()	string
type	Marshaler
type	MarshalerError
				func	(e	*MarshalerError)	Error()	string
type	RawMessage
				func	(m	*RawMessage)	MarshalJSON()	([]byte,	error)
				func	(m	*RawMessage)	UnmarshalJSON(data	[]byte)	error
type	SyntaxError
				func	(e	*SyntaxError)	Error()	string
type	UnmarshalFieldError
				func	(e	*UnmarshalFieldError)	Error()	string
type	UnmarshalTypeError
				func	(e	*UnmarshalTypeError)	Error()	string
type	Unmarshaler
type	UnsupportedTypeError
				func	(e	*UnsupportedTypeError)	Error()	string
type	UnsupportedValueError
				func	(e	*UnsupportedValueError)	Error()	string
Bugs

Examples

Decoder
Marshal
Unmarshal

Package	files

decode.go	encode.go	indent.go	scanner.go	stream.go	tags.go

func	Compact
func	Compact(dst	*bytes.Buffer,	src	[]byte)	error

Compact	appends	to	dst	the	JSON-encoded	src	with	insignificant	space
characters	elided.

func	HTMLEscape
func	HTMLEscape(dst	*bytes.Buffer,	src	[]byte)

HTMLEscape	appends	to	dst	the	JSON-encoded	src	with	<,	>,	and	&	characters
inside	string	literals	changed	to	\u003c,	\u003e,	\u0026	so	that	the	JSON	will	be
safe	to	embed	inside	HTML	<script>	tags.	For	historical	reasons,	web	browsers
don't	honor	standard	HTML	escaping	within	<script>	tags,	so	an	alternative
JSON	encoding	must	be	used.

func	Indent
func	Indent(dst	*bytes.Buffer,	src	[]byte,	prefix,	indent	string)	error

Indent	appends	to	dst	an	indented	form	of	the	JSON-encoded	src.	Each	element
in	a	JSON	object	or	array	begins	on	a	new,	indented	line	beginning	with	prefix
followed	by	one	or	more	copies	of	indent	according	to	the	indentation	nesting.
The	data	appended	to	dst	has	no	trailing	newline,	to	make	it	easier	to	embed
inside	other	formatted	JSON	data.

func	Marshal
func	Marshal(v	interface{})	([]byte,	error)

Marshal	returns	the	JSON	encoding	of	v.

Marshal	traverses	the	value	v	recursively.	If	an	encountered	value	implements
the	Marshaler	interface	and	is	not	a	nil	pointer,	Marshal	calls	its	MarshalJSON
method	to	produce	JSON.	The	nil	pointer	exception	is	not	strictly	necessary	but
mimics	a	similar,	necessary	exception	in	the	behavior	of	UnmarshalJSON.

Otherwise,	Marshal	uses	the	following	type-dependent	default	encodings:

Boolean	values	encode	as	JSON	booleans.

Floating	point	and	integer	values	encode	as	JSON	numbers.

String	values	encode	as	JSON	strings,	with	each	invalid	UTF-8	sequence
replaced	by	the	encoding	of	the	Unicode	replacement	character	U+FFFD.	The
angle	brackets	"<"	and	">"	are	escaped	to	"\u003c"	and	"\u003e"	to	keep	some
browsers	from	misinterpreting	JSON	output	as	HTML.

Array	and	slice	values	encode	as	JSON	arrays,	except	that	[]byte	encodes	as	a
base64-encoded	string,	and	a	nil	slice	encodes	as	the	null	JSON	object.

Struct	values	encode	as	JSON	objects.	Each	exported	struct	field	becomes	a
member	of	the	object	unless

-	the	field's	tag	is	"-",	or

-	the	field	is	empty	and	its	tag	specifies	the	"omitempty"	option.

The	empty	values	are	false,	0,	any	nil	pointer	or	interface	value,	and	any	array,
slice,	map,	or	string	of	length	zero.	The	object's	default	key	string	is	the	struct
field	name	but	can	be	specified	in	the	struct	field's	tag	value.	The	"json"	key	in
struct	field's	tag	value	is	the	key	name,	followed	by	an	optional	comma	and
options.	Examples:

//	Field	is	ignored	by	this	package.

Field	int	`json:"-"`

//	Field	appears	in	JSON	as	key	"myName".

Field	int	`json:"myName"`

//	Field	appears	in	JSON	as	key	"myName"	and

//	the	field	is	omitted	from	the	object	if	its	value	is	empty,

//	as	defined	above.

Field	int	`json:"myName,omitempty"`

//	Field	appears	in	JSON	as	key	"Field"	(the	default),	but

//	the	field	is	skipped	if	empty.

//	Note	the	leading	comma.

Field	int	`json:",omitempty"`

The	"string"	option	signals	that	a	field	is	stored	as	JSON	inside	a	JSON-encoded
string.	This	extra	level	of	encoding	is	sometimes	used	when	communicating	with
JavaScript	programs:

Int64String	int64	`json:",string"`

The	key	name	will	be	used	if	it's	a	non-empty	string	consisting	of	only	Unicode
letters,	digits,	dollar	signs,	percent	signs,	hyphens,	underscores	and	slashes.

Map	values	encode	as	JSON	objects.	The	map's	key	type	must	be	string;	the
object	keys	are	used	directly	as	map	keys.

Pointer	values	encode	as	the	value	pointed	to.	A	nil	pointer	encodes	as	the	null
JSON	object.

Interface	values	encode	as	the	value	contained	in	the	interface.	A	nil	interface
value	encodes	as	the	null	JSON	object.

Channel,	complex,	and	function	values	cannot	be	encoded	in	JSON.	Attempting
to	encode	such	a	value	causes	Marshal	to	return	an	InvalidTypeError.

JSON	cannot	represent	cyclic	data	structures	and	Marshal	does	not	handle	them.
Passing	cyclic	structures	to	Marshal	will	result	in	an	infinite	recursion.

?	Example

?	Example

Code:

type	ColorGroup	struct	{

				ID					int

				Name			string

				Colors	[]string

}

group	:=	ColorGroup{

				ID:					1,

				Name:			"Reds",

				Colors:	[]string{"Crimson",	"Red",	"Ruby",	"Maroon"},

}

b,	err	:=	json.Marshal(group)

if	err	!=	nil	{

				fmt.Println("error:",	err)

}

os.Stdout.Write(b)

Output:

{"ID":1,"Name":"Reds","Colors":["Crimson","Red","Ruby","Maroon"]}

func	MarshalIndent
func	MarshalIndent(v	interface{},	prefix,	indent	string)	([]byte,	error)

MarshalIndent	is	like	Marshal	but	applies	Indent	to	format	the	output.

func	Unmarshal
func	Unmarshal(data	[]byte,	v	interface{})	error

Unmarshal	parses	the	JSON-encoded	data	and	stores	the	result	in	the	value
pointed	to	by	v.

Unmarshal	uses	the	inverse	of	the	encodings	that	Marshal	uses,	allocating	maps,
slices,	and	pointers	as	necessary,	with	the	following	additional	rules:

To	unmarshal	JSON	into	a	pointer,	Unmarshal	first	handles	the	case	of	the	JSON
being	the	JSON	literal	null.	In	that	case,	Unmarshal	sets	the	pointer	to	nil.
Otherwise,	Unmarshal	unmarshals	the	JSON	into	the	value	pointed	at	by	the
pointer.	If	the	pointer	is	nil,	Unmarshal	allocates	a	new	value	for	it	to	point	to.

To	unmarshal	JSON	into	an	interface	value,	Unmarshal	unmarshals	the	JSON
into	the	concrete	value	contained	in	the	interface	value.	If	the	interface	value	is
nil,	that	is,	has	no	concrete	value	stored	in	it,	Unmarshal	stores	one	of	these	in
the	interface	value:

bool,	for	JSON	booleans

float64,	for	JSON	numbers

string,	for	JSON	strings

[]interface{},	for	JSON	arrays

map[string]interface{},	for	JSON	objects

nil	for	JSON	null

If	a	JSON	value	is	not	appropriate	for	a	given	target	type,	or	if	a	JSON	number
overflows	the	target	type,	Unmarshal	skips	that	field	and	completes	the
unmarshalling	as	best	it	can.	If	no	more	serious	errors	are	encountered,
Unmarshal	returns	an	UnmarshalTypeError	describing	the	earliest	such	error.

?	Example

?	Example

Code:

var	jsonBlob	=	[]byte(`[

				{"Name":	"Platypus",	"Order":	"Monotremata"},

				{"Name":	"Quoll",				"Order":	"Dasyuromorphia"}

]`)

type	Animal	struct	{

				Name		string

				Order	string

}

var	animals	[]Animal

err	:=	json.Unmarshal(jsonBlob,	&animals)

if	err	!=	nil	{

				fmt.Println("error:",	err)

}

fmt.Printf("%+v",	animals)

Output:

[{Name:Platypus	Order:Monotremata}	{Name:Quoll	Order:Dasyuromorphia}]

type	Decoder
type	Decoder	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Decoder	reads	and	decodes	JSON	objects	from	an	input	stream.

?	Example

?	Example

This	example	uses	a	Decoder	to	decode	a	stream	of	distinct	JSON	values.

Code:

const	jsonStream	=	`

				{"Name":	"Ed",	"Text":	"Knock	knock."}

				{"Name":	"Sam",	"Text":	"Who's	there?"}

				{"Name":	"Ed",	"Text":	"Go	fmt."}

				{"Name":	"Sam",	"Text":	"Go	fmt	who?"}

				{"Name":	"Ed",	"Text":	"Go	fmt	yourself!"}

`

type	Message	struct	{

				Name,	Text	string

}

dec	:=	json.NewDecoder(strings.NewReader(jsonStream))

for	{

				var	m	Message

				if	err	:=	dec.Decode(&m);	err	==	io.EOF	{

								break

				}	else	if	err	!=	nil	{

								log.Fatal(err)

				}

				fmt.Printf("%s:	%s\n",	m.Name,	m.Text)

}

Output:

Ed:	Knock	knock.

Sam:	Who's	there?

Ed:	Go	fmt.

Sam:	Go	fmt	who?

Ed:	Go	fmt	yourself!

func	NewDecoder

func	NewDecoder(r	io.Reader)	*Decoder

NewDecoder	returns	a	new	decoder	that	reads	from	r.

The	decoder	introduces	its	own	buffering	and	may	read	data	from	r	beyond	the
JSON	values	requested.

func	(*Decoder)	Decode

func	(dec	*Decoder)	Decode(v	interface{})	error

Decode	reads	the	next	JSON-encoded	value	from	its	input	and	stores	it	in	the
value	pointed	to	by	v.

See	the	documentation	for	Unmarshal	for	details	about	the	conversion	of	JSON
into	a	Go	value.

type	Encoder
type	Encoder	struct	{

				//	contains	filtered	or	unexported	fields

}

An	Encoder	writes	JSON	objects	to	an	output	stream.

func	NewEncoder

func	NewEncoder(w	io.Writer)	*Encoder

NewEncoder	returns	a	new	encoder	that	writes	to	w.

func	(*Encoder)	Encode

func	(enc	*Encoder)	Encode(v	interface{})	error

Encode	writes	the	JSON	encoding	of	v	to	the	connection.

See	the	documentation	for	Marshal	for	details	about	the	conversion	of	Go	values
to	JSON.

type	InvalidUTF8Error
type	InvalidUTF8Error	struct	{

				S	string

}

func	(*InvalidUTF8Error)	Error

func	(e	*InvalidUTF8Error)	Error()	string

type	InvalidUnmarshalError
type	InvalidUnmarshalError	struct	{

				Type	reflect.Type

}

An	InvalidUnmarshalError	describes	an	invalid	argument	passed	to	Unmarshal.
(The	argument	to	Unmarshal	must	be	a	non-nil	pointer.)

func	(*InvalidUnmarshalError)	Error

func	(e	*InvalidUnmarshalError)	Error()	string

type	Marshaler
type	Marshaler	interface	{

				MarshalJSON()	([]byte,	error)

}

Marshaler	is	the	interface	implemented	by	objects	that	can	marshal	themselves
into	valid	JSON.

type	MarshalerError
type	MarshalerError	struct	{

				Type	reflect.Type

				Err		error

}

func	(*MarshalerError)	Error

func	(e	*MarshalerError)	Error()	string

type	RawMessage
type	RawMessage	[]byte

RawMessage	is	a	raw	encoded	JSON	object.	It	implements	Marshaler	and
Unmarshaler	and	can	be	used	to	delay	JSON	decoding	or	precompute	a	JSON
encoding.

func	(*RawMessage)	MarshalJSON

func	(m	*RawMessage)	MarshalJSON()	([]byte,	error)

MarshalJSON	returns	*m	as	the	JSON	encoding	of	m.

func	(*RawMessage)	UnmarshalJSON

func	(m	*RawMessage)	UnmarshalJSON(data	[]byte)	error

UnmarshalJSON	sets	*m	to	a	copy	of	data.

type	SyntaxError
type	SyntaxError	struct	{

				Offset	int64	//	error	occurred	after	reading	Offset	bytes

				//	contains	filtered	or	unexported	fields

}

A	SyntaxError	is	a	description	of	a	JSON	syntax	error.

func	(*SyntaxError)	Error

func	(e	*SyntaxError)	Error()	string

type	UnmarshalFieldError
type	UnmarshalFieldError	struct	{

				Key			string

				Type		reflect.Type

				Field	reflect.StructField

}

An	UnmarshalFieldError	describes	a	JSON	object	key	that	led	to	an	unexported
(and	therefore	unwritable)	struct	field.

func	(*UnmarshalFieldError)	Error

func	(e	*UnmarshalFieldError)	Error()	string

type	UnmarshalTypeError
type	UnmarshalTypeError	struct	{

				Value	string							//	description	of	JSON	value	-	"bool",	"array",	"number	-5"

				Type		reflect.Type	//	type	of	Go	value	it	could	not	be	assigned	to

}

An	UnmarshalTypeError	describes	a	JSON	value	that	was	not	appropriate	for	a
value	of	a	specific	Go	type.

func	(*UnmarshalTypeError)	Error

func	(e	*UnmarshalTypeError)	Error()	string

type	Unmarshaler
type	Unmarshaler	interface	{

				UnmarshalJSON([]byte)	error

}

Unmarshaler	is	the	interface	implemented	by	objects	that	can	unmarshal	a	JSON
description	of	themselves.	The	input	can	be	assumed	to	be	a	valid	JSON	object
encoding.	UnmarshalJSON	must	copy	the	JSON	data	if	it	wishes	to	retain	the
data	after	returning.

type	UnsupportedTypeError
type	UnsupportedTypeError	struct	{

				Type	reflect.Type

}

func	(*UnsupportedTypeError)	Error

func	(e	*UnsupportedTypeError)	Error()	string

type	UnsupportedValueError
type	UnsupportedValueError	struct	{

				Value	reflect.Value

				Str			string

}

func	(*UnsupportedValueError)	Error

func	(e	*UnsupportedValueError)	Error()	string

Bugs

This	package	ignores	anonymous	(embedded)	struct	fields	during	encoding	and
decoding.	A	future	version	may	assign	meaning	to	them.	To	force	an	anonymous
field	to	be	ignored	in	all	future	versions	of	this	package,	use	an	explicit	`json:"-"`
tag	in	the	struct	definition.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	pem
import	"encoding/pem"

Overview
Index

Overview	?

Overview	?

Package	pem	implements	the	PEM	data	encoding,	which	originated	in	Privacy
Enhanced	Mail.	The	most	common	use	of	PEM	encoding	today	is	in	TLS	keys
and	certificates.	See	RFC	1421.

Index

func	Encode(out	io.Writer,	b	*Block)	(err	error)
func	EncodeToMemory(b	*Block)	[]byte
type	Block
				func	Decode(data	[]byte)	(p	*Block,	rest	[]byte)

Package	files

pem.go

func	Encode
func	Encode(out	io.Writer,	b	*Block)	(err	error)

func	EncodeToMemory
func	EncodeToMemory(b	*Block)	[]byte

type	Block
type	Block	struct	{

				Type				string												//	The	type,	taken	from	the	preamble	(i.e.	"RSA	PRIVATE	KEY").

				Headers	map[string]string	//	Optional	headers.

				Bytes			[]byte												//	The	decoded	bytes	of	the	contents.	Typically	a	DER	encoded	ASN.1	structure.

}

A	Block	represents	a	PEM	encoded	structure.

The	encoded	form	is:

-----BEGIN	Type-----

Headers

base64-encoded	Bytes

-----END	Type-----

where	Headers	is	a	possibly	empty	sequence	of	Key:	Value	lines.

func	Decode

func	Decode(data	[]byte)	(p	*Block,	rest	[]byte)

Decode	will	find	the	next	PEM	formatted	block	(certificate,	private	key	etc)	in
the	input.	It	returns	that	block	and	the	remainder	of	the	input.	If	no	PEM	data	is
found,	p	is	nil	and	the	whole	of	the	input	is	returned	in	rest.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	xml
import	"encoding/xml"

Overview
Index
Examples

Overview	?

Overview	?

Package	xml	implements	a	simple	XML	1.0	parser	that	understands	XML	name
spaces.

Index

Constants
Variables
func	Escape(w	io.Writer,	s	[]byte)
func	Marshal(v	interface{})	([]byte,	error)
func	MarshalIndent(v	interface{},	prefix,	indent	string)	([]byte,	error)
func	Unmarshal(data	[]byte,	v	interface{})	error
type	Attr
type	CharData
				func	(c	CharData)	Copy()	CharData
type	Comment
				func	(c	Comment)	Copy()	Comment
type	Decoder
				func	NewDecoder(r	io.Reader)	*Decoder
				func	(d	*Decoder)	Decode(v	interface{})	error
				func	(d	*Decoder)	DecodeElement(v	interface{},	start	*StartElement)
error
				func	(d	*Decoder)	RawToken()	(Token,	error)
				func	(d	*Decoder)	Skip()	error
				func	(d	*Decoder)	Token()	(t	Token,	err	error)
type	Directive
				func	(d	Directive)	Copy()	Directive
type	Encoder
				func	NewEncoder(w	io.Writer)	*Encoder
				func	(enc	*Encoder)	Encode(v	interface{})	error
type	EndElement
type	Name
type	ProcInst
				func	(p	ProcInst)	Copy()	ProcInst
type	StartElement
				func	(e	StartElement)	Copy()	StartElement
type	SyntaxError
				func	(e	*SyntaxError)	Error()	string
type	TagPathError
				func	(e	*TagPathError)	Error()	string
type	Token

				func	CopyToken(t	Token)	Token
type	UnmarshalError
				func	(e	UnmarshalError)	Error()	string
type	UnsupportedTypeError
				func	(e	*UnsupportedTypeError)	Error()	string
Bugs

Examples

MarshalIndent
Unmarshal

Package	files

marshal.go	read.go	typeinfo.go	xml.go

Constants
const	(

				//	A	generic	XML	header	suitable	for	use	with	the	output	of	Marshal.

				//	This	is	not	automatically	added	to	any	output	of	this	package,

				//	it	is	provided	as	a	convenience.

				Header	=	`<?xml	version="1.0"	encoding="UTF-8"?>`	+	"\n"

)

Variables
var	HTMLAutoClose	=	htmlAutoClose

HTMLAutoClose	is	the	set	of	HTML	elements	that	should	be	considered	to
close	automatically.

var	HTMLEntity	=	htmlEntity

HTMLEntity	is	an	entity	map	containing	translations	for	the	standard	HTML
entity	characters.

func	Escape
func	Escape(w	io.Writer,	s	[]byte)

Escape	writes	to	w	the	properly	escaped	XML	equivalent	of	the	plain	text	data	s.

func	Marshal
func	Marshal(v	interface{})	([]byte,	error)

Marshal	returns	the	XML	encoding	of	v.

Marshal	handles	an	array	or	slice	by	marshalling	each	of	the	elements.	Marshal
handles	a	pointer	by	marshalling	the	value	it	points	at	or,	if	the	pointer	is	nil,	by
writing	nothing.	Marshal	handles	an	interface	value	by	marshalling	the	value	it
contains	or,	if	the	interface	value	is	nil,	by	writing	nothing.	Marshal	handles	all
other	data	by	writing	one	or	more	XML	elements	containing	the	data.

The	name	for	the	XML	elements	is	taken	from,	in	order	of	preference:

-	the	tag	on	the	XMLName	field,	if	the	data	is	a	struct

-	the	value	of	the	XMLName	field	of	type	xml.Name

-	the	tag	of	the	struct	field	used	to	obtain	the	data

-	the	name	of	the	struct	field	used	to	obtain	the	data

-	the	name	of	the	marshalled	type

The	XML	element	for	a	struct	contains	marshalled	elements	for	each	of	the
exported	fields	of	the	struct,	with	these	exceptions:

-	the	XMLName	field,	described	above,	is	omitted.

-	a	field	with	tag	"-"	is	omitted.

-	a	field	with	tag	"name,attr"	becomes	an	attribute	with

		the	given	name	in	the	XML	element.

-	a	field	with	tag	",attr"	becomes	an	attribute	with	the

		field	name	in	the	in	the	XML	element.

-	a	field	with	tag	",chardata"	is	written	as	character	data,

		not	as	an	XML	element.

-	a	field	with	tag	",innerxml"	is	written	verbatim,	not	subject

		to	the	usual	marshalling	procedure.

-	a	field	with	tag	",comment"	is	written	as	an	XML	comment,	not

		subject	to	the	usual	marshalling	procedure.	It	must	not	contain

		the	"--"	string	within	it.

-	a	field	with	a	tag	including	the	"omitempty"	option	is	omitted

		if	the	field	value	is	empty.	The	empty	values	are	false,	0,	any

		nil	pointer	or	interface	value,	and	any	array,	slice,	map,	or

		string	of	length	zero.

-	a	non-pointer	anonymous	struct	field	is	handled	as	if	the

		fields	of	its	value	were	part	of	the	outer	struct.

If	a	field	uses	a	tag	"a>b>c",	then	the	element	c	will	be	nested	inside	parent
elements	a	and	b.	Fields	that	appear	next	to	each	other	that	name	the	same	parent
will	be	enclosed	in	one	XML	element.

See	MarshalIndent	for	an	example.

Marshal	will	return	an	error	if	asked	to	marshal	a	channel,	function,	or	map.

func	MarshalIndent
func	MarshalIndent(v	interface{},	prefix,	indent	string)	([]byte,	error)

MarshalIndent	works	like	Marshal,	but	each	XML	element	begins	on	a	new
indented	line	that	starts	with	prefix	and	is	followed	by	one	or	more	copies	of
indent	according	to	the	nesting	depth.

?	Example

?	Example

Code:

type	Address	struct	{

				City,	State	string

}

type	Person	struct	{

				XMLName			xml.Name	`xml:"person"`

				Id								int						`xml:"id,attr"`

				FirstName	string			`xml:"name>first"`

				LastName		string			`xml:"name>last"`

				Age							int						`xml:"age"`

				Height				float32		`xml:"height,omitempty"`

				Married			bool

				Address

				Comment	string	`xml:",comment"`

}

v	:=	&Person{Id:	13,	FirstName:	"John",	LastName:	"Doe",	Age:	42}

v.Comment	=	"	Need	more	details.	"

v.Address	=	Address{"Hanga	Roa",	"Easter	Island"}

output,	err	:=	xml.MarshalIndent(v,	"		",	"				")

if	err	!=	nil	{

				fmt.Printf("error:	%v\n",	err)

}

os.Stdout.Write(output)

Output:

<person	id="13">

						<name>

										<first>John</first>

										<last>Doe</last>

						</name>

						<age>42</age>

						<Married>false</Married>

						<City>Hanga	Roa</City>

						<State>Easter	Island</State>

						<!--	Need	more	details.	-->

		</person>

func	Unmarshal
func	Unmarshal(data	[]byte,	v	interface{})	error

Unmarshal	parses	the	XML-encoded	data	and	stores	the	result	in	the	value
pointed	to	by	v,	which	must	be	an	arbitrary	struct,	slice,	or	string.	Well-formed
data	that	does	not	fit	into	v	is	discarded.

Because	Unmarshal	uses	the	reflect	package,	it	can	only	assign	to	exported
(upper	case)	fields.	Unmarshal	uses	a	case-sensitive	comparison	to	match	XML
element	names	to	tag	values	and	struct	field	names.

Unmarshal	maps	an	XML	element	to	a	struct	using	the	following	rules.	In	the
rules,	the	tag	of	a	field	refers	to	the	value	associated	with	the	key	'xml'	in	the
struct	field's	tag	(see	the	example	above).

*	If	the	struct	has	a	field	of	type	[]byte	or	string	with	tag

			",innerxml",	Unmarshal	accumulates	the	raw	XML	nested	inside	the

			element	in	that	field.		The	rest	of	the	rules	still	apply.

*	If	the	struct	has	a	field	named	XMLName	of	type	xml.Name,

			Unmarshal	records	the	element	name	in	that	field.

*	If	the	XMLName	field	has	an	associated	tag	of	the	form

			"name"	or	"namespace-URL	name",	the	XML	element	must	have

			the	given	name	(and,	optionally,	name	space)	or	else	Unmarshal

			returns	an	error.

*	If	the	XML	element	has	an	attribute	whose	name	matches	a

			struct	field	name	with	an	associated	tag	containing	",attr"	or

			the	explicit	name	in	a	struct	field	tag	of	the	form	"name,attr",

			Unmarshal	records	the	attribute	value	in	that	field.

*	If	the	XML	element	contains	character	data,	that	data	is

			accumulated	in	the	first	struct	field	that	has	tag	"chardata".

			The	struct	field	may	have	type	[]byte	or	string.

			If	there	is	no	such	field,	the	character	data	is	discarded.

*	If	the	XML	element	contains	comments,	they	are	accumulated	in

			the	first	struct	field	that	has	tag	",comments".		The	struct

			field	may	have	type	[]byte	or	string.		If	there	is	no	such

			field,	the	comments	are	discarded.

*	If	the	XML	element	contains	a	sub-element	whose	name	matches

			the	prefix	of	a	tag	formatted	as	"a"	or	"a>b>c",	unmarshal

			will	descend	into	the	XML	structure	looking	for	elements	with	the

			given	names,	and	will	map	the	innermost	elements	to	that	struct

			field.	A	tag	starting	with	">"	is	equivalent	to	one	starting

			with	the	field	name	followed	by	">".

*	If	the	XML	element	contains	a	sub-element	whose	name	matches

			a	struct	field's	XMLName	tag	and	the	struct	field	has	no

			explicit	name	tag	as	per	the	previous	rule,	unmarshal	maps

			the	sub-element	to	that	struct	field.

*	If	the	XML	element	contains	a	sub-element	whose	name	matches	a

			field	without	any	mode	flags	(",attr",	",chardata",	etc),	Unmarshal

			maps	the	sub-element	to	that	struct	field.

*	If	the	XML	element	contains	a	sub-element	that	hasn't	matched	any

			of	the	above	rules	and	the	struct	has	a	field	with	tag	",any",

			unmarshal	maps	the	sub-element	to	that	struct	field.

*	A	non-pointer	anonymous	struct	field	is	handled	as	if	the

			fields	of	its	value	were	part	of	the	outer	struct.

*	A	struct	field	with	tag	"-"	is	never	unmarshalled	into.

Unmarshal	maps	an	XML	element	to	a	string	or	[]byte	by	saving	the
concatenation	of	that	element's	character	data	in	the	string	or	[]byte.	The	saved
[]byte	is	never	nil.

Unmarshal	maps	an	attribute	value	to	a	string	or	[]byte	by	saving	the	value	in	the
string	or	slice.

Unmarshal	maps	an	XML	element	to	a	slice	by	extending	the	length	of	the	slice
and	mapping	the	element	to	the	newly	created	value.

Unmarshal	maps	an	XML	element	or	attribute	value	to	a	bool	by	setting	it	to	the
boolean	value	represented	by	the	string.

Unmarshal	maps	an	XML	element	or	attribute	value	to	an	integer	or	floating-
point	field	by	setting	the	field	to	the	result	of	interpreting	the	string	value	in
decimal.	There	is	no	check	for	overflow.

Unmarshal	maps	an	XML	element	to	an	xml.Name	by	recording	the	element
name.

Unmarshal	maps	an	XML	element	to	a	pointer	by	setting	the	pointer	to	a	freshly

allocated	value	and	then	mapping	the	element	to	that	value.

?	Example

?	Example

This	example	demonstrates	unmarshaling	an	XML	excerpt	into	a	value	with
some	preset	fields.	Note	that	the	Phone	field	isn't	modified	and	that	the	XML
<Company>	element	is	ignored.	Also,	the	Groups	field	is	assigned	considering
the	element	path	provided	in	its	tag.

Code:

type	Email	struct	{

				Where	string	`xml:"where,attr"`

				Addr		string

}

type	Address	struct	{

				City,	State	string

}

type	Result	struct	{

				XMLName	xml.Name	`xml:"Person"`

				Name				string			`xml:"FullName"`

				Phone			string

				Email			[]Email

				Groups		[]string	`xml:"Group>Value"`

				Address

}

v	:=	Result{Name:	"none",	Phone:	"none"}

data	:=	`

				<Person>

								<FullName>Grace	R.	Emlin</FullName>

								<Company>Example	Inc.</Company>

								<Email	where="home">

												<Addr>gre@example.com</Addr>

								</Email>

								<Email	where='work'>

												<Addr>gre@work.com</Addr>

								</Email>

								<Group>

												<Value>Friends</Value>

												<Value>Squash</Value>

								</Group>

								<City>Hanga	Roa</City>

								<State>Easter	Island</State>

				</Person>

`

err	:=	xml.Unmarshal([]byte(data),	&v)

if	err	!=	nil	{

				fmt.Printf("error:	%v",	err)

				return

}

fmt.Printf("XMLName:	%#v\n",	v.XMLName)

fmt.Printf("Name:	%q\n",	v.Name)

fmt.Printf("Phone:	%q\n",	v.Phone)

fmt.Printf("Email:	%v\n",	v.Email)

fmt.Printf("Groups:	%v\n",	v.Groups)

fmt.Printf("Address:	%v\n",	v.Address)

Output:

XMLName:	xml.Name{Space:"",	Local:"Person"}

Name:	"Grace	R.	Emlin"

Phone:	"none"

Email:	[{home	gre@example.com}	{work	gre@work.com}]

Groups:	[Friends	Squash]

Address:	{Hanga	Roa	Easter	Island}

type	Attr
type	Attr	struct	{

				Name		Name

				Value	string

}

An	Attr	represents	an	attribute	in	an	XML	element	(Name=Value).

type	CharData
type	CharData	[]byte

A	CharData	represents	XML	character	data	(raw	text),	in	which	XML	escape
sequences	have	been	replaced	by	the	characters	they	represent.

func	(CharData)	Copy

func	(c	CharData)	Copy()	CharData

type	Comment
type	Comment	[]byte

A	Comment	represents	an	XML	comment	of	the	form	<!--comment-->.	The
bytes	do	not	include	the	<!--	and	-->	comment	markers.

func	(Comment)	Copy

func	(c	Comment)	Copy()	Comment

type	Decoder
type	Decoder	struct	{

				//	Strict	defaults	to	true,	enforcing	the	requirements

				//	of	the	XML	specification.

				//	If	set	to	false,	the	parser	allows	input	containing	common

				//	mistakes:

				//	 *	If	an	element	is	missing	an	end	tag,	the	parser	invents

				//	 		end	tags	as	necessary	to	keep	the	return	values	from	Token

				//	 		properly	balanced.

				//	 *	In	attribute	values	and	character	data,	unknown	or	malformed

				//	 		character	entities	(sequences	beginning	with	&)	are	left	alone.

				//

				//	Setting:

				//

				//	 d.Strict	=	false;

				//	 d.AutoClose	=	HTMLAutoClose;

				//	 d.Entity	=	HTMLEntity

				//

				//	creates	a	parser	that	can	handle	typical	HTML.

				Strict	bool

				//	When	Strict	==	false,	AutoClose	indicates	a	set	of	elements	to

				//	consider	closed	immediately	after	they	are	opened,	regardless

				//	of	whether	an	end	element	is	present.

				AutoClose	[]string

				//	Entity	can	be	used	to	map	non-standard	entity	names	to	string	replacements.

				//	The	parser	behaves	as	if	these	standard	mappings	are	present	in	the	map,

				//	regardless	of	the	actual	map	content:

				//

				//	 "lt":	"<",

				//	 "gt":	">",

				//	 "amp":	"&",

				//	 "apos":	"'",

				//	 "quot":	`"`,

				Entity	map[string]string

				//	CharsetReader,	if	non-nil,	defines	a	function	to	generate

				//	charset-conversion	readers,	converting	from	the	provided

				//	non-UTF-8	charset	into	UTF-8.	If	CharsetReader	is	nil	or

				//	returns	an	error,	parsing	stops	with	an	error.	One	of	the

				//	the	CharsetReader's	result	values	must	be	non-nil.

				CharsetReader	func(charset	string,	input	io.Reader)	(io.Reader,	error)

				//	contains	filtered	or	unexported	fields

}

A	Decoder	represents	an	XML	parser	reading	a	particular	input	stream.	The
parser	assumes	that	its	input	is	encoded	in	UTF-8.

func	NewDecoder

func	NewDecoder(r	io.Reader)	*Decoder

NewDecoder	creates	a	new	XML	parser	reading	from	r.

func	(*Decoder)	Decode

func	(d	*Decoder)	Decode(v	interface{})	error

Decode	works	like	xml.Unmarshal,	except	it	reads	the	decoder	stream	to	find	the
start	element.

func	(*Decoder)	DecodeElement

func	(d	*Decoder)	DecodeElement(v	interface{},	start	*StartElement)	error

DecodeElement	works	like	xml.Unmarshal	except	that	it	takes	a	pointer	to	the
start	XML	element	to	decode	into	v.	It	is	useful	when	a	client	reads	some	raw
XML	tokens	itself	but	also	wants	to	defer	to	Unmarshal	for	some	elements.

func	(*Decoder)	RawToken

func	(d	*Decoder)	RawToken()	(Token,	error)

RawToken	is	like	Token	but	does	not	verify	that	start	and	end	elements	match
and	does	not	translate	name	space	prefixes	to	their	corresponding	URLs.

func	(*Decoder)	Skip

func	(d	*Decoder)	Skip()	error

Skip	reads	tokens	until	it	has	consumed	the	end	element	matching	the	most
recent	start	element	already	consumed.	It	recurs	if	it	encounters	a	start	element,
so	it	can	be	used	to	skip	nested	structures.	It	returns	nil	if	it	finds	an	end	element
matching	the	start	element;	otherwise	it	returns	an	error	describing	the	problem.

func	(*Decoder)	Token

func	(d	*Decoder)	Token()	(t	Token,	err	error)

Token	returns	the	next	XML	token	in	the	input	stream.	At	the	end	of	the	input
stream,	Token	returns	nil,	io.EOF.

Slices	of	bytes	in	the	returned	token	data	refer	to	the	parser's	internal	buffer	and
remain	valid	only	until	the	next	call	to	Token.	To	acquire	a	copy	of	the	bytes,
call	CopyToken	or	the	token's	Copy	method.

Token	expands	self-closing	elements	such	as	
	into	separate	start	and	end
elements	returned	by	successive	calls.

Token	guarantees	that	the	StartElement	and	EndElement	tokens	it	returns	are
properly	nested	and	matched:	if	Token	encounters	an	unexpected	end	element,	it
will	return	an	error.

Token	implements	XML	name	spaces	as	described	by
http://www.w3.org/TR/REC-xml-names/.	Each	of	the	Name	structures	contained
in	the	Token	has	the	Space	set	to	the	URL	identifying	its	name	space	when
known.	If	Token	encounters	an	unrecognized	name	space	prefix,	it	uses	the
prefix	as	the	Space	rather	than	report	an	error.

http://www.w3.org/TR/REC-xml-names/

type	Directive
type	Directive	[]byte

A	Directive	represents	an	XML	directive	of	the	form	<!text>.	The	bytes	do	not
include	the	<!	and	>	markers.

func	(Directive)	Copy

func	(d	Directive)	Copy()	Directive

type	Encoder
type	Encoder	struct	{

				//	contains	filtered	or	unexported	fields

}

An	Encoder	writes	XML	data	to	an	output	stream.

func	NewEncoder

func	NewEncoder(w	io.Writer)	*Encoder

NewEncoder	returns	a	new	encoder	that	writes	to	w.

func	(*Encoder)	Encode

func	(enc	*Encoder)	Encode(v	interface{})	error

Encode	writes	the	XML	encoding	of	v	to	the	stream.

See	the	documentation	for	Marshal	for	details	about	the	conversion	of	Go	values
to	XML.

type	EndElement
type	EndElement	struct	{

				Name	Name

}

An	EndElement	represents	an	XML	end	element.

type	Name
type	Name	struct	{

				Space,	Local	string

}

A	Name	represents	an	XML	name	(Local)	annotated	with	a	name	space	identifier
(Space).	In	tokens	returned	by	Decoder.Token,	the	Space	identifier	is	given	as	a
canonical	URL,	not	the	short	prefix	used	in	the	document	being	parsed.

type	ProcInst
type	ProcInst	struct	{

				Target	string

				Inst			[]byte

}

A	ProcInst	represents	an	XML	processing	instruction	of	the	form	<?target	inst?>

func	(ProcInst)	Copy

func	(p	ProcInst)	Copy()	ProcInst

type	StartElement
type	StartElement	struct	{

				Name	Name

				Attr	[]Attr

}

A	StartElement	represents	an	XML	start	element.

func	(StartElement)	Copy

func	(e	StartElement)	Copy()	StartElement

type	SyntaxError
type	SyntaxError	struct	{

				Msg		string

				Line	int

}

A	SyntaxError	represents	a	syntax	error	in	the	XML	input	stream.

func	(*SyntaxError)	Error

func	(e	*SyntaxError)	Error()	string

type	TagPathError
type	TagPathError	struct	{

				Struct							reflect.Type

				Field1,	Tag1	string

				Field2,	Tag2	string

}

A	TagPathError	represents	an	error	in	the	unmarshalling	process	caused	by	the
use	of	field	tags	with	conflicting	paths.

func	(*TagPathError)	Error

func	(e	*TagPathError)	Error()	string

type	Token
type	Token	interface{}

A	Token	is	an	interface	holding	one	of	the	token	types:	StartElement,
EndElement,	CharData,	Comment,	ProcInst,	or	Directive.

func	CopyToken

func	CopyToken(t	Token)	Token

CopyToken	returns	a	copy	of	a	Token.

type	UnmarshalError
type	UnmarshalError	string

An	UnmarshalError	represents	an	error	in	the	unmarshalling	process.

func	(UnmarshalError)	Error

func	(e	UnmarshalError)	Error()	string

type	UnsupportedTypeError
type	UnsupportedTypeError	struct	{

				Type	reflect.Type

}

A	MarshalXMLError	is	returned	when	Marshal	encounters	a	type	that	cannot	be
converted	into	XML.

func	(*UnsupportedTypeError)	Error

func	(e	*UnsupportedTypeError)	Error()	string

Bugs

Mapping	between	XML	elements	and	data	structures	is	inherently	flawed:	an
XML	element	is	an	order-dependent	collection	of	anonymous	values,	while	a
data	structure	is	an	order-independent	collection	of	named	values.	See	package
json	for	a	textual	representation	more	suitable	to	data	structures.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	errors
import	"errors"

Overview
Index
Examples

Overview	?

Overview	?

Package	errors	implements	functions	to	manipulate	errors.

?	Example

?	Example

Code:

package	errors_test

import	(

				"fmt"

				"time"

)

//	MyError	is	an	error	implementation	that	includes	a	time	and	message.

type	MyError	struct	{

				When	time.Time

				What	string

}

func	(e	MyError)	Error()	string	{

				return	fmt.Sprintf("%v:	%v",	e.When,	e.What)

}

func	oops()	error	{

				return	MyError{

								time.Date(1989,	3,	15,	22,	30,	0,	0,	time.UTC),

								"the	file	system	has	gone	away",

				}

}

func	Example()	{

				if	err	:=	oops();	err	!=	nil	{

								fmt.Println(err)

				}

				//	Output:	1989-03-15	22:30:00	+0000	UTC:	the	file	system	has	gone	away

}

Index

func	New(text	string)	error

Examples

Package
New
New	(Errorf)

Package	files

errors.go

func	New
func	New(text	string)	error

New	returns	an	error	that	formats	as	the	given	text.

?	Example

?	Example

Code:

err	:=	errors.New("emit	macho	dwarf:	elf	header	corrupted")

if	err	!=	nil	{

				fmt.Print(err)

}

Output:

emit	macho	dwarf:	elf	header	corrupted

?	Example	(Errorf)

?	Example	(Errorf)

The	fmt	package's	Errorf	function	lets	us	use	the	package's	formatting	features	to
create	descriptive	error	messages.

Code:

const	name,	id	=	"bimmler",	17

err	:=	fmt.Errorf("user	%q	(id	%d)	not	found",	name,	id)

if	err	!=	nil	{

				fmt.Print(err)

}

Output:

user	"bimmler"	(id	17)	not	found

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative

http://code.google.com/policies.html#restrictions

Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Package	expvar
import	"expvar"

Overview
Index

Overview	?

Overview	?

Package	expvar	provides	a	standardized	interface	to	public	variables,	such	as
operation	counters	in	servers.	It	exposes	these	variables	via	HTTP	at	/debug/vars
in	JSON	format.

Operations	to	set	or	modify	these	public	variables	are	atomic.

In	addition	to	adding	the	HTTP	handler,	this	package	registers	the	following
variables:

cmdline			os.Args

memstats		runtime.Memstats

The	package	is	sometimes	only	imported	for	the	side	effect	of	registering	its
HTTP	handler	and	the	above	variables.	To	use	it	this	way,	link	this	package	into
your	program:

import	_	"expvar"

Index

func	Do(f	func(KeyValue))
func	Publish(name	string,	v	Var)
type	Float
				func	NewFloat(name	string)	*Float
				func	(v	*Float)	Add(delta	float64)
				func	(v	*Float)	Set(value	float64)
				func	(v	*Float)	String()	string
type	Func
				func	(f	Func)	String()	string
type	Int
				func	NewInt(name	string)	*Int
				func	(v	*Int)	Add(delta	int64)
				func	(v	*Int)	Set(value	int64)
				func	(v	*Int)	String()	string
type	KeyValue
type	Map
				func	NewMap(name	string)	*Map
				func	(v	*Map)	Add(key	string,	delta	int64)
				func	(v	*Map)	AddFloat(key	string,	delta	float64)
				func	(v	*Map)	Do(f	func(KeyValue))
				func	(v	*Map)	Get(key	string)	Var
				func	(v	*Map)	Init()	*Map
				func	(v	*Map)	Set(key	string,	av	Var)
				func	(v	*Map)	String()	string
type	String
				func	NewString(name	string)	*String
				func	(v	*String)	Set(value	string)
				func	(v	*String)	String()	string
type	Var
				func	Get(name	string)	Var

Package	files

expvar.go

func	Do
func	Do(f	func(KeyValue))

Do	calls	f	for	each	exported	variable.	The	global	variable	map	is	locked	during
the	iteration,	but	existing	entries	may	be	concurrently	updated.

func	Publish
func	Publish(name	string,	v	Var)

Publish	declares	a	named	exported	variable.	This	should	be	called	from	a
package's	init	function	when	it	creates	its	Vars.	If	the	name	is	already	registered
then	this	will	log.Panic.

type	Float
type	Float	struct	{

				//	contains	filtered	or	unexported	fields

}

Float	is	a	64-bit	float	variable	that	satisfies	the	Var	interface.

func	NewFloat

func	NewFloat(name	string)	*Float

func	(*Float)	Add

func	(v	*Float)	Add(delta	float64)

Add	adds	delta	to	v.

func	(*Float)	Set

func	(v	*Float)	Set(value	float64)

Set	sets	v	to	value.

func	(*Float)	String

func	(v	*Float)	String()	string

type	Func
type	Func	func()	interface{}

Func	implements	Var	by	calling	the	function	and	formatting	the	returned	value
using	JSON.

func	(Func)	String

func	(f	Func)	String()	string

type	Int
type	Int	struct	{

				//	contains	filtered	or	unexported	fields

}

Int	is	a	64-bit	integer	variable	that	satisfies	the	Var	interface.

func	NewInt

func	NewInt(name	string)	*Int

func	(*Int)	Add

func	(v	*Int)	Add(delta	int64)

func	(*Int)	Set

func	(v	*Int)	Set(value	int64)

func	(*Int)	String

func	(v	*Int)	String()	string

type	KeyValue
type	KeyValue	struct	{

				Key			string

				Value	Var

}

KeyValue	represents	a	single	entry	in	a	Map.

type	Map
type	Map	struct	{

				//	contains	filtered	or	unexported	fields

}

Map	is	a	string-to-Var	map	variable	that	satisfies	the	Var	interface.

func	NewMap

func	NewMap(name	string)	*Map

func	(*Map)	Add

func	(v	*Map)	Add(key	string,	delta	int64)

func	(*Map)	AddFloat

func	(v	*Map)	AddFloat(key	string,	delta	float64)

AddFloat	adds	delta	to	the	*Float	value	stored	under	the	given	map	key.

func	(*Map)	Do

func	(v	*Map)	Do(f	func(KeyValue))

Do	calls	f	for	each	entry	in	the	map.	The	map	is	locked	during	the	iteration,	but
existing	entries	may	be	concurrently	updated.

func	(*Map)	Get

func	(v	*Map)	Get(key	string)	Var

func	(*Map)	Init

func	(v	*Map)	Init()	*Map

func	(*Map)	Set

func	(v	*Map)	Set(key	string,	av	Var)

func	(*Map)	String

func	(v	*Map)	String()	string

type	String
type	String	struct	{

				//	contains	filtered	or	unexported	fields

}

String	is	a	string	variable,	and	satisfies	the	Var	interface.

func	NewString

func	NewString(name	string)	*String

func	(*String)	Set

func	(v	*String)	Set(value	string)

func	(*String)	String

func	(v	*String)	String()	string

type	Var
type	Var	interface	{

				String()	string

}

Var	is	an	abstract	type	for	all	exported	variables.

func	Get

func	Get(name	string)	Var

Get	retrieves	a	named	exported	variable.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	flag
import	"flag"

Overview
Index
Examples

Overview	?

Overview	?

Package	flag	implements	command-line	flag	parsing.

Usage:

Define	flags	using	flag.String(),	Bool(),	Int(),	etc.

This	declares	an	integer	flag,	-flagname,	stored	in	the	pointer	ip,	with	type	*int.

import	"flag"

var	ip	=	flag.Int("flagname",	1234,	"help	message	for	flagname")

If	you	like,	you	can	bind	the	flag	to	a	variable	using	the	Var()	functions.

var	flagvar	int

func	init()	{

	 flag.IntVar(&flagvar,	"flagname",	1234,	"help	message	for	flagname")

}

Or	you	can	create	custom	flags	that	satisfy	the	Value	interface	(with	pointer
receivers)	and	couple	them	to	flag	parsing	by

flag.Var(&flagVal,	"name",	"help	message	for	flagname")

For	such	flags,	the	default	value	is	just	the	initial	value	of	the	variable.

After	all	flags	are	defined,	call

flag.Parse()

to	parse	the	command	line	into	the	defined	flags.

Flags	may	then	be	used	directly.	If	you're	using	the	flags	themselves,	they	are	all
pointers;	if	you	bind	to	variables,	they're	values.

fmt.Println("ip	has	value	",	*ip)

fmt.Println("flagvar	has	value	",	flagvar)

After	parsing,	the	arguments	after	the	flag	are	available	as	the	slice	flag.Args()	or
individually	as	flag.Arg(i).	The	arguments	are	indexed	from	0	up	to	flag.NArg().

Command	line	flag	syntax:

-flag

-flag=x

-flag	x		//	non-boolean	flags	only

One	or	two	minus	signs	may	be	used;	they	are	equivalent.	The	last	form	is	not
permitted	for	boolean	flags	because	the	meaning	of	the	command

cmd	-x	*

will	change	if	there	is	a	file	called	0,	false,	etc.	You	must	use	the	-flag=false
form	to	turn	off	a	boolean	flag.

Flag	parsing	stops	just	before	the	first	non-flag	argument	("-"	is	a	non-flag
argument)	or	after	the	terminator	"--".

Integer	flags	accept	1234,	0664,	0x1234	and	may	be	negative.	Boolean	flags
may	be	1,	0,	t,	f,	true,	false,	TRUE,	FALSE,	True,	False.	Duration	flags	accept
any	input	valid	for	time.ParseDuration.

The	default	set	of	command-line	flags	is	controlled	by	top-level	functions.	The
FlagSet	type	allows	one	to	define	independent	sets	of	flags,	such	as	to	implement
subcommands	in	a	command-line	interface.	The	methods	of	FlagSet	are
analogous	to	the	top-level	functions	for	the	command-line	flag	set.

?	Example

?	Example

Code:

//	These	examples	demonstrate	more	intricate	uses	of	the	flag	package.

package	flag_test

import	(

				"errors"

				"flag"

				"fmt"

				"strings"

				"time"

)

//	Example	1:	A	single	string	flag	called	"species"	with	default	value	"gopher".

var	species	=	flag.String("species",	"gopher",	"the	species	we	are	studying")

//	Example	2:	Two	flags	sharing	a	variable,	so	we	can	have	a	shorthand.

//	The	order	of	initialization	is	undefined,	so	make	sure	both	use	the

//	same	default	value.	They	must	be	set	up	with	an	init	function.

var	gopherType	string

func	init()	{

				const	(

								defaultGopher	=	"pocket"

								usage									=	"the	variety	of	gopher"

)

				flag.StringVar(&gopherType,	"gopher_type",	defaultGopher,	usage)

				flag.StringVar(&gopherType,	"g",	defaultGopher,	usage+"	(shorthand)")

}

//	Example	3:	A	user-defined	flag	type,	a	slice	of	durations.

type	interval	[]time.Duration

//	String	is	the	method	to	format	the	flag's	value,	part	of	the	flag.Value	interface.

//	The	String	method's	output	will	be	used	in	diagnostics.

func	(i	*interval)	String()	string	{

				return	fmt.Sprint(*i)

}

//	Set	is	the	method	to	set	the	flag	value,	part	of	the	flag.Value	interface.

//	Set's	argument	is	a	string	to	be	parsed	to	set	the	flag.

//	It's	a	comma-separated	list,	so	we	split	it.

func	(i	*interval)	Set(value	string)	error	{

				//	If	we	wanted	to	allow	the	flag	to	be	set	multiple	times,

				//	accumulating	values,	we	would	delete	this	if	statement.

				//	That	would	permit	usages	such	as

				//	 -deltaT	10s	-deltaT	15s

				//	and	other	combinations.

				if	len(*i)	>	0	{

								return	errors.New("interval	flag	already	set")

				}

				for	_,	dt	:=	range	strings.Split(value,	",")	{

								duration,	err	:=	time.ParseDuration(dt)

								if	err	!=	nil	{

												return	err

								}

								*i	=	append(*i,	duration)

				}

				return	nil

}

//	Define	a	flag	to	accumulate	durations.	Because	it	has	a	special	type,

//	we	need	to	use	the	Var	function	and	therefore	create	the	flag	during

//	init.

var	intervalFlag	interval

func	init()	{

				//	Tie	the	command-line	flag	to	the	intervalFlag	variable	and

				//	set	a	usage	message.

				flag.Var(&intervalFlag,	"deltaT",	"comma-separated	list	of	intervals	to	use	between	events")

}

func	Example()	{

				//	All	the	interesting	pieces	are	with	the	variables	declared	above,	but

				//	to	enable	the	flag	package	to	see	the	flags	defined	there,	one	must

				//	execute,	typically	at	the	start	of	main	(not	init!):

				//	 flag.Parse()

				//	We	don't	run	it	here	because	this	is	not	a	main	function	and

				//	the	testing	suite	has	already	parsed	the	flags.

}

Index

Variables
func	Arg(i	int)	string
func	Args()	[]string
func	Bool(name	string,	value	bool,	usage	string)	*bool
func	BoolVar(p	*bool,	name	string,	value	bool,	usage	string)
func	Duration(name	string,	value	time.Duration,	usage	string)
*time.Duration
func	DurationVar(p	*time.Duration,	name	string,	value	time.Duration,
usage	string)
func	Float64(name	string,	value	float64,	usage	string)	*float64
func	Float64Var(p	*float64,	name	string,	value	float64,	usage	string)
func	Int(name	string,	value	int,	usage	string)	*int
func	Int64(name	string,	value	int64,	usage	string)	*int64
func	Int64Var(p	*int64,	name	string,	value	int64,	usage	string)
func	IntVar(p	*int,	name	string,	value	int,	usage	string)
func	NArg()	int
func	NFlag()	int
func	Parse()
func	Parsed()	bool
func	PrintDefaults()
func	Set(name,	value	string)	error
func	String(name	string,	value	string,	usage	string)	*string
func	StringVar(p	*string,	name	string,	value	string,	usage	string)
func	Uint(name	string,	value	uint,	usage	string)	*uint
func	Uint64(name	string,	value	uint64,	usage	string)	*uint64
func	Uint64Var(p	*uint64,	name	string,	value	uint64,	usage	string)
func	UintVar(p	*uint,	name	string,	value	uint,	usage	string)
func	Var(value	Value,	name	string,	usage	string)
func	Visit(fn	func(*Flag))
func	VisitAll(fn	func(*Flag))
type	ErrorHandling
type	Flag
				func	Lookup(name	string)	*Flag
type	FlagSet
				func	NewFlagSet(name	string,	errorHandling	ErrorHandling)	*FlagSet

				func	(f	*FlagSet)	Arg(i	int)	string
				func	(f	*FlagSet)	Args()	[]string
				func	(f	*FlagSet)	Bool(name	string,	value	bool,	usage	string)	*bool
				func	(f	*FlagSet)	BoolVar(p	*bool,	name	string,	value	bool,	usage	string)
				func	(f	*FlagSet)	Duration(name	string,	value	time.Duration,	usage
string)	*time.Duration
				func	(f	*FlagSet)	DurationVar(p	*time.Duration,	name	string,	value
time.Duration,	usage	string)
				func	(f	*FlagSet)	Float64(name	string,	value	float64,	usage	string)
*float64
				func	(f	*FlagSet)	Float64Var(p	*float64,	name	string,	value	float64,
usage	string)
				func	(f	*FlagSet)	Init(name	string,	errorHandling	ErrorHandling)
				func	(f	*FlagSet)	Int(name	string,	value	int,	usage	string)	*int
				func	(f	*FlagSet)	Int64(name	string,	value	int64,	usage	string)	*int64
				func	(f	*FlagSet)	Int64Var(p	*int64,	name	string,	value	int64,	usage
string)
				func	(f	*FlagSet)	IntVar(p	*int,	name	string,	value	int,	usage	string)
				func	(f	*FlagSet)	Lookup(name	string)	*Flag
				func	(f	*FlagSet)	NArg()	int
				func	(f	*FlagSet)	NFlag()	int
				func	(f	*FlagSet)	Parse(arguments	[]string)	error
				func	(f	*FlagSet)	Parsed()	bool
				func	(f	*FlagSet)	PrintDefaults()
				func	(f	*FlagSet)	Set(name,	value	string)	error
				func	(f	*FlagSet)	SetOutput(output	io.Writer)
				func	(f	*FlagSet)	String(name	string,	value	string,	usage	string)	*string
				func	(f	*FlagSet)	StringVar(p	*string,	name	string,	value	string,	usage
string)
				func	(f	*FlagSet)	Uint(name	string,	value	uint,	usage	string)	*uint
				func	(f	*FlagSet)	Uint64(name	string,	value	uint64,	usage	string)	*uint64
				func	(f	*FlagSet)	Uint64Var(p	*uint64,	name	string,	value	uint64,	usage
string)
				func	(f	*FlagSet)	UintVar(p	*uint,	name	string,	value	uint,	usage	string)
				func	(f	*FlagSet)	Var(value	Value,	name	string,	usage	string)
				func	(f	*FlagSet)	Visit(fn	func(*Flag))
				func	(f	*FlagSet)	VisitAll(fn	func(*Flag))
type	Value

Examples

Package

Package	files

flag.go

Variables
var	ErrHelp	=	errors.New("flag:	help	requested")

ErrHelp	is	the	error	returned	if	the	flag	-help	is	invoked	but	no	such	flag	is
defined.

var	Usage	=	func()	{

				fmt.Fprintf(os.Stderr,	"Usage	of	%s:\n",	os.Args[0])

				PrintDefaults()

}

Usage	prints	to	standard	error	a	usage	message	documenting	all	defined
command-line	flags.	The	function	is	a	variable	that	may	be	changed	to	point	to	a
custom	function.

func	Arg
func	Arg(i	int)	string

Arg	returns	the	i'th	command-line	argument.	Arg(0)	is	the	first	remaining
argument	after	flags	have	been	processed.

func	Args
func	Args()	[]string

Args	returns	the	non-flag	command-line	arguments.

func	Bool
func	Bool(name	string,	value	bool,	usage	string)	*bool

Bool	defines	a	bool	flag	with	specified	name,	default	value,	and	usage	string.
The	return	value	is	the	address	of	a	bool	variable	that	stores	the	value	of	the	flag.

func	BoolVar
func	BoolVar(p	*bool,	name	string,	value	bool,	usage	string)

BoolVar	defines	a	bool	flag	with	specified	name,	default	value,	and	usage	string.
The	argument	p	points	to	a	bool	variable	in	which	to	store	the	value	of	the	flag.

func	Duration
func	Duration(name	string,	value	time.Duration,	usage	string)	*time.Duration

Duration	defines	a	time.Duration	flag	with	specified	name,	default	value,	and
usage	string.	The	return	value	is	the	address	of	a	time.Duration	variable	that
stores	the	value	of	the	flag.

func	DurationVar
func	DurationVar(p	*time.Duration,	name	string,	value	time.Duration,	usage	string)

DurationVar	defines	a	time.Duration	flag	with	specified	name,	default	value,	and
usage	string.	The	argument	p	points	to	a	time.Duration	variable	in	which	to	store
the	value	of	the	flag.

func	Float64
func	Float64(name	string,	value	float64,	usage	string)	*float64

Float64	defines	a	float64	flag	with	specified	name,	default	value,	and	usage
string.	The	return	value	is	the	address	of	a	float64	variable	that	stores	the	value
of	the	flag.

func	Float64Var
func	Float64Var(p	*float64,	name	string,	value	float64,	usage	string)

Float64Var	defines	a	float64	flag	with	specified	name,	default	value,	and	usage
string.	The	argument	p	points	to	a	float64	variable	in	which	to	store	the	value	of
the	flag.

func	Int
func	Int(name	string,	value	int,	usage	string)	*int

Int	defines	an	int	flag	with	specified	name,	default	value,	and	usage	string.	The
return	value	is	the	address	of	an	int	variable	that	stores	the	value	of	the	flag.

func	Int64
func	Int64(name	string,	value	int64,	usage	string)	*int64

Int64	defines	an	int64	flag	with	specified	name,	default	value,	and	usage	string.
The	return	value	is	the	address	of	an	int64	variable	that	stores	the	value	of	the
flag.

func	Int64Var
func	Int64Var(p	*int64,	name	string,	value	int64,	usage	string)

Int64Var	defines	an	int64	flag	with	specified	name,	default	value,	and	usage
string.	The	argument	p	points	to	an	int64	variable	in	which	to	store	the	value	of
the	flag.

func	IntVar
func	IntVar(p	*int,	name	string,	value	int,	usage	string)

IntVar	defines	an	int	flag	with	specified	name,	default	value,	and	usage	string.
The	argument	p	points	to	an	int	variable	in	which	to	store	the	value	of	the	flag.

func	NArg
func	NArg()	int

NArg	is	the	number	of	arguments	remaining	after	flags	have	been	processed.

func	NFlag
func	NFlag()	int

NFlag	returns	the	number	of	command-line	flags	that	have	been	set.

func	Parse
func	Parse()

Parse	parses	the	command-line	flags	from	os.Args[1:].	Must	be	called	after	all
flags	are	defined	and	before	flags	are	accessed	by	the	program.

func	Parsed
func	Parsed()	bool

Parsed	returns	true	if	the	command-line	flags	have	been	parsed.

func	PrintDefaults
func	PrintDefaults()

PrintDefaults	prints	to	standard	error	the	default	values	of	all	defined	command-
line	flags.

func	Set
func	Set(name,	value	string)	error

Set	sets	the	value	of	the	named	command-line	flag.

func	String
func	String(name	string,	value	string,	usage	string)	*string

String	defines	a	string	flag	with	specified	name,	default	value,	and	usage	string.
The	return	value	is	the	address	of	a	string	variable	that	stores	the	value	of	the
flag.

func	StringVar
func	StringVar(p	*string,	name	string,	value	string,	usage	string)

StringVar	defines	a	string	flag	with	specified	name,	default	value,	and	usage
string.	The	argument	p	points	to	a	string	variable	in	which	to	store	the	value	of
the	flag.

func	Uint
func	Uint(name	string,	value	uint,	usage	string)	*uint

Uint	defines	a	uint	flag	with	specified	name,	default	value,	and	usage	string.	The
return	value	is	the	address	of	a	uint	variable	that	stores	the	value	of	the	flag.

func	Uint64
func	Uint64(name	string,	value	uint64,	usage	string)	*uint64

Uint64	defines	a	uint64	flag	with	specified	name,	default	value,	and	usage	string.
The	return	value	is	the	address	of	a	uint64	variable	that	stores	the	value	of	the
flag.

func	Uint64Var
func	Uint64Var(p	*uint64,	name	string,	value	uint64,	usage	string)

Uint64Var	defines	a	uint64	flag	with	specified	name,	default	value,	and	usage
string.	The	argument	p	points	to	a	uint64	variable	in	which	to	store	the	value	of
the	flag.

func	UintVar
func	UintVar(p	*uint,	name	string,	value	uint,	usage	string)

UintVar	defines	a	uint	flag	with	specified	name,	default	value,	and	usage	string.
The	argument	p	points	to	a	uint	variable	in	which	to	store	the	value	of	the	flag.

func	Var
func	Var(value	Value,	name	string,	usage	string)

Var	defines	a	flag	with	the	specified	name	and	usage	string.	The	type	and	value
of	the	flag	are	represented	by	the	first	argument,	of	type	Value,	which	typically
holds	a	user-defined	implementation	of	Value.	For	instance,	the	caller	could
create	a	flag	that	turns	a	comma-separated	string	into	a	slice	of	strings	by	giving
the	slice	the	methods	of	Value;	in	particular,	Set	would	decompose	the	comma-
separated	string	into	the	slice.

func	Visit
func	Visit(fn	func(*Flag))

Visit	visits	the	command-line	flags	in	lexicographical	order,	calling	fn	for	each.
It	visits	only	those	flags	that	have	been	set.

func	VisitAll
func	VisitAll(fn	func(*Flag))

VisitAll	visits	the	command-line	flags	in	lexicographical	order,	calling	fn	for
each.	It	visits	all	flags,	even	those	not	set.

type	ErrorHandling
type	ErrorHandling	int

ErrorHandling	defines	how	to	handle	flag	parsing	errors.

const	(

				ContinueOnError	ErrorHandling	=	iota

				ExitOnError

				PanicOnError

)

type	Flag
type	Flag	struct	{

				Name					string	//	name	as	it	appears	on	command	line

				Usage				string	//	help	message

				Value				Value		//	value	as	set

				DefValue	string	//	default	value	(as	text);	for	usage	message

}

A	Flag	represents	the	state	of	a	flag.

func	Lookup

func	Lookup(name	string)	*Flag

Lookup	returns	the	Flag	structure	of	the	named	command-line	flag,	returning	nil
if	none	exists.

type	FlagSet
type	FlagSet	struct	{

				//	Usage	is	the	function	called	when	an	error	occurs	while	parsing	flags.

				//	The	field	is	a	function	(not	a	method)	that	may	be	changed	to	point	to

				//	a	custom	error	handler.

				Usage	func()

				//	contains	filtered	or	unexported	fields

}

A	FlagSet	represents	a	set	of	defined	flags.

func	NewFlagSet

func	NewFlagSet(name	string,	errorHandling	ErrorHandling)	*FlagSet

NewFlagSet	returns	a	new,	empty	flag	set	with	the	specified	name	and	error
handling	property.

func	(*FlagSet)	Arg

func	(f	*FlagSet)	Arg(i	int)	string

Arg	returns	the	i'th	argument.	Arg(0)	is	the	first	remaining	argument	after	flags
have	been	processed.

func	(*FlagSet)	Args

func	(f	*FlagSet)	Args()	[]string

Args	returns	the	non-flag	arguments.

func	(*FlagSet)	Bool

func	(f	*FlagSet)	Bool(name	string,	value	bool,	usage	string)	*bool

Bool	defines	a	bool	flag	with	specified	name,	default	value,	and	usage	string.
The	return	value	is	the	address	of	a	bool	variable	that	stores	the	value	of	the	flag.

func	(*FlagSet)	BoolVar

func	(f	*FlagSet)	BoolVar(p	*bool,	name	string,	value	bool,	usage	string)

BoolVar	defines	a	bool	flag	with	specified	name,	default	value,	and	usage	string.
The	argument	p	points	to	a	bool	variable	in	which	to	store	the	value	of	the	flag.

func	(*FlagSet)	Duration

func	(f	*FlagSet)	Duration(name	string,	value	time.Duration,	usage	string)	*time.Duration

Duration	defines	a	time.Duration	flag	with	specified	name,	default	value,	and
usage	string.	The	return	value	is	the	address	of	a	time.Duration	variable	that
stores	the	value	of	the	flag.

func	(*FlagSet)	DurationVar

func	(f	*FlagSet)	DurationVar(p	*time.Duration,	name	string,	value	time.Duration,	usage	string)

DurationVar	defines	a	time.Duration	flag	with	specified	name,	default	value,	and
usage	string.	The	argument	p	points	to	a	time.Duration	variable	in	which	to	store
the	value	of	the	flag.

func	(*FlagSet)	Float64

func	(f	*FlagSet)	Float64(name	string,	value	float64,	usage	string)	*float64

Float64	defines	a	float64	flag	with	specified	name,	default	value,	and	usage
string.	The	return	value	is	the	address	of	a	float64	variable	that	stores	the	value
of	the	flag.

func	(*FlagSet)	Float64Var

func	(f	*FlagSet)	Float64Var(p	*float64,	name	string,	value	float64,	usage	string)

Float64Var	defines	a	float64	flag	with	specified	name,	default	value,	and	usage
string.	The	argument	p	points	to	a	float64	variable	in	which	to	store	the	value	of
the	flag.

func	(*FlagSet)	Init

func	(f	*FlagSet)	Init(name	string,	errorHandling	ErrorHandling)

Init	sets	the	name	and	error	handling	property	for	a	flag	set.	By	default,	the	zero
FlagSet	uses	an	empty	name	and	the	ContinueOnError	error	handling	policy.

func	(*FlagSet)	Int

func	(f	*FlagSet)	Int(name	string,	value	int,	usage	string)	*int

Int	defines	an	int	flag	with	specified	name,	default	value,	and	usage	string.	The
return	value	is	the	address	of	an	int	variable	that	stores	the	value	of	the	flag.

func	(*FlagSet)	Int64

func	(f	*FlagSet)	Int64(name	string,	value	int64,	usage	string)	*int64

Int64	defines	an	int64	flag	with	specified	name,	default	value,	and	usage	string.
The	return	value	is	the	address	of	an	int64	variable	that	stores	the	value	of	the
flag.

func	(*FlagSet)	Int64Var

func	(f	*FlagSet)	Int64Var(p	*int64,	name	string,	value	int64,	usage	string)

Int64Var	defines	an	int64	flag	with	specified	name,	default	value,	and	usage
string.	The	argument	p	points	to	an	int64	variable	in	which	to	store	the	value	of
the	flag.

func	(*FlagSet)	IntVar

func	(f	*FlagSet)	IntVar(p	*int,	name	string,	value	int,	usage	string)

IntVar	defines	an	int	flag	with	specified	name,	default	value,	and	usage	string.
The	argument	p	points	to	an	int	variable	in	which	to	store	the	value	of	the	flag.

func	(*FlagSet)	Lookup

func	(f	*FlagSet)	Lookup(name	string)	*Flag

Lookup	returns	the	Flag	structure	of	the	named	flag,	returning	nil	if	none	exists.

func	(*FlagSet)	NArg

func	(f	*FlagSet)	NArg()	int

NArg	is	the	number	of	arguments	remaining	after	flags	have	been	processed.

func	(*FlagSet)	NFlag

func	(f	*FlagSet)	NFlag()	int

NFlag	returns	the	number	of	flags	that	have	been	set.

func	(*FlagSet)	Parse

func	(f	*FlagSet)	Parse(arguments	[]string)	error

Parse	parses	flag	definitions	from	the	argument	list,	which	should	not	include	the
command	name.	Must	be	called	after	all	flags	in	the	FlagSet	are	defined	and
before	flags	are	accessed	by	the	program.	The	return	value	will	be	ErrHelp	if	-
help	was	set	but	not	defined.

func	(*FlagSet)	Parsed

func	(f	*FlagSet)	Parsed()	bool

Parsed	reports	whether	f.Parse	has	been	called.

func	(*FlagSet)	PrintDefaults

func	(f	*FlagSet)	PrintDefaults()

PrintDefaults	prints,	to	standard	error	unless	configured	otherwise,	the	default
values	of	all	defined	flags	in	the	set.

func	(*FlagSet)	Set

func	(f	*FlagSet)	Set(name,	value	string)	error

Set	sets	the	value	of	the	named	flag.

func	(*FlagSet)	SetOutput

func	(f	*FlagSet)	SetOutput(output	io.Writer)

SetOutput	sets	the	destination	for	usage	and	error	messages.	If	output	is	nil,
os.Stderr	is	used.

func	(*FlagSet)	String

func	(f	*FlagSet)	String(name	string,	value	string,	usage	string)	*string

String	defines	a	string	flag	with	specified	name,	default	value,	and	usage	string.
The	return	value	is	the	address	of	a	string	variable	that	stores	the	value	of	the
flag.

func	(*FlagSet)	StringVar

func	(f	*FlagSet)	StringVar(p	*string,	name	string,	value	string,	usage	string)

StringVar	defines	a	string	flag	with	specified	name,	default	value,	and	usage
string.	The	argument	p	points	to	a	string	variable	in	which	to	store	the	value	of
the	flag.

func	(*FlagSet)	Uint

func	(f	*FlagSet)	Uint(name	string,	value	uint,	usage	string)	*uint

Uint	defines	a	uint	flag	with	specified	name,	default	value,	and	usage	string.	The
return	value	is	the	address	of	a	uint	variable	that	stores	the	value	of	the	flag.

func	(*FlagSet)	Uint64

func	(f	*FlagSet)	Uint64(name	string,	value	uint64,	usage	string)	*uint64

Uint64	defines	a	uint64	flag	with	specified	name,	default	value,	and	usage	string.
The	return	value	is	the	address	of	a	uint64	variable	that	stores	the	value	of	the
flag.

func	(*FlagSet)	Uint64Var

func	(f	*FlagSet)	Uint64Var(p	*uint64,	name	string,	value	uint64,	usage	string)

Uint64Var	defines	a	uint64	flag	with	specified	name,	default	value,	and	usage
string.	The	argument	p	points	to	a	uint64	variable	in	which	to	store	the	value	of
the	flag.

func	(*FlagSet)	UintVar

func	(f	*FlagSet)	UintVar(p	*uint,	name	string,	value	uint,	usage	string)

UintVar	defines	a	uint	flag	with	specified	name,	default	value,	and	usage	string.
The	argument	p	points	to	a	uint	variable	in	which	to	store	the	value	of	the	flag.

func	(*FlagSet)	Var

func	(f	*FlagSet)	Var(value	Value,	name	string,	usage	string)

Var	defines	a	flag	with	the	specified	name	and	usage	string.	The	type	and	value
of	the	flag	are	represented	by	the	first	argument,	of	type	Value,	which	typically
holds	a	user-defined	implementation	of	Value.	For	instance,	the	caller	could
create	a	flag	that	turns	a	comma-separated	string	into	a	slice	of	strings	by	giving
the	slice	the	methods	of	Value;	in	particular,	Set	would	decompose	the	comma-
separated	string	into	the	slice.

func	(*FlagSet)	Visit

func	(f	*FlagSet)	Visit(fn	func(*Flag))

Visit	visits	the	flags	in	lexicographical	order,	calling	fn	for	each.	It	visits	only
those	flags	that	have	been	set.

func	(*FlagSet)	VisitAll

func	(f	*FlagSet)	VisitAll(fn	func(*Flag))

VisitAll	visits	the	flags	in	lexicographical	order,	calling	fn	for	each.	It	visits	all
flags,	even	those	not	set.

type	Value
type	Value	interface	{

				String()	string

				Set(string)	error

}

Value	is	the	interface	to	the	dynamic	value	stored	in	a	flag.	(The	default	value	is
represented	as	a	string.)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	fmt
import	"fmt"

Overview
Index

Overview	?

Overview	?

Package	fmt	implements	formatted	I/O	with	functions	analogous	to	C's	printf
and	scanf.	The	format	'verbs'	are	derived	from	C's	but	are	simpler.

Printing

The	verbs:

General:

%v	 the	value	in	a	default	format.

	 when	printing	structs,	the	plus	flag	(%+v)	adds	field	names

%#v	 a	Go-syntax	representation	of	the	value

%T	 a	Go-syntax	representation	of	the	type	of	the	value

%%	 a	literal	percent	sign;	consumes	no	value

Boolean:

%t	 the	word	true	or	false

Integer:

%b	 base	2

%c	 the	character	represented	by	the	corresponding	Unicode	code	point

%d	 base	10

%o	 base	8

%q	 a	single-quoted	character	literal	safely	escaped	with	Go	syntax.

%x	 base	16,	with	lower-case	letters	for	a-f

%X	 base	16,	with	upper-case	letters	for	A-F

%U	 Unicode	format:	U+1234;	same	as	"U+%04X"

Floating-point	and	complex	constituents:

%b	 decimalless	scientific	notation	with	exponent	a	power	of	two,

	 in	the	manner	of	strconv.FormatFloat	with	the	'b'	format,

	 e.g.	-123456p-78

%e	 scientific	notation,	e.g.	-1234.456e+78

%E	 scientific	notation,	e.g.	-1234.456E+78

%f	 decimal	point	but	no	exponent,	e.g.	123.456

%g	 whichever	of	%e	or	%f	produces	more	compact	output

%G	 whichever	of	%E	or	%f	produces	more	compact	output

String	and	slice	of	bytes:

%s	 the	uninterpreted	bytes	of	the	string	or	slice

%q	 a	double-quoted	string	safely	escaped	with	Go	syntax

%x	 base	16,	lower-case,	two	characters	per	byte

%X	 base	16,	upper-case,	two	characters	per	byte

Pointer:

%p	 base	16	notation,	with	leading	0x

There	is	no	'u'	flag.	Integers	are	printed	unsigned	if	they	have	unsigned	type.
Similarly,	there	is	no	need	to	specify	the	size	of	the	operand	(int8,	int64).

The	width	and	precision	control	formatting	and	are	in	units	of	Unicode	code
points.	(This	differs	from	C's	printf	where	the	units	are	numbers	of	bytes.)	Either
or	both	of	the	flags	may	be	replaced	with	the	character	'*',	causing	their	values	to
be	obtained	from	the	next	operand,	which	must	be	of	type	int.

For	numeric	values,	width	sets	the	width	of	the	field	and	precision	sets	the
number	of	places	after	the	decimal,	if	appropriate.	For	example,	the	format
%6.2f	prints	123.45.

For	strings,	width	is	the	minimum	number	of	characters	to	output,	padding	with
spaces	if	necessary,	and	precision	is	the	maximum	number	of	characters	to
output,	truncating	if	necessary.

Other	flags:

+	 always	print	a	sign	for	numeric	values;

	 guarantee	ASCII-only	output	for	%q	(%+q)

-	 pad	with	spaces	on	the	right	rather	than	the	left	(left-justify	the	field)

#	 alternate	format:	add	leading	0	for	octal	(%#o),	0x	for	hex	(%#x);

	 0X	for	hex	(%#X);	suppress	0x	for	%p	(%#p);

	 print	a	raw	(backquoted)	string	if	possible	for	%q	(%#q);

	 write	e.g.	U+0078	'x'	if	the	character	is	printable	for	%U	(%#U).

'	'	 (space)	leave	a	space	for	elided	sign	in	numbers	(%	d);

	 put	spaces	between	bytes	printing	strings	or	slices	in	hex	(%	x,	%	X)

0	 pad	with	leading	zeros	rather	than	spaces

For	each	Printf-like	function,	there	is	also	a	Print	function	that	takes	no	format
and	is	equivalent	to	saying	%v	for	every	operand.	Another	variant	Println	inserts
blanks	between	operands	and	appends	a	newline.

Regardless	of	the	verb,	if	an	operand	is	an	interface	value,	the	internal	concrete
value	is	used,	not	the	interface	itself.	Thus:

var	i	interface{}	=	23

fmt.Printf("%v\n",	i)

will	print	23.

If	an	operand	implements	interface	Formatter,	that	interface	can	be	used	for	fine
control	of	formatting.

If	the	format	(which	is	implicitly	%v	for	Println	etc.)	is	valid	for	a	string	(%s	%q
%v	%x	%X),	the	following	two	rules	also	apply:

1.	If	an	operand	implements	the	error	interface,	the	Error	method	will	be	used	to
convert	the	object	to	a	string,	which	will	then	be	formatted	as	required	by	the
verb	(if	any).

2.	If	an	operand	implements	method	String()	string,	that	method	will	be	used	to
convert	the	object	to	a	string,	which	will	then	be	formatted	as	required	by	the
verb	(if	any).

To	avoid	recursion	in	cases	such	as

type	X	string

func	(x	X)	String()	string	{	return	Sprintf("<%s>",	x)	}

convert	the	value	before	recurring:

func	(x	X)	String()	string	{	return	Sprintf("<%s>",	string(x))	}

Format	errors:

If	an	invalid	argument	is	given	for	a	verb,	such	as	providing	a	string	to	%d,	the
generated	string	will	contain	a	description	of	the	problem,	as	in	these	examples:

Wrong	type	or	unknown	verb:	%!verb(type=value)

	 Printf("%d",	hi):										%!d(string=hi)

Too	many	arguments:	%!(EXTRA	type=value)

	 Printf("hi",	"guys"):						hi%!(EXTRA	string=guys)

Too	few	arguments:	%!verb(MISSING)

	 Printf("hi%d"):												hi	%!d(MISSING)

Non-int	for	width	or	precision:	%!(BADWIDTH)	or	%!(BADPREC)

	 Printf("%*s",	4.5,	"hi"):		%!(BADWIDTH)hi

	 Printf("%.*s",	4.5,	"hi"):	%!(BADPREC)hi

All	errors	begin	with	the	string	"%!"	followed	sometimes	by	a	single	character
(the	verb)	and	end	with	a	parenthesized	description.

Scanning

An	analogous	set	of	functions	scans	formatted	text	to	yield	values.	Scan,	Scanf
and	Scanln	read	from	os.Stdin;	Fscan,	Fscanf	and	Fscanln	read	from	a	specified
io.Reader;	Sscan,	Sscanf	and	Sscanln	read	from	an	argument	string.	Scanln,
Fscanln	and	Sscanln	stop	scanning	at	a	newline	and	require	that	the	items	be
followed	by	one;	Sscanf,	Fscanf	and	Sscanf	require	newlines	in	the	input	to
match	newlines	in	the	format;	the	other	routines	treat	newlines	as	spaces.

Scanf,	Fscanf,	and	Sscanf	parse	the	arguments	according	to	a	format	string,
analogous	to	that	of	Printf.	For	example,	%x	will	scan	an	integer	as	a
hexadecimal	number,	and	%v	will	scan	the	default	representation	format	for	the
value.

The	formats	behave	analogously	to	those	of	Printf	with	the	following	exceptions:

%p	is	not	implemented

%T	is	not	implemented

%e	%E	%f	%F	%g	%G	are	all	equivalent	and	scan	any	floating	point	or	complex	value

%s	and	%v	on	strings	scan	a	space-delimited	token

The	familiar	base-setting	prefixes	0	(octal)	and	0x	(hexadecimal)	are	accepted
when	scanning	integers	without	a	format	or	with	the	%v	verb.

Width	is	interpreted	in	the	input	text	(%5s	means	at	most	five	runes	of	input	will
be	read	to	scan	a	string)	but	there	is	no	syntax	for	scanning	with	a	precision	(no
%5.2f,	just	%5f).

When	scanning	with	a	format,	all	non-empty	runs	of	space	characters	(except
newline)	are	equivalent	to	a	single	space	in	both	the	format	and	the	input.	With
that	proviso,	text	in	the	format	string	must	match	the	input	text;	scanning	stops	if
it	does	not,	with	the	return	value	of	the	function	indicating	the	number	of
arguments	scanned.

In	all	the	scanning	functions,	if	an	operand	implements	method	Scan	(that	is,	it

implements	the	Scanner	interface)	that	method	will	be	used	to	scan	the	text	for
that	operand.	Also,	if	the	number	of	arguments	scanned	is	less	than	the	number
of	arguments	provided,	an	error	is	returned.

All	arguments	to	be	scanned	must	be	either	pointers	to	basic	types	or
implementations	of	the	Scanner	interface.

Note:	Fscan	etc.	can	read	one	character	(rune)	past	the	input	they	return,	which
means	that	a	loop	calling	a	scan	routine	may	skip	some	of	the	input.	This	is
usually	a	problem	only	when	there	is	no	space	between	input	values.	If	the
reader	provided	to	Fscan	implements	ReadRune,	that	method	will	be	used	to
read	characters.	If	the	reader	also	implements	UnreadRune,	that	method	will	be
used	to	save	the	character	and	successive	calls	will	not	lose	data.	To	attach
ReadRune	and	UnreadRune	methods	to	a	reader	without	that	capability,	use
bufio.NewReader.

Index

func	Errorf(format	string,	a	...interface{})	error
func	Fprint(w	io.Writer,	a	...interface{})	(n	int,	err	error)
func	Fprintf(w	io.Writer,	format	string,	a	...interface{})	(n	int,	err	error)
func	Fprintln(w	io.Writer,	a	...interface{})	(n	int,	err	error)
func	Fscan(r	io.Reader,	a	...interface{})	(n	int,	err	error)
func	Fscanf(r	io.Reader,	format	string,	a	...interface{})	(n	int,	err	error)
func	Fscanln(r	io.Reader,	a	...interface{})	(n	int,	err	error)
func	Print(a	...interface{})	(n	int,	err	error)
func	Printf(format	string,	a	...interface{})	(n	int,	err	error)
func	Println(a	...interface{})	(n	int,	err	error)
func	Scan(a	...interface{})	(n	int,	err	error)
func	Scanf(format	string,	a	...interface{})	(n	int,	err	error)
func	Scanln(a	...interface{})	(n	int,	err	error)
func	Sprint(a	...interface{})	string
func	Sprintf(format	string,	a	...interface{})	string
func	Sprintln(a	...interface{})	string
func	Sscan(str	string,	a	...interface{})	(n	int,	err	error)
func	Sscanf(str	string,	format	string,	a	...interface{})	(n	int,	err	error)
func	Sscanln(str	string,	a	...interface{})	(n	int,	err	error)
type	Formatter
type	GoStringer
type	ScanState
type	Scanner
type	State
type	Stringer

Package	files

doc.go	format.go	print.go	scan.go

func	Errorf
func	Errorf(format	string,	a	...interface{})	error

Errorf	formats	according	to	a	format	specifier	and	returns	the	string	as	a	value
that	satisfies	error.

func	Fprint
func	Fprint(w	io.Writer,	a	...interface{})	(n	int,	err	error)

Fprint	formats	using	the	default	formats	for	its	operands	and	writes	to	w.	Spaces
are	added	between	operands	when	neither	is	a	string.	It	returns	the	number	of
bytes	written	and	any	write	error	encountered.

func	Fprintf
func	Fprintf(w	io.Writer,	format	string,	a	...interface{})	(n	int,	err	error)

Fprintf	formats	according	to	a	format	specifier	and	writes	to	w.	It	returns	the
number	of	bytes	written	and	any	write	error	encountered.

func	Fprintln
func	Fprintln(w	io.Writer,	a	...interface{})	(n	int,	err	error)

Fprintln	formats	using	the	default	formats	for	its	operands	and	writes	to	w.
Spaces	are	always	added	between	operands	and	a	newline	is	appended.	It	returns
the	number	of	bytes	written	and	any	write	error	encountered.

func	Fscan
func	Fscan(r	io.Reader,	a	...interface{})	(n	int,	err	error)

Fscan	scans	text	read	from	r,	storing	successive	space-separated	values	into
successive	arguments.	Newlines	count	as	space.	It	returns	the	number	of	items
successfully	scanned.	If	that	is	less	than	the	number	of	arguments,	err	will	report
why.

func	Fscanf
func	Fscanf(r	io.Reader,	format	string,	a	...interface{})	(n	int,	err	error)

Fscanf	scans	text	read	from	r,	storing	successive	space-separated	values	into
successive	arguments	as	determined	by	the	format.	It	returns	the	number	of	items
successfully	parsed.

func	Fscanln
func	Fscanln(r	io.Reader,	a	...interface{})	(n	int,	err	error)

Fscanln	is	similar	to	Fscan,	but	stops	scanning	at	a	newline	and	after	the	final
item	there	must	be	a	newline	or	EOF.

func	Print
func	Print(a	...interface{})	(n	int,	err	error)

Print	formats	using	the	default	formats	for	its	operands	and	writes	to	standard
output.	Spaces	are	added	between	operands	when	neither	is	a	string.	It	returns
the	number	of	bytes	written	and	any	write	error	encountered.

func	Printf
func	Printf(format	string,	a	...interface{})	(n	int,	err	error)

Printf	formats	according	to	a	format	specifier	and	writes	to	standard	output.	It
returns	the	number	of	bytes	written	and	any	write	error	encountered.

func	Println
func	Println(a	...interface{})	(n	int,	err	error)

Println	formats	using	the	default	formats	for	its	operands	and	writes	to	standard
output.	Spaces	are	always	added	between	operands	and	a	newline	is	appended.	It
returns	the	number	of	bytes	written	and	any	write	error	encountered.

func	Scan
func	Scan(a	...interface{})	(n	int,	err	error)

Scan	scans	text	read	from	standard	input,	storing	successive	space-separated
values	into	successive	arguments.	Newlines	count	as	space.	It	returns	the	number
of	items	successfully	scanned.	If	that	is	less	than	the	number	of	arguments,	err
will	report	why.

func	Scanf
func	Scanf(format	string,	a	...interface{})	(n	int,	err	error)

Scanf	scans	text	read	from	standard	input,	storing	successive	space-separated
values	into	successive	arguments	as	determined	by	the	format.	It	returns	the
number	of	items	successfully	scanned.

func	Scanln
func	Scanln(a	...interface{})	(n	int,	err	error)

Scanln	is	similar	to	Scan,	but	stops	scanning	at	a	newline	and	after	the	final	item
there	must	be	a	newline	or	EOF.

func	Sprint
func	Sprint(a	...interface{})	string

Sprint	formats	using	the	default	formats	for	its	operands	and	returns	the	resulting
string.	Spaces	are	added	between	operands	when	neither	is	a	string.

func	Sprintf
func	Sprintf(format	string,	a	...interface{})	string

Sprintf	formats	according	to	a	format	specifier	and	returns	the	resulting	string.

func	Sprintln
func	Sprintln(a	...interface{})	string

Sprintln	formats	using	the	default	formats	for	its	operands	and	returns	the
resulting	string.	Spaces	are	always	added	between	operands	and	a	newline	is
appended.

func	Sscan
func	Sscan(str	string,	a	...interface{})	(n	int,	err	error)

Sscan	scans	the	argument	string,	storing	successive	space-separated	values	into
successive	arguments.	Newlines	count	as	space.	It	returns	the	number	of	items
successfully	scanned.	If	that	is	less	than	the	number	of	arguments,	err	will	report
why.

func	Sscanf
func	Sscanf(str	string,	format	string,	a	...interface{})	(n	int,	err	error)

Sscanf	scans	the	argument	string,	storing	successive	space-separated	values	into
successive	arguments	as	determined	by	the	format.	It	returns	the	number	of	items
successfully	parsed.

func	Sscanln
func	Sscanln(str	string,	a	...interface{})	(n	int,	err	error)

Sscanln	is	similar	to	Sscan,	but	stops	scanning	at	a	newline	and	after	the	final
item	there	must	be	a	newline	or	EOF.

type	Formatter
type	Formatter	interface	{

				Format(f	State,	c	rune)

}

Formatter	is	the	interface	implemented	by	values	with	a	custom	formatter.	The
implementation	of	Format	may	call	Sprintf	or	Fprintf(f)	etc.	to	generate	its
output.

type	GoStringer
type	GoStringer	interface	{

				GoString()	string

}

GoStringer	is	implemented	by	any	value	that	has	a	GoString	method,	which
defines	the	Go	syntax	for	that	value.	The	GoString	method	is	used	to	print	values
passed	as	an	operand	to	a	%#v	format.

type	ScanState
type	ScanState	interface	{

				//	ReadRune	reads	the	next	rune	(Unicode	code	point)	from	the	input.

				//	If	invoked	during	Scanln,	Fscanln,	or	Sscanln,	ReadRune()	will

				//	return	EOF	after	returning	the	first	'\n'	or	when	reading	beyond

				//	the	specified	width.

				ReadRune()	(r	rune,	size	int,	err	error)

				//	UnreadRune	causes	the	next	call	to	ReadRune	to	return	the	same	rune.

				UnreadRune()	error

				//	SkipSpace	skips	space	in	the	input.	Newlines	are	treated	as	space	

				//	unless	the	scan	operation	is	Scanln,	Fscanln	or	Sscanln,	in	which	case	

				//	a	newline	is	treated	as	EOF.

				SkipSpace()

				//	Token	skips	space	in	the	input	if	skipSpace	is	true,	then	returns	the

				//	run	of	Unicode	code	points	c	satisfying	f(c).		If	f	is	nil,

				//	!unicode.IsSpace(c)	is	used;	that	is,	the	token	will	hold	non-space

				//	characters.		Newlines	are	treated	as	space	unless	the	scan	operation

				//	is	Scanln,	Fscanln	or	Sscanln,	in	which	case	a	newline	is	treated	as

				//	EOF.		The	returned	slice	points	to	shared	data	that	may	be	overwritten

				//	by	the	next	call	to	Token,	a	call	to	a	Scan	function	using	the	ScanState

				//	as	input,	or	when	the	calling	Scan	method	returns.

				Token(skipSpace	bool,	f	func(rune)	bool)	(token	[]byte,	err	error)

				//	Width	returns	the	value	of	the	width	option	and	whether	it	has	been	set.

				//	The	unit	is	Unicode	code	points.

				Width()	(wid	int,	ok	bool)

				//	Because	ReadRune	is	implemented	by	the	interface,	Read	should	never	be

				//	called	by	the	scanning	routines	and	a	valid	implementation	of

				//	ScanState	may	choose	always	to	return	an	error	from	Read.

				Read(buf	[]byte)	(n	int,	err	error)

}

ScanState	represents	the	scanner	state	passed	to	custom	scanners.	Scanners	may
do	rune-at-a-time	scanning	or	ask	the	ScanState	to	discover	the	next	space-
delimited	token.

type	Scanner
type	Scanner	interface	{

				Scan(state	ScanState,	verb	rune)	error

}

Scanner	is	implemented	by	any	value	that	has	a	Scan	method,	which	scans	the
input	for	the	representation	of	a	value	and	stores	the	result	in	the	receiver,	which
must	be	a	pointer	to	be	useful.	The	Scan	method	is	called	for	any	argument	to
Scan,	Scanf,	or	Scanln	that	implements	it.

type	State
type	State	interface	{

				//	Write	is	the	function	to	call	to	emit	formatted	output	to	be	printed.

				Write(b	[]byte)	(ret	int,	err	error)

				//	Width	returns	the	value	of	the	width	option	and	whether	it	has	been	set.

				Width()	(wid	int,	ok	bool)

				//	Precision	returns	the	value	of	the	precision	option	and	whether	it	has	been	set.

				Precision()	(prec	int,	ok	bool)

				//	Flag	returns	whether	the	flag	c,	a	character,	has	been	set.

				Flag(c	int)	bool

}

State	represents	the	printer	state	passed	to	custom	formatters.	It	provides	access
to	the	io.Writer	interface	plus	information	about	the	flags	and	options	for	the
operand's	format	specifier.

type	Stringer
type	Stringer	interface	{

				String()	string

}

Stringer	is	implemented	by	any	value	that	has	a	String	method,	which	defines	the
“native”	format	for	that	value.	The	String	method	is	used	to	print	values	passed
as	an	operand	to	a	%s	or	%v	format	or	to	an	unformatted	printer	such	as	Print.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Directory	/src/pkg/go
Name 				 Synopsis

ast 				 Package	ast	declares	the	types	used	to	represent	syntax	trees	for	Gopackages.
build 				 Package	build	gathers	information	about	Go	packages.
doc 				 Package	doc	extracts	source	code	documentation	from	a	Go	AST.
parser 				 Package	parser	implements	a	parser	for	Go	source	files.
printer 				 Package	printer	implements	printing	of	AST	nodes.
scanner 				 Package	scanner	implements	a	scanner	for	Go	source	text.

token 				
Package	token	defines	constants	representing	the	lexical	tokens	of
the	Go	programming	language	and	basic	operations	on	tokens
(printing,	predicates).

Need	more	packages?	Take	a	look	at	the	Go	Project	Dashboard.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://godashboard.appspot.com/
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	ast
import	"go/ast"

Overview
Index
Examples

Overview	?

Overview	?

Package	ast	declares	the	types	used	to	represent	syntax	trees	for	Go	packages.

Index

func	FileExports(src	*File)	bool
func	FilterDecl(decl	Decl,	f	Filter)	bool
func	FilterFile(src	*File,	f	Filter)	bool
func	FilterPackage(pkg	*Package,	f	Filter)	bool
func	Fprint(w	io.Writer,	fset	*token.FileSet,	x	interface{},	f	FieldFilter)	(err
error)
func	Inspect(node	Node,	f	func(Node)	bool)
func	IsExported(name	string)	bool
func	NotNilFilter(_	string,	v	reflect.Value)	bool
func	PackageExports(pkg	*Package)	bool
func	Print(fset	*token.FileSet,	x	interface{})	error
func	SortImports(fset	*token.FileSet,	f	*File)
func	Walk(v	Visitor,	node	Node)
type	ArrayType
				func	(x	*ArrayType)	End()	token.Pos
				func	(x	*ArrayType)	Pos()	token.Pos
type	AssignStmt
				func	(s	*AssignStmt)	End()	token.Pos
				func	(s	*AssignStmt)	Pos()	token.Pos
type	BadDecl
				func	(d	*BadDecl)	End()	token.Pos
				func	(d	*BadDecl)	Pos()	token.Pos
type	BadExpr
				func	(x	*BadExpr)	End()	token.Pos
				func	(x	*BadExpr)	Pos()	token.Pos
type	BadStmt
				func	(s	*BadStmt)	End()	token.Pos
				func	(s	*BadStmt)	Pos()	token.Pos
type	BasicLit
				func	(x	*BasicLit)	End()	token.Pos
				func	(x	*BasicLit)	Pos()	token.Pos
type	BinaryExpr
				func	(x	*BinaryExpr)	End()	token.Pos
				func	(x	*BinaryExpr)	Pos()	token.Pos
type	BlockStmt

				func	(s	*BlockStmt)	End()	token.Pos
				func	(s	*BlockStmt)	Pos()	token.Pos
type	BranchStmt
				func	(s	*BranchStmt)	End()	token.Pos
				func	(s	*BranchStmt)	Pos()	token.Pos
type	CallExpr
				func	(x	*CallExpr)	End()	token.Pos
				func	(x	*CallExpr)	Pos()	token.Pos
type	CaseClause
				func	(s	*CaseClause)	End()	token.Pos
				func	(s	*CaseClause)	Pos()	token.Pos
type	ChanDir
type	ChanType
				func	(x	*ChanType)	End()	token.Pos
				func	(x	*ChanType)	Pos()	token.Pos
type	CommClause
				func	(s	*CommClause)	End()	token.Pos
				func	(s	*CommClause)	Pos()	token.Pos
type	Comment
				func	(c	*Comment)	End()	token.Pos
				func	(c	*Comment)	Pos()	token.Pos
type	CommentGroup
				func	(g	*CommentGroup)	End()	token.Pos
				func	(g	*CommentGroup)	Pos()	token.Pos
				func	(g	*CommentGroup)	Text()	string
type	CompositeLit
				func	(x	*CompositeLit)	End()	token.Pos
				func	(x	*CompositeLit)	Pos()	token.Pos
type	Decl
type	DeclStmt
				func	(s	*DeclStmt)	End()	token.Pos
				func	(s	*DeclStmt)	Pos()	token.Pos
type	DeferStmt
				func	(s	*DeferStmt)	End()	token.Pos
				func	(s	*DeferStmt)	Pos()	token.Pos
type	Ellipsis
				func	(x	*Ellipsis)	End()	token.Pos
				func	(x	*Ellipsis)	Pos()	token.Pos
type	EmptyStmt

				func	(s	*EmptyStmt)	End()	token.Pos
				func	(s	*EmptyStmt)	Pos()	token.Pos
type	Expr
type	ExprStmt
				func	(s	*ExprStmt)	End()	token.Pos
				func	(s	*ExprStmt)	Pos()	token.Pos
type	Field
				func	(f	*Field)	End()	token.Pos
				func	(f	*Field)	Pos()	token.Pos
type	FieldFilter
type	FieldList
				func	(f	*FieldList)	End()	token.Pos
				func	(f	*FieldList)	NumFields()	int
				func	(f	*FieldList)	Pos()	token.Pos
type	File
				func	MergePackageFiles(pkg	*Package,	mode	MergeMode)	*File
				func	(f	*File)	End()	token.Pos
				func	(f	*File)	Pos()	token.Pos
type	Filter
type	ForStmt
				func	(s	*ForStmt)	End()	token.Pos
				func	(s	*ForStmt)	Pos()	token.Pos
type	FuncDecl
				func	(d	*FuncDecl)	End()	token.Pos
				func	(d	*FuncDecl)	Pos()	token.Pos
type	FuncLit
				func	(x	*FuncLit)	End()	token.Pos
				func	(x	*FuncLit)	Pos()	token.Pos
type	FuncType
				func	(x	*FuncType)	End()	token.Pos
				func	(x	*FuncType)	Pos()	token.Pos
type	GenDecl
				func	(d	*GenDecl)	End()	token.Pos
				func	(d	*GenDecl)	Pos()	token.Pos
type	GoStmt
				func	(s	*GoStmt)	End()	token.Pos
				func	(s	*GoStmt)	Pos()	token.Pos
type	Ident
				func	NewIdent(name	string)	*Ident

				func	(x	*Ident)	End()	token.Pos
				func	(id	*Ident)	IsExported()	bool
				func	(x	*Ident)	Pos()	token.Pos
				func	(id	*Ident)	String()	string
type	IfStmt
				func	(s	*IfStmt)	End()	token.Pos
				func	(s	*IfStmt)	Pos()	token.Pos
type	ImportSpec
				func	(s	*ImportSpec)	End()	token.Pos
				func	(s	*ImportSpec)	Pos()	token.Pos
type	Importer
type	IncDecStmt
				func	(s	*IncDecStmt)	End()	token.Pos
				func	(s	*IncDecStmt)	Pos()	token.Pos
type	IndexExpr
				func	(x	*IndexExpr)	End()	token.Pos
				func	(x	*IndexExpr)	Pos()	token.Pos
type	InterfaceType
				func	(x	*InterfaceType)	End()	token.Pos
				func	(x	*InterfaceType)	Pos()	token.Pos
type	KeyValueExpr
				func	(x	*KeyValueExpr)	End()	token.Pos
				func	(x	*KeyValueExpr)	Pos()	token.Pos
type	LabeledStmt
				func	(s	*LabeledStmt)	End()	token.Pos
				func	(s	*LabeledStmt)	Pos()	token.Pos
type	MapType
				func	(x	*MapType)	End()	token.Pos
				func	(x	*MapType)	Pos()	token.Pos
type	MergeMode
type	Node
type	ObjKind
				func	(kind	ObjKind)	String()	string
type	Object
				func	NewObj(kind	ObjKind,	name	string)	*Object
				func	(obj	*Object)	Pos()	token.Pos
type	Package
				func	NewPackage(fset	*token.FileSet,	files	map[string]*File,	importer
Importer,	universe	*Scope)	(*Package,	error)

				func	(p	*Package)	End()	token.Pos
				func	(p	*Package)	Pos()	token.Pos
type	ParenExpr
				func	(x	*ParenExpr)	End()	token.Pos
				func	(x	*ParenExpr)	Pos()	token.Pos
type	RangeStmt
				func	(s	*RangeStmt)	End()	token.Pos
				func	(s	*RangeStmt)	Pos()	token.Pos
type	ReturnStmt
				func	(s	*ReturnStmt)	End()	token.Pos
				func	(s	*ReturnStmt)	Pos()	token.Pos
type	Scope
				func	NewScope(outer	*Scope)	*Scope
				func	(s	*Scope)	Insert(obj	*Object)	(alt	*Object)
				func	(s	*Scope)	Lookup(name	string)	*Object
				func	(s	*Scope)	String()	string
type	SelectStmt
				func	(s	*SelectStmt)	End()	token.Pos
				func	(s	*SelectStmt)	Pos()	token.Pos
type	SelectorExpr
				func	(x	*SelectorExpr)	End()	token.Pos
				func	(x	*SelectorExpr)	Pos()	token.Pos
type	SendStmt
				func	(s	*SendStmt)	End()	token.Pos
				func	(s	*SendStmt)	Pos()	token.Pos
type	SliceExpr
				func	(x	*SliceExpr)	End()	token.Pos
				func	(x	*SliceExpr)	Pos()	token.Pos
type	Spec
type	StarExpr
				func	(x	*StarExpr)	End()	token.Pos
				func	(x	*StarExpr)	Pos()	token.Pos
type	Stmt
type	StructType
				func	(x	*StructType)	End()	token.Pos
				func	(x	*StructType)	Pos()	token.Pos
type	SwitchStmt
				func	(s	*SwitchStmt)	End()	token.Pos
				func	(s	*SwitchStmt)	Pos()	token.Pos

type	TypeAssertExpr
				func	(x	*TypeAssertExpr)	End()	token.Pos
				func	(x	*TypeAssertExpr)	Pos()	token.Pos
type	TypeSpec
				func	(s	*TypeSpec)	End()	token.Pos
				func	(s	*TypeSpec)	Pos()	token.Pos
type	TypeSwitchStmt
				func	(s	*TypeSwitchStmt)	End()	token.Pos
				func	(s	*TypeSwitchStmt)	Pos()	token.Pos
type	UnaryExpr
				func	(x	*UnaryExpr)	End()	token.Pos
				func	(x	*UnaryExpr)	Pos()	token.Pos
type	ValueSpec
				func	(s	*ValueSpec)	End()	token.Pos
				func	(s	*ValueSpec)	Pos()	token.Pos
type	Visitor

Examples

Inspect
Print

Package	files

ast.go	filter.go	import.go	print.go	resolve.go	scope.go	walk.go

func	FileExports
func	FileExports(src	*File)	bool

FileExports	trims	the	AST	for	a	Go	source	file	in	place	such	that	only	exported
nodes	remain:	all	top-level	identifiers	which	are	not	exported	and	their
associated	information	(such	as	type,	initial	value,	or	function	body)	are
removed.	Non-exported	fields	and	methods	of	exported	types	are	stripped.	The
File.Comments	list	is	not	changed.

FileExports	returns	true	if	there	are	exported	declarations;	it	returns	false
otherwise.

func	FilterDecl
func	FilterDecl(decl	Decl,	f	Filter)	bool

FilterDecl	trims	the	AST	for	a	Go	declaration	in	place	by	removing	all	names
(including	struct	field	and	interface	method	names,	but	not	from	parameter	lists)
that	don't	pass	through	the	filter	f.

FilterDecl	returns	true	if	there	are	any	declared	names	left	after	filtering;	it
returns	false	otherwise.

func	FilterFile
func	FilterFile(src	*File,	f	Filter)	bool

FilterFile	trims	the	AST	for	a	Go	file	in	place	by	removing	all	names	from	top-
level	declarations	(including	struct	field	and	interface	method	names,	but	not
from	parameter	lists)	that	don't	pass	through	the	filter	f.	If	the	declaration	is
empty	afterwards,	the	declaration	is	removed	from	the	AST.	The	File.Comments
list	is	not	changed.

FilterFile	returns	true	if	there	are	any	top-level	declarations	left	after	filtering;	it
returns	false	otherwise.

func	FilterPackage
func	FilterPackage(pkg	*Package,	f	Filter)	bool

FilterPackage	trims	the	AST	for	a	Go	package	in	place	by	removing	all	names
from	top-level	declarations	(including	struct	field	and	interface	method	names,
but	not	from	parameter	lists)	that	don't	pass	through	the	filter	f.	If	the	declaration
is	empty	afterwards,	the	declaration	is	removed	from	the	AST.	The	pkg.Files	list
is	not	changed,	so	that	file	names	and	top-level	package	comments	don't	get	lost.

FilterPackage	returns	true	if	there	are	any	top-level	declarations	left	after
filtering;	it	returns	false	otherwise.

func	Fprint
func	Fprint(w	io.Writer,	fset	*token.FileSet,	x	interface{},	f	FieldFilter)	(err	error)

Fprint	prints	the	(sub-)tree	starting	at	AST	node	x	to	w.	If	fset	!=	nil,	position
information	is	interpreted	relative	to	that	file	set.	Otherwise	positions	are	printed
as	integer	values	(file	set	specific	offsets).

A	non-nil	FieldFilter	f	may	be	provided	to	control	the	output:	struct	fields	for
which	f(fieldname,	fieldvalue)	is	true	are	are	printed;	all	others	are	filtered	from
the	output.

func	Inspect
func	Inspect(node	Node,	f	func(Node)	bool)

Inspect	traverses	an	AST	in	depth-first	order:	It	starts	by	calling	f(node);	node
must	not	be	nil.	If	f	returns	true,	Inspect	invokes	f	for	all	the	non-nil	children	of
node,	recursively.

?	Example

?	Example

This	example	demonstrates	how	to	inspect	the	AST	of	a	Go	program.

Code:

//	src	is	the	input	for	which	we	want	to	inspect	the	AST.

src	:=	`

package	p

const	c	=	1.0

var	X	=	f(3.14)*2	+	c

`

//	Create	the	AST	by	parsing	src.

fset	:=	token.NewFileSet()	//	positions	are	relative	to	fset

f,	err	:=	parser.ParseFile(fset,	"src.go",	src,	0)

if	err	!=	nil	{

				panic(err)

}

//	Inspect	the	AST	and	print	all	identifiers	and	literals.

ast.Inspect(f,	func(n	ast.Node)	bool	{

				var	s	string

				switch	x	:=	n.(type)	{

				case	*ast.BasicLit:

								s	=	x.Value

				case	*ast.Ident:

								s	=	x.Name

				}

				if	s	!=	""	{

								fmt.Printf("%s:\t%s\n",	fset.Position(n.Pos()),	s)

				}

				return	true

})

Output:

src.go:2:9:	 p

src.go:3:7:	 c

src.go:3:11:	 1.0

src.go:4:5:	 X

src.go:4:9:	 f

src.go:4:11:	 3.14

src.go:4:17:	 2

src.go:4:21:	 c

func	IsExported
func	IsExported(name	string)	bool

IsExported	returns	whether	name	is	an	exported	Go	symbol	(i.e.,	whether	it
begins	with	an	uppercase	letter).

func	NotNilFilter
func	NotNilFilter(_	string,	v	reflect.Value)	bool

NotNilFilter	returns	true	for	field	values	that	are	not	nil;	it	returns	false
otherwise.

func	PackageExports
func	PackageExports(pkg	*Package)	bool

PackageExports	trims	the	AST	for	a	Go	package	in	place	such	that	only	exported
nodes	remain.	The	pkg.Files	list	is	not	changed,	so	that	file	names	and	top-level
package	comments	don't	get	lost.

PackageExports	returns	true	if	there	are	exported	declarations;	it	returns	false
otherwise.

func	Print
func	Print(fset	*token.FileSet,	x	interface{})	error

Print	prints	x	to	standard	output,	skipping	nil	fields.	Print(fset,	x)	is	the	same	as
Fprint(os.Stdout,	fset,	x,	NotNilFilter).

?	Example

?	Example

This	example	shows	what	an	AST	looks	like	when	printed	for	debugging.

Code:

//	src	is	the	input	for	which	we	want	to	print	the	AST.

src	:=	`

package	main

func	main()	{

println("Hello,	World!")

}

`

//	Create	the	AST	by	parsing	src.

fset	:=	token.NewFileSet()	//	positions	are	relative	to	fset

f,	err	:=	parser.ParseFile(fset,	"",	src,	0)

if	err	!=	nil	{

				panic(err)

}

//	Print	the	AST.

ast.Print(fset,	f)

Output:

0		*ast.File	{

					1		.		Package:	2:1

					2		.		Name:	*ast.Ident	{

					3		.		.		NamePos:	2:9

					4		.		.		Name:	"main"

					5		.		}

					6		.		Decls:	[]ast.Decl	(len	=	1)	{

					7		.		.		0:	*ast.FuncDecl	{

					8		.		.		.		Name:	*ast.Ident	{

					9			NamePos:	3:6

				10			Name:	"main"

				11			Obj:	*ast.Object	{

				12			Kind:	func

				13			Name:	"main"

				14			Decl:	*(obj	@	7)

				15			}

				16		.		.		.		}

				17		.		.		.		Type:	*ast.FuncType	{

				18			Func:	3:1

				19			Params:	*ast.FieldList	{

				20			Opening:	3:10

				21			Closing:	3:11

				22			}

				23		.		.		.		}

				24		.		.		.		Body:	*ast.BlockStmt	{

				25			Lbrace:	3:13

				26			List:	[]ast.Stmt	(len	=	1)	{

				27			0:	*ast.ExprStmt	{

				28			X:	*ast.CallExpr	{

				29			Fun:	*ast.Ident	{

				30			NamePos:	4:2

				31			Name:	"println"

				32			}

				33			Lparen:	4:9

				34			Args:	[]ast.Expr	(len	=	1)	{

				35			0:	*ast.BasicLit	{

				36			ValuePos:	4:10

				37			Kind:	STRING

				38			Value:	"\"Hello,	World!\""

				39			}

				40			}

				41			Ellipsis:	-

				42			Rparen:	4:25

				43			}

				44			}

				45			}

				46			Rbrace:	5:1

				47		.		.		.		}

				48		.		.		}

				49		.		}

				50		.		Scope:	*ast.Scope	{

				51		.		.		Objects:	map[string]*ast.Object	(len	=	1)	{

				52		.		.		.		"main":	*(obj	@	11)

				53		.		.		}

				54		.		}

				55		.		Unresolved:	[]*ast.Ident	(len	=	1)	{

				56		.		.		0:	*(obj	@	29)

				57		.		}

				58		}

func	SortImports
func	SortImports(fset	*token.FileSet,	f	*File)

SortImports	sorts	runs	of	consecutive	import	lines	in	import	blocks	in	f.

func	Walk
func	Walk(v	Visitor,	node	Node)

Walk	traverses	an	AST	in	depth-first	order:	It	starts	by	calling	v.Visit(node);
node	must	not	be	nil.	If	the	visitor	w	returned	by	v.Visit(node)	is	not	nil,	Walk	is
invoked	recursively	with	visitor	w	for	each	of	the	non-nil	children	of	node,
followed	by	a	call	of	w.Visit(nil).

type	ArrayType
type	ArrayType	struct	{

				Lbrack	token.Pos	//	position	of	"["

				Len				Expr						//	Ellipsis	node	for	[...]T	array	types,	nil	for	slice	types

				Elt				Expr						//	element	type

}

An	ArrayType	node	represents	an	array	or	slice	type.

func	(*ArrayType)	End

func	(x	*ArrayType)	End()	token.Pos

func	(*ArrayType)	Pos

func	(x	*ArrayType)	Pos()	token.Pos

type	AssignStmt
type	AssignStmt	struct	{

				Lhs				[]Expr

				TokPos	token.Pos			//	position	of	Tok

				Tok				token.Token	//	assignment	token,	DEFINE

				Rhs				[]Expr

}

An	AssignStmt	node	represents	an	assignment	or	a	short	variable	declaration.

func	(*AssignStmt)	End

func	(s	*AssignStmt)	End()	token.Pos

func	(*AssignStmt)	Pos

func	(s	*AssignStmt)	Pos()	token.Pos

type	BadDecl
type	BadDecl	struct	{

				From,	To	token.Pos	//	position	range	of	bad	declaration

}

A	BadDecl	node	is	a	placeholder	for	declarations	containing	syntax	errors	for
which	no	correct	declaration	nodes	can	be	created.

func	(*BadDecl)	End

func	(d	*BadDecl)	End()	token.Pos

func	(*BadDecl)	Pos

func	(d	*BadDecl)	Pos()	token.Pos

Pos	and	End	implementations	for	declaration	nodes.

type	BadExpr
type	BadExpr	struct	{

				From,	To	token.Pos	//	position	range	of	bad	expression

}

A	BadExpr	node	is	a	placeholder	for	expressions	containing	syntax	errors	for
which	no	correct	expression	nodes	can	be	created.

func	(*BadExpr)	End

func	(x	*BadExpr)	End()	token.Pos

func	(*BadExpr)	Pos

func	(x	*BadExpr)	Pos()	token.Pos

Pos	and	End	implementations	for	expression/type	nodes.

type	BadStmt
type	BadStmt	struct	{

				From,	To	token.Pos	//	position	range	of	bad	statement

}

A	BadStmt	node	is	a	placeholder	for	statements	containing	syntax	errors	for
which	no	correct	statement	nodes	can	be	created.

func	(*BadStmt)	End

func	(s	*BadStmt)	End()	token.Pos

func	(*BadStmt)	Pos

func	(s	*BadStmt)	Pos()	token.Pos

Pos	and	End	implementations	for	statement	nodes.

type	BasicLit
type	BasicLit	struct	{

				ValuePos	token.Pos			//	literal	position

				Kind					token.Token	//	token.INT,	token.FLOAT,	token.IMAG,	token.CHAR,	or	token.STRING

				Value				string						//	literal	string;	e.g.	42,	0x7f,	3.14,	1e-9,	2.4i,	'a',	'\x7f',	"foo"	or	`\m\n\o`

}

A	BasicLit	node	represents	a	literal	of	basic	type.

func	(*BasicLit)	End

func	(x	*BasicLit)	End()	token.Pos

func	(*BasicLit)	Pos

func	(x	*BasicLit)	Pos()	token.Pos

type	BinaryExpr
type	BinaryExpr	struct	{

				X					Expr								//	left	operand

				OpPos	token.Pos			//	position	of	Op

				Op				token.Token	//	operator

				Y					Expr								//	right	operand

}

A	BinaryExpr	node	represents	a	binary	expression.

func	(*BinaryExpr)	End

func	(x	*BinaryExpr)	End()	token.Pos

func	(*BinaryExpr)	Pos

func	(x	*BinaryExpr)	Pos()	token.Pos

type	BlockStmt
type	BlockStmt	struct	{

				Lbrace	token.Pos	//	position	of	"{"

				List			[]Stmt

				Rbrace	token.Pos	//	position	of	"}"

}

A	BlockStmt	node	represents	a	braced	statement	list.

func	(*BlockStmt)	End

func	(s	*BlockStmt)	End()	token.Pos

func	(*BlockStmt)	Pos

func	(s	*BlockStmt)	Pos()	token.Pos

type	BranchStmt
type	BranchStmt	struct	{

				TokPos	token.Pos			//	position	of	Tok

				Tok				token.Token	//	keyword	token	(BREAK,	CONTINUE,	GOTO,	FALLTHROUGH)

				Label		*Ident						//	label	name;	or	nil

}

A	BranchStmt	node	represents	a	break,	continue,	goto,	or	fallthrough	statement.

func	(*BranchStmt)	End

func	(s	*BranchStmt)	End()	token.Pos

func	(*BranchStmt)	Pos

func	(s	*BranchStmt)	Pos()	token.Pos

type	CallExpr
type	CallExpr	struct	{

				Fun						Expr						//	function	expression

				Lparen			token.Pos	//	position	of	"("

				Args					[]Expr				//	function	arguments;	or	nil

				Ellipsis	token.Pos	//	position	of	"...",	if	any

				Rparen			token.Pos	//	position	of	")"

}

A	CallExpr	node	represents	an	expression	followed	by	an	argument	list.

func	(*CallExpr)	End

func	(x	*CallExpr)	End()	token.Pos

func	(*CallExpr)	Pos

func	(x	*CallExpr)	Pos()	token.Pos

type	CaseClause
type	CaseClause	struct	{

				Case		token.Pos	//	position	of	"case"	or	"default"	keyword

				List		[]Expr				//	list	of	expressions	or	types;	nil	means	default	case

				Colon	token.Pos	//	position	of	":"

				Body		[]Stmt				//	statement	list;	or	nil

}

A	CaseClause	represents	a	case	of	an	expression	or	type	switch	statement.

func	(*CaseClause)	End

func	(s	*CaseClause)	End()	token.Pos

func	(*CaseClause)	Pos

func	(s	*CaseClause)	Pos()	token.Pos

type	ChanDir
type	ChanDir	int

The	direction	of	a	channel	type	is	indicated	by	one	of	the	following	constants.

const	(

				SEND	ChanDir	=	1	<<	iota

				RECV

)

type	ChanType
type	ChanType	struct	{

				Begin	token.Pos	//	position	of	"chan"	keyword	or	"<-"	(whichever	comes	first)

				Dir			ChanDir			//	channel	direction

				Value	Expr						//	value	type

}

A	ChanType	node	represents	a	channel	type.

func	(*ChanType)	End

func	(x	*ChanType)	End()	token.Pos

func	(*ChanType)	Pos

func	(x	*ChanType)	Pos()	token.Pos

type	CommClause
type	CommClause	struct	{

				Case		token.Pos	//	position	of	"case"	or	"default"	keyword

				Comm		Stmt						//	send	or	receive	statement;	nil	means	default	case

				Colon	token.Pos	//	position	of	":"

				Body		[]Stmt				//	statement	list;	or	nil

}

A	CommClause	node	represents	a	case	of	a	select	statement.

func	(*CommClause)	End

func	(s	*CommClause)	End()	token.Pos

func	(*CommClause)	Pos

func	(s	*CommClause)	Pos()	token.Pos

type	Comment
type	Comment	struct	{

				Slash	token.Pos	//	position	of	"/"	starting	the	comment

				Text		string				//	comment	text	(excluding	'\n'	for	//-style	comments)

}

A	Comment	node	represents	a	single	//-style	or	/*-style	comment.

func	(*Comment)	End

func	(c	*Comment)	End()	token.Pos

func	(*Comment)	Pos

func	(c	*Comment)	Pos()	token.Pos

type	CommentGroup
type	CommentGroup	struct	{

				List	[]*Comment	//	len(List)	>	0

}

A	CommentGroup	represents	a	sequence	of	comments	with	no	other	tokens	and
no	empty	lines	between.

func	(*CommentGroup)	End

func	(g	*CommentGroup)	End()	token.Pos

func	(*CommentGroup)	Pos

func	(g	*CommentGroup)	Pos()	token.Pos

func	(*CommentGroup)	Text

func	(g	*CommentGroup)	Text()	string

Text	returns	the	text	of	the	comment,	with	the	comment	markers	-	//,	/*,	and	*/	-
removed.

type	CompositeLit
type	CompositeLit	struct	{

				Type			Expr						//	literal	type;	or	nil

				Lbrace	token.Pos	//	position	of	"{"

				Elts			[]Expr				//	list	of	composite	elements;	or	nil

				Rbrace	token.Pos	//	position	of	"}"

}

A	CompositeLit	node	represents	a	composite	literal.

func	(*CompositeLit)	End

func	(x	*CompositeLit)	End()	token.Pos

func	(*CompositeLit)	Pos

func	(x	*CompositeLit)	Pos()	token.Pos

type	Decl
type	Decl	interface	{

				Node

				//	contains	filtered	or	unexported	methods

}

All	declaration	nodes	implement	the	Decl	interface.

type	DeclStmt
type	DeclStmt	struct	{

				Decl	Decl

}

A	DeclStmt	node	represents	a	declaration	in	a	statement	list.

func	(*DeclStmt)	End

func	(s	*DeclStmt)	End()	token.Pos

func	(*DeclStmt)	Pos

func	(s	*DeclStmt)	Pos()	token.Pos

type	DeferStmt
type	DeferStmt	struct	{

				Defer	token.Pos	//	position	of	"defer"	keyword

				Call		*CallExpr

}

A	DeferStmt	node	represents	a	defer	statement.

func	(*DeferStmt)	End

func	(s	*DeferStmt)	End()	token.Pos

func	(*DeferStmt)	Pos

func	(s	*DeferStmt)	Pos()	token.Pos

type	Ellipsis
type	Ellipsis	struct	{

				Ellipsis	token.Pos	//	position	of	"..."

				Elt						Expr						//	ellipsis	element	type	(parameter	lists	only);	or	nil

}

An	Ellipsis	node	stands	for	the	"..."	type	in	a	parameter	list	or	the	"..."	length	in
an	array	type.

func	(*Ellipsis)	End

func	(x	*Ellipsis)	End()	token.Pos

func	(*Ellipsis)	Pos

func	(x	*Ellipsis)	Pos()	token.Pos

type	EmptyStmt
type	EmptyStmt	struct	{

				Semicolon	token.Pos	//	position	of	preceding	";"

}

An	EmptyStmt	node	represents	an	empty	statement.	The	"position"	of	the	empty
statement	is	the	position	of	the	immediately	preceding	semicolon.

func	(*EmptyStmt)	End

func	(s	*EmptyStmt)	End()	token.Pos

func	(*EmptyStmt)	Pos

func	(s	*EmptyStmt)	Pos()	token.Pos

type	Expr
type	Expr	interface	{

				Node

				//	contains	filtered	or	unexported	methods

}

All	expression	nodes	implement	the	Expr	interface.

type	ExprStmt
type	ExprStmt	struct	{

				X	Expr	//	expression

}

An	ExprStmt	node	represents	a	(stand-alone)	expression	in	a	statement	list.

func	(*ExprStmt)	End

func	(s	*ExprStmt)	End()	token.Pos

func	(*ExprStmt)	Pos

func	(s	*ExprStmt)	Pos()	token.Pos

type	Field
type	Field	struct	{

				Doc					*CommentGroup	//	associated	documentation;	or	nil

				Names			[]*Ident						//	field/method/parameter	names;	or	nil	if	anonymous	field

				Type				Expr										//	field/method/parameter	type

				Tag					*BasicLit					//	field	tag;	or	nil

				Comment	*CommentGroup	//	line	comments;	or	nil

}

A	Field	represents	a	Field	declaration	list	in	a	struct	type,	a	method	list	in	an
interface	type,	or	a	parameter/result	declaration	in	a	signature.

func	(*Field)	End

func	(f	*Field)	End()	token.Pos

func	(*Field)	Pos

func	(f	*Field)	Pos()	token.Pos

type	FieldFilter
type	FieldFilter	func(name	string,	value	reflect.Value)	bool

A	FieldFilter	may	be	provided	to	Fprint	to	control	the	output.

type	FieldList
type	FieldList	struct	{

				Opening	token.Pos	//	position	of	opening	parenthesis/brace,	if	any

				List				[]*Field		//	field	list;	or	nil

				Closing	token.Pos	//	position	of	closing	parenthesis/brace,	if	any

}

A	FieldList	represents	a	list	of	Fields,	enclosed	by	parentheses	or	braces.

func	(*FieldList)	End

func	(f	*FieldList)	End()	token.Pos

func	(*FieldList)	NumFields

func	(f	*FieldList)	NumFields()	int

NumFields	returns	the	number	of	(named	and	anonymous	fields)	in	a	FieldList.

func	(*FieldList)	Pos

func	(f	*FieldList)	Pos()	token.Pos

type	File
type	File	struct	{

				Doc								*CommentGroup			//	associated	documentation;	or	nil

				Package				token.Pos							//	position	of	"package"	keyword

				Name							*Ident										//	package	name

				Decls						[]Decl										//	top-level	declarations;	or	nil

				Scope						*Scope										//	package	scope	(this	file	only)

				Imports				[]*ImportSpec			//	imports	in	this	file

				Unresolved	[]*Ident								//	unresolved	identifiers	in	this	file

				Comments			[]*CommentGroup	//	list	of	all	comments	in	the	source	file

}

A	File	node	represents	a	Go	source	file.

The	Comments	list	contains	all	comments	in	the	source	file	in	order	of
appearance,	including	the	comments	that	are	pointed	to	from	other	nodes	via
Doc	and	Comment	fields.

func	MergePackageFiles

func	MergePackageFiles(pkg	*Package,	mode	MergeMode)	*File

MergePackageFiles	creates	a	file	AST	by	merging	the	ASTs	of	the	files
belonging	to	a	package.	The	mode	flags	control	merging	behavior.

func	(*File)	End

func	(f	*File)	End()	token.Pos

func	(*File)	Pos

func	(f	*File)	Pos()	token.Pos

type	Filter
type	Filter	func(string)	bool

type	ForStmt
type	ForStmt	struct	{

				For		token.Pos	//	position	of	"for"	keyword

				Init	Stmt						//	initialization	statement;	or	nil

				Cond	Expr						//	condition;	or	nil

				Post	Stmt						//	post	iteration	statement;	or	nil

				Body	*BlockStmt

}

A	ForStmt	represents	a	for	statement.

func	(*ForStmt)	End

func	(s	*ForStmt)	End()	token.Pos

func	(*ForStmt)	Pos

func	(s	*ForStmt)	Pos()	token.Pos

type	FuncDecl
type	FuncDecl	struct	{

				Doc		*CommentGroup	//	associated	documentation;	or	nil

				Recv	*FieldList				//	receiver	(methods);	or	nil	(functions)

				Name	*Ident								//	function/method	name

				Type	*FuncType					//	position	of	Func	keyword,	parameters	and	results

				Body	*BlockStmt				//	function	body;	or	nil	(forward	declaration)

}

A	FuncDecl	node	represents	a	function	declaration.

func	(*FuncDecl)	End

func	(d	*FuncDecl)	End()	token.Pos

func	(*FuncDecl)	Pos

func	(d	*FuncDecl)	Pos()	token.Pos

type	FuncLit
type	FuncLit	struct	{

				Type	*FuncType		//	function	type

				Body	*BlockStmt	//	function	body

}

A	FuncLit	node	represents	a	function	literal.

func	(*FuncLit)	End

func	(x	*FuncLit)	End()	token.Pos

func	(*FuncLit)	Pos

func	(x	*FuncLit)	Pos()	token.Pos

type	FuncType
type	FuncType	struct	{

				Func				token.Pos		//	position	of	"func"	keyword

				Params		*FieldList	//	(incoming)	parameters;	or	nil

				Results	*FieldList	//	(outgoing)	results;	or	nil

}

A	FuncType	node	represents	a	function	type.

func	(*FuncType)	End

func	(x	*FuncType)	End()	token.Pos

func	(*FuncType)	Pos

func	(x	*FuncType)	Pos()	token.Pos

type	GenDecl
type	GenDecl	struct	{

				Doc				*CommentGroup	//	associated	documentation;	or	nil

				TokPos	token.Pos					//	position	of	Tok

				Tok				token.Token			//	IMPORT,	CONST,	TYPE,	VAR

				Lparen	token.Pos					//	position	of	'(',	if	any

				Specs		[]Spec

				Rparen	token.Pos	//	position	of	')',	if	any

}

A	GenDecl	node	(generic	declaration	node)	represents	an	import,	constant,	type
or	variable	declaration.	A	valid	Lparen	position	(Lparen.Line	>	0)	indicates	a
parenthesized	declaration.

Relationship	between	Tok	value	and	Specs	element	type:

token.IMPORT		*ImportSpec

token.CONST			*ValueSpec

token.TYPE				*TypeSpec

token.VAR					*ValueSpec

func	(*GenDecl)	End

func	(d	*GenDecl)	End()	token.Pos

func	(*GenDecl)	Pos

func	(d	*GenDecl)	Pos()	token.Pos

type	GoStmt
type	GoStmt	struct	{

				Go			token.Pos	//	position	of	"go"	keyword

				Call	*CallExpr

}

A	GoStmt	node	represents	a	go	statement.

func	(*GoStmt)	End

func	(s	*GoStmt)	End()	token.Pos

func	(*GoStmt)	Pos

func	(s	*GoStmt)	Pos()	token.Pos

type	Ident
type	Ident	struct	{

				NamePos	token.Pos	//	identifier	position

				Name				string				//	identifier	name

				Obj					*Object			//	denoted	object;	or	nil

}

An	Ident	node	represents	an	identifier.

func	NewIdent

func	NewIdent(name	string)	*Ident

NewIdent	creates	a	new	Ident	without	position.	Useful	for	ASTs	generated	by
code	other	than	the	Go	parser.

func	(*Ident)	End

func	(x	*Ident)	End()	token.Pos

func	(*Ident)	IsExported

func	(id	*Ident)	IsExported()	bool

IsExported	returns	whether	id	is	an	exported	Go	symbol	(i.e.,	whether	it	begins
with	an	uppercase	letter).

func	(*Ident)	Pos

func	(x	*Ident)	Pos()	token.Pos

func	(*Ident)	String

func	(id	*Ident)	String()	string

type	IfStmt
type	IfStmt	struct	{

				If			token.Pos	//	position	of	"if"	keyword

				Init	Stmt						//	initialization	statement;	or	nil

				Cond	Expr						//	condition

				Body	*BlockStmt

				Else	Stmt	//	else	branch;	or	nil

}

An	IfStmt	node	represents	an	if	statement.

func	(*IfStmt)	End

func	(s	*IfStmt)	End()	token.Pos

func	(*IfStmt)	Pos

func	(s	*IfStmt)	Pos()	token.Pos

type	ImportSpec
type	ImportSpec	struct	{

				Doc					*CommentGroup	//	associated	documentation;	or	nil

				Name				*Ident								//	local	package	name	(including	".");	or	nil

				Path				*BasicLit					//	import	path

				Comment	*CommentGroup	//	line	comments;	or	nil

				EndPos		token.Pos					//	end	of	spec	(overrides	Path.Pos	if	nonzero)

}

An	ImportSpec	node	represents	a	single	package	import.

func	(*ImportSpec)	End

func	(s	*ImportSpec)	End()	token.Pos

func	(*ImportSpec)	Pos

func	(s	*ImportSpec)	Pos()	token.Pos

Pos	and	End	implementations	for	spec	nodes.

type	Importer
type	Importer	func(imports	map[string]*Object,	path	string)	(pkg	*Object,	err	error)

An	Importer	resolves	import	paths	to	package	Objects.	The	imports	map	records
the	packages	already	imported,	indexed	by	package	id	(canonical	import	path).
An	Importer	must	determine	the	canonical	import	path	and	check	the	map	to	see
if	it	is	already	present	in	the	imports	map.	If	so,	the	Importer	can	return	the	map
entry.	Otherwise,	the	Importer	should	load	the	package	data	for	the	given	path
into	a	new	*Object	(pkg),	record	pkg	in	the	imports	map,	and	then	return	pkg.

type	IncDecStmt
type	IncDecStmt	struct	{

				X						Expr

				TokPos	token.Pos			//	position	of	Tok

				Tok				token.Token	//	INC	or	DEC

}

An	IncDecStmt	node	represents	an	increment	or	decrement	statement.

func	(*IncDecStmt)	End

func	(s	*IncDecStmt)	End()	token.Pos

func	(*IncDecStmt)	Pos

func	(s	*IncDecStmt)	Pos()	token.Pos

type	IndexExpr
type	IndexExpr	struct	{

				X						Expr						//	expression

				Lbrack	token.Pos	//	position	of	"["

				Index		Expr						//	index	expression

				Rbrack	token.Pos	//	position	of	"]"

}

An	IndexExpr	node	represents	an	expression	followed	by	an	index.

func	(*IndexExpr)	End

func	(x	*IndexExpr)	End()	token.Pos

func	(*IndexExpr)	Pos

func	(x	*IndexExpr)	Pos()	token.Pos

type	InterfaceType
type	InterfaceType	struct	{

				Interface		token.Pos		//	position	of	"interface"	keyword

				Methods				*FieldList	//	list	of	methods

				Incomplete	bool							//	true	if	(source)	methods	are	missing	in	the	Methods	list

}

An	InterfaceType	node	represents	an	interface	type.

func	(*InterfaceType)	End

func	(x	*InterfaceType)	End()	token.Pos

func	(*InterfaceType)	Pos

func	(x	*InterfaceType)	Pos()	token.Pos

type	KeyValueExpr
type	KeyValueExpr	struct	{

				Key			Expr

				Colon	token.Pos	//	position	of	":"

				Value	Expr

}

A	KeyValueExpr	node	represents	(key	:	value)	pairs	in	composite	literals.

func	(*KeyValueExpr)	End

func	(x	*KeyValueExpr)	End()	token.Pos

func	(*KeyValueExpr)	Pos

func	(x	*KeyValueExpr)	Pos()	token.Pos

type	LabeledStmt
type	LabeledStmt	struct	{

				Label	*Ident

				Colon	token.Pos	//	position	of	":"

				Stmt		Stmt

}

A	LabeledStmt	node	represents	a	labeled	statement.

func	(*LabeledStmt)	End

func	(s	*LabeledStmt)	End()	token.Pos

func	(*LabeledStmt)	Pos

func	(s	*LabeledStmt)	Pos()	token.Pos

type	MapType
type	MapType	struct	{

				Map			token.Pos	//	position	of	"map"	keyword

				Key			Expr

				Value	Expr

}

A	MapType	node	represents	a	map	type.

func	(*MapType)	End

func	(x	*MapType)	End()	token.Pos

func	(*MapType)	Pos

func	(x	*MapType)	Pos()	token.Pos

type	MergeMode
type	MergeMode	uint

The	MergeMode	flags	control	the	behavior	of	MergePackageFiles.

const	(

				//	If	set,	duplicate	function	declarations	are	excluded.

				FilterFuncDuplicates	MergeMode	=	1	<<	iota

				//	If	set,	comments	that	are	not	associated	with	a	specific

				//	AST	node	(as	Doc	or	Comment)	are	excluded.

				FilterUnassociatedComments

				//	If	set,	duplicate	import	declarations	are	excluded.

				FilterImportDuplicates

)

type	Node
type	Node	interface	{

				Pos()	token.Pos	//	position	of	first	character	belonging	to	the	node

				End()	token.Pos	//	position	of	first	character	immediately	after	the	node

}

All	node	types	implement	the	Node	interface.

type	ObjKind
type	ObjKind	int

ObKind	describes	what	an	object	represents.

const	(

				Bad	ObjKind	=	iota	//	for	error	handling

				Pkg																//	package

				Con																//	constant

				Typ																//	type

				Var																//	variable

				Fun																//	function	or	method

				Lbl																//	label

)

The	list	of	possible	Object	kinds.

func	(ObjKind)	String

func	(kind	ObjKind)	String()	string

type	Object
type	Object	struct	{

				Kind	ObjKind

				Name	string						//	declared	name

				Decl	interface{}	//	corresponding	Field,	XxxSpec,	FuncDecl,	LabeledStmt,	AssignStmt,	Scope;	or	nil

				Data	interface{}	//	object-specific	data;	or	nil

				Type	interface{}	//	place	holder	for	type	information;	may	be	nil

}

An	Object	describes	a	named	language	entity	such	as	a	package,	constant,	type,
variable,	function	(incl.	methods),	or	label.

The	Data	fields	contains	object-specific	data:

Kind				Data	type				Data	value

Pkg	 *Scope							package	scope

Con					int										iota	for	the	respective	declaration

Con					!=	nil							constant	value

func	NewObj

func	NewObj(kind	ObjKind,	name	string)	*Object

NewObj	creates	a	new	object	of	a	given	kind	and	name.

func	(*Object)	Pos

func	(obj	*Object)	Pos()	token.Pos

Pos	computes	the	source	position	of	the	declaration	of	an	object	name.	The	result
may	be	an	invalid	position	if	it	cannot	be	computed	(obj.Decl	may	be	nil	or	not
correct).

type	Package
type	Package	struct	{

				Name				string													//	package	name

				Scope			*Scope													//	package	scope	across	all	files

				Imports	map[string]*Object	//	map	of	package	id	->	package	object

				Files			map[string]*File			//	Go	source	files	by	filename

}

A	Package	node	represents	a	set	of	source	files	collectively	building	a	Go
package.

func	NewPackage

func	NewPackage(fset	*token.FileSet,	files	map[string]*File,	importer	Importer,	universe	*Scope)	(*Package,	error)

NewPackage	creates	a	new	Package	node	from	a	set	of	File	nodes.	It	resolves
unresolved	identifiers	across	files	and	updates	each	file's	Unresolved	list
accordingly.	If	a	non-nil	importer	and	universe	scope	are	provided,	they	are	used
to	resolve	identifiers	not	declared	in	any	of	the	package	files.	Any	remaining
unresolved	identifiers	are	reported	as	undeclared.	If	the	files	belong	to	different
packages,	one	package	name	is	selected	and	files	with	different	package	names
are	reported	and	then	ignored.	The	result	is	a	package	node	and	a
scanner.ErrorList	if	there	were	errors.

func	(*Package)	End

func	(p	*Package)	End()	token.Pos

func	(*Package)	Pos

func	(p	*Package)	Pos()	token.Pos

type	ParenExpr
type	ParenExpr	struct	{

				Lparen	token.Pos	//	position	of	"("

				X						Expr						//	parenthesized	expression

				Rparen	token.Pos	//	position	of	")"

}

A	ParenExpr	node	represents	a	parenthesized	expression.

func	(*ParenExpr)	End

func	(x	*ParenExpr)	End()	token.Pos

func	(*ParenExpr)	Pos

func	(x	*ParenExpr)	Pos()	token.Pos

type	RangeStmt
type	RangeStmt	struct	{

				For								token.Pos			//	position	of	"for"	keyword

				Key,	Value	Expr								//	Value	may	be	nil

				TokPos					token.Pos			//	position	of	Tok

				Tok								token.Token	//	ASSIGN,	DEFINE

				X										Expr								//	value	to	range	over

				Body							*BlockStmt

}

A	RangeStmt	represents	a	for	statement	with	a	range	clause.

func	(*RangeStmt)	End

func	(s	*RangeStmt)	End()	token.Pos

func	(*RangeStmt)	Pos

func	(s	*RangeStmt)	Pos()	token.Pos

type	ReturnStmt
type	ReturnStmt	struct	{

				Return		token.Pos	//	position	of	"return"	keyword

				Results	[]Expr				//	result	expressions;	or	nil

}

A	ReturnStmt	node	represents	a	return	statement.

func	(*ReturnStmt)	End

func	(s	*ReturnStmt)	End()	token.Pos

func	(*ReturnStmt)	Pos

func	(s	*ReturnStmt)	Pos()	token.Pos

type	Scope
type	Scope	struct	{

				Outer			*Scope

				Objects	map[string]*Object

}

A	Scope	maintains	the	set	of	named	language	entities	declared	in	the	scope	and	a
link	to	the	immediately	surrounding	(outer)	scope.

func	NewScope

func	NewScope(outer	*Scope)	*Scope

NewScope	creates	a	new	scope	nested	in	the	outer	scope.

func	(*Scope)	Insert

func	(s	*Scope)	Insert(obj	*Object)	(alt	*Object)

Insert	attempts	to	insert	a	named	object	obj	into	the	scope	s.	If	the	scope	already
contains	an	object	alt	with	the	same	name,	Insert	leaves	the	scope	unchanged	and
returns	alt.	Otherwise	it	inserts	obj	and	returns	nil."

func	(*Scope)	Lookup

func	(s	*Scope)	Lookup(name	string)	*Object

Lookup	returns	the	object	with	the	given	name	if	it	is	found	in	scope	s,	otherwise
it	returns	nil.	Outer	scopes	are	ignored.

func	(*Scope)	String

func	(s	*Scope)	String()	string

Debugging	support

type	SelectStmt
type	SelectStmt	struct	{

				Select	token.Pos		//	position	of	"select"	keyword

				Body			*BlockStmt	//	CommClauses	only

}

An	SelectStmt	node	represents	a	select	statement.

func	(*SelectStmt)	End

func	(s	*SelectStmt)	End()	token.Pos

func	(*SelectStmt)	Pos

func	(s	*SelectStmt)	Pos()	token.Pos

type	SelectorExpr
type	SelectorExpr	struct	{

				X			Expr			//	expression

				Sel	*Ident	//	field	selector

}

A	SelectorExpr	node	represents	an	expression	followed	by	a	selector.

func	(*SelectorExpr)	End

func	(x	*SelectorExpr)	End()	token.Pos

func	(*SelectorExpr)	Pos

func	(x	*SelectorExpr)	Pos()	token.Pos

type	SendStmt
type	SendStmt	struct	{

				Chan		Expr

				Arrow	token.Pos	//	position	of	"<-"

				Value	Expr

}

A	SendStmt	node	represents	a	send	statement.

func	(*SendStmt)	End

func	(s	*SendStmt)	End()	token.Pos

func	(*SendStmt)	Pos

func	(s	*SendStmt)	Pos()	token.Pos

type	SliceExpr
type	SliceExpr	struct	{

				X						Expr						//	expression

				Lbrack	token.Pos	//	position	of	"["

				Low				Expr						//	begin	of	slice	range;	or	nil

				High			Expr						//	end	of	slice	range;	or	nil

				Rbrack	token.Pos	//	position	of	"]"

}

An	SliceExpr	node	represents	an	expression	followed	by	slice	indices.

func	(*SliceExpr)	End

func	(x	*SliceExpr)	End()	token.Pos

func	(*SliceExpr)	Pos

func	(x	*SliceExpr)	Pos()	token.Pos

type	Spec
type	Spec	interface	{

				Node

				//	contains	filtered	or	unexported	methods

}

The	Spec	type	stands	for	any	of	*ImportSpec,	*ValueSpec,	and	*TypeSpec.

type	StarExpr
type	StarExpr	struct	{

				Star	token.Pos	//	position	of	"*"

				X				Expr						//	operand

}

A	StarExpr	node	represents	an	expression	of	the	form	"*"	Expression.
Semantically	it	could	be	a	unary	"*"	expression,	or	a	pointer	type.

func	(*StarExpr)	End

func	(x	*StarExpr)	End()	token.Pos

func	(*StarExpr)	Pos

func	(x	*StarExpr)	Pos()	token.Pos

type	Stmt
type	Stmt	interface	{

				Node

				//	contains	filtered	or	unexported	methods

}

All	statement	nodes	implement	the	Stmt	interface.

type	StructType
type	StructType	struct	{

				Struct					token.Pos		//	position	of	"struct"	keyword

				Fields					*FieldList	//	list	of	field	declarations

				Incomplete	bool							//	true	if	(source)	fields	are	missing	in	the	Fields	list

}

A	StructType	node	represents	a	struct	type.

func	(*StructType)	End

func	(x	*StructType)	End()	token.Pos

func	(*StructType)	Pos

func	(x	*StructType)	Pos()	token.Pos

type	SwitchStmt
type	SwitchStmt	struct	{

				Switch	token.Pos		//	position	of	"switch"	keyword

				Init			Stmt							//	initialization	statement;	or	nil

				Tag				Expr							//	tag	expression;	or	nil

				Body			*BlockStmt	//	CaseClauses	only

}

A	SwitchStmt	node	represents	an	expression	switch	statement.

func	(*SwitchStmt)	End

func	(s	*SwitchStmt)	End()	token.Pos

func	(*SwitchStmt)	Pos

func	(s	*SwitchStmt)	Pos()	token.Pos

type	TypeAssertExpr
type	TypeAssertExpr	struct	{

				X				Expr	//	expression

				Type	Expr	//	asserted	type;	nil	means	type	switch	X.(type)

}

A	TypeAssertExpr	node	represents	an	expression	followed	by	a	type	assertion.

func	(*TypeAssertExpr)	End

func	(x	*TypeAssertExpr)	End()	token.Pos

func	(*TypeAssertExpr)	Pos

func	(x	*TypeAssertExpr)	Pos()	token.Pos

type	TypeSpec
type	TypeSpec	struct	{

				Doc					*CommentGroup	//	associated	documentation;	or	nil

				Name				*Ident								//	type	name

				Type				Expr										//	*Ident,	*ParenExpr,	*SelectorExpr,	*StarExpr,	or	any	of	the	*XxxTypes

				Comment	*CommentGroup	//	line	comments;	or	nil

}

A	TypeSpec	node	represents	a	type	declaration	(TypeSpec	production).

func	(*TypeSpec)	End

func	(s	*TypeSpec)	End()	token.Pos

func	(*TypeSpec)	Pos

func	(s	*TypeSpec)	Pos()	token.Pos

type	TypeSwitchStmt
type	TypeSwitchStmt	struct	{

				Switch	token.Pos		//	position	of	"switch"	keyword

				Init			Stmt							//	initialization	statement;	or	nil

				Assign	Stmt							//	x	:=	y.(type)	or	y.(type)

				Body			*BlockStmt	//	CaseClauses	only

}

An	TypeSwitchStmt	node	represents	a	type	switch	statement.

func	(*TypeSwitchStmt)	End

func	(s	*TypeSwitchStmt)	End()	token.Pos

func	(*TypeSwitchStmt)	Pos

func	(s	*TypeSwitchStmt)	Pos()	token.Pos

type	UnaryExpr
type	UnaryExpr	struct	{

				OpPos	token.Pos			//	position	of	Op

				Op				token.Token	//	operator

				X					Expr								//	operand

}

A	UnaryExpr	node	represents	a	unary	expression.	Unary	"*"	expressions	are
represented	via	StarExpr	nodes.

func	(*UnaryExpr)	End

func	(x	*UnaryExpr)	End()	token.Pos

func	(*UnaryExpr)	Pos

func	(x	*UnaryExpr)	Pos()	token.Pos

type	ValueSpec
type	ValueSpec	struct	{

				Doc					*CommentGroup	//	associated	documentation;	or	nil

				Names			[]*Ident						//	value	names	(len(Names)	>	0)

				Type				Expr										//	value	type;	or	nil

				Values		[]Expr								//	initial	values;	or	nil

				Comment	*CommentGroup	//	line	comments;	or	nil

}

A	ValueSpec	node	represents	a	constant	or	variable	declaration	(ConstSpec	or
VarSpec	production).

func	(*ValueSpec)	End

func	(s	*ValueSpec)	End()	token.Pos

func	(*ValueSpec)	Pos

func	(s	*ValueSpec)	Pos()	token.Pos

type	Visitor
type	Visitor	interface	{

				Visit(node	Node)	(w	Visitor)

}

A	Visitor's	Visit	method	is	invoked	for	each	node	encountered	by	Walk.	If	the
result	visitor	w	is	not	nil,	Walk	visits	each	of	the	children	of	node	with	the	visitor
w,	followed	by	a	call	of	w.Visit(nil).

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	build
import	"go/build"

Overview
Index

Overview	?

Overview	?

Package	build	gathers	information	about	Go	packages.

Go	Path

The	Go	path	is	a	list	of	directory	trees	containing	Go	source	code.	It	is	consulted
to	resolve	imports	that	cannot	be	found	in	the	standard	Go	tree.	The	default	path
is	the	value	of	the	GOPATH	environment	variable,	interpreted	as	a	path	list
appropriate	to	the	operating	system	(on	Unix,	the	variable	is	a	colon-separated
string;	on	Windows,	a	semicolon-separated	string;	on	Plan	9,	a	list).

Each	directory	listed	in	the	Go	path	must	have	a	prescribed	structure:

The	src/	directory	holds	source	code.	The	path	below	'src'	determines	the	import
path	or	executable	name.

The	pkg/	directory	holds	installed	package	objects.	As	in	the	Go	tree,	each	target
operating	system	and	architecture	pair	has	its	own	subdirectory	of	pkg
(pkg/GOOS_GOARCH).

If	DIR	is	a	directory	listed	in	the	Go	path,	a	package	with	source	in
DIR/src/foo/bar	can	be	imported	as	"foo/bar"	and	has	its	compiled	form	installed
to	"DIR/pkg/GOOS_GOARCH/foo/bar.a"	(or,	for	gccgo,
"DIR/pkg/gccgo/foo/libbar.a").

The	bin/	directory	holds	compiled	commands.	Each	command	is	named	for	its
source	directory,	but	only	using	the	final	element,	not	the	entire	path.	That	is,	the
command	with	source	in	DIR/src/foo/quux	is	installed	into	DIR/bin/quux,	not
DIR/bin/foo/quux.	The	foo/	is	stripped	so	that	you	can	add	DIR/bin	to	your
PATH	to	get	at	the	installed	commands.

Here's	an	example	directory	layout:

GOPATH=/home/user/gocode

/home/user/gocode/

				src/

								foo/

												bar/															(go	code	in	package	bar)

																x.go

												quux/														(go	code	in	package	main)

																y.go

				bin/

								quux																			(installed	command)

				pkg/

								linux_amd64/

												foo/

																bar.a										(installed	package	object)

Build	Constraints

A	build	constraint	is	a	line	comment	beginning	with	the	directive	+build	that	lists
the	conditions	under	which	a	file	should	be	included	in	the	package.	Constraints
may	appear	in	any	kind	of	source	file	(not	just	Go),	but	they	must	be	appear	near
the	top	of	the	file,	preceded	only	by	blank	lines	and	other	line	comments.

A	build	constraint	is	evaluated	as	the	OR	of	space-separated	options;	each	option
evaluates	as	the	AND	of	its	comma-separated	terms;	and	each	term	is	an
alphanumeric	word	or,	preceded	by	!,	its	negation.	That	is,	the	build	constraint:

//	+build	linux,386	darwin,!cgo

corresponds	to	the	boolean	formula:

(linux	AND	386)	OR	(darwin	AND	(NOT	cgo))

During	a	particular	build,	the	following	words	are	satisfied:

-	the	target	operating	system,	as	spelled	by	runtime.GOOS

-	the	target	architecture,	as	spelled	by	runtime.GOARCH

-	"cgo",	if	ctxt.CgoEnabled	is	true

-	any	additional	words	listed	in	ctxt.BuildTags

If	a	file's	name,	after	stripping	the	extension	and	a	possible	_test	suffix,	matches
*_GOOS,	*_GOARCH,	or	*_GOOS_GOARCH	for	any	known	operating
system	and	architecture	values,	then	the	file	is	considered	to	have	an	implicit
build	constraint	requiring	those	terms.

To	keep	a	file	from	being	considered	for	the	build:

//	+build	ignore

(any	other	unsatisfied	word	will	work	as	well,	but	“ignore”	is	conventional.)

To	build	a	file	only	when	using	cgo,	and	only	on	Linux	and	OS	X:

//	+build	linux,cgo	darwin,cgo

Such	a	file	is	usually	paired	with	another	file	implementing	the	default
functionality	for	other	systems,	which	in	this	case	would	carry	the	constraint:

//	+build	!linux	!darwin	!cgo

Naming	a	file	dns_windows.go	will	cause	it	to	be	included	only	when	building
the	package	for	Windows;	similarly,	math_386.s	will	be	included	only	when
building	the	package	for	32-bit	x86.

Index

Variables
func	ArchChar(goarch	string)	(string,	error)
func	IsLocalImport(path	string)	bool
type	Context
				func	(ctxt	*Context)	Import(path	string,	srcDir	string,	mode
ImportMode)	(*Package,	error)
				func	(ctxt	*Context)	ImportDir(dir	string,	mode	ImportMode)	(*Package,
error)
				func	(ctxt	*Context)	SrcDirs()	[]string
type	ImportMode
type	NoGoError
				func	(e	*NoGoError)	Error()	string
type	Package
				func	Import(path,	srcDir	string,	mode	ImportMode)	(*Package,	error)
				func	ImportDir(dir	string,	mode	ImportMode)	(*Package,	error)
				func	(p	*Package)	IsCommand()	bool

Package	files

build.go	doc.go	syslist.go

Variables
var	ToolDir	=	filepath.Join(runtime.GOROOT(),	"pkg/tool/"+runtime.GOOS+"_"+runtime.GOARCH)

ToolDir	is	the	directory	containing	build	tools.

func	ArchChar
func	ArchChar(goarch	string)	(string,	error)

ArchChar	returns	the	architecture	character	for	the	given	goarch.	For	example,
ArchChar("amd64")	returns	"6".

func	IsLocalImport
func	IsLocalImport(path	string)	bool

IsLocalImport	reports	whether	the	import	path	is	a	local	import	path,	like	".",
"..",	"./foo",	or	"../foo".

type	Context
type	Context	struct	{

				GOARCH						string			//	target	architecture

				GOOS								string			//	target	operating	system

				GOROOT						string			//	Go	root

				GOPATH						string			//	Go	path

				CgoEnabled		bool					//	whether	cgo	can	be	used

				BuildTags			[]string	//	additional	tags	to	recognize	in	+build	lines

				UseAllFiles	bool					//	use	files	regardless	of	+build	lines,	file	names

				Compiler				string

				//	JoinPath	joins	the	sequence	of	path	fragments	into	a	single	path.

				//	If	JoinPath	is	nil,	Import	uses	filepath.Join.

				JoinPath	func(elem	...string)	string

				//	SplitPathList	splits	the	path	list	into	a	slice	of	individual	paths.

				//	If	SplitPathList	is	nil,	Import	uses	filepath.SplitList.

				SplitPathList	func(list	string)	[]string

				//	IsAbsPath	reports	whether	path	is	an	absolute	path.

				//	If	IsAbsPath	is	nil,	Import	uses	filepath.IsAbs.

				IsAbsPath	func(path	string)	bool

				//	IsDir	reports	whether	the	path	names	a	directory.

				//	If	IsDir	is	nil,	Import	calls	os.Stat	and	uses	the	result's	IsDir	method.

				IsDir	func(path	string)	bool

				//	HasSubdir	reports	whether	dir	is	a	subdirectory	of

				//	(perhaps	multiple	levels	below)	root.

				//	If	so,	HasSubdir	sets	rel	to	a	slash-separated	path	that

				//	can	be	joined	to	root	to	produce	a	path	equivalent	to	dir.

				//	If	HasSubdir	is	nil,	Import	uses	an	implementation	built	on

				//	filepath.EvalSymlinks.

				HasSubdir	func(root,	dir	string)	(rel	string,	ok	bool)

				//	ReadDir	returns	a	slice	of	os.FileInfo,	sorted	by	Name,

				//	describing	the	content	of	the	named	directory.

				//	If	ReadDir	is	nil,	Import	uses	io.ReadDir.

				ReadDir	func(dir	string)	(fi	[]os.FileInfo,	err	error)

				//	OpenFile	opens	a	file	(not	a	directory)	for	reading.

				//	If	OpenFile	is	nil,	Import	uses	os.Open.

				OpenFile	func(path	string)	(r	io.ReadCloser,	err	error)

}

A	Context	specifies	the	supporting	context	for	a	build.

var	Default	Context	=	defaultContext()

Default	is	the	default	Context	for	builds.	It	uses	the	GOARCH,	GOOS,
GOROOT,	and	GOPATH	environment	variables	if	set,	or	else	the	compiled
code's	GOARCH,	GOOS,	and	GOROOT.

func	(*Context)	Import

func	(ctxt	*Context)	Import(path	string,	srcDir	string,	mode	ImportMode)	(*Package,	error)

Import	returns	details	about	the	Go	package	named	by	the	import	path,
interpreting	local	import	paths	relative	to	the	srcDir	directory.	If	the	path	is	a
local	import	path	naming	a	package	that	can	be	imported	using	a	standard	import
path,	the	returned	package	will	set	p.ImportPath	to	that	path.

In	the	directory	containing	the	package,	.go,	.c,	.h,	and	.s	files	are	considered	part
of	the	package	except	for:

-	.go	files	in	package	documentation

-	files	starting	with	_	or	.	(likely	editor	temporary	files)

-	files	with	build	constraints	not	satisfied	by	the	context

If	an	error	occurs,	Import	returns	a	non-nil	error	also	returns	a	non-nil	*Package
containing	partial	information.

func	(*Context)	ImportDir

func	(ctxt	*Context)	ImportDir(dir	string,	mode	ImportMode)	(*Package,	error)

ImportDir	is	like	Import	but	processes	the	Go	package	found	in	the	named
directory.

func	(*Context)	SrcDirs

func	(ctxt	*Context)	SrcDirs()	[]string

SrcDirs	returns	a	list	of	package	source	root	directories.	It	draws	from	the
current	Go	root	and	Go	path	but	omits	directories	that	do	not	exist.

type	ImportMode
type	ImportMode	uint

An	ImportMode	controls	the	behavior	of	the	Import	method.

const	(

				//	If	FindOnly	is	set,	Import	stops	after	locating	the	directory

				//	that	should	contain	the	sources	for	a	package.		It	does	not

				//	read	any	files	in	the	directory.

				FindOnly	ImportMode	=	1	<<	iota

				//	If	AllowBinary	is	set,	Import	can	be	satisfied	by	a	compiled

				//	package	object	without	corresponding	sources.

				AllowBinary

)

type	NoGoError
type	NoGoError	struct	{

				Dir	string

}

NoGoError	is	the	error	used	by	Import	to	describe	a	directory	containing	no	Go
source	files.

func	(*NoGoError)	Error

func	(e	*NoGoError)	Error()	string

type	Package
type	Package	struct	{

				Dir								string	//	directory	containing	package	sources

				Name							string	//	package	name

				Doc								string	//	documentation	synopsis

				ImportPath	string	//	import	path	of	package	(""	if	unknown)

				Root							string	//	root	of	Go	tree	where	this	package	lives

				SrcRoot				string	//	package	source	root	directory	(""	if	unknown)

				PkgRoot				string	//	package	install	root	directory	(""	if	unknown)

				BinDir					string	//	command	install	directory	(""	if	unknown)

				Goroot					bool			//	package	found	in	Go	root

				PkgObj					string

				//	Source	files

				GoFiles			[]string	//	.go	source	files	(excluding	CgoFiles,	TestGoFiles,	XTestGoFiles)

				CgoFiles		[]string	//	.go	source	files	that	import	"C"

				CFiles				[]string	//	.c	source	files

				HFiles				[]string	//	.h	source	files

				SFiles				[]string	//	.s	source	files

				SysoFiles	[]string

				//	Cgo	directives

				CgoPkgConfig	[]string	//	Cgo	pkg-config	directives

				CgoCFLAGS				[]string	//	Cgo	CFLAGS	directives

				CgoLDFLAGS			[]string

				//	Dependency	information

				Imports			[]string	//	imports	from	GoFiles,	CgoFiles

				ImportPos	map[string][]token.Position

				//	Test	information

				TestGoFiles				[]string																				//	_test.go	files	in	package

				TestImports				[]string																				//	imports	from	TestGoFiles

				TestImportPos		map[string][]token.Position	//	line	information	for	TestImports

				XTestGoFiles			[]string																				//	_test.go	files	outside	package

				XTestImports			[]string																				//	imports	from	XTestGoFiles

				XTestImportPos	map[string][]token.Position	//	line	information	for	XTestImports

}

A	Package	describes	the	Go	package	found	in	a	directory.

func	Import

func	Import(path,	srcDir	string,	mode	ImportMode)	(*Package,	error)

Import	is	shorthand	for	Default.Import.

func	ImportDir

func	ImportDir(dir	string,	mode	ImportMode)	(*Package,	error)

ImportDir	is	shorthand	for	Default.ImportDir.

func	(*Package)	IsCommand

func	(p	*Package)	IsCommand()	bool

IsCommand	reports	whether	the	package	is	considered	a	command	to	be
installed	(not	just	a	library).	Packages	named	"main"	are	treated	as	commands.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	doc
import	"go/doc"

Overview
Index

Overview	?

Overview	?

Package	doc	extracts	source	code	documentation	from	a	Go	AST.

Index

func	Examples(files	...*ast.File)	[]*Example
func	Synopsis(s	string)	string
func	ToHTML(w	io.Writer,	text	string,	words	map[string]string)
func	ToText(w	io.Writer,	text	string,	indent,	preIndent	string,	width	int)
type	Example
type	Filter
type	Func
type	Mode
type	Package
				func	New(pkg	*ast.Package,	importPath	string,	mode	Mode)	*Package
				func	(p	*Package)	Filter(f	Filter)
type	Type
type	Value

Package	files

comment.go	doc.go	example.go	exports.go	filter.go	reader.go	synopsis.go

func	Examples
func	Examples(files	...*ast.File)	[]*Example

func	Synopsis
func	Synopsis(s	string)	string

Synopsis	returns	a	cleaned	version	of	the	first	sentence	in	s.	That	sentence	ends
after	the	first	period	followed	by	space	and	not	preceded	by	exactly	one
uppercase	letter.	The	result	string	has	no	\n,	\r,	or	\t	characters	and	uses	only
single	spaces	between	words.

func	ToHTML
func	ToHTML(w	io.Writer,	text	string,	words	map[string]string)

ToHTML	converts	comment	text	to	formatted	HTML.	The	comment	was
prepared	by	DocReader,	so	it	is	known	not	to	have	leading,	trailing	blank	lines
nor	to	have	trailing	spaces	at	the	end	of	lines.	The	comment	markers	have
already	been	removed.

Turn	each	run	of	multiple	\n	into	</p><p>.	Turn	each	run	of	indented	lines	into	a
<pre>	block	without	indent.	Enclose	headings	with	header	tags.

URLs	in	the	comment	text	are	converted	into	links;	if	the	URL	also	appears	in
the	words	map,	the	link	is	taken	from	the	map	(if	the	corresponding	map	value	is
the	empty	string,	the	URL	is	not	converted	into	a	link).

Go	identifiers	that	appear	in	the	words	map	are	italicized;	if	the	corresponding
map	value	is	not	the	empty	string,	it	is	considered	a	URL	and	the	word	is
converted	into	a	link.

func	ToText
func	ToText(w	io.Writer,	text	string,	indent,	preIndent	string,	width	int)

ToText	prepares	comment	text	for	presentation	in	textual	output.	It	wraps
paragraphs	of	text	to	width	or	fewer	Unicode	code	points	and	then	prefixes	each
line	with	the	indent.	In	preformatted	sections	(such	as	program	text),	it	prefixes
each	non-blank	line	with	preIndent.

type	Example
type	Example	struct	{

				Name					string	//	name	of	the	item	being	exemplified

				Doc						string	//	example	function	doc	string

				Code					ast.Node

				Comments	[]*ast.CommentGroup

				Output			string	//	expected	output

}

type	Filter
type	Filter	func(string)	bool

type	Func
type	Func	struct	{

				Doc		string

				Name	string

				Decl	*ast.FuncDecl

				//	methods

				//	(for	functions,	these	fields	have	the	respective	zero	value)

				Recv		string	//	actual			receiver	"T"	or	"*T"

				Orig		string	//	original	receiver	"T"	or	"*T"

				Level	int				//	embedding	level;	0	means	not	embedded

}

Func	is	the	documentation	for	a	func	declaration.

type	Mode
type	Mode	int

Mode	values	control	the	operation	of	New.

const	(

				//	extract	documentation	for	all	package-level	declarations,

				//	not	just	exported	ones

				AllDecls	Mode	=	1	<<	iota

				//	show	all	embedded	methods,	not	just	the	ones	of

				//	invisible	(unexported)	anonymous	fields

				AllMethods

)

type	Package
type	Package	struct	{

				Doc								string

				Name							string

				ImportPath	string

				Imports				[]string

				Filenames		[]string

				Bugs							[]string

				//	declarations

				Consts	[]*Value

				Types		[]*Type

				Vars			[]*Value

				Funcs		[]*Func

}

Package	is	the	documentation	for	an	entire	package.

func	New

func	New(pkg	*ast.Package,	importPath	string,	mode	Mode)	*Package

New	computes	the	package	documentation	for	the	given	package	AST.	New
takes	ownership	of	the	AST	pkg	and	may	edit	or	overwrite	it.

func	(*Package)	Filter

func	(p	*Package)	Filter(f	Filter)

Filter	eliminates	documentation	for	names	that	don't	pass	through	the	filter	f.
TODO:	Recognize	"Type.Method"	as	a	name.

type	Type
type	Type	struct	{

				Doc		string

				Name	string

				Decl	*ast.GenDecl

				//	associated	declarations

				Consts		[]*Value	//	sorted	list	of	constants	of	(mostly)	this	type

				Vars				[]*Value	//	sorted	list	of	variables	of	(mostly)	this	type

				Funcs			[]*Func		//	sorted	list	of	functions	returning	this	type

				Methods	[]*Func		//	sorted	list	of	methods	(including	embedded	ones)	of	this	type

}

Type	is	the	documentation	for	a	type	declaration.

type	Value
type	Value	struct	{

				Doc			string

				Names	[]string	//	var	or	const	names	in	declaration	order

				Decl		*ast.GenDecl

				//	contains	filtered	or	unexported	fields

}

Value	is	the	documentation	for	a	(possibly	grouped)	var	or	const	declaration.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	parser
import	"go/parser"

Overview
Index
Examples

Overview	?

Overview	?

Package	parser	implements	a	parser	for	Go	source	files.	Input	may	be	provided
in	a	variety	of	forms	(see	the	various	Parse*	functions);	the	output	is	an	abstract
syntax	tree	(AST)	representing	the	Go	source.	The	parser	is	invoked	through	one
of	the	Parse*	functions.

Index

func	ParseDir(fset	*token.FileSet,	path	string,	filter	func(os.FileInfo)	bool,
mode	Mode)	(pkgs	map[string]*ast.Package,	first	error)
func	ParseExpr(x	string)	(ast.Expr,	error)
func	ParseFile(fset	*token.FileSet,	filename	string,	src	interface{},	mode
Mode)	(*ast.File,	error)
type	Mode

Examples

ParseFile

Package	files

interface.go	parser.go

func	ParseDir
func	ParseDir(fset	*token.FileSet,	path	string,	filter	func(os.FileInfo)	bool,	mode	Mode)	(pkgs	map[string]*ast.Package,	first	error)

ParseDir	calls	ParseFile	for	the	files	in	the	directory	specified	by	path	and
returns	a	map	of	package	name	->	package	AST	with	all	the	packages	found.	If
filter	!=	nil,	only	the	files	with	os.FileInfo	entries	passing	through	the	filter	are
considered.	The	mode	bits	are	passed	to	ParseFile	unchanged.	Position
information	is	recorded	in	the	file	set	fset.

If	the	directory	couldn't	be	read,	a	nil	map	and	the	respective	error	are	returned.
If	a	parse	error	occurred,	a	non-nil	but	incomplete	map	and	the	first	error
encountered	are	returned.

func	ParseExpr
func	ParseExpr(x	string)	(ast.Expr,	error)

ParseExpr	is	a	convenience	function	for	obtaining	the	AST	of	an	expression	x.
The	position	information	recorded	in	the	AST	is	undefined.

func	ParseFile
func	ParseFile(fset	*token.FileSet,	filename	string,	src	interface{},	mode	Mode)	(*ast.File,	error)

ParseFile	parses	the	source	code	of	a	single	Go	source	file	and	returns	the
corresponding	ast.File	node.	The	source	code	may	be	provided	via	the	filename
of	the	source	file,	or	via	the	src	parameter.

If	src	!=	nil,	ParseFile	parses	the	source	from	src	and	the	filename	is	only	used
when	recording	position	information.	The	type	of	the	argument	for	the	src
parameter	must	be	string,	[]byte,	or	io.Reader.	If	src	==	nil,	ParseFile	parses	the
file	specified	by	filename.

The	mode	parameter	controls	the	amount	of	source	text	parsed	and	other
optional	parser	functionality.	Position	information	is	recorded	in	the	file	set	fset.

If	the	source	couldn't	be	read,	the	returned	AST	is	nil	and	the	error	indicates	the
specific	failure.	If	the	source	was	read	but	syntax	errors	were	found,	the	result	is
a	partial	AST	(with	ast.Bad*	nodes	representing	the	fragments	of	erroneous
source	code).	Multiple	errors	are	returned	via	a	scanner.ErrorList	which	is	sorted
by	file	position.

?	Example

?	Example

Code:

fset	:=	token.NewFileSet()	//	positions	are	relative	to	fset

//	Parse	the	file	containing	this	very	example

//	but	stop	after	processing	the	imports.

f,	err	:=	parser.ParseFile(fset,	"example_test.go",	nil,	parser.ImportsOnly)

if	err	!=	nil	{

				fmt.Println(err)

				return

}

//	Print	the	imports	from	the	file's	AST.

for	_,	s	:=	range	f.Imports	{

				fmt.Println(s.Path.Value)

}

Output:

"fmt"

"go/parser"

"go/token"

type	Mode
type	Mode	uint

A	Mode	value	is	a	set	of	flags	(or	0).	They	control	the	amount	of	source	code
parsed	and	other	optional	parser	functionality.

const	(

				PackageClauseOnly	Mode	=	1	<<	iota	//	parsing	stops	after	package	clause

				ImportsOnly																								//	parsing	stops	after	import	declarations

				ParseComments																						//	parse	comments	and	add	them	to	AST

				Trace																														//	print	a	trace	of	parsed	productions

				DeclarationErrors																		//	report	declaration	errors

				SpuriousErrors																					//	report	all	(not	just	the	first)	errors	per	line

)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	printer
import	"go/printer"

Overview
Index
Examples

Overview	?

Overview	?

Package	printer	implements	printing	of	AST	nodes.

Index

func	Fprint(output	io.Writer,	fset	*token.FileSet,	node	interface{})	error
type	CommentedNode
type	Config
				func	(cfg	*Config)	Fprint(output	io.Writer,	fset	*token.FileSet,	node
interface{})	error
type	Mode

Examples

Fprint

Package	files

nodes.go	printer.go

func	Fprint
func	Fprint(output	io.Writer,	fset	*token.FileSet,	node	interface{})	error

Fprint	"pretty-prints"	an	AST	node	to	output.	It	calls	Config.Fprint	with	default
settings.

?	Example

?	Example

Code:

//	Parse	source	file	and	extract	the	AST	without	comments	for

//	this	function,	with	position	information	referring	to	the

//	file	set	fset.

funcAST,	fset	:=	parseFunc("example_test.go",	"ExampleFprint")

//	Print	the	function	body	into	buffer	buf.

//	The	file	set	is	provided	to	the	printer	so	that	it	knows

//	about	the	original	source	formatting	and	can	add	additional

//	line	breaks	where	they	were	present	in	the	source.

var	buf	bytes.Buffer

printer.Fprint(&buf,	fset,	funcAST.Body)

//	Remove	braces	{}	enclosing	the	function	body,	unindent,

//	and	trim	leading	and	trailing	white	space.

s	:=	buf.String()

s	=	s[1	:	len(s)-1]

s	=	strings.TrimSpace(strings.Replace(s,	"\n\t",	"\n",	-1))

//	Print	the	cleaned-up	body	text	to	stdout.

fmt.Println(s)

Output:

funcAST,	fset	:=	parseFunc("example_test.go",	"ExampleFprint")

var	buf	bytes.Buffer

printer.Fprint(&buf,	fset,	funcAST.Body)

s	:=	buf.String()

s	=	s[1	:	len(s)-1]

s	=	strings.TrimSpace(strings.Replace(s,	"\n\t",	"\n",	-1))

fmt.Println(s)

type	CommentedNode
type	CommentedNode	struct	{

				Node					interface{}	//	*ast.File,	or	ast.Expr,	ast.Decl,	ast.Spec,	or	ast.Stmt

				Comments	[]*ast.CommentGroup

}

A	CommentedNode	bundles	an	AST	node	and	corresponding	comments.	It	may
be	provided	as	argument	to	any	of	the	Fprint	functions.

type	Config
type	Config	struct	{

				Mode					Mode	//	default:	0

				Tabwidth	int		//	default:	8

}

A	Config	node	controls	the	output	of	Fprint.

func	(*Config)	Fprint

func	(cfg	*Config)	Fprint(output	io.Writer,	fset	*token.FileSet,	node	interface{})	error

Fprint	"pretty-prints"	an	AST	node	to	output	for	a	given	configuration	cfg.
Position	information	is	interpreted	relative	to	the	file	set	fset.	The	node	type
must	be	*ast.File,	*CommentedNode,	or	assignment-compatible	to	ast.Expr,
ast.Decl,	ast.Spec,	or	ast.Stmt.

type	Mode
type	Mode	uint

A	Mode	value	is	a	set	of	flags	(or	0).	They	coontrol	printing.

const	(

				RawFormat	Mode	=	1	<<	iota	//	do	not	use	a	tabwriter;	if	set,	UseSpaces	is	ignored

				TabIndent																		//	use	tabs	for	indentation	independent	of	UseSpaces

				UseSpaces																		//	use	spaces	instead	of	tabs	for	alignment

				SourcePos																		//	emit	//line	comments	to	preserve	original	source	positions

)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	scanner
import	"go/scanner"

Overview
Index
Examples

Overview	?

Overview	?

Package	scanner	implements	a	scanner	for	Go	source	text.	It	takes	a	[]byte	as
source	which	can	then	be	tokenized	through	repeated	calls	to	the	Scan	method.

Index

func	PrintError(w	io.Writer,	err	error)
type	Error
				func	(e	Error)	Error()	string
type	ErrorHandler
type	ErrorList
				func	(p	*ErrorList)	Add(pos	token.Position,	msg	string)
				func	(p	ErrorList)	Err()	error
				func	(p	ErrorList)	Error()	string
				func	(p	ErrorList)	Len()	int
				func	(p	ErrorList)	Less(i,	j	int)	bool
				func	(p	*ErrorList)	RemoveMultiples()
				func	(p	*ErrorList)	Reset()
				func	(p	ErrorList)	Sort()
				func	(p	ErrorList)	Swap(i,	j	int)
type	Mode
type	Scanner
				func	(s	*Scanner)	Init(file	*token.File,	src	[]byte,	err	ErrorHandler,	mode
Mode)
				func	(s	*Scanner)	Scan()	(pos	token.Pos,	tok	token.Token,	lit	string)

Examples

Scanner.Scan

Package	files

errors.go	scanner.go

func	PrintError
func	PrintError(w	io.Writer,	err	error)

PrintError	is	a	utility	function	that	prints	a	list	of	errors	to	w,	one	error	per	line,	if
the	err	parameter	is	an	ErrorList.	Otherwise	it	prints	the	err	string.

type	Error
type	Error	struct	{

				Pos	token.Position

				Msg	string

}

In	an	ErrorList,	an	error	is	represented	by	an	*Error.	The	position	Pos,	if	valid,
points	to	the	beginning	of	the	offending	token,	and	the	error	condition	is
described	by	Msg.

func	(Error)	Error

func	(e	Error)	Error()	string

Error	implements	the	error	interface.

type	ErrorHandler
type	ErrorHandler	func(pos	token.Position,	msg	string)

An	ErrorHandler	may	be	provided	to	Scanner.Init.	If	a	syntax	error	is
encountered	and	a	handler	was	installed,	the	handler	is	called	with	a	position	and
an	error	message.	The	position	points	to	the	beginning	of	the	offending	token.

type	ErrorList
type	ErrorList	[]*Error

ErrorList	is	a	list	of	*Errors.	The	zero	value	for	an	ErrorList	is	an	empty
ErrorList	ready	to	use.

func	(*ErrorList)	Add

func	(p	*ErrorList)	Add(pos	token.Position,	msg	string)

Add	adds	an	Error	with	given	position	and	error	message	to	an	ErrorList.

func	(ErrorList)	Err

func	(p	ErrorList)	Err()	error

Err	returns	an	error	equivalent	to	this	error	list.	If	the	list	is	empty,	Err	returns
nil.

func	(ErrorList)	Error

func	(p	ErrorList)	Error()	string

An	ErrorList	implements	the	error	interface.

func	(ErrorList)	Len

func	(p	ErrorList)	Len()	int

ErrorList	implements	the	sort	Interface.

func	(ErrorList)	Less

func	(p	ErrorList)	Less(i,	j	int)	bool

func	(*ErrorList)	RemoveMultiples

func	(p	*ErrorList)	RemoveMultiples()

RemoveMultiples	sorts	an	ErrorList	and	removes	all	but	the	first	error	per	line.

func	(*ErrorList)	Reset

func	(p	*ErrorList)	Reset()

Reset	resets	an	ErrorList	to	no	errors.

func	(ErrorList)	Sort

func	(p	ErrorList)	Sort()

Sort	sorts	an	ErrorList.	*Error	entries	are	sorted	by	position,	other	errors	are
sorted	by	error	message,	and	before	any	*Error	entry.

func	(ErrorList)	Swap

func	(p	ErrorList)	Swap(i,	j	int)

type	Mode
type	Mode	uint

A	mode	value	is	set	of	flags	(or	0).	They	control	scanner	behavior.

const	(

				ScanComments	Mode	=	1	<<	iota	//	return	comments	as	COMMENT	tokens

)

type	Scanner
type	Scanner	struct	{

				//	public	state	-	ok	to	modify

				ErrorCount	int	//	number	of	errors	encountered

				//	contains	filtered	or	unexported	fields

}

A	Scanner	holds	the	scanner's	internal	state	while	processing	a	given	text.	It	can
be	allocated	as	part	of	another	data	structure	but	must	be	initialized	via	Init
before	use.

func	(*Scanner)	Init

func	(s	*Scanner)	Init(file	*token.File,	src	[]byte,	err	ErrorHandler,	mode	Mode)

Init	prepares	the	scanner	s	to	tokenize	the	text	src	by	setting	the	scanner	at	the
beginning	of	src.	The	scanner	uses	the	file	set	file	for	position	information	and	it
adds	line	information	for	each	line.	It	is	ok	to	re-use	the	same	file	when	re-
scanning	the	same	file	as	line	information	which	is	already	present	is	ignored.
Init	causes	a	panic	if	the	file	size	does	not	match	the	src	size.

Calls	to	Scan	will	invoke	the	error	handler	err	if	they	encounter	a	syntax	error
and	err	is	not	nil.	Also,	for	each	error	encountered,	the	Scanner	field	ErrorCount
is	incremented	by	one.	The	mode	parameter	determines	how	comments	are
handled.

Note	that	Init	may	call	err	if	there	is	an	error	in	the	first	character	of	the	file.

func	(*Scanner)	Scan

func	(s	*Scanner)	Scan()	(pos	token.Pos,	tok	token.Token,	lit	string)

Scan	scans	the	next	token	and	returns	the	token	position,	the	token,	and	its	literal
string	if	applicable.	The	source	end	is	indicated	by	token.EOF.

If	the	returned	token	is	a	literal	(token.IDENT,	token.INT,	token.FLOAT,
token.IMAG,	token.CHAR,	token.STRING)	or	token.COMMENT,	the	literal

string	has	the	corresponding	value.

If	the	returned	token	is	token.SEMICOLON,	the	corresponding	literal	string	is
";"	if	the	semicolon	was	present	in	the	source,	and	"\n"	if	the	semicolon	was
inserted	because	of	a	newline	or	at	EOF.

If	the	returned	token	is	token.ILLEGAL,	the	literal	string	is	the	offending
character.

In	all	other	cases,	Scan	returns	an	empty	literal	string.

For	more	tolerant	parsing,	Scan	will	return	a	valid	token	if	possible	even	if	a
syntax	error	was	encountered.	Thus,	even	if	the	resulting	token	sequence
contains	no	illegal	tokens,	a	client	may	not	assume	that	no	error	occurred.
Instead	it	must	check	the	scanner's	ErrorCount	or	the	number	of	calls	of	the	error
handler,	if	there	was	one	installed.

Scan	adds	line	information	to	the	file	added	to	the	file	set	with	Init.	Token
positions	are	relative	to	that	file	and	thus	relative	to	the	file	set.

?	Example

?	Example

Code:

//	src	is	the	input	that	we	want	to	tokenize.

src	:=	[]byte("cos(x)	+	1i*sin(x)	//	Euler")

//	Initialize	the	scanner.

var	s	scanner.Scanner

fset	:=	token.NewFileSet()																						//	positions	are	relative	to	fset

file	:=	fset.AddFile("",	fset.Base(),	len(src))	//	register	input	"file"

s.Init(file,	src,	nil	/*	no	error	handler	*/,	scanner.ScanComments)

//	Repeated	calls	to	Scan	yield	the	token	sequence	found	in	the	input.

for	{

				pos,	tok,	lit	:=	s.Scan()

				if	tok	==	token.EOF	{

								break

				}

				fmt.Printf("%s\t%s\t%q\n",	fset.Position(pos),	tok,	lit)

}

Output:

1:1	 IDENT	 "cos"

1:4	 (""

1:5	 IDENT	 "x"

1:6)	 ""

1:8	 +	 ""

1:10	 IMAG	 "1i"

1:12	 *	 ""

1:13	 IDENT	 "sin"

1:16	 (""

1:17	 IDENT	 "x"

1:18)	 ""

1:20	 ;	 "\n"

1:20	 COMMENT	"//	Euler"

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	token
import	"go/token"

Overview
Index

Overview	?

Overview	?

Package	token	defines	constants	representing	the	lexical	tokens	of	the	Go
programming	language	and	basic	operations	on	tokens	(printing,	predicates).

Index

Constants
type	File
				func	(f	*File)	AddLine(offset	int)
				func	(f	*File)	AddLineInfo(offset	int,	filename	string,	line	int)
				func	(f	*File)	Base()	int
				func	(f	*File)	Line(p	Pos)	int
				func	(f	*File)	LineCount()	int
				func	(f	*File)	Name()	string
				func	(f	*File)	Offset(p	Pos)	int
				func	(f	*File)	Pos(offset	int)	Pos
				func	(f	*File)	Position(p	Pos)	(pos	Position)
				func	(f	*File)	SetLines(lines	[]int)	bool
				func	(f	*File)	SetLinesForContent(content	[]byte)
				func	(f	*File)	Size()	int
type	FileSet
				func	NewFileSet()	*FileSet
				func	(s	*FileSet)	AddFile(filename	string,	base,	size	int)	*File
				func	(s	*FileSet)	Base()	int
				func	(s	*FileSet)	File(p	Pos)	(f	*File)
				func	(s	*FileSet)	Iterate(f	func(*File)	bool)
				func	(s	*FileSet)	Position(p	Pos)	(pos	Position)
				func	(s	*FileSet)	Read(decode	func(interface{})	error)	error
				func	(s	*FileSet)	Write(encode	func(interface{})	error)	error
type	Pos
				func	(p	Pos)	IsValid()	bool
type	Position
				func	(pos	*Position)	IsValid()	bool
				func	(pos	Position)	String()	string
type	Token
				func	Lookup(ident	string)	Token
				func	(tok	Token)	IsKeyword()	bool
				func	(tok	Token)	IsLiteral()	bool
				func	(tok	Token)	IsOperator()	bool
				func	(op	Token)	Precedence()	int
				func	(tok	Token)	String()	string

Package	files

position.go	serialize.go	token.go

Constants
const	(

				LowestPrec		=	0	//	non-operators

				UnaryPrec			=	6

				HighestPrec	=	7

)

A	set	of	constants	for	precedence-based	expression	parsing.	Non-operators	have
lowest	precedence,	followed	by	operators	starting	with	precedence	1	up	to	unary
operators.	The	highest	precedence	corresponds	serves	as	"catch-all"	precedence
for	selector,	indexing,	and	other	operator	and	delimiter	tokens.

type	File
type	File	struct	{

				//	contains	filtered	or	unexported	fields

}

A	File	is	a	handle	for	a	file	belonging	to	a	FileSet.	A	File	has	a	name,	size,	and
line	offset	table.

func	(*File)	AddLine

func	(f	*File)	AddLine(offset	int)

AddLine	adds	the	line	offset	for	a	new	line.	The	line	offset	must	be	larger	than
the	offset	for	the	previous	line	and	smaller	than	the	file	size;	otherwise	the	line
offset	is	ignored.

func	(*File)	AddLineInfo

func	(f	*File)	AddLineInfo(offset	int,	filename	string,	line	int)

AddLineInfo	adds	alternative	file	and	line	number	information	for	a	given	file
offset.	The	offset	must	be	larger	than	the	offset	for	the	previously	added
alternative	line	info	and	smaller	than	the	file	size;	otherwise	the	information	is
ignored.

AddLineInfo	is	typically	used	to	register	alternative	position	information	for
//line	filename:line	comments	in	source	files.

func	(*File)	Base

func	(f	*File)	Base()	int

Base	returns	the	base	offset	of	file	f	as	registered	with	AddFile.

func	(*File)	Line

func	(f	*File)	Line(p	Pos)	int

Line	returns	the	line	number	for	the	given	file	position	p;	p	must	be	a	Pos	value
in	that	file	or	NoPos.

func	(*File)	LineCount

func	(f	*File)	LineCount()	int

LineCount	returns	the	number	of	lines	in	file	f.

func	(*File)	Name

func	(f	*File)	Name()	string

Name	returns	the	file	name	of	file	f	as	registered	with	AddFile.

func	(*File)	Offset

func	(f	*File)	Offset(p	Pos)	int

Offset	returns	the	offset	for	the	given	file	position	p;	p	must	be	a	valid	Pos	value
in	that	file.	f.Offset(f.Pos(offset))	==	offset.

func	(*File)	Pos

func	(f	*File)	Pos(offset	int)	Pos

Pos	returns	the	Pos	value	for	the	given	file	offset;	the	offset	must	be	<=	f.Size().
f.Pos(f.Offset(p))	==	p.

func	(*File)	Position

func	(f	*File)	Position(p	Pos)	(pos	Position)

Position	returns	the	Position	value	for	the	given	file	position	p;	p	must	be	a	Pos
value	in	that	file	or	NoPos.

func	(*File)	SetLines

func	(f	*File)	SetLines(lines	[]int)	bool

SetLines	sets	the	line	offsets	for	a	file	and	returns	true	if	successful.	The	line
offsets	are	the	offsets	of	the	first	character	of	each	line;	for	instance	for	the
content	"ab\nc\n"	the	line	offsets	are	{0,	3}.	An	empty	file	has	an	empty	line
offset	table.	Each	line	offset	must	be	larger	than	the	offset	for	the	previous	line
and	smaller	than	the	file	size;	otherwise	SetLines	fails	and	returns	false.

func	(*File)	SetLinesForContent

func	(f	*File)	SetLinesForContent(content	[]byte)

SetLinesForContent	sets	the	line	offsets	for	the	given	file	content.

func	(*File)	Size

func	(f	*File)	Size()	int

Size	returns	the	size	of	file	f	as	registered	with	AddFile.

type	FileSet
type	FileSet	struct	{

				//	contains	filtered	or	unexported	fields

}

A	FileSet	represents	a	set	of	source	files.	Methods	of	file	sets	are	synchronized;
multiple	goroutines	may	invoke	them	concurrently.

func	NewFileSet

func	NewFileSet()	*FileSet

NewFileSet	creates	a	new	file	set.

func	(*FileSet)	AddFile

func	(s	*FileSet)	AddFile(filename	string,	base,	size	int)	*File

AddFile	adds	a	new	file	with	a	given	filename,	base	offset,	and	file	size	to	the
file	set	s	and	returns	the	file.	Multiple	files	may	have	the	same	name.	The	base
offset	must	not	be	smaller	than	the	FileSet's	Base(),	and	size	must	not	be
negative.

Adding	the	file	will	set	the	file	set's	Base()	value	to	base	+	size	+	1	as	the
minimum	base	value	for	the	next	file.	The	following	relationship	exists	between
a	Pos	value	p	for	a	given	file	offset	offs:

int(p)	=	base	+	offs

with	offs	in	the	range	[0,	size]	and	thus	p	in	the	range	[base,	base+size].	For
convenience,	File.Pos	may	be	used	to	create	file-specific	position	values	from	a
file	offset.

func	(*FileSet)	Base

func	(s	*FileSet)	Base()	int

Base	returns	the	minimum	base	offset	that	must	be	provided	to	AddFile	when

adding	the	next	file.

func	(*FileSet)	File

func	(s	*FileSet)	File(p	Pos)	(f	*File)

File	returns	the	file	that	contains	the	position	p.	If	no	such	file	is	found	(for
instance	for	p	==	NoPos),	the	result	is	nil.

func	(*FileSet)	Iterate

func	(s	*FileSet)	Iterate(f	func(*File)	bool)

Iterate	calls	f	for	the	files	in	the	file	set	in	the	order	they	were	added	until	f
returns	false.

func	(*FileSet)	Position

func	(s	*FileSet)	Position(p	Pos)	(pos	Position)

Position	converts	a	Pos	in	the	fileset	into	a	general	Position.

func	(*FileSet)	Read

func	(s	*FileSet)	Read(decode	func(interface{})	error)	error

Read	calls	decode	to	deserialize	a	file	set	into	s;	s	must	not	be	nil.

func	(*FileSet)	Write

func	(s	*FileSet)	Write(encode	func(interface{})	error)	error

Write	calls	encode	to	serialize	the	file	set	s.

type	Pos
type	Pos	int

Pos	is	a	compact	encoding	of	a	source	position	within	a	file	set.	It	can	be
converted	into	a	Position	for	a	more	convenient,	but	much	larger,	representation.

The	Pos	value	for	a	given	file	is	a	number	in	the	range	[base,	base+size],	where
base	and	size	are	specified	when	adding	the	file	to	the	file	set	via	AddFile.

To	create	the	Pos	value	for	a	specific	source	offset,	first	add	the	respective	file	to
the	current	file	set	(via	FileSet.AddFile)	and	then	call	File.Pos(offset)	for	that
file.	Given	a	Pos	value	p	for	a	specific	file	set	fset,	the	corresponding	Position
value	is	obtained	by	calling	fset.Position(p).

Pos	values	can	be	compared	directly	with	the	usual	comparison	operators:	If	two
Pos	values	p	and	q	are	in	the	same	file,	comparing	p	and	q	is	equivalent	to
comparing	the	respective	source	file	offsets.	If	p	and	q	are	in	different	files,	p	<	q
is	true	if	the	file	implied	by	p	was	added	to	the	respective	file	set	before	the	file
implied	by	q.

const	NoPos	Pos	=	0

The	zero	value	for	Pos	is	NoPos;	there	is	no	file	and	line	information	associated
with	it,	and	NoPos().IsValid()	is	false.	NoPos	is	always	smaller	than	any	other
Pos	value.	The	corresponding	Position	value	for	NoPos	is	the	zero	value	for
Position.

func	(Pos)	IsValid

func	(p	Pos)	IsValid()	bool

IsValid	returns	true	if	the	position	is	valid.

type	Position
type	Position	struct	{

				Filename	string	//	filename,	if	any

				Offset			int				//	offset,	starting	at	0

				Line					int				//	line	number,	starting	at	1

				Column			int				//	column	number,	starting	at	1	(character	count)

}

Position	describes	an	arbitrary	source	position	including	the	file,	line,	and
column	location.	A	Position	is	valid	if	the	line	number	is	>	0.

func	(*Position)	IsValid

func	(pos	*Position)	IsValid()	bool

IsValid	returns	true	if	the	position	is	valid.

func	(Position)	String

func	(pos	Position)	String()	string

String	returns	a	string	in	one	of	several	forms:

file:line:column				valid	position	with	file	name

line:column									valid	position	without	file	name

file																invalid	position	with	file	name

-																			invalid	position	without	file	name

type	Token
type	Token	int

Token	is	the	set	of	lexical	tokens	of	the	Go	programming	language.

const	(

				//	Special	tokens

				ILLEGAL	Token	=	iota

				EOF

				COMMENT

				//	Identifiers	and	basic	type	literals

				//	(these	tokens	stand	for	classes	of	literals)

				IDENT	//	main

				INT			//	12345

				FLOAT	//	123.45

				IMAG		//	123.45i

				CHAR		//	'a'

				STRING

				//	Operators	and	delimiters

				ADD	//	+

				SUB	//	-

				MUL	//	*

				QUO	//	/

				REM	//	%

				AND					//	&

				OR						//	|

				XOR					//	^

				SHL					//	<<

				SHR					//	>>

				AND_NOT	//	&^

				ADD_ASSIGN	//	+=

				SUB_ASSIGN	//	-=

				MUL_ASSIGN	//	*=

				QUO_ASSIGN	//	/=

				REM_ASSIGN	//	%=

				AND_ASSIGN					//	&=

				OR_ASSIGN						//	|=

				XOR_ASSIGN					//	^=

				SHL_ASSIGN					//	<<=

				SHR_ASSIGN					//	>>=

				AND_NOT_ASSIGN	//	&^=

				LAND		//	&&

				LOR			//	||

				ARROW	//	<-

				INC			//	++

				DEC			//	--

				EQL				//	==

				LSS				//	<

				GTR				//	>

				ASSIGN	//	=

				NOT				//	!

				NEQ						//	!=

				LEQ						//	<=

				GEQ						//	>=

				DEFINE			//	:=

				ELLIPSIS	//	...

				LPAREN	//	(

				LBRACK	//	[

				LBRACE	//	{

				COMMA		//	,

				PERIOD	//	.

				RPAREN				//)

				RBRACK				//]

				RBRACE				//	}

				SEMICOLON	//	;

				COLON

				//	Keywords

				BREAK

				CASE

				CHAN

				CONST

				CONTINUE

				DEFAULT

				DEFER

				ELSE

				FALLTHROUGH

				FOR

				FUNC

				GO

				GOTO

				IF

				IMPORT

				INTERFACE

				MAP

				PACKAGE

				RANGE

				RETURN

				SELECT

				STRUCT

				SWITCH

				TYPE

				VAR

)

The	list	of	tokens.

func	Lookup

func	Lookup(ident	string)	Token

Lookup	maps	an	identifier	to	its	keyword	token	or	IDENT	(if	not	a	keyword).

func	(Token)	IsKeyword

func	(tok	Token)	IsKeyword()	bool

IsKeyword	returns	true	for	tokens	corresponding	to	keywords;	it	returns	false
otherwise.

func	(Token)	IsLiteral

func	(tok	Token)	IsLiteral()	bool

IsLiteral	returns	true	for	tokens	corresponding	to	identifiers	and	basic	type
literals;	it	returns	false	otherwise.

func	(Token)	IsOperator

func	(tok	Token)	IsOperator()	bool

IsOperator	returns	true	for	tokens	corresponding	to	operators	and	delimiters;	it
returns	false	otherwise.

func	(Token)	Precedence

func	(op	Token)	Precedence()	int

Precedence	returns	the	operator	precedence	of	the	binary	operator	op.	If	op	is	not
a	binary	operator,	the	result	is	LowestPrecedence.

func	(Token)	String

func	(tok	Token)	String()	string

String	returns	the	string	corresponding	to	the	token	tok.	For	operators,
delimiters,	and	keywords	the	string	is	the	actual	token	character	sequence	(e.g.,
for	the	token	ADD,	the	string	is	"+").	For	all	other	tokens	the	string	corresponds
to	the	token	constant	name	(e.g.	for	the	token	IDENT,	the	string	is	"IDENT").

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	hash
import	"hash"

Overview
Index
Subdirectories

Overview	?

Overview	?

Package	hash	provides	interfaces	for	hash	functions.

Index

type	Hash
type	Hash32
type	Hash64

Package	files

hash.go

type	Hash
type	Hash	interface	{

				//	Write	adds	more	data	to	the	running	hash.

				//	It	never	returns	an	error.

				io.Writer

				//	Sum	appends	the	current	hash	to	b	and	returns	the	resulting	slice.

				//	It	does	not	change	the	underlying	hash	state.

				Sum(b	[]byte)	[]byte

				//	Reset	resets	the	hash	to	one	with	zero	bytes	written.

				Reset()

				//	Size	returns	the	number	of	bytes	Sum	will	return.

				Size()	int

				//	BlockSize	returns	the	hash's	underlying	block	size.

				//	The	Write	method	must	be	able	to	accept	any	amount

				//	of	data,	but	it	may	operate	more	efficiently	if	all	writes

				//	are	a	multiple	of	the	block	size.

				BlockSize()	int

}

Hash	is	the	common	interface	implemented	by	all	hash	functions.

type	Hash32
type	Hash32	interface	{

				Hash

				Sum32()	uint32

}

Hash32	is	the	common	interface	implemented	by	all	32-bit	hash	functions.

type	Hash64
type	Hash64	interface	{

				Hash

				Sum64()	uint64

}

Hash64	is	the	common	interface	implemented	by	all	64-bit	hash	functions.

Subdirectories

Name 				 Synopsis
adler32 				 Package	adler32	implements	the	Adler-32	checksum.

crc32 				 Package	crc32	implements	the	32-bit	cyclic	redundancy	check,	orCRC-32,	checksum.

crc64 				 Package	crc64	implements	the	64-bit	cyclic	redundancy	check,	orCRC-64,	checksum.

fnv 				
Package	fnv	implements	FNV-1	and	FNV-1a,	non-cryptographic
hash	functions	created	by	Glenn	Fowler,	Landon	Curt	Noll,	and
Phong	Vo.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	adler32
import	"hash/adler32"

Overview
Index

Overview	?

Overview	?

Package	adler32	implements	the	Adler-32	checksum.	Defined	in	RFC	1950:

Adler-32	is	composed	of	two	sums	accumulated	per	byte:	s1	is

the	sum	of	all	bytes,	s2	is	the	sum	of	all	s1	values.	Both	sums

are	done	modulo	65521.	s1	is	initialized	to	1,	s2	to	zero.		The

Adler-32	checksum	is	stored	as	s2*65536	+	s1	in	most-

significant-byte	first	(network)	order.

Index

Constants
func	Checksum(data	[]byte)	uint32
func	New()	hash.Hash32

Package	files

adler32.go

Constants
const	Size	=	4

The	size	of	an	Adler-32	checksum	in	bytes.

func	Checksum
func	Checksum(data	[]byte)	uint32

Checksum	returns	the	Adler-32	checksum	of	data.

func	New
func	New()	hash.Hash32

New	returns	a	new	hash.Hash32	computing	the	Adler-32	checksum.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	crc32
import	"hash/crc32"

Overview
Index

Overview	?

Overview	?

Package	crc32	implements	the	32-bit	cyclic	redundancy	check,	or	CRC-32,
checksum.	See	http://en.wikipedia.org/wiki/Cyclic_redundancy_check	for
information.

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Index

Constants
Variables
func	Checksum(data	[]byte,	tab	*Table)	uint32
func	ChecksumIEEE(data	[]byte)	uint32
func	New(tab	*Table)	hash.Hash32
func	NewIEEE()	hash.Hash32
func	Update(crc	uint32,	tab	*Table,	p	[]byte)	uint32
type	Table
				func	MakeTable(poly	uint32)	*Table

Package	files

crc32.go	crc32_amd64.go

Constants
const	(

				//	Far	and	away	the	most	common	CRC-32	polynomial.

				//	Used	by	ethernet	(IEEE	802.3),	v.42,	fddi,	gzip,	zip,	png,	mpeg-2,	...

				IEEE	=	0xedb88320

				//	Castagnoli's	polynomial,	used	in	iSCSI.

				//	Has	better	error	detection	characteristics	than	IEEE.

				//	http://dx.doi.org/10.1109/26.231911

				Castagnoli	=	0x82f63b78

				//	Koopman's	polynomial.

				//	Also	has	better	error	detection	characteristics	than	IEEE.

				//	http://dx.doi.org/10.1109/DSN.2002.1028931

				Koopman	=	0xeb31d82e

)

Predefined	polynomials.

const	Size	=	4

The	size	of	a	CRC-32	checksum	in	bytes.

Variables
var	IEEETable	=	makeTable(IEEE)

IEEETable	is	the	table	for	the	IEEE	polynomial.

func	Checksum
func	Checksum(data	[]byte,	tab	*Table)	uint32

Checksum	returns	the	CRC-32	checksum	of	data	using	the	polynomial
represented	by	the	Table.

func	ChecksumIEEE
func	ChecksumIEEE(data	[]byte)	uint32

ChecksumIEEE	returns	the	CRC-32	checksum	of	data	using	the	IEEE
polynomial.

func	New
func	New(tab	*Table)	hash.Hash32

New	creates	a	new	hash.Hash32	computing	the	CRC-32	checksum	using	the
polynomial	represented	by	the	Table.

func	NewIEEE
func	NewIEEE()	hash.Hash32

NewIEEE	creates	a	new	hash.Hash32	computing	the	CRC-32	checksum	using
the	IEEE	polynomial.

func	Update
func	Update(crc	uint32,	tab	*Table,	p	[]byte)	uint32

Update	returns	the	result	of	adding	the	bytes	in	p	to	the	crc.

type	Table
type	Table	[256]uint32

Table	is	a	256-word	table	representing	the	polynomial	for	efficient	processing.

func	MakeTable

func	MakeTable(poly	uint32)	*Table

MakeTable	returns	the	Table	constructed	from	the	specified	polynomial.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	crc64
import	"hash/crc64"

Overview
Index

Overview	?

Overview	?

Package	crc64	implements	the	64-bit	cyclic	redundancy	check,	or	CRC-64,
checksum.	See	http://en.wikipedia.org/wiki/Cyclic_redundancy_check	for
information.

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Index

Constants
func	Checksum(data	[]byte,	tab	*Table)	uint64
func	New(tab	*Table)	hash.Hash64
func	Update(crc	uint64,	tab	*Table,	p	[]byte)	uint64
type	Table
				func	MakeTable(poly	uint64)	*Table

Package	files

crc64.go

Constants
const	(

				//	The	ISO	polynomial,	defined	in	ISO	3309	and	used	in	HDLC.

				ISO	=	0xD800000000000000

				//	The	ECMA	polynomial,	defined	in	ECMA	182.

				ECMA	=	0xC96C5795D7870F42

)

Predefined	polynomials.

const	Size	=	8

The	size	of	a	CRC-64	checksum	in	bytes.

func	Checksum
func	Checksum(data	[]byte,	tab	*Table)	uint64

Checksum	returns	the	CRC-64	checksum	of	data	using	the	polynomial
represented	by	the	Table.

func	New
func	New(tab	*Table)	hash.Hash64

New	creates	a	new	hash.Hash64	computing	the	CRC-64	checksum	using	the
polynomial	represented	by	the	Table.

func	Update
func	Update(crc	uint64,	tab	*Table,	p	[]byte)	uint64

Update	returns	the	result	of	adding	the	bytes	in	p	to	the	crc.

type	Table
type	Table	[256]uint64

Table	is	a	256-word	table	representing	the	polynomial	for	efficient	processing.

func	MakeTable

func	MakeTable(poly	uint64)	*Table

MakeTable	returns	the	Table	constructed	from	the	specified	polynomial.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	fnv
import	"hash/fnv"

Overview
Index

Overview	?

Overview	?

Package	fnv	implements	FNV-1	and	FNV-1a,	non-cryptographic	hash	functions
created	by	Glenn	Fowler,	Landon	Curt	Noll,	and	Phong	Vo.	See
http://isthe.com/chongo/tech/comp/fnv/.

http://isthe.com/chongo/tech/comp/fnv/

Index

func	New32()	hash.Hash32
func	New32a()	hash.Hash32
func	New64()	hash.Hash64
func	New64a()	hash.Hash64

Package	files

fnv.go

func	New32
func	New32()	hash.Hash32

New32	returns	a	new	32-bit	FNV-1	hash.Hash.

func	New32a
func	New32a()	hash.Hash32

New32a	returns	a	new	32-bit	FNV-1a	hash.Hash.

func	New64
func	New64()	hash.Hash64

New64	returns	a	new	64-bit	FNV-1	hash.Hash.

func	New64a
func	New64a()	hash.Hash64

New64a	returns	a	new	64-bit	FNV-1a	hash.Hash.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	html
import	"html"

Overview
Index
Subdirectories

Overview	?

Overview	?

Package	html	provides	functions	for	escaping	and	unescaping	HTML	text.

Index

func	EscapeString(s	string)	string
func	UnescapeString(s	string)	string

Package	files

entity.go	escape.go

func	EscapeString
func	EscapeString(s	string)	string

EscapeString	escapes	special	characters	like	"<"	to	become	"<".	It	escapes
only	five	such	characters:	<,	>,	&,	'	and	".	UnescapeString(EscapeString(s))	==	s
always	holds,	but	the	converse	isn't	always	true.

func	UnescapeString
func	UnescapeString(s	string)	string

UnescapeString	unescapes	entities	like	"<"	to	become	"<".	It	unescapes	a
larger	range	of	entities	than	EscapeString	escapes.	For	example,	"á"
unescapes	to	"",	as	does	"á"	and	"&xE1;".
UnescapeString(EscapeString(s))	==	s	always	holds,	but	the	converse	isn't
always	true.

Subdirectories

Name 				 Synopsis

template 				 Package	template	(html/template)	implements	data-driven	templatesfor	generating	HTML	output	safe	against	code	injection.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	template
import	"html/template"

Overview
Index

Overview	?

Overview	?

Package	template	(html/template)	implements	data-driven	templates	for
generating	HTML	output	safe	against	code	injection.	It	provides	the	same
interface	as	package	text/template	and	should	be	used	instead	of	text/template
whenever	the	output	is	HTML.

The	documentation	here	focuses	on	the	security	features	of	the	package.	For
information	about	how	to	program	the	templates	themselves,	see	the
documentation	for	text/template.

Introduction

This	package	wraps	package	text/template	so	you	can	share	its	template	API	to
parse	and	execute	HTML	templates	safely.

tmpl,	err	:=	template.New("name").Parse(...)

//	Error	checking	elided

err	=	tmpl.Execute(out,	data)

If	successful,	tmpl	will	now	be	injection-safe.	Otherwise,	err	is	an	error	defined
in	the	docs	for	ErrorCode.

HTML	templates	treat	data	values	as	plain	text	which	should	be	encoded	so	they
can	be	safely	embedded	in	an	HTML	document.	The	escaping	is	contextual,	so
actions	can	appear	within	JavaScript,	CSS,	and	URI	contexts.

The	security	model	used	by	this	package	assumes	that	template	authors	are
trusted,	while	Execute's	data	parameter	is	not.	More	details	are	provided	below.

Example

import	"text/template"

...

t,	err	:=	template.New("foo").Parse(`{{define	"T"}}Hello,	{{.}}!{{end}}`)

err	=	t.ExecuteTemplate(out,	"T",	"<script>alert('you	have	been	pwned')</script>")

produces

Hello,	<script>alert('you	have	been	pwned')</script>!

but	the	contextual	autoescaping	in	html/template

import	"html/template"

...

t,	err	:=	template.New("foo").Parse(`{{define	"T"}}Hello,	{{.}}!{{end}}`)

err	=	t.ExecuteTemplate(out,	"T",	"<script>alert('you	have	been	pwned')</script>")

produces	safe,	escaped	HTML	output

Hello,	<script>alert('you	have	been	pwned')</script>!

Contexts

This	package	understands	HTML,	CSS,	JavaScript,	and	URIs.	It	adds	sanitizing
functions	to	each	simple	action	pipeline,	so	given	the	excerpt

{{.}}

At	parse	time	each	{{.}}	is	overwritten	to	add	escaping	functions	as	necessary.
In	this	case	it	becomes

{{.	|	html}}

Errors

See	the	documentation	of	ErrorCode	for	details.

A	fuller	picture

The	rest	of	this	package	comment	may	be	skipped	on	first	reading;	it	includes
details	necessary	to	understand	escaping	contexts	and	error	messages.	Most
users	will	not	need	to	understand	these	details.

Contexts

Assuming	{{.}}	is	`O'Reilly:	How	are	<i>you</i>?`,	the	table	below	shows	how
{{.}}	appears	when	used	in	the	context	to	the	left.

Context																										{{.}}	After

{{.}}																												O'Reilly:	How	are	<i>you</i>?

																O'Reilly:	How	are	you?

																O'Reilly:	How	are	%3ci%3eyou%3c/i%3e?

														O'Reilly%3a%20How%20are%3ci%3e...%3f

													O\x27Reilly:	How	are	\x3ci\x3eyou...?

															"O\x27Reilly:	How	are	\x3ci\x3eyou...?"

					O\x27Reilly:	How	are	\x3ci\x3eyou...\x3f

If	used	in	an	unsafe	context,	then	the	value	might	be	filtered	out:

Context																										{{.}}	After

																	#ZgotmplZ

since	"O'Reilly:"	is	not	an	allowed	protocol	like	"http:".

If	{{.}}	is	the	innocuous	word,	`left`,	then	it	can	appear	more	widely,

Context																														{{.}}	After

{{.}}																																left

																				left

																					left

																				left

																left

								left

													left

							left

		left

<style>p.{{.}}	{color:red}</style>			left

Non-string	values	can	be	used	in	JavaScript	contexts.	If	{{.}}	is

[]struct{A,B	string}{	"foo",	"bar"	}

in	the	escaped	template

<script>var	pair	=	{{.}};</script>

then	the	template	output	is

<script>var	pair	=	{"A":	"foo",	"B":	"bar"};</script>

See	package	json	to	understand	how	non-string	content	is	marshalled	for
embedding	in	JavaScript	contexts.

Typed	Strings

By	default,	this	package	assumes	that	all	pipelines	produce	a	plain	text	string.	It

adds	escaping	pipeline	stages	necessary	to	correctly	and	safely	embed	that	plain
text	string	in	the	appropriate	context.

When	a	data	value	is	not	plain	text,	you	can	make	sure	it	is	not	over-escaped	by
marking	it	with	its	type.

Types	HTML,	JS,	URL,	and	others	from	content.go	can	carry	safe	content	that	is
exempted	from	escaping.

The	template

Hello,	{{.}}!

can	be	invoked	with

tmpl.Execute(out,	HTML(`World`))

to	produce

Hello,	World!

instead	of	the

Hello,	World!

that	would	have	been	produced	if	{{.}}	was	a	regular	string.

Security	Model

http://js-quasis-libraries-and-
repl.googlecode.com/svn/trunk/safetemplate.html#problem_definition	defines
"safe"	as	used	by	this	package.

This	package	assumes	that	template	authors	are	trusted,	that	Execute's	data
parameter	is	not,	and	seeks	to	preserve	the	properties	below	in	the	face	of
untrusted	data:

Structure	Preservation	Property:	"...	when	a	template	author	writes	an	HTML	tag
in	a	safe	templating	language,	the	browser	will	interpret	the	corresponding
portion	of	the	output	as	a	tag	regardless	of	the	values	of	untrusted	data,	and
similarly	for	other	structures	such	as	attribute	boundaries	and	JS	and	CSS	string

http://js-quasis-libraries-and-repl.googlecode.com/svn/trunk/safetemplate.html#problem_definition

boundaries."

Code	Effect	Property:	"...	only	code	specified	by	the	template	author	should	run
as	a	result	of	injecting	the	template	output	into	a	page	and	all	code	specified	by
the	template	author	should	run	as	a	result	of	the	same."

Least	Surprise	Property:	"A	developer	(or	code	reviewer)	familiar	with	HTML,
CSS,	and	JavaScript,	who	knows	that	contextual	autoescaping	happens	should	be
able	to	look	at	a	{{.}}	and	correctly	infer	what	sanitization	happens."

Index

func	HTMLEscape(w	io.Writer,	b	[]byte)
func	HTMLEscapeString(s	string)	string
func	HTMLEscaper(args	...interface{})	string
func	JSEscape(w	io.Writer,	b	[]byte)
func	JSEscapeString(s	string)	string
func	JSEscaper(args	...interface{})	string
func	URLQueryEscaper(args	...interface{})	string
type	CSS
type	Error
				func	(e	*Error)	Error()	string
type	ErrorCode
type	FuncMap
type	HTML
type	HTMLAttr
type	JS
type	JSStr
type	Template
				func	Must(t	*Template,	err	error)	*Template
				func	New(name	string)	*Template
				func	ParseFiles(filenames	...string)	(*Template,	error)
				func	ParseGlob(pattern	string)	(*Template,	error)
				func	(t	*Template)	AddParseTree(name	string,	tree	*parse.Tree)
(*Template,	error)
				func	(t	*Template)	Clone()	(*Template,	error)
				func	(t	*Template)	Delims(left,	right	string)	*Template
				func	(t	*Template)	Execute(wr	io.Writer,	data	interface{})	(err	error)
				func	(t	*Template)	ExecuteTemplate(wr	io.Writer,	name	string,	data
interface{})	error
				func	(t	*Template)	Funcs(funcMap	FuncMap)	*Template
				func	(t	*Template)	Lookup(name	string)	*Template
				func	(t	*Template)	Name()	string
				func	(t	*Template)	New(name	string)	*Template
				func	(t	*Template)	Parse(src	string)	(*Template,	error)
				func	(t	*Template)	ParseFiles(filenames	...string)	(*Template,	error)
				func	(t	*Template)	ParseGlob(pattern	string)	(*Template,	error)

				func	(t	*Template)	Templates()	[]*Template
type	URL

Package	files

attr.go	content.go	context.go	css.go	doc.go	error.go	escape.go	html.go	js.go	template.go	transition.go	url.go

func	HTMLEscape
func	HTMLEscape(w	io.Writer,	b	[]byte)

HTMLEscape	writes	to	w	the	escaped	HTML	equivalent	of	the	plain	text	data	b.

func	HTMLEscapeString
func	HTMLEscapeString(s	string)	string

HTMLEscapeString	returns	the	escaped	HTML	equivalent	of	the	plain	text	data
s.

func	HTMLEscaper
func	HTMLEscaper(args	...interface{})	string

HTMLEscaper	returns	the	escaped	HTML	equivalent	of	the	textual
representation	of	its	arguments.

func	JSEscape
func	JSEscape(w	io.Writer,	b	[]byte)

JSEscape	writes	to	w	the	escaped	JavaScript	equivalent	of	the	plain	text	data	b.

func	JSEscapeString
func	JSEscapeString(s	string)	string

JSEscapeString	returns	the	escaped	JavaScript	equivalent	of	the	plain	text	data	s.

func	JSEscaper
func	JSEscaper(args	...interface{})	string

JSEscaper	returns	the	escaped	JavaScript	equivalent	of	the	textual	representation
of	its	arguments.

func	URLQueryEscaper
func	URLQueryEscaper(args	...interface{})	string

URLQueryEscaper	returns	the	escaped	value	of	the	textual	representation	of	its
arguments	in	a	form	suitable	for	embedding	in	a	URL	query.

type	CSS
type	CSS	string

CSS	encapsulates	known	safe	content	that	matches	any	of:

1.	The	CSS3	stylesheet	production,	such	as	`p	{	color:	purple	}`.

2.	The	CSS3	rule	production,	such	as	`a[href=~"https:"].foo#bar`.

3.	CSS3	declaration	productions,	such	as	`color:	red;	margin:	2px`.

4.	The	CSS3	value	production,	such	as	`rgba(0,	0,	255,	127)`.

See	http://www.w3.org/TR/css3-syntax/#style

http://www.w3.org/TR/css3-syntax/#style

type	Error
type	Error	struct	{

				//	ErrorCode	describes	the	kind	of	error.

				ErrorCode	ErrorCode

				//	Name	is	the	name	of	the	template	in	which	the	error	was	encountered.

				Name	string

				//	Line	is	the	line	number	of	the	error	in	the	template	source	or	0.

				Line	int

				//	Description	is	a	human-readable	description	of	the	problem.

				Description	string

}

Error	describes	a	problem	encountered	during	template	Escaping.

func	(*Error)	Error

func	(e	*Error)	Error()	string

type	ErrorCode
type	ErrorCode	int

ErrorCode	is	a	code	for	a	kind	of	error.

const	(

				//	OK	indicates	the	lack	of	an	error.

				OK	ErrorCode	=	iota

				//	ErrAmbigContext:	"...	appears	in	an	ambiguous	URL	context"

				//	Example:

				//			<a	href="

				//						{{if	.C}}

				//								/path/

				//						{{else}}

				//								/search?q=

				//						{{end}}

				//						{{.X}}

				//			">

				//	Discussion:

				//			{{.X}}	is	in	an	ambiguous	URL	context	since,	depending	on	{{.C}},

				//		it	may	be	either	a	URL	suffix	or	a	query	parameter.

				//			Moving	{{.X}}	into	the	condition	removes	the	ambiguity:

				//			

				ErrAmbigContext

				//	ErrBadHTML:	"expected	space,	attr	name,	or	end	of	tag,	but	got	...",

				//			"...	in	unquoted	attr",	"...	in	attribute	name"

				//	Example:

				//			

				//			<href=foo>

				//			<form	na<e=...>

				//			<option	selected<

				//	Discussion:

				//			This	is	often	due	to	a	typo	in	an	HTML	element,	but	some	runes

				//			are	banned	in	tag	names,	attribute	names,	and	unquoted	attribute

				//			values	because	they	can	tickle	parser	ambiguities.

				//			Quoting	all	attributes	is	the	best	policy.

				ErrBadHTML

				//	ErrBranchEnd:	"{{if}}	branches	end	in	different	contexts"

				//	Example:

				//			{{if	.C}}<a	href="{{end}}{{.X}}

				//	Discussion:

				//			Package	html/template	statically	examines	each	path	through	an

				//			{{if}},	{{range}},	or	{{with}}	to	escape	any	following	pipelines.

				//			The	example	is	ambiguous	since	{{.X}}	might	be	an	HTML	text	node,

				//			or	a	URL	prefix	in	an	HTML	attribute.	The	context	of	{{.X}}	is

				//			used	to	figure	out	how	to	escape	it,	but	that	context	depends	on

				//			the	run-time	value	of	{{.C}}	which	is	not	statically	known.

				//

				//			The	problem	is	usually	something	like	missing	quotes	or	angle

				//			brackets,	or	can	be	avoided	by	refactoring	to	put	the	two	contexts

				//			into	different	branches	of	an	if,	range	or	with.	If	the	problem

				//			is	in	a	{{range}}	over	a	collection	that	should	never	be	empty,

				//			adding	a	dummy	{{else}}	can	help.

				ErrBranchEnd

				//	ErrEndContext:	"...	ends	in	a	non-text	context:	..."

				//	Examples:

				//			<div

				//			<div	title="no	close	quote>

				//			<script>f()

				//	Discussion:

				//			Executed	templates	should	produce	a	DocumentFragment	of	HTML.

				//			Templates	that	end	without	closing	tags	will	trigger	this	error.

				//			Templates	that	should	not	be	used	in	an	HTML	context	or	that

				//			produce	incomplete	Fragments	should	not	be	executed	directly.

				//

				//			{{define	"main"}}	<script>{{template	"helper"}}</script>	{{end}}

				//			{{define	"helper"}}	document.write('	<div	title="	')	{{end}}

				//	

				//			"helper"	does	not	produce	a	valid	document	fragment,	so	should

				//			not	be	Executed	directly.

				ErrEndContext

				//	ErrNoSuchTemplate:	"no	such	template	..."

				//	Examples:

				//			{{define	"main"}}<div	{{template	"attrs"}}>{{end}}

				//			{{define	"attrs"}}href="{{.URL}}"{{end}}

				//	Discussion:

				//			Package	html/template	looks	through	template	calls	to	compute	the

				//			context.

				//			Here	the	{{.URL}}	in	"attrs"	must	be	treated	as	a	URL	when	called

				//			from	"main",	but	you	will	get	this	error	if	"attrs"	is	not	defined

				//			when	"main"	is	parsed.

				ErrNoSuchTemplate

				//	ErrOutputContext:	"cannot	compute	output	context	for	template	..."

				//	Examples:

				//			{{define	"t"}}{{if	.T}}{{template	"t"	.T}}{{end}}{{.H}}",{{end}}

				//	Discussion:

				//			A	recursive	template	does	not	end	in	the	same	context	in	which	it

				//			starts,	and	a	reliable	output	context	cannot	be	computed.

				//			Look	for	typos	in	the	named	template.

				//			If	the	template	should	not	be	called	in	the	named	start	context,

				//			look	for	calls	to	that	template	in	unexpected	contexts.

				//			Maybe	refactor	recursive	templates	to	not	be	recursive.

				ErrOutputContext

				//	ErrPartialCharset:	"unfinished	JS	regexp	charset	in	..."

				//	Example:

				//					<script>var	pattern	=	/foo[{{.Chars}}]/</script>

				//	Discussion:

				//			Package	html/template	does	not	support	interpolation	into	regular

				//			expression	literal	character	sets.

				ErrPartialCharset

				//	ErrPartialEscape:	"unfinished	escape	sequence	in	..."

				//	Example:

				//			<script>alert("\{{.X}}")</script>

				//	Discussion:

				//			Package	html/template	does	not	support	actions	following	a

				//			backslash.

				//			This	is	usually	an	error	and	there	are	better	solutions;	for

				//			example

				//					<script>alert("{{.X}}")</script>

				//			should	work,	and	if	{{.X}}	is	a	partial	escape	sequence	such	as

				//			"xA0",	mark	the	whole	sequence	as	safe	content:	JSStr(`\xA0`)

				ErrPartialEscape

				//	ErrRangeLoopReentry:	"on	range	loop	re-entry:	..."

				//	Example:

				//			<script>var	x	=	[{{range	.}}'{{.}},{{end}}]</script>

				//	Discussion:

				//			If	an	iteration	through	a	range	would	cause	it	to	end	in	a

				//			different	context	than	an	earlier	pass,	there	is	no	single	context.

				//			In	the	example,	there	is	missing	a	quote,	so	it	is	not	clear

				//			whether	{{.}}	is	meant	to	be	inside	a	JS	string	or	in	a	JS	value

				//			context.		The	second	iteration	would	produce	something	like

				//	

				//					<script>var	x	=	['firstValue,'secondValue]</script>

				ErrRangeLoopReentry

				//	ErrSlashAmbig:	'/'	could	start	a	division	or	regexp.

				//	Example:

				//			<script>

				//					{{if	.C}}var	x	=	1{{end}}

				//					/-{{.N}}/i.test(x)	?	doThis	:	doThat();

				//			</script>

				//	Discussion:

				//			The	example	above	could	produce	`var	x	=	1/-2/i.test(s)...`

				//			in	which	the	first	'/'	is	a	mathematical	division	operator	or	it

				//			could	produce	`/-2/i.test(s)`	in	which	the	first	'/'	starts	a

				//			regexp	literal.

				//			Look	for	missing	semicolons	inside	branches,	and	maybe	add

				//			parentheses	to	make	it	clear	which	interpretation	you	intend.

				ErrSlashAmbig

)

We	define	codes	for	each	error	that	manifests	while	escaping	templates,	but
escaped	templates	may	also	fail	at	runtime.

Output:	"ZgotmplZ"	Example:

where	{{.X}}	evaluates	to	`javascript:...`

Discussion:

"ZgotmplZ"	is	a	special	value	that	indicates	that	unsafe	content	reached	a

CSS	or	URL	context	at	runtime.	The	output	of	the	example	will	be

		

If	the	data	comes	from	a	trusted	source,	use	content	types	to	exempt	it

from	filtering:	URL(`javascript:...`).

type	FuncMap
type	FuncMap	map[string]interface{}

FuncMap	is	the	type	of	the	map	defining	the	mapping	from	names	to	functions.
Each	function	must	have	either	a	single	return	value,	or	two	return	values	of
which	the	second	has	type	error.	In	that	case,	if	the	second	(error)	argument
evaluates	to	non-nil	during	execution,	execution	terminates	and	Execute	returns
that	error.	FuncMap	has	the	same	base	type	as	template.FuncMap,	copied	here	so
clients	need	not	import	"text/template".

type	HTML
type	HTML	string

HTML	encapsulates	a	known	safe	HTML	document	fragment.	It	should	not	be
used	for	HTML	from	a	third-party,	or	HTML	with	unclosed	tags	or	comments.
The	outputs	of	a	sound	HTML	sanitizer	and	a	template	escaped	by	this	package
are	fine	for	use	with	HTML.

type	HTMLAttr
type	HTMLAttr	string

HTMLAttr	encapsulates	an	HTML	attribute	from	a	trusted	source,	for	example,	`
dir="ltr"`.

type	JS
type	JS	string

JS	encapsulates	a	known	safe	EcmaScript5	Expression,	for	example,	`(x	+	y	*
z())`.	Template	authors	are	responsible	for	ensuring	that	typed	expressions	do	not
break	the	intended	precedence	and	that	there	is	no	statement/expression
ambiguity	as	when	passing	an	expression	like	"{	foo:	bar()	}\n['foo']()",	which	is
both	a	valid	Expression	and	a	valid	Program	with	a	very	different	meaning.

type	JSStr
type	JSStr	string

JSStr	encapsulates	a	sequence	of	characters	meant	to	be	embedded	between
quotes	in	a	JavaScript	expression.	The	string	must	match	a	series	of
StringCharacters:

StringCharacter	::	SourceCharacter	but	not	`\`	or	LineTerminator

																	|	EscapeSequence

Note	that	LineContinuations	are	not	allowed.	JSStr("foo\\nbar")	is	fine,	but
JSStr("foo\\\nbar")	is	not.

type	Template
type	Template	struct	{

				//	contains	filtered	or	unexported	fields

}

Template	is	a	specialized	template.Template	that	produces	a	safe	HTML
document	fragment.

func	Must

func	Must(t	*Template,	err	error)	*Template

Must	panics	if	err	is	non-nil	in	the	same	way	as	template.Must.

func	New

func	New(name	string)	*Template

New	allocates	a	new	HTML	template	with	the	given	name.

func	ParseFiles

func	ParseFiles(filenames	...string)	(*Template,	error)

ParseFiles	creates	a	new	Template	and	parses	the	template	definitions	from	the
named	files.	The	returned	template's	name	will	have	the	(base)	name	and
(parsed)	contents	of	the	first	file.	There	must	be	at	least	one	file.	If	an	error
occurs,	parsing	stops	and	the	returned	*Template	is	nil.

func	ParseGlob

func	ParseGlob(pattern	string)	(*Template,	error)

ParseGlob	creates	a	new	Template	and	parses	the	template	definitions	from	the
files	identified	by	the	pattern,	which	must	match	at	least	one	file.	The	returned
template	will	have	the	(base)	name	and	(parsed)	contents	of	the	first	file	matched
by	the	pattern.	ParseGlob	is	equivalent	to	calling	ParseFiles	with	the	list	of	files
matched	by	the	pattern.

func	(*Template)	AddParseTree

func	(t	*Template)	AddParseTree(name	string,	tree	*parse.Tree)	(*Template,	error)

AddParseTree	creates	a	new	template	with	the	name	and	parse	tree	and
associates	it	with	t.

It	returns	an	error	if	t	has	already	been	executed.

func	(*Template)	Clone

func	(t	*Template)	Clone()	(*Template,	error)

Clone	returns	a	duplicate	of	the	template,	including	all	associated	templates.	The
actual	representation	is	not	copied,	but	the	name	space	of	associated	templates	is,
so	further	calls	to	Parse	in	the	copy	will	add	templates	to	the	copy	but	not	to	the
original.	Clone	can	be	used	to	prepare	common	templates	and	use	them	with
variant	definitions	for	other	templates	by	adding	the	variants	after	the	clone	is
made.

It	returns	an	error	if	t	has	already	been	executed.

func	(*Template)	Delims

func	(t	*Template)	Delims(left,	right	string)	*Template

Delims	sets	the	action	delimiters	to	the	specified	strings,	to	be	used	in
subsequent	calls	to	Parse,	ParseFiles,	or	ParseGlob.	Nested	template	definitions
will	inherit	the	settings.	An	empty	delimiter	stands	for	the	corresponding	default:
{{	or	}}.	The	return	value	is	the	template,	so	calls	can	be	chained.

func	(*Template)	Execute

func	(t	*Template)	Execute(wr	io.Writer,	data	interface{})	(err	error)

Execute	applies	a	parsed	template	to	the	specified	data	object,	writing	the	output
to	wr.

func	(*Template)	ExecuteTemplate

func	(t	*Template)	ExecuteTemplate(wr	io.Writer,	name	string,	data	interface{})	error

ExecuteTemplate	applies	the	template	associated	with	t	that	has	the	given	name
to	the	specified	data	object	and	writes	the	output	to	wr.

func	(*Template)	Funcs

func	(t	*Template)	Funcs(funcMap	FuncMap)	*Template

Funcs	adds	the	elements	of	the	argument	map	to	the	template's	function	map.	It
panics	if	a	value	in	the	map	is	not	a	function	with	appropriate	return	type.
However,	it	is	legal	to	overwrite	elements	of	the	map.	The	return	value	is	the
template,	so	calls	can	be	chained.

func	(*Template)	Lookup

func	(t	*Template)	Lookup(name	string)	*Template

Lookup	returns	the	template	with	the	given	name	that	is	associated	with	t,	or	nil
if	there	is	no	such	template.

func	(*Template)	Name

func	(t	*Template)	Name()	string

Name	returns	the	name	of	the	template.

func	(*Template)	New

func	(t	*Template)	New(name	string)	*Template

New	allocates	a	new	HTML	template	associated	with	the	given	one	and	with	the
same	delimiters.	The	association,	which	is	transitive,	allows	one	template	to
invoke	another	with	a	{{template}}	action.

func	(*Template)	Parse

func	(t	*Template)	Parse(src	string)	(*Template,	error)

Parse	parses	a	string	into	a	template.	Nested	template	definitions	will	be

associated	with	the	top-level	template	t.	Parse	may	be	called	multiple	times	to
parse	definitions	of	templates	to	associate	with	t.	It	is	an	error	if	a	resulting
template	is	non-empty	(contains	content	other	than	template	definitions)	and
would	replace	a	non-empty	template	with	the	same	name.	(In	multiple	calls	to
Parse	with	the	same	receiver	template,	only	one	call	can	contain	text	other	than
space,	comments,	and	template	definitions.)

func	(*Template)	ParseFiles

func	(t	*Template)	ParseFiles(filenames	...string)	(*Template,	error)

ParseFiles	parses	the	named	files	and	associates	the	resulting	templates	with	t.	If
an	error	occurs,	parsing	stops	and	the	returned	template	is	nil;	otherwise	it	is	t.
There	must	be	at	least	one	file.

func	(*Template)	ParseGlob

func	(t	*Template)	ParseGlob(pattern	string)	(*Template,	error)

ParseGlob	parses	the	template	definitions	in	the	files	identified	by	the	pattern
and	associates	the	resulting	templates	with	t.	The	pattern	is	processed	by
filepath.Glob	and	must	match	at	least	one	file.	ParseGlob	is	equivalent	to	calling
t.ParseFiles	with	the	list	of	files	matched	by	the	pattern.

func	(*Template)	Templates

func	(t	*Template)	Templates()	[]*Template

Templates	returns	a	slice	of	the	templates	associated	with	t,	including	t	itself.

type	URL
type	URL	string

URL	encapsulates	a	known	safe	URL	as	defined	in	RFC	3896.	A	URL	like
`javascript:checkThatFormNotEditedBeforeLeavingPage()`	from	a	trusted
source	should	go	in	the	page,	but	by	default	dynamic	`javascript:`	URLs	are
filtered	out	since	they	are	a	frequently	exploited	injection	vector.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	image
import	"image"

Overview
Index
Examples
Subdirectories

Overview	?

Overview	?

Package	image	implements	a	basic	2-D	image	library.

The	fundamental	interface	is	called	Image.	An	Image	contains	colors,	which	are
described	in	the	image/color	package.

Values	of	the	Image	interface	are	created	either	by	calling	functions	such	as
NewRGBA	and	NewPaletted,	or	by	calling	Decode	on	an	io.Reader	containing
image	data	in	a	format	such	as	GIF,	JPEG	or	PNG.	Decoding	any	particular
image	format	requires	the	prior	registration	of	a	decoder	function.	Registration	is
typically	automatic	as	a	side	effect	of	initializing	that	format's	package	so	that,	to
decode	a	PNG	image,	it	suffices	to	have

import	_	"image/png"

in	a	program's	main	package.	The	_	means	to	import	a	package	purely	for	its
initialization	side	effects.

See	"The	Go	image	package"	for	more	details:
http://golang.org/doc/articles/image_package.html

?	Example

?	Example

Code:

//	Open	the	file.

file,	err	:=	os.Open("testdata/video-001.jpeg")

if	err	!=	nil	{

				log.Fatal(err)

}

defer	file.Close()

//	Decode	the	image.

m,	_,	err	:=	image.Decode(file)

if	err	!=	nil	{

				log.Fatal(err)

}

bounds	:=	m.Bounds()

http://golang.org/doc/articles/image_package.html

//	Calculate	a	16-bin	histogram	for	m's	red,	green,	blue	and	alpha	components.

//

//	An	image's	bounds	do	not	necessarily	start	at	(0,	0),	so	the	two	loops	start

//	at	bounds.Min.Y	and	bounds.Min.X.	Looping	over	Y	first	and	X	second	is	more

//	likely	to	result	in	better	memory	access	patterns	than	X	first	and	Y	second.

var	histogram	[16][4]int

for	y	:=	bounds.Min.Y;	y	<	bounds.Max.Y;	y++	{

				for	x	:=	bounds.Min.X;	x	<	bounds.Max.X;	x++	{

								r,	g,	b,	a	:=	m.At(x,	y).RGBA()

								//	A	color's	RGBA	method	returns	values	in	the	range	[0,	65535].

								//	Shifting	by	12	reduces	this	to	the	range	[0,	15].

								histogram[r>>12][0]++

								histogram[g>>12][1]++

								histogram[b>>12][2]++

								histogram[a>>12][3]++

				}

}

//	Print	the	results.

fmt.Printf("%-14s	%6s	%6s	%6s	%6s\n",	"bin",	"red",	"green",	"blue",	"alpha")

for	i,	x	:=	range	histogram	{

				fmt.Printf("0x%04x-0x%04x:	%6d	%6d	%6d	%6d\n",	i<<12,	(i+1)<<12-1,	x[0],	x[1],	x[2],	x[3])

}

Output:

bin															red		green			blue		alpha

0x0000-0x0fff:				471				819			7596						0

0x1000-0x1fff:				576			2892				726						0

0x2000-0x2fff:			1038			2330				943						0

0x3000-0x3fff:				883			2321			1014						0

0x4000-0x4fff:				501			1295				525						0

0x5000-0x5fff:				302				962				242						0

0x6000-0x6fff:				219				358				150						0

0x7000-0x7fff:				352				281				192						0

0x8000-0x8fff:			3688				216				246						0

0x9000-0x9fff:			2277				237				283						0

0xa000-0xafff:				971				254				357						0

0xb000-0xbfff:				317				306				429						0

0xc000-0xcfff:				203				402				401						0

0xd000-0xdfff:				256				394				241						0

0xe000-0xefff:				378				343				173						0

0xf000-0xffff:			3018			2040			1932		15450

Index

Variables
func	RegisterFormat(name,	magic	string,	decode	func(io.Reader)	(Image,
error),	decodeConfig	func(io.Reader)	(Config,	error))
type	Alpha
				func	NewAlpha(r	Rectangle)	*Alpha
				func	(p	*Alpha)	At(x,	y	int)	color.Color
				func	(p	*Alpha)	Bounds()	Rectangle
				func	(p	*Alpha)	ColorModel()	color.Model
				func	(p	*Alpha)	Opaque()	bool
				func	(p	*Alpha)	PixOffset(x,	y	int)	int
				func	(p	*Alpha)	Set(x,	y	int,	c	color.Color)
				func	(p	*Alpha)	SetAlpha(x,	y	int,	c	color.Alpha)
				func	(p	*Alpha)	SubImage(r	Rectangle)	Image
type	Alpha16
				func	NewAlpha16(r	Rectangle)	*Alpha16
				func	(p	*Alpha16)	At(x,	y	int)	color.Color
				func	(p	*Alpha16)	Bounds()	Rectangle
				func	(p	*Alpha16)	ColorModel()	color.Model
				func	(p	*Alpha16)	Opaque()	bool
				func	(p	*Alpha16)	PixOffset(x,	y	int)	int
				func	(p	*Alpha16)	Set(x,	y	int,	c	color.Color)
				func	(p	*Alpha16)	SetAlpha16(x,	y	int,	c	color.Alpha16)
				func	(p	*Alpha16)	SubImage(r	Rectangle)	Image
type	Config
				func	DecodeConfig(r	io.Reader)	(Config,	string,	error)
type	Gray
				func	NewGray(r	Rectangle)	*Gray
				func	(p	*Gray)	At(x,	y	int)	color.Color
				func	(p	*Gray)	Bounds()	Rectangle
				func	(p	*Gray)	ColorModel()	color.Model
				func	(p	*Gray)	Opaque()	bool
				func	(p	*Gray)	PixOffset(x,	y	int)	int
				func	(p	*Gray)	Set(x,	y	int,	c	color.Color)
				func	(p	*Gray)	SetGray(x,	y	int,	c	color.Gray)
				func	(p	*Gray)	SubImage(r	Rectangle)	Image

type	Gray16
				func	NewGray16(r	Rectangle)	*Gray16
				func	(p	*Gray16)	At(x,	y	int)	color.Color
				func	(p	*Gray16)	Bounds()	Rectangle
				func	(p	*Gray16)	ColorModel()	color.Model
				func	(p	*Gray16)	Opaque()	bool
				func	(p	*Gray16)	PixOffset(x,	y	int)	int
				func	(p	*Gray16)	Set(x,	y	int,	c	color.Color)
				func	(p	*Gray16)	SetGray16(x,	y	int,	c	color.Gray16)
				func	(p	*Gray16)	SubImage(r	Rectangle)	Image
type	Image
				func	Decode(r	io.Reader)	(Image,	string,	error)
type	NRGBA
				func	NewNRGBA(r	Rectangle)	*NRGBA
				func	(p	*NRGBA)	At(x,	y	int)	color.Color
				func	(p	*NRGBA)	Bounds()	Rectangle
				func	(p	*NRGBA)	ColorModel()	color.Model
				func	(p	*NRGBA)	Opaque()	bool
				func	(p	*NRGBA)	PixOffset(x,	y	int)	int
				func	(p	*NRGBA)	Set(x,	y	int,	c	color.Color)
				func	(p	*NRGBA)	SetNRGBA(x,	y	int,	c	color.NRGBA)
				func	(p	*NRGBA)	SubImage(r	Rectangle)	Image
type	NRGBA64
				func	NewNRGBA64(r	Rectangle)	*NRGBA64
				func	(p	*NRGBA64)	At(x,	y	int)	color.Color
				func	(p	*NRGBA64)	Bounds()	Rectangle
				func	(p	*NRGBA64)	ColorModel()	color.Model
				func	(p	*NRGBA64)	Opaque()	bool
				func	(p	*NRGBA64)	PixOffset(x,	y	int)	int
				func	(p	*NRGBA64)	Set(x,	y	int,	c	color.Color)
				func	(p	*NRGBA64)	SetNRGBA64(x,	y	int,	c	color.NRGBA64)
				func	(p	*NRGBA64)	SubImage(r	Rectangle)	Image
type	Paletted
				func	NewPaletted(r	Rectangle,	p	color.Palette)	*Paletted
				func	(p	*Paletted)	At(x,	y	int)	color.Color
				func	(p	*Paletted)	Bounds()	Rectangle
				func	(p	*Paletted)	ColorIndexAt(x,	y	int)	uint8
				func	(p	*Paletted)	ColorModel()	color.Model
				func	(p	*Paletted)	Opaque()	bool

				func	(p	*Paletted)	PixOffset(x,	y	int)	int
				func	(p	*Paletted)	Set(x,	y	int,	c	color.Color)
				func	(p	*Paletted)	SetColorIndex(x,	y	int,	index	uint8)
				func	(p	*Paletted)	SubImage(r	Rectangle)	Image
type	PalettedImage
type	Point
				func	Pt(X,	Y	int)	Point
				func	(p	Point)	Add(q	Point)	Point
				func	(p	Point)	Div(k	int)	Point
				func	(p	Point)	Eq(q	Point)	bool
				func	(p	Point)	In(r	Rectangle)	bool
				func	(p	Point)	Mod(r	Rectangle)	Point
				func	(p	Point)	Mul(k	int)	Point
				func	(p	Point)	String()	string
				func	(p	Point)	Sub(q	Point)	Point
type	RGBA
				func	NewRGBA(r	Rectangle)	*RGBA
				func	(p	*RGBA)	At(x,	y	int)	color.Color
				func	(p	*RGBA)	Bounds()	Rectangle
				func	(p	*RGBA)	ColorModel()	color.Model
				func	(p	*RGBA)	Opaque()	bool
				func	(p	*RGBA)	PixOffset(x,	y	int)	int
				func	(p	*RGBA)	Set(x,	y	int,	c	color.Color)
				func	(p	*RGBA)	SetRGBA(x,	y	int,	c	color.RGBA)
				func	(p	*RGBA)	SubImage(r	Rectangle)	Image
type	RGBA64
				func	NewRGBA64(r	Rectangle)	*RGBA64
				func	(p	*RGBA64)	At(x,	y	int)	color.Color
				func	(p	*RGBA64)	Bounds()	Rectangle
				func	(p	*RGBA64)	ColorModel()	color.Model
				func	(p	*RGBA64)	Opaque()	bool
				func	(p	*RGBA64)	PixOffset(x,	y	int)	int
				func	(p	*RGBA64)	Set(x,	y	int,	c	color.Color)
				func	(p	*RGBA64)	SetRGBA64(x,	y	int,	c	color.RGBA64)
				func	(p	*RGBA64)	SubImage(r	Rectangle)	Image
type	Rectangle
				func	Rect(x0,	y0,	x1,	y1	int)	Rectangle
				func	(r	Rectangle)	Add(p	Point)	Rectangle
				func	(r	Rectangle)	Canon()	Rectangle

				func	(r	Rectangle)	Dx()	int
				func	(r	Rectangle)	Dy()	int
				func	(r	Rectangle)	Empty()	bool
				func	(r	Rectangle)	Eq(s	Rectangle)	bool
				func	(r	Rectangle)	In(s	Rectangle)	bool
				func	(r	Rectangle)	Inset(n	int)	Rectangle
				func	(r	Rectangle)	Intersect(s	Rectangle)	Rectangle
				func	(r	Rectangle)	Overlaps(s	Rectangle)	bool
				func	(r	Rectangle)	Size()	Point
				func	(r	Rectangle)	String()	string
				func	(r	Rectangle)	Sub(p	Point)	Rectangle
				func	(r	Rectangle)	Union(s	Rectangle)	Rectangle
type	Uniform
				func	NewUniform(c	color.Color)	*Uniform
				func	(c	*Uniform)	At(x,	y	int)	color.Color
				func	(c	*Uniform)	Bounds()	Rectangle
				func	(c	*Uniform)	ColorModel()	color.Model
				func	(c	*Uniform)	Convert(color.Color)	color.Color
				func	(c	*Uniform)	Opaque()	bool
				func	(c	*Uniform)	RGBA()	(r,	g,	b,	a	uint32)
type	YCbCr
				func	NewYCbCr(r	Rectangle,	subsampleRatio	YCbCrSubsampleRatio)
*YCbCr
				func	(p	*YCbCr)	At(x,	y	int)	color.Color
				func	(p	*YCbCr)	Bounds()	Rectangle
				func	(p	*YCbCr)	COffset(x,	y	int)	int
				func	(p	*YCbCr)	ColorModel()	color.Model
				func	(p	*YCbCr)	Opaque()	bool
				func	(p	*YCbCr)	SubImage(r	Rectangle)	Image
				func	(p	*YCbCr)	YOffset(x,	y	int)	int
type	YCbCrSubsampleRatio
				func	(s	YCbCrSubsampleRatio)	String()	string

Examples

Package

Package	files

format.go	geom.go	image.go	names.go	ycbcr.go

Variables
var	(

				//	Black	is	an	opaque	black	uniform	image.

				Black	=	NewUniform(color.Black)

				//	White	is	an	opaque	white	uniform	image.

				White	=	NewUniform(color.White)

				//	Transparent	is	a	fully	transparent	uniform	image.

				Transparent	=	NewUniform(color.Transparent)

				//	Opaque	is	a	fully	opaque	uniform	image.

				Opaque	=	NewUniform(color.Opaque)

)

var	ErrFormat	=	errors.New("image:	unknown	format")

ErrFormat	indicates	that	decoding	encountered	an	unknown	format.

func	RegisterFormat
func	RegisterFormat(name,	magic	string,	decode	func(io.Reader)	(Image,	error),	decodeConfig	func(io.Reader)	(Config,	error))

RegisterFormat	registers	an	image	format	for	use	by	Decode.	Name	is	the	name
of	the	format,	like	"jpeg"	or	"png".	Magic	is	the	magic	prefix	that	identifies	the
format's	encoding.	The	magic	string	can	contain	"?"	wildcards	that	each	match
any	one	byte.	Decode	is	the	function	that	decodes	the	encoded	image.
DecodeConfig	is	the	function	that	decodes	just	its	configuration.

type	Alpha
type	Alpha	struct	{

				//	Pix	holds	the	image's	pixels,	as	alpha	values.	The	pixel	at

				//	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*1].

				Pix	[]uint8

				//	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

				Stride	int

				//	Rect	is	the	image's	bounds.

				Rect	Rectangle

}

Alpha	is	an	in-memory	image	whose	At	method	returns	color.Alpha	values.

func	NewAlpha

func	NewAlpha(r	Rectangle)	*Alpha

NewAlpha	returns	a	new	Alpha	with	the	given	bounds.

func	(*Alpha)	At

func	(p	*Alpha)	At(x,	y	int)	color.Color

func	(*Alpha)	Bounds

func	(p	*Alpha)	Bounds()	Rectangle

func	(*Alpha)	ColorModel

func	(p	*Alpha)	ColorModel()	color.Model

func	(*Alpha)	Opaque

func	(p	*Alpha)	Opaque()	bool

Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

func	(*Alpha)	PixOffset

func	(p	*Alpha)	PixOffset(x,	y	int)	int

PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to	the
pixel	at	(x,	y).

func	(*Alpha)	Set

func	(p	*Alpha)	Set(x,	y	int,	c	color.Color)

func	(*Alpha)	SetAlpha

func	(p	*Alpha)	SetAlpha(x,	y	int,	c	color.Alpha)

func	(*Alpha)	SubImage

func	(p	*Alpha)	SubImage(r	Rectangle)	Image

SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible
through	r.	The	returned	value	shares	pixels	with	the	original	image.

type	Alpha16
type	Alpha16	struct	{

				//	Pix	holds	the	image's	pixels,	as	alpha	values	in	big-endian	format.	The	pixel	at

				//	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*2].

				Pix	[]uint8

				//	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

				Stride	int

				//	Rect	is	the	image's	bounds.

				Rect	Rectangle

}

Alpha16	is	an	in-memory	image	whose	At	method	returns	color.Alpha64	values.

func	NewAlpha16

func	NewAlpha16(r	Rectangle)	*Alpha16

NewAlpha16	returns	a	new	Alpha16	with	the	given	bounds.

func	(*Alpha16)	At

func	(p	*Alpha16)	At(x,	y	int)	color.Color

func	(*Alpha16)	Bounds

func	(p	*Alpha16)	Bounds()	Rectangle

func	(*Alpha16)	ColorModel

func	(p	*Alpha16)	ColorModel()	color.Model

func	(*Alpha16)	Opaque

func	(p	*Alpha16)	Opaque()	bool

Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

func	(*Alpha16)	PixOffset

func	(p	*Alpha16)	PixOffset(x,	y	int)	int

PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to	the
pixel	at	(x,	y).

func	(*Alpha16)	Set

func	(p	*Alpha16)	Set(x,	y	int,	c	color.Color)

func	(*Alpha16)	SetAlpha16

func	(p	*Alpha16)	SetAlpha16(x,	y	int,	c	color.Alpha16)

func	(*Alpha16)	SubImage

func	(p	*Alpha16)	SubImage(r	Rectangle)	Image

SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible
through	r.	The	returned	value	shares	pixels	with	the	original	image.

type	Config
type	Config	struct	{

				ColorModel				color.Model

				Width,	Height	int

}

Config	holds	an	image's	color	model	and	dimensions.

func	DecodeConfig

func	DecodeConfig(r	io.Reader)	(Config,	string,	error)

DecodeConfig	decodes	the	color	model	and	dimensions	of	an	image	that	has
been	encoded	in	a	registered	format.	The	string	returned	is	the	format	name	used
during	format	registration.	Format	registration	is	typically	done	by	the	init
method	of	the	codec-specific	package.

type	Gray
type	Gray	struct	{

				//	Pix	holds	the	image's	pixels,	as	gray	values.	The	pixel	at

				//	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*1].

				Pix	[]uint8

				//	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

				Stride	int

				//	Rect	is	the	image's	bounds.

				Rect	Rectangle

}

Gray	is	an	in-memory	image	whose	At	method	returns	color.Gray	values.

func	NewGray

func	NewGray(r	Rectangle)	*Gray

NewGray	returns	a	new	Gray	with	the	given	bounds.

func	(*Gray)	At

func	(p	*Gray)	At(x,	y	int)	color.Color

func	(*Gray)	Bounds

func	(p	*Gray)	Bounds()	Rectangle

func	(*Gray)	ColorModel

func	(p	*Gray)	ColorModel()	color.Model

func	(*Gray)	Opaque

func	(p	*Gray)	Opaque()	bool

Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

func	(*Gray)	PixOffset

func	(p	*Gray)	PixOffset(x,	y	int)	int

PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to	the
pixel	at	(x,	y).

func	(*Gray)	Set

func	(p	*Gray)	Set(x,	y	int,	c	color.Color)

func	(*Gray)	SetGray

func	(p	*Gray)	SetGray(x,	y	int,	c	color.Gray)

func	(*Gray)	SubImage

func	(p	*Gray)	SubImage(r	Rectangle)	Image

SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible
through	r.	The	returned	value	shares	pixels	with	the	original	image.

type	Gray16
type	Gray16	struct	{

				//	Pix	holds	the	image's	pixels,	as	gray	values	in	big-endian	format.	The	pixel	at

				//	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*2].

				Pix	[]uint8

				//	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

				Stride	int

				//	Rect	is	the	image's	bounds.

				Rect	Rectangle

}

Gray16	is	an	in-memory	image	whose	At	method	returns	color.Gray16	values.

func	NewGray16

func	NewGray16(r	Rectangle)	*Gray16

NewGray16	returns	a	new	Gray16	with	the	given	bounds.

func	(*Gray16)	At

func	(p	*Gray16)	At(x,	y	int)	color.Color

func	(*Gray16)	Bounds

func	(p	*Gray16)	Bounds()	Rectangle

func	(*Gray16)	ColorModel

func	(p	*Gray16)	ColorModel()	color.Model

func	(*Gray16)	Opaque

func	(p	*Gray16)	Opaque()	bool

Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

func	(*Gray16)	PixOffset

func	(p	*Gray16)	PixOffset(x,	y	int)	int

PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to	the
pixel	at	(x,	y).

func	(*Gray16)	Set

func	(p	*Gray16)	Set(x,	y	int,	c	color.Color)

func	(*Gray16)	SetGray16

func	(p	*Gray16)	SetGray16(x,	y	int,	c	color.Gray16)

func	(*Gray16)	SubImage

func	(p	*Gray16)	SubImage(r	Rectangle)	Image

SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible
through	r.	The	returned	value	shares	pixels	with	the	original	image.

type	Image
type	Image	interface	{

				//	ColorModel	returns	the	Image's	color	model.

				ColorModel()	color.Model

				//	Bounds	returns	the	domain	for	which	At	can	return	non-zero	color.

				//	The	bounds	do	not	necessarily	contain	the	point	(0,	0).

				Bounds()	Rectangle

				//	At	returns	the	color	of	the	pixel	at	(x,	y).

				//	At(Bounds().Min.X,	Bounds().Min.Y)	returns	the	upper-left	pixel	of	the	grid.

				//	At(Bounds().Max.X-1,	Bounds().Max.Y-1)	returns	the	lower-right	one.

				At(x,	y	int)	color.Color

}

Image	is	a	finite	rectangular	grid	of	color.Color	values	taken	from	a	color	model.

func	Decode

func	Decode(r	io.Reader)	(Image,	string,	error)

Decode	decodes	an	image	that	has	been	encoded	in	a	registered	format.	The
string	returned	is	the	format	name	used	during	format	registration.	Format
registration	is	typically	done	by	the	init	method	of	the	codec-	specific	package.

type	NRGBA
type	NRGBA	struct	{

				//	Pix	holds	the	image's	pixels,	in	R,	G,	B,	A	order.	The	pixel	at

				//	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*4].

				Pix	[]uint8

				//	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

				Stride	int

				//	Rect	is	the	image's	bounds.

				Rect	Rectangle

}

NRGBA	is	an	in-memory	image	whose	At	method	returns	color.NRGBA	values.

func	NewNRGBA

func	NewNRGBA(r	Rectangle)	*NRGBA

NewNRGBA	returns	a	new	NRGBA	with	the	given	bounds.

func	(*NRGBA)	At

func	(p	*NRGBA)	At(x,	y	int)	color.Color

func	(*NRGBA)	Bounds

func	(p	*NRGBA)	Bounds()	Rectangle

func	(*NRGBA)	ColorModel

func	(p	*NRGBA)	ColorModel()	color.Model

func	(*NRGBA)	Opaque

func	(p	*NRGBA)	Opaque()	bool

Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

func	(*NRGBA)	PixOffset

func	(p	*NRGBA)	PixOffset(x,	y	int)	int

PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to	the
pixel	at	(x,	y).

func	(*NRGBA)	Set

func	(p	*NRGBA)	Set(x,	y	int,	c	color.Color)

func	(*NRGBA)	SetNRGBA

func	(p	*NRGBA)	SetNRGBA(x,	y	int,	c	color.NRGBA)

func	(*NRGBA)	SubImage

func	(p	*NRGBA)	SubImage(r	Rectangle)	Image

SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible
through	r.	The	returned	value	shares	pixels	with	the	original	image.

type	NRGBA64
type	NRGBA64	struct	{

				//	Pix	holds	the	image's	pixels,	in	R,	G,	B,	A	order	and	big-endian	format.	The	pixel	at

				//	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*8].

				Pix	[]uint8

				//	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

				Stride	int

				//	Rect	is	the	image's	bounds.

				Rect	Rectangle

}

NRGBA64	is	an	in-memory	image	whose	At	method	returns	color.NRGBA64
values.

func	NewNRGBA64

func	NewNRGBA64(r	Rectangle)	*NRGBA64

NewNRGBA64	returns	a	new	NRGBA64	with	the	given	bounds.

func	(*NRGBA64)	At

func	(p	*NRGBA64)	At(x,	y	int)	color.Color

func	(*NRGBA64)	Bounds

func	(p	*NRGBA64)	Bounds()	Rectangle

func	(*NRGBA64)	ColorModel

func	(p	*NRGBA64)	ColorModel()	color.Model

func	(*NRGBA64)	Opaque

func	(p	*NRGBA64)	Opaque()	bool

Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

func	(*NRGBA64)	PixOffset

func	(p	*NRGBA64)	PixOffset(x,	y	int)	int

PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to	the
pixel	at	(x,	y).

func	(*NRGBA64)	Set

func	(p	*NRGBA64)	Set(x,	y	int,	c	color.Color)

func	(*NRGBA64)	SetNRGBA64

func	(p	*NRGBA64)	SetNRGBA64(x,	y	int,	c	color.NRGBA64)

func	(*NRGBA64)	SubImage

func	(p	*NRGBA64)	SubImage(r	Rectangle)	Image

SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible
through	r.	The	returned	value	shares	pixels	with	the	original	image.

type	Paletted
type	Paletted	struct	{

				//	Pix	holds	the	image's	pixels,	as	palette	indices.	The	pixel	at

				//	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*1].

				Pix	[]uint8

				//	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

				Stride	int

				//	Rect	is	the	image's	bounds.

				Rect	Rectangle

				//	Palette	is	the	image's	palette.

				Palette	color.Palette

}

Paletted	is	an	in-memory	image	of	uint8	indices	into	a	given	palette.

func	NewPaletted

func	NewPaletted(r	Rectangle,	p	color.Palette)	*Paletted

NewPaletted	returns	a	new	Paletted	with	the	given	width,	height	and	palette.

func	(*Paletted)	At

func	(p	*Paletted)	At(x,	y	int)	color.Color

func	(*Paletted)	Bounds

func	(p	*Paletted)	Bounds()	Rectangle

func	(*Paletted)	ColorIndexAt

func	(p	*Paletted)	ColorIndexAt(x,	y	int)	uint8

func	(*Paletted)	ColorModel

func	(p	*Paletted)	ColorModel()	color.Model

func	(*Paletted)	Opaque

func	(p	*Paletted)	Opaque()	bool

Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

func	(*Paletted)	PixOffset

func	(p	*Paletted)	PixOffset(x,	y	int)	int

PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to	the
pixel	at	(x,	y).

func	(*Paletted)	Set

func	(p	*Paletted)	Set(x,	y	int,	c	color.Color)

func	(*Paletted)	SetColorIndex

func	(p	*Paletted)	SetColorIndex(x,	y	int,	index	uint8)

func	(*Paletted)	SubImage

func	(p	*Paletted)	SubImage(r	Rectangle)	Image

SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible
through	r.	The	returned	value	shares	pixels	with	the	original	image.

type	PalettedImage
type	PalettedImage	interface	{

				//	ColorIndexAt	returns	the	palette	index	of	the	pixel	at	(x,	y).

				ColorIndexAt(x,	y	int)	uint8

				Image

}

PalettedImage	is	an	image	whose	colors	may	come	from	a	limited	palette.	If	m	is
a	PalettedImage	and	m.ColorModel()	returns	a	PalettedColorModel	p,	then
m.At(x,	y)	should	be	equivalent	to	p[m.ColorIndexAt(x,	y)].	If	m's	color	model
is	not	a	PalettedColorModel,	then	ColorIndexAt's	behavior	is	undefined.

type	Point
type	Point	struct	{

				X,	Y	int

}

A	Point	is	an	X,	Y	coordinate	pair.	The	axes	increase	right	and	down.

var	ZP	Point

ZP	is	the	zero	Point.

func	Pt

func	Pt(X,	Y	int)	Point

Pt	is	shorthand	for	Point{X,	Y}.

func	(Point)	Add

func	(p	Point)	Add(q	Point)	Point

Add	returns	the	vector	p+q.

func	(Point)	Div

func	(p	Point)	Div(k	int)	Point

Div	returns	the	vector	p/k.

func	(Point)	Eq

func	(p	Point)	Eq(q	Point)	bool

Eq	returns	whether	p	and	q	are	equal.

func	(Point)	In

func	(p	Point)	In(r	Rectangle)	bool

In	returns	whether	p	is	in	r.

func	(Point)	Mod

func	(p	Point)	Mod(r	Rectangle)	Point

Mod	returns	the	point	q	in	r	such	that	p.X-q.X	is	a	multiple	of	r's	width	and	p.Y-
q.Y	is	a	multiple	of	r's	height.

func	(Point)	Mul

func	(p	Point)	Mul(k	int)	Point

Mul	returns	the	vector	p*k.

func	(Point)	String

func	(p	Point)	String()	string

String	returns	a	string	representation	of	p	like	"(3,4)".

func	(Point)	Sub

func	(p	Point)	Sub(q	Point)	Point

Sub	returns	the	vector	p-q.

type	RGBA
type	RGBA	struct	{

				//	Pix	holds	the	image's	pixels,	in	R,	G,	B,	A	order.	The	pixel	at

				//	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*4].

				Pix	[]uint8

				//	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

				Stride	int

				//	Rect	is	the	image's	bounds.

				Rect	Rectangle

}

RGBA	is	an	in-memory	image	whose	At	method	returns	color.RGBA	values.

func	NewRGBA

func	NewRGBA(r	Rectangle)	*RGBA

NewRGBA	returns	a	new	RGBA	with	the	given	bounds.

func	(*RGBA)	At

func	(p	*RGBA)	At(x,	y	int)	color.Color

func	(*RGBA)	Bounds

func	(p	*RGBA)	Bounds()	Rectangle

func	(*RGBA)	ColorModel

func	(p	*RGBA)	ColorModel()	color.Model

func	(*RGBA)	Opaque

func	(p	*RGBA)	Opaque()	bool

Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

func	(*RGBA)	PixOffset

func	(p	*RGBA)	PixOffset(x,	y	int)	int

PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to	the
pixel	at	(x,	y).

func	(*RGBA)	Set

func	(p	*RGBA)	Set(x,	y	int,	c	color.Color)

func	(*RGBA)	SetRGBA

func	(p	*RGBA)	SetRGBA(x,	y	int,	c	color.RGBA)

func	(*RGBA)	SubImage

func	(p	*RGBA)	SubImage(r	Rectangle)	Image

SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible
through	r.	The	returned	value	shares	pixels	with	the	original	image.

type	RGBA64
type	RGBA64	struct	{

				//	Pix	holds	the	image's	pixels,	in	R,	G,	B,	A	order	and	big-endian	format.	The	pixel	at

				//	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*8].

				Pix	[]uint8

				//	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

				Stride	int

				//	Rect	is	the	image's	bounds.

				Rect	Rectangle

}

RGBA64	is	an	in-memory	image	whose	At	method	returns	color.RGBA64
values.

func	NewRGBA64

func	NewRGBA64(r	Rectangle)	*RGBA64

NewRGBA64	returns	a	new	RGBA64	with	the	given	bounds.

func	(*RGBA64)	At

func	(p	*RGBA64)	At(x,	y	int)	color.Color

func	(*RGBA64)	Bounds

func	(p	*RGBA64)	Bounds()	Rectangle

func	(*RGBA64)	ColorModel

func	(p	*RGBA64)	ColorModel()	color.Model

func	(*RGBA64)	Opaque

func	(p	*RGBA64)	Opaque()	bool

Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

func	(*RGBA64)	PixOffset

func	(p	*RGBA64)	PixOffset(x,	y	int)	int

PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to	the
pixel	at	(x,	y).

func	(*RGBA64)	Set

func	(p	*RGBA64)	Set(x,	y	int,	c	color.Color)

func	(*RGBA64)	SetRGBA64

func	(p	*RGBA64)	SetRGBA64(x,	y	int,	c	color.RGBA64)

func	(*RGBA64)	SubImage

func	(p	*RGBA64)	SubImage(r	Rectangle)	Image

SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible
through	r.	The	returned	value	shares	pixels	with	the	original	image.

type	Rectangle
type	Rectangle	struct	{

				Min,	Max	Point

}

A	Rectangle	contains	the	points	with	Min.X	<=	X	<	Max.X,	Min.Y	<=	Y	<
Max.Y.	It	is	well-formed	if	Min.X	<=	Max.X	and	likewise	for	Y.	Points	are
always	well-formed.	A	rectangle's	methods	always	return	well-formed	outputs
for	well-formed	inputs.

var	ZR	Rectangle

ZR	is	the	zero	Rectangle.

func	Rect

func	Rect(x0,	y0,	x1,	y1	int)	Rectangle

Rect	is	shorthand	for	Rectangle{Pt(x0,	y0),	Pt(x1,	y1)}.

func	(Rectangle)	Add

func	(r	Rectangle)	Add(p	Point)	Rectangle

Add	returns	the	rectangle	r	translated	by	p.

func	(Rectangle)	Canon

func	(r	Rectangle)	Canon()	Rectangle

Canon	returns	the	canonical	version	of	r.	The	returned	rectangle	has	minimum
and	maximum	coordinates	swapped	if	necessary	so	that	it	is	well-formed.

func	(Rectangle)	Dx

func	(r	Rectangle)	Dx()	int

Dx	returns	r's	width.

func	(Rectangle)	Dy

func	(r	Rectangle)	Dy()	int

Dy	returns	r's	height.

func	(Rectangle)	Empty

func	(r	Rectangle)	Empty()	bool

Empty	returns	whether	the	rectangle	contains	no	points.

func	(Rectangle)	Eq

func	(r	Rectangle)	Eq(s	Rectangle)	bool

Eq	returns	whether	r	and	s	are	equal.

func	(Rectangle)	In

func	(r	Rectangle)	In(s	Rectangle)	bool

In	returns	whether	every	point	in	r	is	in	s.

func	(Rectangle)	Inset

func	(r	Rectangle)	Inset(n	int)	Rectangle

Inset	returns	the	rectangle	r	inset	by	n,	which	may	be	negative.	If	either	of	r's
dimensions	is	less	than	2*n	then	an	empty	rectangle	near	the	center	of	r	will	be
returned.

func	(Rectangle)	Intersect

func	(r	Rectangle)	Intersect(s	Rectangle)	Rectangle

Intersect	returns	the	largest	rectangle	contained	by	both	r	and	s.	If	the	two
rectangles	do	not	overlap	then	the	zero	rectangle	will	be	returned.

func	(Rectangle)	Overlaps

func	(r	Rectangle)	Overlaps(s	Rectangle)	bool

Overlaps	returns	whether	r	and	s	have	a	non-empty	intersection.

func	(Rectangle)	Size

func	(r	Rectangle)	Size()	Point

Size	returns	r's	width	and	height.

func	(Rectangle)	String

func	(r	Rectangle)	String()	string

String	returns	a	string	representation	of	r	like	"(3,4)-(6,5)".

func	(Rectangle)	Sub

func	(r	Rectangle)	Sub(p	Point)	Rectangle

Sub	returns	the	rectangle	r	translated	by	-p.

func	(Rectangle)	Union

func	(r	Rectangle)	Union(s	Rectangle)	Rectangle

Union	returns	the	smallest	rectangle	that	contains	both	r	and	s.

type	Uniform
type	Uniform	struct	{

				C	color.Color

}

Uniform	is	an	infinite-sized	Image	of	uniform	color.	It	implements	the
color.Color,	color.ColorModel,	and	Image	interfaces.

func	NewUniform

func	NewUniform(c	color.Color)	*Uniform

func	(*Uniform)	At

func	(c	*Uniform)	At(x,	y	int)	color.Color

func	(*Uniform)	Bounds

func	(c	*Uniform)	Bounds()	Rectangle

func	(*Uniform)	ColorModel

func	(c	*Uniform)	ColorModel()	color.Model

func	(*Uniform)	Convert

func	(c	*Uniform)	Convert(color.Color)	color.Color

func	(*Uniform)	Opaque

func	(c	*Uniform)	Opaque()	bool

Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

func	(*Uniform)	RGBA

func	(c	*Uniform)	RGBA()	(r,	g,	b,	a	uint32)

type	YCbCr
type	YCbCr	struct	{

				Y,	Cb,	Cr						[]uint8

				YStride								int

				CStride								int

				SubsampleRatio	YCbCrSubsampleRatio

				Rect											Rectangle

}

YCbCr	is	an	in-memory	image	of	Y'CbCr	colors.	There	is	one	Y	sample	per
pixel,	but	each	Cb	and	Cr	sample	can	span	one	or	more	pixels.	YStride	is	the	Y
slice	index	delta	between	vertically	adjacent	pixels.	CStride	is	the	Cb	and	Cr
slice	index	delta	between	vertically	adjacent	pixels	that	map	to	separate	chroma
samples.	It	is	not	an	absolute	requirement,	but	YStride	and	len(Y)	are	typically
multiples	of	8,	and:

For	4:4:4,	CStride	==	YStride/1	&&	len(Cb)	==	len(Cr)	==	len(Y)/1.

For	4:2:2,	CStride	==	YStride/2	&&	len(Cb)	==	len(Cr)	==	len(Y)/2.

For	4:2:0,	CStride	==	YStride/2	&&	len(Cb)	==	len(Cr)	==	len(Y)/4.

func	NewYCbCr

func	NewYCbCr(r	Rectangle,	subsampleRatio	YCbCrSubsampleRatio)	*YCbCr

NewYCbCr	returns	a	new	YCbCr	with	the	given	bounds	and	subsample	ratio.

func	(*YCbCr)	At

func	(p	*YCbCr)	At(x,	y	int)	color.Color

func	(*YCbCr)	Bounds

func	(p	*YCbCr)	Bounds()	Rectangle

func	(*YCbCr)	COffset

func	(p	*YCbCr)	COffset(x,	y	int)	int

COffset	returns	the	index	of	the	first	element	of	Cb	or	Cr	that	corresponds	to	the

pixel	at	(x,	y).

func	(*YCbCr)	ColorModel

func	(p	*YCbCr)	ColorModel()	color.Model

func	(*YCbCr)	Opaque

func	(p	*YCbCr)	Opaque()	bool

func	(*YCbCr)	SubImage

func	(p	*YCbCr)	SubImage(r	Rectangle)	Image

SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible
through	r.	The	returned	value	shares	pixels	with	the	original	image.

func	(*YCbCr)	YOffset

func	(p	*YCbCr)	YOffset(x,	y	int)	int

YOffset	returns	the	index	of	the	first	element	of	Y	that	corresponds	to	the	pixel
at	(x,	y).

type	YCbCrSubsampleRatio
type	YCbCrSubsampleRatio	int

YCbCrSubsampleRatio	is	the	chroma	subsample	ratio	used	in	a	YCbCr	image.

const	(

				YCbCrSubsampleRatio444	YCbCrSubsampleRatio	=	iota

				YCbCrSubsampleRatio422

				YCbCrSubsampleRatio420

)

func	(YCbCrSubsampleRatio)	String

func	(s	YCbCrSubsampleRatio)	String()	string

Subdirectories

Name 				 Synopsis
color 				 Package	color	implements	a	basic	color	library.
draw 				 Package	draw	provides	image	composition	functions.
gif 				 Package	gif	implements	a	GIF	image	decoder.
jpeg 				 Package	jpeg	implements	a	JPEG	image	decoder	and	encoder.
png 				 Package	png	implements	a	PNG	image	decoder	and	encoder.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	color
import	"image/color"

Overview
Index

Overview	?

Overview	?

Package	color	implements	a	basic	color	library.

Index

Variables
func	RGBToYCbCr(r,	g,	b	uint8)	(uint8,	uint8,	uint8)
func	YCbCrToRGB(y,	cb,	cr	uint8)	(uint8,	uint8,	uint8)
type	Alpha
				func	(c	Alpha)	RGBA()	(r,	g,	b,	a	uint32)
type	Alpha16
				func	(c	Alpha16)	RGBA()	(r,	g,	b,	a	uint32)
type	Color
type	Gray
				func	(c	Gray)	RGBA()	(r,	g,	b,	a	uint32)
type	Gray16
				func	(c	Gray16)	RGBA()	(r,	g,	b,	a	uint32)
type	Model
				func	ModelFunc(f	func(Color)	Color)	Model
type	NRGBA
				func	(c	NRGBA)	RGBA()	(r,	g,	b,	a	uint32)
type	NRGBA64
				func	(c	NRGBA64)	RGBA()	(r,	g,	b,	a	uint32)
type	Palette
				func	(p	Palette)	Convert(c	Color)	Color
				func	(p	Palette)	Index(c	Color)	int
type	RGBA
				func	(c	RGBA)	RGBA()	(r,	g,	b,	a	uint32)
type	RGBA64
				func	(c	RGBA64)	RGBA()	(r,	g,	b,	a	uint32)
type	YCbCr
				func	(c	YCbCr)	RGBA()	(uint32,	uint32,	uint32,	uint32)

Package	files

color.go	ycbcr.go

Variables
var	(

				Black							=	Gray16{0}

				White							=	Gray16{0xffff}

				Transparent	=	Alpha16{0}

				Opaque						=	Alpha16{0xffff}

)

Standard	colors.

func	RGBToYCbCr
func	RGBToYCbCr(r,	g,	b	uint8)	(uint8,	uint8,	uint8)

RGBToYCbCr	converts	an	RGB	triple	to	a	Y'CbCr	triple.

func	YCbCrToRGB
func	YCbCrToRGB(y,	cb,	cr	uint8)	(uint8,	uint8,	uint8)

YCbCrToRGB	converts	a	Y'CbCr	triple	to	an	RGB	triple.

type	Alpha
type	Alpha	struct	{

				A	uint8

}

Alpha	represents	an	8-bit	alpha	color.

func	(Alpha)	RGBA

func	(c	Alpha)	RGBA()	(r,	g,	b,	a	uint32)

type	Alpha16
type	Alpha16	struct	{

				A	uint16

}

Alpha16	represents	a	16-bit	alpha	color.

func	(Alpha16)	RGBA

func	(c	Alpha16)	RGBA()	(r,	g,	b,	a	uint32)

type	Color
type	Color	interface	{

				//	RGBA	returns	the	alpha-premultiplied	red,	green,	blue	and	alpha	values

				//	for	the	color.	Each	value	ranges	within	[0,	0xFFFF],	but	is	represented

				//	by	a	uint32	so	that	multiplying	by	a	blend	factor	up	to	0xFFFF	will	not

				//	overflow.

				RGBA()	(r,	g,	b,	a	uint32)

}

Color	can	convert	itself	to	alpha-premultiplied	16-bits	per	channel	RGBA.	The
conversion	may	be	lossy.

type	Gray
type	Gray	struct	{

				Y	uint8

}

Gray	represents	an	8-bit	grayscale	color.

func	(Gray)	RGBA

func	(c	Gray)	RGBA()	(r,	g,	b,	a	uint32)

type	Gray16
type	Gray16	struct	{

				Y	uint16

}

Gray16	represents	a	16-bit	grayscale	color.

func	(Gray16)	RGBA

func	(c	Gray16)	RGBA()	(r,	g,	b,	a	uint32)

type	Model
type	Model	interface	{

				Convert(c	Color)	Color

}

Model	can	convert	any	Color	to	one	from	its	own	color	model.	The	conversion
may	be	lossy.

var	(

				RGBAModel				Model	=	ModelFunc(rgbaModel)

				RGBA64Model		Model	=	ModelFunc(rgba64Model)

				NRGBAModel			Model	=	ModelFunc(nrgbaModel)

				NRGBA64Model	Model	=	ModelFunc(nrgba64Model)

				AlphaModel			Model	=	ModelFunc(alphaModel)

				Alpha16Model	Model	=	ModelFunc(alpha16Model)

				GrayModel				Model	=	ModelFunc(grayModel)

				Gray16Model		Model	=	ModelFunc(gray16Model)

)

Models	for	the	standard	color	types.

var	YCbCrModel	Model	=	ModelFunc(yCbCrModel)

YCbCrModel	is	the	Model	for	Y'CbCr	colors.

func	ModelFunc

func	ModelFunc(f	func(Color)	Color)	Model

ModelFunc	returns	a	Model	that	invokes	f	to	implement	the	conversion.

type	NRGBA
type	NRGBA	struct	{

				R,	G,	B,	A	uint8

}

NRGBA	represents	a	non-alpha-premultiplied	32-bit	color.

func	(NRGBA)	RGBA

func	(c	NRGBA)	RGBA()	(r,	g,	b,	a	uint32)

type	NRGBA64
type	NRGBA64	struct	{

				R,	G,	B,	A	uint16

}

NRGBA64	represents	a	non-alpha-premultiplied	64-bit	color,	having	16	bits	for
each	of	red,	green,	blue	and	alpha.

func	(NRGBA64)	RGBA

func	(c	NRGBA64)	RGBA()	(r,	g,	b,	a	uint32)

type	Palette
type	Palette	[]Color

Palette	is	a	palette	of	colors.

func	(Palette)	Convert

func	(p	Palette)	Convert(c	Color)	Color

Convert	returns	the	palette	color	closest	to	c	in	Euclidean	R,G,B	space.

func	(Palette)	Index

func	(p	Palette)	Index(c	Color)	int

Index	returns	the	index	of	the	palette	color	closest	to	c	in	Euclidean	R,G,B
space.

type	RGBA
type	RGBA	struct	{

				R,	G,	B,	A	uint8

}

RGBA	represents	a	traditional	32-bit	alpha-premultiplied	color,	having	8	bits	for
each	of	red,	green,	blue	and	alpha.

func	(RGBA)	RGBA

func	(c	RGBA)	RGBA()	(r,	g,	b,	a	uint32)

type	RGBA64
type	RGBA64	struct	{

				R,	G,	B,	A	uint16

}

RGBA64	represents	a	64-bit	alpha-premultiplied	color,	having	16	bits	for	each
of	red,	green,	blue	and	alpha.

func	(RGBA64)	RGBA

func	(c	RGBA64)	RGBA()	(r,	g,	b,	a	uint32)

type	YCbCr
type	YCbCr	struct	{

				Y,	Cb,	Cr	uint8

}

YCbCr	represents	a	fully	opaque	24-bit	Y'CbCr	color,	having	8	bits	each	for	one
luma	and	two	chroma	components.

JPEG,	VP8,	the	MPEG	family	and	other	codecs	use	this	color	model.	Such
codecs	often	use	the	terms	YUV	and	Y'CbCr	interchangeably,	but	strictly
speaking,	the	term	YUV	applies	only	to	analog	video	signals,	and	Y'	(luma)	is	Y
(luminance)	after	applying	gamma	correction.

Conversion	between	RGB	and	Y'CbCr	is	lossy	and	there	are	multiple,	slightly
different	formulae	for	converting	between	the	two.	This	package	follows	the
JFIF	specification	at	http://www.w3.org/Graphics/JPEG/jfif3.pdf.

func	(YCbCr)	RGBA

func	(c	YCbCr)	RGBA()	(uint32,	uint32,	uint32,	uint32)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://www.w3.org/Graphics/JPEG/jfif3.pdf
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	draw
import	"image/draw"

Overview
Index

Overview	?

Overview	?

Package	draw	provides	image	composition	functions.

See	"The	Go	image/draw	package"	for	an	introduction	to	this	package:
http://golang.org/doc/articles/image_draw.html

http://golang.org/doc/articles/image_draw.html

Index

func	Draw(dst	Image,	r	image.Rectangle,	src	image.Image,	sp	image.Point,
op	Op)
func	DrawMask(dst	Image,	r	image.Rectangle,	src	image.Image,	sp
image.Point,	mask	image.Image,	mp	image.Point,	op	Op)
type	Image
type	Op

Package	files

draw.go

func	Draw
func	Draw(dst	Image,	r	image.Rectangle,	src	image.Image,	sp	image.Point,	op	Op)

Draw	calls	DrawMask	with	a	nil	mask.

func	DrawMask
func	DrawMask(dst	Image,	r	image.Rectangle,	src	image.Image,	sp	image.Point,	mask	image.Image,	mp	image.Point,	op	Op)

DrawMask	aligns	r.Min	in	dst	with	sp	in	src	and	mp	in	mask	and	then	replaces
the	rectangle	r	in	dst	with	the	result	of	a	Porter-Duff	composition.	A	nil	mask	is
treated	as	opaque.

type	Image
type	Image	interface	{

				image.Image

				Set(x,	y	int,	c	color.Color)

}

A	draw.Image	is	an	image.Image	with	a	Set	method	to	change	a	single	pixel.

type	Op
type	Op	int

Op	is	a	Porter-Duff	compositing	operator.

const	(

				//	Over	specifies	``(src	in	mask)	over	dst''.

				Over	Op	=	iota

				//	Src	specifies	``src	in	mask''.

				Src

)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	gif
import	"image/gif"

Overview
Index

Overview	?

Overview	?

Package	gif	implements	a	GIF	image	decoder.

The	GIF	specification	is	at	http://www.w3.org/Graphics/GIF/spec-gif89a.txt.

http://www.w3.org/Graphics/GIF/spec-gif89a.txt

Index

func	Decode(r	io.Reader)	(image.Image,	error)
func	DecodeConfig(r	io.Reader)	(image.Config,	error)
type	GIF
				func	DecodeAll(r	io.Reader)	(*GIF,	error)

Package	files

reader.go

func	Decode
func	Decode(r	io.Reader)	(image.Image,	error)

Decode	reads	a	GIF	image	from	r	and	returns	the	first	embedded	image	as	an
image.Image.

func	DecodeConfig
func	DecodeConfig(r	io.Reader)	(image.Config,	error)

DecodeConfig	returns	the	global	color	model	and	dimensions	of	a	GIF	image
without	decoding	the	entire	image.

type	GIF
type	GIF	struct	{

				Image					[]*image.Paletted	//	The	successive	images.

				Delay					[]int													//	The	successive	delay	times,	one	per	frame,	in	100ths	of	a	second.

				LoopCount	int															//	The	loop	count.

}

GIF	represents	the	possibly	multiple	images	stored	in	a	GIF	file.

func	DecodeAll

func	DecodeAll(r	io.Reader)	(*GIF,	error)

DecodeAll	reads	a	GIF	image	from	r	and	returns	the	sequential	frames	and
timing	information.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	jpeg
import	"image/jpeg"

Overview
Index

Overview	?

Overview	?

Package	jpeg	implements	a	JPEG	image	decoder	and	encoder.

JPEG	is	defined	in	ITU-T	T.81:	http://www.w3.org/Graphics/JPEG/itu-t81.pdf.

http://www.w3.org/Graphics/JPEG/itu-t81.pdf

Index

Constants
func	Decode(r	io.Reader)	(image.Image,	error)
func	DecodeConfig(r	io.Reader)	(image.Config,	error)
func	Encode(w	io.Writer,	m	image.Image,	o	*Options)	error
type	FormatError
				func	(e	FormatError)	Error()	string
type	Options
type	Reader
type	UnsupportedError
				func	(e	UnsupportedError)	Error()	string

Package	files

fdct.go	huffman.go	idct.go	reader.go	writer.go

Constants
const	DefaultQuality	=	75

DefaultQuality	is	the	default	quality	encoding	parameter.

func	Decode
func	Decode(r	io.Reader)	(image.Image,	error)

Decode	reads	a	JPEG	image	from	r	and	returns	it	as	an	image.Image.

func	DecodeConfig
func	DecodeConfig(r	io.Reader)	(image.Config,	error)

DecodeConfig	returns	the	color	model	and	dimensions	of	a	JPEG	image	without
decoding	the	entire	image.

func	Encode
func	Encode(w	io.Writer,	m	image.Image,	o	*Options)	error

Encode	writes	the	Image	m	to	w	in	JPEG	4:2:0	baseline	format	with	the	given
options.	Default	parameters	are	used	if	a	nil	*Options	is	passed.

type	FormatError
type	FormatError	string

A	FormatError	reports	that	the	input	is	not	a	valid	JPEG.

func	(FormatError)	Error

func	(e	FormatError)	Error()	string

type	Options
type	Options	struct	{

				Quality	int

}

Options	are	the	encoding	parameters.	Quality	ranges	from	1	to	100	inclusive,
higher	is	better.

type	Reader
type	Reader	interface	{

				io.Reader

				ReadByte()	(c	byte,	err	error)

}

If	the	passed	in	io.Reader	does	not	also	have	ReadByte,	then	Decode	will
introduce	its	own	buffering.

type	UnsupportedError
type	UnsupportedError	string

An	UnsupportedError	reports	that	the	input	uses	a	valid	but	unimplemented
JPEG	feature.

func	(UnsupportedError)	Error

func	(e	UnsupportedError)	Error()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	png
import	"image/png"

Overview
Index

Overview	?

Overview	?

Package	png	implements	a	PNG	image	decoder	and	encoder.

The	PNG	specification	is	at	http://www.w3.org/TR/PNG/.

http://www.w3.org/TR/PNG/

Index

func	Decode(r	io.Reader)	(image.Image,	error)
func	DecodeConfig(r	io.Reader)	(image.Config,	error)
func	Encode(w	io.Writer,	m	image.Image)	error
type	FormatError
				func	(e	FormatError)	Error()	string
type	UnsupportedError
				func	(e	UnsupportedError)	Error()	string

Package	files

reader.go	writer.go

func	Decode
func	Decode(r	io.Reader)	(image.Image,	error)

Decode	reads	a	PNG	image	from	r	and	returns	it	as	an	image.Image.	The	type	of
Image	returned	depends	on	the	PNG	contents.

func	DecodeConfig
func	DecodeConfig(r	io.Reader)	(image.Config,	error)

DecodeConfig	returns	the	color	model	and	dimensions	of	a	PNG	image	without
decoding	the	entire	image.

func	Encode
func	Encode(w	io.Writer,	m	image.Image)	error

Encode	writes	the	Image	m	to	w	in	PNG	format.	Any	Image	may	be	encoded,
but	images	that	are	not	image.NRGBA	might	be	encoded	lossily.

type	FormatError
type	FormatError	string

A	FormatError	reports	that	the	input	is	not	a	valid	PNG.

func	(FormatError)	Error

func	(e	FormatError)	Error()	string

type	UnsupportedError
type	UnsupportedError	string

An	UnsupportedError	reports	that	the	input	uses	a	valid	but	unimplemented	PNG
feature.

func	(UnsupportedError)	Error

func	(e	UnsupportedError)	Error()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Directory	/src/pkg/index
Name 				 Synopsis

suffixarray 				 Package	suffixarray	implements	substring	search	in	logarithmictime	using	an	in-memory	suffix	array.

Need	more	packages?	Take	a	look	at	the	Go	Project	Dashboard.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://godashboard.appspot.com/
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	suffixarray
import	"index/suffixarray"

Overview
Index

Overview	?

Overview	?

Package	suffixarray	implements	substring	search	in	logarithmic	time	using	an	in-
memory	suffix	array.

Example	use:

//	create	index	for	some	data

index	:=	suffixarray.New(data)

//	lookup	byte	slice	s

offsets1	:=	index.Lookup(s,	-1)	//	the	list	of	all	indices	where	s	occurs	in	data

offsets2	:=	index.Lookup(s,	3)		//	the	list	of	at	most	3	indices	where	s	occurs	in	data

Index

type	Index
				func	New(data	[]byte)	*Index
				func	(x	*Index)	Bytes()	[]byte
				func	(x	*Index)	FindAllIndex(r	*regexp.Regexp,	n	int)	(result	[][]int)
				func	(x	*Index)	Lookup(s	[]byte,	n	int)	(result	[]int)
				func	(x	*Index)	Read(r	io.Reader)	error
				func	(x	*Index)	Write(w	io.Writer)	error

Package	files

qsufsort.go	suffixarray.go

type	Index
type	Index	struct	{

				//	contains	filtered	or	unexported	fields

}

Index	implements	a	suffix	array	for	fast	substring	search.

func	New

func	New(data	[]byte)	*Index

New	creates	a	new	Index	for	data.	Index	creation	time	is	O(N*log(N))	for	N	=
len(data).

func	(*Index)	Bytes

func	(x	*Index)	Bytes()	[]byte

Bytes	returns	the	data	over	which	the	index	was	created.	It	must	not	be	modified.

func	(*Index)	FindAllIndex

func	(x	*Index)	FindAllIndex(r	*regexp.Regexp,	n	int)	(result	[][]int)

FindAllIndex	returns	a	sorted	list	of	non-overlapping	matches	of	the	regular
expression	r,	where	a	match	is	a	pair	of	indices	specifying	the	matched	slice	of
x.Bytes().	If	n	<	0,	all	matches	are	returned	in	successive	order.	Otherwise,	at
most	n	matches	are	returned	and	they	may	not	be	successive.	The	result	is	nil	if
there	are	no	matches,	or	if	n	==	0.

func	(*Index)	Lookup

func	(x	*Index)	Lookup(s	[]byte,	n	int)	(result	[]int)

Lookup	returns	an	unsorted	list	of	at	most	n	indices	where	the	byte	string	s
occurs	in	the	indexed	data.	If	n	<	0,	all	occurrences	are	returned.	The	result	is	nil
if	s	is	empty,	s	is	not	found,	or	n	==	0.	Lookup	time	is	O(log(N)*len(s)	+
len(result))	where	N	is	the	size	of	the	indexed	data.

func	(*Index)	Read

func	(x	*Index)	Read(r	io.Reader)	error

Read	reads	the	index	from	r	into	x;	x	must	not	be	nil.

func	(*Index)	Write

func	(x	*Index)	Write(w	io.Writer)	error

Write	writes	the	index	x	to	w.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	io
import	"io"

Overview
Index
Subdirectories

Overview	?

Overview	?

Package	io	provides	basic	interfaces	to	I/O	primitives.	Its	primary	job	is	to	wrap
existing	implementations	of	such	primitives,	such	as	those	in	package	os,	into
shared	public	interfaces	that	abstract	the	functionality,	plus	some	other	related
primitives.

Because	these	interfaces	and	primitives	wrap	lower-level	operations	with	various
implementations,	unless	otherwise	informed	clients	should	not	assume	they	are
safe	for	parallel	execution.

Index

Variables
func	Copy(dst	Writer,	src	Reader)	(written	int64,	err	error)
func	CopyN(dst	Writer,	src	Reader,	n	int64)	(written	int64,	err	error)
func	ReadAtLeast(r	Reader,	buf	[]byte,	min	int)	(n	int,	err	error)
func	ReadFull(r	Reader,	buf	[]byte)	(n	int,	err	error)
func	WriteString(w	Writer,	s	string)	(n	int,	err	error)
type	ByteReader
type	ByteScanner
type	Closer
type	LimitedReader
				func	(l	*LimitedReader)	Read(p	[]byte)	(n	int,	err	error)
type	PipeReader
				func	Pipe()	(*PipeReader,	*PipeWriter)
				func	(r	*PipeReader)	Close()	error
				func	(r	*PipeReader)	CloseWithError(err	error)	error
				func	(r	*PipeReader)	Read(data	[]byte)	(n	int,	err	error)
type	PipeWriter
				func	(w	*PipeWriter)	Close()	error
				func	(w	*PipeWriter)	CloseWithError(err	error)	error
				func	(w	*PipeWriter)	Write(data	[]byte)	(n	int,	err	error)
type	ReadCloser
type	ReadSeeker
type	ReadWriteCloser
type	ReadWriteSeeker
type	ReadWriter
type	Reader
				func	LimitReader(r	Reader,	n	int64)	Reader
				func	MultiReader(readers	...Reader)	Reader
				func	TeeReader(r	Reader,	w	Writer)	Reader
type	ReaderAt
type	ReaderFrom
type	RuneReader
type	RuneScanner
type	SectionReader
				func	NewSectionReader(r	ReaderAt,	off	int64,	n	int64)	*SectionReader

				func	(s	*SectionReader)	Read(p	[]byte)	(n	int,	err	error)
				func	(s	*SectionReader)	ReadAt(p	[]byte,	off	int64)	(n	int,	err	error)
				func	(s	*SectionReader)	Seek(offset	int64,	whence	int)	(ret	int64,	err
error)
				func	(s	*SectionReader)	Size()	int64
type	Seeker
type	WriteCloser
type	WriteSeeker
type	Writer
				func	MultiWriter(writers	...Writer)	Writer
type	WriterAt
type	WriterTo

Package	files

io.go	multi.go	pipe.go

Variables
var	EOF	=	errors.New("EOF")

EOF	is	the	error	returned	by	Read	when	no	more	input	is	available.	Functions
should	return	EOF	only	to	signal	a	graceful	end	of	input.	If	the	EOF	occurs
unexpectedly	in	a	structured	data	stream,	the	appropriate	error	is	either
ErrUnexpectedEOF	or	some	other	error	giving	more	detail.

var	ErrClosedPipe	=	errors.New("io:	read/write	on	closed	pipe")

ErrClosedPipe	is	the	error	used	for	read	or	write	operations	on	a	closed	pipe.

var	ErrShortBuffer	=	errors.New("short	buffer")

ErrShortBuffer	means	that	a	read	required	a	longer	buffer	than	was	provided.

var	ErrShortWrite	=	errors.New("short	write")

ErrShortWrite	means	that	a	write	accepted	fewer	bytes	than	requested	but	failed
to	return	an	explicit	error.

var	ErrUnexpectedEOF	=	errors.New("unexpected	EOF")

ErrUnexpectedEOF	means	that	EOF	was	encountered	in	the	middle	of	reading	a
fixed-size	block	or	data	structure.

func	Copy
func	Copy(dst	Writer,	src	Reader)	(written	int64,	err	error)

Copy	copies	from	src	to	dst	until	either	EOF	is	reached	on	src	or	an	error	occurs.
It	returns	the	number	of	bytes	copied	and	the	first	error	encountered	while
copying,	if	any.

A	successful	Copy	returns	err	==	nil,	not	err	==	EOF.	Because	Copy	is	defined
to	read	from	src	until	EOF,	it	does	not	treat	an	EOF	from	Read	as	an	error	to	be
reported.

If	dst	implements	the	ReaderFrom	interface,	the	copy	is	implemented	by	calling
dst.ReadFrom(src).	Otherwise,	if	src	implements	the	WriterTo	interface,	the
copy	is	implemented	by	calling	src.WriteTo(dst).

func	CopyN
func	CopyN(dst	Writer,	src	Reader,	n	int64)	(written	int64,	err	error)

CopyN	copies	n	bytes	(or	until	an	error)	from	src	to	dst.	It	returns	the	number	of
bytes	copied	and	the	earliest	error	encountered	while	copying.	Because	Read	can
return	the	full	amount	requested	as	well	as	an	error	(including	EOF),	so	can
CopyN.

If	dst	implements	the	ReaderFrom	interface,	the	copy	is	implemented	using	it.

func	ReadAtLeast
func	ReadAtLeast(r	Reader,	buf	[]byte,	min	int)	(n	int,	err	error)

ReadAtLeast	reads	from	r	into	buf	until	it	has	read	at	least	min	bytes.	It	returns
the	number	of	bytes	copied	and	an	error	if	fewer	bytes	were	read.	The	error	is
EOF	only	if	no	bytes	were	read.	If	an	EOF	happens	after	reading	fewer	than	min
bytes,	ReadAtLeast	returns	ErrUnexpectedEOF.	If	min	is	greater	than	the	length
of	buf,	ReadAtLeast	returns	ErrShortBuffer.

func	ReadFull
func	ReadFull(r	Reader,	buf	[]byte)	(n	int,	err	error)

ReadFull	reads	exactly	len(buf)	bytes	from	r	into	buf.	It	returns	the	number	of
bytes	copied	and	an	error	if	fewer	bytes	were	read.	The	error	is	EOF	only	if	no
bytes	were	read.	If	an	EOF	happens	after	reading	some	but	not	all	the	bytes,
ReadFull	returns	ErrUnexpectedEOF.

func	WriteString
func	WriteString(w	Writer,	s	string)	(n	int,	err	error)

WriteString	writes	the	contents	of	the	string	s	to	w,	which	accepts	an	array	of
bytes.	If	w	already	implements	a	WriteString	method,	it	is	invoked	directly.

type	ByteReader
type	ByteReader	interface	{

				ReadByte()	(c	byte,	err	error)

}

ByteReader	is	the	interface	that	wraps	the	ReadByte	method.

ReadByte	reads	and	returns	the	next	byte	from	the	input.	If	no	byte	is	available,
err	will	be	set.

type	ByteScanner
type	ByteScanner	interface	{

				ByteReader

				UnreadByte()	error

}

ByteScanner	is	the	interface	that	adds	the	UnreadByte	method	to	the	basic
ReadByte	method.

UnreadByte	causes	the	next	call	to	ReadByte	to	return	the	same	byte	as	the
previous	call	to	ReadByte.	It	may	be	an	error	to	call	UnreadByte	twice	without
an	intervening	call	to	ReadByte.

type	Closer
type	Closer	interface	{

				Close()	error

}

Closer	is	the	interface	that	wraps	the	basic	Close	method.

type	LimitedReader
type	LimitedReader	struct	{

				R	Reader	//	underlying	reader

				N	int64		//	max	bytes	remaining

}

A	LimitedReader	reads	from	R	but	limits	the	amount	of	data	returned	to	just	N
bytes.	Each	call	to	Read	updates	N	to	reflect	the	new	amount	remaining.

func	(*LimitedReader)	Read

func	(l	*LimitedReader)	Read(p	[]byte)	(n	int,	err	error)

type	PipeReader
type	PipeReader	struct	{

				//	contains	filtered	or	unexported	fields

}

A	PipeReader	is	the	read	half	of	a	pipe.

func	Pipe

func	Pipe()	(*PipeReader,	*PipeWriter)

Pipe	creates	a	synchronous	in-memory	pipe.	It	can	be	used	to	connect	code
expecting	an	io.Reader	with	code	expecting	an	io.Writer.	Reads	on	one	end	are
matched	with	writes	on	the	other,	copying	data	directly	between	the	two;	there	is
no	internal	buffering.	It	is	safe	to	call	Read	and	Write	in	parallel	with	each	other
or	with	Close.	Close	will	complete	once	pending	I/O	is	done.	Parallel	calls	to
Read,	and	parallel	calls	to	Write,	are	also	safe:	the	individual	calls	will	be	gated
sequentially.

func	(*PipeReader)	Close

func	(r	*PipeReader)	Close()	error

Close	closes	the	reader;	subsequent	writes	to	the	write	half	of	the	pipe	will	return
the	error	ErrClosedPipe.

func	(*PipeReader)	CloseWithError

func	(r	*PipeReader)	CloseWithError(err	error)	error

CloseWithError	closes	the	reader;	subsequent	writes	to	the	write	half	of	the	pipe
will	return	the	error	err.

func	(*PipeReader)	Read

func	(r	*PipeReader)	Read(data	[]byte)	(n	int,	err	error)

Read	implements	the	standard	Read	interface:	it	reads	data	from	the	pipe,

blocking	until	a	writer	arrives	or	the	write	end	is	closed.	If	the	write	end	is
closed	with	an	error,	that	error	is	returned	as	err;	otherwise	err	is	EOF.

type	PipeWriter
type	PipeWriter	struct	{

				//	contains	filtered	or	unexported	fields

}

A	PipeWriter	is	the	write	half	of	a	pipe.

func	(*PipeWriter)	Close

func	(w	*PipeWriter)	Close()	error

Close	closes	the	writer;	subsequent	reads	from	the	read	half	of	the	pipe	will
return	no	bytes	and	EOF.

func	(*PipeWriter)	CloseWithError

func	(w	*PipeWriter)	CloseWithError(err	error)	error

CloseWithError	closes	the	writer;	subsequent	reads	from	the	read	half	of	the	pipe
will	return	no	bytes	and	the	error	err.

func	(*PipeWriter)	Write

func	(w	*PipeWriter)	Write(data	[]byte)	(n	int,	err	error)

Write	implements	the	standard	Write	interface:	it	writes	data	to	the	pipe,
blocking	until	readers	have	consumed	all	the	data	or	the	read	end	is	closed.	If	the
read	end	is	closed	with	an	error,	that	err	is	returned	as	err;	otherwise	err	is
ErrClosedPipe.

type	ReadCloser
type	ReadCloser	interface	{

				Reader

				Closer

}

ReadCloser	is	the	interface	that	groups	the	basic	Read	and	Close	methods.

type	ReadSeeker
type	ReadSeeker	interface	{

				Reader

				Seeker

}

ReadSeeker	is	the	interface	that	groups	the	basic	Read	and	Seek	methods.

type	ReadWriteCloser
type	ReadWriteCloser	interface	{

				Reader

				Writer

				Closer

}

ReadWriteCloser	is	the	interface	that	groups	the	basic	Read,	Write	and	Close
methods.

type	ReadWriteSeeker
type	ReadWriteSeeker	interface	{

				Reader

				Writer

				Seeker

}

ReadWriteSeeker	is	the	interface	that	groups	the	basic	Read,	Write	and	Seek
methods.

type	ReadWriter
type	ReadWriter	interface	{

				Reader

				Writer

}

ReadWriter	is	the	interface	that	groups	the	basic	Read	and	Write	methods.

type	Reader
type	Reader	interface	{

				Read(p	[]byte)	(n	int,	err	error)

}

Reader	is	the	interface	that	wraps	the	basic	Read	method.

Read	reads	up	to	len(p)	bytes	into	p.	It	returns	the	number	of	bytes	read	(0	<=	n
<=	len(p))	and	any	error	encountered.	Even	if	Read	returns	n	<	len(p),	it	may	use
all	of	p	as	scratch	space	during	the	call.	If	some	data	is	available	but	not	len(p)
bytes,	Read	conventionally	returns	what	is	available	instead	of	waiting	for	more.

When	Read	encounters	an	error	or	end-of-file	condition	after	successfully
reading	n	>	0	bytes,	it	returns	the	number	of	bytes	read.	It	may	return	the	(non-
nil)	error	from	the	same	call	or	return	the	error	(and	n	==	0)	from	a	subsequent
call.	An	instance	of	this	general	case	is	that	a	Reader	returning	a	non-zero
number	of	bytes	at	the	end	of	the	input	stream	may	return	either	err	==	EOF	or
err	==	nil.	The	next	Read	should	return	0,	EOF	regardless.

Callers	should	always	process	the	n	>	0	bytes	returned	before	considering	the
error	err.	Doing	so	correctly	handles	I/O	errors	that	happen	after	reading	some
bytes	and	also	both	of	the	allowed	EOF	behaviors.

func	LimitReader

func	LimitReader(r	Reader,	n	int64)	Reader

LimitReader	returns	a	Reader	that	reads	from	r	but	stops	with	EOF	after	n	bytes.
The	underlying	implementation	is	a	*LimitedReader.

func	MultiReader

func	MultiReader(readers	...Reader)	Reader

MultiReader	returns	a	Reader	that's	the	logical	concatenation	of	the	provided
input	readers.	They're	read	sequentially.	Once	all	inputs	are	drained,	Read	will
return	EOF.

func	TeeReader

func	TeeReader(r	Reader,	w	Writer)	Reader

TeeReader	returns	a	Reader	that	writes	to	w	what	it	reads	from	r.	All	reads	from	r
performed	through	it	are	matched	with	corresponding	writes	to	w.	There	is	no
internal	buffering	-	the	write	must	complete	before	the	read	completes.	Any	error
encountered	while	writing	is	reported	as	a	read	error.

type	ReaderAt
type	ReaderAt	interface	{

				ReadAt(p	[]byte,	off	int64)	(n	int,	err	error)

}

ReaderAt	is	the	interface	that	wraps	the	basic	ReadAt	method.

ReadAt	reads	len(p)	bytes	into	p	starting	at	offset	off	in	the	underlying	input
source.	It	returns	the	number	of	bytes	read	(0	<=	n	<=	len(p))	and	any	error
encountered.

When	ReadAt	returns	n	<	len(p),	it	returns	a	non-nil	error	explaining	why	more
bytes	were	not	returned.	In	this	respect,	ReadAt	is	stricter	than	Read.

Even	if	ReadAt	returns	n	<	len(p),	it	may	use	all	of	p	as	scratch	space	during	the
call.	If	some	data	is	available	but	not	len(p)	bytes,	ReadAt	blocks	until	either	all
the	data	is	available	or	an	error	occurs.	In	this	respect	ReadAt	is	different	from
Read.

If	the	n	=	len(p)	bytes	returned	by	ReadAt	are	at	the	end	of	the	input	source,
ReadAt	may	return	either	err	==	EOF	or	err	==	nil.

If	ReadAt	is	reading	from	an	input	source	with	a	seek	offset,	ReadAt	should	not
affect	nor	be	affected	by	the	underlying	seek	offset.

Clients	of	ReadAt	can	execute	parallel	ReadAt	calls	on	the	same	input	source.

type	ReaderFrom
type	ReaderFrom	interface	{

				ReadFrom(r	Reader)	(n	int64,	err	error)

}

ReaderFrom	is	the	interface	that	wraps	the	ReadFrom	method.

type	RuneReader
type	RuneReader	interface	{

				ReadRune()	(r	rune,	size	int,	err	error)

}

RuneReader	is	the	interface	that	wraps	the	ReadRune	method.

ReadRune	reads	a	single	UTF-8	encoded	Unicode	character	and	returns	the	rune
and	its	size	in	bytes.	If	no	character	is	available,	err	will	be	set.

type	RuneScanner
type	RuneScanner	interface	{

				RuneReader

				UnreadRune()	error

}

RuneScanner	is	the	interface	that	adds	the	UnreadRune	method	to	the	basic
ReadRune	method.

UnreadRune	causes	the	next	call	to	ReadRune	to	return	the	same	rune	as	the
previous	call	to	ReadRune.	It	may	be	an	error	to	call	UnreadRune	twice	without
an	intervening	call	to	ReadRune.

type	SectionReader
type	SectionReader	struct	{

				//	contains	filtered	or	unexported	fields

}

SectionReader	implements	Read,	Seek,	and	ReadAt	on	a	section	of	an
underlying	ReaderAt.

func	NewSectionReader

func	NewSectionReader(r	ReaderAt,	off	int64,	n	int64)	*SectionReader

NewSectionReader	returns	a	SectionReader	that	reads	from	r	starting	at	offset
off	and	stops	with	EOF	after	n	bytes.

func	(*SectionReader)	Read

func	(s	*SectionReader)	Read(p	[]byte)	(n	int,	err	error)

func	(*SectionReader)	ReadAt

func	(s	*SectionReader)	ReadAt(p	[]byte,	off	int64)	(n	int,	err	error)

func	(*SectionReader)	Seek

func	(s	*SectionReader)	Seek(offset	int64,	whence	int)	(ret	int64,	err	error)

func	(*SectionReader)	Size

func	(s	*SectionReader)	Size()	int64

Size	returns	the	size	of	the	section	in	bytes.

type	Seeker
type	Seeker	interface	{

				Seek(offset	int64,	whence	int)	(ret	int64,	err	error)

}

Seeker	is	the	interface	that	wraps	the	basic	Seek	method.

Seek	sets	the	offset	for	the	next	Read	or	Write	to	offset,	interpreted	according	to
whence:	0	means	relative	to	the	origin	of	the	file,	1	means	relative	to	the	current
offset,	and	2	means	relative	to	the	end.	Seek	returns	the	new	offset	and	an	Error,
if	any.

type	WriteCloser
type	WriteCloser	interface	{

				Writer

				Closer

}

WriteCloser	is	the	interface	that	groups	the	basic	Write	and	Close	methods.

type	WriteSeeker
type	WriteSeeker	interface	{

				Writer

				Seeker

}

WriteSeeker	is	the	interface	that	groups	the	basic	Write	and	Seek	methods.

type	Writer
type	Writer	interface	{

				Write(p	[]byte)	(n	int,	err	error)

}

Writer	is	the	interface	that	wraps	the	basic	Write	method.

Write	writes	len(p)	bytes	from	p	to	the	underlying	data	stream.	It	returns	the
number	of	bytes	written	from	p	(0	<=	n	<=	len(p))	and	any	error	encountered
that	caused	the	write	to	stop	early.	Write	must	return	a	non-nil	error	if	it	returns	n
<	len(p).

func	MultiWriter

func	MultiWriter(writers	...Writer)	Writer

MultiWriter	creates	a	writer	that	duplicates	its	writes	to	all	the	provided	writers,
similar	to	the	Unix	tee(1)	command.

type	WriterAt
type	WriterAt	interface	{

				WriteAt(p	[]byte,	off	int64)	(n	int,	err	error)

}

WriterAt	is	the	interface	that	wraps	the	basic	WriteAt	method.

WriteAt	writes	len(p)	bytes	from	p	to	the	underlying	data	stream	at	offset	off.	It
returns	the	number	of	bytes	written	from	p	(0	<=	n	<=	len(p))	and	any	error
encountered	that	caused	the	write	to	stop	early.	WriteAt	must	return	a	non-nil
error	if	it	returns	n	<	len(p).

If	WriteAt	is	writing	to	a	destination	with	a	seek	offset,	WriteAt	should	not	affect
nor	be	affected	by	the	underlying	seek	offset.

Clients	of	WriteAt	can	execute	parallel	WriteAt	calls	on	the	same	destination	if
the	ranges	do	not	overlap.

type	WriterTo
type	WriterTo	interface	{

				WriteTo(w	Writer)	(n	int64,	err	error)

}

WriterTo	is	the	interface	that	wraps	the	WriteTo	method.

Subdirectories

Name 				 Synopsis
ioutil 				 Package	ioutil	implements	some	I/O	utility	functions.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	ioutil
import	"io/ioutil"

Overview
Index

Overview	?

Overview	?

Package	ioutil	implements	some	I/O	utility	functions.

Index

Variables
func	NopCloser(r	io.Reader)	io.ReadCloser
func	ReadAll(r	io.Reader)	([]byte,	error)
func	ReadDir(dirname	string)	([]os.FileInfo,	error)
func	ReadFile(filename	string)	([]byte,	error)
func	TempDir(dir,	prefix	string)	(name	string,	err	error)
func	TempFile(dir,	prefix	string)	(f	*os.File,	err	error)
func	WriteFile(filename	string,	data	[]byte,	perm	os.FileMode)	error

Package	files

ioutil.go	tempfile.go

Variables
var	Discard	io.Writer	=	devNull(0)

Discard	is	an	io.Writer	on	which	all	Write	calls	succeed	without	doing	anything.

func	NopCloser
func	NopCloser(r	io.Reader)	io.ReadCloser

NopCloser	returns	a	ReadCloser	with	a	no-op	Close	method	wrapping	the
provided	Reader	r.

func	ReadAll
func	ReadAll(r	io.Reader)	([]byte,	error)

ReadAll	reads	from	r	until	an	error	or	EOF	and	returns	the	data	it	read.	A
successful	call	returns	err	==	nil,	not	err	==	EOF.	Because	ReadAll	is	defined	to
read	from	src	until	EOF,	it	does	not	treat	an	EOF	from	Read	as	an	error	to	be
reported.

func	ReadDir
func	ReadDir(dirname	string)	([]os.FileInfo,	error)

ReadDir	reads	the	directory	named	by	dirname	and	returns	a	list	of	sorted
directory	entries.

func	ReadFile
func	ReadFile(filename	string)	([]byte,	error)

ReadFile	reads	the	file	named	by	filename	and	returns	the	contents.	A	successful
call	returns	err	==	nil,	not	err	==	EOF.	Because	ReadFile	reads	the	whole	file,	it
does	not	treat	an	EOF	from	Read	as	an	error	to	be	reported.

func	TempDir
func	TempDir(dir,	prefix	string)	(name	string,	err	error)

TempDir	creates	a	new	temporary	directory	in	the	directory	dir	with	a	name
beginning	with	prefix	and	returns	the	path	of	the	new	directory.	If	dir	is	the
empty	string,	TempDir	uses	the	default	directory	for	temporary	files	(see
os.TempDir).	Multiple	programs	calling	TempDir	simultaneously	will	not
choose	the	same	directory.	It	is	the	caller's	responsibility	to	remove	the	directory
when	no	longer	needed.

func	TempFile
func	TempFile(dir,	prefix	string)	(f	*os.File,	err	error)

TempFile	creates	a	new	temporary	file	in	the	directory	dir	with	a	name	beginning
with	prefix,	opens	the	file	for	reading	and	writing,	and	returns	the	resulting
*os.File.	If	dir	is	the	empty	string,	TempFile	uses	the	default	directory	for
temporary	files	(see	os.TempDir).	Multiple	programs	calling	TempFile
simultaneously	will	not	choose	the	same	file.	The	caller	can	use	f.Name()	to	find
the	name	of	the	file.	It	is	the	caller's	responsibility	to	remove	the	file	when	no
longer	needed.

func	WriteFile
func	WriteFile(filename	string,	data	[]byte,	perm	os.FileMode)	error

WriteFile	writes	data	to	a	file	named	by	filename.	If	the	file	does	not	exist,
WriteFile	creates	it	with	permissions	perm;	otherwise	WriteFile	truncates	it
before	writing.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	log
import	"log"

Overview
Index
Subdirectories

Overview	?

Overview	?

Package	log	implements	a	simple	logging	package.	It	defines	a	type,	Logger,
with	methods	for	formatting	output.	It	also	has	a	predefined	'standard'	Logger
accessible	through	helper	functions	Print[f|ln],	Fatal[f|ln],	and	Panic[f|ln],	which
are	easier	to	use	than	creating	a	Logger	manually.	That	logger	writes	to	standard
error	and	prints	the	date	and	time	of	each	logged	message.	The	Fatal	functions
call	os.Exit(1)	after	writing	the	log	message.	The	Panic	functions	call	panic	after
writing	the	log	message.

Index

Constants
func	Fatal(v	...interface{})
func	Fatalf(format	string,	v	...interface{})
func	Fatalln(v	...interface{})
func	Flags()	int
func	Panic(v	...interface{})
func	Panicf(format	string,	v	...interface{})
func	Panicln(v	...interface{})
func	Prefix()	string
func	Print(v	...interface{})
func	Printf(format	string,	v	...interface{})
func	Println(v	...interface{})
func	SetFlags(flag	int)
func	SetOutput(w	io.Writer)
func	SetPrefix(prefix	string)
type	Logger
				func	New(out	io.Writer,	prefix	string,	flag	int)	*Logger
				func	(l	*Logger)	Fatal(v	...interface{})
				func	(l	*Logger)	Fatalf(format	string,	v	...interface{})
				func	(l	*Logger)	Fatalln(v	...interface{})
				func	(l	*Logger)	Flags()	int
				func	(l	*Logger)	Output(calldepth	int,	s	string)	error
				func	(l	*Logger)	Panic(v	...interface{})
				func	(l	*Logger)	Panicf(format	string,	v	...interface{})
				func	(l	*Logger)	Panicln(v	...interface{})
				func	(l	*Logger)	Prefix()	string
				func	(l	*Logger)	Print(v	...interface{})
				func	(l	*Logger)	Printf(format	string,	v	...interface{})
				func	(l	*Logger)	Println(v	...interface{})
				func	(l	*Logger)	SetFlags(flag	int)
				func	(l	*Logger)	SetPrefix(prefix	string)

Package	files

log.go

Constants
const	(

				//	Bits	or'ed	together	to	control	what's	printed.	There	is	no	control	over	the

				//	order	they	appear	(the	order	listed	here)	or	the	format	they	present	(as

				//	described	in	the	comments).		A	colon	appears	after	these	items:

				//	 2009/0123	01:23:23.123123	/a/b/c/d.go:23:	message

				Ldate									=	1	<<	iota					//	the	date:	2009/01/23

				Ltime																									//	the	time:	01:23:23

				Lmicroseconds																	//	microsecond	resolution:	01:23:23.123123.		assumes	Ltime.

				Llongfile																					//	full	file	name	and	line	number:	/a/b/c/d.go:23

				Lshortfile																				//	final	file	name	element	and	line	number:	d.go:23.	overrides	Llongfile

				LstdFlags					=	Ldate	|	Ltime	//	initial	values	for	the	standard	logger

)

These	flags	define	which	text	to	prefix	to	each	log	entry	generated	by	the
Logger.

func	Fatal
func	Fatal(v	...interface{})

Fatal	is	equivalent	to	Print()	followed	by	a	call	to	os.Exit(1).

func	Fatalf
func	Fatalf(format	string,	v	...interface{})

Fatalf	is	equivalent	to	Printf()	followed	by	a	call	to	os.Exit(1).

func	Fatalln
func	Fatalln(v	...interface{})

Fatalln	is	equivalent	to	Println()	followed	by	a	call	to	os.Exit(1).

func	Flags
func	Flags()	int

Flags	returns	the	output	flags	for	the	standard	logger.

func	Panic
func	Panic(v	...interface{})

Panic	is	equivalent	to	Print()	followed	by	a	call	to	panic().

func	Panicf
func	Panicf(format	string,	v	...interface{})

Panicf	is	equivalent	to	Printf()	followed	by	a	call	to	panic().

func	Panicln
func	Panicln(v	...interface{})

Panicln	is	equivalent	to	Println()	followed	by	a	call	to	panic().

func	Prefix
func	Prefix()	string

Prefix	returns	the	output	prefix	for	the	standard	logger.

func	Print
func	Print(v	...interface{})

Print	calls	Output	to	print	to	the	standard	logger.	Arguments	are	handled	in	the
manner	of	fmt.Print.

func	Printf
func	Printf(format	string,	v	...interface{})

Printf	calls	Output	to	print	to	the	standard	logger.	Arguments	are	handled	in	the
manner	of	fmt.Printf.

func	Println
func	Println(v	...interface{})

Println	calls	Output	to	print	to	the	standard	logger.	Arguments	are	handled	in	the
manner	of	fmt.Println.

func	SetFlags
func	SetFlags(flag	int)

SetFlags	sets	the	output	flags	for	the	standard	logger.

func	SetOutput
func	SetOutput(w	io.Writer)

SetOutput	sets	the	output	destination	for	the	standard	logger.

func	SetPrefix
func	SetPrefix(prefix	string)

SetPrefix	sets	the	output	prefix	for	the	standard	logger.

type	Logger
type	Logger	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Logger	represents	an	active	logging	object	that	generates	lines	of	output	to	an
io.Writer.	Each	logging	operation	makes	a	single	call	to	the	Writer's	Write
method.	A	Logger	can	be	used	simultaneously	from	multiple	goroutines;	it
guarantees	to	serialize	access	to	the	Writer.

func	New

func	New(out	io.Writer,	prefix	string,	flag	int)	*Logger

New	creates	a	new	Logger.	The	out	variable	sets	the	destination	to	which	log
data	will	be	written.	The	prefix	appears	at	the	beginning	of	each	generated	log
line.	The	flag	argument	defines	the	logging	properties.

func	(*Logger)	Fatal

func	(l	*Logger)	Fatal(v	...interface{})

Fatal	is	equivalent	to	l.Print()	followed	by	a	call	to	os.Exit(1).

func	(*Logger)	Fatalf

func	(l	*Logger)	Fatalf(format	string,	v	...interface{})

Fatalf	is	equivalent	to	l.Printf()	followed	by	a	call	to	os.Exit(1).

func	(*Logger)	Fatalln

func	(l	*Logger)	Fatalln(v	...interface{})

Fatalln	is	equivalent	to	l.Println()	followed	by	a	call	to	os.Exit(1).

func	(*Logger)	Flags

func	(l	*Logger)	Flags()	int

Flags	returns	the	output	flags	for	the	logger.

func	(*Logger)	Output

func	(l	*Logger)	Output(calldepth	int,	s	string)	error

Output	writes	the	output	for	a	logging	event.	The	string	s	contains	the	text	to
print	after	the	prefix	specified	by	the	flags	of	the	Logger.	A	newline	is	appended
if	the	last	character	of	s	is	not	already	a	newline.	Calldepth	is	used	to	recover	the
PC	and	is	provided	for	generality,	although	at	the	moment	on	all	pre-defined
paths	it	will	be	2.

func	(*Logger)	Panic

func	(l	*Logger)	Panic(v	...interface{})

Panic	is	equivalent	to	l.Print()	followed	by	a	call	to	panic().

func	(*Logger)	Panicf

func	(l	*Logger)	Panicf(format	string,	v	...interface{})

Panicf	is	equivalent	to	l.Printf()	followed	by	a	call	to	panic().

func	(*Logger)	Panicln

func	(l	*Logger)	Panicln(v	...interface{})

Panicln	is	equivalent	to	l.Println()	followed	by	a	call	to	panic().

func	(*Logger)	Prefix

func	(l	*Logger)	Prefix()	string

Prefix	returns	the	output	prefix	for	the	logger.

func	(*Logger)	Print

func	(l	*Logger)	Print(v	...interface{})

Print	calls	l.Output	to	print	to	the	logger.	Arguments	are	handled	in	the	manner
of	fmt.Print.

func	(*Logger)	Printf

func	(l	*Logger)	Printf(format	string,	v	...interface{})

Printf	calls	l.Output	to	print	to	the	logger.	Arguments	are	handled	in	the	manner
of	fmt.Printf.

func	(*Logger)	Println

func	(l	*Logger)	Println(v	...interface{})

Println	calls	l.Output	to	print	to	the	logger.	Arguments	are	handled	in	the	manner
of	fmt.Println.

func	(*Logger)	SetFlags

func	(l	*Logger)	SetFlags(flag	int)

SetFlags	sets	the	output	flags	for	the	logger.

func	(*Logger)	SetPrefix

func	(l	*Logger)	SetPrefix(prefix	string)

SetPrefix	sets	the	output	prefix	for	the	logger.

Subdirectories

Name 				 Synopsis
syslog 				 Package	syslog	provides	a	simple	interface	to	the	system	log	service.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	syslog
import	"log/syslog"

Overview
Index

Overview	?

Overview	?

Package	syslog	provides	a	simple	interface	to	the	system	log	service.	It	can	send
messages	to	the	syslog	daemon	using	UNIX	domain	sockets,	UDP,	or	TCP
connections.

Index

func	NewLogger(p	Priority,	logFlag	int)	(*log.Logger,	error)
type	Priority
type	Writer
				func	Dial(network,	raddr	string,	priority	Priority,	prefix	string)	(w
*Writer,	err	error)
				func	New(priority	Priority,	prefix	string)	(w	*Writer,	err	error)
				func	(w	*Writer)	Alert(m	string)	(err	error)
				func	(w	*Writer)	Close()	error
				func	(w	*Writer)	Crit(m	string)	(err	error)
				func	(w	*Writer)	Debug(m	string)	(err	error)
				func	(w	*Writer)	Emerg(m	string)	(err	error)
				func	(w	*Writer)	Err(m	string)	(err	error)
				func	(w	*Writer)	Info(m	string)	(err	error)
				func	(w	*Writer)	Notice(m	string)	(err	error)
				func	(w	*Writer)	Warning(m	string)	(err	error)
				func	(w	*Writer)	Write(b	[]byte)	(int,	error)

Package	files

syslog.go	syslog_unix.go

func	NewLogger
func	NewLogger(p	Priority,	logFlag	int)	(*log.Logger,	error)

NewLogger	creates	a	log.Logger	whose	output	is	written	to	the	system	log
service	with	the	specified	priority.	The	logFlag	argument	is	the	flag	set	passed
through	to	log.New	to	create	the	Logger.

type	Priority
type	Priority	int

const	(

				//	From	/usr/include/sys/syslog.h.

				//	These	are	the	same	on	Linux,	BSD,	and	OS	X.

				LOG_EMERG	Priority	=	iota

				LOG_ALERT

				LOG_CRIT

				LOG_ERR

				LOG_WARNING

				LOG_NOTICE

				LOG_INFO

				LOG_DEBUG

)

type	Writer
type	Writer	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Writer	is	a	connection	to	a	syslog	server.

func	Dial

func	Dial(network,	raddr	string,	priority	Priority,	prefix	string)	(w	*Writer,	err	error)

Dial	establishes	a	connection	to	a	log	daemon	by	connecting	to	address	raddr	on
the	network	net.	Each	write	to	the	returned	writer	sends	a	log	message	with	the
given	priority	and	prefix.

func	New

func	New(priority	Priority,	prefix	string)	(w	*Writer,	err	error)

New	establishes	a	new	connection	to	the	system	log	daemon.	Each	write	to	the
returned	writer	sends	a	log	message	with	the	given	priority	and	prefix.

func	(*Writer)	Alert

func	(w	*Writer)	Alert(m	string)	(err	error)

Alert	logs	a	message	using	the	LOG_ALERT	priority.

func	(*Writer)	Close

func	(w	*Writer)	Close()	error

func	(*Writer)	Crit

func	(w	*Writer)	Crit(m	string)	(err	error)

Crit	logs	a	message	using	the	LOG_CRIT	priority.

func	(*Writer)	Debug

func	(w	*Writer)	Debug(m	string)	(err	error)

Debug	logs	a	message	using	the	LOG_DEBUG	priority.

func	(*Writer)	Emerg

func	(w	*Writer)	Emerg(m	string)	(err	error)

Emerg	logs	a	message	using	the	LOG_EMERG	priority.

func	(*Writer)	Err

func	(w	*Writer)	Err(m	string)	(err	error)

Err	logs	a	message	using	the	LOG_ERR	priority.

func	(*Writer)	Info

func	(w	*Writer)	Info(m	string)	(err	error)

Info	logs	a	message	using	the	LOG_INFO	priority.

func	(*Writer)	Notice

func	(w	*Writer)	Notice(m	string)	(err	error)

Notice	logs	a	message	using	the	LOG_NOTICE	priority.

func	(*Writer)	Warning

func	(w	*Writer)	Warning(m	string)	(err	error)

Warning	logs	a	message	using	the	LOG_WARNING	priority.

func	(*Writer)	Write

func	(w	*Writer)	Write(b	[]byte)	(int,	error)

Write	sends	a	log	message	to	the	syslog	daemon.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	math
import	"math"

Overview
Index
Subdirectories

Overview	?

Overview	?

Package	math	provides	basic	constants	and	mathematical	functions.

Index

Constants
func	Abs(x	float64)	float64
func	Acos(x	float64)	float64
func	Acosh(x	float64)	float64
func	Asin(x	float64)	float64
func	Asinh(x	float64)	float64
func	Atan(x	float64)	float64
func	Atan2(y,	x	float64)	float64
func	Atanh(x	float64)	float64
func	Cbrt(x	float64)	float64
func	Ceil(x	float64)	float64
func	Copysign(x,	y	float64)	float64
func	Cos(x	float64)	float64
func	Cosh(x	float64)	float64
func	Dim(x,	y	float64)	float64
func	Erf(x	float64)	float64
func	Erfc(x	float64)	float64
func	Exp(x	float64)	float64
func	Exp2(x	float64)	float64
func	Expm1(x	float64)	float64
func	Float32bits(f	float32)	uint32
func	Float32frombits(b	uint32)	float32
func	Float64bits(f	float64)	uint64
func	Float64frombits(b	uint64)	float64
func	Floor(x	float64)	float64
func	Frexp(f	float64)	(frac	float64,	exp	int)
func	Gamma(x	float64)	float64
func	Hypot(p,	q	float64)	float64
func	Ilogb(x	float64)	int
func	Inf(sign	int)	float64
func	IsInf(f	float64,	sign	int)	bool
func	IsNaN(f	float64)	(is	bool)
func	J0(x	float64)	float64
func	J1(x	float64)	float64
func	Jn(n	int,	x	float64)	float64

func	Ldexp(frac	float64,	exp	int)	float64
func	Lgamma(x	float64)	(lgamma	float64,	sign	int)
func	Log(x	float64)	float64
func	Log10(x	float64)	float64
func	Log1p(x	float64)	float64
func	Log2(x	float64)	float64
func	Logb(x	float64)	float64
func	Max(x,	y	float64)	float64
func	Min(x,	y	float64)	float64
func	Mod(x,	y	float64)	float64
func	Modf(f	float64)	(int	float64,	frac	float64)
func	NaN()	float64
func	Nextafter(x,	y	float64)	(r	float64)
func	Pow(x,	y	float64)	float64
func	Pow10(e	int)	float64
func	Remainder(x,	y	float64)	float64
func	Signbit(x	float64)	bool
func	Sin(x	float64)	float64
func	Sincos(x	float64)	(sin,	cos	float64)
func	Sinh(x	float64)	float64
func	Sqrt(x	float64)	float64
func	Tan(x	float64)	float64
func	Tanh(x	float64)	float64
func	Trunc(x	float64)	float64
func	Y0(x	float64)	float64
func	Y1(x	float64)	float64
func	Yn(n	int,	x	float64)	float64

Package	files

abs.go	acosh.go	asin.go	asinh.go	atan.go	atan2.go	atanh.go	bits.go	cbrt.go	const.go	copysign.go	dim.go
erf.go	exp.go	expm1.go	floor.go	frexp.go	gamma.go	hypot.go	j0.go	j1.go	jn.go	ldexp.go	lgamma.go	log.go
log10.go	log1p.go	logb.go	mod.go	modf.go	nextafter.go	pow.go	pow10.go	remainder.go	signbit.go	sin.go
sincos.go	sinh.go	sqrt.go	tan.go	tanh.go	unsafe.go

Constants
const	(

				E			=	2.71828182845904523536028747135266249775724709369995957496696763	

				Pi		=	3.14159265358979323846264338327950288419716939937510582097494459	

				Phi	=	1.61803398874989484820458683436563811772030917980576286213544862	

				Sqrt2			=	1.41421356237309504880168872420969807856967187537694807317667974	

				SqrtE			=	1.64872127070012814684865078781416357165377610071014801157507931	

				SqrtPi		=	1.77245385090551602729816748334114518279754945612238712821380779	

				SqrtPhi	=	1.27201964951406896425242246173749149171560804184009624861664038	

				Ln2				=	0.693147180559945309417232121458176568075500134360255254120680009	

				Log2E		=	1	/	Ln2

				Ln10			=	2.30258509299404568401799145468436420760110148862877297603332790	

				Log10E	=	1	/	Ln10

)

Mathematical	constants.	Reference:	http://oeis.org/Axxxxxx

const	(

				MaxFloat32													=	3.40282346638528859811704183484516925440e+38		

				SmallestNonzeroFloat32	=	1.401298464324817070923729583289916131280e-45	

				MaxFloat64													=	1.797693134862315708145274237317043567981e+308	

				SmallestNonzeroFloat64	=	4.940656458412465441765687928682213723651e-324	

)

Floating-point	limit	values.	Max	is	the	largest	finite	value	representable	by	the
type.	SmallestNonzero	is	the	smallest	positive,	non-zero	value	representable	by
the	type.

const	(

				MaxInt8			=	1<<7	-	1

				MinInt8			=	-1	<<	7

				MaxInt16		=	1<<15	-	1

				MinInt16		=	-1	<<	15

				MaxInt32		=	1<<31	-	1

				MinInt32		=	-1	<<	31

				MaxInt64		=	1<<63	-	1

				MinInt64		=	-1	<<	63

				MaxUint8		=	1<<8	-	1

				MaxUint16	=	1<<16	-	1

				MaxUint32	=	1<<32	-	1

				MaxUint64	=	1<<64	-	1

http://oeis.org/Axxxxxx

)

Integer	limit	values.

func	Abs
func	Abs(x	float64)	float64

Abs	returns	the	absolute	value	of	x.

Special	cases	are:

Abs(Inf)	=	+Inf

Abs(NaN)	=	NaN

func	Acos
func	Acos(x	float64)	float64

Acos	returns	the	arccosine	of	x.

Special	case	is:

Acos(x)	=	NaN	if	x	<	-1	or	x	>	1

func	Acosh
func	Acosh(x	float64)	float64

Acosh(x)	calculates	the	inverse	hyperbolic	cosine	of	x.

Special	cases	are:

Acosh(+Inf)	=	+Inf

Acosh(x)	=	NaN	if	x	<	1

Acosh(NaN)	=	NaN

func	Asin
func	Asin(x	float64)	float64

Asin	returns	the	arcsine	of	x.

Special	cases	are:

Asin(0)	=	0

Asin(x)	=	NaN	if	x	<	-1	or	x	>	1

func	Asinh
func	Asinh(x	float64)	float64

Asinh(x)	calculates	the	inverse	hyperbolic	sine	of	x.

Special	cases	are:

Asinh(0)	=	0

Asinh(Inf)	=	Inf

Asinh(NaN)	=	NaN

func	Atan
func	Atan(x	float64)	float64

Atan	returns	the	arctangent	of	x.

Special	cases	are:

Atan(0)	=	0

Atan(Inf)	=	Pi/2

func	Atan2
func	Atan2(y,	x	float64)	float64

Atan2	returns	the	arc	tangent	of	y/x,	using	the	signs	of	the	two	to	determine	the
quadrant	of	the	return	value.

Special	cases	are	(in	order):

Atan2(y,	NaN)	=	NaN

Atan2(NaN,	x)	=	NaN

Atan2(+0,	x>=0)	=	+0

Atan2(-0,	x>=0)	=	-0

Atan2(+0,	x<=-0)	=	+Pi

Atan2(-0,	x<=-0)	=	-Pi

Atan2(y>0,	0)	=	+Pi/2

Atan2(y<0,	0)	=	-Pi/2

Atan2(+Inf,	+Inf)	=	+Pi/4

Atan2(-Inf,	+Inf)	=	-Pi/4

Atan2(+Inf,	-Inf)	=	3Pi/4

Atan2(-Inf,	-Inf)	=	-3Pi/4

Atan2(y,	+Inf)	=	0

Atan2(y>0,	-Inf)	=	+Pi

Atan2(y<0,	-Inf)	=	-Pi

Atan2(+Inf,	x)	=	+Pi/2

Atan2(-Inf,	x)	=	-Pi/2

func	Atanh
func	Atanh(x	float64)	float64

Atanh(x)	calculates	the	inverse	hyperbolic	tangent	of	x.

Special	cases	are:

Atanh(1)	=	+Inf

Atanh(0)	=	0

Atanh(-1)	=	-Inf

Atanh(x)	=	NaN	if	x	<	-1	or	x	>	1

Atanh(NaN)	=	NaN

func	Cbrt
func	Cbrt(x	float64)	float64

Cbrt	returns	the	cube	root	of	its	argument.

Special	cases	are:

Cbrt(0)	=	0

Cbrt(Inf)	=	Inf

Cbrt(NaN)	=	NaN

func	Ceil
func	Ceil(x	float64)	float64

Ceil	returns	the	least	integer	value	greater	than	or	equal	to	x.

Special	cases	are:

Ceil(0)	=	0

Ceil(Inf)	=	Inf

Ceil(NaN)	=	NaN

func	Copysign
func	Copysign(x,	y	float64)	float64

Copysign(x,	y)	returns	a	value	with	the	magnitude	of	x	and	the	sign	of	y.

func	Cos
func	Cos(x	float64)	float64

Cos	returns	the	cosine	of	x.

Special	cases	are:

Cos(Inf)	=	NaN

Cos(NaN)	=	NaN

func	Cosh
func	Cosh(x	float64)	float64

Cosh	returns	the	hyperbolic	cosine	of	x.

Special	cases	are:

Cosh(0)	=	1

Cosh(Inf)	=	+Inf

Cosh(NaN)	=	NaN

func	Dim
func	Dim(x,	y	float64)	float64

Dim	returns	the	maximum	of	x-y	or	0.

Special	cases	are:

Dim(+Inf,	+Inf)	=	NaN

Dim(-Inf,	-Inf)	=	NaN

Dim(x,	NaN)	=	Dim(NaN,	x)	=	NaN

func	Erf
func	Erf(x	float64)	float64

Erf(x)	returns	the	error	function	of	x.

Special	cases	are:

Erf(+Inf)	=	1

Erf(-Inf)	=	-1

Erf(NaN)	=	NaN

func	Erfc
func	Erfc(x	float64)	float64

Erfc(x)	returns	the	complementary	error	function	of	x.

Special	cases	are:

Erfc(+Inf)	=	0

Erfc(-Inf)	=	2

Erfc(NaN)	=	NaN

func	Exp
func	Exp(x	float64)	float64

Exp	returns	e**x,	the	base-e	exponential	of	x.

Special	cases	are:

Exp(+Inf)	=	+Inf

Exp(NaN)	=	NaN

Very	large	values	overflow	to	0	or	+Inf.	Very	small	values	underflow	to	1.

func	Exp2
func	Exp2(x	float64)	float64

Exp2	returns	2**x,	the	base-2	exponential	of	x.

Special	cases	are	the	same	as	Exp.

func	Expm1
func	Expm1(x	float64)	float64

Expm1	returns	e**x	-	1,	the	base-e	exponential	of	x	minus	1.	It	is	more	accurate
than	Exp(x)	-	1	when	x	is	near	zero.

Special	cases	are:

Expm1(+Inf)	=	+Inf

Expm1(-Inf)	=	-1

Expm1(NaN)	=	NaN

Very	large	values	overflow	to	-1	or	+Inf.

func	Float32bits
func	Float32bits(f	float32)	uint32

Float32bits	returns	the	IEEE	754	binary	representation	of	f.

func	Float32frombits
func	Float32frombits(b	uint32)	float32

Float32frombits	returns	the	floating	point	number	corresponding	to	the	IEEE
754	binary	representation	b.

func	Float64bits
func	Float64bits(f	float64)	uint64

Float64bits	returns	the	IEEE	754	binary	representation	of	f.

func	Float64frombits
func	Float64frombits(b	uint64)	float64

Float64frombits	returns	the	floating	point	number	corresponding	the	IEEE	754
binary	representation	b.

func	Floor
func	Floor(x	float64)	float64

Floor	returns	the	greatest	integer	value	less	than	or	equal	to	x.

Special	cases	are:

Floor(0)	=	0

Floor(Inf)	=	Inf

Floor(NaN)	=	NaN

func	Frexp
func	Frexp(f	float64)	(frac	float64,	exp	int)

Frexp	breaks	f	into	a	normalized	fraction	and	an	integral	power	of	two.	It	returns
frac	and	exp	satisfying	f	==	frac	2**exp,	with	the	absolute	value	of	frac	in	the
interval	[?,	1).

Special	cases	are:

Frexp(0)	=	0,	0

Frexp(Inf)	=	Inf,	0

Frexp(NaN)	=	NaN,	0

func	Gamma
func	Gamma(x	float64)	float64

Gamma(x)	returns	the	Gamma	function	of	x.

Special	cases	are:

Gamma(Inf)	=	Inf

Gamma(NaN)	=	NaN

Large	values	overflow	to	+Inf.	Zero	and	negative	integer	arguments	return	Inf.

func	Hypot
func	Hypot(p,	q	float64)	float64

Hypot	computes	Sqrt(p*p	+	q*q),	taking	care	to	avoid	unnecessary	overflow	and
underflow.

Special	cases	are:

Hypot(p,	q)	=	+Inf	if	p	or	q	is	infinite

Hypot(p,	q)	=	NaN	if	p	or	q	is	NaN

func	Ilogb
func	Ilogb(x	float64)	int

Ilogb(x)	returns	the	binary	exponent	of	x	as	an	integer.

Special	cases	are:

Ilogb(Inf)	=	MaxInt32

Ilogb(0)	=	MinInt32

Ilogb(NaN)	=	MaxInt32

func	Inf
func	Inf(sign	int)	float64

Inf	returns	positive	infinity	if	sign	>=	0,	negative	infinity	if	sign	<	0.

func	IsInf
func	IsInf(f	float64,	sign	int)	bool

IsInf	returns	whether	f	is	an	infinity,	according	to	sign.	If	sign	>	0,	IsInf	returns
whether	f	is	positive	infinity.	If	sign	<	0,	IsInf	returns	whether	f	is	negative
infinity.	If	sign	==	0,	IsInf	returns	whether	f	is	either	infinity.

func	IsNaN
func	IsNaN(f	float64)	(is	bool)

IsNaN	returns	whether	f	is	an	IEEE	754	“not-a-number”	value.

func	J0
func	J0(x	float64)	float64

J0	returns	the	order-zero	Bessel	function	of	the	first	kind.

Special	cases	are:

J0(Inf)	=	0

J0(0)	=	1

J0(NaN)	=	NaN

func	J1
func	J1(x	float64)	float64

J1	returns	the	order-one	Bessel	function	of	the	first	kind.

Special	cases	are:

J1(Inf)	=	0

J1(NaN)	=	NaN

func	Jn
func	Jn(n	int,	x	float64)	float64

Jn	returns	the	order-n	Bessel	function	of	the	first	kind.

Special	cases	are:

Jn(n,	Inf)	=	0

Jn(n,	NaN)	=	NaN

func	Ldexp
func	Ldexp(frac	float64,	exp	int)	float64

Ldexp	is	the	inverse	of	Frexp.	It	returns	frac	2**exp.

Special	cases	are:

Ldexp(0,	exp)	=	0

Ldexp(Inf,	exp)	=	Inf

Ldexp(NaN,	exp)	=	NaN

func	Lgamma
func	Lgamma(x	float64)	(lgamma	float64,	sign	int)

Lgamma	returns	the	natural	logarithm	and	sign	(-1	or	+1)	of	Gamma(x).

Special	cases	are:

Lgamma(+Inf)	=	+Inf

Lgamma(0)	=	+Inf

Lgamma(-integer)	=	+Inf

Lgamma(-Inf)	=	-Inf

Lgamma(NaN)	=	NaN

func	Log
func	Log(x	float64)	float64

Log	returns	the	natural	logarithm	of	x.

Special	cases	are:

Log(+Inf)	=	+Inf

Log(0)	=	-Inf

Log(x	<	0)	=	NaN

Log(NaN)	=	NaN

func	Log10
func	Log10(x	float64)	float64

Log10	returns	the	decimal	logarithm	of	x.	The	special	cases	are	the	same	as	for
Log.

func	Log1p
func	Log1p(x	float64)	float64

Log1p	returns	the	natural	logarithm	of	1	plus	its	argument	x.	It	is	more	accurate
than	Log(1	+	x)	when	x	is	near	zero.

Special	cases	are:

Log1p(+Inf)	=	+Inf

Log1p(0)	=	0

Log1p(-1)	=	-Inf

Log1p(x	<	-1)	=	NaN

Log1p(NaN)	=	NaN

func	Log2
func	Log2(x	float64)	float64

Log2	returns	the	binary	logarithm	of	x.	The	special	cases	are	the	same	as	for
Log.

func	Logb
func	Logb(x	float64)	float64

Logb(x)	returns	the	binary	exponent	of	x.

Special	cases	are:

Logb(Inf)	=	+Inf

Logb(0)	=	-Inf

Logb(NaN)	=	NaN

func	Max
func	Max(x,	y	float64)	float64

Max	returns	the	larger	of	x	or	y.

Special	cases	are:

Max(x,	+Inf)	=	Max(+Inf,	x)	=	+Inf

Max(x,	NaN)	=	Max(NaN,	x)	=	NaN

Max(+0,	0)	=	Max(0,	+0)	=	+0

Max(-0,	-0)	=	-0

func	Min
func	Min(x,	y	float64)	float64

Min	returns	the	smaller	of	x	or	y.

Special	cases	are:

Min(x,	-Inf)	=	Min(-Inf,	x)	=	-Inf

Min(x,	NaN)	=	Min(NaN,	x)	=	NaN

Min(-0,	0)	=	Min(0,	-0)	=	-0

func	Mod
func	Mod(x,	y	float64)	float64

Mod	returns	the	floating-point	remainder	of	x/y.	The	magnitude	of	the	result	is
less	than	y	and	its	sign	agrees	with	that	of	x.

Special	cases	are:

Mod(Inf,	y)	=	NaN

Mod(NaN,	y)	=	NaN

Mod(x,	0)	=	NaN

Mod(x,	Inf)	=	x

Mod(x,	NaN)	=	NaN

func	Modf
func	Modf(f	float64)	(int	float64,	frac	float64)

Modf	returns	integer	and	fractional	floating-point	numbers	that	sum	to	f.	Both
values	have	the	same	sign	as	f.

Special	cases	are:

Modf(Inf)	=	Inf,	NaN

Modf(NaN)	=	NaN,	NaN

func	NaN
func	NaN()	float64

NaN	returns	an	IEEE	754	“not-a-number”	value.

func	Nextafter
func	Nextafter(x,	y	float64)	(r	float64)

Nextafter	returns	the	next	representable	value	after	x	towards	y.	If	x	==	y,	then	x
is	returned.

Special	cases	are:

Nextafter(NaN,	y)	=	NaN

Nextafter(x,	NaN)	=	NaN

func	Pow
func	Pow(x,	y	float64)	float64

Pow	returns	x**y,	the	base-x	exponential	of	y.

Special	cases	are	(in	order):

Pow(x,	0)	=	1	for	any	x

Pow(1,	y)	=	1	for	any	y

Pow(x,	1)	=	x	for	any	x

Pow(NaN,	y)	=	NaN

Pow(x,	NaN)	=	NaN

Pow(0,	y)	=	Inf	for	y	an	odd	integer	<	0

Pow(0,	-Inf)	=	+Inf

Pow(0,	+Inf)	=	+0

Pow(0,	y)	=	+Inf	for	finite	y	<	0	and	not	an	odd	integer

Pow(0,	y)	=	0	for	y	an	odd	integer	>	0

Pow(0,	y)	=	+0	for	finite	y	>	0	and	not	an	odd	integer

Pow(-1,	Inf)	=	1

Pow(x,	+Inf)	=	+Inf	for	|x|	>	1

Pow(x,	-Inf)	=	+0	for	|x|	>	1

Pow(x,	+Inf)	=	+0	for	|x|	<	1

Pow(x,	-Inf)	=	+Inf	for	|x|	<	1

Pow(+Inf,	y)	=	+Inf	for	y	>	0

Pow(+Inf,	y)	=	+0	for	y	<	0

Pow(-Inf,	y)	=	Pow(-0,	-y)

Pow(x,	y)	=	NaN	for	finite	x	<	0	and	finite	non-integer	y

func	Pow10
func	Pow10(e	int)	float64

Pow10	returns	10**e,	the	base-10	exponential	of	e.

Special	cases	are:

Pow10(e)	=	+Inf	for	e	>	309

Pow10(e)	=	0	for	e	<	-324

func	Remainder
func	Remainder(x,	y	float64)	float64

Remainder	returns	the	IEEE	754	floating-point	remainder	of	x/y.

Special	cases	are:

Remainder(Inf,	y)	=	NaN

Remainder(NaN,	y)	=	NaN

Remainder(x,	0)	=	NaN

Remainder(x,	Inf)	=	x

Remainder(x,	NaN)	=	NaN

func	Signbit
func	Signbit(x	float64)	bool

Signbit	returns	true	if	x	is	negative	or	negative	zero.

func	Sin
func	Sin(x	float64)	float64

Sin	returns	the	sine	of	x.

Special	cases	are:

Sin(0)	=	0

Sin(Inf)	=	NaN

Sin(NaN)	=	NaN

func	Sincos
func	Sincos(x	float64)	(sin,	cos	float64)

Sincos(x)	returns	Sin(x),	Cos(x).

Special	cases	are:

Sincos(0)	=	0,	1

Sincos(Inf)	=	NaN,	NaN

Sincos(NaN)	=	NaN,	NaN

func	Sinh
func	Sinh(x	float64)	float64

Sinh	returns	the	hyperbolic	sine	of	x.

Special	cases	are:

Sinh(0)	=	0

Sinh(Inf)	=	Inf

Sinh(NaN)	=	NaN

func	Sqrt
func	Sqrt(x	float64)	float64

Sqrt	returns	the	square	root	of	x.

Special	cases	are:

Sqrt(+Inf)	=	+Inf

Sqrt(0)	=	0

Sqrt(x	<	0)	=	NaN

Sqrt(NaN)	=	NaN

func	Tan
func	Tan(x	float64)	float64

Tan	returns	the	tangent	of	x.

Special	cases	are:

Tan(0)	=	0

Tan(Inf)	=	NaN

Tan(NaN)	=	NaN

func	Tanh
func	Tanh(x	float64)	float64

Tanh	computes	the	hyperbolic	tangent	of	x.

Special	cases	are:

Tanh(0)	=	0

Tanh(Inf)	=	1

Tanh(NaN)	=	NaN

func	Trunc
func	Trunc(x	float64)	float64

Trunc	returns	the	integer	value	of	x.

Special	cases	are:

Trunc(0)	=	0

Trunc(Inf)	=	Inf

Trunc(NaN)	=	NaN

func	Y0
func	Y0(x	float64)	float64

Y0	returns	the	order-zero	Bessel	function	of	the	second	kind.

Special	cases	are:

Y0(+Inf)	=	0

Y0(0)	=	-Inf

Y0(x	<	0)	=	NaN

Y0(NaN)	=	NaN

func	Y1
func	Y1(x	float64)	float64

Y1	returns	the	order-one	Bessel	function	of	the	second	kind.

Special	cases	are:

Y1(+Inf)	=	0

Y1(0)	=	-Inf

Y1(x	<	0)	=	NaN

Y1(NaN)	=	NaN

func	Yn
func	Yn(n	int,	x	float64)	float64

Yn	returns	the	order-n	Bessel	function	of	the	second	kind.

Special	cases	are:

Yn(n,	+Inf)	=	0

Yn(n	>	0,	0)	=	-Inf

Yn(n	<	0,	0)	=	+Inf	if	n	is	odd,	-Inf	if	n	is	even

Y1(n,	x	<	0)	=	NaN

Y1(n,	NaN)	=	NaN

Subdirectories

Name 				 Synopsis
big 				 Package	big	implements	multi-precision	arithmetic	(big	numbers).

cmplx 				 Package	cmplx	provides	basic	constants	and	mathematical	functionsfor	complex	numbers.
rand 				 Package	rand	implements	pseudo-random	number	generators.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	big
import	"math/big"

Overview
Index
Examples

Overview	?

Overview	?

Package	big	implements	multi-precision	arithmetic	(big	numbers).	The
following	numeric	types	are	supported:

-	Int	 signed	integers

-	Rat	 rational	numbers

Methods	are	typically	of	the	form:

func	(z	*Int)	Op(x,	y	*Int)	*Int	 (similar	for	*Rat)

and	implement	operations	z	=	x	Op	y	with	the	result	as	receiver;	if	it	is	one	of	the
operands	it	may	be	overwritten	(and	its	memory	reused).	To	enable	chaining	of
operations,	the	result	is	also	returned.	Methods	returning	a	result	other	than	*Int
or	*Rat	take	one	of	the	operands	as	the	receiver.

Index

Constants
type	Int
				func	NewInt(x	int64)	*Int
				func	(z	*Int)	Abs(x	*Int)	*Int
				func	(z	*Int)	Add(x,	y	*Int)	*Int
				func	(z	*Int)	And(x,	y	*Int)	*Int
				func	(z	*Int)	AndNot(x,	y	*Int)	*Int
				func	(z	*Int)	Binomial(n,	k	int64)	*Int
				func	(x	*Int)	Bit(i	int)	uint
				func	(x	*Int)	BitLen()	int
				func	(x	*Int)	Bits()	[]Word
				func	(x	*Int)	Bytes()	[]byte
				func	(x	*Int)	Cmp(y	*Int)	(r	int)
				func	(z	*Int)	Div(x,	y	*Int)	*Int
				func	(z	*Int)	DivMod(x,	y,	m	*Int)	(*Int,	*Int)
				func	(z	*Int)	Exp(x,	y,	m	*Int)	*Int
				func	(x	*Int)	Format(s	fmt.State,	ch	rune)
				func	(z	*Int)	GCD(x,	y,	a,	b	*Int)	*Int
				func	(z	*Int)	GobDecode(buf	[]byte)	error
				func	(x	*Int)	GobEncode()	([]byte,	error)
				func	(x	*Int)	Int64()	int64
				func	(z	*Int)	Lsh(x	*Int,	n	uint)	*Int
				func	(z	*Int)	Mod(x,	y	*Int)	*Int
				func	(z	*Int)	ModInverse(g,	p	*Int)	*Int
				func	(z	*Int)	Mul(x,	y	*Int)	*Int
				func	(z	*Int)	MulRange(a,	b	int64)	*Int
				func	(z	*Int)	Neg(x	*Int)	*Int
				func	(z	*Int)	Not(x	*Int)	*Int
				func	(z	*Int)	Or(x,	y	*Int)	*Int
				func	(x	*Int)	ProbablyPrime(n	int)	bool
				func	(z	*Int)	Quo(x,	y	*Int)	*Int
				func	(z	*Int)	QuoRem(x,	y,	r	*Int)	(*Int,	*Int)
				func	(z	*Int)	Rand(rnd	*rand.Rand,	n	*Int)	*Int
				func	(z	*Int)	Rem(x,	y	*Int)	*Int
				func	(z	*Int)	Rsh(x	*Int,	n	uint)	*Int

				func	(z	*Int)	Scan(s	fmt.ScanState,	ch	rune)	error
				func	(z	*Int)	Set(x	*Int)	*Int
				func	(z	*Int)	SetBit(x	*Int,	i	int,	b	uint)	*Int
				func	(z	*Int)	SetBits(abs	[]Word)	*Int
				func	(z	*Int)	SetBytes(buf	[]byte)	*Int
				func	(z	*Int)	SetInt64(x	int64)	*Int
				func	(z	*Int)	SetString(s	string,	base	int)	(*Int,	bool)
				func	(x	*Int)	Sign()	int
				func	(x	*Int)	String()	string
				func	(z	*Int)	Sub(x,	y	*Int)	*Int
				func	(z	*Int)	Xor(x,	y	*Int)	*Int
type	Rat
				func	NewRat(a,	b	int64)	*Rat
				func	(z	*Rat)	Abs(x	*Rat)	*Rat
				func	(z	*Rat)	Add(x,	y	*Rat)	*Rat
				func	(x	*Rat)	Cmp(y	*Rat)	int
				func	(x	*Rat)	Denom()	*Int
				func	(x	*Rat)	FloatString(prec	int)	string
				func	(z	*Rat)	GobDecode(buf	[]byte)	error
				func	(x	*Rat)	GobEncode()	([]byte,	error)
				func	(z	*Rat)	Inv(x	*Rat)	*Rat
				func	(x	*Rat)	IsInt()	bool
				func	(z	*Rat)	Mul(x,	y	*Rat)	*Rat
				func	(z	*Rat)	Neg(x	*Rat)	*Rat
				func	(x	*Rat)	Num()	*Int
				func	(z	*Rat)	Quo(x,	y	*Rat)	*Rat
				func	(x	*Rat)	RatString()	string
				func	(z	*Rat)	Scan(s	fmt.ScanState,	ch	rune)	error
				func	(z	*Rat)	Set(x	*Rat)	*Rat
				func	(z	*Rat)	SetFrac(a,	b	*Int)	*Rat
				func	(z	*Rat)	SetFrac64(a,	b	int64)	*Rat
				func	(z	*Rat)	SetInt(x	*Int)	*Rat
				func	(z	*Rat)	SetInt64(x	int64)	*Rat
				func	(z	*Rat)	SetString(s	string)	(*Rat,	bool)
				func	(x	*Rat)	Sign()	int
				func	(x	*Rat)	String()	string
				func	(z	*Rat)	Sub(x,	y	*Rat)	*Rat
type	Word

Examples

Int.Scan
Int.SetString
Rat.Scan
Rat.SetString

Package	files

arith.go	arith_decl.go	int.go	nat.go	rat.go

Constants
const	MaxBase	=	'z'	-	'a'	+	10	+	1	//	=	hexValue('z')	+	1

MaxBase	is	the	largest	number	base	accepted	for	string	conversions.

type	Int
type	Int	struct	{

				//	contains	filtered	or	unexported	fields

}

An	Int	represents	a	signed	multi-precision	integer.	The	zero	value	for	an	Int
represents	the	value	0.

func	NewInt

func	NewInt(x	int64)	*Int

NewInt	allocates	and	returns	a	new	Int	set	to	x.

func	(*Int)	Abs

func	(z	*Int)	Abs(x	*Int)	*Int

Abs	sets	z	to	|x|	(the	absolute	value	of	x)	and	returns	z.

func	(*Int)	Add

func	(z	*Int)	Add(x,	y	*Int)	*Int

Add	sets	z	to	the	sum	x+y	and	returns	z.

func	(*Int)	And

func	(z	*Int)	And(x,	y	*Int)	*Int

And	sets	z	=	x	&	y	and	returns	z.

func	(*Int)	AndNot

func	(z	*Int)	AndNot(x,	y	*Int)	*Int

AndNot	sets	z	=	x	&^	y	and	returns	z.

func	(*Int)	Binomial

func	(z	*Int)	Binomial(n,	k	int64)	*Int

Binomial	sets	z	to	the	binomial	coefficient	of	(n,	k)	and	returns	z.

func	(*Int)	Bit

func	(x	*Int)	Bit(i	int)	uint

Bit	returns	the	value	of	the	i'th	bit	of	x.	That	is,	it	returns	(x>>i)&1.	The	bit
index	i	must	be	>=	0.

func	(*Int)	BitLen

func	(x	*Int)	BitLen()	int

BitLen	returns	the	length	of	the	absolute	value	of	z	in	bits.	The	bit	length	of	0	is
0.

func	(*Int)	Bits

func	(x	*Int)	Bits()	[]Word

Bits	provides	raw	(unchecked	but	fast)	access	to	x	by	returning	its	absolute	value
as	a	little-endian	Word	slice.	The	result	and	x	share	the	same	underlying	array.
Bits	is	intended	to	support	implementation	of	missing	low-level	Int	functionality
outside	this	package;	it	should	be	avoided	otherwise.

func	(*Int)	Bytes

func	(x	*Int)	Bytes()	[]byte

Bytes	returns	the	absolute	value	of	z	as	a	big-endian	byte	slice.

func	(*Int)	Cmp

func	(x	*Int)	Cmp(y	*Int)	(r	int)

Cmp	compares	x	and	y	and	returns:

-1	if	x	<		y

	0	if	x	==	y

+1	if	x	>		y

func	(*Int)	Div

func	(z	*Int)	Div(x,	y	*Int)	*Int

Div	sets	z	to	the	quotient	x/y	for	y	!=	0	and	returns	z.	If	y	==	0,	a	division-by-
zero	run-time	panic	occurs.	Div	implements	Euclidean	division	(unlike	Go);	see
DivMod	for	more	details.

func	(*Int)	DivMod

func	(z	*Int)	DivMod(x,	y,	m	*Int)	(*Int,	*Int)

DivMod	sets	z	to	the	quotient	x	div	y	and	m	to	the	modulus	x	mod	y	and	returns
the	pair	(z,	m)	for	y	!=	0.	If	y	==	0,	a	division-by-zero	run-time	panic	occurs.

DivMod	implements	Euclidean	division	and	modulus	(unlike	Go):

q	=	x	div	y		such	that

m	=	x	-	y*q		with	0	<=	m	<	|q|

(See	Raymond	T.	Boute,	“The	Euclidean	definition	of	the	functions	div	and
mod”.	ACM	Transactions	on	Programming	Languages	and	Systems	(TOPLAS),
14(2):127-144,	New	York,	NY,	USA,	4/1992.	ACM	press.)	See	QuoRem	for	T-
division	and	modulus	(like	Go).

func	(*Int)	Exp

func	(z	*Int)	Exp(x,	y,	m	*Int)	*Int

Exp	sets	z	=	x**y	mod	m	and	returns	z.	If	m	is	nil,	z	=	x**y.	See	Knuth,	volume
2,	section	4.6.3.

func	(*Int)	Format

func	(x	*Int)	Format(s	fmt.State,	ch	rune)

Format	is	a	support	routine	for	fmt.Formatter.	It	accepts	the	formats	'b'	(binary),

'o'	(octal),	'd'	(decimal),	'x'	(lowercase	hexadecimal),	and	'X'	(uppercase
hexadecimal).	Also	supported	are	the	full	suite	of	package	fmt's	format	verbs	for
integral	types,	including	'+',	'-',	and	'	'	for	sign	control,	'#'	for	leading	zero	in	octal
and	for	hexadecimal,	a	leading	"0x"	or	"0X"	for	"%#x"	and	"%#X"	respectively,
specification	of	minimum	digits	precision,	output	field	width,	space	or	zero
padding,	and	left	or	right	justification.

func	(*Int)	GCD

func	(z	*Int)	GCD(x,	y,	a,	b	*Int)	*Int

GCD	sets	z	to	the	greatest	common	divisor	of	a	and	b,	which	must	be	positive
numbers,	and	returns	z.	If	x	and	y	are	not	nil,	GCD	sets	x	and	y	such	that	z	=	a*x
+	b*y.	If	either	a	or	b	is	not	positive,	GCD	sets	z	=	x	=	y	=	0.

func	(*Int)	GobDecode

func	(z	*Int)	GobDecode(buf	[]byte)	error

GobDecode	implements	the	gob.GobDecoder	interface.

func	(*Int)	GobEncode

func	(x	*Int)	GobEncode()	([]byte,	error)

GobEncode	implements	the	gob.GobEncoder	interface.

func	(*Int)	Int64

func	(x	*Int)	Int64()	int64

Int64	returns	the	int64	representation	of	x.	If	x	cannot	be	represented	in	an	int64,
the	result	is	undefined.

func	(*Int)	Lsh

func	(z	*Int)	Lsh(x	*Int,	n	uint)	*Int

Lsh	sets	z	=	x	<<	n	and	returns	z.

func	(*Int)	Mod

func	(z	*Int)	Mod(x,	y	*Int)	*Int

Mod	sets	z	to	the	modulus	x%y	for	y	!=	0	and	returns	z.	If	y	==	0,	a	division-by-
zero	run-time	panic	occurs.	Mod	implements	Euclidean	modulus	(unlike	Go);
see	DivMod	for	more	details.

func	(*Int)	ModInverse

func	(z	*Int)	ModInverse(g,	p	*Int)	*Int

ModInverse	sets	z	to	the	multiplicative	inverse	of	g	in	the	group	?/p?	(where	p	is
a	prime)	and	returns	z.

func	(*Int)	Mul

func	(z	*Int)	Mul(x,	y	*Int)	*Int

Mul	sets	z	to	the	product	x*y	and	returns	z.

func	(*Int)	MulRange

func	(z	*Int)	MulRange(a,	b	int64)	*Int

MulRange	sets	z	to	the	product	of	all	integers	in	the	range	[a,	b]	inclusively	and
returns	z.	If	a	>	b	(empty	range),	the	result	is	1.

func	(*Int)	Neg

func	(z	*Int)	Neg(x	*Int)	*Int

Neg	sets	z	to	-x	and	returns	z.

func	(*Int)	Not

func	(z	*Int)	Not(x	*Int)	*Int

Not	sets	z	=	^x	and	returns	z.

func	(*Int)	Or

func	(z	*Int)	Or(x,	y	*Int)	*Int

Or	sets	z	=	x	|	y	and	returns	z.

func	(*Int)	ProbablyPrime

func	(x	*Int)	ProbablyPrime(n	int)	bool

ProbablyPrime	performs	n	Miller-Rabin	tests	to	check	whether	x	is	prime.	If	it
returns	true,	x	is	prime	with	probability	1	-	1/4^n.	If	it	returns	false,	x	is	not
prime.

func	(*Int)	Quo

func	(z	*Int)	Quo(x,	y	*Int)	*Int

Quo	sets	z	to	the	quotient	x/y	for	y	!=	0	and	returns	z.	If	y	==	0,	a	division-by-
zero	run-time	panic	occurs.	Quo	implements	truncated	division	(like	Go);	see
QuoRem	for	more	details.

func	(*Int)	QuoRem

func	(z	*Int)	QuoRem(x,	y,	r	*Int)	(*Int,	*Int)

QuoRem	sets	z	to	the	quotient	x/y	and	r	to	the	remainder	x%y	and	returns	the
pair	(z,	r)	for	y	!=	0.	If	y	==	0,	a	division-by-zero	run-time	panic	occurs.

QuoRem	implements	T-division	and	modulus	(like	Go):

q	=	x/y						with	the	result	truncated	to	zero

r	=	x	-	y*q

(See	Daan	Leijen,	“Division	and	Modulus	for	Computer	Scientists”.)	See
DivMod	for	Euclidean	division	and	modulus	(unlike	Go).

func	(*Int)	Rand

func	(z	*Int)	Rand(rnd	*rand.Rand,	n	*Int)	*Int

Rand	sets	z	to	a	pseudo-random	number	in	[0,	n)	and	returns	z.

func	(*Int)	Rem

func	(z	*Int)	Rem(x,	y	*Int)	*Int

Rem	sets	z	to	the	remainder	x%y	for	y	!=	0	and	returns	z.	If	y	==	0,	a	division-
by-zero	run-time	panic	occurs.	Rem	implements	truncated	modulus	(like	Go);
see	QuoRem	for	more	details.

func	(*Int)	Rsh

func	(z	*Int)	Rsh(x	*Int,	n	uint)	*Int

Rsh	sets	z	=	x	>>	n	and	returns	z.

func	(*Int)	Scan

func	(z	*Int)	Scan(s	fmt.ScanState,	ch	rune)	error

Scan	is	a	support	routine	for	fmt.Scanner;	it	sets	z	to	the	value	of	the	scanned
number.	It	accepts	the	formats	'b'	(binary),	'o'	(octal),	'd'	(decimal),	'x'	(lowercase
hexadecimal),	and	'X'	(uppercase	hexadecimal).

?	Example

?	Example

Code:

//	The	Scan	function	is	rarely	used	directly;

//	the	fmt	package	recognizes	it	as	an	implementation	of	fmt.Scanner.

i	:=	new(big.Int)

_,	err	:=	fmt.Sscan("18446744073709551617",	i)

if	err	!=	nil	{

				log.Println("error	scanning	value:",	err)

}	else	{

				fmt.Println(i)

}

Output:

18446744073709551617

func	(*Int)	Set

func	(z	*Int)	Set(x	*Int)	*Int

Set	sets	z	to	x	and	returns	z.

func	(*Int)	SetBit

func	(z	*Int)	SetBit(x	*Int,	i	int,	b	uint)	*Int

SetBit	sets	z	to	x,	with	x's	i'th	bit	set	to	b	(0	or	1).	That	is,	if	bit	is	1	SetBit	sets	z
=	x	|	(1	<<	i);	if	bit	is	0	it	sets	z	=	x	&^	(1	<<	i).	If	bit	is	not	0	or	1,	SetBit	will
panic.

func	(*Int)	SetBits

func	(z	*Int)	SetBits(abs	[]Word)	*Int

SetBits	provides	raw	(unchecked	but	fast)	access	to	z	by	setting	its	value	to	abs,
interpreted	as	a	little-endian	Word	slice,	and	returning	z.	The	result	and	abs	share
the	same	underlying	array.	SetBits	is	intended	to	support	implementation	of
missing	low-level	Int	functionality	outside	this	package;	it	should	be	avoided
otherwise.

func	(*Int)	SetBytes

func	(z	*Int)	SetBytes(buf	[]byte)	*Int

SetBytes	interprets	buf	as	the	bytes	of	a	big-endian	unsigned	integer,	sets	z	to
that	value,	and	returns	z.

func	(*Int)	SetInt64

func	(z	*Int)	SetInt64(x	int64)	*Int

SetInt64	sets	z	to	x	and	returns	z.

func	(*Int)	SetString

func	(z	*Int)	SetString(s	string,	base	int)	(*Int,	bool)

SetString	sets	z	to	the	value	of	s,	interpreted	in	the	given	base,	and	returns	z	and
a	boolean	indicating	success.	If	SetString	fails,	the	value	of	z	is	undefined	but
the	returned	value	is	nil.

The	base	argument	must	be	0	or	a	value	from	2	through	MaxBase.	If	the	base	is
0,	the	string	prefix	determines	the	actual	conversion	base.	A	prefix	of	“0x”	or
“0X”	selects	base	16;	the	“0”	prefix	selects	base	8,	and	a	“0b”	or	“0B”	prefix
selects	base	2.	Otherwise	the	selected	base	is	10.

?	Example

?	Example

Code:

i	:=	new(big.Int)

i.SetString("644",	8)	//	octal

fmt.Println(i)

Output:

420

func	(*Int)	Sign

func	(x	*Int)	Sign()	int

Sign	returns:

-1	if	x	<		0

	0	if	x	==	0

+1	if	x	>		0

func	(*Int)	String

func	(x	*Int)	String()	string

func	(*Int)	Sub

func	(z	*Int)	Sub(x,	y	*Int)	*Int

Sub	sets	z	to	the	difference	x-y	and	returns	z.

func	(*Int)	Xor

func	(z	*Int)	Xor(x,	y	*Int)	*Int

Xor	sets	z	=	x	^	y	and	returns	z.

type	Rat
type	Rat	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Rat	represents	a	quotient	a/b	of	arbitrary	precision.	The	zero	value	for	a	Rat
represents	the	value	0.

func	NewRat

func	NewRat(a,	b	int64)	*Rat

NewRat	creates	a	new	Rat	with	numerator	a	and	denominator	b.

func	(*Rat)	Abs

func	(z	*Rat)	Abs(x	*Rat)	*Rat

Abs	sets	z	to	|x|	(the	absolute	value	of	x)	and	returns	z.

func	(*Rat)	Add

func	(z	*Rat)	Add(x,	y	*Rat)	*Rat

Add	sets	z	to	the	sum	x+y	and	returns	z.

func	(*Rat)	Cmp

func	(x	*Rat)	Cmp(y	*Rat)	int

Cmp	compares	x	and	y	and	returns:

-1	if	x	<		y

	0	if	x	==	y

+1	if	x	>		y

func	(*Rat)	Denom

func	(x	*Rat)	Denom()	*Int

Denom	returns	the	denominator	of	x;	it	is	always	>	0.	The	result	is	a	reference	to
x's	denominator;	it	may	change	if	a	new	value	is	assigned	to	x.

func	(*Rat)	FloatString

func	(x	*Rat)	FloatString(prec	int)	string

FloatString	returns	a	string	representation	of	z	in	decimal	form	with	prec	digits
of	precision	after	the	decimal	point	and	the	last	digit	rounded.

func	(*Rat)	GobDecode

func	(z	*Rat)	GobDecode(buf	[]byte)	error

GobDecode	implements	the	gob.GobDecoder	interface.

func	(*Rat)	GobEncode

func	(x	*Rat)	GobEncode()	([]byte,	error)

GobEncode	implements	the	gob.GobEncoder	interface.

func	(*Rat)	Inv

func	(z	*Rat)	Inv(x	*Rat)	*Rat

Inv	sets	z	to	1/x	and	returns	z.

func	(*Rat)	IsInt

func	(x	*Rat)	IsInt()	bool

IsInt	returns	true	if	the	denominator	of	x	is	1.

func	(*Rat)	Mul

func	(z	*Rat)	Mul(x,	y	*Rat)	*Rat

Mul	sets	z	to	the	product	x*y	and	returns	z.

func	(*Rat)	Neg

func	(z	*Rat)	Neg(x	*Rat)	*Rat

Neg	sets	z	to	-x	and	returns	z.

func	(*Rat)	Num

func	(x	*Rat)	Num()	*Int

Num	returns	the	numerator	of	x;	it	may	be	<=	0.	The	result	is	a	reference	to	x's
numerator;	it	may	change	if	a	new	value	is	assigned	to	x.

func	(*Rat)	Quo

func	(z	*Rat)	Quo(x,	y	*Rat)	*Rat

Quo	sets	z	to	the	quotient	x/y	and	returns	z.	If	y	==	0,	a	division-by-zero	run-
time	panic	occurs.

func	(*Rat)	RatString

func	(x	*Rat)	RatString()	string

RatString	returns	a	string	representation	of	z	in	the	form	"a/b"	if	b	!=	1,	and	in
the	form	"a"	if	b	==	1.

func	(*Rat)	Scan

func	(z	*Rat)	Scan(s	fmt.ScanState,	ch	rune)	error

Scan	is	a	support	routine	for	fmt.Scanner.	It	accepts	the	formats	'e',	'E',	'f',	'F',	'g',
'G',	and	'v'.	All	formats	are	equivalent.

?	Example

?	Example

Code:

//	The	Scan	function	is	rarely	used	directly;

//	the	fmt	package	recognizes	it	as	an	implementation	of	fmt.Scanner.

r	:=	new(big.Rat)

_,	err	:=	fmt.Sscan("1.5000",	r)

if	err	!=	nil	{

				log.Println("error	scanning	value:",	err)

}	else	{

				fmt.Println(r)

}

Output:

3/2

func	(*Rat)	Set

func	(z	*Rat)	Set(x	*Rat)	*Rat

Set	sets	z	to	x	(by	making	a	copy	of	x)	and	returns	z.

func	(*Rat)	SetFrac

func	(z	*Rat)	SetFrac(a,	b	*Int)	*Rat

SetFrac	sets	z	to	a/b	and	returns	z.

func	(*Rat)	SetFrac64

func	(z	*Rat)	SetFrac64(a,	b	int64)	*Rat

SetFrac64	sets	z	to	a/b	and	returns	z.

func	(*Rat)	SetInt

func	(z	*Rat)	SetInt(x	*Int)	*Rat

SetInt	sets	z	to	x	(by	making	a	copy	of	x)	and	returns	z.

func	(*Rat)	SetInt64

func	(z	*Rat)	SetInt64(x	int64)	*Rat

SetInt64	sets	z	to	x	and	returns	z.

func	(*Rat)	SetString

func	(z	*Rat)	SetString(s	string)	(*Rat,	bool)

SetString	sets	z	to	the	value	of	s	and	returns	z	and	a	boolean	indicating	success.	s
can	be	given	as	a	fraction	"a/b"	or	as	a	floating-point	number	optionally	followed
by	an	exponent.	If	the	operation	failed,	the	value	of	z	is	undefined	but	the
returned	value	is	nil.

?	Example

?	Example

Code:

r	:=	new(big.Rat)

r.SetString("355/113")

fmt.Println(r.FloatString(3))

Output:

3.142

func	(*Rat)	Sign

func	(x	*Rat)	Sign()	int

Sign	returns:

-1	if	x	<		0

	0	if	x	==	0

+1	if	x	>		0

func	(*Rat)	String

func	(x	*Rat)	String()	string

String	returns	a	string	representation	of	z	in	the	form	"a/b"	(even	if	b	==	1).

func	(*Rat)	Sub

func	(z	*Rat)	Sub(x,	y	*Rat)	*Rat

Sub	sets	z	to	the	difference	x-y	and	returns	z.

type	Word
type	Word	uintptr

A	Word	represents	a	single	digit	of	a	multi-precision	unsigned	integer.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	cmplx
import	"math/cmplx"

Overview
Index

Overview	?

Overview	?

Package	cmplx	provides	basic	constants	and	mathematical	functions	for	complex
numbers.

Index

func	Abs(x	complex128)	float64
func	Acos(x	complex128)	complex128
func	Acosh(x	complex128)	complex128
func	Asin(x	complex128)	complex128
func	Asinh(x	complex128)	complex128
func	Atan(x	complex128)	complex128
func	Atanh(x	complex128)	complex128
func	Conj(x	complex128)	complex128
func	Cos(x	complex128)	complex128
func	Cosh(x	complex128)	complex128
func	Cot(x	complex128)	complex128
func	Exp(x	complex128)	complex128
func	Inf()	complex128
func	IsInf(x	complex128)	bool
func	IsNaN(x	complex128)	bool
func	Log(x	complex128)	complex128
func	Log10(x	complex128)	complex128
func	NaN()	complex128
func	Phase(x	complex128)	float64
func	Polar(x	complex128)	(r,	float64)
func	Pow(x,	y	complex128)	complex128
func	Rect(r,	float64)	complex128
func	Sin(x	complex128)	complex128
func	Sinh(x	complex128)	complex128
func	Sqrt(x	complex128)	complex128
func	Tan(x	complex128)	complex128
func	Tanh(x	complex128)	complex128

Package	files

abs.go	asin.go	conj.go	exp.go	isinf.go	isnan.go	log.go	phase.go	polar.go	pow.go	rect.go	sin.go	sqrt.go	tan.go

func	Abs
func	Abs(x	complex128)	float64

Abs	returns	the	absolute	value	(also	called	the	modulus)	of	x.

func	Acos
func	Acos(x	complex128)	complex128

Acos	returns	the	inverse	cosine	of	x.

func	Acosh
func	Acosh(x	complex128)	complex128

Acosh	returns	the	inverse	hyperbolic	cosine	of	x.

func	Asin
func	Asin(x	complex128)	complex128

Asin	returns	the	inverse	sine	of	x.

func	Asinh
func	Asinh(x	complex128)	complex128

Asinh	returns	the	inverse	hyperbolic	sine	of	x.

func	Atan
func	Atan(x	complex128)	complex128

Atan	returns	the	inverse	tangent	of	x.

func	Atanh
func	Atanh(x	complex128)	complex128

Atanh	returns	the	inverse	hyperbolic	tangent	of	x.

func	Conj
func	Conj(x	complex128)	complex128

Conj	returns	the	complex	conjugate	of	x.

func	Cos
func	Cos(x	complex128)	complex128

Cos	returns	the	cosine	of	x.

func	Cosh
func	Cosh(x	complex128)	complex128

Cosh	returns	the	hyperbolic	cosine	of	x.

func	Cot
func	Cot(x	complex128)	complex128

Cot	returns	the	cotangent	of	x.

func	Exp
func	Exp(x	complex128)	complex128

Exp	returns	e**x,	the	base-e	exponential	of	x.

func	Inf
func	Inf()	complex128

Inf	returns	a	complex	infinity,	complex(+Inf,	+Inf).

func	IsInf
func	IsInf(x	complex128)	bool

IsInf	returns	true	if	either	real(x)	or	imag(x)	is	an	infinity.

func	IsNaN
func	IsNaN(x	complex128)	bool

IsNaN	returns	true	if	either	real(x)	or	imag(x)	is	NaN	and	neither	is	an	infinity.

func	Log
func	Log(x	complex128)	complex128

Log	returns	the	natural	logarithm	of	x.

func	Log10
func	Log10(x	complex128)	complex128

Log10	returns	the	decimal	logarithm	of	x.

func	NaN
func	NaN()	complex128

NaN	returns	a	complex	“not-a-number”	value.

func	Phase
func	Phase(x	complex128)	float64

Phase	returns	the	phase	(also	called	the	argument)	of	x.	The	returned	value	is	in
the	range	[-Pi,	Pi].

func	Polar
func	Polar(x	complex128)	(r,		float64)

Polar	returns	the	absolute	value	r	and	phase	of	x,	such	that	x	=	r	*	e**i.	The
phase	is	in	the	range	[-Pi,	Pi].

func	Pow
func	Pow(x,	y	complex128)	complex128

Pow	returns	x**y,	the	base-x	exponential	of	y.

func	Rect
func	Rect(r,		float64)	complex128

Rect	returns	the	complex	number	x	with	polar	coordinates	r,	.

func	Sin
func	Sin(x	complex128)	complex128

Sin	returns	the	sine	of	x.

func	Sinh
func	Sinh(x	complex128)	complex128

Sinh	returns	the	hyperbolic	sine	of	x.

func	Sqrt
func	Sqrt(x	complex128)	complex128

Sqrt	returns	the	square	root	of	x.

func	Tan
func	Tan(x	complex128)	complex128

Tan	returns	the	tangent	of	x.

func	Tanh
func	Tanh(x	complex128)	complex128

Tanh	returns	the	hyperbolic	tangent	of	x.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	rand
import	"math/rand"

Overview
Index

Overview	?

Overview	?

Package	rand	implements	pseudo-random	number	generators.

Index

func	ExpFloat64()	float64
func	Float32()	float32
func	Float64()	float64
func	Int()	int
func	Int31()	int32
func	Int31n(n	int32)	int32
func	Int63()	int64
func	Int63n(n	int64)	int64
func	Intn(n	int)	int
func	NormFloat64()	float64
func	Perm(n	int)	[]int
func	Seed(seed	int64)
func	Uint32()	uint32
type	Rand
				func	New(src	Source)	*Rand
				func	(r	*Rand)	ExpFloat64()	float64
				func	(r	*Rand)	Float32()	float32
				func	(r	*Rand)	Float64()	float64
				func	(r	*Rand)	Int()	int
				func	(r	*Rand)	Int31()	int32
				func	(r	*Rand)	Int31n(n	int32)	int32
				func	(r	*Rand)	Int63()	int64
				func	(r	*Rand)	Int63n(n	int64)	int64
				func	(r	*Rand)	Intn(n	int)	int
				func	(r	*Rand)	NormFloat64()	float64
				func	(r	*Rand)	Perm(n	int)	[]int
				func	(r	*Rand)	Seed(seed	int64)
				func	(r	*Rand)	Uint32()	uint32
type	Source
				func	NewSource(seed	int64)	Source
type	Zipf
				func	NewZipf(r	*Rand,	s	float64,	v	float64,	imax	uint64)	*Zipf
				func	(z	*Zipf)	Uint64()	uint64

Package	files

exp.go	normal.go	rand.go	rng.go	zipf.go

func	ExpFloat64
func	ExpFloat64()	float64

ExpFloat64	returns	an	exponentially	distributed	float64	in	the	range	(0,
+math.MaxFloat64]	with	an	exponential	distribution	whose	rate	parameter
(lambda)	is	1	and	whose	mean	is	1/lambda	(1).	To	produce	a	distribution	with	a
different	rate	parameter,	callers	can	adjust	the	output	using:

sample	=	ExpFloat64()	/	desiredRateParameter

func	Float32
func	Float32()	float32

Float32	returns,	as	a	float32,	a	pseudo-random	number	in	[0.0,1.0).

func	Float64
func	Float64()	float64

Float64	returns,	as	a	float64,	a	pseudo-random	number	in	[0.0,1.0).

func	Int
func	Int()	int

Int	returns	a	non-negative	pseudo-random	int.

func	Int31
func	Int31()	int32

Int31	returns	a	non-negative	pseudo-random	31-bit	integer	as	an	int32.

func	Int31n
func	Int31n(n	int32)	int32

Int31n	returns,	as	an	int32,	a	non-negative	pseudo-random	number	in	[0,n).	It
panics	if	n	<=	0.

func	Int63
func	Int63()	int64

Int63	returns	a	non-negative	pseudo-random	63-bit	integer	as	an	int64.

func	Int63n
func	Int63n(n	int64)	int64

Int63n	returns,	as	an	int64,	a	non-negative	pseudo-random	number	in	[0,n).	It
panics	if	n	<=	0.

func	Intn
func	Intn(n	int)	int

Intn	returns,	as	an	int,	a	non-negative	pseudo-random	number	in	[0,n).	It	panics
if	n	<=	0.

func	NormFloat64
func	NormFloat64()	float64

NormFloat64	returns	a	normally	distributed	float64	in	the	range	[-
math.MaxFloat64,	+math.MaxFloat64]	with	standard	normal	distribution	(mean
=	0,	stddev	=	1).	To	produce	a	different	normal	distribution,	callers	can	adjust	the
output	using:

sample	=	NormFloat64()	*	desiredStdDev	+	desiredMean

func	Perm
func	Perm(n	int)	[]int

Perm	returns,	as	a	slice	of	n	ints,	a	pseudo-random	permutation	of	the	integers
[0,n).

func	Seed
func	Seed(seed	int64)

Seed	uses	the	provided	seed	value	to	initialize	the	generator	to	a	deterministic
state.	If	Seed	is	not	called,	the	generator	behaves	as	if	seeded	by	Seed(1).

func	Uint32
func	Uint32()	uint32

Uint32	returns	a	pseudo-random	32-bit	value	as	a	uint32.

type	Rand
type	Rand	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Rand	is	a	source	of	random	numbers.

func	New

func	New(src	Source)	*Rand

New	returns	a	new	Rand	that	uses	random	values	from	src	to	generate	other
random	values.

func	(*Rand)	ExpFloat64

func	(r	*Rand)	ExpFloat64()	float64

ExpFloat64	returns	an	exponentially	distributed	float64	in	the	range	(0,
+math.MaxFloat64]	with	an	exponential	distribution	whose	rate	parameter
(lambda)	is	1	and	whose	mean	is	1/lambda	(1).	To	produce	a	distribution	with	a
different	rate	parameter,	callers	can	adjust	the	output	using:

sample	=	ExpFloat64()	/	desiredRateParameter

func	(*Rand)	Float32

func	(r	*Rand)	Float32()	float32

Float32	returns,	as	a	float32,	a	pseudo-random	number	in	[0.0,1.0).

func	(*Rand)	Float64

func	(r	*Rand)	Float64()	float64

Float64	returns,	as	a	float64,	a	pseudo-random	number	in	[0.0,1.0).

func	(*Rand)	Int

func	(r	*Rand)	Int()	int

Int	returns	a	non-negative	pseudo-random	int.

func	(*Rand)	Int31

func	(r	*Rand)	Int31()	int32

Int31	returns	a	non-negative	pseudo-random	31-bit	integer	as	an	int32.

func	(*Rand)	Int31n

func	(r	*Rand)	Int31n(n	int32)	int32

Int31n	returns,	as	an	int32,	a	non-negative	pseudo-random	number	in	[0,n).	It
panics	if	n	<=	0.

func	(*Rand)	Int63

func	(r	*Rand)	Int63()	int64

Int63	returns	a	non-negative	pseudo-random	63-bit	integer	as	an	int64.

func	(*Rand)	Int63n

func	(r	*Rand)	Int63n(n	int64)	int64

Int63n	returns,	as	an	int64,	a	non-negative	pseudo-random	number	in	[0,n).	It
panics	if	n	<=	0.

func	(*Rand)	Intn

func	(r	*Rand)	Intn(n	int)	int

Intn	returns,	as	an	int,	a	non-negative	pseudo-random	number	in	[0,n).	It	panics
if	n	<=	0.

func	(*Rand)	NormFloat64

func	(r	*Rand)	NormFloat64()	float64

NormFloat64	returns	a	normally	distributed	float64	in	the	range	[-
math.MaxFloat64,	+math.MaxFloat64]	with	standard	normal	distribution	(mean
=	0,	stddev	=	1).	To	produce	a	different	normal	distribution,	callers	can	adjust	the
output	using:

sample	=	NormFloat64()	*	desiredStdDev	+	desiredMean

func	(*Rand)	Perm

func	(r	*Rand)	Perm(n	int)	[]int

Perm	returns,	as	a	slice	of	n	ints,	a	pseudo-random	permutation	of	the	integers
[0,n).

func	(*Rand)	Seed

func	(r	*Rand)	Seed(seed	int64)

Seed	uses	the	provided	seed	value	to	initialize	the	generator	to	a	deterministic
state.

func	(*Rand)	Uint32

func	(r	*Rand)	Uint32()	uint32

Uint32	returns	a	pseudo-random	32-bit	value	as	a	uint32.

type	Source
type	Source	interface	{

				Int63()	int64

				Seed(seed	int64)

}

A	Source	represents	a	source	of	uniformly-distributed	pseudo-random	int64
values	in	the	range	[0,	1<<63).

func	NewSource

func	NewSource(seed	int64)	Source

NewSource	returns	a	new	pseudo-random	Source	seeded	with	the	given	value.

type	Zipf
type	Zipf	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Zipf	generates	Zipf	distributed	variates.

func	NewZipf

func	NewZipf(r	*Rand,	s	float64,	v	float64,	imax	uint64)	*Zipf

NewZipf	returns	a	Zipf	generating	variates	p(k)	on	[0,	imax]	proportional	to
(v+k)**(-s)	where	s>1	and	k>=0,	and	v>=1.

func	(*Zipf)	Uint64

func	(z	*Zipf)	Uint64()	uint64

Uint64	returns	a	value	drawn	from	the	Zipf	distributed	described	by	the	Zipf
object.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	mime
import	"mime"

Overview
Index
Subdirectories

Overview	?

Overview	?

Package	mime	implements	parts	of	the	MIME	spec.

Index

func	AddExtensionType(ext,	typ	string)	error
func	FormatMediaType(t	string,	param	map[string]string)	string
func	ParseMediaType(v	string)	(mediatype	string,	params
map[string]string,	err	error)
func	TypeByExtension(ext	string)	string

Package	files

grammar.go	mediatype.go	type.go	type_unix.go

func	AddExtensionType
func	AddExtensionType(ext,	typ	string)	error

AddExtensionType	sets	the	MIME	type	associated	with	the	extension	ext	to	typ.
The	extension	should	begin	with	a	leading	dot,	as	in	".html".

func	FormatMediaType
func	FormatMediaType(t	string,	param	map[string]string)	string

FormatMediaType	serializes	mediatype	t	and	the	parameters	param	as	a	media
type	conforming	to	RFC	2045	and	RFC	2616.	The	type	and	parameter	names	are
written	in	lower-case.	When	any	of	the	arguments	result	in	a	standard	violation
then	FormatMediaType	returns	the	empty	string.

func	ParseMediaType
func	ParseMediaType(v	string)	(mediatype	string,	params	map[string]string,	err	error)

ParseMediaType	parses	a	media	type	value	and	any	optional	parameters,	per
RFC	1521.	Media	types	are	the	values	in	Content-Type	and	Content-Disposition
headers	(RFC	2183).	On	success,	ParseMediaType	returns	the	media	type
converted	to	lowercase	and	trimmed	of	white	space	and	a	non-nil	map.	The
returned	map,	params,	maps	from	the	lowercase	attribute	to	the	attribute	value
with	its	case	preserved.

func	TypeByExtension
func	TypeByExtension(ext	string)	string

TypeByExtension	returns	the	MIME	type	associated	with	the	file	extension	ext.
The	extension	ext	should	begin	with	a	leading	dot,	as	in	".html".	When	ext	has
no	associated	type,	TypeByExtension	returns	"".

The	built-in	table	is	small	but	on	unix	it	is	augmented	by	the	local	system's
mime.types	file(s)	if	available	under	one	or	more	of	these	names:

/etc/mime.types

/etc/apache2/mime.types

/etc/apache/mime.types

Windows	system	mime	types	are	extracted	from	registry.

Text	types	have	the	charset	parameter	set	to	"utf-8"	by	default.

Subdirectories

Name 				 Synopsis

multipart 				 Package	multipart	implements	MIME	multipart	parsing,	as	defined
in	RFC	2046.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	multipart
import	"mime/multipart"

Overview
Index

Overview	?

Overview	?

Package	multipart	implements	MIME	multipart	parsing,	as	defined	in	RFC	2046.

The	implementation	is	sufficient	for	HTTP	(RFC	2388)	and	the	multipart	bodies
generated	by	popular	browsers.

Index

type	File
type	FileHeader
				func	(fh	*FileHeader)	Open()	(File,	error)
type	Form
				func	(f	*Form)	RemoveAll()	error
type	Part
				func	(p	*Part)	Close()	error
				func	(p	*Part)	FileName()	string
				func	(p	*Part)	FormName()	string
				func	(p	*Part)	Read(d	[]byte)	(n	int,	err	error)
type	Reader
				func	NewReader(reader	io.Reader,	boundary	string)	*Reader
				func	(r	*Reader)	NextPart()	(*Part,	error)
				func	(r	*Reader)	ReadForm(maxMemory	int64)	(f	*Form,	err	error)
type	Writer
				func	NewWriter(w	io.Writer)	*Writer
				func	(w	*Writer)	Boundary()	string
				func	(w	*Writer)	Close()	error
				func	(w	*Writer)	CreateFormField(fieldname	string)	(io.Writer,	error)
				func	(w	*Writer)	CreateFormFile(fieldname,	filename	string)	(io.Writer,
error)
				func	(w	*Writer)	CreatePart(header	textproto.MIMEHeader)	(io.Writer,
error)
				func	(w	*Writer)	FormDataContentType()	string
				func	(w	*Writer)	WriteField(fieldname,	value	string)	error

Package	files

formdata.go	multipart.go	writer.go

type	File
type	File	interface	{

				io.Reader

				io.ReaderAt

				io.Seeker

				io.Closer

}

File	is	an	interface	to	access	the	file	part	of	a	multipart	message.	Its	contents	may
be	either	stored	in	memory	or	on	disk.	If	stored	on	disk,	the	File's	underlying
concrete	type	will	be	an	*os.File.

type	FileHeader
type	FileHeader	struct	{

				Filename	string

				Header			textproto.MIMEHeader

				//	contains	filtered	or	unexported	fields

}

A	FileHeader	describes	a	file	part	of	a	multipart	request.

func	(*FileHeader)	Open

func	(fh	*FileHeader)	Open()	(File,	error)

Open	opens	and	returns	the	FileHeader's	associated	File.

type	Form
type	Form	struct	{

				Value	map[string][]string

				File		map[string][]*FileHeader

}

Form	is	a	parsed	multipart	form.	Its	File	parts	are	stored	either	in	memory	or	on
disk,	and	are	accessible	via	the	*FileHeader's	Open	method.	Its	Value	parts	are
stored	as	strings.	Both	are	keyed	by	field	name.

func	(*Form)	RemoveAll

func	(f	*Form)	RemoveAll()	error

RemoveAll	removes	any	temporary	files	associated	with	a	Form.

type	Part
type	Part	struct	{

				//	The	headers	of	the	body,	if	any,	with	the	keys	canonicalized

				//	in	the	same	fashion	that	the	Go	http.Request	headers	are.

				//	i.e.	"foo-bar"	changes	case	to	"Foo-Bar"

				Header	textproto.MIMEHeader

				//	contains	filtered	or	unexported	fields

}

A	Part	represents	a	single	part	in	a	multipart	body.

func	(*Part)	Close

func	(p	*Part)	Close()	error

func	(*Part)	FileName

func	(p	*Part)	FileName()	string

FileName	returns	the	filename	parameter	of	the	Part's	Content-Disposition
header.

func	(*Part)	FormName

func	(p	*Part)	FormName()	string

FormName	returns	the	name	parameter	if	p	has	a	Content-Disposition	of	type
"form-data".	Otherwise	it	returns	the	empty	string.

func	(*Part)	Read

func	(p	*Part)	Read(d	[]byte)	(n	int,	err	error)

Read	reads	the	body	of	a	part,	after	its	headers	and	before	the	next	part	(if	any)
begins.

type	Reader
type	Reader	struct	{

				//	contains	filtered	or	unexported	fields

}

Reader	is	an	iterator	over	parts	in	a	MIME	multipart	body.	Reader's	underlying
parser	consumes	its	input	as	needed.	Seeking	isn't	supported.

func	NewReader

func	NewReader(reader	io.Reader,	boundary	string)	*Reader

NewReader	creates	a	new	multipart	Reader	reading	from	r	using	the	given
MIME	boundary.

func	(*Reader)	NextPart

func	(r	*Reader)	NextPart()	(*Part,	error)

NextPart	returns	the	next	part	in	the	multipart	or	an	error.	When	there	are	no
more	parts,	the	error	io.EOF	is	returned.

func	(*Reader)	ReadForm

func	(r	*Reader)	ReadForm(maxMemory	int64)	(f	*Form,	err	error)

ReadForm	parses	an	entire	multipart	message	whose	parts	have	a	Content-
Disposition	of	"form-data".	It	stores	up	to	maxMemory	bytes	of	the	file	parts	in
memory	and	the	remainder	on	disk	in	temporary	files.

type	Writer
type	Writer	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Writer	generates	multipart	messages.

func	NewWriter

func	NewWriter(w	io.Writer)	*Writer

NewWriter	returns	a	new	multipart	Writer	with	a	random	boundary,	writing	to	w.

func	(*Writer)	Boundary

func	(w	*Writer)	Boundary()	string

Boundary	returns	the	Writer's	randomly	selected	boundary	string.

func	(*Writer)	Close

func	(w	*Writer)	Close()	error

Close	finishes	the	multipart	message	and	writes	the	trailing	boundary	end	line	to
the	output.

func	(*Writer)	CreateFormField

func	(w	*Writer)	CreateFormField(fieldname	string)	(io.Writer,	error)

CreateFormField	calls	CreatePart	with	a	header	using	the	given	field	name.

func	(*Writer)	CreateFormFile

func	(w	*Writer)	CreateFormFile(fieldname,	filename	string)	(io.Writer,	error)

CreateFormFile	is	a	convenience	wrapper	around	CreatePart.	It	creates	a	new
form-data	header	with	the	provided	field	name	and	file	name.

func	(*Writer)	CreatePart

func	(w	*Writer)	CreatePart(header	textproto.MIMEHeader)	(io.Writer,	error)

CreatePart	creates	a	new	multipart	section	with	the	provided	header.	The	body	of
the	part	should	be	written	to	the	returned	Writer.	After	calling	CreatePart,	any
previous	part	may	no	longer	be	written	to.

func	(*Writer)	FormDataContentType

func	(w	*Writer)	FormDataContentType()	string

FormDataContentType	returns	the	Content-Type	for	an	HTTP	multipart/form-
data	with	this	Writer's	Boundary.

func	(*Writer)	WriteField

func	(w	*Writer)	WriteField(fieldname,	value	string)	error

WriteField	calls	CreateFormField	and	then	writes	the	given	value.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	net
import	"net"

Overview
Index
Examples
Subdirectories

Overview	?

Overview	?

Package	net	provides	a	portable	interface	for	network	I/O,	including	TCP/IP,
UDP,	domain	name	resolution,	and	Unix	domain	sockets.

Although	the	package	provides	access	to	low-level	networking	primitives,	most
clients	will	need	only	the	basic	interface	provided	by	the	Dial,	Listen,	and
Accept	functions	and	the	associated	Conn	and	Listener	interfaces.	The	crypto/tls
package	uses	the	same	interfaces	and	similar	Dial	and	Listen	functions.

The	Dial	function	connects	to	a	server:

conn,	err	:=	net.Dial("tcp",	"google.com:80")

if	err	!=	nil	{

	 //	handle	error

}

fmt.Fprintf(conn,	"GET	/	HTTP/1.0\r\n\r\n")

status,	err	:=	bufio.NewReader(conn).ReadString('\n')

//	...

The	Listen	function	creates	servers:

ln,	err	:=	net.Listen("tcp",	":8080")

if	err	!=	nil	{

	 //	handle	error

}

for	{

	 conn,	err	:=	ln.Accept()

	 if	err	!=	nil	{

	 	 //	handle	error

	 	 continue

	 }

	 go	handleConnection(conn)

}

Index

Constants
Variables
func	InterfaceAddrs()	([]Addr,	error)
func	Interfaces()	([]Interface,	error)
func	JoinHostPort(host,	port	string)	string
func	LookupAddr(addr	string)	(name	[]string,	err	error)
func	LookupCNAME(name	string)	(cname	string,	err	error)
func	LookupHost(host	string)	(addrs	[]string,	err	error)
func	LookupIP(host	string)	(addrs	[]IP,	err	error)
func	LookupMX(name	string)	(mx	[]*MX,	err	error)
func	LookupPort(network,	service	string)	(port	int,	err	error)
func	LookupSRV(service,	proto,	name	string)	(cname	string,	addrs	[]*SRV,
err	error)
func	LookupTXT(name	string)	(txt	[]string,	err	error)
func	SplitHostPort(hostport	string)	(host,	port	string,	err	error)
type	Addr
type	AddrError
				func	(e	*AddrError)	Error()	string
				func	(e	*AddrError)	Temporary()	bool
				func	(e	*AddrError)	Timeout()	bool
type	Conn
				func	Dial(net,	addr	string)	(Conn,	error)
				func	DialTimeout(net,	addr	string,	timeout	time.Duration)	(Conn,	error)
				func	FileConn(f	*os.File)	(c	Conn,	err	error)
				func	Pipe()	(Conn,	Conn)
type	DNSConfigError
				func	(e	*DNSConfigError)	Error()	string
				func	(e	*DNSConfigError)	Temporary()	bool
				func	(e	*DNSConfigError)	Timeout()	bool
type	DNSError
				func	(e	*DNSError)	Error()	string
				func	(e	*DNSError)	Temporary()	bool
				func	(e	*DNSError)	Timeout()	bool
type	Error
type	Flags

				func	(f	Flags)	String()	string
type	HardwareAddr
				func	ParseMAC(s	string)	(hw	HardwareAddr,	err	error)
				func	(a	HardwareAddr)	String()	string
type	IP
				func	IPv4(a,	b,	c,	d	byte)	IP
				func	ParseCIDR(s	string)	(IP,	*IPNet,	error)
				func	ParseIP(s	string)	IP
				func	(ip	IP)	DefaultMask()	IPMask
				func	(ip	IP)	Equal(x	IP)	bool
				func	(ip	IP)	IsGlobalUnicast()	bool
				func	(ip	IP)	IsInterfaceLocalMulticast()	bool
				func	(ip	IP)	IsLinkLocalMulticast()	bool
				func	(ip	IP)	IsLinkLocalUnicast()	bool
				func	(ip	IP)	IsLoopback()	bool
				func	(ip	IP)	IsMulticast()	bool
				func	(ip	IP)	IsUnspecified()	bool
				func	(ip	IP)	Mask(mask	IPMask)	IP
				func	(ip	IP)	String()	string
				func	(ip	IP)	To16()	IP
				func	(ip	IP)	To4()	IP
type	IPAddr
				func	ResolveIPAddr(net,	addr	string)	(*IPAddr,	error)
				func	(a	*IPAddr)	Network()	string
				func	(a	*IPAddr)	String()	string
type	IPConn
				func	DialIP(netProto	string,	laddr,	raddr	*IPAddr)	(*IPConn,	error)
				func	ListenIP(netProto	string,	laddr	*IPAddr)	(*IPConn,	error)
				func	(c	*IPConn)	Close()	error
				func	(c	*IPConn)	File()	(f	*os.File,	err	error)
				func	(c	*IPConn)	LocalAddr()	Addr
				func	(c	*IPConn)	Read(b	[]byte)	(int,	error)
				func	(c	*IPConn)	ReadFrom(b	[]byte)	(int,	Addr,	error)
				func	(c	*IPConn)	ReadFromIP(b	[]byte)	(int,	*IPAddr,	error)
				func	(c	*IPConn)	RemoteAddr()	Addr
				func	(c	*IPConn)	SetDeadline(t	time.Time)	error
				func	(c	*IPConn)	SetReadBuffer(bytes	int)	error
				func	(c	*IPConn)	SetReadDeadline(t	time.Time)	error
				func	(c	*IPConn)	SetWriteBuffer(bytes	int)	error

				func	(c	*IPConn)	SetWriteDeadline(t	time.Time)	error
				func	(c	*IPConn)	Write(b	[]byte)	(int,	error)
				func	(c	*IPConn)	WriteTo(b	[]byte,	addr	Addr)	(int,	error)
				func	(c	*IPConn)	WriteToIP(b	[]byte,	addr	*IPAddr)	(int,	error)
type	IPMask
				func	CIDRMask(ones,	bits	int)	IPMask
				func	IPv4Mask(a,	b,	c,	d	byte)	IPMask
				func	(m	IPMask)	Size()	(ones,	bits	int)
				func	(m	IPMask)	String()	string
type	IPNet
				func	(n	*IPNet)	Contains(ip	IP)	bool
				func	(n	*IPNet)	Network()	string
				func	(n	*IPNet)	String()	string
type	Interface
				func	InterfaceByIndex(index	int)	(*Interface,	error)
				func	InterfaceByName(name	string)	(*Interface,	error)
				func	(ifi	*Interface)	Addrs()	([]Addr,	error)
				func	(ifi	*Interface)	MulticastAddrs()	([]Addr,	error)
type	InvalidAddrError
				func	(e	InvalidAddrError)	Error()	string
				func	(e	InvalidAddrError)	Temporary()	bool
				func	(e	InvalidAddrError)	Timeout()	bool
type	Listener
				func	FileListener(f	*os.File)	(l	Listener,	err	error)
				func	Listen(net,	laddr	string)	(Listener,	error)
type	MX
type	OpError
				func	(e	*OpError)	Error()	string
				func	(e	*OpError)	Temporary()	bool
				func	(e	*OpError)	Timeout()	bool
type	PacketConn
				func	FilePacketConn(f	*os.File)	(c	PacketConn,	err	error)
				func	ListenPacket(net,	addr	string)	(PacketConn,	error)
type	ParseError
				func	(e	*ParseError)	Error()	string
type	SRV
type	TCPAddr
				func	ResolveTCPAddr(net,	addr	string)	(*TCPAddr,	error)
				func	(a	*TCPAddr)	Network()	string

				func	(a	*TCPAddr)	String()	string
type	TCPConn
				func	DialTCP(net	string,	laddr,	raddr	*TCPAddr)	(*TCPConn,	error)
				func	(c	*TCPConn)	Close()	error
				func	(c	*TCPConn)	CloseRead()	error
				func	(c	*TCPConn)	CloseWrite()	error
				func	(c	*TCPConn)	File()	(f	*os.File,	err	error)
				func	(c	*TCPConn)	LocalAddr()	Addr
				func	(c	*TCPConn)	Read(b	[]byte)	(n	int,	err	error)
				func	(c	*TCPConn)	ReadFrom(r	io.Reader)	(int64,	error)
				func	(c	*TCPConn)	RemoteAddr()	Addr
				func	(c	*TCPConn)	SetDeadline(t	time.Time)	error
				func	(c	*TCPConn)	SetKeepAlive(keepalive	bool)	error
				func	(c	*TCPConn)	SetLinger(sec	int)	error
				func	(c	*TCPConn)	SetNoDelay(noDelay	bool)	error
				func	(c	*TCPConn)	SetReadBuffer(bytes	int)	error
				func	(c	*TCPConn)	SetReadDeadline(t	time.Time)	error
				func	(c	*TCPConn)	SetWriteBuffer(bytes	int)	error
				func	(c	*TCPConn)	SetWriteDeadline(t	time.Time)	error
				func	(c	*TCPConn)	Write(b	[]byte)	(n	int,	err	error)
type	TCPListener
				func	ListenTCP(net	string,	laddr	*TCPAddr)	(*TCPListener,	error)
				func	(l	*TCPListener)	Accept()	(c	Conn,	err	error)
				func	(l	*TCPListener)	AcceptTCP()	(c	*TCPConn,	err	error)
				func	(l	*TCPListener)	Addr()	Addr
				func	(l	*TCPListener)	Close()	error
				func	(l	*TCPListener)	File()	(f	*os.File,	err	error)
				func	(l	*TCPListener)	SetDeadline(t	time.Time)	error
type	UDPAddr
				func	ResolveUDPAddr(net,	addr	string)	(*UDPAddr,	error)
				func	(a	*UDPAddr)	Network()	string
				func	(a	*UDPAddr)	String()	string
type	UDPConn
				func	DialUDP(net	string,	laddr,	raddr	*UDPAddr)	(*UDPConn,	error)
				func	ListenMulticastUDP(net	string,	ifi	*Interface,	gaddr	*UDPAddr)
(*UDPConn,	error)
				func	ListenUDP(net	string,	laddr	*UDPAddr)	(*UDPConn,	error)
				func	ListenUnixgram(net	string,	laddr	*UnixAddr)	(*UDPConn,	error)
				func	(c	*UDPConn)	Close()	error

				func	(c	*UDPConn)	File()	(f	*os.File,	err	error)
				func	(c	*UDPConn)	LocalAddr()	Addr
				func	(c	*UDPConn)	Read(b	[]byte)	(int,	error)
				func	(c	*UDPConn)	ReadFrom(b	[]byte)	(int,	Addr,	error)
				func	(c	*UDPConn)	ReadFromUDP(b	[]byte)	(n	int,	addr	*UDPAddr,	err
error)
				func	(c	*UDPConn)	RemoteAddr()	Addr
				func	(c	*UDPConn)	SetDeadline(t	time.Time)	error
				func	(c	*UDPConn)	SetReadBuffer(bytes	int)	error
				func	(c	*UDPConn)	SetReadDeadline(t	time.Time)	error
				func	(c	*UDPConn)	SetWriteBuffer(bytes	int)	error
				func	(c	*UDPConn)	SetWriteDeadline(t	time.Time)	error
				func	(c	*UDPConn)	Write(b	[]byte)	(int,	error)
				func	(c	*UDPConn)	WriteTo(b	[]byte,	addr	Addr)	(int,	error)
				func	(c	*UDPConn)	WriteToUDP(b	[]byte,	addr	*UDPAddr)	(int,	error)
type	UnixAddr
				func	ResolveUnixAddr(net,	addr	string)	(*UnixAddr,	error)
				func	(a	*UnixAddr)	Network()	string
				func	(a	*UnixAddr)	String()	string
type	UnixConn
				func	DialUnix(net	string,	laddr,	raddr	*UnixAddr)	(*UnixConn,	error)
				func	(c	*UnixConn)	Close()	error
				func	(c	*UnixConn)	File()	(f	*os.File,	err	error)
				func	(c	*UnixConn)	LocalAddr()	Addr
				func	(c	*UnixConn)	Read(b	[]byte)	(n	int,	err	error)
				func	(c	*UnixConn)	ReadFrom(b	[]byte)	(n	int,	addr	Addr,	err	error)
				func	(c	*UnixConn)	ReadFromUnix(b	[]byte)	(n	int,	addr	*UnixAddr,	err
error)
				func	(c	*UnixConn)	ReadMsgUnix(b,	oob	[]byte)	(n,	oobn,	flags	int,
addr	*UnixAddr,	err	error)
				func	(c	*UnixConn)	RemoteAddr()	Addr
				func	(c	*UnixConn)	SetDeadline(t	time.Time)	error
				func	(c	*UnixConn)	SetReadBuffer(bytes	int)	error
				func	(c	*UnixConn)	SetReadDeadline(t	time.Time)	error
				func	(c	*UnixConn)	SetWriteBuffer(bytes	int)	error
				func	(c	*UnixConn)	SetWriteDeadline(t	time.Time)	error
				func	(c	*UnixConn)	Write(b	[]byte)	(n	int,	err	error)
				func	(c	*UnixConn)	WriteMsgUnix(b,	oob	[]byte,	addr	*UnixAddr)	(n,
oobn	int,	err	error)

				func	(c	*UnixConn)	WriteTo(b	[]byte,	addr	Addr)	(n	int,	err	error)
				func	(c	*UnixConn)	WriteToUnix(b	[]byte,	addr	*UnixAddr)	(n	int,	err
error)
type	UnixListener
				func	ListenUnix(net	string,	laddr	*UnixAddr)	(*UnixListener,	error)
				func	(l	*UnixListener)	Accept()	(c	Conn,	err	error)
				func	(l	*UnixListener)	AcceptUnix()	(*UnixConn,	error)
				func	(l	*UnixListener)	Addr()	Addr
				func	(l	*UnixListener)	Close()	error
				func	(l	*UnixListener)	File()	(f	*os.File,	err	error)
				func	(l	*UnixListener)	SetDeadline(t	time.Time)	(err	error)
type	UnknownNetworkError
				func	(e	UnknownNetworkError)	Error()	string
				func	(e	UnknownNetworkError)	Temporary()	bool
				func	(e	UnknownNetworkError)	Timeout()	bool
Bugs

Examples

Listener

Package	files

cgo_linux.go	cgo_unix.go	dial.go	dnsclient.go	dnsclient_unix.go	dnsconfig.go	dnsmsg.go	doc.go	fd.go
fd_linux.go	file.go	hosts.go	interface.go	interface_linux.go	ip.go	iprawsock.go	iprawsock_posix.go
ipsock.go	ipsock_posix.go	lookup_unix.go	mac.go	net.go	newpollserver.go	parse.go	pipe.go	port.go
sendfile_linux.go	sock.go	sock_linux.go	sockopt.go	sockopt_linux.go	sockoptip.go	sockoptip_linux.go
tcpsock.go	tcpsock_posix.go	udpsock.go	udpsock_posix.go	unixsock.go	unixsock_posix.go

Constants
const	(

				IPv4len	=	4

				IPv6len	=	16

)

IP	address	lengths	(bytes).

Variables
var	(

				IPv4bcast					=	IPv4(255,	255,	255,	255)	//	broadcast

				IPv4allsys				=	IPv4(224,	0,	0,	1)							//	all	systems

				IPv4allrouter	=	IPv4(224,	0,	0,	2)							//	all	routers

				IPv4zero						=	IPv4(0,	0,	0,	0)									//	all	zeros

)

Well-known	IPv4	addresses

var	(

				IPv6zero																			=	IP{0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0}

				IPv6unspecified												=	IP{0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0}

				IPv6loopback															=	IP{0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	1}

				IPv6interfacelocalallnodes	=	IP{0xff,	0x01,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0x01}

				IPv6linklocalallnodes						=	IP{0xff,	0x02,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0x01}

				IPv6linklocalallrouters				=	IP{0xff,	0x02,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0x02}

)

Well-known	IPv6	addresses

var	ErrWriteToConnected	=	errors.New("use	of	WriteTo	with	pre-connected	UDP")

func	InterfaceAddrs
func	InterfaceAddrs()	([]Addr,	error)

InterfaceAddrs	returns	a	list	of	the	system's	network	interface	addresses.

func	Interfaces
func	Interfaces()	([]Interface,	error)

Interfaces	returns	a	list	of	the	system's	network	interfaces.

func	JoinHostPort
func	JoinHostPort(host,	port	string)	string

JoinHostPort	combines	host	and	port	into	a	network	address	of	the	form
"host:port"	or,	if	host	contains	a	colon,	"[host]:port".

func	LookupAddr
func	LookupAddr(addr	string)	(name	[]string,	err	error)

LookupAddr	performs	a	reverse	lookup	for	the	given	address,	returning	a	list	of
names	mapping	to	that	address.

func	LookupCNAME
func	LookupCNAME(name	string)	(cname	string,	err	error)

LookupCNAME	returns	the	canonical	DNS	host	for	the	given	name.	Callers	that
do	not	care	about	the	canonical	name	can	call	LookupHost	or	LookupIP	directly;
both	take	care	of	resolving	the	canonical	name	as	part	of	the	lookup.

func	LookupHost
func	LookupHost(host	string)	(addrs	[]string,	err	error)

LookupHost	looks	up	the	given	host	using	the	local	resolver.	It	returns	an	array
of	that	host's	addresses.

func	LookupIP
func	LookupIP(host	string)	(addrs	[]IP,	err	error)

LookupIP	looks	up	host	using	the	local	resolver.	It	returns	an	array	of	that	host's
IPv4	and	IPv6	addresses.

func	LookupMX
func	LookupMX(name	string)	(mx	[]*MX,	err	error)

LookupMX	returns	the	DNS	MX	records	for	the	given	domain	name	sorted	by
preference.

func	LookupPort
func	LookupPort(network,	service	string)	(port	int,	err	error)

LookupPort	looks	up	the	port	for	the	given	network	and	service.

func	LookupSRV
func	LookupSRV(service,	proto,	name	string)	(cname	string,	addrs	[]*SRV,	err	error)

LookupSRV	tries	to	resolve	an	SRV	query	of	the	given	service,	protocol,	and
domain	name.	The	proto	is	"tcp"	or	"udp".	The	returned	records	are	sorted	by
priority	and	randomized	by	weight	within	a	priority.

LookupSRV	constructs	the	DNS	name	to	look	up	following	RFC	2782.	That	is,
it	looks	up	_service._proto.name.	To	accommodate	services	publishing	SRV
records	under	non-standard	names,	if	both	service	and	proto	are	empty	strings,
LookupSRV	looks	up	name	directly.

func	LookupTXT
func	LookupTXT(name	string)	(txt	[]string,	err	error)

LookupTXT	returns	the	DNS	TXT	records	for	the	given	domain	name.

func	SplitHostPort
func	SplitHostPort(hostport	string)	(host,	port	string,	err	error)

SplitHostPort	splits	a	network	address	of	the	form	"host:port"	or	"[host]:port"
into	host	and	port.	The	latter	form	must	be	used	when	host	contains	a	colon.

type	Addr
type	Addr	interface	{

				Network()	string	//	name	of	the	network

				String()	string		//	string	form	of	address

}

Addr	represents	a	network	end	point	address.

type	AddrError
type	AddrError	struct	{

				Err		string

				Addr	string

}

func	(*AddrError)	Error

func	(e	*AddrError)	Error()	string

func	(*AddrError)	Temporary

func	(e	*AddrError)	Temporary()	bool

func	(*AddrError)	Timeout

func	(e	*AddrError)	Timeout()	bool

type	Conn
type	Conn	interface	{

				//	Read	reads	data	from	the	connection.

				//	Read	can	be	made	to	time	out	and	return	a	Error	with	Timeout()	==	true

				//	after	a	fixed	time	limit;	see	SetDeadline	and	SetReadDeadline.

				Read(b	[]byte)	(n	int,	err	error)

				//	Write	writes	data	to	the	connection.

				//	Write	can	be	made	to	time	out	and	return	a	Error	with	Timeout()	==	true

				//	after	a	fixed	time	limit;	see	SetDeadline	and	SetWriteDeadline.

				Write(b	[]byte)	(n	int,	err	error)

				//	Close	closes	the	connection.

				//	Any	blocked	Read	or	Write	operations	will	be	unblocked	and	return	errors.

				Close()	error

				//	LocalAddr	returns	the	local	network	address.

				LocalAddr()	Addr

				//	RemoteAddr	returns	the	remote	network	address.

				RemoteAddr()	Addr

				//	SetDeadline	sets	the	read	and	write	deadlines	associated

				//	with	the	connection.	It	is	equivalent	to	calling	both

				//	SetReadDeadline	and	SetWriteDeadline.

				//

				//	A	deadline	is	an	absolute	time	after	which	I/O	operations

				//	fail	with	a	timeout	(see	type	Error)	instead	of

				//	blocking.	The	deadline	applies	to	all	future	I/O,	not	just

				//	the	immediately	following	call	to	Read	or	Write.

				//

				//	An	idle	timeout	can	be	implemented	by	repeatedly	extending

				//	the	deadline	after	successful	Read	or	Write	calls.

				//

				//	A	zero	value	for	t	means	I/O	operations	will	not	time	out.

				SetDeadline(t	time.Time)	error

				//	SetReadDeadline	sets	the	deadline	for	future	Read	calls.

				//	A	zero	value	for	t	means	Read	will	not	time	out.

				SetReadDeadline(t	time.Time)	error

				//	SetWriteDeadline	sets	the	deadline	for	future	Write	calls.

				//	Even	if	write	times	out,	it	may	return	n	>	0,	indicating	that

				//	some	of	the	data	was	successfully	written.

				//	A	zero	value	for	t	means	Write	will	not	time	out.

				SetWriteDeadline(t	time.Time)	error

}

Conn	is	a	generic	stream-oriented	network	connection.

Multiple	goroutines	may	invoke	methods	on	a	Conn	simultaneously.

func	Dial

func	Dial(net,	addr	string)	(Conn,	error)

Dial	connects	to	the	address	addr	on	the	network	net.

Known	networks	are	"tcp",	"tcp4"	(IPv4-only),	"tcp6"	(IPv6-only),	"udp",
"udp4"	(IPv4-only),	"udp6"	(IPv6-only),	"ip",	"ip4"	(IPv4-only),	"ip6"	(IPv6-
only),	"unix"	and	"unixpacket".

For	TCP	and	UDP	networks,	addresses	have	the	form	host:port.	If	host	is	a	literal
IPv6	address,	it	must	be	enclosed	in	square	brackets.	The	functions	JoinHostPort
and	SplitHostPort	manipulate	addresses	in	this	form.

Examples:

Dial("tcp",	"12.34.56.78:80")

Dial("tcp",	"google.com:80")

Dial("tcp",	"[de:ad:be:ef::ca:fe]:80")

For	IP	networks,	addr	must	be	"ip",	"ip4"	or	"ip6"	followed	by	a	colon	and	a
protocol	number	or	name.

Examples:

Dial("ip4:1",	"127.0.0.1")

Dial("ip6:ospf",	"::1")

func	DialTimeout

func	DialTimeout(net,	addr	string,	timeout	time.Duration)	(Conn,	error)

DialTimeout	acts	like	Dial	but	takes	a	timeout.	The	timeout	includes	name
resolution,	if	required.

func	FileConn

func	FileConn(f	*os.File)	(c	Conn,	err	error)

FileConn	returns	a	copy	of	the	network	connection	corresponding	to	the	open
file	f.	It	is	the	caller's	responsibility	to	close	f	when	finished.	Closing	c	does	not
affect	f,	and	closing	f	does	not	affect	c.

func	Pipe

func	Pipe()	(Conn,	Conn)

Pipe	creates	a	synchronous,	in-memory,	full	duplex	network	connection;	both
ends	implement	the	Conn	interface.	Reads	on	one	end	are	matched	with	writes
on	the	other,	copying	data	directly	between	the	two;	there	is	no	internal
buffering.

type	DNSConfigError
type	DNSConfigError	struct	{

				Err	error

}

DNSConfigError	represents	an	error	reading	the	machine's	DNS	configuration.

func	(*DNSConfigError)	Error

func	(e	*DNSConfigError)	Error()	string

func	(*DNSConfigError)	Temporary

func	(e	*DNSConfigError)	Temporary()	bool

func	(*DNSConfigError)	Timeout

func	(e	*DNSConfigError)	Timeout()	bool

type	DNSError
type	DNSError	struct	{

				Err							string	//	description	of	the	error

				Name						string	//	name	looked	for

				Server				string	//	server	used

				IsTimeout	bool

}

DNSError	represents	a	DNS	lookup	error.

func	(*DNSError)	Error

func	(e	*DNSError)	Error()	string

func	(*DNSError)	Temporary

func	(e	*DNSError)	Temporary()	bool

func	(*DNSError)	Timeout

func	(e	*DNSError)	Timeout()	bool

type	Error
type	Error	interface	{

				error

				Timeout()	bool			//	Is	the	error	a	timeout?

				Temporary()	bool	//	Is	the	error	temporary?

}

An	Error	represents	a	network	error.

type	Flags
type	Flags	uint

const	(

				FlagUp											Flags	=	1	<<	iota	//	interface	is	up

				FlagBroadcast																						//	interface	supports	broadcast	access	capability

				FlagLoopback																							//	interface	is	a	loopback	interface

				FlagPointToPoint																			//	interface	belongs	to	a	point-to-point	link

				FlagMulticast																						//	interface	supports	multicast	access	capability

)

func	(Flags)	String

func	(f	Flags)	String()	string

type	HardwareAddr
type	HardwareAddr	[]byte

A	HardwareAddr	represents	a	physical	hardware	address.

func	ParseMAC

func	ParseMAC(s	string)	(hw	HardwareAddr,	err	error)

ParseMAC	parses	s	as	an	IEEE	802	MAC-48,	EUI-48,	or	EUI-64	using	one	of
the	following	formats:

01:23:45:67:89:ab

01:23:45:67:89:ab:cd:ef

01-23-45-67-89-ab

01-23-45-67-89-ab-cd-ef

0123.4567.89ab

0123.4567.89ab.cdef

func	(HardwareAddr)	String

func	(a	HardwareAddr)	String()	string

type	IP
type	IP	[]byte

An	IP	is	a	single	IP	address,	an	array	of	bytes.	Functions	in	this	package	accept
either	4-byte	(IPv4)	or	16-byte	(IPv6)	arrays	as	input.

Note	that	in	this	documentation,	referring	to	an	IP	address	as	an	IPv4	address	or
an	IPv6	address	is	a	semantic	property	of	the	address,	not	just	the	length	of	the
byte	array:	a	16-byte	array	can	still	be	an	IPv4	address.

func	IPv4

func	IPv4(a,	b,	c,	d	byte)	IP

IPv4	returns	the	IP	address	(in	16-byte	form)	of	the	IPv4	address	a.b.c.d.

func	ParseCIDR

func	ParseCIDR(s	string)	(IP,	*IPNet,	error)

ParseCIDR	parses	s	as	a	CIDR	notation	IP	address	and	mask,	like
"192.168.100.1/24"	or	"2001:DB8::/48",	as	defined	in	RFC	4632	and	RFC	4291.

It	returns	the	IP	address	and	the	network	implied	by	the	IP	and	mask.	For
example,	ParseCIDR("192.168.100.1/16")	returns	the	IP	address	192.168.100.1
and	the	network	192.168.0.0/16.

func	ParseIP

func	ParseIP(s	string)	IP

ParseIP	parses	s	as	an	IP	address,	returning	the	result.	The	string	s	can	be	in
dotted	decimal	("74.125.19.99")	or	IPv6	("2001:4860:0:2001::68")	form.	If	s	is
not	a	valid	textual	representation	of	an	IP	address,	ParseIP	returns	nil.

func	(IP)	DefaultMask

func	(ip	IP)	DefaultMask()	IPMask

DefaultMask	returns	the	default	IP	mask	for	the	IP	address	ip.	Only	IPv4
addresses	have	default	masks;	DefaultMask	returns	nil	if	ip	is	not	a	valid	IPv4
address.

func	(IP)	Equal

func	(ip	IP)	Equal(x	IP)	bool

Equal	returns	true	if	ip	and	x	are	the	same	IP	address.	An	IPv4	address	and	that
same	address	in	IPv6	form	are	considered	to	be	equal.

func	(IP)	IsGlobalUnicast

func	(ip	IP)	IsGlobalUnicast()	bool

IsGlobalUnicast	returns	true	if	ip	is	a	global	unicast	address.

func	(IP)	IsInterfaceLocalMulticast

func	(ip	IP)	IsInterfaceLocalMulticast()	bool

IsInterfaceLinkLocalMulticast	returns	true	if	ip	is	an	interface-local	multicast
address.

func	(IP)	IsLinkLocalMulticast

func	(ip	IP)	IsLinkLocalMulticast()	bool

IsLinkLocalMulticast	returns	true	if	ip	is	a	link-local	multicast	address.

func	(IP)	IsLinkLocalUnicast

func	(ip	IP)	IsLinkLocalUnicast()	bool

IsLinkLocalUnicast	returns	true	if	ip	is	a	link-local	unicast	address.

func	(IP)	IsLoopback

func	(ip	IP)	IsLoopback()	bool

IsLoopback	returns	true	if	ip	is	a	loopback	address.

func	(IP)	IsMulticast

func	(ip	IP)	IsMulticast()	bool

IsMulticast	returns	true	if	ip	is	a	multicast	address.

func	(IP)	IsUnspecified

func	(ip	IP)	IsUnspecified()	bool

IsUnspecified	returns	true	if	ip	is	an	unspecified	address.

func	(IP)	Mask

func	(ip	IP)	Mask(mask	IPMask)	IP

Mask	returns	the	result	of	masking	the	IP	address	ip	with	mask.

func	(IP)	String

func	(ip	IP)	String()	string

String	returns	the	string	form	of	the	IP	address	ip.	If	the	address	is	an	IPv4
address,	the	string	representation	is	dotted	decimal	("74.125.19.99").	Otherwise
the	representation	is	IPv6	("2001:4860:0:2001::68").

func	(IP)	To16

func	(ip	IP)	To16()	IP

To16	converts	the	IP	address	ip	to	a	16-byte	representation.	If	ip	is	not	an	IP
address	(it	is	the	wrong	length),	To16	returns	nil.

func	(IP)	To4

func	(ip	IP)	To4()	IP

To4	converts	the	IPv4	address	ip	to	a	4-byte	representation.	If	ip	is	not	an	IPv4
address,	To4	returns	nil.

type	IPAddr
type	IPAddr	struct	{

				IP	IP

}

IPAddr	represents	the	address	of	a	IP	end	point.

func	ResolveIPAddr

func	ResolveIPAddr(net,	addr	string)	(*IPAddr,	error)

ResolveIPAddr	parses	addr	as	a	IP	address	and	resolves	domain	names	to
numeric	addresses	on	the	network	net,	which	must	be	"ip",	"ip4"	or	"ip6".	A
literal	IPv6	host	address	must	be	enclosed	in	square	brackets,	as	in	"[::]".

func	(*IPAddr)	Network

func	(a	*IPAddr)	Network()	string

Network	returns	the	address's	network	name,	"ip".

func	(*IPAddr)	String

func	(a	*IPAddr)	String()	string

type	IPConn
type	IPConn	struct	{

				//	contains	filtered	or	unexported	fields

}

IPConn	is	the	implementation	of	the	Conn	and	PacketConn	interfaces	for	IP
network	connections.

func	DialIP

func	DialIP(netProto	string,	laddr,	raddr	*IPAddr)	(*IPConn,	error)

DialIP	connects	to	the	remote	address	raddr	on	the	network	protocol	netProto,
which	must	be	"ip",	"ip4",	or	"ip6"	followed	by	a	colon	and	a	protocol	number
or	name.

func	ListenIP

func	ListenIP(netProto	string,	laddr	*IPAddr)	(*IPConn,	error)

ListenIP	listens	for	incoming	IP	packets	addressed	to	the	local	address	laddr.	The
returned	connection	c's	ReadFrom	and	WriteTo	methods	can	be	used	to	receive
and	send	IP	packets	with	per-packet	addressing.

func	(*IPConn)	Close

func	(c	*IPConn)	Close()	error

Close	closes	the	IP	connection.

func	(*IPConn)	File

func	(c	*IPConn)	File()	(f	*os.File,	err	error)

File	returns	a	copy	of	the	underlying	os.File,	set	to	blocking	mode.	It	is	the
caller's	responsibility	to	close	f	when	finished.	Closing	c	does	not	affect	f,	and
closing	f	does	not	affect	c.

func	(*IPConn)	LocalAddr

func	(c	*IPConn)	LocalAddr()	Addr

LocalAddr	returns	the	local	network	address.

func	(*IPConn)	Read

func	(c	*IPConn)	Read(b	[]byte)	(int,	error)

Read	implements	the	Conn	Read	method.

func	(*IPConn)	ReadFrom

func	(c	*IPConn)	ReadFrom(b	[]byte)	(int,	Addr,	error)

ReadFrom	implements	the	PacketConn	ReadFrom	method.

func	(*IPConn)	ReadFromIP

func	(c	*IPConn)	ReadFromIP(b	[]byte)	(int,	*IPAddr,	error)

ReadFromIP	reads	a	IP	packet	from	c,	copying	the	payload	into	b.	It	returns	the
number	of	bytes	copied	into	b	and	the	return	address	that	was	on	the	packet.

ReadFromIP	can	be	made	to	time	out	and	return	an	error	with	Timeout()	==	true
after	a	fixed	time	limit;	see	SetDeadline	and	SetReadDeadline.

func	(*IPConn)	RemoteAddr

func	(c	*IPConn)	RemoteAddr()	Addr

RemoteAddr	returns	the	remote	network	address,	a	*IPAddr.

func	(*IPConn)	SetDeadline

func	(c	*IPConn)	SetDeadline(t	time.Time)	error

SetDeadline	implements	the	Conn	SetDeadline	method.

func	(*IPConn)	SetReadBuffer

func	(c	*IPConn)	SetReadBuffer(bytes	int)	error

SetReadBuffer	sets	the	size	of	the	operating	system's	receive	buffer	associated
with	the	connection.

func	(*IPConn)	SetReadDeadline

func	(c	*IPConn)	SetReadDeadline(t	time.Time)	error

SetReadDeadline	implements	the	Conn	SetReadDeadline	method.

func	(*IPConn)	SetWriteBuffer

func	(c	*IPConn)	SetWriteBuffer(bytes	int)	error

SetWriteBuffer	sets	the	size	of	the	operating	system's	transmit	buffer	associated
with	the	connection.

func	(*IPConn)	SetWriteDeadline

func	(c	*IPConn)	SetWriteDeadline(t	time.Time)	error

SetWriteDeadline	implements	the	Conn	SetWriteDeadline	method.

func	(*IPConn)	Write

func	(c	*IPConn)	Write(b	[]byte)	(int,	error)

Write	implements	the	Conn	Write	method.

func	(*IPConn)	WriteTo

func	(c	*IPConn)	WriteTo(b	[]byte,	addr	Addr)	(int,	error)

WriteTo	implements	the	PacketConn	WriteTo	method.

func	(*IPConn)	WriteToIP

func	(c	*IPConn)	WriteToIP(b	[]byte,	addr	*IPAddr)	(int,	error)

WriteToIP	writes	a	IP	packet	to	addr	via	c,	copying	the	payload	from	b.

WriteToIP	can	be	made	to	time	out	and	return	an	error	with	Timeout()	==	true
after	a	fixed	time	limit;	see	SetDeadline	and	SetWriteDeadline.	On	packet-
oriented	connections,	write	timeouts	are	rare.

type	IPMask
type	IPMask	[]byte

An	IP	mask	is	an	IP	address.

func	CIDRMask

func	CIDRMask(ones,	bits	int)	IPMask

CIDRMask	returns	an	IPMask	consisting	of	`ones'	1	bits	followed	by	0s	up	to	a
total	length	of	`bits'	bits.	For	a	mask	of	this	form,	CIDRMask	is	the	inverse	of
IPMask.Size.

func	IPv4Mask

func	IPv4Mask(a,	b,	c,	d	byte)	IPMask

IPv4Mask	returns	the	IP	mask	(in	4-byte	form)	of	the	IPv4	mask	a.b.c.d.

func	(IPMask)	Size

func	(m	IPMask)	Size()	(ones,	bits	int)

Size	returns	the	number	of	leading	ones	and	total	bits	in	the	mask.	If	the	mask	is
not	in	the	canonical	form--ones	followed	by	zeros--then	Size	returns	0,	0.

func	(IPMask)	String

func	(m	IPMask)	String()	string

String	returns	the	hexadecimal	form	of	m,	with	no	punctuation.

type	IPNet
type	IPNet	struct	{

				IP			IP					//	network	number

				Mask	IPMask	//	network	mask

}

An	IPNet	represents	an	IP	network.

func	(*IPNet)	Contains

func	(n	*IPNet)	Contains(ip	IP)	bool

Contains	reports	whether	the	network	includes	ip.

func	(*IPNet)	Network

func	(n	*IPNet)	Network()	string

Network	returns	the	address's	network	name,	"ip+net".

func	(*IPNet)	String

func	(n	*IPNet)	String()	string

String	returns	the	CIDR	notation	of	n	like	"192.168.100.1/24"	or
"2001:DB8::/48"	as	defined	in	RFC	4632	and	RFC	4291.	If	the	mask	is	not	in
the	canonical	form,	it	returns	the	string	which	consists	of	an	IP	address,	followed
by	a	slash	character	and	a	mask	expressed	as	hexadecimal	form	with	no
punctuation	like	"192.168.100.1/c000ff00".

type	Interface
type	Interface	struct	{

				Index								int										//	positive	integer	that	starts	at	one,	zero	is	never	used

				MTU										int										//	maximum	transmission	unit

				Name									string							//	e.g.,	"en0",	"lo0",	"eth0.100"

				HardwareAddr	HardwareAddr	//	IEEE	MAC-48,	EUI-48	and	EUI-64	form

				Flags								Flags								//	e.g.,	FlagUp,	FlagLoopback,	FlagMulticast

}

Interface	represents	a	mapping	between	network	interface	name	and	index.	It
also	represents	network	interface	facility	information.

func	InterfaceByIndex

func	InterfaceByIndex(index	int)	(*Interface,	error)

InterfaceByIndex	returns	the	interface	specified	by	index.

func	InterfaceByName

func	InterfaceByName(name	string)	(*Interface,	error)

InterfaceByName	returns	the	interface	specified	by	name.

func	(*Interface)	Addrs

func	(ifi	*Interface)	Addrs()	([]Addr,	error)

Addrs	returns	interface	addresses	for	a	specific	interface.

func	(*Interface)	MulticastAddrs

func	(ifi	*Interface)	MulticastAddrs()	([]Addr,	error)

MulticastAddrs	returns	multicast,	joined	group	addresses	for	a	specific	interface.

type	InvalidAddrError
type	InvalidAddrError	string

func	(InvalidAddrError)	Error

func	(e	InvalidAddrError)	Error()	string

func	(InvalidAddrError)	Temporary

func	(e	InvalidAddrError)	Temporary()	bool

func	(InvalidAddrError)	Timeout

func	(e	InvalidAddrError)	Timeout()	bool

type	Listener
type	Listener	interface	{

				//	Accept	waits	for	and	returns	the	next	connection	to	the	listener.

				Accept()	(c	Conn,	err	error)

				//	Close	closes	the	listener.

				//	Any	blocked	Accept	operations	will	be	unblocked	and	return	errors.

				Close()	error

				//	Addr	returns	the	listener's	network	address.

				Addr()	Addr

}

A	Listener	is	a	generic	network	listener	for	stream-oriented	protocols.

Multiple	goroutines	may	invoke	methods	on	a	Listener	simultaneously.

?	Example

?	Example

Code:

//	Listen	on	TCP	port	2000	on	all	interfaces.

l,	err	:=	net.Listen("tcp",	":2000")

if	err	!=	nil	{

				log.Fatal(err)

}

for	{

				//	Wait	for	a	connection.	

				conn,	err	:=	l.Accept()

				if	err	!=	nil	{

								log.Fatal(err)

				}

				//	Handle	the	connection	in	a	new	goroutine.

				//	The	loop	then	returns	to	accepting,	so	that

				//	multiple	connections	may	be	served	concurrently.

				go	func(c	net.Conn)	{

								//	Echo	all	incoming	data.

								io.Copy(c,	c)

								//	Shut	down	the	connection.

								c.Close()

				}(conn)

}

func	FileListener

func	FileListener(f	*os.File)	(l	Listener,	err	error)

FileListener	returns	a	copy	of	the	network	listener	corresponding	to	the	open	file
f.	It	is	the	caller's	responsibility	to	close	l	when	finished.	Closing	c	does	not
affect	l,	and	closing	l	does	not	affect	c.

func	Listen

func	Listen(net,	laddr	string)	(Listener,	error)

Listen	announces	on	the	local	network	address	laddr.	The	network	string	net
must	be	a	stream-oriented	network:	"tcp",	"tcp4",	"tcp6",	or	"unix",	or
"unixpacket".

type	MX
type	MX	struct	{

				Host	string

				Pref	uint16

}

An	MX	represents	a	single	DNS	MX	record.

type	OpError
type	OpError	struct	{

				Op			string

				Net		string

				Addr	Addr

				Err		error

}

func	(*OpError)	Error

func	(e	*OpError)	Error()	string

func	(*OpError)	Temporary

func	(e	*OpError)	Temporary()	bool

func	(*OpError)	Timeout

func	(e	*OpError)	Timeout()	bool

type	PacketConn
type	PacketConn	interface	{

				//	ReadFrom	reads	a	packet	from	the	connection,

				//	copying	the	payload	into	b.		It	returns	the	number	of

				//	bytes	copied	into	b	and	the	return	address	that

				//	was	on	the	packet.

				//	ReadFrom	can	be	made	to	time	out	and	return

				//	an	error	with	Timeout()	==	true	after	a	fixed	time	limit;

				//	see	SetDeadline	and	SetReadDeadline.

				ReadFrom(b	[]byte)	(n	int,	addr	Addr,	err	error)

				//	WriteTo	writes	a	packet	with	payload	b	to	addr.

				//	WriteTo	can	be	made	to	time	out	and	return

				//	an	error	with	Timeout()	==	true	after	a	fixed	time	limit;

				//	see	SetDeadline	and	SetWriteDeadline.

				//	On	packet-oriented	connections,	write	timeouts	are	rare.

				WriteTo(b	[]byte,	addr	Addr)	(n	int,	err	error)

				//	Close	closes	the	connection.

				//	Any	blocked	ReadFrom	or	WriteTo	operations	will	be	unblocked	and	return	errors.

				Close()	error

				//	LocalAddr	returns	the	local	network	address.

				LocalAddr()	Addr

				//	SetDeadline	sets	the	read	and	write	deadlines	associated

				//	with	the	connection.

				SetDeadline(t	time.Time)	error

				//	SetReadDeadline	sets	the	deadline	for	future	Read	calls.

				//	If	the	deadline	is	reached,	Read	will	fail	with	a	timeout

				//	(see	type	Error)	instead	of	blocking.

				//	A	zero	value	for	t	means	Read	will	not	time	out.

				SetReadDeadline(t	time.Time)	error

				//	SetWriteDeadline	sets	the	deadline	for	future	Write	calls.

				//	If	the	deadline	is	reached,	Write	will	fail	with	a	timeout

				//	(see	type	Error)	instead	of	blocking.

				//	A	zero	value	for	t	means	Write	will	not	time	out.

				//	Even	if	write	times	out,	it	may	return	n	>	0,	indicating	that

				//	some	of	the	data	was	successfully	written.

				SetWriteDeadline(t	time.Time)	error

}

PacketConn	is	a	generic	packet-oriented	network	connection.

Multiple	goroutines	may	invoke	methods	on	a	PacketConn	simultaneously.

func	FilePacketConn

func	FilePacketConn(f	*os.File)	(c	PacketConn,	err	error)

FilePacketConn	returns	a	copy	of	the	packet	network	connection	corresponding
to	the	open	file	f.	It	is	the	caller's	responsibility	to	close	f	when	finished.	Closing
c	does	not	affect	f,	and	closing	f	does	not	affect	c.

func	ListenPacket

func	ListenPacket(net,	addr	string)	(PacketConn,	error)

ListenPacket	announces	on	the	local	network	address	laddr.	The	network	string
net	must	be	a	packet-oriented	network:	"udp",	"udp4",	"udp6",	"ip",	"ip4",	"ip6"
or	"unixgram".

type	ParseError
type	ParseError	struct	{

				Type	string

				Text	string

}

A	ParseError	represents	a	malformed	text	string	and	the	type	of	string	that	was
expected.

func	(*ParseError)	Error

func	(e	*ParseError)	Error()	string

type	SRV
type	SRV	struct	{

				Target			string

				Port					uint16

				Priority	uint16

				Weight			uint16

}

An	SRV	represents	a	single	DNS	SRV	record.

type	TCPAddr
type	TCPAddr	struct	{

				IP			IP

				Port	int

}

TCPAddr	represents	the	address	of	a	TCP	end	point.

func	ResolveTCPAddr

func	ResolveTCPAddr(net,	addr	string)	(*TCPAddr,	error)

ResolveTCPAddr	parses	addr	as	a	TCP	address	of	the	form	host:port	and
resolves	domain	names	or	port	names	to	numeric	addresses	on	the	network	net,
which	must	be	"tcp",	"tcp4"	or	"tcp6".	A	literal	IPv6	host	address	must	be
enclosed	in	square	brackets,	as	in	"[::]:80".

func	(*TCPAddr)	Network

func	(a	*TCPAddr)	Network()	string

Network	returns	the	address's	network	name,	"tcp".

func	(*TCPAddr)	String

func	(a	*TCPAddr)	String()	string

type	TCPConn
type	TCPConn	struct	{

				//	contains	filtered	or	unexported	fields

}

TCPConn	is	an	implementation	of	the	Conn	interface	for	TCP	network
connections.

func	DialTCP

func	DialTCP(net	string,	laddr,	raddr	*TCPAddr)	(*TCPConn,	error)

DialTCP	connects	to	the	remote	address	raddr	on	the	network	net,	which	must	be
"tcp",	"tcp4",	or	"tcp6".	If	laddr	is	not	nil,	it	is	used	as	the	local	address	for	the
connection.

func	(*TCPConn)	Close

func	(c	*TCPConn)	Close()	error

Close	closes	the	TCP	connection.

func	(*TCPConn)	CloseRead

func	(c	*TCPConn)	CloseRead()	error

CloseRead	shuts	down	the	reading	side	of	the	TCP	connection.	Most	callers
should	just	use	Close.

func	(*TCPConn)	CloseWrite

func	(c	*TCPConn)	CloseWrite()	error

CloseWrite	shuts	down	the	writing	side	of	the	TCP	connection.	Most	callers
should	just	use	Close.

func	(*TCPConn)	File

func	(c	*TCPConn)	File()	(f	*os.File,	err	error)

File	returns	a	copy	of	the	underlying	os.File,	set	to	blocking	mode.	It	is	the
caller's	responsibility	to	close	f	when	finished.	Closing	c	does	not	affect	f,	and
closing	f	does	not	affect	c.

func	(*TCPConn)	LocalAddr

func	(c	*TCPConn)	LocalAddr()	Addr

LocalAddr	returns	the	local	network	address,	a	*TCPAddr.

func	(*TCPConn)	Read

func	(c	*TCPConn)	Read(b	[]byte)	(n	int,	err	error)

Read	implements	the	Conn	Read	method.

func	(*TCPConn)	ReadFrom

func	(c	*TCPConn)	ReadFrom(r	io.Reader)	(int64,	error)

ReadFrom	implements	the	io.ReaderFrom	ReadFrom	method.

func	(*TCPConn)	RemoteAddr

func	(c	*TCPConn)	RemoteAddr()	Addr

RemoteAddr	returns	the	remote	network	address,	a	*TCPAddr.

func	(*TCPConn)	SetDeadline

func	(c	*TCPConn)	SetDeadline(t	time.Time)	error

SetDeadline	implements	the	Conn	SetDeadline	method.

func	(*TCPConn)	SetKeepAlive

func	(c	*TCPConn)	SetKeepAlive(keepalive	bool)	error

SetKeepAlive	sets	whether	the	operating	system	should	send	keepalive	messages
on	the	connection.

func	(*TCPConn)	SetLinger

func	(c	*TCPConn)	SetLinger(sec	int)	error

SetLinger	sets	the	behavior	of	Close()	on	a	connection	which	still	has	data
waiting	to	be	sent	or	to	be	acknowledged.

If	sec	<	0	(the	default),	Close	returns	immediately	and	the	operating	system
finishes	sending	the	data	in	the	background.

If	sec	==	0,	Close	returns	immediately	and	the	operating	system	discards	any
unsent	or	unacknowledged	data.

If	sec	>	0,	Close	blocks	for	at	most	sec	seconds	waiting	for	data	to	be	sent	and
acknowledged.

func	(*TCPConn)	SetNoDelay

func	(c	*TCPConn)	SetNoDelay(noDelay	bool)	error

SetNoDelay	controls	whether	the	operating	system	should	delay	packet
transmission	in	hopes	of	sending	fewer	packets	(Nagle's	algorithm).	The	default
is	true	(no	delay),	meaning	that	data	is	sent	as	soon	as	possible	after	a	Write.

func	(*TCPConn)	SetReadBuffer

func	(c	*TCPConn)	SetReadBuffer(bytes	int)	error

SetReadBuffer	sets	the	size	of	the	operating	system's	receive	buffer	associated
with	the	connection.

func	(*TCPConn)	SetReadDeadline

func	(c	*TCPConn)	SetReadDeadline(t	time.Time)	error

SetReadDeadline	implements	the	Conn	SetReadDeadline	method.

func	(*TCPConn)	SetWriteBuffer

func	(c	*TCPConn)	SetWriteBuffer(bytes	int)	error

SetWriteBuffer	sets	the	size	of	the	operating	system's	transmit	buffer	associated
with	the	connection.

func	(*TCPConn)	SetWriteDeadline

func	(c	*TCPConn)	SetWriteDeadline(t	time.Time)	error

SetWriteDeadline	implements	the	Conn	SetWriteDeadline	method.

func	(*TCPConn)	Write

func	(c	*TCPConn)	Write(b	[]byte)	(n	int,	err	error)

Write	implements	the	Conn	Write	method.

type	TCPListener
type	TCPListener	struct	{

				//	contains	filtered	or	unexported	fields

}

TCPListener	is	a	TCP	network	listener.	Clients	should	typically	use	variables	of
type	Listener	instead	of	assuming	TCP.

func	ListenTCP

func	ListenTCP(net	string,	laddr	*TCPAddr)	(*TCPListener,	error)

ListenTCP	announces	on	the	TCP	address	laddr	and	returns	a	TCP	listener.	Net
must	be	"tcp",	"tcp4",	or	"tcp6".	If	laddr	has	a	port	of	0,	it	means	to	listen	on
some	available	port.	The	caller	can	use	l.Addr()	to	retrieve	the	chosen	address.

func	(*TCPListener)	Accept

func	(l	*TCPListener)	Accept()	(c	Conn,	err	error)

Accept	implements	the	Accept	method	in	the	Listener	interface;	it	waits	for	the
next	call	and	returns	a	generic	Conn.

func	(*TCPListener)	AcceptTCP

func	(l	*TCPListener)	AcceptTCP()	(c	*TCPConn,	err	error)

AcceptTCP	accepts	the	next	incoming	call	and	returns	the	new	connection	and
the	remote	address.

func	(*TCPListener)	Addr

func	(l	*TCPListener)	Addr()	Addr

Addr	returns	the	listener's	network	address,	a	*TCPAddr.

func	(*TCPListener)	Close

func	(l	*TCPListener)	Close()	error

Close	stops	listening	on	the	TCP	address.	Already	Accepted	connections	are	not
closed.

func	(*TCPListener)	File

func	(l	*TCPListener)	File()	(f	*os.File,	err	error)

File	returns	a	copy	of	the	underlying	os.File,	set	to	blocking	mode.	It	is	the
caller's	responsibility	to	close	f	when	finished.	Closing	l	does	not	affect	f,	and
closing	f	does	not	affect	l.

func	(*TCPListener)	SetDeadline

func	(l	*TCPListener)	SetDeadline(t	time.Time)	error

SetDeadline	sets	the	deadline	associated	with	the	listener.	A	zero	time	value
disables	the	deadline.

type	UDPAddr
type	UDPAddr	struct	{

				IP			IP

				Port	int

}

UDPAddr	represents	the	address	of	a	UDP	end	point.

func	ResolveUDPAddr

func	ResolveUDPAddr(net,	addr	string)	(*UDPAddr,	error)

ResolveUDPAddr	parses	addr	as	a	UDP	address	of	the	form	host:port	and
resolves	domain	names	or	port	names	to	numeric	addresses	on	the	network	net,
which	must	be	"udp",	"udp4"	or	"udp6".	A	literal	IPv6	host	address	must	be
enclosed	in	square	brackets,	as	in	"[::]:80".

func	(*UDPAddr)	Network

func	(a	*UDPAddr)	Network()	string

Network	returns	the	address's	network	name,	"udp".

func	(*UDPAddr)	String

func	(a	*UDPAddr)	String()	string

type	UDPConn
type	UDPConn	struct	{

				//	contains	filtered	or	unexported	fields

}

UDPConn	is	the	implementation	of	the	Conn	and	PacketConn	interfaces	for
UDP	network	connections.

func	DialUDP

func	DialUDP(net	string,	laddr,	raddr	*UDPAddr)	(*UDPConn,	error)

DialUDP	connects	to	the	remote	address	raddr	on	the	network	net,	which	must
be	"udp",	"udp4",	or	"udp6".	If	laddr	is	not	nil,	it	is	used	as	the	local	address	for
the	connection.

func	ListenMulticastUDP

func	ListenMulticastUDP(net	string,	ifi	*Interface,	gaddr	*UDPAddr)	(*UDPConn,	error)

ListenMulticastUDP	listens	for	incoming	multicast	UDP	packets	addressed	to
the	group	address	gaddr	on	ifi,	which	specifies	the	interface	to	join.
ListenMulticastUDP	uses	default	multicast	interface	if	ifi	is	nil.

func	ListenUDP

func	ListenUDP(net	string,	laddr	*UDPAddr)	(*UDPConn,	error)

ListenUDP	listens	for	incoming	UDP	packets	addressed	to	the	local	address
laddr.	The	returned	connection	c's	ReadFrom	and	WriteTo	methods	can	be	used
to	receive	and	send	UDP	packets	with	per-packet	addressing.

func	ListenUnixgram

func	ListenUnixgram(net	string,	laddr	*UnixAddr)	(*UDPConn,	error)

ListenUnixgram	listens	for	incoming	Unix	datagram	packets	addressed	to	the
local	address	laddr.	The	returned	connection	c's	ReadFrom	and	WriteTo	methods

can	be	used	to	receive	and	send	UDP	packets	with	per-packet	addressing.	The
network	net	must	be	"unixgram".

func	(*UDPConn)	Close

func	(c	*UDPConn)	Close()	error

Close	closes	the	UDP	connection.

func	(*UDPConn)	File

func	(c	*UDPConn)	File()	(f	*os.File,	err	error)

File	returns	a	copy	of	the	underlying	os.File,	set	to	blocking	mode.	It	is	the
caller's	responsibility	to	close	f	when	finished.	Closing	c	does	not	affect	f,	and
closing	f	does	not	affect	c.

func	(*UDPConn)	LocalAddr

func	(c	*UDPConn)	LocalAddr()	Addr

LocalAddr	returns	the	local	network	address.

func	(*UDPConn)	Read

func	(c	*UDPConn)	Read(b	[]byte)	(int,	error)

Read	implements	the	Conn	Read	method.

func	(*UDPConn)	ReadFrom

func	(c	*UDPConn)	ReadFrom(b	[]byte)	(int,	Addr,	error)

ReadFrom	implements	the	PacketConn	ReadFrom	method.

func	(*UDPConn)	ReadFromUDP

func	(c	*UDPConn)	ReadFromUDP(b	[]byte)	(n	int,	addr	*UDPAddr,	err	error)

ReadFromUDP	reads	a	UDP	packet	from	c,	copying	the	payload	into	b.	It	returns

the	number	of	bytes	copied	into	b	and	the	return	address	that	was	on	the	packet.

ReadFromUDP	can	be	made	to	time	out	and	return	an	error	with	Timeout()	==
true	after	a	fixed	time	limit;	see	SetDeadline	and	SetReadDeadline.

func	(*UDPConn)	RemoteAddr

func	(c	*UDPConn)	RemoteAddr()	Addr

RemoteAddr	returns	the	remote	network	address,	a	*UDPAddr.

func	(*UDPConn)	SetDeadline

func	(c	*UDPConn)	SetDeadline(t	time.Time)	error

SetDeadline	implements	the	Conn	SetDeadline	method.

func	(*UDPConn)	SetReadBuffer

func	(c	*UDPConn)	SetReadBuffer(bytes	int)	error

SetReadBuffer	sets	the	size	of	the	operating	system's	receive	buffer	associated
with	the	connection.

func	(*UDPConn)	SetReadDeadline

func	(c	*UDPConn)	SetReadDeadline(t	time.Time)	error

SetReadDeadline	implements	the	Conn	SetReadDeadline	method.

func	(*UDPConn)	SetWriteBuffer

func	(c	*UDPConn)	SetWriteBuffer(bytes	int)	error

SetWriteBuffer	sets	the	size	of	the	operating	system's	transmit	buffer	associated
with	the	connection.

func	(*UDPConn)	SetWriteDeadline

func	(c	*UDPConn)	SetWriteDeadline(t	time.Time)	error

SetWriteDeadline	implements	the	Conn	SetWriteDeadline	method.

func	(*UDPConn)	Write

func	(c	*UDPConn)	Write(b	[]byte)	(int,	error)

Write	implements	the	Conn	Write	method.

func	(*UDPConn)	WriteTo

func	(c	*UDPConn)	WriteTo(b	[]byte,	addr	Addr)	(int,	error)

WriteTo	implements	the	PacketConn	WriteTo	method.

func	(*UDPConn)	WriteToUDP

func	(c	*UDPConn)	WriteToUDP(b	[]byte,	addr	*UDPAddr)	(int,	error)

WriteToUDP	writes	a	UDP	packet	to	addr	via	c,	copying	the	payload	from	b.

WriteToUDP	can	be	made	to	time	out	and	return	an	error	with	Timeout()	==	true
after	a	fixed	time	limit;	see	SetDeadline	and	SetWriteDeadline.	On	packet-
oriented	connections,	write	timeouts	are	rare.

type	UnixAddr
type	UnixAddr	struct	{

				Name	string

				Net		string

}

UnixAddr	represents	the	address	of	a	Unix	domain	socket	end	point.

func	ResolveUnixAddr

func	ResolveUnixAddr(net,	addr	string)	(*UnixAddr,	error)

ResolveUnixAddr	parses	addr	as	a	Unix	domain	socket	address.	The	string	net
gives	the	network	name,	"unix",	"unixgram"	or	"unixpacket".

func	(*UnixAddr)	Network

func	(a	*UnixAddr)	Network()	string

Network	returns	the	address's	network	name,	"unix"	or	"unixgram".

func	(*UnixAddr)	String

func	(a	*UnixAddr)	String()	string

type	UnixConn
type	UnixConn	struct	{

				//	contains	filtered	or	unexported	fields

}

UnixConn	is	an	implementation	of	the	Conn	interface	for	connections	to	Unix
domain	sockets.

func	DialUnix

func	DialUnix(net	string,	laddr,	raddr	*UnixAddr)	(*UnixConn,	error)

DialUnix	connects	to	the	remote	address	raddr	on	the	network	net,	which	must
be	"unix"	or	"unixgram".	If	laddr	is	not	nil,	it	is	used	as	the	local	address	for	the
connection.

func	(*UnixConn)	Close

func	(c	*UnixConn)	Close()	error

Close	closes	the	Unix	domain	connection.

func	(*UnixConn)	File

func	(c	*UnixConn)	File()	(f	*os.File,	err	error)

File	returns	a	copy	of	the	underlying	os.File,	set	to	blocking	mode.	It	is	the
caller's	responsibility	to	close	f	when	finished.	Closing	c	does	not	affect	f,	and
closing	f	does	not	affect	c.

func	(*UnixConn)	LocalAddr

func	(c	*UnixConn)	LocalAddr()	Addr

LocalAddr	returns	the	local	network	address,	a	*UnixAddr.	Unlike	in	other
protocols,	LocalAddr	is	usually	nil	for	dialed	connections.

func	(*UnixConn)	Read

func	(c	*UnixConn)	Read(b	[]byte)	(n	int,	err	error)

Read	implements	the	Conn	Read	method.

func	(*UnixConn)	ReadFrom

func	(c	*UnixConn)	ReadFrom(b	[]byte)	(n	int,	addr	Addr,	err	error)

ReadFrom	implements	the	PacketConn	ReadFrom	method.

func	(*UnixConn)	ReadFromUnix

func	(c	*UnixConn)	ReadFromUnix(b	[]byte)	(n	int,	addr	*UnixAddr,	err	error)

ReadFromUnix	reads	a	packet	from	c,	copying	the	payload	into	b.	It	returns	the
number	of	bytes	copied	into	b	and	the	source	address	of	the	packet.

ReadFromUnix	can	be	made	to	time	out	and	return	an	error	with	Timeout()	==
true	after	a	fixed	time	limit;	see	SetDeadline	and	SetReadDeadline.

func	(*UnixConn)	ReadMsgUnix

func	(c	*UnixConn)	ReadMsgUnix(b,	oob	[]byte)	(n,	oobn,	flags	int,	addr	*UnixAddr,	err	error)

ReadMsgUnix	reads	a	packet	from	c,	copying	the	payload	into	b	and	the
associated	out-of-band	data	into	oob.	It	returns	the	number	of	bytes	copied	into
b,	the	number	of	bytes	copied	into	oob,	the	flags	that	were	set	on	the	packet,	and
the	source	address	of	the	packet.

func	(*UnixConn)	RemoteAddr

func	(c	*UnixConn)	RemoteAddr()	Addr

RemoteAddr	returns	the	remote	network	address,	a	*UnixAddr.	Unlike	in	other
protocols,	RemoteAddr	is	usually	nil	for	connections	accepted	by	a	listener.

func	(*UnixConn)	SetDeadline

func	(c	*UnixConn)	SetDeadline(t	time.Time)	error

SetDeadline	implements	the	Conn	SetDeadline	method.

func	(*UnixConn)	SetReadBuffer

func	(c	*UnixConn)	SetReadBuffer(bytes	int)	error

SetReadBuffer	sets	the	size	of	the	operating	system's	receive	buffer	associated
with	the	connection.

func	(*UnixConn)	SetReadDeadline

func	(c	*UnixConn)	SetReadDeadline(t	time.Time)	error

SetReadDeadline	implements	the	Conn	SetReadDeadline	method.

func	(*UnixConn)	SetWriteBuffer

func	(c	*UnixConn)	SetWriteBuffer(bytes	int)	error

SetWriteBuffer	sets	the	size	of	the	operating	system's	transmit	buffer	associated
with	the	connection.

func	(*UnixConn)	SetWriteDeadline

func	(c	*UnixConn)	SetWriteDeadline(t	time.Time)	error

SetWriteDeadline	implements	the	Conn	SetWriteDeadline	method.

func	(*UnixConn)	Write

func	(c	*UnixConn)	Write(b	[]byte)	(n	int,	err	error)

Write	implements	the	Conn	Write	method.

func	(*UnixConn)	WriteMsgUnix

func	(c	*UnixConn)	WriteMsgUnix(b,	oob	[]byte,	addr	*UnixAddr)	(n,	oobn	int,	err	error)

WriteMsgUnix	writes	a	packet	to	addr	via	c,	copying	the	payload	from	b	and	the
associated	out-of-band	data	from	oob.	It	returns	the	number	of	payload	and	out-

of-band	bytes	written.

func	(*UnixConn)	WriteTo

func	(c	*UnixConn)	WriteTo(b	[]byte,	addr	Addr)	(n	int,	err	error)

WriteTo	implements	the	PacketConn	WriteTo	method.

func	(*UnixConn)	WriteToUnix

func	(c	*UnixConn)	WriteToUnix(b	[]byte,	addr	*UnixAddr)	(n	int,	err	error)

WriteToUnix	writes	a	packet	to	addr	via	c,	copying	the	payload	from	b.

WriteToUnix	can	be	made	to	time	out	and	return	an	error	with	Timeout()	==	true
after	a	fixed	time	limit;	see	SetDeadline	and	SetWriteDeadline.	On	packet-
oriented	connections,	write	timeouts	are	rare.

type	UnixListener
type	UnixListener	struct	{

				//	contains	filtered	or	unexported	fields

}

UnixListener	is	a	Unix	domain	socket	listener.	Clients	should	typically	use
variables	of	type	Listener	instead	of	assuming	Unix	domain	sockets.

func	ListenUnix

func	ListenUnix(net	string,	laddr	*UnixAddr)	(*UnixListener,	error)

ListenUnix	announces	on	the	Unix	domain	socket	laddr	and	returns	a	Unix
listener.	Net	must	be	"unix"	(stream	sockets).

func	(*UnixListener)	Accept

func	(l	*UnixListener)	Accept()	(c	Conn,	err	error)

Accept	implements	the	Accept	method	in	the	Listener	interface;	it	waits	for	the
next	call	and	returns	a	generic	Conn.

func	(*UnixListener)	AcceptUnix

func	(l	*UnixListener)	AcceptUnix()	(*UnixConn,	error)

AcceptUnix	accepts	the	next	incoming	call	and	returns	the	new	connection	and
the	remote	address.

func	(*UnixListener)	Addr

func	(l	*UnixListener)	Addr()	Addr

Addr	returns	the	listener's	network	address.

func	(*UnixListener)	Close

func	(l	*UnixListener)	Close()	error

Close	stops	listening	on	the	Unix	address.	Already	accepted	connections	are	not
closed.

func	(*UnixListener)	File

func	(l	*UnixListener)	File()	(f	*os.File,	err	error)

File	returns	a	copy	of	the	underlying	os.File,	set	to	blocking	mode.	It	is	the
caller's	responsibility	to	close	f	when	finished.	Closing	l	does	not	affect	f,	and
closing	f	does	not	affect	l.

func	(*UnixListener)	SetDeadline

func	(l	*UnixListener)	SetDeadline(t	time.Time)	(err	error)

SetDeadline	sets	the	deadline	associated	with	the	listener.	A	zero	time	value
disables	the	deadline.

type	UnknownNetworkError
type	UnknownNetworkError	string

func	(UnknownNetworkError)	Error

func	(e	UnknownNetworkError)	Error()	string

func	(UnknownNetworkError)	Temporary

func	(e	UnknownNetworkError)	Temporary()	bool

func	(UnknownNetworkError)	Timeout

func	(e	UnknownNetworkError)	Timeout()	bool

Bugs

On	OpenBSD,	listening	on	the	"tcp"	network	does	not	listen	for	both	IPv4	and
IPv6	connections.	This	is	due	to	the	fact	that	IPv4	traffic	will	not	be	routed	to	an
IPv6	socket	-	two	separate	sockets	are	required	if	both	AFs	are	to	be	supported.
See	inet6(4)	on	OpenBSD	for	details.

Subdirectories

Name 				 Synopsis
http 				 Package	http	provides	HTTP	client	and	server	implementations.

					cgi 				 Package	cgi	implements	CGI	(Common	Gateway	Interface)	asspecified	in	RFC	3875.
					fcgi 				 Package	fcgi	implements	the	FastCGI	protocol.
					httptest 				 Package	httptest	provides	utilities	for	HTTP	testing.

					httputil 				 Package	httputil	provides	HTTP	utility	functions,	complementingthe	more	common	ones	in	the	net/http	package.

					pprof 				 Package	pprof	serves	via	its	HTTP	server	runtime	profiling	datain	the	format	expected	by	the	pprof	visualization	tool.
mail 				 Package	mail	implements	parsing	of	mail	messages.

rpc 				 Package	rpc	provides	access	to	the	exported	methods	of	an	objectacross	a	network	or	other	I/O	connection.

					jsonrpc 				 Package	jsonrpc	implements	a	JSON-RPC	ClientCodec	andServerCodec	for	the	rpc	package.

smtp 				 Package	smtp	implements	the	Simple	Mail	Transfer	Protocol	as
defined	in	RFC	5321.

textproto 				
Package	textproto	implements	generic	support	for	text-based
request/response	protocols	in	the	style	of	HTTP,	NNTP,	and
SMTP.

url 				 Package	url	parses	URLs	and	implements	query	escaping.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	http
import	"net/http"

Overview
Index
Examples
Subdirectories

Overview	?

Overview	?

Package	http	provides	HTTP	client	and	server	implementations.

Get,	Head,	Post,	and	PostForm	make	HTTP	requests:

resp,	err	:=	http.Get("http://example.com/")

...

resp,	err	:=	http.Post("http://example.com/upload",	"image/jpeg",	&buf)

...

resp,	err	:=	http.PostForm("http://example.com/form",

	 url.Values{"key":	{"Value"},	"id":	{"123"}})

The	client	must	close	the	response	body	when	finished	with	it:

resp,	err	:=	http.Get("http://example.com/")

if	err	!=	nil	{

	 //	handle	error

}

defer	resp.Body.Close()

body,	err	:=	ioutil.ReadAll(resp.Body)

//	...

For	control	over	HTTP	client	headers,	redirect	policy,	and	other	settings,	create	a
Client:

client	:=	&http.Client{

	 CheckRedirect:	redirectPolicyFunc,

}

resp,	err	:=	client.Get("http://example.com")

//	...

req,	err	:=	http.NewRequest("GET",	"http://example.com",	nil)

//	...

req.Header.Add("If-None-Match",	`W/"wyzzy"`)

resp,	err	:=	client.Do(req)

//	...

For	control	over	proxies,	TLS	configuration,	keep-alives,	compression,	and	other
settings,	create	a	Transport:

tr	:=	&http.Transport{

	 TLSClientConfig:				&tls.Config{RootCAs:	pool},

http://example.com/
http://example.com/upload
http://example.com/form
http://example.com/
http://example.com
http://example.com

	 DisableCompression:	true,

}

client	:=	&http.Client{Transport:	tr}

resp,	err	:=	client.Get("https://example.com")

Clients	and	Transports	are	safe	for	concurrent	use	by	multiple	goroutines	and	for
efficiency	should	only	be	created	once	and	re-used.

ListenAndServe	starts	an	HTTP	server	with	a	given	address	and	handler.	The
handler	is	usually	nil,	which	means	to	use	DefaultServeMux.	Handle	and
HandleFunc	add	handlers	to	DefaultServeMux:

http.Handle("/foo",	fooHandler)

http.HandleFunc("/bar",	func(w	http.ResponseWriter,	r	*http.Request)	{

	 fmt.Fprintf(w,	"Hello,	%q",	html.EscapeString(r.URL.Path))

})

log.Fatal(http.ListenAndServe(":8080",	nil))

More	control	over	the	server's	behavior	is	available	by	creating	a	custom	Server:

s	:=	&http.Server{

	 Addr:											":8080",

	 Handler:								myHandler,

	 ReadTimeout:				10	*	time.Second,

	 WriteTimeout:			10	*	time.Second,

	 MaxHeaderBytes:	1	<<	20,

}

log.Fatal(s.ListenAndServe())

https://example.com

Index

Constants
Variables
func	CanonicalHeaderKey(s	string)	string
func	DetectContentType(data	[]byte)	string
func	Error(w	ResponseWriter,	error	string,	code	int)
func	Handle(pattern	string,	handler	Handler)
func	HandleFunc(pattern	string,	handler	func(ResponseWriter,	*Request))
func	ListenAndServe(addr	string,	handler	Handler)	error
func	ListenAndServeTLS(addr	string,	certFile	string,	keyFile	string,
handler	Handler)	error
func	MaxBytesReader(w	ResponseWriter,	r	io.ReadCloser,	n	int64)
io.ReadCloser
func	NotFound(w	ResponseWriter,	r	*Request)
func	ParseHTTPVersion(vers	string)	(major,	minor	int,	ok	bool)
func	ProxyFromEnvironment(req	*Request)	(*url.URL,	error)
func	ProxyURL(fixedURL	*url.URL)	func(*Request)	(*url.URL,	error)
func	Redirect(w	ResponseWriter,	r	*Request,	urlStr	string,	code	int)
func	Serve(l	net.Listener,	handler	Handler)	error
func	ServeContent(w	ResponseWriter,	req	*Request,	name	string,	modtime
time.Time,	content	io.ReadSeeker)
func	ServeFile(w	ResponseWriter,	r	*Request,	name	string)
func	SetCookie(w	ResponseWriter,	cookie	*Cookie)
func	StatusText(code	int)	string
type	Client
				func	(c	*Client)	Do(req	*Request)	(resp	*Response,	err	error)
				func	(c	*Client)	Get(url	string)	(r	*Response,	err	error)
				func	(c	*Client)	Head(url	string)	(r	*Response,	err	error)
				func	(c	*Client)	Post(url	string,	bodyType	string,	body	io.Reader)	(r
*Response,	err	error)
				func	(c	*Client)	PostForm(url	string,	data	url.Values)	(r	*Response,	err
error)
type	Cookie
				func	(c	*Cookie)	String()	string
type	CookieJar
type	Dir

				func	(d	Dir)	Open(name	string)	(File,	error)
type	File
type	FileSystem
type	Flusher
type	Handler
				func	FileServer(root	FileSystem)	Handler
				func	NotFoundHandler()	Handler
				func	RedirectHandler(url	string,	code	int)	Handler
				func	StripPrefix(prefix	string,	h	Handler)	Handler
				func	TimeoutHandler(h	Handler,	dt	time.Duration,	msg	string)	Handler
type	HandlerFunc
				func	(f	HandlerFunc)	ServeHTTP(w	ResponseWriter,	r	*Request)
type	Header
				func	(h	Header)	Add(key,	value	string)
				func	(h	Header)	Del(key	string)
				func	(h	Header)	Get(key	string)	string
				func	(h	Header)	Set(key,	value	string)
				func	(h	Header)	Write(w	io.Writer)	error
				func	(h	Header)	WriteSubset(w	io.Writer,	exclude	map[string]bool)	error
type	Hijacker
type	ProtocolError
				func	(err	*ProtocolError)	Error()	string
type	Request
				func	NewRequest(method,	urlStr	string,	body	io.Reader)	(*Request,
error)
				func	ReadRequest(b	*bufio.Reader)	(req	*Request,	err	error)
				func	(r	*Request)	AddCookie(c	*Cookie)
				func	(r	*Request)	Cookie(name	string)	(*Cookie,	error)
				func	(r	*Request)	Cookies()	[]*Cookie
				func	(r	*Request)	FormFile(key	string)	(multipart.File,
*multipart.FileHeader,	error)
				func	(r	*Request)	FormValue(key	string)	string
				func	(r	*Request)	MultipartReader()	(*multipart.Reader,	error)
				func	(r	*Request)	ParseForm()	(err	error)
				func	(r	*Request)	ParseMultipartForm(maxMemory	int64)	error
				func	(r	*Request)	ProtoAtLeast(major,	minor	int)	bool
				func	(r	*Request)	Referer()	string
				func	(r	*Request)	SetBasicAuth(username,	password	string)
				func	(r	*Request)	UserAgent()	string

				func	(r	*Request)	Write(w	io.Writer)	error
				func	(r	*Request)	WriteProxy(w	io.Writer)	error
type	Response
				func	Get(url	string)	(r	*Response,	err	error)
				func	Head(url	string)	(r	*Response,	err	error)
				func	Post(url	string,	bodyType	string,	body	io.Reader)	(r	*Response,	err
error)
				func	PostForm(url	string,	data	url.Values)	(r	*Response,	err	error)
				func	ReadResponse(r	*bufio.Reader,	req	*Request)	(resp	*Response,	err
error)
				func	(r	*Response)	Cookies()	[]*Cookie
				func	(r	*Response)	Location()	(*url.URL,	error)
				func	(r	*Response)	ProtoAtLeast(major,	minor	int)	bool
				func	(r	*Response)	Write(w	io.Writer)	error
type	ResponseWriter
type	RoundTripper
				func	NewFileTransport(fs	FileSystem)	RoundTripper
type	ServeMux
				func	NewServeMux()	*ServeMux
				func	(mux	*ServeMux)	Handle(pattern	string,	handler	Handler)
				func	(mux	*ServeMux)	HandleFunc(pattern	string,	handler
func(ResponseWriter,	*Request))
				func	(mux	*ServeMux)	ServeHTTP(w	ResponseWriter,	r	*Request)
type	Server
				func	(srv	*Server)	ListenAndServe()	error
				func	(srv	*Server)	ListenAndServeTLS(certFile,	keyFile	string)	error
				func	(srv	*Server)	Serve(l	net.Listener)	error
type	Transport
				func	(t	*Transport)	CloseIdleConnections()
				func	(t	*Transport)	RegisterProtocol(scheme	string,	rt	RoundTripper)
				func	(t	*Transport)	RoundTrip(req	*Request)	(resp	*Response,	err	error)

Examples

FileServer
Get
Hijacker

Package	files

chunked.go	client.go	cookie.go	doc.go	filetransport.go	fs.go	header.go	jar.go	lex.go	request.go	response.go
server.go	sniff.go	status.go	transfer.go	transport.go

Constants
const	(

				StatusContinue											=	100

				StatusSwitchingProtocols	=	101

				StatusOK																			=	200

				StatusCreated														=	201

				StatusAccepted													=	202

				StatusNonAuthoritativeInfo	=	203

				StatusNoContent												=	204

				StatusResetContent									=	205

				StatusPartialContent							=	206

				StatusMultipleChoices			=	300

				StatusMovedPermanently		=	301

				StatusFound													=	302

				StatusSeeOther										=	303

				StatusNotModified							=	304

				StatusUseProxy										=	305

				StatusTemporaryRedirect	=	307

				StatusBadRequest																			=	400

				StatusUnauthorized																	=	401

				StatusPaymentRequired														=	402

				StatusForbidden																				=	403

				StatusNotFound																					=	404

				StatusMethodNotAllowed													=	405

				StatusNotAcceptable																=	406

				StatusProxyAuthRequired												=	407

				StatusRequestTimeout															=	408

				StatusConflict																					=	409

				StatusGone																									=	410

				StatusLengthRequired															=	411

				StatusPreconditionFailed											=	412

				StatusRequestEntityTooLarge								=	413

				StatusRequestURITooLong												=	414

				StatusUnsupportedMediaType									=	415

				StatusRequestedRangeNotSatisfiable	=	416

				StatusExpectationFailed												=	417

				StatusTeapot																							=	418

				StatusInternalServerError					=	500

				StatusNotImplemented										=	501

				StatusBadGateway														=	502

				StatusServiceUnavailable						=	503

				StatusGatewayTimeout										=	504

				StatusHTTPVersionNotSupported	=	505

)

HTTP	status	codes,	defined	in	RFC	2616.

const	DefaultMaxHeaderBytes	=	1	<<	20	//	1	MB

DefaultMaxHeaderBytes	is	the	maximum	permitted	size	of	the	headers	in	an
HTTP	request.	This	can	be	overridden	by	setting	Server.MaxHeaderBytes.

const	DefaultMaxIdleConnsPerHost	=	2

DefaultMaxIdleConnsPerHost	is	the	default	value	of	Transport's
MaxIdleConnsPerHost.

const	TimeFormat	=	"Mon,	02	Jan	2006	15:04:05	GMT"

TimeFormat	is	the	time	format	to	use	with	time.Parse	and	time.Time.Format
when	parsing	or	generating	times	in	HTTP	headers.	It	is	like	time.RFC1123	but
hard	codes	GMT	as	the	time	zone.

Variables
var	(

				ErrHeaderTooLong								=	&ProtocolError{"header	too	long"}

				ErrShortBody												=	&ProtocolError{"entity	body	too	short"}

				ErrNotSupported									=	&ProtocolError{"feature	not	supported"}

				ErrUnexpectedTrailer				=	&ProtocolError{"trailer	header	without	chunked	transfer	encoding"}

				ErrMissingContentLength	=	&ProtocolError{"missing	ContentLength	in	HEAD	response"}

				ErrNotMultipart									=	&ProtocolError{"request	Content-Type	isn't	multipart/form-data"}

				ErrMissingBoundary						=	&ProtocolError{"no	multipart	boundary	param	Content-Type"}

)

var	(

				ErrWriteAfterFlush	=	errors.New("Conn.Write	called	after	Flush")

				ErrBodyNotAllowed		=	errors.New("http:	response	status	code	does	not	allow	body")

				ErrHijacked								=	errors.New("Conn	has	been	hijacked")

				ErrContentLength			=	errors.New("Conn.Write	wrote	more	than	the	declared	Content-Length")

)

Errors	introduced	by	the	HTTP	server.

var	DefaultClient	=	&Client{}

DefaultClient	is	the	default	Client	and	is	used	by	Get,	Head,	and	Post.

var	DefaultServeMux	=	NewServeMux()

DefaultServeMux	is	the	default	ServeMux	used	by	Serve.

var	ErrBodyReadAfterClose	=	errors.New("http:	invalid	Read	on	closed	request	Body")

ErrBodyReadAfterClose	is	returned	when	reading	a	Request	Body	after	the	body
has	been	closed.	This	typically	happens	when	the	body	is	read	after	an	HTTP
Handler	calls	WriteHeader	or	Write	on	its	ResponseWriter.

var	ErrHandlerTimeout	=	errors.New("http:	Handler	timeout")

ErrHandlerTimeout	is	returned	on	ResponseWriter	Write	calls	in	handlers	which
have	timed	out.

var	ErrLineTooLong	=	errors.New("header	line	too	long")

var	ErrMissingFile	=	errors.New("http:	no	such	file")

ErrMissingFile	is	returned	by	FormFile	when	the	provided	file	field	name	is
either	not	present	in	the	request	or	not	a	file	field.

var	ErrNoCookie	=	errors.New("http:	named	cookie	not	present")

var	ErrNoLocation	=	errors.New("http:	no	Location	header	in	response")

func	CanonicalHeaderKey
func	CanonicalHeaderKey(s	string)	string

CanonicalHeaderKey	returns	the	canonical	format	of	the	header	key	s.	The
canonicalization	converts	the	first	letter	and	any	letter	following	a	hyphen	to
upper	case;	the	rest	are	converted	to	lowercase.	For	example,	the	canonical	key
for	"accept-encoding"	is	"Accept-Encoding".

func	DetectContentType
func	DetectContentType(data	[]byte)	string

DetectContentType	implements	the	algorithm	described	at
http://mimesniff.spec.whatwg.org/	to	determine	the	Content-Type	of	the	given
data.	It	considers	at	most	the	first	512	bytes	of	data.	DetectContentType	always
returns	a	valid	MIME	type:	if	it	cannot	determine	a	more	specific	one,	it	returns
"application/octet-stream".

http://mimesniff.spec.whatwg.org/

func	Error
func	Error(w	ResponseWriter,	error	string,	code	int)

Error	replies	to	the	request	with	the	specified	error	message	and	HTTP	code.

func	Handle
func	Handle(pattern	string,	handler	Handler)

Handle	registers	the	handler	for	the	given	pattern	in	the	DefaultServeMux.	The
documentation	for	ServeMux	explains	how	patterns	are	matched.

func	HandleFunc
func	HandleFunc(pattern	string,	handler	func(ResponseWriter,	*Request))

HandleFunc	registers	the	handler	function	for	the	given	pattern	in	the
DefaultServeMux.	The	documentation	for	ServeMux	explains	how	patterns	are
matched.

func	ListenAndServe
func	ListenAndServe(addr	string,	handler	Handler)	error

ListenAndServe	listens	on	the	TCP	network	address	addr	and	then	calls	Serve
with	handler	to	handle	requests	on	incoming	connections.	Handler	is	typically
nil,	in	which	case	the	DefaultServeMux	is	used.

A	trivial	example	server	is:

package	main

import	(

	 "io"

	 "net/http"

	 "log"

)

//	hello	world,	the	web	server

func	HelloServer(w	http.ResponseWriter,	req	*http.Request)	{

	 io.WriteString(w,	"hello,	world!\n")

}

func	main()	{

	 http.HandleFunc("/hello",	HelloServer)

	 err	:=	http.ListenAndServe(":12345",	nil)

	 if	err	!=	nil	{

	 	 log.Fatal("ListenAndServe:	",	err)

	 }

}

func	ListenAndServeTLS
func	ListenAndServeTLS(addr	string,	certFile	string,	keyFile	string,	handler	Handler)	error

ListenAndServeTLS	acts	identically	to	ListenAndServe,	except	that	it	expects
HTTPS	connections.	Additionally,	files	containing	a	certificate	and	matching
private	key	for	the	server	must	be	provided.	If	the	certificate	is	signed	by	a
certificate	authority,	the	certFile	should	be	the	concatenation	of	the	server's
certificate	followed	by	the	CA's	certificate.

A	trivial	example	server	is:

import	(

	 "log"

	 "net/http"

)

func	handler(w	http.ResponseWriter,	req	*http.Request)	{

	 w.Header().Set("Content-Type",	"text/plain")

	 w.Write([]byte("This	is	an	example	server.\n"))

}

func	main()	{

	 http.HandleFunc("/",	handler)

	 log.Printf("About	to	listen	on	10443.	Go	to	https://127.0.0.1:10443/

	 err	:=	http.ListenAndServeTLS(":10443",	"cert.pem",	"key.pem",	nil)

	 if	err	!=	nil	{

	 	 log.Fatal(err)

	 }

}

One	can	use	generate_cert.go	in	crypto/tls	to	generate	cert.pem	and	key.pem.

https://127.0.0.1:10443/

func	MaxBytesReader
func	MaxBytesReader(w	ResponseWriter,	r	io.ReadCloser,	n	int64)	io.ReadCloser

MaxBytesReader	is	similar	to	io.LimitReader	but	is	intended	for	limiting	the	size
of	incoming	request	bodies.	In	contrast	to	io.LimitReader,	MaxBytesReader's
result	is	a	ReadCloser,	returns	a	non-EOF	error	for	a	Read	beyond	the	limit,	and
Closes	the	underlying	reader	when	its	Close	method	is	called.

MaxBytesReader	prevents	clients	from	accidentally	or	maliciously	sending	a
large	request	and	wasting	server	resources.

func	NotFound
func	NotFound(w	ResponseWriter,	r	*Request)

NotFound	replies	to	the	request	with	an	HTTP	404	not	found	error.

func	ParseHTTPVersion
func	ParseHTTPVersion(vers	string)	(major,	minor	int,	ok	bool)

ParseHTTPVersion	parses	a	HTTP	version	string.	"HTTP/1.0"	returns	(1,	0,
true).

func	ProxyFromEnvironment
func	ProxyFromEnvironment(req	*Request)	(*url.URL,	error)

ProxyFromEnvironment	returns	the	URL	of	the	proxy	to	use	for	a	given	request,
as	indicated	by	the	environment	variables	$HTTP_PROXY	and	$NO_PROXY
(or	$http_proxy	and	$no_proxy).	An	error	is	returned	if	the	proxy	environment	is
invalid.	A	nil	URL	and	nil	error	are	returned	if	no	proxy	is	defined	in	the
environment,	or	a	proxy	should	not	be	used	for	the	given	request.

func	ProxyURL
func	ProxyURL(fixedURL	*url.URL)	func(*Request)	(*url.URL,	error)

ProxyURL	returns	a	proxy	function	(for	use	in	a	Transport)	that	always	returns
the	same	URL.

func	Redirect
func	Redirect(w	ResponseWriter,	r	*Request,	urlStr	string,	code	int)

Redirect	replies	to	the	request	with	a	redirect	to	url,	which	may	be	a	path	relative
to	the	request	path.

func	Serve
func	Serve(l	net.Listener,	handler	Handler)	error

Serve	accepts	incoming	HTTP	connections	on	the	listener	l,	creating	a	new
service	thread	for	each.	The	service	threads	read	requests	and	then	call	handler	to
reply	to	them.	Handler	is	typically	nil,	in	which	case	the	DefaultServeMux	is
used.

func	ServeContent
func	ServeContent(w	ResponseWriter,	req	*Request,	name	string,	modtime	time.Time,	content	io.ReadSeeker)

ServeContent	replies	to	the	request	using	the	content	in	the	provided
ReadSeeker.	The	main	benefit	of	ServeContent	over	io.Copy	is	that	it	handles
Range	requests	properly,	sets	the	MIME	type,	and	handles	If-Modified-Since
requests.

If	the	response's	Content-Type	header	is	not	set,	ServeContent	first	tries	to
deduce	the	type	from	name's	file	extension	and,	if	that	fails,	falls	back	to	reading
the	first	block	of	the	content	and	passing	it	to	DetectContentType.	The	name	is
otherwise	unused;	in	particular	it	can	be	empty	and	is	never	sent	in	the	response.

If	modtime	is	not	the	zero	time,	ServeContent	includes	it	in	a	Last-Modified
header	in	the	response.	If	the	request	includes	an	If-Modified-Since	header,
ServeContent	uses	modtime	to	decide	whether	the	content	needs	to	be	sent	at	all.

The	content's	Seek	method	must	work:	ServeContent	uses	a	seek	to	the	end	of
the	content	to	determine	its	size.

Note	that	*os.File	implements	the	io.ReadSeeker	interface.

func	ServeFile
func	ServeFile(w	ResponseWriter,	r	*Request,	name	string)

ServeFile	replies	to	the	request	with	the	contents	of	the	named	file	or	directory.

func	SetCookie
func	SetCookie(w	ResponseWriter,	cookie	*Cookie)

SetCookie	adds	a	Set-Cookie	header	to	the	provided	ResponseWriter's	headers.

func	StatusText
func	StatusText(code	int)	string

StatusText	returns	a	text	for	the	HTTP	status	code.	It	returns	the	empty	string	if
the	code	is	unknown.

type	Client
type	Client	struct	{

				//	Transport	specifies	the	mechanism	by	which	individual

				//	HTTP	requests	are	made.

				//	If	nil,	DefaultTransport	is	used.

				Transport	RoundTripper

				//	CheckRedirect	specifies	the	policy	for	handling	redirects.

				//	If	CheckRedirect	is	not	nil,	the	client	calls	it	before

				//	following	an	HTTP	redirect.	The	arguments	req	and	via

				//	are	the	upcoming	request	and	the	requests	made	already,

				//	oldest	first.	If	CheckRedirect	returns	an	error,	the	client

				//	returns	that	error	instead	of	issue	the	Request	req.

				//

				//	If	CheckRedirect	is	nil,	the	Client	uses	its	default	policy,

				//	which	is	to	stop	after	10	consecutive	requests.

				CheckRedirect	func(req	*Request,	via	[]*Request)	error

				//	Jar	specifies	the	cookie	jar.	

				//	If	Jar	is	nil,	cookies	are	not	sent	in	requests	and	ignored	

				//	in	responses.

				Jar	CookieJar

}

A	Client	is	an	HTTP	client.	Its	zero	value	(DefaultClient)	is	a	usable	client	that
uses	DefaultTransport.

The	Client's	Transport	typically	has	internal	state	(cached	TCP	connections),	so
Clients	should	be	reused	instead	of	created	as	needed.	Clients	are	safe	for
concurrent	use	by	multiple	goroutines.

func	(*Client)	Do

func	(c	*Client)	Do(req	*Request)	(resp	*Response,	err	error)

Do	sends	an	HTTP	request	and	returns	an	HTTP	response,	following	policy	(e.g.
redirects,	cookies,	auth)	as	configured	on	the	client.

A	non-nil	response	always	contains	a	non-nil	resp.Body.

Callers	should	close	resp.Body	when	done	reading	from	it.	If	resp.Body	is	not
closed,	the	Client's	underlying	RoundTripper	(typically	Transport)	may	not	be

able	to	re-use	a	persistent	TCP	connection	to	the	server	for	a	subsequent	"keep-
alive"	request.

Generally	Get,	Post,	or	PostForm	will	be	used	instead	of	Do.

func	(*Client)	Get

func	(c	*Client)	Get(url	string)	(r	*Response,	err	error)

Get	issues	a	GET	to	the	specified	URL.	If	the	response	is	one	of	the	following
redirect	codes,	Get	follows	the	redirect	after	calling	the	Client's	CheckRedirect
function.

301	(Moved	Permanently)

302	(Found)

303	(See	Other)

307	(Temporary	Redirect)

Caller	should	close	r.Body	when	done	reading	from	it.

func	(*Client)	Head

func	(c	*Client)	Head(url	string)	(r	*Response,	err	error)

Head	issues	a	HEAD	to	the	specified	URL.	If	the	response	is	one	of	the
following	redirect	codes,	Head	follows	the	redirect	after	calling	the	Client's
CheckRedirect	function.

301	(Moved	Permanently)

302	(Found)

303	(See	Other)

307	(Temporary	Redirect)

func	(*Client)	Post

func	(c	*Client)	Post(url	string,	bodyType	string,	body	io.Reader)	(r	*Response,	err	error)

Post	issues	a	POST	to	the	specified	URL.

Caller	should	close	r.Body	when	done	reading	from	it.

func	(*Client)	PostForm

func	(c	*Client)	PostForm(url	string,	data	url.Values)	(r	*Response,	err	error)

PostForm	issues	a	POST	to	the	specified	URL,	with	data's	keys	and	values
urlencoded	as	the	request	body.

Caller	should	close	r.Body	when	done	reading	from	it.

type	Cookie
type	Cookie	struct	{

				Name							string

				Value						string

				Path							string

				Domain					string

				Expires				time.Time

				RawExpires	string

				//	MaxAge=0	means	no	'Max-Age'	attribute	specified.	

				//	MaxAge<0	means	delete	cookie	now,	equivalently	'Max-Age:	0'

				//	MaxAge>0	means	Max-Age	attribute	present	and	given	in	seconds

				MaxAge			int

				Secure			bool

				HttpOnly	bool

				Raw						string

				Unparsed	[]string	//	Raw	text	of	unparsed	attribute-value	pairs

}

A	Cookie	represents	an	HTTP	cookie	as	sent	in	the	Set-Cookie	header	of	an
HTTP	response	or	the	Cookie	header	of	an	HTTP	request.

func	(*Cookie)	String

func	(c	*Cookie)	String()	string

String	returns	the	serialization	of	the	cookie	for	use	in	a	Cookie	header	(if	only
Name	and	Value	are	set)	or	a	Set-Cookie	response	header	(if	other	fields	are	set).

type	CookieJar
type	CookieJar	interface	{

				//	SetCookies	handles	the	receipt	of	the	cookies	in	a	reply	for	the	

				//	given	URL.		It	may	or	may	not	choose	to	save	the	cookies,	depending	

				//	on	the	jar's	policy	and	implementation.	

				SetCookies(u	*url.URL,	cookies	[]*Cookie)

				//	Cookies	returns	the	cookies	to	send	in	a	request	for	the	given	URL.

				//	It	is	up	to	the	implementation	to	honor	the	standard	cookie	use	

				//	restrictions	such	as	in	RFC	6265.	

				Cookies(u	*url.URL)	[]*Cookie

}

A	CookieJar	manages	storage	and	use	of	cookies	in	HTTP	requests.

Implementations	of	CookieJar	must	be	safe	for	concurrent	use	by	multiple
goroutines.

type	Dir
type	Dir	string

A	Dir	implements	http.FileSystem	using	the	native	file	system	restricted	to	a
specific	directory	tree.

An	empty	Dir	is	treated	as	".".

func	(Dir)	Open

func	(d	Dir)	Open(name	string)	(File,	error)

type	File
type	File	interface	{

				Close()	error

				Stat()	(os.FileInfo,	error)

				Readdir(count	int)	([]os.FileInfo,	error)

				Read([]byte)	(int,	error)

				Seek(offset	int64,	whence	int)	(int64,	error)

}

A	File	is	returned	by	a	FileSystem's	Open	method	and	can	be	served	by	the
FileServer	implementation.

type	FileSystem
type	FileSystem	interface	{

				Open(name	string)	(File,	error)

}

A	FileSystem	implements	access	to	a	collection	of	named	files.	The	elements	in
a	file	path	are	separated	by	slash	('/',	U+002F)	characters,	regardless	of	host
operating	system	convention.

type	Flusher
type	Flusher	interface	{

				//	Flush	sends	any	buffered	data	to	the	client.

				Flush()

}

The	Flusher	interface	is	implemented	by	ResponseWriters	that	allow	an	HTTP
handler	to	flush	buffered	data	to	the	client.

Note	that	even	for	ResponseWriters	that	support	Flush,	if	the	client	is	connected
through	an	HTTP	proxy,	the	buffered	data	may	not	reach	the	client	until	the
response	completes.

type	Handler
type	Handler	interface	{

				ServeHTTP(ResponseWriter,	*Request)

}

Objects	implementing	the	Handler	interface	can	be	registered	to	serve	a
particular	path	or	subtree	in	the	HTTP	server.

ServeHTTP	should	write	reply	headers	and	data	to	the	ResponseWriter	and	then
return.	Returning	signals	that	the	request	is	finished	and	that	the	HTTP	server
can	move	on	to	the	next	request	on	the	connection.

func	FileServer

func	FileServer(root	FileSystem)	Handler

FileServer	returns	a	handler	that	serves	HTTP	requests	with	the	contents	of	the
file	system	rooted	at	root.

To	use	the	operating	system's	file	system	implementation,	use	http.Dir:

http.Handle("/",	http.FileServer(http.Dir("/tmp")))

?	Example

?	Example

Code:

//	we	use	StripPrefix	so	that	/tmpfiles/somefile	will	access	/tmp/somefile

http.Handle("/tmpfiles/",	http.StripPrefix("/tmpfiles/",	http.FileServer(http.Dir("/tmp"))))

func	NotFoundHandler

func	NotFoundHandler()	Handler

NotFoundHandler	returns	a	simple	request	handler	that	replies	to	each	request
with	a	“404	page	not	found”	reply.

func	RedirectHandler

func	RedirectHandler(url	string,	code	int)	Handler

RedirectHandler	returns	a	request	handler	that	redirects	each	request	it	receives
to	the	given	url	using	the	given	status	code.

func	StripPrefix

func	StripPrefix(prefix	string,	h	Handler)	Handler

StripPrefix	returns	a	handler	that	serves	HTTP	requests	by	removing	the	given
prefix	from	the	request	URL's	Path	and	invoking	the	handler	h.	StripPrefix
handles	a	request	for	a	path	that	doesn't	begin	with	prefix	by	replying	with	an
HTTP	404	not	found	error.

func	TimeoutHandler

func	TimeoutHandler(h	Handler,	dt	time.Duration,	msg	string)	Handler

TimeoutHandler	returns	a	Handler	that	runs	h	with	the	given	time	limit.

The	new	Handler	calls	h.ServeHTTP	to	handle	each	request,	but	if	a	call	runs	for
more	than	ns	nanoseconds,	the	handler	responds	with	a	503	Service	Unavailable
error	and	the	given	message	in	its	body.	(If	msg	is	empty,	a	suitable	default
message	will	be	sent.)	After	such	a	timeout,	writes	by	h	to	its	ResponseWriter
will	return	ErrHandlerTimeout.

type	HandlerFunc
type	HandlerFunc	func(ResponseWriter,	*Request)

The	HandlerFunc	type	is	an	adapter	to	allow	the	use	of	ordinary	functions	as
HTTP	handlers.	If	f	is	a	function	with	the	appropriate	signature,	HandlerFunc(f)
is	a	Handler	object	that	calls	f.

func	(HandlerFunc)	ServeHTTP

func	(f	HandlerFunc)	ServeHTTP(w	ResponseWriter,	r	*Request)

ServeHTTP	calls	f(w,	r).

type	Header
type	Header	map[string][]string

A	Header	represents	the	key-value	pairs	in	an	HTTP	header.

func	(Header)	Add

func	(h	Header)	Add(key,	value	string)

Add	adds	the	key,	value	pair	to	the	header.	It	appends	to	any	existing	values
associated	with	key.

func	(Header)	Del

func	(h	Header)	Del(key	string)

Del	deletes	the	values	associated	with	key.

func	(Header)	Get

func	(h	Header)	Get(key	string)	string

Get	gets	the	first	value	associated	with	the	given	key.	If	there	are	no	values
associated	with	the	key,	Get	returns	"".	To	access	multiple	values	of	a	key,	access
the	map	directly	with	CanonicalHeaderKey.

func	(Header)	Set

func	(h	Header)	Set(key,	value	string)

Set	sets	the	header	entries	associated	with	key	to	the	single	element	value.	It
replaces	any	existing	values	associated	with	key.

func	(Header)	Write

func	(h	Header)	Write(w	io.Writer)	error

Write	writes	a	header	in	wire	format.

func	(Header)	WriteSubset

func	(h	Header)	WriteSubset(w	io.Writer,	exclude	map[string]bool)	error

WriteSubset	writes	a	header	in	wire	format.	If	exclude	is	not	nil,	keys	where
exclude[key]	==	true	are	not	written.

type	Hijacker
type	Hijacker	interface	{

				//	Hijack	lets	the	caller	take	over	the	connection.

				//	After	a	call	to	Hijack(),	the	HTTP	server	library

				//	will	not	do	anything	else	with	the	connection.

				//	It	becomes	the	caller's	responsibility	to	manage

				//	and	close	the	connection.

				Hijack()	(net.Conn,	*bufio.ReadWriter,	error)

}

The	Hijacker	interface	is	implemented	by	ResponseWriters	that	allow	an	HTTP
handler	to	take	over	the	connection.

?	Example

?	Example

Code:

http.HandleFunc("/hijack",	func(w	http.ResponseWriter,	r	*http.Request)	{

				hj,	ok	:=	w.(http.Hijacker)

				if	!ok	{

								http.Error(w,	"webserver	doesn't	support	hijacking",	http.StatusInternalServerError)

								return

				}

				conn,	bufrw,	err	:=	hj.Hijack()

				if	err	!=	nil	{

								http.Error(w,	err.Error(),	http.StatusInternalServerError)

								return

				}

				//	Don't	forget	to	close	the	connection:

				defer	conn.Close()

				bufrw.WriteString("Now	we're	speaking	raw	TCP.	Say	hi:	")

				bufrw.Flush()

				s,	err	:=	bufrw.ReadString('\n')

				if	err	!=	nil	{

								log.Printf("error	reading	string:	%v",	err)

								return

				}

				fmt.Fprintf(bufrw,	"You	said:	%q\nBye.\n",	s)

				bufrw.Flush()

})

type	ProtocolError
type	ProtocolError	struct	{

				ErrorString	string

}

HTTP	request	parsing	errors.

func	(*ProtocolError)	Error

func	(err	*ProtocolError)	Error()	string

type	Request
type	Request	struct	{

				Method	string	//	GET,	POST,	PUT,	etc.

				URL				*url.URL

				//	The	protocol	version	for	incoming	requests.

				//	Outgoing	requests	always	use	HTTP/1.1.

				Proto						string	//	"HTTP/1.0"

				ProtoMajor	int				//	1

				ProtoMinor	int

				//	A	header	maps	request	lines	to	their	values.

				//	If	the	header	says

				//

				//	 accept-encoding:	gzip,	deflate

				//	 Accept-Language:	en-us

				//	 Connection:	keep-alive

				//

				//	then

				//

				//	 Header	=	map[string][]string{

				//	 	 "Accept-Encoding":	{"gzip,	deflate"},

				//	 	 "Accept-Language":	{"en-us"},

				//	 	 "Connection":	{"keep-alive"},

				//	 }

				//

				//	HTTP	defines	that	header	names	are	case-insensitive.

				//	The	request	parser	implements	this	by	canonicalizing	the

				//	name,	making	the	first	character	and	any	characters

				//	following	a	hyphen	uppercase	and	the	rest	lowercase.

				Header	Header

				//	The	message	body.

				Body	io.ReadCloser

				//	ContentLength	records	the	length	of	the	associated	content.

				//	The	value	-1	indicates	that	the	length	is	unknown.

				//	Values	>=	0	indicate	that	the	given	number	of	bytes	may

				//	be	read	from	Body.

				//	For	outgoing	requests,	a	value	of	0	means	unknown	if	Body	is	not	nil.

				ContentLength	int64

				//	TransferEncoding	lists	the	transfer	encodings	from	outermost	to

				//	innermost.	An	empty	list	denotes	the	"identity"	encoding.

				//	TransferEncoding	can	usually	be	ignored;	chunked	encoding	is

				//	automatically	added	and	removed	as	necessary	when	sending	and

				//	receiving	requests.

				TransferEncoding	[]string

				//	Close	indicates	whether	to	close	the	connection	after

				//	replying	to	this	request.

				Close	bool

				//	The	host	on	which	the	URL	is	sought.

				//	Per	RFC	2616,	this	is	either	the	value	of	the	Host:	header

				//	or	the	host	name	given	in	the	URL	itself.

				Host	string

				//	Form	contains	the	parsed	form	data,	including	both	the	URL

				//	field's	query	parameters	and	the	POST	or	PUT	form	data.

				//	This	field	is	only	available	after	ParseForm	is	called.

				//	The	HTTP	client	ignores	Form	and	uses	Body	instead.

				Form	url.Values

				//	MultipartForm	is	the	parsed	multipart	form,	including	file	uploads.

				//	This	field	is	only	available	after	ParseMultipartForm	is	called.

				//	The	HTTP	client	ignores	MultipartForm	and	uses	Body	instead.

				MultipartForm	*multipart.Form

				//	Trailer	maps	trailer	keys	to	values.		Like	for	Header,	if	the

				//	response	has	multiple	trailer	lines	with	the	same	key,	they	will	be

				//	concatenated,	delimited	by	commas.

				//	For	server	requests,	Trailer	is	only	populated	after	Body	has	been

				//	closed	or	fully	consumed.

				//	Trailer	support	is	only	partially	complete.

				Trailer	Header

				//	RemoteAddr	allows	HTTP	servers	and	other	software	to	record

				//	the	network	address	that	sent	the	request,	usually	for

				//	logging.	This	field	is	not	filled	in	by	ReadRequest	and

				//	has	no	defined	format.	The	HTTP	server	in	this	package

				//	sets	RemoteAddr	to	an	"IP:port"	address	before	invoking	a

				//	handler.

				//	This	field	is	ignored	by	the	HTTP	client.

				RemoteAddr	string

				//	RequestURI	is	the	unmodified	Request-URI	of	the

				//	Request-Line	(RFC	2616,	Section	5.1)	as	sent	by	the	client

				//	to	a	server.	Usually	the	URL	field	should	be	used	instead.

				//	It	is	an	error	to	set	this	field	in	an	HTTP	client	request.

				RequestURI	string

				//	TLS	allows	HTTP	servers	and	other	software	to	record

				//	information	about	the	TLS	connection	on	which	the	request

				//	was	received.	This	field	is	not	filled	in	by	ReadRequest.

				//	The	HTTP	server	in	this	package	sets	the	field	for

				//	TLS-enabled	connections	before	invoking	a	handler;

				//	otherwise	it	leaves	the	field	nil.

				//	This	field	is	ignored	by	the	HTTP	client.

				TLS	*tls.ConnectionState

}

A	Request	represents	an	HTTP	request	received	by	a	server	or	to	be	sent	by	a
client.

func	NewRequest

func	NewRequest(method,	urlStr	string,	body	io.Reader)	(*Request,	error)

NewRequest	returns	a	new	Request	given	a	method,	URL,	and	optional	body.

func	ReadRequest

func	ReadRequest(b	*bufio.Reader)	(req	*Request,	err	error)

ReadRequest	reads	and	parses	a	request	from	b.

func	(*Request)	AddCookie

func	(r	*Request)	AddCookie(c	*Cookie)

AddCookie	adds	a	cookie	to	the	request.	Per	RFC	6265	section	5.4,	AddCookie
does	not	attach	more	than	one	Cookie	header	field.	That	means	all	cookies,	if
any,	are	written	into	the	same	line,	separated	by	semicolon.

func	(*Request)	Cookie

func	(r	*Request)	Cookie(name	string)	(*Cookie,	error)

Cookie	returns	the	named	cookie	provided	in	the	request	or	ErrNoCookie	if	not
found.

func	(*Request)	Cookies

func	(r	*Request)	Cookies()	[]*Cookie

Cookies	parses	and	returns	the	HTTP	cookies	sent	with	the	request.

func	(*Request)	FormFile

func	(r	*Request)	FormFile(key	string)	(multipart.File,	*multipart.FileHeader,	error)

FormFile	returns	the	first	file	for	the	provided	form	key.	FormFile	calls
ParseMultipartForm	and	ParseForm	if	necessary.

func	(*Request)	FormValue

func	(r	*Request)	FormValue(key	string)	string

FormValue	returns	the	first	value	for	the	named	component	of	the	query.
FormValue	calls	ParseMultipartForm	and	ParseForm	if	necessary.

func	(*Request)	MultipartReader

func	(r	*Request)	MultipartReader()	(*multipart.Reader,	error)

MultipartReader	returns	a	MIME	multipart	reader	if	this	is	a	multipart/form-data
POST	request,	else	returns	nil	and	an	error.	Use	this	function	instead	of
ParseMultipartForm	to	process	the	request	body	as	a	stream.

func	(*Request)	ParseForm

func	(r	*Request)	ParseForm()	(err	error)

ParseForm	parses	the	raw	query	from	the	URL.

For	POST	or	PUT	requests,	it	also	parses	the	request	body	as	a	form.	If	the
request	Body's	size	has	not	already	been	limited	by	MaxBytesReader,	the	size	is
capped	at	10MB.

ParseMultipartForm	calls	ParseForm	automatically.	It	is	idempotent.

func	(*Request)	ParseMultipartForm

func	(r	*Request)	ParseMultipartForm(maxMemory	int64)	error

ParseMultipartForm	parses	a	request	body	as	multipart/form-data.	The	whole
request	body	is	parsed	and	up	to	a	total	of	maxMemory	bytes	of	its	file	parts	are
stored	in	memory,	with	the	remainder	stored	on	disk	in	temporary	files.
ParseMultipartForm	calls	ParseForm	if	necessary.	After	one	call	to
ParseMultipartForm,	subsequent	calls	have	no	effect.

func	(*Request)	ProtoAtLeast

func	(r	*Request)	ProtoAtLeast(major,	minor	int)	bool

ProtoAtLeast	returns	whether	the	HTTP	protocol	used	in	the	request	is	at	least
major.minor.

func	(*Request)	Referer

func	(r	*Request)	Referer()	string

Referer	returns	the	referring	URL,	if	sent	in	the	request.

Referer	is	misspelled	as	in	the	request	itself,	a	mistake	from	the	earliest	days	of
HTTP.	This	value	can	also	be	fetched	from	the	Header	map	as
Header["Referer"];	the	benefit	of	making	it	available	as	a	method	is	that	the
compiler	can	diagnose	programs	that	use	the	alternate	(correct	English)	spelling
req.Referrer()	but	cannot	diagnose	programs	that	use	Header["Referrer"].

func	(*Request)	SetBasicAuth

func	(r	*Request)	SetBasicAuth(username,	password	string)

SetBasicAuth	sets	the	request's	Authorization	header	to	use	HTTP	Basic
Authentication	with	the	provided	username	and	password.

With	HTTP	Basic	Authentication	the	provided	username	and	password	are	not
encrypted.

func	(*Request)	UserAgent

func	(r	*Request)	UserAgent()	string

UserAgent	returns	the	client's	User-Agent,	if	sent	in	the	request.

func	(*Request)	Write

func	(r	*Request)	Write(w	io.Writer)	error

Write	writes	an	HTTP/1.1	request	--	header	and	body	--	in	wire	format.	This
method	consults	the	following	fields	of	the	request:

Host

URL

Method	(defaults	to	"GET")

Header

ContentLength

TransferEncoding

Body

If	Body	is	present,	Content-Length	is	<=	0	and	TransferEncoding	hasn't	been	set
to	"identity",	Write	adds	"Transfer-Encoding:	chunked"	to	the	header.	Body	is
closed	after	it	is	sent.

func	(*Request)	WriteProxy

func	(r	*Request)	WriteProxy(w	io.Writer)	error

WriteProxy	is	like	Write	but	writes	the	request	in	the	form	expected	by	an	HTTP
proxy.	In	particular,	WriteProxy	writes	the	initial	Request-URI	line	of	the	request
with	an	absolute	URI,	per	section	5.1.2	of	RFC	2616,	including	the	scheme	and
host.	In	either	case,	WriteProxy	also	writes	a	Host	header,	using	either	r.Host	or
r.URL.Host.

type	Response
type	Response	struct	{

				Status					string	//	e.g.	"200	OK"

				StatusCode	int				//	e.g.	200

				Proto						string	//	e.g.	"HTTP/1.0"

				ProtoMajor	int				//	e.g.	1

				ProtoMinor	int

				//	Header	maps	header	keys	to	values.		If	the	response	had	multiple

				//	headers	with	the	same	key,	they	will	be	concatenated,	with	comma

				//	delimiters.		(Section	4.2	of	RFC	2616	requires	that	multiple	headers

				//	be	semantically	equivalent	to	a	comma-delimited	sequence.)	Values

				//	duplicated	by	other	fields	in	this	struct	(e.g.,	ContentLength)	are

				//	omitted	from	Header.

				//

				//	Keys	in	the	map	are	canonicalized	(see	CanonicalHeaderKey).

				Header	Header

				//	Body	represents	the	response	body.

				//

				//	The	http	Client	and	Transport	guarantee	that	Body	is	always

				//	non-nil,	even	on	responses	without	a	body	or	responses	with

				//	a	zero-lengthed	body.

				Body	io.ReadCloser

				//	ContentLength	records	the	length	of	the	associated	content.		The

				//	value	-1	indicates	that	the	length	is	unknown.		Unless	RequestMethod

				//	is	"HEAD",	values	>=	0	indicate	that	the	given	number	of	bytes	may

				//	be	read	from	Body.

				ContentLength	int64

				//	Contains	transfer	encodings	from	outer-most	to	inner-most.	Value	is

				//	nil,	means	that	"identity"	encoding	is	used.

				TransferEncoding	[]string

				//	Close	records	whether	the	header	directed	that	the	connection	be

				//	closed	after	reading	Body.		The	value	is	advice	for	clients:	neither

				//	ReadResponse	nor	Response.Write	ever	closes	a	connection.

				Close	bool

				//	Trailer	maps	trailer	keys	to	values,	in	the	same

				//	format	as	the	header.

				Trailer	Header

				//	The	Request	that	was	sent	to	obtain	this	Response.

				//	Request's	Body	is	nil	(having	already	been	consumed).

				//	This	is	only	populated	for	Client	requests.

				Request	*Request

}

Response	represents	the	response	from	an	HTTP	request.

func	Get

func	Get(url	string)	(r	*Response,	err	error)

Get	issues	a	GET	to	the	specified	URL.	If	the	response	is	one	of	the	following
redirect	codes,	Get	follows	the	redirect,	up	to	a	maximum	of	10	redirects:

301	(Moved	Permanently)

302	(Found)

303	(See	Other)

307	(Temporary	Redirect)

Caller	should	close	r.Body	when	done	reading	from	it.

Get	is	a	wrapper	around	DefaultClient.Get.

?	Example

?	Example

Code:

res,	err	:=	http.Get("http://www.google.com/robots.txt")

if	err	!=	nil	{

				log.Fatal(err)

}

robots,	err	:=	ioutil.ReadAll(res.Body)

if	err	!=	nil	{

				log.Fatal(err)

}

res.Body.Close()

fmt.Printf("%s",	robots)

func	Head

func	Head(url	string)	(r	*Response,	err	error)

Head	issues	a	HEAD	to	the	specified	URL.	If	the	response	is	one	of	the

following	redirect	codes,	Head	follows	the	redirect	after	calling	the	Client's
CheckRedirect	function.

301	(Moved	Permanently)

302	(Found)

303	(See	Other)

307	(Temporary	Redirect)

Head	is	a	wrapper	around	DefaultClient.Head

func	Post

func	Post(url	string,	bodyType	string,	body	io.Reader)	(r	*Response,	err	error)

Post	issues	a	POST	to	the	specified	URL.

Caller	should	close	r.Body	when	done	reading	from	it.

Post	is	a	wrapper	around	DefaultClient.Post

func	PostForm

func	PostForm(url	string,	data	url.Values)	(r	*Response,	err	error)

PostForm	issues	a	POST	to	the	specified	URL,	with	data's	keys	and	values
urlencoded	as	the	request	body.

Caller	should	close	r.Body	when	done	reading	from	it.

PostForm	is	a	wrapper	around	DefaultClient.PostForm

func	ReadResponse

func	ReadResponse(r	*bufio.Reader,	req	*Request)	(resp	*Response,	err	error)

ReadResponse	reads	and	returns	an	HTTP	response	from	r.	The	req	parameter
specifies	the	Request	that	corresponds	to	this	Response.	Clients	must	call
resp.Body.Close	when	finished	reading	resp.Body.	After	that	call,	clients	can
inspect	resp.Trailer	to	find	key/value	pairs	included	in	the	response	trailer.

func	(*Response)	Cookies

func	(r	*Response)	Cookies()	[]*Cookie

Cookies	parses	and	returns	the	cookies	set	in	the	Set-Cookie	headers.

func	(*Response)	Location

func	(r	*Response)	Location()	(*url.URL,	error)

Location	returns	the	URL	of	the	response's	"Location"	header,	if	present.
Relative	redirects	are	resolved	relative	to	the	Response's	Request.
ErrNoLocation	is	returned	if	no	Location	header	is	present.

func	(*Response)	ProtoAtLeast

func	(r	*Response)	ProtoAtLeast(major,	minor	int)	bool

ProtoAtLeast	returns	whether	the	HTTP	protocol	used	in	the	response	is	at	least
major.minor.

func	(*Response)	Write

func	(r	*Response)	Write(w	io.Writer)	error

Writes	the	response	(header,	body	and	trailer)	in	wire	format.	This	method
consults	the	following	fields	of	the	response:

StatusCode

ProtoMajor

ProtoMinor

RequestMethod

TransferEncoding

Trailer

Body

ContentLength

Header,	values	for	non-canonical	keys	will	have	unpredictable	behavior

type	ResponseWriter
type	ResponseWriter	interface	{

				//	Header	returns	the	header	map	that	will	be	sent	by	WriteHeader.

				//	Changing	the	header	after	a	call	to	WriteHeader	(or	Write)	has

				//	no	effect.

				Header()	Header

				//	Write	writes	the	data	to	the	connection	as	part	of	an	HTTP	reply.

				//	If	WriteHeader	has	not	yet	been	called,	Write	calls	WriteHeader(http.StatusOK)

				//	before	writing	the	data.		If	the	Header	does	not	contain	a

				//	Content-Type	line,	Write	adds	a	Content-Type	set	to	the	result	of	passing

				//	the	initial	512	bytes	of	written	data	to	DetectContentType.

				Write([]byte)	(int,	error)

				//	WriteHeader	sends	an	HTTP	response	header	with	status	code.

				//	If	WriteHeader	is	not	called	explicitly,	the	first	call	to	Write

				//	will	trigger	an	implicit	WriteHeader(http.StatusOK).

				//	Thus	explicit	calls	to	WriteHeader	are	mainly	used	to

				//	send	error	codes.

				WriteHeader(int)

}

A	ResponseWriter	interface	is	used	by	an	HTTP	handler	to	construct	an	HTTP
response.

type	RoundTripper
type	RoundTripper	interface	{

				//	RoundTrip	executes	a	single	HTTP	transaction,	returning

				//	the	Response	for	the	request	req.		RoundTrip	should	not

				//	attempt	to	interpret	the	response.		In	particular,

				//	RoundTrip	must	return	err	==	nil	if	it	obtained	a	response,

				//	regardless	of	the	response's	HTTP	status	code.		A	non-nil

				//	err	should	be	reserved	for	failure	to	obtain	a	response.

				//	Similarly,	RoundTrip	should	not	attempt	to	handle

				//	higher-level	protocol	details	such	as	redirects,

				//	authentication,	or	cookies.

				//

				//	RoundTrip	should	not	modify	the	request,	except	for

				//	consuming	the	Body.		The	request's	URL	and	Header	fields

				//	are	guaranteed	to	be	initialized.

				RoundTrip(*Request)	(*Response,	error)

}

RoundTripper	is	an	interface	representing	the	ability	to	execute	a	single	HTTP
transaction,	obtaining	the	Response	for	a	given	Request.

A	RoundTripper	must	be	safe	for	concurrent	use	by	multiple	goroutines.

var	DefaultTransport	RoundTripper	=	&Transport{Proxy:	ProxyFromEnvironment}

DefaultTransport	is	the	default	implementation	of	Transport	and	is	used	by
DefaultClient.	It	establishes	a	new	network	connection	for	each	call	to	Do	and
uses	HTTP	proxies	as	directed	by	the	$HTTP_PROXY	and	$NO_PROXY	(or
$http_proxy	and	$no_proxy)	environment	variables.

func	NewFileTransport

func	NewFileTransport(fs	FileSystem)	RoundTripper

NewFileTransport	returns	a	new	RoundTripper,	serving	the	provided	FileSystem.
The	returned	RoundTripper	ignores	the	URL	host	in	its	incoming	requests,	as
well	as	most	other	properties	of	the	request.

The	typical	use	case	for	NewFileTransport	is	to	register	the	"file"	protocol	with	a
Transport,	as	in:

t	:=	&http.Transport{}

t.RegisterProtocol("file",	http.NewFileTransport(http.Dir("/")))

c	:=	&http.Client{Transport:	t}

res,	err	:=	c.Get("file:///etc/passwd")

...

type	ServeMux
type	ServeMux	struct	{

				//	contains	filtered	or	unexported	fields

}

ServeMux	is	an	HTTP	request	multiplexer.	It	matches	the	URL	of	each	incoming
request	against	a	list	of	registered	patterns	and	calls	the	handler	for	the	pattern
that	most	closely	matches	the	URL.

Patterns	named	fixed,	rooted	paths,	like	"/favicon.ico",	or	rooted	subtrees,	like
"/images/"	(note	the	trailing	slash).	Longer	patterns	take	precedence	over	shorter
ones,	so	that	if	there	are	handlers	registered	for	both	"/images/"	and
"/images/thumbnails/",	the	latter	handler	will	be	called	for	paths	beginning
"/images/thumbnails/"	and	the	former	will	receiver	requests	for	any	other	paths
in	the	"/images/"	subtree.

Patterns	may	optionally	begin	with	a	host	name,	restricting	matches	to	URLs	on
that	host	only.	Host-specific	patterns	take	precedence	over	general	patterns,	so
that	a	handler	might	register	for	the	two	patterns	"/codesearch"	and
"codesearch.google.com/"	without	also	taking	over	requests	for
"http://www.google.com/".

ServeMux	also	takes	care	of	sanitizing	the	URL	request	path,	redirecting	any
request	containing	.	or	..	elements	to	an	equivalent	.-	and	..-free	URL.

func	NewServeMux

func	NewServeMux()	*ServeMux

NewServeMux	allocates	and	returns	a	new	ServeMux.

func	(*ServeMux)	Handle

func	(mux	*ServeMux)	Handle(pattern	string,	handler	Handler)

Handle	registers	the	handler	for	the	given	pattern.	If	a	handler	already	exists	for
pattern,	Handle	panics.

http://www.google.com/

func	(*ServeMux)	HandleFunc

func	(mux	*ServeMux)	HandleFunc(pattern	string,	handler	func(ResponseWriter,	*Request))

HandleFunc	registers	the	handler	function	for	the	given	pattern.

func	(*ServeMux)	ServeHTTP

func	(mux	*ServeMux)	ServeHTTP(w	ResponseWriter,	r	*Request)

ServeHTTP	dispatches	the	request	to	the	handler	whose	pattern	most	closely
matches	the	request	URL.

type	Server
type	Server	struct	{

				Addr											string								//	TCP	address	to	listen	on,	":http"	if	empty

				Handler								Handler							//	handler	to	invoke,	http.DefaultServeMux	if	nil

				ReadTimeout				time.Duration	//	maximum	duration	before	timing	out	read	of	the	request

				WriteTimeout			time.Duration	//	maximum	duration	before	timing	out	write	of	the	response

				MaxHeaderBytes	int											//	maximum	size	of	request	headers,	DefaultMaxHeaderBytes	if	0

				TLSConfig						*tls.Config			//	optional	TLS	config,	used	by	ListenAndServeTLS

}

A	Server	defines	parameters	for	running	an	HTTP	server.

func	(*Server)	ListenAndServe

func	(srv	*Server)	ListenAndServe()	error

ListenAndServe	listens	on	the	TCP	network	address	srv.Addr	and	then	calls
Serve	to	handle	requests	on	incoming	connections.	If	srv.Addr	is	blank,	":http"	is
used.

func	(*Server)	ListenAndServeTLS

func	(srv	*Server)	ListenAndServeTLS(certFile,	keyFile	string)	error

ListenAndServeTLS	listens	on	the	TCP	network	address	srv.Addr	and	then	calls
Serve	to	handle	requests	on	incoming	TLS	connections.

Filenames	containing	a	certificate	and	matching	private	key	for	the	server	must
be	provided.	If	the	certificate	is	signed	by	a	certificate	authority,	the	certFile
should	be	the	concatenation	of	the	server's	certificate	followed	by	the	CA's
certificate.

If	srv.Addr	is	blank,	":https"	is	used.

func	(*Server)	Serve

func	(srv	*Server)	Serve(l	net.Listener)	error

Serve	accepts	incoming	connections	on	the	Listener	l,	creating	a	new	service

thread	for	each.	The	service	threads	read	requests	and	then	call	srv.Handler	to
reply	to	them.

type	Transport
type	Transport	struct	{

				//	Proxy	specifies	a	function	to	return	a	proxy	for	a	given

				//	Request.	If	the	function	returns	a	non-nil	error,	the

				//	request	is	aborted	with	the	provided	error.

				//	If	Proxy	is	nil	or	returns	a	nil	*URL,	no	proxy	is	used.

				Proxy	func(*Request)	(*url.URL,	error)

				//	Dial	specifies	the	dial	function	for	creating	TCP

				//	connections.

				//	If	Dial	is	nil,	net.Dial	is	used.

				Dial	func(net,	addr	string)	(c	net.Conn,	err	error)

				//	TLSClientConfig	specifies	the	TLS	configuration	to	use	with

				//	tls.Client.	If	nil,	the	default	configuration	is	used.

				TLSClientConfig	*tls.Config

				DisableKeepAlives		bool

				DisableCompression	bool

				//	MaxIdleConnsPerHost,	if	non-zero,	controls	the	maximum	idle

				//	(keep-alive)	to	keep	to	keep	per-host.		If	zero,

				//	DefaultMaxIdleConnsPerHost	is	used.

				MaxIdleConnsPerHost	int

				//	contains	filtered	or	unexported	fields

}

Transport	is	an	implementation	of	RoundTripper	that	supports	http,	https,	and
http	proxies	(for	either	http	or	https	with	CONNECT).	Transport	can	also	cache
connections	for	future	re-use.

func	(*Transport)	CloseIdleConnections

func	(t	*Transport)	CloseIdleConnections()

CloseIdleConnections	closes	any	connections	which	were	previously	connected
from	previous	requests	but	are	now	sitting	idle	in	a	"keep-alive"	state.	It	does	not
interrupt	any	connections	currently	in	use.

func	(*Transport)	RegisterProtocol

func	(t	*Transport)	RegisterProtocol(scheme	string,	rt	RoundTripper)

RegisterProtocol	registers	a	new	protocol	with	scheme.	The	Transport	will	pass
requests	using	the	given	scheme	to	rt.	It	is	rt's	responsibility	to	simulate	HTTP
request	semantics.

RegisterProtocol	can	be	used	by	other	packages	to	provide	implementations	of
protocol	schemes	like	"ftp"	or	"file".

func	(*Transport)	RoundTrip

func	(t	*Transport)	RoundTrip(req	*Request)	(resp	*Response,	err	error)

RoundTrip	implements	the	RoundTripper	interface.

Subdirectories

Name 				 Synopsis

cgi 				 Package	cgi	implements	CGI	(Common	Gateway	Interface)	asspecified	in	RFC	3875.
fcgi 				 Package	fcgi	implements	the	FastCGI	protocol.
httptest 				 Package	httptest	provides	utilities	for	HTTP	testing.

httputil 				 Package	httputil	provides	HTTP	utility	functions,	complementing	themore	common	ones	in	the	net/http	package.

pprof 				 Package	pprof	serves	via	its	HTTP	server	runtime	profiling	data	inthe	format	expected	by	the	pprof	visualization	tool.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	cgi
import	"net/http/cgi"

Overview
Index

Overview	?

Overview	?

Package	cgi	implements	CGI	(Common	Gateway	Interface)	as	specified	in	RFC
3875.

Note	that	using	CGI	means	starting	a	new	process	to	handle	each	request,	which
is	typically	less	efficient	than	using	a	long-running	server.	This	package	is
intended	primarily	for	compatibility	with	existing	systems.

Index

func	Request()	(*http.Request,	error)
func	RequestFromMap(params	map[string]string)	(*http.Request,	error)
func	Serve(handler	http.Handler)	error
type	Handler
				func	(h	*Handler)	ServeHTTP(rw	http.ResponseWriter,	req
*http.Request)

Package	files

child.go	host.go

func	Request
func	Request()	(*http.Request,	error)

Request	returns	the	HTTP	request	as	represented	in	the	current	environment.
This	assumes	the	current	program	is	being	run	by	a	web	server	in	a	CGI
environment.	The	returned	Request's	Body	is	populated,	if	applicable.

func	RequestFromMap
func	RequestFromMap(params	map[string]string)	(*http.Request,	error)

RequestFromMap	creates	an	http.Request	from	CGI	variables.	The	returned
Request's	Body	field	is	not	populated.

func	Serve
func	Serve(handler	http.Handler)	error

Serve	executes	the	provided	Handler	on	the	currently	active	CGI	request,	if	any.
If	there's	no	current	CGI	environment	an	error	is	returned.	The	provided	handler
may	be	nil	to	use	http.DefaultServeMux.

type	Handler
type	Handler	struct	{

				Path	string	//	path	to	the	CGI	executable

				Root	string

				//	Dir	specifies	the	CGI	executable's	working	directory.

				//	If	Dir	is	empty,	the	base	directory	of	Path	is	used.

				//	If	Path	has	no	base	directory,	the	current	working

				//	directory	is	used.

				Dir	string

				Env								[]string				//	extra	environment	variables	to	set,	if	any,	as	"key=value"

				InheritEnv	[]string				//	environment	variables	to	inherit	from	host,	as	"key"

				Logger					*log.Logger	//	optional	log	for	errors	or	nil	to	use	log.Print

				Args							[]string

				//	PathLocationHandler	specifies	the	root	http	Handler	that

				//	should	handle	internal	redirects	when	the	CGI	process

				//	returns	a	Location	header	value	starting	with	a	"/",	as

				//	specified	in	RFC	3875		6.3.2.	This	will	likely	be

				//	http.DefaultServeMux.

				//

				//	If	nil,	a	CGI	response	with	a	local	URI	path	is	instead	sent

				//	back	to	the	client	and	not	redirected	internally.

				PathLocationHandler	http.Handler

}

Handler	runs	an	executable	in	a	subprocess	with	a	CGI	environment.

func	(*Handler)	ServeHTTP

func	(h	*Handler)	ServeHTTP(rw	http.ResponseWriter,	req	*http.Request)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	fcgi
import	"net/http/fcgi"

Overview
Index

Overview	?

Overview	?

Package	fcgi	implements	the	FastCGI	protocol.	Currently	only	the	responder
role	is	supported.	The	protocol	is	defined	at
http://www.fastcgi.com/drupal/node/6?q=node/22

http://www.fastcgi.com/drupal/node/6?q=node/22

Index

func	Serve(l	net.Listener,	handler	http.Handler)	error

Package	files

child.go	fcgi.go

func	Serve
func	Serve(l	net.Listener,	handler	http.Handler)	error

Serve	accepts	incoming	FastCGI	connections	on	the	listener	l,	creating	a	new
goroutine	for	each.	The	goroutine	reads	requests	and	then	calls	handler	to	reply
to	them.	If	l	is	nil,	Serve	accepts	connections	from	os.Stdin.	If	handler	is	nil,
http.DefaultServeMux	is	used.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	httptest
import	"net/http/httptest"

Overview
Index

Overview	?

Overview	?

Package	httptest	provides	utilities	for	HTTP	testing.

Index

Constants
type	ResponseRecorder
				func	NewRecorder()	*ResponseRecorder
				func	(rw	*ResponseRecorder)	Flush()
				func	(rw	*ResponseRecorder)	Header()	http.Header
				func	(rw	*ResponseRecorder)	Write(buf	[]byte)	(int,	error)
				func	(rw	*ResponseRecorder)	WriteHeader(code	int)
type	Server
				func	NewServer(handler	http.Handler)	*Server
				func	NewTLSServer(handler	http.Handler)	*Server
				func	NewUnstartedServer(handler	http.Handler)	*Server
				func	(s	*Server)	Close()
				func	(s	*Server)	CloseClientConnections()
				func	(s	*Server)	Start()
				func	(s	*Server)	StartTLS()

Package	files

recorder.go	server.go

Constants
const	DefaultRemoteAddr	=	"1.2.3.4"

DefaultRemoteAddr	is	the	default	remote	address	to	return	in	RemoteAddr	if	an
explicit	DefaultRemoteAddr	isn't	set	on	ResponseRecorder.

type	ResponseRecorder
type	ResponseRecorder	struct	{

				Code						int											//	the	HTTP	response	code	from	WriteHeader

				HeaderMap	http.Header			//	the	HTTP	response	headers

				Body						*bytes.Buffer	//	if	non-nil,	the	bytes.Buffer	to	append	written	data	to

				Flushed			bool

}

ResponseRecorder	is	an	implementation	of	http.ResponseWriter	that	records	its
mutations	for	later	inspection	in	tests.

func	NewRecorder

func	NewRecorder()	*ResponseRecorder

NewRecorder	returns	an	initialized	ResponseRecorder.

func	(*ResponseRecorder)	Flush

func	(rw	*ResponseRecorder)	Flush()

Flush	sets	rw.Flushed	to	true.

func	(*ResponseRecorder)	Header

func	(rw	*ResponseRecorder)	Header()	http.Header

Header	returns	the	response	headers.

func	(*ResponseRecorder)	Write

func	(rw	*ResponseRecorder)	Write(buf	[]byte)	(int,	error)

Write	always	succeeds	and	writes	to	rw.Body,	if	not	nil.

func	(*ResponseRecorder)	WriteHeader

func	(rw	*ResponseRecorder)	WriteHeader(code	int)

WriteHeader	sets	rw.Code.

type	Server
type	Server	struct	{

				URL						string	//	base	URL	of	form	http://ipaddr:port	with	no	trailing	slash

				Listener	net.Listener

				TLS						*tls.Config

				//	Config	may	be	changed	after	calling	NewUnstartedServer	and

				//	before	Start	or	StartTLS.

				Config	*http.Server

				//	contains	filtered	or	unexported	fields

}

A	Server	is	an	HTTP	server	listening	on	a	system-chosen	port	on	the	local
loopback	interface,	for	use	in	end-to-end	HTTP	tests.

func	NewServer

func	NewServer(handler	http.Handler)	*Server

NewServer	starts	and	returns	a	new	Server.	The	caller	should	call	Close	when
finished,	to	shut	it	down.

func	NewTLSServer

func	NewTLSServer(handler	http.Handler)	*Server

NewTLSServer	starts	and	returns	a	new	Server	using	TLS.	The	caller	should	call
Close	when	finished,	to	shut	it	down.

func	NewUnstartedServer

func	NewUnstartedServer(handler	http.Handler)	*Server

NewUnstartedServer	returns	a	new	Server	but	doesn't	start	it.

After	changing	its	configuration,	the	caller	should	call	Start	or	StartTLS.

The	caller	should	call	Close	when	finished,	to	shut	it	down.

func	(*Server)	Close

func	(s	*Server)	Close()

Close	shuts	down	the	server	and	blocks	until	all	outstanding	requests	on	this
server	have	completed.

func	(*Server)	CloseClientConnections

func	(s	*Server)	CloseClientConnections()

CloseClientConnections	closes	any	currently	open	HTTP	connections	to	the	test
Server.

func	(*Server)	Start

func	(s	*Server)	Start()

Start	starts	a	server	from	NewUnstartedServer.

func	(*Server)	StartTLS

func	(s	*Server)	StartTLS()

StartTLS	starts	TLS	on	a	server	from	NewUnstartedServer.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	httputil
import	"net/http/httputil"

Overview
Index

Overview	?

Overview	?

Package	httputil	provides	HTTP	utility	functions,	complementing	the	more
common	ones	in	the	net/http	package.

Index

Variables
func	DumpRequest(req	*http.Request,	body	bool)	(dump	[]byte,	err	error)
func	DumpRequestOut(req	*http.Request,	body	bool)	([]byte,	error)
func	DumpResponse(resp	*http.Response,	body	bool)	(dump	[]byte,	err
error)
func	NewChunkedReader(r	io.Reader)	io.Reader
func	NewChunkedWriter(w	io.Writer)	io.WriteCloser
type	ClientConn
				func	NewClientConn(c	net.Conn,	r	*bufio.Reader)	*ClientConn
				func	NewProxyClientConn(c	net.Conn,	r	*bufio.Reader)	*ClientConn
				func	(cc	*ClientConn)	Close()	error
				func	(cc	*ClientConn)	Do(req	*http.Request)	(resp	*http.Response,	err
error)
				func	(cc	*ClientConn)	Hijack()	(c	net.Conn,	r	*bufio.Reader)
				func	(cc	*ClientConn)	Pending()	int
				func	(cc	*ClientConn)	Read(req	*http.Request)	(resp	*http.Response,	err
error)
				func	(cc	*ClientConn)	Write(req	*http.Request)	(err	error)
type	ReverseProxy
				func	NewSingleHostReverseProxy(target	*url.URL)	*ReverseProxy
				func	(p	*ReverseProxy)	ServeHTTP(rw	http.ResponseWriter,	req
*http.Request)
type	ServerConn
				func	NewServerConn(c	net.Conn,	r	*bufio.Reader)	*ServerConn
				func	(sc	*ServerConn)	Close()	error
				func	(sc	*ServerConn)	Hijack()	(c	net.Conn,	r	*bufio.Reader)
				func	(sc	*ServerConn)	Pending()	int
				func	(sc	*ServerConn)	Read()	(req	*http.Request,	err	error)
				func	(sc	*ServerConn)	Write(req	*http.Request,	resp	*http.Response)
error

Package	files

chunked.go	dump.go	persist.go	reverseproxy.go

Variables
var	(

				ErrPersistEOF	=	&http.ProtocolError{ErrorString:	"persistent	connection	closed"}

				ErrClosed					=	&http.ProtocolError{ErrorString:	"connection	closed	by	user"}

				ErrPipeline			=	&http.ProtocolError{ErrorString:	"pipeline	error"}

)

var	ErrLineTooLong	=	errors.New("header	line	too	long")

func	DumpRequest
func	DumpRequest(req	*http.Request,	body	bool)	(dump	[]byte,	err	error)

DumpRequest	returns	the	as-received	wire	representation	of	req,	optionally
including	the	request	body,	for	debugging.	DumpRequest	is	semantically	a	no-
op,	but	in	order	to	dump	the	body,	it	reads	the	body	data	into	memory	and
changes	req.Body	to	refer	to	the	in-memory	copy.	The	documentation	for
http.Request.Write	details	which	fields	of	req	are	used.

func	DumpRequestOut
func	DumpRequestOut(req	*http.Request,	body	bool)	([]byte,	error)

DumpRequestOut	is	like	DumpRequest	but	includes	headers	that	the	standard
http.Transport	adds,	such	as	User-Agent.

func	DumpResponse
func	DumpResponse(resp	*http.Response,	body	bool)	(dump	[]byte,	err	error)

DumpResponse	is	like	DumpRequest	but	dumps	a	response.

func	NewChunkedReader
func	NewChunkedReader(r	io.Reader)	io.Reader

NewChunkedReader	returns	a	new	chunkedReader	that	translates	the	data	read
from	r	out	of	HTTP	"chunked"	format	before	returning	it.	The	chunkedReader
returns	io.EOF	when	the	final	0-length	chunk	is	read.

NewChunkedReader	is	not	needed	by	normal	applications.	The	http	package
automatically	decodes	chunking	when	reading	response	bodies.

func	NewChunkedWriter
func	NewChunkedWriter(w	io.Writer)	io.WriteCloser

NewChunkedWriter	returns	a	new	chunkedWriter	that	translates	writes	into
HTTP	"chunked"	format	before	writing	them	to	w.	Closing	the	returned
chunkedWriter	sends	the	final	0-length	chunk	that	marks	the	end	of	the	stream.

NewChunkedWriter	is	not	needed	by	normal	applications.	The	http	package	adds
chunking	automatically	if	handlers	don't	set	a	Content-Length	header.	Using
NewChunkedWriter	inside	a	handler	would	result	in	double	chunking	or
chunking	with	a	Content-Length	length,	both	of	which	are	wrong.

type	ClientConn
type	ClientConn	struct	{

				//	contains	filtered	or	unexported	fields

}

A	ClientConn	sends	request	and	receives	headers	over	an	underlying	connection,
while	respecting	the	HTTP	keepalive	logic.	ClientConn	supports	hijacking	the
connection	calling	Hijack	to	regain	control	of	the	underlying	net.Conn	and	deal
with	it	as	desired.

ClientConn	is	low-level	and	should	not	be	needed	by	most	applications.	See
Client.

func	NewClientConn

func	NewClientConn(c	net.Conn,	r	*bufio.Reader)	*ClientConn

NewClientConn	returns	a	new	ClientConn	reading	and	writing	c.	If	r	is	not	nil,	it
is	the	buffer	to	use	when	reading	c.

func	NewProxyClientConn

func	NewProxyClientConn(c	net.Conn,	r	*bufio.Reader)	*ClientConn

NewProxyClientConn	works	like	NewClientConn	but	writes	Requests	using
Request's	WriteProxy	method.

func	(*ClientConn)	Close

func	(cc	*ClientConn)	Close()	error

Close	calls	Hijack	and	then	also	closes	the	underlying	connection

func	(*ClientConn)	Do

func	(cc	*ClientConn)	Do(req	*http.Request)	(resp	*http.Response,	err	error)

Do	is	convenience	method	that	writes	a	request	and	reads	a	response.

func	(*ClientConn)	Hijack

func	(cc	*ClientConn)	Hijack()	(c	net.Conn,	r	*bufio.Reader)

Hijack	detaches	the	ClientConn	and	returns	the	underlying	connection	as	well	as
the	read-side	bufio	which	may	have	some	left	over	data.	Hijack	may	be	called
before	the	user	or	Read	have	signaled	the	end	of	the	keep-alive	logic.	The	user
should	not	call	Hijack	while	Read	or	Write	is	in	progress.

func	(*ClientConn)	Pending

func	(cc	*ClientConn)	Pending()	int

Pending	returns	the	number	of	unanswered	requests	that	have	been	sent	on	the
connection.

func	(*ClientConn)	Read

func	(cc	*ClientConn)	Read(req	*http.Request)	(resp	*http.Response,	err	error)

Read	reads	the	next	response	from	the	wire.	A	valid	response	might	be	returned
together	with	an	ErrPersistEOF,	which	means	that	the	remote	requested	that	this
be	the	last	request	serviced.	Read	can	be	called	concurrently	with	Write,	but	not
with	another	Read.

func	(*ClientConn)	Write

func	(cc	*ClientConn)	Write(req	*http.Request)	(err	error)

Write	writes	a	request.	An	ErrPersistEOF	error	is	returned	if	the	connection	has
been	closed	in	an	HTTP	keepalive	sense.	If	req.Close	equals	true,	the	keepalive
connection	is	logically	closed	after	this	request	and	the	opposing	server	is
informed.	An	ErrUnexpectedEOF	indicates	the	remote	closed	the	underlying
TCP	connection,	which	is	usually	considered	as	graceful	close.

type	ReverseProxy
type	ReverseProxy	struct	{

				//	Director	must	be	a	function	which	modifies

				//	the	request	into	a	new	request	to	be	sent

				//	using	Transport.	Its	response	is	then	copied

				//	back	to	the	original	client	unmodified.

				Director	func(*http.Request)

				//	The	transport	used	to	perform	proxy	requests.

				//	If	nil,	http.DefaultTransport	is	used.

				Transport	http.RoundTripper

				//	FlushInterval	specifies	the	flush	interval

				//	to	flush	to	the	client	while	copying	the

				//	response	body.

				//	If	zero,	no	periodic	flushing	is	done.

				FlushInterval	time.Duration

}

ReverseProxy	is	an	HTTP	Handler	that	takes	an	incoming	request	and	sends	it	to
another	server,	proxying	the	response	back	to	the	client.

func	NewSingleHostReverseProxy

func	NewSingleHostReverseProxy(target	*url.URL)	*ReverseProxy

NewSingleHostReverseProxy	returns	a	new	ReverseProxy	that	rewrites	URLs	to
the	scheme,	host,	and	base	path	provided	in	target.	If	the	target's	path	is	"/base"
and	the	incoming	request	was	for	"/dir",	the	target	request	will	be	for	/base/dir.

func	(*ReverseProxy)	ServeHTTP

func	(p	*ReverseProxy)	ServeHTTP(rw	http.ResponseWriter,	req	*http.Request)

type	ServerConn
type	ServerConn	struct	{

				//	contains	filtered	or	unexported	fields

}

A	ServerConn	reads	requests	and	sends	responses	over	an	underlying
connection,	until	the	HTTP	keepalive	logic	commands	an	end.	ServerConn	also
allows	hijacking	the	underlying	connection	by	calling	Hijack	to	regain	control
over	the	connection.	ServerConn	supports	pipe-lining,	i.e.	requests	can	be	read
out	of	sync	(but	in	the	same	order)	while	the	respective	responses	are	sent.

ServerConn	is	low-level	and	should	not	be	needed	by	most	applications.	See
Server.

func	NewServerConn

func	NewServerConn(c	net.Conn,	r	*bufio.Reader)	*ServerConn

NewServerConn	returns	a	new	ServerConn	reading	and	writing	c.	If	r	is	not	nil,
it	is	the	buffer	to	use	when	reading	c.

func	(*ServerConn)	Close

func	(sc	*ServerConn)	Close()	error

Close	calls	Hijack	and	then	also	closes	the	underlying	connection

func	(*ServerConn)	Hijack

func	(sc	*ServerConn)	Hijack()	(c	net.Conn,	r	*bufio.Reader)

Hijack	detaches	the	ServerConn	and	returns	the	underlying	connection	as	well	as
the	read-side	bufio	which	may	have	some	left	over	data.	Hijack	may	be	called
before	Read	has	signaled	the	end	of	the	keep-alive	logic.	The	user	should	not
call	Hijack	while	Read	or	Write	is	in	progress.

func	(*ServerConn)	Pending

func	(sc	*ServerConn)	Pending()	int

Pending	returns	the	number	of	unanswered	requests	that	have	been	received	on
the	connection.

func	(*ServerConn)	Read

func	(sc	*ServerConn)	Read()	(req	*http.Request,	err	error)

Read	returns	the	next	request	on	the	wire.	An	ErrPersistEOF	is	returned	if	it	is
gracefully	determined	that	there	are	no	more	requests	(e.g.	after	the	first	request
on	an	HTTP/1.0	connection,	or	after	a	Connection:close	on	a	HTTP/1.1
connection).

func	(*ServerConn)	Write

func	(sc	*ServerConn)	Write(req	*http.Request,	resp	*http.Response)	error

Write	writes	resp	in	response	to	req.	To	close	the	connection	gracefully,	set	the
Response.Close	field	to	true.	Write	should	be	considered	operational	until	it
returns	an	error,	regardless	of	any	errors	returned	on	the	Read	side.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	pprof
import	"net/http/pprof"

Overview
Index

Overview	?

Overview	?

Package	pprof	serves	via	its	HTTP	server	runtime	profiling	data	in	the	format
expected	by	the	pprof	visualization	tool.	For	more	information	about	pprof,	see
http://code.google.com/p/google-perftools/.

The	package	is	typically	only	imported	for	the	side	effect	of	registering	its	HTTP
handlers.	The	handled	paths	all	begin	with	/debug/pprof/.

To	use	pprof,	link	this	package	into	your	program:

import	_	"net/http/pprof"

Then	use	the	pprof	tool	to	look	at	the	heap	profile:

go	tool	pprof	http://localhost:6060/debug/pprof/heap

Or	to	look	at	a	30-second	CPU	profile:

go	tool	pprof	http://localhost:6060/debug/pprof/profile

Or	to	view	all	available	profiles:

go	tool	pprof	http://localhost:6060/debug/pprof/

For	a	study	of	the	facility	in	action,	visit

http://blog.golang.org/2011/06/profiling-go-programs.html

http://code.google.com/p/google-perftools/
http://localhost:6060/debug/pprof/heap
http://localhost:6060/debug/pprof/profile
http://localhost:6060/debug/pprof/
http://blog.golang.org/2011/06/profiling-go-programs.html

Index

func	Cmdline(w	http.ResponseWriter,	r	*http.Request)
func	Handler(name	string)	http.Handler
func	Index(w	http.ResponseWriter,	r	*http.Request)
func	Profile(w	http.ResponseWriter,	r	*http.Request)
func	Symbol(w	http.ResponseWriter,	r	*http.Request)

Package	files

pprof.go

func	Cmdline
func	Cmdline(w	http.ResponseWriter,	r	*http.Request)

Cmdline	responds	with	the	running	program's	command	line,	with	arguments
separated	by	NUL	bytes.	The	package	initialization	registers	it	as
/debug/pprof/cmdline.

func	Handler
func	Handler(name	string)	http.Handler

Handler	returns	an	HTTP	handler	that	serves	the	named	profile.

func	Index
func	Index(w	http.ResponseWriter,	r	*http.Request)

Index	responds	with	the	pprof-formatted	profile	named	by	the	request.	For
example,	"/debug/pprof/heap"	serves	the	"heap"	profile.	Index	responds	to	a
request	for	"/debug/pprof/"	with	an	HTML	page	listing	the	available	profiles.

func	Profile
func	Profile(w	http.ResponseWriter,	r	*http.Request)

Profile	responds	with	the	pprof-formatted	cpu	profile.	The	package	initialization
registers	it	as	/debug/pprof/profile.

func	Symbol
func	Symbol(w	http.ResponseWriter,	r	*http.Request)

Symbol	looks	up	the	program	counters	listed	in	the	request,	responding	with	a
table	mapping	program	counters	to	function	names.	The	package	initialization
registers	it	as	/debug/pprof/symbol.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	mail
import	"net/mail"

Overview
Index

Overview	?

Overview	?

Package	mail	implements	parsing	of	mail	messages.

For	the	most	part,	this	package	follows	the	syntax	as	specified	by	RFC	5322.
Notable	divergences:

*	Obsolete	address	formats	are	not	parsed,	including	addresses	with

		embedded	route	information.

*	Group	addresses	are	not	parsed.

*	The	full	range	of	spacing	(the	CFWS	syntax	element)	is	not	supported,

		such	as	breaking	addresses	across	lines.

Index

Variables
type	Address
				func	(a	*Address)	String()	string
type	Header
				func	(h	Header)	AddressList(key	string)	([]*Address,	error)
				func	(h	Header)	Date()	(time.Time,	error)
				func	(h	Header)	Get(key	string)	string
type	Message
				func	ReadMessage(r	io.Reader)	(msg	*Message,	err	error)

Package	files

message.go

Variables
var	ErrHeaderNotPresent	=	errors.New("mail:	header	not	in	message")

type	Address
type	Address	struct	{

				Name				string	//	Proper	name;	may	be	empty.

				Address	string	//	user@domain

}

Address	represents	a	single	mail	address.	An	address	such	as	"Barry	Gibbs
<bg@example.com>"	is	represented	as	Address{Name:	"Barry	Gibbs",	Address:
"bg@example.com"}.

func	(*Address)	String

func	(a	*Address)	String()	string

String	formats	the	address	as	a	valid	RFC	5322	address.	If	the	address's	name
contains	non-ASCII	characters	the	name	will	be	rendered	according	to	RFC
2047.

type	Header
type	Header	map[string][]string

A	Header	represents	the	key-value	pairs	in	a	mail	message	header.

func	(Header)	AddressList

func	(h	Header)	AddressList(key	string)	([]*Address,	error)

AddressList	parses	the	named	header	field	as	a	list	of	addresses.

func	(Header)	Date

func	(h	Header)	Date()	(time.Time,	error)

Date	parses	the	Date	header	field.

func	(Header)	Get

func	(h	Header)	Get(key	string)	string

Get	gets	the	first	value	associated	with	the	given	key.	If	there	are	no	values
associated	with	the	key,	Get	returns	"".

type	Message
type	Message	struct	{

				Header	Header

				Body			io.Reader

}

A	Message	represents	a	parsed	mail	message.

func	ReadMessage

func	ReadMessage(r	io.Reader)	(msg	*Message,	err	error)

ReadMessage	reads	a	message	from	r.	The	headers	are	parsed,	and	the	body	of
the	message	will	be	reading	from	r.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	rpc
import	"net/rpc"

Overview
Index
Subdirectories

Overview	?

Overview	?

Package	rpc	provides	access	to	the	exported	methods	of	an	object	across	a
network	or	other	I/O	connection.	A	server	registers	an	object,	making	it	visible
as	a	service	with	the	name	of	the	type	of	the	object.	After	registration,	exported
methods	of	the	object	will	be	accessible	remotely.	A	server	may	register	multiple
objects	(services)	of	different	types	but	it	is	an	error	to	register	multiple	objects
of	the	same	type.

Only	methods	that	satisfy	these	criteria	will	be	made	available	for	remote	access;
other	methods	will	be	ignored:

-	the	method	is	exported.

-	the	method	has	two	arguments,	both	exported	(or	builtin)	types.

-	the	method's	second	argument	is	a	pointer.

-	the	method	has	return	type	error.

In	effect,	the	method	must	look	schematically	like

func	(t	*T)	MethodName(argType	T1,	replyType	*T2)	error

where	T,	T1	and	T2	can	be	marshaled	by	encoding/gob.	These	requirements
apply	even	if	a	different	codec	is	used.	(In	future,	these	requirements	may	soften
for	custom	codecs.)

The	method's	first	argument	represents	the	arguments	provided	by	the	caller;	the
second	argument	represents	the	result	parameters	to	be	returned	to	the	caller.	The
method's	return	value,	if	non-nil,	is	passed	back	as	a	string	that	the	client	sees	as
if	created	by	errors.New.

The	server	may	handle	requests	on	a	single	connection	by	calling	ServeConn.
More	typically	it	will	create	a	network	listener	and	call	Accept	or,	for	an	HTTP
listener,	HandleHTTP	and	http.Serve.

A	client	wishing	to	use	the	service	establishes	a	connection	and	then	invokes
NewClient	on	the	connection.	The	convenience	function	Dial	(DialHTTP)
performs	both	steps	for	a	raw	network	connection	(an	HTTP	connection).	The
resulting	Client	object	has	two	methods,	Call	and	Go,	that	specify	the	service
and	method	to	call,	a	pointer	containing	the	arguments,	and	a	pointer	to	receive

the	result	parameters.

The	Call	method	waits	for	the	remote	call	to	complete	while	the	Go	method
launches	the	call	asynchronously	and	signals	completion	using	the	Call
structure's	Done	channel.

Unless	an	explicit	codec	is	set	up,	package	encoding/gob	is	used	to	transport	the
data.

Here	is	a	simple	example.	A	server	wishes	to	export	an	object	of	type	Arith:

package	server

type	Args	struct	{

	 A,	B	int

}

type	Quotient	struct	{

	 Quo,	Rem	int

}

type	Arith	int

func	(t	*Arith)	Multiply(args	*Args,	reply	*int)	error	{

	 *reply	=	args.A	*	args.B

	 return	nil

}

func	(t	*Arith)	Divide(args	*Args,	quo	*Quotient)	error	{

	 if	args.B	==	0	{

	 	 return	errors.New("divide	by	zero")

	 }

	 quo.Quo	=	args.A	/	args.B

	 quo.Rem	=	args.A	%	args.B

	 return	nil

}

The	server	calls	(for	HTTP	service):

arith	:=	new(Arith)

rpc.Register(arith)

rpc.HandleHTTP()

l,	e	:=	net.Listen("tcp",	":1234")

if	e	!=	nil	{

	 log.Fatal("listen	error:",	e)

}

go	http.Serve(l,	nil)

At	this	point,	clients	can	see	a	service	"Arith"	with	methods	"Arith.Multiply"
and	"Arith.Divide".	To	invoke	one,	a	client	first	dials	the	server:

client,	err	:=	rpc.DialHTTP("tcp",	serverAddress	+	":1234")

if	err	!=	nil	{

	 log.Fatal("dialing:",	err)

}

Then	it	can	make	a	remote	call:

//	Synchronous	call

args	:=	&server.Args{7,8}

var	reply	int

err	=	client.Call("Arith.Multiply",	args,	&reply)

if	err	!=	nil	{

	 log.Fatal("arith	error:",	err)

}

fmt.Printf("Arith:	%d*%d=%d",	args.A,	args.B,	reply)

or

//	Asynchronous	call

quotient	:=	new(Quotient)

divCall	:=	client.Go("Arith.Divide",	args,	"ient,	nil)

replyCall	:=	<-divCall.Done	 //	will	be	equal	to	divCall

//	check	errors,	print,	etc.

A	server	implementation	will	often	provide	a	simple,	type-safe	wrapper	for	the
client.

Index

Constants
Variables
func	Accept(lis	net.Listener)
func	HandleHTTP()
func	Register(rcvr	interface{})	error
func	RegisterName(name	string,	rcvr	interface{})	error
func	ServeCodec(codec	ServerCodec)
func	ServeConn(conn	io.ReadWriteCloser)
func	ServeRequest(codec	ServerCodec)	error
type	Call
type	Client
				func	Dial(network,	address	string)	(*Client,	error)
				func	DialHTTP(network,	address	string)	(*Client,	error)
				func	DialHTTPPath(network,	address,	path	string)	(*Client,	error)
				func	NewClient(conn	io.ReadWriteCloser)	*Client
				func	NewClientWithCodec(codec	ClientCodec)	*Client
				func	(client	*Client)	Call(serviceMethod	string,	args	interface{},	reply
interface{})	error
				func	(client	*Client)	Close()	error
				func	(client	*Client)	Go(serviceMethod	string,	args	interface{},	reply
interface{},	done	chan	*Call)	*Call
type	ClientCodec
type	Request
type	Response
type	Server
				func	NewServer()	*Server
				func	(server	*Server)	Accept(lis	net.Listener)
				func	(server	*Server)	HandleHTTP(rpcPath,	debugPath	string)
				func	(server	*Server)	Register(rcvr	interface{})	error
				func	(server	*Server)	RegisterName(name	string,	rcvr	interface{})	error
				func	(server	*Server)	ServeCodec(codec	ServerCodec)
				func	(server	*Server)	ServeConn(conn	io.ReadWriteCloser)
				func	(server	*Server)	ServeHTTP(w	http.ResponseWriter,	req
*http.Request)
				func	(server	*Server)	ServeRequest(codec	ServerCodec)	error

type	ServerCodec
type	ServerError
				func	(e	ServerError)	Error()	string

Package	files

client.go	debug.go	server.go

Constants
const	(

				//	Defaults	used	by	HandleHTTP

				DefaultRPCPath			=	"/_goRPC_"

				DefaultDebugPath	=	"/debug/rpc"

)

Variables
var	DefaultServer	=	NewServer()

DefaultServer	is	the	default	instance	of	*Server.

var	ErrShutdown	=	errors.New("connection	is	shut	down")

func	Accept
func	Accept(lis	net.Listener)

Accept	accepts	connections	on	the	listener	and	serves	requests	to	DefaultServer
for	each	incoming	connection.	Accept	blocks;	the	caller	typically	invokes	it	in	a
go	statement.

func	HandleHTTP
func	HandleHTTP()

HandleHTTP	registers	an	HTTP	handler	for	RPC	messages	to	DefaultServer	on
DefaultRPCPath	and	a	debugging	handler	on	DefaultDebugPath.	It	is	still
necessary	to	invoke	http.Serve(),	typically	in	a	go	statement.

func	Register
func	Register(rcvr	interface{})	error

Register	publishes	the	receiver's	methods	in	the	DefaultServer.

func	RegisterName
func	RegisterName(name	string,	rcvr	interface{})	error

RegisterName	is	like	Register	but	uses	the	provided	name	for	the	type	instead	of
the	receiver's	concrete	type.

func	ServeCodec
func	ServeCodec(codec	ServerCodec)

ServeCodec	is	like	ServeConn	but	uses	the	specified	codec	to	decode	requests
and	encode	responses.

func	ServeConn
func	ServeConn(conn	io.ReadWriteCloser)

ServeConn	runs	the	DefaultServer	on	a	single	connection.	ServeConn	blocks,
serving	the	connection	until	the	client	hangs	up.	The	caller	typically	invokes
ServeConn	in	a	go	statement.	ServeConn	uses	the	gob	wire	format	(see	package
gob)	on	the	connection.	To	use	an	alternate	codec,	use	ServeCodec.

func	ServeRequest
func	ServeRequest(codec	ServerCodec)	error

ServeRequest	is	like	ServeCodec	but	synchronously	serves	a	single	request.	It
does	not	close	the	codec	upon	completion.

type	Call
type	Call	struct	{

				ServiceMethod	string						//	The	name	of	the	service	and	method	to	call.

				Args										interface{}	//	The	argument	to	the	function	(*struct).

				Reply									interface{}	//	The	reply	from	the	function	(*struct).

				Error									error							//	After	completion,	the	error	status.

				Done										chan	*Call		//	Strobes	when	call	is	complete.

}

Call	represents	an	active	RPC.

type	Client
type	Client	struct	{

				//	contains	filtered	or	unexported	fields

}

Client	represents	an	RPC	Client.	There	may	be	multiple	outstanding	Calls
associated	with	a	single	Client,	and	a	Client	may	be	used	by	multiple	goroutines
simultaneously.

func	Dial

func	Dial(network,	address	string)	(*Client,	error)

Dial	connects	to	an	RPC	server	at	the	specified	network	address.

func	DialHTTP

func	DialHTTP(network,	address	string)	(*Client,	error)

DialHTTP	connects	to	an	HTTP	RPC	server	at	the	specified	network	address
listening	on	the	default	HTTP	RPC	path.

func	DialHTTPPath

func	DialHTTPPath(network,	address,	path	string)	(*Client,	error)

DialHTTPPath	connects	to	an	HTTP	RPC	server	at	the	specified	network
address	and	path.

func	NewClient

func	NewClient(conn	io.ReadWriteCloser)	*Client

NewClient	returns	a	new	Client	to	handle	requests	to	the	set	of	services	at	the
other	end	of	the	connection.	It	adds	a	buffer	to	the	write	side	of	the	connection	so
the	header	and	payload	are	sent	as	a	unit.

func	NewClientWithCodec

func	NewClientWithCodec(codec	ClientCodec)	*Client

NewClientWithCodec	is	like	NewClient	but	uses	the	specified	codec	to	encode
requests	and	decode	responses.

func	(*Client)	Call

func	(client	*Client)	Call(serviceMethod	string,	args	interface{},	reply	interface{})	error

Call	invokes	the	named	function,	waits	for	it	to	complete,	and	returns	its	error
status.

func	(*Client)	Close

func	(client	*Client)	Close()	error

func	(*Client)	Go

func	(client	*Client)	Go(serviceMethod	string,	args	interface{},	reply	interface{},	done	chan	*Call)	*Call

Go	invokes	the	function	asynchronously.	It	returns	the	Call	structure
representing	the	invocation.	The	done	channel	will	signal	when	the	call	is
complete	by	returning	the	same	Call	object.	If	done	is	nil,	Go	will	allocate	a	new
channel.	If	non-nil,	done	must	be	buffered	or	Go	will	deliberately	crash.

type	ClientCodec
type	ClientCodec	interface	{

				WriteRequest(*Request,	interface{})	error

				ReadResponseHeader(*Response)	error

				ReadResponseBody(interface{})	error

				Close()	error

}

A	ClientCodec	implements	writing	of	RPC	requests	and	reading	of	RPC
responses	for	the	client	side	of	an	RPC	session.	The	client	calls	WriteRequest	to
write	a	request	to	the	connection	and	calls	ReadResponseHeader	and
ReadResponseBody	in	pairs	to	read	responses.	The	client	calls	Close	when
finished	with	the	connection.	ReadResponseBody	may	be	called	with	a	nil
argument	to	force	the	body	of	the	response	to	be	read	and	then	discarded.

type	Request
type	Request	struct	{

				ServiceMethod	string	//	format:	"Service.Method"

				Seq											uint64	//	sequence	number	chosen	by	client

				//	contains	filtered	or	unexported	fields

}

Request	is	a	header	written	before	every	RPC	call.	It	is	used	internally	but
documented	here	as	an	aid	to	debugging,	such	as	when	analyzing	network
traffic.

type	Response
type	Response	struct	{

				ServiceMethod	string	//	echoes	that	of	the	Request

				Seq											uint64	//	echoes	that	of	the	request

				Error									string	//	error,	if	any.

				//	contains	filtered	or	unexported	fields

}

Response	is	a	header	written	before	every	RPC	return.	It	is	used	internally	but
documented	here	as	an	aid	to	debugging,	such	as	when	analyzing	network
traffic.

type	Server
type	Server	struct	{

				//	contains	filtered	or	unexported	fields

}

Server	represents	an	RPC	Server.

func	NewServer

func	NewServer()	*Server

NewServer	returns	a	new	Server.

func	(*Server)	Accept

func	(server	*Server)	Accept(lis	net.Listener)

Accept	accepts	connections	on	the	listener	and	serves	requests	for	each	incoming
connection.	Accept	blocks;	the	caller	typically	invokes	it	in	a	go	statement.

func	(*Server)	HandleHTTP

func	(server	*Server)	HandleHTTP(rpcPath,	debugPath	string)

HandleHTTP	registers	an	HTTP	handler	for	RPC	messages	on	rpcPath,	and	a
debugging	handler	on	debugPath.	It	is	still	necessary	to	invoke	http.Serve(),
typically	in	a	go	statement.

func	(*Server)	Register

func	(server	*Server)	Register(rcvr	interface{})	error

Register	publishes	in	the	server	the	set	of	methods	of	the	receiver	value	that
satisfy	the	following	conditions:

-	exported	method

-	two	arguments,	both	pointers	to	exported	structs

-	one	return	value,	of	type	error

It	returns	an	error	if	the	receiver	is	not	an	exported	type	or	has	no	suitable
methods.	The	client	accesses	each	method	using	a	string	of	the	form
"Type.Method",	where	Type	is	the	receiver's	concrete	type.

func	(*Server)	RegisterName

func	(server	*Server)	RegisterName(name	string,	rcvr	interface{})	error

RegisterName	is	like	Register	but	uses	the	provided	name	for	the	type	instead	of
the	receiver's	concrete	type.

func	(*Server)	ServeCodec

func	(server	*Server)	ServeCodec(codec	ServerCodec)

ServeCodec	is	like	ServeConn	but	uses	the	specified	codec	to	decode	requests
and	encode	responses.

func	(*Server)	ServeConn

func	(server	*Server)	ServeConn(conn	io.ReadWriteCloser)

ServeConn	runs	the	server	on	a	single	connection.	ServeConn	blocks,	serving
the	connection	until	the	client	hangs	up.	The	caller	typically	invokes	ServeConn
in	a	go	statement.	ServeConn	uses	the	gob	wire	format	(see	package	gob)	on	the
connection.	To	use	an	alternate	codec,	use	ServeCodec.

func	(*Server)	ServeHTTP

func	(server	*Server)	ServeHTTP(w	http.ResponseWriter,	req	*http.Request)

ServeHTTP	implements	an	http.Handler	that	answers	RPC	requests.

func	(*Server)	ServeRequest

func	(server	*Server)	ServeRequest(codec	ServerCodec)	error

ServeRequest	is	like	ServeCodec	but	synchronously	serves	a	single	request.	It
does	not	close	the	codec	upon	completion.

type	ServerCodec
type	ServerCodec	interface	{

				ReadRequestHeader(*Request)	error

				ReadRequestBody(interface{})	error

				WriteResponse(*Response,	interface{})	error

				Close()	error

}

A	ServerCodec	implements	reading	of	RPC	requests	and	writing	of	RPC
responses	for	the	server	side	of	an	RPC	session.	The	server	calls
ReadRequestHeader	and	ReadRequestBody	in	pairs	to	read	requests	from	the
connection,	and	it	calls	WriteResponse	to	write	a	response	back.	The	server	calls
Close	when	finished	with	the	connection.	ReadRequestBody	may	be	called	with
a	nil	argument	to	force	the	body	of	the	request	to	be	read	and	discarded.

type	ServerError
type	ServerError	string

ServerError	represents	an	error	that	has	been	returned	from	the	remote	side	of
the	RPC	connection.

func	(ServerError)	Error

func	(e	ServerError)	Error()	string

Subdirectories

Name 				 Synopsis

jsonrpc 				 Package	jsonrpc	implements	a	JSON-RPC	ClientCodec	andServerCodec	for	the	rpc	package.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	jsonrpc
import	"net/rpc/jsonrpc"

Overview
Index

Overview	?

Overview	?

Package	jsonrpc	implements	a	JSON-RPC	ClientCodec	and	ServerCodec	for	the
rpc	package.

Index

func	Dial(network,	address	string)	(*rpc.Client,	error)
func	NewClient(conn	io.ReadWriteCloser)	*rpc.Client
func	NewClientCodec(conn	io.ReadWriteCloser)	rpc.ClientCodec
func	NewServerCodec(conn	io.ReadWriteCloser)	rpc.ServerCodec
func	ServeConn(conn	io.ReadWriteCloser)

Package	files

client.go	server.go

func	Dial
func	Dial(network,	address	string)	(*rpc.Client,	error)

Dial	connects	to	a	JSON-RPC	server	at	the	specified	network	address.

func	NewClient
func	NewClient(conn	io.ReadWriteCloser)	*rpc.Client

NewClient	returns	a	new	rpc.Client	to	handle	requests	to	the	set	of	services	at
the	other	end	of	the	connection.

func	NewClientCodec
func	NewClientCodec(conn	io.ReadWriteCloser)	rpc.ClientCodec

NewClientCodec	returns	a	new	rpc.ClientCodec	using	JSON-RPC	on	conn.

func	NewServerCodec
func	NewServerCodec(conn	io.ReadWriteCloser)	rpc.ServerCodec

NewServerCodec	returns	a	new	rpc.ServerCodec	using	JSON-RPC	on	conn.

func	ServeConn
func	ServeConn(conn	io.ReadWriteCloser)

ServeConn	runs	the	JSON-RPC	server	on	a	single	connection.	ServeConn
blocks,	serving	the	connection	until	the	client	hangs	up.	The	caller	typically
invokes	ServeConn	in	a	go	statement.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	smtp
import	"net/smtp"

Overview
Index

Overview	?

Overview	?

Package	smtp	implements	the	Simple	Mail	Transfer	Protocol	as	defined	in	RFC
5321.	It	also	implements	the	following	extensions:

8BITMIME		RFC	1652

AUTH						RFC	2554

STARTTLS		RFC	3207

Additional	extensions	may	be	handled	by	clients.

Index

func	SendMail(addr	string,	a	Auth,	from	string,	to	[]string,	msg	[]byte)
error
type	Auth
				func	CRAMMD5Auth(username,	secret	string)	Auth
				func	PlainAuth(identity,	username,	password,	host	string)	Auth
type	Client
				func	Dial(addr	string)	(*Client,	error)
				func	NewClient(conn	net.Conn,	host	string)	(*Client,	error)
				func	(c	*Client)	Auth(a	Auth)	error
				func	(c	*Client)	Data()	(io.WriteCloser,	error)
				func	(c	*Client)	Extension(ext	string)	(bool,	string)
				func	(c	*Client)	Mail(from	string)	error
				func	(c	*Client)	Quit()	error
				func	(c	*Client)	Rcpt(to	string)	error
				func	(c	*Client)	Reset()	error
				func	(c	*Client)	StartTLS(config	*tls.Config)	error
				func	(c	*Client)	Verify(addr	string)	error
type	ServerInfo

Package	files

auth.go	smtp.go

func	SendMail
func	SendMail(addr	string,	a	Auth,	from	string,	to	[]string,	msg	[]byte)	error

SendMail	connects	to	the	server	at	addr,	switches	to	TLS	if	possible,
authenticates	with	mechanism	a	if	possible,	and	then	sends	an	email	from
address	from,	to	addresses	to,	with	message	msg.

type	Auth
type	Auth	interface	{

				//	Start	begins	an	authentication	with	a	server.

				//	It	returns	the	name	of	the	authentication	protocol

				//	and	optionally	data	to	include	in	the	initial	AUTH	message

				//	sent	to	the	server.	It	can	return	proto	==	""	to	indicate

				//	that	the	authentication	should	be	skipped.

				//	If	it	returns	a	non-nil	error,	the	SMTP	client	aborts

				//	the	authentication	attempt	and	closes	the	connection.

				Start(server	*ServerInfo)	(proto	string,	toServer	[]byte,	err	error)

				//	Next	continues	the	authentication.	The	server	has	just	sent

				//	the	fromServer	data.	If	more	is	true,	the	server	expects	a

				//	response,	which	Next	should	return	as	toServer;	otherwise

				//	Next	should	return	toServer	==	nil.

				//	If	Next	returns	a	non-nil	error,	the	SMTP	client	aborts

				//	the	authentication	attempt	and	closes	the	connection.

				Next(fromServer	[]byte,	more	bool)	(toServer	[]byte,	err	error)

}

Auth	is	implemented	by	an	SMTP	authentication	mechanism.

func	CRAMMD5Auth

func	CRAMMD5Auth(username,	secret	string)	Auth

CRAMMD5Auth	returns	an	Auth	that	implements	the	CRAM-MD5
authentication	mechanism	as	defined	in	RFC	2195.	The	returned	Auth	uses	the
given	username	and	secret	to	authenticate	to	the	server	using	the	challenge-
response	mechanism.

func	PlainAuth

func	PlainAuth(identity,	username,	password,	host	string)	Auth

PlainAuth	returns	an	Auth	that	implements	the	PLAIN	authentication
mechanism	as	defined	in	RFC	4616.	The	returned	Auth	uses	the	given	username
and	password	to	authenticate	on	TLS	connections	to	host	and	act	as	identity.
Usually	identity	will	be	left	blank	to	act	as	username.

type	Client
type	Client	struct	{

				//	Text	is	the	textproto.Conn	used	by	the	Client.	It	is	exported	to	allow	for

				//	clients	to	add	extensions.

				Text	*textproto.Conn

				//	contains	filtered	or	unexported	fields

}

A	Client	represents	a	client	connection	to	an	SMTP	server.

func	Dial

func	Dial(addr	string)	(*Client,	error)

Dial	returns	a	new	Client	connected	to	an	SMTP	server	at	addr.

func	NewClient

func	NewClient(conn	net.Conn,	host	string)	(*Client,	error)

NewClient	returns	a	new	Client	using	an	existing	connection	and	host	as	a	server
name	to	be	used	when	authenticating.

func	(*Client)	Auth

func	(c	*Client)	Auth(a	Auth)	error

Auth	authenticates	a	client	using	the	provided	authentication	mechanism.	A
failed	authentication	closes	the	connection.	Only	servers	that	advertise	the
AUTH	extension	support	this	function.

func	(*Client)	Data

func	(c	*Client)	Data()	(io.WriteCloser,	error)

Data	issues	a	DATA	command	to	the	server	and	returns	a	writer	that	can	be	used
to	write	the	data.	The	caller	should	close	the	writer	before	calling	any	more
methods	on	c.	A	call	to	Data	must	be	preceded	by	one	or	more	calls	to	Rcpt.

func	(*Client)	Extension

func	(c	*Client)	Extension(ext	string)	(bool,	string)

Extension	reports	whether	an	extension	is	support	by	the	server.	The	extension
name	is	case-insensitive.	If	the	extension	is	supported,	Extension	also	returns	a
string	that	contains	any	parameters	the	server	specifies	for	the	extension.

func	(*Client)	Mail

func	(c	*Client)	Mail(from	string)	error

Mail	issues	a	MAIL	command	to	the	server	using	the	provided	email	address.	If
the	server	supports	the	8BITMIME	extension,	Mail	adds	the
BODY=8BITMIME	parameter.	This	initiates	a	mail	transaction	and	is	followed
by	one	or	more	Rcpt	calls.

func	(*Client)	Quit

func	(c	*Client)	Quit()	error

Quit	sends	the	QUIT	command	and	closes	the	connection	to	the	server.

func	(*Client)	Rcpt

func	(c	*Client)	Rcpt(to	string)	error

Rcpt	issues	a	RCPT	command	to	the	server	using	the	provided	email	address.	A
call	to	Rcpt	must	be	preceded	by	a	call	to	Mail	and	may	be	followed	by	a	Data
call	or	another	Rcpt	call.

func	(*Client)	Reset

func	(c	*Client)	Reset()	error

Reset	sends	the	RSET	command	to	the	server,	aborting	the	current	mail
transaction.

func	(*Client)	StartTLS

func	(c	*Client)	StartTLS(config	*tls.Config)	error

StartTLS	sends	the	STARTTLS	command	and	encrypts	all	further
communication.	Only	servers	that	advertise	the	STARTTLS	extension	support
this	function.

func	(*Client)	Verify

func	(c	*Client)	Verify(addr	string)	error

Verify	checks	the	validity	of	an	email	address	on	the	server.	If	Verify	returns	nil,
the	address	is	valid.	A	non-nil	return	does	not	necessarily	indicate	an	invalid
address.	Many	servers	will	not	verify	addresses	for	security	reasons.

type	ServerInfo
type	ServerInfo	struct	{

				Name	string			//	SMTP	server	name

				TLS		bool					//	using	TLS,	with	valid	certificate	for	Name

				Auth	[]string	//	advertised	authentication	mechanisms

}

ServerInfo	records	information	about	an	SMTP	server.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	textproto
import	"net/textproto"

Overview
Index

Overview	?

Overview	?

Package	textproto	implements	generic	support	for	text-based	request/response
protocols	in	the	style	of	HTTP,	NNTP,	and	SMTP.

The	package	provides:

Error,	which	represents	a	numeric	error	response	from	a	server.

Pipeline,	to	manage	pipelined	requests	and	responses	in	a	client.

Reader,	to	read	numeric	response	code	lines,	key:	value	headers,	lines	wrapped
with	leading	spaces	on	continuation	lines,	and	whole	text	blocks	ending	with	a
dot	on	a	line	by	itself.

Writer,	to	write	dot-encoded	text	blocks.

Conn,	a	convenient	packaging	of	Reader,	Writer,	and	Pipeline	for	use	with	a
single	network	connection.

Index

func	CanonicalMIMEHeaderKey(s	string)	string
type	Conn
				func	Dial(network,	addr	string)	(*Conn,	error)
				func	NewConn(conn	io.ReadWriteCloser)	*Conn
				func	(c	*Conn)	Close()	error
				func	(c	*Conn)	Cmd(format	string,	args	...interface{})	(id	uint,	err	error)
type	Error
				func	(e	*Error)	Error()	string
type	MIMEHeader
				func	(h	MIMEHeader)	Add(key,	value	string)
				func	(h	MIMEHeader)	Del(key	string)
				func	(h	MIMEHeader)	Get(key	string)	string
				func	(h	MIMEHeader)	Set(key,	value	string)
type	Pipeline
				func	(p	*Pipeline)	EndRequest(id	uint)
				func	(p	*Pipeline)	EndResponse(id	uint)
				func	(p	*Pipeline)	Next()	uint
				func	(p	*Pipeline)	StartRequest(id	uint)
				func	(p	*Pipeline)	StartResponse(id	uint)
type	ProtocolError
				func	(p	ProtocolError)	Error()	string
type	Reader
				func	NewReader(r	*bufio.Reader)	*Reader
				func	(r	*Reader)	DotReader()	io.Reader
				func	(r	*Reader)	ReadCodeLine(expectCode	int)	(code	int,	message
string,	err	error)
				func	(r	*Reader)	ReadContinuedLine()	(string,	error)
				func	(r	*Reader)	ReadContinuedLineBytes()	([]byte,	error)
				func	(r	*Reader)	ReadDotBytes()	([]byte,	error)
				func	(r	*Reader)	ReadDotLines()	([]string,	error)
				func	(r	*Reader)	ReadLine()	(string,	error)
				func	(r	*Reader)	ReadLineBytes()	([]byte,	error)
				func	(r	*Reader)	ReadMIMEHeader()	(MIMEHeader,	error)
				func	(r	*Reader)	ReadResponse(expectCode	int)	(code	int,	message
string,	err	error)

type	Writer
				func	NewWriter(w	*bufio.Writer)	*Writer
				func	(w	*Writer)	DotWriter()	io.WriteCloser
				func	(w	*Writer)	PrintfLine(format	string,	args	...interface{})	error
Bugs

Package	files

header.go	pipeline.go	reader.go	textproto.go	writer.go

func	CanonicalMIMEHeaderKey
func	CanonicalMIMEHeaderKey(s	string)	string

CanonicalMIMEHeaderKey	returns	the	canonical	format	of	the	MIME	header
key	s.	The	canonicalization	converts	the	first	letter	and	any	letter	following	a
hyphen	to	upper	case;	the	rest	are	converted	to	lowercase.	For	example,	the
canonical	key	for	"accept-encoding"	is	"Accept-Encoding".

type	Conn
type	Conn	struct	{

				Reader

				Writer

				Pipeline

				//	contains	filtered	or	unexported	fields

}

A	Conn	represents	a	textual	network	protocol	connection.	It	consists	of	a	Reader
and	Writer	to	manage	I/O	and	a	Pipeline	to	sequence	concurrent	requests	on	the
connection.	These	embedded	types	carry	methods	with	them;	see	the
documentation	of	those	types	for	details.

func	Dial

func	Dial(network,	addr	string)	(*Conn,	error)

Dial	connects	to	the	given	address	on	the	given	network	using	net.Dial	and	then
returns	a	new	Conn	for	the	connection.

func	NewConn

func	NewConn(conn	io.ReadWriteCloser)	*Conn

NewConn	returns	a	new	Conn	using	conn	for	I/O.

func	(*Conn)	Close

func	(c	*Conn)	Close()	error

Close	closes	the	connection.

func	(*Conn)	Cmd

func	(c	*Conn)	Cmd(format	string,	args	...interface{})	(id	uint,	err	error)

Cmd	is	a	convenience	method	that	sends	a	command	after	waiting	its	turn	in	the
pipeline.	The	command	text	is	the	result	of	formatting	format	with	args	and

appending	\r\n.	Cmd	returns	the	id	of	the	command,	for	use	with	StartResponse
and	EndResponse.

For	example,	a	client	might	run	a	HELP	command	that	returns	a	dot-body	by
using:

id,	err	:=	c.Cmd("HELP")

if	err	!=	nil	{

	 return	nil,	err

}

c.StartResponse(id)

defer	c.EndResponse(id)

if	_,	_,	err	=	c.ReadCodeLine(110);	err	!=	nil	{

	 return	nil,	err

}

text,	err	:=	c.ReadDotAll()

if	err	!=	nil	{

	 return	nil,	err

}

return	c.ReadCodeLine(250)

type	Error
type	Error	struct	{

				Code	int

				Msg		string

}

An	Error	represents	a	numeric	error	response	from	a	server.

func	(*Error)	Error

func	(e	*Error)	Error()	string

type	MIMEHeader
type	MIMEHeader	map[string][]string

A	MIMEHeader	represents	a	MIME-style	header	mapping	keys	to	sets	of	values.

func	(MIMEHeader)	Add

func	(h	MIMEHeader)	Add(key,	value	string)

Add	adds	the	key,	value	pair	to	the	header.	It	appends	to	any	existing	values
associated	with	key.

func	(MIMEHeader)	Del

func	(h	MIMEHeader)	Del(key	string)

Del	deletes	the	values	associated	with	key.

func	(MIMEHeader)	Get

func	(h	MIMEHeader)	Get(key	string)	string

Get	gets	the	first	value	associated	with	the	given	key.	If	there	are	no	values
associated	with	the	key,	Get	returns	"".	Get	is	a	convenience	method.	For	more
complex	queries,	access	the	map	directly.

func	(MIMEHeader)	Set

func	(h	MIMEHeader)	Set(key,	value	string)

Set	sets	the	header	entries	associated	with	key	to	the	single	element	value.	It
replaces	any	existing	values	associated	with	key.

type	Pipeline
type	Pipeline	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Pipeline	manages	a	pipelined	in-order	request/response	sequence.

To	use	a	Pipeline	p	to	manage	multiple	clients	on	a	connection,	each	client
should	run:

id	:=	p.Next()	 //	take	a	number

p.StartRequest(id)	 //	wait	for	turn	to	send	request

?send	request?

p.EndRequest(id)	 //	notify	Pipeline	that	request	is	sent

p.StartResponse(id)	 //	wait	for	turn	to	read	response

?read	response?

p.EndResponse(id)	 //	notify	Pipeline	that	response	is	read

A	pipelined	server	can	use	the	same	calls	to	ensure	that	responses	computed	in
parallel	are	written	in	the	correct	order.

func	(*Pipeline)	EndRequest

func	(p	*Pipeline)	EndRequest(id	uint)

EndRequest	notifies	p	that	the	request	with	the	given	id	has	been	sent	(or,	if	this
is	a	server,	received).

func	(*Pipeline)	EndResponse

func	(p	*Pipeline)	EndResponse(id	uint)

EndResponse	notifies	p	that	the	response	with	the	given	id	has	been	received	(or,
if	this	is	a	server,	sent).

func	(*Pipeline)	Next

func	(p	*Pipeline)	Next()	uint

Next	returns	the	next	id	for	a	request/response	pair.

func	(*Pipeline)	StartRequest

func	(p	*Pipeline)	StartRequest(id	uint)

StartRequest	blocks	until	it	is	time	to	send	(or,	if	this	is	a	server,	receive)	the
request	with	the	given	id.

func	(*Pipeline)	StartResponse

func	(p	*Pipeline)	StartResponse(id	uint)

StartResponse	blocks	until	it	is	time	to	receive	(or,	if	this	is	a	server,	send)	the
request	with	the	given	id.

type	ProtocolError
type	ProtocolError	string

A	ProtocolError	describes	a	protocol	violation	such	as	an	invalid	response	or	a
hung-up	connection.

func	(ProtocolError)	Error

func	(p	ProtocolError)	Error()	string

type	Reader
type	Reader	struct	{

				R	*bufio.Reader

				//	contains	filtered	or	unexported	fields

}

A	Reader	implements	convenience	methods	for	reading	requests	or	responses
from	a	text	protocol	network	connection.

func	NewReader

func	NewReader(r	*bufio.Reader)	*Reader

NewReader	returns	a	new	Reader	reading	from	r.

func	(*Reader)	DotReader

func	(r	*Reader)	DotReader()	io.Reader

DotReader	returns	a	new	Reader	that	satisfies	Reads	using	the	decoded	text	of	a
dot-encoded	block	read	from	r.	The	returned	Reader	is	only	valid	until	the	next
call	to	a	method	on	r.

Dot	encoding	is	a	common	framing	used	for	data	blocks	in	text	protocols	such	as
SMTP.	The	data	consists	of	a	sequence	of	lines,	each	of	which	ends	in	"\r\n".
The	sequence	itself	ends	at	a	line	containing	just	a	dot:	".\r\n".	Lines	beginning
with	a	dot	are	escaped	with	an	additional	dot	to	avoid	looking	like	the	end	of	the
sequence.

The	decoded	form	returned	by	the	Reader's	Read	method	rewrites	the	"\r\n"	line
endings	into	the	simpler	"\n",	removes	leading	dot	escapes	if	present,	and	stops
with	error	io.EOF	after	consuming	(and	discarding)	the	end-of-sequence	line.

func	(*Reader)	ReadCodeLine

func	(r	*Reader)	ReadCodeLine(expectCode	int)	(code	int,	message	string,	err	error)

ReadCodeLine	reads	a	response	code	line	of	the	form

code	message

where	code	is	a	3-digit	status	code	and	the	message	extends	to	the	rest	of	the
line.	An	example	of	such	a	line	is:

220	plan9.bell-labs.com	ESMTP

If	the	prefix	of	the	status	does	not	match	the	digits	in	expectCode,
ReadCodeLine	returns	with	err	set	to	&Error{code,	message}.	For	example,	if
expectCode	is	31,	an	error	will	be	returned	if	the	status	is	not	in	the	range
[310,319].

If	the	response	is	multi-line,	ReadCodeLine	returns	an	error.

An	expectCode	<=	0	disables	the	check	of	the	status	code.

func	(*Reader)	ReadContinuedLine

func	(r	*Reader)	ReadContinuedLine()	(string,	error)

ReadContinuedLine	reads	a	possibly	continued	line	from	r,	eliding	the	final
trailing	ASCII	white	space.	Lines	after	the	first	are	considered	continuations	if
they	begin	with	a	space	or	tab	character.	In	the	returned	data,	continuation	lines
are	separated	from	the	previous	line	only	by	a	single	space:	the	newline	and
leading	white	space	are	removed.

For	example,	consider	this	input:

Line	1

		continued...

Line	2

The	first	call	to	ReadContinuedLine	will	return	"Line	1	continued..."	and	the
second	will	return	"Line	2".

A	line	consisting	of	only	white	space	is	never	continued.

func	(*Reader)	ReadContinuedLineBytes

func	(r	*Reader)	ReadContinuedLineBytes()	([]byte,	error)

ReadContinuedLineBytes	is	like	ReadContinuedLine	but	returns	a	[]byte	instead
of	a	string.

func	(*Reader)	ReadDotBytes

func	(r	*Reader)	ReadDotBytes()	([]byte,	error)

ReadDotBytes	reads	a	dot-encoding	and	returns	the	decoded	data.

See	the	documentation	for	the	DotReader	method	for	details	about	dot-encoding.

func	(*Reader)	ReadDotLines

func	(r	*Reader)	ReadDotLines()	([]string,	error)

ReadDotLines	reads	a	dot-encoding	and	returns	a	slice	containing	the	decoded
lines,	with	the	final	\r\n	or	\n	elided	from	each.

See	the	documentation	for	the	DotReader	method	for	details	about	dot-encoding.

func	(*Reader)	ReadLine

func	(r	*Reader)	ReadLine()	(string,	error)

ReadLine	reads	a	single	line	from	r,	eliding	the	final	\n	or	\r\n	from	the	returned
string.

func	(*Reader)	ReadLineBytes

func	(r	*Reader)	ReadLineBytes()	([]byte,	error)

ReadLineBytes	is	like	ReadLine	but	returns	a	[]byte	instead	of	a	string.

func	(*Reader)	ReadMIMEHeader

func	(r	*Reader)	ReadMIMEHeader()	(MIMEHeader,	error)

ReadMIMEHeader	reads	a	MIME-style	header	from	r.	The	header	is	a	sequence
of	possibly	continued	Key:	Value	lines	ending	in	a	blank	line.	The	returned	map
m	maps	CanonicalMIMEHeaderKey(key)	to	a	sequence	of	values	in	the	same

order	encountered	in	the	input.

For	example,	consider	this	input:

My-Key:	Value	1

Long-Key:	Even

							Longer	Value

My-Key:	Value	2

Given	that	input,	ReadMIMEHeader	returns	the	map:

map[string][]string{

	 "My-Key":	{"Value	1",	"Value	2"},

	 "Long-Key":	{"Even	Longer	Value"},

}

func	(*Reader)	ReadResponse

func	(r	*Reader)	ReadResponse(expectCode	int)	(code	int,	message	string,	err	error)

ReadResponse	reads	a	multi-line	response	of	the	form:

code-message	line	1

code-message	line	2

...

code	message	line	n

where	code	is	a	3-digit	status	code.	The	first	line	starts	with	the	code	and	a
hyphen.	The	response	is	terminated	by	a	line	that	starts	with	the	same	code
followed	by	a	space.	Each	line	in	message	is	separated	by	a	newline	(\n).

See	page	36	of	RFC	959	(http://www.ietf.org/rfc/rfc959.txt)	for	details.

If	the	prefix	of	the	status	does	not	match	the	digits	in	expectCode,	ReadResponse
returns	with	err	set	to	&Error{code,	message}.	For	example,	if	expectCode	is	31,
an	error	will	be	returned	if	the	status	is	not	in	the	range	[310,319].

An	expectCode	<=	0	disables	the	check	of	the	status	code.

http://www.ietf.org/rfc/rfc959.txt

type	Writer
type	Writer	struct	{

				W	*bufio.Writer

				//	contains	filtered	or	unexported	fields

}

A	Writer	implements	convenience	methods	for	writing	requests	or	responses	to	a
text	protocol	network	connection.

func	NewWriter

func	NewWriter(w	*bufio.Writer)	*Writer

NewWriter	returns	a	new	Writer	writing	to	w.

func	(*Writer)	DotWriter

func	(w	*Writer)	DotWriter()	io.WriteCloser

DotWriter	returns	a	writer	that	can	be	used	to	write	a	dot-encoding	to	w.	It	takes
care	of	inserting	leading	dots	when	necessary,	translating	line-ending	\n	into	\r\n,
and	adding	the	final	.\r\n	line	when	the	DotWriter	is	closed.	The	caller	should
close	the	DotWriter	before	the	next	call	to	a	method	on	w.

See	the	documentation	for	Reader's	DotReader	method	for	details	about	dot-
encoding.

func	(*Writer)	PrintfLine

func	(w	*Writer)	PrintfLine(format	string,	args	...interface{})	error

PrintfLine	writes	the	formatted	output	followed	by	\r\n.

Bugs

To	let	callers	manage	exposure	to	denial	of	service	attacks,	Reader	should	allow
them	to	set	and	reset	a	limit	on	the	number	of	bytes	read	from	the	connection.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	url
import	"net/url"

Overview
Index
Examples

Overview	?

Overview	?

Package	url	parses	URLs	and	implements	query	escaping.	See	RFC	3986.

Index

func	QueryEscape(s	string)	string
func	QueryUnescape(s	string)	(string,	error)
type	Error
				func	(e	*Error)	Error()	string
type	EscapeError
				func	(e	EscapeError)	Error()	string
type	URL
				func	Parse(rawurl	string)	(url	*URL,	err	error)
				func	ParseRequestURI(rawurl	string)	(url	*URL,	err	error)
				func	(u	*URL)	IsAbs()	bool
				func	(u	*URL)	Parse(ref	string)	(*URL,	error)
				func	(u	*URL)	Query()	Values
				func	(u	*URL)	RequestURI()	string
				func	(u	*URL)	ResolveReference(ref	*URL)	*URL
				func	(u	*URL)	String()	string
type	Userinfo
				func	User(username	string)	*Userinfo
				func	UserPassword(username,	password	string)	*Userinfo
				func	(u	*Userinfo)	Password()	(string,	bool)
				func	(u	*Userinfo)	String()	string
				func	(u	*Userinfo)	Username()	string
type	Values
				func	ParseQuery(query	string)	(m	Values,	err	error)
				func	(v	Values)	Add(key,	value	string)
				func	(v	Values)	Del(key	string)
				func	(v	Values)	Encode()	string
				func	(v	Values)	Get(key	string)	string
				func	(v	Values)	Set(key,	value	string)

Examples

URL
Values

Package	files

url.go

func	QueryEscape
func	QueryEscape(s	string)	string

QueryEscape	escapes	the	string	so	it	can	be	safely	placed	inside	a	URL	query.

func	QueryUnescape
func	QueryUnescape(s	string)	(string,	error)

QueryUnescape	does	the	inverse	transformation	of	QueryEscape,	converting
%AB	into	the	byte	0xAB	and	'+'	into	'	'	(space).	It	returns	an	error	if	any	%	is	not
followed	by	two	hexadecimal	digits.

type	Error
type	Error	struct	{

				Op		string

				URL	string

				Err	error

}

Error	reports	an	error	and	the	operation	and	URL	that	caused	it.

func	(*Error)	Error

func	(e	*Error)	Error()	string

type	EscapeError
type	EscapeError	string

func	(EscapeError)	Error

func	(e	EscapeError)	Error()	string

type	URL
type	URL	struct	{

				Scheme			string

				Opaque			string				//	encoded	opaque	data

				User					*Userinfo	//	username	and	password	information

				Host					string

				Path					string

				RawQuery	string	//	encoded	query	values,	without	'?'

				Fragment	string	//	fragment	for	references,	without	'#'

}

A	URL	represents	a	parsed	URL	(technically,	a	URI	reference).	The	general
form	represented	is:

scheme://[userinfo@]host/path[?query][#fragment]

URLs	that	do	not	start	with	a	slash	after	the	scheme	are	interpreted	as:

scheme:opaque[?query][#fragment]

?	Example

?	Example

Code:

u,	err	:=	url.Parse("http://bing.com/search?q=dotnet")

if	err	!=	nil	{

				log.Fatal(err)

}

u.Scheme	=	"https"

u.Host	=	"google.com"

q	:=	u.Query()

q.Set("q",	"golang")

u.RawQuery	=	q.Encode()

fmt.Println(u)

Output:

https://google.com/search?q=golang

func	Parse

func	Parse(rawurl	string)	(url	*URL,	err	error)

Parse	parses	rawurl	into	a	URL	structure.	The	rawurl	may	be	relative	or	absolute.

func	ParseRequestURI

func	ParseRequestURI(rawurl	string)	(url	*URL,	err	error)

ParseRequestURI	parses	rawurl	into	a	URL	structure.	It	assumes	that	rawurl	was
received	in	an	HTTP	request,	so	the	rawurl	is	interpreted	only	as	an	absolute
URI	or	an	absolute	path.	The	string	rawurl	is	assumed	not	to	have	a	#fragment
suffix.	(Web	browsers	strip	#fragment	before	sending	the	URL	to	a	web	server.)

func	(*URL)	IsAbs

func	(u	*URL)	IsAbs()	bool

IsAbs	returns	true	if	the	URL	is	absolute.

func	(*URL)	Parse

func	(u	*URL)	Parse(ref	string)	(*URL,	error)

Parse	parses	a	URL	in	the	context	of	the	receiver.	The	provided	URL	may	be
relative	or	absolute.	Parse	returns	nil,	err	on	parse	failure,	otherwise	its	return
value	is	the	same	as	ResolveReference.

func	(*URL)	Query

func	(u	*URL)	Query()	Values

Query	parses	RawQuery	and	returns	the	corresponding	values.

func	(*URL)	RequestURI

func	(u	*URL)	RequestURI()	string

RequestURI	returns	the	encoded	path?query	or	opaque?query	string	that	would
be	used	in	an	HTTP	request	for	u.

func	(*URL)	ResolveReference

func	(u	*URL)	ResolveReference(ref	*URL)	*URL

ResolveReference	resolves	a	URI	reference	to	an	absolute	URI	from	an	absolute
base	URI,	per	RFC	2396	Section	5.2.	The	URI	reference	may	be	relative	or
absolute.	ResolveReference	always	returns	a	new	URL	instance,	even	if	the
returned	URL	is	identical	to	either	the	base	or	reference.	If	ref	is	an	absolute
URL,	then	ResolveReference	ignores	base	and	returns	a	copy	of	ref.

func	(*URL)	String

func	(u	*URL)	String()	string

String	reassembles	the	URL	into	a	valid	URL	string.

type	Userinfo
type	Userinfo	struct	{

				//	contains	filtered	or	unexported	fields

}

The	Userinfo	type	is	an	immutable	encapsulation	of	username	and	password
details	for	a	URL.	An	existing	Userinfo	value	is	guaranteed	to	have	a	username
set	(potentially	empty,	as	allowed	by	RFC	2396),	and	optionally	a	password.

func	User

func	User(username	string)	*Userinfo

User	returns	a	Userinfo	containing	the	provided	username	and	no	password	set.

func	UserPassword

func	UserPassword(username,	password	string)	*Userinfo

UserPassword	returns	a	Userinfo	containing	the	provided	username	and
password.	This	functionality	should	only	be	used	with	legacy	web	sites.	RFC
2396	warns	that	interpreting	Userinfo	this	way	“is	NOT	RECOMMENDED,
because	the	passing	of	authentication	information	in	clear	text	(such	as	URI)	has
proven	to	be	a	security	risk	in	almost	every	case	where	it	has	been	used.”

func	(*Userinfo)	Password

func	(u	*Userinfo)	Password()	(string,	bool)

Password	returns	the	password	in	case	it	is	set,	and	whether	it	is	set.

func	(*Userinfo)	String

func	(u	*Userinfo)	String()	string

String	returns	the	encoded	userinfo	information	in	the	standard	form	of
"username[:password]".

func	(*Userinfo)	Username

func	(u	*Userinfo)	Username()	string

Username	returns	the	username.

type	Values
type	Values	map[string][]string

Values	maps	a	string	key	to	a	list	of	values.	It	is	typically	used	for	query
parameters	and	form	values.	Unlike	in	the	http.Header	map,	the	keys	in	a	Values
map	are	case-sensitive.

?	Example

?	Example

Code:

v	:=	url.Values{}

v.Set("name",	"Ava")

v.Add("friend",	"Jess")

v.Add("friend",	"Sarah")

v.Add("friend",	"Zoe")

//	v.Encode()	==	"name=Ava&friend=Jess&friend=Sarah&friend=Zoe"

fmt.Println(v.Get("name"))

fmt.Println(v.Get("friend"))

fmt.Println(v["friend"])

Output:

Ava

Jess

[Jess	Sarah	Zoe]

func	ParseQuery

func	ParseQuery(query	string)	(m	Values,	err	error)

ParseQuery	parses	the	URL-encoded	query	string	and	returns	a	map	listing	the
values	specified	for	each	key.	ParseQuery	always	returns	a	non-nil	map
containing	all	the	valid	query	parameters	found;	err	describes	the	first	decoding
error	encountered,	if	any.

func	(Values)	Add

func	(v	Values)	Add(key,	value	string)

Add	adds	the	key	to	value.	It	appends	to	any	existing	values	associated	with	key.

func	(Values)	Del

func	(v	Values)	Del(key	string)

Del	deletes	the	values	associated	with	key.

func	(Values)	Encode

func	(v	Values)	Encode()	string

Encode	encodes	the	values	into	“URL	encoded”	form.	e.g.	"foo=bar&bar=baz"

func	(Values)	Get

func	(v	Values)	Get(key	string)	string

Get	gets	the	first	value	associated	with	the	given	key.	If	there	are	no	values
associated	with	the	key,	Get	returns	the	empty	string.	To	access	multiple	values,
use	the	map	directly.

func	(Values)	Set

func	(v	Values)	Set(key,	value	string)

Set	sets	the	key	to	value.	It	replaces	any	existing	values.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	os
import	"os"

Overview
Index
Subdirectories

Overview	?

Overview	?

Package	os	provides	a	platform-independent	interface	to	operating	system
functionality.	The	design	is	Unix-like,	although	the	error	handling	is	Go-like;
failing	calls	return	values	of	type	error	rather	than	error	numbers.	Often,	more
information	is	available	within	the	error.	For	example,	if	a	call	that	takes	a	file
name	fails,	such	as	Open	or	Stat,	the	error	will	include	the	failing	file	name
when	printed	and	will	be	of	type	*PathError,	which	may	be	unpacked	for	more
information.

The	os	interface	is	intended	to	be	uniform	across	all	operating	systems.	Features
not	generally	available	appear	in	the	system-specific	package	syscall.

Here	is	a	simple	example,	opening	a	file	and	reading	some	of	it.

file,	err	:=	os.Open("file.go")	//	For	read	access.

if	err	!=	nil	{

	 log.Fatal(err)

}

If	the	open	fails,	the	error	string	will	be	self-explanatory,	like

open	file.go:	no	such	file	or	directory

The	file's	data	can	then	be	read	into	a	slice	of	bytes.	Read	and	Write	take	their
byte	counts	from	the	length	of	the	argument	slice.

data	:=	make([]byte,	100)

count,	err	:=	file.Read(data)

if	err	!=	nil	{

	 log.Fatal(err)

}

fmt.Printf("read	%d	bytes:	%q\n",	count,	data[:count])

Index

Constants
Variables
func	Chdir(dir	string)	error
func	Chmod(name	string,	mode	FileMode)	error
func	Chown(name	string,	uid,	gid	int)	error
func	Chtimes(name	string,	atime	time.Time,	mtime	time.Time)	error
func	Clearenv()
func	Environ()	[]string
func	Exit(code	int)
func	Expand(s	string,	mapping	func(string)	string)	string
func	ExpandEnv(s	string)	string
func	Getegid()	int
func	Getenv(key	string)	string
func	Geteuid()	int
func	Getgid()	int
func	Getgroups()	([]int,	error)
func	Getpagesize()	int
func	Getpid()	int
func	Getppid()	int
func	Getuid()	int
func	Getwd()	(pwd	string,	err	error)
func	Hostname()	(name	string,	err	error)
func	IsExist(err	error)	bool
func	IsNotExist(err	error)	bool
func	IsPathSeparator(c	uint8)	bool
func	IsPermission(err	error)	bool
func	Lchown(name	string,	uid,	gid	int)	error
func	Link(oldname,	newname	string)	error
func	Mkdir(name	string,	perm	FileMode)	error
func	MkdirAll(path	string,	perm	FileMode)	error
func	NewSyscallError(syscall	string,	err	error)	error
func	Readlink(name	string)	(string,	error)
func	Remove(name	string)	error
func	RemoveAll(path	string)	error
func	Rename(oldname,	newname	string)	error

func	SameFile(fi1,	fi2	FileInfo)	bool
func	Setenv(key,	value	string)	error
func	Symlink(oldname,	newname	string)	error
func	TempDir()	string
func	Truncate(name	string,	size	int64)	error
type	File
				func	Create(name	string)	(file	*File,	err	error)
				func	NewFile(fd	uintptr,	name	string)	*File
				func	Open(name	string)	(file	*File,	err	error)
				func	OpenFile(name	string,	flag	int,	perm	FileMode)	(file	*File,	err
error)
				func	Pipe()	(r	*File,	w	*File,	err	error)
				func	(f	*File)	Chdir()	error
				func	(f	*File)	Chmod(mode	FileMode)	error
				func	(f	*File)	Chown(uid,	gid	int)	error
				func	(f	*File)	Close()	error
				func	(f	*File)	Fd()	uintptr
				func	(f	*File)	Name()	string
				func	(f	*File)	Read(b	[]byte)	(n	int,	err	error)
				func	(f	*File)	ReadAt(b	[]byte,	off	int64)	(n	int,	err	error)
				func	(f	*File)	Readdir(n	int)	(fi	[]FileInfo,	err	error)
				func	(f	*File)	Readdirnames(n	int)	(names	[]string,	err	error)
				func	(f	*File)	Seek(offset	int64,	whence	int)	(ret	int64,	err	error)
				func	(f	*File)	Stat()	(fi	FileInfo,	err	error)
				func	(f	*File)	Sync()	(err	error)
				func	(f	*File)	Truncate(size	int64)	error
				func	(f	*File)	Write(b	[]byte)	(n	int,	err	error)
				func	(f	*File)	WriteAt(b	[]byte,	off	int64)	(n	int,	err	error)
				func	(f	*File)	WriteString(s	string)	(ret	int,	err	error)
type	FileInfo
				func	Lstat(name	string)	(fi	FileInfo,	err	error)
				func	Stat(name	string)	(fi	FileInfo,	err	error)
type	FileMode
				func	(m	FileMode)	IsDir()	bool
				func	(m	FileMode)	Perm()	FileMode
				func	(m	FileMode)	String()	string
type	LinkError
				func	(e	*LinkError)	Error()	string
type	PathError

				func	(e	*PathError)	Error()	string
type	ProcAttr
type	Process
				func	FindProcess(pid	int)	(p	*Process,	err	error)
				func	StartProcess(name	string,	argv	[]string,	attr	*ProcAttr)	(*Process,
error)
				func	(p	*Process)	Kill()	error
				func	(p	*Process)	Release()	error
				func	(p	*Process)	Signal(sig	Signal)	error
				func	(p	*Process)	Wait()	(*ProcessState,	error)
type	ProcessState
				func	(p	*ProcessState)	Exited()	bool
				func	(p	*ProcessState)	Pid()	int
				func	(p	*ProcessState)	String()	string
				func	(p	*ProcessState)	Success()	bool
				func	(p	*ProcessState)	Sys()	interface{}
				func	(p	*ProcessState)	SysUsage()	interface{}
				func	(p	*ProcessState)	SystemTime()	time.Duration
				func	(p	*ProcessState)	UserTime()	time.Duration
type	Signal
type	SyscallError
				func	(e	*SyscallError)	Error()	string

Package	files

dir_unix.go	doc.go	env.go	error.go	error_posix.go	exec.go	exec_posix.go	exec_unix.go	file.go	file_posix.go
file_unix.go	getwd.go	path.go	path_unix.go	proc.go	stat_linux.go	sys_linux.go	types.go

Constants
const	(

				O_RDONLY	int	=	syscall.O_RDONLY	//	open	the	file	read-only.

				O_WRONLY	int	=	syscall.O_WRONLY	//	open	the	file	write-only.

				O_RDWR			int	=	syscall.O_RDWR			//	open	the	file	read-write.

				O_APPEND	int	=	syscall.O_APPEND	//	append	data	to	the	file	when	writing.

				O_CREATE	int	=	syscall.O_CREAT		//	create	a	new	file	if	none	exists.

				O_EXCL			int	=	syscall.O_EXCL			//	used	with	O_CREATE,	file	must	not	exist

				O_SYNC			int	=	syscall.O_SYNC			//	open	for	synchronous	I/O.

				O_TRUNC		int	=	syscall.O_TRUNC		//	if	possible,	truncate	file	when	opened.

)

Flags	to	Open	wrapping	those	of	the	underlying	system.	Not	all	flags	may	be
implemented	on	a	given	system.

const	(

				SEEK_SET	int	=	0	//	seek	relative	to	the	origin	of	the	file

				SEEK_CUR	int	=	1	//	seek	relative	to	the	current	offset

				SEEK_END	int	=	2	//	seek	relative	to	the	end

)

Seek	whence	values.

const	(

				PathSeparator					=	'/'	//	OS-specific	path	separator

				PathListSeparator	=	':'	//	OS-specific	path	list	separator

)

const	DevNull	=	"/dev/null"

DevNull	is	the	name	of	the	operating	system's	“null	device.”	On	Unix-like
systems,	it	is	"/dev/null";	on	Windows,	"NUL".

Variables
var	(

				ErrInvalid				=	errors.New("invalid	argument")

				ErrPermission	=	errors.New("permission	denied")

				ErrExist						=	errors.New("file	already	exists")

				ErrNotExist			=	errors.New("file	does	not	exist")

)

Portable	analogs	of	some	common	system	call	errors.

var	(

				Stdin		=	NewFile(uintptr(syscall.Stdin),	"/dev/stdin")

				Stdout	=	NewFile(uintptr(syscall.Stdout),	"/dev/stdout")

				Stderr	=	NewFile(uintptr(syscall.Stderr),	"/dev/stderr")

)

Stdin,	Stdout,	and	Stderr	are	open	Files	pointing	to	the	standard	input,	standard
output,	and	standard	error	file	descriptors.

var	Args	[]string

Args	hold	the	command-line	arguments,	starting	with	the	program	name.

func	Chdir
func	Chdir(dir	string)	error

Chdir	changes	the	current	working	directory	to	the	named	directory.	If	there	is	an
error,	it	will	be	of	type	*PathError.

func	Chmod
func	Chmod(name	string,	mode	FileMode)	error

Chmod	changes	the	mode	of	the	named	file	to	mode.	If	the	file	is	a	symbolic
link,	it	changes	the	mode	of	the	link's	target.	If	there	is	an	error,	it	will	be	of	type
*PathError.

func	Chown
func	Chown(name	string,	uid,	gid	int)	error

Chown	changes	the	numeric	uid	and	gid	of	the	named	file.	If	the	file	is	a
symbolic	link,	it	changes	the	uid	and	gid	of	the	link's	target.	If	there	is	an	error,	it
will	be	of	type	*PathError.

func	Chtimes
func	Chtimes(name	string,	atime	time.Time,	mtime	time.Time)	error

Chtimes	changes	the	access	and	modification	times	of	the	named	file,	similar	to
the	Unix	utime()	or	utimes()	functions.

The	underlying	filesystem	may	truncate	or	round	the	values	to	a	less	precise	time
unit.	If	there	is	an	error,	it	will	be	of	type	*PathError.

func	Clearenv
func	Clearenv()

Clearenv	deletes	all	environment	variables.

func	Environ
func	Environ()	[]string

Environ	returns	a	copy	of	strings	representing	the	environment,	in	the	form
"key=value".

func	Exit
func	Exit(code	int)

Exit	causes	the	current	program	to	exit	with	the	given	status	code.
Conventionally,	code	zero	indicates	success,	non-zero	an	error.

func	Expand
func	Expand(s	string,	mapping	func(string)	string)	string

Expand	replaces	${var}	or	$var	in	the	string	based	on	the	mapping	function.
Invocations	of	undefined	variables	are	replaced	with	the	empty	string.

func	ExpandEnv
func	ExpandEnv(s	string)	string

ExpandEnv	replaces	${var}	or	$var	in	the	string	according	to	the	values	of	the
current	environment	variables.	References	to	undefined	variables	are	replaced	by
the	empty	string.

func	Getegid
func	Getegid()	int

Getegid	returns	the	numeric	effective	group	id	of	the	caller.

func	Getenv
func	Getenv(key	string)	string

Getenv	retrieves	the	value	of	the	environment	variable	named	by	the	key.	It
returns	the	value,	which	will	be	empty	if	the	variable	is	not	present.

func	Geteuid
func	Geteuid()	int

Geteuid	returns	the	numeric	effective	user	id	of	the	caller.

func	Getgid
func	Getgid()	int

Getgid	returns	the	numeric	group	id	of	the	caller.

func	Getgroups
func	Getgroups()	([]int,	error)

Getgroups	returns	a	list	of	the	numeric	ids	of	groups	that	the	caller	belongs	to.

func	Getpagesize
func	Getpagesize()	int

Getpagesize	returns	the	underlying	system's	memory	page	size.

func	Getpid
func	Getpid()	int

Getpid	returns	the	process	id	of	the	caller.

func	Getppid
func	Getppid()	int

Getppid	returns	the	process	id	of	the	caller's	parent.

func	Getuid
func	Getuid()	int

Getuid	returns	the	numeric	user	id	of	the	caller.

func	Getwd
func	Getwd()	(pwd	string,	err	error)

Getwd	returns	a	rooted	path	name	corresponding	to	the	current	directory.	If	the
current	directory	can	be	reached	via	multiple	paths	(due	to	symbolic	links),
Getwd	may	return	any	one	of	them.

func	Hostname
func	Hostname()	(name	string,	err	error)

Hostname	returns	the	host	name	reported	by	the	kernel.

func	IsExist
func	IsExist(err	error)	bool

IsExist	returns	whether	the	error	is	known	to	report	that	a	file	or	directory
already	exists.	It	is	satisfied	by	ErrExist	as	well	as	some	syscall	errors.

func	IsNotExist
func	IsNotExist(err	error)	bool

IsNotExist	returns	whether	the	error	is	known	to	report	that	a	file	or	directory
does	not	exist.	It	is	satisfied	by	ErrNotExist	as	well	as	some	syscall	errors.

func	IsPathSeparator
func	IsPathSeparator(c	uint8)	bool

IsPathSeparator	returns	true	if	c	is	a	directory	separator	character.

func	IsPermission
func	IsPermission(err	error)	bool

IsPermission	returns	whether	the	error	is	known	to	report	that	permission	is
denied.	It	is	satisfied	by	ErrPermission	as	well	as	some	syscall	errors.

func	Lchown
func	Lchown(name	string,	uid,	gid	int)	error

Lchown	changes	the	numeric	uid	and	gid	of	the	named	file.	If	the	file	is	a
symbolic	link,	it	changes	the	uid	and	gid	of	the	link	itself.	If	there	is	an	error,	it
will	be	of	type	*PathError.

func	Link
func	Link(oldname,	newname	string)	error

Link	creates	newname	as	a	hard	link	to	the	oldname	file.	If	there	is	an	error,	it
will	be	of	type	*LinkError.

func	Mkdir
func	Mkdir(name	string,	perm	FileMode)	error

Mkdir	creates	a	new	directory	with	the	specified	name	and	permission	bits.	If
there	is	an	error,	it	will	be	of	type	*PathError.

func	MkdirAll
func	MkdirAll(path	string,	perm	FileMode)	error

MkdirAll	creates	a	directory	named	path,	along	with	any	necessary	parents,	and
returns	nil,	or	else	returns	an	error.	The	permission	bits	perm	are	used	for	all
directories	that	MkdirAll	creates.	If	path	is	already	a	directory,	MkdirAll	does
nothing	and	returns	nil.

func	NewSyscallError
func	NewSyscallError(syscall	string,	err	error)	error

NewSyscallError	returns,	as	an	error,	a	new	SyscallError	with	the	given	system
call	name	and	error	details.	As	a	convenience,	if	err	is	nil,	NewSyscallError
returns	nil.

func	Readlink
func	Readlink(name	string)	(string,	error)

Readlink	returns	the	destination	of	the	named	symbolic	link.	If	there	is	an	error,
it	will	be	of	type	*PathError.

func	Remove
func	Remove(name	string)	error

Remove	removes	the	named	file	or	directory.	If	there	is	an	error,	it	will	be	of
type	*PathError.

func	RemoveAll
func	RemoveAll(path	string)	error

RemoveAll	removes	path	and	any	children	it	contains.	It	removes	everything	it
can	but	returns	the	first	error	it	encounters.	If	the	path	does	not	exist,	RemoveAll
returns	nil	(no	error).

func	Rename
func	Rename(oldname,	newname	string)	error

Rename	renames	a	file.

func	SameFile
func	SameFile(fi1,	fi2	FileInfo)	bool

SameFile	reports	whether	fi1	and	fi2	describe	the	same	file.	For	example,	on
Unix	this	means	that	the	device	and	inode	fields	of	the	two	underlying	structures
are	identical;	on	other	systems	the	decision	may	be	based	on	the	path	names.
SameFile	only	applies	to	results	returned	by	this	package's	Stat.	It	returns	false	in
other	cases.

func	Setenv
func	Setenv(key,	value	string)	error

Setenv	sets	the	value	of	the	environment	variable	named	by	the	key.	It	returns	an
error,	if	any.

func	Symlink
func	Symlink(oldname,	newname	string)	error

Symlink	creates	newname	as	a	symbolic	link	to	oldname.	If	there	is	an	error,	it
will	be	of	type	*LinkError.

func	TempDir
func	TempDir()	string

TempDir	returns	the	default	directory	to	use	for	temporary	files.

func	Truncate
func	Truncate(name	string,	size	int64)	error

Truncate	changes	the	size	of	the	named	file.	If	the	file	is	a	symbolic	link,	it
changes	the	size	of	the	link's	target.	If	there	is	an	error,	it	will	be	of	type
*PathError.

type	File
type	File	struct	{

				//	contains	filtered	or	unexported	fields

}

File	represents	an	open	file	descriptor.

func	Create

func	Create(name	string)	(file	*File,	err	error)

Create	creates	the	named	file	mode	0666	(before	umask),	truncating	it	if	it
already	exists.	If	successful,	methods	on	the	returned	File	can	be	used	for	I/O;
the	associated	file	descriptor	has	mode	O_RDWR.	If	there	is	an	error,	it	will	be
of	type	*PathError.

func	NewFile

func	NewFile(fd	uintptr,	name	string)	*File

NewFile	returns	a	new	File	with	the	given	file	descriptor	and	name.

func	Open

func	Open(name	string)	(file	*File,	err	error)

Open	opens	the	named	file	for	reading.	If	successful,	methods	on	the	returned
file	can	be	used	for	reading;	the	associated	file	descriptor	has	mode
O_RDONLY.	If	there	is	an	error,	it	will	be	of	type	*PathError.

func	OpenFile

func	OpenFile(name	string,	flag	int,	perm	FileMode)	(file	*File,	err	error)

OpenFile	is	the	generalized	open	call;	most	users	will	use	Open	or	Create
instead.	It	opens	the	named	file	with	specified	flag	(O_RDONLY	etc.)	and	perm,
(0666	etc.)	if	applicable.	If	successful,	methods	on	the	returned	File	can	be	used
for	I/O.	If	there	is	an	error,	it	will	be	of	type	*PathError.

func	Pipe

func	Pipe()	(r	*File,	w	*File,	err	error)

Pipe	returns	a	connected	pair	of	Files;	reads	from	r	return	bytes	written	to	w.	It
returns	the	files	and	an	error,	if	any.

func	(*File)	Chdir

func	(f	*File)	Chdir()	error

Chdir	changes	the	current	working	directory	to	the	file,	which	must	be	a
directory.	If	there	is	an	error,	it	will	be	of	type	*PathError.

func	(*File)	Chmod

func	(f	*File)	Chmod(mode	FileMode)	error

Chmod	changes	the	mode	of	the	file	to	mode.	If	there	is	an	error,	it	will	be	of
type	*PathError.

func	(*File)	Chown

func	(f	*File)	Chown(uid,	gid	int)	error

Chown	changes	the	numeric	uid	and	gid	of	the	named	file.	If	there	is	an	error,	it
will	be	of	type	*PathError.

func	(*File)	Close

func	(f	*File)	Close()	error

Close	closes	the	File,	rendering	it	unusable	for	I/O.	It	returns	an	error,	if	any.

func	(*File)	Fd

func	(f	*File)	Fd()	uintptr

Fd	returns	the	integer	Unix	file	descriptor	referencing	the	open	file.

func	(*File)	Name

func	(f	*File)	Name()	string

Name	returns	the	name	of	the	file	as	presented	to	Open.

func	(*File)	Read

func	(f	*File)	Read(b	[]byte)	(n	int,	err	error)

Read	reads	up	to	len(b)	bytes	from	the	File.	It	returns	the	number	of	bytes	read
and	an	error,	if	any.	EOF	is	signaled	by	a	zero	count	with	err	set	to	io.EOF.

func	(*File)	ReadAt

func	(f	*File)	ReadAt(b	[]byte,	off	int64)	(n	int,	err	error)

ReadAt	reads	len(b)	bytes	from	the	File	starting	at	byte	offset	off.	It	returns	the
number	of	bytes	read	and	the	error,	if	any.	ReadAt	always	returns	a	non-nil	error
when	n	<	len(b).	At	end	of	file,	that	error	is	io.EOF.

func	(*File)	Readdir

func	(f	*File)	Readdir(n	int)	(fi	[]FileInfo,	err	error)

Readdir	reads	the	contents	of	the	directory	associated	with	file	and	returns	an
array	of	up	to	n	FileInfo	values,	as	would	be	returned	by	Lstat,	in	directory	order.
Subsequent	calls	on	the	same	file	will	yield	further	FileInfos.

If	n	>	0,	Readdir	returns	at	most	n	FileInfo	structures.	In	this	case,	if	Readdir
returns	an	empty	slice,	it	will	return	a	non-nil	error	explaining	why.	At	the	end	of
a	directory,	the	error	is	io.EOF.

If	n	<=	0,	Readdir	returns	all	the	FileInfo	from	the	directory	in	a	single	slice.	In
this	case,	if	Readdir	succeeds	(reads	all	the	way	to	the	end	of	the	directory),	it
returns	the	slice	and	a	nil	error.	If	it	encounters	an	error	before	the	end	of	the
directory,	Readdir	returns	the	FileInfo	read	until	that	point	and	a	non-nil	error.

func	(*File)	Readdirnames

func	(f	*File)	Readdirnames(n	int)	(names	[]string,	err	error)

Readdirnames	reads	and	returns	a	slice	of	names	from	the	directory	f.

If	n	>	0,	Readdirnames	returns	at	most	n	names.	In	this	case,	if	Readdirnames
returns	an	empty	slice,	it	will	return	a	non-nil	error	explaining	why.	At	the	end	of
a	directory,	the	error	is	io.EOF.

If	n	<=	0,	Readdirnames	returns	all	the	names	from	the	directory	in	a	single
slice.	In	this	case,	if	Readdirnames	succeeds	(reads	all	the	way	to	the	end	of	the
directory),	it	returns	the	slice	and	a	nil	error.	If	it	encounters	an	error	before	the
end	of	the	directory,	Readdirnames	returns	the	names	read	until	that	point	and	a
non-nil	error.

func	(*File)	Seek

func	(f	*File)	Seek(offset	int64,	whence	int)	(ret	int64,	err	error)

Seek	sets	the	offset	for	the	next	Read	or	Write	on	file	to	offset,	interpreted
according	to	whence:	0	means	relative	to	the	origin	of	the	file,	1	means	relative
to	the	current	offset,	and	2	means	relative	to	the	end.	It	returns	the	new	offset	and
an	error,	if	any.

func	(*File)	Stat

func	(f	*File)	Stat()	(fi	FileInfo,	err	error)

Stat	returns	the	FileInfo	structure	describing	file.	If	there	is	an	error,	it	will	be	of
type	*PathError.

func	(*File)	Sync

func	(f	*File)	Sync()	(err	error)

Sync	commits	the	current	contents	of	the	file	to	stable	storage.	Typically,	this
means	flushing	the	file	system's	in-memory	copy	of	recently	written	data	to	disk.

func	(*File)	Truncate

func	(f	*File)	Truncate(size	int64)	error

Truncate	changes	the	size	of	the	file.	It	does	not	change	the	I/O	offset.	If	there	is
an	error,	it	will	be	of	type	*PathError.

func	(*File)	Write

func	(f	*File)	Write(b	[]byte)	(n	int,	err	error)

Write	writes	len(b)	bytes	to	the	File.	It	returns	the	number	of	bytes	written	and
an	error,	if	any.	Write	returns	a	non-nil	error	when	n	!=	len(b).

func	(*File)	WriteAt

func	(f	*File)	WriteAt(b	[]byte,	off	int64)	(n	int,	err	error)

WriteAt	writes	len(b)	bytes	to	the	File	starting	at	byte	offset	off.	It	returns	the
number	of	bytes	written	and	an	error,	if	any.	WriteAt	returns	a	non-nil	error
when	n	!=	len(b).

func	(*File)	WriteString

func	(f	*File)	WriteString(s	string)	(ret	int,	err	error)

WriteString	is	like	Write,	but	writes	the	contents	of	string	s	rather	than	an	array
of	bytes.

type	FileInfo
type	FileInfo	interface	{

				Name()	string							//	base	name	of	the	file

				Size()	int64								//	length	in	bytes	for	regular	files;	system-dependent	for	others

				Mode()	FileMode					//	file	mode	bits

				ModTime()	time.Time	//	modification	time

				IsDir()	bool								//	abbreviation	for	Mode().IsDir()

				Sys()	interface{}			//	underlying	data	source	(can	return	nil)

}

A	FileInfo	describes	a	file	and	is	returned	by	Stat	and	Lstat

func	Lstat

func	Lstat(name	string)	(fi	FileInfo,	err	error)

Lstat	returns	a	FileInfo	describing	the	named	file.	If	the	file	is	a	symbolic	link,
the	returned	FileInfo	describes	the	symbolic	link.	Lstat	makes	no	attempt	to
follow	the	link.	If	there	is	an	error,	it	will	be	of	type	*PathError.

func	Stat

func	Stat(name	string)	(fi	FileInfo,	err	error)

Stat	returns	a	FileInfo	describing	the	named	file.	If	there	is	an	error,	it	will	be	of
type	*PathError.

type	FileMode
type	FileMode	uint32

A	FileMode	represents	a	file's	mode	and	permission	bits.	The	bits	have	the	same
definition	on	all	systems,	so	that	information	about	files	can	be	moved	from	one
system	to	another	portably.	Not	all	bits	apply	to	all	systems.	The	only	required
bit	is	ModeDir	for	directories.

const	(

				//	The	single	letters	are	the	abbreviations

				//	used	by	the	String	method's	formatting.

				ModeDir								FileMode	=	1	<<	(32	-	1	-	iota)	//	d:	is	a	directory

				ModeAppend																																					//	a:	append-only

				ModeExclusive																																		//	l:	exclusive	use

				ModeTemporary																																		//	T:	temporary	file	(not	backed	up)

				ModeSymlink																																				//	L:	symbolic	link

				ModeDevice																																					//	D:	device	file

				ModeNamedPipe																																		//	p:	named	pipe	(FIFO)

				ModeSocket																																					//	S:	Unix	domain	socket

				ModeSetuid																																					//	u:	setuid

				ModeSetgid																																					//	g:	setgid

				ModeCharDevice																																	//	c:	Unix	character	device,	when	ModeDevice	is	set

				ModeSticky

				//	Mask	for	the	type	bits.	For	regular	files,	none	will	be	set.

				ModeType	=	ModeDir	|	ModeSymlink	|	ModeNamedPipe	|	ModeSocket	|	ModeDevice

				ModePerm	FileMode	=	0777	//	permission	bits

)

The	defined	file	mode	bits	are	the	most	significant	bits	of	the	FileMode.	The
nine	least-significant	bits	are	the	standard	Unix	rwxrwxrwx	permissions.	The
values	of	these	bits	should	be	considered	part	of	the	public	API	and	may	be	used
in	wire	protocols	or	disk	representations:	they	must	not	be	changed,	although
new	bits	might	be	added.

func	(FileMode)	IsDir

func	(m	FileMode)	IsDir()	bool

IsDir	reports	whether	m	describes	a	directory.	That	is,	it	tests	for	the	ModeDir	bit
being	set	in	m.

func	(FileMode)	Perm

func	(m	FileMode)	Perm()	FileMode

Perm	returns	the	Unix	permission	bits	in	m.

func	(FileMode)	String

func	(m	FileMode)	String()	string

type	LinkError
type	LinkError	struct	{

				Op		string

				Old	string

				New	string

				Err	error

}

LinkError	records	an	error	during	a	link	or	symlink	or	rename	system	call	and
the	paths	that	caused	it.

func	(*LinkError)	Error

func	(e	*LinkError)	Error()	string

type	PathError
type	PathError	struct	{

				Op			string

				Path	string

				Err		error

}

PathError	records	an	error	and	the	operation	and	file	path	that	caused	it.

func	(*PathError)	Error

func	(e	*PathError)	Error()	string

type	ProcAttr
type	ProcAttr	struct	{

				//	If	Dir	is	non-empty,	the	child	changes	into	the	directory	before

				//	creating	the	process.

				Dir	string

				//	If	Env	is	non-nil,	it	gives	the	environment	variables	for	the

				//	new	process	in	the	form	returned	by	Environ.

				//	If	it	is	nil,	the	result	of	Environ	will	be	used.

				Env	[]string

				//	Files	specifies	the	open	files	inherited	by	the	new	process.		The

				//	first	three	entries	correspond	to	standard	input,	standard	output,	and

				//	standard	error.		An	implementation	may	support	additional	entries,

				//	depending	on	the	underlying	operating	system.		A	nil	entry	corresponds

				//	to	that	file	being	closed	when	the	process	starts.

				Files	[]*File

				//	Operating	system-specific	process	creation	attributes.

				//	Note	that	setting	this	field	means	that	your	program

				//	may	not	execute	properly	or	even	compile	on	some

				//	operating	systems.

				Sys	*syscall.SysProcAttr

}

ProcAttr	holds	the	attributes	that	will	be	applied	to	a	new	process	started	by
StartProcess.

type	Process
type	Process	struct	{

				Pid	int

				//	contains	filtered	or	unexported	fields

}

Process	stores	the	information	about	a	process	created	by	StartProcess.

func	FindProcess

func	FindProcess(pid	int)	(p	*Process,	err	error)

FindProcess	looks	for	a	running	process	by	its	pid.	The	Process	it	returns	can	be
used	to	obtain	information	about	the	underlying	operating	system	process.

func	StartProcess

func	StartProcess(name	string,	argv	[]string,	attr	*ProcAttr)	(*Process,	error)

StartProcess	starts	a	new	process	with	the	program,	arguments	and	attributes
specified	by	name,	argv	and	attr.

StartProcess	is	a	low-level	interface.	The	os/exec	package	provides	higher-level
interfaces.

If	there	is	an	error,	it	will	be	of	type	*PathError.

func	(*Process)	Kill

func	(p	*Process)	Kill()	error

Kill	causes	the	Process	to	exit	immediately.

func	(*Process)	Release

func	(p	*Process)	Release()	error

Release	releases	any	resources	associated	with	the	Process	p,	rendering	it

unusable	in	the	future.	Release	only	needs	to	be	called	if	Wait	is	not.

func	(*Process)	Signal

func	(p	*Process)	Signal(sig	Signal)	error

Signal	sends	a	signal	to	the	Process.

func	(*Process)	Wait

func	(p	*Process)	Wait()	(*ProcessState,	error)

Wait	waits	for	the	Process	to	exit,	and	then	returns	a	ProcessState	describing	its
status	and	an	error,	if	any.	Wait	releases	any	resources	associated	with	the
Process.

type	ProcessState
type	ProcessState	struct	{

				//	contains	filtered	or	unexported	fields

}

ProcessState	stores	information	about	a	process,	as	reported	by	Wait.

func	(*ProcessState)	Exited

func	(p	*ProcessState)	Exited()	bool

Exited	returns	whether	the	program	has	exited.

func	(*ProcessState)	Pid

func	(p	*ProcessState)	Pid()	int

Pid	returns	the	process	id	of	the	exited	process.

func	(*ProcessState)	String

func	(p	*ProcessState)	String()	string

func	(*ProcessState)	Success

func	(p	*ProcessState)	Success()	bool

Success	reports	whether	the	program	exited	successfully,	such	as	with	exit	status
0	on	Unix.

func	(*ProcessState)	Sys

func	(p	*ProcessState)	Sys()	interface{}

Sys	returns	system-dependent	exit	information	about	the	process.	Convert	it	to
the	appropriate	underlying	type,	such	as	syscall.WaitStatus	on	Unix,	to	access	its
contents.

func	(*ProcessState)	SysUsage

func	(p	*ProcessState)	SysUsage()	interface{}

SysUsage	returns	system-dependent	resource	usage	information	about	the	exited
process.	Convert	it	to	the	appropriate	underlying	type,	such	as	*syscall.Rusage
on	Unix,	to	access	its	contents.

func	(*ProcessState)	SystemTime

func	(p	*ProcessState)	SystemTime()	time.Duration

SystemTime	returns	the	system	CPU	time	of	the	exited	process	and	its	children.

func	(*ProcessState)	UserTime

func	(p	*ProcessState)	UserTime()	time.Duration

UserTime	returns	the	user	CPU	time	of	the	exited	process	and	its	children.

type	Signal
type	Signal	interface	{

				String()	string

				Signal()	//	to	distinguish	from	other	Stringers

}

A	Signal	represents	an	operating	system	signal.	The	usual	underlying
implementation	is	operating	system-dependent:	on	Unix	it	is	syscall.Signal.

var	(

				Interrupt	Signal	=	syscall.SIGINT

				Kill						Signal	=	syscall.SIGKILL

)

The	only	signal	values	guaranteed	to	be	present	on	all	systems	are	Interrupt
(send	the	process	an	interrupt)	and	Kill	(force	the	process	to	exit).

type	SyscallError
type	SyscallError	struct	{

				Syscall	string

				Err					error

}

SyscallError	records	an	error	from	a	specific	system	call.

func	(*SyscallError)	Error

func	(e	*SyscallError)	Error()	string

Subdirectories

Name 				 Synopsis
exec 				 Package	exec	runs	external	commands.
signal 				 Package	signal	implements	access	to	incoming	signals.
user 				 Package	user	allows	user	account	lookups	by	name	or	id.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	exec
import	"os/exec"

Overview
Index
Examples

Overview	?

Overview	?

Package	exec	runs	external	commands.	It	wraps	os.StartProcess	to	make	it	easier
to	remap	stdin	and	stdout,	connect	I/O	with	pipes,	and	do	other	adjustments.

Index

Variables
func	LookPath(file	string)	(string,	error)
type	Cmd
				func	Command(name	string,	arg	...string)	*Cmd
				func	(c	*Cmd)	CombinedOutput()	([]byte,	error)
				func	(c	*Cmd)	Output()	([]byte,	error)
				func	(c	*Cmd)	Run()	error
				func	(c	*Cmd)	Start()	error
				func	(c	*Cmd)	StderrPipe()	(io.ReadCloser,	error)
				func	(c	*Cmd)	StdinPipe()	(io.WriteCloser,	error)
				func	(c	*Cmd)	StdoutPipe()	(io.ReadCloser,	error)
				func	(c	*Cmd)	Wait()	error
type	Error
				func	(e	*Error)	Error()	string
type	ExitError
				func	(e	*ExitError)	Error()	string

Examples

Cmd.Output
Cmd.Start
Cmd.StdoutPipe
Command
LookPath

Package	files

exec.go	lp_unix.go

Variables
var	ErrNotFound	=	errors.New("executable	file	not	found	in	$PATH")

ErrNotFound	is	the	error	resulting	if	a	path	search	failed	to	find	an	executable
file.

func	LookPath
func	LookPath(file	string)	(string,	error)

LookPath	searches	for	an	executable	binary	named	file	in	the	directories	named
by	the	PATH	environment	variable.	If	file	contains	a	slash,	it	is	tried	directly	and
the	PATH	is	not	consulted.

?	Example

?	Example

Code:

path,	err	:=	exec.LookPath("fortune")

if	err	!=	nil	{

				log.Fatal("installing	fortune	is	in	your	future")

}

fmt.Printf("fortune	is	available	at	%s\n",	path)

type	Cmd
type	Cmd	struct	{

				//	Path	is	the	path	of	the	command	to	run.

				//

				//	This	is	the	only	field	that	must	be	set	to	a	non-zero

				//	value.

				Path	string

				//	Args	holds	command	line	arguments,	including	the	command	as	Args[0].

				//	If	the	Args	field	is	empty	or	nil,	Run	uses	{Path}.

				//	

				//	In	typical	use,	both	Path	and	Args	are	set	by	calling	Command.

				Args	[]string

				//	Env	specifies	the	environment	of	the	process.

				//	If	Env	is	nil,	Run	uses	the	current	process's	environment.

				Env	[]string

				//	Dir	specifies	the	working	directory	of	the	command.

				//	If	Dir	is	the	empty	string,	Run	runs	the	command	in	the

				//	calling	process's	current	directory.

				Dir	string

				//	Stdin	specifies	the	process's	standard	input.	If	Stdin	is

				//	nil,	the	process	reads	from	the	null	device	(os.DevNull).

				Stdin	io.Reader

				//	Stdout	and	Stderr	specify	the	process's	standard	output	and	error.

				//

				//	If	either	is	nil,	Run	connects	the	corresponding	file	descriptor

				//	to	the	null	device	(os.DevNull).

				//

				//	If	Stdout	and	Stderr	are	the	same	writer,	at	most	one

				//	goroutine	at	a	time	will	call	Write.

				Stdout	io.Writer

				Stderr	io.Writer

				//	ExtraFiles	specifies	additional	open	files	to	be	inherited	by	the

				//	new	process.	It	does	not	include	standard	input,	standard	output,	or

				//	standard	error.	If	non-nil,	entry	i	becomes	file	descriptor	3+i.

				//

				//	BUG:	on	OS	X	10.6,	child	processes	may	sometimes	inherit	unwanted	fds.

				//	http://golang.org/issue/2603

				ExtraFiles	[]*os.File

				//	SysProcAttr	holds	optional,	operating	system-specific	attributes.

				//	Run	passes	it	to	os.StartProcess	as	the	os.ProcAttr's	Sys	field.

				SysProcAttr	*syscall.SysProcAttr

				//	Process	is	the	underlying	process,	once	started.

				Process	*os.Process

				//	ProcessState	contains	information	about	an	exited	process,

				//	available	after	a	call	to	Wait	or	Run.

				ProcessState	*os.ProcessState

				//	contains	filtered	or	unexported	fields

}

Cmd	represents	an	external	command	being	prepared	or	run.

func	Command

func	Command(name	string,	arg	...string)	*Cmd

Command	returns	the	Cmd	struct	to	execute	the	named	program	with	the	given
arguments.

It	sets	Path	and	Args	in	the	returned	structure	and	zeroes	the	other	fields.

If	name	contains	no	path	separators,	Command	uses	LookPath	to	resolve	the
path	to	a	complete	name	if	possible.	Otherwise	it	uses	name	directly.

The	returned	Cmd's	Args	field	is	constructed	from	the	command	name	followed
by	the	elements	of	arg,	so	arg	should	not	include	the	command	name	itself.	For
example,	Command("echo",	"hello")

?	Example

?	Example

Code:

cmd	:=	exec.Command("tr",	"a-z",	"A-Z")

cmd.Stdin	=	strings.NewReader("some	input")

var	out	bytes.Buffer

cmd.Stdout	=	&out

err	:=	cmd.Run()

if	err	!=	nil	{

				log.Fatal(err)

}

fmt.Printf("in	all	caps:	%q\n",	out.String())

func	(*Cmd)	CombinedOutput

func	(c	*Cmd)	CombinedOutput()	([]byte,	error)

CombinedOutput	runs	the	command	and	returns	its	combined	standard	output
and	standard	error.

func	(*Cmd)	Output

func	(c	*Cmd)	Output()	([]byte,	error)

Output	runs	the	command	and	returns	its	standard	output.

?	Example

?	Example

Code:

out,	err	:=	exec.Command("date").Output()

if	err	!=	nil	{

				log.Fatal(err)

}

fmt.Printf("The	date	is	%s\n",	out)

func	(*Cmd)	Run

func	(c	*Cmd)	Run()	error

Run	starts	the	specified	command	and	waits	for	it	to	complete.

The	returned	error	is	nil	if	the	command	runs,	has	no	problems	copying	stdin,
stdout,	and	stderr,	and	exits	with	a	zero	exit	status.

If	the	command	fails	to	run	or	doesn't	complete	successfully,	the	error	is	of	type
*ExitError.	Other	error	types	may	be	returned	for	I/O	problems.

func	(*Cmd)	Start

func	(c	*Cmd)	Start()	error

Start	starts	the	specified	command	but	does	not	wait	for	it	to	complete.

?	Example

?	Example

Code:

cmd	:=	exec.Command("sleep",	"5")

err	:=	cmd.Start()

if	err	!=	nil	{

				log.Fatal(err)

}

log.Printf("Waiting	for	command	to	finish...")

err	=	cmd.Wait()

log.Printf("Command	finished	with	error:	%v",	err)

func	(*Cmd)	StderrPipe

func	(c	*Cmd)	StderrPipe()	(io.ReadCloser,	error)

StderrPipe	returns	a	pipe	that	will	be	connected	to	the	command's	standard	error
when	the	command	starts.	The	pipe	will	be	closed	automatically	after	Wait	sees
the	command	exit.

func	(*Cmd)	StdinPipe

func	(c	*Cmd)	StdinPipe()	(io.WriteCloser,	error)

StdinPipe	returns	a	pipe	that	will	be	connected	to	the	command's	standard	input
when	the	command	starts.

func	(*Cmd)	StdoutPipe

func	(c	*Cmd)	StdoutPipe()	(io.ReadCloser,	error)

StdoutPipe	returns	a	pipe	that	will	be	connected	to	the	command's	standard
output	when	the	command	starts.	The	pipe	will	be	closed	automatically	after
Wait	sees	the	command	exit.

?	Example

?	Example

Code:

cmd	:=	exec.Command("echo",	"-n",	`{"Name":	"Bob",	"Age":	32}`)

stdout,	err	:=	cmd.StdoutPipe()

if	err	!=	nil	{

				log.Fatal(err)

}

if	err	:=	cmd.Start();	err	!=	nil	{

				log.Fatal(err)

}

var	person	struct	{

				Name	string

				Age		int

}

if	err	:=	json.NewDecoder(stdout).Decode(&person);	err	!=	nil	{

				log.Fatal(err)

}

if	err	:=	cmd.Wait();	err	!=	nil	{

				log.Fatal(err)

}

fmt.Printf("%s	is	%d	years	old\n",	person.Name,	person.Age)

func	(*Cmd)	Wait

func	(c	*Cmd)	Wait()	error

Wait	waits	for	the	command	to	exit.	It	must	have	been	started	by	Start.

The	returned	error	is	nil	if	the	command	runs,	has	no	problems	copying	stdin,
stdout,	and	stderr,	and	exits	with	a	zero	exit	status.

If	the	command	fails	to	run	or	doesn't	complete	successfully,	the	error	is	of	type
*ExitError.	Other	error	types	may	be	returned	for	I/O	problems.

type	Error
type	Error	struct	{

				Name	string

				Err		error

}

Error	records	the	name	of	a	binary	that	failed	to	be	be	executed	and	the	reason	it
failed.

func	(*Error)	Error

func	(e	*Error)	Error()	string

type	ExitError
type	ExitError	struct	{

				*os.ProcessState

}

An	ExitError	reports	an	unsuccessful	exit	by	a	command.

func	(*ExitError)	Error

func	(e	*ExitError)	Error()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	signal
import	"os/signal"

Overview
Index

Overview	?

Overview	?

Package	signal	implements	access	to	incoming	signals.

Index

func	Notify(c	chan<-	os.Signal,	sig	...os.Signal)
Bugs

Package	files

signal.go	signal_unix.go

func	Notify
func	Notify(c	chan<-	os.Signal,	sig	...os.Signal)

Notify	causes	package	signal	to	relay	incoming	signals	to	c.	If	no	signals	are
listed,	all	incoming	signals	will	be	relayed	to	c.	Otherwise,	just	the	listed	signals
will.

Package	signal	will	not	block	sending	to	c:	the	caller	must	ensure	that	c	has
sufficient	buffer	space	to	keep	up	with	the	expected	signal	rate.	For	a	channel
used	for	notification	of	just	one	signal	value,	a	buffer	of	size	1	is	sufficient.

Bugs

This	package	is	not	yet	implemented	on	Plan	9	and	Windows.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	user
import	"os/user"

Overview
Index

Overview	?

Overview	?

Package	user	allows	user	account	lookups	by	name	or	id.

Index

type	UnknownUserError
				func	(e	UnknownUserError)	Error()	string
type	UnknownUserIdError
				func	(e	UnknownUserIdError)	Error()	string
type	User
				func	Current()	(*User,	error)
				func	Lookup(username	string)	(*User,	error)
				func	LookupId(uid	string)	(*User,	error)

Package	files

lookup_unix.go	user.go

type	UnknownUserError
type	UnknownUserError	string

UnknownUserError	is	returned	by	Lookup	when	a	user	cannot	be	found.

func	(UnknownUserError)	Error

func	(e	UnknownUserError)	Error()	string

type	UnknownUserIdError
type	UnknownUserIdError	int

UnknownUserIdError	is	returned	by	LookupId	when	a	user	cannot	be	found.

func	(UnknownUserIdError)	Error

func	(e	UnknownUserIdError)	Error()	string

type	User
type	User	struct	{

				Uid						string	//	user	id

				Gid						string	//	primary	group	id

				Username	string

				Name					string

				HomeDir		string

}

User	represents	a	user	account.

On	posix	systems	Uid	and	Gid	contain	a	decimal	number	representing	uid	and
gid.	On	windows	Uid	and	Gid	contain	security	identifier	(SID)	in	a	string
format.

func	Current

func	Current()	(*User,	error)

Current	returns	the	current	user.

func	Lookup

func	Lookup(username	string)	(*User,	error)

Lookup	looks	up	a	user	by	username.	If	the	user	cannot	be	found,	the	returned
error	is	of	type	UnknownUserError.

func	LookupId

func	LookupId(uid	string)	(*User,	error)

LookupId	looks	up	a	user	by	userid.	If	the	user	cannot	be	found,	the	returned
error	is	of	type	UnknownUserIdError.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	path
import	"path"

Overview
Index
Examples
Subdirectories

Overview	?

Overview	?

Package	path	implements	utility	routines	for	manipulating	slash-separated	paths.

Index

Variables
func	Base(path	string)	string
func	Clean(path	string)	string
func	Dir(path	string)	string
func	Ext(path	string)	string
func	IsAbs(path	string)	bool
func	Join(elem	...string)	string
func	Match(pattern,	name	string)	(matched	bool,	err	error)
func	Split(path	string)	(dir,	file	string)

Examples

Base
Clean
Dir
Ext
IsAbs
Join
Split

Package	files

match.go	path.go

Variables
var	ErrBadPattern	=	errors.New("syntax	error	in	pattern")

ErrBadPattern	indicates	a	globbing	pattern	was	malformed.

func	Base
func	Base(path	string)	string

Base	returns	the	last	element	of	path.	Trailing	slashes	are	removed	before
extracting	the	last	element.	If	the	path	is	empty,	Base	returns	".".	If	the	path
consists	entirely	of	slashes,	Base	returns	"/".

?	Example

?	Example

Code:

fmt.Println(path.Base("/a/b"))

Output:

b

func	Clean
func	Clean(path	string)	string

Clean	returns	the	shortest	path	name	equivalent	to	path	by	purely	lexical
processing.	It	applies	the	following	rules	iteratively	until	no	further	processing
can	be	done:

1.	Replace	multiple	slashes	with	a	single	slash.

2.	Eliminate	each	.	path	name	element	(the	current	directory).

3.	Eliminate	each	inner	..	path	name	element	(the	parent	directory)

			along	with	the	non-..	element	that	precedes	it.

4.	Eliminate	..	elements	that	begin	a	rooted	path:

			that	is,	replace	"/.."	by	"/"	at	the	beginning	of	a	path.

The	returned	path	ends	in	a	slash	only	if	it	is	the	root	"/".

If	the	result	of	this	process	is	an	empty	string,	Clean	returns	the	string	".".

See	also	Rob	Pike,	“Lexical	File	Names	in	Plan	9	or	Getting	Dot-Dot	Right,”
http://plan9.bell-labs.com/sys/doc/lexnames.html

?	Example

?	Example

Code:

paths	:=	[]string{

				"a/c",

				"a//c",

				"a/c/.",

				"a/c/b/..",

				"/../a/c",

				"/../a/b/../././/c",

}

for	_,	p	:=	range	paths	{

				fmt.Printf("Clean(%q)	=	%q\n",	p,	path.Clean(p))

}

Output:

http://plan9.bell-labs.com/sys/doc/lexnames.html

Clean("a/c")	=	"a/c"

Clean("a//c")	=	"a/c"

Clean("a/c/.")	=	"a/c"

Clean("a/c/b/..")	=	"a/c"

Clean("/../a/c")	=	"/a/c"

Clean("/../a/b/../././/c")	=	"/a/c"

func	Dir
func	Dir(path	string)	string

Dir	returns	all	but	the	last	element	of	path,	typically	the	path's	directory.	The
path	is	Cleaned	and	trailing	slashes	are	removed	before	processing.	If	the	path	is
empty,	Dir	returns	".".	If	the	path	consists	entirely	of	slashes	followed	by	non-
slash	bytes,	Dir	returns	a	single	slash.	In	any	other	case,	the	returned	path	does
not	end	in	a	slash.

?	Example

?	Example

Code:

fmt.Println(path.Dir("/a/b/c"))

Output:

/a/b

func	Ext
func	Ext(path	string)	string

Ext	returns	the	file	name	extension	used	by	path.	The	extension	is	the	suffix
beginning	at	the	final	dot	in	the	final	slash-separated	element	of	path;	it	is	empty
if	there	is	no	dot.

?	Example

?	Example

Code:

fmt.Println(path.Ext("/a/b/c/bar.css"))

Output:

.css

func	IsAbs
func	IsAbs(path	string)	bool

IsAbs	returns	true	if	the	path	is	absolute.

?	Example

?	Example

Code:

fmt.Println(path.IsAbs("/dev/null"))

Output:

true

func	Join
func	Join(elem	...string)	string

Join	joins	any	number	of	path	elements	into	a	single	path,	adding	a	separating
slash	if	necessary.	The	result	is	Cleaned;	in	particular,	all	empty	strings	are
ignored.

?	Example

?	Example

Code:

fmt.Println(path.Join("a",	"b",	"c"))

Output:

a/b/c

func	Match
func	Match(pattern,	name	string)	(matched	bool,	err	error)

Match	returns	true	if	name	matches	the	shell	file	name	pattern.	The	pattern
syntax	is:

pattern:

	 {	term	}

term:

	 '*'									matches	any	sequence	of	non-/	characters

	 '?'									matches	any	single	non-/	character

	 '['	['^']	{	character-range	}	']'

	 												character	class	(must	be	non-empty)

	 c											matches	character	c	(c	!=	'*',	'?',	'\\',	'[')

	 '\\'	c						matches	character	c

character-range:

	 c											matches	character	c	(c	!=	'\\',	'-',	']')

	 '\\'	c						matches	character	c

	 lo	'-'	hi			matches	character	c	for	lo	<=	c	<=	hi

Match	requires	pattern	to	match	all	of	name,	not	just	a	substring.	The	only
possible	returned	error	is	ErrBadPattern,	when	pattern	is	malformed.

func	Split
func	Split(path	string)	(dir,	file	string)

Split	splits	path	immediately	following	the	final	slash.	separating	it	into	a
directory	and	file	name	component.	If	there	is	no	slash	path,	Split	returns	an
empty	dir	and	file	set	to	path.	The	returned	values	have	the	property	that	path	=
dir+file.

?	Example

?	Example

Code:

fmt.Println(path.Split("static/myfile.css"))

Output:

static/	myfile.css

Subdirectories

Name 				 Synopsis

filepath 				
Package	filepath	implements	utility	routines	for	manipulating
filename	paths	in	a	way	compatible	with	the	target	operating	system-
defined	file	paths.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	filepath
import	"path/filepath"

Overview
Index

Overview	?

Overview	?

Package	filepath	implements	utility	routines	for	manipulating	filename	paths	in	a
way	compatible	with	the	target	operating	system-defined	file	paths.

Index

Constants
Variables
func	Abs(path	string)	(string,	error)
func	Base(path	string)	string
func	Clean(path	string)	string
func	Dir(path	string)	string
func	EvalSymlinks(path	string)	(string,	error)
func	Ext(path	string)	string
func	FromSlash(path	string)	string
func	Glob(pattern	string)	(matches	[]string,	err	error)
func	HasPrefix(p,	prefix	string)	bool
func	IsAbs(path	string)	bool
func	Join(elem	...string)	string
func	Match(pattern,	name	string)	(matched	bool,	err	error)
func	Rel(basepath,	targpath	string)	(string,	error)
func	Split(path	string)	(dir,	file	string)
func	SplitList(path	string)	[]string
func	ToSlash(path	string)	string
func	VolumeName(path	string)	string
func	Walk(root	string,	walkFn	WalkFunc)	error
type	WalkFunc

Package	files

match.go	path.go	path_unix.go	symlink.go

Constants
const	(

				Separator					=	os.PathSeparator

				ListSeparator	=	os.PathListSeparator

)

Variables
var	ErrBadPattern	=	errors.New("syntax	error	in	pattern")

ErrBadPattern	indicates	a	globbing	pattern	was	malformed.

var	SkipDir	=	errors.New("skip	this	directory")

SkipDir	is	used	as	a	return	value	from	WalkFuncs	to	indicate	that	the	directory
named	in	the	call	is	to	be	skipped.	It	is	not	returned	as	an	error	by	any	function.

func	Abs
func	Abs(path	string)	(string,	error)

Abs	returns	an	absolute	representation	of	path.	If	the	path	is	not	absolute	it	will
be	joined	with	the	current	working	directory	to	turn	it	into	an	absolute	path.	The
absolute	path	name	for	a	given	file	is	not	guaranteed	to	be	unique.

func	Base
func	Base(path	string)	string

Base	returns	the	last	element	of	path.	Trailing	path	separators	are	removed
before	extracting	the	last	element.	If	the	path	is	empty,	Base	returns	".".	If	the
path	consists	entirely	of	separators,	Base	returns	a	single	separator.

func	Clean
func	Clean(path	string)	string

Clean	returns	the	shortest	path	name	equivalent	to	path	by	purely	lexical
processing.	It	applies	the	following	rules	iteratively	until	no	further	processing
can	be	done:

	 1.	Replace	multiple	Separator	elements	with	a	single	one.

	 2.	Eliminate	each	.	path	name	element	(the	current	directory).

	 3.	Eliminate	each	inner	..	path	name	element	(the	parent	directory)

	 			along	with	the	non-..	element	that	precedes	it.

	 4.	Eliminate	..	elements	that	begin	a	rooted	path:

	 			that	is,	replace	"/.."	by	"/"	at	the	beginning	of	a	path,

								assuming	Separator	is	'/'.

The	returned	path	ends	in	a	slash	only	if	it	represents	a	root	directory,	such	as	"/"
on	Unix	or	`C:\`	on	Windows.

If	the	result	of	this	process	is	an	empty	string,	Clean	returns	the	string	".".

See	also	Rob	Pike,	“Lexical	File	Names	in	Plan	9	or	Getting	Dot-Dot	Right,”
http://plan9.bell-labs.com/sys/doc/lexnames.html

http://plan9.bell-labs.com/sys/doc/lexnames.html

func	Dir
func	Dir(path	string)	string

Dir	returns	all	but	the	last	element	of	path,	typically	the	path's	directory.	Trailing
path	separators	are	removed	before	processing.	If	the	path	is	empty,	Dir	returns
".".	If	the	path	consists	entirely	of	separators,	Dir	returns	a	single	separator.	The
returned	path	does	not	end	in	a	separator	unless	it	is	the	root	directory.

func	EvalSymlinks
func	EvalSymlinks(path	string)	(string,	error)

EvalSymlinks	returns	the	path	name	after	the	evaluation	of	any	symbolic	links.
If	path	is	relative	the	result	will	be	relative	to	the	current	directory,	unless	one	of
the	components	is	an	absolute	symbolic	link.

func	Ext
func	Ext(path	string)	string

Ext	returns	the	file	name	extension	used	by	path.	The	extension	is	the	suffix
beginning	at	the	final	dot	in	the	final	element	of	path;	it	is	empty	if	there	is	no
dot.

func	FromSlash
func	FromSlash(path	string)	string

FromSlash	returns	the	result	of	replacing	each	slash	('/')	character	in	path	with	a
separator	character.	Multiple	slashes	are	replaced	by	multiple	separators.

func	Glob
func	Glob(pattern	string)	(matches	[]string,	err	error)

Glob	returns	the	names	of	all	files	matching	pattern	or	nil	if	there	is	no	matching
file.	The	syntax	of	patterns	is	the	same	as	in	Match.	The	pattern	may	describe
hierarchical	names	such	as	/usr/*/bin/ed	(assuming	the	Separator	is	'/').

func	HasPrefix
func	HasPrefix(p,	prefix	string)	bool

HasPrefix	exists	for	historical	compatibility	and	should	not	be	used.

func	IsAbs
func	IsAbs(path	string)	bool

IsAbs	returns	true	if	the	path	is	absolute.

func	Join
func	Join(elem	...string)	string

Join	joins	any	number	of	path	elements	into	a	single	path,	adding	a	Separator	if
necessary.	The	result	is	Cleaned,	in	particular	all	empty	strings	are	ignored.

func	Match
func	Match(pattern,	name	string)	(matched	bool,	err	error)

Match	returns	true	if	name	matches	the	shell	file	name	pattern.	The	pattern
syntax	is:

pattern:

	 {	term	}

term:

	 '*'									matches	any	sequence	of	non-Separator	characters

	 '?'									matches	any	single	non-Separator	character

	 '['	['^']	{	character-range	}	']'

	 												character	class	(must	be	non-empty)

	 c											matches	character	c	(c	!=	'*',	'?',	'\\',	'[')

	 '\\'	c						matches	character	c

character-range:

	 c											matches	character	c	(c	!=	'\\',	'-',	']')

	 '\\'	c						matches	character	c

	 lo	'-'	hi			matches	character	c	for	lo	<=	c	<=	hi

Match	requires	pattern	to	match	all	of	name,	not	just	a	substring.	The	only
possible	returned	error	is	ErrBadPattern,	when	pattern	is	malformed.

On	Windows,	escaping	is	disabled.	Instead,	'\\'	is	treated	as	path	separator.

func	Rel
func	Rel(basepath,	targpath	string)	(string,	error)

Rel	returns	a	relative	path	that	is	lexically	equivalent	to	targpath	when	joined	to
basepath	with	an	intervening	separator.	That	is,	Join(basepath,	Rel(basepath,
targpath))	is	equivalent	to	targpath	itself.	On	success,	the	returned	path	will
always	be	relative	to	basepath,	even	if	basepath	and	targpath	share	no	elements.
An	error	is	returned	if	targpath	can't	be	made	relative	to	basepath	or	if	knowing
the	current	working	directory	would	be	necessary	to	compute	it.

func	Split
func	Split(path	string)	(dir,	file	string)

Split	splits	path	immediately	following	the	final	Separator,	separating	it	into	a
directory	and	file	name	component.	If	there	is	no	Separator	in	path,	Split	returns
an	empty	dir	and	file	set	to	path.	The	returned	values	have	the	property	that	path
=	dir+file.

func	SplitList
func	SplitList(path	string)	[]string

SplitList	splits	a	list	of	paths	joined	by	the	OS-specific	ListSeparator,	usually
found	in	PATH	or	GOPATH	environment	variables.	Unlike	strings.Split,
SplitList	returns	an	empty	slice	when	passed	an	empty	string.

func	ToSlash
func	ToSlash(path	string)	string

ToSlash	returns	the	result	of	replacing	each	separator	character	in	path	with	a
slash	('/')	character.	Multiple	separators	are	replaced	by	multiple	slashes.

func	VolumeName
func	VolumeName(path	string)	string

VolumeName	returns	the	leading	volume	name	on	Windows.	It	returns	""
elsewhere.

func	Walk
func	Walk(root	string,	walkFn	WalkFunc)	error

Walk	walks	the	file	tree	rooted	at	root,	calling	walkFn	for	each	file	or	directory
in	the	tree,	including	root.	All	errors	that	arise	visiting	files	and	directories	are
filtered	by	walkFn.	The	files	are	walked	in	lexical	order,	which	makes	the	output
deterministic	but	means	that	for	very	large	directories	Walk	can	be	inefficient.

type	WalkFunc
type	WalkFunc	func(path	string,	info	os.FileInfo,	err	error)	error

WalkFunc	is	the	type	of	the	function	called	for	each	file	or	directory	visited	by
Walk.	If	there	was	a	problem	walking	to	the	file	or	directory	named	by	path,	the
incoming	error	will	describe	the	problem	and	the	function	can	decide	how	to
handle	that	error	(and	Walk	will	not	descend	into	that	directory).	If	an	error	is
returned,	processing	stops.	The	sole	exception	is	that	if	path	is	a	directory	and
the	function	returns	the	special	value	SkipDir,	the	contents	of	the	directory	are
skipped	and	processing	continues	as	usual	on	the	next	file.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	reflect
import	"reflect"

Overview
Index

Overview	?

Overview	?

Package	reflect	implements	run-time	reflection,	allowing	a	program	to
manipulate	objects	with	arbitrary	types.	The	typical	use	is	to	take	a	value	with
static	type	interface{}	and	extract	its	dynamic	type	information	by	calling
TypeOf,	which	returns	a	Type.

A	call	to	ValueOf	returns	a	Value	representing	the	run-time	data.	Zero	takes	a
Type	and	returns	a	Value	representing	a	zero	value	for	that	type.

See	"The	Laws	of	Reflection"	for	an	introduction	to	reflection	in	Go:
http://golang.org/doc/articles/laws_of_reflection.html

http://golang.org/doc/articles/laws_of_reflection.html

Index

func	Copy(dst,	src	Value)	int
func	DeepEqual(a1,	a2	interface{})	bool
type	ChanDir
				func	(d	ChanDir)	String()	string
type	Kind
				func	(k	Kind)	String()	string
type	Method
type	SliceHeader
type	StringHeader
type	StructField
type	StructTag
				func	(tag	StructTag)	Get(key	string)	string
type	Type
				func	PtrTo(t	Type)	Type
				func	TypeOf(i	interface{})	Type
type	Value
				func	Append(s	Value,	x	...Value)	Value
				func	AppendSlice(s,	t	Value)	Value
				func	Indirect(v	Value)	Value
				func	MakeChan(typ	Type,	buffer	int)	Value
				func	MakeMap(typ	Type)	Value
				func	MakeSlice(typ	Type,	len,	cap	int)	Value
				func	New(typ	Type)	Value
				func	NewAt(typ	Type,	p	unsafe.Pointer)	Value
				func	ValueOf(i	interface{})	Value
				func	Zero(typ	Type)	Value
				func	(v	Value)	Addr()	Value
				func	(v	Value)	Bool()	bool
				func	(v	Value)	Bytes()	[]byte
				func	(v	Value)	Call(in	[]Value)	[]Value
				func	(v	Value)	CallSlice(in	[]Value)	[]Value
				func	(v	Value)	CanAddr()	bool
				func	(v	Value)	CanInterface()	bool
				func	(v	Value)	CanSet()	bool
				func	(v	Value)	Cap()	int

				func	(v	Value)	Close()
				func	(v	Value)	Complex()	complex128
				func	(v	Value)	Elem()	Value
				func	(v	Value)	Field(i	int)	Value
				func	(v	Value)	FieldByIndex(index	[]int)	Value
				func	(v	Value)	FieldByName(name	string)	Value
				func	(v	Value)	FieldByNameFunc(match	func(string)	bool)	Value
				func	(v	Value)	Float()	float64
				func	(v	Value)	Index(i	int)	Value
				func	(v	Value)	Int()	int64
				func	(v	Value)	Interface()	(i	interface{})
				func	(v	Value)	InterfaceData()	[2]uintptr
				func	(v	Value)	IsNil()	bool
				func	(v	Value)	IsValid()	bool
				func	(v	Value)	Kind()	Kind
				func	(v	Value)	Len()	int
				func	(v	Value)	MapIndex(key	Value)	Value
				func	(v	Value)	MapKeys()	[]Value
				func	(v	Value)	Method(i	int)	Value
				func	(v	Value)	MethodByName(name	string)	Value
				func	(v	Value)	NumField()	int
				func	(v	Value)	NumMethod()	int
				func	(v	Value)	OverflowComplex(x	complex128)	bool
				func	(v	Value)	OverflowFloat(x	float64)	bool
				func	(v	Value)	OverflowInt(x	int64)	bool
				func	(v	Value)	OverflowUint(x	uint64)	bool
				func	(v	Value)	Pointer()	uintptr
				func	(v	Value)	Recv()	(x	Value,	ok	bool)
				func	(v	Value)	Send(x	Value)
				func	(v	Value)	Set(x	Value)
				func	(v	Value)	SetBool(x	bool)
				func	(v	Value)	SetBytes(x	[]byte)
				func	(v	Value)	SetComplex(x	complex128)
				func	(v	Value)	SetFloat(x	float64)
				func	(v	Value)	SetInt(x	int64)
				func	(v	Value)	SetLen(n	int)
				func	(v	Value)	SetMapIndex(key,	val	Value)
				func	(v	Value)	SetPointer(x	unsafe.Pointer)
				func	(v	Value)	SetString(x	string)

				func	(v	Value)	SetUint(x	uint64)
				func	(v	Value)	Slice(beg,	end	int)	Value
				func	(v	Value)	String()	string
				func	(v	Value)	TryRecv()	(x	Value,	ok	bool)
				func	(v	Value)	TrySend(x	Value)	bool
				func	(v	Value)	Type()	Type
				func	(v	Value)	Uint()	uint64
				func	(v	Value)	UnsafeAddr()	uintptr
type	ValueError
				func	(e	*ValueError)	Error()	string

Package	files

deepequal.go	type.go	value.go

func	Copy
func	Copy(dst,	src	Value)	int

Copy	copies	the	contents	of	src	into	dst	until	either	dst	has	been	filled	or	src	has
been	exhausted.	It	returns	the	number	of	elements	copied.	Dst	and	src	each	must
have	kind	Slice	or	Array,	and	dst	and	src	must	have	the	same	element	type.

func	DeepEqual
func	DeepEqual(a1,	a2	interface{})	bool

DeepEqual	tests	for	deep	equality.	It	uses	normal	==	equality	where	possible	but
will	scan	members	of	arrays,	slices,	maps,	and	fields	of	structs.	It	correctly
handles	recursive	types.	Functions	are	equal	only	if	they	are	both	nil.

type	ChanDir
type	ChanDir	int

ChanDir	represents	a	channel	type's	direction.

const	(

				RecvDir	ChanDir													=	1	<<	iota	//	<-chan

				SendDir																																	//	chan<-

				BothDir	=	RecvDir	|	SendDir													//	chan

)

func	(ChanDir)	String

func	(d	ChanDir)	String()	string

type	Kind
type	Kind	uint

A	Kind	represents	the	specific	kind	of	type	that	a	Type	represents.	The	zero	Kind
is	not	a	valid	kind.

const	(

				Invalid	Kind	=	iota

				Bool

				Int

				Int8

				Int16

				Int32

				Int64

				Uint

				Uint8

				Uint16

				Uint32

				Uint64

				Uintptr

				Float32

				Float64

				Complex64

				Complex128

				Array

				Chan

				Func

				Interface

				Map

				Ptr

				Slice

				String

				Struct

				UnsafePointer

)

func	(Kind)	String

func	(k	Kind)	String()	string

type	Method
type	Method	struct	{

				//	Name	is	the	method	name.

				//	PkgPath	is	the	package	path	that	qualifies	a	lower	case	(unexported)

				//	method	name.		It	is	empty	for	upper	case	(exported)	method	names.

				//	The	combination	of	PkgPath	and	Name	uniquely	identifies	a	method

				//	in	a	method	set.	

				//	See	http://golang.org/ref/spec#Uniqueness_of_identifiers

				Name				string

				PkgPath	string

				Type		Type		//	method	type

				Func		Value	//	func	with	receiver	as	first	argument

				Index	int			//	index	for	Type.Method

}

Method	represents	a	single	method.

type	SliceHeader
type	SliceHeader	struct	{

				Data	uintptr

				Len		int

				Cap		int

}

SliceHeader	is	the	runtime	representation	of	a	slice.	It	cannot	be	used	safely	or
portably.

type	StringHeader
type	StringHeader	struct	{

				Data	uintptr

				Len		int

}

StringHeader	is	the	runtime	representation	of	a	string.	It	cannot	be	used	safely	or
portably.

type	StructField
type	StructField	struct	{

				//	Name	is	the	field	name.

				//	PkgPath	is	the	package	path	that	qualifies	a	lower	case	(unexported)

				//	field	name.		It	is	empty	for	upper	case	(exported)	field	names.

				//	See	http://golang.org/ref/spec#Uniqueness_of_identifiers

				Name				string

				PkgPath	string

				Type						Type						//	field	type

				Tag							StructTag	//	field	tag	string

				Offset				uintptr			//	offset	within	struct,	in	bytes

				Index					[]int					//	index	sequence	for	Type.FieldByIndex

				Anonymous	bool						//	is	an	anonymous	field

}

A	StructField	describes	a	single	field	in	a	struct.

type	StructTag
type	StructTag	string

A	StructTag	is	the	tag	string	in	a	struct	field.

By	convention,	tag	strings	are	a	concatenation	of	optionally	space-separated
key:"value"	pairs.	Each	key	is	a	non-empty	string	consisting	of	non-control
characters	other	than	space	(U+0020	'	'),	quote	(U+0022	'"'),	and	colon	(U+003A
':').	Each	value	is	quoted	using	U+0022	'"'	characters	and	Go	string	literal	syntax.

func	(StructTag)	Get

func	(tag	StructTag)	Get(key	string)	string

Get	returns	the	value	associated	with	key	in	the	tag	string.	If	there	is	no	such	key
in	the	tag,	Get	returns	the	empty	string.	If	the	tag	does	not	have	the	conventional
format,	the	value	returned	by	Get	is	unspecified.

type	Type
type	Type	interface	{

				//	Align	returns	the	alignment	in	bytes	of	a	value	of

				//	this	type	when	allocated	in	memory.

				Align()	int

				//	FieldAlign	returns	the	alignment	in	bytes	of	a	value	of

				//	this	type	when	used	as	a	field	in	a	struct.

				FieldAlign()	int

				//	Method	returns	the	i'th	method	in	the	type's	method	set.

				//	It	panics	if	i	is	not	in	the	range	[0,	NumMethod()).

				//

				//	For	a	non-interface	type	T	or	*T,	the	returned	Method's	Type	and	Func

				//	fields	describe	a	function	whose	first	argument	is	the	receiver.

				//

				//	For	an	interface	type,	the	returned	Method's	Type	field	gives	the

				//	method	signature,	without	a	receiver,	and	the	Func	field	is	nil.

				Method(int)	Method

				//	MethodByName	returns	the	method	with	that	name	in	the	type's

				//	method	set	and	a	boolean	indicating	if	the	method	was	found.

				//

				//	For	a	non-interface	type	T	or	*T,	the	returned	Method's	Type	and	Func

				//	fields	describe	a	function	whose	first	argument	is	the	receiver.

				//

				//	For	an	interface	type,	the	returned	Method's	Type	field	gives	the

				//	method	signature,	without	a	receiver,	and	the	Func	field	is	nil.

				MethodByName(string)	(Method,	bool)

				//	NumMethod	returns	the	number	of	methods	in	the	type's	method	set.

				NumMethod()	int

				//	Name	returns	the	type's	name	within	its	package.

				//	It	returns	an	empty	string	for	unnamed	types.

				Name()	string

				//	PkgPath	returns	a	named	type's	package	path,	that	is,	the	import	path

				//	that	uniquely	identifies	the	package,	such	as	"encoding/base64".

				//	If	the	type	was	predeclared	(string,	error)	or	unnamed	(*T,	struct{},	[]int),

				//	the	package	path	will	be	the	empty	string.

				PkgPath()	string

				//	Size	returns	the	number	of	bytes	needed	to	store

				//	a	value	of	the	given	type;	it	is	analogous	to	unsafe.Sizeof.

				Size()	uintptr

				//	String	returns	a	string	representation	of	the	type.

				//	The	string	representation	may	use	shortened	package	names

				//	(e.g.,	base64	instead	of	"encoding/base64")	and	is	not

				//	guaranteed	to	be	unique	among	types.		To	test	for	equality,

				//	compare	the	Types	directly.

				String()	string

				//	Kind	returns	the	specific	kind	of	this	type.

				Kind()	Kind

				//	Implements	returns	true	if	the	type	implements	the	interface	type	u.

				Implements(u	Type)	bool

				//	AssignableTo	returns	true	if	a	value	of	the	type	is	assignable	to	type	u.

				AssignableTo(u	Type)	bool

				//	Bits	returns	the	size	of	the	type	in	bits.

				//	It	panics	if	the	type's	Kind	is	not	one	of	the

				//	sized	or	unsized	Int,	Uint,	Float,	or	Complex	kinds.

				Bits()	int

				//	ChanDir	returns	a	channel	type's	direction.

				//	It	panics	if	the	type's	Kind	is	not	Chan.

				ChanDir()	ChanDir

				//	IsVariadic	returns	true	if	a	function	type's	final	input	parameter

				//	is	a	"..."	parameter.		If	so,	t.In(t.NumIn()	-	1)	returns	the	parameter's

				//	implicit	actual	type	[]T.

				//

				//	For	concreteness,	if	t	represents	func(x	int,	y	...	float64),	then

				//

				//	 t.NumIn()	==	2

				//	 t.In(0)	is	the	reflect.Type	for	"int"

				//	 t.In(1)	is	the	reflect.Type	for	"[]float64"

				//	 t.IsVariadic()	==	true

				//

				//	IsVariadic	panics	if	the	type's	Kind	is	not	Func.

				IsVariadic()	bool

				//	Elem	returns	a	type's	element	type.

				//	It	panics	if	the	type's	Kind	is	not	Array,	Chan,	Map,	Ptr,	or	Slice.

				Elem()	Type

				//	Field	returns	a	struct	type's	i'th	field.

				//	It	panics	if	the	type's	Kind	is	not	Struct.

				//	It	panics	if	i	is	not	in	the	range	[0,	NumField()).

				Field(i	int)	StructField

				//	FieldByIndex	returns	the	nested	field	corresponding

				//	to	the	index	sequence.		It	is	equivalent	to	calling	Field

				//	successively	for	each	index	i.

				//	It	panics	if	the	type's	Kind	is	not	Struct.

				FieldByIndex(index	[]int)	StructField

				//	FieldByName	returns	the	struct	field	with	the	given	name

				//	and	a	boolean	indicating	if	the	field	was	found.

				FieldByName(name	string)	(StructField,	bool)

				//	FieldByNameFunc	returns	the	first	struct	field	with	a	name

				//	that	satisfies	the	match	function	and	a	boolean	indicating	if

				//	the	field	was	found.

				FieldByNameFunc(match	func(string)	bool)	(StructField,	bool)

				//	In	returns	the	type	of	a	function	type's	i'th	input	parameter.

				//	It	panics	if	the	type's	Kind	is	not	Func.

				//	It	panics	if	i	is	not	in	the	range	[0,	NumIn()).

				In(i	int)	Type

				//	Key	returns	a	map	type's	key	type.

				//	It	panics	if	the	type's	Kind	is	not	Map.

				Key()	Type

				//	Len	returns	an	array	type's	length.

				//	It	panics	if	the	type's	Kind	is	not	Array.

				Len()	int

				//	NumField	returns	a	struct	type's	field	count.

				//	It	panics	if	the	type's	Kind	is	not	Struct.

				NumField()	int

				//	NumIn	returns	a	function	type's	input	parameter	count.

				//	It	panics	if	the	type's	Kind	is	not	Func.

				NumIn()	int

				//	NumOut	returns	a	function	type's	output	parameter	count.

				//	It	panics	if	the	type's	Kind	is	not	Func.

				NumOut()	int

				//	Out	returns	the	type	of	a	function	type's	i'th	output	parameter.

				//	It	panics	if	the	type's	Kind	is	not	Func.

				//	It	panics	if	i	is	not	in	the	range	[0,	NumOut()).

				Out(i	int)	Type

				//	contains	filtered	or	unexported	methods

}

Type	is	the	representation	of	a	Go	type.

Not	all	methods	apply	to	all	kinds	of	types.	Restrictions,	if	any,	are	noted	in	the
documentation	for	each	method.	Use	the	Kind	method	to	find	out	the	kind	of
type	before	calling	kind-specific	methods.	Calling	a	method	inappropriate	to	the
kind	of	type	causes	a	run-time	panic.

func	PtrTo

func	PtrTo(t	Type)	Type

PtrTo	returns	the	pointer	type	with	element	t.	For	example,	if	t	represents	type
Foo,	PtrTo(t)	represents	*Foo.

func	TypeOf

func	TypeOf(i	interface{})	Type

TypeOf	returns	the	reflection	Type	of	the	value	in	the	interface{}.	TypeOf(nil)
returns	nil.

type	Value
type	Value	struct	{

				//	contains	filtered	or	unexported	fields

}

Value	is	the	reflection	interface	to	a	Go	value.

Not	all	methods	apply	to	all	kinds	of	values.	Restrictions,	if	any,	are	noted	in	the
documentation	for	each	method.	Use	the	Kind	method	to	find	out	the	kind	of
value	before	calling	kind-specific	methods.	Calling	a	method	inappropriate	to
the	kind	of	type	causes	a	run	time	panic.

The	zero	Value	represents	no	value.	Its	IsValid	method	returns	false,	its	Kind
method	returns	Invalid,	its	String	method	returns	"<invalid	Value>",	and	all
other	methods	panic.	Most	functions	and	methods	never	return	an	invalid	value.
If	one	does,	its	documentation	states	the	conditions	explicitly.

A	Value	can	be	used	concurrently	by	multiple	goroutines	provided	that	the
underlying	Go	value	can	be	used	concurrently	for	the	equivalent	direct
operations.

func	Append

func	Append(s	Value,	x	...Value)	Value

Append	appends	the	values	x	to	a	slice	s	and	returns	the	resulting	slice.	As	in
Go,	each	x's	value	must	be	assignable	to	the	slice's	element	type.

func	AppendSlice

func	AppendSlice(s,	t	Value)	Value

AppendSlice	appends	a	slice	t	to	a	slice	s	and	returns	the	resulting	slice.	The
slices	s	and	t	must	have	the	same	element	type.

func	Indirect

func	Indirect(v	Value)	Value

Indirect	returns	the	value	that	v	points	to.	If	v	is	a	nil	pointer,	Indirect	returns	a
zero	Value.	If	v	is	not	a	pointer,	Indirect	returns	v.

func	MakeChan

func	MakeChan(typ	Type,	buffer	int)	Value

MakeChan	creates	a	new	channel	with	the	specified	type	and	buffer	size.

func	MakeMap

func	MakeMap(typ	Type)	Value

MakeMap	creates	a	new	map	of	the	specified	type.

func	MakeSlice

func	MakeSlice(typ	Type,	len,	cap	int)	Value

MakeSlice	creates	a	new	zero-initialized	slice	value	for	the	specified	slice	type,
length,	and	capacity.

func	New

func	New(typ	Type)	Value

New	returns	a	Value	representing	a	pointer	to	a	new	zero	value	for	the	specified
type.	That	is,	the	returned	Value's	Type	is	PtrTo(t).

func	NewAt

func	NewAt(typ	Type,	p	unsafe.Pointer)	Value

NewAt	returns	a	Value	representing	a	pointer	to	a	value	of	the	specified	type,
using	p	as	that	pointer.

func	ValueOf

func	ValueOf(i	interface{})	Value

ValueOf	returns	a	new	Value	initialized	to	the	concrete	value	stored	in	the
interface	i.	ValueOf(nil)	returns	the	zero	Value.

func	Zero

func	Zero(typ	Type)	Value

Zero	returns	a	Value	representing	a	zero	value	for	the	specified	type.	The	result
is	different	from	the	zero	value	of	the	Value	struct,	which	represents	no	value	at
all.	For	example,	Zero(TypeOf(42))	returns	a	Value	with	Kind	Int	and	value	0.

func	(Value)	Addr

func	(v	Value)	Addr()	Value

Addr	returns	a	pointer	value	representing	the	address	of	v.	It	panics	if	CanAddr()
returns	false.	Addr	is	typically	used	to	obtain	a	pointer	to	a	struct	field	or	slice
element	in	order	to	call	a	method	that	requires	a	pointer	receiver.

func	(Value)	Bool

func	(v	Value)	Bool()	bool

Bool	returns	v's	underlying	value.	It	panics	if	v's	kind	is	not	Bool.

func	(Value)	Bytes

func	(v	Value)	Bytes()	[]byte

Bytes	returns	v's	underlying	value.	It	panics	if	v's	underlying	value	is	not	a	slice
of	bytes.

func	(Value)	Call

func	(v	Value)	Call(in	[]Value)	[]Value

Call	calls	the	function	v	with	the	input	arguments	in.	For	example,	if	len(in)	==
3,	v.Call(in)	represents	the	Go	call	v(in[0],	in[1],	in[2]).	Call	panics	if	v's	Kind	is
not	Func.	It	returns	the	output	results	as	Values.	As	in	Go,	each	input	argument
must	be	assignable	to	the	type	of	the	function's	corresponding	input	parameter.	If

v	is	a	variadic	function,	Call	creates	the	variadic	slice	parameter	itself,	copying
in	the	corresponding	values.

func	(Value)	CallSlice

func	(v	Value)	CallSlice(in	[]Value)	[]Value

CallSlice	calls	the	variadic	function	v	with	the	input	arguments	in,	assigning	the
slice	in[len(in)-1]	to	v's	final	variadic	argument.	For	example,	if	len(in)	==	3,
v.Call(in)	represents	the	Go	call	v(in[0],	in[1],	in[2]...).	Call	panics	if	v's	Kind	is
not	Func	or	if	v	is	not	variadic.	It	returns	the	output	results	as	Values.	As	in	Go,
each	input	argument	must	be	assignable	to	the	type	of	the	function's
corresponding	input	parameter.

func	(Value)	CanAddr

func	(v	Value)	CanAddr()	bool

CanAddr	returns	true	if	the	value's	address	can	be	obtained	with	Addr.	Such
values	are	called	addressable.	A	value	is	addressable	if	it	is	an	element	of	a	slice,
an	element	of	an	addressable	array,	a	field	of	an	addressable	struct,	or	the	result
of	dereferencing	a	pointer.	If	CanAddr	returns	false,	calling	Addr	will	panic.

func	(Value)	CanInterface

func	(v	Value)	CanInterface()	bool

CanInterface	returns	true	if	Interface	can	be	used	without	panicking.

func	(Value)	CanSet

func	(v	Value)	CanSet()	bool

CanSet	returns	true	if	the	value	of	v	can	be	changed.	A	Value	can	be	changed
only	if	it	is	addressable	and	was	not	obtained	by	the	use	of	unexported	struct
fields.	If	CanSet	returns	false,	calling	Set	or	any	type-specific	setter	(e.g.,
SetBool,	SetInt64)	will	panic.

func	(Value)	Cap

func	(v	Value)	Cap()	int

Cap	returns	v's	capacity.	It	panics	if	v's	Kind	is	not	Array,	Chan,	or	Slice.

func	(Value)	Close

func	(v	Value)	Close()

Close	closes	the	channel	v.	It	panics	if	v's	Kind	is	not	Chan.

func	(Value)	Complex

func	(v	Value)	Complex()	complex128

Complex	returns	v's	underlying	value,	as	a	complex128.	It	panics	if	v's	Kind	is
not	Complex64	or	Complex128

func	(Value)	Elem

func	(v	Value)	Elem()	Value

Elem	returns	the	value	that	the	interface	v	contains	or	that	the	pointer	v	points	to.
It	panics	if	v's	Kind	is	not	Interface	or	Ptr.	It	returns	the	zero	Value	if	v	is	nil.

func	(Value)	Field

func	(v	Value)	Field(i	int)	Value

Field	returns	the	i'th	field	of	the	struct	v.	It	panics	if	v's	Kind	is	not	Struct	or	i	is
out	of	range.

func	(Value)	FieldByIndex

func	(v	Value)	FieldByIndex(index	[]int)	Value

FieldByIndex	returns	the	nested	field	corresponding	to	index.	It	panics	if	v's
Kind	is	not	struct.

func	(Value)	FieldByName

func	(v	Value)	FieldByName(name	string)	Value

FieldByName	returns	the	struct	field	with	the	given	name.	It	returns	the	zero
Value	if	no	field	was	found.	It	panics	if	v's	Kind	is	not	struct.

func	(Value)	FieldByNameFunc

func	(v	Value)	FieldByNameFunc(match	func(string)	bool)	Value

FieldByNameFunc	returns	the	struct	field	with	a	name	that	satisfies	the	match
function.	It	panics	if	v's	Kind	is	not	struct.	It	returns	the	zero	Value	if	no	field
was	found.

func	(Value)	Float

func	(v	Value)	Float()	float64

Float	returns	v's	underlying	value,	as	a	float64.	It	panics	if	v's	Kind	is	not
Float32	or	Float64

func	(Value)	Index

func	(v	Value)	Index(i	int)	Value

Index	returns	v's	i'th	element.	It	panics	if	v's	Kind	is	not	Array	or	Slice	or	i	is	out
of	range.

func	(Value)	Int

func	(v	Value)	Int()	int64

Int	returns	v's	underlying	value,	as	an	int64.	It	panics	if	v's	Kind	is	not	Int,	Int8,
Int16,	Int32,	or	Int64.

func	(Value)	Interface

func	(v	Value)	Interface()	(i	interface{})

Interface	returns	v's	current	value	as	an	interface{}.	It	is	equivalent	to:

var	i	interface{}	=	(v's	underlying	value)

If	v	is	a	method	obtained	by	invoking	Value.Method	(as	opposed	to
Type.Method),	Interface	cannot	return	an	interface	value,	so	it	panics.	It	also
panics	if	the	Value	was	obtained	by	accessing	unexported	struct	fields.

func	(Value)	InterfaceData

func	(v	Value)	InterfaceData()	[2]uintptr

InterfaceData	returns	the	interface	v's	value	as	a	uintptr	pair.	It	panics	if	v's	Kind
is	not	Interface.

func	(Value)	IsNil

func	(v	Value)	IsNil()	bool

IsNil	returns	true	if	v	is	a	nil	value.	It	panics	if	v's	Kind	is	not	Chan,	Func,
Interface,	Map,	Ptr,	or	Slice.

func	(Value)	IsValid

func	(v	Value)	IsValid()	bool

IsValid	returns	true	if	v	represents	a	value.	It	returns	false	if	v	is	the	zero	Value.
If	IsValid	returns	false,	all	other	methods	except	String	panic.	Most	functions
and	methods	never	return	an	invalid	value.	If	one	does,	its	documentation	states
the	conditions	explicitly.

func	(Value)	Kind

func	(v	Value)	Kind()	Kind

Kind	returns	v's	Kind.	If	v	is	the	zero	Value	(IsValid	returns	false),	Kind	returns
Invalid.

func	(Value)	Len

func	(v	Value)	Len()	int

Len	returns	v's	length.	It	panics	if	v's	Kind	is	not	Array,	Chan,	Map,	Slice,	or
String.

func	(Value)	MapIndex

func	(v	Value)	MapIndex(key	Value)	Value

MapIndex	returns	the	value	associated	with	key	in	the	map	v.	It	panics	if	v's
Kind	is	not	Map.	It	returns	the	zero	Value	if	key	is	not	found	in	the	map	or	if	v
represents	a	nil	map.	As	in	Go,	the	key's	value	must	be	assignable	to	the	map's
key	type.

func	(Value)	MapKeys

func	(v	Value)	MapKeys()	[]Value

MapKeys	returns	a	slice	containing	all	the	keys	present	in	the	map,	in
unspecified	order.	It	panics	if	v's	Kind	is	not	Map.	It	returns	an	empty	slice	if	v
represents	a	nil	map.

func	(Value)	Method

func	(v	Value)	Method(i	int)	Value

Method	returns	a	function	value	corresponding	to	v's	i'th	method.	The	arguments
to	a	Call	on	the	returned	function	should	not	include	a	receiver;	the	returned
function	will	always	use	v	as	the	receiver.	Method	panics	if	i	is	out	of	range.

func	(Value)	MethodByName

func	(v	Value)	MethodByName(name	string)	Value

MethodByName	returns	a	function	value	corresponding	to	the	method	of	v	with
the	given	name.	The	arguments	to	a	Call	on	the	returned	function	should	not
include	a	receiver;	the	returned	function	will	always	use	v	as	the	receiver.	It
returns	the	zero	Value	if	no	method	was	found.

func	(Value)	NumField

func	(v	Value)	NumField()	int

NumField	returns	the	number	of	fields	in	the	struct	v.	It	panics	if	v's	Kind	is	not
Struct.

func	(Value)	NumMethod

func	(v	Value)	NumMethod()	int

NumMethod	returns	the	number	of	methods	in	the	value's	method	set.

func	(Value)	OverflowComplex

func	(v	Value)	OverflowComplex(x	complex128)	bool

OverflowComplex	returns	true	if	the	complex128	x	cannot	be	represented	by	v's
type.	It	panics	if	v's	Kind	is	not	Complex64	or	Complex128.

func	(Value)	OverflowFloat

func	(v	Value)	OverflowFloat(x	float64)	bool

OverflowFloat	returns	true	if	the	float64	x	cannot	be	represented	by	v's	type.	It
panics	if	v's	Kind	is	not	Float32	or	Float64.

func	(Value)	OverflowInt

func	(v	Value)	OverflowInt(x	int64)	bool

OverflowInt	returns	true	if	the	int64	x	cannot	be	represented	by	v's	type.	It
panics	if	v's	Kind	is	not	Int,	Int8,	int16,	Int32,	or	Int64.

func	(Value)	OverflowUint

func	(v	Value)	OverflowUint(x	uint64)	bool

OverflowUint	returns	true	if	the	uint64	x	cannot	be	represented	by	v's	type.	It
panics	if	v's	Kind	is	not	Uint,	Uintptr,	Uint8,	Uint16,	Uint32,	or	Uint64.

func	(Value)	Pointer

func	(v	Value)	Pointer()	uintptr

Pointer	returns	v's	value	as	a	uintptr.	It	returns	uintptr	instead	of	unsafe.Pointer
so	that	code	using	reflect	cannot	obtain	unsafe.Pointers	without	importing	the
unsafe	package	explicitly.	It	panics	if	v's	Kind	is	not	Chan,	Func,	Map,	Ptr,	Slice,
or	UnsafePointer.

func	(Value)	Recv

func	(v	Value)	Recv()	(x	Value,	ok	bool)

Recv	receives	and	returns	a	value	from	the	channel	v.	It	panics	if	v's	Kind	is	not
Chan.	The	receive	blocks	until	a	value	is	ready.	The	boolean	value	ok	is	true	if
the	value	x	corresponds	to	a	send	on	the	channel,	false	if	it	is	a	zero	value
received	because	the	channel	is	closed.

func	(Value)	Send

func	(v	Value)	Send(x	Value)

Send	sends	x	on	the	channel	v.	It	panics	if	v's	kind	is	not	Chan	or	if	x's	type	is
not	the	same	type	as	v's	element	type.	As	in	Go,	x's	value	must	be	assignable	to
the	channel's	element	type.

func	(Value)	Set

func	(v	Value)	Set(x	Value)

Set	assigns	x	to	the	value	v.	It	panics	if	CanSet	returns	false.	As	in	Go,	x's	value
must	be	assignable	to	v's	type.

func	(Value)	SetBool

func	(v	Value)	SetBool(x	bool)

SetBool	sets	v's	underlying	value.	It	panics	if	v's	Kind	is	not	Bool	or	if	CanSet()
is	false.

func	(Value)	SetBytes

func	(v	Value)	SetBytes(x	[]byte)

SetBytes	sets	v's	underlying	value.	It	panics	if	v's	underlying	value	is	not	a	slice
of	bytes.

func	(Value)	SetComplex

func	(v	Value)	SetComplex(x	complex128)

SetComplex	sets	v's	underlying	value	to	x.	It	panics	if	v's	Kind	is	not	Complex64
or	Complex128,	or	if	CanSet()	is	false.

func	(Value)	SetFloat

func	(v	Value)	SetFloat(x	float64)

SetFloat	sets	v's	underlying	value	to	x.	It	panics	if	v's	Kind	is	not	Float32	or
Float64,	or	if	CanSet()	is	false.

func	(Value)	SetInt

func	(v	Value)	SetInt(x	int64)

SetInt	sets	v's	underlying	value	to	x.	It	panics	if	v's	Kind	is	not	Int,	Int8,	Int16,
Int32,	or	Int64,	or	if	CanSet()	is	false.

func	(Value)	SetLen

func	(v	Value)	SetLen(n	int)

SetLen	sets	v's	length	to	n.	It	panics	if	v's	Kind	is	not	Slice	or	if	n	is	negative	or
greater	than	the	capacity	of	the	slice.

func	(Value)	SetMapIndex

func	(v	Value)	SetMapIndex(key,	val	Value)

SetMapIndex	sets	the	value	associated	with	key	in	the	map	v	to	val.	It	panics	if
v's	Kind	is	not	Map.	If	val	is	the	zero	Value,	SetMapIndex	deletes	the	key	from
the	map.	As	in	Go,	key's	value	must	be	assignable	to	the	map's	key	type,	and
val's	value	must	be	assignable	to	the	map's	value	type.

func	(Value)	SetPointer

func	(v	Value)	SetPointer(x	unsafe.Pointer)

SetPointer	sets	the	unsafe.Pointer	value	v	to	x.	It	panics	if	v's	Kind	is	not
UnsafePointer.

func	(Value)	SetString

func	(v	Value)	SetString(x	string)

SetString	sets	v's	underlying	value	to	x.	It	panics	if	v's	Kind	is	not	String	or	if
CanSet()	is	false.

func	(Value)	SetUint

func	(v	Value)	SetUint(x	uint64)

SetUint	sets	v's	underlying	value	to	x.	It	panics	if	v's	Kind	is	not	Uint,	Uintptr,
Uint8,	Uint16,	Uint32,	or	Uint64,	or	if	CanSet()	is	false.

func	(Value)	Slice

func	(v	Value)	Slice(beg,	end	int)	Value

Slice	returns	a	slice	of	v.	It	panics	if	v's	Kind	is	not	Array	or	Slice.

func	(Value)	String

func	(v	Value)	String()	string

String	returns	the	string	v's	underlying	value,	as	a	string.	String	is	a	special	case
because	of	Go's	String	method	convention.	Unlike	the	other	getters,	it	does	not
panic	if	v's	Kind	is	not	String.	Instead,	it	returns	a	string	of	the	form	"<T	value>"
where	T	is	v's	type.

func	(Value)	TryRecv

func	(v	Value)	TryRecv()	(x	Value,	ok	bool)

TryRecv	attempts	to	receive	a	value	from	the	channel	v	but	will	not	block.	It
panics	if	v's	Kind	is	not	Chan.	If	the	receive	cannot	finish	without	blocking,	x	is
the	zero	Value.	The	boolean	ok	is	true	if	the	value	x	corresponds	to	a	send	on	the
channel,	false	if	it	is	a	zero	value	received	because	the	channel	is	closed.

func	(Value)	TrySend

func	(v	Value)	TrySend(x	Value)	bool

TrySend	attempts	to	send	x	on	the	channel	v	but	will	not	block.	It	panics	if	v's
Kind	is	not	Chan.	It	returns	true	if	the	value	was	sent,	false	otherwise.	As	in	Go,
x's	value	must	be	assignable	to	the	channel's	element	type.

func	(Value)	Type

func	(v	Value)	Type()	Type

Type	returns	v's	type.

func	(Value)	Uint

func	(v	Value)	Uint()	uint64

Uint	returns	v's	underlying	value,	as	a	uint64.	It	panics	if	v's	Kind	is	not	Uint,
Uintptr,	Uint8,	Uint16,	Uint32,	or	Uint64.

func	(Value)	UnsafeAddr

func	(v	Value)	UnsafeAddr()	uintptr

UnsafeAddr	returns	a	pointer	to	v's	data.	It	is	for	advanced	clients	that	also
import	the	"unsafe"	package.	It	panics	if	v	is	not	addressable.

type	ValueError
type	ValueError	struct	{

				Method	string

				Kind			Kind

}

A	ValueError	occurs	when	a	Value	method	is	invoked	on	a	Value	that	does	not
support	it.	Such	cases	are	documented	in	the	description	of	each	method.

func	(*ValueError)	Error

func	(e	*ValueError)	Error()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	regexp
import	"regexp"

Overview
Index
Subdirectories

Overview	?

Overview	?

Package	regexp	implements	regular	expression	search.

The	syntax	of	the	regular	expressions	accepted	is	the	same	general	syntax	used
by	Perl,	Python,	and	other	languages.	More	precisely,	it	is	the	syntax	accepted	by
RE2	and	described	at	http://code.google.com/p/re2/wiki/Syntax,	except	for	\C.

All	characters	are	UTF-8-encoded	code	points.

There	are	16	methods	of	Regexp	that	match	a	regular	expression	and	identify	the
matched	text.	Their	names	are	matched	by	this	regular	expression:

Find(All)?(String)?(Submatch)?(Index)?

If	'All'	is	present,	the	routine	matches	successive	non-overlapping	matches	of	the
entire	expression.	Empty	matches	abutting	a	preceding	match	are	ignored.	The
return	value	is	a	slice	containing	the	successive	return	values	of	the
corresponding	non-'All'	routine.	These	routines	take	an	extra	integer	argument,
n;	if	n	>=	0,	the	function	returns	at	most	n	matches/submatches.

If	'String'	is	present,	the	argument	is	a	string;	otherwise	it	is	a	slice	of	bytes;
return	values	are	adjusted	as	appropriate.

If	'Submatch'	is	present,	the	return	value	is	a	slice	identifying	the	successive
submatches	of	the	expression.	Submatches	are	matches	of	parenthesized
subexpressions	within	the	regular	expression,	numbered	from	left	to	right	in
order	of	opening	parenthesis.	Submatch	0	is	the	match	of	the	entire	expression,
submatch	1	the	match	of	the	first	parenthesized	subexpression,	and	so	on.

If	'Index'	is	present,	matches	and	submatches	are	identified	by	byte	index	pairs
within	the	input	string:	result[2*n:2*n+1]	identifies	the	indexes	of	the	nth
submatch.	The	pair	for	n==0	identifies	the	match	of	the	entire	expression.	If
'Index'	is	not	present,	the	match	is	identified	by	the	text	of	the	match/submatch.
If	an	index	is	negative,	it	means	that	subexpression	did	not	match	any	string	in
the	input.

There	is	also	a	subset	of	the	methods	that	can	be	applied	to	text	read	from	a
RuneReader:

http://code.google.com/p/re2/wiki/Syntax

MatchReader,	FindReaderIndex,	FindReaderSubmatchIndex

This	set	may	grow.	Note	that	regular	expression	matches	may	need	to	examine
text	beyond	the	text	returned	by	a	match,	so	the	methods	that	match	text	from	a
RuneReader	may	read	arbitrarily	far	into	the	input	before	returning.

(There	are	a	few	other	methods	that	do	not	match	this	pattern.)

Index

func	Match(pattern	string,	b	[]byte)	(matched	bool,	error	error)
func	MatchReader(pattern	string,	r	io.RuneReader)	(matched	bool,	error
error)
func	MatchString(pattern	string,	s	string)	(matched	bool,	error	error)
func	QuoteMeta(s	string)	string
type	Regexp
				func	Compile(expr	string)	(*Regexp,	error)
				func	CompilePOSIX(expr	string)	(*Regexp,	error)
				func	MustCompile(str	string)	*Regexp
				func	MustCompilePOSIX(str	string)	*Regexp
				func	(re	*Regexp)	Expand(dst	[]byte,	template	[]byte,	src	[]byte,	match
[]int)	[]byte
				func	(re	*Regexp)	ExpandString(dst	[]byte,	template	string,	src	string,
match	[]int)	[]byte
				func	(re	*Regexp)	Find(b	[]byte)	[]byte
				func	(re	*Regexp)	FindAll(b	[]byte,	n	int)	[][]byte
				func	(re	*Regexp)	FindAllIndex(b	[]byte,	n	int)	[][]int
				func	(re	*Regexp)	FindAllString(s	string,	n	int)	[]string
				func	(re	*Regexp)	FindAllStringIndex(s	string,	n	int)	[][]int
				func	(re	*Regexp)	FindAllStringSubmatch(s	string,	n	int)	[][]string
				func	(re	*Regexp)	FindAllStringSubmatchIndex(s	string,	n	int)	[][]int
				func	(re	*Regexp)	FindAllSubmatch(b	[]byte,	n	int)	[][][]byte
				func	(re	*Regexp)	FindAllSubmatchIndex(b	[]byte,	n	int)	[][]int
				func	(re	*Regexp)	FindIndex(b	[]byte)	(loc	[]int)
				func	(re	*Regexp)	FindReaderIndex(r	io.RuneReader)	(loc	[]int)
				func	(re	*Regexp)	FindReaderSubmatchIndex(r	io.RuneReader)	[]int
				func	(re	*Regexp)	FindString(s	string)	string
				func	(re	*Regexp)	FindStringIndex(s	string)	(loc	[]int)
				func	(re	*Regexp)	FindStringSubmatch(s	string)	[]string
				func	(re	*Regexp)	FindStringSubmatchIndex(s	string)	[]int
				func	(re	*Regexp)	FindSubmatch(b	[]byte)	[][]byte
				func	(re	*Regexp)	FindSubmatchIndex(b	[]byte)	[]int
				func	(re	*Regexp)	LiteralPrefix()	(prefix	string,	complete	bool)
				func	(re	*Regexp)	Match(b	[]byte)	bool
				func	(re	*Regexp)	MatchReader(r	io.RuneReader)	bool

				func	(re	*Regexp)	MatchString(s	string)	bool
				func	(re	*Regexp)	NumSubexp()	int
				func	(re	*Regexp)	ReplaceAll(src,	repl	[]byte)	[]byte
				func	(re	*Regexp)	ReplaceAllFunc(src	[]byte,	repl	func([]byte)	[]byte)
[]byte
				func	(re	*Regexp)	ReplaceAllLiteral(src,	repl	[]byte)	[]byte
				func	(re	*Regexp)	ReplaceAllLiteralString(src,	repl	string)	string
				func	(re	*Regexp)	ReplaceAllString(src,	repl	string)	string
				func	(re	*Regexp)	ReplaceAllStringFunc(src	string,	repl	func(string)
string)	string
				func	(re	*Regexp)	String()	string
				func	(re	*Regexp)	SubexpNames()	[]string

Package	files

exec.go	regexp.go

func	Match
func	Match(pattern	string,	b	[]byte)	(matched	bool,	error	error)

Match	checks	whether	a	textual	regular	expression	matches	a	byte	slice.	More
complicated	queries	need	to	use	Compile	and	the	full	Regexp	interface.

func	MatchReader
func	MatchReader(pattern	string,	r	io.RuneReader)	(matched	bool,	error	error)

MatchReader	checks	whether	a	textual	regular	expression	matches	the	text	read
by	the	RuneReader.	More	complicated	queries	need	to	use	Compile	and	the	full
Regexp	interface.

func	MatchString
func	MatchString(pattern	string,	s	string)	(matched	bool,	error	error)

MatchString	checks	whether	a	textual	regular	expression	matches	a	string.	More
complicated	queries	need	to	use	Compile	and	the	full	Regexp	interface.

func	QuoteMeta
func	QuoteMeta(s	string)	string

QuoteMeta	returns	a	string	that	quotes	all	regular	expression	metacharacters
inside	the	argument	text;	the	returned	string	is	a	regular	expression	matching	the
literal	text.	For	example,	QuoteMeta(`[foo]`)	returns	`\[foo\]`.

type	Regexp
type	Regexp	struct	{

				//	contains	filtered	or	unexported	fields

}

Regexp	is	the	representation	of	a	compiled	regular	expression.	The	public
interface	is	entirely	through	methods.	A	Regexp	is	safe	for	concurrent	use	by
multiple	goroutines.

func	Compile

func	Compile(expr	string)	(*Regexp,	error)

Compile	parses	a	regular	expression	and	returns,	if	successful,	a	Regexp	object
that	can	be	used	to	match	against	text.

When	matching	against	text,	the	regexp	returns	a	match	that	begins	as	early	as
possible	in	the	input	(leftmost),	and	among	those	it	chooses	the	one	that	a
backtracking	search	would	have	found	first.	This	so-called	leftmost-first
matching	is	the	same	semantics	that	Perl,	Python,	and	other	implementations
use,	although	this	package	implements	it	without	the	expense	of	backtracking.
For	POSIX	leftmost-longest	matching,	see	CompilePOSIX.

func	CompilePOSIX

func	CompilePOSIX(expr	string)	(*Regexp,	error)

CompilePOSIX	is	like	Compile	but	restricts	the	regular	expression	to	POSIX
ERE	(egrep)	syntax	and	changes	the	match	semantics	to	leftmost-longest.

That	is,	when	matching	against	text,	the	regexp	returns	a	match	that	begins	as
early	as	possible	in	the	input	(leftmost),	and	among	those	it	chooses	a	match	that
is	as	long	as	possible.	This	so-called	leftmost-longest	matching	is	the	same
semantics	that	early	regular	expression	implementations	used	and	that	POSIX
specifies.

However,	there	can	be	multiple	leftmost-longest	matches,	with	different
submatch	choices,	and	here	this	package	diverges	from	POSIX.	Among	the

possible	leftmost-longest	matches,	this	package	chooses	the	one	that	a
backtracking	search	would	have	found	first,	while	POSIX	specifies	that	the
match	be	chosen	to	maximize	the	length	of	the	first	subexpression,	then	the
second,	and	so	on	from	left	to	right.	The	POSIX	rule	is	computationally
prohibitive	and	not	even	well-defined.	See
http://swtch.com/~rsc/regexp/regexp2.html#posix	for	details.

func	MustCompile

func	MustCompile(str	string)	*Regexp

MustCompile	is	like	Compile	but	panics	if	the	expression	cannot	be	parsed.	It
simplifies	safe	initialization	of	global	variables	holding	compiled	regular
expressions.

func	MustCompilePOSIX

func	MustCompilePOSIX(str	string)	*Regexp

MustCompilePOSIX	is	like	CompilePOSIX	but	panics	if	the	expression	cannot
be	parsed.	It	simplifies	safe	initialization	of	global	variables	holding	compiled
regular	expressions.

func	(*Regexp)	Expand

func	(re	*Regexp)	Expand(dst	[]byte,	template	[]byte,	src	[]byte,	match	[]int)	[]byte

Expand	appends	template	to	dst	and	returns	the	result;	during	the	append,
Expand	replaces	variables	in	the	template	with	corresponding	matches	drawn
from	src.	The	match	slice	should	have	been	returned	by	FindSubmatchIndex.

In	the	template,	a	variable	is	denoted	by	a	substring	of	the	form	$name	or
${name},	where	name	is	a	non-empty	sequence	of	letters,	digits,	and
underscores.	A	purely	numeric	name	like	$1	refers	to	the	submatch	with	the
corresponding	index;	other	names	refer	to	capturing	parentheses	named	with	the
(?P<name>...)	syntax.	A	reference	to	an	out	of	range	or	unmatched	index	or	a
name	that	is	not	present	in	the	regular	expression	is	replaced	with	an	empty
string.

In	the	$name	form,	name	is	taken	to	be	as	long	as	possible:	$1x	is	equivalent	to

http://swtch.com/~rsc/regexp/regexp2.html#posix

${1x},	not	${1}x,	and,	$10	is	equivalent	to	${10},	not	${1}0.

To	insert	a	literal	$	in	the	output,	use	$$	in	the	template.

func	(*Regexp)	ExpandString

func	(re	*Regexp)	ExpandString(dst	[]byte,	template	string,	src	string,	match	[]int)	[]byte

ExpandString	is	like	Expand	but	the	template	and	source	are	strings.	It	appends
to	and	returns	a	byte	slice	in	order	to	give	the	calling	code	control	over
allocation.

func	(*Regexp)	Find

func	(re	*Regexp)	Find(b	[]byte)	[]byte

Find	returns	a	slice	holding	the	text	of	the	leftmost	match	in	b	of	the	regular
expression.	A	return	value	of	nil	indicates	no	match.

func	(*Regexp)	FindAll

func	(re	*Regexp)	FindAll(b	[]byte,	n	int)	[][]byte

FindAll	is	the	'All'	version	of	Find;	it	returns	a	slice	of	all	successive	matches	of
the	expression,	as	defined	by	the	'All'	description	in	the	package	comment.	A
return	value	of	nil	indicates	no	match.

func	(*Regexp)	FindAllIndex

func	(re	*Regexp)	FindAllIndex(b	[]byte,	n	int)	[][]int

FindAllIndex	is	the	'All'	version	of	FindIndex;	it	returns	a	slice	of	all	successive
matches	of	the	expression,	as	defined	by	the	'All'	description	in	the	package
comment.	A	return	value	of	nil	indicates	no	match.

func	(*Regexp)	FindAllString

func	(re	*Regexp)	FindAllString(s	string,	n	int)	[]string

FindAllString	is	the	'All'	version	of	FindString;	it	returns	a	slice	of	all	successive

matches	of	the	expression,	as	defined	by	the	'All'	description	in	the	package
comment.	A	return	value	of	nil	indicates	no	match.

func	(*Regexp)	FindAllStringIndex

func	(re	*Regexp)	FindAllStringIndex(s	string,	n	int)	[][]int

FindAllStringIndex	is	the	'All'	version	of	FindStringIndex;	it	returns	a	slice	of	all
successive	matches	of	the	expression,	as	defined	by	the	'All'	description	in	the
package	comment.	A	return	value	of	nil	indicates	no	match.

func	(*Regexp)	FindAllStringSubmatch

func	(re	*Regexp)	FindAllStringSubmatch(s	string,	n	int)	[][]string

FindAllStringSubmatch	is	the	'All'	version	of	FindStringSubmatch;	it	returns	a
slice	of	all	successive	matches	of	the	expression,	as	defined	by	the	'All'
description	in	the	package	comment.	A	return	value	of	nil	indicates	no	match.

func	(*Regexp)	FindAllStringSubmatchIndex

func	(re	*Regexp)	FindAllStringSubmatchIndex(s	string,	n	int)	[][]int

FindAllStringSubmatchIndex	is	the	'All'	version	of	FindStringSubmatchIndex;	it
returns	a	slice	of	all	successive	matches	of	the	expression,	as	defined	by	the	'All'
description	in	the	package	comment.	A	return	value	of	nil	indicates	no	match.

func	(*Regexp)	FindAllSubmatch

func	(re	*Regexp)	FindAllSubmatch(b	[]byte,	n	int)	[][][]byte

FindAllSubmatch	is	the	'All'	version	of	FindSubmatch;	it	returns	a	slice	of	all
successive	matches	of	the	expression,	as	defined	by	the	'All'	description	in	the
package	comment.	A	return	value	of	nil	indicates	no	match.

func	(*Regexp)	FindAllSubmatchIndex

func	(re	*Regexp)	FindAllSubmatchIndex(b	[]byte,	n	int)	[][]int

FindAllSubmatchIndex	is	the	'All'	version	of	FindSubmatchIndex;	it	returns	a

slice	of	all	successive	matches	of	the	expression,	as	defined	by	the	'All'
description	in	the	package	comment.	A	return	value	of	nil	indicates	no	match.

func	(*Regexp)	FindIndex

func	(re	*Regexp)	FindIndex(b	[]byte)	(loc	[]int)

FindIndex	returns	a	two-element	slice	of	integers	defining	the	location	of	the
leftmost	match	in	b	of	the	regular	expression.	The	match	itself	is	at
b[loc[0]:loc[1]].	A	return	value	of	nil	indicates	no	match.

func	(*Regexp)	FindReaderIndex

func	(re	*Regexp)	FindReaderIndex(r	io.RuneReader)	(loc	[]int)

FindReaderIndex	returns	a	two-element	slice	of	integers	defining	the	location	of
the	leftmost	match	of	the	regular	expression	in	text	read	from	the	RuneReader.
The	match	itself	is	at	s[loc[0]:loc[1]].	A	return	value	of	nil	indicates	no	match.

func	(*Regexp)	FindReaderSubmatchIndex

func	(re	*Regexp)	FindReaderSubmatchIndex(r	io.RuneReader)	[]int

FindReaderSubmatchIndex	returns	a	slice	holding	the	index	pairs	identifying	the
leftmost	match	of	the	regular	expression	of	text	read	by	the	RuneReader,	and	the
matches,	if	any,	of	its	subexpressions,	as	defined	by	the	'Submatch'	and	'Index'
descriptions	in	the	package	comment.	A	return	value	of	nil	indicates	no	match.

func	(*Regexp)	FindString

func	(re	*Regexp)	FindString(s	string)	string

FindString	returns	a	string	holding	the	text	of	the	leftmost	match	in	s	of	the
regular	expression.	If	there	is	no	match,	the	return	value	is	an	empty	string,	but	it
will	also	be	empty	if	the	regular	expression	successfully	matches	an	empty
string.	Use	FindStringIndex	or	FindStringSubmatch	if	it	is	necessary	to
distinguish	these	cases.

func	(*Regexp)	FindStringIndex

func	(re	*Regexp)	FindStringIndex(s	string)	(loc	[]int)

FindStringIndex	returns	a	two-element	slice	of	integers	defining	the	location	of
the	leftmost	match	in	s	of	the	regular	expression.	The	match	itself	is	at
s[loc[0]:loc[1]].	A	return	value	of	nil	indicates	no	match.

func	(*Regexp)	FindStringSubmatch

func	(re	*Regexp)	FindStringSubmatch(s	string)	[]string

FindStringSubmatch	returns	a	slice	of	strings	holding	the	text	of	the	leftmost
match	of	the	regular	expression	in	s	and	the	matches,	if	any,	of	its
subexpressions,	as	defined	by	the	'Submatch'	description	in	the	package
comment.	A	return	value	of	nil	indicates	no	match.

func	(*Regexp)	FindStringSubmatchIndex

func	(re	*Regexp)	FindStringSubmatchIndex(s	string)	[]int

FindStringSubmatchIndex	returns	a	slice	holding	the	index	pairs	identifying	the
leftmost	match	of	the	regular	expression	in	s	and	the	matches,	if	any,	of	its
subexpressions,	as	defined	by	the	'Submatch'	and	'Index'	descriptions	in	the
package	comment.	A	return	value	of	nil	indicates	no	match.

func	(*Regexp)	FindSubmatch

func	(re	*Regexp)	FindSubmatch(b	[]byte)	[][]byte

FindSubmatch	returns	a	slice	of	slices	holding	the	text	of	the	leftmost	match	of
the	regular	expression	in	b	and	the	matches,	if	any,	of	its	subexpressions,	as
defined	by	the	'Submatch'	descriptions	in	the	package	comment.	A	return	value
of	nil	indicates	no	match.

func	(*Regexp)	FindSubmatchIndex

func	(re	*Regexp)	FindSubmatchIndex(b	[]byte)	[]int

FindSubmatchIndex	returns	a	slice	holding	the	index	pairs	identifying	the
leftmost	match	of	the	regular	expression	in	b	and	the	matches,	if	any,	of	its
subexpressions,	as	defined	by	the	'Submatch'	and	'Index'	descriptions	in	the

package	comment.	A	return	value	of	nil	indicates	no	match.

func	(*Regexp)	LiteralPrefix

func	(re	*Regexp)	LiteralPrefix()	(prefix	string,	complete	bool)

LiteralPrefix	returns	a	literal	string	that	must	begin	any	match	of	the	regular
expression	re.	It	returns	the	boolean	true	if	the	literal	string	comprises	the	entire
regular	expression.

func	(*Regexp)	Match

func	(re	*Regexp)	Match(b	[]byte)	bool

Match	returns	whether	the	Regexp	matches	the	byte	slice	b.	The	return	value	is	a
boolean:	true	for	match,	false	for	no	match.

func	(*Regexp)	MatchReader

func	(re	*Regexp)	MatchReader(r	io.RuneReader)	bool

MatchReader	returns	whether	the	Regexp	matches	the	text	read	by	the
RuneReader.	The	return	value	is	a	boolean:	true	for	match,	false	for	no	match.

func	(*Regexp)	MatchString

func	(re	*Regexp)	MatchString(s	string)	bool

MatchString	returns	whether	the	Regexp	matches	the	string	s.	The	return	value	is
a	boolean:	true	for	match,	false	for	no	match.

func	(*Regexp)	NumSubexp

func	(re	*Regexp)	NumSubexp()	int

NumSubexp	returns	the	number	of	parenthesized	subexpressions	in	this	Regexp.

func	(*Regexp)	ReplaceAll

func	(re	*Regexp)	ReplaceAll(src,	repl	[]byte)	[]byte

ReplaceAll	returns	a	copy	of	src,	replacing	matches	of	the	Regexp	with	the
replacement	string	repl.	Inside	repl,	$	signs	are	interpreted	as	in	Expand,	so	for
instance	$1	represents	the	text	of	the	first	submatch.

func	(*Regexp)	ReplaceAllFunc

func	(re	*Regexp)	ReplaceAllFunc(src	[]byte,	repl	func([]byte)	[]byte)	[]byte

ReplaceAllFunc	returns	a	copy	of	src	in	which	all	matches	of	the	Regexp	have
been	replaced	by	the	return	value	of	of	function	repl	applied	to	the	matched	byte
slice.	The	replacement	returned	by	repl	is	substituted	directly,	without	using
Expand.

func	(*Regexp)	ReplaceAllLiteral

func	(re	*Regexp)	ReplaceAllLiteral(src,	repl	[]byte)	[]byte

ReplaceAllLiteral	returns	a	copy	of	src,	replacing	matches	of	the	Regexp	with
the	replacement	bytes	repl.	The	replacement	repl	is	substituted	directly,	without
using	Expand.

func	(*Regexp)	ReplaceAllLiteralString

func	(re	*Regexp)	ReplaceAllLiteralString(src,	repl	string)	string

ReplaceAllStringLiteral	returns	a	copy	of	src,	replacing	matches	of	the	Regexp
with	the	replacement	string	repl.	The	replacement	repl	is	substituted	directly,
without	using	Expand.

func	(*Regexp)	ReplaceAllString

func	(re	*Regexp)	ReplaceAllString(src,	repl	string)	string

ReplaceAllString	returns	a	copy	of	src,	replacing	matches	of	the	Regexp	with	the
replacement	string	repl.	Inside	repl,	$	signs	are	interpreted	as	in	Expand,	so	for
instance	$1	represents	the	text	of	the	first	submatch.

func	(*Regexp)	ReplaceAllStringFunc

func	(re	*Regexp)	ReplaceAllStringFunc(src	string,	repl	func(string)	string)	string

ReplaceAllStringFunc	returns	a	copy	of	src	in	which	all	matches	of	the	Regexp
have	been	replaced	by	the	return	value	of	of	function	repl	applied	to	the	matched
substring.	The	replacement	returned	by	repl	is	substituted	directly,	without	using
Expand.

func	(*Regexp)	String

func	(re	*Regexp)	String()	string

String	returns	the	source	text	used	to	compile	the	regular	expression.

func	(*Regexp)	SubexpNames

func	(re	*Regexp)	SubexpNames()	[]string

SubexpNames	returns	the	names	of	the	parenthesized	subexpressions	in	this
Regexp.	The	name	for	the	first	sub-expression	is	names[1],	so	that	if	m	is	a
match	slice,	the	name	for	m[i]	is	SubexpNames()[i].	Since	the	Regexp	as	a
whole	cannot	be	named,	names[0]	is	always	the	empty	string.	The	slice	should
not	be	modified.

Subdirectories

Name 				 Synopsis

syntax 				 Package	syntax	parses	regular	expressions	into	parse	trees	andcompiles	parse	trees	into	programs.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	syntax
import	"regexp/syntax"

Overview
Index

Overview	?

Overview	?

Package	syntax	parses	regular	expressions	into	parse	trees	and	compiles	parse
trees	into	programs.	Most	clients	of	regular	expressions	will	use	the	facilities	of
package	regexp	(such	as	Compile	and	Match)	instead	of	this	package.

Index

func	IsWordChar(r	rune)	bool
type	EmptyOp
				func	EmptyOpContext(r1,	r2	rune)	EmptyOp
type	Error
				func	(e	*Error)	Error()	string
type	ErrorCode
				func	(e	ErrorCode)	String()	string
type	Flags
type	Inst
				func	(i	*Inst)	MatchEmptyWidth(before	rune,	after	rune)	bool
				func	(i	*Inst)	MatchRune(r	rune)	bool
				func	(i	*Inst)	String()	string
type	InstOp
type	Op
type	Prog
				func	Compile(re	*Regexp)	(*Prog,	error)
				func	(p	*Prog)	Prefix()	(prefix	string,	complete	bool)
				func	(p	*Prog)	StartCond()	EmptyOp
				func	(p	*Prog)	String()	string
type	Regexp
				func	Parse(s	string,	flags	Flags)	(*Regexp,	error)
				func	(re	*Regexp)	CapNames()	[]string
				func	(x	*Regexp)	Equal(y	*Regexp)	bool
				func	(re	*Regexp)	MaxCap()	int
				func	(re	*Regexp)	Simplify()	*Regexp
				func	(re	*Regexp)	String()	string

Package	files

compile.go	parse.go	perl_groups.go	prog.go	regexp.go	simplify.go

func	IsWordChar
func	IsWordChar(r	rune)	bool

IsWordChar	reports	whether	r	is	consider	a	“word	character”	during	the
evaluation	of	the	\b	and	\B	zero-width	assertions.	These	assertions	are	ASCII-
only:	the	word	characters	are	[A-Za-z0-9_].

type	EmptyOp
type	EmptyOp	uint8

An	EmptyOp	specifies	a	kind	or	mixture	of	zero-width	assertions.

const	(

				EmptyBeginLine	EmptyOp	=	1	<<	iota

				EmptyEndLine

				EmptyBeginText

				EmptyEndText

				EmptyWordBoundary

				EmptyNoWordBoundary

)

func	EmptyOpContext

func	EmptyOpContext(r1,	r2	rune)	EmptyOp

EmptyOpContext	returns	the	zero-width	assertions	satisfied	at	the	position
between	the	runes	r1	and	r2.	Passing	r1	==	-1	indicates	that	the	position	is	at	the
beginning	of	the	text.	Passing	r2	==	-1	indicates	that	the	position	is	at	the	end	of
the	text.

type	Error
type	Error	struct	{

				Code	ErrorCode

				Expr	string

}

An	Error	describes	a	failure	to	parse	a	regular	expression	and	gives	the	offending
expression.

func	(*Error)	Error

func	(e	*Error)	Error()	string

type	ErrorCode
type	ErrorCode	string

An	ErrorCode	describes	a	failure	to	parse	a	regular	expression.

const	(

				//	Unexpected	error

				ErrInternalError	ErrorCode	=	"regexp/syntax:	internal	error"

				//	Parse	errors

				ErrInvalidCharClass						ErrorCode	=	"invalid	character	class"

				ErrInvalidCharRange						ErrorCode	=	"invalid	character	class	range"

				ErrInvalidEscape									ErrorCode	=	"invalid	escape	sequence"

				ErrInvalidNamedCapture			ErrorCode	=	"invalid	named	capture"

				ErrInvalidPerlOp									ErrorCode	=	"invalid	or	unsupported	Perl	syntax"

				ErrInvalidRepeatOp							ErrorCode	=	"invalid	nested	repetition	operator"

				ErrInvalidRepeatSize					ErrorCode	=	"invalid	repeat	count"

				ErrInvalidUTF8											ErrorCode	=	"invalid	UTF-8"

				ErrMissingBracket								ErrorCode	=	"missing	closing]"

				ErrMissingParen										ErrorCode	=	"missing	closing)"

				ErrMissingRepeatArgument	ErrorCode	=	"missing	argument	to	repetition	operator"

				ErrTrailingBackslash					ErrorCode	=	"trailing	backslash	at	end	of	expression"

)

func	(ErrorCode)	String

func	(e	ErrorCode)	String()	string

type	Flags
type	Flags	uint16

Flags	control	the	behavior	of	the	parser	and	record	information	about	regexp
context.

const	(

				FoldCase						Flags	=	1	<<	iota	//	case-insensitive	match

				Literal																									//	treat	pattern	as	literal	string

				ClassNL																									//	allow	character	classes	like	[^a-z]	and	[[:space:]]	to	match	newline

				DotNL																											//	allow	.	to	match	newline

				OneLine																									//	treat	^	and	$	as	only	matching	at	beginning	and	end	of	text

				NonGreedy																							//	make	repetition	operators	default	to	non-greedy

				PerlX																											//	allow	Perl	extensions

				UnicodeGroups																			//	allow	\p{Han},	\P{Han}	for	Unicode	group	and	negation

				WasDollar																							//	regexp	OpEndText	was	$,	not	\z

				Simple																										//	regexp	contains	no	counted	repetition

				MatchNL	=	ClassNL	|	DotNL

				Perl								=	ClassNL	|	OneLine	|	PerlX	|	UnicodeGroups	//	as	close	to	Perl	as	possible

				POSIX	Flags	=	0																																									//	POSIX	syntax

)

type	Inst
type	Inst	struct	{

				Op			InstOp

				Out		uint32	//	all	but	InstMatch,	InstFail

				Arg		uint32	//	InstAlt,	InstAltMatch,	InstCapture,	InstEmptyWidth

				Rune	[]rune

}

An	Inst	is	a	single	instruction	in	a	regular	expression	program.

func	(*Inst)	MatchEmptyWidth

func	(i	*Inst)	MatchEmptyWidth(before	rune,	after	rune)	bool

MatchEmptyWidth	returns	true	if	the	instruction	matches	an	empty	string
between	the	runes	before	and	after.	It	should	only	be	called	when	i.Op	==
InstEmptyWidth.

func	(*Inst)	MatchRune

func	(i	*Inst)	MatchRune(r	rune)	bool

MatchRune	returns	true	if	the	instruction	matches	(and	consumes)	r.	It	should
only	be	called	when	i.Op	==	InstRune.

func	(*Inst)	String

func	(i	*Inst)	String()	string

type	InstOp
type	InstOp	uint8

An	InstOp	is	an	instruction	opcode.

const	(

				InstAlt	InstOp	=	iota

				InstAltMatch

				InstCapture

				InstEmptyWidth

				InstMatch

				InstFail

				InstNop

				InstRune

				InstRune1

				InstRuneAny

				InstRuneAnyNotNL

)

type	Op
type	Op	uint8

An	Op	is	a	single	regular	expression	operator.

const	(

				OpNoMatch								Op	=	1	+	iota	//	matches	no	strings

				OpEmptyMatch																			//	matches	empty	string

				OpLiteral																						//	matches	Runes	sequence

				OpCharClass																				//	matches	Runes	interpreted	as	range	pair	list

				OpAnyCharNotNL																	//	matches	any	character

				OpAnyChar																						//	matches	any	character

				OpBeginLine																				//	matches	empty	string	at	beginning	of	line

				OpEndLine																						//	matches	empty	string	at	end	of	line

				OpBeginText																				//	matches	empty	string	at	beginning	of	text

				OpEndText																						//	matches	empty	string	at	end	of	text

				OpWordBoundary																	//	matches	word	boundary	`\b`

				OpNoWordBoundary															//	matches	word	non-boundary	`\B`

				OpCapture																						//	capturing	subexpression	with	index	Cap,	optional	name	Name

				OpStar																									//	matches	Sub[0]	zero	or	more	times

				OpPlus																									//	matches	Sub[0]	one	or	more	times

				OpQuest																								//	matches	Sub[0]	zero	or	one	times

				OpRepeat																							//	matches	Sub[0]	at	least	Min	times,	at	most	Max	(Max	==	-1	is	no	limit)

				OpConcat																							//	matches	concatenation	of	Subs

				OpAlternate																				//	matches	alternation	of	Subs

)

type	Prog
type	Prog	struct	{

				Inst			[]Inst

				Start		int	//	index	of	start	instruction

				NumCap	int	//	number	of	InstCapture	insts	in	re

}

A	Prog	is	a	compiled	regular	expression	program.

func	Compile

func	Compile(re	*Regexp)	(*Prog,	error)

Compile	compiles	the	regexp	into	a	program	to	be	executed.	The	regexp	should
have	been	simplified	already	(returned	from	re.Simplify).

func	(*Prog)	Prefix

func	(p	*Prog)	Prefix()	(prefix	string,	complete	bool)

Prefix	returns	a	literal	string	that	all	matches	for	the	regexp	must	start	with.
Complete	is	true	if	the	prefix	is	the	entire	match.

func	(*Prog)	StartCond

func	(p	*Prog)	StartCond()	EmptyOp

StartCond	returns	the	leading	empty-width	conditions	that	must	be	true	in	any
match.	It	returns	^EmptyOp(0)	if	no	matches	are	possible.

func	(*Prog)	String

func	(p	*Prog)	String()	string

type	Regexp
type	Regexp	struct	{

				Op							Op	//	operator

				Flags				Flags

				Sub						[]*Regexp		//	subexpressions,	if	any

				Sub0					[1]*Regexp	//	storage	for	short	Sub

				Rune					[]rune					//	matched	runes,	for	OpLiteral,	OpCharClass

				Rune0				[2]rune				//	storage	for	short	Rune

				Min,	Max	int								//	min,	max	for	OpRepeat

				Cap						int								//	capturing	index,	for	OpCapture

				Name					string					//	capturing	name,	for	OpCapture

}

A	Regexp	is	a	node	in	a	regular	expression	syntax	tree.

func	Parse

func	Parse(s	string,	flags	Flags)	(*Regexp,	error)

Parse	parses	a	regular	expression	string	s,	controlled	by	the	specified	Flags,	and
returns	a	regular	expression	parse	tree.	The	syntax	is	described	in	the	top-level
comment	for	package	regexp.

func	(*Regexp)	CapNames

func	(re	*Regexp)	CapNames()	[]string

CapNames	walks	the	regexp	to	find	the	names	of	capturing	groups.

func	(*Regexp)	Equal

func	(x	*Regexp)	Equal(y	*Regexp)	bool

Equal	returns	true	if	x	and	y	have	identical	structure.

func	(*Regexp)	MaxCap

func	(re	*Regexp)	MaxCap()	int

MaxCap	walks	the	regexp	to	find	the	maximum	capture	index.

func	(*Regexp)	Simplify

func	(re	*Regexp)	Simplify()	*Regexp

Simplify	returns	a	regexp	equivalent	to	re	but	without	counted	repetitions	and
with	various	other	simplifications,	such	as	rewriting	/(?:a+)+/	to	/a+/.	The
resulting	regexp	will	execute	correctly	but	its	string	representation	will	not
produce	the	same	parse	tree,	because	capturing	parentheses	may	have	been
duplicated	or	removed.	For	example,	the	simplified	form	for	/(x){1,2}/	is	/(x)
(x)?/	but	both	parentheses	capture	as	$1.	The	returned	regexp	may	share
structure	with	or	be	the	original.

func	(*Regexp)	String

func	(re	*Regexp)	String()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	runtime
import	"runtime"

Overview
Index
Subdirectories

Overview	?

Overview	?

Package	runtime	contains	operations	that	interact	with	Go's	runtime	system,	such
as	functions	to	control	goroutines.	It	also	includes	the	low-level	type	information
used	by	the	reflect	package;	see	reflect's	documentation	for	the	programmable
interface	to	the	run-time	type	system.

Index

Constants
Variables
func	Breakpoint()
func	CPUProfile()	[]byte
func	Caller(skip	int)	(pc	uintptr,	file	string,	line	int,	ok	bool)
func	Callers(skip	int,	pc	[]uintptr)	int
func	GC()
func	GOMAXPROCS(n	int)	int
func	GOROOT()	string
func	Goexit()
func	GoroutineProfile(p	[]StackRecord)	(n	int,	ok	bool)
func	Gosched()
func	LockOSThread()
func	MemProfile(p	[]MemProfileRecord,	inuseZero	bool)	(n	int,	ok	bool)
func	NumCPU()	int
func	NumCgoCall()	int64
func	NumGoroutine()	int
func	ReadMemStats(m	*MemStats)
func	SetCPUProfileRate(hz	int)
func	SetFinalizer(x,	f	interface{})
func	Stack(buf	[]byte,	all	bool)	int
func	ThreadCreateProfile(p	[]StackRecord)	(n	int,	ok	bool)
func	UnlockOSThread()
func	Version()	string
type	Error
type	Func
				func	FuncForPC(pc	uintptr)	*Func
				func	(f	*Func)	Entry()	uintptr
				func	(f	*Func)	FileLine(pc	uintptr)	(file	string,	line	int)
				func	(f	*Func)	Name()	string
type	MemProfileRecord
				func	(r	*MemProfileRecord)	InUseBytes()	int64
				func	(r	*MemProfileRecord)	InUseObjects()	int64
				func	(r	*MemProfileRecord)	Stack()	[]uintptr
type	MemStats

type	StackRecord
				func	(r	*StackRecord)	Stack()	[]uintptr
type	TypeAssertionError
				func	(e	*TypeAssertionError)	Error()	string
				func	(*TypeAssertionError)	RuntimeError()

Package	files

compiler.go	debug.go	error.go	extern.go	mem.go	softfloat64.go	type.go	zgoarch_amd64.go	zgoos_linux.go
zruntime_defs_linux_amd64.go	zversion.go

Constants
const	Compiler	=	"gc"

Compiler	is	the	name	of	the	compiler	toolchain	that	built	the	running	binary.
Known	toolchains	are:

gc						The	5g/6g/8g	compiler	suite	at	code.google.com/p/go.

gccgo			The	gccgo	front	end,	part	of	the	GCC	compiler	suite.

const	GOARCH	string	=	theGoarch

GOARCH	is	the	running	program's	architecture	target:	386,	amd64,	or	arm.

const	GOOS	string	=	theGoos

GOOS	is	the	running	program's	operating	system	target:	one	of	darwin,	freebsd,
linux,	and	so	on.

Variables
var	MemProfileRate	int	=	512	*	1024

MemProfileRate	controls	the	fraction	of	memory	allocations	that	are	recorded
and	reported	in	the	memory	profile.	The	profiler	aims	to	sample	an	average	of
one	allocation	per	MemProfileRate	bytes	allocated.

To	include	every	allocated	block	in	the	profile,	set	MemProfileRate	to	1.	To	turn
off	profiling	entirely,	set	MemProfileRate	to	0.

The	tools	that	process	the	memory	profiles	assume	that	the	profile	rate	is
constant	across	the	lifetime	of	the	program	and	equal	to	the	current	value.
Programs	that	change	the	memory	profiling	rate	should	do	so	just	once,	as	early
as	possible	in	the	execution	of	the	program	(for	example,	at	the	beginning	of
main).

func	Breakpoint
func	Breakpoint()

Breakpoint()	executes	a	breakpoint	trap.

func	CPUProfile
func	CPUProfile()	[]byte

CPUProfile	returns	the	next	chunk	of	binary	CPU	profiling	stack	trace	data,
blocking	until	data	is	available.	If	profiling	is	turned	off	and	all	the	profile	data
accumulated	while	it	was	on	has	been	returned,	CPUProfile	returns	nil.	The
caller	must	save	the	returned	data	before	calling	CPUProfile	again.	Most	clients
should	use	the	runtime/pprof	package	or	the	testing	package's	-test.cpuprofile
flag	instead	of	calling	CPUProfile	directly.

func	Caller
func	Caller(skip	int)	(pc	uintptr,	file	string,	line	int,	ok	bool)

Caller	reports	file	and	line	number	information	about	function	invocations	on	the
calling	goroutine's	stack.	The	argument	skip	is	the	number	of	stack	frames	to
ascend,	with	1	identifying	the	caller	of	Caller.	(For	historical	reasons	the
meaning	of	skip	differs	between	Caller	and	Callers.)	The	return	values	report	the
program	counter,	file	name,	and	line	number	within	the	file	of	the	corresponding
call.	The	boolean	ok	is	false	if	it	was	not	possible	to	recover	the	information.

func	Callers
func	Callers(skip	int,	pc	[]uintptr)	int

Callers	fills	the	slice	pc	with	the	program	counters	of	function	invocations	on	the
calling	goroutine's	stack.	The	argument	skip	is	the	number	of	stack	frames	to
skip	before	recording	in	pc,	with	0	starting	at	the	caller	of	Callers.	It	returns	the
number	of	entries	written	to	pc.

func	GC
func	GC()

GC	runs	a	garbage	collection.

func	GOMAXPROCS
func	GOMAXPROCS(n	int)	int

GOMAXPROCS	sets	the	maximum	number	of	CPUs	that	can	be	executing
simultaneously	and	returns	the	previous	setting.	If	n	<	1,	it	does	not	change	the
current	setting.	The	number	of	logical	CPUs	on	the	local	machine	can	be	queried
with	NumCPU.	This	call	will	go	away	when	the	scheduler	improves.

func	GOROOT
func	GOROOT()	string

GOROOT	returns	the	root	of	the	Go	tree.	It	uses	the	GOROOT	environment
variable,	if	set,	or	else	the	root	used	during	the	Go	build.

func	Goexit
func	Goexit()

Goexit	terminates	the	goroutine	that	calls	it.	No	other	goroutine	is	affected.
Goexit	runs	all	deferred	calls	before	terminating	the	goroutine.

func	GoroutineProfile
func	GoroutineProfile(p	[]StackRecord)	(n	int,	ok	bool)

GoroutineProfile	returns	n,	the	number	of	records	in	the	active	goroutine	stack
profile.	If	len(p)	>=	n,	GoroutineProfile	copies	the	profile	into	p	and	returns	n,
true.	If	len(p)	<	n,	GoroutineProfile	does	not	change	p	and	returns	n,	false.

Most	clients	should	use	the	runtime/pprof	package	instead	of	calling
GoroutineProfile	directly.

func	Gosched
func	Gosched()

Gosched	yields	the	processor,	allowing	other	goroutines	to	run.	It	does	not
suspend	the	current	goroutine,	so	execution	resumes	automatically.

func	LockOSThread
func	LockOSThread()

LockOSThread	wires	the	calling	goroutine	to	its	current	operating	system	thread.
Until	the	calling	goroutine	exits	or	calls	UnlockOSThread,	it	will	always	execute
in	that	thread,	and	no	other	goroutine	can.

func	MemProfile
func	MemProfile(p	[]MemProfileRecord,	inuseZero	bool)	(n	int,	ok	bool)

MemProfile	returns	n,	the	number	of	records	in	the	current	memory	profile.	If
len(p)	>=	n,	MemProfile	copies	the	profile	into	p	and	returns	n,	true.	If	len(p)	<
n,	MemProfile	does	not	change	p	and	returns	n,	false.

If	inuseZero	is	true,	the	profile	includes	allocation	records	where	r.AllocBytes	>
0	but	r.AllocBytes	==	r.FreeBytes.	These	are	sites	where	memory	was	allocated,
but	it	has	all	been	released	back	to	the	runtime.

Most	clients	should	use	the	runtime/pprof	package	or	the	testing	package's	-
test.memprofile	flag	instead	of	calling	MemProfile	directly.

func	NumCPU
func	NumCPU()	int

NumCPU	returns	the	number	of	logical	CPUs	on	the	local	machine.

func	NumCgoCall
func	NumCgoCall()	int64

NumCgoCall	returns	the	number	of	cgo	calls	made	by	the	current	process.

func	NumGoroutine
func	NumGoroutine()	int

NumGoroutine	returns	the	number	of	goroutines	that	currently	exist.

func	ReadMemStats
func	ReadMemStats(m	*MemStats)

ReadMemStats	populates	m	with	memory	allocator	statistics.

func	SetCPUProfileRate
func	SetCPUProfileRate(hz	int)

SetCPUProfileRate	sets	the	CPU	profiling	rate	to	hz	samples	per	second.	If	hz
<=	0,	SetCPUProfileRate	turns	off	profiling.	If	the	profiler	is	on,	the	rate	cannot
be	changed	without	first	turning	it	off.	Most	clients	should	use	the	runtime/pprof
package	or	the	testing	package's	-test.cpuprofile	flag	instead	of	calling
SetCPUProfileRate	directly.

func	SetFinalizer
func	SetFinalizer(x,	f	interface{})

SetFinalizer	sets	the	finalizer	associated	with	x	to	f.	When	the	garbage	collector
finds	an	unreachable	block	with	an	associated	finalizer,	it	clears	the	association
and	runs	f(x)	in	a	separate	goroutine.	This	makes	x	reachable	again,	but	now
without	an	associated	finalizer.	Assuming	that	SetFinalizer	is	not	called	again,
the	next	time	the	garbage	collector	sees	that	x	is	unreachable,	it	will	free	x.

SetFinalizer(x,	nil)	clears	any	finalizer	associated	with	x.

The	argument	x	must	be	a	pointer	to	an	object	allocated	by	calling	new	or	by
taking	the	address	of	a	composite	literal.	The	argument	f	must	be	a	function	that
takes	a	single	argument	of	x's	type	and	can	have	arbitrary	ignored	return	values.
If	either	of	these	is	not	true,	SetFinalizer	aborts	the	program.

Finalizers	are	run	in	dependency	order:	if	A	points	at	B,	both	have	finalizers,	and
they	are	otherwise	unreachable,	only	the	finalizer	for	A	runs;	once	A	is	freed,	the
finalizer	for	B	can	run.	If	a	cyclic	structure	includes	a	block	with	a	finalizer,	that
cycle	is	not	guaranteed	to	be	garbage	collected	and	the	finalizer	is	not
guaranteed	to	run,	because	there	is	no	ordering	that	respects	the	dependencies.

The	finalizer	for	x	is	scheduled	to	run	at	some	arbitrary	time	after	x	becomes
unreachable.	There	is	no	guarantee	that	finalizers	will	run	before	a	program
exits,	so	typically	they	are	useful	only	for	releasing	non-memory	resources
associated	with	an	object	during	a	long-running	program.	For	example,	an
os.File	object	could	use	a	finalizer	to	close	the	associated	operating	system	file
descriptor	when	a	program	discards	an	os.File	without	calling	Close,	but	it
would	be	a	mistake	to	depend	on	a	finalizer	to	flush	an	in-memory	I/O	buffer
such	as	a	bufio.Writer,	because	the	buffer	would	not	be	flushed	at	program	exit.

A	single	goroutine	runs	all	finalizers	for	a	program,	sequentially.	If	a	finalizer
must	run	for	a	long	time,	it	should	do	so	by	starting	a	new	goroutine.

func	Stack
func	Stack(buf	[]byte,	all	bool)	int

Stack	formats	a	stack	trace	of	the	calling	goroutine	into	buf	and	returns	the
number	of	bytes	written	to	buf.	If	all	is	true,	Stack	formats	stack	traces	of	all
other	goroutines	into	buf	after	the	trace	for	the	current	goroutine.

func	ThreadCreateProfile
func	ThreadCreateProfile(p	[]StackRecord)	(n	int,	ok	bool)

ThreadCreateProfile	returns	n,	the	number	of	records	in	the	thread	creation
profile.	If	len(p)	>=	n,	ThreadCreateProfile	copies	the	profile	into	p	and	returns
n,	true.	If	len(p)	<	n,	ThreadCreateProfile	does	not	change	p	and	returns	n,	false.

Most	clients	should	use	the	runtime/pprof	package	instead	of	calling
ThreadCreateProfile	directly.

func	UnlockOSThread
func	UnlockOSThread()

UnlockOSThread	unwires	the	calling	goroutine	from	its	fixed	operating	system
thread.	If	the	calling	goroutine	has	not	called	LockOSThread,	UnlockOSThread
is	a	no-op.

func	Version
func	Version()	string

Version	returns	the	Go	tree's	version	string.	It	is	either	a	sequence	number	or,
when	possible,	a	release	tag	like	"release.2010-03-04".	A	trailing	+	indicates	that
the	tree	had	local	modifications	at	the	time	of	the	build.

type	Error
type	Error	interface	{

				error

				//	RuntimeError	is	a	no-op	function	but

				//	serves	to	distinguish	types	that	are	runtime

				//	errors	from	ordinary	errors:	a	type	is	a

				//	runtime	error	if	it	has	a	RuntimeError	method.

				RuntimeError()

}

The	Error	interface	identifies	a	run	time	error.

type	Func
type	Func	struct	{

				//	contains	filtered	or	unexported	fields

}

func	FuncForPC

func	FuncForPC(pc	uintptr)	*Func

FuncForPC	returns	a	*Func	describing	the	function	that	contains	the	given
program	counter	address,	or	else	nil.

func	(*Func)	Entry

func	(f	*Func)	Entry()	uintptr

Entry	returns	the	entry	address	of	the	function.

func	(*Func)	FileLine

func	(f	*Func)	FileLine(pc	uintptr)	(file	string,	line	int)

FileLine	returns	the	file	name	and	line	number	of	the	source	code	corresponding
to	the	program	counter	pc.	The	result	will	not	be	accurate	if	pc	is	not	a	program
counter	within	f.

func	(*Func)	Name

func	(f	*Func)	Name()	string

Name	returns	the	name	of	the	function.

type	MemProfileRecord
type	MemProfileRecord	struct	{

				AllocBytes,	FreeBytes					int64							//	number	of	bytes	allocated,	freed

				AllocObjects,	FreeObjects	int64							//	number	of	objects	allocated,	freed

				Stack0																				[32]uintptr	//	stack	trace	for	this	record;	ends	at	first	0	entry

}

A	MemProfileRecord	describes	the	live	objects	allocated	by	a	particular	call
sequence	(stack	trace).

func	(*MemProfileRecord)	InUseBytes

func	(r	*MemProfileRecord)	InUseBytes()	int64

InUseBytes	returns	the	number	of	bytes	in	use	(AllocBytes	-	FreeBytes).

func	(*MemProfileRecord)	InUseObjects

func	(r	*MemProfileRecord)	InUseObjects()	int64

InUseObjects	returns	the	number	of	objects	in	use	(AllocObjects	-	FreeObjects).

func	(*MemProfileRecord)	Stack

func	(r	*MemProfileRecord)	Stack()	[]uintptr

Stack	returns	the	stack	trace	associated	with	the	record,	a	prefix	of	r.Stack0.

type	MemStats
type	MemStats	struct	{

				//	General	statistics.

				Alloc						uint64	//	bytes	allocated	and	still	in	use

				TotalAlloc	uint64	//	bytes	allocated	(even	if	freed)

				Sys								uint64	//	bytes	obtained	from	system	(should	be	sum	of	XxxSys	below)

				Lookups				uint64	//	number	of	pointer	lookups

				Mallocs				uint64	//	number	of	mallocs

				Frees						uint64

				//	Main	allocation	heap	statistics.

				HeapAlloc				uint64	//	bytes	allocated	and	still	in	use

				HeapSys						uint64	//	bytes	obtained	from	system

				HeapIdle					uint64	//	bytes	in	idle	spans

				HeapInuse				uint64	//	bytes	in	non-idle	span

				HeapReleased	uint64	//	bytes	released	to	the	OS

				HeapObjects		uint64

				//	Low-level	fixed-size	structure	allocator	statistics.

				//	 Inuse	is	bytes	used	now.

				//	 Sys	is	bytes	obtained	from	system.

				StackInuse		uint64	//	bootstrap	stacks

				StackSys				uint64

				MSpanInuse		uint64	//	mspan	structures

				MSpanSys				uint64

				MCacheInuse	uint64	//	mcache	structures

				MCacheSys			uint64

				BuckHashSys	uint64

				//	Garbage	collector	statistics.

				NextGC							uint64	//	next	run	in	HeapAlloc	time	(bytes)

				LastGC							uint64	//	last	run	in	absolute	time	(ns)

				PauseTotalNs	uint64

				PauseNs						[256]uint64	//	most	recent	GC	pause	times

				NumGC								uint32

				EnableGC					bool

				DebugGC						bool

				//	Per-size	allocation	statistics.

				//	61	is	NumSizeClasses	in	the	C	code.

				BySize	[61]struct	{

								Size				uint32

								Mallocs	uint64

								Frees			uint64

				}

}

A	MemStats	records	statistics	about	the	memory	allocator.

type	StackRecord
type	StackRecord	struct	{

				Stack0	[32]uintptr	//	stack	trace	for	this	record;	ends	at	first	0	entry

}

A	StackRecord	describes	a	single	execution	stack.

func	(*StackRecord)	Stack

func	(r	*StackRecord)	Stack()	[]uintptr

Stack	returns	the	stack	trace	associated	with	the	record,	a	prefix	of	r.Stack0.

type	TypeAssertionError
type	TypeAssertionError	struct	{

				//	contains	filtered	or	unexported	fields

}

A	TypeAssertionError	explains	a	failed	type	assertion.

func	(*TypeAssertionError)	Error

func	(e	*TypeAssertionError)	Error()	string

func	(*TypeAssertionError)	RuntimeError

func	(*TypeAssertionError)	RuntimeError()

Subdirectories

Name 				 Synopsis

cgo 				 Package	cgo	contains	runtime	support	for	code	generated	by	the	cgotool.

debug 				 Package	debug	contains	facilities	for	programs	to	debug	themselveswhile	they	are	running.

pprof 				 Package	pprof	writes	runtime	profiling	data	in	the	format	expected	bythe	pprof	visualization	tool.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	cgo
import	"runtime/cgo"

Overview
Index

Overview	?

Overview	?

Package	cgo	contains	runtime	support	for	code	generated	by	the	cgo	tool.	See
the	documentation	for	the	cgo	command	for	details	on	using	cgo.

Index

Package	files

cgo.go

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	debug
import	"runtime/debug"

Overview
Index

Overview	?

Overview	?

Package	debug	contains	facilities	for	programs	to	debug	themselves	while	they
are	running.

Index

func	PrintStack()
func	Stack()	[]byte

Package	files

stack.go

func	PrintStack
func	PrintStack()

PrintStack	prints	to	standard	error	the	stack	trace	returned	by	Stack.

func	Stack
func	Stack()	[]byte

Stack	returns	a	formatted	stack	trace	of	the	goroutine	that	calls	it.	For	each
routine,	it	includes	the	source	line	information	and	PC	value,	then	attempts	to
discover,	for	Go	functions,	the	calling	function	or	method	and	the	text	of	the	line
containing	the	invocation.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	pprof
import	"runtime/pprof"

Overview
Index

Overview	?

Overview	?

Package	pprof	writes	runtime	profiling	data	in	the	format	expected	by	the	pprof
visualization	tool.	For	more	information	about	pprof,	see
http://code.google.com/p/google-perftools/.

http://code.google.com/p/google-perftools/

Index

func	Profiles()	[]*Profile
func	StartCPUProfile(w	io.Writer)	error
func	StopCPUProfile()
func	WriteHeapProfile(w	io.Writer)	error
type	Profile
				func	Lookup(name	string)	*Profile
				func	NewProfile(name	string)	*Profile
				func	(p	*Profile)	Add(value	interface{},	skip	int)
				func	(p	*Profile)	Count()	int
				func	(p	*Profile)	Name()	string
				func	(p	*Profile)	Remove(value	interface{})
				func	(p	*Profile)	WriteTo(w	io.Writer,	debug	int)	error
Bugs

Package	files

pprof.go

func	Profiles
func	Profiles()	[]*Profile

Profiles	returns	a	slice	of	all	the	known	profiles,	sorted	by	name.

func	StartCPUProfile
func	StartCPUProfile(w	io.Writer)	error

StartCPUProfile	enables	CPU	profiling	for	the	current	process.	While	profiling,
the	profile	will	be	buffered	and	written	to	w.	StartCPUProfile	returns	an	error	if
profiling	is	already	enabled.

func	StopCPUProfile
func	StopCPUProfile()

StopCPUProfile	stops	the	current	CPU	profile,	if	any.	StopCPUProfile	only
returns	after	all	the	writes	for	the	profile	have	completed.

func	WriteHeapProfile
func	WriteHeapProfile(w	io.Writer)	error

WriteHeapProfile	is	shorthand	for	Lookup("heap").WriteTo(w,	0).	It	is	preserved
for	backwards	compatibility.

type	Profile
type	Profile	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Profile	is	a	collection	of	stack	traces	showing	the	call	sequences	that	led	to
instances	of	a	particular	event,	such	as	allocation.	Packages	can	create	and
maintain	their	own	profiles;	the	most	common	use	is	for	tracking	resources	that
must	be	explicitly	closed,	such	as	files	or	network	connections.

A	Profile's	methods	can	be	called	from	multiple	goroutines	simultaneously.

Each	Profile	has	a	unique	name.	A	few	profiles	are	predefined:

goroutine				-	stack	traces	of	all	current	goroutines

heap									-	a	sampling	of	all	heap	allocations

threadcreate	-	stack	traces	that	led	to	the	creation	of	new	OS	threads

These	predefine	profiles	maintain	themselves	and	panic	on	an	explicit	Add	or
Remove	method	call.

The	CPU	profile	is	not	available	as	a	Profile.	It	has	a	special	API,	the
StartCPUProfile	and	StopCPUProfile	functions,	because	it	streams	output	to	a
writer	during	profiling.

func	Lookup

func	Lookup(name	string)	*Profile

Lookup	returns	the	profile	with	the	given	name,	or	nil	if	no	such	profile	exists.

func	NewProfile

func	NewProfile(name	string)	*Profile

NewProfile	creates	a	new	profile	with	the	given	name.	If	a	profile	with	that
name	already	exists,	NewProfile	panics.	The	convention	is	to	use	a	'import/path.'
prefix	to	create	separate	name	spaces	for	each	package.

func	(*Profile)	Add

func	(p	*Profile)	Add(value	interface{},	skip	int)

Add	adds	the	current	execution	stack	to	the	profile,	associated	with	value.	Add
stores	value	in	an	internal	map,	so	value	must	be	suitable	for	use	as	a	map	key
and	will	not	be	garbage	collected	until	the	corresponding	call	to	Remove.	Add
panics	if	the	profile	already	contains	a	stack	for	value.

The	skip	parameter	has	the	same	meaning	as	runtime.Caller's	skip	and	controls
where	the	stack	trace	begins.	Passing	skip=0	begins	the	trace	in	the	function
calling	Add.	For	example,	given	this	execution	stack:

Add

called	from	rpc.NewClient

called	from	mypkg.Run

called	from	main.main

Passing	skip=0	begins	the	stack	trace	at	the	call	to	Add	inside	rpc.NewClient.
Passing	skip=1	begins	the	stack	trace	at	the	call	to	NewClient	inside	mypkg.Run.

func	(*Profile)	Count

func	(p	*Profile)	Count()	int

Count	returns	the	number	of	execution	stacks	currently	in	the	profile.

func	(*Profile)	Name

func	(p	*Profile)	Name()	string

Name	returns	this	profile's	name,	which	can	be	passed	to	Lookup	to	reobtain	the
profile.

func	(*Profile)	Remove

func	(p	*Profile)	Remove(value	interface{})

Remove	removes	the	execution	stack	associated	with	value	from	the	profile.	It	is
a	no-op	if	the	value	is	not	in	the	profile.

func	(*Profile)	WriteTo

func	(p	*Profile)	WriteTo(w	io.Writer,	debug	int)	error

WriteTo	writes	a	pprof-formatted	snapshot	of	the	profile	to	w.	If	a	write	to	w
returns	an	error,	WriteTo	returns	that	error.	Otherwise,	WriteTo	returns	nil.

The	debug	parameter	enables	additional	output.	Passing	debug=0	prints	only	the
hexadecimal	addresses	that	pprof	needs.	Passing	debug=1	adds	comments
translating	addresses	to	function	names	and	line	numbers,	so	that	a	programmer
can	read	the	profile	without	tools.

The	predefined	profiles	may	assign	meaning	to	other	debug	values;	for	example,
when	printing	the	"goroutine"	profile,	debug=2	means	to	print	the	goroutine
stacks	in	the	same	form	that	a	Go	program	uses	when	dying	due	to	an
unrecovered	panic.

Bugs

A	bug	in	the	OS	X	Snow	Leopard	64-bit	kernel	prevents	CPU	profiling	from
giving	accurate	results	on	that	system.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	sort
import	"sort"

Overview
Index
Examples

Overview	?

Overview	?

Package	sort	provides	primitives	for	sorting	slices	and	user-defined	collections.

Index

func	Float64s(a	[]float64)
func	Float64sAreSorted(a	[]float64)	bool
func	Ints(a	[]int)
func	IntsAreSorted(a	[]int)	bool
func	IsSorted(data	Interface)	bool
func	Search(n	int,	f	func(int)	bool)	int
func	SearchFloat64s(a	[]float64,	x	float64)	int
func	SearchInts(a	[]int,	x	int)	int
func	SearchStrings(a	[]string,	x	string)	int
func	Sort(data	Interface)
func	Strings(a	[]string)
func	StringsAreSorted(a	[]string)	bool
type	Float64Slice
				func	(p	Float64Slice)	Len()	int
				func	(p	Float64Slice)	Less(i,	j	int)	bool
				func	(p	Float64Slice)	Search(x	float64)	int
				func	(p	Float64Slice)	Sort()
				func	(p	Float64Slice)	Swap(i,	j	int)
type	IntSlice
				func	(p	IntSlice)	Len()	int
				func	(p	IntSlice)	Less(i,	j	int)	bool
				func	(p	IntSlice)	Search(x	int)	int
				func	(p	IntSlice)	Sort()
				func	(p	IntSlice)	Swap(i,	j	int)
type	Interface
type	StringSlice
				func	(p	StringSlice)	Len()	int
				func	(p	StringSlice)	Less(i,	j	int)	bool
				func	(p	StringSlice)	Search(x	string)	int
				func	(p	StringSlice)	Sort()
				func	(p	StringSlice)	Swap(i,	j	int)

Examples

Interface

Interface	(Reverse)
Ints

Package	files

search.go	sort.go

func	Float64s
func	Float64s(a	[]float64)

Float64s	sorts	a	slice	of	float64s	in	increasing	order.

func	Float64sAreSorted
func	Float64sAreSorted(a	[]float64)	bool

Float64sAreSorted	tests	whether	a	slice	of	float64s	is	sorted	in	increasing	order.

func	Ints
func	Ints(a	[]int)

Ints	sorts	a	slice	of	ints	in	increasing	order.

?	Example

?	Example

Code:

s	:=	[]int{5,	2,	6,	3,	1,	4}	//	unsorted

sort.Ints(s)

fmt.Println(s)

Output:

[1	2	3	4	5	6]

func	IntsAreSorted
func	IntsAreSorted(a	[]int)	bool

IntsAreSorted	tests	whether	a	slice	of	ints	is	sorted	in	increasing	order.

func	IsSorted
func	IsSorted(data	Interface)	bool

IsSorted	reports	whether	data	is	sorted.

func	Search
func	Search(n	int,	f	func(int)	bool)	int

Search	uses	binary	search	to	find	and	return	the	smallest	index	i	in	[0,	n)	at
which	f(i)	is	true,	assuming	that	on	the	range	[0,	n),	f(i)	==	true	implies	f(i+1)	==
true.	That	is,	Search	requires	that	f	is	false	for	some	(possibly	empty)	prefix	of
the	input	range	[0,	n)	and	then	true	for	the	(possibly	empty)	remainder;	Search
returns	the	first	true	index.	If	there	is	no	such	index,	Search	returns	n.	Search
calls	f(i)	only	for	i	in	the	range	[0,	n).

A	common	use	of	Search	is	to	find	the	index	i	for	a	value	x	in	a	sorted,	indexable
data	structure	such	as	an	array	or	slice.	In	this	case,	the	argument	f,	typically	a
closure,	captures	the	value	to	be	searched	for,	and	how	the	data	structure	is
indexed	and	ordered.

For	instance,	given	a	slice	data	sorted	in	ascending	order,	the	call
Search(len(data),	func(i	int)	bool	{	return	data[i]	>=	23	})	returns	the	smallest
index	i	such	that	data[i]	>=	23.	If	the	caller	wants	to	find	whether	23	is	in	the
slice,	it	must	test	data[i]	==	23	separately.

Searching	data	sorted	in	descending	order	would	use	the	<=	operator	instead	of
the	>=	operator.

To	complete	the	example	above,	the	following	code	tries	to	find	the	value	x	in	an
integer	slice	data	sorted	in	ascending	order:

x	:=	23

i	:=	sort.Search(len(data),	func(i	int)	bool	{	return	data[i]	>=	x	})

if	i	<	len(data)	&&	data[i]	==	x	{

	 //	x	is	present	at	data[i]

}	else	{

	 //	x	is	not	present	in	data,

	 //	but	i	is	the	index	where	it	would	be	inserted.

}

As	a	more	whimsical	example,	this	program	guesses	your	number:

func	GuessingGame()	{

	 var	s	string

	 fmt.Printf("Pick	an	integer	from	0	to	100.\n")

	 answer	:=	sort.Search(100,	func(i	int)	bool	{

	 	 fmt.Printf("Is	your	number	<=	%d?	",	i)

	 	 fmt.Scanf("%s",	&s)

	 	 return	s	!=	""	&&	s[0]	==	'y'

	 })

	 fmt.Printf("Your	number	is	%d.\n",	answer)

}

func	SearchFloat64s
func	SearchFloat64s(a	[]float64,	x	float64)	int

SearchFloat64s	searches	for	x	in	a	sorted	slice	of	float64s	and	returns	the	index
as	specified	by	Search.	The	slice	must	be	sorted	in	ascending	order.

func	SearchInts
func	SearchInts(a	[]int,	x	int)	int

SearchInts	searches	for	x	in	a	sorted	slice	of	ints	and	returns	the	index	as
specified	by	Search.	The	slice	must	be	sorted	in	ascending	order.

func	SearchStrings
func	SearchStrings(a	[]string,	x	string)	int

SearchStrings	searches	for	x	slice	a	sorted	slice	of	strings	and	returns	the	index
as	specified	by	Search.	The	slice	must	be	sorted	in	ascending	order.

func	Sort
func	Sort(data	Interface)

Sort	sorts	data.	It	makes	one	call	to	data.Len	to	determine	n,	and	O(n*log(n))
calls	to	data.Less	and	data.Swap.	The	sort	is	not	guaranteed	to	be	stable.

func	Strings
func	Strings(a	[]string)

Strings	sorts	a	slice	of	strings	in	increasing	order.

func	StringsAreSorted
func	StringsAreSorted(a	[]string)	bool

StringsAreSorted	tests	whether	a	slice	of	strings	is	sorted	in	increasing	order.

type	Float64Slice
type	Float64Slice	[]float64

Float64Slice	attaches	the	methods	of	Interface	to	[]float64,	sorting	in	increasing
order.

func	(Float64Slice)	Len

func	(p	Float64Slice)	Len()	int

func	(Float64Slice)	Less

func	(p	Float64Slice)	Less(i,	j	int)	bool

func	(Float64Slice)	Search

func	(p	Float64Slice)	Search(x	float64)	int

Search	returns	the	result	of	applying	SearchFloat64s	to	the	receiver	and	x.

func	(Float64Slice)	Sort

func	(p	Float64Slice)	Sort()

Sort	is	a	convenience	method.

func	(Float64Slice)	Swap

func	(p	Float64Slice)	Swap(i,	j	int)

type	IntSlice
type	IntSlice	[]int

IntSlice	attaches	the	methods	of	Interface	to	[]int,	sorting	in	increasing	order.

func	(IntSlice)	Len

func	(p	IntSlice)	Len()	int

func	(IntSlice)	Less

func	(p	IntSlice)	Less(i,	j	int)	bool

func	(IntSlice)	Search

func	(p	IntSlice)	Search(x	int)	int

Search	returns	the	result	of	applying	SearchInts	to	the	receiver	and	x.

func	(IntSlice)	Sort

func	(p	IntSlice)	Sort()

Sort	is	a	convenience	method.

func	(IntSlice)	Swap

func	(p	IntSlice)	Swap(i,	j	int)

type	Interface
type	Interface	interface	{

				//	Len	is	the	number	of	elements	in	the	collection.

				Len()	int

				//	Less	returns	whether	the	element	with	index	i	should	sort

				//	before	the	element	with	index	j.

				Less(i,	j	int)	bool

				//	Swap	swaps	the	elements	with	indexes	i	and	j.

				Swap(i,	j	int)

}

A	type,	typically	a	collection,	that	satisfies	sort.Interface	can	be	sorted	by	the
routines	in	this	package.	The	methods	require	that	the	elements	of	the	collection
be	enumerated	by	an	integer	index.

?	Example

?	Example

Code:

package	sort_test

import	(

				"fmt"

				"sort"

)

type	Grams	int

func	(g	Grams)	String()	string	{	return	fmt.Sprintf("%dg",	int(g))	}

type	Organ	struct	{

				Name			string

				Weight	Grams

}

type	Organs	[]*Organ

func	(s	Organs)	Len()	int						{	return	len(s)	}

func	(s	Organs)	Swap(i,	j	int)	{	s[i],	s[j]	=	s[j],	s[i]	}

//	ByName	implements	sort.Interface	by	providing	Less	and	using	the	Len	and

//	Swap	methods	of	the	embedded	Organs	value.

type	ByName	struct{	Organs	}

func	(s	ByName)	Less(i,	j	int)	bool	{	return	s.Organs[i].Name	<	s.Organs[j].Name	}

//	ByWeight	implements	sort.Interface	by	providing	Less	and	using	the	Len	and

//	Swap	methods	of	the	embedded	Organs	value.

type	ByWeight	struct{	Organs	}

func	(s	ByWeight)	Less(i,	j	int)	bool	{	return	s.Organs[i].Weight	<	s.Organs[j].Weight	}

func	ExampleInterface()	{

				s	:=	[]*Organ{

								{"brain",	1340},

								{"heart",	290},

								{"liver",	1494},

								{"pancreas",	131},

								{"prostate",	62},

								{"spleen",	162},

				}

				sort.Sort(ByWeight{s})

				fmt.Println("Organs	by	weight:")

				printOrgans(s)

				sort.Sort(ByName{s})

				fmt.Println("Organs	by	name:")

				printOrgans(s)

				//	Output:

				//	Organs	by	weight:

				//	prostate	(62g)

				//	pancreas	(131g)

				//	spleen			(162g)

				//	heart				(290g)

				//	brain				(1340g)

				//	liver				(1494g)

				//	Organs	by	name:

				//	brain				(1340g)

				//	heart				(290g)

				//	liver				(1494g)

				//	pancreas	(131g)

				//	prostate	(62g)

				//	spleen			(162g)

}

func	printOrgans(s	[]*Organ)	{

				for	_,	o	:=	range	s	{

								fmt.Printf("%-8s	(%v)\n",	o.Name,	o.Weight)

				}

}

?	Example	(Reverse)

?	Example	(Reverse)

Code:

package	sort_test

import	(

				"fmt"

				"sort"

)

//	Reverse	embeds	a	sort.Interface	value	and	implements	a	reverse	sort	over

//	that	value.

type	Reverse	struct	{

				//	This	embedded	Interface	permits	Reverse	to	use	the	methods	of

				//	another	Interface	implementation.

				sort.Interface

}

//	Less	returns	the	opposite	of	the	embedded	implementation's	Less	method.

func	(r	Reverse)	Less(i,	j	int)	bool	{

				return	r.Interface.Less(j,	i)

}

func	ExampleInterface_reverse()	{

				s	:=	[]int{5,	2,	6,	3,	1,	4}	//	unsorted

				sort.Sort(Reverse{sort.IntSlice(s)})

				fmt.Println(s)

				//	Output:	[6	5	4	3	2	1]

}

type	StringSlice
type	StringSlice	[]string

StringSlice	attaches	the	methods	of	Interface	to	[]string,	sorting	in	increasing
order.

func	(StringSlice)	Len

func	(p	StringSlice)	Len()	int

func	(StringSlice)	Less

func	(p	StringSlice)	Less(i,	j	int)	bool

func	(StringSlice)	Search

func	(p	StringSlice)	Search(x	string)	int

Search	returns	the	result	of	applying	SearchStrings	to	the	receiver	and	x.

func	(StringSlice)	Sort

func	(p	StringSlice)	Sort()

Sort	is	a	convenience	method.

func	(StringSlice)	Swap

func	(p	StringSlice)	Swap(i,	j	int)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	strconv
import	"strconv"

Overview
Index

Overview	?

Overview	?

Package	strconv	implements	conversions	to	and	from	string	representations	of
basic	data	types.

Index

Constants
Variables
func	AppendBool(dst	[]byte,	b	bool)	[]byte
func	AppendFloat(dst	[]byte,	f	float64,	fmt	byte,	prec	int,	bitSize	int)	[]byte
func	AppendInt(dst	[]byte,	i	int64,	base	int)	[]byte
func	AppendQuote(dst	[]byte,	s	string)	[]byte
func	AppendQuoteRune(dst	[]byte,	r	rune)	[]byte
func	AppendQuoteRuneToASCII(dst	[]byte,	r	rune)	[]byte
func	AppendQuoteToASCII(dst	[]byte,	s	string)	[]byte
func	AppendUint(dst	[]byte,	i	uint64,	base	int)	[]byte
func	Atoi(s	string)	(i	int,	err	error)
func	CanBackquote(s	string)	bool
func	FormatBool(b	bool)	string
func	FormatFloat(f	float64,	fmt	byte,	prec,	bitSize	int)	string
func	FormatInt(i	int64,	base	int)	string
func	FormatUint(i	uint64,	base	int)	string
func	IsPrint(r	rune)	bool
func	Itoa(i	int)	string
func	ParseBool(str	string)	(value	bool,	err	error)
func	ParseFloat(s	string,	bitSize	int)	(f	float64,	err	error)
func	ParseInt(s	string,	base	int,	bitSize	int)	(i	int64,	err	error)
func	ParseUint(s	string,	b	int,	bitSize	int)	(n	uint64,	err	error)
func	Quote(s	string)	string
func	QuoteRune(r	rune)	string
func	QuoteRuneToASCII(r	rune)	string
func	QuoteToASCII(s	string)	string
func	Unquote(s	string)	(t	string,	err	error)
func	UnquoteChar(s	string,	quote	byte)	(value	rune,	multibyte	bool,	tail
string,	err	error)
type	NumError
				func	(e	*NumError)	Error()	string

Package	files

atob.go	atof.go	atoi.go	decimal.go	extfloat.go	ftoa.go	isprint.go	itoa.go	quote.go

Constants
const	IntSize	=	intSize	//	number	of	bits	in	int,	uint	(32	or	64)

Variables
var	ErrRange	=	errors.New("value	out	of	range")

ErrRange	indicates	that	a	value	is	out	of	range	for	the	target	type.

var	ErrSyntax	=	errors.New("invalid	syntax")

ErrSyntax	indicates	that	a	value	does	not	have	the	right	syntax	for	the	target
type.

func	AppendBool
func	AppendBool(dst	[]byte,	b	bool)	[]byte

AppendBool	appends	"true"	or	"false",	according	to	the	value	of	b,	to	dst	and
returns	the	extended	buffer.

func	AppendFloat
func	AppendFloat(dst	[]byte,	f	float64,	fmt	byte,	prec	int,	bitSize	int)	[]byte

AppendFloat	appends	the	string	form	of	the	floating-point	number	f,	as
generated	by	FormatFloat,	to	dst	and	returns	the	extended	buffer.

func	AppendInt
func	AppendInt(dst	[]byte,	i	int64,	base	int)	[]byte

AppendInt	appends	the	string	form	of	the	integer	i,	as	generated	by	FormatInt,	to
dst	and	returns	the	extended	buffer.

func	AppendQuote
func	AppendQuote(dst	[]byte,	s	string)	[]byte

AppendQuote	appends	a	double-quoted	Go	string	literal	representing	s,	as
generated	by	Quote,	to	dst	and	returns	the	extended	buffer.

func	AppendQuoteRune
func	AppendQuoteRune(dst	[]byte,	r	rune)	[]byte

AppendQuoteRune	appends	a	single-quoted	Go	character	literal	representing	the
rune,	as	generated	by	QuoteRune,	to	dst	and	returns	the	extended	buffer.

func	AppendQuoteRuneToASCII
func	AppendQuoteRuneToASCII(dst	[]byte,	r	rune)	[]byte

AppendQuoteRune	appends	a	single-quoted	Go	character	literal	representing	the
rune,	as	generated	by	QuoteRuneToASCII,	to	dst	and	returns	the	extended
buffer.

func	AppendQuoteToASCII
func	AppendQuoteToASCII(dst	[]byte,	s	string)	[]byte

AppendQuoteToASCII	appends	a	double-quoted	Go	string	literal	representing	s,
as	generated	by	QuoteToASCII,	to	dst	and	returns	the	extended	buffer.

func	AppendUint
func	AppendUint(dst	[]byte,	i	uint64,	base	int)	[]byte

AppendUint	appends	the	string	form	of	the	unsigned	integer	i,	as	generated	by
FormatUint,	to	dst	and	returns	the	extended	buffer.

func	Atoi
func	Atoi(s	string)	(i	int,	err	error)

Atoi	is	shorthand	for	ParseInt(s,	10,	0).

func	CanBackquote
func	CanBackquote(s	string)	bool

CanBackquote	returns	whether	the	string	s	would	be	a	valid	Go	string	literal	if
enclosed	in	backquotes.

func	FormatBool
func	FormatBool(b	bool)	string

FormatBool	returns	"true"	or	"false"	according	to	the	value	of	b

func	FormatFloat
func	FormatFloat(f	float64,	fmt	byte,	prec,	bitSize	int)	string

FormatFloat	converts	the	floating-point	number	f	to	a	string,	according	to	the
format	fmt	and	precision	prec.	It	rounds	the	result	assuming	that	the	original	was
obtained	from	a	floating-point	value	of	bitSize	bits	(32	for	float32,	64	for
float64).

The	format	fmt	is	one	of	'b'	(-ddddpddd,	a	binary	exponent),	'e'	(-d.ddddedd,	a
decimal	exponent),	'E'	(-d.ddddEdd,	a	decimal	exponent),	'f'	(-ddd.dddd,	no
exponent),	'g'	('e'	for	large	exponents,	'f'	otherwise),	or	'G'	('E'	for	large
exponents,	'f'	otherwise).

The	precision	prec	controls	the	number	of	digits	(excluding	the	exponent)
printed	by	the	'e',	'E',	'f',	'g',	and	'G'	formats.	For	'e',	'E',	and	'f'	it	is	the	number	of
digits	after	the	decimal	point.	For	'g'	and	'G'	it	is	the	total	number	of	digits.	The
special	precision	-1	uses	the	smallest	number	of	digits	necessary	such	that
ParseFloat	will	return	f	exactly.

func	FormatInt
func	FormatInt(i	int64,	base	int)	string

FormatInt	returns	the	string	representation	of	i	in	the	given	base.

func	FormatUint
func	FormatUint(i	uint64,	base	int)	string

FormatUint	returns	the	string	representation	of	i	in	the	given	base.

func	IsPrint
func	IsPrint(r	rune)	bool

IsPrint	reports	whether	the	rune	is	defined	as	printable	by	Go,	with	the	same
definition	as	unicode.IsPrint:	letters,	numbers,	punctuation,	symbols	and	ASCII
space.

func	Itoa
func	Itoa(i	int)	string

Itoa	is	shorthand	for	FormatInt(i,	10).

func	ParseBool
func	ParseBool(str	string)	(value	bool,	err	error)

ParseBool	returns	the	boolean	value	represented	by	the	string.	It	accepts	1,	t,	T,
TRUE,	true,	True,	0,	f,	F,	FALSE,	false,	False.	Any	other	value	returns	an	error.

func	ParseFloat
func	ParseFloat(s	string,	bitSize	int)	(f	float64,	err	error)

ParseFloat	converts	the	string	s	to	a	floating-point	number	with	the	precision
specified	by	bitSize:	32	for	float32,	or	64	for	float64.	When	bitSize=32,	the
result	still	has	type	float64,	but	it	will	be	convertible	to	float32	without	changing
its	value.

If	s	is	well-formed	and	near	a	valid	floating	point	number,	ParseFloat	returns	the
nearest	floating	point	number	rounded	using	IEEE754	unbiased	rounding.

The	errors	that	ParseFloat	returns	have	concrete	type	*NumError	and	include
err.Num	=	s.

If	s	is	not	syntactically	well-formed,	ParseFloat	returns	err.Error	=	ErrSyntax.

If	s	is	syntactically	well-formed	but	is	more	than	1/2	ULP	away	from	the	largest
floating	point	number	of	the	given	size,	ParseFloat	returns	f	=	Inf,	err.Error	=
ErrRange.

func	ParseInt
func	ParseInt(s	string,	base	int,	bitSize	int)	(i	int64,	err	error)

ParseInt	interprets	a	string	s	in	the	given	base	(2	to	36)	and	returns	the
corresponding	value	i.	If	base	==	0,	the	base	is	implied	by	the	string's	prefix:
base	16	for	"0x",	base	8	for	"0",	and	base	10	otherwise.

The	bitSize	argument	specifies	the	integer	type	that	the	result	must	fit	into.	Bit
sizes	0,	8,	16,	32,	and	64	correspond	to	int,	int8,	int16,	int32,	and	int64.

The	errors	that	ParseInt	returns	have	concrete	type	*NumError	and	include
err.Num	=	s.	If	s	is	empty	or	contains	invalid	digits,	err.Error	=	ErrSyntax;	if	the
value	corresponding	to	s	cannot	be	represented	by	a	signed	integer	of	the	given
size,	err.Error	=	ErrRange.

func	ParseUint
func	ParseUint(s	string,	b	int,	bitSize	int)	(n	uint64,	err	error)

ParseUint	is	like	ParseInt	but	for	unsigned	numbers.

func	Quote
func	Quote(s	string)	string

Quote	returns	a	double-quoted	Go	string	literal	representing	s.	The	returned
string	uses	Go	escape	sequences	(\t,	\n,	\xFF,	\u0100)	for	control	characters	and
non-printable	characters	as	defined	by	IsPrint.

func	QuoteRune
func	QuoteRune(r	rune)	string

QuoteRune	returns	a	single-quoted	Go	character	literal	representing	the	rune.
The	returned	string	uses	Go	escape	sequences	(\t,	\n,	\xFF,	\u0100)	for	control
characters	and	non-printable	characters	as	defined	by	IsPrint.

func	QuoteRuneToASCII
func	QuoteRuneToASCII(r	rune)	string

QuoteRuneToASCII	returns	a	single-quoted	Go	character	literal	representing	the
rune.	The	returned	string	uses	Go	escape	sequences	(\t,	\n,	\xFF,	\u0100)	for	non-
ASCII	characters	and	non-printable	characters	as	defined	by	IsPrint.

func	QuoteToASCII
func	QuoteToASCII(s	string)	string

QuoteToASCII	returns	a	double-quoted	Go	string	literal	representing	s.	The
returned	string	uses	Go	escape	sequences	(\t,	\n,	\xFF,	\u0100)	for	non-ASCII
characters	and	non-printable	characters	as	defined	by	IsPrint.

func	Unquote
func	Unquote(s	string)	(t	string,	err	error)

Unquote	interprets	s	as	a	single-quoted,	double-quoted,	or	backquoted	Go	string
literal,	returning	the	string	value	that	s	quotes.	(If	s	is	single-quoted,	it	would	be
a	Go	character	literal;	Unquote	returns	the	corresponding	one-character	string.)

func	UnquoteChar
func	UnquoteChar(s	string,	quote	byte)	(value	rune,	multibyte	bool,	tail	string,	err	error)

UnquoteChar	decodes	the	first	character	or	byte	in	the	escaped	string	or
character	literal	represented	by	the	string	s.	It	returns	four	values:

1)	value,	the	decoded	Unicode	code	point	or	byte	value;

2)	multibyte,	a	boolean	indicating	whether	the	decoded	character	requires	a	multibyte	UTF-8	representation;

3)	tail,	the	remainder	of	the	string	after	the	character;	and

4)	an	error	that	will	be	nil	if	the	character	is	syntactically	valid.

The	second	argument,	quote,	specifies	the	type	of	literal	being	parsed	and
therefore	which	escaped	quote	character	is	permitted.	If	set	to	a	single	quote,	it
permits	the	sequence	\'	and	disallows	unescaped	'.	If	set	to	a	double	quote,	it
permits	\"	and	disallows	unescaped	".	If	set	to	zero,	it	does	not	permit	either
escape	and	allows	both	quote	characters	to	appear	unescaped.

type	NumError
type	NumError	struct	{

				Func	string	//	the	failing	function	(ParseBool,	ParseInt,	ParseUint,	ParseFloat)

				Num		string	//	the	input

				Err		error		//	the	reason	the	conversion	failed	(ErrRange,	ErrSyntax)

}

A	NumError	records	a	failed	conversion.

func	(*NumError)	Error

func	(e	*NumError)	Error()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	strings
import	"strings"

Overview
Index
Examples

Overview	?

Overview	?

Package	strings	implements	simple	functions	to	manipulate	strings.

Index

func	Contains(s,	substr	string)	bool
func	ContainsAny(s,	chars	string)	bool
func	ContainsRune(s	string,	r	rune)	bool
func	Count(s,	sep	string)	int
func	EqualFold(s,	t	string)	bool
func	Fields(s	string)	[]string
func	FieldsFunc(s	string,	f	func(rune)	bool)	[]string
func	HasPrefix(s,	prefix	string)	bool
func	HasSuffix(s,	suffix	string)	bool
func	Index(s,	sep	string)	int
func	IndexAny(s,	chars	string)	int
func	IndexFunc(s	string,	f	func(rune)	bool)	int
func	IndexRune(s	string,	r	rune)	int
func	Join(a	[]string,	sep	string)	string
func	LastIndex(s,	sep	string)	int
func	LastIndexAny(s,	chars	string)	int
func	LastIndexFunc(s	string,	f	func(rune)	bool)	int
func	Map(mapping	func(rune)	rune,	s	string)	string
func	Repeat(s	string,	count	int)	string
func	Replace(s,	old,	new	string,	n	int)	string
func	Split(s,	sep	string)	[]string
func	SplitAfter(s,	sep	string)	[]string
func	SplitAfterN(s,	sep	string,	n	int)	[]string
func	SplitN(s,	sep	string,	n	int)	[]string
func	Title(s	string)	string
func	ToLower(s	string)	string
func	ToLowerSpecial(_case	unicode.SpecialCase,	s	string)	string
func	ToTitle(s	string)	string
func	ToTitleSpecial(_case	unicode.SpecialCase,	s	string)	string
func	ToUpper(s	string)	string
func	ToUpperSpecial(_case	unicode.SpecialCase,	s	string)	string
func	Trim(s	string,	cutset	string)	string
func	TrimFunc(s	string,	f	func(rune)	bool)	string
func	TrimLeft(s	string,	cutset	string)	string
func	TrimLeftFunc(s	string,	f	func(rune)	bool)	string

func	TrimRight(s	string,	cutset	string)	string
func	TrimRightFunc(s	string,	f	func(rune)	bool)	string
func	TrimSpace(s	string)	string
type	Reader
				func	NewReader(s	string)	*Reader
				func	(r	*Reader)	Len()	int
				func	(r	*Reader)	Read(b	[]byte)	(n	int,	err	error)
				func	(r	*Reader)	ReadAt(b	[]byte,	off	int64)	(n	int,	err	error)
				func	(r	*Reader)	ReadByte()	(b	byte,	err	error)
				func	(r	*Reader)	ReadRune()	(ch	rune,	size	int,	err	error)
				func	(r	*Reader)	Seek(offset	int64,	whence	int)	(int64,	error)
				func	(r	*Reader)	UnreadByte()	error
				func	(r	*Reader)	UnreadRune()	error
type	Replacer
				func	NewReplacer(oldnew	...string)	*Replacer
				func	(r	*Replacer)	Replace(s	string)	string
				func	(r	*Replacer)	WriteString(w	io.Writer,	s	string)	(n	int,	err	error)
Bugs

Examples

Contains
ContainsAny
Count
EqualFold
Fields
Index
IndexRune
Join
LastIndex
Map
NewReplacer
Repeat
Replace
Split
SplitAfter
SplitAfterN
SplitN

Title
ToLower
ToTitle
ToUpper
Trim
TrimSpace

Package	files

reader.go	replace.go	strings.go

func	Contains
func	Contains(s,	substr	string)	bool

Contains	returns	true	if	substr	is	within	s.

?	Example

?	Example

Code:

fmt.Println(strings.Contains("seafood",	"foo"))

fmt.Println(strings.Contains("seafood",	"bar"))

fmt.Println(strings.Contains("seafood",	""))

fmt.Println(strings.Contains("",	""))

Output:

true

false

true

true

func	ContainsAny
func	ContainsAny(s,	chars	string)	bool

ContainsAny	returns	true	if	any	Unicode	code	points	in	chars	are	within	s.

?	Example

?	Example

Code:

fmt.Println(strings.ContainsAny("team",	"i"))

fmt.Println(strings.ContainsAny("failure",	"u	&	i"))

fmt.Println(strings.ContainsAny("foo",	""))

fmt.Println(strings.ContainsAny("",	""))

Output:

false

true

false

false

func	ContainsRune
func	ContainsRune(s	string,	r	rune)	bool

ContainsRune	returns	true	if	the	Unicode	code	point	r	is	within	s.

func	Count
func	Count(s,	sep	string)	int

Count	counts	the	number	of	non-overlapping	instances	of	sep	in	s.

?	Example

?	Example

Code:

fmt.Println(strings.Count("cheese",	"e"))

fmt.Println(strings.Count("five",	""))	//	before	&	after	each	rune

Output:

3

5

func	EqualFold
func	EqualFold(s,	t	string)	bool

EqualFold	reports	whether	s	and	t,	interpreted	as	UTF-8	strings,	are	equal	under
Unicode	case-folding.

?	Example

?	Example

Code:

fmt.Println(strings.EqualFold("Go",	"go"))

Output:

true

func	Fields
func	Fields(s	string)	[]string

Fields	splits	the	string	s	around	each	instance	of	one	or	more	consecutive	white
space	characters,	returning	an	array	of	substrings	of	s	or	an	empty	list	if	s
contains	only	white	space.

?	Example

?	Example

Code:

fmt.Printf("Fields	are:	%q",	strings.Fields("		foo	bar		baz			"))

Output:

Fields	are:	["foo"	"bar"	"baz"]

func	FieldsFunc
func	FieldsFunc(s	string,	f	func(rune)	bool)	[]string

FieldsFunc	splits	the	string	s	at	each	run	of	Unicode	code	points	c	satisfying	f(c)
and	returns	an	array	of	slices	of	s.	If	all	code	points	in	s	satisfy	f(c)	or	the	string
is	empty,	an	empty	slice	is	returned.

func	HasPrefix
func	HasPrefix(s,	prefix	string)	bool

HasPrefix	tests	whether	the	string	s	begins	with	prefix.

func	HasSuffix
func	HasSuffix(s,	suffix	string)	bool

HasSuffix	tests	whether	the	string	s	ends	with	suffix.

func	Index
func	Index(s,	sep	string)	int

Index	returns	the	index	of	the	first	instance	of	sep	in	s,	or	-1	if	sep	is	not	present
in	s.

?	Example

?	Example

Code:

fmt.Println(strings.Index("chicken",	"ken"))

fmt.Println(strings.Index("chicken",	"dmr"))

Output:

4

-1

func	IndexAny
func	IndexAny(s,	chars	string)	int

IndexAny	returns	the	index	of	the	first	instance	of	any	Unicode	code	point	from
chars	in	s,	or	-1	if	no	Unicode	code	point	from	chars	is	present	in	s.

func	IndexFunc
func	IndexFunc(s	string,	f	func(rune)	bool)	int

IndexFunc	returns	the	index	into	s	of	the	first	Unicode	code	point	satisfying	f(c),
or	-1	if	none	do.

func	IndexRune
func	IndexRune(s	string,	r	rune)	int

IndexRune	returns	the	index	of	the	first	instance	of	the	Unicode	code	point	r,	or
-1	if	rune	is	not	present	in	s.

?	Example

?	Example

Code:

fmt.Println(strings.IndexRune("chicken",	'k'))

fmt.Println(strings.IndexRune("chicken",	'd'))

Output:

4

-1

func	Join
func	Join(a	[]string,	sep	string)	string

Join	concatenates	the	elements	of	a	to	create	a	single	string.	The	separator	string
sep	is	placed	between	elements	in	the	resulting	string.

?	Example

?	Example

Code:

s	:=	[]string{"foo",	"bar",	"baz"}

fmt.Println(strings.Join(s,	",	"))

Output:

foo,	bar,	baz

func	LastIndex
func	LastIndex(s,	sep	string)	int

LastIndex	returns	the	index	of	the	last	instance	of	sep	in	s,	or	-1	if	sep	is	not
present	in	s.

?	Example

?	Example

Code:

fmt.Println(strings.Index("go	gopher",	"go"))

fmt.Println(strings.LastIndex("go	gopher",	"go"))

fmt.Println(strings.LastIndex("go	gopher",	"rodent"))

Output:

0

3

-1

func	LastIndexAny
func	LastIndexAny(s,	chars	string)	int

LastIndexAny	returns	the	index	of	the	last	instance	of	any	Unicode	code	point
from	chars	in	s,	or	-1	if	no	Unicode	code	point	from	chars	is	present	in	s.

func	LastIndexFunc
func	LastIndexFunc(s	string,	f	func(rune)	bool)	int

LastIndexFunc	returns	the	index	into	s	of	the	last	Unicode	code	point	satisfying
f(c),	or	-1	if	none	do.

func	Map
func	Map(mapping	func(rune)	rune,	s	string)	string

Map	returns	a	copy	of	the	string	s	with	all	its	characters	modified	according	to
the	mapping	function.	If	mapping	returns	a	negative	value,	the	character	is
dropped	from	the	string	with	no	replacement.

?	Example

?	Example

Code:

rot13	:=	func(r	rune)	rune	{

				switch	{

				case	r	>=	'A'	&&	r	<=	'Z':

								return	'A'	+	(r-'A'+13)%26

				case	r	>=	'a'	&&	r	<=	'z':

								return	'a'	+	(r-'a'+13)%26

				}

				return	r

}

fmt.Println(strings.Map(rot13,	"'Twas	brillig	and	the	slithy	gopher..."))

Output:

'Gjnf	oevyyvt	naq	gur	fyvgul	tbcure...

func	Repeat
func	Repeat(s	string,	count	int)	string

Repeat	returns	a	new	string	consisting	of	count	copies	of	the	string	s.

?	Example

?	Example

Code:

fmt.Println("ba"	+	strings.Repeat("na",	2))

Output:

banana

func	Replace
func	Replace(s,	old,	new	string,	n	int)	string

Replace	returns	a	copy	of	the	string	s	with	the	first	n	non-overlapping	instances
of	old	replaced	by	new.	If	n	<	0,	there	is	no	limit	on	the	number	of	replacements.

?	Example

?	Example

Code:

fmt.Println(strings.Replace("oink	oink	oink",	"k",	"ky",	2))

fmt.Println(strings.Replace("oink	oink	oink",	"oink",	"moo",	-1))

Output:

oinky	oinky	oink

moo	moo	moo

func	Split
func	Split(s,	sep	string)	[]string

Split	slices	s	into	all	substrings	separated	by	sep	and	returns	a	slice	of	the
substrings	between	those	separators.	If	sep	is	empty,	Split	splits	after	each	UTF-
8	sequence.	It	is	equivalent	to	SplitN	with	a	count	of	-1.

?	Example

?	Example

Code:

fmt.Printf("%q\n",	strings.Split("a,b,c",	","))

fmt.Printf("%q\n",	strings.Split("a	man	a	plan	a	canal	panama",	"a	"))

fmt.Printf("%q\n",	strings.Split("	xyz	",	""))

fmt.Printf("%q\n",	strings.Split("",	"Bernardo	O'Higgins"))

Output:

["a"	"b"	"c"]

[""	"man	"	"plan	"	"canal	panama"]

["	"	"x"	"y"	"z"	"	"]

[""]

func	SplitAfter
func	SplitAfter(s,	sep	string)	[]string

SplitAfter	slices	s	into	all	substrings	after	each	instance	of	sep	and	returns	a	slice
of	those	substrings.	If	sep	is	empty,	SplitAfter	splits	after	each	UTF-8	sequence.
It	is	equivalent	to	SplitAfterN	with	a	count	of	-1.

?	Example

?	Example

Code:

fmt.Printf("%q\n",	strings.SplitAfter("a,b,c",	","))

Output:

["a,"	"b,"	"c"]

func	SplitAfterN
func	SplitAfterN(s,	sep	string,	n	int)	[]string

SplitAfterN	slices	s	into	substrings	after	each	instance	of	sep	and	returns	a	slice
of	those	substrings.	If	sep	is	empty,	SplitAfterN	splits	after	each	UTF-8
sequence.	The	count	determines	the	number	of	substrings	to	return:

n	>	0:	at	most	n	substrings;	the	last	substring	will	be	the	unsplit	remainder.

n	==	0:	the	result	is	nil	(zero	substrings)

n	<	0:	all	substrings

?	Example

?	Example

Code:

fmt.Printf("%q\n",	strings.SplitAfterN("a,b,c",	",",	2))

Output:

["a,"	"b,c"]

func	SplitN
func	SplitN(s,	sep	string,	n	int)	[]string

SplitN	slices	s	into	substrings	separated	by	sep	and	returns	a	slice	of	the
substrings	between	those	separators.	If	sep	is	empty,	SplitN	splits	after	each
UTF-8	sequence.	The	count	determines	the	number	of	substrings	to	return:

n	>	0:	at	most	n	substrings;	the	last	substring	will	be	the	unsplit	remainder.

n	==	0:	the	result	is	nil	(zero	substrings)

n	<	0:	all	substrings

?	Example

?	Example

Code:

fmt.Printf("%q\n",	strings.SplitN("a,b,c",	",",	2))

z	:=	strings.SplitN("a,b,c",	",",	0)

fmt.Printf("%q	(nil	=	%v)\n",	z,	z	==	nil)

Output:

["a"	"b,c"]

[]	(nil	=	true)

func	Title
func	Title(s	string)	string

Title	returns	a	copy	of	the	string	s	with	all	Unicode	letters	that	begin	words
mapped	to	their	title	case.

?	Example

?	Example

Code:

fmt.Println(strings.Title("her	royal	highness"))

Output:

Her	Royal	Highness

func	ToLower
func	ToLower(s	string)	string

ToLower	returns	a	copy	of	the	string	s	with	all	Unicode	letters	mapped	to	their
lower	case.

?	Example

?	Example

Code:

fmt.Println(strings.ToLower("Gopher"))

Output:

gopher

func	ToLowerSpecial
func	ToLowerSpecial(_case	unicode.SpecialCase,	s	string)	string

ToLowerSpecial	returns	a	copy	of	the	string	s	with	all	Unicode	letters	mapped	to
their	lower	case,	giving	priority	to	the	special	casing	rules.

func	ToTitle
func	ToTitle(s	string)	string

ToTitle	returns	a	copy	of	the	string	s	with	all	Unicode	letters	mapped	to	their	title
case.

?	Example

?	Example

Code:

fmt.Println(strings.ToTitle("loud	noises"))

fmt.Println(strings.ToTitle("�֧ "))

Output:

LOUD	NOISES

func	ToTitleSpecial
func	ToTitleSpecial(_case	unicode.SpecialCase,	s	string)	string

ToTitleSpecial	returns	a	copy	of	the	string	s	with	all	Unicode	letters	mapped	to
their	title	case,	giving	priority	to	the	special	casing	rules.

func	ToUpper
func	ToUpper(s	string)	string

ToUpper	returns	a	copy	of	the	string	s	with	all	Unicode	letters	mapped	to	their
upper	case.

?	Example

?	Example

Code:

fmt.Println(strings.ToUpper("Gopher"))

Output:

GOPHER

func	ToUpperSpecial
func	ToUpperSpecial(_case	unicode.SpecialCase,	s	string)	string

ToUpperSpecial	returns	a	copy	of	the	string	s	with	all	Unicode	letters	mapped	to
their	upper	case,	giving	priority	to	the	special	casing	rules.

func	Trim
func	Trim(s	string,	cutset	string)	string

Trim	returns	a	slice	of	the	string	s	with	all	leading	and	trailing	Unicode	code
points	contained	in	cutset	removed.

?	Example

?	Example

Code:

fmt.Printf("[%q]",	strings.Trim("	!!!	Achtung	!!!	",	"!	"))

Output:

["Achtung"]

func	TrimFunc
func	TrimFunc(s	string,	f	func(rune)	bool)	string

TrimFunc	returns	a	slice	of	the	string	s	with	all	leading	and	trailing	Unicode
code	points	c	satisfying	f(c)	removed.

func	TrimLeft
func	TrimLeft(s	string,	cutset	string)	string

TrimLeft	returns	a	slice	of	the	string	s	with	all	leading	Unicode	code	points
contained	in	cutset	removed.

func	TrimLeftFunc
func	TrimLeftFunc(s	string,	f	func(rune)	bool)	string

TrimLeftFunc	returns	a	slice	of	the	string	s	with	all	leading	Unicode	code	points
c	satisfying	f(c)	removed.

func	TrimRight
func	TrimRight(s	string,	cutset	string)	string

TrimRight	returns	a	slice	of	the	string	s,	with	all	trailing	Unicode	code	points
contained	in	cutset	removed.

func	TrimRightFunc
func	TrimRightFunc(s	string,	f	func(rune)	bool)	string

TrimRightFunc	returns	a	slice	of	the	string	s	with	all	trailing	Unicode	code
points	c	satisfying	f(c)	removed.

func	TrimSpace
func	TrimSpace(s	string)	string

TrimSpace	returns	a	slice	of	the	string	s,	with	all	leading	and	trailing	white	space
removed,	as	defined	by	Unicode.

?	Example

?	Example

Code:

fmt.Println(strings.TrimSpace("	\t\n	a	lone	gopher	\n\t\r\n"))

Output:

a	lone	gopher

type	Reader
type	Reader	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Reader	implements	the	io.Reader,	io.ReaderAt,	io.Seeker,	io.ByteScanner,	and
io.RuneScanner	interfaces	by	reading	from	a	string.

func	NewReader

func	NewReader(s	string)	*Reader

NewReader	returns	a	new	Reader	reading	from	s.	It	is	similar	to
bytes.NewBufferString	but	more	efficient	and	read-only.

func	(*Reader)	Len

func	(r	*Reader)	Len()	int

Len	returns	the	number	of	bytes	of	the	unread	portion	of	the	string.

func	(*Reader)	Read

func	(r	*Reader)	Read(b	[]byte)	(n	int,	err	error)

func	(*Reader)	ReadAt

func	(r	*Reader)	ReadAt(b	[]byte,	off	int64)	(n	int,	err	error)

func	(*Reader)	ReadByte

func	(r	*Reader)	ReadByte()	(b	byte,	err	error)

func	(*Reader)	ReadRune

func	(r	*Reader)	ReadRune()	(ch	rune,	size	int,	err	error)

func	(*Reader)	Seek

func	(r	*Reader)	Seek(offset	int64,	whence	int)	(int64,	error)

Seek	implements	the	io.Seeker	interface.

func	(*Reader)	UnreadByte

func	(r	*Reader)	UnreadByte()	error

func	(*Reader)	UnreadRune

func	(r	*Reader)	UnreadRune()	error

type	Replacer
type	Replacer	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Replacer	replaces	a	list	of	strings	with	replacements.

func	NewReplacer

func	NewReplacer(oldnew	...string)	*Replacer

NewReplacer	returns	a	new	Replacer	from	a	list	of	old,	new	string	pairs.
Replacements	are	performed	in	order,	without	overlapping	matches.

?	Example

?	Example

Code:

r	:=	strings.NewReplacer("<",	"<",	">",	">")

fmt.Println(r.Replace("This	is	HTML!"))

Output:

This	is	HTML!

func	(*Replacer)	Replace

func	(r	*Replacer)	Replace(s	string)	string

Replace	returns	a	copy	of	s	with	all	replacements	performed.

func	(*Replacer)	WriteString

func	(r	*Replacer)	WriteString(w	io.Writer,	s	string)	(n	int,	err	error)

WriteString	writes	s	to	w	with	all	replacements	performed.

Bugs

The	rule	Title	uses	for	word	boundaries	does	not	handle	Unicode	punctuation
properly.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	sync
import	"sync"

Overview
Index
Examples
Subdirectories

Overview	?

Overview	?

Package	sync	provides	basic	synchronization	primitives	such	as	mutual
exclusion	locks.	Other	than	the	Once	and	WaitGroup	types,	most	are	intended
for	use	by	low-level	library	routines.	Higher-level	synchronization	is	better	done
via	channels	and	communication.

Values	containing	the	types	defined	in	this	package	should	not	be	copied.

Index

type	Cond
				func	NewCond(l	Locker)	*Cond
				func	(c	*Cond)	Broadcast()
				func	(c	*Cond)	Signal()
				func	(c	*Cond)	Wait()
type	Locker
type	Mutex
				func	(m	*Mutex)	Lock()
				func	(m	*Mutex)	Unlock()
type	Once
				func	(o	*Once)	Do(f	func())
type	RWMutex
				func	(rw	*RWMutex)	Lock()
				func	(rw	*RWMutex)	RLock()
				func	(rw	*RWMutex)	RLocker()	Locker
				func	(rw	*RWMutex)	RUnlock()
				func	(rw	*RWMutex)	Unlock()
type	WaitGroup
				func	(wg	*WaitGroup)	Add(delta	int)
				func	(wg	*WaitGroup)	Done()
				func	(wg	*WaitGroup)	Wait()

Examples

Once
WaitGroup

Package	files

cond.go	mutex.go	once.go	runtime.go	rwmutex.go	waitgroup.go

type	Cond
type	Cond	struct	{

				L	Locker	//	held	while	observing	or	changing	the	condition

				//	contains	filtered	or	unexported	fields

}

Cond	implements	a	condition	variable,	a	rendezvous	point	for	goroutines	waiting
for	or	announcing	the	occurrence	of	an	event.

Each	Cond	has	an	associated	Locker	L	(often	a	*Mutex	or	*RWMutex),	which
must	be	held	when	changing	the	condition	and	when	calling	the	Wait	method.

func	NewCond

func	NewCond(l	Locker)	*Cond

NewCond	returns	a	new	Cond	with	Locker	l.

func	(*Cond)	Broadcast

func	(c	*Cond)	Broadcast()

Broadcast	wakes	all	goroutines	waiting	on	c.

It	is	allowed	but	not	required	for	the	caller	to	hold	c.L	during	the	call.

func	(*Cond)	Signal

func	(c	*Cond)	Signal()

Signal	wakes	one	goroutine	waiting	on	c,	if	there	is	any.

It	is	allowed	but	not	required	for	the	caller	to	hold	c.L	during	the	call.

func	(*Cond)	Wait

func	(c	*Cond)	Wait()

Wait	atomically	unlocks	c.L	and	suspends	execution	of	the	calling	goroutine.
After	later	resuming	execution,	Wait	locks	c.L	before	returning.	Unlike	in	other
systems,	Wait	cannot	return	unless	awoken	by	Broadcast	or	Signal.

Because	c.L	is	not	locked	when	Wait	first	resumes,	the	caller	typically	cannot
assume	that	the	condition	is	true	when	Wait	returns.	Instead,	the	caller	should
Wait	in	a	loop:

c.L.Lock()

for	!condition()	{

				c.Wait()

}

...	make	use	of	condition	...

c.L.Unlock()

type	Locker
type	Locker	interface	{

				Lock()

				Unlock()

}

A	Locker	represents	an	object	that	can	be	locked	and	unlocked.

type	Mutex
type	Mutex	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Mutex	is	a	mutual	exclusion	lock.	Mutexes	can	be	created	as	part	of	other
structures;	the	zero	value	for	a	Mutex	is	an	unlocked	mutex.

func	(*Mutex)	Lock

func	(m	*Mutex)	Lock()

Lock	locks	m.	If	the	lock	is	already	in	use,	the	calling	goroutine	blocks	until	the
mutex	is	available.

func	(*Mutex)	Unlock

func	(m	*Mutex)	Unlock()

Unlock	unlocks	m.	It	is	a	run-time	error	if	m	is	not	locked	on	entry	to	Unlock.

A	locked	Mutex	is	not	associated	with	a	particular	goroutine.	It	is	allowed	for
one	goroutine	to	lock	a	Mutex	and	then	arrange	for	another	goroutine	to	unlock
it.

type	Once
type	Once	struct	{

				//	contains	filtered	or	unexported	fields

}

Once	is	an	object	that	will	perform	exactly	one	action.

?	Example

?	Example

Code:

var	once	sync.Once

onceBody	:=	func()	{

				fmt.Printf("Only	once\n")

}

done	:=	make(chan	bool)

for	i	:=	0;	i	<	10;	i++	{

				go	func()	{

								once.Do(onceBody)

								done	<-	true

				}()

}

for	i	:=	0;	i	<	10;	i++	{

				<-done

}

Output:

Only	once

func	(*Once)	Do

func	(o	*Once)	Do(f	func())

Do	calls	the	function	f	if	and	only	if	the	method	is	being	called	for	the	first	time
with	this	receiver.	In	other	words,	given

var	once	Once

if	once.Do(f)	is	called	multiple	times,	only	the	first	call	will	invoke	f,	even	if	f

has	a	different	value	in	each	invocation.	A	new	instance	of	Once	is	required	for
each	function	to	execute.

Do	is	intended	for	initialization	that	must	be	run	exactly	once.	Since	f	is	niladic,
it	may	be	necessary	to	use	a	function	literal	to	capture	the	arguments	to	a
function	to	be	invoked	by	Do:

config.once.Do(func()	{	config.init(filename)	})

Because	no	call	to	Do	returns	until	the	one	call	to	f	returns,	if	f	causes	Do	to	be
called,	it	will	deadlock.

type	RWMutex
type	RWMutex	struct	{

				//	contains	filtered	or	unexported	fields

}

An	RWMutex	is	a	reader/writer	mutual	exclusion	lock.	The	lock	can	be	held	by
an	arbitrary	number	of	readers	or	a	single	writer.	RWMutexes	can	be	created	as
part	of	other	structures;	the	zero	value	for	a	RWMutex	is	an	unlocked	mutex.

func	(*RWMutex)	Lock

func	(rw	*RWMutex)	Lock()

Lock	locks	rw	for	writing.	If	the	lock	is	already	locked	for	reading	or	writing,
Lock	blocks	until	the	lock	is	available.	To	ensure	that	the	lock	eventually
becomes	available,	a	blocked	Lock	call	excludes	new	readers	from	acquiring	the
lock.

func	(*RWMutex)	RLock

func	(rw	*RWMutex)	RLock()

RLock	locks	rw	for	reading.

func	(*RWMutex)	RLocker

func	(rw	*RWMutex)	RLocker()	Locker

RLocker	returns	a	Locker	interface	that	implements	the	Lock	and	Unlock
methods	by	calling	rw.RLock	and	rw.RUnlock.

func	(*RWMutex)	RUnlock

func	(rw	*RWMutex)	RUnlock()

RUnlock	undoes	a	single	RLock	call;	it	does	not	affect	other	simultaneous
readers.	It	is	a	run-time	error	if	rw	is	not	locked	for	reading	on	entry	to	RUnlock.

func	(*RWMutex)	Unlock

func	(rw	*RWMutex)	Unlock()

Unlock	unlocks	rw	for	writing.	It	is	a	run-time	error	if	rw	is	not	locked	for
writing	on	entry	to	Unlock.

As	with	Mutexes,	a	locked	RWMutex	is	not	associated	with	a	particular
goroutine.	One	goroutine	may	RLock	(Lock)	an	RWMutex	and	then	arrange	for
another	goroutine	to	RUnlock	(Unlock)	it.

type	WaitGroup
type	WaitGroup	struct	{

				//	contains	filtered	or	unexported	fields

}

A	WaitGroup	waits	for	a	collection	of	goroutines	to	finish.	The	main	goroutine
calls	Add	to	set	the	number	of	goroutines	to	wait	for.	Then	each	of	the
goroutines	runs	and	calls	Done	when	finished.	At	the	same	time,	Wait	can	be
used	to	block	until	all	goroutines	have	finished.

?	Example

?	Example

This	example	fetches	several	URLs	concurrently,	using	a	WaitGroup	to	block
until	all	the	fetches	are	complete.

Code:

var	wg	sync.WaitGroup

var	urls	=	[]string{

				"http://www.golang.org/",

				"http://www.google.com/",

				"http://www.somestupidname.com/",

}

for	_,	url	:=	range	urls	{

				//	Increment	the	WaitGroup	counter.

				wg.Add(1)

				//	Launch	a	goroutine	to	fetch	the	URL.

				go	func(url	string)	{

								//	Fetch	the	URL.

								http.Get(url)

								//	Decrement	the	counter.

								wg.Done()

				}(url)

}

//	Wait	for	all	HTTP	fetches	to	complete.

wg.Wait()

func	(*WaitGroup)	Add

func	(wg	*WaitGroup)	Add(delta	int)

Add	adds	delta,	which	may	be	negative,	to	the	WaitGroup	counter.	If	the	counter
becomes	zero,	all	goroutines	blocked	on	Wait()	are	released.

func	(*WaitGroup)	Done

func	(wg	*WaitGroup)	Done()

Done	decrements	the	WaitGroup	counter.

func	(*WaitGroup)	Wait

func	(wg	*WaitGroup)	Wait()

Wait	blocks	until	the	WaitGroup	counter	is	zero.

Subdirectories

Name 				 Synopsis

atomic 				 Package	atomic	provides	low-level	atomic	memory	primitives	usefulfor	implementing	synchronization	algorithms.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	atomic
import	"sync/atomic"

Overview
Index

Overview	?

Overview	?

Package	atomic	provides	low-level	atomic	memory	primitives	useful	for
implementing	synchronization	algorithms.

These	functions	require	great	care	to	be	used	correctly.	Except	for	special,	low-
level	applications,	synchronization	is	better	done	with	channels	or	the	facilities
of	the	sync	package.	Share	memory	by	communicating;	don't	communicate	by
sharing	memory.

The	compare-and-swap	operation,	implemented	by	the	CompareAndSwapT
functions,	is	the	atomic	equivalent	of:

if	*val	==	old	{

	 *val	=	new

	 return	true

}

return	false

Index

func	AddInt32(val	*int32,	delta	int32)	(new	int32)
func	AddInt64(val	*int64,	delta	int64)	(new	int64)
func	AddUint32(val	*uint32,	delta	uint32)	(new	uint32)
func	AddUint64(val	*uint64,	delta	uint64)	(new	uint64)
func	AddUintptr(val	*uintptr,	delta	uintptr)	(new	uintptr)
func	CompareAndSwapInt32(val	*int32,	old,	new	int32)	(swapped	bool)
func	CompareAndSwapInt64(val	*int64,	old,	new	int64)	(swapped	bool)
func	CompareAndSwapPointer(val	*unsafe.Pointer,	old,	new
unsafe.Pointer)	(swapped	bool)
func	CompareAndSwapUint32(val	*uint32,	old,	new	uint32)	(swapped
bool)
func	CompareAndSwapUint64(val	*uint64,	old,	new	uint64)	(swapped
bool)
func	CompareAndSwapUintptr(val	*uintptr,	old,	new	uintptr)	(swapped
bool)
func	LoadInt32(addr	*int32)	(val	int32)
func	LoadInt64(addr	*int64)	(val	int64)
func	LoadPointer(addr	*unsafe.Pointer)	(val	unsafe.Pointer)
func	LoadUint32(addr	*uint32)	(val	uint32)
func	LoadUint64(addr	*uint64)	(val	uint64)
func	LoadUintptr(addr	*uintptr)	(val	uintptr)
func	StoreInt32(addr	*int32,	val	int32)
func	StoreInt64(addr	*int64,	val	int64)
func	StorePointer(addr	*unsafe.Pointer,	val	unsafe.Pointer)
func	StoreUint32(addr	*uint32,	val	uint32)
func	StoreUint64(addr	*uint64,	val	uint64)
func	StoreUintptr(addr	*uintptr,	val	uintptr)
Bugs

Package	files

doc.go

func	AddInt32
func	AddInt32(val	*int32,	delta	int32)	(new	int32)

AddInt32	atomically	adds	delta	to	*val	and	returns	the	new	value.

func	AddInt64
func	AddInt64(val	*int64,	delta	int64)	(new	int64)

AddInt64	atomically	adds	delta	to	*val	and	returns	the	new	value.

func	AddUint32
func	AddUint32(val	*uint32,	delta	uint32)	(new	uint32)

AddUint32	atomically	adds	delta	to	*val	and	returns	the	new	value.

func	AddUint64
func	AddUint64(val	*uint64,	delta	uint64)	(new	uint64)

AddUint64	atomically	adds	delta	to	*val	and	returns	the	new	value.

func	AddUintptr
func	AddUintptr(val	*uintptr,	delta	uintptr)	(new	uintptr)

AddUintptr	atomically	adds	delta	to	*val	and	returns	the	new	value.

func	CompareAndSwapInt32
func	CompareAndSwapInt32(val	*int32,	old,	new	int32)	(swapped	bool)

CompareAndSwapInt32	executes	the	compare-and-swap	operation	for	an	int32
value.

func	CompareAndSwapInt64
func	CompareAndSwapInt64(val	*int64,	old,	new	int64)	(swapped	bool)

CompareAndSwapInt64	executes	the	compare-and-swap	operation	for	an	int64
value.

func	CompareAndSwapPointer
func	CompareAndSwapPointer(val	*unsafe.Pointer,	old,	new	unsafe.Pointer)	(swapped	bool)

CompareAndSwapPointer	executes	the	compare-and-swap	operation	for	a
unsafe.Pointer	value.

func	CompareAndSwapUint32
func	CompareAndSwapUint32(val	*uint32,	old,	new	uint32)	(swapped	bool)

CompareAndSwapUint32	executes	the	compare-and-swap	operation	for	a	uint32
value.

func	CompareAndSwapUint64
func	CompareAndSwapUint64(val	*uint64,	old,	new	uint64)	(swapped	bool)

CompareAndSwapUint64	executes	the	compare-and-swap	operation	for	a	uint64
value.

func	CompareAndSwapUintptr
func	CompareAndSwapUintptr(val	*uintptr,	old,	new	uintptr)	(swapped	bool)

CompareAndSwapUintptr	executes	the	compare-and-swap	operation	for	a
uintptr	value.

func	LoadInt32
func	LoadInt32(addr	*int32)	(val	int32)

LoadInt32	atomically	loads	*addr.

func	LoadInt64
func	LoadInt64(addr	*int64)	(val	int64)

LoadInt64	atomically	loads	*addr.

func	LoadPointer
func	LoadPointer(addr	*unsafe.Pointer)	(val	unsafe.Pointer)

LoadPointer	atomically	loads	*addr.

func	LoadUint32
func	LoadUint32(addr	*uint32)	(val	uint32)

LoadUint32	atomically	loads	*addr.

func	LoadUint64
func	LoadUint64(addr	*uint64)	(val	uint64)

LoadUint64	atomically	loads	*addr.

func	LoadUintptr
func	LoadUintptr(addr	*uintptr)	(val	uintptr)

LoadUintptr	atomically	loads	*addr.

func	StoreInt32
func	StoreInt32(addr	*int32,	val	int32)

StoreInt32	atomically	stores	val	into	*addr.

func	StoreInt64
func	StoreInt64(addr	*int64,	val	int64)

StoreInt64	atomically	stores	val	into	*addr.

func	StorePointer
func	StorePointer(addr	*unsafe.Pointer,	val	unsafe.Pointer)

StorePointer	atomically	stores	val	into	*addr.

func	StoreUint32
func	StoreUint32(addr	*uint32,	val	uint32)

StoreUint32	atomically	stores	val	into	*addr.

func	StoreUint64
func	StoreUint64(addr	*uint64,	val	uint64)

StoreUint64	atomically	stores	val	into	*addr.

func	StoreUintptr
func	StoreUintptr(addr	*uintptr,	val	uintptr)

StoreUintptr	atomically	stores	val	into	*addr.

Bugs

On	ARM,	the	64-bit	functions	use	instructions	unavailable	before	ARM	11.

On	x86-32,	the	64-bit	functions	use	instructions	unavailable	before	the	Pentium
MMX.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	syscall
import	"syscall"

Overview
Index

Overview	?

Overview	?

Package	syscall	contains	an	interface	to	the	low-level	operating	system
primitives.	The	details	vary	depending	on	the	underlying	system.	Its	primary	use
is	inside	other	packages	that	provide	a	more	portable	interface	to	the	system,
such	as	"os",	"time"	and	"net".	Use	those	packages	rather	than	this	one	if	you
can.	For	details	of	the	functions	and	data	types	in	this	package	consult	the
manuals	for	the	appropriate	operating	system.	These	calls	return	err	==	nil	to
indicate	success;	otherwise	err	is	an	operating	system	error	describing	the
failure.	On	most	systems,	that	error	has	type	syscall.Errno.

Index

Constants
Variables
func	Accept(fd	int)	(nfd	int,	sa	Sockaddr,	err	error)
func	Access(path	string,	mode	uint32)	(err	error)
func	Acct(path	string)	(err	error)
func	Adjtimex(buf	*Timex)	(state	int,	err	error)
func	AttachLsf(fd	int,	i	[]SockFilter)	error
func	Bind(fd	int,	sa	Sockaddr)	(err	error)
func	BindToDevice(fd	int,	device	string)	(err	error)
func	Chdir(path	string)	(err	error)
func	Chmod(path	string,	mode	uint32)	(err	error)
func	Chown(path	string,	uid	int,	gid	int)	(err	error)
func	Chroot(path	string)	(err	error)
func	Clearenv()
func	Close(fd	int)	(err	error)
func	CloseOnExec(fd	int)
func	CmsgLen(datalen	int)	int
func	CmsgSpace(datalen	int)	int
func	Connect(fd	int,	sa	Sockaddr)	(err	error)
func	Creat(path	string,	mode	uint32)	(fd	int,	err	error)
func	DetachLsf(fd	int)	error
func	Dup(oldfd	int)	(fd	int,	err	error)
func	Dup2(oldfd	int,	newfd	int)	(err	error)
func	Environ()	[]string
func	EpollCreate(size	int)	(fd	int,	err	error)
func	EpollCreate1(flag	int)	(fd	int,	err	error)
func	EpollCtl(epfd	int,	op	int,	fd	int,	event	*EpollEvent)	(err	error)
func	EpollWait(epfd	int,	events	[]EpollEvent,	msec	int)	(n	int,	err	error)
func	Exec(argv0	string,	argv	[]string,	envv	[]string)	(err	error)
func	Exit(code	int)
func	Faccessat(dirfd	int,	path	string,	mode	uint32,	flags	int)	(err	error)
func	Fallocate(fd	int,	mode	uint32,	off	int64,	len	int64)	(err	error)
func	Fchdir(fd	int)	(err	error)
func	Fchmod(fd	int,	mode	uint32)	(err	error)
func	Fchmodat(dirfd	int,	path	string,	mode	uint32,	flags	int)	(err	error)

func	Fchown(fd	int,	uid	int,	gid	int)	(err	error)
func	Fchownat(dirfd	int,	path	string,	uid	int,	gid	int,	flags	int)	(err	error)
func	Fdatasync(fd	int)	(err	error)
func	Flock(fd	int,	how	int)	(err	error)
func	ForkExec(argv0	string,	argv	[]string,	attr	*ProcAttr)	(pid	int,	err	error)
func	Fstat(fd	int,	stat	*Stat_t)	(err	error)
func	Fstatfs(fd	int,	buf	*Statfs_t)	(err	error)
func	Fsync(fd	int)	(err	error)
func	Ftruncate(fd	int,	length	int64)	(err	error)
func	Futimes(fd	int,	tv	[]Timeval)	(err	error)
func	Futimesat(dirfd	int,	path	string,	tv	[]Timeval)	(err	error)
func	Getcwd(buf	[]byte)	(n	int,	err	error)
func	Getdents(fd	int,	buf	[]byte)	(n	int,	err	error)
func	Getegid()	(egid	int)
func	Getenv(key	string)	(value	string,	found	bool)
func	Geteuid()	(euid	int)
func	Getgid()	(gid	int)
func	Getgroups()	(gids	[]int,	err	error)
func	Getpagesize()	int
func	Getpgid(pid	int)	(pgid	int,	err	error)
func	Getpgrp()	(pid	int)
func	Getpid()	(pid	int)
func	Getppid()	(ppid	int)
func	Getrlimit(resource	int,	rlim	*Rlimit)	(err	error)
func	Getrusage(who	int,	rusage	*Rusage)	(err	error)
func	GetsockoptInet4Addr(fd,	level,	opt	int)	(value	[4]byte,	err	error)
func	GetsockoptInt(fd,	level,	opt	int)	(value	int,	err	error)
func	Gettid()	(tid	int)
func	Gettimeofday(tv	*Timeval)	(err	error)
func	Getuid()	(uid	int)
func	Getwd()	(wd	string,	err	error)
func	InotifyAddWatch(fd	int,	pathname	string,	mask	uint32)	(watchdesc	int,
err	error)
func	InotifyInit()	(fd	int,	err	error)
func	InotifyInit1(flags	int)	(fd	int,	err	error)
func	InotifyRmWatch(fd	int,	watchdesc	uint32)	(success	int,	err	error)
func	Ioperm(from	int,	num	int,	on	int)	(err	error)
func	Iopl(level	int)	(err	error)
func	Kill(pid	int,	sig	Signal)	(err	error)

func	Klogctl(typ	int,	buf	[]byte)	(n	int,	err	error)
func	Lchown(path	string,	uid	int,	gid	int)	(err	error)
func	Link(oldpath	string,	newpath	string)	(err	error)
func	Listen(s	int,	n	int)	(err	error)
func	LsfSocket(ifindex,	proto	int)	(int,	error)
func	Lstat(path	string,	stat	*Stat_t)	(err	error)
func	Madvise(b	[]byte,	advice	int)	(err	error)
func	Mkdir(path	string,	mode	uint32)	(err	error)
func	Mkdirat(dirfd	int,	path	string,	mode	uint32)	(err	error)
func	Mkfifo(path	string,	mode	uint32)	(err	error)
func	Mknod(path	string,	mode	uint32,	dev	int)	(err	error)
func	Mknodat(dirfd	int,	path	string,	mode	uint32,	dev	int)	(err	error)
func	Mlock(b	[]byte)	(err	error)
func	Mlockall(flags	int)	(err	error)
func	Mmap(fd	int,	offset	int64,	length	int,	prot	int,	flags	int)	(data	[]byte,	err
error)
func	Mount(source	string,	target	string,	fstype	string,	flags	uintptr,	data
string)	(err	error)
func	Mprotect(b	[]byte,	prot	int)	(err	error)
func	Munlock(b	[]byte)	(err	error)
func	Munlockall()	(err	error)
func	Munmap(b	[]byte)	(err	error)
func	Nanosleep(time	*Timespec,	leftover	*Timespec)	(err	error)
func	NetlinkRIB(proto,	family	int)	([]byte,	error)
func	Open(path	string,	mode	int,	perm	uint32)	(fd	int,	err	error)
func	Openat(dirfd	int,	path	string,	flags	int,	mode	uint32)	(fd	int,	err	error)
func	ParseDirent(buf	[]byte,	max	int,	names	[]string)	(consumed	int,	count
int,	newnames	[]string)
func	ParseNetlinkMessage(buf	[]byte)	([]NetlinkMessage,	error)
func	ParseNetlinkRouteAttr(msg	*NetlinkMessage)	([]NetlinkRouteAttr,
error)
func	ParseSocketControlMessage(buf	[]byte)	([]SocketControlMessage,
error)
func	ParseUnixRights(msg	*SocketControlMessage)	([]int,	error)
func	Pause()	(err	error)
func	Pipe(p	[]int)	(err	error)
func	PivotRoot(newroot	string,	putold	string)	(err	error)
func	Pread(fd	int,	p	[]byte,	offset	int64)	(n	int,	err	error)
func	PtraceAttach(pid	int)	(err	error)

func	PtraceCont(pid	int,	signal	int)	(err	error)
func	PtraceDetach(pid	int)	(err	error)
func	PtraceGetEventMsg(pid	int)	(msg	uint,	err	error)
func	PtraceGetRegs(pid	int,	regsout	*PtraceRegs)	(err	error)
func	PtracePeekData(pid	int,	addr	uintptr,	out	[]byte)	(count	int,	err	error)
func	PtracePeekText(pid	int,	addr	uintptr,	out	[]byte)	(count	int,	err	error)
func	PtracePokeData(pid	int,	addr	uintptr,	data	[]byte)	(count	int,	err	error)
func	PtracePokeText(pid	int,	addr	uintptr,	data	[]byte)	(count	int,	err	error)
func	PtraceSetOptions(pid	int,	options	int)	(err	error)
func	PtraceSetRegs(pid	int,	regs	*PtraceRegs)	(err	error)
func	PtraceSingleStep(pid	int)	(err	error)
func	Pwrite(fd	int,	p	[]byte,	offset	int64)	(n	int,	err	error)
func	RawSyscall(trap,	a1,	a2,	a3	uintptr)	(r1,	r2	uintptr,	err	Errno)
func	RawSyscall6(trap,	a1,	a2,	a3,	a4,	a5,	a6	uintptr)	(r1,	r2	uintptr,	err
Errno)
func	Read(fd	int,	p	[]byte)	(n	int,	err	error)
func	ReadDirent(fd	int,	buf	[]byte)	(n	int,	err	error)
func	Readlink(path	string,	buf	[]byte)	(n	int,	err	error)
func	Reboot(cmd	int)	(err	error)
func	Recvfrom(fd	int,	p	[]byte,	flags	int)	(n	int,	from	Sockaddr,	err	error)
func	Recvmsg(fd	int,	p,	oob	[]byte,	flags	int)	(n,	oobn	int,	recvflags	int,
from	Sockaddr,	err	error)
func	Rename(oldpath	string,	newpath	string)	(err	error)
func	Renameat(olddirfd	int,	oldpath	string,	newdirfd	int,	newpath	string)
(err	error)
func	Rmdir(path	string)	(err	error)
func	Seek(fd	int,	offset	int64,	whence	int)	(off	int64,	err	error)
func	Select(nfd	int,	r	*FdSet,	w	*FdSet,	e	*FdSet,	timeout	*Timeval)	(n	int,
err	error)
func	Sendfile(outfd	int,	infd	int,	offset	*int64,	count	int)	(written	int,	err
error)
func	Sendmsg(fd	int,	p,	oob	[]byte,	to	Sockaddr,	flags	int)	(err	error)
func	Sendto(fd	int,	p	[]byte,	flags	int,	to	Sockaddr)	(err	error)
func	SetLsfPromisc(name	string,	m	bool)	error
func	SetNonblock(fd	int,	nonblocking	bool)	(err	error)
func	Setdomainname(p	[]byte)	(err	error)
func	Setenv(key,	value	string)	error
func	Setfsgid(gid	int)	(err	error)
func	Setfsuid(uid	int)	(err	error)

func	Setgid(gid	int)	(err	error)
func	Setgroups(gids	[]int)	(err	error)
func	Sethostname(p	[]byte)	(err	error)
func	Setpgid(pid	int,	pgid	int)	(err	error)
func	Setregid(rgid	int,	egid	int)	(err	error)
func	Setresgid(rgid	int,	egid	int,	sgid	int)	(err	error)
func	Setresuid(ruid	int,	euid	int,	suid	int)	(err	error)
func	Setreuid(ruid	int,	euid	int)	(err	error)
func	Setrlimit(resource	int,	rlim	*Rlimit)	(err	error)
func	Setsid()	(pid	int,	err	error)
func	SetsockoptIPMreq(fd,	level,	opt	int,	mreq	*IPMreq)	(err	error)
func	SetsockoptIPMreqn(fd,	level,	opt	int,	mreq	*IPMreqn)	(err	error)
func	SetsockoptIPv6Mreq(fd,	level,	opt	int,	mreq	*IPv6Mreq)	(err	error)
func	SetsockoptInet4Addr(fd,	level,	opt	int,	value	[4]byte)	(err	error)
func	SetsockoptInt(fd,	level,	opt	int,	value	int)	(err	error)
func	SetsockoptLinger(fd,	level,	opt	int,	l	*Linger)	(err	error)
func	SetsockoptString(fd,	level,	opt	int,	s	string)	(err	error)
func	SetsockoptTimeval(fd,	level,	opt	int,	tv	*Timeval)	(err	error)
func	Settimeofday(tv	*Timeval)	(err	error)
func	Setuid(uid	int)	(err	error)
func	Shutdown(fd	int,	how	int)	(err	error)
func	Socket(domain,	typ,	proto	int)	(fd	int,	err	error)
func	Socketpair(domain,	typ,	proto	int)	(fd	[2]int,	err	error)
func	Splice(rfd	int,	roff	*int64,	wfd	int,	woff	*int64,	len	int,	flags	int)	(n
int64,	err	error)
func	StartProcess(argv0	string,	argv	[]string,	attr	*ProcAttr)	(pid	int,	handle
uintptr,	err	error)
func	Stat(path	string,	stat	*Stat_t)	(err	error)
func	Statfs(path	string,	buf	*Statfs_t)	(err	error)
func	StringBytePtr(s	string)	*byte
func	StringByteSlice(s	string)	[]byte
func	StringSlicePtr(ss	[]string)	[]*byte
func	Symlink(oldpath	string,	newpath	string)	(err	error)
func	Sync()
func	SyncFileRange(fd	int,	off	int64,	n	int64,	flags	int)	(err	error)
func	Syscall(trap,	a1,	a2,	a3	uintptr)	(r1,	r2	uintptr,	err	Errno)
func	Syscall6(trap,	a1,	a2,	a3,	a4,	a5,	a6	uintptr)	(r1,	r2	uintptr,	err	Errno)
func	Sysinfo(info	*Sysinfo_t)	(err	error)
func	Tee(rfd	int,	wfd	int,	len	int,	flags	int)	(n	int64,	err	error)

func	Tgkill(tgid	int,	tid	int,	sig	Signal)	(err	error)
func	Times(tms	*Tms)	(ticks	uintptr,	err	error)
func	TimespecToNsec(ts	Timespec)	int64
func	TimevalToNsec(tv	Timeval)	int64
func	Truncate(path	string,	length	int64)	(err	error)
func	Umask(mask	int)	(oldmask	int)
func	Uname(buf	*Utsname)	(err	error)
func	UnixCredentials(ucred	*Ucred)	[]byte
func	UnixRights(fds	...int)	[]byte
func	Unlink(path	string)	(err	error)
func	Unlinkat(dirfd	int,	path	string)	(err	error)
func	Unmount(target	string,	flags	int)	(err	error)
func	Unshare(flags	int)	(err	error)
func	Ustat(dev	int,	ubuf	*Ustat_t)	(err	error)
func	Utime(path	string,	buf	*Utimbuf)	(err	error)
func	Utimes(path	string,	tv	[]Timeval)	(err	error)
func	Wait4(pid	int,	wstatus	*WaitStatus,	options	int,	rusage	*Rusage)	(wpid
int,	err	error)
func	Write(fd	int,	p	[]byte)	(n	int,	err	error)
type	Cmsghdr
				func	(cmsg	*Cmsghdr)	SetLen(length	int)
type	Credential
type	Dirent
type	EpollEvent
type	Errno
				func	(e	Errno)	Error()	string
				func	(e	Errno)	Temporary()	bool
				func	(e	Errno)	Timeout()	bool
type	FdSet
type	Fsid
type	IPMreq
				func	GetsockoptIPMreq(fd,	level,	opt	int)	(*IPMreq,	error)
type	IPMreqn
				func	GetsockoptIPMreqn(fd,	level,	opt	int)	(*IPMreqn,	error)
type	IPv6Mreq
				func	GetsockoptIPv6Mreq(fd,	level,	opt	int)	(*IPv6Mreq,	error)
type	IfAddrmsg
type	IfInfomsg
type	Inet4Pktinfo

type	Inet6Pktinfo
type	InotifyEvent
type	Iovec
				func	(iov	*Iovec)	SetLen(length	int)
type	Linger
type	Msghdr
				func	(msghdr	*Msghdr)	SetControllen(length	int)
type	NetlinkMessage
type	NetlinkRouteAttr
type	NetlinkRouteRequest
type	NlAttr
type	NlMsgerr
type	NlMsghdr
type	ProcAttr
type	PtraceRegs
				func	(r	*PtraceRegs)	PC()	uint64
				func	(r	*PtraceRegs)	SetPC(pc	uint64)
type	RawSockaddr
type	RawSockaddrAny
type	RawSockaddrInet4
type	RawSockaddrInet6
type	RawSockaddrLinklayer
type	RawSockaddrNetlink
type	RawSockaddrUnix
type	Rlimit
type	RtAttr
type	RtGenmsg
type	RtMsg
type	RtNexthop
type	Rusage
type	Signal
				func	(s	Signal)	Signal()
				func	(s	Signal)	String()	string
type	SockFilter
				func	LsfJump(code,	k,	jt,	jf	int)	*SockFilter
				func	LsfStmt(code,	k	int)	*SockFilter
type	SockFprog
type	Sockaddr
				func	Getpeername(fd	int)	(sa	Sockaddr,	err	error)

				func	Getsockname(fd	int)	(sa	Sockaddr,	err	error)
type	SockaddrInet4
type	SockaddrInet6
type	SockaddrLinklayer
type	SockaddrNetlink
type	SockaddrUnix
type	SocketControlMessage
type	Stat_t
type	Statfs_t
type	SysProcAttr
type	Sysinfo_t
type	Termios
type	Time_t
				func	Time(t	*Time_t)	(tt	Time_t,	err	error)
type	Timespec
				func	NsecToTimespec(nsec	int64)	(ts	Timespec)
				func	(ts	*Timespec)	Nano()	int64
				func	(ts	*Timespec)	Unix()	(sec	int64,	nsec	int64)
type	Timeval
				func	NsecToTimeval(nsec	int64)	(tv	Timeval)
				func	(tv	*Timeval)	Nano()	int64
				func	(tv	*Timeval)	Unix()	(sec	int64,	nsec	int64)
type	Timex
type	Tms
type	Ucred
				func	ParseUnixCredentials(msg	*SocketControlMessage)	(*Ucred,	error)
type	Ustat_t
type	Utimbuf
type	Utsname
type	WaitStatus
				func	(w	WaitStatus)	Continued()	bool
				func	(w	WaitStatus)	CoreDump()	bool
				func	(w	WaitStatus)	ExitStatus()	int
				func	(w	WaitStatus)	Exited()	bool
				func	(w	WaitStatus)	Signal()	Signal
				func	(w	WaitStatus)	Signaled()	bool
				func	(w	WaitStatus)	StopSignal()	Signal
				func	(w	WaitStatus)	Stopped()	bool
				func	(w	WaitStatus)	TrapCause()	int

Package	files

env_unix.go	exec_linux.go	exec_unix.go	lsf_linux.go	netlink_linux.go	sockcmsg_linux.go
sockcmsg_unix.go	str.go	syscall.go	syscall_linux.go	syscall_linux_amd64.go	syscall_unix.go
zerrors_linux_amd64.go	zsyscall_linux_amd64.go	zsysnum_linux_amd64.go	ztypes_linux_amd64.go

Constants
const	(

				AF_ALG																											=	0x26

				AF_APPLETALK																					=	0x5

				AF_ASH																											=	0x12

				AF_ATMPVC																								=	0x8

				AF_ATMSVC																								=	0x14

				AF_AX25																										=	0x3

				AF_BLUETOOTH																					=	0x1f

				AF_BRIDGE																								=	0x7

				AF_CAIF																										=	0x25

				AF_CAN																											=	0x1d

				AF_DECnet																								=	0xc

				AF_ECONET																								=	0x13

				AF_FILE																										=	0x1

				AF_IEEE802154																				=	0x24

				AF_INET																										=	0x2

				AF_INET6																									=	0xa

				AF_IPX																											=	0x4

				AF_IRDA																										=	0x17

				AF_ISDN																										=	0x22

				AF_IUCV																										=	0x20

				AF_KEY																											=	0xf

				AF_LLC																											=	0x1a

				AF_LOCAL																									=	0x1

				AF_MAX																											=	0x27

				AF_NETBEUI																							=	0xd

				AF_NETLINK																							=	0x10

				AF_NETROM																								=	0x6

				AF_PACKET																								=	0x11

				AF_PHONET																								=	0x23

				AF_PPPOX																									=	0x18

				AF_RDS																											=	0x15

				AF_ROSE																										=	0xb

				AF_ROUTE																									=	0x10

				AF_RXRPC																									=	0x21

				AF_SECURITY																						=	0xe

				AF_SNA																											=	0x16

				AF_TIPC																										=	0x1e

				AF_UNIX																										=	0x1

				AF_UNSPEC																								=	0x0

				AF_WANPIPE																							=	0x19

				AF_X25																											=	0x9

				ARPHRD_ADAPT																					=	0x108

				ARPHRD_APPLETLK																		=	0x8

				ARPHRD_ARCNET																				=	0x7

				ARPHRD_ASH																							=	0x30d

				ARPHRD_ATM																							=	0x13

				ARPHRD_AX25																						=	0x3

				ARPHRD_BIF																							=	0x307

				ARPHRD_CHAOS																					=	0x5

				ARPHRD_CISCO																					=	0x201

				ARPHRD_CSLIP																					=	0x101

				ARPHRD_CSLIP6																				=	0x103

				ARPHRD_DDCMP																					=	0x205

				ARPHRD_DLCI																						=	0xf

				ARPHRD_ECONET																				=	0x30e

				ARPHRD_EETHER																				=	0x2

				ARPHRD_ETHER																					=	0x1

				ARPHRD_EUI64																					=	0x1b

				ARPHRD_FCAL																						=	0x311

				ARPHRD_FCFABRIC																		=	0x313

				ARPHRD_FCPL																						=	0x312

				ARPHRD_FCPP																						=	0x310

				ARPHRD_FDDI																						=	0x306

				ARPHRD_FRAD																						=	0x302

				ARPHRD_HDLC																						=	0x201

				ARPHRD_HIPPI																					=	0x30c

				ARPHRD_HWX25																					=	0x110

				ARPHRD_IEEE1394																		=	0x18

				ARPHRD_IEEE802																			=	0x6

				ARPHRD_IEEE80211																	=	0x321

				ARPHRD_IEEE80211_PRISM											=	0x322

				ARPHRD_IEEE80211_RADIOTAP								=	0x323

				ARPHRD_IEEE802154																=	0x324

				ARPHRD_IEEE802154_PHY												=	0x325

				ARPHRD_IEEE802_TR																=	0x320

				ARPHRD_INFINIBAND																=	0x20

				ARPHRD_IPDDP																					=	0x309

				ARPHRD_IPGRE																					=	0x30a

				ARPHRD_IRDA																						=	0x30f

				ARPHRD_LAPB																						=	0x204

				ARPHRD_LOCALTLK																		=	0x305

				ARPHRD_LOOPBACK																		=	0x304

				ARPHRD_METRICOM																		=	0x17

				ARPHRD_NETROM																				=	0x0

				ARPHRD_NONE																						=	0xfffe

				ARPHRD_PIMREG																				=	0x30b

				ARPHRD_PPP																							=	0x200

				ARPHRD_PRONET																				=	0x4

				ARPHRD_RAWHDLC																			=	0x206

				ARPHRD_ROSE																						=	0x10e

				ARPHRD_RSRVD																					=	0x104

				ARPHRD_SIT																							=	0x308

				ARPHRD_SKIP																						=	0x303

				ARPHRD_SLIP																						=	0x100

				ARPHRD_SLIP6																					=	0x102

				ARPHRD_TUNNEL																				=	0x300

				ARPHRD_TUNNEL6																			=	0x301

				ARPHRD_VOID																						=	0xffff

				ARPHRD_X25																							=	0x10f

				BPF_A																												=	0x10

				BPF_ABS																										=	0x20

				BPF_ADD																										=	0x0

				BPF_ALU																										=	0x4

				BPF_AND																										=	0x50

				BPF_B																												=	0x10

				BPF_DIV																										=	0x30

				BPF_H																												=	0x8

				BPF_IMM																										=	0x0

				BPF_IND																										=	0x40

				BPF_JA																											=	0x0

				BPF_JEQ																										=	0x10

				BPF_JGE																										=	0x30

				BPF_JGT																										=	0x20

				BPF_JMP																										=	0x5

				BPF_JSET																									=	0x40

				BPF_K																												=	0x0

				BPF_LD																											=	0x0

				BPF_LDX																										=	0x1

				BPF_LEN																										=	0x80

				BPF_LSH																										=	0x60

				BPF_MAJOR_VERSION																=	0x1

				BPF_MAXINSNS																					=	0x1000

				BPF_MEM																										=	0x60

				BPF_MEMWORDS																					=	0x10

				BPF_MINOR_VERSION																=	0x1

				BPF_MISC																									=	0x7

				BPF_MSH																										=	0xa0

				BPF_MUL																										=	0x20

				BPF_NEG																										=	0x80

				BPF_OR																											=	0x40

				BPF_RET																										=	0x6

				BPF_RSH																										=	0x70

				BPF_ST																											=	0x2

				BPF_STX																										=	0x3

				BPF_SUB																										=	0x10

				BPF_TAX																										=	0x0

				BPF_TXA																										=	0x80

				BPF_W																												=	0x0

				BPF_X																												=	0x8

				DT_BLK																											=	0x6

				DT_CHR																											=	0x2

				DT_DIR																											=	0x4

				DT_FIFO																										=	0x1

				DT_LNK																											=	0xa

				DT_REG																											=	0x8

				DT_SOCK																										=	0xc

				DT_UNKNOWN																							=	0x0

				DT_WHT																											=	0xe

				EPOLLERR																									=	0x8

				EPOLLET																										=	-0x80000000

				EPOLLHUP																									=	0x10

				EPOLLIN																										=	0x1

				EPOLLMSG																									=	0x400

				EPOLLONESHOT																					=	0x40000000

				EPOLLOUT																									=	0x4

				EPOLLPRI																									=	0x2

				EPOLLRDBAND																						=	0x80

				EPOLLRDHUP																							=	0x2000

				EPOLLRDNORM																						=	0x40

				EPOLLWRBAND																						=	0x200

				EPOLLWRNORM																						=	0x100

				EPOLL_CLOEXEC																				=	0x80000

				EPOLL_CTL_ADD																				=	0x1

				EPOLL_CTL_DEL																				=	0x2

				EPOLL_CTL_MOD																				=	0x3

				EPOLL_NONBLOCK																			=	0x800

				ETH_P_1588																							=	0x88f7

				ETH_P_8021Q																						=	0x8100

				ETH_P_802_2																						=	0x4

				ETH_P_802_3																						=	0x1

				ETH_P_AARP																							=	0x80f3

				ETH_P_ALL																								=	0x3

				ETH_P_AOE																								=	0x88a2

				ETH_P_ARCNET																					=	0x1a

				ETH_P_ARP																								=	0x806

				ETH_P_ATALK																						=	0x809b

				ETH_P_ATMFATE																				=	0x8884

				ETH_P_ATMMPOA																				=	0x884c

				ETH_P_AX25																							=	0x2

				ETH_P_BPQ																								=	0x8ff

				ETH_P_CAIF																							=	0xf7

				ETH_P_CAN																								=	0xc

				ETH_P_CONTROL																				=	0x16

				ETH_P_CUST																							=	0x6006

				ETH_P_DDCMP																						=	0x6

				ETH_P_DEC																								=	0x6000

				ETH_P_DIAG																							=	0x6005

				ETH_P_DNA_DL																					=	0x6001

				ETH_P_DNA_RC																					=	0x6002

				ETH_P_DNA_RT																					=	0x6003

				ETH_P_DSA																								=	0x1b

				ETH_P_ECONET																					=	0x18

				ETH_P_EDSA																							=	0xdada

				ETH_P_FCOE																							=	0x8906

				ETH_P_FIP																								=	0x8914

				ETH_P_HDLC																							=	0x19

				ETH_P_IEEE802154																	=	0xf6

				ETH_P_IEEEPUP																				=	0xa00

				ETH_P_IEEEPUPAT																		=	0xa01

				ETH_P_IP																									=	0x800

				ETH_P_IPV6																							=	0x86dd

				ETH_P_IPX																								=	0x8137

				ETH_P_IRDA																							=	0x17

				ETH_P_LAT																								=	0x6004

				ETH_P_LINK_CTL																			=	0x886c

				ETH_P_LOCALTALK																		=	0x9

				ETH_P_LOOP																							=	0x60

				ETH_P_MOBITEX																				=	0x15

				ETH_P_MPLS_MC																				=	0x8848

				ETH_P_MPLS_UC																				=	0x8847

				ETH_P_PAE																								=	0x888e

				ETH_P_PAUSE																						=	0x8808

				ETH_P_PHONET																					=	0xf5

				ETH_P_PPPTALK																				=	0x10

				ETH_P_PPP_DISC																			=	0x8863

				ETH_P_PPP_MP																					=	0x8

				ETH_P_PPP_SES																				=	0x8864

				ETH_P_PUP																								=	0x200

				ETH_P_PUPAT																						=	0x201

				ETH_P_RARP																							=	0x8035

				ETH_P_SCA																								=	0x6007

				ETH_P_SLOW																							=	0x8809

				ETH_P_SNAP																							=	0x5

				ETH_P_TEB																								=	0x6558

				ETH_P_TIPC																							=	0x88ca

				ETH_P_TRAILER																				=	0x1c

				ETH_P_TR_802_2																			=	0x11

				ETH_P_WAN_PPP																				=	0x7

				ETH_P_WCCP																							=	0x883e

				ETH_P_X25																								=	0x805

				FD_CLOEXEC																							=	0x1

				FD_SETSIZE																							=	0x400

				F_DUPFD																										=	0x0

				F_DUPFD_CLOEXEC																		=	0x406

				F_EXLCK																										=	0x4

				F_GETFD																										=	0x1

				F_GETFL																										=	0x3

				F_GETLEASE																							=	0x401

				F_GETLK																										=	0x5

				F_GETLK64																								=	0x5

				F_GETOWN																									=	0x9

				F_GETOWN_EX																						=	0x10

				F_GETPIPE_SZ																					=	0x408

				F_GETSIG																									=	0xb

				F_LOCK																											=	0x1

				F_NOTIFY																									=	0x402

				F_OK																													=	0x0

				F_RDLCK																										=	0x0

				F_SETFD																										=	0x2

				F_SETFL																										=	0x4

				F_SETLEASE																							=	0x400

				F_SETLK																										=	0x6

				F_SETLK64																								=	0x6

				F_SETLKW																									=	0x7

				F_SETLKW64																							=	0x7

				F_SETOWN																									=	0x8

				F_SETOWN_EX																						=	0xf

				F_SETPIPE_SZ																					=	0x407

				F_SETSIG																									=	0xa

				F_SHLCK																										=	0x8

				F_TEST																											=	0x3

				F_TLOCK																										=	0x2

				F_ULOCK																										=	0x0

				F_UNLCK																										=	0x2

				F_WRLCK																										=	0x1

				IFA_F_DADFAILED																		=	0x8

				IFA_F_DEPRECATED																	=	0x20

				IFA_F_HOMEADDRESS																=	0x10

				IFA_F_NODAD																						=	0x2

				IFA_F_OPTIMISTIC																	=	0x4

				IFA_F_PERMANENT																		=	0x80

				IFA_F_SECONDARY																		=	0x1

				IFA_F_TEMPORARY																		=	0x1

				IFA_F_TENTATIVE																		=	0x40

				IFA_MAX																										=	0x7

				IFF_ALLMULTI																					=	0x200

				IFF_AUTOMEDIA																				=	0x4000

				IFF_BROADCAST																				=	0x2

				IFF_DEBUG																								=	0x4

				IFF_DYNAMIC																						=	0x8000

				IFF_LOOPBACK																					=	0x8

				IFF_MASTER																							=	0x400

				IFF_MULTICAST																				=	0x1000

				IFF_NOARP																								=	0x80

				IFF_NOTRAILERS																			=	0x20

				IFF_NO_PI																								=	0x1000

				IFF_ONE_QUEUE																				=	0x2000

				IFF_POINTOPOINT																		=	0x10

				IFF_PORTSEL																						=	0x2000

				IFF_PROMISC																						=	0x100

				IFF_RUNNING																						=	0x40

				IFF_SLAVE																								=	0x800

				IFF_TAP																										=	0x2

				IFF_TUN																										=	0x1

				IFF_TUN_EXCL																					=	0x8000

				IFF_UP																											=	0x1

				IFF_VNET_HDR																					=	0x4000

				IFNAMSIZ																									=	0x10

				IN_ACCESS																								=	0x1

				IN_ALL_EVENTS																				=	0xfff

				IN_ATTRIB																								=	0x4

				IN_CLASSA_HOST																			=	0xffffff

				IN_CLASSA_MAX																				=	0x80

				IN_CLASSA_NET																				=	0xff000000

				IN_CLASSA_NSHIFT																	=	0x18

				IN_CLASSB_HOST																			=	0xffff

				IN_CLASSB_MAX																				=	0x10000

				IN_CLASSB_NET																				=	0xffff0000

				IN_CLASSB_NSHIFT																	=	0x10

				IN_CLASSC_HOST																			=	0xff

				IN_CLASSC_NET																				=	0xffffff00

				IN_CLASSC_NSHIFT																	=	0x8

				IN_CLOEXEC																							=	0x80000

				IN_CLOSE																									=	0x18

				IN_CLOSE_NOWRITE																	=	0x10

				IN_CLOSE_WRITE																			=	0x8

				IN_CREATE																								=	0x100

				IN_DELETE																								=	0x200

				IN_DELETE_SELF																			=	0x400

				IN_DONT_FOLLOW																			=	0x2000000

				IN_EXCL_UNLINK																			=	0x4000000

				IN_IGNORED																							=	0x8000

				IN_ISDIR																									=	0x40000000

				IN_LOOPBACKNET																			=	0x7f

				IN_MASK_ADD																						=	0x20000000

				IN_MODIFY																								=	0x2

				IN_MOVE																										=	0xc0

				IN_MOVED_FROM																				=	0x40

				IN_MOVED_TO																						=	0x80

				IN_MOVE_SELF																					=	0x800

				IN_NONBLOCK																						=	0x800

				IN_ONESHOT																							=	0x80000000

				IN_ONLYDIR																							=	0x1000000

				IN_OPEN																										=	0x20

				IN_Q_OVERFLOW																				=	0x4000

				IN_UNMOUNT																							=	0x2000

				IPPROTO_AH																							=	0x33

				IPPROTO_COMP																					=	0x6c

				IPPROTO_DCCP																					=	0x21

				IPPROTO_DSTOPTS																		=	0x3c

				IPPROTO_EGP																						=	0x8

				IPPROTO_ENCAP																				=	0x62

				IPPROTO_ESP																						=	0x32

				IPPROTO_FRAGMENT																	=	0x2c

				IPPROTO_GRE																						=	0x2f

				IPPROTO_HOPOPTS																		=	0x0

				IPPROTO_ICMP																					=	0x1

				IPPROTO_ICMPV6																			=	0x3a

				IPPROTO_IDP																						=	0x16

				IPPROTO_IGMP																					=	0x2

				IPPROTO_IP																							=	0x0

				IPPROTO_IPIP																					=	0x4

				IPPROTO_IPV6																					=	0x29

				IPPROTO_MTP																						=	0x5c

				IPPROTO_NONE																					=	0x3b

				IPPROTO_PIM																						=	0x67

				IPPROTO_PUP																						=	0xc

				IPPROTO_RAW																						=	0xff

				IPPROTO_ROUTING																		=	0x2b

				IPPROTO_RSVP																					=	0x2e

				IPPROTO_SCTP																					=	0x84

				IPPROTO_TCP																						=	0x6

				IPPROTO_TP																							=	0x1d

				IPPROTO_UDP																						=	0x11

				IPPROTO_UDPLITE																		=	0x88

				IPV6_2292DSTOPTS																	=	0x4

				IPV6_2292HOPLIMIT																=	0x8

				IPV6_2292HOPOPTS																	=	0x3

				IPV6_2292PKTINFO																	=	0x2

				IPV6_2292PKTOPTIONS														=	0x6

				IPV6_2292RTHDR																			=	0x5

				IPV6_ADDRFORM																				=	0x1

				IPV6_ADD_MEMBERSHIP														=	0x14

				IPV6_AUTHHDR																					=	0xa

				IPV6_CHECKSUM																				=	0x7

				IPV6_DROP_MEMBERSHIP													=	0x15

				IPV6_DSTOPTS																					=	0x3b

				IPV6_HOPLIMIT																				=	0x34

				IPV6_HOPOPTS																					=	0x36

				IPV6_IPSEC_POLICY																=	0x22

				IPV6_JOIN_ANYCAST																=	0x1b

				IPV6_JOIN_GROUP																		=	0x14

				IPV6_LEAVE_ANYCAST															=	0x1c

				IPV6_LEAVE_GROUP																	=	0x15

				IPV6_MTU																									=	0x18

				IPV6_MTU_DISCOVER																=	0x17

				IPV6_MULTICAST_HOPS														=	0x12

				IPV6_MULTICAST_IF																=	0x11

				IPV6_MULTICAST_LOOP														=	0x13

				IPV6_NEXTHOP																					=	0x9

				IPV6_PKTINFO																					=	0x32

				IPV6_PMTUDISC_DO																	=	0x2

				IPV6_PMTUDISC_DONT															=	0x0

				IPV6_PMTUDISC_PROBE														=	0x3

				IPV6_PMTUDISC_WANT															=	0x1

				IPV6_RECVDSTOPTS																	=	0x3a

				IPV6_RECVERR																					=	0x19

				IPV6_RECVHOPLIMIT																=	0x33

				IPV6_RECVHOPOPTS																	=	0x35

				IPV6_RECVPKTINFO																	=	0x31

				IPV6_RECVRTHDR																			=	0x38

				IPV6_RECVTCLASS																		=	0x42

				IPV6_ROUTER_ALERT																=	0x16

				IPV6_RTHDR																							=	0x39

				IPV6_RTHDRDSTOPTS																=	0x37

				IPV6_RTHDR_LOOSE																	=	0x0

				IPV6_RTHDR_STRICT																=	0x1

				IPV6_RTHDR_TYPE_0																=	0x0

				IPV6_RXDSTOPTS																			=	0x3b

				IPV6_RXHOPOPTS																			=	0x36

				IPV6_TCLASS																						=	0x43

				IPV6_UNICAST_HOPS																=	0x10

				IPV6_V6ONLY																						=	0x1a

				IPV6_XFRM_POLICY																	=	0x23

				IP_ADD_MEMBERSHIP																=	0x23

				IP_ADD_SOURCE_MEMBERSHIP									=	0x27

				IP_BLOCK_SOURCE																		=	0x26

				IP_DEFAULT_MULTICAST_LOOP								=	0x1

				IP_DEFAULT_MULTICAST_TTL									=	0x1

				IP_DF																												=	0x4000

				IP_DROP_MEMBERSHIP															=	0x24

				IP_DROP_SOURCE_MEMBERSHIP								=	0x28

				IP_FREEBIND																						=	0xf

				IP_HDRINCL																							=	0x3

				IP_IPSEC_POLICY																		=	0x10

				IP_MAXPACKET																					=	0xffff

				IP_MAX_MEMBERSHIPS															=	0x14

				IP_MF																												=	0x2000

				IP_MINTTL																								=	0x15

				IP_MSFILTER																						=	0x29

				IP_MSS																											=	0x240

				IP_MTU																											=	0xe

				IP_MTU_DISCOVER																		=	0xa

				IP_MULTICAST_IF																		=	0x20

				IP_MULTICAST_LOOP																=	0x22

				IP_MULTICAST_TTL																	=	0x21

				IP_OFFMASK																							=	0x1fff

				IP_OPTIONS																							=	0x4

				IP_ORIGDSTADDR																			=	0x14

				IP_PASSSEC																							=	0x12

				IP_PKTINFO																							=	0x8

				IP_PKTOPTIONS																				=	0x9

				IP_PMTUDISC																						=	0xa

				IP_PMTUDISC_DO																			=	0x2

				IP_PMTUDISC_DONT																	=	0x0

				IP_PMTUDISC_PROBE																=	0x3

				IP_PMTUDISC_WANT																	=	0x1

				IP_RECVERR																							=	0xb

				IP_RECVOPTS																						=	0x6

				IP_RECVORIGDSTADDR															=	0x14

				IP_RECVRETOPTS																			=	0x7

				IP_RECVTOS																							=	0xd

				IP_RECVTTL																							=	0xc

				IP_RETOPTS																							=	0x7

				IP_RF																												=	0x8000

				IP_ROUTER_ALERT																		=	0x5

				IP_TOS																											=	0x1

				IP_TRANSPARENT																			=	0x13

				IP_TTL																											=	0x2

				IP_UNBLOCK_SOURCE																=	0x25

				IP_XFRM_POLICY																			=	0x11

				LINUX_REBOOT_CMD_CAD_OFF									=	0x0

				LINUX_REBOOT_CMD_CAD_ON										=	0x89abcdef

				LINUX_REBOOT_CMD_HALT												=	0xcdef0123

				LINUX_REBOOT_CMD_KEXEC											=	0x45584543

				LINUX_REBOOT_CMD_POWER_OFF							=	0x4321fedc

				LINUX_REBOOT_CMD_RESTART									=	0x1234567

				LINUX_REBOOT_CMD_RESTART2								=	0xa1b2c3d4

				LINUX_REBOOT_CMD_SW_SUSPEND						=	0xd000fce2

				LINUX_REBOOT_MAGIC1														=	0xfee1dead

				LINUX_REBOOT_MAGIC2														=	0x28121969

				LOCK_EX																										=	0x2

				LOCK_NB																										=	0x4

				LOCK_SH																										=	0x1

				LOCK_UN																										=	0x8

				MADV_DOFORK																						=	0xb

				MADV_DONTFORK																				=	0xa

				MADV_DONTNEED																				=	0x4

				MADV_HUGEPAGE																				=	0xe

				MADV_HWPOISON																				=	0x64

				MADV_MERGEABLE																			=	0xc

				MADV_NOHUGEPAGE																		=	0xf

				MADV_NORMAL																						=	0x0

				MADV_RANDOM																						=	0x1

				MADV_REMOVE																						=	0x9

				MADV_SEQUENTIAL																		=	0x2

				MADV_UNMERGEABLE																	=	0xd

				MADV_WILLNEED																				=	0x3

				MAP_32BIT																								=	0x40

				MAP_ANON																									=	0x20

				MAP_ANONYMOUS																				=	0x20

				MAP_DENYWRITE																				=	0x800

				MAP_EXECUTABLE																			=	0x1000

				MAP_FILE																									=	0x0

				MAP_FIXED																								=	0x10

				MAP_GROWSDOWN																				=	0x100

				MAP_HUGETLB																						=	0x40000

				MAP_LOCKED																							=	0x2000

				MAP_NONBLOCK																					=	0x10000

				MAP_NORESERVE																				=	0x4000

				MAP_POPULATE																					=	0x8000

				MAP_PRIVATE																						=	0x2

				MAP_SHARED																							=	0x1

				MAP_STACK																								=	0x20000

				MAP_TYPE																									=	0xf

				MCL_CURRENT																						=	0x1

				MCL_FUTURE																							=	0x2

				MNT_DETACH																							=	0x2

				MNT_EXPIRE																							=	0x4

				MNT_FORCE																								=	0x1

				MSG_CMSG_CLOEXEC																	=	0x40000000

				MSG_CONFIRM																						=	0x800

				MSG_CTRUNC																							=	0x8

				MSG_DONTROUTE																				=	0x4

				MSG_DONTWAIT																					=	0x40

				MSG_EOR																										=	0x80

				MSG_ERRQUEUE																					=	0x2000

				MSG_FIN																										=	0x200

				MSG_MORE																									=	0x8000

				MSG_NOSIGNAL																					=	0x4000

				MSG_OOB																										=	0x1

				MSG_PEEK																									=	0x2

				MSG_PROXY																								=	0x10

				MSG_RST																										=	0x1000

				MSG_SYN																										=	0x400

				MSG_TRUNC																								=	0x20

				MSG_TRYHARD																						=	0x4

				MSG_WAITALL																						=	0x100

				MSG_WAITFORONE																			=	0x10000

				MS_ACTIVE																								=	0x40000000

				MS_ASYNC																									=	0x1

				MS_BIND																										=	0x1000

				MS_DIRSYNC																							=	0x80

				MS_INVALIDATE																				=	0x2

				MS_I_VERSION																					=	0x800000

				MS_KERNMOUNT																					=	0x400000

				MS_MANDLOCK																						=	0x40

				MS_MGC_MSK																							=	0xffff0000

				MS_MGC_VAL																							=	0xc0ed0000

				MS_MOVE																										=	0x2000

				MS_NOATIME																							=	0x400

				MS_NODEV																									=	0x4

				MS_NODIRATIME																				=	0x800

				MS_NOEXEC																								=	0x8

				MS_NOSUID																								=	0x2

				MS_NOUSER																								=	-0x80000000

				MS_POSIXACL																						=	0x10000

				MS_PRIVATE																							=	0x40000

				MS_RDONLY																								=	0x1

				MS_REC																											=	0x4000

				MS_RELATIME																						=	0x200000

				MS_REMOUNT																							=	0x20

				MS_RMT_MASK																						=	0x800051

				MS_SHARED																								=	0x100000

				MS_SILENT																								=	0x8000

				MS_SLAVE																									=	0x80000

				MS_STRICTATIME																			=	0x1000000

				MS_SYNC																										=	0x4

				MS_SYNCHRONOUS																			=	0x10

				MS_UNBINDABLE																				=	0x20000

				NAME_MAX																									=	0xff

				NETLINK_ADD_MEMBERSHIP											=	0x1

				NETLINK_AUDIT																				=	0x9

				NETLINK_BROADCAST_ERROR										=	0x4

				NETLINK_CONNECTOR																=	0xb

				NETLINK_DNRTMSG																		=	0xe

				NETLINK_DROP_MEMBERSHIP										=	0x2

				NETLINK_ECRYPTFS																	=	0x13

				NETLINK_FIB_LOOKUP															=	0xa

				NETLINK_FIREWALL																	=	0x3

				NETLINK_GENERIC																		=	0x10

				NETLINK_INET_DIAG																=	0x4

				NETLINK_IP6_FW																			=	0xd

				NETLINK_ISCSI																				=	0x8

				NETLINK_KOBJECT_UEVENT											=	0xf

				NETLINK_NETFILTER																=	0xc

				NETLINK_NFLOG																				=	0x5

				NETLINK_NO_ENOBUFS															=	0x5

				NETLINK_PKTINFO																		=	0x3

				NETLINK_ROUTE																				=	0x0

				NETLINK_SCSITRANSPORT												=	0x12

				NETLINK_SELINUX																		=	0x7

				NETLINK_UNUSED																			=	0x1

				NETLINK_USERSOCK																	=	0x2

				NETLINK_XFRM																					=	0x6

				NLA_ALIGNTO																						=	0x4

				NLA_F_NESTED																					=	0x8000

				NLA_F_NET_BYTEORDER														=	0x4000

				NLA_HDRLEN																							=	0x4

				NLMSG_ALIGNTO																				=	0x4

				NLMSG_DONE																							=	0x3

				NLMSG_ERROR																						=	0x2

				NLMSG_HDRLEN																					=	0x10

				NLMSG_MIN_TYPE																			=	0x10

				NLMSG_NOOP																							=	0x1

				NLMSG_OVERRUN																				=	0x4

				NLM_F_ACK																								=	0x4

				NLM_F_APPEND																					=	0x800

				NLM_F_ATOMIC																					=	0x400

				NLM_F_CREATE																					=	0x400

				NLM_F_DUMP																							=	0x300

				NLM_F_ECHO																							=	0x8

				NLM_F_EXCL																							=	0x200

				NLM_F_MATCH																						=	0x200

				NLM_F_MULTI																						=	0x2

				NLM_F_REPLACE																				=	0x100

				NLM_F_REQUEST																				=	0x1

				NLM_F_ROOT																							=	0x100

				O_ACCMODE																								=	0x3

				O_APPEND																									=	0x400

				O_ASYNC																										=	0x2000

				O_CLOEXEC																								=	0x80000

				O_CREAT																										=	0x40

				O_DIRECT																									=	0x4000

				O_DIRECTORY																						=	0x10000

				O_DSYNC																										=	0x1000

				O_EXCL																											=	0x80

				O_FSYNC																										=	0x101000

				O_LARGEFILE																						=	0x0

				O_NDELAY																									=	0x800

				O_NOATIME																								=	0x40000

				O_NOCTTY																									=	0x100

				O_NOFOLLOW																							=	0x20000

				O_NONBLOCK																							=	0x800

				O_RDONLY																									=	0x0

				O_RDWR																											=	0x2

				O_RSYNC																										=	0x101000

				O_SYNC																											=	0x101000

				O_TRUNC																										=	0x200

				O_WRONLY																									=	0x1

				PACKET_ADD_MEMBERSHIP												=	0x1

				PACKET_BROADCAST																	=	0x1

				PACKET_DROP_MEMBERSHIP											=	0x2

				PACKET_FASTROUTE																	=	0x6

				PACKET_HOST																						=	0x0

				PACKET_LOOPBACK																		=	0x5

				PACKET_MR_ALLMULTI															=	0x2

				PACKET_MR_MULTICAST														=	0x0

				PACKET_MR_PROMISC																=	0x1

				PACKET_MULTICAST																	=	0x2

				PACKET_OTHERHOST																	=	0x3

				PACKET_OUTGOING																		=	0x4

				PACKET_RECV_OUTPUT															=	0x3

				PACKET_RX_RING																			=	0x5

				PACKET_STATISTICS																=	0x6

				PROT_EXEC																								=	0x4

				PROT_GROWSDOWN																			=	0x1000000

				PROT_GROWSUP																					=	0x2000000

				PROT_NONE																								=	0x0

				PROT_READ																								=	0x1

				PROT_WRITE																							=	0x2

				PR_CAPBSET_DROP																		=	0x18

				PR_CAPBSET_READ																		=	0x17

				PR_ENDIAN_BIG																				=	0x0

				PR_ENDIAN_LITTLE																	=	0x1

				PR_ENDIAN_PPC_LITTLE													=	0x2

				PR_FPEMU_NOPRINT																	=	0x1

				PR_FPEMU_SIGFPE																		=	0x2

				PR_FP_EXC_ASYNC																		=	0x2

				PR_FP_EXC_DISABLED															=	0x0

				PR_FP_EXC_DIV																				=	0x10000

				PR_FP_EXC_INV																				=	0x100000

				PR_FP_EXC_NONRECOV															=	0x1

				PR_FP_EXC_OVF																				=	0x20000

				PR_FP_EXC_PRECISE																=	0x3

				PR_FP_EXC_RES																				=	0x80000

				PR_FP_EXC_SW_ENABLE														=	0x80

				PR_FP_EXC_UND																				=	0x40000

				PR_GET_DUMPABLE																		=	0x3

				PR_GET_ENDIAN																				=	0x13

				PR_GET_FPEMU																					=	0x9

				PR_GET_FPEXC																					=	0xb

				PR_GET_KEEPCAPS																		=	0x7

				PR_GET_NAME																						=	0x10

				PR_GET_PDEATHSIG																	=	0x2

				PR_GET_SECCOMP																			=	0x15

				PR_GET_SECUREBITS																=	0x1b

				PR_GET_TIMERSLACK																=	0x1e

				PR_GET_TIMING																				=	0xd

				PR_GET_TSC																							=	0x19

				PR_GET_UNALIGN																			=	0x5

				PR_MCE_KILL																						=	0x21

				PR_MCE_KILL_CLEAR																=	0x0

				PR_MCE_KILL_DEFAULT														=	0x2

				PR_MCE_KILL_EARLY																=	0x1

				PR_MCE_KILL_GET																		=	0x22

				PR_MCE_KILL_LATE																	=	0x0

				PR_MCE_KILL_SET																		=	0x1

				PR_SET_DUMPABLE																		=	0x4

				PR_SET_ENDIAN																				=	0x14

				PR_SET_FPEMU																					=	0xa

				PR_SET_FPEXC																					=	0xc

				PR_SET_KEEPCAPS																		=	0x8

				PR_SET_NAME																						=	0xf

				PR_SET_PDEATHSIG																	=	0x1

				PR_SET_PTRACER																			=	0x59616d61

				PR_SET_SECCOMP																			=	0x16

				PR_SET_SECUREBITS																=	0x1c

				PR_SET_TIMERSLACK																=	0x1d

				PR_SET_TIMING																				=	0xe

				PR_SET_TSC																							=	0x1a

				PR_SET_UNALIGN																			=	0x6

				PR_TASK_PERF_EVENTS_DISABLE						=	0x1f

				PR_TASK_PERF_EVENTS_ENABLE							=	0x20

				PR_TIMING_STATISTICAL												=	0x0

				PR_TIMING_TIMESTAMP														=	0x1

				PR_TSC_ENABLE																				=	0x1

				PR_TSC_SIGSEGV																			=	0x2

				PR_UNALIGN_NOPRINT															=	0x1

				PR_UNALIGN_SIGBUS																=	0x2

				PTRACE_ARCH_PRCTL																=	0x1e

				PTRACE_ATTACH																				=	0x10

				PTRACE_CONT																						=	0x7

				PTRACE_DETACH																				=	0x11

				PTRACE_EVENT_CLONE															=	0x3

				PTRACE_EVENT_EXEC																=	0x4

				PTRACE_EVENT_EXIT																=	0x6

				PTRACE_EVENT_FORK																=	0x1

				PTRACE_EVENT_VFORK															=	0x2

				PTRACE_EVENT_VFORK_DONE										=	0x5

				PTRACE_GETEVENTMSG															=	0x4201

				PTRACE_GETFPREGS																	=	0xe

				PTRACE_GETFPXREGS																=	0x12

				PTRACE_GETREGS																			=	0xc

				PTRACE_GETREGSET																	=	0x4204

				PTRACE_GETSIGINFO																=	0x4202

				PTRACE_GET_THREAD_AREA											=	0x19

				PTRACE_KILL																						=	0x8

				PTRACE_OLDSETOPTIONS													=	0x15

				PTRACE_O_MASK																				=	0x7f

				PTRACE_O_TRACECLONE														=	0x8

				PTRACE_O_TRACEEXEC															=	0x10

				PTRACE_O_TRACEEXIT															=	0x40

				PTRACE_O_TRACEFORK															=	0x2

				PTRACE_O_TRACESYSGOOD												=	0x1

				PTRACE_O_TRACEVFORK														=	0x4

				PTRACE_O_TRACEVFORKDONE										=	0x20

				PTRACE_PEEKDATA																		=	0x2

				PTRACE_PEEKTEXT																		=	0x1

				PTRACE_PEEKUSR																			=	0x3

				PTRACE_POKEDATA																		=	0x5

				PTRACE_POKETEXT																		=	0x4

				PTRACE_POKEUSR																			=	0x6

				PTRACE_SETFPREGS																	=	0xf

				PTRACE_SETFPXREGS																=	0x13

				PTRACE_SETOPTIONS																=	0x4200

				PTRACE_SETREGS																			=	0xd

				PTRACE_SETREGSET																	=	0x4205

				PTRACE_SETSIGINFO																=	0x4203

				PTRACE_SET_THREAD_AREA											=	0x1a

				PTRACE_SINGLEBLOCK															=	0x21

				PTRACE_SINGLESTEP																=	0x9

				PTRACE_SYSCALL																			=	0x18

				PTRACE_SYSEMU																				=	0x1f

				PTRACE_SYSEMU_SINGLESTEP									=	0x20

				PTRACE_TRACEME																			=	0x0

				RLIMIT_AS																								=	0x9

				RLIMIT_CORE																						=	0x4

				RLIMIT_CPU																							=	0x0

				RLIMIT_DATA																						=	0x2

				RLIMIT_FSIZE																					=	0x1

				RLIMIT_NOFILE																				=	0x7

				RLIMIT_STACK																					=	0x3

				RLIM_INFINITY																				=	-0x1

				RTAX_ADVMSS																						=	0x8

				RTAX_CWND																								=	0x7

				RTAX_FEATURES																				=	0xc

				RTAX_FEATURE_ALLFRAG													=	0x8

				RTAX_FEATURE_ECN																	=	0x1

				RTAX_FEATURE_SACK																=	0x2

				RTAX_FEATURE_TIMESTAMP											=	0x4

				RTAX_HOPLIMIT																				=	0xa

				RTAX_INITCWND																				=	0xb

				RTAX_INITRWND																				=	0xe

				RTAX_LOCK																								=	0x1

				RTAX_MAX																									=	0xe

				RTAX_MTU																									=	0x2

				RTAX_REORDERING																		=	0x9

				RTAX_RTO_MIN																					=	0xd

				RTAX_RTT																									=	0x4

				RTAX_RTTVAR																						=	0x5

				RTAX_SSTHRESH																				=	0x6

				RTAX_UNSPEC																						=	0x0

				RTAX_WINDOW																						=	0x3

				RTA_ALIGNTO																						=	0x4

				RTA_MAX																										=	0x10

				RTCF_DIRECTSRC																			=	0x4000000

				RTCF_DOREDIRECT																		=	0x1000000

				RTCF_LOG																									=	0x2000000

				RTCF_MASQ																								=	0x400000

				RTCF_NAT																									=	0x800000

				RTCF_VALVE																							=	0x200000

				RTF_ADDRCLASSMASK																=	0xf8000000

				RTF_ADDRCONF																					=	0x40000

				RTF_ALLONLINK																				=	0x20000

				RTF_BROADCAST																				=	0x10000000

				RTF_CACHE																								=	0x1000000

				RTF_DEFAULT																						=	0x10000

				RTF_DYNAMIC																						=	0x10

				RTF_FLOW																									=	0x2000000

				RTF_GATEWAY																						=	0x2

				RTF_HOST																									=	0x4

				RTF_INTERFACE																				=	0x40000000

				RTF_IRTT																									=	0x100

				RTF_LINKRT																							=	0x100000

				RTF_LOCAL																								=	0x80000000

				RTF_MODIFIED																					=	0x20

				RTF_MSS																										=	0x40

				RTF_MTU																										=	0x40

				RTF_MULTICAST																				=	0x20000000

				RTF_NAT																										=	0x8000000

				RTF_NOFORWARD																				=	0x1000

				RTF_NONEXTHOP																				=	0x200000

				RTF_NOPMTUDISC																			=	0x4000

				RTF_POLICY																							=	0x4000000

				RTF_REINSTATE																				=	0x8

				RTF_REJECT																							=	0x200

				RTF_STATIC																							=	0x400

				RTF_THROW																								=	0x2000

				RTF_UP																											=	0x1

				RTF_WINDOW																							=	0x80

				RTF_XRESOLVE																					=	0x800

				RTM_BASE																									=	0x10

				RTM_DELACTION																				=	0x31

				RTM_DELADDR																						=	0x15

				RTM_DELADDRLABEL																	=	0x49

				RTM_DELLINK																						=	0x11

				RTM_DELNEIGH																					=	0x1d

				RTM_DELQDISC																					=	0x25

				RTM_DELROUTE																					=	0x19

				RTM_DELRULE																						=	0x21

				RTM_DELTCLASS																				=	0x29

				RTM_DELTFILTER																			=	0x2d

				RTM_F_CLONED																					=	0x200

				RTM_F_EQUALIZE																			=	0x400

				RTM_F_NOTIFY																					=	0x100

				RTM_F_PREFIX																					=	0x800

				RTM_GETACTION																				=	0x32

				RTM_GETADDR																						=	0x16

				RTM_GETADDRLABEL																	=	0x4a

				RTM_GETANYCAST																			=	0x3e

				RTM_GETDCB																							=	0x4e

				RTM_GETLINK																						=	0x12

				RTM_GETMULTICAST																	=	0x3a

				RTM_GETNEIGH																					=	0x1e

				RTM_GETNEIGHTBL																		=	0x42

				RTM_GETQDISC																					=	0x26

				RTM_GETROUTE																					=	0x1a

				RTM_GETRULE																						=	0x22

				RTM_GETTCLASS																				=	0x2a

				RTM_GETTFILTER																			=	0x2e

				RTM_MAX																										=	0x4f

				RTM_NEWACTION																				=	0x30

				RTM_NEWADDR																						=	0x14

				RTM_NEWADDRLABEL																	=	0x48

				RTM_NEWLINK																						=	0x10

				RTM_NEWNDUSEROPT																	=	0x44

				RTM_NEWNEIGH																					=	0x1c

				RTM_NEWNEIGHTBL																		=	0x40

				RTM_NEWPREFIX																				=	0x34

				RTM_NEWQDISC																					=	0x24

				RTM_NEWROUTE																					=	0x18

				RTM_NEWRULE																						=	0x20

				RTM_NEWTCLASS																				=	0x28

				RTM_NEWTFILTER																			=	0x2c

				RTM_NR_FAMILIES																		=	0x10

				RTM_NR_MSGTYPES																		=	0x40

				RTM_SETDCB																							=	0x4f

				RTM_SETLINK																						=	0x13

				RTM_SETNEIGHTBL																		=	0x43

				RTNH_ALIGNTO																					=	0x4

				RTNH_F_DEAD																						=	0x1

				RTNH_F_ONLINK																				=	0x4

				RTNH_F_PERVASIVE																	=	0x2

				RTN_MAX																										=	0xb

				RTPROT_BIRD																						=	0xc

				RTPROT_BOOT																						=	0x3

				RTPROT_DHCP																						=	0x10

				RTPROT_DNROUTED																		=	0xd

				RTPROT_GATED																					=	0x8

				RTPROT_KERNEL																				=	0x2

				RTPROT_MRT																							=	0xa

				RTPROT_NTK																							=	0xf

				RTPROT_RA																								=	0x9

				RTPROT_REDIRECT																		=	0x1

				RTPROT_STATIC																				=	0x4

				RTPROT_UNSPEC																				=	0x0

				RTPROT_XORP																						=	0xe

				RTPROT_ZEBRA																					=	0xb

				RT_CLASS_DEFAULT																	=	0xfd

				RT_CLASS_LOCAL																			=	0xff

				RT_CLASS_MAIN																				=	0xfe

				RT_CLASS_MAX																					=	0xff

				RT_CLASS_UNSPEC																		=	0x0

				RUSAGE_CHILDREN																		=	-0x1

				RUSAGE_SELF																						=	0x0

				RUSAGE_THREAD																				=	0x1

				SCM_CREDENTIALS																		=	0x2

				SCM_RIGHTS																							=	0x1

				SCM_TIMESTAMP																				=	0x1d

				SCM_TIMESTAMPING																	=	0x25

				SCM_TIMESTAMPNS																		=	0x23

				SHUT_RD																										=	0x0

				SHUT_RDWR																								=	0x2

				SHUT_WR																										=	0x1

				SIOCADDDLCI																						=	0x8980

				SIOCADDMULTI																					=	0x8931

				SIOCADDRT																								=	0x890b

				SIOCATMARK																							=	0x8905

				SIOCDARP																									=	0x8953

				SIOCDELDLCI																						=	0x8981

				SIOCDELMULTI																					=	0x8932

				SIOCDELRT																								=	0x890c

				SIOCDEVPRIVATE																			=	0x89f0

				SIOCDIFADDR																						=	0x8936

				SIOCDRARP																								=	0x8960

				SIOCGARP																									=	0x8954

				SIOCGIFADDR																						=	0x8915

				SIOCGIFBR																								=	0x8940

				SIOCGIFBRDADDR																			=	0x8919

				SIOCGIFCONF																						=	0x8912

				SIOCGIFCOUNT																					=	0x8938

				SIOCGIFDSTADDR																			=	0x8917

				SIOCGIFENCAP																					=	0x8925

				SIOCGIFFLAGS																					=	0x8913

				SIOCGIFHWADDR																				=	0x8927

				SIOCGIFINDEX																					=	0x8933

				SIOCGIFMAP																							=	0x8970

				SIOCGIFMEM																							=	0x891f

				SIOCGIFMETRIC																				=	0x891d

				SIOCGIFMTU																							=	0x8921

				SIOCGIFNAME																						=	0x8910

				SIOCGIFNETMASK																			=	0x891b

				SIOCGIFPFLAGS																				=	0x8935

				SIOCGIFSLAVE																					=	0x8929

				SIOCGIFTXQLEN																				=	0x8942

				SIOCGPGRP																								=	0x8904

				SIOCGRARP																								=	0x8961

				SIOCGSTAMP																							=	0x8906

				SIOCGSTAMPNS																					=	0x8907

				SIOCPROTOPRIVATE																	=	0x89e0

				SIOCRTMSG																								=	0x890d

				SIOCSARP																									=	0x8955

				SIOCSIFADDR																						=	0x8916

				SIOCSIFBR																								=	0x8941

				SIOCSIFBRDADDR																			=	0x891a

				SIOCSIFDSTADDR																			=	0x8918

				SIOCSIFENCAP																					=	0x8926

				SIOCSIFFLAGS																					=	0x8914

				SIOCSIFHWADDR																				=	0x8924

				SIOCSIFHWBROADCAST															=	0x8937

				SIOCSIFLINK																						=	0x8911

				SIOCSIFMAP																							=	0x8971

				SIOCSIFMEM																							=	0x8920

				SIOCSIFMETRIC																				=	0x891e

				SIOCSIFMTU																							=	0x8922

				SIOCSIFNAME																						=	0x8923

				SIOCSIFNETMASK																			=	0x891c

				SIOCSIFPFLAGS																				=	0x8934

				SIOCSIFSLAVE																					=	0x8930

				SIOCSIFTXQLEN																				=	0x8943

				SIOCSPGRP																								=	0x8902

				SIOCSRARP																								=	0x8962

				SOCK_CLOEXEC																					=	0x80000

				SOCK_DCCP																								=	0x6

				SOCK_DGRAM																							=	0x2

				SOCK_NONBLOCK																				=	0x800

				SOCK_PACKET																						=	0xa

				SOCK_RAW																									=	0x3

				SOCK_RDM																									=	0x4

				SOCK_SEQPACKET																			=	0x5

				SOCK_STREAM																						=	0x1

				SOL_AAL																										=	0x109

				SOL_ATM																										=	0x108

				SOL_DECNET																							=	0x105

				SOL_ICMPV6																							=	0x3a

				SOL_IP																											=	0x0

				SOL_IPV6																									=	0x29

				SOL_IRDA																									=	0x10a

				SOL_PACKET																							=	0x107

				SOL_RAW																										=	0xff

				SOL_SOCKET																							=	0x1

				SOL_TCP																										=	0x6

				SOL_X25																										=	0x106

				SOMAXCONN																								=	0x80

				SO_ACCEPTCONN																				=	0x1e

				SO_ATTACH_FILTER																	=	0x1a

				SO_BINDTODEVICE																		=	0x19

				SO_BROADCAST																					=	0x6

				SO_BSDCOMPAT																					=	0xe

				SO_DEBUG																									=	0x1

				SO_DETACH_FILTER																	=	0x1b

				SO_DOMAIN																								=	0x27

				SO_DONTROUTE																					=	0x5

				SO_ERROR																									=	0x4

				SO_KEEPALIVE																					=	0x9

				SO_LINGER																								=	0xd

				SO_MARK																										=	0x24

				SO_NO_CHECK																						=	0xb

				SO_OOBINLINE																					=	0xa

				SO_PASSCRED																						=	0x10

				SO_PASSSEC																							=	0x22

				SO_PEERCRED																						=	0x11

				SO_PEERNAME																						=	0x1c

				SO_PEERSEC																							=	0x1f

				SO_PRIORITY																						=	0xc

				SO_PROTOCOL																						=	0x26

				SO_RCVBUF																								=	0x8

				SO_RCVBUFFORCE																			=	0x21

				SO_RCVLOWAT																						=	0x12

				SO_RCVTIMEO																						=	0x14

				SO_REUSEADDR																					=	0x2

				SO_RXQ_OVFL																						=	0x28

				SO_SECURITY_AUTHENTICATION							=	0x16

				SO_SECURITY_ENCRYPTION_NETWORK			=	0x18

				SO_SECURITY_ENCRYPTION_TRANSPORT	=	0x17

				SO_SNDBUF																								=	0x7

				SO_SNDBUFFORCE																			=	0x20

				SO_SNDLOWAT																						=	0x13

				SO_SNDTIMEO																						=	0x15

				SO_TIMESTAMP																					=	0x1d

				SO_TIMESTAMPING																		=	0x25

				SO_TIMESTAMPNS																			=	0x23

				SO_TYPE																										=	0x3

				S_BLKSIZE																								=	0x200

				S_IEXEC																										=	0x40

				S_IFBLK																										=	0x6000

				S_IFCHR																										=	0x2000

				S_IFDIR																										=	0x4000

				S_IFIFO																										=	0x1000

				S_IFLNK																										=	0xa000

				S_IFMT																											=	0xf000

				S_IFREG																										=	0x8000

				S_IFSOCK																									=	0xc000

				S_IREAD																										=	0x100

				S_IRGRP																										=	0x20

				S_IROTH																										=	0x4

				S_IRUSR																										=	0x100

				S_IRWXG																										=	0x38

				S_IRWXO																										=	0x7

				S_IRWXU																										=	0x1c0

				S_ISGID																										=	0x400

				S_ISUID																										=	0x800

				S_ISVTX																										=	0x200

				S_IWGRP																										=	0x10

				S_IWOTH																										=	0x2

				S_IWRITE																									=	0x80

				S_IWUSR																										=	0x80

				S_IXGRP																										=	0x8

				S_IXOTH																										=	0x1

				S_IXUSR																										=	0x40

				TCP_CONGESTION																			=	0xd

				TCP_CORK																									=	0x3

				TCP_DEFER_ACCEPT																	=	0x9

				TCP_INFO																									=	0xb

				TCP_KEEPCNT																						=	0x6

				TCP_KEEPIDLE																					=	0x4

				TCP_KEEPINTVL																				=	0x5

				TCP_LINGER2																						=	0x8

				TCP_MAXSEG																							=	0x2

				TCP_MAXWIN																							=	0xffff

				TCP_MAX_WINSHIFT																	=	0xe

				TCP_MD5SIG																							=	0xe

				TCP_MD5SIG_MAXKEYLEN													=	0x50

				TCP_MSS																										=	0x200

				TCP_NODELAY																						=	0x1

				TCP_QUICKACK																					=	0xc

				TCP_SYNCNT																							=	0x7

				TCP_WINDOW_CLAMP																	=	0xa

				TIOCCBRK																									=	0x5428

				TIOCCONS																									=	0x541d

				TIOCEXCL																									=	0x540c

				TIOCGDEV																									=	0x80045432

				TIOCGETD																									=	0x5424

				TIOCGICOUNT																						=	0x545d

				TIOCGLCKTRMIOS																			=	0x5456

				TIOCGPGRP																								=	0x540f

				TIOCGPTN																									=	0x80045430

				TIOCGRS485																							=	0x542e

				TIOCGSERIAL																						=	0x541e

				TIOCGSID																									=	0x5429

				TIOCGSOFTCAR																					=	0x5419

				TIOCGWINSZ																							=	0x5413

				TIOCINQ																										=	0x541b

				TIOCLINUX																								=	0x541c

				TIOCMBIC																									=	0x5417

				TIOCMBIS																									=	0x5416

				TIOCMGET																									=	0x5415

				TIOCMIWAIT																							=	0x545c

				TIOCMSET																									=	0x5418

				TIOCM_CAR																								=	0x40

				TIOCM_CD																									=	0x40

				TIOCM_CTS																								=	0x20

				TIOCM_DSR																								=	0x100

				TIOCM_DTR																								=	0x2

				TIOCM_LE																									=	0x1

				TIOCM_RI																									=	0x80

				TIOCM_RNG																								=	0x80

				TIOCM_RTS																								=	0x4

				TIOCM_SR																									=	0x10

				TIOCM_ST																									=	0x8

				TIOCNOTTY																								=	0x5422

				TIOCNXCL																									=	0x540d

				TIOCOUTQ																									=	0x5411

				TIOCPKT																										=	0x5420

				TIOCPKT_DATA																					=	0x0

				TIOCPKT_DOSTOP																			=	0x20

				TIOCPKT_FLUSHREAD																=	0x1

				TIOCPKT_FLUSHWRITE															=	0x2

				TIOCPKT_IOCTL																				=	0x40

				TIOCPKT_NOSTOP																			=	0x10

				TIOCPKT_START																				=	0x8

				TIOCPKT_STOP																					=	0x4

				TIOCSBRK																									=	0x5427

				TIOCSCTTY																								=	0x540e

				TIOCSERCONFIG																				=	0x5453

				TIOCSERGETLSR																				=	0x5459

				TIOCSERGETMULTI																		=	0x545a

				TIOCSERGSTRUCT																			=	0x5458

				TIOCSERGWILD																					=	0x5454

				TIOCSERSETMULTI																		=	0x545b

				TIOCSERSWILD																					=	0x5455

				TIOCSER_TEMT																					=	0x1

				TIOCSETD																									=	0x5423

				TIOCSIG																										=	0x40045436

				TIOCSLCKTRMIOS																			=	0x5457

				TIOCSPGRP																								=	0x5410

				TIOCSPTLCK																							=	0x40045431

				TIOCSRS485																							=	0x542f

				TIOCSSERIAL																						=	0x541f

				TIOCSSOFTCAR																					=	0x541a

				TIOCSTI																										=	0x5412

				TIOCSWINSZ																							=	0x5414

				TUNATTACHFILTER																		=	0x401054d5

				TUNDETACHFILTER																		=	0x401054d6

				TUNGETFEATURES																			=	0x800454cf

				TUNGETIFF																								=	0x800454d2

				TUNGETSNDBUF																					=	0x800454d3

				TUNGETVNETHDRSZ																		=	0x800454d7

				TUNSETDEBUG																						=	0x400454c9

				TUNSETGROUP																						=	0x400454ce

				TUNSETIFF																								=	0x400454ca

				TUNSETLINK																							=	0x400454cd

				TUNSETNOCSUM																					=	0x400454c8

				TUNSETOFFLOAD																				=	0x400454d0

				TUNSETOWNER																						=	0x400454cc

				TUNSETPERSIST																				=	0x400454cb

				TUNSETSNDBUF																					=	0x400454d4

				TUNSETTXFILTER																			=	0x400454d1

				TUNSETVNETHDRSZ																		=	0x400454d8

				WALL																													=	0x40000000

				WCLONE																											=	0x80000000

				WCONTINUED																							=	0x8

				WEXITED																										=	0x4

				WNOHANG																										=	0x1

				WNOTHREAD																								=	0x20000000

				WNOWAIT																										=	0x1000000

				WORDSIZE																									=	0x40

				WSTOPPED																									=	0x2

				WUNTRACED																								=	0x2

)

const	(

				E2BIG											=	Errno(0x7)

				EACCES										=	Errno(0xd)

				EADDRINUSE						=	Errno(0x62)

				EADDRNOTAVAIL			=	Errno(0x63)

				EADV												=	Errno(0x44)

				EAFNOSUPPORT				=	Errno(0x61)

				EAGAIN										=	Errno(0xb)

				EALREADY								=	Errno(0x72)

				EBADE											=	Errno(0x34)

				EBADF											=	Errno(0x9)

				EBADFD										=	Errno(0x4d)

				EBADMSG									=	Errno(0x4a)

				EBADR											=	Errno(0x35)

				EBADRQC									=	Errno(0x38)

				EBADSLT									=	Errno(0x39)

				EBFONT										=	Errno(0x3b)

				EBUSY											=	Errno(0x10)

				ECANCELED							=	Errno(0x7d)

				ECHILD										=	Errno(0xa)

				ECHRNG										=	Errno(0x2c)

				ECOMM											=	Errno(0x46)

				ECONNABORTED				=	Errno(0x67)

				ECONNREFUSED				=	Errno(0x6f)

				ECONNRESET						=	Errno(0x68)

				EDEADLK									=	Errno(0x23)

				EDEADLOCK							=	Errno(0x23)

				EDESTADDRREQ				=	Errno(0x59)

				EDOM												=	Errno(0x21)

				EDOTDOT									=	Errno(0x49)

				EDQUOT										=	Errno(0x7a)

				EEXIST										=	Errno(0x11)

				EFAULT										=	Errno(0xe)

				EFBIG											=	Errno(0x1b)

				EHOSTDOWN							=	Errno(0x70)

				EHOSTUNREACH				=	Errno(0x71)

				EIDRM											=	Errno(0x2b)

				EILSEQ										=	Errno(0x54)

				EINPROGRESS					=	Errno(0x73)

				EINTR											=	Errno(0x4)

				EINVAL										=	Errno(0x16)

				EIO													=	Errno(0x5)

				EISCONN									=	Errno(0x6a)

				EISDIR										=	Errno(0x15)

				EISNAM										=	Errno(0x78)

				EKEYEXPIRED					=	Errno(0x7f)

				EKEYREJECTED				=	Errno(0x81)

				EKEYREVOKED					=	Errno(0x80)

				EL2HLT										=	Errno(0x33)

				EL2NSYNC								=	Errno(0x2d)

				EL3HLT										=	Errno(0x2e)

				EL3RST										=	Errno(0x2f)

				ELIBACC									=	Errno(0x4f)

				ELIBBAD									=	Errno(0x50)

				ELIBEXEC								=	Errno(0x53)

				ELIBMAX									=	Errno(0x52)

				ELIBSCN									=	Errno(0x51)

				ELNRNG										=	Errno(0x30)

				ELOOP											=	Errno(0x28)

				EMEDIUMTYPE					=	Errno(0x7c)

				EMFILE										=	Errno(0x18)

				EMLINK										=	Errno(0x1f)

				EMSGSIZE								=	Errno(0x5a)

				EMULTIHOP							=	Errno(0x48)

				ENAMETOOLONG				=	Errno(0x24)

				ENAVAIL									=	Errno(0x77)

				ENETDOWN								=	Errno(0x64)

				ENETRESET							=	Errno(0x66)

				ENETUNREACH					=	Errno(0x65)

				ENFILE										=	Errno(0x17)

				ENOANO										=	Errno(0x37)

				ENOBUFS									=	Errno(0x69)

				ENOCSI										=	Errno(0x32)

				ENODATA									=	Errno(0x3d)

				ENODEV										=	Errno(0x13)

				ENOENT										=	Errno(0x2)

				ENOEXEC									=	Errno(0x8)

				ENOKEY										=	Errno(0x7e)

				ENOLCK										=	Errno(0x25)

				ENOLINK									=	Errno(0x43)

				ENOMEDIUM							=	Errno(0x7b)

				ENOMEM										=	Errno(0xc)

				ENOMSG										=	Errno(0x2a)

				ENONET										=	Errno(0x40)

				ENOPKG										=	Errno(0x41)

				ENOPROTOOPT					=	Errno(0x5c)

				ENOSPC										=	Errno(0x1c)

				ENOSR											=	Errno(0x3f)

				ENOSTR										=	Errno(0x3c)

				ENOSYS										=	Errno(0x26)

				ENOTBLK									=	Errno(0xf)

				ENOTCONN								=	Errno(0x6b)

				ENOTDIR									=	Errno(0x14)

				ENOTEMPTY							=	Errno(0x27)

				ENOTNAM									=	Errno(0x76)

				ENOTRECOVERABLE	=	Errno(0x83)

				ENOTSOCK								=	Errno(0x58)

				ENOTSUP									=	Errno(0x5f)

				ENOTTY										=	Errno(0x19)

				ENOTUNIQ								=	Errno(0x4c)

				ENXIO											=	Errno(0x6)

				EOPNOTSUPP						=	Errno(0x5f)

				EOVERFLOW							=	Errno(0x4b)

				EOWNERDEAD						=	Errno(0x82)

				EPERM											=	Errno(0x1)

				EPFNOSUPPORT				=	Errno(0x60)

				EPIPE											=	Errno(0x20)

				EPROTO										=	Errno(0x47)

				EPROTONOSUPPORT	=	Errno(0x5d)

				EPROTOTYPE						=	Errno(0x5b)

				ERANGE										=	Errno(0x22)

				EREMCHG									=	Errno(0x4e)

				EREMOTE									=	Errno(0x42)

				EREMOTEIO							=	Errno(0x79)

				ERESTART								=	Errno(0x55)

				ERFKILL									=	Errno(0x84)

				EROFS											=	Errno(0x1e)

				ESHUTDOWN							=	Errno(0x6c)

				ESOCKTNOSUPPORT	=	Errno(0x5e)

				ESPIPE										=	Errno(0x1d)

				ESRCH											=	Errno(0x3)

				ESRMNT										=	Errno(0x45)

				ESTALE										=	Errno(0x74)

				ESTRPIPE								=	Errno(0x56)

				ETIME											=	Errno(0x3e)

				ETIMEDOUT							=	Errno(0x6e)

				ETOOMANYREFS				=	Errno(0x6d)

				ETXTBSY									=	Errno(0x1a)

				EUCLEAN									=	Errno(0x75)

				EUNATCH									=	Errno(0x31)

				EUSERS										=	Errno(0x57)

				EWOULDBLOCK					=	Errno(0xb)

				EXDEV											=	Errno(0x12)

				EXFULL										=	Errno(0x36)

)

Errors

const	(

				SIGABRT			=	Signal(0x6)

				SIGALRM			=	Signal(0xe)

				SIGBUS				=	Signal(0x7)

				SIGCHLD			=	Signal(0x11)

				SIGCLD				=	Signal(0x11)

				SIGCONT			=	Signal(0x12)

				SIGFPE				=	Signal(0x8)

				SIGHUP				=	Signal(0x1)

				SIGILL				=	Signal(0x4)

				SIGINT				=	Signal(0x2)

				SIGIO					=	Signal(0x1d)

				SIGIOT				=	Signal(0x6)

				SIGKILL			=	Signal(0x9)

				SIGPIPE			=	Signal(0xd)

				SIGPOLL			=	Signal(0x1d)

				SIGPROF			=	Signal(0x1b)

				SIGPWR				=	Signal(0x1e)

				SIGQUIT			=	Signal(0x3)

				SIGSEGV			=	Signal(0xb)

				SIGSTKFLT	=	Signal(0x10)

				SIGSTOP			=	Signal(0x13)

				SIGSYS				=	Signal(0x1f)

				SIGTERM			=	Signal(0xf)

				SIGTRAP			=	Signal(0x5)

				SIGTSTP			=	Signal(0x14)

				SIGTTIN			=	Signal(0x15)

				SIGTTOU			=	Signal(0x16)

				SIGUNUSED	=	Signal(0x1f)

				SIGURG				=	Signal(0x17)

				SIGUSR1			=	Signal(0xa)

				SIGUSR2			=	Signal(0xc)

				SIGVTALRM	=	Signal(0x1a)

				SIGWINCH		=	Signal(0x1c)

				SIGXCPU			=	Signal(0x18)

				SIGXFSZ			=	Signal(0x19)

)

Signals

const	(

				SYS_READ																			=	0

				SYS_WRITE																		=	1

				SYS_OPEN																			=	2

				SYS_CLOSE																		=	3

				SYS_STAT																			=	4

				SYS_FSTAT																		=	5

				SYS_LSTAT																		=	6

				SYS_POLL																			=	7

				SYS_LSEEK																		=	8

				SYS_MMAP																			=	9

				SYS_MPROTECT															=	10

				SYS_MUNMAP																	=	11

				SYS_BRK																				=	12

				SYS_RT_SIGACTION											=	13

				SYS_RT_SIGPROCMASK									=	14

				SYS_RT_SIGRETURN											=	15

				SYS_IOCTL																		=	16

				SYS_PREAD64																=	17

				SYS_PWRITE64															=	18

				SYS_READV																		=	19

				SYS_WRITEV																	=	20

				SYS_ACCESS																	=	21

				SYS_PIPE																			=	22

				SYS_SELECT																	=	23

				SYS_SCHED_YIELD												=	24

				SYS_MREMAP																	=	25

				SYS_MSYNC																		=	26

				SYS_MINCORE																=	27

				SYS_MADVISE																=	28

				SYS_SHMGET																	=	29

				SYS_SHMAT																		=	30

				SYS_SHMCTL																	=	31

				SYS_DUP																				=	32

				SYS_DUP2																			=	33

				SYS_PAUSE																		=	34

				SYS_NANOSLEEP														=	35

				SYS_GETITIMER														=	36

				SYS_ALARM																		=	37

				SYS_SETITIMER														=	38

				SYS_GETPID																	=	39

				SYS_SENDFILE															=	40

				SYS_SOCKET																	=	41

				SYS_CONNECT																=	42

				SYS_ACCEPT																	=	43

				SYS_SENDTO																	=	44

				SYS_RECVFROM															=	45

				SYS_SENDMSG																=	46

				SYS_RECVMSG																=	47

				SYS_SHUTDOWN															=	48

				SYS_BIND																			=	49

				SYS_LISTEN																	=	50

				SYS_GETSOCKNAME												=	51

				SYS_GETPEERNAME												=	52

				SYS_SOCKETPAIR													=	53

				SYS_SETSOCKOPT													=	54

				SYS_GETSOCKOPT													=	55

				SYS_CLONE																		=	56

				SYS_FORK																			=	57

				SYS_VFORK																		=	58

				SYS_EXECVE																	=	59

				SYS_EXIT																			=	60

				SYS_WAIT4																		=	61

				SYS_KILL																			=	62

				SYS_UNAME																		=	63

				SYS_SEMGET																	=	64

				SYS_SEMOP																		=	65

				SYS_SEMCTL																	=	66

				SYS_SHMDT																		=	67

				SYS_MSGGET																	=	68

				SYS_MSGSND																	=	69

				SYS_MSGRCV																	=	70

				SYS_MSGCTL																	=	71

				SYS_FCNTL																		=	72

				SYS_FLOCK																		=	73

				SYS_FSYNC																		=	74

				SYS_FDATASYNC														=	75

				SYS_TRUNCATE															=	76

				SYS_FTRUNCATE														=	77

				SYS_GETDENTS															=	78

				SYS_GETCWD																	=	79

				SYS_CHDIR																		=	80

				SYS_FCHDIR																	=	81

				SYS_RENAME																	=	82

				SYS_MKDIR																		=	83

				SYS_RMDIR																		=	84

				SYS_CREAT																		=	85

				SYS_LINK																			=	86

				SYS_UNLINK																	=	87

				SYS_SYMLINK																=	88

				SYS_READLINK															=	89

				SYS_CHMOD																		=	90

				SYS_FCHMOD																	=	91

				SYS_CHOWN																		=	92

				SYS_FCHOWN																	=	93

				SYS_LCHOWN																	=	94

				SYS_UMASK																		=	95

				SYS_GETTIMEOFDAY											=	96

				SYS_GETRLIMIT														=	97

				SYS_GETRUSAGE														=	98

				SYS_SYSINFO																=	99

				SYS_TIMES																		=	100

				SYS_PTRACE																	=	101

				SYS_GETUID																	=	102

				SYS_SYSLOG																	=	103

				SYS_GETGID																	=	104

				SYS_SETUID																	=	105

				SYS_SETGID																	=	106

				SYS_GETEUID																=	107

				SYS_GETEGID																=	108

				SYS_SETPGID																=	109

				SYS_GETPPID																=	110

				SYS_GETPGRP																=	111

				SYS_SETSID																	=	112

				SYS_SETREUID															=	113

				SYS_SETREGID															=	114

				SYS_GETGROUPS														=	115

				SYS_SETGROUPS														=	116

				SYS_SETRESUID														=	117

				SYS_GETRESUID														=	118

				SYS_SETRESGID														=	119

				SYS_GETRESGID														=	120

				SYS_GETPGID																=	121

				SYS_SETFSUID															=	122

				SYS_SETFSGID															=	123

				SYS_GETSID																	=	124

				SYS_CAPGET																	=	125

				SYS_CAPSET																	=	126

				SYS_RT_SIGPENDING										=	127

				SYS_RT_SIGTIMEDWAIT								=	128

				SYS_RT_SIGQUEUEINFO								=	129

				SYS_RT_SIGSUSPEND										=	130

				SYS_SIGALTSTACK												=	131

				SYS_UTIME																		=	132

				SYS_MKNOD																		=	133

				SYS_USELIB																	=	134

				SYS_PERSONALITY												=	135

				SYS_USTAT																		=	136

				SYS_STATFS																	=	137

				SYS_FSTATFS																=	138

				SYS_SYSFS																		=	139

				SYS_GETPRIORITY												=	140

				SYS_SETPRIORITY												=	141

				SYS_SCHED_SETPARAM									=	142

				SYS_SCHED_GETPARAM									=	143

				SYS_SCHED_SETSCHEDULER					=	144

				SYS_SCHED_GETSCHEDULER					=	145

				SYS_SCHED_GET_PRIORITY_MAX	=	146

				SYS_SCHED_GET_PRIORITY_MIN	=	147

				SYS_SCHED_RR_GET_INTERVAL		=	148

				SYS_MLOCK																		=	149

				SYS_MUNLOCK																=	150

				SYS_MLOCKALL															=	151

				SYS_MUNLOCKALL													=	152

				SYS_VHANGUP																=	153

				SYS_MODIFY_LDT													=	154

				SYS_PIVOT_ROOT													=	155

				SYS__SYSCTL																=	156

				SYS_PRCTL																		=	157

				SYS_ARCH_PRCTL													=	158

				SYS_ADJTIMEX															=	159

				SYS_SETRLIMIT														=	160

				SYS_CHROOT																	=	161

				SYS_SYNC																			=	162

				SYS_ACCT																			=	163

				SYS_SETTIMEOFDAY											=	164

				SYS_MOUNT																		=	165

				SYS_UMOUNT2																=	166

				SYS_SWAPON																	=	167

				SYS_SWAPOFF																=	168

				SYS_REBOOT																	=	169

				SYS_SETHOSTNAME												=	170

				SYS_SETDOMAINNAME										=	171

				SYS_IOPL																			=	172

				SYS_IOPERM																	=	173

				SYS_CREATE_MODULE										=	174

				SYS_INIT_MODULE												=	175

				SYS_DELETE_MODULE										=	176

				SYS_GET_KERNEL_SYMS								=	177

				SYS_QUERY_MODULE											=	178

				SYS_QUOTACTL															=	179

				SYS_NFSSERVCTL													=	180

				SYS_GETPMSG																=	181

				SYS_PUTPMSG																=	182

				SYS_AFS_SYSCALL												=	183

				SYS_TUXCALL																=	184

				SYS_SECURITY															=	185

				SYS_GETTID																	=	186

				SYS_READAHEAD														=	187

				SYS_SETXATTR															=	188

				SYS_LSETXATTR														=	189

				SYS_FSETXATTR														=	190

				SYS_GETXATTR															=	191

				SYS_LGETXATTR														=	192

				SYS_FGETXATTR														=	193

				SYS_LISTXATTR														=	194

				SYS_LLISTXATTR													=	195

				SYS_FLISTXATTR													=	196

				SYS_REMOVEXATTR												=	197

				SYS_LREMOVEXATTR											=	198

				SYS_FREMOVEXATTR											=	199

				SYS_TKILL																		=	200

				SYS_TIME																			=	201

				SYS_FUTEX																		=	202

				SYS_SCHED_SETAFFINITY						=	203

				SYS_SCHED_GETAFFINITY						=	204

				SYS_SET_THREAD_AREA								=	205

				SYS_IO_SETUP															=	206

				SYS_IO_DESTROY													=	207

				SYS_IO_GETEVENTS											=	208

				SYS_IO_SUBMIT														=	209

				SYS_IO_CANCEL														=	210

				SYS_GET_THREAD_AREA								=	211

				SYS_LOOKUP_DCOOKIE									=	212

				SYS_EPOLL_CREATE											=	213

				SYS_EPOLL_CTL_OLD										=	214

				SYS_EPOLL_WAIT_OLD									=	215

				SYS_REMAP_FILE_PAGES							=	216

				SYS_GETDENTS64													=	217

				SYS_SET_TID_ADDRESS								=	218

				SYS_RESTART_SYSCALL								=	219

				SYS_SEMTIMEDOP													=	220

				SYS_FADVISE64														=	221

				SYS_TIMER_CREATE											=	222

				SYS_TIMER_SETTIME										=	223

				SYS_TIMER_GETTIME										=	224

				SYS_TIMER_GETOVERRUN							=	225

				SYS_TIMER_DELETE											=	226

				SYS_CLOCK_SETTIME										=	227

				SYS_CLOCK_GETTIME										=	228

				SYS_CLOCK_GETRES											=	229

				SYS_CLOCK_NANOSLEEP								=	230

				SYS_EXIT_GROUP													=	231

				SYS_EPOLL_WAIT													=	232

				SYS_EPOLL_CTL														=	233

				SYS_TGKILL																	=	234

				SYS_UTIMES																	=	235

				SYS_VSERVER																=	236

				SYS_MBIND																		=	237

				SYS_SET_MEMPOLICY										=	238

				SYS_GET_MEMPOLICY										=	239

				SYS_MQ_OPEN																=	240

				SYS_MQ_UNLINK														=	241

				SYS_MQ_TIMEDSEND											=	242

				SYS_MQ_TIMEDRECEIVE								=	243

				SYS_MQ_NOTIFY														=	244

				SYS_MQ_GETSETATTR										=	245

				SYS_KEXEC_LOAD													=	246

				SYS_WAITID																	=	247

				SYS_ADD_KEY																=	248

				SYS_REQUEST_KEY												=	249

				SYS_KEYCTL																	=	250

				SYS_IOPRIO_SET													=	251

				SYS_IOPRIO_GET													=	252

				SYS_INOTIFY_INIT											=	253

				SYS_INOTIFY_ADD_WATCH						=	254

				SYS_INOTIFY_RM_WATCH							=	255

				SYS_MIGRATE_PAGES										=	256

				SYS_OPENAT																	=	257

				SYS_MKDIRAT																=	258

				SYS_MKNODAT																=	259

				SYS_FCHOWNAT															=	260

				SYS_FUTIMESAT														=	261

				SYS_NEWFSTATAT													=	262

				SYS_UNLINKAT															=	263

				SYS_RENAMEAT															=	264

				SYS_LINKAT																	=	265

				SYS_SYMLINKAT														=	266

				SYS_READLINKAT													=	267

				SYS_FCHMODAT															=	268

				SYS_FACCESSAT														=	269

				SYS_PSELECT6															=	270

				SYS_PPOLL																		=	271

				SYS_UNSHARE																=	272

				SYS_SET_ROBUST_LIST								=	273

				SYS_GET_ROBUST_LIST								=	274

				SYS_SPLICE																	=	275

				SYS_TEE																				=	276

				SYS_SYNC_FILE_RANGE								=	277

				SYS_VMSPLICE															=	278

				SYS_MOVE_PAGES													=	279

				SYS_UTIMENSAT														=	280

				SYS_EPOLL_PWAIT												=	281

				SYS_SIGNALFD															=	282

				SYS_TIMERFD_CREATE									=	283

				SYS_EVENTFD																=	284

				SYS_FALLOCATE														=	285

				SYS_TIMERFD_SETTIME								=	286

				SYS_TIMERFD_GETTIME								=	287

				SYS_ACCEPT4																=	288

				SYS_SIGNALFD4														=	289

				SYS_EVENTFD2															=	290

				SYS_EPOLL_CREATE1										=	291

				SYS_DUP3																			=	292

				SYS_PIPE2																		=	293

				SYS_INOTIFY_INIT1										=	294

				SYS_PREADV																	=	295

				SYS_PWRITEV																=	296

				SYS_RT_TGSIGQUEUEINFO						=	297

				SYS_PERF_EVENT_OPEN								=	298

				SYS_RECVMMSG															=	299

				SYS_FANOTIFY_INIT										=	300

				SYS_FANOTIFY_MARK										=	301

				SYS_PRLIMIT64														=	302

)

const	(

				SizeofSockaddrInet4					=	0x10

				SizeofSockaddrInet6					=	0x1c

				SizeofSockaddrAny							=	0x70

				SizeofSockaddrUnix						=	0x6e

				SizeofSockaddrLinklayer	=	0x14

				SizeofSockaddrNetlink			=	0xc

				SizeofLinger												=	0x8

				SizeofIPMreq												=	0x8

				SizeofIPMreqn											=	0xc

				SizeofIPv6Mreq										=	0x14

				SizeofMsghdr												=	0x38

				SizeofCmsghdr											=	0x10

				SizeofInet4Pktinfo						=	0xc

				SizeofInet6Pktinfo						=	0x14

				SizeofUcred													=	0xc

)

const	(

				IFA_UNSPEC								=	0x0

				IFA_ADDRESS							=	0x1

				IFA_LOCAL									=	0x2

				IFA_LABEL									=	0x3

				IFA_BROADCAST					=	0x4

				IFA_ANYCAST							=	0x5

				IFA_CACHEINFO					=	0x6

				IFA_MULTICAST					=	0x7

				IFLA_UNSPEC							=	0x0

				IFLA_ADDRESS						=	0x1

				IFLA_BROADCAST				=	0x2

				IFLA_IFNAME							=	0x3

				IFLA_MTU										=	0x4

				IFLA_LINK									=	0x5

				IFLA_QDISC								=	0x6

				IFLA_STATS								=	0x7

				IFLA_COST									=	0x8

				IFLA_PRIORITY					=	0x9

				IFLA_MASTER							=	0xa

				IFLA_WIRELESS					=	0xb

				IFLA_PROTINFO					=	0xc

				IFLA_TXQLEN							=	0xd

				IFLA_MAP										=	0xe

				IFLA_WEIGHT							=	0xf

				IFLA_OPERSTATE				=	0x10

				IFLA_LINKMODE					=	0x11

				IFLA_LINKINFO					=	0x12

				IFLA_NET_NS_PID			=	0x13

				IFLA_IFALIAS						=	0x14

				IFLA_MAX										=	0x1c

				RT_SCOPE_UNIVERSE	=	0x0

				RT_SCOPE_SITE					=	0xc8

				RT_SCOPE_LINK					=	0xfd

				RT_SCOPE_HOST					=	0xfe

				RT_SCOPE_NOWHERE		=	0xff

				RT_TABLE_UNSPEC			=	0x0

				RT_TABLE_COMPAT			=	0xfc

				RT_TABLE_DEFAULT		=	0xfd

				RT_TABLE_MAIN					=	0xfe

				RT_TABLE_LOCAL				=	0xff

				RT_TABLE_MAX						=	0xffffffff

				RTA_UNSPEC								=	0x0

				RTA_DST											=	0x1

				RTA_SRC											=	0x2

				RTA_IIF											=	0x3

				RTA_OIF											=	0x4

				RTA_GATEWAY							=	0x5

				RTA_PRIORITY						=	0x6

				RTA_PREFSRC							=	0x7

				RTA_METRICS							=	0x8

				RTA_MULTIPATH					=	0x9

				RTA_FLOW										=	0xb

				RTA_CACHEINFO					=	0xc

				RTA_TABLE									=	0xf

				RTN_UNSPEC								=	0x0

				RTN_UNICAST							=	0x1

				RTN_LOCAL									=	0x2

				RTN_BROADCAST					=	0x3

				RTN_ANYCAST							=	0x4

				RTN_MULTICAST					=	0x5

				RTN_BLACKHOLE					=	0x6

				RTN_UNREACHABLE			=	0x7

				RTN_PROHIBIT						=	0x8

				RTN_THROW									=	0x9

				RTN_NAT											=	0xa

				RTN_XRESOLVE						=	0xb

				SizeofNlMsghdr				=	0x10

				SizeofNlMsgerr				=	0x14

				SizeofRtGenmsg				=	0x1

				SizeofNlAttr						=	0x4

				SizeofRtAttr						=	0x4

				SizeofIfInfomsg			=	0x10

				SizeofIfAddrmsg			=	0x8

				SizeofRtMsg							=	0xc

				SizeofRtNexthop			=	0x8

)

const	(

				SizeofSockFilter	=	0x8

				SizeofSockFprog		=	0x10

)

const	(

				VINTR				=	0x0

				VQUIT				=	0x1

				VERASE			=	0x2

				VKILL				=	0x3

				VEOF					=	0x4

				VTIME				=	0x5

				VMIN					=	0x6

				VSWTC				=	0x7

				VSTART			=	0x8

				VSTOP				=	0x9

				VSUSP				=	0xa

				VEOL					=	0xb

				VREPRINT	=	0xc

				VDISCARD	=	0xd

				VWERASE		=	0xe

				VLNEXT			=	0xf

				VEOL2				=	0x10

				IGNBRK			=	0x1

				BRKINT			=	0x2

				IGNPAR			=	0x4

				PARMRK			=	0x8

				INPCK				=	0x10

				ISTRIP			=	0x20

				INLCR				=	0x40

				IGNCR				=	0x80

				ICRNL				=	0x100

				IUCLC				=	0x200

				IXON					=	0x400

				IXANY				=	0x800

				IXOFF				=	0x1000

				IMAXBEL		=	0x2000

				IUTF8				=	0x4000

				OPOST				=	0x1

				OLCUC				=	0x2

				ONLCR				=	0x4

				OCRNL				=	0x8

				ONOCR				=	0x10

				ONLRET			=	0x20

				OFILL				=	0x40

				OFDEL				=	0x80

				B0							=	0x0

				B50						=	0x1

				B75						=	0x2

				B110					=	0x3

				B134					=	0x4

				B150					=	0x5

				B200					=	0x6

				B300					=	0x7

				B600					=	0x8

				B1200				=	0x9

				B1800				=	0xa

				B2400				=	0xb

				B4800				=	0xc

				B9600				=	0xd

				B19200			=	0xe

				B38400			=	0xf

				CSIZE				=	0x30

				CS5						=	0x0

				CS6						=	0x10

				CS7						=	0x20

				CS8						=	0x30

				CSTOPB			=	0x40

				CREAD				=	0x80

				PARENB			=	0x100

				PARODD			=	0x200

				HUPCL				=	0x400

				CLOCAL			=	0x800

				B57600			=	0x1001

				B115200		=	0x1002

				B230400		=	0x1003

				B460800		=	0x1004

				B500000		=	0x1005

				B576000		=	0x1006

				B921600		=	0x1007

				B1000000	=	0x1008

				B1152000	=	0x1009

				B1500000	=	0x100a

				B2000000	=	0x100b

				B2500000	=	0x100c

				B3000000	=	0x100d

				B3500000	=	0x100e

				B4000000	=	0x100f

				ISIG					=	0x1

				ICANON			=	0x2

				XCASE				=	0x4

				ECHO					=	0x8

				ECHOE				=	0x10

				ECHOK				=	0x20

				ECHONL			=	0x40

				NOFLSH			=	0x80

				TOSTOP			=	0x100

				ECHOCTL		=	0x200

				ECHOPRT		=	0x400

				ECHOKE			=	0x800

				FLUSHO			=	0x1000

				PENDIN			=	0x4000

				IEXTEN			=	0x8000

				TCGETS			=	0x5401

				TCSETS			=	0x5402

)

const	ImplementsGetwd	=	true

const	(

				PathMax	=	0x1000

)

const	SizeofInotifyEvent	=	0x10

Variables
var	(

				Stdin		=	0

				Stdout	=	1

				Stderr	=	2

)

var	ForkLock	sync.RWMutex

var	SocketDisableIPv6	bool

For	testing:	clients	can	set	this	flag	to	force	creation	of	IPv6	sockets	to	return
EAFNOSUPPORT.

func	Accept
func	Accept(fd	int)	(nfd	int,	sa	Sockaddr,	err	error)

func	Access
func	Access(path	string,	mode	uint32)	(err	error)

func	Acct
func	Acct(path	string)	(err	error)

func	Adjtimex
func	Adjtimex(buf	*Timex)	(state	int,	err	error)

func	AttachLsf
func	AttachLsf(fd	int,	i	[]SockFilter)	error

func	Bind
func	Bind(fd	int,	sa	Sockaddr)	(err	error)

func	BindToDevice
func	BindToDevice(fd	int,	device	string)	(err	error)

BindToDevice	binds	the	socket	associated	with	fd	to	device.

func	Chdir
func	Chdir(path	string)	(err	error)

func	Chmod
func	Chmod(path	string,	mode	uint32)	(err	error)

func	Chown
func	Chown(path	string,	uid	int,	gid	int)	(err	error)

func	Chroot
func	Chroot(path	string)	(err	error)

func	Clearenv
func	Clearenv()

func	Close
func	Close(fd	int)	(err	error)

func	CloseOnExec
func	CloseOnExec(fd	int)

func	CmsgLen
func	CmsgLen(datalen	int)	int

CmsgLen	returns	the	value	to	store	in	the	Len	field	of	the	Cmsghdr	structure,
taking	into	account	any	necessary	alignment.

func	CmsgSpace
func	CmsgSpace(datalen	int)	int

CmsgSpace	returns	the	number	of	bytes	an	ancillary	element	with	payload	of	the
passed	data	length	occupies.

func	Connect
func	Connect(fd	int,	sa	Sockaddr)	(err	error)

func	Creat
func	Creat(path	string,	mode	uint32)	(fd	int,	err	error)

func	DetachLsf
func	DetachLsf(fd	int)	error

func	Dup
func	Dup(oldfd	int)	(fd	int,	err	error)

func	Dup2
func	Dup2(oldfd	int,	newfd	int)	(err	error)

func	Environ
func	Environ()	[]string

func	EpollCreate
func	EpollCreate(size	int)	(fd	int,	err	error)

func	EpollCreate1
func	EpollCreate1(flag	int)	(fd	int,	err	error)

func	EpollCtl
func	EpollCtl(epfd	int,	op	int,	fd	int,	event	*EpollEvent)	(err	error)

func	EpollWait
func	EpollWait(epfd	int,	events	[]EpollEvent,	msec	int)	(n	int,	err	error)

func	Exec
func	Exec(argv0	string,	argv	[]string,	envv	[]string)	(err	error)

Ordinary	exec.

func	Exit
func	Exit(code	int)

func	Faccessat
func	Faccessat(dirfd	int,	path	string,	mode	uint32,	flags	int)	(err	error)

func	Fallocate
func	Fallocate(fd	int,	mode	uint32,	off	int64,	len	int64)	(err	error)

func	Fchdir
func	Fchdir(fd	int)	(err	error)

func	Fchmod
func	Fchmod(fd	int,	mode	uint32)	(err	error)

func	Fchmodat
func	Fchmodat(dirfd	int,	path	string,	mode	uint32,	flags	int)	(err	error)

func	Fchown
func	Fchown(fd	int,	uid	int,	gid	int)	(err	error)

func	Fchownat
func	Fchownat(dirfd	int,	path	string,	uid	int,	gid	int,	flags	int)	(err	error)

func	Fdatasync
func	Fdatasync(fd	int)	(err	error)

func	Flock
func	Flock(fd	int,	how	int)	(err	error)

func	ForkExec
func	ForkExec(argv0	string,	argv	[]string,	attr	*ProcAttr)	(pid	int,	err	error)

Combination	of	fork	and	exec,	careful	to	be	thread	safe.

func	Fstat
func	Fstat(fd	int,	stat	*Stat_t)	(err	error)

func	Fstatfs
func	Fstatfs(fd	int,	buf	*Statfs_t)	(err	error)

func	Fsync
func	Fsync(fd	int)	(err	error)

func	Ftruncate
func	Ftruncate(fd	int,	length	int64)	(err	error)

func	Futimes
func	Futimes(fd	int,	tv	[]Timeval)	(err	error)

func	Futimesat
func	Futimesat(dirfd	int,	path	string,	tv	[]Timeval)	(err	error)

sys	futimesat(dirfd	int,	path	*byte,	times	*[2]Timeval)	(err	error)

func	Getcwd
func	Getcwd(buf	[]byte)	(n	int,	err	error)

func	Getdents
func	Getdents(fd	int,	buf	[]byte)	(n	int,	err	error)

func	Getegid
func	Getegid()	(egid	int)

func	Getenv
func	Getenv(key	string)	(value	string,	found	bool)

func	Geteuid
func	Geteuid()	(euid	int)

func	Getgid
func	Getgid()	(gid	int)

func	Getgroups
func	Getgroups()	(gids	[]int,	err	error)

func	Getpagesize
func	Getpagesize()	int

func	Getpgid
func	Getpgid(pid	int)	(pgid	int,	err	error)

func	Getpgrp
func	Getpgrp()	(pid	int)

func	Getpid
func	Getpid()	(pid	int)

func	Getppid
func	Getppid()	(ppid	int)

func	Getrlimit
func	Getrlimit(resource	int,	rlim	*Rlimit)	(err	error)

func	Getrusage
func	Getrusage(who	int,	rusage	*Rusage)	(err	error)

func	GetsockoptInet4Addr
func	GetsockoptInet4Addr(fd,	level,	opt	int)	(value	[4]byte,	err	error)

func	GetsockoptInt
func	GetsockoptInt(fd,	level,	opt	int)	(value	int,	err	error)

func	Gettid
func	Gettid()	(tid	int)

func	Gettimeofday
func	Gettimeofday(tv	*Timeval)	(err	error)

func	Getuid
func	Getuid()	(uid	int)

func	Getwd
func	Getwd()	(wd	string,	err	error)

sys	Getcwd(buf	[]byte)	(n	int,	err	error)

func	InotifyAddWatch
func	InotifyAddWatch(fd	int,	pathname	string,	mask	uint32)	(watchdesc	int,	err	error)

func	InotifyInit
func	InotifyInit()	(fd	int,	err	error)

func	InotifyInit1
func	InotifyInit1(flags	int)	(fd	int,	err	error)

func	InotifyRmWatch
func	InotifyRmWatch(fd	int,	watchdesc	uint32)	(success	int,	err	error)

func	Ioperm
func	Ioperm(from	int,	num	int,	on	int)	(err	error)

func	Iopl
func	Iopl(level	int)	(err	error)

func	Kill
func	Kill(pid	int,	sig	Signal)	(err	error)

func	Klogctl
func	Klogctl(typ	int,	buf	[]byte)	(n	int,	err	error)

func	Lchown
func	Lchown(path	string,	uid	int,	gid	int)	(err	error)

func	Link
func	Link(oldpath	string,	newpath	string)	(err	error)

func	Listen
func	Listen(s	int,	n	int)	(err	error)

func	LsfSocket
func	LsfSocket(ifindex,	proto	int)	(int,	error)

func	Lstat
func	Lstat(path	string,	stat	*Stat_t)	(err	error)

func	Madvise
func	Madvise(b	[]byte,	advice	int)	(err	error)

func	Mkdir
func	Mkdir(path	string,	mode	uint32)	(err	error)

func	Mkdirat
func	Mkdirat(dirfd	int,	path	string,	mode	uint32)	(err	error)

func	Mkfifo
func	Mkfifo(path	string,	mode	uint32)	(err	error)

func	Mknod
func	Mknod(path	string,	mode	uint32,	dev	int)	(err	error)

func	Mknodat
func	Mknodat(dirfd	int,	path	string,	mode	uint32,	dev	int)	(err	error)

func	Mlock
func	Mlock(b	[]byte)	(err	error)

func	Mlockall
func	Mlockall(flags	int)	(err	error)

func	Mmap
func	Mmap(fd	int,	offset	int64,	length	int,	prot	int,	flags	int)	(data	[]byte,	err	error)

func	Mount
func	Mount(source	string,	target	string,	fstype	string,	flags	uintptr,	data	string)	(err	error)

sys	mount(source	string,	target	string,	fstype	string,	flags	uintptr,	data	*byte)	(err
error)

func	Mprotect
func	Mprotect(b	[]byte,	prot	int)	(err	error)

func	Munlock
func	Munlock(b	[]byte)	(err	error)

func	Munlockall
func	Munlockall()	(err	error)

func	Munmap
func	Munmap(b	[]byte)	(err	error)

func	Nanosleep
func	Nanosleep(time	*Timespec,	leftover	*Timespec)	(err	error)

func	NetlinkRIB
func	NetlinkRIB(proto,	family	int)	([]byte,	error)

NetlinkRIB	returns	routing	information	base,	as	known	as	RIB,	which	consists
of	network	facility	information,	states	and	parameters.

func	Open
func	Open(path	string,	mode	int,	perm	uint32)	(fd	int,	err	error)

sys	open(path	string,	mode	int,	perm	uint32)	(fd	int,	err	error)

func	Openat
func	Openat(dirfd	int,	path	string,	flags	int,	mode	uint32)	(fd	int,	err	error)

sys	openat(dirfd	int,	path	string,	flags	int,	mode	uint32)	(fd	int,	err	error)

func	ParseDirent
func	ParseDirent(buf	[]byte,	max	int,	names	[]string)	(consumed	int,	count	int,	newnames	[]string)

func	ParseNetlinkMessage
func	ParseNetlinkMessage(buf	[]byte)	([]NetlinkMessage,	error)

ParseNetlinkMessage	parses	buf	as	netlink	messages	and	returns	the	slice
containing	the	NetlinkMessage	structs.

func	ParseNetlinkRouteAttr
func	ParseNetlinkRouteAttr(msg	*NetlinkMessage)	([]NetlinkRouteAttr,	error)

ParseNetlinkRouteAttr	parses	msg's	payload	as	netlink	route	attributes	and
returns	the	slice	containing	the	NetlinkRouteAttr	structs.

func	ParseSocketControlMessage
func	ParseSocketControlMessage(buf	[]byte)	([]SocketControlMessage,	error)

func	ParseUnixRights
func	ParseUnixRights(msg	*SocketControlMessage)	([]int,	error)

ParseUnixRights	decodes	a	socket	control	message	that	contains	an	integer	array
of	open	file	descriptors	from	another	process.

func	Pause
func	Pause()	(err	error)

func	Pipe
func	Pipe(p	[]int)	(err	error)

sysnb	pipe(p	*[2]_C_int)	(err	error)

func	PivotRoot
func	PivotRoot(newroot	string,	putold	string)	(err	error)

func	Pread
func	Pread(fd	int,	p	[]byte,	offset	int64)	(n	int,	err	error)

func	PtraceAttach
func	PtraceAttach(pid	int)	(err	error)

func	PtraceCont
func	PtraceCont(pid	int,	signal	int)	(err	error)

func	PtraceDetach
func	PtraceDetach(pid	int)	(err	error)

func	PtraceGetEventMsg
func	PtraceGetEventMsg(pid	int)	(msg	uint,	err	error)

func	PtraceGetRegs
func	PtraceGetRegs(pid	int,	regsout	*PtraceRegs)	(err	error)

func	PtracePeekData
func	PtracePeekData(pid	int,	addr	uintptr,	out	[]byte)	(count	int,	err	error)

func	PtracePeekText
func	PtracePeekText(pid	int,	addr	uintptr,	out	[]byte)	(count	int,	err	error)

func	PtracePokeData
func	PtracePokeData(pid	int,	addr	uintptr,	data	[]byte)	(count	int,	err	error)

func	PtracePokeText
func	PtracePokeText(pid	int,	addr	uintptr,	data	[]byte)	(count	int,	err	error)

func	PtraceSetOptions
func	PtraceSetOptions(pid	int,	options	int)	(err	error)

func	PtraceSetRegs
func	PtraceSetRegs(pid	int,	regs	*PtraceRegs)	(err	error)

func	PtraceSingleStep
func	PtraceSingleStep(pid	int)	(err	error)

func	Pwrite
func	Pwrite(fd	int,	p	[]byte,	offset	int64)	(n	int,	err	error)

func	RawSyscall
func	RawSyscall(trap,	a1,	a2,	a3	uintptr)	(r1,	r2	uintptr,	err	Errno)

func	RawSyscall6
func	RawSyscall6(trap,	a1,	a2,	a3,	a4,	a5,	a6	uintptr)	(r1,	r2	uintptr,	err	Errno)

func	Read
func	Read(fd	int,	p	[]byte)	(n	int,	err	error)

func	ReadDirent
func	ReadDirent(fd	int,	buf	[]byte)	(n	int,	err	error)

func	Readlink
func	Readlink(path	string,	buf	[]byte)	(n	int,	err	error)

func	Reboot
func	Reboot(cmd	int)	(err	error)

sys	reboot(magic1	uint,	magic2	uint,	cmd	int,	arg	string)	(err	error)

func	Recvfrom
func	Recvfrom(fd	int,	p	[]byte,	flags	int)	(n	int,	from	Sockaddr,	err	error)

func	Recvmsg
func	Recvmsg(fd	int,	p,	oob	[]byte,	flags	int)	(n,	oobn	int,	recvflags	int,	from	Sockaddr,	err	error)

func	Rename
func	Rename(oldpath	string,	newpath	string)	(err	error)

func	Renameat
func	Renameat(olddirfd	int,	oldpath	string,	newdirfd	int,	newpath	string)	(err	error)

func	Rmdir
func	Rmdir(path	string)	(err	error)

func	Seek
func	Seek(fd	int,	offset	int64,	whence	int)	(off	int64,	err	error)

func	Select
func	Select(nfd	int,	r	*FdSet,	w	*FdSet,	e	*FdSet,	timeout	*Timeval)	(n	int,	err	error)

func	Sendfile
func	Sendfile(outfd	int,	infd	int,	offset	*int64,	count	int)	(written	int,	err	error)

func	Sendmsg
func	Sendmsg(fd	int,	p,	oob	[]byte,	to	Sockaddr,	flags	int)	(err	error)

func	Sendto
func	Sendto(fd	int,	p	[]byte,	flags	int,	to	Sockaddr)	(err	error)

func	SetLsfPromisc
func	SetLsfPromisc(name	string,	m	bool)	error

func	SetNonblock
func	SetNonblock(fd	int,	nonblocking	bool)	(err	error)

func	Setdomainname
func	Setdomainname(p	[]byte)	(err	error)

func	Setenv
func	Setenv(key,	value	string)	error

func	Setfsgid
func	Setfsgid(gid	int)	(err	error)

func	Setfsuid
func	Setfsuid(uid	int)	(err	error)

func	Setgid
func	Setgid(gid	int)	(err	error)

func	Setgroups
func	Setgroups(gids	[]int)	(err	error)

func	Sethostname
func	Sethostname(p	[]byte)	(err	error)

func	Setpgid
func	Setpgid(pid	int,	pgid	int)	(err	error)

func	Setregid
func	Setregid(rgid	int,	egid	int)	(err	error)

func	Setresgid
func	Setresgid(rgid	int,	egid	int,	sgid	int)	(err	error)

func	Setresuid
func	Setresuid(ruid	int,	euid	int,	suid	int)	(err	error)

func	Setreuid
func	Setreuid(ruid	int,	euid	int)	(err	error)

func	Setrlimit
func	Setrlimit(resource	int,	rlim	*Rlimit)	(err	error)

func	Setsid
func	Setsid()	(pid	int,	err	error)

func	SetsockoptIPMreq
func	SetsockoptIPMreq(fd,	level,	opt	int,	mreq	*IPMreq)	(err	error)

func	SetsockoptIPMreqn
func	SetsockoptIPMreqn(fd,	level,	opt	int,	mreq	*IPMreqn)	(err	error)

func	SetsockoptIPv6Mreq
func	SetsockoptIPv6Mreq(fd,	level,	opt	int,	mreq	*IPv6Mreq)	(err	error)

func	SetsockoptInet4Addr
func	SetsockoptInet4Addr(fd,	level,	opt	int,	value	[4]byte)	(err	error)

func	SetsockoptInt
func	SetsockoptInt(fd,	level,	opt	int,	value	int)	(err	error)

func	SetsockoptLinger
func	SetsockoptLinger(fd,	level,	opt	int,	l	*Linger)	(err	error)

func	SetsockoptString
func	SetsockoptString(fd,	level,	opt	int,	s	string)	(err	error)

func	SetsockoptTimeval
func	SetsockoptTimeval(fd,	level,	opt	int,	tv	*Timeval)	(err	error)

func	Settimeofday
func	Settimeofday(tv	*Timeval)	(err	error)

func	Setuid
func	Setuid(uid	int)	(err	error)

func	Shutdown
func	Shutdown(fd	int,	how	int)	(err	error)

func	Socket
func	Socket(domain,	typ,	proto	int)	(fd	int,	err	error)

func	Socketpair
func	Socketpair(domain,	typ,	proto	int)	(fd	[2]int,	err	error)

func	Splice
func	Splice(rfd	int,	roff	*int64,	wfd	int,	woff	*int64,	len	int,	flags	int)	(n	int64,	err	error)

func	StartProcess
func	StartProcess(argv0	string,	argv	[]string,	attr	*ProcAttr)	(pid	int,	handle	uintptr,	err	error)

StartProcess	wraps	ForkExec	for	package	os.

func	Stat
func	Stat(path	string,	stat	*Stat_t)	(err	error)

func	Statfs
func	Statfs(path	string,	buf	*Statfs_t)	(err	error)

func	StringBytePtr
func	StringBytePtr(s	string)	*byte

StringBytePtr	returns	a	pointer	to	a	NUL-terminated	array	of	bytes	containing
the	text	of	s.

func	StringByteSlice
func	StringByteSlice(s	string)	[]byte

StringByteSlice	returns	a	NUL-terminated	slice	of	bytes	containing	the	text	of	s.

func	StringSlicePtr
func	StringSlicePtr(ss	[]string)	[]*byte

Convert	array	of	string	to	array	of	NUL-terminated	byte	pointer.

func	Symlink
func	Symlink(oldpath	string,	newpath	string)	(err	error)

func	Sync
func	Sync()

func	SyncFileRange
func	SyncFileRange(fd	int,	off	int64,	n	int64,	flags	int)	(err	error)

func	Syscall
func	Syscall(trap,	a1,	a2,	a3	uintptr)	(r1,	r2	uintptr,	err	Errno)

func	Syscall6
func	Syscall6(trap,	a1,	a2,	a3,	a4,	a5,	a6	uintptr)	(r1,	r2	uintptr,	err	Errno)

func	Sysinfo
func	Sysinfo(info	*Sysinfo_t)	(err	error)

func	Tee
func	Tee(rfd	int,	wfd	int,	len	int,	flags	int)	(n	int64,	err	error)

func	Tgkill
func	Tgkill(tgid	int,	tid	int,	sig	Signal)	(err	error)

func	Times
func	Times(tms	*Tms)	(ticks	uintptr,	err	error)

func	TimespecToNsec
func	TimespecToNsec(ts	Timespec)	int64

func	TimevalToNsec
func	TimevalToNsec(tv	Timeval)	int64

func	Truncate
func	Truncate(path	string,	length	int64)	(err	error)

func	Umask
func	Umask(mask	int)	(oldmask	int)

func	Uname
func	Uname(buf	*Utsname)	(err	error)

func	UnixCredentials
func	UnixCredentials(ucred	*Ucred)	[]byte

UnixCredentials	encodes	credentials	into	a	socket	control	message	for	sending	to
another	process.	This	can	be	used	for	authentication.

func	UnixRights
func	UnixRights(fds	...int)	[]byte

UnixRights	encodes	a	set	of	open	file	descriptors	into	a	socket	control	message
for	sending	to	another	process.

func	Unlink
func	Unlink(path	string)	(err	error)

func	Unlinkat
func	Unlinkat(dirfd	int,	path	string)	(err	error)

func	Unmount
func	Unmount(target	string,	flags	int)	(err	error)

func	Unshare
func	Unshare(flags	int)	(err	error)

func	Ustat
func	Ustat(dev	int,	ubuf	*Ustat_t)	(err	error)

func	Utime
func	Utime(path	string,	buf	*Utimbuf)	(err	error)

func	Utimes
func	Utimes(path	string,	tv	[]Timeval)	(err	error)

sys	utimes(path	string,	times	*[2]Timeval)	(err	error)

func	Wait4
func	Wait4(pid	int,	wstatus	*WaitStatus,	options	int,	rusage	*Rusage)	(wpid	int,	err	error)

sys	wait4(pid	int,	wstatus	*_C_int,	options	int,	rusage	*Rusage)	(wpid	int,	err
error)

func	Write
func	Write(fd	int,	p	[]byte)	(n	int,	err	error)

type	Cmsghdr
type	Cmsghdr	struct	{

				Len										uint64

				Level								int32

				Type									int32

				X__cmsg_data	[0]byte

}

func	(*Cmsghdr)	SetLen

func	(cmsg	*Cmsghdr)	SetLen(length	int)

type	Credential
type	Credential	struct	{

				Uid				uint32			//	User	ID.

				Gid				uint32			//	Group	ID.

				Groups	[]uint32	//	Supplementary	group	IDs.

}

Credential	holds	user	and	group	identities	to	be	assumed	by	a	child	process
started	by	StartProcess.

type	Dirent
type	Dirent	struct	{

				Ino							uint64

				Off							int64

				Reclen				uint16

				Type						uint8

				Name						[256]int8

				Pad_cgo_0	[5]byte

}

type	EpollEvent
type	EpollEvent	struct	{

				Events	uint32

				Fd					int32

				Pad				int32

}

type	Errno
type	Errno	uintptr

An	Errno	is	an	unsigned	number	describing	an	error	condition.	It	implements	the
error	interface.	The	zero	Errno	is	by	convention	a	non-error,	so	code	to	convert
from	Errno	to	error	should	use:

err	=	nil

if	errno	!=	0	{

	 err	=	errno

}

func	(Errno)	Error

func	(e	Errno)	Error()	string

func	(Errno)	Temporary

func	(e	Errno)	Temporary()	bool

func	(Errno)	Timeout

func	(e	Errno)	Timeout()	bool

type	FdSet
type	FdSet	struct	{

				Bits	[16]int64

}

type	Fsid
type	Fsid	struct	{

				X__val	[2]int32

}

type	IPMreq
type	IPMreq	struct	{

				Multiaddr	[4]byte	/*	in_addr	*/

				Interface	[4]byte	/*	in_addr	*/

}

func	GetsockoptIPMreq

func	GetsockoptIPMreq(fd,	level,	opt	int)	(*IPMreq,	error)

type	IPMreqn
type	IPMreqn	struct	{

				Multiaddr	[4]byte	/*	in_addr	*/

				Address			[4]byte	/*	in_addr	*/

				Ifindex			int32

}

func	GetsockoptIPMreqn

func	GetsockoptIPMreqn(fd,	level,	opt	int)	(*IPMreqn,	error)

type	IPv6Mreq
type	IPv6Mreq	struct	{

				Multiaddr	[16]byte	/*	in6_addr	*/

				Interface	uint32

}

func	GetsockoptIPv6Mreq

func	GetsockoptIPv6Mreq(fd,	level,	opt	int)	(*IPv6Mreq,	error)

type	IfAddrmsg
type	IfAddrmsg	struct	{

				Family				uint8

				Prefixlen	uint8

				Flags					uint8

				Scope					uint8

				Index					uint32

}

type	IfInfomsg
type	IfInfomsg	struct	{

				Family					uint8

				X__ifi_pad	uint8

				Type							uint16

				Index						int32

				Flags						uint32

				Change					uint32

}

type	Inet4Pktinfo
type	Inet4Pktinfo	struct	{

				Ifindex		int32

				Spec_dst	[4]byte	/*	in_addr	*/

				Addr					[4]byte	/*	in_addr	*/

}

type	Inet6Pktinfo
type	Inet6Pktinfo	struct	{

				Addr				[16]byte	/*	in6_addr	*/

				Ifindex	uint32

}

type	InotifyEvent
type	InotifyEvent	struct	{

				Wd					int32

				Mask			uint32

				Cookie	uint32

				Len				uint32

				Name			[0]byte

}

type	Iovec
type	Iovec	struct	{

				Base	*byte

				Len		uint64

}

func	(*Iovec)	SetLen

func	(iov	*Iovec)	SetLen(length	int)

type	Linger
type	Linger	struct	{

				Onoff		int32

				Linger	int32

}

type	Msghdr
type	Msghdr	struct	{

				Name							*byte

				Namelen				uint32

				Pad_cgo_0		[4]byte

				Iov								*Iovec

				Iovlen					uint64

				Control				*byte

				Controllen	uint64

				Flags						int32

				Pad_cgo_1		[4]byte

}

func	(*Msghdr)	SetControllen

func	(msghdr	*Msghdr)	SetControllen(length	int)

type	NetlinkMessage
type	NetlinkMessage	struct	{

				Header	NlMsghdr

				Data			[]byte

}

NetlinkMessage	represents	the	netlink	message.

type	NetlinkRouteAttr
type	NetlinkRouteAttr	struct	{

				Attr		RtAttr

				Value	[]byte

}

NetlinkRouteAttr	represents	the	netlink	route	attribute.

type	NetlinkRouteRequest
type	NetlinkRouteRequest	struct	{

				Header	NlMsghdr

				Data			RtGenmsg

}

NetlinkRouteRequest	represents	the	request	message	to	receive	routing	and	link
states	from	the	kernel.

type	NlAttr
type	NlAttr	struct	{

				Len		uint16

				Type	uint16

}

type	NlMsgerr
type	NlMsgerr	struct	{

				Error	int32

				Msg			NlMsghdr

}

type	NlMsghdr
type	NlMsghdr	struct	{

				Len			uint32

				Type		uint16

				Flags	uint16

				Seq			uint32

				Pid			uint32

}

type	ProcAttr
type	ProcAttr	struct	{

				Dir			string				//	Current	working	directory.

				Env			[]string		//	Environment.

				Files	[]uintptr	//	File	descriptors.

				Sys			*SysProcAttr

}

ProcAttr	holds	attributes	that	will	be	applied	to	a	new	process	started	by
StartProcess.

type	PtraceRegs
type	PtraceRegs	struct	{

				R15						uint64

				R14						uint64

				R13						uint64

				R12						uint64

				Rbp						uint64

				Rbx						uint64

				R11						uint64

				R10						uint64

				R9							uint64

				R8							uint64

				Rax						uint64

				Rcx						uint64

				Rdx						uint64

				Rsi						uint64

				Rdi						uint64

				Orig_rax	uint64

				Rip						uint64

				Cs							uint64

				Eflags			uint64

				Rsp						uint64

				Ss							uint64

				Fs_base		uint64

				Gs_base		uint64

				Ds							uint64

				Es							uint64

				Fs							uint64

				Gs							uint64

}

func	(*PtraceRegs)	PC

func	(r	*PtraceRegs)	PC()	uint64

func	(*PtraceRegs)	SetPC

func	(r	*PtraceRegs)	SetPC(pc	uint64)

type	RawSockaddr
type	RawSockaddr	struct	{

				Family	uint16

				Data			[14]int8

}

type	RawSockaddrAny
type	RawSockaddrAny	struct	{

				Addr	RawSockaddr

				Pad		[96]int8

}

type	RawSockaddrInet4
type	RawSockaddrInet4	struct	{

				Family	uint16

				Port			uint16

				Addr			[4]byte	/*	in_addr	*/

				Zero			[8]uint8

}

type	RawSockaddrInet6
type	RawSockaddrInet6	struct	{

				Family			uint16

				Port					uint16

				Flowinfo	uint32

				Addr					[16]byte	/*	in6_addr	*/

				Scope_id	uint32

}

type	RawSockaddrLinklayer
type	RawSockaddrLinklayer	struct	{

				Family			uint16

				Protocol	uint16

				Ifindex		int32

				Hatype			uint16

				Pkttype		uint8

				Halen				uint8

				Addr					[8]uint8

}

type	RawSockaddrNetlink
type	RawSockaddrNetlink	struct	{

				Family	uint16

				Pad				uint16

				Pid				uint32

				Groups	uint32

}

type	RawSockaddrUnix
type	RawSockaddrUnix	struct	{

				Family	uint16

				Path			[108]int8

}

type	Rlimit
type	Rlimit	struct	{

				Cur	uint64

				Max	uint64

}

type	RtAttr
type	RtAttr	struct	{

				Len		uint16

				Type	uint16

}

type	RtGenmsg
type	RtGenmsg	struct	{

				Family	uint8

}

type	RtMsg
type	RtMsg	struct	{

				Family			uint8

				Dst_len		uint8

				Src_len		uint8

				Tos						uint8

				Table				uint8

				Protocol	uint8

				Scope				uint8

				Type					uint8

				Flags				uint32

}

type	RtNexthop
type	RtNexthop	struct	{

				Len					uint16

				Flags			uint8

				Hops				uint8

				Ifindex	int32

}

type	Rusage
type	Rusage	struct	{

				Utime				Timeval

				Stime				Timeval

				Maxrss			int64

				Ixrss				int64

				Idrss				int64

				Isrss				int64

				Minflt			int64

				Majflt			int64

				Nswap				int64

				Inblock		int64

				Oublock		int64

				Msgsnd			int64

				Msgrcv			int64

				Nsignals	int64

				Nvcsw				int64

				Nivcsw			int64

}

type	Signal
type	Signal	int

A	Signal	is	a	number	describing	a	process	signal.	It	implements	the	os.Signal
interface.

func	(Signal)	Signal

func	(s	Signal)	Signal()

func	(Signal)	String

func	(s	Signal)	String()	string

type	SockFilter
type	SockFilter	struct	{

				Code	uint16

				Jt			uint8

				Jf			uint8

				K				uint32

}

func	LsfJump

func	LsfJump(code,	k,	jt,	jf	int)	*SockFilter

func	LsfStmt

func	LsfStmt(code,	k	int)	*SockFilter

type	SockFprog
type	SockFprog	struct	{

				Len							uint16

				Pad_cgo_0	[6]byte

				Filter				*SockFilter

}

type	Sockaddr
type	Sockaddr	interface	{

				//	contains	filtered	or	unexported	methods

}

func	Getpeername

func	Getpeername(fd	int)	(sa	Sockaddr,	err	error)

func	Getsockname

func	Getsockname(fd	int)	(sa	Sockaddr,	err	error)

type	SockaddrInet4
type	SockaddrInet4	struct	{

				Port	int

				Addr	[4]byte

				//	contains	filtered	or	unexported	fields

}

type	SockaddrInet6
type	SockaddrInet6	struct	{

				Port			int

				ZoneId	uint32

				Addr			[16]byte

				//	contains	filtered	or	unexported	fields

}

type	SockaddrLinklayer
type	SockaddrLinklayer	struct	{

				Protocol	uint16

				Ifindex		int

				Hatype			uint16

				Pkttype		uint8

				Halen				uint8

				Addr					[8]byte

				//	contains	filtered	or	unexported	fields

}

type	SockaddrNetlink
type	SockaddrNetlink	struct	{

				Family	uint16

				Pad				uint16

				Pid				uint32

				Groups	uint32

				//	contains	filtered	or	unexported	fields

}

type	SockaddrUnix
type	SockaddrUnix	struct	{

				Name	string

				//	contains	filtered	or	unexported	fields

}

type	SocketControlMessage
type	SocketControlMessage	struct	{

				Header	Cmsghdr

				Data			[]byte

}

type	Stat_t
type	Stat_t	struct	{

				Dev							uint64

				Ino							uint64

				Nlink					uint64

				Mode						uint32

				Uid							uint32

				Gid							uint32

				X__pad0			int32

				Rdev						uint64

				Size						int64

				Blksize			int64

				Blocks				int64

				Atim						Timespec

				Mtim						Timespec

				Ctim						Timespec

				X__unused	[3]int64

}

type	Statfs_t
type	Statfs_t	struct	{

				Type				int64

				Bsize			int64

				Blocks		uint64

				Bfree			uint64

				Bavail		uint64

				Files			uint64

				Ffree			uint64

				Fsid				Fsid

				Namelen	int64

				Frsize		int64

				Flags			int64

				Spare			[4]int64

}

type	SysProcAttr
type	SysProcAttr	struct	{

				Chroot					string						//	Chroot.

				Credential	*Credential	//	Credential.

				Ptrace					bool								//	Enable	tracing.

				Setsid					bool								//	Create	session.

				Setpgid				bool								//	Set	process	group	ID	to	new	pid	(SYSV	setpgrp)

				Setctty				bool								//	Set	controlling	terminal	to	fd	0

				Noctty					bool								//	Detach	fd	0	from	controlling	terminal

				Pdeathsig		Signal						//	Signal	that	the	process	will	get	when	its	parent	dies	(Linux	only)

}

type	Sysinfo_t
type	Sysinfo_t	struct	{

				Uptime				int64

				Loads					[3]uint64

				Totalram		uint64

				Freeram			uint64

				Sharedram	uint64

				Bufferram	uint64

				Totalswap	uint64

				Freeswap		uint64

				Procs					uint16

				Pad							uint16

				Pad_cgo_0	[4]byte

				Totalhigh	uint64

				Freehigh		uint64

				Unit						uint32

				X_f							[0]byte

				Pad_cgo_1	[4]byte

}

type	Termios
type	Termios	struct	{

				Iflag					uint32

				Oflag					uint32

				Cflag					uint32

				Lflag					uint32

				Line						uint8

				Cc								[32]uint8

				Pad_cgo_0	[3]byte

				Ispeed				uint32

				Ospeed				uint32

}

type	Time_t
type	Time_t	int64

func	Time

func	Time(t	*Time_t)	(tt	Time_t,	err	error)

type	Timespec
type	Timespec	struct	{

				Sec		int64

				Nsec	int64

}

func	NsecToTimespec

func	NsecToTimespec(nsec	int64)	(ts	Timespec)

func	(*Timespec)	Nano

func	(ts	*Timespec)	Nano()	int64

func	(*Timespec)	Unix

func	(ts	*Timespec)	Unix()	(sec	int64,	nsec	int64)

type	Timeval
type	Timeval	struct	{

				Sec		int64

				Usec	int64

}

func	NsecToTimeval

func	NsecToTimeval(nsec	int64)	(tv	Timeval)

func	(*Timeval)	Nano

func	(tv	*Timeval)	Nano()	int64

func	(*Timeval)	Unix

func	(tv	*Timeval)	Unix()	(sec	int64,	nsec	int64)

type	Timex
type	Timex	struct	{

				Modes					uint32

				Pad_cgo_0	[4]byte

				Offset				int64

				Freq						int64

				Maxerror		int64

				Esterror		int64

				Status				int32

				Pad_cgo_1	[4]byte

				Constant		int64

				Precision	int64

				Tolerance	int64

				Time						Timeval

				Tick						int64

				Ppsfreq			int64

				Jitter				int64

				Shift					int32

				Pad_cgo_2	[4]byte

				Stabil				int64

				Jitcnt				int64

				Calcnt				int64

				Errcnt				int64

				Stbcnt				int64

				Tai							int32

				Pad_cgo_3	[44]byte

}

type	Tms
type	Tms	struct	{

				Utime		int64

				Stime		int64

				Cutime	int64

				Cstime	int64

}

type	Ucred
type	Ucred	struct	{

				Pid	int32

				Uid	uint32

				Gid	uint32

}

func	ParseUnixCredentials

func	ParseUnixCredentials(msg	*SocketControlMessage)	(*Ucred,	error)

ParseUnixCredentials	decodes	a	socket	control	message	that	contains	credentials
in	a	Ucred	structure.	To	receive	such	a	message,	the	SO_PASSCRED	option
must	be	enabled	on	the	socket.

type	Ustat_t
type	Ustat_t	struct	{

				Tfree					int32

				Pad_cgo_0	[4]byte

				Tinode				uint64

				Fname					[6]int8

				Fpack					[6]int8

				Pad_cgo_1	[4]byte

}

type	Utimbuf
type	Utimbuf	struct	{

				Actime		int64

				Modtime	int64

}

type	Utsname
type	Utsname	struct	{

				Sysname				[65]int8

				Nodename			[65]int8

				Release				[65]int8

				Version				[65]int8

				Machine				[65]int8

				Domainname	[65]int8

}

type	WaitStatus
type	WaitStatus	uint32

func	(WaitStatus)	Continued

func	(w	WaitStatus)	Continued()	bool

func	(WaitStatus)	CoreDump

func	(w	WaitStatus)	CoreDump()	bool

func	(WaitStatus)	ExitStatus

func	(w	WaitStatus)	ExitStatus()	int

func	(WaitStatus)	Exited

func	(w	WaitStatus)	Exited()	bool

func	(WaitStatus)	Signal

func	(w	WaitStatus)	Signal()	Signal

func	(WaitStatus)	Signaled

func	(w	WaitStatus)	Signaled()	bool

func	(WaitStatus)	StopSignal

func	(w	WaitStatus)	StopSignal()	Signal

func	(WaitStatus)	Stopped

func	(w	WaitStatus)	Stopped()	bool

func	(WaitStatus)	TrapCause

func	(w	WaitStatus)	TrapCause()	int

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	testing
import	"testing"

Overview
Index
Subdirectories

Overview	?

Overview	?

Package	testing	provides	support	for	automated	testing	of	Go	packages.	It	is
intended	to	be	used	in	concert	with	the	“go	test”	command,	which	automates
execution	of	any	function	of	the	form

func	TestXxx(*testing.T)

where	Xxx	can	be	any	alphanumeric	string	(but	the	first	letter	must	not	be	in	[a-
z])	and	serves	to	identify	the	test	routine.	These	TestXxx	routines	should	be
declared	within	the	package	they	are	testing.

Functions	of	the	form

func	BenchmarkXxx(*testing.B)

are	considered	benchmarks,	and	are	executed	by	the	"go	test"	command	when
the	-test.bench	flag	is	provided.

A	sample	benchmark	function	looks	like	this:

func	BenchmarkHello(b	*testing.B)	{

				for	i	:=	0;	i	<	b.N;	i++	{

								fmt.Sprintf("hello")

				}

}

The	benchmark	package	will	vary	b.N	until	the	benchmark	function	lasts	long
enough	to	be	timed	reliably.	The	output

testing.BenchmarkHello				10000000				282	ns/op

means	that	the	loop	ran	10000000	times	at	a	speed	of	282	ns	per	loop.

If	a	benchmark	needs	some	expensive	setup	before	running,	the	timer	may	be
stopped:

func	BenchmarkBigLen(b	*testing.B)	{

				b.StopTimer()

				big	:=	NewBig()

				b.StartTimer()

				for	i	:=	0;	i	<	b.N;	i++	{

								big.Len()

				}

}

The	package	also	runs	and	verifies	example	code.	Example	functions	may
include	a	concluding	comment	that	begins	with	"Output:"	and	is	compared	with
the	standard	output	of	the	function	when	the	tests	are	run,	as	in	these	examples
of	an	example:

func	ExampleHello()	{

								fmt.Println("hello")

								//	Output:	hello

}

func	ExampleSalutations()	{

								fmt.Println("hello,	and")

								fmt.Println("goodbye")

								//	Output:

								//	hello,	and

								//	goodbye

}

Example	functions	without	output	comments	are	compiled	but	not	executed.

The	naming	convention	to	declare	examples	for	a	function	F,	a	type	T	and
method	M	on	type	T	are:

func	ExampleF()	{	...	}

func	ExampleT()	{	...	}

func	ExampleT_M()	{	...	}

Multiple	example	functions	for	a	type/function/method	may	be	provided	by
appending	a	distinct	suffix	to	the	name.	The	suffix	must	start	with	a	lower-case
letter.

func	ExampleF_suffix()	{	...	}

func	ExampleT_suffix()	{	...	}

func	ExampleT_M_suffix()	{	...	}

The	entire	test	file	is	presented	as	the	example	when	it	contains	a	single	example
function,	at	least	one	other	function,	type,	variable,	or	constant	declaration,	and
no	test	or	benchmark	functions.

Index

func	Main(matchString	func(pat,	str	string)	(bool,	error),	tests
[]InternalTest,	benchmarks	[]InternalBenchmark,	examples
[]InternalExample)
func	RunBenchmarks(matchString	func(pat,	str	string)	(bool,	error),
benchmarks	[]InternalBenchmark)
func	RunExamples(matchString	func(pat,	str	string)	(bool,	error),	examples
[]InternalExample)	(ok	bool)
func	RunTests(matchString	func(pat,	str	string)	(bool,	error),	tests
[]InternalTest)	(ok	bool)
func	Short()	bool
type	B
				func	(c	*B)	Error(args	...interface{})
				func	(c	*B)	Errorf(format	string,	args	...interface{})
				func	(c	*B)	Fail()
				func	(c	*B)	FailNow()
				func	(c	*B)	Failed()	bool
				func	(c	*B)	Fatal(args	...interface{})
				func	(c	*B)	Fatalf(format	string,	args	...interface{})
				func	(c	*B)	Log(args	...interface{})
				func	(c	*B)	Logf(format	string,	args	...interface{})
				func	(b	*B)	ResetTimer()
				func	(b	*B)	SetBytes(n	int64)
				func	(b	*B)	StartTimer()
				func	(b	*B)	StopTimer()
type	BenchmarkResult
				func	Benchmark(f	func(b	*B))	BenchmarkResult
				func	(r	BenchmarkResult)	NsPerOp()	int64
				func	(r	BenchmarkResult)	String()	string
type	InternalBenchmark
type	InternalExample
type	InternalTest
type	T
				func	(c	*T)	Error(args	...interface{})
				func	(c	*T)	Errorf(format	string,	args	...interface{})
				func	(c	*T)	Fail()

				func	(c	*T)	FailNow()
				func	(c	*T)	Failed()	bool
				func	(c	*T)	Fatal(args	...interface{})
				func	(c	*T)	Fatalf(format	string,	args	...interface{})
				func	(c	*T)	Log(args	...interface{})
				func	(c	*T)	Logf(format	string,	args	...interface{})
				func	(t	*T)	Parallel()

Package	files

benchmark.go	example.go	testing.go

func	Main
func	Main(matchString	func(pat,	str	string)	(bool,	error),	tests	[]InternalTest,	benchmarks	[]InternalBenchmark,	examples	[]InternalExample)

An	internal	function	but	exported	because	it	is	cross-package;	part	of	the
implementation	of	the	"go	test"	command.

func	RunBenchmarks
func	RunBenchmarks(matchString	func(pat,	str	string)	(bool,	error),	benchmarks	[]InternalBenchmark)

An	internal	function	but	exported	because	it	is	cross-package;	part	of	the
implementation	of	the	"go	test"	command.

func	RunExamples
func	RunExamples(matchString	func(pat,	str	string)	(bool,	error),	examples	[]InternalExample)	(ok	bool)

func	RunTests
func	RunTests(matchString	func(pat,	str	string)	(bool,	error),	tests	[]InternalTest)	(ok	bool)

func	Short
func	Short()	bool

Short	reports	whether	the	-test.short	flag	is	set.

type	B
type	B	struct	{

				N	int

				//	contains	filtered	or	unexported	fields

}

B	is	a	type	passed	to	Benchmark	functions	to	manage	benchmark	timing	and	to
specify	the	number	of	iterations	to	run.

func	(*B)	Error

func	(c	*B)	Error(args	...interface{})

Error	is	equivalent	to	Log()	followed	by	Fail().

func	(*B)	Errorf

func	(c	*B)	Errorf(format	string,	args	...interface{})

Errorf	is	equivalent	to	Logf()	followed	by	Fail().

func	(*B)	Fail

func	(c	*B)	Fail()

Fail	marks	the	function	as	having	failed	but	continues	execution.

func	(*B)	FailNow

func	(c	*B)	FailNow()

FailNow	marks	the	function	as	having	failed	and	stops	its	execution.	Execution
will	continue	at	the	next	test	or	benchmark.

func	(*B)	Failed

func	(c	*B)	Failed()	bool

Failed	returns	whether	the	function	has	failed.

func	(*B)	Fatal

func	(c	*B)	Fatal(args	...interface{})

Fatal	is	equivalent	to	Log()	followed	by	FailNow().

func	(*B)	Fatalf

func	(c	*B)	Fatalf(format	string,	args	...interface{})

Fatalf	is	equivalent	to	Logf()	followed	by	FailNow().

func	(*B)	Log

func	(c	*B)	Log(args	...interface{})

Log	formats	its	arguments	using	default	formatting,	analogous	to	Println(),	and
records	the	text	in	the	error	log.

func	(*B)	Logf

func	(c	*B)	Logf(format	string,	args	...interface{})

Logf	formats	its	arguments	according	to	the	format,	analogous	to	Printf(),	and
records	the	text	in	the	error	log.

func	(*B)	ResetTimer

func	(b	*B)	ResetTimer()

ResetTimer	sets	the	elapsed	benchmark	time	to	zero.	It	does	not	affect	whether
the	timer	is	running.

func	(*B)	SetBytes

func	(b	*B)	SetBytes(n	int64)

SetBytes	records	the	number	of	bytes	processed	in	a	single	operation.	If	this	is

called,	the	benchmark	will	report	ns/op	and	MB/s.

func	(*B)	StartTimer

func	(b	*B)	StartTimer()

StartTimer	starts	timing	a	test.	This	function	is	called	automatically	before	a
benchmark	starts,	but	it	can	also	used	to	resume	timing	after	a	call	to	StopTimer.

func	(*B)	StopTimer

func	(b	*B)	StopTimer()

StopTimer	stops	timing	a	test.	This	can	be	used	to	pause	the	timer	while
performing	complex	initialization	that	you	don't	want	to	measure.

type	BenchmarkResult
type	BenchmarkResult	struct	{

				N					int											//	The	number	of	iterations.

				T					time.Duration	//	The	total	time	taken.

				Bytes	int64									//	Bytes	processed	in	one	iteration.

}

The	results	of	a	benchmark	run.

func	Benchmark

func	Benchmark(f	func(b	*B))	BenchmarkResult

Benchmark	benchmarks	a	single	function.	Useful	for	creating	custom
benchmarks	that	do	not	use	the	"go	test"	command.

func	(BenchmarkResult)	NsPerOp

func	(r	BenchmarkResult)	NsPerOp()	int64

func	(BenchmarkResult)	String

func	(r	BenchmarkResult)	String()	string

type	InternalBenchmark
type	InternalBenchmark	struct	{

				Name	string

				F				func(b	*B)

}

An	internal	type	but	exported	because	it	is	cross-package;	part	of	the
implementation	of	the	"go	test"	command.

type	InternalExample
type	InternalExample	struct	{

				Name			string

				F						func()

				Output	string

}

type	InternalTest
type	InternalTest	struct	{

				Name	string

				F				func(*T)

}

An	internal	type	but	exported	because	it	is	cross-package;	part	of	the
implementation	of	the	"go	test"	command.

type	T
type	T	struct	{

				//	contains	filtered	or	unexported	fields

}

T	is	a	type	passed	to	Test	functions	to	manage	test	state	and	support	formatted
test	logs.	Logs	are	accumulated	during	execution	and	dumped	to	standard	error
when	done.

func	(*T)	Error

func	(c	*T)	Error(args	...interface{})

Error	is	equivalent	to	Log()	followed	by	Fail().

func	(*T)	Errorf

func	(c	*T)	Errorf(format	string,	args	...interface{})

Errorf	is	equivalent	to	Logf()	followed	by	Fail().

func	(*T)	Fail

func	(c	*T)	Fail()

Fail	marks	the	function	as	having	failed	but	continues	execution.

func	(*T)	FailNow

func	(c	*T)	FailNow()

FailNow	marks	the	function	as	having	failed	and	stops	its	execution.	Execution
will	continue	at	the	next	test	or	benchmark.

func	(*T)	Failed

func	(c	*T)	Failed()	bool

Failed	returns	whether	the	function	has	failed.

func	(*T)	Fatal

func	(c	*T)	Fatal(args	...interface{})

Fatal	is	equivalent	to	Log()	followed	by	FailNow().

func	(*T)	Fatalf

func	(c	*T)	Fatalf(format	string,	args	...interface{})

Fatalf	is	equivalent	to	Logf()	followed	by	FailNow().

func	(*T)	Log

func	(c	*T)	Log(args	...interface{})

Log	formats	its	arguments	using	default	formatting,	analogous	to	Println(),	and
records	the	text	in	the	error	log.

func	(*T)	Logf

func	(c	*T)	Logf(format	string,	args	...interface{})

Logf	formats	its	arguments	according	to	the	format,	analogous	to	Printf(),	and
records	the	text	in	the	error	log.

func	(*T)	Parallel

func	(t	*T)	Parallel()

Parallel	signals	that	this	test	is	to	be	run	in	parallel	with	(and	only	with)	other
parallel	tests	in	this	CPU	group.

Subdirectories

Name 				 Synopsis

iotest 				 Package	iotest	implements	Readers	and	Writers	useful	mainly	for
testing.

quick 				 Package	quick	implements	utility	functions	to	help	with	black	boxtesting.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	iotest
import	"testing/iotest"

Overview
Index

Overview	?

Overview	?

Package	iotest	implements	Readers	and	Writers	useful	mainly	for	testing.

Index

Variables
func	DataErrReader(r	io.Reader)	io.Reader
func	HalfReader(r	io.Reader)	io.Reader
func	NewReadLogger(prefix	string,	r	io.Reader)	io.Reader
func	NewWriteLogger(prefix	string,	w	io.Writer)	io.Writer
func	OneByteReader(r	io.Reader)	io.Reader
func	TimeoutReader(r	io.Reader)	io.Reader
func	TruncateWriter(w	io.Writer,	n	int64)	io.Writer

Package	files

logger.go	reader.go	writer.go

Variables
var	ErrTimeout	=	errors.New("timeout")

func	DataErrReader
func	DataErrReader(r	io.Reader)	io.Reader

DataErrReader	returns	a	Reader	that	returns	the	final	error	with	the	last	data
read,	instead	of	by	itself	with	zero	bytes	of	data.

func	HalfReader
func	HalfReader(r	io.Reader)	io.Reader

HalfReader	returns	a	Reader	that	implements	Read	by	reading	half	as	many
requested	bytes	from	r.

func	NewReadLogger
func	NewReadLogger(prefix	string,	r	io.Reader)	io.Reader

NewReadLogger	returns	a	reader	that	behaves	like	r	except	that	it	logs	(using
log.Print)	each	read	to	standard	error,	printing	the	prefix	and	the	hexadecimal
data	written.

func	NewWriteLogger
func	NewWriteLogger(prefix	string,	w	io.Writer)	io.Writer

NewWriteLogger	returns	a	writer	that	behaves	like	w	except	that	it	logs	(using
log.Printf)	each	write	to	standard	error,	printing	the	prefix	and	the	hexadecimal
data	written.

func	OneByteReader
func	OneByteReader(r	io.Reader)	io.Reader

OneByteReader	returns	a	Reader	that	implements	each	non-empty	Read	by
reading	one	byte	from	r.

func	TimeoutReader
func	TimeoutReader(r	io.Reader)	io.Reader

TimeoutReader	returns	ErrTimeout	on	the	second	read	with	no	data.	Subsequent
calls	to	read	succeed.

func	TruncateWriter
func	TruncateWriter(w	io.Writer,	n	int64)	io.Writer

TruncateWriter	returns	a	Writer	that	writes	to	w	but	stops	silently	after	n	bytes.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	quick
import	"testing/quick"

Overview
Index

Overview	?

Overview	?

Package	quick	implements	utility	functions	to	help	with	black	box	testing.

Index

func	Check(function	interface{},	config	*Config)	(err	error)
func	CheckEqual(f,	g	interface{},	config	*Config)	(err	error)
func	Value(t	reflect.Type,	rand	*rand.Rand)	(value	reflect.Value,	ok	bool)
type	CheckEqualError
				func	(s	*CheckEqualError)	Error()	string
type	CheckError
				func	(s	*CheckError)	Error()	string
type	Config
type	Generator
type	SetupError
				func	(s	SetupError)	Error()	string

Package	files

quick.go

func	Check
func	Check(function	interface{},	config	*Config)	(err	error)

Check	looks	for	an	input	to	f,	any	function	that	returns	bool,	such	that	f	returns
false.	It	calls	f	repeatedly,	with	arbitrary	values	for	each	argument.	If	f	returns
false	on	a	given	input,	Check	returns	that	input	as	a	*CheckError.	For	example:

func	TestOddMultipleOfThree(t	*testing.T)	{

	 f	:=	func(x	int)	bool	{

	 	 y	:=	OddMultipleOfThree(x)

	 	 return	y%2	==	1	&&	y%3	==	0

	 }

	 if	err	:=	quick.Check(f,	nil);	err	!=	nil	{

	 	 t.Error(err)

	 }

}

func	CheckEqual
func	CheckEqual(f,	g	interface{},	config	*Config)	(err	error)

CheckEqual	looks	for	an	input	on	which	f	and	g	return	different	results.	It	calls	f
and	g	repeatedly	with	arbitrary	values	for	each	argument.	If	f	and	g	return
different	answers,	CheckEqual	returns	a	*CheckEqualError	describing	the	input
and	the	outputs.

func	Value
func	Value(t	reflect.Type,	rand	*rand.Rand)	(value	reflect.Value,	ok	bool)

Value	returns	an	arbitrary	value	of	the	given	type.	If	the	type	implements	the
Generator	interface,	that	will	be	used.	Note:	To	create	arbitrary	values	for	structs,
all	the	fields	must	be	exported.

type	CheckEqualError
type	CheckEqualError	struct	{

				CheckError

				Out1	[]interface{}

				Out2	[]interface{}

}

A	CheckEqualError	is	the	result	CheckEqual	finding	an	error.

func	(*CheckEqualError)	Error

func	(s	*CheckEqualError)	Error()	string

type	CheckError
type	CheckError	struct	{

				Count	int

				In				[]interface{}

}

A	CheckError	is	the	result	of	Check	finding	an	error.

func	(*CheckError)	Error

func	(s	*CheckError)	Error()	string

type	Config
type	Config	struct	{

				//	MaxCount	sets	the	maximum	number	of	iterations.	If	zero,

				//	MaxCountScale	is	used.

				MaxCount	int

				//	MaxCountScale	is	a	non-negative	scale	factor	applied	to	the	default

				//	maximum.	If	zero,	the	default	is	unchanged.

				MaxCountScale	float64

				//	If	non-nil,	rand	is	a	source	of	random	numbers.	Otherwise	a	default

				//	pseudo-random	source	will	be	used.

				Rand	*rand.Rand

				//	If	non-nil,	the	Values	function	generates	a	slice	of	arbitrary

				//	reflect.Values	that	are	congruent	with	the	arguments	to	the	function

				//	being	tested.	Otherwise,	the	top-level	Values	function	is	used

				//	to	generate	them.

				Values	func([]reflect.Value,	*rand.Rand)

}

A	Config	structure	contains	options	for	running	a	test.

type	Generator
type	Generator	interface	{

				//	Generate	returns	a	random	instance	of	the	type	on	which	it	is	a

				//	method	using	the	size	as	a	size	hint.

				Generate(rand	*rand.Rand,	size	int)	reflect.Value

}

A	Generator	can	generate	random	values	of	its	own	type.

type	SetupError
type	SetupError	string

A	SetupError	is	the	result	of	an	error	in	the	way	that	check	is	being	used,
independent	of	the	functions	being	tested.

func	(SetupError)	Error

func	(s	SetupError)	Error()	string

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Directory	/src/pkg/text
Name 				 Synopsis

scanner 				 Package	scanner	provides	a	scanner	and	tokenizer	for	UTF-8-encoded	text.

tabwriter 				 Package	tabwriter	implements	a	write	filter	(tabwriter.Writer)	that
translates	tabbed	columns	in	input	into	properly	aligned	text.

template 				 Package	template	implements	data-driven	templates	for	generatingtextual	output.

					parse 				 Package	parse	builds	parse	trees	for	templates	as	defined	bytext/template	and	html/template.

Need	more	packages?	Take	a	look	at	the	Go	Project	Dashboard.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://godashboard.appspot.com/
http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	scanner
import	"text/scanner"

Overview
Index

Overview	?

Overview	?

Package	scanner	provides	a	scanner	and	tokenizer	for	UTF-8-encoded	text.	It
takes	an	io.Reader	providing	the	source,	which	then	can	be	tokenized	through
repeated	calls	to	the	Scan	function.	For	compatibility	with	existing	tools,	the
NUL	character	is	not	allowed.

By	default,	a	Scanner	skips	white	space	and	Go	comments	and	recognizes	all
literals	as	defined	by	the	Go	language	specification.	It	may	be	customized	to
recognize	only	a	subset	of	those	literals	and	to	recognize	different	white	space
characters.

Basic	usage	pattern:

var	s	scanner.Scanner

s.Init(src)

tok	:=	s.Scan()

for	tok	!=	scanner.EOF	{

	 //	do	something	with	tok

	 tok	=	s.Scan()

}

Index

Constants
func	TokenString(tok	rune)	string
type	Position
				func	(pos	*Position)	IsValid()	bool
				func	(pos	Position)	String()	string
type	Scanner
				func	(s	*Scanner)	Init(src	io.Reader)	*Scanner
				func	(s	*Scanner)	Next()	rune
				func	(s	*Scanner)	Peek()	rune
				func	(s	*Scanner)	Pos()	(pos	Position)
				func	(s	*Scanner)	Scan()	rune
				func	(s	*Scanner)	TokenText()	string

Package	files

scanner.go

Constants
const	(

				ScanIdents					=	1	<<	-Ident

				ScanInts							=	1	<<	-Int

				ScanFloats					=	1	<<	-Float	//	includes	Ints

				ScanChars						=	1	<<	-Char

				ScanStrings				=	1	<<	-String

				ScanRawStrings	=	1	<<	-RawString

				ScanComments			=	1	<<	-Comment

				SkipComments			=	1	<<	-skipComment	//	if	set	with	ScanComments,	comments	become	white	space

				GoTokens							=	ScanIdents	|	ScanFloats	|	ScanChars	|	ScanStrings	|	ScanRawStrings	|	ScanComments	|	SkipComments

)

Predefined	mode	bits	to	control	recognition	of	tokens.	For	instance,	to	configure
a	Scanner	such	that	it	only	recognizes	(Go)	identifiers,	integers,	and	skips
comments,	set	the	Scanner's	Mode	field	to:

ScanIdents	|	ScanInts	|	SkipComments

const	(

				EOF	=	-(iota	+	1)

				Ident

				Int

				Float

				Char

				String

				RawString

				Comment

)

The	result	of	Scan	is	one	of	the	following	tokens	or	a	Unicode	character.

const	GoWhitespace	=	1<<'\t'	|	1<<'\n'	|	1<<'\r'	|	1<<'	'

GoWhitespace	is	the	default	value	for	the	Scanner's	Whitespace	field.	Its	value
selects	Go's	white	space	characters.

func	TokenString
func	TokenString(tok	rune)	string

TokenString	returns	a	printable	string	for	a	token	or	Unicode	character.

type	Position
type	Position	struct	{

				Filename	string	//	filename,	if	any

				Offset			int				//	byte	offset,	starting	at	0

				Line					int				//	line	number,	starting	at	1

				Column			int				//	column	number,	starting	at	1	(character	count	per	line)

}

A	source	position	is	represented	by	a	Position	value.	A	position	is	valid	if	Line	>
0.

func	(*Position)	IsValid

func	(pos	*Position)	IsValid()	bool

IsValid	returns	true	if	the	position	is	valid.

func	(Position)	String

func	(pos	Position)	String()	string

type	Scanner
type	Scanner	struct	{

				//	Error	is	called	for	each	error	encountered.	If	no	Error

				//	function	is	set,	the	error	is	reported	to	os.Stderr.

				Error	func(s	*Scanner,	msg	string)

				//	ErrorCount	is	incremented	by	one	for	each	error	encountered.

				ErrorCount	int

				//	The	Mode	field	controls	which	tokens	are	recognized.	For	instance,

				//	to	recognize	Ints,	set	the	ScanInts	bit	in	Mode.	The	field	may	be

				//	changed	at	any	time.

				Mode	uint

				//	The	Whitespace	field	controls	which	characters	are	recognized

				//	as	white	space.	To	recognize	a	character	ch	<=	'	'	as	white	space,

				//	set	the	ch'th	bit	in	Whitespace	(the	Scanner's	behavior	is	undefined

				//	for	values	ch	>	'	').	The	field	may	be	changed	at	any	time.

				Whitespace	uint64

				//	Start	position	of	most	recently	scanned	token;	set	by	Scan.

				//	Calling	Init	or	Next	invalidates	the	position	(Line	==	0).

				//	The	Filename	field	is	always	left	untouched	by	the	Scanner.

				//	If	an	error	is	reported	(via	Error)	and	Position	is	invalid,

				//	the	scanner	is	not	inside	a	token.	Call	Pos	to	obtain	an	error

				//	position	in	that	case.

				Position

				//	contains	filtered	or	unexported	fields

}

A	Scanner	implements	reading	of	Unicode	characters	and	tokens	from	an
io.Reader.

func	(*Scanner)	Init

func	(s	*Scanner)	Init(src	io.Reader)	*Scanner

Init	initializes	a	Scanner	with	a	new	source	and	returns	s.	Error	is	set	to	nil,
ErrorCount	is	set	to	0,	Mode	is	set	to	GoTokens,	and	Whitespace	is	set	to
GoWhitespace.

func	(*Scanner)	Next

func	(s	*Scanner)	Next()	rune

Next	reads	and	returns	the	next	Unicode	character.	It	returns	EOF	at	the	end	of
the	source.	It	reports	a	read	error	by	calling	s.Error,	if	not	nil;	otherwise	it	prints
an	error	message	to	os.Stderr.	Next	does	not	update	the	Scanner's	Position	field;
use	Pos()	to	get	the	current	position.

func	(*Scanner)	Peek

func	(s	*Scanner)	Peek()	rune

Peek	returns	the	next	Unicode	character	in	the	source	without	advancing	the
scanner.	It	returns	EOF	if	the	scanner's	position	is	at	the	last	character	of	the
source.

func	(*Scanner)	Pos

func	(s	*Scanner)	Pos()	(pos	Position)

Pos	returns	the	position	of	the	character	immediately	after	the	character	or	token
returned	by	the	last	call	to	Next	or	Scan.

func	(*Scanner)	Scan

func	(s	*Scanner)	Scan()	rune

Scan	reads	the	next	token	or	Unicode	character	from	source	and	returns	it.	It
only	recognizes	tokens	t	for	which	the	respective	Mode	bit	(1<<-t)	is	set.	It
returns	EOF	at	the	end	of	the	source.	It	reports	scanner	errors	(read	and	token
errors)	by	calling	s.Error,	if	not	nil;	otherwise	it	prints	an	error	message	to
os.Stderr.

func	(*Scanner)	TokenText

func	(s	*Scanner)	TokenText()	string

TokenText	returns	the	string	corresponding	to	the	most	recently	scanned	token.
Valid	after	calling	Scan().

Build	version	go1.0.1.

Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	tabwriter
import	"text/tabwriter"

Overview
Index
Examples

Overview	?

Overview	?

Package	tabwriter	implements	a	write	filter	(tabwriter.Writer)	that	translates
tabbed	columns	in	input	into	properly	aligned	text.

The	package	is	using	the	Elastic	Tabstops	algorithm	described	at
http://nickgravgaard.com/elastictabstops/index.html.

http://nickgravgaard.com/elastictabstops/index.html

Index

Constants
type	Writer
				func	NewWriter(output	io.Writer,	minwidth,	tabwidth,	padding	int,
padchar	byte,	flags	uint)	*Writer
				func	(b	*Writer)	Flush()	(err	error)
				func	(b	*Writer)	Init(output	io.Writer,	minwidth,	tabwidth,	padding	int,
padchar	byte,	flags	uint)	*Writer
				func	(b	*Writer)	Write(buf	[]byte)	(n	int,	err	error)

Examples

Writer.Init

Package	files

tabwriter.go

Constants
const	(

				//	Ignore	html	tags	and	treat	entities	(starting	with	'&'

				//	and	ending	in	';')	as	single	characters	(width	=	1).

				FilterHTML	uint	=	1	<<	iota

				//	Strip	Escape	characters	bracketing	escaped	text	segments

				//	instead	of	passing	them	through	unchanged	with	the	text.

				StripEscape

				//	Force	right-alignment	of	cell	content.

				//	Default	is	left-alignment.

				AlignRight

				//	Handle	empty	columns	as	if	they	were	not	present	in

				//	the	input	in	the	first	place.

				DiscardEmptyColumns

				//	Always	use	tabs	for	indentation	columns	(i.e.,	padding	of

				//	leading	empty	cells	on	the	left)	independent	of	padchar.

				TabIndent

				//	Print	a	vertical	bar	('|')	between	columns	(after	formatting).

				//	Discarded	columns	appear	as	zero-width	columns	("||").

				Debug

)

Formatting	can	be	controlled	with	these	flags.

const	Escape	=	'\xff'

To	escape	a	text	segment,	bracket	it	with	Escape	characters.	For	instance,	the	tab
in	this	string	"Ignore	this	tab:	\xff\t\xff"	does	not	terminate	a	cell	and	constitutes
a	single	character	of	width	one	for	formatting	purposes.

The	value	0xff	was	chosen	because	it	cannot	appear	in	a	valid	UTF-8	sequence.

type	Writer
type	Writer	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Writer	is	a	filter	that	inserts	padding	around	tab-delimited	columns	in	its	input
to	align	them	in	the	output.

The	Writer	treats	incoming	bytes	as	UTF-8	encoded	text	consisting	of	cells
terminated	by	(horizontal	or	vertical)	tabs	or	line	breaks	(newline	or	formfeed
characters).	Cells	in	adjacent	lines	constitute	a	column.	The	Writer	inserts
padding	as	needed	to	make	all	cells	in	a	column	have	the	same	width,	effectively
aligning	the	columns.	It	assumes	that	all	characters	have	the	same	width	except
for	tabs	for	which	a	tabwidth	must	be	specified.	Note	that	cells	are	tab-
terminated,	not	tab-separated:	trailing	non-tab	text	at	the	end	of	a	line	does	not
form	a	column	cell.

The	Writer	assumes	that	all	Unicode	code	points	have	the	same	width;	this	may
not	be	true	in	some	fonts.

If	DiscardEmptyColumns	is	set,	empty	columns	that	are	terminated	entirely	by
vertical	(or	"soft")	tabs	are	discarded.	Columns	terminated	by	horizontal	(or
"hard")	tabs	are	not	affected	by	this	flag.

If	a	Writer	is	configured	to	filter	HTML,	HTML	tags	and	entities	are	passed
through.	The	widths	of	tags	and	entities	are	assumed	to	be	zero	(tags)	and	one
(entities)	for	formatting	purposes.

A	segment	of	text	may	be	escaped	by	bracketing	it	with	Escape	characters.	The
tabwriter	passes	escaped	text	segments	through	unchanged.	In	particular,	it	does
not	interpret	any	tabs	or	line	breaks	within	the	segment.	If	the	StripEscape	flag	is
set,	the	Escape	characters	are	stripped	from	the	output;	otherwise	they	are	passed
through	as	well.	For	the	purpose	of	formatting,	the	width	of	the	escaped	text	is
always	computed	excluding	the	Escape	characters.

The	formfeed	character	('\f')	acts	like	a	newline	but	it	also	terminates	all	columns
in	the	current	line	(effectively	calling	Flush).	Cells	in	the	next	line	start	new
columns.	Unless	found	inside	an	HTML	tag	or	inside	an	escaped	text	segment,

formfeed	characters	appear	as	newlines	in	the	output.

The	Writer	must	buffer	input	internally,	because	proper	spacing	of	one	line	may
depend	on	the	cells	in	future	lines.	Clients	must	call	Flush	when	done	calling
Write.

func	NewWriter

func	NewWriter(output	io.Writer,	minwidth,	tabwidth,	padding	int,	padchar	byte,	flags	uint)	*Writer

NewWriter	allocates	and	initializes	a	new	tabwriter.Writer.	The	parameters	are
the	same	as	for	the	the	Init	function.

func	(*Writer)	Flush

func	(b	*Writer)	Flush()	(err	error)

Flush	should	be	called	after	the	last	call	to	Write	to	ensure	that	any	data	buffered
in	the	Writer	is	written	to	output.	Any	incomplete	escape	sequence	at	the	end	is
considered	complete	for	formatting	purposes.

func	(*Writer)	Init

func	(b	*Writer)	Init(output	io.Writer,	minwidth,	tabwidth,	padding	int,	padchar	byte,	flags	uint)	*Writer

A	Writer	must	be	initialized	with	a	call	to	Init.	The	first	parameter	(output)
specifies	the	filter	output.	The	remaining	parameters	control	the	formatting:

minwidth	 minimal	cell	width	including	any	padding

tabwidth	 width	of	tab	characters	(equivalent	number	of	spaces)

padding		 padding	added	to	a	cell	before	computing	its	width

padchar		 ASCII	char	used	for	padding

	 	 if	padchar	==	'\t',	the	Writer	will	assume	that	the

	 	 width	of	a	'\t'	in	the	formatted	output	is	tabwidth,

	 	 and	cells	are	left-aligned	independent	of	align_left

	 	 (for	correct-looking	results,	tabwidth	must	correspond

	 	 to	the	tab	width	in	the	viewer	displaying	the	result)

flags	 	 formatting	control

?	Example

?	Example

Code:

w	:=	new(tabwriter.Writer)

//	Format	in	tab-separated	columns	with	a	tab	stop	of	8.

w.Init(os.Stdout,	0,	8,	0,	'\t',	0)

fmt.Fprintln(w,	"a\tb\tc\td\t.")

fmt.Fprintln(w,	"123\t12345\t1234567\t123456789\t.")

fmt.Fprintln(w)

w.Flush()

//	Format	right-aligned	in	space-separated	columns	of	minimal	width	5

//	and	at	least	one	blank	of	padding	(so	wider	column	entries	do	not

//	touch	each	other).

w.Init(os.Stdout,	5,	0,	1,	'	',	tabwriter.AlignRight)

fmt.Fprintln(w,	"a\tb\tc\td\t.")

fmt.Fprintln(w,	"123\t12345\t1234567\t123456789\t.")

fmt.Fprintln(w)

w.Flush()

Output:

a	 b	 c	 d	 	 .

123	 12345	 1234567	123456789	 .

				a					b							c									d.

		123	12345	1234567	123456789.

func	(*Writer)	Write

func	(b	*Writer)	Write(buf	[]byte)	(n	int,	err	error)

Write	writes	buf	to	the	writer	b.	The	only	errors	returned	are	ones	encountered
while	writing	to	the	underlying	output	stream.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	template
import	"text/template"

Overview
Index
Examples
Subdirectories

Overview	?

Overview	?

Package	template	implements	data-driven	templates	for	generating	textual
output.

To	generate	HTML	output,	see	package	html/template,	which	has	the	same
interface	as	this	package	but	automatically	secures	HTML	output	against	certain
attacks.

Templates	are	executed	by	applying	them	to	a	data	structure.	Annotations	in	the
template	refer	to	elements	of	the	data	structure	(typically	a	field	of	a	struct	or	a
key	in	a	map)	to	control	execution	and	derive	values	to	be	displayed.	Execution
of	the	template	walks	the	structure	and	sets	the	cursor,	represented	by	a	period	'.'
and	called	"dot",	to	the	value	at	the	current	location	in	the	structure	as	execution
proceeds.

The	input	text	for	a	template	is	UTF-8-encoded	text	in	any	format.	"Actions"--
data	evaluations	or	control	structures--are	delimited	by	"{{"	and	"}}";	all	text
outside	actions	is	copied	to	the	output	unchanged.	Actions	may	not	span
newlines,	although	comments	can.

Once	constructed,	a	template	may	be	executed	safely	in	parallel.

Here	is	a	trivial	example	that	prints	"17	items	are	made	of	wool".

type	Inventory	struct	{

	 Material	string

	 Count				uint

}

sweaters	:=	Inventory{"wool",	17}

tmpl,	err	:=	template.New("test").Parse("{{.Count}}	items	are	made	of	{{.Material}}")

if	err	!=	nil	{	panic(err)	}

err	=	tmpl.Execute(os.Stdout,	sweaters)

if	err	!=	nil	{	panic(err)	}

More	intricate	examples	appear	below.

Actions

Here	is	the	list	of	actions.	"Arguments"	and	"pipelines"	are	evaluations	of	data,

defined	in	detail	below.

{{/*	a	comment	*/}}

	 A	comment;	discarded.	May	contain	newlines.

	 Comments	do	not	nest.

{{pipeline}}

	 The	default	textual	representation	of	the	value	of	the	pipeline

	 is	copied	to	the	output.

{{if	pipeline}}	T1	{{end}}

	 If	the	value	of	the	pipeline	is	empty,	no	output	is	generated;

	 otherwise,	T1	is	executed.		The	empty	values	are	false,	0,	any

	 nil	pointer	or	interface	value,	and	any	array,	slice,	map,	or

	 string	of	length	zero.

	 Dot	is	unaffected.

{{if	pipeline}}	T1	{{else}}	T0	{{end}}

	 If	the	value	of	the	pipeline	is	empty,	T0	is	executed;

	 otherwise,	T1	is	executed.		Dot	is	unaffected.

{{range	pipeline}}	T1	{{end}}

	 The	value	of	the	pipeline	must	be	an	array,	slice,	or	map.	If

	 the	value	of	the	pipeline	has	length	zero,	nothing	is	output;

	 otherwise,	dot	is	set	to	the	successive	elements	of	the	array,

	 slice,	or	map	and	T1	is	executed.	If	the	value	is	a	map	and	the

	 keys	are	of	basic	type	with	a	defined	order	("comparable"),	the

	 elements	will	be	visited	in	sorted	key	order.

{{range	pipeline}}	T1	{{else}}	T0	{{end}}

	 The	value	of	the	pipeline	must	be	an	array,	slice,	or	map.	If

	 the	value	of	the	pipeline	has	length	zero,	dot	is	unaffected	and

	 T0	is	executed;	otherwise,	dot	is	set	to	the	successive	elements

	 of	the	array,	slice,	or	map	and	T1	is	executed.

{{template	"name"}}

	 The	template	with	the	specified	name	is	executed	with	nil	data.

{{template	"name"	pipeline}}

	 The	template	with	the	specified	name	is	executed	with	dot	set

	 to	the	value	of	the	pipeline.

{{with	pipeline}}	T1	{{end}}

	 If	the	value	of	the	pipeline	is	empty,	no	output	is	generated;

	 otherwise,	dot	is	set	to	the	value	of	the	pipeline	and	T1	is

	 executed.

{{with	pipeline}}	T1	{{else}}	T0	{{end}}

	 If	the	value	of	the	pipeline	is	empty,	dot	is	unaffected	and	T0

	 is	executed;	otherwise,	dot	is	set	to	the	value	of	the	pipeline

	 and	T1	is	executed.

Arguments

An	argument	is	a	simple	value,	denoted	by	one	of	the	following.

-	A	boolean,	string,	character,	integer,	floating-point,	imaginary

		or	complex	constant	in	Go	syntax.	These	behave	like	Go's	untyped

		constants,	although	raw	strings	may	not	span	newlines.

-	The	character	'.'	(period):

	 .

		The	result	is	the	value	of	dot.

-	A	variable	name,	which	is	a	(possibly	empty)	alphanumeric	string

		preceded	by	a	dollar	sign,	such	as

	 $piOver2

		or

	 $

		The	result	is	the	value	of	the	variable.

		Variables	are	described	below.

-	The	name	of	a	field	of	the	data,	which	must	be	a	struct,	preceded

		by	a	period,	such	as

	 .Field

		The	result	is	the	value	of	the	field.	Field	invocations	may	be

		chained:

				.Field1.Field2

		Fields	can	also	be	evaluated	on	variables,	including	chaining:

				$x.Field1.Field2

-	The	name	of	a	key	of	the	data,	which	must	be	a	map,	preceded

		by	a	period,	such	as

	 .Key

		The	result	is	the	map	element	value	indexed	by	the	key.

		Key	invocations	may	be	chained	and	combined	with	fields	to	any

		depth:

				.Field1.Key1.Field2.Key2

		Although	the	key	must	be	an	alphanumeric	identifier,	unlike	with

		field	names	they	do	not	need	to	start	with	an	upper	case	letter.

		Keys	can	also	be	evaluated	on	variables,	including	chaining:

				$x.key1.key2

-	The	name	of	a	niladic	method	of	the	data,	preceded	by	a	period,

		such	as

	 .Method

		The	result	is	the	value	of	invoking	the	method	with	dot	as	the

		receiver,	dot.Method().	Such	a	method	must	have	one	return	value	(of

		any	type)	or	two	return	values,	the	second	of	which	is	an	error.

		If	it	has	two	and	the	returned	error	is	non-nil,	execution	terminates

		and	an	error	is	returned	to	the	caller	as	the	value	of	Execute.

		Method	invocations	may	be	chained	and	combined	with	fields	and	keys

		to	any	depth:

				.Field1.Key1.Method1.Field2.Key2.Method2

		Methods	can	also	be	evaluated	on	variables,	including	chaining:

				$x.Method1.Field

-	The	name	of	a	niladic	function,	such	as

	 fun

		The	result	is	the	value	of	invoking	the	function,	fun().	The	return

		types	and	values	behave	as	in	methods.	Functions	and	function

		names	are	described	below.

Arguments	may	evaluate	to	any	type;	if	they	are	pointers	the	implementation
automatically	indirects	to	the	base	type	when	required.	If	an	evaluation	yields	a
function	value,	such	as	a	function-valued	field	of	a	struct,	the	function	is	not
invoked	automatically,	but	it	can	be	used	as	a	truth	value	for	an	if	action	and	the
like.	To	invoke	it,	use	the	call	function,	defined	below.

A	pipeline	is	a	possibly	chained	sequence	of	"commands".	A	command	is	a
simple	value	(argument)	or	a	function	or	method	call,	possibly	with	multiple
arguments:

Argument

	 The	result	is	the	value	of	evaluating	the	argument.

.Method	[Argument...]

	 The	method	can	be	alone	or	the	last	element	of	a	chain	but,

	 unlike	methods	in	the	middle	of	a	chain,	it	can	take	arguments.

	 The	result	is	the	value	of	calling	the	method	with	the

	 arguments:

	 	 dot.Method(Argument1,	etc.)

functionName	[Argument...]

	 The	result	is	the	value	of	calling	the	function	associated

	 with	the	name:

	 	 function(Argument1,	etc.)

	 Functions	and	function	names	are	described	below.

Pipelines

A	pipeline	may	be	"chained"	by	separating	a	sequence	of	commands	with
pipeline	characters	'|'.	In	a	chained	pipeline,	the	result	of	the	each	command	is
passed	as	the	last	argument	of	the	following	command.	The	output	of	the	final
command	in	the	pipeline	is	the	value	of	the	pipeline.

The	output	of	a	command	will	be	either	one	value	or	two	values,	the	second	of
which	has	type	error.	If	that	second	value	is	present	and	evaluates	to	non-nil,
execution	terminates	and	the	error	is	returned	to	the	caller	of	Execute.

Variables

A	pipeline	inside	an	action	may	initialize	a	variable	to	capture	the	result.	The
initialization	has	syntax

$variable	:=	pipeline

where	$variable	is	the	name	of	the	variable.	An	action	that	declares	a	variable
produces	no	output.

If	a	"range"	action	initializes	a	variable,	the	variable	is	set	to	the	successive
elements	of	the	iteration.	Also,	a	"range"	may	declare	two	variables,	separated
by	a	comma:

$index,	$element	:=	pipeline

in	which	case	$index	and	$element	are	set	to	the	successive	values	of	the
array/slice	index	or	map	key	and	element,	respectively.	Note	that	if	there	is	only
one	variable,	it	is	assigned	the	element;	this	is	opposite	to	the	convention	in	Go
range	clauses.

A	variable's	scope	extends	to	the	"end"	action	of	the	control	structure	("if",
"with",	or	"range")	in	which	it	is	declared,	or	to	the	end	of	the	template	if	there	is
no	such	control	structure.	A	template	invocation	does	not	inherit	variables	from
the	point	of	its	invocation.

When	execution	begins,	$	is	set	to	the	data	argument	passed	to	Execute,	that	is,
to	the	starting	value	of	dot.

Examples

Here	are	some	example	one-line	templates	demonstrating	pipelines	and
variables.	All	produce	the	quoted	word	"output":

{{"\"output\""}}

	 A	string	constant.

{{`"output"`}}

	 A	raw	string	constant.

{{printf	"%q"	"output"}}

	 A	function	call.

{{"output"	|	printf	"%q"}}

	 A	function	call	whose	final	argument	comes	from	the	previous

	 command.

{{"put"	|	printf	"%s%s"	"out"	|	printf	"%q"}}

	 A	more	elaborate	call.

{{"output"	|	printf	"%s"	|	printf	"%q"}}

	 A	longer	chain.

{{with	"output"}}{{printf	"%q"	.}}{{end}}

	 A	with	action	using	dot.

{{with	$x	:=	"output"	|	printf	"%q"}}{{$x}}{{end}}

	 A	with	action	that	creates	and	uses	a	variable.

{{with	$x	:=	"output"}}{{printf	"%q"	$x}}{{end}}

	 A	with	action	that	uses	the	variable	in	another	action.

{{with	$x	:=	"output"}}{{$x	|	printf	"%q"}}{{end}}

	 The	same,	but	pipelined.

Functions

During	execution	functions	are	found	in	two	function	maps:	first	in	the	template,
then	in	the	global	function	map.	By	default,	no	functions	are	defined	in	the
template	but	the	Funcs	method	can	be	used	to	add	them.

Predefined	global	functions	are	named	as	follows.

and

	 Returns	the	boolean	AND	of	its	arguments	by	returning	the

	 first	empty	argument	or	the	last	argument,	that	is,

	 "and	x	y"	behaves	as	"if	x	then	y	else	x".	All	the

	 arguments	are	evaluated.

call

	 Returns	the	result	of	calling	the	first	argument,	which

	 must	be	a	function,	with	the	remaining	arguments	as	parameters.

	 Thus	"call	.X.Y	1	2"	is,	in	Go	notation,	dot.X.Y(1,	2)	where

	 Y	is	a	func-valued	field,	map	entry,	or	the	like.

	 The	first	argument	must	be	the	result	of	an	evaluation

	 that	yields	a	value	of	function	type	(as	distinct	from

	 a	predefined	function	such	as	print).	The	function	must

	 return	either	one	or	two	result	values,	the	second	of	which

	 is	of	type	error.	If	the	arguments	don't	match	the	function

	 or	the	returned	error	value	is	non-nil,	execution	stops.

html

	 Returns	the	escaped	HTML	equivalent	of	the	textual

	 representation	of	its	arguments.

index

	 Returns	the	result	of	indexing	its	first	argument	by	the

	 following	arguments.	Thus	"index	x	1	2	3"	is,	in	Go	syntax,

	 x[1][2][3].	Each	indexed	item	must	be	a	map,	slice,	or	array.

js

	 Returns	the	escaped	JavaScript	equivalent	of	the	textual

	 representation	of	its	arguments.

len

	 Returns	the	integer	length	of	its	argument.

not

	 Returns	the	boolean	negation	of	its	single	argument.

or

	 Returns	the	boolean	OR	of	its	arguments	by	returning	the

	 first	non-empty	argument	or	the	last	argument,	that	is,

	 "or	x	y"	behaves	as	"if	x	then	x	else	y".	All	the

	 arguments	are	evaluated.

print

	 An	alias	for	fmt.Sprint

printf

	 An	alias	for	fmt.Sprintf

println

	 An	alias	for	fmt.Sprintln

urlquery

	 Returns	the	escaped	value	of	the	textual	representation	of

	 its	arguments	in	a	form	suitable	for	embedding	in	a	URL	query.

The	boolean	functions	take	any	zero	value	to	be	false	and	a	non-zero	value	to	be
true.

Associated	templates

Each	template	is	named	by	a	string	specified	when	it	is	created.	Also,	each
template	is	associated	with	zero	or	more	other	templates	that	it	may	invoke	by
name;	such	associations	are	transitive	and	form	a	name	space	of	templates.

A	template	may	use	a	template	invocation	to	instantiate	another	associated
template;	see	the	explanation	of	the	"template"	action	above.	The	name	must	be
that	of	a	template	associated	with	the	template	that	contains	the	invocation.

Nested	template	definitions

When	parsing	a	template,	another	template	may	be	defined	and	associated	with
the	template	being	parsed.	Template	definitions	must	appear	at	the	top	level	of
the	template,	much	like	global	variables	in	a	Go	program.

The	syntax	of	such	definitions	is	to	surround	each	template	declaration	with	a
"define"	and	"end"	action.

The	define	action	names	the	template	being	created	by	providing	a	string

constant.	Here	is	a	simple	example:

`{{define	"T1"}}ONE{{end}}

{{define	"T2"}}TWO{{end}}

{{define	"T3"}}{{template	"T1"}}	{{template	"T2"}}{{end}}

{{template	"T3"}}`

This	defines	two	templates,	T1	and	T2,	and	a	third	T3	that	invokes	the	other	two
when	it	is	executed.	Finally	it	invokes	T3.	If	executed	this	template	will	produce
the	text

ONE	TWO

By	construction,	a	template	may	reside	in	only	one	association.	If	it's	necessary
to	have	a	template	addressable	from	multiple	associations,	the	template
definition	must	be	parsed	multiple	times	to	create	distinct	*Template	values,	or
must	be	copied	with	the	Clone	or	AddParseTree	method.

Parse	may	be	called	multiple	times	to	assemble	the	various	associated	templates;
see	the	ParseFiles	and	ParseGlob	functions	and	methods	for	simple	ways	to
parse	related	templates	stored	in	files.

A	template	may	be	executed	directly	or	through	ExecuteTemplate,	which
executes	an	associated	template	identified	by	name.	To	invoke	our	example
above,	we	might	write,

err	:=	tmpl.Execute(os.Stdout,	"no	data	needed")

if	err	!=	nil	{

	 log.Fatalf("execution	failed:	%s",	err)

}

or	to	invoke	a	particular	template	explicitly	by	name,

err	:=	tmpl.ExecuteTemplate(os.Stdout,	"T2",	"no	data	needed")

if	err	!=	nil	{

	 log.Fatalf("execution	failed:	%s",	err)

}

Index

func	HTMLEscape(w	io.Writer,	b	[]byte)
func	HTMLEscapeString(s	string)	string
func	HTMLEscaper(args	...interface{})	string
func	JSEscape(w	io.Writer,	b	[]byte)
func	JSEscapeString(s	string)	string
func	JSEscaper(args	...interface{})	string
func	URLQueryEscaper(args	...interface{})	string
type	FuncMap
type	Template
				func	Must(t	*Template,	err	error)	*Template
				func	New(name	string)	*Template
				func	ParseFiles(filenames	...string)	(*Template,	error)
				func	ParseGlob(pattern	string)	(*Template,	error)
				func	(t	*Template)	AddParseTree(name	string,	tree	*parse.Tree)
(*Template,	error)
				func	(t	*Template)	Clone()	(*Template,	error)
				func	(t	*Template)	Delims(left,	right	string)	*Template
				func	(t	*Template)	Execute(wr	io.Writer,	data	interface{})	(err	error)
				func	(t	*Template)	ExecuteTemplate(wr	io.Writer,	name	string,	data
interface{})	error
				func	(t	*Template)	Funcs(funcMap	FuncMap)	*Template
				func	(t	*Template)	Lookup(name	string)	*Template
				func	(t	*Template)	Name()	string
				func	(t	*Template)	New(name	string)	*Template
				func	(t	*Template)	Parse(text	string)	(*Template,	error)
				func	(t	*Template)	ParseFiles(filenames	...string)	(*Template,	error)
				func	(t	*Template)	ParseGlob(pattern	string)	(*Template,	error)
				func	(t	*Template)	Templates()	[]*Template

Examples

Template
Template	(Func)
Template	(Glob)
Template	(Helpers)

Template	(Share)

Package	files

doc.go	exec.go	funcs.go	helper.go	template.go

func	HTMLEscape
func	HTMLEscape(w	io.Writer,	b	[]byte)

HTMLEscape	writes	to	w	the	escaped	HTML	equivalent	of	the	plain	text	data	b.

func	HTMLEscapeString
func	HTMLEscapeString(s	string)	string

HTMLEscapeString	returns	the	escaped	HTML	equivalent	of	the	plain	text	data
s.

func	HTMLEscaper
func	HTMLEscaper(args	...interface{})	string

HTMLEscaper	returns	the	escaped	HTML	equivalent	of	the	textual
representation	of	its	arguments.

func	JSEscape
func	JSEscape(w	io.Writer,	b	[]byte)

JSEscape	writes	to	w	the	escaped	JavaScript	equivalent	of	the	plain	text	data	b.

func	JSEscapeString
func	JSEscapeString(s	string)	string

JSEscapeString	returns	the	escaped	JavaScript	equivalent	of	the	plain	text	data	s.

func	JSEscaper
func	JSEscaper(args	...interface{})	string

JSEscaper	returns	the	escaped	JavaScript	equivalent	of	the	textual	representation
of	its	arguments.

func	URLQueryEscaper
func	URLQueryEscaper(args	...interface{})	string

URLQueryEscaper	returns	the	escaped	value	of	the	textual	representation	of	its
arguments	in	a	form	suitable	for	embedding	in	a	URL	query.

type	FuncMap
type	FuncMap	map[string]interface{}

FuncMap	is	the	type	of	the	map	defining	the	mapping	from	names	to	functions.
Each	function	must	have	either	a	single	return	value,	or	two	return	values	of
which	the	second	has	type	error.	In	that	case,	if	the	second	(error)	argument
evaluates	to	non-nil	during	execution,	execution	terminates	and	Execute	returns
that	error.

type	Template
type	Template	struct	{

				*parse.Tree

				//	contains	filtered	or	unexported	fields

}

Template	is	the	representation	of	a	parsed	template.	The	*parse.Tree	field	is
exported	only	for	use	by	html/template	and	should	be	treated	as	unexported	by
all	other	clients.

?	Example

?	Example

Code:

//	Define	a	template.

const	letter	=	`

Dear	{{.Name}},

{{if	.Attended}}

It	was	a	pleasure	to	see	you	at	the	wedding.{{else}}

It	is	a	shame	you	couldn't	make	it	to	the	wedding.{{end}}

{{with	.Gift}}Thank	you	for	the	lovely	{{.}}.

{{end}}

Best	wishes,

Josie

`

//	Prepare	some	data	to	insert	into	the	template.

type	Recipient	struct	{

				Name,	Gift	string

				Attended			bool

}

var	recipients	=	[]Recipient{

				{"Aunt	Mildred",	"bone	china	tea	set",	true},

				{"Uncle	John",	"moleskin	pants",	false},

				{"Cousin	Rodney",	"",	false},

}

//	Create	a	new	template	and	parse	the	letter	into	it.

t	:=	template.Must(template.New("letter").Parse(letter))

//	Execute	the	template	for	each	recipient.

for	_,	r	:=	range	recipients	{

				err	:=	t.Execute(os.Stdout,	r)

				if	err	!=	nil	{

								log.Println("executing	template:",	err)

				}

}

Output:

Dear	Aunt	Mildred,

It	was	a	pleasure	to	see	you	at	the	wedding.

Thank	you	for	the	lovely	bone	china	tea	set.

Best	wishes,

Josie

Dear	Uncle	John,

It	is	a	shame	you	couldn't	make	it	to	the	wedding.

Thank	you	for	the	lovely	moleskin	pants.

Best	wishes,

Josie

Dear	Cousin	Rodney,

It	is	a	shame	you	couldn't	make	it	to	the	wedding.

Best	wishes,

Josie

?	Example	(Func)

?	Example	(Func)

This	example	demonstrates	a	custom	function	to	process	template	text.	It	installs
the	strings.Title	function	and	uses	it	to	Make	Title	Text	Look	Good	In	Our
Template's	Output.

Code:

//	First	we	create	a	FuncMap	with	which	to	register	the	function.

funcMap	:=	template.FuncMap{

				//	The	name	"title"	is	what	the	function	will	be	called	in	the	template	text.

				"title":	strings.Title,

}

//	A	simple	template	definition	to	test	our	function.

//	We	print	the	input	text	several	ways:

//	-	the	original

//	-	title-cased

//	-	title-cased	and	then	printed	with	%q

//	-	printed	with	%q	and	then	title-cased.

const	templateText	=	`

Input:	{{printf	"%q"	.}}

Output	0:	{{title	.}}

Output	1:	{{title	.	|	printf	"%q"}}

Output	2:	{{printf	"%q"	.	|	title}}

`

//	Create	a	template,	add	the	function	map,	and	parse	the	text.

tmpl,	err	:=	template.New("titleTest").Funcs(funcMap).Parse(templateText)

if	err	!=	nil	{

				log.Fatalf("parsing:	%s",	err)

}

//	Run	the	template	to	verify	the	output.

err	=	tmpl.Execute(os.Stdout,	"the	go	programming	language")

if	err	!=	nil	{

				log.Fatalf("execution:	%s",	err)

}

Output:

Input:	"the	go	programming	language"

Output	0:	The	Go	Programming	Language

Output	1:	"The	Go	Programming	Language"

Output	2:	"The	Go	Programming	Language"

?	Example	(Glob)

?	Example	(Glob)

Here	we	demonstrate	loading	a	set	of	templates	from	a	directory.

Code:

//	Here	we	create	a	temporary	directory	and	populate	it	with	our	sample

//	template	definition	files;	usually	the	template	files	would	already

//	exist	in	some	location	known	to	the	program.

dir	:=	createTestDir([]templateFile{

				//	T0.tmpl	is	a	plain	template	file	that	just	invokes	T1.

				{"T0.tmpl",	`T0	invokes	T1:	({{template	"T1"}})`},

				//	T1.tmpl	defines	a	template,	T1	that	invokes	T2.

				{"T1.tmpl",	`{{define	"T1"}}T1	invokes	T2:	({{template	"T2"}}){{end}}`},

				//	T2.tmpl	defines	a	template	T2.

				{"T2.tmpl",	`{{define	"T2"}}This	is	T2{{end}}`},

})

//	Clean	up	after	the	test;	another	quirk	of	running	as	an	example.

defer	os.RemoveAll(dir)

//	pattern	is	the	glob	pattern	used	to	find	all	the	template	files.

pattern	:=	filepath.Join(dir,	"*.tmpl")

//	Here	starts	the	example	proper.

//	T0.tmpl	is	the	first	name	matched,	so	it	becomes	the	starting	template,

//	the	value	returned	by	ParseGlob.

tmpl	:=	template.Must(template.ParseGlob(pattern))

err	:=	tmpl.Execute(os.Stdout,	nil)

if	err	!=	nil	{

				log.Fatalf("template	execution:	%s",	err)

}

Output:

T0	invokes	T1:	(T1	invokes	T2:	(This	is	T2))

?	Example	(Helpers)

?	Example	(Helpers)

This	example	demonstrates	one	way	to	share	some	templates	and	use	them	in
different	contexts.	In	this	variant	we	add	multiple	driver	templates	by	hand	to	an
existing	bundle	of	templates.

Code:

//	Here	we	create	a	temporary	directory	and	populate	it	with	our	sample

//	template	definition	files;	usually	the	template	files	would	already

//	exist	in	some	location	known	to	the	program.

dir	:=	createTestDir([]templateFile{

				//	T1.tmpl	defines	a	template,	T1	that	invokes	T2.

				{"T1.tmpl",	`{{define	"T1"}}T1	invokes	T2:	({{template	"T2"}}){{end}}`},

				//	T2.tmpl	defines	a	template	T2.

				{"T2.tmpl",	`{{define	"T2"}}This	is	T2{{end}}`},

})

//	Clean	up	after	the	test;	another	quirk	of	running	as	an	example.

defer	os.RemoveAll(dir)

//	pattern	is	the	glob	pattern	used	to	find	all	the	template	files.

pattern	:=	filepath.Join(dir,	"*.tmpl")

//	Here	starts	the	example	proper.

//	Load	the	helpers.

templates	:=	template.Must(template.ParseGlob(pattern))

//	Add	one	driver	template	to	the	bunch;	we	do	this	with	an	explicit	template	definition.

_,	err	:=	templates.Parse("{{define	`driver1`}}Driver	1	calls	T1:	({{template	`T1`}})\n{{end}}")

if	err	!=	nil	{

				log.Fatal("parsing	driver1:	",	err)

}

//	Add	another	driver	template.

_,	err	=	templates.Parse("{{define	`driver2`}}Driver	2	calls	T2:	({{template	`T2`}})\n{{end}}")

if	err	!=	nil	{

				log.Fatal("parsing	driver2:	",	err)

}

//	We	load	all	the	templates	before	execution.	This	package	does	not	require

//	that	behavior	but	html/template's	escaping	does,	so	it's	a	good	habit.

err	=	templates.ExecuteTemplate(os.Stdout,	"driver1",	nil)

if	err	!=	nil	{

				log.Fatalf("driver1	execution:	%s",	err)

}

err	=	templates.ExecuteTemplate(os.Stdout,	"driver2",	nil)

if	err	!=	nil	{

				log.Fatalf("driver2	execution:	%s",	err)

}

Output:

Driver	1	calls	T1:	(T1	invokes	T2:	(This	is	T2))

Driver	2	calls	T2:	(This	is	T2)

?	Example	(Share)

?	Example	(Share)

This	example	demonstrates	how	to	use	one	group	of	driver	templates	with
distinct	sets	of	helper	templates.

Code:

//	Here	we	create	a	temporary	directory	and	populate	it	with	our	sample

//	template	definition	files;	usually	the	template	files	would	already

//	exist	in	some	location	known	to	the	program.

dir	:=	createTestDir([]templateFile{

				//	T0.tmpl	is	a	plain	template	file	that	just	invokes	T1.

				{"T0.tmpl",	"T0	({{.}}	version)	invokes	T1:	({{template	`T1`}})\n"},

				//	T1.tmpl	defines	a	template,	T1	that	invokes	T2.	Note	T2	is	not	defined

				{"T1.tmpl",	`{{define	"T1"}}T1	invokes	T2:	({{template	"T2"}}){{end}}`},

})

//	Clean	up	after	the	test;	another	quirk	of	running	as	an	example.

defer	os.RemoveAll(dir)

//	pattern	is	the	glob	pattern	used	to	find	all	the	template	files.

pattern	:=	filepath.Join(dir,	"*.tmpl")

//	Here	starts	the	example	proper.

//	Load	the	drivers.

drivers	:=	template.Must(template.ParseGlob(pattern))

//	We	must	define	an	implementation	of	the	T2	template.	First	we	clone

//	the	drivers,	then	add	a	definition	of	T2	to	the	template	name	space.

//	1.	Clone	the	helper	set	to	create	a	new	name	space	from	which	to	run	them.

first,	err	:=	drivers.Clone()

if	err	!=	nil	{

				log.Fatal("cloning	helpers:	",	err)

}

//	2.	Define	T2,	version	A,	and	parse	it.

_,	err	=	first.Parse("{{define	`T2`}}T2,	version	A{{end}}")

if	err	!=	nil	{

				log.Fatal("parsing	T2:	",	err)

}

//	Now	repeat	the	whole	thing,	using	a	different	version	of	T2.

//	1.	Clone	the	drivers.

second,	err	:=	drivers.Clone()

if	err	!=	nil	{

				log.Fatal("cloning	drivers:	",	err)

}

//	2.	Define	T2,	version	B,	and	parse	it.

_,	err	=	second.Parse("{{define	`T2`}}T2,	version	B{{end}}")

if	err	!=	nil	{

				log.Fatal("parsing	T2:	",	err)

}

//	Execute	the	templates	in	the	reverse	order	to	verify	the

//	first	is	unaffected	by	the	second.

err	=	second.ExecuteTemplate(os.Stdout,	"T0.tmpl",	"second")

if	err	!=	nil	{

				log.Fatalf("second	execution:	%s",	err)

}

err	=	first.ExecuteTemplate(os.Stdout,	"T0.tmpl",	"first")

if	err	!=	nil	{

				log.Fatalf("first:	execution:	%s",	err)

}

Output:

T0	(second	version)	invokes	T1:	(T1	invokes	T2:	(T2,	version	B))

T0	(first	version)	invokes	T1:	(T1	invokes	T2:	(T2,	version	A))

func	Must

func	Must(t	*Template,	err	error)	*Template

Must	is	a	helper	that	wraps	a	call	to	a	function	returning	(*Template,	error)	and
panics	if	the	error	is	non-nil.	It	is	intended	for	use	in	variable	initializations	such
as

var	t	=	template.Must(template.New("name").Parse("text"))

func	New

func	New(name	string)	*Template

New	allocates	a	new	template	with	the	given	name.

func	ParseFiles

func	ParseFiles(filenames	...string)	(*Template,	error)

ParseFiles	creates	a	new	Template	and	parses	the	template	definitions	from	the
named	files.	The	returned	template's	name	will	have	the	(base)	name	and
(parsed)	contents	of	the	first	file.	There	must	be	at	least	one	file.	If	an	error
occurs,	parsing	stops	and	the	returned	*Template	is	nil.

func	ParseGlob

func	ParseGlob(pattern	string)	(*Template,	error)

ParseGlob	creates	a	new	Template	and	parses	the	template	definitions	from	the
files	identified	by	the	pattern,	which	must	match	at	least	one	file.	The	returned
template	will	have	the	(base)	name	and	(parsed)	contents	of	the	first	file	matched
by	the	pattern.	ParseGlob	is	equivalent	to	calling	ParseFiles	with	the	list	of	files
matched	by	the	pattern.

func	(*Template)	AddParseTree

func	(t	*Template)	AddParseTree(name	string,	tree	*parse.Tree)	(*Template,	error)

AddParseTree	creates	a	new	template	with	the	name	and	parse	tree	and
associates	it	with	t.

func	(*Template)	Clone

func	(t	*Template)	Clone()	(*Template,	error)

Clone	returns	a	duplicate	of	the	template,	including	all	associated	templates.	The
actual	representation	is	not	copied,	but	the	name	space	of	associated	templates	is,
so	further	calls	to	Parse	in	the	copy	will	add	templates	to	the	copy	but	not	to	the
original.	Clone	can	be	used	to	prepare	common	templates	and	use	them	with
variant	definitions	for	other	templates	by	adding	the	variants	after	the	clone	is
made.

func	(*Template)	Delims

func	(t	*Template)	Delims(left,	right	string)	*Template

Delims	sets	the	action	delimiters	to	the	specified	strings,	to	be	used	in
subsequent	calls	to	Parse,	ParseFiles,	or	ParseGlob.	Nested	template	definitions
will	inherit	the	settings.	An	empty	delimiter	stands	for	the	corresponding	default:
{{	or	}}.	The	return	value	is	the	template,	so	calls	can	be	chained.

func	(*Template)	Execute

func	(t	*Template)	Execute(wr	io.Writer,	data	interface{})	(err	error)

Execute	applies	a	parsed	template	to	the	specified	data	object,	and	writes	the
output	to	wr.

func	(*Template)	ExecuteTemplate

func	(t	*Template)	ExecuteTemplate(wr	io.Writer,	name	string,	data	interface{})	error

ExecuteTemplate	applies	the	template	associated	with	t	that	has	the	given	name
to	the	specified	data	object	and	writes	the	output	to	wr.

func	(*Template)	Funcs

func	(t	*Template)	Funcs(funcMap	FuncMap)	*Template

Funcs	adds	the	elements	of	the	argument	map	to	the	template's	function	map.	It
panics	if	a	value	in	the	map	is	not	a	function	with	appropriate	return	type.
However,	it	is	legal	to	overwrite	elements	of	the	map.	The	return	value	is	the
template,	so	calls	can	be	chained.

func	(*Template)	Lookup

func	(t	*Template)	Lookup(name	string)	*Template

Lookup	returns	the	template	with	the	given	name	that	is	associated	with	t,	or	nil
if	there	is	no	such	template.

func	(*Template)	Name

func	(t	*Template)	Name()	string

Name	returns	the	name	of	the	template.

func	(*Template)	New

func	(t	*Template)	New(name	string)	*Template

New	allocates	a	new	template	associated	with	the	given	one	and	with	the	same
delimiters.	The	association,	which	is	transitive,	allows	one	template	to	invoke
another	with	a	{{template}}	action.

func	(*Template)	Parse

func	(t	*Template)	Parse(text	string)	(*Template,	error)

Parse	parses	a	string	into	a	template.	Nested	template	definitions	will	be
associated	with	the	top-level	template	t.	Parse	may	be	called	multiple	times	to
parse	definitions	of	templates	to	associate	with	t.	It	is	an	error	if	a	resulting
template	is	non-empty	(contains	content	other	than	template	definitions)	and
would	replace	a	non-empty	template	with	the	same	name.	(In	multiple	calls	to
Parse	with	the	same	receiver	template,	only	one	call	can	contain	text	other	than

space,	comments,	and	template	definitions.)

func	(*Template)	ParseFiles

func	(t	*Template)	ParseFiles(filenames	...string)	(*Template,	error)

ParseFiles	parses	the	named	files	and	associates	the	resulting	templates	with	t.	If
an	error	occurs,	parsing	stops	and	the	returned	template	is	nil;	otherwise	it	is	t.
There	must	be	at	least	one	file.

func	(*Template)	ParseGlob

func	(t	*Template)	ParseGlob(pattern	string)	(*Template,	error)

ParseGlob	parses	the	template	definitions	in	the	files	identified	by	the	pattern
and	associates	the	resulting	templates	with	t.	The	pattern	is	processed	by
filepath.Glob	and	must	match	at	least	one	file.	ParseGlob	is	equivalent	to	calling
t.ParseFiles	with	the	list	of	files	matched	by	the	pattern.

func	(*Template)	Templates

func	(t	*Template)	Templates()	[]*Template

Templates	returns	a	slice	of	the	templates	associated	with	t,	including	t	itself.

Subdirectories

Name 				 Synopsis

parse 				 Package	parse	builds	parse	trees	for	templates	as	defined	bytext/template	and	html/template.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	parse
import	"text/template/parse"

Overview
Index

Overview	?

Overview	?

Package	parse	builds	parse	trees	for	templates	as	defined	by	text/template	and
html/template.	Clients	should	use	those	packages	to	construct	templates	rather
than	this	one,	which	provides	shared	internal	data	structures	not	intended	for
general	use.

Index

func	IsEmptyTree(n	Node)	bool
func	Parse(name,	text,	leftDelim,	rightDelim	string,	funcs
...map[string]interface{})	(treeSet	map[string]*Tree,	err	error)
type	ActionNode
				func	(a	*ActionNode)	Copy()	Node
				func	(a	*ActionNode)	String()	string
type	BoolNode
				func	(b	*BoolNode)	Copy()	Node
				func	(b	*BoolNode)	String()	string
type	BranchNode
				func	(b	*BranchNode)	String()	string
type	CommandNode
				func	(c	*CommandNode)	Copy()	Node
				func	(c	*CommandNode)	String()	string
type	DotNode
				func	(d	*DotNode)	Copy()	Node
				func	(d	*DotNode)	String()	string
				func	(d	*DotNode)	Type()	NodeType
type	FieldNode
				func	(f	*FieldNode)	Copy()	Node
				func	(f	*FieldNode)	String()	string
type	IdentifierNode
				func	NewIdentifier(ident	string)	*IdentifierNode
				func	(i	*IdentifierNode)	Copy()	Node
				func	(i	*IdentifierNode)	String()	string
type	IfNode
				func	(i	*IfNode)	Copy()	Node
type	ListNode
				func	(l	*ListNode)	Copy()	Node
				func	(l	*ListNode)	CopyList()	*ListNode
				func	(l	*ListNode)	String()	string
type	Node
type	NodeType
				func	(t	NodeType)	Type()	NodeType
type	NumberNode

				func	(n	*NumberNode)	Copy()	Node
				func	(n	*NumberNode)	String()	string
type	PipeNode
				func	(p	*PipeNode)	Copy()	Node
				func	(p	*PipeNode)	CopyPipe()	*PipeNode
				func	(p	*PipeNode)	String()	string
type	RangeNode
				func	(r	*RangeNode)	Copy()	Node
type	StringNode
				func	(s	*StringNode)	Copy()	Node
				func	(s	*StringNode)	String()	string
type	TemplateNode
				func	(t	*TemplateNode)	Copy()	Node
				func	(t	*TemplateNode)	String()	string
type	TextNode
				func	(t	*TextNode)	Copy()	Node
				func	(t	*TextNode)	String()	string
type	Tree
				func	New(name	string,	funcs	...map[string]interface{})	*Tree
				func	(t	*Tree)	Parse(s,	leftDelim,	rightDelim	string,	treeSet
map[string]*Tree,	funcs	...map[string]interface{})	(tree	*Tree,	err	error)
type	VariableNode
				func	(v	*VariableNode)	Copy()	Node
				func	(v	*VariableNode)	String()	string
type	WithNode
				func	(w	*WithNode)	Copy()	Node

Package	files

lex.go	node.go	parse.go

func	IsEmptyTree
func	IsEmptyTree(n	Node)	bool

IsEmptyTree	reports	whether	this	tree	(node)	is	empty	of	everything	but	space.

func	Parse
func	Parse(name,	text,	leftDelim,	rightDelim	string,	funcs	...map[string]interface{})	(treeSet	map[string]*Tree,	err	error)

Parse	returns	a	map	from	template	name	to	parse.Tree,	created	by	parsing	the
templates	described	in	the	argument	string.	The	top-level	template	will	be	given
the	specified	name.	If	an	error	is	encountered,	parsing	stops	and	an	empty	map	is
returned	with	the	error.

type	ActionNode
type	ActionNode	struct	{

				NodeType

				Line	int							//	The	line	number	in	the	input.

				Pipe	*PipeNode	//	The	pipeline	in	the	action.

}

ActionNode	holds	an	action	(something	bounded	by	delimiters).	Control	actions
have	their	own	nodes;	ActionNode	represents	simple	ones	such	as	field
evaluations.

func	(*ActionNode)	Copy

func	(a	*ActionNode)	Copy()	Node

func	(*ActionNode)	String

func	(a	*ActionNode)	String()	string

type	BoolNode
type	BoolNode	struct	{

				NodeType

				True	bool	//	The	value	of	the	boolean	constant.

}

BoolNode	holds	a	boolean	constant.

func	(*BoolNode)	Copy

func	(b	*BoolNode)	Copy()	Node

func	(*BoolNode)	String

func	(b	*BoolNode)	String()	string

type	BranchNode
type	BranchNode	struct	{

				NodeType

				Line					int							//	The	line	number	in	the	input.

				Pipe					*PipeNode	//	The	pipeline	to	be	evaluated.

				List					*ListNode	//	What	to	execute	if	the	value	is	non-empty.

				ElseList	*ListNode	//	What	to	execute	if	the	value	is	empty	(nil	if	absent).

}

BranchNode	is	the	common	representation	of	if,	range,	and	with.

func	(*BranchNode)	String

func	(b	*BranchNode)	String()	string

type	CommandNode
type	CommandNode	struct	{

				NodeType

				Args	[]Node	//	Arguments	in	lexical	order:	Identifier,	field,	or	constant.

}

CommandNode	holds	a	command	(a	pipeline	inside	an	evaluating	action).

func	(*CommandNode)	Copy

func	(c	*CommandNode)	Copy()	Node

func	(*CommandNode)	String

func	(c	*CommandNode)	String()	string

type	DotNode
type	DotNode	bool

DotNode	holds	the	special	identifier	'.'.	It	is	represented	by	a	nil	pointer.

func	(*DotNode)	Copy

func	(d	*DotNode)	Copy()	Node

func	(*DotNode)	String

func	(d	*DotNode)	String()	string

func	(*DotNode)	Type

func	(d	*DotNode)	Type()	NodeType

type	FieldNode
type	FieldNode	struct	{

				NodeType

				Ident	[]string	//	The	identifiers	in	lexical	order.

}

FieldNode	holds	a	field	(identifier	starting	with	'.').	The	names	may	be	chained
('.x.y').	The	period	is	dropped	from	each	ident.

func	(*FieldNode)	Copy

func	(f	*FieldNode)	Copy()	Node

func	(*FieldNode)	String

func	(f	*FieldNode)	String()	string

type	IdentifierNode
type	IdentifierNode	struct	{

				NodeType

				Ident	string	//	The	identifier's	name.

}

IdentifierNode	holds	an	identifier.

func	NewIdentifier

func	NewIdentifier(ident	string)	*IdentifierNode

NewIdentifier	returns	a	new	IdentifierNode	with	the	given	identifier	name.

func	(*IdentifierNode)	Copy

func	(i	*IdentifierNode)	Copy()	Node

func	(*IdentifierNode)	String

func	(i	*IdentifierNode)	String()	string

type	IfNode
type	IfNode	struct	{

				BranchNode

}

IfNode	represents	an	{{if}}	action	and	its	commands.

func	(*IfNode)	Copy

func	(i	*IfNode)	Copy()	Node

type	ListNode
type	ListNode	struct	{

				NodeType

				Nodes	[]Node	//	The	element	nodes	in	lexical	order.

}

ListNode	holds	a	sequence	of	nodes.

func	(*ListNode)	Copy

func	(l	*ListNode)	Copy()	Node

func	(*ListNode)	CopyList

func	(l	*ListNode)	CopyList()	*ListNode

func	(*ListNode)	String

func	(l	*ListNode)	String()	string

type	Node
type	Node	interface	{

				Type()	NodeType

				String()	string

				//	Copy	does	a	deep	copy	of	the	Node	and	all	its	components.

				//	To	avoid	type	assertions,	some	XxxNodes	also	have	specialized

				//	CopyXxx	methods	that	return	*XxxNode.

				Copy()	Node

}

A	node	is	an	element	in	the	parse	tree.	The	interface	is	trivial.

type	NodeType
type	NodeType	int

NodeType	identifies	the	type	of	a	parse	tree	node.

const	(

				NodeText				NodeType	=	iota	//	Plain	text.

				NodeAction																		//	A	simple	action	such	as	field	evaluation.

				NodeBool																				//	A	boolean	constant.

				NodeCommand																	//	An	element	of	a	pipeline.

				NodeDot																					//	The	cursor,	dot.

				NodeField						//	A	field	or	method	name.

				NodeIdentifier	//	An	identifier;	always	a	function	name.

				NodeIf									//	An	if	action.

				NodeList							//	A	list	of	Nodes.

				NodeNumber					//	A	numerical	constant.

				NodePipe							//	A	pipeline	of	commands.

				NodeRange						//	A	range	action.

				NodeString					//	A	string	constant.

				NodeTemplate			//	A	template	invocation	action.

				NodeVariable			//	A	$	variable.

				NodeWith							//	A	with	action.

)

func	(NodeType)	Type

func	(t	NodeType)	Type()	NodeType

Type	returns	itself	and	provides	an	easy	default	implementation	for	embedding
in	a	Node.	Embedded	in	all	non-trivial	Nodes.

type	NumberNode
type	NumberNode	struct	{

				NodeType

				IsInt						bool							//	Number	has	an	integral	value.

				IsUint					bool							//	Number	has	an	unsigned	integral	value.

				IsFloat				bool							//	Number	has	a	floating-point	value.

				IsComplex		bool							//	Number	is	complex.

				Int64						int64						//	The	signed	integer	value.

				Uint64					uint64					//	The	unsigned	integer	value.

				Float64				float64				//	The	floating-point	value.

				Complex128	complex128	//	The	complex	value.

				Text							string					//	The	original	textual	representation	from	the	input.

}

NumberNode	holds	a	number:	signed	or	unsigned	integer,	float,	or	complex.	The
value	is	parsed	and	stored	under	all	the	types	that	can	represent	the	value.	This
simulates	in	a	small	amount	of	code	the	behavior	of	Go's	ideal	constants.

func	(*NumberNode)	Copy

func	(n	*NumberNode)	Copy()	Node

func	(*NumberNode)	String

func	(n	*NumberNode)	String()	string

type	PipeNode
type	PipeNode	struct	{

				NodeType

				Line	int													//	The	line	number	in	the	input.

				Decl	[]*VariableNode	//	Variable	declarations	in	lexical	order.

				Cmds	[]*CommandNode		//	The	commands	in	lexical	order.

}

PipeNode	holds	a	pipeline	with	optional	declaration

func	(*PipeNode)	Copy

func	(p	*PipeNode)	Copy()	Node

func	(*PipeNode)	CopyPipe

func	(p	*PipeNode)	CopyPipe()	*PipeNode

func	(*PipeNode)	String

func	(p	*PipeNode)	String()	string

type	RangeNode
type	RangeNode	struct	{

				BranchNode

}

RangeNode	represents	a	{{range}}	action	and	its	commands.

func	(*RangeNode)	Copy

func	(r	*RangeNode)	Copy()	Node

type	StringNode
type	StringNode	struct	{

				NodeType

				Quoted	string	//	The	original	text	of	the	string,	with	quotes.

				Text			string	//	The	string,	after	quote	processing.

}

StringNode	holds	a	string	constant.	The	value	has	been	"unquoted".

func	(*StringNode)	Copy

func	(s	*StringNode)	Copy()	Node

func	(*StringNode)	String

func	(s	*StringNode)	String()	string

type	TemplateNode
type	TemplateNode	struct	{

				NodeType

				Line	int							//	The	line	number	in	the	input.

				Name	string				//	The	name	of	the	template	(unquoted).

				Pipe	*PipeNode	//	The	command	to	evaluate	as	dot	for	the	template.

}

TemplateNode	represents	a	{{template}}	action.

func	(*TemplateNode)	Copy

func	(t	*TemplateNode)	Copy()	Node

func	(*TemplateNode)	String

func	(t	*TemplateNode)	String()	string

type	TextNode
type	TextNode	struct	{

				NodeType

				Text	[]byte	//	The	text;	may	span	newlines.

}

TextNode	holds	plain	text.

func	(*TextNode)	Copy

func	(t	*TextNode)	Copy()	Node

func	(*TextNode)	String

func	(t	*TextNode)	String()	string

type	Tree
type	Tree	struct	{

				Name	string				//	name	of	the	template	represented	by	the	tree.

				Root	*ListNode	//	top-level	root	of	the	tree.

				//	Parsing	only;	cleared	after	parse.

				//	contains	filtered	or	unexported	fields

}

Tree	is	the	representation	of	a	single	parsed	template.

func	New

func	New(name	string,	funcs	...map[string]interface{})	*Tree

New	allocates	a	new	parse	tree	with	the	given	name.

func	(*Tree)	Parse

func	(t	*Tree)	Parse(s,	leftDelim,	rightDelim	string,	treeSet	map[string]*Tree,	funcs	...map[string]interface{})	(tree	*Tree,	err	error)

Parse	parses	the	template	definition	string	to	construct	a	representation	of	the
template	for	execution.	If	either	action	delimiter	string	is	empty,	the	default	("{{"
or	"}}")	is	used.	Embedded	template	definitions	are	added	to	the	treeSet	map.

type	VariableNode
type	VariableNode	struct	{

				NodeType

				Ident	[]string	//	Variable	names	in	lexical	order.

}

VariableNode	holds	a	list	of	variable	names.	The	dollar	sign	is	part	of	the	name.

func	(*VariableNode)	Copy

func	(v	*VariableNode)	Copy()	Node

func	(*VariableNode)	String

func	(v	*VariableNode)	String()	string

type	WithNode
type	WithNode	struct	{

				BranchNode

}

WithNode	represents	a	{{with}}	action	and	its	commands.

func	(*WithNode)	Copy

func	(w	*WithNode)	Copy()	Node

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	time
import	"time"

Overview
Index
Examples

Overview	?

Overview	?

Package	time	provides	functionality	for	measuring	and	displaying	time.

The	calendrical	calculations	always	assume	a	Gregorian	calendar.

Index

Constants
func	After(d	Duration)	<-chan	Time
func	Sleep(d	Duration)
func	Tick(d	Duration)	<-chan	Time
type	Duration
				func	ParseDuration(s	string)	(Duration,	error)
				func	Since(t	Time)	Duration
				func	(d	Duration)	Hours()	float64
				func	(d	Duration)	Minutes()	float64
				func	(d	Duration)	Nanoseconds()	int64
				func	(d	Duration)	Seconds()	float64
				func	(d	Duration)	String()	string
type	Location
				func	FixedZone(name	string,	offset	int)	*Location
				func	LoadLocation(name	string)	(*Location,	error)
				func	(l	*Location)	String()	string
type	Month
				func	(m	Month)	String()	string
type	ParseError
				func	(e	*ParseError)	Error()	string
type	Ticker
				func	NewTicker(d	Duration)	*Ticker
				func	(t	*Ticker)	Stop()
type	Time
				func	Date(year	int,	month	Month,	day,	hour,	min,	sec,	nsec	int,	loc
*Location)	Time
				func	Now()	Time
				func	Parse(layout,	value	string)	(Time,	error)
				func	Unix(sec	int64,	nsec	int64)	Time
				func	(t	Time)	Add(d	Duration)	Time
				func	(t	Time)	AddDate(years	int,	months	int,	days	int)	Time
				func	(t	Time)	After(u	Time)	bool
				func	(t	Time)	Before(u	Time)	bool
				func	(t	Time)	Clock()	(hour,	min,	sec	int)
				func	(t	Time)	Date()	(year	int,	month	Month,	day	int)

				func	(t	Time)	Day()	int
				func	(t	Time)	Equal(u	Time)	bool
				func	(t	Time)	Format(layout	string)	string
				func	(t	*Time)	GobDecode(buf	[]byte)	error
				func	(t	Time)	GobEncode()	([]byte,	error)
				func	(t	Time)	Hour()	int
				func	(t	Time)	ISOWeek()	(year,	week	int)
				func	(t	Time)	In(loc	*Location)	Time
				func	(t	Time)	IsZero()	bool
				func	(t	Time)	Local()	Time
				func	(t	Time)	Location()	*Location
				func	(t	Time)	MarshalJSON()	([]byte,	error)
				func	(t	Time)	Minute()	int
				func	(t	Time)	Month()	Month
				func	(t	Time)	Nanosecond()	int
				func	(t	Time)	Second()	int
				func	(t	Time)	String()	string
				func	(t	Time)	Sub(u	Time)	Duration
				func	(t	Time)	UTC()	Time
				func	(t	Time)	Unix()	int64
				func	(t	Time)	UnixNano()	int64
				func	(t	*Time)	UnmarshalJSON(data	[]byte)	(err	error)
				func	(t	Time)	Weekday()	Weekday
				func	(t	Time)	Year()	int
				func	(t	Time)	Zone()	(name	string,	offset	int)
type	Timer
				func	AfterFunc(d	Duration,	f	func())	*Timer
				func	NewTimer(d	Duration)	*Timer
				func	(t	*Timer)	Stop()	(ok	bool)
type	Weekday
				func	(d	Weekday)	String()	string

Examples

After
Date
Duration
Month

Sleep
Tick

Package	files

format.go	sleep.go	sys_unix.go	tick.go	time.go	zoneinfo.go	zoneinfo_read.go	zoneinfo_unix.go

Constants
const	(

				ANSIC							=	"Mon	Jan	_2	15:04:05	2006"

				UnixDate				=	"Mon	Jan	_2	15:04:05	MST	2006"

				RubyDate				=	"Mon	Jan	02	15:04:05	-0700	2006"

				RFC822						=	"02	Jan	06	15:04	MST"

				RFC822Z					=	"02	Jan	06	15:04	-0700"	//	RFC822	with	numeric	zone

				RFC850						=	"Monday,	02-Jan-06	15:04:05	MST"

				RFC1123					=	"Mon,	02	Jan	2006	15:04:05	MST"

				RFC1123Z				=	"Mon,	02	Jan	2006	15:04:05	-0700"	//	RFC1123	with	numeric	zone

				RFC3339					=	"2006-01-02T15:04:05Z07:00"

				RFC3339Nano	=	"2006-01-02T15:04:05.999999999Z07:00"

				Kitchen					=	"3:04PM"

				//	Handy	time	stamps.

				Stamp						=	"Jan	_2	15:04:05"

				StampMilli	=	"Jan	_2	15:04:05.000"

				StampMicro	=	"Jan	_2	15:04:05.000000"

				StampNano		=	"Jan	_2	15:04:05.000000000"

)

These	are	predefined	layouts	for	use	in	Time.Format.	The	standard	time	used	in
the	layouts	is:

Mon	Jan	2	15:04:05	MST	2006

which	is	Unix	time	1136243045.	Since	MST	is	GMT-0700,	the	standard	time
can	be	thought	of	as

01/02	03:04:05PM	'06	-0700

To	define	your	own	format,	write	down	what	the	standard	time	would	look	like
formatted	your	way;	see	the	values	of	constants	like	ANSIC,	StampMicro	or
Kitchen	for	examples.

Within	the	format	string,	an	underscore	_	represents	a	space	that	may	be	replaced
by	a	digit	if	the	following	number	(a	day)	has	two	digits;	for	compatibility	with
fixed-width	Unix	time	formats.

A	decimal	point	followed	by	one	or	more	zeros	represents	a	fractional	second,
printed	to	the	given	number	of	decimal	places.	A	decimal	point	followed	by	one
or	more	nines	represents	a	fractional	second,	printed	to	the	given	number	of

decimal	places,	with	trailing	zeros	removed.	When	parsing	(only),	the	input	may
contain	a	fractional	second	field	immediately	after	the	seconds	field,	even	if	the
layout	does	not	signify	its	presence.	In	that	case	a	decimal	point	followed	by	a
maximal	series	of	digits	is	parsed	as	a	fractional	second.

Numeric	time	zone	offsets	format	as	follows:

-0700		hhmm

-07:00	hh:mm

Replacing	the	sign	in	the	format	with	a	Z	triggers	the	ISO	8601	behavior	of
printing	Z	instead	of	an	offset	for	the	UTC	zone.	Thus:

Z0700		Z	or	hhmm

Z07:00	Z	or	hh:mm

func	After
func	After(d	Duration)	<-chan	Time

After	waits	for	the	duration	to	elapse	and	then	sends	the	current	time	on	the
returned	channel.	It	is	equivalent	to	NewTimer(d).C.

?	Example

?	Example

Code:

select	{

case	m	:=	<-c:

				handle(m)

case	<-time.After(5	*	time.Minute):

				fmt.Println("timed	out")

}

func	Sleep
func	Sleep(d	Duration)

Sleep	pauses	the	current	goroutine	for	the	duration	d.

?	Example

?	Example

Code:

time.Sleep(100	*	time.Millisecond)

func	Tick
func	Tick(d	Duration)	<-chan	Time

Tick	is	a	convenience	wrapper	for	NewTicker	providing	access	to	the	ticking
channel	only.	Useful	for	clients	that	have	no	need	to	shut	down	the	ticker.

?	Example

?	Example

Code:

c	:=	time.Tick(1	*	time.Minute)

for	now	:=	range	c	{

				fmt.Printf("%v	%s\n",	now,	statusUpdate())

}

type	Duration
type	Duration	int64

A	Duration	represents	the	elapsed	time	between	two	instants	as	an	int64
nanosecond	count.	The	representation	limits	the	largest	representable	duration	to
approximately	290	years.

const	(

				Nanosecond		Duration	=	1

				Microsecond										=	1000	*	Nanosecond

				Millisecond										=	1000	*	Microsecond

				Second															=	1000	*	Millisecond

				Minute															=	60	*	Second

				Hour																	=	60	*	Minute

)

Common	durations.	There	is	no	definition	for	units	of	Day	or	larger	to	avoid
confusion	across	daylight	savings	time	zone	transitions.

To	count	the	number	of	units	in	a	Duration,	divide:

second	:=	time.Second

fmt.Print(int64(second/time.Millisecond))	//	prints	1000

To	convert	an	integer	number	of	units	to	a	Duration,	multiply:

seconds	:=	10

fmt.Print(time.Duration(seconds)*time.Second)	//	prints	10s

?	Example

?	Example

Code:

t0	:=	time.Now()

expensiveCall()

t1	:=	time.Now()

fmt.Printf("The	call	took	%v	to	run.\n",	t1.Sub(t0))

func	ParseDuration

func	ParseDuration(s	string)	(Duration,	error)

ParseDuration	parses	a	duration	string.	A	duration	string	is	a	possibly	signed
sequence	of	decimal	numbers,	each	with	optional	fraction	and	a	unit	suffix,	such
as	"300ms",	"-1.5h"	or	"2h45m".	Valid	time	units	are	"ns",	"us"	(or	"?s"),	"ms",
"s",	"m",	"h".

func	Since

func	Since(t	Time)	Duration

Since	returns	the	time	elapsed	since	t.	It	is	shorthand	for	time.Now().Sub(t).

func	(Duration)	Hours

func	(d	Duration)	Hours()	float64

Hours	returns	the	duration	as	a	floating	point	number	of	hours.

func	(Duration)	Minutes

func	(d	Duration)	Minutes()	float64

Minutes	returns	the	duration	as	a	floating	point	number	of	minutes.

func	(Duration)	Nanoseconds

func	(d	Duration)	Nanoseconds()	int64

Nanoseconds	returns	the	duration	as	an	integer	nanosecond	count.

func	(Duration)	Seconds

func	(d	Duration)	Seconds()	float64

Seconds	returns	the	duration	as	a	floating	point	number	of	seconds.

func	(Duration)	String

func	(d	Duration)	String()	string

String	returns	a	string	representing	the	duration	in	the	form	"72h3m0.5s".
Leading	zero	units	are	omitted.	As	a	special	case,	durations	less	than	one	second
format	use	a	smaller	unit	(milli-,	micro-,	or	nanoseconds)	to	ensure	that	the
leading	digit	is	non-zero.	The	zero	duration	formats	as	0,	with	no	unit.

type	Location
type	Location	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Location	maps	time	instants	to	the	zone	in	use	at	that	time.	Typically,	the
Location	represents	the	collection	of	time	offsets	in	use	in	a	geographical	area,
such	as	CEST	and	CET	for	central	Europe.

var	Local	*Location	=	&localLoc

Local	represents	the	system's	local	time	zone.

var	UTC	*Location	=	&utcLoc

UTC	represents	Universal	Coordinated	Time	(UTC).

func	FixedZone

func	FixedZone(name	string,	offset	int)	*Location

FixedZone	returns	a	Location	that	always	uses	the	given	zone	name	and	offset
(seconds	east	of	UTC).

func	LoadLocation

func	LoadLocation(name	string)	(*Location,	error)

LoadLocation	returns	the	Location	with	the	given	name.

If	the	name	is	""	or	"UTC",	LoadLocation	returns	UTC.	If	the	name	is	"Local",
LoadLocation	returns	Local.

Otherwise,	the	name	is	taken	to	be	a	location	name	corresponding	to	a	file	in	the
IANA	Time	Zone	database,	such	as	"America/New_York".

The	time	zone	database	needed	by	LoadLocation	may	not	be	present	on	all
systems,	especially	non-Unix	systems.	LoadLocation	looks	in	the	directory	or
uncompressed	zip	file	named	by	the	ZONEINFO	environment	variable,	if	any,

then	looks	in	known	installation	locations	on	Unix	systems,	and	finally	looks	in
$GOROOT/lib/time/zoneinfo.zip.

func	(*Location)	String

func	(l	*Location)	String()	string

String	returns	a	descriptive	name	for	the	time	zone	information,	corresponding	to
the	argument	to	LoadLocation.

type	Month
type	Month	int

A	Month	specifies	a	month	of	the	year	(January	=	1,	...).

const	(

				January	Month	=	1	+	iota

				February

				March

				April

				May

				June

				July

				August

				September

				October

				November

				December

)

?	Example

?	Example

Code:

_,	month,	day	:=	time.Now().Date()

if	month	==	time.November	&&	day	==	10	{

				fmt.Println("Happy	Go	day!")

}

func	(Month)	String

func	(m	Month)	String()	string

String	returns	the	English	name	of	the	month	("January",	"February",	...).

type	ParseError
type	ParseError	struct	{

				Layout					string

				Value						string

				LayoutElem	string

				ValueElem		string

				Message				string

}

ParseError	describes	a	problem	parsing	a	time	string.

func	(*ParseError)	Error

func	(e	*ParseError)	Error()	string

Error	returns	the	string	representation	of	a	ParseError.

type	Ticker
type	Ticker	struct	{

				C	<-chan	Time	//	The	channel	on	which	the	ticks	are	delivered.

				//	contains	filtered	or	unexported	fields

}

A	Ticker	holds	a	synchronous	channel	that	delivers	`ticks'	of	a	clock	at	intervals.

func	NewTicker

func	NewTicker(d	Duration)	*Ticker

NewTicker	returns	a	new	Ticker	containing	a	channel	that	will	send	the	time
with	a	period	specified	by	the	duration	argument.	It	adjusts	the	intervals	or	drops
ticks	to	make	up	for	slow	receivers.	The	duration	d	must	be	greater	than	zero;	if
not,	NewTicker	will	panic.

func	(*Ticker)	Stop

func	(t	*Ticker)	Stop()

Stop	turns	off	a	ticker.	After	Stop,	no	more	ticks	will	be	sent.

type	Time
type	Time	struct	{

				//	contains	filtered	or	unexported	fields

}

A	Time	represents	an	instant	in	time	with	nanosecond	precision.

Programs	using	times	should	typically	store	and	pass	them	as	values,	not
pointers.	That	is,	time	variables	and	struct	fields	should	be	of	type	time.Time,
not	*time.Time.	A	Time	value	can	be	used	by	multiple	goroutines
simultaneously.

Time	instants	can	be	compared	using	the	Before,	After,	and	Equal	methods.	The
Sub	method	subtracts	two	instants,	producing	a	Duration.	The	Add	method	adds
a	Time	and	a	Duration,	producing	a	Time.

The	zero	value	of	type	Time	is	January	1,	year	1,	00:00:00.000000000	UTC.	As
this	time	is	unlikely	to	come	up	in	practice,	the	IsZero	method	gives	a	simple
way	of	detecting	a	time	that	has	not	been	initialized	explicitly.

Each	Time	has	associated	with	it	a	Location,	consulted	when	computing	the
presentation	form	of	the	time,	such	as	in	the	Format,	Hour,	and	Year	methods.
The	methods	Local,	UTC,	and	In	return	a	Time	with	a	specific	location.
Changing	the	location	in	this	way	changes	only	the	presentation;	it	does	not
change	the	instant	in	time	being	denoted	and	therefore	does	not	affect	the
computations	described	in	earlier	paragraphs.

func	Date

func	Date(year	int,	month	Month,	day,	hour,	min,	sec,	nsec	int,	loc	*Location)	Time

Date	returns	the	Time	corresponding	to

yyyy-mm-dd	hh:mm:ss	+	nsec	nanoseconds

in	the	appropriate	zone	for	that	time	in	the	given	location.

The	month,	day,	hour,	min,	sec,	and	nsec	values	may	be	outside	their	usual

ranges	and	will	be	normalized	during	the	conversion.	For	example,	October	32
converts	to	November	1.

A	daylight	savings	time	transition	skips	or	repeats	times.	For	example,	in	the
United	States,	March	13,	2011	2:15am	never	occurred,	while	November	6,	2011
1:15am	occurred	twice.	In	such	cases,	the	choice	of	time	zone,	and	therefore	the
time,	is	not	well-defined.	Date	returns	a	time	that	is	correct	in	one	of	the	two
zones	involved	in	the	transition,	but	it	does	not	guarantee	which.

Date	panics	if	loc	is	nil.

?	Example

?	Example

Code:

t	:=	time.Date(2009,	time.November,	10,	23,	0,	0,	0,	time.UTC)

fmt.Printf("Go	launched	at	%s\n",	t.Local())

Output:

Go	launched	at	2009-11-10	15:00:00	-0800	PST

func	Now

func	Now()	Time

Now	returns	the	current	local	time.

func	Parse

func	Parse(layout,	value	string)	(Time,	error)

Parse	parses	a	formatted	string	and	returns	the	time	value	it	represents.	The
layout	defines	the	format	by	showing	the	representation	of	the	standard	time,

Mon	Jan	2	15:04:05	-0700	MST	2006

which	is	then	used	to	describe	the	string	to	be	parsed.	Predefined	layouts
ANSIC,	UnixDate,	RFC3339	and	others	describe	standard	representations.	For

more	information	about	the	formats	and	the	definition	of	the	standard	time,	see
the	documentation	for	ANSIC.

Elements	omitted	from	the	value	are	assumed	to	be	zero	or,	when	zero	is
impossible,	one,	so	parsing	"3:04pm"	returns	the	time	corresponding	to	Jan	1,
year	0,	15:04:00	UTC.	Years	must	be	in	the	range	0000..9999.	The	day	of	the
week	is	checked	for	syntax	but	it	is	otherwise	ignored.

func	Unix

func	Unix(sec	int64,	nsec	int64)	Time

Unix	returns	the	local	Time	corresponding	to	the	given	Unix	time,	sec	seconds
and	nsec	nanoseconds	since	January	1,	1970	UTC.	It	is	valid	to	pass	nsec	outside
the	range	[0,	999999999].

func	(Time)	Add

func	(t	Time)	Add(d	Duration)	Time

Add	returns	the	time	t+d.

func	(Time)	AddDate

func	(t	Time)	AddDate(years	int,	months	int,	days	int)	Time

AddDate	returns	the	time	corresponding	to	adding	the	given	number	of	years,
months,	and	days	to	t.	For	example,	AddDate(-1,	2,	3)	applied	to	January	1,	2011
returns	March	4,	2010.

AddDate	normalizes	its	result	in	the	same	way	that	Date	does,	so,	for	example,
adding	one	month	to	October	31	yields	December	1,	the	normalized	form	for
November	31.

func	(Time)	After

func	(t	Time)	After(u	Time)	bool

After	reports	whether	the	time	instant	t	is	after	u.

func	(Time)	Before

func	(t	Time)	Before(u	Time)	bool

Before	reports	whether	the	time	instant	t	is	before	u.

func	(Time)	Clock

func	(t	Time)	Clock()	(hour,	min,	sec	int)

Clock	returns	the	hour,	minute,	and	second	within	the	day	specified	by	t.

func	(Time)	Date

func	(t	Time)	Date()	(year	int,	month	Month,	day	int)

Date	returns	the	year,	month,	and	day	in	which	t	occurs.

func	(Time)	Day

func	(t	Time)	Day()	int

Day	returns	the	day	of	the	month	specified	by	t.

func	(Time)	Equal

func	(t	Time)	Equal(u	Time)	bool

Equal	reports	whether	t	and	u	represent	the	same	time	instant.	Two	times	can	be
equal	even	if	they	are	in	different	locations.	For	example,	6:00	+0200	CEST	and
4:00	UTC	are	Equal.	This	comparison	is	different	from	using	t	==	u,	which	also
compares	the	locations.

func	(Time)	Format

func	(t	Time)	Format(layout	string)	string

Format	returns	a	textual	representation	of	the	time	value	formatted	according	to
layout.	The	layout	defines	the	format	by	showing	the	representation	of	the
standard	time,

Mon	Jan	2	15:04:05	-0700	MST	2006

which	is	then	used	to	describe	the	time	to	be	formatted.	Predefined	layouts
ANSIC,	UnixDate,	RFC3339	and	others	describe	standard	representations.	For
more	information	about	the	formats	and	the	definition	of	the	standard	time,	see
the	documentation	for	ANSIC.

func	(*Time)	GobDecode

func	(t	*Time)	GobDecode(buf	[]byte)	error

GobDecode	implements	the	gob.GobDecoder	interface.

func	(Time)	GobEncode

func	(t	Time)	GobEncode()	([]byte,	error)

GobEncode	implements	the	gob.GobEncoder	interface.

func	(Time)	Hour

func	(t	Time)	Hour()	int

Hour	returns	the	hour	within	the	day	specified	by	t,	in	the	range	[0,	23].

func	(Time)	ISOWeek

func	(t	Time)	ISOWeek()	(year,	week	int)

ISOWeek	returns	the	ISO	8601	year	and	week	number	in	which	t	occurs.	Week
ranges	from	1	to	53.	Jan	01	to	Jan	03	of	year	n	might	belong	to	week	52	or	53	of
year	n-1,	and	Dec	29	to	Dec	31	might	belong	to	week	1	of	year	n+1.

func	(Time)	In

func	(t	Time)	In(loc	*Location)	Time

In	returns	t	with	the	location	information	set	to	loc.

In	panics	if	loc	is	nil.

func	(Time)	IsZero

func	(t	Time)	IsZero()	bool

IsZero	reports	whether	t	represents	the	zero	time	instant,	January	1,	year	1,
00:00:00	UTC.

func	(Time)	Local

func	(t	Time)	Local()	Time

Local	returns	t	with	the	location	set	to	local	time.

func	(Time)	Location

func	(t	Time)	Location()	*Location

Location	returns	the	time	zone	information	associated	with	t.

func	(Time)	MarshalJSON

func	(t	Time)	MarshalJSON()	([]byte,	error)

MarshalJSON	implements	the	json.Marshaler	interface.	Time	is	formatted	as
RFC3339.

func	(Time)	Minute

func	(t	Time)	Minute()	int

Minute	returns	the	minute	offset	within	the	hour	specified	by	t,	in	the	range	[0,
59].

func	(Time)	Month

func	(t	Time)	Month()	Month

Month	returns	the	month	of	the	year	specified	by	t.

func	(Time)	Nanosecond

func	(t	Time)	Nanosecond()	int

Nanosecond	returns	the	nanosecond	offset	within	the	second	specified	by	t,	in
the	range	[0,	999999999].

func	(Time)	Second

func	(t	Time)	Second()	int

Second	returns	the	second	offset	within	the	minute	specified	by	t,	in	the	range	[0,
59].

func	(Time)	String

func	(t	Time)	String()	string

String	returns	the	time	formatted	using	the	format	string

"2006-01-02	15:04:05.999999999	-0700	MST"

func	(Time)	Sub

func	(t	Time)	Sub(u	Time)	Duration

Sub	returns	the	duration	t-u.	To	compute	t-d	for	a	duration	d,	use	t.Add(-d).

func	(Time)	UTC

func	(t	Time)	UTC()	Time

UTC	returns	t	with	the	location	set	to	UTC.

func	(Time)	Unix

func	(t	Time)	Unix()	int64

Unix	returns	t	as	a	Unix	time,	the	number	of	seconds	elapsed	since	January	1,
1970	UTC.

func	(Time)	UnixNano

func	(t	Time)	UnixNano()	int64

UnixNano	returns	t	as	a	Unix	time,	the	number	of	nanoseconds	elapsed	since
January	1,	1970	UTC.	The	result	is	undefined	if	the	Unix	time	in	nanoseconds
cannot	be	represented	by	an	int64.	Note	that	this	means	the	result	of	calling
UnixNano	on	the	zero	Time	is	undefined.

func	(*Time)	UnmarshalJSON

func	(t	*Time)	UnmarshalJSON(data	[]byte)	(err	error)

UnmarshalJSON	implements	the	json.Unmarshaler	interface.	Time	is	expected
in	RFC3339	format.

func	(Time)	Weekday

func	(t	Time)	Weekday()	Weekday

Weekday	returns	the	day	of	the	week	specified	by	t.

func	(Time)	Year

func	(t	Time)	Year()	int

Year	returns	the	year	in	which	t	occurs.

func	(Time)	Zone

func	(t	Time)	Zone()	(name	string,	offset	int)

Zone	computes	the	time	zone	in	effect	at	time	t,	returning	the	abbreviated	name
of	the	zone	(such	as	"CET")	and	its	offset	in	seconds	east	of	UTC.

type	Timer
type	Timer	struct	{

				C	<-chan	Time

				//	contains	filtered	or	unexported	fields

}

The	Timer	type	represents	a	single	event.	When	the	Timer	expires,	the	current
time	will	be	sent	on	C,	unless	the	Timer	was	created	by	AfterFunc.

func	AfterFunc

func	AfterFunc(d	Duration,	f	func())	*Timer

AfterFunc	waits	for	the	duration	to	elapse	and	then	calls	f	in	its	own	goroutine.	It
returns	a	Timer	that	can	be	used	to	cancel	the	call	using	its	Stop	method.

func	NewTimer

func	NewTimer(d	Duration)	*Timer

NewTimer	creates	a	new	Timer	that	will	send	the	current	time	on	its	channel
after	at	least	duration	d.

func	(*Timer)	Stop

func	(t	*Timer)	Stop()	(ok	bool)

Stop	prevents	the	Timer	from	firing.	It	returns	true	if	the	call	stops	the	timer,
false	if	the	timer	has	already	expired	or	stopped.

type	Weekday
type	Weekday	int

A	Weekday	specifies	a	day	of	the	week	(Sunday	=	0,	...).

const	(

				Sunday	Weekday	=	iota

				Monday

				Tuesday

				Wednesday

				Thursday

				Friday

				Saturday

)

func	(Weekday)	String

func	(d	Weekday)	String()	string

String	returns	the	English	name	of	the	day	("Sunday",	"Monday",	...).

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	unicode
import	"unicode"

Overview
Index
Subdirectories

Overview	?

Overview	?

Package	unicode	provides	data	and	functions	to	test	some	properties	of	Unicode
code	points.

Index

Constants
Variables
func	Is(rangeTab	*RangeTable,	r	rune)	bool
func	IsControl(r	rune)	bool
func	IsDigit(r	rune)	bool
func	IsGraphic(r	rune)	bool
func	IsLetter(r	rune)	bool
func	IsLower(r	rune)	bool
func	IsMark(r	rune)	bool
func	IsNumber(r	rune)	bool
func	IsOneOf(set	[]*RangeTable,	r	rune)	bool
func	IsPrint(r	rune)	bool
func	IsPunct(r	rune)	bool
func	IsSpace(r	rune)	bool
func	IsSymbol(r	rune)	bool
func	IsTitle(r	rune)	bool
func	IsUpper(r	rune)	bool
func	SimpleFold(r	rune)	rune
func	To(_case	int,	r	rune)	rune
func	ToLower(r	rune)	rune
func	ToTitle(r	rune)	rune
func	ToUpper(r	rune)	rune
type	CaseRange
type	Range16
type	Range32
type	RangeTable
type	SpecialCase
				func	(special	SpecialCase)	ToLower(r	rune)	rune
				func	(special	SpecialCase)	ToTitle(r	rune)	rune
				func	(special	SpecialCase)	ToUpper(r	rune)	rune
Bugs

Package	files

casetables.go	digit.go	graphic.go	letter.go	tables.go

Constants
const	(

				MaxRune									=	'\U0010FFFF'	//	Maximum	valid	Unicode	code	point.

				ReplacementChar	=	'\uFFFD'					//	Represents	invalid	code	points.

				MaxASCII								=	'\u007F'					//	maximum	ASCII	value.

				MaxLatin1							=	'\u00FF'					//	maximum	Latin-1	value.

)

const	(

				UpperCase	=	iota

				LowerCase

				TitleCase

				MaxCase

)

Indices	into	the	Delta	arrays	inside	CaseRanges	for	case	mapping.

const	(

				UpperLower	=	MaxRune	+	1	//	(Cannot	be	a	valid	delta.)

)

If	the	Delta	field	of	a	CaseRange	is	UpperLower	or	LowerUpper,	it	means	this
CaseRange	represents	a	sequence	of	the	form	(say)	Upper	Lower	Upper	Lower.

const	Version	=	"6.0.0"

Version	is	the	Unicode	edition	from	which	the	tables	are	derived.

Variables
var	(

				Cc					=	_Cc	//	Cc	is	the	set	of	Unicode	characters	in	category	Cc.

				Cf					=	_Cf	//	Cf	is	the	set	of	Unicode	characters	in	category	Cf.

				Co					=	_Co	//	Co	is	the	set	of	Unicode	characters	in	category	Co.

				Cs					=	_Cs	//	Cs	is	the	set	of	Unicode	characters	in	category	Cs.

				Digit		=	_Nd	//	Digit	is	the	set	of	Unicode	characters	with	the	"decimal	digit"	property.

				Nd					=	_Nd	//	Nd	is	the	set	of	Unicode	characters	in	category	Nd.

				Letter	=	_L		//	Letter/L	is	the	set	of	Unicode	letters,	category	L.

				L						=	_L

				Lm					=	_Lm	//	Lm	is	the	set	of	Unicode	characters	in	category	Lm.

				Lo					=	_Lo	//	Lo	is	the	set	of	Unicode	characters	in	category	Lo.

				Lower		=	_Ll	//	Lower	is	the	set	of	Unicode	lower	case	letters.

				Ll					=	_Ll	//	Ll	is	the	set	of	Unicode	characters	in	category	Ll.

				Mark			=	_M		//	Mark/M	is	the	set	of	Unicode	mark	characters,	category		M.

				M						=	_M

				Mc					=	_Mc	//	Mc	is	the	set	of	Unicode	characters	in	category	Mc.

				Me					=	_Me	//	Me	is	the	set	of	Unicode	characters	in	category	Me.

				Mn					=	_Mn	//	Mn	is	the	set	of	Unicode	characters	in	category	Mn.

				Nl					=	_Nl	//	Nl	is	the	set	of	Unicode	characters	in	category	Nl.

				No					=	_No	//	No	is	the	set	of	Unicode	characters	in	category	No.

				Number	=	_N		//	Number/N	is	the	set	of	Unicode	number	characters,	category	N.

				N						=	_N

				Other		=	_C	//	Other/C	is	the	set	of	Unicode	control	and	special	characters,	category	C.

				C						=	_C

				Pc					=	_Pc	//	Pc	is	the	set	of	Unicode	characters	in	category	Pc.

				Pd					=	_Pd	//	Pd	is	the	set	of	Unicode	characters	in	category	Pd.

				Pe					=	_Pe	//	Pe	is	the	set	of	Unicode	characters	in	category	Pe.

				Pf					=	_Pf	//	Pf	is	the	set	of	Unicode	characters	in	category	Pf.

				Pi					=	_Pi	//	Pi	is	the	set	of	Unicode	characters	in	category	Pi.

				Po					=	_Po	//	Po	is	the	set	of	Unicode	characters	in	category	Po.

				Ps					=	_Ps	//	Ps	is	the	set	of	Unicode	characters	in	category	Ps.

				Punct		=	_P		//	Punct/P	is	the	set	of	Unicode	punctuation	characters,	category	P.

				P						=	_P

				Sc					=	_Sc	//	Sc	is	the	set	of	Unicode	characters	in	category	Sc.

				Sk					=	_Sk	//	Sk	is	the	set	of	Unicode	characters	in	category	Sk.

				Sm					=	_Sm	//	Sm	is	the	set	of	Unicode	characters	in	category	Sm.

				So					=	_So	//	So	is	the	set	of	Unicode	characters	in	category	So.

				Space		=	_Z		//	Space/Z	is	the	set	of	Unicode	space	characters,	category	Z.

				Z						=	_Z

				Symbol	=	_S	//	Symbol/S	is	the	set	of	Unicode	symbol	characters,	category	S.

				S						=	_S

				Title		=	_Lt	//	Title	is	the	set	of	Unicode	title	case	letters.

				Lt					=	_Lt	//	Lt	is	the	set	of	Unicode	characters	in	category	Lt.

				Upper		=	_Lu	//	Upper	is	the	set	of	Unicode	upper	case	letters.

				Lu					=	_Lu	//	Lu	is	the	set	of	Unicode	characters	in	category	Lu.

				Zl					=	_Zl	//	Zl	is	the	set	of	Unicode	characters	in	category	Zl.

				Zp					=	_Zp	//	Zp	is	the	set	of	Unicode	characters	in	category	Zp.

				Zs					=	_Zs	//	Zs	is	the	set	of	Unicode	characters	in	category	Zs.

)

The	following	variables	are	of	type	*RangeTable:

var	(

				Arabic																	=	_Arabic																	//	Arabic	is	the	set	of	Unicode	characters	in	script	Arabic.

				Armenian															=	_Armenian															//	Armenian	is	the	set	of	Unicode	characters	in	script	Armenian.

				Avestan																=	_Avestan																//	Avestan	is	the	set	of	Unicode	characters	in	script	Avestan.

				Balinese															=	_Balinese															//	Balinese	is	the	set	of	Unicode	characters	in	script	Balinese.

				Bamum																		=	_Bamum																		//	Bamum	is	the	set	of	Unicode	characters	in	script	Bamum.

				Batak																		=	_Batak																		//	Batak	is	the	set	of	Unicode	characters	in	script	Batak.

				Bengali																=	_Bengali																//	Bengali	is	the	set	of	Unicode	characters	in	script	Bengali.

				Bopomofo															=	_Bopomofo															//	Bopomofo	is	the	set	of	Unicode	characters	in	script	Bopomofo.

				Brahmi																	=	_Brahmi																	//	Brahmi	is	the	set	of	Unicode	characters	in	script	Brahmi.

				Braille																=	_Braille																//	Braille	is	the	set	of	Unicode	characters	in	script	Braille.

				Buginese															=	_Buginese															//	Buginese	is	the	set	of	Unicode	characters	in	script	Buginese.

				Buhid																		=	_Buhid																		//	Buhid	is	the	set	of	Unicode	characters	in	script	Buhid.

				Canadian_Aboriginal				=	_Canadian_Aboriginal				//	Canadian_Aboriginal	is	the	set	of	Unicode	characters	in	script	Canadian_Aboriginal.

				Carian																	=	_Carian																	//	Carian	is	the	set	of	Unicode	characters	in	script	Carian.

				Cham																			=	_Cham																			//	Cham	is	the	set	of	Unicode	characters	in	script	Cham.

				Cherokee															=	_Cherokee															//	Cherokee	is	the	set	of	Unicode	characters	in	script	Cherokee.

				Common																	=	_Common																	//	Common	is	the	set	of	Unicode	characters	in	script	Common.

				Coptic																	=	_Coptic																	//	Coptic	is	the	set	of	Unicode	characters	in	script	Coptic.

				Cuneiform														=	_Cuneiform														//	Cuneiform	is	the	set	of	Unicode	characters	in	script	Cuneiform.

				Cypriot																=	_Cypriot																//	Cypriot	is	the	set	of	Unicode	characters	in	script	Cypriot.

				Cyrillic															=	_Cyrillic															//	Cyrillic	is	the	set	of	Unicode	characters	in	script	Cyrillic.

				Deseret																=	_Deseret																//	Deseret	is	the	set	of	Unicode	characters	in	script	Deseret.

				Devanagari													=	_Devanagari													//	Devanagari	is	the	set	of	Unicode	characters	in	script	Devanagari.

				Egyptian_Hieroglyphs			=	_Egyptian_Hieroglyphs			//	Egyptian_Hieroglyphs	is	the	set	of	Unicode	characters	in	script	Egyptian_Hieroglyphs.

				Ethiopic															=	_Ethiopic															//	Ethiopic	is	the	set	of	Unicode	characters	in	script	Ethiopic.

				Georgian															=	_Georgian															//	Georgian	is	the	set	of	Unicode	characters	in	script	Georgian.

				Glagolitic													=	_Glagolitic													//	Glagolitic	is	the	set	of	Unicode	characters	in	script	Glagolitic.

				Gothic																	=	_Gothic																	//	Gothic	is	the	set	of	Unicode	characters	in	script	Gothic.

				Greek																		=	_Greek																		//	Greek	is	the	set	of	Unicode	characters	in	script	Greek.

				Gujarati															=	_Gujarati															//	Gujarati	is	the	set	of	Unicode	characters	in	script	Gujarati.

				Gurmukhi															=	_Gurmukhi															//	Gurmukhi	is	the	set	of	Unicode	characters	in	script	Gurmukhi.

				Han																				=	_Han																				//	Han	is	the	set	of	Unicode	characters	in	script	Han.

				Hangul																	=	_Hangul																	//	Hangul	is	the	set	of	Unicode	characters	in	script	Hangul.

				Hanunoo																=	_Hanunoo																//	Hanunoo	is	the	set	of	Unicode	characters	in	script	Hanunoo.

				Hebrew																	=	_Hebrew																	//	Hebrew	is	the	set	of	Unicode	characters	in	script	Hebrew.

				Hiragana															=	_Hiragana															//	Hiragana	is	the	set	of	Unicode	characters	in	script	Hiragana.

				Imperial_Aramaic							=	_Imperial_Aramaic							//	Imperial_Aramaic	is	the	set	of	Unicode	characters	in	script	Imperial_Aramaic.

				Inherited														=	_Inherited														//	Inherited	is	the	set	of	Unicode	characters	in	script	Inherited.

				Inscriptional_Pahlavi		=	_Inscriptional_Pahlavi		//	Inscriptional_Pahlavi	is	the	set	of	Unicode	characters	in	script	Inscriptional_Pahlavi.

				Inscriptional_Parthian	=	_Inscriptional_Parthian	//	Inscriptional_Parthian	is	the	set	of	Unicode	characters	in	script	Inscriptional_Parthian.

				Javanese															=	_Javanese															//	Javanese	is	the	set	of	Unicode	characters	in	script	Javanese.

				Kaithi																	=	_Kaithi																	//	Kaithi	is	the	set	of	Unicode	characters	in	script	Kaithi.

				Kannada																=	_Kannada																//	Kannada	is	the	set	of	Unicode	characters	in	script	Kannada.

				Katakana															=	_Katakana															//	Katakana	is	the	set	of	Unicode	characters	in	script	Katakana.

				Kayah_Li															=	_Kayah_Li															//	Kayah_Li	is	the	set	of	Unicode	characters	in	script	Kayah_Li.

				Kharoshthi													=	_Kharoshthi													//	Kharoshthi	is	the	set	of	Unicode	characters	in	script	Kharoshthi.

				Khmer																		=	_Khmer																		//	Khmer	is	the	set	of	Unicode	characters	in	script	Khmer.

				Lao																				=	_Lao																				//	Lao	is	the	set	of	Unicode	characters	in	script	Lao.

				Latin																		=	_Latin																		//	Latin	is	the	set	of	Unicode	characters	in	script	Latin.

				Lepcha																	=	_Lepcha																	//	Lepcha	is	the	set	of	Unicode	characters	in	script	Lepcha.

				Limbu																		=	_Limbu																		//	Limbu	is	the	set	of	Unicode	characters	in	script	Limbu.

				Linear_B															=	_Linear_B															//	Linear_B	is	the	set	of	Unicode	characters	in	script	Linear_B.

				Lisu																			=	_Lisu																			//	Lisu	is	the	set	of	Unicode	characters	in	script	Lisu.

				Lycian																	=	_Lycian																	//	Lycian	is	the	set	of	Unicode	characters	in	script	Lycian.

				Lydian																	=	_Lydian																	//	Lydian	is	the	set	of	Unicode	characters	in	script	Lydian.

				Malayalam														=	_Malayalam														//	Malayalam	is	the	set	of	Unicode	characters	in	script	Malayalam.

				Mandaic																=	_Mandaic																//	Mandaic	is	the	set	of	Unicode	characters	in	script	Mandaic.

				Meetei_Mayek											=	_Meetei_Mayek											//	Meetei_Mayek	is	the	set	of	Unicode	characters	in	script	Meetei_Mayek.

				Mongolian														=	_Mongolian														//	Mongolian	is	the	set	of	Unicode	characters	in	script	Mongolian.

				Myanmar																=	_Myanmar																//	Myanmar	is	the	set	of	Unicode	characters	in	script	Myanmar.

				New_Tai_Lue												=	_New_Tai_Lue												//	New_Tai_Lue	is	the	set	of	Unicode	characters	in	script	New_Tai_Lue.

				Nko																				=	_Nko																				//	Nko	is	the	set	of	Unicode	characters	in	script	Nko.

				Ogham																		=	_Ogham																		//	Ogham	is	the	set	of	Unicode	characters	in	script	Ogham.

				Ol_Chiki															=	_Ol_Chiki															//	Ol_Chiki	is	the	set	of	Unicode	characters	in	script	Ol_Chiki.

				Old_Italic													=	_Old_Italic													//	Old_Italic	is	the	set	of	Unicode	characters	in	script	Old_Italic.

				Old_Persian												=	_Old_Persian												//	Old_Persian	is	the	set	of	Unicode	characters	in	script	Old_Persian.

				Old_South_Arabian						=	_Old_South_Arabian						//	Old_South_Arabian	is	the	set	of	Unicode	characters	in	script	Old_South_Arabian.

				Old_Turkic													=	_Old_Turkic													//	Old_Turkic	is	the	set	of	Unicode	characters	in	script	Old_Turkic.

				Oriya																		=	_Oriya																		//	Oriya	is	the	set	of	Unicode	characters	in	script	Oriya.

				Osmanya																=	_Osmanya																//	Osmanya	is	the	set	of	Unicode	characters	in	script	Osmanya.

				Phags_Pa															=	_Phags_Pa															//	Phags_Pa	is	the	set	of	Unicode	characters	in	script	Phags_Pa.

				Phoenician													=	_Phoenician													//	Phoenician	is	the	set	of	Unicode	characters	in	script	Phoenician.

				Rejang																	=	_Rejang																	//	Rejang	is	the	set	of	Unicode	characters	in	script	Rejang.

				Runic																		=	_Runic																		//	Runic	is	the	set	of	Unicode	characters	in	script	Runic.

				Samaritan														=	_Samaritan														//	Samaritan	is	the	set	of	Unicode	characters	in	script	Samaritan.

				Saurashtra													=	_Saurashtra													//	Saurashtra	is	the	set	of	Unicode	characters	in	script	Saurashtra.

				Shavian																=	_Shavian																//	Shavian	is	the	set	of	Unicode	characters	in	script	Shavian.

				Sinhala																=	_Sinhala																//	Sinhala	is	the	set	of	Unicode	characters	in	script	Sinhala.

				Sundanese														=	_Sundanese														//	Sundanese	is	the	set	of	Unicode	characters	in	script	Sundanese.

				Syloti_Nagri											=	_Syloti_Nagri											//	Syloti_Nagri	is	the	set	of	Unicode	characters	in	script	Syloti_Nagri.

				Syriac																	=	_Syriac																	//	Syriac	is	the	set	of	Unicode	characters	in	script	Syriac.

				Tagalog																=	_Tagalog																//	Tagalog	is	the	set	of	Unicode	characters	in	script	Tagalog.

				Tagbanwa															=	_Tagbanwa															//	Tagbanwa	is	the	set	of	Unicode	characters	in	script	Tagbanwa.

				Tai_Le																	=	_Tai_Le																	//	Tai_Le	is	the	set	of	Unicode	characters	in	script	Tai_Le.

				Tai_Tham															=	_Tai_Tham															//	Tai_Tham	is	the	set	of	Unicode	characters	in	script	Tai_Tham.

				Tai_Viet															=	_Tai_Viet															//	Tai_Viet	is	the	set	of	Unicode	characters	in	script	Tai_Viet.

				Tamil																		=	_Tamil																		//	Tamil	is	the	set	of	Unicode	characters	in	script	Tamil.

				Telugu																	=	_Telugu																	//	Telugu	is	the	set	of	Unicode	characters	in	script	Telugu.

				Thaana																	=	_Thaana																	//	Thaana	is	the	set	of	Unicode	characters	in	script	Thaana.

				Thai																			=	_Thai																			//	Thai	is	the	set	of	Unicode	characters	in	script	Thai.

				Tibetan																=	_Tibetan																//	Tibetan	is	the	set	of	Unicode	characters	in	script	Tibetan.

				Tifinagh															=	_Tifinagh															//	Tifinagh	is	the	set	of	Unicode	characters	in	script	Tifinagh.

				Ugaritic															=	_Ugaritic															//	Ugaritic	is	the	set	of	Unicode	characters	in	script	Ugaritic.

				Vai																				=	_Vai																				//	Vai	is	the	set	of	Unicode	characters	in	script	Vai.

				Yi																					=	_Yi																					//	Yi	is	the	set	of	Unicode	characters	in	script	Yi.

)

The	following	variables	are	of	type	*RangeTable:

var	(

				ASCII_Hex_Digit																				=	_ASCII_Hex_Digit																				

				Bidi_Control																							=	_Bidi_Control																							

				Dash																															=	_Dash																															

				Deprecated																									=	_Deprecated																									

				Diacritic																										=	_Diacritic																										

				Extender																											=	_Extender																											

				Hex_Digit																										=	_Hex_Digit																										

				Hyphen																													=	_Hyphen																													

				IDS_Binary_Operator																=	_IDS_Binary_Operator																

				IDS_Trinary_Operator															=	_IDS_Trinary_Operator															

				Ideographic																								=	_Ideographic																								

				Join_Control																							=	_Join_Control																							

				Logical_Order_Exception												=	_Logical_Order_Exception												

				Noncharacter_Code_Point												=	_Noncharacter_Code_Point												

				Other_Alphabetic																			=	_Other_Alphabetic																			

				Other_Default_Ignorable_Code_Point	=	_Other_Default_Ignorable_Code_Point	

				Other_Grapheme_Extend														=	_Other_Grapheme_Extend														

				Other_ID_Continue																		=	_Other_ID_Continue																		

				Other_ID_Start																					=	_Other_ID_Start																					

				Other_Lowercase																				=	_Other_Lowercase																				

				Other_Math																									=	_Other_Math																									

				Other_Uppercase																				=	_Other_Uppercase																				

				Pattern_Syntax																					=	_Pattern_Syntax																					

				Pattern_White_Space																=	_Pattern_White_Space																

				Quotation_Mark																					=	_Quotation_Mark																					

				Radical																												=	_Radical																												

				STerm																														=	_STerm																														

				Soft_Dotted																								=	_Soft_Dotted																								

				Terminal_Punctuation															=	_Terminal_Punctuation															

				Unified_Ideograph																		=	_Unified_Ideograph																		

				Variation_Selector																	=	_Variation_Selector																	

				White_Space																								=	_White_Space																								

)

The	following	variables	are	of	type	*RangeTable:

var	CaseRanges	=	_CaseRanges

CaseRanges	is	the	table	describing	case	mappings	for	all	letters	with	non-self

mappings.

var	Categories	=	map[string]*RangeTable{

				"C":		C,

				"Cc":	Cc,

				"Cf":	Cf,

				"Co":	Co,

				"Cs":	Cs,

				"L":		L,

				"Ll":	Ll,

				"Lm":	Lm,

				"Lo":	Lo,

				"Lt":	Lt,

				"Lu":	Lu,

				"M":		M,

				"Mc":	Mc,

				"Me":	Me,

				"Mn":	Mn,

				"N":		N,

				"Nd":	Nd,

				"Nl":	Nl,

				"No":	No,

				"P":		P,

				"Pc":	Pc,

				"Pd":	Pd,

				"Pe":	Pe,

				"Pf":	Pf,

				"Pi":	Pi,

				"Po":	Po,

				"Ps":	Ps,

				"S":		S,

				"Sc":	Sc,

				"Sk":	Sk,

				"Sm":	Sm,

				"So":	So,

				"Z":		Z,

				"Zl":	Zl,

				"Zp":	Zp,

				"Zs":	Zs,

}

Categories	is	the	set	of	Unicode	category	tables.

var	FoldCategory	=	map[string]*RangeTable{

				"Common":				foldCommon,

				"Greek":					foldGreek,

				"Inherited":	foldInherited,

				"L":									foldL,

				"Ll":								foldLl,

				"Lt":								foldLt,

				"Lu":								foldLu,

				"M":									foldM,

				"Mn":								foldMn,

}

FoldCategory	maps	a	category	name	to	a	table	of	code	points	outside	the
category	that	are	equivalent	under	simple	case	folding	to	code	points	inside	the
category.	If	there	is	no	entry	for	a	category	name,	there	are	no	such	points.

var	FoldScript	=	map[string]*RangeTable{}

FoldScript	maps	a	script	name	to	a	table	of	code	points	outside	the	script	that	are
equivalent	under	simple	case	folding	to	code	points	inside	the	script.	If	there	is
no	entry	for	a	script	name,	there	are	no	such	points.

var	GraphicRanges	=	[]*RangeTable{

				L,	M,	N,	P,	S,	Zs,

}

GraphicRanges	defines	the	set	of	graphic	characters	according	to	Unicode.

var	PrintRanges	=	[]*RangeTable{

				L,	M,	N,	P,	S,

}

PrintRanges	defines	the	set	of	printable	characters	according	to	Go.	ASCII
space,	U+0020,	is	handled	separately.

var	Properties	=	map[string]*RangeTable{

				"ASCII_Hex_Digit":																				ASCII_Hex_Digit,

				"Bidi_Control":																							Bidi_Control,

				"Dash":																															Dash,

				"Deprecated":																									Deprecated,

				"Diacritic":																										Diacritic,

				"Extender":																											Extender,

				"Hex_Digit":																										Hex_Digit,

				"Hyphen":																													Hyphen,

				"IDS_Binary_Operator":																IDS_Binary_Operator,

				"IDS_Trinary_Operator":															IDS_Trinary_Operator,

				"Ideographic":																								Ideographic,

				"Join_Control":																							Join_Control,

				"Logical_Order_Exception":												Logical_Order_Exception,

				"Noncharacter_Code_Point":												Noncharacter_Code_Point,

				"Other_Alphabetic":																			Other_Alphabetic,

				"Other_Default_Ignorable_Code_Point":	Other_Default_Ignorable_Code_Point,

				"Other_Grapheme_Extend":														Other_Grapheme_Extend,

				"Other_ID_Continue":																		Other_ID_Continue,

				"Other_ID_Start":																					Other_ID_Start,

				"Other_Lowercase":																				Other_Lowercase,

				"Other_Math":																									Other_Math,

				"Other_Uppercase":																				Other_Uppercase,

				"Pattern_Syntax":																					Pattern_Syntax,

				"Pattern_White_Space":																Pattern_White_Space,

				"Quotation_Mark":																					Quotation_Mark,

				"Radical":																												Radical,

				"STerm":																														STerm,

				"Soft_Dotted":																								Soft_Dotted,

				"Terminal_Punctuation":															Terminal_Punctuation,

				"Unified_Ideograph":																		Unified_Ideograph,

				"Variation_Selector":																	Variation_Selector,

				"White_Space":																								White_Space,

}

Properties	is	the	set	of	Unicode	property	tables.

var	Scripts	=	map[string]*RangeTable{

				"Arabic":																	Arabic,

				"Armenian":															Armenian,

				"Avestan":																Avestan,

				"Balinese":															Balinese,

				"Bamum":																		Bamum,

				"Batak":																		Batak,

				"Bengali":																Bengali,

				"Bopomofo":															Bopomofo,

				"Brahmi":																	Brahmi,

				"Braille":																Braille,

				"Buginese":															Buginese,

				"Buhid":																		Buhid,

				"Canadian_Aboriginal":				Canadian_Aboriginal,

				"Carian":																	Carian,

				"Cham":																			Cham,

				"Cherokee":															Cherokee,

				"Common":																	Common,

				"Coptic":																	Coptic,

				"Cuneiform":														Cuneiform,

				"Cypriot":																Cypriot,

				"Cyrillic":															Cyrillic,

				"Deseret":																Deseret,

				"Devanagari":													Devanagari,

				"Egyptian_Hieroglyphs":			Egyptian_Hieroglyphs,

				"Ethiopic":															Ethiopic,

				"Georgian":															Georgian,

				"Glagolitic":													Glagolitic,

				"Gothic":																	Gothic,

				"Greek":																		Greek,

				"Gujarati":															Gujarati,

				"Gurmukhi":															Gurmukhi,

				"Han":																				Han,

				"Hangul":																	Hangul,

				"Hanunoo":																Hanunoo,

				"Hebrew":																	Hebrew,

				"Hiragana":															Hiragana,

				"Imperial_Aramaic":							Imperial_Aramaic,

				"Inherited":														Inherited,

				"Inscriptional_Pahlavi":		Inscriptional_Pahlavi,

				"Inscriptional_Parthian":	Inscriptional_Parthian,

				"Javanese":															Javanese,

				"Kaithi":																	Kaithi,

				"Kannada":																Kannada,

				"Katakana":															Katakana,

				"Kayah_Li":															Kayah_Li,

				"Kharoshthi":													Kharoshthi,

				"Khmer":																		Khmer,

				"Lao":																				Lao,

				"Latin":																		Latin,

				"Lepcha":																	Lepcha,

				"Limbu":																		Limbu,

				"Linear_B":															Linear_B,

				"Lisu":																			Lisu,

				"Lycian":																	Lycian,

				"Lydian":																	Lydian,

				"Malayalam":														Malayalam,

				"Mandaic":																Mandaic,

				"Meetei_Mayek":											Meetei_Mayek,

				"Mongolian":														Mongolian,

				"Myanmar":																Myanmar,

				"New_Tai_Lue":												New_Tai_Lue,

				"Nko":																				Nko,

				"Ogham":																		Ogham,

				"Ol_Chiki":															Ol_Chiki,

				"Old_Italic":													Old_Italic,

				"Old_Persian":												Old_Persian,

				"Old_South_Arabian":						Old_South_Arabian,

				"Old_Turkic":													Old_Turkic,

				"Oriya":																		Oriya,

				"Osmanya":																Osmanya,

				"Phags_Pa":															Phags_Pa,

				"Phoenician":													Phoenician,

				"Rejang":																	Rejang,

				"Runic":																		Runic,

				"Samaritan":														Samaritan,

				"Saurashtra":													Saurashtra,

				"Shavian":																Shavian,

				"Sinhala":																Sinhala,

				"Sundanese":														Sundanese,

				"Syloti_Nagri":											Syloti_Nagri,

				"Syriac":																	Syriac,

				"Tagalog":																Tagalog,

				"Tagbanwa":															Tagbanwa,

				"Tai_Le":																	Tai_Le,

				"Tai_Tham":															Tai_Tham,

				"Tai_Viet":															Tai_Viet,

				"Tamil":																		Tamil,

				"Telugu":																	Telugu,

				"Thaana":																	Thaana,

				"Thai":																			Thai,

				"Tibetan":																Tibetan,

				"Tifinagh":															Tifinagh,

				"Ugaritic":															Ugaritic,

				"Vai":																				Vai,

				"Yi":																					Yi,

}

Scripts	is	the	set	of	Unicode	script	tables.

func	Is
func	Is(rangeTab	*RangeTable,	r	rune)	bool

Is	tests	whether	rune	is	in	the	specified	table	of	ranges.

func	IsControl
func	IsControl(r	rune)	bool

IsControl	reports	whether	the	rune	is	a	control	character.	The	C	(Other)	Unicode
category	includes	more	code	points	such	as	surrogates;	use	Is(C,	r)	to	test	for
them.

func	IsDigit
func	IsDigit(r	rune)	bool

IsDigit	reports	whether	the	rune	is	a	decimal	digit.

func	IsGraphic
func	IsGraphic(r	rune)	bool

IsGraphic	reports	whether	the	rune	is	defined	as	a	Graphic	by	Unicode.	Such
characters	include	letters,	marks,	numbers,	punctuation,	symbols,	and	spaces,
from	categories	L,	M,	N,	P,	S,	Zs.

func	IsLetter
func	IsLetter(r	rune)	bool

IsLetter	reports	whether	the	rune	is	a	letter	(category	L).

func	IsLower
func	IsLower(r	rune)	bool

IsLower	reports	whether	the	rune	is	a	lower	case	letter.

func	IsMark
func	IsMark(r	rune)	bool

IsMark	reports	whether	the	rune	is	a	mark	character	(category	M).

func	IsNumber
func	IsNumber(r	rune)	bool

IsNumber	reports	whether	the	rune	is	a	number	(category	N).

func	IsOneOf
func	IsOneOf(set	[]*RangeTable,	r	rune)	bool

IsOneOf	reports	whether	the	rune	is	a	member	of	one	of	the	ranges.

func	IsPrint
func	IsPrint(r	rune)	bool

IsPrint	reports	whether	the	rune	is	defined	as	printable	by	Go.	Such	characters
include	letters,	marks,	numbers,	punctuation,	symbols,	and	the	ASCII	space
character,	from	categories	L,	M,	N,	P,	S	and	the	ASCII	space	character.	This
categorization	is	the	same	as	IsGraphic	except	that	the	only	spacing	character	is
ASCII	space,	U+0020.

func	IsPunct
func	IsPunct(r	rune)	bool

IsPunct	reports	whether	the	rune	is	a	Unicode	punctuation	character	(category
P).

func	IsSpace
func	IsSpace(r	rune)	bool

IsSpace	reports	whether	the	rune	is	a	space	character	as	defined	by	Unicode's
White	Space	property;	in	the	Latin-1	space	this	is

'\t',	'\n',	'\v',	'\f',	'\r',	'	',	U+0085	(NEL),	U+00A0	(NBSP).

Other	definitions	of	spacing	characters	are	set	by	category	Z	and	property
Pattern_White_Space.

func	IsSymbol
func	IsSymbol(r	rune)	bool

IsSymbol	reports	whether	the	rune	is	a	symbolic	character.

func	IsTitle
func	IsTitle(r	rune)	bool

IsTitle	reports	whether	the	rune	is	a	title	case	letter.

func	IsUpper
func	IsUpper(r	rune)	bool

IsUpper	reports	whether	the	rune	is	an	upper	case	letter.

func	SimpleFold
func	SimpleFold(r	rune)	rune

SimpleFold	iterates	over	Unicode	code	points	equivalent	under	the	Unicode-
defined	simple	case	folding.	Among	the	code	points	equivalent	to	rune
(including	rune	itself),	SimpleFold	returns	the	smallest	rune	>=	r	if	one	exists,	or
else	the	smallest	rune	>=	0.

For	example:

SimpleFold('A')	=	'a'

SimpleFold('a')	=	'A'

SimpleFold('K')	=	'k'

SimpleFold('k')	=	'\u212A'	(Kelvin	symbol,	?)

SimpleFold('\u212A')	=	'K'

SimpleFold('1')	=	'1'

func	To
func	To(_case	int,	r	rune)	rune

To	maps	the	rune	to	the	specified	case:	UpperCase,	LowerCase,	or	TitleCase.

func	ToLower
func	ToLower(r	rune)	rune

ToLower	maps	the	rune	to	lower	case.

func	ToTitle
func	ToTitle(r	rune)	rune

ToTitle	maps	the	rune	to	title	case.

func	ToUpper
func	ToUpper(r	rune)	rune

ToUpper	maps	the	rune	to	upper	case.

type	CaseRange
type	CaseRange	struct	{

				Lo				uint32

				Hi				uint32

				Delta	d

}

CaseRange	represents	a	range	of	Unicode	code	points	for	simple	(one	code	point
to	one	code	point)	case	conversion.	The	range	runs	from	Lo	to	Hi	inclusive,	with
a	fixed	stride	of	1.	Deltas	are	the	number	to	add	to	the	code	point	to	reach	the
code	point	for	a	different	case	for	that	character.	They	may	be	negative.	If	zero,
it	means	the	character	is	in	the	corresponding	case.	There	is	a	special	case
representing	sequences	of	alternating	corresponding	Upper	and	Lower	pairs.	It
appears	with	a	fixed	Delta	of

{UpperLower,	UpperLower,	UpperLower}

The	constant	UpperLower	has	an	otherwise	impossible	delta	value.

type	Range16
type	Range16	struct	{

				Lo					uint16

				Hi					uint16

				Stride	uint16

}

Range16	represents	of	a	range	of	16-bit	Unicode	code	points.	The	range	runs
from	Lo	to	Hi	inclusive	and	has	the	specified	stride.

type	Range32
type	Range32	struct	{

				Lo					uint32

				Hi					uint32

				Stride	uint32

}

Range32	represents	of	a	range	of	Unicode	code	points	and	is	used	when	one	or
more	of	the	values	will	not	fit	in	16	bits.	The	range	runs	from	Lo	to	Hi	inclusive
and	has	the	specified	stride.	Lo	and	Hi	must	always	be	>=	1<<16.

type	RangeTable
type	RangeTable	struct	{

				R16	[]Range16

				R32	[]Range32

}

RangeTable	defines	a	set	of	Unicode	code	points	by	listing	the	ranges	of	code
points	within	the	set.	The	ranges	are	listed	in	two	slices	to	save	space:	a	slice	of
16-bit	ranges	and	a	slice	of	32-bit	ranges.	The	two	slices	must	be	in	sorted	order
and	non-overlapping.	Also,	R32	should	contain	only	values	>=	0x10000
(1<<16).

type	SpecialCase
type	SpecialCase	[]CaseRange

SpecialCase	represents	language-specific	case	mappings	such	as	Turkish.
Methods	of	SpecialCase	customize	(by	overriding)	the	standard	mappings.

var	AzeriCase	SpecialCase	=	_TurkishCase

var	TurkishCase	SpecialCase	=	_TurkishCase

func	(SpecialCase)	ToLower

func	(special	SpecialCase)	ToLower(r	rune)	rune

ToLower	maps	the	rune	to	lower	case	giving	priority	to	the	special	mapping.

func	(SpecialCase)	ToTitle

func	(special	SpecialCase)	ToTitle(r	rune)	rune

ToTitle	maps	the	rune	to	title	case	giving	priority	to	the	special	mapping.

func	(SpecialCase)	ToUpper

func	(special	SpecialCase)	ToUpper(r	rune)	rune

ToUpper	maps	the	rune	to	upper	case	giving	priority	to	the	special	mapping.

Bugs

There	is	no	mechanism	for	full	case	folding,	that	is,	for	characters	that	involve
multiple	runes	in	the	input	or	output.

Subdirectories

Name 				 Synopsis

utf16 				 Package	utf16	implements	encoding	and	decoding	of	UTF-16sequences.

utf8 				 Package	utf8	implements	functions	and	constants	to	support	textencoded	in	UTF-8.
Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	utf16
import	"unicode/utf16"

Overview
Index

Overview	?

Overview	?

Package	utf16	implements	encoding	and	decoding	of	UTF-16	sequences.

Index

func	Decode(s	[]uint16)	[]rune
func	DecodeRune(r1,	r2	rune)	rune
func	Encode(s	[]rune)	[]uint16
func	EncodeRune(r	rune)	(r1,	r2	rune)
func	IsSurrogate(r	rune)	bool

Package	files

utf16.go

func	Decode
func	Decode(s	[]uint16)	[]rune

Decode	returns	the	Unicode	code	point	sequence	represented	by	the	UTF-16
encoding	s.

func	DecodeRune
func	DecodeRune(r1,	r2	rune)	rune

DecodeRune	returns	the	UTF-16	decoding	of	a	surrogate	pair.	If	the	pair	is	not	a
valid	UTF-16	surrogate	pair,	DecodeRune	returns	the	Unicode	replacement	code
point	U+FFFD.

func	Encode
func	Encode(s	[]rune)	[]uint16

Encode	returns	the	UTF-16	encoding	of	the	Unicode	code	point	sequence	s.

func	EncodeRune
func	EncodeRune(r	rune)	(r1,	r2	rune)

EncodeRune	returns	the	UTF-16	surrogate	pair	r1,	r2	for	the	given	rune.	If	the
rune	is	not	a	valid	Unicode	code	point	or	does	not	need	encoding,	EncodeRune
returns	U+FFFD,	U+FFFD.

func	IsSurrogate
func	IsSurrogate(r	rune)	bool

IsSurrogate	returns	true	if	the	specified	Unicode	code	point	can	appear	in	a
surrogate	pair.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	utf8
import	"unicode/utf8"

Overview
Index

Overview	?

Overview	?

Package	utf8	implements	functions	and	constants	to	support	text	encoded	in
UTF-8.	It	includes	functions	to	translate	between	runes	and	UTF-8	byte
sequences.

Index

Constants
func	DecodeLastRune(p	[]byte)	(r	rune,	size	int)
func	DecodeLastRuneInString(s	string)	(r	rune,	size	int)
func	DecodeRune(p	[]byte)	(r	rune,	size	int)
func	DecodeRuneInString(s	string)	(r	rune,	size	int)
func	EncodeRune(p	[]byte,	r	rune)	int
func	FullRune(p	[]byte)	bool
func	FullRuneInString(s	string)	bool
func	RuneCount(p	[]byte)	int
func	RuneCountInString(s	string)	(n	int)
func	RuneLen(r	rune)	int
func	RuneStart(b	byte)	bool
func	Valid(p	[]byte)	bool
func	ValidString(s	string)	bool

Package	files

utf8.go

Constants
const	(

				RuneError	=	'\uFFFD'					//	the	"error"	Rune	or	"Unicode	replacement	character"

				RuneSelf		=	0x80									//	characters	below	Runeself	are	represented	as	themselves	in	a	single	byte.

				MaxRune			=	'\U0010FFFF'	//	Maximum	valid	Unicode	code	point.

				UTFMax				=	4												//	maximum	number	of	bytes	of	a	UTF-8	encoded	Unicode	character.

)

Numbers	fundamental	to	the	encoding.

func	DecodeLastRune
func	DecodeLastRune(p	[]byte)	(r	rune,	size	int)

DecodeLastRune	unpacks	the	last	UTF-8	encoding	in	p	and	returns	the	rune	and
its	width	in	bytes.	If	the	encoding	is	invalid,	it	returns	(RuneError,	1),	an
impossible	result	for	correct	UTF-8.

func	DecodeLastRuneInString
func	DecodeLastRuneInString(s	string)	(r	rune,	size	int)

DecodeLastRuneInString	is	like	DecodeLastRune	but	its	input	is	a	string.	If	the
encoding	is	invalid,	it	returns	(RuneError,	1),	an	impossible	result	for	correct
UTF-8.

func	DecodeRune
func	DecodeRune(p	[]byte)	(r	rune,	size	int)

DecodeRune	unpacks	the	first	UTF-8	encoding	in	p	and	returns	the	rune	and	its
width	in	bytes.	If	the	encoding	is	invalid,	it	returns	(RuneError,	1),	an	impossible
result	for	correct	UTF-8.

func	DecodeRuneInString
func	DecodeRuneInString(s	string)	(r	rune,	size	int)

DecodeRuneInString	is	like	DecodeRune	but	its	input	is	a	string.	If	the	encoding
is	invalid,	it	returns	(RuneError,	1),	an	impossible	result	for	correct	UTF-8.

func	EncodeRune
func	EncodeRune(p	[]byte,	r	rune)	int

EncodeRune	writes	into	p	(which	must	be	large	enough)	the	UTF-8	encoding	of
the	rune.	It	returns	the	number	of	bytes	written.

func	FullRune
func	FullRune(p	[]byte)	bool

FullRune	reports	whether	the	bytes	in	p	begin	with	a	full	UTF-8	encoding	of	a
rune.	An	invalid	encoding	is	considered	a	full	Rune	since	it	will	convert	as	a
width-1	error	rune.

func	FullRuneInString
func	FullRuneInString(s	string)	bool

FullRuneInString	is	like	FullRune	but	its	input	is	a	string.

func	RuneCount
func	RuneCount(p	[]byte)	int

RuneCount	returns	the	number	of	runes	in	p.	Erroneous	and	short	encodings	are
treated	as	single	runes	of	width	1	byte.

func	RuneCountInString
func	RuneCountInString(s	string)	(n	int)

RuneCountInString	is	like	RuneCount	but	its	input	is	a	string.

func	RuneLen
func	RuneLen(r	rune)	int

RuneLen	returns	the	number	of	bytes	required	to	encode	the	rune.

func	RuneStart
func	RuneStart(b	byte)	bool

RuneStart	reports	whether	the	byte	could	be	the	first	byte	of	an	encoded	rune.
Second	and	subsequent	bytes	always	have	the	top	two	bits	set	to	10.

func	Valid
func	Valid(p	[]byte)	bool

Valid	reports	whether	p	consists	entirely	of	valid	UTF-8-encoded	runes.

func	ValidString
func	ValidString(s	string)	bool

ValidString	reports	whether	s	consists	entirely	of	valid	UTF-8-encoded	runes.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Package	unsafe
import	"unsafe"

Overview
Index

Overview	?

Overview	?

Package	unsafe	contains	operations	that	step	around	the	type	safety	of	Go
programs.

Index

func	Alignof(v	ArbitraryType)	uintptr
func	Offsetof(v	ArbitraryType)	uintptr
func	Sizeof(v	ArbitraryType)	uintptr
type	ArbitraryType
type	Pointer

Package	files

unsafe.go

func	Alignof
func	Alignof(v	ArbitraryType)	uintptr

Alignof	returns	the	alignment	of	the	value	v.	It	is	the	maximum	value	m	such
that	the	address	of	a	variable	with	the	type	of	v	will	always	always	be	zero	mod
m.	If	v	is	of	the	form	structValue.field,	it	returns	the	alignment	of	field	f	within
struct	object	obj.

func	Offsetof
func	Offsetof(v	ArbitraryType)	uintptr

Offsetof	returns	the	offset	within	the	struct	of	the	field	represented	by	v,	which
must	be	of	the	form	structValue.field.	In	other	words,	it	returns	the	number	of
bytes	between	the	start	of	the	struct	and	the	start	of	the	field.

func	Sizeof
func	Sizeof(v	ArbitraryType)	uintptr

Sizeof	returns	the	size	in	bytes	occupied	by	the	value	v.	The	size	is	that	of	the
"top	level"	of	the	value	only.	For	instance,	if	v	is	a	slice,	it	returns	the	size	of	the
slice	descriptor,	not	the	size	of	the	memory	referenced	by	the	slice.

type	ArbitraryType
type	ArbitraryType	int

ArbitraryType	is	here	for	the	purposes	of	documentation	only	and	is	not	actually
part	of	the	unsafe	package.	It	represents	the	type	of	an	arbitrary	Go	expression.

type	Pointer
type	Pointer	*ArbitraryType

Pointer	represents	a	pointer	to	an	arbitrary	type.	There	are	three	special
operations	available	for	type	Pointer	that	are	not	available	for	other	types.

1)	A	pointer	value	of	any	type	can	be	converted	to	a	Pointer.

2)	A	Pointer	can	be	converted	to	a	pointer	value	of	any	type.

3)	A	uintptr	can	be	converted	to	a	Pointer.

4)	A	Pointer	can	be	converted	to	a	uintptr.

Pointer	therefore	allows	a	program	to	defeat	the	type	system	and	read	and	write
arbitrary	memory.	It	should	be	used	with	extreme	care.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Go	Projects
These	are	external	projects	and	not	endorsed	or	supported	by	the	Go	project.

Projects

Submit	a	Project

Using	this	form	you	can	submit	a	project	to	be	included	in	the	list.

Filter	by	tag:	all	lib	app	tool	cgo	wontbuild

Build	Tools

GG	-	A	build	tool	for	Go	in	Go	tool
GVM	-	GVM	provides	an	interface	to	manage	Go	versions.	lib
Gocheck	-	Rich	test	framework	with	suites,	fixtures,	assertions,	good	error
reporting,	etc	tool
SCons	Go	Tools	-	A	collection	of	builders	that	makes	it	easy	to	compile	Go
projects	in	SCons.	tool
chimp	-	Library	to	provide	the	"Go"	language	with	automation	tools.	Can
be	used	to	write	build	scripts,	deploy	scripts,	etc	tool
fileembed-go	-	This	is	a	command-line	utility	to	take	a	number	of	source
files,	and	embed	them	into	a	Go	package.	tool
gb	-	A(nother)	build	tool	for	go,	with	an	emphasis	on	multi-package
projects.	tool
go-runner	-	a	simple	runner	for	.go	programs	tool	wontbuild
goam	-	A	simple	project	build	tool	for	Go	tool
gobbler	-	Go	build	tool	to	build	and	test	advanced	multi-package	projects
with	little	configuration	tool	wontbuild
gobuild	-	Automatic	build	tool	aiming	to	replace	Makefiles	for	simple	Go
projects	tool
gobuild-fork	-	A	fork	of	gobuild	tool	wontbuild
godag	-	A	frontend	to	the	Go	compiler	collection	tool
goscons	-	Another	set	of	SCons	builders	for	Go.	tool
gotgo	-	An	experimental	preprocesor	to	implement	'generics'	tool	wontbuild
makengo	-	A	build	tool	similar	to	Ruby's	rake	tool

Caching

gocache	-	gocache	app	wontbuild

http://www.manatlan.com/page/gg
http://github.com/moovweb/gvm
http://labix.org/gocheck
https://launchpad.net/sconsgo
https://github.com/andrebq/chimp
https://bitbucket.org/rj/fileembed-go/
http://code.google.com/p/go-gb/
http://github.com/malkia/go-runner
http://github.com/0xe2-0x9a-0x9b/goam
http://github.com/orfjackal/gobbler
http://code.google.com/p/gobuild/
http://github.com/timtadh/gobuild-fork
http://code.google.com/p/godag/
http://github.com/alberts/goscons
http://github.com/droundy/gotgo
http://github.com/remogatto/makengo
http://github.com/westymatt/gocache

gomemcached	-	A	memcached	server	in	go	app

Command-line	Option	Parsers

ReadFlags	-	Read	flag	values	from	text	files	lib
argcfg	-	Use	reflection	to	populate	fields	in	a	struct	from	command	line
arguments	lib
gnuflag	-	GNU-compatible	flag	parsing;	substantially	compatible	with	flag.
lib
go-options	-	A	command	line	parsing	library	for	Go	lib
goopt	-	a	getopt	clone	to	parse	command-line	flags	lib
optarg	-	An	easy	to	use	GNU-style	command-line	argument	parsing	with
full	validation	and	nice	usage	information.	lib
optparse-go	-	parses	command-lines	lib
opts.go	-	lightweight	POSIX-	and	GNU-	style	option	parsing	lib
pflag	-	Drop-in	replacement	for	Go's	flag	package,	implementing
POSIX/GNU-style	--flags.	lib

Command-line	Tools

GoPasswordCreator	-	A	small	tool,	which	creates	random	passwords	tool
cron.go	-	A	small	cron	job	system	to	handle	scheduled	tasks,	such	as
optimizing	databases	or	kicking	idle	users	from	chat.	lib
gich	-	A	cross	platform	which	utility	written	in	Go	tool
goblin	-	a	set	of	Plan9/unix	utilities	re-written	in	Go	app
gocreate	-	Command	line	utility	that	create	files	from	templates.	tool
jsonpp	-	A	fast	command	line	JSON	pretty	printer.	lib
tecla	-	Command-line	editing	library	lib

Compression

dgolzo	-	LZO	bindings	lib
go-lz4	-	Port	of	LZ4	lossless	compression	algorithm	to	Go.	lib
go-lzss	-	Implementation	of	LZSS	compression	algorithm	in	Go	lib
go-sevenzip	-	Package	sevenzip	implements	access	to	7-zip	archives	(wraps
C	interface	of	LZMA	SDK)	lib
lzma	-	compress/lzma	package	for	Go	lib
snappy-go	-	Google's	Snappy	compression	algorithm	in	Go	lib

http://github.com/dustin/gomemcached
http://code.google.com/p/readflags-go/
http://code.google.com/p/goargcfg/
https://launchpad.net/gnuflag
https://github.com/gaal/go-options
http://github.com/droundy/goopt
http://code.google.com/p/optarg/
http://code.google.com/p/optparse-go/
http://opts-go.googlecode.com/
https://github.com/ogier/pflag
https://github.com/d3xter/GoPasswordCreator
https://github.com/rk/cron.go
http://bitbucket.org/jpoirier/gich
https://github.com/jdparent/goblin
https://bitbucket.org/llg/gocreate/
http://jmhodges.github.com/jsonpp/
http://github.com/michaelmacinnis/tecla
https://github.com/dgryski/dgolzo
http://github.com/bkaradzic/go-lz4
http://github.com/salviati/go-lzss
https://github.com/salviati/go-sevenzip
http://code.google.com/p/lzma/
http://code.google.com/p/snappy-go/

yenc	-	yenc	decoder	package	lib
zip	-	a	library	for	reading	ZIP	archives.	lib

Console	User	Interface

DevTodo2	-	A	small	command-line	per-project	task	list	manager.	tool
ansiterm	-	pkg	to	drive	text-only	consoles	that	respond	to	ANSI	escape
sequences
curses.go	-	GO	binding	for	NCurses	lib
g5t	-	Gettext	for	Go,	stripped	down	to	the	bare	metal	lib
getpass	-	Password	prompting	from	console	lib
go-stfl	-	a	thin	wrapper	around	STFL,	an	ncurses-based	widget	toolkit	lib
go-term	-	Wrapper	and	utilities	related	to	Unix	terminal	lib
gockel	-	a	Twitter	client	for	text	terminals	tool
gocurse	-	Go	bindings	for	NCurses	cgo	wontbuild
goncurses	-	An	ncurses	library,	including	the	form,	menu	and	panel
extensions	lib
igo	-	A	simple	interactive	Go	interpreter	built	on	exp/eval	with	some
readline	refinements	lib	wontbuild
inline	-	Library	for	line	editing	lib
oh	-	A	Unix	shell	written	in	Go	app
pty	-	obtain	pseudo-terminal	devices	lib
tcattr-go	-	Thin	wrapper	around	termios	structure	lib
termios	-	Terminal	support	lib
termon	-	Easy	terminal-control-interface	for	Go.	lib

Cryptography

BLAKE-256	-	Go	implementation	of	BLAKE-256	hash	function	lib
GoKoblitz	-	An	ECDSA	library	for	Go	supporting	Koblitz	curves	(such	as
secp256k1)	lib
GoSkein	-	Implementation	of	Skein	hash	and	Threefisch	crypto	for	Go	lib
bcrypt	-	Blowfish	password	hashing	lib
dkeyczar	-	Go	port	of	Google'e	Keyczar	cryptography	library	lib
dkrcrypt	-	Korean	block	ciphers:	SEED	and	HIGHT	lib
dskipjack	-	Go	implementation	of	the	SKIPJACK	encryption	algorithm	lib
go-rabbit	-	Go	implementation	of	Rabbit	encryption	algorithm	lib
go-salsa20	-	Go	implementation	of	Salsa20	encryption	algorithm	lib

http://github.com/chrisfarms/yenc
http://github.com/nf/zip
https://github.com/alecthomas/devtodo2
http://github.com/hotei/ansiterm
https://github.com/thiagoncc/curses.go
https://github.com/GerardNL/g5t
http://bitbucket.org/taruti/getpass
https://github.com/akrennmair/go-stfl
http://github.com/kless/go-term
https://github.com/akrennmair/gockel
http://github.com/jabb/gocurse
http://code.google.com/p/goncurses/
https://bitbucket.org/binet/igo
https://github.com/kless/inline
https://github.com/michaelmacinnis/oh
https://github.com/kr/pty
https://github.com/Roorback/tcattr-go
http://bitbucket.org/taruti/termios
http://termon.googlecode.com/
https://github.com/dchest/blake256
https://github.com/ThePiachu/Golang-Koblitz-elliptic-curve-DSA-library
https://github.com/wernerd/Skein3Fish/tree/master/go
https://bitbucket.org/zoowar/bcrypt/
https://github.com/dgryski/dkeyczar
https://github.com/dgryski/dkrcrypt
https://github.com/dgryski/dskipjack
http://code.google.com/p/go-rabbit
http://code.google.com/p/go-salsa20

gopam	-	PAM	application	API	wrapper	lib
ketama.go	-	libketama-style	consistent	hashing	lib
kindi	-	encryption	command	line	tool	app
passwordhash	-	Package	passwordhash	implements	safe	password	hashing
and	comparison.	lib
pbkdf2.go	-	PBKDF2	password	hashing	lib
scpu	-	SSH2	client	application	lib
scrypt	-	Go	implementation	of	Colin	Percival's	scrypt	key	derivation
function	lib
ssh.go	-	SSH2	Client	library	lib

Data	Structures

FSM	-	Finite	State	Machine	lib
GoLLRB	-	A	Left-Leaning	Red-Black	(LLRB)	implementation	of	2-3
balanced	binary	search	trees	in	Google	Go	lib
Gokogiri	-	A	lightweight	libxml	wrapper	library	lib
Picugen	-	A	general-purpose	hash/checksum	digest	generator.	lib
Sortutil	-	Nested,	case-insensitive,	and	reverse	sorting	for	Go.	lib
asyncwr	-	Asynchronous,	non-blocking,	wrapper	for	io.Writer	lib
bigendian	-	binary	parsing	and	printing	lib
btree	-	Package	btree	implements	B-trees	with	fixed	size	keys,
http://en.wikipedia.org/wiki/Btree	lib
deepcopy	-	Make	deep	copies	of	data	structures	lib	wontbuild
dgobloom	-	A	Bloom	Filter	implementation	lib
epochdate	-	Compact	dates	stored	as	days	since	the	Unix	epoch	lib
go-avltree	-	AVL	tree	(Adel'son-Vel'skii	&	Landis)	with	indexing	added	lib
go-darts	-	Double-ARray	Trie	System	for	golang	lib
go-extractor	-	Go	wrapper	for	GNU	libextractor	lib
go-maps	-	Go	maps	generalized	to	interfaces	lib
go-priority-queue	-	An	easy	to	use	heap	implementation	with	a
conventional	priority	queue	interface.	lib
go-stree	-	A	segment	tree	implementation	for	range	queries	on	intervals	lib
gobson	-	BSON	(de)serializer	lib
gohash	-	A	simple	linked-list	hashtable	that	implements	sets	and	maps	lib
goop	-	Dynamic	object-oriented	programming	support	for	Go	lib
gopqueue	-	Priority	queue	at	top	of	container/heap	lib
gorbt	-	A	simple	red	black	tree	lib
gotoc	-	A	protocol	buffer	compiler	written	in	Go	lib

http://github.com/krockot/gopam
https://github.com/mncaudill/ketama.go
https://github.com/uwedeportivo/Kindi
http://github.com/dchest/passwordhash
http://bitbucket.org/taruti/pbkdf2.go
http://bitbucket.org/taruti/ssh.go
https://github.com/dchest/scrypt
http://bitbucket.org/taruti/ssh.go
https://github.com/sdegutis/go.fsm
http://github.com/petar/GoLLRB
https://github.com/moovweb/gokogiri
http://patrickmylund.com/projects/picugen/
http://patrickmylund.com/projects/sortutil/
https://github.com/yorhel/asyncwr
https://bitbucket.org/taruti/bigendian
http://bitbucket.org/santucco/btree
http://bitbucket.org/taruti/deepcopy
https://github.com/dgryski/dgobloom
https://github.com/extemporalgenome/epochdate
https://code.google.com/p/go-avltree/
https://github.com/awsong/go-darts
http://github.com/salviati/go-extractor
https://github.com/serge-hulne/go-maps
https://code.google.com/p/go-priority-queue/
https://github.com/toberndo/go-stree
http://labix.org/gobson
http://code.google.com/p/gohash/
http://github.com/losalamos/goop
https://github.com/nu7hatch/gopqueue
http://code.google.com/p/gorbt/
https://github.com/dsymonds/gotoc

goxml	-	A	thin	wrapper	around	libxml2	lib
gringo	-	A	minimalist	queue	implemented	using	a	stripped-down	lock-free
ringbuffer	lib
libgob	-	A	low	level	library	for	generating	gobs	from	other	languages	lib
seq	-	Functional	containers,	sequential	and	concurrent	lib
skip.go	-	Fast	ordered	maps	using	skip	lists	lib
skiplist	-	A	skip	list	implementation.	Highly	customizable	and	easy	to	use.
lib
sortutil	-	Utilities	supplemental	to	the	Go	standard	"sort"	package	lib
timsort	-	Fast,	stable	sort,	uses	external	comparator	lib
tribool	-	Ternary	(tree-valued)	logic	for	Go	lib
vcard	-	Reading	and	writing	vcard	file	in	go.	Implementation	of	RFC	2425
(A	MIME	Content-Type	for	Directory	Information)	and	RFC	2426	(vCard
MIME	Directory	Profile).	lib
xlsx	-	A	library	to	help	with	extracting	data	from	Microsoft	Office	Excel
XLSX	files.	lib
xmlm	-	Advanced	XML	marshalling/unmarshalling	lib

Databases	and	Storage

CodeSearch	-	Index	and	perform	regex	searches	over	large	bodies	of	source
code	app
DBGo	-	A	light-weight	relational	flat-file	database	engine.	app
Diskv	-	Home-grown,	disk-backed	key-value	store	tool
Go-Redis	-	Client	and	Connectors	for	Redis	key-value	store	lib
GoMySQL	-	MySQL	library	for	Go	lib
GoMySQL-Client-Library	-	Go	MySQL	Client	Library	lib
MyMySQL	-	MySQL	Client	API	written	entirely	in	Go.	lib
Optimus	Cache	Prime	-	Smart	cache	preloader	for	websites	with	XML
sitemaps.	app
PostgreSQL	bindings	-	PostgreSQL	bindings	cgo
Radix	-	Asynchronous	Redis	client	lib
Tideland	CGL	Redis	-	Powerful	Redis	client	with	pub/sub	support.	lib
Tideland	Redis	Database	Client	-	Simple	but	powerful	client	for	the	Redis
key/value	(and	more)	database.	lib
Weed	File	System	-	fast	distributed	key-file	store	app
cabinet	-	Kyoto	Cabinet	bindings	for	go	lib
cass	-	Cassandra	Client	Lib	lib
cdb.go	-	Create	and	read	cdb	("constant	database")	files	lib

http://github.com/jbussdieker/golibxml
https://github.com/textnode/gringo
http://code.google.com/p/libgob/
http://github.com/zot/seq
http://bitbucket.org/taruti/skip.go
https://github.com/huandu/skiplist
http://github.com/cznic/sortutil
http://github.com/pgmmpk/timsort
https://github.com/saschpe/tribool
https://bitbucket.org/llg/vcard
https://github.com/tealeg/xlsx
https://bitbucket.org/lavalamp/xmlm
http://code.google.com/p/codesearch/
https://github.com/HouzuoGuo/DBGo
http://diskv.googlecode.com
http://github.com/alphazero/Go-Redis
https://github.com/Philio/GoMySQL
http://github.com/thoj/Go-MySQL-Client-Library
http://github.com/ziutek/mymysql
http://patrickmylund.com/projects/ocp/
http://d.hatena.ne.jp/oibore/20091114/1258191288
https://github.com/fzzbt/radix
http://code.google.com/p/tcgl/
http://code.google.com/p/tideland-rdc/
http://code.google.com/p/weed-fs/
https://bitbucket.org/ww/cabinet
https://github.com/araddon/cass
https://github.com/jbarham/cdb.go

couch-go	-	newer	maintained	CouchDB	database	binding	lib
fswatch	-	mac	utility	for	watching	the	file	system	for	changes	tool
go	datamapper	-	ActiveRecord-like	database	wrapper	lib
go-cache	-	An	in-memory	key:value	store/cache	(similar	to	Memcached)
library	for	Go,	suitable	for	single-machine	applications.	app
go-db	-	A	generic	database	API	lib
go-db-oracle	-	GO	interface	to	Oracle	DB	lib
go-dbd-mysql	-	A	MySQL	driver	implementation	for	go-dbi	lib
go-dbi	-	A	database	abstraction	API	in	the	spirit	of	Perl	DBI	et	al	lib
go-mongo	-	a	driver	for	MongoDB	lib
go-mysql	-	MySQL	wrapper	for	Go	cgo
go-mysql-driver	-	A	lightweight	and	fast	MySQL-Driver	for	Go's
database/sql	package	lib
go-notify	-	GO	bindings	for	the	libnotify	lib
go-odbc	-	ODBC	Driver	for	Go	lib
go-pgsql	-	A	PostgreSQL	client	library	for	Go	lib
go-sphinx	-	A	sphinx	client	package	for	Go,	for	full	text	search.	lib
go-sqlite3	-	Access	SQLite3	databases	from	Go	cgo
go-wikiparse	-	mediawiki	dump	parser	for	working	with	wikipedia	data	tool
go.fsevents	-	path	event	lib	for	mac	lib
gocask	-	Key-value	store	inspired	by	Riak	Bitcask.	Can	be	used	as	pure	go
implementation	of	dbm	and	other	kv-stores.	lib
gocouch	-	a	CouchDB	client	library	lib
godbc	-	Go	ODBC	Interface	using	unixODBC	by	Benoy	R	Nair	cgo
godis	-	Simple	client	for	Redis	lib
gofluid	-	FluidDB	client	library	for	Go	lib
gofluiddb	-	A	lightweight	wrapper	around	the	FluidDB	API	for	clients
written	in	Go	lib
gographite	-	statsd	server	in	go	(for	feeding	data	to	graphite)	app
gokabinet	-	Go	bindings	for	Kyoto	Cabinet	DBM	implementation	lib
gomemcache	-	a	memcached	client	lib
gomongo	-	driver	for	MongoDB	lib
goprotodb	-	A	binding	to	Berkeley	DB	storing	records	encoded	as	Protocol
Buffers.	lib
goriak	-	Database	bindings	for	Riak	lib
goriak	-	Database	driver	for	riak	database	(project	homepage	is	now	on
bitbucket.org)	lib
gorp	-	SQL	mapper	for	Go	lib
gosqlite	-	a	trivial	SQLite	binding	for	Go.	lib

http://couch-go.googlecode.com
https://github.com/sdegutis/fswatch
http://github.com/yyyc514/go_datamapper
http://patrickmylund.com/projects/go-cache/
http://github.com/phf/go-db
https://code.google.com/p/go-db-oracle/
http://github.com/thomaslee/go-dbd-mysql
http://github.com/thomaslee/go-dbi
http://github.com/garyburd/go-mongo
http://github.com/yone098/go-mysql
http://code.google.com/p/go-mysql-driver/
https://github.com/lenormf/go-notify
https://github.com/weigj/go-odbc
http://github.com/lxn/go-pgsql
http://github.com/yunge/gosphinx
http://github.com/phf/go-sqlite3
https://github.com/dustin/go-wikiparse
https://github.com/sdegutis/go.fsevents
http://code.google.com/p/gocask/
http://github.com/hoisie/gocouch
http://github.com/BenoyRNair/godbc/
https://github.com/simonz05/godis
http://code.google.com/p/gofluid/
http://github.com/micrypt/GoFluidDB
https://github.com/amir/gographite
https://github.com/fsouza/gokabinet
http://github.com/kklis/gomemcache
http://github.com/mikejs/gomongo
http://launchpad.net/goprotodb
https://code.google.com/p/goriak/
https://bitbucket.org/lateefj/goriak/overview
https://github.com/coopernurse/gorp
http://code.google.com/p/gosqlite/

gosqlite	(forked)	-	A	fork	of	gosqlite	lib
gosqlite3	-	Go	Interface	for	SQLite3	cgo
gotyrant	-	A	Go	wrapper	for	tokyo	tyrant	cgo
hdfs.go	-	go	bindings	for	libhdfs	lib
levigo	-	levigo	provides	the	ability	to	create	and	access	LevelDB	databases.
lib
libmysqlgo	-	Another	wrapper	for	the	MySQL	C	API	cgo
mgo	-	Rich	MongoDB	driver	for	Go	lib
mgo	(package)	-	Rich	MongoDB	driver	for	Go	(package	reference	for	the
Packages	tab,	please	keep	the	other	link	since	it	has	docs)	lib
mysql-connector-go	-	implements	MySQL	wire	protocol	lib
mysqlgo	-	MySQL	bindings	cgo
persival	-	Programatic,	persistent,	pseudo	key-value	storage	app
pgsql.go	-	PostgreSQL	high-level	client	library	wrapper	lib
pq.go	-	A	pure	Go	Postgres	driver	lib
vitess	-	Scaling	MySQL	databases	for	the	web	app

Development	Tools

deifdef	-	Removes	#ifdef/#endif	blocks	from	code	based	on	a	set	of
#defines	tool
glib	-	Bindings	for	GLib	type	system	lib
gonew	-	A	tool	to	create	new	Go	projects	tool
gonow	-	Tool	to	run	Go	scripts	tool
gorun	-	Enables	Go	source	files	to	be	used	as	scripts.	tool
hamcrest	-	Hamcrest	matchers	(and	Asserters)	for	runtime	check	and	JUnit-
like	testing	tool	lib
hsandbox	-	Tool	for	quick	exprimentation	with	Go	snippets	tool
liccor	-	A	tool	for	updating	license	headers	in	Go	source	files	tool
liteide	-	An	go	auto	build	tools	and	qt-based	ide	for	Go	tool
trace	-	a	simple	debug	tracing	tool

Distributed/Grid	Computing

Cloud-Backups	-	Small	Go	utilities	to	backup	data	from	the	cloud,	to	the
cloud	app
malus	-	A	Kademlia-compatible	DHT(Distributed	Hash	Table)	written	in
Go	app

https://github.com/gwenn/gosqlite
http://github.com/kuroneko/gosqlite3
http://github.com/patrickxb/gotyrant
https://github.com/zyxar/hdfs.go
https://github.com/jmhodges/levigo
http://github.com/chbfiv/libmysqlgo
http://labix.org/mgo
https://launchpad.net/mgo
http://code.google.com/p/mysql-connector-go/
http://github.com/eden/mysqlgo
https://github.com/nu7hatch/persival
https://github.com/jbarham/pgsql.go
https://github.com/bmizerany/pq.go
http://code.google.com/p/vitess/
http://code.google.com/p/deifdef/
http://github.com/ziutek/glib
https://github.com/bmatsuo/gonew
https://github.com/kless/gonow
https://wiki.ubuntu.com/gorun
https://github.com/rdrdr/hamcrest
http://labix.org/hsandbox
https://github.com/gtalent/liccor
http://code.google.com/p/golangide/
http://bitbucket.org/santucco/trace
http://github.com/nictuku/Cloud-Backups
http://github.com/distributed/malus

Documentation

Mango	-	Automatically	generate	unix	man	pages	from	Go	sources	app
pkgdoc	-	Pkgdoc	generates	HTML	documentation	for	a	Go	package	using	a
user	specified	template.	tool
redoc	-	Commands	documentation	for	Redis	tool

Editors

Go	conTEXT	-	Highlighter	plugin	for	the	conTEXT	editor	lib
Google	Go	for	Idea	-	Google	Go	language	plugin	for	Intellij	IDEA
goclipse	-	An	Eclipse-based	IDE	for	Go.	tool
gofinder	-	(code)	search	tool	for	acme	tool
tabby	-	Source	code	editor	app

Encodings

mimemagic	-	Detect	mime-types	automatically	based	on	file	contents	with
no	external	dependencies	lib

GUIs	and	Widget	Toolkits

go-fltk	-	FLTK2	GUI	toolkit	bindings	for	Go	lib
go-gtk	-	Bindings	for	GTK	cgo
go-iup	-	Bindings	for	Iup,	a	cross-platform	native	widget	GUI	toolkit	lib
goosurface	-	An	interface	to	Cairo	via	GTK	cgo
mdtwm	-	Tiling	window	manager	for	X	app
termbox	-	A	minimalist	alternative	to	ncurses	to	build	terminal-based	user
interfaces	cgo

Games

ChessBuddy	-	Play	chess	with	Go,	HTML5,	WebSockets	and	random
strangers!	app
FlexBot	-	A	flexible	bot	for	the	Spring	RTS	engine	implementing	the	'lobby
protocol'	app
Gongo	-	A	program	written	in	Go	that	plays	Go	app
godoku	-	Go	Sudoku	Solver	-	example	of	"share	by	communicating"	tool

http://code.google.com/p/mango-doc/
http://github.com/garyburd/pkgdoc
https://github.com/simonz05/redoc
http://www.tc33.org/go/go-programming-highlighter-for-context-editor/
http://plugins.intellij.net/plugin/?idea&id=5047
http://code.google.com/p/goclipse/
https://github.com/mpl/gofinder
https://github.com/mikhailt/tabby
https://bitbucket.org/taruti/mimemagic
https://github.com/zot/go-fltk
http://github.com/mattn/go-gtk
http://github.com/jcowgar/go-iup
http://code.google.com/p/gogoo/source/browse/#hg/goosurface
https://github.com/ziutek/mdtwm
http://github.com/nsf/termbox
https://github.com/tux21b/ChessBuddy
http://github.com/Agon/FlexBot
http://github.com/skybrian/Gongo
http://code.google.com/p/kylelemons/source/browse?repo=godoku

gospeccy	-	A	ZX	Spectrum	48k	Emulator	app
gotris	-	A	classic	tetris	game	written	in	Go	app
teratogen	-	A	rogue-like	game	using	SDL	app

Go	Implementations

Express	Go	-	Interpreted	Go	implementation	for	Windows	app

Graphics	and	Audio

Arclight	-	Arclight	is	a	tool	for	rendering	images	app
Go-OpenGL	-	Go	bindings	for	OpenGL	cgo
Go-SDL	-	Go	bindings	for	SDL	cgo
GoGL	-	OpenGL	binding	generator	lib
GoMacDraw	-	A	mac	implementation	of	go.wde	lib
Goop	-	Audio	synthesizer	engine	tool
Winhello	-	An	example	Windows	GUI	hello	world	application	app
allergro	-	basic	wrapper	for	the	Allegro	library	cgo
alsa	-	alsa	is	a	Go	wrapper	package	for	C	alsa	library.	lib
baukasten	-	A	modular	game	library.	lib
blend	-	Image	processing	library	and	rendering	toolkit	for	Go.	lib
bmp.go	-	package	for	encoding/decoding	Windows	BMP	files	lib
chart	-	Library	to	generate	common	chart	(pie,	bar,	strip,	scatter,	hstogram)
in	different	output	formats.	lib
draw2d	-	This	package	provide	an	API	to	draw	2d	geometrical	form	on
images.	This	library	is	largely	inspired	by	postscript,	cairo,	HTML5	canvas.
lib
freetype-go	-	a	Go	implementation	of	FreeType	lib
gmf	-	Go	Media	Framework	-	a	binding	to	ffmpeg	to	bring	Media
Processing	to	Google	Go	lib
go-gd	-	Go	bingings	for	GD	lib
go-gnuplot	-	go	bindings	for	GNUPlot	lib
go-graph	-	Generic	graph	library	for	Go.	lib
go-gtk3	-	gtk3	bindings	for	go	lib
go-heatmap	-	A	toolkit	for	making	heatmaps	lib
go-openal	-	Experimental	OpenAL	bindings	for	Go	cgo
go-opencl	-	A	go	wrapper	to	the	OpenCL	heterogeneous	parallel
programming	library	lib

http://github.com/remogatto/gospeccy
http://github.com/nsf/gotris
http://github.com/rsaarelm/teratogen
http://www.unicorn-enterprises.com/express_go.html
http://www.angryredplanet.com/exh/arclight/
http://github.com/banthar/Go-OpenGL
http://github.com/banthar/Go-SDL
https://github.com/chsc/GoGL
https://github.com/skelterjohn/gmd
http://goop.googlecode.com
https://github.com/MalcolmJSmith/Winhello
http://github.com/lasarux/go-spanish/tree/master/allegro
https://github.com/vchumushuk/alsa-go
https://github.com/Agon/baukasten
https://github.com/Phrozen/blend
http://gopaste.org/w0D8b
https://github.com/vdobler/chart
http://code.google.com/p/draw2d
http://code.google.com/p/freetype-go/
http://code.google.com/p/gmf/
https://github.com/bolknote/go-gd
https://bitbucket.org/binet/go-gnuplot
http://github.com/StepLg/go-graph
https://github.com/norisatir/go-gtk3
https://github.com/dustin/go-heatmap
http://github.com/phf/go-openal
https://github.com/tones111/go-opencl

go-vlc	-	Go	bindings	for	libVLC	lib
go.uik	-	A	UI	kit	for	Go,	in	Go.	lib
go.wde	-	A	windowing/drawing/event	interface	lib
gocairo	-	Golang	wrapper	for	cairo	graphics	library	cgo
gofax	-	CCITT	fax	library	lib
goray	-	Raytracer	written	in	Go,	based	on	Yafaray	app
gosdl	-	Go	wrapper	for	SDL	cgo
goxscr	-	Go	rewrites	of	xscreensaver	ports	app
gst	-	Go	bindings	for	GStreamer	lib
hgui	-	Gui	toolkit	based	on	http	and	gtk-webkit.	lib
iascii	-	retro-ASCII	image	encoder	tool
id3tag	-	id3tag	is	a	Go	wrapper	around	C	libid3tag	library.	lib
math3d	-	A	linear	algebra	package	optimized	for	OpenGl	lib
ogg	-	Go	wrapper	for	C	libogg	library.	lib	cgo
pdfreader	-	a	library	to	read	the	contents	of	PDF	files	lib
portaudio	-	A	Go	binding	to	PortAudio	lib
postscript-go	-	Postscript	go	implementation	that	uses	draw2d	to	generate
images.	lib
pulsego	-	Go	binding	for	PulseAudio	cgo
smallpt.go	-	A	port	of	the	smallpt	global	illumination	renderer	to	Go	app
starfish	-	A	simple	Go	graphics	and	user	input	library,	built	on	SDL	lib
svgo	-	a	library	for	creating	and	outputting	SVG	lib
window	-	Optimized	moving	window	for	real-time	data	lib
wingo	-	A	fully-featured	window	manager	written	in	Go.	app
wxGo	-	Go	Wrapper	for	the	wxWidgets	GUI	lib
x-go-binding	-	bindings	for	the	X	windowing	system	lib

Instant	Messaging

Go-IRC-Client-Library	-	blah	lib
GoTY	-	"Go	Troll	Yourself",	minimalist	client	IRC	library	lib
calculon	-	IRC	bot	with	support	for	runtime	(un)loadable	modules	and
configurable	via	a	web	interface	lib
go-bot	-	(aka	rndbot)	-	An	irc-bot	that	executes	Go	code	sent	to	it	and	print
its	output	app
goirc	-	event-based	stateful	IRC	client	framework	lib
irc.go	-	Go	IRC	bot	framework	lib

https://github.com/jteeuwen/go-vlc
https://github.com/skelterjohn/go.uik
https://github.com/skelterjohn/go.wde
http://bitbucket.org/dethe/gocairo/
http://gofax.googlecode.com/git/image/fax/
http://goray.sourceforge.net/
http://code.google.com/p/gosdl/
http://goxscr.googlecode.com
http://github.com/ziutek/gst
https://github.com/zozor/hgui
https://github.com/9nut/iascii
https://github.com/vchumushuk/id3tag-go
https://github.com/eadf/math3d
https://github.com/vchumushuk/ogg-go
http://code.google.com/p/pdfreader/
http://code.google.com/p/portaudio-go/
http://code.google.com/p/postcript-go
http://github.com/moriyoshi/pulsego/
http://github.com/ShadowIce/smallpt.go
https://github.com/gtalent/starfish
http://github.com/ajstarks/svgo
https://github.com/jbrukh/window
https://github.com/BurntSushi/wingo
https://github.com/JeroenD/wxGo
http://code.google.com/p/x-go-binding/
http://github.com/thoj/Go-IRC-Client-Library
http://logik.li/projects/goty
http://github.com/jteeuwen/calculon/
http://code.google.com/p/go-bot/
http://github.com/fluffle/goirc/
http://code.google.com/p/go-bot/source/browse/irc.go

Mathematics

Bitcoin	Calculator	-	Bitcoin	Mining,	Power	and	Profitability	Calculator,
data	fetching,	json,	scheduled	tasks	lib
GoStats	-	Descriptive	statistics	and	linear	regression	for	Go	lib
Tideland	Go	Numerical	Library	-	Helpful	numerical	types	and	functions.	lib
bayesian	-	Naive	Bayesian	Classification	for	Golang	lib
blas	-	Go	implementation	of	BLAS	(Basic	Linear	Algebra	Subprograms)	lib
cartconvert	-	cartography	functions	for	the	Go	programming	language	lib
ellipsoid	-	ellipsoid.go	performs	latitude	and	longitude	calculations	on	the
surface	of	an	ellipsoid.	lib
geom	-	2d	geometry.	lib
go-fftw	-	Go	bindings	for	FFTW	-	The	Fastest	Fourier	Transform	in	the
West	lib
go-fn	-	Special	functions	that	would	not	fit	in	"math"	pkg	lib
go-gt	-	Graph	theory	algorithms	lib
go-humanize	-	Formatting	numbers	for	humans.	lib
go.matrix	-	a	linear	algebra	package	(please	remove	gomatrix	-	i	am	its
author	and	this	is	the	same	code)	lib
gochipmunk	-	Go	bindings	to	the	Chipmunk	Physics	library.	lib
gocomplex	-	a	complex	number	library	lib
gofrac	-	A	fractions	library	for	go	lib
gogmp	-	GMP	bindings	for	Go	cgo
gomatrix	-	a	linear	algebra	package	lib
imath	-	Fast	integer-only	math	routines	lib
mathutil	-	Package	mathutil	provides	utilities	supplementing	the	standard
'math'	and	'rand'	packages.	lib
polyclip.go	-	Go	implementation	of	algorithm	for	Boolean	operations	on	2D
polygons	lib

Misc

ArBit	-	Automated	Bitcoin	arbitrage	trading	program.	tool
CGRates	-	Rating	system	designed	to	be	used	in	telecom	carriers	world
Go-PhysicsFS	-	Go	bindings	for	the	PhysicsFS	archive-access	abstraction
library.	lib
Go-fuse	-	Library	to	write	FUSE	filesystems	in	Go	lib
GoLCS	-	Sovle	Longest	Common	Sequence	problem	in	go	lib

https://github.com/ThePiachu/Bitcoin-Go-Calculator
https://github.com/GaryBoone/GoStats
http://ideland-gnl.googlecode.com/hg
https://github.com/jbrukh/bayesian
https://github.com/ziutek/blas
https://github.com/the42/cartconvert
http://github.com/StefanSchroeder/Golang-Ellipsoid
https://github.com/skelterjohn/geom
https://github.com/runningwild/go-fftw
https://code.google.com/p/go-fn/
https://code.google.com/p/go-gt/
http://github.com/dustin/go-humanize
https://github.com/skelterjohn/go.matrix
https://github.com/paulcoyle/gochipmunk
http://code.google.com/p/gocomplex/
http://github.com/anschelsc/gofrac
http://github.com/salviati/gogmp
http://code.google.com/p/gomatrix
https://bitbucket.org/SyntaxK/go-imath
http://github.com/cznic/mathutil
http://github.com/akavel/polyclip.go
https://github.com/goteppo/ArBit
https://github.com/rif/cgrates
https://github.com/DeedleFake/Go-PhysicsFS
https://github.com/hanwen/go-fuse
https://github.com/makokaka/goalgo/tree/master/algo

GoTS	-	a	commandline	tool	for	www.tinysong.com	app
Gotgo	-	A	Go	preprocessor	that	provides	an	implementation	of	generics	tool
Hranoprovod	-	Command-line	calorie	tracking	tool
Perlito	-	An	implementation	of	a	subset	of	Perl	6	with	a	Go	(and	other
languages)	backend	tool
Tideland	CGL	Monitoring	-	Flexible	monitoring	of	your	application	lib
Tideland	Common	Go	Library	-	Many	helpful	packages	for	the	daily	Go
development.	lib
Tideland	Event-Driven	Cell	Architecture	-	Package	for	the	development	of
event-driven	architectures.	lib
UbuntuTranslator	-	a	simple	but	useful	translator	for	Ubuntu.	app
atexit	-	Simple	atexit	library	lib
bencoding	-	Go	implementation	of	the	bencoding	protocol	used	by
bittorrent	lib
b��ogo	-	Basic	bioinformatics	functions	for	the	Go	language.	lib
cpu	-	A	Go	package	that	reports	processor	topology	lib
dbus-go	-	D-Bus	Go	library	lib
desktop	-	Open	file/uri	with	default	application	(cross	platform)	lib
dump	-	An	utility	that	dumps	Go	variables,	similar	to	PHP's	var_dump	tool
dupfinder	-	Simple	program	that	finds	duplicate	files	app
errforce	-	Utilities	for	working	effectively	with	Go	errors	and	UNIX	errnos
lib
faker	-	Generate	fake	data,	names,	text,	addresses,	etc.	tool
fnv	-	Go	implementation	for	the	Fowler-Noll-Vo	hash	function	lib
functional	-	Functional	programming	library	including	a	lazy	list
implementation	and	some	of	the	most	usual	functions.	lib
fungo	-	A	library	to	help	write	2D	games	in	Go	lib
go-amiando	-	Wrapper	for	the	Amiando	event	management	API	lib
go-bit	-	An	efficient	and	comprehensive	bitset	implementation	with	utility
bit	functions.	lib
go-eco	-	Functions	for	use	in	ecology	lib
go-erx	-	Extended	error	reporting	library	lib
go-ext	-	Small	utility	library	for	Go	lib
go-hyphenator	-	A	TeX-style	hyphenation	package.	lib
go-idn	-	a	project	to	bring	IDN	support	to	Go,	feature	compatible	with
libidn	lib
go-papi	-	Go	interface	to	the	PAPI	performance	API	lib
go-pkg-lastfm	-	A	library	to	access	the	entire	Last.fm	2.0	webservice	API,
including	the	authenticated	services	lib

https://bitbucket.org/axle/gots/
http://github.com/droundy/gotgo
https://github.com/aquilax/hranoprovod-go
http://github.com/fglock/Perlito
http://code.google.com/p/tcgl/
http://code.google.com/p/tideland-cgl/
http://code.google.com/p/tideland-eca/
http://zengsai.github.com/UbuntuTranslator/
https://bitbucket.org/tebeka/atexit
https://github.com/jsz/gorrent/tree/master/bencode
https://github.com/kortschak/biogo
https://github.com/jpoirier/cpu
http://code.google.com/p/dbus-go/
https://bitbucket.org/tebeka/desktop
http://code.google.com/p/golang/source/browse/src/pkg/dump/
http://bitbucket.org/fusiongyro/dupfinder/wiki/Home
https://github.com/rcrowley/errforce
https://github.com/manveru/faker
https://bitbucket.org/ww/fnv
http://github.com/tcard/functional
http://github.com/beoran/fungo
https://github.com/ungerik/go-amiando
http://code.google.com/p/go-bit/
https://code.google.com/p/go-eco/
http://github.com/StepLg/go-erx
http://github.com/thomaslee/go-ext
http://github.com/AlanQuatermain/go-hyphenator
http://code.google.com/p/go-idn/
http://github.com/losalamos/go-papi
http://github.com/jteeuwen/go-pkg-lastfm

go-pkg-mpd	-	A	library	to	access	the	MPD	music	daemon	lib
go-pkg-mtp	-	Bindings	for	the	libmtp	implementation	of	the	Media	Transfer
Protocol	to	interact	with	media	devices	like	MP3	players	cgo
go-pkg-njb	-	Bindings	for	the	libnjb	(Nomad	Juke	Box)	that	interacts	with
older	MP3	players	cgo
go-pkg-xmlx	-	Extension	to	the	standard	Go	XML	package.	Maintains	a
node	tree	that	allows	forward/backwards	browser	and	exposes	some	simpel
single/multi-node	search	functions	lib
go-qrand	-	Go	client	for	quantum	random	bit	generator	service	at
random.irb.hr	lib
go-repl	-	A	Go	REPL;	builds	up	a	source	.go	file	over	time,	compiles	it	for
output	tool
go-semvar	-	Semantic	versions	(see	http:/semver.org)	lib
go-taskstats	-	Go	interface	for	Linux	taskstats	lib
go-translate	-	Google	Language	Translate	library	lib
go-uuid	-	Universal	Unique	IDentifier	generator	and	parser	lib
go.pcsclite	-	Go	wrapper	for	pcsc-lite	lib
goNI488	-	A	Go	wrapper	around	National	Instruments	NI488.2	General
Purpose	Interface	Bus	(GPIB)	driver.	lib
goPromise	-	Scheme-like	delayed	evaluation	for	Go	lib
goagain	-	Zero-downtime	restarts	in	Go	lib
goconf	-	a	configuration	file	parser	lib
goconfig	-	Configuration	file	parser	for	Go	lib
gocsv	-	Library	for	CSV	parsing	and	emitting	lib
goga	-	A	genetic	algorithm	framework	lib
gogobject	-	GObject-introspection	based	bindings	generator	lib
golife	-	Implementation	of	Game	of	Life	for	command	line	app
gomagic	-	Libmagic	bindings	cgo
gommap	-	gommap	enables	Go	programs	to	directly	work	with	memory
mapped	files	and	devices	in	a	very	efficient	way	lib
goneuro	-	Go	driver	for	NeuroSky	devices.	lib
goplan9	-	libraries	for	interacting	with	Plan	9	lib
goraphing	-	A	tool	to	generate	a	simple	graph	data	structures	from	JSON
data	files	app
goskirt	-	Upskirt	markdown	library	bindings	for	Go	lib
gotaskqueue	-	With	gotaskqueue,	a	program	could	define	several	tasks	and
execute	them	separately	at	specific	time	points.	lib
gotimer	-	A	simple	way	to	time	a	function	lib
gotweet	-	A	simple	Twitter	command	line	client	app

http://github.com/jteeuwen/go-pkg-mpd
http://github.com/jteeuwen/go-pkg-mtp
http://github.com/jteeuwen/go-pkg-njb
http://github.com/jteeuwen/go-pkg-xmlx
https://github.com/salviati/go-qrand
http://github.com/vito/go-repl
http://code.google.com/p/go-semver/
http://github.com/salviati/go-taskstats
http://github.com/mattn/go-translate
https://code.google.com/p/go-uuid/
http://github.com/ebfe/go.pcsclite
http://github.com/jpoirier/goNI488
http://github.com/anschelsc/goPromise/
https://github.com/rcrowley/goagain
http://code.google.com/p/goconf/
http://github.com/msbranco/goconfig
http://code.google.com/p/gocsv
https://github.com/rrs/goga
https://github.com/nsf/gogobject
http://logik.li/projects/gomagic
https://launchpad.net/gommap
https://github.com/jbrukh/goneuro
http://code.google.com/p/goplan9/
http://code.google.com/p/goraphing/
https://github.com/madari/goskirt
https://github.com/monnand/gotaskqueue
http://code.google.com/p/gotimer/
http://codingrobots.org/p/gotweet/doc/tip/www/index.wiki

gouuid	-	Pure	Go	UUID	v3,	4	and	5	generator	compatible	with	RFC4122
lib
hasher	-	Library	to	compute	hash	in	user	account	passwords	lib
iolaus-go	-	A	Go	implementation	of	the	'iolaus'	distributed	version	control
system	app
koans	-	programming	koans	for	go
lineup	-	A	minimalistic	message	queue	server	app
log4go	-	Go	logging	package	akin	to	log4j	lib
magic	-	wrapper	around	libmagic	lib
mimeparse	-	Simple	library	to	handle	mime-types	Go	lib
mitigation	-	Package	mitigation	provides	the	possibility	to	prevent	damage
caused	by	bugs	or	exploits.	lib
passwd	-	A	parser	for	the	/etc/passwd	file	lib
primegen.go	-	Sieve	of	Atkin	prime	number	generator
seelog	-	powerful	and	easy-to-learn	logging	framework	that	provides
functionality	for	flexible	dispatching,	filtering,	and	formatting	lib
selenium	-	Selenium	client	tool
symutils	-	Various	tools	and	libraries	to	handle	symbolic	links	lib
tamias	-	a	port	of	Chipmunk	Physics	lib
tideland-kmr	-	Tideland	Knowledge	Management	and	Retrieval	is	a	wiki
app
trie	-	A	Trie	structure	implementation	for	Go,	using	Unicode	runes	as	keys.
Includes	a	customization	for	TeX-style	hyphenation	tries.	lib
xplor	-	Files	tree	browser	for	p9p	acme	app

Music

gompd	-	A	client	interface	for	the	MPD	(Music	Player	Daemon)	app

Networking

Go	Ajax	-	Go	Ajax	is	a	JSON-RPC	implementation	designed	to	create
AJAX	powered	websites.	lib
GoAWS	-	Library	for	many	AWS	services	(S3,	SQS,	EC2,	etc)	lib
GoPOP3	-	Implements	the	POP3	protocol	as	specified	in	RFC	1939	lib
GoRTP	-	RTP	/	RTCP	stack	implementation	for	Go	lib
HTTP	JSON-RPC	-	An	implementation	of	HTTP	JSON-RPC	protocol	for
Go	lib

http://github.com/nu7hatch/gouuid
https://github.com/kless/hasher
http://github.com/droundy/iolaus-go
https://github.com/sdegutis/go-koans
http://github.com/jdp/lineup
http://log4go.googlecode.com/
http://code.google.com/p/go-magic/
http://code.google.com/p/mimeparse/
https://github.com/sarnowski/mitigation
http://github.com/willdonnelly/passwd
https://github.com/jbarham/primegen.go
https://github.com/cihub/seelogfast
https://bitbucket.org/tebeka/selenium/src
http://github.com/salviati/symutils
http://github.com/beoran/tamias
http://code.google.com/p/tideland-kmr/
http://github.com/AlanQuatermain/go-trie
http://bitbucket.org/mpl/xplor
http://code.google.com/p/gompd/
https://github.com/jeffreybolle/goajax
https://github.com/abneptis/GoAWS
https://github.com/d3xter/GoPOP3f
https://github.com/wernerd/GoRTP
https://github.com/ThePiachu/Go-HTTP-JSON-RPC

Skynet	-	Skynet	is	distributed	mesh	of	processes	designed	for	highly
scalable	API	type	service	provision.	lib
Tonika	-	Secure	social	networking	platform	app
Uniqush	-	A	free	and	open	source	software	which	provides	a	unified	push
service	for	server-side	notification	to	apps	on	mobile	devices.	lib
cascadeauth	-	Squid	authenticator	that	consults	multiple	sources	app
dmrgo	-	Library	for	with	Hadoop	Streaming	map/reduce	lib
dns	-	A	DNS	library	in	Go	lib
doozerd	-	A	consistent	distributed	data	store	app
dyndnscd	-	a	configurable	dyndns	client	tool
eventsource	-	Server-sent	events	for	net/http	server.	lib
freeport	-	Find	a	free	port	on	the	system.	lib
ftp.go	-	FTP	client	for	Google	Go	language	lib
ftp4go	-	An	FTP	client	for	Go,	started	as	a	port	of	the	standard	Python	FTP
client	library	lib
gearman-go	-	A	native	implementation	for	Gearman	API	with	Go.	lib
go-curl	-	libcurl	bingding	that	supports	go	func	callbacks	lib
go-dbus	-	A	library	to	connect	to	the	D-bus	messaging	system	lib
go-icap	-	ICAP	(Internet	Content	Adaptation	Protocol)	server	library	lib
go-imap	-	IMAP	client	library	lib
go-irc	-	Simple	IRC	client	library	lib
go-mail	-	Email	utilities	including	RFC822	messages	and	Google	Mail
defaults.	lib
go-msgpack	-	MsgPack	library	for	Go,	with	pack/unpack	and	net/rpc	codec
support	lib
go-nagios	-	Library	for	writing	Nagios	plugins	lib
go-nntp	-	An	NNTP	client	and	server	library	for	go	lib
go-router	-	implementation	of	remote	channel	communication	lib
go-rpcgen	-	ProtoBuf	RPC	binding	generator	for	net/rpc	and	AppEngine	lib
go-socket.io	-	A	Socket.IO	backend	implementation	written	in	Go	lib
go-xmlrpc	-	Simple	XML-RPC	client/server	library	lib
go-xmpp	-	XMPP	client	library	lib
go9	-	an	implementation	of	the	9P	distributed	file	system	protocol	lib
go9p	-	9p	protocol	implementation	in	Go	lib
goauth	-	A	library	for	header-based	OAuth	over	HTTP	or	HTTPS.	lib
gobeanstalk	-	Go	Beanstalkd	client	library	lib
gobir	-	Extensible	IRC	bot	with	channel	administration,	seen	support,	and
go	documentation	querying	app
gocluster	-	implementation	of	a	clustering	heuristic	using	a	particle	swarm

https://github.com/bketelsen/skynet
http://5ttt.org
http://uniqush.org/
http://github.com/jdinuncio/cascadeauth
https://github.com/dgryski/dmrgo
https://github.com/miekg/dns
https://github.com/ha/doozerd
https://github.com/akrennmair/dyndnscd
https://github.com/antage/eventsource
https://github.com/nshah/go.freeport
https://github.com/smallfish/ftp.go
http://code.google.com/p/ftp4go/
https://bitbucket.org/mikespook/gearman-go
http://github.com/andelf/go-curl
https://github.com/norisatir/go-dbus
http://code.google.com/p/go-icap/
https://github.com/martine/go-imap
https://github.com/husio/go-irc
https://github.com/ungerik/go-mail
https://github.com/ugorji/go-msgpack
http://github.com/laziac/go-nagios
https://github.com/dustin/go-nntp
http://code.google.com/p/go-router/
http://github.com/kylelemons/go-rpcgen
https://github.com/madari/go-socket.io
http://code.google.com/p/go-xmlrpc/
https://github.com/mattn/go-xmpp
http://code.google.com/p/go9
http://code.google.com/p/go9p/
http://github.com/alloy-d/goauth
https://github.com/iwanbk/gobeanstalk
http://code.google.com/p/kylelemons/source/browse?repo=gobir
http://code.google.com/p/gocluster/

optimization	technique	lib
godloader	-	Collection	of	download	tools	that	tries	to	follow	the	Unix
philosophy	app
godns	-	A	more	complete	DNS	package	lib
godns2	-	A	simple	DNS	resolution	library	with	fine	control	over	the
messages	lib
godwulf	-	Gopher	server	written	in	Go	app
goexmpp	-	XMPP	client	implementation	lib
goftp	-	A	FTP	client	library	lib
gogammu	-	Library	for	sending	and	receiving	SMS	lib
gonetbench	-	Simple	TCP	benchmarking	tool	tool
gonoip	-	No-IP	client	lib
gopcap	-	A	simple	wrapper	around	libpcap	cgo
goprotobuf	-	the	Go	implementation	of	Google's	Protocol	Buffers	lib
gorobot	-	a	modular	IRC	bot	app
gosndfile	-	Go	binding	for	libsndfile	lib
gostomp	-	implementation	of	STOMP	(Streaming	Text	Orientated
Messaging	Protocol)	lib
gozmq	-	Go	Bindings	for	0mq	(zeromq/zmq)	lib
grong	-	Small	authoritative	DNS	name	server	app
handlersocket-go	-	Go	native	library	to	connect	to	HandlerSocket	interface
of	InnoDB	tables	lib
jaid	-	Just	Another	IRC	Daemon	app
kafka.go	-	Producer	&	Consumer	for	the	Kafka	messaging	system	lib
ldap	-	Basic	LDAP	v3	functionality	for	the	GO	programming	language.	lib
mdns	-	Multicast	DNS	library	for	Go	lib
netsnail	-	A	low-bandwidth	simulator	app
remotize	-	A	remotize	package	and	command	that	helps	remotizing	methods
without	having	to	chaneg	their	signatures	for	rpc	lib
replican-sync	-	An	rsync	algorithm	implementation	in	Go	lib
rs232	-	Serial	interface	for	those	of	us	who	still	have	modems	(or	arduinos)
lib
statsd.go	-	Client	library	for	statsd	lib
stompngo	-	A	Stomp	1.1	Compliant	Client	lib
stompngo_examples	-	Examples	for	stompngo.	lib

Other	Random	Toys,	Experiments	and	Example	Code

go-crazy	-	An	experimental	source-to-source	compiler	for	go	tool

http://github.com/exiquio/godloader
http://github.com/miekg/godns
http://github.com/jbussdieker/gosamples/godns
http://logik.li/projects/godwulf/
http://code.google.com/p/goexmpp/
https://github.com/jlaffaye/
https://github.com/ziutek/gogammu
https://github.com/nu7hatch/gonetbench
https://github.com/cheemosabe/gonoip
http://github.com/akrennmair/gopcap
http://code.google.com/p/goprotobuf/
https://github.com/aimxhaisse/gorobot
http://github.com/mkb218/gosndfile
http://github.com/nf/gostomp
http://github.com/alecthomas/gozmq
http://github.com/bortzmeyer/grong
https://github.com/bketelsen/handlersocket-go
http://bitbucket.org/kylelemons/jaid/
https://github.com/jdamick/kafka.go
https://github.com/mmitton/ldap
https://github.com/davecheney/mdns/
http://github.com/purex01/netsnail
https://github.com/josvazg/remotize
https://github.com/cmars/replican-sync
http://github.com/dustin/rs232.go
https://github.com/cyberdelia/statsd.go
https://github.com/gmallard/stompngo
https://github.com/gmallard/stompngo_examples
http://github.com/droundy/go-crazy

go-hashmap	-	A	hash	table	in	pure	go	as	an	experiment	in	Go	performance
app
gochat	-	A	'stupid'	chat	server	written	in	Go	app
goconc	-	A	collection	of	useful	concurrency	idioms	and	functions	for	Go,
compiled	app
goplay	-	A	bunch	of	random	small	programs	in	Go	app
lifegame-on-golang	-	Game	of	Life	in	Go	app
linear	-	Playing	around	with	the	linear	algebra	app
project	euler	in	go	-	Solutions	to	Project	Euler	in	Go	also	app
shadergo	-	shader	test	using	golang	app

P2P	and	File	Sharing

Taipei-Torrent	-	Another	BT	client	app
ed2kcrawler	-	eDonkey2000	link	crawler	app
gobit	-	Bittorrent	Client	in	Go	app
gop2p	-	A	simple	p2p	app	to	learn	Go	app
wgo	-	A	simple	BitTorrent	client	based	in	part	on	the	Taipei-Torrent	and
gobit	code	app

Programming

GoSpec	-	a	BDD	framework	lib
go-clang	-	cgo	bindings	to	the	C-API	of	libclang	lib
go-galib	-	a	library	of	Genetic	Algorithms	lib
go-intset	-	a	library	to	work	with	bounded	sets	of	integers,	including
multiple	alternative	implementations	lib
go-parse	-	a	Parsec-like	parsing	library	lib
go-stringio	-	implementation	of	the	various	file	I/O	interfaces	using
memory	buffers	instead	of	real	files	lib
godeferred	-	port	of	jsdeferred:	http://cho45.stfuawsc.com/jsdeferred/	lib
gosets	-	implementation	of	set	types	lib
gospecify	-	another	BDD	framework	lib
gowizard	-	Tool	to	create	skeleton	of	Go	projects	tool
iterutils	-	functions	from	Python's	itertools	module	lib

Source	Code	Management

http://github.com/phf/go-hashmap
http://github.com/ichverstehe/gochat
http://code.google.com/p/goconc/
http://github.com/timtadh/goplay
http://github.com/horiuchi/lifegame-on-golang
http://github.com/tychofreeman/Linear
http://github.com/yyyc514/project_euler_in_go
http://github.com/gyuque/shadergo
http://github.com/jackpal/Taipei-Torrent
http://github.com/kevinwatt/ed2kcrawler
http://github.com/jessta/gobit
http://github.com/nacmartin/gop2p
http://github.com/royger/wgo
http://github.com/orfjackal/gospec
http://bitbucket.org/binet/go-clang
http://github.com/thoj/go-galib
http://github.com/phf/go-intset
http://github.com/vito/go-parse
https://code.google.com/p/go-stringio/
http://github.com/mattn/godeferred
http://github.com/pwil3058/gosets
http://github.com/stesla/gospecify
http://github.com/kless/gowizard
http://www.cs.hmc.edu/~me/go/iterutils/iterutils.go

hggofmt	-	A	Mercurial/hg	extension	with	a	hook	to	gofmt	changed	files
automatically	before	a	commit	tool

Strings	and	Text

Black	Friday	-	A	markdown	processor	lib
GoXML	-	A	basic	libxml	wrapper	for	Go	lib	cgo
Mahonia	-	Character-set	conversion	library	in	Go	lib
NTemplate	-	Nested	Templates	lib
csvutil	-	A	heavy	duty	CSV	reading	and	writing	library.	lib
dgohash	-	Collection	of	string	hashing	functions,	including	Murmur3	and
others	lib
go-charset	-	Conversion	between	character	sets.	Native	Go.	lib
go-guess	-	Go	wrapper	for	libguess	lib
go-migemo	-	migemo	extension	for	go	(Japanese	incremental	text	search)
lib
go-substrs	-	A	container	for	substrings	resultant	from	pattern	matching	lib
go.stringmetrics	-	String	distance	metrics	implemented	in	Go	lib
goini	-	A	go	library	to	parse	INI	files.	lib
gosphinx	-	A	Go	client	interface	to	the	Sphinx	standalone	full-text	search
engine	app
goyaml	-	A	port	of	LibYAML	to	Go	lib
gpKMP	-	String-matching	in	Golang	using	the	Knuth�CMorris�CPratt
algorithm	lib
iconv-go	-	iconv	wrapper	with	Reader	and	Writer	lib
inflect	-	Word	inflection	library	(similar	to	Ruby	ActiveSupport::Inflector).
Singularize(),	Pluralize(),	Underscore()	etc.	lib
kasia.go	-	Templating	system	for	HTML	and	other	text	documents	lib
kview	-	Simple	wrapper	for	kasia.go	templates.	It	helps	to	modularize
content	of	a	website	lib
mail.go	-	Parse	email	messages	lib
neste	-	Extended	version	of	Go's	template	package	for	generating	textual
output	from	nested	templates.	lib
peg	-	Parsing	Expression	Grammer	Parser	lib
pretty.go	-	Pretty-printing	for	go	values	lib
rubex	-	A	simple	regular	expression	library	that	supports	Ruby's	regex
syntax.	It	is	faster	than	Regexp.	lib
scanner	-	A	text	scanner	that	parses	primitive	types,	analogous	to	Java's
java.util.Scanner	or	C's	scanf(3)	lib

http://bitbucket.org/ede/hggofmt/
http://github.com/russross/blackfriday
https://github.com/moovweb/goxml
http://code.google.com/p/mahonia/source/browse/
https://github.com/yohcop/ntemplate.go
https://github.com/bmatsuo/csvutil
https://github.com/dgryski/dgohash
http://code.google.com/p/go-charset/
http://github.com/salviati/go-guess
http://github.com/mattn/go-migemo
http://code.google.com/p/go-substrs/
https://github.com/robyoung/go.stringmetrics
https://github.com/glacjay/goini
http://github.com/kpumuk/gosphinx
http://goyaml.googlecode.com/
https://github.com/paddie/goKMP
https://github.com/djimenez/iconv-go
http://github.com/ziutek/kasia.go
http://github.com/ziutek/kview
https://bitbucket.org/taruti/mail.go
https://github.com/fzzbt/neste
https://github.com/badgerodon/peg
http://github.com/kr/pretty.go
https://github.com/moovweb/rubex
http://code.google.com/p/golang/source/browse/src/pkg/scanner

sre2	-	RE2	in	Go	lib
strogonoff	-	Stenography	with	Go	lib
strutil	-	Package	strutil	collects	utils	supplemental	to	the	standard	strings
package.	lib
uctricks	-	Some	silly	text	transformations	via	Unicode	lib

Tag	Generators

egotags	-	ETags	generator	tool
gotags	-	Generate	a	tags	file	for	the	Go	Programming	Language	in	the
format	used	tool
tago	-	Emacs	TAGS	generator	for	Go	source	tool

Testing

Tideland	CGL	Asserts	-	Make	asserts	during	testing	and	inside	of	your
applications	lib
assert	-	helper	functions	for	the	built-in	'testing'	package	lib
go2xunit	-	Convert	"go	test	-v"	output	to	xunit	XML	output	tool
gomock	-	a	mocking	framework	for	Go.	tool

Virtual	Machines	and	Languages

Gelo	-	Extensible,	embeddable	interpreter	app
GoForth	-	A	simple	Forth	parser	app
GoLightly	-	A	flexible	and	lightweight	virtual	machine	with	runtime-
configurable	instruction	set	app
JavaScriptCore	-	This	is	a	wrapper	for	WebKit's	javascript	engine	for	Go.
lib
RubyGoLightly	-	An	experimental	port	of	TinyRb	to	Go	app
The	erGo?	Compiler	-	An	independent	implementation	of	the	Go	language.
app
brainfuck	-	A	brainfuck	virtual	machine	in	Go	app
forego	-	Forth	virtual	machine	tool
go-python	-	go	bindings	for	CPython	C-API	lib
go-scheme	-	Scheme	implementation	in	Go	app
goheader	-	Tool	for	translating	C	type	declarations	into	its	Go	equivalent	lib
golemon	-	A	port	of	the	Lemon	parser-generator	lib

http://code.google.com/p/sre2
https://github.com/jbochi/strogonoff
http://github.com/cznic/strutil
http://github.com/rjw57/unifun/pkg/uctricks
http://bitbucket.org/scriptdevil/egotags/
http://sigpipe.org/go/gotags/
http://github.com/AlexCombas/Tago
http://code.google.com/p/tcgl/
https://github.com/sdegutis/go.assert
https://bitbucket.org/tebeka/go2xunit
http://code.google.com/p/gomock/
http://code.google.com/p/gelo/
http://github.com/ArtemTitoulenko/GoForth
http://github.com/feyeleanor/GoLightly
https://bitbucket.org/rj/golang-javascriptcore/
http://github.com/feyeleanor/RubyGoLightly
http://newquistsolutions.com/index.php/ergo
http://bitbucket.org/yiyus/brainfuck/
https://github.com/unixdj/forego
https://bitbucket.org/binet/go-python
http://github.com/chrislloyd/go-scheme
http://github.com/kless/goheader
http://github.com/nsf/golemon

goll1e	-	An	LL(1)	parser	generator	for	the	Go	programming	language.	app
golua	-	Go	wrapper	for	LUA's	C	API	cgo
golua-fork	-	A	fork	of	GoLua	that	works	on	current	releases	of	Go	lib
gotcl	-	Tcl	interpreter	in	Go	lib
ngaro	-	A	ngaro	virtual	machine	to	run	retroForth	images	app
prescript	-	An	experimental	PostScript-like	scripting	language	app
turing	-	BF	virtual	machine	more	appropriate	for	school	settings.	lib

Web	Applications

Digestw	-	A	Web	Application	-	Twitter's	Timeline	Digest	app
GoURLShortener	-	A	frontend	for	the	http://is.gd/	URL	shortener	app
J��	Vai	Tarde	-	Unfollows	monitoring	for	Twitter	app
fourohfourfound	-	A	fallback	HTTP	server	that	may	redirect	requests	with
runtime	configurable	redirections	app
goals-calendar	-	A	web-based	Seinfeld	calendar	implemented	in	Go	app
goblog	-	A	static	blog	engine	lib
goflash	-	Flash	player	implementation	in	Go	language	app
gogallery	-	simple	web	server	with	an	emphasis	on	easily	browsing	images
app
goof	-	A	simple	http	server	to	exchange	files	over	http	(upload/download)
app
gopages	-	A	php-like	web	framework	that	allows	embedding	Go	code	in
web	pages	app
gopaste	-	The	code	that	runs	the	gopaste.org	pastebin	app
goplot	-	A	graphing	utility	with	some	curve-fitting	features,	includes	a	web
interface	app
gowiki	-	A	simple	wiki	in	Go	using	web.go	and	mustache.go	app
htdigest-go	-	Command	line	tool	for	managing	htdigest	files	lib
kurz.go	-	a	url	shortener	based	on	web.go	and	redis	app
now.go	-	A	simple	HTTP-based	to-do	queue.	app
sf_server	-	a	tiny	send	file	server	and	client	lib
webtf	-	Web	app	to	graphical	visualization	of	twitter	timelines	using	the
HTML5	<canvas>	tag	app

Web	Libraries

Cascadia	-	CSS	selector	library	lib

http://github.com/realistschuckle/goll1e
http://github.com/afitz/golua
https://github.com/xenith-studios/golua
http://code.google.com/p/gotcl/
http://www.anarchyinthetubes.com/hg/go/ngaro
http://github.com/jteeuwen/prescript
https://github.com/ahorn/turing
https://github.com/mocchira/digestw
http://github.com/NickPresta/GoURLShortener
http://github.com/nictuku/javaitarde
https://github.com/whee/fourohfourfound/
http://github.com/nono/goals-calendar
https://github.com/begoon/begoon.github.com
https://sourceforge.net/p/goflash/home/Home/
http://code.google.com/p/gogallery/
https://github.com/stone/goof
http://code.google.com/p/gopages/
http://github.com/vito/go-play/blob/master/paste.go
http://code.google.com/p/goplot/
http://github.com/nf/gowiki
https://github.com/Roorback/htdigest-go
https://github.com/fs111/kurz.go
http://github.com/alloy-d/now.go
http://code.google.com/p/rflk/source/browse/#svn%2Ftrunk%2Fsw%2FGo%2Fsend_file_go
http://code.google.com/p/webtf/
http://code.google.com/p/cascadia

GOAuth	-	OAuth	Consumer	lib
Go-OAuth	-	OAuth	1.0	client	lib
GoRest	-	An	extensive	configuration(tags)	based	RESTful	style	web-
services	framework.	lib
GoWeb	-	Frameworklet	that	simplifies	building	API's	in	Go	-	has	Ruby	on
Rails	style	routing	lib
Goldorak.Go	-	a	web	miniframework	built	using	mustache.go,	web.go	and
Go-Redis	lib
HTML	Transform	-	A	CSS	selector	based	html	scraping	and	transformation
library	lib
Kontl	-	A	client	for	kon.tl's	URL	shortening	service	lib
OAuth	Consumer	-	OAuth	1.0	consumer	implementation	lib
RSS-Go	-	RSS	and	ATOM	feed	reader	package	for	the	Go	programming
language.	lib
Stack	on	Go	-	Go	wrapper	for	Stack	Exchange	API	lib
Tideland	CGL	Web	-	Package	for	RESTful	web	applications	lib
Tideland	RESTful	Web	Framework	-	A	foundation	for	web	applications	and
servers	following	the	REST	principles	lib
Twister	-	A	framework	and	server	for	writing	web	applications.	lib
app.go	-	Web	framework	for	google	app	engine	lib
authcookie	-	Package	authcookie	implements	creation	and	verification	of
signed	authentication	cookies.	lib
bwl	-	a	set	of	libraries	to	help	build	web	sites	lib
captcha	-	Image	and	audio	captcha	generator	and	server	lib
ddg	-	DuckDuckGo	API	interface	lib
dgoogauth	-	Go	port	of	Google's	Authenticator	library	for	one-time
passwords	lib
falcore	-	Modular	HTTP	server	framework	lib
fcgigo	-	a	FastCGI	implementation	lib
gaerecords	-	Lightweight	wrapper	around	appengine/datastore	providing
Active	Record	and	DBO	style	management	of	data	lib
get2ch-go	-	a	library	to	access	the	2channel	Japanese	web	bulletin	board	lib
go-dealmap	-	Go	library	for	accessing	TheDealMap's	API	lib
go-dropbox	-	API	library	for	dropbox	lib
go-facebook	-	Go	implementations	of	facebook	APIs.	lib
go-fastweb	-	aims	to	be	a	simple,	small	and	clean	MVC	framework	for	go
lib
go-flickr	-	A	wrapper	for	Flickr's	API	lib
go-gravatar	-	Wrapper	for	the	Gravatar	API	lib

https://github.com/hokapoka/goauth
https://github.com/garyburd/go-oauth
http://code.google.com/p/gorest/
http://goweb.googlecode.com/
http://github.com/nono/Goldorak.Go
http://code.google.com/p/go-html-transform/
https://github.com/geovedi/kontl
http://github.com/mrjones/oauth
https://github.com/angusglashier/RSS-Go
https://github.com/laktek/Stack-on-Go
http://code.google.com/p/tcgl/
http://code.google.com/p/tideland-rwf/
http://github.com/garyburd/twister
https://github.com/georgenava/appgo
https://github.com/dchest/authcookie
http://github.com/bobappleyard/bwl
https://github.com/dchest/captcha
https://github.com/whee/ddg
https://github.com/dgryski/dgoogauth
https://github.com/ngmoco/falcore
http://github.com/jldailey/fcgigo
http://github.com/matryer/gae-records
http://github.com/tanaton/get2ch-go
http://github.com/ancientlore/go-dealmap
https://github.com/nickoneill/go-dropbox
https://github.com/Agon/go-facebook
http://code.google.com/p/go-fastweb/
https://github.com/mncaudill/go-flickr
https://github.com/ungerik/go-gravatar

go-gzip-file-server	-	A	net.http.Handler	similar	to	FileServer	that	serves
gzipped	content	lib
go-http-auth	-	HTTP	Basic	and	HTTP	Digest	authentication	lib
go-libGeoIP	-	GO	Lib	GeoIP	API	for	Maxmind	lib
go-pkg-rss	-	a	packages	that	reads	RSS	and	Atom	feeds	lib
go-rss	-	Simple	RSS	parser,	tested	with	Wordpress	feeds.	lib
go-start	-	A	high	level	web-framework	for	Go	lib
go-tripit	-	Go	API	library	for	the	TripIt	web	services	lib
go-twitter	-	another	Twitter	client	lib
go-twitter-oauth	-	a	simple	Twitter	client	(supports	OAuth)	lib
go-urlshortener	-	interface	to	google's	urlshorten	API	lib
go-webproject	-	Modular	web	application	framework	and	app	server	tool
godom	-	a	library	that	implements	a	small,	non-compliant	subset	of	the
W3C	DOM	Core	lib
gofastcgi	-	another	FastCGI	implementation	lib
gohaml	-	An	implementation	of	the	popular	XHTML	Abstraction	Markup
Language	using	the	Go	language.	lib
gojwt	-	Json	Web	Tokens	for	Go	lib
gomesh	-	A	simple	HTML	decoration	library.	lib
googtrans	-	unofficial	go	bindings	for	Google	Translate	API	v2	lib
gorilla	-	Go	web	toolkit	lib
gorouter	-	Simple	router	for	go	to	process	url	variables	lib
goscribble	-	An	MPD	Audioscrobble	lib
goweb	-	Lightweight	web	framework	for	Go	providing	Ruby	on	Rails	style
routing	lib
htmlfiller	-	Fills	in	html	forms	with	default	values	and	errors	a	la	Ian
Bicking's	htmlfill	for	Python	lib
http-gonsole	-	Speak	HTTP	like	a	local.	(the	simple,	intuitive	HTTP
console,	golang	version)	lib
httplib.go	-	'Low	level'	client	HTTP	library	that	provides	keep-alive
connections	and	generic	requests	lib
justintv	-	Justin.tv	REST	API	with	oauth	lib
mango	-	Mango	is	a	modular	web-application	framework	for	Go,	inspired
by	Rack,	and	PEP333.	lib
mustache.go	-	an	implementation	of	the	Mustache	template	language	lib
passwordreset	-	Creation	and	verification	of	secure	tokens	useful	for
implementation	of	"reset	forgotten	password"	feature	in	web	applications.
lib
postmark	-	Access	postmark	API	from	Go	lib

https://github.com/joaodasilva/go-gzip-file-server
https://github.com/abbot/go-http-auth
http://github.com/nranchev/go-libGeoIP
http://github.com/jteeuwen/go-pkg-rss
https://github.com/ungerik/go-rss
https://github.com/ungerik/go-start
http://github.com/ancientlore/go-tripit
http://github.com/jb55/go-twitter
http://github.com/montsamu/go-twitter-oauth
https://github.com/mattn/go-urlshortener
http://go-webproject.appspot.com
http://code.google.com/p/godom/
https://launchpad.net/~ericmoritz/+junk/gofastcgi
http://github.com/realistschuckle/gohaml
https://github.com/mzgoddard/gojwt
https://github.com/tuxychandru/gomesh
https://github.com/bthomson/googtrans
http://code.google.com/p/gorilla/
https://github.com/rsentry/gorouter
https://github.com/amir/goscribble
http://code.google.com/p/goweb/
http://github.com/griffy/htmlfiller
http://github.com/mattn/http-gonsole
http://github.com/hoisie/httplib.go
https://github.com/Agon/justintv
http://github.com/paulbellamy/mango
http://github.com/hoisie/mustache.go
https://github.com/dchest/passwordreset
http://github.com/gcmurphy/postmark

pusher.go	-	HTTP	Server	Push	module	for	the	standard	http	package	lib
rest.go	-	Library	ti	simplify	implementation	of	REST	servers	and	clients.	lib
rest.go	(forked)	-	forked	rest.go	for	improvements	and	REST	consistency
lib
rest2go	-	Based	on	rest.go,	forked	for	improvements	and	REST	consistency
lib
robotstxt	-	The	robots.txt	exclusion	protocol	implementation.	Allows	to
parse	and	query	robots.txt	file.	lib
routes.go	-	http	routing	API	similar	to	expressjs	or	sinatra	lib
seshcookie	-	A	web	session	library	inspired	by	Beaker	lib
web	-	A	web	framework	with	views	for	constructing	web	page,	supports
FCGI,	CGI.	lib
web.go	-	a	simple	framework	to	write	webapps	lib
webdriver	-	WebDriver	(Selenium)	client	lib
webtestutil	-	Web	and	HTTP	functional	testing	utilities.	Includes	Gorilla
testing	support.	lib
wfdr	-	Simple	web	framework	designed	for	and	written	in	go.	Works	with
other	lanauges	as	well,	but	not	as	well.	lib
xmldom	-	a	library	that	implements	a	small,	non-compliant	subset	of	the
W3C	DOM	Core	lib
xsrftoken	-	A	package	for	generating	and	validating	tokens	used	in
preventing	XSRF	attacks.	lib

Windows

gform	-	An	easy	to	use	Windows	GUI	toolkit	for	Go	lib
go-Windows-begin	-	for	the	absolute	Windows-Go	beginner
go-ole	-	win32	ole	implementation	for	golang	lib
w32	-	Windows	API	wrapper	for	Go.	lib
walk	-	"Windows	Application	Library	Kit"	for	the	Go	Programming
Language	lib

http://github.com/madari/pusher.go
https://github.com/nathankerr/rest.go
https://github.com/Kissaki/rest.go
https://github.com/Kissaki/rest2go
https://github.com/temoto/robotstxt.go
https://github.com/bradrydzewski/routes.go
https://github.com/bpowers/seshcookie
https://github.com/duzy/web
http://github.com/hoisie/web.go
https://bitbucket.org/tebeka/selenium/src
http://github.com/chlu/webtestutil
https://github.com/crazy2be/wfdr
https://bitbucket.org/rj/golang-xmldom
http://code.google.com/p/xsrftoken
https://github.com/AllenDang/gform
https://github.com/yoffset/absolute-Windows---Go-Language-beginner
https://github.com/mattn/go-ole/
https://github.com/AllenDang/w32
https://github.com/lxn/walk

Source	file
src/pkg/archive/tar/common.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	tar	implements	access	to	tar	archives.

					6	 //	It	aims	to	cover	most	of	the	variations,	including	those	produced

					7	 //	by	GNU	and	BSD	tars.

					8	 //

					9	 //	References:

				10	 //			http://www.freebsd.org/cgi/man.cgi?query=tar&sektion=5

				11	 //			http://www.gnu.org/software/tar/manual/html_node/Standard.html

				12	 package	tar

				13	

				14	 import	"time"

				15	

				16	 const	(

				17	 	 blockSize	=	512

				18	

				19	 	 //	Types

				20	 	 TypeReg											=	'0'				//	regular	file

				21	 	 TypeRegA										=	'\x00'	//	regular	file

				22	 	 TypeLink										=	'1'				//	hard	link

				23	 	 TypeSymlink							=	'2'				//	symbolic	link

				24	 	 TypeChar										=	'3'				//	character	device	node

				25	 	 TypeBlock									=	'4'				//	block	device	node

				26	 	 TypeDir											=	'5'				//	directory

				27	 	 TypeFifo										=	'6'				//	fifo	node

				28	 	 TypeCont										=	'7'				//	reserved

				29	 	 TypeXHeader							=	'x'				//	extended	header

				30	 	 TypeXGlobalHeader	=	'g'				//	global	extended	header

				31)

				32	

				33	 //	A	Header	represents	a	single	header	in	a	tar	archive.

				34	 //	Some	fields	may	not	be	populated.

				35	 type	Header	struct	{

				36	 	 Name							string				//	name	of	header	file	entry

				37	 	 Mode							int64					//	permission	and	mode	bits

				38	 	 Uid								int							//	user	id	of	owner

				39	 	 Gid								int							//	group	id	of	owner

				40	 	 Size							int64					//	length	in	bytes

				41	 	 ModTime				time.Time	//	modified	time

				42	 	 Typeflag			byte						//	type	of	header	entry

				43	 	 Linkname			string				//	target	name	of	link

				44	 	 Uname						string				//	user	name	of	owner

				45	 	 Gname						string				//	group	name	of	owner

				46	 	 Devmajor			int64					//	major	number	of	character	or	block	device

				47	 	 Devminor			int64					//	minor	number	of	character	or	block	device

				48	 	 AccessTime	time.Time	//	access	time

				49	 	 ChangeTime	time.Time	//	status	change	time

				50	 }

				51	

				52	 var	zeroBlock	=	make([]byte,	blockSize)

				53	

				54	 //	POSIX	specifies	a	sum	of	the	unsigned	byte	values,	but	the	Sun	tar	uses	signed	byte	values.

				55	 //	We	compute	and	return	both.

				56	 func	checksum(header	[]byte)	(unsigned	int64,	signed	int64)	{

				57	 	 for	i	:=	0;	i	<	len(header);	i++	{

				58	 	 	 if	i	==	148	{

				59	 	 	 	 //	The	chksum	field	(header[148:156])	is	special:	it	should	be	treated	as	space	bytes.

				60	 	 	 	 unsigned	+=	'	'	*	8

				61	 	 	 	 signed	+=	'	'	*	8

				62	 	 	 	 i	+=	7

				63	 	 	 	 continue

				64	 	 	 }

				65	 	 	 unsigned	+=	int64(header[i])

				66	 	 	 signed	+=	int64(int8(header[i]))

				67	 	 }

				68	 	 return

				69	 }

				70	

				71	 type	slicer	[]byte

				72	

				73	 func	(sp	*slicer)	next(n	int)	(b	[]byte)	{

				74	 	 s	:=	*sp

				75	 	 b,	*sp	=	s[0:n],	s[n:]

				76	 	 return

				77	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/archive/tar/reader.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	tar

					6	

					7	 //	TODO(dsymonds):

					8	 //			-	pax	extensions

					9	

				10	 import	(

				11	 	 "bytes"

				12	 	 "errors"

				13	 	 "io"

				14	 	 "io/ioutil"

				15	 	 "os"

				16	 	 "strconv"

				17	 	 "time"

				18)

				19	

				20	 var	(

				21	 	 ErrHeader	=	errors.New("archive/tar:	invalid	tar	header")

				22)

				23	

				24	 //	A	Reader	provides	sequential	access	to	the	contents	of	a	tar	archive.

				25	 //	A	tar	archive	consists	of	a	sequence	of	files.

				26	 //	The	Next	method	advances	to	the	next	file	in	the	archive	(including	the	first),

				27	 //	and	then	it	can	be	treated	as	an	io.Reader	to	access	the	file's	data.

				28	 //

				29	 //	Example:

				30	 //	 tr	:=	tar.NewReader(r)

				31	 //	 for	{

				32	 //	 	 hdr,	err	:=	tr.Next()

				33	 //	 	 if	err	==	io.EOF	{

				34	 //	 	 	 //	end	of	tar	archive

				35	 //	 	 	 break

				36	 //	 	 }

				37	 //	 	 if	err	!=	nil	{

				38	 //	 	 	 //	handle	error

				39	 //	 	 }

				40	 //	 	 io.Copy(data,	tr)

				41	 //	 }

				42	 type	Reader	struct	{

				43	 	 r			io.Reader

				44	 	 err	error

				45	 	 nb		int64	//	number	of	unread	bytes	for	current	file	entry

				46	 	 pad	int64	//	amount	of	padding	(ignored)	after	current	file	entry

				47	 }

				48	

				49	 //	NewReader	creates	a	new	Reader	reading	from	r.

				50	 func	NewReader(r	io.Reader)	*Reader	{	return	&Reader{r:	r}	}

				51	

				52	 //	Next	advances	to	the	next	entry	in	the	tar	archive.

				53	 func	(tr	*Reader)	Next()	(*Header,	error)	{

				54	 	 var	hdr	*Header

				55	 	 if	tr.err	==	nil	{

				56	 	 	 tr.skipUnread()

				57	 	 }

				58	 	 if	tr.err	==	nil	{

				59	 	 	 hdr	=	tr.readHeader()

				60	 	 }

				61	 	 return	hdr,	tr.err

				62	 }

				63	

				64	 //	Parse	bytes	as	a	NUL-terminated	C-style	string.

				65	 //	If	a	NUL	byte	is	not	found	then	the	whole	slice	is	returned	as	a	string.

				66	 func	cString(b	[]byte)	string	{

				67	 	 n	:=	0

				68	 	 for	n	<	len(b)	&&	b[n]	!=	0	{

				69	 	 	 n++

				70	 	 }

				71	 	 return	string(b[0:n])

				72	 }

				73	

				74	 func	(tr	*Reader)	octal(b	[]byte)	int64	{

				75	 	 //	Removing	leading	spaces.

				76	 	 for	len(b)	>	0	&&	b[0]	==	'	'	{

				77	 	 	 b	=	b[1:]

				78	 	 }

				79	 	 //	Removing	trailing	NULs	and	spaces.

				80	 	 for	len(b)	>	0	&&	(b[len(b)-1]	==	'	'	||	b[len(b)-1]	==	'\x00')	{

				81	 	 	 b	=	b[0	:	len(b)-1]

				82	 	 }

				83	 	 x,	err	:=	strconv.ParseUint(cString(b),	8,	64)

				84	 	 if	err	!=	nil	{

				85	 	 	 tr.err	=	err

				86	 	 }

				87	 	 return	int64(x)

				88	 }

				89	

				90	 //	Skip	any	unread	bytes	in	the	existing	file	entry,	as	well	as	any	alignment	padding.

				91	 func	(tr	*Reader)	skipUnread()	{

				92	 	 nr	:=	tr.nb	+	tr.pad	//	number	of	bytes	to	skip

				93	 	 tr.nb,	tr.pad	=	0,	0

				94	 	 if	sr,	ok	:=	tr.r.(io.Seeker);	ok	{

				95	 	 	 if	_,	err	:=	sr.Seek(nr,	os.SEEK_CUR);	err	==	nil	{

				96	 	 	 	 return

				97	 	 	 }

				98	 	 }

				99	 	 _,	tr.err	=	io.CopyN(ioutil.Discard,	tr.r,	nr)

			100	 }

			101	

			102	 func	(tr	*Reader)	verifyChecksum(header	[]byte)	bool	{

			103	 	 if	tr.err	!=	nil	{

			104	 	 	 return	false

			105	 	 }

			106	

			107	 	 given	:=	tr.octal(header[148:156])

			108	 	 unsigned,	signed	:=	checksum(header)

			109	 	 return	given	==	unsigned	||	given	==	signed

			110	 }

			111	

			112	 func	(tr	*Reader)	readHeader()	*Header	{

			113	 	 header	:=	make([]byte,	blockSize)

			114	 	 if	_,	tr.err	=	io.ReadFull(tr.r,	header);	tr.err	!=	nil	{

			115	 	 	 return	nil

			116	 	 }

			117	

			118	 	 //	Two	blocks	of	zero	bytes	marks	the	end	of	the	archive.

			119	 	 if	bytes.Equal(header,	zeroBlock[0:blockSize])	{

			120	 	 	 if	_,	tr.err	=	io.ReadFull(tr.r,	header);	tr.err	!=	nil	{

			121	 	 	 	 return	nil

			122	 	 	 }

			123	 	 	 if	bytes.Equal(header,	zeroBlock[0:blockSize])	{

			124	 	 	 	 tr.err	=	io.EOF

			125	 	 	 }	else	{

			126	 	 	 	 tr.err	=	ErrHeader	//	zero	block	and	then	non-zero	block

			127	 	 	 }

			128	 	 	 return	nil

			129	 	 }

			130	

			131	 	 if	!tr.verifyChecksum(header)	{

			132	 	 	 tr.err	=	ErrHeader

			133	 	 	 return	nil

			134	 	 }

			135	

			136	 	 //	Unpack

			137	 	 hdr	:=	new(Header)

			138	 	 s	:=	slicer(header)

			139	

			140	 	 hdr.Name	=	cString(s.next(100))

			141	 	 hdr.Mode	=	tr.octal(s.next(8))

			142	 	 hdr.Uid	=	int(tr.octal(s.next(8)))

			143	 	 hdr.Gid	=	int(tr.octal(s.next(8)))

			144	 	 hdr.Size	=	tr.octal(s.next(12))

			145	 	 hdr.ModTime	=	time.Unix(tr.octal(s.next(12)),	0)

			146	 	 s.next(8)	//	chksum

			147	 	 hdr.Typeflag	=	s.next(1)[0]

			148	 	 hdr.Linkname	=	cString(s.next(100))

			149	

			150	 	 //	The	remainder	of	the	header	depends	on	the	value	of	magic.

			151	 	 //	The	original	(v7)	version	of	tar	had	no	explicit	magic	field,

			152	 	 //	so	its	magic	bytes,	like	the	rest	of	the	block,	are	NULs.

			153	 	 magic	:=	string(s.next(8))	//	contains	version	field	as	well.

			154	 	 var	format	string

			155	 	 switch	magic	{

			156	 	 case	"ustar\x0000":	//	POSIX	tar	(1003.1-1988)

			157	 	 	 if	string(header[508:512])	==	"tar\x00"	{

			158	 	 	 	 format	=	"star"

			159	 	 	 }	else	{

			160	 	 	 	 format	=	"posix"

			161	 	 	 }

			162	 	 case	"ustar		\x00":	//	old	GNU	tar

			163	 	 	 format	=	"gnu"

			164	 	 }

			165	

			166	 	 switch	format	{

			167	 	 case	"posix",	"gnu",	"star":

			168	 	 	 hdr.Uname	=	cString(s.next(32))

			169	 	 	 hdr.Gname	=	cString(s.next(32))

			170	 	 	 devmajor	:=	s.next(8)

			171	 	 	 devminor	:=	s.next(8)

			172	 	 	 if	hdr.Typeflag	==	TypeChar	||	hdr.Typeflag	==	TypeBlock	{

			173	 	 	 	 hdr.Devmajor	=	tr.octal(devmajor)

			174	 	 	 	 hdr.Devminor	=	tr.octal(devminor)

			175	 	 	 }

			176	 	 	 var	prefix	string

			177	 	 	 switch	format	{

			178	 	 	 case	"posix",	"gnu":

			179	 	 	 	 prefix	=	cString(s.next(155))

			180	 	 	 case	"star":

			181	 	 	 	 prefix	=	cString(s.next(131))

			182	 	 	 	 hdr.AccessTime	=	time.Unix(tr.octal(s.next(12)),	0)

			183	 	 	 	 hdr.ChangeTime	=	time.Unix(tr.octal(s.next(12)),	0)

			184	 	 	 }

			185	 	 	 if	len(prefix)	>	0	{

			186	 	 	 	 hdr.Name	=	prefix	+	"/"	+	hdr.Name

			187	 	 	 }

			188	 	 }

			189	

			190	 	 if	tr.err	!=	nil	{

			191	 	 	 tr.err	=	ErrHeader

			192	 	 	 return	nil

			193	 	 }

			194	

			195	 	 //	Maximum	value	of	hdr.Size	is	64	GB	(12	octal	digits),

			196	 	 //	so	there's	no	risk	of	int64	overflowing.

			197	 	 tr.nb	=	int64(hdr.Size)

			198	 	 tr.pad	=	-tr.nb	&	(blockSize	-	1)	//	blockSize	is	a	power	of	two

			199	

			200	 	 return	hdr

			201	 }

			202	

			203	 //	Read	reads	from	the	current	entry	in	the	tar	archive.

			204	 //	It	returns	0,	io.EOF	when	it	reaches	the	end	of	that	entry,

			205	 //	until	Next	is	called	to	advance	to	the	next	entry.

			206	 func	(tr	*Reader)	Read(b	[]byte)	(n	int,	err	error)	{

			207	 	 if	tr.nb	==	0	{

			208	 	 	 //	file	consumed

			209	 	 	 return	0,	io.EOF

			210	 	 }

			211	

			212	 	 if	int64(len(b))	>	tr.nb	{

			213	 	 	 b	=	b[0:tr.nb]

			214	 	 }

			215	 	 n,	err	=	tr.r.Read(b)

			216	 	 tr.nb	-=	int64(n)

			217	

			218	 	 if	err	==	io.EOF	&&	tr.nb	>	0	{

			219	 	 	 err	=	io.ErrUnexpectedEOF

			220	 	 }

			221	 	 tr.err	=	err

			222	 	 return

			223	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/archive/tar/writer.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	tar

					6	

					7	 //	TODO(dsymonds):

					8	 //	-	catch	more	errors	(no	first	header,	etc.)

					9	

				10	 import	(

				11	 	 "errors"

				12	 	 "fmt"

				13	 	 "io"

				14	 	 "strconv"

				15)

				16	

				17	 var	(

				18	 	 ErrWriteTooLong				=	errors.New("archive/tar:	write	too	long")

				19	 	 ErrFieldTooLong				=	errors.New("archive/tar:	header	field	too	long")

				20	 	 ErrWriteAfterClose	=	errors.New("archive/tar:	write	after	close")

				21)

				22	

				23	 //	A	Writer	provides	sequential	writing	of	a	tar	archive	in	POSIX.1	format.

				24	 //	A	tar	archive	consists	of	a	sequence	of	files.

				25	 //	Call	WriteHeader	to	begin	a	new	file,	and	then	call	Write	to	supply	that	file's	data,

				26	 //	writing	at	most	hdr.Size	bytes	in	total.

				27	 //

				28	 //	Example:

				29	 //	 tw	:=	tar.NewWriter(w)

				30	 //	 hdr	:=	new(Header)

				31	 //	 hdr.Size	=	length	of	data	in	bytes

				32	 //	 //	populate	other	hdr	fields	as	desired

				33	 //	 if	err	:=	tw.WriteHeader(hdr);	err	!=	nil	{

				34	 //	 	 //	handle	error

				35	 //	 }

				36	 //	 io.Copy(tw,	data)

				37	 //	 tw.Close()

				38	 type	Writer	struct	{

				39	 	 w										io.Writer

				40	 	 err								error

				41	 	 nb									int64	//	number	of	unwritten	bytes	for	current	file	entry

				42	 	 pad								int64	//	amount	of	padding	to	write	after	current	file	entry

				43	 	 closed					bool

				44	 	 usedBinary	bool	//	whether	the	binary	numeric	field	extension	was	used

				45	 }

				46	

				47	 //	NewWriter	creates	a	new	Writer	writing	to	w.

				48	 func	NewWriter(w	io.Writer)	*Writer	{	return	&Writer{w:	w}	}

				49	

				50	 //	Flush	finishes	writing	the	current	file	(optional).

				51	 func	(tw	*Writer)	Flush()	error	{

				52	 	 if	tw.nb	>	0	{

				53	 	 	 tw.err	=	fmt.Errorf("archive/tar:	missed	writing	%d	bytes",	tw.nb)

				54	 	 	 return	tw.err

				55	 	 }

				56	

				57	 	 n	:=	tw.nb	+	tw.pad

				58	 	 for	n	>	0	&&	tw.err	==	nil	{

				59	 	 	 nr	:=	n

				60	 	 	 if	nr	>	blockSize	{

				61	 	 	 	 nr	=	blockSize

				62	 	 	 }

				63	 	 	 var	nw	int

				64	 	 	 nw,	tw.err	=	tw.w.Write(zeroBlock[0:nr])

				65	 	 	 n	-=	int64(nw)

				66	 	 }

				67	 	 tw.nb	=	0

				68	 	 tw.pad	=	0

				69	 	 return	tw.err

				70	 }

				71	

				72	 //	Write	s	into	b,	terminating	it	with	a	NUL	if	there	is	room.

				73	 func	(tw	*Writer)	cString(b	[]byte,	s	string)	{

				74	 	 if	len(s)	>	len(b)	{

				75	 	 	 if	tw.err	==	nil	{

				76	 	 	 	 tw.err	=	ErrFieldTooLong

				77	 	 	 }

				78	 	 	 return

				79	 	 }

				80	 	 copy(b,	s)

				81	 	 if	len(s)	<	len(b)	{

				82	 	 	 b[len(s)]	=	0

				83	 	 }

				84	 }

				85	

				86	 //	Encode	x	as	an	octal	ASCII	string	and	write	it	into	b	with	leading	zeros.

				87	 func	(tw	*Writer)	octal(b	[]byte,	x	int64)	{

				88	 	 s	:=	strconv.FormatInt(x,	8)

				89	 	 //	leading	zeros,	but	leave	room	for	a	NUL.

				90	 	 for	len(s)+1	<	len(b)	{

				91	 	 	 s	=	"0"	+	s

				92	 	 }

				93	 	 tw.cString(b,	s)

				94	 }

				95	

				96	 //	Write	x	into	b,	either	as	octal	or	as	binary	(GNUtar/star	extension).

				97	 func	(tw	*Writer)	numeric(b	[]byte,	x	int64)	{

				98	 	 //	Try	octal	first.

				99	 	 s	:=	strconv.FormatInt(x,	8)

			100	 	 if	len(s)	<	len(b)	{

			101	 	 	 tw.octal(b,	x)

			102	 	 	 return

			103	 	 }

			104	 	 //	Too	big:	use	binary	(big-endian).

			105	 	 tw.usedBinary	=	true

			106	 	 for	i	:=	len(b)	-	1;	x	>	0	&&	i	>=	0;	i--	{

			107	 	 	 b[i]	=	byte(x)

			108	 	 	 x	>>=	8

			109	 	 }

			110	 	 b[0]	|=	0x80	//	highest	bit	indicates	binary	format

			111	 }

			112	

			113	 //	WriteHeader	writes	hdr	and	prepares	to	accept	the	file's	contents.

			114	 //	WriteHeader	calls	Flush	if	it	is	not	the	first	header.

			115	 //	Calling	after	a	Close	will	return	ErrWriteAfterClose.

			116	 func	(tw	*Writer)	WriteHeader(hdr	*Header)	error	{

			117	 	 if	tw.closed	{

			118	 	 	 return	ErrWriteAfterClose

			119	 	 }

			120	 	 if	tw.err	==	nil	{

			121	 	 	 tw.Flush()

			122	 	 }

			123	 	 if	tw.err	!=	nil	{

			124	 	 	 return	tw.err

			125	 	 }

			126	

			127	 	 tw.nb	=	int64(hdr.Size)

			128	 	 tw.pad	=	-tw.nb	&	(blockSize	-	1)	//	blockSize	is	a	power	of	two

			129	

			130	 	 header	:=	make([]byte,	blockSize)

			131	 	 s	:=	slicer(header)

			132	

			133	 	 //	TODO(dsymonds):	handle	names	longer	than	100	chars

			134	 	 copy(s.next(100),	[]byte(hdr.Name))

			135	

			136	 	 tw.octal(s.next(8),	hdr.Mode)														//	100:108

			137	 	 tw.numeric(s.next(8),	int64(hdr.Uid))						//	108:116

			138	 	 tw.numeric(s.next(8),	int64(hdr.Gid))						//	116:124

			139	 	 tw.numeric(s.next(12),	hdr.Size)											//	124:136

			140	 	 tw.numeric(s.next(12),	hdr.ModTime.Unix())	//	136:148

			141	 	 s.next(8)																																		//	chksum	(148:156)

			142	 	 s.next(1)[0]	=	hdr.Typeflag																//	156:157

			143	 	 tw.cString(s.next(100),	hdr.Linkname)						//	linkname	(157:257)

			144	 	 copy(s.next(8),	[]byte("ustar\x0000"))					//	257:265

			145	 	 tw.cString(s.next(32),	hdr.Uname)										//	265:297

			146	 	 tw.cString(s.next(32),	hdr.Gname)										//	297:329

			147	 	 tw.numeric(s.next(8),	hdr.Devmajor)								//	329:337

			148	 	 tw.numeric(s.next(8),	hdr.Devminor)								//	337:345

			149	

			150	 	 //	Use	the	GNU	magic	instead	of	POSIX	magic	if	we	used	any	GNU	extensions.

			151	 	 if	tw.usedBinary	{

			152	 	 	 copy(header[257:265],	[]byte("ustar		\x00"))

			153	 	 }

			154	

			155	 	 //	The	chksum	field	is	terminated	by	a	NUL	and	a	space.

			156	 	 //	This	is	different	from	the	other	octal	fields.

			157	 	 chksum,	_	:=	checksum(header)

			158	 	 tw.octal(header[148:155],	chksum)

			159	 	 header[155]	=	'	'

			160	

			161	 	 if	tw.err	!=	nil	{

			162	 	 	 //	problem	with	header;	probably	integer	too	big	for	a	field.

			163	 	 	 return	tw.err

			164	 	 }

			165	

			166	 	 _,	tw.err	=	tw.w.Write(header)

			167	

			168	 	 return	tw.err

			169	 }

			170	

			171	 //	Write	writes	to	the	current	entry	in	the	tar	archive.

			172	 //	Write	returns	the	error	ErrWriteTooLong	if	more	than

			173	 //	hdr.Size	bytes	are	written	after	WriteHeader.

			174	 func	(tw	*Writer)	Write(b	[]byte)	(n	int,	err	error)	{

			175	 	 if	tw.closed	{

			176	 	 	 err	=	ErrWriteTooLong

			177	 	 	 return

			178	 	 }

			179	 	 overwrite	:=	false

			180	 	 if	int64(len(b))	>	tw.nb	{

			181	 	 	 b	=	b[0:tw.nb]

			182	 	 	 overwrite	=	true

			183	 	 }

			184	 	 n,	err	=	tw.w.Write(b)

			185	 	 tw.nb	-=	int64(n)

			186	 	 if	err	==	nil	&&	overwrite	{

			187	 	 	 err	=	ErrWriteTooLong

			188	 	 	 return

			189	 	 }

			190	 	 tw.err	=	err

			191	 	 return

			192	 }

			193	

			194	 //	Close	closes	the	tar	archive,	flushing	any	unwritten

			195	 //	data	to	the	underlying	writer.

			196	 func	(tw	*Writer)	Close()	error	{

			197	 	 if	tw.err	!=	nil	||	tw.closed	{

			198	 	 	 return	tw.err

			199	 	 }

			200	 	 tw.Flush()

			201	 	 tw.closed	=	true

			202	 	 if	tw.err	!=	nil	{

			203	 	 	 return	tw.err

			204	 	 }

			205	

			206	 	 //	trailer:	two	zero	blocks

			207	 	 for	i	:=	0;	i	<	2;	i++	{

			208	 	 	 _,	tw.err	=	tw.w.Write(zeroBlock)

			209	 	 	 if	tw.err	!=	nil	{

			210	 	 	 	 break

			211	 	 	 }

			212	 	 }

			213	 	 return	tw.err

			214	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/archive/zip/reader.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	zip

					6	

					7	 import	(

					8	 	 "bufio"

					9	 	 "compress/flate"

				10	 	 "encoding/binary"

				11	 	 "errors"

				12	 	 "hash"

				13	 	 "hash/crc32"

				14	 	 "io"

				15	 	 "io/ioutil"

				16	 	 "os"

				17)

				18	

				19	 var	(

				20	 	 ErrFormat				=	errors.New("zip:	not	a	valid	zip	file")

				21	 	 ErrAlgorithm	=	errors.New("zip:	unsupported	compression	algorithm")

				22	 	 ErrChecksum		=	errors.New("zip:	checksum	error")

				23)

				24	

				25	 type	Reader	struct	{

				26	 	 r							io.ReaderAt

				27	 	 File				[]*File

				28	 	 Comment	string

				29	 }

				30	

				31	 type	ReadCloser	struct	{

				32	 	 f	*os.File

				33	 	 Reader

				34	 }

				35	

				36	 type	File	struct	{

				37	 	 FileHeader

				38	 	 zipr									io.ReaderAt

				39	 	 zipsize						int64

				40	 	 headerOffset	int64

				41	 }

				42	

				43	 func	(f	*File)	hasDataDescriptor()	bool	{

				44	 	 return	f.Flags&0x8	!=	0

				45	 }

				46	

				47	 //	OpenReader	will	open	the	Zip	file	specified	by	name	and	return	a	ReadCloser.

				48	 func	OpenReader(name	string)	(*ReadCloser,	error)	{

				49	 	 f,	err	:=	os.Open(name)

				50	 	 if	err	!=	nil	{

				51	 	 	 return	nil,	err

				52	 	 }

				53	 	 fi,	err	:=	f.Stat()

				54	 	 if	err	!=	nil	{

				55	 	 	 f.Close()

				56	 	 	 return	nil,	err

				57	 	 }

				58	 	 r	:=	new(ReadCloser)

				59	 	 if	err	:=	r.init(f,	fi.Size());	err	!=	nil	{

				60	 	 	 f.Close()

				61	 	 	 return	nil,	err

				62	 	 }

				63	 	 r.f	=	f

				64	 	 return	r,	nil

				65	 }

				66	

				67	 //	NewReader	returns	a	new	Reader	reading	from	r,	which	is	assumed	to

				68	 //	have	the	given	size	in	bytes.

				69	 func	NewReader(r	io.ReaderAt,	size	int64)	(*Reader,	error)	{

				70	 	 zr	:=	new(Reader)

				71	 	 if	err	:=	zr.init(r,	size);	err	!=	nil	{

				72	 	 	 return	nil,	err

				73	 	 }

				74	 	 return	zr,	nil

				75	 }

				76	

				77	 func	(z	*Reader)	init(r	io.ReaderAt,	size	int64)	error	{

				78	 	 end,	err	:=	readDirectoryEnd(r,	size)

				79	 	 if	err	!=	nil	{

				80	 	 	 return	err

				81	 	 }

				82	 	 z.r	=	r

				83	 	 z.File	=	make([]*File,	0,	end.directoryRecords)

				84	 	 z.Comment	=	end.comment

				85	 	 rs	:=	io.NewSectionReader(r,	0,	size)

				86	 	 if	_,	err	=	rs.Seek(int64(end.directoryOffset),	os.SEEK_SET);	err	!=	nil	{

				87	 	 	 return	err

				88	 	 }

				89	 	 buf	:=	bufio.NewReader(rs)

				90	

				91	 	 //	The	count	of	files	inside	a	zip	is	truncated	to	fit	in	a	uint16.

				92	 	 //	Gloss	over	this	by	reading	headers	until	we	encounter

				93	 	 //	a	bad	one,	and	then	only	report	a	ErrFormat	or	UnexpectedEOF	if

				94	 	 //	the	file	count	modulo	65536	is	incorrect.

				95	 	 for	{

				96	 	 	 f	:=	&File{zipr:	r,	zipsize:	size}

				97	 	 	 err	=	readDirectoryHeader(f,	buf)

				98	 	 	 if	err	==	ErrFormat	||	err	==	io.ErrUnexpectedEOF	{

				99	 	 	 	 break

			100	 	 	 }

			101	 	 	 if	err	!=	nil	{

			102	 	 	 	 return	err

			103	 	 	 }

			104	 	 	 z.File	=	append(z.File,	f)

			105	 	 }

			106	 	 if	uint16(len(z.File))	!=	end.directoryRecords	{

			107	 	 	 //	Return	the	readDirectoryHeader	error	if	we	read

			108	 	 	 //	the	wrong	number	of	directory	entries.

			109	 	 	 return	err

			110	 	 }

			111	 	 return	nil

			112	 }

			113	

			114	 //	Close	closes	the	Zip	file,	rendering	it	unusable	for	I/O.

			115	 func	(rc	*ReadCloser)	Close()	error	{

			116	 	 return	rc.f.Close()

			117	 }

			118	

			119	 //	Open	returns	a	ReadCloser	that	provides	access	to	the	File's	contents.

			120	 //	Multiple	files	may	be	read	concurrently.

			121	 func	(f	*File)	Open()	(rc	io.ReadCloser,	err	error)	{

			122	 	 bodyOffset,	err	:=	f.findBodyOffset()

			123	 	 if	err	!=	nil	{

			124	 	 	 return

			125	 	 }

			126	 	 size	:=	int64(f.CompressedSize)

			127	 	 r	:=	io.NewSectionReader(f.zipr,	f.headerOffset+bodyOffset,	size)

			128	 	 switch	f.Method	{

			129	 	 case	Store:	//	(no	compression)

			130	 	 	 rc	=	ioutil.NopCloser(r)

			131	 	 case	Deflate:

			132	 	 	 rc	=	flate.NewReader(r)

			133	 	 default:

			134	 	 	 err	=	ErrAlgorithm

			135	 	 	 return

			136	 	 }

			137	 	 var	desr	io.Reader

			138	 	 if	f.hasDataDescriptor()	{

			139	 	 	 desr	=	io.NewSectionReader(f.zipr,	f.headerOffset+bodyOffset+size,	dataDescriptorLen)

			140	 	 }

			141	 	 rc	=	&checksumReader{rc,	crc32.NewIEEE(),	f,	desr,	nil}

			142	 	 return

			143	 }

			144	

			145	 type	checksumReader	struct	{

			146	 	 rc			io.ReadCloser

			147	 	 hash	hash.Hash32

			148	 	 f				*File

			149	 	 desr	io.Reader	//	if	non-nil,	where	to	read	the	data	descriptor

			150	 	 err		error					//	sticky	error

			151	 }

			152	

			153	 func	(r	*checksumReader)	Read(b	[]byte)	(n	int,	err	error)	{

			154	 	 if	r.err	!=	nil	{

			155	 	 	 return	0,	r.err

			156	 	 }

			157	 	 n,	err	=	r.rc.Read(b)

			158	 	 r.hash.Write(b[:n])

			159	 	 if	err	==	nil	{

			160	 	 	 return

			161	 	 }

			162	 	 if	err	==	io.EOF	{

			163	 	 	 if	r.desr	!=	nil	{

			164	 	 	 	 if	err1	:=	readDataDescriptor(r.desr,	r.f);	err1	!=	nil	{

			165	 	 	 	 	 err	=	err1

			166	 	 	 	 }	else	if	r.hash.Sum32()	!=	r.f.CRC32	{

			167	 	 	 	 	 err	=	ErrChecksum

			168	 	 	 	 }

			169	 	 	 }	else	{

			170	 	 	 	 //	If	there's	not	a	data	descriptor,	we	still	compare

			171	 	 	 	 //	the	CRC32	of	what	we've	read	against	the	file	header

			172	 	 	 	 //	or	TOC's	CRC32,	if	it	seems	like	it	was	set.

			173	 	 	 	 if	r.f.CRC32	!=	0	&&	r.hash.Sum32()	!=	r.f.CRC32	{

			174	 	 	 	 	 err	=	ErrChecksum

			175	 	 	 	 }

			176	 	 	 }

			177	 	 }

			178	 	 r.err	=	err

			179	 	 return

			180	 }

			181	

			182	 func	(r	*checksumReader)	Close()	error	{	return	r.rc.Close()	}

			183	

			184	 //	findBodyOffset	does	the	minimum	work	to	verify	the	file	has	a	header

			185	 //	and	returns	the	file	body	offset.

			186	 func	(f	*File)	findBodyOffset()	(int64,	error)	{

			187	 	 r	:=	io.NewSectionReader(f.zipr,	f.headerOffset,	f.zipsize-f.headerOffset)

			188	 	 var	buf	[fileHeaderLen]byte

			189	 	 if	_,	err	:=	io.ReadFull(r,	buf[:]);	err	!=	nil	{

			190	 	 	 return	0,	err

			191	 	 }

			192	 	 b	:=	readBuf(buf[:])

			193	 	 if	sig	:=	b.uint32();	sig	!=	fileHeaderSignature	{

			194	 	 	 return	0,	ErrFormat

			195	 	 }

			196	 	 b	=	b[22:]	//	skip	over	most	of	the	header

			197	 	 filenameLen	:=	int(b.uint16())

			198	 	 extraLen	:=	int(b.uint16())

			199	 	 return	int64(fileHeaderLen	+	filenameLen	+	extraLen),	nil

			200	 }

			201	

			202	 //	readDirectoryHeader	attempts	to	read	a	directory	header	from	r.

			203	 //	It	returns	io.ErrUnexpectedEOF	if	it	cannot	read	a	complete	header,

			204	 //	and	ErrFormat	if	it	doesn't	find	a	valid	header	signature.

			205	 func	readDirectoryHeader(f	*File,	r	io.Reader)	error	{

			206	 	 var	buf	[directoryHeaderLen]byte

			207	 	 if	_,	err	:=	io.ReadFull(r,	buf[:]);	err	!=	nil	{

			208	 	 	 return	err

			209	 	 }

			210	 	 b	:=	readBuf(buf[:])

			211	 	 if	sig	:=	b.uint32();	sig	!=	directoryHeaderSignature	{

			212	 	 	 return	ErrFormat

			213	 	 }

			214	 	 f.CreatorVersion	=	b.uint16()

			215	 	 f.ReaderVersion	=	b.uint16()

			216	 	 f.Flags	=	b.uint16()

			217	 	 f.Method	=	b.uint16()

			218	 	 f.ModifiedTime	=	b.uint16()

			219	 	 f.ModifiedDate	=	b.uint16()

			220	 	 f.CRC32	=	b.uint32()

			221	 	 f.CompressedSize	=	b.uint32()

			222	 	 f.UncompressedSize	=	b.uint32()

			223	 	 filenameLen	:=	int(b.uint16())

			224	 	 extraLen	:=	int(b.uint16())

			225	 	 commentLen	:=	int(b.uint16())

			226	 	 b	=	b[4:]	//	skipped	start	disk	number	and	internal	attributes	(2x	uint16)

			227	 	 f.ExternalAttrs	=	b.uint32()

			228	 	 f.headerOffset	=	int64(b.uint32())

			229	 	 d	:=	make([]byte,	filenameLen+extraLen+commentLen)

			230	 	 if	_,	err	:=	io.ReadFull(r,	d);	err	!=	nil	{

			231	 	 	 return	err

			232	 	 }

			233	 	 f.Name	=	string(d[:filenameLen])

			234	 	 f.Extra	=	d[filenameLen	:	filenameLen+extraLen]

			235	 	 f.Comment	=	string(d[filenameLen+extraLen:])

			236	 	 return	nil

			237	 }

			238	

			239	 func	readDataDescriptor(r	io.Reader,	f	*File)	error	{

			240	 	 var	buf	[dataDescriptorLen]byte

			241	

			242	 	 //	The	spec	says:	"Although	not	originally	assigned	a

			243	 	 //	signature,	the	value	0x08074b50	has	commonly	been	adopted

			244	 	 //	as	a	signature	value	for	the	data	descriptor	record.

			245	 	 //	Implementers	should	be	aware	that	ZIP	files	may	be

			246	 	 //	encountered	with	or	without	this	signature	marking	data

			247	 	 //	descriptors	and	should	account	for	either	case	when	reading

			248	 	 //	ZIP	files	to	ensure	compatibility."

			249	 	 //

			250	 	 //	dataDescriptorLen	includes	the	size	of	the	signature	but

			251	 	 //	first	read	just	those	4	bytes	to	see	if	it	exists.

			252	 	 if	_,	err	:=	io.ReadFull(r,	buf[:4]);	err	!=	nil	{

			253	 	 	 return	err

			254	 	 }

			255	 	 off	:=	0

			256	 	 maybeSig	:=	readBuf(buf[:4])

			257	 	 if	maybeSig.uint32()	!=	dataDescriptorSignature	{

			258	 	 	 //	No	data	descriptor	signature.	Keep	these	four

			259	 	 	 //	bytes.

			260	 	 	 off	+=	4

			261	 	 }

			262	 	 if	_,	err	:=	io.ReadFull(r,	buf[off:12]);	err	!=	nil	{

			263	 	 	 return	err

			264	 	 }

			265	 	 b	:=	readBuf(buf[:12])

			266	 	 f.CRC32	=	b.uint32()

			267	 	 f.CompressedSize	=	b.uint32()

			268	 	 f.UncompressedSize	=	b.uint32()

			269	 	 return	nil

			270	 }

			271	

			272	 func	readDirectoryEnd(r	io.ReaderAt,	size	int64)	(dir	*directoryEnd,	err	error)	{

			273	 	 //	look	for	directoryEndSignature	in	the	last	1k,	then	in	the	last	65k

			274	 	 var	buf	[]byte

			275	 	 for	i,	bLen	:=	range	[]int64{1024,	65	*	1024}	{

			276	 	 	 if	bLen	>	size	{

			277	 	 	 	 bLen	=	size

			278	 	 	 }

			279	 	 	 buf	=	make([]byte,	int(bLen))

			280	 	 	 if	_,	err	:=	r.ReadAt(buf,	size-bLen);	err	!=	nil	&&	err	!=	io.EOF	{

			281	 	 	 	 return	nil,	err

			282	 	 	 }

			283	 	 	 if	p	:=	findSignatureInBlock(buf);	p	>=	0	{

			284	 	 	 	 buf	=	buf[p:]

			285	 	 	 	 break

			286	 	 	 }

			287	 	 	 if	i	==	1	||	bLen	==	size	{

			288	 	 	 	 return	nil,	ErrFormat

			289	 	 	 }

			290	 	 }

			291	

			292	 	 //	read	header	into	struct

			293	 	 b	:=	readBuf(buf[4:])	//	skip	signature

			294	 	 d	:=	&directoryEnd{

			295	 	 	 diskNbr:												b.uint16(),

			296	 	 	 dirDiskNbr:									b.uint16(),

			297	 	 	 dirRecordsThisDisk:	b.uint16(),

			298	 	 	 directoryRecords:			b.uint16(),

			299	 	 	 directorySize:						b.uint32(),

			300	 	 	 directoryOffset:				b.uint32(),

			301	 	 	 commentLen:									b.uint16(),

			302	 	 }

			303	 	 l	:=	int(d.commentLen)

			304	 	 if	l	>	len(b)	{

			305	 	 	 return	nil,	errors.New("zip:	invalid	comment	length")

			306	 	 }

			307	 	 d.comment	=	string(b[:l])

			308	 	 return	d,	nil

			309	 }

			310	

			311	 func	findSignatureInBlock(b	[]byte)	int	{

			312	 	 for	i	:=	len(b)	-	directoryEndLen;	i	>=	0;	i--	{

			313	 	 	 //	defined	from	directoryEndSignature	in	struct.go

			314	 	 	 if	b[i]	==	'P'	&&	b[i+1]	==	'K'	&&	b[i+2]	==	0x05	&&	b[i+3]	==	0x06	{

			315	 	 	 	 //	n	is	length	of	comment

			316	 	 	 	 n	:=	int(b[i+directoryEndLen-2])	|	int(b[i+directoryEndLen-1])<<8

			317	 	 	 	 if	n+directoryEndLen+i	==	len(b)	{

			318	 	 	 	 	 return	i

			319	 	 	 	 }

			320	 	 	 }

			321	 	 }

			322	 	 return	-1

			323	 }

			324	

			325	 type	readBuf	[]byte

			326	

			327	 func	(b	*readBuf)	uint16()	uint16	{

			328	 	 v	:=	binary.LittleEndian.Uint16(*b)

			329	 	 *b	=	(*b)[2:]

			330	 	 return	v

			331	 }

			332	

			333	 func	(b	*readBuf)	uint32()	uint32	{

			334	 	 v	:=	binary.LittleEndian.Uint32(*b)

			335	 	 *b	=	(*b)[4:]

			336	 	 return	v

			337	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/archive/zip/struct.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 Package	zip	provides	support	for	reading	and	writing	ZIP	archives.

					7	

					8	 See:	http://www.pkware.com/documents/casestudies/APPNOTE.TXT

					9	

				10	 This	package	does	not	support	ZIP64	or	disk	spanning.

				11	 */

				12	 package	zip

				13	

				14	 import	(

				15	 	 "errors"

				16	 	 "os"

				17	 	 "time"

				18)

				19	

				20	 //	Compression	methods.

				21	 const	(

				22	 	 Store			uint16	=	0

				23	 	 Deflate	uint16	=	8

				24)

				25	

				26	 const	(

				27	 	 fileHeaderSignature						=	0x04034b50

				28	 	 directoryHeaderSignature	=	0x02014b50

				29	 	 directoryEndSignature				=	0x06054b50

				30	 	 dataDescriptorSignature		=	0x08074b50	//	de-facto	standard;	required	by	OS	X	Finder

				31	 	 fileHeaderLen												=	30									//	+	filename	+	extra

				32	 	 directoryHeaderLen							=	46									//	+	filename	+	extra	+	comment

				33	 	 directoryEndLen										=	22									//	+	comment

				34	 	 dataDescriptorLen								=	16									//	four	uint32:	descriptor	signature,	crc32,	compressed	size,	size

				35	

				36	 	 //	Constants	for	the	first	byte	in	CreatorVersion

				37	 	 creatorFAT				=	0

				38	 	 creatorUnix			=	3

				39	 	 creatorNTFS			=	11

				40	 	 creatorVFAT			=	14

				41	 	 creatorMacOSX	=	19

				42)

				43	

				44	 type	FileHeader	struct	{

				45	 	 Name													string

				46	 	 CreatorVersion			uint16

				47	 	 ReaderVersion				uint16

				48	 	 Flags												uint16

				49	 	 Method											uint16

				50	 	 ModifiedTime					uint16	//	MS-DOS	time

				51	 	 ModifiedDate					uint16	//	MS-DOS	date

				52	 	 CRC32												uint32

				53	 	 CompressedSize			uint32

				54	 	 UncompressedSize	uint32

				55	 	 Extra												[]byte

				56	 	 ExternalAttrs				uint32	//	Meaning	depends	on	CreatorVersion

				57	 	 Comment										string

				58	 }

				59	

				60	 //	FileInfo	returns	an	os.FileInfo	for	the	FileHeader.

				61	 func	(h	*FileHeader)	FileInfo()	os.FileInfo	{

				62	 	 return	headerFileInfo{h}

				63	 }

				64	

				65	 //	headerFileInfo	implements	os.FileInfo.

				66	 type	headerFileInfo	struct	{

				67	 	 fh	*FileHeader

				68	 }

				69	

				70	 func	(fi	headerFileInfo)	Name()	string							{	return	fi.fh.Name	}

				71	 func	(fi	headerFileInfo)	Size()	int64								{	return	int64(fi.fh.UncompressedSize)	}

				72	 func	(fi	headerFileInfo)	IsDir()	bool								{	return	fi.Mode().IsDir()	}

				73	 func	(fi	headerFileInfo)	ModTime()	time.Time	{	return	fi.fh.ModTime()	}

				74	 func	(fi	headerFileInfo)	Mode()	os.FileMode		{	return	fi.fh.Mode()	}

				75	 func	(fi	headerFileInfo)	Sys()	interface{}			{	return	fi.fh	}

				76	

				77	 //	FileInfoHeader	creates	a	partially-populated	FileHeader	from	an

				78	 //	os.FileInfo.

				79	 func	FileInfoHeader(fi	os.FileInfo)	(*FileHeader,	error)	{

				80	 	 size	:=	fi.Size()

				81	 	 if	size	>	(1<<32	-	1)	{

				82	 	 	 return	nil,	errors.New("zip:	file	over	4GB")

				83	 	 }

				84	 	 fh	:=	&FileHeader{

				85	 	 	 Name:													fi.Name(),

				86	 	 	 UncompressedSize:	uint32(size),

				87	 	 }

				88	 	 fh.SetModTime(fi.ModTime())

				89	 	 fh.SetMode(fi.Mode())

				90	 	 return	fh,	nil

				91	 }

				92	

				93	 type	directoryEnd	struct	{

				94	 	 diskNbr												uint16	//	unused

				95	 	 dirDiskNbr									uint16	//	unused

				96	 	 dirRecordsThisDisk	uint16	//	unused

				97	 	 directoryRecords			uint16

				98	 	 directorySize						uint32

				99	 	 directoryOffset				uint32	//	relative	to	file

			100	 	 commentLen									uint16

			101	 	 comment												string

			102	 }

			103	

			104	 //	msDosTimeToTime	converts	an	MS-DOS	date	and	time	into	a	time.Time.

			105	 //	The	resolution	is	2s.

			106	 //	See:	http://msdn.microsoft.com/en-us/library/ms724247(v=VS.85).aspx

			107	 func	msDosTimeToTime(dosDate,	dosTime	uint16)	time.Time	{

			108	 	 return	time.Date(

			109	 	 	 //	date	bits	0-4:	day	of	month;	5-8:	month;	9-15:	years	since	1980

			110	 	 	 int(dosDate>>9+1980),

			111	 	 	 time.Month(dosDate>>5&0xf),

			112	 	 	 int(dosDate&0x1f),

			113	

			114	 	 	 //	time	bits	0-4:	second/2;	5-10:	minute;	11-15:	hour

			115	 	 	 int(dosTime>>11),

			116	 	 	 int(dosTime>>5&0x3f),

			117	 	 	 int(dosTime&0x1f*2),

			118	 	 	 0,	//	nanoseconds

			119	

			120	 	 	 time.UTC,

			121)

			122	 }

			123	

			124	 //	timeToMsDosTime	converts	a	time.Time	to	an	MS-DOS	date	and	time.

			125	 //	The	resolution	is	2s.

			126	 //	See:	http://msdn.microsoft.com/en-us/library/ms724274(v=VS.85).aspx

			127	 func	timeToMsDosTime(t	time.Time)	(fDate	uint16,	fTime	uint16)	{

			128	 	 t	=	t.In(time.UTC)

			129	 	 fDate	=	uint16(t.Day()	+	int(t.Month())<<5	+	(t.Year()-1980)<<9)

			130	 	 fTime	=	uint16(t.Second()/2	+	t.Minute()<<5	+	t.Hour()<<11)

			131	 	 return

			132	 }

			133	

			134	 //	ModTime	returns	the	modification	time.

			135	 //	The	resolution	is	2s.

			136	 func	(h	*FileHeader)	ModTime()	time.Time	{

			137	 	 return	msDosTimeToTime(h.ModifiedDate,	h.ModifiedTime)

			138	 }

			139	

			140	 //	SetModTime	sets	the	ModifiedTime	and	ModifiedDate	fields	to	the	given	time.

			141	 //	The	resolution	is	2s.

			142	 func	(h	*FileHeader)	SetModTime(t	time.Time)	{

			143	 	 h.ModifiedDate,	h.ModifiedTime	=	timeToMsDosTime(t)

			144	 }

			145	

			146	 const	(

			147	 	 //	Unix	constants.	The	specification	doesn't	mention	them,

			148	 	 //	but	these	seem	to	be	the	values	agreed	on	by	tools.

			149	 	 s_IFMT			=	0xf000

			150	 	 s_IFSOCK	=	0xc000

			151	 	 s_IFLNK		=	0xa000

			152	 	 s_IFREG		=	0x8000

			153	 	 s_IFBLK		=	0x6000

			154	 	 s_IFDIR		=	0x4000

			155	 	 s_IFCHR		=	0x2000

			156	 	 s_IFIFO		=	0x1000

			157	 	 s_ISUID		=	0x800

			158	 	 s_ISGID		=	0x400

			159	 	 s_ISVTX		=	0x200

			160	

			161	 	 msdosDir						=	0x10

			162	 	 msdosReadOnly	=	0x01

			163)

			164	

			165	 //	Mode	returns	the	permission	and	mode	bits	for	the	FileHeader.

			166	 func	(h	*FileHeader)	Mode()	(mode	os.FileMode)	{

			167	 	 switch	h.CreatorVersion	>>	8	{

			168	 	 case	creatorUnix,	creatorMacOSX:

			169	 	 	 mode	=	unixModeToFileMode(h.ExternalAttrs	>>	16)

			170	 	 case	creatorNTFS,	creatorVFAT,	creatorFAT:

			171	 	 	 mode	=	msdosModeToFileMode(h.ExternalAttrs)

			172	 	 }

			173	 	 if	len(h.Name)	>	0	&&	h.Name[len(h.Name)-1]	==	'/'	{

			174	 	 	 mode	|=	os.ModeDir

			175	 	 }

			176	 	 return	mode

			177	 }

			178	

			179	 //	SetMode	changes	the	permission	and	mode	bits	for	the	FileHeader.

			180	 func	(h	*FileHeader)	SetMode(mode	os.FileMode)	{

			181	 	 h.CreatorVersion	=	h.CreatorVersion&0xff	|	creatorUnix<<8

			182	 	 h.ExternalAttrs	=	fileModeToUnixMode(mode)	<<	16

			183	

			184	 	 //	set	MSDOS	attributes	too,	as	the	original	zip	does.

			185	 	 if	mode&os.ModeDir	!=	0	{

			186	 	 	 h.ExternalAttrs	|=	msdosDir

			187	 	 }

			188	 	 if	mode&0200	==	0	{

			189	 	 	 h.ExternalAttrs	|=	msdosReadOnly

			190	 	 }

			191	 }

			192	

			193	 func	msdosModeToFileMode(m	uint32)	(mode	os.FileMode)	{

			194	 	 if	m&msdosDir	!=	0	{

			195	 	 	 mode	=	os.ModeDir	|	0777

			196	 	 }	else	{

			197	 	 	 mode	=	0666

			198	 	 }

			199	 	 if	m&msdosReadOnly	!=	0	{

			200	 	 	 mode	&^=	0222

			201	 	 }

			202	 	 return	mode

			203	 }

			204	

			205	 func	fileModeToUnixMode(mode	os.FileMode)	uint32	{

			206	 	 var	m	uint32

			207	 	 switch	mode	&	os.ModeType	{

			208	 	 default:

			209	 	 	 m	=	s_IFREG

			210	 	 case	os.ModeDir:

			211	 	 	 m	=	s_IFDIR

			212	 	 case	os.ModeSymlink:

			213	 	 	 m	=	s_IFLNK

			214	 	 case	os.ModeNamedPipe:

			215	 	 	 m	=	s_IFIFO

			216	 	 case	os.ModeSocket:

			217	 	 	 m	=	s_IFSOCK

			218	 	 case	os.ModeDevice:

			219	 	 	 if	mode&os.ModeCharDevice	!=	0	{

			220	 	 	 	 m	=	s_IFCHR

			221	 	 	 }	else	{

			222	 	 	 	 m	=	s_IFBLK

			223	 	 	 }

			224	 	 }

			225	 	 if	mode&os.ModeSetuid	!=	0	{

			226	 	 	 m	|=	s_ISUID

			227	 	 }

			228	 	 if	mode&os.ModeSetgid	!=	0	{

			229	 	 	 m	|=	s_ISGID

			230	 	 }

			231	 	 if	mode&os.ModeSticky	!=	0	{

			232	 	 	 m	|=	s_ISVTX

			233	 	 }

			234	 	 return	m	|	uint32(mode&0777)

			235	 }

			236	

			237	 func	unixModeToFileMode(m	uint32)	os.FileMode	{

			238	 	 mode	:=	os.FileMode(m	&	0777)

			239	 	 switch	m	&	s_IFMT	{

			240	 	 case	s_IFBLK:

			241	 	 	 mode	|=	os.ModeDevice

			242	 	 case	s_IFCHR:

			243	 	 	 mode	|=	os.ModeDevice	|	os.ModeCharDevice

			244	 	 case	s_IFDIR:

			245	 	 	 mode	|=	os.ModeDir

			246	 	 case	s_IFIFO:

			247	 	 	 mode	|=	os.ModeNamedPipe

			248	 	 case	s_IFLNK:

			249	 	 	 mode	|=	os.ModeSymlink

			250	 	 case	s_IFREG:

			251	 	 	 //	nothing	to	do

			252	 	 case	s_IFSOCK:

			253	 	 	 mode	|=	os.ModeSocket

			254	 	 }

			255	 	 if	m&s_ISGID	!=	0	{

			256	 	 	 mode	|=	os.ModeSetgid

			257	 	 }

			258	 	 if	m&s_ISUID	!=	0	{

			259	 	 	 mode	|=	os.ModeSetuid

			260	 	 }

			261	 	 if	m&s_ISVTX	!=	0	{

			262	 	 	 mode	|=	os.ModeSticky

			263	 	 }

			264	 	 return	mode

			265	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/archive/zip/writer.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	zip

					6	

					7	 import	(

					8	 	 "bufio"

					9	 	 "compress/flate"

				10	 	 "encoding/binary"

				11	 	 "errors"

				12	 	 "hash"

				13	 	 "hash/crc32"

				14	 	 "io"

				15)

				16	

				17	 //	TODO(adg):	support	zip	file	comments

				18	 //	TODO(adg):	support	specifying	deflate	level

				19	

				20	 //	Writer	implements	a	zip	file	writer.

				21	 type	Writer	struct	{

				22	 	 cw					*countWriter

				23	 	 dir				[]*header

				24	 	 last			*fileWriter

				25	 	 closed	bool

				26	 }

				27	

				28	 type	header	struct	{

				29	 	 *FileHeader

				30	 	 offset	uint32

				31	 }

				32	

				33	 //	NewWriter	returns	a	new	Writer	writing	a	zip	file	to	w.

				34	 func	NewWriter(w	io.Writer)	*Writer	{

				35	 	 return	&Writer{cw:	&countWriter{w:	bufio.NewWriter(w)}}

				36	 }

				37	

				38	 //	Close	finishes	writing	the	zip	file	by	writing	the	central	directory.

				39	 //	It	does	not	(and	can	not)	close	the	underlying	writer.

				40	 func	(w	*Writer)	Close()	error	{

				41	 	 if	w.last	!=	nil	&&	!w.last.closed	{

				42	 	 	 if	err	:=	w.last.close();	err	!=	nil	{

				43	 	 	 	 return	err

				44	 	 	 }

				45	 	 	 w.last	=	nil

				46	 	 }

				47	 	 if	w.closed	{

				48	 	 	 return	errors.New("zip:	writer	closed	twice")

				49	 	 }

				50	 	 w.closed	=	true

				51	

				52	 	 //	write	central	directory

				53	 	 start	:=	w.cw.count

				54	 	 for	_,	h	:=	range	w.dir	{

				55	 	 	 var	buf	[directoryHeaderLen]byte

				56	 	 	 b	:=	writeBuf(buf[:])

				57	 	 	 b.uint32(uint32(directoryHeaderSignature))

				58	 	 	 b.uint16(h.CreatorVersion)

				59	 	 	 b.uint16(h.ReaderVersion)

				60	 	 	 b.uint16(h.Flags)

				61	 	 	 b.uint16(h.Method)

				62	 	 	 b.uint16(h.ModifiedTime)

				63	 	 	 b.uint16(h.ModifiedDate)

				64	 	 	 b.uint32(h.CRC32)

				65	 	 	 b.uint32(h.CompressedSize)

				66	 	 	 b.uint32(h.UncompressedSize)

				67	 	 	 b.uint16(uint16(len(h.Name)))

				68	 	 	 b.uint16(uint16(len(h.Extra)))

				69	 	 	 b.uint16(uint16(len(h.Comment)))

				70	 	 	 b	=	b[4:]	//	skip	disk	number	start	and	internal	file	attr	(2x	uint16)

				71	 	 	 b.uint32(h.ExternalAttrs)

				72	 	 	 b.uint32(h.offset)

				73	 	 	 if	_,	err	:=	w.cw.Write(buf[:]);	err	!=	nil	{

				74	 	 	 	 return	err

				75	 	 	 }

				76	 	 	 if	_,	err	:=	io.WriteString(w.cw,	h.Name);	err	!=	nil	{

				77	 	 	 	 return	err

				78	 	 	 }

				79	 	 	 if	_,	err	:=	w.cw.Write(h.Extra);	err	!=	nil	{

				80	 	 	 	 return	err

				81	 	 	 }

				82	 	 	 if	_,	err	:=	io.WriteString(w.cw,	h.Comment);	err	!=	nil	{

				83	 	 	 	 return	err

				84	 	 	 }

				85	 	 }

				86	 	 end	:=	w.cw.count

				87	

				88	 	 //	write	end	record

				89	 	 var	buf	[directoryEndLen]byte

				90	 	 b	:=	writeBuf(buf[:])

				91	 	 b.uint32(uint32(directoryEndSignature))

				92	 	 b	=	b[4:]																					//	skip	over	disk	number	and	first	disk	number	(2x	uint16)

				93	 	 b.uint16(uint16(len(w.dir)))		//	number	of	entries	this	disk

				94	 	 b.uint16(uint16(len(w.dir)))		//	number	of	entries	total

				95	 	 b.uint32(uint32(end	-	start))	//	size	of	directory

				96	 	 b.uint32(uint32(start))							//	start	of	directory

				97	 	 //	skipped	size	of	comment	(always	zero)

				98	 	 if	_,	err	:=	w.cw.Write(buf[:]);	err	!=	nil	{

				99	 	 	 return	err

			100	 	 }

			101	

			102	 	 return	w.cw.w.(*bufio.Writer).Flush()

			103	 }

			104	

			105	 //	Create	adds	a	file	to	the	zip	file	using	the	provided	name.

			106	 //	It	returns	a	Writer	to	which	the	file	contents	should	be	written.

			107	 //	The	file's	contents	must	be	written	to	the	io.Writer	before	the	next

			108	 //	call	to	Create,	CreateHeader,	or	Close.

			109	 func	(w	*Writer)	Create(name	string)	(io.Writer,	error)	{

			110	 	 header	:=	&FileHeader{

			111	 	 	 Name:			name,

			112	 	 	 Method:	Deflate,

			113	 	 }

			114	 	 return	w.CreateHeader(header)

			115	 }

			116	

			117	 //	CreateHeader	adds	a	file	to	the	zip	file	using	the	provided	FileHeader

			118	 //	for	the	file	metadata.	

			119	 //	It	returns	a	Writer	to	which	the	file	contents	should	be	written.

			120	 //	The	file's	contents	must	be	written	to	the	io.Writer	before	the	next

			121	 //	call	to	Create,	CreateHeader,	or	Close.

			122	 func	(w	*Writer)	CreateHeader(fh	*FileHeader)	(io.Writer,	error)	{

			123	 	 if	w.last	!=	nil	&&	!w.last.closed	{

			124	 	 	 if	err	:=	w.last.close();	err	!=	nil	{

			125	 	 	 	 return	nil,	err

			126	 	 	 }

			127	 	 }

			128	

			129	 	 fh.Flags	|=	0x8	//	we	will	write	a	data	descriptor

			130	 	 fh.CreatorVersion	=	fh.CreatorVersion&0xff00	|	0x14

			131	 	 fh.ReaderVersion	=	0x14

			132	

			133	 	 fw	:=	&fileWriter{

			134	 	 	 zipw:						w.cw,

			135	 	 	 compCount:	&countWriter{w:	w.cw},

			136	 	 	 crc32:					crc32.NewIEEE(),

			137	 	 }

			138	 	 switch	fh.Method	{

			139	 	 case	Store:

			140	 	 	 fw.comp	=	nopCloser{fw.compCount}

			141	 	 case	Deflate:

			142	 	 	 var	err	error

			143	 	 	 fw.comp,	err	=	flate.NewWriter(fw.compCount,	5)

			144	 	 	 if	err	!=	nil	{

			145	 	 	 	 return	nil,	err

			146	 	 	 }

			147	 	 default:

			148	 	 	 return	nil,	ErrAlgorithm

			149	 	 }

			150	 	 fw.rawCount	=	&countWriter{w:	fw.comp}

			151	

			152	 	 h	:=	&header{

			153	 	 	 FileHeader:	fh,

			154	 	 	 offset:					uint32(w.cw.count),

			155	 	 }

			156	 	 w.dir	=	append(w.dir,	h)

			157	 	 fw.header	=	h

			158	

			159	 	 if	err	:=	writeHeader(w.cw,	fh);	err	!=	nil	{

			160	 	 	 return	nil,	err

			161	 	 }

			162	

			163	 	 w.last	=	fw

			164	 	 return	fw,	nil

			165	 }

			166	

			167	 func	writeHeader(w	io.Writer,	h	*FileHeader)	error	{

			168	 	 var	buf	[fileHeaderLen]byte

			169	 	 b	:=	writeBuf(buf[:])

			170	 	 b.uint32(uint32(fileHeaderSignature))

			171	 	 b.uint16(h.ReaderVersion)

			172	 	 b.uint16(h.Flags)

			173	 	 b.uint16(h.Method)

			174	 	 b.uint16(h.ModifiedTime)

			175	 	 b.uint16(h.ModifiedDate)

			176	 	 b.uint32(h.CRC32)

			177	 	 b.uint32(h.CompressedSize)

			178	 	 b.uint32(h.UncompressedSize)

			179	 	 b.uint16(uint16(len(h.Name)))

			180	 	 b.uint16(uint16(len(h.Extra)))

			181	 	 if	_,	err	:=	w.Write(buf[:]);	err	!=	nil	{

			182	 	 	 return	err

			183	 	 }

			184	 	 if	_,	err	:=	io.WriteString(w,	h.Name);	err	!=	nil	{

			185	 	 	 return	err

			186	 	 }

			187	 	 _,	err	:=	w.Write(h.Extra)

			188	 	 return	err

			189	 }

			190	

			191	 type	fileWriter	struct	{

			192	 	 *header

			193	 	 zipw						io.Writer

			194	 	 rawCount		*countWriter

			195	 	 comp						io.WriteCloser

			196	 	 compCount	*countWriter

			197	 	 crc32					hash.Hash32

			198	 	 closed				bool

			199	 }

			200	

			201	 func	(w	*fileWriter)	Write(p	[]byte)	(int,	error)	{

			202	 	 if	w.closed	{

			203	 	 	 return	0,	errors.New("zip:	write	to	closed	file")

			204	 	 }

			205	 	 w.crc32.Write(p)

			206	 	 return	w.rawCount.Write(p)

			207	 }

			208	

			209	 func	(w	*fileWriter)	close()	error	{

			210	 	 if	w.closed	{

			211	 	 	 return	errors.New("zip:	file	closed	twice")

			212	 	 }

			213	 	 w.closed	=	true

			214	 	 if	err	:=	w.comp.Close();	err	!=	nil	{

			215	 	 	 return	err

			216	 	 }

			217	

			218	 	 //	update	FileHeader

			219	 	 fh	:=	w.header.FileHeader

			220	 	 fh.CRC32	=	w.crc32.Sum32()

			221	 	 fh.CompressedSize	=	uint32(w.compCount.count)

			222	 	 fh.UncompressedSize	=	uint32(w.rawCount.count)

			223	

			224	 	 //	write	data	descriptor

			225	 	 var	buf	[dataDescriptorLen]byte

			226	 	 b	:=	writeBuf(buf[:])

			227	 	 b.uint32(dataDescriptorSignature)	//	de-facto	standard,	required	by	OS	X

			228	 	 b.uint32(fh.CRC32)

			229	 	 b.uint32(fh.CompressedSize)

			230	 	 b.uint32(fh.UncompressedSize)

			231	 	 _,	err	:=	w.zipw.Write(buf[:])

			232	 	 return	err

			233	 }

			234	

			235	 type	countWriter	struct	{

			236	 	 w					io.Writer

			237	 	 count	int64

			238	 }

			239	

			240	 func	(w	*countWriter)	Write(p	[]byte)	(int,	error)	{

			241	 	 n,	err	:=	w.w.Write(p)

			242	 	 w.count	+=	int64(n)

			243	 	 return	n,	err

			244	 }

			245	

			246	 type	nopCloser	struct	{

			247	 	 io.Writer

			248	 }

			249	

			250	 func	(w	nopCloser)	Close()	error	{

			251	 	 return	nil

			252	 }

			253	

			254	 type	writeBuf	[]byte

			255	

			256	 func	(b	*writeBuf)	uint16(v	uint16)	{

			257	 	 binary.LittleEndian.PutUint16(*b,	v)

			258	 	 *b	=	(*b)[2:]

			259	 }

			260	

			261	 func	(b	*writeBuf)	uint32(v	uint32)	{

			262	 	 binary.LittleEndian.PutUint32(*b,	v)

			263	 	 *b	=	(*b)[4:]

			264	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/bufio/bufio.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	bufio	implements	buffered	I/O.		It	wraps	an	io.Reader	or	io.Writer

					6	 //	object,	creating	another	object	(Reader	or	Writer)	that	also	implements

					7	 //	the	interface	but	provides	buffering	and	some	help	for	textual	I/O.

					8	 package	bufio

					9	

				10	 import	(

				11	 	 "bytes"

				12	 	 "errors"

				13	 	 "io"

				14	 	 "unicode/utf8"

				15)

				16	

				17	 const	(

				18	 	 defaultBufSize	=	4096

				19)

				20	

				21	 var	(

				22	 	 ErrInvalidUnreadByte	=	errors.New("bufio:	invalid	use	of	UnreadByte")

				23	 	 ErrInvalidUnreadRune	=	errors.New("bufio:	invalid	use	of	UnreadRune")

				24	 	 ErrBufferFull								=	errors.New("bufio:	buffer	full")

				25	 	 ErrNegativeCount					=	errors.New("bufio:	negative	count")

				26)

				27	

				28	 //	Buffered	input.

				29	

				30	 //	Reader	implements	buffering	for	an	io.Reader	object.

				31	 type	Reader	struct	{

				32	 	 buf										[]byte

				33	 	 rd											io.Reader

				34	 	 r,	w									int

				35	 	 err										error

				36	 	 lastByte					int

				37	 	 lastRuneSize	int

				38	 }

				39	

				40	 const	minReadBufferSize	=	16

				41	

				42	 //	NewReaderSize	returns	a	new	Reader	whose	buffer	has	at	least	the	specified

				43	 //	size.	If	the	argument	io.Reader	is	already	a	Reader	with	large	enough

				44	 //	size,	it	returns	the	underlying	Reader.

				45	 func	NewReaderSize(rd	io.Reader,	size	int)	*Reader	{

				46	 	 //	Is	it	already	a	Reader?

				47	 	 b,	ok	:=	rd.(*Reader)

				48	 	 if	ok	&&	len(b.buf)	>=	size	{

				49	 	 	 return	b

				50	 	 }

				51	 	 if	size	<	minReadBufferSize	{

				52	 	 	 size	=	minReadBufferSize

				53	 	 }

				54	 	 return	&Reader{

				55	 	 	 buf:										make([]byte,	size),

				56	 	 	 rd:											rd,

				57	 	 	 lastByte:					-1,

				58	 	 	 lastRuneSize:	-1,

				59	 	 }

				60	 }

				61	

				62	 //	NewReader	returns	a	new	Reader	whose	buffer	has	the	default	size.

				63	 func	NewReader(rd	io.Reader)	*Reader	{

				64	 	 return	NewReaderSize(rd,	defaultBufSize)

				65	 }

				66	

				67	 //	fill	reads	a	new	chunk	into	the	buffer.

				68	 func	(b	*Reader)	fill()	{

				69	 	 //	Slide	existing	data	to	beginning.

				70	 	 if	b.r	>	0	{

				71	 	 	 copy(b.buf,	b.buf[b.r:b.w])

				72	 	 	 b.w	-=	b.r

				73	 	 	 b.r	=	0

				74	 	 }

				75	

				76	 	 //	Read	new	data.

				77	 	 n,	e	:=	b.rd.Read(b.buf[b.w:])

				78	 	 b.w	+=	n

				79	 	 if	e	!=	nil	{

				80	 	 	 b.err	=	e

				81	 	 }

				82	 }

				83	

				84	 func	(b	*Reader)	readErr()	error	{

				85	 	 err	:=	b.err

				86	 	 b.err	=	nil

				87	 	 return	err

				88	 }

				89	

				90	 //	Peek	returns	the	next	n	bytes	without	advancing	the	reader.	The	bytes	stop

				91	 //	being	valid	at	the	next	read	call.	If	Peek	returns	fewer	than	n	bytes,	it

				92	 //	also	returns	an	error	explaining	why	the	read	is	short.	The	error	is

				93	 //	ErrBufferFull	if	n	is	larger	than	b's	buffer	size.

				94	 func	(b	*Reader)	Peek(n	int)	([]byte,	error)	{

				95	 	 if	n	<	0	{

				96	 	 	 return	nil,	ErrNegativeCount

				97	 	 }

				98	 	 if	n	>	len(b.buf)	{

				99	 	 	 return	nil,	ErrBufferFull

			100	 	 }

			101	 	 for	b.w-b.r	<	n	&&	b.err	==	nil	{

			102	 	 	 b.fill()

			103	 	 }

			104	 	 m	:=	b.w	-	b.r

			105	 	 if	m	>	n	{

			106	 	 	 m	=	n

			107	 	 }

			108	 	 var	err	error

			109	 	 if	m	<	n	{

			110	 	 	 err	=	b.readErr()

			111	 	 	 if	err	==	nil	{

			112	 	 	 	 err	=	ErrBufferFull

			113	 	 	 }

			114	 	 }

			115	 	 return	b.buf[b.r	:	b.r+m],	err

			116	 }

			117	

			118	 //	Read	reads	data	into	p.

			119	 //	It	returns	the	number	of	bytes	read	into	p.

			120	 //	It	calls	Read	at	most	once	on	the	underlying	Reader,

			121	 //	hence	n	may	be	less	than	len(p).

			122	 //	At	EOF,	the	count	will	be	zero	and	err	will	be	io.EOF.

			123	 func	(b	*Reader)	Read(p	[]byte)	(n	int,	err	error)	{

			124	 	 n	=	len(p)

			125	 	 if	n	==	0	{

			126	 	 	 return	0,	b.readErr()

			127	 	 }

			128	 	 if	b.w	==	b.r	{

			129	 	 	 if	b.err	!=	nil	{

			130	 	 	 	 return	0,	b.readErr()

			131	 	 	 }

			132	 	 	 if	len(p)	>=	len(b.buf)	{

			133	 	 	 	 //	Large	read,	empty	buffer.

			134	 	 	 	 //	Read	directly	into	p	to	avoid	copy.

			135	 	 	 	 n,	b.err	=	b.rd.Read(p)

			136	 	 	 	 if	n	>	0	{

			137	 	 	 	 	 b.lastByte	=	int(p[n-1])

			138	 	 	 	 	 b.lastRuneSize	=	-1

			139	 	 	 	 }

			140	 	 	 	 return	n,	b.readErr()

			141	 	 	 }

			142	 	 	 b.fill()

			143	 	 	 if	b.w	==	b.r	{

			144	 	 	 	 return	0,	b.readErr()

			145	 	 	 }

			146	 	 }

			147	

			148	 	 if	n	>	b.w-b.r	{

			149	 	 	 n	=	b.w	-	b.r

			150	 	 }

			151	 	 copy(p[0:n],	b.buf[b.r:])

			152	 	 b.r	+=	n

			153	 	 b.lastByte	=	int(b.buf[b.r-1])

			154	 	 b.lastRuneSize	=	-1

			155	 	 return	n,	nil

			156	 }

			157	

			158	 //	ReadByte	reads	and	returns	a	single	byte.

			159	 //	If	no	byte	is	available,	returns	an	error.

			160	 func	(b	*Reader)	ReadByte()	(c	byte,	err	error)	{

			161	 	 b.lastRuneSize	=	-1

			162	 	 for	b.w	==	b.r	{

			163	 	 	 if	b.err	!=	nil	{

			164	 	 	 	 return	0,	b.readErr()

			165	 	 	 }

			166	 	 	 b.fill()

			167	 	 }

			168	 	 c	=	b.buf[b.r]

			169	 	 b.r++

			170	 	 b.lastByte	=	int(c)

			171	 	 return	c,	nil

			172	 }

			173	

			174	 //	UnreadByte	unreads	the	last	byte.		Only	the	most	recently	read	byte	can	be	unread.

			175	 func	(b	*Reader)	UnreadByte()	error	{

			176	 	 b.lastRuneSize	=	-1

			177	 	 if	b.r	==	b.w	&&	b.lastByte	>=	0	{

			178	 	 	 b.w	=	1

			179	 	 	 b.r	=	0

			180	 	 	 b.buf[0]	=	byte(b.lastByte)

			181	 	 	 b.lastByte	=	-1

			182	 	 	 return	nil

			183	 	 }

			184	 	 if	b.r	<=	0	{

			185	 	 	 return	ErrInvalidUnreadByte

			186	 	 }

			187	 	 b.r--

			188	 	 b.lastByte	=	-1

			189	 	 return	nil

			190	 }

			191	

			192	 //	ReadRune	reads	a	single	UTF-8	encoded	Unicode	character	and	returns	the

			193	 //	rune	and	its	size	in	bytes.	If	the	encoded	rune	is	invalid,	it	consumes	one	byte

			194	 //	and	returns	unicode.ReplacementChar	(U+FFFD)	with	a	size	of	1.

			195	 func	(b	*Reader)	ReadRune()	(r	rune,	size	int,	err	error)	{

			196	 	 for	b.r+utf8.UTFMax	>	b.w	&&	!utf8.FullRune(b.buf[b.r:b.w])	&&	b.err	==	nil	{

			197	 	 	 b.fill()

			198	 	 }

			199	 	 b.lastRuneSize	=	-1

			200	 	 if	b.r	==	b.w	{

			201	 	 	 return	0,	0,	b.readErr()

			202	 	 }

			203	 	 r,	size	=	rune(b.buf[b.r]),	1

			204	 	 if	r	>=	0x80	{

			205	 	 	 r,	size	=	utf8.DecodeRune(b.buf[b.r:b.w])

			206	 	 }

			207	 	 b.r	+=	size

			208	 	 b.lastByte	=	int(b.buf[b.r-1])

			209	 	 b.lastRuneSize	=	size

			210	 	 return	r,	size,	nil

			211	 }

			212	

			213	 //	UnreadRune	unreads	the	last	rune.		If	the	most	recent	read	operation	on

			214	 //	the	buffer	was	not	a	ReadRune,	UnreadRune	returns	an	error.		(In	this

			215	 //	regard	it	is	stricter	than	UnreadByte,	which	will	unread	the	last	byte

			216	 //	from	any	read	operation.)

			217	 func	(b	*Reader)	UnreadRune()	error	{

			218	 	 if	b.lastRuneSize	<	0	||	b.r	==	0	{

			219	 	 	 return	ErrInvalidUnreadRune

			220	 	 }

			221	 	 b.r	-=	b.lastRuneSize

			222	 	 b.lastByte	=	-1

			223	 	 b.lastRuneSize	=	-1

			224	 	 return	nil

			225	 }

			226	

			227	 //	Buffered	returns	the	number	of	bytes	that	can	be	read	from	the	current	buffer.

			228	 func	(b	*Reader)	Buffered()	int	{	return	b.w	-	b.r	}

			229	

			230	 //	ReadSlice	reads	until	the	first	occurrence	of	delim	in	the	input,

			231	 //	returning	a	slice	pointing	at	the	bytes	in	the	buffer.

			232	 //	The	bytes	stop	being	valid	at	the	next	read	call.

			233	 //	If	ReadSlice	encounters	an	error	before	finding	a	delimiter,

			234	 //	it	returns	all	the	data	in	the	buffer	and	the	error	itself	(often	io.EOF).

			235	 //	ReadSlice	fails	with	error	ErrBufferFull	if	the	buffer	fills	without	a	delim.

			236	 //	Because	the	data	returned	from	ReadSlice	will	be	overwritten

			237	 //	by	the	next	I/O	operation,	most	clients	should	use

			238	 //	ReadBytes	or	ReadString	instead.

			239	 //	ReadSlice	returns	err	!=	nil	if	and	only	if	line	does	not	end	in	delim.

			240	 func	(b	*Reader)	ReadSlice(delim	byte)	(line	[]byte,	err	error)	{

			241	 	 //	Look	in	buffer.

			242	 	 if	i	:=	bytes.IndexByte(b.buf[b.r:b.w],	delim);	i	>=	0	{

			243	 	 	 line1	:=	b.buf[b.r	:	b.r+i+1]

			244	 	 	 b.r	+=	i	+	1

			245	 	 	 return	line1,	nil

			246	 	 }

			247	

			248	 	 //	Read	more	into	buffer,	until	buffer	fills	or	we	find	delim.

			249	 	 for	{

			250	 	 	 if	b.err	!=	nil	{

			251	 	 	 	 line	:=	b.buf[b.r:b.w]

			252	 	 	 	 b.r	=	b.w

			253	 	 	 	 return	line,	b.readErr()

			254	 	 	 }

			255	

			256	 	 	 n	:=	b.Buffered()

			257	 	 	 b.fill()

			258	

			259	 	 	 //	Search	new	part	of	buffer

			260	 	 	 if	i	:=	bytes.IndexByte(b.buf[n:b.w],	delim);	i	>=	0	{

			261	 	 	 	 line	:=	b.buf[0	:	n+i+1]

			262	 	 	 	 b.r	=	n	+	i	+	1

			263	 	 	 	 return	line,	nil

			264	 	 	 }

			265	

			266	 	 	 //	Buffer	is	full?

			267	 	 	 if	b.Buffered()	>=	len(b.buf)	{

			268	 	 	 	 b.r	=	b.w

			269	 	 	 	 return	b.buf,	ErrBufferFull

			270	 	 	 }

			271	 	 }

			272	 	 panic("not	reached")

			273	 }

			274	

			275	 //	ReadLine	tries	to	return	a	single	line,	not	including	the	end-of-line	bytes.

			276	 //	If	the	line	was	too	long	for	the	buffer	then	isPrefix	is	set	and	the

			277	 //	beginning	of	the	line	is	returned.	The	rest	of	the	line	will	be	returned

			278	 //	from	future	calls.	isPrefix	will	be	false	when	returning	the	last	fragment

			279	 //	of	the	line.	The	returned	buffer	is	only	valid	until	the	next	call	to

			280	 //	ReadLine.	ReadLine	either	returns	a	non-nil	line	or	it	returns	an	error,

			281	 //	never	both.

			282	 func	(b	*Reader)	ReadLine()	(line	[]byte,	isPrefix	bool,	err	error)	{

			283	 	 line,	err	=	b.ReadSlice('\n')

			284	 	 if	err	==	ErrBufferFull	{

			285	 	 	 //	Handle	the	case	where	"\r\n"	straddles	the	buffer.

			286	 	 	 if	len(line)	>	0	&&	line[len(line)-1]	==	'\r'	{

			287	 	 	 	 //	Put	the	'\r'	back	on	buf	and	drop	it	from	line.

			288	 	 	 	 //	Let	the	next	call	to	ReadLine	check	for	"\r\n".

			289	 	 	 	 if	b.r	==	0	{

			290	 	 	 	 	 //	should	be	unreachable

			291	 	 	 	 	 panic("bufio:	tried	to	rewind	past	start	of	buffer")

			292	 	 	 	 }

			293	 	 	 	 b.r--

			294	 	 	 	 line	=	line[:len(line)-1]

			295	 	 	 }

			296	 	 	 return	line,	true,	nil

			297	 	 }

			298	

			299	 	 if	len(line)	==	0	{

			300	 	 	 if	err	!=	nil	{

			301	 	 	 	 line	=	nil

			302	 	 	 }

			303	 	 	 return

			304	 	 }

			305	 	 err	=	nil

			306	

			307	 	 if	line[len(line)-1]	==	'\n'	{

			308	 	 	 drop	:=	1

			309	 	 	 if	len(line)	>	1	&&	line[len(line)-2]	==	'\r'	{

			310	 	 	 	 drop	=	2

			311	 	 	 }

			312	 	 	 line	=	line[:len(line)-drop]

			313	 	 }

			314	 	 return

			315	 }

			316	

			317	 //	ReadBytes	reads	until	the	first	occurrence	of	delim	in	the	input,

			318	 //	returning	a	slice	containing	the	data	up	to	and	including	the	delimiter.

			319	 //	If	ReadBytes	encounters	an	error	before	finding	a	delimiter,

			320	 //	it	returns	the	data	read	before	the	error	and	the	error	itself	(often	io.EOF).

			321	 //	ReadBytes	returns	err	!=	nil	if	and	only	if	the	returned	data	does	not	end	in

			322	 //	delim.

			323	 func	(b	*Reader)	ReadBytes(delim	byte)	(line	[]byte,	err	error)	{

			324	 	 //	Use	ReadSlice	to	look	for	array,

			325	 	 //	accumulating	full	buffers.

			326	 	 var	frag	[]byte

			327	 	 var	full	[][]byte

			328	 	 err	=	nil

			329	

			330	 	 for	{

			331	 	 	 var	e	error

			332	 	 	 frag,	e	=	b.ReadSlice(delim)

			333	 	 	 if	e	==	nil	{	//	got	final	fragment

			334	 	 	 	 break

			335	 	 	 }

			336	 	 	 if	e	!=	ErrBufferFull	{	//	unexpected	error

			337	 	 	 	 err	=	e

			338	 	 	 	 break

			339	 	 	 }

			340	

			341	 	 	 //	Make	a	copy	of	the	buffer.

			342	 	 	 buf	:=	make([]byte,	len(frag))

			343	 	 	 copy(buf,	frag)

			344	 	 	 full	=	append(full,	buf)

			345	 	 }

			346	

			347	 	 //	Allocate	new	buffer	to	hold	the	full	pieces	and	the	fragment.

			348	 	 n	:=	0

			349	 	 for	i	:=	range	full	{

			350	 	 	 n	+=	len(full[i])

			351	 	 }

			352	 	 n	+=	len(frag)

			353	

			354	 	 //	Copy	full	pieces	and	fragment	in.

			355	 	 buf	:=	make([]byte,	n)

			356	 	 n	=	0

			357	 	 for	i	:=	range	full	{

			358	 	 	 n	+=	copy(buf[n:],	full[i])

			359	 	 }

			360	 	 copy(buf[n:],	frag)

			361	 	 return	buf,	err

			362	 }

			363	

			364	 //	ReadString	reads	until	the	first	occurrence	of	delim	in	the	input,

			365	 //	returning	a	string	containing	the	data	up	to	and	including	the	delimiter.

			366	 //	If	ReadString	encounters	an	error	before	finding	a	delimiter,

			367	 //	it	returns	the	data	read	before	the	error	and	the	error	itself	(often	io.EOF).

			368	 //	ReadString	returns	err	!=	nil	if	and	only	if	the	returned	data	does	not	end	in

			369	 //	delim.

			370	 func	(b	*Reader)	ReadString(delim	byte)	(line	string,	err	error)	{

			371	 	 bytes,	e	:=	b.ReadBytes(delim)

			372	 	 return	string(bytes),	e

			373	 }

			374	

			375	 //	buffered	output

			376	

			377	 //	Writer	implements	buffering	for	an	io.Writer	object.

			378	 //	If	an	error	occurs	writing	to	a	Writer,	no	more	data	will	be

			379	 //	accepted	and	all	subsequent	writes	will	return	the	error.

			380	 type	Writer	struct	{

			381	 	 err	error

			382	 	 buf	[]byte

			383	 	 n			int

			384	 	 wr		io.Writer

			385	 }

			386	

			387	 //	NewWriterSize	returns	a	new	Writer	whose	buffer	has	at	least	the	specified

			388	 //	size.	If	the	argument	io.Writer	is	already	a	Writer	with	large	enough

			389	 //	size,	it	returns	the	underlying	Writer.

			390	 func	NewWriterSize(wr	io.Writer,	size	int)	*Writer	{

			391	 	 //	Is	it	already	a	Writer?

			392	 	 b,	ok	:=	wr.(*Writer)

			393	 	 if	ok	&&	len(b.buf)	>=	size	{

			394	 	 	 return	b

			395	 	 }

			396	 	 if	size	<=	0	{

			397	 	 	 size	=	defaultBufSize

			398	 	 }

			399	 	 b	=	new(Writer)

			400	 	 b.buf	=	make([]byte,	size)

			401	 	 b.wr	=	wr

			402	 	 return	b

			403	 }

			404	

			405	 //	NewWriter	returns	a	new	Writer	whose	buffer	has	the	default	size.

			406	 func	NewWriter(wr	io.Writer)	*Writer	{

			407	 	 return	NewWriterSize(wr,	defaultBufSize)

			408	 }

			409	

			410	 //	Flush	writes	any	buffered	data	to	the	underlying	io.Writer.

			411	 func	(b	*Writer)	Flush()	error	{

			412	 	 if	b.err	!=	nil	{

			413	 	 	 return	b.err

			414	 	 }

			415	 	 if	b.n	==	0	{

			416	 	 	 return	nil

			417	 	 }

			418	 	 n,	e	:=	b.wr.Write(b.buf[0:b.n])

			419	 	 if	n	<	b.n	&&	e	==	nil	{

			420	 	 	 e	=	io.ErrShortWrite

			421	 	 }

			422	 	 if	e	!=	nil	{

			423	 	 	 if	n	>	0	&&	n	<	b.n	{

			424	 	 	 	 copy(b.buf[0:b.n-n],	b.buf[n:b.n])

			425	 	 	 }

			426	 	 	 b.n	-=	n

			427	 	 	 b.err	=	e

			428	 	 	 return	e

			429	 	 }

			430	 	 b.n	=	0

			431	 	 return	nil

			432	 }

			433	

			434	 //	Available	returns	how	many	bytes	are	unused	in	the	buffer.

			435	 func	(b	*Writer)	Available()	int	{	return	len(b.buf)	-	b.n	}

			436	

			437	 //	Buffered	returns	the	number	of	bytes	that	have	been	written	into	the	current	buffer.

			438	 func	(b	*Writer)	Buffered()	int	{	return	b.n	}

			439	

			440	 //	Write	writes	the	contents	of	p	into	the	buffer.

			441	 //	It	returns	the	number	of	bytes	written.

			442	 //	If	nn	<	len(p),	it	also	returns	an	error	explaining

			443	 //	why	the	write	is	short.

			444	 func	(b	*Writer)	Write(p	[]byte)	(nn	int,	err	error)	{

			445	 	 for	len(p)	>	b.Available()	&&	b.err	==	nil	{

			446	 	 	 var	n	int

			447	 	 	 if	b.Buffered()	==	0	{

			448	 	 	 	 //	Large	write,	empty	buffer.

			449	 	 	 	 //	Write	directly	from	p	to	avoid	copy.

			450	 	 	 	 n,	b.err	=	b.wr.Write(p)

			451	 	 	 }	else	{

			452	 	 	 	 n	=	copy(b.buf[b.n:],	p)

			453	 	 	 	 b.n	+=	n

			454	 	 	 	 b.Flush()

			455	 	 	 }

			456	 	 	 nn	+=	n

			457	 	 	 p	=	p[n:]

			458	 	 }

			459	 	 if	b.err	!=	nil	{

			460	 	 	 return	nn,	b.err

			461	 	 }

			462	 	 n	:=	copy(b.buf[b.n:],	p)

			463	 	 b.n	+=	n

			464	 	 nn	+=	n

			465	 	 return	nn,	nil

			466	 }

			467	

			468	 //	WriteByte	writes	a	single	byte.

			469	 func	(b	*Writer)	WriteByte(c	byte)	error	{

			470	 	 if	b.err	!=	nil	{

			471	 	 	 return	b.err

			472	 	 }

			473	 	 if	b.Available()	<=	0	&&	b.Flush()	!=	nil	{

			474	 	 	 return	b.err

			475	 	 }

			476	 	 b.buf[b.n]	=	c

			477	 	 b.n++

			478	 	 return	nil

			479	 }

			480	

			481	 //	WriteRune	writes	a	single	Unicode	code	point,	returning

			482	 //	the	number	of	bytes	written	and	any	error.

			483	 func	(b	*Writer)	WriteRune(r	rune)	(size	int,	err	error)	{

			484	 	 if	r	<	utf8.RuneSelf	{

			485	 	 	 err	=	b.WriteByte(byte(r))

			486	 	 	 if	err	!=	nil	{

			487	 	 	 	 return	0,	err

			488	 	 	 }

			489	 	 	 return	1,	nil

			490	 	 }

			491	 	 if	b.err	!=	nil	{

			492	 	 	 return	0,	b.err

			493	 	 }

			494	 	 n	:=	b.Available()

			495	 	 if	n	<	utf8.UTFMax	{

			496	 	 	 if	b.Flush();	b.err	!=	nil	{

			497	 	 	 	 return	0,	b.err

			498	 	 	 }

			499	 	 	 n	=	b.Available()

			500	 	 	 if	n	<	utf8.UTFMax	{

			501	 	 	 	 //	Can	only	happen	if	buffer	is	silly	small.

			502	 	 	 	 return	b.WriteString(string(r))

			503	 	 	 }

			504	 	 }

			505	 	 size	=	utf8.EncodeRune(b.buf[b.n:],	r)

			506	 	 b.n	+=	size

			507	 	 return	size,	nil

			508	 }

			509	

			510	 //	WriteString	writes	a	string.

			511	 //	It	returns	the	number	of	bytes	written.

			512	 //	If	the	count	is	less	than	len(s),	it	also	returns	an	error	explaining

			513	 //	why	the	write	is	short.

			514	 func	(b	*Writer)	WriteString(s	string)	(int,	error)	{

			515	 	 nn	:=	0

			516	 	 for	len(s)	>	b.Available()	&&	b.err	==	nil	{

			517	 	 	 n	:=	copy(b.buf[b.n:],	s)

			518	 	 	 b.n	+=	n

			519	 	 	 nn	+=	n

			520	 	 	 s	=	s[n:]

			521	 	 	 b.Flush()

			522	 	 }

			523	 	 if	b.err	!=	nil	{

			524	 	 	 return	nn,	b.err

			525	 	 }

			526	 	 n	:=	copy(b.buf[b.n:],	s)

			527	 	 b.n	+=	n

			528	 	 nn	+=	n

			529	 	 return	nn,	nil

			530	 }

			531	

			532	 //	buffered	input	and	output

			533	

			534	 //	ReadWriter	stores	pointers	to	a	Reader	and	a	Writer.

			535	 //	It	implements	io.ReadWriter.

			536	 type	ReadWriter	struct	{

			537	 	 *Reader

			538	 	 *Writer

			539	 }

			540	

			541	 //	NewReadWriter	allocates	a	new	ReadWriter	that	dispatches	to	r	and	w.

			542	 func	NewReadWriter(r	*Reader,	w	*Writer)	*ReadWriter	{

			543	 	 return	&ReadWriter{r,	w}

			544	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/builtin/builtin.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 	 Package	builtin	provides	documentation	for	Go's	predeclared	identifiers.

					7	 	 The	items	documented	here	are	not	actually	in	package	builtin

					8	 	 but	their	descriptions	here	allow	godoc	to	present	documentation

					9	 	 for	the	language's	special	identifiers.

				10	 */

				11	 package	builtin

				12	

				13	 //	bool	is	the	set	of	boolean	values,	true	and	false.

				14	 type	bool	bool

				15	

				16	 //	uint8	is	the	set	of	all	unsigned	8-bit	integers.

				17	 //	Range:	0	through	255.

				18	 type	uint8	uint8

				19	

				20	 //	uint16	is	the	set	of	all	unsigned	16-bit	integers.

				21	 //	Range:	0	through	65535.

				22	 type	uint16	uint16

				23	

				24	 //	uint32	is	the	set	of	all	unsigned	32-bit	integers.

				25	 //	Range:	0	through	4294967295.

				26	 type	uint32	uint32

				27	

				28	 //	uint64	is	the	set	of	all	unsigned	64-bit	integers.

				29	 //	Range:	0	through	18446744073709551615.

				30	 type	uint64	uint64

				31	

				32	 //	int8	is	the	set	of	all	signed	8-bit	integers.

				33	 //	Range:	-128	through	127.

				34	 type	int8	int8

				35	

				36	 //	int16	is	the	set	of	all	signed	16-bit	integers.

				37	 //	Range:	-32768	through	32767.

				38	 type	int16	int16

				39	

				40	 //	int32	is	the	set	of	all	signed	32-bit	integers.

				41	 //	Range:	-2147483648	through	2147483647.

				42	 type	int32	int32

				43	

				44	 //	int64	is	the	set	of	all	signed	64-bit	integers.

				45	 //	Range:	-9223372036854775808	through	9223372036854775807.

				46	 type	int64	int64

				47	

				48	 //	float32	is	the	set	of	all	IEEE-754	32-bit	floating-point	numbers.

				49	 type	float32	float32

				50	

				51	 //	float64	is	the	set	of	all	IEEE-754	64-bit	floating-point	numbers.

				52	 type	float64	float64

				53	

				54	 //	complex64	is	the	set	of	all	complex	numbers	with	float32	real	and

				55	 //	imaginary	parts.

				56	 type	complex64	complex64

				57	

				58	 //	complex128	is	the	set	of	all	complex	numbers	with	float64	real	and

				59	 //	imaginary	parts.

				60	 type	complex128	complex128

				61	

				62	 //	string	is	the	set	of	all	strings	of	8-bit	bytes,	conventionally	but	not

				63	 //	necessarily	representing	UTF-8-encoded	text.	A	string	may	be	empty,	but

				64	 //	not	nil.	Values	of	string	type	are	immutable.

				65	 type	string	string

				66	

				67	 //	int	is	a	signed	integer	type	that	is	at	least	32	bits	in	size.	It	is	a

				68	 //	distinct	type,	however,	and	not	an	alias	for,	say,	int32.

				69	 type	int	int

				70	

				71	 //	uint	is	an	unsigned	integer	type	that	is	at	least	32	bits	in	size.	It	is	a

				72	 //	distinct	type,	however,	and	not	an	alias	for,	say,	uint32.

				73	 type	uint	uint

				74	

				75	 //	uintptr	is	an	integer	type	that	is	large	enough	to	hold	the	bit	pattern	of

				76	 //	any	pointer.

				77	 type	uintptr	uintptr

				78	

				79	 //	byte	is	an	alias	for	uint8	and	is	equivalent	to	uint8	in	all	ways.	It	is

				80	 //	used,	by	convention,	to	distinguish	byte	values	from	8-bit	unsigned

				81	 //	integer	values.

				82	 type	byte	byte

				83	

				84	 //	rune	is	an	alias	for	int	and	is	equivalent	to	int	in	all	ways.	It	is

				85	 //	used,	by	convention,	to	distinguish	character	values	from	integer	values.

				86	 //	In	a	future	version	of	Go,	it	will	change	to	an	alias	of	int32.

				87	 type	rune	rune

				88	

				89	 //	Type	is	here	for	the	purposes	of	documentation	only.	It	is	a	stand-in

				90	 //	for	any	Go	type,	but	represents	the	same	type	for	any	given	function

				91	 //	invocation.

				92	 type	Type	int

				93	

				94	 //	Type1	is	here	for	the	purposes	of	documentation	only.	It	is	a	stand-in

				95	 //	for	any	Go	type,	but	represents	the	same	type	for	any	given	function

				96	 //	invocation.

				97	 type	Type1	int

				98	

				99	 //	IntegerType	is	here	for	the	purposes	of	documentation	only.	It	is	a	stand-in

			100	 //	for	any	integer	type:	int,	uint,	int8	etc.

			101	 type	IntegerType	int

			102	

			103	 //	FloatType	is	here	for	the	purposes	of	documentation	only.	It	is	a	stand-in

			104	 //	for	either	float	type:	float32	or	float64.

			105	 type	FloatType	float32

			106	

			107	 //	ComplexType	is	here	for	the	purposes	of	documentation	only.	It	is	a

			108	 //	stand-in	for	either	complex	type:	complex64	or	complex128.

			109	 type	ComplexType	complex64

			110	

			111	 //	The	append	built-in	function	appends	elements	to	the	end	of	a	slice.	If

			112	 //	it	has	sufficient	capacity,	the	destination	is	resliced	to	accommodate	the

			113	 //	new	elements.	If	it	does	not,	a	new	underlying	array	will	be	allocated.

			114	 //	Append	returns	the	updated	slice.	It	is	therefore	necessary	to	store	the

			115	 //	result	of	append,	often	in	the	variable	holding	the	slice	itself:

			116	 //	 slice	=	append(slice,	elem1,	elem2)

			117	 //	 slice	=	append(slice,	anotherSlice...)

			118	 func	append(slice	[]Type,	elems	...Type)	[]Type

			119	

			120	 //	The	copy	built-in	function	copies	elements	from	a	source	slice	into	a

			121	 //	destination	slice.	(As	a	special	case,	it	also	will	copy	bytes	from	a

			122	 //	string	to	a	slice	of	bytes.)	The	source	and	destination	may	overlap.	Copy

			123	 //	returns	the	number	of	elements	copied,	which	will	be	the	minimum	of

			124	 //	len(src)	and	len(dst).

			125	 func	copy(dst,	src	[]Type)	int

			126	

			127	 //	The	delete	built-in	function	deletes	the	element	with	the	specified	key

			128	 //	(m[key])	from	the	map.	If	there	is	no	such	element,	delete	is	a	no-op.

			129	 //	If	m	is	nil,	delete	panics.

			130	 func	delete(m	map[Type]Type1,	key	Type)

			131	

			132	 //	The	len	built-in	function	returns	the	length	of	v,	according	to	its	type:

			133	 //	 Array:	the	number	of	elements	in	v.

			134	 //	 Pointer	to	array:	the	number	of	elements	in	*v	(even	if	v	is	nil).

			135	 //	 Slice,	or	map:	the	number	of	elements	in	v;	if	v	is	nil,	len(v)	is	zero.

			136	 //	 String:	the	number	of	bytes	in	v.

			137	 //	 Channel:	the	number	of	elements	queued	(unread)	in	the	channel	buffer;

			138	 //	 if	v	is	nil,	len(v)	is	zero.

			139	 func	len(v	Type)	int

			140	

			141	 //	The	cap	built-in	function	returns	the	capacity	of	v,	according	to	its	type:

			142	 //	 Array:	the	number	of	elements	in	v	(same	as	len(v)).

			143	 //	 Pointer	to	array:	the	number	of	elements	in	*v	(same	as	len(v)).

			144	 //	 Slice:	the	maximum	length	the	slice	can	reach	when	resliced;

			145	 //	 if	v	is	nil,	cap(v)	is	zero.

			146	 //	 Channel:	the	channel	buffer	capacity,	in	units	of	elements;

			147	 //	 if	v	is	nil,	cap(v)	is	zero.

			148	 func	cap(v	Type)	int

			149	

			150	 //	The	make	built-in	function	allocates	and	initializes	an	object	of	type

			151	 //	slice,	map,	or	chan	(only).	Like	new,	the	first	argument	is	a	type,	not	a

			152	 //	value.	Unlike	new,	make's	return	type	is	the	same	as	the	type	of	its

			153	 //	argument,	not	a	pointer	to	it.	The	specification	of	the	result	depends	on

			154	 //	the	type:

			155	 //	 Slice:	The	size	specifies	the	length.	The	capacity	of	the	slice	is

			156	 //	 equal	to	its	length.	A	second	integer	argument	may	be	provided	to

			157	 //	 specify	a	different	capacity;	it	must	be	no	smaller	than	the

			158	 //	 length,	so	make([]int,	0,	10)	allocates	a	slice	of	length	0	and

			159	 //	 capacity	10.

			160	 //	 Map:	An	initial	allocation	is	made	according	to	the	size	but	the

			161	 //	 resulting	map	has	length	0.	The	size	may	be	omitted,	in	which	case

			162	 //	 a	small	starting	size	is	allocated.

			163	 //	 Channel:	The	channel's	buffer	is	initialized	with	the	specified

			164	 //	 buffer	capacity.	If	zero,	or	the	size	is	omitted,	the	channel	is

			165	 //	 unbuffered.

			166	 func	make(Type,	size	IntegerType)	Type

			167	

			168	 //	The	new	built-in	function	allocates	memory.	The	first	argument	is	a	type,

			169	 //	not	a	value,	and	the	value	returned	is	a	pointer	to	a	newly

			170	 //	allocated	zero	value	of	that	type.

			171	 func	new(Type)	*Type

			172	

			173	 //	The	complex	built-in	function	constructs	a	complex	value	from	two

			174	 //	floating-point	values.	The	real	and	imaginary	parts	must	be	of	the	same

			175	 //	size,	either	float32	or	float64	(or	assignable	to	them),	and	the	return

			176	 //	value	will	be	the	corresponding	complex	type	(complex64	for	float32,

			177	 //	complex128	for	float64).

			178	 func	complex(r,	i	FloatType)	ComplexType

			179	

			180	 //	The	real	built-in	function	returns	the	real	part	of	the	complex	number	c.

			181	 //	The	return	value	will	be	floating	point	type	corresponding	to	the	type	of	c.

			182	 func	real(c	ComplexType)	FloatType

			183	

			184	 //	The	imag	built-in	function	returns	the	imaginary	part	of	the	complex

			185	 //	number	c.	The	return	value	will	be	floating	point	type	corresponding	to

			186	 //	the	type	of	c.

			187	 func	imag(c	ComplexType)	FloatType

			188	

			189	 //	The	close	built-in	function	closes	a	channel,	which	must	be	either

			190	 //	bidirectional	or	send-only.	It	should	be	executed	only	by	the	sender,

			191	 //	never	the	receiver,	and	has	the	effect	of	shutting	down	the	channel	after

			192	 //	the	last	sent	value	is	received.	After	the	last	value	has	been	received

			193	 //	from	a	closed	channel	c,	any	receive	from	c	will	succeed	without

			194	 //	blocking,	returning	the	zero	value	for	the	channel	element.	The	form

			195	 //	 x,	ok	:=	<-c

			196	 //	will	also	set	ok	to	false	for	a	closed	channel.

			197	 func	close(c	chan<-	Type)

			198	

			199	 //	The	panic	built-in	function	stops	normal	execution	of	the	current

			200	 //	goroutine.	When	a	function	F	calls	panic,	normal	execution	of	F	stops

			201	 //	immediately.	Any	functions	whose	execution	was	deferred	by	F	are	run	in

			202	 //	the	usual	way,	and	then	F	returns	to	its	caller.	To	the	caller	G,	the

			203	 //	invocation	of	F	then	behaves	like	a	call	to	panic,	terminating	G's

			204	 //	execution	and	running	any	deferred	functions.	This	continues	until	all

			205	 //	functions	in	the	executing	goroutine	have	stopped,	in	reverse	order.	At

			206	 //	that	point,	the	program	is	terminated	and	the	error	condition	is	reported,

			207	 //	including	the	value	of	the	argument	to	panic.	This	termination	sequence

			208	 //	is	called	panicking	and	can	be	controlled	by	the	built-in	function

			209	 //	recover.

			210	 func	panic(v	interface{})

			211	

			212	 //	The	recover	built-in	function	allows	a	program	to	manage	behavior	of	a

			213	 //	panicking	goroutine.	Executing	a	call	to	recover	inside	a	deferred

			214	 //	function	(but	not	any	function	called	by	it)	stops	the	panicking	sequence

			215	 //	by	restoring	normal	execution	and	retrieves	the	error	value	passed	to	the

			216	 //	call	of	panic.	If	recover	is	called	outside	the	deferred	function	it	will

			217	 //	not	stop	a	panicking	sequence.	In	this	case,	or	when	the	goroutine	is	not

			218	 //	panicking,	or	if	the	argument	supplied	to	panic	was	nil,	recover	returns

			219	 //	nil.	Thus	the	return	value	from	recover	reports	whether	the	goroutine	is

			220	 //	panicking.

			221	 func	recover()	interface{}

			222	

			223	 //	The	error	built-in	interface	type	is	the	conventional	interface	for

			224	 //	representing	an	error	condition,	with	the	nil	value	representing	no	error.

			225	 type	error	interface	{

			226	 	 Error()	string

			227	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/bytes/buffer.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	bytes

					6	

					7	 //	Simple	byte	buffer	for	marshaling	data.

					8	

					9	 import	(

				10	 	 "errors"

				11	 	 "io"

				12	 	 "unicode/utf8"

				13)

				14	

				15	 //	A	Buffer	is	a	variable-sized	buffer	of	bytes	with	Read	and	Write	methods.

				16	 //	The	zero	value	for	Buffer	is	an	empty	buffer	ready	to	use.

				17	 type	Buffer	struct	{

				18	 	 buf							[]byte												//	contents	are	the	bytes	buf[off	:	len(buf)]

				19	 	 off							int															//	read	at	&buf[off],	write	at	&buf[len(buf)]

				20	 	 runeBytes	[utf8.UTFMax]byte	//	avoid	allocation	of	slice	on	each	WriteByte	or	Rune

				21	 	 bootstrap	[64]byte										//	memory	to	hold	first	slice;	helps	small	buffers	(Printf)	avoid	allocation.

				22	 	 lastRead		readOp												//	last	read	operation,	so	that	Unread*	can	work	correctly.

				23	 }

				24	

				25	 //	The	readOp	constants	describe	the	last	action	performed	on

				26	 //	the	buffer,	so	that	UnreadRune	and	UnreadByte	can

				27	 //	check	for	invalid	usage.

				28	 type	readOp	int

				29	

				30	 const	(

				31	 	 opInvalid		readOp	=	iota	//	Non-read	operation.

				32	 	 opReadRune															//	Read	rune.

				33	 	 opRead																			//	Any	other	read	operation.

				34)

				35	

				36	 //	ErrTooLarge	is	passed	to	panic	if	memory	cannot	be	allocated	to	store	data	in	a	buffer.

				37	 var	ErrTooLarge	=	errors.New("bytes.Buffer:	too	large")

				38	

				39	 //	Bytes	returns	a	slice	of	the	contents	of	the	unread	portion	of	the	buffer;

				40	 //	len(b.Bytes())	==	b.Len().		If	the	caller	changes	the	contents	of	the

				41	 //	returned	slice,	the	contents	of	the	buffer	will	change	provided	there

				42	 //	are	no	intervening	method	calls	on	the	Buffer.

				43	 func	(b	*Buffer)	Bytes()	[]byte	{	return	b.buf[b.off:]	}

				44	

				45	 //	String	returns	the	contents	of	the	unread	portion	of	the	buffer

				46	 //	as	a	string.		If	the	Buffer	is	a	nil	pointer,	it	returns	"<nil>".

				47	 func	(b	*Buffer)	String()	string	{

				48	 	 if	b	==	nil	{

				49	 	 	 //	Special	case,	useful	in	debugging.

				50	 	 	 return	"<nil>"

				51	 	 }

				52	 	 return	string(b.buf[b.off:])

				53	 }

				54	

				55	 //	Len	returns	the	number	of	bytes	of	the	unread	portion	of	the	buffer;

				56	 //	b.Len()	==	len(b.Bytes()).

				57	 func	(b	*Buffer)	Len()	int	{	return	len(b.buf)	-	b.off	}

				58	

				59	 //	Truncate	discards	all	but	the	first	n	unread	bytes	from	the	buffer.

				60	 //	It	panics	if	n	is	negative	or	greater	than	the	length	of	the	buffer.

				61	 func	(b	*Buffer)	Truncate(n	int)	{

				62	 	 b.lastRead	=	opInvalid

				63	 	 switch	{

				64	 	 case	n	<	0	||	n	>	b.Len():

				65	 	 	 panic("bytes.Buffer:	truncation	out	of	range")

				66	 	 case	n	==	0:

				67	 	 	 //	Reuse	buffer	space.

				68	 	 	 b.off	=	0

				69	 	 }

				70	 	 b.buf	=	b.buf[0	:	b.off+n]

				71	 }

				72	

				73	 //	Reset	resets	the	buffer	so	it	has	no	content.

				74	 //	b.Reset()	is	the	same	as	b.Truncate(0).

				75	 func	(b	*Buffer)	Reset()	{	b.Truncate(0)	}

				76	

				77	 //	grow	grows	the	buffer	to	guarantee	space	for	n	more	bytes.

				78	 //	It	returns	the	index	where	bytes	should	be	written.

				79	 //	If	the	buffer	can't	grow	it	will	panic	with	ErrTooLarge.

				80	 func	(b	*Buffer)	grow(n	int)	int	{

				81	 	 m	:=	b.Len()

				82	 	 //	If	buffer	is	empty,	reset	to	recover	space.

				83	 	 if	m	==	0	&&	b.off	!=	0	{

				84	 	 	 b.Truncate(0)

				85	 	 }

				86	 	 if	len(b.buf)+n	>	cap(b.buf)	{

				87	 	 	 var	buf	[]byte

				88	 	 	 if	b.buf	==	nil	&&	n	<=	len(b.bootstrap)	{

				89	 	 	 	 buf	=	b.bootstrap[0:]

				90	 	 	 }	else	{

				91	 	 	 	 //	not	enough	space	anywhere

				92	 	 	 	 buf	=	makeSlice(2*cap(b.buf)	+	n)

				93	 	 	 	 copy(buf,	b.buf[b.off:])

				94	 	 	 }

				95	 	 	 b.buf	=	buf

				96	 	 	 b.off	=	0

				97	 	 }

				98	 	 b.buf	=	b.buf[0	:	b.off+m+n]

				99	 	 return	b.off	+	m

			100	 }

			101	

			102	 //	Write	appends	the	contents	of	p	to	the	buffer.		The	return

			103	 //	value	n	is	the	length	of	p;	err	is	always	nil.

			104	 //	If	the	buffer	becomes	too	large,	Write	will	panic	with

			105	 //	ErrTooLarge.

			106	 func	(b	*Buffer)	Write(p	[]byte)	(n	int,	err	error)	{

			107	 	 b.lastRead	=	opInvalid

			108	 	 m	:=	b.grow(len(p))

			109	 	 return	copy(b.buf[m:],	p),	nil

			110	 }

			111	

			112	 //	WriteString	appends	the	contents	of	s	to	the	buffer.		The	return

			113	 //	value	n	is	the	length	of	s;	err	is	always	nil.

			114	 //	If	the	buffer	becomes	too	large,	WriteString	will	panic	with

			115	 //	ErrTooLarge.

			116	 func	(b	*Buffer)	WriteString(s	string)	(n	int,	err	error)	{

			117	 	 b.lastRead	=	opInvalid

			118	 	 m	:=	b.grow(len(s))

			119	 	 return	copy(b.buf[m:],	s),	nil

			120	 }

			121	

			122	 //	MinRead	is	the	minimum	slice	size	passed	to	a	Read	call	by

			123	 //	Buffer.ReadFrom.		As	long	as	the	Buffer	has	at	least	MinRead	bytes	beyond

			124	 //	what	is	required	to	hold	the	contents	of	r,	ReadFrom	will	not	grow	the

			125	 //	underlying	buffer.

			126	 const	MinRead	=	512

			127	

			128	 //	ReadFrom	reads	data	from	r	until	EOF	and	appends	it	to	the	buffer.

			129	 //	The	return	value	n	is	the	number	of	bytes	read.

			130	 //	Any	error	except	io.EOF	encountered	during	the	read

			131	 //	is	also	returned.

			132	 //	If	the	buffer	becomes	too	large,	ReadFrom	will	panic	with

			133	 //	ErrTooLarge.

			134	 func	(b	*Buffer)	ReadFrom(r	io.Reader)	(n	int64,	err	error)	{

			135	 	 b.lastRead	=	opInvalid

			136	 	 //	If	buffer	is	empty,	reset	to	recover	space.

			137	 	 if	b.off	>=	len(b.buf)	{

			138	 	 	 b.Truncate(0)

			139	 	 }

			140	 	 for	{

			141	 	 	 if	free	:=	cap(b.buf)	-	len(b.buf);	free	<	MinRead	{

			142	 	 	 	 //	not	enough	space	at	end

			143	 	 	 	 newBuf	:=	b.buf

			144	 	 	 	 if	b.off+free	<	MinRead	{

			145	 	 	 	 	 //	not	enough	space	using	beginning	of	buffer;

			146	 	 	 	 	 //	double	buffer	capacity

			147	 	 	 	 	 newBuf	=	makeSlice(2*cap(b.buf)	+	MinRead)

			148	 	 	 	 }

			149	 	 	 	 copy(newBuf,	b.buf[b.off:])

			150	 	 	 	 b.buf	=	newBuf[:len(b.buf)-b.off]

			151	 	 	 	 b.off	=	0

			152	 	 	 }

			153	 	 	 m,	e	:=	r.Read(b.buf[len(b.buf):cap(b.buf)])

			154	 	 	 b.buf	=	b.buf[0	:	len(b.buf)+m]

			155	 	 	 n	+=	int64(m)

			156	 	 	 if	e	==	io.EOF	{

			157	 	 	 	 break

			158	 	 	 }

			159	 	 	 if	e	!=	nil	{

			160	 	 	 	 return	n,	e

			161	 	 	 }

			162	 	 }

			163	 	 return	n,	nil	//	err	is	EOF,	so	return	nil	explicitly

			164	 }

			165	

			166	 //	makeSlice	allocates	a	slice	of	size	n.	If	the	allocation	fails,	it	panics

			167	 //	with	ErrTooLarge.

			168	 func	makeSlice(n	int)	[]byte	{

			169	 	 //	If	the	make	fails,	give	a	known	error.

			170	 	 defer	func()	{

			171	 	 	 if	recover()	!=	nil	{

			172	 	 	 	 panic(ErrTooLarge)

			173	 	 	 }

			174	 	 }()

			175	 	 return	make([]byte,	n)

			176	 }

			177	

			178	 //	WriteTo	writes	data	to	w	until	the	buffer	is	drained	or	an	error

			179	 //	occurs.	The	return	value	n	is	the	number	of	bytes	written;	it	always

			180	 //	fits	into	an	int,	but	it	is	int64	to	match	the	io.WriterTo	interface.

			181	 //	Any	error	encountered	during	the	write	is	also	returned.

			182	 func	(b	*Buffer)	WriteTo(w	io.Writer)	(n	int64,	err	error)	{

			183	 	 b.lastRead	=	opInvalid

			184	 	 if	b.off	<	len(b.buf)	{

			185	 	 	 nBytes	:=	b.Len()

			186	 	 	 m,	e	:=	w.Write(b.buf[b.off:])

			187	 	 	 if	m	>	nBytes	{

			188	 	 	 	 panic("bytes.Buffer.WriteTo:	invalid	Write	count")

			189	 	 	 }

			190	 	 	 b.off	+=	m

			191	 	 	 n	=	int64(m)

			192	 	 	 if	e	!=	nil	{

			193	 	 	 	 return	n,	e

			194	 	 	 }

			195	 	 	 //	all	bytes	should	have	been	written,	by	definition	of

			196	 	 	 //	Write	method	in	io.Writer

			197	 	 	 if	m	!=	nBytes	{

			198	 	 	 	 return	n,	io.ErrShortWrite

			199	 	 	 }

			200	 	 }

			201	 	 //	Buffer	is	now	empty;	reset.

			202	 	 b.Truncate(0)

			203	 	 return

			204	 }

			205	

			206	 //	WriteByte	appends	the	byte	c	to	the	buffer.

			207	 //	The	returned	error	is	always	nil,	but	is	included

			208	 //	to	match	bufio.Writer's	WriteByte.

			209	 //	If	the	buffer	becomes	too	large,	WriteByte	will	panic	with

			210	 //	ErrTooLarge.

			211	 func	(b	*Buffer)	WriteByte(c	byte)	error	{

			212	 	 b.lastRead	=	opInvalid

			213	 	 m	:=	b.grow(1)

			214	 	 b.buf[m]	=	c

			215	 	 return	nil

			216	 }

			217	

			218	 //	WriteRune	appends	the	UTF-8	encoding	of	Unicode

			219	 //	code	point	r	to	the	buffer,	returning	its	length	and

			220	 //	an	error,	which	is	always	nil	but	is	included

			221	 //	to	match	bufio.Writer's	WriteRune.

			222	 //	If	the	buffer	becomes	too	large,	WriteRune	will	panic	with

			223	 //	ErrTooLarge.

			224	 func	(b	*Buffer)	WriteRune(r	rune)	(n	int,	err	error)	{

			225	 	 if	r	<	utf8.RuneSelf	{

			226	 	 	 b.WriteByte(byte(r))

			227	 	 	 return	1,	nil

			228	 	 }

			229	 	 n	=	utf8.EncodeRune(b.runeBytes[0:],	r)

			230	 	 b.Write(b.runeBytes[0:n])

			231	 	 return	n,	nil

			232	 }

			233	

			234	 //	Read	reads	the	next	len(p)	bytes	from	the	buffer	or	until	the	buffer

			235	 //	is	drained.		The	return	value	n	is	the	number	of	bytes	read.		If	the

			236	 //	buffer	has	no	data	to	return,	err	is	io.EOF	(unless	len(p)	is	zero);

			237	 //	otherwise	it	is	nil.

			238	 func	(b	*Buffer)	Read(p	[]byte)	(n	int,	err	error)	{

			239	 	 b.lastRead	=	opInvalid

			240	 	 if	b.off	>=	len(b.buf)	{

			241	 	 	 //	Buffer	is	empty,	reset	to	recover	space.

			242	 	 	 b.Truncate(0)

			243	 	 	 if	len(p)	==	0	{

			244	 	 	 	 return

			245	 	 	 }

			246	 	 	 return	0,	io.EOF

			247	 	 }

			248	 	 n	=	copy(p,	b.buf[b.off:])

			249	 	 b.off	+=	n

			250	 	 if	n	>	0	{

			251	 	 	 b.lastRead	=	opRead

			252	 	 }

			253	 	 return

			254	 }

			255	

			256	 //	Next	returns	a	slice	containing	the	next	n	bytes	from	the	buffer,

			257	 //	advancing	the	buffer	as	if	the	bytes	had	been	returned	by	Read.

			258	 //	If	there	are	fewer	than	n	bytes	in	the	buffer,	Next	returns	the	entire	buffer.

			259	 //	The	slice	is	only	valid	until	the	next	call	to	a	read	or	write	method.

			260	 func	(b	*Buffer)	Next(n	int)	[]byte	{

			261	 	 b.lastRead	=	opInvalid

			262	 	 m	:=	b.Len()

			263	 	 if	n	>	m	{

			264	 	 	 n	=	m

			265	 	 }

			266	 	 data	:=	b.buf[b.off	:	b.off+n]

			267	 	 b.off	+=	n

			268	 	 if	n	>	0	{

			269	 	 	 b.lastRead	=	opRead

			270	 	 }

			271	 	 return	data

			272	 }

			273	

			274	 //	ReadByte	reads	and	returns	the	next	byte	from	the	buffer.

			275	 //	If	no	byte	is	available,	it	returns	error	io.EOF.

			276	 func	(b	*Buffer)	ReadByte()	(c	byte,	err	error)	{

			277	 	 b.lastRead	=	opInvalid

			278	 	 if	b.off	>=	len(b.buf)	{

			279	 	 	 //	Buffer	is	empty,	reset	to	recover	space.

			280	 	 	 b.Truncate(0)

			281	 	 	 return	0,	io.EOF

			282	 	 }

			283	 	 c	=	b.buf[b.off]

			284	 	 b.off++

			285	 	 b.lastRead	=	opRead

			286	 	 return	c,	nil

			287	 }

			288	

			289	 //	ReadRune	reads	and	returns	the	next	UTF-8-encoded

			290	 //	Unicode	code	point	from	the	buffer.

			291	 //	If	no	bytes	are	available,	the	error	returned	is	io.EOF.

			292	 //	If	the	bytes	are	an	erroneous	UTF-8	encoding,	it

			293	 //	consumes	one	byte	and	returns	U+FFFD,	1.

			294	 func	(b	*Buffer)	ReadRune()	(r	rune,	size	int,	err	error)	{

			295	 	 b.lastRead	=	opInvalid

			296	 	 if	b.off	>=	len(b.buf)	{

			297	 	 	 //	Buffer	is	empty,	reset	to	recover	space.

			298	 	 	 b.Truncate(0)

			299	 	 	 return	0,	0,	io.EOF

			300	 	 }

			301	 	 b.lastRead	=	opReadRune

			302	 	 c	:=	b.buf[b.off]

			303	 	 if	c	<	utf8.RuneSelf	{

			304	 	 	 b.off++

			305	 	 	 return	rune(c),	1,	nil

			306	 	 }

			307	 	 r,	n	:=	utf8.DecodeRune(b.buf[b.off:])

			308	 	 b.off	+=	n

			309	 	 return	r,	n,	nil

			310	 }

			311	

			312	 //	UnreadRune	unreads	the	last	rune	returned	by	ReadRune.

			313	 //	If	the	most	recent	read	or	write	operation	on	the	buffer	was

			314	 //	not	a	ReadRune,	UnreadRune	returns	an	error.		(In	this	regard

			315	 //	it	is	stricter	than	UnreadByte,	which	will	unread	the	last	byte

			316	 //	from	any	read	operation.)

			317	 func	(b	*Buffer)	UnreadRune()	error	{

			318	 	 if	b.lastRead	!=	opReadRune	{

			319	 	 	 return	errors.New("bytes.Buffer:	UnreadRune:	previous	operation	was	not	ReadRune")

			320	 	 }

			321	 	 b.lastRead	=	opInvalid

			322	 	 if	b.off	>	0	{

			323	 	 	 _,	n	:=	utf8.DecodeLastRune(b.buf[0:b.off])

			324	 	 	 b.off	-=	n

			325	 	 }

			326	 	 return	nil

			327	 }

			328	

			329	 //	UnreadByte	unreads	the	last	byte	returned	by	the	most	recent

			330	 //	read	operation.		If	write	has	happened	since	the	last	read,	UnreadByte

			331	 //	returns	an	error.

			332	 func	(b	*Buffer)	UnreadByte()	error	{

			333	 	 if	b.lastRead	!=	opReadRune	&&	b.lastRead	!=	opRead	{

			334	 	 	 return	errors.New("bytes.Buffer:	UnreadByte:	previous	operation	was	not	a	read")

			335	 	 }

			336	 	 b.lastRead	=	opInvalid

			337	 	 if	b.off	>	0	{

			338	 	 	 b.off--

			339	 	 }

			340	 	 return	nil

			341	 }

			342	

			343	 //	ReadBytes	reads	until	the	first	occurrence	of	delim	in	the	input,

			344	 //	returning	a	slice	containing	the	data	up	to	and	including	the	delimiter.

			345	 //	If	ReadBytes	encounters	an	error	before	finding	a	delimiter,

			346	 //	it	returns	the	data	read	before	the	error	and	the	error	itself	(often	io.EOF).

			347	 //	ReadBytes	returns	err	!=	nil	if	and	only	if	the	returned	data	does	not	end	in

			348	 //	delim.

			349	 func	(b	*Buffer)	ReadBytes(delim	byte)	(line	[]byte,	err	error)	{

			350	 	 i	:=	IndexByte(b.buf[b.off:],	delim)

			351	 	 size	:=	i	+	1

			352	 	 if	i	<	0	{

			353	 	 	 size	=	len(b.buf)	-	b.off

			354	 	 	 err	=	io.EOF

			355	 	 }

			356	 	 line	=	make([]byte,	size)

			357	 	 copy(line,	b.buf[b.off:])

			358	 	 b.off	+=	size

			359	 	 return

			360	 }

			361	

			362	 //	ReadString	reads	until	the	first	occurrence	of	delim	in	the	input,

			363	 //	returning	a	string	containing	the	data	up	to	and	including	the	delimiter.

			364	 //	If	ReadString	encounters	an	error	before	finding	a	delimiter,

			365	 //	it	returns	the	data	read	before	the	error	and	the	error	itself	(often	io.EOF).

			366	 //	ReadString	returns	err	!=	nil	if	and	only	if	the	returned	data	does	not	end

			367	 //	in	delim.

			368	 func	(b	*Buffer)	ReadString(delim	byte)	(line	string,	err	error)	{

			369	 	 bytes,	err	:=	b.ReadBytes(delim)

			370	 	 return	string(bytes),	err

			371	 }

			372	

			373	 //	NewBuffer	creates	and	initializes	a	new	Buffer	using	buf	as	its	initial

			374	 //	contents.		It	is	intended	to	prepare	a	Buffer	to	read	existing	data.		It

			375	 //	can	also	be	used	to	size	the	internal	buffer	for	writing.	To	do	that,

			376	 //	buf	should	have	the	desired	capacity	but	a	length	of	zero.

			377	 //

			378	 //	In	most	cases,	new(Buffer)	(or	just	declaring	a	Buffer	variable)	is

			379	 //	sufficient	to	initialize	a	Buffer.

			380	 func	NewBuffer(buf	[]byte)	*Buffer	{	return	&Buffer{buf:	buf}	}

			381	

			382	 //	NewBufferString	creates	and	initializes	a	new	Buffer	using	string	s	as	its

			383	 //	initial	contents.	It	is	intended	to	prepare	a	buffer	to	read	an	existing

			384	 //	string.

			385	 //

			386	 //	In	most	cases,	new(Buffer)	(or	just	declaring	a	Buffer	variable)	is

			387	 //	sufficient	to	initialize	a	Buffer.

			388	 func	NewBufferString(s	string)	*Buffer	{

			389	 	 return	&Buffer{buf:	[]byte(s)}

			390	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/bytes/bytes.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	bytes	implements	functions	for	the	manipulation	of	byte	slices.

					6	 //	It	is	analogous	to	the	facilities	of	the	strings	package.

					7	 package	bytes

					8	

					9	 import	(

				10	 	 "unicode"

				11	 	 "unicode/utf8"

				12)

				13	

				14	 //	Compare	returns	an	integer	comparing	the	two	byte	arrays	lexicographically.

				15	 //	The	result	will	be	0	if	a==b,	-1	if	a	<	b,	and	+1	if	a	>	b

				16	 //	A	nil	argument	is	equivalent	to	an	empty	slice.

				17	 func	Compare(a,	b	[]byte)	int	{

				18	 	 m	:=	len(a)

				19	 	 if	m	>	len(b)	{

				20	 	 	 m	=	len(b)

				21	 	 }

				22	 	 for	i,	ac	:=	range	a[0:m]	{

				23	 	 	 bc	:=	b[i]

				24	 	 	 switch	{

				25	 	 	 case	ac	>	bc:

				26	 	 	 	 return	1

				27	 	 	 case	ac	<	bc:

				28	 	 	 	 return	-1

				29	 	 	 }

				30	 	 }

				31	 	 switch	{

				32	 	 case	len(a)	<	len(b):

				33	 	 	 return	-1

				34	 	 case	len(a)	>	len(b):

				35	 	 	 return	1

				36	 	 }

				37	 	 return	0

				38	 }

				39	

				40	 //	Equal	returns	a	boolean	reporting	whether	a	==	b.

				41	 //	A	nil	argument	is	equivalent	to	an	empty	slice.

				42	 func	Equal(a,	b	[]byte)	bool

				43	

				44	 func	equalPortable(a,	b	[]byte)	bool	{

				45	 	 if	len(a)	!=	len(b)	{

				46	 	 	 return	false

				47	 	 }

				48	 	 for	i,	c	:=	range	a	{

				49	 	 	 if	c	!=	b[i]	{

				50	 	 	 	 return	false

				51	 	 	 }

				52	 	 }

				53	 	 return	true

				54	 }

				55	

				56	 //	explode	splits	s	into	an	array	of	UTF-8	sequences,	one	per	Unicode	character	(still	arrays	of	bytes),

				57	 //	up	to	a	maximum	of	n	byte	arrays.	Invalid	UTF-8	sequences	are	chopped	into	individual	bytes.

				58	 func	explode(s	[]byte,	n	int)	[][]byte	{

				59	 	 if	n	<=	0	{

				60	 	 	 n	=	len(s)

				61	 	 }

				62	 	 a	:=	make([][]byte,	n)

				63	 	 var	size	int

				64	 	 na	:=	0

				65	 	 for	len(s)	>	0	{

				66	 	 	 if	na+1	>=	n	{

				67	 	 	 	 a[na]	=	s

				68	 	 	 	 na++

				69	 	 	 	 break

				70	 	 	 }

				71	 	 	 _,	size	=	utf8.DecodeRune(s)

				72	 	 	 a[na]	=	s[0:size]

				73	 	 	 s	=	s[size:]

				74	 	 	 na++

				75	 	 }

				76	 	 return	a[0:na]

				77	 }

				78	

				79	 //	Count	counts	the	number	of	non-overlapping	instances	of	sep	in	s.

				80	 func	Count(s,	sep	[]byte)	int	{

				81	 	 n	:=	len(sep)

				82	 	 if	n	==	0	{

				83	 	 	 return	utf8.RuneCount(s)	+	1

				84	 	 }

				85	 	 if	n	>	len(s)	{

				86	 	 	 return	0

				87	 	 }

				88	 	 count	:=	0

				89	 	 c	:=	sep[0]

				90	 	 i	:=	0

				91	 	 t	:=	s[:len(s)-n+1]

				92	 	 for	i	<	len(t)	{

				93	 	 	 if	t[i]	!=	c	{

				94	 	 	 	 o	:=	IndexByte(t[i:],	c)

				95	 	 	 	 if	o	<	0	{

				96	 	 	 	 	 break

				97	 	 	 	 }

				98	 	 	 	 i	+=	o

				99	 	 	 }

			100	 	 	 if	n	==	1	||	Equal(s[i:i+n],	sep)	{

			101	 	 	 	 count++

			102	 	 	 	 i	+=	n

			103	 	 	 	 continue

			104	 	 	 }

			105	 	 	 i++

			106	 	 }

			107	 	 return	count

			108	 }

			109	

			110	 //	Contains	returns	whether	subslice	is	within	b.

			111	 func	Contains(b,	subslice	[]byte)	bool	{

			112	 	 return	Index(b,	subslice)	!=	-1

			113	 }

			114	

			115	 //	Index	returns	the	index	of	the	first	instance	of	sep	in	s,	or	-1	if	sep	is	not	present	in	s.

			116	 func	Index(s,	sep	[]byte)	int	{

			117	 	 n	:=	len(sep)

			118	 	 if	n	==	0	{

			119	 	 	 return	0

			120	 	 }

			121	 	 if	n	>	len(s)	{

			122	 	 	 return	-1

			123	 	 }

			124	 	 c	:=	sep[0]

			125	 	 if	n	==	1	{

			126	 	 	 return	IndexByte(s,	c)

			127	 	 }

			128	 	 i	:=	0

			129	 	 t	:=	s[:len(s)-n+1]

			130	 	 for	i	<	len(t)	{

			131	 	 	 if	t[i]	!=	c	{

			132	 	 	 	 o	:=	IndexByte(t[i:],	c)

			133	 	 	 	 if	o	<	0	{

			134	 	 	 	 	 break

			135	 	 	 	 }

			136	 	 	 	 i	+=	o

			137	 	 	 }

			138	 	 	 if	Equal(s[i:i+n],	sep)	{

			139	 	 	 	 return	i

			140	 	 	 }

			141	 	 	 i++

			142	 	 }

			143	 	 return	-1

			144	 }

			145	

			146	 func	indexBytePortable(s	[]byte,	c	byte)	int	{

			147	 	 for	i,	b	:=	range	s	{

			148	 	 	 if	b	==	c	{

			149	 	 	 	 return	i

			150	 	 	 }

			151	 	 }

			152	 	 return	-1

			153	 }

			154	

			155	 //	LastIndex	returns	the	index	of	the	last	instance	of	sep	in	s,	or	-1	if	sep	is	not	present	in	s.

			156	 func	LastIndex(s,	sep	[]byte)	int	{

			157	 	 n	:=	len(sep)

			158	 	 if	n	==	0	{

			159	 	 	 return	len(s)

			160	 	 }

			161	 	 c	:=	sep[0]

			162	 	 for	i	:=	len(s)	-	n;	i	>=	0;	i--	{

			163	 	 	 if	s[i]	==	c	&&	(n	==	1	||	Equal(s[i:i+n],	sep))	{

			164	 	 	 	 return	i

			165	 	 	 }

			166	 	 }

			167	 	 return	-1

			168	 }

			169	

			170	 //	IndexRune	interprets	s	as	a	sequence	of	UTF-8-encoded	Unicode	code	points.

			171	 //	It	returns	the	byte	index	of	the	first	occurrence	in	s	of	the	given	rune.

			172	 //	It	returns	-1	if	rune	is	not	present	in	s.

			173	 func	IndexRune(s	[]byte,	r	rune)	int	{

			174	 	 for	i	:=	0;	i	<	len(s);	{

			175	 	 	 r1,	size	:=	utf8.DecodeRune(s[i:])

			176	 	 	 if	r	==	r1	{

			177	 	 	 	 return	i

			178	 	 	 }

			179	 	 	 i	+=	size

			180	 	 }

			181	 	 return	-1

			182	 }

			183	

			184	 //	IndexAny	interprets	s	as	a	sequence	of	UTF-8-encoded	Unicode	code	points.

			185	 //	It	returns	the	byte	index	of	the	first	occurrence	in	s	of	any	of	the	Unicode

			186	 //	code	points	in	chars.		It	returns	-1	if	chars	is	empty	or	if	there	is	no	code

			187	 //	point	in	common.

			188	 func	IndexAny(s	[]byte,	chars	string)	int	{

			189	 	 if	len(chars)	>	0	{

			190	 	 	 var	r	rune

			191	 	 	 var	width	int

			192	 	 	 for	i	:=	0;	i	<	len(s);	i	+=	width	{

			193	 	 	 	 r	=	rune(s[i])

			194	 	 	 	 if	r	<	utf8.RuneSelf	{

			195	 	 	 	 	 width	=	1

			196	 	 	 	 }	else	{

			197	 	 	 	 	 r,	width	=	utf8.DecodeRune(s[i:])

			198	 	 	 	 }

			199	 	 	 	 for	_,	ch	:=	range	chars	{

			200	 	 	 	 	 if	r	==	ch	{

			201	 	 	 	 	 	 return	i

			202	 	 	 	 	 }

			203	 	 	 	 }

			204	 	 	 }

			205	 	 }

			206	 	 return	-1

			207	 }

			208	

			209	 //	LastIndexAny	interprets	s	as	a	sequence	of	UTF-8-encoded	Unicode	code

			210	 //	points.		It	returns	the	byte	index	of	the	last	occurrence	in	s	of	any	of

			211	 //	the	Unicode	code	points	in	chars.		It	returns	-1	if	chars	is	empty	or	if

			212	 //	there	is	no	code	point	in	common.

			213	 func	LastIndexAny(s	[]byte,	chars	string)	int	{

			214	 	 if	len(chars)	>	0	{

			215	 	 	 for	i	:=	len(s);	i	>	0;	{

			216	 	 	 	 r,	size	:=	utf8.DecodeLastRune(s[0:i])

			217	 	 	 	 i	-=	size

			218	 	 	 	 for	_,	ch	:=	range	chars	{

			219	 	 	 	 	 if	r	==	ch	{

			220	 	 	 	 	 	 return	i

			221	 	 	 	 	 }

			222	 	 	 	 }

			223	 	 	 }

			224	 	 }

			225	 	 return	-1

			226	 }

			227	

			228	 //	Generic	split:	splits	after	each	instance	of	sep,

			229	 //	including	sepSave	bytes	of	sep	in	the	subarrays.

			230	 func	genSplit(s,	sep	[]byte,	sepSave,	n	int)	[][]byte	{

			231	 	 if	n	==	0	{

			232	 	 	 return	nil

			233	 	 }

			234	 	 if	len(sep)	==	0	{

			235	 	 	 return	explode(s,	n)

			236	 	 }

			237	 	 if	n	<	0	{

			238	 	 	 n	=	Count(s,	sep)	+	1

			239	 	 }

			240	 	 c	:=	sep[0]

			241	 	 start	:=	0

			242	 	 a	:=	make([][]byte,	n)

			243	 	 na	:=	0

			244	 	 for	i	:=	0;	i+len(sep)	<=	len(s)	&&	na+1	<	n;	i++	{

			245	 	 	 if	s[i]	==	c	&&	(len(sep)	==	1	||	Equal(s[i:i+len(sep)],	sep))	{

			246	 	 	 	 a[na]	=	s[start	:	i+sepSave]

			247	 	 	 	 na++

			248	 	 	 	 start	=	i	+	len(sep)

			249	 	 	 	 i	+=	len(sep)	-	1

			250	 	 	 }

			251	 	 }

			252	 	 a[na]	=	s[start:]

			253	 	 return	a[0	:	na+1]

			254	 }

			255	

			256	 //	SplitN	slices	s	into	subslices	separated	by	sep	and	returns	a	slice	of

			257	 //	the	subslices	between	those	separators.

			258	 //	If	sep	is	empty,	SplitN	splits	after	each	UTF-8	sequence.

			259	 //	The	count	determines	the	number	of	subslices	to	return:

			260	 //			n	>	0:	at	most	n	subslices;	the	last	subslice	will	be	the	unsplit	remainder.

			261	 //			n	==	0:	the	result	is	nil	(zero	subslices)

			262	 //			n	<	0:	all	subslices

			263	 func	SplitN(s,	sep	[]byte,	n	int)	[][]byte	{	return	genSplit(s,	sep,	0,	n)	}

			264	

			265	 //	SplitAfterN	slices	s	into	subslices	after	each	instance	of	sep	and

			266	 //	returns	a	slice	of	those	subslices.

			267	 //	If	sep	is	empty,	SplitAfterN	splits	after	each	UTF-8	sequence.

			268	 //	The	count	determines	the	number	of	subslices	to	return:

			269	 //			n	>	0:	at	most	n	subslices;	the	last	subslice	will	be	the	unsplit	remainder.

			270	 //			n	==	0:	the	result	is	nil	(zero	subslices)

			271	 //			n	<	0:	all	subslices

			272	 func	SplitAfterN(s,	sep	[]byte,	n	int)	[][]byte	{

			273	 	 return	genSplit(s,	sep,	len(sep),	n)

			274	 }

			275	

			276	 //	Split	slices	s	into	all	subslices	separated	by	sep	and	returns	a	slice	of

			277	 //	the	subslices	between	those	separators.

			278	 //	If	sep	is	empty,	Split	splits	after	each	UTF-8	sequence.

			279	 //	It	is	equivalent	to	SplitN	with	a	count	of	-1.

			280	 func	Split(s,	sep	[]byte)	[][]byte	{	return	genSplit(s,	sep,	0,	-1)	}

			281	

			282	 //	SplitAfter	slices	s	into	all	subslices	after	each	instance	of	sep	and

			283	 //	returns	a	slice	of	those	subslices.

			284	 //	If	sep	is	empty,	SplitAfter	splits	after	each	UTF-8	sequence.

			285	 //	It	is	equivalent	to	SplitAfterN	with	a	count	of	-1.

			286	 func	SplitAfter(s,	sep	[]byte)	[][]byte	{

			287	 	 return	genSplit(s,	sep,	len(sep),	-1)

			288	 }

			289	

			290	 //	Fields	splits	the	array	s	around	each	instance	of	one	or	more	consecutive	white	space

			291	 //	characters,	returning	a	slice	of	subarrays	of	s	or	an	empty	list	if	s	contains	only	white	space.

			292	 func	Fields(s	[]byte)	[][]byte	{

			293	 	 return	FieldsFunc(s,	unicode.IsSpace)

			294	 }

			295	

			296	 //	FieldsFunc	interprets	s	as	a	sequence	of	UTF-8-encoded	Unicode	code	points.

			297	 //	It	splits	the	array	s	at	each	run	of	code	points	c	satisfying	f(c)	and

			298	 //	returns	a	slice	of	subarrays	of	s.		If	no	code	points	in	s	satisfy	f(c),	an

			299	 //	empty	slice	is	returned.

			300	 func	FieldsFunc(s	[]byte,	f	func(rune)	bool)	[][]byte	{

			301	 	 n	:=	0

			302	 	 inField	:=	false

			303	 	 for	i	:=	0;	i	<	len(s);	{

			304	 	 	 r,	size	:=	utf8.DecodeRune(s[i:])

			305	 	 	 wasInField	:=	inField

			306	 	 	 inField	=	!f(r)

			307	 	 	 if	inField	&&	!wasInField	{

			308	 	 	 	 n++

			309	 	 	 }

			310	 	 	 i	+=	size

			311	 	 }

			312	

			313	 	 a	:=	make([][]byte,	n)

			314	 	 na	:=	0

			315	 	 fieldStart	:=	-1

			316	 	 for	i	:=	0;	i	<=	len(s)	&&	na	<	n;	{

			317	 	 	 r,	size	:=	utf8.DecodeRune(s[i:])

			318	 	 	 if	fieldStart	<	0	&&	size	>	0	&&	!f(r)	{

			319	 	 	 	 fieldStart	=	i

			320	 	 	 	 i	+=	size

			321	 	 	 	 continue

			322	 	 	 }

			323	 	 	 if	fieldStart	>=	0	&&	(size	==	0	||	f(r))	{

			324	 	 	 	 a[na]	=	s[fieldStart:i]

			325	 	 	 	 na++

			326	 	 	 	 fieldStart	=	-1

			327	 	 	 }

			328	 	 	 if	size	==	0	{

			329	 	 	 	 break

			330	 	 	 }

			331	 	 	 i	+=	size

			332	 	 }

			333	 	 return	a[0:na]

			334	 }

			335	

			336	 //	Join	concatenates	the	elements	of	a	to	create	a	single	byte	array.			The	separator

			337	 //	sep	is	placed	between	elements	in	the	resulting	array.

			338	 func	Join(a	[][]byte,	sep	[]byte)	[]byte	{

			339	 	 if	len(a)	==	0	{

			340	 	 	 return	[]byte{}

			341	 	 }

			342	 	 if	len(a)	==	1	{

			343	 	 	 return	a[0]

			344	 	 }

			345	 	 n	:=	len(sep)	*	(len(a)	-	1)

			346	 	 for	i	:=	0;	i	<	len(a);	i++	{

			347	 	 	 n	+=	len(a[i])

			348	 	 }

			349	

			350	 	 b	:=	make([]byte,	n)

			351	 	 bp	:=	copy(b,	a[0])

			352	 	 for	_,	s	:=	range	a[1:]	{

			353	 	 	 bp	+=	copy(b[bp:],	sep)

			354	 	 	 bp	+=	copy(b[bp:],	s)

			355	 	 }

			356	 	 return	b

			357	 }

			358	

			359	 //	HasPrefix	tests	whether	the	byte	array	s	begins	with	prefix.

			360	 func	HasPrefix(s,	prefix	[]byte)	bool	{

			361	 	 return	len(s)	>=	len(prefix)	&&	Equal(s[0:len(prefix)],	prefix)

			362	 }

			363	

			364	 //	HasSuffix	tests	whether	the	byte	array	s	ends	with	suffix.

			365	 func	HasSuffix(s,	suffix	[]byte)	bool	{

			366	 	 return	len(s)	>=	len(suffix)	&&	Equal(s[len(s)-len(suffix):],	suffix)

			367	 }

			368	

			369	 //	Map	returns	a	copy	of	the	byte	array	s	with	all	its	characters	modified

			370	 //	according	to	the	mapping	function.	If	mapping	returns	a	negative	value,	the	character	is

			371	 //	dropped	from	the	string	with	no	replacement.		The	characters	in	s	and	the

			372	 //	output	are	interpreted	as	UTF-8-encoded	Unicode	code	points.

			373	 func	Map(mapping	func(r	rune)	rune,	s	[]byte)	[]byte	{

			374	 	 //	In	the	worst	case,	the	array	can	grow	when	mapped,	making

			375	 	 //	things	unpleasant.		But	it's	so	rare	we	barge	in	assuming	it's

			376	 	 //	fine.		It	could	also	shrink	but	that	falls	out	naturally.

			377	 	 maxbytes	:=	len(s)	//	length	of	b

			378	 	 nbytes	:=	0								//	number	of	bytes	encoded	in	b

			379	 	 b	:=	make([]byte,	maxbytes)

			380	 	 for	i	:=	0;	i	<	len(s);	{

			381	 	 	 wid	:=	1

			382	 	 	 r	:=	rune(s[i])

			383	 	 	 if	r	>=	utf8.RuneSelf	{

			384	 	 	 	 r,	wid	=	utf8.DecodeRune(s[i:])

			385	 	 	 }

			386	 	 	 r	=	mapping(r)

			387	 	 	 if	r	>=	0	{

			388	 	 	 	 if	nbytes+utf8.RuneLen(r)	>	maxbytes	{

			389	 	 	 	 	 //	Grow	the	buffer.

			390	 	 	 	 	 maxbytes	=	maxbytes*2	+	utf8.UTFMax

			391	 	 	 	 	 nb	:=	make([]byte,	maxbytes)

			392	 	 	 	 	 copy(nb,	b[0:nbytes])

			393	 	 	 	 	 b	=	nb

			394	 	 	 	 }

			395	 	 	 	 nbytes	+=	utf8.EncodeRune(b[nbytes:maxbytes],	r)

			396	 	 	 }

			397	 	 	 i	+=	wid

			398	 	 }

			399	 	 return	b[0:nbytes]

			400	 }

			401	

			402	 //	Repeat	returns	a	new	byte	slice	consisting	of	count	copies	of	b.

			403	 func	Repeat(b	[]byte,	count	int)	[]byte	{

			404	 	 nb	:=	make([]byte,	len(b)*count)

			405	 	 bp	:=	0

			406	 	 for	i	:=	0;	i	<	count;	i++	{

			407	 	 	 for	j	:=	0;	j	<	len(b);	j++	{

			408	 	 	 	 nb[bp]	=	b[j]

			409	 	 	 	 bp++

			410	 	 	 }

			411	 	 }

			412	 	 return	nb

			413	 }

			414	

			415	 //	ToUpper	returns	a	copy	of	the	byte	array	s	with	all	Unicode	letters	mapped	to	their	upper	case.

			416	 func	ToUpper(s	[]byte)	[]byte	{	return	Map(unicode.ToUpper,	s)	}

			417	

			418	 //	ToUpper	returns	a	copy	of	the	byte	array	s	with	all	Unicode	letters	mapped	to	their	lower	case.

			419	 func	ToLower(s	[]byte)	[]byte	{	return	Map(unicode.ToLower,	s)	}

			420	

			421	 //	ToTitle	returns	a	copy	of	the	byte	array	s	with	all	Unicode	letters	mapped	to	their	title	case.

			422	 func	ToTitle(s	[]byte)	[]byte	{	return	Map(unicode.ToTitle,	s)	}

			423	

			424	 //	ToUpperSpecial	returns	a	copy	of	the	byte	array	s	with	all	Unicode	letters	mapped	to	their

			425	 //	upper	case,	giving	priority	to	the	special	casing	rules.

			426	 func	ToUpperSpecial(_case	unicode.SpecialCase,	s	[]byte)	[]byte	{

			427	 	 return	Map(func(r	rune)	rune	{	return	_case.ToUpper(r)	},	s)

			428	 }

			429	

			430	 //	ToLowerSpecial	returns	a	copy	of	the	byte	array	s	with	all	Unicode	letters	mapped	to	their

			431	 //	lower	case,	giving	priority	to	the	special	casing	rules.

			432	 func	ToLowerSpecial(_case	unicode.SpecialCase,	s	[]byte)	[]byte	{

			433	 	 return	Map(func(r	rune)	rune	{	return	_case.ToLower(r)	},	s)

			434	 }

			435	

			436	 //	ToTitleSpecial	returns	a	copy	of	the	byte	array	s	with	all	Unicode	letters	mapped	to	their

			437	 //	title	case,	giving	priority	to	the	special	casing	rules.

			438	 func	ToTitleSpecial(_case	unicode.SpecialCase,	s	[]byte)	[]byte	{

			439	 	 return	Map(func(r	rune)	rune	{	return	_case.ToTitle(r)	},	s)

			440	 }

			441	

			442	 //	isSeparator	reports	whether	the	rune	could	mark	a	word	boundary.

			443	 //	TODO:	update	when	package	unicode	captures	more	of	the	properties.

			444	 func	isSeparator(r	rune)	bool	{

			445	 	 //	ASCII	alphanumerics	and	underscore	are	not	separators

			446	 	 if	r	<=	0x7F	{

			447	 	 	 switch	{

			448	 	 	 case	'0'	<=	r	&&	r	<=	'9':

			449	 	 	 	 return	false

			450	 	 	 case	'a'	<=	r	&&	r	<=	'z':

			451	 	 	 	 return	false

			452	 	 	 case	'A'	<=	r	&&	r	<=	'Z':

			453	 	 	 	 return	false

			454	 	 	 case	r	==	'_':

			455	 	 	 	 return	false

			456	 	 	 }

			457	 	 	 return	true

			458	 	 }

			459	 	 //	Letters	and	digits	are	not	separators

			460	 	 if	unicode.IsLetter(r)	||	unicode.IsDigit(r)	{

			461	 	 	 return	false

			462	 	 }

			463	 	 //	Otherwise,	all	we	can	do	for	now	is	treat	spaces	as	separators.

			464	 	 return	unicode.IsSpace(r)

			465	 }

			466	

			467	 //	BUG(r):	The	rule	Title	uses	for	word	boundaries	does	not	handle	Unicode	punctuation	properly.

			468	

			469	 //	Title	returns	a	copy	of	s	with	all	Unicode	letters	that	begin	words

			470	 //	mapped	to	their	title	case.

			471	 func	Title(s	[]byte)	[]byte	{

			472	 	 //	Use	a	closure	here	to	remember	state.

			473	 	 //	Hackish	but	effective.	Depends	on	Map	scanning	in	order	and	calling

			474	 	 //	the	closure	once	per	rune.

			475	 	 prev	:=	'	'

			476	 	 return	Map(

			477	 	 	 func(r	rune)	rune	{

			478	 	 	 	 if	isSeparator(prev)	{

			479	 	 	 	 	 prev	=	r

			480	 	 	 	 	 return	unicode.ToTitle(r)

			481	 	 	 	 }

			482	 	 	 	 prev	=	r

			483	 	 	 	 return	r

			484	 	 	 },

			485	 	 	 s)

			486	 }

			487	

			488	 //	TrimLeftFunc	returns	a	subslice	of	s	by	slicing	off	all	leading	UTF-8-encoded

			489	 //	Unicode	code	points	c	that	satisfy	f(c).

			490	 func	TrimLeftFunc(s	[]byte,	f	func(r	rune)	bool)	[]byte	{

			491	 	 i	:=	indexFunc(s,	f,	false)

			492	 	 if	i	==	-1	{

			493	 	 	 return	nil

			494	 	 }

			495	 	 return	s[i:]

			496	 }

			497	

			498	 //	TrimRightFunc	returns	a	subslice	of	s	by	slicing	off	all	trailing	UTF-8

			499	 //	encoded	Unicode	code	points	c	that	satisfy	f(c).

			500	 func	TrimRightFunc(s	[]byte,	f	func(r	rune)	bool)	[]byte	{

			501	 	 i	:=	lastIndexFunc(s,	f,	false)

			502	 	 if	i	>=	0	&&	s[i]	>=	utf8.RuneSelf	{

			503	 	 	 _,	wid	:=	utf8.DecodeRune(s[i:])

			504	 	 	 i	+=	wid

			505	 	 }	else	{

			506	 	 	 i++

			507	 	 }

			508	 	 return	s[0:i]

			509	 }

			510	

			511	 //	TrimFunc	returns	a	subslice	of	s	by	slicing	off	all	leading	and	trailing

			512	 //	UTF-8-encoded	Unicode	code	points	c	that	satisfy	f(c).

			513	 func	TrimFunc(s	[]byte,	f	func(r	rune)	bool)	[]byte	{

			514	 	 return	TrimRightFunc(TrimLeftFunc(s,	f),	f)

			515	 }

			516	

			517	 //	IndexFunc	interprets	s	as	a	sequence	of	UTF-8-encoded	Unicode	code	points.

			518	 //	It	returns	the	byte	index	in	s	of	the	first	Unicode

			519	 //	code	point	satisfying	f(c),	or	-1	if	none	do.

			520	 func	IndexFunc(s	[]byte,	f	func(r	rune)	bool)	int	{

			521	 	 return	indexFunc(s,	f,	true)

			522	 }

			523	

			524	 //	LastIndexFunc	interprets	s	as	a	sequence	of	UTF-8-encoded	Unicode	code	points.

			525	 //	It	returns	the	byte	index	in	s	of	the	last	Unicode

			526	 //	code	point	satisfying	f(c),	or	-1	if	none	do.

			527	 func	LastIndexFunc(s	[]byte,	f	func(r	rune)	bool)	int	{

			528	 	 return	lastIndexFunc(s,	f,	true)

			529	 }

			530	

			531	 //	indexFunc	is	the	same	as	IndexFunc	except	that	if

			532	 //	truth==false,	the	sense	of	the	predicate	function	is

			533	 //	inverted.

			534	 func	indexFunc(s	[]byte,	f	func(r	rune)	bool,	truth	bool)	int	{

			535	 	 start	:=	0

			536	 	 for	start	<	len(s)	{

			537	 	 	 wid	:=	1

			538	 	 	 r	:=	rune(s[start])

			539	 	 	 if	r	>=	utf8.RuneSelf	{

			540	 	 	 	 r,	wid	=	utf8.DecodeRune(s[start:])

			541	 	 	 }

			542	 	 	 if	f(r)	==	truth	{

			543	 	 	 	 return	start

			544	 	 	 }

			545	 	 	 start	+=	wid

			546	 	 }

			547	 	 return	-1

			548	 }

			549	

			550	 //	lastIndexFunc	is	the	same	as	LastIndexFunc	except	that	if

			551	 //	truth==false,	the	sense	of	the	predicate	function	is

			552	 //	inverted.

			553	 func	lastIndexFunc(s	[]byte,	f	func(r	rune)	bool,	truth	bool)	int	{

			554	 	 for	i	:=	len(s);	i	>	0;	{

			555	 	 	 r,	size	:=	utf8.DecodeLastRune(s[0:i])

			556	 	 	 i	-=	size

			557	 	 	 if	f(r)	==	truth	{

			558	 	 	 	 return	i

			559	 	 	 }

			560	 	 }

			561	 	 return	-1

			562	 }

			563	

			564	 func	makeCutsetFunc(cutset	string)	func(r	rune)	bool	{

			565	 	 return	func(r	rune)	bool	{

			566	 	 	 for	_,	c	:=	range	cutset	{

			567	 	 	 	 if	c	==	r	{

			568	 	 	 	 	 return	true

			569	 	 	 	 }

			570	 	 	 }

			571	 	 	 return	false

			572	 	 }

			573	 }

			574	

			575	 //	Trim	returns	a	subslice	of	s	by	slicing	off	all	leading	and

			576	 //	trailing	UTF-8-encoded	Unicode	code	points	contained	in	cutset.

			577	 func	Trim(s	[]byte,	cutset	string)	[]byte	{

			578	 	 return	TrimFunc(s,	makeCutsetFunc(cutset))

			579	 }

			580	

			581	 //	TrimLeft	returns	a	subslice	of	s	by	slicing	off	all	leading

			582	 //	UTF-8-encoded	Unicode	code	points	contained	in	cutset.

			583	 func	TrimLeft(s	[]byte,	cutset	string)	[]byte	{

			584	 	 return	TrimLeftFunc(s,	makeCutsetFunc(cutset))

			585	 }

			586	

			587	 //	TrimRight	returns	a	subslice	of	s	by	slicing	off	all	trailing

			588	 //	UTF-8-encoded	Unicode	code	points	that	are	contained	in	cutset.

			589	 func	TrimRight(s	[]byte,	cutset	string)	[]byte	{

			590	 	 return	TrimRightFunc(s,	makeCutsetFunc(cutset))

			591	 }

			592	

			593	 //	TrimSpace	returns	a	subslice	of	s	by	slicing	off	all	leading	and

			594	 //	trailing	white	space,	as	defined	by	Unicode.

			595	 func	TrimSpace(s	[]byte)	[]byte	{

			596	 	 return	TrimFunc(s,	unicode.IsSpace)

			597	 }

			598	

			599	 //	Runes	returns	a	slice	of	runes	(Unicode	code	points)	equivalent	to	s.

			600	 func	Runes(s	[]byte)	[]rune	{

			601	 	 t	:=	make([]rune,	utf8.RuneCount(s))

			602	 	 i	:=	0

			603	 	 for	len(s)	>	0	{

			604	 	 	 r,	l	:=	utf8.DecodeRune(s)

			605	 	 	 t[i]	=	r

			606	 	 	 i++

			607	 	 	 s	=	s[l:]

			608	 	 }

			609	 	 return	t

			610	 }

			611	

			612	 //	Replace	returns	a	copy	of	the	slice	s	with	the	first	n

			613	 //	non-overlapping	instances	of	old	replaced	by	new.

			614	 //	If	n	<	0,	there	is	no	limit	on	the	number	of	replacements.

			615	 func	Replace(s,	old,	new	[]byte,	n	int)	[]byte	{

			616	 	 m	:=	0

			617	 	 if	n	!=	0	{

			618	 	 	 //	Compute	number	of	replacements.

			619	 	 	 m	=	Count(s,	old)

			620	 	 }

			621	 	 if	m	==	0	{

			622	 	 	 //	Nothing	to	do.	Just	copy.

			623	 	 	 t	:=	make([]byte,	len(s))

			624	 	 	 copy(t,	s)

			625	 	 	 return	t

			626	 	 }

			627	 	 if	n	<	0	||	m	<	n	{

			628	 	 	 n	=	m

			629	 	 }

			630	

			631	 	 //	Apply	replacements	to	buffer.

			632	 	 t	:=	make([]byte,	len(s)+n*(len(new)-len(old)))

			633	 	 w	:=	0

			634	 	 start	:=	0

			635	 	 for	i	:=	0;	i	<	n;	i++	{

			636	 	 	 j	:=	start

			637	 	 	 if	len(old)	==	0	{

			638	 	 	 	 if	i	>	0	{

			639	 	 	 	 	 _,	wid	:=	utf8.DecodeRune(s[start:])

			640	 	 	 	 	 j	+=	wid

			641	 	 	 	 }

			642	 	 	 }	else	{

			643	 	 	 	 j	+=	Index(s[start:],	old)

			644	 	 	 }

			645	 	 	 w	+=	copy(t[w:],	s[start:j])

			646	 	 	 w	+=	copy(t[w:],	new)

			647	 	 	 start	=	j	+	len(old)

			648	 	 }

			649	 	 w	+=	copy(t[w:],	s[start:])

			650	 	 return	t[0:w]

			651	 }

			652	

			653	 //	EqualFold	reports	whether	s	and	t,	interpreted	as	UTF-8	strings,

			654	 //	are	equal	under	Unicode	case-folding.

			655	 func	EqualFold(s,	t	[]byte)	bool	{

			656	 	 for	len(s)	!=	0	&&	len(t)	!=	0	{

			657	 	 	 //	Extract	first	rune	from	each.

			658	 	 	 var	sr,	tr	rune

			659	 	 	 if	s[0]	<	utf8.RuneSelf	{

			660	 	 	 	 sr,	s	=	rune(s[0]),	s[1:]

			661	 	 	 }	else	{

			662	 	 	 	 r,	size	:=	utf8.DecodeRune(s)

			663	 	 	 	 sr,	s	=	r,	s[size:]

			664	 	 	 }

			665	 	 	 if	t[0]	<	utf8.RuneSelf	{

			666	 	 	 	 tr,	t	=	rune(t[0]),	t[1:]

			667	 	 	 }	else	{

			668	 	 	 	 r,	size	:=	utf8.DecodeRune(t)

			669	 	 	 	 tr,	t	=	r,	t[size:]

			670	 	 	 }

			671	

			672	 	 	 //	If	they	match,	keep	going;	if	not,	return	false.

			673	

			674	 	 	 //	Easy	case.

			675	 	 	 if	tr	==	sr	{

			676	 	 	 	 continue

			677	 	 	 }

			678	

			679	 	 	 //	Make	sr	<	tr	to	simplify	what	follows.

			680	 	 	 if	tr	<	sr	{

			681	 	 	 	 tr,	sr	=	sr,	tr

			682	 	 	 }

			683	 	 	 //	Fast	check	for	ASCII.

			684	 	 	 if	tr	<	utf8.RuneSelf	&&	'A'	<=	sr	&&	sr	<=	'Z'	{

			685	 	 	 	 //	ASCII,	and	sr	is	upper	case.		tr	must	be	lower	case.

			686	 	 	 	 if	tr	==	sr+'a'-'A'	{

			687	 	 	 	 	 continue

			688	 	 	 	 }

			689	 	 	 	 return	false

			690	 	 	 }

			691	

			692	 	 	 //	General	case.		SimpleFold(x)	returns	the	next	equivalent	rune	>	x

			693	 	 	 //	or	wraps	around	to	smaller	values.

			694	 	 	 r	:=	unicode.SimpleFold(sr)

			695	 	 	 for	r	!=	sr	&&	r	<	tr	{

			696	 	 	 	 r	=	unicode.SimpleFold(r)

			697	 	 	 }

			698	 	 	 if	r	==	tr	{

			699	 	 	 	 continue

			700	 	 	 }

			701	 	 	 return	false

			702	 	 }

			703	

			704	 	 //	One	string	is	empty.		Are	both?

			705	 	 return	len(s)	==	len(t)

			706	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/bytes/bytes_decl.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	bytes

					6	

					7	 //	IndexByte	returns	the	index	of	the	first	instance	of	c	in	s,	or	-1	if	c	is	not	present	in	s.

					8	 func	IndexByte(s	[]byte,	c	byte)	int	//	asm_$GOARCH.s

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/bytes/reader.go
					1	 //	Copyright	2012	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	bytes

					6	

					7	 import	(

					8	 	 "errors"

					9	 	 "io"

				10	 	 "unicode/utf8"

				11)

				12	

				13	 //	A	Reader	implements	the	io.Reader,	io.ReaderAt,	io.Seeker,

				14	 //	io.ByteScanner,	and	io.RuneScanner	interfaces	by	reading	from

				15	 //	a	byte	slice.

				16	 //	Unlike	a	Buffer,	a	Reader	is	read-only	and	supports	seeking.

				17	 type	Reader	struct	{

				18	 	 s								[]byte

				19	 	 i								int	//	current	reading	index

				20	 	 prevRune	int	//	index	of	previous	rune;	or	<	0

				21	 }

				22	

				23	 //	Len	returns	the	number	of	bytes	of	the	unread	portion	of	the

				24	 //	slice.

				25	 func	(r	*Reader)	Len()	int	{

				26	 	 if	r.i	>=	len(r.s)	{

				27	 	 	 return	0

				28	 	 }

				29	 	 return	len(r.s)	-	r.i

				30	 }

				31	

				32	 func	(r	*Reader)	Read(b	[]byte)	(n	int,	err	error)	{

				33	 	 if	len(b)	==	0	{

				34	 	 	 return	0,	nil

				35	 	 }

				36	 	 if	r.i	>=	len(r.s)	{

				37	 	 	 return	0,	io.EOF

				38	 	 }

				39	 	 n	=	copy(b,	r.s[r.i:])

				40	 	 r.i	+=	n

				41	 	 r.prevRune	=	-1

				42	 	 return

				43	 }

				44	

				45	 func	(r	*Reader)	ReadAt(b	[]byte,	off	int64)	(n	int,	err	error)	{

				46	 	 if	off	<	0	{

				47	 	 	 return	0,	errors.New("bytes:	invalid	offset")

				48	 	 }

				49	 	 if	off	>=	int64(len(r.s))	{

				50	 	 	 return	0,	io.EOF

				51	 	 }

				52	 	 n	=	copy(b,	r.s[int(off):])

				53	 	 if	n	<	len(b)	{

				54	 	 	 err	=	io.EOF

				55	 	 }

				56	 	 return

				57	 }

				58	

				59	 func	(r	*Reader)	ReadByte()	(b	byte,	err	error)	{

				60	 	 if	r.i	>=	len(r.s)	{

				61	 	 	 return	0,	io.EOF

				62	 	 }

				63	 	 b	=	r.s[r.i]

				64	 	 r.i++

				65	 	 r.prevRune	=	-1

				66	 	 return

				67	 }

				68	

				69	 func	(r	*Reader)	UnreadByte()	error	{

				70	 	 if	r.i	<=	0	{

				71	 	 	 return	errors.New("bytes.Reader:	at	beginning	of	slice")

				72	 	 }

				73	 	 r.i--

				74	 	 r.prevRune	=	-1

				75	 	 return	nil

				76	 }

				77	

				78	 func	(r	*Reader)	ReadRune()	(ch	rune,	size	int,	err	error)	{

				79	 	 if	r.i	>=	len(r.s)	{

				80	 	 	 return	0,	0,	io.EOF

				81	 	 }

				82	 	 r.prevRune	=	r.i

				83	 	 if	c	:=	r.s[r.i];	c	<	utf8.RuneSelf	{

				84	 	 	 r.i++

				85	 	 	 return	rune(c),	1,	nil

				86	 	 }

				87	 	 ch,	size	=	utf8.DecodeRune(r.s[r.i:])

				88	 	 r.i	+=	size

				89	 	 return

				90	 }

				91	

				92	 func	(r	*Reader)	UnreadRune()	error	{

				93	 	 if	r.prevRune	<	0	{

				94	 	 	 return	errors.New("bytes.Reader:	previous	operation	was	not	ReadRune")

				95	 	 }

				96	 	 r.i	=	r.prevRune

				97	 	 r.prevRune	=	-1

				98	 	 return	nil

				99	 }

			100	

			101	 //	Seek	implements	the	io.Seeker	interface.

			102	 func	(r	*Reader)	Seek(offset	int64,	whence	int)	(int64,	error)	{

			103	 	 var	abs	int64

			104	 	 switch	whence	{

			105	 	 case	0:

			106	 	 	 abs	=	offset

			107	 	 case	1:

			108	 	 	 abs	=	int64(r.i)	+	offset

			109	 	 case	2:

			110	 	 	 abs	=	int64(len(r.s))	+	offset

			111	 	 default:

			112	 	 	 return	0,	errors.New("bytes:	invalid	whence")

			113	 	 }

			114	 	 if	abs	<	0	{

			115	 	 	 return	0,	errors.New("bytes:	negative	position")

			116	 	 }

			117	 	 if	abs	>=	1<<31	{

			118	 	 	 return	0,	errors.New("bytes:	position	out	of	range")

			119	 	 }

			120	 	 r.i	=	int(abs)

			121	 	 return	abs,	nil

			122	 }

			123	

			124	 //	NewReader	returns	a	new	Reader	reading	from	b.

			125	 func	NewReader(b	[]byte)	*Reader	{	return	&Reader{b,	0,	-1}	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/bzip2/bit_reader.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	bzip2

					6	

					7	 import	(

					8	 	 "bufio"

					9	 	 "io"

				10)

				11	

				12	 //	bitReader	wraps	an	io.Reader	and	provides	the	ability	to	read	values,

				13	 //	bit-by-bit,	from	it.	Its	Read*	methods	don't	return	the	usual	error

				14	 //	because	the	error	handling	was	verbose.	Instead,	any	error	is	kept	and	can

				15	 //	be	checked	afterwards.

				16	 type	bitReader	struct	{

				17	 	 r				byteReader

				18	 	 n				uint64

				19	 	 bits	uint

				20	 	 err		error

				21	 }

				22	

				23	 //	bitReader	needs	to	read	bytes	from	an	io.Reader.	We	attempt	to	convert	the

				24	 //	given	io.Reader	to	this	interface	and,	if	it	doesn't	already	fit,	we	wrap	in

				25	 //	a	bufio.Reader.

				26	 type	byteReader	interface	{

				27	 	 ReadByte()	(byte,	error)

				28	 }

				29	

				30	 func	newBitReader(r	io.Reader)	bitReader	{

				31	 	 byter,	ok	:=	r.(byteReader)

				32	 	 if	!ok	{

				33	 	 	 byter	=	bufio.NewReader(r)

				34	 	 }

				35	 	 return	bitReader{r:	byter}

				36	 }

				37	

				38	 //	ReadBits64	reads	the	given	number	of	bits	and	returns	them	in	the

				39	 //	least-significant	part	of	a	uint64.	In	the	event	of	an	error,	it	returns	0

				40	 //	and	the	error	can	be	obtained	by	calling	Err().

				41	 func	(br	*bitReader)	ReadBits64(bits	uint)	(n	uint64)	{

				42	 	 for	bits	>	br.bits	{

				43	 	 	 b,	err	:=	br.r.ReadByte()

				44	 	 	 if	err	==	io.EOF	{

				45	 	 	 	 err	=	io.ErrUnexpectedEOF

				46	 	 	 }

				47	 	 	 if	err	!=	nil	{

				48	 	 	 	 br.err	=	err

				49	 	 	 	 return	0

				50	 	 	 }

				51	 	 	 br.n	<<=	8

				52	 	 	 br.n	|=	uint64(b)

				53	 	 	 br.bits	+=	8

				54	 	 }

				55	

				56	 	 //	br.n	looks	like	this	(assuming	that	br.bits	=	14	and	bits	=	6):

				57	 	 //	Bit:	111111

				58	 	 //						5432109876543210

				59	 	 //

				60	 	 //									(6	bits,	the	desired	output)

				61	 	 //								|-----|

				62	 	 //								V					V

				63	 	 //						0101101101001110

				64	 	 //								^												^

				65	 	 //								|------------|

				66	 	 //											br.bits	(num	valid	bits)

				67	 	 //

				68	 	 //	This	the	next	line	right	shifts	the	desired	bits	into	the

				69	 	 //	least-significant	places	and	masks	off	anything	above.

				70	 	 n	=	(br.n	>>	(br.bits	-	bits))	&	((1	<<	bits)	-	1)

				71	 	 br.bits	-=	bits

				72	 	 return

				73	 }

				74	

				75	 func	(br	*bitReader)	ReadBits(bits	uint)	(n	int)	{

				76	 	 n64	:=	br.ReadBits64(bits)

				77	 	 return	int(n64)

				78	 }

				79	

				80	 func	(br	*bitReader)	ReadBit()	bool	{

				81	 	 n	:=	br.ReadBits(1)

				82	 	 return	n	!=	0

				83	 }

				84	

				85	 func	(br	*bitReader)	Err()	error	{

				86	 	 return	br.err

				87	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative

http://code.google.com/policies.html#restrictions

Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/bzip2/bzip2.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	bzip2	implements	bzip2	decompression.

					6	 package	bzip2

					7	

					8	 import	"io"

					9	

				10	 //	There's	no	RFC	for	bzip2.	I	used	the	Wikipedia	page	for	reference	and	a	lot

				11	 //	of	guessing:	http://en.wikipedia.org/wiki/Bzip2

				12	 //	The	source	code	to	pyflate	was	useful	for	debugging:

				13	 //	http://www.paul.sladen.org/projects/pyflate

				14	

				15	 //	A	StructuralError	is	returned	when	the	bzip2	data	is	found	to	be

				16	 //	syntactically	invalid.

				17	 type	StructuralError	string

				18	

				19	 func	(s	StructuralError)	Error()	string	{

				20	 	 return	"bzip2	data	invalid:	"	+	string(s)

				21	 }

				22	

				23	 //	A	reader	decompresses	bzip2	compressed	data.

				24	 type	reader	struct	{

				25	 	 br								bitReader

				26	 	 setupDone	bool	//	true	if	we	have	parsed	the	bzip2	header.

				27	 	 blockSize	int		//	blockSize	in	bytes,	i.e.	900	*	1024.

				28	 	 eof							bool

				29	 	 buf							[]byte				//	stores	Burrows-Wheeler	transformed	data.

				30	 	 c									[256]uint	//	the	`C'	array	for	the	inverse	BWT.

				31	 	 tt								[]uint32		//	mirrors	the	`tt'	array	in	the	bzip2	source	and	contains	the	P	array	in	the	upper	24	bits.

				32	 	 tPos						uint32				//	Index	of	the	next	output	byte	in	tt.

				33	

				34	 	 preRLE						[]uint32	//	contains	the	RLE	data	still	to	be	processed.

				35	 	 preRLEUsed		int						//	number	of	entries	of	preRLE	used.

				36	 	 lastByte				int						//	the	last	byte	value	seen.

				37	 	 byteRepeats	uint					//	the	number	of	repeats	of	lastByte	seen.

				38	 	 repeats					uint					//	the	number	of	copies	of	lastByte	to	output.

				39	 }

				40	

				41	 //	NewReader	returns	an	io.Reader	which	decompresses	bzip2	data	from	r.

				42	 func	NewReader(r	io.Reader)	io.Reader	{

				43	 	 bz2	:=	new(reader)

				44	 	 bz2.br	=	newBitReader(r)

				45	 	 return	bz2

				46	 }

				47	

				48	 const	bzip2FileMagic	=	0x425a	//	"BZ"

				49	 const	bzip2BlockMagic	=	0x314159265359

				50	 const	bzip2FinalMagic	=	0x177245385090

				51	

				52	 //	setup	parses	the	bzip2	header.

				53	 func	(bz2	*reader)	setup()	error	{

				54	 	 br	:=	&bz2.br

				55	

				56	 	 magic	:=	br.ReadBits(16)

				57	 	 if	magic	!=	bzip2FileMagic	{

				58	 	 	 return	StructuralError("bad	magic	value")

				59	 	 }

				60	

				61	 	 t	:=	br.ReadBits(8)

				62	 	 if	t	!=	'h'	{

				63	 	 	 return	StructuralError("non-Huffman	entropy	encoding")

				64	 	 }

				65	

				66	 	 level	:=	br.ReadBits(8)

				67	 	 if	level	<	'1'	||	level	>	'9'	{

				68	 	 	 return	StructuralError("invalid	compression	level")

				69	 	 }

				70	

				71	 	 bz2.blockSize	=	100	*	1024	*	(int(level)	-	'0')

				72	 	 bz2.tt	=	make([]uint32,	bz2.blockSize)

				73	 	 return	nil

				74	 }

				75	

				76	 func	(bz2	*reader)	Read(buf	[]byte)	(n	int,	err	error)	{

				77	 	 if	bz2.eof	{

				78	 	 	 return	0,	io.EOF

				79	 	 }

				80	

				81	 	 if	!bz2.setupDone	{

				82	 	 	 err	=	bz2.setup()

				83	 	 	 brErr	:=	bz2.br.Err()

				84	 	 	 if	brErr	!=	nil	{

				85	 	 	 	 err	=	brErr

				86	 	 	 }

				87	 	 	 if	err	!=	nil	{

				88	 	 	 	 return	0,	err

				89	 	 	 }

				90	 	 	 bz2.setupDone	=	true

				91	 	 }

				92	

				93	 	 n,	err	=	bz2.read(buf)

				94	 	 brErr	:=	bz2.br.Err()

				95	 	 if	brErr	!=	nil	{

				96	 	 	 err	=	brErr

				97	 	 }

				98	 	 return

				99	 }

			100	

			101	 func	(bz2	*reader)	read(buf	[]byte)	(n	int,	err	error)	{

			102	 	 //	bzip2	is	a	block	based	compressor,	except	that	it	has	a	run-length

			103	 	 //	preprocessing	step.	The	block	based	nature	means	that	we	can

			104	 	 //	preallocate	fixed-size	buffers	and	reuse	them.	However,	the	RLE

			105	 	 //	preprocessing	would	require	allocating	huge	buffers	to	store	the

			106	 	 //	maximum	expansion.	Thus	we	process	blocks	all	at	once,	except	for

			107	 	 //	the	RLE	which	we	decompress	as	required.

			108	

			109	 	 for	(bz2.repeats	>	0	||	bz2.preRLEUsed	<	len(bz2.preRLE))	&&	n	<	len(buf)	{

			110	 	 	 //	We	have	RLE	data	pending.

			111	

			112	 	 	 //	The	run-length	encoding	works	like	this:

			113	 	 	 //	Any	sequence	of	four	equal	bytes	is	followed	by	a	length

			114	 	 	 //	byte	which	contains	the	number	of	repeats	of	that	byte	to

			115	 	 	 //	include.	(The	number	of	repeats	can	be	zero.)	Because	we	are

			116	 	 	 //	decompressing	on-demand	our	state	is	kept	in	the	reader

			117	 	 	 //	object.

			118	

			119	 	 	 if	bz2.repeats	>	0	{

			120	 	 	 	 buf[n]	=	byte(bz2.lastByte)

			121	 	 	 	 n++

			122	 	 	 	 bz2.repeats--

			123	 	 	 	 if	bz2.repeats	==	0	{

			124	 	 	 	 	 bz2.lastByte	=	-1

			125	 	 	 	 }

			126	 	 	 	 continue

			127	 	 	 }

			128	

			129	 	 	 bz2.tPos	=	bz2.preRLE[bz2.tPos]

			130	 	 	 b	:=	byte(bz2.tPos)

			131	 	 	 bz2.tPos	>>=	8

			132	 	 	 bz2.preRLEUsed++

			133	

			134	 	 	 if	bz2.byteRepeats	==	3	{

			135	 	 	 	 bz2.repeats	=	uint(b)

			136	 	 	 	 bz2.byteRepeats	=	0

			137	 	 	 	 continue

			138	 	 	 }

			139	

			140	 	 	 if	bz2.lastByte	==	int(b)	{

			141	 	 	 	 bz2.byteRepeats++

			142	 	 	 }	else	{

			143	 	 	 	 bz2.byteRepeats	=	0

			144	 	 	 }

			145	 	 	 bz2.lastByte	=	int(b)

			146	

			147	 	 	 buf[n]	=	b

			148	 	 	 n++

			149	 	 }

			150	

			151	 	 if	n	>	0	{

			152	 	 	 return

			153	 	 }

			154	

			155	 	 //	No	RLE	data	is	pending	so	we	need	to	read	a	block.

			156	

			157	 	 br	:=	&bz2.br

			158	 	 magic	:=	br.ReadBits64(48)

			159	 	 if	magic	==	bzip2FinalMagic	{

			160	 	 	 br.ReadBits64(32)	//	ignored	CRC

			161	 	 	 bz2.eof	=	true

			162	 	 	 return	0,	io.EOF

			163	 	 }	else	if	magic	!=	bzip2BlockMagic	{

			164	 	 	 return	0,	StructuralError("bad	magic	value	found")

			165	 	 }

			166	

			167	 	 err	=	bz2.readBlock()

			168	 	 if	err	!=	nil	{

			169	 	 	 return	0,	err

			170	 	 }

			171	

			172	 	 return	bz2.read(buf)

			173	 }

			174	

			175	 //	readBlock	reads	a	bzip2	block.	The	magic	number	should	already	have	been	consumed.

			176	 func	(bz2	*reader)	readBlock()	(err	error)	{

			177	 	 br	:=	&bz2.br

			178	 	 br.ReadBits64(32)	//	skip	checksum.	TODO:	check	it	if	we	can	figure	out	what	it	is.

			179	 	 randomized	:=	br.ReadBits(1)

			180	 	 if	randomized	!=	0	{

			181	 	 	 return	StructuralError("deprecated	randomized	files")

			182	 	 }

			183	 	 origPtr	:=	uint(br.ReadBits(24))

			184	

			185	 	 //	If	not	every	byte	value	is	used	in	the	block	(i.e.,	it's	text)	then

			186	 	 //	the	symbol	set	is	reduced.	The	symbols	used	are	stored	as	a

			187	 	 //	two-level,	16x16	bitmap.

			188	 	 symbolRangeUsedBitmap	:=	br.ReadBits(16)

			189	 	 symbolPresent	:=	make([]bool,	256)

			190	 	 numSymbols	:=	0

			191	 	 for	symRange	:=	uint(0);	symRange	<	16;	symRange++	{

			192	 	 	 if	symbolRangeUsedBitmap&(1<<(15-symRange))	!=	0	{

			193	 	 	 	 bits	:=	br.ReadBits(16)

			194	 	 	 	 for	symbol	:=	uint(0);	symbol	<	16;	symbol++	{

			195	 	 	 	 	 if	bits&(1<<(15-symbol))	!=	0	{

			196	 	 	 	 	 	 symbolPresent[16*symRange+symbol]	=	true

			197	 	 	 	 	 	 numSymbols++

			198	 	 	 	 	 }

			199	 	 	 	 }

			200	 	 	 }

			201	 	 }

			202	

			203	 	 //	A	block	uses	between	two	and	six	different	Huffman	trees.

			204	 	 numHuffmanTrees	:=	br.ReadBits(3)

			205	 	 if	numHuffmanTrees	<	2	||	numHuffmanTrees	>	6	{

			206	 	 	 return	StructuralError("invalid	number	of	Huffman	trees")

			207	 	 }

			208	

			209	 	 //	The	Huffman	tree	can	switch	every	50	symbols	so	there's	a	list	of

			210	 	 //	tree	indexes	telling	us	which	tree	to	use	for	each	50	symbol	block.

			211	 	 numSelectors	:=	br.ReadBits(15)

			212	 	 treeIndexes	:=	make([]uint8,	numSelectors)

			213	

			214	 	 //	The	tree	indexes	are	move-to-front	transformed	and	stored	as	unary

			215	 	 //	numbers.

			216	 	 mtfTreeDecoder	:=	newMTFDecoderWithRange(numHuffmanTrees)

			217	 	 for	i	:=	range	treeIndexes	{

			218	 	 	 c	:=	0

			219	 	 	 for	{

			220	 	 	 	 inc	:=	br.ReadBits(1)

			221	 	 	 	 if	inc	==	0	{

			222	 	 	 	 	 break

			223	 	 	 	 }

			224	 	 	 	 c++

			225	 	 	 }

			226	 	 	 if	c	>=	numHuffmanTrees	{

			227	 	 	 	 return	StructuralError("tree	index	too	large")

			228	 	 	 }

			229	 	 	 treeIndexes[i]	=	uint8(mtfTreeDecoder.Decode(c))

			230	 	 }

			231	

			232	 	 //	The	list	of	symbols	for	the	move-to-front	transform	is	taken	from

			233	 	 //	the	previously	decoded	symbol	bitmap.

			234	 	 symbols	:=	make([]byte,	numSymbols)

			235	 	 nextSymbol	:=	0

			236	 	 for	i	:=	0;	i	<	256;	i++	{

			237	 	 	 if	symbolPresent[i]	{

			238	 	 	 	 symbols[nextSymbol]	=	byte(i)

			239	 	 	 	 nextSymbol++

			240	 	 	 }

			241	 	 }

			242	 	 mtf	:=	newMTFDecoder(symbols)

			243	

			244	 	 numSymbols	+=	2	//	to	account	for	RUNA	and	RUNB	symbols

			245	 	 huffmanTrees	:=	make([]huffmanTree,	numHuffmanTrees)

			246	

			247	 	 //	Now	we	decode	the	arrays	of	code-lengths	for	each	tree.

			248	 	 lengths	:=	make([]uint8,	numSymbols)

			249	 	 for	i	:=	0;	i	<	numHuffmanTrees;	i++	{

			250	 	 	 //	The	code	lengths	are	delta	encoded	from	a	5-bit	base	value.

			251	 	 	 length	:=	br.ReadBits(5)

			252	 	 	 for	j	:=	0;	j	<	numSymbols;	j++	{

			253	 	 	 	 for	{

			254	 	 	 	 	 if	!br.ReadBit()	{

			255	 	 	 	 	 	 break

			256	 	 	 	 	 }

			257	 	 	 	 	 if	br.ReadBit()	{

			258	 	 	 	 	 	 length--

			259	 	 	 	 	 }	else	{

			260	 	 	 	 	 	 length++

			261	 	 	 	 	 }

			262	 	 	 	 }

			263	 	 	 	 if	length	<	0	||	length	>	20	{

			264	 	 	 	 	 return	StructuralError("Huffman	length	out	of	range")

			265	 	 	 	 }

			266	 	 	 	 lengths[j]	=	uint8(length)

			267	 	 	 }

			268	 	 	 huffmanTrees[i],	err	=	newHuffmanTree(lengths)

			269	 	 	 if	err	!=	nil	{

			270	 	 	 	 return	err

			271	 	 	 }

			272	 	 }

			273	

			274	 	 selectorIndex	:=	1	//	the	next	tree	index	to	use

			275	 	 currentHuffmanTree	:=	huffmanTrees[treeIndexes[0]]

			276	 	 bufIndex	:=	0	//	indexes	bz2.buf,	the	output	buffer.

			277	 	 //	The	output	of	the	move-to-front	transform	is	run-length	encoded	and

			278	 	 //	we	merge	the	decoding	into	the	Huffman	parsing	loop.	These	two

			279	 	 //	variables	accumulate	the	repeat	count.	See	the	Wikipedia	page	for

			280	 	 //	details.

			281	 	 repeat	:=	0

			282	 	 repeat_power	:=	0

			283	

			284	 	 //	The	`C'	array	(used	by	the	inverse	BWT)	needs	to	be	zero	initialized.

			285	 	 for	i	:=	range	bz2.c	{

			286	 	 	 bz2.c[i]	=	0

			287	 	 }

			288	

			289	 	 decoded	:=	0	//	counts	the	number	of	symbols	decoded	by	the	current	tree.

			290	 	 for	{

			291	 	 	 if	decoded	==	50	{

			292	 	 	 	 currentHuffmanTree	=	huffmanTrees[treeIndexes[selectorIndex]]

			293	 	 	 	 selectorIndex++

			294	 	 	 	 decoded	=	0

			295	 	 	 }

			296	

			297	 	 	 v	:=	currentHuffmanTree.Decode(br)

			298	 	 	 decoded++

			299	

			300	 	 	 if	v	<	2	{

			301	 	 	 	 //	This	is	either	the	RUNA	or	RUNB	symbol.

			302	 	 	 	 if	repeat	==	0	{

			303	 	 	 	 	 repeat_power	=	1

			304	 	 	 	 }

			305	 	 	 	 repeat	+=	repeat_power	<<	v

			306	 	 	 	 repeat_power	<<=	1

			307	

			308	 	 	 	 //	This	limit	of	2	million	comes	from	the	bzip2	source

			309	 	 	 	 //	code.	It	prevents	repeat	from	overflowing.

			310	 	 	 	 if	repeat	>	2*1024*1024	{

			311	 	 	 	 	 return	StructuralError("repeat	count	too	large")

			312	 	 	 	 }

			313	 	 	 	 continue

			314	 	 	 }

			315	

			316	 	 	 if	repeat	>	0	{

			317	 	 	 	 //	We	have	decoded	a	complete	run-length	so	we	need	to

			318	 	 	 	 //	replicate	the	last	output	symbol.

			319	 	 	 	 for	i	:=	0;	i	<	repeat;	i++	{

			320	 	 	 	 	 b	:=	byte(mtf.First())

			321	 	 	 	 	 bz2.tt[bufIndex]	=	uint32(b)

			322	 	 	 	 	 bz2.c[b]++

			323	 	 	 	 	 bufIndex++

			324	 	 	 	 }

			325	 	 	 	 repeat	=	0

			326	 	 	 }

			327	

			328	 	 	 if	int(v)	==	numSymbols-1	{

			329	 	 	 	 //	This	is	the	EOF	symbol.	Because	it's	always	at	the

			330	 	 	 	 //	end	of	the	move-to-front	list,	and	never	gets	moved

			331	 	 	 	 //	to	the	front,	it	has	this	unique	value.

			332	 	 	 	 break

			333	 	 	 }

			334	

			335	 	 	 //	Since	two	metasymbols	(RUNA	and	RUNB)	have	values	0	and	1,

			336	 	 	 //	one	would	expect	|v-2|	to	be	passed	to	the	MTF	decoder.

			337	 	 	 //	However,	the	front	of	the	MTF	list	is	never	referenced	as	0,

			338	 	 	 //	it's	always	referenced	with	a	run-length	of	1.	Thus	0

			339	 	 	 //	doesn't	need	to	be	encoded	and	we	have	|v-1|	in	the	next

			340	 	 	 //	line.

			341	 	 	 b	:=	byte(mtf.Decode(int(v	-	1)))

			342	 	 	 bz2.tt[bufIndex]	=	uint32(b)

			343	 	 	 bz2.c[b]++

			344	 	 	 bufIndex++

			345	 	 }

			346	

			347	 	 if	origPtr	>=	uint(bufIndex)	{

			348	 	 	 return	StructuralError("origPtr	out	of	bounds")

			349	 	 }

			350	

			351	 	 //	We	have	completed	the	entropy	decoding.	Now	we	can	perform	the

			352	 	 //	inverse	BWT	and	setup	the	RLE	buffer.

			353	 	 bz2.preRLE	=	bz2.tt[:bufIndex]

			354	 	 bz2.preRLEUsed	=	0

			355	 	 bz2.tPos	=	inverseBWT(bz2.preRLE,	origPtr,	bz2.c[:])

			356	 	 bz2.lastByte	=	-1

			357	 	 bz2.byteRepeats	=	0

			358	 	 bz2.repeats	=	0

			359	

			360	 	 return	nil

			361	 }

			362	

			363	 //	inverseBWT	implements	the	inverse	Burrows-Wheeler	transform	as	described	in

			364	 //	http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf,	section	4.2.

			365	 //	In	that	document,	origPtr	is	called	`I'	and	c	is	the	`C'	array	after	the

			366	 //	first	pass	over	the	data.	It's	an	argument	here	because	we	merge	the	first

			367	 //	pass	with	the	Huffman	decoding.

			368	 //

			369	 //	This	also	implements	the	`single	array'	method	from	the	bzip2	source	code

			370	 //	which	leaves	the	output,	still	shuffled,	in	the	bottom	8	bits	of	tt	with	the

			371	 //	index	of	the	next	byte	in	the	top	24-bits.	The	index	of	the	first	byte	is

			372	 //	returned.

			373	 func	inverseBWT(tt	[]uint32,	origPtr	uint,	c	[]uint)	uint32	{

			374	 	 sum	:=	uint(0)

			375	 	 for	i	:=	0;	i	<	256;	i++	{

			376	 	 	 sum	+=	c[i]

			377	 	 	 c[i]	=	sum	-	c[i]

			378	 	 }

			379	

			380	 	 for	i	:=	range	tt	{

			381	 	 	 b	:=	tt[i]	&	0xff

			382	 	 	 tt[c[b]]	|=	uint32(i)	<<	8

			383	 	 	 c[b]++

			384	 	 }

			385	

			386	 	 return	tt[origPtr]	>>	8

			387	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/bzip2/huffman.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	bzip2

					6	

					7	 import	"sort"

					8	

					9	 //	A	huffmanTree	is	a	binary	tree	which	is	navigated,	bit-by-bit	to	reach	a

				10	 //	symbol.

				11	 type	huffmanTree	struct	{

				12	 	 //	nodes	contains	all	the	non-leaf	nodes	in	the	tree.	nodes[0]	is	the

				13	 	 //	root	of	the	tree	and	nextNode	contains	the	index	of	the	next	element

				14	 	 //	of	nodes	to	use	when	the	tree	is	being	constructed.

				15	 	 nodes				[]huffmanNode

				16	 	 nextNode	int

				17	 }

				18	

				19	 //	A	huffmanNode	is	a	node	in	the	tree.	left	and	right	contain	indexes	into	the

				20	 //	nodes	slice	of	the	tree.	If	left	or	right	is	invalidNodeValue	then	the	child

				21	 //	is	a	left	node	and	its	value	is	in	leftValue/rightValue.

				22	 //

				23	 //	The	symbols	are	uint16s	because	bzip2	encodes	not	only	MTF	indexes	in	the

				24	 //	tree,	but	also	two	magic	values	for	run-length	encoding	and	an	EOF	symbol.

				25	 //	Thus	there	are	more	than	256	possible	symbols.

				26	 type	huffmanNode	struct	{

				27	 	 left,	right											uint16

				28	 	 leftValue,	rightValue	uint16

				29	 }

				30	

				31	 //	invalidNodeValue	is	an	invalid	index	which	marks	a	leaf	node	in	the	tree.

				32	 const	invalidNodeValue	=	0xffff

				33	

				34	 //	Decode	reads	bits	from	the	given	bitReader	and	navigates	the	tree	until	a

				35	 //	symbol	is	found.

				36	 func	(t	huffmanTree)	Decode(br	*bitReader)	(v	uint16)	{

				37	 	 nodeIndex	:=	uint16(0)	//	node	0	is	the	root	of	the	tree.

				38	

				39	 	 for	{

				40	 	 	 node	:=	&t.nodes[nodeIndex]

				41	 	 	 bit	:=	br.ReadBit()

				42	 	 	 //	bzip2	encodes	left	as	a	true	bit.

				43	 	 	 if	bit	{

				44	 	 	 	 //	left

				45	 	 	 	 if	node.left	==	invalidNodeValue	{

				46	 	 	 	 	 return	node.leftValue

				47	 	 	 	 }

				48	 	 	 	 nodeIndex	=	node.left

				49	 	 	 }	else	{

				50	 	 	 	 //	right

				51	 	 	 	 if	node.right	==	invalidNodeValue	{

				52	 	 	 	 	 return	node.rightValue

				53	 	 	 	 }

				54	 	 	 	 nodeIndex	=	node.right

				55	 	 	 }

				56	 	 }

				57	

				58	 	 panic("unreachable")

				59	 }

				60	

				61	 //	newHuffmanTree	builds	a	Huffman	tree	from	a	slice	containing	the	code

				62	 //	lengths	of	each	symbol.	The	maximum	code	length	is	32	bits.

				63	 func	newHuffmanTree(lengths	[]uint8)	(huffmanTree,	error)	{

				64	 	 //	There	are	many	possible	trees	that	assign	the	same	code	length	to

				65	 	 //	each	symbol	(consider	reflecting	a	tree	down	the	middle,	for

				66	 	 //	example).	Since	the	code	length	assignments	determine	the

				67	 	 //	efficiency	of	the	tree,	each	of	these	trees	is	equally	good.	In

				68	 	 //	order	to	minimize	the	amount	of	information	needed	to	build	a	tree

				69	 	 //	bzip2	uses	a	canonical	tree	so	that	it	can	be	reconstructed	given

				70	 	 //	only	the	code	length	assignments.

				71	

				72	 	 if	len(lengths)	<	2	{

				73	 	 	 panic("newHuffmanTree:	too	few	symbols")

				74	 	 }

				75	

				76	 	 var	t	huffmanTree

				77	

				78	 	 //	First	we	sort	the	code	length	assignments	by	ascending	code	length,

				79	 	 //	using	the	symbol	value	to	break	ties.

				80	 	 pairs	:=	huffmanSymbolLengthPairs(make([]huffmanSymbolLengthPair,	len(lengths)))

				81	 	 for	i,	length	:=	range	lengths	{

				82	 	 	 pairs[i].value	=	uint16(i)

				83	 	 	 pairs[i].length	=	length

				84	 	 }

				85	

				86	 	 sort.Sort(pairs)

				87	

				88	 	 //	Now	we	assign	codes	to	the	symbols,	starting	with	the	longest	code.

				89	 	 //	We	keep	the	codes	packed	into	a	uint32,	at	the	most-significant	end.

				90	 	 //	So	branches	are	taken	from	the	MSB	downwards.	This	makes	it	easy	to

				91	 	 //	sort	them	later.

				92	 	 code	:=	uint32(0)

				93	 	 length	:=	uint8(32)

				94	

				95	 	 codes	:=	huffmanCodes(make([]huffmanCode,	len(lengths)))

				96	 	 for	i	:=	len(pairs)	-	1;	i	>=	0;	i--	{

				97	 	 	 if	length	>	pairs[i].length	{

				98	 	 	 	 //	If	the	code	length	decreases	we	shift	in	order	to

				99	 	 	 	 //	zero	any	bits	beyond	the	end	of	the	code.

			100	 	 	 	 length	>>=	32	-	pairs[i].length

			101	 	 	 	 length	<<=	32	-	pairs[i].length

			102	 	 	 	 length	=	pairs[i].length

			103	 	 	 }

			104	 	 	 codes[i].code	=	code

			105	 	 	 codes[i].codeLen	=	length

			106	 	 	 codes[i].value	=	pairs[i].value

			107	 	 	 //	We	need	to	'increment'	the	code,	which	means	treating	|code|

			108	 	 	 //	like	a	|length|	bit	number.

			109	 	 	 code	+=	1	<<	(32	-	length)

			110	 	 }

			111	

			112	 	 //	Now	we	can	sort	by	the	code	so	that	the	left	half	of	each	branch	are

			113	 	 //	grouped	together,	recursively.

			114	 	 sort.Sort(codes)

			115	

			116	 	 t.nodes	=	make([]huffmanNode,	len(codes))

			117	 	 _,	err	:=	buildHuffmanNode(&t,	codes,	0)

			118	 	 return	t,	err

			119	 }

			120	

			121	 //	huffmanSymbolLengthPair	contains	a	symbol	and	its	code	length.

			122	 type	huffmanSymbolLengthPair	struct	{

			123	 	 value		uint16

			124	 	 length	uint8

			125	 }

			126	

			127	 //	huffmanSymbolLengthPair	is	used	to	provide	an	interface	for	sorting.

			128	 type	huffmanSymbolLengthPairs	[]huffmanSymbolLengthPair

			129	

			130	 func	(h	huffmanSymbolLengthPairs)	Len()	int	{

			131	 	 return	len(h)

			132	 }

			133	

			134	 func	(h	huffmanSymbolLengthPairs)	Less(i,	j	int)	bool	{

			135	 	 if	h[i].length	<	h[j].length	{

			136	 	 	 return	true

			137	 	 }

			138	 	 if	h[i].length	>	h[j].length	{

			139	 	 	 return	false

			140	 	 }

			141	 	 if	h[i].value	<	h[j].value	{

			142	 	 	 return	true

			143	 	 }

			144	 	 return	false

			145	 }

			146	

			147	 func	(h	huffmanSymbolLengthPairs)	Swap(i,	j	int)	{

			148	 	 h[i],	h[j]	=	h[j],	h[i]

			149	 }

			150	

			151	 //	huffmanCode	contains	a	symbol,	its	code	and	code	length.

			152	 type	huffmanCode	struct	{

			153	 	 code				uint32

			154	 	 codeLen	uint8

			155	 	 value			uint16

			156	 }

			157	

			158	 //	huffmanCodes	is	used	to	provide	an	interface	for	sorting.

			159	 type	huffmanCodes	[]huffmanCode

			160	

			161	 func	(n	huffmanCodes)	Len()	int	{

			162	 	 return	len(n)

			163	 }

			164	

			165	 func	(n	huffmanCodes)	Less(i,	j	int)	bool	{

			166	 	 return	n[i].code	<	n[j].code

			167	 }

			168	

			169	 func	(n	huffmanCodes)	Swap(i,	j	int)	{

			170	 	 n[i],	n[j]	=	n[j],	n[i]

			171	 }

			172	

			173	 //	buildHuffmanNode	takes	a	slice	of	sorted	huffmanCodes	and	builds	a	node	in

			174	 //	the	Huffman	tree	at	the	given	level.	It	returns	the	index	of	the	newly

			175	 //	constructed	node.

			176	 func	buildHuffmanNode(t	*huffmanTree,	codes	[]huffmanCode,	level	uint32)	(nodeIndex	uint16,	err	error)	{

			177	 	 test	:=	uint32(1)	<<	(31	-	level)

			178	

			179	 	 //	We	have	to	search	the	list	of	codes	to	find	the	divide	between	the	left	and	right	sides.

			180	 	 firstRightIndex	:=	len(codes)

			181	 	 for	i,	code	:=	range	codes	{

			182	 	 	 if	code.code&test	!=	0	{

			183	 	 	 	 firstRightIndex	=	i

			184	 	 	 	 break

			185	 	 	 }

			186	 	 }

			187	

			188	 	 left	:=	codes[:firstRightIndex]

			189	 	 right	:=	codes[firstRightIndex:]

			190	

			191	 	 if	len(left)	==	0	||	len(right)	==	0	{

			192	 	 	 return	0,	StructuralError("superfluous	level	in	Huffman	tree")

			193	 	 }

			194	

			195	 	 nodeIndex	=	uint16(t.nextNode)

			196	 	 node	:=	&t.nodes[t.nextNode]

			197	 	 t.nextNode++

			198	

			199	 	 if	len(left)	==	1	{

			200	 	 	 //	leaf	node

			201	 	 	 node.left	=	invalidNodeValue

			202	 	 	 node.leftValue	=	left[0].value

			203	 	 }	else	{

			204	 	 	 node.left,	err	=	buildHuffmanNode(t,	left,	level+1)

			205	 	 }

			206	

			207	 	 if	err	!=	nil	{

			208	 	 	 return

			209	 	 }

			210	

			211	 	 if	len(right)	==	1	{

			212	 	 	 //	leaf	node

			213	 	 	 node.right	=	invalidNodeValue

			214	 	 	 node.rightValue	=	right[0].value

			215	 	 }	else	{

			216	 	 	 node.right,	err	=	buildHuffmanNode(t,	right,	level+1)

			217	 	 }

			218	

			219	 	 return

			220	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/bzip2/move_to_front.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	bzip2

					6	

					7	 //	moveToFrontDecoder	implements	a	move-to-front	list.	Such	a	list	is	an

					8	 //	efficient	way	to	transform	a	string	with	repeating	elements	into	one	with

					9	 //	many	small	valued	numbers,	which	is	suitable	for	entropy	encoding.	It	works

				10	 //	by	starting	with	an	initial	list	of	symbols	and	references	symbols	by	their

				11	 //	index	into	that	list.	When	a	symbol	is	referenced,	it's	moved	to	the	front

				12	 //	of	the	list.	Thus,	a	repeated	symbol	ends	up	being	encoded	with	many	zeros,

				13	 //	as	the	symbol	will	be	at	the	front	of	the	list	after	the	first	access.

				14	 type	moveToFrontDecoder	struct	{

				15	 	 //	Rather	than	actually	keep	the	list	in	memory,	the	symbols	are	stored

				16	 	 //	as	a	circular,	double	linked	list	with	the	symbol	indexed	by	head

				17	 	 //	at	the	front	of	the	list.

				18	 	 symbols	[]byte

				19	 	 next				[]uint8

				20	 	 prev				[]uint8

				21	 	 head				uint8

				22	 }

				23	

				24	 //	newMTFDecoder	creates	a	move-to-front	decoder	with	an	explicit	initial	list

				25	 //	of	symbols.

				26	 func	newMTFDecoder(symbols	[]byte)	*moveToFrontDecoder	{

				27	 	 if	len(symbols)	>	256	{

				28	 	 	 panic("too	many	symbols")

				29	 	 }

				30	

				31	 	 m	:=	&moveToFrontDecoder{

				32	 	 	 symbols:	symbols,

				33	 	 	 next:				make([]uint8,	len(symbols)),

				34	 	 	 prev:				make([]uint8,	len(symbols)),

				35	 	 }

				36	

				37	 	 m.threadLinkedList()

				38	 	 return	m

				39	 }

				40	

				41	 //	newMTFDecoderWithRange	creates	a	move-to-front	decoder	with	an	initial

				42	 //	symbol	list	of	0...n-1.

				43	 func	newMTFDecoderWithRange(n	int)	*moveToFrontDecoder	{

				44	 	 if	n	>	256	{

				45	 	 	 panic("newMTFDecoderWithRange:	cannot	have	>	256	symbols")

				46	 	 }

				47	

				48	 	 m	:=	&moveToFrontDecoder{

				49	 	 	 symbols:	make([]uint8,	n),

				50	 	 	 next:				make([]uint8,	n),

				51	 	 	 prev:				make([]uint8,	n),

				52	 	 }

				53	

				54	 	 for	i	:=	0;	i	<	n;	i++	{

				55	 	 	 m.symbols[i]	=	byte(i)

				56	 	 }

				57	

				58	 	 m.threadLinkedList()

				59	 	 return	m

				60	 }

				61	

				62	 //	threadLinkedList	creates	the	initial	linked-list	pointers.

				63	 func	(m	*moveToFrontDecoder)	threadLinkedList()	{

				64	 	 if	len(m.symbols)	==	0	{

				65	 	 	 return

				66	 	 }

				67	

				68	 	 m.prev[0]	=	uint8(len(m.symbols)	-	1)

				69	

				70	 	 for	i	:=	0;	i	<	len(m.symbols)-1;	i++	{

				71	 	 	 m.next[i]	=	uint8(i	+	1)

				72	 	 	 m.prev[i+1]	=	uint8(i)

				73	 	 }

				74	

				75	 	 m.next[len(m.symbols)-1]	=	0

				76	 }

				77	

				78	 func	(m	*moveToFrontDecoder)	Decode(n	int)	(b	byte)	{

				79	 	 //	Most	of	the	time,	n	will	be	zero	so	it's	worth	dealing	with	this

				80	 	 //	simple	case.

				81	 	 if	n	==	0	{

				82	 	 	 return	m.symbols[m.head]

				83	 	 }

				84	

				85	 	 i	:=	m.head

				86	 	 for	j	:=	0;	j	<	n;	j++	{

				87	 	 	 i	=	m.next[i]

				88	 	 }

				89	 	 b	=	m.symbols[i]

				90	

				91	 	 m.next[m.prev[i]]	=	m.next[i]

				92	 	 m.prev[m.next[i]]	=	m.prev[i]

				93	 	 m.next[i]	=	m.head

				94	 	 m.prev[i]	=	m.prev[m.head]

				95	 	 m.next[m.prev[m.head]]	=	i

				96	 	 m.prev[m.head]	=	i

				97	 	 m.head	=	i

				98	

				99	 	 return

			100	 }

			101	

			102	 //	First	returns	the	symbol	at	the	front	of	the	list.

			103	 func	(m	*moveToFrontDecoder)	First()	byte	{

			104	 	 return	m.symbols[m.head]

			105	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/flate/deflate.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	flate

					6	

					7	 import	(

					8	 	 "fmt"

					9	 	 "io"

				10	 	 "math"

				11)

				12	

				13	 const	(

				14	 	 NoCompression						=	0

				15	 	 BestSpeed										=	1

				16	 	 fastCompression				=	3

				17	 	 BestCompression				=	9

				18	 	 DefaultCompression	=	-1

				19	 	 logWindowSize						=	15

				20	 	 windowSize									=	1	<<	logWindowSize

				21	 	 windowMask									=	windowSize	-	1

				22	 	 logMaxOffsetSize			=	15		//	Standard	DEFLATE

				23	 	 minMatchLength					=	3			//	The	smallest	match	that	the	compressor	looks	for

				24	 	 maxMatchLength					=	258	//	The	longest	match	for	the	compressor

				25	 	 minOffsetSize						=	1			//	The	shortest	offset	that	makes	any	sence

				26	

				27	 	 //	The	maximum	number	of	tokens	we	put	into	a	single	flat	block,	just	too

				28	 	 //	stop	things	from	getting	too	large.

				29	 	 maxFlateBlockTokens	=	1	<<	14

				30	 	 maxStoreBlockSize			=	65535

				31	 	 hashBits												=	17

				32	 	 hashSize												=	1	<<	hashBits

				33	 	 hashMask												=	(1	<<	hashBits)	-	1

				34	 	 hashShift											=	(hashBits	+	minMatchLength	-	1)	/	minMatchLength

				35	

				36	 	 skipNever	=	math.MaxInt32

				37)

				38	

				39	 type	compressionLevel	struct	{

				40	 	 good,	lazy,	nice,	chain,	fastSkipHashing	int

				41	 }

				42	

				43	 var	levels	=	[]compressionLevel{

				44	 	 {},	//	0

				45	 	 //	For	levels	1-3	we	don't	bother	trying	with	lazy	matches

				46	 	 {3,	0,	8,	4,	4},

				47	 	 {3,	0,	16,	8,	5},

				48	 	 {3,	0,	32,	32,	6},

				49	 	 //	Levels	4-9	use	increasingly	more	lazy	matching

				50	 	 //	and	increasingly	stringent	conditions	for	"good	enough".

				51	 	 {4,	4,	16,	16,	skipNever},

				52	 	 {8,	16,	32,	32,	skipNever},

				53	 	 {8,	16,	128,	128,	skipNever},

				54	 	 {8,	32,	128,	256,	skipNever},

				55	 	 {32,	128,	258,	1024,	skipNever},

				56	 	 {32,	258,	258,	4096,	skipNever},

				57	 }

				58	

				59	 type	compressor	struct	{

				60	 	 compressionLevel

				61	

				62	 	 w	*huffmanBitWriter

				63	

				64	 	 //	compression	algorithm

				65	 	 fill	func(*compressor,	[]byte)	int	//	copy	data	to	window

				66	 	 step	func(*compressor)													//	process	window

				67	 	 sync	bool																										//	requesting	flush

				68	

				69	 	 //	Input	hash	chains

				70	 	 //	hashHead[hashValue]	contains	the	largest	inputIndex	with	the	specified	hash	value

				71	 	 //	If	hashHead[hashValue]	is	within	the	current	window,	then

				72	 	 //	hashPrev[hashHead[hashValue]	&	windowMask]	contains	the	previous	index

				73	 	 //	with	the	same	hash	value.

				74	 	 chainHead		int

				75	 	 hashHead			[]int

				76	 	 hashPrev			[]int

				77	 	 hashOffset	int

				78	

				79	 	 //	input	window:	unprocessed	data	is	window[index:windowEnd]

				80	 	 index									int

				81	 	 window								[]byte

				82	 	 windowEnd					int

				83	 	 blockStart				int		//	window	index	where	current	tokens	start

				84	 	 byteAvailable	bool	//	if	true,	still	need	to	process	window[index-1].

				85	

				86	 	 //	queued	output	tokens

				87	 	 tokens	[]token

				88	

				89	 	 //	deflate	state

				90	 	 length									int

				91	 	 offset									int

				92	 	 hash											int

				93	 	 maxInsertIndex	int

				94	 	 err												error

				95	 }

				96	

				97	 func	(d	*compressor)	fillDeflate(b	[]byte)	int	{

				98	 	 if	d.index	>=	2*windowSize-(minMatchLength+maxMatchLength)	{

				99	 	 	 //	shift	the	window	by	windowSize

			100	 	 	 copy(d.window,	d.window[windowSize:2*windowSize])

			101	 	 	 d.index	-=	windowSize

			102	 	 	 d.windowEnd	-=	windowSize

			103	 	 	 if	d.blockStart	>=	windowSize	{

			104	 	 	 	 d.blockStart	-=	windowSize

			105	 	 	 }	else	{

			106	 	 	 	 d.blockStart	=	math.MaxInt32

			107	 	 	 }

			108	 	 	 d.hashOffset	+=	windowSize

			109	 	 }

			110	 	 n	:=	copy(d.window[d.windowEnd:],	b)

			111	 	 d.windowEnd	+=	n

			112	 	 return	n

			113	 }

			114	

			115	 func	(d	*compressor)	writeBlock(tokens	[]token,	index	int,	eof	bool)	error	{

			116	 	 if	index	>	0	||	eof	{

			117	 	 	 var	window	[]byte

			118	 	 	 if	d.blockStart	<=	index	{

			119	 	 	 	 window	=	d.window[d.blockStart:index]

			120	 	 	 }

			121	 	 	 d.blockStart	=	index

			122	 	 	 d.w.writeBlock(tokens,	eof,	window)

			123	 	 	 return	d.w.err

			124	 	 }

			125	 	 return	nil

			126	 }

			127	

			128	 //	Try	to	find	a	match	starting	at	index	whose	length	is	greater	than	prevSize.

			129	 //	We	only	look	at	chainCount	possibilities	before	giving	up.

			130	 func	(d	*compressor)	findMatch(pos	int,	prevHead	int,	prevLength	int,	lookahead	int)	(length,	offset	int,	ok	bool)	{

			131	 	 minMatchLook	:=	maxMatchLength

			132	 	 if	lookahead	<	minMatchLook	{

			133	 	 	 minMatchLook	=	lookahead

			134	 	 }

			135	

			136	 	 win	:=	d.window[0	:	pos+minMatchLook]

			137	

			138	 	 //	We	quit	when	we	get	a	match	that's	at	least	nice	long

			139	 	 nice	:=	len(win)	-	pos

			140	 	 if	d.nice	<	nice	{

			141	 	 	 nice	=	d.nice

			142	 	 }

			143	

			144	 	 //	If	we've	got	a	match	that's	good	enough,	only	look	in	1/4	the	chain.

			145	 	 tries	:=	d.chain

			146	 	 length	=	prevLength

			147	 	 if	length	>=	d.good	{

			148	 	 	 tries	>>=	2

			149	 	 }

			150	

			151	 	 w0	:=	win[pos]

			152	 	 w1	:=	win[pos+1]

			153	 	 wEnd	:=	win[pos+length]

			154	 	 minIndex	:=	pos	-	windowSize

			155	

			156	 	 for	i	:=	prevHead;	tries	>	0;	tries--	{

			157	 	 	 if	w0	==	win[i]	&&	w1	==	win[i+1]	&&	wEnd	==	win[i+length]	{

			158	 	 	 	 //	The	hash	function	ensures	that	if	win[i]	and	win[i+1]	match,	win[i+2]	matches

			159	

			160	 	 	 	 n	:=	3

			161	 	 	 	 for	pos+n	<	len(win)	&&	win[i+n]	==	win[pos+n]	{

			162	 	 	 	 	 n++

			163	 	 	 	 }

			164	 	 	 	 if	n	>	length	&&	(n	>	3	||	pos-i	<=	4096)	{

			165	 	 	 	 	 length	=	n

			166	 	 	 	 	 offset	=	pos	-	i

			167	 	 	 	 	 ok	=	true

			168	 	 	 	 	 if	n	>=	nice	{

			169	 	 	 	 	 	 //	The	match	is	good	enough	that	we	don't	try	to	find	a	better	one.

			170	 	 	 	 	 	 break

			171	 	 	 	 	 }

			172	 	 	 	 	 wEnd	=	win[pos+n]

			173	 	 	 	 }

			174	 	 	 }

			175	 	 	 if	i	==	minIndex	{

			176	 	 	 	 //	hashPrev[i	&	windowMask]	has	already	been	overwritten,	so	stop	now.

			177	 	 	 	 break

			178	 	 	 }

			179	 	 	 if	i	=	d.hashPrev[i&windowMask]	-	d.hashOffset;	i	<	minIndex	||	i	<	0	{

			180	 	 	 	 break

			181	 	 	 }

			182	 	 }

			183	 	 return

			184	 }

			185	

			186	 func	(d	*compressor)	writeStoredBlock(buf	[]byte)	error	{

			187	 	 if	d.w.writeStoredHeader(len(buf),	false);	d.w.err	!=	nil	{

			188	 	 	 return	d.w.err

			189	 	 }

			190	 	 d.w.writeBytes(buf)

			191	 	 return	d.w.err

			192	 }

			193	

			194	 func	(d	*compressor)	initDeflate()	{

			195	 	 d.hashHead	=	make([]int,	hashSize)

			196	 	 d.hashPrev	=	make([]int,	windowSize)

			197	 	 d.window	=	make([]byte,	2*windowSize)

			198	 	 d.hashOffset	=	1

			199	 	 d.tokens	=	make([]token,	0,	maxFlateBlockTokens+1)

			200	 	 d.length	=	minMatchLength	-	1

			201	 	 d.offset	=	0

			202	 	 d.byteAvailable	=	false

			203	 	 d.index	=	0

			204	 	 d.hash	=	0

			205	 	 d.chainHead	=	-1

			206	 }

			207	

			208	 func	(d	*compressor)	deflate()	{

			209	 	 if	d.windowEnd-d.index	<	minMatchLength+maxMatchLength	&&	!d.sync	{

			210	 	 	 return

			211	 	 }

			212	

			213	 	 d.maxInsertIndex	=	d.windowEnd	-	(minMatchLength	-	1)

			214	 	 if	d.index	<	d.maxInsertIndex	{

			215	 	 	 d.hash	=	int(d.window[d.index])<<hashShift	+	int(d.window[d.index+1])

			216	 	 }

			217	

			218	 Loop:

			219	 	 for	{

			220	 	 	 if	d.index	>	d.windowEnd	{

			221	 	 	 	 panic("index	>	windowEnd")

			222	 	 	 }

			223	 	 	 lookahead	:=	d.windowEnd	-	d.index

			224	 	 	 if	lookahead	<	minMatchLength+maxMatchLength	{

			225	 	 	 	 if	!d.sync	{

			226	 	 	 	 	 break	Loop

			227	 	 	 	 }

			228	 	 	 	 if	d.index	>	d.windowEnd	{

			229	 	 	 	 	 panic("index	>	windowEnd")

			230	 	 	 	 }

			231	 	 	 	 if	lookahead	==	0	{

			232	 	 	 	 	 //	Flush	current	output	block	if	any.

			233	 	 	 	 	 if	d.byteAvailable	{

			234	 	 	 	 	 	 //	There	is	still	one	pending	token	that	needs	to	be	flushed

			235	 	 	 	 	 	 d.tokens	=	append(d.tokens,	literalToken(uint32(d.window[d.index-1])))

			236	 	 	 	 	 	 d.byteAvailable	=	false

			237	 	 	 	 	 }

			238	 	 	 	 	 if	len(d.tokens)	>	0	{

			239	 	 	 	 	 	 if	d.err	=	d.writeBlock(d.tokens,	d.index,	false);	d.err	!=	nil	{

			240	 	 	 	 	 	 	 return

			241	 	 	 	 	 	 }

			242	 	 	 	 	 	 d.tokens	=	d.tokens[:0]

			243	 	 	 	 	 }

			244	 	 	 	 	 break	Loop

			245	 	 	 	 }

			246	 	 	 }

			247	 	 	 if	d.index	<	d.maxInsertIndex	{

			248	 	 	 	 //	Update	the	hash

			249	 	 	 	 d.hash	=	(d.hash<<hashShift	+	int(d.window[d.index+2]))	&	hashMask

			250	 	 	 	 d.chainHead	=	d.hashHead[d.hash]

			251	 	 	 	 d.hashPrev[d.index&windowMask]	=	d.chainHead

			252	 	 	 	 d.hashHead[d.hash]	=	d.index	+	d.hashOffset

			253	 	 	 }

			254	 	 	 prevLength	:=	d.length

			255	 	 	 prevOffset	:=	d.offset

			256	 	 	 d.length	=	minMatchLength	-	1

			257	 	 	 d.offset	=	0

			258	 	 	 minIndex	:=	d.index	-	windowSize

			259	 	 	 if	minIndex	<	0	{

			260	 	 	 	 minIndex	=	0

			261	 	 	 }

			262	

			263	 	 	 if	d.chainHead-d.hashOffset	>=	minIndex	&&

			264	 	 	 	 (d.fastSkipHashing	!=	skipNever	&&	lookahead	>	minMatchLength-1	||

			265	 	 	 	 	 d.fastSkipHashing	==	skipNever	&&	lookahead	>	prevLength	&&	prevLength	<	d.lazy)	{

			266	 	 	 	 if	newLength,	newOffset,	ok	:=	d.findMatch(d.index,	d.chainHead-d.hashOffset,	minMatchLength-1,	lookahead);	ok	{

			267	 	 	 	 	 d.length	=	newLength

			268	 	 	 	 	 d.offset	=	newOffset

			269	 	 	 	 }

			270	 	 	 }

			271	 	 	 if	d.fastSkipHashing	!=	skipNever	&&	d.length	>=	minMatchLength	||

			272	 	 	 	 d.fastSkipHashing	==	skipNever	&&	prevLength	>=	minMatchLength	&&	d.length	<=	prevLength	{

			273	 	 	 	 //	There	was	a	match	at	the	previous	step,	and	the	current	match	is

			274	 	 	 	 //	not	better.	Output	the	previous	match.

			275	 	 	 	 if	d.fastSkipHashing	!=	skipNever	{

			276	 	 	 	 	 d.tokens	=	append(d.tokens,	matchToken(uint32(d.length-minMatchLength),	uint32(d.offset-minOffsetSize)))

			277	 	 	 	 }	else	{

			278	 	 	 	 	 d.tokens	=	append(d.tokens,	matchToken(uint32(prevLength-minMatchLength),	uint32(prevOffset-minOffsetSize)))

			279	 	 	 	 }

			280	 	 	 	 //	Insert	in	the	hash	table	all	strings	up	to	the	end	of	the	match.

			281	 	 	 	 //	index	and	index-1	are	already	inserted.	If	there	is	not	enough

			282	 	 	 	 //	lookahead,	the	last	two	strings	are	not	inserted	into	the	hash

			283	 	 	 	 //	table.

			284	 	 	 	 if	d.length	<=	d.fastSkipHashing	{

			285	 	 	 	 	 var	newIndex	int

			286	 	 	 	 	 if	d.fastSkipHashing	!=	skipNever	{

			287	 	 	 	 	 	 newIndex	=	d.index	+	d.length

			288	 	 	 	 	 }	else	{

			289	 	 	 	 	 	 newIndex	=	d.index	+	prevLength	-	1

			290	 	 	 	 	 }

			291	 	 	 	 	 for	d.index++;	d.index	<	newIndex;	d.index++	{

			292	 	 	 	 	 	 if	d.index	<	d.maxInsertIndex	{

			293	 	 	 	 	 	 	 d.hash	=	(d.hash<<hashShift	+	int(d.window[d.index+2]))	&	hashMask

			294	 	 	 	 	 	 	 //	Get	previous	value	with	the	same	hash.

			295	 	 	 	 	 	 	 //	Our	chain	should	point	to	the	previous	value.

			296	 	 	 	 	 	 	 d.hashPrev[d.index&windowMask]	=	d.hashHead[d.hash]

			297	 	 	 	 	 	 	 //	Set	the	head	of	the	hash	chain	to	us.

			298	 	 	 	 	 	 	 d.hashHead[d.hash]	=	d.index	+	d.hashOffset

			299	 	 	 	 	 	 }

			300	 	 	 	 	 }

			301	 	 	 	 	 if	d.fastSkipHashing	==	skipNever	{

			302	 	 	 	 	 	 d.byteAvailable	=	false

			303	 	 	 	 	 	 d.length	=	minMatchLength	-	1

			304	 	 	 	 	 }

			305	 	 	 	 }	else	{

			306	 	 	 	 	 //	For	matches	this	long,	we	don't	bother	inserting	each	individual

			307	 	 	 	 	 //	item	into	the	table.

			308	 	 	 	 	 d.index	+=	d.length

			309	 	 	 	 	 if	d.index	<	d.maxInsertIndex	{

			310	 	 	 	 	 	 d.hash	=	(int(d.window[d.index])<<hashShift	+	int(d.window[d.index+1]))

			311	 	 	 	 	 }

			312	 	 	 	 }

			313	 	 	 	 if	len(d.tokens)	==	maxFlateBlockTokens	{

			314	 	 	 	 	 //	The	block	includes	the	current	character

			315	 	 	 	 	 if	d.err	=	d.writeBlock(d.tokens,	d.index,	false);	d.err	!=	nil	{

			316	 	 	 	 	 	 return

			317	 	 	 	 	 }

			318	 	 	 	 	 d.tokens	=	d.tokens[:0]

			319	 	 	 	 }

			320	 	 	 }	else	{

			321	 	 	 	 if	d.fastSkipHashing	!=	skipNever	||	d.byteAvailable	{

			322	 	 	 	 	 i	:=	d.index	-	1

			323	 	 	 	 	 if	d.fastSkipHashing	!=	skipNever	{

			324	 	 	 	 	 	 i	=	d.index

			325	 	 	 	 	 }

			326	 	 	 	 	 d.tokens	=	append(d.tokens,	literalToken(uint32(d.window[i])))

			327	 	 	 	 	 if	len(d.tokens)	==	maxFlateBlockTokens	{

			328	 	 	 	 	 	 if	d.err	=	d.writeBlock(d.tokens,	i+1,	false);	d.err	!=	nil	{

			329	 	 	 	 	 	 	 return

			330	 	 	 	 	 	 }

			331	 	 	 	 	 	 d.tokens	=	d.tokens[:0]

			332	 	 	 	 	 }

			333	 	 	 	 }

			334	 	 	 	 d.index++

			335	 	 	 	 if	d.fastSkipHashing	==	skipNever	{

			336	 	 	 	 	 d.byteAvailable	=	true

			337	 	 	 	 }

			338	 	 	 }

			339	 	 }

			340	 }

			341	

			342	 func	(d	*compressor)	fillStore(b	[]byte)	int	{

			343	 	 n	:=	copy(d.window[d.windowEnd:],	b)

			344	 	 d.windowEnd	+=	n

			345	 	 return	n

			346	 }

			347	

			348	 func	(d	*compressor)	store()	{

			349	 	 if	d.windowEnd	>	0	{

			350	 	 	 d.err	=	d.writeStoredBlock(d.window[:d.windowEnd])

			351	 	 }

			352	 	 d.windowEnd	=	0

			353	 }

			354	

			355	 func	(d	*compressor)	write(b	[]byte)	(n	int,	err	error)	{

			356	 	 n	=	len(b)

			357	 	 b	=	b[d.fill(d,	b):]

			358	 	 for	len(b)	>	0	{

			359	 	 	 d.step(d)

			360	 	 	 b	=	b[d.fill(d,	b):]

			361	 	 }

			362	 	 return	n,	d.err

			363	 }

			364	

			365	 func	(d	*compressor)	syncFlush()	error	{

			366	 	 d.sync	=	true

			367	 	 d.step(d)

			368	 	 if	d.err	==	nil	{

			369	 	 	 d.w.writeStoredHeader(0,	false)

			370	 	 	 d.w.flush()

			371	 	 	 d.err	=	d.w.err

			372	 	 }

			373	 	 d.sync	=	false

			374	 	 return	d.err

			375	 }

			376	

			377	 func	(d	*compressor)	init(w	io.Writer,	level	int)	(err	error)	{

			378	 	 d.w	=	newHuffmanBitWriter(w)

			379	

			380	 	 switch	{

			381	 	 case	level	==	NoCompression:

			382	 	 	 d.window	=	make([]byte,	maxStoreBlockSize)

			383	 	 	 d.fill	=	(*compressor).fillStore

			384	 	 	 d.step	=	(*compressor).store

			385	 	 case	level	==	DefaultCompression:

			386	 	 	 level	=	6

			387	 	 	 fallthrough

			388	 	 case	1	<=	level	&&	level	<=	9:

			389	 	 	 d.compressionLevel	=	levels[level]

			390	 	 	 d.initDeflate()

			391	 	 	 d.fill	=	(*compressor).fillDeflate

			392	 	 	 d.step	=	(*compressor).deflate

			393	 	 default:

			394	 	 	 return	fmt.Errorf("flate:	invalid	compression	level	%d:	want	value	in	range	[-1,	9]",	level)

			395	 	 }

			396	 	 return	nil

			397	 }

			398	

			399	 func	(d	*compressor)	close()	error	{

			400	 	 d.sync	=	true

			401	 	 d.step(d)

			402	 	 if	d.err	!=	nil	{

			403	 	 	 return	d.err

			404	 	 }

			405	 	 if	d.w.writeStoredHeader(0,	true);	d.w.err	!=	nil	{

			406	 	 	 return	d.w.err

			407	 	 }

			408	 	 d.w.flush()

			409	 	 return	d.w.err

			410	 }

			411	

			412	 //	NewWriter	returns	a	new	Writer	compressing	data	at	the	given	level.

			413	 //	Following	zlib,	levels	range	from	1	(BestSpeed)	to	9	(BestCompression);

			414	 //	higher	levels	typically	run	slower	but	compress	more.	Level	0

			415	 //	(NoCompression)	does	not	attempt	any	compression;	it	only	adds	the

			416	 //	necessary	DEFLATE	framing.	Level	-1	(DefaultCompression)	uses	the	default

			417	 //	compression	level.

			418	 //

			419	 //	If	level	is	in	the	range	[-1,	9]	then	the	error	returned	will	be	nil.

			420	 //	Otherwise	the	error	returned	will	be	non-nil.

			421	 func	NewWriter(w	io.Writer,	level	int)	(*Writer,	error)	{

			422	 	 const	logWindowSize	=	logMaxOffsetSize

			423	 	 var	dw	Writer

			424	 	 if	err	:=	dw.d.init(w,	level);	err	!=	nil	{

			425	 	 	 return	nil,	err

			426	 	 }

			427	 	 return	&dw,	nil

			428	 }

			429	

			430	 //	NewWriterDict	is	like	NewWriter	but	initializes	the	new

			431	 //	Writer	with	a	preset	dictionary.		The	returned	Writer	behaves

			432	 //	as	if	the	dictionary	had	been	written	to	it	without	producing

			433	 //	any	compressed	output.		The	compressed	data	written	to	w

			434	 //	can	only	be	decompressed	by	a	Reader	initialized	with	the

			435	 //	same	dictionary.

			436	 func	NewWriterDict(w	io.Writer,	level	int,	dict	[]byte)	(*Writer,	error)	{

			437	 	 dw	:=	&dictWriter{w,	false}

			438	 	 zw,	err	:=	NewWriter(dw,	level)

			439	 	 if	err	!=	nil	{

			440	 	 	 return	nil,	err

			441	 	 }

			442	 	 zw.Write(dict)

			443	 	 zw.Flush()

			444	 	 dw.enabled	=	true

			445	 	 return	zw,	err

			446	 }

			447	

			448	 type	dictWriter	struct	{

			449	 	 w							io.Writer

			450	 	 enabled	bool

			451	 }

			452	

			453	 func	(w	*dictWriter)	Write(b	[]byte)	(n	int,	err	error)	{

			454	 	 if	w.enabled	{

			455	 	 	 return	w.w.Write(b)

			456	 	 }

			457	 	 return	len(b),	nil

			458	 }

			459	

			460	 //	A	Writer	takes	data	written	to	it	and	writes	the	compressed

			461	 //	form	of	that	data	to	an	underlying	writer	(see	NewWriter).

			462	 type	Writer	struct	{

			463	 	 d	compressor

			464	 }

			465	

			466	 //	Write	writes	data	to	w,	which	will	eventually	write	the

			467	 //	compressed	form	of	data	to	its	underlying	writer.

			468	 func	(w	*Writer)	Write(data	[]byte)	(n	int,	err	error)	{

			469	 	 return	w.d.write(data)

			470	 }

			471	

			472	 //	Flush	flushes	any	pending	compressed	data	to	the	underlying	writer.

			473	 //	It	is	useful	mainly	in	compressed	network	protocols,	to	ensure	that

			474	 //	a	remote	reader	has	enough	data	to	reconstruct	a	packet.

			475	 //	Flush	does	not	return	until	the	data	has	been	written.

			476	 //	If	the	underlying	writer	returns	an	error,	Flush	returns	that	error.

			477	 //

			478	 //	In	the	terminology	of	the	zlib	library,	Flush	is	equivalent	to	Z_SYNC_FLUSH.

			479	 func	(w	*Writer)	Flush()	error	{

			480	 	 //	For	more	about	flushing:

			481	 	 //	http://www.bolet.org/~pornin/deflate-flush.html

			482	 	 return	w.d.syncFlush()

			483	 }

			484	

			485	 //	Close	flushes	and	closes	the	writer.

			486	 func	(w	*Writer)	Close()	error	{

			487	 	 return	w.d.close()

			488	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/flate/huffman_bit_writer.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	flate

					6	

					7	 import	(

					8	 	 "io"

					9	 	 "math"

				10)

				11	

				12	 const	(

				13	 	 //	The	largest	offset	code.

				14	 	 offsetCodeCount	=	30

				15	

				16	 	 //	The	special	code	used	to	mark	the	end	of	a	block.

				17	 	 endBlockMarker	=	256

				18	

				19	 	 //	The	first	length	code.

				20	 	 lengthCodesStart	=	257

				21	

				22	 	 //	The	number	of	codegen	codes.

				23	 	 codegenCodeCount	=	19

				24	 	 badCode										=	255

				25)

				26	

				27	 //	The	number	of	extra	bits	needed	by	length	code	X	-	LENGTH_CODES_START.

				28	 var	lengthExtraBits	=	[]int8{

				29	 	 /*	257	*/	0,	0,	0,

				30	 	 /*	260	*/	0,	0,	0,	0,	0,	1,	1,	1,	1,	2,

				31	 	 /*	270	*/	2,	2,	2,	3,	3,	3,	3,	4,	4,	4,

				32	 	 /*	280	*/	4,	5,	5,	5,	5,	0,

				33	 }

				34	

				35	 //	The	length	indicated	by	length	code	X	-	LENGTH_CODES_START.

				36	 var	lengthBase	=	[]uint32{

				37	 	 0,	1,	2,	3,	4,	5,	6,	7,	8,	10,

				38	 	 12,	14,	16,	20,	24,	28,	32,	40,	48,	56,

				39	 	 64,	80,	96,	112,	128,	160,	192,	224,	255,

				40	 }

				41	

				42	 //	offset	code	word	extra	bits.

				43	 var	offsetExtraBits	=	[]int8{

				44	 	 0,	0,	0,	0,	1,	1,	2,	2,	3,	3,

				45	 	 4,	4,	5,	5,	6,	6,	7,	7,	8,	8,

				46	 	 9,	9,	10,	10,	11,	11,	12,	12,	13,	13,

				47	 	 /*	extended	window	*/

				48	 	 14,	14,	15,	15,	16,	16,	17,	17,	18,	18,	19,	19,	20,	20,

				49	 }

				50	

				51	 var	offsetBase	=	[]uint32{

				52	 	 /*	normal	deflate	*/

				53	 	 0x000000,	0x000001,	0x000002,	0x000003,	0x000004,

				54	 	 0x000006,	0x000008,	0x00000c,	0x000010,	0x000018,

				55	 	 0x000020,	0x000030,	0x000040,	0x000060,	0x000080,

				56	 	 0x0000c0,	0x000100,	0x000180,	0x000200,	0x000300,

				57	 	 0x000400,	0x000600,	0x000800,	0x000c00,	0x001000,

				58	 	 0x001800,	0x002000,	0x003000,	0x004000,	0x006000,

				59	

				60	 	 /*	extended	window	*/

				61	 	 0x008000,	0x00c000,	0x010000,	0x018000,	0x020000,

				62	 	 0x030000,	0x040000,	0x060000,	0x080000,	0x0c0000,

				63	 	 0x100000,	0x180000,	0x200000,	0x300000,

				64	 }

				65	

				66	 //	The	odd	order	in	which	the	codegen	code	sizes	are	written.

				67	 var	codegenOrder	=	[]uint32{16,	17,	18,	0,	8,	7,	9,	6,	10,	5,	11,	4,	12,	3,	13,	2,	14,	1,	15}

				68	

				69	 type	huffmanBitWriter	struct	{

				70	 	 w	io.Writer

				71	 	 //	Data	waiting	to	be	written	is	bytes[0:nbytes]

				72	 	 //	and	then	the	low	nbits	of	bits.

				73	 	 bits												uint32

				74	 	 nbits											uint32

				75	 	 bytes											[64]byte

				76	 	 nbytes										int

				77	 	 literalFreq					[]int32

				78	 	 offsetFreq						[]int32

				79	 	 codegen									[]uint8

				80	 	 codegenFreq					[]int32

				81	 	 literalEncoding	*huffmanEncoder

				82	 	 offsetEncoding		*huffmanEncoder

				83	 	 codegenEncoding	*huffmanEncoder

				84	 	 err													error

				85	 }

				86	

				87	 func	newHuffmanBitWriter(w	io.Writer)	*huffmanBitWriter	{

				88	 	 return	&huffmanBitWriter{

				89	 	 	 w:															w,

				90	 	 	 literalFreq:					make([]int32,	maxLit),

				91	 	 	 offsetFreq:						make([]int32,	offsetCodeCount),

				92	 	 	 codegen:									make([]uint8,	maxLit+offsetCodeCount+1),

				93	 	 	 codegenFreq:					make([]int32,	codegenCodeCount),

				94	 	 	 literalEncoding:	newHuffmanEncoder(maxLit),

				95	 	 	 offsetEncoding:		newHuffmanEncoder(offsetCodeCount),

				96	 	 	 codegenEncoding:	newHuffmanEncoder(codegenCodeCount),

				97	 	 }

				98	 }

				99	

			100	 func	(w	*huffmanBitWriter)	flushBits()	{

			101	 	 if	w.err	!=	nil	{

			102	 	 	 w.nbits	=	0

			103	 	 	 return

			104	 	 }

			105	 	 bits	:=	w.bits

			106	 	 w.bits	>>=	16

			107	 	 w.nbits	-=	16

			108	 	 n	:=	w.nbytes

			109	 	 w.bytes[n]	=	byte(bits)

			110	 	 w.bytes[n+1]	=	byte(bits	>>	8)

			111	 	 if	n	+=	2;	n	>=	len(w.bytes)	{

			112	 	 	 _,	w.err	=	w.w.Write(w.bytes[0:])

			113	 	 	 n	=	0

			114	 	 }

			115	 	 w.nbytes	=	n

			116	 }

			117	

			118	 func	(w	*huffmanBitWriter)	flush()	{

			119	 	 if	w.err	!=	nil	{

			120	 	 	 w.nbits	=	0

			121	 	 	 return

			122	 	 }

			123	 	 n	:=	w.nbytes

			124	 	 if	w.nbits	>	8	{

			125	 	 	 w.bytes[n]	=	byte(w.bits)

			126	 	 	 w.bits	>>=	8

			127	 	 	 w.nbits	-=	8

			128	 	 	 n++

			129	 	 }

			130	 	 if	w.nbits	>	0	{

			131	 	 	 w.bytes[n]	=	byte(w.bits)

			132	 	 	 w.nbits	=	0

			133	 	 	 n++

			134	 	 }

			135	 	 w.bits	=	0

			136	 	 _,	w.err	=	w.w.Write(w.bytes[0:n])

			137	 	 w.nbytes	=	0

			138	 }

			139	

			140	 func	(w	*huffmanBitWriter)	writeBits(b,	nb	int32)	{

			141	 	 w.bits	|=	uint32(b)	<<	w.nbits

			142	 	 if	w.nbits	+=	uint32(nb);	w.nbits	>=	16	{

			143	 	 	 w.flushBits()

			144	 	 }

			145	 }

			146	

			147	 func	(w	*huffmanBitWriter)	writeBytes(bytes	[]byte)	{

			148	 	 if	w.err	!=	nil	{

			149	 	 	 return

			150	 	 }

			151	 	 n	:=	w.nbytes

			152	 	 if	w.nbits	==	8	{

			153	 	 	 w.bytes[n]	=	byte(w.bits)

			154	 	 	 w.nbits	=	0

			155	 	 	 n++

			156	 	 }

			157	 	 if	w.nbits	!=	0	{

			158	 	 	 w.err	=	InternalError("writeBytes	with	unfinished	bits")

			159	 	 	 return

			160	 	 }

			161	 	 if	n	!=	0	{

			162	 	 	 _,	w.err	=	w.w.Write(w.bytes[0:n])

			163	 	 	 if	w.err	!=	nil	{

			164	 	 	 	 return

			165	 	 	 }

			166	 	 }

			167	 	 w.nbytes	=	0

			168	 	 _,	w.err	=	w.w.Write(bytes)

			169	 }

			170	

			171	 //	RFC	1951	3.2.7	specifies	a	special	run-length	encoding	for	specifying

			172	 //	the	literal	and	offset	lengths	arrays	(which	are	concatenated	into	a	single

			173	 //	array).		This	method	generates	that	run-length	encoding.

			174	 //

			175	 //	The	result	is	written	into	the	codegen	array,	and	the	frequencies

			176	 //	of	each	code	is	written	into	the	codegenFreq	array.

			177	 //	Codes	0-15	are	single	byte	codes.	Codes	16-18	are	followed	by	additional

			178	 //	information.		Code	badCode	is	an	end	marker

			179	 //

			180	 //		numLiterals						The	number	of	literals	in	literalEncoding

			181	 //		numOffsets							The	number	of	offsets	in	offsetEncoding

			182	 func	(w	*huffmanBitWriter)	generateCodegen(numLiterals	int,	numOffsets	int)	{

			183	 	 for	i	:=	range	w.codegenFreq	{

			184	 	 	 w.codegenFreq[i]	=	0

			185	 	 }

			186	 	 //	Note	that	we	are	using	codegen	both	as	a	temporary	variable	for	holding

			187	 	 //	a	copy	of	the	frequencies,	and	as	the	place	where	we	put	the	result.

			188	 	 //	This	is	fine	because	the	output	is	always	shorter	than	the	input	used

			189	 	 //	so	far.

			190	 	 codegen	:=	w.codegen	//	cache

			191	 	 //	Copy	the	concatenated	code	sizes	to	codegen.		Put	a	marker	at	the	end.

			192	 	 copy(codegen[0:numLiterals],	w.literalEncoding.codeBits)

			193	 	 copy(codegen[numLiterals:numLiterals+numOffsets],	w.offsetEncoding.codeBits)

			194	 	 codegen[numLiterals+numOffsets]	=	badCode

			195	

			196	 	 size	:=	codegen[0]

			197	 	 count	:=	1

			198	 	 outIndex	:=	0

			199	 	 for	inIndex	:=	1;	size	!=	badCode;	inIndex++	{

			200	 	 	 //	INVARIANT:	We	have	seen	"count"	copies	of	size	that	have	not	yet

			201	 	 	 //	had	output	generated	for	them.

			202	 	 	 nextSize	:=	codegen[inIndex]

			203	 	 	 if	nextSize	==	size	{

			204	 	 	 	 count++

			205	 	 	 	 continue

			206	 	 	 }

			207	 	 	 //	We	need	to	generate	codegen	indicating	"count"	of	size.

			208	 	 	 if	size	!=	0	{

			209	 	 	 	 codegen[outIndex]	=	size

			210	 	 	 	 outIndex++

			211	 	 	 	 w.codegenFreq[size]++

			212	 	 	 	 count--

			213	 	 	 	 for	count	>=	3	{

			214	 	 	 	 	 n	:=	6

			215	 	 	 	 	 if	n	>	count	{

			216	 	 	 	 	 	 n	=	count

			217	 	 	 	 	 }

			218	 	 	 	 	 codegen[outIndex]	=	16

			219	 	 	 	 	 outIndex++

			220	 	 	 	 	 codegen[outIndex]	=	uint8(n	-	3)

			221	 	 	 	 	 outIndex++

			222	 	 	 	 	 w.codegenFreq[16]++

			223	 	 	 	 	 count	-=	n

			224	 	 	 	 }

			225	 	 	 }	else	{

			226	 	 	 	 for	count	>=	11	{

			227	 	 	 	 	 n	:=	138

			228	 	 	 	 	 if	n	>	count	{

			229	 	 	 	 	 	 n	=	count

			230	 	 	 	 	 }

			231	 	 	 	 	 codegen[outIndex]	=	18

			232	 	 	 	 	 outIndex++

			233	 	 	 	 	 codegen[outIndex]	=	uint8(n	-	11)

			234	 	 	 	 	 outIndex++

			235	 	 	 	 	 w.codegenFreq[18]++

			236	 	 	 	 	 count	-=	n

			237	 	 	 	 }

			238	 	 	 	 if	count	>=	3	{

			239	 	 	 	 	 //	count	>=	3	&&	count	<=	10

			240	 	 	 	 	 codegen[outIndex]	=	17

			241	 	 	 	 	 outIndex++

			242	 	 	 	 	 codegen[outIndex]	=	uint8(count	-	3)

			243	 	 	 	 	 outIndex++

			244	 	 	 	 	 w.codegenFreq[17]++

			245	 	 	 	 	 count	=	0

			246	 	 	 	 }

			247	 	 	 }

			248	 	 	 count--

			249	 	 	 for	;	count	>=	0;	count--	{

			250	 	 	 	 codegen[outIndex]	=	size

			251	 	 	 	 outIndex++

			252	 	 	 	 w.codegenFreq[size]++

			253	 	 	 }

			254	 	 	 //	Set	up	invariant	for	next	time	through	the	loop.

			255	 	 	 size	=	nextSize

			256	 	 	 count	=	1

			257	 	 }

			258	 	 //	Marker	indicating	the	end	of	the	codegen.

			259	 	 codegen[outIndex]	=	badCode

			260	 }

			261	

			262	 func	(w	*huffmanBitWriter)	writeCode(code	*huffmanEncoder,	literal	uint32)	{

			263	 	 if	w.err	!=	nil	{

			264	 	 	 return

			265	 	 }

			266	 	 w.writeBits(int32(code.code[literal]),	int32(code.codeBits[literal]))

			267	 }

			268	

			269	 //	Write	the	header	of	a	dynamic	Huffman	block	to	the	output	stream.

			270	 //

			271	 //		numLiterals		The	number	of	literals	specified	in	codegen

			272	 //		numOffsets			The	number	of	offsets	specified	in	codegen

			273	 //		numCodegens		The	number	of	codegens	used	in	codegen

			274	 func	(w	*huffmanBitWriter)	writeDynamicHeader(numLiterals	int,	numOffsets	int,	numCodegens	int,	isEof	bool)	{

			275	 	 if	w.err	!=	nil	{

			276	 	 	 return

			277	 	 }

			278	 	 var	firstBits	int32	=	4

			279	 	 if	isEof	{

			280	 	 	 firstBits	=	5

			281	 	 }

			282	 	 w.writeBits(firstBits,	3)

			283	 	 w.writeBits(int32(numLiterals-257),	5)

			284	 	 w.writeBits(int32(numOffsets-1),	5)

			285	 	 w.writeBits(int32(numCodegens-4),	4)

			286	

			287	 	 for	i	:=	0;	i	<	numCodegens;	i++	{

			288	 	 	 value	:=	w.codegenEncoding.codeBits[codegenOrder[i]]

			289	 	 	 w.writeBits(int32(value),	3)

			290	 	 }

			291	

			292	 	 i	:=	0

			293	 	 for	{

			294	 	 	 var	codeWord	int	=	int(w.codegen[i])

			295	 	 	 i++

			296	 	 	 if	codeWord	==	badCode	{

			297	 	 	 	 break

			298	 	 	 }

			299	 	 	 //	The	low	byte	contains	the	actual	code	to	generate.

			300	 	 	 w.writeCode(w.codegenEncoding,	uint32(codeWord))

			301	

			302	 	 	 switch	codeWord	{

			303	 	 	 case	16:

			304	 	 	 	 w.writeBits(int32(w.codegen[i]),	2)

			305	 	 	 	 i++

			306	 	 	 	 break

			307	 	 	 case	17:

			308	 	 	 	 w.writeBits(int32(w.codegen[i]),	3)

			309	 	 	 	 i++

			310	 	 	 	 break

			311	 	 	 case	18:

			312	 	 	 	 w.writeBits(int32(w.codegen[i]),	7)

			313	 	 	 	 i++

			314	 	 	 	 break

			315	 	 	 }

			316	 	 }

			317	 }

			318	

			319	 func	(w	*huffmanBitWriter)	writeStoredHeader(length	int,	isEof	bool)	{

			320	 	 if	w.err	!=	nil	{

			321	 	 	 return

			322	 	 }

			323	 	 var	flag	int32

			324	 	 if	isEof	{

			325	 	 	 flag	=	1

			326	 	 }

			327	 	 w.writeBits(flag,	3)

			328	 	 w.flush()

			329	 	 w.writeBits(int32(length),	16)

			330	 	 w.writeBits(int32(^uint16(length)),	16)

			331	 }

			332	

			333	 func	(w	*huffmanBitWriter)	writeFixedHeader(isEof	bool)	{

			334	 	 if	w.err	!=	nil	{

			335	 	 	 return

			336	 	 }

			337	 	 //	Indicate	that	we	are	a	fixed	Huffman	block

			338	 	 var	value	int32	=	2

			339	 	 if	isEof	{

			340	 	 	 value	=	3

			341	 	 }

			342	 	 w.writeBits(value,	3)

			343	 }

			344	

			345	 func	(w	*huffmanBitWriter)	writeBlock(tokens	[]token,	eof	bool,	input	[]byte)	{

			346	 	 if	w.err	!=	nil	{

			347	 	 	 return

			348	 	 }

			349	 	 for	i	:=	range	w.literalFreq	{

			350	 	 	 w.literalFreq[i]	=	0

			351	 	 }

			352	 	 for	i	:=	range	w.offsetFreq	{

			353	 	 	 w.offsetFreq[i]	=	0

			354	 	 }

			355	

			356	 	 n	:=	len(tokens)

			357	 	 tokens	=	tokens[0	:	n+1]

			358	 	 tokens[n]	=	endBlockMarker

			359	

			360	 	 for	_,	t	:=	range	tokens	{

			361	 	 	 switch	t.typ()	{

			362	 	 	 case	literalType:

			363	 	 	 	 w.literalFreq[t.literal()]++

			364	 	 	 case	matchType:

			365	 	 	 	 length	:=	t.length()

			366	 	 	 	 offset	:=	t.offset()

			367	 	 	 	 w.literalFreq[lengthCodesStart+lengthCode(length)]++

			368	 	 	 	 w.offsetFreq[offsetCode(offset)]++

			369	 	 	 }

			370	 	 }

			371	

			372	 	 //	get	the	number	of	literals

			373	 	 numLiterals	:=	len(w.literalFreq)

			374	 	 for	w.literalFreq[numLiterals-1]	==	0	{

			375	 	 	 numLiterals--

			376	 	 }

			377	 	 //	get	the	number	of	offsets

			378	 	 numOffsets	:=	len(w.offsetFreq)

			379	 	 for	numOffsets	>	0	&&	w.offsetFreq[numOffsets-1]	==	0	{

			380	 	 	 numOffsets--

			381	 	 }

			382	 	 if	numOffsets	==	0	{

			383	 	 	 //	We	haven't	found	a	single	match.	If	we	want	to	go	with	the	dynamic	encoding,

			384	 	 	 //	we	should	count	at	least	one	offset	to	be	sure	that	the	offset	huffman	tree	could	be	encoded.

			385	 	 	 w.offsetFreq[0]	=	1

			386	 	 	 numOffsets	=	1

			387	 	 }

			388	

			389	 	 w.literalEncoding.generate(w.literalFreq,	15)

			390	 	 w.offsetEncoding.generate(w.offsetFreq,	15)

			391	

			392	 	 storedBytes	:=	0

			393	 	 if	input	!=	nil	{

			394	 	 	 storedBytes	=	len(input)

			395	 	 }

			396	 	 var	extraBits	int64

			397	 	 var	storedSize	int64	=	math.MaxInt64

			398	 	 if	storedBytes	<=	maxStoreBlockSize	&&	input	!=	nil	{

			399	 	 	 storedSize	=	int64((storedBytes	+	5)	*	8)

			400	 	 	 //	We	only	bother	calculating	the	costs	of	the	extra	bits	required	by

			401	 	 	 //	the	length	of	offset	fields	(which	will	be	the	same	for	both	fixed

			402	 	 	 //	and	dynamic	encoding),	if	we	need	to	compare	those	two	encodings

			403	 	 	 //	against	stored	encoding.

			404	 	 	 for	lengthCode	:=	lengthCodesStart	+	8;	lengthCode	<	numLiterals;	lengthCode++	{

			405	 	 	 	 //	First	eight	length	codes	have	extra	size	=	0.

			406	 	 	 	 extraBits	+=	int64(w.literalFreq[lengthCode])	*	int64(lengthExtraBits[lengthCode-lengthCodesStart])

			407	 	 	 }

			408	 	 	 for	offsetCode	:=	4;	offsetCode	<	numOffsets;	offsetCode++	{

			409	 	 	 	 //	First	four	offset	codes	have	extra	size	=	0.

			410	 	 	 	 extraBits	+=	int64(w.offsetFreq[offsetCode])	*	int64(offsetExtraBits[offsetCode])

			411	 	 	 }

			412	 	 }

			413	

			414	 	 //	Figure	out	smallest	code.

			415	 	 //	Fixed	Huffman	baseline.

			416	 	 var	size	=	int64(3)	+

			417	 	 	 fixedLiteralEncoding.bitLength(w.literalFreq)	+

			418	 	 	 fixedOffsetEncoding.bitLength(w.offsetFreq)	+

			419	 	 	 extraBits

			420	 	 var	literalEncoding	=	fixedLiteralEncoding

			421	 	 var	offsetEncoding	=	fixedOffsetEncoding

			422	

			423	 	 //	Dynamic	Huffman?

			424	 	 var	numCodegens	int

			425	

			426	 	 //	Generate	codegen	and	codegenFrequencies,	which	indicates	how	to	encode

			427	 	 //	the	literalEncoding	and	the	offsetEncoding.

			428	 	 w.generateCodegen(numLiterals,	numOffsets)

			429	 	 w.codegenEncoding.generate(w.codegenFreq,	7)

			430	 	 numCodegens	=	len(w.codegenFreq)

			431	 	 for	numCodegens	>	4	&&	w.codegenFreq[codegenOrder[numCodegens-1]]	==	0	{

			432	 	 	 numCodegens--

			433	 	 }

			434	 	 dynamicHeader	:=	int64(3+5+5+4+(3*numCodegens))	+

			435	 	 	 w.codegenEncoding.bitLength(w.codegenFreq)	+

			436	 	 	 int64(extraBits)	+

			437	 	 	 int64(w.codegenFreq[16]*2)	+

			438	 	 	 int64(w.codegenFreq[17]*3)	+

			439	 	 	 int64(w.codegenFreq[18]*7)

			440	 	 dynamicSize	:=	dynamicHeader	+

			441	 	 	 w.literalEncoding.bitLength(w.literalFreq)	+

			442	 	 	 w.offsetEncoding.bitLength(w.offsetFreq)

			443	

			444	 	 if	dynamicSize	<	size	{

			445	 	 	 size	=	dynamicSize

			446	 	 	 literalEncoding	=	w.literalEncoding

			447	 	 	 offsetEncoding	=	w.offsetEncoding

			448	 	 }

			449	

			450	 	 //	Stored	bytes?

			451	 	 if	storedSize	<	size	{

			452	 	 	 w.writeStoredHeader(storedBytes,	eof)

			453	 	 	 w.writeBytes(input[0:storedBytes])

			454	 	 	 return

			455	 	 }

			456	

			457	 	 //	Huffman.

			458	 	 if	literalEncoding	==	fixedLiteralEncoding	{

			459	 	 	 w.writeFixedHeader(eof)

			460	 	 }	else	{

			461	 	 	 w.writeDynamicHeader(numLiterals,	numOffsets,	numCodegens,	eof)

			462	 	 }

			463	 	 for	_,	t	:=	range	tokens	{

			464	 	 	 switch	t.typ()	{

			465	 	 	 case	literalType:

			466	 	 	 	 w.writeCode(literalEncoding,	t.literal())

			467	 	 	 	 break

			468	 	 	 case	matchType:

			469	 	 	 	 //	Write	the	length

			470	 	 	 	 length	:=	t.length()

			471	 	 	 	 lengthCode	:=	lengthCode(length)

			472	 	 	 	 w.writeCode(literalEncoding,	lengthCode+lengthCodesStart)

			473	 	 	 	 extraLengthBits	:=	int32(lengthExtraBits[lengthCode])

			474	 	 	 	 if	extraLengthBits	>	0	{

			475	 	 	 	 	 extraLength	:=	int32(length	-	lengthBase[lengthCode])

			476	 	 	 	 	 w.writeBits(extraLength,	extraLengthBits)

			477	 	 	 	 }

			478	 	 	 	 //	Write	the	offset

			479	 	 	 	 offset	:=	t.offset()

			480	 	 	 	 offsetCode	:=	offsetCode(offset)

			481	 	 	 	 w.writeCode(offsetEncoding,	offsetCode)

			482	 	 	 	 extraOffsetBits	:=	int32(offsetExtraBits[offsetCode])

			483	 	 	 	 if	extraOffsetBits	>	0	{

			484	 	 	 	 	 extraOffset	:=	int32(offset	-	offsetBase[offsetCode])

			485	 	 	 	 	 w.writeBits(extraOffset,	extraOffsetBits)

			486	 	 	 	 }

			487	 	 	 	 break

			488	 	 	 default:

			489	 	 	 	 panic("unknown	token	type:	"	+	string(t))

			490	 	 	 }

			491	 	 }

			492	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/flate/huffman_code.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	flate

					6	

					7	 import	(

					8	 	 "math"

					9	 	 "sort"

				10)

				11	

				12	 type	huffmanEncoder	struct	{

				13	 	 codeBits	[]uint8

				14	 	 code					[]uint16

				15	 }

				16	

				17	 type	literalNode	struct	{

				18	 	 literal	uint16

				19	 	 freq				int32

				20	 }

				21	

				22	 type	chain	struct	{

				23	 	 //	The	sum	of	the	leaves	in	this	tree

				24	 	 freq	int32

				25	

				26	 	 //	The	number	of	literals	to	the	left	of	this	item	at	this	level

				27	 	 leafCount	int32

				28	

				29	 	 //	The	right	child	of	this	chain	in	the	previous	level.

				30	 	 up	*chain

				31	 }

				32	

				33	 type	levelInfo	struct	{

				34	 	 //	Our	level.		for	better	printing

				35	 	 level	int32

				36	

				37	 	 //	The	most	recent	chain	generated	for	this	level

				38	 	 lastChain	*chain

				39	

				40	 	 //	The	frequency	of	the	next	character	to	add	to	this	level

				41	 	 nextCharFreq	int32

				42	

				43	 	 //	The	frequency	of	the	next	pair	(from	level	below)	to	add	to	this	level.

				44	 	 //	Only	valid	if	the	"needed"	value	of	the	next	lower	level	is	0.

				45	 	 nextPairFreq	int32

				46	

				47	 	 //	The	number	of	chains	remaining	to	generate	for	this	level	before	moving

				48	 	 //	up	to	the	next	level

				49	 	 needed	int32

				50	

				51	 	 //	The	levelInfo	for	level+1

				52	 	 up	*levelInfo

				53	

				54	 	 //	The	levelInfo	for	level-1

				55	 	 down	*levelInfo

				56	 }

				57	

				58	 func	maxNode()	literalNode	{	return	literalNode{math.MaxUint16,	math.MaxInt32}	}

				59	

				60	 func	newHuffmanEncoder(size	int)	*huffmanEncoder	{

				61	 	 return	&huffmanEncoder{make([]uint8,	size),	make([]uint16,	size)}

				62	 }

				63	

				64	 //	Generates	a	HuffmanCode	corresponding	to	the	fixed	literal	table

				65	 func	generateFixedLiteralEncoding()	*huffmanEncoder	{

				66	 	 h	:=	newHuffmanEncoder(maxLit)

				67	 	 codeBits	:=	h.codeBits

				68	 	 code	:=	h.code

				69	 	 var	ch	uint16

				70	 	 for	ch	=	0;	ch	<	maxLit;	ch++	{

				71	 	 	 var	bits	uint16

				72	 	 	 var	size	uint8

				73	 	 	 switch	{

				74	 	 	 case	ch	<	144:

				75	 	 	 	 //	size	8,	000110000		..	10111111

				76	 	 	 	 bits	=	ch	+	48

				77	 	 	 	 size	=	8

				78	 	 	 	 break

				79	 	 	 case	ch	<	256:

				80	 	 	 	 //	size	9,	110010000	..	111111111

				81	 	 	 	 bits	=	ch	+	400	-	144

				82	 	 	 	 size	=	9

				83	 	 	 	 break

				84	 	 	 case	ch	<	280:

				85	 	 	 	 //	size	7,	0000000	..	0010111

				86	 	 	 	 bits	=	ch	-	256

				87	 	 	 	 size	=	7

				88	 	 	 	 break

				89	 	 	 default:

				90	 	 	 	 //	size	8,	11000000	..	11000111

				91	 	 	 	 bits	=	ch	+	192	-	280

				92	 	 	 	 size	=	8

				93	 	 	 }

				94	 	 	 codeBits[ch]	=	size

				95	 	 	 code[ch]	=	reverseBits(bits,	size)

				96	 	 }

				97	 	 return	h

				98	 }

				99	

			100	 func	generateFixedOffsetEncoding()	*huffmanEncoder	{

			101	 	 h	:=	newHuffmanEncoder(30)

			102	 	 codeBits	:=	h.codeBits

			103	 	 code	:=	h.code

			104	 	 for	ch	:=	uint16(0);	ch	<	30;	ch++	{

			105	 	 	 codeBits[ch]	=	5

			106	 	 	 code[ch]	=	reverseBits(ch,	5)

			107	 	 }

			108	 	 return	h

			109	 }

			110	

			111	 var	fixedLiteralEncoding	*huffmanEncoder	=	generateFixedLiteralEncoding()

			112	 var	fixedOffsetEncoding	*huffmanEncoder	=	generateFixedOffsetEncoding()

			113	

			114	 func	(h	*huffmanEncoder)	bitLength(freq	[]int32)	int64	{

			115	 	 var	total	int64

			116	 	 for	i,	f	:=	range	freq	{

			117	 	 	 if	f	!=	0	{

			118	 	 	 	 total	+=	int64(f)	*	int64(h.codeBits[i])

			119	 	 	 }

			120	 	 }

			121	 	 return	total

			122	 }

			123	

			124	 //	Return	the	number	of	literals	assigned	to	each	bit	size	in	the	Huffman	encoding

			125	 //

			126	 //	This	method	is	only	called	when	list.length	>=	3

			127	 //	The	cases	of	0,	1,	and	2	literals	are	handled	by	special	case	code.

			128	 //

			129	 //	list		An	array	of	the	literals	with	non-zero	frequencies

			130	 //													and	their	associated	frequencies.		The	array	is	in	order	of	increasing

			131	 //													frequency,	and	has	as	its	last	element	a	special	element	with	frequency

			132	 //													MaxInt32

			133	 //	maxBits					The	maximum	number	of	bits	that	should	be	used	to	encode	any	literal.

			134	 //	return						An	integer	array	in	which	array[i]	indicates	the	number	of	literals

			135	 //													that	should	be	encoded	in	i	bits.

			136	 func	(h	*huffmanEncoder)	bitCounts(list	[]literalNode,	maxBits	int32)	[]int32	{

			137	 	 n	:=	int32(len(list))

			138	 	 list	=	list[0	:	n+1]

			139	 	 list[n]	=	maxNode()

			140	

			141	 	 //	The	tree	can't	have	greater	depth	than	n	-	1,	no	matter	what.		This

			142	 	 //	saves	a	little	bit	of	work	in	some	small	cases

			143	 	 if	maxBits	>	n-1	{

			144	 	 	 maxBits	=	n	-	1

			145	 	 }

			146	

			147	 	 //	Create	information	about	each	of	the	levels.

			148	 	 //	A	bogus	"Level	0"	whose	sole	purpose	is	so	that

			149	 	 //	level1.prev.needed==0.		This	makes	level1.nextPairFreq

			150	 	 //	be	a	legitimate	value	that	never	gets	chosen.

			151	 	 top	:=	&levelInfo{needed:	0}

			152	 	 chain2	:=	&chain{list[1].freq,	2,	new(chain)}

			153	 	 for	level	:=	int32(1);	level	<=	maxBits;	level++	{

			154	 	 	 //	For	every	level,	the	first	two	items	are	the	first	two	characters.

			155	 	 	 //	We	initialize	the	levels	as	if	we	had	already	figured	this	out.

			156	 	 	 top	=	&levelInfo{

			157	 	 	 	 level:								level,

			158	 	 	 	 lastChain:				chain2,

			159	 	 	 	 nextCharFreq:	list[2].freq,

			160	 	 	 	 nextPairFreq:	list[0].freq	+	list[1].freq,

			161	 	 	 	 down:									top,

			162	 	 	 }

			163	 	 	 top.down.up	=	top

			164	 	 	 if	level	==	1	{

			165	 	 	 	 top.nextPairFreq	=	math.MaxInt32

			166	 	 	 }

			167	 	 }

			168	

			169	 	 //	We	need	a	total	of	2*n	-	2	items	at	top	level	and	have	already	generated	2.

			170	 	 top.needed	=	2*n	-	4

			171	

			172	 	 l	:=	top

			173	 	 for	{

			174	 	 	 if	l.nextPairFreq	==	math.MaxInt32	&&	l.nextCharFreq	==	math.MaxInt32	{

			175	 	 	 	 //	We've	run	out	of	both	leafs	and	pairs.

			176	 	 	 	 //	End	all	calculations	for	this	level.

			177	 	 	 	 //	To	m	sure	we	never	come	back	to	this	level	or	any	lower	level,

			178	 	 	 	 //	set	nextPairFreq	impossibly	large.

			179	 	 	 	 l.lastChain	=	nil

			180	 	 	 	 l.needed	=	0

			181	 	 	 	 l	=	l.up

			182	 	 	 	 l.nextPairFreq	=	math.MaxInt32

			183	 	 	 	 continue

			184	 	 	 }

			185	

			186	 	 	 prevFreq	:=	l.lastChain.freq

			187	 	 	 if	l.nextCharFreq	<	l.nextPairFreq	{

			188	 	 	 	 //	The	next	item	on	this	row	is	a	leaf	node.

			189	 	 	 	 n	:=	l.lastChain.leafCount	+	1

			190	 	 	 	 l.lastChain	=	&chain{l.nextCharFreq,	n,	l.lastChain.up}

			191	 	 	 	 l.nextCharFreq	=	list[n].freq

			192	 	 	 }	else	{

			193	 	 	 	 //	The	next	item	on	this	row	is	a	pair	from	the	previous	row.

			194	 	 	 	 //	nextPairFreq	isn't	valid	until	we	generate	two

			195	 	 	 	 //	more	values	in	the	level	below

			196	 	 	 	 l.lastChain	=	&chain{l.nextPairFreq,	l.lastChain.leafCount,	l.down.lastChain}

			197	 	 	 	 l.down.needed	=	2

			198	 	 	 }

			199	

			200	 	 	 if	l.needed--;	l.needed	==	0	{

			201	 	 	 	 //	We've	done	everything	we	need	to	do	for	this	level.

			202	 	 	 	 //	Continue	calculating	one	level	up.		Fill	in	nextPairFreq

			203	 	 	 	 //	of	that	level	with	the	sum	of	the	two	nodes	we've	just	calculated	on

			204	 	 	 	 //	this	level.

			205	 	 	 	 up	:=	l.up

			206	 	 	 	 if	up	==	nil	{

			207	 	 	 	 	 //	All	done!

			208	 	 	 	 	 break

			209	 	 	 	 }

			210	 	 	 	 up.nextPairFreq	=	prevFreq	+	l.lastChain.freq

			211	 	 	 	 l	=	up

			212	 	 	 }	else	{

			213	 	 	 	 //	If	we	stole	from	below,	move	down	temporarily	to	replenish	it.

			214	 	 	 	 for	l.down.needed	>	0	{

			215	 	 	 	 	 l	=	l.down

			216	 	 	 	 }

			217	 	 	 }

			218	 	 }

			219	

			220	 	 //	Somethings	is	wrong	if	at	the	end,	the	top	level	is	null	or	hasn't	used

			221	 	 //	all	of	the	leaves.

			222	 	 if	top.lastChain.leafCount	!=	n	{

			223	 	 	 panic("top.lastChain.leafCount	!=	n")

			224	 	 }

			225	

			226	 	 bitCount	:=	make([]int32,	maxBits+1)

			227	 	 bits	:=	1

			228	 	 for	chain	:=	top.lastChain;	chain.up	!=	nil;	chain	=	chain.up	{

			229	 	 	 //	chain.leafCount	gives	the	number	of	literals	requiring	at	least	"bits"

			230	 	 	 //	bits	to	encode.

			231	 	 	 bitCount[bits]	=	chain.leafCount	-	chain.up.leafCount

			232	 	 	 bits++

			233	 	 }

			234	 	 return	bitCount

			235	 }

			236	

			237	 //	Look	at	the	leaves	and	assign	them	a	bit	count	and	an	encoding	as	specified

			238	 //	in	RFC	1951	3.2.2

			239	 func	(h	*huffmanEncoder)	assignEncodingAndSize(bitCount	[]int32,	list	[]literalNode)	{

			240	 	 code	:=	uint16(0)

			241	 	 for	n,	bits	:=	range	bitCount	{

			242	 	 	 code	<<=	1

			243	 	 	 if	n	==	0	||	bits	==	0	{

			244	 	 	 	 continue

			245	 	 	 }

			246	 	 	 //	The	literals	list[len(list)-bits]	..	list[len(list)-bits]

			247	 	 	 //	are	encoded	using	"bits"	bits,	and	get	the	values

			248	 	 	 //	code,	code	+	1,		The	code	values	are

			249	 	 	 //	assigned	in	literal	order	(not	frequency	order).

			250	 	 	 chunk	:=	list[len(list)-int(bits):]

			251	 	 	 sortByLiteral(chunk)

			252	 	 	 for	_,	node	:=	range	chunk	{

			253	 	 	 	 h.codeBits[node.literal]	=	uint8(n)

			254	 	 	 	 h.code[node.literal]	=	reverseBits(code,	uint8(n))

			255	 	 	 	 code++

			256	 	 	 }

			257	 	 	 list	=	list[0	:	len(list)-int(bits)]

			258	 	 }

			259	 }

			260	

			261	 //	Update	this	Huffman	Code	object	to	be	the	minimum	code	for	the	specified	frequency	count.

			262	 //

			263	 //	freq		An	array	of	frequencies,	in	which	frequency[i]	gives	the	frequency	of	literal	i.

			264	 //	maxBits		The	maximum	number	of	bits	to	use	for	any	literal.

			265	 func	(h	*huffmanEncoder)	generate(freq	[]int32,	maxBits	int32)	{

			266	 	 list	:=	make([]literalNode,	len(freq)+1)

			267	 	 //	Number	of	non-zero	literals

			268	 	 count	:=	0

			269	 	 //	Set	list	to	be	the	set	of	all	non-zero	literals	and	their	frequencies

			270	 	 for	i,	f	:=	range	freq	{

			271	 	 	 if	f	!=	0	{

			272	 	 	 	 list[count]	=	literalNode{uint16(i),	f}

			273	 	 	 	 count++

			274	 	 	 }	else	{

			275	 	 	 	 h.codeBits[i]	=	0

			276	 	 	 }

			277	 	 }

			278	 	 //	If	freq[]	is	shorter	than	codeBits[],	fill	rest	of	codeBits[]	with	zeros

			279	 	 h.codeBits	=	h.codeBits[0:len(freq)]

			280	 	 list	=	list[0:count]

			281	 	 if	count	<=	2	{

			282	 	 	 //	Handle	the	small	cases	here,	because	they	are	awkward	for	the	general	case	code.		With

			283	 	 	 //	two	or	fewer	literals,	everything	has	bit	length	1.

			284	 	 	 for	i,	node	:=	range	list	{

			285	 	 	 	 //	"list"	is	in	order	of	increasing	literal	value.

			286	 	 	 	 h.codeBits[node.literal]	=	1

			287	 	 	 	 h.code[node.literal]	=	uint16(i)

			288	 	 	 }

			289	 	 	 return

			290	 	 }

			291	 	 sortByFreq(list)

			292	

			293	 	 //	Get	the	number	of	literals	for	each	bit	count

			294	 	 bitCount	:=	h.bitCounts(list,	maxBits)

			295	 	 //	And	do	the	assignment

			296	 	 h.assignEncodingAndSize(bitCount,	list)

			297	 }

			298	

			299	 type	literalNodeSorter	struct	{

			300	 	 a				[]literalNode

			301	 	 less	func(i,	j	int)	bool

			302	 }

			303	

			304	 func	(s	literalNodeSorter)	Len()	int	{	return	len(s.a)	}

			305	

			306	 func	(s	literalNodeSorter)	Less(i,	j	int)	bool	{

			307	 	 return	s.less(i,	j)

			308	 }

			309	

			310	 func	(s	literalNodeSorter)	Swap(i,	j	int)	{	s.a[i],	s.a[j]	=	s.a[j],	s.a[i]	}

			311	

			312	 func	sortByFreq(a	[]literalNode)	{

			313	 	 s	:=	&literalNodeSorter{a,	func(i,	j	int)	bool	{

			314	 	 	 if	a[i].freq	==	a[j].freq	{

			315	 	 	 	 return	a[i].literal	<	a[j].literal

			316	 	 	 }

			317	 	 	 return	a[i].freq	<	a[j].freq

			318	 	 }}

			319	 	 sort.Sort(s)

			320	 }

			321	

			322	 func	sortByLiteral(a	[]literalNode)	{

			323	 	 s	:=	&literalNodeSorter{a,	func(i,	j	int)	bool	{	return	a[i].literal	<	a[j].literal	}}

			324	 	 sort.Sort(s)

			325	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/flate/inflate.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	flate	implements	the	DEFLATE	compressed	data	format,	described	in

					6	 //	RFC	1951.		The	gzip	and	zlib	packages	implement	access	to	DEFLATE-based	file

					7	 //	formats.

					8	 package	flate

					9	

				10	 import	(

				11	 	 "bufio"

				12	 	 "io"

				13	 	 "strconv"

				14)

				15	

				16	 const	(

				17	 	 maxCodeLen	=	16				//	max	length	of	Huffman	code

				18	 	 maxHist				=	32768	//	max	history	required

				19	 	 maxLit					=	286

				20	 	 maxDist				=	32

				21	 	 numCodes			=	19	//	number	of	codes	in	Huffman	meta-code

				22)

				23	

				24	 //	A	CorruptInputError	reports	the	presence	of	corrupt	input	at	a	given	offset.

				25	 type	CorruptInputError	int64

				26	

				27	 func	(e	CorruptInputError)	Error()	string	{

				28	 	 return	"flate:	corrupt	input	before	offset	"	+	strconv.FormatInt(int64(e),	10)

				29	 }

				30	

				31	 //	An	InternalError	reports	an	error	in	the	flate	code	itself.

				32	 type	InternalError	string

				33	

				34	 func	(e	InternalError)	Error()	string	{	return	"flate:	internal	error:	"	+	string(e)	}

				35	

				36	 //	A	ReadError	reports	an	error	encountered	while	reading	input.

				37	 type	ReadError	struct	{

				38	 	 Offset	int64	//	byte	offset	where	error	occurred

				39	 	 Err				error	//	error	returned	by	underlying	Read

				40	 }

				41	

				42	 func	(e	*ReadError)	Error()	string	{

				43	 	 return	"flate:	read	error	at	offset	"	+	strconv.FormatInt(e.Offset,	10)	+	":	"	+	e.Err.Error()

				44	 }

				45	

				46	 //	A	WriteError	reports	an	error	encountered	while	writing	output.

				47	 type	WriteError	struct	{

				48	 	 Offset	int64	//	byte	offset	where	error	occurred

				49	 	 Err				error	//	error	returned	by	underlying	Write

				50	 }

				51	

				52	 func	(e	*WriteError)	Error()	string	{

				53	 	 return	"flate:	write	error	at	offset	"	+	strconv.FormatInt(e.Offset,	10)	+	":	"	+	e.Err.Error()

				54	 }

				55	

				56	 //	Huffman	decoder	is	based	on

				57	 //	J.	Brian	Connell,	``A	Huffman-Shannon-Fano	Code,''

				58	 //	Proceedings	of	the	IEEE,	61(7)	(July	1973),	pp	1046-1047.

				59	 type	huffmanDecoder	struct	{

				60	 	 //	min,	max	code	length

				61	 	 min,	max	int

				62	

				63	 	 //	limit[i]	=	largest	code	word	of	length	i

				64	 	 //	Given	code	v	of	length	n,

				65	 	 //	need	more	bits	if	v	>	limit[n].

				66	 	 limit	[maxCodeLen	+	1]int

				67	

				68	 	 //	base[i]	=	smallest	code	word	of	length	i	-	seq	number

				69	 	 base	[maxCodeLen	+	1]int

				70	

				71	 	 //	codes[seq	number]	=	output	code.

				72	 	 //	Given	code	v	of	length	n,	value	is

				73	 	 //	codes[v	-	base[n]].

				74	 	 codes	[]int

				75	 }

				76	

				77	 //	Initialize	Huffman	decoding	tables	from	array	of	code	lengths.

				78	 func	(h	*huffmanDecoder)	init(bits	[]int)	bool	{

				79	 	 //	Count	number	of	codes	of	each	length,

				80	 	 //	compute	min	and	max	length.

				81	 	 var	count	[maxCodeLen	+	1]int

				82	 	 var	min,	max	int

				83	 	 for	_,	n	:=	range	bits	{

				84	 	 	 if	n	==	0	{

				85	 	 	 	 continue

				86	 	 	 }

				87	 	 	 if	min	==	0	||	n	<	min	{

				88	 	 	 	 min	=	n

				89	 	 	 }

				90	 	 	 if	n	>	max	{

				91	 	 	 	 max	=	n

				92	 	 	 }

				93	 	 	 count[n]++

				94	 	 }

				95	 	 if	max	==	0	{

				96	 	 	 return	false

				97	 	 }

				98	

				99	 	 h.min	=	min

			100	 	 h.max	=	max

			101	

			102	 	 //	For	each	code	range,	compute

			103	 	 //	nextcode	(first	code	of	that	length),

			104	 	 //	limit	(last	code	of	that	length),	and

			105	 	 //	base	(offset	from	first	code	to	sequence	number).

			106	 	 code	:=	0

			107	 	 seq	:=	0

			108	 	 var	nextcode	[maxCodeLen]int

			109	 	 for	i	:=	min;	i	<=	max;	i++	{

			110	 	 	 n	:=	count[i]

			111	 	 	 nextcode[i]	=	code

			112	 	 	 h.base[i]	=	code	-	seq

			113	 	 	 code	+=	n

			114	 	 	 seq	+=	n

			115	 	 	 h.limit[i]	=	code	-	1

			116	 	 	 code	<<=	1

			117	 	 }

			118	

			119	 	 //	Make	array	mapping	sequence	numbers	to	codes.

			120	 	 if	len(h.codes)	<	len(bits)	{

			121	 	 	 h.codes	=	make([]int,	len(bits))

			122	 	 }

			123	 	 for	i,	n	:=	range	bits	{

			124	 	 	 if	n	==	0	{

			125	 	 	 	 continue

			126	 	 	 }

			127	 	 	 code	:=	nextcode[n]

			128	 	 	 nextcode[n]++

			129	 	 	 seq	:=	code	-	h.base[n]

			130	 	 	 h.codes[seq]	=	i

			131	 	 }

			132	 	 return	true

			133	 }

			134	

			135	 //	Hard-coded	Huffman	tables	for	DEFLATE	algorithm.

			136	 //	See	RFC	1951,	section	3.2.6.

			137	 var	fixedHuffmanDecoder	=	huffmanDecoder{

			138	 	 7,	9,

			139	 	 [maxCodeLen	+	1]int{7:	23,	199,	511},

			140	 	 [maxCodeLen	+	1]int{7:	0,	24,	224},

			141	 	 []int{

			142	 	 	 //	length	7:	256-279

			143	 	 	 256,	257,	258,	259,	260,	261,	262,

			144	 	 	 263,	264,	265,	266,	267,	268,	269,

			145	 	 	 270,	271,	272,	273,	274,	275,	276,

			146	 	 	 277,	278,	279,

			147	

			148	 	 	 //	length	8:	0-143

			149	 	 	 0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,

			150	 	 	 12,	13,	14,	15,	16,	17,	18,	19,	20,	21,

			151	 	 	 22,	23,	24,	25,	26,	27,	28,	29,	30,	31,

			152	 	 	 32,	33,	34,	35,	36,	37,	38,	39,	40,	41,

			153	 	 	 42,	43,	44,	45,	46,	47,	48,	49,	50,	51,

			154	 	 	 52,	53,	54,	55,	56,	57,	58,	59,	60,	61,

			155	 	 	 62,	63,	64,	65,	66,	67,	68,	69,	70,	71,

			156	 	 	 72,	73,	74,	75,	76,	77,	78,	79,	80,	81,

			157	 	 	 82,	83,	84,	85,	86,	87,	88,	89,	90,	91,

			158	 	 	 92,	93,	94,	95,	96,	97,	98,	99,	100,

			159	 	 	 101,	102,	103,	104,	105,	106,	107,	108,

			160	 	 	 109,	110,	111,	112,	113,	114,	115,	116,

			161	 	 	 117,	118,	119,	120,	121,	122,	123,	124,

			162	 	 	 125,	126,	127,	128,	129,	130,	131,	132,

			163	 	 	 133,	134,	135,	136,	137,	138,	139,	140,

			164	 	 	 141,	142,	143,

			165	

			166	 	 	 //	length	8:	280-287

			167	 	 	 280,	281,	282,	283,	284,	285,	286,	287,

			168	

			169	 	 	 //	length	9:	144-255

			170	 	 	 144,	145,	146,	147,	148,	149,	150,	151,

			171	 	 	 152,	153,	154,	155,	156,	157,	158,	159,

			172	 	 	 160,	161,	162,	163,	164,	165,	166,	167,

			173	 	 	 168,	169,	170,	171,	172,	173,	174,	175,

			174	 	 	 176,	177,	178,	179,	180,	181,	182,	183,

			175	 	 	 184,	185,	186,	187,	188,	189,	190,	191,

			176	 	 	 192,	193,	194,	195,	196,	197,	198,	199,

			177	 	 	 200,	201,	202,	203,	204,	205,	206,	207,

			178	 	 	 208,	209,	210,	211,	212,	213,	214,	215,

			179	 	 	 216,	217,	218,	219,	220,	221,	222,	223,

			180	 	 	 224,	225,	226,	227,	228,	229,	230,	231,

			181	 	 	 232,	233,	234,	235,	236,	237,	238,	239,

			182	 	 	 240,	241,	242,	243,	244,	245,	246,	247,

			183	 	 	 248,	249,	250,	251,	252,	253,	254,	255,

			184	 	 },

			185	 }

			186	

			187	 //	The	actual	read	interface	needed	by	NewReader.

			188	 //	If	the	passed	in	io.Reader	does	not	also	have	ReadByte,

			189	 //	the	NewReader	will	introduce	its	own	buffering.

			190	 type	Reader	interface	{

			191	 	 io.Reader

			192	 	 ReadByte()	(c	byte,	err	error)

			193	 }

			194	

			195	 //	Decompress	state.

			196	 type	decompressor	struct	{

			197	 	 //	Input	source.

			198	 	 r							Reader

			199	 	 roffset	int64

			200	 	 woffset	int64

			201	

			202	 	 //	Input	bits,	in	top	of	b.

			203	 	 b		uint32

			204	 	 nb	uint

			205	

			206	 	 //	Huffman	decoders	for	literal/length,	distance.

			207	 	 h1,	h2	huffmanDecoder

			208	

			209	 	 //	Length	arrays	used	to	define	Huffman	codes.

			210	 	 bits					[maxLit	+	maxDist]int

			211	 	 codebits	[numCodes]int

			212	

			213	 	 //	Output	history,	buffer.

			214	 	 hist		[maxHist]byte

			215	 	 hp				int		//	current	output	position	in	buffer

			216	 	 hw				int		//	have	written	hist[0:hw]	already

			217	 	 hfull	bool	//	buffer	has	filled	at	least	once

			218	

			219	 	 //	Temporary	buffer	(avoids	repeated	allocation).

			220	 	 buf	[4]byte

			221	

			222	 	 //	Next	step	in	the	decompression,

			223	 	 //	and	decompression	state.

			224	 	 step					func(*decompressor)

			225	 	 final				bool

			226	 	 err						error

			227	 	 toRead			[]byte

			228	 	 hl,	hd			*huffmanDecoder

			229	 	 copyLen		int

			230	 	 copyDist	int

			231	 }

			232	

			233	 func	(f	*decompressor)	nextBlock()	{

			234	 	 if	f.final	{

			235	 	 	 if	f.hw	!=	f.hp	{

			236	 	 	 	 f.flush((*decompressor).nextBlock)

			237	 	 	 	 return

			238	 	 	 }

			239	 	 	 f.err	=	io.EOF

			240	 	 	 return

			241	 	 }

			242	 	 for	f.nb	<	1+2	{

			243	 	 	 if	f.err	=	f.moreBits();	f.err	!=	nil	{

			244	 	 	 	 return

			245	 	 	 }

			246	 	 }

			247	 	 f.final	=	f.b&1	==	1

			248	 	 f.b	>>=	1

			249	 	 typ	:=	f.b	&	3

			250	 	 f.b	>>=	2

			251	 	 f.nb	-=	1	+	2

			252	 	 switch	typ	{

			253	 	 case	0:

			254	 	 	 f.dataBlock()

			255	 	 case	1:

			256	 	 	 //	compressed,	fixed	Huffman	tables

			257	 	 	 f.hl	=	&fixedHuffmanDecoder

			258	 	 	 f.hd	=	nil

			259	 	 	 f.huffmanBlock()

			260	 	 case	2:

			261	 	 	 //	compressed,	dynamic	Huffman	tables

			262	 	 	 if	f.err	=	f.readHuffman();	f.err	!=	nil	{

			263	 	 	 	 break

			264	 	 	 }

			265	 	 	 f.hl	=	&f.h1

			266	 	 	 f.hd	=	&f.h2

			267	 	 	 f.huffmanBlock()

			268	 	 default:

			269	 	 	 //	3	is	reserved.

			270	 	 	 f.err	=	CorruptInputError(f.roffset)

			271	 	 }

			272	 }

			273	

			274	 func	(f	*decompressor)	Read(b	[]byte)	(int,	error)	{

			275	 	 for	{

			276	 	 	 if	len(f.toRead)	>	0	{

			277	 	 	 	 n	:=	copy(b,	f.toRead)

			278	 	 	 	 f.toRead	=	f.toRead[n:]

			279	 	 	 	 return	n,	nil

			280	 	 	 }

			281	 	 	 if	f.err	!=	nil	{

			282	 	 	 	 return	0,	f.err

			283	 	 	 }

			284	 	 	 f.step(f)

			285	 	 }

			286	 	 panic("unreachable")

			287	 }

			288	

			289	 func	(f	*decompressor)	Close()	error	{

			290	 	 if	f.err	==	io.EOF	{

			291	 	 	 return	nil

			292	 	 }

			293	 	 return	f.err

			294	 }

			295	

			296	 //	RFC	1951	section	3.2.7.

			297	 //	Compression	with	dynamic	Huffman	codes

			298	

			299	 var	codeOrder	=	[...]int{16,	17,	18,	0,	8,	7,	9,	6,	10,	5,	11,	4,	12,	3,	13,	2,	14,	1,	15}

			300	

			301	 func	(f	*decompressor)	readHuffman()	error	{

			302	 	 //	HLIT[5],	HDIST[5],	HCLEN[4].

			303	 	 for	f.nb	<	5+5+4	{

			304	 	 	 if	err	:=	f.moreBits();	err	!=	nil	{

			305	 	 	 	 return	err

			306	 	 	 }

			307	 	 }

			308	 	 nlit	:=	int(f.b&0x1F)	+	257

			309	 	 f.b	>>=	5

			310	 	 ndist	:=	int(f.b&0x1F)	+	1

			311	 	 f.b	>>=	5

			312	 	 nclen	:=	int(f.b&0xF)	+	4

			313	 	 f.b	>>=	4

			314	 	 f.nb	-=	5	+	5	+	4

			315	

			316	 	 //	(HCLEN+4)*3	bits:	code	lengths	in	the	magic	codeOrder	order.

			317	 	 for	i	:=	0;	i	<	nclen;	i++	{

			318	 	 	 for	f.nb	<	3	{

			319	 	 	 	 if	err	:=	f.moreBits();	err	!=	nil	{

			320	 	 	 	 	 return	err

			321	 	 	 	 }

			322	 	 	 }

			323	 	 	 f.codebits[codeOrder[i]]	=	int(f.b	&	0x7)

			324	 	 	 f.b	>>=	3

			325	 	 	 f.nb	-=	3

			326	 	 }

			327	 	 for	i	:=	nclen;	i	<	len(codeOrder);	i++	{

			328	 	 	 f.codebits[codeOrder[i]]	=	0

			329	 	 }

			330	 	 if	!f.h1.init(f.codebits[0:])	{

			331	 	 	 return	CorruptInputError(f.roffset)

			332	 	 }

			333	

			334	 	 //	HLIT	+	257	code	lengths,	HDIST	+	1	code	lengths,

			335	 	 //	using	the	code	length	Huffman	code.

			336	 	 for	i,	n	:=	0,	nlit+ndist;	i	<	n;	{

			337	 	 	 x,	err	:=	f.huffSym(&f.h1)

			338	 	 	 if	err	!=	nil	{

			339	 	 	 	 return	err

			340	 	 	 }

			341	 	 	 if	x	<	16	{

			342	 	 	 	 //	Actual	length.

			343	 	 	 	 f.bits[i]	=	x

			344	 	 	 	 i++

			345	 	 	 	 continue

			346	 	 	 }

			347	 	 	 //	Repeat	previous	length	or	zero.

			348	 	 	 var	rep	int

			349	 	 	 var	nb	uint

			350	 	 	 var	b	int

			351	 	 	 switch	x	{

			352	 	 	 default:

			353	 	 	 	 return	InternalError("unexpected	length	code")

			354	 	 	 case	16:

			355	 	 	 	 rep	=	3

			356	 	 	 	 nb	=	2

			357	 	 	 	 if	i	==	0	{

			358	 	 	 	 	 return	CorruptInputError(f.roffset)

			359	 	 	 	 }

			360	 	 	 	 b	=	f.bits[i-1]

			361	 	 	 case	17:

			362	 	 	 	 rep	=	3

			363	 	 	 	 nb	=	3

			364	 	 	 	 b	=	0

			365	 	 	 case	18:

			366	 	 	 	 rep	=	11

			367	 	 	 	 nb	=	7

			368	 	 	 	 b	=	0

			369	 	 	 }

			370	 	 	 for	f.nb	<	nb	{

			371	 	 	 	 if	err	:=	f.moreBits();	err	!=	nil	{

			372	 	 	 	 	 return	err

			373	 	 	 	 }

			374	 	 	 }

			375	 	 	 rep	+=	int(f.b	&	uint32(1<<nb-1))

			376	 	 	 f.b	>>=	nb

			377	 	 	 f.nb	-=	nb

			378	 	 	 if	i+rep	>	n	{

			379	 	 	 	 return	CorruptInputError(f.roffset)

			380	 	 	 }

			381	 	 	 for	j	:=	0;	j	<	rep;	j++	{

			382	 	 	 	 f.bits[i]	=	b

			383	 	 	 	 i++

			384	 	 	 }

			385	 	 }

			386	

			387	 	 if	!f.h1.init(f.bits[0:nlit])	||	!f.h2.init(f.bits[nlit:nlit+ndist])	{

			388	 	 	 return	CorruptInputError(f.roffset)

			389	 	 }

			390	

			391	 	 return	nil

			392	 }

			393	

			394	 //	Decode	a	single	Huffman	block	from	f.

			395	 //	hl	and	hd	are	the	Huffman	states	for	the	lit/length	values

			396	 //	and	the	distance	values,	respectively.		If	hd	==	nil,	using	the

			397	 //	fixed	distance	encoding	associated	with	fixed	Huffman	blocks.

			398	 func	(f	*decompressor)	huffmanBlock()	{

			399	 	 for	{

			400	 	 	 v,	err	:=	f.huffSym(f.hl)

			401	 	 	 if	err	!=	nil	{

			402	 	 	 	 f.err	=	err

			403	 	 	 	 return

			404	 	 	 }

			405	 	 	 var	n	uint	//	number	of	bits	extra

			406	 	 	 var	length	int

			407	 	 	 switch	{

			408	 	 	 case	v	<	256:

			409	 	 	 	 f.hist[f.hp]	=	byte(v)

			410	 	 	 	 f.hp++

			411	 	 	 	 if	f.hp	==	len(f.hist)	{

			412	 	 	 	 	 //	After	the	flush,	continue	this	loop.

			413	 	 	 	 	 f.flush((*decompressor).huffmanBlock)

			414	 	 	 	 	 return

			415	 	 	 	 }

			416	 	 	 	 continue

			417	 	 	 case	v	==	256:

			418	 	 	 	 //	Done	with	huffman	block;	read	next	block.

			419	 	 	 	 f.step	=	(*decompressor).nextBlock

			420	 	 	 	 return

			421	 	 	 //	otherwise,	reference	to	older	data

			422	 	 	 case	v	<	265:

			423	 	 	 	 length	=	v	-	(257	-	3)

			424	 	 	 	 n	=	0

			425	 	 	 case	v	<	269:

			426	 	 	 	 length	=	v*2	-	(265*2	-	11)

			427	 	 	 	 n	=	1

			428	 	 	 case	v	<	273:

			429	 	 	 	 length	=	v*4	-	(269*4	-	19)

			430	 	 	 	 n	=	2

			431	 	 	 case	v	<	277:

			432	 	 	 	 length	=	v*8	-	(273*8	-	35)

			433	 	 	 	 n	=	3

			434	 	 	 case	v	<	281:

			435	 	 	 	 length	=	v*16	-	(277*16	-	67)

			436	 	 	 	 n	=	4

			437	 	 	 case	v	<	285:

			438	 	 	 	 length	=	v*32	-	(281*32	-	131)

			439	 	 	 	 n	=	5

			440	 	 	 default:

			441	 	 	 	 length	=	258

			442	 	 	 	 n	=	0

			443	 	 	 }

			444	 	 	 if	n	>	0	{

			445	 	 	 	 for	f.nb	<	n	{

			446	 	 	 	 	 if	err	=	f.moreBits();	err	!=	nil	{

			447	 	 	 	 	 	 f.err	=	err

			448	 	 	 	 	 	 return

			449	 	 	 	 	 }

			450	 	 	 	 }

			451	 	 	 	 length	+=	int(f.b	&	uint32(1<<n-1))

			452	 	 	 	 f.b	>>=	n

			453	 	 	 	 f.nb	-=	n

			454	 	 	 }

			455	

			456	 	 	 var	dist	int

			457	 	 	 if	f.hd	==	nil	{

			458	 	 	 	 for	f.nb	<	5	{

			459	 	 	 	 	 if	err	=	f.moreBits();	err	!=	nil	{

			460	 	 	 	 	 	 f.err	=	err

			461	 	 	 	 	 	 return

			462	 	 	 	 	 }

			463	 	 	 	 }

			464	 	 	 	 dist	=	int(reverseByte[(f.b&0x1F)<<3])

			465	 	 	 	 f.b	>>=	5

			466	 	 	 	 f.nb	-=	5

			467	 	 	 }	else	{

			468	 	 	 	 if	dist,	err	=	f.huffSym(f.hd);	err	!=	nil	{

			469	 	 	 	 	 f.err	=	err

			470	 	 	 	 	 return

			471	 	 	 	 }

			472	 	 	 }

			473	

			474	 	 	 switch	{

			475	 	 	 case	dist	<	4:

			476	 	 	 	 dist++

			477	 	 	 case	dist	>=	30:

			478	 	 	 	 f.err	=	CorruptInputError(f.roffset)

			479	 	 	 	 return

			480	 	 	 default:

			481	 	 	 	 nb	:=	uint(dist-2)	>>	1

			482	 	 	 	 //	have	1	bit	in	bottom	of	dist,	need	nb	more.

			483	 	 	 	 extra	:=	(dist	&	1)	<<	nb

			484	 	 	 	 for	f.nb	<	nb	{

			485	 	 	 	 	 if	err	=	f.moreBits();	err	!=	nil	{

			486	 	 	 	 	 	 f.err	=	err

			487	 	 	 	 	 	 return

			488	 	 	 	 	 }

			489	 	 	 	 }

			490	 	 	 	 extra	|=	int(f.b	&	uint32(1<<nb-1))

			491	 	 	 	 f.b	>>=	nb

			492	 	 	 	 f.nb	-=	nb

			493	 	 	 	 dist	=	1<<(nb+1)	+	1	+	extra

			494	 	 	 }

			495	

			496	 	 	 //	Copy	history[-dist:-dist+length]	into	output.

			497	 	 	 if	dist	>	len(f.hist)	{

			498	 	 	 	 f.err	=	InternalError("bad	history	distance")

			499	 	 	 	 return

			500	 	 	 }

			501	

			502	 	 	 //	No	check	on	length;	encoding	can	be	prescient.

			503	 	 	 if	!f.hfull	&&	dist	>	f.hp	{

			504	 	 	 	 f.err	=	CorruptInputError(f.roffset)

			505	 	 	 	 return

			506	 	 	 }

			507	

			508	 	 	 p	:=	f.hp	-	dist

			509	 	 	 if	p	<	0	{

			510	 	 	 	 p	+=	len(f.hist)

			511	 	 	 }

			512	 	 	 for	i	:=	0;	i	<	length;	i++	{

			513	 	 	 	 f.hist[f.hp]	=	f.hist[p]

			514	 	 	 	 f.hp++

			515	 	 	 	 p++

			516	 	 	 	 if	f.hp	==	len(f.hist)	{

			517	 	 	 	 	 //	After	flush	continue	copying	out	of	history.

			518	 	 	 	 	 f.copyLen	=	length	-	(i	+	1)

			519	 	 	 	 	 f.copyDist	=	dist

			520	 	 	 	 	 f.flush((*decompressor).copyHuff)

			521	 	 	 	 	 return

			522	 	 	 	 }

			523	 	 	 	 if	p	==	len(f.hist)	{

			524	 	 	 	 	 p	=	0

			525	 	 	 	 }

			526	 	 	 }

			527	 	 }

			528	 	 panic("unreached")

			529	 }

			530	

			531	 func	(f	*decompressor)	copyHuff()	{

			532	 	 length	:=	f.copyLen

			533	 	 dist	:=	f.copyDist

			534	 	 p	:=	f.hp	-	dist

			535	 	 if	p	<	0	{

			536	 	 	 p	+=	len(f.hist)

			537	 	 }

			538	 	 for	i	:=	0;	i	<	length;	i++	{

			539	 	 	 f.hist[f.hp]	=	f.hist[p]

			540	 	 	 f.hp++

			541	 	 	 p++

			542	 	 	 if	f.hp	==	len(f.hist)	{

			543	 	 	 	 f.copyLen	=	length	-	(i	+	1)

			544	 	 	 	 f.flush((*decompressor).copyHuff)

			545	 	 	 	 return

			546	 	 	 }

			547	 	 	 if	p	==	len(f.hist)	{

			548	 	 	 	 p	=	0

			549	 	 	 }

			550	 	 }

			551	

			552	 	 //	Continue	processing	Huffman	block.

			553	 	 f.huffmanBlock()

			554	 }

			555	

			556	 //	Copy	a	single	uncompressed	data	block	from	input	to	output.

			557	 func	(f	*decompressor)	dataBlock()	{

			558	 	 //	Uncompressed.

			559	 	 //	Discard	current	half-byte.

			560	 	 f.nb	=	0

			561	 	 f.b	=	0

			562	

			563	 	 //	Length	then	ones-complement	of	length.

			564	 	 nr,	err	:=	io.ReadFull(f.r,	f.buf[0:4])

			565	 	 f.roffset	+=	int64(nr)

			566	 	 if	err	!=	nil	{

			567	 	 	 f.err	=	&ReadError{f.roffset,	err}

			568	 	 	 return

			569	 	 }

			570	 	 n	:=	int(f.buf[0])	|	int(f.buf[1])<<8

			571	 	 nn	:=	int(f.buf[2])	|	int(f.buf[3])<<8

			572	 	 if	uint16(nn)	!=	uint16(^n)	{

			573	 	 	 f.err	=	CorruptInputError(f.roffset)

			574	 	 	 return

			575	 	 }

			576	

			577	 	 if	n	==	0	{

			578	 	 	 //	0-length	block	means	sync

			579	 	 	 f.flush((*decompressor).nextBlock)

			580	 	 	 return

			581	 	 }

			582	

			583	 	 f.copyLen	=	n

			584	 	 f.copyData()

			585	 }

			586	

			587	 func	(f	*decompressor)	copyData()	{

			588	 	 //	Read	f.dataLen	bytes	into	history,

			589	 	 //	pausing	for	reads	as	history	fills.

			590	 	 n	:=	f.copyLen

			591	 	 for	n	>	0	{

			592	 	 	 m	:=	len(f.hist)	-	f.hp

			593	 	 	 if	m	>	n	{

			594	 	 	 	 m	=	n

			595	 	 	 }

			596	 	 	 m,	err	:=	io.ReadFull(f.r,	f.hist[f.hp:f.hp+m])

			597	 	 	 f.roffset	+=	int64(m)

			598	 	 	 if	err	!=	nil	{

			599	 	 	 	 f.err	=	&ReadError{f.roffset,	err}

			600	 	 	 	 return

			601	 	 	 }

			602	 	 	 n	-=	m

			603	 	 	 f.hp	+=	m

			604	 	 	 if	f.hp	==	len(f.hist)	{

			605	 	 	 	 f.copyLen	=	n

			606	 	 	 	 f.flush((*decompressor).copyData)

			607	 	 	 	 return

			608	 	 	 }

			609	 	 }

			610	 	 f.step	=	(*decompressor).nextBlock

			611	 }

			612	

			613	 func	(f	*decompressor)	setDict(dict	[]byte)	{

			614	 	 if	len(dict)	>	len(f.hist)	{

			615	 	 	 //	Will	only	remember	the	tail.

			616	 	 	 dict	=	dict[len(dict)-len(f.hist):]

			617	 	 }

			618	

			619	 	 f.hp	=	copy(f.hist[:],	dict)

			620	 	 if	f.hp	==	len(f.hist)	{

			621	 	 	 f.hp	=	0

			622	 	 	 f.hfull	=	true

			623	 	 }

			624	 	 f.hw	=	f.hp

			625	 }

			626	

			627	 func	(f	*decompressor)	moreBits()	error	{

			628	 	 c,	err	:=	f.r.ReadByte()

			629	 	 if	err	!=	nil	{

			630	 	 	 if	err	==	io.EOF	{

			631	 	 	 	 err	=	io.ErrUnexpectedEOF

			632	 	 	 }

			633	 	 	 return	err

			634	 	 }

			635	 	 f.roffset++

			636	 	 f.b	|=	uint32(c)	<<	f.nb

			637	 	 f.nb	+=	8

			638	 	 return	nil

			639	 }

			640	

			641	 //	Read	the	next	Huffman-encoded	symbol	from	f	according	to	h.

			642	 func	(f	*decompressor)	huffSym(h	*huffmanDecoder)	(int,	error)	{

			643	 	 for	n	:=	uint(h.min);	n	<=	uint(h.max);	n++	{

			644	 	 	 lim	:=	h.limit[n]

			645	 	 	 if	lim	==	-1	{

			646	 	 	 	 continue

			647	 	 	 }

			648	 	 	 for	f.nb	<	n	{

			649	 	 	 	 if	err	:=	f.moreBits();	err	!=	nil	{

			650	 	 	 	 	 return	0,	err

			651	 	 	 	 }

			652	 	 	 }

			653	 	 	 v	:=	int(f.b	&	uint32(1<<n-1))

			654	 	 	 v	<<=	16	-	n

			655	 	 	 v	=	int(reverseByte[v>>8])	|	int(reverseByte[v&0xFF])<<8	

			656	 	 	 if	v	<=	lim	{

			657	 	 	 	 f.b	>>=	n

			658	 	 	 	 f.nb	-=	n

			659	 	 	 	 return	h.codes[v-h.base[n]],	nil

			660	 	 	 }

			661	 	 }

			662	 	 return	0,	CorruptInputError(f.roffset)

			663	 }

			664	

			665	 //	Flush	any	buffered	output	to	the	underlying	writer.

			666	 func	(f	*decompressor)	flush(step	func(*decompressor))	{

			667	 	 f.toRead	=	f.hist[f.hw:f.hp]

			668	 	 f.woffset	+=	int64(f.hp	-	f.hw)

			669	 	 f.hw	=	f.hp

			670	 	 if	f.hp	==	len(f.hist)	{

			671	 	 	 f.hp	=	0

			672	 	 	 f.hw	=	0

			673	 	 	 f.hfull	=	true

			674	 	 }

			675	 	 f.step	=	step

			676	 }

			677	

			678	 func	makeReader(r	io.Reader)	Reader	{

			679	 	 if	rr,	ok	:=	r.(Reader);	ok	{

			680	 	 	 return	rr

			681	 	 }

			682	 	 return	bufio.NewReader(r)

			683	 }

			684	

			685	 //	NewReader	returns	a	new	ReadCloser	that	can	be	used

			686	 //	to	read	the	uncompressed	version	of	r.		It	is	the	caller's

			687	 //	responsibility	to	call	Close	on	the	ReadCloser	when

			688	 //	finished	reading.

			689	 func	NewReader(r	io.Reader)	io.ReadCloser	{

			690	 	 var	f	decompressor

			691	 	 f.r	=	makeReader(r)

			692	 	 f.step	=	(*decompressor).nextBlock

			693	 	 return	&f

			694	 }

			695	

			696	 //	NewReaderDict	is	like	NewReader	but	initializes	the	reader

			697	 //	with	a	preset	dictionary.		The	returned	Reader	behaves	as	if

			698	 //	the	uncompressed	data	stream	started	with	the	given	dictionary,

			699	 //	which	has	already	been	read.		NewReaderDict	is	typically	used

			700	 //	to	read	data	compressed	by	NewWriterDict.

			701	 func	NewReaderDict(r	io.Reader,	dict	[]byte)	io.ReadCloser	{

			702	 	 var	f	decompressor

			703	 	 f.setDict(dict)

			704	 	 f.r	=	makeReader(r)

			705	 	 f.step	=	(*decompressor).nextBlock

			706	 	 return	&f

			707	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/flate/reverse_bits.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	flate

					6	

					7	 var	reverseByte	=	[256]byte{

					8	 	 0x00,	0x80,	0x40,	0xc0,	0x20,	0xa0,	0x60,	0xe0,

					9	 	 0x10,	0x90,	0x50,	0xd0,	0x30,	0xb0,	0x70,	0xf0,

				10	 	 0x08,	0x88,	0x48,	0xc8,	0x28,	0xa8,	0x68,	0xe8,

				11	 	 0x18,	0x98,	0x58,	0xd8,	0x38,	0xb8,	0x78,	0xf8,

				12	 	 0x04,	0x84,	0x44,	0xc4,	0x24,	0xa4,	0x64,	0xe4,

				13	 	 0x14,	0x94,	0x54,	0xd4,	0x34,	0xb4,	0x74,	0xf4,

				14	 	 0x0c,	0x8c,	0x4c,	0xcc,	0x2c,	0xac,	0x6c,	0xec,

				15	 	 0x1c,	0x9c,	0x5c,	0xdc,	0x3c,	0xbc,	0x7c,	0xfc,

				16	 	 0x02,	0x82,	0x42,	0xc2,	0x22,	0xa2,	0x62,	0xe2,

				17	 	 0x12,	0x92,	0x52,	0xd2,	0x32,	0xb2,	0x72,	0xf2,

				18	 	 0x0a,	0x8a,	0x4a,	0xca,	0x2a,	0xaa,	0x6a,	0xea,

				19	 	 0x1a,	0x9a,	0x5a,	0xda,	0x3a,	0xba,	0x7a,	0xfa,

				20	 	 0x06,	0x86,	0x46,	0xc6,	0x26,	0xa6,	0x66,	0xe6,

				21	 	 0x16,	0x96,	0x56,	0xd6,	0x36,	0xb6,	0x76,	0xf6,

				22	 	 0x0e,	0x8e,	0x4e,	0xce,	0x2e,	0xae,	0x6e,	0xee,

				23	 	 0x1e,	0x9e,	0x5e,	0xde,	0x3e,	0xbe,	0x7e,	0xfe,

				24	 	 0x01,	0x81,	0x41,	0xc1,	0x21,	0xa1,	0x61,	0xe1,

				25	 	 0x11,	0x91,	0x51,	0xd1,	0x31,	0xb1,	0x71,	0xf1,

				26	 	 0x09,	0x89,	0x49,	0xc9,	0x29,	0xa9,	0x69,	0xe9,

				27	 	 0x19,	0x99,	0x59,	0xd9,	0x39,	0xb9,	0x79,	0xf9,

				28	 	 0x05,	0x85,	0x45,	0xc5,	0x25,	0xa5,	0x65,	0xe5,

				29	 	 0x15,	0x95,	0x55,	0xd5,	0x35,	0xb5,	0x75,	0xf5,

				30	 	 0x0d,	0x8d,	0x4d,	0xcd,	0x2d,	0xad,	0x6d,	0xed,

				31	 	 0x1d,	0x9d,	0x5d,	0xdd,	0x3d,	0xbd,	0x7d,	0xfd,

				32	 	 0x03,	0x83,	0x43,	0xc3,	0x23,	0xa3,	0x63,	0xe3,

				33	 	 0x13,	0x93,	0x53,	0xd3,	0x33,	0xb3,	0x73,	0xf3,

				34	 	 0x0b,	0x8b,	0x4b,	0xcb,	0x2b,	0xab,	0x6b,	0xeb,

				35	 	 0x1b,	0x9b,	0x5b,	0xdb,	0x3b,	0xbb,	0x7b,	0xfb,

				36	 	 0x07,	0x87,	0x47,	0xc7,	0x27,	0xa7,	0x67,	0xe7,

				37	 	 0x17,	0x97,	0x57,	0xd7,	0x37,	0xb7,	0x77,	0xf7,

				38	 	 0x0f,	0x8f,	0x4f,	0xcf,	0x2f,	0xaf,	0x6f,	0xef,

				39	 	 0x1f,	0x9f,	0x5f,	0xdf,	0x3f,	0xbf,	0x7f,	0xff,

				40	 }

				41	

				42	 func	reverseUint16(v	uint16)	uint16	{

				43	 	 return	uint16(reverseByte[v>>8])	|	uint16(reverseByte[v&0xFF])<<8

				44	 }

				45	

				46	 func	reverseBits(number	uint16,	bitLength	byte)	uint16	{

				47	 	 return	reverseUint16(number	<<	uint8(16-bitLength))

				48	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/flate/token.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	flate

					6	

					7	 const	(

					8	 	 //	2	bits:			type			0	=	literal		1=EOF		2=Match			3=Unused

					9	 	 //	8	bits:			xlength	=	length	-	MIN_MATCH_LENGTH

				10	 	 //	22	bits			xoffset	=	offset	-	MIN_OFFSET_SIZE,	or	literal

				11	 	 lengthShift	=	22

				12	 	 offsetMask		=	1<<lengthShift	-	1

				13	 	 typeMask				=	3	<<	30

				14	 	 literalType	=	0	<<	30

				15	 	 matchType			=	1	<<	30

				16)

				17	

				18	 //	The	length	code	for	length	X	(MIN_MATCH_LENGTH	<=	X	<=	MAX_MATCH_LENGTH)

				19	 //	is	lengthCodes[length	-	MIN_MATCH_LENGTH]

				20	 var	lengthCodes	=	[...]uint32{

				21	 	 0,	1,	2,	3,	4,	5,	6,	7,	8,	8,

				22	 	 9,	9,	10,	10,	11,	11,	12,	12,	12,	12,

				23	 	 13,	13,	13,	13,	14,	14,	14,	14,	15,	15,

				24	 	 15,	15,	16,	16,	16,	16,	16,	16,	16,	16,

				25	 	 17,	17,	17,	17,	17,	17,	17,	17,	18,	18,

				26	 	 18,	18,	18,	18,	18,	18,	19,	19,	19,	19,

				27	 	 19,	19,	19,	19,	20,	20,	20,	20,	20,	20,

				28	 	 20,	20,	20,	20,	20,	20,	20,	20,	20,	20,

				29	 	 21,	21,	21,	21,	21,	21,	21,	21,	21,	21,

				30	 	 21,	21,	21,	21,	21,	21,	22,	22,	22,	22,

				31	 	 22,	22,	22,	22,	22,	22,	22,	22,	22,	22,

				32	 	 22,	22,	23,	23,	23,	23,	23,	23,	23,	23,

				33	 	 23,	23,	23,	23,	23,	23,	23,	23,	24,	24,

				34	 	 24,	24,	24,	24,	24,	24,	24,	24,	24,	24,

				35	 	 24,	24,	24,	24,	24,	24,	24,	24,	24,	24,

				36	 	 24,	24,	24,	24,	24,	24,	24,	24,	24,	24,

				37	 	 25,	25,	25,	25,	25,	25,	25,	25,	25,	25,

				38	 	 25,	25,	25,	25,	25,	25,	25,	25,	25,	25,

				39	 	 25,	25,	25,	25,	25,	25,	25,	25,	25,	25,

				40	 	 25,	25,	26,	26,	26,	26,	26,	26,	26,	26,

				41	 	 26,	26,	26,	26,	26,	26,	26,	26,	26,	26,

				42	 	 26,	26,	26,	26,	26,	26,	26,	26,	26,	26,

				43	 	 26,	26,	26,	26,	27,	27,	27,	27,	27,	27,

				44	 	 27,	27,	27,	27,	27,	27,	27,	27,	27,	27,

				45	 	 27,	27,	27,	27,	27,	27,	27,	27,	27,	27,

				46	 	 27,	27,	27,	27,	27,	28,

				47	 }

				48	

				49	 var	offsetCodes	=	[...]uint32{

				50	 	 0,	1,	2,	3,	4,	4,	5,	5,	6,	6,	6,	6,	7,	7,	7,	7,

				51	 	 8,	8,	8,	8,	8,	8,	8,	8,	9,	9,	9,	9,	9,	9,	9,	9,

				52	 	 10,	10,	10,	10,	10,	10,	10,	10,	10,	10,	10,	10,	10,	10,	10,	10,

				53	 	 11,	11,	11,	11,	11,	11,	11,	11,	11,	11,	11,	11,	11,	11,	11,	11,

				54	 	 12,	12,	12,	12,	12,	12,	12,	12,	12,	12,	12,	12,	12,	12,	12,	12,

				55	 	 12,	12,	12,	12,	12,	12,	12,	12,	12,	12,	12,	12,	12,	12,	12,	12,

				56	 	 13,	13,	13,	13,	13,	13,	13,	13,	13,	13,	13,	13,	13,	13,	13,	13,

				57	 	 13,	13,	13,	13,	13,	13,	13,	13,	13,	13,	13,	13,	13,	13,	13,	13,

				58	 	 14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,

				59	 	 14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,

				60	 	 14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,

				61	 	 14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,	14,

				62	 	 15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,

				63	 	 15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,

				64	 	 15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,

				65	 	 15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,	15,

				66	 }

				67	

				68	 type	token	uint32

				69	

				70	 //	Convert	a	literal	into	a	literal	token.

				71	 func	literalToken(literal	uint32)	token	{	return	token(literalType	+	literal)	}

				72	

				73	 //	Convert	a	<	xlength,	xoffset	>	pair	into	a	match	token.

				74	 func	matchToken(xlength	uint32,	xoffset	uint32)	token	{

				75	 	 return	token(matchType	+	xlength<<lengthShift	+	xoffset)

				76	 }

				77	

				78	 //	Returns	the	type	of	a	token

				79	 func	(t	token)	typ()	uint32	{	return	uint32(t)	&	typeMask	}

				80	

				81	 //	Returns	the	literal	of	a	literal	token

				82	 func	(t	token)	literal()	uint32	{	return	uint32(t	-	literalType)	}

				83	

				84	 //	Returns	the	extra	offset	of	a	match	token

				85	 func	(t	token)	offset()	uint32	{	return	uint32(t)	&	offsetMask	}

				86	

				87	 func	(t	token)	length()	uint32	{	return	uint32((t	-	matchType)	>>	lengthShift)	}

				88	

				89	 func	lengthCode(len	uint32)	uint32	{	return	lengthCodes[len]	}

				90	

				91	 //	Returns	the	offset	code	corresponding	to	a	specific	offset

				92	 func	offsetCode(off	uint32)	uint32	{

				93	 	 const	n	=	uint32(len(offsetCodes))

				94	 	 switch	{

				95	 	 case	off	<	n:

				96	 	 	 return	offsetCodes[off]

				97	 	 case	off>>7	<	n:

				98	 	 	 return	offsetCodes[off>>7]	+	14

				99	 	 default:

			100	 	 	 return	offsetCodes[off>>14]	+	28

			101	 	 }

			102	 	 panic("unreachable")

			103	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/gzip/gunzip.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	gzip	implements	reading	and	writing	of	gzip	format	compressed	files,

					6	 //	as	specified	in	RFC	1952.

					7	 package	gzip

					8	

					9	 import	(

				10	 	 "bufio"

				11	 	 "compress/flate"

				12	 	 "errors"

				13	 	 "hash"

				14	 	 "hash/crc32"

				15	 	 "io"

				16	 	 "time"

				17)

				18	

				19	 const	(

				20	 	 gzipID1					=	0x1f

				21	 	 gzipID2					=	0x8b

				22	 	 gzipDeflate	=	8

				23	 	 flagText				=	1	<<	0

				24	 	 flagHdrCrc		=	1	<<	1

				25	 	 flagExtra			=	1	<<	2

				26	 	 flagName				=	1	<<	3

				27	 	 flagComment	=	1	<<	4

				28)

				29	

				30	 func	makeReader(r	io.Reader)	flate.Reader	{

				31	 	 if	rr,	ok	:=	r.(flate.Reader);	ok	{

				32	 	 	 return	rr

				33	 	 }

				34	 	 return	bufio.NewReader(r)

				35	 }

				36	

				37	 var	(

				38	 	 //	ErrChecksum	is	returned	when	reading	GZIP	data	that	has	an	invalid	checksum.

				39	 	 ErrChecksum	=	errors.New("gzip:	invalid	checksum")

				40	 	 //	ErrHeader	is	returned	when	reading	GZIP	data	that	has	an	invalid	header.

				41	 	 ErrHeader	=	errors.New("gzip:	invalid	header")

				42)

				43	

				44	 //	The	gzip	file	stores	a	header	giving	metadata	about	the	compressed	file.

				45	 //	That	header	is	exposed	as	the	fields	of	the	Writer	and	Reader	structs.

				46	 type	Header	struct	{

				47	 	 Comment	string				//	comment

				48	 	 Extra			[]byte				//	"extra	data"

				49	 	 ModTime	time.Time	//	modification	time

				50	 	 Name				string				//	file	name

				51	 	 OS						byte						//	operating	system	type

				52	 }

				53	

				54	 //	A	Reader	is	an	io.Reader	that	can	be	read	to	retrieve

				55	 //	uncompressed	data	from	a	gzip-format	compressed	file.

				56	 //

				57	 //	In	general,	a	gzip	file	can	be	a	concatenation	of	gzip	files,

				58	 //	each	with	its	own	header.		Reads	from	the	Reader

				59	 //	return	the	concatenation	of	the	uncompressed	data	of	each.

				60	 //	Only	the	first	header	is	recorded	in	the	Reader	fields.

				61	 //

				62	 //	Gzip	files	store	a	length	and	checksum	of	the	uncompressed	data.

				63	 //	The	Reader	will	return	a	ErrChecksum	when	Read

				64	 //	reaches	the	end	of	the	uncompressed	data	if	it	does	not

				65	 //	have	the	expected	length	or	checksum.		Clients	should	treat	data

				66	 //	returned	by	Read	as	tentative	until	they	receive	the	io.EOF

				67	 //	marking	the	end	of	the	data.

				68	 type	Reader	struct	{

				69	 	 Header

				70	 	 r												flate.Reader

				71	 	 decompressor	io.ReadCloser

				72	 	 digest							hash.Hash32

				73	 	 size									uint32

				74	 	 flg										byte

				75	 	 buf										[512]byte

				76	 	 err										error

				77	 }

				78	

				79	 //	NewReader	creates	a	new	Reader	reading	the	given	reader.

				80	 //	The	implementation	buffers	input	and	may	read	more	data	than	necessary	from	r.

				81	 //	It	is	the	caller's	responsibility	to	call	Close	on	the	Reader	when	done.

				82	 func	NewReader(r	io.Reader)	(*Reader,	error)	{

				83	 	 z	:=	new(Reader)

				84	 	 z.r	=	makeReader(r)

				85	 	 z.digest	=	crc32.NewIEEE()

				86	 	 if	err	:=	z.readHeader(true);	err	!=	nil	{

				87	 	 	 return	nil,	err

				88	 	 }

				89	 	 return	z,	nil

				90	 }

				91	

				92	 //	GZIP	(RFC	1952)	is	little-endian,	unlike	ZLIB	(RFC	1950).

				93	 func	get4(p	[]byte)	uint32	{

				94	 	 return	uint32(p[0])	|	uint32(p[1])<<8	|	uint32(p[2])<<16	|	uint32(p[3])<<24

				95	 }

				96	

				97	 func	(z	*Reader)	readString()	(string,	error)	{

				98	 	 var	err	error

				99	 	 needconv	:=	false

			100	 	 for	i	:=	0;	;	i++	{

			101	 	 	 if	i	>=	len(z.buf)	{

			102	 	 	 	 return	"",	ErrHeader

			103	 	 	 }

			104	 	 	 z.buf[i],	err	=	z.r.ReadByte()

			105	 	 	 if	err	!=	nil	{

			106	 	 	 	 return	"",	err

			107	 	 	 }

			108	 	 	 if	z.buf[i]	>	0x7f	{

			109	 	 	 	 needconv	=	true

			110	 	 	 }

			111	 	 	 if	z.buf[i]	==	0	{

			112	 	 	 	 //	GZIP	(RFC	1952)	specifies	that	strings	are	NUL-terminated	ISO	8859-1	(Latin-1).

			113	 	 	 	 if	needconv	{

			114	 	 	 	 	 s	:=	make([]rune,	0,	i)

			115	 	 	 	 	 for	_,	v	:=	range	z.buf[0:i]	{

			116	 	 	 	 	 	 s	=	append(s,	rune(v))

			117	 	 	 	 	 }

			118	 	 	 	 	 return	string(s),	nil

			119	 	 	 	 }

			120	 	 	 	 return	string(z.buf[0:i]),	nil

			121	 	 	 }

			122	 	 }

			123	 	 panic("not	reached")

			124	 }

			125	

			126	 func	(z	*Reader)	read2()	(uint32,	error)	{

			127	 	 _,	err	:=	io.ReadFull(z.r,	z.buf[0:2])

			128	 	 if	err	!=	nil	{

			129	 	 	 return	0,	err

			130	 	 }

			131	 	 return	uint32(z.buf[0])	|	uint32(z.buf[1])<<8,	nil

			132	 }

			133	

			134	 func	(z	*Reader)	readHeader(save	bool)	error	{

			135	 	 _,	err	:=	io.ReadFull(z.r,	z.buf[0:10])

			136	 	 if	err	!=	nil	{

			137	 	 	 return	err

			138	 	 }

			139	 	 if	z.buf[0]	!=	gzipID1	||	z.buf[1]	!=	gzipID2	||	z.buf[2]	!=	gzipDeflate	{

			140	 	 	 return	ErrHeader

			141	 	 }

			142	 	 z.flg	=	z.buf[3]

			143	 	 if	save	{

			144	 	 	 z.ModTime	=	time.Unix(int64(get4(z.buf[4:8])),	0)

			145	 	 	 //	z.buf[8]	is	xfl,	ignored

			146	 	 	 z.OS	=	z.buf[9]

			147	 	 }

			148	 	 z.digest.Reset()

			149	 	 z.digest.Write(z.buf[0:10])

			150	

			151	 	 if	z.flg&flagExtra	!=	0	{

			152	 	 	 n,	err	:=	z.read2()

			153	 	 	 if	err	!=	nil	{

			154	 	 	 	 return	err

			155	 	 	 }

			156	 	 	 data	:=	make([]byte,	n)

			157	 	 	 if	_,	err	=	io.ReadFull(z.r,	data);	err	!=	nil	{

			158	 	 	 	 return	err

			159	 	 	 }

			160	 	 	 if	save	{

			161	 	 	 	 z.Extra	=	data

			162	 	 	 }

			163	 	 }

			164	

			165	 	 var	s	string

			166	 	 if	z.flg&flagName	!=	0	{

			167	 	 	 if	s,	err	=	z.readString();	err	!=	nil	{

			168	 	 	 	 return	err

			169	 	 	 }

			170	 	 	 if	save	{

			171	 	 	 	 z.Name	=	s

			172	 	 	 }

			173	 	 }

			174	

			175	 	 if	z.flg&flagComment	!=	0	{

			176	 	 	 if	s,	err	=	z.readString();	err	!=	nil	{

			177	 	 	 	 return	err

			178	 	 	 }

			179	 	 	 if	save	{

			180	 	 	 	 z.Comment	=	s

			181	 	 	 }

			182	 	 }

			183	

			184	 	 if	z.flg&flagHdrCrc	!=	0	{

			185	 	 	 n,	err	:=	z.read2()

			186	 	 	 if	err	!=	nil	{

			187	 	 	 	 return	err

			188	 	 	 }

			189	 	 	 sum	:=	z.digest.Sum32()	&	0xFFFF

			190	 	 	 if	n	!=	sum	{

			191	 	 	 	 return	ErrHeader

			192	 	 	 }

			193	 	 }

			194	

			195	 	 z.digest.Reset()

			196	 	 z.decompressor	=	flate.NewReader(z.r)

			197	 	 return	nil

			198	 }

			199	

			200	 func	(z	*Reader)	Read(p	[]byte)	(n	int,	err	error)	{

			201	 	 if	z.err	!=	nil	{

			202	 	 	 return	0,	z.err

			203	 	 }

			204	 	 if	len(p)	==	0	{

			205	 	 	 return	0,	nil

			206	 	 }

			207	

			208	 	 n,	err	=	z.decompressor.Read(p)

			209	 	 z.digest.Write(p[0:n])

			210	 	 z.size	+=	uint32(n)

			211	 	 if	n	!=	0	||	err	!=	io.EOF	{

			212	 	 	 z.err	=	err

			213	 	 	 return

			214	 	 }

			215	

			216	 	 //	Finished	file;	check	checksum	+	size.

			217	 	 if	_,	err	:=	io.ReadFull(z.r,	z.buf[0:8]);	err	!=	nil	{

			218	 	 	 z.err	=	err

			219	 	 	 return	0,	err

			220	 	 }

			221	 	 crc32,	isize	:=	get4(z.buf[0:4]),	get4(z.buf[4:8])

			222	 	 sum	:=	z.digest.Sum32()

			223	 	 if	sum	!=	crc32	||	isize	!=	z.size	{

			224	 	 	 z.err	=	ErrChecksum

			225	 	 	 return	0,	z.err

			226	 	 }

			227	

			228	 	 //	File	is	ok;	is	there	another?

			229	 	 if	err	=	z.readHeader(false);	err	!=	nil	{

			230	 	 	 z.err	=	err

			231	 	 	 return

			232	 	 }

			233	

			234	 	 //	Yes.		Reset	and	read	from	it.

			235	 	 z.digest.Reset()

			236	 	 z.size	=	0

			237	 	 return	z.Read(p)

			238	 }

			239	

			240	 //	Close	closes	the	Reader.	It	does	not	close	the	underlying	io.Reader.

			241	 func	(z	*Reader)	Close()	error	{	return	z.decompressor.Close()	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/gzip/gzip.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	gzip

					6	

					7	 import	(

					8	 	 "compress/flate"

					9	 	 "errors"

				10	 	 "fmt"

				11	 	 "hash"

				12	 	 "hash/crc32"

				13	 	 "io"

				14)

				15	

				16	 //	These	constants	are	copied	from	the	flate	package,	so	that	code	that	imports

				17	 //	"compress/gzip"	does	not	also	have	to	import	"compress/flate".

				18	 const	(

				19	 	 NoCompression						=	flate.NoCompression

				20	 	 BestSpeed										=	flate.BestSpeed

				21	 	 BestCompression				=	flate.BestCompression

				22	 	 DefaultCompression	=	flate.DefaultCompression

				23)

				24	

				25	 //	A	Writer	is	an	io.WriteCloser	that	satisfies	writes	by	compressing	data	written

				26	 //	to	its	wrapped	io.Writer.

				27	 type	Writer	struct	{

				28	 	 Header

				29	 	 w										io.Writer

				30	 	 level						int

				31	 	 compressor	io.WriteCloser

				32	 	 digest					hash.Hash32

				33	 	 size							uint32

				34	 	 closed					bool

				35	 	 buf								[10]byte

				36	 	 err								error

				37	 }

				38	

				39	 //	NewWriter	creates	a	new	Writer	that	satisfies	writes	by	compressing	data

				40	 //	written	to	w.

				41	 //

				42	 //	It	is	the	caller's	responsibility	to	call	Close	on	the	WriteCloser	when	done.

				43	 //	Writes	may	be	buffered	and	not	flushed	until	Close.

				44	 //

				45	 //	Callers	that	wish	to	set	the	fields	in	Writer.Header	must	do	so	before

				46	 //	the	first	call	to	Write	or	Close.	The	Comment	and	Name	header	fields	are

				47	 //	UTF-8	strings	in	Go,	but	the	underlying	format	requires	NUL-terminated	ISO

				48	 //	8859-1	(Latin-1).	NUL	or	non-Latin-1	runes	in	those	strings	will	lead	to	an

				49	 //	error	on	Write.

				50	 func	NewWriter(w	io.Writer)	*Writer	{

				51	 	 z,	_	:=	NewWriterLevel(w,	DefaultCompression)

				52	 	 return	z

				53	 }

				54	

				55	 //	NewWriterLevel	is	like	NewWriter	but	specifies	the	compression	level	instead

				56	 //	of	assuming	DefaultCompression.

				57	 //

				58	 //	The	compression	level	can	be	DefaultCompression,	NoCompression,	or	any

				59	 //	integer	value	between	BestSpeed	and	BestCompression	inclusive.	The	error

				60	 //	returned	will	be	nil	if	the	level	is	valid.

				61	 func	NewWriterLevel(w	io.Writer,	level	int)	(*Writer,	error)	{

				62	 	 if	level	<	DefaultCompression	||	level	>	BestCompression	{

				63	 	 	 return	nil,	fmt.Errorf("gzip:	invalid	compression	level:	%d",	level)

				64	 	 }

				65	 	 return	&Writer{

				66	 	 	 Header:	Header{

				67	 	 	 	 OS:	255,	//	unknown

				68	 	 	 },

				69	 	 	 w:						w,

				70	 	 	 level:		level,

				71	 	 	 digest:	crc32.NewIEEE(),

				72	 	 },	nil

				73	 }

				74	

				75	 //	GZIP	(RFC	1952)	is	little-endian,	unlike	ZLIB	(RFC	1950).

				76	 func	put2(p	[]byte,	v	uint16)	{

				77	 	 p[0]	=	uint8(v	>>	0)

				78	 	 p[1]	=	uint8(v	>>	8)

				79	 }

				80	

				81	 func	put4(p	[]byte,	v	uint32)	{

				82	 	 p[0]	=	uint8(v	>>	0)

				83	 	 p[1]	=	uint8(v	>>	8)

				84	 	 p[2]	=	uint8(v	>>	16)

				85	 	 p[3]	=	uint8(v	>>	24)

				86	 }

				87	

				88	 //	writeBytes	writes	a	length-prefixed	byte	slice	to	z.w.

				89	 func	(z	*Writer)	writeBytes(b	[]byte)	error	{

				90	 	 if	len(b)	>	0xffff	{

				91	 	 	 return	errors.New("gzip.Write:	Extra	data	is	too	large")

				92	 	 }

				93	 	 put2(z.buf[0:2],	uint16(len(b)))

				94	 	 _,	err	:=	z.w.Write(z.buf[0:2])

				95	 	 if	err	!=	nil	{

				96	 	 	 return	err

				97	 	 }

				98	 	 _,	err	=	z.w.Write(b)

				99	 	 return	err

			100	 }

			101	

			102	 //	writeString	writes	a	UTF-8	string	s	in	GZIP's	format	to	z.w.

			103	 //	GZIP	(RFC	1952)	specifies	that	strings	are	NUL-terminated	ISO	8859-1	(Latin-1).

			104	 func	(z	*Writer)	writeString(s	string)	(err	error)	{

			105	 	 //	GZIP	stores	Latin-1	strings;	error	if	non-Latin-1;	convert	if	non-ASCII.

			106	 	 needconv	:=	false

			107	 	 for	_,	v	:=	range	s	{

			108	 	 	 if	v	==	0	||	v	>	0xff	{

			109	 	 	 	 return	errors.New("gzip.Write:	non-Latin-1	header	string")

			110	 	 	 }

			111	 	 	 if	v	>	0x7f	{

			112	 	 	 	 needconv	=	true

			113	 	 	 }

			114	 	 }

			115	 	 if	needconv	{

			116	 	 	 b	:=	make([]byte,	0,	len(s))

			117	 	 	 for	_,	v	:=	range	s	{

			118	 	 	 	 b	=	append(b,	byte(v))

			119	 	 	 }

			120	 	 	 _,	err	=	z.w.Write(b)

			121	 	 }	else	{

			122	 	 	 _,	err	=	io.WriteString(z.w,	s)

			123	 	 }

			124	 	 if	err	!=	nil	{

			125	 	 	 return	err

			126	 	 }

			127	 	 //	GZIP	strings	are	NUL-terminated.

			128	 	 z.buf[0]	=	0

			129	 	 _,	err	=	z.w.Write(z.buf[0:1])

			130	 	 return	err

			131	 }

			132	

			133	 //	Write	writes	a	compressed	form	of	p	to	the	underlying	io.Writer.	The

			134	 //	compressed	bytes	are	not	necessarily	flushed	until	the	Writer	is	closed.

			135	 func	(z	*Writer)	Write(p	[]byte)	(int,	error)	{

			136	 	 if	z.err	!=	nil	{

			137	 	 	 return	0,	z.err

			138	 	 }

			139	 	 var	n	int

			140	 	 //	Write	the	GZIP	header	lazily.

			141	 	 if	z.compressor	==	nil	{

			142	 	 	 z.buf[0]	=	gzipID1

			143	 	 	 z.buf[1]	=	gzipID2

			144	 	 	 z.buf[2]	=	gzipDeflate

			145	 	 	 z.buf[3]	=	0

			146	 	 	 if	z.Extra	!=	nil	{

			147	 	 	 	 z.buf[3]	|=	0x04

			148	 	 	 }

			149	 	 	 if	z.Name	!=	""	{

			150	 	 	 	 z.buf[3]	|=	0x08

			151	 	 	 }

			152	 	 	 if	z.Comment	!=	""	{

			153	 	 	 	 z.buf[3]	|=	0x10

			154	 	 	 }

			155	 	 	 put4(z.buf[4:8],	uint32(z.ModTime.Unix()))

			156	 	 	 if	z.level	==	BestCompression	{

			157	 	 	 	 z.buf[8]	=	2

			158	 	 	 }	else	if	z.level	==	BestSpeed	{

			159	 	 	 	 z.buf[8]	=	4

			160	 	 	 }	else	{

			161	 	 	 	 z.buf[8]	=	0

			162	 	 	 }

			163	 	 	 z.buf[9]	=	z.OS

			164	 	 	 n,	z.err	=	z.w.Write(z.buf[0:10])

			165	 	 	 if	z.err	!=	nil	{

			166	 	 	 	 return	n,	z.err

			167	 	 	 }

			168	 	 	 if	z.Extra	!=	nil	{

			169	 	 	 	 z.err	=	z.writeBytes(z.Extra)

			170	 	 	 	 if	z.err	!=	nil	{

			171	 	 	 	 	 return	n,	z.err

			172	 	 	 	 }

			173	 	 	 }

			174	 	 	 if	z.Name	!=	""	{

			175	 	 	 	 z.err	=	z.writeString(z.Name)

			176	 	 	 	 if	z.err	!=	nil	{

			177	 	 	 	 	 return	n,	z.err

			178	 	 	 	 }

			179	 	 	 }

			180	 	 	 if	z.Comment	!=	""	{

			181	 	 	 	 z.err	=	z.writeString(z.Comment)

			182	 	 	 	 if	z.err	!=	nil	{

			183	 	 	 	 	 return	n,	z.err

			184	 	 	 	 }

			185	 	 	 }

			186	 	 	 z.compressor,	_	=	flate.NewWriter(z.w,	z.level)

			187	 	 }

			188	 	 z.size	+=	uint32(len(p))

			189	 	 z.digest.Write(p)

			190	 	 n,	z.err	=	z.compressor.Write(p)

			191	 	 return	n,	z.err

			192	 }

			193	

			194	 //	Close	closes	the	Writer.	It	does	not	close	the	underlying	io.Writer.

			195	 func	(z	*Writer)	Close()	error	{

			196	 	 if	z.err	!=	nil	{

			197	 	 	 return	z.err

			198	 	 }

			199	 	 if	z.closed	{

			200	 	 	 return	nil

			201	 	 }

			202	 	 z.closed	=	true

			203	 	 if	z.compressor	==	nil	{

			204	 	 	 z.Write(nil)

			205	 	 	 if	z.err	!=	nil	{

			206	 	 	 	 return	z.err

			207	 	 	 }

			208	 	 }

			209	 	 z.err	=	z.compressor.Close()

			210	 	 if	z.err	!=	nil	{

			211	 	 	 return	z.err

			212	 	 }

			213	 	 put4(z.buf[0:4],	z.digest.Sum32())

			214	 	 put4(z.buf[4:8],	z.size)

			215	 	 _,	z.err	=	z.w.Write(z.buf[0:8])

			216	 	 return	z.err

			217	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/lzw/reader.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	lzw	implements	the	Lempel-Ziv-Welch	compressed	data	format,

					6	 //	described	in	T.	A.	Welch,	``A	Technique	for	High-Performance	Data

					7	 //	Compression'',	Computer,	17(6)	(June	1984),	pp	8-19.

					8	 //

					9	 //	In	particular,	it	implements	LZW	as	used	by	the	GIF,	TIFF	and	PDF	file

				10	 //	formats,	which	means	variable-width	codes	up	to	12	bits	and	the	first

				11	 //	two	non-literal	codes	are	a	clear	code	and	an	EOF	code.

				12	 package	lzw

				13	

				14	 //	TODO(nigeltao):	check	that	TIFF	and	PDF	use	LZW	in	the	same	way	as	GIF,

				15	 //	modulo	LSB/MSB	packing	order.

				16	

				17	 import	(

				18	 	 "bufio"

				19	 	 "errors"

				20	 	 "fmt"

				21	 	 "io"

				22)

				23	

				24	 //	Order	specifies	the	bit	ordering	in	an	LZW	data	stream.

				25	 type	Order	int

				26	

				27	 const	(

				28	 	 //	LSB	means	Least	Significant	Bits	first,	as	used	in	the	GIF	file	format.

				29	 	 LSB	Order	=	iota

				30	 	 //	MSB	means	Most	Significant	Bits	first,	as	used	in	the	TIFF	and	PDF

				31	 	 //	file	formats.

				32	 	 MSB

				33)

				34	

				35	 const	(

				36	 	 maxWidth											=	12

				37	 	 decoderInvalidCode	=	0xffff

				38	 	 flushBuffer								=	1	<<	maxWidth

				39)

				40	

				41	 //	decoder	is	the	state	from	which	the	readXxx	method	converts	a	byte

				42	 //	stream	into	a	code	stream.

				43	 type	decoder	struct	{

				44	 	 r								io.ByteReader

				45	 	 bits					uint32

				46	 	 nBits				uint

				47	 	 width				uint

				48	 	 read					func(*decoder)	(uint16,	error)	//	readLSB	or	readMSB

				49	 	 litWidth	int																												//	width	in	bits	of	literal	codes

				50	 	 err						error

				51	

				52	 	 //	The	first	1<<litWidth	codes	are	literal	codes.

				53	 	 //	The	next	two	codes	mean	clear	and	EOF.

				54	 	 //	Other	valid	codes	are	in	the	range	[lo,	hi]	where	lo	:=	clear	+	2,

				55	 	 //	with	the	upper	bound	incrementing	on	each	code	seen.

				56	 	 //	overflow	is	the	code	at	which	hi	overflows	the	code	width.

				57	 	 //	last	is	the	most	recently	seen	code,	or	decoderInvalidCode.

				58	 	 clear,	eof,	hi,	overflow,	last	uint16

				59	

				60	 	 //	Each	code	c	in	[lo,	hi]	expands	to	two	or	more	bytes.	For	c	!=	hi:

				61	 	 //			suffix[c]	is	the	last	of	these	bytes.

				62	 	 //			prefix[c]	is	the	code	for	all	but	the	last	byte.

				63	 	 //			This	code	can	either	be	a	literal	code	or	another	code	in	[lo,	c).

				64	 	 //	The	c	==	hi	case	is	a	special	case.

				65	 	 suffix	[1	<<	maxWidth]uint8

				66	 	 prefix	[1	<<	maxWidth]uint16

				67	

				68	 	 //	output	is	the	temporary	output	buffer.

				69	 	 //	Literal	codes	are	accumulated	from	the	start	of	the	buffer.

				70	 	 //	Non-literal	codes	decode	to	a	sequence	of	suffixes	that	are	first

				71	 	 //	written	right-to-left	from	the	end	of	the	buffer	before	being	copied

				72	 	 //	to	the	start	of	the	buffer.

				73	 	 //	It	is	flushed	when	it	contains	>=	1<<maxWidth	bytes,

				74	 	 //	so	that	there	is	always	room	to	decode	an	entire	code.

				75	 	 output	[2	*	1	<<	maxWidth]byte

				76	 	 o						int				//	write	index	into	output

				77	 	 toRead	[]byte	//	bytes	to	return	from	Read

				78	 }

				79	

				80	 //	readLSB	returns	the	next	code	for	"Least	Significant	Bits	first"	data.

				81	 func	(d	*decoder)	readLSB()	(uint16,	error)	{

				82	 	 for	d.nBits	<	d.width	{

				83	 	 	 x,	err	:=	d.r.ReadByte()

				84	 	 	 if	err	!=	nil	{

				85	 	 	 	 return	0,	err

				86	 	 	 }

				87	 	 	 d.bits	|=	uint32(x)	<<	d.nBits

				88	 	 	 d.nBits	+=	8

				89	 	 }

				90	 	 code	:=	uint16(d.bits	&	(1<<d.width	-	1))

				91	 	 d.bits	>>=	d.width

				92	 	 d.nBits	-=	d.width

				93	 	 return	code,	nil

				94	 }

				95	

				96	 //	readMSB	returns	the	next	code	for	"Most	Significant	Bits	first"	data.

				97	 func	(d	*decoder)	readMSB()	(uint16,	error)	{

				98	 	 for	d.nBits	<	d.width	{

				99	 	 	 x,	err	:=	d.r.ReadByte()

			100	 	 	 if	err	!=	nil	{

			101	 	 	 	 return	0,	err

			102	 	 	 }

			103	 	 	 d.bits	|=	uint32(x)	<<	(24	-	d.nBits)

			104	 	 	 d.nBits	+=	8

			105	 	 }

			106	 	 code	:=	uint16(d.bits	>>	(32	-	d.width))

			107	 	 d.bits	<<=	d.width

			108	 	 d.nBits	-=	d.width

			109	 	 return	code,	nil

			110	 }

			111	

			112	 func	(d	*decoder)	Read(b	[]byte)	(int,	error)	{

			113	 	 for	{

			114	 	 	 if	len(d.toRead)	>	0	{

			115	 	 	 	 n	:=	copy(b,	d.toRead)

			116	 	 	 	 d.toRead	=	d.toRead[n:]

			117	 	 	 	 return	n,	nil

			118	 	 	 }

			119	 	 	 if	d.err	!=	nil	{

			120	 	 	 	 return	0,	d.err

			121	 	 	 }

			122	 	 	 d.decode()

			123	 	 }

			124	 	 panic("unreachable")

			125	 }

			126	

			127	 //	decode	decompresses	bytes	from	r	and	leaves	them	in	d.toRead.

			128	 //	read	specifies	how	to	decode	bytes	into	codes.

			129	 //	litWidth	is	the	width	in	bits	of	literal	codes.

			130	 func	(d	*decoder)	decode()	{

			131	 	 //	Loop	over	the	code	stream,	converting	codes	into	decompressed	bytes.

			132	 	 for	{

			133	 	 	 code,	err	:=	d.read(d)

			134	 	 	 if	err	!=	nil	{

			135	 	 	 	 if	err	==	io.EOF	{

			136	 	 	 	 	 err	=	io.ErrUnexpectedEOF

			137	 	 	 	 }

			138	 	 	 	 d.err	=	err

			139	 	 	 	 return

			140	 	 	 }

			141	 	 	 switch	{

			142	 	 	 case	code	<	d.clear:

			143	 	 	 	 //	We	have	a	literal	code.

			144	 	 	 	 d.output[d.o]	=	uint8(code)

			145	 	 	 	 d.o++

			146	 	 	 	 if	d.last	!=	decoderInvalidCode	{

			147	 	 	 	 	 //	Save	what	the	hi	code	expands	to.

			148	 	 	 	 	 d.suffix[d.hi]	=	uint8(code)

			149	 	 	 	 	 d.prefix[d.hi]	=	d.last

			150	 	 	 	 }

			151	 	 	 case	code	==	d.clear:

			152	 	 	 	 d.width	=	1	+	uint(d.litWidth)

			153	 	 	 	 d.hi	=	d.eof

			154	 	 	 	 d.overflow	=	1	<<	d.width

			155	 	 	 	 d.last	=	decoderInvalidCode

			156	 	 	 	 continue

			157	 	 	 case	code	==	d.eof:

			158	 	 	 	 d.flush()

			159	 	 	 	 d.err	=	io.EOF

			160	 	 	 	 return

			161	 	 	 case	code	<=	d.hi:

			162	 	 	 	 c,	i	:=	code,	len(d.output)-1

			163	 	 	 	 if	code	==	d.hi	{

			164	 	 	 	 	 //	code	==	hi	is	a	special	case	which	expands	to	the	last	expansion

			165	 	 	 	 	 //	followed	by	the	head	of	the	last	expansion.	To	find	the	head,	we	walk

			166	 	 	 	 	 //	the	prefix	chain	until	we	find	a	literal	code.

			167	 	 	 	 	 c	=	d.last

			168	 	 	 	 	 for	c	>=	d.clear	{

			169	 	 	 	 	 	 c	=	d.prefix[c]

			170	 	 	 	 	 }

			171	 	 	 	 	 d.output[i]	=	uint8(c)

			172	 	 	 	 	 i--

			173	 	 	 	 	 c	=	d.last

			174	 	 	 	 }

			175	 	 	 	 //	Copy	the	suffix	chain	into	output	and	then	write	that	to	w.

			176	 	 	 	 for	c	>=	d.clear	{

			177	 	 	 	 	 d.output[i]	=	d.suffix[c]

			178	 	 	 	 	 i--

			179	 	 	 	 	 c	=	d.prefix[c]

			180	 	 	 	 }

			181	 	 	 	 d.output[i]	=	uint8(c)

			182	 	 	 	 d.o	+=	copy(d.output[d.o:],	d.output[i:])

			183	 	 	 	 if	d.last	!=	decoderInvalidCode	{

			184	 	 	 	 	 //	Save	what	the	hi	code	expands	to.

			185	 	 	 	 	 d.suffix[d.hi]	=	uint8(c)

			186	 	 	 	 	 d.prefix[d.hi]	=	d.last

			187	 	 	 	 }

			188	 	 	 default:

			189	 	 	 	 d.err	=	errors.New("lzw:	invalid	code")

			190	 	 	 	 return

			191	 	 	 }

			192	 	 	 d.last,	d.hi	=	code,	d.hi+1

			193	 	 	 if	d.hi	>=	d.overflow	{

			194	 	 	 	 if	d.width	==	maxWidth	{

			195	 	 	 	 	 d.last	=	decoderInvalidCode

			196	 	 	 	 }	else	{

			197	 	 	 	 	 d.width++

			198	 	 	 	 	 d.overflow	<<=	1

			199	 	 	 	 }

			200	 	 	 }

			201	 	 	 if	d.o	>=	flushBuffer	{

			202	 	 	 	 d.flush()

			203	 	 	 	 return

			204	 	 	 }

			205	 	 }

			206	 	 panic("unreachable")

			207	 }

			208	

			209	 func	(d	*decoder)	flush()	{

			210	 	 d.toRead	=	d.output[:d.o]

			211	 	 d.o	=	0

			212	 }

			213	

			214	 var	errClosed	=	errors.New("compress/lzw:	reader/writer	is	closed")

			215	

			216	 func	(d	*decoder)	Close()	error	{

			217	 	 d.err	=	errClosed	//	in	case	any	Reads	come	along

			218	 	 return	nil

			219	 }

			220	

			221	 //	NewReader	creates	a	new	io.ReadCloser	that	satisfies	reads	by	decompressing

			222	 //	the	data	read	from	r.

			223	 //	It	is	the	caller's	responsibility	to	call	Close	on	the	ReadCloser	when

			224	 //	finished	reading.

			225	 //	The	number	of	bits	to	use	for	literal	codes,	litWidth,	must	be	in	the

			226	 //	range	[2,8]	and	is	typically	8.

			227	 func	NewReader(r	io.Reader,	order	Order,	litWidth	int)	io.ReadCloser	{

			228	 	 d	:=	new(decoder)

			229	 	 switch	order	{

			230	 	 case	LSB:

			231	 	 	 d.read	=	(*decoder).readLSB

			232	 	 case	MSB:

			233	 	 	 d.read	=	(*decoder).readMSB

			234	 	 default:

			235	 	 	 d.err	=	errors.New("lzw:	unknown	order")

			236	 	 	 return	d

			237	 	 }

			238	 	 if	litWidth	<	2	||	8	<	litWidth	{

			239	 	 	 d.err	=	fmt.Errorf("lzw:	litWidth	%d	out	of	range",	litWidth)

			240	 	 	 return	d

			241	 	 }

			242	 	 if	br,	ok	:=	r.(io.ByteReader);	ok	{

			243	 	 	 d.r	=	br

			244	 	 }	else	{

			245	 	 	 d.r	=	bufio.NewReader(r)

			246	 	 }

			247	 	 d.litWidth	=	litWidth

			248	 	 d.width	=	1	+	uint(litWidth)

			249	 	 d.clear	=	uint16(1)	<<	uint(litWidth)

			250	 	 d.eof,	d.hi	=	d.clear+1,	d.clear+1

			251	 	 d.overflow	=	uint16(1)	<<	d.width

			252	 	 d.last	=	decoderInvalidCode

			253	

			254	 	 return	d

			255	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/lzw/writer.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	lzw

					6	

					7	 import	(

					8	 	 "bufio"

					9	 	 "errors"

				10	 	 "fmt"

				11	 	 "io"

				12)

				13	

				14	 //	A	writer	is	a	buffered,	flushable	writer.

				15	 type	writer	interface	{

				16	 	 WriteByte(byte)	error

				17	 	 Flush()	error

				18	 }

				19	

				20	 //	An	errWriteCloser	is	an	io.WriteCloser	that	always	returns	a	given	error.

				21	 type	errWriteCloser	struct	{

				22	 	 err	error

				23	 }

				24	

				25	 func	(e	*errWriteCloser)	Write([]byte)	(int,	error)	{

				26	 	 return	0,	e.err

				27	 }

				28	

				29	 func	(e	*errWriteCloser)	Close()	error	{

				30	 	 return	e.err

				31	 }

				32	

				33	 const	(

				34	 	 //	A	code	is	a	12	bit	value,	stored	as	a	uint32	when	encoding	to	avoid

				35	 	 //	type	conversions	when	shifting	bits.

				36	 	 maxCode					=	1<<12	-	1

				37	 	 invalidCode	=	1<<32	-	1

				38	 	 //	There	are	1<<12	possible	codes,	which	is	an	upper	bound	on	the	number	of

				39	 	 //	valid	hash	table	entries	at	any	given	point	in	time.	tableSize	is	4x	that.

				40	 	 tableSize	=	4	*	1	<<	12

				41	 	 tableMask	=	tableSize	-	1

				42	 	 //	A	hash	table	entry	is	a	uint32.	Zero	is	an	invalid	entry	since	the

				43	 	 //	lower	12	bits	of	a	valid	entry	must	be	a	non-literal	code.

				44	 	 invalidEntry	=	0

				45)

				46	

				47	 //	encoder	is	LZW	compressor.

				48	 type	encoder	struct	{

				49	 	 //	w	is	the	writer	that	compressed	bytes	are	written	to.

				50	 	 w	writer

				51	 	 //	order,	write,	bits,	nBits	and	width	are	the	state	for

				52	 	 //	converting	a	code	stream	into	a	byte	stream.

				53	 	 order	Order

				54	 	 write	func(*encoder,	uint32)	error

				55	 	 bits		uint32

				56	 	 nBits	uint

				57	 	 width	uint

				58	 	 //	litWidth	is	the	width	in	bits	of	literal	codes.

				59	 	 litWidth	uint

				60	 	 //	hi	is	the	code	implied	by	the	next	code	emission.

				61	 	 //	overflow	is	the	code	at	which	hi	overflows	the	code	width.

				62	 	 hi,	overflow	uint32

				63	 	 //	savedCode	is	the	accumulated	code	at	the	end	of	the	most	recent	Write

				64	 	 //	call.	It	is	equal	to	invalidCode	if	there	was	no	such	call.

				65	 	 savedCode	uint32

				66	 	 //	err	is	the	first	error	encountered	during	writing.	Closing	the	encoder

				67	 	 //	will	make	any	future	Write	calls	return	errClosed

				68	 	 err	error

				69	 	 //	table	is	the	hash	table	from	20-bit	keys	to	12-bit	values.	Each	table

				70	 	 //	entry	contains	key<<12|val	and	collisions	resolve	by	linear	probing.

				71	 	 //	The	keys	consist	of	a	12-bit	code	prefix	and	an	8-bit	byte	suffix.

				72	 	 //	The	values	are	a	12-bit	code.

				73	 	 table	[tableSize]uint32

				74	 }

				75	

				76	 //	writeLSB	writes	the	code	c	for	"Least	Significant	Bits	first"	data.

				77	 func	(e	*encoder)	writeLSB(c	uint32)	error	{

				78	 	 e.bits	|=	c	<<	e.nBits

				79	 	 e.nBits	+=	e.width

				80	 	 for	e.nBits	>=	8	{

				81	 	 	 if	err	:=	e.w.WriteByte(uint8(e.bits));	err	!=	nil	{

				82	 	 	 	 return	err

				83	 	 	 }

				84	 	 	 e.bits	>>=	8

				85	 	 	 e.nBits	-=	8

				86	 	 }

				87	 	 return	nil

				88	 }

				89	

				90	 //	writeMSB	writes	the	code	c	for	"Most	Significant	Bits	first"	data.

				91	 func	(e	*encoder)	writeMSB(c	uint32)	error	{

				92	 	 e.bits	|=	c	<<	(32	-	e.width	-	e.nBits)

				93	 	 e.nBits	+=	e.width

				94	 	 for	e.nBits	>=	8	{

				95	 	 	 if	err	:=	e.w.WriteByte(uint8(e.bits	>>	24));	err	!=	nil	{

				96	 	 	 	 return	err

				97	 	 	 }

				98	 	 	 e.bits	<<=	8

				99	 	 	 e.nBits	-=	8

			100	 	 }

			101	 	 return	nil

			102	 }

			103	

			104	 //	errOutOfCodes	is	an	internal	error	that	means	that	the	encoder	has	run	out

			105	 //	of	unused	codes	and	a	clear	code	needs	to	be	sent	next.

			106	 var	errOutOfCodes	=	errors.New("lzw:	out	of	codes")

			107	

			108	 //	incHi	increments	e.hi	and	checks	for	both	overflow	and	running	out	of

			109	 //	unused	codes.	In	the	latter	case,	incHi	sends	a	clear	code,	resets	the

			110	 //	encoder	state	and	returns	errOutOfCodes.

			111	 func	(e	*encoder)	incHi()	error	{

			112	 	 e.hi++

			113	 	 if	e.hi	==	e.overflow	{

			114	 	 	 e.width++

			115	 	 	 e.overflow	<<=	1

			116	 	 }

			117	 	 if	e.hi	==	maxCode	{

			118	 	 	 clear	:=	uint32(1)	<<	e.litWidth

			119	 	 	 if	err	:=	e.write(e,	clear);	err	!=	nil	{

			120	 	 	 	 return	err

			121	 	 	 }

			122	 	 	 e.width	=	uint(e.litWidth)	+	1

			123	 	 	 e.hi	=	clear	+	1

			124	 	 	 e.overflow	=	clear	<<	1

			125	 	 	 for	i	:=	range	e.table	{

			126	 	 	 	 e.table[i]	=	invalidEntry

			127	 	 	 }

			128	 	 	 return	errOutOfCodes

			129	 	 }

			130	 	 return	nil

			131	 }

			132	

			133	 //	Write	writes	a	compressed	representation	of	p	to	e's	underlying	writer.

			134	 func	(e	*encoder)	Write(p	[]byte)	(int,	error)	{

			135	 	 if	e.err	!=	nil	{

			136	 	 	 return	0,	e.err

			137	 	 }

			138	 	 if	len(p)	==	0	{

			139	 	 	 return	0,	nil

			140	 	 }

			141	 	 litMask	:=	uint32(1<<e.litWidth	-	1)

			142	 	 code	:=	e.savedCode

			143	 	 if	code	==	invalidCode	{

			144	 	 	 //	The	first	code	sent	is	always	a	literal	code.

			145	 	 	 code,	p	=	uint32(p[0])&litMask,	p[1:]

			146	 	 }

			147	 loop:

			148	 	 for	_,	x	:=	range	p	{

			149	 	 	 literal	:=	uint32(x)	&	litMask

			150	 	 	 key	:=	code<<8	|	literal

			151	 	 	 //	If	there	is	a	hash	table	hit	for	this	key	then	we	continue	the	loop

			152	 	 	 //	and	do	not	emit	a	code	yet.

			153	 	 	 hash	:=	(key>>12	^	key)	&	tableMask

			154	 	 	 for	h,	t	:=	hash,	e.table[hash];	t	!=	invalidEntry;	{

			155	 	 	 	 if	key	==	t>>12	{

			156	 	 	 	 	 code	=	t	&	maxCode

			157	 	 	 	 	 continue	loop

			158	 	 	 	 }

			159	 	 	 	 h	=	(h	+	1)	&	tableMask

			160	 	 	 	 t	=	e.table[h]

			161	 	 	 }

			162	 	 	 //	Otherwise,	write	the	current	code,	and	literal	becomes	the	start	of

			163	 	 	 //	the	next	emitted	code.

			164	 	 	 if	e.err	=	e.write(e,	code);	e.err	!=	nil	{

			165	 	 	 	 return	0,	e.err

			166	 	 	 }

			167	 	 	 code	=	literal

			168	 	 	 //	Increment	e.hi,	the	next	implied	code.	If	we	run	out	of	codes,	reset

			169	 	 	 //	the	encoder	state	(including	clearing	the	hash	table)	and	continue.

			170	 	 	 if	err	:=	e.incHi();	err	!=	nil	{

			171	 	 	 	 if	err	==	errOutOfCodes	{

			172	 	 	 	 	 continue

			173	 	 	 	 }

			174	 	 	 	 e.err	=	err

			175	 	 	 	 return	0,	e.err

			176	 	 	 }

			177	 	 	 //	Otherwise,	insert	key	->	e.hi	into	the	map	that	e.table	represents.

			178	 	 	 for	{

			179	 	 	 	 if	e.table[hash]	==	invalidEntry	{

			180	 	 	 	 	 e.table[hash]	=	(key	<<	12)	|	e.hi

			181	 	 	 	 	 break

			182	 	 	 	 }

			183	 	 	 	 hash	=	(hash	+	1)	&	tableMask

			184	 	 	 }

			185	 	 }

			186	 	 e.savedCode	=	code

			187	 	 return	len(p),	nil

			188	 }

			189	

			190	 //	Close	closes	the	encoder,	flushing	any	pending	output.	It	does	not	close	or

			191	 //	flush	e's	underlying	writer.

			192	 func	(e	*encoder)	Close()	error	{

			193	 	 if	e.err	!=	nil	{

			194	 	 	 if	e.err	==	errClosed	{

			195	 	 	 	 return	nil

			196	 	 	 }

			197	 	 	 return	e.err

			198	 	 }

			199	 	 //	Make	any	future	calls	to	Write	return	errClosed.

			200	 	 e.err	=	errClosed

			201	 	 //	Write	the	savedCode	if	valid.

			202	 	 if	e.savedCode	!=	invalidCode	{

			203	 	 	 if	err	:=	e.write(e,	e.savedCode);	err	!=	nil	{

			204	 	 	 	 return	err

			205	 	 	 }

			206	 	 	 if	err	:=	e.incHi();	err	!=	nil	&&	err	!=	errOutOfCodes	{

			207	 	 	 	 return	err

			208	 	 	 }

			209	 	 }

			210	 	 //	Write	the	eof	code.

			211	 	 eof	:=	uint32(1)<<e.litWidth	+	1

			212	 	 if	err	:=	e.write(e,	eof);	err	!=	nil	{

			213	 	 	 return	err

			214	 	 }

			215	 	 //	Write	the	final	bits.

			216	 	 if	e.nBits	>	0	{

			217	 	 	 if	e.order	==	MSB	{

			218	 	 	 	 e.bits	>>=	24

			219	 	 	 }

			220	 	 	 if	err	:=	e.w.WriteByte(uint8(e.bits));	err	!=	nil	{

			221	 	 	 	 return	err

			222	 	 	 }

			223	 	 }

			224	 	 return	e.w.Flush()

			225	 }

			226	

			227	 //	NewWriter	creates	a	new	io.WriteCloser	that	satisfies	writes	by	compressing

			228	 //	the	data	and	writing	it	to	w.

			229	 //	It	is	the	caller's	responsibility	to	call	Close	on	the	WriteCloser	when

			230	 //	finished	writing.

			231	 //	The	number	of	bits	to	use	for	literal	codes,	litWidth,	must	be	in	the

			232	 //	range	[2,8]	and	is	typically	8.

			233	 func	NewWriter(w	io.Writer,	order	Order,	litWidth	int)	io.WriteCloser	{

			234	 	 var	write	func(*encoder,	uint32)	error

			235	 	 switch	order	{

			236	 	 case	LSB:

			237	 	 	 write	=	(*encoder).writeLSB

			238	 	 case	MSB:

			239	 	 	 write	=	(*encoder).writeMSB

			240	 	 default:

			241	 	 	 return	&errWriteCloser{errors.New("lzw:	unknown	order")}

			242	 	 }

			243	 	 if	litWidth	<	2	||	8	<	litWidth	{

			244	 	 	 return	&errWriteCloser{fmt.Errorf("lzw:	litWidth	%d	out	of	range",	litWidth)}

			245	 	 }

			246	 	 bw,	ok	:=	w.(writer)

			247	 	 if	!ok	{

			248	 	 	 bw	=	bufio.NewWriter(w)

			249	 	 }

			250	 	 lw	:=	uint(litWidth)

			251	 	 return	&encoder{

			252	 	 	 w:									bw,

			253	 	 	 order:					order,

			254	 	 	 write:					write,

			255	 	 	 width:					1	+	lw,

			256	 	 	 litWidth:		lw,

			257	 	 	 hi:								1<<lw	+	1,

			258	 	 	 overflow:		1	<<	(lw	+	1),

			259	 	 	 savedCode:	invalidCode,

			260	 	 }

			261	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/zlib/reader.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 Package	zlib	implements	reading	and	writing	of	zlib	format	compressed	data,

					7	 as	specified	in	RFC	1950.

					8	

					9	 The	implementation	provides	filters	that	uncompress	during	reading

				10	 and	compress	during	writing.		For	example,	to	write	compressed	data

				11	 to	a	buffer:

				12	

				13	 	 var	b	bytes.Buffer

				14	 	 w,	err	:=	zlib.NewWriter(&b)

				15	 	 w.Write([]byte("hello,	world\n"))

				16	 	 w.Close()

				17	

				18	 and	to	read	that	data	back:

				19	

				20	 	 r,	err	:=	zlib.NewReader(&b)

				21	 	 io.Copy(os.Stdout,	r)

				22	 	 r.Close()

				23	 */

				24	 package	zlib

				25	

				26	 import	(

				27	 	 "bufio"

				28	 	 "compress/flate"

				29	 	 "errors"

				30	 	 "hash"

				31	 	 "hash/adler32"

				32	 	 "io"

				33)

				34	

				35	 const	zlibDeflate	=	8

				36	

				37	 var	(

				38	 	 //	ErrChecksum	is	returned	when	reading	ZLIB	data	that	has	an	invalid	checksum.

				39	 	 ErrChecksum	=	errors.New("zlib:	invalid	checksum")

				40	 	 //	ErrDictionary	is	returned	when	reading	ZLIB	data	that	has	an	invalid	dictionary.

				41	 	 ErrDictionary	=	errors.New("zlib:	invalid	dictionary")

				42	 	 //	ErrHeader	is	returned	when	reading	ZLIB	data	that	has	an	invalid	header.

				43	 	 ErrHeader	=	errors.New("zlib:	invalid	header")

				44)

				45	

				46	 type	reader	struct	{

				47	 	 r												flate.Reader

				48	 	 decompressor	io.ReadCloser

				49	 	 digest							hash.Hash32

				50	 	 err										error

				51	 	 scratch						[4]byte

				52	 }

				53	

				54	 //	NewReader	creates	a	new	io.ReadCloser	that	satisfies	reads	by	decompressing	data	read	from	r.

				55	 //	The	implementation	buffers	input	and	may	read	more	data	than	necessary	from	r.

				56	 //	It	is	the	caller's	responsibility	to	call	Close	on	the	ReadCloser	when	done.

				57	 func	NewReader(r	io.Reader)	(io.ReadCloser,	error)	{

				58	 	 return	NewReaderDict(r,	nil)

				59	 }

				60	

				61	 //	NewReaderDict	is	like	NewReader	but	uses	a	preset	dictionary.

				62	 //	NewReaderDict	ignores	the	dictionary	if	the	compressed	data	does	not	refer	to	it.

				63	 func	NewReaderDict(r	io.Reader,	dict	[]byte)	(io.ReadCloser,	error)	{

				64	 	 z	:=	new(reader)

				65	 	 if	fr,	ok	:=	r.(flate.Reader);	ok	{

				66	 	 	 z.r	=	fr

				67	 	 }	else	{

				68	 	 	 z.r	=	bufio.NewReader(r)

				69	 	 }

				70	 	 _,	err	:=	io.ReadFull(z.r,	z.scratch[0:2])

				71	 	 if	err	!=	nil	{

				72	 	 	 return	nil,	err

				73	 	 }

				74	 	 h	:=	uint(z.scratch[0])<<8	|	uint(z.scratch[1])

				75	 	 if	(z.scratch[0]&0x0f	!=	zlibDeflate)	||	(h%31	!=	0)	{

				76	 	 	 return	nil,	ErrHeader

				77	 	 }

				78	 	 if	z.scratch[1]&0x20	!=	0	{

				79	 	 	 _,	err	=	io.ReadFull(z.r,	z.scratch[0:4])

				80	 	 	 if	err	!=	nil	{

				81	 	 	 	 return	nil,	err

				82	 	 	 }

				83	 	 	 checksum	:=	uint32(z.scratch[0])<<24	|	uint32(z.scratch[1])<<16	|	uint32(z.scratch[2])<<8	|	uint32(z.scratch[3])

				84	 	 	 if	checksum	!=	adler32.Checksum(dict)	{

				85	 	 	 	 return	nil,	ErrDictionary

				86	 	 	 }

				87	 	 	 z.decompressor	=	flate.NewReaderDict(z.r,	dict)

				88	 	 }	else	{

				89	 	 	 z.decompressor	=	flate.NewReader(z.r)

				90	 	 }

				91	 	 z.digest	=	adler32.New()

				92	 	 return	z,	nil

				93	 }

				94	

				95	 func	(z	*reader)	Read(p	[]byte)	(n	int,	err	error)	{

				96	 	 if	z.err	!=	nil	{

				97	 	 	 return	0,	z.err

				98	 	 }

				99	 	 if	len(p)	==	0	{

			100	 	 	 return	0,	nil

			101	 	 }

			102	

			103	 	 n,	err	=	z.decompressor.Read(p)

			104	 	 z.digest.Write(p[0:n])

			105	 	 if	n	!=	0	||	err	!=	io.EOF	{

			106	 	 	 z.err	=	err

			107	 	 	 return

			108	 	 }

			109	

			110	 	 //	Finished	file;	check	checksum.

			111	 	 if	_,	err	:=	io.ReadFull(z.r,	z.scratch[0:4]);	err	!=	nil	{

			112	 	 	 z.err	=	err

			113	 	 	 return	0,	err

			114	 	 }

			115	 	 //	ZLIB	(RFC	1950)	is	big-endian,	unlike	GZIP	(RFC	1952).

			116	 	 checksum	:=	uint32(z.scratch[0])<<24	|	uint32(z.scratch[1])<<16	|	uint32(z.scratch[2])<<8	|	uint32(z.scratch[3])

			117	 	 if	checksum	!=	z.digest.Sum32()	{

			118	 	 	 z.err	=	ErrChecksum

			119	 	 	 return	0,	z.err

			120	 	 }

			121	 	 return

			122	 }

			123	

			124	 //	Calling	Close	does	not	close	the	wrapped	io.Reader	originally	passed	to	NewReader.

			125	 func	(z	*reader)	Close()	error	{

			126	 	 if	z.err	!=	nil	{

			127	 	 	 return	z.err

			128	 	 }

			129	 	 z.err	=	z.decompressor.Close()

			130	 	 return	z.err

			131	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/compress/zlib/writer.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	zlib

					6	

					7	 import	(

					8	 	 "compress/flate"

					9	 	 "fmt"

				10	 	 "hash"

				11	 	 "hash/adler32"

				12	 	 "io"

				13)

				14	

				15	 //	These	constants	are	copied	from	the	flate	package,	so	that	code	that	imports

				16	 //	"compress/zlib"	does	not	also	have	to	import	"compress/flate".

				17	 const	(

				18	 	 NoCompression						=	flate.NoCompression

				19	 	 BestSpeed										=	flate.BestSpeed

				20	 	 BestCompression				=	flate.BestCompression

				21	 	 DefaultCompression	=	flate.DefaultCompression

				22)

				23	

				24	 //	A	Writer	takes	data	written	to	it	and	writes	the	compressed

				25	 //	form	of	that	data	to	an	underlying	writer	(see	NewWriter).

				26	 type	Writer	struct	{

				27	 	 w											io.Writer

				28	 	 level							int

				29	 	 dict								[]byte

				30	 	 compressor		*flate.Writer

				31	 	 digest						hash.Hash32

				32	 	 err									error

				33	 	 scratch					[4]byte

				34	 	 wroteHeader	bool

				35	 }

				36	

				37	 //	NewWriter	creates	a	new	Writer	that	satisfies	writes	by	compressing	data

				38	 //	written	to	w.

				39	 //

				40	 //	It	is	the	caller's	responsibility	to	call	Close	on	the	WriteCloser	when	done.

				41	 //	Writes	may	be	buffered	and	not	flushed	until	Close.

				42	 func	NewWriter(w	io.Writer)	*Writer	{

				43	 	 z,	_	:=	NewWriterLevelDict(w,	DefaultCompression,	nil)

				44	 	 return	z

				45	 }

				46	

				47	 //	NewWriterLevel	is	like	NewWriter	but	specifies	the	compression	level	instead

				48	 //	of	assuming	DefaultCompression.

				49	 //

				50	 //	The	compression	level	can	be	DefaultCompression,	NoCompression,	or	any

				51	 //	integer	value	between	BestSpeed	and	BestCompression	inclusive.	The	error

				52	 //	returned	will	be	nil	if	the	level	is	valid.

				53	 func	NewWriterLevel(w	io.Writer,	level	int)	(*Writer,	error)	{

				54	 	 return	NewWriterLevelDict(w,	level,	nil)

				55	 }

				56	

				57	 //	NewWriterLevelDict	is	like	NewWriterLevel	but	specifies	a	dictionary	to

				58	 //	compress	with.

				59	 //

				60	 //	The	dictionary	may	be	nil.	If	not,	its	contents	should	not	be	modified	until

				61	 //	the	Writer	is	closed.

				62	 func	NewWriterLevelDict(w	io.Writer,	level	int,	dict	[]byte)	(*Writer,	error)	{

				63	 	 if	level	<	DefaultCompression	||	level	>	BestCompression	{

				64	 	 	 return	nil,	fmt.Errorf("zlib:	invalid	compression	level:	%d",	level)

				65	 	 }

				66	 	 return	&Writer{

				67	 	 	 w:					w,

				68	 	 	 level:	level,

				69	 	 	 dict:		dict,

				70	 	 },	nil

				71	 }

				72	

				73	 //	writeHeader	writes	the	ZLIB	header.

				74	 func	(z	*Writer)	writeHeader()	(err	error)	{

				75	 	 z.wroteHeader	=	true

				76	 	 //	ZLIB	has	a	two-byte	header	(as	documented	in	RFC	1950).

				77	 	 //	The	first	four	bits	is	the	CINFO	(compression	info),	which	is	7	for	the	default	deflate	window	size.

				78	 	 //	The	next	four	bits	is	the	CM	(compression	method),	which	is	8	for	deflate.

				79	 	 z.scratch[0]	=	0x78

				80	 	 //	The	next	two	bits	is	the	FLEVEL	(compression	level).	The	four	values	are:

				81	 	 //	0=fastest,	1=fast,	2=default,	3=best.

				82	 	 //	The	next	bit,	FDICT,	is	set	if	a	dictionary	is	given.

				83	 	 //	The	final	five	FCHECK	bits	form	a	mod-31	checksum.

				84	 	 switch	z.level	{

				85	 	 case	0,	1:

				86	 	 	 z.scratch[1]	=	0	<<	6

				87	 	 case	2,	3,	4,	5:

				88	 	 	 z.scratch[1]	=	1	<<	6

				89	 	 case	6,	-1:

				90	 	 	 z.scratch[1]	=	2	<<	6

				91	 	 case	7,	8,	9:

				92	 	 	 z.scratch[1]	=	3	<<	6

				93	 	 default:

				94	 	 	 panic("unreachable")

				95	 	 }

				96	 	 if	z.dict	!=	nil	{

				97	 	 	 z.scratch[1]	|=	1	<<	5

				98	 	 }

				99	 	 z.scratch[1]	+=	uint8(31	-	(uint16(z.scratch[0])<<8+uint16(z.scratch[1]))%31)

			100	 	 if	_,	err	=	z.w.Write(z.scratch[0:2]);	err	!=	nil	{

			101	 	 	 return	err

			102	 	 }

			103	 	 if	z.dict	!=	nil	{

			104	 	 	 //	The	next	four	bytes	are	the	Adler-32	checksum	of	the	dictionary.

			105	 	 	 checksum	:=	adler32.Checksum(z.dict)

			106	 	 	 z.scratch[0]	=	uint8(checksum	>>	24)

			107	 	 	 z.scratch[1]	=	uint8(checksum	>>	16)

			108	 	 	 z.scratch[2]	=	uint8(checksum	>>	8)

			109	 	 	 z.scratch[3]	=	uint8(checksum	>>	0)

			110	 	 	 if	_,	err	=	z.w.Write(z.scratch[0:4]);	err	!=	nil	{

			111	 	 	 	 return	err

			112	 	 	 }

			113	 	 }

			114	 	 z.compressor,	err	=	flate.NewWriterDict(z.w,	z.level,	z.dict)

			115	 	 if	err	!=	nil	{

			116	 	 	 return	err

			117	 	 }

			118	 	 z.digest	=	adler32.New()

			119	 	 return	nil

			120	 }

			121	

			122	 //	Write	writes	a	compressed	form	of	p	to	the	underlying	io.Writer.	The

			123	 //	compressed	bytes	are	not	necessarily	flushed	until	the	Writer	is	closed	or

			124	 //	explicitly	flushed.

			125	 func	(z	*Writer)	Write(p	[]byte)	(n	int,	err	error)	{

			126	 	 if	!z.wroteHeader	{

			127	 	 	 z.err	=	z.writeHeader()

			128	 	 }

			129	 	 if	z.err	!=	nil	{

			130	 	 	 return	0,	z.err

			131	 	 }

			132	 	 if	len(p)	==	0	{

			133	 	 	 return	0,	nil

			134	 	 }

			135	 	 n,	err	=	z.compressor.Write(p)

			136	 	 if	err	!=	nil	{

			137	 	 	 z.err	=	err

			138	 	 	 return

			139	 	 }

			140	 	 z.digest.Write(p)

			141	 	 return

			142	 }

			143	

			144	 //	Flush	flushes	the	Writer	to	its	underlying	io.Writer.

			145	 func	(z	*Writer)	Flush()	error	{

			146	 	 if	!z.wroteHeader	{

			147	 	 	 z.err	=	z.writeHeader()

			148	 	 }

			149	 	 if	z.err	!=	nil	{

			150	 	 	 return	z.err

			151	 	 }

			152	 	 z.err	=	z.compressor.Flush()

			153	 	 return	z.err

			154	 }

			155	

			156	 //	Calling	Close	does	not	close	the	wrapped	io.Writer	originally	passed	to	NewWriter.

			157	 func	(z	*Writer)	Close()	error	{

			158	 	 if	!z.wroteHeader	{

			159	 	 	 z.err	=	z.writeHeader()

			160	 	 }

			161	 	 if	z.err	!=	nil	{

			162	 	 	 return	z.err

			163	 	 }

			164	 	 z.err	=	z.compressor.Close()

			165	 	 if	z.err	!=	nil	{

			166	 	 	 return	z.err

			167	 	 }

			168	 	 checksum	:=	z.digest.Sum32()

			169	 	 //	ZLIB	(RFC	1950)	is	big-endian,	unlike	GZIP	(RFC	1952).

			170	 	 z.scratch[0]	=	uint8(checksum	>>	24)

			171	 	 z.scratch[1]	=	uint8(checksum	>>	16)

			172	 	 z.scratch[2]	=	uint8(checksum	>>	8)

			173	 	 z.scratch[3]	=	uint8(checksum	>>	0)

			174	 	 _,	z.err	=	z.w.Write(z.scratch[0:4])

			175	 	 return	z.err

			176	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/container/heap/heap.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	heap	provides	heap	operations	for	any	type	that	implements

					6	 //	heap.Interface.	A	heap	is	a	tree	with	the	property	that	each	node	is	the

					7	 //	highest-valued	node	in	its	subtree.

					8	 //

					9	 //	A	heap	is	a	common	way	to	implement	a	priority	queue.	To	build	a	priority

				10	 //	queue,	implement	the	Heap	interface	with	the	(negative)	priority	as	the

				11	 //	ordering	for	the	Less	method,	so	Push	adds	items	while	Pop	removes	the

				12	 //	highest-priority	item	from	the	queue.	The	Examples	include	such	an

				13	 //	implementation;	the	file	example_test.go	has	the	complete	source.

				14	 //

				15	 package	heap

				16	

				17	 import	"sort"

				18	

				19	 //	Any	type	that	implements	heap.Interface	may	be	used	as	a

				20	 //	min-heap	with	the	following	invariants	(established	after

				21	 //	Init	has	been	called	or	if	the	data	is	empty	or	sorted):

				22	 //

				23	 //	 !h.Less(j,	i)	for	0	<=	i	<	h.Len()	and	j	=	2*i+1	or	2*i+2	and	j	<	h.Len()

				24	 //

				25	 //	Note	that	Push	and	Pop	in	this	interface	are	for	package	heap's

				26	 //	implementation	to	call.		To	add	and	remove	things	from	the	heap,

				27	 //	use	heap.Push	and	heap.Pop.

				28	 type	Interface	interface	{

				29	 	 sort.Interface

				30	 	 Push(x	interface{})	//	add	x	as	element	Len()

				31	 	 Pop()	interface{}			//	remove	and	return	element	Len()	-	1.

				32	 }

				33	

				34	 //	A	heap	must	be	initialized	before	any	of	the	heap	operations

				35	 //	can	be	used.	Init	is	idempotent	with	respect	to	the	heap	invariants

				36	 //	and	may	be	called	whenever	the	heap	invariants	may	have	been	invalidated.

				37	 //	Its	complexity	is	O(n)	where	n	=	h.Len().

				38	 //

				39	 func	Init(h	Interface)	{

				40	 	 //	heapify

				41	 	 n	:=	h.Len()

				42	 	 for	i	:=	n/2	-	1;	i	>=	0;	i--	{

				43	 	 	 down(h,	i,	n)

				44	 	 }

				45	 }

				46	

				47	 //	Push	pushes	the	element	x	onto	the	heap.	The	complexity	is

				48	 //	O(log(n))	where	n	=	h.Len().

				49	 //

				50	 func	Push(h	Interface,	x	interface{})	{

				51	 	 h.Push(x)

				52	 	 up(h,	h.Len()-1)

				53	 }

				54	

				55	 //	Pop	removes	the	minimum	element	(according	to	Less)	from	the	heap

				56	 //	and	returns	it.	The	complexity	is	O(log(n))	where	n	=	h.Len().

				57	 //	Same	as	Remove(h,	0).

				58	 //

				59	 func	Pop(h	Interface)	interface{}	{

				60	 	 n	:=	h.Len()	-	1

				61	 	 h.Swap(0,	n)

				62	 	 down(h,	0,	n)

				63	 	 return	h.Pop()

				64	 }

				65	

				66	 //	Remove	removes	the	element	at	index	i	from	the	heap.

				67	 //	The	complexity	is	O(log(n))	where	n	=	h.Len().

				68	 //

				69	 func	Remove(h	Interface,	i	int)	interface{}	{

				70	 	 n	:=	h.Len()	-	1

				71	 	 if	n	!=	i	{

				72	 	 	 h.Swap(i,	n)

				73	 	 	 down(h,	i,	n)

				74	 	 	 up(h,	i)

				75	 	 }

				76	 	 return	h.Pop()

				77	 }

				78	

				79	 func	up(h	Interface,	j	int)	{

				80	 	 for	{

				81	 	 	 i	:=	(j	-	1)	/	2	//	parent

				82	 	 	 if	i	==	j	||	h.Less(i,	j)	{

				83	 	 	 	 break

				84	 	 	 }

				85	 	 	 h.Swap(i,	j)

				86	 	 	 j	=	i

				87	 	 }

				88	 }

				89	

				90	 func	down(h	Interface,	i,	n	int)	{

				91	 	 for	{

				92	 	 	 j1	:=	2*i	+	1

				93	 	 	 if	j1	>=	n	{

				94	 	 	 	 break

				95	 	 	 }

				96	 	 	 j	:=	j1	//	left	child

				97	 	 	 if	j2	:=	j1	+	1;	j2	<	n	&&	!h.Less(j1,	j2)	{

				98	 	 	 	 j	=	j2	//	=	2*i	+	2		//	right	child

				99	 	 	 }

			100	 	 	 if	h.Less(i,	j)	{

			101	 	 	 	 break

			102	 	 	 }

			103	 	 	 h.Swap(i,	j)

			104	 	 	 i	=	j

			105	 	 }

			106	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/container/list/list.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	list	implements	a	doubly	linked	list.

					6	 //

					7	 //	To	iterate	over	a	list	(where	l	is	a	*List):

					8	 //	 for	e	:=	l.Front();	e	!=	nil;	e	=	e.Next()	{

					9	 //	 	 //	do	something	with	e.Value

				10	 //	 }

				11	 //

				12	 package	list

				13	

				14	 //	Element	is	an	element	in	the	linked	list.

				15	 type	Element	struct	{

				16	 	 //	Next	and	previous	pointers	in	the	doubly-linked	list	of	elements.

				17	 	 //	The	front	of	the	list	has	prev	=	nil,	and	the	back	has	next	=	nil.

				18	 	 next,	prev	*Element

				19	

				20	 	 //	The	list	to	which	this	element	belongs.

				21	 	 list	*List

				22	

				23	 	 //	The	contents	of	this	list	element.

				24	 	 Value	interface{}

				25	 }

				26	

				27	 //	Next	returns	the	next	list	element	or	nil.

				28	 func	(e	*Element)	Next()	*Element	{	return	e.next	}

				29	

				30	 //	Prev	returns	the	previous	list	element	or	nil.

				31	 func	(e	*Element)	Prev()	*Element	{	return	e.prev	}

				32	

				33	 //	List	represents	a	doubly	linked	list.

				34	 //	The	zero	value	for	List	is	an	empty	list	ready	to	use.

				35	 type	List	struct	{

				36	 	 front,	back	*Element

				37	 	 len									int

				38	 }

				39	

				40	 //	Init	initializes	or	clears	a	List.

				41	 func	(l	*List)	Init()	*List	{

				42	 	 l.front	=	nil

				43	 	 l.back	=	nil

				44	 	 l.len	=	0

				45	 	 return	l

				46	 }

				47	

				48	 //	New	returns	an	initialized	list.

				49	 func	New()	*List	{	return	new(List)	}

				50	

				51	 //	Front	returns	the	first	element	in	the	list.

				52	 func	(l	*List)	Front()	*Element	{	return	l.front	}

				53	

				54	 //	Back	returns	the	last	element	in	the	list.

				55	 func	(l	*List)	Back()	*Element	{	return	l.back	}

				56	

				57	 //	Remove	removes	the	element	from	the	list

				58	 //	and	returns	its	Value.

				59	 func	(l	*List)	Remove(e	*Element)	interface{}	{

				60	 	 l.remove(e)

				61	 	 e.list	=	nil	//	do	what	remove	does	not

				62	 	 return	e.Value

				63	 }

				64	

				65	 //	remove	the	element	from	the	list,	but	do	not	clear	the	Element's	list	field.

				66	 //	This	is	so	that	other	List	methods	may	use	remove	when	relocating	Elements

				67	 //	without	needing	to	restore	the	list	field.

				68	 func	(l	*List)	remove(e	*Element)	{

				69	 	 if	e.list	!=	l	{

				70	 	 	 return

				71	 	 }

				72	 	 if	e.prev	==	nil	{

				73	 	 	 l.front	=	e.next

				74	 	 }	else	{

				75	 	 	 e.prev.next	=	e.next

				76	 	 }

				77	 	 if	e.next	==	nil	{

				78	 	 	 l.back	=	e.prev

				79	 	 }	else	{

				80	 	 	 e.next.prev	=	e.prev

				81	 	 }

				82	

				83	 	 e.prev	=	nil

				84	 	 e.next	=	nil

				85	 	 l.len--

				86	 }

				87	

				88	 func	(l	*List)	insertBefore(e	*Element,	mark	*Element)	{

				89	 	 if	mark.prev	==	nil	{

				90	 	 	 //	new	front	of	the	list

				91	 	 	 l.front	=	e

				92	 	 }	else	{

				93	 	 	 mark.prev.next	=	e

				94	 	 }

				95	 	 e.prev	=	mark.prev

				96	 	 mark.prev	=	e

				97	 	 e.next	=	mark

				98	 	 l.len++

				99	 }

			100	

			101	 func	(l	*List)	insertAfter(e	*Element,	mark	*Element)	{

			102	 	 if	mark.next	==	nil	{

			103	 	 	 //	new	back	of	the	list

			104	 	 	 l.back	=	e

			105	 	 }	else	{

			106	 	 	 mark.next.prev	=	e

			107	 	 }

			108	 	 e.next	=	mark.next

			109	 	 mark.next	=	e

			110	 	 e.prev	=	mark

			111	 	 l.len++

			112	 }

			113	

			114	 func	(l	*List)	insertFront(e	*Element)	{

			115	 	 if	l.front	==	nil	{

			116	 	 	 //	empty	list

			117	 	 	 l.front,	l.back	=	e,	e

			118	 	 	 e.prev,	e.next	=	nil,	nil

			119	 	 	 l.len	=	1

			120	 	 	 return

			121	 	 }

			122	 	 l.insertBefore(e,	l.front)

			123	 }

			124	

			125	 func	(l	*List)	insertBack(e	*Element)	{

			126	 	 if	l.back	==	nil	{

			127	 	 	 //	empty	list

			128	 	 	 l.front,	l.back	=	e,	e

			129	 	 	 e.prev,	e.next	=	nil,	nil

			130	 	 	 l.len	=	1

			131	 	 	 return

			132	 	 }

			133	 	 l.insertAfter(e,	l.back)

			134	 }

			135	

			136	 //	PushFront	inserts	the	value	at	the	front	of	the	list	and	returns	a	new	Element	containing	the	value.

			137	 func	(l	*List)	PushFront(value	interface{})	*Element	{

			138	 	 e	:=	&Element{nil,	nil,	l,	value}

			139	 	 l.insertFront(e)

			140	 	 return	e

			141	 }

			142	

			143	 //	PushBack	inserts	the	value	at	the	back	of	the	list	and	returns	a	new	Element	containing	the	value.

			144	 func	(l	*List)	PushBack(value	interface{})	*Element	{

			145	 	 e	:=	&Element{nil,	nil,	l,	value}

			146	 	 l.insertBack(e)

			147	 	 return	e

			148	 }

			149	

			150	 //	InsertBefore	inserts	the	value	immediately	before	mark	and	returns	a	new	Element	containing	the	value.

			151	 func	(l	*List)	InsertBefore(value	interface{},	mark	*Element)	*Element	{

			152	 	 if	mark.list	!=	l	{

			153	 	 	 return	nil

			154	 	 }

			155	 	 e	:=	&Element{nil,	nil,	l,	value}

			156	 	 l.insertBefore(e,	mark)

			157	 	 return	e

			158	 }

			159	

			160	 //	InsertAfter	inserts	the	value	immediately	after	mark	and	returns	a	new	Element	containing	the	value.

			161	 func	(l	*List)	InsertAfter(value	interface{},	mark	*Element)	*Element	{

			162	 	 if	mark.list	!=	l	{

			163	 	 	 return	nil

			164	 	 }

			165	 	 e	:=	&Element{nil,	nil,	l,	value}

			166	 	 l.insertAfter(e,	mark)

			167	 	 return	e

			168	 }

			169	

			170	 //	MoveToFront	moves	the	element	to	the	front	of	the	list.

			171	 func	(l	*List)	MoveToFront(e	*Element)	{

			172	 	 if	e.list	!=	l	||	l.front	==	e	{

			173	 	 	 return

			174	 	 }

			175	 	 l.remove(e)

			176	 	 l.insertFront(e)

			177	 }

			178	

			179	 //	MoveToBack	moves	the	element	to	the	back	of	the	list.

			180	 func	(l	*List)	MoveToBack(e	*Element)	{

			181	 	 if	e.list	!=	l	||	l.back	==	e	{

			182	 	 	 return

			183	 	 }

			184	 	 l.remove(e)

			185	 	 l.insertBack(e)

			186	 }

			187	

			188	 //	Len	returns	the	number	of	elements	in	the	list.

			189	 func	(l	*List)	Len()	int	{	return	l.len	}

			190	

			191	 //	PushBackList	inserts	each	element	of	ol	at	the	back	of	the	list.

			192	 func	(l	*List)	PushBackList(ol	*List)	{

			193	 	 last	:=	ol.Back()

			194	 	 for	e	:=	ol.Front();	e	!=	nil;	e	=	e.Next()	{

			195	 	 	 l.PushBack(e.Value)

			196	 	 	 if	e	==	last	{

			197	 	 	 	 break

			198	 	 	 }

			199	 	 }

			200	 }

			201	

			202	 //	PushFrontList	inserts	each	element	of	ol	at	the	front	of	the	list.	The	ordering	of	the	passed	list	is	preserved.

			203	 func	(l	*List)	PushFrontList(ol	*List)	{

			204	 	 first	:=	ol.Front()

			205	 	 for	e	:=	ol.Back();	e	!=	nil;	e	=	e.Prev()	{

			206	 	 	 l.PushFront(e.Value)

			207	 	 	 if	e	==	first	{

			208	 	 	 	 break

			209	 	 	 }

			210	 	 }

			211	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/container/ring/ring.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	ring	implements	operations	on	circular	lists.

					6	 package	ring

					7	

					8	 //	A	Ring	is	an	element	of	a	circular	list,	or	ring.

					9	 //	Rings	do	not	have	a	beginning	or	end;	a	pointer	to	any	ring	element

				10	 //	serves	as	reference	to	the	entire	ring.	Empty	rings	are	represented

				11	 //	as	nil	Ring	pointers.	The	zero	value	for	a	Ring	is	a	one-element

				12	 //	ring	with	a	nil	Value.

				13	 //

				14	 type	Ring	struct	{

				15	 	 next,	prev	*Ring

				16	 	 Value						interface{}	//	for	use	by	client;	untouched	by	this	library

				17	 }

				18	

				19	 func	(r	*Ring)	init()	*Ring	{

				20	 	 r.next	=	r

				21	 	 r.prev	=	r

				22	 	 return	r

				23	 }

				24	

				25	 //	Next	returns	the	next	ring	element.	r	must	not	be	empty.

				26	 func	(r	*Ring)	Next()	*Ring	{

				27	 	 if	r.next	==	nil	{

				28	 	 	 return	r.init()

				29	 	 }

				30	 	 return	r.next

				31	 }

				32	

				33	 //	Prev	returns	the	previous	ring	element.	r	must	not	be	empty.

				34	 func	(r	*Ring)	Prev()	*Ring	{

				35	 	 if	r.next	==	nil	{

				36	 	 	 return	r.init()

				37	 	 }

				38	 	 return	r.prev

				39	 }

				40	

				41	 //	Move	moves	n	%	r.Len()	elements	backward	(n	<	0)	or	forward	(n	>=	0)

				42	 //	in	the	ring	and	returns	that	ring	element.	r	must	not	be	empty.

				43	 //

				44	 func	(r	*Ring)	Move(n	int)	*Ring	{

				45	 	 if	r.next	==	nil	{

				46	 	 	 return	r.init()

				47	 	 }

				48	 	 switch	{

				49	 	 case	n	<	0:

				50	 	 	 for	;	n	<	0;	n++	{

				51	 	 	 	 r	=	r.prev

				52	 	 	 }

				53	 	 case	n	>	0:

				54	 	 	 for	;	n	>	0;	n--	{

				55	 	 	 	 r	=	r.next

				56	 	 	 }

				57	 	 }

				58	 	 return	r

				59	 }

				60	

				61	 //	New	creates	a	ring	of	n	elements.

				62	 func	New(n	int)	*Ring	{

				63	 	 if	n	<=	0	{

				64	 	 	 return	nil

				65	 	 }

				66	 	 r	:=	new(Ring)

				67	 	 p	:=	r

				68	 	 for	i	:=	1;	i	<	n;	i++	{

				69	 	 	 p.next	=	&Ring{prev:	p}

				70	 	 	 p	=	p.next

				71	 	 }

				72	 	 p.next	=	r

				73	 	 r.prev	=	p

				74	 	 return	r

				75	 }

				76	

				77	 //	Link	connects	ring	r	with	with	ring	s	such	that	r.Next()

				78	 //	becomes	s	and	returns	the	original	value	for	r.Next().

				79	 //	r	must	not	be	empty.

				80	 //

				81	 //	If	r	and	s	point	to	the	same	ring,	linking

				82	 //	them	removes	the	elements	between	r	and	s	from	the	ring.

				83	 //	The	removed	elements	form	a	subring	and	the	result	is	a

				84	 //	reference	to	that	subring	(if	no	elements	were	removed,

				85	 //	the	result	is	still	the	original	value	for	r.Next(),

				86	 //	and	not	nil).

				87	 //

				88	 //	If	r	and	s	point	to	different	rings,	linking

				89	 //	them	creates	a	single	ring	with	the	elements	of	s	inserted

				90	 //	after	r.	The	result	points	to	the	element	following	the

				91	 //	last	element	of	s	after	insertion.

				92	 //

				93	 func	(r	*Ring)	Link(s	*Ring)	*Ring	{

				94	 	 n	:=	r.Next()

				95	 	 if	s	!=	nil	{

				96	 	 	 p	:=	s.Prev()

				97	 	 	 //	Note:	Cannot	use	multiple	assignment	because

				98	 	 	 //	evaluation	order	of	LHS	is	not	specified.

				99	 	 	 r.next	=	s

			100	 	 	 s.prev	=	r

			101	 	 	 n.prev	=	p

			102	 	 	 p.next	=	n

			103	 	 }

			104	 	 return	n

			105	 }

			106	

			107	 //	Unlink	removes	n	%	r.Len()	elements	from	the	ring	r,	starting

			108	 //	at	r.Next().	If	n	%	r.Len()	==	0,	r	remains	unchanged.

			109	 //	The	result	is	the	removed	subring.	r	must	not	be	empty.

			110	 //

			111	 func	(r	*Ring)	Unlink(n	int)	*Ring	{

			112	 	 if	n	<=	0	{

			113	 	 	 return	nil

			114	 	 }

			115	 	 return	r.Link(r.Move(n	+	1))

			116	 }

			117	

			118	 //	Len	computes	the	number	of	elements	in	ring	r.

			119	 //	It	executes	in	time	proportional	to	the	number	of	elements.

			120	 //

			121	 func	(r	*Ring)	Len()	int	{

			122	 	 n	:=	0

			123	 	 if	r	!=	nil	{

			124	 	 	 n	=	1

			125	 	 	 for	p	:=	r.Next();	p	!=	r;	p	=	p.next	{

			126	 	 	 	 n++

			127	 	 	 }

			128	 	 }

			129	 	 return	n

			130	 }

			131	

			132	 //	Do	calls	function	f	on	each	element	of	the	ring,	in	forward	order.

			133	 //	The	behavior	of	Do	is	undefined	if	f	changes	*r.

			134	 func	(r	*Ring)	Do(f	func(interface{}))	{

			135	 	 if	r	!=	nil	{

			136	 	 	 f(r.Value)

			137	 	 	 for	p	:=	r.Next();	p	!=	r;	p	=	p.next	{

			138	 	 	 	 f(p.Value)

			139	 	 	 }

			140	 	 }

			141	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/crypto/crypto.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	crypto	collects	common	cryptographic	constants.

					6	 package	crypto

					7	

					8	 import	(

					9	 	 "hash"

				10)

				11	

				12	 //	Hash	identifies	a	cryptographic	hash	function	that	is	implemented	in	another

				13	 //	package.

				14	 type	Hash	uint

				15	

				16	 const	(

				17	 	 MD4							Hash	=	1	+	iota	//	import	code.google.com/p/go.crypto/md4

				18	 	 MD5																							//	import	crypto/md5

				19	 	 SHA1																						//	import	crypto/sha1

				20	 	 SHA224																				//	import	crypto/sha256

				21	 	 SHA256																				//	import	crypto/sha256

				22	 	 SHA384																				//	import	crypto/sha512

				23	 	 SHA512																				//	import	crypto/sha512

				24	 	 MD5SHA1																			//	no	implementation;	MD5+SHA1	used	for	TLS	RSA

				25	 	 RIPEMD160																	//	import	code.google.com/p/go.crypto/ripemd160

				26	 	 maxHash

				27)

				28	

				29	 var	digestSizes	=	[]uint8{

				30	 	 MD4:							16,

				31	 	 MD5:							16,

				32	 	 SHA1:						20,

				33	 	 SHA224:				28,

				34	 	 SHA256:				32,

				35	 	 SHA384:				48,

				36	 	 SHA512:				64,

				37	 	 MD5SHA1:			36,

				38	 	 RIPEMD160:	20,

				39	 }

				40	

				41	 //	Size	returns	the	length,	in	bytes,	of	a	digest	resulting	from	the	given	hash

				42	 //	function.	It	doesn't	require	that	the	hash	function	in	question	be	linked

				43	 //	into	the	program.

				44	 func	(h	Hash)	Size()	int	{

				45	 	 if	h	>	0	&&	h	<	maxHash	{

				46	 	 	 return	int(digestSizes[h])

				47	 	 }

				48	 	 panic("crypto:	Size	of	unknown	hash	function")

				49	 }

				50	

				51	 var	hashes	=	make([]func()	hash.Hash,	maxHash)

				52	

				53	 //	New	returns	a	new	hash.Hash	calculating	the	given	hash	function.	New	panics

				54	 //	if	the	hash	function	is	not	linked	into	the	binary.

				55	 func	(h	Hash)	New()	hash.Hash	{

				56	 	 if	h	>	0	&&	h	<	maxHash	{

				57	 	 	 f	:=	hashes[h]

				58	 	 	 if	f	!=	nil	{

				59	 	 	 	 return	f()

				60	 	 	 }

				61	 	 }

				62	 	 panic("crypto:	requested	hash	function	is	unavailable")

				63	 }

				64	

				65	 //	Available	reports	whether	the	given	hash	function	is	linked	into	the	binary.

				66	 func	(h	Hash)	Available()	bool	{

				67	 	 return	h	<	maxHash	&&	hashes[h]	!=	nil

				68	 }

				69	

				70	 //	RegisterHash	registers	a	function	that	returns	a	new	instance	of	the	given

				71	 //	hash	function.	This	is	intended	to	be	called	from	the	init	function	in

				72	 //	packages	that	implement	hash	functions.

				73	 func	RegisterHash(h	Hash,	f	func()	hash.Hash)	{

				74	 	 if	h	>=	maxHash	{

				75	 	 	 panic("crypto:	RegisterHash	of	unknown	hash	function")

				76	 	 }

				77	 	 hashes[h]	=	f

				78	 }

				79	

				80	 //	PrivateKey	represents	a	private	key	using	an	unspecified	algorithm.

				81	 type	PrivateKey	interface{}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/aes/block.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	This	Go	implementation	is	derived	in	part	from	the	reference

					6	 //	ANSI	C	implementation,	which	carries	the	following	notice:

					7	 //

					8	 //	 rijndael-alg-fst.c

					9	 //

				10	 //	 @version	3.0	(December	2000)

				11	 //

				12	 //	 Optimised	ANSI	C	code	for	the	Rijndael	cipher	(now	AES)

				13	 //

				14	 //	 @author	Vincent	Rijmen	<vincent.rijmen@esat.kuleuven.ac.be>

				15	 //	 @author	Antoon	Bosselaers	<antoon.bosselaers@esat.kuleuven.ac.be>

				16	 //	 @author	Paulo	Barreto	<paulo.barreto@terra.com.br>

				17	 //

				18	 //	 This	code	is	hereby	placed	in	the	public	domain.

				19	 //

				20	 //	 THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHORS	''AS	IS''	AND	ANY	EXPRESS

				21	 //	 OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED

				22	 //	 WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

				23	 //	 ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	AUTHORS	OR	CONTRIBUTORS	BE

				24	 //	 LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR

				25	 //	 CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF

				26	 //	 SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR

				27	 //	 BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,

				28	 //	 WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE

				29	 //	 OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,

				30	 //	 EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

				31	 //

				32	 //	See	FIPS	197	for	specification,	and	see	Daemen	and	Rijmen's	Rijndael	submission

				33	 //	for	implementation	details.

				34	 //	 http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf

				35	 //	 http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

				36	

				37	 package	aes

				38	

				39	 //	Encrypt	one	block	from	src	into	dst,	using	the	expanded	key	xk.

				40	 func	encryptBlock(xk	[]uint32,	dst,	src	[]byte)	{

				41	 	 var	s0,	s1,	s2,	s3,	t0,	t1,	t2,	t3	uint32

				42	

				43	 	 s0	=	uint32(src[0])<<24	|	uint32(src[1])<<16	|	uint32(src[2])<<8	|	uint32(src[3])

				44	 	 s1	=	uint32(src[4])<<24	|	uint32(src[5])<<16	|	uint32(src[6])<<8	|	uint32(src[7])

				45	 	 s2	=	uint32(src[8])<<24	|	uint32(src[9])<<16	|	uint32(src[10])<<8	|	uint32(src[11])

				46	 	 s3	=	uint32(src[12])<<24	|	uint32(src[13])<<16	|	uint32(src[14])<<8	|	uint32(src[15])

				47	

				48	 	 //	First	round	just	XORs	input	with	key.

				49	 	 s0	^=	xk[0]

				50	 	 s1	^=	xk[1]

				51	 	 s2	^=	xk[2]

				52	 	 s3	^=	xk[3]

				53	

				54	 	 //	Middle	rounds	shuffle	using	tables.

				55	 	 //	Number	of	rounds	is	set	by	length	of	expanded	key.

				56	 	 nr	:=	len(xk)/4	-	2	//	-	2:	one	above,	one	more	below

				57	 	 k	:=	4

				58	 	 for	r	:=	0;	r	<	nr;	r++	{

				59	 	 	 t0	=	xk[k+0]	^	te0[uint8(s0>>24)]	^	te1[uint8(s1>>16)]	^	te2[uint8(s2>>8)]	^	te3[uint8(s3)]

				60	 	 	 t1	=	xk[k+1]	^	te0[uint8(s1>>24)]	^	te1[uint8(s2>>16)]	^	te2[uint8(s3>>8)]	^	te3[uint8(s0)]

				61	 	 	 t2	=	xk[k+2]	^	te0[uint8(s2>>24)]	^	te1[uint8(s3>>16)]	^	te2[uint8(s0>>8)]	^	te3[uint8(s1)]

				62	 	 	 t3	=	xk[k+3]	^	te0[uint8(s3>>24)]	^	te1[uint8(s0>>16)]	^	te2[uint8(s1>>8)]	^	te3[uint8(s2)]

				63	 	 	 k	+=	4

				64	 	 	 s0,	s1,	s2,	s3	=	t0,	t1,	t2,	t3

				65	 	 }

				66	

				67	 	 //	Last	round	uses	s-box	directly	and	XORs	to	produce	output.

				68	 	 s0	=	uint32(sbox0[t0>>24])<<24	|	uint32(sbox0[t1>>16&0xff])<<16	|	uint32(sbox0[t2>>8&0xff])<<8	|	uint32(sbox0[t3&0xff])

				69	 	 s1	=	uint32(sbox0[t1>>24])<<24	|	uint32(sbox0[t2>>16&0xff])<<16	|	uint32(sbox0[t3>>8&0xff])<<8	|	uint32(sbox0[t0&0xff])

				70	 	 s2	=	uint32(sbox0[t2>>24])<<24	|	uint32(sbox0[t3>>16&0xff])<<16	|	uint32(sbox0[t0>>8&0xff])<<8	|	uint32(sbox0[t1&0xff])

				71	 	 s3	=	uint32(sbox0[t3>>24])<<24	|	uint32(sbox0[t0>>16&0xff])<<16	|	uint32(sbox0[t1>>8&0xff])<<8	|	uint32(sbox0[t2&0xff])

				72	

				73	 	 s0	^=	xk[k+0]

				74	 	 s1	^=	xk[k+1]

				75	 	 s2	^=	xk[k+2]

				76	 	 s3	^=	xk[k+3]

				77	

				78	 	 dst[0],	dst[1],	dst[2],	dst[3]	=	byte(s0>>24),	byte(s0>>16),	byte(s0>>8),	byte(s0)

				79	 	 dst[4],	dst[5],	dst[6],	dst[7]	=	byte(s1>>24),	byte(s1>>16),	byte(s1>>8),	byte(s1)

				80	 	 dst[8],	dst[9],	dst[10],	dst[11]	=	byte(s2>>24),	byte(s2>>16),	byte(s2>>8),	byte(s2)

				81	 	 dst[12],	dst[13],	dst[14],	dst[15]	=	byte(s3>>24),	byte(s3>>16),	byte(s3>>8),	byte(s3)

				82	 }

				83	

				84	 //	Decrypt	one	block	from	src	into	dst,	using	the	expanded	key	xk.

				85	 func	decryptBlock(xk	[]uint32,	dst,	src	[]byte)	{

				86	 	 var	s0,	s1,	s2,	s3,	t0,	t1,	t2,	t3	uint32

				87	

				88	 	 s0	=	uint32(src[0])<<24	|	uint32(src[1])<<16	|	uint32(src[2])<<8	|	uint32(src[3])

				89	 	 s1	=	uint32(src[4])<<24	|	uint32(src[5])<<16	|	uint32(src[6])<<8	|	uint32(src[7])

				90	 	 s2	=	uint32(src[8])<<24	|	uint32(src[9])<<16	|	uint32(src[10])<<8	|	uint32(src[11])

				91	 	 s3	=	uint32(src[12])<<24	|	uint32(src[13])<<16	|	uint32(src[14])<<8	|	uint32(src[15])

				92	

				93	 	 //	First	round	just	XORs	input	with	key.

				94	 	 s0	^=	xk[0]

				95	 	 s1	^=	xk[1]

				96	 	 s2	^=	xk[2]

				97	 	 s3	^=	xk[3]

				98	

				99	 	 //	Middle	rounds	shuffle	using	tables.

			100	 	 //	Number	of	rounds	is	set	by	length	of	expanded	key.

			101	 	 nr	:=	len(xk)/4	-	2	//	-	2:	one	above,	one	more	below

			102	 	 k	:=	4

			103	 	 for	r	:=	0;	r	<	nr;	r++	{

			104	 	 	 t0	=	xk[k+0]	^	td0[uint8(s0>>24)]	^	td1[uint8(s3>>16)]	^	td2[uint8(s2>>8)]	^	td3[uint8(s1)]

			105	 	 	 t1	=	xk[k+1]	^	td0[uint8(s1>>24)]	^	td1[uint8(s0>>16)]	^	td2[uint8(s3>>8)]	^	td3[uint8(s2)]

			106	 	 	 t2	=	xk[k+2]	^	td0[uint8(s2>>24)]	^	td1[uint8(s1>>16)]	^	td2[uint8(s0>>8)]	^	td3[uint8(s3)]

			107	 	 	 t3	=	xk[k+3]	^	td0[uint8(s3>>24)]	^	td1[uint8(s2>>16)]	^	td2[uint8(s1>>8)]	^	td3[uint8(s0)]

			108	 	 	 k	+=	4

			109	 	 	 s0,	s1,	s2,	s3	=	t0,	t1,	t2,	t3

			110	 	 }

			111	

			112	 	 //	Last	round	uses	s-box	directly	and	XORs	to	produce	output.

			113	 	 s0	=	uint32(sbox1[t0>>24])<<24	|	uint32(sbox1[t3>>16&0xff])<<16	|	uint32(sbox1[t2>>8&0xff])<<8	|	uint32(sbox1[t1&0xff])

			114	 	 s1	=	uint32(sbox1[t1>>24])<<24	|	uint32(sbox1[t0>>16&0xff])<<16	|	uint32(sbox1[t3>>8&0xff])<<8	|	uint32(sbox1[t2&0xff])

			115	 	 s2	=	uint32(sbox1[t2>>24])<<24	|	uint32(sbox1[t1>>16&0xff])<<16	|	uint32(sbox1[t0>>8&0xff])<<8	|	uint32(sbox1[t3&0xff])

			116	 	 s3	=	uint32(sbox1[t3>>24])<<24	|	uint32(sbox1[t2>>16&0xff])<<16	|	uint32(sbox1[t1>>8&0xff])<<8	|	uint32(sbox1[t0&0xff])

			117	

			118	 	 s0	^=	xk[k+0]

			119	 	 s1	^=	xk[k+1]

			120	 	 s2	^=	xk[k+2]

			121	 	 s3	^=	xk[k+3]

			122	

			123	 	 dst[0],	dst[1],	dst[2],	dst[3]	=	byte(s0>>24),	byte(s0>>16),	byte(s0>>8),	byte(s0)

			124	 	 dst[4],	dst[5],	dst[6],	dst[7]	=	byte(s1>>24),	byte(s1>>16),	byte(s1>>8),	byte(s1)

			125	 	 dst[8],	dst[9],	dst[10],	dst[11]	=	byte(s2>>24),	byte(s2>>16),	byte(s2>>8),	byte(s2)

			126	 	 dst[12],	dst[13],	dst[14],	dst[15]	=	byte(s3>>24),	byte(s3>>16),	byte(s3>>8),	byte(s3)

			127	 }

			128	

			129	 //	Apply	sbox0	to	each	byte	in	w.

			130	 func	subw(w	uint32)	uint32	{

			131	 	 return	uint32(sbox0[w>>24])<<24	|

			132	 	 	 uint32(sbox0[w>>16&0xff])<<16	|

			133	 	 	 uint32(sbox0[w>>8&0xff])<<8	|

			134	 	 	 uint32(sbox0[w&0xff])

			135	 }

			136	

			137	 //	Rotate

			138	 func	rotw(w	uint32)	uint32	{	return	w<<8	|	w>>24	}

			139	

			140	 //	Key	expansion	algorithm.		See	FIPS-197,	Figure	11.

			141	 //	Their	rcon[i]	is	our	powx[i-1]	<<	24.

			142	 func	expandKey(key	[]byte,	enc,	dec	[]uint32)	{

			143	 	 //	Encryption	key	setup.

			144	 	 var	i	int

			145	 	 nk	:=	len(key)	/	4

			146	 	 for	i	=	0;	i	<	nk;	i++	{

			147	 	 	 enc[i]	=	uint32(key[4*i])<<24	|	uint32(key[4*i+1])<<16	|	uint32(key[4*i+2])<<8	|	uint32(key[4*i+3])

			148	 	 }

			149	 	 for	;	i	<	len(enc);	i++	{

			150	 	 	 t	:=	enc[i-1]

			151	 	 	 if	i%nk	==	0	{

			152	 	 	 	 t	=	subw(rotw(t))	^	(uint32(powx[i/nk-1])	<<	24)

			153	 	 	 }	else	if	nk	>	6	&&	i%nk	==	4	{

			154	 	 	 	 t	=	subw(t)

			155	 	 	 }

			156	 	 	 enc[i]	=	enc[i-nk]	^	t

			157	 	 }

			158	

			159	 	 //	Derive	decryption	key	from	encryption	key.

			160	 	 //	Reverse	the	4-word	round	key	sets	from	enc	to	produce	dec.

			161	 	 //	All	sets	but	the	first	and	last	get	the	MixColumn	transform	applied.

			162	 	 if	dec	==	nil	{

			163	 	 	 return

			164	 	 }

			165	 	 n	:=	len(enc)

			166	 	 for	i	:=	0;	i	<	n;	i	+=	4	{

			167	 	 	 ei	:=	n	-	i	-	4

			168	 	 	 for	j	:=	0;	j	<	4;	j++	{

			169	 	 	 	 x	:=	enc[ei+j]

			170	 	 	 	 if	i	>	0	&&	i+4	<	n	{

			171	 	 	 	 	 x	=	td0[sbox0[x>>24]]	^	td1[sbox0[x>>16&0xff]]	^	td2[sbox0[x>>8&0xff]]	^	td3[sbox0[x&0xff]]

			172	 	 	 	 }

			173	 	 	 	 dec[i+j]	=	x

			174	 	 	 }

			175	 	 }

			176	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/aes/cipher.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	aes

					6	

					7	 import	(

					8	 	 "crypto/cipher"

					9	 	 "strconv"

				10)

				11	

				12	 //	The	AES	block	size	in	bytes.

				13	 const	BlockSize	=	16

				14	

				15	 //	A	cipher	is	an	instance	of	AES	encryption	using	a	particular	key.

				16	 type	aesCipher	struct	{

				17	 	 enc	[]uint32

				18	 	 dec	[]uint32

				19	 }

				20	

				21	 type	KeySizeError	int

				22	

				23	 func	(k	KeySizeError)	Error()	string	{

				24	 	 return	"crypto/aes:	invalid	key	size	"	+	strconv.Itoa(int(k))

				25	 }

				26	

				27	 //	NewCipher	creates	and	returns	a	new	cipher.Block.

				28	 //	The	key	argument	should	be	the	AES	key,

				29	 //	either	16,	24,	or	32	bytes	to	select

				30	 //	AES-128,	AES-192,	or	AES-256.

				31	 func	NewCipher(key	[]byte)	(cipher.Block,	error)	{

				32	 	 k	:=	len(key)

				33	 	 switch	k	{

				34	 	 default:

				35	 	 	 return	nil,	KeySizeError(k)

				36	 	 case	16,	24,	32:

				37	 	 	 break

				38	 	 }

				39	

				40	 	 n	:=	k	+	28

				41	 	 c	:=	&aesCipher{make([]uint32,	n),	make([]uint32,	n)}

				42	 	 expandKey(key,	c.enc,	c.dec)

				43	 	 return	c,	nil

				44	 }

				45	

				46	 func	(c	*aesCipher)	BlockSize()	int	{	return	BlockSize	}

				47	

				48	 func	(c	*aesCipher)	Encrypt(dst,	src	[]byte)	{	encryptBlock(c.enc,	dst,	src)	}

				49	

				50	 func	(c	*aesCipher)	Decrypt(dst,	src	[]byte)	{	decryptBlock(c.dec,	dst,	src)	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/aes/const.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	aes	implements	AES	encryption	(formerly	Rijndael),	as	defined	in

					6	 //	U.S.	Federal	Information	Processing	Standards	Publication	197.

					7	 package	aes

					8	

					9	 //	This	file	contains	AES	constants	-	8720	bytes	of	initialized	data.

				10	

				11	 //	http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf

				12	

				13	 //	AES	is	based	on	the	mathematical	behavior	of	binary	polynomials

				14	 //	(polynomials	over	GF(2))	modulo	the	irreducible	polynomial	x⁸	+	x⁴	+	x²	+	x	+	1.
				15	 //	Addition	of	these	binary	polynomials	corresponds	to	binary	xor.

				16	 //	Reducing	mod	poly	corresponds	to	binary	xor	with	poly	every

				17	 //	time	a	0x100	bit	appears.

				18	 const	poly	=	1<<8	|	1<<4	|	1<<3	|	1<<1	|	1<<0	//	x⁸	+	x⁴	+	x²	+	x	+	1
				19	

				20	 //	Powers	of	x	mod	poly	in	GF(2).

				21	 var	powx	=	[16]byte{

				22	 	 0x01,

				23	 	 0x02,

				24	 	 0x04,

				25	 	 0x08,

				26	 	 0x10,

				27	 	 0x20,

				28	 	 0x40,

				29	 	 0x80,

				30	 	 0x1b,

				31	 	 0x36,

				32	 	 0x6c,

				33	 	 0xd8,

				34	 	 0xab,

				35	 	 0x4d,

				36	 	 0x9a,

				37	 	 0x2f,

				38	 }

				39	

				40	 //	FIPS-197	Figure	7.	S-box	substitution	values	in	hexadecimal	format.

				41	 var	sbox0	=	[256]byte{

				42	 	 0x63,	0x7c,	0x77,	0x7b,	0xf2,	0x6b,	0x6f,	0xc5,	0x30,	0x01,	0x67,	0x2b,	0xfe,	0xd7,	0xab,	0x76,

				43	 	 0xca,	0x82,	0xc9,	0x7d,	0xfa,	0x59,	0x47,	0xf0,	0xad,	0xd4,	0xa2,	0xaf,	0x9c,	0xa4,	0x72,	0xc0,

				44	 	 0xb7,	0xfd,	0x93,	0x26,	0x36,	0x3f,	0xf7,	0xcc,	0x34,	0xa5,	0xe5,	0xf1,	0x71,	0xd8,	0x31,	0x15,

				45	 	 0x04,	0xc7,	0x23,	0xc3,	0x18,	0x96,	0x05,	0x9a,	0x07,	0x12,	0x80,	0xe2,	0xeb,	0x27,	0xb2,	0x75,

				46	 	 0x09,	0x83,	0x2c,	0x1a,	0x1b,	0x6e,	0x5a,	0xa0,	0x52,	0x3b,	0xd6,	0xb3,	0x29,	0xe3,	0x2f,	0x84,

				47	 	 0x53,	0xd1,	0x00,	0xed,	0x20,	0xfc,	0xb1,	0x5b,	0x6a,	0xcb,	0xbe,	0x39,	0x4a,	0x4c,	0x58,	0xcf,

				48	 	 0xd0,	0xef,	0xaa,	0xfb,	0x43,	0x4d,	0x33,	0x85,	0x45,	0xf9,	0x02,	0x7f,	0x50,	0x3c,	0x9f,	0xa8,

				49	 	 0x51,	0xa3,	0x40,	0x8f,	0x92,	0x9d,	0x38,	0xf5,	0xbc,	0xb6,	0xda,	0x21,	0x10,	0xff,	0xf3,	0xd2,

				50	 	 0xcd,	0x0c,	0x13,	0xec,	0x5f,	0x97,	0x44,	0x17,	0xc4,	0xa7,	0x7e,	0x3d,	0x64,	0x5d,	0x19,	0x73,

				51	 	 0x60,	0x81,	0x4f,	0xdc,	0x22,	0x2a,	0x90,	0x88,	0x46,	0xee,	0xb8,	0x14,	0xde,	0x5e,	0x0b,	0xdb,

				52	 	 0xe0,	0x32,	0x3a,	0x0a,	0x49,	0x06,	0x24,	0x5c,	0xc2,	0xd3,	0xac,	0x62,	0x91,	0x95,	0xe4,	0x79,

				53	 	 0xe7,	0xc8,	0x37,	0x6d,	0x8d,	0xd5,	0x4e,	0xa9,	0x6c,	0x56,	0xf4,	0xea,	0x65,	0x7a,	0xae,	0x08,

				54	 	 0xba,	0x78,	0x25,	0x2e,	0x1c,	0xa6,	0xb4,	0xc6,	0xe8,	0xdd,	0x74,	0x1f,	0x4b,	0xbd,	0x8b,	0x8a,

				55	 	 0x70,	0x3e,	0xb5,	0x66,	0x48,	0x03,	0xf6,	0x0e,	0x61,	0x35,	0x57,	0xb9,	0x86,	0xc1,	0x1d,	0x9e,

				56	 	 0xe1,	0xf8,	0x98,	0x11,	0x69,	0xd9,	0x8e,	0x94,	0x9b,	0x1e,	0x87,	0xe9,	0xce,	0x55,	0x28,	0xdf,

				57	 	 0x8c,	0xa1,	0x89,	0x0d,	0xbf,	0xe6,	0x42,	0x68,	0x41,	0x99,	0x2d,	0x0f,	0xb0,	0x54,	0xbb,	0x16,

				58	 }

				59	

				60	 //	FIPS-197	Figure	14.		Inverse	S-box	substitution	values	in	hexadecimal	format.

				61	 var	sbox1	=	[256]byte{

				62	 	 0x52,	0x09,	0x6a,	0xd5,	0x30,	0x36,	0xa5,	0x38,	0xbf,	0x40,	0xa3,	0x9e,	0x81,	0xf3,	0xd7,	0xfb,

				63	 	 0x7c,	0xe3,	0x39,	0x82,	0x9b,	0x2f,	0xff,	0x87,	0x34,	0x8e,	0x43,	0x44,	0xc4,	0xde,	0xe9,	0xcb,

				64	 	 0x54,	0x7b,	0x94,	0x32,	0xa6,	0xc2,	0x23,	0x3d,	0xee,	0x4c,	0x95,	0x0b,	0x42,	0xfa,	0xc3,	0x4e,

				65	 	 0x08,	0x2e,	0xa1,	0x66,	0x28,	0xd9,	0x24,	0xb2,	0x76,	0x5b,	0xa2,	0x49,	0x6d,	0x8b,	0xd1,	0x25,

				66	 	 0x72,	0xf8,	0xf6,	0x64,	0x86,	0x68,	0x98,	0x16,	0xd4,	0xa4,	0x5c,	0xcc,	0x5d,	0x65,	0xb6,	0x92,

				67	 	 0x6c,	0x70,	0x48,	0x50,	0xfd,	0xed,	0xb9,	0xda,	0x5e,	0x15,	0x46,	0x57,	0xa7,	0x8d,	0x9d,	0x84,

				68	 	 0x90,	0xd8,	0xab,	0x00,	0x8c,	0xbc,	0xd3,	0x0a,	0xf7,	0xe4,	0x58,	0x05,	0xb8,	0xb3,	0x45,	0x06,

				69	 	 0xd0,	0x2c,	0x1e,	0x8f,	0xca,	0x3f,	0x0f,	0x02,	0xc1,	0xaf,	0xbd,	0x03,	0x01,	0x13,	0x8a,	0x6b,

				70	 	 0x3a,	0x91,	0x11,	0x41,	0x4f,	0x67,	0xdc,	0xea,	0x97,	0xf2,	0xcf,	0xce,	0xf0,	0xb4,	0xe6,	0x73,

				71	 	 0x96,	0xac,	0x74,	0x22,	0xe7,	0xad,	0x35,	0x85,	0xe2,	0xf9,	0x37,	0xe8,	0x1c,	0x75,	0xdf,	0x6e,

				72	 	 0x47,	0xf1,	0x1a,	0x71,	0x1d,	0x29,	0xc5,	0x89,	0x6f,	0xb7,	0x62,	0x0e,	0xaa,	0x18,	0xbe,	0x1b,

				73	 	 0xfc,	0x56,	0x3e,	0x4b,	0xc6,	0xd2,	0x79,	0x20,	0x9a,	0xdb,	0xc0,	0xfe,	0x78,	0xcd,	0x5a,	0xf4,

				74	 	 0x1f,	0xdd,	0xa8,	0x33,	0x88,	0x07,	0xc7,	0x31,	0xb1,	0x12,	0x10,	0x59,	0x27,	0x80,	0xec,	0x5f,

				75	 	 0x60,	0x51,	0x7f,	0xa9,	0x19,	0xb5,	0x4a,	0x0d,	0x2d,	0xe5,	0x7a,	0x9f,	0x93,	0xc9,	0x9c,	0xef,

				76	 	 0xa0,	0xe0,	0x3b,	0x4d,	0xae,	0x2a,	0xf5,	0xb0,	0xc8,	0xeb,	0xbb,	0x3c,	0x83,	0x53,	0x99,	0x61,

				77	 	 0x17,	0x2b,	0x04,	0x7e,	0xba,	0x77,	0xd6,	0x26,	0xe1,	0x69,	0x14,	0x63,	0x55,	0x21,	0x0c,	0x7d,

				78	 }

				79	

				80	 //	Lookup	tables	for	encryption.

				81	 //	These	can	be	recomputed	by	adapting	the	tests	in	aes_test.go.

				82	

				83	 var	te0	=	[256]uint32{

				84	 	 0xc66363a5,	0xf87c7c84,	0xee777799,	0xf67b7b8d,	0xfff2f20d,	0xd66b6bbd,	0xde6f6fb1,	0x91c5c554,

				85	 	 0x60303050,	0x02010103,	0xce6767a9,	0x562b2b7d,	0xe7fefe19,	0xb5d7d762,	0x4dababe6,	0xec76769a,

				86	 	 0x8fcaca45,	0x1f82829d,	0x89c9c940,	0xfa7d7d87,	0xeffafa15,	0xb25959eb,	0x8e4747c9,	0xfbf0f00b,

				87	 	 0x41adadec,	0xb3d4d467,	0x5fa2a2fd,	0x45afafea,	0x239c9cbf,	0x53a4a4f7,	0xe4727296,	0x9bc0c05b,

				88	 	 0x75b7b7c2,	0xe1fdfd1c,	0x3d9393ae,	0x4c26266a,	0x6c36365a,	0x7e3f3f41,	0xf5f7f702,	0x83cccc4f,

				89	 	 0x6834345c,	0x51a5a5f4,	0xd1e5e534,	0xf9f1f108,	0xe2717193,	0xabd8d873,	0x62313153,	0x2a15153f,

				90	 	 0x0804040c,	0x95c7c752,	0x46232365,	0x9dc3c35e,	0x30181828,	0x379696a1,	0x0a05050f,	0x2f9a9ab5,

				91	 	 0x0e070709,	0x24121236,	0x1b80809b,	0xdfe2e23d,	0xcdebeb26,	0x4e272769,	0x7fb2b2cd,	0xea75759f,

				92	 	 0x1209091b,	0x1d83839e,	0x582c2c74,	0x341a1a2e,	0x361b1b2d,	0xdc6e6eb2,	0xb45a5aee,	0x5ba0a0fb,

				93	 	 0xa45252f6,	0x763b3b4d,	0xb7d6d661,	0x7db3b3ce,	0x5229297b,	0xdde3e33e,	0x5e2f2f71,	0x13848497,

				94	 	 0xa65353f5,	0xb9d1d168,	0x00000000,	0xc1eded2c,	0x40202060,	0xe3fcfc1f,	0x79b1b1c8,	0xb65b5bed,

				95	 	 0xd46a6abe,	0x8dcbcb46,	0x67bebed9,	0x7239394b,	0x944a4ade,	0x984c4cd4,	0xb05858e8,	0x85cfcf4a,

				96	 	 0xbbd0d06b,	0xc5efef2a,	0x4faaaae5,	0xedfbfb16,	0x864343c5,	0x9a4d4dd7,	0x66333355,	0x11858594,

				97	 	 0x8a4545cf,	0xe9f9f910,	0x04020206,	0xfe7f7f81,	0xa05050f0,	0x783c3c44,	0x259f9fba,	0x4ba8a8e3,

				98	 	 0xa25151f3,	0x5da3a3fe,	0x804040c0,	0x058f8f8a,	0x3f9292ad,	0x219d9dbc,	0x70383848,	0xf1f5f504,

				99	 	 0x63bcbcdf,	0x77b6b6c1,	0xafdada75,	0x42212163,	0x20101030,	0xe5ffff1a,	0xfdf3f30e,	0xbfd2d26d,

			100	 	 0x81cdcd4c,	0x180c0c14,	0x26131335,	0xc3ecec2f,	0xbe5f5fe1,	0x359797a2,	0x884444cc,	0x2e171739,

			101	 	 0x93c4c457,	0x55a7a7f2,	0xfc7e7e82,	0x7a3d3d47,	0xc86464ac,	0xba5d5de7,	0x3219192b,	0xe6737395,

			102	 	 0xc06060a0,	0x19818198,	0x9e4f4fd1,	0xa3dcdc7f,	0x44222266,	0x542a2a7e,	0x3b9090ab,	0x0b888883,

			103	 	 0x8c4646ca,	0xc7eeee29,	0x6bb8b8d3,	0x2814143c,	0xa7dede79,	0xbc5e5ee2,	0x160b0b1d,	0xaddbdb76,

			104	 	 0xdbe0e03b,	0x64323256,	0x743a3a4e,	0x140a0a1e,	0x924949db,	0x0c06060a,	0x4824246c,	0xb85c5ce4,

			105	 	 0x9fc2c25d,	0xbdd3d36e,	0x43acacef,	0xc46262a6,	0x399191a8,	0x319595a4,	0xd3e4e437,	0xf279798b,

			106	 	 0xd5e7e732,	0x8bc8c843,	0x6e373759,	0xda6d6db7,	0x018d8d8c,	0xb1d5d564,	0x9c4e4ed2,	0x49a9a9e0,

			107	 	 0xd86c6cb4,	0xac5656fa,	0xf3f4f407,	0xcfeaea25,	0xca6565af,	0xf47a7a8e,	0x47aeaee9,	0x10080818,

			108	 	 0x6fbabad5,	0xf0787888,	0x4a25256f,	0x5c2e2e72,	0x381c1c24,	0x57a6a6f1,	0x73b4b4c7,	0x97c6c651,

			109	 	 0xcbe8e823,	0xa1dddd7c,	0xe874749c,	0x3e1f1f21,	0x964b4bdd,	0x61bdbddc,	0x0d8b8b86,	0x0f8a8a85,

			110	 	 0xe0707090,	0x7c3e3e42,	0x71b5b5c4,	0xcc6666aa,	0x904848d8,	0x06030305,	0xf7f6f601,	0x1c0e0e12,

			111	 	 0xc26161a3,	0x6a35355f,	0xae5757f9,	0x69b9b9d0,	0x17868691,	0x99c1c158,	0x3a1d1d27,	0x279e9eb9,

			112	 	 0xd9e1e138,	0xebf8f813,	0x2b9898b3,	0x22111133,	0xd26969bb,	0xa9d9d970,	0x078e8e89,	0x339494a7,

			113	 	 0x2d9b9bb6,	0x3c1e1e22,	0x15878792,	0xc9e9e920,	0x87cece49,	0xaa5555ff,	0x50282878,	0xa5dfdf7a,

			114	 	 0x038c8c8f,	0x59a1a1f8,	0x09898980,	0x1a0d0d17,	0x65bfbfda,	0xd7e6e631,	0x844242c6,	0xd06868b8,

			115	 	 0x824141c3,	0x299999b0,	0x5a2d2d77,	0x1e0f0f11,	0x7bb0b0cb,	0xa85454fc,	0x6dbbbbd6,	0x2c16163a,

			116	 }

			117	 var	te1	=	[256]uint32{

			118	 	 0xa5c66363,	0x84f87c7c,	0x99ee7777,	0x8df67b7b,	0x0dfff2f2,	0xbdd66b6b,	0xb1de6f6f,	0x5491c5c5,

			119	 	 0x50603030,	0x03020101,	0xa9ce6767,	0x7d562b2b,	0x19e7fefe,	0x62b5d7d7,	0xe64dabab,	0x9aec7676,

			120	 	 0x458fcaca,	0x9d1f8282,	0x4089c9c9,	0x87fa7d7d,	0x15effafa,	0xebb25959,	0xc98e4747,	0x0bfbf0f0,

			121	 	 0xec41adad,	0x67b3d4d4,	0xfd5fa2a2,	0xea45afaf,	0xbf239c9c,	0xf753a4a4,	0x96e47272,	0x5b9bc0c0,

			122	 	 0xc275b7b7,	0x1ce1fdfd,	0xae3d9393,	0x6a4c2626,	0x5a6c3636,	0x417e3f3f,	0x02f5f7f7,	0x4f83cccc,

			123	 	 0x5c683434,	0xf451a5a5,	0x34d1e5e5,	0x08f9f1f1,	0x93e27171,	0x73abd8d8,	0x53623131,	0x3f2a1515,

			124	 	 0x0c080404,	0x5295c7c7,	0x65462323,	0x5e9dc3c3,	0x28301818,	0xa1379696,	0x0f0a0505,	0xb52f9a9a,

			125	 	 0x090e0707,	0x36241212,	0x9b1b8080,	0x3ddfe2e2,	0x26cdebeb,	0x694e2727,	0xcd7fb2b2,	0x9fea7575,

			126	 	 0x1b120909,	0x9e1d8383,	0x74582c2c,	0x2e341a1a,	0x2d361b1b,	0xb2dc6e6e,	0xeeb45a5a,	0xfb5ba0a0,

			127	 	 0xf6a45252,	0x4d763b3b,	0x61b7d6d6,	0xce7db3b3,	0x7b522929,	0x3edde3e3,	0x715e2f2f,	0x97138484,

			128	 	 0xf5a65353,	0x68b9d1d1,	0x00000000,	0x2cc1eded,	0x60402020,	0x1fe3fcfc,	0xc879b1b1,	0xedb65b5b,

			129	 	 0xbed46a6a,	0x468dcbcb,	0xd967bebe,	0x4b723939,	0xde944a4a,	0xd4984c4c,	0xe8b05858,	0x4a85cfcf,

			130	 	 0x6bbbd0d0,	0x2ac5efef,	0xe54faaaa,	0x16edfbfb,	0xc5864343,	0xd79a4d4d,	0x55663333,	0x94118585,

			131	 	 0xcf8a4545,	0x10e9f9f9,	0x06040202,	0x81fe7f7f,	0xf0a05050,	0x44783c3c,	0xba259f9f,	0xe34ba8a8,

			132	 	 0xf3a25151,	0xfe5da3a3,	0xc0804040,	0x8a058f8f,	0xad3f9292,	0xbc219d9d,	0x48703838,	0x04f1f5f5,

			133	 	 0xdf63bcbc,	0xc177b6b6,	0x75afdada,	0x63422121,	0x30201010,	0x1ae5ffff,	0x0efdf3f3,	0x6dbfd2d2,

			134	 	 0x4c81cdcd,	0x14180c0c,	0x35261313,	0x2fc3ecec,	0xe1be5f5f,	0xa2359797,	0xcc884444,	0x392e1717,

			135	 	 0x5793c4c4,	0xf255a7a7,	0x82fc7e7e,	0x477a3d3d,	0xacc86464,	0xe7ba5d5d,	0x2b321919,	0x95e67373,

			136	 	 0xa0c06060,	0x98198181,	0xd19e4f4f,	0x7fa3dcdc,	0x66442222,	0x7e542a2a,	0xab3b9090,	0x830b8888,

			137	 	 0xca8c4646,	0x29c7eeee,	0xd36bb8b8,	0x3c281414,	0x79a7dede,	0xe2bc5e5e,	0x1d160b0b,	0x76addbdb,

			138	 	 0x3bdbe0e0,	0x56643232,	0x4e743a3a,	0x1e140a0a,	0xdb924949,	0x0a0c0606,	0x6c482424,	0xe4b85c5c,

			139	 	 0x5d9fc2c2,	0x6ebdd3d3,	0xef43acac,	0xa6c46262,	0xa8399191,	0xa4319595,	0x37d3e4e4,	0x8bf27979,

			140	 	 0x32d5e7e7,	0x438bc8c8,	0x596e3737,	0xb7da6d6d,	0x8c018d8d,	0x64b1d5d5,	0xd29c4e4e,	0xe049a9a9,

			141	 	 0xb4d86c6c,	0xfaac5656,	0x07f3f4f4,	0x25cfeaea,	0xafca6565,	0x8ef47a7a,	0xe947aeae,	0x18100808,

			142	 	 0xd56fbaba,	0x88f07878,	0x6f4a2525,	0x725c2e2e,	0x24381c1c,	0xf157a6a6,	0xc773b4b4,	0x5197c6c6,

			143	 	 0x23cbe8e8,	0x7ca1dddd,	0x9ce87474,	0x213e1f1f,	0xdd964b4b,	0xdc61bdbd,	0x860d8b8b,	0x850f8a8a,

			144	 	 0x90e07070,	0x427c3e3e,	0xc471b5b5,	0xaacc6666,	0xd8904848,	0x05060303,	0x01f7f6f6,	0x121c0e0e,

			145	 	 0xa3c26161,	0x5f6a3535,	0xf9ae5757,	0xd069b9b9,	0x91178686,	0x5899c1c1,	0x273a1d1d,	0xb9279e9e,

			146	 	 0x38d9e1e1,	0x13ebf8f8,	0xb32b9898,	0x33221111,	0xbbd26969,	0x70a9d9d9,	0x89078e8e,	0xa7339494,

			147	 	 0xb62d9b9b,	0x223c1e1e,	0x92158787,	0x20c9e9e9,	0x4987cece,	0xffaa5555,	0x78502828,	0x7aa5dfdf,

			148	 	 0x8f038c8c,	0xf859a1a1,	0x80098989,	0x171a0d0d,	0xda65bfbf,	0x31d7e6e6,	0xc6844242,	0xb8d06868,

			149	 	 0xc3824141,	0xb0299999,	0x775a2d2d,	0x111e0f0f,	0xcb7bb0b0,	0xfca85454,	0xd66dbbbb,	0x3a2c1616,

			150	 }

			151	 var	te2	=	[256]uint32{

			152	 	 0x63a5c663,	0x7c84f87c,	0x7799ee77,	0x7b8df67b,	0xf20dfff2,	0x6bbdd66b,	0x6fb1de6f,	0xc55491c5,

			153	 	 0x30506030,	0x01030201,	0x67a9ce67,	0x2b7d562b,	0xfe19e7fe,	0xd762b5d7,	0xabe64dab,	0x769aec76,

			154	 	 0xca458fca,	0x829d1f82,	0xc94089c9,	0x7d87fa7d,	0xfa15effa,	0x59ebb259,	0x47c98e47,	0xf00bfbf0,

			155	 	 0xadec41ad,	0xd467b3d4,	0xa2fd5fa2,	0xafea45af,	0x9cbf239c,	0xa4f753a4,	0x7296e472,	0xc05b9bc0,

			156	 	 0xb7c275b7,	0xfd1ce1fd,	0x93ae3d93,	0x266a4c26,	0x365a6c36,	0x3f417e3f,	0xf702f5f7,	0xcc4f83cc,

			157	 	 0x345c6834,	0xa5f451a5,	0xe534d1e5,	0xf108f9f1,	0x7193e271,	0xd873abd8,	0x31536231,	0x153f2a15,

			158	 	 0x040c0804,	0xc75295c7,	0x23654623,	0xc35e9dc3,	0x18283018,	0x96a13796,	0x050f0a05,	0x9ab52f9a,

			159	 	 0x07090e07,	0x12362412,	0x809b1b80,	0xe23ddfe2,	0xeb26cdeb,	0x27694e27,	0xb2cd7fb2,	0x759fea75,

			160	 	 0x091b1209,	0x839e1d83,	0x2c74582c,	0x1a2e341a,	0x1b2d361b,	0x6eb2dc6e,	0x5aeeb45a,	0xa0fb5ba0,

			161	 	 0x52f6a452,	0x3b4d763b,	0xd661b7d6,	0xb3ce7db3,	0x297b5229,	0xe33edde3,	0x2f715e2f,	0x84971384,

			162	 	 0x53f5a653,	0xd168b9d1,	0x00000000,	0xed2cc1ed,	0x20604020,	0xfc1fe3fc,	0xb1c879b1,	0x5bedb65b,

			163	 	 0x6abed46a,	0xcb468dcb,	0xbed967be,	0x394b7239,	0x4ade944a,	0x4cd4984c,	0x58e8b058,	0xcf4a85cf,

			164	 	 0xd06bbbd0,	0xef2ac5ef,	0xaae54faa,	0xfb16edfb,	0x43c58643,	0x4dd79a4d,	0x33556633,	0x85941185,

			165	 	 0x45cf8a45,	0xf910e9f9,	0x02060402,	0x7f81fe7f,	0x50f0a050,	0x3c44783c,	0x9fba259f,	0xa8e34ba8,

			166	 	 0x51f3a251,	0xa3fe5da3,	0x40c08040,	0x8f8a058f,	0x92ad3f92,	0x9dbc219d,	0x38487038,	0xf504f1f5,

			167	 	 0xbcdf63bc,	0xb6c177b6,	0xda75afda,	0x21634221,	0x10302010,	0xff1ae5ff,	0xf30efdf3,	0xd26dbfd2,

			168	 	 0xcd4c81cd,	0x0c14180c,	0x13352613,	0xec2fc3ec,	0x5fe1be5f,	0x97a23597,	0x44cc8844,	0x17392e17,

			169	 	 0xc45793c4,	0xa7f255a7,	0x7e82fc7e,	0x3d477a3d,	0x64acc864,	0x5de7ba5d,	0x192b3219,	0x7395e673,

			170	 	 0x60a0c060,	0x81981981,	0x4fd19e4f,	0xdc7fa3dc,	0x22664422,	0x2a7e542a,	0x90ab3b90,	0x88830b88,

			171	 	 0x46ca8c46,	0xee29c7ee,	0xb8d36bb8,	0x143c2814,	0xde79a7de,	0x5ee2bc5e,	0x0b1d160b,	0xdb76addb,

			172	 	 0xe03bdbe0,	0x32566432,	0x3a4e743a,	0x0a1e140a,	0x49db9249,	0x060a0c06,	0x246c4824,	0x5ce4b85c,

			173	 	 0xc25d9fc2,	0xd36ebdd3,	0xacef43ac,	0x62a6c462,	0x91a83991,	0x95a43195,	0xe437d3e4,	0x798bf279,

			174	 	 0xe732d5e7,	0xc8438bc8,	0x37596e37,	0x6db7da6d,	0x8d8c018d,	0xd564b1d5,	0x4ed29c4e,	0xa9e049a9,

			175	 	 0x6cb4d86c,	0x56faac56,	0xf407f3f4,	0xea25cfea,	0x65afca65,	0x7a8ef47a,	0xaee947ae,	0x08181008,

			176	 	 0xbad56fba,	0x7888f078,	0x256f4a25,	0x2e725c2e,	0x1c24381c,	0xa6f157a6,	0xb4c773b4,	0xc65197c6,

			177	 	 0xe823cbe8,	0xdd7ca1dd,	0x749ce874,	0x1f213e1f,	0x4bdd964b,	0xbddc61bd,	0x8b860d8b,	0x8a850f8a,

			178	 	 0x7090e070,	0x3e427c3e,	0xb5c471b5,	0x66aacc66,	0x48d89048,	0x03050603,	0xf601f7f6,	0x0e121c0e,

			179	 	 0x61a3c261,	0x355f6a35,	0x57f9ae57,	0xb9d069b9,	0x86911786,	0xc15899c1,	0x1d273a1d,	0x9eb9279e,

			180	 	 0xe138d9e1,	0xf813ebf8,	0x98b32b98,	0x11332211,	0x69bbd269,	0xd970a9d9,	0x8e89078e,	0x94a73394,

			181	 	 0x9bb62d9b,	0x1e223c1e,	0x87921587,	0xe920c9e9,	0xce4987ce,	0x55ffaa55,	0x28785028,	0xdf7aa5df,

			182	 	 0x8c8f038c,	0xa1f859a1,	0x89800989,	0x0d171a0d,	0xbfda65bf,	0xe631d7e6,	0x42c68442,	0x68b8d068,

			183	 	 0x41c38241,	0x99b02999,	0x2d775a2d,	0x0f111e0f,	0xb0cb7bb0,	0x54fca854,	0xbbd66dbb,	0x163a2c16,

			184	 }

			185	 var	te3	=	[256]uint32{

			186	 	 0x6363a5c6,	0x7c7c84f8,	0x777799ee,	0x7b7b8df6,	0xf2f20dff,	0x6b6bbdd6,	0x6f6fb1de,	0xc5c55491,

			187	 	 0x30305060,	0x01010302,	0x6767a9ce,	0x2b2b7d56,	0xfefe19e7,	0xd7d762b5,	0xababe64d,	0x76769aec,

			188	 	 0xcaca458f,	0x82829d1f,	0xc9c94089,	0x7d7d87fa,	0xfafa15ef,	0x5959ebb2,	0x4747c98e,	0xf0f00bfb,

			189	 	 0xadadec41,	0xd4d467b3,	0xa2a2fd5f,	0xafafea45,	0x9c9cbf23,	0xa4a4f753,	0x727296e4,	0xc0c05b9b,

			190	 	 0xb7b7c275,	0xfdfd1ce1,	0x9393ae3d,	0x26266a4c,	0x36365a6c,	0x3f3f417e,	0xf7f702f5,	0xcccc4f83,

			191	 	 0x34345c68,	0xa5a5f451,	0xe5e534d1,	0xf1f108f9,	0x717193e2,	0xd8d873ab,	0x31315362,	0x15153f2a,

			192	 	 0x04040c08,	0xc7c75295,	0x23236546,	0xc3c35e9d,	0x18182830,	0x9696a137,	0x05050f0a,	0x9a9ab52f,

			193	 	 0x0707090e,	0x12123624,	0x80809b1b,	0xe2e23ddf,	0xebeb26cd,	0x2727694e,	0xb2b2cd7f,	0x75759fea,

			194	 	 0x09091b12,	0x83839e1d,	0x2c2c7458,	0x1a1a2e34,	0x1b1b2d36,	0x6e6eb2dc,	0x5a5aeeb4,	0xa0a0fb5b,

			195	 	 0x5252f6a4,	0x3b3b4d76,	0xd6d661b7,	0xb3b3ce7d,	0x29297b52,	0xe3e33edd,	0x2f2f715e,	0x84849713,

			196	 	 0x5353f5a6,	0xd1d168b9,	0x00000000,	0xeded2cc1,	0x20206040,	0xfcfc1fe3,	0xb1b1c879,	0x5b5bedb6,

			197	 	 0x6a6abed4,	0xcbcb468d,	0xbebed967,	0x39394b72,	0x4a4ade94,	0x4c4cd498,	0x5858e8b0,	0xcfcf4a85,

			198	 	 0xd0d06bbb,	0xefef2ac5,	0xaaaae54f,	0xfbfb16ed,	0x4343c586,	0x4d4dd79a,	0x33335566,	0x85859411,

			199	 	 0x4545cf8a,	0xf9f910e9,	0x02020604,	0x7f7f81fe,	0x5050f0a0,	0x3c3c4478,	0x9f9fba25,	0xa8a8e34b,

			200	 	 0x5151f3a2,	0xa3a3fe5d,	0x4040c080,	0x8f8f8a05,	0x9292ad3f,	0x9d9dbc21,	0x38384870,	0xf5f504f1,

			201	 	 0xbcbcdf63,	0xb6b6c177,	0xdada75af,	0x21216342,	0x10103020,	0xffff1ae5,	0xf3f30efd,	0xd2d26dbf,

			202	 	 0xcdcd4c81,	0x0c0c1418,	0x13133526,	0xecec2fc3,	0x5f5fe1be,	0x9797a235,	0x4444cc88,	0x1717392e,

			203	 	 0xc4c45793,	0xa7a7f255,	0x7e7e82fc,	0x3d3d477a,	0x6464acc8,	0x5d5de7ba,	0x19192b32,	0x737395e6,

			204	 	 0x6060a0c0,	0x81819819,	0x4f4fd19e,	0xdcdc7fa3,	0x22226644,	0x2a2a7e54,	0x9090ab3b,	0x8888830b,

			205	 	 0x4646ca8c,	0xeeee29c7,	0xb8b8d36b,	0x14143c28,	0xdede79a7,	0x5e5ee2bc,	0x0b0b1d16,	0xdbdb76ad,

			206	 	 0xe0e03bdb,	0x32325664,	0x3a3a4e74,	0x0a0a1e14,	0x4949db92,	0x06060a0c,	0x24246c48,	0x5c5ce4b8,

			207	 	 0xc2c25d9f,	0xd3d36ebd,	0xacacef43,	0x6262a6c4,	0x9191a839,	0x9595a431,	0xe4e437d3,	0x79798bf2,

			208	 	 0xe7e732d5,	0xc8c8438b,	0x3737596e,	0x6d6db7da,	0x8d8d8c01,	0xd5d564b1,	0x4e4ed29c,	0xa9a9e049,

			209	 	 0x6c6cb4d8,	0x5656faac,	0xf4f407f3,	0xeaea25cf,	0x6565afca,	0x7a7a8ef4,	0xaeaee947,	0x08081810,

			210	 	 0xbabad56f,	0x787888f0,	0x25256f4a,	0x2e2e725c,	0x1c1c2438,	0xa6a6f157,	0xb4b4c773,	0xc6c65197,

			211	 	 0xe8e823cb,	0xdddd7ca1,	0x74749ce8,	0x1f1f213e,	0x4b4bdd96,	0xbdbddc61,	0x8b8b860d,	0x8a8a850f,

			212	 	 0x707090e0,	0x3e3e427c,	0xb5b5c471,	0x6666aacc,	0x4848d890,	0x03030506,	0xf6f601f7,	0x0e0e121c,

			213	 	 0x6161a3c2,	0x35355f6a,	0x5757f9ae,	0xb9b9d069,	0x86869117,	0xc1c15899,	0x1d1d273a,	0x9e9eb927,

			214	 	 0xe1e138d9,	0xf8f813eb,	0x9898b32b,	0x11113322,	0x6969bbd2,	0xd9d970a9,	0x8e8e8907,	0x9494a733,

			215	 	 0x9b9bb62d,	0x1e1e223c,	0x87879215,	0xe9e920c9,	0xcece4987,	0x5555ffaa,	0x28287850,	0xdfdf7aa5,

			216	 	 0x8c8c8f03,	0xa1a1f859,	0x89898009,	0x0d0d171a,	0xbfbfda65,	0xe6e631d7,	0x4242c684,	0x6868b8d0,

			217	 	 0x4141c382,	0x9999b029,	0x2d2d775a,	0x0f0f111e,	0xb0b0cb7b,	0x5454fca8,	0xbbbbd66d,	0x16163a2c,

			218	 }

			219	

			220	 //	Lookup	tables	for	decryption.

			221	 //	These	can	be	recomputed	by	adapting	the	tests	in	aes_test.go.

			222	

			223	 var	td0	=	[256]uint32{

			224	 	 0x51f4a750,	0x7e416553,	0x1a17a4c3,	0x3a275e96,	0x3bab6bcb,	0x1f9d45f1,	0xacfa58ab,	0x4be30393,

			225	 	 0x2030fa55,	0xad766df6,	0x88cc7691,	0xf5024c25,	0x4fe5d7fc,	0xc52acbd7,	0x26354480,	0xb562a38f,

			226	 	 0xdeb15a49,	0x25ba1b67,	0x45ea0e98,	0x5dfec0e1,	0xc32f7502,	0x814cf012,	0x8d4697a3,	0x6bd3f9c6,

			227	 	 0x038f5fe7,	0x15929c95,	0xbf6d7aeb,	0x955259da,	0xd4be832d,	0x587421d3,	0x49e06929,	0x8ec9c844,

			228	 	 0x75c2896a,	0xf48e7978,	0x99583e6b,	0x27b971dd,	0xbee14fb6,	0xf088ad17,	0xc920ac66,	0x7dce3ab4,

			229	 	 0x63df4a18,	0xe51a3182,	0x97513360,	0x62537f45,	0xb16477e0,	0xbb6bae84,	0xfe81a01c,	0xf9082b94,

			230	 	 0x70486858,	0x8f45fd19,	0x94de6c87,	0x527bf8b7,	0xab73d323,	0x724b02e2,	0xe31f8f57,	0x6655ab2a,

			231	 	 0xb2eb2807,	0x2fb5c203,	0x86c57b9a,	0xd33708a5,	0x302887f2,	0x23bfa5b2,	0x02036aba,	0xed16825c,

			232	 	 0x8acf1c2b,	0xa779b492,	0xf307f2f0,	0x4e69e2a1,	0x65daf4cd,	0x0605bed5,	0xd134621f,	0xc4a6fe8a,

			233	 	 0x342e539d,	0xa2f355a0,	0x058ae132,	0xa4f6eb75,	0x0b83ec39,	0x4060efaa,	0x5e719f06,	0xbd6e1051,

			234	 	 0x3e218af9,	0x96dd063d,	0xdd3e05ae,	0x4de6bd46,	0x91548db5,	0x71c45d05,	0x0406d46f,	0x605015ff,

			235	 	 0x1998fb24,	0xd6bde997,	0x894043cc,	0x67d99e77,	0xb0e842bd,	0x07898b88,	0xe7195b38,	0x79c8eedb,

			236	 	 0xa17c0a47,	0x7c420fe9,	0xf8841ec9,	0x00000000,	0x09808683,	0x322bed48,	0x1e1170ac,	0x6c5a724e,

			237	 	 0xfd0efffb,	0x0f853856,	0x3daed51e,	0x362d3927,	0x0a0fd964,	0x685ca621,	0x9b5b54d1,	0x24362e3a,

			238	 	 0x0c0a67b1,	0x9357e70f,	0xb4ee96d2,	0x1b9b919e,	0x80c0c54f,	0x61dc20a2,	0x5a774b69,	0x1c121a16,

			239	 	 0xe293ba0a,	0xc0a02ae5,	0x3c22e043,	0x121b171d,	0x0e090d0b,	0xf28bc7ad,	0x2db6a8b9,	0x141ea9c8,

			240	 	 0x57f11985,	0xaf75074c,	0xee99ddbb,	0xa37f60fd,	0xf701269f,	0x5c72f5bc,	0x44663bc5,	0x5bfb7e34,

			241	 	 0x8b432976,	0xcb23c6dc,	0xb6edfc68,	0xb8e4f163,	0xd731dcca,	0x42638510,	0x13972240,	0x84c61120,

			242	 	 0x854a247d,	0xd2bb3df8,	0xaef93211,	0xc729a16d,	0x1d9e2f4b,	0xdcb230f3,	0x0d8652ec,	0x77c1e3d0,

			243	 	 0x2bb3166c,	0xa970b999,	0x119448fa,	0x47e96422,	0xa8fc8cc4,	0xa0f03f1a,	0x567d2cd8,	0x223390ef,

			244	 	 0x87494ec7,	0xd938d1c1,	0x8ccaa2fe,	0x98d40b36,	0xa6f581cf,	0xa57ade28,	0xdab78e26,	0x3fadbfa4,

			245	 	 0x2c3a9de4,	0x5078920d,	0x6a5fcc9b,	0x547e4662,	0xf68d13c2,	0x90d8b8e8,	0x2e39f75e,	0x82c3aff5,

			246	 	 0x9f5d80be,	0x69d0937c,	0x6fd52da9,	0xcf2512b3,	0xc8ac993b,	0x10187da7,	0xe89c636e,	0xdb3bbb7b,

			247	 	 0xcd267809,	0x6e5918f4,	0xec9ab701,	0x834f9aa8,	0xe6956e65,	0xaaffe67e,	0x21bccf08,	0xef15e8e6,

			248	 	 0xbae79bd9,	0x4a6f36ce,	0xea9f09d4,	0x29b07cd6,	0x31a4b2af,	0x2a3f2331,	0xc6a59430,	0x35a266c0,

			249	 	 0x744ebc37,	0xfc82caa6,	0xe090d0b0,	0x33a7d815,	0xf104984a,	0x41ecdaf7,	0x7fcd500e,	0x1791f62f,

			250	 	 0x764dd68d,	0x43efb04d,	0xccaa4d54,	0xe49604df,	0x9ed1b5e3,	0x4c6a881b,	0xc12c1fb8,	0x4665517f,

			251	 	 0x9d5eea04,	0x018c355d,	0xfa877473,	0xfb0b412e,	0xb3671d5a,	0x92dbd252,	0xe9105633,	0x6dd64713,

			252	 	 0x9ad7618c,	0x37a10c7a,	0x59f8148e,	0xeb133c89,	0xcea927ee,	0xb761c935,	0xe11ce5ed,	0x7a47b13c,

			253	 	 0x9cd2df59,	0x55f2733f,	0x1814ce79,	0x73c737bf,	0x53f7cdea,	0x5ffdaa5b,	0xdf3d6f14,	0x7844db86,

			254	 	 0xcaaff381,	0xb968c43e,	0x3824342c,	0xc2a3405f,	0x161dc372,	0xbce2250c,	0x283c498b,	0xff0d9541,

			255	 	 0x39a80171,	0x080cb3de,	0xd8b4e49c,	0x6456c190,	0x7bcb8461,	0xd532b670,	0x486c5c74,	0xd0b85742,

			256	 }

			257	 var	td1	=	[256]uint32{

			258	 	 0x5051f4a7,	0x537e4165,	0xc31a17a4,	0x963a275e,	0xcb3bab6b,	0xf11f9d45,	0xabacfa58,	0x934be303,

			259	 	 0x552030fa,	0xf6ad766d,	0x9188cc76,	0x25f5024c,	0xfc4fe5d7,	0xd7c52acb,	0x80263544,	0x8fb562a3,

			260	 	 0x49deb15a,	0x6725ba1b,	0x9845ea0e,	0xe15dfec0,	0x02c32f75,	0x12814cf0,	0xa38d4697,	0xc66bd3f9,

			261	 	 0xe7038f5f,	0x9515929c,	0xebbf6d7a,	0xda955259,	0x2dd4be83,	0xd3587421,	0x2949e069,	0x448ec9c8,

			262	 	 0x6a75c289,	0x78f48e79,	0x6b99583e,	0xdd27b971,	0xb6bee14f,	0x17f088ad,	0x66c920ac,	0xb47dce3a,

			263	 	 0x1863df4a,	0x82e51a31,	0x60975133,	0x4562537f,	0xe0b16477,	0x84bb6bae,	0x1cfe81a0,	0x94f9082b,

			264	 	 0x58704868,	0x198f45fd,	0x8794de6c,	0xb7527bf8,	0x23ab73d3,	0xe2724b02,	0x57e31f8f,	0x2a6655ab,

			265	 	 0x07b2eb28,	0x032fb5c2,	0x9a86c57b,	0xa5d33708,	0xf2302887,	0xb223bfa5,	0xba02036a,	0x5ced1682,

			266	 	 0x2b8acf1c,	0x92a779b4,	0xf0f307f2,	0xa14e69e2,	0xcd65daf4,	0xd50605be,	0x1fd13462,	0x8ac4a6fe,

			267	 	 0x9d342e53,	0xa0a2f355,	0x32058ae1,	0x75a4f6eb,	0x390b83ec,	0xaa4060ef,	0x065e719f,	0x51bd6e10,

			268	 	 0xf93e218a,	0x3d96dd06,	0xaedd3e05,	0x464de6bd,	0xb591548d,	0x0571c45d,	0x6f0406d4,	0xff605015,

			269	 	 0x241998fb,	0x97d6bde9,	0xcc894043,	0x7767d99e,	0xbdb0e842,	0x8807898b,	0x38e7195b,	0xdb79c8ee,

			270	 	 0x47a17c0a,	0xe97c420f,	0xc9f8841e,	0x00000000,	0x83098086,	0x48322bed,	0xac1e1170,	0x4e6c5a72,

			271	 	 0xfbfd0eff,	0x560f8538,	0x1e3daed5,	0x27362d39,	0x640a0fd9,	0x21685ca6,	0xd19b5b54,	0x3a24362e,

			272	 	 0xb10c0a67,	0x0f9357e7,	0xd2b4ee96,	0x9e1b9b91,	0x4f80c0c5,	0xa261dc20,	0x695a774b,	0x161c121a,

			273	 	 0x0ae293ba,	0xe5c0a02a,	0x433c22e0,	0x1d121b17,	0x0b0e090d,	0xadf28bc7,	0xb92db6a8,	0xc8141ea9,

			274	 	 0x8557f119,	0x4caf7507,	0xbbee99dd,	0xfda37f60,	0x9ff70126,	0xbc5c72f5,	0xc544663b,	0x345bfb7e,

			275	 	 0x768b4329,	0xdccb23c6,	0x68b6edfc,	0x63b8e4f1,	0xcad731dc,	0x10426385,	0x40139722,	0x2084c611,

			276	 	 0x7d854a24,	0xf8d2bb3d,	0x11aef932,	0x6dc729a1,	0x4b1d9e2f,	0xf3dcb230,	0xec0d8652,	0xd077c1e3,

			277	 	 0x6c2bb316,	0x99a970b9,	0xfa119448,	0x2247e964,	0xc4a8fc8c,	0x1aa0f03f,	0xd8567d2c,	0xef223390,

			278	 	 0xc787494e,	0xc1d938d1,	0xfe8ccaa2,	0x3698d40b,	0xcfa6f581,	0x28a57ade,	0x26dab78e,	0xa43fadbf,

			279	 	 0xe42c3a9d,	0x0d507892,	0x9b6a5fcc,	0x62547e46,	0xc2f68d13,	0xe890d8b8,	0x5e2e39f7,	0xf582c3af,

			280	 	 0xbe9f5d80,	0x7c69d093,	0xa96fd52d,	0xb3cf2512,	0x3bc8ac99,	0xa710187d,	0x6ee89c63,	0x7bdb3bbb,

			281	 	 0x09cd2678,	0xf46e5918,	0x01ec9ab7,	0xa8834f9a,	0x65e6956e,	0x7eaaffe6,	0x0821bccf,	0xe6ef15e8,

			282	 	 0xd9bae79b,	0xce4a6f36,	0xd4ea9f09,	0xd629b07c,	0xaf31a4b2,	0x312a3f23,	0x30c6a594,	0xc035a266,

			283	 	 0x37744ebc,	0xa6fc82ca,	0xb0e090d0,	0x1533a7d8,	0x4af10498,	0xf741ecda,	0x0e7fcd50,	0x2f1791f6,

			284	 	 0x8d764dd6,	0x4d43efb0,	0x54ccaa4d,	0xdfe49604,	0xe39ed1b5,	0x1b4c6a88,	0xb8c12c1f,	0x7f466551,

			285	 	 0x049d5eea,	0x5d018c35,	0x73fa8774,	0x2efb0b41,	0x5ab3671d,	0x5292dbd2,	0x33e91056,	0x136dd647,

			286	 	 0x8c9ad761,	0x7a37a10c,	0x8e59f814,	0x89eb133c,	0xeecea927,	0x35b761c9,	0xede11ce5,	0x3c7a47b1,

			287	 	 0x599cd2df,	0x3f55f273,	0x791814ce,	0xbf73c737,	0xea53f7cd,	0x5b5ffdaa,	0x14df3d6f,	0x867844db,

			288	 	 0x81caaff3,	0x3eb968c4,	0x2c382434,	0x5fc2a340,	0x72161dc3,	0x0cbce225,	0x8b283c49,	0x41ff0d95,

			289	 	 0x7139a801,	0xde080cb3,	0x9cd8b4e4,	0x906456c1,	0x617bcb84,	0x70d532b6,	0x74486c5c,	0x42d0b857,

			290	 }

			291	 var	td2	=	[256]uint32{

			292	 	 0xa75051f4,	0x65537e41,	0xa4c31a17,	0x5e963a27,	0x6bcb3bab,	0x45f11f9d,	0x58abacfa,	0x03934be3,

			293	 	 0xfa552030,	0x6df6ad76,	0x769188cc,	0x4c25f502,	0xd7fc4fe5,	0xcbd7c52a,	0x44802635,	0xa38fb562,

			294	 	 0x5a49deb1,	0x1b6725ba,	0x0e9845ea,	0xc0e15dfe,	0x7502c32f,	0xf012814c,	0x97a38d46,	0xf9c66bd3,

			295	 	 0x5fe7038f,	0x9c951592,	0x7aebbf6d,	0x59da9552,	0x832dd4be,	0x21d35874,	0x692949e0,	0xc8448ec9,

			296	 	 0x896a75c2,	0x7978f48e,	0x3e6b9958,	0x71dd27b9,	0x4fb6bee1,	0xad17f088,	0xac66c920,	0x3ab47dce,

			297	 	 0x4a1863df,	0x3182e51a,	0x33609751,	0x7f456253,	0x77e0b164,	0xae84bb6b,	0xa01cfe81,	0x2b94f908,

			298	 	 0x68587048,	0xfd198f45,	0x6c8794de,	0xf8b7527b,	0xd323ab73,	0x02e2724b,	0x8f57e31f,	0xab2a6655,

			299	 	 0x2807b2eb,	0xc2032fb5,	0x7b9a86c5,	0x08a5d337,	0x87f23028,	0xa5b223bf,	0x6aba0203,	0x825ced16,

			300	 	 0x1c2b8acf,	0xb492a779,	0xf2f0f307,	0xe2a14e69,	0xf4cd65da,	0xbed50605,	0x621fd134,	0xfe8ac4a6,

			301	 	 0x539d342e,	0x55a0a2f3,	0xe132058a,	0xeb75a4f6,	0xec390b83,	0xefaa4060,	0x9f065e71,	0x1051bd6e,

			302	 	 0x8af93e21,	0x063d96dd,	0x05aedd3e,	0xbd464de6,	0x8db59154,	0x5d0571c4,	0xd46f0406,	0x15ff6050,

			303	 	 0xfb241998,	0xe997d6bd,	0x43cc8940,	0x9e7767d9,	0x42bdb0e8,	0x8b880789,	0x5b38e719,	0xeedb79c8,

			304	 	 0x0a47a17c,	0x0fe97c42,	0x1ec9f884,	0x00000000,	0x86830980,	0xed48322b,	0x70ac1e11,	0x724e6c5a,

			305	 	 0xfffbfd0e,	0x38560f85,	0xd51e3dae,	0x3927362d,	0xd9640a0f,	0xa621685c,	0x54d19b5b,	0x2e3a2436,

			306	 	 0x67b10c0a,	0xe70f9357,	0x96d2b4ee,	0x919e1b9b,	0xc54f80c0,	0x20a261dc,	0x4b695a77,	0x1a161c12,

			307	 	 0xba0ae293,	0x2ae5c0a0,	0xe0433c22,	0x171d121b,	0x0d0b0e09,	0xc7adf28b,	0xa8b92db6,	0xa9c8141e,

			308	 	 0x198557f1,	0x074caf75,	0xddbbee99,	0x60fda37f,	0x269ff701,	0xf5bc5c72,	0x3bc54466,	0x7e345bfb,

			309	 	 0x29768b43,	0xc6dccb23,	0xfc68b6ed,	0xf163b8e4,	0xdccad731,	0x85104263,	0x22401397,	0x112084c6,

			310	 	 0x247d854a,	0x3df8d2bb,	0x3211aef9,	0xa16dc729,	0x2f4b1d9e,	0x30f3dcb2,	0x52ec0d86,	0xe3d077c1,

			311	 	 0x166c2bb3,	0xb999a970,	0x48fa1194,	0x642247e9,	0x8cc4a8fc,	0x3f1aa0f0,	0x2cd8567d,	0x90ef2233,

			312	 	 0x4ec78749,	0xd1c1d938,	0xa2fe8cca,	0x0b3698d4,	0x81cfa6f5,	0xde28a57a,	0x8e26dab7,	0xbfa43fad,

			313	 	 0x9de42c3a,	0x920d5078,	0xcc9b6a5f,	0x4662547e,	0x13c2f68d,	0xb8e890d8,	0xf75e2e39,	0xaff582c3,

			314	 	 0x80be9f5d,	0x937c69d0,	0x2da96fd5,	0x12b3cf25,	0x993bc8ac,	0x7da71018,	0x636ee89c,	0xbb7bdb3b,

			315	 	 0x7809cd26,	0x18f46e59,	0xb701ec9a,	0x9aa8834f,	0x6e65e695,	0xe67eaaff,	0xcf0821bc,	0xe8e6ef15,

			316	 	 0x9bd9bae7,	0x36ce4a6f,	0x09d4ea9f,	0x7cd629b0,	0xb2af31a4,	0x23312a3f,	0x9430c6a5,	0x66c035a2,

			317	 	 0xbc37744e,	0xcaa6fc82,	0xd0b0e090,	0xd81533a7,	0x984af104,	0xdaf741ec,	0x500e7fcd,	0xf62f1791,

			318	 	 0xd68d764d,	0xb04d43ef,	0x4d54ccaa,	0x04dfe496,	0xb5e39ed1,	0x881b4c6a,	0x1fb8c12c,	0x517f4665,

			319	 	 0xea049d5e,	0x355d018c,	0x7473fa87,	0x412efb0b,	0x1d5ab367,	0xd25292db,	0x5633e910,	0x47136dd6,

			320	 	 0x618c9ad7,	0x0c7a37a1,	0x148e59f8,	0x3c89eb13,	0x27eecea9,	0xc935b761,	0xe5ede11c,	0xb13c7a47,

			321	 	 0xdf599cd2,	0x733f55f2,	0xce791814,	0x37bf73c7,	0xcdea53f7,	0xaa5b5ffd,	0x6f14df3d,	0xdb867844,

			322	 	 0xf381caaf,	0xc43eb968,	0x342c3824,	0x405fc2a3,	0xc372161d,	0x250cbce2,	0x498b283c,	0x9541ff0d,

			323	 	 0x017139a8,	0xb3de080c,	0xe49cd8b4,	0xc1906456,	0x84617bcb,	0xb670d532,	0x5c74486c,	0x5742d0b8,

			324	 }

			325	 var	td3	=	[256]uint32{

			326	 	 0xf4a75051,	0x4165537e,	0x17a4c31a,	0x275e963a,	0xab6bcb3b,	0x9d45f11f,	0xfa58abac,	0xe303934b,

			327	 	 0x30fa5520,	0x766df6ad,	0xcc769188,	0x024c25f5,	0xe5d7fc4f,	0x2acbd7c5,	0x35448026,	0x62a38fb5,

			328	 	 0xb15a49de,	0xba1b6725,	0xea0e9845,	0xfec0e15d,	0x2f7502c3,	0x4cf01281,	0x4697a38d,	0xd3f9c66b,

			329	 	 0x8f5fe703,	0x929c9515,	0x6d7aebbf,	0x5259da95,	0xbe832dd4,	0x7421d358,	0xe0692949,	0xc9c8448e,

			330	 	 0xc2896a75,	0x8e7978f4,	0x583e6b99,	0xb971dd27,	0xe14fb6be,	0x88ad17f0,	0x20ac66c9,	0xce3ab47d,

			331	 	 0xdf4a1863,	0x1a3182e5,	0x51336097,	0x537f4562,	0x6477e0b1,	0x6bae84bb,	0x81a01cfe,	0x082b94f9,

			332	 	 0x48685870,	0x45fd198f,	0xde6c8794,	0x7bf8b752,	0x73d323ab,	0x4b02e272,	0x1f8f57e3,	0x55ab2a66,

			333	 	 0xeb2807b2,	0xb5c2032f,	0xc57b9a86,	0x3708a5d3,	0x2887f230,	0xbfa5b223,	0x036aba02,	0x16825ced,

			334	 	 0xcf1c2b8a,	0x79b492a7,	0x07f2f0f3,	0x69e2a14e,	0xdaf4cd65,	0x05bed506,	0x34621fd1,	0xa6fe8ac4,

			335	 	 0x2e539d34,	0xf355a0a2,	0x8ae13205,	0xf6eb75a4,	0x83ec390b,	0x60efaa40,	0x719f065e,	0x6e1051bd,

			336	 	 0x218af93e,	0xdd063d96,	0x3e05aedd,	0xe6bd464d,	0x548db591,	0xc45d0571,	0x06d46f04,	0x5015ff60,

			337	 	 0x98fb2419,	0xbde997d6,	0x4043cc89,	0xd99e7767,	0xe842bdb0,	0x898b8807,	0x195b38e7,	0xc8eedb79,

			338	 	 0x7c0a47a1,	0x420fe97c,	0x841ec9f8,	0x00000000,	0x80868309,	0x2bed4832,	0x1170ac1e,	0x5a724e6c,

			339	 	 0x0efffbfd,	0x8538560f,	0xaed51e3d,	0x2d392736,	0x0fd9640a,	0x5ca62168,	0x5b54d19b,	0x362e3a24,

			340	 	 0x0a67b10c,	0x57e70f93,	0xee96d2b4,	0x9b919e1b,	0xc0c54f80,	0xdc20a261,	0x774b695a,	0x121a161c,

			341	 	 0x93ba0ae2,	0xa02ae5c0,	0x22e0433c,	0x1b171d12,	0x090d0b0e,	0x8bc7adf2,	0xb6a8b92d,	0x1ea9c814,

			342	 	 0xf1198557,	0x75074caf,	0x99ddbbee,	0x7f60fda3,	0x01269ff7,	0x72f5bc5c,	0x663bc544,	0xfb7e345b,

			343	 	 0x4329768b,	0x23c6dccb,	0xedfc68b6,	0xe4f163b8,	0x31dccad7,	0x63851042,	0x97224013,	0xc6112084,

			344	 	 0x4a247d85,	0xbb3df8d2,	0xf93211ae,	0x29a16dc7,	0x9e2f4b1d,	0xb230f3dc,	0x8652ec0d,	0xc1e3d077,

			345	 	 0xb3166c2b,	0x70b999a9,	0x9448fa11,	0xe9642247,	0xfc8cc4a8,	0xf03f1aa0,	0x7d2cd856,	0x3390ef22,

			346	 	 0x494ec787,	0x38d1c1d9,	0xcaa2fe8c,	0xd40b3698,	0xf581cfa6,	0x7ade28a5,	0xb78e26da,	0xadbfa43f,

			347	 	 0x3a9de42c,	0x78920d50,	0x5fcc9b6a,	0x7e466254,	0x8d13c2f6,	0xd8b8e890,	0x39f75e2e,	0xc3aff582,

			348	 	 0x5d80be9f,	0xd0937c69,	0xd52da96f,	0x2512b3cf,	0xac993bc8,	0x187da710,	0x9c636ee8,	0x3bbb7bdb,

			349	 	 0x267809cd,	0x5918f46e,	0x9ab701ec,	0x4f9aa883,	0x956e65e6,	0xffe67eaa,	0xbccf0821,	0x15e8e6ef,

			350	 	 0xe79bd9ba,	0x6f36ce4a,	0x9f09d4ea,	0xb07cd629,	0xa4b2af31,	0x3f23312a,	0xa59430c6,	0xa266c035,

			351	 	 0x4ebc3774,	0x82caa6fc,	0x90d0b0e0,	0xa7d81533,	0x04984af1,	0xecdaf741,	0xcd500e7f,	0x91f62f17,

			352	 	 0x4dd68d76,	0xefb04d43,	0xaa4d54cc,	0x9604dfe4,	0xd1b5e39e,	0x6a881b4c,	0x2c1fb8c1,	0x65517f46,

			353	 	 0x5eea049d,	0x8c355d01,	0x877473fa,	0x0b412efb,	0x671d5ab3,	0xdbd25292,	0x105633e9,	0xd647136d,

			354	 	 0xd7618c9a,	0xa10c7a37,	0xf8148e59,	0x133c89eb,	0xa927eece,	0x61c935b7,	0x1ce5ede1,	0x47b13c7a,

			355	 	 0xd2df599c,	0xf2733f55,	0x14ce7918,	0xc737bf73,	0xf7cdea53,	0xfdaa5b5f,	0x3d6f14df,	0x44db8678,

			356	 	 0xaff381ca,	0x68c43eb9,	0x24342c38,	0xa3405fc2,	0x1dc37216,	0xe2250cbc,	0x3c498b28,	0x0d9541ff,

			357	 	 0xa8017139,	0x0cb3de08,	0xb4e49cd8,	0x56c19064,	0xcb84617b,	0x32b670d5,	0x6c5c7448,	0xb85742d0,

			358	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/cipher/cbc.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Cipher	block	chaining	(CBC)	mode.

					6	

					7	 //	CBC	provides	confidentiality	by	xoring	(chaining)	each	plaintext	block

					8	 //	with	the	previous	ciphertext	block	before	applying	the	block	cipher.

					9	

				10	 //	See	NIST	SP	800-38A,	pp	10-11

				11	

				12	 package	cipher

				13	

				14	 type	cbc	struct	{

				15	 	 b									Block

				16	 	 blockSize	int

				17	 	 iv								[]byte

				18	 	 tmp							[]byte

				19	 }

				20	

				21	 func	newCBC(b	Block,	iv	[]byte)	*cbc	{

				22	 	 return	&cbc{

				23	 	 	 b:									b,

				24	 	 	 blockSize:	b.BlockSize(),

				25	 	 	 iv:								dup(iv),

				26	 	 	 tmp:							make([]byte,	b.BlockSize()),

				27	 	 }

				28	 }

				29	

				30	 type	cbcEncrypter	cbc

				31	

				32	 //	NewCBCEncrypter	returns	a	BlockMode	which	encrypts	in	cipher	block	chaining

				33	 //	mode,	using	the	given	Block.	The	length	of	iv	must	be	the	same	as	the

				34	 //	Block's	block	size.

				35	 func	NewCBCEncrypter(b	Block,	iv	[]byte)	BlockMode	{

				36	 	 return	(*cbcEncrypter)(newCBC(b,	iv))

				37	 }

				38	

				39	 func	(x	*cbcEncrypter)	BlockSize()	int	{	return	x.blockSize	}

				40	

				41	 func	(x	*cbcEncrypter)	CryptBlocks(dst,	src	[]byte)	{

				42	 	 for	len(src)	>	0	{

				43	 	 	 for	i	:=	0;	i	<	x.blockSize;	i++	{

				44	 	 	 	 x.iv[i]	^=	src[i]

				45	 	 	 }

				46	 	 	 x.b.Encrypt(x.iv,	x.iv)

				47	 	 	 for	i	:=	0;	i	<	x.blockSize;	i++	{

				48	 	 	 	 dst[i]	=	x.iv[i]

				49	 	 	 }

				50	 	 	 src	=	src[x.blockSize:]

				51	 	 	 dst	=	dst[x.blockSize:]

				52	 	 }

				53	 }

				54	

				55	 type	cbcDecrypter	cbc

				56	

				57	 //	NewCBCDecrypter	returns	a	BlockMode	which	decrypts	in	cipher	block	chaining

				58	 //	mode,	using	the	given	Block.	The	length	of	iv	must	be	the	same	as	the

				59	 //	Block's	block	size	and	must	match	the	iv	used	to	encrypt	the	data.

				60	 func	NewCBCDecrypter(b	Block,	iv	[]byte)	BlockMode	{

				61	 	 return	(*cbcDecrypter)(newCBC(b,	iv))

				62	 }

				63	

				64	 func	(x	*cbcDecrypter)	BlockSize()	int	{	return	x.blockSize	}

				65	

				66	 func	(x	*cbcDecrypter)	CryptBlocks(dst,	src	[]byte)	{

				67	 	 for	len(src)	>	0	{

				68	 	 	 x.b.Decrypt(x.tmp,	src[:x.blockSize])

				69	 	 	 for	i	:=	0;	i	<	x.blockSize;	i++	{

				70	 	 	 	 x.tmp[i]	^=	x.iv[i]

				71	 	 	 	 x.iv[i]	=	src[i]

				72	 	 	 	 dst[i]	=	x.tmp[i]

				73	 	 	 }

				74	

				75	 	 	 src	=	src[x.blockSize:]

				76	 	 	 dst	=	dst[x.blockSize:]

				77	 	 }

				78	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/cipher/cfb.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	CFB	(Cipher	Feedback)	Mode.

					6	

					7	 package	cipher

					8	

					9	 type	cfb	struct	{

				10	 	 b							Block

				11	 	 out					[]byte

				12	 	 outUsed	int

				13	 	 decrypt	bool

				14	 }

				15	

				16	 //	NewCFBEncrypter	returns	a	Stream	which	encrypts	with	cipher	feedback	mode,

				17	 //	using	the	given	Block.	The	iv	must	be	the	same	length	as	the	Block's	block

				18	 //	size.

				19	 func	NewCFBEncrypter(block	Block,	iv	[]byte)	Stream	{

				20	 	 return	newCFB(block,	iv,	false)

				21	 }

				22	

				23	 //	NewCFBDecrypter	returns	a	Stream	which	decrypts	with	cipher	feedback	mode,

				24	 //	using	the	given	Block.	The	iv	must	be	the	same	length	as	the	Block's	block

				25	 //	size.

				26	 func	NewCFBDecrypter(block	Block,	iv	[]byte)	Stream	{

				27	 	 return	newCFB(block,	iv,	true)

				28	 }

				29	

				30	 func	newCFB(block	Block,	iv	[]byte,	decrypt	bool)	Stream	{

				31	 	 blockSize	:=	block.BlockSize()

				32	 	 if	len(iv)	!=	blockSize	{

				33	 	 	 return	nil

				34	 	 }

				35	

				36	 	 x	:=	&cfb{

				37	 	 	 b:							block,

				38	 	 	 out:					make([]byte,	blockSize),

				39	 	 	 outUsed:	0,

				40	 	 	 decrypt:	decrypt,

				41	 	 }

				42	 	 block.Encrypt(x.out,	iv)

				43	

				44	 	 return	x

				45	 }

				46	

				47	 func	(x	*cfb)	XORKeyStream(dst,	src	[]byte)	{

				48	 	 for	i	:=	0;	i	<	len(src);	i++	{

				49	 	 	 if	x.outUsed	==	len(x.out)	{

				50	 	 	 	 x.b.Encrypt(x.out,	x.out)

				51	 	 	 	 x.outUsed	=	0

				52	 	 	 }

				53	

				54	 	 	 if	x.decrypt	{

				55	 	 	 	 t	:=	src[i]

				56	 	 	 	 dst[i]	=	src[i]	^	x.out[x.outUsed]

				57	 	 	 	 x.out[x.outUsed]	=	t

				58	 	 	 }	else	{

				59	 	 	 	 x.out[x.outUsed]	^=	src[i]

				60	 	 	 	 dst[i]	=	x.out[x.outUsed]

				61	 	 	 }

				62	 	 	 x.outUsed++

				63	 	 }

				64	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/cipher/cipher.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	cipher	implements	standard	block	cipher	modes	that	can	be	wrapped

					6	 //	around	low-level	block	cipher	implementations.

					7	 //	See	http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html

					8	 //	and	NIST	Special	Publication	800-38A.

					9	 package	cipher

				10	

				11	 //	A	Block	represents	an	implementation	of	block	cipher

				12	 //	using	a	given	key.		It	provides	the	capability	to	encrypt

				13	 //	or	decrypt	individual	blocks.		The	mode	implementations

				14	 //	extend	that	capability	to	streams	of	blocks.

				15	 type	Block	interface	{

				16	 	 //	BlockSize	returns	the	cipher's	block	size.

				17	 	 BlockSize()	int

				18	

				19	 	 //	Encrypt	encrypts	the	first	block	in	src	into	dst.

				20	 	 //	Dst	and	src	may	point	at	the	same	memory.

				21	 	 Encrypt(dst,	src	[]byte)

				22	

				23	 	 //	Decrypt	decrypts	the	first	block	in	src	into	dst.

				24	 	 //	Dst	and	src	may	point	at	the	same	memory.

				25	 	 Decrypt(dst,	src	[]byte)

				26	 }

				27	

				28	 //	A	Stream	represents	a	stream	cipher.

				29	 type	Stream	interface	{

				30	 	 //	XORKeyStream	XORs	each	byte	in	the	given	slice	with	a	byte	from	the

				31	 	 //	cipher's	key	stream.	Dst	and	src	may	point	to	the	same	memory.

				32	 	 XORKeyStream(dst,	src	[]byte)

				33	 }

				34	

				35	 //	A	BlockMode	represents	a	block	cipher	running	in	a	block-based	mode	(CBC,

				36	 //	ECB	etc).

				37	 type	BlockMode	interface	{

				38	 	 //	BlockSize	returns	the	mode's	block	size.

				39	 	 BlockSize()	int

				40	

				41	 	 //	CryptBlocks	encrypts	or	decrypts	a	number	of	blocks.	The	length	of

				42	 	 //	src	must	be	a	multiple	of	the	block	size.	Dst	and	src	may	point	to

				43	 	 //	the	same	memory.

				44	 	 CryptBlocks(dst,	src	[]byte)

				45	 }

				46	

				47	 //	Utility	routines

				48	

				49	 func	shift1(dst,	src	[]byte)	byte	{

				50	 	 var	b	byte

				51	 	 for	i	:=	len(src)	-	1;	i	>=	0;	i--	{

				52	 	 	 bb	:=	src[i]	>>	7

				53	 	 	 dst[i]	=	src[i]<<1	|	b

				54	 	 	 b	=	bb

				55	 	 }

				56	 	 return	b

				57	 }

				58	

				59	 func	dup(p	[]byte)	[]byte	{

				60	 	 q	:=	make([]byte,	len(p))

				61	 	 copy(q,	p)

				62	 	 return	q

				63	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/cipher/ctr.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Counter	(CTR)	mode.

					6	

					7	 //	CTR	converts	a	block	cipher	into	a	stream	cipher	by

					8	 //	repeatedly	encrypting	an	incrementing	counter	and

					9	 //	xoring	the	resulting	stream	of	data	with	the	input.

				10	

				11	 //	See	NIST	SP	800-38A,	pp	13-15

				12	

				13	 package	cipher

				14	

				15	 type	ctr	struct	{

				16	 	 b							Block

				17	 	 ctr					[]byte

				18	 	 out					[]byte

				19	 	 outUsed	int

				20	 }

				21	

				22	 //	NewCTR	returns	a	Stream	which	encrypts/decrypts	using	the	given	Block	in

				23	 //	counter	mode.	The	length	of	iv	must	be	the	same	as	the	Block's	block	size.

				24	 func	NewCTR(block	Block,	iv	[]byte)	Stream	{

				25	 	 if	len(iv)	!=	block.BlockSize()	{

				26	 	 	 panic("cipher.NewCTR:	iv	length	must	equal	block	size")

				27	 	 }

				28	

				29	 	 return	&ctr{

				30	 	 	 b:							block,

				31	 	 	 ctr:					dup(iv),

				32	 	 	 out:					make([]byte,	len(iv)),

				33	 	 	 outUsed:	len(iv),

				34	 	 }

				35	 }

				36	

				37	 func	(x	*ctr)	XORKeyStream(dst,	src	[]byte)	{

				38	 	 for	i	:=	0;	i	<	len(src);	i++	{

				39	 	 	 if	x.outUsed	==	len(x.ctr)	{

				40	 	 	 	 x.b.Encrypt(x.out,	x.ctr)

				41	 	 	 	 x.outUsed	=	0

				42	

				43	 	 	 	 //	Increment	counter

				44	 	 	 	 for	i	:=	len(x.ctr)	-	1;	i	>=	0;	i--	{

				45	 	 	 	 	 x.ctr[i]++

				46	 	 	 	 	 if	x.ctr[i]	!=	0	{

				47	 	 	 	 	 	 break

				48	 	 	 	 	 }

				49	 	 	 	 }

				50	 	 	 }

				51	

				52	 	 	 dst[i]	=	src[i]	^	x.out[x.outUsed]

				53	 	 	 x.outUsed++

				54	 	 }

				55	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/cipher/io.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	cipher

					6	

					7	 import	"io"

					8	

					9	 //	The	Stream*	objects	are	so	simple	that	all	their	members	are	public.	Users

				10	 //	can	create	them	themselves.

				11	

				12	 //	StreamReader	wraps	a	Stream	into	an	io.Reader.	It	calls	XORKeyStream

				13	 //	to	process	each	slice	of	data	which	passes	through.

				14	 type	StreamReader	struct	{

				15	 	 S	Stream

				16	 	 R	io.Reader

				17	 }

				18	

				19	 func	(r	StreamReader)	Read(dst	[]byte)	(n	int,	err	error)	{

				20	 	 n,	err	=	r.R.Read(dst)

				21	 	 r.S.XORKeyStream(dst[:n],	dst[:n])

				22	 	 return

				23	 }

				24	

				25	 //	StreamWriter	wraps	a	Stream	into	an	io.Writer.	It	calls	XORKeyStream

				26	 //	to	process	each	slice	of	data	which	passes	through.	If	any	Write	call

				27	 //	returns	short	then	the	StreamWriter	is	out	of	sync	and	must	be	discarded.

				28	 type	StreamWriter	struct	{

				29	 	 S			Stream

				30	 	 W			io.Writer

				31	 	 Err	error

				32	 }

				33	

				34	 func	(w	StreamWriter)	Write(src	[]byte)	(n	int,	err	error)	{

				35	 	 if	w.Err	!=	nil	{

				36	 	 	 return	0,	w.Err

				37	 	 }

				38	 	 c	:=	make([]byte,	len(src))

				39	 	 w.S.XORKeyStream(c,	src)

				40	 	 n,	err	=	w.W.Write(c)

				41	 	 if	n	!=	len(src)	{

				42	 	 	 if	err	==	nil	{	//	should	never	happen

				43	 	 	 	 err	=	io.ErrShortWrite

				44	 	 	 }

				45	 	 	 w.Err	=	err

				46	 	 }

				47	 	 return

				48	 }

				49	

				50	 func	(w	StreamWriter)	Close()	error	{

				51	 	 //	This	saves	us	from	either	requiring	a	WriteCloser	or	having	a

				52	 	 //	StreamWriterCloser.

				53	 	 return	w.W.(io.Closer).Close()

				54	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/cipher/ofb.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	OFB	(Output	Feedback)	Mode.

					6	

					7	 package	cipher

					8	

					9	 type	ofb	struct	{

				10	 	 b							Block

				11	 	 out					[]byte

				12	 	 outUsed	int

				13	 }

				14	

				15	 //	NewOFB	returns	a	Stream	that	encrypts	or	decrypts	using	the	block	cipher	b

				16	 //	in	output	feedback	mode.	The	initialization	vector	iv's	length	must	be	equal

				17	 //	to	b's	block	size.

				18	 func	NewOFB(b	Block,	iv	[]byte)	Stream	{

				19	 	 blockSize	:=	b.BlockSize()

				20	 	 if	len(iv)	!=	blockSize	{

				21	 	 	 return	nil

				22	 	 }

				23	

				24	 	 x	:=	&ofb{

				25	 	 	 b:							b,

				26	 	 	 out:					make([]byte,	blockSize),

				27	 	 	 outUsed:	0,

				28	 	 }

				29	 	 b.Encrypt(x.out,	iv)

				30	

				31	 	 return	x

				32	 }

				33	

				34	 func	(x	*ofb)	XORKeyStream(dst,	src	[]byte)	{

				35	 	 for	i,	s	:=	range	src	{

				36	 	 	 if	x.outUsed	==	len(x.out)	{

				37	 	 	 	 x.b.Encrypt(x.out,	x.out)

				38	 	 	 	 x.outUsed	=	0

				39	 	 	 }

				40	

				41	 	 	 dst[i]	=	s	^	x.out[x.outUsed]

				42	 	 	 x.outUsed++

				43	 	 }

				44	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/des/block.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	des

					6	

					7	 import	(

					8	 	 "encoding/binary"

					9)

				10	

				11	 func	cryptBlock(subkeys	[]uint64,	dst,	src	[]byte,	decrypt	bool)	{

				12	 	 b	:=	binary.BigEndian.Uint64(src)

				13	 	 b	=	permuteBlock(b,	initialPermutation[:])

				14	 	 left,	right	:=	uint32(b>>32),	uint32(b)

				15	

				16	 	 var	subkey	uint64

				17	 	 for	i	:=	0;	i	<	16;	i++	{

				18	 	 	 if	decrypt	{

				19	 	 	 	 subkey	=	subkeys[15-i]

				20	 	 	 }	else	{

				21	 	 	 	 subkey	=	subkeys[i]

				22	 	 	 }

				23	

				24	 	 	 left,	right	=	right,	left^feistel(right,	subkey)

				25	 	 }

				26	 	 //	switch	left	&	right	and	perform	final	permutation

				27	 	 preOutput	:=	(uint64(right)	<<	32)	|	uint64(left)

				28	 	 binary.BigEndian.PutUint64(dst,	permuteBlock(preOutput,	finalPermutation[:]))

				29	 }

				30	

				31	 //	Encrypt	one	block	from	src	into	dst,	using	the	subkeys.

				32	 func	encryptBlock(subkeys	[]uint64,	dst,	src	[]byte)	{

				33	 	 cryptBlock(subkeys,	dst,	src,	false)

				34	 }

				35	

				36	 //	Decrypt	one	block	from	src	into	dst,	using	the	subkeys.

				37	 func	decryptBlock(subkeys	[]uint64,	dst,	src	[]byte)	{

				38	 	 cryptBlock(subkeys,	dst,	src,	true)

				39	 }

				40	

				41	 //	DES	Feistel	function

				42	 func	feistel(right	uint32,	key	uint64)	(result	uint32)	{

				43	 	 sBoxLocations	:=	key	^	permuteBlock(uint64(right),	expansionFunction[:])

				44	 	 var	sBoxResult	uint32

				45	 	 for	i	:=	uint8(0);	i	<	8;	i++	{

				46	 	 	 sBoxLocation	:=	uint8(sBoxLocations>>42)	&	0x3f

				47	 	 	 sBoxLocations	<<=	6

				48	 	 	 //	row	determined	by	1st	and	6th	bit

				49	 	 	 row	:=	(sBoxLocation	&	0x1)	|	((sBoxLocation	&	0x20)	>>	4)

				50	 	 	 //	column	is	middle	four	bits

				51	 	 	 column	:=	(sBoxLocation	>>	1)	&	0xf

				52	 	 	 sBoxResult	|=	uint32(sBoxes[i][row][column])	<<	(4	*	(7	-	i))

				53	 	 }

				54	 	 return	uint32(permuteBlock(uint64(sBoxResult),	permutationFunction[:]))

				55	 }

				56	

				57	 //	general	purpose	function	to	perform	DES	block	permutations

				58	 func	permuteBlock(src	uint64,	permutation	[]uint8)	(block	uint64)	{

				59	 	 for	position,	n	:=	range	permutation	{

				60	 	 	 bit	:=	(src	>>	n)	&	1

				61	 	 	 block	|=	bit	<<	uint((len(permutation)-1)-position)

				62	 	 }

				63	 	 return

				64	 }

				65	

				66	 //	creates	16	28-bit	blocks	rotated	according

				67	 //	to	the	rotation	schedule

				68	 func	ksRotate(in	uint32)	(out	[]uint32)	{

				69	 	 out	=	make([]uint32,	16)

				70	 	 last	:=	in

				71	 	 for	i	:=	0;	i	<	16;	i++	{

				72	 	 	 //	28-bit	circular	left	shift

				73	 	 	 left	:=	(last	<<	(4	+	ksRotations[i]))	>>	4

				74	 	 	 right	:=	(last	<<	4)	>>	(32	-	ksRotations[i])

				75	 	 	 out[i]	=	left	|	right

				76	 	 	 last	=	out[i]

				77	 	 }

				78	 	 return

				79	 }

				80	

				81	 //	creates	16	56-bit	subkeys	from	the	original	key

				82	 func	(c	*desCipher)	generateSubkeys(keyBytes	[]byte)	{

				83	 	 //	apply	PC1	permutation	to	key

				84	 	 key	:=	binary.BigEndian.Uint64(keyBytes)

				85	 	 permutedKey	:=	permuteBlock(key,	permutedChoice1[:])

				86	

				87	 	 //	rotate	halves	of	permuted	key	according	to	the	rotation	schedule

				88	 	 leftRotations	:=	ksRotate(uint32(permutedKey	>>	28))

				89	 	 rightRotations	:=	ksRotate(uint32(permutedKey<<4)	>>	4)

				90	

				91	 	 //	generate	subkeys

				92	 	 for	i	:=	0;	i	<	16;	i++	{

				93	 	 	 //	combine	halves	to	form	56-bit	input	to	PC2

				94	 	 	 pc2Input	:=	uint64(leftRotations[i])<<28	|	uint64(rightRotations[i])

				95	 	 	 //	apply	PC2	permutation	to	7	byte	input

				96	 	 	 c.subkeys[i]	=	permuteBlock(pc2Input,	permutedChoice2[:])

				97	 	 }

				98	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/des/cipher.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	des

					6	

					7	 import	(

					8	 	 "crypto/cipher"

					9	 	 "strconv"

				10)

				11	

				12	 //	The	DES	block	size	in	bytes.

				13	 const	BlockSize	=	8

				14	

				15	 type	KeySizeError	int

				16	

				17	 func	(k	KeySizeError)	Error()	string	{

				18	 	 return	"crypto/des:	invalid	key	size	"	+	strconv.Itoa(int(k))

				19	 }

				20	

				21	 //	desCipher	is	an	instance	of	DES	encryption.

				22	 type	desCipher	struct	{

				23	 	 subkeys	[16]uint64

				24	 }

				25	

				26	 //	NewCipher	creates	and	returns	a	new	cipher.Block.

				27	 func	NewCipher(key	[]byte)	(cipher.Block,	error)	{

				28	 	 if	len(key)	!=	8	{

				29	 	 	 return	nil,	KeySizeError(len(key))

				30	 	 }

				31	

				32	 	 c	:=	new(desCipher)

				33	 	 c.generateSubkeys(key)

				34	 	 return	c,	nil

				35	 }

				36	

				37	 func	(c	*desCipher)	BlockSize()	int	{	return	BlockSize	}

				38	

				39	 func	(c	*desCipher)	Encrypt(dst,	src	[]byte)	{	encryptBlock(c.subkeys[:],	dst,	src)	}

				40	

				41	 func	(c	*desCipher)	Decrypt(dst,	src	[]byte)	{	decryptBlock(c.subkeys[:],	dst,	src)	}

				42	

				43	 //	A	tripleDESCipher	is	an	instance	of	TripleDES	encryption.

				44	 type	tripleDESCipher	struct	{

				45	 	 cipher1,	cipher2,	cipher3	desCipher

				46	 }

				47	

				48	 //	NewTripleDESCipher	creates	and	returns	a	new	cipher.Block.

				49	 func	NewTripleDESCipher(key	[]byte)	(cipher.Block,	error)	{

				50	 	 if	len(key)	!=	24	{

				51	 	 	 return	nil,	KeySizeError(len(key))

				52	 	 }

				53	

				54	 	 c	:=	new(tripleDESCipher)

				55	 	 c.cipher1.generateSubkeys(key[:8])

				56	 	 c.cipher2.generateSubkeys(key[8:16])

				57	 	 c.cipher3.generateSubkeys(key[16:])

				58	 	 return	c,	nil

				59	 }

				60	

				61	 func	(c	*tripleDESCipher)	BlockSize()	int	{	return	BlockSize	}

				62	

				63	 func	(c	*tripleDESCipher)	Encrypt(dst,	src	[]byte)	{

				64	 	 c.cipher1.Encrypt(dst,	src)

				65	 	 c.cipher2.Decrypt(dst,	dst)

				66	 	 c.cipher3.Encrypt(dst,	dst)

				67	 }

				68	

				69	 func	(c	*tripleDESCipher)	Decrypt(dst,	src	[]byte)	{

				70	 	 c.cipher3.Decrypt(dst,	src)

				71	 	 c.cipher2.Encrypt(dst,	dst)

				72	 	 c.cipher1.Decrypt(dst,	dst)

				73	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/des/const.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	des	implements	the	Data	Encryption	Standard	(DES)	and	the

					6	 //	Triple	Data	Encryption	Algorithm	(TDEA)	as	defined

					7	 //	in	U.S.	Federal	Information	Processing	Standards	Publication	46-3.

					8	 package	des

					9	

				10	 //	Used	to	perform	an	initial	permutation	of	a	64-bit	input	block.

				11	 var	initialPermutation	=	[64]byte{

				12	 	 6,	14,	22,	30,	38,	46,	54,	62,

				13	 	 4,	12,	20,	28,	36,	44,	52,	60,

				14	 	 2,	10,	18,	26,	34,	42,	50,	58,

				15	 	 0,	8,	16,	24,	32,	40,	48,	56,

				16	 	 7,	15,	23,	31,	39,	47,	55,	63,

				17	 	 5,	13,	21,	29,	37,	45,	53,	61,

				18	 	 3,	11,	19,	27,	35,	43,	51,	59,

				19	 	 1,	9,	17,	25,	33,	41,	49,	57,

				20	 }

				21	

				22	 //	Used	to	perform	a	final	permutation	of	a	4-bit	preoutput	block.	This	is	the

				23	 //	inverse	of	initialPermutation

				24	 var	finalPermutation	=	[64]byte{

				25	 	 24,	56,	16,	48,	8,	40,	0,	32,

				26	 	 25,	57,	17,	49,	9,	41,	1,	33,

				27	 	 26,	58,	18,	50,	10,	42,	2,	34,

				28	 	 27,	59,	19,	51,	11,	43,	3,	35,

				29	 	 28,	60,	20,	52,	12,	44,	4,	36,

				30	 	 29,	61,	21,	53,	13,	45,	5,	37,

				31	 	 30,	62,	22,	54,	14,	46,	6,	38,

				32	 	 31,	63,	23,	55,	15,	47,	7,	39,

				33	 }

				34	

				35	 //	Used	to	expand	an	input	block	of	32	bits,	producing	an	output	block	of	48

				36	 //	bits.

				37	 var	expansionFunction	=	[48]byte{

				38	 	 0,	31,	30,	29,	28,	27,	28,	27,

				39	 	 26,	25,	24,	23,	24,	23,	22,	21,

				40	 	 20,	19,	20,	19,	18,	17,	16,	15,

				41	 	 16,	15,	14,	13,	12,	11,	12,	11,

				42	 	 10,	9,	8,	7,	8,	7,	6,	5,

				43	 	 4,	3,	4,	3,	2,	1,	0,	31,

				44	 }

				45	

				46	 //	Yields	a	32-bit	output	from	a	32-bit	input

				47	 var	permutationFunction	=	[32]byte{

				48	 	 16,	25,	12,	11,	3,	20,	4,	15,

				49	 	 31,	17,	9,	6,	27,	14,	1,	22,

				50	 	 30,	24,	8,	18,	0,	5,	29,	23,

				51	 	 13,	19,	2,	26,	10,	21,	28,	7,

				52	 }

				53	

				54	 //	Used	in	the	key	schedule	to	select	56	bits

				55	 //	from	a	64-bit	input.

				56	 var	permutedChoice1	=	[56]byte{

				57	 	 7,	15,	23,	31,	39,	47,	55,	63,

				58	 	 6,	14,	22,	30,	38,	46,	54,	62,

				59	 	 5,	13,	21,	29,	37,	45,	53,	61,

				60	 	 4,	12,	20,	28,	1,	9,	17,	25,

				61	 	 33,	41,	49,	57,	2,	10,	18,	26,

				62	 	 34,	42,	50,	58,	3,	11,	19,	27,

				63	 	 35,	43,	51,	59,	36,	44,	52,	60,

				64	 }

				65	

				66	 //	Used	in	the	key	schedule	to	produce	each	subkey	by	selecting	48	bits	from

				67	 //	the	56-bit	input

				68	 var	permutedChoice2	=	[48]byte{

				69	 	 42,	39,	45,	32,	55,	51,	53,	28,

				70	 	 41,	50,	35,	46,	33,	37,	44,	52,

				71	 	 30,	48,	40,	49,	29,	36,	43,	54,

				72	 	 15,	4,	25,	19,	9,	1,	26,	16,

				73	 	 5,	11,	23,	8,	12,	7,	17,	0,

				74	 	 22,	3,	10,	14,	6,	20,	27,	24,

				75	 }

				76	

				77	 //	8	S-boxes	composed	of	4	rows	and	16	columns

				78	 //	Used	in	the	DES	cipher	function

				79	 var	sBoxes	=	[8][4][16]uint8{

				80	 	 //	S-box	1

				81	 	 {

				82	 	 	 {14,	4,	13,	1,	2,	15,	11,	8,	3,	10,	6,	12,	5,	9,	0,	7},

				83	 	 	 {0,	15,	7,	4,	14,	2,	13,	1,	10,	6,	12,	11,	9,	5,	3,	8},

				84	 	 	 {4,	1,	14,	8,	13,	6,	2,	11,	15,	12,	9,	7,	3,	10,	5,	0},

				85	 	 	 {15,	12,	8,	2,	4,	9,	1,	7,	5,	11,	3,	14,	10,	0,	6,	13},

				86	 	 },

				87	 	 //	S-box	2

				88	 	 {

				89	 	 	 {15,	1,	8,	14,	6,	11,	3,	4,	9,	7,	2,	13,	12,	0,	5,	10},

				90	 	 	 {3,	13,	4,	7,	15,	2,	8,	14,	12,	0,	1,	10,	6,	9,	11,	5},

				91	 	 	 {0,	14,	7,	11,	10,	4,	13,	1,	5,	8,	12,	6,	9,	3,	2,	15},

				92	 	 	 {13,	8,	10,	1,	3,	15,	4,	2,	11,	6,	7,	12,	0,	5,	14,	9},

				93	 	 },

				94	 	 //	S-box	3

				95	 	 {

				96	 	 	 {10,	0,	9,	14,	6,	3,	15,	5,	1,	13,	12,	7,	11,	4,	2,	8},

				97	 	 	 {13,	7,	0,	9,	3,	4,	6,	10,	2,	8,	5,	14,	12,	11,	15,	1},

				98	 	 	 {13,	6,	4,	9,	8,	15,	3,	0,	11,	1,	2,	12,	5,	10,	14,	7},

				99	 	 	 {1,	10,	13,	0,	6,	9,	8,	7,	4,	15,	14,	3,	11,	5,	2,	12},

			100	 	 },

			101	 	 //	S-box	4

			102	 	 {

			103	 	 	 {7,	13,	14,	3,	0,	6,	9,	10,	1,	2,	8,	5,	11,	12,	4,	15},

			104	 	 	 {13,	8,	11,	5,	6,	15,	0,	3,	4,	7,	2,	12,	1,	10,	14,	9},

			105	 	 	 {10,	6,	9,	0,	12,	11,	7,	13,	15,	1,	3,	14,	5,	2,	8,	4},

			106	 	 	 {3,	15,	0,	6,	10,	1,	13,	8,	9,	4,	5,	11,	12,	7,	2,	14},

			107	 	 },

			108	 	 //	S-box	5

			109	 	 {

			110	 	 	 {2,	12,	4,	1,	7,	10,	11,	6,	8,	5,	3,	15,	13,	0,	14,	9},

			111	 	 	 {14,	11,	2,	12,	4,	7,	13,	1,	5,	0,	15,	10,	3,	9,	8,	6},

			112	 	 	 {4,	2,	1,	11,	10,	13,	7,	8,	15,	9,	12,	5,	6,	3,	0,	14},

			113	 	 	 {11,	8,	12,	7,	1,	14,	2,	13,	6,	15,	0,	9,	10,	4,	5,	3},

			114	 	 },

			115	 	 //	S-box	6

			116	 	 {

			117	 	 	 {12,	1,	10,	15,	9,	2,	6,	8,	0,	13,	3,	4,	14,	7,	5,	11},

			118	 	 	 {10,	15,	4,	2,	7,	12,	9,	5,	6,	1,	13,	14,	0,	11,	3,	8},

			119	 	 	 {9,	14,	15,	5,	2,	8,	12,	3,	7,	0,	4,	10,	1,	13,	11,	6},

			120	 	 	 {4,	3,	2,	12,	9,	5,	15,	10,	11,	14,	1,	7,	6,	0,	8,	13},

			121	 	 },

			122	 	 //	S-box	7

			123	 	 {

			124	 	 	 {4,	11,	2,	14,	15,	0,	8,	13,	3,	12,	9,	7,	5,	10,	6,	1},

			125	 	 	 {13,	0,	11,	7,	4,	9,	1,	10,	14,	3,	5,	12,	2,	15,	8,	6},

			126	 	 	 {1,	4,	11,	13,	12,	3,	7,	14,	10,	15,	6,	8,	0,	5,	9,	2},

			127	 	 	 {6,	11,	13,	8,	1,	4,	10,	7,	9,	5,	0,	15,	14,	2,	3,	12},

			128	 	 },

			129	 	 //	S-box	8

			130	 	 {

			131	 	 	 {13,	2,	8,	4,	6,	15,	11,	1,	10,	9,	3,	14,	5,	0,	12,	7},

			132	 	 	 {1,	15,	13,	8,	10,	3,	7,	4,	12,	5,	6,	11,	0,	14,	9,	2},

			133	 	 	 {7,	11,	4,	1,	9,	12,	14,	2,	0,	6,	10,	13,	15,	3,	5,	8},

			134	 	 	 {2,	1,	14,	7,	4,	10,	8,	13,	15,	12,	9,	0,	3,	5,	6,	11},

			135	 	 },

			136	 }

			137	

			138	 //	Size	of	left	rotation	per	round	in	each	half	of	the	key	schedule

			139	 var	ksRotations	=	[16]uint8{1,	1,	2,	2,	2,	2,	2,	2,	1,	2,	2,	2,	2,	2,	2,	1}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/crypto/dsa/dsa.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	dsa	implements	the	Digital	Signature	Algorithm,	as	defined	in	FIPS	186-3.

					6	 package	dsa

					7	

					8	 import	(

					9	 	 "errors"

				10	 	 "io"

				11	 	 "math/big"

				12)

				13	

				14	 //	Parameters	represents	the	domain	parameters	for	a	key.	These	parameters	can

				15	 //	be	shared	across	many	keys.	The	bit	length	of	Q	must	be	a	multiple	of	8.

				16	 type	Parameters	struct	{

				17	 	 P,	Q,	G	*big.Int

				18	 }

				19	

				20	 //	PublicKey	represents	a	DSA	public	key.

				21	 type	PublicKey	struct	{

				22	 	 Parameters

				23	 	 Y	*big.Int

				24	 }

				25	

				26	 //	PrivateKey	represents	a	DSA	private	key.

				27	 type	PrivateKey	struct	{

				28	 	 PublicKey

				29	 	 X	*big.Int

				30	 }

				31	

				32	 //	ErrInvalidPublicKey	results	when	a	public	key	is	not	usable	by	this	code.

				33	 //	FIPS	is	quite	strict	about	the	format	of	DSA	keys,	but	other	code	may	be

				34	 //	less	so.	Thus,	when	using	keys	which	may	have	been	generated	by	other	code,

				35	 //	this	error	must	be	handled.

				36	 var	ErrInvalidPublicKey	=	errors.New("crypto/dsa:	invalid	public	key")

				37	

				38	 //	ParameterSizes	is	a	enumeration	of	the	acceptable	bit	lengths	of	the	primes

				39	 //	in	a	set	of	DSA	parameters.	See	FIPS	186-3,	section	4.2.

				40	 type	ParameterSizes	int

				41	

				42	 const	(

				43	 	 L1024N160	ParameterSizes	=	iota

				44	 	 L2048N224

				45	 	 L2048N256

				46	 	 L3072N256

				47)

				48	

				49	 //	numMRTests	is	the	number	of	Miller-Rabin	primality	tests	that	we	perform.	We

				50	 //	pick	the	largest	recommended	number	from	table	C.1	of	FIPS	186-3.

				51	 const	numMRTests	=	64

				52	

				53	 //	GenerateParameters	puts	a	random,	valid	set	of	DSA	parameters	into	params.

				54	 //	This	function	takes	many	seconds,	even	on	fast	machines.

				55	 func	GenerateParameters(params	*Parameters,	rand	io.Reader,	sizes	ParameterSizes)	(err	error)	{

				56	 	 //	This	function	doesn't	follow	FIPS	186-3	exactly	in	that	it	doesn't

				57	 	 //	use	a	verification	seed	to	generate	the	primes.	The	verification

				58	 	 //	seed	doesn't	appear	to	be	exported	or	used	by	other	code	and

				59	 	 //	omitting	it	makes	the	code	cleaner.

				60	

				61	 	 var	L,	N	int

				62	 	 switch	sizes	{

				63	 	 case	L1024N160:

				64	 	 	 L	=	1024

				65	 	 	 N	=	160

				66	 	 case	L2048N224:

				67	 	 	 L	=	2048

				68	 	 	 N	=	224

				69	 	 case	L2048N256:

				70	 	 	 L	=	2048

				71	 	 	 N	=	256

				72	 	 case	L3072N256:

				73	 	 	 L	=	3072

				74	 	 	 N	=	256

				75	 	 default:

				76	 	 	 return	errors.New("crypto/dsa:	invalid	ParameterSizes")

				77	 	 }

				78	

				79	 	 qBytes	:=	make([]byte,	N/8)

				80	 	 pBytes	:=	make([]byte,	L/8)

				81	

				82	 	 q	:=	new(big.Int)

				83	 	 p	:=	new(big.Int)

				84	 	 rem	:=	new(big.Int)

				85	 	 one	:=	new(big.Int)

				86	 	 one.SetInt64(1)

				87	

				88	 GeneratePrimes:

				89	 	 for	{

				90	 	 	 _,	err	=	io.ReadFull(rand,	qBytes)

				91	 	 	 if	err	!=	nil	{

				92	 	 	 	 return

				93	 	 	 }

				94	

				95	 	 	 qBytes[len(qBytes)-1]	|=	1

				96	 	 	 qBytes[0]	|=	0x80

				97	 	 	 q.SetBytes(qBytes)

				98	

				99	 	 	 if	!q.ProbablyPrime(numMRTests)	{

			100	 	 	 	 continue

			101	 	 	 }

			102	

			103	 	 	 for	i	:=	0;	i	<	4*L;	i++	{

			104	 	 	 	 _,	err	=	io.ReadFull(rand,	pBytes)

			105	 	 	 	 if	err	!=	nil	{

			106	 	 	 	 	 return

			107	 	 	 	 }

			108	

			109	 	 	 	 pBytes[len(pBytes)-1]	|=	1

			110	 	 	 	 pBytes[0]	|=	0x80

			111	

			112	 	 	 	 p.SetBytes(pBytes)

			113	 	 	 	 rem.Mod(p,	q)

			114	 	 	 	 rem.Sub(rem,	one)

			115	 	 	 	 p.Sub(p,	rem)

			116	 	 	 	 if	p.BitLen()	<	L	{

			117	 	 	 	 	 continue

			118	 	 	 	 }

			119	

			120	 	 	 	 if	!p.ProbablyPrime(numMRTests)	{

			121	 	 	 	 	 continue

			122	 	 	 	 }

			123	

			124	 	 	 	 params.P	=	p

			125	 	 	 	 params.Q	=	q

			126	 	 	 	 break	GeneratePrimes

			127	 	 	 }

			128	 	 }

			129	

			130	 	 h	:=	new(big.Int)

			131	 	 h.SetInt64(2)

			132	 	 g	:=	new(big.Int)

			133	

			134	 	 pm1	:=	new(big.Int).Sub(p,	one)

			135	 	 e	:=	new(big.Int).Div(pm1,	q)

			136	

			137	 	 for	{

			138	 	 	 g.Exp(h,	e,	p)

			139	 	 	 if	g.Cmp(one)	==	0	{

			140	 	 	 	 h.Add(h,	one)

			141	 	 	 	 continue

			142	 	 	 }

			143	

			144	 	 	 params.G	=	g

			145	 	 	 return

			146	 	 }

			147	

			148	 	 panic("unreachable")

			149	 }

			150	

			151	 //	GenerateKey	generates	a	public&private	key	pair.	The	Parameters	of	the

			152	 //	PrivateKey	must	already	be	valid	(see	GenerateParameters).

			153	 func	GenerateKey(priv	*PrivateKey,	rand	io.Reader)	error	{

			154	 	 if	priv.P	==	nil	||	priv.Q	==	nil	||	priv.G	==	nil	{

			155	 	 	 return	errors.New("crypto/dsa:	parameters	not	set	up	before	generating	key")

			156	 	 }

			157	

			158	 	 x	:=	new(big.Int)

			159	 	 xBytes	:=	make([]byte,	priv.Q.BitLen()/8)

			160	

			161	 	 for	{

			162	 	 	 _,	err	:=	io.ReadFull(rand,	xBytes)

			163	 	 	 if	err	!=	nil	{

			164	 	 	 	 return	err

			165	 	 	 }

			166	 	 	 x.SetBytes(xBytes)

			167	 	 	 if	x.Sign()	!=	0	&&	x.Cmp(priv.Q)	<	0	{

			168	 	 	 	 break

			169	 	 	 }

			170	 	 }

			171	

			172	 	 priv.X	=	x

			173	 	 priv.Y	=	new(big.Int)

			174	 	 priv.Y.Exp(priv.G,	x,	priv.P)

			175	 	 return	nil

			176	 }

			177	

			178	 //	Sign	signs	an	arbitrary	length	hash	(which	should	be	the	result	of	hashing	a

			179	 //	larger	message)	using	the	private	key,	priv.	It	returns	the	signature	as	a

			180	 //	pair	of	integers.	The	security	of	the	private	key	depends	on	the	entropy	of

			181	 //	rand.

			182	 //

			183	 //	Note	that	FIPS	186-3	section	4.6	specifies	that	the	hash	should	be	truncated

			184	 //	to	the	byte-length	of	the	subgroup.	This	function	does	not	perform	that

			185	 //	truncation	itself.

			186	 func	Sign(rand	io.Reader,	priv	*PrivateKey,	hash	[]byte)	(r,	s	*big.Int,	err	error)	{

			187	 	 //	FIPS	186-3,	section	4.6

			188	

			189	 	 n	:=	priv.Q.BitLen()

			190	 	 if	n&7	!=	0	{

			191	 	 	 err	=	ErrInvalidPublicKey

			192	 	 	 return

			193	 	 }

			194	 	 n	>>=	3

			195	

			196	 	 for	{

			197	 	 	 k	:=	new(big.Int)

			198	 	 	 buf	:=	make([]byte,	n)

			199	 	 	 for	{

			200	 	 	 	 _,	err	=	io.ReadFull(rand,	buf)

			201	 	 	 	 if	err	!=	nil	{

			202	 	 	 	 	 return

			203	 	 	 	 }

			204	 	 	 	 k.SetBytes(buf)

			205	 	 	 	 if	k.Sign()	>	0	&&	k.Cmp(priv.Q)	<	0	{

			206	 	 	 	 	 break

			207	 	 	 	 }

			208	 	 	 }

			209	

			210	 	 	 kInv	:=	new(big.Int).ModInverse(k,	priv.Q)

			211	

			212	 	 	 r	=	new(big.Int).Exp(priv.G,	k,	priv.P)

			213	 	 	 r.Mod(r,	priv.Q)

			214	

			215	 	 	 if	r.Sign()	==	0	{

			216	 	 	 	 continue

			217	 	 	 }

			218	

			219	 	 	 z	:=	k.SetBytes(hash)

			220	

			221	 	 	 s	=	new(big.Int).Mul(priv.X,	r)

			222	 	 	 s.Add(s,	z)

			223	 	 	 s.Mod(s,	priv.Q)

			224	 	 	 s.Mul(s,	kInv)

			225	 	 	 s.Mod(s,	priv.Q)

			226	

			227	 	 	 if	s.Sign()	!=	0	{

			228	 	 	 	 break

			229	 	 	 }

			230	 	 }

			231	

			232	 	 return

			233	 }

			234	

			235	 //	Verify	verifies	the	signature	in	r,	s	of	hash	using	the	public	key,	pub.	It

			236	 //	reports	whether	the	signature	is	valid.

			237	 //

			238	 //	Note	that	FIPS	186-3	section	4.6	specifies	that	the	hash	should	be	truncated

			239	 //	to	the	byte-length	of	the	subgroup.	This	function	does	not	perform	that

			240	 //	truncation	itself.

			241	 func	Verify(pub	*PublicKey,	hash	[]byte,	r,	s	*big.Int)	bool	{

			242	 	 //	FIPS	186-3,	section	4.7

			243	

			244	 	 if	r.Sign()	<	1	||	r.Cmp(pub.Q)	>=	0	{

			245	 	 	 return	false

			246	 	 }

			247	 	 if	s.Sign()	<	1	||	s.Cmp(pub.Q)	>=	0	{

			248	 	 	 return	false

			249	 	 }

			250	

			251	 	 w	:=	new(big.Int).ModInverse(s,	pub.Q)

			252	

			253	 	 n	:=	pub.Q.BitLen()

			254	 	 if	n&7	!=	0	{

			255	 	 	 return	false

			256	 	 }

			257	 	 z	:=	new(big.Int).SetBytes(hash)

			258	

			259	 	 u1	:=	new(big.Int).Mul(z,	w)

			260	 	 u1.Mod(u1,	pub.Q)

			261	 	 u2	:=	w.Mul(r,	w)

			262	 	 u2.Mod(u2,	pub.Q)

			263	 	 v	:=	u1.Exp(pub.G,	u1,	pub.P)

			264	 	 u2.Exp(pub.Y,	u2,	pub.P)

			265	 	 v.Mul(v,	u2)

			266	 	 v.Mod(v,	pub.P)

			267	 	 v.Mod(v,	pub.Q)

			268	

			269	 	 return	v.Cmp(r)	==	0

			270	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/ecdsa/ecdsa.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	ecdsa	implements	the	Elliptic	Curve	Digital	Signature	Algorithm,	as

					6	 //	defined	in	FIPS	186-3.

					7	 package	ecdsa

					8	

					9	 //	References:

				10	 //			[NSA]:	Suite	B	implementer's	guide	to	FIPS	186-3,

				11	 //					http://www.nsa.gov/ia/_files/ecdsa.pdf

				12	 //			[SECG]:	SECG,	SEC1

				13	 //					http://www.secg.org/download/aid-780/sec1-v2.pdf

				14	

				15	 import	(

				16	 	 "crypto/elliptic"

				17	 	 "io"

				18	 	 "math/big"

				19)

				20	

				21	 //	PublicKey	represents	an	ECDSA	public	key.

				22	 type	PublicKey	struct	{

				23	 	 elliptic.Curve

				24	 	 X,	Y	*big.Int

				25	 }

				26	

				27	 //	PrivateKey	represents	a	ECDSA	private	key.

				28	 type	PrivateKey	struct	{

				29	 	 PublicKey

				30	 	 D	*big.Int

				31	 }

				32	

				33	 var	one	=	new(big.Int).SetInt64(1)

				34	

				35	 //	randFieldElement	returns	a	random	element	of	the	field	underlying	the	given

				36	 //	curve	using	the	procedure	given	in	[NSA]	A.2.1.

				37	 func	randFieldElement(c	elliptic.Curve,	rand	io.Reader)	(k	*big.Int,	err	error)	{

				38	 	 params	:=	c.Params()

				39	 	 b	:=	make([]byte,	params.BitSize/8+8)

				40	 	 _,	err	=	io.ReadFull(rand,	b)

				41	 	 if	err	!=	nil	{

				42	 	 	 return

				43	 	 }

				44	

				45	 	 k	=	new(big.Int).SetBytes(b)

				46	 	 n	:=	new(big.Int).Sub(params.N,	one)

				47	 	 k.Mod(k,	n)

				48	 	 k.Add(k,	one)

				49	 	 return

				50	 }

				51	

				52	 //	GenerateKey	generates	a	public&private	key	pair.

				53	 func	GenerateKey(c	elliptic.Curve,	rand	io.Reader)	(priv	*PrivateKey,	err	error)	{

				54	 	 k,	err	:=	randFieldElement(c,	rand)

				55	 	 if	err	!=	nil	{

				56	 	 	 return

				57	 	 }

				58	

				59	 	 priv	=	new(PrivateKey)

				60	 	 priv.PublicKey.Curve	=	c

				61	 	 priv.D	=	k

				62	 	 priv.PublicKey.X,	priv.PublicKey.Y	=	c.ScalarBaseMult(k.Bytes())

				63	 	 return

				64	 }

				65	

				66	 //	hashToInt	converts	a	hash	value	to	an	integer.	There	is	some	disagreement

				67	 //	about	how	this	is	done.	[NSA]	suggests	that	this	is	done	in	the	obvious

				68	 //	manner,	but	[SECG]	truncates	the	hash	to	the	bit-length	of	the	curve	order

				69	 //	first.	We	follow	[SECG]	because	that's	what	OpenSSL	does.

				70	 func	hashToInt(hash	[]byte,	c	elliptic.Curve)	*big.Int	{

				71	 	 orderBits	:=	c.Params().N.BitLen()

				72	 	 orderBytes	:=	(orderBits	+	7)	/	8

				73	 	 if	len(hash)	>	orderBytes	{

				74	 	 	 hash	=	hash[:orderBytes]

				75	 	 }

				76	

				77	 	 ret	:=	new(big.Int).SetBytes(hash)

				78	 	 excess	:=	orderBytes*8	-	orderBits

				79	 	 if	excess	>	0	{

				80	 	 	 ret.Rsh(ret,	uint(excess))

				81	 	 }

				82	 	 return	ret

				83	 }

				84	

				85	 //	Sign	signs	an	arbitrary	length	hash	(which	should	be	the	result	of	hashing	a

				86	 //	larger	message)	using	the	private	key,	priv.	It	returns	the	signature	as	a

				87	 //	pair	of	integers.	The	security	of	the	private	key	depends	on	the	entropy	of

				88	 //	rand.

				89	 func	Sign(rand	io.Reader,	priv	*PrivateKey,	hash	[]byte)	(r,	s	*big.Int,	err	error)	{

				90	 	 //	See	[NSA]	3.4.1

				91	 	 c	:=	priv.PublicKey.Curve

				92	 	 N	:=	c.Params().N

				93	

				94	 	 var	k,	kInv	*big.Int

				95	 	 for	{

				96	 	 	 for	{

				97	 	 	 	 k,	err	=	randFieldElement(c,	rand)

				98	 	 	 	 if	err	!=	nil	{

				99	 	 	 	 	 r	=	nil

			100	 	 	 	 	 return

			101	 	 	 	 }

			102	

			103	 	 	 	 kInv	=	new(big.Int).ModInverse(k,	N)

			104	 	 	 	 r,	_	=	priv.Curve.ScalarBaseMult(k.Bytes())

			105	 	 	 	 r.Mod(r,	N)

			106	 	 	 	 if	r.Sign()	!=	0	{

			107	 	 	 	 	 break

			108	 	 	 	 }

			109	 	 	 }

			110	

			111	 	 	 e	:=	hashToInt(hash,	c)

			112	 	 	 s	=	new(big.Int).Mul(priv.D,	r)

			113	 	 	 s.Add(s,	e)

			114	 	 	 s.Mul(s,	kInv)

			115	 	 	 s.Mod(s,	N)

			116	 	 	 if	s.Sign()	!=	0	{

			117	 	 	 	 break

			118	 	 	 }

			119	 	 }

			120	

			121	 	 return

			122	 }

			123	

			124	 //	Verify	verifies	the	signature	in	r,	s	of	hash	using	the	public	key,	pub.	It

			125	 //	returns	true	iff	the	signature	is	valid.

			126	 func	Verify(pub	*PublicKey,	hash	[]byte,	r,	s	*big.Int)	bool	{

			127	 	 //	See	[NSA]	3.4.2

			128	 	 c	:=	pub.Curve

			129	 	 N	:=	c.Params().N

			130	

			131	 	 if	r.Sign()	==	0	||	s.Sign()	==	0	{

			132	 	 	 return	false

			133	 	 }

			134	 	 if	r.Cmp(N)	>=	0	||	s.Cmp(N)	>=	0	{

			135	 	 	 return	false

			136	 	 }

			137	 	 e	:=	hashToInt(hash,	c)

			138	 	 w	:=	new(big.Int).ModInverse(s,	N)

			139	

			140	 	 u1	:=	e.Mul(e,	w)

			141	 	 u2	:=	w.Mul(r,	w)

			142	

			143	 	 x1,	y1	:=	c.ScalarBaseMult(u1.Bytes())

			144	 	 x2,	y2	:=	c.ScalarMult(pub.X,	pub.Y,	u2.Bytes())

			145	 	 if	x1.Cmp(x2)	==	0	{

			146	 	 	 return	false

			147	 	 }

			148	 	 x,	_	:=	c.Add(x1,	y1,	x2,	y2)

			149	 	 x.Mod(x,	N)

			150	 	 return	x.Cmp(r)	==	0

			151	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/elliptic/elliptic.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	elliptic	implements	several	standard	elliptic	curves	over	prime

					6	 //	fields.

					7	 package	elliptic

					8	

					9	 //	This	package	operates,	internally,	on	Jacobian	coordinates.	For	a	given

				10	 //	(x,	y)	position	on	the	curve,	the	Jacobian	coordinates	are	(x1,	y1,	z1)

				11	 //	where	x	=	x1/z1²	and	y	=	y1/z1³.	The	greatest	speedups	come	when	the	whole

				12	 //	calculation	can	be	performed	within	the	transform	(as	in	ScalarMult	and

				13	 //	ScalarBaseMult).	But	even	for	Add	and	Double,	it's	faster	to	apply	and

				14	 //	reverse	the	transform	than	to	operate	in	affine	coordinates.

				15	

				16	 import	(

				17	 	 "io"

				18	 	 "math/big"

				19	 	 "sync"

				20)

				21	

				22	 //	A	Curve	represents	a	short-form	Weierstrass	curve	with	a=-3.

				23	 //	See	http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html

				24	 type	Curve	interface	{

				25	 	 //	Params	returns	the	parameters	for	the	curve.

				26	 	 Params()	*CurveParams

				27	 	 //	IsOnCurve	returns	true	if	the	given	(x,y)	lies	on	the	curve.

				28	 	 IsOnCurve(x,	y	*big.Int)	bool

				29	 	 //	Add	returns	the	sum	of	(x1,y1)	and	(x2,y2)

				30	 	 Add(x1,	y1,	x2,	y2	*big.Int)	(x,	y	*big.Int)

				31	 	 //	Double	returns	2*(x,y)

				32	 	 Double(x1,	y1	*big.Int)	(x,	y	*big.Int)

				33	 	 //	ScalarMult	returns	k*(Bx,By)	where	k	is	a	number	in	big-endian	form.

				34	 	 ScalarMult(x1,	y1	*big.Int,	scalar	[]byte)	(x,	y	*big.Int)

				35	 	 //	ScalarBaseMult	returns	k*G,	where	G	is	the	base	point	of	the	group	and	k

				36	 	 //	is	an	integer	in	big-endian	form.

				37	 	 ScalarBaseMult(scalar	[]byte)	(x,	y	*big.Int)

				38	 }

				39	

				40	 //	CurveParams	contains	the	parameters	of	an	elliptic	curve	and	also	provides

				41	 //	a	generic,	non-constant	time	implementation	of	Curve.

				42	 type	CurveParams	struct	{

				43	 	 P							*big.Int	//	the	order	of	the	underlying	field

				44	 	 N							*big.Int	//	the	order	of	the	base	point

				45	 	 B							*big.Int	//	the	constant	of	the	curve	equation

				46	 	 Gx,	Gy		*big.Int	//	(x,y)	of	the	base	point

				47	 	 BitSize	int						//	the	size	of	the	underlying	field

				48	 }

				49	

				50	 func	(curve	*CurveParams)	Params()	*CurveParams	{

				51	 	 return	curve

				52	 }

				53	

				54	 func	(curve	*CurveParams)	IsOnCurve(x,	y	*big.Int)	bool	{

				55	 	 //	y²	=	x³	-	3x	+	b

				56	 	 y2	:=	new(big.Int).Mul(y,	y)

				57	 	 y2.Mod(y2,	curve.P)

				58	

				59	 	 x3	:=	new(big.Int).Mul(x,	x)

				60	 	 x3.Mul(x3,	x)

				61	

				62	 	 threeX	:=	new(big.Int).Lsh(x,	1)

				63	 	 threeX.Add(threeX,	x)

				64	

				65	 	 x3.Sub(x3,	threeX)

				66	 	 x3.Add(x3,	curve.B)

				67	 	 x3.Mod(x3,	curve.P)

				68	

				69	 	 return	x3.Cmp(y2)	==	0

				70	 }

				71	

				72	 //	affineFromJacobian	reverses	the	Jacobian	transform.	See	the	comment	at	the

				73	 //	top	of	the	file.

				74	 func	(curve	*CurveParams)	affineFromJacobian(x,	y,	z	*big.Int)	(xOut,	yOut	*big.Int)	{

				75	 	 zinv	:=	new(big.Int).ModInverse(z,	curve.P)

				76	 	 zinvsq	:=	new(big.Int).Mul(zinv,	zinv)

				77	

				78	 	 xOut	=	new(big.Int).Mul(x,	zinvsq)

				79	 	 xOut.Mod(xOut,	curve.P)

				80	 	 zinvsq.Mul(zinvsq,	zinv)

				81	 	 yOut	=	new(big.Int).Mul(y,	zinvsq)

				82	 	 yOut.Mod(yOut,	curve.P)

				83	 	 return

				84	 }

				85	

				86	 func	(curve	*CurveParams)	Add(x1,	y1,	x2,	y2	*big.Int)	(*big.Int,	*big.Int)	{

				87	 	 z	:=	new(big.Int).SetInt64(1)

				88	 	 return	curve.affineFromJacobian(curve.addJacobian(x1,	y1,	z,	x2,	y2,	z))

				89	 }

				90	

				91	 //	addJacobian	takes	two	points	in	Jacobian	coordinates,	(x1,	y1,	z1)	and

				92	 //	(x2,	y2,	z2)	and	returns	their	sum,	also	in	Jacobian	form.

				93	 func	(curve	*CurveParams)	addJacobian(x1,	y1,	z1,	x2,	y2,	z2	*big.Int)	(*big.Int,	*big.Int,	*big.Int)	{

				94	 	 //	See	http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl

				95	 	 z1z1	:=	new(big.Int).Mul(z1,	z1)

				96	 	 z1z1.Mod(z1z1,	curve.P)

				97	 	 z2z2	:=	new(big.Int).Mul(z2,	z2)

				98	 	 z2z2.Mod(z2z2,	curve.P)

				99	

			100	 	 u1	:=	new(big.Int).Mul(x1,	z2z2)

			101	 	 u1.Mod(u1,	curve.P)

			102	 	 u2	:=	new(big.Int).Mul(x2,	z1z1)

			103	 	 u2.Mod(u2,	curve.P)

			104	 	 h	:=	new(big.Int).Sub(u2,	u1)

			105	 	 if	h.Sign()	==	-1	{

			106	 	 	 h.Add(h,	curve.P)

			107	 	 }

			108	 	 i	:=	new(big.Int).Lsh(h,	1)

			109	 	 i.Mul(i,	i)

			110	 	 j	:=	new(big.Int).Mul(h,	i)

			111	

			112	 	 s1	:=	new(big.Int).Mul(y1,	z2)

			113	 	 s1.Mul(s1,	z2z2)

			114	 	 s1.Mod(s1,	curve.P)

			115	 	 s2	:=	new(big.Int).Mul(y2,	z1)

			116	 	 s2.Mul(s2,	z1z1)

			117	 	 s2.Mod(s2,	curve.P)

			118	 	 r	:=	new(big.Int).Sub(s2,	s1)

			119	 	 if	r.Sign()	==	-1	{

			120	 	 	 r.Add(r,	curve.P)

			121	 	 }

			122	 	 r.Lsh(r,	1)

			123	 	 v	:=	new(big.Int).Mul(u1,	i)

			124	

			125	 	 x3	:=	new(big.Int).Set(r)

			126	 	 x3.Mul(x3,	x3)

			127	 	 x3.Sub(x3,	j)

			128	 	 x3.Sub(x3,	v)

			129	 	 x3.Sub(x3,	v)

			130	 	 x3.Mod(x3,	curve.P)

			131	

			132	 	 y3	:=	new(big.Int).Set(r)

			133	 	 v.Sub(v,	x3)

			134	 	 y3.Mul(y3,	v)

			135	 	 s1.Mul(s1,	j)

			136	 	 s1.Lsh(s1,	1)

			137	 	 y3.Sub(y3,	s1)

			138	 	 y3.Mod(y3,	curve.P)

			139	

			140	 	 z3	:=	new(big.Int).Add(z1,	z2)

			141	 	 z3.Mul(z3,	z3)

			142	 	 z3.Sub(z3,	z1z1)

			143	 	 if	z3.Sign()	==	-1	{

			144	 	 	 z3.Add(z3,	curve.P)

			145	 	 }

			146	 	 z3.Sub(z3,	z2z2)

			147	 	 if	z3.Sign()	==	-1	{

			148	 	 	 z3.Add(z3,	curve.P)

			149	 	 }

			150	 	 z3.Mul(z3,	h)

			151	 	 z3.Mod(z3,	curve.P)

			152	

			153	 	 return	x3,	y3,	z3

			154	 }

			155	

			156	 func	(curve	*CurveParams)	Double(x1,	y1	*big.Int)	(*big.Int,	*big.Int)	{

			157	 	 z1	:=	new(big.Int).SetInt64(1)

			158	 	 return	curve.affineFromJacobian(curve.doubleJacobian(x1,	y1,	z1))

			159	 }

			160	

			161	 //	doubleJacobian	takes	a	point	in	Jacobian	coordinates,	(x,	y,	z),	and

			162	 //	returns	its	double,	also	in	Jacobian	form.

			163	 func	(curve	*CurveParams)	doubleJacobian(x,	y,	z	*big.Int)	(*big.Int,	*big.Int,	*big.Int)	{

			164	 	 //	See	http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b

			165	 	 delta	:=	new(big.Int).Mul(z,	z)

			166	 	 delta.Mod(delta,	curve.P)

			167	 	 gamma	:=	new(big.Int).Mul(y,	y)

			168	 	 gamma.Mod(gamma,	curve.P)

			169	 	 alpha	:=	new(big.Int).Sub(x,	delta)

			170	 	 if	alpha.Sign()	==	-1	{

			171	 	 	 alpha.Add(alpha,	curve.P)

			172	 	 }

			173	 	 alpha2	:=	new(big.Int).Add(x,	delta)

			174	 	 alpha.Mul(alpha,	alpha2)

			175	 	 alpha2.Set(alpha)

			176	 	 alpha.Lsh(alpha,	1)

			177	 	 alpha.Add(alpha,	alpha2)

			178	

			179	 	 beta	:=	alpha2.Mul(x,	gamma)

			180	

			181	 	 x3	:=	new(big.Int).Mul(alpha,	alpha)

			182	 	 beta8	:=	new(big.Int).Lsh(beta,	3)

			183	 	 x3.Sub(x3,	beta8)

			184	 	 for	x3.Sign()	==	-1	{

			185	 	 	 x3.Add(x3,	curve.P)

			186	 	 }

			187	 	 x3.Mod(x3,	curve.P)

			188	

			189	 	 z3	:=	new(big.Int).Add(y,	z)

			190	 	 z3.Mul(z3,	z3)

			191	 	 z3.Sub(z3,	gamma)

			192	 	 if	z3.Sign()	==	-1	{

			193	 	 	 z3.Add(z3,	curve.P)

			194	 	 }

			195	 	 z3.Sub(z3,	delta)

			196	 	 if	z3.Sign()	==	-1	{

			197	 	 	 z3.Add(z3,	curve.P)

			198	 	 }

			199	 	 z3.Mod(z3,	curve.P)

			200	

			201	 	 beta.Lsh(beta,	2)

			202	 	 beta.Sub(beta,	x3)

			203	 	 if	beta.Sign()	==	-1	{

			204	 	 	 beta.Add(beta,	curve.P)

			205	 	 }

			206	 	 y3	:=	alpha.Mul(alpha,	beta)

			207	

			208	 	 gamma.Mul(gamma,	gamma)

			209	 	 gamma.Lsh(gamma,	3)

			210	 	 gamma.Mod(gamma,	curve.P)

			211	

			212	 	 y3.Sub(y3,	gamma)

			213	 	 if	y3.Sign()	==	-1	{

			214	 	 	 y3.Add(y3,	curve.P)

			215	 	 }

			216	 	 y3.Mod(y3,	curve.P)

			217	

			218	 	 return	x3,	y3,	z3

			219	 }

			220	

			221	 func	(curve	*CurveParams)	ScalarMult(Bx,	By	*big.Int,	k	[]byte)	(*big.Int,	*big.Int)	{

			222	 	 //	We	have	a	slight	problem	in	that	the	identity	of	the	group	(the

			223	 	 //	point	at	infinity)	cannot	be	represented	in	(x,	y)	form	on	a	finite

			224	 	 //	machine.	Thus	the	standard	add/double	algorithm	has	to	be	tweaked

			225	 	 //	slightly:	our	initial	state	is	not	the	identity,	but	x,	and	we

			226	 	 //	ignore	the	first	true	bit	in	|k|.		If	we	don't	find	any	true	bits	in

			227	 	 //	|k|,	then	we	return	nil,	nil,	because	we	cannot	return	the	identity

			228	 	 //	element.

			229	

			230	 	 Bz	:=	new(big.Int).SetInt64(1)

			231	 	 x	:=	Bx

			232	 	 y	:=	By

			233	 	 z	:=	Bz

			234	

			235	 	 seenFirstTrue	:=	false

			236	 	 for	_,	byte	:=	range	k	{

			237	 	 	 for	bitNum	:=	0;	bitNum	<	8;	bitNum++	{

			238	 	 	 	 if	seenFirstTrue	{

			239	 	 	 	 	 x,	y,	z	=	curve.doubleJacobian(x,	y,	z)

			240	 	 	 	 }

			241	 	 	 	 if	byte&0x80	==	0x80	{

			242	 	 	 	 	 if	!seenFirstTrue	{

			243	 	 	 	 	 	 seenFirstTrue	=	true

			244	 	 	 	 	 }	else	{

			245	 	 	 	 	 	 x,	y,	z	=	curve.addJacobian(Bx,	By,	Bz,	x,	y,	z)

			246	 	 	 	 	 }

			247	 	 	 	 }

			248	 	 	 	 byte	<<=	1

			249	 	 	 }

			250	 	 }

			251	

			252	 	 if	!seenFirstTrue	{

			253	 	 	 return	nil,	nil

			254	 	 }

			255	

			256	 	 return	curve.affineFromJacobian(x,	y,	z)

			257	 }

			258	

			259	 func	(curve	*CurveParams)	ScalarBaseMult(k	[]byte)	(*big.Int,	*big.Int)	{

			260	 	 return	curve.ScalarMult(curve.Gx,	curve.Gy,	k)

			261	 }

			262	

			263	 var	mask	=	[]byte{0xff,	0x1,	0x3,	0x7,	0xf,	0x1f,	0x3f,	0x7f}

			264	

			265	 //	GenerateKey	returns	a	public/private	key	pair.	The	private	key	is

			266	 //	generated	using	the	given	reader,	which	must	return	random	data.

			267	 func	GenerateKey(curve	Curve,	rand	io.Reader)	(priv	[]byte,	x,	y	*big.Int,	err	error)	{

			268	 	 bitSize	:=	curve.Params().BitSize

			269	 	 byteLen	:=	(bitSize	+	7)	>>	3

			270	 	 priv	=	make([]byte,	byteLen)

			271	

			272	 	 for	x	==	nil	{

			273	 	 	 _,	err	=	io.ReadFull(rand,	priv)

			274	 	 	 if	err	!=	nil	{

			275	 	 	 	 return

			276	 	 	 }

			277	 	 	 //	We	have	to	mask	off	any	excess	bits	in	the	case	that	the	size	of	the

			278	 	 	 //	underlying	field	is	not	a	whole	number	of	bytes.

			279	 	 	 priv[0]	&=	mask[bitSize%8]

			280	 	 	 //	This	is	because,	in	tests,	rand	will	return	all	zeros	and	we	don't

			281	 	 	 //	want	to	get	the	point	at	infinity	and	loop	forever.

			282	 	 	 priv[1]	^=	0x42

			283	 	 	 x,	y	=	curve.ScalarBaseMult(priv)

			284	 	 }

			285	 	 return

			286	 }

			287	

			288	 //	Marshal	converts	a	point	into	the	form	specified	in	section	4.3.6	of	ANSI	X9.62.

			289	 func	Marshal(curve	Curve,	x,	y	*big.Int)	[]byte	{

			290	 	 byteLen	:=	(curve.Params().BitSize	+	7)	>>	3

			291	

			292	 	 ret	:=	make([]byte,	1+2*byteLen)

			293	 	 ret[0]	=	4	//	uncompressed	point

			294	

			295	 	 xBytes	:=	x.Bytes()

			296	 	 copy(ret[1+byteLen-len(xBytes):],	xBytes)

			297	 	 yBytes	:=	y.Bytes()

			298	 	 copy(ret[1+2*byteLen-len(yBytes):],	yBytes)

			299	 	 return	ret

			300	 }

			301	

			302	 //	Unmarshal	converts	a	point,	serialized	by	Marshal,	into	an	x,	y	pair.	On	error,	x	=	nil.

			303	 func	Unmarshal(curve	Curve,	data	[]byte)	(x,	y	*big.Int)	{

			304	 	 byteLen	:=	(curve.Params().BitSize	+	7)	>>	3

			305	 	 if	len(data)	!=	1+2*byteLen	{

			306	 	 	 return

			307	 	 }

			308	 	 if	data[0]	!=	4	{	//	uncompressed	form

			309	 	 	 return

			310	 	 }

			311	 	 x	=	new(big.Int).SetBytes(data[1	:	1+byteLen])

			312	 	 y	=	new(big.Int).SetBytes(data[1+byteLen:])

			313	 	 return

			314	 }

			315	

			316	 var	initonce	sync.Once

			317	 var	p256	*CurveParams

			318	 var	p384	*CurveParams

			319	 var	p521	*CurveParams

			320	

			321	 func	initAll()	{

			322	 	 initP224()

			323	 	 initP256()

			324	 	 initP384()

			325	 	 initP521()

			326	 }

			327	

			328	 func	initP256()	{

			329	 	 //	See	FIPS	186-3,	section	D.2.3

			330	 	 p256	=	new(CurveParams)

			331	 	 p256.P,	_	=	new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951",	10)

			332	 	 p256.N,	_	=	new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369",	10)

			333	 	 p256.B,	_	=	new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b",	16)

			334	 	 p256.Gx,	_	=	new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296",	16)

			335	 	 p256.Gy,	_	=	new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5",	16)

			336	 	 p256.BitSize	=	256

			337	 }

			338	

			339	 func	initP384()	{

			340	 	 //	See	FIPS	186-3,	section	D.2.4

			341	 	 p384	=	new(CurveParams)

			342	 	 p384.P,	_	=	new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319",	10)

			343	 	 p384.N,	_	=	new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643",	10)

			344	 	 p384.B,	_	=	new(big.Int).SetString("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef",	16)

			345	 	 p384.Gx,	_	=	new(big.Int).SetString("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7",	16)

			346	 	 p384.Gy,	_	=	new(big.Int).SetString("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f",	16)

			347	 	 p384.BitSize	=	384

			348	 }

			349	

			350	 func	initP521()	{

			351	 	 //	See	FIPS	186-3,	section	D.2.5

			352	 	 p521	=	new(CurveParams)

			353	 	 p521.P,	_	=	new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",	10)

			354	 	 p521.N,	_	=	new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449",	10)

			355	 	 p521.B,	_	=	new(big.Int).SetString("051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00",	16)

			356	 	 p521.Gx,	_	=	new(big.Int).SetString("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66",	16)

			357	 	 p521.Gy,	_	=	new(big.Int).SetString("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650",	16)

			358	 	 p521.BitSize	=	521

			359	 }

			360	

			361	 //	P256	returns	a	Curve	which	implements	P-256	(see	FIPS	186-3,	section	D.2.3)

			362	 func	P256()	Curve	{

			363	 	 initonce.Do(initAll)

			364	 	 return	p256

			365	 }

			366	

			367	 //	P384	returns	a	Curve	which	implements	P-384	(see	FIPS	186-3,	section	D.2.4)

			368	 func	P384()	Curve	{

			369	 	 initonce.Do(initAll)

			370	 	 return	p384

			371	 }

			372	

			373	 //	P256	returns	a	Curve	which	implements	P-521	(see	FIPS	186-3,	section	D.2.5)

			374	 func	P521()	Curve	{

			375	 	 initonce.Do(initAll)

			376	 	 return	p521

			377	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/elliptic/p224.go
					1	 //	Copyright	2012	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	elliptic

					6	

					7	 //	This	is	a	constant-time,	32-bit	implementation	of	P224.	See	FIPS	186-3,

					8	 //	section	D.2.2.

					9	 //

				10	 //	See	http://www.imperialviolet.org/2010/12/04/ecc.html	([1])	for	background.

				11	

				12	 import	(

				13	 	 "math/big"

				14)

				15	

				16	 var	p224	p224Curve

				17	

				18	 type	p224Curve	struct	{

				19	 	 *CurveParams

				20	 	 gx,	gy,	b	p224FieldElement

				21	 }

				22	

				23	 func	initP224()	{

				24	 	 //	See	FIPS	186-3,	section	D.2.2

				25	 	 p224.CurveParams	=	new(CurveParams)

				26	 	 p224.P,	_	=	new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881",	10)

				27	 	 p224.N,	_	=	new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061",	10)

				28	 	 p224.B,	_	=	new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4",	16)

				29	 	 p224.Gx,	_	=	new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21",	16)

				30	 	 p224.Gy,	_	=	new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34",	16)

				31	 	 p224.BitSize	=	224

				32	

				33	 	 p224FromBig(&p224.gx,	p224.Gx)

				34	 	 p224FromBig(&p224.gy,	p224.Gy)

				35	 	 p224FromBig(&p224.b,	p224.B)

				36	 }

				37	

				38	 //	P224	returns	a	Curve	which	implements	P-224	(see	FIPS	186-3,	section	D.2.2)

				39	 func	P224()	Curve	{

				40	 	 initonce.Do(initAll)

				41	 	 return	p224

				42	 }

				43	

				44	 func	(curve	p224Curve)	Params()	*CurveParams	{

				45	 	 return	curve.CurveParams

				46	 }

				47	

				48	 func	(curve	p224Curve)	IsOnCurve(bigX,	bigY	*big.Int)	bool	{

				49	 	 var	x,	y	p224FieldElement

				50	 	 p224FromBig(&x,	bigX)

				51	 	 p224FromBig(&y,	bigY)

				52	

				53	 	 //	y²	=	x³	-	3x	+	b

				54	 	 var	tmp	p224LargeFieldElement

				55	 	 var	x3	p224FieldElement

				56	 	 p224Square(&x3,	&x,	&tmp)

				57	 	 p224Mul(&x3,	&x3,	&x,	&tmp)

				58	

				59	 	 for	i	:=	0;	i	<	8;	i++	{

				60	 	 	 x[i]	*=	3

				61	 	 }

				62	 	 p224Sub(&x3,	&x3,	&x)

				63	 	 p224Reduce(&x3)

				64	 	 p224Add(&x3,	&x3,	&curve.b)

				65	 	 p224Contract(&x3,	&x3)

				66	

				67	 	 p224Square(&y,	&y,	&tmp)

				68	 	 p224Contract(&y,	&y)

				69	

				70	 	 for	i	:=	0;	i	<	8;	i++	{

				71	 	 	 if	y[i]	!=	x3[i]	{

				72	 	 	 	 return	false

				73	 	 	 }

				74	 	 }

				75	 	 return	true

				76	 }

				77	

				78	 func	(p224Curve)	Add(bigX1,	bigY1,	bigX2,	bigY2	*big.Int)	(x,	y	*big.Int)	{

				79	 	 var	x1,	y1,	z1,	x2,	y2,	z2,	x3,	y3,	z3	p224FieldElement

				80	

				81	 	 p224FromBig(&x1,	bigX1)

				82	 	 p224FromBig(&y1,	bigY1)

				83	 	 z1[0]	=	1

				84	 	 p224FromBig(&x2,	bigX2)

				85	 	 p224FromBig(&y2,	bigY2)

				86	 	 z2[0]	=	1

				87	

				88	 	 p224AddJacobian(&x3,	&y3,	&z3,	&x1,	&y1,	&z1,	&x2,	&y2,	&z2)

				89	 	 return	p224ToAffine(&x3,	&y3,	&z3)

				90	 }

				91	

				92	 func	(p224Curve)	Double(bigX1,	bigY1	*big.Int)	(x,	y	*big.Int)	{

				93	 	 var	x1,	y1,	z1,	x2,	y2,	z2	p224FieldElement

				94	

				95	 	 p224FromBig(&x1,	bigX1)

				96	 	 p224FromBig(&y1,	bigY1)

				97	 	 z1[0]	=	1

				98	

				99	 	 p224DoubleJacobian(&x2,	&y2,	&z2,	&x1,	&y1,	&z1)

			100	 	 return	p224ToAffine(&x2,	&y2,	&z2)

			101	 }

			102	

			103	 func	(p224Curve)	ScalarMult(bigX1,	bigY1	*big.Int,	scalar	[]byte)	(x,	y	*big.Int)	{

			104	 	 var	x1,	y1,	z1,	x2,	y2,	z2	p224FieldElement

			105	

			106	 	 p224FromBig(&x1,	bigX1)

			107	 	 p224FromBig(&y1,	bigY1)

			108	 	 z1[0]	=	1

			109	

			110	 	 p224ScalarMult(&x2,	&y2,	&z2,	&x1,	&y1,	&z1,	scalar)

			111	 	 return	p224ToAffine(&x2,	&y2,	&z2)

			112	 }

			113	

			114	 func	(curve	p224Curve)	ScalarBaseMult(scalar	[]byte)	(x,	y	*big.Int)	{

			115	 	 var	z1,	x2,	y2,	z2	p224FieldElement

			116	

			117	 	 z1[0]	=	1

			118	 	 p224ScalarMult(&x2,	&y2,	&z2,	&curve.gx,	&curve.gy,	&z1,	scalar)

			119	 	 return	p224ToAffine(&x2,	&y2,	&z2)

			120	 }

			121	

			122	 //	Field	element	functions.

			123	 //

			124	 //	The	field	that	we're	dealing	with	is	ℤ/pℤ	where	p	=	2**224	-	2**96	+	1.
			125	 //

			126	 //	Field	elements	are	represented	by	a	FieldElement,	which	is	a	typedef	to	an

			127	 //	array	of	8	uint32's.	The	value	of	a	FieldElement,	a,	is:

			128	 //			a[0]	+	2**28·a[1]	+	2**56·a[1]	+	...	+	2**196·a[7]

			129	 //

			130	 //	Using	28-bit	limbs	means	that	there's	only	4	bits	of	headroom,	which	is	less

			131	 //	than	we	would	really	like.	But	it	has	the	useful	feature	that	we	hit	2**224

			132	 //	exactly,	making	the	reflections	during	a	reduce	much	nicer.

			133	 type	p224FieldElement	[8]uint32

			134	

			135	 //	p224Add	computes	*out	=	a+b

			136	 //

			137	 //	a[i]	+	b[i]	<	2**32

			138	 func	p224Add(out,	a,	b	*p224FieldElement)	{

			139	 	 for	i	:=	0;	i	<	8;	i++	{

			140	 	 	 out[i]	=	a[i]	+	b[i]

			141	 	 }

			142	 }

			143	

			144	 const	two31p3	=	1<<31	+	1<<3

			145	 const	two31m3	=	1<<31	-	1<<3

			146	 const	two31m15m3	=	1<<31	-	1<<15	-	1<<3

			147	

			148	 //	p224ZeroModP31	is	0	mod	p	where	bit	31	is	set	in	all	limbs	so	that	we	can

			149	 //	subtract	smaller	amounts	without	underflow.	See	the	section	"Subtraction"	in

			150	 //	[1]	for	reasoning.

			151	 var	p224ZeroModP31	=	[]uint32{two31p3,	two31m3,	two31m3,	two31m15m3,	two31m3,	two31m3,	two31m3,	two31m3}

			152	

			153	 //	p224Sub	computes	*out	=	a-b

			154	 //

			155	 //	a[i],	b[i]	<	2**30

			156	 //	out[i]	<	2**32

			157	 func	p224Sub(out,	a,	b	*p224FieldElement)	{

			158	 	 for	i	:=	0;	i	<	8;	i++	{

			159	 	 	 out[i]	=	a[i]	+	p224ZeroModP31[i]	-	b[i]

			160	 	 }

			161	 }

			162	

			163	 //	LargeFieldElement	also	represents	an	element	of	the	field.	The	limbs	are

			164	 //	still	spaced	28-bits	apart	and	in	little-endian	order.	So	the	limbs	are	at

			165	 //	0,	28,	56,	...,	392	bits,	each	64-bits	wide.

			166	 type	p224LargeFieldElement	[15]uint64

			167	

			168	 const	two63p35	=	1<<63	+	1<<35

			169	 const	two63m35	=	1<<63	-	1<<35

			170	 const	two63m35m19	=	1<<63	-	1<<35	-	1<<19

			171	

			172	 //	p224ZeroModP63	is	0	mod	p	where	bit	63	is	set	in	all	limbs.	See	the	section

			173	 //	"Subtraction"	in	[1]	for	why.

			174	 var	p224ZeroModP63	=	[8]uint64{two63p35,	two63m35,	two63m35,	two63m35,	two63m35m19,	two63m35,	two63m35,	two63m35}

			175	

			176	 const	bottom12Bits	=	0xfff

			177	 const	bottom28Bits	=	0xfffffff

			178	

			179	 //	p224Mul	computes	*out	=	a*b

			180	 //

			181	 //	a[i]	<	2**29,	b[i]	<	2**30	(or	vice	versa)

			182	 //	out[i]	<	2**29

			183	 func	p224Mul(out,	a,	b	*p224FieldElement,	tmp	*p224LargeFieldElement)	{

			184	 	 for	i	:=	0;	i	<	15;	i++	{

			185	 	 	 tmp[i]	=	0

			186	 	 }

			187	

			188	 	 for	i	:=	0;	i	<	8;	i++	{

			189	 	 	 for	j	:=	0;	j	<	8;	j++	{

			190	 	 	 	 tmp[i+j]	+=	uint64(a[i])	*	uint64(b[j])

			191	 	 	 }

			192	 	 }

			193	

			194	 	 p224ReduceLarge(out,	tmp)

			195	 }

			196	

			197	 //	Square	computes	*out	=	a*a

			198	 //

			199	 //	a[i]	<	2**29

			200	 //	out[i]	<	2**29

			201	 func	p224Square(out,	a	*p224FieldElement,	tmp	*p224LargeFieldElement)	{

			202	 	 for	i	:=	0;	i	<	15;	i++	{

			203	 	 	 tmp[i]	=	0

			204	 	 }

			205	

			206	 	 for	i	:=	0;	i	<	8;	i++	{

			207	 	 	 for	j	:=	0;	j	<=	i;	j++	{

			208	 	 	 	 r	:=	uint64(a[i])	*	uint64(a[j])

			209	 	 	 	 if	i	==	j	{

			210	 	 	 	 	 tmp[i+j]	+=	r

			211	 	 	 	 }	else	{

			212	 	 	 	 	 tmp[i+j]	+=	r	<<	1

			213	 	 	 	 }

			214	 	 	 }

			215	 	 }

			216	

			217	 	 p224ReduceLarge(out,	tmp)

			218	 }

			219	

			220	 //	ReduceLarge	converts	a	p224LargeFieldElement	to	a	p224FieldElement.

			221	 //

			222	 //	in[i]	<	2**62

			223	 func	p224ReduceLarge(out	*p224FieldElement,	in	*p224LargeFieldElement)	{

			224	 	 for	i	:=	0;	i	<	8;	i++	{

			225	 	 	 in[i]	+=	p224ZeroModP63[i]

			226	 	 }

			227	

			228	 	 //	Eliminate	the	coefficients	at	2**224	and	greater.

			229	 	 for	i	:=	14;	i	>=	8;	i--	{

			230	 	 	 in[i-8]	-=	in[i]

			231	 	 	 in[i-5]	+=	(in[i]	&	0xffff)	<<	12

			232	 	 	 in[i-4]	+=	in[i]	>>	16

			233	 	 }

			234	 	 in[8]	=	0

			235	 	 //	in[0..8]	<	2**64

			236	

			237	 	 //	As	the	values	become	small	enough,	we	start	to	store	them	in	|out|

			238	 	 //	and	use	32-bit	operations.

			239	 	 for	i	:=	1;	i	<	8;	i++	{

			240	 	 	 in[i+1]	+=	in[i]	>>	28

			241	 	 	 out[i]	=	uint32(in[i]	&	bottom28Bits)

			242	 	 }

			243	 	 in[0]	-=	in[8]

			244	 	 out[3]	+=	uint32(in[8]&0xffff)	<<	12

			245	 	 out[4]	+=	uint32(in[8]	>>	16)

			246	 	 //	in[0]	<	2**64

			247	 	 //	out[3]	<	2**29

			248	 	 //	out[4]	<	2**29

			249	 	 //	out[1,2,5..7]	<	2**28

			250	

			251	 	 out[0]	=	uint32(in[0]	&	bottom28Bits)

			252	 	 out[1]	+=	uint32((in[0]	>>	28)	&	bottom28Bits)

			253	 	 out[2]	+=	uint32(in[0]	>>	56)

			254	 	 //	out[0]	<	2**28

			255	 	 //	out[1..4]	<	2**29

			256	 	 //	out[5..7]	<	2**28

			257	 }

			258	

			259	 //	Reduce	reduces	the	coefficients	of	a	to	smaller	bounds.

			260	 //

			261	 //	On	entry:	a[i]	<	2**31	+	2**30

			262	 //	On	exit:	a[i]	<	2**29

			263	 func	p224Reduce(a	*p224FieldElement)	{

			264	 	 for	i	:=	0;	i	<	7;	i++	{

			265	 	 	 a[i+1]	+=	a[i]	>>	28

			266	 	 	 a[i]	&=	bottom28Bits

			267	 	 }

			268	 	 top	:=	a[7]	>>	28

			269	 	 a[7]	&=	bottom28Bits

			270	

			271	 	 //	top	<	2**4

			272	 	 mask	:=	top

			273	 	 mask	|=	mask	>>	2

			274	 	 mask	|=	mask	>>	1

			275	 	 mask	<<=	31

			276	 	 mask	=	uint32(int32(mask)	>>	31)

			277	 	 //	Mask	is	all	ones	if	top	!=	0,	all	zero	otherwise

			278	

			279	 	 a[0]	-=	top

			280	 	 a[3]	+=	top	<<	12

			281	

			282	 	 //	We	may	have	just	made	a[0]	negative	but,	if	we	did,	then	we	must

			283	 	 //	have	added	something	to	a[3],	this	it's	>	2**12.	Therefore	we	can

			284	 	 //	carry	down	to	a[0].

			285	 	 a[3]	-=	1	&	mask

			286	 	 a[2]	+=	mask	&	(1<<28	-	1)

			287	 	 a[1]	+=	mask	&	(1<<28	-	1)

			288	 	 a[0]	+=	mask	&	(1	<<	28)

			289	 }

			290	

			291	 //	p224Invert	calculates	*out	=	in**-1	by	computing	in**(2**224	-	2**96	-	1),

			292	 //	i.e.	Fermat's	little	theorem.

			293	 func	p224Invert(out,	in	*p224FieldElement)	{

			294	 	 var	f1,	f2,	f3,	f4	p224FieldElement

			295	 	 var	c	p224LargeFieldElement

			296	

			297	 	 p224Square(&f1,	in,	&c)				//	2

			298	 	 p224Mul(&f1,	&f1,	in,	&c)		//	2**2	-	1

			299	 	 p224Square(&f1,	&f1,	&c)			//	2**3	-	2

			300	 	 p224Mul(&f1,	&f1,	in,	&c)		//	2**3	-	1

			301	 	 p224Square(&f2,	&f1,	&c)			//	2**4	-	2

			302	 	 p224Square(&f2,	&f2,	&c)			//	2**5	-	4

			303	 	 p224Square(&f2,	&f2,	&c)			//	2**6	-	8

			304	 	 p224Mul(&f1,	&f1,	&f2,	&c)	//	2**6	-	1

			305	 	 p224Square(&f2,	&f1,	&c)			//	2**7	-	2

			306	 	 for	i	:=	0;	i	<	5;	i++	{			//	2**12	-	2**6

			307	 	 	 p224Square(&f2,	&f2,	&c)

			308	 	 }

			309	 	 p224Mul(&f2,	&f2,	&f1,	&c)	//	2**12	-	1

			310	 	 p224Square(&f3,	&f2,	&c)			//	2**13	-	2

			311	 	 for	i	:=	0;	i	<	11;	i++	{		//	2**24	-	2**12

			312	 	 	 p224Square(&f3,	&f3,	&c)

			313	 	 }

			314	 	 p224Mul(&f2,	&f3,	&f2,	&c)	//	2**24	-	1

			315	 	 p224Square(&f3,	&f2,	&c)			//	2**25	-	2

			316	 	 for	i	:=	0;	i	<	23;	i++	{		//	2**48	-	2**24

			317	 	 	 p224Square(&f3,	&f3,	&c)

			318	 	 }

			319	 	 p224Mul(&f3,	&f3,	&f2,	&c)	//	2**48	-	1

			320	 	 p224Square(&f4,	&f3,	&c)			//	2**49	-	2

			321	 	 for	i	:=	0;	i	<	47;	i++	{		//	2**96	-	2**48

			322	 	 	 p224Square(&f4,	&f4,	&c)

			323	 	 }

			324	 	 p224Mul(&f3,	&f3,	&f4,	&c)	//	2**96	-	1

			325	 	 p224Square(&f4,	&f3,	&c)			//	2**97	-	2

			326	 	 for	i	:=	0;	i	<	23;	i++	{		//	2**120	-	2**24

			327	 	 	 p224Square(&f4,	&f4,	&c)

			328	 	 }

			329	 	 p224Mul(&f2,	&f4,	&f2,	&c)	//	2**120	-	1

			330	 	 for	i	:=	0;	i	<	6;	i++	{			//	2**126	-	2**6

			331	 	 	 p224Square(&f2,	&f2,	&c)

			332	 	 }

			333	 	 p224Mul(&f1,	&f1,	&f2,	&c)	//	2**126	-	1

			334	 	 p224Square(&f1,	&f1,	&c)			//	2**127	-	2

			335	 	 p224Mul(&f1,	&f1,	in,	&c)		//	2**127	-	1

			336	 	 for	i	:=	0;	i	<	97;	i++	{		//	2**224	-	2**97

			337	 	 	 p224Square(&f1,	&f1,	&c)

			338	 	 }

			339	 	 p224Mul(out,	&f1,	&f3,	&c)	//	2**224	-	2**96	-	1

			340	 }

			341	

			342	 //	p224Contract	converts	a	FieldElement	to	its	unique,	minimal	form.

			343	 //

			344	 //	On	entry,	in[i]	<	2**29

			345	 //	On	exit,	in[i]	<	2**28

			346	 func	p224Contract(out,	in	*p224FieldElement)	{

			347	 	 copy(out[:],	in[:])

			348	

			349	 	 for	i	:=	0;	i	<	7;	i++	{

			350	 	 	 out[i+1]	+=	out[i]	>>	28

			351	 	 	 out[i]	&=	bottom28Bits

			352	 	 }

			353	 	 top	:=	out[7]	>>	28

			354	 	 out[7]	&=	bottom28Bits

			355	

			356	 	 out[0]	-=	top

			357	 	 out[3]	+=	top	<<	12

			358	

			359	 	 //	We	may	just	have	made	out[i]	negative.	So	we	carry	down.	If	we	made

			360	 	 //	out[0]	negative	then	we	know	that	out[3]	is	sufficiently	positive

			361	 	 //	because	we	just	added	to	it.

			362	 	 for	i	:=	0;	i	<	3;	i++	{

			363	 	 	 mask	:=	uint32(int32(out[i])	>>	31)

			364	 	 	 out[i]	+=	(1	<<	28)	&	mask

			365	 	 	 out[i+1]	-=	1	&	mask

			366	 	 }

			367	

			368	 	 //	We	might	have	pushed	out[3]	over	2**28	so	we	perform	another,	partial,

			369	 	 //	carry	chain.

			370	 	 for	i	:=	3;	i	<	7;	i++	{

			371	 	 	 out[i+1]	+=	out[i]	>>	28

			372	 	 	 out[i]	&=	bottom28Bits

			373	 	 }

			374	 	 top	=	out[7]	>>	28

			375	 	 out[7]	&=	bottom28Bits

			376	

			377	 	 //	Eliminate	top	while	maintaining	the	same	value	mod	p.

			378	 	 out[0]	-=	top

			379	 	 out[3]	+=	top	<<	12

			380	

			381	 	 //	There	are	two	cases	to	consider	for	out[3]:

			382	 	 //			1)	The	first	time	that	we	eliminated	top,	we	didn't	push	out[3]	over

			383	 	 //						2**28.	In	this	case,	the	partial	carry	chain	didn't	change	any	values

			384	 	 //						and	top	is	zero.

			385	 	 //			2)	We	did	push	out[3]	over	2**28	the	first	time	that	we	eliminated	top.

			386	 	 //						The	first	value	of	top	was	in	[0..16),	therefore,	prior	to	eliminating

			387	 	 //						the	first	top,	0xfff1000	<=	out[3]	<=	0xfffffff.	Therefore,	after

			388	 	 //						overflowing	and	being	reduced	by	the	second	carry	chain,	out[3]	<=

			389	 	 //						0xf000.	Thus	it	cannot	have	overflowed	when	we	eliminated	top	for	the

			390	 	 //						second	time.

			391	

			392	 	 //	Again,	we	may	just	have	made	out[0]	negative,	so	do	the	same	carry	down.

			393	 	 //	As	before,	if	we	made	out[0]	negative	then	we	know	that	out[3]	is

			394	 	 //	sufficiently	positive.

			395	 	 for	i	:=	0;	i	<	3;	i++	{

			396	 	 	 mask	:=	uint32(int32(out[i])	>>	31)

			397	 	 	 out[i]	+=	(1	<<	28)	&	mask

			398	 	 	 out[i+1]	-=	1	&	mask

			399	 	 }

			400	

			401	 	 //	Now	we	see	if	the	value	is	>=	p	and,	if	so,	subtract	p.

			402	

			403	 	 //	First	we	build	a	mask	from	the	top	four	limbs,	which	must	all	be

			404	 	 //	equal	to	bottom28Bits	if	the	whole	value	is	>=	p.	If	top4AllOnes

			405	 	 //	ends	up	with	any	zero	bits	in	the	bottom	28	bits,	then	this	wasn't

			406	 	 //	true.

			407	 	 top4AllOnes	:=	uint32(0xffffffff)

			408	 	 for	i	:=	4;	i	<	8;	i++	{

			409	 	 	 top4AllOnes	&=	(out[i]	&	bottom28Bits)	-	1

			410	 	 }

			411	 	 top4AllOnes	|=	0xf0000000

			412	 	 //	Now	we	replicate	any	zero	bits	to	all	the	bits	in	top4AllOnes.

			413	 	 top4AllOnes	&=	top4AllOnes	>>	16

			414	 	 top4AllOnes	&=	top4AllOnes	>>	8

			415	 	 top4AllOnes	&=	top4AllOnes	>>	4

			416	 	 top4AllOnes	&=	top4AllOnes	>>	2

			417	 	 top4AllOnes	&=	top4AllOnes	>>	1

			418	 	 top4AllOnes	=	uint32(int32(top4AllOnes<<31)	>>	31)

			419	

			420	 	 //	Now	we	test	whether	the	bottom	three	limbs	are	non-zero.

			421	 	 bottom3NonZero	:=	out[0]	|	out[1]	|	out[2]

			422	 	 bottom3NonZero	|=	bottom3NonZero	>>	16

			423	 	 bottom3NonZero	|=	bottom3NonZero	>>	8

			424	 	 bottom3NonZero	|=	bottom3NonZero	>>	4

			425	 	 bottom3NonZero	|=	bottom3NonZero	>>	2

			426	 	 bottom3NonZero	|=	bottom3NonZero	>>	1

			427	 	 bottom3NonZero	=	uint32(int32(bottom3NonZero<<31)	>>	31)

			428	

			429	 	 //	Everything	depends	on	the	value	of	out[3].

			430	 	 //				If	it's	>	0xffff000	and	top4AllOnes	!=	0	then	the	whole	value	is	>=	p

			431	 	 //				If	it's	=	0xffff000	and	top4AllOnes	!=	0	and	bottom3NonZero	!=	0,

			432	 	 //						then	the	whole	value	is	>=	p

			433	 	 //				If	it's	<	0xffff000,	then	the	whole	value	is	<	p

			434	 	 n	:=	out[3]	-	0xffff000

			435	 	 out3Equal	:=	n

			436	 	 out3Equal	|=	out3Equal	>>	16

			437	 	 out3Equal	|=	out3Equal	>>	8

			438	 	 out3Equal	|=	out3Equal	>>	4

			439	 	 out3Equal	|=	out3Equal	>>	2

			440	 	 out3Equal	|=	out3Equal	>>	1

			441	 	 out3Equal	=	^uint32(int32(out3Equal<<31)	>>	31)

			442	

			443	 	 //	If	out[3]	>	0xffff000	then	n's	MSB	will	be	zero.

			444	 	 out3GT	:=	^uint32(int32(n<<31)	>>	31)

			445	

			446	 	 mask	:=	top4AllOnes	&	((out3Equal	&	bottom3NonZero)	|	out3GT)

			447	 	 out[0]	-=	1	&	mask

			448	 	 out[3]	-=	0xffff000	&	mask

			449	 	 out[4]	-=	0xfffffff	&	mask

			450	 	 out[5]	-=	0xfffffff	&	mask

			451	 	 out[6]	-=	0xfffffff	&	mask

			452	 	 out[7]	-=	0xfffffff	&	mask

			453	 }

			454	

			455	 //	Group	element	functions.

			456	 //

			457	 //	These	functions	deal	with	group	elements.	The	group	is	an	elliptic	curve

			458	 //	group	with	a	=	-3	defined	in	FIPS	186-3,	section	D.2.2.

			459	

			460	 //	p224AddJacobian	computes	*out	=	a+b	where	a	!=	b.

			461	 func	p224AddJacobian(x3,	y3,	z3,	x1,	y1,	z1,	x2,	y2,	z2	*p224FieldElement)	{

			462	 	 //	See	http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl

			463	 	 var	z1z1,	z2z2,	u1,	u2,	s1,	s2,	h,	i,	j,	r,	v	p224FieldElement

			464	 	 var	c	p224LargeFieldElement

			465	

			466	 	 //	Z1Z1	=	Z1²

			467	 	 p224Square(&z1z1,	z1,	&c)

			468	 	 //	Z2Z2	=	Z2²

			469	 	 p224Square(&z2z2,	z2,	&c)

			470	 	 //	U1	=	X1*Z2Z2

			471	 	 p224Mul(&u1,	x1,	&z2z2,	&c)

			472	 	 //	U2	=	X2*Z1Z1

			473	 	 p224Mul(&u2,	x2,	&z1z1,	&c)

			474	 	 //	S1	=	Y1*Z2*Z2Z2

			475	 	 p224Mul(&s1,	z2,	&z2z2,	&c)

			476	 	 p224Mul(&s1,	y1,	&s1,	&c)

			477	 	 //	S2	=	Y2*Z1*Z1Z1

			478	 	 p224Mul(&s2,	z1,	&z1z1,	&c)

			479	 	 p224Mul(&s2,	y2,	&s2,	&c)

			480	 	 //	H	=	U2-U1

			481	 	 p224Sub(&h,	&u2,	&u1)

			482	 	 p224Reduce(&h)

			483	 	 //	I	=	(2*H)²

			484	 	 for	j	:=	0;	j	<	8;	j++	{

			485	 	 	 i[j]	=	h[j]	<<	1

			486	 	 }

			487	 	 p224Reduce(&i)

			488	 	 p224Square(&i,	&i,	&c)

			489	 	 //	J	=	H*I

			490	 	 p224Mul(&j,	&h,	&i,	&c)

			491	 	 //	r	=	2*(S2-S1)

			492	 	 p224Sub(&r,	&s2,	&s1)

			493	 	 p224Reduce(&r)

			494	 	 for	i	:=	0;	i	<	8;	i++	{

			495	 	 	 r[i]	<<=	1

			496	 	 }

			497	 	 p224Reduce(&r)

			498	 	 //	V	=	U1*I

			499	 	 p224Mul(&v,	&u1,	&i,	&c)

			500	 	 //	Z3	=	((Z1+Z2)²-Z1Z1-Z2Z2)*H

			501	 	 p224Add(&z1z1,	&z1z1,	&z2z2)

			502	 	 p224Add(&z2z2,	z1,	z2)

			503	 	 p224Reduce(&z2z2)

			504	 	 p224Square(&z2z2,	&z2z2,	&c)

			505	 	 p224Sub(z3,	&z2z2,	&z1z1)

			506	 	 p224Reduce(z3)

			507	 	 p224Mul(z3,	z3,	&h,	&c)

			508	 	 //	X3	=	r²-J-2*V

			509	 	 for	i	:=	0;	i	<	8;	i++	{

			510	 	 	 z1z1[i]	=	v[i]	<<	1

			511	 	 }

			512	 	 p224Add(&z1z1,	&j,	&z1z1)

			513	 	 p224Reduce(&z1z1)

			514	 	 p224Square(x3,	&r,	&c)

			515	 	 p224Sub(x3,	x3,	&z1z1)

			516	 	 p224Reduce(x3)

			517	 	 //	Y3	=	r*(V-X3)-2*S1*J

			518	 	 for	i	:=	0;	i	<	8;	i++	{

			519	 	 	 s1[i]	<<=	1

			520	 	 }

			521	 	 p224Mul(&s1,	&s1,	&j,	&c)

			522	 	 p224Sub(&z1z1,	&v,	x3)

			523	 	 p224Reduce(&z1z1)

			524	 	 p224Mul(&z1z1,	&z1z1,	&r,	&c)

			525	 	 p224Sub(y3,	&z1z1,	&s1)

			526	 	 p224Reduce(y3)

			527	 }

			528	

			529	 //	p224DoubleJacobian	computes	*out	=	a+a.

			530	 func	p224DoubleJacobian(x3,	y3,	z3,	x1,	y1,	z1	*p224FieldElement)	{

			531	 	 var	delta,	gamma,	beta,	alpha,	t	p224FieldElement

			532	 	 var	c	p224LargeFieldElement

			533	

			534	 	 p224Square(&delta,	z1,	&c)

			535	 	 p224Square(&gamma,	y1,	&c)

			536	 	 p224Mul(&beta,	x1,	&gamma,	&c)

			537	

			538	 	 //	alpha	=	3*(X1-delta)*(X1+delta)

			539	 	 p224Add(&t,	x1,	&delta)

			540	 	 for	i	:=	0;	i	<	8;	i++	{

			541	 	 	 t[i]	+=	t[i]	<<	1

			542	 	 }

			543	 	 p224Reduce(&t)

			544	 	 p224Sub(&alpha,	x1,	&delta)

			545	 	 p224Reduce(&alpha)

			546	 	 p224Mul(&alpha,	&alpha,	&t,	&c)

			547	

			548	 	 //	Z3	=	(Y1+Z1)²-gamma-delta

			549	 	 p224Add(z3,	y1,	z1)

			550	 	 p224Reduce(z3)

			551	 	 p224Square(z3,	z3,	&c)

			552	 	 p224Sub(z3,	z3,	&gamma)

			553	 	 p224Reduce(z3)

			554	 	 p224Sub(z3,	z3,	&delta)

			555	 	 p224Reduce(z3)

			556	

			557	 	 //	X3	=	alpha²-8*beta

			558	 	 for	i	:=	0;	i	<	8;	i++	{

			559	 	 	 delta[i]	=	beta[i]	<<	3

			560	 	 }

			561	 	 p224Reduce(&delta)

			562	 	 p224Square(x3,	&alpha,	&c)

			563	 	 p224Sub(x3,	x3,	&delta)

			564	 	 p224Reduce(x3)

			565	

			566	 	 //	Y3	=	alpha*(4*beta-X3)-8*gamma²

			567	 	 for	i	:=	0;	i	<	8;	i++	{

			568	 	 	 beta[i]	<<=	2

			569	 	 }

			570	 	 p224Sub(&beta,	&beta,	x3)

			571	 	 p224Reduce(&beta)

			572	 	 p224Square(&gamma,	&gamma,	&c)

			573	 	 for	i	:=	0;	i	<	8;	i++	{

			574	 	 	 gamma[i]	<<=	3

			575	 	 }

			576	 	 p224Reduce(&gamma)

			577	 	 p224Mul(y3,	&alpha,	&beta,	&c)

			578	 	 p224Sub(y3,	y3,	&gamma)

			579	 	 p224Reduce(y3)

			580	 }

			581	

			582	 //	p224CopyConditional	sets	*out	=	*in	iff	the	least-significant-bit	of	control

			583	 //	is	true,	and	it	runs	in	constant	time.

			584	 func	p224CopyConditional(out,	in	*p224FieldElement,	control	uint32)	{

			585	 	 control	<<=	31

			586	 	 control	=	uint32(int32(control)	>>	31)

			587	

			588	 	 for	i	:=	0;	i	<	8;	i++	{

			589	 	 	 out[i]	^=	(out[i]	^	in[i])	&	control

			590	 	 }

			591	 }

			592	

			593	 func	p224ScalarMult(outX,	outY,	outZ,	inX,	inY,	inZ	*p224FieldElement,	scalar	[]byte)	{

			594	 	 var	xx,	yy,	zz	p224FieldElement

			595	 	 for	i	:=	0;	i	<	8;	i++	{

			596	 	 	 outZ[i]	=	0

			597	 	 }

			598	

			599	 	 firstBit	:=	uint32(1)

			600	 	 for	_,	byte	:=	range	scalar	{

			601	 	 	 for	bitNum	:=	uint(0);	bitNum	<	8;	bitNum++	{

			602	 	 	 	 p224DoubleJacobian(outX,	outY,	outZ,	outX,	outY,	outZ)

			603	 	 	 	 bit	:=	uint32((byte	>>	(7	-	bitNum))	&	1)

			604	 	 	 	 p224AddJacobian(&xx,	&yy,	&zz,	inX,	inY,	inZ,	outX,	outY,	outZ)

			605	 	 	 	 p224CopyConditional(outX,	inX,	firstBit&bit)

			606	 	 	 	 p224CopyConditional(outY,	inY,	firstBit&bit)

			607	 	 	 	 p224CopyConditional(outZ,	inZ,	firstBit&bit)

			608	 	 	 	 p224CopyConditional(outX,	&xx,	^firstBit&bit)

			609	 	 	 	 p224CopyConditional(outY,	&yy,	^firstBit&bit)

			610	 	 	 	 p224CopyConditional(outZ,	&zz,	^firstBit&bit)

			611	 	 	 	 firstBit	=	firstBit	&	^bit

			612	 	 	 }

			613	 	 }

			614	 }

			615	

			616	 //	p224ToAffine	converts	from	Jacobian	to	affine	form.

			617	 func	p224ToAffine(x,	y,	z	*p224FieldElement)	(*big.Int,	*big.Int)	{

			618	 	 var	zinv,	zinvsq,	outx,	outy	p224FieldElement

			619	 	 var	tmp	p224LargeFieldElement

			620	

			621	 	 isPointAtInfinity	:=	true

			622	 	 for	i	:=	0;	i	<	8;	i++	{

			623	 	 	 if	z[i]	!=	0	{

			624	 	 	 	 isPointAtInfinity	=	false

			625	 	 	 	 break

			626	 	 	 }

			627	 	 }

			628	

			629	 	 if	isPointAtInfinity	{

			630	 	 	 return	nil,	nil

			631	 	 }

			632	

			633	 	 p224Invert(&zinv,	z)

			634	 	 p224Square(&zinvsq,	&zinv,	&tmp)

			635	 	 p224Mul(x,	x,	&zinvsq,	&tmp)

			636	 	 p224Mul(&zinvsq,	&zinvsq,	&zinv,	&tmp)

			637	 	 p224Mul(y,	y,	&zinvsq,	&tmp)

			638	

			639	 	 p224Contract(&outx,	x)

			640	 	 p224Contract(&outy,	y)

			641	 	 return	p224ToBig(&outx),	p224ToBig(&outy)

			642	 }

			643	

			644	 //	get28BitsFromEnd	returns	the	least-significant	28	bits	from	buf>>shift,

			645	 //	where	buf	is	interpreted	as	a	big-endian	number.

			646	 func	get28BitsFromEnd(buf	[]byte,	shift	uint)	(uint32,	[]byte)	{

			647	 	 var	ret	uint32

			648	

			649	 	 for	i	:=	uint(0);	i	<	4;	i++	{

			650	 	 	 var	b	byte

			651	 	 	 if	l	:=	len(buf);	l	>	0	{

			652	 	 	 	 b	=	buf[l-1]

			653	 	 	 	 //	We	don't	remove	the	byte	if	we're	about	to	return	and	we're	not

			654	 	 	 	 //	reading	all	of	it.

			655	 	 	 	 if	i	!=	3	||	shift	==	4	{

			656	 	 	 	 	 buf	=	buf[:l-1]

			657	 	 	 	 }

			658	 	 	 }

			659	 	 	 ret	|=	uint32(b)	<<	(8	*	i)	>>	shift

			660	 	 }

			661	 	 ret	&=	bottom28Bits

			662	 	 return	ret,	buf

			663	 }

			664	

			665	 //	p224FromBig	sets	*out	=	*in.

			666	 func	p224FromBig(out	*p224FieldElement,	in	*big.Int)	{

			667	 	 bytes	:=	in.Bytes()

			668	 	 out[0],	bytes	=	get28BitsFromEnd(bytes,	0)

			669	 	 out[1],	bytes	=	get28BitsFromEnd(bytes,	4)

			670	 	 out[2],	bytes	=	get28BitsFromEnd(bytes,	0)

			671	 	 out[3],	bytes	=	get28BitsFromEnd(bytes,	4)

			672	 	 out[4],	bytes	=	get28BitsFromEnd(bytes,	0)

			673	 	 out[5],	bytes	=	get28BitsFromEnd(bytes,	4)

			674	 	 out[6],	bytes	=	get28BitsFromEnd(bytes,	0)

			675	 	 out[7],	bytes	=	get28BitsFromEnd(bytes,	4)

			676	 }

			677	

			678	 //	p224ToBig	returns	in	as	a	big.Int.

			679	 func	p224ToBig(in	*p224FieldElement)	*big.Int	{

			680	 	 var	buf	[28]byte

			681	 	 buf[27]	=	byte(in[0])

			682	 	 buf[26]	=	byte(in[0]	>>	8)

			683	 	 buf[25]	=	byte(in[0]	>>	16)

			684	 	 buf[24]	=	byte(((in[0]	>>	24)	&	0x0f)	|	(in[1]<<4)&0xf0)

			685	

			686	 	 buf[23]	=	byte(in[1]	>>	4)

			687	 	 buf[22]	=	byte(in[1]	>>	12)

			688	 	 buf[21]	=	byte(in[1]	>>	20)

			689	

			690	 	 buf[20]	=	byte(in[2])

			691	 	 buf[19]	=	byte(in[2]	>>	8)

			692	 	 buf[18]	=	byte(in[2]	>>	16)

			693	 	 buf[17]	=	byte(((in[2]	>>	24)	&	0x0f)	|	(in[3]<<4)&0xf0)

			694	

			695	 	 buf[16]	=	byte(in[3]	>>	4)

			696	 	 buf[15]	=	byte(in[3]	>>	12)

			697	 	 buf[14]	=	byte(in[3]	>>	20)

			698	

			699	 	 buf[13]	=	byte(in[4])

			700	 	 buf[12]	=	byte(in[4]	>>	8)

			701	 	 buf[11]	=	byte(in[4]	>>	16)

			702	 	 buf[10]	=	byte(((in[4]	>>	24)	&	0x0f)	|	(in[5]<<4)&0xf0)

			703	

			704	 	 buf[9]	=	byte(in[5]	>>	4)

			705	 	 buf[8]	=	byte(in[5]	>>	12)

			706	 	 buf[7]	=	byte(in[5]	>>	20)

			707	

			708	 	 buf[6]	=	byte(in[6])

			709	 	 buf[5]	=	byte(in[6]	>>	8)

			710	 	 buf[4]	=	byte(in[6]	>>	16)

			711	 	 buf[3]	=	byte(((in[6]	>>	24)	&	0x0f)	|	(in[7]<<4)&0xf0)

			712	

			713	 	 buf[2]	=	byte(in[7]	>>	4)

			714	 	 buf[1]	=	byte(in[7]	>>	12)

			715	 	 buf[0]	=	byte(in[7]	>>	20)

			716	

			717	 	 return	new(big.Int).SetBytes(buf[:])

			718	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/hmac/hmac.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	hmac	implements	the	Keyed-Hash	Message	Authentication	Code	(HMAC)	as

					6	 //	defined	in	U.S.	Federal	Information	Processing	Standards	Publication	198.

					7	 //	An	HMAC	is	a	cryptographic	hash	that	uses	a	key	to	sign	a	message.

					8	 //	The	receiver	verifies	the	hash	by	recomputing	it	using	the	same	key.

					9	 package	hmac

				10	

				11	 import	(

				12	 	 "hash"

				13)

				14	

				15	 //	FIPS	198:

				16	 //	http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

				17	

				18	 //	key	is	zero	padded	to	the	block	size	of	the	hash	function

				19	 //	ipad	=	0x36	byte	repeated	for	key	length

				20	 //	opad	=	0x5c	byte	repeated	for	key	length

				21	 //	hmac	=	H([key	^	opad]	H([key	^	ipad]	text))

				22	

				23	 type	hmac	struct	{

				24	 	 size									int

				25	 	 blocksize				int

				26	 	 key,	tmp					[]byte

				27	 	 outer,	inner	hash.Hash

				28	 }

				29	

				30	 func	(h	*hmac)	tmpPad(xor	byte)	{

				31	 	 for	i,	k	:=	range	h.key	{

				32	 	 	 h.tmp[i]	=	xor	^	k

				33	 	 }

				34	 	 for	i	:=	len(h.key);	i	<	h.blocksize;	i++	{

				35	 	 	 h.tmp[i]	=	xor

				36	 	 }

				37	 }

				38	

				39	 func	(h	*hmac)	Sum(in	[]byte)	[]byte	{

				40	 	 origLen	:=	len(in)

				41	 	 in	=	h.inner.Sum(in)

				42	 	 h.tmpPad(0x5c)

				43	 	 copy(h.tmp[h.blocksize:],	in[origLen:])

				44	 	 h.outer.Reset()

				45	 	 h.outer.Write(h.tmp)

				46	 	 return	h.outer.Sum(in[:origLen])

				47	 }

				48	

				49	 func	(h	*hmac)	Write(p	[]byte)	(n	int,	err	error)	{

				50	 	 return	h.inner.Write(p)

				51	 }

				52	

				53	 func	(h	*hmac)	Size()	int	{	return	h.size	}

				54	

				55	 func	(h	*hmac)	BlockSize()	int	{	return	h.blocksize	}

				56	

				57	 func	(h	*hmac)	Reset()	{

				58	 	 h.inner.Reset()

				59	 	 h.tmpPad(0x36)

				60	 	 h.inner.Write(h.tmp[0:h.blocksize])

				61	 }

				62	

				63	 //	New	returns	a	new	HMAC	hash	using	the	given	hash.Hash	type	and	key.

				64	 func	New(h	func()	hash.Hash,	key	[]byte)	hash.Hash	{

				65	 	 hm	:=	new(hmac)

				66	 	 hm.outer	=	h()

				67	 	 hm.inner	=	h()

				68	 	 hm.size	=	hm.inner.Size()

				69	 	 hm.blocksize	=	hm.inner.BlockSize()

				70	 	 hm.tmp	=	make([]byte,	hm.blocksize+hm.size)

				71	 	 if	len(key)	>	hm.blocksize	{

				72	 	 	 //	If	key	is	too	big,	hash	it.

				73	 	 	 hm.outer.Write(key)

				74	 	 	 key	=	hm.outer.Sum(nil)

				75	 	 }

				76	 	 hm.key	=	make([]byte,	len(key))

				77	 	 copy(hm.key,	key)

				78	 	 hm.Reset()

				79	 	 return	hm

				80	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/md5/md5.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	md5	implements	the	MD5	hash	algorithm	as	defined	in	RFC	1321.

					6	 package	md5

					7	

					8	 import	(

					9	 	 "crypto"

				10	 	 "hash"

				11)

				12	

				13	 func	init()	{

				14	 	 crypto.RegisterHash(crypto.MD5,	New)

				15	 }

				16	

				17	 //	The	size	of	an	MD5	checksum	in	bytes.

				18	 const	Size	=	16

				19	

				20	 //	The	blocksize	of	MD5	in	bytes.

				21	 const	BlockSize	=	64

				22	

				23	 const	(

				24	 	 _Chunk	=	64

				25	 	 _Init0	=	0x67452301

				26	 	 _Init1	=	0xEFCDAB89

				27	 	 _Init2	=	0x98BADCFE

				28	 	 _Init3	=	0x10325476

				29)

				30	

				31	 //	digest	represents	the	partial	evaluation	of	a	checksum.

				32	 type	digest	struct	{

				33	 	 s			[4]uint32

				34	 	 x			[_Chunk]byte

				35	 	 nx		int

				36	 	 len	uint64

				37	 }

				38	

				39	 func	(d	*digest)	Reset()	{

				40	 	 d.s[0]	=	_Init0

				41	 	 d.s[1]	=	_Init1

				42	 	 d.s[2]	=	_Init2

				43	 	 d.s[3]	=	_Init3

				44	 	 d.nx	=	0

				45	 	 d.len	=	0

				46	 }

				47	

				48	 //	New	returns	a	new	hash.Hash	computing	the	MD5	checksum.

				49	 func	New()	hash.Hash	{

				50	 	 d	:=	new(digest)

				51	 	 d.Reset()

				52	 	 return	d

				53	 }

				54	

				55	 func	(d	*digest)	Size()	int	{	return	Size	}

				56	

				57	 func	(d	*digest)	BlockSize()	int	{	return	BlockSize	}

				58	

				59	 func	(d	*digest)	Write(p	[]byte)	(nn	int,	err	error)	{

				60	 	 nn	=	len(p)

				61	 	 d.len	+=	uint64(nn)

				62	 	 if	d.nx	>	0	{

				63	 	 	 n	:=	len(p)

				64	 	 	 if	n	>	_Chunk-d.nx	{

				65	 	 	 	 n	=	_Chunk	-	d.nx

				66	 	 	 }

				67	 	 	 for	i	:=	0;	i	<	n;	i++	{

				68	 	 	 	 d.x[d.nx+i]	=	p[i]

				69	 	 	 }

				70	 	 	 d.nx	+=	n

				71	 	 	 if	d.nx	==	_Chunk	{

				72	 	 	 	 _Block(d,	d.x[0:])

				73	 	 	 	 d.nx	=	0

				74	 	 	 }

				75	 	 	 p	=	p[n:]

				76	 	 }

				77	 	 n	:=	_Block(d,	p)

				78	 	 p	=	p[n:]

				79	 	 if	len(p)	>	0	{

				80	 	 	 d.nx	=	copy(d.x[:],	p)

				81	 	 }

				82	 	 return

				83	 }

				84	

				85	 func	(d0	*digest)	Sum(in	[]byte)	[]byte	{

				86	 	 //	Make	a	copy	of	d0	so	that	caller	can	keep	writing	and	summing.

				87	 	 d	:=	*d0

				88	

				89	 	 //	Padding.		Add	a	1	bit	and	0	bits	until	56	bytes	mod	64.

				90	 	 len	:=	d.len

				91	 	 var	tmp	[64]byte

				92	 	 tmp[0]	=	0x80

				93	 	 if	len%64	<	56	{

				94	 	 	 d.Write(tmp[0	:	56-len%64])

				95	 	 }	else	{

				96	 	 	 d.Write(tmp[0	:	64+56-len%64])

				97	 	 }

				98	

				99	 	 //	Length	in	bits.

			100	 	 len	<<=	3

			101	 	 for	i	:=	uint(0);	i	<	8;	i++	{

			102	 	 	 tmp[i]	=	byte(len	>>	(8	*	i))

			103	 	 }

			104	 	 d.Write(tmp[0:8])

			105	

			106	 	 if	d.nx	!=	0	{

			107	 	 	 panic("d.nx	!=	0")

			108	 	 }

			109	

			110	 	 var	digest	[Size]byte

			111	 	 for	i,	s	:=	range	d.s	{

			112	 	 	 digest[i*4]	=	byte(s)

			113	 	 	 digest[i*4+1]	=	byte(s	>>	8)

			114	 	 	 digest[i*4+2]	=	byte(s	>>	16)

			115	 	 	 digest[i*4+3]	=	byte(s	>>	24)

			116	 	 }

			117	

			118	 	 return	append(in,	digest[:]...)

			119	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/md5/md5block.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	MD5	block	step.

					6	 //	In	its	own	file	so	that	a	faster	assembly	or	C	version

					7	 //	can	be	substituted	easily.

					8	

					9	 package	md5

				10	

				11	 //	table[i]	=	int((1<<32)	*	abs(sin(i+1	radians))).

				12	 var	table	=	[]uint32{

				13	 	 //	round	1

				14	 	 0xd76aa478,

				15	 	 0xe8c7b756,

				16	 	 0x242070db,

				17	 	 0xc1bdceee,

				18	 	 0xf57c0faf,

				19	 	 0x4787c62a,

				20	 	 0xa8304613,

				21	 	 0xfd469501,

				22	 	 0x698098d8,

				23	 	 0x8b44f7af,

				24	 	 0xffff5bb1,

				25	 	 0x895cd7be,

				26	 	 0x6b901122,

				27	 	 0xfd987193,

				28	 	 0xa679438e,

				29	 	 0x49b40821,

				30	

				31	 	 //	round	2

				32	 	 0xf61e2562,

				33	 	 0xc040b340,

				34	 	 0x265e5a51,

				35	 	 0xe9b6c7aa,

				36	 	 0xd62f105d,

				37	 	 0x2441453,

				38	 	 0xd8a1e681,

				39	 	 0xe7d3fbc8,

				40	 	 0x21e1cde6,

				41	 	 0xc33707d6,

				42	 	 0xf4d50d87,

				43	 	 0x455a14ed,

				44	 	 0xa9e3e905,

				45	 	 0xfcefa3f8,

				46	 	 0x676f02d9,

				47	 	 0x8d2a4c8a,

				48	

				49	 	 //	round3

				50	 	 0xfffa3942,

				51	 	 0x8771f681,

				52	 	 0x6d9d6122,

				53	 	 0xfde5380c,

				54	 	 0xa4beea44,

				55	 	 0x4bdecfa9,

				56	 	 0xf6bb4b60,

				57	 	 0xbebfbc70,

				58	 	 0x289b7ec6,

				59	 	 0xeaa127fa,

				60	 	 0xd4ef3085,

				61	 	 0x4881d05,

				62	 	 0xd9d4d039,

				63	 	 0xe6db99e5,

				64	 	 0x1fa27cf8,

				65	 	 0xc4ac5665,

				66	

				67	 	 //	round	4

				68	 	 0xf4292244,

				69	 	 0x432aff97,

				70	 	 0xab9423a7,

				71	 	 0xfc93a039,

				72	 	 0x655b59c3,

				73	 	 0x8f0ccc92,

				74	 	 0xffeff47d,

				75	 	 0x85845dd1,

				76	 	 0x6fa87e4f,

				77	 	 0xfe2ce6e0,

				78	 	 0xa3014314,

				79	 	 0x4e0811a1,

				80	 	 0xf7537e82,

				81	 	 0xbd3af235,

				82	 	 0x2ad7d2bb,

				83	 	 0xeb86d391,

				84	 }

				85	

				86	 var	shift1	=	[]uint{7,	12,	17,	22}

				87	 var	shift2	=	[]uint{5,	9,	14,	20}

				88	 var	shift3	=	[]uint{4,	11,	16,	23}

				89	 var	shift4	=	[]uint{6,	10,	15,	21}

				90	

				91	 func	_Block(dig	*digest,	p	[]byte)	int	{

				92	 	 a	:=	dig.s[0]

				93	 	 b	:=	dig.s[1]

				94	 	 c	:=	dig.s[2]

				95	 	 d	:=	dig.s[3]

				96	 	 n	:=	0

				97	 	 var	X	[16]uint32

				98	 	 for	len(p)	>=	_Chunk	{

				99	 	 	 aa,	bb,	cc,	dd	:=	a,	b,	c,	d

			100	

			101	 	 	 j	:=	0

			102	 	 	 for	i	:=	0;	i	<	16;	i++	{

			103	 	 	 	 X[i]	=	uint32(p[j])	|	uint32(p[j+1])<<8	|	uint32(p[j+2])<<16	|	uint32(p[j+3])<<24

			104	 	 	 	 j	+=	4

			105	 	 	 }

			106	

			107	 	 	 //	If	this	needs	to	be	made	faster	in	the	future,

			108	 	 	 //	the	usual	trick	is	to	unroll	each	of	these

			109	 	 	 //	loops	by	a	factor	of	4;	that	lets	you	replace

			110	 	 	 //	the	shift[]	lookups	with	constants	and,

			111	 	 	 //	with	suitable	variable	renaming	in	each

			112	 	 	 //	unrolled	body,	delete	the	a,	b,	c,	d	=	d,	a,	b,	c

			113	 	 	 //	(or	you	can	let	the	optimizer	do	the	renaming).

			114	 	 	 //

			115	 	 	 //	The	index	variables	are	uint	so	that	%	by	a	power

			116	 	 	 //	of	two	can	be	optimized	easily	by	a	compiler.

			117	

			118	 	 	 //	Round	1.

			119	 	 	 for	i	:=	uint(0);	i	<	16;	i++	{

			120	 	 	 	 x	:=	i

			121	 	 	 	 s	:=	shift1[i%4]

			122	 	 	 	 f	:=	((c	^	d)	&	b)	^	d

			123	 	 	 	 a	+=	f	+	X[x]	+	table[i]

			124	 	 	 	 a	=	a<<s	|	a>>(32-s)	+	b

			125	 	 	 	 a,	b,	c,	d	=	d,	a,	b,	c

			126	 	 	 }

			127	

			128	 	 	 //	Round	2.

			129	 	 	 for	i	:=	uint(0);	i	<	16;	i++	{

			130	 	 	 	 x	:=	(1	+	5*i)	%	16

			131	 	 	 	 s	:=	shift2[i%4]

			132	 	 	 	 g	:=	((b	^	c)	&	d)	^	c

			133	 	 	 	 a	+=	g	+	X[x]	+	table[i+16]

			134	 	 	 	 a	=	a<<s	|	a>>(32-s)	+	b

			135	 	 	 	 a,	b,	c,	d	=	d,	a,	b,	c

			136	 	 	 }

			137	

			138	 	 	 //	Round	3.

			139	 	 	 for	i	:=	uint(0);	i	<	16;	i++	{

			140	 	 	 	 x	:=	(5	+	3*i)	%	16

			141	 	 	 	 s	:=	shift3[i%4]

			142	 	 	 	 h	:=	b	^	c	^	d

			143	 	 	 	 a	+=	h	+	X[x]	+	table[i+32]

			144	 	 	 	 a	=	a<<s	|	a>>(32-s)	+	b

			145	 	 	 	 a,	b,	c,	d	=	d,	a,	b,	c

			146	 	 	 }

			147	

			148	 	 	 //	Round	4.

			149	 	 	 for	i	:=	uint(0);	i	<	16;	i++	{

			150	 	 	 	 x	:=	(7	*	i)	%	16

			151	 	 	 	 s	:=	shift4[i%4]

			152	 	 	 	 j	:=	c	^	(b	|	^d)

			153	 	 	 	 a	+=	j	+	X[x]	+	table[i+48]

			154	 	 	 	 a	=	a<<s	|	a>>(32-s)	+	b

			155	 	 	 	 a,	b,	c,	d	=	d,	a,	b,	c

			156	 	 	 }

			157	

			158	 	 	 a	+=	aa

			159	 	 	 b	+=	bb

			160	 	 	 c	+=	cc

			161	 	 	 d	+=	dd

			162	

			163	 	 	 p	=	p[_Chunk:]

			164	 	 	 n	+=	_Chunk

			165	 	 }

			166	

			167	 	 dig.s[0]	=	a

			168	 	 dig.s[1]	=	b

			169	 	 dig.s[2]	=	c

			170	 	 dig.s[3]	=	d

			171	 	 return	n

			172	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/rand/rand.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	rand	implements	a	cryptographically	secure

					6	 //	pseudorandom	number	generator.

					7	 package	rand

					8	

					9	 import	"io"

				10	

				11	 //	Reader	is	a	global,	shared	instance	of	a	cryptographically

				12	 //	strong	pseudo-random	generator.

				13	 //	On	Unix-like	systems,	Reader	reads	from	/dev/urandom.

				14	 //	On	Windows	systems,	Reader	uses	the	CryptGenRandom	API.

				15	 var	Reader	io.Reader

				16	

				17	 //	Read	is	a	helper	function	that	calls	Reader.Read.

				18	 func	Read(b	[]byte)	(n	int,	err	error)	{	return	Reader.Read(b)	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/rand/rand_unix.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 //	Unix	cryptographically	secure	pseudorandom	number

					8	 //	generator.

					9	

				10	 package	rand

				11	

				12	 import	(

				13	 	 "bufio"

				14	 	 "crypto/aes"

				15	 	 "crypto/cipher"

				16	 	 "io"

				17	 	 "os"

				18	 	 "sync"

				19	 	 "time"

				20)

				21	

				22	 //	Easy	implementation:	read	from	/dev/urandom.

				23	 //	This	is	sufficient	on	Linux,	OS	X,	and	FreeBSD.

				24	

				25	 func	init()	{	Reader	=	&devReader{name:	"/dev/urandom"}	}

				26	

				27	 //	A	devReader	satisfies	reads	by	reading	the	file	named	name.

				28	 type	devReader	struct	{

				29	 	 name	string

				30	 	 f				io.Reader

				31	 	 mu			sync.Mutex

				32	 }

				33	

				34	 func	(r	*devReader)	Read(b	[]byte)	(n	int,	err	error)	{

				35	 	 r.mu.Lock()

				36	 	 defer	r.mu.Unlock()

				37	 	 if	r.f	==	nil	{

				38	 	 	 f,	err	:=	os.Open(r.name)

				39	 	 	 if	f	==	nil	{

				40	 	 	 	 return	0,	err

				41	 	 	 }

				42	 	 	 r.f	=	bufio.NewReader(f)

				43	 	 }

				44	 	 return	r.f.Read(b)

				45	 }

				46	

				47	 //	Alternate	pseudo-random	implementation	for	use	on

				48	 //	systems	without	a	reliable	/dev/urandom.		So	far	we

				49	 //	haven't	needed	it.

				50	

				51	 //	newReader	returns	a	new	pseudorandom	generator	that

				52	 //	seeds	itself	by	reading	from	entropy.		If	entropy	==	nil,

				53	 //	the	generator	seeds	itself	by	reading	from	the	system's

				54	 //	random	number	generator,	typically	/dev/random.

				55	 //	The	Read	method	on	the	returned	reader	always	returns

				56	 //	the	full	amount	asked	for,	or	else	it	returns	an	error.

				57	 //

				58	 //	The	generator	uses	the	X9.31	algorithm	with	AES-128,

				59	 //	reseeding	after	every	1	MB	of	generated	data.

				60	 func	newReader(entropy	io.Reader)	io.Reader	{

				61	 	 if	entropy	==	nil	{

				62	 	 	 entropy	=	&devReader{name:	"/dev/random"}

				63	 	 }

				64	 	 return	&reader{entropy:	entropy}

				65	 }

				66	

				67	 type	reader	struct	{

				68	 	 mu																			sync.Mutex

				69	 	 budget															int	//	number	of	bytes	that	can	be	generated

				70	 	 cipher															cipher.Block

				71	 	 entropy														io.Reader

				72	 	 time,	seed,	dst,	key	[aes.BlockSize]byte

				73	 }

				74	

				75	 func	(r	*reader)	Read(b	[]byte)	(n	int,	err	error)	{

				76	 	 r.mu.Lock()

				77	 	 defer	r.mu.Unlock()

				78	 	 n	=	len(b)

				79	

				80	 	 for	len(b)	>	0	{

				81	 	 	 if	r.budget	==	0	{

				82	 	 	 	 _,	err	:=	io.ReadFull(r.entropy,	r.seed[0:])

				83	 	 	 	 if	err	!=	nil	{

				84	 	 	 	 	 return	n	-	len(b),	err

				85	 	 	 	 }

				86	 	 	 	 _,	err	=	io.ReadFull(r.entropy,	r.key[0:])

				87	 	 	 	 if	err	!=	nil	{

				88	 	 	 	 	 return	n	-	len(b),	err

				89	 	 	 	 }

				90	 	 	 	 r.cipher,	err	=	aes.NewCipher(r.key[0:])

				91	 	 	 	 if	err	!=	nil	{

				92	 	 	 	 	 return	n	-	len(b),	err

				93	 	 	 	 }

				94	 	 	 	 r.budget	=	1	<<	20	//	reseed	after	generating	1MB

				95	 	 	 }

				96	 	 	 r.budget	-=	aes.BlockSize

				97	

				98	 	 	 //	ANSI	X9.31	(==	X9.17)	algorithm,	but	using	AES	in	place	of	3DES.

				99	 	 	 //

			100	 	 	 //	single	block:

			101	 	 	 //	t	=	encrypt(time)

			102	 	 	 //	dst	=	encrypt(t^seed)

			103	 	 	 //	seed	=	encrypt(t^dst)

			104	 	 	 ns	:=	time.Now().UnixNano()

			105	 	 	 r.time[0]	=	byte(ns	>>	56)

			106	 	 	 r.time[1]	=	byte(ns	>>	48)

			107	 	 	 r.time[2]	=	byte(ns	>>	40)

			108	 	 	 r.time[3]	=	byte(ns	>>	32)

			109	 	 	 r.time[4]	=	byte(ns	>>	24)

			110	 	 	 r.time[5]	=	byte(ns	>>	16)

			111	 	 	 r.time[6]	=	byte(ns	>>	8)

			112	 	 	 r.time[7]	=	byte(ns)

			113	 	 	 r.cipher.Encrypt(r.time[0:],	r.time[0:])

			114	 	 	 for	i	:=	0;	i	<	aes.BlockSize;	i++	{

			115	 	 	 	 r.dst[i]	=	r.time[i]	^	r.seed[i]

			116	 	 	 }

			117	 	 	 r.cipher.Encrypt(r.dst[0:],	r.dst[0:])

			118	 	 	 for	i	:=	0;	i	<	aes.BlockSize;	i++	{

			119	 	 	 	 r.seed[i]	=	r.time[i]	^	r.dst[i]

			120	 	 	 }

			121	 	 	 r.cipher.Encrypt(r.seed[0:],	r.seed[0:])

			122	

			123	 	 	 m	:=	copy(b,	r.dst[0:])

			124	 	 	 b	=	b[m:]

			125	 	 }

			126	

			127	 	 return	n,	nil

			128	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/rand/util.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	rand

					6	

					7	 import	(

					8	 	 "errors"

					9	 	 "io"

				10	 	 "math/big"

				11)

				12	

				13	 //	Prime	returns	a	number,	p,	of	the	given	size,	such	that	p	is	prime

				14	 //	with	high	probability.

				15	 func	Prime(rand	io.Reader,	bits	int)	(p	*big.Int,	err	error)	{

				16	 	 if	bits	<	1	{

				17	 	 	 err	=	errors.New("crypto/rand:	prime	size	must	be	positive")

				18	 	 }

				19	

				20	 	 b	:=	uint(bits	%	8)

				21	 	 if	b	==	0	{

				22	 	 	 b	=	8

				23	 	 }

				24	

				25	 	 bytes	:=	make([]byte,	(bits+7)/8)

				26	 	 p	=	new(big.Int)

				27	

				28	 	 for	{

				29	 	 	 _,	err	=	io.ReadFull(rand,	bytes)

				30	 	 	 if	err	!=	nil	{

				31	 	 	 	 return	nil,	err

				32	 	 	 }

				33	

				34	 	 	 //	Clear	bits	in	the	first	byte	to	make	sure	the	candidate	has	a	size	<=	bits.

				35	 	 	 bytes[0]	&=	uint8(int(1<<b)	-	1)

				36	 	 	 //	Don't	let	the	value	be	too	small,	i.e,	set	the	most	significant	bit.

				37	 	 	 bytes[0]	|=	1	<<	(b	-	1)

				38	 	 	 //	Make	the	value	odd	since	an	even	number	this	large	certainly	isn't	prime.

				39	 	 	 bytes[len(bytes)-1]	|=	1

				40	

				41	 	 	 p.SetBytes(bytes)

				42	 	 	 if	p.ProbablyPrime(20)	{

				43	 	 	 	 return

				44	 	 	 }

				45	 	 }

				46	

				47	 	 return

				48	 }

				49	

				50	 //	Int	returns	a	uniform	random	value	in	[0,	max).

				51	 func	Int(rand	io.Reader,	max	*big.Int)	(n	*big.Int,	err	error)	{

				52	 	 k	:=	(max.BitLen()	+	7)	/	8

				53	

				54	 	 //	b	is	the	number	of	bits	in	the	most	significant	byte	of	max.

				55	 	 b	:=	uint(max.BitLen()	%	8)

				56	 	 if	b	==	0	{

				57	 	 	 b	=	8

				58	 	 }

				59	

				60	 	 bytes	:=	make([]byte,	k)

				61	 	 n	=	new(big.Int)

				62	

				63	 	 for	{

				64	 	 	 _,	err	=	io.ReadFull(rand,	bytes)

				65	 	 	 if	err	!=	nil	{

				66	 	 	 	 return	nil,	err

				67	 	 	 }

				68	

				69	 	 	 //	Clear	bits	in	the	first	byte	to	increase	the	probability

				70	 	 	 //	that	the	candidate	is	<	max.

				71	 	 	 bytes[0]	&=	uint8(int(1<<b)	-	1)

				72	

				73	 	 	 n.SetBytes(bytes)

				74	 	 	 if	n.Cmp(max)	<	0	{

				75	 	 	 	 return

				76	 	 	 }

				77	 	 }

				78	

				79	 	 return

				80	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/crypto/rc4/rc4.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	rc4	implements	RC4	encryption,	as	defined	in	Bruce	Schneier's

					6	 //	Applied	Cryptography.

					7	 package	rc4

					8	

					9	 //	BUG(agl):	RC4	is	in	common	use	but	has	design	weaknesses	that	make

				10	 //	it	a	poor	choice	for	new	protocols.

				11	

				12	 import	"strconv"

				13	

				14	 //	A	Cipher	is	an	instance	of	RC4	using	a	particular	key.

				15	 type	Cipher	struct	{

				16	 	 s				[256]byte

				17	 	 i,	j	uint8

				18	 }

				19	

				20	 type	KeySizeError	int

				21	

				22	 func	(k	KeySizeError)	Error()	string	{

				23	 	 return	"crypto/rc4:	invalid	key	size	"	+	strconv.Itoa(int(k))

				24	 }

				25	

				26	 //	NewCipher	creates	and	returns	a	new	Cipher.		The	key	argument	should	be	the

				27	 //	RC4	key,	at	least	1	byte	and	at	most	256	bytes.

				28	 func	NewCipher(key	[]byte)	(*Cipher,	error)	{

				29	 	 k	:=	len(key)

				30	 	 if	k	<	1	||	k	>	256	{

				31	 	 	 return	nil,	KeySizeError(k)

				32	 	 }

				33	 	 var	c	Cipher

				34	 	 for	i	:=	0;	i	<	256;	i++	{

				35	 	 	 c.s[i]	=	uint8(i)

				36	 	 }

				37	 	 var	j	uint8	=	0

				38	 	 for	i	:=	0;	i	<	256;	i++	{

				39	 	 	 j	+=	c.s[i]	+	key[i%k]

				40	 	 	 c.s[i],	c.s[j]	=	c.s[j],	c.s[i]

				41	 	 }

				42	 	 return	&c,	nil

				43	 }

				44	

				45	 //	XORKeyStream	sets	dst	to	the	result	of	XORing	src	with	the	key	stream.

				46	 //	Dst	and	src	may	be	the	same	slice	but	otherwise	should	not	overlap.

				47	 func	(c	*Cipher)	XORKeyStream(dst,	src	[]byte)	{

				48	 	 for	i	:=	range	src	{

				49	 	 	 c.i	+=	1

				50	 	 	 c.j	+=	c.s[c.i]

				51	 	 	 c.s[c.i],	c.s[c.j]	=	c.s[c.j],	c.s[c.i]

				52	 	 	 dst[i]	=	src[i]	^	c.s[c.s[c.i]+c.s[c.j]]

				53	 	 }

				54	 }

				55	

				56	 //	Reset	zeros	the	key	data	so	that	it	will	no	longer	appear	in	the

				57	 //	process's	memory.

				58	 func	(c	*Cipher)	Reset()	{

				59	 	 for	i	:=	range	c.s	{

				60	 	 	 c.s[i]	=	0

				61	 	 }

				62	 	 c.i,	c.j	=	0,	0

				63	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/rsa/pkcs1v15.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	rsa

					6	

					7	 import	(

					8	 	 "crypto"

					9	 	 "crypto/subtle"

				10	 	 "errors"

				11	 	 "io"

				12	 	 "math/big"

				13)

				14	

				15	 //	This	file	implements	encryption	and	decryption	using	PKCS#1	v1.5	padding.

				16	

				17	 //	EncryptPKCS1v15	encrypts	the	given	message	with	RSA	and	the	padding	scheme	from	PKCS#1	v1.5.

				18	 //	The	message	must	be	no	longer	than	the	length	of	the	public	modulus	minus	11	bytes.

				19	 //	WARNING:	use	of	this	function	to	encrypt	plaintexts	other	than	session	keys

				20	 //	is	dangerous.	Use	RSA	OAEP	in	new	protocols.

				21	 func	EncryptPKCS1v15(rand	io.Reader,	pub	*PublicKey,	msg	[]byte)	(out	[]byte,	err	error)	{

				22	 	 k	:=	(pub.N.BitLen()	+	7)	/	8

				23	 	 if	len(msg)	>	k-11	{

				24	 	 	 err	=	ErrMessageTooLong

				25	 	 	 return

				26	 	 }

				27	

				28	 	 //	EM	=	0x02	||	PS	||	0x00	||	M

				29	 	 em	:=	make([]byte,	k-1)

				30	 	 em[0]	=	2

				31	 	 ps,	mm	:=	em[1:len(em)-len(msg)-1],	em[len(em)-len(msg):]

				32	 	 err	=	nonZeroRandomBytes(ps,	rand)

				33	 	 if	err	!=	nil	{

				34	 	 	 return

				35	 	 }

				36	 	 em[len(em)-len(msg)-1]	=	0

				37	 	 copy(mm,	msg)

				38	

				39	 	 m	:=	new(big.Int).SetBytes(em)

				40	 	 c	:=	encrypt(new(big.Int),	pub,	m)

				41	 	 out	=	c.Bytes()

				42	 	 return

				43	 }

				44	

				45	 //	DecryptPKCS1v15	decrypts	a	plaintext	using	RSA	and	the	padding	scheme	from	PKCS#1	v1.5.

				46	 //	If	rand	!=	nil,	it	uses	RSA	blinding	to	avoid	timing	side-channel	attacks.

				47	 func	DecryptPKCS1v15(rand	io.Reader,	priv	*PrivateKey,	ciphertext	[]byte)	(out	[]byte,	err	error)	{

				48	 	 valid,	out,	err	:=	decryptPKCS1v15(rand,	priv,	ciphertext)

				49	 	 if	err	==	nil	&&	valid	==	0	{

				50	 	 	 err	=	ErrDecryption

				51	 	 }

				52	

				53	 	 return

				54	 }

				55	

				56	 //	DecryptPKCS1v15SessionKey	decrypts	a	session	key	using	RSA	and	the	padding	scheme	from	PKCS#1	v1.5.

				57	 //	If	rand	!=	nil,	it	uses	RSA	blinding	to	avoid	timing	side-channel	attacks.

				58	 //	It	returns	an	error	if	the	ciphertext	is	the	wrong	length	or	if	the

				59	 //	ciphertext	is	greater	than	the	public	modulus.	Otherwise,	no	error	is

				60	 //	returned.	If	the	padding	is	valid,	the	resulting	plaintext	message	is	copied

				61	 //	into	key.	Otherwise,	key	is	unchanged.	These	alternatives	occur	in	constant

				62	 //	time.	It	is	intended	that	the	user	of	this	function	generate	a	random

				63	 //	session	key	beforehand	and	continue	the	protocol	with	the	resulting	value.

				64	 //	This	will	remove	any	possibility	that	an	attacker	can	learn	any	information

				65	 //	about	the	plaintext.

				66	 //	See	``Chosen	Ciphertext	Attacks	Against	Protocols	Based	on	the	RSA

				67	 //	Encryption	Standard	PKCS	#1'',	Daniel	Bleichenbacher,	Advances	in	Cryptology

				68	 //	(Crypto	'98).

				69	 func	DecryptPKCS1v15SessionKey(rand	io.Reader,	priv	*PrivateKey,	ciphertext	[]byte,	key	[]byte)	(err	error)	{

				70	 	 k	:=	(priv.N.BitLen()	+	7)	/	8

				71	 	 if	k-(len(key)+3+8)	<	0	{

				72	 	 	 err	=	ErrDecryption

				73	 	 	 return

				74	 	 }

				75	

				76	 	 valid,	msg,	err	:=	decryptPKCS1v15(rand,	priv,	ciphertext)

				77	 	 if	err	!=	nil	{

				78	 	 	 return

				79	 	 }

				80	

				81	 	 valid	&=	subtle.ConstantTimeEq(int32(len(msg)),	int32(len(key)))

				82	 	 subtle.ConstantTimeCopy(valid,	key,	msg)

				83	 	 return

				84	 }

				85	

				86	 func	decryptPKCS1v15(rand	io.Reader,	priv	*PrivateKey,	ciphertext	[]byte)	(valid	int,	msg	[]byte,	err	error)	{

				87	 	 k	:=	(priv.N.BitLen()	+	7)	/	8

				88	 	 if	k	<	11	{

				89	 	 	 err	=	ErrDecryption

				90	 	 	 return

				91	 	 }

				92	

				93	 	 c	:=	new(big.Int).SetBytes(ciphertext)

				94	 	 m,	err	:=	decrypt(rand,	priv,	c)

				95	 	 if	err	!=	nil	{

				96	 	 	 return

				97	 	 }

				98	

				99	 	 em	:=	leftPad(m.Bytes(),	k)

			100	 	 firstByteIsZero	:=	subtle.ConstantTimeByteEq(em[0],	0)

			101	 	 secondByteIsTwo	:=	subtle.ConstantTimeByteEq(em[1],	2)

			102	

			103	 	 //	The	remainder	of	the	plaintext	must	be	a	string	of	non-zero	random

			104	 	 //	octets,	followed	by	a	0,	followed	by	the	message.

			105	 	 //			lookingForIndex:	1	iff	we	are	still	looking	for	the	zero.

			106	 	 //			index:	the	offset	of	the	first	zero	byte.

			107	 	 var	lookingForIndex,	index	int

			108	 	 lookingForIndex	=	1

			109	

			110	 	 for	i	:=	2;	i	<	len(em);	i++	{

			111	 	 	 equals0	:=	subtle.ConstantTimeByteEq(em[i],	0)

			112	 	 	 index	=	subtle.ConstantTimeSelect(lookingForIndex&equals0,	i,	index)

			113	 	 	 lookingForIndex	=	subtle.ConstantTimeSelect(equals0,	0,	lookingForIndex)

			114	 	 }

			115	

			116	 	 valid	=	firstByteIsZero	&	secondByteIsTwo	&	(^lookingForIndex	&	1)

			117	 	 msg	=	em[index+1:]

			118	 	 return

			119	 }

			120	

			121	 //	nonZeroRandomBytes	fills	the	given	slice	with	non-zero	random	octets.

			122	 func	nonZeroRandomBytes(s	[]byte,	rand	io.Reader)	(err	error)	{

			123	 	 _,	err	=	io.ReadFull(rand,	s)

			124	 	 if	err	!=	nil	{

			125	 	 	 return

			126	 	 }

			127	

			128	 	 for	i	:=	0;	i	<	len(s);	i++	{

			129	 	 	 for	s[i]	==	0	{

			130	 	 	 	 _,	err	=	io.ReadFull(rand,	s[i:i+1])

			131	 	 	 	 if	err	!=	nil	{

			132	 	 	 	 	 return

			133	 	 	 	 }

			134	 	 	 	 //	In	tests,	the	PRNG	may	return	all	zeros	so	we	do

			135	 	 	 	 //	this	to	break	the	loop.

			136	 	 	 	 s[i]	^=	0x42

			137	 	 	 }

			138	 	 }

			139	

			140	 	 return

			141	 }

			142	

			143	 //	These	are	ASN1	DER	structures:

			144	 //			DigestInfo	::=	SEQUENCE	{

			145	 //					digestAlgorithm	AlgorithmIdentifier,

			146	 //					digest	OCTET	STRING

			147	 //			}

			148	 //	For	performance,	we	don't	use	the	generic	ASN1	encoder.	Rather,	we

			149	 //	precompute	a	prefix	of	the	digest	value	that	makes	a	valid	ASN1	DER	string

			150	 //	with	the	correct	contents.

			151	 var	hashPrefixes	=	map[crypto.Hash][]byte{

			152	 	 crypto.MD5:							{0x30,	0x20,	0x30,	0x0c,	0x06,	0x08,	0x2a,	0x86,	0x48,	0x86,	0xf7,	0x0d,	0x02,	0x05,	0x05,	0x00,	0x04,	0x10},

			153	 	 crypto.SHA1:						{0x30,	0x21,	0x30,	0x09,	0x06,	0x05,	0x2b,	0x0e,	0x03,	0x02,	0x1a,	0x05,	0x00,	0x04,	0x14},

			154	 	 crypto.SHA256:				{0x30,	0x31,	0x30,	0x0d,	0x06,	0x09,	0x60,	0x86,	0x48,	0x01,	0x65,	0x03,	0x04,	0x02,	0x01,	0x05,	0x00,	0x04,	0x20},

			155	 	 crypto.SHA384:				{0x30,	0x41,	0x30,	0x0d,	0x06,	0x09,	0x60,	0x86,	0x48,	0x01,	0x65,	0x03,	0x04,	0x02,	0x02,	0x05,	0x00,	0x04,	0x30},

			156	 	 crypto.SHA512:				{0x30,	0x51,	0x30,	0x0d,	0x06,	0x09,	0x60,	0x86,	0x48,	0x01,	0x65,	0x03,	0x04,	0x02,	0x03,	0x05,	0x00,	0x04,	0x40},

			157	 	 crypto.MD5SHA1:			{},	//	A	special	TLS	case	which	doesn't	use	an	ASN1	prefix.

			158	 	 crypto.RIPEMD160:	{0x30,	0x20,	0x30,	0x08,	0x06,	0x06,	0x28,	0xcf,	0x06,	0x03,	0x00,	0x31,	0x04,	0x14},

			159	 }

			160	

			161	 //	SignPKCS1v15	calculates	the	signature	of	hashed	using	RSASSA-PKCS1-V1_5-SIGN	from	RSA	PKCS#1	v1.5.

			162	 //	Note	that	hashed	must	be	the	result	of	hashing	the	input	message	using	the

			163	 //	given	hash	function.

			164	 func	SignPKCS1v15(rand	io.Reader,	priv	*PrivateKey,	hash	crypto.Hash,	hashed	[]byte)	(s	[]byte,	err	error)	{

			165	 	 hashLen,	prefix,	err	:=	pkcs1v15HashInfo(hash,	len(hashed))

			166	 	 if	err	!=	nil	{

			167	 	 	 return

			168	 	 }

			169	

			170	 	 tLen	:=	len(prefix)	+	hashLen

			171	 	 k	:=	(priv.N.BitLen()	+	7)	/	8

			172	 	 if	k	<	tLen+11	{

			173	 	 	 return	nil,	ErrMessageTooLong

			174	 	 }

			175	

			176	 	 //	EM	=	0x00	||	0x01	||	PS	||	0x00	||	T

			177	 	 em	:=	make([]byte,	k)

			178	 	 em[1]	=	1

			179	 	 for	i	:=	2;	i	<	k-tLen-1;	i++	{

			180	 	 	 em[i]	=	0xff

			181	 	 }

			182	 	 copy(em[k-tLen:k-hashLen],	prefix)

			183	 	 copy(em[k-hashLen:k],	hashed)

			184	

			185	 	 m	:=	new(big.Int).SetBytes(em)

			186	 	 c,	err	:=	decrypt(rand,	priv,	m)

			187	 	 if	err	==	nil	{

			188	 	 	 s	=	c.Bytes()

			189	 	 }

			190	 	 return

			191	 }

			192	

			193	 //	VerifyPKCS1v15	verifies	an	RSA	PKCS#1	v1.5	signature.

			194	 //	hashed	is	the	result	of	hashing	the	input	message	using	the	given	hash

			195	 //	function	and	sig	is	the	signature.	A	valid	signature	is	indicated	by

			196	 //	returning	a	nil	error.

			197	 func	VerifyPKCS1v15(pub	*PublicKey,	hash	crypto.Hash,	hashed	[]byte,	sig	[]byte)	(err	error)	{

			198	 	 hashLen,	prefix,	err	:=	pkcs1v15HashInfo(hash,	len(hashed))

			199	 	 if	err	!=	nil	{

			200	 	 	 return

			201	 	 }

			202	

			203	 	 tLen	:=	len(prefix)	+	hashLen

			204	 	 k	:=	(pub.N.BitLen()	+	7)	/	8

			205	 	 if	k	<	tLen+11	{

			206	 	 	 err	=	ErrVerification

			207	 	 	 return

			208	 	 }

			209	

			210	 	 c	:=	new(big.Int).SetBytes(sig)

			211	 	 m	:=	encrypt(new(big.Int),	pub,	c)

			212	 	 em	:=	leftPad(m.Bytes(),	k)

			213	 	 //	EM	=	0x00	||	0x01	||	PS	||	0x00	||	T

			214	

			215	 	 ok	:=	subtle.ConstantTimeByteEq(em[0],	0)

			216	 	 ok	&=	subtle.ConstantTimeByteEq(em[1],	1)

			217	 	 ok	&=	subtle.ConstantTimeCompare(em[k-hashLen:k],	hashed)

			218	 	 ok	&=	subtle.ConstantTimeCompare(em[k-tLen:k-hashLen],	prefix)

			219	 	 ok	&=	subtle.ConstantTimeByteEq(em[k-tLen-1],	0)

			220	

			221	 	 for	i	:=	2;	i	<	k-tLen-1;	i++	{

			222	 	 	 ok	&=	subtle.ConstantTimeByteEq(em[i],	0xff)

			223	 	 }

			224	

			225	 	 if	ok	!=	1	{

			226	 	 	 return	ErrVerification

			227	 	 }

			228	

			229	 	 return	nil

			230	 }

			231	

			232	 func	pkcs1v15HashInfo(hash	crypto.Hash,	inLen	int)	(hashLen	int,	prefix	[]byte,	err	error)	{

			233	 	 hashLen	=	hash.Size()

			234	 	 if	inLen	!=	hashLen	{

			235	 	 	 return	0,	nil,	errors.New("input	must	be	hashed	message")

			236	 	 }

			237	 	 prefix,	ok	:=	hashPrefixes[hash]

			238	 	 if	!ok	{

			239	 	 	 return	0,	nil,	errors.New("unsupported	hash	function")

			240	 	 }

			241	 	 return

			242	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/crypto/rsa/rsa.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	rsa	implements	RSA	encryption	as	specified	in	PKCS#1.

					6	 package	rsa

					7	

					8	 //	TODO(agl):	Add	support	for	PSS	padding.

					9	

				10	 import	(

				11	 	 "crypto/rand"

				12	 	 "crypto/subtle"

				13	 	 "errors"

				14	 	 "hash"

				15	 	 "io"

				16	 	 "math/big"

				17)

				18	

				19	 var	bigZero	=	big.NewInt(0)

				20	 var	bigOne	=	big.NewInt(1)

				21	

				22	 //	A	PublicKey	represents	the	public	part	of	an	RSA	key.

				23	 type	PublicKey	struct	{

				24	 	 N	*big.Int	//	modulus

				25	 	 E	int						//	public	exponent

				26	 }

				27	

				28	 //	A	PrivateKey	represents	an	RSA	key

				29	 type	PrivateKey	struct	{

				30	 	 PublicKey												//	public	part.

				31	 	 D									*big.Int			//	private	exponent

				32	 	 Primes				[]*big.Int	//	prime	factors	of	N,	has	>=	2	elements.

				33	

				34	 	 //	Precomputed	contains	precomputed	values	that	speed	up	private

				35	 	 //	operations,	if	available.

				36	 	 Precomputed	PrecomputedValues

				37	 }

				38	

				39	 type	PrecomputedValues	struct	{

				40	 	 Dp,	Dq	*big.Int	//	D	mod	(P-1)	(or	mod	Q-1)	

				41	 	 Qinv			*big.Int	//	Q^-1	mod	Q

				42	

				43	 	 //	CRTValues	is	used	for	the	3rd	and	subsequent	primes.	Due	to	a

				44	 	 //	historical	accident,	the	CRT	for	the	first	two	primes	is	handled

				45	 	 //	differently	in	PKCS#1	and	interoperability	is	sufficiently

				46	 	 //	important	that	we	mirror	this.

				47	 	 CRTValues	[]CRTValue

				48	 }

				49	

				50	 //	CRTValue	contains	the	precomputed	chinese	remainder	theorem	values.

				51	 type	CRTValue	struct	{

				52	 	 Exp			*big.Int	//	D	mod	(prime-1).

				53	 	 Coeff	*big.Int	//	R·Coeff	≡	1	mod	Prime.

				54	 	 R					*big.Int	//	product	of	primes	prior	to	this	(inc	p	and	q).

				55	 }

				56	

				57	 //	Validate	performs	basic	sanity	checks	on	the	key.

				58	 //	It	returns	nil	if	the	key	is	valid,	or	else	an	error	describing	a	problem.

				59	 func	(priv	*PrivateKey)	Validate()	error	{

				60	 	 //	Check	that	the	prime	factors	are	actually	prime.	Note	that	this	is

				61	 	 //	just	a	sanity	check.	Since	the	random	witnesses	chosen	by

				62	 	 //	ProbablyPrime	are	deterministic,	given	the	candidate	number,	it's

				63	 	 //	easy	for	an	attack	to	generate	composites	that	pass	this	test.

				64	 	 for	_,	prime	:=	range	priv.Primes	{

				65	 	 	 if	!prime.ProbablyPrime(20)	{

				66	 	 	 	 return	errors.New("prime	factor	is	composite")

				67	 	 	 }

				68	 	 }

				69	

				70	 	 //	Check	that	Πprimes	==	n.

				71	 	 modulus	:=	new(big.Int).Set(bigOne)

				72	 	 for	_,	prime	:=	range	priv.Primes	{

				73	 	 	 modulus.Mul(modulus,	prime)

				74	 	 }

				75	 	 if	modulus.Cmp(priv.N)	!=	0	{

				76	 	 	 return	errors.New("invalid	modulus")

				77	 	 }

				78	 	 //	Check	that	e	and	totient(Πprimes)	are	coprime.

				79	 	 totient	:=	new(big.Int).Set(bigOne)

				80	 	 for	_,	prime	:=	range	priv.Primes	{

				81	 	 	 pminus1	:=	new(big.Int).Sub(prime,	bigOne)

				82	 	 	 totient.Mul(totient,	pminus1)

				83	 	 }

				84	 	 e	:=	big.NewInt(int64(priv.E))

				85	 	 gcd	:=	new(big.Int)

				86	 	 x	:=	new(big.Int)

				87	 	 y	:=	new(big.Int)

				88	 	 gcd.GCD(x,	y,	totient,	e)

				89	 	 if	gcd.Cmp(bigOne)	!=	0	{

				90	 	 	 return	errors.New("invalid	public	exponent	E")

				91	 	 }

				92	 	 //	Check	that	de	≡	1	(mod	totient(Πprimes))

				93	 	 de	:=	new(big.Int).Mul(priv.D,	e)

				94	 	 de.Mod(de,	totient)

				95	 	 if	de.Cmp(bigOne)	!=	0	{

				96	 	 	 return	errors.New("invalid	private	exponent	D")

				97	 	 }

				98	 	 return	nil

				99	 }

			100	

			101	 //	GenerateKey	generates	an	RSA	keypair	of	the	given	bit	size.

			102	 func	GenerateKey(random	io.Reader,	bits	int)	(priv	*PrivateKey,	err	error)	{

			103	 	 return	GenerateMultiPrimeKey(random,	2,	bits)

			104	 }

			105	

			106	 //	GenerateMultiPrimeKey	generates	a	multi-prime	RSA	keypair	of	the	given	bit

			107	 //	size,	as	suggested	in	[1].	Although	the	public	keys	are	compatible

			108	 //	(actually,	indistinguishable)	from	the	2-prime	case,	the	private	keys	are

			109	 //	not.	Thus	it	may	not	be	possible	to	export	multi-prime	private	keys	in

			110	 //	certain	formats	or	to	subsequently	import	them	into	other	code.

			111	 //

			112	 //	Table	1	in	[2]	suggests	maximum	numbers	of	primes	for	a	given	size.

			113	 //

			114	 //	[1]	US	patent	4405829	(1972,	expired)

			115	 //	[2]	http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf

			116	 func	GenerateMultiPrimeKey(random	io.Reader,	nprimes	int,	bits	int)	(priv	*PrivateKey,	err	error)	{

			117	 	 priv	=	new(PrivateKey)

			118	 	 priv.E	=	65537

			119	

			120	 	 if	nprimes	<	2	{

			121	 	 	 return	nil,	errors.New("rsa.GenerateMultiPrimeKey:	nprimes	must	be	>=	2")

			122	 	 }

			123	

			124	 	 primes	:=	make([]*big.Int,	nprimes)

			125	

			126	 NextSetOfPrimes:

			127	 	 for	{

			128	 	 	 todo	:=	bits

			129	 	 	 for	i	:=	0;	i	<	nprimes;	i++	{

			130	 	 	 	 primes[i],	err	=	rand.Prime(random,	todo/(nprimes-i))

			131	 	 	 	 if	err	!=	nil	{

			132	 	 	 	 	 return	nil,	err

			133	 	 	 	 }

			134	 	 	 	 todo	-=	primes[i].BitLen()

			135	 	 	 }

			136	

			137	 	 	 //	Make	sure	that	primes	is	pairwise	unequal.

			138	 	 	 for	i,	prime	:=	range	primes	{

			139	 	 	 	 for	j	:=	0;	j	<	i;	j++	{

			140	 	 	 	 	 if	prime.Cmp(primes[j])	==	0	{

			141	 	 	 	 	 	 continue	NextSetOfPrimes

			142	 	 	 	 	 }

			143	 	 	 	 }

			144	 	 	 }

			145	

			146	 	 	 n	:=	new(big.Int).Set(bigOne)

			147	 	 	 totient	:=	new(big.Int).Set(bigOne)

			148	 	 	 pminus1	:=	new(big.Int)

			149	 	 	 for	_,	prime	:=	range	primes	{

			150	 	 	 	 n.Mul(n,	prime)

			151	 	 	 	 pminus1.Sub(prime,	bigOne)

			152	 	 	 	 totient.Mul(totient,	pminus1)

			153	 	 	 }

			154	

			155	 	 	 g	:=	new(big.Int)

			156	 	 	 priv.D	=	new(big.Int)

			157	 	 	 y	:=	new(big.Int)

			158	 	 	 e	:=	big.NewInt(int64(priv.E))

			159	 	 	 g.GCD(priv.D,	y,	e,	totient)

			160	

			161	 	 	 if	g.Cmp(bigOne)	==	0	{

			162	 	 	 	 priv.D.Add(priv.D,	totient)

			163	 	 	 	 priv.Primes	=	primes

			164	 	 	 	 priv.N	=	n

			165	

			166	 	 	 	 break

			167	 	 	 }

			168	 	 }

			169	

			170	 	 priv.Precompute()

			171	 	 return

			172	 }

			173	

			174	 //	incCounter	increments	a	four	byte,	big-endian	counter.

			175	 func	incCounter(c	*[4]byte)	{

			176	 	 if	c[3]++;	c[3]	!=	0	{

			177	 	 	 return

			178	 	 }

			179	 	 if	c[2]++;	c[2]	!=	0	{

			180	 	 	 return

			181	 	 }

			182	 	 if	c[1]++;	c[1]	!=	0	{

			183	 	 	 return

			184	 	 }

			185	 	 c[0]++

			186	 }

			187	

			188	 //	mgf1XOR	XORs	the	bytes	in	out	with	a	mask	generated	using	the	MGF1	function

			189	 //	specified	in	PKCS#1	v2.1.

			190	 func	mgf1XOR(out	[]byte,	hash	hash.Hash,	seed	[]byte)	{

			191	 	 var	counter	[4]byte

			192	 	 var	digest	[]byte

			193	

			194	 	 done	:=	0

			195	 	 for	done	<	len(out)	{

			196	 	 	 hash.Write(seed)

			197	 	 	 hash.Write(counter[0:4])

			198	 	 	 digest	=	hash.Sum(digest[:0])

			199	 	 	 hash.Reset()

			200	

			201	 	 	 for	i	:=	0;	i	<	len(digest)	&&	done	<	len(out);	i++	{

			202	 	 	 	 out[done]	^=	digest[i]

			203	 	 	 	 done++

			204	 	 	 }

			205	 	 	 incCounter(&counter)

			206	 	 }

			207	 }

			208	

			209	 //	ErrMessageTooLong	is	returned	when	attempting	to	encrypt	a	message	which	is

			210	 //	too	large	for	the	size	of	the	public	key.

			211	 var	ErrMessageTooLong	=	errors.New("crypto/rsa:	message	too	long	for	RSA	public	key	size")

			212	

			213	 func	encrypt(c	*big.Int,	pub	*PublicKey,	m	*big.Int)	*big.Int	{

			214	 	 e	:=	big.NewInt(int64(pub.E))

			215	 	 c.Exp(m,	e,	pub.N)

			216	 	 return	c

			217	 }

			218	

			219	 //	EncryptOAEP	encrypts	the	given	message	with	RSA-OAEP.

			220	 //	The	message	must	be	no	longer	than	the	length	of	the	public	modulus	less

			221	 //	twice	the	hash	length	plus	2.

			222	 func	EncryptOAEP(hash	hash.Hash,	random	io.Reader,	pub	*PublicKey,	msg	[]byte,	label	[]byte)	(out	[]byte,	err	error)	{

			223	 	 hash.Reset()

			224	 	 k	:=	(pub.N.BitLen()	+	7)	/	8

			225	 	 if	len(msg)	>	k-2*hash.Size()-2	{

			226	 	 	 err	=	ErrMessageTooLong

			227	 	 	 return

			228	 	 }

			229	

			230	 	 hash.Write(label)

			231	 	 lHash	:=	hash.Sum(nil)

			232	 	 hash.Reset()

			233	

			234	 	 em	:=	make([]byte,	k)

			235	 	 seed	:=	em[1	:	1+hash.Size()]

			236	 	 db	:=	em[1+hash.Size():]

			237	

			238	 	 copy(db[0:hash.Size()],	lHash)

			239	 	 db[len(db)-len(msg)-1]	=	1

			240	 	 copy(db[len(db)-len(msg):],	msg)

			241	

			242	 	 _,	err	=	io.ReadFull(random,	seed)

			243	 	 if	err	!=	nil	{

			244	 	 	 return

			245	 	 }

			246	

			247	 	 mgf1XOR(db,	hash,	seed)

			248	 	 mgf1XOR(seed,	hash,	db)

			249	

			250	 	 m	:=	new(big.Int)

			251	 	 m.SetBytes(em)

			252	 	 c	:=	encrypt(new(big.Int),	pub,	m)

			253	 	 out	=	c.Bytes()

			254	

			255	 	 if	len(out)	<	k	{

			256	 	 	 //	If	the	output	is	too	small,	we	need	to	left-pad	with	zeros.

			257	 	 	 t	:=	make([]byte,	k)

			258	 	 	 copy(t[k-len(out):],	out)

			259	 	 	 out	=	t

			260	 	 }

			261	

			262	 	 return

			263	 }

			264	

			265	 //	ErrDecryption	represents	a	failure	to	decrypt	a	message.

			266	 //	It	is	deliberately	vague	to	avoid	adaptive	attacks.

			267	 var	ErrDecryption	=	errors.New("crypto/rsa:	decryption	error")

			268	

			269	 //	ErrVerification	represents	a	failure	to	verify	a	signature.

			270	 //	It	is	deliberately	vague	to	avoid	adaptive	attacks.

			271	 var	ErrVerification	=	errors.New("crypto/rsa:	verification	error")

			272	

			273	 //	modInverse	returns	ia,	the	inverse	of	a	in	the	multiplicative	group	of	prime

			274	 //	order	n.	It	requires	that	a	be	a	member	of	the	group	(i.e.	less	than	n).

			275	 func	modInverse(a,	n	*big.Int)	(ia	*big.Int,	ok	bool)	{

			276	 	 g	:=	new(big.Int)

			277	 	 x	:=	new(big.Int)

			278	 	 y	:=	new(big.Int)

			279	 	 g.GCD(x,	y,	a,	n)

			280	 	 if	g.Cmp(bigOne)	!=	0	{

			281	 	 	 //	In	this	case,	a	and	n	aren't	coprime	and	we	cannot	calculate

			282	 	 	 //	the	inverse.	This	happens	because	the	values	of	n	are	nearly

			283	 	 	 //	prime	(being	the	product	of	two	primes)	rather	than	truly

			284	 	 	 //	prime.

			285	 	 	 return

			286	 	 }

			287	

			288	 	 if	x.Cmp(bigOne)	<	0	{

			289	 	 	 //	0	is	not	the	multiplicative	inverse	of	any	element	so,	if	x

			290	 	 	 //	<	1,	then	x	is	negative.

			291	 	 	 x.Add(x,	n)

			292	 	 }

			293	

			294	 	 return	x,	true

			295	 }

			296	

			297	 //	Precompute	performs	some	calculations	that	speed	up	private	key	operations

			298	 //	in	the	future.

			299	 func	(priv	*PrivateKey)	Precompute()	{

			300	 	 if	priv.Precomputed.Dp	!=	nil	{

			301	 	 	 return

			302	 	 }

			303	

			304	 	 priv.Precomputed.Dp	=	new(big.Int).Sub(priv.Primes[0],	bigOne)

			305	 	 priv.Precomputed.Dp.Mod(priv.D,	priv.Precomputed.Dp)

			306	

			307	 	 priv.Precomputed.Dq	=	new(big.Int).Sub(priv.Primes[1],	bigOne)

			308	 	 priv.Precomputed.Dq.Mod(priv.D,	priv.Precomputed.Dq)

			309	

			310	 	 priv.Precomputed.Qinv	=	new(big.Int).ModInverse(priv.Primes[1],	priv.Primes[0])

			311	

			312	 	 r	:=	new(big.Int).Mul(priv.Primes[0],	priv.Primes[1])

			313	 	 priv.Precomputed.CRTValues	=	make([]CRTValue,	len(priv.Primes)-2)

			314	 	 for	i	:=	2;	i	<	len(priv.Primes);	i++	{

			315	 	 	 prime	:=	priv.Primes[i]

			316	 	 	 values	:=	&priv.Precomputed.CRTValues[i-2]

			317	

			318	 	 	 values.Exp	=	new(big.Int).Sub(prime,	bigOne)

			319	 	 	 values.Exp.Mod(priv.D,	values.Exp)

			320	

			321	 	 	 values.R	=	new(big.Int).Set(r)

			322	 	 	 values.Coeff	=	new(big.Int).ModInverse(r,	prime)

			323	

			324	 	 	 r.Mul(r,	prime)

			325	 	 }

			326	 }

			327	

			328	 //	decrypt	performs	an	RSA	decryption,	resulting	in	a	plaintext	integer.	If	a

			329	 //	random	source	is	given,	RSA	blinding	is	used.

			330	 func	decrypt(random	io.Reader,	priv	*PrivateKey,	c	*big.Int)	(m	*big.Int,	err	error)	{

			331	 	 //	TODO(agl):	can	we	get	away	with	reusing	blinds?

			332	 	 if	c.Cmp(priv.N)	>	0	{

			333	 	 	 err	=	ErrDecryption

			334	 	 	 return

			335	 	 }

			336	

			337	 	 var	ir	*big.Int

			338	 	 if	random	!=	nil	{

			339	 	 	 //	Blinding	enabled.	Blinding	involves	multiplying	c	by	r^e.

			340	 	 	 //	Then	the	decryption	operation	performs	(m^e	*	r^e)^d	mod	n

			341	 	 	 //	which	equals	mr	mod	n.	The	factor	of	r	can	then	be	removed

			342	 	 	 //	by	multiplying	by	the	multiplicative	inverse	of	r.

			343	

			344	 	 	 var	r	*big.Int

			345	

			346	 	 	 for	{

			347	 	 	 	 r,	err	=	rand.Int(random,	priv.N)

			348	 	 	 	 if	err	!=	nil	{

			349	 	 	 	 	 return

			350	 	 	 	 }

			351	 	 	 	 if	r.Cmp(bigZero)	==	0	{

			352	 	 	 	 	 r	=	bigOne

			353	 	 	 	 }

			354	 	 	 	 var	ok	bool

			355	 	 	 	 ir,	ok	=	modInverse(r,	priv.N)

			356	 	 	 	 if	ok	{

			357	 	 	 	 	 break

			358	 	 	 	 }

			359	 	 	 }

			360	 	 	 bigE	:=	big.NewInt(int64(priv.E))

			361	 	 	 rpowe	:=	new(big.Int).Exp(r,	bigE,	priv.N)

			362	 	 	 cCopy	:=	new(big.Int).Set(c)

			363	 	 	 cCopy.Mul(cCopy,	rpowe)

			364	 	 	 cCopy.Mod(cCopy,	priv.N)

			365	 	 	 c	=	cCopy

			366	 	 }

			367	

			368	 	 if	priv.Precomputed.Dp	==	nil	{

			369	 	 	 m	=	new(big.Int).Exp(c,	priv.D,	priv.N)

			370	 	 }	else	{

			371	 	 	 //	We	have	the	precalculated	values	needed	for	the	CRT.

			372	 	 	 m	=	new(big.Int).Exp(c,	priv.Precomputed.Dp,	priv.Primes[0])

			373	 	 	 m2	:=	new(big.Int).Exp(c,	priv.Precomputed.Dq,	priv.Primes[1])

			374	 	 	 m.Sub(m,	m2)

			375	 	 	 if	m.Sign()	<	0	{

			376	 	 	 	 m.Add(m,	priv.Primes[0])

			377	 	 	 }

			378	 	 	 m.Mul(m,	priv.Precomputed.Qinv)

			379	 	 	 m.Mod(m,	priv.Primes[0])

			380	 	 	 m.Mul(m,	priv.Primes[1])

			381	 	 	 m.Add(m,	m2)

			382	

			383	 	 	 for	i,	values	:=	range	priv.Precomputed.CRTValues	{

			384	 	 	 	 prime	:=	priv.Primes[2+i]

			385	 	 	 	 m2.Exp(c,	values.Exp,	prime)

			386	 	 	 	 m2.Sub(m2,	m)

			387	 	 	 	 m2.Mul(m2,	values.Coeff)

			388	 	 	 	 m2.Mod(m2,	prime)

			389	 	 	 	 if	m2.Sign()	<	0	{

			390	 	 	 	 	 m2.Add(m2,	prime)

			391	 	 	 	 }

			392	 	 	 	 m2.Mul(m2,	values.R)

			393	 	 	 	 m.Add(m,	m2)

			394	 	 	 }

			395	 	 }

			396	

			397	 	 if	ir	!=	nil	{

			398	 	 	 //	Unblind.

			399	 	 	 m.Mul(m,	ir)

			400	 	 	 m.Mod(m,	priv.N)

			401	 	 }

			402	

			403	 	 return

			404	 }

			405	

			406	 //	DecryptOAEP	decrypts	ciphertext	using	RSA-OAEP.

			407	 //	If	random	!=	nil,	DecryptOAEP	uses	RSA	blinding	to	avoid	timing	side-channel	attacks.

			408	 func	DecryptOAEP(hash	hash.Hash,	random	io.Reader,	priv	*PrivateKey,	ciphertext	[]byte,	label	[]byte)	(msg	[]byte,	err	error)	{

			409	 	 k	:=	(priv.N.BitLen()	+	7)	/	8

			410	 	 if	len(ciphertext)	>	k	||

			411	 	 	 k	<	hash.Size()*2+2	{

			412	 	 	 err	=	ErrDecryption

			413	 	 	 return

			414	 	 }

			415	

			416	 	 c	:=	new(big.Int).SetBytes(ciphertext)

			417	

			418	 	 m,	err	:=	decrypt(random,	priv,	c)

			419	 	 if	err	!=	nil	{

			420	 	 	 return

			421	 	 }

			422	

			423	 	 hash.Write(label)

			424	 	 lHash	:=	hash.Sum(nil)

			425	 	 hash.Reset()

			426	

			427	 	 //	Converting	the	plaintext	number	to	bytes	will	strip	any

			428	 	 //	leading	zeros	so	we	may	have	to	left	pad.	We	do	this	unconditionally

			429	 	 //	to	avoid	leaking	timing	information.	(Although	we	still	probably

			430	 	 //	leak	the	number	of	leading	zeros.	It's	not	clear	that	we	can	do

			431	 	 //	anything	about	this.)

			432	 	 em	:=	leftPad(m.Bytes(),	k)

			433	

			434	 	 firstByteIsZero	:=	subtle.ConstantTimeByteEq(em[0],	0)

			435	

			436	 	 seed	:=	em[1	:	hash.Size()+1]

			437	 	 db	:=	em[hash.Size()+1:]

			438	

			439	 	 mgf1XOR(seed,	hash,	db)

			440	 	 mgf1XOR(db,	hash,	seed)

			441	

			442	 	 lHash2	:=	db[0:hash.Size()]

			443	

			444	 	 //	We	have	to	validate	the	plaintext	in	constant	time	in	order	to	avoid

			445	 	 //	attacks	like:	J.	Manger.	A	Chosen	Ciphertext	Attack	on	RSA	Optimal

			446	 	 //	Asymmetric	Encryption	Padding	(OAEP)	as	Standardized	in	PKCS	#1

			447	 	 //	v2.0.	In	J.	Kilian,	editor,	Advances	in	Cryptology.

			448	 	 lHash2Good	:=	subtle.ConstantTimeCompare(lHash,	lHash2)

			449	

			450	 	 //	The	remainder	of	the	plaintext	must	be	zero	or	more	0x00,	followed

			451	 	 //	by	0x01,	followed	by	the	message.

			452	 	 //			lookingForIndex:	1	iff	we	are	still	looking	for	the	0x01

			453	 	 //			index:	the	offset	of	the	first	0x01	byte

			454	 	 //			invalid:	1	iff	we	saw	a	non-zero	byte	before	the	0x01.

			455	 	 var	lookingForIndex,	index,	invalid	int

			456	 	 lookingForIndex	=	1

			457	 	 rest	:=	db[hash.Size():]

			458	

			459	 	 for	i	:=	0;	i	<	len(rest);	i++	{

			460	 	 	 equals0	:=	subtle.ConstantTimeByteEq(rest[i],	0)

			461	 	 	 equals1	:=	subtle.ConstantTimeByteEq(rest[i],	1)

			462	 	 	 index	=	subtle.ConstantTimeSelect(lookingForIndex&equals1,	i,	index)

			463	 	 	 lookingForIndex	=	subtle.ConstantTimeSelect(equals1,	0,	lookingForIndex)

			464	 	 	 invalid	=	subtle.ConstantTimeSelect(lookingForIndex&^equals0,	1,	invalid)

			465	 	 }

			466	

			467	 	 if	firstByteIsZero&lHash2Good&^invalid&^lookingForIndex	!=	1	{

			468	 	 	 err	=	ErrDecryption

			469	 	 	 return

			470	 	 }

			471	

			472	 	 msg	=	rest[index+1:]

			473	 	 return

			474	 }

			475	

			476	 //	leftPad	returns	a	new	slice	of	length	size.	The	contents	of	input	are	right

			477	 //	aligned	in	the	new	slice.

			478	 func	leftPad(input	[]byte,	size	int)	(out	[]byte)	{

			479	 	 n	:=	len(input)

			480	 	 if	n	>	size	{

			481	 	 	 n	=	size

			482	 	 }

			483	 	 out	=	make([]byte,	size)

			484	 	 copy(out[len(out)-n:],	input)

			485	 	 return

			486	 }

Build	version	go1.0.1.

Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/sha1/sha1.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	sha1	implements	the	SHA1	hash	algorithm	as	defined	in	RFC	3174.

					6	 package	sha1

					7	

					8	 import	(

					9	 	 "crypto"

				10	 	 "hash"

				11)

				12	

				13	 func	init()	{

				14	 	 crypto.RegisterHash(crypto.SHA1,	New)

				15	 }

				16	

				17	 //	The	size	of	a	SHA1	checksum	in	bytes.

				18	 const	Size	=	20

				19	

				20	 //	The	blocksize	of	SHA1	in	bytes.

				21	 const	BlockSize	=	64

				22	

				23	 const	(

				24	 	 _Chunk	=	64

				25	 	 _Init0	=	0x67452301

				26	 	 _Init1	=	0xEFCDAB89

				27	 	 _Init2	=	0x98BADCFE

				28	 	 _Init3	=	0x10325476

				29	 	 _Init4	=	0xC3D2E1F0

				30)

				31	

				32	 //	digest	represents	the	partial	evaluation	of	a	checksum.

				33	 type	digest	struct	{

				34	 	 h			[5]uint32

				35	 	 x			[_Chunk]byte

				36	 	 nx		int

				37	 	 len	uint64

				38	 }

				39	

				40	 func	(d	*digest)	Reset()	{

				41	 	 d.h[0]	=	_Init0

				42	 	 d.h[1]	=	_Init1

				43	 	 d.h[2]	=	_Init2

				44	 	 d.h[3]	=	_Init3

				45	 	 d.h[4]	=	_Init4

				46	 	 d.nx	=	0

				47	 	 d.len	=	0

				48	 }

				49	

				50	 //	New	returns	a	new	hash.Hash	computing	the	SHA1	checksum.

				51	 func	New()	hash.Hash	{

				52	 	 d	:=	new(digest)

				53	 	 d.Reset()

				54	 	 return	d

				55	 }

				56	

				57	 func	(d	*digest)	Size()	int	{	return	Size	}

				58	

				59	 func	(d	*digest)	BlockSize()	int	{	return	BlockSize	}

				60	

				61	 func	(d	*digest)	Write(p	[]byte)	(nn	int,	err	error)	{

				62	 	 nn	=	len(p)

				63	 	 d.len	+=	uint64(nn)

				64	 	 if	d.nx	>	0	{

				65	 	 	 n	:=	len(p)

				66	 	 	 if	n	>	_Chunk-d.nx	{

				67	 	 	 	 n	=	_Chunk	-	d.nx

				68	 	 	 }

				69	 	 	 for	i	:=	0;	i	<	n;	i++	{

				70	 	 	 	 d.x[d.nx+i]	=	p[i]

				71	 	 	 }

				72	 	 	 d.nx	+=	n

				73	 	 	 if	d.nx	==	_Chunk	{

				74	 	 	 	 _Block(d,	d.x[0:])

				75	 	 	 	 d.nx	=	0

				76	 	 	 }

				77	 	 	 p	=	p[n:]

				78	 	 }

				79	 	 n	:=	_Block(d,	p)

				80	 	 p	=	p[n:]

				81	 	 if	len(p)	>	0	{

				82	 	 	 d.nx	=	copy(d.x[:],	p)

				83	 	 }

				84	 	 return

				85	 }

				86	

				87	 func	(d0	*digest)	Sum(in	[]byte)	[]byte	{

				88	 	 //	Make	a	copy	of	d0	so	that	caller	can	keep	writing	and	summing.

				89	 	 d	:=	*d0

				90	

				91	 	 //	Padding.		Add	a	1	bit	and	0	bits	until	56	bytes	mod	64.

				92	 	 len	:=	d.len

				93	 	 var	tmp	[64]byte

				94	 	 tmp[0]	=	0x80

				95	 	 if	len%64	<	56	{

				96	 	 	 d.Write(tmp[0	:	56-len%64])

				97	 	 }	else	{

				98	 	 	 d.Write(tmp[0	:	64+56-len%64])

				99	 	 }

			100	

			101	 	 //	Length	in	bits.

			102	 	 len	<<=	3

			103	 	 for	i	:=	uint(0);	i	<	8;	i++	{

			104	 	 	 tmp[i]	=	byte(len	>>	(56	-	8*i))

			105	 	 }

			106	 	 d.Write(tmp[0:8])

			107	

			108	 	 if	d.nx	!=	0	{

			109	 	 	 panic("d.nx	!=	0")

			110	 	 }

			111	

			112	 	 var	digest	[Size]byte

			113	 	 for	i,	s	:=	range	d.h	{

			114	 	 	 digest[i*4]	=	byte(s	>>	24)

			115	 	 	 digest[i*4+1]	=	byte(s	>>	16)

			116	 	 	 digest[i*4+2]	=	byte(s	>>	8)

			117	 	 	 digest[i*4+3]	=	byte(s)

			118	 	 }

			119	

			120	 	 return	append(in,	digest[:]...)

			121	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/sha1/sha1block.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	SHA1	block	step.

					6	 //	In	its	own	file	so	that	a	faster	assembly	or	C	version

					7	 //	can	be	substituted	easily.

					8	

					9	 package	sha1

				10	

				11	 const	(

				12	 	 _K0	=	0x5A827999

				13	 	 _K1	=	0x6ED9EBA1

				14	 	 _K2	=	0x8F1BBCDC

				15	 	 _K3	=	0xCA62C1D6

				16)

				17	

				18	 func	_Block(dig	*digest,	p	[]byte)	int	{

				19	 	 var	w	[80]uint32

				20	

				21	 	 n	:=	0

				22	 	 h0,	h1,	h2,	h3,	h4	:=	dig.h[0],	dig.h[1],	dig.h[2],	dig.h[3],	dig.h[4]

				23	 	 for	len(p)	>=	_Chunk	{

				24	 	 	 //	Can	interlace	the	computation	of	w	with	the

				25	 	 	 //	rounds	below	if	needed	for	speed.

				26	 	 	 for	i	:=	0;	i	<	16;	i++	{

				27	 	 	 	 j	:=	i	*	4

				28	 	 	 	 w[i]	=	uint32(p[j])<<24	|	uint32(p[j+1])<<16	|	uint32(p[j+2])<<8	|	uint32(p[j+3])

				29	 	 	 }

				30	 	 	 for	i	:=	16;	i	<	80;	i++	{

				31	 	 	 	 tmp	:=	w[i-3]	^	w[i-8]	^	w[i-14]	^	w[i-16]

				32	 	 	 	 w[i]	=	tmp<<1	|	tmp>>(32-1)

				33	 	 	 }

				34	

				35	 	 	 a,	b,	c,	d,	e	:=	h0,	h1,	h2,	h3,	h4

				36	

				37	 	 	 //	Each	of	the	four	20-iteration	rounds

				38	 	 	 //	differs	only	in	the	computation	of	f	and

				39	 	 	 //	the	choice	of	K	(_K0,	_K1,	etc).

				40	 	 	 for	i	:=	0;	i	<	20;	i++	{

				41	 	 	 	 f	:=	b&c	|	(^b)&d

				42	 	 	 	 a5	:=	a<<5	|	a>>(32-5)

				43	 	 	 	 b30	:=	b<<30	|	b>>(32-30)

				44	 	 	 	 t	:=	a5	+	f	+	e	+	w[i]	+	_K0

				45	 	 	 	 a,	b,	c,	d,	e	=	t,	a,	b30,	c,	d

				46	 	 	 }

				47	 	 	 for	i	:=	20;	i	<	40;	i++	{

				48	 	 	 	 f	:=	b	^	c	^	d

				49	 	 	 	 a5	:=	a<<5	|	a>>(32-5)

				50	 	 	 	 b30	:=	b<<30	|	b>>(32-30)

				51	 	 	 	 t	:=	a5	+	f	+	e	+	w[i]	+	_K1

				52	 	 	 	 a,	b,	c,	d,	e	=	t,	a,	b30,	c,	d

				53	 	 	 }

				54	 	 	 for	i	:=	40;	i	<	60;	i++	{

				55	 	 	 	 f	:=	b&c	|	b&d	|	c&d

				56	 	 	 	 a5	:=	a<<5	|	a>>(32-5)

				57	 	 	 	 b30	:=	b<<30	|	b>>(32-30)

				58	 	 	 	 t	:=	a5	+	f	+	e	+	w[i]	+	_K2

				59	 	 	 	 a,	b,	c,	d,	e	=	t,	a,	b30,	c,	d

				60	 	 	 }

				61	 	 	 for	i	:=	60;	i	<	80;	i++	{

				62	 	 	 	 f	:=	b	^	c	^	d

				63	 	 	 	 a5	:=	a<<5	|	a>>(32-5)

				64	 	 	 	 b30	:=	b<<30	|	b>>(32-30)

				65	 	 	 	 t	:=	a5	+	f	+	e	+	w[i]	+	_K3

				66	 	 	 	 a,	b,	c,	d,	e	=	t,	a,	b30,	c,	d

				67	 	 	 }

				68	

				69	 	 	 h0	+=	a

				70	 	 	 h1	+=	b

				71	 	 	 h2	+=	c

				72	 	 	 h3	+=	d

				73	 	 	 h4	+=	e

				74	

				75	 	 	 p	=	p[_Chunk:]

				76	 	 	 n	+=	_Chunk

				77	 	 }

				78	

				79	 	 dig.h[0],	dig.h[1],	dig.h[2],	dig.h[3],	dig.h[4]	=	h0,	h1,	h2,	h3,	h4

				80	 	 return	n

				81	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/sha256/sha256.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	sha256	implements	the	SHA224	and	SHA256	hash	algorithms	as	defined

					6	 //	in	FIPS	180-2.

					7	 package	sha256

					8	

					9	 import	(

				10	 	 "crypto"

				11	 	 "hash"

				12)

				13	

				14	 func	init()	{

				15	 	 crypto.RegisterHash(crypto.SHA224,	New224)

				16	 	 crypto.RegisterHash(crypto.SHA256,	New)

				17	 }

				18	

				19	 //	The	size	of	a	SHA256	checksum	in	bytes.

				20	 const	Size	=	32

				21	

				22	 //	The	size	of	a	SHA224	checksum	in	bytes.

				23	 const	Size224	=	28

				24	

				25	 //	The	blocksize	of	SHA256	and	SHA224	in	bytes.

				26	 const	BlockSize	=	64

				27	

				28	 const	(

				29	 	 _Chunk					=	64

				30	 	 _Init0					=	0x6A09E667

				31	 	 _Init1					=	0xBB67AE85

				32	 	 _Init2					=	0x3C6EF372

				33	 	 _Init3					=	0xA54FF53A

				34	 	 _Init4					=	0x510E527F

				35	 	 _Init5					=	0x9B05688C

				36	 	 _Init6					=	0x1F83D9AB

				37	 	 _Init7					=	0x5BE0CD19

				38	 	 _Init0_224	=	0xC1059ED8

				39	 	 _Init1_224	=	0x367CD507

				40	 	 _Init2_224	=	0x3070DD17

				41	 	 _Init3_224	=	0xF70E5939

				42	 	 _Init4_224	=	0xFFC00B31

				43	 	 _Init5_224	=	0x68581511

				44	 	 _Init6_224	=	0x64F98FA7

				45	 	 _Init7_224	=	0xBEFA4FA4

				46)

				47	

				48	 //	digest	represents	the	partial	evaluation	of	a	checksum.

				49	 type	digest	struct	{

				50	 	 h					[8]uint32

				51	 	 x					[_Chunk]byte

				52	 	 nx				int

				53	 	 len			uint64

				54	 	 is224	bool	//	mark	if	this	digest	is	SHA-224

				55	 }

				56	

				57	 func	(d	*digest)	Reset()	{

				58	 	 if	!d.is224	{

				59	 	 	 d.h[0]	=	_Init0

				60	 	 	 d.h[1]	=	_Init1

				61	 	 	 d.h[2]	=	_Init2

				62	 	 	 d.h[3]	=	_Init3

				63	 	 	 d.h[4]	=	_Init4

				64	 	 	 d.h[5]	=	_Init5

				65	 	 	 d.h[6]	=	_Init6

				66	 	 	 d.h[7]	=	_Init7

				67	 	 }	else	{

				68	 	 	 d.h[0]	=	_Init0_224

				69	 	 	 d.h[1]	=	_Init1_224

				70	 	 	 d.h[2]	=	_Init2_224

				71	 	 	 d.h[3]	=	_Init3_224

				72	 	 	 d.h[4]	=	_Init4_224

				73	 	 	 d.h[5]	=	_Init5_224

				74	 	 	 d.h[6]	=	_Init6_224

				75	 	 	 d.h[7]	=	_Init7_224

				76	 	 }

				77	 	 d.nx	=	0

				78	 	 d.len	=	0

				79	 }

				80	

				81	 //	New	returns	a	new	hash.Hash	computing	the	SHA256	checksum.

				82	 func	New()	hash.Hash	{

				83	 	 d	:=	new(digest)

				84	 	 d.Reset()

				85	 	 return	d

				86	 }

				87	

				88	 //	New224	returns	a	new	hash.Hash	computing	the	SHA224	checksum.

				89	 func	New224()	hash.Hash	{

				90	 	 d	:=	new(digest)

				91	 	 d.is224	=	true

				92	 	 d.Reset()

				93	 	 return	d

				94	 }

				95	

				96	 func	(d	*digest)	Size()	int	{

				97	 	 if	!d.is224	{

				98	 	 	 return	Size

				99	 	 }

			100	 	 return	Size224

			101	 }

			102	

			103	 func	(d	*digest)	BlockSize()	int	{	return	BlockSize	}

			104	

			105	 func	(d	*digest)	Write(p	[]byte)	(nn	int,	err	error)	{

			106	 	 nn	=	len(p)

			107	 	 d.len	+=	uint64(nn)

			108	 	 if	d.nx	>	0	{

			109	 	 	 n	:=	len(p)

			110	 	 	 if	n	>	_Chunk-d.nx	{

			111	 	 	 	 n	=	_Chunk	-	d.nx

			112	 	 	 }

			113	 	 	 for	i	:=	0;	i	<	n;	i++	{

			114	 	 	 	 d.x[d.nx+i]	=	p[i]

			115	 	 	 }

			116	 	 	 d.nx	+=	n

			117	 	 	 if	d.nx	==	_Chunk	{

			118	 	 	 	 _Block(d,	d.x[0:])

			119	 	 	 	 d.nx	=	0

			120	 	 	 }

			121	 	 	 p	=	p[n:]

			122	 	 }

			123	 	 n	:=	_Block(d,	p)

			124	 	 p	=	p[n:]

			125	 	 if	len(p)	>	0	{

			126	 	 	 d.nx	=	copy(d.x[:],	p)

			127	 	 }

			128	 	 return

			129	 }

			130	

			131	 func	(d0	*digest)	Sum(in	[]byte)	[]byte	{

			132	 	 //	Make	a	copy	of	d0	so	that	caller	can	keep	writing	and	summing.

			133	 	 d	:=	*d0

			134	

			135	 	 //	Padding.		Add	a	1	bit	and	0	bits	until	56	bytes	mod	64.

			136	 	 len	:=	d.len

			137	 	 var	tmp	[64]byte

			138	 	 tmp[0]	=	0x80

			139	 	 if	len%64	<	56	{

			140	 	 	 d.Write(tmp[0	:	56-len%64])

			141	 	 }	else	{

			142	 	 	 d.Write(tmp[0	:	64+56-len%64])

			143	 	 }

			144	

			145	 	 //	Length	in	bits.

			146	 	 len	<<=	3

			147	 	 for	i	:=	uint(0);	i	<	8;	i++	{

			148	 	 	 tmp[i]	=	byte(len	>>	(56	-	8*i))

			149	 	 }

			150	 	 d.Write(tmp[0:8])

			151	

			152	 	 if	d.nx	!=	0	{

			153	 	 	 panic("d.nx	!=	0")

			154	 	 }

			155	

			156	 	 h	:=	d.h[:]

			157	 	 size	:=	Size

			158	 	 if	d.is224	{

			159	 	 	 h	=	d.h[:7]

			160	 	 	 size	=	Size224

			161	 	 }

			162	

			163	 	 var	digest	[Size]byte

			164	 	 for	i,	s	:=	range	h	{

			165	 	 	 digest[i*4]	=	byte(s	>>	24)

			166	 	 	 digest[i*4+1]	=	byte(s	>>	16)

			167	 	 	 digest[i*4+2]	=	byte(s	>>	8)

			168	 	 	 digest[i*4+3]	=	byte(s)

			169	 	 }

			170	

			171	 	 return	append(in,	digest[:size]...)

			172	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/sha256/sha256block.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	SHA256	block	step.

					6	 //	In	its	own	file	so	that	a	faster	assembly	or	C	version

					7	 //	can	be	substituted	easily.

					8	

					9	 package	sha256

				10	

				11	 var	_K	=	[]uint32{

				12	 	 0x428a2f98,

				13	 	 0x71374491,

				14	 	 0xb5c0fbcf,

				15	 	 0xe9b5dba5,

				16	 	 0x3956c25b,

				17	 	 0x59f111f1,

				18	 	 0x923f82a4,

				19	 	 0xab1c5ed5,

				20	 	 0xd807aa98,

				21	 	 0x12835b01,

				22	 	 0x243185be,

				23	 	 0x550c7dc3,

				24	 	 0x72be5d74,

				25	 	 0x80deb1fe,

				26	 	 0x9bdc06a7,

				27	 	 0xc19bf174,

				28	 	 0xe49b69c1,

				29	 	 0xefbe4786,

				30	 	 0x0fc19dc6,

				31	 	 0x240ca1cc,

				32	 	 0x2de92c6f,

				33	 	 0x4a7484aa,

				34	 	 0x5cb0a9dc,

				35	 	 0x76f988da,

				36	 	 0x983e5152,

				37	 	 0xa831c66d,

				38	 	 0xb00327c8,

				39	 	 0xbf597fc7,

				40	 	 0xc6e00bf3,

				41	 	 0xd5a79147,

				42	 	 0x06ca6351,

				43	 	 0x14292967,

				44	 	 0x27b70a85,

				45	 	 0x2e1b2138,

				46	 	 0x4d2c6dfc,

				47	 	 0x53380d13,

				48	 	 0x650a7354,

				49	 	 0x766a0abb,

				50	 	 0x81c2c92e,

				51	 	 0x92722c85,

				52	 	 0xa2bfe8a1,

				53	 	 0xa81a664b,

				54	 	 0xc24b8b70,

				55	 	 0xc76c51a3,

				56	 	 0xd192e819,

				57	 	 0xd6990624,

				58	 	 0xf40e3585,

				59	 	 0x106aa070,

				60	 	 0x19a4c116,

				61	 	 0x1e376c08,

				62	 	 0x2748774c,

				63	 	 0x34b0bcb5,

				64	 	 0x391c0cb3,

				65	 	 0x4ed8aa4a,

				66	 	 0x5b9cca4f,

				67	 	 0x682e6ff3,

				68	 	 0x748f82ee,

				69	 	 0x78a5636f,

				70	 	 0x84c87814,

				71	 	 0x8cc70208,

				72	 	 0x90befffa,

				73	 	 0xa4506ceb,

				74	 	 0xbef9a3f7,

				75	 	 0xc67178f2,

				76	 }

				77	

				78	 func	_Block(dig	*digest,	p	[]byte)	int	{

				79	 	 var	w	[64]uint32

				80	 	 n	:=	0

				81	 	 h0,	h1,	h2,	h3,	h4,	h5,	h6,	h7	:=	dig.h[0],	dig.h[1],	dig.h[2],	dig.h[3],	dig.h[4],	dig.h[5],	dig.h[6],	dig.h[7]

				82	 	 for	len(p)	>=	_Chunk	{

				83	 	 	 //	Can	interlace	the	computation	of	w	with	the

				84	 	 	 //	rounds	below	if	needed	for	speed.

				85	 	 	 for	i	:=	0;	i	<	16;	i++	{

				86	 	 	 	 j	:=	i	*	4

				87	 	 	 	 w[i]	=	uint32(p[j])<<24	|	uint32(p[j+1])<<16	|	uint32(p[j+2])<<8	|	uint32(p[j+3])

				88	 	 	 }

				89	 	 	 for	i	:=	16;	i	<	64;	i++	{

				90	 	 	 	 t1	:=	(w[i-2]>>17	|	w[i-2]<<(32-17))	^	(w[i-2]>>19	|	w[i-2]<<(32-19))	^	(w[i-2]	>>	10)

				91	

				92	 	 	 	 t2	:=	(w[i-15]>>7	|	w[i-15]<<(32-7))	^	(w[i-15]>>18	|	w[i-15]<<(32-18))	^	(w[i-15]	>>	3)

				93	

				94	 	 	 	 w[i]	=	t1	+	w[i-7]	+	t2	+	w[i-16]

				95	 	 	 }

				96	

				97	 	 	 a,	b,	c,	d,	e,	f,	g,	h	:=	h0,	h1,	h2,	h3,	h4,	h5,	h6,	h7

				98	

				99	 	 	 for	i	:=	0;	i	<	64;	i++	{

			100	 	 	 	 t1	:=	h	+	((e>>6	|	e<<(32-6))	^	(e>>11	|	e<<(32-11))	^	(e>>25	|	e<<(32-25)))	+	((e	&	f)	^	(^e	&	g))	+	_K[i]	+	w[i]

			101	

			102	 	 	 	 t2	:=	((a>>2	|	a<<(32-2))	^	(a>>13	|	a<<(32-13))	^	(a>>22	|	a<<(32-22)))	+	((a	&	b)	^	(a	&	c)	^	(b	&	c))

			103	

			104	 	 	 	 h	=	g

			105	 	 	 	 g	=	f

			106	 	 	 	 f	=	e

			107	 	 	 	 e	=	d	+	t1

			108	 	 	 	 d	=	c

			109	 	 	 	 c	=	b

			110	 	 	 	 b	=	a

			111	 	 	 	 a	=	t1	+	t2

			112	 	 	 }

			113	

			114	 	 	 h0	+=	a

			115	 	 	 h1	+=	b

			116	 	 	 h2	+=	c

			117	 	 	 h3	+=	d

			118	 	 	 h4	+=	e

			119	 	 	 h5	+=	f

			120	 	 	 h6	+=	g

			121	 	 	 h7	+=	h

			122	

			123	 	 	 p	=	p[_Chunk:]

			124	 	 	 n	+=	_Chunk

			125	 	 }

			126	

			127	 	 dig.h[0],	dig.h[1],	dig.h[2],	dig.h[3],	dig.h[4],	dig.h[5],	dig.h[6],	dig.h[7]	=	h0,	h1,	h2,	h3,	h4,	h5,	h6,	h7

			128	 	 return	n

			129	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/sha512/sha512.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	sha512	implements	the	SHA384	and	SHA512	hash	algorithms	as	defined

					6	 //	in	FIPS	180-2.

					7	 package	sha512

					8	

					9	 import	(

				10	 	 "crypto"

				11	 	 "hash"

				12)

				13	

				14	 func	init()	{

				15	 	 crypto.RegisterHash(crypto.SHA384,	New384)

				16	 	 crypto.RegisterHash(crypto.SHA512,	New)

				17	 }

				18	

				19	 //	The	size	of	a	SHA512	checksum	in	bytes.

				20	 const	Size	=	64

				21	

				22	 //	The	size	of	a	SHA384	checksum	in	bytes.

				23	 const	Size384	=	48

				24	

				25	 //	The	blocksize	of	SHA512	and	SHA384	in	bytes.

				26	 const	BlockSize	=	128

				27	

				28	 const	(

				29	 	 _Chunk					=	128

				30	 	 _Init0					=	0x6a09e667f3bcc908

				31	 	 _Init1					=	0xbb67ae8584caa73b

				32	 	 _Init2					=	0x3c6ef372fe94f82b

				33	 	 _Init3					=	0xa54ff53a5f1d36f1

				34	 	 _Init4					=	0x510e527fade682d1

				35	 	 _Init5					=	0x9b05688c2b3e6c1f

				36	 	 _Init6					=	0x1f83d9abfb41bd6b

				37	 	 _Init7					=	0x5be0cd19137e2179

				38	 	 _Init0_384	=	0xcbbb9d5dc1059ed8

				39	 	 _Init1_384	=	0x629a292a367cd507

				40	 	 _Init2_384	=	0x9159015a3070dd17

				41	 	 _Init3_384	=	0x152fecd8f70e5939

				42	 	 _Init4_384	=	0x67332667ffc00b31

				43	 	 _Init5_384	=	0x8eb44a8768581511

				44	 	 _Init6_384	=	0xdb0c2e0d64f98fa7

				45	 	 _Init7_384	=	0x47b5481dbefa4fa4

				46)

				47	

				48	 //	digest	represents	the	partial	evaluation	of	a	checksum.

				49	 type	digest	struct	{

				50	 	 h					[8]uint64

				51	 	 x					[_Chunk]byte

				52	 	 nx				int

				53	 	 len			uint64

				54	 	 is384	bool	//	mark	if	this	digest	is	SHA-384

				55	 }

				56	

				57	 func	(d	*digest)	Reset()	{

				58	 	 if	!d.is384	{

				59	 	 	 d.h[0]	=	_Init0

				60	 	 	 d.h[1]	=	_Init1

				61	 	 	 d.h[2]	=	_Init2

				62	 	 	 d.h[3]	=	_Init3

				63	 	 	 d.h[4]	=	_Init4

				64	 	 	 d.h[5]	=	_Init5

				65	 	 	 d.h[6]	=	_Init6

				66	 	 	 d.h[7]	=	_Init7

				67	 	 }	else	{

				68	 	 	 d.h[0]	=	_Init0_384

				69	 	 	 d.h[1]	=	_Init1_384

				70	 	 	 d.h[2]	=	_Init2_384

				71	 	 	 d.h[3]	=	_Init3_384

				72	 	 	 d.h[4]	=	_Init4_384

				73	 	 	 d.h[5]	=	_Init5_384

				74	 	 	 d.h[6]	=	_Init6_384

				75	 	 	 d.h[7]	=	_Init7_384

				76	 	 }

				77	 	 d.nx	=	0

				78	 	 d.len	=	0

				79	 }

				80	

				81	 //	New	returns	a	new	hash.Hash	computing	the	SHA512	checksum.

				82	 func	New()	hash.Hash	{

				83	 	 d	:=	new(digest)

				84	 	 d.Reset()

				85	 	 return	d

				86	 }

				87	

				88	 //	New384	returns	a	new	hash.Hash	computing	the	SHA384	checksum.

				89	 func	New384()	hash.Hash	{

				90	 	 d	:=	new(digest)

				91	 	 d.is384	=	true

				92	 	 d.Reset()

				93	 	 return	d

				94	 }

				95	

				96	 func	(d	*digest)	Size()	int	{

				97	 	 if	!d.is384	{

				98	 	 	 return	Size

				99	 	 }

			100	 	 return	Size384

			101	 }

			102	

			103	 func	(d	*digest)	BlockSize()	int	{	return	BlockSize	}

			104	

			105	 func	(d	*digest)	Write(p	[]byte)	(nn	int,	err	error)	{

			106	 	 nn	=	len(p)

			107	 	 d.len	+=	uint64(nn)

			108	 	 if	d.nx	>	0	{

			109	 	 	 n	:=	len(p)

			110	 	 	 if	n	>	_Chunk-d.nx	{

			111	 	 	 	 n	=	_Chunk	-	d.nx

			112	 	 	 }

			113	 	 	 for	i	:=	0;	i	<	n;	i++	{

			114	 	 	 	 d.x[d.nx+i]	=	p[i]

			115	 	 	 }

			116	 	 	 d.nx	+=	n

			117	 	 	 if	d.nx	==	_Chunk	{

			118	 	 	 	 _Block(d,	d.x[0:])

			119	 	 	 	 d.nx	=	0

			120	 	 	 }

			121	 	 	 p	=	p[n:]

			122	 	 }

			123	 	 n	:=	_Block(d,	p)

			124	 	 p	=	p[n:]

			125	 	 if	len(p)	>	0	{

			126	 	 	 d.nx	=	copy(d.x[:],	p)

			127	 	 }

			128	 	 return

			129	 }

			130	

			131	 func	(d0	*digest)	Sum(in	[]byte)	[]byte	{

			132	 	 //	Make	a	copy	of	d0	so	that	caller	can	keep	writing	and	summing.

			133	 	 d	:=	new(digest)

			134	 	 *d	=	*d0

			135	

			136	 	 //	Padding.		Add	a	1	bit	and	0	bits	until	112	bytes	mod	128.

			137	 	 len	:=	d.len

			138	 	 var	tmp	[128]byte

			139	 	 tmp[0]	=	0x80

			140	 	 if	len%128	<	112	{

			141	 	 	 d.Write(tmp[0	:	112-len%128])

			142	 	 }	else	{

			143	 	 	 d.Write(tmp[0	:	128+112-len%128])

			144	 	 }

			145	

			146	 	 //	Length	in	bits.

			147	 	 len	<<=	3

			148	 	 for	i	:=	uint(0);	i	<	16;	i++	{

			149	 	 	 tmp[i]	=	byte(len	>>	(120	-	8*i))

			150	 	 }

			151	 	 d.Write(tmp[0:16])

			152	

			153	 	 if	d.nx	!=	0	{

			154	 	 	 panic("d.nx	!=	0")

			155	 	 }

			156	

			157	 	 h	:=	d.h[:]

			158	 	 size	:=	Size

			159	 	 if	d.is384	{

			160	 	 	 h	=	d.h[:6]

			161	 	 	 size	=	Size384

			162	 	 }

			163	

			164	 	 var	digest	[Size]byte

			165	 	 for	i,	s	:=	range	h	{

			166	 	 	 digest[i*8]	=	byte(s	>>	56)

			167	 	 	 digest[i*8+1]	=	byte(s	>>	48)

			168	 	 	 digest[i*8+2]	=	byte(s	>>	40)

			169	 	 	 digest[i*8+3]	=	byte(s	>>	32)

			170	 	 	 digest[i*8+4]	=	byte(s	>>	24)

			171	 	 	 digest[i*8+5]	=	byte(s	>>	16)

			172	 	 	 digest[i*8+6]	=	byte(s	>>	8)

			173	 	 	 digest[i*8+7]	=	byte(s)

			174	 	 }

			175	

			176	 	 return	append(in,	digest[:size]...)

			177	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/sha512/sha512block.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	SHA512	block	step.

					6	 //	In	its	own	file	so	that	a	faster	assembly	or	C	version

					7	 //	can	be	substituted	easily.

					8	

					9	 package	sha512

				10	

				11	 var	_K	=	[]uint64{

				12	 	 0x428a2f98d728ae22,

				13	 	 0x7137449123ef65cd,

				14	 	 0xb5c0fbcfec4d3b2f,

				15	 	 0xe9b5dba58189dbbc,

				16	 	 0x3956c25bf348b538,

				17	 	 0x59f111f1b605d019,

				18	 	 0x923f82a4af194f9b,

				19	 	 0xab1c5ed5da6d8118,

				20	 	 0xd807aa98a3030242,

				21	 	 0x12835b0145706fbe,

				22	 	 0x243185be4ee4b28c,

				23	 	 0x550c7dc3d5ffb4e2,

				24	 	 0x72be5d74f27b896f,

				25	 	 0x80deb1fe3b1696b1,

				26	 	 0x9bdc06a725c71235,

				27	 	 0xc19bf174cf692694,

				28	 	 0xe49b69c19ef14ad2,

				29	 	 0xefbe4786384f25e3,

				30	 	 0x0fc19dc68b8cd5b5,

				31	 	 0x240ca1cc77ac9c65,

				32	 	 0x2de92c6f592b0275,

				33	 	 0x4a7484aa6ea6e483,

				34	 	 0x5cb0a9dcbd41fbd4,

				35	 	 0x76f988da831153b5,

				36	 	 0x983e5152ee66dfab,

				37	 	 0xa831c66d2db43210,

				38	 	 0xb00327c898fb213f,

				39	 	 0xbf597fc7beef0ee4,

				40	 	 0xc6e00bf33da88fc2,

				41	 	 0xd5a79147930aa725,

				42	 	 0x06ca6351e003826f,

				43	 	 0x142929670a0e6e70,

				44	 	 0x27b70a8546d22ffc,

				45	 	 0x2e1b21385c26c926,

				46	 	 0x4d2c6dfc5ac42aed,

				47	 	 0x53380d139d95b3df,

				48	 	 0x650a73548baf63de,

				49	 	 0x766a0abb3c77b2a8,

				50	 	 0x81c2c92e47edaee6,

				51	 	 0x92722c851482353b,

				52	 	 0xa2bfe8a14cf10364,

				53	 	 0xa81a664bbc423001,

				54	 	 0xc24b8b70d0f89791,

				55	 	 0xc76c51a30654be30,

				56	 	 0xd192e819d6ef5218,

				57	 	 0xd69906245565a910,

				58	 	 0xf40e35855771202a,

				59	 	 0x106aa07032bbd1b8,

				60	 	 0x19a4c116b8d2d0c8,

				61	 	 0x1e376c085141ab53,

				62	 	 0x2748774cdf8eeb99,

				63	 	 0x34b0bcb5e19b48a8,

				64	 	 0x391c0cb3c5c95a63,

				65	 	 0x4ed8aa4ae3418acb,

				66	 	 0x5b9cca4f7763e373,

				67	 	 0x682e6ff3d6b2b8a3,

				68	 	 0x748f82ee5defb2fc,

				69	 	 0x78a5636f43172f60,

				70	 	 0x84c87814a1f0ab72,

				71	 	 0x8cc702081a6439ec,

				72	 	 0x90befffa23631e28,

				73	 	 0xa4506cebde82bde9,

				74	 	 0xbef9a3f7b2c67915,

				75	 	 0xc67178f2e372532b,

				76	 	 0xca273eceea26619c,

				77	 	 0xd186b8c721c0c207,

				78	 	 0xeada7dd6cde0eb1e,

				79	 	 0xf57d4f7fee6ed178,

				80	 	 0x06f067aa72176fba,

				81	 	 0x0a637dc5a2c898a6,

				82	 	 0x113f9804bef90dae,

				83	 	 0x1b710b35131c471b,

				84	 	 0x28db77f523047d84,

				85	 	 0x32caab7b40c72493,

				86	 	 0x3c9ebe0a15c9bebc,

				87	 	 0x431d67c49c100d4c,

				88	 	 0x4cc5d4becb3e42b6,

				89	 	 0x597f299cfc657e2a,

				90	 	 0x5fcb6fab3ad6faec,

				91	 	 0x6c44198c4a475817,

				92	 }

				93	

				94	 func	_Block(dig	*digest,	p	[]byte)	int	{

				95	 	 var	w	[80]uint64

				96	 	 n	:=	0

				97	 	 h0,	h1,	h2,	h3,	h4,	h5,	h6,	h7	:=	dig.h[0],	dig.h[1],	dig.h[2],	dig.h[3],	dig.h[4],	dig.h[5],	dig.h[6],	dig.h[7]

				98	 	 for	len(p)	>=	_Chunk	{

				99	 	 	 for	i	:=	0;	i	<	16;	i++	{

			100	 	 	 	 j	:=	i	*	8

			101	 	 	 	 w[i]	=	uint64(p[j])<<56	|	uint64(p[j+1])<<48	|	uint64(p[j+2])<<40	|	uint64(p[j+3])<<32	|

			102	 	 	 	 	 uint64(p[j+4])<<24	|	uint64(p[j+5])<<16	|	uint64(p[j+6])<<8	|	uint64(p[j+7])

			103	 	 	 }

			104	 	 	 for	i	:=	16;	i	<	80;	i++	{

			105	 	 	 	 t1	:=	(w[i-2]>>19	|	w[i-2]<<(64-19))	^	(w[i-2]>>61	|	w[i-2]<<(64-61))	^	(w[i-2]	>>	6)

			106	

			107	 	 	 	 t2	:=	(w[i-15]>>1	|	w[i-15]<<(64-1))	^	(w[i-15]>>8	|	w[i-15]<<(64-8))	^	(w[i-15]	>>	7)

			108	

			109	 	 	 	 w[i]	=	t1	+	w[i-7]	+	t2	+	w[i-16]

			110	 	 	 }

			111	

			112	 	 	 a,	b,	c,	d,	e,	f,	g,	h	:=	h0,	h1,	h2,	h3,	h4,	h5,	h6,	h7

			113	

			114	 	 	 for	i	:=	0;	i	<	80;	i++	{

			115	 	 	 	 t1	:=	h	+	((e>>14	|	e<<(64-14))	^	(e>>18	|	e<<(64-18))	^	(e>>41	|	e<<(64-41)))	+	((e	&	f)	^	(^e	&	g))	+	_K[i]	+	w[i]

			116	

			117	 	 	 	 t2	:=	((a>>28	|	a<<(64-28))	^	(a>>34	|	a<<(64-34))	^	(a>>39	|	a<<(64-39)))	+	((a	&	b)	^	(a	&	c)	^	(b	&	c))

			118	

			119	 	 	 	 h	=	g

			120	 	 	 	 g	=	f

			121	 	 	 	 f	=	e

			122	 	 	 	 e	=	d	+	t1

			123	 	 	 	 d	=	c

			124	 	 	 	 c	=	b

			125	 	 	 	 b	=	a

			126	 	 	 	 a	=	t1	+	t2

			127	 	 	 }

			128	

			129	 	 	 h0	+=	a

			130	 	 	 h1	+=	b

			131	 	 	 h2	+=	c

			132	 	 	 h3	+=	d

			133	 	 	 h4	+=	e

			134	 	 	 h5	+=	f

			135	 	 	 h6	+=	g

			136	 	 	 h7	+=	h

			137	

			138	 	 	 p	=	p[_Chunk:]

			139	 	 	 n	+=	_Chunk

			140	 	 }

			141	

			142	 	 dig.h[0],	dig.h[1],	dig.h[2],	dig.h[3],	dig.h[4],	dig.h[5],	dig.h[6],	dig.h[7]	=	h0,	h1,	h2,	h3,	h4,	h5,	h6,	h7

			143	 	 return	n

			144	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/subtle/constant_time.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	subtle	implements	functions	that	are	often	useful	in	cryptographic

					6	 //	code	but	require	careful	thought	to	use	correctly.

					7	 package	subtle

					8	

					9	 //	ConstantTimeCompare	returns	1	iff	the	two	equal	length	slices,	x

				10	 //	and	y,	have	equal	contents.	The	time	taken	is	a	function	of	the	length	of

				11	 //	the	slices	and	is	independent	of	the	contents.

				12	 func	ConstantTimeCompare(x,	y	[]byte)	int	{

				13	 	 var	v	byte

				14	

				15	 	 for	i	:=	0;	i	<	len(x);	i++	{

				16	 	 	 v	|=	x[i]	^	y[i]

				17	 	 }

				18	

				19	 	 return	ConstantTimeByteEq(v,	0)

				20	 }

				21	

				22	 //	ConstantTimeSelect	returns	x	if	v	is	1	and	y	if	v	is	0.

				23	 //	Its	behavior	is	undefined	if	v	takes	any	other	value.

				24	 func	ConstantTimeSelect(v,	x,	y	int)	int	{	return	^(v-1)&x	|	(v-1)&y	}

				25	

				26	 //	ConstantTimeByteEq	returns	1	if	x	==	y	and	0	otherwise.

				27	 func	ConstantTimeByteEq(x,	y	uint8)	int	{

				28	 	 z	:=	^(x	^	y)

				29	 	 z	&=	z	>>	4

				30	 	 z	&=	z	>>	2

				31	 	 z	&=	z	>>	1

				32	

				33	 	 return	int(z)

				34	 }

				35	

				36	 //	ConstantTimeEq	returns	1	if	x	==	y	and	0	otherwise.

				37	 func	ConstantTimeEq(x,	y	int32)	int	{

				38	 	 z	:=	^(x	^	y)

				39	 	 z	&=	z	>>	16

				40	 	 z	&=	z	>>	8

				41	 	 z	&=	z	>>	4

				42	 	 z	&=	z	>>	2

				43	 	 z	&=	z	>>	1

				44	

				45	 	 return	int(z	&	1)

				46	 }

				47	

				48	 //	ConstantTimeCopy	copies	the	contents	of	y	into	x	iff	v	==	1.	If	v	==	0,	x	is	left	unchanged.

				49	 //	Its	behavior	is	undefined	if	v	takes	any	other	value.

				50	 func	ConstantTimeCopy(v	int,	x,	y	[]byte)	{

				51	 	 xmask	:=	byte(v	-	1)

				52	 	 ymask	:=	byte(^(v	-	1))

				53	 	 for	i	:=	0;	i	<	len(x);	i++	{

				54	 	 	 x[i]	=	x[i]&xmask	|	y[i]&ymask

				55	 	 }

				56	 	 return

				57	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/crypto/tls/alert.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	tls

					6	

					7	 import	"strconv"

					8	

					9	 type	alert	uint8

				10	

				11	 const	(

				12	 	 //	alert	level

				13	 	 alertLevelWarning	=	1

				14	 	 alertLevelError			=	2

				15)

				16	

				17	 const	(

				18	 	 alertCloseNotify												alert	=	0

				19	 	 alertUnexpectedMessage						alert	=	10

				20	 	 alertBadRecordMAC											alert	=	20

				21	 	 alertDecryptionFailed							alert	=	21

				22	 	 alertRecordOverflow									alert	=	22

				23	 	 alertDecompressionFailure			alert	=	30

				24	 	 alertHandshakeFailure							alert	=	40

				25	 	 alertBadCertificate									alert	=	42

				26	 	 alertUnsupportedCertificate	alert	=	43

				27	 	 alertCertificateRevoked					alert	=	44

				28	 	 alertCertificateExpired					alert	=	45

				29	 	 alertCertificateUnknown					alert	=	46

				30	 	 alertIllegalParameter							alert	=	47

				31	 	 alertUnknownCA														alert	=	48

				32	 	 alertAccessDenied											alert	=	49

				33	 	 alertDecodeError												alert	=	50

				34	 	 alertDecryptError											alert	=	51

				35	 	 alertProtocolVersion								alert	=	70

				36	 	 alertInsufficientSecurity			alert	=	71

				37	 	 alertInternalError										alert	=	80

				38	 	 alertUserCanceled											alert	=	90

				39	 	 alertNoRenegotiation								alert	=	100

				40)

				41	

				42	 var	alertText	=	map[alert]string{

				43	 	 alertCloseNotify:												"close	notify",

				44	 	 alertUnexpectedMessage:						"unexpected	message",

				45	 	 alertBadRecordMAC:											"bad	record	MAC",

				46	 	 alertDecryptionFailed:							"decryption	failed",

				47	 	 alertRecordOverflow:									"record	overflow",

				48	 	 alertDecompressionFailure:			"decompression	failure",

				49	 	 alertHandshakeFailure:							"handshake	failure",

				50	 	 alertBadCertificate:									"bad	certificate",

				51	 	 alertUnsupportedCertificate:	"unsupported	certificate",

				52	 	 alertCertificateRevoked:					"revoked	certificate",

				53	 	 alertCertificateExpired:					"expired	certificate",

				54	 	 alertCertificateUnknown:					"unknown	certificate",

				55	 	 alertIllegalParameter:							"illegal	parameter",

				56	 	 alertUnknownCA:														"unknown	certificate	authority",

				57	 	 alertAccessDenied:											"access	denied",

				58	 	 alertDecodeError:												"error	decoding	message",

				59	 	 alertDecryptError:											"error	decrypting	message",

				60	 	 alertProtocolVersion:								"protocol	version	not	supported",

				61	 	 alertInsufficientSecurity:			"insufficient	security	level",

				62	 	 alertInternalError:										"internal	error",

				63	 	 alertUserCanceled:											"user	canceled",

				64	 	 alertNoRenegotiation:								"no	renegotiation",

				65	 }

				66	

				67	 func	(e	alert)	String()	string	{

				68	 	 s,	ok	:=	alertText[e]

				69	 	 if	ok	{

				70	 	 	 return	s

				71	 	 }

				72	 	 return	"alert("	+	strconv.Itoa(int(e))	+	")"

				73	 }

				74	

				75	 func	(e	alert)	Error()	string	{

				76	 	 return	e.String()

				77	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/tls/cipher_suites.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	tls

					6	

					7	 import	(

					8	 	 "crypto/aes"

					9	 	 "crypto/cipher"

				10	 	 "crypto/des"

				11	 	 "crypto/hmac"

				12	 	 "crypto/rc4"

				13	 	 "crypto/sha1"

				14	 	 "crypto/x509"

				15	 	 "hash"

				16)

				17	

				18	 //	a	keyAgreement	implements	the	client	and	server	side	of	a	TLS	key	agreement

				19	 //	protocol	by	generating	and	processing	key	exchange	messages.

				20	 type	keyAgreement	interface	{

				21	 	 //	On	the	server	side,	the	first	two	methods	are	called	in	order.

				22	

				23	 	 //	In	the	case	that	the	key	agreement	protocol	doesn't	use	a

				24	 	 //	ServerKeyExchange	message,	generateServerKeyExchange	can	return	nil,

				25	 	 //	nil.

				26	 	 generateServerKeyExchange(*Config,	*Certificate,	*clientHelloMsg,	*serverHelloMsg)	(*serverKeyExchangeMsg,	error)

				27	 	 processClientKeyExchange(*Config,	*Certificate,	*clientKeyExchangeMsg,	uint16)	([]byte,	error)

				28	

				29	 	 //	On	the	client	side,	the	next	two	methods	are	called	in	order.

				30	

				31	 	 //	This	method	may	not	be	called	if	the	server	doesn't	send	a

				32	 	 //	ServerKeyExchange	message.

				33	 	 processServerKeyExchange(*Config,	*clientHelloMsg,	*serverHelloMsg,	*x509.Certificate,	*serverKeyExchangeMsg)	error

				34	 	 generateClientKeyExchange(*Config,	*clientHelloMsg,	*x509.Certificate)	([]byte,	*clientKeyExchangeMsg,	error)

				35	 }

				36	

				37	 //	A	cipherSuite	is	a	specific	combination	of	key	agreement,	cipher	and	MAC

				38	 //	function.	All	cipher	suites	currently	assume	RSA	key	agreement.

				39	 type	cipherSuite	struct	{

				40	 	 id	uint16

				41	 	 //	the	lengths,	in	bytes,	of	the	key	material	needed	for	each	component.

				42	 	 keyLen	int

				43	 	 macLen	int

				44	 	 ivLen		int

				45	 	 ka					func()	keyAgreement

				46	 	 //	If	elliptic	is	set,	a	server	will	only	consider	this	ciphersuite	if

				47	 	 //	the	ClientHello	indicated	that	the	client	supports	an	elliptic	curve

				48	 	 //	and	point	format	that	we	can	handle.

				49	 	 elliptic	bool

				50	 	 cipher			func(key,	iv	[]byte,	isRead	bool)	interface{}

				51	 	 mac						func(version	uint16,	macKey	[]byte)	macFunction

				52	 }

				53	

				54	 var	cipherSuites	=	[]*cipherSuite{

				55	 	 {TLS_RSA_WITH_RC4_128_SHA,	16,	20,	0,	rsaKA,	false,	cipherRC4,	macSHA1},

				56	 	 {TLS_RSA_WITH_3DES_EDE_CBC_SHA,	24,	20,	8,	rsaKA,	false,	cipher3DES,	macSHA1},

				57	 	 {TLS_RSA_WITH_AES_128_CBC_SHA,	16,	20,	16,	rsaKA,	false,	cipherAES,	macSHA1},

				58	 	 {TLS_ECDHE_RSA_WITH_RC4_128_SHA,	16,	20,	0,	ecdheRSAKA,	true,	cipherRC4,	macSHA1},

				59	 	 {TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,	24,	20,	8,	ecdheRSAKA,	true,	cipher3DES,	macSHA1},

				60	 	 {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,	16,	20,	16,	ecdheRSAKA,	true,	cipherAES,	macSHA1},

				61	 }

				62	

				63	 func	cipherRC4(key,	iv	[]byte,	isRead	bool)	interface{}	{

				64	 	 cipher,	_	:=	rc4.NewCipher(key)

				65	 	 return	cipher

				66	 }

				67	

				68	 func	cipher3DES(key,	iv	[]byte,	isRead	bool)	interface{}	{

				69	 	 block,	_	:=	des.NewTripleDESCipher(key)

				70	 	 if	isRead	{

				71	 	 	 return	cipher.NewCBCDecrypter(block,	iv)

				72	 	 }

				73	 	 return	cipher.NewCBCEncrypter(block,	iv)

				74	 }

				75	

				76	 func	cipherAES(key,	iv	[]byte,	isRead	bool)	interface{}	{

				77	 	 block,	_	:=	aes.NewCipher(key)

				78	 	 if	isRead	{

				79	 	 	 return	cipher.NewCBCDecrypter(block,	iv)

				80	 	 }

				81	 	 return	cipher.NewCBCEncrypter(block,	iv)

				82	 }

				83	

				84	 //	macSHA1	returns	a	macFunction	for	the	given	protocol	version.

				85	 func	macSHA1(version	uint16,	key	[]byte)	macFunction	{

				86	 	 if	version	==	versionSSL30	{

				87	 	 	 mac	:=	ssl30MAC{

				88	 	 	 	 h:			sha1.New(),

				89	 	 	 	 key:	make([]byte,	len(key)),

				90	 	 	 }

				91	 	 	 copy(mac.key,	key)

				92	 	 	 return	mac

				93	 	 }

				94	 	 return	tls10MAC{hmac.New(sha1.New,	key)}

				95	 }

				96	

				97	 type	macFunction	interface	{

				98	 	 Size()	int

				99	 	 MAC(digestBuf,	seq,	data	[]byte)	[]byte

			100	 }

			101	

			102	 //	ssl30MAC	implements	the	SSLv3	MAC	function,	as	defined	in

			103	 //	www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt	section	5.2.3.1

			104	 type	ssl30MAC	struct	{

			105	 	 h			hash.Hash

			106	 	 key	[]byte

			107	 }

			108	

			109	 func	(s	ssl30MAC)	Size()	int	{

			110	 	 return	s.h.Size()

			111	 }

			112	

			113	 var	ssl30Pad1	=	[48]byte{0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36,	0x36}

			114	

			115	 var	ssl30Pad2	=	[48]byte{0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c,	0x5c}

			116	

			117	 func	(s	ssl30MAC)	MAC(digestBuf,	seq,	record	[]byte)	[]byte	{

			118	 	 padLength	:=	48

			119	 	 if	s.h.Size()	==	20	{

			120	 	 	 padLength	=	40

			121	 	 }

			122	

			123	 	 s.h.Reset()

			124	 	 s.h.Write(s.key)

			125	 	 s.h.Write(ssl30Pad1[:padLength])

			126	 	 s.h.Write(seq)

			127	 	 s.h.Write(record[:1])

			128	 	 s.h.Write(record[3:5])

			129	 	 s.h.Write(record[recordHeaderLen:])

			130	 	 digestBuf	=	s.h.Sum(digestBuf[:0])

			131	

			132	 	 s.h.Reset()

			133	 	 s.h.Write(s.key)

			134	 	 s.h.Write(ssl30Pad2[:padLength])

			135	 	 s.h.Write(digestBuf)

			136	 	 return	s.h.Sum(digestBuf[:0])

			137	 }

			138	

			139	 //	tls10MAC	implements	the	TLS	1.0	MAC	function.	RFC	2246,	section	6.2.3.

			140	 type	tls10MAC	struct	{

			141	 	 h	hash.Hash

			142	 }

			143	

			144	 func	(s	tls10MAC)	Size()	int	{

			145	 	 return	s.h.Size()

			146	 }

			147	

			148	 func	(s	tls10MAC)	MAC(digestBuf,	seq,	record	[]byte)	[]byte	{

			149	 	 s.h.Reset()

			150	 	 s.h.Write(seq)

			151	 	 s.h.Write(record)

			152	 	 return	s.h.Sum(digestBuf[:0])

			153	 }

			154	

			155	 func	rsaKA()	keyAgreement	{

			156	 	 return	rsaKeyAgreement{}

			157	 }

			158	

			159	 func	ecdheRSAKA()	keyAgreement	{

			160	 	 return	new(ecdheRSAKeyAgreement)

			161	 }

			162	

			163	 //	mutualCipherSuite	returns	a	cipherSuite	given	a	list	of	supported

			164	 //	ciphersuites	and	the	id	requested	by	the	peer.

			165	 func	mutualCipherSuite(have	[]uint16,	want	uint16)	*cipherSuite	{

			166	 	 for	_,	id	:=	range	have	{

			167	 	 	 if	id	==	want	{

			168	 	 	 	 for	_,	suite	:=	range	cipherSuites	{

			169	 	 	 	 	 if	suite.id	==	want	{

			170	 	 	 	 	 	 return	suite

			171	 	 	 	 	 }

			172	 	 	 	 }

			173	 	 	 	 return	nil

			174	 	 	 }

			175	 	 }

			176	 	 return	nil

			177	 }

			178	

			179	 //	A	list	of	the	possible	cipher	suite	ids.	Taken	from

			180	 //	http://www.iana.org/assignments/tls-parameters/tls-parameters.xml

			181	 const	(

			182	 	 TLS_RSA_WITH_RC4_128_SHA												uint16	=	0x0005

			183	 	 TLS_RSA_WITH_3DES_EDE_CBC_SHA							uint16	=	0x000a

			184	 	 TLS_RSA_WITH_AES_128_CBC_SHA								uint16	=	0x002f

			185	 	 TLS_ECDHE_RSA_WITH_RC4_128_SHA						uint16	=	0xc011

			186	 	 TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA	uint16	=	0xc012

			187	 	 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA		uint16	=	0xc013

			188)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/tls/common.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	tls

					6	

					7	 import	(

					8	 	 "crypto"

					9	 	 "crypto/rand"

				10	 	 "crypto/x509"

				11	 	 "io"

				12	 	 "strings"

				13	 	 "sync"

				14	 	 "time"

				15)

				16	

				17	 const	(

				18	 	 maxPlaintext				=	16384								//	maximum	plaintext	payload	length

				19	 	 maxCiphertext			=	16384	+	2048	//	maximum	ciphertext	payload	length

				20	 	 recordHeaderLen	=	5												//	record	header	length

				21	 	 maxHandshake				=	65536								//	maximum	handshake	we	support	(protocol	max	is	16	MB)

				22	

				23	 	 versionSSL30	=	0x0300

				24	 	 versionTLS10	=	0x0301

				25	

				26	 	 minVersion	=	versionSSL30

				27	 	 maxVersion	=	versionTLS10

				28)

				29	

				30	 //	TLS	record	types.

				31	 type	recordType	uint8

				32	

				33	 const	(

				34	 	 recordTypeChangeCipherSpec	recordType	=	20

				35	 	 recordTypeAlert												recordType	=	21

				36	 	 recordTypeHandshake								recordType	=	22

				37	 	 recordTypeApplicationData		recordType	=	23

				38)

				39	

				40	 //	TLS	handshake	message	types.

				41	 const	(

				42	 	 typeClientHello								uint8	=	1

				43	 	 typeServerHello								uint8	=	2

				44	 	 typeCertificate								uint8	=	11

				45	 	 typeServerKeyExchange		uint8	=	12

				46	 	 typeCertificateRequest	uint8	=	13

				47	 	 typeServerHelloDone				uint8	=	14

				48	 	 typeCertificateVerify		uint8	=	15

				49	 	 typeClientKeyExchange		uint8	=	16

				50	 	 typeFinished											uint8	=	20

				51	 	 typeCertificateStatus		uint8	=	22

				52	 	 typeNextProtocol							uint8	=	67	//	Not	IANA	assigned

				53)

				54	

				55	 //	TLS	compression	types.

				56	 const	(

				57	 	 compressionNone	uint8	=	0

				58)

				59	

				60	 //	TLS	extension	numbers

				61	 var	(

				62	 	 extensionServerName						uint16	=	0

				63	 	 extensionStatusRequest			uint16	=	5

				64	 	 extensionSupportedCurves	uint16	=	10

				65	 	 extensionSupportedPoints	uint16	=	11

				66	 	 extensionNextProtoNeg				uint16	=	13172	//	not	IANA	assigned

				67)

				68	

				69	 //	TLS	Elliptic	Curves

				70	 //	http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8

				71	 var	(

				72	 	 curveP256	uint16	=	23

				73	 	 curveP384	uint16	=	24

				74	 	 curveP521	uint16	=	25

				75)

				76	

				77	 //	TLS	Elliptic	Curve	Point	Formats

				78	 //	http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-9

				79	 var	(

				80	 	 pointFormatUncompressed	uint8	=	0

				81)

				82	

				83	 //	TLS	CertificateStatusType	(RFC	3546)

				84	 const	(

				85	 	 statusTypeOCSP	uint8	=	1

				86)

				87	

				88	 //	Certificate	types	(for	certificateRequestMsg)

				89	 const	(

				90	 	 certTypeRSASign				=	1	//	A	certificate	containing	an	RSA	key

				91	 	 certTypeDSSSign				=	2	//	A	certificate	containing	a	DSA	key

				92	 	 certTypeRSAFixedDH	=	3	//	A	certificate	containing	a	static	DH	key

				93	 	 certTypeDSSFixedDH	=	4	//	A	certificate	containing	a	static	DH	key

				94	 	 //	Rest	of	these	are	reserved	by	the	TLS	spec

				95)

				96	

				97	 //	ConnectionState	records	basic	TLS	details	about	the	connection.

				98	 type	ConnectionState	struct	{

				99	 	 HandshakeComplete										bool

			100	 	 CipherSuite																uint16

			101	 	 NegotiatedProtocol									string

			102	 	 NegotiatedProtocolIsMutual	bool

			103	

			104	 	 //	ServerName	contains	the	server	name	indicated	by	the	client,	if	any.

			105	 	 //	(Only	valid	for	server	connections.)

			106	 	 ServerName	string

			107	

			108	 	 //	the	certificate	chain	that	was	presented	by	the	other	side

			109	 	 PeerCertificates	[]*x509.Certificate

			110	 	 //	the	verified	certificate	chains	built	from	PeerCertificates.

			111	 	 VerifiedChains	[][]*x509.Certificate

			112	 }

			113	

			114	 //	ClientAuthType	declares	the	policy	the	server	will	follow	for

			115	 //	TLS	Client	Authentication.

			116	 type	ClientAuthType	int

			117	

			118	 const	(

			119	 	 NoClientCert	ClientAuthType	=	iota

			120	 	 RequestClientCert

			121	 	 RequireAnyClientCert

			122	 	 VerifyClientCertIfGiven

			123	 	 RequireAndVerifyClientCert

			124)

			125	

			126	 //	A	Config	structure	is	used	to	configure	a	TLS	client	or	server.	After	one

			127	 //	has	been	passed	to	a	TLS	function	it	must	not	be	modified.

			128	 type	Config	struct	{

			129	 	 //	Rand	provides	the	source	of	entropy	for	nonces	and	RSA	blinding.

			130	 	 //	If	Rand	is	nil,	TLS	uses	the	cryptographic	random	reader	in	package

			131	 	 //	crypto/rand.

			132	 	 Rand	io.Reader

			133	

			134	 	 //	Time	returns	the	current	time	as	the	number	of	seconds	since	the	epoch.

			135	 	 //	If	Time	is	nil,	TLS	uses	time.Now.

			136	 	 Time	func()	time.Time

			137	

			138	 	 //	Certificates	contains	one	or	more	certificate	chains

			139	 	 //	to	present	to	the	other	side	of	the	connection.

			140	 	 //	Server	configurations	must	include	at	least	one	certificate.

			141	 	 Certificates	[]Certificate

			142	

			143	 	 //	NameToCertificate	maps	from	a	certificate	name	to	an	element	of

			144	 	 //	Certificates.	Note	that	a	certificate	name	can	be	of	the	form

			145	 	 //	'*.example.com'	and	so	doesn't	have	to	be	a	domain	name	as	such.

			146	 	 //	See	Config.BuildNameToCertificate

			147	 	 //	The	nil	value	causes	the	first	element	of	Certificates	to	be	used

			148	 	 //	for	all	connections.

			149	 	 NameToCertificate	map[string]*Certificate

			150	

			151	 	 //	RootCAs	defines	the	set	of	root	certificate	authorities

			152	 	 //	that	clients	use	when	verifying	server	certificates.

			153	 	 //	If	RootCAs	is	nil,	TLS	uses	the	host's	root	CA	set.

			154	 	 RootCAs	*x509.CertPool

			155	

			156	 	 //	NextProtos	is	a	list	of	supported,	application	level	protocols.

			157	 	 NextProtos	[]string

			158	

			159	 	 //	ServerName	is	included	in	the	client's	handshake	to	support	virtual

			160	 	 //	hosting.

			161	 	 ServerName	string

			162	

			163	 	 //	ClientAuth	determines	the	server's	policy	for

			164	 	 //	TLS	Client	Authentication.	The	default	is	NoClientCert.

			165	 	 ClientAuth	ClientAuthType

			166	

			167	 	 //	ClientCAs	defines	the	set	of	root	certificate	authorities

			168	 	 //	that	servers	use	if	required	to	verify	a	client	certificate

			169	 	 //	by	the	policy	in	ClientAuth.

			170	 	 ClientCAs	*x509.CertPool

			171	

			172	 	 //	InsecureSkipVerify	controls	whether	a	client	verifies	the

			173	 	 //	server's	certificate	chain	and	host	name.

			174	 	 //	If	InsecureSkipVerify	is	true,	TLS	accepts	any	certificate

			175	 	 //	presented	by	the	server	and	any	host	name	in	that	certificate.

			176	 	 //	In	this	mode,	TLS	is	susceptible	to	man-in-the-middle	attacks.

			177	 	 //	This	should	be	used	only	for	testing.

			178	 	 InsecureSkipVerify	bool

			179	

			180	 	 //	CipherSuites	is	a	list	of	supported	cipher	suites.	If	CipherSuites

			181	 	 //	is	nil,	TLS	uses	a	list	of	suites	supported	by	the	implementation.

			182	 	 CipherSuites	[]uint16

			183	 }

			184	

			185	 func	(c	*Config)	rand()	io.Reader	{

			186	 	 r	:=	c.Rand

			187	 	 if	r	==	nil	{

			188	 	 	 return	rand.Reader

			189	 	 }

			190	 	 return	r

			191	 }

			192	

			193	 func	(c	*Config)	time()	time.Time	{

			194	 	 t	:=	c.Time

			195	 	 if	t	==	nil	{

			196	 	 	 t	=	time.Now

			197	 	 }

			198	 	 return	t()

			199	 }

			200	

			201	 func	(c	*Config)	cipherSuites()	[]uint16	{

			202	 	 s	:=	c.CipherSuites

			203	 	 if	s	==	nil	{

			204	 	 	 s	=	defaultCipherSuites()

			205	 	 }

			206	 	 return	s

			207	 }

			208	

			209	 //	getCertificateForName	returns	the	best	certificate	for	the	given	name,

			210	 //	defaulting	to	the	first	element	of	c.Certificates	if	there	are	no	good

			211	 //	options.

			212	 func	(c	*Config)	getCertificateForName(name	string)	*Certificate	{

			213	 	 if	len(c.Certificates)	==	1	||	c.NameToCertificate	==	nil	{

			214	 	 	 //	There's	only	one	choice,	so	no	point	doing	any	work.

			215	 	 	 return	&c.Certificates[0]

			216	 	 }

			217	

			218	 	 name	=	strings.ToLower(name)

			219	 	 for	len(name)	>	0	&&	name[len(name)-1]	==	'.'	{

			220	 	 	 name	=	name[:len(name)-1]

			221	 	 }

			222	

			223	 	 if	cert,	ok	:=	c.NameToCertificate[name];	ok	{

			224	 	 	 return	cert

			225	 	 }

			226	

			227	 	 //	try	replacing	labels	in	the	name	with	wildcards	until	we	get	a

			228	 	 //	match.

			229	 	 labels	:=	strings.Split(name,	".")

			230	 	 for	i	:=	range	labels	{

			231	 	 	 labels[i]	=	"*"

			232	 	 	 candidate	:=	strings.Join(labels,	".")

			233	 	 	 if	cert,	ok	:=	c.NameToCertificate[candidate];	ok	{

			234	 	 	 	 return	cert

			235	 	 	 }

			236	 	 }

			237	

			238	 	 //	If	nothing	matches,	return	the	first	certificate.

			239	 	 return	&c.Certificates[0]

			240	 }

			241	

			242	 //	BuildNameToCertificate	parses	c.Certificates	and	builds	c.NameToCertificate

			243	 //	from	the	CommonName	and	SubjectAlternateName	fields	of	each	of	the	leaf

			244	 //	certificates.

			245	 func	(c	*Config)	BuildNameToCertificate()	{

			246	 	 c.NameToCertificate	=	make(map[string]*Certificate)

			247	 	 for	i	:=	range	c.Certificates	{

			248	 	 	 cert	:=	&c.Certificates[i]

			249	 	 	 x509Cert,	err	:=	x509.ParseCertificate(cert.Certificate[0])

			250	 	 	 if	err	!=	nil	{

			251	 	 	 	 continue

			252	 	 	 }

			253	 	 	 if	len(x509Cert.Subject.CommonName)	>	0	{

			254	 	 	 	 c.NameToCertificate[x509Cert.Subject.CommonName]	=	cert

			255	 	 	 }

			256	 	 	 for	_,	san	:=	range	x509Cert.DNSNames	{

			257	 	 	 	 c.NameToCertificate[san]	=	cert

			258	 	 	 }

			259	 	 }

			260	 }

			261	

			262	 //	A	Certificate	is	a	chain	of	one	or	more	certificates,	leaf	first.

			263	 type	Certificate	struct	{

			264	 	 Certificate	[][]byte

			265	 	 PrivateKey		crypto.PrivateKey	//	supported	types:	*rsa.PrivateKey

			266	 	 //	OCSPStaple	contains	an	optional	OCSP	response	which	will	be	served

			267	 	 //	to	clients	that	request	it.

			268	 	 OCSPStaple	[]byte

			269	 	 //	Leaf	is	the	parsed	form	of	the	leaf	certificate,	which	may	be

			270	 	 //	initialized	using	x509.ParseCertificate	to	reduce	per-handshake

			271	 	 //	processing	for	TLS	clients	doing	client	authentication.	If	nil,	the

			272	 	 //	leaf	certificate	will	be	parsed	as	needed.

			273	 	 Leaf	*x509.Certificate

			274	 }

			275	

			276	 //	A	TLS	record.

			277	 type	record	struct	{

			278	 	 contentType		recordType

			279	 	 major,	minor	uint8

			280	 	 payload						[]byte

			281	 }

			282	

			283	 type	handshakeMessage	interface	{

			284	 	 marshal()	[]byte

			285	 	 unmarshal([]byte)	bool

			286	 }

			287	

			288	 //	mutualVersion	returns	the	protocol	version	to	use	given	the	advertised

			289	 //	version	of	the	peer.

			290	 func	mutualVersion(vers	uint16)	(uint16,	bool)	{

			291	 	 if	vers	<	minVersion	{

			292	 	 	 return	0,	false

			293	 	 }

			294	 	 if	vers	>	maxVersion	{

			295	 	 	 vers	=	maxVersion

			296	 	 }

			297	 	 return	vers,	true

			298	 }

			299	

			300	 var	emptyConfig	Config

			301	

			302	 func	defaultConfig()	*Config	{

			303	 	 return	&emptyConfig

			304	 }

			305	

			306	 var	(

			307	 	 once																			sync.Once

			308	 	 varDefaultCipherSuites	[]uint16

			309)

			310	

			311	 func	defaultCipherSuites()	[]uint16	{

			312	 	 once.Do(initDefaultCipherSuites)

			313	 	 return	varDefaultCipherSuites

			314	 }

			315	

			316	 func	initDefaultCipherSuites()	{

			317	 	 varDefaultCipherSuites	=	make([]uint16,	len(cipherSuites))

			318	 	 for	i,	suite	:=	range	cipherSuites	{

			319	 	 	 varDefaultCipherSuites[i]	=	suite.id

			320	 	 }

			321	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/crypto/tls/conn.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	TLS	low	level	connection	and	record	layer

					6	

					7	 package	tls

					8	

					9	 import	(

				10	 	 "bytes"

				11	 	 "crypto/cipher"

				12	 	 "crypto/subtle"

				13	 	 "crypto/x509"

				14	 	 "errors"

				15	 	 "io"

				16	 	 "net"

				17	 	 "sync"

				18	 	 "time"

				19)

				20	

				21	 //	A	Conn	represents	a	secured	connection.

				22	 //	It	implements	the	net.Conn	interface.

				23	 type	Conn	struct	{

				24	 	 //	constant

				25	 	 conn					net.Conn

				26	 	 isClient	bool

				27	

				28	 	 //	constant	after	handshake;	protected	by	handshakeMutex

				29	 	 handshakeMutex				sync.Mutex	//	handshakeMutex	<	in.Mutex,	out.Mutex,	errMutex

				30	 	 vers														uint16					//	TLS	version

				31	 	 haveVers										bool							//	version	has	been	negotiated

				32	 	 config												*Config				//	configuration	passed	to	constructor

				33	 	 handshakeComplete	bool

				34	 	 cipherSuite							uint16

				35	 	 ocspResponse						[]byte	//	stapled	OCSP	response

				36	 	 peerCertificates		[]*x509.Certificate

				37	 	 //	verifiedChains	contains	the	certificate	chains	that	we	built,	as

				38	 	 //	opposed	to	the	ones	presented	by	the	server.

				39	 	 verifiedChains	[][]*x509.Certificate

				40	 	 //	serverName	contains	the	server	name	indicated	by	the	client,	if	any.

				41	 	 serverName	string

				42	

				43	 	 clientProtocol									string

				44	 	 clientProtocolFallback	bool

				45	

				46	 	 //	first	permanent	error

				47	 	 errMutex	sync.Mutex

				48	 	 err						error

				49	

				50	 	 //	input/output

				51	 	 in,	out		halfConn					//	in.Mutex	<	out.Mutex

				52	 	 rawInput	*block							//	raw	input,	right	off	the	wire

				53	 	 input				*block							//	application	data	waiting	to	be	read

				54	 	 hand					bytes.Buffer	//	handshake	data	waiting	to	be	read

				55	

				56	 	 tmp	[16]byte

				57	 }

				58	

				59	 func	(c	*Conn)	setError(err	error)	error	{

				60	 	 c.errMutex.Lock()

				61	 	 defer	c.errMutex.Unlock()

				62	

				63	 	 if	c.err	==	nil	{

				64	 	 	 c.err	=	err

				65	 	 }

				66	 	 return	err

				67	 }

				68	

				69	 func	(c	*Conn)	error()	error	{

				70	 	 c.errMutex.Lock()

				71	 	 defer	c.errMutex.Unlock()

				72	

				73	 	 return	c.err

				74	 }

				75	

				76	 //	Access	to	net.Conn	methods.

				77	 //	Cannot	just	embed	net.Conn	because	that	would

				78	 //	export	the	struct	field	too.

				79	

				80	 //	LocalAddr	returns	the	local	network	address.

				81	 func	(c	*Conn)	LocalAddr()	net.Addr	{

				82	 	 return	c.conn.LocalAddr()

				83	 }

				84	

				85	 //	RemoteAddr	returns	the	remote	network	address.

				86	 func	(c	*Conn)	RemoteAddr()	net.Addr	{

				87	 	 return	c.conn.RemoteAddr()

				88	 }

				89	

				90	 //	SetDeadline	sets	the	read	and	write	deadlines	associated	with	the	connection.

				91	 //	A	zero	value	for	t	means	Read	and	Write	will	not	time	out.

				92	 //	After	a	Write	has	timed	out,	the	TLS	state	is	corrupt	and	all	future	writes	will	return	the	same	error.

				93	 func	(c	*Conn)	SetDeadline(t	time.Time)	error	{

				94	 	 return	c.conn.SetDeadline(t)

				95	 }

				96	

				97	 //	SetReadDeadline	sets	the	read	deadline	on	the	underlying	connection.

				98	 //	A	zero	value	for	t	means	Read	will	not	time	out.

				99	 func	(c	*Conn)	SetReadDeadline(t	time.Time)	error	{

			100	 	 return	c.conn.SetReadDeadline(t)

			101	 }

			102	

			103	 //	SetWriteDeadline	sets	the	write	deadline	on	the	underlying	conneciton.

			104	 //	A	zero	value	for	t	means	Write	will	not	time	out.

			105	 //	After	a	Write	has	timed	out,	the	TLS	state	is	corrupt	and	all	future	writes	will	return	the	same	error.

			106	 func	(c	*Conn)	SetWriteDeadline(t	time.Time)	error	{

			107	 	 return	c.conn.SetWriteDeadline(t)

			108	 }

			109	

			110	 //	A	halfConn	represents	one	direction	of	the	record	layer

			111	 //	connection,	either	sending	or	receiving.

			112	 type	halfConn	struct	{

			113	 	 sync.Mutex

			114	 	 version	uint16						//	protocol	version

			115	 	 cipher		interface{}	//	cipher	algorithm

			116	 	 mac					macFunction

			117	 	 seq					[8]byte	//	64-bit	sequence	number

			118	 	 bfree			*block		//	list	of	free	blocks

			119	

			120	 	 nextCipher	interface{}	//	next	encryption	state

			121	 	 nextMac				macFunction	//	next	MAC	algorithm

			122	

			123	 	 //	used	to	save	allocating	a	new	buffer	for	each	MAC.

			124	 	 inDigestBuf,	outDigestBuf	[]byte

			125	 }

			126	

			127	 //	prepareCipherSpec	sets	the	encryption	and	MAC	states

			128	 //	that	a	subsequent	changeCipherSpec	will	use.

			129	 func	(hc	*halfConn)	prepareCipherSpec(version	uint16,	cipher	interface{},	mac	macFunction)	{

			130	 	 hc.version	=	version

			131	 	 hc.nextCipher	=	cipher

			132	 	 hc.nextMac	=	mac

			133	 }

			134	

			135	 //	changeCipherSpec	changes	the	encryption	and	MAC	states

			136	 //	to	the	ones	previously	passed	to	prepareCipherSpec.

			137	 func	(hc	*halfConn)	changeCipherSpec()	error	{

			138	 	 if	hc.nextCipher	==	nil	{

			139	 	 	 return	alertInternalError

			140	 	 }

			141	 	 hc.cipher	=	hc.nextCipher

			142	 	 hc.mac	=	hc.nextMac

			143	 	 hc.nextCipher	=	nil

			144	 	 hc.nextMac	=	nil

			145	 	 return	nil

			146	 }

			147	

			148	 //	incSeq	increments	the	sequence	number.

			149	 func	(hc	*halfConn)	incSeq()	{

			150	 	 for	i	:=	7;	i	>=	0;	i--	{

			151	 	 	 hc.seq[i]++

			152	 	 	 if	hc.seq[i]	!=	0	{

			153	 	 	 	 return

			154	 	 	 }

			155	 	 }

			156	

			157	 	 //	Not	allowed	to	let	sequence	number	wrap.

			158	 	 //	Instead,	must	renegotiate	before	it	does.

			159	 	 //	Not	likely	enough	to	bother.

			160	 	 panic("TLS:	sequence	number	wraparound")

			161	 }

			162	

			163	 //	resetSeq	resets	the	sequence	number	to	zero.

			164	 func	(hc	*halfConn)	resetSeq()	{

			165	 	 for	i	:=	range	hc.seq	{

			166	 	 	 hc.seq[i]	=	0

			167	 	 }

			168	 }

			169	

			170	 //	removePadding	returns	an	unpadded	slice,	in	constant	time,	which	is	a	prefix

			171	 //	of	the	input.	It	also	returns	a	byte	which	is	equal	to	255	if	the	padding

			172	 //	was	valid	and	0	otherwise.	See	RFC	2246,	section	6.2.3.2

			173	 func	removePadding(payload	[]byte)	([]byte,	byte)	{

			174	 	 if	len(payload)	<	1	{

			175	 	 	 return	payload,	0

			176	 	 }

			177	

			178	 	 paddingLen	:=	payload[len(payload)-1]

			179	 	 t	:=	uint(len(payload)-1)	-	uint(paddingLen)

			180	 	 //	if	len(payload)	>=	(paddingLen	-	1)	then	the	MSB	of	t	is	zero

			181	 	 good	:=	byte(int32(^t)	>>	31)

			182	

			183	 	 toCheck	:=	255	//	the	maximum	possible	padding	length

			184	 	 //	The	length	of	the	padded	data	is	public,	so	we	can	use	an	if	here

			185	 	 if	toCheck+1	>	len(payload)	{

			186	 	 	 toCheck	=	len(payload)	-	1

			187	 	 }

			188	

			189	 	 for	i	:=	0;	i	<	toCheck;	i++	{

			190	 	 	 t	:=	uint(paddingLen)	-	uint(i)

			191	 	 	 //	if	i	<=	paddingLen	then	the	MSB	of	t	is	zero

			192	 	 	 mask	:=	byte(int32(^t)	>>	31)

			193	 	 	 b	:=	payload[len(payload)-1-i]

			194	 	 	 good	&^=	mask&paddingLen	^	mask&b

			195	 	 }

			196	

			197	 	 //	We	AND	together	the	bits	of	good	and	replicate	the	result	across

			198	 	 //	all	the	bits.

			199	 	 good	&=	good	<<	4

			200	 	 good	&=	good	<<	2

			201	 	 good	&=	good	<<	1

			202	 	 good	=	uint8(int8(good)	>>	7)

			203	

			204	 	 toRemove	:=	good&paddingLen	+	1

			205	 	 return	payload[:len(payload)-int(toRemove)],	good

			206	 }

			207	

			208	 //	removePaddingSSL30	is	a	replacement	for	removePadding	in	the	case	that	the

			209	 //	protocol	version	is	SSLv3.	In	this	version,	the	contents	of	the	padding

			210	 //	are	random	and	cannot	be	checked.

			211	 func	removePaddingSSL30(payload	[]byte)	([]byte,	byte)	{

			212	 	 if	len(payload)	<	1	{

			213	 	 	 return	payload,	0

			214	 	 }

			215	

			216	 	 paddingLen	:=	int(payload[len(payload)-1])	+	1

			217	 	 if	paddingLen	>	len(payload)	{

			218	 	 	 return	payload,	0

			219	 	 }

			220	

			221	 	 return	payload[:len(payload)-paddingLen],	255

			222	 }

			223	

			224	 func	roundUp(a,	b	int)	int	{

			225	 	 return	a	+	(b-a%b)%b

			226	 }

			227	

			228	 //	decrypt	checks	and	strips	the	mac	and	decrypts	the	data	in	b.

			229	 func	(hc	*halfConn)	decrypt(b	*block)	(bool,	alert)	{

			230	 	 //	pull	out	payload

			231	 	 payload	:=	b.data[recordHeaderLen:]

			232	

			233	 	 macSize	:=	0

			234	 	 if	hc.mac	!=	nil	{

			235	 	 	 macSize	=	hc.mac.Size()

			236	 	 }

			237	

			238	 	 paddingGood	:=	byte(255)

			239	

			240	 	 //	decrypt

			241	 	 if	hc.cipher	!=	nil	{

			242	 	 	 switch	c	:=	hc.cipher.(type)	{

			243	 	 	 case	cipher.Stream:

			244	 	 	 	 c.XORKeyStream(payload,	payload)

			245	 	 	 case	cipher.BlockMode:

			246	 	 	 	 blockSize	:=	c.BlockSize()

			247	

			248	 	 	 	 if	len(payload)%blockSize	!=	0	||	len(payload)	<	roundUp(macSize+1,	blockSize)	{

			249	 	 	 	 	 return	false,	alertBadRecordMAC

			250	 	 	 	 }

			251	

			252	 	 	 	 c.CryptBlocks(payload,	payload)

			253	 	 	 	 if	hc.version	==	versionSSL30	{

			254	 	 	 	 	 payload,	paddingGood	=	removePaddingSSL30(payload)

			255	 	 	 	 }	else	{

			256	 	 	 	 	 payload,	paddingGood	=	removePadding(payload)

			257	 	 	 	 }

			258	 	 	 	 b.resize(recordHeaderLen	+	len(payload))

			259	

			260	 	 	 	 //	note	that	we	still	have	a	timing	side-channel	in	the

			261	 	 	 	 //	MAC	check,	below.	An	attacker	can	align	the	record

			262	 	 	 	 //	so	that	a	correct	padding	will	cause	one	less	hash

			263	 	 	 	 //	block	to	be	calculated.	Then	they	can	iteratively

			264	 	 	 	 //	decrypt	a	record	by	breaking	each	byte.	See

			265	 	 	 	 //	"Password	Interception	in	a	SSL/TLS	Channel",	Brice

			266	 	 	 	 //	Canvel	et	al.

			267	 	 	 	 //

			268	 	 	 	 //	However,	our	behavior	matches	OpenSSL,	so	we	leak

			269	 	 	 	 //	only	as	much	as	they	do.

			270	 	 	 default:

			271	 	 	 	 panic("unknown	cipher	type")

			272	 	 	 }

			273	 	 }

			274	

			275	 	 //	check,	strip	mac

			276	 	 if	hc.mac	!=	nil	{

			277	 	 	 if	len(payload)	<	macSize	{

			278	 	 	 	 return	false,	alertBadRecordMAC

			279	 	 	 }

			280	

			281	 	 	 //	strip	mac	off	payload,	b.data

			282	 	 	 n	:=	len(payload)	-	macSize

			283	 	 	 b.data[3]	=	byte(n	>>	8)

			284	 	 	 b.data[4]	=	byte(n)

			285	 	 	 b.resize(recordHeaderLen	+	n)

			286	 	 	 remoteMAC	:=	payload[n:]

			287	 	 	 localMAC	:=	hc.mac.MAC(hc.inDigestBuf,	hc.seq[0:],	b.data)

			288	 	 	 hc.incSeq()

			289	

			290	 	 	 if	subtle.ConstantTimeCompare(localMAC,	remoteMAC)	!=	1	||	paddingGood	!=	255	{

			291	 	 	 	 return	false,	alertBadRecordMAC

			292	 	 	 }

			293	 	 	 hc.inDigestBuf	=	localMAC

			294	 	 }

			295	

			296	 	 return	true,	0

			297	 }

			298	

			299	 //	padToBlockSize	calculates	the	needed	padding	block,	if	any,	for	a	payload.

			300	 //	On	exit,	prefix	aliases	payload	and	extends	to	the	end	of	the	last	full

			301	 //	block	of	payload.	finalBlock	is	a	fresh	slice	which	contains	the	contents	of

			302	 //	any	suffix	of	payload	as	well	as	the	needed	padding	to	make	finalBlock	a

			303	 //	full	block.

			304	 func	padToBlockSize(payload	[]byte,	blockSize	int)	(prefix,	finalBlock	[]byte)	{

			305	 	 overrun	:=	len(payload)	%	blockSize

			306	 	 paddingLen	:=	blockSize	-	overrun

			307	 	 prefix	=	payload[:len(payload)-overrun]

			308	 	 finalBlock	=	make([]byte,	blockSize)

			309	 	 copy(finalBlock,	payload[len(payload)-overrun:])

			310	 	 for	i	:=	overrun;	i	<	blockSize;	i++	{

			311	 	 	 finalBlock[i]	=	byte(paddingLen	-	1)

			312	 	 }

			313	 	 return

			314	 }

			315	

			316	 //	encrypt	encrypts	and	macs	the	data	in	b.

			317	 func	(hc	*halfConn)	encrypt(b	*block)	(bool,	alert)	{

			318	 	 //	mac

			319	 	 if	hc.mac	!=	nil	{

			320	 	 	 mac	:=	hc.mac.MAC(hc.outDigestBuf,	hc.seq[0:],	b.data)

			321	 	 	 hc.incSeq()

			322	

			323	 	 	 n	:=	len(b.data)

			324	 	 	 b.resize(n	+	len(mac))

			325	 	 	 copy(b.data[n:],	mac)

			326	 	 	 hc.outDigestBuf	=	mac

			327	 	 }

			328	

			329	 	 payload	:=	b.data[recordHeaderLen:]

			330	

			331	 	 //	encrypt

			332	 	 if	hc.cipher	!=	nil	{

			333	 	 	 switch	c	:=	hc.cipher.(type)	{

			334	 	 	 case	cipher.Stream:

			335	 	 	 	 c.XORKeyStream(payload,	payload)

			336	 	 	 case	cipher.BlockMode:

			337	 	 	 	 prefix,	finalBlock	:=	padToBlockSize(payload,	c.BlockSize())

			338	 	 	 	 b.resize(recordHeaderLen	+	len(prefix)	+	len(finalBlock))

			339	 	 	 	 c.CryptBlocks(b.data[recordHeaderLen:],	prefix)

			340	 	 	 	 c.CryptBlocks(b.data[recordHeaderLen+len(prefix):],	finalBlock)

			341	 	 	 default:

			342	 	 	 	 panic("unknown	cipher	type")

			343	 	 	 }

			344	 	 }

			345	

			346	 	 //	update	length	to	include	MAC	and	any	block	padding	needed.

			347	 	 n	:=	len(b.data)	-	recordHeaderLen

			348	 	 b.data[3]	=	byte(n	>>	8)

			349	 	 b.data[4]	=	byte(n)

			350	

			351	 	 return	true,	0

			352	 }

			353	

			354	 //	A	block	is	a	simple	data	buffer.

			355	 type	block	struct	{

			356	 	 data	[]byte

			357	 	 off		int	//	index	for	Read

			358	 	 link	*block

			359	 }

			360	

			361	 //	resize	resizes	block	to	be	n	bytes,	growing	if	necessary.

			362	 func	(b	*block)	resize(n	int)	{

			363	 	 if	n	>	cap(b.data)	{

			364	 	 	 b.reserve(n)

			365	 	 }

			366	 	 b.data	=	b.data[0:n]

			367	 }

			368	

			369	 //	reserve	makes	sure	that	block	contains	a	capacity	of	at	least	n	bytes.

			370	 func	(b	*block)	reserve(n	int)	{

			371	 	 if	cap(b.data)	>=	n	{

			372	 	 	 return

			373	 	 }

			374	 	 m	:=	cap(b.data)

			375	 	 if	m	==	0	{

			376	 	 	 m	=	1024

			377	 	 }

			378	 	 for	m	<	n	{

			379	 	 	 m	*=	2

			380	 	 }

			381	 	 data	:=	make([]byte,	len(b.data),	m)

			382	 	 copy(data,	b.data)

			383	 	 b.data	=	data

			384	 }

			385	

			386	 //	readFromUntil	reads	from	r	into	b	until	b	contains	at	least	n	bytes

			387	 //	or	else	returns	an	error.

			388	 func	(b	*block)	readFromUntil(r	io.Reader,	n	int)	error	{

			389	 	 //	quick	case

			390	 	 if	len(b.data)	>=	n	{

			391	 	 	 return	nil

			392	 	 }

			393	

			394	 	 //	read	until	have	enough.

			395	 	 b.reserve(n)

			396	 	 for	{

			397	 	 	 m,	err	:=	r.Read(b.data[len(b.data):cap(b.data)])

			398	 	 	 b.data	=	b.data[0	:	len(b.data)+m]

			399	 	 	 if	len(b.data)	>=	n	{

			400	 	 	 	 break

			401	 	 	 }

			402	 	 	 if	err	!=	nil	{

			403	 	 	 	 return	err

			404	 	 	 }

			405	 	 }

			406	 	 return	nil

			407	 }

			408	

			409	 func	(b	*block)	Read(p	[]byte)	(n	int,	err	error)	{

			410	 	 n	=	copy(p,	b.data[b.off:])

			411	 	 b.off	+=	n

			412	 	 return

			413	 }

			414	

			415	 //	newBlock	allocates	a	new	block,	from	hc's	free	list	if	possible.

			416	 func	(hc	*halfConn)	newBlock()	*block	{

			417	 	 b	:=	hc.bfree

			418	 	 if	b	==	nil	{

			419	 	 	 return	new(block)

			420	 	 }

			421	 	 hc.bfree	=	b.link

			422	 	 b.link	=	nil

			423	 	 b.resize(0)

			424	 	 return	b

			425	 }

			426	

			427	 //	freeBlock	returns	a	block	to	hc's	free	list.

			428	 //	The	protocol	is	such	that	each	side	only	has	a	block	or	two	on

			429	 //	its	free	list	at	a	time,	so	there's	no	need	to	worry	about

			430	 //	trimming	the	list,	etc.

			431	 func	(hc	*halfConn)	freeBlock(b	*block)	{

			432	 	 b.link	=	hc.bfree

			433	 	 hc.bfree	=	b

			434	 }

			435	

			436	 //	splitBlock	splits	a	block	after	the	first	n	bytes,

			437	 //	returning	a	block	with	those	n	bytes	and	a

			438	 //	block	with	the	remainder.		the	latter	may	be	nil.

			439	 func	(hc	*halfConn)	splitBlock(b	*block,	n	int)	(*block,	*block)	{

			440	 	 if	len(b.data)	<=	n	{

			441	 	 	 return	b,	nil

			442	 	 }

			443	 	 bb	:=	hc.newBlock()

			444	 	 bb.resize(len(b.data)	-	n)

			445	 	 copy(bb.data,	b.data[n:])

			446	 	 b.data	=	b.data[0:n]

			447	 	 return	b,	bb

			448	 }

			449	

			450	 //	readRecord	reads	the	next	TLS	record	from	the	connection

			451	 //	and	updates	the	record	layer	state.

			452	 //	c.in.Mutex	<=	L;	c.input	==	nil.

			453	 func	(c	*Conn)	readRecord(want	recordType)	error	{

			454	 	 //	Caller	must	be	in	sync	with	connection:

			455	 	 //	handshake	data	if	handshake	not	yet	completed,

			456	 	 //	else	application	data.		(We	don't	support	renegotiation.)

			457	 	 switch	want	{

			458	 	 default:

			459	 	 	 return	c.sendAlert(alertInternalError)

			460	 	 case	recordTypeHandshake,	recordTypeChangeCipherSpec:

			461	 	 	 if	c.handshakeComplete	{

			462	 	 	 	 return	c.sendAlert(alertInternalError)

			463	 	 	 }

			464	 	 case	recordTypeApplicationData:

			465	 	 	 if	!c.handshakeComplete	{

			466	 	 	 	 return	c.sendAlert(alertInternalError)

			467	 	 	 }

			468	 	 }

			469	

			470	 Again:

			471	 	 if	c.rawInput	==	nil	{

			472	 	 	 c.rawInput	=	c.in.newBlock()

			473	 	 }

			474	 	 b	:=	c.rawInput

			475	

			476	 	 //	Read	header,	payload.

			477	 	 if	err	:=	b.readFromUntil(c.conn,	recordHeaderLen);	err	!=	nil	{

			478	 	 	 //	RFC	suggests	that	EOF	without	an	alertCloseNotify	is

			479	 	 	 //	an	error,	but	popular	web	sites	seem	to	do	this,

			480	 	 	 //	so	we	can't	make	it	an	error.

			481	 	 	 //	if	err	==	io.EOF	{

			482	 	 	 //		 err	=	io.ErrUnexpectedEOF

			483	 	 	 //	}

			484	 	 	 if	e,	ok	:=	err.(net.Error);	!ok	||	!e.Temporary()	{

			485	 	 	 	 c.setError(err)

			486	 	 	 }

			487	 	 	 return	err

			488	 	 }

			489	 	 typ	:=	recordType(b.data[0])

			490	 	 vers	:=	uint16(b.data[1])<<8	|	uint16(b.data[2])

			491	 	 n	:=	int(b.data[3])<<8	|	int(b.data[4])

			492	 	 if	c.haveVers	&&	vers	!=	c.vers	{

			493	 	 	 return	c.sendAlert(alertProtocolVersion)

			494	 	 }

			495	 	 if	n	>	maxCiphertext	{

			496	 	 	 return	c.sendAlert(alertRecordOverflow)

			497	 	 }

			498	 	 if	!c.haveVers	{

			499	 	 	 //	First	message,	be	extra	suspicious:

			500	 	 	 //	this	might	not	be	a	TLS	client.

			501	 	 	 //	Bail	out	before	reading	a	full	'body',	if	possible.

			502	 	 	 //	The	current	max	version	is	3.1.	

			503	 	 	 //	If	the	version	is	>=	16.0,	it's	probably	not	real.

			504	 	 	 //	Similarly,	a	clientHello	message	encodes	in

			505	 	 	 //	well	under	a	kilobyte.		If	the	length	is	>=	12	kB,

			506	 	 	 //	it's	probably	not	real.

			507	 	 	 if	(typ	!=	recordTypeAlert	&&	typ	!=	want)	||	vers	>=	0x1000	||	n	>=	0x3000	{

			508	 	 	 	 return	c.sendAlert(alertUnexpectedMessage)

			509	 	 	 }

			510	 	 }

			511	 	 if	err	:=	b.readFromUntil(c.conn,	recordHeaderLen+n);	err	!=	nil	{

			512	 	 	 if	err	==	io.EOF	{

			513	 	 	 	 err	=	io.ErrUnexpectedEOF

			514	 	 	 }

			515	 	 	 if	e,	ok	:=	err.(net.Error);	!ok	||	!e.Temporary()	{

			516	 	 	 	 c.setError(err)

			517	 	 	 }

			518	 	 	 return	err

			519	 	 }

			520	

			521	 	 //	Process	message.

			522	 	 b,	c.rawInput	=	c.in.splitBlock(b,	recordHeaderLen+n)

			523	 	 b.off	=	recordHeaderLen

			524	 	 if	ok,	err	:=	c.in.decrypt(b);	!ok	{

			525	 	 	 return	c.sendAlert(err)

			526	 	 }

			527	 	 data	:=	b.data[b.off:]

			528	 	 if	len(data)	>	maxPlaintext	{

			529	 	 	 c.sendAlert(alertRecordOverflow)

			530	 	 	 c.in.freeBlock(b)

			531	 	 	 return	c.error()

			532	 	 }

			533	

			534	 	 switch	typ	{

			535	 	 default:

			536	 	 	 c.sendAlert(alertUnexpectedMessage)

			537	

			538	 	 case	recordTypeAlert:

			539	 	 	 if	len(data)	!=	2	{

			540	 	 	 	 c.sendAlert(alertUnexpectedMessage)

			541	 	 	 	 break

			542	 	 	 }

			543	 	 	 if	alert(data[1])	==	alertCloseNotify	{

			544	 	 	 	 c.setError(io.EOF)

			545	 	 	 	 break

			546	 	 	 }

			547	 	 	 switch	data[0]	{

			548	 	 	 case	alertLevelWarning:

			549	 	 	 	 //	drop	on	the	floor

			550	 	 	 	 c.in.freeBlock(b)

			551	 	 	 	 goto	Again

			552	 	 	 case	alertLevelError:

			553	 	 	 	 c.setError(&net.OpError{Op:	"remote	error",	Err:	alert(data[1])})

			554	 	 	 default:

			555	 	 	 	 c.sendAlert(alertUnexpectedMessage)

			556	 	 	 }

			557	

			558	 	 case	recordTypeChangeCipherSpec:

			559	 	 	 if	typ	!=	want	||	len(data)	!=	1	||	data[0]	!=	1	{

			560	 	 	 	 c.sendAlert(alertUnexpectedMessage)

			561	 	 	 	 break

			562	 	 	 }

			563	 	 	 err	:=	c.in.changeCipherSpec()

			564	 	 	 if	err	!=	nil	{

			565	 	 	 	 c.sendAlert(err.(alert))

			566	 	 	 }

			567	

			568	 	 case	recordTypeApplicationData:

			569	 	 	 if	typ	!=	want	{

			570	 	 	 	 c.sendAlert(alertUnexpectedMessage)

			571	 	 	 	 break

			572	 	 	 }

			573	 	 	 c.input	=	b

			574	 	 	 b	=	nil

			575	

			576	 	 case	recordTypeHandshake:

			577	 	 	 //	TODO(rsc):	Should	at	least	pick	off	connection	close.

			578	 	 	 if	typ	!=	want	{

			579	 	 	 	 return	c.sendAlert(alertNoRenegotiation)

			580	 	 	 }

			581	 	 	 c.hand.Write(data)

			582	 	 }

			583	

			584	 	 if	b	!=	nil	{

			585	 	 	 c.in.freeBlock(b)

			586	 	 }

			587	 	 return	c.error()

			588	 }

			589	

			590	 //	sendAlert	sends	a	TLS	alert	message.

			591	 //	c.out.Mutex	<=	L.

			592	 func	(c	*Conn)	sendAlertLocked(err	alert)	error	{

			593	 	 c.tmp[0]	=	alertLevelError

			594	 	 if	err	==	alertNoRenegotiation	{

			595	 	 	 c.tmp[0]	=	alertLevelWarning

			596	 	 }

			597	 	 c.tmp[1]	=	byte(err)

			598	 	 c.writeRecord(recordTypeAlert,	c.tmp[0:2])

			599	 	 //	closeNotify	is	a	special	case	in	that	it	isn't	an	error:

			600	 	 if	err	!=	alertCloseNotify	{

			601	 	 	 return	c.setError(&net.OpError{Op:	"local	error",	Err:	err})

			602	 	 }

			603	 	 return	nil

			604	 }

			605	

			606	 //	sendAlert	sends	a	TLS	alert	message.

			607	 //	L	<	c.out.Mutex.

			608	 func	(c	*Conn)	sendAlert(err	alert)	error	{

			609	 	 c.out.Lock()

			610	 	 defer	c.out.Unlock()

			611	 	 return	c.sendAlertLocked(err)

			612	 }

			613	

			614	 //	writeRecord	writes	a	TLS	record	with	the	given	type	and	payload

			615	 //	to	the	connection	and	updates	the	record	layer	state.

			616	 //	c.out.Mutex	<=	L.

			617	 func	(c	*Conn)	writeRecord(typ	recordType,	data	[]byte)	(n	int,	err	error)	{

			618	 	 b	:=	c.out.newBlock()

			619	 	 for	len(data)	>	0	{

			620	 	 	 m	:=	len(data)

			621	 	 	 if	m	>	maxPlaintext	{

			622	 	 	 	 m	=	maxPlaintext

			623	 	 	 }

			624	 	 	 b.resize(recordHeaderLen	+	m)

			625	 	 	 b.data[0]	=	byte(typ)

			626	 	 	 vers	:=	c.vers

			627	 	 	 if	vers	==	0	{

			628	 	 	 	 vers	=	maxVersion

			629	 	 	 }

			630	 	 	 b.data[1]	=	byte(vers	>>	8)

			631	 	 	 b.data[2]	=	byte(vers)

			632	 	 	 b.data[3]	=	byte(m	>>	8)

			633	 	 	 b.data[4]	=	byte(m)

			634	 	 	 copy(b.data[recordHeaderLen:],	data)

			635	 	 	 c.out.encrypt(b)

			636	 	 	 _,	err	=	c.conn.Write(b.data)

			637	 	 	 if	err	!=	nil	{

			638	 	 	 	 break

			639	 	 	 }

			640	 	 	 n	+=	m

			641	 	 	 data	=	data[m:]

			642	 	 }

			643	 	 c.out.freeBlock(b)

			644	

			645	 	 if	typ	==	recordTypeChangeCipherSpec	{

			646	 	 	 err	=	c.out.changeCipherSpec()

			647	 	 	 if	err	!=	nil	{

			648	 	 	 	 //	Cannot	call	sendAlert	directly,

			649	 	 	 	 //	because	we	already	hold	c.out.Mutex.

			650	 	 	 	 c.tmp[0]	=	alertLevelError

			651	 	 	 	 c.tmp[1]	=	byte(err.(alert))

			652	 	 	 	 c.writeRecord(recordTypeAlert,	c.tmp[0:2])

			653	 	 	 	 c.err	=	&net.OpError{Op:	"local	error",	Err:	err}

			654	 	 	 	 return	n,	c.err

			655	 	 	 }

			656	 	 }

			657	 	 return

			658	 }

			659	

			660	 //	readHandshake	reads	the	next	handshake	message	from

			661	 //	the	record	layer.

			662	 //	c.in.Mutex	<	L;	c.out.Mutex	<	L.

			663	 func	(c	*Conn)	readHandshake()	(interface{},	error)	{

			664	 	 for	c.hand.Len()	<	4	{

			665	 	 	 if	c.err	!=	nil	{

			666	 	 	 	 return	nil,	c.err

			667	 	 	 }

			668	 	 	 if	err	:=	c.readRecord(recordTypeHandshake);	err	!=	nil	{

			669	 	 	 	 return	nil,	err

			670	 	 	 }

			671	 	 }

			672	

			673	 	 data	:=	c.hand.Bytes()

			674	 	 n	:=	int(data[1])<<16	|	int(data[2])<<8	|	int(data[3])

			675	 	 if	n	>	maxHandshake	{

			676	 	 	 c.sendAlert(alertInternalError)

			677	 	 	 return	nil,	c.err

			678	 	 }

			679	 	 for	c.hand.Len()	<	4+n	{

			680	 	 	 if	c.err	!=	nil	{

			681	 	 	 	 return	nil,	c.err

			682	 	 	 }

			683	 	 	 if	err	:=	c.readRecord(recordTypeHandshake);	err	!=	nil	{

			684	 	 	 	 return	nil,	err

			685	 	 	 }

			686	 	 }

			687	 	 data	=	c.hand.Next(4	+	n)

			688	 	 var	m	handshakeMessage

			689	 	 switch	data[0]	{

			690	 	 case	typeClientHello:

			691	 	 	 m	=	new(clientHelloMsg)

			692	 	 case	typeServerHello:

			693	 	 	 m	=	new(serverHelloMsg)

			694	 	 case	typeCertificate:

			695	 	 	 m	=	new(certificateMsg)

			696	 	 case	typeCertificateRequest:

			697	 	 	 m	=	new(certificateRequestMsg)

			698	 	 case	typeCertificateStatus:

			699	 	 	 m	=	new(certificateStatusMsg)

			700	 	 case	typeServerKeyExchange:

			701	 	 	 m	=	new(serverKeyExchangeMsg)

			702	 	 case	typeServerHelloDone:

			703	 	 	 m	=	new(serverHelloDoneMsg)

			704	 	 case	typeClientKeyExchange:

			705	 	 	 m	=	new(clientKeyExchangeMsg)

			706	 	 case	typeCertificateVerify:

			707	 	 	 m	=	new(certificateVerifyMsg)

			708	 	 case	typeNextProtocol:

			709	 	 	 m	=	new(nextProtoMsg)

			710	 	 case	typeFinished:

			711	 	 	 m	=	new(finishedMsg)

			712	 	 default:

			713	 	 	 c.sendAlert(alertUnexpectedMessage)

			714	 	 	 return	nil,	alertUnexpectedMessage

			715	 	 }

			716	

			717	 	 //	The	handshake	message	unmarshallers

			718	 	 //	expect	to	be	able	to	keep	references	to	data,

			719	 	 //	so	pass	in	a	fresh	copy	that	won't	be	overwritten.

			720	 	 data	=	append([]byte(nil),	data...)

			721	

			722	 	 if	!m.unmarshal(data)	{

			723	 	 	 c.sendAlert(alertUnexpectedMessage)

			724	 	 	 return	nil,	alertUnexpectedMessage

			725	 	 }

			726	 	 return	m,	nil

			727	 }

			728	

			729	 //	Write	writes	data	to	the	connection.

			730	 func	(c	*Conn)	Write(b	[]byte)	(int,	error)	{

			731	 	 if	c.err	!=	nil	{

			732	 	 	 return	0,	c.err

			733	 	 }

			734	

			735	 	 if	c.err	=	c.Handshake();	c.err	!=	nil	{

			736	 	 	 return	0,	c.err

			737	 	 }

			738	

			739	 	 c.out.Lock()

			740	 	 defer	c.out.Unlock()

			741	

			742	 	 if	!c.handshakeComplete	{

			743	 	 	 return	0,	alertInternalError

			744	 	 }

			745	

			746	 	 var	n	int

			747	 	 n,	c.err	=	c.writeRecord(recordTypeApplicationData,	b)

			748	 	 return	n,	c.err

			749	 }

			750	

			751	 //	Read	can	be	made	to	time	out	and	return	a	net.Error	with	Timeout()	==	true

			752	 //	after	a	fixed	time	limit;	see	SetDeadline	and	SetReadDeadline.

			753	 func	(c	*Conn)	Read(b	[]byte)	(n	int,	err	error)	{

			754	 	 if	err	=	c.Handshake();	err	!=	nil	{

			755	 	 	 return

			756	 	 }

			757	

			758	 	 c.in.Lock()

			759	 	 defer	c.in.Unlock()

			760	

			761	 	 for	c.input	==	nil	&&	c.err	==	nil	{

			762	 	 	 if	err	:=	c.readRecord(recordTypeApplicationData);	err	!=	nil	{

			763	 	 	 	 //	Soft	error,	like	EAGAIN

			764	 	 	 	 return	0,	err

			765	 	 	 }

			766	 	 }

			767	 	 if	c.err	!=	nil	{

			768	 	 	 return	0,	c.err

			769	 	 }

			770	 	 n,	err	=	c.input.Read(b)

			771	 	 if	c.input.off	>=	len(c.input.data)	{

			772	 	 	 c.in.freeBlock(c.input)

			773	 	 	 c.input	=	nil

			774	 	 }

			775	 	 return	n,	nil

			776	 }

			777	

			778	 //	Close	closes	the	connection.

			779	 func	(c	*Conn)	Close()	error	{

			780	 	 var	alertErr	error

			781	

			782	 	 c.handshakeMutex.Lock()

			783	 	 defer	c.handshakeMutex.Unlock()

			784	 	 if	c.handshakeComplete	{

			785	 	 	 alertErr	=	c.sendAlert(alertCloseNotify)

			786	 	 }

			787	

			788	 	 if	err	:=	c.conn.Close();	err	!=	nil	{

			789	 	 	 return	err

			790	 	 }

			791	 	 return	alertErr

			792	 }

			793	

			794	 //	Handshake	runs	the	client	or	server	handshake

			795	 //	protocol	if	it	has	not	yet	been	run.

			796	 //	Most	uses	of	this	package	need	not	call	Handshake

			797	 //	explicitly:	the	first	Read	or	Write	will	call	it	automatically.

			798	 func	(c	*Conn)	Handshake()	error	{

			799	 	 c.handshakeMutex.Lock()

			800	 	 defer	c.handshakeMutex.Unlock()

			801	 	 if	err	:=	c.error();	err	!=	nil	{

			802	 	 	 return	err

			803	 	 }

			804	 	 if	c.handshakeComplete	{

			805	 	 	 return	nil

			806	 	 }

			807	 	 if	c.isClient	{

			808	 	 	 return	c.clientHandshake()

			809	 	 }

			810	 	 return	c.serverHandshake()

			811	 }

			812	

			813	 //	ConnectionState	returns	basic	TLS	details	about	the	connection.

			814	 func	(c	*Conn)	ConnectionState()	ConnectionState	{

			815	 	 c.handshakeMutex.Lock()

			816	 	 defer	c.handshakeMutex.Unlock()

			817	

			818	 	 var	state	ConnectionState

			819	 	 state.HandshakeComplete	=	c.handshakeComplete

			820	 	 if	c.handshakeComplete	{

			821	 	 	 state.NegotiatedProtocol	=	c.clientProtocol

			822	 	 	 state.NegotiatedProtocolIsMutual	=	!c.clientProtocolFallback

			823	 	 	 state.CipherSuite	=	c.cipherSuite

			824	 	 	 state.PeerCertificates	=	c.peerCertificates

			825	 	 	 state.VerifiedChains	=	c.verifiedChains

			826	 	 	 state.ServerName	=	c.serverName

			827	 	 }

			828	

			829	 	 return	state

			830	 }

			831	

			832	 //	OCSPResponse	returns	the	stapled	OCSP	response	from	the	TLS	server,	if

			833	 //	any.	(Only	valid	for	client	connections.)

			834	 func	(c	*Conn)	OCSPResponse()	[]byte	{

			835	 	 c.handshakeMutex.Lock()

			836	 	 defer	c.handshakeMutex.Unlock()

			837	

			838	 	 return	c.ocspResponse

			839	 }

			840	

			841	 //	VerifyHostname	checks	that	the	peer	certificate	chain	is	valid	for

			842	 //	connecting	to	host.		If	so,	it	returns	nil;	if	not,	it	returns	an	error

			843	 //	describing	the	problem.

			844	 func	(c	*Conn)	VerifyHostname(host	string)	error	{

			845	 	 c.handshakeMutex.Lock()

			846	 	 defer	c.handshakeMutex.Unlock()

			847	 	 if	!c.isClient	{

			848	 	 	 return	errors.New("VerifyHostname	called	on	TLS	server	connection")

			849	 	 }

			850	 	 if	!c.handshakeComplete	{

			851	 	 	 return	errors.New("TLS	handshake	has	not	yet	been	performed")

			852	 	 }

			853	 	 return	c.peerCertificates[0].VerifyHostname(host)

			854	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/tls/handshake_client.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	tls

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "crypto"

				10	 	 "crypto/rsa"

				11	 	 "crypto/subtle"

				12	 	 "crypto/x509"

				13	 	 "errors"

				14	 	 "io"

				15	 	 "strconv"

				16)

				17	

				18	 func	(c	*Conn)	clientHandshake()	error	{

				19	 	 finishedHash	:=	newFinishedHash(versionTLS10)

				20	

				21	 	 if	c.config	==	nil	{

				22	 	 	 c.config	=	defaultConfig()

				23	 	 }

				24	

				25	 	 hello	:=	&clientHelloMsg{

				26	 	 	 vers:															maxVersion,

				27	 	 	 cipherSuites:							c.config.cipherSuites(),

				28	 	 	 compressionMethods:	[]uint8{compressionNone},

				29	 	 	 random:													make([]byte,	32),

				30	 	 	 ocspStapling:							true,

				31	 	 	 serverName:									c.config.ServerName,

				32	 	 	 supportedCurves:				[]uint16{curveP256,	curveP384,	curveP521},

				33	 	 	 supportedPoints:				[]uint8{pointFormatUncompressed},

				34	 	 	 nextProtoNeg:							len(c.config.NextProtos)	>	0,

				35	 	 }

				36	

				37	 	 t	:=	uint32(c.config.time().Unix())

				38	 	 hello.random[0]	=	byte(t	>>	24)

				39	 	 hello.random[1]	=	byte(t	>>	16)

				40	 	 hello.random[2]	=	byte(t	>>	8)

				41	 	 hello.random[3]	=	byte(t)

				42	 	 _,	err	:=	io.ReadFull(c.config.rand(),	hello.random[4:])

				43	 	 if	err	!=	nil	{

				44	 	 	 c.sendAlert(alertInternalError)

				45	 	 	 return	errors.New("short	read	from	Rand")

				46	 	 }

				47	

				48	 	 finishedHash.Write(hello.marshal())

				49	 	 c.writeRecord(recordTypeHandshake,	hello.marshal())

				50	

				51	 	 msg,	err	:=	c.readHandshake()

				52	 	 if	err	!=	nil	{

				53	 	 	 return	err

				54	 	 }

				55	 	 serverHello,	ok	:=	msg.(*serverHelloMsg)

				56	 	 if	!ok	{

				57	 	 	 return	c.sendAlert(alertUnexpectedMessage)

				58	 	 }

				59	 	 finishedHash.Write(serverHello.marshal())

				60	

				61	 	 vers,	ok	:=	mutualVersion(serverHello.vers)

				62	 	 if	!ok	||	vers	<	versionTLS10	{

				63	 	 	 //	TLS	1.0	is	the	minimum	version	supported	as	a	client.

				64	 	 	 return	c.sendAlert(alertProtocolVersion)

				65	 	 }

				66	 	 c.vers	=	vers

				67	 	 c.haveVers	=	true

				68	

				69	 	 if	serverHello.compressionMethod	!=	compressionNone	{

				70	 	 	 return	c.sendAlert(alertUnexpectedMessage)

				71	 	 }

				72	

				73	 	 if	!hello.nextProtoNeg	&&	serverHello.nextProtoNeg	{

				74	 	 	 c.sendAlert(alertHandshakeFailure)

				75	 	 	 return	errors.New("server	advertised	unrequested	NPN")

				76	 	 }

				77	

				78	 	 suite	:=	mutualCipherSuite(c.config.cipherSuites(),	serverHello.cipherSuite)

				79	 	 if	suite	==	nil	{

				80	 	 	 return	c.sendAlert(alertHandshakeFailure)

				81	 	 }

				82	

				83	 	 msg,	err	=	c.readHandshake()

				84	 	 if	err	!=	nil	{

				85	 	 	 return	err

				86	 	 }

				87	 	 certMsg,	ok	:=	msg.(*certificateMsg)

				88	 	 if	!ok	||	len(certMsg.certificates)	==	0	{

				89	 	 	 return	c.sendAlert(alertUnexpectedMessage)

				90	 	 }

				91	 	 finishedHash.Write(certMsg.marshal())

				92	

				93	 	 certs	:=	make([]*x509.Certificate,	len(certMsg.certificates))

				94	 	 for	i,	asn1Data	:=	range	certMsg.certificates	{

				95	 	 	 cert,	err	:=	x509.ParseCertificate(asn1Data)

				96	 	 	 if	err	!=	nil	{

				97	 	 	 	 c.sendAlert(alertBadCertificate)

				98	 	 	 	 return	errors.New("failed	to	parse	certificate	from	server:	"	+	err.Error())

				99	 	 	 }

			100	 	 	 certs[i]	=	cert

			101	 	 }

			102	

			103	 	 if	!c.config.InsecureSkipVerify	{

			104	 	 	 opts	:=	x509.VerifyOptions{

			105	 	 	 	 Roots:									c.config.RootCAs,

			106	 	 	 	 CurrentTime:			c.config.time(),

			107	 	 	 	 DNSName:							c.config.ServerName,

			108	 	 	 	 Intermediates:	x509.NewCertPool(),

			109	 	 	 }

			110	

			111	 	 	 for	i,	cert	:=	range	certs	{

			112	 	 	 	 if	i	==	0	{

			113	 	 	 	 	 continue

			114	 	 	 	 }

			115	 	 	 	 opts.Intermediates.AddCert(cert)

			116	 	 	 }

			117	 	 	 c.verifiedChains,	err	=	certs[0].Verify(opts)

			118	 	 	 if	err	!=	nil	{

			119	 	 	 	 c.sendAlert(alertBadCertificate)

			120	 	 	 	 return	err

			121	 	 	 }

			122	 	 }

			123	

			124	 	 if	_,	ok	:=	certs[0].PublicKey.(*rsa.PublicKey);	!ok	{

			125	 	 	 return	c.sendAlert(alertUnsupportedCertificate)

			126	 	 }

			127	

			128	 	 c.peerCertificates	=	certs

			129	

			130	 	 if	serverHello.ocspStapling	{

			131	 	 	 msg,	err	=	c.readHandshake()

			132	 	 	 if	err	!=	nil	{

			133	 	 	 	 return	err

			134	 	 	 }

			135	 	 	 cs,	ok	:=	msg.(*certificateStatusMsg)

			136	 	 	 if	!ok	{

			137	 	 	 	 return	c.sendAlert(alertUnexpectedMessage)

			138	 	 	 }

			139	 	 	 finishedHash.Write(cs.marshal())

			140	

			141	 	 	 if	cs.statusType	==	statusTypeOCSP	{

			142	 	 	 	 c.ocspResponse	=	cs.response

			143	 	 	 }

			144	 	 }

			145	

			146	 	 msg,	err	=	c.readHandshake()

			147	 	 if	err	!=	nil	{

			148	 	 	 return	err

			149	 	 }

			150	

			151	 	 keyAgreement	:=	suite.ka()

			152	

			153	 	 skx,	ok	:=	msg.(*serverKeyExchangeMsg)

			154	 	 if	ok	{

			155	 	 	 finishedHash.Write(skx.marshal())

			156	 	 	 err	=	keyAgreement.processServerKeyExchange(c.config,	hello,	serverHello,	certs[0],	skx)

			157	 	 	 if	err	!=	nil	{

			158	 	 	 	 c.sendAlert(alertUnexpectedMessage)

			159	 	 	 	 return	err

			160	 	 	 }

			161	

			162	 	 	 msg,	err	=	c.readHandshake()

			163	 	 	 if	err	!=	nil	{

			164	 	 	 	 return	err

			165	 	 	 }

			166	 	 }

			167	

			168	 	 var	certToSend	*Certificate

			169	 	 var	certRequested	bool

			170	 	 certReq,	ok	:=	msg.(*certificateRequestMsg)

			171	 	 if	ok	{

			172	 	 	 certRequested	=	true

			173	

			174	 	 	 //	RFC	4346	on	the	certificateAuthorities	field:

			175	 	 	 //	A	list	of	the	distinguished	names	of	acceptable	certificate

			176	 	 	 //	authorities.	These	distinguished	names	may	specify	a	desired

			177	 	 	 //	distinguished	name	for	a	root	CA	or	for	a	subordinate	CA;

			178	 	 	 //	thus,	this	message	can	be	used	to	describe	both	known	roots

			179	 	 	 //	and	a	desired	authorization	space.	If	the

			180	 	 	 //	certificate_authorities	list	is	empty	then	the	client	MAY

			181	 	 	 //	send	any	certificate	of	the	appropriate

			182	 	 	 //	ClientCertificateType,	unless	there	is	some	external

			183	 	 	 //	arrangement	to	the	contrary.

			184	

			185	 	 	 finishedHash.Write(certReq.marshal())

			186	

			187	 	 	 //	For	now,	we	only	know	how	to	sign	challenges	with	RSA

			188	 	 	 rsaAvail	:=	false

			189	 	 	 for	_,	certType	:=	range	certReq.certificateTypes	{

			190	 	 	 	 if	certType	==	certTypeRSASign	{

			191	 	 	 	 	 rsaAvail	=	true

			192	 	 	 	 	 break

			193	 	 	 	 }

			194	 	 	 }

			195	

			196	 	 	 //	We	need	to	search	our	list	of	client	certs	for	one

			197	 	 	 //	where	SignatureAlgorithm	is	RSA	and	the	Issuer	is	in

			198	 	 	 //	certReq.certificateAuthorities

			199	 	 findCert:

			200	 	 	 for	i,	cert	:=	range	c.config.Certificates	{

			201	 	 	 	 if	!rsaAvail	{

			202	 	 	 	 	 continue

			203	 	 	 	 }

			204	

			205	 	 	 	 leaf	:=	cert.Leaf

			206	 	 	 	 if	leaf	==	nil	{

			207	 	 	 	 	 if	leaf,	err	=	x509.ParseCertificate(cert.Certificate[0]);	err	!=	nil	{

			208	 	 	 	 	 	 c.sendAlert(alertInternalError)

			209	 	 	 	 	 	 return	errors.New("tls:	failed	to	parse	client	certificate	#"	+	strconv.Itoa(i)	+	":	"	+	err.Error())

			210	 	 	 	 	 }

			211	 	 	 	 }

			212	

			213	 	 	 	 if	leaf.PublicKeyAlgorithm	!=	x509.RSA	{

			214	 	 	 	 	 continue

			215	 	 	 	 }

			216	

			217	 	 	 	 if	len(certReq.certificateAuthorities)	==	0	{

			218	 	 	 	 	 //	they	gave	us	an	empty	list,	so	just	take	the

			219	 	 	 	 	 //	first	RSA	cert	from	c.config.Certificates

			220	 	 	 	 	 certToSend	=	&cert

			221	 	 	 	 	 break

			222	 	 	 	 }

			223	

			224	 	 	 	 for	_,	ca	:=	range	certReq.certificateAuthorities	{

			225	 	 	 	 	 if	bytes.Equal(leaf.RawIssuer,	ca)	{

			226	 	 	 	 	 	 certToSend	=	&cert

			227	 	 	 	 	 	 break	findCert

			228	 	 	 	 	 }

			229	 	 	 	 }

			230	 	 	 }

			231	

			232	 	 	 msg,	err	=	c.readHandshake()

			233	 	 	 if	err	!=	nil	{

			234	 	 	 	 return	err

			235	 	 	 }

			236	 	 }

			237	

			238	 	 shd,	ok	:=	msg.(*serverHelloDoneMsg)

			239	 	 if	!ok	{

			240	 	 	 return	c.sendAlert(alertUnexpectedMessage)

			241	 	 }

			242	 	 finishedHash.Write(shd.marshal())

			243	

			244	 	 //	If	the	server	requested	a	certificate	then	we	have	to	send	a

			245	 	 //	Certificate	message,	even	if	it's	empty	because	we	don't	have	a

			246	 	 //	certificate	to	send.

			247	 	 if	certRequested	{

			248	 	 	 certMsg	=	new(certificateMsg)

			249	 	 	 if	certToSend	!=	nil	{

			250	 	 	 	 certMsg.certificates	=	certToSend.Certificate

			251	 	 	 }

			252	 	 	 finishedHash.Write(certMsg.marshal())

			253	 	 	 c.writeRecord(recordTypeHandshake,	certMsg.marshal())

			254	 	 }

			255	

			256	 	 preMasterSecret,	ckx,	err	:=	keyAgreement.generateClientKeyExchange(c.config,	hello,	certs[0])

			257	 	 if	err	!=	nil	{

			258	 	 	 c.sendAlert(alertInternalError)

			259	 	 	 return	err

			260	 	 }

			261	 	 if	ckx	!=	nil	{

			262	 	 	 finishedHash.Write(ckx.marshal())

			263	 	 	 c.writeRecord(recordTypeHandshake,	ckx.marshal())

			264	 	 }

			265	

			266	 	 if	certToSend	!=	nil	{

			267	 	 	 certVerify	:=	new(certificateVerifyMsg)

			268	 	 	 digest	:=	make([]byte,	0,	36)

			269	 	 	 digest	=	finishedHash.serverMD5.Sum(digest)

			270	 	 	 digest	=	finishedHash.serverSHA1.Sum(digest)

			271	 	 	 signed,	err	:=	rsa.SignPKCS1v15(c.config.rand(),	c.config.Certificates[0].PrivateKey.(*rsa.PrivateKey),	crypto.MD5SHA1,	digest)

			272	 	 	 if	err	!=	nil	{

			273	 	 	 	 return	c.sendAlert(alertInternalError)

			274	 	 	 }

			275	 	 	 certVerify.signature	=	signed

			276	

			277	 	 	 finishedHash.Write(certVerify.marshal())

			278	 	 	 c.writeRecord(recordTypeHandshake,	certVerify.marshal())

			279	 	 }

			280	

			281	 	 masterSecret,	clientMAC,	serverMAC,	clientKey,	serverKey,	clientIV,	serverIV	:=

			282	 	 	 keysFromPreMasterSecret(c.vers,	preMasterSecret,	hello.random,	serverHello.random,	suite.macLen,	suite.keyLen,	suite.ivLen)

			283	

			284	 	 clientCipher	:=	suite.cipher(clientKey,	clientIV,	false	

			285	 	 clientHash	:=	suite.mac(c.vers,	clientMAC)

			286	 	 c.out.prepareCipherSpec(c.vers,	clientCipher,	clientHash)

			287	 	 c.writeRecord(recordTypeChangeCipherSpec,	[]byte{1})

			288	

			289	 	 if	serverHello.nextProtoNeg	{

			290	 	 	 nextProto	:=	new(nextProtoMsg)

			291	 	 	 proto,	fallback	:=	mutualProtocol(c.config.NextProtos,	serverHello.nextProtos)

			292	 	 	 nextProto.proto	=	proto

			293	 	 	 c.clientProtocol	=	proto

			294	 	 	 c.clientProtocolFallback	=	fallback

			295	

			296	 	 	 finishedHash.Write(nextProto.marshal())

			297	 	 	 c.writeRecord(recordTypeHandshake,	nextProto.marshal())

			298	 	 }

			299	

			300	 	 finished	:=	new(finishedMsg)

			301	 	 finished.verifyData	=	finishedHash.clientSum(masterSecret)

			302	 	 finishedHash.Write(finished.marshal())

			303	 	 c.writeRecord(recordTypeHandshake,	finished.marshal())

			304	

			305	 	 serverCipher	:=	suite.cipher(serverKey,	serverIV,	true	

			306	 	 serverHash	:=	suite.mac(c.vers,	serverMAC)

			307	 	 c.in.prepareCipherSpec(c.vers,	serverCipher,	serverHash)

			308	 	 c.readRecord(recordTypeChangeCipherSpec)

			309	 	 if	c.err	!=	nil	{

			310	 	 	 return	c.err

			311	 	 }

			312	

			313	 	 msg,	err	=	c.readHandshake()

			314	 	 if	err	!=	nil	{

			315	 	 	 return	err

			316	 	 }

			317	 	 serverFinished,	ok	:=	msg.(*finishedMsg)

			318	 	 if	!ok	{

			319	 	 	 return	c.sendAlert(alertUnexpectedMessage)

			320	 	 }

			321	

			322	 	 verify	:=	finishedHash.serverSum(masterSecret)

			323	 	 if	len(verify)	!=	len(serverFinished.verifyData)	||

			324	 	 	 subtle.ConstantTimeCompare(verify,	serverFinished.verifyData)	!=	1	{

			325	 	 	 return	c.sendAlert(alertHandshakeFailure)

			326	 	 }

			327	

			328	 	 c.handshakeComplete	=	true

			329	 	 c.cipherSuite	=	suite.id

			330	 	 return	nil

			331	 }

			332	

			333	 //	mutualProtocol	finds	the	mutual	Next	Protocol	Negotiation	protocol	given	the

			334	 //	set	of	client	and	server	supported	protocols.	The	set	of	client	supported

			335	 //	protocols	must	not	be	empty.	It	returns	the	resulting	protocol	and	flag

			336	 //	indicating	if	the	fallback	case	was	reached.

			337	 func	mutualProtocol(clientProtos,	serverProtos	[]string)	(string,	bool)	{

			338	 	 for	_,	s	:=	range	serverProtos	{

			339	 	 	 for	_,	c	:=	range	clientProtos	{

			340	 	 	 	 if	s	==	c	{

			341	 	 	 	 	 return	s,	false

			342	 	 	 	 }

			343	 	 	 }

			344	 	 }

			345	

			346	 	 return	clientProtos[0],	true

			347	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/tls/handshake_messages.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	tls

					6	

					7	 import	"bytes"

					8	

					9	 type	clientHelloMsg	struct	{

				10	 	 raw																[]byte

				11	 	 vers															uint16

				12	 	 random													[]byte

				13	 	 sessionId										[]byte

				14	 	 cipherSuites							[]uint16

				15	 	 compressionMethods	[]uint8

				16	 	 nextProtoNeg							bool

				17	 	 serverName									string

				18	 	 ocspStapling							bool

				19	 	 supportedCurves				[]uint16

				20	 	 supportedPoints				[]uint8

				21	 }

				22	

				23	 func	(m	*clientHelloMsg)	equal(i	interface{})	bool	{

				24	 	 m1,	ok	:=	i.(*clientHelloMsg)

				25	 	 if	!ok	{

				26	 	 	 return	false

				27	 	 }

				28	

				29	 	 return	bytes.Equal(m.raw,	m1.raw)	&&

				30	 	 	 m.vers	==	m1.vers	&&

				31	 	 	 bytes.Equal(m.random,	m1.random)	&&

				32	 	 	 bytes.Equal(m.sessionId,	m1.sessionId)	&&

				33	 	 	 eqUint16s(m.cipherSuites,	m1.cipherSuites)	&&

				34	 	 	 bytes.Equal(m.compressionMethods,	m1.compressionMethods)	&&

				35	 	 	 m.nextProtoNeg	==	m1.nextProtoNeg	&&

				36	 	 	 m.serverName	==	m1.serverName	&&

				37	 	 	 m.ocspStapling	==	m1.ocspStapling	&&

				38	 	 	 eqUint16s(m.supportedCurves,	m1.supportedCurves)	&&

				39	 	 	 bytes.Equal(m.supportedPoints,	m1.supportedPoints)

				40	 }

				41	

				42	 func	(m	*clientHelloMsg)	marshal()	[]byte	{

				43	 	 if	m.raw	!=	nil	{

				44	 	 	 return	m.raw

				45	 	 }

				46	

				47	 	 length	:=	2	+	32	+	1	+	len(m.sessionId)	+	2	+	len(m.cipherSuites)*2	+	1	+	len(m.compressionMethods)

				48	 	 numExtensions	:=	0

				49	 	 extensionsLength	:=	0

				50	 	 if	m.nextProtoNeg	{

				51	 	 	 numExtensions++

				52	 	 }

				53	 	 if	m.ocspStapling	{

				54	 	 	 extensionsLength	+=	1	+	2	+	2

				55	 	 	 numExtensions++

				56	 	 }

				57	 	 if	len(m.serverName)	>	0	{

				58	 	 	 extensionsLength	+=	5	+	len(m.serverName)

				59	 	 	 numExtensions++

				60	 	 }

				61	 	 if	len(m.supportedCurves)	>	0	{

				62	 	 	 extensionsLength	+=	2	+	2*len(m.supportedCurves)

				63	 	 	 numExtensions++

				64	 	 }

				65	 	 if	len(m.supportedPoints)	>	0	{

				66	 	 	 extensionsLength	+=	1	+	len(m.supportedPoints)

				67	 	 	 numExtensions++

				68	 	 }

				69	 	 if	numExtensions	>	0	{

				70	 	 	 extensionsLength	+=	4	*	numExtensions

				71	 	 	 length	+=	2	+	extensionsLength

				72	 	 }

				73	

				74	 	 x	:=	make([]byte,	4+length)

				75	 	 x[0]	=	typeClientHello

				76	 	 x[1]	=	uint8(length	>>	16)

				77	 	 x[2]	=	uint8(length	>>	8)

				78	 	 x[3]	=	uint8(length)

				79	 	 x[4]	=	uint8(m.vers	>>	8)

				80	 	 x[5]	=	uint8(m.vers)

				81	 	 copy(x[6:38],	m.random)

				82	 	 x[38]	=	uint8(len(m.sessionId))

				83	 	 copy(x[39:39+len(m.sessionId)],	m.sessionId)

				84	 	 y	:=	x[39+len(m.sessionId):]

				85	 	 y[0]	=	uint8(len(m.cipherSuites)	>>	7)

				86	 	 y[1]	=	uint8(len(m.cipherSuites)	<<	1)

				87	 	 for	i,	suite	:=	range	m.cipherSuites	{

				88	 	 	 y[2+i*2]	=	uint8(suite	>>	8)

				89	 	 	 y[3+i*2]	=	uint8(suite)

				90	 	 }

				91	 	 z	:=	y[2+len(m.cipherSuites)*2:]

				92	 	 z[0]	=	uint8(len(m.compressionMethods))

				93	 	 copy(z[1:],	m.compressionMethods)

				94	

				95	 	 z	=	z[1+len(m.compressionMethods):]

				96	 	 if	numExtensions	>	0	{

				97	 	 	 z[0]	=	byte(extensionsLength	>>	8)

				98	 	 	 z[1]	=	byte(extensionsLength)

				99	 	 	 z	=	z[2:]

			100	 	 }

			101	 	 if	m.nextProtoNeg	{

			102	 	 	 z[0]	=	byte(extensionNextProtoNeg	>>	8)

			103	 	 	 z[1]	=	byte(extensionNextProtoNeg)

			104	 	 	 //	The	length	is	always	0

			105	 	 	 z	=	z[4:]

			106	 	 }

			107	 	 if	len(m.serverName)	>	0	{

			108	 	 	 z[0]	=	byte(extensionServerName	>>	8)

			109	 	 	 z[1]	=	byte(extensionServerName)

			110	 	 	 l	:=	len(m.serverName)	+	5

			111	 	 	 z[2]	=	byte(l	>>	8)

			112	 	 	 z[3]	=	byte(l)

			113	 	 	 z	=	z[4:]

			114	

			115	 	 	 //	RFC	3546,	section	3.1

			116	 	 	 //

			117	 	 	 //	struct	{

			118	 	 	 //					NameType	name_type;

			119	 	 	 //					select	(name_type)	{

			120	 	 	 //									case	host_name:	HostName;

			121	 	 	 //					}	name;

			122	 	 	 //	}	ServerName;

			123	 	 	 //

			124	 	 	 //	enum	{

			125	 	 	 //					host_name(0),	(255)

			126	 	 	 //	}	NameType;

			127	 	 	 //

			128	 	 	 //	opaque	HostName<1..2^16-1>;

			129	 	 	 //

			130	 	 	 //	struct	{

			131	 	 	 //					ServerName	server_name_list<1..2^16-1>

			132	 	 	 //	}	ServerNameList;

			133	

			134	 	 	 z[0]	=	byte((len(m.serverName)	+	3)	>>	8)

			135	 	 	 z[1]	=	byte(len(m.serverName)	+	3)

			136	 	 	 z[3]	=	byte(len(m.serverName)	>>	8)

			137	 	 	 z[4]	=	byte(len(m.serverName))

			138	 	 	 copy(z[5:],	[]byte(m.serverName))

			139	 	 	 z	=	z[l:]

			140	 	 }

			141	 	 if	m.ocspStapling	{

			142	 	 	 //	RFC	4366,	section	3.6

			143	 	 	 z[0]	=	byte(extensionStatusRequest	>>	8)

			144	 	 	 z[1]	=	byte(extensionStatusRequest)

			145	 	 	 z[2]	=	0

			146	 	 	 z[3]	=	5

			147	 	 	 z[4]	=	1	//	OCSP	type

			148	 	 	 //	Two	zero	valued	uint16s	for	the	two	lengths.

			149	 	 	 z	=	z[9:]

			150	 	 }

			151	 	 if	len(m.supportedCurves)	>	0	{

			152	 	 	 //	http://tools.ietf.org/html/rfc4492#section-5.5.1

			153	 	 	 z[0]	=	byte(extensionSupportedCurves	>>	8)

			154	 	 	 z[1]	=	byte(extensionSupportedCurves)

			155	 	 	 l	:=	2	+	2*len(m.supportedCurves)

			156	 	 	 z[2]	=	byte(l	>>	8)

			157	 	 	 z[3]	=	byte(l)

			158	 	 	 l	-=	2

			159	 	 	 z[4]	=	byte(l	>>	8)

			160	 	 	 z[5]	=	byte(l)

			161	 	 	 z	=	z[6:]

			162	 	 	 for	_,	curve	:=	range	m.supportedCurves	{

			163	 	 	 	 z[0]	=	byte(curve	>>	8)

			164	 	 	 	 z[1]	=	byte(curve)

			165	 	 	 	 z	=	z[2:]

			166	 	 	 }

			167	 	 }

			168	 	 if	len(m.supportedPoints)	>	0	{

			169	 	 	 //	http://tools.ietf.org/html/rfc4492#section-5.5.2

			170	 	 	 z[0]	=	byte(extensionSupportedPoints	>>	8)

			171	 	 	 z[1]	=	byte(extensionSupportedPoints)

			172	 	 	 l	:=	1	+	len(m.supportedPoints)

			173	 	 	 z[2]	=	byte(l	>>	8)

			174	 	 	 z[3]	=	byte(l)

			175	 	 	 l--

			176	 	 	 z[4]	=	byte(l)

			177	 	 	 z	=	z[5:]

			178	 	 	 for	_,	pointFormat	:=	range	m.supportedPoints	{

			179	 	 	 	 z[0]	=	byte(pointFormat)

			180	 	 	 	 z	=	z[1:]

			181	 	 	 }

			182	 	 }

			183	

			184	 	 m.raw	=	x

			185	

			186	 	 return	x

			187	 }

			188	

			189	 func	(m	*clientHelloMsg)	unmarshal(data	[]byte)	bool	{

			190	 	 if	len(data)	<	42	{

			191	 	 	 return	false

			192	 	 }

			193	 	 m.raw	=	data

			194	 	 m.vers	=	uint16(data[4])<<8	|	uint16(data[5])

			195	 	 m.random	=	data[6:38]

			196	 	 sessionIdLen	:=	int(data[38])

			197	 	 if	sessionIdLen	>	32	||	len(data)	<	39+sessionIdLen	{

			198	 	 	 return	false

			199	 	 }

			200	 	 m.sessionId	=	data[39	:	39+sessionIdLen]

			201	 	 data	=	data[39+sessionIdLen:]

			202	 	 if	len(data)	<	2	{

			203	 	 	 return	false

			204	 	 }

			205	 	 //	cipherSuiteLen	is	the	number	of	bytes	of	cipher	suite	numbers.	Since

			206	 	 //	they	are	uint16s,	the	number	must	be	even.

			207	 	 cipherSuiteLen	:=	int(data[0])<<8	|	int(data[1])

			208	 	 if	cipherSuiteLen%2	==	1	||	len(data)	<	2+cipherSuiteLen	{

			209	 	 	 return	false

			210	 	 }

			211	 	 numCipherSuites	:=	cipherSuiteLen	/	2

			212	 	 m.cipherSuites	=	make([]uint16,	numCipherSuites)

			213	 	 for	i	:=	0;	i	<	numCipherSuites;	i++	{

			214	 	 	 m.cipherSuites[i]	=	uint16(data[2+2*i])<<8	|	uint16(data[3+2*i])

			215	 	 }

			216	 	 data	=	data[2+cipherSuiteLen:]

			217	 	 if	len(data)	<	1	{

			218	 	 	 return	false

			219	 	 }

			220	 	 compressionMethodsLen	:=	int(data[0])

			221	 	 if	len(data)	<	1+compressionMethodsLen	{

			222	 	 	 return	false

			223	 	 }

			224	 	 m.compressionMethods	=	data[1	:	1+compressionMethodsLen]

			225	

			226	 	 data	=	data[1+compressionMethodsLen:]

			227	

			228	 	 m.nextProtoNeg	=	false

			229	 	 m.serverName	=	""

			230	 	 m.ocspStapling	=	false

			231	

			232	 	 if	len(data)	==	0	{

			233	 	 	 //	ClientHello	is	optionally	followed	by	extension	data

			234	 	 	 return	true

			235	 	 }

			236	 	 if	len(data)	<	2	{

			237	 	 	 return	false

			238	 	 }

			239	

			240	 	 extensionsLength	:=	int(data[0])<<8	|	int(data[1])

			241	 	 data	=	data[2:]

			242	 	 if	extensionsLength	!=	len(data)	{

			243	 	 	 return	false

			244	 	 }

			245	

			246	 	 for	len(data)	!=	0	{

			247	 	 	 if	len(data)	<	4	{

			248	 	 	 	 return	false

			249	 	 	 }

			250	 	 	 extension	:=	uint16(data[0])<<8	|	uint16(data[1])

			251	 	 	 length	:=	int(data[2])<<8	|	int(data[3])

			252	 	 	 data	=	data[4:]

			253	 	 	 if	len(data)	<	length	{

			254	 	 	 	 return	false

			255	 	 	 }

			256	

			257	 	 	 switch	extension	{

			258	 	 	 case	extensionServerName:

			259	 	 	 	 if	length	<	2	{

			260	 	 	 	 	 return	false

			261	 	 	 	 }

			262	 	 	 	 numNames	:=	int(data[0])<<8	|	int(data[1])

			263	 	 	 	 d	:=	data[2:]

			264	 	 	 	 for	i	:=	0;	i	<	numNames;	i++	{

			265	 	 	 	 	 if	len(d)	<	3	{

			266	 	 	 	 	 	 return	false

			267	 	 	 	 	 }

			268	 	 	 	 	 nameType	:=	d[0]

			269	 	 	 	 	 nameLen	:=	int(d[1])<<8	|	int(d[2])

			270	 	 	 	 	 d	=	d[3:]

			271	 	 	 	 	 if	len(d)	<	nameLen	{

			272	 	 	 	 	 	 return	false

			273	 	 	 	 	 }

			274	 	 	 	 	 if	nameType	==	0	{

			275	 	 	 	 	 	 m.serverName	=	string(d[0:nameLen])

			276	 	 	 	 	 	 break

			277	 	 	 	 	 }

			278	 	 	 	 	 d	=	d[nameLen:]

			279	 	 	 	 }

			280	 	 	 case	extensionNextProtoNeg:

			281	 	 	 	 if	length	>	0	{

			282	 	 	 	 	 return	false

			283	 	 	 	 }

			284	 	 	 	 m.nextProtoNeg	=	true

			285	 	 	 case	extensionStatusRequest:

			286	 	 	 	 m.ocspStapling	=	length	>	0	&&	data[0]	==	statusTypeOCSP

			287	 	 	 case	extensionSupportedCurves:

			288	 	 	 	 //	http://tools.ietf.org/html/rfc4492#section-5.5.1

			289	 	 	 	 if	length	<	2	{

			290	 	 	 	 	 return	false

			291	 	 	 	 }

			292	 	 	 	 l	:=	int(data[0])<<8	|	int(data[1])

			293	 	 	 	 if	l%2	==	1	||	length	!=	l+2	{

			294	 	 	 	 	 return	false

			295	 	 	 	 }

			296	 	 	 	 numCurves	:=	l	/	2

			297	 	 	 	 m.supportedCurves	=	make([]uint16,	numCurves)

			298	 	 	 	 d	:=	data[2:]

			299	 	 	 	 for	i	:=	0;	i	<	numCurves;	i++	{

			300	 	 	 	 	 m.supportedCurves[i]	=	uint16(d[0])<<8	|	uint16(d[1])

			301	 	 	 	 	 d	=	d[2:]

			302	 	 	 	 }

			303	 	 	 case	extensionSupportedPoints:

			304	 	 	 	 //	http://tools.ietf.org/html/rfc4492#section-5.5.2

			305	 	 	 	 if	length	<	1	{

			306	 	 	 	 	 return	false

			307	 	 	 	 }

			308	 	 	 	 l	:=	int(data[0])

			309	 	 	 	 if	length	!=	l+1	{

			310	 	 	 	 	 return	false

			311	 	 	 	 }

			312	 	 	 	 m.supportedPoints	=	make([]uint8,	l)

			313	 	 	 	 copy(m.supportedPoints,	data[1:])

			314	 	 	 }

			315	 	 	 data	=	data[length:]

			316	 	 }

			317	

			318	 	 return	true

			319	 }

			320	

			321	 type	serverHelloMsg	struct	{

			322	 	 raw															[]byte

			323	 	 vers														uint16

			324	 	 random												[]byte

			325	 	 sessionId									[]byte

			326	 	 cipherSuite							uint16

			327	 	 compressionMethod	uint8

			328	 	 nextProtoNeg						bool

			329	 	 nextProtos								[]string

			330	 	 ocspStapling						bool

			331	 }

			332	

			333	 func	(m	*serverHelloMsg)	equal(i	interface{})	bool	{

			334	 	 m1,	ok	:=	i.(*serverHelloMsg)

			335	 	 if	!ok	{

			336	 	 	 return	false

			337	 	 }

			338	

			339	 	 return	bytes.Equal(m.raw,	m1.raw)	&&

			340	 	 	 m.vers	==	m1.vers	&&

			341	 	 	 bytes.Equal(m.random,	m1.random)	&&

			342	 	 	 bytes.Equal(m.sessionId,	m1.sessionId)	&&

			343	 	 	 m.cipherSuite	==	m1.cipherSuite	&&

			344	 	 	 m.compressionMethod	==	m1.compressionMethod	&&

			345	 	 	 m.nextProtoNeg	==	m1.nextProtoNeg	&&

			346	 	 	 eqStrings(m.nextProtos,	m1.nextProtos)	&&

			347	 	 	 m.ocspStapling	==	m1.ocspStapling

			348	 }

			349	

			350	 func	(m	*serverHelloMsg)	marshal()	[]byte	{

			351	 	 if	m.raw	!=	nil	{

			352	 	 	 return	m.raw

			353	 	 }

			354	

			355	 	 length	:=	38	+	len(m.sessionId)

			356	 	 numExtensions	:=	0

			357	 	 extensionsLength	:=	0

			358	

			359	 	 nextProtoLen	:=	0

			360	 	 if	m.nextProtoNeg	{

			361	 	 	 numExtensions++

			362	 	 	 for	_,	v	:=	range	m.nextProtos	{

			363	 	 	 	 nextProtoLen	+=	len(v)

			364	 	 	 }

			365	 	 	 nextProtoLen	+=	len(m.nextProtos)

			366	 	 	 extensionsLength	+=	nextProtoLen

			367	 	 }

			368	 	 if	m.ocspStapling	{

			369	 	 	 numExtensions++

			370	 	 }

			371	 	 if	numExtensions	>	0	{

			372	 	 	 extensionsLength	+=	4	*	numExtensions

			373	 	 	 length	+=	2	+	extensionsLength

			374	 	 }

			375	

			376	 	 x	:=	make([]byte,	4+length)

			377	 	 x[0]	=	typeServerHello

			378	 	 x[1]	=	uint8(length	>>	16)

			379	 	 x[2]	=	uint8(length	>>	8)

			380	 	 x[3]	=	uint8(length)

			381	 	 x[4]	=	uint8(m.vers	>>	8)

			382	 	 x[5]	=	uint8(m.vers)

			383	 	 copy(x[6:38],	m.random)

			384	 	 x[38]	=	uint8(len(m.sessionId))

			385	 	 copy(x[39:39+len(m.sessionId)],	m.sessionId)

			386	 	 z	:=	x[39+len(m.sessionId):]

			387	 	 z[0]	=	uint8(m.cipherSuite	>>	8)

			388	 	 z[1]	=	uint8(m.cipherSuite)

			389	 	 z[2]	=	uint8(m.compressionMethod)

			390	

			391	 	 z	=	z[3:]

			392	 	 if	numExtensions	>	0	{

			393	 	 	 z[0]	=	byte(extensionsLength	>>	8)

			394	 	 	 z[1]	=	byte(extensionsLength)

			395	 	 	 z	=	z[2:]

			396	 	 }

			397	 	 if	m.nextProtoNeg	{

			398	 	 	 z[0]	=	byte(extensionNextProtoNeg	>>	8)

			399	 	 	 z[1]	=	byte(extensionNextProtoNeg)

			400	 	 	 z[2]	=	byte(nextProtoLen	>>	8)

			401	 	 	 z[3]	=	byte(nextProtoLen)

			402	 	 	 z	=	z[4:]

			403	

			404	 	 	 for	_,	v	:=	range	m.nextProtos	{

			405	 	 	 	 l	:=	len(v)

			406	 	 	 	 if	l	>	255	{

			407	 	 	 	 	 l	=	255

			408	 	 	 	 }

			409	 	 	 	 z[0]	=	byte(l)

			410	 	 	 	 copy(z[1:],	[]byte(v[0:l]))

			411	 	 	 	 z	=	z[1+l:]

			412	 	 	 }

			413	 	 }

			414	 	 if	m.ocspStapling	{

			415	 	 	 z[0]	=	byte(extensionStatusRequest	>>	8)

			416	 	 	 z[1]	=	byte(extensionStatusRequest)

			417	 	 	 z	=	z[4:]

			418	 	 }

			419	

			420	 	 m.raw	=	x

			421	

			422	 	 return	x

			423	 }

			424	

			425	 func	(m	*serverHelloMsg)	unmarshal(data	[]byte)	bool	{

			426	 	 if	len(data)	<	42	{

			427	 	 	 return	false

			428	 	 }

			429	 	 m.raw	=	data

			430	 	 m.vers	=	uint16(data[4])<<8	|	uint16(data[5])

			431	 	 m.random	=	data[6:38]

			432	 	 sessionIdLen	:=	int(data[38])

			433	 	 if	sessionIdLen	>	32	||	len(data)	<	39+sessionIdLen	{

			434	 	 	 return	false

			435	 	 }

			436	 	 m.sessionId	=	data[39	:	39+sessionIdLen]

			437	 	 data	=	data[39+sessionIdLen:]

			438	 	 if	len(data)	<	3	{

			439	 	 	 return	false

			440	 	 }

			441	 	 m.cipherSuite	=	uint16(data[0])<<8	|	uint16(data[1])

			442	 	 m.compressionMethod	=	data[2]

			443	 	 data	=	data[3:]

			444	

			445	 	 m.nextProtoNeg	=	false

			446	 	 m.nextProtos	=	nil

			447	 	 m.ocspStapling	=	false

			448	

			449	 	 if	len(data)	==	0	{

			450	 	 	 //	ServerHello	is	optionally	followed	by	extension	data

			451	 	 	 return	true

			452	 	 }

			453	 	 if	len(data)	<	2	{

			454	 	 	 return	false

			455	 	 }

			456	

			457	 	 extensionsLength	:=	int(data[0])<<8	|	int(data[1])

			458	 	 data	=	data[2:]

			459	 	 if	len(data)	!=	extensionsLength	{

			460	 	 	 return	false

			461	 	 }

			462	

			463	 	 for	len(data)	!=	0	{

			464	 	 	 if	len(data)	<	4	{

			465	 	 	 	 return	false

			466	 	 	 }

			467	 	 	 extension	:=	uint16(data[0])<<8	|	uint16(data[1])

			468	 	 	 length	:=	int(data[2])<<8	|	int(data[3])

			469	 	 	 data	=	data[4:]

			470	 	 	 if	len(data)	<	length	{

			471	 	 	 	 return	false

			472	 	 	 }

			473	

			474	 	 	 switch	extension	{

			475	 	 	 case	extensionNextProtoNeg:

			476	 	 	 	 m.nextProtoNeg	=	true

			477	 	 	 	 d	:=	data

			478	 	 	 	 for	len(d)	>	0	{

			479	 	 	 	 	 l	:=	int(d[0])

			480	 	 	 	 	 d	=	d[1:]

			481	 	 	 	 	 if	l	==	0	||	l	>	len(d)	{

			482	 	 	 	 	 	 return	false

			483	 	 	 	 	 }

			484	 	 	 	 	 m.nextProtos	=	append(m.nextProtos,	string(d[0:l]))

			485	 	 	 	 	 d	=	d[l:]

			486	 	 	 	 }

			487	 	 	 case	extensionStatusRequest:

			488	 	 	 	 if	length	>	0	{

			489	 	 	 	 	 return	false

			490	 	 	 	 }

			491	 	 	 	 m.ocspStapling	=	true

			492	 	 	 }

			493	 	 	 data	=	data[length:]

			494	 	 }

			495	

			496	 	 return	true

			497	 }

			498	

			499	 type	certificateMsg	struct	{

			500	 	 raw										[]byte

			501	 	 certificates	[][]byte

			502	 }

			503	

			504	 func	(m	*certificateMsg)	equal(i	interface{})	bool	{

			505	 	 m1,	ok	:=	i.(*certificateMsg)

			506	 	 if	!ok	{

			507	 	 	 return	false

			508	 	 }

			509	

			510	 	 return	bytes.Equal(m.raw,	m1.raw)	&&

			511	 	 	 eqByteSlices(m.certificates,	m1.certificates)

			512	 }

			513	

			514	 func	(m	*certificateMsg)	marshal()	(x	[]byte)	{

			515	 	 if	m.raw	!=	nil	{

			516	 	 	 return	m.raw

			517	 	 }

			518	

			519	 	 var	i	int

			520	 	 for	_,	slice	:=	range	m.certificates	{

			521	 	 	 i	+=	len(slice)

			522	 	 }

			523	

			524	 	 length	:=	3	+	3*len(m.certificates)	+	i

			525	 	 x	=	make([]byte,	4+length)

			526	 	 x[0]	=	typeCertificate

			527	 	 x[1]	=	uint8(length	>>	16)

			528	 	 x[2]	=	uint8(length	>>	8)

			529	 	 x[3]	=	uint8(length)

			530	

			531	 	 certificateOctets	:=	length	-	3

			532	 	 x[4]	=	uint8(certificateOctets	>>	16)

			533	 	 x[5]	=	uint8(certificateOctets	>>	8)

			534	 	 x[6]	=	uint8(certificateOctets)

			535	

			536	 	 y	:=	x[7:]

			537	 	 for	_,	slice	:=	range	m.certificates	{

			538	 	 	 y[0]	=	uint8(len(slice)	>>	16)

			539	 	 	 y[1]	=	uint8(len(slice)	>>	8)

			540	 	 	 y[2]	=	uint8(len(slice))

			541	 	 	 copy(y[3:],	slice)

			542	 	 	 y	=	y[3+len(slice):]

			543	 	 }

			544	

			545	 	 m.raw	=	x

			546	 	 return

			547	 }

			548	

			549	 func	(m	*certificateMsg)	unmarshal(data	[]byte)	bool	{

			550	 	 if	len(data)	<	7	{

			551	 	 	 return	false

			552	 	 }

			553	

			554	 	 m.raw	=	data

			555	 	 certsLen	:=	uint32(data[4])<<16	|	uint32(data[5])<<8	|	uint32(data[6])

			556	 	 if	uint32(len(data))	!=	certsLen+7	{

			557	 	 	 return	false

			558	 	 }

			559	

			560	 	 numCerts	:=	0

			561	 	 d	:=	data[7:]

			562	 	 for	certsLen	>	0	{

			563	 	 	 if	len(d)	<	4	{

			564	 	 	 	 return	false

			565	 	 	 }

			566	 	 	 certLen	:=	uint32(d[0])<<24	|	uint32(d[1])<<8	|	uint32(d[2])

			567	 	 	 if	uint32(len(d))	<	3+certLen	{

			568	 	 	 	 return	false

			569	 	 	 }

			570	 	 	 d	=	d[3+certLen:]

			571	 	 	 certsLen	-=	3	+	certLen

			572	 	 	 numCerts++

			573	 	 }

			574	

			575	 	 m.certificates	=	make([][]byte,	numCerts)

			576	 	 d	=	data[7:]

			577	 	 for	i	:=	0;	i	<	numCerts;	i++	{

			578	 	 	 certLen	:=	uint32(d[0])<<24	|	uint32(d[1])<<8	|	uint32(d[2])

			579	 	 	 m.certificates[i]	=	d[3	:	3+certLen]

			580	 	 	 d	=	d[3+certLen:]

			581	 	 }

			582	

			583	 	 return	true

			584	 }

			585	

			586	 type	serverKeyExchangeMsg	struct	{

			587	 	 raw	[]byte

			588	 	 key	[]byte

			589	 }

			590	

			591	 func	(m	*serverKeyExchangeMsg)	equal(i	interface{})	bool	{

			592	 	 m1,	ok	:=	i.(*serverKeyExchangeMsg)

			593	 	 if	!ok	{

			594	 	 	 return	false

			595	 	 }

			596	

			597	 	 return	bytes.Equal(m.raw,	m1.raw)	&&

			598	 	 	 bytes.Equal(m.key,	m1.key)

			599	 }

			600	

			601	 func	(m	*serverKeyExchangeMsg)	marshal()	[]byte	{

			602	 	 if	m.raw	!=	nil	{

			603	 	 	 return	m.raw

			604	 	 }

			605	 	 length	:=	len(m.key)

			606	 	 x	:=	make([]byte,	length+4)

			607	 	 x[0]	=	typeServerKeyExchange

			608	 	 x[1]	=	uint8(length	>>	16)

			609	 	 x[2]	=	uint8(length	>>	8)

			610	 	 x[3]	=	uint8(length)

			611	 	 copy(x[4:],	m.key)

			612	

			613	 	 m.raw	=	x

			614	 	 return	x

			615	 }

			616	

			617	 func	(m	*serverKeyExchangeMsg)	unmarshal(data	[]byte)	bool	{

			618	 	 m.raw	=	data

			619	 	 if	len(data)	<	4	{

			620	 	 	 return	false

			621	 	 }

			622	 	 m.key	=	data[4:]

			623	 	 return	true

			624	 }

			625	

			626	 type	certificateStatusMsg	struct	{

			627	 	 raw								[]byte

			628	 	 statusType	uint8

			629	 	 response			[]byte

			630	 }

			631	

			632	 func	(m	*certificateStatusMsg)	equal(i	interface{})	bool	{

			633	 	 m1,	ok	:=	i.(*certificateStatusMsg)

			634	 	 if	!ok	{

			635	 	 	 return	false

			636	 	 }

			637	

			638	 	 return	bytes.Equal(m.raw,	m1.raw)	&&

			639	 	 	 m.statusType	==	m1.statusType	&&

			640	 	 	 bytes.Equal(m.response,	m1.response)

			641	 }

			642	

			643	 func	(m	*certificateStatusMsg)	marshal()	[]byte	{

			644	 	 if	m.raw	!=	nil	{

			645	 	 	 return	m.raw

			646	 	 }

			647	

			648	 	 var	x	[]byte

			649	 	 if	m.statusType	==	statusTypeOCSP	{

			650	 	 	 x	=	make([]byte,	4+4+len(m.response))

			651	 	 	 x[0]	=	typeCertificateStatus

			652	 	 	 l	:=	len(m.response)	+	4

			653	 	 	 x[1]	=	byte(l	>>	16)

			654	 	 	 x[2]	=	byte(l	>>	8)

			655	 	 	 x[3]	=	byte(l)

			656	 	 	 x[4]	=	statusTypeOCSP

			657	

			658	 	 	 l	-=	4

			659	 	 	 x[5]	=	byte(l	>>	16)

			660	 	 	 x[6]	=	byte(l	>>	8)

			661	 	 	 x[7]	=	byte(l)

			662	 	 	 copy(x[8:],	m.response)

			663	 	 }	else	{

			664	 	 	 x	=	[]byte{typeCertificateStatus,	0,	0,	1,	m.statusType}

			665	 	 }

			666	

			667	 	 m.raw	=	x

			668	 	 return	x

			669	 }

			670	

			671	 func	(m	*certificateStatusMsg)	unmarshal(data	[]byte)	bool	{

			672	 	 m.raw	=	data

			673	 	 if	len(data)	<	5	{

			674	 	 	 return	false

			675	 	 }

			676	 	 m.statusType	=	data[4]

			677	

			678	 	 m.response	=	nil

			679	 	 if	m.statusType	==	statusTypeOCSP	{

			680	 	 	 if	len(data)	<	8	{

			681	 	 	 	 return	false

			682	 	 	 }

			683	 	 	 respLen	:=	uint32(data[5])<<16	|	uint32(data[6])<<8	|	uint32(data[7])

			684	 	 	 if	uint32(len(data))	!=	4+4+respLen	{

			685	 	 	 	 return	false

			686	 	 	 }

			687	 	 	 m.response	=	data[8:]

			688	 	 }

			689	 	 return	true

			690	 }

			691	

			692	 type	serverHelloDoneMsg	struct{}

			693	

			694	 func	(m	*serverHelloDoneMsg)	equal(i	interface{})	bool	{

			695	 	 _,	ok	:=	i.(*serverHelloDoneMsg)

			696	 	 return	ok

			697	 }

			698	

			699	 func	(m	*serverHelloDoneMsg)	marshal()	[]byte	{

			700	 	 x	:=	make([]byte,	4)

			701	 	 x[0]	=	typeServerHelloDone

			702	 	 return	x

			703	 }

			704	

			705	 func	(m	*serverHelloDoneMsg)	unmarshal(data	[]byte)	bool	{

			706	 	 return	len(data)	==	4

			707	 }

			708	

			709	 type	clientKeyExchangeMsg	struct	{

			710	 	 raw								[]byte

			711	 	 ciphertext	[]byte

			712	 }

			713	

			714	 func	(m	*clientKeyExchangeMsg)	equal(i	interface{})	bool	{

			715	 	 m1,	ok	:=	i.(*clientKeyExchangeMsg)

			716	 	 if	!ok	{

			717	 	 	 return	false

			718	 	 }

			719	

			720	 	 return	bytes.Equal(m.raw,	m1.raw)	&&

			721	 	 	 bytes.Equal(m.ciphertext,	m1.ciphertext)

			722	 }

			723	

			724	 func	(m	*clientKeyExchangeMsg)	marshal()	[]byte	{

			725	 	 if	m.raw	!=	nil	{

			726	 	 	 return	m.raw

			727	 	 }

			728	 	 length	:=	len(m.ciphertext)

			729	 	 x	:=	make([]byte,	length+4)

			730	 	 x[0]	=	typeClientKeyExchange

			731	 	 x[1]	=	uint8(length	>>	16)

			732	 	 x[2]	=	uint8(length	>>	8)

			733	 	 x[3]	=	uint8(length)

			734	 	 copy(x[4:],	m.ciphertext)

			735	

			736	 	 m.raw	=	x

			737	 	 return	x

			738	 }

			739	

			740	 func	(m	*clientKeyExchangeMsg)	unmarshal(data	[]byte)	bool	{

			741	 	 m.raw	=	data

			742	 	 if	len(data)	<	4	{

			743	 	 	 return	false

			744	 	 }

			745	 	 l	:=	int(data[1])<<16	|	int(data[2])<<8	|	int(data[3])

			746	 	 if	l	!=	len(data)-4	{

			747	 	 	 return	false

			748	 	 }

			749	 	 m.ciphertext	=	data[4:]

			750	 	 return	true

			751	 }

			752	

			753	 type	finishedMsg	struct	{

			754	 	 raw								[]byte

			755	 	 verifyData	[]byte

			756	 }

			757	

			758	 func	(m	*finishedMsg)	equal(i	interface{})	bool	{

			759	 	 m1,	ok	:=	i.(*finishedMsg)

			760	 	 if	!ok	{

			761	 	 	 return	false

			762	 	 }

			763	

			764	 	 return	bytes.Equal(m.raw,	m1.raw)	&&

			765	 	 	 bytes.Equal(m.verifyData,	m1.verifyData)

			766	 }

			767	

			768	 func	(m	*finishedMsg)	marshal()	(x	[]byte)	{

			769	 	 if	m.raw	!=	nil	{

			770	 	 	 return	m.raw

			771	 	 }

			772	

			773	 	 x	=	make([]byte,	4+len(m.verifyData))

			774	 	 x[0]	=	typeFinished

			775	 	 x[3]	=	byte(len(m.verifyData))

			776	 	 copy(x[4:],	m.verifyData)

			777	 	 m.raw	=	x

			778	 	 return

			779	 }

			780	

			781	 func	(m	*finishedMsg)	unmarshal(data	[]byte)	bool	{

			782	 	 m.raw	=	data

			783	 	 if	len(data)	<	4	{

			784	 	 	 return	false

			785	 	 }

			786	 	 m.verifyData	=	data[4:]

			787	 	 return	true

			788	 }

			789	

			790	 type	nextProtoMsg	struct	{

			791	 	 raw			[]byte

			792	 	 proto	string

			793	 }

			794	

			795	 func	(m	*nextProtoMsg)	equal(i	interface{})	bool	{

			796	 	 m1,	ok	:=	i.(*nextProtoMsg)

			797	 	 if	!ok	{

			798	 	 	 return	false

			799	 	 }

			800	

			801	 	 return	bytes.Equal(m.raw,	m1.raw)	&&

			802	 	 	 m.proto	==	m1.proto

			803	 }

			804	

			805	 func	(m	*nextProtoMsg)	marshal()	[]byte	{

			806	 	 if	m.raw	!=	nil	{

			807	 	 	 return	m.raw

			808	 	 }

			809	 	 l	:=	len(m.proto)

			810	 	 if	l	>	255	{

			811	 	 	 l	=	255

			812	 	 }

			813	

			814	 	 padding	:=	32	-	(l+2)%32

			815	 	 length	:=	l	+	padding	+	2

			816	 	 x	:=	make([]byte,	length+4)

			817	 	 x[0]	=	typeNextProtocol

			818	 	 x[1]	=	uint8(length	>>	16)

			819	 	 x[2]	=	uint8(length	>>	8)

			820	 	 x[3]	=	uint8(length)

			821	

			822	 	 y	:=	x[4:]

			823	 	 y[0]	=	byte(l)

			824	 	 copy(y[1:],	[]byte(m.proto[0:l]))

			825	 	 y	=	y[1+l:]

			826	 	 y[0]	=	byte(padding)

			827	

			828	 	 m.raw	=	x

			829	

			830	 	 return	x

			831	 }

			832	

			833	 func	(m	*nextProtoMsg)	unmarshal(data	[]byte)	bool	{

			834	 	 m.raw	=	data

			835	

			836	 	 if	len(data)	<	5	{

			837	 	 	 return	false

			838	 	 }

			839	 	 data	=	data[4:]

			840	 	 protoLen	:=	int(data[0])

			841	 	 data	=	data[1:]

			842	 	 if	len(data)	<	protoLen	{

			843	 	 	 return	false

			844	 	 }

			845	 	 m.proto	=	string(data[0:protoLen])

			846	 	 data	=	data[protoLen:]

			847	

			848	 	 if	len(data)	<	1	{

			849	 	 	 return	false

			850	 	 }

			851	 	 paddingLen	:=	int(data[0])

			852	 	 data	=	data[1:]

			853	 	 if	len(data)	!=	paddingLen	{

			854	 	 	 return	false

			855	 	 }

			856	

			857	 	 return	true

			858	 }

			859	

			860	 type	certificateRequestMsg	struct	{

			861	 	 raw																				[]byte

			862	 	 certificateTypes							[]byte

			863	 	 certificateAuthorities	[][]byte

			864	 }

			865	

			866	 func	(m	*certificateRequestMsg)	equal(i	interface{})	bool	{

			867	 	 m1,	ok	:=	i.(*certificateRequestMsg)

			868	 	 if	!ok	{

			869	 	 	 return	false

			870	 	 }

			871	

			872	 	 return	bytes.Equal(m.raw,	m1.raw)	&&

			873	 	 	 bytes.Equal(m.certificateTypes,	m1.certificateTypes)	&&

			874	 	 	 eqByteSlices(m.certificateAuthorities,	m1.certificateAuthorities)

			875	 }

			876	

			877	 func	(m	*certificateRequestMsg)	marshal()	(x	[]byte)	{

			878	 	 if	m.raw	!=	nil	{

			879	 	 	 return	m.raw

			880	 	 }

			881	

			882	 	 //	See	http://tools.ietf.org/html/rfc4346#section-7.4.4

			883	 	 length	:=	1	+	len(m.certificateTypes)	+	2

			884	 	 casLength	:=	0

			885	 	 for	_,	ca	:=	range	m.certificateAuthorities	{

			886	 	 	 casLength	+=	2	+	len(ca)

			887	 	 }

			888	 	 length	+=	casLength

			889	

			890	 	 x	=	make([]byte,	4+length)

			891	 	 x[0]	=	typeCertificateRequest

			892	 	 x[1]	=	uint8(length	>>	16)

			893	 	 x[2]	=	uint8(length	>>	8)

			894	 	 x[3]	=	uint8(length)

			895	

			896	 	 x[4]	=	uint8(len(m.certificateTypes))

			897	

			898	 	 copy(x[5:],	m.certificateTypes)

			899	 	 y	:=	x[5+len(m.certificateTypes):]

			900	 	 y[0]	=	uint8(casLength	>>	8)

			901	 	 y[1]	=	uint8(casLength)

			902	 	 y	=	y[2:]

			903	 	 for	_,	ca	:=	range	m.certificateAuthorities	{

			904	 	 	 y[0]	=	uint8(len(ca)	>>	8)

			905	 	 	 y[1]	=	uint8(len(ca))

			906	 	 	 y	=	y[2:]

			907	 	 	 copy(y,	ca)

			908	 	 	 y	=	y[len(ca):]

			909	 	 }

			910	

			911	 	 m.raw	=	x

			912	 	 return

			913	 }

			914	

			915	 func	(m	*certificateRequestMsg)	unmarshal(data	[]byte)	bool	{

			916	 	 m.raw	=	data

			917	

			918	 	 if	len(data)	<	5	{

			919	 	 	 return	false

			920	 	 }

			921	

			922	 	 length	:=	uint32(data[1])<<16	|	uint32(data[2])<<8	|	uint32(data[3])

			923	 	 if	uint32(len(data))-4	!=	length	{

			924	 	 	 return	false

			925	 	 }

			926	

			927	 	 numCertTypes	:=	int(data[4])

			928	 	 data	=	data[5:]

			929	 	 if	numCertTypes	==	0	||	len(data)	<=	numCertTypes	{

			930	 	 	 return	false

			931	 	 }

			932	

			933	 	 m.certificateTypes	=	make([]byte,	numCertTypes)

			934	 	 if	copy(m.certificateTypes,	data)	!=	numCertTypes	{

			935	 	 	 return	false

			936	 	 }

			937	

			938	 	 data	=	data[numCertTypes:]

			939	

			940	 	 if	len(data)	<	2	{

			941	 	 	 return	false

			942	 	 }

			943	 	 casLength	:=	uint16(data[0])<<8	|	uint16(data[1])

			944	 	 data	=	data[2:]

			945	 	 if	len(data)	<	int(casLength)	{

			946	 	 	 return	false

			947	 	 }

			948	 	 cas	:=	make([]byte,	casLength)

			949	 	 copy(cas,	data)

			950	 	 data	=	data[casLength:]

			951	

			952	 	 m.certificateAuthorities	=	nil

			953	 	 for	len(cas)	>	0	{

			954	 	 	 if	len(cas)	<	2	{

			955	 	 	 	 return	false

			956	 	 	 }

			957	 	 	 caLen	:=	uint16(cas[0])<<8	|	uint16(cas[1])

			958	 	 	 cas	=	cas[2:]

			959	

			960	 	 	 if	len(cas)	<	int(caLen)	{

			961	 	 	 	 return	false

			962	 	 	 }

			963	

			964	 	 	 m.certificateAuthorities	=	append(m.certificateAuthorities,	cas[:caLen])

			965	 	 	 cas	=	cas[caLen:]

			966	 	 }

			967	 	 if	len(data)	>	0	{

			968	 	 	 return	false

			969	 	 }

			970	

			971	 	 return	true

			972	 }

			973	

			974	 type	certificateVerifyMsg	struct	{

			975	 	 raw							[]byte

			976	 	 signature	[]byte

			977	 }

			978	

			979	 func	(m	*certificateVerifyMsg)	equal(i	interface{})	bool	{

			980	 	 m1,	ok	:=	i.(*certificateVerifyMsg)

			981	 	 if	!ok	{

			982	 	 	 return	false

			983	 	 }

			984	

			985	 	 return	bytes.Equal(m.raw,	m1.raw)	&&

			986	 	 	 bytes.Equal(m.signature,	m1.signature)

			987	 }

			988	

			989	 func	(m	*certificateVerifyMsg)	marshal()	(x	[]byte)	{

			990	 	 if	m.raw	!=	nil	{

			991	 	 	 return	m.raw

			992	 	 }

			993	

			994	 	 //	See	http://tools.ietf.org/html/rfc4346#section-7.4.8

			995	 	 siglength	:=	len(m.signature)

			996	 	 length	:=	2	+	siglength

			997	 	 x	=	make([]byte,	4+length)

			998	 	 x[0]	=	typeCertificateVerify

			999	 	 x[1]	=	uint8(length	>>	16)

		1000	 	 x[2]	=	uint8(length	>>	8)

		1001	 	 x[3]	=	uint8(length)

		1002	 	 x[4]	=	uint8(siglength	>>	8)

		1003	 	 x[5]	=	uint8(siglength)

		1004	 	 copy(x[6:],	m.signature)

		1005	

		1006	 	 m.raw	=	x

		1007	

		1008	 	 return

		1009	 }

		1010	

		1011	 func	(m	*certificateVerifyMsg)	unmarshal(data	[]byte)	bool	{

		1012	 	 m.raw	=	data

		1013	

		1014	 	 if	len(data)	<	6	{

		1015	 	 	 return	false

		1016	 	 }

		1017	

		1018	 	 length	:=	uint32(data[1])<<16	|	uint32(data[2])<<8	|	uint32(data[3])

		1019	 	 if	uint32(len(data))-4	!=	length	{

		1020	 	 	 return	false

		1021	 	 }

		1022	

		1023	 	 siglength	:=	int(data[4])<<8	+	int(data[5])

		1024	 	 if	len(data)-6	!=	siglength	{

		1025	 	 	 return	false

		1026	 	 }

		1027	

		1028	 	 m.signature	=	data[6:]

		1029	

		1030	 	 return	true

		1031	 }

		1032	

		1033	 func	eqUint16s(x,	y	[]uint16)	bool	{

		1034	 	 if	len(x)	!=	len(y)	{

		1035	 	 	 return	false

		1036	 	 }

		1037	 	 for	i,	v	:=	range	x	{

		1038	 	 	 if	y[i]	!=	v	{

		1039	 	 	 	 return	false

		1040	 	 	 }

		1041	 	 }

		1042	 	 return	true

		1043	 }

		1044	

		1045	 func	eqStrings(x,	y	[]string)	bool	{

		1046	 	 if	len(x)	!=	len(y)	{

		1047	 	 	 return	false

		1048	 	 }

		1049	 	 for	i,	v	:=	range	x	{

		1050	 	 	 if	y[i]	!=	v	{

		1051	 	 	 	 return	false

		1052	 	 	 }

		1053	 	 }

		1054	 	 return	true

		1055	 }

		1056	

		1057	 func	eqByteSlices(x,	y	[][]byte)	bool	{

		1058	 	 if	len(x)	!=	len(y)	{

		1059	 	 	 return	false

		1060	 	 }

		1061	 	 for	i,	v	:=	range	x	{

		1062	 	 	 if	!bytes.Equal(v,	y[i])	{

		1063	 	 	 	 return	false

		1064	 	 	 }

		1065	 	 }

		1066	 	 return	true

		1067	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/tls/handshake_server.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	tls

					6	

					7	 import	(

					8	 	 "crypto"

					9	 	 "crypto/rsa"

				10	 	 "crypto/subtle"

				11	 	 "crypto/x509"

				12	 	 "errors"

				13	 	 "io"

				14)

				15	

				16	 func	(c	*Conn)	serverHandshake()	error	{

				17	 	 config	:=	c.config

				18	 	 msg,	err	:=	c.readHandshake()

				19	 	 if	err	!=	nil	{

				20	 	 	 return	err

				21	 	 }

				22	 	 clientHello,	ok	:=	msg.(*clientHelloMsg)

				23	 	 if	!ok	{

				24	 	 	 return	c.sendAlert(alertUnexpectedMessage)

				25	 	 }

				26	 	 vers,	ok	:=	mutualVersion(clientHello.vers)

				27	 	 if	!ok	{

				28	 	 	 return	c.sendAlert(alertProtocolVersion)

				29	 	 }

				30	 	 c.vers	=	vers

				31	 	 c.haveVers	=	true

				32	

				33	 	 finishedHash	:=	newFinishedHash(vers)

				34	 	 finishedHash.Write(clientHello.marshal())

				35	

				36	 	 hello	:=	new(serverHelloMsg)

				37	

				38	 	 supportedCurve	:=	false

				39	 Curves:

				40	 	 for	_,	curve	:=	range	clientHello.supportedCurves	{

				41	 	 	 switch	curve	{

				42	 	 	 case	curveP256,	curveP384,	curveP521:

				43	 	 	 	 supportedCurve	=	true

				44	 	 	 	 break	Curves

				45	 	 	 }

				46	 	 }

				47	

				48	 	 supportedPointFormat	:=	false

				49	 	 for	_,	pointFormat	:=	range	clientHello.supportedPoints	{

				50	 	 	 if	pointFormat	==	pointFormatUncompressed	{

				51	 	 	 	 supportedPointFormat	=	true

				52	 	 	 	 break

				53	 	 	 }

				54	 	 }

				55	

				56	 	 ellipticOk	:=	supportedCurve	&&	supportedPointFormat

				57	

				58	 	 var	suite	*cipherSuite

				59	 FindCipherSuite:

				60	 	 for	_,	id	:=	range	clientHello.cipherSuites	{

				61	 	 	 for	_,	supported	:=	range	config.cipherSuites()	{

				62	 	 	 	 if	id	==	supported	{

				63	 	 	 	 	 var	candidate	*cipherSuite

				64	

				65	 	 	 	 	 for	_,	s	:=	range	cipherSuites	{

				66	 	 	 	 	 	 if	s.id	==	id	{

				67	 	 	 	 	 	 	 candidate	=	s

				68	 	 	 	 	 	 	 break

				69	 	 	 	 	 	 }

				70	 	 	 	 	 }

				71	 	 	 	 	 if	candidate	==	nil	{

				72	 	 	 	 	 	 continue

				73	 	 	 	 	 }

				74	 	 	 	 	 //	Don't	select	a	ciphersuite	which	we	can't

				75	 	 	 	 	 //	support	for	this	client.

				76	 	 	 	 	 if	candidate.elliptic	&&	!ellipticOk	{

				77	 	 	 	 	 	 continue

				78	 	 	 	 	 }

				79	 	 	 	 	 suite	=	candidate

				80	 	 	 	 	 break	FindCipherSuite

				81	 	 	 	 }

				82	 	 	 }

				83	 	 }

				84	

				85	 	 foundCompression	:=	false

				86	 	 //	We	only	support	null	compression,	so	check	that	the	client	offered	it.

				87	 	 for	_,	compression	:=	range	clientHello.compressionMethods	{

				88	 	 	 if	compression	==	compressionNone	{

				89	 	 	 	 foundCompression	=	true

				90	 	 	 	 break

				91	 	 	 }

				92	 	 }

				93	

				94	 	 if	suite	==	nil	||	!foundCompression	{

				95	 	 	 return	c.sendAlert(alertHandshakeFailure)

				96	 	 }

				97	

				98	 	 hello.vers	=	vers

				99	 	 hello.cipherSuite	=	suite.id

			100	 	 t	:=	uint32(config.time().Unix())

			101	 	 hello.random	=	make([]byte,	32)

			102	 	 hello.random[0]	=	byte(t	>>	24)

			103	 	 hello.random[1]	=	byte(t	>>	16)

			104	 	 hello.random[2]	=	byte(t	>>	8)

			105	 	 hello.random[3]	=	byte(t)

			106	 	 _,	err	=	io.ReadFull(config.rand(),	hello.random[4:])

			107	 	 if	err	!=	nil	{

			108	 	 	 return	c.sendAlert(alertInternalError)

			109	 	 }

			110	 	 hello.compressionMethod	=	compressionNone

			111	 	 if	clientHello.nextProtoNeg	{

			112	 	 	 hello.nextProtoNeg	=	true

			113	 	 	 hello.nextProtos	=	config.NextProtos

			114	 	 }

			115	

			116	 	 if	len(config.Certificates)	==	0	{

			117	 	 	 return	c.sendAlert(alertInternalError)

			118	 	 }

			119	 	 cert	:=	&config.Certificates[0]

			120	 	 if	len(clientHello.serverName)	>	0	{

			121	 	 	 c.serverName	=	clientHello.serverName

			122	 	 	 cert	=	config.getCertificateForName(clientHello.serverName)

			123	 	 }

			124	

			125	 	 if	clientHello.ocspStapling	&&	len(cert.OCSPStaple)	>	0	{

			126	 	 	 hello.ocspStapling	=	true

			127	 	 }

			128	

			129	 	 finishedHash.Write(hello.marshal())

			130	 	 c.writeRecord(recordTypeHandshake,	hello.marshal())

			131	

			132	 	 certMsg	:=	new(certificateMsg)

			133	 	 certMsg.certificates	=	cert.Certificate

			134	 	 finishedHash.Write(certMsg.marshal())

			135	 	 c.writeRecord(recordTypeHandshake,	certMsg.marshal())

			136	

			137	 	 if	hello.ocspStapling	{

			138	 	 	 certStatus	:=	new(certificateStatusMsg)

			139	 	 	 certStatus.statusType	=	statusTypeOCSP

			140	 	 	 certStatus.response	=	cert.OCSPStaple

			141	 	 	 finishedHash.Write(certStatus.marshal())

			142	 	 	 c.writeRecord(recordTypeHandshake,	certStatus.marshal())

			143	 	 }

			144	

			145	 	 keyAgreement	:=	suite.ka()

			146	 	 skx,	err	:=	keyAgreement.generateServerKeyExchange(config,	cert,	clientHello,	hello)

			147	 	 if	err	!=	nil	{

			148	 	 	 c.sendAlert(alertHandshakeFailure)

			149	 	 	 return	err

			150	 	 }

			151	 	 if	skx	!=	nil	{

			152	 	 	 finishedHash.Write(skx.marshal())

			153	 	 	 c.writeRecord(recordTypeHandshake,	skx.marshal())

			154	 	 }

			155	

			156	 	 if	config.ClientAuth	>=	RequestClientCert	{

			157	 	 	 //	Request	a	client	certificate

			158	 	 	 certReq	:=	new(certificateRequestMsg)

			159	 	 	 certReq.certificateTypes	=	[]byte{certTypeRSASign}

			160	

			161	 	 	 //	An	empty	list	of	certificateAuthorities	signals	to

			162	 	 	 //	the	client	that	it	may	send	any	certificate	in	response

			163	 	 	 //	to	our	request.	When	we	know	the	CAs	we	trust,	then

			164	 	 	 //	we	can	send	them	down,	so	that	the	client	can	choose

			165	 	 	 //	an	appropriate	certificate	to	give	to	us.

			166	 	 	 if	config.ClientCAs	!=	nil	{

			167	 	 	 	 certReq.certificateAuthorities	=	config.ClientCAs.Subjects()

			168	 	 	 }

			169	 	 	 finishedHash.Write(certReq.marshal())

			170	 	 	 c.writeRecord(recordTypeHandshake,	certReq.marshal())

			171	 	 }

			172	

			173	 	 helloDone	:=	new(serverHelloDoneMsg)

			174	 	 finishedHash.Write(helloDone.marshal())

			175	 	 c.writeRecord(recordTypeHandshake,	helloDone.marshal())

			176	

			177	 	 var	pub	*rsa.PublicKey	//	public	key	for	client	auth,	if	any

			178	

			179	 	 msg,	err	=	c.readHandshake()

			180	 	 if	err	!=	nil	{

			181	 	 	 return	err

			182	 	 }

			183	

			184	 	 //	If	we	requested	a	client	certificate,	then	the	client	must	send	a

			185	 	 //	certificate	message,	even	if	it's	empty.

			186	 	 if	config.ClientAuth	>=	RequestClientCert	{

			187	 	 	 if	certMsg,	ok	=	msg.(*certificateMsg);	!ok	{

			188	 	 	 	 return	c.sendAlert(alertHandshakeFailure)

			189	 	 	 }

			190	 	 	 finishedHash.Write(certMsg.marshal())

			191	

			192	 	 	 if	len(certMsg.certificates)	==	0	{

			193	 	 	 	 //	The	client	didn't	actually	send	a	certificate

			194	 	 	 	 switch	config.ClientAuth	{

			195	 	 	 	 case	RequireAnyClientCert,	RequireAndVerifyClientCert:

			196	 	 	 	 	 c.sendAlert(alertBadCertificate)

			197	 	 	 	 	 return	errors.New("tls:	client	didn't	provide	a	certificate")

			198	 	 	 	 }

			199	 	 	 }

			200	

			201	 	 	 certs	:=	make([]*x509.Certificate,	len(certMsg.certificates))

			202	 	 	 for	i,	asn1Data	:=	range	certMsg.certificates	{

			203	 	 	 	 if	certs[i],	err	=	x509.ParseCertificate(asn1Data);	err	!=	nil	{

			204	 	 	 	 	 c.sendAlert(alertBadCertificate)

			205	 	 	 	 	 return	errors.New("tls:	failed	to	parse	client	certificate:	"	+	err.Error())

			206	 	 	 	 }

			207	 	 	 }

			208	

			209	 	 	 if	c.config.ClientAuth	>=	VerifyClientCertIfGiven	&&	len(certs)	>	0	{

			210	 	 	 	 opts	:=	x509.VerifyOptions{

			211	 	 	 	 	 Roots:									c.config.ClientCAs,

			212	 	 	 	 	 CurrentTime:			c.config.time(),

			213	 	 	 	 	 Intermediates:	x509.NewCertPool(),

			214	 	 	 	 }

			215	

			216	 	 	 	 for	i,	cert	:=	range	certs	{

			217	 	 	 	 	 if	i	==	0	{

			218	 	 	 	 	 	 continue

			219	 	 	 	 	 }

			220	 	 	 	 	 opts.Intermediates.AddCert(cert)

			221	 	 	 	 }

			222	

			223	 	 	 	 chains,	err	:=	certs[0].Verify(opts)

			224	 	 	 	 if	err	!=	nil	{

			225	 	 	 	 	 c.sendAlert(alertBadCertificate)

			226	 	 	 	 	 return	errors.New("tls:	failed	to	verify	client's	certificate:	"	+	err.Error())

			227	 	 	 	 }

			228	

			229	 	 	 	 ok	:=	false

			230	 	 	 	 for	_,	ku	:=	range	certs[0].ExtKeyUsage	{

			231	 	 	 	 	 if	ku	==	x509.ExtKeyUsageClientAuth	{

			232	 	 	 	 	 	 ok	=	true

			233	 	 	 	 	 	 break

			234	 	 	 	 	 }

			235	 	 	 	 }

			236	 	 	 	 if	!ok	{

			237	 	 	 	 	 c.sendAlert(alertHandshakeFailure)

			238	 	 	 	 	 return	errors.New("tls:	client's	certificate's	extended	key	usage	doesn't	permit	it	to	be	used	for	client	authentication")

			239	 	 	 	 }

			240	

			241	 	 	 	 c.verifiedChains	=	chains

			242	 	 	 }

			243	

			244	 	 	 if	len(certs)	>	0	{

			245	 	 	 	 if	pub,	ok	=	certs[0].PublicKey.(*rsa.PublicKey);	!ok	{

			246	 	 	 	 	 return	c.sendAlert(alertUnsupportedCertificate)

			247	 	 	 	 }

			248	 	 	 	 c.peerCertificates	=	certs

			249	 	 	 }

			250	

			251	 	 	 msg,	err	=	c.readHandshake()

			252	 	 	 if	err	!=	nil	{

			253	 	 	 	 return	err

			254	 	 	 }

			255	 	 }

			256	

			257	 	 //	Get	client	key	exchange

			258	 	 ckx,	ok	:=	msg.(*clientKeyExchangeMsg)

			259	 	 if	!ok	{

			260	 	 	 return	c.sendAlert(alertUnexpectedMessage)

			261	 	 }

			262	 	 finishedHash.Write(ckx.marshal())

			263	

			264	 	 //	If	we	received	a	client	cert	in	response	to	our	certificate	request	message,

			265	 	 //	the	client	will	send	us	a	certificateVerifyMsg	immediately	after	the

			266	 	 //	clientKeyExchangeMsg.		This	message	is	a	MD5SHA1	digest	of	all	preceding

			267	 	 //	handshake-layer	messages	that	is	signed	using	the	private	key	corresponding

			268	 	 //	to	the	client's	certificate.	This	allows	us	to	verify	that	the	client	is	in

			269	 	 //	possession	of	the	private	key	of	the	certificate.

			270	 	 if	len(c.peerCertificates)	>	0	{

			271	 	 	 msg,	err	=	c.readHandshake()

			272	 	 	 if	err	!=	nil	{

			273	 	 	 	 return	err

			274	 	 	 }

			275	 	 	 certVerify,	ok	:=	msg.(*certificateVerifyMsg)

			276	 	 	 if	!ok	{

			277	 	 	 	 return	c.sendAlert(alertUnexpectedMessage)

			278	 	 	 }

			279	

			280	 	 	 digest	:=	make([]byte,	0,	36)

			281	 	 	 digest	=	finishedHash.serverMD5.Sum(digest)

			282	 	 	 digest	=	finishedHash.serverSHA1.Sum(digest)

			283	 	 	 err	=	rsa.VerifyPKCS1v15(pub,	crypto.MD5SHA1,	digest,	certVerify.signature)

			284	 	 	 if	err	!=	nil	{

			285	 	 	 	 c.sendAlert(alertBadCertificate)

			286	 	 	 	 return	errors.New("could	not	validate	signature	of	connection	nonces:	"	+	err.Error())

			287	 	 	 }

			288	

			289	 	 	 finishedHash.Write(certVerify.marshal())

			290	 	 }

			291	

			292	 	 preMasterSecret,	err	:=	keyAgreement.processClientKeyExchange(config,	cert,	ckx,	c.vers)

			293	 	 if	err	!=	nil	{

			294	 	 	 c.sendAlert(alertHandshakeFailure)

			295	 	 	 return	err

			296	 	 }

			297	

			298	 	 masterSecret,	clientMAC,	serverMAC,	clientKey,	serverKey,	clientIV,	serverIV	:=

			299	 	 	 keysFromPreMasterSecret(c.vers,	preMasterSecret,	clientHello.random,	hello.random,	suite.macLen,	suite.keyLen,	suite.ivLen)

			300	

			301	 	 clientCipher	:=	suite.cipher(clientKey,	clientIV,	true	

			302	 	 clientHash	:=	suite.mac(c.vers,	clientMAC)

			303	 	 c.in.prepareCipherSpec(c.vers,	clientCipher,	clientHash)

			304	 	 c.readRecord(recordTypeChangeCipherSpec)

			305	 	 if	err	:=	c.error();	err	!=	nil	{

			306	 	 	 return	err

			307	 	 }

			308	

			309	 	 if	hello.nextProtoNeg	{

			310	 	 	 msg,	err	=	c.readHandshake()

			311	 	 	 if	err	!=	nil	{

			312	 	 	 	 return	err

			313	 	 	 }

			314	 	 	 nextProto,	ok	:=	msg.(*nextProtoMsg)

			315	 	 	 if	!ok	{

			316	 	 	 	 return	c.sendAlert(alertUnexpectedMessage)

			317	 	 	 }

			318	 	 	 finishedHash.Write(nextProto.marshal())

			319	 	 	 c.clientProtocol	=	nextProto.proto

			320	 	 }

			321	

			322	 	 msg,	err	=	c.readHandshake()

			323	 	 if	err	!=	nil	{

			324	 	 	 return	err

			325	 	 }

			326	 	 clientFinished,	ok	:=	msg.(*finishedMsg)

			327	 	 if	!ok	{

			328	 	 	 return	c.sendAlert(alertUnexpectedMessage)

			329	 	 }

			330	

			331	 	 verify	:=	finishedHash.clientSum(masterSecret)

			332	 	 if	len(verify)	!=	len(clientFinished.verifyData)	||

			333	 	 	 subtle.ConstantTimeCompare(verify,	clientFinished.verifyData)	!=	1	{

			334	 	 	 return	c.sendAlert(alertHandshakeFailure)

			335	 	 }

			336	

			337	 	 finishedHash.Write(clientFinished.marshal())

			338	

			339	 	 serverCipher	:=	suite.cipher(serverKey,	serverIV,	false	

			340	 	 serverHash	:=	suite.mac(c.vers,	serverMAC)

			341	 	 c.out.prepareCipherSpec(c.vers,	serverCipher,	serverHash)

			342	 	 c.writeRecord(recordTypeChangeCipherSpec,	[]byte{1})

			343	

			344	 	 finished	:=	new(finishedMsg)

			345	 	 finished.verifyData	=	finishedHash.serverSum(masterSecret)

			346	 	 c.writeRecord(recordTypeHandshake,	finished.marshal())

			347	

			348	 	 c.handshakeComplete	=	true

			349	 	 c.cipherSuite	=	suite.id

			350	

			351	 	 return	nil

			352	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/tls/key_agreement.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	tls

					6	

					7	 import	(

					8	 	 "crypto"

					9	 	 "crypto/elliptic"

				10	 	 "crypto/md5"

				11	 	 "crypto/rsa"

				12	 	 "crypto/sha1"

				13	 	 "crypto/x509"

				14	 	 "errors"

				15	 	 "io"

				16	 	 "math/big"

				17)

				18	

				19	 //	rsaKeyAgreement	implements	the	standard	TLS	key	agreement	where	the	client

				20	 //	encrypts	the	pre-master	secret	to	the	server's	public	key.

				21	 type	rsaKeyAgreement	struct{}

				22	

				23	 func	(ka	rsaKeyAgreement)	generateServerKeyExchange(config	*Config,	cert	*Certificate,	clientHello	*clientHelloMsg,	hello	*serverHelloMsg)	(*serverKeyExchangeMsg,	error)	{

				24	 	 return	nil,	nil

				25	 }

				26	

				27	 func	(ka	rsaKeyAgreement)	processClientKeyExchange(config	*Config,	cert	*Certificate,	ckx	*clientKeyExchangeMsg,	version	uint16)	([]byte,	error)	{

				28	 	 preMasterSecret	:=	make([]byte,	48)

				29	 	 _,	err	:=	io.ReadFull(config.rand(),	preMasterSecret[2:])

				30	 	 if	err	!=	nil	{

				31	 	 	 return	nil,	err

				32	 	 }

				33	

				34	 	 if	len(ckx.ciphertext)	<	2	{

				35	 	 	 return	nil,	errors.New("bad	ClientKeyExchange")

				36	 	 }

				37	

				38	 	 ciphertext	:=	ckx.ciphertext

				39	 	 if	version	!=	versionSSL30	{

				40	 	 	 ciphertextLen	:=	int(ckx.ciphertext[0])<<8	|	int(ckx.ciphertext[1])

				41	 	 	 if	ciphertextLen	!=	len(ckx.ciphertext)-2	{

				42	 	 	 	 return	nil,	errors.New("bad	ClientKeyExchange")

				43	 	 	 }

				44	 	 	 ciphertext	=	ckx.ciphertext[2:]

				45	 	 }

				46	

				47	 	 err	=	rsa.DecryptPKCS1v15SessionKey(config.rand(),	cert.PrivateKey.(*rsa.PrivateKey),	ciphertext,	preMasterSecret)

				48	 	 if	err	!=	nil	{

				49	 	 	 return	nil,	err

				50	 	 }

				51	 	 //	We	don't	check	the	version	number	in	the	premaster	secret.		For	one,

				52	 	 //	by	checking	it,	we	would	leak	information	about	the	validity	of	the

				53	 	 //	encrypted	pre-master	secret.	Secondly,	it	provides	only	a	small

				54	 	 //	benefit	against	a	downgrade	attack	and	some	implementations	send	the

				55	 	 //	wrong	version	anyway.	See	the	discussion	at	the	end	of	section

				56	 	 //	7.4.7.1	of	RFC	4346.

				57	 	 return	preMasterSecret,	nil

				58	 }

				59	

				60	 func	(ka	rsaKeyAgreement)	processServerKeyExchange(config	*Config,	clientHello	*clientHelloMsg,	serverHello	*serverHelloMsg,	cert	*x509.Certificate,	skx	*serverKeyExchangeMsg)	error	{

				61	 	 return	errors.New("unexpected	ServerKeyExchange")

				62	 }

				63	

				64	 func	(ka	rsaKeyAgreement)	generateClientKeyExchange(config	*Config,	clientHello	*clientHelloMsg,	cert	*x509.Certificate)	([]byte,	*clientKeyExchangeMsg,	error)	{

				65	 	 preMasterSecret	:=	make([]byte,	48)

				66	 	 preMasterSecret[0]	=	byte(clientHello.vers	>>	8)

				67	 	 preMasterSecret[1]	=	byte(clientHello.vers)

				68	 	 _,	err	:=	io.ReadFull(config.rand(),	preMasterSecret[2:])

				69	 	 if	err	!=	nil	{

				70	 	 	 return	nil,	nil,	err

				71	 	 }

				72	

				73	 	 encrypted,	err	:=	rsa.EncryptPKCS1v15(config.rand(),	cert.PublicKey.(*rsa.PublicKey),	preMasterSecret)

				74	 	 if	err	!=	nil	{

				75	 	 	 return	nil,	nil,	err

				76	 	 }

				77	 	 ckx	:=	new(clientKeyExchangeMsg)

				78	 	 ckx.ciphertext	=	make([]byte,	len(encrypted)+2)

				79	 	 ckx.ciphertext[0]	=	byte(len(encrypted)	>>	8)

				80	 	 ckx.ciphertext[1]	=	byte(len(encrypted))

				81	 	 copy(ckx.ciphertext[2:],	encrypted)

				82	 	 return	preMasterSecret,	ckx,	nil

				83	 }

				84	

				85	 //	md5SHA1Hash	implements	TLS	1.0's	hybrid	hash	function	which	consists	of	the

				86	 //	concatenation	of	an	MD5	and	SHA1	hash.

				87	 func	md5SHA1Hash(slices	...[]byte)	[]byte	{

				88	 	 md5sha1	:=	make([]byte,	md5.Size+sha1.Size)

				89	 	 hmd5	:=	md5.New()

				90	 	 for	_,	slice	:=	range	slices	{

				91	 	 	 hmd5.Write(slice)

				92	 	 }

				93	 	 copy(md5sha1,	hmd5.Sum(nil))

				94	

				95	 	 hsha1	:=	sha1.New()

				96	 	 for	_,	slice	:=	range	slices	{

				97	 	 	 hsha1.Write(slice)

				98	 	 }

				99	 	 copy(md5sha1[md5.Size:],	hsha1.Sum(nil))

			100	 	 return	md5sha1

			101	 }

			102	

			103	 //	ecdheRSAKeyAgreement	implements	a	TLS	key	agreement	where	the	server

			104	 //	generates	a	ephemeral	EC	public/private	key	pair	and	signs	it.	The

			105	 //	pre-master	secret	is	then	calculated	using	ECDH.

			106	 type	ecdheRSAKeyAgreement	struct	{

			107	 	 privateKey	[]byte

			108	 	 curve						elliptic.Curve

			109	 	 x,	y							*big.Int

			110	 }

			111	

			112	 func	(ka	*ecdheRSAKeyAgreement)	generateServerKeyExchange(config	*Config,	cert	*Certificate,	clientHello	*clientHelloMsg,	hello	*serverHelloMsg)	(*serverKeyExchangeMsg,	error)	{

			113	 	 var	curveid	uint16

			114	

			115	 Curve:

			116	 	 for	_,	c	:=	range	clientHello.supportedCurves	{

			117	 	 	 switch	c	{

			118	 	 	 case	curveP256:

			119	 	 	 	 ka.curve	=	elliptic.P256()

			120	 	 	 	 curveid	=	c

			121	 	 	 	 break	Curve

			122	 	 	 case	curveP384:

			123	 	 	 	 ka.curve	=	elliptic.P384()

			124	 	 	 	 curveid	=	c

			125	 	 	 	 break	Curve

			126	 	 	 case	curveP521:

			127	 	 	 	 ka.curve	=	elliptic.P521()

			128	 	 	 	 curveid	=	c

			129	 	 	 	 break	Curve

			130	 	 	 }

			131	 	 }

			132	

			133	 	 if	curveid	==	0	{

			134	 	 	 return	nil,	errors.New("tls:	no	supported	elliptic	curves	offered")

			135	 	 }

			136	

			137	 	 var	x,	y	*big.Int

			138	 	 var	err	error

			139	 	 ka.privateKey,	x,	y,	err	=	elliptic.GenerateKey(ka.curve,	config.rand())

			140	 	 if	err	!=	nil	{

			141	 	 	 return	nil,	err

			142	 	 }

			143	 	 ecdhePublic	:=	elliptic.Marshal(ka.curve,	x,	y)

			144	

			145	 	 //	http://tools.ietf.org/html/rfc4492#section-5.4

			146	 	 serverECDHParams	:=	make([]byte,	1+2+1+len(ecdhePublic))

			147	 	 serverECDHParams[0]	=	3	//	named	curve

			148	 	 serverECDHParams[1]	=	byte(curveid	>>	8)

			149	 	 serverECDHParams[2]	=	byte(curveid)

			150	 	 serverECDHParams[3]	=	byte(len(ecdhePublic))

			151	 	 copy(serverECDHParams[4:],	ecdhePublic)

			152	

			153	 	 md5sha1	:=	md5SHA1Hash(clientHello.random,	hello.random,	serverECDHParams)

			154	 	 sig,	err	:=	rsa.SignPKCS1v15(config.rand(),	cert.PrivateKey.(*rsa.PrivateKey),	crypto.MD5SHA1,	md5sha1)

			155	 	 if	err	!=	nil	{

			156	 	 	 return	nil,	errors.New("failed	to	sign	ECDHE	parameters:	"	+	err.Error())

			157	 	 }

			158	

			159	 	 skx	:=	new(serverKeyExchangeMsg)

			160	 	 skx.key	=	make([]byte,	len(serverECDHParams)+2+len(sig))

			161	 	 copy(skx.key,	serverECDHParams)

			162	 	 k	:=	skx.key[len(serverECDHParams):]

			163	 	 k[0]	=	byte(len(sig)	>>	8)

			164	 	 k[1]	=	byte(len(sig))

			165	 	 copy(k[2:],	sig)

			166	

			167	 	 return	skx,	nil

			168	 }

			169	

			170	 func	(ka	*ecdheRSAKeyAgreement)	processClientKeyExchange(config	*Config,	cert	*Certificate,	ckx	*clientKeyExchangeMsg,	version	uint16)	([]byte,	error)	{

			171	 	 if	len(ckx.ciphertext)	==	0	||	int(ckx.ciphertext[0])	!=	len(ckx.ciphertext)-1	{

			172	 	 	 return	nil,	errors.New("bad	ClientKeyExchange")

			173	 	 }

			174	 	 x,	y	:=	elliptic.Unmarshal(ka.curve,	ckx.ciphertext[1:])

			175	 	 if	x	==	nil	{

			176	 	 	 return	nil,	errors.New("bad	ClientKeyExchange")

			177	 	 }

			178	 	 x,	_	=	ka.curve.ScalarMult(x,	y,	ka.privateKey)

			179	 	 preMasterSecret	:=	make([]byte,	(ka.curve.Params().BitSize+7)>>3)

			180	 	 xBytes	:=	x.Bytes()

			181	 	 copy(preMasterSecret[len(preMasterSecret)-len(xBytes):],	xBytes)

			182	

			183	 	 return	preMasterSecret,	nil

			184	 }

			185	

			186	 var	errServerKeyExchange	=	errors.New("invalid	ServerKeyExchange")

			187	

			188	 func	(ka	*ecdheRSAKeyAgreement)	processServerKeyExchange(config	*Config,	clientHello	*clientHelloMsg,	serverHello	*serverHelloMsg,	cert	*x509.Certificate,	skx	*serverKeyExchangeMsg)	error	{

			189	 	 if	len(skx.key)	<	4	{

			190	 	 	 return	errServerKeyExchange

			191	 	 }

			192	 	 if	skx.key[0]	!=	3	{	//	named	curve

			193	 	 	 return	errors.New("server	selected	unsupported	curve")

			194	 	 }

			195	 	 curveid	:=	uint16(skx.key[1])<<8	|	uint16(skx.key[2])

			196	

			197	 	 switch	curveid	{

			198	 	 case	curveP256:

			199	 	 	 ka.curve	=	elliptic.P256()

			200	 	 case	curveP384:

			201	 	 	 ka.curve	=	elliptic.P384()

			202	 	 case	curveP521:

			203	 	 	 ka.curve	=	elliptic.P521()

			204	 	 default:

			205	 	 	 return	errors.New("server	selected	unsupported	curve")

			206	 	 }

			207	

			208	 	 publicLen	:=	int(skx.key[3])

			209	 	 if	publicLen+4	>	len(skx.key)	{

			210	 	 	 return	errServerKeyExchange

			211	 	 }

			212	 	 ka.x,	ka.y	=	elliptic.Unmarshal(ka.curve,	skx.key[4:4+publicLen])

			213	 	 if	ka.x	==	nil	{

			214	 	 	 return	errServerKeyExchange

			215	 	 }

			216	 	 serverECDHParams	:=	skx.key[:4+publicLen]

			217	

			218	 	 sig	:=	skx.key[4+publicLen:]

			219	 	 if	len(sig)	<	2	{

			220	 	 	 return	errServerKeyExchange

			221	 	 }

			222	 	 sigLen	:=	int(sig[0])<<8	|	int(sig[1])

			223	 	 if	sigLen+2	!=	len(sig)	{

			224	 	 	 return	errServerKeyExchange

			225	 	 }

			226	 	 sig	=	sig[2:]

			227	

			228	 	 md5sha1	:=	md5SHA1Hash(clientHello.random,	serverHello.random,	serverECDHParams)

			229	 	 return	rsa.VerifyPKCS1v15(cert.PublicKey.(*rsa.PublicKey),	crypto.MD5SHA1,	md5sha1,	sig)

			230	 }

			231	

			232	 func	(ka	*ecdheRSAKeyAgreement)	generateClientKeyExchange(config	*Config,	clientHello	*clientHelloMsg,	cert	*x509.Certificate)	([]byte,	*clientKeyExchangeMsg,	error)	{

			233	 	 if	ka.curve	==	nil	{

			234	 	 	 return	nil,	nil,	errors.New("missing	ServerKeyExchange	message")

			235	 	 }

			236	 	 priv,	mx,	my,	err	:=	elliptic.GenerateKey(ka.curve,	config.rand())

			237	 	 if	err	!=	nil	{

			238	 	 	 return	nil,	nil,	err

			239	 	 }

			240	 	 x,	_	:=	ka.curve.ScalarMult(ka.x,	ka.y,	priv)

			241	 	 preMasterSecret	:=	make([]byte,	(ka.curve.Params().BitSize+7)>>3)

			242	 	 xBytes	:=	x.Bytes()

			243	 	 copy(preMasterSecret[len(preMasterSecret)-len(xBytes):],	xBytes)

			244	

			245	 	 serialized	:=	elliptic.Marshal(ka.curve,	mx,	my)

			246	

			247	 	 ckx	:=	new(clientKeyExchangeMsg)

			248	 	 ckx.ciphertext	=	make([]byte,	1+len(serialized))

			249	 	 ckx.ciphertext[0]	=	byte(len(serialized))

			250	 	 copy(ckx.ciphertext[1:],	serialized)

			251	

			252	 	 return	preMasterSecret,	ckx,	nil

			253	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/crypto/tls/prf.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	tls

					6	

					7	 import	(

					8	 	 "crypto/hmac"

					9	 	 "crypto/md5"

				10	 	 "crypto/sha1"

				11	 	 "hash"

				12)

				13	

				14	 //	Split	a	premaster	secret	in	two	as	specified	in	RFC	4346,	section	5.

				15	 func	splitPreMasterSecret(secret	[]byte)	(s1,	s2	[]byte)	{

				16	 	 s1	=	secret[0	:	(len(secret)+1)/2]

				17	 	 s2	=	secret[len(secret)/2:]

				18	 	 return

				19	 }

				20	

				21	 //	pHash	implements	the	P_hash	function,	as	defined	in	RFC	4346,	section	5.

				22	 func	pHash(result,	secret,	seed	[]byte,	hash	func()	hash.Hash)	{

				23	 	 h	:=	hmac.New(hash,	secret)

				24	 	 h.Write(seed)

				25	 	 a	:=	h.Sum(nil)

				26	

				27	 	 j	:=	0

				28	 	 for	j	<	len(result)	{

				29	 	 	 h.Reset()

				30	 	 	 h.Write(a)

				31	 	 	 h.Write(seed)

				32	 	 	 b	:=	h.Sum(nil)

				33	 	 	 todo	:=	len(b)

				34	 	 	 if	j+todo	>	len(result)	{

				35	 	 	 	 todo	=	len(result)	-	j

				36	 	 	 }

				37	 	 	 copy(result[j:j+todo],	b)

				38	 	 	 j	+=	todo

				39	

				40	 	 	 h.Reset()

				41	 	 	 h.Write(a)

				42	 	 	 a	=	h.Sum(nil)

				43	 	 }

				44	 }

				45	

				46	 //	pRF10	implements	the	TLS	1.0	pseudo-random	function,	as	defined	in	RFC	2246,	section	5.

				47	 func	pRF10(result,	secret,	label,	seed	[]byte)	{

				48	 	 hashSHA1	:=	sha1.New

				49	 	 hashMD5	:=	md5.New

				50	

				51	 	 labelAndSeed	:=	make([]byte,	len(label)+len(seed))

				52	 	 copy(labelAndSeed,	label)

				53	 	 copy(labelAndSeed[len(label):],	seed)

				54	

				55	 	 s1,	s2	:=	splitPreMasterSecret(secret)

				56	 	 pHash(result,	s1,	labelAndSeed,	hashMD5)

				57	 	 result2	:=	make([]byte,	len(result))

				58	 	 pHash(result2,	s2,	labelAndSeed,	hashSHA1)

				59	

				60	 	 for	i,	b	:=	range	result2	{

				61	 	 	 result[i]	^=	b

				62	 	 }

				63	 }

				64	

				65	 //	pRF30	implements	the	SSL	3.0	pseudo-random	function,	as	defined	in

				66	 //	www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt	section	6.

				67	 func	pRF30(result,	secret,	label,	seed	[]byte)	{

				68	 	 hashSHA1	:=	sha1.New()

				69	 	 hashMD5	:=	md5.New()

				70	

				71	 	 done	:=	0

				72	 	 i	:=	0

				73	 	 //	RFC5246	section	6.3	says	that	the	largest	PRF	output	needed	is	128

				74	 	 //	bytes.	Since	no	more	ciphersuites	will	be	added	to	SSLv3,	this	will

				75	 	 //	remain	true.	Each	iteration	gives	us	16	bytes	so	10	iterations	will

				76	 	 //	be	sufficient.

				77	 	 var	b	[11]byte

				78	 	 for	done	<	len(result)	{

				79	 	 	 for	j	:=	0;	j	<=	i;	j++	{

				80	 	 	 	 b[j]	=	'A'	+	byte(i)

				81	 	 	 }

				82	

				83	 	 	 hashSHA1.Reset()

				84	 	 	 hashSHA1.Write(b[:i+1])

				85	 	 	 hashSHA1.Write(secret)

				86	 	 	 hashSHA1.Write(seed)

				87	 	 	 digest	:=	hashSHA1.Sum(nil)

				88	

				89	 	 	 hashMD5.Reset()

				90	 	 	 hashMD5.Write(secret)

				91	 	 	 hashMD5.Write(digest)

				92	

				93	 	 	 done	+=	copy(result[done:],	hashMD5.Sum(nil))

				94	 	 	 i++

				95	 	 }

				96	 }

				97	

				98	 const	(

				99	 	 tlsRandomLength						=	32	//	Length	of	a	random	nonce	in	TLS	1.1.

			100	 	 masterSecretLength			=	48	//	Length	of	a	master	secret	in	TLS	1.1.

			101	 	 finishedVerifyLength	=	12	//	Length	of	verify_data	in	a	Finished	message.

			102)

			103	

			104	 var	masterSecretLabel	=	[]byte("master	secret")

			105	 var	keyExpansionLabel	=	[]byte("key	expansion")

			106	 var	clientFinishedLabel	=	[]byte("client	finished")

			107	 var	serverFinishedLabel	=	[]byte("server	finished")

			108	

			109	 //	keysFromPreMasterSecret	generates	the	connection	keys	from	the	pre	master

			110	 //	secret,	given	the	lengths	of	the	MAC	key,	cipher	key	and	IV,	as	defined	in

			111	 //	RFC	2246,	section	6.3.

			112	 func	keysFromPreMasterSecret(version	uint16,	preMasterSecret,	clientRandom,	serverRandom	[]byte,	macLen,	keyLen,	ivLen	int)	(masterSecret,	clientMAC,	serverMAC,	clientKey,	serverKey,	clientIV,	serverIV	[]byte)	{

			113	 	 prf	:=	pRF10

			114	 	 if	version	==	versionSSL30	{

			115	 	 	 prf	=	pRF30

			116	 	 }

			117	

			118	 	 var	seed	[tlsRandomLength	*	2]byte

			119	 	 copy(seed[0:len(clientRandom)],	clientRandom)

			120	 	 copy(seed[len(clientRandom):],	serverRandom)

			121	 	 masterSecret	=	make([]byte,	masterSecretLength)

			122	 	 prf(masterSecret,	preMasterSecret,	masterSecretLabel,	seed[0:])

			123	

			124	 	 copy(seed[0:len(clientRandom)],	serverRandom)

			125	 	 copy(seed[len(serverRandom):],	clientRandom)

			126	

			127	 	 n	:=	2*macLen	+	2*keyLen	+	2*ivLen

			128	 	 keyMaterial	:=	make([]byte,	n)

			129	 	 prf(keyMaterial,	masterSecret,	keyExpansionLabel,	seed[0:])

			130	 	 clientMAC	=	keyMaterial[:macLen]

			131	 	 keyMaterial	=	keyMaterial[macLen:]

			132	 	 serverMAC	=	keyMaterial[:macLen]

			133	 	 keyMaterial	=	keyMaterial[macLen:]

			134	 	 clientKey	=	keyMaterial[:keyLen]

			135	 	 keyMaterial	=	keyMaterial[keyLen:]

			136	 	 serverKey	=	keyMaterial[:keyLen]

			137	 	 keyMaterial	=	keyMaterial[keyLen:]

			138	 	 clientIV	=	keyMaterial[:ivLen]

			139	 	 keyMaterial	=	keyMaterial[ivLen:]

			140	 	 serverIV	=	keyMaterial[:ivLen]

			141	 	 return

			142	 }

			143	

			144	 func	newFinishedHash(version	uint16)	finishedHash	{

			145	 	 return	finishedHash{md5.New(),	sha1.New(),	md5.New(),	sha1.New(),	version}

			146	 }

			147	

			148	 //	A	finishedHash	calculates	the	hash	of	a	set	of	handshake	messages	suitable

			149	 //	for	including	in	a	Finished	message.

			150	 type	finishedHash	struct	{

			151	 	 clientMD5		hash.Hash

			152	 	 clientSHA1	hash.Hash

			153	 	 serverMD5		hash.Hash

			154	 	 serverSHA1	hash.Hash

			155	 	 version				uint16

			156	 }

			157	

			158	 func	(h	finishedHash)	Write(msg	[]byte)	(n	int,	err	error)	{

			159	 	 h.clientMD5.Write(msg)

			160	 	 h.clientSHA1.Write(msg)

			161	 	 h.serverMD5.Write(msg)

			162	 	 h.serverSHA1.Write(msg)

			163	 	 return	len(msg),	nil

			164	 }

			165	

			166	 //	finishedSum10	calculates	the	contents	of	the	verify_data	member	of	a	TLSv1

			167	 //	Finished	message	given	the	MD5	and	SHA1	hashes	of	a	set	of	handshake

			168	 //	messages.

			169	 func	finishedSum10(md5,	sha1,	label,	masterSecret	[]byte)	[]byte	{

			170	 	 seed	:=	make([]byte,	len(md5)+len(sha1))

			171	 	 copy(seed,	md5)

			172	 	 copy(seed[len(md5):],	sha1)

			173	 	 out	:=	make([]byte,	finishedVerifyLength)

			174	 	 pRF10(out,	masterSecret,	label,	seed)

			175	 	 return	out

			176	 }

			177	

			178	 //	finishedSum30	calculates	the	contents	of	the	verify_data	member	of	a	SSLv3

			179	 //	Finished	message	given	the	MD5	and	SHA1	hashes	of	a	set	of	handshake

			180	 //	messages.

			181	 func	finishedSum30(md5,	sha1	hash.Hash,	masterSecret	[]byte,	magic	[4]byte)	[]byte	{

			182	 	 md5.Write(magic[:])

			183	 	 md5.Write(masterSecret)

			184	 	 md5.Write(ssl30Pad1[:])

			185	 	 md5Digest	:=	md5.Sum(nil)

			186	

			187	 	 md5.Reset()

			188	 	 md5.Write(masterSecret)

			189	 	 md5.Write(ssl30Pad2[:])

			190	 	 md5.Write(md5Digest)

			191	 	 md5Digest	=	md5.Sum(nil)

			192	

			193	 	 sha1.Write(magic[:])

			194	 	 sha1.Write(masterSecret)

			195	 	 sha1.Write(ssl30Pad1[:40])

			196	 	 sha1Digest	:=	sha1.Sum(nil)

			197	

			198	 	 sha1.Reset()

			199	 	 sha1.Write(masterSecret)

			200	 	 sha1.Write(ssl30Pad2[:40])

			201	 	 sha1.Write(sha1Digest)

			202	 	 sha1Digest	=	sha1.Sum(nil)

			203	

			204	 	 ret	:=	make([]byte,	len(md5Digest)+len(sha1Digest))

			205	 	 copy(ret,	md5Digest)

			206	 	 copy(ret[len(md5Digest):],	sha1Digest)

			207	 	 return	ret

			208	 }

			209	

			210	 var	ssl3ClientFinishedMagic	=	[4]byte{0x43,	0x4c,	0x4e,	0x54}

			211	 var	ssl3ServerFinishedMagic	=	[4]byte{0x53,	0x52,	0x56,	0x52}

			212	

			213	 //	clientSum	returns	the	contents	of	the	verify_data	member	of	a	client's

			214	 //	Finished	message.

			215	 func	(h	finishedHash)	clientSum(masterSecret	[]byte)	[]byte	{

			216	 	 if	h.version	==	versionSSL30	{

			217	 	 	 return	finishedSum30(h.clientMD5,	h.clientSHA1,	masterSecret,	ssl3ClientFinishedMagic)

			218	 	 }

			219	

			220	 	 md5	:=	h.clientMD5.Sum(nil)

			221	 	 sha1	:=	h.clientSHA1.Sum(nil)

			222	 	 return	finishedSum10(md5,	sha1,	clientFinishedLabel,	masterSecret)

			223	 }

			224	

			225	 //	serverSum	returns	the	contents	of	the	verify_data	member	of	a	server's

			226	 //	Finished	message.

			227	 func	(h	finishedHash)	serverSum(masterSecret	[]byte)	[]byte	{

			228	 	 if	h.version	==	versionSSL30	{

			229	 	 	 return	finishedSum30(h.serverMD5,	h.serverSHA1,	masterSecret,	ssl3ServerFinishedMagic)

			230	 	 }

			231	

			232	 	 md5	:=	h.serverMD5.Sum(nil)

			233	 	 sha1	:=	h.serverSHA1.Sum(nil)

			234	 	 return	finishedSum10(md5,	sha1,	serverFinishedLabel,	masterSecret)

			235	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/crypto/tls/tls.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	tls	partially	implements	TLS	1.0,	as	specified	in	RFC	2246.

					6	 package	tls

					7	

					8	 import	(

					9	 	 "crypto/rsa"

				10	 	 "crypto/x509"

				11	 	 "encoding/pem"

				12	 	 "errors"

				13	 	 "io/ioutil"

				14	 	 "net"

				15	 	 "strings"

				16)

				17	

				18	 //	Server	returns	a	new	TLS	server	side	connection

				19	 //	using	conn	as	the	underlying	transport.

				20	 //	The	configuration	config	must	be	non-nil	and	must	have

				21	 //	at	least	one	certificate.

				22	 func	Server(conn	net.Conn,	config	*Config)	*Conn	{

				23	 	 return	&Conn{conn:	conn,	config:	config}

				24	 }

				25	

				26	 //	Client	returns	a	new	TLS	client	side	connection

				27	 //	using	conn	as	the	underlying	transport.

				28	 //	Client	interprets	a	nil	configuration	as	equivalent	to

				29	 //	the	zero	configuration;	see	the	documentation	of	Config

				30	 //	for	the	defaults.

				31	 func	Client(conn	net.Conn,	config	*Config)	*Conn	{

				32	 	 return	&Conn{conn:	conn,	config:	config,	isClient:	true}

				33	 }

				34	

				35	 //	A	listener	implements	a	network	listener	(net.Listener)	for	TLS	connections.

				36	 type	listener	struct	{

				37	 	 net.Listener

				38	 	 config	*Config

				39	 }

				40	

				41	 //	Accept	waits	for	and	returns	the	next	incoming	TLS	connection.

				42	 //	The	returned	connection	c	is	a	*tls.Conn.

				43	 func	(l	*listener)	Accept()	(c	net.Conn,	err	error)	{

				44	 	 c,	err	=	l.Listener.Accept()

				45	 	 if	err	!=	nil	{

				46	 	 	 return

				47	 	 }

				48	 	 c	=	Server(c,	l.config)

				49	 	 return

				50	 }

				51	

				52	 //	NewListener	creates	a	Listener	which	accepts	connections	from	an	inner

				53	 //	Listener	and	wraps	each	connection	with	Server.

				54	 //	The	configuration	config	must	be	non-nil	and	must	have

				55	 //	at	least	one	certificate.

				56	 func	NewListener(inner	net.Listener,	config	*Config)	net.Listener	{

				57	 	 l	:=	new(listener)

				58	 	 l.Listener	=	inner

				59	 	 l.config	=	config

				60	 	 return	l

				61	 }

				62	

				63	 //	Listen	creates	a	TLS	listener	accepting	connections	on	the

				64	 //	given	network	address	using	net.Listen.

				65	 //	The	configuration	config	must	be	non-nil	and	must	have

				66	 //	at	least	one	certificate.

				67	 func	Listen(network,	laddr	string,	config	*Config)	(net.Listener,	error)	{

				68	 	 if	config	==	nil	||	len(config.Certificates)	==	0	{

				69	 	 	 return	nil,	errors.New("tls.Listen:	no	certificates	in	configuration")

				70	 	 }

				71	 	 l,	err	:=	net.Listen(network,	laddr)

				72	 	 if	err	!=	nil	{

				73	 	 	 return	nil,	err

				74	 	 }

				75	 	 return	NewListener(l,	config),	nil

				76	 }

				77	

				78	 //	Dial	connects	to	the	given	network	address	using	net.Dial

				79	 //	and	then	initiates	a	TLS	handshake,	returning	the	resulting

				80	 //	TLS	connection.

				81	 //	Dial	interprets	a	nil	configuration	as	equivalent	to

				82	 //	the	zero	configuration;	see	the	documentation	of	Config

				83	 //	for	the	defaults.

				84	 func	Dial(network,	addr	string,	config	*Config)	(*Conn,	error)	{

				85	 	 raddr	:=	addr

				86	 	 c,	err	:=	net.Dial(network,	raddr)

				87	 	 if	err	!=	nil	{

				88	 	 	 return	nil,	err

				89	 	 }

				90	

				91	 	 colonPos	:=	strings.LastIndex(raddr,	":")

				92	 	 if	colonPos	==	-1	{

				93	 	 	 colonPos	=	len(raddr)

				94	 	 }

				95	 	 hostname	:=	raddr[:colonPos]

				96	

				97	 	 if	config	==	nil	{

				98	 	 	 config	=	defaultConfig()

				99	 	 }

			100	 	 //	If	no	ServerName	is	set,	infer	the	ServerName

			101	 	 //	from	the	hostname	we're	connecting	to.

			102	 	 if	config.ServerName	==	""	{

			103	 	 	 //	Make	a	copy	to	avoid	polluting	argument	or	default.

			104	 	 	 c	:=	*config

			105	 	 	 c.ServerName	=	hostname

			106	 	 	 config	=	&c

			107	 	 }

			108	 	 conn	:=	Client(c,	config)

			109	 	 if	err	=	conn.Handshake();	err	!=	nil	{

			110	 	 	 c.Close()

			111	 	 	 return	nil,	err

			112	 	 }

			113	 	 return	conn,	nil

			114	 }

			115	

			116	 //	LoadX509KeyPair	reads	and	parses	a	public/private	key	pair	from	a	pair	of

			117	 //	files.	The	files	must	contain	PEM	encoded	data.

			118	 func	LoadX509KeyPair(certFile,	keyFile	string)	(cert	Certificate,	err	error)	{

			119	 	 certPEMBlock,	err	:=	ioutil.ReadFile(certFile)

			120	 	 if	err	!=	nil	{

			121	 	 	 return

			122	 	 }

			123	 	 keyPEMBlock,	err	:=	ioutil.ReadFile(keyFile)

			124	 	 if	err	!=	nil	{

			125	 	 	 return

			126	 	 }

			127	 	 return	X509KeyPair(certPEMBlock,	keyPEMBlock)

			128	 }

			129	

			130	 //	X509KeyPair	parses	a	public/private	key	pair	from	a	pair	of

			131	 //	PEM	encoded	data.

			132	 func	X509KeyPair(certPEMBlock,	keyPEMBlock	[]byte)	(cert	Certificate,	err	error)	{

			133	 	 var	certDERBlock	*pem.Block

			134	 	 for	{

			135	 	 	 certDERBlock,	certPEMBlock	=	pem.Decode(certPEMBlock)

			136	 	 	 if	certDERBlock	==	nil	{

			137	 	 	 	 break

			138	 	 	 }

			139	 	 	 if	certDERBlock.Type	==	"CERTIFICATE"	{

			140	 	 	 	 cert.Certificate	=	append(cert.Certificate,	certDERBlock.Bytes)

			141	 	 	 }

			142	 	 }

			143	

			144	 	 if	len(cert.Certificate)	==	0	{

			145	 	 	 err	=	errors.New("crypto/tls:	failed	to	parse	certificate	PEM	data")

			146	 	 	 return

			147	 	 }

			148	

			149	 	 keyDERBlock,	_	:=	pem.Decode(keyPEMBlock)

			150	 	 if	keyDERBlock	==	nil	{

			151	 	 	 err	=	errors.New("crypto/tls:	failed	to	parse	key	PEM	data")

			152	 	 	 return

			153	 	 }

			154	

			155	 	 //	OpenSSL	0.9.8	generates	PKCS#1	private	keys	by	default,	while

			156	 	 //	OpenSSL	1.0.0	generates	PKCS#8	keys.	We	try	both.

			157	 	 var	key	*rsa.PrivateKey

			158	 	 if	key,	err	=	x509.ParsePKCS1PrivateKey(keyDERBlock.Bytes);	err	!=	nil	{

			159	 	 	 var	privKey	interface{}

			160	 	 	 if	privKey,	err	=	x509.ParsePKCS8PrivateKey(keyDERBlock.Bytes);	err	!=	nil	{

			161	 	 	 	 err	=	errors.New("crypto/tls:	failed	to	parse	key:	"	+	err.Error())

			162	 	 	 	 return

			163	 	 	 }

			164	

			165	 	 	 var	ok	bool

			166	 	 	 if	key,	ok	=	privKey.(*rsa.PrivateKey);	!ok	{

			167	 	 	 	 err	=	errors.New("crypto/tls:	found	non-RSA	private	key	in	PKCS#8	wrapping")

			168	 	 	 	 return

			169	 	 	 }

			170	 	 }

			171	

			172	 	 cert.PrivateKey	=	key

			173	

			174	 	 //	We	don't	need	to	parse	the	public	key	for	TLS,	but	we	so	do	anyway

			175	 	 //	to	check	that	it	looks	sane	and	matches	the	private	key.

			176	 	 x509Cert,	err	:=	x509.ParseCertificate(cert.Certificate[0])

			177	 	 if	err	!=	nil	{

			178	 	 	 return

			179	 	 }

			180	

			181	 	 if	x509Cert.PublicKeyAlgorithm	!=	x509.RSA	||	x509Cert.PublicKey.(*rsa.PublicKey).N.Cmp(key.PublicKey.N)	!=	0	{

			182	 	 	 err	=	errors.New("crypto/tls:	private	key	does	not	match	public	key")

			183	 	 	 return

			184	 	 }

			185	

			186	 	 return

			187	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.

http://code.google.com/policies.html#restrictions

Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/x509/cert_pool.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	x509

					6	

					7	 import	(

					8	 	 "encoding/pem"

					9)

				10	

				11	 //	CertPool	is	a	set	of	certificates.

				12	 type	CertPool	struct	{

				13	 	 bySubjectKeyId	map[string][]int

				14	 	 byName									map[string][]int

				15	 	 certs										[]*Certificate

				16	 }

				17	

				18	 //	NewCertPool	returns	a	new,	empty	CertPool.

				19	 func	NewCertPool()	*CertPool	{

				20	 	 return	&CertPool{

				21	 	 	 make(map[string][]int),

				22	 	 	 make(map[string][]int),

				23	 	 	 nil,

				24	 	 }

				25	 }

				26	

				27	 //	findVerifiedParents	attempts	to	find	certificates	in	s	which	have	signed	the

				28	 //	given	certificate.	If	no	such	certificate	can	be	found	or	the	signature

				29	 //	doesn't	match,	it	returns	nil.

				30	 func	(s	*CertPool)	findVerifiedParents(cert	*Certificate)	(parents	[]int)	{

				31	 	 if	s	==	nil	{

				32	 	 	 return

				33	 	 }

				34	 	 var	candidates	[]int

				35	

				36	 	 if	len(cert.AuthorityKeyId)	>	0	{

				37	 	 	 candidates	=	s.bySubjectKeyId[string(cert.AuthorityKeyId)]

				38	 	 }

				39	 	 if	len(candidates)	==	0	{

				40	 	 	 candidates	=	s.byName[string(cert.RawIssuer)]

				41	 	 }

				42	

				43	 	 for	_,	c	:=	range	candidates	{

				44	 	 	 if	cert.CheckSignatureFrom(s.certs[c])	==	nil	{

				45	 	 	 	 parents	=	append(parents,	c)

				46	 	 	 }

				47	 	 }

				48	

				49	 	 return

				50	 }

				51	

				52	 //	AddCert	adds	a	certificate	to	a	pool.

				53	 func	(s	*CertPool)	AddCert(cert	*Certificate)	{

				54	 	 if	cert	==	nil	{

				55	 	 	 panic("adding	nil	Certificate	to	CertPool")

				56	 	 }

				57	

				58	 	 //	Check	that	the	certificate	isn't	being	added	twice.

				59	 	 for	_,	c	:=	range	s.certs	{

				60	 	 	 if	c.Equal(cert)	{

				61	 	 	 	 return

				62	 	 	 }

				63	 	 }

				64	

				65	 	 n	:=	len(s.certs)

				66	 	 s.certs	=	append(s.certs,	cert)

				67	

				68	 	 if	len(cert.SubjectKeyId)	>	0	{

				69	 	 	 keyId	:=	string(cert.SubjectKeyId)

				70	 	 	 s.bySubjectKeyId[keyId]	=	append(s.bySubjectKeyId[keyId],	n)

				71	 	 }

				72	 	 name	:=	string(cert.RawSubject)

				73	 	 s.byName[name]	=	append(s.byName[name],	n)

				74	 }

				75	

				76	 //	AppendCertsFromPEM	attempts	to	parse	a	series	of	PEM	encoded	certificates.

				77	 //	It	appends	any	certificates	found	to	s	and	returns	true	if	any	certificates

				78	 //	were	successfully	parsed.

				79	 //

				80	 //	On	many	Linux	systems,	/etc/ssl/cert.pem	will	contain	the	system	wide	set

				81	 //	of	root	CAs	in	a	format	suitable	for	this	function.

				82	 func	(s	*CertPool)	AppendCertsFromPEM(pemCerts	[]byte)	(ok	bool)	{

				83	 	 for	len(pemCerts)	>	0	{

				84	 	 	 var	block	*pem.Block

				85	 	 	 block,	pemCerts	=	pem.Decode(pemCerts)

				86	 	 	 if	block	==	nil	{

				87	 	 	 	 break

				88	 	 	 }

				89	 	 	 if	block.Type	!=	"CERTIFICATE"	||	len(block.Headers)	!=	0	{

				90	 	 	 	 continue

				91	 	 	 }

				92	

				93	 	 	 cert,	err	:=	ParseCertificate(block.Bytes)

				94	 	 	 if	err	!=	nil	{

				95	 	 	 	 continue

				96	 	 	 }

				97	

				98	 	 	 s.AddCert(cert)

				99	 	 	 ok	=	true

			100	 	 }

			101	

			102	 	 return

			103	 }

			104	

			105	 //	Subjects	returns	a	list	of	the	DER-encoded	subjects	of

			106	 //	all	of	the	certificates	in	the	pool.	

			107	 func	(s	*CertPool)	Subjects()	(res	[][]byte)	{

			108	 	 res	=	make([][]byte,	len(s.certs))

			109	 	 for	i,	c	:=	range	s.certs	{

			110	 	 	 res[i]	=	c.RawSubject

			111	 	 }

			112	 	 return

			113	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/x509/pkcs1.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	x509

					6	

					7	 import	(

					8	 	 "crypto/rsa"

					9	 	 "encoding/asn1"

				10	 	 "errors"

				11	 	 "math/big"

				12)

				13	

				14	 //	pkcs1PrivateKey	is	a	structure	which	mirrors	the	PKCS#1	ASN.1	for	an	RSA	private	key.

				15	 type	pkcs1PrivateKey	struct	{

				16	 	 Version	int

				17	 	 N							*big.Int

				18	 	 E							int

				19	 	 D							*big.Int

				20	 	 P							*big.Int

				21	 	 Q							*big.Int

				22	 	 //	We	ignore	these	values,	if	present,	because	rsa	will	calculate	them.

				23	 	 Dp			*big.Int	`asn1:"optional"`

				24	 	 Dq			*big.Int	`asn1:"optional"`

				25	 	 Qinv	*big.Int	`asn1:"optional"`

				26	

				27	 	 AdditionalPrimes	[]pkcs1AdditionalRSAPrime	`asn1:"optional,omitempty"`

				28	 }

				29	

				30	 type	pkcs1AdditionalRSAPrime	struct	{

				31	 	 Prime	*big.Int

				32	

				33	 	 //	We	ignore	these	values	because	rsa	will	calculate	them.

				34	 	 Exp			*big.Int

				35	 	 Coeff	*big.Int

				36	 }

				37	

				38	 //	ParsePKCS1PrivateKey	returns	an	RSA	private	key	from	its	ASN.1	PKCS#1	DER	encoded	form.

				39	 func	ParsePKCS1PrivateKey(der	[]byte)	(key	*rsa.PrivateKey,	err	error)	{

				40	 	 var	priv	pkcs1PrivateKey

				41	 	 rest,	err	:=	asn1.Unmarshal(der,	&priv)

				42	 	 if	len(rest)	>	0	{

				43	 	 	 err	=	asn1.SyntaxError{Msg:	"trailing	data"}

				44	 	 	 return

				45	 	 }

				46	 	 if	err	!=	nil	{

				47	 	 	 return

				48	 	 }

				49	

				50	 	 if	priv.Version	>	1	{

				51	 	 	 return	nil,	errors.New("x509:	unsupported	private	key	version")

				52	 	 }

				53	

				54	 	 if	priv.N.Sign()	<=	0	||	priv.D.Sign()	<=	0	||	priv.P.Sign()	<=	0	||	priv.Q.Sign()	<=	0	{

				55	 	 	 return	nil,	errors.New("private	key	contains	zero	or	negative	value")

				56	 	 }

				57	

				58	 	 key	=	new(rsa.PrivateKey)

				59	 	 key.PublicKey	=	rsa.PublicKey{

				60	 	 	 E:	priv.E,

				61	 	 	 N:	priv.N,

				62	 	 }

				63	

				64	 	 key.D	=	priv.D

				65	 	 key.Primes	=	make([]*big.Int,	2+len(priv.AdditionalPrimes))

				66	 	 key.Primes[0]	=	priv.P

				67	 	 key.Primes[1]	=	priv.Q

				68	 	 for	i,	a	:=	range	priv.AdditionalPrimes	{

				69	 	 	 if	a.Prime.Sign()	<=	0	{

				70	 	 	 	 return	nil,	errors.New("private	key	contains	zero	or	negative	prime")

				71	 	 	 }

				72	 	 	 key.Primes[i+2]	=	a.Prime

				73	 	 	 //	We	ignore	the	other	two	values	because	rsa	will	calculate

				74	 	 	 //	them	as	needed.

				75	 	 }

				76	

				77	 	 err	=	key.Validate()

				78	 	 if	err	!=	nil	{

				79	 	 	 return	nil,	err

				80	 	 }

				81	 	 key.Precompute()

				82	

				83	 	 return

				84	 }

				85	

				86	 //	MarshalPKCS1PrivateKey	converts	a	private	key	to	ASN.1	DER	encoded	form.

				87	 func	MarshalPKCS1PrivateKey(key	*rsa.PrivateKey)	[]byte	{

				88	 	 key.Precompute()

				89	

				90	 	 version	:=	0

				91	 	 if	len(key.Primes)	>	2	{

				92	 	 	 version	=	1

				93	 	 }

				94	

				95	 	 priv	:=	pkcs1PrivateKey{

				96	 	 	 Version:	version,

				97	 	 	 N:							key.N,

				98	 	 	 E:							key.PublicKey.E,

				99	 	 	 D:							key.D,

			100	 	 	 P:							key.Primes[0],

			101	 	 	 Q:							key.Primes[1],

			102	 	 	 Dp:						key.Precomputed.Dp,

			103	 	 	 Dq:						key.Precomputed.Dq,

			104	 	 	 Qinv:				key.Precomputed.Qinv,

			105	 	 }

			106	

			107	 	 priv.AdditionalPrimes	=	make([]pkcs1AdditionalRSAPrime,	len(key.Precomputed.CRTValues))

			108	 	 for	i,	values	:=	range	key.Precomputed.CRTValues	{

			109	 	 	 priv.AdditionalPrimes[i].Prime	=	key.Primes[2+i]

			110	 	 	 priv.AdditionalPrimes[i].Exp	=	values.Exp

			111	 	 	 priv.AdditionalPrimes[i].Coeff	=	values.Coeff

			112	 	 }

			113	

			114	 	 b,	_	:=	asn1.Marshal(priv)

			115	 	 return	b

			116	 }

			117	

			118	 //	rsaPublicKey	reflects	the	ASN.1	structure	of	a	PKCS#1	public	key.

			119	 type	rsaPublicKey	struct	{

			120	 	 N	*big.Int

			121	 	 E	int

			122	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/x509/pkcs8.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	x509

					6	

					7	 import	(

					8	 	 "crypto/x509/pkix"

					9	 	 "encoding/asn1"

				10	 	 "errors"

				11	 	 "fmt"

				12)

				13	

				14	 //	pkcs8	reflects	an	ASN.1,	PKCS#8	PrivateKey.	See	

				15	 //	ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-8/pkcs-8v1_2.asn.

				16	 type	pkcs8	struct	{

				17	 	 Version				int

				18	 	 Algo							pkix.AlgorithmIdentifier

				19	 	 PrivateKey	[]byte

				20	 	 //	optional	attributes	omitted.

				21	 }

				22	

				23	 //	ParsePKCS8PrivateKey	parses	an	unencrypted,	PKCS#8	private	key.	See

				24	 //	http://www.rsa.com/rsalabs/node.asp?id=2130

				25	 func	ParsePKCS8PrivateKey(der	[]byte)	(key	interface{},	err	error)	{

				26	 	 var	privKey	pkcs8

				27	 	 if	_,	err	:=	asn1.Unmarshal(der,	&privKey);	err	!=	nil	{

				28	 	 	 return	nil,	err

				29	 	 }

				30	 	 switch	{

				31	 	 case	privKey.Algo.Algorithm.Equal(oidRSA):

				32	 	 	 key,	err	=	ParsePKCS1PrivateKey(privKey.PrivateKey)

				33	 	 	 if	err	!=	nil	{

				34	 	 	 	 return	nil,	errors.New("crypto/x509:	failed	to	parse	RSA	private	key	embedded	in	PKCS#8:	"	+	err.Error())

				35	 	 	 }

				36	 	 	 return	key,	nil

				37	 	 default:

				38	 	 	 return	nil,	fmt.Errorf("crypto/x509:	PKCS#8	wrapping	contained	private	key	with	unknown	algorithm:	%v",	privKey.Algo.Algorithm)

				39	 	 }

				40	

				41	 	 panic("unreachable")

				42	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/x509/root.go
					1	 //	Copyright	2012	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	x509

					6	

					7	 import	"sync"

					8	

					9	 var	(

				10	 	 once								sync.Once

				11	 	 systemRoots	*CertPool

				12)

				13	

				14	 func	systemRootsPool()	*CertPool	{

				15	 	 once.Do(initSystemRoots)

				16	 	 return	systemRoots

				17	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/x509/root_unix.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	freebsd	linux	openbsd	netbsd

					6	

					7	 package	x509

					8	

					9	 import	"io/ioutil"

				10	

				11	 //	Possible	certificate	files;	stop	after	finding	one.

				12	 var	certFiles	=	[]string{

				13	 	 "/etc/ssl/certs/ca-certificates.crt",					//	Linux	etc

				14	 	 "/etc/pki/tls/certs/ca-bundle.crt",							//	Fedora/RHEL

				15	 	 "/etc/ssl/ca-bundle.pem",																	//	OpenSUSE

				16	 	 "/etc/ssl/cert.pem",																						//	OpenBSD

				17	 	 "/usr/local/share/certs/ca-root-nss.crt",	//	FreeBSD

				18	 }

				19	

				20	 func	(c	*Certificate)	systemVerify(opts	*VerifyOptions)	(chains	[][]*Certificate,	err	error)	{

				21	 	 return	nil,	nil

				22	 }

				23	

				24	 func	initSystemRoots()	{

				25	 	 roots	:=	NewCertPool()

				26	 	 for	_,	file	:=	range	certFiles	{

				27	 	 	 data,	err	:=	ioutil.ReadFile(file)

				28	 	 	 if	err	==	nil	{

				29	 	 	 	 roots.AppendCertsFromPEM(data)

				30	 	 	 	 break

				31	 	 	 }

				32	 	 }

				33	

				34	 	 systemRoots	=	roots

				35	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/x509/verify.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	x509

					6	

					7	 import	(

					8	 	 "runtime"

					9	 	 "strings"

				10	 	 "time"

				11	 	 "unicode/utf8"

				12)

				13	

				14	 type	InvalidReason	int

				15	

				16	 const	(

				17	 	 //	NotAuthorizedToSign	results	when	a	certificate	is	signed	by	another

				18	 	 //	which	isn't	marked	as	a	CA	certificate.

				19	 	 NotAuthorizedToSign	InvalidReason	=	iota

				20	 	 //	Expired	results	when	a	certificate	has	expired,	based	on	the	time

				21	 	 //	given	in	the	VerifyOptions.

				22	 	 Expired

				23	 	 //	CANotAuthorizedForThisName	results	when	an	intermediate	or	root

				24	 	 //	certificate	has	a	name	constraint	which	doesn't	include	the	name

				25	 	 //	being	checked.

				26	 	 CANotAuthorizedForThisName

				27	 	 //	TooManyIntermediates	results	when	a	path	length	constraint	is

				28	 	 //	violated.

				29	 	 TooManyIntermediates

				30)

				31	

				32	 //	CertificateInvalidError	results	when	an	odd	error	occurs.	Users	of	this

				33	 //	library	probably	want	to	handle	all	these	errors	uniformly.

				34	 type	CertificateInvalidError	struct	{

				35	 	 Cert			*Certificate

				36	 	 Reason	InvalidReason

				37	 }

				38	

				39	 func	(e	CertificateInvalidError)	Error()	string	{

				40	 	 switch	e.Reason	{

				41	 	 case	NotAuthorizedToSign:

				42	 	 	 return	"x509:	certificate	is	not	authorized	to	sign	other	other	certificates"

				43	 	 case	Expired:

				44	 	 	 return	"x509:	certificate	has	expired	or	is	not	yet	valid"

				45	 	 case	CANotAuthorizedForThisName:

				46	 	 	 return	"x509:	a	root	or	intermediate	certificate	is	not	authorized	to	sign	in	this	domain"

				47	 	 case	TooManyIntermediates:

				48	 	 	 return	"x509:	too	many	intermediates	for	path	length	constraint"

				49	 	 }

				50	 	 return	"x509:	unknown	error"

				51	 }

				52	

				53	 //	HostnameError	results	when	the	set	of	authorized	names	doesn't	match	the

				54	 //	requested	name.

				55	 type	HostnameError	struct	{

				56	 	 Certificate	*Certificate

				57	 	 Host								string

				58	 }

				59	

				60	 func	(h	HostnameError)	Error()	string	{

				61	 	 var	valid	string

				62	 	 c	:=	h.Certificate

				63	 	 if	len(c.DNSNames)	>	0	{

				64	 	 	 valid	=	strings.Join(c.DNSNames,	",	")

				65	 	 }	else	{

				66	 	 	 valid	=	c.Subject.CommonName

				67	 	 }

				68	 	 return	"certificate	is	valid	for	"	+	valid	+	",	not	"	+	h.Host

				69	 }

				70	

				71	 //	UnknownAuthorityError	results	when	the	certificate	issuer	is	unknown

				72	 type	UnknownAuthorityError	struct	{

				73	 	 cert	*Certificate

				74	 }

				75	

				76	 func	(e	UnknownAuthorityError)	Error()	string	{

				77	 	 return	"x509:	certificate	signed	by	unknown	authority"

				78	 }

				79	

				80	 //	VerifyOptions	contains	parameters	for	Certificate.Verify.	It's	a	structure

				81	 //	because	other	PKIX	verification	APIs	have	ended	up	needing	many	options.

				82	 type	VerifyOptions	struct	{

				83	 	 DNSName							string

				84	 	 Intermediates	*CertPool

				85	 	 Roots									*CertPool	//	if	nil,	the	system	roots	are	used

				86	 	 CurrentTime			time.Time	//	if	zero,	the	current	time	is	used

				87	 }

				88	

				89	 const	(

				90	 	 leafCertificate	=	iota

				91	 	 intermediateCertificate

				92	 	 rootCertificate

				93)

				94	

				95	 //	isValid	performs	validity	checks	on	the	c.

				96	 func	(c	*Certificate)	isValid(certType	int,	currentChain	[]*Certificate,	opts	*VerifyOptions)	error	{

				97	 	 now	:=	opts.CurrentTime

				98	 	 if	now.IsZero()	{

				99	 	 	 now	=	time.Now()

			100	 	 }

			101	 	 if	now.Before(c.NotBefore)	||	now.After(c.NotAfter)	{

			102	 	 	 return	CertificateInvalidError{c,	Expired}

			103	 	 }

			104	

			105	 	 if	len(c.PermittedDNSDomains)	>	0	{

			106	 	 	 for	_,	domain	:=	range	c.PermittedDNSDomains	{

			107	 	 	 	 if	opts.DNSName	==	domain	||

			108	 	 	 	 	 (strings.HasSuffix(opts.DNSName,	domain)	&&

			109	 	 	 	 	 	 len(opts.DNSName)	>=	1+len(domain)	&&

			110	 	 	 	 	 	 opts.DNSName[len(opts.DNSName)-len(domain)-1]	==	'.')	{

			111	 	 	 	 	 continue

			112	 	 	 	 }

			113	

			114	 	 	 	 return	CertificateInvalidError{c,	CANotAuthorizedForThisName}

			115	 	 	 }

			116	 	 }

			117	

			118	 	 //	KeyUsage	status	flags	are	ignored.	From	Engineering	Security,	Peter

			119	 	 //	Gutmann:	A	European	government	CA	marked	its	signing	certificates	as

			120	 	 //	being	valid	for	encryption	only,	but	no-one	noticed.	Another

			121	 	 //	European	CA	marked	its	signature	keys	as	not	being	valid	for

			122	 	 //	signatures.	A	different	CA	marked	its	own	trusted	root	certificate

			123	 	 //	as	being	invalid	for	certificate	signing.		Another	national	CA

			124	 	 //	distributed	a	certificate	to	be	used	to	encrypt	data	for	the

			125	 	 //	country’s	tax	authority	that	was	marked	as	only	being	usable	for

			126	 	 //	digital	signatures	but	not	for	encryption.	Yet	another	CA	reversed

			127	 	 //	the	order	of	the	bit	flags	in	the	keyUsage	due	to	confusion	over

			128	 	 //	encoding	endianness,	essentially	setting	a	random	keyUsage	in

			129	 	 //	certificates	that	it	issued.	Another	CA	created	a	self-invalidating

			130	 	 //	certificate	by	adding	a	certificate	policy	statement	stipulating

			131	 	 //	that	the	certificate	had	to	be	used	strictly	as	specified	in	the

			132	 	 //	keyUsage,	and	a	keyUsage	containing	a	flag	indicating	that	the	RSA

			133	 	 //	encryption	key	could	only	be	used	for	Diffie-Hellman	key	agreement.

			134	

			135	 	 if	certType	==	intermediateCertificate	&&	(!c.BasicConstraintsValid	||	!c.IsCA)	{

			136	 	 	 return	CertificateInvalidError{c,	NotAuthorizedToSign}

			137	 	 }

			138	

			139	 	 if	c.BasicConstraintsValid	&&	c.MaxPathLen	>=	0	{

			140	 	 	 numIntermediates	:=	len(currentChain)	-	1

			141	 	 	 if	numIntermediates	>	c.MaxPathLen	{

			142	 	 	 	 return	CertificateInvalidError{c,	TooManyIntermediates}

			143	 	 	 }

			144	 	 }

			145	

			146	 	 return	nil

			147	 }

			148	

			149	 //	Verify	attempts	to	verify	c	by	building	one	or	more	chains	from	c	to	a

			150	 //	certificate	in	opts.Roots,	using	certificates	in	opts.Intermediates	if

			151	 //	needed.	If	successful,	it	returns	one	or	more	chains	where	the	first

			152	 //	element	of	the	chain	is	c	and	the	last	element	is	from	opts.Roots.

			153	 //

			154	 //	WARNING:	this	doesn't	do	any	revocation	checking.

			155	 func	(c	*Certificate)	Verify(opts	VerifyOptions)	(chains	[][]*Certificate,	err	error)	{

			156	 	 //	Use	Windows's	own	verification	and	chain	building.

			157	 	 if	opts.Roots	==	nil	&&	runtime.GOOS	==	"windows"	{

			158	 	 	 return	c.systemVerify(&opts)

			159	 	 }

			160	

			161	 	 if	opts.Roots	==	nil	{

			162	 	 	 opts.Roots	=	systemRootsPool()

			163	 	 }

			164	

			165	 	 err	=	c.isValid(leafCertificate,	nil,	&opts)

			166	 	 if	err	!=	nil	{

			167	 	 	 return

			168	 	 }

			169	

			170	 	 if	len(opts.DNSName)	>	0	{

			171	 	 	 err	=	c.VerifyHostname(opts.DNSName)

			172	 	 	 if	err	!=	nil	{

			173	 	 	 	 return

			174	 	 	 }

			175	 	 }

			176	

			177	 	 return	c.buildChains(make(map[int][][]*Certificate),	[]*Certificate{c},	&opts)

			178	 }

			179	

			180	 func	appendToFreshChain(chain	[]*Certificate,	cert	*Certificate)	[]*Certificate	{

			181	 	 n	:=	make([]*Certificate,	len(chain)+1)

			182	 	 copy(n,	chain)

			183	 	 n[len(chain)]	=	cert

			184	 	 return	n

			185	 }

			186	

			187	 func	(c	*Certificate)	buildChains(cache	map[int][][]*Certificate,	currentChain	[]*Certificate,	opts	*VerifyOptions)	(chains	[][]*Certificate,	err	error)	{

			188	 	 for	_,	rootNum	:=	range	opts.Roots.findVerifiedParents(c)	{

			189	 	 	 root	:=	opts.Roots.certs[rootNum]

			190	 	 	 err	=	root.isValid(rootCertificate,	currentChain,	opts)

			191	 	 	 if	err	!=	nil	{

			192	 	 	 	 continue

			193	 	 	 }

			194	 	 	 chains	=	append(chains,	appendToFreshChain(currentChain,	root))

			195	 	 }

			196	

			197	 nextIntermediate:

			198	 	 for	_,	intermediateNum	:=	range	opts.Intermediates.findVerifiedParents(c)	{

			199	 	 	 intermediate	:=	opts.Intermediates.certs[intermediateNum]

			200	 	 	 for	_,	cert	:=	range	currentChain	{

			201	 	 	 	 if	cert	==	intermediate	{

			202	 	 	 	 	 continue	nextIntermediate

			203	 	 	 	 }

			204	 	 	 }

			205	 	 	 err	=	intermediate.isValid(intermediateCertificate,	currentChain,	opts)

			206	 	 	 if	err	!=	nil	{

			207	 	 	 	 continue

			208	 	 	 }

			209	 	 	 var	childChains	[][]*Certificate

			210	 	 	 childChains,	ok	:=	cache[intermediateNum]

			211	 	 	 if	!ok	{

			212	 	 	 	 childChains,	err	=	intermediate.buildChains(cache,	appendToFreshChain(currentChain,	intermediate),	opts)

			213	 	 	 	 cache[intermediateNum]	=	childChains

			214	 	 	 }

			215	 	 	 chains	=	append(chains,	childChains...)

			216	 	 }

			217	

			218	 	 if	len(chains)	>	0	{

			219	 	 	 err	=	nil

			220	 	 }

			221	

			222	 	 if	len(chains)	==	0	&&	err	==	nil	{

			223	 	 	 err	=	UnknownAuthorityError{c}

			224	 	 }

			225	

			226	 	 return

			227	 }

			228	

			229	 func	matchHostnames(pattern,	host	string)	bool	{

			230	 	 if	len(pattern)	==	0	||	len(host)	==	0	{

			231	 	 	 return	false

			232	 	 }

			233	

			234	 	 patternParts	:=	strings.Split(pattern,	".")

			235	 	 hostParts	:=	strings.Split(host,	".")

			236	

			237	 	 if	len(patternParts)	!=	len(hostParts)	{

			238	 	 	 return	false

			239	 	 }

			240	

			241	 	 for	i,	patternPart	:=	range	patternParts	{

			242	 	 	 if	patternPart	==	"*"	{

			243	 	 	 	 continue

			244	 	 	 }

			245	 	 	 if	patternPart	!=	hostParts[i]	{

			246	 	 	 	 return	false

			247	 	 	 }

			248	 	 }

			249	

			250	 	 return	true

			251	 }

			252	

			253	 //	toLowerCaseASCII	returns	a	lower-case	version	of	in.	See	RFC	6125	6.4.1.	We	use

			254	 //	an	explicitly	ASCII	function	to	avoid	any	sharp	corners	resulting	from

			255	 //	performing	Unicode	operations	on	DNS	labels.

			256	 func	toLowerCaseASCII(in	string)	string	{

			257	 	 //	If	the	string	is	already	lower-case	then	there's	nothing	to	do.

			258	 	 isAlreadyLowerCase	:=	true

			259	 	 for	_,	c	:=	range	in	{

			260	 	 	 if	c	==	utf8.RuneError	{

			261	 	 	 	 //	If	we	get	a	UTF-8	error	then	there	might	be

			262	 	 	 	 //	upper-case	ASCII	bytes	in	the	invalid	sequence.

			263	 	 	 	 isAlreadyLowerCase	=	false

			264	 	 	 	 break

			265	 	 	 }

			266	 	 	 if	'A'	<=	c	&&	c	<=	'Z'	{

			267	 	 	 	 isAlreadyLowerCase	=	false

			268	 	 	 	 break

			269	 	 	 }

			270	 	 }

			271	

			272	 	 if	isAlreadyLowerCase	{

			273	 	 	 return	in

			274	 	 }

			275	

			276	 	 out	:=	[]byte(in)

			277	 	 for	i,	c	:=	range	out	{

			278	 	 	 if	'A'	<=	c	&&	c	<=	'Z'	{

			279	 	 	 	 out[i]	+=	'a'	-	'A'

			280	 	 	 }

			281	 	 }

			282	 	 return	string(out)

			283	 }

			284	

			285	 //	VerifyHostname	returns	nil	if	c	is	a	valid	certificate	for	the	named	host.

			286	 //	Otherwise	it	returns	an	error	describing	the	mismatch.

			287	 func	(c	*Certificate)	VerifyHostname(h	string)	error	{

			288	 	 lowered	:=	toLowerCaseASCII(h)

			289	

			290	 	 if	len(c.DNSNames)	>	0	{

			291	 	 	 for	_,	match	:=	range	c.DNSNames	{

			292	 	 	 	 if	matchHostnames(toLowerCaseASCII(match),	lowered)	{

			293	 	 	 	 	 return	nil

			294	 	 	 	 }

			295	 	 	 }

			296	 	 	 //	If	Subject	Alt	Name	is	given,	we	ignore	the	common	name.

			297	 	 }	else	if	matchHostnames(toLowerCaseASCII(c.Subject.CommonName),	lowered)	{

			298	 	 	 return	nil

			299	 	 }

			300	

			301	 	 return	HostnameError{c,	h}

			302	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/x509/x509.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	x509	parses	X.509-encoded	keys	and	certificates.

					6	 package	x509

					7	

					8	 import	(

					9	 	 "bytes"

				10	 	 "crypto"

				11	 	 "crypto/dsa"

				12	 	 "crypto/rsa"

				13	 	 "crypto/sha1"

				14	 	 "crypto/x509/pkix"

				15	 	 "encoding/asn1"

				16	 	 "encoding/pem"

				17	 	 "errors"

				18	 	 "io"

				19	 	 "math/big"

				20	 	 "time"

				21)

				22	

				23	 //	pkixPublicKey	reflects	a	PKIX	public	key	structure.	See	SubjectPublicKeyInfo

				24	 //	in	RFC	3280.

				25	 type	pkixPublicKey	struct	{

				26	 	 Algo						pkix.AlgorithmIdentifier

				27	 	 BitString	asn1.BitString

				28	 }

				29	

				30	 //	ParsePKIXPublicKey	parses	a	DER	encoded	public	key.	These	values	are

				31	 //	typically	found	in	PEM	blocks	with	"BEGIN	PUBLIC	KEY".

				32	 func	ParsePKIXPublicKey(derBytes	[]byte)	(pub	interface{},	err	error)	{

				33	 	 var	pki	publicKeyInfo

				34	 	 if	_,	err	=	asn1.Unmarshal(derBytes,	&pki);	err	!=	nil	{

				35	 	 	 return

				36	 	 }

				37	 	 algo	:=	getPublicKeyAlgorithmFromOID(pki.Algorithm.Algorithm)

				38	 	 if	algo	==	UnknownPublicKeyAlgorithm	{

				39	 	 	 return	nil,	errors.New("ParsePKIXPublicKey:	unknown	public	key	algorithm")

				40	 	 }

				41	 	 return	parsePublicKey(algo,	&pki)

				42	 }

				43	

				44	 //	MarshalPKIXPublicKey	serialises	a	public	key	to	DER-encoded	PKIX	format.

				45	 func	MarshalPKIXPublicKey(pub	interface{})	([]byte,	error)	{

				46	 	 var	pubBytes	[]byte

				47	

				48	 	 switch	pub	:=	pub.(type)	{

				49	 	 case	*rsa.PublicKey:

				50	 	 	 pubBytes,	_	=	asn1.Marshal(rsaPublicKey{

				51	 	 	 	 N:	pub.N,

				52	 	 	 	 E:	pub.E,

				53	 	 	 })

				54	 	 default:

				55	 	 	 return	nil,	errors.New("MarshalPKIXPublicKey:	unknown	public	key	type")

				56	 	 }

				57	

				58	 	 pkix	:=	pkixPublicKey{

				59	 	 	 Algo:	pkix.AlgorithmIdentifier{

				60	 	 	 	 Algorithm:	[]int{1,	2,	840,	113549,	1,	1,	1},

				61	 	 	 	 //	This	is	a	NULL	parameters	value	which	is	technically

				62	 	 	 	 //	superfluous,	but	most	other	code	includes	it	and,	by

				63	 	 	 	 //	doing	this,	we	match	their	public	key	hashes.

				64	 	 	 	 Parameters:	asn1.RawValue{

				65	 	 	 	 	 Tag:	5,

				66	 	 	 	 },

				67	 	 	 },

				68	 	 	 BitString:	asn1.BitString{

				69	 	 	 	 Bytes:					pubBytes,

				70	 	 	 	 BitLength:	8	*	len(pubBytes),

				71	 	 	 },

				72	 	 }

				73	

				74	 	 ret,	_	:=	asn1.Marshal(pkix)

				75	 	 return	ret,	nil

				76	 }

				77	

				78	 //	These	structures	reflect	the	ASN.1	structure	of	X.509	certificates.:

				79	

				80	 type	certificate	struct	{

				81	 	 Raw																asn1.RawContent

				82	 	 TBSCertificate					tbsCertificate

				83	 	 SignatureAlgorithm	pkix.AlgorithmIdentifier

				84	 	 SignatureValue					asn1.BitString

				85	 }

				86	

				87	 type	tbsCertificate	struct	{

				88	 	 Raw																asn1.RawContent

				89	 	 Version												int	`asn1:"optional,explicit,default:1,tag:0"`

				90	 	 SerialNumber							*big.Int

				91	 	 SignatureAlgorithm	pkix.AlgorithmIdentifier

				92	 	 Issuer													asn1.RawValue

				93	 	 Validity											validity

				94	 	 Subject												asn1.RawValue

				95	 	 PublicKey										publicKeyInfo

				96	 	 UniqueId											asn1.BitString			`asn1:"optional,tag:1"`

				97	 	 SubjectUniqueId				asn1.BitString			`asn1:"optional,tag:2"`

				98	 	 Extensions									[]pkix.Extension	`asn1:"optional,explicit,tag:3"`

				99	 }

			100	

			101	 type	dsaAlgorithmParameters	struct	{

			102	 	 P,	Q,	G	*big.Int

			103	 }

			104	

			105	 type	dsaSignature	struct	{

			106	 	 R,	S	*big.Int

			107	 }

			108	

			109	 type	validity	struct	{

			110	 	 NotBefore,	NotAfter	time.Time

			111	 }

			112	

			113	 type	publicKeyInfo	struct	{

			114	 	 Raw							asn1.RawContent

			115	 	 Algorithm	pkix.AlgorithmIdentifier

			116	 	 PublicKey	asn1.BitString

			117	 }

			118	

			119	 //	RFC	5280,		4.2.1.1

			120	 type	authKeyId	struct	{

			121	 	 Id	[]byte	`asn1:"optional,tag:0"`

			122	 }

			123	

			124	 type	SignatureAlgorithm	int

			125	

			126	 const	(

			127	 	 UnknownSignatureAlgorithm	SignatureAlgorithm	=	iota

			128	 	 MD2WithRSA

			129	 	 MD5WithRSA

			130	 	 SHA1WithRSA

			131	 	 SHA256WithRSA

			132	 	 SHA384WithRSA

			133	 	 SHA512WithRSA

			134	 	 DSAWithSHA1

			135	 	 DSAWithSHA256

			136)

			137	

			138	 type	PublicKeyAlgorithm	int

			139	

			140	 const	(

			141	 	 UnknownPublicKeyAlgorithm	PublicKeyAlgorithm	=	iota

			142	 	 RSA

			143	 	 DSA

			144)

			145	

			146	 //	OIDs	for	signature	algorithms

			147	 //

			148	 //	pkcs-1	OBJECT	IDENTIFIER	::=	{

			149	 //				iso(1)	member-body(2)	us(840)	rsadsi(113549)	pkcs(1)	1	}

			150	 //	

			151	 //	

			152	 //	RFC	3279	2.2.1	RSA	Signature	Algorithms

			153	 //

			154	 //	md2WithRSAEncryption	OBJECT	IDENTIFIER	::=	{	pkcs-1	2	}

			155	 //

			156	 //	md5WithRSAEncryption	OBJECT	IDENTIFIER	::=	{	pkcs-1	4	}

			157	 //

			158	 //	sha-1WithRSAEncryption	OBJECT	IDENTIFIER	::=	{	pkcs-1	5	}

			159	 //	

			160	 //	dsaWithSha1	OBJECT	IDENTIFIER	::=	{

			161	 //				iso(1)	member-body(2)	us(840)	x9-57(10040)	x9cm(4)	3	}	

			162	 //

			163	 //

			164	 //	RFC	4055	5	PKCS	#1	Version	1.5

			165	 //	

			166	 //	sha256WithRSAEncryption	OBJECT	IDENTIFIER	::=	{	pkcs-1	11	}

			167	 //

			168	 //	sha384WithRSAEncryption	OBJECT	IDENTIFIER	::=	{	pkcs-1	12	}

			169	 //

			170	 //	sha512WithRSAEncryption	OBJECT	IDENTIFIER	::=	{	pkcs-1	13	}

			171	 //

			172	 //

			173	 //	RFC	5758	3.1	DSA	Signature	Algorithms

			174	 //

			175	 //	dsaWithSha256	OBJECT	IDENTIFIER	::=	{

			176	 //				joint-iso-ccitt(2)	country(16)	us(840)	organization(1)	gov(101)

			177	 //				csor(3)	algorithms(4)	id-dsa-with-sha2(3)	2}

			178	 //

			179	 var	(

			180	 	 oidSignatureMD2WithRSA				=	asn1.ObjectIdentifier{1,	2,	840,	113549,	1,	1,	2}

			181	 	 oidSignatureMD5WithRSA				=	asn1.ObjectIdentifier{1,	2,	840,	113549,	1,	1,	4}

			182	 	 oidSignatureSHA1WithRSA			=	asn1.ObjectIdentifier{1,	2,	840,	113549,	1,	1,	5}

			183	 	 oidSignatureSHA256WithRSA	=	asn1.ObjectIdentifier{1,	2,	840,	113549,	1,	1,	11}

			184	 	 oidSignatureSHA384WithRSA	=	asn1.ObjectIdentifier{1,	2,	840,	113549,	1,	1,	12}

			185	 	 oidSignatureSHA512WithRSA	=	asn1.ObjectIdentifier{1,	2,	840,	113549,	1,	1,	13}

			186	 	 oidSignatureDSAWithSHA1			=	asn1.ObjectIdentifier{1,	2,	840,	10040,	4,	3}

			187	 	 oidSignatureDSAWithSHA256	=	asn1.ObjectIdentifier{2,	16,	840,	1,	101,	4,	3,	2}

			188)

			189	

			190	 func	getSignatureAlgorithmFromOID(oid	asn1.ObjectIdentifier)	SignatureAlgorithm	{

			191	 	 switch	{

			192	 	 case	oid.Equal(oidSignatureMD2WithRSA):

			193	 	 	 return	MD2WithRSA

			194	 	 case	oid.Equal(oidSignatureMD5WithRSA):

			195	 	 	 return	MD5WithRSA

			196	 	 case	oid.Equal(oidSignatureSHA1WithRSA):

			197	 	 	 return	SHA1WithRSA

			198	 	 case	oid.Equal(oidSignatureSHA256WithRSA):

			199	 	 	 return	SHA256WithRSA

			200	 	 case	oid.Equal(oidSignatureSHA384WithRSA):

			201	 	 	 return	SHA384WithRSA

			202	 	 case	oid.Equal(oidSignatureSHA512WithRSA):

			203	 	 	 return	SHA512WithRSA

			204	 	 case	oid.Equal(oidSignatureDSAWithSHA1):

			205	 	 	 return	DSAWithSHA1

			206	 	 case	oid.Equal(oidSignatureDSAWithSHA256):

			207	 	 	 return	DSAWithSHA256

			208	 	 }

			209	 	 return	UnknownSignatureAlgorithm

			210	 }

			211	

			212	 //	RFC	3279,	2.3	Public	Key	Algorithms

			213	 //

			214	 //	pkcs-1	OBJECT	IDENTIFIER	::==	{	iso(1)	member-body(2)	us(840)

			215	 //				rsadsi(113549)	pkcs(1)	1	}

			216	 //

			217	 //	rsaEncryption	OBJECT	IDENTIFIER	::==	{	pkcs1-1	1	}

			218	 //

			219	 //	id-dsa	OBJECT	IDENTIFIER	::==	{	iso(1)	member-body(2)	us(840)

			220	 //				x9-57(10040)	x9cm(4)	1	}

			221	 var	(

			222	 	 oidPublicKeyRsa	=	asn1.ObjectIdentifier{1,	2,	840,	113549,	1,	1,	1}

			223	 	 oidPublicKeyDsa	=	asn1.ObjectIdentifier{1,	2,	840,	10040,	4,	1}

			224)

			225	

			226	 func	getPublicKeyAlgorithmFromOID(oid	asn1.ObjectIdentifier)	PublicKeyAlgorithm	{

			227	 	 switch	{

			228	 	 case	oid.Equal(oidPublicKeyRsa):

			229	 	 	 return	RSA

			230	 	 case	oid.Equal(oidPublicKeyDsa):

			231	 	 	 return	DSA

			232	 	 }

			233	 	 return	UnknownPublicKeyAlgorithm

			234	 }

			235	

			236	 //	KeyUsage	represents	the	set	of	actions	that	are	valid	for	a	given	key.	It's

			237	 //	a	bitmap	of	the	KeyUsage*	constants.

			238	 type	KeyUsage	int

			239	

			240	 const	(

			241	 	 KeyUsageDigitalSignature	KeyUsage	=	1	<<	iota

			242	 	 KeyUsageContentCommitment

			243	 	 KeyUsageKeyEncipherment

			244	 	 KeyUsageDataEncipherment

			245	 	 KeyUsageKeyAgreement

			246	 	 KeyUsageCertSign

			247	 	 KeyUsageCRLSign

			248	 	 KeyUsageEncipherOnly

			249	 	 KeyUsageDecipherOnly

			250)

			251	

			252	 //	RFC	5280,	4.2.1.12		Extended	Key	Usage

			253	 //

			254	 //	anyExtendedKeyUsage	OBJECT	IDENTIFIER	::=	{	id-ce-extKeyUsage	0	}

			255	 //

			256	 //	id-kp	OBJECT	IDENTIFIER	::=	{	id-pkix	3	}

			257	 //

			258	 //	id-kp-serverAuth													OBJECT	IDENTIFIER	::=	{	id-kp	1	}

			259	 //	id-kp-clientAuth													OBJECT	IDENTIFIER	::=	{	id-kp	2	}

			260	 //	id-kp-codeSigning												OBJECT	IDENTIFIER	::=	{	id-kp	3	}

			261	 //	id-kp-emailProtection								OBJECT	IDENTIFIER	::=	{	id-kp	4	}

			262	 //	id-kp-timeStamping											OBJECT	IDENTIFIER	::=	{	id-kp	8	}

			263	 //	id-kp-OCSPSigning												OBJECT	IDENTIFIER	::=	{	id-kp	9	}

			264	 var	(

			265	 	 oidExtKeyUsageAny													=	asn1.ObjectIdentifier{2,	5,	29,	37,	0}

			266	 	 oidExtKeyUsageServerAuth						=	asn1.ObjectIdentifier{1,	3,	6,	1,	5,	5,	7,	3,	1}

			267	 	 oidExtKeyUsageClientAuth						=	asn1.ObjectIdentifier{1,	3,	6,	1,	5,	5,	7,	3,	2}

			268	 	 oidExtKeyUsageCodeSigning					=	asn1.ObjectIdentifier{1,	3,	6,	1,	5,	5,	7,	3,	3}

			269	 	 oidExtKeyUsageEmailProtection	=	asn1.ObjectIdentifier{1,	3,	6,	1,	5,	5,	7,	3,	4}

			270	 	 oidExtKeyUsageTimeStamping				=	asn1.ObjectIdentifier{1,	3,	6,	1,	5,	5,	7,	3,	8}

			271	 	 oidExtKeyUsageOCSPSigning					=	asn1.ObjectIdentifier{1,	3,	6,	1,	5,	5,	7,	3,	9}

			272)

			273	

			274	 //	ExtKeyUsage	represents	an	extended	set	of	actions	that	are	valid	for	a	given	key.

			275	 //	Each	of	the	ExtKeyUsage*	constants	define	a	unique	action.

			276	 type	ExtKeyUsage	int

			277	

			278	 const	(

			279	 	 ExtKeyUsageAny	ExtKeyUsage	=	iota

			280	 	 ExtKeyUsageServerAuth

			281	 	 ExtKeyUsageClientAuth

			282	 	 ExtKeyUsageCodeSigning

			283	 	 ExtKeyUsageEmailProtection

			284	 	 ExtKeyUsageTimeStamping

			285	 	 ExtKeyUsageOCSPSigning

			286)

			287	

			288	 //	A	Certificate	represents	an	X.509	certificate.

			289	 type	Certificate	struct	{

			290	 	 Raw																					[]byte	//	Complete	ASN.1	DER	content	(certificate,	signature	algorithm	and	signature).

			291	 	 RawTBSCertificate							[]byte	//	Certificate	part	of	raw	ASN.1	DER	content.

			292	 	 RawSubjectPublicKeyInfo	[]byte	//	DER	encoded	SubjectPublicKeyInfo.

			293	 	 RawSubject														[]byte	//	DER	encoded	Subject

			294	 	 RawIssuer															[]byte	//	DER	encoded	Issuer

			295	

			296	 	 Signature										[]byte

			297	 	 SignatureAlgorithm	SignatureAlgorithm

			298	

			299	 	 PublicKeyAlgorithm	PublicKeyAlgorithm

			300	 	 PublicKey										interface{}

			301	

			302	 	 Version													int

			303	 	 SerialNumber								*big.Int

			304	 	 Issuer														pkix.Name

			305	 	 Subject													pkix.Name

			306	 	 NotBefore,	NotAfter	time.Time	//	Validity	bounds.

			307	 	 KeyUsage												KeyUsage

			308	

			309	 	 ExtKeyUsage								[]ExtKeyUsage											//	Sequence	of	extended	key	usages.

			310	 	 UnknownExtKeyUsage	[]asn1.ObjectIdentifier	//	Encountered	extended	key	usages	unknown	to	this	package.

			311	

			312	 	 BasicConstraintsValid	bool	//	if	true	then	the	next	two	fields	are	valid.

			313	 	 IsCA																		bool

			314	 	 MaxPathLen												int

			315	

			316	 	 SubjectKeyId			[]byte

			317	 	 AuthorityKeyId	[]byte

			318	

			319	 	 //	Subject	Alternate	Name	values

			320	 	 DNSNames							[]string

			321	 	 EmailAddresses	[]string

			322	

			323	 	 //	Name	constraints

			324	 	 PermittedDNSDomainsCritical	bool	//	if	true	then	the	name	constraints	are	marked	critical.

			325	 	 PermittedDNSDomains									[]string

			326	

			327	 	 PolicyIdentifiers	[]asn1.ObjectIdentifier

			328	 }

			329	

			330	 //	ErrUnsupportedAlgorithm	results	from	attempting	to	perform	an	operation	that

			331	 //	involves	algorithms	that	are	not	currently	implemented.

			332	 var	ErrUnsupportedAlgorithm	=	errors.New("crypto/x509:	cannot	verify	signature:	algorithm	unimplemented")

			333	

			334	 //	ConstraintViolationError	results	when	a	requested	usage	is	not	permitted	by

			335	 //	a	certificate.	For	example:	checking	a	signature	when	the	public	key	isn't	a

			336	 //	certificate	signing	key.

			337	 type	ConstraintViolationError	struct{}

			338	

			339	 func	(ConstraintViolationError)	Error()	string	{

			340	 	 return	"crypto/x509:	invalid	signature:	parent	certificate	cannot	sign	this	kind	of	certificate"

			341	 }

			342	

			343	 func	(c	*Certificate)	Equal(other	*Certificate)	bool	{

			344	 	 return	bytes.Equal(c.Raw,	other.Raw)

			345	 }

			346	

			347	 //	CheckSignatureFrom	verifies	that	the	signature	on	c	is	a	valid	signature

			348	 //	from	parent.

			349	 func	(c	*Certificate)	CheckSignatureFrom(parent	*Certificate)	(err	error)	{

			350	 	 //	RFC	5280,	4.2.1.9:

			351	 	 //	"If	the	basic	constraints	extension	is	not	present	in	a	version	3

			352	 	 //	certificate,	or	the	extension	is	present	but	the	cA	boolean	is	not

			353	 	 //	asserted,	then	the	certified	public	key	MUST	NOT	be	used	to	verify

			354	 	 //	certificate	signatures."

			355	 	 if	parent.Version	==	3	&&	!parent.BasicConstraintsValid	||

			356	 	 	 parent.BasicConstraintsValid	&&	!parent.IsCA	{

			357	 	 	 return	ConstraintViolationError{}

			358	 	 }

			359	

			360	 	 if	parent.KeyUsage	!=	0	&&	parent.KeyUsage&KeyUsageCertSign	==	0	{

			361	 	 	 return	ConstraintViolationError{}

			362	 	 }

			363	

			364	 	 if	parent.PublicKeyAlgorithm	==	UnknownPublicKeyAlgorithm	{

			365	 	 	 return	ErrUnsupportedAlgorithm

			366	 	 }

			367	

			368	 	 //	TODO(agl):	don't	ignore	the	path	length	constraint.

			369	

			370	 	 return	parent.CheckSignature(c.SignatureAlgorithm,	c.RawTBSCertificate,	c.Signature)

			371	 }

			372	

			373	 //	CheckSignature	verifies	that	signature	is	a	valid	signature	over	signed	from

			374	 //	c's	public	key.

			375	 func	(c	*Certificate)	CheckSignature(algo	SignatureAlgorithm,	signed,	signature	[]byte)	(err	error)	{

			376	 	 var	hashType	crypto.Hash

			377	

			378	 	 switch	algo	{

			379	 	 case	SHA1WithRSA,	DSAWithSHA1:

			380	 	 	 hashType	=	crypto.SHA1

			381	 	 case	SHA256WithRSA,	DSAWithSHA256:

			382	 	 	 hashType	=	crypto.SHA256

			383	 	 case	SHA384WithRSA:

			384	 	 	 hashType	=	crypto.SHA384

			385	 	 case	SHA512WithRSA:

			386	 	 	 hashType	=	crypto.SHA512

			387	 	 default:

			388	 	 	 return	ErrUnsupportedAlgorithm

			389	 	 }

			390	

			391	 	 h	:=	hashType.New()

			392	 	 if	h	==	nil	{

			393	 	 	 return	ErrUnsupportedAlgorithm

			394	 	 }

			395	

			396	 	 h.Write(signed)

			397	 	 digest	:=	h.Sum(nil)

			398	

			399	 	 switch	pub	:=	c.PublicKey.(type)	{

			400	 	 case	*rsa.PublicKey:

			401	 	 	 return	rsa.VerifyPKCS1v15(pub,	hashType,	digest,	signature)

			402	 	 case	*dsa.PublicKey:

			403	 	 	 dsaSig	:=	new(dsaSignature)

			404	 	 	 if	_,	err	:=	asn1.Unmarshal(signature,	dsaSig);	err	!=	nil	{

			405	 	 	 	 return	err

			406	 	 	 }

			407	 	 	 if	dsaSig.R.Sign()	<=	0	||	dsaSig.S.Sign()	<=	0	{

			408	 	 	 	 return	errors.New("DSA	signature	contained	zero	or	negative	values")

			409	 	 	 }

			410	 	 	 if	!dsa.Verify(pub,	digest,	dsaSig.R,	dsaSig.S)	{

			411	 	 	 	 return	errors.New("DSA	verification	failure")

			412	 	 	 }

			413	 	 	 return

			414	 	 }

			415	 	 return	ErrUnsupportedAlgorithm

			416	 }

			417	

			418	 //	CheckCRLSignature	checks	that	the	signature	in	crl	is	from	c.

			419	 func	(c	*Certificate)	CheckCRLSignature(crl	*pkix.CertificateList)	(err	error)	{

			420	 	 algo	:=	getSignatureAlgorithmFromOID(crl.SignatureAlgorithm.Algorithm)

			421	 	 return	c.CheckSignature(algo,	crl.TBSCertList.Raw,	crl.SignatureValue.RightAlign())

			422	 }

			423	

			424	 type	UnhandledCriticalExtension	struct{}

			425	

			426	 func	(h	UnhandledCriticalExtension)	Error()	string	{

			427	 	 return	"unhandled	critical	extension"

			428	 }

			429	

			430	 type	basicConstraints	struct	{

			431	 	 IsCA							bool	`asn1:"optional"`

			432	 	 MaxPathLen	int		`asn1:"optional,default:-1"`

			433	 }

			434	

			435	 //	RFC	5280	4.2.1.4

			436	 type	policyInformation	struct	{

			437	 	 Policy	asn1.ObjectIdentifier

			438	 	 //	policyQualifiers	omitted

			439	 }

			440	

			441	 //	RFC	5280,	4.2.1.10

			442	 type	nameConstraints	struct	{

			443	 	 Permitted	[]generalSubtree	`asn1:"optional,tag:0"`

			444	 	 Excluded		[]generalSubtree	`asn1:"optional,tag:1"`

			445	 }

			446	

			447	 type	generalSubtree	struct	{

			448	 	 Name	string	`asn1:"tag:2,optional,ia5"`

			449	 	 Min		int				`asn1:"optional,tag:0"`

			450	 	 Max		int				`asn1:"optional,tag:1"`

			451	 }

			452	

			453	 func	parsePublicKey(algo	PublicKeyAlgorithm,	keyData	*publicKeyInfo)	(interface{},	error)	{

			454	 	 asn1Data	:=	keyData.PublicKey.RightAlign()

			455	 	 switch	algo	{

			456	 	 case	RSA:

			457	 	 	 p	:=	new(rsaPublicKey)

			458	 	 	 _,	err	:=	asn1.Unmarshal(asn1Data,	p)

			459	 	 	 if	err	!=	nil	{

			460	 	 	 	 return	nil,	err

			461	 	 	 }

			462	

			463	 	 	 pub	:=	&rsa.PublicKey{

			464	 	 	 	 E:	p.E,

			465	 	 	 	 N:	p.N,

			466	 	 	 }

			467	 	 	 return	pub,	nil

			468	 	 case	DSA:

			469	 	 	 var	p	*big.Int

			470	 	 	 _,	err	:=	asn1.Unmarshal(asn1Data,	&p)

			471	 	 	 if	err	!=	nil	{

			472	 	 	 	 return	nil,	err

			473	 	 	 }

			474	 	 	 paramsData	:=	keyData.Algorithm.Parameters.FullBytes

			475	 	 	 params	:=	new(dsaAlgorithmParameters)

			476	 	 	 _,	err	=	asn1.Unmarshal(paramsData,	params)

			477	 	 	 if	err	!=	nil	{

			478	 	 	 	 return	nil,	err

			479	 	 	 }

			480	 	 	 if	p.Sign()	<=	0	||	params.P.Sign()	<=	0	||	params.Q.Sign()	<=	0	||	params.G.Sign()	<=	0	{

			481	 	 	 	 return	nil,	errors.New("zero	or	negative	DSA	parameter")

			482	 	 	 }

			483	 	 	 pub	:=	&dsa.PublicKey{

			484	 	 	 	 Parameters:	dsa.Parameters{

			485	 	 	 	 	 P:	params.P,

			486	 	 	 	 	 Q:	params.Q,

			487	 	 	 	 	 G:	params.G,

			488	 	 	 	 },

			489	 	 	 	 Y:	p,

			490	 	 	 }

			491	 	 	 return	pub,	nil

			492	 	 default:

			493	 	 	 return	nil,	nil

			494	 	 }

			495	 	 panic("unreachable")

			496	 }

			497	

			498	 func	parseCertificate(in	*certificate)	(*Certificate,	error)	{

			499	 	 out	:=	new(Certificate)

			500	 	 out.Raw	=	in.Raw

			501	 	 out.RawTBSCertificate	=	in.TBSCertificate.Raw

			502	 	 out.RawSubjectPublicKeyInfo	=	in.TBSCertificate.PublicKey.Raw

			503	 	 out.RawSubject	=	in.TBSCertificate.Subject.FullBytes

			504	 	 out.RawIssuer	=	in.TBSCertificate.Issuer.FullBytes

			505	

			506	 	 out.Signature	=	in.SignatureValue.RightAlign()

			507	 	 out.SignatureAlgorithm	=

			508	 	 	 getSignatureAlgorithmFromOID(in.TBSCertificate.SignatureAlgorithm.Algorithm)

			509	

			510	 	 out.PublicKeyAlgorithm	=

			511	 	 	 getPublicKeyAlgorithmFromOID(in.TBSCertificate.PublicKey.Algorithm.Algorithm)

			512	 	 var	err	error

			513	 	 out.PublicKey,	err	=	parsePublicKey(out.PublicKeyAlgorithm,	&in.TBSCertificate.PublicKey)

			514	 	 if	err	!=	nil	{

			515	 	 	 return	nil,	err

			516	 	 }

			517	

			518	 	 if	in.TBSCertificate.SerialNumber.Sign()	<	0	{

			519	 	 	 return	nil,	errors.New("negative	serial	number")

			520	 	 }

			521	

			522	 	 out.Version	=	in.TBSCertificate.Version	+	1

			523	 	 out.SerialNumber	=	in.TBSCertificate.SerialNumber

			524	

			525	 	 var	issuer,	subject	pkix.RDNSequence

			526	 	 if	_,	err	:=	asn1.Unmarshal(in.TBSCertificate.Subject.FullBytes,	&subject);	err	!=	nil	{

			527	 	 	 return	nil,	err

			528	 	 }

			529	 	 if	_,	err	:=	asn1.Unmarshal(in.TBSCertificate.Issuer.FullBytes,	&issuer);	err	!=	nil	{

			530	 	 	 return	nil,	err

			531	 	 }

			532	

			533	 	 out.Issuer.FillFromRDNSequence(&issuer)

			534	 	 out.Subject.FillFromRDNSequence(&subject)

			535	

			536	 	 out.NotBefore	=	in.TBSCertificate.Validity.NotBefore

			537	 	 out.NotAfter	=	in.TBSCertificate.Validity.NotAfter

			538	

			539	 	 for	_,	e	:=	range	in.TBSCertificate.Extensions	{

			540	 	 	 if	len(e.Id)	==	4	&&	e.Id[0]	==	2	&&	e.Id[1]	==	5	&&	e.Id[2]	==	29	{

			541	 	 	 	 switch	e.Id[3]	{

			542	 	 	 	 case	15:

			543	 	 	 	 	 //	RFC	5280,	4.2.1.3

			544	 	 	 	 	 var	usageBits	asn1.BitString

			545	 	 	 	 	 _,	err	:=	asn1.Unmarshal(e.Value,	&usageBits)

			546	

			547	 	 	 	 	 if	err	==	nil	{

			548	 	 	 	 	 	 var	usage	int

			549	 	 	 	 	 	 for	i	:=	0;	i	<	9;	i++	{

			550	 	 	 	 	 	 	 if	usageBits.At(i)	!=	0	{

			551	 	 	 	 	 	 	 	 usage	|=	1	<<	uint(i)

			552	 	 	 	 	 	 	 }

			553	 	 	 	 	 	 }

			554	 	 	 	 	 	 out.KeyUsage	=	KeyUsage(usage)

			555	 	 	 	 	 	 continue

			556	 	 	 	 	 }

			557	 	 	 	 case	19:

			558	 	 	 	 	 //	RFC	5280,	4.2.1.9

			559	 	 	 	 	 var	constraints	basicConstraints

			560	 	 	 	 	 _,	err	:=	asn1.Unmarshal(e.Value,	&constraints)

			561	

			562	 	 	 	 	 if	err	==	nil	{

			563	 	 	 	 	 	 out.BasicConstraintsValid	=	true

			564	 	 	 	 	 	 out.IsCA	=	constraints.IsCA

			565	 	 	 	 	 	 out.MaxPathLen	=	constraints.MaxPathLen

			566	 	 	 	 	 	 continue

			567	 	 	 	 	 }

			568	 	 	 	 case	17:

			569	 	 	 	 	 //	RFC	5280,	4.2.1.6

			570	

			571	 	 	 	 	 //	SubjectAltName	::=	GeneralNames

			572	 	 	 	 	 //

			573	 	 	 	 	 //	GeneralNames	::=	SEQUENCE	SIZE	(1..MAX)	OF	GeneralName

			574	 	 	 	 	 //

			575	 	 	 	 	 //	GeneralName	::=	CHOICE	{

			576	 	 	 	 	 //						otherName																							[0]					OtherName,

			577	 	 	 	 	 //						rfc822Name																						[1]					IA5String,

			578	 	 	 	 	 //						dNSName																									[2]					IA5String,

			579	 	 	 	 	 //						x400Address																					[3]					ORAddress,

			580	 	 	 	 	 //						directoryName																			[4]					Name,

			581	 	 	 	 	 //						ediPartyName																				[5]					EDIPartyName,

			582	 	 	 	 	 //						uniformResourceIdentifier							[6]					IA5String,

			583	 	 	 	 	 //						iPAddress																							[7]					OCTET	STRING,

			584	 	 	 	 	 //						registeredID																				[8]					OBJECT	IDENTIFIER	}

			585	 	 	 	 	 var	seq	asn1.RawValue

			586	 	 	 	 	 _,	err	:=	asn1.Unmarshal(e.Value,	&seq)

			587	 	 	 	 	 if	err	!=	nil	{

			588	 	 	 	 	 	 return	nil,	err

			589	 	 	 	 	 }

			590	 	 	 	 	 if	!seq.IsCompound	||	seq.Tag	!=	16	||	seq.Class	!=	0	{

			591	 	 	 	 	 	 return	nil,	asn1.StructuralError{Msg:	"bad	SAN	sequence"}

			592	 	 	 	 	 }

			593	

			594	 	 	 	 	 parsedName	:=	false

			595	

			596	 	 	 	 	 rest	:=	seq.Bytes

			597	 	 	 	 	 for	len(rest)	>	0	{

			598	 	 	 	 	 	 var	v	asn1.RawValue

			599	 	 	 	 	 	 rest,	err	=	asn1.Unmarshal(rest,	&v)

			600	 	 	 	 	 	 if	err	!=	nil	{

			601	 	 	 	 	 	 	 return	nil,	err

			602	 	 	 	 	 	 }

			603	 	 	 	 	 	 switch	v.Tag	{

			604	 	 	 	 	 	 case	1:

			605	 	 	 	 	 	 	 out.EmailAddresses	=	append(out.EmailAddresses,	string(v.Bytes))

			606	 	 	 	 	 	 	 parsedName	=	true

			607	 	 	 	 	 	 case	2:

			608	 	 	 	 	 	 	 out.DNSNames	=	append(out.DNSNames,	string(v.Bytes))

			609	 	 	 	 	 	 	 parsedName	=	true

			610	 	 	 	 	 	 }

			611	 	 	 	 	 }

			612	

			613	 	 	 	 	 if	parsedName	{

			614	 	 	 	 	 	 continue

			615	 	 	 	 	 }

			616	 	 	 	 	 //	If	we	didn't	parse	any	of	the	names	then	we

			617	 	 	 	 	 //	fall	through	to	the	critical	check	below.

			618	

			619	 	 	 	 case	30:

			620	 	 	 	 	 //	RFC	5280,	4.2.1.10

			621	

			622	 	 	 	 	 //	NameConstraints	::=	SEQUENCE	{

			623	 	 	 	 	 //						permittedSubtrees							[0]					GeneralSubtrees	OPTIONAL,

			624	 	 	 	 	 //						excludedSubtrees								[1]					GeneralSubtrees	OPTIONAL	}

			625	 	 	 	 	 //

			626	 	 	 	 	 //	GeneralSubtrees	::=	SEQUENCE	SIZE	(1..MAX)	OF	GeneralSubtree

			627	 	 	 	 	 //

			628	 	 	 	 	 //	GeneralSubtree	::=	SEQUENCE	{

			629	 	 	 	 	 //						base																				GeneralName,

			630	 	 	 	 	 //						minimum									[0]					BaseDistance	DEFAULT	0,

			631	 	 	 	 	 //						maximum									[1]					BaseDistance	OPTIONAL	}

			632	 	 	 	 	 //

			633	 	 	 	 	 //	BaseDistance	::=	INTEGER	(0..MAX)

			634	

			635	 	 	 	 	 var	constraints	nameConstraints

			636	 	 	 	 	 _,	err	:=	asn1.Unmarshal(e.Value,	&constraints)

			637	 	 	 	 	 if	err	!=	nil	{

			638	 	 	 	 	 	 return	nil,	err

			639	 	 	 	 	 }

			640	

			641	 	 	 	 	 if	len(constraints.Excluded)	>	0	&&	e.Critical	{

			642	 	 	 	 	 	 return	out,	UnhandledCriticalExtension{}

			643	 	 	 	 	 }

			644	

			645	 	 	 	 	 for	_,	subtree	:=	range	constraints.Permitted	{

			646	 	 	 	 	 	 if	subtree.Min	>	0	||	subtree.Max	>	0	||	len(subtree.Name)	==	0	{

			647	 	 	 	 	 	 	 if	e.Critical	{

			648	 	 	 	 	 	 	 	 return	out,	UnhandledCriticalExtension{}

			649	 	 	 	 	 	 	 }

			650	 	 	 	 	 	 	 continue

			651	 	 	 	 	 	 }

			652	 	 	 	 	 	 out.PermittedDNSDomains	=	append(out.PermittedDNSDomains,	subtree.Name)

			653	 	 	 	 	 }

			654	 	 	 	 	 continue

			655	

			656	 	 	 	 case	35:

			657	 	 	 	 	 //	RFC	5280,	4.2.1.1

			658	 	 	 	 	 var	a	authKeyId

			659	 	 	 	 	 _,	err	=	asn1.Unmarshal(e.Value,	&a)

			660	 	 	 	 	 if	err	!=	nil	{

			661	 	 	 	 	 	 return	nil,	err

			662	 	 	 	 	 }

			663	 	 	 	 	 out.AuthorityKeyId	=	a.Id

			664	 	 	 	 	 continue

			665	

			666	 	 	 	 case	37:

			667	 	 	 	 	 //	RFC	5280,	4.2.1.12.		Extended	Key	Usage

			668	

			669	 	 	 	 	 //	id-ce-extKeyUsage	OBJECT	IDENTIFIER	::=	{	id-ce	37	}

			670	 	 	 	 	 //

			671	 	 	 	 	 //	ExtKeyUsageSyntax	::=	SEQUENCE	SIZE	(1..MAX)	OF	KeyPurposeId

			672	 	 	 	 	 //

			673	 	 	 	 	 //	KeyPurposeId	::=	OBJECT	IDENTIFIER

			674	

			675	 	 	 	 	 var	keyUsage	[]asn1.ObjectIdentifier

			676	 	 	 	 	 _,	err	=	asn1.Unmarshal(e.Value,	&keyUsage)

			677	 	 	 	 	 if	err	!=	nil	{

			678	 	 	 	 	 	 return	nil,	err

			679	 	 	 	 	 }

			680	

			681	 	 	 	 	 for	_,	u	:=	range	keyUsage	{

			682	 	 	 	 	 	 switch	{

			683	 	 	 	 	 	 case	u.Equal(oidExtKeyUsageAny):

			684	 	 	 	 	 	 	 out.ExtKeyUsage	=	append(out.ExtKeyUsage,	ExtKeyUsageAny)

			685	 	 	 	 	 	 case	u.Equal(oidExtKeyUsageServerAuth):

			686	 	 	 	 	 	 	 out.ExtKeyUsage	=	append(out.ExtKeyUsage,	ExtKeyUsageServerAuth)

			687	 	 	 	 	 	 case	u.Equal(oidExtKeyUsageClientAuth):

			688	 	 	 	 	 	 	 out.ExtKeyUsage	=	append(out.ExtKeyUsage,	ExtKeyUsageClientAuth)

			689	 	 	 	 	 	 case	u.Equal(oidExtKeyUsageCodeSigning):

			690	 	 	 	 	 	 	 out.ExtKeyUsage	=	append(out.ExtKeyUsage,	ExtKeyUsageCodeSigning)

			691	 	 	 	 	 	 case	u.Equal(oidExtKeyUsageEmailProtection):

			692	 	 	 	 	 	 	 out.ExtKeyUsage	=	append(out.ExtKeyUsage,	ExtKeyUsageEmailProtection)

			693	 	 	 	 	 	 case	u.Equal(oidExtKeyUsageTimeStamping):

			694	 	 	 	 	 	 	 out.ExtKeyUsage	=	append(out.ExtKeyUsage,	ExtKeyUsageTimeStamping)

			695	 	 	 	 	 	 case	u.Equal(oidExtKeyUsageOCSPSigning):

			696	 	 	 	 	 	 	 out.ExtKeyUsage	=	append(out.ExtKeyUsage,	ExtKeyUsageOCSPSigning)

			697	 	 	 	 	 	 default:

			698	 	 	 	 	 	 	 out.UnknownExtKeyUsage	=	append(out.UnknownExtKeyUsage,	u)

			699	 	 	 	 	 	 }

			700	 	 	 	 	 }

			701	

			702	 	 	 	 	 continue

			703	

			704	 	 	 	 case	14:

			705	 	 	 	 	 //	RFC	5280,	4.2.1.2

			706	 	 	 	 	 var	keyid	[]byte

			707	 	 	 	 	 _,	err	=	asn1.Unmarshal(e.Value,	&keyid)

			708	 	 	 	 	 if	err	!=	nil	{

			709	 	 	 	 	 	 return	nil,	err

			710	 	 	 	 	 }

			711	 	 	 	 	 out.SubjectKeyId	=	keyid

			712	 	 	 	 	 continue

			713	

			714	 	 	 	 case	32:

			715	 	 	 	 	 //	RFC	5280	4.2.1.4:	Certificate	Policies

			716	 	 	 	 	 var	policies	[]policyInformation

			717	 	 	 	 	 if	_,	err	=	asn1.Unmarshal(e.Value,	&policies);	err	!=	nil	{

			718	 	 	 	 	 	 return	nil,	err

			719	 	 	 	 	 }

			720	 	 	 	 	 out.PolicyIdentifiers	=	make([]asn1.ObjectIdentifier,	len(policies))

			721	 	 	 	 	 for	i,	policy	:=	range	policies	{

			722	 	 	 	 	 	 out.PolicyIdentifiers[i]	=	policy.Policy

			723	 	 	 	 	 }

			724	 	 	 	 }

			725	 	 	 }

			726	

			727	 	 	 if	e.Critical	{

			728	 	 	 	 return	out,	UnhandledCriticalExtension{}

			729	 	 	 }

			730	 	 }

			731	

			732	 	 return	out,	nil

			733	 }

			734	

			735	 //	ParseCertificate	parses	a	single	certificate	from	the	given	ASN.1	DER	data.

			736	 func	ParseCertificate(asn1Data	[]byte)	(*Certificate,	error)	{

			737	 	 var	cert	certificate

			738	 	 rest,	err	:=	asn1.Unmarshal(asn1Data,	&cert)

			739	 	 if	err	!=	nil	{

			740	 	 	 return	nil,	err

			741	 	 }

			742	 	 if	len(rest)	>	0	{

			743	 	 	 return	nil,	asn1.SyntaxError{Msg:	"trailing	data"}

			744	 	 }

			745	

			746	 	 return	parseCertificate(&cert)

			747	 }

			748	

			749	 //	ParseCertificates	parses	one	or	more	certificates	from	the	given	ASN.1	DER

			750	 //	data.	The	certificates	must	be	concatenated	with	no	intermediate	padding.

			751	 func	ParseCertificates(asn1Data	[]byte)	([]*Certificate,	error)	{

			752	 	 var	v	[]*certificate

			753	

			754	 	 for	len(asn1Data)	>	0	{

			755	 	 	 cert	:=	new(certificate)

			756	 	 	 var	err	error

			757	 	 	 asn1Data,	err	=	asn1.Unmarshal(asn1Data,	cert)

			758	 	 	 if	err	!=	nil	{

			759	 	 	 	 return	nil,	err

			760	 	 	 }

			761	 	 	 v	=	append(v,	cert)

			762	 	 }

			763	

			764	 	 ret	:=	make([]*Certificate,	len(v))

			765	 	 for	i,	ci	:=	range	v	{

			766	 	 	 cert,	err	:=	parseCertificate(ci)

			767	 	 	 if	err	!=	nil	{

			768	 	 	 	 return	nil,	err

			769	 	 	 }

			770	 	 	 ret[i]	=	cert

			771	 	 }

			772	

			773	 	 return	ret,	nil

			774	 }

			775	

			776	 func	reverseBitsInAByte(in	byte)	byte	{

			777	 	 b1	:=	in>>4	|	in<<4

			778	 	 b2	:=	b1>>2&0x33	|	b1<<2&0xcc

			779	 	 b3	:=	b2>>1&0x55	|	b2<<1&0xaa

			780	 	 return	b3

			781	 }

			782	

			783	 var	(

			784	 	 oidExtensionSubjectKeyId								=	[]int{2,	5,	29,	14}

			785	 	 oidExtensionKeyUsage												=	[]int{2,	5,	29,	15}

			786	 	 oidExtensionAuthorityKeyId						=	[]int{2,	5,	29,	35}

			787	 	 oidExtensionBasicConstraints				=	[]int{2,	5,	29,	19}

			788	 	 oidExtensionSubjectAltName						=	[]int{2,	5,	29,	17}

			789	 	 oidExtensionCertificatePolicies	=	[]int{2,	5,	29,	32}

			790	 	 oidExtensionNameConstraints					=	[]int{2,	5,	29,	30}

			791)

			792	

			793	 func	buildExtensions(template	*Certificate)	(ret	[]pkix.Extension,	err	error)	{

			794	 	 ret	=	make([]pkix.Extension,	7	/*	maximum	number	of	elements.	*/

			795	 	 n	:=	0

			796	

			797	 	 if	template.KeyUsage	!=	0	{

			798	 	 	 ret[n].Id	=	oidExtensionKeyUsage

			799	 	 	 ret[n].Critical	=	true

			800	

			801	 	 	 var	a	[2]byte

			802	 	 	 a[0]	=	reverseBitsInAByte(byte(template.KeyUsage))

			803	 	 	 a[1]	=	reverseBitsInAByte(byte(template.KeyUsage	>>	8))

			804	

			805	 	 	 l	:=	1

			806	 	 	 if	a[1]	!=	0	{

			807	 	 	 	 l	=	2

			808	 	 	 }

			809	

			810	 	 	 ret[n].Value,	err	=	asn1.Marshal(asn1.BitString{Bytes:	a[0:l],	BitLength:	l	*	8})

			811	 	 	 if	err	!=	nil	{

			812	 	 	 	 return

			813	 	 	 }

			814	 	 	 n++

			815	 	 }

			816	

			817	 	 if	template.BasicConstraintsValid	{

			818	 	 	 ret[n].Id	=	oidExtensionBasicConstraints

			819	 	 	 ret[n].Value,	err	=	asn1.Marshal(basicConstraints{template.IsCA,	template.MaxPathLen})

			820	 	 	 ret[n].Critical	=	true

			821	 	 	 if	err	!=	nil	{

			822	 	 	 	 return

			823	 	 	 }

			824	 	 	 n++

			825	 	 }

			826	

			827	 	 if	len(template.SubjectKeyId)	>	0	{

			828	 	 	 ret[n].Id	=	oidExtensionSubjectKeyId

			829	 	 	 ret[n].Value,	err	=	asn1.Marshal(template.SubjectKeyId)

			830	 	 	 if	err	!=	nil	{

			831	 	 	 	 return

			832	 	 	 }

			833	 	 	 n++

			834	 	 }

			835	

			836	 	 if	len(template.AuthorityKeyId)	>	0	{

			837	 	 	 ret[n].Id	=	oidExtensionAuthorityKeyId

			838	 	 	 ret[n].Value,	err	=	asn1.Marshal(authKeyId{template.AuthorityKeyId})

			839	 	 	 if	err	!=	nil	{

			840	 	 	 	 return

			841	 	 	 }

			842	 	 	 n++

			843	 	 }

			844	

			845	 	 if	len(template.DNSNames)	>	0	{

			846	 	 	 ret[n].Id	=	oidExtensionSubjectAltName

			847	 	 	 rawValues	:=	make([]asn1.RawValue,	len(template.DNSNames))

			848	 	 	 for	i,	name	:=	range	template.DNSNames	{

			849	 	 	 	 rawValues[i]	=	asn1.RawValue{Tag:	2,	Class:	2,	Bytes:	[]byte(name)}

			850	 	 	 }

			851	 	 	 ret[n].Value,	err	=	asn1.Marshal(rawValues)

			852	 	 	 if	err	!=	nil	{

			853	 	 	 	 return

			854	 	 	 }

			855	 	 	 n++

			856	 	 }

			857	

			858	 	 if	len(template.PolicyIdentifiers)	>	0	{

			859	 	 	 ret[n].Id	=	oidExtensionCertificatePolicies

			860	 	 	 policies	:=	make([]policyInformation,	len(template.PolicyIdentifiers))

			861	 	 	 for	i,	policy	:=	range	template.PolicyIdentifiers	{

			862	 	 	 	 policies[i].Policy	=	policy

			863	 	 	 }

			864	 	 	 ret[n].Value,	err	=	asn1.Marshal(policies)

			865	 	 	 if	err	!=	nil	{

			866	 	 	 	 return

			867	 	 	 }

			868	 	 	 n++

			869	 	 }

			870	

			871	 	 if	len(template.PermittedDNSDomains)	>	0	{

			872	 	 	 ret[n].Id	=	oidExtensionNameConstraints

			873	 	 	 ret[n].Critical	=	template.PermittedDNSDomainsCritical

			874	

			875	 	 	 var	out	nameConstraints

			876	 	 	 out.Permitted	=	make([]generalSubtree,	len(template.PermittedDNSDomains))

			877	 	 	 for	i,	permitted	:=	range	template.PermittedDNSDomains	{

			878	 	 	 	 out.Permitted[i]	=	generalSubtree{Name:	permitted}

			879	 	 	 }

			880	 	 	 ret[n].Value,	err	=	asn1.Marshal(out)

			881	 	 	 if	err	!=	nil	{

			882	 	 	 	 return

			883	 	 	 }

			884	 	 	 n++

			885	 	 }

			886	

			887	 	 //	Adding	another	extension	here?	Remember	to	update	the	maximum	number

			888	 	 //	of	elements	in	the	make()	at	the	top	of	the	function.

			889	

			890	 	 return	ret[0:n],	nil

			891	 }

			892	

			893	 var	(

			894	 	 oidSHA1WithRSA	=	[]int{1,	2,	840,	113549,	1,	1,	5}

			895	 	 oidRSA									=	[]int{1,	2,	840,	113549,	1,	1,	1}

			896)

			897	

			898	 func	subjectBytes(cert	*Certificate)	([]byte,	error)	{

			899	 	 if	len(cert.RawSubject)	>	0	{

			900	 	 	 return	cert.RawSubject,	nil

			901	 	 }

			902	

			903	 	 return	asn1.Marshal(cert.Subject.ToRDNSequence())

			904	 }

			905	

			906	 //	CreateCertificate	creates	a	new	certificate	based	on	a	template.	The

			907	 //	following	members	of	template	are	used:	SerialNumber,	Subject,	NotBefore,

			908	 //	NotAfter,	KeyUsage,	BasicConstraintsValid,	IsCA,	MaxPathLen,	SubjectKeyId,

			909	 //	DNSNames,	PermittedDNSDomainsCritical,	PermittedDNSDomains.

			910	 //

			911	 //	The	certificate	is	signed	by	parent.	If	parent	is	equal	to	template	then	the

			912	 //	certificate	is	self-signed.	The	parameter	pub	is	the	public	key	of	the

			913	 //	signee	and	priv	is	the	private	key	of	the	signer.

			914	 //

			915	 //	The	returned	slice	is	the	certificate	in	DER	encoding.

			916	 //

			917	 //	The	only	supported	key	type	is	RSA	(*rsa.PublicKey	for	pub,	*rsa.PrivateKey

			918	 //	for	priv).

			919	 func	CreateCertificate(rand	io.Reader,	template,	parent	*Certificate,	pub	interface{},	priv	interface{})	(cert	[]byte,	err	error)	{

			920	 	 rsaPub,	ok	:=	pub.(*rsa.PublicKey)

			921	 	 if	!ok	{

			922	 	 	 return	nil,	errors.New("x509:	non-RSA	public	keys	not	supported")

			923	 	 }

			924	

			925	 	 rsaPriv,	ok	:=	priv.(*rsa.PrivateKey)

			926	 	 if	!ok	{

			927	 	 	 return	nil,	errors.New("x509:	non-RSA	private	keys	not	supported")

			928	 	 }

			929	

			930	 	 asn1PublicKey,	err	:=	asn1.Marshal(rsaPublicKey{

			931	 	 	 N:	rsaPub.N,

			932	 	 	 E:	rsaPub.E,

			933	 	 })

			934	 	 if	err	!=	nil	{

			935	 	 	 return

			936	 	 }

			937	

			938	 	 if	len(parent.SubjectKeyId)	>	0	{

			939	 	 	 template.AuthorityKeyId	=	parent.SubjectKeyId

			940	 	 }

			941	

			942	 	 extensions,	err	:=	buildExtensions(template)

			943	 	 if	err	!=	nil	{

			944	 	 	 return

			945	 	 }

			946	

			947	 	 asn1Issuer,	err	:=	subjectBytes(parent)

			948	 	 if	err	!=	nil	{

			949	 	 	 return

			950	 	 }

			951	

			952	 	 asn1Subject,	err	:=	subjectBytes(template)

			953	 	 if	err	!=	nil	{

			954	 	 	 return

			955	 	 }

			956	

			957	 	 encodedPublicKey	:=	asn1.BitString{BitLength:	len(asn1PublicKey)	*	8,	Bytes:	asn1PublicKey}

			958	 	 c	:=	tbsCertificate{

			959	 	 	 Version:												2,

			960	 	 	 SerialNumber:							template.SerialNumber,

			961	 	 	 SignatureAlgorithm:	pkix.AlgorithmIdentifier{Algorithm:	oidSHA1WithRSA},

			962	 	 	 Issuer:													asn1.RawValue{FullBytes:	asn1Issuer},

			963	 	 	 Validity:											validity{template.NotBefore,	template.NotAfter},

			964	 	 	 Subject:												asn1.RawValue{FullBytes:	asn1Subject},

			965	 	 	 PublicKey:										publicKeyInfo{nil,	pkix.AlgorithmIdentifier{Algorithm:	oidRSA},	encodedPublicKey},

			966	 	 	 Extensions:									extensions,

			967	 	 }

			968	

			969	 	 tbsCertContents,	err	:=	asn1.Marshal(c)

			970	 	 if	err	!=	nil	{

			971	 	 	 return

			972	 	 }

			973	

			974	 	 c.Raw	=	tbsCertContents

			975	

			976	 	 h	:=	sha1.New()

			977	 	 h.Write(tbsCertContents)

			978	 	 digest	:=	h.Sum(nil)

			979	

			980	 	 signature,	err	:=	rsa.SignPKCS1v15(rand,	rsaPriv,	crypto.SHA1,	digest)

			981	 	 if	err	!=	nil	{

			982	 	 	 return

			983	 	 }

			984	

			985	 	 cert,	err	=	asn1.Marshal(certificate{

			986	 	 	 nil,

			987	 	 	 c,

			988	 	 	 pkix.AlgorithmIdentifier{Algorithm:	oidSHA1WithRSA},

			989	 	 	 asn1.BitString{Bytes:	signature,	BitLength:	len(signature)	*	8},

			990	 	 })

			991	 	 return

			992	 }

			993	

			994	 //	pemCRLPrefix	is	the	magic	string	that	indicates	that	we	have	a	PEM	encoded

			995	 //	CRL.

			996	 var	pemCRLPrefix	=	[]byte("-----BEGIN	X509	CRL")

			997	

			998	 //	pemType	is	the	type	of	a	PEM	encoded	CRL.

			999	 var	pemType	=	"X509	CRL"

		1000	

		1001	 //	ParseCRL	parses	a	CRL	from	the	given	bytes.	It's	often	the	case	that	PEM

		1002	 //	encoded	CRLs	will	appear	where	they	should	be	DER	encoded,	so	this	function

		1003	 //	will	transparently	handle	PEM	encoding	as	long	as	there	isn't	any	leading

		1004	 //	garbage.

		1005	 func	ParseCRL(crlBytes	[]byte)	(certList	*pkix.CertificateList,	err	error)	{

		1006	 	 if	bytes.HasPrefix(crlBytes,	pemCRLPrefix)	{

		1007	 	 	 block,	_	:=	pem.Decode(crlBytes)

		1008	 	 	 if	block	!=	nil	&&	block.Type	==	pemType	{

		1009	 	 	 	 crlBytes	=	block.Bytes

		1010	 	 	 }

		1011	 	 }

		1012	 	 return	ParseDERCRL(crlBytes)

		1013	 }

		1014	

		1015	 //	ParseDERCRL	parses	a	DER	encoded	CRL	from	the	given	bytes.

		1016	 func	ParseDERCRL(derBytes	[]byte)	(certList	*pkix.CertificateList,	err	error)	{

		1017	 	 certList	=	new(pkix.CertificateList)

		1018	 	 _,	err	=	asn1.Unmarshal(derBytes,	certList)

		1019	 	 if	err	!=	nil	{

		1020	 	 	 certList	=	nil

		1021	 	 }

		1022	 	 return

		1023	 }

		1024	

		1025	 //	CreateCRL	returns	a	DER	encoded	CRL,	signed	by	this	Certificate,	that

		1026	 //	contains	the	given	list	of	revoked	certificates.

		1027	 //

		1028	 //	The	only	supported	key	type	is	RSA	(*rsa.PrivateKey	for	priv).

		1029	 func	(c	*Certificate)	CreateCRL(rand	io.Reader,	priv	interface{},	revokedCerts	[]pkix.RevokedCertificate,	now,	expiry	time.Time)	(crlBytes	[]byte,	err	error)	{

		1030	 	 rsaPriv,	ok	:=	priv.(*rsa.PrivateKey)

		1031	 	 if	!ok	{

		1032	 	 	 return	nil,	errors.New("x509:	non-RSA	private	keys	not	supported")

		1033	 	 }

		1034	 	 tbsCertList	:=	pkix.TBSCertificateList{

		1035	 	 	 Version:	2,

		1036	 	 	 Signature:	pkix.AlgorithmIdentifier{

		1037	 	 	 	 Algorithm:	oidSignatureSHA1WithRSA,

		1038	 	 	 },

		1039	 	 	 Issuer:														c.Subject.ToRDNSequence(),

		1040	 	 	 ThisUpdate:										now,

		1041	 	 	 NextUpdate:										expiry,

		1042	 	 	 RevokedCertificates:	revokedCerts,

		1043	 	 }

		1044	

		1045	 	 tbsCertListContents,	err	:=	asn1.Marshal(tbsCertList)

		1046	 	 if	err	!=	nil	{

		1047	 	 	 return

		1048	 	 }

		1049	

		1050	 	 h	:=	sha1.New()

		1051	 	 h.Write(tbsCertListContents)

		1052	 	 digest	:=	h.Sum(nil)

		1053	

		1054	 	 signature,	err	:=	rsa.SignPKCS1v15(rand,	rsaPriv,	crypto.SHA1,	digest)

		1055	 	 if	err	!=	nil	{

		1056	 	 	 return

		1057	 	 }

		1058	

		1059	 	 return	asn1.Marshal(pkix.CertificateList{

		1060	 	 	 TBSCertList:	tbsCertList,

		1061	 	 	 SignatureAlgorithm:	pkix.AlgorithmIdentifier{

		1062	 	 	 	 Algorithm:	oidSignatureSHA1WithRSA,

		1063	 	 	 },

		1064	 	 	 SignatureValue:	asn1.BitString{Bytes:	signature,	BitLength:	len(signature)	*	8},

		1065	 	 })

		1066	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/crypto/x509/pkix/pkix.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	pkix	contains	shared,	low	level	structures	used	for	ASN.1	parsing

					6	 //	and	serialization	of	X.509	certificates,	CRL	and	OCSP.

					7	 package	pkix

					8	

					9	 import	(

				10	 	 "encoding/asn1"

				11	 	 "math/big"

				12	 	 "time"

				13)

				14	

				15	 //	AlgorithmIdentifier	represents	the	ASN.1	structure	of	the	same	name.	See	RFC

				16	 //	5280,	section	4.1.1.2.

				17	 type	AlgorithmIdentifier	struct	{

				18	 	 Algorithm		asn1.ObjectIdentifier

				19	 	 Parameters	asn1.RawValue	`asn1:"optional"`

				20	 }

				21	

				22	 type	RDNSequence	[]RelativeDistinguishedNameSET

				23	

				24	 type	RelativeDistinguishedNameSET	[]AttributeTypeAndValue

				25	

				26	 //	AttributeTypeAndValue	mirrors	the	ASN.1	structure	of	the	same	name	in

				27	 //	http://tools.ietf.org/html/rfc5280#section-4.1.2.4

				28	 type	AttributeTypeAndValue	struct	{

				29	 	 Type		asn1.ObjectIdentifier

				30	 	 Value	interface{}

				31	 }

				32	

				33	 //	Extension	represents	the	ASN.1	structure	of	the	same	name.	See	RFC

				34	 //	5280,	section	4.2.

				35	 type	Extension	struct	{

				36	 	 Id							asn1.ObjectIdentifier

				37	 	 Critical	bool	`asn1:"optional"`

				38	 	 Value				[]byte

				39	 }

				40	

				41	 //	Name	represents	an	X.509	distinguished	name.	This	only	includes	the	common

				42	 //	elements	of	a	DN.		Additional	elements	in	the	name	are	ignored.

				43	 type	Name	struct	{

				44	 	 Country,	Organization,	OrganizationalUnit	[]string

				45	 	 Locality,	Province																								[]string

				46	 	 StreetAddress,	PostalCode																	[]string

				47	 	 SerialNumber,	CommonName																		string

				48	

				49	 	 Names	[]AttributeTypeAndValue

				50	 }

				51	

				52	 func	(n	*Name)	FillFromRDNSequence(rdns	*RDNSequence)	{

				53	 	 for	_,	rdn	:=	range	*rdns	{

				54	 	 	 if	len(rdn)	==	0	{

				55	 	 	 	 continue

				56	 	 	 }

				57	 	 	 atv	:=	rdn[0]

				58	 	 	 n.Names	=	append(n.Names,	atv)

				59	 	 	 value,	ok	:=	atv.Value.(string)

				60	 	 	 if	!ok	{

				61	 	 	 	 continue

				62	 	 	 }

				63	

				64	 	 	 t	:=	atv.Type

				65	 	 	 if	len(t)	==	4	&&	t[0]	==	2	&&	t[1]	==	5	&&	t[2]	==	4	{

				66	 	 	 	 switch	t[3]	{

				67	 	 	 	 case	3:

				68	 	 	 	 	 n.CommonName	=	value

				69	 	 	 	 case	5:

				70	 	 	 	 	 n.SerialNumber	=	value

				71	 	 	 	 case	6:

				72	 	 	 	 	 n.Country	=	append(n.Country,	value)

				73	 	 	 	 case	7:

				74	 	 	 	 	 n.Locality	=	append(n.Locality,	value)

				75	 	 	 	 case	8:

				76	 	 	 	 	 n.Province	=	append(n.Province,	value)

				77	 	 	 	 case	9:

				78	 	 	 	 	 n.StreetAddress	=	append(n.StreetAddress,	value)

				79	 	 	 	 case	10:

				80	 	 	 	 	 n.Organization	=	append(n.Organization,	value)

				81	 	 	 	 case	11:

				82	 	 	 	 	 n.OrganizationalUnit	=	append(n.OrganizationalUnit,	value)

				83	 	 	 	 case	17:

				84	 	 	 	 	 n.PostalCode	=	append(n.PostalCode,	value)

				85	 	 	 	 }

				86	 	 	 }

				87	 	 }

				88	 }

				89	

				90	 var	(

				91	 	 oidCountry												=	[]int{2,	5,	4,	6}

				92	 	 oidOrganization							=	[]int{2,	5,	4,	10}

				93	 	 oidOrganizationalUnit	=	[]int{2,	5,	4,	11}

				94	 	 oidCommonName									=	[]int{2,	5,	4,	3}

				95	 	 oidSerialNumber							=	[]int{2,	5,	4,	5}

				96	 	 oidLocality											=	[]int{2,	5,	4,	7}

				97	 	 oidProvince											=	[]int{2,	5,	4,	8}

				98	 	 oidStreetAddress						=	[]int{2,	5,	4,	9}

				99	 	 oidPostalCode									=	[]int{2,	5,	4,	17}

			100)

			101	

			102	 //	appendRDNs	appends	a	relativeDistinguishedNameSET	to	the	given	RDNSequence

			103	 //	and	returns	the	new	value.	The	relativeDistinguishedNameSET	contains	an

			104	 //	attributeTypeAndValue	for	each	of	the	given	values.	See	RFC	5280,	A.1,	and

			105	 //	search	for	AttributeTypeAndValue.

			106	 func	appendRDNs(in	RDNSequence,	values	[]string,	oid	asn1.ObjectIdentifier)	RDNSequence	{

			107	 	 if	len(values)	==	0	{

			108	 	 	 return	in

			109	 	 }

			110	

			111	 	 s	:=	make([]AttributeTypeAndValue,	len(values))

			112	 	 for	i,	value	:=	range	values	{

			113	 	 	 s[i].Type	=	oid

			114	 	 	 s[i].Value	=	value

			115	 	 }

			116	

			117	 	 return	append(in,	s)

			118	 }

			119	

			120	 func	(n	Name)	ToRDNSequence()	(ret	RDNSequence)	{

			121	 	 ret	=	appendRDNs(ret,	n.Country,	oidCountry)

			122	 	 ret	=	appendRDNs(ret,	n.Organization,	oidOrganization)

			123	 	 ret	=	appendRDNs(ret,	n.OrganizationalUnit,	oidOrganizationalUnit)

			124	 	 ret	=	appendRDNs(ret,	n.Locality,	oidLocality)

			125	 	 ret	=	appendRDNs(ret,	n.Province,	oidProvince)

			126	 	 ret	=	appendRDNs(ret,	n.StreetAddress,	oidStreetAddress)

			127	 	 ret	=	appendRDNs(ret,	n.PostalCode,	oidPostalCode)

			128	 	 if	len(n.CommonName)	>	0	{

			129	 	 	 ret	=	appendRDNs(ret,	[]string{n.CommonName},	oidCommonName)

			130	 	 }

			131	 	 if	len(n.SerialNumber)	>	0	{

			132	 	 	 ret	=	appendRDNs(ret,	[]string{n.SerialNumber},	oidSerialNumber)

			133	 	 }

			134	

			135	 	 return	ret

			136	 }

			137	

			138	 //	CertificateList	represents	the	ASN.1	structure	of	the	same	name.	See	RFC

			139	 //	5280,	section	5.1.	Use	Certificate.CheckCRLSignature	to	verify	the

			140	 //	signature.

			141	 type	CertificateList	struct	{

			142	 	 TBSCertList								TBSCertificateList

			143	 	 SignatureAlgorithm	AlgorithmIdentifier

			144	 	 SignatureValue					asn1.BitString

			145	 }

			146	

			147	 //	HasExpired	returns	true	iff	now	is	past	the	expiry	time	of	certList.

			148	 func	(certList	*CertificateList)	HasExpired(now	time.Time)	bool	{

			149	 	 return	now.After(certList.TBSCertList.NextUpdate)

			150	 }

			151	

			152	 //	TBSCertificateList	represents	the	ASN.1	structure	of	the	same	name.	See	RFC

			153	 //	5280,	section	5.1.

			154	 type	TBSCertificateList	struct	{

			155	 	 Raw																	asn1.RawContent

			156	 	 Version													int	`asn1:"optional,default:2"`

			157	 	 Signature											AlgorithmIdentifier

			158	 	 Issuer														RDNSequence

			159	 	 ThisUpdate										time.Time

			160	 	 NextUpdate										time.Time

			161	 	 RevokedCertificates	[]RevokedCertificate	`asn1:"optional"`

			162	 	 Extensions										[]Extension										`asn1:"tag:0,optional,explicit"`

			163	 }

			164	

			165	 //	RevokedCertificate	represents	the	ASN.1	structure	of	the	same	name.	See	RFC

			166	 //	5280,	section	5.1.

			167	 type	RevokedCertificate	struct	{

			168	 	 SerialNumber			*big.Int

			169	 	 RevocationTime	time.Time

			170	 	 Extensions					[]Extension	`asn1:"optional"`

			171	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/database/sql/convert.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Type	conversions	for	Scan.

					6	

					7	 package	sql

					8	

					9	 import	(

				10	 	 "database/sql/driver"

				11	 	 "errors"

				12	 	 "fmt"

				13	 	 "reflect"

				14	 	 "strconv"

				15)

				16	

				17	 //	subsetTypeArgs	takes	a	slice	of	arguments	from	callers	of	the	sql

				18	 //	package	and	converts	them	into	a	slice	of	the	driver	package's

				19	 //	"subset	types".

				20	 func	subsetTypeArgs(args	[]interface{})	([]driver.Value,	error)	{

				21	 	 out	:=	make([]driver.Value,	len(args))

				22	 	 for	n,	arg	:=	range	args	{

				23	 	 	 var	err	error

				24	 	 	 out[n],	err	=	driver.DefaultParameterConverter.ConvertValue(arg)

				25	 	 	 if	err	!=	nil	{

				26	 	 	 	 return	nil,	fmt.Errorf("sql:	converting	argument	#%d's	type:	%v",	n+1,	err)

				27	 	 	 }

				28	 	 }

				29	 	 return	out,	nil

				30	 }

				31	

				32	 //	convertAssign	copies	to	dest	the	value	in	src,	converting	it	if	possible.

				33	 //	An	error	is	returned	if	the	copy	would	result	in	loss	of	information.

				34	 //	dest	should	be	a	pointer	type.

				35	 func	convertAssign(dest,	src	interface{})	error	{

				36	 	 //	Common	cases,	without	reflect.		Fall	through.

				37	 	 switch	s	:=	src.(type)	{

				38	 	 case	string:

				39	 	 	 switch	d	:=	dest.(type)	{

				40	 	 	 case	*string:

				41	 	 	 	 *d	=	s

				42	 	 	 	 return	nil

				43	 	 	 case	*[]byte:

				44	 	 	 	 *d	=	[]byte(s)

				45	 	 	 	 return	nil

				46	 	 	 }

				47	 	 case	[]byte:

				48	 	 	 switch	d	:=	dest.(type)	{

				49	 	 	 case	*string:

				50	 	 	 	 *d	=	string(s)

				51	 	 	 	 return	nil

				52	 	 	 case	*interface{}:

				53	 	 	 	 bcopy	:=	make([]byte,	len(s))

				54	 	 	 	 copy(bcopy,	s)

				55	 	 	 	 *d	=	bcopy

				56	 	 	 	 return	nil

				57	 	 	 case	*[]byte:

				58	 	 	 	 *d	=	s

				59	 	 	 	 return	nil

				60	 	 	 }

				61	 	 case	nil:

				62	 	 	 switch	d	:=	dest.(type)	{

				63	 	 	 case	*[]byte:

				64	 	 	 	 *d	=	nil

				65	 	 	 	 return	nil

				66	 	 	 }

				67	 	 }

				68	

				69	 	 var	sv	reflect.Value

				70	

				71	 	 switch	d	:=	dest.(type)	{

				72	 	 case	*string:

				73	 	 	 sv	=	reflect.ValueOf(src)

				74	 	 	 switch	sv.Kind()	{

				75	 	 	 case	reflect.Bool,

				76	 	 	 	 reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64,

				77	 	 	 	 reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,

				78	 	 	 	 reflect.Float32,	reflect.Float64:

				79	 	 	 	 *d	=	fmt.Sprintf("%v",	src)

				80	 	 	 	 return	nil

				81	 	 	 }

				82	 	 case	*bool:

				83	 	 	 bv,	err	:=	driver.Bool.ConvertValue(src)

				84	 	 	 if	err	==	nil	{

				85	 	 	 	 *d	=	bv.(bool)

				86	 	 	 }

				87	 	 	 return	err

				88	 	 case	*interface{}:

				89	 	 	 *d	=	src

				90	 	 	 return	nil

				91	 	 }

				92	

				93	 	 if	scanner,	ok	:=	dest.(Scanner);	ok	{

				94	 	 	 return	scanner.Scan(src)

				95	 	 }

				96	

				97	 	 dpv	:=	reflect.ValueOf(dest)

				98	 	 if	dpv.Kind()	!=	reflect.Ptr	{

				99	 	 	 return	errors.New("destination	not	a	pointer")

			100	 	 }

			101	

			102	 	 if	!sv.IsValid()	{

			103	 	 	 sv	=	reflect.ValueOf(src)

			104	 	 }

			105	

			106	 	 dv	:=	reflect.Indirect(dpv)

			107	 	 if	dv.Kind()	==	sv.Kind()	{

			108	 	 	 dv.Set(sv)

			109	 	 	 return	nil

			110	 	 }

			111	

			112	 	 switch	dv.Kind()	{

			113	 	 case	reflect.Ptr:

			114	 	 	 if	src	==	nil	{

			115	 	 	 	 dv.Set(reflect.Zero(dv.Type()))

			116	 	 	 	 return	nil

			117	 	 	 }	else	{

			118	 	 	 	 dv.Set(reflect.New(dv.Type().Elem()))

			119	 	 	 	 return	convertAssign(dv.Interface(),	src)

			120	 	 	 }

			121	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			122	 	 	 s	:=	asString(src)

			123	 	 	 i64,	err	:=	strconv.ParseInt(s,	10,	dv.Type().Bits())

			124	 	 	 if	err	!=	nil	{

			125	 	 	 	 return	fmt.Errorf("converting	string	%q	to	a	%s:	%v",	s,	dv.Kind(),	err)

			126	 	 	 }

			127	 	 	 dv.SetInt(i64)

			128	 	 	 return	nil

			129	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64:

			130	 	 	 s	:=	asString(src)

			131	 	 	 u64,	err	:=	strconv.ParseUint(s,	10,	dv.Type().Bits())

			132	 	 	 if	err	!=	nil	{

			133	 	 	 	 return	fmt.Errorf("converting	string	%q	to	a	%s:	%v",	s,	dv.Kind(),	err)

			134	 	 	 }

			135	 	 	 dv.SetUint(u64)

			136	 	 	 return	nil

			137	 	 case	reflect.Float32,	reflect.Float64:

			138	 	 	 s	:=	asString(src)

			139	 	 	 f64,	err	:=	strconv.ParseFloat(s,	dv.Type().Bits())

			140	 	 	 if	err	!=	nil	{

			141	 	 	 	 return	fmt.Errorf("converting	string	%q	to	a	%s:	%v",	s,	dv.Kind(),	err)

			142	 	 	 }

			143	 	 	 dv.SetFloat(f64)

			144	 	 	 return	nil

			145	 	 }

			146	

			147	 	 return	fmt.Errorf("unsupported	driver	->	Scan	pair:	%T	->	%T",	src,	dest)

			148	 }

			149	

			150	 func	asString(src	interface{})	string	{

			151	 	 switch	v	:=	src.(type)	{

			152	 	 case	string:

			153	 	 	 return	v

			154	 	 case	[]byte:

			155	 	 	 return	string(v)

			156	 	 }

			157	 	 return	fmt.Sprintf("%v",	src)

			158	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/database/sql/sql.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	sql	provides	a	generic	interface	around	SQL	(or	SQL-like)

					6	 //	databases.

					7	 package	sql

					8	

					9	 import	(

				10	 	 "database/sql/driver"

				11	 	 "errors"

				12	 	 "fmt"

				13	 	 "io"

				14	 	 "sync"

				15)

				16	

				17	 var	drivers	=	make(map[string]driver.Driver)

				18	

				19	 //	Register	makes	a	database	driver	available	by	the	provided	name.

				20	 //	If	Register	is	called	twice	with	the	same	name	or	if	driver	is	nil,

				21	 //	it	panics.

				22	 func	Register(name	string,	driver	driver.Driver)	{

				23	 	 if	driver	==	nil	{

				24	 	 	 panic("sql:	Register	driver	is	nil")

				25	 	 }

				26	 	 if	_,	dup	:=	drivers[name];	dup	{

				27	 	 	 panic("sql:	Register	called	twice	for	driver	"	+	name)

				28	 	 }

				29	 	 drivers[name]	=	driver

				30	 }

				31	

				32	 //	RawBytes	is	a	byte	slice	that	holds	a	reference	to	memory	owned	by

				33	 //	the	database	itself.	After	a	Scan	into	a	RawBytes,	the	slice	is	only

				34	 //	valid	until	the	next	call	to	Next,	Scan,	or	Close.

				35	 type	RawBytes	[]byte

				36	

				37	 //	NullString	represents	a	string	that	may	be	null.

				38	 //	NullString	implements	the	Scanner	interface	so

				39	 //	it	can	be	used	as	a	scan	destination:

				40	 //

				41	 //		var	s	NullString

				42	 //		err	:=	db.QueryRow("SELECT	name	FROM	foo	WHERE	id=?",	id).Scan(&s)

				43	 //		...

				44	 //		if	s.Valid	{

				45	 //					//	use	s.String

				46	 //		}	else	{

				47	 //					//	NULL	value

				48	 //		}

				49	 //

				50	 type	NullString	struct	{

				51	 	 String	string

				52	 	 Valid		bool	//	Valid	is	true	if	String	is	not	NULL

				53	 }

				54	

				55	 //	Scan	implements	the	Scanner	interface.

				56	 func	(ns	*NullString)	Scan(value	interface{})	error	{

				57	 	 if	value	==	nil	{

				58	 	 	 ns.String,	ns.Valid	=	"",	false

				59	 	 	 return	nil

				60	 	 }

				61	 	 ns.Valid	=	true

				62	 	 return	convertAssign(&ns.String,	value)

				63	 }

				64	

				65	 //	Value	implements	the	driver	Valuer	interface.

				66	 func	(ns	NullString)	Value()	(driver.Value,	error)	{

				67	 	 if	!ns.Valid	{

				68	 	 	 return	nil,	nil

				69	 	 }

				70	 	 return	ns.String,	nil

				71	 }

				72	

				73	 //	NullInt64	represents	an	int64	that	may	be	null.

				74	 //	NullInt64	implements	the	Scanner	interface	so

				75	 //	it	can	be	used	as	a	scan	destination,	similar	to	NullString.

				76	 type	NullInt64	struct	{

				77	 	 Int64	int64

				78	 	 Valid	bool	//	Valid	is	true	if	Int64	is	not	NULL

				79	 }

				80	

				81	 //	Scan	implements	the	Scanner	interface.

				82	 func	(n	*NullInt64)	Scan(value	interface{})	error	{

				83	 	 if	value	==	nil	{

				84	 	 	 n.Int64,	n.Valid	=	0,	false

				85	 	 	 return	nil

				86	 	 }

				87	 	 n.Valid	=	true

				88	 	 return	convertAssign(&n.Int64,	value)

				89	 }

				90	

				91	 //	Value	implements	the	driver	Valuer	interface.

				92	 func	(n	NullInt64)	Value()	(driver.Value,	error)	{

				93	 	 if	!n.Valid	{

				94	 	 	 return	nil,	nil

				95	 	 }

				96	 	 return	n.Int64,	nil

				97	 }

				98	

				99	 //	NullFloat64	represents	a	float64	that	may	be	null.

			100	 //	NullFloat64	implements	the	Scanner	interface	so

			101	 //	it	can	be	used	as	a	scan	destination,	similar	to	NullString.

			102	 type	NullFloat64	struct	{

			103	 	 Float64	float64

			104	 	 Valid			bool	//	Valid	is	true	if	Float64	is	not	NULL

			105	 }

			106	

			107	 //	Scan	implements	the	Scanner	interface.

			108	 func	(n	*NullFloat64)	Scan(value	interface{})	error	{

			109	 	 if	value	==	nil	{

			110	 	 	 n.Float64,	n.Valid	=	0,	false

			111	 	 	 return	nil

			112	 	 }

			113	 	 n.Valid	=	true

			114	 	 return	convertAssign(&n.Float64,	value)

			115	 }

			116	

			117	 //	Value	implements	the	driver	Valuer	interface.

			118	 func	(n	NullFloat64)	Value()	(driver.Value,	error)	{

			119	 	 if	!n.Valid	{

			120	 	 	 return	nil,	nil

			121	 	 }

			122	 	 return	n.Float64,	nil

			123	 }

			124	

			125	 //	NullBool	represents	a	bool	that	may	be	null.

			126	 //	NullBool	implements	the	Scanner	interface	so

			127	 //	it	can	be	used	as	a	scan	destination,	similar	to	NullString.

			128	 type	NullBool	struct	{

			129	 	 Bool		bool

			130	 	 Valid	bool	//	Valid	is	true	if	Bool	is	not	NULL

			131	 }

			132	

			133	 //	Scan	implements	the	Scanner	interface.

			134	 func	(n	*NullBool)	Scan(value	interface{})	error	{

			135	 	 if	value	==	nil	{

			136	 	 	 n.Bool,	n.Valid	=	false,	false

			137	 	 	 return	nil

			138	 	 }

			139	 	 n.Valid	=	true

			140	 	 return	convertAssign(&n.Bool,	value)

			141	 }

			142	

			143	 //	Value	implements	the	driver	Valuer	interface.

			144	 func	(n	NullBool)	Value()	(driver.Value,	error)	{

			145	 	 if	!n.Valid	{

			146	 	 	 return	nil,	nil

			147	 	 }

			148	 	 return	n.Bool,	nil

			149	 }

			150	

			151	 //	Scanner	is	an	interface	used	by	Scan.

			152	 type	Scanner	interface	{

			153	 	 //	Scan	assigns	a	value	from	a	database	driver.

			154	 	 //

			155	 	 //	The	src	value	will	be	of	one	of	the	following	restricted

			156	 	 //	set	of	types:

			157	 	 //

			158	 	 //				int64

			159	 	 //				float64

			160	 	 //				bool

			161	 	 //				[]byte

			162	 	 //				string

			163	 	 //				time.Time

			164	 	 //				nil	-	for	NULL	values

			165	 	 //

			166	 	 //	An	error	should	be	returned	if	the	value	can	not	be	stored

			167	 	 //	without	loss	of	information.

			168	 	 Scan(src	interface{})	error

			169	 }

			170	

			171	 //	ErrNoRows	is	returned	by	Scan	when	QueryRow	doesn't	return	a

			172	 //	row.	In	such	a	case,	QueryRow	returns	a	placeholder	*Row	value	that

			173	 //	defers	this	error	until	a	Scan.

			174	 var	ErrNoRows	=	errors.New("sql:	no	rows	in	result	set")

			175	

			176	 //	DB	is	a	database	handle.	It's	safe	for	concurrent	use	by	multiple

			177	 //	goroutines.

			178	 //

			179	 //	If	the	underlying	database	driver	has	the	concept	of	a	connection

			180	 //	and	per-connection	session	state,	the	sql	package	manages	creating

			181	 //	and	freeing	connections	automatically,	including	maintaining	a	free

			182	 //	pool	of	idle	connections.	If	observing	session	state	is	required,

			183	 //	either	do	not	share	a	*DB	between	multiple	concurrent	goroutines	or

			184	 //	create	and	observe	all	state	only	within	a	transaction.	Once

			185	 //	DB.Open	is	called,	the	returned	Tx	is	bound	to	a	single	isolated

			186	 //	connection.	Once	Tx.Commit	or	Tx.Rollback	is	called,	that

			187	 //	connection	is	returned	to	DB's	idle	connection	pool.

			188	 type	DB	struct	{

			189	 	 driver	driver.Driver

			190	 	 dsn				string

			191	

			192	 	 mu							sync.Mutex	//	protects	freeConn	and	closed

			193	 	 freeConn	[]driver.Conn

			194	 	 closed			bool

			195	 }

			196	

			197	 //	Open	opens	a	database	specified	by	its	database	driver	name	and	a

			198	 //	driver-specific	data	source	name,	usually	consisting	of	at	least	a

			199	 //	database	name	and	connection	information.

			200	 //

			201	 //	Most	users	will	open	a	database	via	a	driver-specific	connection

			202	 //	helper	function	that	returns	a	*DB.

			203	 func	Open(driverName,	dataSourceName	string)	(*DB,	error)	{

			204	 	 driver,	ok	:=	drivers[driverName]

			205	 	 if	!ok	{

			206	 	 	 return	nil,	fmt.Errorf("sql:	unknown	driver	%q	(forgotten	import?)",	driverName)

			207	 	 }

			208	 	 return	&DB{driver:	driver,	dsn:	dataSourceName},	nil

			209	 }

			210	

			211	 //	Close	closes	the	database,	releasing	any	open	resources.

			212	 func	(db	*DB)	Close()	error	{

			213	 	 db.mu.Lock()

			214	 	 defer	db.mu.Unlock()

			215	 	 var	err	error

			216	 	 for	_,	c	:=	range	db.freeConn	{

			217	 	 	 err1	:=	c.Close()

			218	 	 	 if	err1	!=	nil	{

			219	 	 	 	 err	=	err1

			220	 	 	 }

			221	 	 }

			222	 	 db.freeConn	=	nil

			223	 	 db.closed	=	true

			224	 	 return	err

			225	 }

			226	

			227	 func	(db	*DB)	maxIdleConns()	int	{

			228	 	 const	defaultMaxIdleConns	=	2

			229	 	 //	TODO(bradfitz):	ask	driver,	if	supported,	for	its	default	preference

			230	 	 //	TODO(bradfitz):	let	users	override?

			231	 	 return	defaultMaxIdleConns

			232	 }

			233	

			234	 //	conn	returns	a	newly-opened	or	cached	driver.Conn

			235	 func	(db	*DB)	conn()	(driver.Conn,	error)	{

			236	 	 db.mu.Lock()

			237	 	 if	db.closed	{

			238	 	 	 db.mu.Unlock()

			239	 	 	 return	nil,	errors.New("sql:	database	is	closed")

			240	 	 }

			241	 	 if	n	:=	len(db.freeConn);	n	>	0	{

			242	 	 	 conn	:=	db.freeConn[n-1]

			243	 	 	 db.freeConn	=	db.freeConn[:n-1]

			244	 	 	 db.mu.Unlock()

			245	 	 	 return	conn,	nil

			246	 	 }

			247	 	 db.mu.Unlock()

			248	 	 return	db.driver.Open(db.dsn)

			249	 }

			250	

			251	 func	(db	*DB)	connIfFree(wanted	driver.Conn)	(conn	driver.Conn,	ok	bool)	{

			252	 	 db.mu.Lock()

			253	 	 defer	db.mu.Unlock()

			254	 	 for	i,	conn	:=	range	db.freeConn	{

			255	 	 	 if	conn	!=	wanted	{

			256	 	 	 	 continue

			257	 	 	 }

			258	 	 	 db.freeConn[i]	=	db.freeConn[len(db.freeConn)-1]

			259	 	 	 db.freeConn	=	db.freeConn[:len(db.freeConn)-1]

			260	 	 	 return	wanted,	true

			261	 	 }

			262	 	 return	nil,	false

			263	 }

			264	

			265	 //	putConnHook	is	a	hook	for	testing.

			266	 var	putConnHook	func(*DB,	driver.Conn)

			267	

			268	 //	putConn	adds	a	connection	to	the	db's	free	pool.

			269	 //	err	is	optionally	the	last	error	that	occured	on	this	connection.

			270	 func	(db	*DB)	putConn(c	driver.Conn,	err	error)	{

			271	 	 if	err	==	driver.ErrBadConn	{

			272	 	 	 //	Don't	reuse	bad	connections.

			273	 	 	 return

			274	 	 }

			275	 	 db.mu.Lock()

			276	 	 if	putConnHook	!=	nil	{

			277	 	 	 putConnHook(db,	c)

			278	 	 }

			279	 	 if	n	:=	len(db.freeConn);	!db.closed	&&	n	<	db.maxIdleConns()	{

			280	 	 	 db.freeConn	=	append(db.freeConn,	c)

			281	 	 	 db.mu.Unlock()

			282	 	 	 return

			283	 	 }

			284	 	 //	TODO:	check	to	see	if	we	need	this	Conn	for	any	prepared

			285	 	 //	statements	which	are	still	active?

			286	 	 db.mu.Unlock()

			287	 	 c.Close()

			288	 }

			289	

			290	 //	Prepare	creates	a	prepared	statement	for	later	execution.

			291	 func	(db	*DB)	Prepare(query	string)	(*Stmt,	error)	{

			292	 	 var	stmt	*Stmt

			293	 	 var	err	error

			294	 	 for	i	:=	0;	i	<	10;	i++	{

			295	 	 	 stmt,	err	=	db.prepare(query)

			296	 	 	 if	err	!=	driver.ErrBadConn	{

			297	 	 	 	 break

			298	 	 	 }

			299	 	 }

			300	 	 return	stmt,	err

			301	 }

			302	

			303	 func	(db	*DB)	prepare(query	string)	(stmt	*Stmt,	err	error)	{

			304	 	 //	TODO:	check	if	db.driver	supports	an	optional

			305	 	 //	driver.Preparer	interface	and	call	that	instead,	if	so,

			306	 	 //	otherwise	we	make	a	prepared	statement	that's	bound

			307	 	 //	to	a	connection,	and	to	execute	this	prepared	statement

			308	 	 //	we	either	need	to	use	this	connection	(if	it's	free),	else

			309	 	 //	get	a	new	connection	+	re-prepare	+	execute	on	that	one.

			310	 	 ci,	err	:=	db.conn()

			311	 	 if	err	!=	nil	{

			312	 	 	 return	nil,	err

			313	 	 }

			314	 	 defer	db.putConn(ci,	err)

			315	 	 si,	err	:=	ci.Prepare(query)

			316	 	 if	err	!=	nil	{

			317	 	 	 return	nil,	err

			318	 	 }

			319	 	 stmt	=	&Stmt{

			320	 	 	 db:				db,

			321	 	 	 query:	query,

			322	 	 	 css:			[]connStmt{{ci,	si}},

			323	 	 }

			324	 	 return	stmt,	nil

			325	 }

			326	

			327	 //	Exec	executes	a	query	without	returning	any	rows.

			328	 func	(db	*DB)	Exec(query	string,	args	...interface{})	(Result,	error)	{

			329	 	 sargs,	err	:=	subsetTypeArgs(args)

			330	 	 if	err	!=	nil	{

			331	 	 	 return	nil,	err

			332	 	 }

			333	 	 var	res	Result

			334	 	 for	i	:=	0;	i	<	10;	i++	{

			335	 	 	 res,	err	=	db.exec(query,	sargs)

			336	 	 	 if	err	!=	driver.ErrBadConn	{

			337	 	 	 	 break

			338	 	 	 }

			339	 	 }

			340	 	 return	res,	err

			341	 }

			342	

			343	 func	(db	*DB)	exec(query	string,	sargs	[]driver.Value)	(res	Result,	err	error)	{

			344	 	 ci,	err	:=	db.conn()

			345	 	 if	err	!=	nil	{

			346	 	 	 return	nil,	err

			347	 	 }

			348	 	 defer	db.putConn(ci,	err)

			349	

			350	 	 if	execer,	ok	:=	ci.(driver.Execer);	ok	{

			351	 	 	 resi,	err	:=	execer.Exec(query,	sargs)

			352	 	 	 if	err	!=	driver.ErrSkip	{

			353	 	 	 	 if	err	!=	nil	{

			354	 	 	 	 	 return	nil,	err

			355	 	 	 	 }

			356	 	 	 	 return	result{resi},	nil

			357	 	 	 }

			358	 	 }

			359	

			360	 	 sti,	err	:=	ci.Prepare(query)

			361	 	 if	err	!=	nil	{

			362	 	 	 return	nil,	err

			363	 	 }

			364	 	 defer	sti.Close()

			365	

			366	 	 resi,	err	:=	sti.Exec(sargs)

			367	 	 if	err	!=	nil	{

			368	 	 	 return	nil,	err

			369	 	 }

			370	 	 return	result{resi},	nil

			371	 }

			372	

			373	 //	Query	executes	a	query	that	returns	rows,	typically	a	SELECT.

			374	 func	(db	*DB)	Query(query	string,	args	...interface{})	(*Rows,	error)	{

			375	 	 stmt,	err	:=	db.Prepare(query)

			376	 	 if	err	!=	nil	{

			377	 	 	 return	nil,	err

			378	 	 }

			379	 	 rows,	err	:=	stmt.Query(args...)

			380	 	 if	err	!=	nil	{

			381	 	 	 stmt.Close()

			382	 	 	 return	nil,	err

			383	 	 }

			384	 	 rows.closeStmt	=	stmt

			385	 	 return	rows,	nil

			386	 }

			387	

			388	 //	QueryRow	executes	a	query	that	is	expected	to	return	at	most	one	row.

			389	 //	QueryRow	always	return	a	non-nil	value.	Errors	are	deferred	until

			390	 //	Row's	Scan	method	is	called.

			391	 func	(db	*DB)	QueryRow(query	string,	args	...interface{})	*Row	{

			392	 	 rows,	err	:=	db.Query(query,	args...)

			393	 	 return	&Row{rows:	rows,	err:	err}

			394	 }

			395	

			396	 //	Begin	starts	a	transaction.	The	isolation	level	is	dependent	on

			397	 //	the	driver.

			398	 func	(db	*DB)	Begin()	(*Tx,	error)	{

			399	 	 var	tx	*Tx

			400	 	 var	err	error

			401	 	 for	i	:=	0;	i	<	10;	i++	{

			402	 	 	 tx,	err	=	db.begin()

			403	 	 	 if	err	!=	driver.ErrBadConn	{

			404	 	 	 	 break

			405	 	 	 }

			406	 	 }

			407	 	 return	tx,	err

			408	 }

			409	

			410	 func	(db	*DB)	begin()	(tx	*Tx,	err	error)	{

			411	 	 ci,	err	:=	db.conn()

			412	 	 if	err	!=	nil	{

			413	 	 	 return	nil,	err

			414	 	 }

			415	 	 txi,	err	:=	ci.Begin()

			416	 	 if	err	!=	nil	{

			417	 	 	 db.putConn(ci,	err)

			418	 	 	 return	nil,	fmt.Errorf("sql:	failed	to	Begin	transaction:	%v",	err)

			419	 	 }

			420	 	 return	&Tx{

			421	 	 	 db:		db,

			422	 	 	 ci:		ci,

			423	 	 	 txi:	txi,

			424	 	 },	nil

			425	 }

			426	

			427	 //	Driver	returns	the	database's	underlying	driver.

			428	 func	(db	*DB)	Driver()	driver.Driver	{

			429	 	 return	db.driver

			430	 }

			431	

			432	 //	Tx	is	an	in-progress	database	transaction.

			433	 //

			434	 //	A	transaction	must	end	with	a	call	to	Commit	or	Rollback.

			435	 //

			436	 //	After	a	call	to	Commit	or	Rollback,	all	operations	on	the

			437	 //	transaction	fail	with	ErrTxDone.

			438	 type	Tx	struct	{

			439	 	 db	*DB

			440	

			441	 	 //	ci	is	owned	exclusively	until	Commit	or	Rollback,	at	which	point

			442	 	 //	it's	returned	with	putConn.

			443	 	 ci		driver.Conn

			444	 	 txi	driver.Tx

			445	

			446	 	 //	cimu	is	held	while	somebody	is	using	ci	(between	grabConn

			447	 	 //	and	releaseConn)

			448	 	 cimu	sync.Mutex

			449	

			450	 	 //	done	transitions	from	false	to	true	exactly	once,	on	Commit

			451	 	 //	or	Rollback.	once	done,	all	operations	fail	with

			452	 	 //	ErrTxDone.

			453	 	 done	bool

			454	 }

			455	

			456	 var	ErrTxDone	=	errors.New("sql:	Transaction	has	already	been	committed	or	rolled	back")

			457	

			458	 func	(tx	*Tx)	close()	{

			459	 	 if	tx.done	{

			460	 	 	 panic("double	close")	//	internal	error

			461	 	 }

			462	 	 tx.done	=	true

			463	 	 tx.db.putConn(tx.ci,	nil)

			464	 	 tx.ci	=	nil

			465	 	 tx.txi	=	nil

			466	 }

			467	

			468	 func	(tx	*Tx)	grabConn()	(driver.Conn,	error)	{

			469	 	 if	tx.done	{

			470	 	 	 return	nil,	ErrTxDone

			471	 	 }

			472	 	 tx.cimu.Lock()

			473	 	 return	tx.ci,	nil

			474	 }

			475	

			476	 func	(tx	*Tx)	releaseConn()	{

			477	 	 tx.cimu.Unlock()

			478	 }

			479	

			480	 //	Commit	commits	the	transaction.

			481	 func	(tx	*Tx)	Commit()	error	{

			482	 	 if	tx.done	{

			483	 	 	 return	ErrTxDone

			484	 	 }

			485	 	 defer	tx.close()

			486	 	 return	tx.txi.Commit()

			487	 }

			488	

			489	 //	Rollback	aborts	the	transaction.

			490	 func	(tx	*Tx)	Rollback()	error	{

			491	 	 if	tx.done	{

			492	 	 	 return	ErrTxDone

			493	 	 }

			494	 	 defer	tx.close()

			495	 	 return	tx.txi.Rollback()

			496	 }

			497	

			498	 //	Prepare	creates	a	prepared	statement	for	use	within	a	transaction.

			499	 //

			500	 //	The	returned	statement	operates	within	the	transaction	and	can	no	longer

			501	 //	be	used	once	the	transaction	has	been	committed	or	rolled	back.

			502	 //

			503	 //	To	use	an	existing	prepared	statement	on	this	transaction,	see	Tx.Stmt.

			504	 func	(tx	*Tx)	Prepare(query	string)	(*Stmt,	error)	{

			505	 	 //	TODO(bradfitz):	We	could	be	more	efficient	here	and	either

			506	 	 //	provide	a	method	to	take	an	existing	Stmt	(created	on

			507	 	 //	perhaps	a	different	Conn),	and	re-create	it	on	this	Conn	if

			508	 	 //	necessary.	Or,	better:	keep	a	map	in	DB	of	query	string	to

			509	 	 //	Stmts,	and	have	Stmt.Execute	do	the	right	thing	and

			510	 	 //	re-prepare	if	the	Conn	in	use	doesn't	have	that	prepared

			511	 	 //	statement.		But	we'll	want	to	avoid	caching	the	statement

			512	 	 //	in	the	case	where	we	only	call	conn.Prepare	implicitly

			513	 	 //	(such	as	in	db.Exec	or	tx.Exec),	but	the	caller	package

			514	 	 //	can't	be	holding	a	reference	to	the	returned	statement.

			515	 	 //	Perhaps	just	looking	at	the	reference	count	(by	noting

			516	 	 //	Stmt.Close)	would	be	enough.	We	might	also	want	a	finalizer

			517	 	 //	on	Stmt	to	drop	the	reference	count.

			518	 	 ci,	err	:=	tx.grabConn()

			519	 	 if	err	!=	nil	{

			520	 	 	 return	nil,	err

			521	 	 }

			522	 	 defer	tx.releaseConn()

			523	

			524	 	 si,	err	:=	ci.Prepare(query)

			525	 	 if	err	!=	nil	{

			526	 	 	 return	nil,	err

			527	 	 }

			528	

			529	 	 stmt	:=	&Stmt{

			530	 	 	 db:				tx.db,

			531	 	 	 tx:				tx,

			532	 	 	 txsi:		si,

			533	 	 	 query:	query,

			534	 	 }

			535	 	 return	stmt,	nil

			536	 }

			537	

			538	 //	Stmt	returns	a	transaction-specific	prepared	statement	from

			539	 //	an	existing	statement.

			540	 //

			541	 //	Example:

			542	 //		updateMoney,	err	:=	db.Prepare("UPDATE	balance	SET	money=money+?	WHERE	id=?")

			543	 //		...

			544	 //		tx,	err	:=	db.Begin()

			545	 //		...

			546	 //		res,	err	:=	tx.Stmt(updateMoney).Exec(123.45,	98293203)

			547	 func	(tx	*Tx)	Stmt(stmt	*Stmt)	*Stmt	{

			548	 	 //	TODO(bradfitz):	optimize	this.	Currently	this	re-prepares

			549	 	 //	each	time.		This	is	fine	for	now	to	illustrate	the	API	but

			550	 	 //	we	should	really	cache	already-prepared	statements

			551	 	 //	per-Conn.	See	also	the	big	comment	in	Tx.Prepare.

			552	

			553	 	 if	tx.db	!=	stmt.db	{

			554	 	 	 return	&Stmt{stickyErr:	errors.New("sql:	Tx.Stmt:	statement	from	different	database	used")}

			555	 	 }

			556	 	 ci,	err	:=	tx.grabConn()

			557	 	 if	err	!=	nil	{

			558	 	 	 return	&Stmt{stickyErr:	err}

			559	 	 }

			560	 	 defer	tx.releaseConn()

			561	 	 si,	err	:=	ci.Prepare(stmt.query)

			562	 	 return	&Stmt{

			563	 	 	 db:								tx.db,

			564	 	 	 tx:								tx,

			565	 	 	 txsi:						si,

			566	 	 	 query:					stmt.query,

			567	 	 	 stickyErr:	err,

			568	 	 }

			569	 }

			570	

			571	 //	Exec	executes	a	query	that	doesn't	return	rows.

			572	 //	For	example:	an	INSERT	and	UPDATE.

			573	 func	(tx	*Tx)	Exec(query	string,	args	...interface{})	(Result,	error)	{

			574	 	 ci,	err	:=	tx.grabConn()

			575	 	 if	err	!=	nil	{

			576	 	 	 return	nil,	err

			577	 	 }

			578	 	 defer	tx.releaseConn()

			579	

			580	 	 sargs,	err	:=	subsetTypeArgs(args)

			581	 	 if	err	!=	nil	{

			582	 	 	 return	nil,	err

			583	 	 }

			584	

			585	 	 if	execer,	ok	:=	ci.(driver.Execer);	ok	{

			586	 	 	 resi,	err	:=	execer.Exec(query,	sargs)

			587	 	 	 if	err	==	nil	{

			588	 	 	 	 return	result{resi},	nil

			589	 	 	 }

			590	 	 	 if	err	!=	driver.ErrSkip	{

			591	 	 	 	 return	nil,	err

			592	 	 	 }

			593	 	 }

			594	

			595	 	 sti,	err	:=	ci.Prepare(query)

			596	 	 if	err	!=	nil	{

			597	 	 	 return	nil,	err

			598	 	 }

			599	 	 defer	sti.Close()

			600	

			601	 	 resi,	err	:=	sti.Exec(sargs)

			602	 	 if	err	!=	nil	{

			603	 	 	 return	nil,	err

			604	 	 }

			605	 	 return	result{resi},	nil

			606	 }

			607	

			608	 //	Query	executes	a	query	that	returns	rows,	typically	a	SELECT.

			609	 func	(tx	*Tx)	Query(query	string,	args	...interface{})	(*Rows,	error)	{

			610	 	 if	tx.done	{

			611	 	 	 return	nil,	ErrTxDone

			612	 	 }

			613	 	 stmt,	err	:=	tx.Prepare(query)

			614	 	 if	err	!=	nil	{

			615	 	 	 return	nil,	err

			616	 	 }

			617	 	 rows,	err	:=	stmt.Query(args...)

			618	 	 if	err	!=	nil	{

			619	 	 	 stmt.Close()

			620	 	 	 return	nil,	err

			621	 	 }

			622	 	 rows.closeStmt	=	stmt

			623	 	 return	rows,	err

			624	 }

			625	

			626	 //	QueryRow	executes	a	query	that	is	expected	to	return	at	most	one	row.

			627	 //	QueryRow	always	return	a	non-nil	value.	Errors	are	deferred	until

			628	 //	Row's	Scan	method	is	called.

			629	 func	(tx	*Tx)	QueryRow(query	string,	args	...interface{})	*Row	{

			630	 	 rows,	err	:=	tx.Query(query,	args...)

			631	 	 return	&Row{rows:	rows,	err:	err}

			632	 }

			633	

			634	 //	connStmt	is	a	prepared	statement	on	a	particular	connection.

			635	 type	connStmt	struct	{

			636	 	 ci	driver.Conn

			637	 	 si	driver.Stmt

			638	 }

			639	

			640	 //	Stmt	is	a	prepared	statement.	Stmt	is	safe	for	concurrent	use	by	multiple	goroutines.

			641	 type	Stmt	struct	{

			642	 	 //	Immutable:

			643	 	 db								*DB				//	where	we	came	from

			644	 	 query					string	//	that	created	the	Stmt

			645	 	 stickyErr	error		//	if	non-nil,	this	error	is	returned	for	all	operations

			646	

			647	 	 //	If	in	a	transaction,	else	both	nil:

			648	 	 tx			*Tx

			649	 	 txsi	driver.Stmt

			650	

			651	 	 mu					sync.Mutex	//	protects	the	rest	of	the	fields

			652	 	 closed	bool

			653	

			654	 	 //	css	is	a	list	of	underlying	driver	statement	interfaces

			655	 	 //	that	are	valid	on	particular	connections.		This	is	only

			656	 	 //	used	if	tx	==	nil	and	one	is	found	that	has	idle

			657	 	 //	connections.		If	tx	!=	nil,	txsi	is	always	used.

			658	 	 css	[]connStmt

			659	 }

			660	

			661	 //	Exec	executes	a	prepared	statement	with	the	given	arguments	and

			662	 //	returns	a	Result	summarizing	the	effect	of	the	statement.

			663	 func	(s	*Stmt)	Exec(args	...interface{})	(Result,	error)	{

			664	 	 _,	releaseConn,	si,	err	:=	s.connStmt()

			665	 	 if	err	!=	nil	{

			666	 	 	 return	nil,	err

			667	 	 }

			668	 	 defer	releaseConn(nil)

			669	

			670	 	 //	-1	means	the	driver	doesn't	know	how	to	count	the	number	of

			671	 	 //	placeholders,	so	we	won't	sanity	check	input	here	and	instead	let	the

			672	 	 //	driver	deal	with	errors.

			673	 	 if	want	:=	si.NumInput();	want	!=	-1	&&	len(args)	!=	want	{

			674	 	 	 return	nil,	fmt.Errorf("sql:	expected	%d	arguments,	got	%d",	want,	len(args))

			675	 	 }

			676	

			677	 	 sargs	:=	make([]driver.Value,	len(args))

			678	

			679	 	 //	Convert	args	to	subset	types.

			680	 	 if	cc,	ok	:=	si.(driver.ColumnConverter);	ok	{

			681	 	 	 for	n,	arg	:=	range	args	{

			682	 	 	 	 //	First,	see	if	the	value	itself	knows	how	to	convert

			683	 	 	 	 //	itself	to	a	driver	type.		For	example,	a	NullString

			684	 	 	 	 //	struct	changing	into	a	string	or	nil.

			685	 	 	 	 if	svi,	ok	:=	arg.(driver.Valuer);	ok	{

			686	 	 	 	 	 sv,	err	:=	svi.Value()

			687	 	 	 	 	 if	err	!=	nil	{

			688	 	 	 	 	 	 return	nil,	fmt.Errorf("sql:	argument	index	%d	from	Value:	%v",	n,	err)

			689	 	 	 	 	 }

			690	 	 	 	 	 if	!driver.IsValue(sv)	{

			691	 	 	 	 	 	 return	nil,	fmt.Errorf("sql:	argument	index	%d:	non-subset	type	%T	returned	from	Value",	n,	sv)

			692	 	 	 	 	 }

			693	 	 	 	 	 arg	=	sv

			694	 	 	 	 }

			695	

			696	 	 	 	 //	Second,	ask	the	column	to	sanity	check	itself.	For

			697	 	 	 	 //	example,	drivers	might	use	this	to	make	sure	that

			698	 	 	 	 //	an	int64	values	being	inserted	into	a	16-bit

			699	 	 	 	 //	integer	field	is	in	range	(before	getting

			700	 	 	 	 //	truncated),	or	that	a	nil	can't	go	into	a	NOT	NULL

			701	 	 	 	 //	column	before	going	across	the	network	to	get	the

			702	 	 	 	 //	same	error.

			703	 	 	 	 sargs[n],	err	=	cc.ColumnConverter(n).ConvertValue(arg)

			704	 	 	 	 if	err	!=	nil	{

			705	 	 	 	 	 return	nil,	fmt.Errorf("sql:	converting	Exec	argument	#%d's	type:	%v",	n,	err)

			706	 	 	 	 }

			707	 	 	 	 if	!driver.IsValue(sargs[n])	{

			708	 	 	 	 	 return	nil,	fmt.Errorf("sql:	driver	ColumnConverter	error	converted	%T	to	unsupported	type	%T",

			709	 	 	 	 	 	 arg,	sargs[n])

			710	 	 	 	 }

			711	 	 	 }

			712	 	 }	else	{

			713	 	 	 for	n,	arg	:=	range	args	{

			714	 	 	 	 sargs[n],	err	=	driver.DefaultParameterConverter.ConvertValue(arg)

			715	 	 	 	 if	err	!=	nil	{

			716	 	 	 	 	 return	nil,	fmt.Errorf("sql:	converting	Exec	argument	#%d's	type:	%v",	n,	err)

			717	 	 	 	 }

			718	 	 	 }

			719	 	 }

			720	

			721	 	 resi,	err	:=	si.Exec(sargs)

			722	 	 if	err	!=	nil	{

			723	 	 	 return	nil,	err

			724	 	 }

			725	 	 return	result{resi},	nil

			726	 }

			727	

			728	 //	connStmt	returns	a	free	driver	connection	on	which	to	execute	the

			729	 //	statement,	a	function	to	call	to	release	the	connection,	and	a

			730	 //	statement	bound	to	that	connection.

			731	 func	(s	*Stmt)	connStmt()	(ci	driver.Conn,	releaseConn	func(error),	si	driver.Stmt,	err	error)	{

			732	 	 if	err	=	s.stickyErr;	err	!=	nil	{

			733	 	 	 return

			734	 	 }

			735	 	 s.mu.Lock()

			736	 	 if	s.closed	{

			737	 	 	 s.mu.Unlock()

			738	 	 	 err	=	errors.New("sql:	statement	is	closed")

			739	 	 	 return

			740	 	 }

			741	

			742	 	 //	In	a	transaction,	we	always	use	the	connection	that	the

			743	 	 //	transaction	was	created	on.

			744	 	 if	s.tx	!=	nil	{

			745	 	 	 s.mu.Unlock()

			746	 	 	 ci,	err	=	s.tx.grabConn()	//	blocks,	waiting	for	the	connection.

			747	 	 	 if	err	!=	nil	{

			748	 	 	 	 return

			749	 	 	 }

			750	 	 	 releaseConn	=	func(error)	{	s.tx.releaseConn()	}

			751	 	 	 return	ci,	releaseConn,	s.txsi,	nil

			752	 	 }

			753	

			754	 	 var	cs	connStmt

			755	 	 match	:=	false

			756	 	 for	_,	v	:=	range	s.css	{

			757	 	 	 //	TODO(bradfitz):	lazily	clean	up	entries	in	this

			758	 	 	 //	list	with	dead	conns	while	enumerating

			759	 	 	 if	_,	match	=	s.db.connIfFree(v.ci);	match	{

			760	 	 	 	 cs	=	v

			761	 	 	 	 break

			762	 	 	 }

			763	 	 }

			764	 	 s.mu.Unlock()

			765	

			766	 	 //	Make	a	new	conn	if	all	are	busy.

			767	 	 //	TODO(bradfitz):	or	wait	for	one?	make	configurable	later?

			768	 	 if	!match	{

			769	 	 	 for	i	:=	0;	;	i++	{

			770	 	 	 	 ci,	err	:=	s.db.conn()

			771	 	 	 	 if	err	!=	nil	{

			772	 	 	 	 	 return	nil,	nil,	nil,	err

			773	 	 	 	 }

			774	 	 	 	 si,	err	:=	ci.Prepare(s.query)

			775	 	 	 	 if	err	==	driver.ErrBadConn	&&	i	<	10	{

			776	 	 	 	 	 continue

			777	 	 	 	 }

			778	 	 	 	 if	err	!=	nil	{

			779	 	 	 	 	 return	nil,	nil,	nil,	err

			780	 	 	 	 }

			781	 	 	 	 s.mu.Lock()

			782	 	 	 	 cs	=	connStmt{ci,	si}

			783	 	 	 	 s.css	=	append(s.css,	cs)

			784	 	 	 	 s.mu.Unlock()

			785	 	 	 	 break

			786	 	 	 }

			787	 	 }

			788	

			789	 	 conn	:=	cs.ci

			790	 	 releaseConn	=	func(err	error)	{	s.db.putConn(conn,	err)	}

			791	 	 return	conn,	releaseConn,	cs.si,	nil

			792	 }

			793	

			794	 //	Query	executes	a	prepared	query	statement	with	the	given	arguments

			795	 //	and	returns	the	query	results	as	a	*Rows.

			796	 func	(s	*Stmt)	Query(args	...interface{})	(*Rows,	error)	{

			797	 	 ci,	releaseConn,	si,	err	:=	s.connStmt()

			798	 	 if	err	!=	nil	{

			799	 	 	 return	nil,	err

			800	 	 }

			801	

			802	 	 //	-1	means	the	driver	doesn't	know	how	to	count	the	number	of

			803	 	 //	placeholders,	so	we	won't	sanity	check	input	here	and	instead	let	the

			804	 	 //	driver	deal	with	errors.

			805	 	 if	want	:=	si.NumInput();	want	!=	-1	&&	len(args)	!=	want	{

			806	 	 	 return	nil,	fmt.Errorf("sql:	statement	expects	%d	inputs;	got	%d",	si.NumInput(),	len(args))

			807	 	 }

			808	 	 sargs,	err	:=	subsetTypeArgs(args)

			809	 	 if	err	!=	nil	{

			810	 	 	 return	nil,	err

			811	 	 }

			812	 	 rowsi,	err	:=	si.Query(sargs)

			813	 	 if	err	!=	nil	{

			814	 	 	 releaseConn(err)

			815	 	 	 return	nil,	err

			816	 	 }

			817	 	 //	Note:	ownership	of	ci	passes	to	the	*Rows,	to	be	freed

			818	 	 //	with	releaseConn.

			819	 	 rows	:=	&Rows{

			820	 	 	 db:										s.db,

			821	 	 	 ci:										ci,

			822	 	 	 releaseConn:	releaseConn,

			823	 	 	 rowsi:							rowsi,

			824	 	 }

			825	 	 return	rows,	nil

			826	 }

			827	

			828	 //	QueryRow	executes	a	prepared	query	statement	with	the	given	arguments.

			829	 //	If	an	error	occurs	during	the	execution	of	the	statement,	that	error	will

			830	 //	be	returned	by	a	call	to	Scan	on	the	returned	*Row,	which	is	always	non-nil.

			831	 //	If	the	query	selects	no	rows,	the	*Row's	Scan	will	return	ErrNoRows.

			832	 //	Otherwise,	the	*Row's	Scan	scans	the	first	selected	row	and	discards

			833	 //	the	rest.

			834	 //

			835	 //	Example	usage:

			836	 //

			837	 //		var	name	string

			838	 //		err	:=	nameByUseridStmt.QueryRow(id).Scan(&name)

			839	 func	(s	*Stmt)	QueryRow(args	...interface{})	*Row	{

			840	 	 rows,	err	:=	s.Query(args...)

			841	 	 if	err	!=	nil	{

			842	 	 	 return	&Row{err:	err}

			843	 	 }

			844	 	 return	&Row{rows:	rows}

			845	 }

			846	

			847	 //	Close	closes	the	statement.

			848	 func	(s	*Stmt)	Close()	error	{

			849	 	 if	s.stickyErr	!=	nil	{

			850	 	 	 return	s.stickyErr

			851	 	 }

			852	 	 s.mu.Lock()

			853	 	 defer	s.mu.Unlock()

			854	 	 if	s.closed	{

			855	 	 	 return	nil

			856	 	 }

			857	 	 s.closed	=	true

			858	

			859	 	 if	s.tx	!=	nil	{

			860	 	 	 s.txsi.Close()

			861	 	 }	else	{

			862	 	 	 for	_,	v	:=	range	s.css	{

			863	 	 	 	 if	ci,	match	:=	s.db.connIfFree(v.ci);	match	{

			864	 	 	 	 	 v.si.Close()

			865	 	 	 	 	 s.db.putConn(ci,	nil)

			866	 	 	 	 }	else	{

			867	 	 	 	 	 //	TODO(bradfitz):	care	that	we	can't	close

			868	 	 	 	 	 //	this	statement	because	the	statement's

			869	 	 	 	 	 //	connection	is	in	use?

			870	 	 	 	 }

			871	 	 	 }

			872	 	 }

			873	 	 return	nil

			874	 }

			875	

			876	 //	Rows	is	the	result	of	a	query.	Its	cursor	starts	before	the	first	row

			877	 //	of	the	result	set.	Use	Next	to	advance	through	the	rows:

			878	 //

			879	 //					rows,	err	:=	db.Query("SELECT	...")

			880	 //					...

			881	 //					for	rows.Next()	{

			882	 //									var	id	int

			883	 //									var	name	string

			884	 //									err	=	rows.Scan(&id,	&name)

			885	 //									...

			886	 //					}

			887	 //					err	=	rows.Err()	//	get	any	error	encountered	during	iteration

			888	 //					...

			889	 type	Rows	struct	{

			890	 	 db										*DB

			891	 	 ci										driver.Conn	//	owned;	must	call	putconn	when	closed	to	release

			892	 	 releaseConn	func(error)

			893	 	 rowsi							driver.Rows

			894	

			895	 	 closed				bool

			896	 	 lastcols		[]driver.Value

			897	 	 lasterr			error

			898	 	 closeStmt	*Stmt	//	if	non-nil,	statement	to	Close	on	close

			899	 }

			900	

			901	 //	Next	prepares	the	next	result	row	for	reading	with	the	Scan	method.

			902	 //	It	returns	true	on	success,	false	if	there	is	no	next	result	row.

			903	 //	Every	call	to	Scan,	even	the	first	one,	must	be	preceded	by	a	call

			904	 //	to	Next.

			905	 func	(rs	*Rows)	Next()	bool	{

			906	 	 if	rs.closed	{

			907	 	 	 return	false

			908	 	 }

			909	 	 if	rs.lasterr	!=	nil	{

			910	 	 	 return	false

			911	 	 }

			912	 	 if	rs.lastcols	==	nil	{

			913	 	 	 rs.lastcols	=	make([]driver.Value,	len(rs.rowsi.Columns()))

			914	 	 }

			915	 	 rs.lasterr	=	rs.rowsi.Next(rs.lastcols)

			916	 	 if	rs.lasterr	==	io.EOF	{

			917	 	 	 rs.Close()

			918	 	 }

			919	 	 return	rs.lasterr	==	nil

			920	 }

			921	

			922	 //	Err	returns	the	error,	if	any,	that	was	encountered	during	iteration.

			923	 func	(rs	*Rows)	Err()	error	{

			924	 	 if	rs.lasterr	==	io.EOF	{

			925	 	 	 return	nil

			926	 	 }

			927	 	 return	rs.lasterr

			928	 }

			929	

			930	 //	Columns	returns	the	column	names.

			931	 //	Columns	returns	an	error	if	the	rows	are	closed,	or	if	the	rows

			932	 //	are	from	QueryRow	and	there	was	a	deferred	error.

			933	 func	(rs	*Rows)	Columns()	([]string,	error)	{

			934	 	 if	rs.closed	{

			935	 	 	 return	nil,	errors.New("sql:	Rows	are	closed")

			936	 	 }

			937	 	 if	rs.rowsi	==	nil	{

			938	 	 	 return	nil,	errors.New("sql:	no	Rows	available")

			939	 	 }

			940	 	 return	rs.rowsi.Columns(),	nil

			941	 }

			942	

			943	 //	Scan	copies	the	columns	in	the	current	row	into	the	values	pointed

			944	 //	at	by	dest.

			945	 //

			946	 //	If	an	argument	has	type	*[]byte,	Scan	saves	in	that	argument	a	copy

			947	 //	of	the	corresponding	data.	The	copy	is	owned	by	the	caller	and	can

			948	 //	be	modified	and	held	indefinitely.	The	copy	can	be	avoided	by	using

			949	 //	an	argument	of	type	*RawBytes	instead;	see	the	documentation	for

			950	 //	RawBytes	for	restrictions	on	its	use.

			951	 //

			952	 //	If	an	argument	has	type	*interface{},	Scan	copies	the	value

			953	 //	provided	by	the	underlying	driver	without	conversion.	If	the	value

			954	 //	is	of	type	[]byte,	a	copy	is	made	and	the	caller	owns	the	result.

			955	 func	(rs	*Rows)	Scan(dest	...interface{})	error	{

			956	 	 if	rs.closed	{

			957	 	 	 return	errors.New("sql:	Rows	closed")

			958	 	 }

			959	 	 if	rs.lasterr	!=	nil	{

			960	 	 	 return	rs.lasterr

			961	 	 }

			962	 	 if	rs.lastcols	==	nil	{

			963	 	 	 return	errors.New("sql:	Scan	called	without	calling	Next")

			964	 	 }

			965	 	 if	len(dest)	!=	len(rs.lastcols)	{

			966	 	 	 return	fmt.Errorf("sql:	expected	%d	destination	arguments	in	Scan,	not	%d",	len(rs.lastcols),	len(dest))

			967	 	 }

			968	 	 for	i,	sv	:=	range	rs.lastcols	{

			969	 	 	 err	:=	convertAssign(dest[i],	sv)

			970	 	 	 if	err	!=	nil	{

			971	 	 	 	 return	fmt.Errorf("sql:	Scan	error	on	column	index	%d:	%v",	i,	err)

			972	 	 	 }

			973	 	 }

			974	 	 for	_,	dp	:=	range	dest	{

			975	 	 	 b,	ok	:=	dp.(*[]byte)

			976	 	 	 if	!ok	{

			977	 	 	 	 continue

			978	 	 	 }

			979	 	 	 if	*b	==	nil	{

			980	 	 	 	 //	If	the	[]byte	is	now	nil	(for	a	NULL	value),

			981	 	 	 	 //	don't	fall	through	to	below	which	would

			982	 	 	 	 //	turn	it	into	a	non-nil	0-length	byte	slice

			983	 	 	 	 continue

			984	 	 	 }

			985	 	 	 if	_,	ok	=	dp.(*RawBytes);	ok	{

			986	 	 	 	 continue

			987	 	 	 }

			988	 	 	 clone	:=	make([]byte,	len(*b))

			989	 	 	 copy(clone,	*b)

			990	 	 	 *b	=	clone

			991	 	 }

			992	 	 return	nil

			993	 }

			994	

			995	 //	Close	closes	the	Rows,	preventing	further	enumeration.	If	the

			996	 //	end	is	encountered,	the	Rows	are	closed	automatically.	Close

			997	 //	is	idempotent.

			998	 func	(rs	*Rows)	Close()	error	{

			999	 	 if	rs.closed	{

		1000	 	 	 return	nil

		1001	 	 }

		1002	 	 rs.closed	=	true

		1003	 	 err	:=	rs.rowsi.Close()

		1004	 	 rs.releaseConn(err)

		1005	 	 if	rs.closeStmt	!=	nil	{

		1006	 	 	 rs.closeStmt.Close()

		1007	 	 }

		1008	 	 return	err

		1009	 }

		1010	

		1011	 //	Row	is	the	result	of	calling	QueryRow	to	select	a	single	row.

		1012	 type	Row	struct	{

		1013	 	 //	One	of	these	two	will	be	non-nil:

		1014	 	 err		error	//	deferred	error	for	easy	chaining

		1015	 	 rows	*Rows

		1016	 }

		1017	

		1018	 //	Scan	copies	the	columns	from	the	matched	row	into	the	values

		1019	 //	pointed	at	by	dest.		If	more	than	one	row	matches	the	query,

		1020	 //	Scan	uses	the	first	row	and	discards	the	rest.		If	no	row	matches

		1021	 //	the	query,	Scan	returns	ErrNoRows.

		1022	 func	(r	*Row)	Scan(dest	...interface{})	error	{

		1023	 	 if	r.err	!=	nil	{

		1024	 	 	 return	r.err

		1025	 	 }

		1026	

		1027	 	 //	TODO(bradfitz):	for	now	we	need	to	defensively	clone	all

		1028	 	 //	[]byte	that	the	driver	returned	(not	permitting

		1029	 	 //	*RawBytes	in	Rows.Scan),	since	we're	about	to	close

		1030	 	 //	the	Rows	in	our	defer,	when	we	return	from	this	function.

		1031	 	 //	the	contract	with	the	driver.Next(...)	interface	is	that	it

		1032	 	 //	can	return	slices	into	read-only	temporary	memory	that's

		1033	 	 //	only	valid	until	the	next	Scan/Close.		But	the	TODO	is	that

		1034	 	 //	for	a	lot	of	drivers,	this	copy	will	be	unnecessary.		We

		1035	 	 //	should	provide	an	optional	interface	for	drivers	to

		1036	 	 //	implement	to	say,	"don't	worry,	the	[]bytes	that	I	return

		1037	 	 //	from	Next	will	not	be	modified	again."	(for	instance,	if

		1038	 	 //	they	were	obtained	from	the	network	anyway)	But	for	now	we

		1039	 	 //	don't	care.

		1040	 	 for	_,	dp	:=	range	dest	{

		1041	 	 	 if	_,	ok	:=	dp.(*RawBytes);	ok	{

		1042	 	 	 	 return	errors.New("sql:	RawBytes	isn't	allowed	on	Row.Scan")

		1043	 	 	 }

		1044	 	 }

		1045	

		1046	 	 defer	r.rows.Close()

		1047	 	 if	!r.rows.Next()	{

		1048	 	 	 return	ErrNoRows

		1049	 	 }

		1050	 	 err	:=	r.rows.Scan(dest...)

		1051	 	 if	err	!=	nil	{

		1052	 	 	 return	err

		1053	 	 }

		1054	

		1055	 	 return	nil

		1056	 }

		1057	

		1058	 //	A	Result	summarizes	an	executed	SQL	command.

		1059	 type	Result	interface	{

		1060	 	 LastInsertId()	(int64,	error)

		1061	 	 RowsAffected()	(int64,	error)

		1062	 }

		1063	

		1064	 type	result	struct	{

		1065	 	 driver.Result

		1066	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/database/sql/driver/driver.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	driver	defines	interfaces	to	be	implemented	by	database

					6	 //	drivers	as	used	by	package	sql.

					7	 //

					8	 //	Most	code	should	use	package	sql.

					9	 package	driver

				10	

				11	 import	"errors"

				12	

				13	 //	A	driver	Value	is	a	value	that	drivers	must	be	able	to	handle.

				14	 //	A	Value	is	either	nil	or	an	instance	of	one	of	these	types:

				15	 //

				16	 //			int64

				17	 //			float64

				18	 //			bool

				19	 //			[]byte

				20	 //			string			[*]	everywhere	except	from	Rows.Next.

				21	 //			time.Time

				22	 type	Value	interface{}

				23	

				24	 //	Driver	is	the	interface	that	must	be	implemented	by	a	database

				25	 //	driver.

				26	 type	Driver	interface	{

				27	 	 //	Open	returns	a	new	connection	to	the	database.

				28	 	 //	The	name	is	a	string	in	a	driver-specific	format.

				29	 	 //

				30	 	 //	Open	may	return	a	cached	connection	(one	previously

				31	 	 //	closed),	but	doing	so	is	unnecessary;	the	sql	package

				32	 	 //	maintains	a	pool	of	idle	connections	for	efficient	re-use.

				33	 	 //

				34	 	 //	The	returned	connection	is	only	used	by	one	goroutine	at	a

				35	 	 //	time.

				36	 	 Open(name	string)	(Conn,	error)

				37	 }

				38	

				39	 //	ErrSkip	may	be	returned	by	some	optional	interfaces'	methods	to

				40	 //	indicate	at	runtime	that	the	fast	path	is	unavailable	and	the	sql

				41	 //	package	should	continue	as	if	the	optional	interface	was	not

				42	 //	implemented.	ErrSkip	is	only	supported	where	explicitly

				43	 //	documented.

				44	 var	ErrSkip	=	errors.New("driver:	skip	fast-path;	continue	as	if	unimplemented")

				45	

				46	 //	ErrBadConn	should	be	returned	by	a	driver	to	signal	to	the	sql

				47	 //	package	that	a	driver.Conn	is	in	a	bad	state	(such	as	the	server

				48	 //	having	earlier	closed	the	connection)	and	the	sql	package	should

				49	 //	retry	on	a	new	connection.

				50	 //

				51	 //	To	prevent	duplicate	operations,	ErrBadConn	should	NOT	be	returned

				52	 //	if	there's	a	possibility	that	the	database	server	might	have

				53	 //	performed	the	operation.	Even	if	the	server	sends	back	an	error,

				54	 //	you	shouldn't	return	ErrBadConn.

				55	 var	ErrBadConn	=	errors.New("driver:	bad	connection")

				56	

				57	 //	Execer	is	an	optional	interface	that	may	be	implemented	by	a	Conn.

				58	 //

				59	 //	If	a	Conn	does	not	implement	Execer,	the	db	package's	DB.Exec	will

				60	 //	first	prepare	a	query,	execute	the	statement,	and	then	close	the

				61	 //	statement.

				62	 //

				63	 //	Exec	may	return	ErrSkip.

				64	 type	Execer	interface	{

				65	 	 Exec(query	string,	args	[]Value)	(Result,	error)

				66	 }

				67	

				68	 //	Conn	is	a	connection	to	a	database.	It	is	not	used	concurrently

				69	 //	by	multiple	goroutines.

				70	 //

				71	 //	Conn	is	assumed	to	be	stateful.

				72	 type	Conn	interface	{

				73	 	 //	Prepare	returns	a	prepared	statement,	bound	to	this	connection.

				74	 	 Prepare(query	string)	(Stmt,	error)

				75	

				76	 	 //	Close	invalidates	and	potentially	stops	any	current

				77	 	 //	prepared	statements	and	transactions,	marking	this

				78	 	 //	connection	as	no	longer	in	use.

				79	 	 //

				80	 	 //	Because	the	sql	package	maintains	a	free	pool	of

				81	 	 //	connections	and	only	calls	Close	when	there's	a	surplus	of

				82	 	 //	idle	connections,	it	shouldn't	be	necessary	for	drivers	to

				83	 	 //	do	their	own	connection	caching.

				84	 	 Close()	error

				85	

				86	 	 //	Begin	starts	and	returns	a	new	transaction.

				87	 	 Begin()	(Tx,	error)

				88	 }

				89	

				90	 //	Result	is	the	result	of	a	query	execution.

				91	 type	Result	interface	{

				92	 	 //	LastInsertId	returns	the	database's	auto-generated	ID

				93	 	 //	after,	for	example,	an	INSERT	into	a	table	with	primary

				94	 	 //	key.

				95	 	 LastInsertId()	(int64,	error)

				96	

				97	 	 //	RowsAffected	returns	the	number	of	rows	affected	by	the

				98	 	 //	query.

				99	 	 RowsAffected()	(int64,	error)

			100	 }

			101	

			102	 //	Stmt	is	a	prepared	statement.	It	is	bound	to	a	Conn	and	not

			103	 //	used	by	multiple	goroutines	concurrently.

			104	 type	Stmt	interface	{

			105	 	 //	Close	closes	the	statement.

			106	 	 //

			107	 	 //	Closing	a	statement	should	not	interrupt	any	outstanding

			108	 	 //	query	created	from	that	statement.	That	is,	the	following

			109	 	 //	order	of	operations	is	valid:

			110	 	 //

			111	 	 //		*	create	a	driver	statement

			112	 	 //		*	call	Query	on	statement,	returning	Rows

			113	 	 //		*	close	the	statement

			114	 	 //		*	read	from	Rows

			115	 	 //

			116	 	 //	If	closing	a	statement	invalidates	currently-running

			117	 	 //	queries,	the	final	step	above	will	incorrectly	fail.

			118	 	 //

			119	 	 //	TODO(bradfitz):	possibly	remove	the	restriction	above,	if

			120	 	 //	enough	driver	authors	object	and	find	it	complicates	their

			121	 	 //	code	too	much.	The	sql	package	could	be	smarter	about

			122	 	 //	refcounting	the	statement	and	closing	it	at	the	appropriate

			123	 	 //	time.

			124	 	 Close()	error

			125	

			126	 	 //	NumInput	returns	the	number	of	placeholder	parameters.

			127	 	 //

			128	 	 //	If	NumInput	returns	>=	0,	the	sql	package	will	sanity	check

			129	 	 //	argument	counts	from	callers	and	return	errors	to	the	caller

			130	 	 //	before	the	statement's	Exec	or	Query	methods	are	called.

			131	 	 //

			132	 	 //	NumInput	may	also	return	-1,	if	the	driver	doesn't	know

			133	 	 //	its	number	of	placeholders.	In	that	case,	the	sql	package

			134	 	 //	will	not	sanity	check	Exec	or	Query	argument	counts.

			135	 	 NumInput()	int

			136	

			137	 	 //	Exec	executes	a	query	that	doesn't	return	rows,	such

			138	 	 //	as	an	INSERT	or	UPDATE.

			139	 	 Exec(args	[]Value)	(Result,	error)

			140	

			141	 	 //	Exec	executes	a	query	that	may	return	rows,	such	as	a

			142	 	 //	SELECT.

			143	 	 Query(args	[]Value)	(Rows,	error)

			144	 }

			145	

			146	 //	ColumnConverter	may	be	optionally	implemented	by	Stmt	if	the

			147	 //	the	statement	is	aware	of	its	own	columns'	types	and	can

			148	 //	convert	from	any	type	to	a	driver	Value.

			149	 type	ColumnConverter	interface	{

			150	 	 //	ColumnConverter	returns	a	ValueConverter	for	the	provided

			151	 	 //	column	index.		If	the	type	of	a	specific	column	isn't	known

			152	 	 //	or	shouldn't	be	handled	specially,	DefaultValueConverter

			153	 	 //	can	be	returned.

			154	 	 ColumnConverter(idx	int)	ValueConverter

			155	 }

			156	

			157	 //	Rows	is	an	iterator	over	an	executed	query's	results.

			158	 type	Rows	interface	{

			159	 	 //	Columns	returns	the	names	of	the	columns.	The	number	of

			160	 	 //	columns	of	the	result	is	inferred	from	the	length	of	the

			161	 	 //	slice.		If	a	particular	column	name	isn't	known,	an	empty

			162	 	 //	string	should	be	returned	for	that	entry.

			163	 	 Columns()	[]string

			164	

			165	 	 //	Close	closes	the	rows	iterator.

			166	 	 Close()	error

			167	

			168	 	 //	Next	is	called	to	populate	the	next	row	of	data	into

			169	 	 //	the	provided	slice.	The	provided	slice	will	be	the	same

			170	 	 //	size	as	the	Columns()	are	wide.

			171	 	 //

			172	 	 //	The	dest	slice	may	be	populated	only	with

			173	 	 //	a	driver	Value	type,	but	excluding	string.

			174	 	 //	All	string	values	must	be	converted	to	[]byte.

			175	 	 //

			176	 	 //	Next	should	return	io.EOF	when	there	are	no	more	rows.

			177	 	 Next(dest	[]Value)	error

			178	 }

			179	

			180	 //	Tx	is	a	transaction.

			181	 type	Tx	interface	{

			182	 	 Commit()	error

			183	 	 Rollback()	error

			184	 }

			185	

			186	 //	RowsAffected	implements	Result	for	an	INSERT	or	UPDATE	operation

			187	 //	which	mutates	a	number	of	rows.

			188	 type	RowsAffected	int64

			189	

			190	 var	_	Result	=	RowsAffected(0)

			191	

			192	 func	(RowsAffected)	LastInsertId()	(int64,	error)	{

			193	 	 return	0,	errors.New("no	LastInsertId	available")

			194	 }

			195	

			196	 func	(v	RowsAffected)	RowsAffected()	(int64,	error)	{

			197	 	 return	int64(v),	nil

			198	 }

			199	

			200	 //	ResultNoRows	is	a	pre-defined	Result	for	drivers	to	return	when	a	DDL

			201	 //	command	(such	as	a	CREATE	TABLE)	succeeds.	It	returns	an	error	for	both

			202	 //	LastInsertId	and	RowsAffected.

			203	 var	ResultNoRows	noRows

			204	

			205	 type	noRows	struct{}

			206	

			207	 var	_	Result	=	noRows{}

			208	

			209	 func	(noRows)	LastInsertId()	(int64,	error)	{

			210	 	 return	0,	errors.New("no	LastInsertId	available	after	DDL	statement")

			211	 }

			212	

			213	 func	(noRows)	RowsAffected()	(int64,	error)	{

			214	 	 return	0,	errors.New("no	RowsAffected	available	after	DDL	statement")

			215	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/database/sql/driver/types.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	driver

					6	

					7	 import	(

					8	 	 "fmt"

					9	 	 "reflect"

				10	 	 "strconv"

				11	 	 "time"

				12)

				13	

				14	 //	ValueConverter	is	the	interface	providing	the	ConvertValue	method.

				15	 //

				16	 //	Various	implementations	of	ValueConverter	are	provided	by	the

				17	 //	driver	package	to	provide	consistent	implementations	of	conversions

				18	 //	between	drivers.		The	ValueConverters	have	several	uses:

				19	 //

				20	 //		*	converting	from	the	Value	types	as	provided	by	the	sql	package

				21	 //				into	a	database	table's	specific	column	type	and	making	sure	it

				22	 //				fits,	such	as	making	sure	a	particular	int64	fits	in	a

				23	 //				table's	uint16	column.

				24	 //

				25	 //		*	converting	a	value	as	given	from	the	database	into	one	of	the

				26	 //				driver	Value	types.

				27	 //

				28	 //		*	by	the	sql	package,	for	converting	from	a	driver's	Value	type

				29	 //				to	a	user's	type	in	a	scan.

				30	 type	ValueConverter	interface	{

				31	 	 //	ConvertValue	converts	a	value	to	a	driver	Value.

				32	 	 ConvertValue(v	interface{})	(Value,	error)

				33	 }

				34	

				35	 //	Valuer	is	the	interface	providing	the	Value	method.

				36	 //

				37	 //	Types	implementing	Valuer	interface	are	able	to	convert

				38	 //	themselves	to	a	driver	Value.

				39	 type	Valuer	interface	{

				40	 	 //	Value	returns	a	driver	Value.

				41	 	 Value()	(Value,	error)

				42	 }

				43	

				44	 //	Bool	is	a	ValueConverter	that	converts	input	values	to	bools.

				45	 //

				46	 //	The	conversion	rules	are:

				47	 //		-	booleans	are	returned	unchanged

				48	 //		-	for	integer	types,

				49	 //							1	is	true

				50	 //							0	is	false,

				51	 //							other	integers	are	an	error

				52	 //		-	for	strings	and	[]byte,	same	rules	as	strconv.ParseBool

				53	 //		-	all	other	types	are	an	error

				54	 var	Bool	boolType

				55	

				56	 type	boolType	struct{}

				57	

				58	 var	_	ValueConverter	=	boolType{}

				59	

				60	 func	(boolType)	String()	string	{	return	"Bool"	}

				61	

				62	 func	(boolType)	ConvertValue(src	interface{})	(Value,	error)	{

				63	 	 switch	s	:=	src.(type)	{

				64	 	 case	bool:

				65	 	 	 return	s,	nil

				66	 	 case	string:

				67	 	 	 b,	err	:=	strconv.ParseBool(s)

				68	 	 	 if	err	!=	nil	{

				69	 	 	 	 return	nil,	fmt.Errorf("sql/driver:	couldn't	convert	%q	into	type	bool",	s)

				70	 	 	 }

				71	 	 	 return	b,	nil

				72	 	 case	[]byte:

				73	 	 	 b,	err	:=	strconv.ParseBool(string(s))

				74	 	 	 if	err	!=	nil	{

				75	 	 	 	 return	nil,	fmt.Errorf("sql/driver:	couldn't	convert	%q	into	type	bool",	s)

				76	 	 	 }

				77	 	 	 return	b,	nil

				78	 	 }

				79	

				80	 	 sv	:=	reflect.ValueOf(src)

				81	 	 switch	sv.Kind()	{

				82	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

				83	 	 	 iv	:=	sv.Int()

				84	 	 	 if	iv	==	1	||	iv	==	0	{

				85	 	 	 	 return	iv	==	1,	nil

				86	 	 	 }

				87	 	 	 return	nil,	fmt.Errorf("sql/driver:	couldn't	convert	%d	into	type	bool",	iv)

				88	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64:

				89	 	 	 uv	:=	sv.Uint()

				90	 	 	 if	uv	==	1	||	uv	==	0	{

				91	 	 	 	 return	uv	==	1,	nil

				92	 	 	 }

				93	 	 	 return	nil,	fmt.Errorf("sql/driver:	couldn't	convert	%d	into	type	bool",	uv)

				94	 	 }

				95	

				96	 	 return	nil,	fmt.Errorf("sql/driver:	couldn't	convert	%v	(%T)	into	type	bool",	src,	src)

				97	 }

				98	

				99	 //	Int32	is	a	ValueConverter	that	converts	input	values	to	int64,

			100	 //	respecting	the	limits	of	an	int32	value.

			101	 var	Int32	int32Type

			102	

			103	 type	int32Type	struct{}

			104	

			105	 var	_	ValueConverter	=	int32Type{}

			106	

			107	 func	(int32Type)	ConvertValue(v	interface{})	(Value,	error)	{

			108	 	 rv	:=	reflect.ValueOf(v)

			109	 	 switch	rv.Kind()	{

			110	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			111	 	 	 i64	:=	rv.Int()

			112	 	 	 if	i64	>	(1<<31)-1	||	i64	<	-(1<<31)	{

			113	 	 	 	 return	nil,	fmt.Errorf("sql/driver:	value	%d	overflows	int32",	v)

			114	 	 	 }

			115	 	 	 return	i64,	nil

			116	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64:

			117	 	 	 u64	:=	rv.Uint()

			118	 	 	 if	u64	>	(1<<31)-1	{

			119	 	 	 	 return	nil,	fmt.Errorf("sql/driver:	value	%d	overflows	int32",	v)

			120	 	 	 }

			121	 	 	 return	int64(u64),	nil

			122	 	 case	reflect.String:

			123	 	 	 i,	err	:=	strconv.Atoi(rv.String())

			124	 	 	 if	err	!=	nil	{

			125	 	 	 	 return	nil,	fmt.Errorf("sql/driver:	value	%q	can't	be	converted	to	int32",	v)

			126	 	 	 }

			127	 	 	 return	int64(i),	nil

			128	 	 }

			129	 	 return	nil,	fmt.Errorf("sql/driver:	unsupported	value	%v	(type	%T)	converting	to	int32",	v,	v)

			130	 }

			131	

			132	 //	String	is	a	ValueConverter	that	converts	its	input	to	a	string.

			133	 //	If	the	value	is	already	a	string	or	[]byte,	it's	unchanged.

			134	 //	If	the	value	is	of	another	type,	conversion	to	string	is	done

			135	 //	with	fmt.Sprintf("%v",	v).

			136	 var	String	stringType

			137	

			138	 type	stringType	struct{}

			139	

			140	 func	(stringType)	ConvertValue(v	interface{})	(Value,	error)	{

			141	 	 switch	v.(type)	{

			142	 	 case	string,	[]byte:

			143	 	 	 return	v,	nil

			144	 	 }

			145	 	 return	fmt.Sprintf("%v",	v),	nil

			146	 }

			147	

			148	 //	Null	is	a	type	that	implements	ValueConverter	by	allowing	nil

			149	 //	values	but	otherwise	delegating	to	another	ValueConverter.

			150	 type	Null	struct	{

			151	 	 Converter	ValueConverter

			152	 }

			153	

			154	 func	(n	Null)	ConvertValue(v	interface{})	(Value,	error)	{

			155	 	 if	v	==	nil	{

			156	 	 	 return	nil,	nil

			157	 	 }

			158	 	 return	n.Converter.ConvertValue(v)

			159	 }

			160	

			161	 //	NotNull	is	a	type	that	implements	ValueConverter	by	disallowing	nil

			162	 //	values	but	otherwise	delegating	to	another	ValueConverter.

			163	 type	NotNull	struct	{

			164	 	 Converter	ValueConverter

			165	 }

			166	

			167	 func	(n	NotNull)	ConvertValue(v	interface{})	(Value,	error)	{

			168	 	 if	v	==	nil	{

			169	 	 	 return	nil,	fmt.Errorf("nil	value	not	allowed")

			170	 	 }

			171	 	 return	n.Converter.ConvertValue(v)

			172	 }

			173	

			174	 //	IsValue	reports	whether	v	is	a	valid	Value	parameter	type.

			175	 //	Unlike	IsScanValue,	IsValue	permits	the	string	type.

			176	 func	IsValue(v	interface{})	bool	{

			177	 	 if	IsScanValue(v)	{

			178	 	 	 return	true

			179	 	 }

			180	 	 if	_,	ok	:=	v.(string);	ok	{

			181	 	 	 return	true

			182	 	 }

			183	 	 return	false

			184	 }

			185	

			186	 //	IsScanValue	reports	whether	v	is	a	valid	Value	scan	type.

			187	 //	Unlike	IsValue,	IsScanValue	does	not	permit	the	string	type.

			188	 func	IsScanValue(v	interface{})	bool	{

			189	 	 if	v	==	nil	{

			190	 	 	 return	true

			191	 	 }

			192	 	 switch	v.(type)	{

			193	 	 case	int64,	float64,	[]byte,	bool,	time.Time:

			194	 	 	 return	true

			195	 	 }

			196	 	 return	false

			197	 }

			198	

			199	 //	DefaultParameterConverter	is	the	default	implementation	of

			200	 //	ValueConverter	that's	used	when	a	Stmt	doesn't	implement

			201	 //	ColumnConverter.

			202	 //

			203	 //	DefaultParameterConverter	returns	the	given	value	directly	if

			204	 //	IsValue(value).		Otherwise	integer	type	are	converted	to

			205	 //	int64,	floats	to	float64,	and	strings	to	[]byte.		Other	types	are

			206	 //	an	error.

			207	 var	DefaultParameterConverter	defaultConverter

			208	

			209	 type	defaultConverter	struct{}

			210	

			211	 var	_	ValueConverter	=	defaultConverter{}

			212	

			213	 func	(defaultConverter)	ConvertValue(v	interface{})	(Value,	error)	{

			214	 	 if	IsValue(v)	{

			215	 	 	 return	v,	nil

			216	 	 }

			217	

			218	 	 if	svi,	ok	:=	v.(Valuer);	ok	{

			219	 	 	 sv,	err	:=	svi.Value()

			220	 	 	 if	err	!=	nil	{

			221	 	 	 	 return	nil,	err

			222	 	 	 }

			223	 	 	 if	!IsValue(sv)	{

			224	 	 	 	 return	nil,	fmt.Errorf("non-Value	type	%T	returned	from	Value",	sv)

			225	 	 	 }

			226	 	 	 return	sv,	nil

			227	 	 }

			228	

			229	 	 rv	:=	reflect.ValueOf(v)

			230	 	 switch	rv.Kind()	{

			231	 	 case	reflect.Ptr:

			232	 	 	 //	indirect	pointers

			233	 	 	 if	rv.IsNil()	{

			234	 	 	 	 return	nil,	nil

			235	 	 	 }	else	{

			236	 	 	 	 return	defaultConverter{}.ConvertValue(rv.Elem().Interface())

			237	 	 	 }

			238	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			239	 	 	 return	rv.Int(),	nil

			240	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32:

			241	 	 	 return	int64(rv.Uint()),	nil

			242	 	 case	reflect.Uint64:

			243	 	 	 u64	:=	rv.Uint()

			244	 	 	 if	u64	>=	1<<63	{

			245	 	 	 	 return	nil,	fmt.Errorf("uint64	values	with	high	bit	set	are	not	supported")

			246	 	 	 }

			247	 	 	 return	int64(u64),	nil

			248	 	 case	reflect.Float32,	reflect.Float64:

			249	 	 	 return	rv.Float(),	nil

			250	 	 }

			251	 	 return	nil,	fmt.Errorf("unsupported	type	%T,	a	%s",	v,	rv.Kind())

			252	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/debug/dwarf/buf.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Buffered	reading	and	decoding	of	DWARF	data	streams.

					6	

					7	 package	dwarf

					8	

					9	 import	(

				10	 	 "encoding/binary"

				11	 	 "strconv"

				12)

				13	

				14	 //	Data	buffer	being	decoded.

				15	 type	buf	struct	{

				16	 	 dwarf				*Data

				17	 	 order				binary.ByteOrder

				18	 	 name					string

				19	 	 off						Offset

				20	 	 data					[]byte

				21	 	 addrsize	int

				22	 	 err						error

				23	 }

				24	

				25	 func	makeBuf(d	*Data,	name	string,	off	Offset,	data	[]byte,	addrsize	int)	buf	{

				26	 	 return	buf{d,	d.order,	name,	off,	data,	addrsize,	nil}

				27	 }

				28	

				29	 func	(b	*buf)	uint8()	uint8	{

				30	 	 if	len(b.data)	<	1	{

				31	 	 	 b.error("underflow")

				32	 	 	 return	0

				33	 	 }

				34	 	 val	:=	b.data[0]

				35	 	 b.data	=	b.data[1:]

				36	 	 b.off++

				37	 	 return	val

				38	 }

				39	

				40	 func	(b	*buf)	bytes(n	int)	[]byte	{

				41	 	 if	len(b.data)	<	n	{

				42	 	 	 b.error("underflow")

				43	 	 	 return	nil

				44	 	 }

				45	 	 data	:=	b.data[0:n]

				46	 	 b.data	=	b.data[n:]

				47	 	 b.off	+=	Offset(n)

				48	 	 return	data

				49	 }

				50	

				51	 func	(b	*buf)	skip(n	int)	{	b.bytes(n)	}

				52	

				53	 func	(b	*buf)	string()	string	{

				54	 	 for	i	:=	0;	i	<	len(b.data);	i++	{

				55	 	 	 if	b.data[i]	==	0	{

				56	 	 	 	 s	:=	string(b.data[0:i])

				57	 	 	 	 b.data	=	b.data[i+1:]

				58	 	 	 	 b.off	+=	Offset(i	+	1)

				59	 	 	 	 return	s

				60	 	 	 }

				61	 	 }

				62	 	 b.error("underflow")

				63	 	 return	""

				64	 }

				65	

				66	 func	(b	*buf)	uint16()	uint16	{

				67	 	 a	:=	b.bytes(2)

				68	 	 if	a	==	nil	{

				69	 	 	 return	0

				70	 	 }

				71	 	 return	b.order.Uint16(a)

				72	 }

				73	

				74	 func	(b	*buf)	uint32()	uint32	{

				75	 	 a	:=	b.bytes(4)

				76	 	 if	a	==	nil	{

				77	 	 	 return	0

				78	 	 }

				79	 	 return	b.order.Uint32(a)

				80	 }

				81	

				82	 func	(b	*buf)	uint64()	uint64	{

				83	 	 a	:=	b.bytes(8)

				84	 	 if	a	==	nil	{

				85	 	 	 return	0

				86	 	 }

				87	 	 return	b.order.Uint64(a)

				88	 }

				89	

				90	 //	Read	a	varint,	which	is	7	bits	per	byte,	little	endian.

				91	 //	the	0x80	bit	means	read	another	byte.

				92	 func	(b	*buf)	varint()	(c	uint64,	bits	uint)	{

				93	 	 for	i	:=	0;	i	<	len(b.data);	i++	{

				94	 	 	 byte	:=	b.data[i]

				95	 	 	 c	|=	uint64(byte&0x7F)	<<	bits

				96	 	 	 bits	+=	7

				97	 	 	 if	byte&0x80	==	0	{

				98	 	 	 	 b.off	+=	Offset(i	+	1)

				99	 	 	 	 b.data	=	b.data[i+1:]

			100	 	 	 	 return	c,	bits

			101	 	 	 }

			102	 	 }

			103	 	 return	0,	0

			104	 }

			105	

			106	 //	Unsigned	int	is	just	a	varint.

			107	 func	(b	*buf)	uint()	uint64	{

			108	 	 x,	_	:=	b.varint()

			109	 	 return	x

			110	 }

			111	

			112	 //	Signed	int	is	a	sign-extended	varint.

			113	 func	(b	*buf)	int()	int64	{

			114	 	 ux,	bits	:=	b.varint()

			115	 	 x	:=	int64(ux)

			116	 	 if	x&(1<<(bits-1))	!=	0	{

			117	 	 	 x	|=	-1	<<	bits

			118	 	 }

			119	 	 return	x

			120	 }

			121	

			122	 //	Address-sized	uint.

			123	 func	(b	*buf)	addr()	uint64	{

			124	 	 switch	b.addrsize	{

			125	 	 case	1:

			126	 	 	 return	uint64(b.uint8())

			127	 	 case	2:

			128	 	 	 return	uint64(b.uint16())

			129	 	 case	4:

			130	 	 	 return	uint64(b.uint32())

			131	 	 case	8:

			132	 	 	 return	uint64(b.uint64())

			133	 	 }

			134	 	 b.error("unknown	address	size")

			135	 	 return	0

			136	 }

			137	

			138	 func	(b	*buf)	error(s	string)	{

			139	 	 if	b.err	==	nil	{

			140	 	 	 b.data	=	nil

			141	 	 	 b.err	=	DecodeError{b.name,	b.off,	s}

			142	 	 }

			143	 }

			144	

			145	 type	DecodeError	struct	{

			146	 	 Name			string

			147	 	 Offset	Offset

			148	 	 Err				string

			149	 }

			150	

			151	 func	(e	DecodeError)	Error()	string	{

			152	 	 return	"decoding	dwarf	section	"	+	e.Name	+	"	at	offset	0x"	+	strconv.FormatInt(int64(e.Offset),	16)	+	":	"	+	e.Err

			153	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/debug/dwarf/const.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Constants

					6	

					7	 package	dwarf

					8	

					9	 import	"strconv"

				10	

				11	 //	An	Attr	identifies	the	attribute	type	in	a	DWARF	Entry's	Field.

				12	 type	Attr	uint32

				13	

				14	 const	(

				15	 	 AttrSibling								Attr	=	0x01

				16	 	 AttrLocation							Attr	=	0x02

				17	 	 AttrName											Attr	=	0x03

				18	 	 AttrOrdering							Attr	=	0x09

				19	 	 AttrByteSize							Attr	=	0x0B

				20	 	 AttrBitOffset						Attr	=	0x0C

				21	 	 AttrBitSize								Attr	=	0x0D

				22	 	 AttrStmtList							Attr	=	0x10

				23	 	 AttrLowpc										Attr	=	0x11

				24	 	 AttrHighpc									Attr	=	0x12

				25	 	 AttrLanguage							Attr	=	0x13

				26	 	 AttrDiscr										Attr	=	0x15

				27	 	 AttrDiscrValue					Attr	=	0x16

				28	 	 AttrVisibility					Attr	=	0x17

				29	 	 AttrImport									Attr	=	0x18

				30	 	 AttrStringLength			Attr	=	0x19

				31	 	 AttrCommonRef						Attr	=	0x1A

				32	 	 AttrCompDir								Attr	=	0x1B

				33	 	 AttrConstValue					Attr	=	0x1C

				34	 	 AttrContainingType	Attr	=	0x1D

				35	 	 AttrDefaultValue			Attr	=	0x1E

				36	 	 AttrInline									Attr	=	0x20

				37	 	 AttrIsOptional					Attr	=	0x21

				38	 	 AttrLowerBound					Attr	=	0x22

				39	 	 AttrProducer							Attr	=	0x25

				40	 	 AttrPrototyped					Attr	=	0x27

				41	 	 AttrReturnAddr					Attr	=	0x2A

				42	 	 AttrStartScope					Attr	=	0x2C

				43	 	 AttrStrideSize					Attr	=	0x2E

				44	 	 AttrUpperBound					Attr	=	0x2F

				45	 	 AttrAbstractOrigin	Attr	=	0x31

				46	 	 AttrAccessibility		Attr	=	0x32

				47	 	 AttrAddrClass						Attr	=	0x33

				48	 	 AttrArtificial					Attr	=	0x34

				49	 	 AttrBaseTypes						Attr	=	0x35

				50	 	 AttrCalling								Attr	=	0x36

				51	 	 AttrCount										Attr	=	0x37

				52	 	 AttrDataMemberLoc		Attr	=	0x38

				53	 	 AttrDeclColumn					Attr	=	0x39

				54	 	 AttrDeclFile							Attr	=	0x3A

				55	 	 AttrDeclLine							Attr	=	0x3B

				56	 	 AttrDeclaration				Attr	=	0x3C

				57	 	 AttrDiscrList						Attr	=	0x3D

				58	 	 AttrEncoding							Attr	=	0x3E

				59	 	 AttrExternal							Attr	=	0x3F

				60	 	 AttrFrameBase						Attr	=	0x40

				61	 	 AttrFriend									Attr	=	0x41

				62	 	 AttrIdentifierCase	Attr	=	0x42

				63	 	 AttrMacroInfo						Attr	=	0x43

				64	 	 AttrNamelistItem			Attr	=	0x44

				65	 	 AttrPriority							Attr	=	0x45

				66	 	 AttrSegment								Attr	=	0x46

				67	 	 AttrSpecification		Attr	=	0x47

				68	 	 AttrStaticLink					Attr	=	0x48

				69	 	 AttrType											Attr	=	0x49

				70	 	 AttrUseLocation				Attr	=	0x4A

				71	 	 AttrVarParam							Attr	=	0x4B

				72	 	 AttrVirtuality					Attr	=	0x4C

				73	 	 AttrVtableElemLoc		Attr	=	0x4D

				74	 	 AttrAllocated						Attr	=	0x4E

				75	 	 AttrAssociated					Attr	=	0x4F

				76	 	 AttrDataLocation			Attr	=	0x50

				77	 	 AttrStride									Attr	=	0x51

				78	 	 AttrEntrypc								Attr	=	0x52

				79	 	 AttrUseUTF8								Attr	=	0x53

				80	 	 AttrExtension						Attr	=	0x54

				81	 	 AttrRanges									Attr	=	0x55

				82	 	 AttrTrampoline					Attr	=	0x56

				83	 	 AttrCallColumn					Attr	=	0x57

				84	 	 AttrCallFile							Attr	=	0x58

				85	 	 AttrCallLine							Attr	=	0x59

				86	 	 AttrDescription				Attr	=	0x5A

				87)

				88	

				89	 var	attrNames	=	[...]string{

				90	 	 AttrSibling:								"Sibling",

				91	 	 AttrLocation:							"Location",

				92	 	 AttrName:											"Name",

				93	 	 AttrOrdering:							"Ordering",

				94	 	 AttrByteSize:							"ByteSize",

				95	 	 AttrBitOffset:						"BitOffset",

				96	 	 AttrBitSize:								"BitSize",

				97	 	 AttrStmtList:							"StmtList",

				98	 	 AttrLowpc:										"Lowpc",

				99	 	 AttrHighpc:									"Highpc",

			100	 	 AttrLanguage:							"Language",

			101	 	 AttrDiscr:										"Discr",

			102	 	 AttrDiscrValue:					"DiscrValue",

			103	 	 AttrVisibility:					"Visibility",

			104	 	 AttrImport:									"Import",

			105	 	 AttrStringLength:			"StringLength",

			106	 	 AttrCommonRef:						"CommonRef",

			107	 	 AttrCompDir:								"CompDir",

			108	 	 AttrConstValue:					"ConstValue",

			109	 	 AttrContainingType:	"ContainingType",

			110	 	 AttrDefaultValue:			"DefaultValue",

			111	 	 AttrInline:									"Inline",

			112	 	 AttrIsOptional:					"IsOptional",

			113	 	 AttrLowerBound:					"LowerBound",

			114	 	 AttrProducer:							"Producer",

			115	 	 AttrPrototyped:					"Prototyped",

			116	 	 AttrReturnAddr:					"ReturnAddr",

			117	 	 AttrStartScope:					"StartScope",

			118	 	 AttrStrideSize:					"StrideSize",

			119	 	 AttrUpperBound:					"UpperBound",

			120	 	 AttrAbstractOrigin:	"AbstractOrigin",

			121	 	 AttrAccessibility:		"Accessibility",

			122	 	 AttrAddrClass:						"AddrClass",

			123	 	 AttrArtificial:					"Artificial",

			124	 	 AttrBaseTypes:						"BaseTypes",

			125	 	 AttrCalling:								"Calling",

			126	 	 AttrCount:										"Count",

			127	 	 AttrDataMemberLoc:		"DataMemberLoc",

			128	 	 AttrDeclColumn:					"DeclColumn",

			129	 	 AttrDeclFile:							"DeclFile",

			130	 	 AttrDeclLine:							"DeclLine",

			131	 	 AttrDeclaration:				"Declaration",

			132	 	 AttrDiscrList:						"DiscrList",

			133	 	 AttrEncoding:							"Encoding",

			134	 	 AttrExternal:							"External",

			135	 	 AttrFrameBase:						"FrameBase",

			136	 	 AttrFriend:									"Friend",

			137	 	 AttrIdentifierCase:	"IdentifierCase",

			138	 	 AttrMacroInfo:						"MacroInfo",

			139	 	 AttrNamelistItem:			"NamelistItem",

			140	 	 AttrPriority:							"Priority",

			141	 	 AttrSegment:								"Segment",

			142	 	 AttrSpecification:		"Specification",

			143	 	 AttrStaticLink:					"StaticLink",

			144	 	 AttrType:											"Type",

			145	 	 AttrUseLocation:				"UseLocation",

			146	 	 AttrVarParam:							"VarParam",

			147	 	 AttrVirtuality:					"Virtuality",

			148	 	 AttrVtableElemLoc:		"VtableElemLoc",

			149	 	 AttrAllocated:						"Allocated",

			150	 	 AttrAssociated:					"Associated",

			151	 	 AttrDataLocation:			"DataLocation",

			152	 	 AttrStride:									"Stride",

			153	 	 AttrEntrypc:								"Entrypc",

			154	 	 AttrUseUTF8:								"UseUTF8",

			155	 	 AttrExtension:						"Extension",

			156	 	 AttrRanges:									"Ranges",

			157	 	 AttrTrampoline:					"Trampoline",

			158	 	 AttrCallColumn:					"CallColumn",

			159	 	 AttrCallFile:							"CallFile",

			160	 	 AttrCallLine:							"CallLine",

			161	 	 AttrDescription:				"Description",

			162	 }

			163	

			164	 func	(a	Attr)	String()	string	{

			165	 	 if	int(a)	<	len(attrNames)	{

			166	 	 	 s	:=	attrNames[a]

			167	 	 	 if	s	!=	""	{

			168	 	 	 	 return	s

			169	 	 	 }

			170	 	 }

			171	 	 return	strconv.Itoa(int(a))

			172	 }

			173	

			174	 func	(a	Attr)	GoString()	string	{

			175	 	 if	int(a)	<	len(attrNames)	{

			176	 	 	 s	:=	attrNames[a]

			177	 	 	 if	s	!=	""	{

			178	 	 	 	 return	"dwarf.Attr"	+	s

			179	 	 	 }

			180	 	 }

			181	 	 return	"dwarf.Attr("	+	strconv.FormatInt(int64(a),	10)	+	")"

			182	 }

			183	

			184	 //	A	format	is	a	DWARF	data	encoding	format.

			185	 type	format	uint32

			186	

			187	 const	(

			188	 	 //	value	formats

			189	 	 formAddr								format	=	0x01

			190	 	 formDwarfBlock2	format	=	0x03

			191	 	 formDwarfBlock4	format	=	0x04

			192	 	 formData2							format	=	0x05

			193	 	 formData4							format	=	0x06

			194	 	 formData8							format	=	0x07

			195	 	 formString						format	=	0x08

			196	 	 formDwarfBlock		format	=	0x09

			197	 	 formDwarfBlock1	format	=	0x0A

			198	 	 formData1							format	=	0x0B

			199	 	 formFlag								format	=	0x0C

			200	 	 formSdata							format	=	0x0D

			201	 	 formStrp								format	=	0x0E

			202	 	 formUdata							format	=	0x0F

			203	 	 formRefAddr					format	=	0x10

			204	 	 formRef1								format	=	0x11

			205	 	 formRef2								format	=	0x12

			206	 	 formRef4								format	=	0x13

			207	 	 formRef8								format	=	0x14

			208	 	 formRefUdata				format	=	0x15

			209	 	 formIndirect				format	=	0x16

			210)

			211	

			212	 //	A	Tag	is	the	classification	(the	type)	of	an	Entry.

			213	 type	Tag	uint32

			214	

			215	 const	(

			216	 	 TagArrayType														Tag	=	0x01

			217	 	 TagClassType														Tag	=	0x02

			218	 	 TagEntryPoint													Tag	=	0x03

			219	 	 TagEnumerationType								Tag	=	0x04

			220	 	 TagFormalParameter								Tag	=	0x05

			221	 	 TagImportedDeclaration				Tag	=	0x08

			222	 	 TagLabel																		Tag	=	0x0A

			223	 	 TagLexDwarfBlock										Tag	=	0x0B

			224	 	 TagMember																	Tag	=	0x0D

			225	 	 TagPointerType												Tag	=	0x0F

			226	 	 TagReferenceType										Tag	=	0x10

			227	 	 TagCompileUnit												Tag	=	0x11

			228	 	 TagStringType													Tag	=	0x12

			229	 	 TagStructType													Tag	=	0x13

			230	 	 TagSubroutineType									Tag	=	0x15

			231	 	 TagTypedef																Tag	=	0x16

			232	 	 TagUnionType														Tag	=	0x17

			233	 	 TagUnspecifiedParameters		Tag	=	0x18

			234	 	 TagVariant																Tag	=	0x19

			235	 	 TagCommonDwarfBlock							Tag	=	0x1A

			236	 	 TagCommonInclusion								Tag	=	0x1B

			237	 	 TagInheritance												Tag	=	0x1C

			238	 	 TagInlinedSubroutine						Tag	=	0x1D

			239	 	 TagModule																	Tag	=	0x1E

			240	 	 TagPtrToMemberType								Tag	=	0x1F

			241	 	 TagSetType																Tag	=	0x20

			242	 	 TagSubrangeType											Tag	=	0x21

			243	 	 TagWithStmt															Tag	=	0x22

			244	 	 TagAccessDeclaration						Tag	=	0x23

			245	 	 TagBaseType															Tag	=	0x24

			246	 	 TagCatchDwarfBlock								Tag	=	0x25

			247	 	 TagConstType														Tag	=	0x26

			248	 	 TagConstant															Tag	=	0x27

			249	 	 TagEnumerator													Tag	=	0x28

			250	 	 TagFileType															Tag	=	0x29

			251	 	 TagFriend																	Tag	=	0x2A

			252	 	 TagNamelist															Tag	=	0x2B

			253	 	 TagNamelistItem											Tag	=	0x2C

			254	 	 TagPackedType													Tag	=	0x2D

			255	 	 TagSubprogram													Tag	=	0x2E

			256	 	 TagTemplateTypeParameter		Tag	=	0x2F

			257	 	 TagTemplateValueParameter	Tag	=	0x30

			258	 	 TagThrownType													Tag	=	0x31

			259	 	 TagTryDwarfBlock										Tag	=	0x32

			260	 	 TagVariantPart												Tag	=	0x33

			261	 	 TagVariable															Tag	=	0x34

			262	 	 TagVolatileType											Tag	=	0x35

			263	 	 TagDwarfProcedure									Tag	=	0x36

			264	 	 TagRestrictType											Tag	=	0x37

			265	 	 TagInterfaceType										Tag	=	0x38

			266	 	 TagNamespace														Tag	=	0x39

			267	 	 TagImportedModule									Tag	=	0x3A

			268	 	 TagUnspecifiedType								Tag	=	0x3B

			269	 	 TagPartialUnit												Tag	=	0x3C

			270	 	 TagImportedUnit											Tag	=	0x3D

			271	 	 TagMutableType												Tag	=	0x3E

			272)

			273	

			274	 var	tagNames	=	[...]string{

			275	 	 TagArrayType:														"ArrayType",

			276	 	 TagClassType:														"ClassType",

			277	 	 TagEntryPoint:													"EntryPoint",

			278	 	 TagEnumerationType:								"EnumerationType",

			279	 	 TagFormalParameter:								"FormalParameter",

			280	 	 TagImportedDeclaration:				"ImportedDeclaration",

			281	 	 TagLabel:																		"Label",

			282	 	 TagLexDwarfBlock:										"LexDwarfBlock",

			283	 	 TagMember:																	"Member",

			284	 	 TagPointerType:												"PointerType",

			285	 	 TagReferenceType:										"ReferenceType",

			286	 	 TagCompileUnit:												"CompileUnit",

			287	 	 TagStringType:													"StringType",

			288	 	 TagStructType:													"StructType",

			289	 	 TagSubroutineType:									"SubroutineType",

			290	 	 TagTypedef:																"Typedef",

			291	 	 TagUnionType:														"UnionType",

			292	 	 TagUnspecifiedParameters:		"UnspecifiedParameters",

			293	 	 TagVariant:																"Variant",

			294	 	 TagCommonDwarfBlock:							"CommonDwarfBlock",

			295	 	 TagCommonInclusion:								"CommonInclusion",

			296	 	 TagInheritance:												"Inheritance",

			297	 	 TagInlinedSubroutine:						"InlinedSubroutine",

			298	 	 TagModule:																	"Module",

			299	 	 TagPtrToMemberType:								"PtrToMemberType",

			300	 	 TagSetType:																"SetType",

			301	 	 TagSubrangeType:											"SubrangeType",

			302	 	 TagWithStmt:															"WithStmt",

			303	 	 TagAccessDeclaration:						"AccessDeclaration",

			304	 	 TagBaseType:															"BaseType",

			305	 	 TagCatchDwarfBlock:								"CatchDwarfBlock",

			306	 	 TagConstType:														"ConstType",

			307	 	 TagConstant:															"Constant",

			308	 	 TagEnumerator:													"Enumerator",

			309	 	 TagFileType:															"FileType",

			310	 	 TagFriend:																	"Friend",

			311	 	 TagNamelist:															"Namelist",

			312	 	 TagNamelistItem:											"NamelistItem",

			313	 	 TagPackedType:													"PackedType",

			314	 	 TagSubprogram:													"Subprogram",

			315	 	 TagTemplateTypeParameter:		"TemplateTypeParameter",

			316	 	 TagTemplateValueParameter:	"TemplateValueParameter",

			317	 	 TagThrownType:													"ThrownType",

			318	 	 TagTryDwarfBlock:										"TryDwarfBlock",

			319	 	 TagVariantPart:												"VariantPart",

			320	 	 TagVariable:															"Variable",

			321	 	 TagVolatileType:											"VolatileType",

			322	 	 TagDwarfProcedure:									"DwarfProcedure",

			323	 	 TagRestrictType:											"RestrictType",

			324	 	 TagInterfaceType:										"InterfaceType",

			325	 	 TagNamespace:														"Namespace",

			326	 	 TagImportedModule:									"ImportedModule",

			327	 	 TagUnspecifiedType:								"UnspecifiedType",

			328	 	 TagPartialUnit:												"PartialUnit",

			329	 	 TagImportedUnit:											"ImportedUnit",

			330	 	 TagMutableType:												"MutableType",

			331	 }

			332	

			333	 func	(t	Tag)	String()	string	{

			334	 	 if	int(t)	<	len(tagNames)	{

			335	 	 	 s	:=	tagNames[t]

			336	 	 	 if	s	!=	""	{

			337	 	 	 	 return	s

			338	 	 	 }

			339	 	 }

			340	 	 return	strconv.Itoa(int(t))

			341	 }

			342	

			343	 func	(t	Tag)	GoString()	string	{

			344	 	 if	int(t)	<	len(tagNames)	{

			345	 	 	 s	:=	tagNames[t]

			346	 	 	 if	s	!=	""	{

			347	 	 	 	 return	"dwarf.Tag"	+	s

			348	 	 	 }

			349	 	 }

			350	 	 return	"dwarf.Tag("	+	strconv.FormatInt(int64(t),	10)	+	")"

			351	 }

			352	

			353	 //	Location	expression	operators.

			354	 //	The	debug	info	encodes	value	locations	like	8(R3)

			355	 //	as	a	sequence	of	these	op	codes.

			356	 //	This	package	does	not	implement	full	expressions;

			357	 //	the	opPlusUconst	operator	is	expected	by	the	type	parser.

			358	 const	(

			359	 	 opAddr							=	0x03	/*	1	op,	const	addr	*/

			360	 	 opDeref						=	0x06

			361	 	 opConst1u				=	0x08	/*	1	op,	1	byte	const	*/

			362	 	 opConst1s				=	0x09	/*	 "	signed	*/

			363	 	 opConst2u				=	0x0A	/*	1	op,	2	byte	const		*/

			364	 	 opConst2s				=	0x0B	/*	 "	signed	*/

			365	 	 opConst4u				=	0x0C	/*	1	op,	4	byte	const	*/

			366	 	 opConst4s				=	0x0D	/*	 "	signed	*/

			367	 	 opConst8u				=	0x0E	/*	1	op,	8	byte	const	*/

			368	 	 opConst8s				=	0x0F	/*	 "	signed	*/

			369	 	 opConstu					=	0x10	/*	1	op,	LEB128	const	*/

			370	 	 opConsts					=	0x11	/*	 "	signed	*/

			371	 	 opDup								=	0x12

			372	 	 opDrop							=	0x13

			373	 	 opOver							=	0x14

			374	 	 opPick							=	0x15	/*	1	op,	1	byte	stack	index	*/

			375	 	 opSwap							=	0x16

			376	 	 opRot								=	0x17

			377	 	 opXderef					=	0x18

			378	 	 opAbs								=	0x19

			379	 	 opAnd								=	0x1A

			380	 	 opDiv								=	0x1B

			381	 	 opMinus						=	0x1C

			382	 	 opMod								=	0x1D

			383	 	 opMul								=	0x1E

			384	 	 opNeg								=	0x1F

			385	 	 opNot								=	0x20

			386	 	 opOr									=	0x21

			387	 	 opPlus							=	0x22

			388	 	 opPlusUconst	=	0x23	/*	1	op,	ULEB128	addend	*/

			389	 	 opShl								=	0x24

			390	 	 opShr								=	0x25

			391	 	 opShra							=	0x26

			392	 	 opXor								=	0x27

			393	 	 opSkip							=	0x2F	/*	1	op,	signed	2-byte	constant	*/

			394	 	 opBra								=	0x28	/*	1	op,	signed	2-byte	constant	*/

			395	 	 opEq									=	0x29

			396	 	 opGe									=	0x2A

			397	 	 opGt									=	0x2B

			398	 	 opLe									=	0x2C

			399	 	 opLt									=	0x2D

			400	 	 opNe									=	0x2E

			401	 	 opLit0							=	0x30

			402	 	 /*	OpLitN	=	OpLit0	+	N	for	N	=	0..31	*/

			403	 	 opReg0	=	0x50

			404	 	 /*	OpRegN	=	OpReg0	+	N	for	N	=	0..31	*/

			405	 	 opBreg0	=	0x70	/*	1	op,	signed	LEB128	constant	*/

			406	 	 /*	OpBregN	=	OpBreg0	+	N	for	N	=	0..31	*/

			407	 	 opRegx							=	0x90	/*	1	op,	ULEB128	register	*/

			408	 	 opFbreg						=	0x91	/*	1	op,	SLEB128	offset	*/

			409	 	 opBregx						=	0x92	/*	2	op,	ULEB128	reg;	SLEB128	off	*/

			410	 	 opPiece						=	0x93	/*	1	op,	ULEB128	size	of	piece	*/

			411	 	 opDerefSize		=	0x94	/*	1-byte	size	of	data	retrieved	*/

			412	 	 opXderefSize	=	0x95	/*	1-byte	size	of	data	retrieved	*/

			413	 	 opNop								=	0x96

			414	 	 /*	next	four	new	in	Dwarf	v3	*/

			415	 	 opPushObjAddr	=	0x97

			416	 	 opCall2							=	0x98	/*	2-byte	offset	of	DIE	*/

			417	 	 opCall4							=	0x99	/*	4-byte	offset	of	DIE	*/

			418	 	 opCallRef					=	0x9A	/*	4-	or	8-	byte	offset	of	DIE	*/

			419	 	 /*	0xE0-0xFF	reserved	for	user-specific	*/

			420)

			421	

			422	 //	Basic	type	encodings	--	the	value	for	AttrEncoding	in	a	TagBaseType	Entry.

			423	 const	(

			424	 	 encAddress								=	0x01

			425	 	 encBoolean								=	0x02

			426	 	 encComplexFloat			=	0x03

			427	 	 encFloat										=	0x04

			428	 	 encSigned									=	0x05

			429	 	 encSignedChar					=	0x06

			430	 	 encUnsigned							=	0x07

			431	 	 encUnsignedChar			=	0x08

			432	 	 encImaginaryFloat	=	0x09

			433)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative

http://code.google.com/policies.html#restrictions

Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/debug/dwarf/entry.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	DWARF	debug	information	entry	parser.

					6	 //	An	entry	is	a	sequence	of	data	items	of	a	given	format.

					7	 //	The	first	word	in	the	entry	is	an	index	into	what	DWARF

					8	 //	calls	the	``abbreviation	table.''		An	abbreviation	is	really

					9	 //	just	a	type	descriptor:	it's	an	array	of	attribute	tag/value	format	pairs.

				10	

				11	 package	dwarf

				12	

				13	 import	"errors"

				14	

				15	 //	a	single	entry's	description:	a	sequence	of	attributes

				16	 type	abbrev	struct	{

				17	 	 tag						Tag

				18	 	 children	bool

				19	 	 field				[]afield

				20	 }

				21	

				22	 type	afield	struct	{

				23	 	 attr	Attr

				24	 	 fmt		format

				25	 }

				26	

				27	 //	a	map	from	entry	format	ids	to	their	descriptions

				28	 type	abbrevTable	map[uint32]abbrev

				29	

				30	 //	ParseAbbrev	returns	the	abbreviation	table	that	starts	at	byte	off

				31	 //	in	the	.debug_abbrev	section.

				32	 func	(d	*Data)	parseAbbrev(off	uint32)	(abbrevTable,	error)	{

				33	 	 if	m,	ok	:=	d.abbrevCache[off];	ok	{

				34	 	 	 return	m,	nil

				35	 	 }

				36	

				37	 	 data	:=	d.abbrev

				38	 	 if	off	>	uint32(len(data))	{

				39	 	 	 data	=	nil

				40	 	 }	else	{

				41	 	 	 data	=	data[off:]

				42	 	 }

				43	 	 b	:=	makeBuf(d,	"abbrev",	0,	data,	0)

				44	

				45	 	 //	Error	handling	is	simplified	by	the	buf	getters

				46	 	 //	returning	an	endless	stream	of	0s	after	an	error.

				47	 	 m	:=	make(abbrevTable)

				48	 	 for	{

				49	 	 	 //	Table	ends	with	id	==	0.

				50	 	 	 id	:=	uint32(b.uint())

				51	 	 	 if	id	==	0	{

				52	 	 	 	 break

				53	 	 	 }

				54	

				55	 	 	 //	Walk	over	attributes,	counting.

				56	 	 	 n	:=	0

				57	 	 	 b1	:=	b	//	Read	from	copy	of	b.

				58	 	 	 b1.uint()

				59	 	 	 b1.uint8()

				60	 	 	 for	{

				61	 	 	 	 tag	:=	b1.uint()

				62	 	 	 	 fmt	:=	b1.uint()

				63	 	 	 	 if	tag	==	0	&&	fmt	==	0	{

				64	 	 	 	 	 break

				65	 	 	 	 }

				66	 	 	 	 n++

				67	 	 	 }

				68	 	 	 if	b1.err	!=	nil	{

				69	 	 	 	 return	nil,	b1.err

				70	 	 	 }

				71	

				72	 	 	 //	Walk	over	attributes	again,	this	time	writing	them	down.

				73	 	 	 var	a	abbrev

				74	 	 	 a.tag	=	Tag(b.uint())

				75	 	 	 a.children	=	b.uint8()	!=	0

				76	 	 	 a.field	=	make([]afield,	n)

				77	 	 	 for	i	:=	range	a.field	{

				78	 	 	 	 a.field[i].attr	=	Attr(b.uint())

				79	 	 	 	 a.field[i].fmt	=	format(b.uint())

				80	 	 	 }

				81	 	 	 b.uint()

				82	 	 	 b.uint()

				83	

				84	 	 	 m[id]	=	a

				85	 	 }

				86	 	 if	b.err	!=	nil	{

				87	 	 	 return	nil,	b.err

				88	 	 }

				89	 	 d.abbrevCache[off]	=	m

				90	 	 return	m,	nil

				91	 }

				92	

				93	 //	An	entry	is	a	sequence	of	attribute/value	pairs.

				94	 type	Entry	struct	{

				95	 	 Offset			Offset	//	offset	of	Entry	in	DWARF	info

				96	 	 Tag						Tag				//	tag	(kind	of	Entry)

				97	 	 Children	bool			//	whether	Entry	is	followed	by	children

				98	 	 Field				[]Field

				99	 }

			100	

			101	 //	A	Field	is	a	single	attribute/value	pair	in	an	Entry.

			102	 type	Field	struct	{

			103	 	 Attr	Attr

			104	 	 Val		interface{}

			105	 }

			106	

			107	 //	Val	returns	the	value	associated	with	attribute	Attr	in	Entry,

			108	 //	or	nil	if	there	is	no	such	attribute.

			109	 //

			110	 //	A	common	idiom	is	to	merge	the	check	for	nil	return	with

			111	 //	the	check	that	the	value	has	the	expected	dynamic	type,	as	in:

			112	 //	 v,	ok	:=	e.Val(AttrSibling).(int64);

			113	 //

			114	 func	(e	*Entry)	Val(a	Attr)	interface{}	{

			115	 	 for	_,	f	:=	range	e.Field	{

			116	 	 	 if	f.Attr	==	a	{

			117	 	 	 	 return	f.Val

			118	 	 	 }

			119	 	 }

			120	 	 return	nil

			121	 }

			122	

			123	 //	An	Offset	represents	the	location	of	an	Entry	within	the	DWARF	info.

			124	 //	(See	Reader.Seek.)

			125	 type	Offset	uint32

			126	

			127	 //	Entry	reads	a	single	entry	from	buf,	decoding

			128	 //	according	to	the	given	abbreviation	table.

			129	 func	(b	*buf)	entry(atab	abbrevTable,	ubase	Offset)	*Entry	{

			130	 	 off	:=	b.off

			131	 	 id	:=	uint32(b.uint())

			132	 	 if	id	==	0	{

			133	 	 	 return	&Entry{}

			134	 	 }

			135	 	 a,	ok	:=	atab[id]

			136	 	 if	!ok	{

			137	 	 	 b.error("unknown	abbreviation	table	index")

			138	 	 	 return	nil

			139	 	 }

			140	 	 e	:=	&Entry{

			141	 	 	 Offset:			off,

			142	 	 	 Tag:						a.tag,

			143	 	 	 Children:	a.children,

			144	 	 	 Field:				make([]Field,	len(a.field)),

			145	 	 }

			146	 	 for	i	:=	range	e.Field	{

			147	 	 	 e.Field[i].Attr	=	a.field[i].attr

			148	 	 	 fmt	:=	a.field[i].fmt

			149	 	 	 if	fmt	==	formIndirect	{

			150	 	 	 	 fmt	=	format(b.uint())

			151	 	 	 }

			152	 	 	 var	val	interface{}

			153	 	 	 switch	fmt	{

			154	 	 	 default:

			155	 	 	 	 b.error("unknown	entry	attr	format")

			156	

			157	 	 	 //	address

			158	 	 	 case	formAddr:

			159	 	 	 	 val	=	b.addr()

			160	

			161	 	 	 //	block

			162	 	 	 case	formDwarfBlock1:

			163	 	 	 	 val	=	b.bytes(int(b.uint8()))

			164	 	 	 case	formDwarfBlock2:

			165	 	 	 	 val	=	b.bytes(int(b.uint16()))

			166	 	 	 case	formDwarfBlock4:

			167	 	 	 	 val	=	b.bytes(int(b.uint32()))

			168	 	 	 case	formDwarfBlock:

			169	 	 	 	 val	=	b.bytes(int(b.uint()))

			170	

			171	 	 	 //	constant

			172	 	 	 case	formData1:

			173	 	 	 	 val	=	int64(b.uint8())

			174	 	 	 case	formData2:

			175	 	 	 	 val	=	int64(b.uint16())

			176	 	 	 case	formData4:

			177	 	 	 	 val	=	int64(b.uint32())

			178	 	 	 case	formData8:

			179	 	 	 	 val	=	int64(b.uint64())

			180	 	 	 case	formSdata:

			181	 	 	 	 val	=	int64(b.int())

			182	 	 	 case	formUdata:

			183	 	 	 	 val	=	int64(b.uint())

			184	

			185	 	 	 //	flag

			186	 	 	 case	formFlag:

			187	 	 	 	 val	=	b.uint8()	==	1

			188	

			189	 	 	 //	reference	to	other	entry

			190	 	 	 case	formRefAddr:

			191	 	 	 	 val	=	Offset(b.addr())

			192	 	 	 case	formRef1:

			193	 	 	 	 val	=	Offset(b.uint8())	+	ubase

			194	 	 	 case	formRef2:

			195	 	 	 	 val	=	Offset(b.uint16())	+	ubase

			196	 	 	 case	formRef4:

			197	 	 	 	 val	=	Offset(b.uint32())	+	ubase

			198	 	 	 case	formRef8:

			199	 	 	 	 val	=	Offset(b.uint64())	+	ubase

			200	 	 	 case	formRefUdata:

			201	 	 	 	 val	=	Offset(b.uint())	+	ubase

			202	

			203	 	 	 //	string

			204	 	 	 case	formString:

			205	 	 	 	 val	=	b.string()

			206	 	 	 case	formStrp:

			207	 	 	 	 off	:=	b.uint32()	//	offset	into	.debug_str

			208	 	 	 	 if	b.err	!=	nil	{

			209	 	 	 	 	 return	nil

			210	 	 	 	 }

			211	 	 	 	 b1	:=	makeBuf(b.dwarf,	"str",	0,	b.dwarf.str,	0)

			212	 	 	 	 b1.skip(int(off))

			213	 	 	 	 val	=	b1.string()

			214	 	 	 	 if	b1.err	!=	nil	{

			215	 	 	 	 	 b.err	=	b1.err

			216	 	 	 	 	 return	nil

			217	 	 	 	 }

			218	 	 	 }

			219	 	 	 e.Field[i].Val	=	val

			220	 	 }

			221	 	 if	b.err	!=	nil	{

			222	 	 	 return	nil

			223	 	 }

			224	 	 return	e

			225	 }

			226	

			227	 //	A	Reader	allows	reading	Entry	structures	from	a	DWARF	``info''	section.

			228	 //	The	Entry	structures	are	arranged	in	a	tree.		The	Reader's	Next	function

			229	 //	return	successive	entries	from	a	pre-order	traversal	of	the	tree.

			230	 //	If	an	entry	has	children,	its	Children	field	will	be	true,	and	the	children

			231	 //	follow,	terminated	by	an	Entry	with	Tag	0.

			232	 type	Reader	struct	{

			233	 	 b												buf

			234	 	 d												*Data

			235	 	 err										error

			236	 	 unit									int

			237	 	 lastChildren	bool			//	.Children	of	last	entry	returned	by	Next

			238	 	 lastSibling		Offset	//	.Val(AttrSibling)	of	last	entry	returned	by	Next

			239	 }

			240	

			241	 //	Reader	returns	a	new	Reader	for	Data.

			242	 //	The	reader	is	positioned	at	byte	offset	0	in	the	DWARF	``info''	section.

			243	 func	(d	*Data)	Reader()	*Reader	{

			244	 	 r	:=	&Reader{d:	d}

			245	 	 r.Seek(0)

			246	 	 return	r

			247	 }

			248	

			249	 //	Seek	positions	the	Reader	at	offset	off	in	the	encoded	entry	stream.

			250	 //	Offset	0	can	be	used	to	denote	the	first	entry.

			251	 func	(r	*Reader)	Seek(off	Offset)	{

			252	 	 d	:=	r.d

			253	 	 r.err	=	nil

			254	 	 r.lastChildren	=	false

			255	 	 if	off	==	0	{

			256	 	 	 if	len(d.unit)	==	0	{

			257	 	 	 	 return

			258	 	 	 }

			259	 	 	 u	:=	&d.unit[0]

			260	 	 	 r.unit	=	0

			261	 	 	 r.b	=	makeBuf(r.d,	"info",	u.off,	u.data,	u.addrsize)

			262	 	 	 return

			263	 	 }

			264	

			265	 	 //	TODO(rsc):	binary	search	(maybe	a	new	package)

			266	 	 var	i	int

			267	 	 var	u	*unit

			268	 	 for	i	=	range	d.unit	{

			269	 	 	 u	=	&d.unit[i]

			270	 	 	 if	u.off	<=	off	&&	off	<	u.off+Offset(len(u.data))	{

			271	 	 	 	 r.unit	=	i

			272	 	 	 	 r.b	=	makeBuf(r.d,	"info",	off,	u.data[off-u.off:],	u.addrsize)

			273	 	 	 	 return

			274	 	 	 }

			275	 	 }

			276	 	 r.err	=	errors.New("offset	out	of	range")

			277	 }

			278	

			279	 //	maybeNextUnit	advances	to	the	next	unit	if	this	one	is	finished.

			280	 func	(r	*Reader)	maybeNextUnit()	{

			281	 	 for	len(r.b.data)	==	0	&&	r.unit+1	<	len(r.d.unit)	{

			282	 	 	 r.unit++

			283	 	 	 u	:=	&r.d.unit[r.unit]

			284	 	 	 r.b	=	makeBuf(r.d,	"info",	u.off,	u.data,	u.addrsize)

			285	 	 }

			286	 }

			287	

			288	 //	Next	reads	the	next	entry	from	the	encoded	entry	stream.

			289	 //	It	returns	nil,	nil	when	it	reaches	the	end	of	the	section.

			290	 //	It	returns	an	error	if	the	current	offset	is	invalid	or	the	data	at	the

			291	 //	offset	cannot	be	decoded	as	a	valid	Entry.

			292	 func	(r	*Reader)	Next()	(*Entry,	error)	{

			293	 	 if	r.err	!=	nil	{

			294	 	 	 return	nil,	r.err

			295	 	 }

			296	 	 r.maybeNextUnit()

			297	 	 if	len(r.b.data)	==	0	{

			298	 	 	 return	nil,	nil

			299	 	 }

			300	 	 u	:=	&r.d.unit[r.unit]

			301	 	 e	:=	r.b.entry(u.atable,	u.base)

			302	 	 if	r.b.err	!=	nil	{

			303	 	 	 r.err	=	r.b.err

			304	 	 	 return	nil,	r.err

			305	 	 }

			306	 	 if	e	!=	nil	{

			307	 	 	 r.lastChildren	=	e.Children

			308	 	 	 if	r.lastChildren	{

			309	 	 	 	 r.lastSibling,	_	=	e.Val(AttrSibling).(Offset)

			310	 	 	 }

			311	 	 }	else	{

			312	 	 	 r.lastChildren	=	false

			313	 	 }

			314	 	 return	e,	nil

			315	 }

			316	

			317	 //	SkipChildren	skips	over	the	child	entries	associated	with

			318	 //	the	last	Entry	returned	by	Next.		If	that	Entry	did	not	have

			319	 //	children	or	Next	has	not	been	called,	SkipChildren	is	a	no-op.

			320	 func	(r	*Reader)	SkipChildren()	{

			321	 	 if	r.err	!=	nil	||	!r.lastChildren	{

			322	 	 	 return

			323	 	 }

			324	

			325	 	 //	If	the	last	entry	had	a	sibling	attribute,

			326	 	 //	that	attribute	gives	the	offset	of	the	next

			327	 	 //	sibling,	so	we	can	avoid	decoding	the

			328	 	 //	child	subtrees.

			329	 	 if	r.lastSibling	>=	r.b.off	{

			330	 	 	 r.Seek(r.lastSibling)

			331	 	 	 return

			332	 	 }

			333	

			334	 	 for	{

			335	 	 	 e,	err	:=	r.Next()

			336	 	 	 if	err	!=	nil	||	e	==	nil	||	e.Tag	==	0	{

			337	 	 	 	 break

			338	 	 	 }

			339	 	 	 if	e.Children	{

			340	 	 	 	 r.SkipChildren()

			341	 	 	 }

			342	 	 }

			343	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/debug/dwarf/open.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	dwarf	provides	access	to	DWARF	debugging	information	loaded	from

					6	 //	executable	files,	as	defined	in	the	DWARF	2.0	Standard	at

					7	 //	http://dwarfstd.org/doc/dwarf-2.0.0.pdf

					8	 package	dwarf

					9	

				10	 import	"encoding/binary"

				11	

				12	 //	Data	represents	the	DWARF	debugging	information

				13	 //	loaded	from	an	executable	file	(for	example,	an	ELF	or	Mach-O	executable).

				14	 type	Data	struct	{

				15	 	 //	raw	data

				16	 	 abbrev			[]byte

				17	 	 aranges		[]byte

				18	 	 frame				[]byte

				19	 	 info					[]byte

				20	 	 line					[]byte

				21	 	 pubnames	[]byte

				22	 	 ranges			[]byte

				23	 	 str						[]byte

				24	

				25	 	 //	parsed	data

				26	 	 abbrevCache	map[uint32]abbrevTable

				27	 	 addrsize				int

				28	 	 order							binary.ByteOrder

				29	 	 typeCache			map[Offset]Type

				30	 	 unit								[]unit

				31	 }

				32	

				33	 //	New	returns	a	new	Data	object	initialized	from	the	given	parameters.

				34	 //	Rather	than	calling	this	function	directly,	clients	should	typically	use

				35	 //	the	DWARF	method	of	the	File	type	of	the	appropriate	package	debug/elf,

				36	 //	debug/macho,	or	debug/pe.

				37	 //

				38	 //	The	[]byte	arguments	are	the	data	from	the	corresponding	debug	section

				39	 //	in	the	object	file;	for	example,	for	an	ELF	object,	abbrev	is	the	contents	of

				40	 //	the	".debug_abbrev"	section.

				41	 func	New(abbrev,	aranges,	frame,	info,	line,	pubnames,	ranges,	str	[]byte)	(*Data,	error)	{

				42	 	 d	:=	&Data{

				43	 	 	 abbrev:						abbrev,

				44	 	 	 aranges:					aranges,

				45	 	 	 frame:							frame,

				46	 	 	 info:								info,

				47	 	 	 line:								line,

				48	 	 	 pubnames:				pubnames,

				49	 	 	 ranges:						ranges,

				50	 	 	 str:									str,

				51	 	 	 abbrevCache:	make(map[uint32]abbrevTable),

				52	 	 	 typeCache:			make(map[Offset]Type),

				53	 	 }

				54	

				55	 	 //	Sniff	.debug_info	to	figure	out	byte	order.

				56	 	 //	bytes	4:6	are	the	version,	a	tiny	16-bit	number	(1,	2,	3).

				57	 	 if	len(d.info)	<	6	{

				58	 	 	 return	nil,	DecodeError{"info",	Offset(len(d.info)),	"too	short"}

				59	 	 }

				60	 	 x,	y	:=	d.info[4],	d.info[5]

				61	 	 switch	{

				62	 	 case	x	==	0	&&	y	==	0:

				63	 	 	 return	nil,	DecodeError{"info",	4,	"unsupported	version	0"}

				64	 	 case	x	==	0:

				65	 	 	 d.order	=	binary.BigEndian

				66	 	 case	y	==	0:

				67	 	 	 d.order	=	binary.LittleEndian

				68	 	 default:

				69	 	 	 return	nil,	DecodeError{"info",	4,	"cannot	determine	byte	order"}

				70	 	 }

				71	

				72	 	 u,	err	:=	d.parseUnits()

				73	 	 if	err	!=	nil	{

				74	 	 	 return	nil,	err

				75	 	 }

				76	 	 d.unit	=	u

				77	 	 return	d,	nil

				78	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/debug/dwarf/type.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	DWARF	type	information	structures.

					6	 //	The	format	is	heavily	biased	toward	C,	but	for	simplicity

					7	 //	the	String	methods	use	a	pseudo-Go	syntax.

					8	

					9	 package	dwarf

				10	

				11	 import	"strconv"

				12	

				13	 //	A	Type	conventionally	represents	a	pointer	to	any	of	the

				14	 //	specific	Type	structures	(CharType,	StructType,	etc.).

				15	 type	Type	interface	{

				16	 	 Common()	*CommonType

				17	 	 String()	string

				18	 	 Size()	int64

				19	 }

				20	

				21	 //	A	CommonType	holds	fields	common	to	multiple	types.

				22	 //	If	a	field	is	not	known	or	not	applicable	for	a	given	type,

				23	 //	the	zero	value	is	used.

				24	 type	CommonType	struct	{

				25	 	 ByteSize	int64		//	size	of	value	of	this	type,	in	bytes

				26	 	 Name					string	//	name	that	can	be	used	to	refer	to	type

				27	 }

				28	

				29	 func	(c	*CommonType)	Common()	*CommonType	{	return	c	}

				30	

				31	 func	(c	*CommonType)	Size()	int64	{	return	c.ByteSize	}

				32	

				33	 //	Basic	types

				34	

				35	 //	A	BasicType	holds	fields	common	to	all	basic	types.

				36	 type	BasicType	struct	{

				37	 	 CommonType

				38	 	 BitSize			int64

				39	 	 BitOffset	int64

				40	 }

				41	

				42	 func	(b	*BasicType)	Basic()	*BasicType	{	return	b	}

				43	

				44	 func	(t	*BasicType)	String()	string	{

				45	 	 if	t.Name	!=	""	{

				46	 	 	 return	t.Name

				47	 	 }

				48	 	 return	"?"

				49	 }

				50	

				51	 //	A	CharType	represents	a	signed	character	type.

				52	 type	CharType	struct	{

				53	 	 BasicType

				54	 }

				55	

				56	 //	A	UcharType	represents	an	unsigned	character	type.

				57	 type	UcharType	struct	{

				58	 	 BasicType

				59	 }

				60	

				61	 //	An	IntType	represents	a	signed	integer	type.

				62	 type	IntType	struct	{

				63	 	 BasicType

				64	 }

				65	

				66	 //	A	UintType	represents	an	unsigned	integer	type.

				67	 type	UintType	struct	{

				68	 	 BasicType

				69	 }

				70	

				71	 //	A	FloatType	represents	a	floating	point	type.

				72	 type	FloatType	struct	{

				73	 	 BasicType

				74	 }

				75	

				76	 //	A	ComplexType	represents	a	complex	floating	point	type.

				77	 type	ComplexType	struct	{

				78	 	 BasicType

				79	 }

				80	

				81	 //	A	BoolType	represents	a	boolean	type.

				82	 type	BoolType	struct	{

				83	 	 BasicType

				84	 }

				85	

				86	 //	An	AddrType	represents	a	machine	address	type.

				87	 type	AddrType	struct	{

				88	 	 BasicType

				89	 }

				90	

				91	 //	qualifiers

				92	

				93	 //	A	QualType	represents	a	type	that	has	the	C/C++	"const",	"restrict",	or	"volatile"	qualifier.

				94	 type	QualType	struct	{

				95	 	 CommonType

				96	 	 Qual	string

				97	 	 Type	Type

				98	 }

				99	

			100	 func	(t	*QualType)	String()	string	{	return	t.Qual	+	"	"	+	t.Type.String()	}

			101	

			102	 func	(t	*QualType)	Size()	int64	{	return	t.Type.Size()	}

			103	

			104	 //	An	ArrayType	represents	a	fixed	size	array	type.

			105	 type	ArrayType	struct	{

			106	 	 CommonType

			107	 	 Type										Type

			108	 	 StrideBitSize	int64	//	if	>	0,	number	of	bits	to	hold	each	element

			109	 	 Count									int64	//	if	==	-1,	an	incomplete	array,	like	char	x[].

			110	 }

			111	

			112	 func	(t	*ArrayType)	String()	string	{

			113	 	 return	"["	+	strconv.FormatInt(t.Count,	10)	+	"]"	+	t.Type.String()

			114	 }

			115	

			116	 func	(t	*ArrayType)	Size()	int64	{	return	t.Count	*	t.Type.Size()	}

			117	

			118	 //	A	VoidType	represents	the	C	void	type.

			119	 type	VoidType	struct	{

			120	 	 CommonType

			121	 }

			122	

			123	 func	(t	*VoidType)	String()	string	{	return	"void"	}

			124	

			125	 //	A	PtrType	represents	a	pointer	type.

			126	 type	PtrType	struct	{

			127	 	 CommonType

			128	 	 Type	Type

			129	 }

			130	

			131	 func	(t	*PtrType)	String()	string	{	return	"*"	+	t.Type.String()	}

			132	

			133	 //	A	StructType	represents	a	struct,	union,	or	C++	class	type.

			134	 type	StructType	struct	{

			135	 	 CommonType

			136	 	 StructName	string

			137	 	 Kind							string	//	"struct",	"union",	or	"class".

			138	 	 Field						[]*StructField

			139	 	 Incomplete	bool	//	if	true,	struct,	union,	class	is	declared	but	not	defined

			140	 }

			141	

			142	 //	A	StructField	represents	a	field	in	a	struct,	union,	or	C++	class	type.

			143	 type	StructField	struct	{

			144	 	 Name							string

			145	 	 Type							Type

			146	 	 ByteOffset	int64

			147	 	 ByteSize			int64

			148	 	 BitOffset		int64	//	within	the	ByteSize	bytes	at	ByteOffset

			149	 	 BitSize				int64	//	zero	if	not	a	bit	field

			150	 }

			151	

			152	 func	(t	*StructType)	String()	string	{

			153	 	 if	t.StructName	!=	""	{

			154	 	 	 return	t.Kind	+	"	"	+	t.StructName

			155	 	 }

			156	 	 return	t.Defn()

			157	 }

			158	

			159	 func	(t	*StructType)	Defn()	string	{

			160	 	 s	:=	t.Kind

			161	 	 if	t.StructName	!=	""	{

			162	 	 	 s	+=	"	"	+	t.StructName

			163	 	 }

			164	 	 if	t.Incomplete	{

			165	 	 	 s	+=	"	/*incomplete*/"

			166	 	 	 return	s

			167	 	 }

			168	 	 s	+=	"	{"

			169	 	 for	i,	f	:=	range	t.Field	{

			170	 	 	 if	i	>	0	{

			171	 	 	 	 s	+=	";	"

			172	 	 	 }

			173	 	 	 s	+=	f.Name	+	"	"	+	f.Type.String()

			174	 	 	 s	+=	"@"	+	strconv.FormatInt(f.ByteOffset,	10)

			175	 	 	 if	f.BitSize	>	0	{

			176	 	 	 	 s	+=	"	:	"	+	strconv.FormatInt(f.BitSize,	10)

			177	 	 	 	 s	+=	"@"	+	strconv.FormatInt(f.BitOffset,	10)

			178	 	 	 }

			179	 	 }

			180	 	 s	+=	"}"

			181	 	 return	s

			182	 }

			183	

			184	 //	An	EnumType	represents	an	enumerated	type.

			185	 //	The	only	indication	of	its	native	integer	type	is	its	ByteSize

			186	 //	(inside	CommonType).

			187	 type	EnumType	struct	{

			188	 	 CommonType

			189	 	 EnumName	string

			190	 	 Val						[]*EnumValue

			191	 }

			192	

			193	 //	An	EnumValue	represents	a	single	enumeration	value.

			194	 type	EnumValue	struct	{

			195	 	 Name	string

			196	 	 Val		int64

			197	 }

			198	

			199	 func	(t	*EnumType)	String()	string	{

			200	 	 s	:=	"enum"

			201	 	 if	t.EnumName	!=	""	{

			202	 	 	 s	+=	"	"	+	t.EnumName

			203	 	 }

			204	 	 s	+=	"	{"

			205	 	 for	i,	v	:=	range	t.Val	{

			206	 	 	 if	i	>	0	{

			207	 	 	 	 s	+=	";	"

			208	 	 	 }

			209	 	 	 s	+=	v.Name	+	"="	+	strconv.FormatInt(v.Val,	10)

			210	 	 }

			211	 	 s	+=	"}"

			212	 	 return	s

			213	 }

			214	

			215	 //	A	FuncType	represents	a	function	type.

			216	 type	FuncType	struct	{

			217	 	 CommonType

			218	 	 ReturnType	Type

			219	 	 ParamType		[]Type

			220	 }

			221	

			222	 func	(t	*FuncType)	String()	string	{

			223	 	 s	:=	"func("

			224	 	 for	i,	t	:=	range	t.ParamType	{

			225	 	 	 if	i	>	0	{

			226	 	 	 	 s	+=	",	"

			227	 	 	 }

			228	 	 	 s	+=	t.String()

			229	 	 }

			230	 	 s	+=	")"

			231	 	 if	t.ReturnType	!=	nil	{

			232	 	 	 s	+=	"	"	+	t.ReturnType.String()

			233	 	 }

			234	 	 return	s

			235	 }

			236	

			237	 //	A	DotDotDotType	represents	the	variadic	...	function	parameter.

			238	 type	DotDotDotType	struct	{

			239	 	 CommonType

			240	 }

			241	

			242	 func	(t	*DotDotDotType)	String()	string	{	return	"..."	}

			243	

			244	 //	A	TypedefType	represents	a	named	type.

			245	 type	TypedefType	struct	{

			246	 	 CommonType

			247	 	 Type	Type

			248	 }

			249	

			250	 func	(t	*TypedefType)	String()	string	{	return	t.Name	}

			251	

			252	 func	(t	*TypedefType)	Size()	int64	{	return	t.Type.Size()	}

			253	

			254	 func	(d	*Data)	Type(off	Offset)	(Type,	error)	{

			255	 	 if	t,	ok	:=	d.typeCache[off];	ok	{

			256	 	 	 return	t,	nil

			257	 	 }

			258	

			259	 	 r	:=	d.Reader()

			260	 	 r.Seek(off)

			261	 	 e,	err	:=	r.Next()

			262	 	 if	err	!=	nil	{

			263	 	 	 return	nil,	err

			264	 	 }

			265	 	 if	e	==	nil	||	e.Offset	!=	off	{

			266	 	 	 return	nil,	DecodeError{"info",	off,	"no	type	at	offset"}

			267	 	 }

			268	

			269	 	 //	Parse	type	from	Entry.

			270	 	 //	Must	always	set	d.typeCache[off]	before	calling

			271	 	 //	d.Type	recursively,	to	handle	circular	types	correctly.

			272	 	 var	typ	Type

			273	

			274	 	 //	Get	next	child;	set	err	if	error	happens.

			275	 	 next	:=	func()	*Entry	{

			276	 	 	 if	!e.Children	{

			277	 	 	 	 return	nil

			278	 	 	 }

			279	 	 	 kid,	err1	:=	r.Next()

			280	 	 	 if	err1	!=	nil	{

			281	 	 	 	 err	=	err1

			282	 	 	 	 return	nil

			283	 	 	 }

			284	 	 	 if	kid	==	nil	{

			285	 	 	 	 err	=	DecodeError{"info",	r.b.off,	"unexpected	end	of	DWARF	entries"}

			286	 	 	 	 return	nil

			287	 	 	 }

			288	 	 	 if	kid.Tag	==	0	{

			289	 	 	 	 return	nil

			290	 	 	 }

			291	 	 	 return	kid

			292	 	 }

			293	

			294	 	 //	Get	Type	referred	to	by	Entry's	AttrType	field.

			295	 	 //	Set	err	if	error	happens.		Not	having	a	type	is	an	error.

			296	 	 typeOf	:=	func(e	*Entry)	Type	{

			297	 	 	 toff,	ok	:=	e.Val(AttrType).(Offset)

			298	 	 	 if	!ok	{

			299	 	 	 	 //	It	appears	that	no	Type	means	"void".

			300	 	 	 	 return	new(VoidType)

			301	 	 	 }

			302	 	 	 var	t	Type

			303	 	 	 if	t,	err	=	d.Type(toff);	err	!=	nil	{

			304	 	 	 	 return	nil

			305	 	 	 }

			306	 	 	 return	t

			307	 	 }

			308	

			309	 	 switch	e.Tag	{

			310	 	 case	TagArrayType:

			311	 	 	 //	Multi-dimensional	array.		(DWARF	v2	§5.4)

			312	 	 	 //	Attributes:

			313	 	 	 //	 AttrType:subtype	[required]

			314	 	 	 //	 AttrStrideSize:	size	in	bits	of	each	element	of	the	array

			315	 	 	 //	 AttrByteSize:	size	of	entire	array

			316	 	 	 //	Children:

			317	 	 	 //	 TagSubrangeType	or	TagEnumerationType	giving	one	dimension.

			318	 	 	 //	 dimensions	are	in	left	to	right	order.

			319	 	 	 t	:=	new(ArrayType)

			320	 	 	 typ	=	t

			321	 	 	 d.typeCache[off]	=	t

			322	 	 	 if	t.Type	=	typeOf(e);	err	!=	nil	{

			323	 	 	 	 goto	Error

			324	 	 	 }

			325	 	 	 t.StrideBitSize,	_	=	e.Val(AttrStrideSize).(int64)

			326	

			327	 	 	 //	Accumulate	dimensions,

			328	 	 	 ndim	:=	0

			329	 	 	 for	kid	:=	next();	kid	!=	nil;	kid	=	next()	{

			330	 	 	 	 //	TODO(rsc):	Can	also	be	TagEnumerationType

			331	 	 	 	 //	but	haven't	seen	that	in	the	wild	yet.

			332	 	 	 	 switch	kid.Tag	{

			333	 	 	 	 case	TagSubrangeType:

			334	 	 	 	 	 max,	ok	:=	kid.Val(AttrUpperBound).(int64)

			335	 	 	 	 	 if	!ok	{

			336	 	 	 	 	 	 max	=	-2	//	Count	==	-1,	as	in	x[].

			337	 	 	 	 	 }

			338	 	 	 	 	 if	ndim	==	0	{

			339	 	 	 	 	 	 t.Count	=	max	+	1

			340	 	 	 	 	 }	else	{

			341	 	 	 	 	 	 //	Multidimensional	array.

			342	 	 	 	 	 	 //	Create	new	array	type	underneath	this	one.

			343	 	 	 	 	 	 t.Type	=	&ArrayType{Type:	t.Type,	Count:	max	+	1}

			344	 	 	 	 	 }

			345	 	 	 	 	 ndim++

			346	 	 	 	 case	TagEnumerationType:

			347	 	 	 	 	 err	=	DecodeError{"info",	kid.Offset,	"cannot	handle	enumeration	type	as	array	bound"}

			348	 	 	 	 	 goto	Error

			349	 	 	 	 }

			350	 	 	 }

			351	 	 	 if	ndim	==	0	{

			352	 	 	 	 //	LLVM	generates	this	for	x[].

			353	 	 	 	 t.Count	=	-1

			354	 	 	 }

			355	

			356	 	 case	TagBaseType:

			357	 	 	 //	Basic	type.		(DWARF	v2	§5.1)

			358	 	 	 //	Attributes:

			359	 	 	 //	 AttrName:	name	of	base	type	in	programming	language	of	the	compilation	unit	[required]

			360	 	 	 //	 AttrEncoding:	encoding	value	for	type	(encFloat	etc)	[required]

			361	 	 	 //	 AttrByteSize:	size	of	type	in	bytes	[required]

			362	 	 	 //	 AttrBitOffset:	for	sub-byte	types,	size	in	bits

			363	 	 	 //	 AttrBitSize:	for	sub-byte	types,	bit	offset	of	high	order	bit	in	the	AttrByteSize	bytes

			364	 	 	 name,	_	:=	e.Val(AttrName).(string)

			365	 	 	 enc,	ok	:=	e.Val(AttrEncoding).(int64)

			366	 	 	 if	!ok	{

			367	 	 	 	 err	=	DecodeError{"info",	e.Offset,	"missing	encoding	attribute	for	"	+	name}

			368	 	 	 	 goto	Error

			369	 	 	 }

			370	 	 	 switch	enc	{

			371	 	 	 default:

			372	 	 	 	 err	=	DecodeError{"info",	e.Offset,	"unrecognized	encoding	attribute	value"}

			373	 	 	 	 goto	Error

			374	

			375	 	 	 case	encAddress:

			376	 	 	 	 typ	=	new(AddrType)

			377	 	 	 case	encBoolean:

			378	 	 	 	 typ	=	new(BoolType)

			379	 	 	 case	encComplexFloat:

			380	 	 	 	 typ	=	new(ComplexType)

			381	 	 	 case	encFloat:

			382	 	 	 	 typ	=	new(FloatType)

			383	 	 	 case	encSigned:

			384	 	 	 	 typ	=	new(IntType)

			385	 	 	 case	encUnsigned:

			386	 	 	 	 typ	=	new(UintType)

			387	 	 	 case	encSignedChar:

			388	 	 	 	 typ	=	new(CharType)

			389	 	 	 case	encUnsignedChar:

			390	 	 	 	 typ	=	new(UcharType)

			391	 	 	 }

			392	 	 	 d.typeCache[off]	=	typ

			393	 	 	 t	:=	typ.(interface	{

			394	 	 	 	 Basic()	*BasicType

			395	 	 	 }).Basic()

			396	 	 	 t.Name	=	name

			397	 	 	 t.BitSize,	_	=	e.Val(AttrBitSize).(int64)

			398	 	 	 t.BitOffset,	_	=	e.Val(AttrBitOffset).(int64)

			399	

			400	 	 case	TagClassType,	TagStructType,	TagUnionType:

			401	 	 	 //	Structure,	union,	or	class	type.		(DWARF	v2	§5.5)

			402	 	 	 //	Attributes:

			403	 	 	 //	 AttrName:	name	of	struct,	union,	or	class

			404	 	 	 //	 AttrByteSize:	byte	size	[required]

			405	 	 	 //	 AttrDeclaration:	if	true,	struct/union/class	is	incomplete

			406	 	 	 //	Children:

			407	 	 	 //	 TagMember	to	describe	one	member.

			408	 	 	 //	 	 AttrName:	name	of	member	[required]

			409	 	 	 //	 	 AttrType:	type	of	member	[required]

			410	 	 	 //	 	 AttrByteSize:	size	in	bytes

			411	 	 	 //	 	 AttrBitOffset:	bit	offset	within	bytes	for	bit	fields

			412	 	 	 //	 	 AttrBitSize:	bit	size	for	bit	fields

			413	 	 	 //	 	 AttrDataMemberLoc:	location	within	struct	[required	for	struct,	class]

			414	 	 	 //	There	is	much	more	to	handle	C++,	all	ignored	for	now.

			415	 	 	 t	:=	new(StructType)

			416	 	 	 typ	=	t

			417	 	 	 d.typeCache[off]	=	t

			418	 	 	 switch	e.Tag	{

			419	 	 	 case	TagClassType:

			420	 	 	 	 t.Kind	=	"class"

			421	 	 	 case	TagStructType:

			422	 	 	 	 t.Kind	=	"struct"

			423	 	 	 case	TagUnionType:

			424	 	 	 	 t.Kind	=	"union"

			425	 	 	 }

			426	 	 	 t.StructName,	_	=	e.Val(AttrName).(string)

			427	 	 	 t.Incomplete	=	e.Val(AttrDeclaration)	!=	nil

			428	 	 	 t.Field	=	make([]*StructField,	0,	8)

			429	 	 	 var	lastFieldType	Type

			430	 	 	 var	lastFieldBitOffset	int64

			431	 	 	 for	kid	:=	next();	kid	!=	nil;	kid	=	next()	{

			432	 	 	 	 if	kid.Tag	==	TagMember	{

			433	 	 	 	 	 f	:=	new(StructField)

			434	 	 	 	 	 if	f.Type	=	typeOf(kid);	err	!=	nil	{

			435	 	 	 	 	 	 goto	Error

			436	 	 	 	 	 }

			437	 	 	 	 	 if	loc,	ok	:=	kid.Val(AttrDataMemberLoc).([]byte);	ok	{

			438	 	 	 	 	 	 b	:=	makeBuf(d,	"location",	0,	loc,	d.addrsize)

			439	 	 	 	 	 	 if	b.uint8()	!=	opPlusUconst	{

			440	 	 	 	 	 	 	 err	=	DecodeError{"info",	kid.Offset,	"unexpected	opcode"}

			441	 	 	 	 	 	 	 goto	Error

			442	 	 	 	 	 	 }

			443	 	 	 	 	 	 f.ByteOffset	=	int64(b.uint())

			444	 	 	 	 	 	 if	b.err	!=	nil	{

			445	 	 	 	 	 	 	 err	=	b.err

			446	 	 	 	 	 	 	 goto	Error

			447	 	 	 	 	 	 }

			448	 	 	 	 	 }

			449	

			450	 	 	 	 	 haveBitOffset	:=	false

			451	 	 	 	 	 f.Name,	_	=	kid.Val(AttrName).(string)

			452	 	 	 	 	 f.ByteSize,	_	=	kid.Val(AttrByteSize).(int64)

			453	 	 	 	 	 f.BitOffset,	haveBitOffset	=	kid.Val(AttrBitOffset).(int64)

			454	 	 	 	 	 f.BitSize,	_	=	kid.Val(AttrBitSize).(int64)

			455	 	 	 	 	 t.Field	=	append(t.Field,	f)

			456	

			457	 	 	 	 	 bito	:=	f.BitOffset

			458	 	 	 	 	 if	!haveBitOffset	{

			459	 	 	 	 	 	 bito	=	f.ByteOffset	*	8

			460	 	 	 	 	 }

			461	 	 	 	 	 if	bito	==	lastFieldBitOffset	&&	t.Kind	!=	"union"	{

			462	 	 	 	 	 	 //	Last	field	was	zero	width.		Fix	array	length.

			463	 	 	 	 	 	 //	(DWARF	writes	out	0-length	arrays	as	if	they	were	1-length	arrays.)

			464	 	 	 	 	 	 zeroArray(lastFieldType)

			465	 	 	 	 	 }

			466	 	 	 	 	 lastFieldType	=	f.Type

			467	 	 	 	 	 lastFieldBitOffset	=	bito

			468	 	 	 	 }

			469	 	 	 }

			470	 	 	 if	t.Kind	!=	"union"	{

			471	 	 	 	 b,	ok	:=	e.Val(AttrByteSize).(int64)

			472	 	 	 	 if	ok	&&	b*8	==	lastFieldBitOffset	{

			473	 	 	 	 	 //	Final	field	must	be	zero	width.		Fix	array	length.

			474	 	 	 	 	 zeroArray(lastFieldType)

			475	 	 	 	 }

			476	 	 	 }

			477	

			478	 	 case	TagConstType,	TagVolatileType,	TagRestrictType:

			479	 	 	 //	Type	modifier	(DWARF	v2	§5.2)

			480	 	 	 //	Attributes:

			481	 	 	 //	 AttrType:	subtype

			482	 	 	 t	:=	new(QualType)

			483	 	 	 typ	=	t

			484	 	 	 d.typeCache[off]	=	t

			485	 	 	 if	t.Type	=	typeOf(e);	err	!=	nil	{

			486	 	 	 	 goto	Error

			487	 	 	 }

			488	 	 	 switch	e.Tag	{

			489	 	 	 case	TagConstType:

			490	 	 	 	 t.Qual	=	"const"

			491	 	 	 case	TagRestrictType:

			492	 	 	 	 t.Qual	=	"restrict"

			493	 	 	 case	TagVolatileType:

			494	 	 	 	 t.Qual	=	"volatile"

			495	 	 	 }

			496	

			497	 	 case	TagEnumerationType:

			498	 	 	 //	Enumeration	type	(DWARF	v2	§5.6)

			499	 	 	 //	Attributes:

			500	 	 	 //	 AttrName:	enum	name	if	any

			501	 	 	 //	 AttrByteSize:	bytes	required	to	represent	largest	value

			502	 	 	 //	Children:

			503	 	 	 //	 TagEnumerator:

			504	 	 	 //	 	 AttrName:	name	of	constant

			505	 	 	 //	 	 AttrConstValue:	value	of	constant

			506	 	 	 t	:=	new(EnumType)

			507	 	 	 typ	=	t

			508	 	 	 d.typeCache[off]	=	t

			509	 	 	 t.EnumName,	_	=	e.Val(AttrName).(string)

			510	 	 	 t.Val	=	make([]*EnumValue,	0,	8)

			511	 	 	 for	kid	:=	next();	kid	!=	nil;	kid	=	next()	{

			512	 	 	 	 if	kid.Tag	==	TagEnumerator	{

			513	 	 	 	 	 f	:=	new(EnumValue)

			514	 	 	 	 	 f.Name,	_	=	kid.Val(AttrName).(string)

			515	 	 	 	 	 f.Val,	_	=	kid.Val(AttrConstValue).(int64)

			516	 	 	 	 	 n	:=	len(t.Val)

			517	 	 	 	 	 if	n	>=	cap(t.Val)	{

			518	 	 	 	 	 	 val	:=	make([]*EnumValue,	n,	n*2)

			519	 	 	 	 	 	 copy(val,	t.Val)

			520	 	 	 	 	 	 t.Val	=	val

			521	 	 	 	 	 }

			522	 	 	 	 	 t.Val	=	t.Val[0	:	n+1]

			523	 	 	 	 	 t.Val[n]	=	f

			524	 	 	 	 }

			525	 	 	 }

			526	

			527	 	 case	TagPointerType:

			528	 	 	 //	Type	modifier	(DWARF	v2	§5.2)

			529	 	 	 //	Attributes:

			530	 	 	 //	 AttrType:	subtype	[not	required!		void*	has	no	AttrType]

			531	 	 	 //	 AttrAddrClass:	address	class	[ignored]

			532	 	 	 t	:=	new(PtrType)

			533	 	 	 typ	=	t

			534	 	 	 d.typeCache[off]	=	t

			535	 	 	 if	e.Val(AttrType)	==	nil	{

			536	 	 	 	 t.Type	=	&VoidType{}

			537	 	 	 	 break

			538	 	 	 }

			539	 	 	 t.Type	=	typeOf(e)

			540	

			541	 	 case	TagSubroutineType:

			542	 	 	 //	Subroutine	type.		(DWARF	v2	§5.7)

			543	 	 	 //	Attributes:

			544	 	 	 //	 AttrType:	type	of	return	value	if	any

			545	 	 	 //	 AttrName:	possible	name	of	type	[ignored]

			546	 	 	 //	 AttrPrototyped:	whether	used	ANSI	C	prototype	[ignored]

			547	 	 	 //	Children:

			548	 	 	 //	 TagFormalParameter:	typed	parameter

			549	 	 	 //	 	 AttrType:	type	of	parameter

			550	 	 	 //	 TagUnspecifiedParameter:	final	...

			551	 	 	 t	:=	new(FuncType)

			552	 	 	 typ	=	t

			553	 	 	 d.typeCache[off]	=	t

			554	 	 	 if	t.ReturnType	=	typeOf(e);	err	!=	nil	{

			555	 	 	 	 goto	Error

			556	 	 	 }

			557	 	 	 t.ParamType	=	make([]Type,	0,	8)

			558	 	 	 for	kid	:=	next();	kid	!=	nil;	kid	=	next()	{

			559	 	 	 	 var	tkid	Type

			560	 	 	 	 switch	kid.Tag	{

			561	 	 	 	 default:

			562	 	 	 	 	 continue

			563	 	 	 	 case	TagFormalParameter:

			564	 	 	 	 	 if	tkid	=	typeOf(kid);	err	!=	nil	{

			565	 	 	 	 	 	 goto	Error

			566	 	 	 	 	 }

			567	 	 	 	 case	TagUnspecifiedParameters:

			568	 	 	 	 	 tkid	=	&DotDotDotType{}

			569	 	 	 	 }

			570	 	 	 	 t.ParamType	=	append(t.ParamType,	tkid)

			571	 	 	 }

			572	

			573	 	 case	TagTypedef:

			574	 	 	 //	Typedef	(DWARF	v2	§5.3)

			575	 	 	 //	Attributes:

			576	 	 	 //	 AttrName:	name	[required]

			577	 	 	 //	 AttrType:	type	definition	[required]

			578	 	 	 t	:=	new(TypedefType)

			579	 	 	 typ	=	t

			580	 	 	 d.typeCache[off]	=	t

			581	 	 	 t.Name,	_	=	e.Val(AttrName).(string)

			582	 	 	 t.Type	=	typeOf(e)

			583	 	 }

			584	

			585	 	 if	err	!=	nil	{

			586	 	 	 goto	Error

			587	 	 }

			588	

			589	 	 {

			590	 	 	 b,	ok	:=	e.Val(AttrByteSize).(int64)

			591	 	 	 if	!ok	{

			592	 	 	 	 b	=	-1

			593	 	 	 }

			594	 	 	 typ.Common().ByteSize	=	b

			595	 	 }

			596	 	 return	typ,	nil

			597	

			598	 Error:

			599	 	 //	If	the	parse	fails,	take	the	type	out	of	the	cache

			600	 	 //	so	that	the	next	call	with	this	offset	doesn't	hit

			601	 	 //	the	cache	and	return	success.

			602	 	 delete(d.typeCache,	off)

			603	 	 return	nil,	err

			604	 }

			605	

			606	 func	zeroArray(t	Type)	{

			607	 	 for	{

			608	 	 	 at,	ok	:=	t.(*ArrayType)

			609	 	 	 if	!ok	{

			610	 	 	 	 break

			611	 	 	 }

			612	 	 	 at.Count	=	0

			613	 	 	 t	=	at.Type

			614	 	 }

			615	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/debug/dwarf/unit.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	dwarf

					6	

					7	 import	"strconv"

					8	

					9	 //	DWARF	debug	info	is	split	into	a	sequence	of	compilation	units.

				10	 //	Each	unit	has	its	own	abbreviation	table	and	address	size.

				11	

				12	 type	unit	struct	{

				13	 	 base					Offset	//	byte	offset	of	header	within	the	aggregate	info

				14	 	 off						Offset	//	byte	offset	of	data	within	the	aggregate	info

				15	 	 data					[]byte

				16	 	 atable			abbrevTable

				17	 	 addrsize	int

				18	 }

				19	

				20	 func	(d	*Data)	parseUnits()	([]unit,	error)	{

				21	 	 //	Count	units.

				22	 	 nunit	:=	0

				23	 	 b	:=	makeBuf(d,	"info",	0,	d.info,	0)

				24	 	 for	len(b.data)	>	0	{

				25	 	 	 b.skip(int(b.uint32()))

				26	 	 	 nunit++

				27	 	 }

				28	 	 if	b.err	!=	nil	{

				29	 	 	 return	nil,	b.err

				30	 	 }

				31	

				32	 	 //	Again,	this	time	writing	them	down.

				33	 	 b	=	makeBuf(d,	"info",	0,	d.info,	0)

				34	 	 units	:=	make([]unit,	nunit)

				35	 	 for	i	:=	range	units	{

				36	 	 	 u	:=	&units[i]

				37	 	 	 u.base	=	b.off

				38	 	 	 n	:=	b.uint32()

				39	 	 	 if	vers	:=	b.uint16();	vers	!=	2	{

				40	 	 	 	 b.error("unsupported	DWARF	version	"	+	strconv.Itoa(int(vers)))

				41	 	 	 	 break

				42	 	 	 }

				43	 	 	 atable,	err	:=	d.parseAbbrev(b.uint32())

				44	 	 	 if	err	!=	nil	{

				45	 	 	 	 if	b.err	==	nil	{

				46	 	 	 	 	 b.err	=	err

				47	 	 	 	 }

				48	 	 	 	 break

				49	 	 	 }

				50	 	 	 u.atable	=	atable

				51	 	 	 u.addrsize	=	int(b.uint8())

				52	 	 	 u.off	=	b.off

				53	 	 	 u.data	=	b.bytes(int(n	-	(2	+	4	+	1)))

				54	 	 }

				55	 	 if	b.err	!=	nil	{

				56	 	 	 return	nil,	b.err

				57	 	 }

				58	 	 return	units,	nil

				59	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/debug/elf/elf.go
					1	 /*

					2	 	*	ELF	constants	and	data	structures

					3	 	*

					4	 	*	Derived	from:

					5	 	*	$FreeBSD:	src/sys/sys/elf32.h,v	1.8.14.1	2005/12/30	22:13:58	marcel	Exp	$

					6	 	*	$FreeBSD:	src/sys/sys/elf64.h,v	1.10.14.1	2005/12/30	22:13:58	marcel	Exp	$

					7	 	*	$FreeBSD:	src/sys/sys/elf_common.h,v	1.15.8.1	2005/12/30	22:13:58	marcel	Exp	$

					8	 	*	$FreeBSD:	src/sys/alpha/include/elf.h,v	1.14	2003/09/25	01:10:22	peter	Exp	$

					9	 	*	$FreeBSD:	src/sys/amd64/include/elf.h,v	1.18	2004/08/03	08:21:48	dfr	Exp	$

				10	 	*	$FreeBSD:	src/sys/arm/include/elf.h,v	1.5.2.1	2006/06/30	21:42:52	cognet	Exp	$

				11	 	*	$FreeBSD:	src/sys/i386/include/elf.h,v	1.16	2004/08/02	19:12:17	dfr	Exp	$

				12	 	*	$FreeBSD:	src/sys/powerpc/include/elf.h,v	1.7	2004/11/02	09:47:01	ssouhlal	Exp	$

				13	 	*	$FreeBSD:	src/sys/sparc64/include/elf.h,v	1.12	2003/09/25	01:10:26	peter	Exp	$

				14	 	*

				15	 	*	Copyright	(c)	1996-1998	John	D.	Polstra.		All	rights	reserved.

				16	 	*	Copyright	(c)	2001	David	E.	O'Brien

				17	 	*	Portions	Copyright	2009	The	Go	Authors.		All	rights	reserved.

				18	 	*

				19	 	*	Redistribution	and	use	in	source	and	binary	forms,	with	or	without

				20	 	*	modification,	are	permitted	provided	that	the	following	conditions

				21	 	*	are	met:

				22	 	*	1.	Redistributions	of	source	code	must	retain	the	above	copyright

				23	 	*				notice,	this	list	of	conditions	and	the	following	disclaimer.

				24	 	*	2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

				25	 	*				notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

				26	 	*				documentation	and/or	other	materials	provided	with	the	distribution.

				27	 	*

				28	 	*	THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND	CONTRIBUTORS	``AS	IS''	AND

				29	 	*	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

				30	 	*	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

				31	 	*	ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	AUTHOR	OR	CONTRIBUTORS	BE	LIABLE

				32	 	*	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL

				33	 	*	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS

				34	 	*	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

				35	 	*	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT

				36	 	*	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY

				37	 	*	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF

				38	 	*	SUCH	DAMAGE.

				39	 	*/

				40	

				41	 package	elf

				42	

				43	 import	"strconv"

				44	

				45	 /*

				46	 	*	Constants

				47	 	*/

				48	

				49	 //	Indexes	into	the	Header.Ident	array.

				50	 const	(

				51	 	 EI_CLASS						=	4		/*	Class	of	machine.	*/

				52	 	 EI_DATA							=	5		/*	Data	format.	*/

				53	 	 EI_VERSION				=	6		/*	ELF	format	version.	*/

				54	 	 EI_OSABI						=	7		/*	Operating	system	/	ABI	identification	*/

				55	 	 EI_ABIVERSION	=	8		/*	ABI	version	*/

				56	 	 EI_PAD								=	9		/*	Start	of	padding	(per	SVR4	ABI).	*/

				57	 	 EI_NIDENT					=	16	/*	Size	of	e_ident	array.	*/

				58)

				59	

				60	 //	Initial	magic	number	for	ELF	files.

				61	 const	ELFMAG	=	"\177ELF"

				62	

				63	 //	Version	is	found	in	Header.Ident[EI_VERSION]	and	Header.Version.

				64	 type	Version	byte

				65	

				66	 const	(

				67	 	 EV_NONE				Version	=	0

				68	 	 EV_CURRENT	Version	=	1

				69)

				70	

				71	 var	versionStrings	=	[]intName{

				72	 	 {0,	"EV_NONE"},

				73	 	 {1,	"EV_CURRENT"},

				74	 }

				75	

				76	 func	(i	Version)	String()	string			{	return	stringName(uint32(i),	versionStrings,	false)	}

				77	 func	(i	Version)	GoString()	string	{	return	stringName(uint32(i),	versionStrings,	true)	}

				78	

				79	 //	Class	is	found	in	Header.Ident[EI_CLASS]	and	Header.Class.

				80	 type	Class	byte

				81	

				82	 const	(

				83	 	 ELFCLASSNONE	Class	=	0	/*	Unknown	class.	*/

				84	 	 ELFCLASS32			Class	=	1	/*	32-bit	architecture.	*/

				85	 	 ELFCLASS64			Class	=	2	/*	64-bit	architecture.	*/

				86)

				87	

				88	 var	classStrings	=	[]intName{

				89	 	 {0,	"ELFCLASSNONE"},

				90	 	 {1,	"ELFCLASS32"},

				91	 	 {2,	"ELFCLASS64"},

				92	 }

				93	

				94	 func	(i	Class)	String()	string			{	return	stringName(uint32(i),	classStrings,	false)	}

				95	 func	(i	Class)	GoString()	string	{	return	stringName(uint32(i),	classStrings,	true)	}

				96	

				97	 //	Data	is	found	in	Header.Ident[EI_DATA]	and	Header.Data.

				98	 type	Data	byte

				99	

			100	 const	(

			101	 	 ELFDATANONE	Data	=	0	/*	Unknown	data	format.	*/

			102	 	 ELFDATA2LSB	Data	=	1	/*	2's	complement	little-endian.	*/

			103	 	 ELFDATA2MSB	Data	=	2	/*	2's	complement	big-endian.	*/

			104)

			105	

			106	 var	dataStrings	=	[]intName{

			107	 	 {0,	"ELFDATANONE"},

			108	 	 {1,	"ELFDATA2LSB"},

			109	 	 {2,	"ELFDATA2MSB"},

			110	 }

			111	

			112	 func	(i	Data)	String()	string			{	return	stringName(uint32(i),	dataStrings,	false)	}

			113	 func	(i	Data)	GoString()	string	{	return	stringName(uint32(i),	dataStrings,	true)	}

			114	

			115	 //	OSABI	is	found	in	Header.Ident[EI_OSABI]	and	Header.OSABI.

			116	 type	OSABI	byte

			117	

			118	 const	(

			119	 	 ELFOSABI_NONE							OSABI	=	0			/*	UNIX	System	V	ABI	*/

			120	 	 ELFOSABI_HPUX							OSABI	=	1			/*	HP-UX	operating	system	*/

			121	 	 ELFOSABI_NETBSD					OSABI	=	2			/*	NetBSD	*/

			122	 	 ELFOSABI_LINUX						OSABI	=	3			/*	GNU/Linux	*/

			123	 	 ELFOSABI_HURD							OSABI	=	4			/*	GNU/Hurd	*/

			124	 	 ELFOSABI_86OPEN					OSABI	=	5			/*	86Open	common	IA32	ABI	*/

			125	 	 ELFOSABI_SOLARIS				OSABI	=	6			/*	Solaris	*/

			126	 	 ELFOSABI_AIX								OSABI	=	7			/*	AIX	*/

			127	 	 ELFOSABI_IRIX							OSABI	=	8			/*	IRIX	*/

			128	 	 ELFOSABI_FREEBSD				OSABI	=	9			/*	FreeBSD	*/

			129	 	 ELFOSABI_TRU64						OSABI	=	10		/*	TRU64	UNIX	*/

			130	 	 ELFOSABI_MODESTO				OSABI	=	11		/*	Novell	Modesto	*/

			131	 	 ELFOSABI_OPENBSD				OSABI	=	12		/*	OpenBSD	*/

			132	 	 ELFOSABI_OPENVMS				OSABI	=	13		/*	Open	VMS	*/

			133	 	 ELFOSABI_NSK								OSABI	=	14		/*	HP	Non-Stop	Kernel	*/

			134	 	 ELFOSABI_ARM								OSABI	=	97		/*	ARM	*/

			135	 	 ELFOSABI_STANDALONE	OSABI	=	255	/*	Standalone	(embedded)	application	*/

			136)

			137	

			138	 var	osabiStrings	=	[]intName{

			139	 	 {0,	"ELFOSABI_NONE"},

			140	 	 {1,	"ELFOSABI_HPUX"},

			141	 	 {2,	"ELFOSABI_NETBSD"},

			142	 	 {3,	"ELFOSABI_LINUX"},

			143	 	 {4,	"ELFOSABI_HURD"},

			144	 	 {5,	"ELFOSABI_86OPEN"},

			145	 	 {6,	"ELFOSABI_SOLARIS"},

			146	 	 {7,	"ELFOSABI_AIX"},

			147	 	 {8,	"ELFOSABI_IRIX"},

			148	 	 {9,	"ELFOSABI_FREEBSD"},

			149	 	 {10,	"ELFOSABI_TRU64"},

			150	 	 {11,	"ELFOSABI_MODESTO"},

			151	 	 {12,	"ELFOSABI_OPENBSD"},

			152	 	 {13,	"ELFOSABI_OPENVMS"},

			153	 	 {14,	"ELFOSABI_NSK"},

			154	 	 {97,	"ELFOSABI_ARM"},

			155	 	 {255,	"ELFOSABI_STANDALONE"},

			156	 }

			157	

			158	 func	(i	OSABI)	String()	string			{	return	stringName(uint32(i),	osabiStrings,	false)	}

			159	 func	(i	OSABI)	GoString()	string	{	return	stringName(uint32(i),	osabiStrings,	true)	}

			160	

			161	 //	Type	is	found	in	Header.Type.

			162	 type	Type	uint16

			163	

			164	 const	(

			165	 	 ET_NONE			Type	=	0						/*	Unknown	type.	*/

			166	 	 ET_REL				Type	=	1						/*	Relocatable.	*/

			167	 	 ET_EXEC			Type	=	2						/*	Executable.	*/

			168	 	 ET_DYN				Type	=	3						/*	Shared	object.	*/

			169	 	 ET_CORE			Type	=	4						/*	Core	file.	*/

			170	 	 ET_LOOS			Type	=	0xfe00	/*	First	operating	system	specific.	*/

			171	 	 ET_HIOS			Type	=	0xfeff	/*	Last	operating	system-specific.	*/

			172	 	 ET_LOPROC	Type	=	0xff00	/*	First	processor-specific.	*/

			173	 	 ET_HIPROC	Type	=	0xffff	/*	Last	processor-specific.	*/

			174)

			175	

			176	 var	typeStrings	=	[]intName{

			177	 	 {0,	"ET_NONE"},

			178	 	 {1,	"ET_REL"},

			179	 	 {2,	"ET_EXEC"},

			180	 	 {3,	"ET_DYN"},

			181	 	 {4,	"ET_CORE"},

			182	 	 {0xfe00,	"ET_LOOS"},

			183	 	 {0xfeff,	"ET_HIOS"},

			184	 	 {0xff00,	"ET_LOPROC"},

			185	 	 {0xffff,	"ET_HIPROC"},

			186	 }

			187	

			188	 func	(i	Type)	String()	string			{	return	stringName(uint32(i),	typeStrings,	false)	}

			189	 func	(i	Type)	GoString()	string	{	return	stringName(uint32(i),	typeStrings,	true)	}

			190	

			191	 //	Machine	is	found	in	Header.Machine.

			192	 type	Machine	uint16

			193	

			194	 const	(

			195	 	 EM_NONE								Machine	=	0		/*	Unknown	machine.	*/

			196	 	 EM_M32									Machine	=	1		/*	AT&T	WE32100.	*/

			197	 	 EM_SPARC							Machine	=	2		/*	Sun	SPARC.	*/

			198	 	 EM_386									Machine	=	3		/*	Intel	i386.	*/

			199	 	 EM_68K									Machine	=	4		/*	Motorola	68000.	*/

			200	 	 EM_88K									Machine	=	5		/*	Motorola	88000.	*/

			201	 	 EM_860									Machine	=	7		/*	Intel	i860.	*/

			202	 	 EM_MIPS								Machine	=	8		/*	MIPS	R3000	Big-Endian	only.	*/

			203	 	 EM_S370								Machine	=	9		/*	IBM	System/370.	*/

			204	 	 EM_MIPS_RS3_LE	Machine	=	10	/*	MIPS	R3000	Little-Endian.	*/

			205	 	 EM_PARISC						Machine	=	15	/*	HP	PA-RISC.	*/

			206	 	 EM_VPP500						Machine	=	17	/*	Fujitsu	VPP500.	*/

			207	 	 EM_SPARC32PLUS	Machine	=	18	/*	SPARC	v8plus.	*/

			208	 	 EM_960									Machine	=	19	/*	Intel	80960.	*/

			209	 	 EM_PPC									Machine	=	20	/*	PowerPC	32-bit.	*/

			210	 	 EM_PPC64							Machine	=	21	/*	PowerPC	64-bit.	*/

			211	 	 EM_S390								Machine	=	22	/*	IBM	System/390.	*/

			212	 	 EM_V800								Machine	=	36	/*	NEC	V800.	*/

			213	 	 EM_FR20								Machine	=	37	/*	Fujitsu	FR20.	*/

			214	 	 EM_RH32								Machine	=	38	/*	TRW	RH-32.	*/

			215	 	 EM_RCE									Machine	=	39	/*	Motorola	RCE.	*/

			216	 	 EM_ARM									Machine	=	40	/*	ARM.	*/

			217	 	 EM_SH										Machine	=	42	/*	Hitachi	SH.	*/

			218	 	 EM_SPARCV9					Machine	=	43	/*	SPARC	v9	64-bit.	*/

			219	 	 EM_TRICORE					Machine	=	44	/*	Siemens	TriCore	embedded	processor.	*/

			220	 	 EM_ARC									Machine	=	45	/*	Argonaut	RISC	Core.	*/

			221	 	 EM_H8_300						Machine	=	46	/*	Hitachi	H8/300.	*/

			222	 	 EM_H8_300H					Machine	=	47	/*	Hitachi	H8/300H.	*/

			223	 	 EM_H8S									Machine	=	48	/*	Hitachi	H8S.	*/

			224	 	 EM_H8_500						Machine	=	49	/*	Hitachi	H8/500.	*/

			225	 	 EM_IA_64							Machine	=	50	/*	Intel	IA-64	Processor.	*/

			226	 	 EM_MIPS_X						Machine	=	51	/*	Stanford	MIPS-X.	*/

			227	 	 EM_COLDFIRE				Machine	=	52	/*	Motorola	ColdFire.	*/

			228	 	 EM_68HC12						Machine	=	53	/*	Motorola	M68HC12.	*/

			229	 	 EM_MMA									Machine	=	54	/*	Fujitsu	MMA.	*/

			230	 	 EM_PCP									Machine	=	55	/*	Siemens	PCP.	*/

			231	 	 EM_NCPU								Machine	=	56	/*	Sony	nCPU.	*/

			232	 	 EM_NDR1								Machine	=	57	/*	Denso	NDR1	microprocessor.	*/

			233	 	 EM_STARCORE				Machine	=	58	/*	Motorola	Star*Core	processor.	*/

			234	 	 EM_ME16								Machine	=	59	/*	Toyota	ME16	processor.	*/

			235	 	 EM_ST100							Machine	=	60	/*	STMicroelectronics	ST100	processor.	*/

			236	 	 EM_TINYJ							Machine	=	61	/*	Advanced	Logic	Corp.	TinyJ	processor.	*/

			237	 	 EM_X86_64						Machine	=	62	/*	Advanced	Micro	Devices	x86-64	*/

			238	

			239	 	 /*	Non-standard	or	deprecated.	*/

			240	 	 EM_486									Machine	=	6						/*	Intel	i486.	*/

			241	 	 EM_MIPS_RS4_BE	Machine	=	10					/*	MIPS	R4000	Big-Endian	*/

			242	 	 EM_ALPHA_STD			Machine	=	41					/*	Digital	Alpha	(standard	value).	*/

			243	 	 EM_ALPHA							Machine	=	0x9026	/*	Alpha	(written	in	the	absence	of	an	ABI)	*/

			244)

			245	

			246	 var	machineStrings	=	[]intName{

			247	 	 {0,	"EM_NONE"},

			248	 	 {1,	"EM_M32"},

			249	 	 {2,	"EM_SPARC"},

			250	 	 {3,	"EM_386"},

			251	 	 {4,	"EM_68K"},

			252	 	 {5,	"EM_88K"},

			253	 	 {7,	"EM_860"},

			254	 	 {8,	"EM_MIPS"},

			255	 	 {9,	"EM_S370"},

			256	 	 {10,	"EM_MIPS_RS3_LE"},

			257	 	 {15,	"EM_PARISC"},

			258	 	 {17,	"EM_VPP500"},

			259	 	 {18,	"EM_SPARC32PLUS"},

			260	 	 {19,	"EM_960"},

			261	 	 {20,	"EM_PPC"},

			262	 	 {21,	"EM_PPC64"},

			263	 	 {22,	"EM_S390"},

			264	 	 {36,	"EM_V800"},

			265	 	 {37,	"EM_FR20"},

			266	 	 {38,	"EM_RH32"},

			267	 	 {39,	"EM_RCE"},

			268	 	 {40,	"EM_ARM"},

			269	 	 {42,	"EM_SH"},

			270	 	 {43,	"EM_SPARCV9"},

			271	 	 {44,	"EM_TRICORE"},

			272	 	 {45,	"EM_ARC"},

			273	 	 {46,	"EM_H8_300"},

			274	 	 {47,	"EM_H8_300H"},

			275	 	 {48,	"EM_H8S"},

			276	 	 {49,	"EM_H8_500"},

			277	 	 {50,	"EM_IA_64"},

			278	 	 {51,	"EM_MIPS_X"},

			279	 	 {52,	"EM_COLDFIRE"},

			280	 	 {53,	"EM_68HC12"},

			281	 	 {54,	"EM_MMA"},

			282	 	 {55,	"EM_PCP"},

			283	 	 {56,	"EM_NCPU"},

			284	 	 {57,	"EM_NDR1"},

			285	 	 {58,	"EM_STARCORE"},

			286	 	 {59,	"EM_ME16"},

			287	 	 {60,	"EM_ST100"},

			288	 	 {61,	"EM_TINYJ"},

			289	 	 {62,	"EM_X86_64"},

			290	

			291	 	 /*	Non-standard	or	deprecated.	*/

			292	 	 {6,	"EM_486"},

			293	 	 {10,	"EM_MIPS_RS4_BE"},

			294	 	 {41,	"EM_ALPHA_STD"},

			295	 	 {0x9026,	"EM_ALPHA"},

			296	 }

			297	

			298	 func	(i	Machine)	String()	string			{	return	stringName(uint32(i),	machineStrings,	false)	}

			299	 func	(i	Machine)	GoString()	string	{	return	stringName(uint32(i),	machineStrings,	true)	}

			300	

			301	 //	Special	section	indices.

			302	 type	SectionIndex	int

			303	

			304	 const	(

			305	 	 SHN_UNDEF					SectionIndex	=	0						/*	Undefined,	missing,	irrelevant.	*/

			306	 	 SHN_LORESERVE	SectionIndex	=	0xff00	/*	First	of	reserved	range.	*/

			307	 	 SHN_LOPROC				SectionIndex	=	0xff00	/*	First	processor-specific.	*/

			308	 	 SHN_HIPROC				SectionIndex	=	0xff1f	/*	Last	processor-specific.	*/

			309	 	 SHN_LOOS						SectionIndex	=	0xff20	/*	First	operating	system-specific.	*/

			310	 	 SHN_HIOS						SectionIndex	=	0xff3f	/*	Last	operating	system-specific.	*/

			311	 	 SHN_ABS							SectionIndex	=	0xfff1	/*	Absolute	values.	*/

			312	 	 SHN_COMMON				SectionIndex	=	0xfff2	/*	Common	data.	*/

			313	 	 SHN_XINDEX				SectionIndex	=	0xffff	/*	Escape	--	index	stored	elsewhere.	*/

			314	 	 SHN_HIRESERVE	SectionIndex	=	0xffff	/*	Last	of	reserved	range.	*/

			315)

			316	

			317	 var	shnStrings	=	[]intName{

			318	 	 {0,	"SHN_UNDEF"},

			319	 	 {0xff00,	"SHN_LOPROC"},

			320	 	 {0xff20,	"SHN_LOOS"},

			321	 	 {0xfff1,	"SHN_ABS"},

			322	 	 {0xfff2,	"SHN_COMMON"},

			323	 	 {0xffff,	"SHN_XINDEX"},

			324	 }

			325	

			326	 func	(i	SectionIndex)	String()	string			{	return	stringName(uint32(i),	shnStrings,	false)	}

			327	 func	(i	SectionIndex)	GoString()	string	{	return	stringName(uint32(i),	shnStrings,	true)	}

			328	

			329	 //	Section	type.

			330	 type	SectionType	uint32

			331	

			332	 const	(

			333	 	 SHT_NULL											SectionType	=	0										/*	inactive	*/

			334	 	 SHT_PROGBITS							SectionType	=	1										/*	program	defined	information	*/

			335	 	 SHT_SYMTAB									SectionType	=	2										/*	symbol	table	section	*/

			336	 	 SHT_STRTAB									SectionType	=	3										/*	string	table	section	*/

			337	 	 SHT_RELA											SectionType	=	4										/*	relocation	section	with	addends	*/

			338	 	 SHT_HASH											SectionType	=	5										/*	symbol	hash	table	section	*/

			339	 	 SHT_DYNAMIC								SectionType	=	6										/*	dynamic	section	*/

			340	 	 SHT_NOTE											SectionType	=	7										/*	note	section	*/

			341	 	 SHT_NOBITS									SectionType	=	8										/*	no	space	section	*/

			342	 	 SHT_REL												SectionType	=	9										/*	relocation	section	-	no	addends	*/

			343	 	 SHT_SHLIB										SectionType	=	10									/*	reserved	-	purpose	unknown	*/

			344	 	 SHT_DYNSYM									SectionType	=	11									/*	dynamic	symbol	table	section	*/

			345	 	 SHT_INIT_ARRAY					SectionType	=	14									/*	Initialization	function	pointers.	*/

			346	 	 SHT_FINI_ARRAY					SectionType	=	15									/*	Termination	function	pointers.	*/

			347	 	 SHT_PREINIT_ARRAY		SectionType	=	16									/*	Pre-initialization	function	ptrs.	*/

			348	 	 SHT_GROUP										SectionType	=	17									/*	Section	group.	*/

			349	 	 SHT_SYMTAB_SHNDX			SectionType	=	18									/*	Section	indexes	(see	SHN_XINDEX).	*/

			350	 	 SHT_LOOS											SectionType	=	0x60000000	/*	First	of	OS	specific	semantics	*/

			351	 	 SHT_GNU_ATTRIBUTES	SectionType	=	0x6ffffff5	/*	GNU	object	attributes	*/

			352	 	 SHT_GNU_HASH							SectionType	=	0x6ffffff6	/*	GNU	hash	table	*/

			353	 	 SHT_GNU_LIBLIST				SectionType	=	0x6ffffff7	/*	GNU	prelink	library	list	*/

			354	 	 SHT_GNU_VERDEF					SectionType	=	0x6ffffffd	/*	GNU	version	definition	section	*/

			355	 	 SHT_GNU_VERNEED				SectionType	=	0x6ffffffe	/*	GNU	version	needs	section	*/

			356	 	 SHT_GNU_VERSYM					SectionType	=	0x6fffffff	/*	GNU	version	symbol	table	*/

			357	 	 SHT_HIOS											SectionType	=	0x6fffffff	/*	Last	of	OS	specific	semantics	*/

			358	 	 SHT_LOPROC									SectionType	=	0x70000000	/*	reserved	range	for	processor	*/

			359	 	 SHT_HIPROC									SectionType	=	0x7fffffff	/*	specific	section	header	types	*/

			360	 	 SHT_LOUSER									SectionType	=	0x80000000	/*	reserved	range	for	application	*/

			361	 	 SHT_HIUSER									SectionType	=	0xffffffff	/*	specific	indexes	*/

			362)

			363	

			364	 var	shtStrings	=	[]intName{

			365	 	 {0,	"SHT_NULL"},

			366	 	 {1,	"SHT_PROGBITS"},

			367	 	 {2,	"SHT_SYMTAB"},

			368	 	 {3,	"SHT_STRTAB"},

			369	 	 {4,	"SHT_RELA"},

			370	 	 {5,	"SHT_HASH"},

			371	 	 {6,	"SHT_DYNAMIC"},

			372	 	 {7,	"SHT_NOTE"},

			373	 	 {8,	"SHT_NOBITS"},

			374	 	 {9,	"SHT_REL"},

			375	 	 {10,	"SHT_SHLIB"},

			376	 	 {11,	"SHT_DYNSYM"},

			377	 	 {14,	"SHT_INIT_ARRAY"},

			378	 	 {15,	"SHT_FINI_ARRAY"},

			379	 	 {16,	"SHT_PREINIT_ARRAY"},

			380	 	 {17,	"SHT_GROUP"},

			381	 	 {18,	"SHT_SYMTAB_SHNDX"},

			382	 	 {0x60000000,	"SHT_LOOS"},

			383	 	 {0x6ffffff5,	"SHT_GNU_ATTRIBUTES"},

			384	 	 {0x6ffffff6,	"SHT_GNU_HASH"},

			385	 	 {0x6ffffff7,	"SHT_GNU_LIBLIST"},

			386	 	 {0x6ffffffd,	"SHT_GNU_VERDEF"},

			387	 	 {0x6ffffffe,	"SHT_GNU_VERNEED"},

			388	 	 {0x6fffffff,	"SHT_GNU_VERSYM"},

			389	 	 {0x70000000,	"SHT_LOPROC"},

			390	 	 {0x7fffffff,	"SHT_HIPROC"},

			391	 	 {0x80000000,	"SHT_LOUSER"},

			392	 	 {0xffffffff,	"SHT_HIUSER"},

			393	 }

			394	

			395	 func	(i	SectionType)	String()	string			{	return	stringName(uint32(i),	shtStrings,	false)	}

			396	 func	(i	SectionType)	GoString()	string	{	return	stringName(uint32(i),	shtStrings,	true)	}

			397	

			398	 //	Section	flags.

			399	 type	SectionFlag	uint32

			400	

			401	 const	(

			402	 	 SHF_WRITE												SectionFlag	=	0x1								/*	Section	contains	writable	data.	*/

			403	 	 SHF_ALLOC												SectionFlag	=	0x2								/*	Section	occupies	memory.	*/

			404	 	 SHF_EXECINSTR								SectionFlag	=	0x4								/*	Section	contains	instructions.	*/

			405	 	 SHF_MERGE												SectionFlag	=	0x10							/*	Section	may	be	merged.	*/

			406	 	 SHF_STRINGS										SectionFlag	=	0x20							/*	Section	contains	strings.	*/

			407	 	 SHF_INFO_LINK								SectionFlag	=	0x40							/*	sh_info	holds	section	index.	*/

			408	 	 SHF_LINK_ORDER							SectionFlag	=	0x80							/*	Special	ordering	requirements.	*/

			409	 	 SHF_OS_NONCONFORMING	SectionFlag	=	0x100						/*	OS-specific	processing	required.	*/

			410	 	 SHF_GROUP												SectionFlag	=	0x200						/*	Member	of	section	group.	*/

			411	 	 SHF_TLS														SectionFlag	=	0x400						/*	Section	contains	TLS	data.	*/

			412	 	 SHF_MASKOS											SectionFlag	=	0x0ff00000	/*	OS-specific	semantics.	*/

			413	 	 SHF_MASKPROC									SectionFlag	=	0xf0000000	/*	Processor-specific	semantics.	*/

			414)

			415	

			416	 var	shfStrings	=	[]intName{

			417	 	 {0x1,	"SHF_WRITE"},

			418	 	 {0x2,	"SHF_ALLOC"},

			419	 	 {0x4,	"SHF_EXECINSTR"},

			420	 	 {0x10,	"SHF_MERGE"},

			421	 	 {0x20,	"SHF_STRINGS"},

			422	 	 {0x40,	"SHF_INFO_LINK"},

			423	 	 {0x80,	"SHF_LINK_ORDER"},

			424	 	 {0x100,	"SHF_OS_NONCONFORMING"},

			425	 	 {0x200,	"SHF_GROUP"},

			426	 	 {0x400,	"SHF_TLS"},

			427	 }

			428	

			429	 func	(i	SectionFlag)	String()	string			{	return	flagName(uint32(i),	shfStrings,	false)	}

			430	 func	(i	SectionFlag)	GoString()	string	{	return	flagName(uint32(i),	shfStrings,	true)	}

			431	

			432	 //	Prog.Type

			433	 type	ProgType	int

			434	

			435	 const	(

			436	 	 PT_NULL				ProgType	=	0										/*	Unused	entry.	*/

			437	 	 PT_LOAD				ProgType	=	1										/*	Loadable	segment.	*/

			438	 	 PT_DYNAMIC	ProgType	=	2										/*	Dynamic	linking	information	segment.	*/

			439	 	 PT_INTERP		ProgType	=	3										/*	Pathname	of	interpreter.	*/

			440	 	 PT_NOTE				ProgType	=	4										/*	Auxiliary	information.	*/

			441	 	 PT_SHLIB			ProgType	=	5										/*	Reserved	(not	used).	*/

			442	 	 PT_PHDR				ProgType	=	6										/*	Location	of	program	header	itself.	*/

			443	 	 PT_TLS					ProgType	=	7										/*	Thread	local	storage	segment	*/

			444	 	 PT_LOOS				ProgType	=	0x60000000	/*	First	OS-specific.	*/

			445	 	 PT_HIOS				ProgType	=	0x6fffffff	/*	Last	OS-specific.	*/

			446	 	 PT_LOPROC		ProgType	=	0x70000000	/*	First	processor-specific	type.	*/

			447	 	 PT_HIPROC		ProgType	=	0x7fffffff	/*	Last	processor-specific	type.	*/

			448)

			449	

			450	 var	ptStrings	=	[]intName{

			451	 	 {0,	"PT_NULL"},

			452	 	 {1,	"PT_LOAD"},

			453	 	 {2,	"PT_DYNAMIC"},

			454	 	 {3,	"PT_INTERP"},

			455	 	 {4,	"PT_NOTE"},

			456	 	 {5,	"PT_SHLIB"},

			457	 	 {6,	"PT_PHDR"},

			458	 	 {7,	"PT_TLS"},

			459	 	 {0x60000000,	"PT_LOOS"},

			460	 	 {0x6fffffff,	"PT_HIOS"},

			461	 	 {0x70000000,	"PT_LOPROC"},

			462	 	 {0x7fffffff,	"PT_HIPROC"},

			463	 }

			464	

			465	 func	(i	ProgType)	String()	string			{	return	stringName(uint32(i),	ptStrings,	false)	}

			466	 func	(i	ProgType)	GoString()	string	{	return	stringName(uint32(i),	ptStrings,	true)	}

			467	

			468	 //	Prog.Flag

			469	 type	ProgFlag	uint32

			470	

			471	 const	(

			472	 	 PF_X								ProgFlag	=	0x1								/*	Executable.	*/

			473	 	 PF_W								ProgFlag	=	0x2								/*	Writable.	*/

			474	 	 PF_R								ProgFlag	=	0x4								/*	Readable.	*/

			475	 	 PF_MASKOS			ProgFlag	=	0x0ff00000	/*	Operating	system-specific.	*/

			476	 	 PF_MASKPROC	ProgFlag	=	0xf0000000	/*	Processor-specific.	*/

			477)

			478	

			479	 var	pfStrings	=	[]intName{

			480	 	 {0x1,	"PF_X"},

			481	 	 {0x2,	"PF_W"},

			482	 	 {0x4,	"PF_R"},

			483	 }

			484	

			485	 func	(i	ProgFlag)	String()	string			{	return	flagName(uint32(i),	pfStrings,	false)	}

			486	 func	(i	ProgFlag)	GoString()	string	{	return	flagName(uint32(i),	pfStrings,	true)	}

			487	

			488	 //	Dyn.Tag

			489	 type	DynTag	int

			490	

			491	 const	(

			492	 	 DT_NULL									DynTag	=	0		/*	Terminating	entry.	*/

			493	 	 DT_NEEDED							DynTag	=	1		/*	String	table	offset	of	a	needed	shared	library.	*/

			494	 	 DT_PLTRELSZ					DynTag	=	2		/*	Total	size	in	bytes	of	PLT	relocations.	*/

			495	 	 DT_PLTGOT							DynTag	=	3		/*	Processor-dependent	address.	*/

			496	 	 DT_HASH									DynTag	=	4		/*	Address	of	symbol	hash	table.	*/

			497	 	 DT_STRTAB							DynTag	=	5		/*	Address	of	string	table.	*/

			498	 	 DT_SYMTAB							DynTag	=	6		/*	Address	of	symbol	table.	*/

			499	 	 DT_RELA									DynTag	=	7		/*	Address	of	ElfNN_Rela	relocations.	*/

			500	 	 DT_RELASZ							DynTag	=	8		/*	Total	size	of	ElfNN_Rela	relocations.	*/

			501	 	 DT_RELAENT						DynTag	=	9		/*	Size	of	each	ElfNN_Rela	relocation	entry.	*/

			502	 	 DT_STRSZ								DynTag	=	10	/*	Size	of	string	table.	*/

			503	 	 DT_SYMENT							DynTag	=	11	/*	Size	of	each	symbol	table	entry.	*/

			504	 	 DT_INIT									DynTag	=	12	/*	Address	of	initialization	function.	*/

			505	 	 DT_FINI									DynTag	=	13	/*	Address	of	finalization	function.	*/

			506	 	 DT_SONAME							DynTag	=	14	/*	String	table	offset	of	shared	object	name.	*/

			507	 	 DT_RPATH								DynTag	=	15	/*	String	table	offset	of	library	path.	[sup]	*/

			508	 	 DT_SYMBOLIC					DynTag	=	16	/*	Indicates	"symbolic"	linking.	[sup]	*/

			509	 	 DT_REL										DynTag	=	17	/*	Address	of	ElfNN_Rel	relocations.	*/

			510	 	 DT_RELSZ								DynTag	=	18	/*	Total	size	of	ElfNN_Rel	relocations.	*/

			511	 	 DT_RELENT							DynTag	=	19	/*	Size	of	each	ElfNN_Rel	relocation.	*/

			512	 	 DT_PLTREL							DynTag	=	20	/*	Type	of	relocation	used	for	PLT.	*/

			513	 	 DT_DEBUG								DynTag	=	21	/*	Reserved	(not	used).	*/

			514	 	 DT_TEXTREL						DynTag	=	22	/*	Indicates	there	may	be	relocations	in	non-writable	segments.	[sup]	*/

			515	 	 DT_JMPREL							DynTag	=	23	/*	Address	of	PLT	relocations.	*/

			516	 	 DT_BIND_NOW					DynTag	=	24	/*	[sup]	*/

			517	 	 DT_INIT_ARRAY			DynTag	=	25	/*	Address	of	the	array	of	pointers	to	initialization	functions	*/

			518	 	 DT_FINI_ARRAY			DynTag	=	26	/*	Address	of	the	array	of	pointers	to	termination	functions	*/

			519	 	 DT_INIT_ARRAYSZ	DynTag	=	27	/*	Size	in	bytes	of	the	array	of	initialization	functions.	*/

			520	 	 DT_FINI_ARRAYSZ	DynTag	=	28	/*	Size	in	bytes	of	the	array	of	terminationfunctions.	*/

			521	 	 DT_RUNPATH						DynTag	=	29	/*	String	table	offset	of	a	null-terminated	library	search	path	string.	*/

			522	 	 DT_FLAGS								DynTag	=	30	/*	Object	specific	flag	values.	*/

			523	 	 DT_ENCODING					DynTag	=	32	/*	Values	greater	than	or	equal	to	DT_ENCODING

			524	 	 			and	less	than	DT_LOOS	follow	the	rules	for

			525	 	 			the	interpretation	of	the	d_un	union

			526	 	 			as	follows:	even	==	'd_ptr',	even	==	'd_val'

			527	 	 			or	none	*/

			528	 	 DT_PREINIT_ARRAY			DynTag	=	32									/*	Address	of	the	array	of	pointers	to	pre-initialization	functions.	*/

			529	 	 DT_PREINIT_ARRAYSZ	DynTag	=	33									/*	Size	in	bytes	of	the	array	of	pre-initialization	functions.	*/

			530	 	 DT_LOOS												DynTag	=	0x6000000d	/*	First	OS-specific	*/

			531	 	 DT_HIOS												DynTag	=	0x6ffff000	/*	Last	OS-specific	*/

			532	 	 DT_VERSYM										DynTag	=	0x6ffffff0

			533	 	 DT_VERNEED									DynTag	=	0x6ffffffe

			534	 	 DT_VERNEEDNUM						DynTag	=	0x6fffffff

			535	 	 DT_LOPROC										DynTag	=	0x70000000	/*	First	processor-specific	type.	*/

			536	 	 DT_HIPROC										DynTag	=	0x7fffffff	/*	Last	processor-specific	type.	*/

			537)

			538	

			539	 var	dtStrings	=	[]intName{

			540	 	 {0,	"DT_NULL"},

			541	 	 {1,	"DT_NEEDED"},

			542	 	 {2,	"DT_PLTRELSZ"},

			543	 	 {3,	"DT_PLTGOT"},

			544	 	 {4,	"DT_HASH"},

			545	 	 {5,	"DT_STRTAB"},

			546	 	 {6,	"DT_SYMTAB"},

			547	 	 {7,	"DT_RELA"},

			548	 	 {8,	"DT_RELASZ"},

			549	 	 {9,	"DT_RELAENT"},

			550	 	 {10,	"DT_STRSZ"},

			551	 	 {11,	"DT_SYMENT"},

			552	 	 {12,	"DT_INIT"},

			553	 	 {13,	"DT_FINI"},

			554	 	 {14,	"DT_SONAME"},

			555	 	 {15,	"DT_RPATH"},

			556	 	 {16,	"DT_SYMBOLIC"},

			557	 	 {17,	"DT_REL"},

			558	 	 {18,	"DT_RELSZ"},

			559	 	 {19,	"DT_RELENT"},

			560	 	 {20,	"DT_PLTREL"},

			561	 	 {21,	"DT_DEBUG"},

			562	 	 {22,	"DT_TEXTREL"},

			563	 	 {23,	"DT_JMPREL"},

			564	 	 {24,	"DT_BIND_NOW"},

			565	 	 {25,	"DT_INIT_ARRAY"},

			566	 	 {26,	"DT_FINI_ARRAY"},

			567	 	 {27,	"DT_INIT_ARRAYSZ"},

			568	 	 {28,	"DT_FINI_ARRAYSZ"},

			569	 	 {29,	"DT_RUNPATH"},

			570	 	 {30,	"DT_FLAGS"},

			571	 	 {32,	"DT_ENCODING"},

			572	 	 {32,	"DT_PREINIT_ARRAY"},

			573	 	 {33,	"DT_PREINIT_ARRAYSZ"},

			574	 	 {0x6000000d,	"DT_LOOS"},

			575	 	 {0x6ffff000,	"DT_HIOS"},

			576	 	 {0x6ffffff0,	"DT_VERSYM"},

			577	 	 {0x6ffffffe,	"DT_VERNEED"},

			578	 	 {0x6fffffff,	"DT_VERNEEDNUM"},

			579	 	 {0x70000000,	"DT_LOPROC"},

			580	 	 {0x7fffffff,	"DT_HIPROC"},

			581	 }

			582	

			583	 func	(i	DynTag)	String()	string			{	return	stringName(uint32(i),	dtStrings,	false)	}

			584	 func	(i	DynTag)	GoString()	string	{	return	stringName(uint32(i),	dtStrings,	true)	}

			585	

			586	 //	DT_FLAGS	values.

			587	 type	DynFlag	int

			588	

			589	 const	(

			590	 	 DF_ORIGIN	DynFlag	=	0x0001	/*	Indicates	that	the	object	being	loaded	may

			591	 	 			make	reference	to	the

			592	 	 			$ORIGIN	substitution	string	*/

			593	 	 DF_SYMBOLIC	DynFlag	=	0x0002	/*	Indicates	"symbolic"	linking.	*/

			594	 	 DF_TEXTREL		DynFlag	=	0x0004	/*	Indicates	there	may	be	relocations	in	non-writable	segments.	*/

			595	 	 DF_BIND_NOW	DynFlag	=	0x0008	/*	Indicates	that	the	dynamic	linker	should

			596	 	 			process	all	relocations	for	the	object

			597	 	 			containing	this	entry	before	transferring

			598	 	 			control	to	the	program.	*/

			599	 	 DF_STATIC_TLS	DynFlag	=	0x0010	/*	Indicates	that	the	shared	object	or

			600	 	 			executable	contains	code	using	a	static

			601	 	 			thread-local	storage	scheme.	*/

			602)

			603	

			604	 var	dflagStrings	=	[]intName{

			605	 	 {0x0001,	"DF_ORIGIN"},

			606	 	 {0x0002,	"DF_SYMBOLIC"},

			607	 	 {0x0004,	"DF_TEXTREL"},

			608	 	 {0x0008,	"DF_BIND_NOW"},

			609	 	 {0x0010,	"DF_STATIC_TLS"},

			610	 }

			611	

			612	 func	(i	DynFlag)	String()	string			{	return	flagName(uint32(i),	dflagStrings,	false)	}

			613	 func	(i	DynFlag)	GoString()	string	{	return	flagName(uint32(i),	dflagStrings,	true)	}

			614	

			615	 //	NType	values;	used	in	core	files.

			616	 type	NType	int

			617	

			618	 const	(

			619	 	 NT_PRSTATUS	NType	=	1	/*	Process	status.	*/

			620	 	 NT_FPREGSET	NType	=	2	/*	Floating	point	registers.	*/

			621	 	 NT_PRPSINFO	NType	=	3	/*	Process	state	info.	*/

			622)

			623	

			624	 var	ntypeStrings	=	[]intName{

			625	 	 {1,	"NT_PRSTATUS"},

			626	 	 {2,	"NT_FPREGSET"},

			627	 	 {3,	"NT_PRPSINFO"},

			628	 }

			629	

			630	 func	(i	NType)	String()	string			{	return	stringName(uint32(i),	ntypeStrings,	false)	}

			631	 func	(i	NType)	GoString()	string	{	return	stringName(uint32(i),	ntypeStrings,	true)	}

			632	

			633	 /*	Symbol	Binding	-	ELFNN_ST_BIND	-	st_info	*/

			634	 type	SymBind	int

			635	

			636	 const	(

			637	 	 STB_LOCAL		SymBind	=	0		/*	Local	symbol	*/

			638	 	 STB_GLOBAL	SymBind	=	1		/*	Global	symbol	*/

			639	 	 STB_WEAK			SymBind	=	2		/*	like	global	-	lower	precedence	*/

			640	 	 STB_LOOS			SymBind	=	10	/*	Reserved	range	for	operating	system	*/

			641	 	 STB_HIOS			SymBind	=	12	/*			specific	semantics.	*/

			642	 	 STB_LOPROC	SymBind	=	13	/*	reserved	range	for	processor	*/

			643	 	 STB_HIPROC	SymBind	=	15	/*			specific	semantics.	*/

			644)

			645	

			646	 var	stbStrings	=	[]intName{

			647	 	 {0,	"STB_LOCAL"},

			648	 	 {1,	"STB_GLOBAL"},

			649	 	 {2,	"STB_WEAK"},

			650	 	 {10,	"STB_LOOS"},

			651	 	 {12,	"STB_HIOS"},

			652	 	 {13,	"STB_LOPROC"},

			653	 	 {15,	"STB_HIPROC"},

			654	 }

			655	

			656	 func	(i	SymBind)	String()	string			{	return	stringName(uint32(i),	stbStrings,	false)	}

			657	 func	(i	SymBind)	GoString()	string	{	return	stringName(uint32(i),	stbStrings,	true)	}

			658	

			659	 /*	Symbol	type	-	ELFNN_ST_TYPE	-	st_info	*/

			660	 type	SymType	int

			661	

			662	 const	(

			663	 	 STT_NOTYPE		SymType	=	0		/*	Unspecified	type.	*/

			664	 	 STT_OBJECT		SymType	=	1		/*	Data	object.	*/

			665	 	 STT_FUNC				SymType	=	2		/*	Function.	*/

			666	 	 STT_SECTION	SymType	=	3		/*	Section.	*/

			667	 	 STT_FILE				SymType	=	4		/*	Source	file.	*/

			668	 	 STT_COMMON		SymType	=	5		/*	Uninitialized	common	block.	*/

			669	 	 STT_TLS					SymType	=	6		/*	TLS	object.	*/

			670	 	 STT_LOOS				SymType	=	10	/*	Reserved	range	for	operating	system	*/

			671	 	 STT_HIOS				SymType	=	12	/*			specific	semantics.	*/

			672	 	 STT_LOPROC		SymType	=	13	/*	reserved	range	for	processor	*/

			673	 	 STT_HIPROC		SymType	=	15	/*			specific	semantics.	*/

			674)

			675	

			676	 var	sttStrings	=	[]intName{

			677	 	 {0,	"STT_NOTYPE"},

			678	 	 {1,	"STT_OBJECT"},

			679	 	 {2,	"STT_FUNC"},

			680	 	 {3,	"STT_SECTION"},

			681	 	 {4,	"STT_FILE"},

			682	 	 {5,	"STT_COMMON"},

			683	 	 {6,	"STT_TLS"},

			684	 	 {10,	"STT_LOOS"},

			685	 	 {12,	"STT_HIOS"},

			686	 	 {13,	"STT_LOPROC"},

			687	 	 {15,	"STT_HIPROC"},

			688	 }

			689	

			690	 func	(i	SymType)	String()	string			{	return	stringName(uint32(i),	sttStrings,	false)	}

			691	 func	(i	SymType)	GoString()	string	{	return	stringName(uint32(i),	sttStrings,	true)	}

			692	

			693	 /*	Symbol	visibility	-	ELFNN_ST_VISIBILITY	-	st_other	*/

			694	 type	SymVis	int

			695	

			696	 const	(

			697	 	 STV_DEFAULT			SymVis	=	0x0	/*	Default	visibility	(see	binding).	*/

			698	 	 STV_INTERNAL		SymVis	=	0x1	/*	Special	meaning	in	relocatable	objects.	*/

			699	 	 STV_HIDDEN				SymVis	=	0x2	/*	Not	visible.	*/

			700	 	 STV_PROTECTED	SymVis	=	0x3	/*	Visible	but	not	preemptible.	*/

			701)

			702	

			703	 var	stvStrings	=	[]intName{

			704	 	 {0x0,	"STV_DEFAULT"},

			705	 	 {0x1,	"STV_INTERNAL"},

			706	 	 {0x2,	"STV_HIDDEN"},

			707	 	 {0x3,	"STV_PROTECTED"},

			708	 }

			709	

			710	 func	(i	SymVis)	String()	string			{	return	stringName(uint32(i),	stvStrings,	false)	}

			711	 func	(i	SymVis)	GoString()	string	{	return	stringName(uint32(i),	stvStrings,	true)	}

			712	

			713	 /*

			714	 	*	Relocation	types.

			715	 	*/

			716	

			717	 //	Relocation	types	for	x86-64.

			718	 type	R_X86_64	int

			719	

			720	 const	(

			721	 	 R_X86_64_NONE					R_X86_64	=	0		/*	No	relocation.	*/

			722	 	 R_X86_64_64							R_X86_64	=	1		/*	Add	64	bit	symbol	value.	*/

			723	 	 R_X86_64_PC32					R_X86_64	=	2		/*	PC-relative	32	bit	signed	sym	value.	*/

			724	 	 R_X86_64_GOT32				R_X86_64	=	3		/*	PC-relative	32	bit	GOT	offset.	*/

			725	 	 R_X86_64_PLT32				R_X86_64	=	4		/*	PC-relative	32	bit	PLT	offset.	*/

			726	 	 R_X86_64_COPY					R_X86_64	=	5		/*	Copy	data	from	shared	object.	*/

			727	 	 R_X86_64_GLOB_DAT	R_X86_64	=	6		/*	Set	GOT	entry	to	data	address.	*/

			728	 	 R_X86_64_JMP_SLOT	R_X86_64	=	7		/*	Set	GOT	entry	to	code	address.	*/

			729	 	 R_X86_64_RELATIVE	R_X86_64	=	8		/*	Add	load	address	of	shared	object.	*/

			730	 	 R_X86_64_GOTPCREL	R_X86_64	=	9		/*	Add	32	bit	signed	pcrel	offset	to	GOT.	*/

			731	 	 R_X86_64_32							R_X86_64	=	10	/*	Add	32	bit	zero	extended	symbol	value	*/

			732	 	 R_X86_64_32S						R_X86_64	=	11	/*	Add	32	bit	sign	extended	symbol	value	*/

			733	 	 R_X86_64_16							R_X86_64	=	12	/*	Add	16	bit	zero	extended	symbol	value	*/

			734	 	 R_X86_64_PC16					R_X86_64	=	13	/*	Add	16	bit	signed	extended	pc	relative	symbol	value	*/

			735	 	 R_X86_64_8								R_X86_64	=	14	/*	Add	8	bit	zero	extended	symbol	value	*/

			736	 	 R_X86_64_PC8						R_X86_64	=	15	/*	Add	8	bit	signed	extended	pc	relative	symbol	value	*/

			737	 	 R_X86_64_DTPMOD64	R_X86_64	=	16	/*	ID	of	module	containing	symbol	*/

			738	 	 R_X86_64_DTPOFF64	R_X86_64	=	17	/*	Offset	in	TLS	block	*/

			739	 	 R_X86_64_TPOFF64		R_X86_64	=	18	/*	Offset	in	static	TLS	block	*/

			740	 	 R_X86_64_TLSGD				R_X86_64	=	19	/*	PC	relative	offset	to	GD	GOT	entry	*/

			741	 	 R_X86_64_TLSLD				R_X86_64	=	20	/*	PC	relative	offset	to	LD	GOT	entry	*/

			742	 	 R_X86_64_DTPOFF32	R_X86_64	=	21	/*	Offset	in	TLS	block	*/

			743	 	 R_X86_64_GOTTPOFF	R_X86_64	=	22	/*	PC	relative	offset	to	IE	GOT	entry	*/

			744	 	 R_X86_64_TPOFF32		R_X86_64	=	23	/*	Offset	in	static	TLS	block	*/

			745)

			746	

			747	 var	rx86_64Strings	=	[]intName{

			748	 	 {0,	"R_X86_64_NONE"},

			749	 	 {1,	"R_X86_64_64"},

			750	 	 {2,	"R_X86_64_PC32"},

			751	 	 {3,	"R_X86_64_GOT32"},

			752	 	 {4,	"R_X86_64_PLT32"},

			753	 	 {5,	"R_X86_64_COPY"},

			754	 	 {6,	"R_X86_64_GLOB_DAT"},

			755	 	 {7,	"R_X86_64_JMP_SLOT"},

			756	 	 {8,	"R_X86_64_RELATIVE"},

			757	 	 {9,	"R_X86_64_GOTPCREL"},

			758	 	 {10,	"R_X86_64_32"},

			759	 	 {11,	"R_X86_64_32S"},

			760	 	 {12,	"R_X86_64_16"},

			761	 	 {13,	"R_X86_64_PC16"},

			762	 	 {14,	"R_X86_64_8"},

			763	 	 {15,	"R_X86_64_PC8"},

			764	 	 {16,	"R_X86_64_DTPMOD64"},

			765	 	 {17,	"R_X86_64_DTPOFF64"},

			766	 	 {18,	"R_X86_64_TPOFF64"},

			767	 	 {19,	"R_X86_64_TLSGD"},

			768	 	 {20,	"R_X86_64_TLSLD"},

			769	 	 {21,	"R_X86_64_DTPOFF32"},

			770	 	 {22,	"R_X86_64_GOTTPOFF"},

			771	 	 {23,	"R_X86_64_TPOFF32"},

			772	 }

			773	

			774	 func	(i	R_X86_64)	String()	string			{	return	stringName(uint32(i),	rx86_64Strings,	false)	}

			775	 func	(i	R_X86_64)	GoString()	string	{	return	stringName(uint32(i),	rx86_64Strings,	true)	}

			776	

			777	 //	Relocation	types	for	Alpha.

			778	 type	R_ALPHA	int

			779	

			780	 const	(

			781	 	 R_ALPHA_NONE											R_ALPHA	=	0		/*	No	reloc	*/

			782	 	 R_ALPHA_REFLONG								R_ALPHA	=	1		/*	Direct	32	bit	*/

			783	 	 R_ALPHA_REFQUAD								R_ALPHA	=	2		/*	Direct	64	bit	*/

			784	 	 R_ALPHA_GPREL32								R_ALPHA	=	3		/*	GP	relative	32	bit	*/

			785	 	 R_ALPHA_LITERAL								R_ALPHA	=	4		/*	GP	relative	16	bit	w/optimization	*/

			786	 	 R_ALPHA_LITUSE									R_ALPHA	=	5		/*	Optimization	hint	for	LITERAL	*/

			787	 	 R_ALPHA_GPDISP									R_ALPHA	=	6		/*	Add	displacement	to	GP	*/

			788	 	 R_ALPHA_BRADDR									R_ALPHA	=	7		/*	PC+4	relative	23	bit	shifted	*/

			789	 	 R_ALPHA_HINT											R_ALPHA	=	8		/*	PC+4	relative	16	bit	shifted	*/

			790	 	 R_ALPHA_SREL16									R_ALPHA	=	9		/*	PC	relative	16	bit	*/

			791	 	 R_ALPHA_SREL32									R_ALPHA	=	10	/*	PC	relative	32	bit	*/

			792	 	 R_ALPHA_SREL64									R_ALPHA	=	11	/*	PC	relative	64	bit	*/

			793	 	 R_ALPHA_OP_PUSH								R_ALPHA	=	12	/*	OP	stack	push	*/

			794	 	 R_ALPHA_OP_STORE							R_ALPHA	=	13	/*	OP	stack	pop	and	store	*/

			795	 	 R_ALPHA_OP_PSUB								R_ALPHA	=	14	/*	OP	stack	subtract	*/

			796	 	 R_ALPHA_OP_PRSHIFT					R_ALPHA	=	15	/*	OP	stack	right	shift	*/

			797	 	 R_ALPHA_GPVALUE								R_ALPHA	=	16

			798	 	 R_ALPHA_GPRELHIGH						R_ALPHA	=	17

			799	 	 R_ALPHA_GPRELLOW							R_ALPHA	=	18

			800	 	 R_ALPHA_IMMED_GP_16				R_ALPHA	=	19

			801	 	 R_ALPHA_IMMED_GP_HI32		R_ALPHA	=	20

			802	 	 R_ALPHA_IMMED_SCN_HI32	R_ALPHA	=	21

			803	 	 R_ALPHA_IMMED_BR_HI32		R_ALPHA	=	22

			804	 	 R_ALPHA_IMMED_LO32					R_ALPHA	=	23

			805	 	 R_ALPHA_COPY											R_ALPHA	=	24	/*	Copy	symbol	at	runtime	*/

			806	 	 R_ALPHA_GLOB_DAT							R_ALPHA	=	25	/*	Create	GOT	entry	*/

			807	 	 R_ALPHA_JMP_SLOT							R_ALPHA	=	26	/*	Create	PLT	entry	*/

			808	 	 R_ALPHA_RELATIVE							R_ALPHA	=	27	/*	Adjust	by	program	base	*/

			809)

			810	

			811	 var	ralphaStrings	=	[]intName{

			812	 	 {0,	"R_ALPHA_NONE"},

			813	 	 {1,	"R_ALPHA_REFLONG"},

			814	 	 {2,	"R_ALPHA_REFQUAD"},

			815	 	 {3,	"R_ALPHA_GPREL32"},

			816	 	 {4,	"R_ALPHA_LITERAL"},

			817	 	 {5,	"R_ALPHA_LITUSE"},

			818	 	 {6,	"R_ALPHA_GPDISP"},

			819	 	 {7,	"R_ALPHA_BRADDR"},

			820	 	 {8,	"R_ALPHA_HINT"},

			821	 	 {9,	"R_ALPHA_SREL16"},

			822	 	 {10,	"R_ALPHA_SREL32"},

			823	 	 {11,	"R_ALPHA_SREL64"},

			824	 	 {12,	"R_ALPHA_OP_PUSH"},

			825	 	 {13,	"R_ALPHA_OP_STORE"},

			826	 	 {14,	"R_ALPHA_OP_PSUB"},

			827	 	 {15,	"R_ALPHA_OP_PRSHIFT"},

			828	 	 {16,	"R_ALPHA_GPVALUE"},

			829	 	 {17,	"R_ALPHA_GPRELHIGH"},

			830	 	 {18,	"R_ALPHA_GPRELLOW"},

			831	 	 {19,	"R_ALPHA_IMMED_GP_16"},

			832	 	 {20,	"R_ALPHA_IMMED_GP_HI32"},

			833	 	 {21,	"R_ALPHA_IMMED_SCN_HI32"},

			834	 	 {22,	"R_ALPHA_IMMED_BR_HI32"},

			835	 	 {23,	"R_ALPHA_IMMED_LO32"},

			836	 	 {24,	"R_ALPHA_COPY"},

			837	 	 {25,	"R_ALPHA_GLOB_DAT"},

			838	 	 {26,	"R_ALPHA_JMP_SLOT"},

			839	 	 {27,	"R_ALPHA_RELATIVE"},

			840	 }

			841	

			842	 func	(i	R_ALPHA)	String()	string			{	return	stringName(uint32(i),	ralphaStrings,	false)	}

			843	 func	(i	R_ALPHA)	GoString()	string	{	return	stringName(uint32(i),	ralphaStrings,	true)	}

			844	

			845	 //	Relocation	types	for	ARM.

			846	 type	R_ARM	int

			847	

			848	 const	(

			849	 	 R_ARM_NONE										R_ARM	=	0	/*	No	relocation.	*/

			850	 	 R_ARM_PC24										R_ARM	=	1

			851	 	 R_ARM_ABS32									R_ARM	=	2

			852	 	 R_ARM_REL32									R_ARM	=	3

			853	 	 R_ARM_PC13										R_ARM	=	4

			854	 	 R_ARM_ABS16									R_ARM	=	5

			855	 	 R_ARM_ABS12									R_ARM	=	6

			856	 	 R_ARM_THM_ABS5						R_ARM	=	7

			857	 	 R_ARM_ABS8										R_ARM	=	8

			858	 	 R_ARM_SBREL32							R_ARM	=	9

			859	 	 R_ARM_THM_PC22						R_ARM	=	10

			860	 	 R_ARM_THM_PC8							R_ARM	=	11

			861	 	 R_ARM_AMP_VCALL9				R_ARM	=	12

			862	 	 R_ARM_SWI24									R_ARM	=	13

			863	 	 R_ARM_THM_SWI8						R_ARM	=	14

			864	 	 R_ARM_XPC25									R_ARM	=	15

			865	 	 R_ARM_THM_XPC22					R_ARM	=	16

			866	 	 R_ARM_COPY										R_ARM	=	20	/*	Copy	data	from	shared	object.	*/

			867	 	 R_ARM_GLOB_DAT						R_ARM	=	21	/*	Set	GOT	entry	to	data	address.	*/

			868	 	 R_ARM_JUMP_SLOT					R_ARM	=	22	/*	Set	GOT	entry	to	code	address.	*/

			869	 	 R_ARM_RELATIVE						R_ARM	=	23	/*	Add	load	address	of	shared	object.	*/

			870	 	 R_ARM_GOTOFF								R_ARM	=	24	/*	Add	GOT-relative	symbol	address.	*/

			871	 	 R_ARM_GOTPC									R_ARM	=	25	/*	Add	PC-relative	GOT	table	address.	*/

			872	 	 R_ARM_GOT32									R_ARM	=	26	/*	Add	PC-relative	GOT	offset.	*/

			873	 	 R_ARM_PLT32									R_ARM	=	27	/*	Add	PC-relative	PLT	offset.	*/

			874	 	 R_ARM_GNU_VTENTRY			R_ARM	=	100

			875	 	 R_ARM_GNU_VTINHERIT	R_ARM	=	101

			876	 	 R_ARM_RSBREL32						R_ARM	=	250

			877	 	 R_ARM_THM_RPC22					R_ARM	=	251

			878	 	 R_ARM_RREL32								R_ARM	=	252

			879	 	 R_ARM_RABS32								R_ARM	=	253

			880	 	 R_ARM_RPC24									R_ARM	=	254

			881	 	 R_ARM_RBASE									R_ARM	=	255

			882)

			883	

			884	 var	rarmStrings	=	[]intName{

			885	 	 {0,	"R_ARM_NONE"},

			886	 	 {1,	"R_ARM_PC24"},

			887	 	 {2,	"R_ARM_ABS32"},

			888	 	 {3,	"R_ARM_REL32"},

			889	 	 {4,	"R_ARM_PC13"},

			890	 	 {5,	"R_ARM_ABS16"},

			891	 	 {6,	"R_ARM_ABS12"},

			892	 	 {7,	"R_ARM_THM_ABS5"},

			893	 	 {8,	"R_ARM_ABS8"},

			894	 	 {9,	"R_ARM_SBREL32"},

			895	 	 {10,	"R_ARM_THM_PC22"},

			896	 	 {11,	"R_ARM_THM_PC8"},

			897	 	 {12,	"R_ARM_AMP_VCALL9"},

			898	 	 {13,	"R_ARM_SWI24"},

			899	 	 {14,	"R_ARM_THM_SWI8"},

			900	 	 {15,	"R_ARM_XPC25"},

			901	 	 {16,	"R_ARM_THM_XPC22"},

			902	 	 {20,	"R_ARM_COPY"},

			903	 	 {21,	"R_ARM_GLOB_DAT"},

			904	 	 {22,	"R_ARM_JUMP_SLOT"},

			905	 	 {23,	"R_ARM_RELATIVE"},

			906	 	 {24,	"R_ARM_GOTOFF"},

			907	 	 {25,	"R_ARM_GOTPC"},

			908	 	 {26,	"R_ARM_GOT32"},

			909	 	 {27,	"R_ARM_PLT32"},

			910	 	 {100,	"R_ARM_GNU_VTENTRY"},

			911	 	 {101,	"R_ARM_GNU_VTINHERIT"},

			912	 	 {250,	"R_ARM_RSBREL32"},

			913	 	 {251,	"R_ARM_THM_RPC22"},

			914	 	 {252,	"R_ARM_RREL32"},

			915	 	 {253,	"R_ARM_RABS32"},

			916	 	 {254,	"R_ARM_RPC24"},

			917	 	 {255,	"R_ARM_RBASE"},

			918	 }

			919	

			920	 func	(i	R_ARM)	String()	string			{	return	stringName(uint32(i),	rarmStrings,	false)	}

			921	 func	(i	R_ARM)	GoString()	string	{	return	stringName(uint32(i),	rarmStrings,	true)	}

			922	

			923	 //	Relocation	types	for	386.

			924	 type	R_386	int

			925	

			926	 const	(

			927	 	 R_386_NONE									R_386	=	0		/*	No	relocation.	*/

			928	 	 R_386_32											R_386	=	1		/*	Add	symbol	value.	*/

			929	 	 R_386_PC32									R_386	=	2		/*	Add	PC-relative	symbol	value.	*/

			930	 	 R_386_GOT32								R_386	=	3		/*	Add	PC-relative	GOT	offset.	*/

			931	 	 R_386_PLT32								R_386	=	4		/*	Add	PC-relative	PLT	offset.	*/

			932	 	 R_386_COPY									R_386	=	5		/*	Copy	data	from	shared	object.	*/

			933	 	 R_386_GLOB_DAT					R_386	=	6		/*	Set	GOT	entry	to	data	address.	*/

			934	 	 R_386_JMP_SLOT					R_386	=	7		/*	Set	GOT	entry	to	code	address.	*/

			935	 	 R_386_RELATIVE					R_386	=	8		/*	Add	load	address	of	shared	object.	*/

			936	 	 R_386_GOTOFF							R_386	=	9		/*	Add	GOT-relative	symbol	address.	*/

			937	 	 R_386_GOTPC								R_386	=	10	/*	Add	PC-relative	GOT	table	address.	*/

			938	 	 R_386_TLS_TPOFF				R_386	=	14	/*	Negative	offset	in	static	TLS	block	*/

			939	 	 R_386_TLS_IE							R_386	=	15	/*	Absolute	address	of	GOT	for	-ve	static	TLS	*/

			940	 	 R_386_TLS_GOTIE				R_386	=	16	/*	GOT	entry	for	negative	static	TLS	block	*/

			941	 	 R_386_TLS_LE							R_386	=	17	/*	Negative	offset	relative	to	static	TLS	*/

			942	 	 R_386_TLS_GD							R_386	=	18	/*	32	bit	offset	to	GOT	(index,off)	pair	*/

			943	 	 R_386_TLS_LDM						R_386	=	19	/*	32	bit	offset	to	GOT	(index,zero)	pair	*/

			944	 	 R_386_TLS_GD_32				R_386	=	24	/*	32	bit	offset	to	GOT	(index,off)	pair	*/

			945	 	 R_386_TLS_GD_PUSH		R_386	=	25	/*	pushl	instruction	for	Sun	ABI	GD	sequence	*/

			946	 	 R_386_TLS_GD_CALL		R_386	=	26	/*	call	instruction	for	Sun	ABI	GD	sequence	*/

			947	 	 R_386_TLS_GD_POP			R_386	=	27	/*	popl	instruction	for	Sun	ABI	GD	sequence	*/

			948	 	 R_386_TLS_LDM_32			R_386	=	28	/*	32	bit	offset	to	GOT	(index,zero)	pair	*/

			949	 	 R_386_TLS_LDM_PUSH	R_386	=	29	/*	pushl	instruction	for	Sun	ABI	LD	sequence	*/

			950	 	 R_386_TLS_LDM_CALL	R_386	=	30	/*	call	instruction	for	Sun	ABI	LD	sequence	*/

			951	 	 R_386_TLS_LDM_POP		R_386	=	31	/*	popl	instruction	for	Sun	ABI	LD	sequence	*/

			952	 	 R_386_TLS_LDO_32			R_386	=	32	/*	32	bit	offset	from	start	of	TLS	block	*/

			953	 	 R_386_TLS_IE_32				R_386	=	33	/*	32	bit	offset	to	GOT	static	TLS	offset	entry	*/

			954	 	 R_386_TLS_LE_32				R_386	=	34	/*	32	bit	offset	within	static	TLS	block	*/

			955	 	 R_386_TLS_DTPMOD32	R_386	=	35	/*	GOT	entry	containing	TLS	index	*/

			956	 	 R_386_TLS_DTPOFF32	R_386	=	36	/*	GOT	entry	containing	TLS	offset	*/

			957	 	 R_386_TLS_TPOFF32		R_386	=	37	/*	GOT	entry	of	-ve	static	TLS	offset	*/

			958)

			959	

			960	 var	r386Strings	=	[]intName{

			961	 	 {0,	"R_386_NONE"},

			962	 	 {1,	"R_386_32"},

			963	 	 {2,	"R_386_PC32"},

			964	 	 {3,	"R_386_GOT32"},

			965	 	 {4,	"R_386_PLT32"},

			966	 	 {5,	"R_386_COPY"},

			967	 	 {6,	"R_386_GLOB_DAT"},

			968	 	 {7,	"R_386_JMP_SLOT"},

			969	 	 {8,	"R_386_RELATIVE"},

			970	 	 {9,	"R_386_GOTOFF"},

			971	 	 {10,	"R_386_GOTPC"},

			972	 	 {14,	"R_386_TLS_TPOFF"},

			973	 	 {15,	"R_386_TLS_IE"},

			974	 	 {16,	"R_386_TLS_GOTIE"},

			975	 	 {17,	"R_386_TLS_LE"},

			976	 	 {18,	"R_386_TLS_GD"},

			977	 	 {19,	"R_386_TLS_LDM"},

			978	 	 {24,	"R_386_TLS_GD_32"},

			979	 	 {25,	"R_386_TLS_GD_PUSH"},

			980	 	 {26,	"R_386_TLS_GD_CALL"},

			981	 	 {27,	"R_386_TLS_GD_POP"},

			982	 	 {28,	"R_386_TLS_LDM_32"},

			983	 	 {29,	"R_386_TLS_LDM_PUSH"},

			984	 	 {30,	"R_386_TLS_LDM_CALL"},

			985	 	 {31,	"R_386_TLS_LDM_POP"},

			986	 	 {32,	"R_386_TLS_LDO_32"},

			987	 	 {33,	"R_386_TLS_IE_32"},

			988	 	 {34,	"R_386_TLS_LE_32"},

			989	 	 {35,	"R_386_TLS_DTPMOD32"},

			990	 	 {36,	"R_386_TLS_DTPOFF32"},

			991	 	 {37,	"R_386_TLS_TPOFF32"},

			992	 }

			993	

			994	 func	(i	R_386)	String()	string			{	return	stringName(uint32(i),	r386Strings,	false)	}

			995	 func	(i	R_386)	GoString()	string	{	return	stringName(uint32(i),	r386Strings,	true)	}

			996	

			997	 //	Relocation	types	for	PowerPC.

			998	 type	R_PPC	int

			999	

		1000	 const	(

		1001	 	 R_PPC_NONE												R_PPC	=	0	/*	No	relocation.	*/

		1002	 	 R_PPC_ADDR32										R_PPC	=	1

		1003	 	 R_PPC_ADDR24										R_PPC	=	2

		1004	 	 R_PPC_ADDR16										R_PPC	=	3

		1005	 	 R_PPC_ADDR16_LO							R_PPC	=	4

		1006	 	 R_PPC_ADDR16_HI							R_PPC	=	5

		1007	 	 R_PPC_ADDR16_HA							R_PPC	=	6

		1008	 	 R_PPC_ADDR14										R_PPC	=	7

		1009	 	 R_PPC_ADDR14_BRTAKEN		R_PPC	=	8

		1010	 	 R_PPC_ADDR14_BRNTAKEN	R_PPC	=	9

		1011	 	 R_PPC_REL24											R_PPC	=	10

		1012	 	 R_PPC_REL14											R_PPC	=	11

		1013	 	 R_PPC_REL14_BRTAKEN			R_PPC	=	12

		1014	 	 R_PPC_REL14_BRNTAKEN		R_PPC	=	13

		1015	 	 R_PPC_GOT16											R_PPC	=	14

		1016	 	 R_PPC_GOT16_LO								R_PPC	=	15

		1017	 	 R_PPC_GOT16_HI								R_PPC	=	16

		1018	 	 R_PPC_GOT16_HA								R_PPC	=	17

		1019	 	 R_PPC_PLTREL24								R_PPC	=	18

		1020	 	 R_PPC_COPY												R_PPC	=	19

		1021	 	 R_PPC_GLOB_DAT								R_PPC	=	20

		1022	 	 R_PPC_JMP_SLOT								R_PPC	=	21

		1023	 	 R_PPC_RELATIVE								R_PPC	=	22

		1024	 	 R_PPC_LOCAL24PC							R_PPC	=	23

		1025	 	 R_PPC_UADDR32									R_PPC	=	24

		1026	 	 R_PPC_UADDR16									R_PPC	=	25

		1027	 	 R_PPC_REL32											R_PPC	=	26

		1028	 	 R_PPC_PLT32											R_PPC	=	27

		1029	 	 R_PPC_PLTREL32								R_PPC	=	28

		1030	 	 R_PPC_PLT16_LO								R_PPC	=	29

		1031	 	 R_PPC_PLT16_HI								R_PPC	=	30

		1032	 	 R_PPC_PLT16_HA								R_PPC	=	31

		1033	 	 R_PPC_SDAREL16								R_PPC	=	32

		1034	 	 R_PPC_SECTOFF									R_PPC	=	33

		1035	 	 R_PPC_SECTOFF_LO						R_PPC	=	34

		1036	 	 R_PPC_SECTOFF_HI						R_PPC	=	35

		1037	 	 R_PPC_SECTOFF_HA						R_PPC	=	36

		1038	 	 R_PPC_TLS													R_PPC	=	67

		1039	 	 R_PPC_DTPMOD32								R_PPC	=	68

		1040	 	 R_PPC_TPREL16									R_PPC	=	69

		1041	 	 R_PPC_TPREL16_LO						R_PPC	=	70

		1042	 	 R_PPC_TPREL16_HI						R_PPC	=	71

		1043	 	 R_PPC_TPREL16_HA						R_PPC	=	72

		1044	 	 R_PPC_TPREL32									R_PPC	=	73

		1045	 	 R_PPC_DTPREL16								R_PPC	=	74

		1046	 	 R_PPC_DTPREL16_LO					R_PPC	=	75

		1047	 	 R_PPC_DTPREL16_HI					R_PPC	=	76

		1048	 	 R_PPC_DTPREL16_HA					R_PPC	=	77

		1049	 	 R_PPC_DTPREL32								R_PPC	=	78

		1050	 	 R_PPC_GOT_TLSGD16					R_PPC	=	79

		1051	 	 R_PPC_GOT_TLSGD16_LO		R_PPC	=	80

		1052	 	 R_PPC_GOT_TLSGD16_HI		R_PPC	=	81

		1053	 	 R_PPC_GOT_TLSGD16_HA		R_PPC	=	82

		1054	 	 R_PPC_GOT_TLSLD16					R_PPC	=	83

		1055	 	 R_PPC_GOT_TLSLD16_LO		R_PPC	=	84

		1056	 	 R_PPC_GOT_TLSLD16_HI		R_PPC	=	85

		1057	 	 R_PPC_GOT_TLSLD16_HA		R_PPC	=	86

		1058	 	 R_PPC_GOT_TPREL16					R_PPC	=	87

		1059	 	 R_PPC_GOT_TPREL16_LO		R_PPC	=	88

		1060	 	 R_PPC_GOT_TPREL16_HI		R_PPC	=	89

		1061	 	 R_PPC_GOT_TPREL16_HA		R_PPC	=	90

		1062	 	 R_PPC_EMB_NADDR32					R_PPC	=	101

		1063	 	 R_PPC_EMB_NADDR16					R_PPC	=	102

		1064	 	 R_PPC_EMB_NADDR16_LO		R_PPC	=	103

		1065	 	 R_PPC_EMB_NADDR16_HI		R_PPC	=	104

		1066	 	 R_PPC_EMB_NADDR16_HA		R_PPC	=	105

		1067	 	 R_PPC_EMB_SDAI16						R_PPC	=	106

		1068	 	 R_PPC_EMB_SDA2I16					R_PPC	=	107

		1069	 	 R_PPC_EMB_SDA2REL					R_PPC	=	108

		1070	 	 R_PPC_EMB_SDA21							R_PPC	=	109

		1071	 	 R_PPC_EMB_MRKREF						R_PPC	=	110

		1072	 	 R_PPC_EMB_RELSEC16				R_PPC	=	111

		1073	 	 R_PPC_EMB_RELST_LO				R_PPC	=	112

		1074	 	 R_PPC_EMB_RELST_HI				R_PPC	=	113

		1075	 	 R_PPC_EMB_RELST_HA				R_PPC	=	114

		1076	 	 R_PPC_EMB_BIT_FLD					R_PPC	=	115

		1077	 	 R_PPC_EMB_RELSDA						R_PPC	=	116

		1078)

		1079	

		1080	 var	rppcStrings	=	[]intName{

		1081	 	 {0,	"R_PPC_NONE"},

		1082	 	 {1,	"R_PPC_ADDR32"},

		1083	 	 {2,	"R_PPC_ADDR24"},

		1084	 	 {3,	"R_PPC_ADDR16"},

		1085	 	 {4,	"R_PPC_ADDR16_LO"},

		1086	 	 {5,	"R_PPC_ADDR16_HI"},

		1087	 	 {6,	"R_PPC_ADDR16_HA"},

		1088	 	 {7,	"R_PPC_ADDR14"},

		1089	 	 {8,	"R_PPC_ADDR14_BRTAKEN"},

		1090	 	 {9,	"R_PPC_ADDR14_BRNTAKEN"},

		1091	 	 {10,	"R_PPC_REL24"},

		1092	 	 {11,	"R_PPC_REL14"},

		1093	 	 {12,	"R_PPC_REL14_BRTAKEN"},

		1094	 	 {13,	"R_PPC_REL14_BRNTAKEN"},

		1095	 	 {14,	"R_PPC_GOT16"},

		1096	 	 {15,	"R_PPC_GOT16_LO"},

		1097	 	 {16,	"R_PPC_GOT16_HI"},

		1098	 	 {17,	"R_PPC_GOT16_HA"},

		1099	 	 {18,	"R_PPC_PLTREL24"},

		1100	 	 {19,	"R_PPC_COPY"},

		1101	 	 {20,	"R_PPC_GLOB_DAT"},

		1102	 	 {21,	"R_PPC_JMP_SLOT"},

		1103	 	 {22,	"R_PPC_RELATIVE"},

		1104	 	 {23,	"R_PPC_LOCAL24PC"},

		1105	 	 {24,	"R_PPC_UADDR32"},

		1106	 	 {25,	"R_PPC_UADDR16"},

		1107	 	 {26,	"R_PPC_REL32"},

		1108	 	 {27,	"R_PPC_PLT32"},

		1109	 	 {28,	"R_PPC_PLTREL32"},

		1110	 	 {29,	"R_PPC_PLT16_LO"},

		1111	 	 {30,	"R_PPC_PLT16_HI"},

		1112	 	 {31,	"R_PPC_PLT16_HA"},

		1113	 	 {32,	"R_PPC_SDAREL16"},

		1114	 	 {33,	"R_PPC_SECTOFF"},

		1115	 	 {34,	"R_PPC_SECTOFF_LO"},

		1116	 	 {35,	"R_PPC_SECTOFF_HI"},

		1117	 	 {36,	"R_PPC_SECTOFF_HA"},

		1118	

		1119	 	 {67,	"R_PPC_TLS"},

		1120	 	 {68,	"R_PPC_DTPMOD32"},

		1121	 	 {69,	"R_PPC_TPREL16"},

		1122	 	 {70,	"R_PPC_TPREL16_LO"},

		1123	 	 {71,	"R_PPC_TPREL16_HI"},

		1124	 	 {72,	"R_PPC_TPREL16_HA"},

		1125	 	 {73,	"R_PPC_TPREL32"},

		1126	 	 {74,	"R_PPC_DTPREL16"},

		1127	 	 {75,	"R_PPC_DTPREL16_LO"},

		1128	 	 {76,	"R_PPC_DTPREL16_HI"},

		1129	 	 {77,	"R_PPC_DTPREL16_HA"},

		1130	 	 {78,	"R_PPC_DTPREL32"},

		1131	 	 {79,	"R_PPC_GOT_TLSGD16"},

		1132	 	 {80,	"R_PPC_GOT_TLSGD16_LO"},

		1133	 	 {81,	"R_PPC_GOT_TLSGD16_HI"},

		1134	 	 {82,	"R_PPC_GOT_TLSGD16_HA"},

		1135	 	 {83,	"R_PPC_GOT_TLSLD16"},

		1136	 	 {84,	"R_PPC_GOT_TLSLD16_LO"},

		1137	 	 {85,	"R_PPC_GOT_TLSLD16_HI"},

		1138	 	 {86,	"R_PPC_GOT_TLSLD16_HA"},

		1139	 	 {87,	"R_PPC_GOT_TPREL16"},

		1140	 	 {88,	"R_PPC_GOT_TPREL16_LO"},

		1141	 	 {89,	"R_PPC_GOT_TPREL16_HI"},

		1142	 	 {90,	"R_PPC_GOT_TPREL16_HA"},

		1143	

		1144	 	 {101,	"R_PPC_EMB_NADDR32"},

		1145	 	 {102,	"R_PPC_EMB_NADDR16"},

		1146	 	 {103,	"R_PPC_EMB_NADDR16_LO"},

		1147	 	 {104,	"R_PPC_EMB_NADDR16_HI"},

		1148	 	 {105,	"R_PPC_EMB_NADDR16_HA"},

		1149	 	 {106,	"R_PPC_EMB_SDAI16"},

		1150	 	 {107,	"R_PPC_EMB_SDA2I16"},

		1151	 	 {108,	"R_PPC_EMB_SDA2REL"},

		1152	 	 {109,	"R_PPC_EMB_SDA21"},

		1153	 	 {110,	"R_PPC_EMB_MRKREF"},

		1154	 	 {111,	"R_PPC_EMB_RELSEC16"},

		1155	 	 {112,	"R_PPC_EMB_RELST_LO"},

		1156	 	 {113,	"R_PPC_EMB_RELST_HI"},

		1157	 	 {114,	"R_PPC_EMB_RELST_HA"},

		1158	 	 {115,	"R_PPC_EMB_BIT_FLD"},

		1159	 	 {116,	"R_PPC_EMB_RELSDA"},

		1160	 }

		1161	

		1162	 func	(i	R_PPC)	String()	string			{	return	stringName(uint32(i),	rppcStrings,	false)	}

		1163	 func	(i	R_PPC)	GoString()	string	{	return	stringName(uint32(i),	rppcStrings,	true)	}

		1164	

		1165	 //	Relocation	types	for	SPARC.

		1166	 type	R_SPARC	int

		1167	

		1168	 const	(

		1169	 	 R_SPARC_NONE					R_SPARC	=	0

		1170	 	 R_SPARC_8								R_SPARC	=	1

		1171	 	 R_SPARC_16							R_SPARC	=	2

		1172	 	 R_SPARC_32							R_SPARC	=	3

		1173	 	 R_SPARC_DISP8				R_SPARC	=	4

		1174	 	 R_SPARC_DISP16			R_SPARC	=	5

		1175	 	 R_SPARC_DISP32			R_SPARC	=	6

		1176	 	 R_SPARC_WDISP30		R_SPARC	=	7

		1177	 	 R_SPARC_WDISP22		R_SPARC	=	8

		1178	 	 R_SPARC_HI22					R_SPARC	=	9

		1179	 	 R_SPARC_22							R_SPARC	=	10

		1180	 	 R_SPARC_13							R_SPARC	=	11

		1181	 	 R_SPARC_LO10					R_SPARC	=	12

		1182	 	 R_SPARC_GOT10				R_SPARC	=	13

		1183	 	 R_SPARC_GOT13				R_SPARC	=	14

		1184	 	 R_SPARC_GOT22				R_SPARC	=	15

		1185	 	 R_SPARC_PC10					R_SPARC	=	16

		1186	 	 R_SPARC_PC22					R_SPARC	=	17

		1187	 	 R_SPARC_WPLT30			R_SPARC	=	18

		1188	 	 R_SPARC_COPY					R_SPARC	=	19

		1189	 	 R_SPARC_GLOB_DAT	R_SPARC	=	20

		1190	 	 R_SPARC_JMP_SLOT	R_SPARC	=	21

		1191	 	 R_SPARC_RELATIVE	R_SPARC	=	22

		1192	 	 R_SPARC_UA32					R_SPARC	=	23

		1193	 	 R_SPARC_PLT32				R_SPARC	=	24

		1194	 	 R_SPARC_HIPLT22		R_SPARC	=	25

		1195	 	 R_SPARC_LOPLT10		R_SPARC	=	26

		1196	 	 R_SPARC_PCPLT32		R_SPARC	=	27

		1197	 	 R_SPARC_PCPLT22		R_SPARC	=	28

		1198	 	 R_SPARC_PCPLT10		R_SPARC	=	29

		1199	 	 R_SPARC_10							R_SPARC	=	30

		1200	 	 R_SPARC_11							R_SPARC	=	31

		1201	 	 R_SPARC_64							R_SPARC	=	32

		1202	 	 R_SPARC_OLO10				R_SPARC	=	33

		1203	 	 R_SPARC_HH22					R_SPARC	=	34

		1204	 	 R_SPARC_HM10					R_SPARC	=	35

		1205	 	 R_SPARC_LM22					R_SPARC	=	36

		1206	 	 R_SPARC_PC_HH22		R_SPARC	=	37

		1207	 	 R_SPARC_PC_HM10		R_SPARC	=	38

		1208	 	 R_SPARC_PC_LM22		R_SPARC	=	39

		1209	 	 R_SPARC_WDISP16		R_SPARC	=	40

		1210	 	 R_SPARC_WDISP19		R_SPARC	=	41

		1211	 	 R_SPARC_GLOB_JMP	R_SPARC	=	42

		1212	 	 R_SPARC_7								R_SPARC	=	43

		1213	 	 R_SPARC_5								R_SPARC	=	44

		1214	 	 R_SPARC_6								R_SPARC	=	45

		1215	 	 R_SPARC_DISP64			R_SPARC	=	46

		1216	 	 R_SPARC_PLT64				R_SPARC	=	47

		1217	 	 R_SPARC_HIX22				R_SPARC	=	48

		1218	 	 R_SPARC_LOX10				R_SPARC	=	49

		1219	 	 R_SPARC_H44						R_SPARC	=	50

		1220	 	 R_SPARC_M44						R_SPARC	=	51

		1221	 	 R_SPARC_L44						R_SPARC	=	52

		1222	 	 R_SPARC_REGISTER	R_SPARC	=	53

		1223	 	 R_SPARC_UA64					R_SPARC	=	54

		1224	 	 R_SPARC_UA16					R_SPARC	=	55

		1225)

		1226	

		1227	 var	rsparcStrings	=	[]intName{

		1228	 	 {0,	"R_SPARC_NONE"},

		1229	 	 {1,	"R_SPARC_8"},

		1230	 	 {2,	"R_SPARC_16"},

		1231	 	 {3,	"R_SPARC_32"},

		1232	 	 {4,	"R_SPARC_DISP8"},

		1233	 	 {5,	"R_SPARC_DISP16"},

		1234	 	 {6,	"R_SPARC_DISP32"},

		1235	 	 {7,	"R_SPARC_WDISP30"},

		1236	 	 {8,	"R_SPARC_WDISP22"},

		1237	 	 {9,	"R_SPARC_HI22"},

		1238	 	 {10,	"R_SPARC_22"},

		1239	 	 {11,	"R_SPARC_13"},

		1240	 	 {12,	"R_SPARC_LO10"},

		1241	 	 {13,	"R_SPARC_GOT10"},

		1242	 	 {14,	"R_SPARC_GOT13"},

		1243	 	 {15,	"R_SPARC_GOT22"},

		1244	 	 {16,	"R_SPARC_PC10"},

		1245	 	 {17,	"R_SPARC_PC22"},

		1246	 	 {18,	"R_SPARC_WPLT30"},

		1247	 	 {19,	"R_SPARC_COPY"},

		1248	 	 {20,	"R_SPARC_GLOB_DAT"},

		1249	 	 {21,	"R_SPARC_JMP_SLOT"},

		1250	 	 {22,	"R_SPARC_RELATIVE"},

		1251	 	 {23,	"R_SPARC_UA32"},

		1252	 	 {24,	"R_SPARC_PLT32"},

		1253	 	 {25,	"R_SPARC_HIPLT22"},

		1254	 	 {26,	"R_SPARC_LOPLT10"},

		1255	 	 {27,	"R_SPARC_PCPLT32"},

		1256	 	 {28,	"R_SPARC_PCPLT22"},

		1257	 	 {29,	"R_SPARC_PCPLT10"},

		1258	 	 {30,	"R_SPARC_10"},

		1259	 	 {31,	"R_SPARC_11"},

		1260	 	 {32,	"R_SPARC_64"},

		1261	 	 {33,	"R_SPARC_OLO10"},

		1262	 	 {34,	"R_SPARC_HH22"},

		1263	 	 {35,	"R_SPARC_HM10"},

		1264	 	 {36,	"R_SPARC_LM22"},

		1265	 	 {37,	"R_SPARC_PC_HH22"},

		1266	 	 {38,	"R_SPARC_PC_HM10"},

		1267	 	 {39,	"R_SPARC_PC_LM22"},

		1268	 	 {40,	"R_SPARC_WDISP16"},

		1269	 	 {41,	"R_SPARC_WDISP19"},

		1270	 	 {42,	"R_SPARC_GLOB_JMP"},

		1271	 	 {43,	"R_SPARC_7"},

		1272	 	 {44,	"R_SPARC_5"},

		1273	 	 {45,	"R_SPARC_6"},

		1274	 	 {46,	"R_SPARC_DISP64"},

		1275	 	 {47,	"R_SPARC_PLT64"},

		1276	 	 {48,	"R_SPARC_HIX22"},

		1277	 	 {49,	"R_SPARC_LOX10"},

		1278	 	 {50,	"R_SPARC_H44"},

		1279	 	 {51,	"R_SPARC_M44"},

		1280	 	 {52,	"R_SPARC_L44"},

		1281	 	 {53,	"R_SPARC_REGISTER"},

		1282	 	 {54,	"R_SPARC_UA64"},

		1283	 	 {55,	"R_SPARC_UA16"},

		1284	 }

		1285	

		1286	 func	(i	R_SPARC)	String()	string			{	return	stringName(uint32(i),	rsparcStrings,	false)	}

		1287	 func	(i	R_SPARC)	GoString()	string	{	return	stringName(uint32(i),	rsparcStrings,	true)	}

		1288	

		1289	 //	Magic	number	for	the	elf	trampoline,	chosen	wisely	to	be	an	immediate	value.

		1290	 const	ARM_MAGIC_TRAMP_NUMBER	=	0x5c000003

		1291	

		1292	 //	ELF32	File	header.

		1293	 type	Header32	struct	{

		1294	 	 Ident					[EI_NIDENT]byte	/*	File	identification.	*/

		1295	 	 Type						uint16										/*	File	type.	*/

		1296	 	 Machine			uint16										/*	Machine	architecture.	*/

		1297	 	 Version			uint32										/*	ELF	format	version.	*/

		1298	 	 Entry					uint32										/*	Entry	point.	*/

		1299	 	 Phoff					uint32										/*	Program	header	file	offset.	*/

		1300	 	 Shoff					uint32										/*	Section	header	file	offset.	*/

		1301	 	 Flags					uint32										/*	Architecture-specific	flags.	*/

		1302	 	 Ehsize				uint16										/*	Size	of	ELF	header	in	bytes.	*/

		1303	 	 Phentsize	uint16										/*	Size	of	program	header	entry.	*/

		1304	 	 Phnum					uint16										/*	Number	of	program	header	entries.	*/

		1305	 	 Shentsize	uint16										/*	Size	of	section	header	entry.	*/

		1306	 	 Shnum					uint16										/*	Number	of	section	header	entries.	*/

		1307	 	 Shstrndx		uint16										/*	Section	name	strings	section.	*/

		1308	 }

		1309	

		1310	 //	ELF32	Section	header.

		1311	 type	Section32	struct	{

		1312	 	 Name						uint32	/*	Section	name	(index	into	the	section	header	string	table).	*/

		1313	 	 Type						uint32	/*	Section	type.	*/

		1314	 	 Flags					uint32	/*	Section	flags.	*/

		1315	 	 Addr						uint32	/*	Address	in	memory	image.	*/

		1316	 	 Off							uint32	/*	Offset	in	file.	*/

		1317	 	 Size						uint32	/*	Size	in	bytes.	*/

		1318	 	 Link						uint32	/*	Index	of	a	related	section.	*/

		1319	 	 Info						uint32	/*	Depends	on	section	type.	*/

		1320	 	 Addralign	uint32	/*	Alignment	in	bytes.	*/

		1321	 	 Entsize			uint32	/*	Size	of	each	entry	in	section.	*/

		1322	 }

		1323	

		1324	 //	ELF32	Program	header.

		1325	 type	Prog32	struct	{

		1326	 	 Type			uint32	/*	Entry	type.	*/

		1327	 	 Off				uint32	/*	File	offset	of	contents.	*/

		1328	 	 Vaddr		uint32	/*	Virtual	address	in	memory	image.	*/

		1329	 	 Paddr		uint32	/*	Physical	address	(not	used).	*/

		1330	 	 Filesz	uint32	/*	Size	of	contents	in	file.	*/

		1331	 	 Memsz		uint32	/*	Size	of	contents	in	memory.	*/

		1332	 	 Flags		uint32	/*	Access	permission	flags.	*/

		1333	 	 Align		uint32	/*	Alignment	in	memory	and	file.	*/

		1334	 }

		1335	

		1336	 //	ELF32	Dynamic	structure.		The	".dynamic"	section	contains	an	array	of	them.

		1337	 type	Dyn32	struct	{

		1338	 	 Tag	int32		/*	Entry	type.	*/

		1339	 	 Val	uint32	/*	Integer/Address	value.	*/

		1340	 }

		1341	

		1342	 /*

		1343	 	*	Relocation	entries.

		1344	 	*/

		1345	

		1346	 //	ELF32	Relocations	that	don't	need	an	addend	field.

		1347	 type	Rel32	struct	{

		1348	 	 Off		uint32	/*	Location	to	be	relocated.	*/

		1349	 	 Info	uint32	/*	Relocation	type	and	symbol	index.	*/

		1350	 }

		1351	

		1352	 //	ELF32	Relocations	that	need	an	addend	field.

		1353	 type	Rela32	struct	{

		1354	 	 Off				uint32	/*	Location	to	be	relocated.	*/

		1355	 	 Info			uint32	/*	Relocation	type	and	symbol	index.	*/

		1356	 	 Addend	int32		/*	Addend.	*/

		1357	 }

		1358	

		1359	 func	R_SYM32(info	uint32)	uint32						{	return	uint32(info	>>	8)	}

		1360	 func	R_TYPE32(info	uint32)	uint32					{	return	uint32(info	&	0xff)	}

		1361	 func	R_INFO32(sym,	typ	uint32)	uint32	{	return	sym<<8	|	typ	}

		1362	

		1363	 //	ELF32	Symbol.

		1364	 type	Sym32	struct	{

		1365	 	 Name		uint32

		1366	 	 Value	uint32

		1367	 	 Size		uint32

		1368	 	 Info		uint8

		1369	 	 Other	uint8

		1370	 	 Shndx	uint16

		1371	 }

		1372	

		1373	 const	Sym32Size	=	16

		1374	

		1375	 func	ST_BIND(info	uint8)	SymBind	{	return	SymBind(info	>>	4)	}

		1376	 func	ST_TYPE(info	uint8)	SymType	{	return	SymType(info	&	0xF)	}

		1377	 func	ST_INFO(bind	SymBind,	typ	SymType)	uint8	{

		1378	 	 return	uint8(bind)<<4	|	uint8(typ)&0xf

		1379	 }

		1380	 func	ST_VISIBILITY(other	uint8)	SymVis	{	return	SymVis(other	&	3)	}

		1381	

		1382	 /*

		1383	 	*	ELF64

		1384	 	*/

		1385	

		1386	 //	ELF64	file	header.

		1387	 type	Header64	struct	{

		1388	 	 Ident					[EI_NIDENT]byte	/*	File	identification.	*/

		1389	 	 Type						uint16										/*	File	type.	*/

		1390	 	 Machine			uint16										/*	Machine	architecture.	*/

		1391	 	 Version			uint32										/*	ELF	format	version.	*/

		1392	 	 Entry					uint64										/*	Entry	point.	*/

		1393	 	 Phoff					uint64										/*	Program	header	file	offset.	*/

		1394	 	 Shoff					uint64										/*	Section	header	file	offset.	*/

		1395	 	 Flags					uint32										/*	Architecture-specific	flags.	*/

		1396	 	 Ehsize				uint16										/*	Size	of	ELF	header	in	bytes.	*/

		1397	 	 Phentsize	uint16										/*	Size	of	program	header	entry.	*/

		1398	 	 Phnum					uint16										/*	Number	of	program	header	entries.	*/

		1399	 	 Shentsize	uint16										/*	Size	of	section	header	entry.	*/

		1400	 	 Shnum					uint16										/*	Number	of	section	header	entries.	*/

		1401	 	 Shstrndx		uint16										/*	Section	name	strings	section.	*/

		1402	 }

		1403	

		1404	 //	ELF64	Section	header.

		1405	 type	Section64	struct	{

		1406	 	 Name						uint32	/*	Section	name	(index	into	the	section	header	string	table).	*/

		1407	 	 Type						uint32	/*	Section	type.	*/

		1408	 	 Flags					uint64	/*	Section	flags.	*/

		1409	 	 Addr						uint64	/*	Address	in	memory	image.	*/

		1410	 	 Off							uint64	/*	Offset	in	file.	*/

		1411	 	 Size						uint64	/*	Size	in	bytes.	*/

		1412	 	 Link						uint32	/*	Index	of	a	related	section.	*/

		1413	 	 Info						uint32	/*	Depends	on	section	type.	*/

		1414	 	 Addralign	uint64	/*	Alignment	in	bytes.	*/

		1415	 	 Entsize			uint64	/*	Size	of	each	entry	in	section.	*/

		1416	 }

		1417	

		1418	 //	ELF64	Program	header.

		1419	 type	Prog64	struct	{

		1420	 	 Type			uint32	/*	Entry	type.	*/

		1421	 	 Flags		uint32	/*	Access	permission	flags.	*/

		1422	 	 Off				uint64	/*	File	offset	of	contents.	*/

		1423	 	 Vaddr		uint64	/*	Virtual	address	in	memory	image.	*/

		1424	 	 Paddr		uint64	/*	Physical	address	(not	used).	*/

		1425	 	 Filesz	uint64	/*	Size	of	contents	in	file.	*/

		1426	 	 Memsz		uint64	/*	Size	of	contents	in	memory.	*/

		1427	 	 Align		uint64	/*	Alignment	in	memory	and	file.	*/

		1428	 }

		1429	

		1430	 //	ELF64	Dynamic	structure.		The	".dynamic"	section	contains	an	array	of	them.

		1431	 type	Dyn64	struct	{

		1432	 	 Tag	int64		/*	Entry	type.	*/

		1433	 	 Val	uint64	/*	Integer/address	value	*/

		1434	 }

		1435	

		1436	 /*

		1437	 	*	Relocation	entries.

		1438	 	*/

		1439	

		1440	 /*	ELF64	relocations	that	don't	need	an	addend	field.	*/

		1441	 type	Rel64	struct	{

		1442	 	 Off		uint64	/*	Location	to	be	relocated.	*/

		1443	 	 Info	uint64	/*	Relocation	type	and	symbol	index.	*/

		1444	 }

		1445	

		1446	 /*	ELF64	relocations	that	need	an	addend	field.	*/

		1447	 type	Rela64	struct	{

		1448	 	 Off				uint64	/*	Location	to	be	relocated.	*/

		1449	 	 Info			uint64	/*	Relocation	type	and	symbol	index.	*/

		1450	 	 Addend	int64		/*	Addend.	*/

		1451	 }

		1452	

		1453	 func	R_SYM64(info	uint64)	uint32				{	return	uint32(info	>>	32)	}

		1454	 func	R_TYPE64(info	uint64)	uint32			{	return	uint32(info)	}

		1455	 func	R_INFO(sym,	typ	uint32)	uint64	{	return	uint64(sym)<<32	|	uint64(typ)	}

		1456	

		1457	 //	ELF64	symbol	table	entries.

		1458	 type	Sym64	struct	{

		1459	 	 Name		uint32	/*	String	table	index	of	name.	*/

		1460	 	 Info		uint8		/*	Type	and	binding	information.	*/

		1461	 	 Other	uint8		/*	Reserved	(not	used).	*/

		1462	 	 Shndx	uint16	/*	Section	index	of	symbol.	*/

		1463	 	 Value	uint64	/*	Symbol	value.	*/

		1464	 	 Size		uint64	/*	Size	of	associated	object.	*/

		1465	 }

		1466	

		1467	 const	Sym64Size	=	24

		1468	

		1469	 type	intName	struct	{

		1470	 	 i	uint32

		1471	 	 s	string

		1472	 }

		1473	

		1474	 func	stringName(i	uint32,	names	[]intName,	goSyntax	bool)	string	{

		1475	 	 for	_,	n	:=	range	names	{

		1476	 	 	 if	n.i	==	i	{

		1477	 	 	 	 if	goSyntax	{

		1478	 	 	 	 	 return	"elf."	+	n.s

		1479	 	 	 	 }

		1480	 	 	 	 return	n.s

		1481	 	 	 }

		1482	 	 }

		1483	

		1484	 	 //	second	pass	-	look	for	smaller	to	add	with.

		1485	 	 //	assume	sorted	already

		1486	 	 for	j	:=	len(names)	-	1;	j	>=	0;	j--	{

		1487	 	 	 n	:=	names[j]

		1488	 	 	 if	n.i	<	i	{

		1489	 	 	 	 s	:=	n.s

		1490	 	 	 	 if	goSyntax	{

		1491	 	 	 	 	 s	=	"elf."	+	s

		1492	 	 	 	 }

		1493	 	 	 	 return	s	+	"+"	+	strconv.FormatUint(uint64(i-n.i),	10)

		1494	 	 	 }

		1495	 	 }

		1496	

		1497	 	 return	strconv.FormatUint(uint64(i),	10)

		1498	 }

		1499	

		1500	 func	flagName(i	uint32,	names	[]intName,	goSyntax	bool)	string	{

		1501	 	 s	:=	""

		1502	 	 for	_,	n	:=	range	names	{

		1503	 	 	 if	n.i&i	==	n.i	{

		1504	 	 	 	 if	len(s)	>	0	{

		1505	 	 	 	 	 s	+=	"+"

		1506	 	 	 	 }

		1507	 	 	 	 if	goSyntax	{

		1508	 	 	 	 	 s	+=	"elf."

		1509	 	 	 	 }

		1510	 	 	 	 s	+=	n.s

		1511	 	 	 	 i	-=	n.i

		1512	 	 	 }

		1513	 	 }

		1514	 	 if	len(s)	==	0	{

		1515	 	 	 return	"0x"	+	strconv.FormatUint(uint64(i),	16)

		1516	 	 }

		1517	 	 if	i	!=	0	{

		1518	 	 	 s	+=	"+0x"	+	strconv.FormatUint(uint64(i),	16)

		1519	 	 }

		1520	 	 return	s

		1521	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative

http://code.google.com/policies.html#restrictions

Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/debug/elf/file.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	elf	implements	access	to	ELF	object	files.

					6	 package	elf

					7	

					8	 import	(

					9	 	 "bytes"

				10	 	 "debug/dwarf"

				11	 	 "encoding/binary"

				12	 	 "errors"

				13	 	 "fmt"

				14	 	 "io"

				15	 	 "os"

				16)

				17	

				18	 //	TODO:	error	reporting	detail

				19	

				20	 /*

				21	 	*	Internal	ELF	representation

				22	 	*/

				23	

				24	 //	A	FileHeader	represents	an	ELF	file	header.

				25	 type	FileHeader	struct	{

				26	 	 Class						Class

				27	 	 Data							Data

				28	 	 Version				Version

				29	 	 OSABI						OSABI

				30	 	 ABIVersion	uint8

				31	 	 ByteOrder		binary.ByteOrder

				32	 	 Type							Type

				33	 	 Machine				Machine

				34	 }

				35	

				36	 //	A	File	represents	an	open	ELF	file.

				37	 type	File	struct	{

				38	 	 FileHeader

				39	 	 Sections		[]*Section

				40	 	 Progs					[]*Prog

				41	 	 closer				io.Closer

				42	 	 gnuNeed			[]verneed

				43	 	 gnuVersym	[]byte

				44	 }

				45	

				46	 //	A	SectionHeader	represents	a	single	ELF	section	header.

				47	 type	SectionHeader	struct	{

				48	 	 Name						string

				49	 	 Type						SectionType

				50	 	 Flags					SectionFlag

				51	 	 Addr						uint64

				52	 	 Offset				uint64

				53	 	 Size						uint64

				54	 	 Link						uint32

				55	 	 Info						uint32

				56	 	 Addralign	uint64

				57	 	 Entsize			uint64

				58	 }

				59	

				60	 //	A	Section	represents	a	single	section	in	an	ELF	file.

				61	 type	Section	struct	{

				62	 	 SectionHeader

				63	

				64	 	 //	Embed	ReaderAt	for	ReadAt	method.

				65	 	 //	Do	not	embed	SectionReader	directly

				66	 	 //	to	avoid	having	Read	and	Seek.

				67	 	 //	If	a	client	wants	Read	and	Seek	it	must	use

				68	 	 //	Open()	to	avoid	fighting	over	the	seek	offset

				69	 	 //	with	other	clients.

				70	 	 io.ReaderAt

				71	 	 sr	*io.SectionReader

				72	 }

				73	

				74	 //	Data	reads	and	returns	the	contents	of	the	ELF	section.

				75	 func	(s	*Section)	Data()	([]byte,	error)	{

				76	 	 dat	:=	make([]byte,	s.sr.Size())

				77	 	 n,	err	:=	s.sr.ReadAt(dat,	0)

				78	 	 return	dat[0:n],	err

				79	 }

				80	

				81	 //	stringTable	reads	and	returns	the	string	table	given	by	the

				82	 //	specified	link	value.

				83	 func	(f	*File)	stringTable(link	uint32)	([]byte,	error)	{

				84	 	 if	link	<=	0	||	link	>=	uint32(len(f.Sections))	{

				85	 	 	 return	nil,	errors.New("section	has	invalid	string	table	link")

				86	 	 }

				87	 	 return	f.Sections[link].Data()

				88	 }

				89	

				90	 //	Open	returns	a	new	ReadSeeker	reading	the	ELF	section.

				91	 func	(s	*Section)	Open()	io.ReadSeeker	{	return	io.NewSectionReader(s.sr,	0,	1<<63-1)	}

				92	

				93	 //	A	ProgHeader	represents	a	single	ELF	program	header.

				94	 type	ProgHeader	struct	{

				95	 	 Type			ProgType

				96	 	 Flags		ProgFlag

				97	 	 Off				uint64

				98	 	 Vaddr		uint64

				99	 	 Paddr		uint64

			100	 	 Filesz	uint64

			101	 	 Memsz		uint64

			102	 	 Align		uint64

			103	 }

			104	

			105	 //	A	Prog	represents	a	single	ELF	program	header	in	an	ELF	binary.

			106	 type	Prog	struct	{

			107	 	 ProgHeader

			108	

			109	 	 //	Embed	ReaderAt	for	ReadAt	method.

			110	 	 //	Do	not	embed	SectionReader	directly

			111	 	 //	to	avoid	having	Read	and	Seek.

			112	 	 //	If	a	client	wants	Read	and	Seek	it	must	use

			113	 	 //	Open()	to	avoid	fighting	over	the	seek	offset

			114	 	 //	with	other	clients.

			115	 	 io.ReaderAt

			116	 	 sr	*io.SectionReader

			117	 }

			118	

			119	 //	Open	returns	a	new	ReadSeeker	reading	the	ELF	program	body.

			120	 func	(p	*Prog)	Open()	io.ReadSeeker	{	return	io.NewSectionReader(p.sr,	0,	1<<63-1)	}

			121	

			122	 //	A	Symbol	represents	an	entry	in	an	ELF	symbol	table	section.

			123	 type	Symbol	struct	{

			124	 	 Name								string

			125	 	 Info,	Other	byte

			126	 	 Section					SectionIndex

			127	 	 Value,	Size	uint64

			128	 }

			129	

			130	 /*

			131	 	*	ELF	reader

			132	 	*/

			133	

			134	 type	FormatError	struct	{

			135	 	 off	int64

			136	 	 msg	string

			137	 	 val	interface{}

			138	 }

			139	

			140	 func	(e	*FormatError)	Error()	string	{

			141	 	 msg	:=	e.msg

			142	 	 if	e.val	!=	nil	{

			143	 	 	 msg	+=	fmt.Sprintf("	'%v'	",	e.val)

			144	 	 }

			145	 	 msg	+=	fmt.Sprintf("in	record	at	byte	%#x",	e.off)

			146	 	 return	msg

			147	 }

			148	

			149	 //	Open	opens	the	named	file	using	os.Open	and	prepares	it	for	use	as	an	ELF	binary.

			150	 func	Open(name	string)	(*File,	error)	{

			151	 	 f,	err	:=	os.Open(name)

			152	 	 if	err	!=	nil	{

			153	 	 	 return	nil,	err

			154	 	 }

			155	 	 ff,	err	:=	NewFile(f)

			156	 	 if	err	!=	nil	{

			157	 	 	 f.Close()

			158	 	 	 return	nil,	err

			159	 	 }

			160	 	 ff.closer	=	f

			161	 	 return	ff,	nil

			162	 }

			163	

			164	 //	Close	closes	the	File.

			165	 //	If	the	File	was	created	using	NewFile	directly	instead	of	Open,

			166	 //	Close	has	no	effect.

			167	 func	(f	*File)	Close()	error	{

			168	 	 var	err	error

			169	 	 if	f.closer	!=	nil	{

			170	 	 	 err	=	f.closer.Close()

			171	 	 	 f.closer	=	nil

			172	 	 }

			173	 	 return	err

			174	 }

			175	

			176	 //	SectionByType	returns	the	first	section	in	f	with	the

			177	 //	given	type,	or	nil	if	there	is	no	such	section.

			178	 func	(f	*File)	SectionByType(typ	SectionType)	*Section	{

			179	 	 for	_,	s	:=	range	f.Sections	{

			180	 	 	 if	s.Type	==	typ	{

			181	 	 	 	 return	s

			182	 	 	 }

			183	 	 }

			184	 	 return	nil

			185	 }

			186	

			187	 //	NewFile	creates	a	new	File	for	accessing	an	ELF	binary	in	an	underlying	reader.

			188	 //	The	ELF	binary	is	expected	to	start	at	position	0	in	the	ReaderAt.

			189	 func	NewFile(r	io.ReaderAt)	(*File,	error)	{

			190	 	 sr	:=	io.NewSectionReader(r,	0,	1<<63-1)

			191	 	 //	Read	and	decode	ELF	identifier

			192	 	 var	ident	[16]uint8

			193	 	 if	_,	err	:=	r.ReadAt(ident[0:],	0);	err	!=	nil	{

			194	 	 	 return	nil,	err

			195	 	 }

			196	 	 if	ident[0]	!=	'\x7f'	||	ident[1]	!=	'E'	||	ident[2]	!=	'L'	||	ident[3]	!=	'F'	{

			197	 	 	 return	nil,	&FormatError{0,	"bad	magic	number",	ident[0:4]}

			198	 	 }

			199	

			200	 	 f	:=	new(File)

			201	 	 f.Class	=	Class(ident[EI_CLASS])

			202	 	 switch	f.Class	{

			203	 	 case	ELFCLASS32:

			204	 	 case	ELFCLASS64:

			205	 	 	 //	ok

			206	 	 default:

			207	 	 	 return	nil,	&FormatError{0,	"unknown	ELF	class",	f.Class}

			208	 	 }

			209	

			210	 	 f.Data	=	Data(ident[EI_DATA])

			211	 	 switch	f.Data	{

			212	 	 case	ELFDATA2LSB:

			213	 	 	 f.ByteOrder	=	binary.LittleEndian

			214	 	 case	ELFDATA2MSB:

			215	 	 	 f.ByteOrder	=	binary.BigEndian

			216	 	 default:

			217	 	 	 return	nil,	&FormatError{0,	"unknown	ELF	data	encoding",	f.Data}

			218	 	 }

			219	

			220	 	 f.Version	=	Version(ident[EI_VERSION])

			221	 	 if	f.Version	!=	EV_CURRENT	{

			222	 	 	 return	nil,	&FormatError{0,	"unknown	ELF	version",	f.Version}

			223	 	 }

			224	

			225	 	 f.OSABI	=	OSABI(ident[EI_OSABI])

			226	 	 f.ABIVersion	=	ident[EI_ABIVERSION]

			227	

			228	 	 //	Read	ELF	file	header

			229	 	 var	phoff	int64

			230	 	 var	phentsize,	phnum	int

			231	 	 var	shoff	int64

			232	 	 var	shentsize,	shnum,	shstrndx	int

			233	 	 shstrndx	=	-1

			234	 	 switch	f.Class	{

			235	 	 case	ELFCLASS32:

			236	 	 	 hdr	:=	new(Header32)

			237	 	 	 sr.Seek(0,	os.SEEK_SET)

			238	 	 	 if	err	:=	binary.Read(sr,	f.ByteOrder,	hdr);	err	!=	nil	{

			239	 	 	 	 return	nil,	err

			240	 	 	 }

			241	 	 	 f.Type	=	Type(hdr.Type)

			242	 	 	 f.Machine	=	Machine(hdr.Machine)

			243	 	 	 if	v	:=	Version(hdr.Version);	v	!=	f.Version	{

			244	 	 	 	 return	nil,	&FormatError{0,	"mismatched	ELF	version",	v}

			245	 	 	 }

			246	 	 	 phoff	=	int64(hdr.Phoff)

			247	 	 	 phentsize	=	int(hdr.Phentsize)

			248	 	 	 phnum	=	int(hdr.Phnum)

			249	 	 	 shoff	=	int64(hdr.Shoff)

			250	 	 	 shentsize	=	int(hdr.Shentsize)

			251	 	 	 shnum	=	int(hdr.Shnum)

			252	 	 	 shstrndx	=	int(hdr.Shstrndx)

			253	 	 case	ELFCLASS64:

			254	 	 	 hdr	:=	new(Header64)

			255	 	 	 sr.Seek(0,	os.SEEK_SET)

			256	 	 	 if	err	:=	binary.Read(sr,	f.ByteOrder,	hdr);	err	!=	nil	{

			257	 	 	 	 return	nil,	err

			258	 	 	 }

			259	 	 	 f.Type	=	Type(hdr.Type)

			260	 	 	 f.Machine	=	Machine(hdr.Machine)

			261	 	 	 if	v	:=	Version(hdr.Version);	v	!=	f.Version	{

			262	 	 	 	 return	nil,	&FormatError{0,	"mismatched	ELF	version",	v}

			263	 	 	 }

			264	 	 	 phoff	=	int64(hdr.Phoff)

			265	 	 	 phentsize	=	int(hdr.Phentsize)

			266	 	 	 phnum	=	int(hdr.Phnum)

			267	 	 	 shoff	=	int64(hdr.Shoff)

			268	 	 	 shentsize	=	int(hdr.Shentsize)

			269	 	 	 shnum	=	int(hdr.Shnum)

			270	 	 	 shstrndx	=	int(hdr.Shstrndx)

			271	 	 }

			272	 	 if	shstrndx	<	0	||	shstrndx	>=	shnum	{

			273	 	 	 return	nil,	&FormatError{0,	"invalid	ELF	shstrndx",	shstrndx}

			274	 	 }

			275	

			276	 	 //	Read	program	headers

			277	 	 f.Progs	=	make([]*Prog,	phnum)

			278	 	 for	i	:=	0;	i	<	phnum;	i++	{

			279	 	 	 off	:=	phoff	+	int64(i)*int64(phentsize)

			280	 	 	 sr.Seek(off,	os.SEEK_SET)

			281	 	 	 p	:=	new(Prog)

			282	 	 	 switch	f.Class	{

			283	 	 	 case	ELFCLASS32:

			284	 	 	 	 ph	:=	new(Prog32)

			285	 	 	 	 if	err	:=	binary.Read(sr,	f.ByteOrder,	ph);	err	!=	nil	{

			286	 	 	 	 	 return	nil,	err

			287	 	 	 	 }

			288	 	 	 	 p.ProgHeader	=	ProgHeader{

			289	 	 	 	 	 Type:			ProgType(ph.Type),

			290	 	 	 	 	 Flags:		ProgFlag(ph.Flags),

			291	 	 	 	 	 Off:				uint64(ph.Off),

			292	 	 	 	 	 Vaddr:		uint64(ph.Vaddr),

			293	 	 	 	 	 Paddr:		uint64(ph.Paddr),

			294	 	 	 	 	 Filesz:	uint64(ph.Filesz),

			295	 	 	 	 	 Memsz:		uint64(ph.Memsz),

			296	 	 	 	 	 Align:		uint64(ph.Align),

			297	 	 	 	 }

			298	 	 	 case	ELFCLASS64:

			299	 	 	 	 ph	:=	new(Prog64)

			300	 	 	 	 if	err	:=	binary.Read(sr,	f.ByteOrder,	ph);	err	!=	nil	{

			301	 	 	 	 	 return	nil,	err

			302	 	 	 	 }

			303	 	 	 	 p.ProgHeader	=	ProgHeader{

			304	 	 	 	 	 Type:			ProgType(ph.Type),

			305	 	 	 	 	 Flags:		ProgFlag(ph.Flags),

			306	 	 	 	 	 Off:				uint64(ph.Off),

			307	 	 	 	 	 Vaddr:		uint64(ph.Vaddr),

			308	 	 	 	 	 Paddr:		uint64(ph.Paddr),

			309	 	 	 	 	 Filesz:	uint64(ph.Filesz),

			310	 	 	 	 	 Memsz:		uint64(ph.Memsz),

			311	 	 	 	 	 Align:		uint64(ph.Align),

			312	 	 	 	 }

			313	 	 	 }

			314	 	 	 p.sr	=	io.NewSectionReader(r,	int64(p.Off),	int64(p.Filesz))

			315	 	 	 p.ReaderAt	=	p.sr

			316	 	 	 f.Progs[i]	=	p

			317	 	 }

			318	

			319	 	 //	Read	section	headers

			320	 	 f.Sections	=	make([]*Section,	shnum)

			321	 	 names	:=	make([]uint32,	shnum)

			322	 	 for	i	:=	0;	i	<	shnum;	i++	{

			323	 	 	 off	:=	shoff	+	int64(i)*int64(shentsize)

			324	 	 	 sr.Seek(off,	os.SEEK_SET)

			325	 	 	 s	:=	new(Section)

			326	 	 	 switch	f.Class	{

			327	 	 	 case	ELFCLASS32:

			328	 	 	 	 sh	:=	new(Section32)

			329	 	 	 	 if	err	:=	binary.Read(sr,	f.ByteOrder,	sh);	err	!=	nil	{

			330	 	 	 	 	 return	nil,	err

			331	 	 	 	 }

			332	 	 	 	 names[i]	=	sh.Name

			333	 	 	 	 s.SectionHeader	=	SectionHeader{

			334	 	 	 	 	 Type:						SectionType(sh.Type),

			335	 	 	 	 	 Flags:					SectionFlag(sh.Flags),

			336	 	 	 	 	 Addr:						uint64(sh.Addr),

			337	 	 	 	 	 Offset:				uint64(sh.Off),

			338	 	 	 	 	 Size:						uint64(sh.Size),

			339	 	 	 	 	 Link:						uint32(sh.Link),

			340	 	 	 	 	 Info:						uint32(sh.Info),

			341	 	 	 	 	 Addralign:	uint64(sh.Addralign),

			342	 	 	 	 	 Entsize:			uint64(sh.Entsize),

			343	 	 	 	 }

			344	 	 	 case	ELFCLASS64:

			345	 	 	 	 sh	:=	new(Section64)

			346	 	 	 	 if	err	:=	binary.Read(sr,	f.ByteOrder,	sh);	err	!=	nil	{

			347	 	 	 	 	 return	nil,	err

			348	 	 	 	 }

			349	 	 	 	 names[i]	=	sh.Name

			350	 	 	 	 s.SectionHeader	=	SectionHeader{

			351	 	 	 	 	 Type:						SectionType(sh.Type),

			352	 	 	 	 	 Flags:					SectionFlag(sh.Flags),

			353	 	 	 	 	 Offset:				uint64(sh.Off),

			354	 	 	 	 	 Size:						uint64(sh.Size),

			355	 	 	 	 	 Addr:						uint64(sh.Addr),

			356	 	 	 	 	 Link:						uint32(sh.Link),

			357	 	 	 	 	 Info:						uint32(sh.Info),

			358	 	 	 	 	 Addralign:	uint64(sh.Addralign),

			359	 	 	 	 	 Entsize:			uint64(sh.Entsize),

			360	 	 	 	 }

			361	 	 	 }

			362	 	 	 s.sr	=	io.NewSectionReader(r,	int64(s.Offset),	int64(s.Size))

			363	 	 	 s.ReaderAt	=	s.sr

			364	 	 	 f.Sections[i]	=	s

			365	 	 }

			366	

			367	 	 //	Load	section	header	string	table.

			368	 	 shstrtab,	err	:=	f.Sections[shstrndx].Data()

			369	 	 if	err	!=	nil	{

			370	 	 	 return	nil,	err

			371	 	 }

			372	 	 for	i,	s	:=	range	f.Sections	{

			373	 	 	 var	ok	bool

			374	 	 	 s.Name,	ok	=	getString(shstrtab,	int(names[i]))

			375	 	 	 if	!ok	{

			376	 	 	 	 return	nil,	&FormatError{shoff	+	int64(i*shentsize),	"bad	section	name	index",	names[i]}

			377	 	 	 }

			378	 	 }

			379	

			380	 	 return	f,	nil

			381	 }

			382	

			383	 //	getSymbols	returns	a	slice	of	Symbols	from	parsing	the	symbol	table

			384	 //	with	the	given	type,	along	with	the	associated	string	table.

			385	 func	(f	*File)	getSymbols(typ	SectionType)	([]Symbol,	[]byte,	error)	{

			386	 	 switch	f.Class	{

			387	 	 case	ELFCLASS64:

			388	 	 	 return	f.getSymbols64(typ)

			389	

			390	 	 case	ELFCLASS32:

			391	 	 	 return	f.getSymbols32(typ)

			392	 	 }

			393	

			394	 	 return	nil,	nil,	errors.New("not	implemented")

			395	 }

			396	

			397	 func	(f	*File)	getSymbols32(typ	SectionType)	([]Symbol,	[]byte,	error)	{

			398	 	 symtabSection	:=	f.SectionByType(typ)

			399	 	 if	symtabSection	==	nil	{

			400	 	 	 return	nil,	nil,	errors.New("no	symbol	section")

			401	 	 }

			402	

			403	 	 data,	err	:=	symtabSection.Data()

			404	 	 if	err	!=	nil	{

			405	 	 	 return	nil,	nil,	errors.New("cannot	load	symbol	section")

			406	 	 }

			407	 	 symtab	:=	bytes.NewBuffer(data)

			408	 	 if	symtab.Len()%Sym32Size	!=	0	{

			409	 	 	 return	nil,	nil,	errors.New("length	of	symbol	section	is	not	a	multiple	of	SymSize")

			410	 	 }

			411	

			412	 	 strdata,	err	:=	f.stringTable(symtabSection.Link)

			413	 	 if	err	!=	nil	{

			414	 	 	 return	nil,	nil,	errors.New("cannot	load	string	table	section")

			415	 	 }

			416	

			417	 	 //	The	first	entry	is	all	zeros.

			418	 	 var	skip	[Sym32Size]byte

			419	 	 symtab.Read(skip[0:])

			420	

			421	 	 symbols	:=	make([]Symbol,	symtab.Len()/Sym32Size)

			422	

			423	 	 i	:=	0

			424	 	 var	sym	Sym32

			425	 	 for	symtab.Len()	>	0	{

			426	 	 	 binary.Read(symtab,	f.ByteOrder,	&sym)

			427	 	 	 str,	_	:=	getString(strdata,	int(sym.Name))

			428	 	 	 symbols[i].Name	=	str

			429	 	 	 symbols[i].Info	=	sym.Info

			430	 	 	 symbols[i].Other	=	sym.Other

			431	 	 	 symbols[i].Section	=	SectionIndex(sym.Shndx)

			432	 	 	 symbols[i].Value	=	uint64(sym.Value)

			433	 	 	 symbols[i].Size	=	uint64(sym.Size)

			434	 	 	 i++

			435	 	 }

			436	

			437	 	 return	symbols,	strdata,	nil

			438	 }

			439	

			440	 func	(f	*File)	getSymbols64(typ	SectionType)	([]Symbol,	[]byte,	error)	{

			441	 	 symtabSection	:=	f.SectionByType(typ)

			442	 	 if	symtabSection	==	nil	{

			443	 	 	 return	nil,	nil,	errors.New("no	symbol	section")

			444	 	 }

			445	

			446	 	 data,	err	:=	symtabSection.Data()

			447	 	 if	err	!=	nil	{

			448	 	 	 return	nil,	nil,	errors.New("cannot	load	symbol	section")

			449	 	 }

			450	 	 symtab	:=	bytes.NewBuffer(data)

			451	 	 if	symtab.Len()%Sym64Size	!=	0	{

			452	 	 	 return	nil,	nil,	errors.New("length	of	symbol	section	is	not	a	multiple	of	Sym64Size")

			453	 	 }

			454	

			455	 	 strdata,	err	:=	f.stringTable(symtabSection.Link)

			456	 	 if	err	!=	nil	{

			457	 	 	 return	nil,	nil,	errors.New("cannot	load	string	table	section")

			458	 	 }

			459	

			460	 	 //	The	first	entry	is	all	zeros.

			461	 	 var	skip	[Sym64Size]byte

			462	 	 symtab.Read(skip[0:])

			463	

			464	 	 symbols	:=	make([]Symbol,	symtab.Len()/Sym64Size)

			465	

			466	 	 i	:=	0

			467	 	 var	sym	Sym64

			468	 	 for	symtab.Len()	>	0	{

			469	 	 	 binary.Read(symtab,	f.ByteOrder,	&sym)

			470	 	 	 str,	_	:=	getString(strdata,	int(sym.Name))

			471	 	 	 symbols[i].Name	=	str

			472	 	 	 symbols[i].Info	=	sym.Info

			473	 	 	 symbols[i].Other	=	sym.Other

			474	 	 	 symbols[i].Section	=	SectionIndex(sym.Shndx)

			475	 	 	 symbols[i].Value	=	sym.Value

			476	 	 	 symbols[i].Size	=	sym.Size

			477	 	 	 i++

			478	 	 }

			479	

			480	 	 return	symbols,	strdata,	nil

			481	 }

			482	

			483	 //	getString	extracts	a	string	from	an	ELF	string	table.

			484	 func	getString(section	[]byte,	start	int)	(string,	bool)	{

			485	 	 if	start	<	0	||	start	>=	len(section)	{

			486	 	 	 return	"",	false

			487	 	 }

			488	

			489	 	 for	end	:=	start;	end	<	len(section);	end++	{

			490	 	 	 if	section[end]	==	0	{

			491	 	 	 	 return	string(section[start:end]),	true

			492	 	 	 }

			493	 	 }

			494	 	 return	"",	false

			495	 }

			496	

			497	 //	Section	returns	a	section	with	the	given	name,	or	nil	if	no	such

			498	 //	section	exists.

			499	 func	(f	*File)	Section(name	string)	*Section	{

			500	 	 for	_,	s	:=	range	f.Sections	{

			501	 	 	 if	s.Name	==	name	{

			502	 	 	 	 return	s

			503	 	 	 }

			504	 	 }

			505	 	 return	nil

			506	 }

			507	

			508	 //	applyRelocations	applies	relocations	to	dst.	rels	is	a	relocations	section

			509	 //	in	RELA	format.

			510	 func	(f	*File)	applyRelocations(dst	[]byte,	rels	[]byte)	error	{

			511	 	 if	f.Class	==	ELFCLASS64	&&	f.Machine	==	EM_X86_64	{

			512	 	 	 return	f.applyRelocationsAMD64(dst,	rels)

			513	 	 }

			514	

			515	 	 return	errors.New("not	implemented")

			516	 }

			517	

			518	 func	(f	*File)	applyRelocationsAMD64(dst	[]byte,	rels	[]byte)	error	{

			519	 	 if	len(rels)%Sym64Size	!=	0	{

			520	 	 	 return	errors.New("length	of	relocation	section	is	not	a	multiple	of	Sym64Size")

			521	 	 }

			522	

			523	 	 symbols,	_,	err	:=	f.getSymbols(SHT_SYMTAB)

			524	 	 if	err	!=	nil	{

			525	 	 	 return	err

			526	 	 }

			527	

			528	 	 b	:=	bytes.NewBuffer(rels)

			529	 	 var	rela	Rela64

			530	

			531	 	 for	b.Len()	>	0	{

			532	 	 	 binary.Read(b,	f.ByteOrder,	&rela)

			533	 	 	 symNo	:=	rela.Info	>>	32

			534	 	 	 t	:=	R_X86_64(rela.Info	&	0xffff)

			535	

			536	 	 	 if	symNo	>=	uint64(len(symbols))	{

			537	 	 	 	 continue

			538	 	 	 }

			539	 	 	 sym	:=	&symbols[symNo]

			540	 	 	 if	SymType(sym.Info&0xf)	!=	STT_SECTION	{

			541	 	 	 	 //	We	don't	handle	non-section	relocations	for	now.

			542	 	 	 	 continue

			543	 	 	 }

			544	

			545	 	 	 switch	t	{

			546	 	 	 case	R_X86_64_64:

			547	 	 	 	 if	rela.Off+8	>=	uint64(len(dst))	||	rela.Addend	<	0	{

			548	 	 	 	 	 continue

			549	 	 	 	 }

			550	 	 	 	 f.ByteOrder.PutUint64(dst[rela.Off:rela.Off+8],	uint64(rela.Addend))

			551	 	 	 case	R_X86_64_32:

			552	 	 	 	 if	rela.Off+4	>=	uint64(len(dst))	||	rela.Addend	<	0	{

			553	 	 	 	 	 continue

			554	 	 	 	 }

			555	 	 	 	 f.ByteOrder.PutUint32(dst[rela.Off:rela.Off+4],	uint32(rela.Addend))

			556	 	 	 }

			557	 	 }

			558	

			559	 	 return	nil

			560	 }

			561	

			562	 func	(f	*File)	DWARF()	(*dwarf.Data,	error)	{

			563	 	 //	There	are	many	other	DWARF	sections,	but	these

			564	 	 //	are	the	required	ones,	and	the	debug/dwarf	package

			565	 	 //	does	not	use	the	others,	so	don't	bother	loading	them.

			566	 	 var	names	=	[...]string{"abbrev",	"info",	"str"}

			567	 	 var	dat	[len(names)][]byte

			568	 	 for	i,	name	:=	range	names	{

			569	 	 	 name	=	".debug_"	+	name

			570	 	 	 s	:=	f.Section(name)

			571	 	 	 if	s	==	nil	{

			572	 	 	 	 continue

			573	 	 	 }

			574	 	 	 b,	err	:=	s.Data()

			575	 	 	 if	err	!=	nil	&&	uint64(len(b))	<	s.Size	{

			576	 	 	 	 return	nil,	err

			577	 	 	 }

			578	 	 	 dat[i]	=	b

			579	 	 }

			580	

			581	 	 //	If	there's	a	relocation	table	for	.debug_info,	we	have	to	process	it

			582	 	 //	now	otherwise	the	data	in	.debug_info	is	invalid	for	x86-64	objects.

			583	 	 rela	:=	f.Section(".rela.debug_info")

			584	 	 if	rela	!=	nil	&&	rela.Type	==	SHT_RELA	&&	f.Machine	==	EM_X86_64	{

			585	 	 	 data,	err	:=	rela.Data()

			586	 	 	 if	err	!=	nil	{

			587	 	 	 	 return	nil,	err

			588	 	 	 }

			589	 	 	 err	=	f.applyRelocations(dat[1],	data)

			590	 	 	 if	err	!=	nil	{

			591	 	 	 	 return	nil,	err

			592	 	 	 }

			593	 	 }

			594	

			595	 	 abbrev,	info,	str	:=	dat[0],	dat[1],	dat[2]

			596	 	 return	dwarf.New(abbrev,	nil,	nil,	info,	nil,	nil,	nil,	str)

			597	 }

			598	

			599	 //	Symbols	returns	the	symbol	table	for	f.

			600	 func	(f	*File)	Symbols()	([]Symbol,	error)	{

			601	 	 sym,	_,	err	:=	f.getSymbols(SHT_SYMTAB)

			602	 	 return	sym,	err

			603	 }

			604	

			605	 type	ImportedSymbol	struct	{

			606	 	 Name				string

			607	 	 Version	string

			608	 	 Library	string

			609	 }

			610	

			611	 //	ImportedSymbols	returns	the	names	of	all	symbols

			612	 //	referred	to	by	the	binary	f	that	are	expected	to	be

			613	 //	satisfied	by	other	libraries	at	dynamic	load	time.

			614	 //	It	does	not	return	weak	symbols.

			615	 func	(f	*File)	ImportedSymbols()	([]ImportedSymbol,	error)	{

			616	 	 sym,	str,	err	:=	f.getSymbols(SHT_DYNSYM)

			617	 	 if	err	!=	nil	{

			618	 	 	 return	nil,	err

			619	 	 }

			620	 	 f.gnuVersionInit(str)

			621	 	 var	all	[]ImportedSymbol

			622	 	 for	i,	s	:=	range	sym	{

			623	 	 	 if	ST_BIND(s.Info)	==	STB_GLOBAL	&&	s.Section	==	SHN_UNDEF	{

			624	 	 	 	 all	=	append(all,	ImportedSymbol{Name:	s.Name})

			625	 	 	 	 f.gnuVersion(i,	&all[len(all)-1])

			626	 	 	 }

			627	 	 }

			628	 	 return	all,	nil

			629	 }

			630	

			631	 type	verneed	struct	{

			632	 	 File	string

			633	 	 Name	string

			634	 }

			635	

			636	 //	gnuVersionInit	parses	the	GNU	version	tables

			637	 //	for	use	by	calls	to	gnuVersion.

			638	 func	(f	*File)	gnuVersionInit(str	[]byte)	{

			639	 	 //	Accumulate	verneed	information.

			640	 	 vn	:=	f.SectionByType(SHT_GNU_VERNEED)

			641	 	 if	vn	==	nil	{

			642	 	 	 return

			643	 	 }

			644	 	 d,	_	:=	vn.Data()

			645	

			646	 	 var	need	[]verneed

			647	 	 i	:=	0

			648	 	 for	{

			649	 	 	 if	i+16	>	len(d)	{

			650	 	 	 	 break

			651	 	 	 }

			652	 	 	 vers	:=	f.ByteOrder.Uint16(d[i	:	i+2])

			653	 	 	 if	vers	!=	1	{

			654	 	 	 	 break

			655	 	 	 }

			656	 	 	 cnt	:=	f.ByteOrder.Uint16(d[i+2	:	i+4])

			657	 	 	 fileoff	:=	f.ByteOrder.Uint32(d[i+4	:	i+8])

			658	 	 	 aux	:=	f.ByteOrder.Uint32(d[i+8	:	i+12])

			659	 	 	 next	:=	f.ByteOrder.Uint32(d[i+12	:	i+16])

			660	 	 	 file,	_	:=	getString(str,	int(fileoff))

			661	

			662	 	 	 var	name	string

			663	 	 	 j	:=	i	+	int(aux)

			664	 	 	 for	c	:=	0;	c	<	int(cnt);	c++	{

			665	 	 	 	 if	j+16	>	len(d)	{

			666	 	 	 	 	 break

			667	 	 	 	 }

			668	 	 	 	 //	hash	:=	f.ByteOrder.Uint32(d[j:j+4])

			669	 	 	 	 //	flags	:=	f.ByteOrder.Uint16(d[j+4:j+6])

			670	 	 	 	 other	:=	f.ByteOrder.Uint16(d[j+6	:	j+8])

			671	 	 	 	 nameoff	:=	f.ByteOrder.Uint32(d[j+8	:	j+12])

			672	 	 	 	 next	:=	f.ByteOrder.Uint32(d[j+12	:	j+16])

			673	 	 	 	 name,	_	=	getString(str,	int(nameoff))

			674	 	 	 	 ndx	:=	int(other)

			675	 	 	 	 if	ndx	>=	len(need)	{

			676	 	 	 	 	 a	:=	make([]verneed,	2*(ndx+1))

			677	 	 	 	 	 copy(a,	need)

			678	 	 	 	 	 need	=	a

			679	 	 	 	 }

			680	

			681	 	 	 	 need[ndx]	=	verneed{file,	name}

			682	 	 	 	 if	next	==	0	{

			683	 	 	 	 	 break

			684	 	 	 	 }

			685	 	 	 	 j	+=	int(next)

			686	 	 	 }

			687	

			688	 	 	 if	next	==	0	{

			689	 	 	 	 break

			690	 	 	 }

			691	 	 	 i	+=	int(next)

			692	 	 }

			693	

			694	 	 //	Versym	parallels	symbol	table,	indexing	into	verneed.

			695	 	 vs	:=	f.SectionByType(SHT_GNU_VERSYM)

			696	 	 if	vs	==	nil	{

			697	 	 	 return

			698	 	 }

			699	 	 d,	_	=	vs.Data()

			700	

			701	 	 f.gnuNeed	=	need

			702	 	 f.gnuVersym	=	d

			703	 }

			704	

			705	 //	gnuVersion	adds	Library	and	Version	information	to	sym,

			706	 //	which	came	from	offset	i	of	the	symbol	table.

			707	 func	(f	*File)	gnuVersion(i	int,	sym	*ImportedSymbol)	{

			708	 	 //	Each	entry	is	two	bytes;	skip	undef	entry	at	beginning.

			709	 	 i	=	(i	+	1)	*	2

			710	 	 if	i	>=	len(f.gnuVersym)	{

			711	 	 	 return

			712	 	 }

			713	 	 j	:=	int(f.ByteOrder.Uint16(f.gnuVersym[i:]))

			714	 	 if	j	<	2	||	j	>=	len(f.gnuNeed)	{

			715	 	 	 return

			716	 	 }

			717	 	 n	:=	&f.gnuNeed[j]

			718	 	 sym.Library	=	n.File

			719	 	 sym.Version	=	n.Name

			720	 }

			721	

			722	 //	ImportedLibraries	returns	the	names	of	all	libraries

			723	 //	referred	to	by	the	binary	f	that	are	expected	to	be

			724	 //	linked	with	the	binary	at	dynamic	link	time.

			725	 func	(f	*File)	ImportedLibraries()	([]string,	error)	{

			726	 	 ds	:=	f.SectionByType(SHT_DYNAMIC)

			727	 	 if	ds	==	nil	{

			728	 	 	 //	not	dynamic,	so	no	libraries

			729	 	 	 return	nil,	nil

			730	 	 }

			731	 	 d,	err	:=	ds.Data()

			732	 	 if	err	!=	nil	{

			733	 	 	 return	nil,	err

			734	 	 }

			735	 	 str,	err	:=	f.stringTable(ds.Link)

			736	 	 if	err	!=	nil	{

			737	 	 	 return	nil,	err

			738	 	 }

			739	 	 var	all	[]string

			740	 	 for	len(d)	>	0	{

			741	 	 	 var	tag	DynTag

			742	 	 	 var	value	uint64

			743	 	 	 switch	f.Class	{

			744	 	 	 case	ELFCLASS32:

			745	 	 	 	 tag	=	DynTag(f.ByteOrder.Uint32(d[0:4]))

			746	 	 	 	 value	=	uint64(f.ByteOrder.Uint32(d[4:8]))

			747	 	 	 	 d	=	d[8:]

			748	 	 	 case	ELFCLASS64:

			749	 	 	 	 tag	=	DynTag(f.ByteOrder.Uint64(d[0:8]))

			750	 	 	 	 value	=	f.ByteOrder.Uint64(d[8:16])

			751	 	 	 	 d	=	d[16:]

			752	 	 	 }

			753	 	 	 if	tag	==	DT_NEEDED	{

			754	 	 	 	 s,	ok	:=	getString(str,	int(value))

			755	 	 	 	 if	ok	{

			756	 	 	 	 	 all	=	append(all,	s)

			757	 	 	 	 }

			758	 	 	 }

			759	 	 }

			760	

			761	 	 return	all,	nil

			762	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/debug/gosym/pclntab.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 	*	Line	tables

					7	 	*/

					8	

					9	 package	gosym

				10	

				11	 import	"encoding/binary"

				12	

				13	 type	LineTable	struct	{

				14	 	 Data	[]byte

				15	 	 PC			uint64

				16	 	 Line	int

				17	 }

				18	

				19	 //	TODO(rsc):	Need	to	pull	in	quantum	from	architecture	definition.

				20	 const	quantum	=	1

				21	

				22	 func	(t	*LineTable)	parse(targetPC	uint64,	targetLine	int)	(b	[]byte,	pc	uint64,	line	int)	{

				23	 	 //	The	PC/line	table	can	be	thought	of	as	a	sequence	of

				24	 	 //		<pc	update>*	<line	update>

				25	 	 //	batches.		Each	update	batch	results	in	a	(pc,	line)	pair,

				26	 	 //	where	line	applies	to	every	PC	from	pc	up	to	but	not

				27	 	 //	including	the	pc	of	the	next	pair.

				28	 	 //

				29	 	 //	Here	we	process	each	update	individually,	which	simplifies

				30	 	 //	the	code,	but	makes	the	corner	cases	more	confusing.

				31	 	 b,	pc,	line	=	t.Data,	t.PC,	t.Line

				32	 	 for	pc	<=	targetPC	&&	line	!=	targetLine	&&	len(b)	>	0	{

				33	 	 	 code	:=	b[0]

				34	 	 	 b	=	b[1:]

				35	 	 	 switch	{

				36	 	 	 case	code	==	0:

				37	 	 	 	 if	len(b)	<	4	{

				38	 	 	 	 	 b	=	b[0:0]

				39	 	 	 	 	 break

				40	 	 	 	 }

				41	 	 	 	 val	:=	binary.BigEndian.Uint32(b)

				42	 	 	 	 b	=	b[4:]

				43	 	 	 	 line	+=	int(val)

				44	 	 	 case	code	<=	64:

				45	 	 	 	 line	+=	int(code)

				46	 	 	 case	code	<=	128:

				47	 	 	 	 line	-=	int(code	-	64)

				48	 	 	 default:

				49	 	 	 	 pc	+=	quantum	*	uint64(code-128)

				50	 	 	 	 continue

				51	 	 	 }

				52	 	 	 pc	+=	quantum

				53	 	 }

				54	 	 return	b,	pc,	line

				55	 }

				56	

				57	 func	(t	*LineTable)	slice(pc	uint64)	*LineTable	{

				58	 	 data,	pc,	line	:=	t.parse(pc,	-1)

				59	 	 return	&LineTable{data,	pc,	line}

				60	 }

				61	

				62	 func	(t	*LineTable)	PCToLine(pc	uint64)	int	{

				63	 	 _,	_,	line	:=	t.parse(pc,	-1)

				64	 	 return	line

				65	 }

				66	

				67	 func	(t	*LineTable)	LineToPC(line	int,	maxpc	uint64)	uint64	{

				68	 	 _,	pc,	line1	:=	t.parse(maxpc,	line)

				69	 	 if	line1	!=	line	{

				70	 	 	 return	0

				71	 	 }

				72	 	 //	Subtract	quantum	from	PC	to	account	for	post-line	increment

				73	 	 return	pc	-	quantum

				74	 }

				75	

				76	 //	NewLineTable	returns	a	new	PC/line	table

				77	 //	corresponding	to	the	encoded	data.

				78	 //	Text	must	be	the	start	address	of	the

				79	 //	corresponding	text	segment.

				80	 func	NewLineTable(data	[]byte,	text	uint64)	*LineTable	{

				81	 	 return	&LineTable{data,	text,	0}

				82	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/debug/gosym/symtab.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	gosym	implements	access	to	the	Go	symbol

					6	 //	and	line	number	tables	embedded	in	Go	binaries	generated

					7	 //	by	the	gc	compilers.

					8	 package	gosym

					9	

				10	 //	The	table	format	is	a	variant	of	the	format	used	in	Plan	9's	a.out

				11	 //	format,	documented	at	http://plan9.bell-labs.com/magic/man2html/6/a.out.

				12	 //	The	best	reference	for	the	differences	between	the	Plan	9	format

				13	 //	and	the	Go	format	is	the	runtime	source,	specifically	../../runtime/symtab.c.

				14	

				15	 import	(

				16	 	 "encoding/binary"

				17	 	 "fmt"

				18	 	 "strconv"

				19	 	 "strings"

				20)

				21	

				22	 /*

				23	 	*	Symbols

				24	 	*/

				25	

				26	 //	A	Sym	represents	a	single	symbol	table	entry.

				27	 type	Sym	struct	{

				28	 	 Value		uint64

				29	 	 Type			byte

				30	 	 Name			string

				31	 	 GoType	uint64

				32	 	 //	If	this	symbol	if	a	function	symbol,	the	corresponding	Func

				33	 	 Func	*Func

				34	 }

				35	

				36	 //	Static	returns	whether	this	symbol	is	static	(not	visible	outside	its	file).

				37	 func	(s	*Sym)	Static()	bool	{	return	s.Type	>=	'a'	}

				38	

				39	 //	PackageName	returns	the	package	part	of	the	symbol	name,

				40	 //	or	the	empty	string	if	there	is	none.

				41	 func	(s	*Sym)	PackageName()	string	{

				42	 	 if	i	:=	strings.Index(s.Name,	".");	i	!=	-1	{

				43	 	 	 return	s.Name[0:i]

				44	 	 }

				45	 	 return	""

				46	 }

				47	

				48	 //	ReceiverName	returns	the	receiver	type	name	of	this	symbol,

				49	 //	or	the	empty	string	if	there	is	none.

				50	 func	(s	*Sym)	ReceiverName()	string	{

				51	 	 l	:=	strings.Index(s.Name,	".")

				52	 	 r	:=	strings.LastIndex(s.Name,	".")

				53	 	 if	l	==	-1	||	r	==	-1	||	l	==	r	{

				54	 	 	 return	""

				55	 	 }

				56	 	 return	s.Name[l+1	:	r]

				57	 }

				58	

				59	 //	BaseName	returns	the	symbol	name	without	the	package	or	receiver	name.

				60	 func	(s	*Sym)	BaseName()	string	{

				61	 	 if	i	:=	strings.LastIndex(s.Name,	".");	i	!=	-1	{

				62	 	 	 return	s.Name[i+1:]

				63	 	 }

				64	 	 return	s.Name

				65	 }

				66	

				67	 //	A	Func	collects	information	about	a	single	function.

				68	 type	Func	struct	{

				69	 	 Entry	uint64

				70	 	 *Sym

				71	 	 End							uint64

				72	 	 Params				[]*Sym

				73	 	 Locals				[]*Sym

				74	 	 FrameSize	int

				75	 	 LineTable	*LineTable

				76	 	 Obj							*Obj

				77	 }

				78	

				79	 //	An	Obj	represents	a	single	object	file.

				80	 type	Obj	struct	{

				81	 	 Funcs	[]Func

				82	 	 Paths	[]Sym

				83	 }

				84	

				85	 /*

				86	 	*	Symbol	tables

				87	 	*/

				88	

				89	 //	Table	represents	a	Go	symbol	table.		It	stores	all	of	the

				90	 //	symbols	decoded	from	the	program	and	provides	methods	to	translate

				91	 //	between	symbols,	names,	and	addresses.

				92	 type	Table	struct	{

				93	 	 Syms		[]Sym

				94	 	 Funcs	[]Func

				95	 	 Files	map[string]*Obj

				96	 	 Objs		[]Obj

				97	 	 //	 textEnd	uint64;

				98	 }

				99	

			100	 type	sym	struct	{

			101	 	 value		uint32

			102	 	 gotype	uint32

			103	 	 typ				byte

			104	 	 name			[]byte

			105	 }

			106	

			107	 func	walksymtab(data	[]byte,	fn	func(sym)	error)	error	{

			108	 	 var	s	sym

			109	 	 p	:=	data

			110	 	 for	len(p)	>=	6	{

			111	 	 	 s.value	=	binary.BigEndian.Uint32(p[0:4])

			112	 	 	 typ	:=	p[4]

			113	 	 	 if	typ&0x80	==	0	{

			114	 	 	 	 return	&DecodingError{len(data)	-	len(p)	+	4,	"bad	symbol	type",	typ}

			115	 	 	 }

			116	 	 	 typ	&^=	0x80

			117	 	 	 s.typ	=	typ

			118	 	 	 p	=	p[5:]

			119	 	 	 var	i	int

			120	 	 	 var	nnul	int

			121	 	 	 for	i	=	0;	i	<	len(p);	i++	{

			122	 	 	 	 if	p[i]	==	0	{

			123	 	 	 	 	 nnul	=	1

			124	 	 	 	 	 break

			125	 	 	 	 }

			126	 	 	 }

			127	 	 	 switch	typ	{

			128	 	 	 case	'z',	'Z':

			129	 	 	 	 p	=	p[i+nnul:]

			130	 	 	 	 for	i	=	0;	i+2	<=	len(p);	i	+=	2	{

			131	 	 	 	 	 if	p[i]	==	0	&&	p[i+1]	==	0	{

			132	 	 	 	 	 	 nnul	=	2

			133	 	 	 	 	 	 break

			134	 	 	 	 	 }

			135	 	 	 	 }

			136	 	 	 }

			137	 	 	 if	i+nnul+4	>	len(p)	{

			138	 	 	 	 return	&DecodingError{len(data),	"unexpected	EOF",	nil}

			139	 	 	 }

			140	 	 	 s.name	=	p[0:i]

			141	 	 	 i	+=	nnul

			142	 	 	 s.gotype	=	binary.BigEndian.Uint32(p[i	:	i+4])

			143	 	 	 p	=	p[i+4:]

			144	 	 	 fn(s)

			145	 	 }

			146	 	 return	nil

			147	 }

			148	

			149	 //	NewTable	decodes	the	Go	symbol	table	in	data,

			150	 //	returning	an	in-memory	representation.

			151	 func	NewTable(symtab	[]byte,	pcln	*LineTable)	(*Table,	error)	{

			152	 	 var	n	int

			153	 	 err	:=	walksymtab(symtab,	func(s	sym)	error	{

			154	 	 	 n++

			155	 	 	 return	nil

			156	 	 })

			157	 	 if	err	!=	nil	{

			158	 	 	 return	nil,	err

			159	 	 }

			160	

			161	 	 var	t	Table

			162	 	 fname	:=	make(map[uint16]string)

			163	 	 t.Syms	=	make([]Sym,	0,	n)

			164	 	 nf	:=	0

			165	 	 nz	:=	0

			166	 	 lasttyp	:=	uint8(0)

			167	 	 err	=	walksymtab(symtab,	func(s	sym)	error	{

			168	 	 	 n	:=	len(t.Syms)

			169	 	 	 t.Syms	=	t.Syms[0	:	n+1]

			170	 	 	 ts	:=	&t.Syms[n]

			171	 	 	 ts.Type	=	s.typ

			172	 	 	 ts.Value	=	uint64(s.value)

			173	 	 	 ts.GoType	=	uint64(s.gotype)

			174	 	 	 switch	s.typ	{

			175	 	 	 default:

			176	 	 	 	 //	rewrite	name	to	use	.	instead	of	·	(c2	b7)

			177	 	 	 	 w	:=	0

			178	 	 	 	 b	:=	s.name

			179	 	 	 	 for	i	:=	0;	i	<	len(b);	i++	{

			180	 	 	 	 	 if	b[i]	==	0xc2	&&	i+1	<	len(b)	&&	b[i+1]	==	0xb7	{

			181	 	 	 	 	 	 i++

			182	 	 	 	 	 	 b[i]	=	'.'

			183	 	 	 	 	 }

			184	 	 	 	 	 b[w]	=	b[i]

			185	 	 	 	 	 w++

			186	 	 	 	 }

			187	 	 	 	 ts.Name	=	string(s.name[0:w])

			188	 	 	 case	'z',	'Z':

			189	 	 	 	 if	lasttyp	!=	'z'	&&	lasttyp	!=	'Z'	{

			190	 	 	 	 	 nz++

			191	 	 	 	 }

			192	 	 	 	 for	i	:=	0;	i	<	len(s.name);	i	+=	2	{

			193	 	 	 	 	 eltIdx	:=	binary.BigEndian.Uint16(s.name[i	:	i+2])

			194	 	 	 	 	 elt,	ok	:=	fname[eltIdx]

			195	 	 	 	 	 if	!ok	{

			196	 	 	 	 	 	 return	&DecodingError{-1,	"bad	filename	code",	eltIdx}

			197	 	 	 	 	 }

			198	 	 	 	 	 if	n	:=	len(ts.Name);	n	>	0	&&	ts.Name[n-1]	!=	'/'	{

			199	 	 	 	 	 	 ts.Name	+=	"/"

			200	 	 	 	 	 }

			201	 	 	 	 	 ts.Name	+=	elt

			202	 	 	 	 }

			203	 	 	 }

			204	 	 	 switch	s.typ	{

			205	 	 	 case	'T',	't',	'L',	'l':

			206	 	 	 	 nf++

			207	 	 	 case	'f':

			208	 	 	 	 fname[uint16(s.value)]	=	ts.Name

			209	 	 	 }

			210	 	 	 lasttyp	=	s.typ

			211	 	 	 return	nil

			212	 	 })

			213	 	 if	err	!=	nil	{

			214	 	 	 return	nil,	err

			215	 	 }

			216	

			217	 	 t.Funcs	=	make([]Func,	0,	nf)

			218	 	 t.Objs	=	make([]Obj,	0,	nz)

			219	 	 t.Files	=	make(map[string]*Obj)

			220	

			221	 	 //	Count	text	symbols	and	attach	frame	sizes,	parameters,	and

			222	 	 //	locals	to	them.		Also,	find	object	file	boundaries.

			223	 	 var	obj	*Obj

			224	 	 lastf	:=	0

			225	 	 for	i	:=	0;	i	<	len(t.Syms);	i++	{

			226	 	 	 sym	:=	&t.Syms[i]

			227	 	 	 switch	sym.Type	{

			228	 	 	 case	'Z',	'z':	//	path	symbol

			229	 	 	 	 //	Finish	the	current	object

			230	 	 	 	 if	obj	!=	nil	{

			231	 	 	 	 	 obj.Funcs	=	t.Funcs[lastf:]

			232	 	 	 	 }

			233	 	 	 	 lastf	=	len(t.Funcs)

			234	

			235	 	 	 	 //	Start	new	object

			236	 	 	 	 n	:=	len(t.Objs)

			237	 	 	 	 t.Objs	=	t.Objs[0	:	n+1]

			238	 	 	 	 obj	=	&t.Objs[n]

			239	

			240	 	 	 	 //	Count	&	copy	path	symbols

			241	 	 	 	 var	end	int

			242	 	 	 	 for	end	=	i	+	1;	end	<	len(t.Syms);	end++	{

			243	 	 	 	 	 if	c	:=	t.Syms[end].Type;	c	!=	'Z'	&&	c	!=	'z'	{

			244	 	 	 	 	 	 break

			245	 	 	 	 	 }

			246	 	 	 	 }

			247	 	 	 	 obj.Paths	=	t.Syms[i:end]

			248	 	 	 	 i	=	end	-	1	//	loop	will	i++

			249	

			250	 	 	 	 //	Record	file	names

			251	 	 	 	 depth	:=	0

			252	 	 	 	 for	j	:=	range	obj.Paths	{

			253	 	 	 	 	 s	:=	&obj.Paths[j]

			254	 	 	 	 	 if	s.Name	==	""	{

			255	 	 	 	 	 	 depth--

			256	 	 	 	 	 }	else	{

			257	 	 	 	 	 	 if	depth	==	0	{

			258	 	 	 	 	 	 	 t.Files[s.Name]	=	obj

			259	 	 	 	 	 	 }

			260	 	 	 	 	 	 depth++

			261	 	 	 	 	 }

			262	 	 	 	 }

			263	

			264	 	 	 case	'T',	't',	'L',	'l':	//	text	symbol

			265	 	 	 	 if	n	:=	len(t.Funcs);	n	>	0	{

			266	 	 	 	 	 t.Funcs[n-1].End	=	sym.Value

			267	 	 	 	 }

			268	 	 	 	 if	sym.Name	==	"etext"	{

			269	 	 	 	 	 continue

			270	 	 	 	 }

			271	

			272	 	 	 	 //	Count	parameter	and	local	(auto)	syms

			273	 	 	 	 var	np,	na	int

			274	 	 	 	 var	end	int

			275	 	 	 countloop:

			276	 	 	 	 for	end	=	i	+	1;	end	<	len(t.Syms);	end++	{

			277	 	 	 	 	 switch	t.Syms[end].Type	{

			278	 	 	 	 	 case	'T',	't',	'L',	'l',	'Z',	'z':

			279	 	 	 	 	 	 break	countloop

			280	 	 	 	 	 case	'p':

			281	 	 	 	 	 	 np++

			282	 	 	 	 	 case	'a':

			283	 	 	 	 	 	 na++

			284	 	 	 	 	 }

			285	 	 	 	 }

			286	

			287	 	 	 	 //	Fill	in	the	function	symbol

			288	 	 	 	 n	:=	len(t.Funcs)

			289	 	 	 	 t.Funcs	=	t.Funcs[0	:	n+1]

			290	 	 	 	 fn	:=	&t.Funcs[n]

			291	 	 	 	 sym.Func	=	fn

			292	 	 	 	 fn.Params	=	make([]*Sym,	0,	np)

			293	 	 	 	 fn.Locals	=	make([]*Sym,	0,	na)

			294	 	 	 	 fn.Sym	=	sym

			295	 	 	 	 fn.Entry	=	sym.Value

			296	 	 	 	 fn.Obj	=	obj

			297	 	 	 	 if	pcln	!=	nil	{

			298	 	 	 	 	 fn.LineTable	=	pcln.slice(fn.Entry)

			299	 	 	 	 	 pcln	=	fn.LineTable

			300	 	 	 	 }

			301	 	 	 	 for	j	:=	i;	j	<	end;	j++	{

			302	 	 	 	 	 s	:=	&t.Syms[j]

			303	 	 	 	 	 switch	s.Type	{

			304	 	 	 	 	 case	'm':

			305	 	 	 	 	 	 fn.FrameSize	=	int(s.Value)

			306	 	 	 	 	 case	'p':

			307	 	 	 	 	 	 n	:=	len(fn.Params)

			308	 	 	 	 	 	 fn.Params	=	fn.Params[0	:	n+1]

			309	 	 	 	 	 	 fn.Params[n]	=	s

			310	 	 	 	 	 case	'a':

			311	 	 	 	 	 	 n	:=	len(fn.Locals)

			312	 	 	 	 	 	 fn.Locals	=	fn.Locals[0	:	n+1]

			313	 	 	 	 	 	 fn.Locals[n]	=	s

			314	 	 	 	 	 }

			315	 	 	 	 }

			316	 	 	 	 i	=	end	-	1	//	loop	will	i++

			317	 	 	 }

			318	 	 }

			319	 	 if	obj	!=	nil	{

			320	 	 	 obj.Funcs	=	t.Funcs[lastf:]

			321	 	 }

			322	 	 return	&t,	nil

			323	 }

			324	

			325	 //	PCToFunc	returns	the	function	containing	the	program	counter	pc,

			326	 //	or	nil	if	there	is	no	such	function.

			327	 func	(t	*Table)	PCToFunc(pc	uint64)	*Func	{

			328	 	 funcs	:=	t.Funcs

			329	 	 for	len(funcs)	>	0	{

			330	 	 	 m	:=	len(funcs)	/	2

			331	 	 	 fn	:=	&funcs[m]

			332	 	 	 switch	{

			333	 	 	 case	pc	<	fn.Entry:

			334	 	 	 	 funcs	=	funcs[0:m]

			335	 	 	 case	fn.Entry	<=	pc	&&	pc	<	fn.End:

			336	 	 	 	 return	fn

			337	 	 	 default:

			338	 	 	 	 funcs	=	funcs[m+1:]

			339	 	 	 }

			340	 	 }

			341	 	 return	nil

			342	 }

			343	

			344	 //	PCToLine	looks	up	line	number	information	for	a	program	counter.

			345	 //	If	there	is	no	information,	it	returns	fn	==	nil.

			346	 func	(t	*Table)	PCToLine(pc	uint64)	(file	string,	line	int,	fn	*Func)	{

			347	 	 if	fn	=	t.PCToFunc(pc);	fn	==	nil	{

			348	 	 	 return

			349	 	 }

			350	 	 file,	line	=	fn.Obj.lineFromAline(fn.LineTable.PCToLine(pc))

			351	 	 return

			352	 }

			353	

			354	 //	LineToPC	looks	up	the	first	program	counter	on	the	given	line	in

			355	 //	the	named	file.		Returns	UnknownPathError	or	UnknownLineError	if

			356	 //	there	is	an	error	looking	up	this	line.

			357	 func	(t	*Table)	LineToPC(file	string,	line	int)	(pc	uint64,	fn	*Func,	err	error)	{

			358	 	 obj,	ok	:=	t.Files[file]

			359	 	 if	!ok	{

			360	 	 	 return	0,	nil,	UnknownFileError(file)

			361	 	 }

			362	 	 abs,	err	:=	obj.alineFromLine(file,	line)

			363	 	 if	err	!=	nil	{

			364	 	 	 return

			365	 	 }

			366	 	 for	i	:=	range	obj.Funcs	{

			367	 	 	 f	:=	&obj.Funcs[i]

			368	 	 	 pc	:=	f.LineTable.LineToPC(abs,	f.End)

			369	 	 	 if	pc	!=	0	{

			370	 	 	 	 return	pc,	f,	nil

			371	 	 	 }

			372	 	 }

			373	 	 return	0,	nil,	&UnknownLineError{file,	line}

			374	 }

			375	

			376	 //	LookupSym	returns	the	text,	data,	or	bss	symbol	with	the	given	name,

			377	 //	or	nil	if	no	such	symbol	is	found.

			378	 func	(t	*Table)	LookupSym(name	string)	*Sym	{

			379	 	 //	TODO(austin)	Maybe	make	a	map

			380	 	 for	i	:=	range	t.Syms	{

			381	 	 	 s	:=	&t.Syms[i]

			382	 	 	 switch	s.Type	{

			383	 	 	 case	'T',	't',	'L',	'l',	'D',	'd',	'B',	'b':

			384	 	 	 	 if	s.Name	==	name	{

			385	 	 	 	 	 return	s

			386	 	 	 	 }

			387	 	 	 }

			388	 	 }

			389	 	 return	nil

			390	 }

			391	

			392	 //	LookupFunc	returns	the	text,	data,	or	bss	symbol	with	the	given	name,

			393	 //	or	nil	if	no	such	symbol	is	found.

			394	 func	(t	*Table)	LookupFunc(name	string)	*Func	{

			395	 	 for	i	:=	range	t.Funcs	{

			396	 	 	 f	:=	&t.Funcs[i]

			397	 	 	 if	f.Sym.Name	==	name	{

			398	 	 	 	 return	f

			399	 	 	 }

			400	 	 }

			401	 	 return	nil

			402	 }

			403	

			404	 //	SymByAddr	returns	the	text,	data,	or	bss	symbol	starting	at	the	given	address.

			405	 //	TODO(rsc):	Allow	lookup	by	any	address	within	the	symbol.

			406	 func	(t	*Table)	SymByAddr(addr	uint64)	*Sym	{

			407	 	 //	TODO(austin)	Maybe	make	a	map

			408	 	 for	i	:=	range	t.Syms	{

			409	 	 	 s	:=	&t.Syms[i]

			410	 	 	 switch	s.Type	{

			411	 	 	 case	'T',	't',	'L',	'l',	'D',	'd',	'B',	'b':

			412	 	 	 	 if	s.Value	==	addr	{

			413	 	 	 	 	 return	s

			414	 	 	 	 }

			415	 	 	 }

			416	 	 }

			417	 	 return	nil

			418	 }

			419	

			420	 /*

			421	 	*	Object	files

			422	 	*/

			423	

			424	 func	(o	*Obj)	lineFromAline(aline	int)	(string,	int)	{

			425	 	 type	stackEnt	struct	{

			426	 	 	 path			string

			427	 	 	 start		int

			428	 	 	 offset	int

			429	 	 	 prev			*stackEnt

			430	 	 }

			431	

			432	 	 noPath	:=	&stackEnt{"",	0,	0,	nil}

			433	 	 tos	:=	noPath

			434	

			435	 	 //	TODO(austin)	I	have	no	idea	how	'Z'	symbols	work,	except

			436	 	 //	that	they	pop	the	stack.

			437	 pathloop:

			438	 	 for	_,	s	:=	range	o.Paths	{

			439	 	 	 val	:=	int(s.Value)

			440	 	 	 switch	{

			441	 	 	 case	val	>	aline:

			442	 	 	 	 break	pathloop

			443	

			444	 	 	 case	val	==	1:

			445	 	 	 	 //	Start	a	new	stack

			446	 	 	 	 tos	=	&stackEnt{s.Name,	val,	0,	noPath}

			447	

			448	 	 	 case	s.Name	==	"":

			449	 	 	 	 //	Pop

			450	 	 	 	 if	tos	==	noPath	{

			451	 	 	 	 	 return	"<malformed	symbol	table>",	0

			452	 	 	 	 }

			453	 	 	 	 tos.prev.offset	+=	val	-	tos.start

			454	 	 	 	 tos	=	tos.prev

			455	

			456	 	 	 default:

			457	 	 	 	 //	Push

			458	 	 	 	 tos	=	&stackEnt{s.Name,	val,	0,	tos}

			459	 	 	 }

			460	 	 }

			461	

			462	 	 if	tos	==	noPath	{

			463	 	 	 return	"",	0

			464	 	 }

			465	 	 return	tos.path,	aline	-	tos.start	-	tos.offset	+	1

			466	 }

			467	

			468	 func	(o	*Obj)	alineFromLine(path	string,	line	int)	(int,	error)	{

			469	 	 if	line	<	1	{

			470	 	 	 return	0,	&UnknownLineError{path,	line}

			471	 	 }

			472	

			473	 	 for	i,	s	:=	range	o.Paths	{

			474	 	 	 //	Find	this	path

			475	 	 	 if	s.Name	!=	path	{

			476	 	 	 	 continue

			477	 	 	 }

			478	

			479	 	 	 //	Find	this	line	at	this	stack	level

			480	 	 	 depth	:=	0

			481	 	 	 var	incstart	int

			482	 	 	 line	+=	int(s.Value)

			483	 	 pathloop:

			484	 	 	 for	_,	s	:=	range	o.Paths[i:]	{

			485	 	 	 	 val	:=	int(s.Value)

			486	 	 	 	 switch	{

			487	 	 	 	 case	depth	==	1	&&	val	>=	line:

			488	 	 	 	 	 return	line	-	1,	nil

			489	

			490	 	 	 	 case	s.Name	==	"":

			491	 	 	 	 	 depth--

			492	 	 	 	 	 if	depth	==	0	{

			493	 	 	 	 	 	 break	pathloop

			494	 	 	 	 	 }	else	if	depth	==	1	{

			495	 	 	 	 	 	 line	+=	val	-	incstart

			496	 	 	 	 	 }

			497	

			498	 	 	 	 default:

			499	 	 	 	 	 if	depth	==	1	{

			500	 	 	 	 	 	 incstart	=	val

			501	 	 	 	 	 }

			502	 	 	 	 	 depth++

			503	 	 	 	 }

			504	 	 	 }

			505	 	 	 return	0,	&UnknownLineError{path,	line}

			506	 	 }

			507	 	 return	0,	UnknownFileError(path)

			508	 }

			509	

			510	 /*

			511	 	*	Errors

			512	 	*/

			513	

			514	 //	UnknownFileError	represents	a	failure	to	find	the	specific	file	in

			515	 //	the	symbol	table.

			516	 type	UnknownFileError	string

			517	

			518	 func	(e	UnknownFileError)	Error()	string	{	return	"unknown	file:	"	+	string(e)	}

			519	

			520	 //	UnknownLineError	represents	a	failure	to	map	a	line	to	a	program

			521	 //	counter,	either	because	the	line	is	beyond	the	bounds	of	the	file

			522	 //	or	because	there	is	no	code	on	the	given	line.

			523	 type	UnknownLineError	struct	{

			524	 	 File	string

			525	 	 Line	int

			526	 }

			527	

			528	 func	(e	*UnknownLineError)	Error()	string	{

			529	 	 return	"no	code	at	"	+	e.File	+	":"	+	strconv.Itoa(e.Line)

			530	 }

			531	

			532	 //	DecodingError	represents	an	error	during	the	decoding	of

			533	 //	the	symbol	table.

			534	 type	DecodingError	struct	{

			535	 	 off	int

			536	 	 msg	string

			537	 	 val	interface{}

			538	 }

			539	

			540	 func	(e	*DecodingError)	Error()	string	{

			541	 	 msg	:=	e.msg

			542	 	 if	e.val	!=	nil	{

			543	 	 	 msg	+=	fmt.Sprintf("	'%v'",	e.val)

			544	 	 }

			545	 	 msg	+=	fmt.Sprintf("	at	byte	%#x",	e.off)

			546	 	 return	msg

			547	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/debug/macho/file.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	macho	implements	access	to	Mach-O	object	files.

					6	 package	macho

					7	

					8	 //	High	level	access	to	low	level	data	structures.

					9	

				10	 import	(

				11	 	 "bytes"

				12	 	 "debug/dwarf"

				13	 	 "encoding/binary"

				14	 	 "errors"

				15	 	 "fmt"

				16	 	 "io"

				17	 	 "os"

				18)

				19	

				20	 //	A	File	represents	an	open	Mach-O	file.

				21	 type	File	struct	{

				22	 	 FileHeader

				23	 	 ByteOrder	binary.ByteOrder

				24	 	 Loads					[]Load

				25	 	 Sections		[]*Section

				26	

				27	 	 Symtab			*Symtab

				28	 	 Dysymtab	*Dysymtab

				29	

				30	 	 closer	io.Closer

				31	 }

				32	

				33	 //	A	Load	represents	any	Mach-O	load	command.

				34	 type	Load	interface	{

				35	 	 Raw()	[]byte

				36	 }

				37	

				38	 //	A	LoadBytes	is	the	uninterpreted	bytes	of	a	Mach-O	load	command.

				39	 type	LoadBytes	[]byte

				40	

				41	 func	(b	LoadBytes)	Raw()	[]byte	{	return	b	}

				42	

				43	 //	A	SegmentHeader	is	the	header	for	a	Mach-O	32-bit	or	64-bit	load	segment	command.

				44	 type	SegmentHeader	struct	{

				45	 	 Cmd					LoadCmd

				46	 	 Len					uint32

				47	 	 Name				string

				48	 	 Addr				uint64

				49	 	 Memsz			uint64

				50	 	 Offset		uint64

				51	 	 Filesz		uint64

				52	 	 Maxprot	uint32

				53	 	 Prot				uint32

				54	 	 Nsect			uint32

				55	 	 Flag				uint32

				56	 }

				57	

				58	 //	A	Segment	represents	a	Mach-O	32-bit	or	64-bit	load	segment	command.

				59	 type	Segment	struct	{

				60	 	 LoadBytes

				61	 	 SegmentHeader

				62	

				63	 	 //	Embed	ReaderAt	for	ReadAt	method.

				64	 	 //	Do	not	embed	SectionReader	directly

				65	 	 //	to	avoid	having	Read	and	Seek.

				66	 	 //	If	a	client	wants	Read	and	Seek	it	must	use

				67	 	 //	Open()	to	avoid	fighting	over	the	seek	offset

				68	 	 //	with	other	clients.

				69	 	 io.ReaderAt

				70	 	 sr	*io.SectionReader

				71	 }

				72	

				73	 //	Data	reads	and	returns	the	contents	of	the	segment.

				74	 func	(s	*Segment)	Data()	([]byte,	error)	{

				75	 	 dat	:=	make([]byte,	s.sr.Size())

				76	 	 n,	err	:=	s.sr.ReadAt(dat,	0)

				77	 	 return	dat[0:n],	err

				78	 }

				79	

				80	 //	Open	returns	a	new	ReadSeeker	reading	the	segment.

				81	 func	(s	*Segment)	Open()	io.ReadSeeker	{	return	io.NewSectionReader(s.sr,	0,	1<<63-1)	}

				82	

				83	 type	SectionHeader	struct	{

				84	 	 Name			string

				85	 	 Seg				string

				86	 	 Addr			uint64

				87	 	 Size			uint64

				88	 	 Offset	uint32

				89	 	 Align		uint32

				90	 	 Reloff	uint32

				91	 	 Nreloc	uint32

				92	 	 Flags		uint32

				93	 }

				94	

				95	 type	Section	struct	{

				96	 	 SectionHeader

				97	

				98	 	 //	Embed	ReaderAt	for	ReadAt	method.

				99	 	 //	Do	not	embed	SectionReader	directly

			100	 	 //	to	avoid	having	Read	and	Seek.

			101	 	 //	If	a	client	wants	Read	and	Seek	it	must	use

			102	 	 //	Open()	to	avoid	fighting	over	the	seek	offset

			103	 	 //	with	other	clients.

			104	 	 io.ReaderAt

			105	 	 sr	*io.SectionReader

			106	 }

			107	

			108	 //	Data	reads	and	returns	the	contents	of	the	Mach-O	section.

			109	 func	(s	*Section)	Data()	([]byte,	error)	{

			110	 	 dat	:=	make([]byte,	s.sr.Size())

			111	 	 n,	err	:=	s.sr.ReadAt(dat,	0)

			112	 	 return	dat[0:n],	err

			113	 }

			114	

			115	 //	Open	returns	a	new	ReadSeeker	reading	the	Mach-O	section.

			116	 func	(s	*Section)	Open()	io.ReadSeeker	{	return	io.NewSectionReader(s.sr,	0,	1<<63-1)	}

			117	

			118	 //	A	Dylib	represents	a	Mach-O	load	dynamic	library	command.

			119	 type	Dylib	struct	{

			120	 	 LoadBytes

			121	 	 Name											string

			122	 	 Time											uint32

			123	 	 CurrentVersion	uint32

			124	 	 CompatVersion		uint32

			125	 }

			126	

			127	 //	A	Symtab	represents	a	Mach-O	symbol	table	command.

			128	 type	Symtab	struct	{

			129	 	 LoadBytes

			130	 	 SymtabCmd

			131	 	 Syms	[]Symbol

			132	 }

			133	

			134	 //	A	Dysymtab	represents	a	Mach-O	dynamic	symbol	table	command.

			135	 type	Dysymtab	struct	{

			136	 	 LoadBytes

			137	 	 DysymtabCmd

			138	 	 IndirectSyms	[]uint32	//	indices	into	Symtab.Syms

			139	 }

			140	

			141	 /*

			142	 	*	Mach-O	reader

			143	 	*/

			144	

			145	 type	FormatError	struct	{

			146	 	 off	int64

			147	 	 msg	string

			148	 	 val	interface{}

			149	 }

			150	

			151	 func	(e	*FormatError)	Error()	string	{

			152	 	 msg	:=	e.msg

			153	 	 if	e.val	!=	nil	{

			154	 	 	 msg	+=	fmt.Sprintf("	'%v'",	e.val)

			155	 	 }

			156	 	 msg	+=	fmt.Sprintf("	in	record	at	byte	%#x",	e.off)

			157	 	 return	msg

			158	 }

			159	

			160	 //	Open	opens	the	named	file	using	os.Open	and	prepares	it	for	use	as	a	Mach-O	binary.

			161	 func	Open(name	string)	(*File,	error)	{

			162	 	 f,	err	:=	os.Open(name)

			163	 	 if	err	!=	nil	{

			164	 	 	 return	nil,	err

			165	 	 }

			166	 	 ff,	err	:=	NewFile(f)

			167	 	 if	err	!=	nil	{

			168	 	 	 f.Close()

			169	 	 	 return	nil,	err

			170	 	 }

			171	 	 ff.closer	=	f

			172	 	 return	ff,	nil

			173	 }

			174	

			175	 //	Close	closes	the	File.

			176	 //	If	the	File	was	created	using	NewFile	directly	instead	of	Open,

			177	 //	Close	has	no	effect.

			178	 func	(f	*File)	Close()	error	{

			179	 	 var	err	error

			180	 	 if	f.closer	!=	nil	{

			181	 	 	 err	=	f.closer.Close()

			182	 	 	 f.closer	=	nil

			183	 	 }

			184	 	 return	err

			185	 }

			186	

			187	 //	NewFile	creates	a	new	File	for	accessing	a	Mach-O	binary	in	an	underlying	reader.

			188	 //	The	Mach-O	binary	is	expected	to	start	at	position	0	in	the	ReaderAt.

			189	 func	NewFile(r	io.ReaderAt)	(*File,	error)	{

			190	 	 f	:=	new(File)

			191	 	 sr	:=	io.NewSectionReader(r,	0,	1<<63-1)

			192	

			193	 	 //	Read	and	decode	Mach	magic	to	determine	byte	order,	size.

			194	 	 //	Magic32	and	Magic64	differ	only	in	the	bottom	bit.

			195	 	 var	ident	[4]byte

			196	 	 if	_,	err	:=	r.ReadAt(ident[0:],	0);	err	!=	nil	{

			197	 	 	 return	nil,	err

			198	 	 }

			199	 	 be	:=	binary.BigEndian.Uint32(ident[0:])

			200	 	 le	:=	binary.LittleEndian.Uint32(ident[0:])

			201	 	 switch	Magic32	&^	1	{

			202	 	 case	be	&^	1:

			203	 	 	 f.ByteOrder	=	binary.BigEndian

			204	 	 	 f.Magic	=	be

			205	 	 case	le	&^	1:

			206	 	 	 f.ByteOrder	=	binary.LittleEndian

			207	 	 	 f.Magic	=	le

			208	 	 default:

			209	 	 	 return	nil,	&FormatError{0,	"invalid	magic	number",	nil}

			210	 	 }

			211	

			212	 	 //	Read	entire	file	header.

			213	 	 if	err	:=	binary.Read(sr,	f.ByteOrder,	&f.FileHeader);	err	!=	nil	{

			214	 	 	 return	nil,	err

			215	 	 }

			216	

			217	 	 //	Then	load	commands.

			218	 	 offset	:=	int64(fileHeaderSize32)

			219	 	 if	f.Magic	==	Magic64	{

			220	 	 	 offset	=	fileHeaderSize64

			221	 	 }

			222	 	 dat	:=	make([]byte,	f.Cmdsz)

			223	 	 if	_,	err	:=	r.ReadAt(dat,	offset);	err	!=	nil	{

			224	 	 	 return	nil,	err

			225	 	 }

			226	 	 f.Loads	=	make([]Load,	f.Ncmd)

			227	 	 bo	:=	f.ByteOrder

			228	 	 for	i	:=	range	f.Loads	{

			229	 	 	 //	Each	load	command	begins	with	uint32	command	and	length.

			230	 	 	 if	len(dat)	<	8	{

			231	 	 	 	 return	nil,	&FormatError{offset,	"command	block	too	small",	nil}

			232	 	 	 }

			233	 	 	 cmd,	siz	:=	LoadCmd(bo.Uint32(dat[0:4])),	bo.Uint32(dat[4:8])

			234	 	 	 if	siz	<	8	||	siz	>	uint32(len(dat))	{

			235	 	 	 	 return	nil,	&FormatError{offset,	"invalid	command	block	size",	nil}

			236	 	 	 }

			237	 	 	 var	cmddat	[]byte

			238	 	 	 cmddat,	dat	=	dat[0:siz],	dat[siz:]

			239	 	 	 offset	+=	int64(siz)

			240	 	 	 var	s	*Segment

			241	 	 	 switch	cmd	{

			242	 	 	 default:

			243	 	 	 	 f.Loads[i]	=	LoadBytes(cmddat)

			244	

			245	 	 	 case	LoadCmdDylib:

			246	 	 	 	 var	hdr	DylibCmd

			247	 	 	 	 b	:=	bytes.NewBuffer(cmddat)

			248	 	 	 	 if	err	:=	binary.Read(b,	bo,	&hdr);	err	!=	nil	{

			249	 	 	 	 	 return	nil,	err

			250	 	 	 	 }

			251	 	 	 	 l	:=	new(Dylib)

			252	 	 	 	 if	hdr.Name	>=	uint32(len(cmddat))	{

			253	 	 	 	 	 return	nil,	&FormatError{offset,	"invalid	name	in	dynamic	library	command",	hdr.Name}

			254	 	 	 	 }

			255	 	 	 	 l.Name	=	cstring(cmddat[hdr.Name:])

			256	 	 	 	 l.Time	=	hdr.Time

			257	 	 	 	 l.CurrentVersion	=	hdr.CurrentVersion

			258	 	 	 	 l.CompatVersion	=	hdr.CompatVersion

			259	 	 	 	 l.LoadBytes	=	LoadBytes(cmddat)

			260	 	 	 	 f.Loads[i]	=	l

			261	

			262	 	 	 case	LoadCmdSymtab:

			263	 	 	 	 var	hdr	SymtabCmd

			264	 	 	 	 b	:=	bytes.NewBuffer(cmddat)

			265	 	 	 	 if	err	:=	binary.Read(b,	bo,	&hdr);	err	!=	nil	{

			266	 	 	 	 	 return	nil,	err

			267	 	 	 	 }

			268	 	 	 	 strtab	:=	make([]byte,	hdr.Strsize)

			269	 	 	 	 if	_,	err	:=	r.ReadAt(strtab,	int64(hdr.Stroff));	err	!=	nil	{

			270	 	 	 	 	 return	nil,	err

			271	 	 	 	 }

			272	 	 	 	 var	symsz	int

			273	 	 	 	 if	f.Magic	==	Magic64	{

			274	 	 	 	 	 symsz	=	16

			275	 	 	 	 }	else	{

			276	 	 	 	 	 symsz	=	12

			277	 	 	 	 }

			278	 	 	 	 symdat	:=	make([]byte,	int(hdr.Nsyms)*symsz)

			279	 	 	 	 if	_,	err	:=	r.ReadAt(symdat,	int64(hdr.Symoff));	err	!=	nil	{

			280	 	 	 	 	 return	nil,	err

			281	 	 	 	 }

			282	 	 	 	 st,	err	:=	f.parseSymtab(symdat,	strtab,	cmddat,	&hdr,	offset)

			283	 	 	 	 if	err	!=	nil	{

			284	 	 	 	 	 return	nil,	err

			285	 	 	 	 }

			286	 	 	 	 f.Loads[i]	=	st

			287	 	 	 	 f.Symtab	=	st

			288	

			289	 	 	 case	LoadCmdDysymtab:

			290	 	 	 	 var	hdr	DysymtabCmd

			291	 	 	 	 b	:=	bytes.NewBuffer(cmddat)

			292	 	 	 	 if	err	:=	binary.Read(b,	bo,	&hdr);	err	!=	nil	{

			293	 	 	 	 	 return	nil,	err

			294	 	 	 	 }

			295	 	 	 	 dat	:=	make([]byte,	hdr.Nindirectsyms*4)

			296	 	 	 	 if	_,	err	:=	r.ReadAt(dat,	int64(hdr.Indirectsymoff));	err	!=	nil	{

			297	 	 	 	 	 return	nil,	err

			298	 	 	 	 }

			299	 	 	 	 x	:=	make([]uint32,	hdr.Nindirectsyms)

			300	 	 	 	 if	err	:=	binary.Read(bytes.NewBuffer(dat),	bo,	x);	err	!=	nil	{

			301	 	 	 	 	 return	nil,	err

			302	 	 	 	 }

			303	 	 	 	 st	:=	new(Dysymtab)

			304	 	 	 	 st.LoadBytes	=	LoadBytes(cmddat)

			305	 	 	 	 st.DysymtabCmd	=	hdr

			306	 	 	 	 st.IndirectSyms	=	x

			307	 	 	 	 f.Loads[i]	=	st

			308	 	 	 	 f.Dysymtab	=	st

			309	

			310	 	 	 case	LoadCmdSegment:

			311	 	 	 	 var	seg32	Segment32

			312	 	 	 	 b	:=	bytes.NewBuffer(cmddat)

			313	 	 	 	 if	err	:=	binary.Read(b,	bo,	&seg32);	err	!=	nil	{

			314	 	 	 	 	 return	nil,	err

			315	 	 	 	 }

			316	 	 	 	 s	=	new(Segment)

			317	 	 	 	 s.LoadBytes	=	cmddat

			318	 	 	 	 s.Cmd	=	cmd

			319	 	 	 	 s.Len	=	siz

			320	 	 	 	 s.Name	=	cstring(seg32.Name[0:])

			321	 	 	 	 s.Addr	=	uint64(seg32.Addr)

			322	 	 	 	 s.Memsz	=	uint64(seg32.Memsz)

			323	 	 	 	 s.Offset	=	uint64(seg32.Offset)

			324	 	 	 	 s.Filesz	=	uint64(seg32.Filesz)

			325	 	 	 	 s.Maxprot	=	seg32.Maxprot

			326	 	 	 	 s.Prot	=	seg32.Prot

			327	 	 	 	 s.Nsect	=	seg32.Nsect

			328	 	 	 	 s.Flag	=	seg32.Flag

			329	 	 	 	 f.Loads[i]	=	s

			330	 	 	 	 for	i	:=	0;	i	<	int(s.Nsect);	i++	{

			331	 	 	 	 	 var	sh32	Section32

			332	 	 	 	 	 if	err	:=	binary.Read(b,	bo,	&sh32);	err	!=	nil	{

			333	 	 	 	 	 	 return	nil,	err

			334	 	 	 	 	 }

			335	 	 	 	 	 sh	:=	new(Section)

			336	 	 	 	 	 sh.Name	=	cstring(sh32.Name[0:])

			337	 	 	 	 	 sh.Seg	=	cstring(sh32.Seg[0:])

			338	 	 	 	 	 sh.Addr	=	uint64(sh32.Addr)

			339	 	 	 	 	 sh.Size	=	uint64(sh32.Size)

			340	 	 	 	 	 sh.Offset	=	sh32.Offset

			341	 	 	 	 	 sh.Align	=	sh32.Align

			342	 	 	 	 	 sh.Reloff	=	sh32.Reloff

			343	 	 	 	 	 sh.Nreloc	=	sh32.Nreloc

			344	 	 	 	 	 sh.Flags	=	sh32.Flags

			345	 	 	 	 	 f.pushSection(sh,	r)

			346	 	 	 	 }

			347	

			348	 	 	 case	LoadCmdSegment64:

			349	 	 	 	 var	seg64	Segment64

			350	 	 	 	 b	:=	bytes.NewBuffer(cmddat)

			351	 	 	 	 if	err	:=	binary.Read(b,	bo,	&seg64);	err	!=	nil	{

			352	 	 	 	 	 return	nil,	err

			353	 	 	 	 }

			354	 	 	 	 s	=	new(Segment)

			355	 	 	 	 s.LoadBytes	=	cmddat

			356	 	 	 	 s.Cmd	=	cmd

			357	 	 	 	 s.Len	=	siz

			358	 	 	 	 s.Name	=	cstring(seg64.Name[0:])

			359	 	 	 	 s.Addr	=	seg64.Addr

			360	 	 	 	 s.Memsz	=	seg64.Memsz

			361	 	 	 	 s.Offset	=	seg64.Offset

			362	 	 	 	 s.Filesz	=	seg64.Filesz

			363	 	 	 	 s.Maxprot	=	seg64.Maxprot

			364	 	 	 	 s.Prot	=	seg64.Prot

			365	 	 	 	 s.Nsect	=	seg64.Nsect

			366	 	 	 	 s.Flag	=	seg64.Flag

			367	 	 	 	 f.Loads[i]	=	s

			368	 	 	 	 for	i	:=	0;	i	<	int(s.Nsect);	i++	{

			369	 	 	 	 	 var	sh64	Section64

			370	 	 	 	 	 if	err	:=	binary.Read(b,	bo,	&sh64);	err	!=	nil	{

			371	 	 	 	 	 	 return	nil,	err

			372	 	 	 	 	 }

			373	 	 	 	 	 sh	:=	new(Section)

			374	 	 	 	 	 sh.Name	=	cstring(sh64.Name[0:])

			375	 	 	 	 	 sh.Seg	=	cstring(sh64.Seg[0:])

			376	 	 	 	 	 sh.Addr	=	sh64.Addr

			377	 	 	 	 	 sh.Size	=	sh64.Size

			378	 	 	 	 	 sh.Offset	=	sh64.Offset

			379	 	 	 	 	 sh.Align	=	sh64.Align

			380	 	 	 	 	 sh.Reloff	=	sh64.Reloff

			381	 	 	 	 	 sh.Nreloc	=	sh64.Nreloc

			382	 	 	 	 	 sh.Flags	=	sh64.Flags

			383	 	 	 	 	 f.pushSection(sh,	r)

			384	 	 	 	 }

			385	 	 	 }

			386	 	 	 if	s	!=	nil	{

			387	 	 	 	 s.sr	=	io.NewSectionReader(r,	int64(s.Offset),	int64(s.Filesz))

			388	 	 	 	 s.ReaderAt	=	s.sr

			389	 	 	 }

			390	 	 }

			391	 	 return	f,	nil

			392	 }

			393	

			394	 func	(f	*File)	parseSymtab(symdat,	strtab,	cmddat	[]byte,	hdr	*SymtabCmd,	offset	int64)	(*Symtab,	error)	{

			395	 	 bo	:=	f.ByteOrder

			396	 	 symtab	:=	make([]Symbol,	hdr.Nsyms)

			397	 	 b	:=	bytes.NewBuffer(symdat)

			398	 	 for	i	:=	range	symtab	{

			399	 	 	 var	n	Nlist64

			400	 	 	 if	f.Magic	==	Magic64	{

			401	 	 	 	 if	err	:=	binary.Read(b,	bo,	&n);	err	!=	nil	{

			402	 	 	 	 	 return	nil,	err

			403	 	 	 	 }

			404	 	 	 }	else	{

			405	 	 	 	 var	n32	Nlist32

			406	 	 	 	 if	err	:=	binary.Read(b,	bo,	&n32);	err	!=	nil	{

			407	 	 	 	 	 return	nil,	err

			408	 	 	 	 }

			409	 	 	 	 n.Name	=	n32.Name

			410	 	 	 	 n.Type	=	n32.Type

			411	 	 	 	 n.Sect	=	n32.Sect

			412	 	 	 	 n.Desc	=	n32.Desc

			413	 	 	 	 n.Value	=	uint64(n32.Value)

			414	 	 	 }

			415	 	 	 sym	:=	&symtab[i]

			416	 	 	 if	n.Name	>=	uint32(len(strtab))	{

			417	 	 	 	 return	nil,	&FormatError{offset,	"invalid	name	in	symbol	table",	n.Name}

			418	 	 	 }

			419	 	 	 sym.Name	=	cstring(strtab[n.Name:])

			420	 	 	 sym.Type	=	n.Type

			421	 	 	 sym.Sect	=	n.Sect

			422	 	 	 sym.Desc	=	n.Desc

			423	 	 	 sym.Value	=	n.Value

			424	 	 }

			425	 	 st	:=	new(Symtab)

			426	 	 st.LoadBytes	=	LoadBytes(cmddat)

			427	 	 st.Syms	=	symtab

			428	 	 return	st,	nil

			429	 }

			430	

			431	 func	(f	*File)	pushSection(sh	*Section,	r	io.ReaderAt)	{

			432	 	 f.Sections	=	append(f.Sections,	sh)

			433	 	 sh.sr	=	io.NewSectionReader(r,	int64(sh.Offset),	int64(sh.Size))

			434	 	 sh.ReaderAt	=	sh.sr

			435	 }

			436	

			437	 func	cstring(b	[]byte)	string	{

			438	 	 var	i	int

			439	 	 for	i	=	0;	i	<	len(b)	&&	b[i]	!=	0;	i++	{

			440	 	 }

			441	 	 return	string(b[0:i])

			442	 }

			443	

			444	 //	Segment	returns	the	first	Segment	with	the	given	name,	or	nil	if	no	such	segment	exists.

			445	 func	(f	*File)	Segment(name	string)	*Segment	{

			446	 	 for	_,	l	:=	range	f.Loads	{

			447	 	 	 if	s,	ok	:=	l.(*Segment);	ok	&&	s.Name	==	name	{

			448	 	 	 	 return	s

			449	 	 	 }

			450	 	 }

			451	 	 return	nil

			452	 }

			453	

			454	 //	Section	returns	the	first	section	with	the	given	name,	or	nil	if	no	such

			455	 //	section	exists.

			456	 func	(f	*File)	Section(name	string)	*Section	{

			457	 	 for	_,	s	:=	range	f.Sections	{

			458	 	 	 if	s.Name	==	name	{

			459	 	 	 	 return	s

			460	 	 	 }

			461	 	 }

			462	 	 return	nil

			463	 }

			464	

			465	 //	DWARF	returns	the	DWARF	debug	information	for	the	Mach-O	file.

			466	 func	(f	*File)	DWARF()	(*dwarf.Data,	error)	{

			467	 	 //	There	are	many	other	DWARF	sections,	but	these

			468	 	 //	are	the	required	ones,	and	the	debug/dwarf	package

			469	 	 //	does	not	use	the	others,	so	don't	bother	loading	them.

			470	 	 var	names	=	[...]string{"abbrev",	"info",	"str"}

			471	 	 var	dat	[len(names)][]byte

			472	 	 for	i,	name	:=	range	names	{

			473	 	 	 name	=	"__debug_"	+	name

			474	 	 	 s	:=	f.Section(name)

			475	 	 	 if	s	==	nil	{

			476	 	 	 	 return	nil,	errors.New("missing	Mach-O	section	"	+	name)

			477	 	 	 }

			478	 	 	 b,	err	:=	s.Data()

			479	 	 	 if	err	!=	nil	&&	uint64(len(b))	<	s.Size	{

			480	 	 	 	 return	nil,	err

			481	 	 	 }

			482	 	 	 dat[i]	=	b

			483	 	 }

			484	

			485	 	 abbrev,	info,	str	:=	dat[0],	dat[1],	dat[2]

			486	 	 return	dwarf.New(abbrev,	nil,	nil,	info,	nil,	nil,	nil,	str)

			487	 }

			488	

			489	 //	ImportedSymbols	returns	the	names	of	all	symbols

			490	 //	referred	to	by	the	binary	f	that	are	expected	to	be

			491	 //	satisfied	by	other	libraries	at	dynamic	load	time.

			492	 func	(f	*File)	ImportedSymbols()	([]string,	error)	{

			493	 	 if	f.Dysymtab	==	nil	||	f.Symtab	==	nil	{

			494	 	 	 return	nil,	&FormatError{0,	"missing	symbol	table",	nil}

			495	 	 }

			496	

			497	 	 st	:=	f.Symtab

			498	 	 dt	:=	f.Dysymtab

			499	 	 var	all	[]string

			500	 	 for	_,	s	:=	range	st.Syms[dt.Iundefsym	:	dt.Iundefsym+dt.Nundefsym]	{

			501	 	 	 all	=	append(all,	s.Name)

			502	 	 }

			503	 	 return	all,	nil

			504	 }

			505	

			506	 //	ImportedLibraries	returns	the	paths	of	all	libraries

			507	 //	referred	to	by	the	binary	f	that	are	expected	to	be

			508	 //	linked	with	the	binary	at	dynamic	link	time.

			509	 func	(f	*File)	ImportedLibraries()	([]string,	error)	{

			510	 	 var	all	[]string

			511	 	 for	_,	l	:=	range	f.Loads	{

			512	 	 	 if	lib,	ok	:=	l.(*Dylib);	ok	{

			513	 	 	 	 all	=	append(all,	lib.Name)

			514	 	 	 }

			515	 	 }

			516	 	 return	all,	nil

			517	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/debug/macho/macho.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Mach-O	header	data	structures

					6	 //	http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html

					7	

					8	 package	macho

					9	

				10	 import	"strconv"

				11	

				12	 //	A	FileHeader	represents	a	Mach-O	file	header.

				13	 type	FileHeader	struct	{

				14	 	 Magic		uint32

				15	 	 Cpu				Cpu

				16	 	 SubCpu	uint32

				17	 	 Type			Type

				18	 	 Ncmd			uint32

				19	 	 Cmdsz		uint32

				20	 	 Flags		uint32

				21	 }

				22	

				23	 const	(

				24	 	 fileHeaderSize32	=	7	*	4

				25	 	 fileHeaderSize64	=	8	*	4

				26)

				27	

				28	 const	(

				29	 	 Magic32	uint32	=	0xfeedface

				30	 	 Magic64	uint32	=	0xfeedfacf

				31)

				32	

				33	 //	A	Type	is	a	Mach-O	file	type,	either	an	object	or	an	executable.

				34	 type	Type	uint32

				35	

				36	 const	(

				37	 	 TypeObj		Type	=	1

				38	 	 TypeExec	Type	=	2

				39)

				40	

				41	 //	A	Cpu	is	a	Mach-O	cpu	type.

				42	 type	Cpu	uint32

				43	

				44	 const	(

				45	 	 Cpu386			Cpu	=	7

				46	 	 CpuAmd64	Cpu	=	Cpu386	+	1<<24

				47)

				48	

				49	 var	cpuStrings	=	[]intName{

				50	 	 {uint32(Cpu386),	"Cpu386"},

				51	 	 {uint32(CpuAmd64),	"CpuAmd64"},

				52	 }

				53	

				54	 func	(i	Cpu)	String()	string			{	return	stringName(uint32(i),	cpuStrings,	false)	}

				55	 func	(i	Cpu)	GoString()	string	{	return	stringName(uint32(i),	cpuStrings,	true)	}

				56	

				57	 //	A	LoadCmd	is	a	Mach-O	load	command.

				58	 type	LoadCmd	uint32

				59	

				60	 const	(

				61	 	 LoadCmdSegment				LoadCmd	=	1

				62	 	 LoadCmdSymtab					LoadCmd	=	2

				63	 	 LoadCmdThread					LoadCmd	=	4

				64	 	 LoadCmdUnixThread	LoadCmd	=	5	//	thread+stack

				65	 	 LoadCmdDysymtab			LoadCmd	=	11

				66	 	 LoadCmdDylib						LoadCmd	=	12

				67	 	 LoadCmdDylinker			LoadCmd	=	15

				68	 	 LoadCmdSegment64		LoadCmd	=	25

				69)

				70	

				71	 var	cmdStrings	=	[]intName{

				72	 	 {uint32(LoadCmdSegment),	"LoadCmdSegment"},

				73	 	 {uint32(LoadCmdThread),	"LoadCmdThread"},

				74	 	 {uint32(LoadCmdUnixThread),	"LoadCmdUnixThread"},

				75	 	 {uint32(LoadCmdDylib),	"LoadCmdDylib"},

				76	 	 {uint32(LoadCmdSegment64),	"LoadCmdSegment64"},

				77	 }

				78	

				79	 func	(i	LoadCmd)	String()	string			{	return	stringName(uint32(i),	cmdStrings,	false)	}

				80	 func	(i	LoadCmd)	GoString()	string	{	return	stringName(uint32(i),	cmdStrings,	true)	}

				81	

				82	 //	A	Segment64	is	a	64-bit	Mach-O	segment	load	command.

				83	 type	Segment64	struct	{

				84	 	 Cmd					LoadCmd

				85	 	 Len					uint32

				86	 	 Name				[16]byte

				87	 	 Addr				uint64

				88	 	 Memsz			uint64

				89	 	 Offset		uint64

				90	 	 Filesz		uint64

				91	 	 Maxprot	uint32

				92	 	 Prot				uint32

				93	 	 Nsect			uint32

				94	 	 Flag				uint32

				95	 }

				96	

				97	 //	A	Segment32	is	a	32-bit	Mach-O	segment	load	command.

				98	 type	Segment32	struct	{

				99	 	 Cmd					LoadCmd

			100	 	 Len					uint32

			101	 	 Name				[16]byte

			102	 	 Addr				uint32

			103	 	 Memsz			uint32

			104	 	 Offset		uint32

			105	 	 Filesz		uint32

			106	 	 Maxprot	uint32

			107	 	 Prot				uint32

			108	 	 Nsect			uint32

			109	 	 Flag				uint32

			110	 }

			111	

			112	 //	A	DylibCmd	is	a	Mach-O	load	dynamic	library	command.

			113	 type	DylibCmd	struct	{

			114	 	 Cmd												LoadCmd

			115	 	 Len												uint32

			116	 	 Name											uint32

			117	 	 Time											uint32

			118	 	 CurrentVersion	uint32

			119	 	 CompatVersion		uint32

			120	 }

			121	

			122	 //	A	Section32	is	a	32-bit	Mach-O	section	header.

			123	 type	Section32	struct	{

			124	 	 Name					[16]byte

			125	 	 Seg						[16]byte

			126	 	 Addr					uint32

			127	 	 Size					uint32

			128	 	 Offset			uint32

			129	 	 Align				uint32

			130	 	 Reloff			uint32

			131	 	 Nreloc			uint32

			132	 	 Flags				uint32

			133	 	 Reserve1	uint32

			134	 	 Reserve2	uint32

			135	 }

			136	

			137	 //	A	Section32	is	a	64-bit	Mach-O	section	header.

			138	 type	Section64	struct	{

			139	 	 Name					[16]byte

			140	 	 Seg						[16]byte

			141	 	 Addr					uint64

			142	 	 Size					uint64

			143	 	 Offset			uint32

			144	 	 Align				uint32

			145	 	 Reloff			uint32

			146	 	 Nreloc			uint32

			147	 	 Flags				uint32

			148	 	 Reserve1	uint32

			149	 	 Reserve2	uint32

			150	 	 Reserve3	uint32

			151	 }

			152	

			153	 //	A	SymtabCmd	is	a	Mach-O	symbol	table	command.

			154	 type	SymtabCmd	struct	{

			155	 	 Cmd					LoadCmd

			156	 	 Len					uint32

			157	 	 Symoff		uint32

			158	 	 Nsyms			uint32

			159	 	 Stroff		uint32

			160	 	 Strsize	uint32

			161	 }

			162	

			163	 //	A	DysymtabCmd	is	a	Mach-O	dynamic	symbol	table	command.

			164	 type	DysymtabCmd	struct	{

			165	 	 Cmd												LoadCmd

			166	 	 Len												uint32

			167	 	 Ilocalsym						uint32

			168	 	 Nlocalsym						uint32

			169	 	 Iextdefsym					uint32

			170	 	 Nextdefsym					uint32

			171	 	 Iundefsym						uint32

			172	 	 Nundefsym						uint32

			173	 	 Tocoffset						uint32

			174	 	 Ntoc											uint32

			175	 	 Modtaboff						uint32

			176	 	 Nmodtab								uint32

			177	 	 Extrefsymoff			uint32

			178	 	 Nextrefsyms				uint32

			179	 	 Indirectsymoff	uint32

			180	 	 Nindirectsyms		uint32

			181	 	 Extreloff						uint32

			182	 	 Nextrel								uint32

			183	 	 Locreloff						uint32

			184	 	 Nlocrel								uint32

			185	 }

			186	

			187	 //	An	Nlist32	is	a	Mach-O	32-bit	symbol	table	entry.

			188	 type	Nlist32	struct	{

			189	 	 Name		uint32

			190	 	 Type		uint8

			191	 	 Sect		uint8

			192	 	 Desc		uint16

			193	 	 Value	uint32

			194	 }

			195	

			196	 //	An	Nlist64	is	a	Mach-O	64-bit	symbol	table	entry.

			197	 type	Nlist64	struct	{

			198	 	 Name		uint32

			199	 	 Type		uint8

			200	 	 Sect		uint8

			201	 	 Desc		uint16

			202	 	 Value	uint64

			203	 }

			204	

			205	 //	A	Symbol	is	a	Mach-O	32-bit	or	64-bit	symbol	table	entry.

			206	 type	Symbol	struct	{

			207	 	 Name		string

			208	 	 Type		uint8

			209	 	 Sect		uint8

			210	 	 Desc		uint16

			211	 	 Value	uint64

			212	 }

			213	

			214	 //	A	Thread	is	a	Mach-O	thread	state	command.

			215	 type	Thread	struct	{

			216	 	 Cmd		LoadCmd

			217	 	 Len		uint32

			218	 	 Type	uint32

			219	 	 Data	[]uint32

			220	 }

			221	

			222	 //	Regs386	is	the	Mach-O	386	register	structure.

			223	 type	Regs386	struct	{

			224	 	 AX				uint32

			225	 	 BX				uint32

			226	 	 CX				uint32

			227	 	 DX				uint32

			228	 	 DI				uint32

			229	 	 SI				uint32

			230	 	 BP				uint32

			231	 	 SP				uint32

			232	 	 SS				uint32

			233	 	 FLAGS	uint32

			234	 	 IP				uint32

			235	 	 CS				uint32

			236	 	 DS				uint32

			237	 	 ES				uint32

			238	 	 FS				uint32

			239	 	 GS				uint32

			240	 }

			241	

			242	 //	RegsAMD64	is	the	Mach-O	AMD64	register	structure.

			243	 type	RegsAMD64	struct	{

			244	 	 AX				uint64

			245	 	 BX				uint64

			246	 	 CX				uint64

			247	 	 DX				uint64

			248	 	 DI				uint64

			249	 	 SI				uint64

			250	 	 BP				uint64

			251	 	 SP				uint64

			252	 	 R8				uint64

			253	 	 R9				uint64

			254	 	 R10			uint64

			255	 	 R11			uint64

			256	 	 R12			uint64

			257	 	 R13			uint64

			258	 	 R14			uint64

			259	 	 R15			uint64

			260	 	 IP				uint64

			261	 	 FLAGS	uint64

			262	 	 CS				uint64

			263	 	 FS				uint64

			264	 	 GS				uint64

			265	 }

			266	

			267	 type	intName	struct	{

			268	 	 i	uint32

			269	 	 s	string

			270	 }

			271	

			272	 func	stringName(i	uint32,	names	[]intName,	goSyntax	bool)	string	{

			273	 	 for	_,	n	:=	range	names	{

			274	 	 	 if	n.i	==	i	{

			275	 	 	 	 if	goSyntax	{

			276	 	 	 	 	 return	"macho."	+	n.s

			277	 	 	 	 }

			278	 	 	 	 return	n.s

			279	 	 	 }

			280	 	 }

			281	 	 return	strconv.FormatUint(uint64(i),	10)

			282	 }

			283	

			284	 func	flagName(i	uint32,	names	[]intName,	goSyntax	bool)	string	{

			285	 	 s	:=	""

			286	 	 for	_,	n	:=	range	names	{

			287	 	 	 if	n.i&i	==	n.i	{

			288	 	 	 	 if	len(s)	>	0	{

			289	 	 	 	 	 s	+=	"+"

			290	 	 	 	 }

			291	 	 	 	 if	goSyntax	{

			292	 	 	 	 	 s	+=	"macho."

			293	 	 	 	 }

			294	 	 	 	 s	+=	n.s

			295	 	 	 	 i	-=	n.i

			296	 	 	 }

			297	 	 }

			298	 	 if	len(s)	==	0	{

			299	 	 	 return	"0x"	+	strconv.FormatUint(uint64(i),	16)

			300	 	 }

			301	 	 if	i	!=	0	{

			302	 	 	 s	+=	"+0x"	+	strconv.FormatUint(uint64(i),	16)

			303	 	 }

			304	 	 return	s

			305	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/debug/pe/file.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	pe	implements	access	to	PE	(Microsoft	Windows	Portable	Executable)	files.

					6	 package	pe

					7	

					8	 import	(

					9	 	 "debug/dwarf"

				10	 	 "encoding/binary"

				11	 	 "errors"

				12	 	 "fmt"

				13	 	 "io"

				14	 	 "os"

				15	 	 "strconv"

				16)

				17	

				18	 //	A	File	represents	an	open	PE	file.

				19	 type	File	struct	{

				20	 	 FileHeader

				21	 	 Sections	[]*Section

				22	

				23	 	 closer	io.Closer

				24	 }

				25	

				26	 type	SectionHeader	struct	{

				27	 	 Name																	string

				28	 	 VirtualSize										uint32

				29	 	 VirtualAddress							uint32

				30	 	 Size																	uint32

				31	 	 Offset															uint32

				32	 	 PointerToRelocations	uint32

				33	 	 PointerToLineNumbers	uint32

				34	 	 NumberOfRelocations		uint16

				35	 	 NumberOfLineNumbers		uint16

				36	 	 Characteristics						uint32

				37	 }

				38	

				39	 type	Section	struct	{

				40	 	 SectionHeader

				41	

				42	 	 //	Embed	ReaderAt	for	ReadAt	method.

				43	 	 //	Do	not	embed	SectionReader	directly

				44	 	 //	to	avoid	having	Read	and	Seek.

				45	 	 //	If	a	client	wants	Read	and	Seek	it	must	use

				46	 	 //	Open()	to	avoid	fighting	over	the	seek	offset

				47	 	 //	with	other	clients.

				48	 	 io.ReaderAt

				49	 	 sr	*io.SectionReader

				50	 }

				51	

				52	 type	ImportDirectory	struct	{

				53	 	 OriginalFirstThunk	uint32

				54	 	 TimeDateStamp						uint32

				55	 	 ForwarderChain					uint32

				56	 	 Name															uint32

				57	 	 FirstThunk									uint32

				58	

				59	 	 dll	string

				60	 }

				61	

				62	 //	Data	reads	and	returns	the	contents	of	the	PE	section.

				63	 func	(s	*Section)	Data()	([]byte,	error)	{

				64	 	 dat	:=	make([]byte,	s.sr.Size())

				65	 	 n,	err	:=	s.sr.ReadAt(dat,	0)

				66	 	 return	dat[0:n],	err

				67	 }

				68	

				69	 //	Open	returns	a	new	ReadSeeker	reading	the	PE	section.

				70	 func	(s	*Section)	Open()	io.ReadSeeker	{	return	io.NewSectionReader(s.sr,	0,	1<<63-1)	}

				71	

				72	 type	FormatError	struct	{

				73	 	 off	int64

				74	 	 msg	string

				75	 	 val	interface{}

				76	 }

				77	

				78	 func	(e	*FormatError)	Error()	string	{

				79	 	 msg	:=	e.msg

				80	 	 if	e.val	!=	nil	{

				81	 	 	 msg	+=	fmt.Sprintf("	'%v'",	e.val)

				82	 	 }

				83	 	 msg	+=	fmt.Sprintf("	in	record	at	byte	%#x",	e.off)

				84	 	 return	msg

				85	 }

				86	

				87	 //	Open	opens	the	named	file	using	os.Open	and	prepares	it	for	use	as	a	PE	binary.

				88	 func	Open(name	string)	(*File,	error)	{

				89	 	 f,	err	:=	os.Open(name)

				90	 	 if	err	!=	nil	{

				91	 	 	 return	nil,	err

				92	 	 }

				93	 	 ff,	err	:=	NewFile(f)

				94	 	 if	err	!=	nil	{

				95	 	 	 f.Close()

				96	 	 	 return	nil,	err

				97	 	 }

				98	 	 ff.closer	=	f

				99	 	 return	ff,	nil

			100	 }

			101	

			102	 //	Close	closes	the	File.

			103	 //	If	the	File	was	created	using	NewFile	directly	instead	of	Open,

			104	 //	Close	has	no	effect.

			105	 func	(f	*File)	Close()	error	{

			106	 	 var	err	error

			107	 	 if	f.closer	!=	nil	{

			108	 	 	 err	=	f.closer.Close()

			109	 	 	 f.closer	=	nil

			110	 	 }

			111	 	 return	err

			112	 }

			113	

			114	 //	NewFile	creates	a	new	File	for	accessing	a	PE	binary	in	an	underlying	reader.

			115	 func	NewFile(r	io.ReaderAt)	(*File,	error)	{

			116	 	 f	:=	new(File)

			117	 	 sr	:=	io.NewSectionReader(r,	0,	1<<63-1)

			118	

			119	 	 var	dosheader	[96]byte

			120	 	 if	_,	err	:=	r.ReadAt(dosheader[0:],	0);	err	!=	nil	{

			121	 	 	 return	nil,	err

			122	 	 }

			123	 	 var	base	int64

			124	 	 if	dosheader[0]	==	'M'	&&	dosheader[1]	==	'Z'	{

			125	 	 	 var	sign	[4]byte

			126	 	 	 r.ReadAt(sign[0:],	int64(dosheader[0x3c]))

			127	 	 	 if	!(sign[0]	==	'P'	&&	sign[1]	==	'E'	&&	sign[2]	==	0	&&	sign[3]	==	0)	{

			128	 	 	 	 return	nil,	errors.New("Invalid	PE	File	Format.")

			129	 	 	 }

			130	 	 	 base	=	int64(dosheader[0x3c])	+	4

			131	 	 }	else	{

			132	 	 	 base	=	int64(0)

			133	 	 }

			134	 	 sr.Seek(base,	os.SEEK_SET)

			135	 	 if	err	:=	binary.Read(sr,	binary.LittleEndian,	&f.FileHeader);	err	!=	nil	{

			136	 	 	 return	nil,	err

			137	 	 }

			138	 	 if	f.FileHeader.Machine	!=	IMAGE_FILE_MACHINE_UNKNOWN	&&	f.FileHeader.Machine	!=	IMAGE_FILE_MACHINE_AMD64	&&	f.FileHeader.Machine	!=	IMAGE_FILE_MACHINE_I386	{

			139	 	 	 return	nil,	errors.New("Invalid	PE	File	Format.")

			140	 	 }

			141	 	 //	get	symbol	string	table

			142	 	 sr.Seek(int64(f.FileHeader.PointerToSymbolTable+18*f.FileHeader.NumberOfSymbols),	os.SEEK_SET)

			143	 	 var	l	uint32

			144	 	 if	err	:=	binary.Read(sr,	binary.LittleEndian,	&l);	err	!=	nil	{

			145	 	 	 return	nil,	err

			146	 	 }

			147	 	 ss	:=	make([]byte,	l)

			148	 	 if	_,	err	:=	r.ReadAt(ss,	int64(f.FileHeader.PointerToSymbolTable+18*f.FileHeader.NumberOfSymbols));	err	!=	nil	{

			149	 	 	 return	nil,	err

			150	 	 }

			151	 	 sr.Seek(base,	os.SEEK_SET)

			152	 	 binary.Read(sr,	binary.LittleEndian,	&f.FileHeader)

			153	 	 sr.Seek(int64(f.FileHeader.SizeOfOptionalHeader),	os.SEEK_CUR)	

			154	 	 f.Sections	=	make([]*Section,	f.FileHeader.NumberOfSections)

			155	 	 for	i	:=	0;	i	<	int(f.FileHeader.NumberOfSections);	i++	{

			156	 	 	 sh	:=	new(SectionHeader32)

			157	 	 	 if	err	:=	binary.Read(sr,	binary.LittleEndian,	sh);	err	!=	nil	{

			158	 	 	 	 return	nil,	err

			159	 	 	 }

			160	 	 	 var	name	string

			161	 	 	 if	sh.Name[0]	==	'\x2F'	{

			162	 	 	 	 si,	_	:=	strconv.Atoi(cstring(sh.Name[1:]))

			163	 	 	 	 name,	_	=	getString(ss,	si)

			164	 	 	 }	else	{

			165	 	 	 	 name	=	cstring(sh.Name[0:])

			166	 	 	 }

			167	 	 	 s	:=	new(Section)

			168	 	 	 s.SectionHeader	=	SectionHeader{

			169	 	 	 	 Name:																	name,

			170	 	 	 	 VirtualSize:										uint32(sh.VirtualSize),

			171	 	 	 	 VirtualAddress:							uint32(sh.VirtualAddress),

			172	 	 	 	 Size:																	uint32(sh.SizeOfRawData),

			173	 	 	 	 Offset:															uint32(sh.PointerToRawData),

			174	 	 	 	 PointerToRelocations:	uint32(sh.PointerToRelocations),

			175	 	 	 	 PointerToLineNumbers:	uint32(sh.PointerToLineNumbers),

			176	 	 	 	 NumberOfRelocations:		uint16(sh.NumberOfRelocations),

			177	 	 	 	 NumberOfLineNumbers:		uint16(sh.NumberOfLineNumbers),

			178	 	 	 	 Characteristics:						uint32(sh.Characteristics),

			179	 	 	 }

			180	 	 	 s.sr	=	io.NewSectionReader(r,	int64(s.SectionHeader.Offset),	int64(s.SectionHeader.Size))

			181	 	 	 s.ReaderAt	=	s.sr

			182	 	 	 f.Sections[i]	=	s

			183	 	 }

			184	 	 return	f,	nil

			185	 }

			186	

			187	 func	cstring(b	[]byte)	string	{

			188	 	 var	i	int

			189	 	 for	i	=	0;	i	<	len(b)	&&	b[i]	!=	0;	i++	{

			190	 	 }

			191	 	 return	string(b[0:i])

			192	 }

			193	

			194	 //	getString	extracts	a	string	from	symbol	string	table.

			195	 func	getString(section	[]byte,	start	int)	(string,	bool)	{

			196	 	 if	start	<	0	||	start	>=	len(section)	{

			197	 	 	 return	"",	false

			198	 	 }

			199	

			200	 	 for	end	:=	start;	end	<	len(section);	end++	{

			201	 	 	 if	section[end]	==	0	{

			202	 	 	 	 return	string(section[start:end]),	true

			203	 	 	 }

			204	 	 }

			205	 	 return	"",	false

			206	 }

			207	

			208	 //	Section	returns	the	first	section	with	the	given	name,	or	nil	if	no	such

			209	 //	section	exists.

			210	 func	(f	*File)	Section(name	string)	*Section	{

			211	 	 for	_,	s	:=	range	f.Sections	{

			212	 	 	 if	s.Name	==	name	{

			213	 	 	 	 return	s

			214	 	 	 }

			215	 	 }

			216	 	 return	nil

			217	 }

			218	

			219	 func	(f	*File)	DWARF()	(*dwarf.Data,	error)	{

			220	 	 //	There	are	many	other	DWARF	sections,	but	these

			221	 	 //	are	the	required	ones,	and	the	debug/dwarf	package

			222	 	 //	does	not	use	the	others,	so	don't	bother	loading	them.

			223	 	 var	names	=	[...]string{"abbrev",	"info",	"str"}

			224	 	 var	dat	[len(names)][]byte

			225	 	 for	i,	name	:=	range	names	{

			226	 	 	 name	=	".debug_"	+	name

			227	 	 	 s	:=	f.Section(name)

			228	 	 	 if	s	==	nil	{

			229	 	 	 	 continue

			230	 	 	 }

			231	 	 	 b,	err	:=	s.Data()

			232	 	 	 if	err	!=	nil	&&	uint32(len(b))	<	s.Size	{

			233	 	 	 	 return	nil,	err

			234	 	 	 }

			235	 	 	 dat[i]	=	b

			236	 	 }

			237	

			238	 	 abbrev,	info,	str	:=	dat[0],	dat[1],	dat[2]

			239	 	 return	dwarf.New(abbrev,	nil,	nil,	info,	nil,	nil,	nil,	str)

			240	 }

			241	

			242	 //	ImportedSymbols	returns	the	names	of	all	symbols

			243	 //	referred	to	by	the	binary	f	that	are	expected	to	be

			244	 //	satisfied	by	other	libraries	at	dynamic	load	time.

			245	 //	It	does	not	return	weak	symbols.

			246	 func	(f	*File)	ImportedSymbols()	([]string,	error)	{

			247	 	 pe64	:=	f.Machine	==	IMAGE_FILE_MACHINE_AMD64

			248	 	 ds	:=	f.Section(".idata")

			249	 	 if	ds	==	nil	{

			250	 	 	 //	not	dynamic,	so	no	libraries

			251	 	 	 return	nil,	nil

			252	 	 }

			253	 	 d,	err	:=	ds.Data()

			254	 	 if	err	!=	nil	{

			255	 	 	 return	nil,	err

			256	 	 }

			257	 	 var	ida	[]ImportDirectory

			258	 	 for	len(d)	>	0	{

			259	 	 	 var	dt	ImportDirectory

			260	 	 	 dt.OriginalFirstThunk	=	binary.LittleEndian.Uint32(d[0:4])

			261	 	 	 dt.Name	=	binary.LittleEndian.Uint32(d[12:16])

			262	 	 	 dt.FirstThunk	=	binary.LittleEndian.Uint32(d[16:20])

			263	 	 	 d	=	d[20:]

			264	 	 	 if	dt.OriginalFirstThunk	==	0	{

			265	 	 	 	 break

			266	 	 	 }

			267	 	 	 ida	=	append(ida,	dt)

			268	 	 }

			269	 	 names,	_	:=	ds.Data()

			270	 	 var	all	[]string

			271	 	 for	_,	dt	:=	range	ida	{

			272	 	 	 dt.dll,	_	=	getString(names,	int(dt.Name-ds.VirtualAddress))

			273	 	 	 d,	_	=	ds.Data()

			274	 	 	 //	seek	to	OriginalFirstThunk

			275	 	 	 d	=	d[dt.OriginalFirstThunk-ds.VirtualAddress:]

			276	 	 	 for	len(d)	>	0	{

			277	 	 	 	 if	pe64	{	//	64bit

			278	 	 	 	 	 va	:=	binary.LittleEndian.Uint64(d[0:8])

			279	 	 	 	 	 d	=	d[8:]

			280	 	 	 	 	 if	va	==	0	{

			281	 	 	 	 	 	 break

			282	 	 	 	 	 }

			283	 	 	 	 	 if	va&0x8000000000000000	>	0	{	

			284	 	 	 	 	 	 //	TODO	add	dynimport	ordinal	support.

			285	 	 	 	 	 }	else	{

			286	 	 	 	 	 	 fn,	_	:=	getString(names,	int(uint32(va)-ds.VirtualAddress+2))

			287	 	 	 	 	 	 all	=	append(all,	fn+":"+dt.dll)

			288	 	 	 	 	 }

			289	 	 	 	 }	else	{	//	32bit

			290	 	 	 	 	 va	:=	binary.LittleEndian.Uint32(d[0:4])

			291	 	 	 	 	 d	=	d[4:]

			292	 	 	 	 	 if	va	==	0	{

			293	 	 	 	 	 	 break

			294	 	 	 	 	 }

			295	 	 	 	 	 if	va&0x80000000	>	0	{	//	is	Ordinal

			296	 	 	 	 	 	 //	TODO	add	dynimport	ordinal	support.

			297	 	 	 	 	 	 //ord	:=	va&0x0000FFFF

			298	 	 	 	 	 }	else	{

			299	 	 	 	 	 	 fn,	_	:=	getString(names,	int(va-ds.VirtualAddress+2))

			300	 	 	 	 	 	 all	=	append(all,	fn+":"+dt.dll)

			301	 	 	 	 	 }

			302	 	 	 	 }

			303	 	 	 }

			304	 	 }

			305	

			306	 	 return	all,	nil

			307	 }

			308	

			309	 //	ImportedLibraries	returns	the	names	of	all	libraries

			310	 //	referred	to	by	the	binary	f	that	are	expected	to	be

			311	 //	linked	with	the	binary	at	dynamic	link	time.

			312	 func	(f	*File)	ImportedLibraries()	([]string,	error)	{

			313	 	 //	TODO

			314	 	 //	cgo	-dynimport	don't	use	this	for	windows	PE,	so	just	return.

			315	 	 return	nil,	nil

			316	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/debug/pe/pe.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	pe

					6	

					7	 type	FileHeader	struct	{

					8	 	 Machine														uint16

					9	 	 NumberOfSections					uint16

				10	 	 TimeDateStamp								uint32

				11	 	 PointerToSymbolTable	uint32

				12	 	 NumberOfSymbols						uint32

				13	 	 SizeOfOptionalHeader	uint16

				14	 	 Characteristics						uint16

				15	 }

				16	

				17	 type	SectionHeader32	struct	{

				18	 	 Name																	[8]uint8

				19	 	 VirtualSize										uint32

				20	 	 VirtualAddress							uint32

				21	 	 SizeOfRawData								uint32

				22	 	 PointerToRawData					uint32

				23	 	 PointerToRelocations	uint32

				24	 	 PointerToLineNumbers	uint32

				25	 	 NumberOfRelocations		uint16

				26	 	 NumberOfLineNumbers		uint16

				27	 	 Characteristics						uint32

				28	 }

				29	

				30	 const	(

				31	 	 IMAGE_FILE_MACHINE_UNKNOWN			=	0x0

				32	 	 IMAGE_FILE_MACHINE_AM33						=	0x1d3

				33	 	 IMAGE_FILE_MACHINE_AMD64					=	0x8664

				34	 	 IMAGE_FILE_MACHINE_ARM							=	0x1c0

				35	 	 IMAGE_FILE_MACHINE_EBC							=	0xebc

				36	 	 IMAGE_FILE_MACHINE_I386						=	0x14c

				37	 	 IMAGE_FILE_MACHINE_IA64						=	0x200

				38	 	 IMAGE_FILE_MACHINE_M32R						=	0x9041

				39	 	 IMAGE_FILE_MACHINE_MIPS16				=	0x266

				40	 	 IMAGE_FILE_MACHINE_MIPSFPU			=	0x366

				41	 	 IMAGE_FILE_MACHINE_MIPSFPU16	=	0x466

				42	 	 IMAGE_FILE_MACHINE_POWERPC			=	0x1f0

				43	 	 IMAGE_FILE_MACHINE_POWERPCFP	=	0x1f1

				44	 	 IMAGE_FILE_MACHINE_R4000					=	0x166

				45	 	 IMAGE_FILE_MACHINE_SH3							=	0x1a2

				46	 	 IMAGE_FILE_MACHINE_SH3DSP				=	0x1a3

				47	 	 IMAGE_FILE_MACHINE_SH4							=	0x1a6

				48	 	 IMAGE_FILE_MACHINE_SH5							=	0x1a8

				49	 	 IMAGE_FILE_MACHINE_THUMB					=	0x1c2

				50	 	 IMAGE_FILE_MACHINE_WCEMIPSV2	=	0x169

				51)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/ascii85/ascii85.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	ascii85	implements	the	ascii85	data	encoding

					6	 //	as	used	in	the	btoa	tool	and	Adobe's	PostScript	and	PDF	document	formats.

					7	 package	ascii85

					8	

					9	 import	(

				10	 	 "io"

				11	 	 "strconv"

				12)

				13	

				14	 /*

				15	 	*	Encoder

				16	 	*/

				17	

				18	 //	Encode	encodes	src	into	at	most	MaxEncodedLen(len(src))

				19	 //	bytes	of	dst,	returning	the	actual	number	of	bytes	written.

				20	 //

				21	 //	The	encoding	handles	4-byte	chunks,	using	a	special	encoding

				22	 //	for	the	last	fragment,	so	Encode	is	not	appropriate	for	use	on

				23	 //	individual	blocks	of	a	large	data	stream.		Use	NewEncoder()	instead.

				24	 //

				25	 //	Often,	ascii85-encoded	data	is	wrapped	in	<~	and	~>	symbols.

				26	 //	Encode	does	not	add	these.

				27	 func	Encode(dst,	src	[]byte)	int	{

				28	 	 if	len(src)	==	0	{

				29	 	 	 return	0

				30	 	 }

				31	

				32	 	 n	:=	0

				33	 	 for	len(src)	>	0	{

				34	 	 	 dst[0]	=	0

				35	 	 	 dst[1]	=	0

				36	 	 	 dst[2]	=	0

				37	 	 	 dst[3]	=	0

				38	 	 	 dst[4]	=	0

				39	

				40	 	 	 //	Unpack	4	bytes	into	uint32	to	repack	into	base	85	5-byte.

				41	 	 	 var	v	uint32

				42	 	 	 switch	len(src)	{

				43	 	 	 default:

				44	 	 	 	 v	|=	uint32(src[3])

				45	 	 	 	 fallthrough

				46	 	 	 case	3:

				47	 	 	 	 v	|=	uint32(src[2])	<<	8

				48	 	 	 	 fallthrough

				49	 	 	 case	2:

				50	 	 	 	 v	|=	uint32(src[1])	<<	16

				51	 	 	 	 fallthrough

				52	 	 	 case	1:

				53	 	 	 	 v	|=	uint32(src[0])	<<	24

				54	 	 	 }

				55	

				56	 	 	 //	Special	case:	zero	(!!!!!)	shortens	to	z.

				57	 	 	 if	v	==	0	&&	len(src)	>=	4	{

				58	 	 	 	 dst[0]	=	'z'

				59	 	 	 	 dst	=	dst[1:]

				60	 	 	 	 src	=	src[4:]

				61	 	 	 	 n++

				62	 	 	 	 continue

				63	 	 	 }

				64	

				65	 	 	 //	Otherwise,	5	base	85	digits	starting	at	!.

				66	 	 	 for	i	:=	4;	i	>=	0;	i--	{

				67	 	 	 	 dst[i]	=	'!'	+	byte(v%85)

				68	 	 	 	 v	/=	85

				69	 	 	 }

				70	

				71	 	 	 //	If	src	was	short,	discard	the	low	destination	bytes.

				72	 	 	 m	:=	5

				73	 	 	 if	len(src)	<	4	{

				74	 	 	 	 m	-=	4	-	len(src)

				75	 	 	 	 src	=	nil

				76	 	 	 }	else	{

				77	 	 	 	 src	=	src[4:]

				78	 	 	 }

				79	 	 	 dst	=	dst[m:]

				80	 	 	 n	+=	m

				81	 	 }

				82	 	 return	n

				83	 }

				84	

				85	 //	MaxEncodedLen	returns	the	maximum	length	of	an	encoding	of	n	source	bytes.

				86	 func	MaxEncodedLen(n	int)	int	{	return	(n	+	3)	/	4	*	5	}

				87	

				88	 //	NewEncoder	returns	a	new	ascii85	stream	encoder.		Data	written	to

				89	 //	the	returned	writer	will	be	encoded	and	then	written	to	w.

				90	 //	Ascii85	encodings	operate	in	32-bit	blocks;	when	finished

				91	 //	writing,	the	caller	must	Close	the	returned	encoder	to	flush	any

				92	 //	trailing	partial	block.

				93	 func	NewEncoder(w	io.Writer)	io.WriteCloser	{	return	&encoder{w:	w}	}

				94	

				95	 type	encoder	struct	{

				96	 	 err		error

				97	 	 w				io.Writer

				98	 	 buf		[4]byte				//	buffered	data	waiting	to	be	encoded

				99	 	 nbuf	int								//	number	of	bytes	in	buf

			100	 	 out		[1024]byte	//	output	buffer

			101	 }

			102	

			103	 func	(e	*encoder)	Write(p	[]byte)	(n	int,	err	error)	{

			104	 	 if	e.err	!=	nil	{

			105	 	 	 return	0,	e.err

			106	 	 }

			107	

			108	 	 //	Leading	fringe.

			109	 	 if	e.nbuf	>	0	{

			110	 	 	 var	i	int

			111	 	 	 for	i	=	0;	i	<	len(p)	&&	e.nbuf	<	4;	i++	{

			112	 	 	 	 e.buf[e.nbuf]	=	p[i]

			113	 	 	 	 e.nbuf++

			114	 	 	 }

			115	 	 	 n	+=	i

			116	 	 	 p	=	p[i:]

			117	 	 	 if	e.nbuf	<	4	{

			118	 	 	 	 return

			119	 	 	 }

			120	 	 	 nout	:=	Encode(e.out[0:],	e.buf[0:])

			121	 	 	 if	_,	e.err	=	e.w.Write(e.out[0:nout]);	e.err	!=	nil	{

			122	 	 	 	 return	n,	e.err

			123	 	 	 }

			124	 	 	 e.nbuf	=	0

			125	 	 }

			126	

			127	 	 //	Large	interior	chunks.

			128	 	 for	len(p)	>=	4	{

			129	 	 	 nn	:=	len(e.out)	/	5	*	4

			130	 	 	 if	nn	>	len(p)	{

			131	 	 	 	 nn	=	len(p)

			132	 	 	 }

			133	 	 	 nn	-=	nn	%	4

			134	 	 	 if	nn	>	0	{

			135	 	 	 	 nout	:=	Encode(e.out[0:],	p[0:nn])

			136	 	 	 	 if	_,	e.err	=	e.w.Write(e.out[0:nout]);	e.err	!=	nil	{

			137	 	 	 	 	 return	n,	e.err

			138	 	 	 	 }

			139	 	 	 }

			140	 	 	 n	+=	nn

			141	 	 	 p	=	p[nn:]

			142	 	 }

			143	

			144	 	 //	Trailing	fringe.

			145	 	 for	i	:=	0;	i	<	len(p);	i++	{

			146	 	 	 e.buf[i]	=	p[i]

			147	 	 }

			148	 	 e.nbuf	=	len(p)

			149	 	 n	+=	len(p)

			150	 	 return

			151	 }

			152	

			153	 //	Close	flushes	any	pending	output	from	the	encoder.

			154	 //	It	is	an	error	to	call	Write	after	calling	Close.

			155	 func	(e	*encoder)	Close()	error	{

			156	 	 //	If	there's	anything	left	in	the	buffer,	flush	it	out

			157	 	 if	e.err	==	nil	&&	e.nbuf	>	0	{

			158	 	 	 nout	:=	Encode(e.out[0:],	e.buf[0:e.nbuf])

			159	 	 	 e.nbuf	=	0

			160	 	 	 _,	e.err	=	e.w.Write(e.out[0:nout])

			161	 	 }

			162	 	 return	e.err

			163	 }

			164	

			165	 /*

			166	 	*	Decoder

			167	 	*/

			168	

			169	 type	CorruptInputError	int64

			170	

			171	 func	(e	CorruptInputError)	Error()	string	{

			172	 	 return	"illegal	ascii85	data	at	input	byte	"	+	strconv.FormatInt(int64(e),	10)

			173	 }

			174	

			175	 //	Decode	decodes	src	into	dst,	returning	both	the	number

			176	 //	of	bytes	written	to	dst	and	the	number	consumed	from	src.

			177	 //	If	src	contains	invalid	ascii85	data,	Decode	will	return	the

			178	 //	number	of	bytes	successfully	written	and	a	CorruptInputError.

			179	 //	Decode	ignores	space	and	control	characters	in	src.

			180	 //	Often,	ascii85-encoded	data	is	wrapped	in	<~	and	~>	symbols.

			181	 //	Decode	expects	these	to	have	been	stripped	by	the	caller.

			182	 //

			183	 //	If	flush	is	true,	Decode	assumes	that	src	represents	the

			184	 //	end	of	the	input	stream	and	processes	it	completely	rather

			185	 //	than	wait	for	the	completion	of	another	32-bit	block.

			186	 //

			187	 //	NewDecoder	wraps	an	io.Reader	interface	around	Decode.

			188	 //

			189	 func	Decode(dst,	src	[]byte,	flush	bool)	(ndst,	nsrc	int,	err	error)	{

			190	 	 var	v	uint32

			191	 	 var	nb	int

			192	 	 for	i,	b	:=	range	src	{

			193	 	 	 if	len(dst)-ndst	<	4	{

			194	 	 	 	 return

			195	 	 	 }

			196	 	 	 switch	{

			197	 	 	 case	b	<=	'	':

			198	 	 	 	 continue

			199	 	 	 case	b	==	'z'	&&	nb	==	0:

			200	 	 	 	 nb	=	5

			201	 	 	 	 v	=	0

			202	 	 	 case	'!'	<=	b	&&	b	<=	'u':

			203	 	 	 	 v	=	v*85	+	uint32(b-'!')

			204	 	 	 	 nb++

			205	 	 	 default:

			206	 	 	 	 return	0,	0,	CorruptInputError(i)

			207	 	 	 }

			208	 	 	 if	nb	==	5	{

			209	 	 	 	 nsrc	=	i	+	1

			210	 	 	 	 dst[ndst]	=	byte(v	>>	24)

			211	 	 	 	 dst[ndst+1]	=	byte(v	>>	16)

			212	 	 	 	 dst[ndst+2]	=	byte(v	>>	8)

			213	 	 	 	 dst[ndst+3]	=	byte(v)

			214	 	 	 	 ndst	+=	4

			215	 	 	 	 nb	=	0

			216	 	 	 	 v	=	0

			217	 	 	 }

			218	 	 }

			219	 	 if	flush	{

			220	 	 	 nsrc	=	len(src)

			221	 	 	 if	nb	>	0	{

			222	 	 	 	 //	The	number	of	output	bytes	in	the	last	fragment

			223	 	 	 	 //	is	the	number	of	leftover	input	bytes	-	1:

			224	 	 	 	 //	the	extra	byte	provides	enough	bits	to	cover

			225	 	 	 	 //	the	inefficiency	of	the	encoding	for	the	block.

			226	 	 	 	 if	nb	==	1	{

			227	 	 	 	 	 return	0,	0,	CorruptInputError(len(src))

			228	 	 	 	 }

			229	 	 	 	 for	i	:=	nb;	i	<	5;	i++	{

			230	 	 	 	 	 //	The	short	encoding	truncated	the	output	value.

			231	 	 	 	 	 //	We	have	to	assume	the	worst	case	values	(digit	84)

			232	 	 	 	 	 //	in	order	to	ensure	that	the	top	bits	are	correct.

			233	 	 	 	 	 v	=	v*85	+	84

			234	 	 	 	 }

			235	 	 	 	 for	i	:=	0;	i	<	nb-1;	i++	{

			236	 	 	 	 	 dst[ndst]	=	byte(v	>>	24)

			237	 	 	 	 	 v	<<=	8

			238	 	 	 	 	 ndst++

			239	 	 	 	 }

			240	 	 	 }

			241	 	 }

			242	 	 return

			243	 }

			244	

			245	 //	NewDecoder	constructs	a	new	ascii85	stream	decoder.

			246	 func	NewDecoder(r	io.Reader)	io.Reader	{	return	&decoder{r:	r}	}

			247	

			248	 type	decoder	struct	{

			249	 	 err					error

			250	 	 readErr	error

			251	 	 r							io.Reader

			252	 	 end					bool							//	saw	end	of	message

			253	 	 buf					[1024]byte	//	leftover	input

			254	 	 nbuf				int

			255	 	 out					[]byte	//	leftover	decoded	output

			256	 	 outbuf		[1024]byte

			257	 }

			258	

			259	 func	(d	*decoder)	Read(p	[]byte)	(n	int,	err	error)	{

			260	 	 if	len(p)	==	0	{

			261	 	 	 return	0,	nil

			262	 	 }

			263	 	 if	d.err	!=	nil	{

			264	 	 	 return	0,	d.err

			265	 	 }

			266	

			267	 	 for	{

			268	 	 	 //	Copy	leftover	output	from	last	decode.

			269	 	 	 if	len(d.out)	>	0	{

			270	 	 	 	 n	=	copy(p,	d.out)

			271	 	 	 	 d.out	=	d.out[n:]

			272	 	 	 	 return

			273	 	 	 }

			274	

			275	 	 	 //	Decode	leftover	input	from	last	read.

			276	 	 	 var	nn,	nsrc,	ndst	int

			277	 	 	 if	d.nbuf	>	0	{

			278	 	 	 	 ndst,	nsrc,	d.err	=	Decode(d.outbuf[0:],	d.buf[0:d.nbuf],	d.readErr	!=	nil)

			279	 	 	 	 if	ndst	>	0	{

			280	 	 	 	 	 d.out	=	d.outbuf[0:ndst]

			281	 	 	 	 	 d.nbuf	=	copy(d.buf[0:],	d.buf[nsrc:d.nbuf])

			282	 	 	 	 	 continue	//	copy	out	and	return

			283	 	 	 	 }

			284	 	 	 }

			285	

			286	 	 	 //	Out	of	input,	out	of	decoded	output.		Check	errors.

			287	 	 	 if	d.err	!=	nil	{

			288	 	 	 	 return	0,	d.err

			289	 	 	 }

			290	 	 	 if	d.readErr	!=	nil	{

			291	 	 	 	 d.err	=	d.readErr

			292	 	 	 	 return	0,	d.err

			293	 	 	 }

			294	

			295	 	 	 //	Read	more	data.

			296	 	 	 nn,	d.readErr	=	d.r.Read(d.buf[d.nbuf:])

			297	 	 	 d.nbuf	+=	nn

			298	 	 }

			299	 	 panic("unreachable")

			300	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/asn1/asn1.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	asn1	implements	parsing	of	DER-encoded	ASN.1	data	structures,

					6	 //	as	defined	in	ITU-T	Rec	X.690.

					7	 //

					8	 //	See	also	``A	Layman's	Guide	to	a	Subset	of	ASN.1,	BER,	and	DER,''

					9	 //	http://luca.ntop.org/Teaching/Appunti/asn1.html.

				10	 package	asn1

				11	

				12	 //	ASN.1	is	a	syntax	for	specifying	abstract	objects	and	BER,	DER,	PER,	XER	etc

				13	 //	are	different	encoding	formats	for	those	objects.	Here,	we'll	be	dealing

				14	 //	with	DER,	the	Distinguished	Encoding	Rules.	DER	is	used	in	X.509	because

				15	 //	it's	fast	to	parse	and,	unlike	BER,	has	a	unique	encoding	for	every	object.

				16	 //	When	calculating	hashes	over	objects,	it's	important	that	the	resulting

				17	 //	bytes	be	the	same	at	both	ends	and	DER	removes	this	margin	of	error.

				18	 //

				19	 //	ASN.1	is	very	complex	and	this	package	doesn't	attempt	to	implement

				20	 //	everything	by	any	means.

				21	

				22	 import	(

				23	 	 "fmt"

				24	 	 "math/big"

				25	 	 "reflect"

				26	 	 "time"

				27)

				28	

				29	 //	A	StructuralError	suggests	that	the	ASN.1	data	is	valid,	but	the	Go	type

				30	 //	which	is	receiving	it	doesn't	match.

				31	 type	StructuralError	struct	{

				32	 	 Msg	string

				33	 }

				34	

				35	 func	(e	StructuralError)	Error()	string	{	return	"ASN.1	structure	error:	"	+	e.Msg	}

				36	

				37	 //	A	SyntaxError	suggests	that	the	ASN.1	data	is	invalid.

				38	 type	SyntaxError	struct	{

				39	 	 Msg	string

				40	 }

				41	

				42	 func	(e	SyntaxError)	Error()	string	{	return	"ASN.1	syntax	error:	"	+	e.Msg	}

				43	

				44	 //	We	start	by	dealing	with	each	of	the	primitive	types	in	turn.

				45	

				46	 //	BOOLEAN

				47	

				48	 func	parseBool(bytes	[]byte)	(ret	bool,	err	error)	{

				49	 	 if	len(bytes)	!=	1	{

				50	 	 	 err	=	SyntaxError{"invalid	boolean"}

				51	 	 	 return

				52	 	 }

				53	

				54	 	 return	bytes[0]	!=	0,	nil

				55	 }

				56	

				57	 //	INTEGER

				58	

				59	 //	parseInt64	treats	the	given	bytes	as	a	big-endian,	signed	integer	and

				60	 //	returns	the	result.

				61	 func	parseInt64(bytes	[]byte)	(ret	int64,	err	error)	{

				62	 	 if	len(bytes)	>	8	{

				63	 	 	 //	We'll	overflow	an	int64	in	this	case.

				64	 	 	 err	=	StructuralError{"integer	too	large"}

				65	 	 	 return

				66	 	 }

				67	 	 for	bytesRead	:=	0;	bytesRead	<	len(bytes);	bytesRead++	{

				68	 	 	 ret	<<=	8

				69	 	 	 ret	|=	int64(bytes[bytesRead])

				70	 	 }

				71	

				72	 	 //	Shift	up	and	down	in	order	to	sign	extend	the	result.

				73	 	 ret	<<=	64	-	uint8(len(bytes))*8

				74	 	 ret	>>=	64	-	uint8(len(bytes))*8

				75	 	 return

				76	 }

				77	

				78	 //	parseInt	treats	the	given	bytes	as	a	big-endian,	signed	integer	and	returns

				79	 //	the	result.

				80	 func	parseInt(bytes	[]byte)	(int,	error)	{

				81	 	 ret64,	err	:=	parseInt64(bytes)

				82	 	 if	err	!=	nil	{

				83	 	 	 return	0,	err

				84	 	 }

				85	 	 if	ret64	!=	int64(int(ret64))	{

				86	 	 	 return	0,	StructuralError{"integer	too	large"}

				87	 	 }

				88	 	 return	int(ret64),	nil

				89	 }

				90	

				91	 var	bigOne	=	big.NewInt(1)

				92	

				93	 //	parseBigInt	treats	the	given	bytes	as	a	big-endian,	signed	integer	and	returns

				94	 //	the	result.

				95	 func	parseBigInt(bytes	[]byte)	*big.Int	{

				96	 	 ret	:=	new(big.Int)

				97	 	 if	len(bytes)	>	0	&&	bytes[0]&0x80	==	0x80	{

				98	 	 	 //	This	is	a	negative	number.

				99	 	 	 notBytes	:=	make([]byte,	len(bytes))

			100	 	 	 for	i	:=	range	notBytes	{

			101	 	 	 	 notBytes[i]	=	^bytes[i]

			102	 	 	 }

			103	 	 	 ret.SetBytes(notBytes)

			104	 	 	 ret.Add(ret,	bigOne)

			105	 	 	 ret.Neg(ret)

			106	 	 	 return	ret

			107	 	 }

			108	 	 ret.SetBytes(bytes)

			109	 	 return	ret

			110	 }

			111	

			112	 //	BIT	STRING

			113	

			114	 //	BitString	is	the	structure	to	use	when	you	want	an	ASN.1	BIT	STRING	type.	A

			115	 //	bit	string	is	padded	up	to	the	nearest	byte	in	memory	and	the	number	of

			116	 //	valid	bits	is	recorded.	Padding	bits	will	be	zero.

			117	 type	BitString	struct	{

			118	 	 Bytes					[]byte	//	bits	packed	into	bytes.

			119	 	 BitLength	int				//	length	in	bits.

			120	 }

			121	

			122	 //	At	returns	the	bit	at	the	given	index.	If	the	index	is	out	of	range	it

			123	 //	returns	false.

			124	 func	(b	BitString)	At(i	int)	int	{

			125	 	 if	i	<	0	||	i	>=	b.BitLength	{

			126	 	 	 return	0

			127	 	 }

			128	 	 x	:=	i	/	8

			129	 	 y	:=	7	-	uint(i%8)

			130	 	 return	int(b.Bytes[x]>>y)	&	1

			131	 }

			132	

			133	 //	RightAlign	returns	a	slice	where	the	padding	bits	are	at	the	beginning.	The

			134	 //	slice	may	share	memory	with	the	BitString.

			135	 func	(b	BitString)	RightAlign()	[]byte	{

			136	 	 shift	:=	uint(8	-	(b.BitLength	%	8))

			137	 	 if	shift	==	8	||	len(b.Bytes)	==	0	{

			138	 	 	 return	b.Bytes

			139	 	 }

			140	

			141	 	 a	:=	make([]byte,	len(b.Bytes))

			142	 	 a[0]	=	b.Bytes[0]	>>	shift

			143	 	 for	i	:=	1;	i	<	len(b.Bytes);	i++	{

			144	 	 	 a[i]	=	b.Bytes[i-1]	<<	(8	-	shift)

			145	 	 	 a[i]	|=	b.Bytes[i]	>>	shift

			146	 	 }

			147	

			148	 	 return	a

			149	 }

			150	

			151	 //	parseBitString	parses	an	ASN.1	bit	string	from	the	given	byte	slice	and	returns	it.

			152	 func	parseBitString(bytes	[]byte)	(ret	BitString,	err	error)	{

			153	 	 if	len(bytes)	==	0	{

			154	 	 	 err	=	SyntaxError{"zero	length	BIT	STRING"}

			155	 	 	 return

			156	 	 }

			157	 	 paddingBits	:=	int(bytes[0])

			158	 	 if	paddingBits	>	7	||

			159	 	 	 len(bytes)	==	1	&&	paddingBits	>	0	||

			160	 	 	 bytes[len(bytes)-1]&((1<<bytes[0])-1)	!=	0	{

			161	 	 	 err	=	SyntaxError{"invalid	padding	bits	in	BIT	STRING"}

			162	 	 	 return

			163	 	 }

			164	 	 ret.BitLength	=	(len(bytes)-1)*8	-	paddingBits

			165	 	 ret.Bytes	=	bytes[1:]

			166	 	 return

			167	 }

			168	

			169	 //	OBJECT	IDENTIFIER

			170	

			171	 //	An	ObjectIdentifier	represents	an	ASN.1	OBJECT	IDENTIFIER.

			172	 type	ObjectIdentifier	[]int

			173	

			174	 //	Equal	returns	true	iff	oi	and	other	represent	the	same	identifier.

			175	 func	(oi	ObjectIdentifier)	Equal(other	ObjectIdentifier)	bool	{

			176	 	 if	len(oi)	!=	len(other)	{

			177	 	 	 return	false

			178	 	 }

			179	 	 for	i	:=	0;	i	<	len(oi);	i++	{

			180	 	 	 if	oi[i]	!=	other[i]	{

			181	 	 	 	 return	false

			182	 	 	 }

			183	 	 }

			184	

			185	 	 return	true

			186	 }

			187	

			188	 //	parseObjectIdentifier	parses	an	OBJECT	IDENTIFIER	from	the	given	bytes	and

			189	 //	returns	it.	An	object	identifier	is	a	sequence	of	variable	length	integers

			190	 //	that	are	assigned	in	a	hierarchy.

			191	 func	parseObjectIdentifier(bytes	[]byte)	(s	[]int,	err	error)	{

			192	 	 if	len(bytes)	==	0	{

			193	 	 	 err	=	SyntaxError{"zero	length	OBJECT	IDENTIFIER"}

			194	 	 	 return

			195	 	 }

			196	

			197	 	 //	In	the	worst	case,	we	get	two	elements	from	the	first	byte	(which	is

			198	 	 //	encoded	differently)	and	then	every	varint	is	a	single	byte	long.

			199	 	 s	=	make([]int,	len(bytes)+1)

			200	

			201	 	 //	The	first	byte	is	40*value1	+	value2:

			202	 	 s[0]	=	int(bytes[0])	/	40

			203	 	 s[1]	=	int(bytes[0])	%	40

			204	 	 i	:=	2

			205	 	 for	offset	:=	1;	offset	<	len(bytes);	i++	{

			206	 	 	 var	v	int

			207	 	 	 v,	offset,	err	=	parseBase128Int(bytes,	offset)

			208	 	 	 if	err	!=	nil	{

			209	 	 	 	 return

			210	 	 	 }

			211	 	 	 s[i]	=	v

			212	 	 }

			213	 	 s	=	s[0:i]

			214	 	 return

			215	 }

			216	

			217	 //	ENUMERATED

			218	

			219	 //	An	Enumerated	is	represented	as	a	plain	int.

			220	 type	Enumerated	int

			221	

			222	 //	FLAG

			223	

			224	 //	A	Flag	accepts	any	data	and	is	set	to	true	if	present.

			225	 type	Flag	bool

			226	

			227	 //	parseBase128Int	parses	a	base-128	encoded	int	from	the	given	offset	in	the

			228	 //	given	byte	slice.	It	returns	the	value	and	the	new	offset.

			229	 func	parseBase128Int(bytes	[]byte,	initOffset	int)	(ret,	offset	int,	err	error)	{

			230	 	 offset	=	initOffset

			231	 	 for	shifted	:=	0;	offset	<	len(bytes);	shifted++	{

			232	 	 	 if	shifted	>	4	{

			233	 	 	 	 err	=	StructuralError{"base	128	integer	too	large"}

			234	 	 	 	 return

			235	 	 	 }

			236	 	 	 ret	<<=	7

			237	 	 	 b	:=	bytes[offset]

			238	 	 	 ret	|=	int(b	&	0x7f)

			239	 	 	 offset++

			240	 	 	 if	b&0x80	==	0	{

			241	 	 	 	 return

			242	 	 	 }

			243	 	 }

			244	 	 err	=	SyntaxError{"truncated	base	128	integer"}

			245	 	 return

			246	 }

			247	

			248	 //	UTCTime

			249	

			250	 func	parseUTCTime(bytes	[]byte)	(ret	time.Time,	err	error)	{

			251	 	 s	:=	string(bytes)

			252	 	 ret,	err	=	time.Parse("0601021504Z0700",	s)

			253	 	 if	err	!=	nil	{

			254	 	 	 ret,	err	=	time.Parse("060102150405Z0700",	s)

			255	 	 }

			256	 	 if	err	==	nil	&&	ret.Year()	>=	2050	{

			257	 	 	 //	UTCTime	only	encodes	times	prior	to	2050.	See	https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1

			258	 	 	 ret	=	ret.AddDate(-100,	0,	0)

			259	 	 }

			260	

			261	 	 return

			262	 }

			263	

			264	 //	parseGeneralizedTime	parses	the	GeneralizedTime	from	the	given	byte	slice

			265	 //	and	returns	the	resulting	time.

			266	 func	parseGeneralizedTime(bytes	[]byte)	(ret	time.Time,	err	error)	{

			267	 	 return	time.Parse("20060102150405Z0700",	string(bytes))

			268	 }

			269	

			270	 //	PrintableString

			271	

			272	 //	parsePrintableString	parses	a	ASN.1	PrintableString	from	the	given	byte

			273	 //	array	and	returns	it.

			274	 func	parsePrintableString(bytes	[]byte)	(ret	string,	err	error)	{

			275	 	 for	_,	b	:=	range	bytes	{

			276	 	 	 if	!isPrintable(b)	{

			277	 	 	 	 err	=	SyntaxError{"PrintableString	contains	invalid	character"}

			278	 	 	 	 return

			279	 	 	 }

			280	 	 }

			281	 	 ret	=	string(bytes)

			282	 	 return

			283	 }

			284	

			285	 //	isPrintable	returns	true	iff	the	given	b	is	in	the	ASN.1	PrintableString	set.

			286	 func	isPrintable(b	byte)	bool	{

			287	 	 return	'a'	<=	b	&&	b	<=	'z'	||

			288	 	 	 'A'	<=	b	&&	b	<=	'Z'	||

			289	 	 	 '0'	<=	b	&&	b	<=	'9'	||

			290	 	 	 '\''	<=	b	&&	b	<=	')'	||

			291	 	 	 '+'	<=	b	&&	b	<=	'/'	||

			292	 	 	 b	==	'	'	||

			293	 	 	 b	==	':'	||

			294	 	 	 b	==	'='	||

			295	 	 	 b	==	'?'	||

			296	 	 	 //	This	is	technically	not	allowed	in	a	PrintableString.

			297	 	 	 //	However,	x509	certificates	with	wildcard	strings	don't

			298	 	 	 //	always	use	the	correct	string	type	so	we	permit	it.

			299	 	 	 b	==	'*'

			300	 }

			301	

			302	 //	IA5String

			303	

			304	 //	parseIA5String	parses	a	ASN.1	IA5String	(ASCII	string)	from	the	given

			305	 //	byte	slice	and	returns	it.

			306	 func	parseIA5String(bytes	[]byte)	(ret	string,	err	error)	{

			307	 	 for	_,	b	:=	range	bytes	{

			308	 	 	 if	b	>=	0x80	{

			309	 	 	 	 err	=	SyntaxError{"IA5String	contains	invalid	character"}

			310	 	 	 	 return

			311	 	 	 }

			312	 	 }

			313	 	 ret	=	string(bytes)

			314	 	 return

			315	 }

			316	

			317	 //	T61String

			318	

			319	 //	parseT61String	parses	a	ASN.1	T61String	(8-bit	clean	string)	from	the	given

			320	 //	byte	slice	and	returns	it.

			321	 func	parseT61String(bytes	[]byte)	(ret	string,	err	error)	{

			322	 	 return	string(bytes),	nil

			323	 }

			324	

			325	 //	UTF8String

			326	

			327	 //	parseUTF8String	parses	a	ASN.1	UTF8String	(raw	UTF-8)	from	the	given	byte

			328	 //	array	and	returns	it.

			329	 func	parseUTF8String(bytes	[]byte)	(ret	string,	err	error)	{

			330	 	 return	string(bytes),	nil

			331	 }

			332	

			333	 //	A	RawValue	represents	an	undecoded	ASN.1	object.

			334	 type	RawValue	struct	{

			335	 	 Class,	Tag	int

			336	 	 IsCompound	bool

			337	 	 Bytes						[]byte

			338	 	 FullBytes		[]byte	//	includes	the	tag	and	length

			339	 }

			340	

			341	 //	RawContent	is	used	to	signal	that	the	undecoded,	DER	data	needs	to	be

			342	 //	preserved	for	a	struct.	To	use	it,	the	first	field	of	the	struct	must	have

			343	 //	this	type.	It's	an	error	for	any	of	the	other	fields	to	have	this	type.

			344	 type	RawContent	[]byte

			345	

			346	 //	Tagging

			347	

			348	 //	parseTagAndLength	parses	an	ASN.1	tag	and	length	pair	from	the	given	offset

			349	 //	into	a	byte	slice.	It	returns	the	parsed	data	and	the	new	offset.	SET	and

			350	 //	SET	OF	(tag	17)	are	mapped	to	SEQUENCE	and	SEQUENCE	OF	(tag	16)	since	we

			351	 //	don't	distinguish	between	ordered	and	unordered	objects	in	this	code.

			352	 func	parseTagAndLength(bytes	[]byte,	initOffset	int)	(ret	tagAndLength,	offset	int,	err	error)	{

			353	 	 offset	=	initOffset

			354	 	 b	:=	bytes[offset]

			355	 	 offset++

			356	 	 ret.class	=	int(b	>>	6)

			357	 	 ret.isCompound	=	b&0x20	==	0x20

			358	 	 ret.tag	=	int(b	&	0x1f)

			359	

			360	 	 //	If	the	bottom	five	bits	are	set,	then	the	tag	number	is	actually	base	128

			361	 	 //	encoded	afterwards

			362	 	 if	ret.tag	==	0x1f	{

			363	 	 	 ret.tag,	offset,	err	=	parseBase128Int(bytes,	offset)

			364	 	 	 if	err	!=	nil	{

			365	 	 	 	 return

			366	 	 	 }

			367	 	 }

			368	 	 if	offset	>=	len(bytes)	{

			369	 	 	 err	=	SyntaxError{"truncated	tag	or	length"}

			370	 	 	 return

			371	 	 }

			372	 	 b	=	bytes[offset]

			373	 	 offset++

			374	 	 if	b&0x80	==	0	{

			375	 	 	 //	The	length	is	encoded	in	the	bottom	7	bits.

			376	 	 	 ret.length	=	int(b	&	0x7f)

			377	 	 }	else	{

			378	 	 	 //	Bottom	7	bits	give	the	number	of	length	bytes	to	follow.

			379	 	 	 numBytes	:=	int(b	&	0x7f)

			380	 	 	 if	numBytes	==	0	{

			381	 	 	 	 err	=	SyntaxError{"indefinite	length	found	(not	DER)"}

			382	 	 	 	 return

			383	 	 	 }

			384	 	 	 ret.length	=	0

			385	 	 	 for	i	:=	0;	i	<	numBytes;	i++	{

			386	 	 	 	 if	offset	>=	len(bytes)	{

			387	 	 	 	 	 err	=	SyntaxError{"truncated	tag	or	length"}

			388	 	 	 	 	 return

			389	 	 	 	 }

			390	 	 	 	 b	=	bytes[offset]

			391	 	 	 	 offset++

			392	 	 	 	 if	ret.length	>=	1<<23	{

			393	 	 	 	 	 //	We	can't	shift	ret.length	up	without

			394	 	 	 	 	 //	overflowing.

			395	 	 	 	 	 err	=	StructuralError{"length	too	large"}

			396	 	 	 	 	 return

			397	 	 	 	 }

			398	 	 	 	 ret.length	<<=	8

			399	 	 	 	 ret.length	|=	int(b)

			400	 	 	 	 if	ret.length	==	0	{

			401	 	 	 	 	 //	DER	requires	that	lengths	be	minimal.

			402	 	 	 	 	 err	=	StructuralError{"superfluous	leading	zeros	in	length"}

			403	 	 	 	 	 return

			404	 	 	 	 }

			405	 	 	 }

			406	 	 }

			407	

			408	 	 return

			409	 }

			410	

			411	 //	parseSequenceOf	is	used	for	SEQUENCE	OF	and	SET	OF	values.	It	tries	to	parse

			412	 //	a	number	of	ASN.1	values	from	the	given	byte	slice	and	returns	them	as	a

			413	 //	slice	of	Go	values	of	the	given	type.

			414	 func	parseSequenceOf(bytes	[]byte,	sliceType	reflect.Type,	elemType	reflect.Type)	(ret	reflect.Value,	err	error)	{

			415	 	 expectedTag,	compoundType,	ok	:=	getUniversalType(elemType)

			416	 	 if	!ok	{

			417	 	 	 err	=	StructuralError{"unknown	Go	type	for	slice"}

			418	 	 	 return

			419	 	 }

			420	

			421	 	 //	First	we	iterate	over	the	input	and	count	the	number	of	elements,

			422	 	 //	checking	that	the	types	are	correct	in	each	case.

			423	 	 numElements	:=	0

			424	 	 for	offset	:=	0;	offset	<	len(bytes);	{

			425	 	 	 var	t	tagAndLength

			426	 	 	 t,	offset,	err	=	parseTagAndLength(bytes,	offset)

			427	 	 	 if	err	!=	nil	{

			428	 	 	 	 return

			429	 	 	 }

			430	 	 	 //	We	pretend	that	GENERAL	STRINGs	are	PRINTABLE	STRINGs	so

			431	 	 	 //	that	a	sequence	of	them	can	be	parsed	into	a	[]string.

			432	 	 	 if	t.tag	==	tagGeneralString	{

			433	 	 	 	 t.tag	=	tagPrintableString

			434	 	 	 }

			435	 	 	 if	t.class	!=	classUniversal	||	t.isCompound	!=	compoundType	||	t.tag	!=	expectedTag	{

			436	 	 	 	 err	=	StructuralError{"sequence	tag	mismatch"}

			437	 	 	 	 return

			438	 	 	 }

			439	 	 	 if	invalidLength(offset,	t.length,	len(bytes))	{

			440	 	 	 	 err	=	SyntaxError{"truncated	sequence"}

			441	 	 	 	 return

			442	 	 	 }

			443	 	 	 offset	+=	t.length

			444	 	 	 numElements++

			445	 	 }

			446	 	 ret	=	reflect.MakeSlice(sliceType,	numElements,	numElements)

			447	 	 params	:=	fieldParameters{}

			448	 	 offset	:=	0

			449	 	 for	i	:=	0;	i	<	numElements;	i++	{

			450	 	 	 offset,	err	=	parseField(ret.Index(i),	bytes,	offset,	params)

			451	 	 	 if	err	!=	nil	{

			452	 	 	 	 return

			453	 	 	 }

			454	 	 }

			455	 	 return

			456	 }

			457	

			458	 var	(

			459	 	 bitStringType								=	reflect.TypeOf(BitString{})

			460	 	 objectIdentifierType	=	reflect.TypeOf(ObjectIdentifier{})

			461	 	 enumeratedType							=	reflect.TypeOf(Enumerated(0))

			462	 	 flagType													=	reflect.TypeOf(Flag(false))

			463	 	 timeType													=	reflect.TypeOf(time.Time{})

			464	 	 rawValueType									=	reflect.TypeOf(RawValue{})

			465	 	 rawContentsType						=	reflect.TypeOf(RawContent(nil))

			466	 	 bigIntType											=	reflect.TypeOf(new(big.Int))

			467)

			468	

			469	 //	invalidLength	returns	true	iff	offset	+	length	>	sliceLength,	or	if	the

			470	 //	addition	would	overflow.

			471	 func	invalidLength(offset,	length,	sliceLength	int)	bool	{

			472	 	 return	offset+length	<	offset	||	offset+length	>	sliceLength

			473	 }

			474	

			475	 //	parseField	is	the	main	parsing	function.	Given	a	byte	slice	and	an	offset

			476	 //	into	the	array,	it	will	try	to	parse	a	suitable	ASN.1	value	out	and	store	it

			477	 //	in	the	given	Value.

			478	 func	parseField(v	reflect.Value,	bytes	[]byte,	initOffset	int,	params	fieldParameters)	(offset	int,	err	error)	{

			479	 	 offset	=	initOffset

			480	 	 fieldType	:=	v.Type()

			481	

			482	 	 //	If	we	have	run	out	of	data,	it	may	be	that	there	are	optional	elements	at	the	end.

			483	 	 if	offset	==	len(bytes)	{

			484	 	 	 if	!setDefaultValue(v,	params)	{

			485	 	 	 	 err	=	SyntaxError{"sequence	truncated"}

			486	 	 	 }

			487	 	 	 return

			488	 	 }

			489	

			490	 	 //	Deal	with	raw	values.

			491	 	 if	fieldType	==	rawValueType	{

			492	 	 	 var	t	tagAndLength

			493	 	 	 t,	offset,	err	=	parseTagAndLength(bytes,	offset)

			494	 	 	 if	err	!=	nil	{

			495	 	 	 	 return

			496	 	 	 }

			497	 	 	 if	invalidLength(offset,	t.length,	len(bytes))	{

			498	 	 	 	 err	=	SyntaxError{"data	truncated"}

			499	 	 	 	 return

			500	 	 	 }

			501	 	 	 result	:=	RawValue{t.class,	t.tag,	t.isCompound,	bytes[offset	:	offset+t.length],	bytes[initOffset	:	offset+t.length]}

			502	 	 	 offset	+=	t.length

			503	 	 	 v.Set(reflect.ValueOf(result))

			504	 	 	 return

			505	 	 }

			506	

			507	 	 //	Deal	with	the	ANY	type.

			508	 	 if	ifaceType	:=	fieldType;	ifaceType.Kind()	==	reflect.Interface	&&	ifaceType.NumMethod()	==	0	{

			509	 	 	 var	t	tagAndLength

			510	 	 	 t,	offset,	err	=	parseTagAndLength(bytes,	offset)

			511	 	 	 if	err	!=	nil	{

			512	 	 	 	 return

			513	 	 	 }

			514	 	 	 if	invalidLength(offset,	t.length,	len(bytes))	{

			515	 	 	 	 err	=	SyntaxError{"data	truncated"}

			516	 	 	 	 return

			517	 	 	 }

			518	 	 	 var	result	interface{}

			519	 	 	 if	!t.isCompound	&&	t.class	==	classUniversal	{

			520	 	 	 	 innerBytes	:=	bytes[offset	:	offset+t.length]

			521	 	 	 	 switch	t.tag	{

			522	 	 	 	 case	tagPrintableString:

			523	 	 	 	 	 result,	err	=	parsePrintableString(innerBytes)

			524	 	 	 	 case	tagIA5String:

			525	 	 	 	 	 result,	err	=	parseIA5String(innerBytes)

			526	 	 	 	 case	tagT61String:

			527	 	 	 	 	 result,	err	=	parseT61String(innerBytes)

			528	 	 	 	 case	tagUTF8String:

			529	 	 	 	 	 result,	err	=	parseUTF8String(innerBytes)

			530	 	 	 	 case	tagInteger:

			531	 	 	 	 	 result,	err	=	parseInt64(innerBytes)

			532	 	 	 	 case	tagBitString:

			533	 	 	 	 	 result,	err	=	parseBitString(innerBytes)

			534	 	 	 	 case	tagOID:

			535	 	 	 	 	 result,	err	=	parseObjectIdentifier(innerBytes)

			536	 	 	 	 case	tagUTCTime:

			537	 	 	 	 	 result,	err	=	parseUTCTime(innerBytes)

			538	 	 	 	 case	tagOctetString:

			539	 	 	 	 	 result	=	innerBytes

			540	 	 	 	 default:

			541	 	 	 	 	 //	If	we	don't	know	how	to	handle	the	type,	we	just	leave	Value	as	nil.

			542	 	 	 	 }

			543	 	 	 }

			544	 	 	 offset	+=	t.length

			545	 	 	 if	err	!=	nil	{

			546	 	 	 	 return

			547	 	 	 }

			548	 	 	 if	result	!=	nil	{

			549	 	 	 	 v.Set(reflect.ValueOf(result))

			550	 	 	 }

			551	 	 	 return

			552	 	 }

			553	 	 universalTag,	compoundType,	ok1	:=	getUniversalType(fieldType)

			554	 	 if	!ok1	{

			555	 	 	 err	=	StructuralError{fmt.Sprintf("unknown	Go	type:	%v",	fieldType)}

			556	 	 	 return

			557	 	 }

			558	

			559	 	 t,	offset,	err	:=	parseTagAndLength(bytes,	offset)

			560	 	 if	err	!=	nil	{

			561	 	 	 return

			562	 	 }

			563	 	 if	params.explicit	{

			564	 	 	 expectedClass	:=	classContextSpecific

			565	 	 	 if	params.application	{

			566	 	 	 	 expectedClass	=	classApplication

			567	 	 	 }

			568	 	 	 if	t.class	==	expectedClass	&&	t.tag	==	*params.tag	&&	(t.length	==	0	||	t.isCompound)	{

			569	 	 	 	 if	t.length	>	0	{

			570	 	 	 	 	 t,	offset,	err	=	parseTagAndLength(bytes,	offset)

			571	 	 	 	 	 if	err	!=	nil	{

			572	 	 	 	 	 	 return

			573	 	 	 	 	 }

			574	 	 	 	 }	else	{

			575	 	 	 	 	 if	fieldType	!=	flagType	{

			576	 	 	 	 	 	 err	=	StructuralError{"Zero	length	explicit	tag	was	not	an	asn1.Flag"}

			577	 	 	 	 	 	 return

			578	 	 	 	 	 }

			579	 	 	 	 	 v.SetBool(true)

			580	 	 	 	 	 return

			581	 	 	 	 }

			582	 	 	 }	else	{

			583	 	 	 	 //	The	tags	didn't	match,	it	might	be	an	optional	element.

			584	 	 	 	 ok	:=	setDefaultValue(v,	params)

			585	 	 	 	 if	ok	{

			586	 	 	 	 	 offset	=	initOffset

			587	 	 	 	 }	else	{

			588	 	 	 	 	 err	=	StructuralError{"explicitly	tagged	member	didn't	match"}

			589	 	 	 	 }

			590	 	 	 	 return

			591	 	 	 }

			592	 	 }

			593	

			594	 	 //	Special	case	for	strings:	all	the	ASN.1	string	types	map	to	the	Go

			595	 	 //	type	string.	getUniversalType	returns	the	tag	for	PrintableString

			596	 	 //	when	it	sees	a	string,	so	if	we	see	a	different	string	type	on	the

			597	 	 //	wire,	we	change	the	universal	type	to	match.

			598	 	 if	universalTag	==	tagPrintableString	{

			599	 	 	 switch	t.tag	{

			600	 	 	 case	tagIA5String,	tagGeneralString,	tagT61String,	tagUTF8String:

			601	 	 	 	 universalTag	=	t.tag

			602	 	 	 }

			603	 	 }

			604	

			605	 	 //	Special	case	for	time:	UTCTime	and	GeneralizedTime	both	map	to	the

			606	 	 //	Go	type	time.Time.

			607	 	 if	universalTag	==	tagUTCTime	&&	t.tag	==	tagGeneralizedTime	{

			608	 	 	 universalTag	=	tagGeneralizedTime

			609	 	 }

			610	

			611	 	 expectedClass	:=	classUniversal

			612	 	 expectedTag	:=	universalTag

			613	

			614	 	 if	!params.explicit	&&	params.tag	!=	nil	{

			615	 	 	 expectedClass	=	classContextSpecific

			616	 	 	 expectedTag	=	*params.tag

			617	 	 }

			618	

			619	 	 if	!params.explicit	&&	params.application	&&	params.tag	!=	nil	{

			620	 	 	 expectedClass	=	classApplication

			621	 	 	 expectedTag	=	*params.tag

			622	 	 }

			623	

			624	 	 //	We	have	unwrapped	any	explicit	tagging	at	this	point.

			625	 	 if	t.class	!=	expectedClass	||	t.tag	!=	expectedTag	||	t.isCompound	!=	compoundType	{

			626	 	 	 //	Tags	don't	match.	Again,	it	could	be	an	optional	element.

			627	 	 	 ok	:=	setDefaultValue(v,	params)

			628	 	 	 if	ok	{

			629	 	 	 	 offset	=	initOffset

			630	 	 	 }	else	{

			631	 	 	 	 err	=	StructuralError{fmt.Sprintf("tags	don't	match	(%d	vs	%+v)	%+v	%s	@%d",	expectedTag,	t,	params,	fieldType.Name(),	offset)}

			632	 	 	 }

			633	 	 	 return

			634	 	 }

			635	 	 if	invalidLength(offset,	t.length,	len(bytes))	{

			636	 	 	 err	=	SyntaxError{"data	truncated"}

			637	 	 	 return

			638	 	 }

			639	 	 innerBytes	:=	bytes[offset	:	offset+t.length]

			640	 	 offset	+=	t.length

			641	

			642	 	 //	We	deal	with	the	structures	defined	in	this	package	first.

			643	 	 switch	fieldType	{

			644	 	 case	objectIdentifierType:

			645	 	 	 newSlice,	err1	:=	parseObjectIdentifier(innerBytes)

			646	 	 	 v.Set(reflect.MakeSlice(v.Type(),	len(newSlice),	len(newSlice)))

			647	 	 	 if	err1	==	nil	{

			648	 	 	 	 reflect.Copy(v,	reflect.ValueOf(newSlice))

			649	 	 	 }

			650	 	 	 err	=	err1

			651	 	 	 return

			652	 	 case	bitStringType:

			653	 	 	 bs,	err1	:=	parseBitString(innerBytes)

			654	 	 	 if	err1	==	nil	{

			655	 	 	 	 v.Set(reflect.ValueOf(bs))

			656	 	 	 }

			657	 	 	 err	=	err1

			658	 	 	 return

			659	 	 case	timeType:

			660	 	 	 var	time	time.Time

			661	 	 	 var	err1	error

			662	 	 	 if	universalTag	==	tagUTCTime	{

			663	 	 	 	 time,	err1	=	parseUTCTime(innerBytes)

			664	 	 	 }	else	{

			665	 	 	 	 time,	err1	=	parseGeneralizedTime(innerBytes)

			666	 	 	 }

			667	 	 	 if	err1	==	nil	{

			668	 	 	 	 v.Set(reflect.ValueOf(time))

			669	 	 	 }

			670	 	 	 err	=	err1

			671	 	 	 return

			672	 	 case	enumeratedType:

			673	 	 	 parsedInt,	err1	:=	parseInt(innerBytes)

			674	 	 	 if	err1	==	nil	{

			675	 	 	 	 v.SetInt(int64(parsedInt))

			676	 	 	 }

			677	 	 	 err	=	err1

			678	 	 	 return

			679	 	 case	flagType:

			680	 	 	 v.SetBool(true)

			681	 	 	 return

			682	 	 case	bigIntType:

			683	 	 	 parsedInt	:=	parseBigInt(innerBytes)

			684	 	 	 v.Set(reflect.ValueOf(parsedInt))

			685	 	 	 return

			686	 	 }

			687	 	 switch	val	:=	v;	val.Kind()	{

			688	 	 case	reflect.Bool:

			689	 	 	 parsedBool,	err1	:=	parseBool(innerBytes)

			690	 	 	 if	err1	==	nil	{

			691	 	 	 	 val.SetBool(parsedBool)

			692	 	 	 }

			693	 	 	 err	=	err1

			694	 	 	 return

			695	 	 case	reflect.Int,	reflect.Int32:

			696	 	 	 parsedInt,	err1	:=	parseInt(innerBytes)

			697	 	 	 if	err1	==	nil	{

			698	 	 	 	 val.SetInt(int64(parsedInt))

			699	 	 	 }

			700	 	 	 err	=	err1

			701	 	 	 return

			702	 	 case	reflect.Int64:

			703	 	 	 parsedInt,	err1	:=	parseInt64(innerBytes)

			704	 	 	 if	err1	==	nil	{

			705	 	 	 	 val.SetInt(parsedInt)

			706	 	 	 }

			707	 	 	 err	=	err1

			708	 	 	 return

			709	 	 //	TODO(dfc)	Add	support	for	the	remaining	integer	types

			710	 	 case	reflect.Struct:

			711	 	 	 structType	:=	fieldType

			712	

			713	 	 	 if	structType.NumField()	>	0	&&

			714	 	 	 	 structType.Field(0).Type	==	rawContentsType	{

			715	 	 	 	 bytes	:=	bytes[initOffset:offset]

			716	 	 	 	 val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))

			717	 	 	 }

			718	

			719	 	 	 innerOffset	:=	0

			720	 	 	 for	i	:=	0;	i	<	structType.NumField();	i++	{

			721	 	 	 	 field	:=	structType.Field(i)

			722	 	 	 	 if	i	==	0	&&	field.Type	==	rawContentsType	{

			723	 	 	 	 	 continue

			724	 	 	 	 }

			725	 	 	 	 innerOffset,	err	=	parseField(val.Field(i),	innerBytes,	innerOffset,	parseFieldParameters(field.Tag.Get("asn1")))

			726	 	 	 	 if	err	!=	nil	{

			727	 	 	 	 	 return

			728	 	 	 	 }

			729	 	 	 }

			730	 	 	 //	We	allow	extra	bytes	at	the	end	of	the	SEQUENCE	because

			731	 	 	 //	adding	elements	to	the	end	has	been	used	in	X.509	as	the

			732	 	 	 //	version	numbers	have	increased.

			733	 	 	 return

			734	 	 case	reflect.Slice:

			735	 	 	 sliceType	:=	fieldType

			736	 	 	 if	sliceType.Elem().Kind()	==	reflect.Uint8	{

			737	 	 	 	 val.Set(reflect.MakeSlice(sliceType,	len(innerBytes),	len(innerBytes)))

			738	 	 	 	 reflect.Copy(val,	reflect.ValueOf(innerBytes))

			739	 	 	 	 return

			740	 	 	 }

			741	 	 	 newSlice,	err1	:=	parseSequenceOf(innerBytes,	sliceType,	sliceType.Elem())

			742	 	 	 if	err1	==	nil	{

			743	 	 	 	 val.Set(newSlice)

			744	 	 	 }

			745	 	 	 err	=	err1

			746	 	 	 return

			747	 	 case	reflect.String:

			748	 	 	 var	v	string

			749	 	 	 switch	universalTag	{

			750	 	 	 case	tagPrintableString:

			751	 	 	 	 v,	err	=	parsePrintableString(innerBytes)

			752	 	 	 case	tagIA5String:

			753	 	 	 	 v,	err	=	parseIA5String(innerBytes)

			754	 	 	 case	tagT61String:

			755	 	 	 	 v,	err	=	parseT61String(innerBytes)

			756	 	 	 case	tagUTF8String:

			757	 	 	 	 v,	err	=	parseUTF8String(innerBytes)

			758	 	 	 case	tagGeneralString:

			759	 	 	 	 //	GeneralString	is	specified	in	ISO-2022/ECMA-35,

			760	 	 	 	 //	A	brief	review	suggests	that	it	includes	structures

			761	 	 	 	 //	that	allow	the	encoding	to	change	midstring	and

			762	 	 	 	 //	such.	We	give	up	and	pass	it	as	an	8-bit	string.

			763	 	 	 	 v,	err	=	parseT61String(innerBytes)

			764	 	 	 default:

			765	 	 	 	 err	=	SyntaxError{fmt.Sprintf("internal	error:	unknown	string	type	%d",	universalTag)}

			766	 	 	 }

			767	 	 	 if	err	==	nil	{

			768	 	 	 	 val.SetString(v)

			769	 	 	 }

			770	 	 	 return

			771	 	 }

			772	 	 err	=	StructuralError{"unsupported:	"	+	v.Type().String()}

			773	 	 return

			774	 }

			775	

			776	 //	setDefaultValue	is	used	to	install	a	default	value,	from	a	tag	string,	into

			777	 //	a	Value.	It	is	successful	is	the	field	was	optional,	even	if	a	default	value

			778	 //	wasn't	provided	or	it	failed	to	install	it	into	the	Value.

			779	 func	setDefaultValue(v	reflect.Value,	params	fieldParameters)	(ok	bool)	{

			780	 	 if	!params.optional	{

			781	 	 	 return

			782	 	 }

			783	 	 ok	=	true

			784	 	 if	params.defaultValue	==	nil	{

			785	 	 	 return

			786	 	 }

			787	 	 switch	val	:=	v;	val.Kind()	{

			788	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			789	 	 	 val.SetInt(*params.defaultValue)

			790	 	 }

			791	 	 return

			792	 }

			793	

			794	 //	Unmarshal	parses	the	DER-encoded	ASN.1	data	structure	b

			795	 //	and	uses	the	reflect	package	to	fill	in	an	arbitrary	value	pointed	at	by	val.

			796	 //	Because	Unmarshal	uses	the	reflect	package,	the	structs

			797	 //	being	written	to	must	use	upper	case	field	names.

			798	 //

			799	 //	An	ASN.1	INTEGER	can	be	written	to	an	int,	int32,	int64,

			800	 //	or	*big.Int	(from	the	math/big	package).

			801	 //	If	the	encoded	value	does	not	fit	in	the	Go	type,

			802	 //	Unmarshal	returns	a	parse	error.

			803	 //

			804	 //	An	ASN.1	BIT	STRING	can	be	written	to	a	BitString.

			805	 //

			806	 //	An	ASN.1	OCTET	STRING	can	be	written	to	a	[]byte.

			807	 //

			808	 //	An	ASN.1	OBJECT	IDENTIFIER	can	be	written	to	an

			809	 //	ObjectIdentifier.

			810	 //

			811	 //	An	ASN.1	ENUMERATED	can	be	written	to	an	Enumerated.

			812	 //

			813	 //	An	ASN.1	UTCTIME	or	GENERALIZEDTIME	can	be	written	to	a	time.Time.

			814	 //

			815	 //	An	ASN.1	PrintableString	or	IA5String	can	be	written	to	a	string.

			816	 //

			817	 //	Any	of	the	above	ASN.1	values	can	be	written	to	an	interface{}.

			818	 //	The	value	stored	in	the	interface	has	the	corresponding	Go	type.

			819	 //	For	integers,	that	type	is	int64.

			820	 //

			821	 //	An	ASN.1	SEQUENCE	OF	x	or	SET	OF	x	can	be	written

			822	 //	to	a	slice	if	an	x	can	be	written	to	the	slice's	element	type.

			823	 //

			824	 //	An	ASN.1	SEQUENCE	or	SET	can	be	written	to	a	struct

			825	 //	if	each	of	the	elements	in	the	sequence	can	be

			826	 //	written	to	the	corresponding	element	in	the	struct.

			827	 //

			828	 //	The	following	tags	on	struct	fields	have	special	meaning	to	Unmarshal:

			829	 //

			830	 //	 optional	 	 marks	the	field	as	ASN.1	OPTIONAL

			831	 //	 [explicit]	tag:x	 specifies	the	ASN.1	tag	number;	implies	ASN.1	CONTEXT	SPECIFIC

			832	 //	 default:x	 	 sets	the	default	value	for	optional	integer	fields

			833	 //

			834	 //	If	the	type	of	the	first	field	of	a	structure	is	RawContent	then	the	raw

			835	 //	ASN1	contents	of	the	struct	will	be	stored	in	it.

			836	 //

			837	 //	Other	ASN.1	types	are	not	supported;	if	it	encounters	them,

			838	 //	Unmarshal	returns	a	parse	error.

			839	 func	Unmarshal(b	[]byte,	val	interface{})	(rest	[]byte,	err	error)	{

			840	 	 return	UnmarshalWithParams(b,	val,	"")

			841	 }

			842	

			843	 //	UnmarshalWithParams	allows	field	parameters	to	be	specified	for	the

			844	 //	top-level	element.	The	form	of	the	params	is	the	same	as	the	field	tags.

			845	 func	UnmarshalWithParams(b	[]byte,	val	interface{},	params	string)	(rest	[]byte,	err	error)	{

			846	 	 v	:=	reflect.ValueOf(val).Elem()

			847	 	 offset,	err	:=	parseField(v,	b,	0,	parseFieldParameters(params))

			848	 	 if	err	!=	nil	{

			849	 	 	 return	nil,	err

			850	 	 }

			851	 	 return	b[offset:],	nil

			852	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/asn1/common.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	asn1

					6	

					7	 import	(

					8	 	 "reflect"

					9	 	 "strconv"

				10	 	 "strings"

				11)

				12	

				13	 //	ASN.1	objects	have	metadata	preceding	them:

				14	 //			the	tag:	the	type	of	the	object

				15	 //			a	flag	denoting	if	this	object	is	compound	or	not

				16	 //			the	class	type:	the	namespace	of	the	tag

				17	 //			the	length	of	the	object,	in	bytes

				18	

				19	 //	Here	are	some	standard	tags	and	classes

				20	

				21	 const	(

				22	 	 tagBoolean									=	1

				23	 	 tagInteger									=	2

				24	 	 tagBitString							=	3

				25	 	 tagOctetString					=	4

				26	 	 tagOID													=	6

				27	 	 tagEnum												=	10

				28	 	 tagUTF8String						=	12

				29	 	 tagSequence								=	16

				30	 	 tagSet													=	17

				31	 	 tagPrintableString	=	19

				32	 	 tagT61String							=	20

				33	 	 tagIA5String							=	22

				34	 	 tagUTCTime									=	23

				35	 	 tagGeneralizedTime	=	24

				36	 	 tagGeneralString			=	27

				37)

				38	

				39	 const	(

				40	 	 classUniversal							=	0

				41	 	 classApplication					=	1

				42	 	 classContextSpecific	=	2

				43	 	 classPrivate									=	3

				44)

				45	

				46	 type	tagAndLength	struct	{

				47	 	 class,	tag,	length	int

				48	 	 isCompound									bool

				49	 }

				50	

				51	 //	ASN.1	has	IMPLICIT	and	EXPLICIT	tags,	which	can	be	translated	as	"instead

				52	 //	of"	and	"in	addition	to".	When	not	specified,	every	primitive	type	has	a

				53	 //	default	tag	in	the	UNIVERSAL	class.

				54	 //

				55	 //	For	example:	a	BIT	STRING	is	tagged	[UNIVERSAL	3]	by	default	(although	ASN.1

				56	 //	doesn't	actually	have	a	UNIVERSAL	keyword).	However,	by	saying	[IMPLICIT

				57	 //	CONTEXT-SPECIFIC	42],	that	means	that	the	tag	is	replaced	by	another.

				58	 //

				59	 //	On	the	other	hand,	if	it	said	[EXPLICIT	CONTEXT-SPECIFIC	10],	then	an

				60	 //	/additional/	tag	would	wrap	the	default	tag.	This	explicit	tag	will	have	the

				61	 //	compound	flag	set.

				62	 //

				63	 //	(This	is	used	in	order	to	remove	ambiguity	with	optional	elements.)

				64	 //

				65	 //	You	can	layer	EXPLICIT	and	IMPLICIT	tags	to	an	arbitrary	depth,	however	we

				66	 //	don't	support	that	here.	We	support	a	single	layer	of	EXPLICIT	or	IMPLICIT

				67	 //	tagging	with	tag	strings	on	the	fields	of	a	structure.

				68	

				69	 //	fieldParameters	is	the	parsed	representation	of	tag	string	from	a	structure	field.

				70	 type	fieldParameters	struct	{

				71	 	 optional					bool			//	true	iff	the	field	is	OPTIONAL

				72	 	 explicit					bool			//	true	iff	an	EXPLICIT	tag	is	in	use.

				73	 	 application		bool			//	true	iff	an	APPLICATION	tag	is	in	use.

				74	 	 defaultValue	*int64	//	a	default	value	for	INTEGER	typed	fields	(maybe	nil).

				75	 	 tag										*int			//	the	EXPLICIT	or	IMPLICIT	tag	(maybe	nil).

				76	 	 stringType			int				//	the	string	tag	to	use	when	marshaling.

				77	 	 set										bool			//	true	iff	this	should	be	encoded	as	a	SET

				78	 	 omitEmpty				bool			//	true	iff	this	should	be	omitted	if	empty	when	marshaling.

				79	

				80	 	 //	Invariants:

				81	 	 //			if	explicit	is	set,	tag	is	non-nil.

				82	 }

				83	

				84	 //	Given	a	tag	string	with	the	format	specified	in	the	package	comment,

				85	 //	parseFieldParameters	will	parse	it	into	a	fieldParameters	structure,

				86	 //	ignoring	unknown	parts	of	the	string.

				87	 func	parseFieldParameters(str	string)	(ret	fieldParameters)	{

				88	 	 for	_,	part	:=	range	strings.Split(str,	",")	{

				89	 	 	 switch	{

				90	 	 	 case	part	==	"optional":

				91	 	 	 	 ret.optional	=	true

				92	 	 	 case	part	==	"explicit":

				93	 	 	 	 ret.explicit	=	true

				94	 	 	 	 if	ret.tag	==	nil	{

				95	 	 	 	 	 ret.tag	=	new(int)

				96	 	 	 	 }

				97	 	 	 case	part	==	"ia5":

				98	 	 	 	 ret.stringType	=	tagIA5String

				99	 	 	 case	part	==	"printable":

			100	 	 	 	 ret.stringType	=	tagPrintableString

			101	 	 	 case	strings.HasPrefix(part,	"default:"):

			102	 	 	 	 i,	err	:=	strconv.ParseInt(part[8:],	10,	64)

			103	 	 	 	 if	err	==	nil	{

			104	 	 	 	 	 ret.defaultValue	=	new(int64)

			105	 	 	 	 	 *ret.defaultValue	=	i

			106	 	 	 	 }

			107	 	 	 case	strings.HasPrefix(part,	"tag:"):

			108	 	 	 	 i,	err	:=	strconv.Atoi(part[4:])

			109	 	 	 	 if	err	==	nil	{

			110	 	 	 	 	 ret.tag	=	new(int)

			111	 	 	 	 	 *ret.tag	=	i

			112	 	 	 	 }

			113	 	 	 case	part	==	"set":

			114	 	 	 	 ret.set	=	true

			115	 	 	 case	part	==	"application":

			116	 	 	 	 ret.application	=	true

			117	 	 	 	 if	ret.tag	==	nil	{

			118	 	 	 	 	 ret.tag	=	new(int)

			119	 	 	 	 }

			120	 	 	 case	part	==	"omitempty":

			121	 	 	 	 ret.omitEmpty	=	true

			122	 	 	 }

			123	 	 }

			124	 	 return

			125	 }

			126	

			127	 //	Given	a	reflected	Go	type,	getUniversalType	returns	the	default	tag	number

			128	 //	and	expected	compound	flag.

			129	 func	getUniversalType(t	reflect.Type)	(tagNumber	int,	isCompound,	ok	bool)	{

			130	 	 switch	t	{

			131	 	 case	objectIdentifierType:

			132	 	 	 return	tagOID,	false,	true

			133	 	 case	bitStringType:

			134	 	 	 return	tagBitString,	false,	true

			135	 	 case	timeType:

			136	 	 	 return	tagUTCTime,	false,	true

			137	 	 case	enumeratedType:

			138	 	 	 return	tagEnum,	false,	true

			139	 	 case	bigIntType:

			140	 	 	 return	tagInteger,	false,	true

			141	 	 }

			142	 	 switch	t.Kind()	{

			143	 	 case	reflect.Bool:

			144	 	 	 return	tagBoolean,	false,	true

			145	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			146	 	 	 return	tagInteger,	false,	true

			147	 	 case	reflect.Struct:

			148	 	 	 return	tagSequence,	true,	true

			149	 	 case	reflect.Slice:

			150	 	 	 if	t.Elem().Kind()	==	reflect.Uint8	{

			151	 	 	 	 return	tagOctetString,	false,	true

			152	 	 	 }

			153	 	 	 if	strings.HasSuffix(t.Name(),	"SET")	{

			154	 	 	 	 return	tagSet,	true,	true

			155	 	 	 }

			156	 	 	 return	tagSequence,	true,	true

			157	 	 case	reflect.String:

			158	 	 	 return	tagPrintableString,	false,	true

			159	 	 }

			160	 	 return	0,	false,	false

			161	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/asn1/marshal.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	asn1

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "fmt"

				10	 	 "io"

				11	 	 "math/big"

				12	 	 "reflect"

				13	 	 "time"

				14)

				15	

				16	 //	A	forkableWriter	is	an	in-memory	buffer	that	can	be

				17	 //	'forked'	to	create	new	forkableWriters	that	bracket	the

				18	 //	original.		After

				19	 //				pre,	post	:=	w.fork();

				20	 //	the	overall	sequence	of	bytes	represented	is	logically	w+pre+post.

				21	 type	forkableWriter	struct	{

				22	 	 *bytes.Buffer

				23	 	 pre,	post	*forkableWriter

				24	 }

				25	

				26	 func	newForkableWriter()	*forkableWriter	{

				27	 	 return	&forkableWriter{new(bytes.Buffer),	nil,	nil}

				28	 }

				29	

				30	 func	(f	*forkableWriter)	fork()	(pre,	post	*forkableWriter)	{

				31	 	 if	f.pre	!=	nil	||	f.post	!=	nil	{

				32	 	 	 panic("have	already	forked")

				33	 	 }

				34	 	 f.pre	=	newForkableWriter()

				35	 	 f.post	=	newForkableWriter()

				36	 	 return	f.pre,	f.post

				37	 }

				38	

				39	 func	(f	*forkableWriter)	Len()	(l	int)	{

				40	 	 l	+=	f.Buffer.Len()

				41	 	 if	f.pre	!=	nil	{

				42	 	 	 l	+=	f.pre.Len()

				43	 	 }

				44	 	 if	f.post	!=	nil	{

				45	 	 	 l	+=	f.post.Len()

				46	 	 }

				47	 	 return

				48	 }

				49	

				50	 func	(f	*forkableWriter)	writeTo(out	io.Writer)	(n	int,	err	error)	{

				51	 	 n,	err	=	out.Write(f.Bytes())

				52	 	 if	err	!=	nil	{

				53	 	 	 return

				54	 	 }

				55	

				56	 	 var	nn	int

				57	

				58	 	 if	f.pre	!=	nil	{

				59	 	 	 nn,	err	=	f.pre.writeTo(out)

				60	 	 	 n	+=	nn

				61	 	 	 if	err	!=	nil	{

				62	 	 	 	 return

				63	 	 	 }

				64	 	 }

				65	

				66	 	 if	f.post	!=	nil	{

				67	 	 	 nn,	err	=	f.post.writeTo(out)

				68	 	 	 n	+=	nn

				69	 	 }

				70	 	 return

				71	 }

				72	

				73	 func	marshalBase128Int(out	*forkableWriter,	n	int64)	(err	error)	{

				74	 	 if	n	==	0	{

				75	 	 	 err	=	out.WriteByte(0)

				76	 	 	 return

				77	 	 }

				78	

				79	 	 l	:=	0

				80	 	 for	i	:=	n;	i	>	0;	i	>>=	7	{

				81	 	 	 l++

				82	 	 }

				83	

				84	 	 for	i	:=	l	-	1;	i	>=	0;	i--	{

				85	 	 	 o	:=	byte(n	>>	uint(i*7))

				86	 	 	 o	&=	0x7f

				87	 	 	 if	i	!=	0	{

				88	 	 	 	 o	|=	0x80

				89	 	 	 }

				90	 	 	 err	=	out.WriteByte(o)

				91	 	 	 if	err	!=	nil	{

				92	 	 	 	 return

				93	 	 	 }

				94	 	 }

				95	

				96	 	 return	nil

				97	 }

				98	

				99	 func	marshalInt64(out	*forkableWriter,	i	int64)	(err	error)	{

			100	 	 n	:=	int64Length(i)

			101	

			102	 	 for	;	n	>	0;	n--	{

			103	 	 	 err	=	out.WriteByte(byte(i	>>	uint((n-1)*8)))

			104	 	 	 if	err	!=	nil	{

			105	 	 	 	 return

			106	 	 	 }

			107	 	 }

			108	

			109	 	 return	nil

			110	 }

			111	

			112	 func	int64Length(i	int64)	(numBytes	int)	{

			113	 	 numBytes	=	1

			114	

			115	 	 for	i	>	127	{

			116	 	 	 numBytes++

			117	 	 	 i	>>=	8

			118	 	 }

			119	

			120	 	 for	i	<	-128	{

			121	 	 	 numBytes++

			122	 	 	 i	>>=	8

			123	 	 }

			124	

			125	 	 return

			126	 }

			127	

			128	 func	marshalBigInt(out	*forkableWriter,	n	*big.Int)	(err	error)	{

			129	 	 if	n.Sign()	<	0	{

			130	 	 	 //	A	negative	number	has	to	be	converted	to	two's-complement

			131	 	 	 //	form.	So	we'll	subtract	1	and	invert.	If	the

			132	 	 	 //	most-significant-bit	isn't	set	then	we'll	need	to	pad	the

			133	 	 	 //	beginning	with	0xff	in	order	to	keep	the	number	negative.

			134	 	 	 nMinus1	:=	new(big.Int).Neg(n)

			135	 	 	 nMinus1.Sub(nMinus1,	bigOne)

			136	 	 	 bytes	:=	nMinus1.Bytes()

			137	 	 	 for	i	:=	range	bytes	{

			138	 	 	 	 bytes[i]	^=	0xff

			139	 	 	 }

			140	 	 	 if	len(bytes)	==	0	||	bytes[0]&0x80	==	0	{

			141	 	 	 	 err	=	out.WriteByte(0xff)

			142	 	 	 	 if	err	!=	nil	{

			143	 	 	 	 	 return

			144	 	 	 	 }

			145	 	 	 }

			146	 	 	 _,	err	=	out.Write(bytes)

			147	 	 }	else	if	n.Sign()	==	0	{

			148	 	 	 //	Zero	is	written	as	a	single	0	zero	rather	than	no	bytes.

			149	 	 	 err	=	out.WriteByte(0x00)

			150	 	 }	else	{

			151	 	 	 bytes	:=	n.Bytes()

			152	 	 	 if	len(bytes)	>	0	&&	bytes[0]&0x80	!=	0	{

			153	 	 	 	 //	We'll	have	to	pad	this	with	0x00	in	order	to	stop	it

			154	 	 	 	 //	looking	like	a	negative	number.

			155	 	 	 	 err	=	out.WriteByte(0)

			156	 	 	 	 if	err	!=	nil	{

			157	 	 	 	 	 return

			158	 	 	 	 }

			159	 	 	 }

			160	 	 	 _,	err	=	out.Write(bytes)

			161	 	 }

			162	 	 return

			163	 }

			164	

			165	 func	marshalLength(out	*forkableWriter,	i	int)	(err	error)	{

			166	 	 n	:=	lengthLength(i)

			167	

			168	 	 for	;	n	>	0;	n--	{

			169	 	 	 err	=	out.WriteByte(byte(i	>>	uint((n-1)*8)))

			170	 	 	 if	err	!=	nil	{

			171	 	 	 	 return

			172	 	 	 }

			173	 	 }

			174	

			175	 	 return	nil

			176	 }

			177	

			178	 func	lengthLength(i	int)	(numBytes	int)	{

			179	 	 numBytes	=	1

			180	 	 for	i	>	255	{

			181	 	 	 numBytes++

			182	 	 	 i	>>=	8

			183	 	 }

			184	 	 return

			185	 }

			186	

			187	 func	marshalTagAndLength(out	*forkableWriter,	t	tagAndLength)	(err	error)	{

			188	 	 b	:=	uint8(t.class)	<<	6

			189	 	 if	t.isCompound	{

			190	 	 	 b	|=	0x20

			191	 	 }

			192	 	 if	t.tag	>=	31	{

			193	 	 	 b	|=	0x1f

			194	 	 	 err	=	out.WriteByte(b)

			195	 	 	 if	err	!=	nil	{

			196	 	 	 	 return

			197	 	 	 }

			198	 	 	 err	=	marshalBase128Int(out,	int64(t.tag))

			199	 	 	 if	err	!=	nil	{

			200	 	 	 	 return

			201	 	 	 }

			202	 	 }	else	{

			203	 	 	 b	|=	uint8(t.tag)

			204	 	 	 err	=	out.WriteByte(b)

			205	 	 	 if	err	!=	nil	{

			206	 	 	 	 return

			207	 	 	 }

			208	 	 }

			209	

			210	 	 if	t.length	>=	128	{

			211	 	 	 l	:=	lengthLength(t.length)

			212	 	 	 err	=	out.WriteByte(0x80	|	byte(l))

			213	 	 	 if	err	!=	nil	{

			214	 	 	 	 return

			215	 	 	 }

			216	 	 	 err	=	marshalLength(out,	t.length)

			217	 	 	 if	err	!=	nil	{

			218	 	 	 	 return

			219	 	 	 }

			220	 	 }	else	{

			221	 	 	 err	=	out.WriteByte(byte(t.length))

			222	 	 	 if	err	!=	nil	{

			223	 	 	 	 return

			224	 	 	 }

			225	 	 }

			226	

			227	 	 return	nil

			228	 }

			229	

			230	 func	marshalBitString(out	*forkableWriter,	b	BitString)	(err	error)	{

			231	 	 paddingBits	:=	byte((8	-	b.BitLength%8)	%	8)

			232	 	 err	=	out.WriteByte(paddingBits)

			233	 	 if	err	!=	nil	{

			234	 	 	 return

			235	 	 }

			236	 	 _,	err	=	out.Write(b.Bytes)

			237	 	 return

			238	 }

			239	

			240	 func	marshalObjectIdentifier(out	*forkableWriter,	oid	[]int)	(err	error)	{

			241	 	 if	len(oid)	<	2	||	oid[0]	>	6	||	oid[1]	>=	40	{

			242	 	 	 return	StructuralError{"invalid	object	identifier"}

			243	 	 }

			244	

			245	 	 err	=	out.WriteByte(byte(oid[0]*40	+	oid[1]))

			246	 	 if	err	!=	nil	{

			247	 	 	 return

			248	 	 }

			249	 	 for	i	:=	2;	i	<	len(oid);	i++	{

			250	 	 	 err	=	marshalBase128Int(out,	int64(oid[i]))

			251	 	 	 if	err	!=	nil	{

			252	 	 	 	 return

			253	 	 	 }

			254	 	 }

			255	

			256	 	 return

			257	 }

			258	

			259	 func	marshalPrintableString(out	*forkableWriter,	s	string)	(err	error)	{

			260	 	 b	:=	[]byte(s)

			261	 	 for	_,	c	:=	range	b	{

			262	 	 	 if	!isPrintable(c)	{

			263	 	 	 	 return	StructuralError{"PrintableString	contains	invalid	character"}

			264	 	 	 }

			265	 	 }

			266	

			267	 	 _,	err	=	out.Write(b)

			268	 	 return

			269	 }

			270	

			271	 func	marshalIA5String(out	*forkableWriter,	s	string)	(err	error)	{

			272	 	 b	:=	[]byte(s)

			273	 	 for	_,	c	:=	range	b	{

			274	 	 	 if	c	>	127	{

			275	 	 	 	 return	StructuralError{"IA5String	contains	invalid	character"}

			276	 	 	 }

			277	 	 }

			278	

			279	 	 _,	err	=	out.Write(b)

			280	 	 return

			281	 }

			282	

			283	 func	marshalTwoDigits(out	*forkableWriter,	v	int)	(err	error)	{

			284	 	 err	=	out.WriteByte(byte('0'	+	(v/10)%10))

			285	 	 if	err	!=	nil	{

			286	 	 	 return

			287	 	 }

			288	 	 return	out.WriteByte(byte('0'	+	v%10))

			289	 }

			290	

			291	 func	marshalUTCTime(out	*forkableWriter,	t	time.Time)	(err	error)	{

			292	 	 utc	:=	t.UTC()

			293	 	 year,	month,	day	:=	utc.Date()

			294	

			295	 	 switch	{

			296	 	 case	1950	<=	year	&&	year	<	2000:

			297	 	 	 err	=	marshalTwoDigits(out,	int(year-1900))

			298	 	 case	2000	<=	year	&&	year	<	2050:

			299	 	 	 err	=	marshalTwoDigits(out,	int(year-2000))

			300	 	 default:

			301	 	 	 return	StructuralError{"Cannot	represent	time	as	UTCTime"}

			302	 	 }

			303	 	 if	err	!=	nil	{

			304	 	 	 return

			305	 	 }

			306	

			307	 	 err	=	marshalTwoDigits(out,	int(month))

			308	 	 if	err	!=	nil	{

			309	 	 	 return

			310	 	 }

			311	

			312	 	 err	=	marshalTwoDigits(out,	day)

			313	 	 if	err	!=	nil	{

			314	 	 	 return

			315	 	 }

			316	

			317	 	 hour,	min,	sec	:=	utc.Clock()

			318	

			319	 	 err	=	marshalTwoDigits(out,	hour)

			320	 	 if	err	!=	nil	{

			321	 	 	 return

			322	 	 }

			323	

			324	 	 err	=	marshalTwoDigits(out,	min)

			325	 	 if	err	!=	nil	{

			326	 	 	 return

			327	 	 }

			328	

			329	 	 err	=	marshalTwoDigits(out,	sec)

			330	 	 if	err	!=	nil	{

			331	 	 	 return

			332	 	 }

			333	

			334	 	 _,	offset	:=	t.Zone()

			335	

			336	 	 switch	{

			337	 	 case	offset/60	==	0:

			338	 	 	 err	=	out.WriteByte('Z')

			339	 	 	 return

			340	 	 case	offset	>	0:

			341	 	 	 err	=	out.WriteByte('+')

			342	 	 case	offset	<	0:

			343	 	 	 err	=	out.WriteByte('-')

			344	 	 }

			345	

			346	 	 if	err	!=	nil	{

			347	 	 	 return

			348	 	 }

			349	

			350	 	 offsetMinutes	:=	offset	/	60

			351	 	 if	offsetMinutes	<	0	{

			352	 	 	 offsetMinutes	=	-offsetMinutes

			353	 	 }

			354	

			355	 	 err	=	marshalTwoDigits(out,	offsetMinutes/60)

			356	 	 if	err	!=	nil	{

			357	 	 	 return

			358	 	 }

			359	

			360	 	 err	=	marshalTwoDigits(out,	offsetMinutes%60)

			361	 	 return

			362	 }

			363	

			364	 func	stripTagAndLength(in	[]byte)	[]byte	{

			365	 	 _,	offset,	err	:=	parseTagAndLength(in,	0)

			366	 	 if	err	!=	nil	{

			367	 	 	 return	in

			368	 	 }

			369	 	 return	in[offset:]

			370	 }

			371	

			372	 func	marshalBody(out	*forkableWriter,	value	reflect.Value,	params	fieldParameters)	(err	error)	{

			373	 	 switch	value.Type()	{

			374	 	 case	timeType:

			375	 	 	 return	marshalUTCTime(out,	value.Interface().(time.Time))

			376	 	 case	bitStringType:

			377	 	 	 return	marshalBitString(out,	value.Interface().(BitString))

			378	 	 case	objectIdentifierType:

			379	 	 	 return	marshalObjectIdentifier(out,	value.Interface().(ObjectIdentifier))

			380	 	 case	bigIntType:

			381	 	 	 return	marshalBigInt(out,	value.Interface().(*big.Int))

			382	 	 }

			383	

			384	 	 switch	v	:=	value;	v.Kind()	{

			385	 	 case	reflect.Bool:

			386	 	 	 if	v.Bool()	{

			387	 	 	 	 return	out.WriteByte(255)

			388	 	 	 }	else	{

			389	 	 	 	 return	out.WriteByte(0)

			390	 	 	 }

			391	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			392	 	 	 return	marshalInt64(out,	int64(v.Int()))

			393	 	 case	reflect.Struct:

			394	 	 	 t	:=	v.Type()

			395	

			396	 	 	 startingField	:=	0

			397	

			398	 	 	 //	If	the	first	element	of	the	structure	is	a	non-empty

			399	 	 	 //	RawContents,	then	we	don't	bother	serializing	the	rest.

			400	 	 	 if	t.NumField()	>	0	&&	t.Field(0).Type	==	rawContentsType	{

			401	 	 	 	 s	:=	v.Field(0)

			402	 	 	 	 if	s.Len()	>	0	{

			403	 	 	 	 	 bytes	:=	make([]byte,	s.Len())

			404	 	 	 	 	 for	i	:=	0;	i	<	s.Len();	i++	{

			405	 	 	 	 	 	 bytes[i]	=	uint8(s.Index(i).Uint())

			406	 	 	 	 	 }

			407	 	 	 	 	 /*	The	RawContents	will	contain	the	tag	and

			408	 	 	 	 	 	*	length	fields	but	we'll	also	be	writing

			409	 	 	 	 	 	*	those	ourselves,	so	we	strip	them	out	of

			410	 	 	 	 	 	*	bytes	*/

			411	 	 	 	 	 _,	err	=	out.Write(stripTagAndLength(bytes))

			412	 	 	 	 	 return

			413	 	 	 	 }	else	{

			414	 	 	 	 	 startingField	=	1

			415	 	 	 	 }

			416	 	 	 }

			417	

			418	 	 	 for	i	:=	startingField;	i	<	t.NumField();	i++	{

			419	 	 	 	 var	pre	*forkableWriter

			420	 	 	 	 pre,	out	=	out.fork()

			421	 	 	 	 err	=	marshalField(pre,	v.Field(i),	parseFieldParameters(t.Field(i).Tag.Get("asn1")))

			422	 	 	 	 if	err	!=	nil	{

			423	 	 	 	 	 return

			424	 	 	 	 }

			425	 	 	 }

			426	 	 	 return

			427	 	 case	reflect.Slice:

			428	 	 	 sliceType	:=	v.Type()

			429	 	 	 if	sliceType.Elem().Kind()	==	reflect.Uint8	{

			430	 	 	 	 bytes	:=	make([]byte,	v.Len())

			431	 	 	 	 for	i	:=	0;	i	<	v.Len();	i++	{

			432	 	 	 	 	 bytes[i]	=	uint8(v.Index(i).Uint())

			433	 	 	 	 }

			434	 	 	 	 _,	err	=	out.Write(bytes)

			435	 	 	 	 return

			436	 	 	 }

			437	

			438	 	 	 var	params	fieldParameters

			439	 	 	 for	i	:=	0;	i	<	v.Len();	i++	{

			440	 	 	 	 var	pre	*forkableWriter

			441	 	 	 	 pre,	out	=	out.fork()

			442	 	 	 	 err	=	marshalField(pre,	v.Index(i),	params)

			443	 	 	 	 if	err	!=	nil	{

			444	 	 	 	 	 return

			445	 	 	 	 }

			446	 	 	 }

			447	 	 	 return

			448	 	 case	reflect.String:

			449	 	 	 if	params.stringType	==	tagIA5String	{

			450	 	 	 	 return	marshalIA5String(out,	v.String())

			451	 	 	 }	else	{

			452	 	 	 	 return	marshalPrintableString(out,	v.String())

			453	 	 	 }

			454	 	 	 return

			455	 	 }

			456	

			457	 	 return	StructuralError{"unknown	Go	type"}

			458	 }

			459	

			460	 func	marshalField(out	*forkableWriter,	v	reflect.Value,	params	fieldParameters)	(err	error)	{

			461	 	 //	If	the	field	is	an	interface{}	then	recurse	into	it.

			462	 	 if	v.Kind()	==	reflect.Interface	&&	v.Type().NumMethod()	==	0	{

			463	 	 	 return	marshalField(out,	v.Elem(),	params)

			464	 	 }

			465	

			466	 	 if	v.Kind()	==	reflect.Slice	&&	v.Len()	==	0	&&	params.omitEmpty	{

			467	 	 	 return

			468	 	 }

			469	

			470	 	 if	params.optional	&&	reflect.DeepEqual(v.Interface(),	reflect.Zero(v.Type()).Interface())	{

			471	 	 	 return

			472	 	 }

			473	

			474	 	 if	v.Type()	==	rawValueType	{

			475	 	 	 rv	:=	v.Interface().(RawValue)

			476	 	 	 if	len(rv.FullBytes)	!=	0	{

			477	 	 	 	 _,	err	=	out.Write(rv.FullBytes)

			478	 	 	 }	else	{

			479	 	 	 	 err	=	marshalTagAndLength(out,	tagAndLength{rv.Class,	rv.Tag,	len(rv.Bytes),	rv.IsCompound})

			480	 	 	 	 if	err	!=	nil	{

			481	 	 	 	 	 return

			482	 	 	 	 }

			483	 	 	 	 _,	err	=	out.Write(rv.Bytes)

			484	 	 	 }

			485	 	 	 return

			486	 	 }

			487	

			488	 	 tag,	isCompound,	ok	:=	getUniversalType(v.Type())

			489	 	 if	!ok	{

			490	 	 	 err	=	StructuralError{fmt.Sprintf("unknown	Go	type:	%v",	v.Type())}

			491	 	 	 return

			492	 	 }

			493	 	 class	:=	classUniversal

			494	

			495	 	 if	params.stringType	!=	0	{

			496	 	 	 if	tag	!=	tagPrintableString	{

			497	 	 	 	 return	StructuralError{"Explicit	string	type	given	to	non-string	member"}

			498	 	 	 }

			499	 	 	 tag	=	params.stringType

			500	 	 }

			501	

			502	 	 if	params.set	{

			503	 	 	 if	tag	!=	tagSequence	{

			504	 	 	 	 return	StructuralError{"Non	sequence	tagged	as	set"}

			505	 	 	 }

			506	 	 	 tag	=	tagSet

			507	 	 }

			508	

			509	 	 tags,	body	:=	out.fork()

			510	

			511	 	 err	=	marshalBody(body,	v,	params)

			512	 	 if	err	!=	nil	{

			513	 	 	 return

			514	 	 }

			515	

			516	 	 bodyLen	:=	body.Len()

			517	

			518	 	 var	explicitTag	*forkableWriter

			519	 	 if	params.explicit	{

			520	 	 	 explicitTag,	tags	=	tags.fork()

			521	 	 }

			522	

			523	 	 if	!params.explicit	&&	params.tag	!=	nil	{

			524	 	 	 //	implicit	tag.

			525	 	 	 tag	=	*params.tag

			526	 	 	 class	=	classContextSpecific

			527	 	 }

			528	

			529	 	 err	=	marshalTagAndLength(tags,	tagAndLength{class,	tag,	bodyLen,	isCompound})

			530	 	 if	err	!=	nil	{

			531	 	 	 return

			532	 	 }

			533	

			534	 	 if	params.explicit	{

			535	 	 	 err	=	marshalTagAndLength(explicitTag,	tagAndLength{

			536	 	 	 	 class:						classContextSpecific,

			537	 	 	 	 tag:								*params.tag,

			538	 	 	 	 length:					bodyLen	+	tags.Len(),

			539	 	 	 	 isCompound:	true,

			540	 	 	 })

			541	 	 }

			542	

			543	 	 return	nil

			544	 }

			545	

			546	 //	Marshal	returns	the	ASN.1	encoding	of	val.

			547	 func	Marshal(val	interface{})	([]byte,	error)	{

			548	 	 var	out	bytes.Buffer

			549	 	 v	:=	reflect.ValueOf(val)

			550	 	 f	:=	newForkableWriter()

			551	 	 err	:=	marshalField(f,	v,	fieldParameters{})

			552	 	 if	err	!=	nil	{

			553	 	 	 return	nil,	err

			554	 	 }

			555	 	 _,	err	=	f.writeTo(&out)

			556	 	 return	out.Bytes(),	nil

			557	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/base32/base32.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	base32	implements	base32	encoding	as	specified	by	RFC	4648.

					6	 package	base32

					7	

					8	 import	(

					9	 	 "io"

				10	 	 "strconv"

				11)

				12	

				13	 /*

				14	 	*	Encodings

				15	 	*/

				16	

				17	 //	An	Encoding	is	a	radix	32	encoding/decoding	scheme,	defined	by	a

				18	 //	32-character	alphabet.		The	most	common	is	the	"base32"	encoding

				19	 //	introduced	for	SASL	GSSAPI	and	standardized	in	RFC	4648.

				20	 //	The	alternate	"base32hex"	encoding	is	used	in	DNSSEC.

				21	 type	Encoding	struct	{

				22	 	 encode				string

				23	 	 decodeMap	[256]byte

				24	 }

				25	

				26	 const	encodeStd	=	"ABCDEFGHIJKLMNOPQRSTUVWXYZ234567"

				27	 const	encodeHex	=	"0123456789ABCDEFGHIJKLMNOPQRSTUV"

				28	

				29	 //	NewEncoding	returns	a	new	Encoding	defined	by	the	given	alphabet,

				30	 //	which	must	be	a	32-byte	string.

				31	 func	NewEncoding(encoder	string)	*Encoding	{

				32	 	 e	:=	new(Encoding)

				33	 	 e.encode	=	encoder

				34	 	 for	i	:=	0;	i	<	len(e.decodeMap);	i++	{

				35	 	 	 e.decodeMap[i]	=	0xFF

				36	 	 }

				37	 	 for	i	:=	0;	i	<	len(encoder);	i++	{

				38	 	 	 e.decodeMap[encoder[i]]	=	byte(i)

				39	 	 }

				40	 	 return	e

				41	 }

				42	

				43	 //	StdEncoding	is	the	standard	base32	encoding,	as	defined	in

				44	 //	RFC	4648.

				45	 var	StdEncoding	=	NewEncoding(encodeStd)

				46	

				47	 //	HexEncoding	is	the	``Extended	Hex	Alphabet''	defined	in	RFC	4648.

				48	 //	It	is	typically	used	in	DNS.

				49	 var	HexEncoding	=	NewEncoding(encodeHex)

				50	

				51	 /*

				52	 	*	Encoder

				53	 	*/

				54	

				55	 //	Encode	encodes	src	using	the	encoding	enc,	writing

				56	 //	EncodedLen(len(src))	bytes	to	dst.

				57	 //

				58	 //	The	encoding	pads	the	output	to	a	multiple	of	8	bytes,

				59	 //	so	Encode	is	not	appropriate	for	use	on	individual	blocks

				60	 //	of	a	large	data	stream.		Use	NewEncoder()	instead.

				61	 func	(enc	*Encoding)	Encode(dst,	src	[]byte)	{

				62	 	 if	len(src)	==	0	{

				63	 	 	 return

				64	 	 }

				65	

				66	 	 for	len(src)	>	0	{

				67	 	 	 dst[0]	=	0

				68	 	 	 dst[1]	=	0

				69	 	 	 dst[2]	=	0

				70	 	 	 dst[3]	=	0

				71	 	 	 dst[4]	=	0

				72	 	 	 dst[5]	=	0

				73	 	 	 dst[6]	=	0

				74	 	 	 dst[7]	=	0

				75	

				76	 	 	 //	Unpack	8x	5-bit	source	blocks	into	a	5	byte

				77	 	 	 //	destination	quantum

				78	 	 	 switch	len(src)	{

				79	 	 	 default:

				80	 	 	 	 dst[7]	|=	src[4]	&	0x1F

				81	 	 	 	 dst[6]	|=	src[4]	>>	5

				82	 	 	 	 fallthrough

				83	 	 	 case	4:

				84	 	 	 	 dst[6]	|=	(src[3]	<<	3)	&	0x1F

				85	 	 	 	 dst[5]	|=	(src[3]	>>	2)	&	0x1F

				86	 	 	 	 dst[4]	|=	src[3]	>>	7

				87	 	 	 	 fallthrough

				88	 	 	 case	3:

				89	 	 	 	 dst[4]	|=	(src[2]	<<	1)	&	0x1F

				90	 	 	 	 dst[3]	|=	(src[2]	>>	4)	&	0x1F

				91	 	 	 	 fallthrough

				92	 	 	 case	2:

				93	 	 	 	 dst[3]	|=	(src[1]	<<	4)	&	0x1F

				94	 	 	 	 dst[2]	|=	(src[1]	>>	1)	&	0x1F

				95	 	 	 	 dst[1]	|=	(src[1]	>>	6)	&	0x1F

				96	 	 	 	 fallthrough

				97	 	 	 case	1:

				98	 	 	 	 dst[1]	|=	(src[0]	<<	2)	&	0x1F

				99	 	 	 	 dst[0]	|=	src[0]	>>	3

			100	 	 	 }

			101	

			102	 	 	 //	Encode	5-bit	blocks	using	the	base32	alphabet

			103	 	 	 for	j	:=	0;	j	<	8;	j++	{

			104	 	 	 	 dst[j]	=	enc.encode[dst[j]]

			105	 	 	 }

			106	

			107	 	 	 //	Pad	the	final	quantum

			108	 	 	 if	len(src)	<	5	{

			109	 	 	 	 dst[7]	=	'='

			110	 	 	 	 if	len(src)	<	4	{

			111	 	 	 	 	 dst[6]	=	'='

			112	 	 	 	 	 dst[5]	=	'='

			113	 	 	 	 	 if	len(src)	<	3	{

			114	 	 	 	 	 	 dst[4]	=	'='

			115	 	 	 	 	 	 if	len(src)	<	2	{

			116	 	 	 	 	 	 	 dst[3]	=	'='

			117	 	 	 	 	 	 	 dst[2]	=	'='

			118	 	 	 	 	 	 }

			119	 	 	 	 	 }

			120	 	 	 	 }

			121	 	 	 	 break

			122	 	 	 }

			123	 	 	 src	=	src[5:]

			124	 	 	 dst	=	dst[8:]

			125	 	 }

			126	 }

			127	

			128	 //	EncodeToString	returns	the	base32	encoding	of	src.

			129	 func	(enc	*Encoding)	EncodeToString(src	[]byte)	string	{

			130	 	 buf	:=	make([]byte,	enc.EncodedLen(len(src)))

			131	 	 enc.Encode(buf,	src)

			132	 	 return	string(buf)

			133	 }

			134	

			135	 type	encoder	struct	{

			136	 	 err		error

			137	 	 enc		*Encoding

			138	 	 w				io.Writer

			139	 	 buf		[5]byte				//	buffered	data	waiting	to	be	encoded

			140	 	 nbuf	int								//	number	of	bytes	in	buf

			141	 	 out		[1024]byte	//	output	buffer

			142	 }

			143	

			144	 func	(e	*encoder)	Write(p	[]byte)	(n	int,	err	error)	{

			145	 	 if	e.err	!=	nil	{

			146	 	 	 return	0,	e.err

			147	 	 }

			148	

			149	 	 //	Leading	fringe.

			150	 	 if	e.nbuf	>	0	{

			151	 	 	 var	i	int

			152	 	 	 for	i	=	0;	i	<	len(p)	&&	e.nbuf	<	5;	i++	{

			153	 	 	 	 e.buf[e.nbuf]	=	p[i]

			154	 	 	 	 e.nbuf++

			155	 	 	 }

			156	 	 	 n	+=	i

			157	 	 	 p	=	p[i:]

			158	 	 	 if	e.nbuf	<	5	{

			159	 	 	 	 return

			160	 	 	 }

			161	 	 	 e.enc.Encode(e.out[0:],	e.buf[0:])

			162	 	 	 if	_,	e.err	=	e.w.Write(e.out[0:8]);	e.err	!=	nil	{

			163	 	 	 	 return	n,	e.err

			164	 	 	 }

			165	 	 	 e.nbuf	=	0

			166	 	 }

			167	

			168	 	 //	Large	interior	chunks.

			169	 	 for	len(p)	>=	5	{

			170	 	 	 nn	:=	len(e.out)	/	8	*	5

			171	 	 	 if	nn	>	len(p)	{

			172	 	 	 	 nn	=	len(p)

			173	 	 	 }

			174	 	 	 nn	-=	nn	%	5

			175	 	 	 if	nn	>	0	{

			176	 	 	 	 e.enc.Encode(e.out[0:],	p[0:nn])

			177	 	 	 	 if	_,	e.err	=	e.w.Write(e.out[0	:	nn/5*8]);	e.err	!=	nil	{

			178	 	 	 	 	 return	n,	e.err

			179	 	 	 	 }

			180	 	 	 }

			181	 	 	 n	+=	nn

			182	 	 	 p	=	p[nn:]

			183	 	 }

			184	

			185	 	 //	Trailing	fringe.

			186	 	 for	i	:=	0;	i	<	len(p);	i++	{

			187	 	 	 e.buf[i]	=	p[i]

			188	 	 }

			189	 	 e.nbuf	=	len(p)

			190	 	 n	+=	len(p)

			191	 	 return

			192	 }

			193	

			194	 //	Close	flushes	any	pending	output	from	the	encoder.

			195	 //	It	is	an	error	to	call	Write	after	calling	Close.

			196	 func	(e	*encoder)	Close()	error	{

			197	 	 //	If	there's	anything	left	in	the	buffer,	flush	it	out

			198	 	 if	e.err	==	nil	&&	e.nbuf	>	0	{

			199	 	 	 e.enc.Encode(e.out[0:],	e.buf[0:e.nbuf])

			200	 	 	 e.nbuf	=	0

			201	 	 	 _,	e.err	=	e.w.Write(e.out[0:8])

			202	 	 }

			203	 	 return	e.err

			204	 }

			205	

			206	 //	NewEncoder	returns	a	new	base32	stream	encoder.		Data	written	to

			207	 //	the	returned	writer	will	be	encoded	using	enc	and	then	written	to	w.

			208	 //	Base32	encodings	operate	in	5-byte	blocks;	when	finished

			209	 //	writing,	the	caller	must	Close	the	returned	encoder	to	flush	any

			210	 //	partially	written	blocks.

			211	 func	NewEncoder(enc	*Encoding,	w	io.Writer)	io.WriteCloser	{

			212	 	 return	&encoder{enc:	enc,	w:	w}

			213	 }

			214	

			215	 //	EncodedLen	returns	the	length	in	bytes	of	the	base32	encoding

			216	 //	of	an	input	buffer	of	length	n.

			217	 func	(enc	*Encoding)	EncodedLen(n	int)	int	{	return	(n	+	4)	/	5	*	8	}

			218	

			219	 /*

			220	 	*	Decoder

			221	 	*/

			222	

			223	 type	CorruptInputError	int64

			224	

			225	 func	(e	CorruptInputError)	Error()	string	{

			226	 	 return	"illegal	base32	data	at	input	byte	"	+	strconv.FormatInt(int64(e),	10)

			227	 }

			228	

			229	 //	decode	is	like	Decode	but	returns	an	additional	'end'	value,	which

			230	 //	indicates	if	end-of-message	padding	was	encountered	and	thus	any

			231	 //	additional	data	is	an	error.

			232	 func	(enc	*Encoding)	decode(dst,	src	[]byte)	(n	int,	end	bool,	err	error)	{

			233	 	 osrc	:=	src

			234	 	 for	len(src)	>	0	&&	!end	{

			235	 	 	 //	Decode	quantum	using	the	base32	alphabet

			236	 	 	 var	dbuf	[8]byte

			237	 	 	 dlen	:=	8

			238	

			239	 	 	 //	do	the	top	bytes	contain	any	data?

			240	 	 dbufloop:

			241	 	 	 for	j	:=	0;	j	<	8;	{

			242	 	 	 	 if	len(src)	==	0	{

			243	 	 	 	 	 return	n,	false,	CorruptInputError(len(osrc)	-	len(src)	-	j)

			244	 	 	 	 }

			245	 	 	 	 in	:=	src[0]

			246	 	 	 	 src	=	src[1:]

			247	 	 	 	 if	in	==	'\r'	||	in	==	'\n'	{

			248	 	 	 	 	 //	Ignore	this	character.

			249	 	 	 	 	 continue

			250	 	 	 	 }

			251	 	 	 	 if	in	==	'='	&&	j	>=	2	&&	len(src)	<	8	{

			252	 	 	 	 	 //	We've	reached	the	end	and	there's

			253	 	 	 	 	 //	padding,	the	rest	should	be	padded

			254	 	 	 	 	 for	k	:=	0;	k	<	8-j-1;	k++	{

			255	 	 	 	 	 	 if	len(src)	>	k	&&	src[k]	!=	'='	{

			256	 	 	 	 	 	 	 return	n,	false,	CorruptInputError(len(osrc)	-	len(src)	+	k	-	1)

			257	 	 	 	 	 	 }

			258	 	 	 	 	 }

			259	 	 	 	 	 dlen	=	j

			260	 	 	 	 	 end	=	true

			261	 	 	 	 	 break	dbufloop

			262	 	 	 	 }

			263	 	 	 	 dbuf[j]	=	enc.decodeMap[in]

			264	 	 	 	 if	dbuf[j]	==	0xFF	{

			265	 	 	 	 	 return	n,	false,	CorruptInputError(len(osrc)	-	len(src)	-	1)

			266	 	 	 	 }

			267	 	 	 	 j++

			268	 	 	 }

			269	

			270	 	 	 //	Pack	8x	5-bit	source	blocks	into	5	byte	destination

			271	 	 	 //	quantum

			272	 	 	 switch	dlen	{

			273	 	 	 case	7,	8:

			274	 	 	 	 dst[4]	=	dbuf[6]<<5	|	dbuf[7]

			275	 	 	 	 fallthrough

			276	 	 	 case	6,	5:

			277	 	 	 	 dst[3]	=	dbuf[4]<<7	|	dbuf[5]<<2	|	dbuf[6]>>3

			278	 	 	 	 fallthrough

			279	 	 	 case	4:

			280	 	 	 	 dst[2]	=	dbuf[3]<<4	|	dbuf[4]>>1

			281	 	 	 	 fallthrough

			282	 	 	 case	3:

			283	 	 	 	 dst[1]	=	dbuf[1]<<6	|	dbuf[2]<<1	|	dbuf[3]>>4

			284	 	 	 	 fallthrough

			285	 	 	 case	2:

			286	 	 	 	 dst[0]	=	dbuf[0]<<3	|	dbuf[1]>>2

			287	 	 	 }

			288	 	 	 dst	=	dst[5:]

			289	 	 	 switch	dlen	{

			290	 	 	 case	2:

			291	 	 	 	 n	+=	1

			292	 	 	 case	3,	4:

			293	 	 	 	 n	+=	2

			294	 	 	 case	5:

			295	 	 	 	 n	+=	3

			296	 	 	 case	6,	7:

			297	 	 	 	 n	+=	4

			298	 	 	 case	8:

			299	 	 	 	 n	+=	5

			300	 	 	 }

			301	 	 }

			302	 	 return	n,	end,	nil

			303	 }

			304	

			305	 //	Decode	decodes	src	using	the	encoding	enc.		It	writes	at	most

			306	 //	DecodedLen(len(src))	bytes	to	dst	and	returns	the	number	of	bytes

			307	 //	written.		If	src	contains	invalid	base32	data,	it	will	return	the

			308	 //	number	of	bytes	successfully	written	and	CorruptInputError.

			309	 //	New	line	characters	(\r	and	\n)	are	ignored.

			310	 func	(enc	*Encoding)	Decode(dst,	src	[]byte)	(n	int,	err	error)	{

			311	 	 n,	_,	err	=	enc.decode(dst,	src)

			312	 	 return

			313	 }

			314	

			315	 //	DecodeString	returns	the	bytes	represented	by	the	base32	string	s.

			316	 func	(enc	*Encoding)	DecodeString(s	string)	([]byte,	error)	{

			317	 	 dbuf	:=	make([]byte,	enc.DecodedLen(len(s)))

			318	 	 n,	err	:=	enc.Decode(dbuf,	[]byte(s))

			319	 	 return	dbuf[:n],	err

			320	 }

			321	

			322	 type	decoder	struct	{

			323	 	 err				error

			324	 	 enc				*Encoding

			325	 	 r						io.Reader

			326	 	 end				bool							//	saw	end	of	message

			327	 	 buf				[1024]byte	//	leftover	input

			328	 	 nbuf			int

			329	 	 out				[]byte	//	leftover	decoded	output

			330	 	 outbuf	[1024	/	8	*	5]byte

			331	 }

			332	

			333	 func	(d	*decoder)	Read(p	[]byte)	(n	int,	err	error)	{

			334	 	 if	d.err	!=	nil	{

			335	 	 	 return	0,	d.err

			336	 	 }

			337	

			338	 	 //	Use	leftover	decoded	output	from	last	read.

			339	 	 if	len(d.out)	>	0	{

			340	 	 	 n	=	copy(p,	d.out)

			341	 	 	 d.out	=	d.out[n:]

			342	 	 	 return	n,	nil

			343	 	 }

			344	

			345	 	 //	Read	a	chunk.

			346	 	 nn	:=	len(p)	/	5	*	8

			347	 	 if	nn	<	8	{

			348	 	 	 nn	=	8

			349	 	 }

			350	 	 if	nn	>	len(d.buf)	{

			351	 	 	 nn	=	len(d.buf)

			352	 	 }

			353	 	 nn,	d.err	=	io.ReadAtLeast(d.r,	d.buf[d.nbuf:nn],	8-d.nbuf)

			354	 	 d.nbuf	+=	nn

			355	 	 if	d.nbuf	<	8	{

			356	 	 	 return	0,	d.err

			357	 	 }

			358	

			359	 	 //	Decode	chunk	into	p,	or	d.out	and	then	p	if	p	is	too	small.

			360	 	 nr	:=	d.nbuf	/	8	*	8

			361	 	 nw	:=	d.nbuf	/	8	*	5

			362	 	 if	nw	>	len(p)	{

			363	 	 	 nw,	d.end,	d.err	=	d.enc.decode(d.outbuf[0:],	d.buf[0:nr])

			364	 	 	 d.out	=	d.outbuf[0:nw]

			365	 	 	 n	=	copy(p,	d.out)

			366	 	 	 d.out	=	d.out[n:]

			367	 	 }	else	{

			368	 	 	 n,	d.end,	d.err	=	d.enc.decode(p,	d.buf[0:nr])

			369	 	 }

			370	 	 d.nbuf	-=	nr

			371	 	 for	i	:=	0;	i	<	d.nbuf;	i++	{

			372	 	 	 d.buf[i]	=	d.buf[i+nr]

			373	 	 }

			374	

			375	 	 if	d.err	==	nil	{

			376	 	 	 d.err	=	err

			377	 	 }

			378	 	 return	n,	d.err

			379	 }

			380	

			381	 //	NewDecoder	constructs	a	new	base32	stream	decoder.

			382	 func	NewDecoder(enc	*Encoding,	r	io.Reader)	io.Reader	{

			383	 	 return	&decoder{enc:	enc,	r:	r}

			384	 }

			385	

			386	 //	DecodedLen	returns	the	maximum	length	in	bytes	of	the	decoded	data

			387	 //	corresponding	to	n	bytes	of	base32-encoded	data.

			388	 func	(enc	*Encoding)	DecodedLen(n	int)	int	{	return	n	/	8	*	5	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/base64/base64.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	base64	implements	base64	encoding	as	specified	by	RFC	4648.

					6	 package	base64

					7	

					8	 import	(

					9	 	 "io"

				10	 	 "strconv"

				11)

				12	

				13	 /*

				14	 	*	Encodings

				15	 	*/

				16	

				17	 //	An	Encoding	is	a	radix	64	encoding/decoding	scheme,	defined	by	a

				18	 //	64-character	alphabet.		The	most	common	encoding	is	the	"base64"

				19	 //	encoding	defined	in	RFC	4648	and	used	in	MIME	(RFC	2045)	and	PEM

				20	 //	(RFC	1421).		RFC	4648	also	defines	an	alternate	encoding,	which	is

				21	 //	the	standard	encoding	with	-	and	_	substituted	for	+	and	/.

				22	 type	Encoding	struct	{

				23	 	 encode				string

				24	 	 decodeMap	[256]byte

				25	 }

				26	

				27	 const	encodeStd	=	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"

				28	 const	encodeURL	=	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"

				29	

				30	 //	NewEncoding	returns	a	new	Encoding	defined	by	the	given	alphabet,

				31	 //	which	must	be	a	64-byte	string.

				32	 func	NewEncoding(encoder	string)	*Encoding	{

				33	 	 e	:=	new(Encoding)

				34	 	 e.encode	=	encoder

				35	 	 for	i	:=	0;	i	<	len(e.decodeMap);	i++	{

				36	 	 	 e.decodeMap[i]	=	0xFF

				37	 	 }

				38	 	 for	i	:=	0;	i	<	len(encoder);	i++	{

				39	 	 	 e.decodeMap[encoder[i]]	=	byte(i)

				40	 	 }

				41	 	 return	e

				42	 }

				43	

				44	 //	StdEncoding	is	the	standard	base64	encoding,	as	defined	in

				45	 //	RFC	4648.

				46	 var	StdEncoding	=	NewEncoding(encodeStd)

				47	

				48	 //	URLEncoding	is	the	alternate	base64	encoding	defined	in	RFC	4648.

				49	 //	It	is	typically	used	in	URLs	and	file	names.

				50	 var	URLEncoding	=	NewEncoding(encodeURL)

				51	

				52	 /*

				53	 	*	Encoder

				54	 	*/

				55	

				56	 //	Encode	encodes	src	using	the	encoding	enc,	writing

				57	 //	EncodedLen(len(src))	bytes	to	dst.

				58	 //

				59	 //	The	encoding	pads	the	output	to	a	multiple	of	4	bytes,

				60	 //	so	Encode	is	not	appropriate	for	use	on	individual	blocks

				61	 //	of	a	large	data	stream.		Use	NewEncoder()	instead.

				62	 func	(enc	*Encoding)	Encode(dst,	src	[]byte)	{

				63	 	 if	len(src)	==	0	{

				64	 	 	 return

				65	 	 }

				66	

				67	 	 for	len(src)	>	0	{

				68	 	 	 dst[0]	=	0

				69	 	 	 dst[1]	=	0

				70	 	 	 dst[2]	=	0

				71	 	 	 dst[3]	=	0

				72	

				73	 	 	 //	Unpack	4x	6-bit	source	blocks	into	a	4	byte

				74	 	 	 //	destination	quantum

				75	 	 	 switch	len(src)	{

				76	 	 	 default:

				77	 	 	 	 dst[3]	|=	src[2]	&	0x3F

				78	 	 	 	 dst[2]	|=	src[2]	>>	6

				79	 	 	 	 fallthrough

				80	 	 	 case	2:

				81	 	 	 	 dst[2]	|=	(src[1]	<<	2)	&	0x3F

				82	 	 	 	 dst[1]	|=	src[1]	>>	4

				83	 	 	 	 fallthrough

				84	 	 	 case	1:

				85	 	 	 	 dst[1]	|=	(src[0]	<<	4)	&	0x3F

				86	 	 	 	 dst[0]	|=	src[0]	>>	2

				87	 	 	 }

				88	

				89	 	 	 //	Encode	6-bit	blocks	using	the	base64	alphabet

				90	 	 	 for	j	:=	0;	j	<	4;	j++	{

				91	 	 	 	 dst[j]	=	enc.encode[dst[j]]

				92	 	 	 }

				93	

				94	 	 	 //	Pad	the	final	quantum

				95	 	 	 if	len(src)	<	3	{

				96	 	 	 	 dst[3]	=	'='

				97	 	 	 	 if	len(src)	<	2	{

				98	 	 	 	 	 dst[2]	=	'='

				99	 	 	 	 }

			100	 	 	 	 break

			101	 	 	 }

			102	

			103	 	 	 src	=	src[3:]

			104	 	 	 dst	=	dst[4:]

			105	 	 }

			106	 }

			107	

			108	 //	EncodeToString	returns	the	base64	encoding	of	src.

			109	 func	(enc	*Encoding)	EncodeToString(src	[]byte)	string	{

			110	 	 buf	:=	make([]byte,	enc.EncodedLen(len(src)))

			111	 	 enc.Encode(buf,	src)

			112	 	 return	string(buf)

			113	 }

			114	

			115	 type	encoder	struct	{

			116	 	 err		error

			117	 	 enc		*Encoding

			118	 	 w				io.Writer

			119	 	 buf		[3]byte				//	buffered	data	waiting	to	be	encoded

			120	 	 nbuf	int								//	number	of	bytes	in	buf

			121	 	 out		[1024]byte	//	output	buffer

			122	 }

			123	

			124	 func	(e	*encoder)	Write(p	[]byte)	(n	int,	err	error)	{

			125	 	 if	e.err	!=	nil	{

			126	 	 	 return	0,	e.err

			127	 	 }

			128	

			129	 	 //	Leading	fringe.

			130	 	 if	e.nbuf	>	0	{

			131	 	 	 var	i	int

			132	 	 	 for	i	=	0;	i	<	len(p)	&&	e.nbuf	<	3;	i++	{

			133	 	 	 	 e.buf[e.nbuf]	=	p[i]

			134	 	 	 	 e.nbuf++

			135	 	 	 }

			136	 	 	 n	+=	i

			137	 	 	 p	=	p[i:]

			138	 	 	 if	e.nbuf	<	3	{

			139	 	 	 	 return

			140	 	 	 }

			141	 	 	 e.enc.Encode(e.out[0:],	e.buf[0:])

			142	 	 	 if	_,	e.err	=	e.w.Write(e.out[0:4]);	e.err	!=	nil	{

			143	 	 	 	 return	n,	e.err

			144	 	 	 }

			145	 	 	 e.nbuf	=	0

			146	 	 }

			147	

			148	 	 //	Large	interior	chunks.

			149	 	 for	len(p)	>=	3	{

			150	 	 	 nn	:=	len(e.out)	/	4	*	3

			151	 	 	 if	nn	>	len(p)	{

			152	 	 	 	 nn	=	len(p)

			153	 	 	 }

			154	 	 	 nn	-=	nn	%	3

			155	 	 	 if	nn	>	0	{

			156	 	 	 	 e.enc.Encode(e.out[0:],	p[0:nn])

			157	 	 	 	 if	_,	e.err	=	e.w.Write(e.out[0	:	nn/3*4]);	e.err	!=	nil	{

			158	 	 	 	 	 return	n,	e.err

			159	 	 	 	 }

			160	 	 	 }

			161	 	 	 n	+=	nn

			162	 	 	 p	=	p[nn:]

			163	 	 }

			164	

			165	 	 //	Trailing	fringe.

			166	 	 for	i	:=	0;	i	<	len(p);	i++	{

			167	 	 	 e.buf[i]	=	p[i]

			168	 	 }

			169	 	 e.nbuf	=	len(p)

			170	 	 n	+=	len(p)

			171	 	 return

			172	 }

			173	

			174	 //	Close	flushes	any	pending	output	from	the	encoder.

			175	 //	It	is	an	error	to	call	Write	after	calling	Close.

			176	 func	(e	*encoder)	Close()	error	{

			177	 	 //	If	there's	anything	left	in	the	buffer,	flush	it	out

			178	 	 if	e.err	==	nil	&&	e.nbuf	>	0	{

			179	 	 	 e.enc.Encode(e.out[0:],	e.buf[0:e.nbuf])

			180	 	 	 e.nbuf	=	0

			181	 	 	 _,	e.err	=	e.w.Write(e.out[0:4])

			182	 	 }

			183	 	 return	e.err

			184	 }

			185	

			186	 //	NewEncoder	returns	a	new	base64	stream	encoder.		Data	written	to

			187	 //	the	returned	writer	will	be	encoded	using	enc	and	then	written	to	w.

			188	 //	Base64	encodings	operate	in	4-byte	blocks;	when	finished

			189	 //	writing,	the	caller	must	Close	the	returned	encoder	to	flush	any

			190	 //	partially	written	blocks.

			191	 func	NewEncoder(enc	*Encoding,	w	io.Writer)	io.WriteCloser	{

			192	 	 return	&encoder{enc:	enc,	w:	w}

			193	 }

			194	

			195	 //	EncodedLen	returns	the	length	in	bytes	of	the	base64	encoding

			196	 //	of	an	input	buffer	of	length	n.

			197	 func	(enc	*Encoding)	EncodedLen(n	int)	int	{	return	(n	+	2)	/	3	*	4	}

			198	

			199	 /*

			200	 	*	Decoder

			201	 	*/

			202	

			203	 type	CorruptInputError	int64

			204	

			205	 func	(e	CorruptInputError)	Error()	string	{

			206	 	 return	"illegal	base64	data	at	input	byte	"	+	strconv.FormatInt(int64(e),	10)

			207	 }

			208	

			209	 //	decode	is	like	Decode	but	returns	an	additional	'end'	value,	which

			210	 //	indicates	if	end-of-message	padding	was	encountered	and	thus	any

			211	 //	additional	data	is	an	error.

			212	 func	(enc	*Encoding)	decode(dst,	src	[]byte)	(n	int,	end	bool,	err	error)	{

			213	 	 osrc	:=	src

			214	 	 for	len(src)	>	0	&&	!end	{

			215	 	 	 //	Decode	quantum	using	the	base64	alphabet

			216	 	 	 var	dbuf	[4]byte

			217	 	 	 dlen	:=	4

			218	

			219	 	 dbufloop:

			220	 	 	 for	j	:=	0;	j	<	4;	{

			221	 	 	 	 if	len(src)	==	0	{

			222	 	 	 	 	 return	n,	false,	CorruptInputError(len(osrc)	-	len(src)	-	j)

			223	 	 	 	 }

			224	 	 	 	 in	:=	src[0]

			225	 	 	 	 src	=	src[1:]

			226	 	 	 	 if	in	==	'\r'	||	in	==	'\n'	{

			227	 	 	 	 	 //	Ignore	this	character.

			228	 	 	 	 	 continue

			229	 	 	 	 }

			230	 	 	 	 if	in	==	'='	&&	j	>=	2	&&	len(src)	<	4	{

			231	 	 	 	 	 //	We've	reached	the	end	and	there's

			232	 	 	 	 	 //	padding

			233	 	 	 	 	 if	len(src)	==	0	&&	j	==	2	{

			234	 	 	 	 	 	 //	not	enough	padding

			235	 	 	 	 	 	 return	n,	false,	CorruptInputError(len(osrc))

			236	 	 	 	 	 }

			237	 	 	 	 	 if	len(src)	>	0	&&	src[0]	!=	'='	{

			238	 	 	 	 	 	 //	incorrect	padding

			239	 	 	 	 	 	 return	n,	false,	CorruptInputError(len(osrc)	-	len(src)	-	1)

			240	 	 	 	 	 }

			241	 	 	 	 	 dlen	=	j

			242	 	 	 	 	 end	=	true

			243	 	 	 	 	 break	dbufloop

			244	 	 	 	 }

			245	 	 	 	 dbuf[j]	=	enc.decodeMap[in]

			246	 	 	 	 if	dbuf[j]	==	0xFF	{

			247	 	 	 	 	 return	n,	false,	CorruptInputError(len(osrc)	-	len(src)	-	1)

			248	 	 	 	 }

			249	 	 	 	 j++

			250	 	 	 }

			251	

			252	 	 	 //	Pack	4x	6-bit	source	blocks	into	3	byte	destination

			253	 	 	 //	quantum

			254	 	 	 switch	dlen	{

			255	 	 	 case	4:

			256	 	 	 	 dst[2]	=	dbuf[2]<<6	|	dbuf[3]

			257	 	 	 	 fallthrough

			258	 	 	 case	3:

			259	 	 	 	 dst[1]	=	dbuf[1]<<4	|	dbuf[2]>>2

			260	 	 	 	 fallthrough

			261	 	 	 case	2:

			262	 	 	 	 dst[0]	=	dbuf[0]<<2	|	dbuf[1]>>4

			263	 	 	 }

			264	 	 	 dst	=	dst[3:]

			265	 	 	 n	+=	dlen	-	1

			266	 	 }

			267	

			268	 	 return	n,	end,	nil

			269	 }

			270	

			271	 //	Decode	decodes	src	using	the	encoding	enc.		It	writes	at	most

			272	 //	DecodedLen(len(src))	bytes	to	dst	and	returns	the	number	of	bytes

			273	 //	written.		If	src	contains	invalid	base64	data,	it	will	return	the

			274	 //	number	of	bytes	successfully	written	and	CorruptInputError.

			275	 //	New	line	characters	(\r	and	\n)	are	ignored.

			276	 func	(enc	*Encoding)	Decode(dst,	src	[]byte)	(n	int,	err	error)	{

			277	 	 n,	_,	err	=	enc.decode(dst,	src)

			278	 	 return

			279	 }

			280	

			281	 //	DecodeString	returns	the	bytes	represented	by	the	base64	string	s.

			282	 func	(enc	*Encoding)	DecodeString(s	string)	([]byte,	error)	{

			283	 	 dbuf	:=	make([]byte,	enc.DecodedLen(len(s)))

			284	 	 n,	err	:=	enc.Decode(dbuf,	[]byte(s))

			285	 	 return	dbuf[:n],	err

			286	 }

			287	

			288	 type	decoder	struct	{

			289	 	 err				error

			290	 	 enc				*Encoding

			291	 	 r						io.Reader

			292	 	 end				bool							//	saw	end	of	message

			293	 	 buf				[1024]byte	//	leftover	input

			294	 	 nbuf			int

			295	 	 out				[]byte	//	leftover	decoded	output

			296	 	 outbuf	[1024	/	4	*	3]byte

			297	 }

			298	

			299	 func	(d	*decoder)	Read(p	[]byte)	(n	int,	err	error)	{

			300	 	 if	d.err	!=	nil	{

			301	 	 	 return	0,	d.err

			302	 	 }

			303	

			304	 	 //	Use	leftover	decoded	output	from	last	read.

			305	 	 if	len(d.out)	>	0	{

			306	 	 	 n	=	copy(p,	d.out)

			307	 	 	 d.out	=	d.out[n:]

			308	 	 	 return	n,	nil

			309	 	 }

			310	

			311	 	 //	Read	a	chunk.

			312	 	 nn	:=	len(p)	/	3	*	4

			313	 	 if	nn	<	4	{

			314	 	 	 nn	=	4

			315	 	 }

			316	 	 if	nn	>	len(d.buf)	{

			317	 	 	 nn	=	len(d.buf)

			318	 	 }

			319	 	 nn,	d.err	=	io.ReadAtLeast(d.r,	d.buf[d.nbuf:nn],	4-d.nbuf)

			320	 	 d.nbuf	+=	nn

			321	 	 if	d.nbuf	<	4	{

			322	 	 	 return	0,	d.err

			323	 	 }

			324	

			325	 	 //	Decode	chunk	into	p,	or	d.out	and	then	p	if	p	is	too	small.

			326	 	 nr	:=	d.nbuf	/	4	*	4

			327	 	 nw	:=	d.nbuf	/	4	*	3

			328	 	 if	nw	>	len(p)	{

			329	 	 	 nw,	d.end,	d.err	=	d.enc.decode(d.outbuf[0:],	d.buf[0:nr])

			330	 	 	 d.out	=	d.outbuf[0:nw]

			331	 	 	 n	=	copy(p,	d.out)

			332	 	 	 d.out	=	d.out[n:]

			333	 	 }	else	{

			334	 	 	 n,	d.end,	d.err	=	d.enc.decode(p,	d.buf[0:nr])

			335	 	 }

			336	 	 d.nbuf	-=	nr

			337	 	 for	i	:=	0;	i	<	d.nbuf;	i++	{

			338	 	 	 d.buf[i]	=	d.buf[i+nr]

			339	 	 }

			340	

			341	 	 if	d.err	==	nil	{

			342	 	 	 d.err	=	err

			343	 	 }

			344	 	 return	n,	d.err

			345	 }

			346	

			347	 //	NewDecoder	constructs	a	new	base64	stream	decoder.

			348	 func	NewDecoder(enc	*Encoding,	r	io.Reader)	io.Reader	{

			349	 	 return	&decoder{enc:	enc,	r:	r}

			350	 }

			351	

			352	 //	DecodedLen	returns	the	maximum	length	in	bytes	of	the	decoded	data

			353	 //	corresponding	to	n	bytes	of	base64-encoded	data.

			354	 func	(enc	*Encoding)	DecodedLen(n	int)	int	{	return	n	/	4	*	3	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/binary/binary.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	binary	implements	translation	between	numbers	and	byte	sequences

					6	 //	and	encoding	and	decoding	of	varints.

					7	 //

					8	 //	Numbers	are	translated	by	reading	and	writing	fixed-size	values.

					9	 //	A	fixed-size	value	is	either	a	fixed-size	arithmetic

				10	 //	type	(int8,	uint8,	int16,	float32,	complex64,	...)

				11	 //	or	an	array	or	struct	containing	only	fixed-size	values.

				12	 //

				13	 //	Varints	are	a	method	of	encoding	integers	using	one	or	more	bytes;

				14	 //	numbers	with	smaller	absolute	value	take	a	smaller	number	of	bytes.

				15	 //	For	a	specification,	see	http://code.google.com/apis/protocolbuffers/docs/encoding.html.

				16	 package	binary

				17	

				18	 import	(

				19	 	 "errors"

				20	 	 "io"

				21	 	 "math"

				22	 	 "reflect"

				23)

				24	

				25	 //	A	ByteOrder	specifies	how	to	convert	byte	sequences	into

				26	 //	16-,	32-,	or	64-bit	unsigned	integers.

				27	 type	ByteOrder	interface	{

				28	 	 Uint16([]byte)	uint16

				29	 	 Uint32([]byte)	uint32

				30	 	 Uint64([]byte)	uint64

				31	 	 PutUint16([]byte,	uint16)

				32	 	 PutUint32([]byte,	uint32)

				33	 	 PutUint64([]byte,	uint64)

				34	 	 String()	string

				35	 }

				36	

				37	 //	LittleEndian	is	the	little-endian	implementation	of	ByteOrder.

				38	 var	LittleEndian	littleEndian

				39	

				40	 //	BigEndian	is	the	big-endian	implementation	of	ByteOrder.

				41	 var	BigEndian	bigEndian

				42	

				43	 type	littleEndian	struct{}

				44	

				45	 func	(littleEndian)	Uint16(b	[]byte)	uint16	{	return	uint16(b[0])	|	uint16(b[1])<<8	}

				46	

				47	 func	(littleEndian)	PutUint16(b	[]byte,	v	uint16)	{

				48	 	 b[0]	=	byte(v)

				49	 	 b[1]	=	byte(v	>>	8)

				50	 }

				51	

				52	 func	(littleEndian)	Uint32(b	[]byte)	uint32	{

				53	 	 return	uint32(b[0])	|	uint32(b[1])<<8	|	uint32(b[2])<<16	|	uint32(b[3])<<24

				54	 }

				55	

				56	 func	(littleEndian)	PutUint32(b	[]byte,	v	uint32)	{

				57	 	 b[0]	=	byte(v)

				58	 	 b[1]	=	byte(v	>>	8)

				59	 	 b[2]	=	byte(v	>>	16)

				60	 	 b[3]	=	byte(v	>>	24)

				61	 }

				62	

				63	 func	(littleEndian)	Uint64(b	[]byte)	uint64	{

				64	 	 return	uint64(b[0])	|	uint64(b[1])<<8	|	uint64(b[2])<<16	|	uint64(b[3])<<24	|

				65	 	 	 uint64(b[4])<<32	|	uint64(b[5])<<40	|	uint64(b[6])<<48	|	uint64(b[7])<<56

				66	 }

				67	

				68	 func	(littleEndian)	PutUint64(b	[]byte,	v	uint64)	{

				69	 	 b[0]	=	byte(v)

				70	 	 b[1]	=	byte(v	>>	8)

				71	 	 b[2]	=	byte(v	>>	16)

				72	 	 b[3]	=	byte(v	>>	24)

				73	 	 b[4]	=	byte(v	>>	32)

				74	 	 b[5]	=	byte(v	>>	40)

				75	 	 b[6]	=	byte(v	>>	48)

				76	 	 b[7]	=	byte(v	>>	56)

				77	 }

				78	

				79	 func	(littleEndian)	String()	string	{	return	"LittleEndian"	}

				80	

				81	 func	(littleEndian)	GoString()	string	{	return	"binary.LittleEndian"	}

				82	

				83	 type	bigEndian	struct{}

				84	

				85	 func	(bigEndian)	Uint16(b	[]byte)	uint16	{	return	uint16(b[1])	|	uint16(b[0])<<8	}

				86	

				87	 func	(bigEndian)	PutUint16(b	[]byte,	v	uint16)	{

				88	 	 b[0]	=	byte(v	>>	8)

				89	 	 b[1]	=	byte(v)

				90	 }

				91	

				92	 func	(bigEndian)	Uint32(b	[]byte)	uint32	{

				93	 	 return	uint32(b[3])	|	uint32(b[2])<<8	|	uint32(b[1])<<16	|	uint32(b[0])<<24

				94	 }

				95	

				96	 func	(bigEndian)	PutUint32(b	[]byte,	v	uint32)	{

				97	 	 b[0]	=	byte(v	>>	24)

				98	 	 b[1]	=	byte(v	>>	16)

				99	 	 b[2]	=	byte(v	>>	8)

			100	 	 b[3]	=	byte(v)

			101	 }

			102	

			103	 func	(bigEndian)	Uint64(b	[]byte)	uint64	{

			104	 	 return	uint64(b[7])	|	uint64(b[6])<<8	|	uint64(b[5])<<16	|	uint64(b[4])<<24	|

			105	 	 	 uint64(b[3])<<32	|	uint64(b[2])<<40	|	uint64(b[1])<<48	|	uint64(b[0])<<56

			106	 }

			107	

			108	 func	(bigEndian)	PutUint64(b	[]byte,	v	uint64)	{

			109	 	 b[0]	=	byte(v	>>	56)

			110	 	 b[1]	=	byte(v	>>	48)

			111	 	 b[2]	=	byte(v	>>	40)

			112	 	 b[3]	=	byte(v	>>	32)

			113	 	 b[4]	=	byte(v	>>	24)

			114	 	 b[5]	=	byte(v	>>	16)

			115	 	 b[6]	=	byte(v	>>	8)

			116	 	 b[7]	=	byte(v)

			117	 }

			118	

			119	 func	(bigEndian)	String()	string	{	return	"BigEndian"	}

			120	

			121	 func	(bigEndian)	GoString()	string	{	return	"binary.BigEndian"	}

			122	

			123	 //	Read	reads	structured	binary	data	from	r	into	data.

			124	 //	Data	must	be	a	pointer	to	a	fixed-size	value	or	a	slice

			125	 //	of	fixed-size	values.

			126	 //	Bytes	read	from	r	are	decoded	using	the	specified	byte	order

			127	 //	and	written	to	successive	fields	of	the	data.

			128	 func	Read(r	io.Reader,	order	ByteOrder,	data	interface{})	error	{

			129	 	 //	Fast	path	for	basic	types.

			130	 	 if	n	:=	intDestSize(data);	n	!=	0	{

			131	 	 	 var	b	[8]byte

			132	 	 	 bs	:=	b[:n]

			133	 	 	 if	_,	err	:=	io.ReadFull(r,	bs);	err	!=	nil	{

			134	 	 	 	 return	err

			135	 	 	 }

			136	 	 	 switch	v	:=	data.(type)	{

			137	 	 	 case	*int8:

			138	 	 	 	 *v	=	int8(b[0])

			139	 	 	 case	*uint8:

			140	 	 	 	 *v	=	b[0]

			141	 	 	 case	*int16:

			142	 	 	 	 *v	=	int16(order.Uint16(bs))

			143	 	 	 case	*uint16:

			144	 	 	 	 *v	=	order.Uint16(bs)

			145	 	 	 case	*int32:

			146	 	 	 	 *v	=	int32(order.Uint32(bs))

			147	 	 	 case	*uint32:

			148	 	 	 	 *v	=	order.Uint32(bs)

			149	 	 	 case	*int64:

			150	 	 	 	 *v	=	int64(order.Uint64(bs))

			151	 	 	 case	*uint64:

			152	 	 	 	 *v	=	order.Uint64(bs)

			153	 	 	 }

			154	 	 	 return	nil

			155	 	 }

			156	

			157	 	 //	Fallback	to	reflect-based.

			158	 	 var	v	reflect.Value

			159	 	 switch	d	:=	reflect.ValueOf(data);	d.Kind()	{

			160	 	 case	reflect.Ptr:

			161	 	 	 v	=	d.Elem()

			162	 	 case	reflect.Slice:

			163	 	 	 v	=	d

			164	 	 default:

			165	 	 	 return	errors.New("binary.Read:	invalid	type	"	+	d.Type().String())

			166	 	 }

			167	 	 size	:=	dataSize(v)

			168	 	 if	size	<	0	{

			169	 	 	 return	errors.New("binary.Read:	invalid	type	"	+	v.Type().String())

			170	 	 }

			171	 	 d	:=	&decoder{order:	order,	buf:	make([]byte,	size)}

			172	 	 if	_,	err	:=	io.ReadFull(r,	d.buf);	err	!=	nil	{

			173	 	 	 return	err

			174	 	 }

			175	 	 d.value(v)

			176	 	 return	nil

			177	 }

			178	

			179	 //	Write	writes	the	binary	representation	of	data	into	w.

			180	 //	Data	must	be	a	fixed-size	value	or	a	slice	of	fixed-size

			181	 //	values,	or	a	pointer	to	such	data.

			182	 //	Bytes	written	to	w	are	encoded	using	the	specified	byte	order

			183	 //	and	read	from	successive	fields	of	the	data.

			184	 func	Write(w	io.Writer,	order	ByteOrder,	data	interface{})	error	{

			185	 	 //	Fast	path	for	basic	types.

			186	 	 var	b	[8]byte

			187	 	 var	bs	[]byte

			188	 	 switch	v	:=	data.(type)	{

			189	 	 case	*int8:

			190	 	 	 bs	=	b[:1]

			191	 	 	 b[0]	=	byte(*v)

			192	 	 case	int8:

			193	 	 	 bs	=	b[:1]

			194	 	 	 b[0]	=	byte(v)

			195	 	 case	*uint8:

			196	 	 	 bs	=	b[:1]

			197	 	 	 b[0]	=	*v

			198	 	 case	uint8:

			199	 	 	 bs	=	b[:1]

			200	 	 	 b[0]	=	byte(v)

			201	 	 case	*int16:

			202	 	 	 bs	=	b[:2]

			203	 	 	 order.PutUint16(bs,	uint16(*v))

			204	 	 case	int16:

			205	 	 	 bs	=	b[:2]

			206	 	 	 order.PutUint16(bs,	uint16(v))

			207	 	 case	*uint16:

			208	 	 	 bs	=	b[:2]

			209	 	 	 order.PutUint16(bs,	*v)

			210	 	 case	uint16:

			211	 	 	 bs	=	b[:2]

			212	 	 	 order.PutUint16(bs,	v)

			213	 	 case	*int32:

			214	 	 	 bs	=	b[:4]

			215	 	 	 order.PutUint32(bs,	uint32(*v))

			216	 	 case	int32:

			217	 	 	 bs	=	b[:4]

			218	 	 	 order.PutUint32(bs,	uint32(v))

			219	 	 case	*uint32:

			220	 	 	 bs	=	b[:4]

			221	 	 	 order.PutUint32(bs,	*v)

			222	 	 case	uint32:

			223	 	 	 bs	=	b[:4]

			224	 	 	 order.PutUint32(bs,	v)

			225	 	 case	*int64:

			226	 	 	 bs	=	b[:8]

			227	 	 	 order.PutUint64(bs,	uint64(*v))

			228	 	 case	int64:

			229	 	 	 bs	=	b[:8]

			230	 	 	 order.PutUint64(bs,	uint64(v))

			231	 	 case	*uint64:

			232	 	 	 bs	=	b[:8]

			233	 	 	 order.PutUint64(bs,	*v)

			234	 	 case	uint64:

			235	 	 	 bs	=	b[:8]

			236	 	 	 order.PutUint64(bs,	v)

			237	 	 }

			238	 	 if	bs	!=	nil	{

			239	 	 	 _,	err	:=	w.Write(bs)

			240	 	 	 return	err

			241	 	 }

			242	 	 v	:=	reflect.Indirect(reflect.ValueOf(data))

			243	 	 size	:=	dataSize(v)

			244	 	 if	size	<	0	{

			245	 	 	 return	errors.New("binary.Write:	invalid	type	"	+	v.Type().String())

			246	 	 }

			247	 	 buf	:=	make([]byte,	size)

			248	 	 e	:=	&encoder{order:	order,	buf:	buf}

			249	 	 e.value(v)

			250	 	 _,	err	:=	w.Write(buf)

			251	 	 return	err

			252	 }

			253	

			254	 //	Size	returns	how	many	bytes	Write	would	generate	to	encode	the	value	v,	which

			255	 //	must	be	a	fixed-size	value	or	a	slice	of	fixed-size	values,	or	a	pointer	to	such	data.

			256	 func	Size(v	interface{})	int	{

			257	 	 return	dataSize(reflect.Indirect(reflect.ValueOf(v)))

			258	 }

			259	

			260	 //	dataSize	returns	the	number	of	bytes	the	actual	data	represented	by	v	occupies	in	memory.

			261	 //	For	compound	structures,	it	sums	the	sizes	of	the	elements.	Thus,	for	instance,	for	a	slice

			262	 //	it	returns	the	length	of	the	slice	times	the	element	size	and	does	not	count	the	memory

			263	 //	occupied	by	the	header.

			264	 func	dataSize(v	reflect.Value)	int	{

			265	 	 if	v.Kind()	==	reflect.Slice	{

			266	 	 	 elem	:=	sizeof(v.Type().Elem())

			267	 	 	 if	elem	<	0	{

			268	 	 	 	 return	-1

			269	 	 	 }

			270	 	 	 return	v.Len()	*	elem

			271	 	 }

			272	 	 return	sizeof(v.Type())

			273	 }

			274	

			275	 func	sizeof(t	reflect.Type)	int	{

			276	 	 switch	t.Kind()	{

			277	 	 case	reflect.Array:

			278	 	 	 n	:=	sizeof(t.Elem())

			279	 	 	 if	n	<	0	{

			280	 	 	 	 return	-1

			281	 	 	 }

			282	 	 	 return	t.Len()	*	n

			283	

			284	 	 case	reflect.Struct:

			285	 	 	 sum	:=	0

			286	 	 	 for	i,	n	:=	0,	t.NumField();	i	<	n;	i++	{

			287	 	 	 	 s	:=	sizeof(t.Field(i).Type)

			288	 	 	 	 if	s	<	0	{

			289	 	 	 	 	 return	-1

			290	 	 	 	 }

			291	 	 	 	 sum	+=	s

			292	 	 	 }

			293	 	 	 return	sum

			294	

			295	 	 case	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,

			296	 	 	 reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64,

			297	 	 	 reflect.Float32,	reflect.Float64,	reflect.Complex64,	reflect.Complex128:

			298	 	 	 return	int(t.Size())

			299	 	 }

			300	 	 return	-1

			301	 }

			302	

			303	 type	decoder	struct	{

			304	 	 order	ByteOrder

			305	 	 buf			[]byte

			306	 }

			307	

			308	 type	encoder	struct	{

			309	 	 order	ByteOrder

			310	 	 buf			[]byte

			311	 }

			312	

			313	 func	(d	*decoder)	uint8()	uint8	{

			314	 	 x	:=	d.buf[0]

			315	 	 d.buf	=	d.buf[1:]

			316	 	 return	x

			317	 }

			318	

			319	 func	(e	*encoder)	uint8(x	uint8)	{

			320	 	 e.buf[0]	=	x

			321	 	 e.buf	=	e.buf[1:]

			322	 }

			323	

			324	 func	(d	*decoder)	uint16()	uint16	{

			325	 	 x	:=	d.order.Uint16(d.buf[0:2])

			326	 	 d.buf	=	d.buf[2:]

			327	 	 return	x

			328	 }

			329	

			330	 func	(e	*encoder)	uint16(x	uint16)	{

			331	 	 e.order.PutUint16(e.buf[0:2],	x)

			332	 	 e.buf	=	e.buf[2:]

			333	 }

			334	

			335	 func	(d	*decoder)	uint32()	uint32	{

			336	 	 x	:=	d.order.Uint32(d.buf[0:4])

			337	 	 d.buf	=	d.buf[4:]

			338	 	 return	x

			339	 }

			340	

			341	 func	(e	*encoder)	uint32(x	uint32)	{

			342	 	 e.order.PutUint32(e.buf[0:4],	x)

			343	 	 e.buf	=	e.buf[4:]

			344	 }

			345	

			346	 func	(d	*decoder)	uint64()	uint64	{

			347	 	 x	:=	d.order.Uint64(d.buf[0:8])

			348	 	 d.buf	=	d.buf[8:]

			349	 	 return	x

			350	 }

			351	

			352	 func	(e	*encoder)	uint64(x	uint64)	{

			353	 	 e.order.PutUint64(e.buf[0:8],	x)

			354	 	 e.buf	=	e.buf[8:]

			355	 }

			356	

			357	 func	(d	*decoder)	int8()	int8	{	return	int8(d.uint8())	}

			358	

			359	 func	(e	*encoder)	int8(x	int8)	{	e.uint8(uint8(x))	}

			360	

			361	 func	(d	*decoder)	int16()	int16	{	return	int16(d.uint16())	}

			362	

			363	 func	(e	*encoder)	int16(x	int16)	{	e.uint16(uint16(x))	}

			364	

			365	 func	(d	*decoder)	int32()	int32	{	return	int32(d.uint32())	}

			366	

			367	 func	(e	*encoder)	int32(x	int32)	{	e.uint32(uint32(x))	}

			368	

			369	 func	(d	*decoder)	int64()	int64	{	return	int64(d.uint64())	}

			370	

			371	 func	(e	*encoder)	int64(x	int64)	{	e.uint64(uint64(x))	}

			372	

			373	 func	(d	*decoder)	value(v	reflect.Value)	{

			374	 	 switch	v.Kind()	{

			375	 	 case	reflect.Array:

			376	 	 	 l	:=	v.Len()

			377	 	 	 for	i	:=	0;	i	<	l;	i++	{

			378	 	 	 	 d.value(v.Index(i))

			379	 	 	 }

			380	

			381	 	 case	reflect.Struct:

			382	 	 	 l	:=	v.NumField()

			383	 	 	 for	i	:=	0;	i	<	l;	i++	{

			384	 	 	 	 d.value(v.Field(i))

			385	 	 	 }

			386	

			387	 	 case	reflect.Slice:

			388	 	 	 l	:=	v.Len()

			389	 	 	 for	i	:=	0;	i	<	l;	i++	{

			390	 	 	 	 d.value(v.Index(i))

			391	 	 	 }

			392	

			393	 	 case	reflect.Int8:

			394	 	 	 v.SetInt(int64(d.int8()))

			395	 	 case	reflect.Int16:

			396	 	 	 v.SetInt(int64(d.int16()))

			397	 	 case	reflect.Int32:

			398	 	 	 v.SetInt(int64(d.int32()))

			399	 	 case	reflect.Int64:

			400	 	 	 v.SetInt(d.int64())

			401	

			402	 	 case	reflect.Uint8:

			403	 	 	 v.SetUint(uint64(d.uint8()))

			404	 	 case	reflect.Uint16:

			405	 	 	 v.SetUint(uint64(d.uint16()))

			406	 	 case	reflect.Uint32:

			407	 	 	 v.SetUint(uint64(d.uint32()))

			408	 	 case	reflect.Uint64:

			409	 	 	 v.SetUint(d.uint64())

			410	

			411	 	 case	reflect.Float32:

			412	 	 	 v.SetFloat(float64(math.Float32frombits(d.uint32())))

			413	 	 case	reflect.Float64:

			414	 	 	 v.SetFloat(math.Float64frombits(d.uint64()))

			415	

			416	 	 case	reflect.Complex64:

			417	 	 	 v.SetComplex(complex(

			418	 	 	 	 float64(math.Float32frombits(d.uint32())),

			419	 	 	 	 float64(math.Float32frombits(d.uint32())),

			420))

			421	 	 case	reflect.Complex128:

			422	 	 	 v.SetComplex(complex(

			423	 	 	 	 math.Float64frombits(d.uint64()),

			424	 	 	 	 math.Float64frombits(d.uint64()),

			425))

			426	 	 }

			427	 }

			428	

			429	 func	(e	*encoder)	value(v	reflect.Value)	{

			430	 	 switch	v.Kind()	{

			431	 	 case	reflect.Array:

			432	 	 	 l	:=	v.Len()

			433	 	 	 for	i	:=	0;	i	<	l;	i++	{

			434	 	 	 	 e.value(v.Index(i))

			435	 	 	 }

			436	

			437	 	 case	reflect.Struct:

			438	 	 	 l	:=	v.NumField()

			439	 	 	 for	i	:=	0;	i	<	l;	i++	{

			440	 	 	 	 e.value(v.Field(i))

			441	 	 	 }

			442	

			443	 	 case	reflect.Slice:

			444	 	 	 l	:=	v.Len()

			445	 	 	 for	i	:=	0;	i	<	l;	i++	{

			446	 	 	 	 e.value(v.Index(i))

			447	 	 	 }

			448	

			449	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			450	 	 	 switch	v.Type().Kind()	{

			451	 	 	 case	reflect.Int8:

			452	 	 	 	 e.int8(int8(v.Int()))

			453	 	 	 case	reflect.Int16:

			454	 	 	 	 e.int16(int16(v.Int()))

			455	 	 	 case	reflect.Int32:

			456	 	 	 	 e.int32(int32(v.Int()))

			457	 	 	 case	reflect.Int64:

			458	 	 	 	 e.int64(v.Int())

			459	 	 	 }

			460	

			461	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

			462	 	 	 switch	v.Type().Kind()	{

			463	 	 	 case	reflect.Uint8:

			464	 	 	 	 e.uint8(uint8(v.Uint()))

			465	 	 	 case	reflect.Uint16:

			466	 	 	 	 e.uint16(uint16(v.Uint()))

			467	 	 	 case	reflect.Uint32:

			468	 	 	 	 e.uint32(uint32(v.Uint()))

			469	 	 	 case	reflect.Uint64:

			470	 	 	 	 e.uint64(v.Uint())

			471	 	 	 }

			472	

			473	 	 case	reflect.Float32,	reflect.Float64:

			474	 	 	 switch	v.Type().Kind()	{

			475	 	 	 case	reflect.Float32:

			476	 	 	 	 e.uint32(math.Float32bits(float32(v.Float())))

			477	 	 	 case	reflect.Float64:

			478	 	 	 	 e.uint64(math.Float64bits(v.Float()))

			479	 	 	 }

			480	

			481	 	 case	reflect.Complex64,	reflect.Complex128:

			482	 	 	 switch	v.Type().Kind()	{

			483	 	 	 case	reflect.Complex64:

			484	 	 	 	 x	:=	v.Complex()

			485	 	 	 	 e.uint32(math.Float32bits(float32(real(x))))

			486	 	 	 	 e.uint32(math.Float32bits(float32(imag(x))))

			487	 	 	 case	reflect.Complex128:

			488	 	 	 	 x	:=	v.Complex()

			489	 	 	 	 e.uint64(math.Float64bits(real(x)))

			490	 	 	 	 e.uint64(math.Float64bits(imag(x)))

			491	 	 	 }

			492	 	 }

			493	 }

			494	

			495	 //	intDestSize	returns	the	size	of	the	integer	that	ptrType	points	to,

			496	 //	or	0	if	the	type	is	not	supported.

			497	 func	intDestSize(ptrType	interface{})	int	{

			498	 	 switch	ptrType.(type)	{

			499	 	 case	*int8,	*uint8:

			500	 	 	 return	1

			501	 	 case	*int16,	*uint16:

			502	 	 	 return	2

			503	 	 case	*int32,	*uint32:

			504	 	 	 return	4

			505	 	 case	*int64,	*uint64:

			506	 	 	 return	8

			507	 	 }

			508	 	 return	0

			509	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/binary/varint.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	binary

					6	

					7	 //	This	file	implements	"varint"	encoding	of	64-bit	integers.

					8	 //	The	encoding	is:

					9	 //	-	unsigned	integers	are	serialized	7	bits	at	a	time,	starting	with	the

				10	 //			least	significant	bits

				11	 //	-	the	most	significant	bit	(msb)	in	each	output	byte	indicates	if	there

				12	 //			is	a	continuation	byte	(msb	=	1)

				13	 //	-	signed	integers	are	mapped	to	unsigned	integers	using	"zig-zag"

				14	 //			encoding:	Positive	values	x	are	written	as	2*x	+	0,	negative	values

				15	 //			are	written	as	2*(^x)	+	1;	that	is,	negative	numbers	are	complemented

				16	 //			and	whether	to	complement	is	encoded	in	bit	0.

				17	 //

				18	 //	Design	note:

				19	 //	At	most	10	bytes	are	needed	for	64-bit	values.	The	encoding	could

				20	 //	be	more	dense:	a	full	64-bit	value	needs	an	extra	byte	just	to	hold	bit	63.

				21	 //	Instead,	the	msb	of	the	previous	byte	could	be	used	to	hold	bit	63	since	we

				22	 //	know	there	can't	be	more	than	64	bits.	This	is	a	trivial	improvement	and

				23	 //	would	reduce	the	maximum	encoding	length	to	9	bytes.	However,	it	breaks	the

				24	 //	invariant	that	the	msb	is	always	the	"continuation	bit"	and	thus	makes	the

				25	 //	format	incompatible	with	a	varint	encoding	for	larger	numbers	(say	128-bit).

				26	

				27	 import	(

				28	 	 "errors"

				29	 	 "io"

				30)

				31	

				32	 //	MaxVarintLenN	is	the	maximum	length	of	a	varint-encoded	N-bit	integer.

				33	 const	(

				34	 	 MaxVarintLen16	=	3

				35	 	 MaxVarintLen32	=	5

				36	 	 MaxVarintLen64	=	10

				37)

				38	

				39	 //	PutUvarint	encodes	a	uint64	into	buf	and	returns	the	number	of	bytes	written.

				40	 //	If	the	buffer	is	too	small,	PutUvarint	will	panic.

				41	 func	PutUvarint(buf	[]byte,	x	uint64)	int	{

				42	 	 i	:=	0

				43	 	 for	x	>=	0x80	{

				44	 	 	 buf[i]	=	byte(x)	|	0x80

				45	 	 	 x	>>=	7

				46	 	 	 i++

				47	 	 }

				48	 	 buf[i]	=	byte(x)

				49	 	 return	i	+	1

				50	 }

				51	

				52	 //	Uvarint	decodes	a	uint64	from	buf	and	returns	that	value	and	the

				53	 //	number	of	bytes	read	(>	0).	If	an	error	occurred,	the	value	is	0

				54	 //	and	the	number	of	bytes	n	is	<=	0	meaning:

				55	 //

				56	 //	 n	==	0:	buf	too	small

				57	 //	 n		<	0:	value	larger	than	64	bits	(overflow)

				58	 //														and	-n	is	the	number	of	bytes	read

				59	 //

				60	 func	Uvarint(buf	[]byte)	(uint64,	int)	{

				61	 	 var	x	uint64

				62	 	 var	s	uint

				63	 	 for	i,	b	:=	range	buf	{

				64	 	 	 if	b	<	0x80	{

				65	 	 	 	 if	i	>	9	||	i	==	9	&&	b	>	1	{

				66	 	 	 	 	 return	0,	-(i	+	1)	//	overflow

				67	 	 	 	 }

				68	 	 	 	 return	x	|	uint64(b)<<s,	i	+	1

				69	 	 	 }

				70	 	 	 x	|=	uint64(b&0x7f)	<<	s

				71	 	 	 s	+=	7

				72	 	 }

				73	 	 return	0,	0

				74	 }

				75	

				76	 //	PutVarint	encodes	an	int64	into	buf	and	returns	the	number	of	bytes	written.

				77	 //	If	the	buffer	is	too	small,	PutVarint	will	panic.

				78	 func	PutVarint(buf	[]byte,	x	int64)	int	{

				79	 	 ux	:=	uint64(x)	<<	1

				80	 	 if	x	<	0	{

				81	 	 	 ux	=	^ux

				82	 	 }

				83	 	 return	PutUvarint(buf,	ux)

				84	 }

				85	

				86	 //	Varint	decodes	an	int64	from	buf	and	returns	that	value	and	the

				87	 //	number	of	bytes	read	(>	0).	If	an	error	occurred,	the	value	is	0

				88	 //	and	the	number	of	bytes	n	is	<=	0	with	the	following	meaning:

				89	 //

				90	 //	 n	==	0:	buf	too	small

				91	 //	 n		<	0:	value	larger	than	64	bits	(overflow)

				92	 //														and	-n	is	the	number	of	bytes	read

				93	 //

				94	 func	Varint(buf	[]byte)	(int64,	int)	{

				95	 	 ux,	n	:=	Uvarint(buf)	//	ok	to	continue	in	presence	of	error

				96	 	 x	:=	int64(ux	>>	1)

				97	 	 if	ux&1	!=	0	{

				98	 	 	 x	=	^x

				99	 	 }

			100	 	 return	x,	n

			101	 }

			102	

			103	 var	overflow	=	errors.New("binary:	varint	overflows	a	64-bit	integer")

			104	

			105	 //	ReadUvarint	reads	an	encoded	unsigned	integer	from	r	and	returns	it	as	a	uint64.

			106	 func	ReadUvarint(r	io.ByteReader)	(uint64,	error)	{

			107	 	 var	x	uint64

			108	 	 var	s	uint

			109	 	 for	i	:=	0;	;	i++	{

			110	 	 	 b,	err	:=	r.ReadByte()

			111	 	 	 if	err	!=	nil	{

			112	 	 	 	 return	x,	err

			113	 	 	 }

			114	 	 	 if	b	<	0x80	{

			115	 	 	 	 if	i	>	9	||	i	==	9	&&	b	>	1	{

			116	 	 	 	 	 return	x,	overflow

			117	 	 	 	 }

			118	 	 	 	 return	x	|	uint64(b)<<s,	nil

			119	 	 	 }

			120	 	 	 x	|=	uint64(b&0x7f)	<<	s

			121	 	 	 s	+=	7

			122	 	 }

			123	 	 panic("unreachable")

			124	 }

			125	

			126	 //	ReadVarint	reads	an	encoded	unsigned	integer	from	r	and	returns	it	as	a	uint64.

			127	 func	ReadVarint(r	io.ByteReader)	(int64,	error)	{

			128	 	 ux,	err	:=	ReadUvarint(r)	//	ok	to	continue	in	presence	of	error

			129	 	 x	:=	int64(ux	>>	1)

			130	 	 if	ux&1	!=	0	{

			131	 	 	 x	=	^x

			132	 	 }

			133	 	 return	x,	err

			134	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/csv/reader.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	csv	reads	and	writes	comma-separated	values	(CSV)	files.

					6	 //

					7	 //	A	csv	file	contains	zero	or	more	records	of	one	or	more	fields	per	record.

					8	 //	Each	record	is	separated	by	the	newline	character.	The	final	record	may

					9	 //	optionally	be	followed	by	a	newline	character.

				10	 //

				11	 //	 field1,field2,field3

				12	 //

				13	 //	White	space	is	considered	part	of	a	field.

				14	 //

				15	 //	Carriage	returns	before	newline	characters	are	silently	removed.

				16	 //

				17	 //	Blank	lines	are	ignored.		A	line	with	only	whitespace	characters	(excluding

				18	 //	the	ending	newline	character)	is	not	considered	a	blank	line.

				19	 //

				20	 //	Fields	which	start	and	stop	with	the	quote	character	"	are	called

				21	 //	quoted-fields.		The	beginning	and	ending	quote	are	not	part	of	the

				22	 //	field.

				23	 //

				24	 //	The	source:

				25	 //

				26	 //	 normal	string,"quoted-field"

				27	 //

				28	 //	results	in	the	fields

				29	 //

				30	 //	 {`normal	string`,	`quoted-field`}

				31	 //

				32	 //	Within	a	quoted-field	a	quote	character	followed	by	a	second	quote

				33	 //	character	is	considered	a	single	quote.

				34	 //

				35	 //	 "the	""word""	is	true","a	""quoted-field"""

				36	 //

				37	 //	results	in

				38	 //

				39	 //	 {`the	"word"	is	true`,	`a	"quoted-field"`}

				40	 //

				41	 //	Newlines	and	commas	may	be	included	in	a	quoted-field

				42	 //

				43	 //	 "Multi-line

				44	 //	 field","comma	is	,"

				45	 //

				46	 //	results	in

				47	 //

				48	 //	 {`Multi-line

				49	 //	 field`,	`comma	is	,`}

				50	 package	csv

				51	

				52	 import	(

				53	 	 "bufio"

				54	 	 "bytes"

				55	 	 "errors"

				56	 	 "fmt"

				57	 	 "io"

				58	 	 "unicode"

				59)

				60	

				61	 //	A	ParseError	is	returned	for	parsing	errors.

				62	 //	The	first	line	is	1.		The	first	column	is	0.

				63	 type	ParseError	struct	{

				64	 	 Line			int			//	Line	where	the	error	occurred

				65	 	 Column	int			//	Column	(rune	index)	where	the	error	occurred

				66	 	 Err				error	//	The	actual	error

				67	 }

				68	

				69	 func	(e	*ParseError)	Error()	string	{

				70	 	 return	fmt.Sprintf("line	%d,	column	%d:	%s",	e.Line,	e.Column,	e.Err)

				71	 }

				72	

				73	 //	These	are	the	errors	that	can	be	returned	in	ParseError.Error

				74	 var	(

				75	 	 ErrTrailingComma	=	errors.New("extra	delimiter	at	end	of	line")

				76	 	 ErrBareQuote					=	errors.New("bare	\"	in	non-quoted-field")

				77	 	 ErrQuote									=	errors.New("extraneous	\"	in	field")

				78	 	 ErrFieldCount				=	errors.New("wrong	number	of	fields	in	line")

				79)

				80	

				81	 //	A	Reader	reads	records	from	a	CSV-encoded	file.

				82	 //

				83	 //	As	returned	by	NewReader,	a	Reader	expects	input	conforming	to	RFC	4180.

				84	 //	The	exported	fields	can	be	changed	to	customize	the	details	before	the

				85	 //	first	call	to	Read	or	ReadAll.

				86	 //

				87	 //	Comma	is	the	field	delimiter.		It	defaults	to	','.

				88	 //

				89	 //	Comment,	if	not	0,	is	the	comment	character.	Lines	beginning	with	the

				90	 //	Comment	character	are	ignored.

				91	 //

				92	 //	If	FieldsPerRecord	is	positive,	Read	requires	each	record	to

				93	 //	have	the	given	number	of	fields.		If	FieldsPerRecord	is	0,	Read	sets	it	to

				94	 //	the	number	of	fields	in	the	first	record,	so	that	future	records	must

				95	 //	have	the	same	field	count.		If	FieldsPerRecord	is	negative,	no	check	is

				96	 //	made	and	records	may	have	a	variable	number	of	fields.

				97	 //

				98	 //	If	LazyQuotes	is	true,	a	quote	may	appear	in	an	unquoted	field	and	a

				99	 //	non-doubled	quote	may	appear	in	a	quoted	field.

			100	 //

			101	 //	If	TrailingComma	is	true,	the	last	field	may	be	an	unquoted	empty	field.

			102	 //

			103	 //	If	TrimLeadingSpace	is	true,	leading	white	space	in	a	field	is	ignored.

			104	 type	Reader	struct	{

			105	 	 Comma												rune	//	Field	delimiter	(set	to	','	by	NewReader)

			106	 	 Comment										rune	//	Comment	character	for	start	of	line

			107	 	 FieldsPerRecord		int		//	Number	of	expected	fields	per	record

			108	 	 LazyQuotes							bool	//	Allow	lazy	quotes

			109	 	 TrailingComma				bool	//	Allow	trailing	comma

			110	 	 TrimLeadingSpace	bool	//	Trim	leading	space

			111	 	 line													int

			112	 	 column											int

			113	 	 r																*bufio.Reader

			114	 	 field												bytes.Buffer

			115	 }

			116	

			117	 //	NewReader	returns	a	new	Reader	that	reads	from	r.

			118	 func	NewReader(r	io.Reader)	*Reader	{

			119	 	 return	&Reader{

			120	 	 	 Comma:	',',

			121	 	 	 r:					bufio.NewReader(r),

			122	 	 }

			123	 }

			124	

			125	 //	error	creates	a	new	ParseError	based	on	err.

			126	 func	(r	*Reader)	error(err	error)	error	{

			127	 	 return	&ParseError{

			128	 	 	 Line:			r.line,

			129	 	 	 Column:	r.column,

			130	 	 	 Err:				err,

			131	 	 }

			132	 }

			133	

			134	 //	Read	reads	one	record	from	r.		The	record	is	a	slice	of	strings	with	each

			135	 //	string	representing	one	field.

			136	 func	(r	*Reader)	Read()	(record	[]string,	err	error)	{

			137	 	 for	{

			138	 	 	 record,	err	=	r.parseRecord()

			139	 	 	 if	record	!=	nil	{

			140	 	 	 	 break

			141	 	 	 }

			142	 	 	 if	err	!=	nil	{

			143	 	 	 	 return	nil,	err

			144	 	 	 }

			145	 	 }

			146	

			147	 	 if	r.FieldsPerRecord	>	0	{

			148	 	 	 if	len(record)	!=	r.FieldsPerRecord	{

			149	 	 	 	 r.column	=	0	//	report	at	start	of	record

			150	 	 	 	 return	record,	r.error(ErrFieldCount)

			151	 	 	 }

			152	 	 }	else	if	r.FieldsPerRecord	==	0	{

			153	 	 	 r.FieldsPerRecord	=	len(record)

			154	 	 }

			155	 	 return	record,	nil

			156	 }

			157	

			158	 //	ReadAll	reads	all	the	remaining	records	from	r.

			159	 //	Each	record	is	a	slice	of	fields.

			160	 //	A	successful	call	returns	err	==	nil,	not	err	==	EOF.	Because	ReadAll	is

			161	 //	defined	to	read	until	EOF,	it	does	not	treat	end	of	file	as	an	error	to	be

			162	 //	reported.

			163	 func	(r	*Reader)	ReadAll()	(records	[][]string,	err	error)	{

			164	 	 for	{

			165	 	 	 record,	err	:=	r.Read()

			166	 	 	 if	err	==	io.EOF	{

			167	 	 	 	 return	records,	nil

			168	 	 	 }

			169	 	 	 if	err	!=	nil	{

			170	 	 	 	 return	nil,	err

			171	 	 	 }

			172	 	 	 records	=	append(records,	record)

			173	 	 }

			174	 	 panic("unreachable")

			175	 }

			176	

			177	 //	readRune	reads	one	rune	from	r,	folding	\r\n	to	\n	and	keeping	track

			178	 //	of	how	far	into	the	line	we	have	read.		r.column	will	point	to	the	start

			179	 //	of	this	rune,	not	the	end	of	this	rune.

			180	 func	(r	*Reader)	readRune()	(rune,	error)	{

			181	 	 r1,	_,	err	:=	r.r.ReadRune()

			182	

			183	 	 //	Handle	\r\n	here.		We	make	the	simplifying	assumption	that

			184	 	 //	anytime	\r	is	followed	by	\n	that	it	can	be	folded	to	\n.

			185	 	 //	We	will	not	detect	files	which	contain	both	\r\n	and	bare	\n.

			186	 	 if	r1	==	'\r'	{

			187	 	 	 r1,	_,	err	=	r.r.ReadRune()

			188	 	 	 if	err	==	nil	{

			189	 	 	 	 if	r1	!=	'\n'	{

			190	 	 	 	 	 r.r.UnreadRune()

			191	 	 	 	 	 r1	=	'\r'

			192	 	 	 	 }

			193	 	 	 }

			194	 	 }

			195	 	 r.column++

			196	 	 return	r1,	err

			197	 }

			198	

			199	 //	unreadRune	puts	the	last	rune	read	from	r	back.

			200	 func	(r	*Reader)	unreadRune()	{

			201	 	 r.r.UnreadRune()

			202	 	 r.column--

			203	 }

			204	

			205	 //	skip	reads	runes	up	to	and	including	the	rune	delim	or	until	error.

			206	 func	(r	*Reader)	skip(delim	rune)	error	{

			207	 	 for	{

			208	 	 	 r1,	err	:=	r.readRune()

			209	 	 	 if	err	!=	nil	{

			210	 	 	 	 return	err

			211	 	 	 }

			212	 	 	 if	r1	==	delim	{

			213	 	 	 	 return	nil

			214	 	 	 }

			215	 	 }

			216	 	 panic("unreachable")

			217	 }

			218	

			219	 //	parseRecord	reads	and	parses	a	single	csv	record	from	r.

			220	 func	(r	*Reader)	parseRecord()	(fields	[]string,	err	error)	{

			221	 	 //	Each	record	starts	on	a	new	line.		We	increment	our	line

			222	 	 //	number	(lines	start	at	1,	not	0)	and	set	column	to	-1

			223	 	 //	so	as	we	increment	in	readRune	it	points	to	the	character	we	read.

			224	 	 r.line++

			225	 	 r.column	=	-1

			226	

			227	 	 //	Peek	at	the	first	rune.		If	it	is	an	error	we	are	done.

			228	 	 //	If	we	are	support	comments	and	it	is	the	comment	character

			229	 	 //	then	skip	to	the	end	of	line.

			230	

			231	 	 r1,	_,	err	:=	r.r.ReadRune()

			232	 	 if	err	!=	nil	{

			233	 	 	 return	nil,	err

			234	 	 }

			235	

			236	 	 if	r.Comment	!=	0	&&	r1	==	r.Comment	{

			237	 	 	 return	nil,	r.skip('\n')

			238	 	 }

			239	 	 r.r.UnreadRune()

			240	

			241	 	 //	At	this	point	we	have	at	least	one	field.

			242	 	 for	{

			243	 	 	 haveField,	delim,	err	:=	r.parseField()

			244	 	 	 if	haveField	{

			245	 	 	 	 fields	=	append(fields,	r.field.String())

			246	 	 	 }

			247	 	 	 if	delim	==	'\n'	||	err	==	io.EOF	{

			248	 	 	 	 return	fields,	err

			249	 	 	 }	else	if	err	!=	nil	{

			250	 	 	 	 return	nil,	err

			251	 	 	 }

			252	 	 }

			253	 	 panic("unreachable")

			254	 }

			255	

			256	 //	parseField	parses	the	next	field	in	the	record.		The	read	field	is

			257	 //	located	in	r.field.		Delim	is	the	first	character	not	part	of	the	field

			258	 //	(r.Comma	or	'\n').

			259	 func	(r	*Reader)	parseField()	(haveField	bool,	delim	rune,	err	error)	{

			260	 	 r.field.Reset()

			261	

			262	 	 r1,	err	:=	r.readRune()

			263	 	 if	err	!=	nil	{

			264	 	 	 //	If	we	have	EOF	and	are	not	at	the	start	of	a	line

			265	 	 	 //	then	we	return	the	empty	field.		We	have	already

			266	 	 	 //	checked	for	trailing	commas	if	needed.

			267	 	 	 if	err	==	io.EOF	&&	r.column	!=	0	{

			268	 	 	 	 return	true,	0,	err

			269	 	 	 }

			270	 	 	 return	false,	0,	err

			271	 	 }

			272	

			273	 	 if	r.TrimLeadingSpace	{

			274	 	 	 for	r1	!=	'\n'	&&	unicode.IsSpace(r1)	{

			275	 	 	 	 r1,	err	=	r.readRune()

			276	 	 	 	 if	err	!=	nil	{

			277	 	 	 	 	 return	false,	0,	err

			278	 	 	 	 }

			279	 	 	 }

			280	 	 }

			281	

			282	 	 switch	r1	{

			283	 	 case	r.Comma:

			284	 	 	 //	will	check	below

			285	

			286	 	 case	'\n':

			287	 	 	 //	We	are	a	trailing	empty	field	or	a	blank	line

			288	 	 	 if	r.column	==	0	{

			289	 	 	 	 return	false,	r1,	nil

			290	 	 	 }

			291	 	 	 return	true,	r1,	nil

			292	

			293	 	 case	'"':

			294	 	 	 //	quoted	field

			295	 	 Quoted:

			296	 	 	 for	{

			297	 	 	 	 r1,	err	=	r.readRune()

			298	 	 	 	 if	err	!=	nil	{

			299	 	 	 	 	 if	err	==	io.EOF	{

			300	 	 	 	 	 	 if	r.LazyQuotes	{

			301	 	 	 	 	 	 	 return	true,	0,	err

			302	 	 	 	 	 	 }

			303	 	 	 	 	 	 return	false,	0,	r.error(ErrQuote)

			304	 	 	 	 	 }

			305	 	 	 	 	 return	false,	0,	err

			306	 	 	 	 }

			307	 	 	 	 switch	r1	{

			308	 	 	 	 case	'"':

			309	 	 	 	 	 r1,	err	=	r.readRune()

			310	 	 	 	 	 if	err	!=	nil	||	r1	==	r.Comma	{

			311	 	 	 	 	 	 break	Quoted

			312	 	 	 	 	 }

			313	 	 	 	 	 if	r1	==	'\n'	{

			314	 	 	 	 	 	 return	true,	r1,	nil

			315	 	 	 	 	 }

			316	 	 	 	 	 if	r1	!=	'"'	{

			317	 	 	 	 	 	 if	!r.LazyQuotes	{

			318	 	 	 	 	 	 	 r.column--

			319	 	 	 	 	 	 	 return	false,	0,	r.error(ErrQuote)

			320	 	 	 	 	 	 }

			321	 	 	 	 	 	 //	accept	the	bare	quote

			322	 	 	 	 	 	 r.field.WriteRune('"')

			323	 	 	 	 	 }

			324	 	 	 	 case	'\n':

			325	 	 	 	 	 r.line++

			326	 	 	 	 	 r.column	=	-1

			327	 	 	 	 }

			328	 	 	 	 r.field.WriteRune(r1)

			329	 	 	 }

			330	

			331	 	 default:

			332	 	 	 //	unquoted	field

			333	 	 	 for	{

			334	 	 	 	 r.field.WriteRune(r1)

			335	 	 	 	 r1,	err	=	r.readRune()

			336	 	 	 	 if	err	!=	nil	||	r1	==	r.Comma	{

			337	 	 	 	 	 break

			338	 	 	 	 }

			339	 	 	 	 if	r1	==	'\n'	{

			340	 	 	 	 	 return	true,	r1,	nil

			341	 	 	 	 }

			342	 	 	 	 if	!r.LazyQuotes	&&	r1	==	'"'	{

			343	 	 	 	 	 return	false,	0,	r.error(ErrBareQuote)

			344	 	 	 	 }

			345	 	 	 }

			346	 	 }

			347	

			348	 	 if	err	!=	nil	{

			349	 	 	 if	err	==	io.EOF	{

			350	 	 	 	 return	true,	0,	err

			351	 	 	 }

			352	 	 	 return	false,	0,	err

			353	 	 }

			354	

			355	 	 if	!r.TrailingComma	{

			356	 	 	 //	We	don't	allow	trailing	commas.		See	if	we

			357	 	 	 //	are	at	the	end	of	the	line	(being	mindful

			358	 	 	 //	of	trimming	spaces).

			359	 	 	 c	:=	r.column

			360	 	 	 r1,	err	=	r.readRune()

			361	 	 	 if	r.TrimLeadingSpace	{

			362	 	 	 	 for	r1	!=	'\n'	&&	unicode.IsSpace(r1)	{

			363	 	 	 	 	 r1,	err	=	r.readRune()

			364	 	 	 	 	 if	err	!=	nil	{

			365	 	 	 	 	 	 break

			366	 	 	 	 	 }

			367	 	 	 	 }

			368	 	 	 }

			369	 	 	 if	err	==	io.EOF	||	r1	==	'\n'	{

			370	 	 	 	 r.column	=	c	//	report	the	comma

			371	 	 	 	 return	false,	0,	r.error(ErrTrailingComma)

			372	 	 	 }

			373	 	 	 r.unreadRune()

			374	 	 }

			375	 	 return	true,	r1,	nil

			376	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/csv/writer.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	csv

					6	

					7	 import	(

					8	 	 "bufio"

					9	 	 "io"

				10	 	 "strings"

				11	 	 "unicode"

				12	 	 "unicode/utf8"

				13)

				14	

				15	 //	A	Writer	writes	records	to	a	CSV	encoded	file.

				16	 //

				17	 //	As	returned	by	NewWriter,	a	Writer	writes	records	terminated	by	a

				18	 //	newline	and	uses	','	as	the	field	delimiter.		The	exported	fields	can	be

				19	 //	changed	to	customize	the	details	before	the	first	call	to	Write	or	WriteAll.

				20	 //

				21	 //	Comma	is	the	field	delimiter.

				22	 //

				23	 //	If	UseCRLF	is	true,	the	Writer	ends	each	record	with	\r\n	instead	of	\n.

				24	 type	Writer	struct	{

				25	 	 Comma			rune	//	Field	delimiter	(set	to	to	','	by	NewWriter)

				26	 	 UseCRLF	bool	//	True	to	use	\r\n	as	the	line	terminator

				27	 	 w							*bufio.Writer

				28	 }

				29	

				30	 //	NewWriter	returns	a	new	Writer	that	writes	to	w.

				31	 func	NewWriter(w	io.Writer)	*Writer	{

				32	 	 return	&Writer{

				33	 	 	 Comma:	',',

				34	 	 	 w:					bufio.NewWriter(w),

				35	 	 }

				36	 }

				37	

				38	 //	Writer	writes	a	single	CSV	record	to	w	along	with	any	necessary	quoting.

				39	 //	A	record	is	a	slice	of	strings	with	each	string	being	one	field.

				40	 func	(w	*Writer)	Write(record	[]string)	(err	error)	{

				41	 	 for	n,	field	:=	range	record	{

				42	 	 	 if	n	>	0	{

				43	 	 	 	 if	_,	err	=	w.w.WriteRune(w.Comma);	err	!=	nil	{

				44	 	 	 	 	 return

				45	 	 	 	 }

				46	 	 	 }

				47	

				48	 	 	 //	If	we	don't	have	to	have	a	quoted	field	then	just

				49	 	 	 //	write	out	the	field	and	continue	to	the	next	field.

				50	 	 	 if	!w.fieldNeedsQuotes(field)	{

				51	 	 	 	 if	_,	err	=	w.w.WriteString(field);	err	!=	nil	{

				52	 	 	 	 	 return

				53	 	 	 	 }

				54	 	 	 	 continue

				55	 	 	 }

				56	 	 	 if	err	=	w.w.WriteByte('"');	err	!=	nil	{

				57	 	 	 	 return

				58	 	 	 }

				59	

				60	 	 	 for	_,	r1	:=	range	field	{

				61	 	 	 	 switch	r1	{

				62	 	 	 	 case	'"':

				63	 	 	 	 	 _,	err	=	w.w.WriteString(`""`)

				64	 	 	 	 case	'\r':

				65	 	 	 	 	 if	!w.UseCRLF	{

				66	 	 	 	 	 	 err	=	w.w.WriteByte('\r')

				67	 	 	 	 	 }

				68	 	 	 	 case	'\n':

				69	 	 	 	 	 if	w.UseCRLF	{

				70	 	 	 	 	 	 _,	err	=	w.w.WriteString("\r\n")

				71	 	 	 	 	 }	else	{

				72	 	 	 	 	 	 err	=	w.w.WriteByte('\n')

				73	 	 	 	 	 }

				74	 	 	 	 default:

				75	 	 	 	 	 _,	err	=	w.w.WriteRune(r1)

				76	 	 	 	 }

				77	 	 	 	 if	err	!=	nil	{

				78	 	 	 	 	 return

				79	 	 	 	 }

				80	 	 	 }

				81	

				82	 	 	 if	err	=	w.w.WriteByte('"');	err	!=	nil	{

				83	 	 	 	 return

				84	 	 	 }

				85	 	 }

				86	 	 if	w.UseCRLF	{

				87	 	 	 _,	err	=	w.w.WriteString("\r\n")

				88	 	 }	else	{

				89	 	 	 err	=	w.w.WriteByte('\n')

				90	 	 }

				91	 	 return

				92	 }

				93	

				94	 //	Flush	writes	any	buffered	data	to	the	underlying	io.Writer.

				95	 func	(w	*Writer)	Flush()	{

				96	 	 w.w.Flush()

				97	 }

				98	

				99	 //	WriteAll	writes	multiple	CSV	records	to	w	using	Write	and	then	calls	Flush.

			100	 func	(w	*Writer)	WriteAll(records	[][]string)	(err	error)	{

			101	 	 for	_,	record	:=	range	records	{

			102	 	 	 err	=	w.Write(record)

			103	 	 	 if	err	!=	nil	{

			104	 	 	 	 break

			105	 	 	 }

			106	 	 }

			107	 	 w.Flush()

			108	 	 return	nil

			109	 }

			110	

			111	 //	fieldNeedsQuotes	returns	true	if	our	field	must	be	enclosed	in	quotes.

			112	 //	Empty	fields,	files	with	a	Comma,	fields	with	a	quote	or	newline,	and

			113	 //	fields	which	start	with	a	space	must	be	enclosed	in	quotes.

			114	 func	(w	*Writer)	fieldNeedsQuotes(field	string)	bool	{

			115	 	 if	len(field)	==	0	||	strings.IndexRune(field,	w.Comma)	>=	0	||	strings.IndexAny(field,	"\"\r\n")	>=	0	{

			116	 	 	 return	true

			117	 	 }

			118	

			119	 	 r1,	_	:=	utf8.DecodeRuneInString(field)

			120	 	 return	unicode.IsSpace(r1)

			121	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/gob/decode.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	gob

					6	

					7	 //	TODO(rsc):	When	garbage	collector	changes,	revisit

					8	 //	the	allocations	in	this	file	that	use	unsafe.Pointer.

					9	

				10	 import	(

				11	 	 "bytes"

				12	 	 "errors"

				13	 	 "io"

				14	 	 "math"

				15	 	 "reflect"

				16	 	 "unsafe"

				17)

				18	

				19	 var	(

				20	 	 errBadUint	=	errors.New("gob:	encoded	unsigned	integer	out	of	range")

				21	 	 errBadType	=	errors.New("gob:	unknown	type	id	or	corrupted	data")

				22	 	 errRange			=	errors.New("gob:	bad	data:	field	numbers	out	of	bounds")

				23)

				24	

				25	 //	decoderState	is	the	execution	state	of	an	instance	of	the	decoder.	A	new	state

				26	 //	is	created	for	nested	objects.

				27	 type	decoderState	struct	{

				28	 	 dec	*Decoder

				29	 	 //	The	buffer	is	stored	with	an	extra	indirection	because	it	may	be	replaced

				30	 	 //	if	we	load	a	type	during	decode	(when	reading	an	interface	value).

				31	 	 b								*bytes.Buffer

				32	 	 fieldnum	int	//	the	last	field	number	read.

				33	 	 buf						[]byte

				34	 	 next					*decoderState	//	for	free	list

				35	 }

				36	

				37	 //	We	pass	the	bytes.Buffer	separately	for	easier	testing	of	the	infrastructure

				38	 //	without	requiring	a	full	Decoder.

				39	 func	(dec	*Decoder)	newDecoderState(buf	*bytes.Buffer)	*decoderState	{

				40	 	 d	:=	dec.freeList

				41	 	 if	d	==	nil	{

				42	 	 	 d	=	new(decoderState)

				43	 	 	 d.dec	=	dec

				44	 	 	 d.buf	=	make([]byte,	uint64Size)

				45	 	 }	else	{

				46	 	 	 dec.freeList	=	d.next

				47	 	 }

				48	 	 d.b	=	buf

				49	 	 return	d

				50	 }

				51	

				52	 func	(dec	*Decoder)	freeDecoderState(d	*decoderState)	{

				53	 	 d.next	=	dec.freeList

				54	 	 dec.freeList	=	d

				55	 }

				56	

				57	 func	overflow(name	string)	error	{

				58	 	 return	errors.New(`value	for	"`	+	name	+	`"	out	of	range`)

				59	 }

				60	

				61	 //	decodeUintReader	reads	an	encoded	unsigned	integer	from	an	io.Reader.

				62	 //	Used	only	by	the	Decoder	to	read	the	message	length.

				63	 func	decodeUintReader(r	io.Reader,	buf	[]byte)	(x	uint64,	width	int,	err	error)	{

				64	 	 width	=	1

				65	 	 _,	err	=	r.Read(buf[0:width])

				66	 	 if	err	!=	nil	{

				67	 	 	 return

				68	 	 }

				69	 	 b	:=	buf[0]

				70	 	 if	b	<=	0x7f	{

				71	 	 	 return	uint64(b),	width,	nil

				72	 	 }

				73	 	 n	:=	-int(int8(b))

				74	 	 if	n	>	uint64Size	{

				75	 	 	 err	=	errBadUint

				76	 	 	 return

				77	 	 }

				78	 	 width,	err	=	io.ReadFull(r,	buf[0:n])

				79	 	 if	err	!=	nil	{

				80	 	 	 if	err	==	io.EOF	{

				81	 	 	 	 err	=	io.ErrUnexpectedEOF

				82	 	 	 }

				83	 	 	 return

				84	 	 }

				85	 	 //	Could	check	that	the	high	byte	is	zero	but	it's	not	worth	it.

				86	 	 for	_,	b	:=	range	buf[0:width]	{

				87	 	 	 x	=	x<<8	|	uint64(b)

				88	 	 }

				89	 	 width++	//	+1	for	length	byte

				90	 	 return

				91	 }

				92	

				93	 //	decodeUint	reads	an	encoded	unsigned	integer	from	state.r.

				94	 //	Does	not	check	for	overflow.

				95	 func	(state	*decoderState)	decodeUint()	(x	uint64)	{

				96	 	 b,	err	:=	state.b.ReadByte()

				97	 	 if	err	!=	nil	{

				98	 	 	 error_(err)

				99	 	 }

			100	 	 if	b	<=	0x7f	{

			101	 	 	 return	uint64(b)

			102	 	 }

			103	 	 n	:=	-int(int8(b))

			104	 	 if	n	>	uint64Size	{

			105	 	 	 error_(errBadUint)

			106	 	 }

			107	 	 width,	err	:=	state.b.Read(state.buf[0:n])

			108	 	 if	err	!=	nil	{

			109	 	 	 error_(err)

			110	 	 }

			111	 	 //	Don't	need	to	check	error;	it's	safe	to	loop	regardless.

			112	 	 //	Could	check	that	the	high	byte	is	zero	but	it's	not	worth	it.

			113	 	 for	_,	b	:=	range	state.buf[0:width]	{

			114	 	 	 x	=	x<<8	|	uint64(b)

			115	 	 }

			116	 	 return	x

			117	 }

			118	

			119	 //	decodeInt	reads	an	encoded	signed	integer	from	state.r.

			120	 //	Does	not	check	for	overflow.

			121	 func	(state	*decoderState)	decodeInt()	int64	{

			122	 	 x	:=	state.decodeUint()

			123	 	 if	x&1	!=	0	{

			124	 	 	 return	^int64(x	>>	1)

			125	 	 }

			126	 	 return	int64(x	>>	1)

			127	 }

			128	

			129	 //	decOp	is	the	signature	of	a	decoding	operator	for	a	given	type.

			130	 type	decOp	func(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)

			131	

			132	 //	The	'instructions'	of	the	decoding	machine

			133	 type	decInstr	struct	{

			134	 	 op					decOp

			135	 	 field		int					//	field	number	of	the	wire	type

			136	 	 indir		int					//	how	many	pointer	indirections	to	reach	the	value	in	the	struct

			137	 	 offset	uintptr	//	offset	in	the	structure	of	the	field	to	encode

			138	 	 ovfl			error			//	error	message	for	overflow/underflow	(for	arrays,	of	the	elements)

			139	 }

			140	

			141	 //	Since	the	encoder	writes	no	zeros,	if	we	arrive	at	a	decoder	we	have

			142	 //	a	value	to	extract	and	store.		The	field	number	has	already	been	read

			143	 //	(it's	how	we	knew	to	call	this	decoder).

			144	 //	Each	decoder	is	responsible	for	handling	any	indirections	associated

			145	 //	with	the	data	structure.		If	any	pointer	so	reached	is	nil,	allocation	must

			146	 //	be	done.

			147	

			148	 //	Walk	the	pointer	hierarchy,	allocating	if	we	find	a	nil.		Stop	one	before	the	end.

			149	 func	decIndirect(p	unsafe.Pointer,	indir	int)	unsafe.Pointer	{

			150	 	 for	;	indir	>	1;	indir--	{

			151	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			152	 	 	 	 //	Allocation	required

			153	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new(unsafe.Pointer))

			154	 	 	 }

			155	 	 	 p	=	*(*unsafe.Pointer)(p)

			156	 	 }

			157	 	 return	p

			158	 }

			159	

			160	 //	ignoreUint	discards	a	uint	value	with	no	destination.

			161	 func	ignoreUint(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			162	 	 state.decodeUint()

			163	 }

			164	

			165	 //	ignoreTwoUints	discards	a	uint	value	with	no	destination.	It's	used	to	skip

			166	 //	complex	values.

			167	 func	ignoreTwoUints(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			168	 	 state.decodeUint()

			169	 	 state.decodeUint()

			170	 }

			171	

			172	 //	decBool	decodes	a	uint	and	stores	it	as	a	boolean	through	p.

			173	 func	decBool(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			174	 	 if	i.indir	>	0	{

			175	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			176	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new(bool))

			177	 	 	 }

			178	 	 	 p	=	*(*unsafe.Pointer)(p)

			179	 	 }

			180	 	 *(*bool)(p)	=	state.decodeUint()	!=	0

			181	 }

			182	

			183	 //	decInt8	decodes	an	integer	and	stores	it	as	an	int8	through	p.

			184	 func	decInt8(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			185	 	 if	i.indir	>	0	{

			186	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			187	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new(int8))

			188	 	 	 }

			189	 	 	 p	=	*(*unsafe.Pointer)(p)

			190	 	 }

			191	 	 v	:=	state.decodeInt()

			192	 	 if	v	<	math.MinInt8	||	math.MaxInt8	<	v	{

			193	 	 	 error_(i.ovfl)

			194	 	 }	else	{

			195	 	 	 *(*int8)(p)	=	int8(v)

			196	 	 }

			197	 }

			198	

			199	 //	decUint8	decodes	an	unsigned	integer	and	stores	it	as	a	uint8	through	p.

			200	 func	decUint8(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			201	 	 if	i.indir	>	0	{

			202	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			203	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new(uint8))

			204	 	 	 }

			205	 	 	 p	=	*(*unsafe.Pointer)(p)

			206	 	 }

			207	 	 v	:=	state.decodeUint()

			208	 	 if	math.MaxUint8	<	v	{

			209	 	 	 error_(i.ovfl)

			210	 	 }	else	{

			211	 	 	 *(*uint8)(p)	=	uint8(v)

			212	 	 }

			213	 }

			214	

			215	 //	decInt16	decodes	an	integer	and	stores	it	as	an	int16	through	p.

			216	 func	decInt16(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			217	 	 if	i.indir	>	0	{

			218	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			219	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new(int16))

			220	 	 	 }

			221	 	 	 p	=	*(*unsafe.Pointer)(p)

			222	 	 }

			223	 	 v	:=	state.decodeInt()

			224	 	 if	v	<	math.MinInt16	||	math.MaxInt16	<	v	{

			225	 	 	 error_(i.ovfl)

			226	 	 }	else	{

			227	 	 	 *(*int16)(p)	=	int16(v)

			228	 	 }

			229	 }

			230	

			231	 //	decUint16	decodes	an	unsigned	integer	and	stores	it	as	a	uint16	through	p.

			232	 func	decUint16(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			233	 	 if	i.indir	>	0	{

			234	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			235	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new(uint16))

			236	 	 	 }

			237	 	 	 p	=	*(*unsafe.Pointer)(p)

			238	 	 }

			239	 	 v	:=	state.decodeUint()

			240	 	 if	math.MaxUint16	<	v	{

			241	 	 	 error_(i.ovfl)

			242	 	 }	else	{

			243	 	 	 *(*uint16)(p)	=	uint16(v)

			244	 	 }

			245	 }

			246	

			247	 //	decInt32	decodes	an	integer	and	stores	it	as	an	int32	through	p.

			248	 func	decInt32(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			249	 	 if	i.indir	>	0	{

			250	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			251	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new(int32))

			252	 	 	 }

			253	 	 	 p	=	*(*unsafe.Pointer)(p)

			254	 	 }

			255	 	 v	:=	state.decodeInt()

			256	 	 if	v	<	math.MinInt32	||	math.MaxInt32	<	v	{

			257	 	 	 error_(i.ovfl)

			258	 	 }	else	{

			259	 	 	 *(*int32)(p)	=	int32(v)

			260	 	 }

			261	 }

			262	

			263	 //	decUint32	decodes	an	unsigned	integer	and	stores	it	as	a	uint32	through	p.

			264	 func	decUint32(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			265	 	 if	i.indir	>	0	{

			266	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			267	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new(uint32))

			268	 	 	 }

			269	 	 	 p	=	*(*unsafe.Pointer)(p)

			270	 	 }

			271	 	 v	:=	state.decodeUint()

			272	 	 if	math.MaxUint32	<	v	{

			273	 	 	 error_(i.ovfl)

			274	 	 }	else	{

			275	 	 	 *(*uint32)(p)	=	uint32(v)

			276	 	 }

			277	 }

			278	

			279	 //	decInt64	decodes	an	integer	and	stores	it	as	an	int64	through	p.

			280	 func	decInt64(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			281	 	 if	i.indir	>	0	{

			282	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			283	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new(int64))

			284	 	 	 }

			285	 	 	 p	=	*(*unsafe.Pointer)(p)

			286	 	 }

			287	 	 *(*int64)(p)	=	int64(state.decodeInt())

			288	 }

			289	

			290	 //	decUint64	decodes	an	unsigned	integer	and	stores	it	as	a	uint64	through	p.

			291	 func	decUint64(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			292	 	 if	i.indir	>	0	{

			293	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			294	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new(uint64))

			295	 	 	 }

			296	 	 	 p	=	*(*unsafe.Pointer)(p)

			297	 	 }

			298	 	 *(*uint64)(p)	=	uint64(state.decodeUint())

			299	 }

			300	

			301	 //	Floating-point	numbers	are	transmitted	as	uint64s	holding	the	bits

			302	 //	of	the	underlying	representation.		They	are	sent	byte-reversed,	with

			303	 //	the	exponent	end	coming	out	first,	so	integer	floating	point	numbers

			304	 //	(for	example)	transmit	more	compactly.		This	routine	does	the

			305	 //	unswizzling.

			306	 func	floatFromBits(u	uint64)	float64	{

			307	 	 var	v	uint64

			308	 	 for	i	:=	0;	i	<	8;	i++	{

			309	 	 	 v	<<=	8

			310	 	 	 v	|=	u	&	0xFF

			311	 	 	 u	>>=	8

			312	 	 }

			313	 	 return	math.Float64frombits(v)

			314	 }

			315	

			316	 //	storeFloat32	decodes	an	unsigned	integer,	treats	it	as	a	32-bit	floating-point

			317	 //	number,	and	stores	it	through	p.	It's	a	helper	function	for	float32	and	complex64.

			318	 func	storeFloat32(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			319	 	 v	:=	floatFromBits(state.decodeUint())

			320	 	 av	:=	v

			321	 	 if	av	<	0	{

			322	 	 	 av	=	-av

			323	 	 }

			324	 	 //	+Inf	is	OK	in	both	32-	and	64-bit	floats.		Underflow	is	always	OK.

			325	 	 if	math.MaxFloat32	<	av	&&	av	<=	math.MaxFloat64	{

			326	 	 	 error_(i.ovfl)

			327	 	 }	else	{

			328	 	 	 *(*float32)(p)	=	float32(v)

			329	 	 }

			330	 }

			331	

			332	 //	decFloat32	decodes	an	unsigned	integer,	treats	it	as	a	32-bit	floating-point

			333	 //	number,	and	stores	it	through	p.

			334	 func	decFloat32(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			335	 	 if	i.indir	>	0	{

			336	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			337	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new(float32))

			338	 	 	 }

			339	 	 	 p	=	*(*unsafe.Pointer)(p)

			340	 	 }

			341	 	 storeFloat32(i,	state,	p)

			342	 }

			343	

			344	 //	decFloat64	decodes	an	unsigned	integer,	treats	it	as	a	64-bit	floating-point

			345	 //	number,	and	stores	it	through	p.

			346	 func	decFloat64(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			347	 	 if	i.indir	>	0	{

			348	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			349	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new(float64))

			350	 	 	 }

			351	 	 	 p	=	*(*unsafe.Pointer)(p)

			352	 	 }

			353	 	 *(*float64)(p)	=	floatFromBits(uint64(state.decodeUint()))

			354	 }

			355	

			356	 //	decComplex64	decodes	a	pair	of	unsigned	integers,	treats	them	as	a

			357	 //	pair	of	floating	point	numbers,	and	stores	them	as	a	complex64	through	p.

			358	 //	The	real	part	comes	first.

			359	 func	decComplex64(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			360	 	 if	i.indir	>	0	{

			361	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			362	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new(complex64))

			363	 	 	 }

			364	 	 	 p	=	*(*unsafe.Pointer)(p)

			365	 	 }

			366	 	 storeFloat32(i,	state,	p)

			367	 	 storeFloat32(i,	state,	unsafe.Pointer(uintptr(p)+unsafe.Sizeof(float32(0))))

			368	 }

			369	

			370	 //	decComplex128	decodes	a	pair	of	unsigned	integers,	treats	them	as	a

			371	 //	pair	of	floating	point	numbers,	and	stores	them	as	a	complex128	through	p.

			372	 //	The	real	part	comes	first.

			373	 func	decComplex128(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			374	 	 if	i.indir	>	0	{

			375	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			376	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new(complex128))

			377	 	 	 }

			378	 	 	 p	=	*(*unsafe.Pointer)(p)

			379	 	 }

			380	 	 real	:=	floatFromBits(uint64(state.decodeUint()))

			381	 	 imag	:=	floatFromBits(uint64(state.decodeUint()))

			382	 	 *(*complex128)(p)	=	complex(real,	imag)

			383	 }

			384	

			385	 //	decUint8Slice	decodes	a	byte	slice	and	stores	through	p	a	slice	header

			386	 //	describing	the	data.

			387	 //	uint8	slices	are	encoded	as	an	unsigned	count	followed	by	the	raw	bytes.

			388	 func	decUint8Slice(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			389	 	 if	i.indir	>	0	{

			390	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			391	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new([]uint8))

			392	 	 	 }

			393	 	 	 p	=	*(*unsafe.Pointer)(p)

			394	 	 }

			395	 	 n	:=	state.decodeUint()

			396	 	 if	n	>	uint64(state.b.Len())	{

			397	 	 	 errorf("length	of	[]byte	exceeds	input	size	(%d	bytes)",	n)

			398	 	 }

			399	 	 slice	:=	(*[]uint8)(p)

			400	 	 if	uint64(cap(*slice))	<	n	{

			401	 	 	 *slice	=	make([]uint8,	n)

			402	 	 }	else	{

			403	 	 	 *slice	=	(*slice)[0:n]

			404	 	 }

			405	 	 if	_,	err	:=	state.b.Read(*slice);	err	!=	nil	{

			406	 	 	 errorf("error	decoding	[]byte:	%s",	err)

			407	 	 }

			408	 }

			409	

			410	 //	decString	decodes	byte	array	and	stores	through	p	a	string	header

			411	 //	describing	the	data.

			412	 //	Strings	are	encoded	as	an	unsigned	count	followed	by	the	raw	bytes.

			413	 func	decString(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			414	 	 if	i.indir	>	0	{

			415	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			416	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(new(string))

			417	 	 	 }

			418	 	 	 p	=	*(*unsafe.Pointer)(p)

			419	 	 }

			420	 	 n	:=	state.decodeUint()

			421	 	 if	n	>	uint64(state.b.Len())	{

			422	 	 	 errorf("string	length	exceeds	input	size	(%d	bytes)",	n)

			423	 	 }

			424	 	 b	:=	make([]byte,	n)

			425	 	 state.b.Read(b)

			426	 	 //	It	would	be	a	shame	to	do	the	obvious	thing	here,

			427	 	 //	 *(*string)(p)	=	string(b)

			428	 	 //	because	we've	already	allocated	the	storage	and	this	would

			429	 	 //	allocate	again	and	copy.		So	we	do	this	ugly	hack,	which	is	even

			430	 	 //	even	more	unsafe	than	it	looks	as	it	depends	the	memory

			431	 	 //	representation	of	a	string	matching	the	beginning	of	the	memory

			432	 	 //	representation	of	a	byte	slice	(a	byte	slice	is	longer).

			433	 	 *(*string)(p)	=	*(*string)(unsafe.Pointer(&b))

			434	 }

			435	

			436	 //	ignoreUint8Array	skips	over	the	data	for	a	byte	slice	value	with	no	destination.

			437	 func	ignoreUint8Array(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			438	 	 b	:=	make([]byte,	state.decodeUint())

			439	 	 state.b.Read(b)

			440	 }

			441	

			442	 //	Execution	engine

			443	

			444	 //	The	encoder	engine	is	an	array	of	instructions	indexed	by	field	number	of	the	incoming

			445	 //	decoder.		It	is	executed	with	random	access	according	to	field	number.

			446	 type	decEngine	struct	{

			447	 	 instr				[]decInstr

			448	 	 numInstr	int	//	the	number	of	active	instructions

			449	 }

			450	

			451	 //	allocate	makes	sure	storage	is	available	for	an	object	of	underlying	type	rtyp

			452	 //	that	is	indir	levels	of	indirection	through	p.

			453	 func	allocate(rtyp	reflect.Type,	p	uintptr,	indir	int)	uintptr	{

			454	 	 if	indir	==	0	{

			455	 	 	 return	p

			456	 	 }

			457	 	 up	:=	unsafe.Pointer(p)

			458	 	 if	indir	>	1	{

			459	 	 	 up	=	decIndirect(up,	indir)

			460	 	 }

			461	 	 if	*(*unsafe.Pointer)(up)	==	nil	{

			462	 	 	 //	Allocate	object.

			463	 	 	 *(*unsafe.Pointer)(up)	=	unsafe.Pointer(reflect.New(rtyp).Pointer())

			464	 	 }

			465	 	 return	*(*uintptr)(up)

			466	 }

			467	

			468	 //	decodeSingle	decodes	a	top-level	value	that	is	not	a	struct	and	stores	it	through	p.

			469	 //	Such	values	are	preceded	by	a	zero,	making	them	have	the	memory	layout	of	a

			470	 //	struct	field	(although	with	an	illegal	field	number).

			471	 func	(dec	*Decoder)	decodeSingle(engine	*decEngine,	ut	*userTypeInfo,	basep	uintptr)	{

			472	 	 state	:=	dec.newDecoderState(&dec.buf)

			473	 	 state.fieldnum	=	singletonField

			474	 	 delta	:=	int(state.decodeUint())

			475	 	 if	delta	!=	0	{

			476	 	 	 errorf("decode:	corrupted	data:	non-zero	delta	for	singleton")

			477	 	 }

			478	 	 instr	:=	&engine.instr[singletonField]

			479	 	 if	instr.indir	!=	ut.indir	{

			480	 	 	 errorf("internal	error:	inconsistent	indirection	instr	%d	ut	%d",	instr.indir,	ut.indir)

			481	 	 }

			482	 	 ptr	:=	unsafe.Pointer(basep)	//	offset	will	be	zero

			483	 	 if	instr.indir	>	1	{

			484	 	 	 ptr	=	decIndirect(ptr,	instr.indir)

			485	 	 }

			486	 	 instr.op(instr,	state,	ptr)

			487	 	 dec.freeDecoderState(state)

			488	 }

			489	

			490	 //	decodeStruct	decodes	a	top-level	struct	and	stores	it	through	p.

			491	 //	Indir	is	for	the	value,	not	the	type.		At	the	time	of	the	call	it	may

			492	 //	differ	from	ut.indir,	which	was	computed	when	the	engine	was	built.

			493	 //	This	state	cannot	arise	for	decodeSingle,	which	is	called	directly

			494	 //	from	the	user's	value,	not	from	the	innards	of	an	engine.

			495	 func	(dec	*Decoder)	decodeStruct(engine	*decEngine,	ut	*userTypeInfo,	p	uintptr,	indir	int)	{

			496	 	 p	=	allocate(ut.base,	p,	indir)

			497	 	 state	:=	dec.newDecoderState(&dec.buf)

			498	 	 state.fieldnum	=	-1

			499	 	 basep	:=	p

			500	 	 for	state.b.Len()	>	0	{

			501	 	 	 delta	:=	int(state.decodeUint())

			502	 	 	 if	delta	<	0	{

			503	 	 	 	 errorf("decode:	corrupted	data:	negative	delta")

			504	 	 	 }

			505	 	 	 if	delta	==	0	{	//	struct	terminator	is	zero	delta	fieldnum

			506	 	 	 	 break

			507	 	 	 }

			508	 	 	 fieldnum	:=	state.fieldnum	+	delta

			509	 	 	 if	fieldnum	>=	len(engine.instr)	{

			510	 	 	 	 error_(errRange)

			511	 	 	 	 break

			512	 	 	 }

			513	 	 	 instr	:=	&engine.instr[fieldnum]

			514	 	 	 p	:=	unsafe.Pointer(basep	+	instr.offset)

			515	 	 	 if	instr.indir	>	1	{

			516	 	 	 	 p	=	decIndirect(p,	instr.indir)

			517	 	 	 }

			518	 	 	 instr.op(instr,	state,	p)

			519	 	 	 state.fieldnum	=	fieldnum

			520	 	 }

			521	 	 dec.freeDecoderState(state)

			522	 }

			523	

			524	 //	ignoreStruct	discards	the	data	for	a	struct	with	no	destination.

			525	 func	(dec	*Decoder)	ignoreStruct(engine	*decEngine)	{

			526	 	 state	:=	dec.newDecoderState(&dec.buf)

			527	 	 state.fieldnum	=	-1

			528	 	 for	state.b.Len()	>	0	{

			529	 	 	 delta	:=	int(state.decodeUint())

			530	 	 	 if	delta	<	0	{

			531	 	 	 	 errorf("ignore	decode:	corrupted	data:	negative	delta")

			532	 	 	 }

			533	 	 	 if	delta	==	0	{	//	struct	terminator	is	zero	delta	fieldnum

			534	 	 	 	 break

			535	 	 	 }

			536	 	 	 fieldnum	:=	state.fieldnum	+	delta

			537	 	 	 if	fieldnum	>=	len(engine.instr)	{

			538	 	 	 	 error_(errRange)

			539	 	 	 }

			540	 	 	 instr	:=	&engine.instr[fieldnum]

			541	 	 	 instr.op(instr,	state,	unsafe.Pointer(nil))

			542	 	 	 state.fieldnum	=	fieldnum

			543	 	 }

			544	 	 dec.freeDecoderState(state)

			545	 }

			546	

			547	 //	ignoreSingle	discards	the	data	for	a	top-level	non-struct	value	with	no

			548	 //	destination.	It's	used	when	calling	Decode	with	a	nil	value.

			549	 func	(dec	*Decoder)	ignoreSingle(engine	*decEngine)	{

			550	 	 state	:=	dec.newDecoderState(&dec.buf)

			551	 	 state.fieldnum	=	singletonField

			552	 	 delta	:=	int(state.decodeUint())

			553	 	 if	delta	!=	0	{

			554	 	 	 errorf("decode:	corrupted	data:	non-zero	delta	for	singleton")

			555	 	 }

			556	 	 instr	:=	&engine.instr[singletonField]

			557	 	 instr.op(instr,	state,	unsafe.Pointer(nil))

			558	 	 dec.freeDecoderState(state)

			559	 }

			560	

			561	 //	decodeArrayHelper	does	the	work	for	decoding	arrays	and	slices.

			562	 func	(dec	*Decoder)	decodeArrayHelper(state	*decoderState,	p	uintptr,	elemOp	decOp,	elemWid	uintptr,	length,	elemIndir	int,	ovfl	error)	{

			563	 	 instr	:=	&decInstr{elemOp,	0,	elemIndir,	0,	ovfl}

			564	 	 for	i	:=	0;	i	<	length;	i++	{

			565	 	 	 up	:=	unsafe.Pointer(p)

			566	 	 	 if	elemIndir	>	1	{

			567	 	 	 	 up	=	decIndirect(up,	elemIndir)

			568	 	 	 }

			569	 	 	 elemOp(instr,	state,	up)

			570	 	 	 p	+=	uintptr(elemWid)

			571	 	 }

			572	 }

			573	

			574	 //	decodeArray	decodes	an	array	and	stores	it	through	p,	that	is,	p	points	to	the	zeroth	element.

			575	 //	The	length	is	an	unsigned	integer	preceding	the	elements.		Even	though	the	length	is	redundant

			576	 //	(it's	part	of	the	type),	it's	a	useful	check	and	is	included	in	the	encoding.

			577	 func	(dec	*Decoder)	decodeArray(atyp	reflect.Type,	state	*decoderState,	p	uintptr,	elemOp	decOp,	elemWid	uintptr,	length,	indir,	elemIndir	int,	ovfl	error)	{

			578	 	 if	indir	>	0	{

			579	 	 	 p	=	allocate(atyp,	p,	1)	//	All	but	the	last	level	has	been	allocated	by	dec.Indirect

			580	 	 }

			581	 	 if	n	:=	state.decodeUint();	n	!=	uint64(length)	{

			582	 	 	 errorf("length	mismatch	in	decodeArray")

			583	 	 }

			584	 	 dec.decodeArrayHelper(state,	p,	elemOp,	elemWid,	length,	elemIndir,	ovfl)

			585	 }

			586	

			587	 //	decodeIntoValue	is	a	helper	for	map	decoding.		Since	maps	are	decoded	using	reflection,

			588	 //	unlike	the	other	items	we	can't	use	a	pointer	directly.

			589	 func	decodeIntoValue(state	*decoderState,	op	decOp,	indir	int,	v	reflect.Value,	ovfl	error)	reflect.Value	{

			590	 	 instr	:=	&decInstr{op,	0,	indir,	0,	ovfl}

			591	 	 up	:=	unsafe.Pointer(unsafeAddr(v))

			592	 	 if	indir	>	1	{

			593	 	 	 up	=	decIndirect(up,	indir)

			594	 	 }

			595	 	 op(instr,	state,	up)

			596	 	 return	v

			597	 }

			598	

			599	 //	decodeMap	decodes	a	map	and	stores	its	header	through	p.

			600	 //	Maps	are	encoded	as	a	length	followed	by	key:value	pairs.

			601	 //	Because	the	internals	of	maps	are	not	visible	to	us,	we	must

			602	 //	use	reflection	rather	than	pointer	magic.

			603	 func	(dec	*Decoder)	decodeMap(mtyp	reflect.Type,	state	*decoderState,	p	uintptr,	keyOp,	elemOp	decOp,	indir,	keyIndir,	elemIndir	int,	ovfl	error)	{

			604	 	 if	indir	>	0	{

			605	 	 	 p	=	allocate(mtyp,	p,	1)	//	All	but	the	last	level	has	been	allocated	by	dec.Indirect

			606	 	 }

			607	 	 up	:=	unsafe.Pointer(p)

			608	 	 if	*(*unsafe.Pointer)(up)	==	nil	{	//	maps	are	represented	as	a	pointer	in	the	runtime

			609	 	 	 //	Allocate	map.

			610	 	 	 *(*unsafe.Pointer)(up)	=	unsafe.Pointer(reflect.MakeMap(mtyp).Pointer())

			611	 	 }

			612	 	 //	Maps	cannot	be	accessed	by	moving	addresses	around	the	way

			613	 	 //	that	slices	etc.	can.		We	must	recover	a	full	reflection	value	for

			614	 	 //	the	iteration.

			615	 	 v	:=	reflect.NewAt(mtyp,	unsafe.Pointer(p)).Elem()

			616	 	 n	:=	int(state.decodeUint())

			617	 	 for	i	:=	0;	i	<	n;	i++	{

			618	 	 	 key	:=	decodeIntoValue(state,	keyOp,	keyIndir,	allocValue(mtyp.Key()),	ovfl)

			619	 	 	 elem	:=	decodeIntoValue(state,	elemOp,	elemIndir,	allocValue(mtyp.Elem()),	ovfl)

			620	 	 	 v.SetMapIndex(key,	elem)

			621	 	 }

			622	 }

			623	

			624	 //	ignoreArrayHelper	does	the	work	for	discarding	arrays	and	slices.

			625	 func	(dec	*Decoder)	ignoreArrayHelper(state	*decoderState,	elemOp	decOp,	length	int)	{

			626	 	 instr	:=	&decInstr{elemOp,	0,	0,	0,	errors.New("no	error")}

			627	 	 for	i	:=	0;	i	<	length;	i++	{

			628	 	 	 elemOp(instr,	state,	nil)

			629	 	 }

			630	 }

			631	

			632	 //	ignoreArray	discards	the	data	for	an	array	value	with	no	destination.

			633	 func	(dec	*Decoder)	ignoreArray(state	*decoderState,	elemOp	decOp,	length	int)	{

			634	 	 if	n	:=	state.decodeUint();	n	!=	uint64(length)	{

			635	 	 	 errorf("length	mismatch	in	ignoreArray")

			636	 	 }

			637	 	 dec.ignoreArrayHelper(state,	elemOp,	length)

			638	 }

			639	

			640	 //	ignoreMap	discards	the	data	for	a	map	value	with	no	destination.

			641	 func	(dec	*Decoder)	ignoreMap(state	*decoderState,	keyOp,	elemOp	decOp)	{

			642	 	 n	:=	int(state.decodeUint())

			643	 	 keyInstr	:=	&decInstr{keyOp,	0,	0,	0,	errors.New("no	error")}

			644	 	 elemInstr	:=	&decInstr{elemOp,	0,	0,	0,	errors.New("no	error")}

			645	 	 for	i	:=	0;	i	<	n;	i++	{

			646	 	 	 keyOp(keyInstr,	state,	nil)

			647	 	 	 elemOp(elemInstr,	state,	nil)

			648	 	 }

			649	 }

			650	

			651	 //	decodeSlice	decodes	a	slice	and	stores	the	slice	header	through	p.

			652	 //	Slices	are	encoded	as	an	unsigned	length	followed	by	the	elements.

			653	 func	(dec	*Decoder)	decodeSlice(atyp	reflect.Type,	state	*decoderState,	p	uintptr,	elemOp	decOp,	elemWid	uintptr,	indir,	elemIndir	int,	ovfl	error)	{

			654	 	 nr	:=	state.decodeUint()

			655	 	 if	nr	>	uint64(state.b.Len())	{

			656	 	 	 errorf("length	of	slice	exceeds	input	size	(%d	elements)",	nr)

			657	 	 }

			658	 	 n	:=	int(nr)

			659	 	 if	indir	>	0	{

			660	 	 	 up	:=	unsafe.Pointer(p)

			661	 	 	 if	*(*unsafe.Pointer)(up)	==	nil	{

			662	 	 	 	 //	Allocate	the	slice	header.

			663	 	 	 	 *(*unsafe.Pointer)(up)	=	unsafe.Pointer(new([]unsafe.Pointer))

			664	 	 	 }

			665	 	 	 p	=	*(*uintptr)(up)

			666	 	 }

			667	 	 //	Allocate	storage	for	the	slice	elements,	that	is,	the	underlying	array,

			668	 	 //	if	the	existing	slice	does	not	have	the	capacity.

			669	 	 //	Always	write	a	header	at	p.

			670	 	 hdrp	:=	(*reflect.SliceHeader)(unsafe.Pointer(p))

			671	 	 if	hdrp.Cap	<	n	{

			672	 	 	 hdrp.Data	=	reflect.MakeSlice(atyp,	n,	n).Pointer()

			673	 	 	 hdrp.Cap	=	n

			674	 	 }

			675	 	 hdrp.Len	=	n

			676	 	 dec.decodeArrayHelper(state,	hdrp.Data,	elemOp,	elemWid,	n,	elemIndir,	ovfl)

			677	 }

			678	

			679	 //	ignoreSlice	skips	over	the	data	for	a	slice	value	with	no	destination.

			680	 func	(dec	*Decoder)	ignoreSlice(state	*decoderState,	elemOp	decOp)	{

			681	 	 dec.ignoreArrayHelper(state,	elemOp,	int(state.decodeUint()))

			682	 }

			683	

			684	 //	setInterfaceValue	sets	an	interface	value	to	a	concrete	value,

			685	 //	but	first	it	checks	that	the	assignment	will	succeed.

			686	 func	setInterfaceValue(ivalue	reflect.Value,	value	reflect.Value)	{

			687	 	 if	!value.Type().AssignableTo(ivalue.Type())	{

			688	 	 	 errorf("cannot	assign	value	of	type	%s	to	%s",	value.Type(),	ivalue.Type())

			689	 	 }

			690	 	 ivalue.Set(value)

			691	 }

			692	

			693	 //	decodeInterface	decodes	an	interface	value	and	stores	it	through	p.

			694	 //	Interfaces	are	encoded	as	the	name	of	a	concrete	type	followed	by	a	value.

			695	 //	If	the	name	is	empty,	the	value	is	nil	and	no	value	is	sent.

			696	 func	(dec	*Decoder)	decodeInterface(ityp	reflect.Type,	state	*decoderState,	p	uintptr,	indir	int)	{

			697	 	 //	Create	a	writable	interface	reflect.Value.		We	need	one	even	for	the	nil	case.

			698	 	 ivalue	:=	allocValue(ityp)

			699	 	 //	Read	the	name	of	the	concrete	type.

			700	 	 nr	:=	state.decodeUint()

			701	 	 if	nr	<	0	||	nr	>	1<<31	{	//	zero	is	permissible	for	anonymous	types

			702	 	 	 errorf("invalid	type	name	length	%d",	nr)

			703	 	 }

			704	 	 b	:=	make([]byte,	nr)

			705	 	 state.b.Read(b)

			706	 	 name	:=	string(b)

			707	 	 if	name	==	""	{

			708	 	 	 //	Copy	the	representation	of	the	nil	interface	value	to	the	target.

			709	 	 	 //	This	is	horribly	unsafe	and	special.

			710	 	 	 if	indir	>	0	{

			711	 	 	 	 p	=	allocate(ityp,	p,	1)	//	All	but	the	last	level	has	been	allocated	by	dec.Indirect

			712	 	 	 }

			713	 	 	 *(*[2]uintptr)(unsafe.Pointer(p))	=	ivalue.InterfaceData()

			714	 	 	 return

			715	 	 }

			716	 	 if	len(name)	>	1024	{

			717	 	 	 errorf("name	too	long	(%d	bytes):	%.20q...",	len(name),	name)

			718	 	 }

			719	 	 //	The	concrete	type	must	be	registered.

			720	 	 typ,	ok	:=	nameToConcreteType[name]

			721	 	 if	!ok	{

			722	 	 	 errorf("name	not	registered	for	interface:	%q",	name)

			723	 	 }

			724	 	 //	Read	the	type	id	of	the	concrete	value.

			725	 	 concreteId	:=	dec.decodeTypeSequence(true)

			726	 	 if	concreteId	<	0	{

			727	 	 	 error_(dec.err)

			728	 	 }

			729	 	 //	Byte	count	of	value	is	next;	we	don't	care	what	it	is	(it's	there

			730	 	 //	in	case	we	want	to	ignore	the	value	by	skipping	it	completely).

			731	 	 state.decodeUint()

			732	 	 //	Read	the	concrete	value.

			733	 	 value	:=	allocValue(typ)

			734	 	 dec.decodeValue(concreteId,	value)

			735	 	 if	dec.err	!=	nil	{

			736	 	 	 error_(dec.err)

			737	 	 }

			738	 	 //	Allocate	the	destination	interface	value.

			739	 	 if	indir	>	0	{

			740	 	 	 p	=	allocate(ityp,	p,	1)	//	All	but	the	last	level	has	been	allocated	by	dec.Indirect

			741	 	 }

			742	 	 //	Assign	the	concrete	value	to	the	interface.

			743	 	 //	Tread	carefully;	it	might	not	satisfy	the	interface.

			744	 	 setInterfaceValue(ivalue,	value)

			745	 	 //	Copy	the	representation	of	the	interface	value	to	the	target.

			746	 	 //	This	is	horribly	unsafe	and	special.

			747	 	 *(*[2]uintptr)(unsafe.Pointer(p))	=	ivalue.InterfaceData()

			748	 }

			749	

			750	 //	ignoreInterface	discards	the	data	for	an	interface	value	with	no	destination.

			751	 func	(dec	*Decoder)	ignoreInterface(state	*decoderState)	{

			752	 	 //	Read	the	name	of	the	concrete	type.

			753	 	 b	:=	make([]byte,	state.decodeUint())

			754	 	 _,	err	:=	state.b.Read(b)

			755	 	 if	err	!=	nil	{

			756	 	 	 error_(err)

			757	 	 }

			758	 	 id	:=	dec.decodeTypeSequence(true)

			759	 	 if	id	<	0	{

			760	 	 	 error_(dec.err)

			761	 	 }

			762	 	 //	At	this	point,	the	decoder	buffer	contains	a	delimited	value.	Just	toss	it.

			763	 	 state.b.Next(int(state.decodeUint()))

			764	 }

			765	

			766	 //	decodeGobDecoder	decodes	something	implementing	the	GobDecoder	interface.

			767	 //	The	data	is	encoded	as	a	byte	slice.

			768	 func	(dec	*Decoder)	decodeGobDecoder(state	*decoderState,	v	reflect.Value)	{

			769	 	 //	Read	the	bytes	for	the	value.

			770	 	 b	:=	make([]byte,	state.decodeUint())

			771	 	 _,	err	:=	state.b.Read(b)

			772	 	 if	err	!=	nil	{

			773	 	 	 error_(err)

			774	 	 }

			775	 	 //	We	know	it's	a	GobDecoder,	so	just	call	the	method	directly.

			776	 	 err	=	v.Interface().(GobDecoder).GobDecode(b)

			777	 	 if	err	!=	nil	{

			778	 	 	 error_(err)

			779	 	 }

			780	 }

			781	

			782	 //	ignoreGobDecoder	discards	the	data	for	a	GobDecoder	value	with	no	destination.

			783	 func	(dec	*Decoder)	ignoreGobDecoder(state	*decoderState)	{

			784	 	 //	Read	the	bytes	for	the	value.

			785	 	 b	:=	make([]byte,	state.decodeUint())

			786	 	 _,	err	:=	state.b.Read(b)

			787	 	 if	err	!=	nil	{

			788	 	 	 error_(err)

			789	 	 }

			790	 }

			791	

			792	 //	Index	by	Go	types.

			793	 var	decOpTable	=	[...]decOp{

			794	 	 reflect.Bool:							decBool,

			795	 	 reflect.Int8:							decInt8,

			796	 	 reflect.Int16:						decInt16,

			797	 	 reflect.Int32:						decInt32,

			798	 	 reflect.Int64:						decInt64,

			799	 	 reflect.Uint8:						decUint8,

			800	 	 reflect.Uint16:					decUint16,

			801	 	 reflect.Uint32:					decUint32,

			802	 	 reflect.Uint64:					decUint64,

			803	 	 reflect.Float32:				decFloat32,

			804	 	 reflect.Float64:				decFloat64,

			805	 	 reflect.Complex64:		decComplex64,

			806	 	 reflect.Complex128:	decComplex128,

			807	 	 reflect.String:					decString,

			808	 }

			809	

			810	 //	Indexed	by	gob	types.		tComplex	will	be	added	during	type.init().

			811	 var	decIgnoreOpMap	=	map[typeId]decOp{

			812	 	 tBool:				ignoreUint,

			813	 	 tInt:					ignoreUint,

			814	 	 tUint:				ignoreUint,

			815	 	 tFloat:			ignoreUint,

			816	 	 tBytes:			ignoreUint8Array,

			817	 	 tString:		ignoreUint8Array,

			818	 	 tComplex:	ignoreTwoUints,

			819	 }

			820	

			821	 //	decOpFor	returns	the	decoding	op	for	the	base	type	under	rt	and

			822	 //	the	indirection	count	to	reach	it.

			823	 func	(dec	*Decoder)	decOpFor(wireId	typeId,	rt	reflect.Type,	name	string,	inProgress	map[reflect.Type]*decOp)	(*decOp,	int)	{

			824	 	 ut	:=	userType(rt)

			825	 	 //	If	the	type	implements	GobEncoder,	we	handle	it	without	further	processing.

			826	 	 if	ut.isGobDecoder	{

			827	 	 	 return	dec.gobDecodeOpFor(ut)

			828	 	 }

			829	 	 //	If	this	type	is	already	in	progress,	it's	a	recursive	type	(e.g.	map[string]*T).

			830	 	 //	Return	the	pointer	to	the	op	we're	already	building.

			831	 	 if	opPtr	:=	inProgress[rt];	opPtr	!=	nil	{

			832	 	 	 return	opPtr,	ut.indir

			833	 	 }

			834	 	 typ	:=	ut.base

			835	 	 indir	:=	ut.indir

			836	 	 var	op	decOp

			837	 	 k	:=	typ.Kind()

			838	 	 if	int(k)	<	len(decOpTable)	{

			839	 	 	 op	=	decOpTable[k]

			840	 	 }

			841	 	 if	op	==	nil	{

			842	 	 	 inProgress[rt]	=	&op

			843	 	 	 //	Special	cases

			844	 	 	 switch	t	:=	typ;	t.Kind()	{

			845	 	 	 case	reflect.Array:

			846	 	 	 	 name	=	"element	of	"	+	name

			847	 	 	 	 elemId	:=	dec.wireType[wireId].ArrayT.Elem

			848	 	 	 	 elemOp,	elemIndir	:=	dec.decOpFor(elemId,	t.Elem(),	name,	inProgress)

			849	 	 	 	 ovfl	:=	overflow(name)

			850	 	 	 	 op	=	func(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			851	 	 	 	 	 state.dec.decodeArray(t,	state,	uintptr(p),	*elemOp,	t.Elem().Size(),	t.Len(),	i.indir,	elemIndir,	ovfl)

			852	 	 	 	 }

			853	

			854	 	 	 case	reflect.Map:

			855	 	 	 	 keyId	:=	dec.wireType[wireId].MapT.Key

			856	 	 	 	 elemId	:=	dec.wireType[wireId].MapT.Elem

			857	 	 	 	 keyOp,	keyIndir	:=	dec.decOpFor(keyId,	t.Key(),	"key	of	"+name,	inProgress)

			858	 	 	 	 elemOp,	elemIndir	:=	dec.decOpFor(elemId,	t.Elem(),	"element	of	"+name,	inProgress)

			859	 	 	 	 ovfl	:=	overflow(name)

			860	 	 	 	 op	=	func(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			861	 	 	 	 	 up	:=	unsafe.Pointer(p)

			862	 	 	 	 	 state.dec.decodeMap(t,	state,	uintptr(up),	*keyOp,	*elemOp,	i.indir,	keyIndir,	elemIndir,	ovfl)

			863	 	 	 	 }

			864	

			865	 	 	 case	reflect.Slice:

			866	 	 	 	 name	=	"element	of	"	+	name

			867	 	 	 	 if	t.Elem().Kind()	==	reflect.Uint8	{

			868	 	 	 	 	 op	=	decUint8Slice

			869	 	 	 	 	 break

			870	 	 	 	 }

			871	 	 	 	 var	elemId	typeId

			872	 	 	 	 if	tt,	ok	:=	builtinIdToType[wireId];	ok	{

			873	 	 	 	 	 elemId	=	tt.(*sliceType).Elem

			874	 	 	 	 }	else	{

			875	 	 	 	 	 elemId	=	dec.wireType[wireId].SliceT.Elem

			876	 	 	 	 }

			877	 	 	 	 elemOp,	elemIndir	:=	dec.decOpFor(elemId,	t.Elem(),	name,	inProgress)

			878	 	 	 	 ovfl	:=	overflow(name)

			879	 	 	 	 op	=	func(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			880	 	 	 	 	 state.dec.decodeSlice(t,	state,	uintptr(p),	*elemOp,	t.Elem().Size(),	i.indir,	elemIndir,	ovfl)

			881	 	 	 	 }

			882	

			883	 	 	 case	reflect.Struct:

			884	 	 	 	 //	Generate	a	closure	that	calls	out	to	the	engine	for	the	nested	type.

			885	 	 	 	 enginePtr,	err	:=	dec.getDecEnginePtr(wireId,	userType(typ))

			886	 	 	 	 if	err	!=	nil	{

			887	 	 	 	 	 error_(err)

			888	 	 	 	 }

			889	 	 	 	 op	=	func(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			890	 	 	 	 	 //	indirect	through	enginePtr	to	delay	evaluation	for	recursive	structs.

			891	 	 	 	 	 dec.decodeStruct(*enginePtr,	userType(typ),	uintptr(p),	i.indir)

			892	 	 	 	 }

			893	 	 	 case	reflect.Interface:

			894	 	 	 	 op	=	func(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			895	 	 	 	 	 state.dec.decodeInterface(t,	state,	uintptr(p),	i.indir)

			896	 	 	 	 }

			897	 	 	 }

			898	 	 }

			899	 	 if	op	==	nil	{

			900	 	 	 errorf("decode	can't	handle	type	%s",	rt)

			901	 	 }

			902	 	 return	&op,	indir

			903	 }

			904	

			905	 //	decIgnoreOpFor	returns	the	decoding	op	for	a	field	that	has	no	destination.

			906	 func	(dec	*Decoder)	decIgnoreOpFor(wireId	typeId)	decOp	{

			907	 	 op,	ok	:=	decIgnoreOpMap[wireId]

			908	 	 if	!ok	{

			909	 	 	 if	wireId	==	tInterface	{

			910	 	 	 	 //	Special	case	because	it's	a	method:	the	ignored	item	might

			911	 	 	 	 //	define	types	and	we	need	to	record	their	state	in	the	decoder.

			912	 	 	 	 op	=	func(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			913	 	 	 	 	 state.dec.ignoreInterface(state)

			914	 	 	 	 }

			915	 	 	 	 return	op

			916	 	 	 }

			917	 	 	 //	Special	cases

			918	 	 	 wire	:=	dec.wireType[wireId]

			919	 	 	 switch	{

			920	 	 	 case	wire	==	nil:

			921	 	 	 	 errorf("bad	data:	undefined	type	%s",	wireId.string())

			922	 	 	 case	wire.ArrayT	!=	nil:

			923	 	 	 	 elemId	:=	wire.ArrayT.Elem

			924	 	 	 	 elemOp	:=	dec.decIgnoreOpFor(elemId)

			925	 	 	 	 op	=	func(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			926	 	 	 	 	 state.dec.ignoreArray(state,	elemOp,	wire.ArrayT.Len)

			927	 	 	 	 }

			928	

			929	 	 	 case	wire.MapT	!=	nil:

			930	 	 	 	 keyId	:=	dec.wireType[wireId].MapT.Key

			931	 	 	 	 elemId	:=	dec.wireType[wireId].MapT.Elem

			932	 	 	 	 keyOp	:=	dec.decIgnoreOpFor(keyId)

			933	 	 	 	 elemOp	:=	dec.decIgnoreOpFor(elemId)

			934	 	 	 	 op	=	func(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			935	 	 	 	 	 state.dec.ignoreMap(state,	keyOp,	elemOp)

			936	 	 	 	 }

			937	

			938	 	 	 case	wire.SliceT	!=	nil:

			939	 	 	 	 elemId	:=	wire.SliceT.Elem

			940	 	 	 	 elemOp	:=	dec.decIgnoreOpFor(elemId)

			941	 	 	 	 op	=	func(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			942	 	 	 	 	 state.dec.ignoreSlice(state,	elemOp)

			943	 	 	 	 }

			944	

			945	 	 	 case	wire.StructT	!=	nil:

			946	 	 	 	 //	Generate	a	closure	that	calls	out	to	the	engine	for	the	nested	type.

			947	 	 	 	 enginePtr,	err	:=	dec.getIgnoreEnginePtr(wireId)

			948	 	 	 	 if	err	!=	nil	{

			949	 	 	 	 	 error_(err)

			950	 	 	 	 }

			951	 	 	 	 op	=	func(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			952	 	 	 	 	 //	indirect	through	enginePtr	to	delay	evaluation	for	recursive	structs

			953	 	 	 	 	 state.dec.ignoreStruct(*enginePtr)

			954	 	 	 	 }

			955	

			956	 	 	 case	wire.GobEncoderT	!=	nil:

			957	 	 	 	 op	=	func(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			958	 	 	 	 	 state.dec.ignoreGobDecoder(state)

			959	 	 	 	 }

			960	 	 	 }

			961	 	 }

			962	 	 if	op	==	nil	{

			963	 	 	 errorf("bad	data:	ignore	can't	handle	type	%s",	wireId.string())

			964	 	 }

			965	 	 return	op

			966	 }

			967	

			968	 //	gobDecodeOpFor	returns	the	op	for	a	type	that	is	known	to	implement

			969	 //	GobDecoder.

			970	 func	(dec	*Decoder)	gobDecodeOpFor(ut	*userTypeInfo)	(*decOp,	int)	{

			971	 	 rcvrType	:=	ut.user

			972	 	 if	ut.decIndir	==	-1	{

			973	 	 	 rcvrType	=	reflect.PtrTo(rcvrType)

			974	 	 }	else	if	ut.decIndir	>	0	{

			975	 	 	 for	i	:=	int8(0);	i	<	ut.decIndir;	i++	{

			976	 	 	 	 rcvrType	=	rcvrType.Elem()

			977	 	 	 }

			978	 	 }

			979	 	 var	op	decOp

			980	 	 op	=	func(i	*decInstr,	state	*decoderState,	p	unsafe.Pointer)	{

			981	 	 	 //	Caller	has	gotten	us	to	within	one	indirection	of	our	value.

			982	 	 	 if	i.indir	>	0	{

			983	 	 	 	 if	*(*unsafe.Pointer)(p)	==	nil	{

			984	 	 	 	 	 *(*unsafe.Pointer)(p)	=	unsafe.Pointer(reflect.New(ut.base).Pointer())

			985	 	 	 	 }

			986	 	 	 }

			987	 	 	 //	Now	p	is	a	pointer	to	the	base	type.		Do	we	need	to	climb	out	to

			988	 	 	 //	get	to	the	receiver	type?

			989	 	 	 var	v	reflect.Value

			990	 	 	 if	ut.decIndir	==	-1	{

			991	 	 	 	 v	=	reflect.NewAt(rcvrType,	unsafe.Pointer(&p)).Elem()

			992	 	 	 }	else	{

			993	 	 	 	 v	=	reflect.NewAt(rcvrType,	p).Elem()

			994	 	 	 }

			995	 	 	 state.dec.decodeGobDecoder(state,	v)

			996	 	 }

			997	 	 return	&op,	int(ut.indir)

			998	

			999	 }

		1000	

		1001	 //	compatibleType	asks:	Are	these	two	gob	Types	compatible?

		1002	 //	Answers	the	question	for	basic	types,	arrays,	maps	and	slices,	plus

		1003	 //	GobEncoder/Decoder	pairs.

		1004	 //	Structs	are	considered	ok;	fields	will	be	checked	later.

		1005	 func	(dec	*Decoder)	compatibleType(fr	reflect.Type,	fw	typeId,	inProgress	map[reflect.Type]typeId)	bool	{

		1006	 	 if	rhs,	ok	:=	inProgress[fr];	ok	{

		1007	 	 	 return	rhs	==	fw

		1008	 	 }

		1009	 	 inProgress[fr]	=	fw

		1010	 	 ut	:=	userType(fr)

		1011	 	 wire,	ok	:=	dec.wireType[fw]

		1012	 	 //	If	fr	is	a	GobDecoder,	the	wire	type	must	be	GobEncoder.

		1013	 	 //	And	if	fr	is	not	a	GobDecoder,	the	wire	type	must	not	be	either.

		1014	 	 if	ut.isGobDecoder	!=	(ok	&&	wire.GobEncoderT	!=	nil)	{	

		1015	 	 	 return	false

		1016	 	 }

		1017	 	 if	ut.isGobDecoder	{	//	This	test	trumps	all	others.

		1018	 	 	 return	true

		1019	 	 }

		1020	 	 switch	t	:=	ut.base;	t.Kind()	{

		1021	 	 default:

		1022	 	 	 //	chan,	etc:	cannot	handle.

		1023	 	 	 return	false

		1024	 	 case	reflect.Bool:

		1025	 	 	 return	fw	==	tBool

		1026	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

		1027	 	 	 return	fw	==	tInt

		1028	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

		1029	 	 	 return	fw	==	tUint

		1030	 	 case	reflect.Float32,	reflect.Float64:

		1031	 	 	 return	fw	==	tFloat

		1032	 	 case	reflect.Complex64,	reflect.Complex128:

		1033	 	 	 return	fw	==	tComplex

		1034	 	 case	reflect.String:

		1035	 	 	 return	fw	==	tString

		1036	 	 case	reflect.Interface:

		1037	 	 	 return	fw	==	tInterface

		1038	 	 case	reflect.Array:

		1039	 	 	 if	!ok	||	wire.ArrayT	==	nil	{

		1040	 	 	 	 return	false

		1041	 	 	 }

		1042	 	 	 array	:=	wire.ArrayT

		1043	 	 	 return	t.Len()	==	array.Len	&&	dec.compatibleType(t.Elem(),	array.Elem,	inProgress)

		1044	 	 case	reflect.Map:

		1045	 	 	 if	!ok	||	wire.MapT	==	nil	{

		1046	 	 	 	 return	false

		1047	 	 	 }

		1048	 	 	 MapType	:=	wire.MapT

		1049	 	 	 return	dec.compatibleType(t.Key(),	MapType.Key,	inProgress)	&&	dec.compatibleType(t.Elem(),	MapType.Elem,	inProgress)

		1050	 	 case	reflect.Slice:

		1051	 	 	 //	Is	it	an	array	of	bytes?

		1052	 	 	 if	t.Elem().Kind()	==	reflect.Uint8	{

		1053	 	 	 	 return	fw	==	tBytes

		1054	 	 	 }

		1055	 	 	 //	Extract	and	compare	element	types.

		1056	 	 	 var	sw	*sliceType

		1057	 	 	 if	tt,	ok	:=	builtinIdToType[fw];	ok	{

		1058	 	 	 	 sw,	_	=	tt.(*sliceType)

		1059	 	 	 }	else	if	wire	!=	nil	{

		1060	 	 	 	 sw	=	wire.SliceT

		1061	 	 	 }

		1062	 	 	 elem	:=	userType(t.Elem()).base

		1063	 	 	 return	sw	!=	nil	&&	dec.compatibleType(elem,	sw.Elem,	inProgress)

		1064	 	 case	reflect.Struct:

		1065	 	 	 return	true

		1066	 	 }

		1067	 	 return	true

		1068	 }

		1069	

		1070	 //	typeString	returns	a	human-readable	description	of	the	type	identified	by	remoteId.

		1071	 func	(dec	*Decoder)	typeString(remoteId	typeId)	string	{

		1072	 	 if	t	:=	idToType[remoteId];	t	!=	nil	{

		1073	 	 	 //	globally	known	type.

		1074	 	 	 return	t.string()

		1075	 	 }

		1076	 	 return	dec.wireType[remoteId].string()

		1077	 }

		1078	

		1079	 //	compileSingle	compiles	the	decoder	engine	for	a	non-struct	top-level	value,	including

		1080	 //	GobDecoders.

		1081	 func	(dec	*Decoder)	compileSingle(remoteId	typeId,	ut	*userTypeInfo)	(engine	*decEngine,	err	error)	{

		1082	 	 rt	:=	ut.user

		1083	 	 engine	=	new(decEngine)

		1084	 	 engine.instr	=	make([]decInstr,	1)	//	one	item

		1085	 	 name	:=	rt.String()																//	best	we	can	do

		1086	 	 if	!dec.compatibleType(rt,	remoteId,	make(map[reflect.Type]typeId))	{

		1087	 	 	 remoteType	:=	dec.typeString(remoteId)

		1088	 	 	 //	Common	confusing	case:	local	interface	type,	remote	concrete	type.

		1089	 	 	 if	ut.base.Kind()	==	reflect.Interface	&&	remoteId	!=	tInterface	{

		1090	 	 	 	 return	nil,	errors.New("gob:	local	interface	type	"	+	name	+	"	can	only	be	decoded	from	remote	interface	type;	received	concrete	type	"	+	remoteType)

		1091	 	 	 }

		1092	 	 	 return	nil,	errors.New("gob:	decoding	into	local	type	"	+	name	+	",	received	remote	type	"	+	remoteType)

		1093	 	 }

		1094	 	 op,	indir	:=	dec.decOpFor(remoteId,	rt,	name,	make(map[reflect.Type]*decOp))

		1095	 	 ovfl	:=	errors.New(`value	for	"`	+	name	+	`"	out	of	range`)

		1096	 	 engine.instr[singletonField]	=	decInstr{*op,	singletonField,	indir,	0,	ovfl}

		1097	 	 engine.numInstr	=	1

		1098	 	 return

		1099	 }

		1100	

		1101	 //	compileIgnoreSingle	compiles	the	decoder	engine	for	a	non-struct	top-level	value	that	will	be	discarded.

		1102	 func	(dec	*Decoder)	compileIgnoreSingle(remoteId	typeId)	(engine	*decEngine,	err	error)	{

		1103	 	 engine	=	new(decEngine)

		1104	 	 engine.instr	=	make([]decInstr,	1)	//	one	item

		1105	 	 op	:=	dec.decIgnoreOpFor(remoteId)

		1106	 	 ovfl	:=	overflow(dec.typeString(remoteId))

		1107	 	 engine.instr[0]	=	decInstr{op,	0,	0,	0,	ovfl}

		1108	 	 engine.numInstr	=	1

		1109	 	 return

		1110	 }

		1111	

		1112	 //	compileDec	compiles	the	decoder	engine	for	a	value.		If	the	value	is	not	a	struct,

		1113	 //	it	calls	out	to	compileSingle.

		1114	 func	(dec	*Decoder)	compileDec(remoteId	typeId,	ut	*userTypeInfo)	(engine	*decEngine,	err	error)	{

		1115	 	 rt	:=	ut.base

		1116	 	 srt	:=	rt

		1117	 	 if	srt.Kind()	!=	reflect.Struct	||

		1118	 	 	 ut.isGobDecoder	{

		1119	 	 	 return	dec.compileSingle(remoteId,	ut)

		1120	 	 }

		1121	 	 var	wireStruct	*structType

		1122	 	 //	Builtin	types	can	come	from	global	pool;	the	rest	must	be	defined	by	the	decoder.

		1123	 	 //	Also	we	know	we're	decoding	a	struct	now,	so	the	client	must	have	sent	one.

		1124	 	 if	t,	ok	:=	builtinIdToType[remoteId];	ok	{

		1125	 	 	 wireStruct,	_	=	t.(*structType)

		1126	 	 }	else	{

		1127	 	 	 wire	:=	dec.wireType[remoteId]

		1128	 	 	 if	wire	==	nil	{

		1129	 	 	 	 error_(errBadType)

		1130	 	 	 }

		1131	 	 	 wireStruct	=	wire.StructT

		1132	 	 }

		1133	 	 if	wireStruct	==	nil	{

		1134	 	 	 errorf("type	mismatch	in	decoder:	want	struct	type	%s;	got	non-struct",	rt)

		1135	 	 }

		1136	 	 engine	=	new(decEngine)

		1137	 	 engine.instr	=	make([]decInstr,	len(wireStruct.Field))

		1138	 	 seen	:=	make(map[reflect.Type]*decOp)

		1139	 	 //	Loop	over	the	fields	of	the	wire	type.

		1140	 	 for	fieldnum	:=	0;	fieldnum	<	len(wireStruct.Field);	fieldnum++	{

		1141	 	 	 wireField	:=	wireStruct.Field[fieldnum]

		1142	 	 	 if	wireField.Name	==	""	{

		1143	 	 	 	 errorf("empty	name	for	remote	field	of	type	%s",	wireStruct.Name)

		1144	 	 	 }

		1145	 	 	 ovfl	:=	overflow(wireField.Name)

		1146	 	 	 //	Find	the	field	of	the	local	type	with	the	same	name.

		1147	 	 	 localField,	present	:=	srt.FieldByName(wireField.Name)

		1148	 	 	 //	TODO(r):	anonymous	names

		1149	 	 	 if	!present	||	!isExported(wireField.Name)	{

		1150	 	 	 	 op	:=	dec.decIgnoreOpFor(wireField.Id)

		1151	 	 	 	 engine.instr[fieldnum]	=	decInstr{op,	fieldnum,	0,	0,	ovfl}

		1152	 	 	 	 continue

		1153	 	 	 }

		1154	 	 	 if	!dec.compatibleType(localField.Type,	wireField.Id,	make(map[reflect.Type]typeId))	{

		1155	 	 	 	 errorf("wrong	type	(%s)	for	received	field	%s.%s",	localField.Type,	wireStruct.Name,	wireField.Name)

		1156	 	 	 }

		1157	 	 	 op,	indir	:=	dec.decOpFor(wireField.Id,	localField.Type,	localField.Name,	seen)

		1158	 	 	 engine.instr[fieldnum]	=	decInstr{*op,	fieldnum,	indir,	uintptr(localField.Offset),	ovfl}

		1159	 	 	 engine.numInstr++

		1160	 	 }

		1161	 	 return

		1162	 }

		1163	

		1164	 //	getDecEnginePtr	returns	the	engine	for	the	specified	type.

		1165	 func	(dec	*Decoder)	getDecEnginePtr(remoteId	typeId,	ut	*userTypeInfo)	(enginePtr	**decEngine,	err	error)	{

		1166	 	 rt	:=	ut.user

		1167	 	 decoderMap,	ok	:=	dec.decoderCache[rt]

		1168	 	 if	!ok	{

		1169	 	 	 decoderMap	=	make(map[typeId]**decEngine)

		1170	 	 	 dec.decoderCache[rt]	=	decoderMap

		1171	 	 }

		1172	 	 if	enginePtr,	ok	=	decoderMap[remoteId];	!ok	{

		1173	 	 	 //	To	handle	recursive	types,	mark	this	engine	as	underway	before	compiling.

		1174	 	 	 enginePtr	=	new(*decEngine)

		1175	 	 	 decoderMap[remoteId]	=	enginePtr

		1176	 	 	 *enginePtr,	err	=	dec.compileDec(remoteId,	ut)

		1177	 	 	 if	err	!=	nil	{

		1178	 	 	 	 delete(decoderMap,	remoteId)

		1179	 	 	 }

		1180	 	 }

		1181	 	 return

		1182	 }

		1183	

		1184	 //	emptyStruct	is	the	type	we	compile	into	when	ignoring	a	struct	value.

		1185	 type	emptyStruct	struct{}

		1186	

		1187	 var	emptyStructType	=	reflect.TypeOf(emptyStruct{})

		1188	

		1189	 //	getDecEnginePtr	returns	the	engine	for	the	specified	type	when	the	value	is	to	be	discarded.

		1190	 func	(dec	*Decoder)	getIgnoreEnginePtr(wireId	typeId)	(enginePtr	**decEngine,	err	error)	{

		1191	 	 var	ok	bool

		1192	 	 if	enginePtr,	ok	=	dec.ignorerCache[wireId];	!ok	{

		1193	 	 	 //	To	handle	recursive	types,	mark	this	engine	as	underway	before	compiling.

		1194	 	 	 enginePtr	=	new(*decEngine)

		1195	 	 	 dec.ignorerCache[wireId]	=	enginePtr

		1196	 	 	 wire	:=	dec.wireType[wireId]

		1197	 	 	 if	wire	!=	nil	&&	wire.StructT	!=	nil	{

		1198	 	 	 	 *enginePtr,	err	=	dec.compileDec(wireId,	userType(emptyStructType))

		1199	 	 	 }	else	{

		1200	 	 	 	 *enginePtr,	err	=	dec.compileIgnoreSingle(wireId)

		1201	 	 	 }

		1202	 	 	 if	err	!=	nil	{

		1203	 	 	 	 delete(dec.ignorerCache,	wireId)

		1204	 	 	 }

		1205	 	 }

		1206	 	 return

		1207	 }

		1208	

		1209	 //	decodeValue	decodes	the	data	stream	representing	a	value	and	stores	it	in	val.

		1210	 func	(dec	*Decoder)	decodeValue(wireId	typeId,	val	reflect.Value)	{

		1211	 	 defer	catchError(&dec.err)

		1212	 	 //	If	the	value	is	nil,	it	means	we	should	just	ignore	this	item.

		1213	 	 if	!val.IsValid()	{

		1214	 	 	 dec.decodeIgnoredValue(wireId)

		1215	 	 	 return

		1216	 	 }

		1217	 	 //	Dereference	down	to	the	underlying	type.

		1218	 	 ut	:=	userType(val.Type())

		1219	 	 base	:=	ut.base

		1220	 	 var	enginePtr	**decEngine

		1221	 	 enginePtr,	dec.err	=	dec.getDecEnginePtr(wireId,	ut)

		1222	 	 if	dec.err	!=	nil	{

		1223	 	 	 return

		1224	 	 }

		1225	 	 engine	:=	*enginePtr

		1226	 	 if	st	:=	base;	st.Kind()	==	reflect.Struct	&&	!ut.isGobDecoder	{

		1227	 	 	 if	engine.numInstr	==	0	&&	st.NumField()	>	0	&&	len(dec.wireType[wireId].StructT.Field)	>	0	{

		1228	 	 	 	 name	:=	base.Name()

		1229	 	 	 	 errorf("type	mismatch:	no	fields	matched	compiling	decoder	for	%s",	name)

		1230	 	 	 }

		1231	 	 	 dec.decodeStruct(engine,	ut,	uintptr(unsafeAddr(val)),	ut.indir)

		1232	 	 }	else	{

		1233	 	 	 dec.decodeSingle(engine,	ut,	uintptr(unsafeAddr(val)))

		1234	 	 }

		1235	 }

		1236	

		1237	 //	decodeIgnoredValue	decodes	the	data	stream	representing	a	value	of	the	specified	type	and	discards	it.

		1238	 func	(dec	*Decoder)	decodeIgnoredValue(wireId	typeId)	{

		1239	 	 var	enginePtr	**decEngine

		1240	 	 enginePtr,	dec.err	=	dec.getIgnoreEnginePtr(wireId)

		1241	 	 if	dec.err	!=	nil	{

		1242	 	 	 return

		1243	 	 }

		1244	 	 wire	:=	dec.wireType[wireId]

		1245	 	 if	wire	!=	nil	&&	wire.StructT	!=	nil	{

		1246	 	 	 dec.ignoreStruct(*enginePtr)

		1247	 	 }	else	{

		1248	 	 	 dec.ignoreSingle(*enginePtr)

		1249	 	 }

		1250	 }

		1251	

		1252	 func	init()	{

		1253	 	 var	iop,	uop	decOp

		1254	 	 switch	reflect.TypeOf(int(0)).Bits()	{

		1255	 	 case	32:

		1256	 	 	 iop	=	decInt32

		1257	 	 	 uop	=	decUint32

		1258	 	 case	64:

		1259	 	 	 iop	=	decInt64

		1260	 	 	 uop	=	decUint64

		1261	 	 default:

		1262	 	 	 panic("gob:	unknown	size	of	int/uint")

		1263	 	 }

		1264	 	 decOpTable[reflect.Int]	=	iop

		1265	 	 decOpTable[reflect.Uint]	=	uop

		1266	

		1267	 	 //	Finally	uintptr

		1268	 	 switch	reflect.TypeOf(uintptr(0)).Bits()	{

		1269	 	 case	32:

		1270	 	 	 uop	=	decUint32

		1271	 	 case	64:

		1272	 	 	 uop	=	decUint64

		1273	 	 default:

		1274	 	 	 panic("gob:	unknown	size	of	uintptr")

		1275	 	 }

		1276	 	 decOpTable[reflect.Uintptr]	=	uop

		1277	 }

		1278	

		1279	 //	Gob	assumes	it	can	call	UnsafeAddr	on	any	Value

		1280	 //	in	order	to	get	a	pointer	it	can	copy	data	from.

		1281	 //	Values	that	have	just	been	created	and	do	not	point

		1282	 //	into	existing	structs	or	slices	cannot	be	addressed,

		1283	 //	so	simulate	it	by	returning	a	pointer	to	a	copy.

		1284	 //	Each	call	allocates	once.

		1285	 func	unsafeAddr(v	reflect.Value)	uintptr	{

		1286	 	 if	v.CanAddr()	{

		1287	 	 	 return	v.UnsafeAddr()

		1288	 	 }

		1289	 	 x	:=	reflect.New(v.Type()).Elem()

		1290	 	 x.Set(v)

		1291	 	 return	x.UnsafeAddr()

		1292	 }

		1293	

		1294	 //	Gob	depends	on	being	able	to	take	the	address

		1295	 //	of	zeroed	Values	it	creates,	so	use	this	wrapper	instead

		1296	 //	of	the	standard	reflect.Zero.

		1297	 //	Each	call	allocates	once.

		1298	 func	allocValue(t	reflect.Type)	reflect.Value	{

		1299	 	 return	reflect.New(t).Elem()

		1300	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/gob/decoder.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	gob

					6	

					7	 import	(

					8	 	 "bufio"

					9	 	 "bytes"

				10	 	 "errors"

				11	 	 "io"

				12	 	 "reflect"

				13	 	 "sync"

				14)

				15	

				16	 //	A	Decoder	manages	the	receipt	of	type	and	data	information	read	from	the

				17	 //	remote	side	of	a	connection.

				18	 type	Decoder	struct	{

				19	 	 mutex								sync.Mutex																														

				20	 	 r												io.Reader																															

				21	 	 buf										bytes.Buffer																												

				22	 	 wireType					map[typeId]*wireType																				

				23	 	 decoderCache	map[reflect.Type]map[typeId]**decEngine	

				24	 	 ignorerCache	map[typeId]**decEngine																		

				25	 	 freeList					*decoderState																											

				26	 	 countBuf					[]byte																																		

				27	 	 tmp										[]byte																																		

				28	 	 err										error

				29	 }

				30	

				31	 //	NewDecoder	returns	a	new	decoder	that	reads	from	the	io.Reader.

				32	 //	If	r	does	not	also	implement	io.ByteReader,	it	will	be	wrapped	in	a

				33	 //	bufio.Reader.

				34	 func	NewDecoder(r	io.Reader)	*Decoder	{

				35	 	 dec	:=	new(Decoder)

				36	 	 //	We	use	the	ability	to	read	bytes	as	a	plausible	surrogate	for	buffering.

				37	 	 if	_,	ok	:=	r.(io.ByteReader);	!ok	{

				38	 	 	 r	=	bufio.NewReader(r)

				39	 	 }

				40	 	 dec.r	=	r

				41	 	 dec.wireType	=	make(map[typeId]*wireType)

				42	 	 dec.decoderCache	=	make(map[reflect.Type]map[typeId]**decEngine)

				43	 	 dec.ignorerCache	=	make(map[typeId]**decEngine)

				44	 	 dec.countBuf	=	make([]byte,	9)	//	counts	may	be	uint64s	(unlikely!),	require	9	bytes

				45	

				46	 	 return	dec

				47	 }

				48	

				49	 //	recvType	loads	the	definition	of	a	type.

				50	 func	(dec	*Decoder)	recvType(id	typeId)	{

				51	 	 //	Have	we	already	seen	this	type?		That's	an	error

				52	 	 if	id	<	firstUserId	||	dec.wireType[id]	!=	nil	{

				53	 	 	 dec.err	=	errors.New("gob:	duplicate	type	received")

				54	 	 	 return

				55	 	 }

				56	

				57	 	 //	Type:

				58	 	 wire	:=	new(wireType)

				59	 	 dec.decodeValue(tWireType,	reflect.ValueOf(wire))

				60	 	 if	dec.err	!=	nil	{

				61	 	 	 return

				62	 	 }

				63	 	 //	Remember	we've	seen	this	type.

				64	 	 dec.wireType[id]	=	wire

				65	 }

				66	

				67	 var	errBadCount	=	errors.New("invalid	message	length")

				68	

				69	 //	recvMessage	reads	the	next	count-delimited	item	from	the	input.	It	is	the	converse

				70	 //	of	Encoder.writeMessage.	It	returns	false	on	EOF	or	other	error	reading	the	message.

				71	 func	(dec	*Decoder)	recvMessage()	bool	{

				72	 	 //	Read	a	count.

				73	 	 nbytes,	_,	err	:=	decodeUintReader(dec.r,	dec.countBuf)

				74	 	 if	err	!=	nil	{

				75	 	 	 dec.err	=	err

				76	 	 	 return	false

				77	 	 }

				78	 	 //	Upper	limit	of	1GB,	allowing	room	to	grow	a	little	without	overflow.

				79	 	 //	TODO:	We	might	want	more	control	over	this	limit.

				80	 	 if	nbytes	>=	1<<30	{

				81	 	 	 dec.err	=	errBadCount

				82	 	 	 return	false

				83	 	 }

				84	 	 dec.readMessage(int(nbytes))

				85	 	 return	dec.err	==	nil

				86	 }

				87	

				88	 //	readMessage	reads	the	next	nbytes	bytes	from	the	input.

				89	 func	(dec	*Decoder)	readMessage(nbytes	int)	{

				90	 	 //	Allocate	the	buffer.

				91	 	 if	cap(dec.tmp)	<	nbytes	{

				92	 	 	 dec.tmp	=	make([]byte,	nbytes+100)	//	room	to	grow

				93	 	 }

				94	 	 dec.tmp	=	dec.tmp[:nbytes]

				95	

				96	 	 //	Read	the	data

				97	 	 _,	dec.err	=	io.ReadFull(dec.r,	dec.tmp)

				98	 	 if	dec.err	!=	nil	{

				99	 	 	 if	dec.err	==	io.EOF	{

			100	 	 	 	 dec.err	=	io.ErrUnexpectedEOF

			101	 	 	 }

			102	 	 	 return

			103	 	 }

			104	 	 dec.buf.Write(dec.tmp)

			105	 }

			106	

			107	 //	toInt	turns	an	encoded	uint64	into	an	int,	according	to	the	marshaling	rules.

			108	 func	toInt(x	uint64)	int64	{

			109	 	 i	:=	int64(x	>>	1)

			110	 	 if	x&1	!=	0	{

			111	 	 	 i	=	^i

			112	 	 }

			113	 	 return	i

			114	 }

			115	

			116	 func	(dec	*Decoder)	nextInt()	int64	{

			117	 	 n,	_,	err	:=	decodeUintReader(&dec.buf,	dec.countBuf)

			118	 	 if	err	!=	nil	{

			119	 	 	 dec.err	=	err

			120	 	 }

			121	 	 return	toInt(n)

			122	 }

			123	

			124	 func	(dec	*Decoder)	nextUint()	uint64	{

			125	 	 n,	_,	err	:=	decodeUintReader(&dec.buf,	dec.countBuf)

			126	 	 if	err	!=	nil	{

			127	 	 	 dec.err	=	err

			128	 	 }

			129	 	 return	n

			130	 }

			131	

			132	 //	decodeTypeSequence	parses:

			133	 //	TypeSequence

			134	 //	 (TypeDefinition	DelimitedTypeDefinition*)?

			135	 //	and	returns	the	type	id	of	the	next	value.		It	returns	-1	at

			136	 //	EOF.		Upon	return,	the	remainder	of	dec.buf	is	the	value	to	be

			137	 //	decoded.		If	this	is	an	interface	value,	it	can	be	ignored	by

			138	 //	resetting	that	buffer.

			139	 func	(dec	*Decoder)	decodeTypeSequence(isInterface	bool)	typeId	{

			140	 	 for	dec.err	==	nil	{

			141	 	 	 if	dec.buf.Len()	==	0	{

			142	 	 	 	 if	!dec.recvMessage()	{

			143	 	 	 	 	 break

			144	 	 	 	 }

			145	 	 	 }

			146	 	 	 //	Receive	a	type	id.

			147	 	 	 id	:=	typeId(dec.nextInt())

			148	 	 	 if	id	>=	0	{

			149	 	 	 	 //	Value	follows.

			150	 	 	 	 return	id

			151	 	 	 }

			152	 	 	 //	Type	definition	for	(-id)	follows.

			153	 	 	 dec.recvType(-id)

			154	 	 	 //	When	decoding	an	interface,	after	a	type	there	may	be	a

			155	 	 	 //	DelimitedValue	still	in	the	buffer.		Skip	its	count.

			156	 	 	 //	(Alternatively,	the	buffer	is	empty	and	the	byte	count

			157	 	 	 //	will	be	absorbed	by	recvMessage.)

			158	 	 	 if	dec.buf.Len()	>	0	{

			159	 	 	 	 if	!isInterface	{

			160	 	 	 	 	 dec.err	=	errors.New("extra	data	in	buffer")

			161	 	 	 	 	 break

			162	 	 	 	 }

			163	 	 	 	 dec.nextUint()

			164	 	 	 }

			165	 	 }

			166	 	 return	-1

			167	 }

			168	

			169	 //	Decode	reads	the	next	value	from	the	connection	and	stores

			170	 //	it	in	the	data	represented	by	the	empty	interface	value.

			171	 //	If	e	is	nil,	the	value	will	be	discarded.	Otherwise,

			172	 //	the	value	underlying	e	must	be	a	pointer	to	the

			173	 //	correct	type	for	the	next	data	item	received.

			174	 func	(dec	*Decoder)	Decode(e	interface{})	error	{

			175	 	 if	e	==	nil	{

			176	 	 	 return	dec.DecodeValue(reflect.Value{})

			177	 	 }

			178	 	 value	:=	reflect.ValueOf(e)

			179	 	 //	If	e	represents	a	value	as	opposed	to	a	pointer,	the	answer	won't

			180	 	 //	get	back	to	the	caller.		Make	sure	it's	a	pointer.

			181	 	 if	value.Type().Kind()	!=	reflect.Ptr	{

			182	 	 	 dec.err	=	errors.New("gob:	attempt	to	decode	into	a	non-pointer")

			183	 	 	 return	dec.err

			184	 	 }

			185	 	 return	dec.DecodeValue(value)

			186	 }

			187	

			188	 //	DecodeValue	reads	the	next	value	from	the	connection.

			189	 //	If	v	is	the	zero	reflect.Value	(v.Kind()	==	Invalid),	DecodeValue	discards	the	value.

			190	 //	Otherwise,	it	stores	the	value	into	v.		In	that	case,	v	must	represent

			191	 //	a	non-nil	pointer	to	data	or	be	an	assignable	reflect.Value	(v.CanSet())

			192	 func	(dec	*Decoder)	DecodeValue(v	reflect.Value)	error	{

			193	 	 if	v.IsValid()	{

			194	 	 	 if	v.Kind()	==	reflect.Ptr	&&	!v.IsNil()	{

			195	 	 	 	 //	That's	okay,	we'll	store	through	the	pointer.

			196	 	 	 }	else	if	!v.CanSet()	{

			197	 	 	 	 return	errors.New("gob:	DecodeValue	of	unassignable	value")

			198	 	 	 }

			199	 	 }

			200	 	 //	Make	sure	we're	single-threaded	through	here.

			201	 	 dec.mutex.Lock()

			202	 	 defer	dec.mutex.Unlock()

			203	

			204	 	 dec.buf.Reset()	//	In	case	data	lingers	from	previous	invocation.

			205	 	 dec.err	=	nil

			206	 	 id	:=	dec.decodeTypeSequence(false)

			207	 	 if	dec.err	==	nil	{

			208	 	 	 dec.decodeValue(id,	v)

			209	 	 }

			210	 	 return	dec.err

			211	 }

			212	

			213	 //	If	debug.go	is	compiled	into	the	program	,	debugFunc	prints	a	human-readable

			214	 //	representation	of	the	gob	data	read	from	r	by	calling	that	file's	Debug	function.

			215	 //	Otherwise	it	is	nil.

			216	 var	debugFunc	func(io.Reader)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/gob/doc.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 Package	gob	manages	streams	of	gobs	-	binary	values	exchanged	between	an

					7	 Encoder	(transmitter)	and	a	Decoder	(receiver).		A	typical	use	is	transporting

					8	 arguments	and	results	of	remote	procedure	calls	(RPCs)	such	as	those	provided	by

					9	 package	"rpc".

				10	

				11	 A	stream	of	gobs	is	self-describing.		Each	data	item	in	the	stream	is	preceded	by

				12	 a	specification	of	its	type,	expressed	in	terms	of	a	small	set	of	predefined

				13	 types.		Pointers	are	not	transmitted,	but	the	things	they	point	to	are

				14	 transmitted;	that	is,	the	values	are	flattened.		Recursive	types	work	fine,	but

				15	 recursive	values	(data	with	cycles)	are	problematic.		This	may	change.

				16	

				17	 To	use	gobs,	create	an	Encoder	and	present	it	with	a	series	of	data	items	as

				18	 values	or	addresses	that	can	be	dereferenced	to	values.		The	Encoder	makes	sure

				19	 all	type	information	is	sent	before	it	is	needed.		At	the	receive	side,	a

				20	 Decoder	retrieves	values	from	the	encoded	stream	and	unpacks	them	into	local

				21	 variables.

				22	

				23	 The	source	and	destination	values/types	need	not	correspond	exactly.		For	structs,

				24	 fields	(identified	by	name)	that	are	in	the	source	but	absent	from	the	receiving

				25	 variable	will	be	ignored.		Fields	that	are	in	the	receiving	variable	but	missing

				26	 from	the	transmitted	type	or	value	will	be	ignored	in	the	destination.		If	a	field

				27	 with	the	same	name	is	present	in	both,	their	types	must	be	compatible.	Both	the

				28	 receiver	and	transmitter	will	do	all	necessary	indirection	and	dereferencing	to

				29	 convert	between	gobs	and	actual	Go	values.		For	instance,	a	gob	type	that	is

				30	 schematically,

				31	

				32	 	 struct	{	A,	B	int	}

				33	

				34	 can	be	sent	from	or	received	into	any	of	these	Go	types:

				35	

				36	 	 struct	{	A,	B	int	}	 //	the	same

				37	 	 *struct	{	A,	B	int	}	 //	extra	indirection	of	the	struct

				38	 	 struct	{	*A,	**B	int	}	 //	extra	indirection	of	the	fields

				39	 	 struct	{	A,	B	int64	}	 //	different	concrete	value	type;	see	below

				40	

				41	 It	may	also	be	received	into	any	of	these:

				42	

				43	 	 struct	{	A,	B	int	}	 //	the	same

				44	 	 struct	{	B,	A	int	}	 //	ordering	doesn't	matter;	matching	is	by	name

				45	 	 struct	{	A,	B,	C	int	}	 //	extra	field	(C)	ignored

				46	 	 struct	{	B	int	}	 //	missing	field	(A)	ignored;	data	will	be	dropped

				47	 	 struct	{	B,	C	int	}	 //	missing	field	(A)	ignored;	extra	field	(C)	ignored.

				48	

				49	 Attempting	to	receive	into	these	types	will	draw	a	decode	error:

				50	

				51	 	 struct	{	A	int;	B	uint	}	 //	change	of	signedness	for	B

				52	 	 struct	{	A	int;	B	float	}	 //	change	of	type	for	B

				53	 	 struct	{	}	 	 	 //	no	field	names	in	common

				54	 	 struct	{	C,	D	int	}	 	 //	no	field	names	in	common

				55	

				56	 Integers	are	transmitted	two	ways:	arbitrary	precision	signed	integers	or

				57	 arbitrary	precision	unsigned	integers.		There	is	no	int8,	int16	etc.

				58	 discrimination	in	the	gob	format;	there	are	only	signed	and	unsigned	integers.		As

				59	 described	below,	the	transmitter	sends	the	value	in	a	variable-length	encoding;

				60	 the	receiver	accepts	the	value	and	stores	it	in	the	destination	variable.

				61	 Floating-point	numbers	are	always	sent	using	IEEE-754	64-bit	precision	(see

				62	 below).

				63	

				64	 Signed	integers	may	be	received	into	any	signed	integer	variable:	int,	int16,	etc.;

				65	 unsigned	integers	may	be	received	into	any	unsigned	integer	variable;	and	floating

				66	 point	values	may	be	received	into	any	floating	point	variable.		However,

				67	 the	destination	variable	must	be	able	to	represent	the	value	or	the	decode

				68	 operation	will	fail.

				69	

				70	 Structs,	arrays	and	slices	are	also	supported.		Strings	and	arrays	of	bytes	are

				71	 supported	with	a	special,	efficient	representation	(see	below).		When	a	slice	is

				72	 decoded,	if	the	existing	slice	has	capacity	the	slice	will	be	extended	in	place;

				73	 if	not,	a	new	array	is	allocated.		Regardless,	the	length	of	the	resulting	slice

				74	 reports	the	number	of	elements	decoded.

				75	

				76	 Functions	and	channels	cannot	be	sent	in	a	gob.		Attempting

				77	 to	encode	a	value	that	contains	one	will	fail.

				78	

				79	 The	rest	of	this	comment	documents	the	encoding,	details	that	are	not	important

				80	 for	most	users.		Details	are	presented	bottom-up.

				81	

				82	 An	unsigned	integer	is	sent	one	of	two	ways.		If	it	is	less	than	128,	it	is	sent

				83	 as	a	byte	with	that	value.		Otherwise	it	is	sent	as	a	minimal-length	big-endian

				84	 (high	byte	first)	byte	stream	holding	the	value,	preceded	by	one	byte	holding	the

				85	 byte	count,	negated.		Thus	0	is	transmitted	as	(00),	7	is	transmitted	as	(07)	and

				86	 256	is	transmitted	as	(FE	01	00).

				87	

				88	 A	boolean	is	encoded	within	an	unsigned	integer:	0	for	false,	1	for	true.

				89	

				90	 A	signed	integer,	i,	is	encoded	within	an	unsigned	integer,	u.		Within	u,	bits	1

				91	 upward	contain	the	value;	bit	0	says	whether	they	should	be	complemented	upon

				92	 receipt.		The	encode	algorithm	looks	like	this:

				93	

				94	 	 uint	u;

				95	 	 if	i	<	0	{

				96	 	 	 u	=	(^i	<<	1)	|	1	 //	complement	i,	bit	0	is	1

				97	 	 }	else	{

				98	 	 	 u	=	(i	<<	1)	 //	do	not	complement	i,	bit	0	is	0

				99	 	 }

			100	 	 encodeUnsigned(u)

			101	

			102	 The	low	bit	is	therefore	analogous	to	a	sign	bit,	but	making	it	the	complement	bit

			103	 instead	guarantees	that	the	largest	negative	integer	is	not	a	special	case.		For

			104	 example,	-129=^128=(^256>>1)	encodes	as	(FE	01	01).

			105	

			106	 Floating-point	numbers	are	always	sent	as	a	representation	of	a	float64	value.

			107	 That	value	is	converted	to	a	uint64	using	math.Float64bits.		The	uint64	is	then

			108	 byte-reversed	and	sent	as	a	regular	unsigned	integer.		The	byte-reversal	means	the

			109	 exponent	and	high-precision	part	of	the	mantissa	go	first.		Since	the	low	bits	are

			110	 often	zero,	this	can	save	encoding	bytes.		For	instance,	17.0	is	encoded	in	only

			111	 three	bytes	(FE	31	40).

			112	

			113	 Strings	and	slices	of	bytes	are	sent	as	an	unsigned	count	followed	by	that	many

			114	 uninterpreted	bytes	of	the	value.

			115	

			116	 All	other	slices	and	arrays	are	sent	as	an	unsigned	count	followed	by	that	many

			117	 elements	using	the	standard	gob	encoding	for	their	type,	recursively.

			118	

			119	 Maps	are	sent	as	an	unsigned	count	followed	by	that	man	key,	element

			120	 pairs.	Empty	but	non-nil	maps	are	sent,	so	if	the	sender	has	allocated

			121	 a	map,	the	receiver	will	allocate	a	map	even	no	elements	are

			122	 transmitted.

			123	

			124	 Structs	are	sent	as	a	sequence	of	(field	number,	field	value)	pairs.		The	field

			125	 value	is	sent	using	the	standard	gob	encoding	for	its	type,	recursively.		If	a

			126	 field	has	the	zero	value	for	its	type,	it	is	omitted	from	the	transmission.		The

			127	 field	number	is	defined	by	the	type	of	the	encoded	struct:	the	first	field	of	the

			128	 encoded	type	is	field	0,	the	second	is	field	1,	etc.		When	encoding	a	value,	the

			129	 field	numbers	are	delta	encoded	for	efficiency	and	the	fields	are	always	sent	in

			130	 order	of	increasing	field	number;	the	deltas	are	therefore	unsigned.		The

			131	 initialization	for	the	delta	encoding	sets	the	field	number	to	-1,	so	an	unsigned

			132	 integer	field	0	with	value	7	is	transmitted	as	unsigned	delta	=	1,	unsigned	value

			133	 =	7	or	(01	07).		Finally,	after	all	the	fields	have	been	sent	a	terminating	mark

			134	 denotes	the	end	of	the	struct.		That	mark	is	a	delta=0	value,	which	has

			135	 representation	(00).

			136	

			137	 Interface	types	are	not	checked	for	compatibility;	all	interface	types	are

			138	 treated,	for	transmission,	as	members	of	a	single	"interface"	type,	analogous	to

			139	 int	or	[]byte	-	in	effect	they're	all	treated	as	interface{}.		Interface	values

			140	 are	transmitted	as	a	string	identifying	the	concrete	type	being	sent	(a	name

			141	 that	must	be	pre-defined	by	calling	Register),	followed	by	a	byte	count	of	the

			142	 length	of	the	following	data	(so	the	value	can	be	skipped	if	it	cannot	be

			143	 stored),	followed	by	the	usual	encoding	of	concrete	(dynamic)	value	stored	in

			144	 the	interface	value.		(A	nil	interface	value	is	identified	by	the	empty	string

			145	 and	transmits	no	value.)	Upon	receipt,	the	decoder	verifies	that	the	unpacked

			146	 concrete	item	satisfies	the	interface	of	the	receiving	variable.

			147	

			148	 The	representation	of	types	is	described	below.		When	a	type	is	defined	on	a	given

			149	 connection	between	an	Encoder	and	Decoder,	it	is	assigned	a	signed	integer	type

			150	 id.		When	Encoder.Encode(v)	is	called,	it	makes	sure	there	is	an	id	assigned	for

			151	 the	type	of	v	and	all	its	elements	and	then	it	sends	the	pair	(typeid,	encoded-v)

			152	 where	typeid	is	the	type	id	of	the	encoded	type	of	v	and	encoded-v	is	the	gob

			153	 encoding	of	the	value	v.

			154	

			155	 To	define	a	type,	the	encoder	chooses	an	unused,	positive	type	id	and	sends	the

			156	 pair	(-type	id,	encoded-type)	where	encoded-type	is	the	gob	encoding	of	a	wireType

			157	 description,	constructed	from	these	types:

			158	

			159	 	 type	wireType	struct	{

			160	 	 	 ArrayT		*ArrayType

			161	 	 	 SliceT		*SliceType

			162	 	 	 StructT	*StructType

			163	 	 	 MapT				*MapType

			164	 	 }

			165	 	 type	arrayType	struct	{

			166	 	 	 CommonType

			167	 	 	 Elem	typeId

			168	 	 	 Len		int

			169	 	 }

			170	 	 type	CommonType	struct	{

			171	 	 	 Name	string	//	the	name	of	the	struct	type

			172	 	 	 Id		int				//	the	id	of	the	type,	repeated	so	it's	inside	the	type

			173	 	 }

			174	 	 type	sliceType	struct	{

			175	 	 	 CommonType

			176	 	 	 Elem	typeId

			177	 	 }

			178	 	 type	structType	struct	{

			179	 	 	 CommonType

			180	 	 	 Field	[]*fieldType	//	the	fields	of	the	struct.

			181	 	 }

			182	 	 type	fieldType	struct	{

			183	 	 	 Name	string	//	the	name	of	the	field.

			184	 	 	 Id			int				//	the	type	id	of	the	field,	which	must	be	already	defined

			185	 	 }

			186	 	 type	mapType	struct	{

			187	 	 	 CommonType

			188	 	 	 Key		typeId

			189	 	 	 Elem	typeId

			190	 	 }

			191	

			192	 If	there	are	nested	type	ids,	the	types	for	all	inner	type	ids	must	be	defined

			193	 before	the	top-level	type	id	is	used	to	describe	an	encoded-v.

			194	

			195	 For	simplicity	in	setup,	the	connection	is	defined	to	understand	these	types	a

			196	 priori,	as	well	as	the	basic	gob	types	int,	uint,	etc.		Their	ids	are:

			197	

			198	 	 bool								1

			199	 	 int									2

			200	 	 uint								3

			201	 	 float							4

			202	 	 []byte						5

			203	 	 string						6

			204	 	 complex					7

			205	 	 interface			8

			206	 	 //	gap	for	reserved	ids.

			207	 	 WireType				16

			208	 	 ArrayType			17

			209	 	 CommonType		18

			210	 	 SliceType			19

			211	 	 StructType		20

			212	 	 FieldType			21

			213	 	 //	22	is	slice	of	fieldType.

			214	 	 MapType					23

			215	

			216	 Finally,	each	message	created	by	a	call	to	Encode	is	preceded	by	an	encoded

			217	 unsigned	integer	count	of	the	number	of	bytes	remaining	in	the	message.		After

			218	 the	initial	type	name,	interface	values	are	wrapped	the	same	way;	in	effect,	the

			219	 interface	value	acts	like	a	recursive	invocation	of	Encode.

			220	

			221	 In	summary,	a	gob	stream	looks	like

			222	

			223	 	 (byteCount	(-type	id,	encoding	of	a	wireType)*	(type	id,	encoding	of	a	value))*

			224	

			225	 where	*	signifies	zero	or	more	repetitions	and	the	type	id	of	a	value	must

			226	 be	predefined	or	be	defined	before	the	value	in	the	stream.

			227	

			228	 See	"Gobs	of	data"	for	a	design	discussion	of	the	gob	wire	format:

			229	 http://golang.org/doc/articles/gobs_of_data.html

			230	 */

			231	 package	gob

			232	

			233	 /*

			234	 Grammar:

			235	

			236	 Tokens	starting	with	a	lower	case	letter	are	terminals;	int(n)

			237	 and	uint(n)	represent	the	signed/unsigned	encodings	of	the	value	n.

			238	

			239	 GobStream:

			240	 	 DelimitedMessage*

			241	 DelimitedMessage:

			242	 	 uint(lengthOfMessage)	Message

			243	 Message:

			244	 	 TypeSequence	TypedValue

			245	 TypeSequence

			246	 	 (TypeDefinition	DelimitedTypeDefinition*)?

			247	 DelimitedTypeDefinition:

			248	 	 uint(lengthOfTypeDefinition)	TypeDefinition

			249	 TypedValue:

			250	 	 int(typeId)	Value

			251	 TypeDefinition:

			252	 	 int(-typeId)	encodingOfWireType

			253	 Value:

			254	 	 SingletonValue	|	StructValue

			255	 SingletonValue:

			256	 	 uint(0)	FieldValue

			257	 FieldValue:

			258	 	 builtinValue	|	ArrayValue	|	MapValue	|	SliceValue	|	StructValue	|	InterfaceValue

			259	 InterfaceValue:

			260	 	 NilInterfaceValue	|	NonNilInterfaceValue

			261	 NilInterfaceValue:

			262	 	 uint(0)

			263	 NonNilInterfaceValue:

			264	 	 ConcreteTypeName	TypeSequence	InterfaceContents

			265	 ConcreteTypeName:

			266	 	 uint(lengthOfName)	[already	read=n]	name

			267	 InterfaceContents:

			268	 	 int(concreteTypeId)	DelimitedValue

			269	 DelimitedValue:

			270	 	 uint(length)	Value

			271	 ArrayValue:

			272	 	 uint(n)	FieldValue*n	[n	elements]

			273	 MapValue:

			274	 	 uint(n)	(FieldValue	FieldValue)*n		[n	(key,	value)	pairs]

			275	 SliceValue:

			276	 	 uint(n)	FieldValue*n	[n	elements]

			277	 StructValue:

			278	 	 (uint(fieldDelta)	FieldValue)*

			279	 */

			280	

			281	 /*

			282	 For	implementers	and	the	curious,	here	is	an	encoded	example.		Given

			283	 	 type	Point	struct	{X,	Y	int}

			284	 and	the	value

			285	 	 p	:=	Point{22,	33}

			286	 the	bytes	transmitted	that	encode	p	will	be:

			287	 	 1f	ff	81	03	01	01	05	50	6f	69	6e	74	01	ff	82	00

			288	 	 01	02	01	01	58	01	04	00	01	01	59	01	04	00	00	00

			289	 	 07	ff	82	01	2c	01	42	00

			290	 They	are	determined	as	follows.

			291	

			292	 Since	this	is	the	first	transmission	of	type	Point,	the	type	descriptor

			293	 for	Point	itself	must	be	sent	before	the	value.		This	is	the	first	type

			294	 we've	sent	on	this	Encoder,	so	it	has	type	id	65	(0	through	64	are

			295	 reserved).

			296	

			297	 	 1f	 //	This	item	(a	type	descriptor)	is	31	bytes	long.

			298	 	 ff	81	 //	The	negative	of	the	id	for	the	type	we're	defining,	-65.

			299	 	 	 //	This	is	one	byte	(indicated	by	FF	=	-1)	followed	by

			300	 	 	 //	^-65<<1	|	1.		The	low	1	bit	signals	to	complement	the

			301	 	 	 //	rest	upon	receipt.

			302	

			303	 	 //	Now	we	send	a	type	descriptor,	which	is	itself	a	struct	(wireType).

			304	 	 //	The	type	of	wireType	itself	is	known	(it's	built	in,	as	is	the	type	of

			305	 	 //	all	its	components),	so	we	just	need	to	send	a	*value*	of	type	wireType

			306	 	 //	that	represents	type	"Point".

			307	 	 //	Here	starts	the	encoding	of	that	value.

			308	 	 //	Set	the	field	number	implicitly	to	-1;	this	is	done	at	the	beginning

			309	 	 //	of	every	struct,	including	nested	structs.

			310	 	 03	 //	Add	3	to	field	number;	now	2	(wireType.structType;	this	is	a	struct).

			311	 	 	 //	structType	starts	with	an	embedded	CommonType,	which	appears

			312	 	 	 //	as	a	regular	structure	here	too.

			313	 	 01	 //	add	1	to	field	number	(now	0);	start	of	embedded	CommonType.

			314	 	 01	 //	add	1	to	field	number	(now	0,	the	name	of	the	type)

			315	 	 05	 //	string	is	(unsigned)	5	bytes	long

			316	 	 50	6f	69	6e	74	 //	wireType.structType.CommonType.name	=	"Point"

			317	 	 01	 //	add	1	to	field	number	(now	1,	the	id	of	the	type)

			318	 	 ff	82	 //	wireType.structType.CommonType._id	=	65

			319	 	 00	 //	end	of	embedded	wiretype.structType.CommonType	struct

			320	 	 01	 //	add	1	to	field	number	(now	1,	the	field	array	in	wireType.structType)

			321	 	 02	 //	There	are	two	fields	in	the	type	(len(structType.field))

			322	 	 01	 //	Start	of	first	field	structure;	add	1	to	get	field	number	0:	field[0].name

			323	 	 01	 //	1	byte

			324	 	 58	 //	structType.field[0].name	=	"X"

			325	 	 01	 //	Add	1	to	get	field	number	1:	field[0].id

			326	 	 04	 //	structType.field[0].typeId	is	2	(signed	int).

			327	 	 00	 //	End	of	structType.field[0];	start	structType.field[1];	set	field	number	to	-1.

			328	 	 01	 //	Add	1	to	get	field	number	0:	field[1].name

			329	 	 01	 //	1	byte

			330	 	 59	 //	structType.field[1].name	=	"Y"

			331	 	 01	 //	Add	1	to	get	field	number	1:	field[0].id

			332	 	 04	 //	struct.Type.field[1].typeId	is	2	(signed	int).

			333	 	 00	 //	End	of	structType.field[1];	end	of	structType.field.

			334	 	 00	 //	end	of	wireType.structType	structure

			335	 	 00	 //	end	of	wireType	structure

			336	

			337	 Now	we	can	send	the	Point	value.		Again	the	field	number	resets	to	-1:

			338	

			339	 	 07	 //	this	value	is	7	bytes	long

			340	 	 ff	82	 //	the	type	number,	65	(1	byte	(-FF)	followed	by	65<<1)

			341	 	 01	 //	add	one	to	field	number,	yielding	field	0

			342	 	 2c	 //	encoding	of	signed	"22"	(0x22	=	44	=	22<<1);	Point.x	=	22

			343	 	 01	 //	add	one	to	field	number,	yielding	field	1

			344	 	 42	 //	encoding	of	signed	"33"	(0x42	=	66	=	33<<1);	Point.y	=	33

			345	 	 00	 //	end	of	structure

			346	

			347	 The	type	encoding	is	long	and	fairly	intricate	but	we	send	it	only	once.

			348	 If	p	is	transmitted	a	second	time,	the	type	is	already	known	so	the

			349	 output	will	be	just:

			350	

			351	 	 07	ff	82	01	2c	01	42	00

			352	

			353	 A	single	non-struct	value	at	top	level	is	transmitted	like	a	field	with

			354	 delta	tag	0.		For	instance,	a	signed	integer	with	value	3	presented	as

			355	 the	argument	to	Encode	will	emit:

			356	

			357	 	 03	04	00	06

			358	

			359	 Which	represents:

			360	

			361	 	 03	 //	this	value	is	3	bytes	long

			362	 	 04	 //	the	type	number,	2,	represents	an	integer

			363	 	 00	 //	tag	delta	0

			364	 	 06	 //	value	3

			365	

			366	 */

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/gob/encode.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	gob

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "math"

				10	 	 "reflect"

				11	 	 "unsafe"

				12)

				13	

				14	 const	uint64Size	=	int(unsafe.Sizeof(uint64(0)))

				15	

				16	 //	encoderState	is	the	global	execution	state	of	an	instance	of	the	encoder.

				17	 //	Field	numbers	are	delta	encoded	and	always	increase.	The	field

				18	 //	number	is	initialized	to	-1	so	0	comes	out	as	delta(1).	A	delta	of

				19	 //	0	terminates	the	structure.

				20	 type	encoderState	struct	{

				21	 	 enc						*Encoder

				22	 	 b								*bytes.Buffer

				23	 	 sendZero	bool																	//	encoding	an	array	element	or	map	key/value	pair;	send	zero	values

				24	 	 fieldnum	int																		//	the	last	field	number	written.

				25	 	 buf						[1	+	uint64Size]byte	//	buffer	used	by	the	encoder;	here	to	avoid	allocation.

				26	 	 next					*encoderState								//	for	free	list

				27	 }

				28	

				29	 func	(enc	*Encoder)	newEncoderState(b	*bytes.Buffer)	*encoderState	{

				30	 	 e	:=	enc.freeList

				31	 	 if	e	==	nil	{

				32	 	 	 e	=	new(encoderState)

				33	 	 	 e.enc	=	enc

				34	 	 }	else	{

				35	 	 	 enc.freeList	=	e.next

				36	 	 }

				37	 	 e.sendZero	=	false

				38	 	 e.fieldnum	=	0

				39	 	 e.b	=	b

				40	 	 return	e

				41	 }

				42	

				43	 func	(enc	*Encoder)	freeEncoderState(e	*encoderState)	{

				44	 	 e.next	=	enc.freeList

				45	 	 enc.freeList	=	e

				46	 }

				47	

				48	 //	Unsigned	integers	have	a	two-state	encoding.		If	the	number	is	less

				49	 //	than	128	(0	through	0x7F),	its	value	is	written	directly.

				50	 //	Otherwise	the	value	is	written	in	big-endian	byte	order	preceded

				51	 //	by	the	byte	length,	negated.

				52	

				53	 //	encodeUint	writes	an	encoded	unsigned	integer	to	state.b.

				54	 func	(state	*encoderState)	encodeUint(x	uint64)	{

				55	 	 if	x	<=	0x7F	{

				56	 	 	 err	:=	state.b.WriteByte(uint8(x))

				57	 	 	 if	err	!=	nil	{

				58	 	 	 	 error_(err)

				59	 	 	 }

				60	 	 	 return

				61	 	 }

				62	 	 i	:=	uint64Size

				63	 	 for	x	>	0	{

				64	 	 	 state.buf[i]	=	uint8(x)

				65	 	 	 x	>>=	8

				66	 	 	 i--

				67	 	 }

				68	 	 state.buf[i]	=	uint8(i	-	uint64Size)	//	=	loop	count,	negated

				69	 	 _,	err	:=	state.b.Write(state.buf[i	:	uint64Size+1])

				70	 	 if	err	!=	nil	{

				71	 	 	 error_(err)

				72	 	 }

				73	 }

				74	

				75	 //	encodeInt	writes	an	encoded	signed	integer	to	state.w.

				76	 //	The	low	bit	of	the	encoding	says	whether	to	bit	complement	the	(other	bits	of	the)

				77	 //	uint	to	recover	the	int.

				78	 func	(state	*encoderState)	encodeInt(i	int64)	{

				79	 	 var	x	uint64

				80	 	 if	i	<	0	{

				81	 	 	 x	=	uint64(^i<<1)	|	1

				82	 	 }	else	{

				83	 	 	 x	=	uint64(i	<<	1)

				84	 	 }

				85	 	 state.encodeUint(uint64(x))

				86	 }

				87	

				88	 //	encOp	is	the	signature	of	an	encoding	operator	for	a	given	type.

				89	 type	encOp	func(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)

				90	

				91	 //	The	'instructions'	of	the	encoding	machine

				92	 type	encInstr	struct	{

				93	 	 op					encOp

				94	 	 field		int					//	field	number

				95	 	 indir		int					//	how	many	pointer	indirections	to	reach	the	value	in	the	struct

				96	 	 offset	uintptr	//	offset	in	the	structure	of	the	field	to	encode

				97	 }

				98	

				99	 //	update	emits	a	field	number	and	updates	the	state	to	record	its	value	for	delta	encoding.

			100	 //	If	the	instruction	pointer	is	nil,	it	does	nothing

			101	 func	(state	*encoderState)	update(instr	*encInstr)	{

			102	 	 if	instr	!=	nil	{

			103	 	 	 state.encodeUint(uint64(instr.field	-	state.fieldnum))

			104	 	 	 state.fieldnum	=	instr.field

			105	 	 }

			106	 }

			107	

			108	 //	Each	encoder	for	a	composite	is	responsible	for	handling	any

			109	 //	indirections	associated	with	the	elements	of	the	data	structure.

			110	 //	If	any	pointer	so	reached	is	nil,	no	bytes	are	written.		If	the

			111	 //	data	item	is	zero,	no	bytes	are	written.		Single	values	-	ints,

			112	 //	strings	etc.	-	are	indirected	before	calling	their	encoders.

			113	 //	Otherwise,	the	output	(for	a	scalar)	is	the	field	number,	as	an

			114	 //	encoded	integer,	followed	by	the	field	data	in	its	appropriate

			115	 //	format.

			116	

			117	 //	encIndirect	dereferences	p	indir	times	and	returns	the	result.

			118	 func	encIndirect(p	unsafe.Pointer,	indir	int)	unsafe.Pointer	{

			119	 	 for	;	indir	>	0;	indir--	{

			120	 	 	 p	=	*(*unsafe.Pointer)(p)

			121	 	 	 if	p	==	nil	{

			122	 	 	 	 return	unsafe.Pointer(nil)

			123	 	 	 }

			124	 	 }

			125	 	 return	p

			126	 }

			127	

			128	 //	encBool	encodes	the	bool	with	address	p	as	an	unsigned	0	or	1.

			129	 func	encBool(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			130	 	 b	:=	*(*bool)(p)

			131	 	 if	b	||	state.sendZero	{

			132	 	 	 state.update(i)

			133	 	 	 if	b	{

			134	 	 	 	 state.encodeUint(1)

			135	 	 	 }	else	{

			136	 	 	 	 state.encodeUint(0)

			137	 	 	 }

			138	 	 }

			139	 }

			140	

			141	 //	encInt	encodes	the	int	with	address	p.

			142	 func	encInt(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			143	 	 v	:=	int64(*(*int)(p))

			144	 	 if	v	!=	0	||	state.sendZero	{

			145	 	 	 state.update(i)

			146	 	 	 state.encodeInt(v)

			147	 	 }

			148	 }

			149	

			150	 //	encUint	encodes	the	uint	with	address	p.

			151	 func	encUint(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			152	 	 v	:=	uint64(*(*uint)(p))

			153	 	 if	v	!=	0	||	state.sendZero	{

			154	 	 	 state.update(i)

			155	 	 	 state.encodeUint(v)

			156	 	 }

			157	 }

			158	

			159	 //	encInt8	encodes	the	int8	with	address	p.

			160	 func	encInt8(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			161	 	 v	:=	int64(*(*int8)(p))

			162	 	 if	v	!=	0	||	state.sendZero	{

			163	 	 	 state.update(i)

			164	 	 	 state.encodeInt(v)

			165	 	 }

			166	 }

			167	

			168	 //	encUint8	encodes	the	uint8	with	address	p.

			169	 func	encUint8(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			170	 	 v	:=	uint64(*(*uint8)(p))

			171	 	 if	v	!=	0	||	state.sendZero	{

			172	 	 	 state.update(i)

			173	 	 	 state.encodeUint(v)

			174	 	 }

			175	 }

			176	

			177	 //	encInt16	encodes	the	int16	with	address	p.

			178	 func	encInt16(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			179	 	 v	:=	int64(*(*int16)(p))

			180	 	 if	v	!=	0	||	state.sendZero	{

			181	 	 	 state.update(i)

			182	 	 	 state.encodeInt(v)

			183	 	 }

			184	 }

			185	

			186	 //	encUint16	encodes	the	uint16	with	address	p.

			187	 func	encUint16(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			188	 	 v	:=	uint64(*(*uint16)(p))

			189	 	 if	v	!=	0	||	state.sendZero	{

			190	 	 	 state.update(i)

			191	 	 	 state.encodeUint(v)

			192	 	 }

			193	 }

			194	

			195	 //	encInt32	encodes	the	int32	with	address	p.

			196	 func	encInt32(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			197	 	 v	:=	int64(*(*int32)(p))

			198	 	 if	v	!=	0	||	state.sendZero	{

			199	 	 	 state.update(i)

			200	 	 	 state.encodeInt(v)

			201	 	 }

			202	 }

			203	

			204	 //	encUint	encodes	the	uint32	with	address	p.

			205	 func	encUint32(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			206	 	 v	:=	uint64(*(*uint32)(p))

			207	 	 if	v	!=	0	||	state.sendZero	{

			208	 	 	 state.update(i)

			209	 	 	 state.encodeUint(v)

			210	 	 }

			211	 }

			212	

			213	 //	encInt64	encodes	the	int64	with	address	p.

			214	 func	encInt64(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			215	 	 v	:=	*(*int64)(p)

			216	 	 if	v	!=	0	||	state.sendZero	{

			217	 	 	 state.update(i)

			218	 	 	 state.encodeInt(v)

			219	 	 }

			220	 }

			221	

			222	 //	encInt64	encodes	the	uint64	with	address	p.

			223	 func	encUint64(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			224	 	 v	:=	*(*uint64)(p)

			225	 	 if	v	!=	0	||	state.sendZero	{

			226	 	 	 state.update(i)

			227	 	 	 state.encodeUint(v)

			228	 	 }

			229	 }

			230	

			231	 //	encUintptr	encodes	the	uintptr	with	address	p.

			232	 func	encUintptr(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			233	 	 v	:=	uint64(*(*uintptr)(p))

			234	 	 if	v	!=	0	||	state.sendZero	{

			235	 	 	 state.update(i)

			236	 	 	 state.encodeUint(v)

			237	 	 }

			238	 }

			239	

			240	 //	floatBits	returns	a	uint64	holding	the	bits	of	a	floating-point	number.

			241	 //	Floating-point	numbers	are	transmitted	as	uint64s	holding	the	bits

			242	 //	of	the	underlying	representation.		They	are	sent	byte-reversed,	with

			243	 //	the	exponent	end	coming	out	first,	so	integer	floating	point	numbers

			244	 //	(for	example)	transmit	more	compactly.		This	routine	does	the

			245	 //	swizzling.

			246	 func	floatBits(f	float64)	uint64	{

			247	 	 u	:=	math.Float64bits(f)

			248	 	 var	v	uint64

			249	 	 for	i	:=	0;	i	<	8;	i++	{

			250	 	 	 v	<<=	8

			251	 	 	 v	|=	u	&	0xFF

			252	 	 	 u	>>=	8

			253	 	 }

			254	 	 return	v

			255	 }

			256	

			257	 //	encFloat32	encodes	the	float32	with	address	p.

			258	 func	encFloat32(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			259	 	 f	:=	*(*float32)(p)

			260	 	 if	f	!=	0	||	state.sendZero	{

			261	 	 	 v	:=	floatBits(float64(f))

			262	 	 	 state.update(i)

			263	 	 	 state.encodeUint(v)

			264	 	 }

			265	 }

			266	

			267	 //	encFloat64	encodes	the	float64	with	address	p.

			268	 func	encFloat64(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			269	 	 f	:=	*(*float64)(p)

			270	 	 if	f	!=	0	||	state.sendZero	{

			271	 	 	 state.update(i)

			272	 	 	 v	:=	floatBits(f)

			273	 	 	 state.encodeUint(v)

			274	 	 }

			275	 }

			276	

			277	 //	encComplex64	encodes	the	complex64	with	address	p.

			278	 //	Complex	numbers	are	just	a	pair	of	floating-point	numbers,	real	part	first.

			279	 func	encComplex64(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			280	 	 c	:=	*(*complex64)(p)

			281	 	 if	c	!=	0+0i	||	state.sendZero	{

			282	 	 	 rpart	:=	floatBits(float64(real(c)))

			283	 	 	 ipart	:=	floatBits(float64(imag(c)))

			284	 	 	 state.update(i)

			285	 	 	 state.encodeUint(rpart)

			286	 	 	 state.encodeUint(ipart)

			287	 	 }

			288	 }

			289	

			290	 //	encComplex128	encodes	the	complex128	with	address	p.

			291	 func	encComplex128(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			292	 	 c	:=	*(*complex128)(p)

			293	 	 if	c	!=	0+0i	||	state.sendZero	{

			294	 	 	 rpart	:=	floatBits(real(c))

			295	 	 	 ipart	:=	floatBits(imag(c))

			296	 	 	 state.update(i)

			297	 	 	 state.encodeUint(rpart)

			298	 	 	 state.encodeUint(ipart)

			299	 	 }

			300	 }

			301	

			302	 //	encUint8Array	encodes	the	byte	slice	whose	header	has	address	p.

			303	 //	Byte	arrays	are	encoded	as	an	unsigned	count	followed	by	the	raw	bytes.

			304	 func	encUint8Array(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			305	 	 b	:=	*(*[]byte)(p)

			306	 	 if	len(b)	>	0	||	state.sendZero	{

			307	 	 	 state.update(i)

			308	 	 	 state.encodeUint(uint64(len(b)))

			309	 	 	 state.b.Write(b)

			310	 	 }

			311	 }

			312	

			313	 //	encString	encodes	the	string	whose	header	has	address	p.

			314	 //	Strings	are	encoded	as	an	unsigned	count	followed	by	the	raw	bytes.

			315	 func	encString(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			316	 	 s	:=	*(*string)(p)

			317	 	 if	len(s)	>	0	||	state.sendZero	{

			318	 	 	 state.update(i)

			319	 	 	 state.encodeUint(uint64(len(s)))

			320	 	 	 state.b.WriteString(s)

			321	 	 }

			322	 }

			323	

			324	 //	encStructTerminator	encodes	the	end	of	an	encoded	struct

			325	 //	as	delta	field	number	of	0.

			326	 func	encStructTerminator(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			327	 	 state.encodeUint(0)

			328	 }

			329	

			330	 //	Execution	engine

			331	

			332	 //	encEngine	an	array	of	instructions	indexed	by	field	number	of	the	encoding

			333	 //	data,	typically	a	struct.		It	is	executed	top	to	bottom,	walking	the	struct.

			334	 type	encEngine	struct	{

			335	 	 instr	[]encInstr

			336	 }

			337	

			338	 const	singletonField	=	0

			339	

			340	 //	encodeSingle	encodes	a	single	top-level	non-struct	value.

			341	 func	(enc	*Encoder)	encodeSingle(b	*bytes.Buffer,	engine	*encEngine,	basep	uintptr)	{

			342	 	 state	:=	enc.newEncoderState(b)

			343	 	 state.fieldnum	=	singletonField

			344	 	 //	There	is	no	surrounding	struct	to	frame	the	transmission,	so	we	must

			345	 	 //	generate	data	even	if	the	item	is	zero.		To	do	this,	set	sendZero.

			346	 	 state.sendZero	=	true

			347	 	 instr	:=	&engine.instr[singletonField]

			348	 	 p	:=	unsafe.Pointer(basep)	//	offset	will	be	zero

			349	 	 if	instr.indir	>	0	{

			350	 	 	 if	p	=	encIndirect(p,	instr.indir);	p	==	nil	{

			351	 	 	 	 return

			352	 	 	 }

			353	 	 }

			354	 	 instr.op(instr,	state,	p)

			355	 	 enc.freeEncoderState(state)

			356	 }

			357	

			358	 //	encodeStruct	encodes	a	single	struct	value.

			359	 func	(enc	*Encoder)	encodeStruct(b	*bytes.Buffer,	engine	*encEngine,	basep	uintptr)	{

			360	 	 state	:=	enc.newEncoderState(b)

			361	 	 state.fieldnum	=	-1

			362	 	 for	i	:=	0;	i	<	len(engine.instr);	i++	{

			363	 	 	 instr	:=	&engine.instr[i]

			364	 	 	 p	:=	unsafe.Pointer(basep	+	instr.offset)

			365	 	 	 if	instr.indir	>	0	{

			366	 	 	 	 if	p	=	encIndirect(p,	instr.indir);	p	==	nil	{

			367	 	 	 	 	 continue

			368	 	 	 	 }

			369	 	 	 }

			370	 	 	 instr.op(instr,	state,	p)

			371	 	 }

			372	 	 enc.freeEncoderState(state)

			373	 }

			374	

			375	 //	encodeArray	encodes	the	array	whose	0th	element	is	at	p.

			376	 func	(enc	*Encoder)	encodeArray(b	*bytes.Buffer,	p	uintptr,	op	encOp,	elemWid	uintptr,	elemIndir	int,	length	int)	{

			377	 	 state	:=	enc.newEncoderState(b)

			378	 	 state.fieldnum	=	-1

			379	 	 state.sendZero	=	true

			380	 	 state.encodeUint(uint64(length))

			381	 	 for	i	:=	0;	i	<	length;	i++	{

			382	 	 	 elemp	:=	p

			383	 	 	 up	:=	unsafe.Pointer(elemp)

			384	 	 	 if	elemIndir	>	0	{

			385	 	 	 	 if	up	=	encIndirect(up,	elemIndir);	up	==	nil	{

			386	 	 	 	 	 errorf("encodeArray:	nil	element")

			387	 	 	 	 }

			388	 	 	 	 elemp	=	uintptr(up)

			389	 	 	 }

			390	 	 	 op(nil,	state,	unsafe.Pointer(elemp))

			391	 	 	 p	+=	uintptr(elemWid)

			392	 	 }

			393	 	 enc.freeEncoderState(state)

			394	 }

			395	

			396	 //	encodeReflectValue	is	a	helper	for	maps.	It	encodes	the	value	v.

			397	 func	encodeReflectValue(state	*encoderState,	v	reflect.Value,	op	encOp,	indir	int)	{

			398	 	 for	i	:=	0;	i	<	indir	&&	v.IsValid();	i++	{

			399	 	 	 v	=	reflect.Indirect(v)

			400	 	 }

			401	 	 if	!v.IsValid()	{

			402	 	 	 errorf("encodeReflectValue:	nil	element")

			403	 	 }

			404	 	 op(nil,	state,	unsafe.Pointer(unsafeAddr(v)))

			405	 }

			406	

			407	 //	encodeMap	encodes	a	map	as	unsigned	count	followed	by	key:value	pairs.

			408	 //	Because	map	internals	are	not	exposed,	we	must	use	reflection	rather	than

			409	 //	addresses.

			410	 func	(enc	*Encoder)	encodeMap(b	*bytes.Buffer,	mv	reflect.Value,	keyOp,	elemOp	encOp,	keyIndir,	elemIndir	int)	{

			411	 	 state	:=	enc.newEncoderState(b)

			412	 	 state.fieldnum	=	-1

			413	 	 state.sendZero	=	true

			414	 	 keys	:=	mv.MapKeys()

			415	 	 state.encodeUint(uint64(len(keys)))

			416	 	 for	_,	key	:=	range	keys	{

			417	 	 	 encodeReflectValue(state,	key,	keyOp,	keyIndir)

			418	 	 	 encodeReflectValue(state,	mv.MapIndex(key),	elemOp,	elemIndir)

			419	 	 }

			420	 	 enc.freeEncoderState(state)

			421	 }

			422	

			423	 //	encodeInterface	encodes	the	interface	value	iv.

			424	 //	To	send	an	interface,	we	send	a	string	identifying	the	concrete	type,	followed

			425	 //	by	the	type	identifier	(which	might	require	defining	that	type	right	now),	followed

			426	 //	by	the	concrete	value.		A	nil	value	gets	sent	as	the	empty	string	for	the	name,

			427	 //	followed	by	no	value.

			428	 func	(enc	*Encoder)	encodeInterface(b	*bytes.Buffer,	iv	reflect.Value)	{

			429	 	 state	:=	enc.newEncoderState(b)

			430	 	 state.fieldnum	=	-1

			431	 	 state.sendZero	=	true

			432	 	 if	iv.IsNil()	{

			433	 	 	 state.encodeUint(0)

			434	 	 	 return

			435	 	 }

			436	

			437	 	 ut	:=	userType(iv.Elem().Type())

			438	 	 name,	ok	:=	concreteTypeToName[ut.base]

			439	 	 if	!ok	{

			440	 	 	 errorf("type	not	registered	for	interface:	%s",	ut.base)

			441	 	 }

			442	 	 //	Send	the	name.

			443	 	 state.encodeUint(uint64(len(name)))

			444	 	 _,	err	:=	state.b.WriteString(name)

			445	 	 if	err	!=	nil	{

			446	 	 	 error_(err)

			447	 	 }

			448	 	 //	Define	the	type	id	if	necessary.

			449	 	 enc.sendTypeDescriptor(enc.writer(),	state,	ut)

			450	 	 //	Send	the	type	id.

			451	 	 enc.sendTypeId(state,	ut)

			452	 	 //	Encode	the	value	into	a	new	buffer.		Any	nested	type	definitions

			453	 	 //	should	be	written	to	b,	before	the	encoded	value.

			454	 	 enc.pushWriter(b)

			455	 	 data	:=	new(bytes.Buffer)

			456	 	 data.Write(spaceForLength)

			457	 	 enc.encode(data,	iv.Elem(),	ut)

			458	 	 if	enc.err	!=	nil	{

			459	 	 	 error_(enc.err)

			460	 	 }

			461	 	 enc.popWriter()

			462	 	 enc.writeMessage(b,	data)

			463	 	 if	enc.err	!=	nil	{

			464	 	 	 error_(err)

			465	 	 }

			466	 	 enc.freeEncoderState(state)

			467	 }

			468	

			469	 //	isZero	returns	whether	the	value	is	the	zero	of	its	type.

			470	 func	isZero(val	reflect.Value)	bool	{

			471	 	 switch	val.Kind()	{

			472	 	 case	reflect.Array:

			473	 	 	 for	i	:=	0;	i	<	val.Len();	i++	{

			474	 	 	 	 if	!isZero(val.Index(i))	{

			475	 	 	 	 	 return	false

			476	 	 	 	 }

			477	 	 	 }

			478	 	 	 return	true

			479	 	 case	reflect.Map,	reflect.Slice,	reflect.String:

			480	 	 	 return	val.Len()	==	0

			481	 	 case	reflect.Bool:

			482	 	 	 return	!val.Bool()

			483	 	 case	reflect.Complex64,	reflect.Complex128:

			484	 	 	 return	val.Complex()	==	0

			485	 	 case	reflect.Chan,	reflect.Func,	reflect.Ptr:

			486	 	 	 return	val.IsNil()

			487	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			488	 	 	 return	val.Int()	==	0

			489	 	 case	reflect.Float32,	reflect.Float64:

			490	 	 	 return	val.Float()	==	0

			491	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

			492	 	 	 return	val.Uint()	==	0

			493	 	 case	reflect.Struct:

			494	 	 	 for	i	:=	0;	i	<	val.NumField();	i++	{

			495	 	 	 	 if	!isZero(val.Field(i))	{

			496	 	 	 	 	 return	false

			497	 	 	 	 }

			498	 	 	 }

			499	 	 	 return	true

			500	 	 }

			501	 	 panic("unknown	type	in	isZero	"	+	val.Type().String())

			502	 }

			503	

			504	 //	encGobEncoder	encodes	a	value	that	implements	the	GobEncoder	interface.

			505	 //	The	data	is	sent	as	a	byte	array.

			506	 func	(enc	*Encoder)	encodeGobEncoder(b	*bytes.Buffer,	v	reflect.Value)	{

			507	 	 //	TODO:	should	we	catch	panics	from	the	called	method?

			508	 	 //	We	know	it's	a	GobEncoder,	so	just	call	the	method	directly.

			509	 	 data,	err	:=	v.Interface().(GobEncoder).GobEncode()

			510	 	 if	err	!=	nil	{

			511	 	 	 error_(err)

			512	 	 }

			513	 	 state	:=	enc.newEncoderState(b)

			514	 	 state.fieldnum	=	-1

			515	 	 state.encodeUint(uint64(len(data)))

			516	 	 state.b.Write(data)

			517	 	 enc.freeEncoderState(state)

			518	 }

			519	

			520	 var	encOpTable	=	[...]encOp{

			521	 	 reflect.Bool:							encBool,

			522	 	 reflect.Int:								encInt,

			523	 	 reflect.Int8:							encInt8,

			524	 	 reflect.Int16:						encInt16,

			525	 	 reflect.Int32:						encInt32,

			526	 	 reflect.Int64:						encInt64,

			527	 	 reflect.Uint:							encUint,

			528	 	 reflect.Uint8:						encUint8,

			529	 	 reflect.Uint16:					encUint16,

			530	 	 reflect.Uint32:					encUint32,

			531	 	 reflect.Uint64:					encUint64,

			532	 	 reflect.Uintptr:				encUintptr,

			533	 	 reflect.Float32:				encFloat32,

			534	 	 reflect.Float64:				encFloat64,

			535	 	 reflect.Complex64:		encComplex64,

			536	 	 reflect.Complex128:	encComplex128,

			537	 	 reflect.String:					encString,

			538	 }

			539	

			540	 //	encOpFor	returns	(a	pointer	to)	the	encoding	op	for	the	base	type	under	rt	and

			541	 //	the	indirection	count	to	reach	it.

			542	 func	(enc	*Encoder)	encOpFor(rt	reflect.Type,	inProgress	map[reflect.Type]*encOp)	(*encOp,	int)	{

			543	 	 ut	:=	userType(rt)

			544	 	 //	If	the	type	implements	GobEncoder,	we	handle	it	without	further	processing.

			545	 	 if	ut.isGobEncoder	{

			546	 	 	 return	enc.gobEncodeOpFor(ut)

			547	 	 }

			548	 	 //	If	this	type	is	already	in	progress,	it's	a	recursive	type	(e.g.	map[string]*T).

			549	 	 //	Return	the	pointer	to	the	op	we're	already	building.

			550	 	 if	opPtr	:=	inProgress[rt];	opPtr	!=	nil	{

			551	 	 	 return	opPtr,	ut.indir

			552	 	 }

			553	 	 typ	:=	ut.base

			554	 	 indir	:=	ut.indir

			555	 	 k	:=	typ.Kind()

			556	 	 var	op	encOp

			557	 	 if	int(k)	<	len(encOpTable)	{

			558	 	 	 op	=	encOpTable[k]

			559	 	 }

			560	 	 if	op	==	nil	{

			561	 	 	 inProgress[rt]	=	&op

			562	 	 	 //	Special	cases

			563	 	 	 switch	t	:=	typ;	t.Kind()	{

			564	 	 	 case	reflect.Slice:

			565	 	 	 	 if	t.Elem().Kind()	==	reflect.Uint8	{

			566	 	 	 	 	 op	=	encUint8Array

			567	 	 	 	 	 break

			568	 	 	 	 }

			569	 	 	 	 //	Slices	have	a	header;	we	decode	it	to	find	the	underlying	array.

			570	 	 	 	 elemOp,	indir	:=	enc.encOpFor(t.Elem(),	inProgress)

			571	 	 	 	 op	=	func(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			572	 	 	 	 	 slice	:=	(*reflect.SliceHeader)(p)

			573	 	 	 	 	 if	!state.sendZero	&&	slice.Len	==	0	{

			574	 	 	 	 	 	 return

			575	 	 	 	 	 }

			576	 	 	 	 	 state.update(i)

			577	 	 	 	 	 state.enc.encodeArray(state.b,	slice.Data,	*elemOp,	t.Elem().Size(),	indir,	int(slice.Len))

			578	 	 	 	 }

			579	 	 	 case	reflect.Array:

			580	 	 	 	 //	True	arrays	have	size	in	the	type.

			581	 	 	 	 elemOp,	indir	:=	enc.encOpFor(t.Elem(),	inProgress)

			582	 	 	 	 op	=	func(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			583	 	 	 	 	 state.update(i)

			584	 	 	 	 	 state.enc.encodeArray(state.b,	uintptr(p),	*elemOp,	t.Elem().Size(),	indir,	t.Len())

			585	 	 	 	 }

			586	 	 	 case	reflect.Map:

			587	 	 	 	 keyOp,	keyIndir	:=	enc.encOpFor(t.Key(),	inProgress)

			588	 	 	 	 elemOp,	elemIndir	:=	enc.encOpFor(t.Elem(),	inProgress)

			589	 	 	 	 op	=	func(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			590	 	 	 	 	 //	Maps	cannot	be	accessed	by	moving	addresses	around	the	way

			591	 	 	 	 	 //	that	slices	etc.	can.		We	must	recover	a	full	reflection	value	for

			592	 	 	 	 	 //	the	iteration.

			593	 	 	 	 	 v	:=	reflect.NewAt(t,	unsafe.Pointer(p)).Elem()

			594	 	 	 	 	 mv	:=	reflect.Indirect(v)

			595	 	 	 	 	 //	We	send	zero-length	(but	non-nil)	maps	because	the

			596	 	 	 	 	 //	receiver	might	want	to	use	the	map.		(Maps	don't	use	append.)

			597	 	 	 	 	 if	!state.sendZero	&&	mv.IsNil()	{

			598	 	 	 	 	 	 return

			599	 	 	 	 	 }

			600	 	 	 	 	 state.update(i)

			601	 	 	 	 	 state.enc.encodeMap(state.b,	mv,	*keyOp,	*elemOp,	keyIndir,	elemIndir)

			602	 	 	 	 }

			603	 	 	 case	reflect.Struct:

			604	 	 	 	 //	Generate	a	closure	that	calls	out	to	the	engine	for	the	nested	type.

			605	 	 	 	 enc.getEncEngine(userType(typ))

			606	 	 	 	 info	:=	mustGetTypeInfo(typ)

			607	 	 	 	 op	=	func(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			608	 	 	 	 	 state.update(i)

			609	 	 	 	 	 //	indirect	through	info	to	delay	evaluation	for	recursive	structs

			610	 	 	 	 	 state.enc.encodeStruct(state.b,	info.encoder,	uintptr(p))

			611	 	 	 	 }

			612	 	 	 case	reflect.Interface:

			613	 	 	 	 op	=	func(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			614	 	 	 	 	 //	Interfaces	transmit	the	name	and	contents	of	the	concrete

			615	 	 	 	 	 //	value	they	contain.

			616	 	 	 	 	 v	:=	reflect.NewAt(t,	unsafe.Pointer(p)).Elem()

			617	 	 	 	 	 iv	:=	reflect.Indirect(v)

			618	 	 	 	 	 if	!state.sendZero	&&	(!iv.IsValid()	||	iv.IsNil())	{

			619	 	 	 	 	 	 return

			620	 	 	 	 	 }

			621	 	 	 	 	 state.update(i)

			622	 	 	 	 	 state.enc.encodeInterface(state.b,	iv)

			623	 	 	 	 }

			624	 	 	 }

			625	 	 }

			626	 	 if	op	==	nil	{

			627	 	 	 errorf("can't	happen:	encode	type	%s",	rt)

			628	 	 }

			629	 	 return	&op,	indir

			630	 }

			631	

			632	 //	gobEncodeOpFor	returns	the	op	for	a	type	that	is	known	to	implement

			633	 //	GobEncoder.

			634	 func	(enc	*Encoder)	gobEncodeOpFor(ut	*userTypeInfo)	(*encOp,	int)	{

			635	 	 rt	:=	ut.user

			636	 	 if	ut.encIndir	==	-1	{

			637	 	 	 rt	=	reflect.PtrTo(rt)

			638	 	 }	else	if	ut.encIndir	>	0	{

			639	 	 	 for	i	:=	int8(0);	i	<	ut.encIndir;	i++	{

			640	 	 	 	 rt	=	rt.Elem()

			641	 	 	 }

			642	 	 }

			643	 	 var	op	encOp

			644	 	 op	=	func(i	*encInstr,	state	*encoderState,	p	unsafe.Pointer)	{

			645	 	 	 var	v	reflect.Value

			646	 	 	 if	ut.encIndir	==	-1	{

			647	 	 	 	 //	Need	to	climb	up	one	level	to	turn	value	into	pointer.

			648	 	 	 	 v	=	reflect.NewAt(rt,	unsafe.Pointer(&p)).Elem()

			649	 	 	 }	else	{

			650	 	 	 	 v	=	reflect.NewAt(rt,	p).Elem()

			651	 	 	 }

			652	 	 	 if	!state.sendZero	&&	isZero(v)	{

			653	 	 	 	 return

			654	 	 	 }

			655	 	 	 state.update(i)

			656	 	 	 state.enc.encodeGobEncoder(state.b,	v)

			657	 	 }

			658	 	 return	&op,	int(ut.encIndir)	//	encIndir:	op	will	get	called	with	p	==	address	of	receiver.

			659	 }

			660	

			661	 //	compileEnc	returns	the	engine	to	compile	the	type.

			662	 func	(enc	*Encoder)	compileEnc(ut	*userTypeInfo)	*encEngine	{

			663	 	 srt	:=	ut.base

			664	 	 engine	:=	new(encEngine)

			665	 	 seen	:=	make(map[reflect.Type]*encOp)

			666	 	 rt	:=	ut.base

			667	 	 if	ut.isGobEncoder	{

			668	 	 	 rt	=	ut.user

			669	 	 }

			670	 	 if	!ut.isGobEncoder	&&

			671	 	 	 srt.Kind()	==	reflect.Struct	{

			672	 	 	 for	fieldNum,	wireFieldNum	:=	0,	0;	fieldNum	<	srt.NumField();	fieldNum++	{

			673	 	 	 	 f	:=	srt.Field(fieldNum)

			674	 	 	 	 if	!isExported(f.Name)	{

			675	 	 	 	 	 continue

			676	 	 	 	 }

			677	 	 	 	 op,	indir	:=	enc.encOpFor(f.Type,	seen)

			678	 	 	 	 engine.instr	=	append(engine.instr,	encInstr{*op,	wireFieldNum,	indir,	uintptr(f.Offset)})

			679	 	 	 	 wireFieldNum++

			680	 	 	 }

			681	 	 	 if	srt.NumField()	>	0	&&	len(engine.instr)	==	0	{

			682	 	 	 	 errorf("type	%s	has	no	exported	fields",	rt)

			683	 	 	 }

			684	 	 	 engine.instr	=	append(engine.instr,	encInstr{encStructTerminator,	0,	0,	0})

			685	 	 }	else	{

			686	 	 	 engine.instr	=	make([]encInstr,	1)

			687	 	 	 op,	indir	:=	enc.encOpFor(rt,	seen)

			688	 	 	 engine.instr[0]	=	encInstr{*op,	singletonField,	indir,	0}	

			689	 	 }

			690	 	 return	engine

			691	 }

			692	

			693	 //	getEncEngine	returns	the	engine	to	compile	the	type.

			694	 //	typeLock	must	be	held	(or	we're	in	initialization	and	guaranteed	single-threaded).

			695	 func	(enc	*Encoder)	getEncEngine(ut	*userTypeInfo)	*encEngine	{

			696	 	 info,	err1	:=	getTypeInfo(ut)

			697	 	 if	err1	!=	nil	{

			698	 	 	 error_(err1)

			699	 	 }

			700	 	 if	info.encoder	==	nil	{

			701	 	 	 //	mark	this	engine	as	underway	before	compiling	to	handle	recursive	types.

			702	 	 	 info.encoder	=	new(encEngine)

			703	 	 	 info.encoder	=	enc.compileEnc(ut)

			704	 	 }

			705	 	 return	info.encoder

			706	 }

			707	

			708	 //	lockAndGetEncEngine	is	a	function	that	locks	and	compiles.

			709	 //	This	lets	us	hold	the	lock	only	while	compiling,	not	when	encoding.

			710	 func	(enc	*Encoder)	lockAndGetEncEngine(ut	*userTypeInfo)	*encEngine	{

			711	 	 typeLock.Lock()

			712	 	 defer	typeLock.Unlock()

			713	 	 return	enc.getEncEngine(ut)

			714	 }

			715	

			716	 func	(enc	*Encoder)	encode(b	*bytes.Buffer,	value	reflect.Value,	ut	*userTypeInfo)	{

			717	 	 defer	catchError(&enc.err)

			718	 	 engine	:=	enc.lockAndGetEncEngine(ut)

			719	 	 indir	:=	ut.indir

			720	 	 if	ut.isGobEncoder	{

			721	 	 	 indir	=	int(ut.encIndir)

			722	 	 }

			723	 	 for	i	:=	0;	i	<	indir;	i++	{

			724	 	 	 value	=	reflect.Indirect(value)

			725	 	 }

			726	 	 if	!ut.isGobEncoder	&&	value.Type().Kind()	==	reflect.Struct	{

			727	 	 	 enc.encodeStruct(b,	engine,	unsafeAddr(value))

			728	 	 }	else	{

			729	 	 	 enc.encodeSingle(b,	engine,	unsafeAddr(value))

			730	 	 }

			731	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/gob/encoder.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	gob

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "errors"

				10	 	 "io"

				11	 	 "reflect"

				12	 	 "sync"

				13)

				14	

				15	 //	An	Encoder	manages	the	transmission	of	type	and	data	information	to	the

				16	 //	other	side	of	a	connection.

				17	 type	Encoder	struct	{

				18	 	 mutex						sync.Mutex														//	each	item	must	be	sent	atomically

				19	 	 w										[]io.Writer													//	where	to	send	the	data

				20	 	 sent							map[reflect.Type]typeId	//	which	types	we've	already	sent

				21	 	 countState	*encoderState											//	stage	for	writing	counts

				22	 	 freeList			*encoderState											//	list	of	free	encoderStates;	avoids	reallocation

				23	 	 byteBuf				bytes.Buffer												//	buffer	for	top-level	encoderState

				24	 	 err								error

				25	 }

				26	

				27	 //	Before	we	encode	a	message,	we	reserve	space	at	the	head	of	the

				28	 //	buffer	in	which	to	encode	its	length.	This	means	we	can	use	the

				29	 //	buffer	to	assemble	the	message	without	another	allocation.

				30	 const	maxLength	=	9	//	Maximum	size	of	an	encoded	length.

				31	 var	spaceForLength	=	make([]byte,	maxLength)

				32	

				33	 //	NewEncoder	returns	a	new	encoder	that	will	transmit	on	the	io.Writer.

				34	 func	NewEncoder(w	io.Writer)	*Encoder	{

				35	 	 enc	:=	new(Encoder)

				36	 	 enc.w	=	[]io.Writer{w}

				37	 	 enc.sent	=	make(map[reflect.Type]typeId)

				38	 	 enc.countState	=	enc.newEncoderState(new(bytes.Buffer))

				39	 	 return	enc

				40	 }

				41	

				42	 //	writer()	returns	the	innermost	writer	the	encoder	is	using

				43	 func	(enc	*Encoder)	writer()	io.Writer	{

				44	 	 return	enc.w[len(enc.w)-1]

				45	 }

				46	

				47	 //	pushWriter	adds	a	writer	to	the	encoder.

				48	 func	(enc	*Encoder)	pushWriter(w	io.Writer)	{

				49	 	 enc.w	=	append(enc.w,	w)

				50	 }

				51	

				52	 //	popWriter	pops	the	innermost	writer.

				53	 func	(enc	*Encoder)	popWriter()	{

				54	 	 enc.w	=	enc.w[0	:	len(enc.w)-1]

				55	 }

				56	

				57	 func	(enc	*Encoder)	badType(rt	reflect.Type)	{

				58	 	 enc.setError(errors.New("gob:	can't	encode	type	"	+	rt.String()))

				59	 }

				60	

				61	 func	(enc	*Encoder)	setError(err	error)	{

				62	 	 if	enc.err	==	nil	{	//	remember	the	first.

				63	 	 	 enc.err	=	err

				64	 	 }

				65	 }

				66	

				67	 //	writeMessage	sends	the	data	item	preceded	by	a	unsigned	count	of	its	length.

				68	 func	(enc	*Encoder)	writeMessage(w	io.Writer,	b	*bytes.Buffer)	{

				69	 	 //	Space	has	been	reserved	for	the	length	at	the	head	of	the	message.

				70	 	 //	This	is	a	little	dirty:	we	grab	the	slice	from	the	bytes.Buffer	and	massage

				71	 	 //	it	by	hand.

				72	 	 message	:=	b.Bytes()

				73	 	 messageLen	:=	len(message)	-	maxLength

				74	 	 //	Encode	the	length.

				75	 	 enc.countState.b.Reset()

				76	 	 enc.countState.encodeUint(uint64(messageLen))

				77	 	 //	Copy	the	length	to	be	a	prefix	of	the	message.

				78	 	 offset	:=	maxLength	-	enc.countState.b.Len()

				79	 	 copy(message[offset:],	enc.countState.b.Bytes())

				80	 	 //	Write	the	data.

				81	 	 _,	err	:=	w.Write(message[offset:])

				82	 	 //	Drain	the	buffer	and	restore	the	space	at	the	front	for	the	count	of	the	next	message.

				83	 	 b.Reset()

				84	 	 b.Write(spaceForLength)

				85	 	 if	err	!=	nil	{

				86	 	 	 enc.setError(err)

				87	 	 }

				88	 }

				89	

				90	 //	sendActualType	sends	the	requested	type,	without	further	investigation,	unless

				91	 //	it's	been	sent	before.

				92	 func	(enc	*Encoder)	sendActualType(w	io.Writer,	state	*encoderState,	ut	*userTypeInfo,	actual	reflect.Type)	(sent	bool)	{

				93	 	 if	_,	alreadySent	:=	enc.sent[actual];	alreadySent	{

				94	 	 	 return	false

				95	 	 }

				96	 	 typeLock.Lock()

				97	 	 info,	err	:=	getTypeInfo(ut)

				98	 	 typeLock.Unlock()

				99	 	 if	err	!=	nil	{

			100	 	 	 enc.setError(err)

			101	 	 	 return

			102	 	 }

			103	 	 //	Send	the	pair	(-id,	type)

			104	 	 //	Id:

			105	 	 state.encodeInt(-int64(info.id))

			106	 	 //	Type:

			107	 	 enc.encode(state.b,	reflect.ValueOf(info.wire),	wireTypeUserInfo)

			108	 	 enc.writeMessage(w,	state.b)

			109	 	 if	enc.err	!=	nil	{

			110	 	 	 return

			111	 	 }

			112	

			113	 	 //	Remember	we've	sent	this	type,	both	what	the	user	gave	us	and	the	base	type.

			114	 	 enc.sent[ut.base]	=	info.id

			115	 	 if	ut.user	!=	ut.base	{

			116	 	 	 enc.sent[ut.user]	=	info.id

			117	 	 }

			118	 	 //	Now	send	the	inner	types

			119	 	 switch	st	:=	actual;	st.Kind()	{

			120	 	 case	reflect.Struct:

			121	 	 	 for	i	:=	0;	i	<	st.NumField();	i++	{

			122	 	 	 	 if	isExported(st.Field(i).Name)	{

			123	 	 	 	 	 enc.sendType(w,	state,	st.Field(i).Type)

			124	 	 	 	 }

			125	 	 	 }

			126	 	 case	reflect.Array,	reflect.Slice:

			127	 	 	 enc.sendType(w,	state,	st.Elem())

			128	 	 case	reflect.Map:

			129	 	 	 enc.sendType(w,	state,	st.Key())

			130	 	 	 enc.sendType(w,	state,	st.Elem())

			131	 	 }

			132	 	 return	true

			133	 }

			134	

			135	 //	sendType	sends	the	type	info	to	the	other	side,	if	necessary.	

			136	 func	(enc	*Encoder)	sendType(w	io.Writer,	state	*encoderState,	origt	reflect.Type)	(sent	bool)	{

			137	 	 ut	:=	userType(origt)

			138	 	 if	ut.isGobEncoder	{

			139	 	 	 //	The	rules	are	different:	regardless	of	the	underlying	type's	representation,

			140	 	 	 //	we	need	to	tell	the	other	side	that	this	exact	type	is	a	GobEncoder.

			141	 	 	 return	enc.sendActualType(w,	state,	ut,	ut.user)

			142	 	 }

			143	

			144	 	 //	It's	a	concrete	value,	so	drill	down	to	the	base	type.

			145	 	 switch	rt	:=	ut.base;	rt.Kind()	{

			146	 	 default:

			147	 	 	 //	Basic	types	and	interfaces	do	not	need	to	be	described.

			148	 	 	 return

			149	 	 case	reflect.Slice:

			150	 	 	 //	If	it's	[]uint8,	don't	send;	it's	considered	basic.

			151	 	 	 if	rt.Elem().Kind()	==	reflect.Uint8	{

			152	 	 	 	 return

			153	 	 	 }

			154	 	 	 //	Otherwise	we	do	send.

			155	 	 	 break

			156	 	 case	reflect.Array:

			157	 	 	 //	arrays	must	be	sent	so	we	know	their	lengths	and	element	types.

			158	 	 	 break

			159	 	 case	reflect.Map:

			160	 	 	 //	maps	must	be	sent	so	we	know	their	lengths	and	key/value	types.

			161	 	 	 break

			162	 	 case	reflect.Struct:

			163	 	 	 //	structs	must	be	sent	so	we	know	their	fields.

			164	 	 	 break

			165	 	 case	reflect.Chan,	reflect.Func:

			166	 	 	 //	Probably	a	bad	field	in	a	struct.

			167	 	 	 enc.badType(rt)

			168	 	 	 return

			169	 	 }

			170	

			171	 	 return	enc.sendActualType(w,	state,	ut,	ut.base)

			172	 }

			173	

			174	 //	Encode	transmits	the	data	item	represented	by	the	empty	interface	value,

			175	 //	guaranteeing	that	all	necessary	type	information	has	been	transmitted	first.

			176	 func	(enc	*Encoder)	Encode(e	interface{})	error	{

			177	 	 return	enc.EncodeValue(reflect.ValueOf(e))

			178	 }

			179	

			180	 //	sendTypeDescriptor	makes	sure	the	remote	side	knows	about	this	type.

			181	 //	It	will	send	a	descriptor	if	this	is	the	first	time	the	type	has	been

			182	 //	sent.

			183	 func	(enc	*Encoder)	sendTypeDescriptor(w	io.Writer,	state	*encoderState,	ut	*userTypeInfo)	{

			184	 	 //	Make	sure	the	type	is	known	to	the	other	side.

			185	 	 //	First,	have	we	already	sent	this	type?

			186	 	 rt	:=	ut.base

			187	 	 if	ut.isGobEncoder	{

			188	 	 	 rt	=	ut.user

			189	 	 }

			190	 	 if	_,	alreadySent	:=	enc.sent[rt];	!alreadySent	{

			191	 	 	 //	No,	so	send	it.

			192	 	 	 sent	:=	enc.sendType(w,	state,	rt)

			193	 	 	 if	enc.err	!=	nil	{

			194	 	 	 	 return

			195	 	 	 }

			196	 	 	 //	If	the	type	info	has	still	not	been	transmitted,	it	means	we	have

			197	 	 	 //	a	singleton	basic	type	(int,	[]byte	etc.)	at	top	level.		We	don't

			198	 	 	 //	need	to	send	the	type	info	but	we	do	need	to	update	enc.sent.

			199	 	 	 if	!sent	{

			200	 	 	 	 typeLock.Lock()

			201	 	 	 	 info,	err	:=	getTypeInfo(ut)

			202	 	 	 	 typeLock.Unlock()

			203	 	 	 	 if	err	!=	nil	{

			204	 	 	 	 	 enc.setError(err)

			205	 	 	 	 	 return

			206	 	 	 	 }

			207	 	 	 	 enc.sent[rt]	=	info.id

			208	 	 	 }

			209	 	 }

			210	 }

			211	

			212	 //	sendTypeId	sends	the	id,	which	must	have	already	been	defined.

			213	 func	(enc	*Encoder)	sendTypeId(state	*encoderState,	ut	*userTypeInfo)	{

			214	 	 //	Identify	the	type	of	this	top-level	value.

			215	 	 state.encodeInt(int64(enc.sent[ut.base]))

			216	 }

			217	

			218	 //	EncodeValue	transmits	the	data	item	represented	by	the	reflection	value,

			219	 //	guaranteeing	that	all	necessary	type	information	has	been	transmitted	first.

			220	 func	(enc	*Encoder)	EncodeValue(value	reflect.Value)	error	{

			221	 	 //	Make	sure	we're	single-threaded	through	here,	so	multiple

			222	 	 //	goroutines	can	share	an	encoder.

			223	 	 enc.mutex.Lock()

			224	 	 defer	enc.mutex.Unlock()

			225	

			226	 	 //	Remove	any	nested	writers	remaining	due	to	previous	errors.

			227	 	 enc.w	=	enc.w[0:1]

			228	

			229	 	 ut,	err	:=	validUserType(value.Type())

			230	 	 if	err	!=	nil	{

			231	 	 	 return	err

			232	 	 }

			233	

			234	 	 enc.err	=	nil

			235	 	 enc.byteBuf.Reset()

			236	 	 enc.byteBuf.Write(spaceForLength)

			237	 	 state	:=	enc.newEncoderState(&enc.byteBuf)

			238	

			239	 	 enc.sendTypeDescriptor(enc.writer(),	state,	ut)

			240	 	 enc.sendTypeId(state,	ut)

			241	 	 if	enc.err	!=	nil	{

			242	 	 	 return	enc.err

			243	 	 }

			244	

			245	 	 //	Encode	the	object.

			246	 	 enc.encode(state.b,	value,	ut)

			247	 	 if	enc.err	==	nil	{

			248	 	 	 enc.writeMessage(enc.writer(),	state.b)

			249	 	 }

			250	

			251	 	 enc.freeEncoderState(state)

			252	 	 return	enc.err

			253	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/gob/error.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	gob

					6	

					7	 import	"fmt"

					8	

					9	 //	Errors	in	decoding	and	encoding	are	handled	using	panic	and	recover.

				10	 //	Panics	caused	by	user	error	(that	is,	everything	except	run-time	panics

				11	 //	such	as	"index	out	of	bounds"	errors)	do	not	leave	the	file	that	caused

				12	 //	them,	but	are	instead	turned	into	plain	error	returns.		Encoding	and

				13	 //	decoding	functions	and	methods	that	do	not	return	an	error	either	use

				14	 //	panic	to	report	an	error	or	are	guaranteed	error-free.

				15	

				16	 //	A	gobError	is	used	to	distinguish	errors	(panics)	generated	in	this	package.

				17	 type	gobError	struct	{

				18	 	 err	error

				19	 }

				20	

				21	 //	errorf	is	like	error_	but	takes	Printf-style	arguments	to	construct	an	error.

				22	 //	It	always	prefixes	the	message	with	"gob:	".

				23	 func	errorf(format	string,	args	...interface{})	{

				24	 	 error_(fmt.Errorf("gob:	"+format,	args...))

				25	 }

				26	

				27	 //	error	wraps	the	argument	error	and	uses	it	as	the	argument	to	panic.

				28	 func	error_(err	error)	{

				29	 	 panic(gobError{err})

				30	 }

				31	

				32	 //	catchError	is	meant	to	be	used	as	a	deferred	function	to	turn	a	panic(gobError)	into	a

				33	 //	plain	error.		It	overwrites	the	error	return	of	the	function	that	deferred	its	call.

				34	 func	catchError(err	*error)	{

				35	 	 if	e	:=	recover();	e	!=	nil	{

				36	 	 	 ge,	ok	:=	e.(gobError)

				37	 	 	 if	!ok	{

				38	 	 	 	 panic(e)

				39	 	 	 }

				40	 	 	 *err	=	ge.err

				41	 	 }

				42	 	 return

				43	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/gob/type.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	gob

					6	

					7	 import	(

					8	 	 "errors"

					9	 	 "fmt"

				10	 	 "os"

				11	 	 "reflect"

				12	 	 "sync"

				13	 	 "unicode"

				14	 	 "unicode/utf8"

				15)

				16	

				17	 //	userTypeInfo	stores	the	information	associated	with	a	type	the	user	has	handed

				18	 //	to	the	package.		It's	computed	once	and	stored	in	a	map	keyed	by	reflection

				19	 //	type.

				20	 type	userTypeInfo	struct	{

				21	 	 user									reflect.Type	//	the	type	the	user	handed	us

				22	 	 base									reflect.Type	//	the	base	type	after	all	indirections

				23	 	 indir								int										//	number	of	indirections	to	reach	the	base	type

				24	 	 isGobEncoder	bool									//	does	the	type	implement	GobEncoder?

				25	 	 isGobDecoder	bool									//	does	the	type	implement	GobDecoder?

				26	 	 encIndir					int8									//	number	of	indirections	to	reach	the	receiver	type;	may	be	negative

				27	 	 decIndir					int8									//	number	of	indirections	to	reach	the	receiver	type;	may	be	negative

				28	 }

				29	

				30	 var	(

				31	 	 //	Protected	by	an	RWMutex	because	we	read	it	a	lot	and	write

				32	 	 //	it	only	when	we	see	a	new	type,	typically	when	compiling.

				33	 	 userTypeLock		sync.RWMutex

				34	 	 userTypeCache	=	make(map[reflect.Type]*userTypeInfo)

				35)

				36	

				37	 //	validType	returns,	and	saves,	the	information	associated	with	user-provided	type	rt.

				38	 //	If	the	user	type	is	not	valid,	err	will	be	non-nil.		To	be	used	when	the	error	handler

				39	 //	is	not	set	up.

				40	 func	validUserType(rt	reflect.Type)	(ut	*userTypeInfo,	err	error)	{

				41	 	 userTypeLock.RLock()

				42	 	 ut	=	userTypeCache[rt]

				43	 	 userTypeLock.RUnlock()

				44	 	 if	ut	!=	nil	{

				45	 	 	 return

				46	 	 }

				47	 	 //	Now	set	the	value	under	the	write	lock.

				48	 	 userTypeLock.Lock()

				49	 	 defer	userTypeLock.Unlock()

				50	 	 if	ut	=	userTypeCache[rt];	ut	!=	nil	{

				51	 	 	 //	Lost	the	race;	not	a	problem.

				52	 	 	 return

				53	 	 }

				54	 	 ut	=	new(userTypeInfo)

				55	 	 ut.base	=	rt

				56	 	 ut.user	=	rt

				57	 	 //	A	type	that	is	just	a	cycle	of	pointers	(such	as	type	T	*T)	cannot

				58	 	 //	be	represented	in	gobs,	which	need	some	concrete	data.		We	use	a

				59	 	 //	cycle	detection	algorithm	from	Knuth,	Vol	2,	Section	3.1,	Ex	6,

				60	 	 //	pp	539-540.		As	we	step	through	indirections,	run	another	type	at

				61	 	 //	half	speed.	If	they	meet	up,	there's	a	cycle.

				62	 	 slowpoke	:=	ut.base	//	walks	half	as	fast	as	ut.base

				63	 	 for	{

				64	 	 	 pt	:=	ut.base

				65	 	 	 if	pt.Kind()	!=	reflect.Ptr	{

				66	 	 	 	 break

				67	 	 	 }

				68	 	 	 ut.base	=	pt.Elem()

				69	 	 	 if	ut.base	==	slowpoke	{	//	ut.base	lapped	slowpoke

				70	 	 	 	 //	recursive	pointer	type.

				71	 	 	 	 return	nil,	errors.New("can't	represent	recursive	pointer	type	"	+	ut.base.String())

				72	 	 	 }

				73	 	 	 if	ut.indir%2	==	0	{

				74	 	 	 	 slowpoke	=	slowpoke.Elem()

				75	 	 	 }

				76	 	 	 ut.indir++

				77	 	 }

				78	 	 ut.isGobEncoder,	ut.encIndir	=	implementsInterface(ut.user,	gobEncoderInterfaceType)

				79	 	 ut.isGobDecoder,	ut.decIndir	=	implementsInterface(ut.user,	gobDecoderInterfaceType)

				80	 	 userTypeCache[rt]	=	ut

				81	 	 return

				82	 }

				83	

				84	 var	(

				85	 	 gobEncoderInterfaceType	=	reflect.TypeOf((*GobEncoder)(nil)).Elem()

				86	 	 gobDecoderInterfaceType	=	reflect.TypeOf((*GobDecoder)(nil)).Elem()

				87)

				88	

				89	 //	implementsInterface	reports	whether	the	type	implements	the

				90	 //	gobEncoder/gobDecoder	interface.

				91	 //	It	also	returns	the	number	of	indirections	required	to	get	to	the

				92	 //	implementation.

				93	 func	implementsInterface(typ,	gobEncDecType	reflect.Type)	(success	bool,	indir	int8)	{

				94	 	 if	typ	==	nil	{

				95	 	 	 return

				96	 	 }

				97	 	 rt	:=	typ

				98	 	 //	The	type	might	be	a	pointer	and	we	need	to	keep

				99	 	 //	dereferencing	to	the	base	type	until	we	find	an	implementation.

			100	 	 for	{

			101	 	 	 if	rt.Implements(gobEncDecType)	{

			102	 	 	 	 return	true,	indir

			103	 	 	 }

			104	 	 	 if	p	:=	rt;	p.Kind()	==	reflect.Ptr	{

			105	 	 	 	 indir++

			106	 	 	 	 if	indir	>	100	{	//	insane	number	of	indirections

			107	 	 	 	 	 return	false,	0

			108	 	 	 	 }

			109	 	 	 	 rt	=	p.Elem()

			110	 	 	 	 continue

			111	 	 	 }

			112	 	 	 break

			113	 	 }

			114	 	 //	No	luck	yet,	but	if	this	is	a	base	type	(non-pointer),	the	pointer	might	satisfy.

			115	 	 if	typ.Kind()	!=	reflect.Ptr	{

			116	 	 	 //	Not	a	pointer,	but	does	the	pointer	work?

			117	 	 	 if	reflect.PtrTo(typ).Implements(gobEncDecType)	{

			118	 	 	 	 return	true,	-1

			119	 	 	 }

			120	 	 }

			121	 	 return	false,	0

			122	 }

			123	

			124	 //	userType	returns,	and	saves,	the	information	associated	with	user-provided	type	rt.

			125	 //	If	the	user	type	is	not	valid,	it	calls	error.

			126	 func	userType(rt	reflect.Type)	*userTypeInfo	{

			127	 	 ut,	err	:=	validUserType(rt)

			128	 	 if	err	!=	nil	{

			129	 	 	 error_(err)

			130	 	 }

			131	 	 return	ut

			132	 }

			133	

			134	 //	A	typeId	represents	a	gob	Type	as	an	integer	that	can	be	passed	on	the	wire.

			135	 //	Internally,	typeIds	are	used	as	keys	to	a	map	to	recover	the	underlying	type	info.

			136	 type	typeId	int32

			137	

			138	 var	nextId	typeId							//	incremented	for	each	new	type	we	build

			139	 var	typeLock	sync.Mutex	//	set	while	building	a	type

			140	 const	firstUserId	=	64		//	lowest	id	number	granted	to	user

			141	

			142	 type	gobType	interface	{

			143	 	 id()	typeId

			144	 	 setId(id	typeId)

			145	 	 name()	string

			146	 	 string()	string	//	not	public;	only	for	debugging

			147	 	 safeString(seen	map[typeId]bool)	string

			148	 }

			149	

			150	 var	types	=	make(map[reflect.Type]gobType)

			151	 var	idToType	=	make(map[typeId]gobType)

			152	 var	builtinIdToType	map[typeId]gobType	//	set	in	init()	after	builtins	are	established

			153	

			154	 func	setTypeId(typ	gobType)	{

			155	 	 //	When	building	recursive	types,	someone	may	get	there	before	us.

			156	 	 if	typ.id()	!=	0	{

			157	 	 	 return

			158	 	 }

			159	 	 nextId++

			160	 	 typ.setId(nextId)

			161	 	 idToType[nextId]	=	typ

			162	 }

			163	

			164	 func	(t	typeId)	gobType()	gobType	{

			165	 	 if	t	==	0	{

			166	 	 	 return	nil

			167	 	 }

			168	 	 return	idToType[t]

			169	 }

			170	

			171	 //	string	returns	the	string	representation	of	the	type	associated	with	the	typeId.

			172	 func	(t	typeId)	string()	string	{

			173	 	 if	t.gobType()	==	nil	{

			174	 	 	 return	"<nil>"

			175	 	 }

			176	 	 return	t.gobType().string()

			177	 }

			178	

			179	 //	Name	returns	the	name	of	the	type	associated	with	the	typeId.

			180	 func	(t	typeId)	name()	string	{

			181	 	 if	t.gobType()	==	nil	{

			182	 	 	 return	"<nil>"

			183	 	 }

			184	 	 return	t.gobType().name()

			185	 }

			186	

			187	 //	CommonType	holds	elements	of	all	types.

			188	 //	It	is	a	historical	artifact,	kept	for	binary	compatibility	and	exported

			189	 //	only	for	the	benefit	of	the	package's	encoding	of	type	descriptors.	It	is

			190	 //	not	intended	for	direct	use	by	clients.

			191	 type	CommonType	struct	{

			192	 	 Name	string

			193	 	 Id			typeId

			194	 }

			195	

			196	 func	(t	*CommonType)	id()	typeId	{	return	t.Id	}

			197	

			198	 func	(t	*CommonType)	setId(id	typeId)	{	t.Id	=	id	}

			199	

			200	 func	(t	*CommonType)	string()	string	{	return	t.Name	}

			201	

			202	 func	(t	*CommonType)	safeString(seen	map[typeId]bool)	string	{

			203	 	 return	t.Name

			204	 }

			205	

			206	 func	(t	*CommonType)	name()	string	{	return	t.Name	}

			207	

			208	 //	Create	and	check	predefined	types

			209	 //	The	string	for	tBytes	is	"bytes"	not	"[]byte"	to	signify	its	specialness.

			210	

			211	 var	(

			212	 	 //	Primordial	types,	needed	during	initialization.

			213	 	 //	Always	passed	as	pointers	so	the	interface{}	type

			214	 	 //	goes	through	without	losing	its	interfaceness.

			215	 	 tBool						=	bootstrapType("bool",	(*bool)(nil),	1)

			216	 	 tInt							=	bootstrapType("int",	(*int)(nil),	2)

			217	 	 tUint						=	bootstrapType("uint",	(*uint)(nil),	3)

			218	 	 tFloat					=	bootstrapType("float",	(*float64)(nil),	4)

			219	 	 tBytes					=	bootstrapType("bytes",	(*[]byte)(nil),	5)

			220	 	 tString				=	bootstrapType("string",	(*string)(nil),	6)

			221	 	 tComplex			=	bootstrapType("complex",	(*complex128)(nil),	7)

			222	 	 tInterface	=	bootstrapType("interface",	(*interface{})(nil),	8)

			223	 	 //	Reserve	some	Ids	for	compatible	expansion

			224	 	 tReserved7	=	bootstrapType("_reserved1",	(*struct{	r7	int	})(nil),	9)

			225	 	 tReserved6	=	bootstrapType("_reserved1",	(*struct{	r6	int	})(nil),	10)

			226	 	 tReserved5	=	bootstrapType("_reserved1",	(*struct{	r5	int	})(nil),	11)

			227	 	 tReserved4	=	bootstrapType("_reserved1",	(*struct{	r4	int	})(nil),	12)

			228	 	 tReserved3	=	bootstrapType("_reserved1",	(*struct{	r3	int	})(nil),	13)

			229	 	 tReserved2	=	bootstrapType("_reserved1",	(*struct{	r2	int	})(nil),	14)

			230	 	 tReserved1	=	bootstrapType("_reserved1",	(*struct{	r1	int	})(nil),	15)

			231)

			232	

			233	 //	Predefined	because	it's	needed	by	the	Decoder

			234	 var	tWireType	=	mustGetTypeInfo(reflect.TypeOf(wireType{})).id

			235	 var	wireTypeUserInfo	*userTypeInfo	//	userTypeInfo	of	(*wireType)

			236	

			237	 func	init()	{

			238	 	 //	Some	magic	numbers	to	make	sure	there	are	no	surprises.

			239	 	 checkId(16,	tWireType)

			240	 	 checkId(17,	mustGetTypeInfo(reflect.TypeOf(arrayType{})).id)

			241	 	 checkId(18,	mustGetTypeInfo(reflect.TypeOf(CommonType{})).id)

			242	 	 checkId(19,	mustGetTypeInfo(reflect.TypeOf(sliceType{})).id)

			243	 	 checkId(20,	mustGetTypeInfo(reflect.TypeOf(structType{})).id)

			244	 	 checkId(21,	mustGetTypeInfo(reflect.TypeOf(fieldType{})).id)

			245	 	 checkId(23,	mustGetTypeInfo(reflect.TypeOf(mapType{})).id)

			246	

			247	 	 builtinIdToType	=	make(map[typeId]gobType)

			248	 	 for	k,	v	:=	range	idToType	{

			249	 	 	 builtinIdToType[k]	=	v

			250	 	 }

			251	

			252	 	 //	Move	the	id	space	upwards	to	allow	for	growth	in	the	predefined	world

			253	 	 //	without	breaking	existing	files.

			254	 	 if	nextId	>	firstUserId	{

			255	 	 	 panic(fmt.Sprintln("nextId	too	large:",	nextId))

			256	 	 }

			257	 	 nextId	=	firstUserId

			258	 	 registerBasics()

			259	 	 wireTypeUserInfo	=	userType(reflect.TypeOf((*wireType)(nil)))

			260	 }

			261	

			262	 //	Array	type

			263	 type	arrayType	struct	{

			264	 	 CommonType

			265	 	 Elem	typeId

			266	 	 Len		int

			267	 }

			268	

			269	 func	newArrayType(name	string)	*arrayType	{

			270	 	 a	:=	&arrayType{CommonType{Name:	name},	0,	0}

			271	 	 return	a

			272	 }

			273	

			274	 func	(a	*arrayType)	init(elem	gobType,	len	int)	{

			275	 	 //	Set	our	type	id	before	evaluating	the	element's,	in	case	it's	our	own.

			276	 	 setTypeId(a)

			277	 	 a.Elem	=	elem.id()

			278	 	 a.Len	=	len

			279	 }

			280	

			281	 func	(a	*arrayType)	safeString(seen	map[typeId]bool)	string	{

			282	 	 if	seen[a.Id]	{

			283	 	 	 return	a.Name

			284	 	 }

			285	 	 seen[a.Id]	=	true

			286	 	 return	fmt.Sprintf("[%d]%s",	a.Len,	a.Elem.gobType().safeString(seen))

			287	 }

			288	

			289	 func	(a	*arrayType)	string()	string	{	return	a.safeString(make(map[typeId]bool))	}

			290	

			291	 //	GobEncoder	type	(something	that	implements	the	GobEncoder	interface)

			292	 type	gobEncoderType	struct	{

			293	 	 CommonType

			294	 }

			295	

			296	 func	newGobEncoderType(name	string)	*gobEncoderType	{

			297	 	 g	:=	&gobEncoderType{CommonType{Name:	name}}

			298	 	 setTypeId(g)

			299	 	 return	g

			300	 }

			301	

			302	 func	(g	*gobEncoderType)	safeString(seen	map[typeId]bool)	string	{

			303	 	 return	g.Name

			304	 }

			305	

			306	 func	(g	*gobEncoderType)	string()	string	{	return	g.Name	}

			307	

			308	 //	Map	type

			309	 type	mapType	struct	{

			310	 	 CommonType

			311	 	 Key		typeId

			312	 	 Elem	typeId

			313	 }

			314	

			315	 func	newMapType(name	string)	*mapType	{

			316	 	 m	:=	&mapType{CommonType{Name:	name},	0,	0}

			317	 	 return	m

			318	 }

			319	

			320	 func	(m	*mapType)	init(key,	elem	gobType)	{

			321	 	 //	Set	our	type	id	before	evaluating	the	element's,	in	case	it's	our	own.

			322	 	 setTypeId(m)

			323	 	 m.Key	=	key.id()

			324	 	 m.Elem	=	elem.id()

			325	 }

			326	

			327	 func	(m	*mapType)	safeString(seen	map[typeId]bool)	string	{

			328	 	 if	seen[m.Id]	{

			329	 	 	 return	m.Name

			330	 	 }

			331	 	 seen[m.Id]	=	true

			332	 	 key	:=	m.Key.gobType().safeString(seen)

			333	 	 elem	:=	m.Elem.gobType().safeString(seen)

			334	 	 return	fmt.Sprintf("map[%s]%s",	key,	elem)

			335	 }

			336	

			337	 func	(m	*mapType)	string()	string	{	return	m.safeString(make(map[typeId]bool))	}

			338	

			339	 //	Slice	type

			340	 type	sliceType	struct	{

			341	 	 CommonType

			342	 	 Elem	typeId

			343	 }

			344	

			345	 func	newSliceType(name	string)	*sliceType	{

			346	 	 s	:=	&sliceType{CommonType{Name:	name},	0}

			347	 	 return	s

			348	 }

			349	

			350	 func	(s	*sliceType)	init(elem	gobType)	{

			351	 	 //	Set	our	type	id	before	evaluating	the	element's,	in	case	it's	our	own.

			352	 	 setTypeId(s)

			353	 	 //	See	the	comments	about	ids	in	newTypeObject.	Only	slices	and

			354	 	 //	structs	have	mutual	recursion.

			355	 	 if	elem.id()	==	0	{

			356	 	 	 setTypeId(elem)

			357	 	 }

			358	 	 s.Elem	=	elem.id()

			359	 }

			360	

			361	 func	(s	*sliceType)	safeString(seen	map[typeId]bool)	string	{

			362	 	 if	seen[s.Id]	{

			363	 	 	 return	s.Name

			364	 	 }

			365	 	 seen[s.Id]	=	true

			366	 	 return	fmt.Sprintf("[]%s",	s.Elem.gobType().safeString(seen))

			367	 }

			368	

			369	 func	(s	*sliceType)	string()	string	{	return	s.safeString(make(map[typeId]bool))	}

			370	

			371	 //	Struct	type

			372	 type	fieldType	struct	{

			373	 	 Name	string

			374	 	 Id			typeId

			375	 }

			376	

			377	 type	structType	struct	{

			378	 	 CommonType

			379	 	 Field	[]*fieldType

			380	 }

			381	

			382	 func	(s	*structType)	safeString(seen	map[typeId]bool)	string	{

			383	 	 if	s	==	nil	{

			384	 	 	 return	"<nil>"

			385	 	 }

			386	 	 if	_,	ok	:=	seen[s.Id];	ok	{

			387	 	 	 return	s.Name

			388	 	 }

			389	 	 seen[s.Id]	=	true

			390	 	 str	:=	s.Name	+	"	=	struct	{	"

			391	 	 for	_,	f	:=	range	s.Field	{

			392	 	 	 str	+=	fmt.Sprintf("%s	%s;	",	f.Name,	f.Id.gobType().safeString(seen))

			393	 	 }

			394	 	 str	+=	"}"

			395	 	 return	str

			396	 }

			397	

			398	 func	(s	*structType)	string()	string	{	return	s.safeString(make(map[typeId]bool))	}

			399	

			400	 func	newStructType(name	string)	*structType	{

			401	 	 s	:=	&structType{CommonType{Name:	name},	nil}

			402	 	 //	For	historical	reasons	we	set	the	id	here	rather	than	init.

			403	 	 //	See	the	comment	in	newTypeObject	for	details.

			404	 	 setTypeId(s)

			405	 	 return	s

			406	 }

			407	

			408	 //	newTypeObject	allocates	a	gobType	for	the	reflection	type	rt.

			409	 //	Unless	ut	represents	a	GobEncoder,	rt	should	be	the	base	type

			410	 //	of	ut.

			411	 //	This	is	only	called	from	the	encoding	side.	The	decoding	side

			412	 //	works	through	typeIds	and	userTypeInfos	alone.

			413	 func	newTypeObject(name	string,	ut	*userTypeInfo,	rt	reflect.Type)	(gobType,	error)	{

			414	 	 //	Does	this	type	implement	GobEncoder?

			415	 	 if	ut.isGobEncoder	{

			416	 	 	 return	newGobEncoderType(name),	nil

			417	 	 }

			418	 	 var	err	error

			419	 	 var	type0,	type1	gobType

			420	 	 defer	func()	{

			421	 	 	 if	err	!=	nil	{

			422	 	 	 	 delete(types,	rt)

			423	 	 	 }

			424	 	 }()

			425	 	 //	Install	the	top-level	type	before	the	subtypes	(e.g.	struct	before

			426	 	 //	fields)	so	recursive	types	can	be	constructed	safely.

			427	 	 switch	t	:=	rt;	t.Kind()	{

			428	 	 //	All	basic	types	are	easy:	they	are	predefined.

			429	 	 case	reflect.Bool:

			430	 	 	 return	tBool.gobType(),	nil

			431	

			432	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			433	 	 	 return	tInt.gobType(),	nil

			434	

			435	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

			436	 	 	 return	tUint.gobType(),	nil

			437	

			438	 	 case	reflect.Float32,	reflect.Float64:

			439	 	 	 return	tFloat.gobType(),	nil

			440	

			441	 	 case	reflect.Complex64,	reflect.Complex128:

			442	 	 	 return	tComplex.gobType(),	nil

			443	

			444	 	 case	reflect.String:

			445	 	 	 return	tString.gobType(),	nil

			446	

			447	 	 case	reflect.Interface:

			448	 	 	 return	tInterface.gobType(),	nil

			449	

			450	 	 case	reflect.Array:

			451	 	 	 at	:=	newArrayType(name)

			452	 	 	 types[rt]	=	at

			453	 	 	 type0,	err	=	getBaseType("",	t.Elem())

			454	 	 	 if	err	!=	nil	{

			455	 	 	 	 return	nil,	err

			456	 	 	 }

			457	 	 	 //	Historical	aside:

			458	 	 	 //	For	arrays,	maps,	and	slices,	we	set	the	type	id	after	the	elements

			459	 	 	 //	are	constructed.	This	is	to	retain	the	order	of	type	id	allocation	after

			460	 	 	 //	a	fix	made	to	handle	recursive	types,	which	changed	the	order	in

			461	 	 	 //	which	types	are	built.		Delaying	the	setting	in	this	way	preserves

			462	 	 	 //	type	ids	while	allowing	recursive	types	to	be	described.	Structs,

			463	 	 	 //	done	below,	were	already	handling	recursion	correctly	so	they

			464	 	 	 //	assign	the	top-level	id	before	those	of	the	field.

			465	 	 	 at.init(type0,	t.Len())

			466	 	 	 return	at,	nil

			467	

			468	 	 case	reflect.Map:

			469	 	 	 mt	:=	newMapType(name)

			470	 	 	 types[rt]	=	mt

			471	 	 	 type0,	err	=	getBaseType("",	t.Key())

			472	 	 	 if	err	!=	nil	{

			473	 	 	 	 return	nil,	err

			474	 	 	 }

			475	 	 	 type1,	err	=	getBaseType("",	t.Elem())

			476	 	 	 if	err	!=	nil	{

			477	 	 	 	 return	nil,	err

			478	 	 	 }

			479	 	 	 mt.init(type0,	type1)

			480	 	 	 return	mt,	nil

			481	

			482	 	 case	reflect.Slice:

			483	 	 	 //	[]byte	==	[]uint8	is	a	special	case

			484	 	 	 if	t.Elem().Kind()	==	reflect.Uint8	{

			485	 	 	 	 return	tBytes.gobType(),	nil

			486	 	 	 }

			487	 	 	 st	:=	newSliceType(name)

			488	 	 	 types[rt]	=	st

			489	 	 	 type0,	err	=	getBaseType(t.Elem().Name(),	t.Elem())

			490	 	 	 if	err	!=	nil	{

			491	 	 	 	 return	nil,	err

			492	 	 	 }

			493	 	 	 st.init(type0)

			494	 	 	 return	st,	nil

			495	

			496	 	 case	reflect.Struct:

			497	 	 	 st	:=	newStructType(name)

			498	 	 	 types[rt]	=	st

			499	 	 	 idToType[st.id()]	=	st

			500	 	 	 for	i	:=	0;	i	<	t.NumField();	i++	{

			501	 	 	 	 f	:=	t.Field(i)

			502	 	 	 	 if	!isExported(f.Name)	{

			503	 	 	 	 	 continue

			504	 	 	 	 }

			505	 	 	 	 typ	:=	userType(f.Type).base

			506	 	 	 	 tname	:=	typ.Name()

			507	 	 	 	 if	tname	==	""	{

			508	 	 	 	 	 t	:=	userType(f.Type).base

			509	 	 	 	 	 tname	=	t.String()

			510	 	 	 	 }

			511	 	 	 	 gt,	err	:=	getBaseType(tname,	f.Type)

			512	 	 	 	 if	err	!=	nil	{

			513	 	 	 	 	 return	nil,	err

			514	 	 	 	 }

			515	 	 	 	 //	Some	mutually	recursive	types	can	cause	us	to	be	here	while

			516	 	 	 	 //	still	defining	the	element.	Fix	the	element	type	id	here.

			517	 	 	 	 //	We	could	do	this	more	neatly	by	setting	the	id	at	the	start	of

			518	 	 	 	 //	building	every	type,	but	that	would	break	binary	compatibility.

			519	 	 	 	 if	gt.id()	==	0	{

			520	 	 	 	 	 setTypeId(gt)

			521	 	 	 	 }

			522	 	 	 	 st.Field	=	append(st.Field,	&fieldType{f.Name,	gt.id()})

			523	 	 	 }

			524	 	 	 return	st,	nil

			525	

			526	 	 default:

			527	 	 	 return	nil,	errors.New("gob	NewTypeObject	can't	handle	type:	"	+	rt.String())

			528	 	 }

			529	 	 return	nil,	nil

			530	 }

			531	

			532	 //	isExported	reports	whether	this	is	an	exported	-	upper	case	-	name.

			533	 func	isExported(name	string)	bool	{

			534	 	 rune,	_	:=	utf8.DecodeRuneInString(name)

			535	 	 return	unicode.IsUpper(rune)

			536	 }

			537	

			538	 //	getBaseType	returns	the	Gob	type	describing	the	given	reflect.Type's	base	type.

			539	 //	typeLock	must	be	held.

			540	 func	getBaseType(name	string,	rt	reflect.Type)	(gobType,	error)	{

			541	 	 ut	:=	userType(rt)

			542	 	 return	getType(name,	ut,	ut.base)

			543	 }

			544	

			545	 //	getType	returns	the	Gob	type	describing	the	given	reflect.Type.

			546	 //	Should	be	called	only	when	handling	GobEncoders/Decoders,

			547	 //	which	may	be	pointers.		All	other	types	are	handled	through	the

			548	 //	base	type,	never	a	pointer.

			549	 //	typeLock	must	be	held.

			550	 func	getType(name	string,	ut	*userTypeInfo,	rt	reflect.Type)	(gobType,	error)	{

			551	 	 typ,	present	:=	types[rt]

			552	 	 if	present	{

			553	 	 	 return	typ,	nil

			554	 	 }

			555	 	 typ,	err	:=	newTypeObject(name,	ut,	rt)

			556	 	 if	err	==	nil	{

			557	 	 	 types[rt]	=	typ

			558	 	 }

			559	 	 return	typ,	err

			560	 }

			561	

			562	 func	checkId(want,	got	typeId)	{

			563	 	 if	want	!=	got	{

			564	 	 	 fmt.Fprintf(os.Stderr,	"checkId:	%d	should	be	%d\n",	int(got),	int(want))

			565	 	 	 panic("bootstrap	type	wrong	id:	"	+	got.name()	+	"	"	+	got.string()	+	"	not	"	+	want.string())

			566	 	 }

			567	 }

			568	

			569	 //	used	for	building	the	basic	types;	called	only	from	init().		the	incoming

			570	 //	interface	always	refers	to	a	pointer.

			571	 func	bootstrapType(name	string,	e	interface{},	expect	typeId)	typeId	{

			572	 	 rt	:=	reflect.TypeOf(e).Elem()

			573	 	 _,	present	:=	types[rt]

			574	 	 if	present	{

			575	 	 	 panic("bootstrap	type	already	present:	"	+	name	+	",	"	+	rt.String())

			576	 	 }

			577	 	 typ	:=	&CommonType{Name:	name}

			578	 	 types[rt]	=	typ

			579	 	 setTypeId(typ)

			580	 	 checkId(expect,	nextId)

			581	 	 userType(rt)	//	might	as	well	cache	it	now

			582	 	 return	nextId

			583	 }

			584	

			585	 //	Representation	of	the	information	we	send	and	receive	about	this	type.

			586	 //	Each	value	we	send	is	preceded	by	its	type	definition:	an	encoded	int.

			587	 //	However,	the	very	first	time	we	send	the	value,	we	first	send	the	pair

			588	 //	(-id,	wireType).

			589	 //	For	bootstrapping	purposes,	we	assume	that	the	recipient	knows	how

			590	 //	to	decode	a	wireType;	it	is	exactly	the	wireType	struct	here,	interpreted

			591	 //	using	the	gob	rules	for	sending	a	structure,	except	that	we	assume	the

			592	 //	ids	for	wireType	and	structType	etc.	are	known.		The	relevant	pieces

			593	 //	are	built	in	encode.go's	init()	function.

			594	 //	To	maintain	binary	compatibility,	if	you	extend	this	type,	always	put

			595	 //	the	new	fields	last.

			596	 type	wireType	struct	{

			597	 	 ArrayT						*arrayType

			598	 	 SliceT						*sliceType

			599	 	 StructT					*structType

			600	 	 MapT								*mapType

			601	 	 GobEncoderT	*gobEncoderType

			602	 }

			603	

			604	 func	(w	*wireType)	string()	string	{

			605	 	 const	unknown	=	"unknown	type"

			606	 	 if	w	==	nil	{

			607	 	 	 return	unknown

			608	 	 }

			609	 	 switch	{

			610	 	 case	w.ArrayT	!=	nil:

			611	 	 	 return	w.ArrayT.Name

			612	 	 case	w.SliceT	!=	nil:

			613	 	 	 return	w.SliceT.Name

			614	 	 case	w.StructT	!=	nil:

			615	 	 	 return	w.StructT.Name

			616	 	 case	w.MapT	!=	nil:

			617	 	 	 return	w.MapT.Name

			618	 	 case	w.GobEncoderT	!=	nil:

			619	 	 	 return	w.GobEncoderT.Name

			620	 	 }

			621	 	 return	unknown

			622	 }

			623	

			624	 type	typeInfo	struct	{

			625	 	 id						typeId

			626	 	 encoder	*encEngine

			627	 	 wire				*wireType

			628	 }

			629	

			630	 var	typeInfoMap	=	make(map[reflect.Type]*typeInfo)	//	protected	by	typeLock

			631	

			632	 //	typeLock	must	be	held.

			633	 func	getTypeInfo(ut	*userTypeInfo)	(*typeInfo,	error)	{

			634	 	 rt	:=	ut.base

			635	 	 if	ut.isGobEncoder	{

			636	 	 	 //	We	want	the	user	type,	not	the	base	type.

			637	 	 	 rt	=	ut.user

			638	 	 }

			639	 	 info,	ok	:=	typeInfoMap[rt]

			640	 	 if	ok	{

			641	 	 	 return	info,	nil

			642	 	 }

			643	 	 info	=	new(typeInfo)

			644	 	 gt,	err	:=	getBaseType(rt.Name(),	rt)

			645	 	 if	err	!=	nil	{

			646	 	 	 return	nil,	err

			647	 	 }

			648	 	 info.id	=	gt.id()

			649	

			650	 	 if	ut.isGobEncoder	{

			651	 	 	 userType,	err	:=	getType(rt.Name(),	ut,	rt)

			652	 	 	 if	err	!=	nil	{

			653	 	 	 	 return	nil,	err

			654	 	 	 }

			655	 	 	 info.wire	=	&wireType{GobEncoderT:	userType.id().gobType().(*gobEncoderType)}

			656	 	 	 typeInfoMap[ut.user]	=	info

			657	 	 	 return	info,	nil

			658	 	 }

			659	

			660	 	 t	:=	info.id.gobType()

			661	 	 switch	typ	:=	rt;	typ.Kind()	{

			662	 	 case	reflect.Array:

			663	 	 	 info.wire	=	&wireType{ArrayT:	t.(*arrayType)}

			664	 	 case	reflect.Map:

			665	 	 	 info.wire	=	&wireType{MapT:	t.(*mapType)}

			666	 	 case	reflect.Slice:

			667	 	 	 //	[]byte	==	[]uint8	is	a	special	case	handled	separately

			668	 	 	 if	typ.Elem().Kind()	!=	reflect.Uint8	{

			669	 	 	 	 info.wire	=	&wireType{SliceT:	t.(*sliceType)}

			670	 	 	 }

			671	 	 case	reflect.Struct:

			672	 	 	 info.wire	=	&wireType{StructT:	t.(*structType)}

			673	 	 }

			674	 	 typeInfoMap[rt]	=	info

			675	 	 return	info,	nil

			676	 }

			677	

			678	 //	Called	only	when	a	panic	is	acceptable	and	unexpected.

			679	 func	mustGetTypeInfo(rt	reflect.Type)	*typeInfo	{

			680	 	 t,	err	:=	getTypeInfo(userType(rt))

			681	 	 if	err	!=	nil	{

			682	 	 	 panic("getTypeInfo:	"	+	err.Error())

			683	 	 }

			684	 	 return	t

			685	 }

			686	

			687	 //	GobEncoder	is	the	interface	describing	data	that	provides	its	own

			688	 //	representation	for	encoding	values	for	transmission	to	a	GobDecoder.

			689	 //	A	type	that	implements	GobEncoder	and	GobDecoder	has	complete

			690	 //	control	over	the	representation	of	its	data	and	may	therefore

			691	 //	contain	things	such	as	private	fields,	channels,	and	functions,

			692	 //	which	are	not	usually	transmissible	in	gob	streams.

			693	 //

			694	 //	Note:	Since	gobs	can	be	stored	permanently,	It	is	good	design

			695	 //	to	guarantee	the	encoding	used	by	a	GobEncoder	is	stable	as	the

			696	 //	software	evolves.		For	instance,	it	might	make	sense	for	GobEncode

			697	 //	to	include	a	version	number	in	the	encoding.

			698	 type	GobEncoder	interface	{

			699	 	 //	GobEncode	returns	a	byte	slice	representing	the	encoding	of	the

			700	 	 //	receiver	for	transmission	to	a	GobDecoder,	usually	of	the	same

			701	 	 //	concrete	type.

			702	 	 GobEncode()	([]byte,	error)

			703	 }

			704	

			705	 //	GobDecoder	is	the	interface	describing	data	that	provides	its	own

			706	 //	routine	for	decoding	transmitted	values	sent	by	a	GobEncoder.

			707	 type	GobDecoder	interface	{

			708	 	 //	GobDecode	overwrites	the	receiver,	which	must	be	a	pointer,

			709	 	 //	with	the	value	represented	by	the	byte	slice,	which	was	written

			710	 	 //	by	GobEncode,	usually	for	the	same	concrete	type.

			711	 	 GobDecode([]byte)	error

			712	 }

			713	

			714	 var	(

			715	 	 nameToConcreteType	=	make(map[string]reflect.Type)

			716	 	 concreteTypeToName	=	make(map[reflect.Type]string)

			717)

			718	

			719	 //	RegisterName	is	like	Register	but	uses	the	provided	name	rather	than	the

			720	 //	type's	default.

			721	 func	RegisterName(name	string,	value	interface{})	{

			722	 	 if	name	==	""	{

			723	 	 	 //	reserved	for	nil

			724	 	 	 panic("attempt	to	register	empty	name")

			725	 	 }

			726	 	 ut	:=	userType(reflect.TypeOf(value))

			727	 	 //	Check	for	incompatible	duplicates.	The	name	must	refer	to	the

			728	 	 //	same	user	type,	and	vice	versa.

			729	 	 if	t,	ok	:=	nameToConcreteType[name];	ok	&&	t	!=	ut.user	{

			730	 	 	 panic(fmt.Sprintf("gob:	registering	duplicate	types	for	%q:	%s	!=	%s",	name,	t,	ut.user))

			731	 	 }

			732	 	 if	n,	ok	:=	concreteTypeToName[ut.base];	ok	&&	n	!=	name	{

			733	 	 	 panic(fmt.Sprintf("gob:	registering	duplicate	names	for	%s:	%q	!=	%q",	ut.user,	n,	name))

			734	 	 }

			735	 	 //	Store	the	name	and	type	provided	by	the	user....

			736	 	 nameToConcreteType[name]	=	reflect.TypeOf(value)

			737	 	 //	but	the	flattened	type	in	the	type	table,	since	that's	what	decode	needs.

			738	 	 concreteTypeToName[ut.base]	=	name

			739	 }

			740	

			741	 //	Register	records	a	type,	identified	by	a	value	for	that	type,	under	its

			742	 //	internal	type	name.		That	name	will	identify	the	concrete	type	of	a	value

			743	 //	sent	or	received	as	an	interface	variable.		Only	types	that	will	be

			744	 //	transferred	as	implementations	of	interface	values	need	to	be	registered.

			745	 //	Expecting	to	be	used	only	during	initialization,	it	panics	if	the	mapping

			746	 //	between	types	and	names	is	not	a	bijection.

			747	 func	Register(value	interface{})	{

			748	 	 //	Default	to	printed	representation	for	unnamed	types

			749	 	 rt	:=	reflect.TypeOf(value)

			750	 	 name	:=	rt.String()

			751	

			752	 	 //	But	for	named	types	(or	pointers	to	them),	qualify	with	import	path.

			753	 	 //	Dereference	one	pointer	looking	for	a	named	type.

			754	 	 star	:=	""

			755	 	 if	rt.Name()	==	""	{

			756	 	 	 if	pt	:=	rt;	pt.Kind()	==	reflect.Ptr	{

			757	 	 	 	 star	=	"*"

			758	 	 	 	 rt	=	pt

			759	 	 	 }

			760	 	 }

			761	 	 if	rt.Name()	!=	""	{

			762	 	 	 if	rt.PkgPath()	==	""	{

			763	 	 	 	 name	=	star	+	rt.Name()

			764	 	 	 }	else	{

			765	 	 	 	 name	=	star	+	rt.PkgPath()	+	"."	+	rt.Name()

			766	 	 	 }

			767	 	 }

			768	

			769	 	 RegisterName(name,	value)

			770	 }

			771	

			772	 func	registerBasics()	{

			773	 	 Register(int(0))

			774	 	 Register(int8(0))

			775	 	 Register(int16(0))

			776	 	 Register(int32(0))

			777	 	 Register(int64(0))

			778	 	 Register(uint(0))

			779	 	 Register(uint8(0))

			780	 	 Register(uint16(0))

			781	 	 Register(uint32(0))

			782	 	 Register(uint64(0))

			783	 	 Register(float32(0))

			784	 	 Register(float64(0))

			785	 	 Register(complex64(0i))

			786	 	 Register(complex128(0i))

			787	 	 Register(uintptr(0))

			788	 	 Register(false)

			789	 	 Register("")

			790	 	 Register([]byte(nil))

			791	 	 Register([]int(nil))

			792	 	 Register([]int8(nil))

			793	 	 Register([]int16(nil))

			794	 	 Register([]int32(nil))

			795	 	 Register([]int64(nil))

			796	 	 Register([]uint(nil))

			797	 	 Register([]uint8(nil))

			798	 	 Register([]uint16(nil))

			799	 	 Register([]uint32(nil))

			800	 	 Register([]uint64(nil))

			801	 	 Register([]float32(nil))

			802	 	 Register([]float64(nil))

			803	 	 Register([]complex64(nil))

			804	 	 Register([]complex128(nil))

			805	 	 Register([]uintptr(nil))

			806	 	 Register([]bool(nil))

			807	 	 Register([]string(nil))

			808	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/hex/hex.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	hex	implements	hexadecimal	encoding	and	decoding.

					6	 package	hex

					7	

					8	 import	(

					9	 	 "bytes"

				10	 	 "errors"

				11	 	 "fmt"

				12	 	 "io"

				13)

				14	

				15	 const	hextable	=	"0123456789abcdef"

				16	

				17	 //	EncodedLen	returns	the	length	of	an	encoding	of	n	source	bytes.

				18	 func	EncodedLen(n	int)	int	{	return	n	*	2	}

				19	

				20	 //	Encode	encodes	src	into	EncodedLen(len(src))

				21	 //	bytes	of	dst.		As	a	convenience,	it	returns	the	number

				22	 //	of	bytes	written	to	dst,	but	this	value	is	always	EncodedLen(len(src)).

				23	 //	Encode	implements	hexadecimal	encoding.

				24	 func	Encode(dst,	src	[]byte)	int	{

				25	 	 for	i,	v	:=	range	src	{

				26	 	 	 dst[i*2]	=	hextable[v>>4]

				27	 	 	 dst[i*2+1]	=	hextable[v&0x0f]

				28	 	 }

				29	

				30	 	 return	len(src)	*	2

				31	 }

				32	

				33	 //	ErrLength	results	from	decoding	an	odd	length	slice.

				34	 var	ErrLength	=	errors.New("encoding/hex:	odd	length	hex	string")

				35	

				36	 //	InvalidByteError	values	describe	errors	resulting	from	an	invalid	byte	in	a	hex	string.

				37	 type	InvalidByteError	byte

				38	

				39	 func	(e	InvalidByteError)	Error()	string	{

				40	 	 return	fmt.Sprintf("encoding/hex:	invalid	byte:	%#U",	rune(e))

				41	 }

				42	

				43	 func	DecodedLen(x	int)	int	{	return	x	/	2	}

				44	

				45	 //	Decode	decodes	src	into	DecodedLen(len(src))	bytes,	returning	the	actual

				46	 //	number	of	bytes	written	to	dst.

				47	 //

				48	 //	If	Decode	encounters	invalid	input,	it	returns	an	error	describing	the	failure.

				49	 func	Decode(dst,	src	[]byte)	(int,	error)	{

				50	 	 if	len(src)%2	==	1	{

				51	 	 	 return	0,	ErrLength

				52	 	 }

				53	

				54	 	 for	i	:=	0;	i	<	len(src)/2;	i++	{

				55	 	 	 a,	ok	:=	fromHexChar(src[i*2])

				56	 	 	 if	!ok	{

				57	 	 	 	 return	0,	InvalidByteError(src[i*2])

				58	 	 	 }

				59	 	 	 b,	ok	:=	fromHexChar(src[i*2+1])

				60	 	 	 if	!ok	{

				61	 	 	 	 return	0,	InvalidByteError(src[i*2+1])

				62	 	 	 }

				63	 	 	 dst[i]	=	(a	<<	4)	|	b

				64	 	 }

				65	

				66	 	 return	len(src)	/	2,	nil

				67	 }

				68	

				69	 //	fromHexChar	converts	a	hex	character	into	its	value	and	a	success	flag.

				70	 func	fromHexChar(c	byte)	(byte,	bool)	{

				71	 	 switch	{

				72	 	 case	'0'	<=	c	&&	c	<=	'9':

				73	 	 	 return	c	-	'0',	true

				74	 	 case	'a'	<=	c	&&	c	<=	'f':

				75	 	 	 return	c	-	'a'	+	10,	true

				76	 	 case	'A'	<=	c	&&	c	<=	'F':

				77	 	 	 return	c	-	'A'	+	10,	true

				78	 	 }

				79	

				80	 	 return	0,	false

				81	 }

				82	

				83	 //	EncodeToString	returns	the	hexadecimal	encoding	of	src.

				84	 func	EncodeToString(src	[]byte)	string	{

				85	 	 dst	:=	make([]byte,	EncodedLen(len(src)))

				86	 	 Encode(dst,	src)

				87	 	 return	string(dst)

				88	 }

				89	

				90	 //	DecodeString	returns	the	bytes	represented	by	the	hexadecimal	string	s.

				91	 func	DecodeString(s	string)	([]byte,	error)	{

				92	 	 src	:=	[]byte(s)

				93	 	 dst	:=	make([]byte,	DecodedLen(len(src)))

				94	 	 _,	err	:=	Decode(dst,	src)

				95	 	 if	err	!=	nil	{

				96	 	 	 return	nil,	err

				97	 	 }

				98	 	 return	dst,	nil

				99	 }

			100	

			101	 //	Dump	returns	a	string	that	contains	a	hex	dump	of	the	given	data.	The	format

			102	 //	of	the	hex	dump	matches	the	output	of	`hexdump	-C`	on	the	command	line.

			103	 func	Dump(data	[]byte)	string	{

			104	 	 var	buf	bytes.Buffer

			105	 	 dumper	:=	Dumper(&buf)

			106	 	 dumper.Write(data)

			107	 	 dumper.Close()

			108	 	 return	string(buf.Bytes())

			109	 }

			110	

			111	 //	Dumper	returns	a	WriteCloser	that	writes	a	hex	dump	of	all	written	data	to

			112	 //	w.	The	format	of	the	dump	matches	the	output	of	`hexdump	-C`	on	the	command

			113	 //	line.

			114	 func	Dumper(w	io.Writer)	io.WriteCloser	{

			115	 	 return	&dumper{w:	w}

			116	 }

			117	

			118	 type	dumper	struct	{

			119	 	 w										io.Writer

			120	 	 rightChars	[18]byte

			121	 	 buf								[14]byte

			122	 	 used							int		//	number	of	bytes	in	the	current	line

			123	 	 n										uint	//	number	of	bytes,	total

			124	 }

			125	

			126	 func	toChar(b	byte)	byte	{

			127	 	 if	b	<	32	||	b	>	126	{

			128	 	 	 return	'.'

			129	 	 }

			130	 	 return	b

			131	 }

			132	

			133	 func	(h	*dumper)	Write(data	[]byte)	(n	int,	err	error)	{

			134	 	 //	Output	lines	look	like:

			135	 	 //	00000010		2e	2f	30	31	32	33	34	35		36	37	38	39	3a	3b	3c	3d		|./0123456789:;<=|

			136	 	 //	^	offset																										^	extra	space														^	ASCII	of	line.

			137	 	 for	i	:=	range	data	{

			138	 	 	 if	h.used	==	0	{

			139	 	 	 	 //	At	the	beginning	of	a	line	we	print	the	current

			140	 	 	 	 //	offset	in	hex.

			141	 	 	 	 h.buf[0]	=	byte(h.n	>>	24)

			142	 	 	 	 h.buf[1]	=	byte(h.n	>>	16)

			143	 	 	 	 h.buf[2]	=	byte(h.n	>>	8)

			144	 	 	 	 h.buf[3]	=	byte(h.n)

			145	 	 	 	 Encode(h.buf[4:],	h.buf[:4])

			146	 	 	 	 h.buf[12]	=	'	'

			147	 	 	 	 h.buf[13]	=	'	'

			148	 	 	 	 _,	err	=	h.w.Write(h.buf[4:])

			149	 	 	 }

			150	 	 	 Encode(h.buf[:],	data[i:i+1])

			151	 	 	 h.buf[2]	=	'	'

			152	 	 	 l	:=	3

			153	 	 	 if	h.used	==	7	{

			154	 	 	 	 //	There's	an	additional	space	after	the	8th	byte.

			155	 	 	 	 h.buf[3]	=	'	'

			156	 	 	 	 l	=	4

			157	 	 	 }	else	if	h.used	==	15	{

			158	 	 	 	 //	At	the	end	of	the	line	there's	an	extra	space	and

			159	 	 	 	 //	the	bar	for	the	right	column.

			160	 	 	 	 h.buf[3]	=	'	'

			161	 	 	 	 h.buf[4]	=	'|'

			162	 	 	 	 l	=	5

			163	 	 	 }

			164	 	 	 _,	err	=	h.w.Write(h.buf[:l])

			165	 	 	 if	err	!=	nil	{

			166	 	 	 	 return

			167	 	 	 }

			168	 	 	 n++

			169	 	 	 h.rightChars[h.used]	=	toChar(data[i])

			170	 	 	 h.used++

			171	 	 	 h.n++

			172	 	 	 if	h.used	==	16	{

			173	 	 	 	 h.rightChars[16]	=	'|'

			174	 	 	 	 h.rightChars[17]	=	'\n'

			175	 	 	 	 _,	err	=	h.w.Write(h.rightChars[:])

			176	 	 	 	 if	err	!=	nil	{

			177	 	 	 	 	 return

			178	 	 	 	 }

			179	 	 	 	 h.used	=	0

			180	 	 	 }

			181	 	 }

			182	 	 return

			183	 }

			184	

			185	 func	(h	*dumper)	Close()	(err	error)	{

			186	 	 //	See	the	comments	in	Write()	for	the	details	of	this	format.

			187	 	 if	h.used	==	0	{

			188	 	 	 return

			189	 	 }

			190	 	 h.buf[0]	=	'	'

			191	 	 h.buf[1]	=	'	'

			192	 	 h.buf[2]	=	'	'

			193	 	 h.buf[3]	=	'	'

			194	 	 h.buf[4]	=	'|'

			195	 	 nBytes	:=	h.used

			196	 	 for	h.used	<	16	{

			197	 	 	 l	:=	3

			198	 	 	 if	h.used	==	7	{

			199	 	 	 	 l	=	4

			200	 	 	 }	else	if	h.used	==	15	{

			201	 	 	 	 l	=	5

			202	 	 	 }

			203	 	 	 _,	err	=	h.w.Write(h.buf[:l])

			204	 	 	 if	err	!=	nil	{

			205	 	 	 	 return

			206	 	 	 }

			207	 	 	 h.used++

			208	 	 }

			209	 	 h.rightChars[nBytes]	=	'|'

			210	 	 h.rightChars[nBytes+1]	=	'\n'

			211	 	 _,	err	=	h.w.Write(h.rightChars[:nBytes+2])

			212	 	 return

			213	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/json/decode.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Represents	JSON	data	structure	using	native	Go	types:	booleans,	floats,

					6	 //	strings,	arrays,	and	maps.

					7	

					8	 package	json

					9	

				10	 import	(

				11	 	 "encoding/base64"

				12	 	 "errors"

				13	 	 "fmt"

				14	 	 "reflect"

				15	 	 "runtime"

				16	 	 "strconv"

				17	 	 "strings"

				18	 	 "unicode"

				19	 	 "unicode/utf16"

				20	 	 "unicode/utf8"

				21)

				22	

				23	 //	Unmarshal	parses	the	JSON-encoded	data	and	stores	the	result

				24	 //	in	the	value	pointed	to	by	v.

				25	 //

				26	 //	Unmarshal	uses	the	inverse	of	the	encodings	that

				27	 //	Marshal	uses,	allocating	maps,	slices,	and	pointers	as	necessary,

				28	 //	with	the	following	additional	rules:

				29	 //

				30	 //	To	unmarshal	JSON	into	a	pointer,	Unmarshal	first	handles	the	case	of

				31	 //	the	JSON	being	the	JSON	literal	null.		In	that	case,	Unmarshal	sets

				32	 //	the	pointer	to	nil.		Otherwise,	Unmarshal	unmarshals	the	JSON	into

				33	 //	the	value	pointed	at	by	the	pointer.		If	the	pointer	is	nil,	Unmarshal

				34	 //	allocates	a	new	value	for	it	to	point	to.

				35	 //

				36	 //	To	unmarshal	JSON	into	an	interface	value,	Unmarshal	unmarshals

				37	 //	the	JSON	into	the	concrete	value	contained	in	the	interface	value.

				38	 //	If	the	interface	value	is	nil,	that	is,	has	no	concrete	value	stored	in	it,

				39	 //	Unmarshal	stores	one	of	these	in	the	interface	value:

				40	 //

				41	 //	 bool,	for	JSON	booleans

				42	 //	 float64,	for	JSON	numbers

				43	 //	 string,	for	JSON	strings

				44	 //	 []interface{},	for	JSON	arrays

				45	 //	 map[string]interface{},	for	JSON	objects

				46	 //	 nil	for	JSON	null

				47	 //

				48	 //	If	a	JSON	value	is	not	appropriate	for	a	given	target	type,

				49	 //	or	if	a	JSON	number	overflows	the	target	type,	Unmarshal

				50	 //	skips	that	field	and	completes	the	unmarshalling	as	best	it	can.

				51	 //	If	no	more	serious	errors	are	encountered,	Unmarshal	returns

				52	 //	an	UnmarshalTypeError	describing	the	earliest	such	error.

				53	 //

				54	 func	Unmarshal(data	[]byte,	v	interface{})	error	{

				55	 	 d	:=	new(decodeState).init(data)

				56	

				57	 	 //	Quick	check	for	well-formedness.

				58	 	 //	Avoids	filling	out	half	a	data	structure

				59	 	 //	before	discovering	a	JSON	syntax	error.

				60	 	 err	:=	checkValid(data,	&d.scan)

				61	 	 if	err	!=	nil	{

				62	 	 	 return	err

				63	 	 }

				64	

				65	 	 return	d.unmarshal(v)

				66	 }

				67	

				68	 //	Unmarshaler	is	the	interface	implemented	by	objects

				69	 //	that	can	unmarshal	a	JSON	description	of	themselves.

				70	 //	The	input	can	be	assumed	to	be	a	valid	JSON	object

				71	 //	encoding.		UnmarshalJSON	must	copy	the	JSON	data

				72	 //	if	it	wishes	to	retain	the	data	after	returning.

				73	 type	Unmarshaler	interface	{

				74	 	 UnmarshalJSON([]byte)	error

				75	 }

				76	

				77	 //	An	UnmarshalTypeError	describes	a	JSON	value	that	was

				78	 //	not	appropriate	for	a	value	of	a	specific	Go	type.

				79	 type	UnmarshalTypeError	struct	{

				80	 	 Value	string							//	description	of	JSON	value	-	"bool",	"array",	"number	-5"

				81	 	 Type		reflect.Type	//	type	of	Go	value	it	could	not	be	assigned	to

				82	 }

				83	

				84	 func	(e	*UnmarshalTypeError)	Error()	string	{

				85	 	 return	"json:	cannot	unmarshal	"	+	e.Value	+	"	into	Go	value	of	type	"	+	e.Type.String()

				86	 }

				87	

				88	 //	An	UnmarshalFieldError	describes	a	JSON	object	key	that

				89	 //	led	to	an	unexported	(and	therefore	unwritable)	struct	field.

				90	 type	UnmarshalFieldError	struct	{

				91	 	 Key			string

				92	 	 Type		reflect.Type

				93	 	 Field	reflect.StructField

				94	 }

				95	

				96	 func	(e	*UnmarshalFieldError)	Error()	string	{

				97	 	 return	"json:	cannot	unmarshal	object	key	"	+	strconv.Quote(e.Key)	+	"	into	unexported	field	"	+	e.Field.Name	+	"	of	type	"	+	e.Type.String()

				98	 }

				99	

			100	 //	An	InvalidUnmarshalError	describes	an	invalid	argument	passed	to	Unmarshal.

			101	 //	(The	argument	to	Unmarshal	must	be	a	non-nil	pointer.)

			102	 type	InvalidUnmarshalError	struct	{

			103	 	 Type	reflect.Type

			104	 }

			105	

			106	 func	(e	*InvalidUnmarshalError)	Error()	string	{

			107	 	 if	e.Type	==	nil	{

			108	 	 	 return	"json:	Unmarshal(nil)"

			109	 	 }

			110	

			111	 	 if	e.Type.Kind()	!=	reflect.Ptr	{

			112	 	 	 return	"json:	Unmarshal(non-pointer	"	+	e.Type.String()	+	")"

			113	 	 }

			114	 	 return	"json:	Unmarshal(nil	"	+	e.Type.String()	+	")"

			115	 }

			116	

			117	 func	(d	*decodeState)	unmarshal(v	interface{})	(err	error)	{

			118	 	 defer	func()	{

			119	 	 	 if	r	:=	recover();	r	!=	nil	{

			120	 	 	 	 if	_,	ok	:=	r.(runtime.Error);	ok	{

			121	 	 	 	 	 panic(r)

			122	 	 	 	 }

			123	 	 	 	 err	=	r.(error)

			124	 	 	 }

			125	 	 }()

			126	

			127	 	 rv	:=	reflect.ValueOf(v)

			128	 	 pv	:=	rv

			129	 	 if	pv.Kind()	!=	reflect.Ptr	||	pv.IsNil()	{

			130	 	 	 return	&InvalidUnmarshalError{reflect.TypeOf(v)}

			131	 	 }

			132	

			133	 	 d.scan.reset()

			134	 	 //	We	decode	rv	not	pv.Elem	because	the	Unmarshaler	interface

			135	 	 //	test	must	be	applied	at	the	top	level	of	the	value.

			136	 	 d.value(rv)

			137	 	 return	d.savedError

			138	 }

			139	

			140	 //	decodeState	represents	the	state	while	decoding	a	JSON	value.

			141	 type	decodeState	struct	{

			142	 	 data							[]byte

			143	 	 off								int	//	read	offset	in	data

			144	 	 scan							scanner

			145	 	 nextscan			scanner	//	for	calls	to	nextValue

			146	 	 savedError	error

			147	 	 tempstr				string	//	scratch	space	to	avoid	some	allocations

			148	 }

			149	

			150	 //	errPhase	is	used	for	errors	that	should	not	happen	unless

			151	 //	there	is	a	bug	in	the	JSON	decoder	or	something	is	editing

			152	 //	the	data	slice	while	the	decoder	executes.

			153	 var	errPhase	=	errors.New("JSON	decoder	out	of	sync	-	data	changing	underfoot?")

			154	

			155	 func	(d	*decodeState)	init(data	[]byte)	*decodeState	{

			156	 	 d.data	=	data

			157	 	 d.off	=	0

			158	 	 d.savedError	=	nil

			159	 	 return	d

			160	 }

			161	

			162	 //	error	aborts	the	decoding	by	panicking	with	err.

			163	 func	(d	*decodeState)	error(err	error)	{

			164	 	 panic(err)

			165	 }

			166	

			167	 //	saveError	saves	the	first	err	it	is	called	with,

			168	 //	for	reporting	at	the	end	of	the	unmarshal.

			169	 func	(d	*decodeState)	saveError(err	error)	{

			170	 	 if	d.savedError	==	nil	{

			171	 	 	 d.savedError	=	err

			172	 	 }

			173	 }

			174	

			175	 //	next	cuts	off	and	returns	the	next	full	JSON	value	in	d.data[d.off:].

			176	 //	The	next	value	is	known	to	be	an	object	or	array,	not	a	literal.

			177	 func	(d	*decodeState)	next()	[]byte	{

			178	 	 c	:=	d.data[d.off]

			179	 	 item,	rest,	err	:=	nextValue(d.data[d.off:],	&d.nextscan)

			180	 	 if	err	!=	nil	{

			181	 	 	 d.error(err)

			182	 	 }

			183	 	 d.off	=	len(d.data)	-	len(rest)

			184	

			185	 	 //	Our	scanner	has	seen	the	opening	brace/bracket

			186	 	 //	and	thinks	we're	still	in	the	middle	of	the	object.

			187	 	 //	invent	a	closing	brace/bracket	to	get	it	out.

			188	 	 if	c	==	'{'	{

			189	 	 	 d.scan.step(&d.scan,	'}')

			190	 	 }	else	{

			191	 	 	 d.scan.step(&d.scan,	']')

			192	 	 }

			193	

			194	 	 return	item

			195	 }

			196	

			197	 //	scanWhile	processes	bytes	in	d.data[d.off:]	until	it

			198	 //	receives	a	scan	code	not	equal	to	op.

			199	 //	It	updates	d.off	and	returns	the	new	scan	code.

			200	 func	(d	*decodeState)	scanWhile(op	int)	int	{

			201	 	 var	newOp	int

			202	 	 for	{

			203	 	 	 if	d.off	>=	len(d.data)	{

			204	 	 	 	 newOp	=	d.scan.eof()

			205	 	 	 	 d.off	=	len(d.data)	+	1	//	mark	processed	EOF	with	len+1

			206	 	 	 }	else	{

			207	 	 	 	 c	:=	int(d.data[d.off])

			208	 	 	 	 d.off++

			209	 	 	 	 newOp	=	d.scan.step(&d.scan,	c)

			210	 	 	 }

			211	 	 	 if	newOp	!=	op	{

			212	 	 	 	 break

			213	 	 	 }

			214	 	 }

			215	 	 return	newOp

			216	 }

			217	

			218	 //	value	decodes	a	JSON	value	from	d.data[d.off:]	into	the	value.

			219	 //	it	updates	d.off	to	point	past	the	decoded	value.

			220	 func	(d	*decodeState)	value(v	reflect.Value)	{

			221	 	 if	!v.IsValid()	{

			222	 	 	 _,	rest,	err	:=	nextValue(d.data[d.off:],	&d.nextscan)

			223	 	 	 if	err	!=	nil	{

			224	 	 	 	 d.error(err)

			225	 	 	 }

			226	 	 	 d.off	=	len(d.data)	-	len(rest)

			227	

			228	 	 	 //	d.scan	thinks	we're	still	at	the	beginning	of	the	item.

			229	 	 	 //	Feed	in	an	empty	string	-	the	shortest,	simplest	value	-

			230	 	 	 //	so	that	it	knows	we	got	to	the	end	of	the	value.

			231	 	 	 if	d.scan.redo	{

			232	 	 	 	 //	rewind.

			233	 	 	 	 d.scan.redo	=	false

			234	 	 	 	 d.scan.step	=	stateBeginValue

			235	 	 	 }

			236	 	 	 d.scan.step(&d.scan,	'"')

			237	 	 	 d.scan.step(&d.scan,	'"')

			238	 	 	 return

			239	 	 }

			240	

			241	 	 switch	op	:=	d.scanWhile(scanSkipSpace);	op	{

			242	 	 default:

			243	 	 	 d.error(errPhase)

			244	

			245	 	 case	scanBeginArray:

			246	 	 	 d.array(v)

			247	

			248	 	 case	scanBeginObject:

			249	 	 	 d.object(v)

			250	

			251	 	 case	scanBeginLiteral:

			252	 	 	 d.literal(v)

			253	 	 }

			254	 }

			255	

			256	 //	indirect	walks	down	v	allocating	pointers	as	needed,

			257	 //	until	it	gets	to	a	non-pointer.

			258	 //	if	it	encounters	an	Unmarshaler,	indirect	stops	and	returns	that.

			259	 //	if	decodingNull	is	true,	indirect	stops	at	the	last	pointer	so	it	can	be	set	to	nil.

			260	 func	(d	*decodeState)	indirect(v	reflect.Value,	decodingNull	bool)	(Unmarshaler,	reflect.Value)	{

			261	 	 //	If	v	is	a	named	type	and	is	addressable,

			262	 	 //	start	with	its	address,	so	that	if	the	type	has	pointer	methods,

			263	 	 //	we	find	them.

			264	 	 if	v.Kind()	!=	reflect.Ptr	&&	v.Type().Name()	!=	""	&&	v.CanAddr()	{

			265	 	 	 v	=	v.Addr()

			266	 	 }

			267	 	 for	{

			268	 	 	 var	isUnmarshaler	bool

			269	 	 	 if	v.Type().NumMethod()	>	0	{

			270	 	 	 	 //	Remember	that	this	is	an	unmarshaler,

			271	 	 	 	 //	but	wait	to	return	it	until	after	allocating

			272	 	 	 	 //	the	pointer	(if	necessary).

			273	 	 	 	 _,	isUnmarshaler	=	v.Interface().(Unmarshaler)

			274	 	 	 }

			275	

			276	 	 	 if	iv	:=	v;	iv.Kind()	==	reflect.Interface	&&	!iv.IsNil()	{

			277	 	 	 	 v	=	iv.Elem()

			278	 	 	 	 continue

			279	 	 	 }

			280	

			281	 	 	 pv	:=	v

			282	 	 	 if	pv.Kind()	!=	reflect.Ptr	{

			283	 	 	 	 break

			284	 	 	 }

			285	

			286	 	 	 if	pv.Elem().Kind()	!=	reflect.Ptr	&&	decodingNull	&&	pv.CanSet()	{

			287	 	 	 	 return	nil,	pv

			288	 	 	 }

			289	 	 	 if	pv.IsNil()	{

			290	 	 	 	 pv.Set(reflect.New(pv.Type().Elem()))

			291	 	 	 }

			292	 	 	 if	isUnmarshaler	{

			293	 	 	 	 //	Using	v.Interface().(Unmarshaler)

			294	 	 	 	 //	here	means	that	we	have	to	use	a	pointer

			295	 	 	 	 //	as	the	struct	field.		We	cannot	use	a	value	inside

			296	 	 	 	 //	a	pointer	to	a	struct,	because	in	that	case

			297	 	 	 	 //	v.Interface()	is	the	value	(x.f)	not	the	pointer	(&x.f).

			298	 	 	 	 //	This	is	an	unfortunate	consequence	of	reflect.

			299	 	 	 	 //	An	alternative	would	be	to	look	up	the

			300	 	 	 	 //	UnmarshalJSON	method	and	return	a	FuncValue.

			301	 	 	 	 return	v.Interface().(Unmarshaler),	reflect.Value{}

			302	 	 	 }

			303	 	 	 v	=	pv.Elem()

			304	 	 }

			305	 	 return	nil,	v

			306	 }

			307	

			308	 //	array	consumes	an	array	from	d.data[d.off-1:],	decoding	into	the	value	v.

			309	 //	the	first	byte	of	the	array	('[')	has	been	read	already.

			310	 func	(d	*decodeState)	array(v	reflect.Value)	{

			311	 	 //	Check	for	unmarshaler.

			312	 	 unmarshaler,	pv	:=	d.indirect(v,	false)

			313	 	 if	unmarshaler	!=	nil	{

			314	 	 	 d.off--

			315	 	 	 err	:=	unmarshaler.UnmarshalJSON(d.next())

			316	 	 	 if	err	!=	nil	{

			317	 	 	 	 d.error(err)

			318	 	 	 }

			319	 	 	 return

			320	 	 }

			321	 	 v	=	pv

			322	

			323	 	 //	Check	type	of	target.

			324	 	 switch	v.Kind()	{

			325	 	 default:

			326	 	 	 d.saveError(&UnmarshalTypeError{"array",	v.Type()})

			327	 	 	 d.off--

			328	 	 	 d.next()

			329	 	 	 return

			330	 	 case	reflect.Interface:

			331	 	 	 //	Decoding	into	nil	interface?		Switch	to	non-reflect	code.

			332	 	 	 v.Set(reflect.ValueOf(d.arrayInterface()))

			333	 	 	 return

			334	 	 case	reflect.Array:

			335	 	 case	reflect.Slice:

			336	 	 	 break

			337	 	 }

			338	

			339	 	 i	:=	0

			340	 	 for	{

			341	 	 	 //	Look	ahead	for]	-	can	only	happen	on	first	iteration.

			342	 	 	 op	:=	d.scanWhile(scanSkipSpace)

			343	 	 	 if	op	==	scanEndArray	{

			344	 	 	 	 break

			345	 	 	 }

			346	

			347	 	 	 //	Back	up	so	d.value	can	have	the	byte	we	just	read.

			348	 	 	 d.off--

			349	 	 	 d.scan.undo(op)

			350	

			351	 	 	 //	Get	element	of	array,	growing	if	necessary.

			352	 	 	 if	v.Kind()	==	reflect.Slice	{

			353	 	 	 	 //	Grow	slice	if	necessary

			354	 	 	 	 if	i	>=	v.Cap()	{

			355	 	 	 	 	 newcap	:=	v.Cap()	+	v.Cap()/2

			356	 	 	 	 	 if	newcap	<	4	{

			357	 	 	 	 	 	 newcap	=	4

			358	 	 	 	 	 }

			359	 	 	 	 	 newv	:=	reflect.MakeSlice(v.Type(),	v.Len(),	newcap)

			360	 	 	 	 	 reflect.Copy(newv,	v)

			361	 	 	 	 	 v.Set(newv)

			362	 	 	 	 }

			363	 	 	 	 if	i	>=	v.Len()	{

			364	 	 	 	 	 v.SetLen(i	+	1)

			365	 	 	 	 }

			366	 	 	 }

			367	

			368	 	 	 if	i	<	v.Len()	{

			369	 	 	 	 //	Decode	into	element.

			370	 	 	 	 d.value(v.Index(i))

			371	 	 	 }	else	{

			372	 	 	 	 //	Ran	out	of	fixed	array:	skip.

			373	 	 	 	 d.value(reflect.Value{})

			374	 	 	 }

			375	 	 	 i++

			376	

			377	 	 	 //	Next	token	must	be	,	or].

			378	 	 	 op	=	d.scanWhile(scanSkipSpace)

			379	 	 	 if	op	==	scanEndArray	{

			380	 	 	 	 break

			381	 	 	 }

			382	 	 	 if	op	!=	scanArrayValue	{

			383	 	 	 	 d.error(errPhase)

			384	 	 	 }

			385	 	 }

			386	

			387	 	 if	i	<	v.Len()	{

			388	 	 	 if	v.Kind()	==	reflect.Array	{

			389	 	 	 	 //	Array.		Zero	the	rest.

			390	 	 	 	 z	:=	reflect.Zero(v.Type().Elem())

			391	 	 	 	 for	;	i	<	v.Len();	i++	{

			392	 	 	 	 	 v.Index(i).Set(z)

			393	 	 	 	 }

			394	 	 	 }	else	{

			395	 	 	 	 v.SetLen(i)

			396	 	 	 }

			397	 	 }

			398	 	 if	i	==	0	&&	v.Kind()	==	reflect.Slice	{

			399	 	 	 v.Set(reflect.MakeSlice(v.Type(),	0,	0))

			400	 	 }

			401	 }

			402	

			403	 //	object	consumes	an	object	from	d.data[d.off-1:],	decoding	into	the	value	v.

			404	 //	the	first	byte	of	the	object	('{')	has	been	read	already.

			405	 func	(d	*decodeState)	object(v	reflect.Value)	{

			406	 	 //	Check	for	unmarshaler.

			407	 	 unmarshaler,	pv	:=	d.indirect(v,	false)

			408	 	 if	unmarshaler	!=	nil	{

			409	 	 	 d.off--

			410	 	 	 err	:=	unmarshaler.UnmarshalJSON(d.next())

			411	 	 	 if	err	!=	nil	{

			412	 	 	 	 d.error(err)

			413	 	 	 }

			414	 	 	 return

			415	 	 }

			416	 	 v	=	pv

			417	

			418	 	 //	Decoding	into	nil	interface?		Switch	to	non-reflect	code.

			419	 	 iv	:=	v

			420	 	 if	iv.Kind()	==	reflect.Interface	{

			421	 	 	 iv.Set(reflect.ValueOf(d.objectInterface()))

			422	 	 	 return

			423	 	 }

			424	

			425	 	 //	Check	type	of	target:	struct	or	map[string]T

			426	 	 var	(

			427	 	 	 mv	reflect.Value

			428	 	 	 sv	reflect.Value

			429)

			430	 	 switch	v.Kind()	{

			431	 	 case	reflect.Map:

			432	 	 	 //	map	must	have	string	type

			433	 	 	 t	:=	v.Type()

			434	 	 	 if	t.Key()	!=	reflect.TypeOf("")	{

			435	 	 	 	 d.saveError(&UnmarshalTypeError{"object",	v.Type()})

			436	 	 	 	 break

			437	 	 	 }

			438	 	 	 mv	=	v

			439	 	 	 if	mv.IsNil()	{

			440	 	 	 	 mv.Set(reflect.MakeMap(t))

			441	 	 	 }

			442	 	 case	reflect.Struct:

			443	 	 	 sv	=	v

			444	 	 default:

			445	 	 	 d.saveError(&UnmarshalTypeError{"object",	v.Type()})

			446	 	 }

			447	

			448	 	 if	!mv.IsValid()	&&	!sv.IsValid()	{

			449	 	 	 d.off--

			450	 	 	 d.next()	//	skip	over	{	}	in	input

			451	 	 	 return

			452	 	 }

			453	

			454	 	 var	mapElem	reflect.Value

			455	

			456	 	 for	{

			457	 	 	 //	Read	opening	"	of	string	key	or	closing	}.

			458	 	 	 op	:=	d.scanWhile(scanSkipSpace)

			459	 	 	 if	op	==	scanEndObject	{

			460	 	 	 	 //	closing	}	-	can	only	happen	on	first	iteration.

			461	 	 	 	 break

			462	 	 	 }

			463	 	 	 if	op	!=	scanBeginLiteral	{

			464	 	 	 	 d.error(errPhase)

			465	 	 	 }

			466	

			467	 	 	 //	Read	string	key.

			468	 	 	 start	:=	d.off	-	1

			469	 	 	 op	=	d.scanWhile(scanContinue)

			470	 	 	 item	:=	d.data[start	:	d.off-1]

			471	 	 	 key,	ok	:=	unquote(item)

			472	 	 	 if	!ok	{

			473	 	 	 	 d.error(errPhase)

			474	 	 	 }

			475	

			476	 	 	 //	Figure	out	field	corresponding	to	key.

			477	 	 	 var	subv	reflect.Value

			478	 	 	 destring	:=	false	//	whether	the	value	is	wrapped	in	a	string	to	be	decoded	first

			479	

			480	 	 	 if	mv.IsValid()	{

			481	 	 	 	 elemType	:=	mv.Type().Elem()

			482	 	 	 	 if	!mapElem.IsValid()	{

			483	 	 	 	 	 mapElem	=	reflect.New(elemType).Elem()

			484	 	 	 	 }	else	{

			485	 	 	 	 	 mapElem.Set(reflect.Zero(elemType))

			486	 	 	 	 }

			487	 	 	 	 subv	=	mapElem

			488	 	 	 }	else	{

			489	 	 	 	 var	f	reflect.StructField

			490	 	 	 	 var	ok	bool

			491	 	 	 	 st	:=	sv.Type()

			492	 	 	 	 for	i	:=	0;	i	<	sv.NumField();	i++	{

			493	 	 	 	 	 sf	:=	st.Field(i)

			494	 	 	 	 	 tag	:=	sf.Tag.Get("json")

			495	 	 	 	 	 if	tag	==	"-"	{

			496	 	 	 	 	 	 //	Pretend	this	field	doesn't	exist.

			497	 	 	 	 	 	 continue

			498	 	 	 	 	 }

			499	 	 	 	 	 if	sf.Anonymous	{

			500	 	 	 	 	 	 //	Pretend	this	field	doesn't	exist,

			501	 	 	 	 	 	 //	so	that	we	can	do	a	good	job	with

			502	 	 	 	 	 	 //	these	in	a	later	version.

			503	 	 	 	 	 	 continue

			504	 	 	 	 	 }

			505	 	 	 	 	 //	First,	tag	match

			506	 	 	 	 	 tagName,	_	:=	parseTag(tag)

			507	 	 	 	 	 if	tagName	==	key	{

			508	 	 	 	 	 	 f	=	sf

			509	 	 	 	 	 	 ok	=	true

			510	 	 	 	 	 	 break	//	no	better	match	possible

			511	 	 	 	 	 }

			512	 	 	 	 	 //	Second,	exact	field	name	match

			513	 	 	 	 	 if	sf.Name	==	key	{

			514	 	 	 	 	 	 f	=	sf

			515	 	 	 	 	 	 ok	=	true

			516	 	 	 	 	 }

			517	 	 	 	 	 //	Third,	case-insensitive	field	name	match,

			518	 	 	 	 	 //	but	only	if	a	better	match	hasn't	already	been	seen

			519	 	 	 	 	 if	!ok	&&	strings.EqualFold(sf.Name,	key)	{

			520	 	 	 	 	 	 f	=	sf

			521	 	 	 	 	 	 ok	=	true

			522	 	 	 	 	 }

			523	 	 	 	 }

			524	

			525	 	 	 	 //	Extract	value;	name	must	be	exported.

			526	 	 	 	 if	ok	{

			527	 	 	 	 	 if	f.PkgPath	!=	""	{

			528	 	 	 	 	 	 d.saveError(&UnmarshalFieldError{key,	st,	f})

			529	 	 	 	 	 }	else	{

			530	 	 	 	 	 	 subv	=	sv.FieldByIndex(f.Index)

			531	 	 	 	 	 }

			532	 	 	 	 	 _,	opts	:=	parseTag(f.Tag.Get("json"))

			533	 	 	 	 	 destring	=	opts.Contains("string")

			534	 	 	 	 }

			535	 	 	 }

			536	

			537	 	 	 //	Read	:	before	value.

			538	 	 	 if	op	==	scanSkipSpace	{

			539	 	 	 	 op	=	d.scanWhile(scanSkipSpace)

			540	 	 	 }

			541	 	 	 if	op	!=	scanObjectKey	{

			542	 	 	 	 d.error(errPhase)

			543	 	 	 }

			544	

			545	 	 	 //	Read	value.

			546	 	 	 if	destring	{

			547	 	 	 	 d.value(reflect.ValueOf(&d.tempstr))

			548	 	 	 	 d.literalStore([]byte(d.tempstr),	subv,	true)

			549	 	 	 }	else	{

			550	 	 	 	 d.value(subv)

			551	 	 	 }

			552	 	 	 //	Write	value	back	to	map;

			553	 	 	 //	if	using	struct,	subv	points	into	struct	already.

			554	 	 	 if	mv.IsValid()	{

			555	 	 	 	 mv.SetMapIndex(reflect.ValueOf(key),	subv)

			556	 	 	 }

			557	

			558	 	 	 //	Next	token	must	be	,	or	}.

			559	 	 	 op	=	d.scanWhile(scanSkipSpace)

			560	 	 	 if	op	==	scanEndObject	{

			561	 	 	 	 break

			562	 	 	 }

			563	 	 	 if	op	!=	scanObjectValue	{

			564	 	 	 	 d.error(errPhase)

			565	 	 	 }

			566	 	 }

			567	 }

			568	

			569	 //	literal	consumes	a	literal	from	d.data[d.off-1:],	decoding	into	the	value	v.

			570	 //	The	first	byte	of	the	literal	has	been	read	already

			571	 //	(that's	how	the	caller	knows	it's	a	literal).

			572	 func	(d	*decodeState)	literal(v	reflect.Value)	{

			573	 	 //	All	bytes	inside	literal	return	scanContinue	op	code.

			574	 	 start	:=	d.off	-	1

			575	 	 op	:=	d.scanWhile(scanContinue)

			576	

			577	 	 //	Scan	read	one	byte	too	far;	back	up.

			578	 	 d.off--

			579	 	 d.scan.undo(op)

			580	

			581	 	 d.literalStore(d.data[start:d.off],	v,	false)

			582	 }

			583	

			584	 //	literalStore	decodes	a	literal	stored	in	item	into	v.

			585	 //

			586	 //	fromQuoted	indicates	whether	this	literal	came	from	unwrapping	a

			587	 //	string	from	the	",string"	struct	tag	option.	this	is	used	only	to

			588	 //	produce	more	helpful	error	messages.

			589	 func	(d	*decodeState)	literalStore(item	[]byte,	v	reflect.Value,	fromQuoted	bool)	{

			590	 	 //	Check	for	unmarshaler.

			591	 	 wantptr	:=	item[0]	==	'n'	//	null

			592	 	 unmarshaler,	pv	:=	d.indirect(v,	wantptr)

			593	 	 if	unmarshaler	!=	nil	{

			594	 	 	 err	:=	unmarshaler.UnmarshalJSON(item)

			595	 	 	 if	err	!=	nil	{

			596	 	 	 	 d.error(err)

			597	 	 	 }

			598	 	 	 return

			599	 	 }

			600	 	 v	=	pv

			601	

			602	 	 switch	c	:=	item[0];	c	{

			603	 	 case	'n':	//	null

			604	 	 	 switch	v.Kind()	{

			605	 	 	 default:

			606	 	 	 	 d.saveError(&UnmarshalTypeError{"null",	v.Type()})

			607	 	 	 case	reflect.Interface,	reflect.Ptr,	reflect.Map,	reflect.Slice:

			608	 	 	 	 v.Set(reflect.Zero(v.Type()))

			609	 	 	 }

			610	

			611	 	 case	't',	'f':	//	true,	false

			612	 	 	 value	:=	c	==	't'

			613	 	 	 switch	v.Kind()	{

			614	 	 	 default:

			615	 	 	 	 if	fromQuoted	{

			616	 	 	 	 	 d.saveError(fmt.Errorf("json:	invalid	use	of	,string	struct	tag,	trying	to	unmarshal	%q	into	%v",	item,	v.Type()))

			617	 	 	 	 }	else	{

			618	 	 	 	 	 d.saveError(&UnmarshalTypeError{"bool",	v.Type()})

			619	 	 	 	 }

			620	 	 	 case	reflect.Bool:

			621	 	 	 	 v.SetBool(value)

			622	 	 	 case	reflect.Interface:

			623	 	 	 	 v.Set(reflect.ValueOf(value))

			624	 	 	 }

			625	

			626	 	 case	'"':	//	string

			627	 	 	 s,	ok	:=	unquoteBytes(item)

			628	 	 	 if	!ok	{

			629	 	 	 	 if	fromQuoted	{

			630	 	 	 	 	 d.error(fmt.Errorf("json:	invalid	use	of	,string	struct	tag,	trying	to	unmarshal	%q	into	%v",	item,	v.Type()))

			631	 	 	 	 }	else	{

			632	 	 	 	 	 d.error(errPhase)

			633	 	 	 	 }

			634	 	 	 }

			635	 	 	 switch	v.Kind()	{

			636	 	 	 default:

			637	 	 	 	 d.saveError(&UnmarshalTypeError{"string",	v.Type()})

			638	 	 	 case	reflect.Slice:

			639	 	 	 	 if	v.Type()	!=	byteSliceType	{

			640	 	 	 	 	 d.saveError(&UnmarshalTypeError{"string",	v.Type()})

			641	 	 	 	 	 break

			642	 	 	 	 }

			643	 	 	 	 b	:=	make([]byte,	base64.StdEncoding.DecodedLen(len(s)))

			644	 	 	 	 n,	err	:=	base64.StdEncoding.Decode(b,	s)

			645	 	 	 	 if	err	!=	nil	{

			646	 	 	 	 	 d.saveError(err)

			647	 	 	 	 	 break

			648	 	 	 	 }

			649	 	 	 	 v.Set(reflect.ValueOf(b[0:n]))

			650	 	 	 case	reflect.String:

			651	 	 	 	 v.SetString(string(s))

			652	 	 	 case	reflect.Interface:

			653	 	 	 	 v.Set(reflect.ValueOf(string(s)))

			654	 	 	 }

			655	

			656	 	 default:	//	number

			657	 	 	 if	c	!=	'-'	&&	(c	<	'0'	||	c	>	'9')	{

			658	 	 	 	 if	fromQuoted	{

			659	 	 	 	 	 d.error(fmt.Errorf("json:	invalid	use	of	,string	struct	tag,	trying	to	unmarshal	%q	into	%v",	item,	v.Type()))

			660	 	 	 	 }	else	{

			661	 	 	 	 	 d.error(errPhase)

			662	 	 	 	 }

			663	 	 	 }

			664	 	 	 s	:=	string(item)

			665	 	 	 switch	v.Kind()	{

			666	 	 	 default:

			667	 	 	 	 if	fromQuoted	{

			668	 	 	 	 	 d.error(fmt.Errorf("json:	invalid	use	of	,string	struct	tag,	trying	to	unmarshal	%q	into	%v",	item,	v.Type()))

			669	 	 	 	 }	else	{

			670	 	 	 	 	 d.error(&UnmarshalTypeError{"number",	v.Type()})

			671	 	 	 	 }

			672	 	 	 case	reflect.Interface:

			673	 	 	 	 n,	err	:=	strconv.ParseFloat(s,	64)

			674	 	 	 	 if	err	!=	nil	{

			675	 	 	 	 	 d.saveError(&UnmarshalTypeError{"number	"	+	s,	v.Type()})

			676	 	 	 	 	 break

			677	 	 	 	 }

			678	 	 	 	 v.Set(reflect.ValueOf(n))

			679	

			680	 	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			681	 	 	 	 n,	err	:=	strconv.ParseInt(s,	10,	64)

			682	 	 	 	 if	err	!=	nil	||	v.OverflowInt(n)	{

			683	 	 	 	 	 d.saveError(&UnmarshalTypeError{"number	"	+	s,	v.Type()})

			684	 	 	 	 	 break

			685	 	 	 	 }

			686	 	 	 	 v.SetInt(n)

			687	

			688	 	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

			689	 	 	 	 n,	err	:=	strconv.ParseUint(s,	10,	64)

			690	 	 	 	 if	err	!=	nil	||	v.OverflowUint(n)	{

			691	 	 	 	 	 d.saveError(&UnmarshalTypeError{"number	"	+	s,	v.Type()})

			692	 	 	 	 	 break

			693	 	 	 	 }

			694	 	 	 	 v.SetUint(n)

			695	

			696	 	 	 case	reflect.Float32,	reflect.Float64:

			697	 	 	 	 n,	err	:=	strconv.ParseFloat(s,	v.Type().Bits())

			698	 	 	 	 if	err	!=	nil	||	v.OverflowFloat(n)	{

			699	 	 	 	 	 d.saveError(&UnmarshalTypeError{"number	"	+	s,	v.Type()})

			700	 	 	 	 	 break

			701	 	 	 	 }

			702	 	 	 	 v.SetFloat(n)

			703	 	 	 }

			704	 	 }

			705	 }

			706	

			707	 //	The	xxxInterface	routines	build	up	a	value	to	be	stored

			708	 //	in	an	empty	interface.		They	are	not	strictly	necessary,

			709	 //	but	they	avoid	the	weight	of	reflection	in	this	common	case.

			710	

			711	 //	valueInterface	is	like	value	but	returns	interface{}

			712	 func	(d	*decodeState)	valueInterface()	interface{}	{

			713	 	 switch	d.scanWhile(scanSkipSpace)	{

			714	 	 default:

			715	 	 	 d.error(errPhase)

			716	 	 case	scanBeginArray:

			717	 	 	 return	d.arrayInterface()

			718	 	 case	scanBeginObject:

			719	 	 	 return	d.objectInterface()

			720	 	 case	scanBeginLiteral:

			721	 	 	 return	d.literalInterface()

			722	 	 }

			723	 	 panic("unreachable")

			724	 }

			725	

			726	 //	arrayInterface	is	like	array	but	returns	[]interface{}.

			727	 func	(d	*decodeState)	arrayInterface()	[]interface{}	{

			728	 	 var	v	[]interface{}

			729	 	 for	{

			730	 	 	 //	Look	ahead	for]	-	can	only	happen	on	first	iteration.

			731	 	 	 op	:=	d.scanWhile(scanSkipSpace)

			732	 	 	 if	op	==	scanEndArray	{

			733	 	 	 	 break

			734	 	 	 }

			735	

			736	 	 	 //	Back	up	so	d.value	can	have	the	byte	we	just	read.

			737	 	 	 d.off--

			738	 	 	 d.scan.undo(op)

			739	

			740	 	 	 v	=	append(v,	d.valueInterface())

			741	

			742	 	 	 //	Next	token	must	be	,	or].

			743	 	 	 op	=	d.scanWhile(scanSkipSpace)

			744	 	 	 if	op	==	scanEndArray	{

			745	 	 	 	 break

			746	 	 	 }

			747	 	 	 if	op	!=	scanArrayValue	{

			748	 	 	 	 d.error(errPhase)

			749	 	 	 }

			750	 	 }

			751	 	 return	v

			752	 }

			753	

			754	 //	objectInterface	is	like	object	but	returns	map[string]interface{}.

			755	 func	(d	*decodeState)	objectInterface()	map[string]interface{}	{

			756	 	 m	:=	make(map[string]interface{})

			757	 	 for	{

			758	 	 	 //	Read	opening	"	of	string	key	or	closing	}.

			759	 	 	 op	:=	d.scanWhile(scanSkipSpace)

			760	 	 	 if	op	==	scanEndObject	{

			761	 	 	 	 //	closing	}	-	can	only	happen	on	first	iteration.

			762	 	 	 	 break

			763	 	 	 }

			764	 	 	 if	op	!=	scanBeginLiteral	{

			765	 	 	 	 d.error(errPhase)

			766	 	 	 }

			767	

			768	 	 	 //	Read	string	key.

			769	 	 	 start	:=	d.off	-	1

			770	 	 	 op	=	d.scanWhile(scanContinue)

			771	 	 	 item	:=	d.data[start	:	d.off-1]

			772	 	 	 key,	ok	:=	unquote(item)

			773	 	 	 if	!ok	{

			774	 	 	 	 d.error(errPhase)

			775	 	 	 }

			776	

			777	 	 	 //	Read	:	before	value.

			778	 	 	 if	op	==	scanSkipSpace	{

			779	 	 	 	 op	=	d.scanWhile(scanSkipSpace)

			780	 	 	 }

			781	 	 	 if	op	!=	scanObjectKey	{

			782	 	 	 	 d.error(errPhase)

			783	 	 	 }

			784	

			785	 	 	 //	Read	value.

			786	 	 	 m[key]	=	d.valueInterface()

			787	

			788	 	 	 //	Next	token	must	be	,	or	}.

			789	 	 	 op	=	d.scanWhile(scanSkipSpace)

			790	 	 	 if	op	==	scanEndObject	{

			791	 	 	 	 break

			792	 	 	 }

			793	 	 	 if	op	!=	scanObjectValue	{

			794	 	 	 	 d.error(errPhase)

			795	 	 	 }

			796	 	 }

			797	 	 return	m

			798	 }

			799	

			800	 //	literalInterface	is	like	literal	but	returns	an	interface	value.

			801	 func	(d	*decodeState)	literalInterface()	interface{}	{

			802	 	 //	All	bytes	inside	literal	return	scanContinue	op	code.

			803	 	 start	:=	d.off	-	1

			804	 	 op	:=	d.scanWhile(scanContinue)

			805	

			806	 	 //	Scan	read	one	byte	too	far;	back	up.

			807	 	 d.off--

			808	 	 d.scan.undo(op)

			809	 	 item	:=	d.data[start:d.off]

			810	

			811	 	 switch	c	:=	item[0];	c	{

			812	 	 case	'n':	//	null

			813	 	 	 return	nil

			814	

			815	 	 case	't',	'f':	//	true,	false

			816	 	 	 return	c	==	't'

			817	

			818	 	 case	'"':	//	string

			819	 	 	 s,	ok	:=	unquote(item)

			820	 	 	 if	!ok	{

			821	 	 	 	 d.error(errPhase)

			822	 	 	 }

			823	 	 	 return	s

			824	

			825	 	 default:	//	number

			826	 	 	 if	c	!=	'-'	&&	(c	<	'0'	||	c	>	'9')	{

			827	 	 	 	 d.error(errPhase)

			828	 	 	 }

			829	 	 	 n,	err	:=	strconv.ParseFloat(string(item),	64)

			830	 	 	 if	err	!=	nil	{

			831	 	 	 	 d.saveError(&UnmarshalTypeError{"number	"	+	string(item),	reflect.TypeOf(0.0)})

			832	 	 	 }

			833	 	 	 return	n

			834	 	 }

			835	 	 panic("unreachable")

			836	 }

			837	

			838	 //	getu4	decodes	\uXXXX	from	the	beginning	of	s,	returning	the	hex	value,

			839	 //	or	it	returns	-1.

			840	 func	getu4(s	[]byte)	rune	{

			841	 	 if	len(s)	<	6	||	s[0]	!=	'\\'	||	s[1]	!=	'u'	{

			842	 	 	 return	-1

			843	 	 }

			844	 	 r,	err	:=	strconv.ParseUint(string(s[2:6]),	16,	64)

			845	 	 if	err	!=	nil	{

			846	 	 	 return	-1

			847	 	 }

			848	 	 return	rune(r)

			849	 }

			850	

			851	 //	unquote	converts	a	quoted	JSON	string	literal	s	into	an	actual	string	t.

			852	 //	The	rules	are	different	than	for	Go,	so	cannot	use	strconv.Unquote.

			853	 func	unquote(s	[]byte)	(t	string,	ok	bool)	{

			854	 	 s,	ok	=	unquoteBytes(s)

			855	 	 t	=	string(s)

			856	 	 return

			857	 }

			858	

			859	 func	unquoteBytes(s	[]byte)	(t	[]byte,	ok	bool)	{

			860	 	 if	len(s)	<	2	||	s[0]	!=	'"'	||	s[len(s)-1]	!=	'"'	{

			861	 	 	 return

			862	 	 }

			863	 	 s	=	s[1	:	len(s)-1]

			864	

			865	 	 //	Check	for	unusual	characters.	If	there	are	none,

			866	 	 //	then	no	unquoting	is	needed,	so	return	a	slice	of	the

			867	 	 //	original	bytes.

			868	 	 r	:=	0

			869	 	 for	r	<	len(s)	{

			870	 	 	 c	:=	s[r]

			871	 	 	 if	c	==	'\\'	||	c	==	'"'	||	c	<	'	'	{

			872	 	 	 	 break

			873	 	 	 }

			874	 	 	 if	c	<	utf8.RuneSelf	{

			875	 	 	 	 r++

			876	 	 	 	 continue

			877	 	 	 }

			878	 	 	 rr,	size	:=	utf8.DecodeRune(s[r:])

			879	 	 	 if	rr	==	utf8.RuneError	&&	size	==	1	{

			880	 	 	 	 break

			881	 	 	 }

			882	 	 	 r	+=	size

			883	 	 }

			884	 	 if	r	==	len(s)	{

			885	 	 	 return	s,	true

			886	 	 }

			887	

			888	 	 b	:=	make([]byte,	len(s)+2*utf8.UTFMax)

			889	 	 w	:=	copy(b,	s[0:r])

			890	 	 for	r	<	len(s)	{

			891	 	 	 //	Out	of	room?		Can	only	happen	if	s	is	full	of

			892	 	 	 //	malformed	UTF-8	and	we're	replacing	each

			893	 	 	 //	byte	with	RuneError.

			894	 	 	 if	w	>=	len(b)-2*utf8.UTFMax	{

			895	 	 	 	 nb	:=	make([]byte,	(len(b)+utf8.UTFMax)*2)

			896	 	 	 	 copy(nb,	b[0:w])

			897	 	 	 	 b	=	nb

			898	 	 	 }

			899	 	 	 switch	c	:=	s[r];	{

			900	 	 	 case	c	==	'\\':

			901	 	 	 	 r++

			902	 	 	 	 if	r	>=	len(s)	{

			903	 	 	 	 	 return

			904	 	 	 	 }

			905	 	 	 	 switch	s[r]	{

			906	 	 	 	 default:

			907	 	 	 	 	 return

			908	 	 	 	 case	'"',	'\\',	'/',	'\'':

			909	 	 	 	 	 b[w]	=	s[r]

			910	 	 	 	 	 r++

			911	 	 	 	 	 w++

			912	 	 	 	 case	'b':

			913	 	 	 	 	 b[w]	=	'\b'

			914	 	 	 	 	 r++

			915	 	 	 	 	 w++

			916	 	 	 	 case	'f':

			917	 	 	 	 	 b[w]	=	'\f'

			918	 	 	 	 	 r++

			919	 	 	 	 	 w++

			920	 	 	 	 case	'n':

			921	 	 	 	 	 b[w]	=	'\n'

			922	 	 	 	 	 r++

			923	 	 	 	 	 w++

			924	 	 	 	 case	'r':

			925	 	 	 	 	 b[w]	=	'\r'

			926	 	 	 	 	 r++

			927	 	 	 	 	 w++

			928	 	 	 	 case	't':

			929	 	 	 	 	 b[w]	=	'\t'

			930	 	 	 	 	 r++

			931	 	 	 	 	 w++

			932	 	 	 	 case	'u':

			933	 	 	 	 	 r--

			934	 	 	 	 	 rr	:=	getu4(s[r:])

			935	 	 	 	 	 if	rr	<	0	{

			936	 	 	 	 	 	 return

			937	 	 	 	 	 }

			938	 	 	 	 	 r	+=	6

			939	 	 	 	 	 if	utf16.IsSurrogate(rr)	{

			940	 	 	 	 	 	 rr1	:=	getu4(s[r:])

			941	 	 	 	 	 	 if	dec	:=	utf16.DecodeRune(rr,	rr1);	dec	!=	unicode.ReplacementChar	{

			942	 	 	 	 	 	 	 //	A	valid	pair;	consume.

			943	 	 	 	 	 	 	 r	+=	6

			944	 	 	 	 	 	 	 w	+=	utf8.EncodeRune(b[w:],	dec)

			945	 	 	 	 	 	 	 break

			946	 	 	 	 	 	 }

			947	 	 	 	 	 	 //	Invalid	surrogate;	fall	back	to	replacement	rune.

			948	 	 	 	 	 	 rr	=	unicode.ReplacementChar

			949	 	 	 	 	 }

			950	 	 	 	 	 w	+=	utf8.EncodeRune(b[w:],	rr)

			951	 	 	 	 }

			952	

			953	 	 	 //	Quote,	control	characters	are	invalid.

			954	 	 	 case	c	==	'"',	c	<	'	':

			955	 	 	 	 return

			956	

			957	 	 	 //	ASCII

			958	 	 	 case	c	<	utf8.RuneSelf:

			959	 	 	 	 b[w]	=	c

			960	 	 	 	 r++

			961	 	 	 	 w++

			962	

			963	 	 	 //	Coerce	to	well-formed	UTF-8.

			964	 	 	 default:

			965	 	 	 	 rr,	size	:=	utf8.DecodeRune(s[r:])

			966	 	 	 	 r	+=	size

			967	 	 	 	 w	+=	utf8.EncodeRune(b[w:],	rr)

			968	 	 	 }

			969	 	 }

			970	 	 return	b[0:w],	true

			971	 }

			972	

			973	 //	The	following	is	issue	3069.

			974	

			975	 //	BUG(rsc):	This	package	ignores	anonymous	(embedded)	struct	fields

			976	 //	during	encoding	and	decoding.		A	future	version	may	assign	meaning

			977	 //	to	them.		To	force	an	anonymous	field	to	be	ignored	in	all	future

			978	 //	versions	of	this	package,	use	an	explicit	`json:"-"`	tag	in	the	struct

			979	 //	definition.

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/json/encode.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	json	implements	encoding	and	decoding	of	JSON	objects	as	defined	in

					6	 //	RFC	4627.

					7	 //

					8	 //	See	"JSON	and	Go"	for	an	introduction	to	this	package:

					9	 //	http://golang.org/doc/articles/json_and_go.html

				10	 package	json

				11	

				12	 import	(

				13	 	 "bytes"

				14	 	 "encoding/base64"

				15	 	 "math"

				16	 	 "reflect"

				17	 	 "runtime"

				18	 	 "sort"

				19	 	 "strconv"

				20	 	 "strings"

				21	 	 "sync"

				22	 	 "unicode"

				23	 	 "unicode/utf8"

				24)

				25	

				26	 //	Marshal	returns	the	JSON	encoding	of	v.

				27	 //

				28	 //	Marshal	traverses	the	value	v	recursively.

				29	 //	If	an	encountered	value	implements	the	Marshaler	interface

				30	 //	and	is	not	a	nil	pointer,	Marshal	calls	its	MarshalJSON	method

				31	 //	to	produce	JSON.		The	nil	pointer	exception	is	not	strictly	necessary

				32	 //	but	mimics	a	similar,	necessary	exception	in	the	behavior	of

				33	 //	UnmarshalJSON.

				34	 //

				35	 //	Otherwise,	Marshal	uses	the	following	type-dependent	default	encodings:

				36	 //

				37	 //	Boolean	values	encode	as	JSON	booleans.

				38	 //

				39	 //	Floating	point	and	integer	values	encode	as	JSON	numbers.

				40	 //

				41	 //	String	values	encode	as	JSON	strings,	with	each	invalid	UTF-8	sequence

				42	 //	replaced	by	the	encoding	of	the	Unicode	replacement	character	U+FFFD.

				43	 //	The	angle	brackets	"<"	and	">"	are	escaped	to	"\u003c"	and	"\u003e"

				44	 //	to	keep	some	browsers	from	misinterpreting	JSON	output	as	HTML.

				45	 //

				46	 //	Array	and	slice	values	encode	as	JSON	arrays,	except	that

				47	 //	[]byte	encodes	as	a	base64-encoded	string,	and	a	nil	slice

				48	 //	encodes	as	the	null	JSON	object.

				49	 //

				50	 //	Struct	values	encode	as	JSON	objects.	Each	exported	struct	field

				51	 //	becomes	a	member	of	the	object	unless

				52	 //			-	the	field's	tag	is	"-",	or

				53	 //			-	the	field	is	empty	and	its	tag	specifies	the	"omitempty"	option.

				54	 //	The	empty	values	are	false,	0,	any

				55	 //	nil	pointer	or	interface	value,	and	any	array,	slice,	map,	or	string	of

				56	 //	length	zero.	The	object's	default	key	string	is	the	struct	field	name

				57	 //	but	can	be	specified	in	the	struct	field's	tag	value.	The	"json"	key	in

				58	 //	struct	field's	tag	value	is	the	key	name,	followed	by	an	optional	comma

				59	 //	and	options.	Examples:

				60	 //

				61	 //			//	Field	is	ignored	by	this	package.

				62	 //			Field	int	`json:"-"`

				63	 //

				64	 //			//	Field	appears	in	JSON	as	key	"myName".

				65	 //			Field	int	`json:"myName"`

				66	 //

				67	 //			//	Field	appears	in	JSON	as	key	"myName"	and

				68	 //			//	the	field	is	omitted	from	the	object	if	its	value	is	empty,

				69	 //			//	as	defined	above.

				70	 //			Field	int	`json:"myName,omitempty"`

				71	 //

				72	 //			//	Field	appears	in	JSON	as	key	"Field"	(the	default),	but

				73	 //			//	the	field	is	skipped	if	empty.

				74	 //			//	Note	the	leading	comma.

				75	 //			Field	int	`json:",omitempty"`

				76	 //

				77	 //	The	"string"	option	signals	that	a	field	is	stored	as	JSON	inside	a

				78	 //	JSON-encoded	string.		This	extra	level	of	encoding	is	sometimes

				79	 //	used	when	communicating	with	JavaScript	programs:

				80	 //

				81	 //				Int64String	int64	`json:",string"`

				82	 //

				83	 //	The	key	name	will	be	used	if	it's	a	non-empty	string	consisting	of

				84	 //	only	Unicode	letters,	digits,	dollar	signs,	percent	signs,	hyphens,

				85	 //	underscores	and	slashes.

				86	 //

				87	 //	Map	values	encode	as	JSON	objects.

				88	 //	The	map's	key	type	must	be	string;	the	object	keys	are	used	directly

				89	 //	as	map	keys.

				90	 //

				91	 //	Pointer	values	encode	as	the	value	pointed	to.

				92	 //	A	nil	pointer	encodes	as	the	null	JSON	object.

				93	 //

				94	 //	Interface	values	encode	as	the	value	contained	in	the	interface.

				95	 //	A	nil	interface	value	encodes	as	the	null	JSON	object.

				96	 //

				97	 //	Channel,	complex,	and	function	values	cannot	be	encoded	in	JSON.

				98	 //	Attempting	to	encode	such	a	value	causes	Marshal	to	return

				99	 //	an	InvalidTypeError.

			100	 //

			101	 //	JSON	cannot	represent	cyclic	data	structures	and	Marshal	does	not

			102	 //	handle	them.		Passing	cyclic	structures	to	Marshal	will	result	in

			103	 //	an	infinite	recursion.

			104	 //

			105	 func	Marshal(v	interface{})	([]byte,	error)	{

			106	 	 e	:=	&encodeState{}

			107	 	 err	:=	e.marshal(v)

			108	 	 if	err	!=	nil	{

			109	 	 	 return	nil,	err

			110	 	 }

			111	 	 return	e.Bytes(),	nil

			112	 }

			113	

			114	 //	MarshalIndent	is	like	Marshal	but	applies	Indent	to	format	the	output.

			115	 func	MarshalIndent(v	interface{},	prefix,	indent	string)	([]byte,	error)	{

			116	 	 b,	err	:=	Marshal(v)

			117	 	 if	err	!=	nil	{

			118	 	 	 return	nil,	err

			119	 	 }

			120	 	 var	buf	bytes.Buffer

			121	 	 err	=	Indent(&buf,	b,	prefix,	indent)

			122	 	 if	err	!=	nil	{

			123	 	 	 return	nil,	err

			124	 	 }

			125	 	 return	buf.Bytes(),	nil

			126	 }

			127	

			128	 //	HTMLEscape	appends	to	dst	the	JSON-encoded	src	with	<,	>,	and	&

			129	 //	characters	inside	string	literals	changed	to	\u003c,	\u003e,	\u0026

			130	 //	so	that	the	JSON	will	be	safe	to	embed	inside	HTML	<script>	tags.

			131	 //	For	historical	reasons,	web	browsers	don't	honor	standard	HTML

			132	 //	escaping	within	<script>	tags,	so	an	alternative	JSON	encoding	must

			133	 //	be	used.

			134	 func	HTMLEscape(dst	*bytes.Buffer,	src	[]byte)	{

			135	 	 //	<	>	&	can	only	appear	in	string	literals,

			136	 	 //	so	just	scan	the	string	one	byte	at	a	time.

			137	 	 start	:=	0

			138	 	 for	i,	c	:=	range	src	{

			139	 	 	 if	c	==	'<'	||	c	==	'>'	||	c	==	'&'	{

			140	 	 	 	 if	start	<	i	{

			141	 	 	 	 	 dst.Write(src[start:i])

			142	 	 	 	 }

			143	 	 	 	 dst.WriteString(`\u00`)

			144	 	 	 	 dst.WriteByte(hex[c>>4])

			145	 	 	 	 dst.WriteByte(hex[c&0xF])

			146	 	 	 	 start	=	i	+	1

			147	 	 	 }

			148	 	 }

			149	 	 if	start	<	len(src)	{

			150	 	 	 dst.Write(src[start:])

			151	 	 }

			152	 }

			153	

			154	 //	Marshaler	is	the	interface	implemented	by	objects	that

			155	 //	can	marshal	themselves	into	valid	JSON.

			156	 type	Marshaler	interface	{

			157	 	 MarshalJSON()	([]byte,	error)

			158	 }

			159	

			160	 type	UnsupportedTypeError	struct	{

			161	 	 Type	reflect.Type

			162	 }

			163	

			164	 func	(e	*UnsupportedTypeError)	Error()	string	{

			165	 	 return	"json:	unsupported	type:	"	+	e.Type.String()

			166	 }

			167	

			168	 type	UnsupportedValueError	struct	{

			169	 	 Value	reflect.Value

			170	 	 Str			string

			171	 }

			172	

			173	 func	(e	*UnsupportedValueError)	Error()	string	{

			174	 	 return	"json:	unsupported	value:	"	+	e.Str

			175	 }

			176	

			177	 type	InvalidUTF8Error	struct	{

			178	 	 S	string

			179	 }

			180	

			181	 func	(e	*InvalidUTF8Error)	Error()	string	{

			182	 	 return	"json:	invalid	UTF-8	in	string:	"	+	strconv.Quote(e.S)

			183	 }

			184	

			185	 type	MarshalerError	struct	{

			186	 	 Type	reflect.Type

			187	 	 Err		error

			188	 }

			189	

			190	 func	(e	*MarshalerError)	Error()	string	{

			191	 	 return	"json:	error	calling	MarshalJSON	for	type	"	+	e.Type.String()	+	":	"	+	e.Err.Error()

			192	 }

			193	

			194	 var	hex	=	"0123456789abcdef"

			195	

			196	 //	An	encodeState	encodes	JSON	into	a	bytes.Buffer.

			197	 type	encodeState	struct	{

			198	 	 bytes.Buffer	//	accumulated	output

			199	 	 scratch						[64]byte

			200	 }

			201	

			202	 func	(e	*encodeState)	marshal(v	interface{})	(err	error)	{

			203	 	 defer	func()	{

			204	 	 	 if	r	:=	recover();	r	!=	nil	{

			205	 	 	 	 if	_,	ok	:=	r.(runtime.Error);	ok	{

			206	 	 	 	 	 panic(r)

			207	 	 	 	 }

			208	 	 	 	 err	=	r.(error)

			209	 	 	 }

			210	 	 }()

			211	 	 e.reflectValue(reflect.ValueOf(v))

			212	 	 return	nil

			213	 }

			214	

			215	 func	(e	*encodeState)	error(err	error)	{

			216	 	 panic(err)

			217	 }

			218	

			219	 var	byteSliceType	=	reflect.TypeOf([]byte(nil))

			220	

			221	 func	isEmptyValue(v	reflect.Value)	bool	{

			222	 	 switch	v.Kind()	{

			223	 	 case	reflect.Array,	reflect.Map,	reflect.Slice,	reflect.String:

			224	 	 	 return	v.Len()	==	0

			225	 	 case	reflect.Bool:

			226	 	 	 return	!v.Bool()

			227	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			228	 	 	 return	v.Int()	==	0

			229	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

			230	 	 	 return	v.Uint()	==	0

			231	 	 case	reflect.Float32,	reflect.Float64:

			232	 	 	 return	v.Float()	==	0

			233	 	 case	reflect.Interface,	reflect.Ptr:

			234	 	 	 return	v.IsNil()

			235	 	 }

			236	 	 return	false

			237	 }

			238	

			239	 func	(e	*encodeState)	reflectValue(v	reflect.Value)	{

			240	 	 e.reflectValueQuoted(v,	false)

			241	 }

			242	

			243	 //	reflectValueQuoted	writes	the	value	in	v	to	the	output.

			244	 //	If	quoted	is	true,	the	serialization	is	wrapped	in	a	JSON	string.

			245	 func	(e	*encodeState)	reflectValueQuoted(v	reflect.Value,	quoted	bool)	{

			246	 	 if	!v.IsValid()	{

			247	 	 	 e.WriteString("null")

			248	 	 	 return

			249	 	 }

			250	

			251	 	 m,	ok	:=	v.Interface().(Marshaler)

			252	 	 if	!ok	{

			253	 	 	 //	T	doesn't	match	the	interface.	Check	against	*T	too.

			254	 	 	 if	v.Kind()	!=	reflect.Ptr	&&	v.CanAddr()	{

			255	 	 	 	 m,	ok	=	v.Addr().Interface().(Marshaler)

			256	 	 	 	 if	ok	{

			257	 	 	 	 	 v	=	v.Addr()

			258	 	 	 	 }

			259	 	 	 }

			260	 	 }

			261	 	 if	ok	&&	(v.Kind()	!=	reflect.Ptr	||	!v.IsNil())	{

			262	 	 	 b,	err	:=	m.MarshalJSON()

			263	 	 	 if	err	==	nil	{

			264	 	 	 	 //	copy	JSON	into	buffer,	checking	validity.

			265	 	 	 	 err	=	compact(&e.Buffer,	b,	true)

			266	 	 	 }

			267	 	 	 if	err	!=	nil	{

			268	 	 	 	 e.error(&MarshalerError{v.Type(),	err})

			269	 	 	 }

			270	 	 	 return

			271	 	 }

			272	

			273	 	 writeString	:=	(*encodeState).WriteString

			274	 	 if	quoted	{

			275	 	 	 writeString	=	(*encodeState).string

			276	 	 }

			277	

			278	 	 switch	v.Kind()	{

			279	 	 case	reflect.Bool:

			280	 	 	 x	:=	v.Bool()

			281	 	 	 if	x	{

			282	 	 	 	 writeString(e,	"true")

			283	 	 	 }	else	{

			284	 	 	 	 writeString(e,	"false")

			285	 	 	 }

			286	

			287	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			288	 	 	 b	:=	strconv.AppendInt(e.scratch[:0],	v.Int(),	10)

			289	 	 	 if	quoted	{

			290	 	 	 	 writeString(e,	string(b))

			291	 	 	 }	else	{

			292	 	 	 	 e.Write(b)

			293	 	 	 }

			294	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

			295	 	 	 b	:=	strconv.AppendUint(e.scratch[:0],	v.Uint(),	10)

			296	 	 	 if	quoted	{

			297	 	 	 	 writeString(e,	string(b))

			298	 	 	 }	else	{

			299	 	 	 	 e.Write(b)

			300	 	 	 }

			301	 	 case	reflect.Float32,	reflect.Float64:

			302	 	 	 f	:=	v.Float()

			303	 	 	 if	math.IsInf(f,	0)	||	math.IsNaN(f)	{

			304	 	 	 	 e.error(&UnsupportedValueError{v,	strconv.FormatFloat(f,	'g',	-1,	v.Type().Bits())})

			305	 	 	 }

			306	 	 	 b	:=	strconv.AppendFloat(e.scratch[:0],	f,	'g',	-1,	v.Type().Bits())

			307	 	 	 if	quoted	{

			308	 	 	 	 writeString(e,	string(b))

			309	 	 	 }	else	{

			310	 	 	 	 e.Write(b)

			311	 	 	 }

			312	 	 case	reflect.String:

			313	 	 	 if	quoted	{

			314	 	 	 	 sb,	err	:=	Marshal(v.String())

			315	 	 	 	 if	err	!=	nil	{

			316	 	 	 	 	 e.error(err)

			317	 	 	 	 }

			318	 	 	 	 e.string(string(sb))

			319	 	 	 }	else	{

			320	 	 	 	 e.string(v.String())

			321	 	 	 }

			322	

			323	 	 case	reflect.Struct:

			324	 	 	 e.WriteByte('{')

			325	 	 	 first	:=	true

			326	 	 	 for	_,	ef	:=	range	encodeFields(v.Type())	{

			327	 	 	 	 fieldValue	:=	v.Field(ef.i)

			328	 	 	 	 if	ef.omitEmpty	&&	isEmptyValue(fieldValue)	{

			329	 	 	 	 	 continue

			330	 	 	 	 }

			331	 	 	 	 if	first	{

			332	 	 	 	 	 first	=	false

			333	 	 	 	 }	else	{

			334	 	 	 	 	 e.WriteByte(',')

			335	 	 	 	 }

			336	 	 	 	 e.string(ef.tag)

			337	 	 	 	 e.WriteByte(':')

			338	 	 	 	 e.reflectValueQuoted(fieldValue,	ef.quoted)

			339	 	 	 }

			340	 	 	 e.WriteByte('}')

			341	

			342	 	 case	reflect.Map:

			343	 	 	 if	v.Type().Key().Kind()	!=	reflect.String	{

			344	 	 	 	 e.error(&UnsupportedTypeError{v.Type()})

			345	 	 	 }

			346	 	 	 if	v.IsNil()	{

			347	 	 	 	 e.WriteString("null")

			348	 	 	 	 break

			349	 	 	 }

			350	 	 	 e.WriteByte('{')

			351	 	 	 var	sv	stringValues	=	v.MapKeys()

			352	 	 	 sort.Sort(sv)

			353	 	 	 for	i,	k	:=	range	sv	{

			354	 	 	 	 if	i	>	0	{

			355	 	 	 	 	 e.WriteByte(',')

			356	 	 	 	 }

			357	 	 	 	 e.string(k.String())

			358	 	 	 	 e.WriteByte(':')

			359	 	 	 	 e.reflectValue(v.MapIndex(k))

			360	 	 	 }

			361	 	 	 e.WriteByte('}')

			362	

			363	 	 case	reflect.Slice:

			364	 	 	 if	v.IsNil()	{

			365	 	 	 	 e.WriteString("null")

			366	 	 	 	 break

			367	 	 	 }

			368	 	 	 if	v.Type().Elem().Kind()	==	reflect.Uint8	{

			369	 	 	 	 //	Byte	slices	get	special	treatment;	arrays	don't.

			370	 	 	 	 s	:=	v.Bytes()

			371	 	 	 	 e.WriteByte('"')

			372	 	 	 	 if	len(s)	<	1024	{

			373	 	 	 	 	 //	for	small	buffers,	using	Encode	directly	is	much	faster.

			374	 	 	 	 	 dst	:=	make([]byte,	base64.StdEncoding.EncodedLen(len(s)))

			375	 	 	 	 	 base64.StdEncoding.Encode(dst,	s)

			376	 	 	 	 	 e.Write(dst)

			377	 	 	 	 }	else	{

			378	 	 	 	 	 //	for	large	buffers,	avoid	unnecessary	extra	temporary

			379	 	 	 	 	 //	buffer	space.

			380	 	 	 	 	 enc	:=	base64.NewEncoder(base64.StdEncoding,	e)

			381	 	 	 	 	 enc.Write(s)

			382	 	 	 	 	 enc.Close()

			383	 	 	 	 }

			384	 	 	 	 e.WriteByte('"')

			385	 	 	 	 break

			386	 	 	 }

			387	 	 	 //	Slices	can	be	marshalled	as	nil,	but	otherwise	are	handled

			388	 	 	 //	as	arrays.

			389	 	 	 fallthrough

			390	 	 case	reflect.Array:

			391	 	 	 e.WriteByte('[')

			392	 	 	 n	:=	v.Len()

			393	 	 	 for	i	:=	0;	i	<	n;	i++	{

			394	 	 	 	 if	i	>	0	{

			395	 	 	 	 	 e.WriteByte(',')

			396	 	 	 	 }

			397	 	 	 	 e.reflectValue(v.Index(i))

			398	 	 	 }

			399	 	 	 e.WriteByte(']')

			400	

			401	 	 case	reflect.Interface,	reflect.Ptr:

			402	 	 	 if	v.IsNil()	{

			403	 	 	 	 e.WriteString("null")

			404	 	 	 	 return

			405	 	 	 }

			406	 	 	 e.reflectValue(v.Elem())

			407	

			408	 	 default:

			409	 	 	 e.error(&UnsupportedTypeError{v.Type()})

			410	 	 }

			411	 	 return

			412	 }

			413	

			414	 func	isValidTag(s	string)	bool	{

			415	 	 if	s	==	""	{

			416	 	 	 return	false

			417	 	 }

			418	 	 for	_,	c	:=	range	s	{

			419	 	 	 switch	{

			420	 	 	 case	strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~",	c):

			421	 	 	 	 //	Backslash	and	quote	chars	are	reserved,	but

			422	 	 	 	 //	otherwise	any	punctuation	chars	are	allowed

			423	 	 	 	 //	in	a	tag	name.

			424	 	 	 default:

			425	 	 	 	 if	!unicode.IsLetter(c)	&&	!unicode.IsDigit(c)	{

			426	 	 	 	 	 return	false

			427	 	 	 	 }

			428	 	 	 }

			429	 	 }

			430	 	 return	true

			431	 }

			432	

			433	 //	stringValues	is	a	slice	of	reflect.Value	holding	*reflect.StringValue.

			434	 //	It	implements	the	methods	to	sort	by	string.

			435	 type	stringValues	[]reflect.Value

			436	

			437	 func	(sv	stringValues)	Len()	int											{	return	len(sv)	}

			438	 func	(sv	stringValues)	Swap(i,	j	int)						{	sv[i],	sv[j]	=	sv[j],	sv[i]	}

			439	 func	(sv	stringValues)	Less(i,	j	int)	bool	{	return	sv.get(i)	<	sv.get(j)	}

			440	 func	(sv	stringValues)	get(i	int)	string			{	return	sv[i].String()	}

			441	

			442	 func	(e	*encodeState)	string(s	string)	(int,	error)	{

			443	 	 len0	:=	e.Len()

			444	 	 e.WriteByte('"')

			445	 	 start	:=	0

			446	 	 for	i	:=	0;	i	<	len(s);	{

			447	 	 	 if	b	:=	s[i];	b	<	utf8.RuneSelf	{

			448	 	 	 	 if	0x20	<=	b	&&	b	!=	'\\'	&&	b	!=	'"'	&&	b	!=	'<'	&&	b	!=	'>'	{

			449	 	 	 	 	 i++

			450	 	 	 	 	 continue

			451	 	 	 	 }

			452	 	 	 	 if	start	<	i	{

			453	 	 	 	 	 e.WriteString(s[start:i])

			454	 	 	 	 }

			455	 	 	 	 switch	b	{

			456	 	 	 	 case	'\\',	'"':

			457	 	 	 	 	 e.WriteByte('\\')

			458	 	 	 	 	 e.WriteByte(b)

			459	 	 	 	 case	'\n':

			460	 	 	 	 	 e.WriteByte('\\')

			461	 	 	 	 	 e.WriteByte('n')

			462	 	 	 	 case	'\r':

			463	 	 	 	 	 e.WriteByte('\\')

			464	 	 	 	 	 e.WriteByte('r')

			465	 	 	 	 default:

			466	 	 	 	 	 //	This	encodes	bytes	<	0x20	except	for	\n	and	\r,

			467	 	 	 	 	 //	as	well	as	<	and	>.	The	latter	are	escaped	because	they

			468	 	 	 	 	 //	can	lead	to	security	holes	when	user-controlled	strings

			469	 	 	 	 	 //	are	rendered	into	JSON	and	served	to	some	browsers.

			470	 	 	 	 	 e.WriteString(`\u00`)

			471	 	 	 	 	 e.WriteByte(hex[b>>4])

			472	 	 	 	 	 e.WriteByte(hex[b&0xF])

			473	 	 	 	 }

			474	 	 	 	 i++

			475	 	 	 	 start	=	i

			476	 	 	 	 continue

			477	 	 	 }

			478	 	 	 c,	size	:=	utf8.DecodeRuneInString(s[i:])

			479	 	 	 if	c	==	utf8.RuneError	&&	size	==	1	{

			480	 	 	 	 e.error(&InvalidUTF8Error{s})

			481	 	 	 }

			482	 	 	 i	+=	size

			483	 	 }

			484	 	 if	start	<	len(s)	{

			485	 	 	 e.WriteString(s[start:])

			486	 	 }

			487	 	 e.WriteByte('"')

			488	 	 return	e.Len()	-	len0,	nil

			489	 }

			490	

			491	 //	encodeField	contains	information	about	how	to	encode	a	field	of	a

			492	 //	struct.

			493	 type	encodeField	struct	{

			494	 	 i									int	//	field	index	in	struct

			495	 	 tag							string

			496	 	 quoted				bool

			497	 	 omitEmpty	bool

			498	 }

			499	

			500	 var	(

			501	 	 typeCacheLock					sync.RWMutex

			502	 	 encodeFieldsCache	=	make(map[reflect.Type][]encodeField)

			503)

			504	

			505	 //	encodeFields	returns	a	slice	of	encodeField	for	a	given

			506	 //	struct	type.

			507	 func	encodeFields(t	reflect.Type)	[]encodeField	{

			508	 	 typeCacheLock.RLock()

			509	 	 fs,	ok	:=	encodeFieldsCache[t]

			510	 	 typeCacheLock.RUnlock()

			511	 	 if	ok	{

			512	 	 	 return	fs

			513	 	 }

			514	

			515	 	 typeCacheLock.Lock()

			516	 	 defer	typeCacheLock.Unlock()

			517	 	 fs,	ok	=	encodeFieldsCache[t]

			518	 	 if	ok	{

			519	 	 	 return	fs

			520	 	 }

			521	

			522	 	 v	:=	reflect.Zero(t)

			523	 	 n	:=	v.NumField()

			524	 	 for	i	:=	0;	i	<	n;	i++	{

			525	 	 	 f	:=	t.Field(i)

			526	 	 	 if	f.PkgPath	!=	""	{

			527	 	 	 	 continue

			528	 	 	 }

			529	 	 	 if	f.Anonymous	{

			530	 	 	 	 //	We	want	to	do	a	better	job	with	these	later,

			531	 	 	 	 //	so	for	now	pretend	they	don't	exist.

			532	 	 	 	 continue

			533	 	 	 }

			534	 	 	 var	ef	encodeField

			535	 	 	 ef.i	=	i

			536	 	 	 ef.tag	=	f.Name

			537	

			538	 	 	 tv	:=	f.Tag.Get("json")

			539	 	 	 if	tv	!=	""	{

			540	 	 	 	 if	tv	==	"-"	{

			541	 	 	 	 	 continue

			542	 	 	 	 }

			543	 	 	 	 name,	opts	:=	parseTag(tv)

			544	 	 	 	 if	isValidTag(name)	{

			545	 	 	 	 	 ef.tag	=	name

			546	 	 	 	 }

			547	 	 	 	 ef.omitEmpty	=	opts.Contains("omitempty")

			548	 	 	 	 ef.quoted	=	opts.Contains("string")

			549	 	 	 }

			550	 	 	 fs	=	append(fs,	ef)

			551	 	 }

			552	 	 encodeFieldsCache[t]	=	fs

			553	 	 return	fs

			554	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/json/indent.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	json

					6	

					7	 import	"bytes"

					8	

					9	 //	Compact	appends	to	dst	the	JSON-encoded	src	with

				10	 //	insignificant	space	characters	elided.

				11	 func	Compact(dst	*bytes.Buffer,	src	[]byte)	error	{

				12	 	 return	compact(dst,	src,	false)

				13	 }

				14	

				15	 func	compact(dst	*bytes.Buffer,	src	[]byte,	escape	bool)	error	{

				16	 	 origLen	:=	dst.Len()

				17	 	 var	scan	scanner

				18	 	 scan.reset()

				19	 	 start	:=	0

				20	 	 for	i,	c	:=	range	src	{

				21	 	 	 if	escape	&&	(c	==	'<'	||	c	==	'>'	||	c	==	'&')	{

				22	 	 	 	 if	start	<	i	{

				23	 	 	 	 	 dst.Write(src[start:i])

				24	 	 	 	 }

				25	 	 	 	 dst.WriteString(`\u00`)

				26	 	 	 	 dst.WriteByte(hex[c>>4])

				27	 	 	 	 dst.WriteByte(hex[c&0xF])

				28	 	 	 	 start	=	i	+	1

				29	 	 	 }

				30	 	 	 v	:=	scan.step(&scan,	int(c))

				31	 	 	 if	v	>=	scanSkipSpace	{

				32	 	 	 	 if	v	==	scanError	{

				33	 	 	 	 	 break

				34	 	 	 	 }

				35	 	 	 	 if	start	<	i	{

				36	 	 	 	 	 dst.Write(src[start:i])

				37	 	 	 	 }

				38	 	 	 	 start	=	i	+	1

				39	 	 	 }

				40	 	 }

				41	 	 if	scan.eof()	==	scanError	{

				42	 	 	 dst.Truncate(origLen)

				43	 	 	 return	scan.err

				44	 	 }

				45	 	 if	start	<	len(src)	{

				46	 	 	 dst.Write(src[start:])

				47	 	 }

				48	 	 return	nil

				49	 }

				50	

				51	 func	newline(dst	*bytes.Buffer,	prefix,	indent	string,	depth	int)	{

				52	 	 dst.WriteByte('\n')

				53	 	 dst.WriteString(prefix)

				54	 	 for	i	:=	0;	i	<	depth;	i++	{

				55	 	 	 dst.WriteString(indent)

				56	 	 }

				57	 }

				58	

				59	 //	Indent	appends	to	dst	an	indented	form	of	the	JSON-encoded	src.

				60	 //	Each	element	in	a	JSON	object	or	array	begins	on	a	new,

				61	 //	indented	line	beginning	with	prefix	followed	by	one	or	more

				62	 //	copies	of	indent	according	to	the	indentation	nesting.

				63	 //	The	data	appended	to	dst	has	no	trailing	newline,	to	make	it	easier

				64	 //	to	embed	inside	other	formatted	JSON	data.

				65	 func	Indent(dst	*bytes.Buffer,	src	[]byte,	prefix,	indent	string)	error	{

				66	 	 origLen	:=	dst.Len()

				67	 	 var	scan	scanner

				68	 	 scan.reset()

				69	 	 needIndent	:=	false

				70	 	 depth	:=	0

				71	 	 for	_,	c	:=	range	src	{

				72	 	 	 scan.bytes++

				73	 	 	 v	:=	scan.step(&scan,	int(c))

				74	 	 	 if	v	==	scanSkipSpace	{

				75	 	 	 	 continue

				76	 	 	 }

				77	 	 	 if	v	==	scanError	{

				78	 	 	 	 break

				79	 	 	 }

				80	 	 	 if	needIndent	&&	v	!=	scanEndObject	&&	v	!=	scanEndArray	{

				81	 	 	 	 needIndent	=	false

				82	 	 	 	 depth++

				83	 	 	 	 newline(dst,	prefix,	indent,	depth)

				84	 	 	 }

				85	

				86	 	 	 //	Emit	semantically	uninteresting	bytes

				87	 	 	 //	(in	particular,	punctuation	in	strings)	unmodified.

				88	 	 	 if	v	==	scanContinue	{

				89	 	 	 	 dst.WriteByte(c)

				90	 	 	 	 continue

				91	 	 	 }

				92	

				93	 	 	 //	Add	spacing	around	real	punctuation.

				94	 	 	 switch	c	{

				95	 	 	 case	'{',	'[':

				96	 	 	 	 //	delay	indent	so	that	empty	object	and	array	are	formatted	as	{}	and	[].

				97	 	 	 	 needIndent	=	true

				98	 	 	 	 dst.WriteByte(c)

				99	

			100	 	 	 case	',':

			101	 	 	 	 dst.WriteByte(c)

			102	 	 	 	 newline(dst,	prefix,	indent,	depth)

			103	

			104	 	 	 case	':':

			105	 	 	 	 dst.WriteByte(c)

			106	 	 	 	 dst.WriteByte('	')

			107	

			108	 	 	 case	'}',	']':

			109	 	 	 	 if	needIndent	{

			110	 	 	 	 	 //	suppress	indent	in	empty	object/array

			111	 	 	 	 	 needIndent	=	false

			112	 	 	 	 }	else	{

			113	 	 	 	 	 depth--

			114	 	 	 	 	 newline(dst,	prefix,	indent,	depth)

			115	 	 	 	 }

			116	 	 	 	 dst.WriteByte(c)

			117	

			118	 	 	 default:

			119	 	 	 	 dst.WriteByte(c)

			120	 	 	 }

			121	 	 }

			122	 	 if	scan.eof()	==	scanError	{

			123	 	 	 dst.Truncate(origLen)

			124	 	 	 return	scan.err

			125	 	 }

			126	 	 return	nil

			127	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/json/scanner.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	json

					6	

					7	 //	JSON	value	parser	state	machine.

					8	 //	Just	about	at	the	limit	of	what	is	reasonable	to	write	by	hand.

					9	 //	Some	parts	are	a	bit	tedious,	but	overall	it	nicely	factors	out	the

				10	 //	otherwise	common	code	from	the	multiple	scanning	functions

				11	 //	in	this	package	(Compact,	Indent,	checkValid,	nextValue,	etc).

				12	 //

				13	 //	This	file	starts	with	two	simple	examples	using	the	scanner

				14	 //	before	diving	into	the	scanner	itself.

				15	

				16	 import	"strconv"

				17	

				18	 //	checkValid	verifies	that	data	is	valid	JSON-encoded	data.

				19	 //	scan	is	passed	in	for	use	by	checkValid	to	avoid	an	allocation.

				20	 func	checkValid(data	[]byte,	scan	*scanner)	error	{

				21	 	 scan.reset()

				22	 	 for	_,	c	:=	range	data	{

				23	 	 	 scan.bytes++

				24	 	 	 if	scan.step(scan,	int(c))	==	scanError	{

				25	 	 	 	 return	scan.err

				26	 	 	 }

				27	 	 }

				28	 	 if	scan.eof()	==	scanError	{

				29	 	 	 return	scan.err

				30	 	 }

				31	 	 return	nil

				32	 }

				33	

				34	 //	nextValue	splits	data	after	the	next	whole	JSON	value,

				35	 //	returning	that	value	and	the	bytes	that	follow	it	as	separate	slices.

				36	 //	scan	is	passed	in	for	use	by	nextValue	to	avoid	an	allocation.

				37	 func	nextValue(data	[]byte,	scan	*scanner)	(value,	rest	[]byte,	err	error)	{

				38	 	 scan.reset()

				39	 	 for	i,	c	:=	range	data	{

				40	 	 	 v	:=	scan.step(scan,	int(c))

				41	 	 	 if	v	>=	scanEnd	{

				42	 	 	 	 switch	v	{

				43	 	 	 	 case	scanError:

				44	 	 	 	 	 return	nil,	nil,	scan.err

				45	 	 	 	 case	scanEnd:

				46	 	 	 	 	 return	data[0:i],	data[i:],	nil

				47	 	 	 	 }

				48	 	 	 }

				49	 	 }

				50	 	 if	scan.eof()	==	scanError	{

				51	 	 	 return	nil,	nil,	scan.err

				52	 	 }

				53	 	 return	data,	nil,	nil

				54	 }

				55	

				56	 //	A	SyntaxError	is	a	description	of	a	JSON	syntax	error.

				57	 type	SyntaxError	struct	{

				58	 	 msg				string	//	description	of	error

				59	 	 Offset	int64		//	error	occurred	after	reading	Offset	bytes

				60	 }

				61	

				62	 func	(e	*SyntaxError)	Error()	string	{	return	e.msg	}

				63	

				64	 //	A	scanner	is	a	JSON	scanning	state	machine.

				65	 //	Callers	call	scan.reset()	and	then	pass	bytes	in	one	at	a	time

				66	 //	by	calling	scan.step(&scan,	c)	for	each	byte.

				67	 //	The	return	value,	referred	to	as	an	opcode,	tells	the

				68	 //	caller	about	significant	parsing	events	like	beginning

				69	 //	and	ending	literals,	objects,	and	arrays,	so	that	the

				70	 //	caller	can	follow	along	if	it	wishes.

				71	 //	The	return	value	scanEnd	indicates	that	a	single	top-level

				72	 //	JSON	value	has	been	completed,	*before*	the	byte	that

				73	 //	just	got	passed	in.		(The	indication	must	be	delayed	in	order

				74	 //	to	recognize	the	end	of	numbers:	is	123	a	whole	value	or

				75	 //	the	beginning	of	12345e+6?).

				76	 type	scanner	struct	{

				77	 	 //	The	step	is	a	func	to	be	called	to	execute	the	next	transition.

				78	 	 //	Also	tried	using	an	integer	constant	and	a	single	func

				79	 	 //	with	a	switch,	but	using	the	func	directly	was	10%	faster

				80	 	 //	on	a	64-bit	Mac	Mini,	and	it's	nicer	to	read.

				81	 	 step	func(*scanner,	int)	int

				82	

				83	 	 //	Reached	end	of	top-level	value.

				84	 	 endTop	bool

				85	

				86	 	 //	Stack	of	what	we're	in	the	middle	of	-	array	values,	object	keys,	object	values.

				87	 	 parseState	[]int

				88	

				89	 	 //	Error	that	happened,	if	any.

				90	 	 err	error

				91	

				92	 	 //	1-byte	redo	(see	undo	method)

				93	 	 redo						bool

				94	 	 redoCode		int

				95	 	 redoState	func(*scanner,	int)	int

				96	

				97	 	 //	total	bytes	consumed,	updated	by	decoder.Decode

				98	 	 bytes	int64

				99	 }

			100	

			101	 //	These	values	are	returned	by	the	state	transition	functions

			102	 //	assigned	to	scanner.state	and	the	method	scanner.eof.

			103	 //	They	give	details	about	the	current	state	of	the	scan	that

			104	 //	callers	might	be	interested	to	know	about.

			105	 //	It	is	okay	to	ignore	the	return	value	of	any	particular

			106	 //	call	to	scanner.state:	if	one	call	returns	scanError,

			107	 //	every	subsequent	call	will	return	scanError	too.

			108	 const	(

			109	 	 //	Continue.

			110	 	 scanContinue					=	iota	//	uninteresting	byte

			111	 	 scanBeginLiteral								//	end	implied	by	next	result	!=	scanContinue

			112	 	 scanBeginObject									//	begin	object

			113	 	 scanObjectKey											//	just	finished	object	key	(string)

			114	 	 scanObjectValue									//	just	finished	non-last	object	value

			115	 	 scanEndObject											//	end	object	(implies	scanObjectValue	if	possible)

			116	 	 scanBeginArray										//	begin	array

			117	 	 scanArrayValue										//	just	finished	array	value

			118	 	 scanEndArray												//	end	array	(implies	scanArrayValue	if	possible)

			119	 	 scanSkipSpace											//	space	byte;	can	skip;	known	to	be	last	"continue"	result

			120	

			121	 	 //	Stop.

			122	 	 scanEnd			//	top-level	value	ended	*before*	this	byte;	known	to	be	first	"stop"	result

			123	 	 scanError	//	hit	an	error,	scanner.err.

			124)

			125	

			126	 //	These	values	are	stored	in	the	parseState	stack.

			127	 //	They	give	the	current	state	of	a	composite	value

			128	 //	being	scanned.		If	the	parser	is	inside	a	nested	value

			129	 //	the	parseState	describes	the	nested	state,	outermost	at	entry	0.

			130	 const	(

			131	 	 parseObjectKey			=	iota	//	parsing	object	key	(before	colon)

			132	 	 parseObjectValue								//	parsing	object	value	(after	colon)

			133	 	 parseArrayValue									//	parsing	array	value

			134)

			135	

			136	 //	reset	prepares	the	scanner	for	use.

			137	 //	It	must	be	called	before	calling	s.step.

			138	 func	(s	*scanner)	reset()	{

			139	 	 s.step	=	stateBeginValue

			140	 	 s.parseState	=	s.parseState[0:0]

			141	 	 s.err	=	nil

			142	 	 s.redo	=	false

			143	 	 s.endTop	=	false

			144	 }

			145	

			146	 //	eof	tells	the	scanner	that	the	end	of	input	has	been	reached.

			147	 //	It	returns	a	scan	status	just	as	s.step	does.

			148	 func	(s	*scanner)	eof()	int	{

			149	 	 if	s.err	!=	nil	{

			150	 	 	 return	scanError

			151	 	 }

			152	 	 if	s.endTop	{

			153	 	 	 return	scanEnd

			154	 	 }

			155	 	 s.step(s,	'	')

			156	 	 if	s.endTop	{

			157	 	 	 return	scanEnd

			158	 	 }

			159	 	 if	s.err	==	nil	{

			160	 	 	 s.err	=	&SyntaxError{"unexpected	end	of	JSON	input",	s.bytes}

			161	 	 }

			162	 	 return	scanError

			163	 }

			164	

			165	 //	pushParseState	pushes	a	new	parse	state	p	onto	the	parse	stack.

			166	 func	(s	*scanner)	pushParseState(p	int)	{

			167	 	 s.parseState	=	append(s.parseState,	p)

			168	 }

			169	

			170	 //	popParseState	pops	a	parse	state	(already	obtained)	off	the	stack

			171	 //	and	updates	s.step	accordingly.

			172	 func	(s	*scanner)	popParseState()	{

			173	 	 n	:=	len(s.parseState)	-	1

			174	 	 s.parseState	=	s.parseState[0:n]

			175	 	 s.redo	=	false

			176	 	 if	n	==	0	{

			177	 	 	 s.step	=	stateEndTop

			178	 	 	 s.endTop	=	true

			179	 	 }	else	{

			180	 	 	 s.step	=	stateEndValue

			181	 	 }

			182	 }

			183	

			184	 func	isSpace(c	rune)	bool	{

			185	 	 return	c	==	'	'	||	c	==	'\t'	||	c	==	'\r'	||	c	==	'\n'

			186	 }

			187	

			188	 //	stateBeginValueOrEmpty	is	the	state	after	reading	`[`.

			189	 func	stateBeginValueOrEmpty(s	*scanner,	c	int)	int	{

			190	 	 if	c	<=	'	'	&&	isSpace(rune(c))	{

			191	 	 	 return	scanSkipSpace

			192	 	 }

			193	 	 if	c	==	']'	{

			194	 	 	 return	stateEndValue(s,	c)

			195	 	 }

			196	 	 return	stateBeginValue(s,	c)

			197	 }

			198	

			199	 //	stateBeginValue	is	the	state	at	the	beginning	of	the	input.

			200	 func	stateBeginValue(s	*scanner,	c	int)	int	{

			201	 	 if	c	<=	'	'	&&	isSpace(rune(c))	{

			202	 	 	 return	scanSkipSpace

			203	 	 }

			204	 	 switch	c	{

			205	 	 case	'{':

			206	 	 	 s.step	=	stateBeginStringOrEmpty

			207	 	 	 s.pushParseState(parseObjectKey)

			208	 	 	 return	scanBeginObject

			209	 	 case	'[':

			210	 	 	 s.step	=	stateBeginValueOrEmpty

			211	 	 	 s.pushParseState(parseArrayValue)

			212	 	 	 return	scanBeginArray

			213	 	 case	'"':

			214	 	 	 s.step	=	stateInString

			215	 	 	 return	scanBeginLiteral

			216	 	 case	'-':

			217	 	 	 s.step	=	stateNeg

			218	 	 	 return	scanBeginLiteral

			219	 	 case	'0':	//	beginning	of	0.123

			220	 	 	 s.step	=	state0

			221	 	 	 return	scanBeginLiteral

			222	 	 case	't':	//	beginning	of	true

			223	 	 	 s.step	=	stateT

			224	 	 	 return	scanBeginLiteral

			225	 	 case	'f':	//	beginning	of	false

			226	 	 	 s.step	=	stateF

			227	 	 	 return	scanBeginLiteral

			228	 	 case	'n':	//	beginning	of	null

			229	 	 	 s.step	=	stateN

			230	 	 	 return	scanBeginLiteral

			231	 	 }

			232	 	 if	'1'	<=	c	&&	c	<=	'9'	{	//	beginning	of	1234.5

			233	 	 	 s.step	=	state1

			234	 	 	 return	scanBeginLiteral

			235	 	 }

			236	 	 return	s.error(c,	"looking	for	beginning	of	value")

			237	 }

			238	

			239	 //	stateBeginStringOrEmpty	is	the	state	after	reading	`{`.

			240	 func	stateBeginStringOrEmpty(s	*scanner,	c	int)	int	{

			241	 	 if	c	<=	'	'	&&	isSpace(rune(c))	{

			242	 	 	 return	scanSkipSpace

			243	 	 }

			244	 	 if	c	==	'}'	{

			245	 	 	 n	:=	len(s.parseState)

			246	 	 	 s.parseState[n-1]	=	parseObjectValue

			247	 	 	 return	stateEndValue(s,	c)

			248	 	 }

			249	 	 return	stateBeginString(s,	c)

			250	 }

			251	

			252	 //	stateBeginString	is	the	state	after	reading	`{"key":	value,`.

			253	 func	stateBeginString(s	*scanner,	c	int)	int	{

			254	 	 if	c	<=	'	'	&&	isSpace(rune(c))	{

			255	 	 	 return	scanSkipSpace

			256	 	 }

			257	 	 if	c	==	'"'	{

			258	 	 	 s.step	=	stateInString

			259	 	 	 return	scanBeginLiteral

			260	 	 }

			261	 	 return	s.error(c,	"looking	for	beginning	of	object	key	string")

			262	 }

			263	

			264	 //	stateEndValue	is	the	state	after	completing	a	value,

			265	 //	such	as	after	reading	`{}`	or	`true`	or	`["x"`.

			266	 func	stateEndValue(s	*scanner,	c	int)	int	{

			267	 	 n	:=	len(s.parseState)

			268	 	 if	n	==	0	{

			269	 	 	 //	Completed	top-level	before	the	current	byte.

			270	 	 	 s.step	=	stateEndTop

			271	 	 	 s.endTop	=	true

			272	 	 	 return	stateEndTop(s,	c)

			273	 	 }

			274	 	 if	c	<=	'	'	&&	isSpace(rune(c))	{

			275	 	 	 s.step	=	stateEndValue

			276	 	 	 return	scanSkipSpace

			277	 	 }

			278	 	 ps	:=	s.parseState[n-1]

			279	 	 switch	ps	{

			280	 	 case	parseObjectKey:

			281	 	 	 if	c	==	':'	{

			282	 	 	 	 s.parseState[n-1]	=	parseObjectValue

			283	 	 	 	 s.step	=	stateBeginValue

			284	 	 	 	 return	scanObjectKey

			285	 	 	 }

			286	 	 	 return	s.error(c,	"after	object	key")

			287	 	 case	parseObjectValue:

			288	 	 	 if	c	==	','	{

			289	 	 	 	 s.parseState[n-1]	=	parseObjectKey

			290	 	 	 	 s.step	=	stateBeginString

			291	 	 	 	 return	scanObjectValue

			292	 	 	 }

			293	 	 	 if	c	==	'}'	{

			294	 	 	 	 s.popParseState()

			295	 	 	 	 return	scanEndObject

			296	 	 	 }

			297	 	 	 return	s.error(c,	"after	object	key:value	pair")

			298	 	 case	parseArrayValue:

			299	 	 	 if	c	==	','	{

			300	 	 	 	 s.step	=	stateBeginValue

			301	 	 	 	 return	scanArrayValue

			302	 	 	 }

			303	 	 	 if	c	==	']'	{

			304	 	 	 	 s.popParseState()

			305	 	 	 	 return	scanEndArray

			306	 	 	 }

			307	 	 	 return	s.error(c,	"after	array	element")

			308	 	 }

			309	 	 return	s.error(c,	"")

			310	 }

			311	

			312	 //	stateEndTop	is	the	state	after	finishing	the	top-level	value,

			313	 //	such	as	after	reading	`{}`	or	`[1,2,3]`.

			314	 //	Only	space	characters	should	be	seen	now.

			315	 func	stateEndTop(s	*scanner,	c	int)	int	{

			316	 	 if	c	!=	'	'	&&	c	!=	'\t'	&&	c	!=	'\r'	&&	c	!=	'\n'	{

			317	 	 	 //	Complain	about	non-space	byte	on	next	call.

			318	 	 	 s.error(c,	"after	top-level	value")

			319	 	 }

			320	 	 return	scanEnd

			321	 }

			322	

			323	 //	stateInString	is	the	state	after	reading	`"`.

			324	 func	stateInString(s	*scanner,	c	int)	int	{

			325	 	 if	c	==	'"'	{

			326	 	 	 s.step	=	stateEndValue

			327	 	 	 return	scanContinue

			328	 	 }

			329	 	 if	c	==	'\\'	{

			330	 	 	 s.step	=	stateInStringEsc

			331	 	 	 return	scanContinue

			332	 	 }

			333	 	 if	c	<	0x20	{

			334	 	 	 return	s.error(c,	"in	string	literal")

			335	 	 }

			336	 	 return	scanContinue

			337	 }

			338	

			339	 //	stateInStringEsc	is	the	state	after	reading	`"\`	during	a	quoted	string.

			340	 func	stateInStringEsc(s	*scanner,	c	int)	int	{

			341	 	 switch	c	{

			342	 	 case	'b',	'f',	'n',	'r',	't',	'\\',	'/',	'"':

			343	 	 	 s.step	=	stateInString

			344	 	 	 return	scanContinue

			345	 	 }

			346	 	 if	c	==	'u'	{

			347	 	 	 s.step	=	stateInStringEscU

			348	 	 	 return	scanContinue

			349	 	 }

			350	 	 return	s.error(c,	"in	string	escape	code")

			351	 }

			352	

			353	 //	stateInStringEscU	is	the	state	after	reading	`"\u`	during	a	quoted	string.

			354	 func	stateInStringEscU(s	*scanner,	c	int)	int	{

			355	 	 if	'0'	<=	c	&&	c	<=	'9'	||	'a'	<=	c	&&	c	<=	'f'	||	'A'	<=	c	&&	c	<=	'F'	{

			356	 	 	 s.step	=	stateInStringEscU1

			357	 	 	 return	scanContinue

			358	 	 }

			359	 	 //	numbers

			360	 	 return	s.error(c,	"in	\\u	hexadecimal	character	escape")

			361	 }

			362	

			363	 //	stateInStringEscU1	is	the	state	after	reading	`"\u1`	during	a	quoted	string.

			364	 func	stateInStringEscU1(s	*scanner,	c	int)	int	{

			365	 	 if	'0'	<=	c	&&	c	<=	'9'	||	'a'	<=	c	&&	c	<=	'f'	||	'A'	<=	c	&&	c	<=	'F'	{

			366	 	 	 s.step	=	stateInStringEscU12

			367	 	 	 return	scanContinue

			368	 	 }

			369	 	 //	numbers

			370	 	 return	s.error(c,	"in	\\u	hexadecimal	character	escape")

			371	 }

			372	

			373	 //	stateInStringEscU12	is	the	state	after	reading	`"\u12`	during	a	quoted	string.

			374	 func	stateInStringEscU12(s	*scanner,	c	int)	int	{

			375	 	 if	'0'	<=	c	&&	c	<=	'9'	||	'a'	<=	c	&&	c	<=	'f'	||	'A'	<=	c	&&	c	<=	'F'	{

			376	 	 	 s.step	=	stateInStringEscU123

			377	 	 	 return	scanContinue

			378	 	 }

			379	 	 //	numbers

			380	 	 return	s.error(c,	"in	\\u	hexadecimal	character	escape")

			381	 }

			382	

			383	 //	stateInStringEscU123	is	the	state	after	reading	`"\u123`	during	a	quoted	string.

			384	 func	stateInStringEscU123(s	*scanner,	c	int)	int	{

			385	 	 if	'0'	<=	c	&&	c	<=	'9'	||	'a'	<=	c	&&	c	<=	'f'	||	'A'	<=	c	&&	c	<=	'F'	{

			386	 	 	 s.step	=	stateInString

			387	 	 	 return	scanContinue

			388	 	 }

			389	 	 //	numbers

			390	 	 return	s.error(c,	"in	\\u	hexadecimal	character	escape")

			391	 }

			392	

			393	 //	stateInStringEscU123	is	the	state	after	reading	`-`	during	a	number.

			394	 func	stateNeg(s	*scanner,	c	int)	int	{

			395	 	 if	c	==	'0'	{

			396	 	 	 s.step	=	state0

			397	 	 	 return	scanContinue

			398	 	 }

			399	 	 if	'1'	<=	c	&&	c	<=	'9'	{

			400	 	 	 s.step	=	state1

			401	 	 	 return	scanContinue

			402	 	 }

			403	 	 return	s.error(c,	"in	numeric	literal")

			404	 }

			405	

			406	 //	state1	is	the	state	after	reading	a	non-zero	integer	during	a	number,

			407	 //	such	as	after	reading	`1`	or	`100`	but	not	`0`.

			408	 func	state1(s	*scanner,	c	int)	int	{

			409	 	 if	'0'	<=	c	&&	c	<=	'9'	{

			410	 	 	 s.step	=	state1

			411	 	 	 return	scanContinue

			412	 	 }

			413	 	 return	state0(s,	c)

			414	 }

			415	

			416	 //	state0	is	the	state	after	reading	`0`	during	a	number.

			417	 func	state0(s	*scanner,	c	int)	int	{

			418	 	 if	c	==	'.'	{

			419	 	 	 s.step	=	stateDot

			420	 	 	 return	scanContinue

			421	 	 }

			422	 	 if	c	==	'e'	||	c	==	'E'	{

			423	 	 	 s.step	=	stateE

			424	 	 	 return	scanContinue

			425	 	 }

			426	 	 return	stateEndValue(s,	c)

			427	 }

			428	

			429	 //	stateDot	is	the	state	after	reading	the	integer	and	decimal	point	in	a	number,

			430	 //	such	as	after	reading	`1.`.

			431	 func	stateDot(s	*scanner,	c	int)	int	{

			432	 	 if	'0'	<=	c	&&	c	<=	'9'	{

			433	 	 	 s.step	=	stateDot0

			434	 	 	 return	scanContinue

			435	 	 }

			436	 	 return	s.error(c,	"after	decimal	point	in	numeric	literal")

			437	 }

			438	

			439	 //	stateDot0	is	the	state	after	reading	the	integer,	decimal	point,	and	subsequent

			440	 //	digits	of	a	number,	such	as	after	reading	`3.14`.

			441	 func	stateDot0(s	*scanner,	c	int)	int	{

			442	 	 if	'0'	<=	c	&&	c	<=	'9'	{

			443	 	 	 s.step	=	stateDot0

			444	 	 	 return	scanContinue

			445	 	 }

			446	 	 if	c	==	'e'	||	c	==	'E'	{

			447	 	 	 s.step	=	stateE

			448	 	 	 return	scanContinue

			449	 	 }

			450	 	 return	stateEndValue(s,	c)

			451	 }

			452	

			453	 //	stateE	is	the	state	after	reading	the	mantissa	and	e	in	a	number,

			454	 //	such	as	after	reading	`314e`	or	`0.314e`.

			455	 func	stateE(s	*scanner,	c	int)	int	{

			456	 	 if	c	==	'+'	{

			457	 	 	 s.step	=	stateESign

			458	 	 	 return	scanContinue

			459	 	 }

			460	 	 if	c	==	'-'	{

			461	 	 	 s.step	=	stateESign

			462	 	 	 return	scanContinue

			463	 	 }

			464	 	 return	stateESign(s,	c)

			465	 }

			466	

			467	 //	stateESign	is	the	state	after	reading	the	mantissa,	e,	and	sign	in	a	number,

			468	 //	such	as	after	reading	`314e-`	or	`0.314e+`.

			469	 func	stateESign(s	*scanner,	c	int)	int	{

			470	 	 if	'0'	<=	c	&&	c	<=	'9'	{

			471	 	 	 s.step	=	stateE0

			472	 	 	 return	scanContinue

			473	 	 }

			474	 	 return	s.error(c,	"in	exponent	of	numeric	literal")

			475	 }

			476	

			477	 //	stateE0	is	the	state	after	reading	the	mantissa,	e,	optional	sign,

			478	 //	and	at	least	one	digit	of	the	exponent	in	a	number,

			479	 //	such	as	after	reading	`314e-2`	or	`0.314e+1`	or	`3.14e0`.

			480	 func	stateE0(s	*scanner,	c	int)	int	{

			481	 	 if	'0'	<=	c	&&	c	<=	'9'	{

			482	 	 	 s.step	=	stateE0

			483	 	 	 return	scanContinue

			484	 	 }

			485	 	 return	stateEndValue(s,	c)

			486	 }

			487	

			488	 //	stateT	is	the	state	after	reading	`t`.

			489	 func	stateT(s	*scanner,	c	int)	int	{

			490	 	 if	c	==	'r'	{

			491	 	 	 s.step	=	stateTr

			492	 	 	 return	scanContinue

			493	 	 }

			494	 	 return	s.error(c,	"in	literal	true	(expecting	'r')")

			495	 }

			496	

			497	 //	stateTr	is	the	state	after	reading	`tr`.

			498	 func	stateTr(s	*scanner,	c	int)	int	{

			499	 	 if	c	==	'u'	{

			500	 	 	 s.step	=	stateTru

			501	 	 	 return	scanContinue

			502	 	 }

			503	 	 return	s.error(c,	"in	literal	true	(expecting	'u')")

			504	 }

			505	

			506	 //	stateTru	is	the	state	after	reading	`tru`.

			507	 func	stateTru(s	*scanner,	c	int)	int	{

			508	 	 if	c	==	'e'	{

			509	 	 	 s.step	=	stateEndValue

			510	 	 	 return	scanContinue

			511	 	 }

			512	 	 return	s.error(c,	"in	literal	true	(expecting	'e')")

			513	 }

			514	

			515	 //	stateF	is	the	state	after	reading	`f`.

			516	 func	stateF(s	*scanner,	c	int)	int	{

			517	 	 if	c	==	'a'	{

			518	 	 	 s.step	=	stateFa

			519	 	 	 return	scanContinue

			520	 	 }

			521	 	 return	s.error(c,	"in	literal	false	(expecting	'a')")

			522	 }

			523	

			524	 //	stateFa	is	the	state	after	reading	`fa`.

			525	 func	stateFa(s	*scanner,	c	int)	int	{

			526	 	 if	c	==	'l'	{

			527	 	 	 s.step	=	stateFal

			528	 	 	 return	scanContinue

			529	 	 }

			530	 	 return	s.error(c,	"in	literal	false	(expecting	'l')")

			531	 }

			532	

			533	 //	stateFal	is	the	state	after	reading	`fal`.

			534	 func	stateFal(s	*scanner,	c	int)	int	{

			535	 	 if	c	==	's'	{

			536	 	 	 s.step	=	stateFals

			537	 	 	 return	scanContinue

			538	 	 }

			539	 	 return	s.error(c,	"in	literal	false	(expecting	's')")

			540	 }

			541	

			542	 //	stateFals	is	the	state	after	reading	`fals`.

			543	 func	stateFals(s	*scanner,	c	int)	int	{

			544	 	 if	c	==	'e'	{

			545	 	 	 s.step	=	stateEndValue

			546	 	 	 return	scanContinue

			547	 	 }

			548	 	 return	s.error(c,	"in	literal	false	(expecting	'e')")

			549	 }

			550	

			551	 //	stateN	is	the	state	after	reading	`n`.

			552	 func	stateN(s	*scanner,	c	int)	int	{

			553	 	 if	c	==	'u'	{

			554	 	 	 s.step	=	stateNu

			555	 	 	 return	scanContinue

			556	 	 }

			557	 	 return	s.error(c,	"in	literal	null	(expecting	'u')")

			558	 }

			559	

			560	 //	stateNu	is	the	state	after	reading	`nu`.

			561	 func	stateNu(s	*scanner,	c	int)	int	{

			562	 	 if	c	==	'l'	{

			563	 	 	 s.step	=	stateNul

			564	 	 	 return	scanContinue

			565	 	 }

			566	 	 return	s.error(c,	"in	literal	null	(expecting	'l')")

			567	 }

			568	

			569	 //	stateNul	is	the	state	after	reading	`nul`.

			570	 func	stateNul(s	*scanner,	c	int)	int	{

			571	 	 if	c	==	'l'	{

			572	 	 	 s.step	=	stateEndValue

			573	 	 	 return	scanContinue

			574	 	 }

			575	 	 return	s.error(c,	"in	literal	null	(expecting	'l')")

			576	 }

			577	

			578	 //	stateError	is	the	state	after	reaching	a	syntax	error,

			579	 //	such	as	after	reading	`[1}`	or	`5.1.2`.

			580	 func	stateError(s	*scanner,	c	int)	int	{

			581	 	 return	scanError

			582	 }

			583	

			584	 //	error	records	an	error	and	switches	to	the	error	state.

			585	 func	(s	*scanner)	error(c	int,	context	string)	int	{

			586	 	 s.step	=	stateError

			587	 	 s.err	=	&SyntaxError{"invalid	character	"	+	quoteChar(c)	+	"	"	+	context,	s.bytes}

			588	 	 return	scanError

			589	 }

			590	

			591	 //	quoteChar	formats	c	as	a	quoted	character	literal

			592	 func	quoteChar(c	int)	string	{

			593	 	 //	special	cases	-	different	from	quoted	strings

			594	 	 if	c	==	'\''	{

			595	 	 	 return	`'\''`

			596	 	 }

			597	 	 if	c	==	'"'	{

			598	 	 	 return	`'"'`

			599	 	 }

			600	

			601	 	 //	use	quoted	string	with	different	quotation	marks

			602	 	 s	:=	strconv.Quote(string(c))

			603	 	 return	"'"	+	s[1:len(s)-1]	+	"'"

			604	 }

			605	

			606	 //	undo	causes	the	scanner	to	return	scanCode	from	the	next	state	transition.

			607	 //	This	gives	callers	a	simple	1-byte	undo	mechanism.

			608	 func	(s	*scanner)	undo(scanCode	int)	{

			609	 	 if	s.redo	{

			610	 	 	 panic("json:	invalid	use	of	scanner")

			611	 	 }

			612	 	 s.redoCode	=	scanCode

			613	 	 s.redoState	=	s.step

			614	 	 s.step	=	stateRedo

			615	 	 s.redo	=	true

			616	 }

			617	

			618	 //	stateRedo	helps	implement	the	scanner's	1-byte	undo.

			619	 func	stateRedo(s	*scanner,	c	int)	int	{

			620	 	 s.redo	=	false

			621	 	 s.step	=	s.redoState

			622	 	 return	s.redoCode

			623	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/json/stream.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	json

					6	

					7	 import	(

					8	 	 "errors"

					9	 	 "io"

				10)

				11	

				12	 //	A	Decoder	reads	and	decodes	JSON	objects	from	an	input	stream.

				13	 type	Decoder	struct	{

				14	 	 r				io.Reader

				15	 	 buf		[]byte

				16	 	 d				decodeState

				17	 	 scan	scanner

				18	 	 err		error

				19	 }

				20	

				21	 //	NewDecoder	returns	a	new	decoder	that	reads	from	r.

				22	 //

				23	 //	The	decoder	introduces	its	own	buffering	and	may

				24	 //	read	data	from	r	beyond	the	JSON	values	requested.

				25	 func	NewDecoder(r	io.Reader)	*Decoder	{

				26	 	 return	&Decoder{r:	r}

				27	 }

				28	

				29	 //	Decode	reads	the	next	JSON-encoded	value	from	its

				30	 //	input	and	stores	it	in	the	value	pointed	to	by	v.

				31	 //

				32	 //	See	the	documentation	for	Unmarshal	for	details	about

				33	 //	the	conversion	of	JSON	into	a	Go	value.

				34	 func	(dec	*Decoder)	Decode(v	interface{})	error	{

				35	 	 if	dec.err	!=	nil	{

				36	 	 	 return	dec.err

				37	 	 }

				38	

				39	 	 n,	err	:=	dec.readValue()

				40	 	 if	err	!=	nil	{

				41	 	 	 return	err

				42	 	 }

				43	

				44	 	 //	Don't	save	err	from	unmarshal	into	dec.err:

				45	 	 //	the	connection	is	still	usable	since	we	read	a	complete	JSON

				46	 	 //	object	from	it	before	the	error	happened.

				47	 	 dec.d.init(dec.buf[0:n])

				48	 	 err	=	dec.d.unmarshal(v)

				49	

				50	 	 //	Slide	rest	of	data	down.

				51	 	 rest	:=	copy(dec.buf,	dec.buf[n:])

				52	 	 dec.buf	=	dec.buf[0:rest]

				53	

				54	 	 return	err

				55	 }

				56	

				57	 //	readValue	reads	a	JSON	value	into	dec.buf.

				58	 //	It	returns	the	length	of	the	encoding.

				59	 func	(dec	*Decoder)	readValue()	(int,	error)	{

				60	 	 dec.scan.reset()

				61	

				62	 	 scanp	:=	0

				63	 	 var	err	error

				64	 Input:

				65	 	 for	{

				66	 	 	 //	Look	in	the	buffer	for	a	new	value.

				67	 	 	 for	i,	c	:=	range	dec.buf[scanp:]	{

				68	 	 	 	 dec.scan.bytes++

				69	 	 	 	 v	:=	dec.scan.step(&dec.scan,	int(c))

				70	 	 	 	 if	v	==	scanEnd	{

				71	 	 	 	 	 scanp	+=	i

				72	 	 	 	 	 break	Input

				73	 	 	 	 }

				74	 	 	 	 //	scanEnd	is	delayed	one	byte.

				75	 	 	 	 //	We	might	block	trying	to	get	that	byte	from	src,

				76	 	 	 	 //	so	instead	invent	a	space	byte.

				77	 	 	 	 if	v	==	scanEndObject	&&	dec.scan.step(&dec.scan,	'	')	==	scanEnd	{

				78	 	 	 	 	 scanp	+=	i	+	1

				79	 	 	 	 	 break	Input

				80	 	 	 	 }

				81	 	 	 	 if	v	==	scanError	{

				82	 	 	 	 	 dec.err	=	dec.scan.err

				83	 	 	 	 	 return	0,	dec.scan.err

				84	 	 	 	 }

				85	 	 	 }

				86	 	 	 scanp	=	len(dec.buf)

				87	

				88	 	 	 //	Did	the	last	read	have	an	error?

				89	 	 	 //	Delayed	until	now	to	allow	buffer	scan.

				90	 	 	 if	err	!=	nil	{

				91	 	 	 	 if	err	==	io.EOF	{

				92	 	 	 	 	 if	dec.scan.step(&dec.scan,	'	')	==	scanEnd	{

				93	 	 	 	 	 	 break	Input

				94	 	 	 	 	 }

				95	 	 	 	 	 if	nonSpace(dec.buf)	{

				96	 	 	 	 	 	 err	=	io.ErrUnexpectedEOF

				97	 	 	 	 	 }

				98	 	 	 	 }

				99	 	 	 	 dec.err	=	err

			100	 	 	 	 return	0,	err

			101	 	 	 }

			102	

			103	 	 	 //	Make	room	to	read	more	into	the	buffer.

			104	 	 	 const	minRead	=	512

			105	 	 	 if	cap(dec.buf)-len(dec.buf)	<	minRead	{

			106	 	 	 	 newBuf	:=	make([]byte,	len(dec.buf),	2*cap(dec.buf)+minRead)

			107	 	 	 	 copy(newBuf,	dec.buf)

			108	 	 	 	 dec.buf	=	newBuf

			109	 	 	 }

			110	

			111	 	 	 //	Read.		Delay	error	for	next	iteration	(after	scan).

			112	 	 	 var	n	int

			113	 	 	 n,	err	=	dec.r.Read(dec.buf[len(dec.buf):cap(dec.buf)])

			114	 	 	 dec.buf	=	dec.buf[0	:	len(dec.buf)+n]

			115	 	 }

			116	 	 return	scanp,	nil

			117	 }

			118	

			119	 func	nonSpace(b	[]byte)	bool	{

			120	 	 for	_,	c	:=	range	b	{

			121	 	 	 if	!isSpace(rune(c))	{

			122	 	 	 	 return	true

			123	 	 	 }

			124	 	 }

			125	 	 return	false

			126	 }

			127	

			128	 //	An	Encoder	writes	JSON	objects	to	an	output	stream.

			129	 type	Encoder	struct	{

			130	 	 w			io.Writer

			131	 	 e			encodeState

			132	 	 err	error

			133	 }

			134	

			135	 //	NewEncoder	returns	a	new	encoder	that	writes	to	w.

			136	 func	NewEncoder(w	io.Writer)	*Encoder	{

			137	 	 return	&Encoder{w:	w}

			138	 }

			139	

			140	 //	Encode	writes	the	JSON	encoding	of	v	to	the	connection.

			141	 //

			142	 //	See	the	documentation	for	Marshal	for	details	about	the

			143	 //	conversion	of	Go	values	to	JSON.

			144	 func	(enc	*Encoder)	Encode(v	interface{})	error	{

			145	 	 if	enc.err	!=	nil	{

			146	 	 	 return	enc.err

			147	 	 }

			148	 	 enc.e.Reset()

			149	 	 err	:=	enc.e.marshal(v)

			150	 	 if	err	!=	nil	{

			151	 	 	 return	err

			152	 	 }

			153	

			154	 	 //	Terminate	each	value	with	a	newline.

			155	 	 //	This	makes	the	output	look	a	little	nicer

			156	 	 //	when	debugging,	and	some	kind	of	space

			157	 	 //	is	required	if	the	encoded	value	was	a	number,

			158	 	 //	so	that	the	reader	knows	there	aren't	more

			159	 	 //	digits	coming.

			160	 	 enc.e.WriteByte('\n')

			161	

			162	 	 if	_,	err	=	enc.w.Write(enc.e.Bytes());	err	!=	nil	{

			163	 	 	 enc.err	=	err

			164	 	 }

			165	 	 return	err

			166	 }

			167	

			168	 //	RawMessage	is	a	raw	encoded	JSON	object.

			169	 //	It	implements	Marshaler	and	Unmarshaler	and	can

			170	 //	be	used	to	delay	JSON	decoding	or	precompute	a	JSON	encoding.

			171	 type	RawMessage	[]byte

			172	

			173	 //	MarshalJSON	returns	*m	as	the	JSON	encoding	of	m.

			174	 func	(m	*RawMessage)	MarshalJSON()	([]byte,	error)	{

			175	 	 return	*m,	nil

			176	 }

			177	

			178	 //	UnmarshalJSON	sets	*m	to	a	copy	of	data.

			179	 func	(m	*RawMessage)	UnmarshalJSON(data	[]byte)	error	{

			180	 	 if	m	==	nil	{

			181	 	 	 return	errors.New("json.RawMessage:	UnmarshalJSON	on	nil	pointer")

			182	 	 }

			183	 	 *m	=	append((*m)[0:0],	data...)

			184	 	 return	nil

			185	 }

			186	

			187	 var	_	Marshaler	=	(*RawMessage)(nil)

			188	 var	_	Unmarshaler	=	(*RawMessage)(nil)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/json/tags.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	json

					6	

					7	 import	(

					8	 	 "strings"

					9)

				10	

				11	 //	tagOptions	is	the	string	following	a	comma	in	a	struct	field's	"json"

				12	 //	tag,	or	the	empty	string.	It	does	not	include	the	leading	comma.

				13	 type	tagOptions	string

				14	

				15	 //	parseTag	splits	a	struct	field's	json	tag	into	its	name	and

				16	 //	comma-separated	options.

				17	 func	parseTag(tag	string)	(string,	tagOptions)	{

				18	 	 if	idx	:=	strings.Index(tag,	",");	idx	!=	-1	{

				19	 	 	 return	tag[:idx],	tagOptions(tag[idx+1:])

				20	 	 }

				21	 	 return	tag,	tagOptions("")

				22	 }

				23	

				24	 //	Contains	returns	whether	checks	that	a	comma-separated	list	of	options

				25	 //	contains	a	particular	substr	flag.	substr	must	be	surrounded	by	a

				26	 //	string	boundary	or	commas.

				27	 func	(o	tagOptions)	Contains(optionName	string)	bool	{

				28	 	 if	len(o)	==	0	{

				29	 	 	 return	false

				30	 	 }

				31	 	 s	:=	string(o)

				32	 	 for	s	!=	""	{

				33	 	 	 var	next	string

				34	 	 	 i	:=	strings.Index(s,	",")

				35	 	 	 if	i	>=	0	{

				36	 	 	 	 s,	next	=	s[:i],	s[i+1:]

				37	 	 	 }

				38	 	 	 if	s	==	optionName	{

				39	 	 	 	 return	true

				40	 	 	 }

				41	 	 	 s	=	next

				42	 	 }

				43	 	 return	false

				44	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/pem/pem.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	pem	implements	the	PEM	data	encoding,	which	originated	in	Privacy

					6	 //	Enhanced	Mail.	The	most	common	use	of	PEM	encoding	today	is	in	TLS	keys	and

					7	 //	certificates.	See	RFC	1421.

					8	 package	pem

					9	

				10	 import	(

				11	 	 "bytes"

				12	 	 "encoding/base64"

				13	 	 "io"

				14)

				15	

				16	 //	A	Block	represents	a	PEM	encoded	structure.

				17	 //

				18	 //	The	encoded	form	is:

				19	 //				-----BEGIN	Type-----

				20	 //				Headers

				21	 //				base64-encoded	Bytes

				22	 //				-----END	Type-----

				23	 //	where	Headers	is	a	possibly	empty	sequence	of	Key:	Value	lines.

				24	 type	Block	struct	{

				25	 	 Type				string												//	The	type,	taken	from	the	preamble	(i.e.	"RSA	PRIVATE	KEY").

				26	 	 Headers	map[string]string	//	Optional	headers.

				27	 	 Bytes			[]byte												//	The	decoded	bytes	of	the	contents.	Typically	a	DER	encoded	ASN.1	structure.

				28	 }

				29	

				30	 //	getLine	results	the	first	\r\n	or	\n	delineated	line	from	the	given	byte

				31	 //	array.	The	line	does	not	include	trailing	whitespace	or	the	trailing	new

				32	 //	line	bytes.	The	remainder	of	the	byte	array	(also	not	including	the	new	line

				33	 //	bytes)	is	also	returned	and	this	will	always	be	smaller	than	the	original

				34	 //	argument.

				35	 func	getLine(data	[]byte)	(line,	rest	[]byte)	{

				36	 	 i	:=	bytes.Index(data,	[]byte{'\n'})

				37	 	 var	j	int

				38	 	 if	i	<	0	{

				39	 	 	 i	=	len(data)

				40	 	 	 j	=	i

				41	 	 }	else	{

				42	 	 	 j	=	i	+	1

				43	 	 	 if	i	>	0	&&	data[i-1]	==	'\r'	{

				44	 	 	 	 i--

				45	 	 	 }

				46	 	 }

				47	 	 return	bytes.TrimRight(data[0:i],	"	\t"),	data[j:]

				48	 }

				49	

				50	 //	removeWhitespace	returns	a	copy	of	its	input	with	all	spaces,	tab	and

				51	 //	newline	characters	removed.

				52	 func	removeWhitespace(data	[]byte)	[]byte	{

				53	 	 result	:=	make([]byte,	len(data))

				54	 	 n	:=	0

				55	

				56	 	 for	_,	b	:=	range	data	{

				57	 	 	 if	b	==	'	'	||	b	==	'\t'	||	b	==	'\r'	||	b	==	'\n'	{

				58	 	 	 	 continue

				59	 	 	 }

				60	 	 	 result[n]	=	b

				61	 	 	 n++

				62	 	 }

				63	

				64	 	 return	result[0:n]

				65	 }

				66	

				67	 var	pemStart	=	[]byte("\n-----BEGIN	")

				68	 var	pemEnd	=	[]byte("\n-----END	")

				69	 var	pemEndOfLine	=	[]byte("-----")

				70	

				71	 //	Decode	will	find	the	next	PEM	formatted	block	(certificate,	private	key

				72	 //	etc)	in	the	input.	It	returns	that	block	and	the	remainder	of	the	input.	If

				73	 //	no	PEM	data	is	found,	p	is	nil	and	the	whole	of	the	input	is	returned	in

				74	 //	rest.

				75	 func	Decode(data	[]byte)	(p	*Block,	rest	[]byte)	{

				76	 	 //	pemStart	begins	with	a	newline.	However,	at	the	very	beginning	of

				77	 	 //	the	byte	array,	we'll	accept	the	start	string	without	it.

				78	 	 rest	=	data

				79	 	 if	bytes.HasPrefix(data,	pemStart[1:])	{

				80	 	 	 rest	=	rest[len(pemStart)-1	:	len(data)]

				81	 	 }	else	if	i	:=	bytes.Index(data,	pemStart);	i	>=	0	{

				82	 	 	 rest	=	rest[i+len(pemStart)	:	len(data)]

				83	 	 }	else	{

				84	 	 	 return	nil,	data

				85	 	 }

				86	

				87	 	 typeLine,	rest	:=	getLine(rest)

				88	 	 if	!bytes.HasSuffix(typeLine,	pemEndOfLine)	{

				89	 	 	 return	decodeError(data,	rest)

				90	 	 }

				91	 	 typeLine	=	typeLine[0	:	len(typeLine)-len(pemEndOfLine)]

				92	

				93	 	 p	=	&Block{

				94	 	 	 Headers:	make(map[string]string),

				95	 	 	 Type:				string(typeLine),

				96	 	 }

				97	

				98	 	 for	{

				99	 	 	 //	This	loop	terminates	because	getLine's	second	result	is

			100	 	 	 //	always	smaller	than	its	argument.

			101	 	 	 if	len(rest)	==	0	{

			102	 	 	 	 return	nil,	data

			103	 	 	 }

			104	 	 	 line,	next	:=	getLine(rest)

			105	

			106	 	 	 i	:=	bytes.Index(line,	[]byte{':'})

			107	 	 	 if	i	==	-1	{

			108	 	 	 	 break

			109	 	 	 }

			110	

			111	 	 	 //	TODO(agl):	need	to	cope	with	values	that	spread	across	lines.

			112	 	 	 key,	val	:=	line[0:i],	line[i+1:]

			113	 	 	 key	=	bytes.TrimSpace(key)

			114	 	 	 val	=	bytes.TrimSpace(val)

			115	 	 	 p.Headers[string(key)]	=	string(val)

			116	 	 	 rest	=	next

			117	 	 }

			118	

			119	 	 i	:=	bytes.Index(rest,	pemEnd)

			120	 	 if	i	<	0	{

			121	 	 	 return	decodeError(data,	rest)

			122	 	 }

			123	 	 base64Data	:=	removeWhitespace(rest[0:i])

			124	

			125	 	 p.Bytes	=	make([]byte,	base64.StdEncoding.DecodedLen(len(base64Data)))

			126	 	 n,	err	:=	base64.StdEncoding.Decode(p.Bytes,	base64Data)

			127	 	 if	err	!=	nil	{

			128	 	 	 return	decodeError(data,	rest)

			129	 	 }

			130	 	 p.Bytes	=	p.Bytes[0:n]

			131	

			132	 	 _,	rest	=	getLine(rest[i+len(pemEnd):])

			133	

			134	 	 return

			135	 }

			136	

			137	 func	decodeError(data,	rest	[]byte)	(*Block,	[]byte)	{

			138	 	 //	If	we	get	here	then	we	have	rejected	a	likely	looking,	but

			139	 	 //	ultimately	invalid	PEM	block.	We	need	to	start	over	from	a	new

			140	 	 //	position.		We	have	consumed	the	preamble	line	and	will	have	consumed

			141	 	 //	any	lines	which	could	be	header	lines.	However,	a	valid	preamble

			142	 	 //	line	is	not	a	valid	header	line,	therefore	we	cannot	have	consumed

			143	 	 //	the	preamble	line	for	the	any	subsequent	block.	Thus,	we	will	always

			144	 	 //	find	any	valid	block,	no	matter	what	bytes	precede	it.

			145	 	 //

			146	 	 //	For	example,	if	the	input	is

			147	 	 //

			148	 	 //				-----BEGIN	MALFORMED	BLOCK-----

			149	 	 //				junk	that	may	look	like	header	lines

			150	 	 //			or	data	lines,	but	no	END	line

			151	 	 //

			152	 	 //				-----BEGIN	ACTUAL	BLOCK-----

			153	 	 //				realdata

			154	 	 //				-----END	ACTUAL	BLOCK-----

			155	 	 //

			156	 	 //	we've	failed	to	parse	using	the	first	BEGIN	line

			157	 	 //	and	now	will	try	again,	using	the	second	BEGIN	line.

			158	 	 p,	rest	:=	Decode(rest)

			159	 	 if	p	==	nil	{

			160	 	 	 rest	=	data

			161	 	 }

			162	 	 return	p,	rest

			163	 }

			164	

			165	 const	pemLineLength	=	64

			166	

			167	 type	lineBreaker	struct	{

			168	 	 line	[pemLineLength]byte

			169	 	 used	int

			170	 	 out		io.Writer

			171	 }

			172	

			173	 func	(l	*lineBreaker)	Write(b	[]byte)	(n	int,	err	error)	{

			174	 	 if	l.used+len(b)	<	pemLineLength	{

			175	 	 	 copy(l.line[l.used:],	b)

			176	 	 	 l.used	+=	len(b)

			177	 	 	 return	len(b),	nil

			178	 	 }

			179	

			180	 	 n,	err	=	l.out.Write(l.line[0:l.used])

			181	 	 if	err	!=	nil	{

			182	 	 	 return

			183	 	 }

			184	 	 excess	:=	pemLineLength	-	l.used

			185	 	 l.used	=	0

			186	

			187	 	 n,	err	=	l.out.Write(b[0:excess])

			188	 	 if	err	!=	nil	{

			189	 	 	 return

			190	 	 }

			191	

			192	 	 n,	err	=	l.out.Write([]byte{'\n'})

			193	 	 if	err	!=	nil	{

			194	 	 	 return

			195	 	 }

			196	

			197	 	 return	l.Write(b[excess:])

			198	 }

			199	

			200	 func	(l	*lineBreaker)	Close()	(err	error)	{

			201	 	 if	l.used	>	0	{

			202	 	 	 _,	err	=	l.out.Write(l.line[0:l.used])

			203	 	 	 if	err	!=	nil	{

			204	 	 	 	 return

			205	 	 	 }

			206	 	 	 _,	err	=	l.out.Write([]byte{'\n'})

			207	 	 }

			208	

			209	 	 return

			210	 }

			211	

			212	 func	Encode(out	io.Writer,	b	*Block)	(err	error)	{

			213	 	 _,	err	=	out.Write(pemStart[1:])

			214	 	 if	err	!=	nil	{

			215	 	 	 return

			216	 	 }

			217	 	 _,	err	=	out.Write([]byte(b.Type	+	"-----\n"))

			218	 	 if	err	!=	nil	{

			219	 	 	 return

			220	 	 }

			221	

			222	 	 if	len(b.Headers)	>	0	{

			223	 	 	 for	k,	v	:=	range	b.Headers	{

			224	 	 	 	 _,	err	=	out.Write([]byte(k	+	":	"	+	v	+	"\n"))

			225	 	 	 	 if	err	!=	nil	{

			226	 	 	 	 	 return

			227	 	 	 	 }

			228	 	 	 }

			229	 	 	 _,	err	=	out.Write([]byte{'\n'})

			230	 	 	 if	err	!=	nil	{

			231	 	 	 	 return

			232	 	 	 }

			233	 	 }

			234	

			235	 	 var	breaker	lineBreaker

			236	 	 breaker.out	=	out

			237	

			238	 	 b64	:=	base64.NewEncoder(base64.StdEncoding,	&breaker)

			239	 	 _,	err	=	b64.Write(b.Bytes)

			240	 	 if	err	!=	nil	{

			241	 	 	 return

			242	 	 }

			243	 	 b64.Close()

			244	 	 breaker.Close()

			245	

			246	 	 _,	err	=	out.Write(pemEnd[1:])

			247	 	 if	err	!=	nil	{

			248	 	 	 return

			249	 	 }

			250	 	 _,	err	=	out.Write([]byte(b.Type	+	"-----\n"))

			251	 	 return

			252	 }

			253	

			254	 func	EncodeToMemory(b	*Block)	[]byte	{

			255	 	 var	buf	bytes.Buffer

			256	 	 Encode(&buf,	b)

			257	 	 return	buf.Bytes()

			258	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/xml/marshal.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	xml

					6	

					7	 import	(

					8	 	 "bufio"

					9	 	 "bytes"

				10	 	 "fmt"

				11	 	 "io"

				12	 	 "reflect"

				13	 	 "strconv"

				14	 	 "strings"

				15	 	 "time"

				16)

				17	

				18	 const	(

				19	 	 //	A	generic	XML	header	suitable	for	use	with	the	output	of	Marshal.

				20	 	 //	This	is	not	automatically	added	to	any	output	of	this	package,

				21	 	 //	it	is	provided	as	a	convenience.

				22	 	 Header	=	`<?xml	version="1.0"	encoding="UTF-8"?>`	+	"\n"

				23)

				24	

				25	 //	Marshal	returns	the	XML	encoding	of	v.

				26	 //

				27	 //	Marshal	handles	an	array	or	slice	by	marshalling	each	of	the	elements.

				28	 //	Marshal	handles	a	pointer	by	marshalling	the	value	it	points	at	or,	if	the

				29	 //	pointer	is	nil,	by	writing	nothing.		Marshal	handles	an	interface	value	by

				30	 //	marshalling	the	value	it	contains	or,	if	the	interface	value	is	nil,	by

				31	 //	writing	nothing.		Marshal	handles	all	other	data	by	writing	one	or	more	XML

				32	 //	elements	containing	the	data.

				33	 //

				34	 //	The	name	for	the	XML	elements	is	taken	from,	in	order	of	preference:

				35	 //					-	the	tag	on	the	XMLName	field,	if	the	data	is	a	struct

				36	 //					-	the	value	of	the	XMLName	field	of	type	xml.Name

				37	 //					-	the	tag	of	the	struct	field	used	to	obtain	the	data

				38	 //					-	the	name	of	the	struct	field	used	to	obtain	the	data

				39	 //					-	the	name	of	the	marshalled	type

				40	 //

				41	 //	The	XML	element	for	a	struct	contains	marshalled	elements	for	each	of	the

				42	 //	exported	fields	of	the	struct,	with	these	exceptions:

				43	 //					-	the	XMLName	field,	described	above,	is	omitted.

				44	 //					-	a	field	with	tag	"-"	is	omitted.

				45	 //					-	a	field	with	tag	"name,attr"	becomes	an	attribute	with

				46	 //							the	given	name	in	the	XML	element.

				47	 //					-	a	field	with	tag	",attr"	becomes	an	attribute	with	the

				48	 //							field	name	in	the	in	the	XML	element.

				49	 //					-	a	field	with	tag	",chardata"	is	written	as	character	data,

				50	 //							not	as	an	XML	element.

				51	 //					-	a	field	with	tag	",innerxml"	is	written	verbatim,	not	subject

				52	 //							to	the	usual	marshalling	procedure.

				53	 //					-	a	field	with	tag	",comment"	is	written	as	an	XML	comment,	not

				54	 //							subject	to	the	usual	marshalling	procedure.	It	must	not	contain

				55	 //							the	"--"	string	within	it.

				56	 //					-	a	field	with	a	tag	including	the	"omitempty"	option	is	omitted

				57	 //							if	the	field	value	is	empty.	The	empty	values	are	false,	0,	any

				58	 //							nil	pointer	or	interface	value,	and	any	array,	slice,	map,	or

				59	 //							string	of	length	zero.

				60	 //					-	a	non-pointer	anonymous	struct	field	is	handled	as	if	the

				61	 //							fields	of	its	value	were	part	of	the	outer	struct.

				62	 //

				63	 //	If	a	field	uses	a	tag	"a>b>c",	then	the	element	c	will	be	nested	inside

				64	 //	parent	elements	a	and	b.		Fields	that	appear	next	to	each	other	that	name

				65	 //	the	same	parent	will	be	enclosed	in	one	XML	element.

				66	 //

				67	 //	See	MarshalIndent	for	an	example.

				68	 //

				69	 //	Marshal	will	return	an	error	if	asked	to	marshal	a	channel,	function,	or	map.

				70	 func	Marshal(v	interface{})	([]byte,	error)	{

				71	 	 var	b	bytes.Buffer

				72	 	 if	err	:=	NewEncoder(&b).Encode(v);	err	!=	nil	{

				73	 	 	 return	nil,	err

				74	 	 }

				75	 	 return	b.Bytes(),	nil

				76	 }

				77	

				78	 //	MarshalIndent	works	like	Marshal,	but	each	XML	element	begins	on	a	new

				79	 //	indented	line	that	starts	with	prefix	and	is	followed	by	one	or	more

				80	 //	copies	of	indent	according	to	the	nesting	depth.

				81	 func	MarshalIndent(v	interface{},	prefix,	indent	string)	([]byte,	error)	{

				82	 	 var	b	bytes.Buffer

				83	 	 enc	:=	NewEncoder(&b)

				84	 	 enc.prefix	=	prefix

				85	 	 enc.indent	=	indent

				86	 	 err	:=	enc.marshalValue(reflect.ValueOf(v),	nil)

				87	 	 enc.Flush()

				88	 	 if	err	!=	nil	{

				89	 	 	 return	nil,	err

				90	 	 }

				91	 	 return	b.Bytes(),	nil

				92	 }

				93	

				94	 //	An	Encoder	writes	XML	data	to	an	output	stream.

				95	 type	Encoder	struct	{

				96	 	 printer

				97	 }

				98	

				99	 //	NewEncoder	returns	a	new	encoder	that	writes	to	w.

			100	 func	NewEncoder(w	io.Writer)	*Encoder	{

			101	 	 return	&Encoder{printer{Writer:	bufio.NewWriter(w)}}

			102	 }

			103	

			104	 //	Encode	writes	the	XML	encoding	of	v	to	the	stream.

			105	 //

			106	 //	See	the	documentation	for	Marshal	for	details	about	the	conversion

			107	 //	of	Go	values	to	XML.

			108	 func	(enc	*Encoder)	Encode(v	interface{})	error	{

			109	 	 err	:=	enc.marshalValue(reflect.ValueOf(v),	nil)

			110	 	 enc.Flush()

			111	 	 return	err

			112	 }

			113	

			114	 type	printer	struct	{

			115	 	 *bufio.Writer

			116	 	 indent					string

			117	 	 prefix					string

			118	 	 depth						int

			119	 	 indentedIn	bool

			120	 }

			121	

			122	 //	marshalValue	writes	one	or	more	XML	elements	representing	val.

			123	 //	If	val	was	obtained	from	a	struct	field,	finfo	must	have	its	details.

			124	 func	(p	*printer)	marshalValue(val	reflect.Value,	finfo	*fieldInfo)	error	{

			125	 	 if	!val.IsValid()	{

			126	 	 	 return	nil

			127	 	 }

			128	 	 if	finfo	!=	nil	&&	finfo.flags&fOmitEmpty	!=	0	&&	isEmptyValue(val)	{

			129	 	 	 return	nil

			130	 	 }

			131	

			132	 	 kind	:=	val.Kind()

			133	 	 typ	:=	val.Type()

			134	

			135	 	 //	Drill	into	pointers/interfaces

			136	 	 if	kind	==	reflect.Ptr	||	kind	==	reflect.Interface	{

			137	 	 	 if	val.IsNil()	{

			138	 	 	 	 return	nil

			139	 	 	 }

			140	 	 	 return	p.marshalValue(val.Elem(),	finfo)

			141	 	 }

			142	

			143	 	 //	Slices	and	arrays	iterate	over	the	elements.	They	do	not	have	an	enclosing	tag.

			144	 	 if	(kind	==	reflect.Slice	||	kind	==	reflect.Array)	&&	typ.Elem().Kind()	!=	reflect.Uint8	{

			145	 	 	 for	i,	n	:=	0,	val.Len();	i	<	n;	i++	{

			146	 	 	 	 if	err	:=	p.marshalValue(val.Index(i),	finfo);	err	!=	nil	{

			147	 	 	 	 	 return	err

			148	 	 	 	 }

			149	 	 	 }

			150	 	 	 return	nil

			151	 	 }

			152	

			153	 	 tinfo,	err	:=	getTypeInfo(typ)

			154	 	 if	err	!=	nil	{

			155	 	 	 return	err

			156	 	 }

			157	

			158	 	 //	Precedence	for	the	XML	element	name	is:

			159	 	 //	1.	XMLName	field	in	underlying	struct;

			160	 	 //	2.	field	name/tag	in	the	struct	field;	and

			161	 	 //	3.	type	name

			162	 	 var	xmlns,	name	string

			163	 	 if	tinfo.xmlname	!=	nil	{

			164	 	 	 xmlname	:=	tinfo.xmlname

			165	 	 	 if	xmlname.name	!=	""	{

			166	 	 	 	 xmlns,	name	=	xmlname.xmlns,	xmlname.name

			167	 	 	 }	else	if	v,	ok	:=	val.FieldByIndex(xmlname.idx).Interface().(Name);	ok	&&	v.Local	!=	""	{

			168	 	 	 	 xmlns,	name	=	v.Space,	v.Local

			169	 	 	 }

			170	 	 }

			171	 	 if	name	==	""	&&	finfo	!=	nil	{

			172	 	 	 xmlns,	name	=	finfo.xmlns,	finfo.name

			173	 	 }

			174	 	 if	name	==	""	{

			175	 	 	 name	=	typ.Name()

			176	 	 	 if	name	==	""	{

			177	 	 	 	 return	&UnsupportedTypeError{typ}

			178	 	 	 }

			179	 	 }

			180	

			181	 	 p.writeIndent(1)

			182	 	 p.WriteByte('<')

			183	 	 p.WriteString(name)

			184	

			185	 	 if	xmlns	!=	""	{

			186	 	 	 p.WriteString(`	xmlns="`)

			187	 	 	 //	TODO:	EscapeString,	to	avoid	the	allocation.

			188	 	 	 Escape(p,	[]byte(xmlns))

			189	 	 	 p.WriteByte('"')

			190	 	 }

			191	

			192	 	 //	Attributes

			193	 	 for	i	:=	range	tinfo.fields	{

			194	 	 	 finfo	:=	&tinfo.fields[i]

			195	 	 	 if	finfo.flags&fAttr	==	0	{

			196	 	 	 	 continue

			197	 	 	 }

			198	 	 	 fv	:=	val.FieldByIndex(finfo.idx)

			199	 	 	 if	finfo.flags&fOmitEmpty	!=	0	&&	isEmptyValue(fv)	{

			200	 	 	 	 continue

			201	 	 	 }

			202	 	 	 p.WriteByte('	')

			203	 	 	 p.WriteString(finfo.name)

			204	 	 	 p.WriteString(`="`)

			205	 	 	 if	err	:=	p.marshalSimple(fv.Type(),	fv);	err	!=	nil	{

			206	 	 	 	 return	err

			207	 	 	 }

			208	 	 	 p.WriteByte('"')

			209	 	 }

			210	 	 p.WriteByte('>')

			211	

			212	 	 if	val.Kind()	==	reflect.Struct	{

			213	 	 	 err	=	p.marshalStruct(tinfo,	val)

			214	 	 }	else	{

			215	 	 	 err	=	p.marshalSimple(typ,	val)

			216	 	 }

			217	 	 if	err	!=	nil	{

			218	 	 	 return	err

			219	 	 }

			220	

			221	 	 p.writeIndent(-1)

			222	 	 p.WriteByte('<')

			223	 	 p.WriteByte('/')

			224	 	 p.WriteString(name)

			225	 	 p.WriteByte('>')

			226	

			227	 	 return	nil

			228	 }

			229	

			230	 var	timeType	=	reflect.TypeOf(time.Time{})

			231	

			232	 func	(p	*printer)	marshalSimple(typ	reflect.Type,	val	reflect.Value)	error	{

			233	 	 //	Normally	we	don't	see	structs,	but	this	can	happen	for	an	attribute.

			234	 	 if	val.Type()	==	timeType	{

			235	 	 	 p.WriteString(val.Interface().(time.Time).Format(time.RFC3339Nano))

			236	 	 	 return	nil

			237	 	 }

			238	 	 switch	val.Kind()	{

			239	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			240	 	 	 p.WriteString(strconv.FormatInt(val.Int(),	10))

			241	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

			242	 	 	 p.WriteString(strconv.FormatUint(val.Uint(),	10))

			243	 	 case	reflect.Float32,	reflect.Float64:

			244	 	 	 p.WriteString(strconv.FormatFloat(val.Float(),	'g',	-1,	64))

			245	 	 case	reflect.String:

			246	 	 	 //	TODO:	Add	EscapeString.

			247	 	 	 Escape(p,	[]byte(val.String()))

			248	 	 case	reflect.Bool:

			249	 	 	 p.WriteString(strconv.FormatBool(val.Bool()))

			250	 	 case	reflect.Array:

			251	 	 	 //	will	be	[...]byte

			252	 	 	 bytes	:=	make([]byte,	val.Len())

			253	 	 	 for	i	:=	range	bytes	{

			254	 	 	 	 bytes[i]	=	val.Index(i).Interface().(byte)

			255	 	 	 }

			256	 	 	 Escape(p,	bytes)

			257	 	 case	reflect.Slice:

			258	 	 	 //	will	be	[]byte

			259	 	 	 Escape(p,	val.Bytes())

			260	 	 default:

			261	 	 	 return	&UnsupportedTypeError{typ}

			262	 	 }

			263	 	 return	nil

			264	 }

			265	

			266	 var	ddBytes	=	[]byte("--")

			267	

			268	 func	(p	*printer)	marshalStruct(tinfo	*typeInfo,	val	reflect.Value)	error	{

			269	 	 if	val.Type()	==	timeType	{

			270	 	 	 p.WriteString(val.Interface().(time.Time).Format(time.RFC3339Nano))

			271	 	 	 return	nil

			272	 	 }

			273	 	 s	:=	parentStack{printer:	p}

			274	 	 for	i	:=	range	tinfo.fields	{

			275	 	 	 finfo	:=	&tinfo.fields[i]

			276	 	 	 if	finfo.flags&(fAttr|fAny)	!=	0	{

			277	 	 	 	 continue

			278	 	 	 }

			279	 	 	 vf	:=	val.FieldByIndex(finfo.idx)

			280	 	 	 switch	finfo.flags	&	fMode	{

			281	 	 	 case	fCharData:

			282	 	 	 	 switch	vf.Kind()	{

			283	 	 	 	 case	reflect.String:

			284	 	 	 	 	 Escape(p,	[]byte(vf.String()))

			285	 	 	 	 case	reflect.Slice:

			286	 	 	 	 	 if	elem,	ok	:=	vf.Interface().([]byte);	ok	{

			287	 	 	 	 	 	 Escape(p,	elem)

			288	 	 	 	 	 }

			289	 	 	 	 }

			290	 	 	 	 continue

			291	

			292	 	 	 case	fComment:

			293	 	 	 	 k	:=	vf.Kind()

			294	 	 	 	 if	!(k	==	reflect.String	||	k	==	reflect.Slice	&&	vf.Type().Elem().Kind()	==	reflect.Uint8)	{

			295	 	 	 	 	 return	fmt.Errorf("xml:	bad	type	for	comment	field	of	%s",	val.Type())

			296	 	 	 	 }

			297	 	 	 	 if	vf.Len()	==	0	{

			298	 	 	 	 	 continue

			299	 	 	 	 }

			300	 	 	 	 p.writeIndent(0)

			301	 	 	 	 p.WriteString("<!--")

			302	 	 	 	 dashDash	:=	false

			303	 	 	 	 dashLast	:=	false

			304	 	 	 	 switch	k	{

			305	 	 	 	 case	reflect.String:

			306	 	 	 	 	 s	:=	vf.String()

			307	 	 	 	 	 dashDash	=	strings.Index(s,	"--")	>=	0

			308	 	 	 	 	 dashLast	=	s[len(s)-1]	==	'-'

			309	 	 	 	 	 if	!dashDash	{

			310	 	 	 	 	 	 p.WriteString(s)

			311	 	 	 	 	 }

			312	 	 	 	 case	reflect.Slice:

			313	 	 	 	 	 b	:=	vf.Bytes()

			314	 	 	 	 	 dashDash	=	bytes.Index(b,	ddBytes)	>=	0

			315	 	 	 	 	 dashLast	=	b[len(b)-1]	==	'-'

			316	 	 	 	 	 if	!dashDash	{

			317	 	 	 	 	 	 p.Write(b)

			318	 	 	 	 	 }

			319	 	 	 	 default:

			320	 	 	 	 	 panic("can't	happen")

			321	 	 	 	 }

			322	 	 	 	 if	dashDash	{

			323	 	 	 	 	 return	fmt.Errorf(`xml:	comments	must	not	contain	"--"`)

			324	 	 	 	 }

			325	 	 	 	 if	dashLast	{

			326	 	 	 	 	 //	"--->"	is	invalid	grammar.	Make	it	"-	-->"

			327	 	 	 	 	 p.WriteByte('	')

			328	 	 	 	 }

			329	 	 	 	 p.WriteString("-->")

			330	 	 	 	 continue

			331	

			332	 	 	 case	fInnerXml:

			333	 	 	 	 iface	:=	vf.Interface()

			334	 	 	 	 switch	raw	:=	iface.(type)	{

			335	 	 	 	 case	[]byte:

			336	 	 	 	 	 p.Write(raw)

			337	 	 	 	 	 continue

			338	 	 	 	 case	string:

			339	 	 	 	 	 p.WriteString(raw)

			340	 	 	 	 	 continue

			341	 	 	 	 }

			342	

			343	 	 	 case	fElement:

			344	 	 	 	 s.trim(finfo.parents)

			345	 	 	 	 if	len(finfo.parents)	>	len(s.stack)	{

			346	 	 	 	 	 if	vf.Kind()	!=	reflect.Ptr	&&	vf.Kind()	!=	reflect.Interface	||	!vf.IsNil()	{

			347	 	 	 	 	 	 s.push(finfo.parents[len(s.stack):])

			348	 	 	 	 	 }

			349	 	 	 	 }

			350	 	 	 }

			351	 	 	 if	err	:=	p.marshalValue(vf,	finfo);	err	!=	nil	{

			352	 	 	 	 return	err

			353	 	 	 }

			354	 	 }

			355	 	 s.trim(nil)

			356	 	 return	nil

			357	 }

			358	

			359	 func	(p	*printer)	writeIndent(depthDelta	int)	{

			360	 	 if	len(p.prefix)	==	0	&&	len(p.indent)	==	0	{

			361	 	 	 return

			362	 	 }

			363	 	 if	depthDelta	<	0	{

			364	 	 	 p.depth--

			365	 	 	 if	p.indentedIn	{

			366	 	 	 	 p.indentedIn	=	false

			367	 	 	 	 return

			368	 	 	 }

			369	 	 	 p.indentedIn	=	false

			370	 	 }

			371	 	 p.WriteByte('\n')

			372	 	 if	len(p.prefix)	>	0	{

			373	 	 	 p.WriteString(p.prefix)

			374	 	 }

			375	 	 if	len(p.indent)	>	0	{

			376	 	 	 for	i	:=	0;	i	<	p.depth;	i++	{

			377	 	 	 	 p.WriteString(p.indent)

			378	 	 	 }

			379	 	 }

			380	 	 if	depthDelta	>	0	{

			381	 	 	 p.depth++

			382	 	 	 p.indentedIn	=	true

			383	 	 }

			384	 }

			385	

			386	 type	parentStack	struct	{

			387	 	 *printer

			388	 	 stack	[]string

			389	 }

			390	

			391	 //	trim	updates	the	XML	context	to	match	the	longest	common	prefix	of	the	stack

			392	 //	and	the	given	parents.		A	closing	tag	will	be	written	for	every	parent

			393	 //	popped.		Passing	a	zero	slice	or	nil	will	close	all	the	elements.

			394	 func	(s	*parentStack)	trim(parents	[]string)	{

			395	 	 split	:=	0

			396	 	 for	;	split	<	len(parents)	&&	split	<	len(s.stack);	split++	{

			397	 	 	 if	parents[split]	!=	s.stack[split]	{

			398	 	 	 	 break

			399	 	 	 }

			400	 	 }

			401	 	 for	i	:=	len(s.stack)	-	1;	i	>=	split;	i--	{

			402	 	 	 s.writeIndent(-1)

			403	 	 	 s.WriteString("</")

			404	 	 	 s.WriteString(s.stack[i])

			405	 	 	 s.WriteByte('>')

			406	 	 }

			407	 	 s.stack	=	parents[:split]

			408	 }

			409	

			410	 //	push	adds	parent	elements	to	the	stack	and	writes	open	tags.

			411	 func	(s	*parentStack)	push(parents	[]string)	{

			412	 	 for	i	:=	0;	i	<	len(parents);	i++	{

			413	 	 	 s.writeIndent(1)

			414	 	 	 s.WriteByte('<')

			415	 	 	 s.WriteString(parents[i])

			416	 	 	 s.WriteByte('>')

			417	 	 }

			418	 	 s.stack	=	append(s.stack,	parents...)

			419	 }

			420	

			421	 //	A	MarshalXMLError	is	returned	when	Marshal	encounters	a	type

			422	 //	that	cannot	be	converted	into	XML.

			423	 type	UnsupportedTypeError	struct	{

			424	 	 Type	reflect.Type

			425	 }

			426	

			427	 func	(e	*UnsupportedTypeError)	Error()	string	{

			428	 	 return	"xml:	unsupported	type:	"	+	e.Type.String()

			429	 }

			430	

			431	 func	isEmptyValue(v	reflect.Value)	bool	{

			432	 	 switch	v.Kind()	{

			433	 	 case	reflect.Array,	reflect.Map,	reflect.Slice,	reflect.String:

			434	 	 	 return	v.Len()	==	0

			435	 	 case	reflect.Bool:

			436	 	 	 return	!v.Bool()

			437	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			438	 	 	 return	v.Int()	==	0

			439	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

			440	 	 	 return	v.Uint()	==	0

			441	 	 case	reflect.Float32,	reflect.Float64:

			442	 	 	 return	v.Float()	==	0

			443	 	 case	reflect.Interface,	reflect.Ptr:

			444	 	 	 return	v.IsNil()

			445	 	 }

			446	 	 return	false

			447	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/xml/read.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	xml

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "errors"

				10	 	 "reflect"

				11	 	 "strconv"

				12	 	 "strings"

				13	 	 "time"

				14)

				15	

				16	 //	BUG(rsc):	Mapping	between	XML	elements	and	data	structures	is	inherently	flawed:

				17	 //	an	XML	element	is	an	order-dependent	collection	of	anonymous

				18	 //	values,	while	a	data	structure	is	an	order-independent	collection

				19	 //	of	named	values.

				20	 //	See	package	json	for	a	textual	representation	more	suitable

				21	 //	to	data	structures.

				22	

				23	 //	Unmarshal	parses	the	XML-encoded	data	and	stores	the	result	in

				24	 //	the	value	pointed	to	by	v,	which	must	be	an	arbitrary	struct,

				25	 //	slice,	or	string.	Well-formed	data	that	does	not	fit	into	v	is

				26	 //	discarded.

				27	 //

				28	 //	Because	Unmarshal	uses	the	reflect	package,	it	can	only	assign

				29	 //	to	exported	(upper	case)	fields.		Unmarshal	uses	a	case-sensitive

				30	 //	comparison	to	match	XML	element	names	to	tag	values	and	struct

				31	 //	field	names.

				32	 //

				33	 //	Unmarshal	maps	an	XML	element	to	a	struct	using	the	following	rules.

				34	 //	In	the	rules,	the	tag	of	a	field	refers	to	the	value	associated	with	the

				35	 //	key	'xml'	in	the	struct	field's	tag	(see	the	example	above).

				36	 //

				37	 //			*	If	the	struct	has	a	field	of	type	[]byte	or	string	with	tag

				38	 //						",innerxml",	Unmarshal	accumulates	the	raw	XML	nested	inside	the

				39	 //						element	in	that	field.		The	rest	of	the	rules	still	apply.

				40	 //

				41	 //			*	If	the	struct	has	a	field	named	XMLName	of	type	xml.Name,

				42	 //						Unmarshal	records	the	element	name	in	that	field.

				43	 //

				44	 //			*	If	the	XMLName	field	has	an	associated	tag	of	the	form

				45	 //						"name"	or	"namespace-URL	name",	the	XML	element	must	have

				46	 //						the	given	name	(and,	optionally,	name	space)	or	else	Unmarshal

				47	 //						returns	an	error.

				48	 //

				49	 //			*	If	the	XML	element	has	an	attribute	whose	name	matches	a

				50	 //						struct	field	name	with	an	associated	tag	containing	",attr"	or

				51	 //						the	explicit	name	in	a	struct	field	tag	of	the	form	"name,attr",

				52	 //						Unmarshal	records	the	attribute	value	in	that	field.

				53	 //

				54	 //			*	If	the	XML	element	contains	character	data,	that	data	is

				55	 //						accumulated	in	the	first	struct	field	that	has	tag	"chardata".

				56	 //						The	struct	field	may	have	type	[]byte	or	string.

				57	 //						If	there	is	no	such	field,	the	character	data	is	discarded.

				58	 //

				59	 //			*	If	the	XML	element	contains	comments,	they	are	accumulated	in

				60	 //						the	first	struct	field	that	has	tag	",comments".		The	struct

				61	 //						field	may	have	type	[]byte	or	string.		If	there	is	no	such

				62	 //						field,	the	comments	are	discarded.

				63	 //

				64	 //			*	If	the	XML	element	contains	a	sub-element	whose	name	matches

				65	 //						the	prefix	of	a	tag	formatted	as	"a"	or	"a>b>c",	unmarshal

				66	 //						will	descend	into	the	XML	structure	looking	for	elements	with	the

				67	 //						given	names,	and	will	map	the	innermost	elements	to	that	struct

				68	 //						field.	A	tag	starting	with	">"	is	equivalent	to	one	starting

				69	 //						with	the	field	name	followed	by	">".

				70	 //

				71	 //			*	If	the	XML	element	contains	a	sub-element	whose	name	matches

				72	 //						a	struct	field's	XMLName	tag	and	the	struct	field	has	no

				73	 //						explicit	name	tag	as	per	the	previous	rule,	unmarshal	maps

				74	 //						the	sub-element	to	that	struct	field.

				75	 //

				76	 //			*	If	the	XML	element	contains	a	sub-element	whose	name	matches	a

				77	 //						field	without	any	mode	flags	(",attr",	",chardata",	etc),	Unmarshal

				78	 //						maps	the	sub-element	to	that	struct	field.

				79	 //

				80	 //			*	If	the	XML	element	contains	a	sub-element	that	hasn't	matched	any

				81	 //						of	the	above	rules	and	the	struct	has	a	field	with	tag	",any",

				82	 //						unmarshal	maps	the	sub-element	to	that	struct	field.

				83	 //

				84	 //			*	A	non-pointer	anonymous	struct	field	is	handled	as	if	the

				85	 //						fields	of	its	value	were	part	of	the	outer	struct.

				86	 //

				87	 //			*	A	struct	field	with	tag	"-"	is	never	unmarshalled	into.

				88	 //

				89	 //	Unmarshal	maps	an	XML	element	to	a	string	or	[]byte	by	saving	the

				90	 //	concatenation	of	that	element's	character	data	in	the	string	or

				91	 //	[]byte.	The	saved	[]byte	is	never	nil.

				92	 //

				93	 //	Unmarshal	maps	an	attribute	value	to	a	string	or	[]byte	by	saving

				94	 //	the	value	in	the	string	or	slice.

				95	 //

				96	 //	Unmarshal	maps	an	XML	element	to	a	slice	by	extending	the	length	of

				97	 //	the	slice	and	mapping	the	element	to	the	newly	created	value.

				98	 //

				99	 //	Unmarshal	maps	an	XML	element	or	attribute	value	to	a	bool	by

			100	 //	setting	it	to	the	boolean	value	represented	by	the	string.

			101	 //

			102	 //	Unmarshal	maps	an	XML	element	or	attribute	value	to	an	integer	or

			103	 //	floating-point	field	by	setting	the	field	to	the	result	of

			104	 //	interpreting	the	string	value	in	decimal.		There	is	no	check	for

			105	 //	overflow.

			106	 //

			107	 //	Unmarshal	maps	an	XML	element	to	an	xml.Name	by	recording	the

			108	 //	element	name.

			109	 //

			110	 //	Unmarshal	maps	an	XML	element	to	a	pointer	by	setting	the	pointer

			111	 //	to	a	freshly	allocated	value	and	then	mapping	the	element	to	that	value.

			112	 //

			113	 func	Unmarshal(data	[]byte,	v	interface{})	error	{

			114	 	 return	NewDecoder(bytes.NewBuffer(data)).Decode(v)

			115	 }

			116	

			117	 //	Decode	works	like	xml.Unmarshal,	except	it	reads	the	decoder

			118	 //	stream	to	find	the	start	element.

			119	 func	(d	*Decoder)	Decode(v	interface{})	error	{

			120	 	 return	d.DecodeElement(v,	nil)

			121	 }

			122	

			123	 //	DecodeElement	works	like	xml.Unmarshal	except	that	it	takes

			124	 //	a	pointer	to	the	start	XML	element	to	decode	into	v.

			125	 //	It	is	useful	when	a	client	reads	some	raw	XML	tokens	itself

			126	 //	but	also	wants	to	defer	to	Unmarshal	for	some	elements.

			127	 func	(d	*Decoder)	DecodeElement(v	interface{},	start	*StartElement)	error	{

			128	 	 val	:=	reflect.ValueOf(v)

			129	 	 if	val.Kind()	!=	reflect.Ptr	{

			130	 	 	 return	errors.New("non-pointer	passed	to	Unmarshal")

			131	 	 }

			132	 	 return	d.unmarshal(val.Elem(),	start)

			133	 }

			134	

			135	 //	An	UnmarshalError	represents	an	error	in	the	unmarshalling	process.

			136	 type	UnmarshalError	string

			137	

			138	 func	(e	UnmarshalError)	Error()	string	{	return	string(e)	}

			139	

			140	 //	Unmarshal	a	single	XML	element	into	val.

			141	 func	(p	*Decoder)	unmarshal(val	reflect.Value,	start	*StartElement)	error	{

			142	 	 //	Find	start	element	if	we	need	it.

			143	 	 if	start	==	nil	{

			144	 	 	 for	{

			145	 	 	 	 tok,	err	:=	p.Token()

			146	 	 	 	 if	err	!=	nil	{

			147	 	 	 	 	 return	err

			148	 	 	 	 }

			149	 	 	 	 if	t,	ok	:=	tok.(StartElement);	ok	{

			150	 	 	 	 	 start	=	&t

			151	 	 	 	 	 break

			152	 	 	 	 }

			153	 	 	 }

			154	 	 }

			155	

			156	 	 if	pv	:=	val;	pv.Kind()	==	reflect.Ptr	{

			157	 	 	 if	pv.IsNil()	{

			158	 	 	 	 pv.Set(reflect.New(pv.Type().Elem()))

			159	 	 	 }

			160	 	 	 val	=	pv.Elem()

			161	 	 }

			162	

			163	 	 var	(

			164	 	 	 data									[]byte

			165	 	 	 saveData					reflect.Value

			166	 	 	 comment						[]byte

			167	 	 	 saveComment		reflect.Value

			168	 	 	 saveXML						reflect.Value

			169	 	 	 saveXMLIndex	int

			170	 	 	 saveXMLData		[]byte

			171	 	 	 saveAny						reflect.Value

			172	 	 	 sv											reflect.Value

			173	 	 	 tinfo								*typeInfo

			174	 	 	 err										error

			175)

			176	

			177	 	 switch	v	:=	val;	v.Kind()	{

			178	 	 default:

			179	 	 	 return	errors.New("unknown	type	"	+	v.Type().String())

			180	

			181	 	 case	reflect.Interface:

			182	 	 	 //	TODO:	For	now,	simply	ignore	the	field.	In	the	near

			183	 	 	 //							future	we	may	choose	to	unmarshal	the	start

			184	 	 	 //							element	on	it,	if	not	nil.

			185	 	 	 return	p.Skip()

			186	

			187	 	 case	reflect.Slice:

			188	 	 	 typ	:=	v.Type()

			189	 	 	 if	typ.Elem().Kind()	==	reflect.Uint8	{

			190	 	 	 	 //	[]byte

			191	 	 	 	 saveData	=	v

			192	 	 	 	 break

			193	 	 	 }

			194	

			195	 	 	 //	Slice	of	element	values.

			196	 	 	 //	Grow	slice.

			197	 	 	 n	:=	v.Len()

			198	 	 	 if	n	>=	v.Cap()	{

			199	 	 	 	 ncap	:=	2	*	n

			200	 	 	 	 if	ncap	<	4	{

			201	 	 	 	 	 ncap	=	4

			202	 	 	 	 }

			203	 	 	 	 new	:=	reflect.MakeSlice(typ,	n,	ncap)

			204	 	 	 	 reflect.Copy(new,	v)

			205	 	 	 	 v.Set(new)

			206	 	 	 }

			207	 	 	 v.SetLen(n	+	1)

			208	

			209	 	 	 //	Recur	to	read	element	into	slice.

			210	 	 	 if	err	:=	p.unmarshal(v.Index(n),	start);	err	!=	nil	{

			211	 	 	 	 v.SetLen(n)

			212	 	 	 	 return	err

			213	 	 	 }

			214	 	 	 return	nil

			215	

			216	 	 case	reflect.Bool,	reflect.Float32,	reflect.Float64,	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64,	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr,	reflect.String:

			217	 	 	 saveData	=	v

			218	

			219	 	 case	reflect.Struct:

			220	 	 	 typ	:=	v.Type()

			221	 	 	 if	typ	==	nameType	{

			222	 	 	 	 v.Set(reflect.ValueOf(start.Name))

			223	 	 	 	 break

			224	 	 	 }

			225	 	 	 if	typ	==	timeType	{

			226	 	 	 	 saveData	=	v

			227	 	 	 	 break

			228	 	 	 }

			229	

			230	 	 	 sv	=	v

			231	 	 	 tinfo,	err	=	getTypeInfo(typ)

			232	 	 	 if	err	!=	nil	{

			233	 	 	 	 return	err

			234	 	 	 }

			235	

			236	 	 	 //	Validate	and	assign	element	name.

			237	 	 	 if	tinfo.xmlname	!=	nil	{

			238	 	 	 	 finfo	:=	tinfo.xmlname

			239	 	 	 	 if	finfo.name	!=	""	&&	finfo.name	!=	start.Name.Local	{

			240	 	 	 	 	 return	UnmarshalError("expected	element	type	<"	+	finfo.name	+	">	but	have	<"	+	start.Name.Local	+	">")

			241	 	 	 	 }

			242	 	 	 	 if	finfo.xmlns	!=	""	&&	finfo.xmlns	!=	start.Name.Space	{

			243	 	 	 	 	 e	:=	"expected	element	<"	+	finfo.name	+	">	in	name	space	"	+	finfo.xmlns	+	"	but	have	"

			244	 	 	 	 	 if	start.Name.Space	==	""	{

			245	 	 	 	 	 	 e	+=	"no	name	space"

			246	 	 	 	 	 }	else	{

			247	 	 	 	 	 	 e	+=	start.Name.Space

			248	 	 	 	 	 }

			249	 	 	 	 	 return	UnmarshalError(e)

			250	 	 	 	 }

			251	 	 	 	 fv	:=	sv.FieldByIndex(finfo.idx)

			252	 	 	 	 if	_,	ok	:=	fv.Interface().(Name);	ok	{

			253	 	 	 	 	 fv.Set(reflect.ValueOf(start.Name))

			254	 	 	 	 }

			255	 	 	 }

			256	

			257	 	 	 //	Assign	attributes.

			258	 	 	 //	Also,	determine	whether	we	need	to	save	character	data	or	comments.

			259	 	 	 for	i	:=	range	tinfo.fields	{

			260	 	 	 	 finfo	:=	&tinfo.fields[i]

			261	 	 	 	 switch	finfo.flags	&	fMode	{

			262	 	 	 	 case	fAttr:

			263	 	 	 	 	 strv	:=	sv.FieldByIndex(finfo.idx)

			264	 	 	 	 	 //	Look	for	attribute.

			265	 	 	 	 	 for	_,	a	:=	range	start.Attr	{

			266	 	 	 	 	 	 if	a.Name.Local	==	finfo.name	{

			267	 	 	 	 	 	 	 copyValue(strv,	[]byte(a.Value))

			268	 	 	 	 	 	 	 break

			269	 	 	 	 	 	 }

			270	 	 	 	 	 }

			271	

			272	 	 	 	 case	fCharData:

			273	 	 	 	 	 if	!saveData.IsValid()	{

			274	 	 	 	 	 	 saveData	=	sv.FieldByIndex(finfo.idx)

			275	 	 	 	 	 }

			276	

			277	 	 	 	 case	fComment:

			278	 	 	 	 	 if	!saveComment.IsValid()	{

			279	 	 	 	 	 	 saveComment	=	sv.FieldByIndex(finfo.idx)

			280	 	 	 	 	 }

			281	

			282	 	 	 	 case	fAny:

			283	 	 	 	 	 if	!saveAny.IsValid()	{

			284	 	 	 	 	 	 saveAny	=	sv.FieldByIndex(finfo.idx)

			285	 	 	 	 	 }

			286	

			287	 	 	 	 case	fInnerXml:

			288	 	 	 	 	 if	!saveXML.IsValid()	{

			289	 	 	 	 	 	 saveXML	=	sv.FieldByIndex(finfo.idx)

			290	 	 	 	 	 	 if	p.saved	==	nil	{

			291	 	 	 	 	 	 	 saveXMLIndex	=	0

			292	 	 	 	 	 	 	 p.saved	=	new(bytes.Buffer)

			293	 	 	 	 	 	 }	else	{

			294	 	 	 	 	 	 	 saveXMLIndex	=	p.savedOffset()

			295	 	 	 	 	 	 }

			296	 	 	 	 	 }

			297	 	 	 	 }

			298	 	 	 }

			299	 	 }

			300	

			301	 	 //	Find	end	element.

			302	 	 //	Process	sub-elements	along	the	way.

			303	 Loop:

			304	 	 for	{

			305	 	 	 var	savedOffset	int

			306	 	 	 if	saveXML.IsValid()	{

			307	 	 	 	 savedOffset	=	p.savedOffset()

			308	 	 	 }

			309	 	 	 tok,	err	:=	p.Token()

			310	 	 	 if	err	!=	nil	{

			311	 	 	 	 return	err

			312	 	 	 }

			313	 	 	 switch	t	:=	tok.(type)	{

			314	 	 	 case	StartElement:

			315	 	 	 	 consumed	:=	false

			316	 	 	 	 if	sv.IsValid()	{

			317	 	 	 	 	 consumed,	err	=	p.unmarshalPath(tinfo,	sv,	nil,	&t)

			318	 	 	 	 	 if	err	!=	nil	{

			319	 	 	 	 	 	 return	err

			320	 	 	 	 	 }

			321	 	 	 	 	 if	!consumed	&&	saveAny.IsValid()	{

			322	 	 	 	 	 	 consumed	=	true

			323	 	 	 	 	 	 if	err	:=	p.unmarshal(saveAny,	&t);	err	!=	nil	{

			324	 	 	 	 	 	 	 return	err

			325	 	 	 	 	 	 }

			326	 	 	 	 	 }

			327	 	 	 	 }

			328	 	 	 	 if	!consumed	{

			329	 	 	 	 	 if	err	:=	p.Skip();	err	!=	nil	{

			330	 	 	 	 	 	 return	err

			331	 	 	 	 	 }

			332	 	 	 	 }

			333	

			334	 	 	 case	EndElement:

			335	 	 	 	 if	saveXML.IsValid()	{

			336	 	 	 	 	 saveXMLData	=	p.saved.Bytes()[saveXMLIndex:savedOffset]

			337	 	 	 	 	 if	saveXMLIndex	==	0	{

			338	 	 	 	 	 	 p.saved	=	nil

			339	 	 	 	 	 }

			340	 	 	 	 }

			341	 	 	 	 break	Loop

			342	

			343	 	 	 case	CharData:

			344	 	 	 	 if	saveData.IsValid()	{

			345	 	 	 	 	 data	=	append(data,	t...)

			346	 	 	 	 }

			347	

			348	 	 	 case	Comment:

			349	 	 	 	 if	saveComment.IsValid()	{

			350	 	 	 	 	 comment	=	append(comment,	t...)

			351	 	 	 	 }

			352	 	 	 }

			353	 	 }

			354	

			355	 	 if	err	:=	copyValue(saveData,	data);	err	!=	nil	{

			356	 	 	 return	err

			357	 	 }

			358	

			359	 	 switch	t	:=	saveComment;	t.Kind()	{

			360	 	 case	reflect.String:

			361	 	 	 t.SetString(string(comment))

			362	 	 case	reflect.Slice:

			363	 	 	 t.Set(reflect.ValueOf(comment))

			364	 	 }

			365	

			366	 	 switch	t	:=	saveXML;	t.Kind()	{

			367	 	 case	reflect.String:

			368	 	 	 t.SetString(string(saveXMLData))

			369	 	 case	reflect.Slice:

			370	 	 	 t.Set(reflect.ValueOf(saveXMLData))

			371	 	 }

			372	

			373	 	 return	nil

			374	 }

			375	

			376	 func	copyValue(dst	reflect.Value,	src	[]byte)	(err	error)	{

			377	 	 //	Helper	functions	for	integer	and	unsigned	integer	conversions

			378	 	 var	itmp	int64

			379	 	 getInt64	:=	func()	bool	{

			380	 	 	 itmp,	err	=	strconv.ParseInt(string(src),	10,	64)

			381	 	 	 //	TODO:	should	check	sizes

			382	 	 	 return	err	==	nil

			383	 	 }

			384	 	 var	utmp	uint64

			385	 	 getUint64	:=	func()	bool	{

			386	 	 	 utmp,	err	=	strconv.ParseUint(string(src),	10,	64)

			387	 	 	 //	TODO:	check	for	overflow?

			388	 	 	 return	err	==	nil

			389	 	 }

			390	 	 var	ftmp	float64

			391	 	 getFloat64	:=	func()	bool	{

			392	 	 	 ftmp,	err	=	strconv.ParseFloat(string(src),	64)

			393	 	 	 //	TODO:	check	for	overflow?

			394	 	 	 return	err	==	nil

			395	 	 }

			396	

			397	 	 //	Save	accumulated	data.

			398	 	 switch	t	:=	dst;	t.Kind()	{

			399	 	 case	reflect.Invalid:

			400	 	 	 //	Probably	a	comment.

			401	 	 default:

			402	 	 	 return	errors.New("cannot	happen:	unknown	type	"	+	t.Type().String())

			403	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			404	 	 	 if	!getInt64()	{

			405	 	 	 	 return	err

			406	 	 	 }

			407	 	 	 t.SetInt(itmp)

			408	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

			409	 	 	 if	!getUint64()	{

			410	 	 	 	 return	err

			411	 	 	 }

			412	 	 	 t.SetUint(utmp)

			413	 	 case	reflect.Float32,	reflect.Float64:

			414	 	 	 if	!getFloat64()	{

			415	 	 	 	 return	err

			416	 	 	 }

			417	 	 	 t.SetFloat(ftmp)

			418	 	 case	reflect.Bool:

			419	 	 	 value,	err	:=	strconv.ParseBool(strings.TrimSpace(string(src)))

			420	 	 	 if	err	!=	nil	{

			421	 	 	 	 return	err

			422	 	 	 }

			423	 	 	 t.SetBool(value)

			424	 	 case	reflect.String:

			425	 	 	 t.SetString(string(src))

			426	 	 case	reflect.Slice:

			427	 	 	 if	len(src)	==	0	{

			428	 	 	 	 //	non-nil	to	flag	presence

			429	 	 	 	 src	=	[]byte{}

			430	 	 	 }

			431	 	 	 t.SetBytes(src)

			432	 	 case	reflect.Struct:

			433	 	 	 if	t.Type()	==	timeType	{

			434	 	 	 	 tv,	err	:=	time.Parse(time.RFC3339,	string(src))

			435	 	 	 	 if	err	!=	nil	{

			436	 	 	 	 	 return	err

			437	 	 	 	 }

			438	 	 	 	 t.Set(reflect.ValueOf(tv))

			439	 	 	 }

			440	 	 }

			441	 	 return	nil

			442	 }

			443	

			444	 //	unmarshalPath	walks	down	an	XML	structure	looking	for	wanted

			445	 //	paths,	and	calls	unmarshal	on	them.

			446	 //	The	consumed	result	tells	whether	XML	elements	have	been	consumed

			447	 //	from	the	Decoder	until	start's	matching	end	element,	or	if	it's

			448	 //	still	untouched	because	start	is	uninteresting	for	sv's	fields.

			449	 func	(p	*Decoder)	unmarshalPath(tinfo	*typeInfo,	sv	reflect.Value,	parents	[]string,	start	*StartElement)	(consumed	bool,	err	error)	{

			450	 	 recurse	:=	false

			451	 Loop:

			452	 	 for	i	:=	range	tinfo.fields	{

			453	 	 	 finfo	:=	&tinfo.fields[i]

			454	 	 	 if	finfo.flags&fElement	==	0	||	len(finfo.parents)	<	len(parents)	{

			455	 	 	 	 continue

			456	 	 	 }

			457	 	 	 for	j	:=	range	parents	{

			458	 	 	 	 if	parents[j]	!=	finfo.parents[j]	{

			459	 	 	 	 	 continue	Loop

			460	 	 	 	 }

			461	 	 	 }

			462	 	 	 if	len(finfo.parents)	==	len(parents)	&&	finfo.name	==	start.Name.Local	{

			463	 	 	 	 //	It's	a	perfect	match,	unmarshal	the	field.

			464	 	 	 	 return	true,	p.unmarshal(sv.FieldByIndex(finfo.idx),	start)

			465	 	 	 }

			466	 	 	 if	len(finfo.parents)	>	len(parents)	&&	finfo.parents[len(parents)]	==	start.Name.Local	{

			467	 	 	 	 //	It's	a	prefix	for	the	field.	Break	and	recurse

			468	 	 	 	 //	since	it's	not	ok	for	one	field	path	to	be	itself

			469	 	 	 	 //	the	prefix	for	another	field	path.

			470	 	 	 	 recurse	=	true

			471	

			472	 	 	 	 //	We	can	reuse	the	same	slice	as	long	as	we

			473	 	 	 	 //	don't	try	to	append	to	it.

			474	 	 	 	 parents	=	finfo.parents[:len(parents)+1]

			475	 	 	 	 break

			476	 	 	 }

			477	 	 }

			478	 	 if	!recurse	{

			479	 	 	 //	We	have	no	business	with	this	element.

			480	 	 	 return	false,	nil

			481	 	 }

			482	 	 //	The	element	is	not	a	perfect	match	for	any	field,	but	one

			483	 	 //	or	more	fields	have	the	path	to	this	element	as	a	parent

			484	 	 //	prefix.	Recurse	and	attempt	to	match	these.

			485	 	 for	{

			486	 	 	 var	tok	Token

			487	 	 	 tok,	err	=	p.Token()

			488	 	 	 if	err	!=	nil	{

			489	 	 	 	 return	true,	err

			490	 	 	 }

			491	 	 	 switch	t	:=	tok.(type)	{

			492	 	 	 case	StartElement:

			493	 	 	 	 consumed2,	err	:=	p.unmarshalPath(tinfo,	sv,	parents,	&t)

			494	 	 	 	 if	err	!=	nil	{

			495	 	 	 	 	 return	true,	err

			496	 	 	 	 }

			497	 	 	 	 if	!consumed2	{

			498	 	 	 	 	 if	err	:=	p.Skip();	err	!=	nil	{

			499	 	 	 	 	 	 return	true,	err

			500	 	 	 	 	 }

			501	 	 	 	 }

			502	 	 	 case	EndElement:

			503	 	 	 	 return	true,	nil

			504	 	 	 }

			505	 	 }

			506	 	 panic("unreachable")

			507	 }

			508	

			509	 //	Skip	reads	tokens	until	it	has	consumed	the	end	element

			510	 //	matching	the	most	recent	start	element	already	consumed.

			511	 //	It	recurs	if	it	encounters	a	start	element,	so	it	can	be	used	to

			512	 //	skip	nested	structures.

			513	 //	It	returns	nil	if	it	finds	an	end	element	matching	the	start

			514	 //	element;	otherwise	it	returns	an	error	describing	the	problem.

			515	 func	(d	*Decoder)	Skip()	error	{

			516	 	 for	{

			517	 	 	 tok,	err	:=	d.Token()

			518	 	 	 if	err	!=	nil	{

			519	 	 	 	 return	err

			520	 	 	 }

			521	 	 	 switch	tok.(type)	{

			522	 	 	 case	StartElement:

			523	 	 	 	 if	err	:=	d.Skip();	err	!=	nil	{

			524	 	 	 	 	 return	err

			525	 	 	 	 }

			526	 	 	 case	EndElement:

			527	 	 	 	 return	nil

			528	 	 	 }

			529	 	 }

			530	 	 panic("unreachable")

			531	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative

http://code.google.com/policies.html#restrictions

Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/xml/typeinfo.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	xml

					6	

					7	 import	(

					8	 	 "fmt"

					9	 	 "reflect"

				10	 	 "strings"

				11	 	 "sync"

				12)

				13	

				14	 //	typeInfo	holds	details	for	the	xml	representation	of	a	type.

				15	 type	typeInfo	struct	{

				16	 	 xmlname	*fieldInfo

				17	 	 fields		[]fieldInfo

				18	 }

				19	

				20	 //	fieldInfo	holds	details	for	the	xml	representation	of	a	single	field.

				21	 type	fieldInfo	struct	{

				22	 	 idx					[]int

				23	 	 name				string

				24	 	 xmlns			string

				25	 	 flags			fieldFlags

				26	 	 parents	[]string

				27	 }

				28	

				29	 type	fieldFlags	int

				30	

				31	 const	(

				32	 	 fElement	fieldFlags	=	1	<<	iota

				33	 	 fAttr

				34	 	 fCharData

				35	 	 fInnerXml

				36	 	 fComment

				37	 	 fAny

				38	

				39	 	 fOmitEmpty

				40	

				41	 	 fMode	=	fElement	|	fAttr	|	fCharData	|	fInnerXml	|	fComment	|	fAny

				42)

				43	

				44	 var	tinfoMap	=	make(map[reflect.Type]*typeInfo)

				45	 var	tinfoLock	sync.RWMutex

				46	

				47	 var	nameType	=	reflect.TypeOf(Name{})

				48	

				49	 //	getTypeInfo	returns	the	typeInfo	structure	with	details	necessary

				50	 //	for	marshalling	and	unmarshalling	typ.

				51	 func	getTypeInfo(typ	reflect.Type)	(*typeInfo,	error)	{

				52	 	 tinfoLock.RLock()

				53	 	 tinfo,	ok	:=	tinfoMap[typ]

				54	 	 tinfoLock.RUnlock()

				55	 	 if	ok	{

				56	 	 	 return	tinfo,	nil

				57	 	 }

				58	 	 tinfo	=	&typeInfo{}

				59	 	 if	typ.Kind()	==	reflect.Struct	&&	typ	!=	nameType	{

				60	 	 	 n	:=	typ.NumField()

				61	 	 	 for	i	:=	0;	i	<	n;	i++	{

				62	 	 	 	 f	:=	typ.Field(i)

				63	 	 	 	 if	f.PkgPath	!=	""	||	f.Tag.Get("xml")	==	"-"	{

				64	 	 	 	 	 continue	//	Private	field

				65	 	 	 	 }

				66	

				67	 	 	 	 //	For	embedded	structs,	embed	its	fields.

				68	 	 	 	 if	f.Anonymous	{

				69	 	 	 	 	 if	f.Type.Kind()	!=	reflect.Struct	{

				70	 	 	 	 	 	 continue

				71	 	 	 	 	 }

				72	 	 	 	 	 inner,	err	:=	getTypeInfo(f.Type)

				73	 	 	 	 	 if	err	!=	nil	{

				74	 	 	 	 	 	 return	nil,	err

				75	 	 	 	 	 }

				76	 	 	 	 	 for	_,	finfo	:=	range	inner.fields	{

				77	 	 	 	 	 	 finfo.idx	=	append([]int{i},	finfo.idx...)

				78	 	 	 	 	 	 if	err	:=	addFieldInfo(typ,	tinfo,	&finfo);	err	!=	nil	{

				79	 	 	 	 	 	 	 return	nil,	err

				80	 	 	 	 	 	 }

				81	 	 	 	 	 }

				82	 	 	 	 	 continue

				83	 	 	 	 }

				84	

				85	 	 	 	 finfo,	err	:=	structFieldInfo(typ,	&f)

				86	 	 	 	 if	err	!=	nil	{

				87	 	 	 	 	 return	nil,	err

				88	 	 	 	 }

				89	

				90	 	 	 	 if	f.Name	==	"XMLName"	{

				91	 	 	 	 	 tinfo.xmlname	=	finfo

				92	 	 	 	 	 continue

				93	 	 	 	 }

				94	

				95	 	 	 	 //	Add	the	field	if	it	doesn't	conflict	with	other	fields.

				96	 	 	 	 if	err	:=	addFieldInfo(typ,	tinfo,	finfo);	err	!=	nil	{

				97	 	 	 	 	 return	nil,	err

				98	 	 	 	 }

				99	 	 	 }

			100	 	 }

			101	 	 tinfoLock.Lock()

			102	 	 tinfoMap[typ]	=	tinfo

			103	 	 tinfoLock.Unlock()

			104	 	 return	tinfo,	nil

			105	 }

			106	

			107	 //	structFieldInfo	builds	and	returns	a	fieldInfo	for	f.

			108	 func	structFieldInfo(typ	reflect.Type,	f	*reflect.StructField)	(*fieldInfo,	error)	{

			109	 	 finfo	:=	&fieldInfo{idx:	f.Index}

			110	

			111	 	 //	Split	the	tag	from	the	xml	namespace	if	necessary.

			112	 	 tag	:=	f.Tag.Get("xml")

			113	 	 if	i	:=	strings.Index(tag,	"	");	i	>=	0	{

			114	 	 	 finfo.xmlns,	tag	=	tag[:i],	tag[i+1:]

			115	 	 }

			116	

			117	 	 //	Parse	flags.

			118	 	 tokens	:=	strings.Split(tag,	",")

			119	 	 if	len(tokens)	==	1	{

			120	 	 	 finfo.flags	=	fElement

			121	 	 }	else	{

			122	 	 	 tag	=	tokens[0]

			123	 	 	 for	_,	flag	:=	range	tokens[1:]	{

			124	 	 	 	 switch	flag	{

			125	 	 	 	 case	"attr":

			126	 	 	 	 	 finfo.flags	|=	fAttr

			127	 	 	 	 case	"chardata":

			128	 	 	 	 	 finfo.flags	|=	fCharData

			129	 	 	 	 case	"innerxml":

			130	 	 	 	 	 finfo.flags	|=	fInnerXml

			131	 	 	 	 case	"comment":

			132	 	 	 	 	 finfo.flags	|=	fComment

			133	 	 	 	 case	"any":

			134	 	 	 	 	 finfo.flags	|=	fAny

			135	 	 	 	 case	"omitempty":

			136	 	 	 	 	 finfo.flags	|=	fOmitEmpty

			137	 	 	 	 }

			138	 	 	 }

			139	

			140	 	 	 //	Validate	the	flags	used.

			141	 	 	 valid	:=	true

			142	 	 	 switch	mode	:=	finfo.flags	&	fMode;	mode	{

			143	 	 	 case	0:

			144	 	 	 	 finfo.flags	|=	fElement

			145	 	 	 case	fAttr,	fCharData,	fInnerXml,	fComment,	fAny:

			146	 	 	 	 if	f.Name	==	"XMLName"	||	tag	!=	""	&&	mode	!=	fAttr	{

			147	 	 	 	 	 valid	=	false

			148	 	 	 	 }

			149	 	 	 default:

			150	 	 	 	 //	This	will	also	catch	multiple	modes	in	a	single	field.

			151	 	 	 	 valid	=	false

			152	 	 	 }

			153	 	 	 if	finfo.flags&fOmitEmpty	!=	0	&&	finfo.flags&(fElement|fAttr)	==	0	{

			154	 	 	 	 valid	=	false

			155	 	 	 }

			156	 	 	 if	!valid	{

			157	 	 	 	 return	nil,	fmt.Errorf("xml:	invalid	tag	in	field	%s	of	type	%s:	%q",

			158	 	 	 	 	 f.Name,	typ,	f.Tag.Get("xml"))

			159	 	 	 }

			160	 	 }

			161	

			162	 	 //	Use	of	xmlns	without	a	name	is	not	allowed.

			163	 	 if	finfo.xmlns	!=	""	&&	tag	==	""	{

			164	 	 	 return	nil,	fmt.Errorf("xml:	namespace	without	name	in	field	%s	of	type	%s:	%q",

			165	 	 	 	 f.Name,	typ,	f.Tag.Get("xml"))

			166	 	 }

			167	

			168	 	 if	f.Name	==	"XMLName"	{

			169	 	 	 //	The	XMLName	field	records	the	XML	element	name.	Don't

			170	 	 	 //	process	it	as	usual	because	its	name	should	default	to

			171	 	 	 //	empty	rather	than	to	the	field	name.

			172	 	 	 finfo.name	=	tag

			173	 	 	 return	finfo,	nil

			174	 	 }

			175	

			176	 	 if	tag	==	""	{

			177	 	 	 //	If	the	name	part	of	the	tag	is	completely	empty,	get

			178	 	 	 //	default	from	XMLName	of	underlying	struct	if	feasible,

			179	 	 	 //	or	field	name	otherwise.

			180	 	 	 if	xmlname	:=	lookupXMLName(f.Type);	xmlname	!=	nil	{

			181	 	 	 	 finfo.xmlns,	finfo.name	=	xmlname.xmlns,	xmlname.name

			182	 	 	 }	else	{

			183	 	 	 	 finfo.name	=	f.Name

			184	 	 	 }

			185	 	 	 return	finfo,	nil

			186	 	 }

			187	

			188	 	 //	Prepare	field	name	and	parents.

			189	 	 tokens	=	strings.Split(tag,	">")

			190	 	 if	tokens[0]	==	""	{

			191	 	 	 tokens[0]	=	f.Name

			192	 	 }

			193	 	 if	tokens[len(tokens)-1]	==	""	{

			194	 	 	 return	nil,	fmt.Errorf("xml:	trailing	'>'	in	field	%s	of	type	%s",	f.Name,	typ)

			195	 	 }

			196	 	 finfo.name	=	tokens[len(tokens)-1]

			197	 	 if	len(tokens)	>	1	{

			198	 	 	 finfo.parents	=	tokens[:len(tokens)-1]

			199	 	 }

			200	

			201	 	 //	If	the	field	type	has	an	XMLName	field,	the	names	must	match

			202	 	 //	so	that	the	behavior	of	both	marshalling	and	unmarshalling

			203	 	 //	is	straightforward	and	unambiguous.

			204	 	 if	finfo.flags&fElement	!=	0	{

			205	 	 	 ftyp	:=	f.Type

			206	 	 	 xmlname	:=	lookupXMLName(ftyp)

			207	 	 	 if	xmlname	!=	nil	&&	xmlname.name	!=	finfo.name	{

			208	 	 	 	 return	nil,	fmt.Errorf("xml:	name	%q	in	tag	of	%s.%s	conflicts	with	name	%q	in	%s.XMLName",

			209	 	 	 	 	 finfo.name,	typ,	f.Name,	xmlname.name,	ftyp)

			210	 	 	 }

			211	 	 }

			212	 	 return	finfo,	nil

			213	 }

			214	

			215	 //	lookupXMLName	returns	the	fieldInfo	for	typ's	XMLName	field

			216	 //	in	case	it	exists	and	has	a	valid	xml	field	tag,	otherwise

			217	 //	it	returns	nil.

			218	 func	lookupXMLName(typ	reflect.Type)	(xmlname	*fieldInfo)	{

			219	 	 for	typ.Kind()	==	reflect.Ptr	{

			220	 	 	 typ	=	typ.Elem()

			221	 	 }

			222	 	 if	typ.Kind()	!=	reflect.Struct	{

			223	 	 	 return	nil

			224	 	 }

			225	 	 for	i,	n	:=	0,	typ.NumField();	i	<	n;	i++	{

			226	 	 	 f	:=	typ.Field(i)

			227	 	 	 if	f.Name	!=	"XMLName"	{

			228	 	 	 	 continue

			229	 	 	 }

			230	 	 	 finfo,	err	:=	structFieldInfo(typ,	&f)

			231	 	 	 if	finfo.name	!=	""	&&	err	==	nil	{

			232	 	 	 	 return	finfo

			233	 	 	 }

			234	 	 	 //	Also	consider	errors	as	a	non-existent	field	tag

			235	 	 	 //	and	let	getTypeInfo	itself	report	the	error.

			236	 	 	 break

			237	 	 }

			238	 	 return	nil

			239	 }

			240	

			241	 func	min(a,	b	int)	int	{

			242	 	 if	a	<=	b	{

			243	 	 	 return	a

			244	 	 }

			245	 	 return	b

			246	 }

			247	

			248	 //	addFieldInfo	adds	finfo	to	tinfo.fields	if	there	are	no

			249	 //	conflicts,	or	if	conflicts	arise	from	previous	fields	that	were

			250	 //	obtained	from	deeper	embedded	structures	than	finfo.	In	the	latter

			251	 //	case,	the	conflicting	entries	are	dropped.

			252	 //	A	conflict	occurs	when	the	path	(parent	+	name)	to	a	field	is

			253	 //	itself	a	prefix	of	another	path,	or	when	two	paths	match	exactly.

			254	 //	It	is	okay	for	field	paths	to	share	a	common,	shorter	prefix.

			255	 func	addFieldInfo(typ	reflect.Type,	tinfo	*typeInfo,	newf	*fieldInfo)	error	{

			256	 	 var	conflicts	[]int

			257	 Loop:

			258	 	 //	First,	figure	all	conflicts.	Most	working	code	will	have	none.

			259	 	 for	i	:=	range	tinfo.fields	{

			260	 	 	 oldf	:=	&tinfo.fields[i]

			261	 	 	 if	oldf.flags&fMode	!=	newf.flags&fMode	{

			262	 	 	 	 continue

			263	 	 	 }

			264	 	 	 minl	:=	min(len(newf.parents),	len(oldf.parents))

			265	 	 	 for	p	:=	0;	p	<	minl;	p++	{

			266	 	 	 	 if	oldf.parents[p]	!=	newf.parents[p]	{

			267	 	 	 	 	 continue	Loop

			268	 	 	 	 }

			269	 	 	 }

			270	 	 	 if	len(oldf.parents)	>	len(newf.parents)	{

			271	 	 	 	 if	oldf.parents[len(newf.parents)]	==	newf.name	{

			272	 	 	 	 	 conflicts	=	append(conflicts,	i)

			273	 	 	 	 }

			274	 	 	 }	else	if	len(oldf.parents)	<	len(newf.parents)	{

			275	 	 	 	 if	newf.parents[len(oldf.parents)]	==	oldf.name	{

			276	 	 	 	 	 conflicts	=	append(conflicts,	i)

			277	 	 	 	 }

			278	 	 	 }	else	{

			279	 	 	 	 if	newf.name	==	oldf.name	{

			280	 	 	 	 	 conflicts	=	append(conflicts,	i)

			281	 	 	 	 }

			282	 	 	 }

			283	 	 }

			284	 	 //	Without	conflicts,	add	the	new	field	and	return.

			285	 	 if	conflicts	==	nil	{

			286	 	 	 tinfo.fields	=	append(tinfo.fields,	*newf)

			287	 	 	 return	nil

			288	 	 }

			289	

			290	 	 //	If	any	conflict	is	shallower,	ignore	the	new	field.

			291	 	 //	This	matches	the	Go	field	resolution	on	embedding.

			292	 	 for	_,	i	:=	range	conflicts	{

			293	 	 	 if	len(tinfo.fields[i].idx)	<	len(newf.idx)	{

			294	 	 	 	 return	nil

			295	 	 	 }

			296	 	 }

			297	

			298	 	 //	Otherwise,	if	any	of	them	is	at	the	same	depth	level,	it's	an	error.

			299	 	 for	_,	i	:=	range	conflicts	{

			300	 	 	 oldf	:=	&tinfo.fields[i]

			301	 	 	 if	len(oldf.idx)	==	len(newf.idx)	{

			302	 	 	 	 f1	:=	typ.FieldByIndex(oldf.idx)

			303	 	 	 	 f2	:=	typ.FieldByIndex(newf.idx)

			304	 	 	 	 return	&TagPathError{typ,	f1.Name,	f1.Tag.Get("xml"),	f2.Name,	f2.Tag.Get("xml")}

			305	 	 	 }

			306	 	 }

			307	

			308	 	 //	Otherwise,	the	new	field	is	shallower,	and	thus	takes	precedence,

			309	 	 //	so	drop	the	conflicting	fields	from	tinfo	and	append	the	new	one.

			310	 	 for	c	:=	len(conflicts)	-	1;	c	>=	0;	c--	{

			311	 	 	 i	:=	conflicts[c]

			312	 	 	 copy(tinfo.fields[i:],	tinfo.fields[i+1:])

			313	 	 	 tinfo.fields	=	tinfo.fields[:len(tinfo.fields)-1]

			314	 	 }

			315	 	 tinfo.fields	=	append(tinfo.fields,	*newf)

			316	 	 return	nil

			317	 }

			318	

			319	 //	A	TagPathError	represents	an	error	in	the	unmarshalling	process

			320	 //	caused	by	the	use	of	field	tags	with	conflicting	paths.

			321	 type	TagPathError	struct	{

			322	 	 Struct							reflect.Type

			323	 	 Field1,	Tag1	string

			324	 	 Field2,	Tag2	string

			325	 }

			326	

			327	 func	(e	*TagPathError)	Error()	string	{

			328	 	 return	fmt.Sprintf("%s	field	%q	with	tag	%q	conflicts	with	field	%q	with	tag	%q",	e.Struct,	e.Field1,	e.Tag1,	e.Field2,	e.Tag2)

			329	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/encoding/xml/xml.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	xml	implements	a	simple	XML	1.0	parser	that

					6	 //	understands	XML	name	spaces.

					7	 package	xml

					8	

					9	 //	References:

				10	 //				Annotated	XML	spec:	http://www.xml.com/axml/testaxml.htm

				11	 //				XML	name	spaces:	http://www.w3.org/TR/REC-xml-names/

				12	

				13	 //	TODO(rsc):

				14	 //	 Test	error	handling.

				15	

				16	 import	(

				17	 	 "bufio"

				18	 	 "bytes"

				19	 	 "fmt"

				20	 	 "io"

				21	 	 "strconv"

				22	 	 "strings"

				23	 	 "unicode"

				24	 	 "unicode/utf8"

				25)

				26	

				27	 //	A	SyntaxError	represents	a	syntax	error	in	the	XML	input	stream.

				28	 type	SyntaxError	struct	{

				29	 	 Msg		string

				30	 	 Line	int

				31	 }

				32	

				33	 func	(e	*SyntaxError)	Error()	string	{

				34	 	 return	"XML	syntax	error	on	line	"	+	strconv.Itoa(e.Line)	+	":	"	+	e.Msg

				35	 }

				36	

				37	 //	A	Name	represents	an	XML	name	(Local)	annotated

				38	 //	with	a	name	space	identifier	(Space).

				39	 //	In	tokens	returned	by	Decoder.Token,	the	Space	identifier

				40	 //	is	given	as	a	canonical	URL,	not	the	short	prefix	used

				41	 //	in	the	document	being	parsed.

				42	 type	Name	struct	{

				43	 	 Space,	Local	string

				44	 }

				45	

				46	 //	An	Attr	represents	an	attribute	in	an	XML	element	(Name=Value).

				47	 type	Attr	struct	{

				48	 	 Name		Name

				49	 	 Value	string

				50	 }

				51	

				52	 //	A	Token	is	an	interface	holding	one	of	the	token	types:

				53	 //	StartElement,	EndElement,	CharData,	Comment,	ProcInst,	or	Directive.

				54	 type	Token	interface{}

				55	

				56	 //	A	StartElement	represents	an	XML	start	element.

				57	 type	StartElement	struct	{

				58	 	 Name	Name

				59	 	 Attr	[]Attr

				60	 }

				61	

				62	 func	(e	StartElement)	Copy()	StartElement	{

				63	 	 attrs	:=	make([]Attr,	len(e.Attr))

				64	 	 copy(attrs,	e.Attr)

				65	 	 e.Attr	=	attrs

				66	 	 return	e

				67	 }

				68	

				69	 //	An	EndElement	represents	an	XML	end	element.

				70	 type	EndElement	struct	{

				71	 	 Name	Name

				72	 }

				73	

				74	 //	A	CharData	represents	XML	character	data	(raw	text),

				75	 //	in	which	XML	escape	sequences	have	been	replaced	by

				76	 //	the	characters	they	represent.

				77	 type	CharData	[]byte

				78	

				79	 func	makeCopy(b	[]byte)	[]byte	{

				80	 	 b1	:=	make([]byte,	len(b))

				81	 	 copy(b1,	b)

				82	 	 return	b1

				83	 }

				84	

				85	 func	(c	CharData)	Copy()	CharData	{	return	CharData(makeCopy(c))	}

				86	

				87	 //	A	Comment	represents	an	XML	comment	of	the	form	<!--comment-->.

				88	 //	The	bytes	do	not	include	the	<!--	and	-->	comment	markers.

				89	 type	Comment	[]byte

				90	

				91	 func	(c	Comment)	Copy()	Comment	{	return	Comment(makeCopy(c))	}

				92	

				93	 //	A	ProcInst	represents	an	XML	processing	instruction	of	the	form	<?target	inst?>

				94	 type	ProcInst	struct	{

				95	 	 Target	string

				96	 	 Inst			[]byte

				97	 }

				98	

				99	 func	(p	ProcInst)	Copy()	ProcInst	{

			100	 	 p.Inst	=	makeCopy(p.Inst)

			101	 	 return	p

			102	 }

			103	

			104	 //	A	Directive	represents	an	XML	directive	of	the	form	<!text>.

			105	 //	The	bytes	do	not	include	the	<!	and	>	markers.

			106	 type	Directive	[]byte

			107	

			108	 func	(d	Directive)	Copy()	Directive	{	return	Directive(makeCopy(d))	}

			109	

			110	 //	CopyToken	returns	a	copy	of	a	Token.

			111	 func	CopyToken(t	Token)	Token	{

			112	 	 switch	v	:=	t.(type)	{

			113	 	 case	CharData:

			114	 	 	 return	v.Copy()

			115	 	 case	Comment:

			116	 	 	 return	v.Copy()

			117	 	 case	Directive:

			118	 	 	 return	v.Copy()

			119	 	 case	ProcInst:

			120	 	 	 return	v.Copy()

			121	 	 case	StartElement:

			122	 	 	 return	v.Copy()

			123	 	 }

			124	 	 return	t

			125	 }

			126	

			127	 //	A	Decoder	represents	an	XML	parser	reading	a	particular	input	stream.

			128	 //	The	parser	assumes	that	its	input	is	encoded	in	UTF-8.

			129	 type	Decoder	struct	{

			130	 	 //	Strict	defaults	to	true,	enforcing	the	requirements

			131	 	 //	of	the	XML	specification.

			132	 	 //	If	set	to	false,	the	parser	allows	input	containing	common

			133	 	 //	mistakes:

			134	 	 //	 *	If	an	element	is	missing	an	end	tag,	the	parser	invents

			135	 	 //	 		end	tags	as	necessary	to	keep	the	return	values	from	Token

			136	 	 //	 		properly	balanced.

			137	 	 //	 *	In	attribute	values	and	character	data,	unknown	or	malformed

			138	 	 //	 		character	entities	(sequences	beginning	with	&)	are	left	alone.

			139	 	 //

			140	 	 //	Setting:

			141	 	 //

			142	 	 //	 d.Strict	=	false;

			143	 	 //	 d.AutoClose	=	HTMLAutoClose;

			144	 	 //	 d.Entity	=	HTMLEntity

			145	 	 //

			146	 	 //	creates	a	parser	that	can	handle	typical	HTML.

			147	 	 Strict	bool

			148	

			149	 	 //	When	Strict	==	false,	AutoClose	indicates	a	set	of	elements	to

			150	 	 //	consider	closed	immediately	after	they	are	opened,	regardless

			151	 	 //	of	whether	an	end	element	is	present.

			152	 	 AutoClose	[]string

			153	

			154	 	 //	Entity	can	be	used	to	map	non-standard	entity	names	to	string	replacements.

			155	 	 //	The	parser	behaves	as	if	these	standard	mappings	are	present	in	the	map,

			156	 	 //	regardless	of	the	actual	map	content:

			157	 	 //

			158	 	 //	 "lt":	"<",

			159	 	 //	 "gt":	">",

			160	 	 //	 "amp":	"&",

			161	 	 //	 "apos":	"'",

			162	 	 //	 "quot":	`"`,

			163	 	 Entity	map[string]string

			164	

			165	 	 //	CharsetReader,	if	non-nil,	defines	a	function	to	generate

			166	 	 //	charset-conversion	readers,	converting	from	the	provided

			167	 	 //	non-UTF-8	charset	into	UTF-8.	If	CharsetReader	is	nil	or

			168	 	 //	returns	an	error,	parsing	stops	with	an	error.	One	of	the

			169	 	 //	the	CharsetReader's	result	values	must	be	non-nil.

			170	 	 CharsetReader	func(charset	string,	input	io.Reader)	(io.Reader,	error)

			171	

			172	 	 r									io.ByteReader

			173	 	 buf							bytes.Buffer

			174	 	 saved					*bytes.Buffer

			175	 	 stk							*stack

			176	 	 free						*stack

			177	 	 needClose	bool

			178	 	 toClose			Name

			179	 	 nextToken	Token

			180	 	 nextByte		int

			181	 	 ns								map[string]string

			182	 	 err							error

			183	 	 line						int

			184	 	 tmp							[32]byte

			185	 }

			186	

			187	 //	NewDecoder	creates	a	new	XML	parser	reading	from	r.

			188	 func	NewDecoder(r	io.Reader)	*Decoder	{

			189	 	 d	:=	&Decoder{

			190	 	 	 ns:							make(map[string]string),

			191	 	 	 nextByte:	-1,

			192	 	 	 line:					1,

			193	 	 	 Strict:			true,

			194	 	 }

			195	 	 d.switchToReader(r)

			196	 	 return	d

			197	 }

			198	

			199	 //	Token	returns	the	next	XML	token	in	the	input	stream.

			200	 //	At	the	end	of	the	input	stream,	Token	returns	nil,	io.EOF.

			201	 //

			202	 //	Slices	of	bytes	in	the	returned	token	data	refer	to	the

			203	 //	parser's	internal	buffer	and	remain	valid	only	until	the	next

			204	 //	call	to	Token.		To	acquire	a	copy	of	the	bytes,	call	CopyToken

			205	 //	or	the	token's	Copy	method.

			206	 //

			207	 //	Token	expands	self-closing	elements	such	as	

			208	 //	into	separate	start	and	end	elements	returned	by	successive	calls.

			209	 //

			210	 //	Token	guarantees	that	the	StartElement	and	EndElement

			211	 //	tokens	it	returns	are	properly	nested	and	matched:

			212	 //	if	Token	encounters	an	unexpected	end	element,

			213	 //	it	will	return	an	error.

			214	 //

			215	 //	Token	implements	XML	name	spaces	as	described	by

			216	 //	http://www.w3.org/TR/REC-xml-names/.		Each	of	the

			217	 //	Name	structures	contained	in	the	Token	has	the	Space

			218	 //	set	to	the	URL	identifying	its	name	space	when	known.

			219	 //	If	Token	encounters	an	unrecognized	name	space	prefix,

			220	 //	it	uses	the	prefix	as	the	Space	rather	than	report	an	error.

			221	 func	(d	*Decoder)	Token()	(t	Token,	err	error)	{

			222	 	 if	d.nextToken	!=	nil	{

			223	 	 	 t	=	d.nextToken

			224	 	 	 d.nextToken	=	nil

			225	 	 }	else	if	t,	err	=	d.RawToken();	err	!=	nil	{

			226	 	 	 return

			227	 	 }

			228	

			229	 	 if	!d.Strict	{

			230	 	 	 if	t1,	ok	:=	d.autoClose(t);	ok	{

			231	 	 	 	 d.nextToken	=	t

			232	 	 	 	 t	=	t1

			233	 	 	 }

			234	 	 }

			235	 	 switch	t1	:=	t.(type)	{

			236	 	 case	StartElement:

			237	 	 	 //	In	XML	name	spaces,	the	translations	listed	in	the

			238	 	 	 //	attributes	apply	to	the	element	name	and

			239	 	 	 //	to	the	other	attribute	names,	so	process

			240	 	 	 //	the	translations	first.

			241	 	 	 for	_,	a	:=	range	t1.Attr	{

			242	 	 	 	 if	a.Name.Space	==	"xmlns"	{

			243	 	 	 	 	 v,	ok	:=	d.ns[a.Name.Local]

			244	 	 	 	 	 d.pushNs(a.Name.Local,	v,	ok)

			245	 	 	 	 	 d.ns[a.Name.Local]	=	a.Value

			246	 	 	 	 }

			247	 	 	 	 if	a.Name.Space	==	""	&&	a.Name.Local	==	"xmlns"	{

			248	 	 	 	 	 //	Default	space	for	untagged	names

			249	 	 	 	 	 v,	ok	:=	d.ns[""]

			250	 	 	 	 	 d.pushNs("",	v,	ok)

			251	 	 	 	 	 d.ns[""]	=	a.Value

			252	 	 	 	 }

			253	 	 	 }

			254	

			255	 	 	 d.translate(&t1.Name,	true)

			256	 	 	 for	i	:=	range	t1.Attr	{

			257	 	 	 	 d.translate(&t1.Attr[i].Name,	false)

			258	 	 	 }

			259	 	 	 d.pushElement(t1.Name)

			260	 	 	 t	=	t1

			261	

			262	 	 case	EndElement:

			263	 	 	 d.translate(&t1.Name,	true)

			264	 	 	 if	!d.popElement(&t1)	{

			265	 	 	 	 return	nil,	d.err

			266	 	 	 }

			267	 	 	 t	=	t1

			268	 	 }

			269	 	 return

			270	 }

			271	

			272	 //	Apply	name	space	translation	to	name	n.

			273	 //	The	default	name	space	(for	Space=="")

			274	 //	applies	only	to	element	names,	not	to	attribute	names.

			275	 func	(d	*Decoder)	translate(n	*Name,	isElementName	bool)	{

			276	 	 switch	{

			277	 	 case	n.Space	==	"xmlns":

			278	 	 	 return

			279	 	 case	n.Space	==	""	&&	!isElementName:

			280	 	 	 return

			281	 	 case	n.Space	==	""	&&	n.Local	==	"xmlns":

			282	 	 	 return

			283	 	 }

			284	 	 if	v,	ok	:=	d.ns[n.Space];	ok	{

			285	 	 	 n.Space	=	v

			286	 	 }

			287	 }

			288	

			289	 func	(d	*Decoder)	switchToReader(r	io.Reader)	{

			290	 	 //	Get	efficient	byte	at	a	time	reader.

			291	 	 //	Assume	that	if	reader	has	its	own

			292	 	 //	ReadByte,	it's	efficient	enough.

			293	 	 //	Otherwise,	use	bufio.

			294	 	 if	rb,	ok	:=	r.(io.ByteReader);	ok	{

			295	 	 	 d.r	=	rb

			296	 	 }	else	{

			297	 	 	 d.r	=	bufio.NewReader(r)

			298	 	 }

			299	 }

			300	

			301	 //	Parsing	state	-	stack	holds	old	name	space	translations

			302	 //	and	the	current	set	of	open	elements.		The	translations	to	pop	when

			303	 //	ending	a	given	tag	are	*below*	it	on	the	stack,	which	is

			304	 //	more	work	but	forced	on	us	by	XML.

			305	 type	stack	struct	{

			306	 	 next	*stack

			307	 	 kind	int

			308	 	 name	Name

			309	 	 ok			bool

			310	 }

			311	

			312	 const	(

			313	 	 stkStart	=	iota

			314	 	 stkNs

			315)

			316	

			317	 func	(d	*Decoder)	push(kind	int)	*stack	{

			318	 	 s	:=	d.free

			319	 	 if	s	!=	nil	{

			320	 	 	 d.free	=	s.next

			321	 	 }	else	{

			322	 	 	 s	=	new(stack)

			323	 	 }

			324	 	 s.next	=	d.stk

			325	 	 s.kind	=	kind

			326	 	 d.stk	=	s

			327	 	 return	s

			328	 }

			329	

			330	 func	(d	*Decoder)	pop()	*stack	{

			331	 	 s	:=	d.stk

			332	 	 if	s	!=	nil	{

			333	 	 	 d.stk	=	s.next

			334	 	 	 s.next	=	d.free

			335	 	 	 d.free	=	s

			336	 	 }

			337	 	 return	s

			338	 }

			339	

			340	 //	Record	that	we	are	starting	an	element	with	the	given	name.

			341	 func	(d	*Decoder)	pushElement(name	Name)	{

			342	 	 s	:=	d.push(stkStart)

			343	 	 s.name	=	name

			344	 }

			345	

			346	 //	Record	that	we	are	changing	the	value	of	ns[local].

			347	 //	The	old	value	is	url,	ok.

			348	 func	(d	*Decoder)	pushNs(local	string,	url	string,	ok	bool)	{

			349	 	 s	:=	d.push(stkNs)

			350	 	 s.name.Local	=	local

			351	 	 s.name.Space	=	url

			352	 	 s.ok	=	ok

			353	 }

			354	

			355	 //	Creates	a	SyntaxError	with	the	current	line	number.

			356	 func	(d	*Decoder)	syntaxError(msg	string)	error	{

			357	 	 return	&SyntaxError{Msg:	msg,	Line:	d.line}

			358	 }

			359	

			360	 //	Record	that	we	are	ending	an	element	with	the	given	name.

			361	 //	The	name	must	match	the	record	at	the	top	of	the	stack,

			362	 //	which	must	be	a	pushElement	record.

			363	 //	After	popping	the	element,	apply	any	undo	records	from

			364	 //	the	stack	to	restore	the	name	translations	that	existed

			365	 //	before	we	saw	this	element.

			366	 func	(d	*Decoder)	popElement(t	*EndElement)	bool	{

			367	 	 s	:=	d.pop()

			368	 	 name	:=	t.Name

			369	 	 switch	{

			370	 	 case	s	==	nil	||	s.kind	!=	stkStart:

			371	 	 	 d.err	=	d.syntaxError("unexpected	end	element	</"	+	name.Local	+	">")

			372	 	 	 return	false

			373	 	 case	s.name.Local	!=	name.Local:

			374	 	 	 if	!d.Strict	{

			375	 	 	 	 d.needClose	=	true

			376	 	 	 	 d.toClose	=	t.Name

			377	 	 	 	 t.Name	=	s.name

			378	 	 	 	 return	true

			379	 	 	 }

			380	 	 	 d.err	=	d.syntaxError("element	<"	+	s.name.Local	+	">	closed	by	</"	+	name.Local	+	">")

			381	 	 	 return	false

			382	 	 case	s.name.Space	!=	name.Space:

			383	 	 	 d.err	=	d.syntaxError("element	<"	+	s.name.Local	+	">	in	space	"	+	s.name.Space	+

			384	 	 	 	 "closed	by	</"	+	name.Local	+	">	in	space	"	+	name.Space)

			385	 	 	 return	false

			386	 	 }

			387	

			388	 	 //	Pop	stack	until	a	Start	is	on	the	top,	undoing	the

			389	 	 //	translations	that	were	associated	with	the	element	we	just	closed.

			390	 	 for	d.stk	!=	nil	&&	d.stk.kind	!=	stkStart	{

			391	 	 	 s	:=	d.pop()

			392	 	 	 if	s.ok	{

			393	 	 	 	 d.ns[s.name.Local]	=	s.name.Space

			394	 	 	 }	else	{

			395	 	 	 	 delete(d.ns,	s.name.Local)

			396	 	 	 }

			397	 	 }

			398	

			399	 	 return	true

			400	 }

			401	

			402	 //	If	the	top	element	on	the	stack	is	autoclosing	and

			403	 //	t	is	not	the	end	tag,	invent	the	end	tag.

			404	 func	(d	*Decoder)	autoClose(t	Token)	(Token,	bool)	{

			405	 	 if	d.stk	==	nil	||	d.stk.kind	!=	stkStart	{

			406	 	 	 return	nil,	false

			407	 	 }

			408	 	 name	:=	strings.ToLower(d.stk.name.Local)

			409	 	 for	_,	s	:=	range	d.AutoClose	{

			410	 	 	 if	strings.ToLower(s)	==	name	{

			411	 	 	 	 //	This	one	should	be	auto	closed	if	t	doesn't	close	it.

			412	 	 	 	 et,	ok	:=	t.(EndElement)

			413	 	 	 	 if	!ok	||	et.Name.Local	!=	name	{

			414	 	 	 	 	 return	EndElement{d.stk.name},	true

			415	 	 	 	 }

			416	 	 	 	 break

			417	 	 	 }

			418	 	 }

			419	 	 return	nil,	false

			420	 }

			421	

			422	 //	RawToken	is	like	Token	but	does	not	verify	that

			423	 //	start	and	end	elements	match	and	does	not	translate

			424	 //	name	space	prefixes	to	their	corresponding	URLs.

			425	 func	(d	*Decoder)	RawToken()	(Token,	error)	{

			426	 	 if	d.err	!=	nil	{

			427	 	 	 return	nil,	d.err

			428	 	 }

			429	 	 if	d.needClose	{

			430	 	 	 //	The	last	element	we	read	was	self-closing	and

			431	 	 	 //	we	returned	just	the	StartElement	half.

			432	 	 	 //	Return	the	EndElement	half	now.

			433	 	 	 d.needClose	=	false

			434	 	 	 return	EndElement{d.toClose},	nil

			435	 	 }

			436	

			437	 	 b,	ok	:=	d.getc()

			438	 	 if	!ok	{

			439	 	 	 return	nil,	d.err

			440	 	 }

			441	

			442	 	 if	b	!=	'<'	{

			443	 	 	 //	Text	section.

			444	 	 	 d.ungetc(b)

			445	 	 	 data	:=	d.text(-1,	false)

			446	 	 	 if	data	==	nil	{

			447	 	 	 	 return	nil,	d.err

			448	 	 	 }

			449	 	 	 return	CharData(data),	nil

			450	 	 }

			451	

			452	 	 if	b,	ok	=	d.mustgetc();	!ok	{

			453	 	 	 return	nil,	d.err

			454	 	 }

			455	 	 switch	b	{

			456	 	 case	'/':

			457	 	 	 //	</:	End	element

			458	 	 	 var	name	Name

			459	 	 	 if	name,	ok	=	d.nsname();	!ok	{

			460	 	 	 	 if	d.err	==	nil	{

			461	 	 	 	 	 d.err	=	d.syntaxError("expected	element	name	after	</")

			462	 	 	 	 }

			463	 	 	 	 return	nil,	d.err

			464	 	 	 }

			465	 	 	 d.space()

			466	 	 	 if	b,	ok	=	d.mustgetc();	!ok	{

			467	 	 	 	 return	nil,	d.err

			468	 	 	 }

			469	 	 	 if	b	!=	'>'	{

			470	 	 	 	 d.err	=	d.syntaxError("invalid	characters	between	</"	+	name.Local	+	"	and	>")

			471	 	 	 	 return	nil,	d.err

			472	 	 	 }

			473	 	 	 return	EndElement{name},	nil

			474	

			475	 	 case	'?':

			476	 	 	 //	<?:	Processing	instruction.

			477	 	 	 //	TODO(rsc):	Should	parse	the	<?xml	declaration	to	make	sure

			478	 	 	 //	the	version	is	1.0	and	the	encoding	is	UTF-8.

			479	 	 	 var	target	string

			480	 	 	 if	target,	ok	=	d.name();	!ok	{

			481	 	 	 	 if	d.err	==	nil	{

			482	 	 	 	 	 d.err	=	d.syntaxError("expected	target	name	after	<?")

			483	 	 	 	 }

			484	 	 	 	 return	nil,	d.err

			485	 	 	 }

			486	 	 	 d.space()

			487	 	 	 d.buf.Reset()

			488	 	 	 var	b0	byte

			489	 	 	 for	{

			490	 	 	 	 if	b,	ok	=	d.mustgetc();	!ok	{

			491	 	 	 	 	 return	nil,	d.err

			492	 	 	 	 }

			493	 	 	 	 d.buf.WriteByte(b)

			494	 	 	 	 if	b0	==	'?'	&&	b	==	'>'	{

			495	 	 	 	 	 break

			496	 	 	 	 }

			497	 	 	 	 b0	=	b

			498	 	 	 }

			499	 	 	 data	:=	d.buf.Bytes()

			500	 	 	 data	=	data[0	:	len(data)-2]	//	chop	?>

			501	

			502	 	 	 if	target	==	"xml"	{

			503	 	 	 	 enc	:=	procInstEncoding(string(data))

			504	 	 	 	 if	enc	!=	""	&&	enc	!=	"utf-8"	&&	enc	!=	"UTF-8"	{

			505	 	 	 	 	 if	d.CharsetReader	==	nil	{

			506	 	 	 	 	 	 d.err	=	fmt.Errorf("xml:	encoding	%q	declared	but	Decoder.CharsetReader	is	nil",	enc)

			507	 	 	 	 	 	 return	nil,	d.err

			508	 	 	 	 	 }

			509	 	 	 	 	 newr,	err	:=	d.CharsetReader(enc,	d.r.(io.Reader))

			510	 	 	 	 	 if	err	!=	nil	{

			511	 	 	 	 	 	 d.err	=	fmt.Errorf("xml:	opening	charset	%q:	%v",	enc,	err)

			512	 	 	 	 	 	 return	nil,	d.err

			513	 	 	 	 	 }

			514	 	 	 	 	 if	newr	==	nil	{

			515	 	 	 	 	 	 panic("CharsetReader	returned	a	nil	Reader	for	charset	"	+	enc)

			516	 	 	 	 	 }

			517	 	 	 	 	 d.switchToReader(newr)

			518	 	 	 	 }

			519	 	 	 }

			520	 	 	 return	ProcInst{target,	data},	nil

			521	

			522	 	 case	'!':

			523	 	 	 //	<!:	Maybe	comment,	maybe	CDATA.

			524	 	 	 if	b,	ok	=	d.mustgetc();	!ok	{

			525	 	 	 	 return	nil,	d.err

			526	 	 	 }

			527	 	 	 switch	b	{

			528	 	 	 case	'-':	//	<!-

			529	 	 	 	 //	Probably	<!--	for	a	comment.

			530	 	 	 	 if	b,	ok	=	d.mustgetc();	!ok	{

			531	 	 	 	 	 return	nil,	d.err

			532	 	 	 	 }

			533	 	 	 	 if	b	!=	'-'	{

			534	 	 	 	 	 d.err	=	d.syntaxError("invalid	sequence	<!-	not	part	of	<!--")

			535	 	 	 	 	 return	nil,	d.err

			536	 	 	 	 }

			537	 	 	 	 //	Look	for	terminator.

			538	 	 	 	 d.buf.Reset()

			539	 	 	 	 var	b0,	b1	byte

			540	 	 	 	 for	{

			541	 	 	 	 	 if	b,	ok	=	d.mustgetc();	!ok	{

			542	 	 	 	 	 	 return	nil,	d.err

			543	 	 	 	 	 }

			544	 	 	 	 	 d.buf.WriteByte(b)

			545	 	 	 	 	 if	b0	==	'-'	&&	b1	==	'-'	&&	b	==	'>'	{

			546	 	 	 	 	 	 break

			547	 	 	 	 	 }

			548	 	 	 	 	 b0,	b1	=	b1,	b

			549	 	 	 	 }

			550	 	 	 	 data	:=	d.buf.Bytes()

			551	 	 	 	 data	=	data[0	:	len(data)-3]	//	chop	-->

			552	 	 	 	 return	Comment(data),	nil

			553	

			554	 	 	 case	'[':	//	<![

			555	 	 	 	 //	Probably	<![CDATA[.

			556	 	 	 	 for	i	:=	0;	i	<	6;	i++	{

			557	 	 	 	 	 if	b,	ok	=	d.mustgetc();	!ok	{

			558	 	 	 	 	 	 return	nil,	d.err

			559	 	 	 	 	 }

			560	 	 	 	 	 if	b	!=	"CDATA["[i]	{

			561	 	 	 	 	 	 d.err	=	d.syntaxError("invalid	<![sequence")

			562	 	 	 	 	 	 return	nil,	d.err

			563	 	 	 	 	 }

			564	 	 	 	 }

			565	 	 	 	 //	Have	<![CDATA[.		Read	text	until]]>.

			566	 	 	 	 data	:=	d.text(-1,	true)

			567	 	 	 	 if	data	==	nil	{

			568	 	 	 	 	 return	nil,	d.err

			569	 	 	 	 }

			570	 	 	 	 return	CharData(data),	nil

			571	 	 	 }

			572	

			573	 	 	 //	Probably	a	directive:	<!DOCTYPE	...>,	<!ENTITY	...>,	etc.

			574	 	 	 //	We	don't	care,	but	accumulate	for	caller.	Quoted	angle

			575	 	 	 //	brackets	do	not	count	for	nesting.

			576	 	 	 d.buf.Reset()

			577	 	 	 d.buf.WriteByte(b)

			578	 	 	 inquote	:=	uint8(0)

			579	 	 	 depth	:=	0

			580	 	 	 for	{

			581	 	 	 	 if	b,	ok	=	d.mustgetc();	!ok	{

			582	 	 	 	 	 return	nil,	d.err

			583	 	 	 	 }

			584	 	 	 	 if	inquote	==	0	&&	b	==	'>'	&&	depth	==	0	{

			585	 	 	 	 	 break

			586	 	 	 	 }

			587	 	 	 	 d.buf.WriteByte(b)

			588	 	 	 	 switch	{

			589	 	 	 	 case	b	==	inquote:

			590	 	 	 	 	 inquote	=	0

			591	

			592	 	 	 	 case	inquote	!=	0:

			593	 	 	 	 	 //	in	quotes,	no	special	action

			594	

			595	 	 	 	 case	b	==	'\''	||	b	==	'"':

			596	 	 	 	 	 inquote	=	b

			597	

			598	 	 	 	 case	b	==	'>'	&&	inquote	==	0:

			599	 	 	 	 	 depth--

			600	

			601	 	 	 	 case	b	==	'<'	&&	inquote	==	0:

			602	 	 	 	 	 depth++

			603	 	 	 	 }

			604	 	 	 }

			605	 	 	 return	Directive(d.buf.Bytes()),	nil

			606	 	 }

			607	

			608	 	 //	Must	be	an	open	element	like	

			609	 	 d.ungetc(b)

			610	

			611	 	 var	(

			612	 	 	 name		Name

			613	 	 	 empty	bool

			614	 	 	 attr		[]Attr

			615)

			616	 	 if	name,	ok	=	d.nsname();	!ok	{

			617	 	 	 if	d.err	==	nil	{

			618	 	 	 	 d.err	=	d.syntaxError("expected	element	name	after	<")

			619	 	 	 }

			620	 	 	 return	nil,	d.err

			621	 	 }

			622	

			623	 	 attr	=	make([]Attr,	0,	4)

			624	 	 for	{

			625	 	 	 d.space()

			626	 	 	 if	b,	ok	=	d.mustgetc();	!ok	{

			627	 	 	 	 return	nil,	d.err

			628	 	 	 }

			629	 	 	 if	b	==	'/'	{

			630	 	 	 	 empty	=	true

			631	 	 	 	 if	b,	ok	=	d.mustgetc();	!ok	{

			632	 	 	 	 	 return	nil,	d.err

			633	 	 	 	 }

			634	 	 	 	 if	b	!=	'>'	{

			635	 	 	 	 	 d.err	=	d.syntaxError("expected	/>	in	element")

			636	 	 	 	 	 return	nil,	d.err

			637	 	 	 	 }

			638	 	 	 	 break

			639	 	 	 }

			640	 	 	 if	b	==	'>'	{

			641	 	 	 	 break

			642	 	 	 }

			643	 	 	 d.ungetc(b)

			644	

			645	 	 	 n	:=	len(attr)

			646	 	 	 if	n	>=	cap(attr)	{

			647	 	 	 	 nattr	:=	make([]Attr,	n,	2*cap(attr))

			648	 	 	 	 copy(nattr,	attr)

			649	 	 	 	 attr	=	nattr

			650	 	 	 }

			651	 	 	 attr	=	attr[0	:	n+1]

			652	 	 	 a	:=	&attr[n]

			653	 	 	 if	a.Name,	ok	=	d.nsname();	!ok	{

			654	 	 	 	 if	d.err	==	nil	{

			655	 	 	 	 	 d.err	=	d.syntaxError("expected	attribute	name	in	element")

			656	 	 	 	 }

			657	 	 	 	 return	nil,	d.err

			658	 	 	 }

			659	 	 	 d.space()

			660	 	 	 if	b,	ok	=	d.mustgetc();	!ok	{

			661	 	 	 	 return	nil,	d.err

			662	 	 	 }

			663	 	 	 if	b	!=	'='	{

			664	 	 	 	 if	d.Strict	{

			665	 	 	 	 	 d.err	=	d.syntaxError("attribute	name	without	=	in	element")

			666	 	 	 	 	 return	nil,	d.err

			667	 	 	 	 }	else	{

			668	 	 	 	 	 d.ungetc(b)

			669	 	 	 	 	 a.Value	=	a.Name.Local

			670	 	 	 	 }

			671	 	 	 }	else	{

			672	 	 	 	 d.space()

			673	 	 	 	 data	:=	d.attrval()

			674	 	 	 	 if	data	==	nil	{

			675	 	 	 	 	 return	nil,	d.err

			676	 	 	 	 }

			677	 	 	 	 a.Value	=	string(data)

			678	 	 	 }

			679	 	 }

			680	 	 if	empty	{

			681	 	 	 d.needClose	=	true

			682	 	 	 d.toClose	=	name

			683	 	 }

			684	 	 return	StartElement{name,	attr},	nil

			685	 }

			686	

			687	 func	(d	*Decoder)	attrval()	[]byte	{

			688	 	 b,	ok	:=	d.mustgetc()

			689	 	 if	!ok	{

			690	 	 	 return	nil

			691	 	 }

			692	 	 //	Handle	quoted	attribute	values

			693	 	 if	b	==	'"'	||	b	==	'\''	{

			694	 	 	 return	d.text(int(b),	false)

			695	 	 }

			696	 	 //	Handle	unquoted	attribute	values	for	strict	parsers

			697	 	 if	d.Strict	{

			698	 	 	 d.err	=	d.syntaxError("unquoted	or	missing	attribute	value	in	element")

			699	 	 	 return	nil

			700	 	 }

			701	 	 //	Handle	unquoted	attribute	values	for	unstrict	parsers

			702	 	 d.ungetc(b)

			703	 	 d.buf.Reset()

			704	 	 for	{

			705	 	 	 b,	ok	=	d.mustgetc()

			706	 	 	 if	!ok	{

			707	 	 	 	 return	nil

			708	 	 	 }

			709	 	 	 //	http://www.w3.org/TR/REC-html40/intro/sgmltut.html#h-3.2.2

			710	 	 	 if	'a'	<=	b	&&	b	<=	'z'	||	'A'	<=	b	&&	b	<=	'Z'	||

			711	 	 	 	 '0'	<=	b	&&	b	<=	'9'	||	b	==	'_'	||	b	==	':'	||	b	==	'-'	{

			712	 	 	 	 d.buf.WriteByte(b)

			713	 	 	 }	else	{

			714	 	 	 	 d.ungetc(b)

			715	 	 	 	 break

			716	 	 	 }

			717	 	 }

			718	 	 return	d.buf.Bytes()

			719	 }

			720	

			721	 //	Skip	spaces	if	any

			722	 func	(d	*Decoder)	space()	{

			723	 	 for	{

			724	 	 	 b,	ok	:=	d.getc()

			725	 	 	 if	!ok	{

			726	 	 	 	 return

			727	 	 	 }

			728	 	 	 switch	b	{

			729	 	 	 case	'	',	'\r',	'\n',	'\t':

			730	 	 	 default:

			731	 	 	 	 d.ungetc(b)

			732	 	 	 	 return

			733	 	 	 }

			734	 	 }

			735	 }

			736	

			737	 //	Read	a	single	byte.

			738	 //	If	there	is	no	byte	to	read,	return	ok==false

			739	 //	and	leave	the	error	in	d.err.

			740	 //	Maintain	line	number.

			741	 func	(d	*Decoder)	getc()	(b	byte,	ok	bool)	{

			742	 	 if	d.err	!=	nil	{

			743	 	 	 return	0,	false

			744	 	 }

			745	 	 if	d.nextByte	>=	0	{

			746	 	 	 b	=	byte(d.nextByte)

			747	 	 	 d.nextByte	=	-1

			748	 	 }	else	{

			749	 	 	 b,	d.err	=	d.r.ReadByte()

			750	 	 	 if	d.err	!=	nil	{

			751	 	 	 	 return	0,	false

			752	 	 	 }

			753	 	 	 if	d.saved	!=	nil	{

			754	 	 	 	 d.saved.WriteByte(b)

			755	 	 	 }

			756	 	 }

			757	 	 if	b	==	'\n'	{

			758	 	 	 d.line++

			759	 	 }

			760	 	 return	b,	true

			761	 }

			762	

			763	 //	Return	saved	offset.

			764	 //	If	we	did	ungetc	(nextByte	>=	0),	have	to	back	up	one.

			765	 func	(d	*Decoder)	savedOffset()	int	{

			766	 	 n	:=	d.saved.Len()

			767	 	 if	d.nextByte	>=	0	{

			768	 	 	 n--

			769	 	 }

			770	 	 return	n

			771	 }

			772	

			773	 //	Must	read	a	single	byte.

			774	 //	If	there	is	no	byte	to	read,

			775	 //	set	d.err	to	SyntaxError("unexpected	EOF")

			776	 //	and	return	ok==false

			777	 func	(d	*Decoder)	mustgetc()	(b	byte,	ok	bool)	{

			778	 	 if	b,	ok	=	d.getc();	!ok	{

			779	 	 	 if	d.err	==	io.EOF	{

			780	 	 	 	 d.err	=	d.syntaxError("unexpected	EOF")

			781	 	 	 }

			782	 	 }

			783	 	 return

			784	 }

			785	

			786	 //	Unread	a	single	byte.

			787	 func	(d	*Decoder)	ungetc(b	byte)	{

			788	 	 if	b	==	'\n'	{

			789	 	 	 d.line--

			790	 	 }

			791	 	 d.nextByte	=	int(b)

			792	 }

			793	

			794	 var	entity	=	map[string]int{

			795	 	 "lt":			'<',

			796	 	 "gt":			'>',

			797	 	 "amp":		'&',

			798	 	 "apos":	'\'',

			799	 	 "quot":	'"',

			800	 }

			801	

			802	 //	Read	plain	text	section	(XML	calls	it	character	data).

			803	 //	If	quote	>=	0,	we	are	in	a	quoted	string	and	need	to	find	the	matching	quote.

			804	 //	If	cdata	==	true,	we	are	in	a	<![CDATA[section	and	need	to	find]]>.

			805	 //	On	failure	return	nil	and	leave	the	error	in	d.err.

			806	 func	(d	*Decoder)	text(quote	int,	cdata	bool)	[]byte	{

			807	 	 var	b0,	b1	byte

			808	 	 var	trunc	int

			809	 	 d.buf.Reset()

			810	 Input:

			811	 	 for	{

			812	 	 	 b,	ok	:=	d.getc()

			813	 	 	 if	!ok	{

			814	 	 	 	 if	cdata	{

			815	 	 	 	 	 if	d.err	==	io.EOF	{

			816	 	 	 	 	 	 d.err	=	d.syntaxError("unexpected	EOF	in	CDATA	section")

			817	 	 	 	 	 }

			818	 	 	 	 	 return	nil

			819	 	 	 	 }

			820	 	 	 	 break	Input

			821	 	 	 }

			822	

			823	 	 	 //	<![CDATA[section	ends	with]]>.

			824	 	 	 //	It	is	an	error	for]]>	to	appear	in	ordinary	text.

			825	 	 	 if	b0	==	']'	&&	b1	==	']'	&&	b	==	'>'	{

			826	 	 	 	 if	cdata	{

			827	 	 	 	 	 trunc	=	2

			828	 	 	 	 	 break	Input

			829	 	 	 	 }

			830	 	 	 	 d.err	=	d.syntaxError("unescaped]]>	not	in	CDATA	section")

			831	 	 	 	 return	nil

			832	 	 	 }

			833	

			834	 	 	 //	Stop	reading	text	if	we	see	a	<.

			835	 	 	 if	b	==	'<'	&&	!cdata	{

			836	 	 	 	 if	quote	>=	0	{

			837	 	 	 	 	 d.err	=	d.syntaxError("unescaped	<	inside	quoted	string")

			838	 	 	 	 	 return	nil

			839	 	 	 	 }

			840	 	 	 	 d.ungetc('<')

			841	 	 	 	 break	Input

			842	 	 	 }

			843	 	 	 if	quote	>=	0	&&	b	==	byte(quote)	{

			844	 	 	 	 break	Input

			845	 	 	 }

			846	 	 	 if	b	==	'&'	&&	!cdata	{

			847	 	 	 	 //	Read	escaped	character	expression	up	to	semicolon.

			848	 	 	 	 //	XML	in	all	its	glory	allows	a	document	to	define	and	use

			849	 	 	 	 //	its	own	character	names	with	<!ENTITY	...>	directives.

			850	 	 	 	 //	Parsers	are	required	to	recognize	lt,	gt,	amp,	apos,	and	quot

			851	 	 	 	 //	even	if	they	have	not	been	declared.		That's	all	we	allow.

			852	 	 	 	 var	i	int

			853	 	 	 	 for	i	=	0;	i	<	len(d.tmp);	i++	{

			854	 	 	 	 	 var	ok	bool

			855	 	 	 	 	 d.tmp[i],	ok	=	d.getc()

			856	 	 	 	 	 if	!ok	{

			857	 	 	 	 	 	 if	d.err	==	io.EOF	{

			858	 	 	 	 	 	 	 d.err	=	d.syntaxError("unexpected	EOF")

			859	 	 	 	 	 	 }

			860	 	 	 	 	 	 return	nil

			861	 	 	 	 	 }

			862	 	 	 	 	 c	:=	d.tmp[i]

			863	 	 	 	 	 if	c	==	';'	{

			864	 	 	 	 	 	 break

			865	 	 	 	 	 }

			866	 	 	 	 	 if	'a'	<=	c	&&	c	<=	'z'	||

			867	 	 	 	 	 	 'A'	<=	c	&&	c	<=	'Z'	||

			868	 	 	 	 	 	 '0'	<=	c	&&	c	<=	'9'	||

			869	 	 	 	 	 	 c	==	'_'	||	c	==	'#'	{

			870	 	 	 	 	 	 continue

			871	 	 	 	 	 }

			872	 	 	 	 	 d.ungetc(c)

			873	 	 	 	 	 break

			874	 	 	 	 }

			875	 	 	 	 s	:=	string(d.tmp[0:i])

			876	 	 	 	 if	i	>=	len(d.tmp)	{

			877	 	 	 	 	 if	!d.Strict	{

			878	 	 	 	 	 	 b0,	b1	=	0,	0

			879	 	 	 	 	 	 d.buf.WriteByte('&')

			880	 	 	 	 	 	 d.buf.Write(d.tmp[0:i])

			881	 	 	 	 	 	 continue	Input

			882	 	 	 	 	 }

			883	 	 	 	 	 d.err	=	d.syntaxError("character	entity	expression	&"	+	s	+	"...	too	long")

			884	 	 	 	 	 return	nil

			885	 	 	 	 }

			886	 	 	 	 var	haveText	bool

			887	 	 	 	 var	text	string

			888	 	 	 	 if	i	>=	2	&&	s[0]	==	'#'	{

			889	 	 	 	 	 var	n	uint64

			890	 	 	 	 	 var	err	error

			891	 	 	 	 	 if	i	>=	3	&&	s[1]	==	'x'	{

			892	 	 	 	 	 	 n,	err	=	strconv.ParseUint(s[2:],	16,	64)

			893	 	 	 	 	 }	else	{

			894	 	 	 	 	 	 n,	err	=	strconv.ParseUint(s[1:],	10,	64)

			895	 	 	 	 	 }

			896	 	 	 	 	 if	err	==	nil	&&	n	<=	unicode.MaxRune	{

			897	 	 	 	 	 	 text	=	string(n)

			898	 	 	 	 	 	 haveText	=	true

			899	 	 	 	 	 }

			900	 	 	 	 }	else	{

			901	 	 	 	 	 if	r,	ok	:=	entity[s];	ok	{

			902	 	 	 	 	 	 text	=	string(r)

			903	 	 	 	 	 	 haveText	=	true

			904	 	 	 	 	 }	else	if	d.Entity	!=	nil	{

			905	 	 	 	 	 	 text,	haveText	=	d.Entity[s]

			906	 	 	 	 	 }

			907	 	 	 	 }

			908	 	 	 	 if	!haveText	{

			909	 	 	 	 	 if	!d.Strict	{

			910	 	 	 	 	 	 b0,	b1	=	0,	0

			911	 	 	 	 	 	 d.buf.WriteByte('&')

			912	 	 	 	 	 	 d.buf.Write(d.tmp[0:i])

			913	 	 	 	 	 	 continue	Input

			914	 	 	 	 	 }

			915	 	 	 	 	 d.err	=	d.syntaxError("invalid	character	entity	&"	+	s	+	";")

			916	 	 	 	 	 return	nil

			917	 	 	 	 }

			918	 	 	 	 d.buf.Write([]byte(text))

			919	 	 	 	 b0,	b1	=	0,	0

			920	 	 	 	 continue	Input

			921	 	 	 }

			922	 	 	 d.buf.WriteByte(b)

			923	 	 	 b0,	b1	=	b1,	b

			924	 	 }

			925	 	 data	:=	d.buf.Bytes()

			926	 	 data	=	data[0	:	len(data)-trunc]

			927	

			928	 	 //	Inspect	each	rune	for	being	a	disallowed	character.

			929	 	 buf	:=	data

			930	 	 for	len(buf)	>	0	{

			931	 	 	 r,	size	:=	utf8.DecodeRune(buf)

			932	 	 	 if	r	==	utf8.RuneError	&&	size	==	1	{

			933	 	 	 	 d.err	=	d.syntaxError("invalid	UTF-8")

			934	 	 	 	 return	nil

			935	 	 	 }

			936	 	 	 buf	=	buf[size:]

			937	 	 	 if	!isInCharacterRange(r)	{

			938	 	 	 	 d.err	=	d.syntaxError(fmt.Sprintf("illegal	character	code	%U",	r))

			939	 	 	 	 return	nil

			940	 	 	 }

			941	 	 }

			942	

			943	 	 //	Must	rewrite	\r	and	\r\n	into	\n.

			944	 	 w	:=	0

			945	 	 for	r	:=	0;	r	<	len(data);	r++	{

			946	 	 	 b	:=	data[r]

			947	 	 	 if	b	==	'\r'	{

			948	 	 	 	 if	r+1	<	len(data)	&&	data[r+1]	==	'\n'	{

			949	 	 	 	 	 continue

			950	 	 	 	 }

			951	 	 	 	 b	=	'\n'

			952	 	 	 }

			953	 	 	 data[w]	=	b

			954	 	 	 w++

			955	 	 }

			956	 	 return	data[0:w]

			957	 }

			958	

			959	 //	Decide	whether	the	given	rune	is	in	the	XML	Character	Range,	per

			960	 //	the	Char	production	of	http://www.xml.com/axml/testaxml.htm,

			961	 //	Section	2.2	Characters.

			962	 func	isInCharacterRange(r	rune)	(inrange	bool)	{

			963	 	 return	r	==	0x09	||

			964	 	 	 r	==	0x0A	||

			965	 	 	 r	==	0x0D	||

			966	 	 	 r	>=	0x20	&&	r	<=	0xDF77	||

			967	 	 	 r	>=	0xE000	&&	r	<=	0xFFFD	||

			968	 	 	 r	>=	0x10000	&&	r	<=	0x10FFFF

			969	 }

			970	

			971	 //	Get	name	space	name:	name	with	a	:	stuck	in	the	middle.

			972	 //	The	part	before	the	:	is	the	name	space	identifier.

			973	 func	(d	*Decoder)	nsname()	(name	Name,	ok	bool)	{

			974	 	 s,	ok	:=	d.name()

			975	 	 if	!ok	{

			976	 	 	 return

			977	 	 }

			978	 	 i	:=	strings.Index(s,	":")

			979	 	 if	i	<	0	{

			980	 	 	 name.Local	=	s

			981	 	 }	else	{

			982	 	 	 name.Space	=	s[0:i]

			983	 	 	 name.Local	=	s[i+1:]

			984	 	 }

			985	 	 return	name,	true

			986	 }

			987	

			988	 //	Get	name:	/first(first|second)*/

			989	 //	Do	not	set	d.err	if	the	name	is	missing	(unless	unexpected	EOF	is	received):

			990	 //	let	the	caller	provide	better	context.

			991	 func	(d	*Decoder)	name()	(s	string,	ok	bool)	{

			992	 	 var	b	byte

			993	 	 if	b,	ok	=	d.mustgetc();	!ok	{

			994	 	 	 return

			995	 	 }

			996	

			997	 	 //	As	a	first	approximation,	we	gather	the	bytes	[A-Za-z_:.-\x80-\xFF]*

			998	 	 if	b	<	utf8.RuneSelf	&&	!isNameByte(b)	{

			999	 	 	 d.ungetc(b)

		1000	 	 	 return	"",	false

		1001	 	 }

		1002	 	 d.buf.Reset()

		1003	 	 d.buf.WriteByte(b)

		1004	 	 for	{

		1005	 	 	 if	b,	ok	=	d.mustgetc();	!ok	{

		1006	 	 	 	 return

		1007	 	 	 }

		1008	 	 	 if	b	<	utf8.RuneSelf	&&	!isNameByte(b)	{

		1009	 	 	 	 d.ungetc(b)

		1010	 	 	 	 break

		1011	 	 	 }

		1012	 	 	 d.buf.WriteByte(b)

		1013	 	 }

		1014	

		1015	 	 //	Then	we	check	the	characters.

		1016	 	 s	=	d.buf.String()

		1017	 	 for	i,	c	:=	range	s	{

		1018	 	 	 if	!unicode.Is(first,	c)	&&	(i	==	0	||	!unicode.Is(second,	c))	{

		1019	 	 	 	 d.err	=	d.syntaxError("invalid	XML	name:	"	+	s)

		1020	 	 	 	 return	"",	false

		1021	 	 	 }

		1022	 	 }

		1023	 	 return	s,	true

		1024	 }

		1025	

		1026	 func	isNameByte(c	byte)	bool	{

		1027	 	 return	'A'	<=	c	&&	c	<=	'Z'	||

		1028	 	 	 'a'	<=	c	&&	c	<=	'z'	||

		1029	 	 	 '0'	<=	c	&&	c	<=	'9'	||

		1030	 	 	 c	==	'_'	||	c	==	':'	||	c	==	'.'	||	c	==	'-'

		1031	 }

		1032	

		1033	 //	These	tables	were	generated	by	cut	and	paste	from	Appendix	B	of

		1034	 //	the	XML	spec	at	http://www.xml.com/axml/testaxml.htm

		1035	 //	and	then	reformatting.		First	corresponds	to	(Letter	|	'_'	|	':')

		1036	 //	and	second	corresponds	to	NameChar.

		1037	

		1038	 var	first	=	&unicode.RangeTable{

		1039	 	 R16:	[]unicode.Range16{

		1040	 	 	 {0x003A,	0x003A,	1},

		1041	 	 	 {0x0041,	0x005A,	1},

		1042	 	 	 {0x005F,	0x005F,	1},

		1043	 	 	 {0x0061,	0x007A,	1},

		1044	 	 	 {0x00C0,	0x00D6,	1},

		1045	 	 	 {0x00D8,	0x00F6,	1},

		1046	 	 	 {0x00F8,	0x00FF,	1},

		1047	 	 	 {0x0100,	0x0131,	1},

		1048	 	 	 {0x0134,	0x013E,	1},

		1049	 	 	 {0x0141,	0x0148,	1},

		1050	 	 	 {0x014A,	0x017E,	1},

		1051	 	 	 {0x0180,	0x01C3,	1},

		1052	 	 	 {0x01CD,	0x01F0,	1},

		1053	 	 	 {0x01F4,	0x01F5,	1},

		1054	 	 	 {0x01FA,	0x0217,	1},

		1055	 	 	 {0x0250,	0x02A8,	1},

		1056	 	 	 {0x02BB,	0x02C1,	1},

		1057	 	 	 {0x0386,	0x0386,	1},

		1058	 	 	 {0x0388,	0x038A,	1},

		1059	 	 	 {0x038C,	0x038C,	1},

		1060	 	 	 {0x038E,	0x03A1,	1},

		1061	 	 	 {0x03A3,	0x03CE,	1},

		1062	 	 	 {0x03D0,	0x03D6,	1},

		1063	 	 	 {0x03DA,	0x03E0,	2},

		1064	 	 	 {0x03E2,	0x03F3,	1},

		1065	 	 	 {0x0401,	0x040C,	1},

		1066	 	 	 {0x040E,	0x044F,	1},

		1067	 	 	 {0x0451,	0x045C,	1},

		1068	 	 	 {0x045E,	0x0481,	1},

		1069	 	 	 {0x0490,	0x04C4,	1},

		1070	 	 	 {0x04C7,	0x04C8,	1},

		1071	 	 	 {0x04CB,	0x04CC,	1},

		1072	 	 	 {0x04D0,	0x04EB,	1},

		1073	 	 	 {0x04EE,	0x04F5,	1},

		1074	 	 	 {0x04F8,	0x04F9,	1},

		1075	 	 	 {0x0531,	0x0556,	1},

		1076	 	 	 {0x0559,	0x0559,	1},

		1077	 	 	 {0x0561,	0x0586,	1},

		1078	 	 	 {0x05D0,	0x05EA,	1},

		1079	 	 	 {0x05F0,	0x05F2,	1},

		1080	 	 	 {0x0621,	0x063A,	1},

		1081	 	 	 {0x0641,	0x064A,	1},

		1082	 	 	 {0x0671,	0x06B7,	1},

		1083	 	 	 {0x06BA,	0x06BE,	1},

		1084	 	 	 {0x06C0,	0x06CE,	1},

		1085	 	 	 {0x06D0,	0x06D3,	1},

		1086	 	 	 {0x06D5,	0x06D5,	1},

		1087	 	 	 {0x06E5,	0x06E6,	1},

		1088	 	 	 {0x0905,	0x0939,	1},

		1089	 	 	 {0x093D,	0x093D,	1},

		1090	 	 	 {0x0958,	0x0961,	1},

		1091	 	 	 {0x0985,	0x098C,	1},

		1092	 	 	 {0x098F,	0x0990,	1},

		1093	 	 	 {0x0993,	0x09A8,	1},

		1094	 	 	 {0x09AA,	0x09B0,	1},

		1095	 	 	 {0x09B2,	0x09B2,	1},

		1096	 	 	 {0x09B6,	0x09B9,	1},

		1097	 	 	 {0x09DC,	0x09DD,	1},

		1098	 	 	 {0x09DF,	0x09E1,	1},

		1099	 	 	 {0x09F0,	0x09F1,	1},

		1100	 	 	 {0x0A05,	0x0A0A,	1},

		1101	 	 	 {0x0A0F,	0x0A10,	1},

		1102	 	 	 {0x0A13,	0x0A28,	1},

		1103	 	 	 {0x0A2A,	0x0A30,	1},

		1104	 	 	 {0x0A32,	0x0A33,	1},

		1105	 	 	 {0x0A35,	0x0A36,	1},

		1106	 	 	 {0x0A38,	0x0A39,	1},

		1107	 	 	 {0x0A59,	0x0A5C,	1},

		1108	 	 	 {0x0A5E,	0x0A5E,	1},

		1109	 	 	 {0x0A72,	0x0A74,	1},

		1110	 	 	 {0x0A85,	0x0A8B,	1},

		1111	 	 	 {0x0A8D,	0x0A8D,	1},

		1112	 	 	 {0x0A8F,	0x0A91,	1},

		1113	 	 	 {0x0A93,	0x0AA8,	1},

		1114	 	 	 {0x0AAA,	0x0AB0,	1},

		1115	 	 	 {0x0AB2,	0x0AB3,	1},

		1116	 	 	 {0x0AB5,	0x0AB9,	1},

		1117	 	 	 {0x0ABD,	0x0AE0,	0x23},

		1118	 	 	 {0x0B05,	0x0B0C,	1},

		1119	 	 	 {0x0B0F,	0x0B10,	1},

		1120	 	 	 {0x0B13,	0x0B28,	1},

		1121	 	 	 {0x0B2A,	0x0B30,	1},

		1122	 	 	 {0x0B32,	0x0B33,	1},

		1123	 	 	 {0x0B36,	0x0B39,	1},

		1124	 	 	 {0x0B3D,	0x0B3D,	1},

		1125	 	 	 {0x0B5C,	0x0B5D,	1},

		1126	 	 	 {0x0B5F,	0x0B61,	1},

		1127	 	 	 {0x0B85,	0x0B8A,	1},

		1128	 	 	 {0x0B8E,	0x0B90,	1},

		1129	 	 	 {0x0B92,	0x0B95,	1},

		1130	 	 	 {0x0B99,	0x0B9A,	1},

		1131	 	 	 {0x0B9C,	0x0B9C,	1},

		1132	 	 	 {0x0B9E,	0x0B9F,	1},

		1133	 	 	 {0x0BA3,	0x0BA4,	1},

		1134	 	 	 {0x0BA8,	0x0BAA,	1},

		1135	 	 	 {0x0BAE,	0x0BB5,	1},

		1136	 	 	 {0x0BB7,	0x0BB9,	1},

		1137	 	 	 {0x0C05,	0x0C0C,	1},

		1138	 	 	 {0x0C0E,	0x0C10,	1},

		1139	 	 	 {0x0C12,	0x0C28,	1},

		1140	 	 	 {0x0C2A,	0x0C33,	1},

		1141	 	 	 {0x0C35,	0x0C39,	1},

		1142	 	 	 {0x0C60,	0x0C61,	1},

		1143	 	 	 {0x0C85,	0x0C8C,	1},

		1144	 	 	 {0x0C8E,	0x0C90,	1},

		1145	 	 	 {0x0C92,	0x0CA8,	1},

		1146	 	 	 {0x0CAA,	0x0CB3,	1},

		1147	 	 	 {0x0CB5,	0x0CB9,	1},

		1148	 	 	 {0x0CDE,	0x0CDE,	1},

		1149	 	 	 {0x0CE0,	0x0CE1,	1},

		1150	 	 	 {0x0D05,	0x0D0C,	1},

		1151	 	 	 {0x0D0E,	0x0D10,	1},

		1152	 	 	 {0x0D12,	0x0D28,	1},

		1153	 	 	 {0x0D2A,	0x0D39,	1},

		1154	 	 	 {0x0D60,	0x0D61,	1},

		1155	 	 	 {0x0E01,	0x0E2E,	1},

		1156	 	 	 {0x0E30,	0x0E30,	1},

		1157	 	 	 {0x0E32,	0x0E33,	1},

		1158	 	 	 {0x0E40,	0x0E45,	1},

		1159	 	 	 {0x0E81,	0x0E82,	1},

		1160	 	 	 {0x0E84,	0x0E84,	1},

		1161	 	 	 {0x0E87,	0x0E88,	1},

		1162	 	 	 {0x0E8A,	0x0E8D,	3},

		1163	 	 	 {0x0E94,	0x0E97,	1},

		1164	 	 	 {0x0E99,	0x0E9F,	1},

		1165	 	 	 {0x0EA1,	0x0EA3,	1},

		1166	 	 	 {0x0EA5,	0x0EA7,	2},

		1167	 	 	 {0x0EAA,	0x0EAB,	1},

		1168	 	 	 {0x0EAD,	0x0EAE,	1},

		1169	 	 	 {0x0EB0,	0x0EB0,	1},

		1170	 	 	 {0x0EB2,	0x0EB3,	1},

		1171	 	 	 {0x0EBD,	0x0EBD,	1},

		1172	 	 	 {0x0EC0,	0x0EC4,	1},

		1173	 	 	 {0x0F40,	0x0F47,	1},

		1174	 	 	 {0x0F49,	0x0F69,	1},

		1175	 	 	 {0x10A0,	0x10C5,	1},

		1176	 	 	 {0x10D0,	0x10F6,	1},

		1177	 	 	 {0x1100,	0x1100,	1},

		1178	 	 	 {0x1102,	0x1103,	1},

		1179	 	 	 {0x1105,	0x1107,	1},

		1180	 	 	 {0x1109,	0x1109,	1},

		1181	 	 	 {0x110B,	0x110C,	1},

		1182	 	 	 {0x110E,	0x1112,	1},

		1183	 	 	 {0x113C,	0x1140,	2},

		1184	 	 	 {0x114C,	0x1150,	2},

		1185	 	 	 {0x1154,	0x1155,	1},

		1186	 	 	 {0x1159,	0x1159,	1},

		1187	 	 	 {0x115F,	0x1161,	1},

		1188	 	 	 {0x1163,	0x1169,	2},

		1189	 	 	 {0x116D,	0x116E,	1},

		1190	 	 	 {0x1172,	0x1173,	1},

		1191	 	 	 {0x1175,	0x119E,	0x119E	-	0x1175},

		1192	 	 	 {0x11A8,	0x11AB,	0x11AB	-	0x11A8},

		1193	 	 	 {0x11AE,	0x11AF,	1},

		1194	 	 	 {0x11B7,	0x11B8,	1},

		1195	 	 	 {0x11BA,	0x11BA,	1},

		1196	 	 	 {0x11BC,	0x11C2,	1},

		1197	 	 	 {0x11EB,	0x11F0,	0x11F0	-	0x11EB},

		1198	 	 	 {0x11F9,	0x11F9,	1},

		1199	 	 	 {0x1E00,	0x1E9B,	1},

		1200	 	 	 {0x1EA0,	0x1EF9,	1},

		1201	 	 	 {0x1F00,	0x1F15,	1},

		1202	 	 	 {0x1F18,	0x1F1D,	1},

		1203	 	 	 {0x1F20,	0x1F45,	1},

		1204	 	 	 {0x1F48,	0x1F4D,	1},

		1205	 	 	 {0x1F50,	0x1F57,	1},

		1206	 	 	 {0x1F59,	0x1F5B,	0x1F5B	-	0x1F59},

		1207	 	 	 {0x1F5D,	0x1F5D,	1},

		1208	 	 	 {0x1F5F,	0x1F7D,	1},

		1209	 	 	 {0x1F80,	0x1FB4,	1},

		1210	 	 	 {0x1FB6,	0x1FBC,	1},

		1211	 	 	 {0x1FBE,	0x1FBE,	1},

		1212	 	 	 {0x1FC2,	0x1FC4,	1},

		1213	 	 	 {0x1FC6,	0x1FCC,	1},

		1214	 	 	 {0x1FD0,	0x1FD3,	1},

		1215	 	 	 {0x1FD6,	0x1FDB,	1},

		1216	 	 	 {0x1FE0,	0x1FEC,	1},

		1217	 	 	 {0x1FF2,	0x1FF4,	1},

		1218	 	 	 {0x1FF6,	0x1FFC,	1},

		1219	 	 	 {0x2126,	0x2126,	1},

		1220	 	 	 {0x212A,	0x212B,	1},

		1221	 	 	 {0x212E,	0x212E,	1},

		1222	 	 	 {0x2180,	0x2182,	1},

		1223	 	 	 {0x3007,	0x3007,	1},

		1224	 	 	 {0x3021,	0x3029,	1},

		1225	 	 	 {0x3041,	0x3094,	1},

		1226	 	 	 {0x30A1,	0x30FA,	1},

		1227	 	 	 {0x3105,	0x312C,	1},

		1228	 	 	 {0x4E00,	0x9FA5,	1},

		1229	 	 	 {0xAC00,	0xD7A3,	1},

		1230	 	 },

		1231	 }

		1232	

		1233	 var	second	=	&unicode.RangeTable{

		1234	 	 R16:	[]unicode.Range16{

		1235	 	 	 {0x002D,	0x002E,	1},

		1236	 	 	 {0x0030,	0x0039,	1},

		1237	 	 	 {0x00B7,	0x00B7,	1},

		1238	 	 	 {0x02D0,	0x02D1,	1},

		1239	 	 	 {0x0300,	0x0345,	1},

		1240	 	 	 {0x0360,	0x0361,	1},

		1241	 	 	 {0x0387,	0x0387,	1},

		1242	 	 	 {0x0483,	0x0486,	1},

		1243	 	 	 {0x0591,	0x05A1,	1},

		1244	 	 	 {0x05A3,	0x05B9,	1},

		1245	 	 	 {0x05BB,	0x05BD,	1},

		1246	 	 	 {0x05BF,	0x05BF,	1},

		1247	 	 	 {0x05C1,	0x05C2,	1},

		1248	 	 	 {0x05C4,	0x0640,	0x0640	-	0x05C4},

		1249	 	 	 {0x064B,	0x0652,	1},

		1250	 	 	 {0x0660,	0x0669,	1},

		1251	 	 	 {0x0670,	0x0670,	1},

		1252	 	 	 {0x06D6,	0x06DC,	1},

		1253	 	 	 {0x06DD,	0x06DF,	1},

		1254	 	 	 {0x06E0,	0x06E4,	1},

		1255	 	 	 {0x06E7,	0x06E8,	1},

		1256	 	 	 {0x06EA,	0x06ED,	1},

		1257	 	 	 {0x06F0,	0x06F9,	1},

		1258	 	 	 {0x0901,	0x0903,	1},

		1259	 	 	 {0x093C,	0x093C,	1},

		1260	 	 	 {0x093E,	0x094C,	1},

		1261	 	 	 {0x094D,	0x094D,	1},

		1262	 	 	 {0x0951,	0x0954,	1},

		1263	 	 	 {0x0962,	0x0963,	1},

		1264	 	 	 {0x0966,	0x096F,	1},

		1265	 	 	 {0x0981,	0x0983,	1},

		1266	 	 	 {0x09BC,	0x09BC,	1},

		1267	 	 	 {0x09BE,	0x09BF,	1},

		1268	 	 	 {0x09C0,	0x09C4,	1},

		1269	 	 	 {0x09C7,	0x09C8,	1},

		1270	 	 	 {0x09CB,	0x09CD,	1},

		1271	 	 	 {0x09D7,	0x09D7,	1},

		1272	 	 	 {0x09E2,	0x09E3,	1},

		1273	 	 	 {0x09E6,	0x09EF,	1},

		1274	 	 	 {0x0A02,	0x0A3C,	0x3A},

		1275	 	 	 {0x0A3E,	0x0A3F,	1},

		1276	 	 	 {0x0A40,	0x0A42,	1},

		1277	 	 	 {0x0A47,	0x0A48,	1},

		1278	 	 	 {0x0A4B,	0x0A4D,	1},

		1279	 	 	 {0x0A66,	0x0A6F,	1},

		1280	 	 	 {0x0A70,	0x0A71,	1},

		1281	 	 	 {0x0A81,	0x0A83,	1},

		1282	 	 	 {0x0ABC,	0x0ABC,	1},

		1283	 	 	 {0x0ABE,	0x0AC5,	1},

		1284	 	 	 {0x0AC7,	0x0AC9,	1},

		1285	 	 	 {0x0ACB,	0x0ACD,	1},

		1286	 	 	 {0x0AE6,	0x0AEF,	1},

		1287	 	 	 {0x0B01,	0x0B03,	1},

		1288	 	 	 {0x0B3C,	0x0B3C,	1},

		1289	 	 	 {0x0B3E,	0x0B43,	1},

		1290	 	 	 {0x0B47,	0x0B48,	1},

		1291	 	 	 {0x0B4B,	0x0B4D,	1},

		1292	 	 	 {0x0B56,	0x0B57,	1},

		1293	 	 	 {0x0B66,	0x0B6F,	1},

		1294	 	 	 {0x0B82,	0x0B83,	1},

		1295	 	 	 {0x0BBE,	0x0BC2,	1},

		1296	 	 	 {0x0BC6,	0x0BC8,	1},

		1297	 	 	 {0x0BCA,	0x0BCD,	1},

		1298	 	 	 {0x0BD7,	0x0BD7,	1},

		1299	 	 	 {0x0BE7,	0x0BEF,	1},

		1300	 	 	 {0x0C01,	0x0C03,	1},

		1301	 	 	 {0x0C3E,	0x0C44,	1},

		1302	 	 	 {0x0C46,	0x0C48,	1},

		1303	 	 	 {0x0C4A,	0x0C4D,	1},

		1304	 	 	 {0x0C55,	0x0C56,	1},

		1305	 	 	 {0x0C66,	0x0C6F,	1},

		1306	 	 	 {0x0C82,	0x0C83,	1},

		1307	 	 	 {0x0CBE,	0x0CC4,	1},

		1308	 	 	 {0x0CC6,	0x0CC8,	1},

		1309	 	 	 {0x0CCA,	0x0CCD,	1},

		1310	 	 	 {0x0CD5,	0x0CD6,	1},

		1311	 	 	 {0x0CE6,	0x0CEF,	1},

		1312	 	 	 {0x0D02,	0x0D03,	1},

		1313	 	 	 {0x0D3E,	0x0D43,	1},

		1314	 	 	 {0x0D46,	0x0D48,	1},

		1315	 	 	 {0x0D4A,	0x0D4D,	1},

		1316	 	 	 {0x0D57,	0x0D57,	1},

		1317	 	 	 {0x0D66,	0x0D6F,	1},

		1318	 	 	 {0x0E31,	0x0E31,	1},

		1319	 	 	 {0x0E34,	0x0E3A,	1},

		1320	 	 	 {0x0E46,	0x0E46,	1},

		1321	 	 	 {0x0E47,	0x0E4E,	1},

		1322	 	 	 {0x0E50,	0x0E59,	1},

		1323	 	 	 {0x0EB1,	0x0EB1,	1},

		1324	 	 	 {0x0EB4,	0x0EB9,	1},

		1325	 	 	 {0x0EBB,	0x0EBC,	1},

		1326	 	 	 {0x0EC6,	0x0EC6,	1},

		1327	 	 	 {0x0EC8,	0x0ECD,	1},

		1328	 	 	 {0x0ED0,	0x0ED9,	1},

		1329	 	 	 {0x0F18,	0x0F19,	1},

		1330	 	 	 {0x0F20,	0x0F29,	1},

		1331	 	 	 {0x0F35,	0x0F39,	2},

		1332	 	 	 {0x0F3E,	0x0F3F,	1},

		1333	 	 	 {0x0F71,	0x0F84,	1},

		1334	 	 	 {0x0F86,	0x0F8B,	1},

		1335	 	 	 {0x0F90,	0x0F95,	1},

		1336	 	 	 {0x0F97,	0x0F97,	1},

		1337	 	 	 {0x0F99,	0x0FAD,	1},

		1338	 	 	 {0x0FB1,	0x0FB7,	1},

		1339	 	 	 {0x0FB9,	0x0FB9,	1},

		1340	 	 	 {0x20D0,	0x20DC,	1},

		1341	 	 	 {0x20E1,	0x3005,	0x3005	-	0x20E1},

		1342	 	 	 {0x302A,	0x302F,	1},

		1343	 	 	 {0x3031,	0x3035,	1},

		1344	 	 	 {0x3099,	0x309A,	1},

		1345	 	 	 {0x309D,	0x309E,	1},

		1346	 	 	 {0x30FC,	0x30FE,	1},

		1347	 	 },

		1348	 }

		1349	

		1350	 //	HTMLEntity	is	an	entity	map	containing	translations	for	the

		1351	 //	standard	HTML	entity	characters.

		1352	 var	HTMLEntity	=	htmlEntity

		1353	

		1354	 var	htmlEntity	=	map[string]string{

		1355	 	 /*

		1356	 	 	 hget	http://www.w3.org/TR/html4/sgml/entities.html	|

		1357	 	 	 ssam	'

		1358	 	 	 	 ,y	/\>/	x/\<(.|\n)+/	s/\n/	/g

		1359	 	 	 	 ,x	v/^\<!ENTITY/d

		1360	 	 	 	 ,s/\<!ENTITY	([^]+)	.*U\+([0-9A-F][0-9A-F][0-9A-F][0-9A-F])	.+/	 "\1":	"\\u\2",/g

		1361	 	 	 '

		1362	 	 */

		1363	 	 "nbsp":					"\u00A0",

		1364	 	 "iexcl":				"\u00A1",

		1365	 	 "cent":					"\u00A2",

		1366	 	 "pound":				"\u00A3",

		1367	 	 "curren":			"\u00A4",

		1368	 	 "yen":						"\u00A5",

		1369	 	 "brvbar":			"\u00A6",

		1370	 	 "sect":					"\u00A7",

		1371	 	 "uml":						"\u00A8",

		1372	 	 "copy":					"\u00A9",

		1373	 	 "ordf":					"\u00AA",

		1374	 	 "laquo":				"\u00AB",

		1375	 	 "not":						"\u00AC",

		1376	 	 "shy":						"\u00AD",

		1377	 	 "reg":						"\u00AE",

		1378	 	 "macr":					"\u00AF",

		1379	 	 "deg":						"\u00B0",

		1380	 	 "plusmn":			"\u00B1",

		1381	 	 "sup2":					"\u00B2",

		1382	 	 "sup3":					"\u00B3",

		1383	 	 "acute":				"\u00B4",

		1384	 	 "micro":				"\u00B5",

		1385	 	 "para":					"\u00B6",

		1386	 	 "middot":			"\u00B7",

		1387	 	 "cedil":				"\u00B8",

		1388	 	 "sup1":					"\u00B9",

		1389	 	 "ordm":					"\u00BA",

		1390	 	 "raquo":				"\u00BB",

		1391	 	 "frac14":			"\u00BC",

		1392	 	 "frac12":			"\u00BD",

		1393	 	 "frac34":			"\u00BE",

		1394	 	 "iquest":			"\u00BF",

		1395	 	 "Agrave":			"\u00C0",

		1396	 	 "Aacute":			"\u00C1",

		1397	 	 "Acirc":				"\u00C2",

		1398	 	 "Atilde":			"\u00C3",

		1399	 	 "Auml":					"\u00C4",

		1400	 	 "Aring":				"\u00C5",

		1401	 	 "AElig":				"\u00C6",

		1402	 	 "Ccedil":			"\u00C7",

		1403	 	 "Egrave":			"\u00C8",

		1404	 	 "Eacute":			"\u00C9",

		1405	 	 "Ecirc":				"\u00CA",

		1406	 	 "Euml":					"\u00CB",

		1407	 	 "Igrave":			"\u00CC",

		1408	 	 "Iacute":			"\u00CD",

		1409	 	 "Icirc":				"\u00CE",

		1410	 	 "Iuml":					"\u00CF",

		1411	 	 "ETH":						"\u00D0",

		1412	 	 "Ntilde":			"\u00D1",

		1413	 	 "Ograve":			"\u00D2",

		1414	 	 "Oacute":			"\u00D3",

		1415	 	 "Ocirc":				"\u00D4",

		1416	 	 "Otilde":			"\u00D5",

		1417	 	 "Ouml":					"\u00D6",

		1418	 	 "times":				"\u00D7",

		1419	 	 "Oslash":			"\u00D8",

		1420	 	 "Ugrave":			"\u00D9",

		1421	 	 "Uacute":			"\u00DA",

		1422	 	 "Ucirc":				"\u00DB",

		1423	 	 "Uuml":					"\u00DC",

		1424	 	 "Yacute":			"\u00DD",

		1425	 	 "THORN":				"\u00DE",

		1426	 	 "szlig":				"\u00DF",

		1427	 	 "agrave":			"\u00E0",

		1428	 	 "aacute":			"\u00E1",

		1429	 	 "acirc":				"\u00E2",

		1430	 	 "atilde":			"\u00E3",

		1431	 	 "auml":					"\u00E4",

		1432	 	 "aring":				"\u00E5",

		1433	 	 "aelig":				"\u00E6",

		1434	 	 "ccedil":			"\u00E7",

		1435	 	 "egrave":			"\u00E8",

		1436	 	 "eacute":			"\u00E9",

		1437	 	 "ecirc":				"\u00EA",

		1438	 	 "euml":					"\u00EB",

		1439	 	 "igrave":			"\u00EC",

		1440	 	 "iacute":			"\u00ED",

		1441	 	 "icirc":				"\u00EE",

		1442	 	 "iuml":					"\u00EF",

		1443	 	 "eth":						"\u00F0",

		1444	 	 "ntilde":			"\u00F1",

		1445	 	 "ograve":			"\u00F2",

		1446	 	 "oacute":			"\u00F3",

		1447	 	 "ocirc":				"\u00F4",

		1448	 	 "otilde":			"\u00F5",

		1449	 	 "ouml":					"\u00F6",

		1450	 	 "divide":			"\u00F7",

		1451	 	 "oslash":			"\u00F8",

		1452	 	 "ugrave":			"\u00F9",

		1453	 	 "uacute":			"\u00FA",

		1454	 	 "ucirc":				"\u00FB",

		1455	 	 "uuml":					"\u00FC",

		1456	 	 "yacute":			"\u00FD",

		1457	 	 "thorn":				"\u00FE",

		1458	 	 "yuml":					"\u00FF",

		1459	 	 "fnof":					"\u0192",

		1460	 	 "Alpha":				"\u0391",

		1461	 	 "Beta":					"\u0392",

		1462	 	 "Gamma":				"\u0393",

		1463	 	 "Delta":				"\u0394",

		1464	 	 "Epsilon":		"\u0395",

		1465	 	 "Zeta":					"\u0396",

		1466	 	 "Eta":						"\u0397",

		1467	 	 "Theta":				"\u0398",

		1468	 	 "Iota":					"\u0399",

		1469	 	 "Kappa":				"\u039A",

		1470	 	 "Lambda":			"\u039B",

		1471	 	 "Mu":							"\u039C",

		1472	 	 "Nu":							"\u039D",

		1473	 	 "Xi":							"\u039E",

		1474	 	 "Omicron":		"\u039F",

		1475	 	 "Pi":							"\u03A0",

		1476	 	 "Rho":						"\u03A1",

		1477	 	 "Sigma":				"\u03A3",

		1478	 	 "Tau":						"\u03A4",

		1479	 	 "Upsilon":		"\u03A5",

		1480	 	 "Phi":						"\u03A6",

		1481	 	 "Chi":						"\u03A7",

		1482	 	 "Psi":						"\u03A8",

		1483	 	 "Omega":				"\u03A9",

		1484	 	 "alpha":				"\u03B1",

		1485	 	 "beta":					"\u03B2",

		1486	 	 "gamma":				"\u03B3",

		1487	 	 "delta":				"\u03B4",

		1488	 	 "epsilon":		"\u03B5",

		1489	 	 "zeta":					"\u03B6",

		1490	 	 "eta":						"\u03B7",

		1491	 	 "theta":				"\u03B8",

		1492	 	 "iota":					"\u03B9",

		1493	 	 "kappa":				"\u03BA",

		1494	 	 "lambda":			"\u03BB",

		1495	 	 "mu":							"\u03BC",

		1496	 	 "nu":							"\u03BD",

		1497	 	 "xi":							"\u03BE",

		1498	 	 "omicron":		"\u03BF",

		1499	 	 "pi":							"\u03C0",

		1500	 	 "rho":						"\u03C1",

		1501	 	 "sigmaf":			"\u03C2",

		1502	 	 "sigma":				"\u03C3",

		1503	 	 "tau":						"\u03C4",

		1504	 	 "upsilon":		"\u03C5",

		1505	 	 "phi":						"\u03C6",

		1506	 	 "chi":						"\u03C7",

		1507	 	 "psi":						"\u03C8",

		1508	 	 "omega":				"\u03C9",

		1509	 	 "thetasym":	"\u03D1",

		1510	 	 "upsih":				"\u03D2",

		1511	 	 "piv":						"\u03D6",

		1512	 	 "bull":					"\u2022",

		1513	 	 "hellip":			"\u2026",

		1514	 	 "prime":				"\u2032",

		1515	 	 "Prime":				"\u2033",

		1516	 	 "oline":				"\u203E",

		1517	 	 "frasl":				"\u2044",

		1518	 	 "weierp":			"\u2118",

		1519	 	 "image":				"\u2111",

		1520	 	 "real":					"\u211C",

		1521	 	 "trade":				"\u2122",

		1522	 	 "alefsym":		"\u2135",

		1523	 	 "larr":					"\u2190",

		1524	 	 "uarr":					"\u2191",

		1525	 	 "rarr":					"\u2192",

		1526	 	 "darr":					"\u2193",

		1527	 	 "harr":					"\u2194",

		1528	 	 "crarr":				"\u21B5",

		1529	 	 "lArr":					"\u21D0",

		1530	 	 "uArr":					"\u21D1",

		1531	 	 "rArr":					"\u21D2",

		1532	 	 "dArr":					"\u21D3",

		1533	 	 "hArr":					"\u21D4",

		1534	 	 "forall":			"\u2200",

		1535	 	 "part":					"\u2202",

		1536	 	 "exist":				"\u2203",

		1537	 	 "empty":				"\u2205",

		1538	 	 "nabla":				"\u2207",

		1539	 	 "isin":					"\u2208",

		1540	 	 "notin":				"\u2209",

		1541	 	 "ni":							"\u220B",

		1542	 	 "prod":					"\u220F",

		1543	 	 "sum":						"\u2211",

		1544	 	 "minus":				"\u2212",

		1545	 	 "lowast":			"\u2217",

		1546	 	 "radic":				"\u221A",

		1547	 	 "prop":					"\u221D",

		1548	 	 "infin":				"\u221E",

		1549	 	 "ang":						"\u2220",

		1550	 	 "and":						"\u2227",

		1551	 	 "or":							"\u2228",

		1552	 	 "cap":						"\u2229",

		1553	 	 "cup":						"\u222A",

		1554	 	 "int":						"\u222B",

		1555	 	 "there4":			"\u2234",

		1556	 	 "sim":						"\u223C",

		1557	 	 "cong":					"\u2245",

		1558	 	 "asymp":				"\u2248",

		1559	 	 "ne":							"\u2260",

		1560	 	 "equiv":				"\u2261",

		1561	 	 "le":							"\u2264",

		1562	 	 "ge":							"\u2265",

		1563	 	 "sub":						"\u2282",

		1564	 	 "sup":						"\u2283",

		1565	 	 "nsub":					"\u2284",

		1566	 	 "sube":					"\u2286",

		1567	 	 "supe":					"\u2287",

		1568	 	 "oplus":				"\u2295",

		1569	 	 "otimes":			"\u2297",

		1570	 	 "perp":					"\u22A5",

		1571	 	 "sdot":					"\u22C5",

		1572	 	 "lceil":				"\u2308",

		1573	 	 "rceil":				"\u2309",

		1574	 	 "lfloor":			"\u230A",

		1575	 	 "rfloor":			"\u230B",

		1576	 	 "lang":					"\u2329",

		1577	 	 "rang":					"\u232A",

		1578	 	 "loz":						"\u25CA",

		1579	 	 "spades":			"\u2660",

		1580	 	 "clubs":				"\u2663",

		1581	 	 "hearts":			"\u2665",

		1582	 	 "diams":				"\u2666",

		1583	 	 "quot":					"\u0022",

		1584	 	 "amp":						"\u0026",

		1585	 	 "lt":							"\u003C",

		1586	 	 "gt":							"\u003E",

		1587	 	 "OElig":				"\u0152",

		1588	 	 "oelig":				"\u0153",

		1589	 	 "Scaron":			"\u0160",

		1590	 	 "scaron":			"\u0161",

		1591	 	 "Yuml":					"\u0178",

		1592	 	 "circ":					"\u02C6",

		1593	 	 "tilde":				"\u02DC",

		1594	 	 "ensp":					"\u2002",

		1595	 	 "emsp":					"\u2003",

		1596	 	 "thinsp":			"\u2009",

		1597	 	 "zwnj":					"\u200C",

		1598	 	 "zwj":						"\u200D",

		1599	 	 "lrm":						"\u200E",

		1600	 	 "rlm":						"\u200F",

		1601	 	 "ndash":				"\u2013",

		1602	 	 "mdash":				"\u2014",

		1603	 	 "lsquo":				"\u2018",

		1604	 	 "rsquo":				"\u2019",

		1605	 	 "sbquo":				"\u201A",

		1606	 	 "ldquo":				"\u201C",

		1607	 	 "rdquo":				"\u201D",

		1608	 	 "bdquo":				"\u201E",

		1609	 	 "dagger":			"\u2020",

		1610	 	 "Dagger":			"\u2021",

		1611	 	 "permil":			"\u2030",

		1612	 	 "lsaquo":			"\u2039",

		1613	 	 "rsaquo":			"\u203A",

		1614	 	 "euro":					"\u20AC",

		1615	 }

		1616	

		1617	 //	HTMLAutoClose	is	the	set	of	HTML	elements	that

		1618	 //	should	be	considered	to	close	automatically.

		1619	 var	HTMLAutoClose	=	htmlAutoClose

		1620	

		1621	 var	htmlAutoClose	=	[]string{

		1622	 	 /*

		1623	 	 	 hget	http://www.w3.org/TR/html4/loose.dtd	|

		1624	 	 	 9	sed	-n	's/<!ELEMENT	(.*)	-	O	EMPTY.+/	"\1",/p'	|	tr	A-Z	a-z

		1625	 	 */

		1626	 	 "basefont",

		1627	 	 "br",

		1628	 	 "area",

		1629	 	 "link",

		1630	 	 "img",

		1631	 	 "param",

		1632	 	 "hr",

		1633	 	 "input",

		1634	 	 "col					",

		1635	 	 "frame",

		1636	 	 "isindex",

		1637	 	 "base",

		1638	 	 "meta",

		1639	 }

		1640	

		1641	 var	(

		1642	 	 esc_quot	=	[]byte(""")	//	shorter	than	"""

		1643	 	 esc_apos	=	[]byte("'")	//	shorter	than	"'"

		1644	 	 esc_amp		=	[]byte("&")

		1645	 	 esc_lt			=	[]byte("<")

		1646	 	 esc_gt			=	[]byte(">")

		1647)

		1648	

		1649	 //	Escape	writes	to	w	the	properly	escaped	XML	equivalent

		1650	 //	of	the	plain	text	data	s.

		1651	 func	Escape(w	io.Writer,	s	[]byte)	{

		1652	 	 var	esc	[]byte

		1653	 	 last	:=	0

		1654	 	 for	i,	c	:=	range	s	{

		1655	 	 	 switch	c	{

		1656	 	 	 case	'"':

		1657	 	 	 	 esc	=	esc_quot

		1658	 	 	 case	'\'':

		1659	 	 	 	 esc	=	esc_apos

		1660	 	 	 case	'&':

		1661	 	 	 	 esc	=	esc_amp

		1662	 	 	 case	'<':

		1663	 	 	 	 esc	=	esc_lt

		1664	 	 	 case	'>':

		1665	 	 	 	 esc	=	esc_gt

		1666	 	 	 default:

		1667	 	 	 	 continue

		1668	 	 	 }

		1669	 	 	 w.Write(s[last:i])

		1670	 	 	 w.Write(esc)

		1671	 	 	 last	=	i	+	1

		1672	 	 }

		1673	 	 w.Write(s[last:])

		1674	 }

		1675	

		1676	 //	procInstEncoding	parses	the	`encoding="..."`	or	`encoding='...'`

		1677	 //	value	out	of	the	provided	string,	returning	""	if	not	found.

		1678	 func	procInstEncoding(s	string)	string	{

		1679	 	 //	TODO:	this	parsing	is	somewhat	lame	and	not	exact.

		1680	 	 //	It	works	for	all	actual	cases,	though.

		1681	 	 idx	:=	strings.Index(s,	"encoding=")

		1682	 	 if	idx	==	-1	{

		1683	 	 	 return	""

		1684	 	 }

		1685	 	 v	:=	s[idx+len("encoding="):]

		1686	 	 if	v	==	""	{

		1687	 	 	 return	""

		1688	 	 }

		1689	 	 if	v[0]	!=	'\''	&&	v[0]	!=	'"'	{

		1690	 	 	 return	""

		1691	 	 }

		1692	 	 idx	=	strings.IndexRune(v[1:],	rune(v[0]))

		1693	 	 if	idx	==	-1	{

		1694	 	 	 return	""

		1695	 	 }

		1696	 	 return	v[1	:	idx+1]

		1697	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/errors/errors.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	errors	implements	functions	to	manipulate	errors.

					6	 package	errors

					7	

					8	 //	New	returns	an	error	that	formats	as	the	given	text.

					9	 func	New(text	string)	error	{

				10	 	 return	&errorString{text}

				11	 }

				12	

				13	 //	errorString	is	a	trivial	implementation	of	error.

				14	 type	errorString	struct	{

				15	 	 s	string

				16	 }

				17	

				18	 func	(e	*errorString)	Error()	string	{

				19	 	 return	e.s

				20	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/expvar/expvar.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	expvar	provides	a	standardized	interface	to	public	variables,	such

					6	 //	as	operation	counters	in	servers.	It	exposes	these	variables	via	HTTP	at

					7	 //	/debug/vars	in	JSON	format.

					8	 //

					9	 //	Operations	to	set	or	modify	these	public	variables	are	atomic.

				10	 //

				11	 //	In	addition	to	adding	the	HTTP	handler,	this	package	registers	the

				12	 //	following	variables:

				13	 //

				14	 //	 cmdline			os.Args

				15	 //	 memstats		runtime.Memstats

				16	 //

				17	 //	The	package	is	sometimes	only	imported	for	the	side	effect	of

				18	 //	registering	its	HTTP	handler	and	the	above	variables.		To	use	it

				19	 //	this	way,	link	this	package	into	your	program:

				20	 //	 import	_	"expvar"

				21	 //

				22	 package	expvar

				23	

				24	 import	(

				25	 	 "bytes"

				26	 	 "encoding/json"

				27	 	 "fmt"

				28	 	 "log"

				29	 	 "net/http"

				30	 	 "os"

				31	 	 "runtime"

				32	 	 "strconv"

				33	 	 "sync"

				34)

				35	

				36	 //	Var	is	an	abstract	type	for	all	exported	variables.

				37	 type	Var	interface	{

				38	 	 String()	string

				39	 }

				40	

				41	 //	Int	is	a	64-bit	integer	variable	that	satisfies	the	Var	interface.

				42	 type	Int	struct	{

				43	 	 i		int64

				44	 	 mu	sync.RWMutex

				45	 }

				46	

				47	 func	(v	*Int)	String()	string	{

				48	 	 v.mu.RLock()

				49	 	 defer	v.mu.RUnlock()

				50	 	 return	strconv.FormatInt(v.i,	10)

				51	 }

				52	

				53	 func	(v	*Int)	Add(delta	int64)	{

				54	 	 v.mu.Lock()

				55	 	 defer	v.mu.Unlock()

				56	 	 v.i	+=	delta

				57	 }

				58	

				59	 func	(v	*Int)	Set(value	int64)	{

				60	 	 v.mu.Lock()

				61	 	 defer	v.mu.Unlock()

				62	 	 v.i	=	value

				63	 }

				64	

				65	 //	Float	is	a	64-bit	float	variable	that	satisfies	the	Var	interface.

				66	 type	Float	struct	{

				67	 	 f		float64

				68	 	 mu	sync.RWMutex

				69	 }

				70	

				71	 func	(v	*Float)	String()	string	{

				72	 	 v.mu.RLock()

				73	 	 defer	v.mu.RUnlock()

				74	 	 return	strconv.FormatFloat(v.f,	'g',	-1,	64)

				75	 }

				76	

				77	 //	Add	adds	delta	to	v.

				78	 func	(v	*Float)	Add(delta	float64)	{

				79	 	 v.mu.Lock()

				80	 	 defer	v.mu.Unlock()

				81	 	 v.f	+=	delta

				82	 }

				83	

				84	 //	Set	sets	v	to	value.

				85	 func	(v	*Float)	Set(value	float64)	{

				86	 	 v.mu.Lock()

				87	 	 defer	v.mu.Unlock()

				88	 	 v.f	=	value

				89	 }

				90	

				91	 //	Map	is	a	string-to-Var	map	variable	that	satisfies	the	Var	interface.

				92	 type	Map	struct	{

				93	 	 m		map[string]Var

				94	 	 mu	sync.RWMutex

				95	 }

				96	

				97	 //	KeyValue	represents	a	single	entry	in	a	Map.

				98	 type	KeyValue	struct	{

				99	 	 Key			string

			100	 	 Value	Var

			101	 }

			102	

			103	 func	(v	*Map)	String()	string	{

			104	 	 v.mu.RLock()

			105	 	 defer	v.mu.RUnlock()

			106	 	 var	b	bytes.Buffer

			107	 	 fmt.Fprintf(&b,	"{")

			108	 	 first	:=	true

			109	 	 for	key,	val	:=	range	v.m	{

			110	 	 	 if	!first	{

			111	 	 	 	 fmt.Fprintf(&b,	",	")

			112	 	 	 }

			113	 	 	 fmt.Fprintf(&b,	"\"%s\":	%v",	key,	val)

			114	 	 	 first	=	false

			115	 	 }

			116	 	 fmt.Fprintf(&b,	"}")

			117	 	 return	b.String()

			118	 }

			119	

			120	 func	(v	*Map)	Init()	*Map	{

			121	 	 v.m	=	make(map[string]Var)

			122	 	 return	v

			123	 }

			124	

			125	 func	(v	*Map)	Get(key	string)	Var	{

			126	 	 v.mu.RLock()

			127	 	 defer	v.mu.RUnlock()

			128	 	 return	v.m[key]

			129	 }

			130	

			131	 func	(v	*Map)	Set(key	string,	av	Var)	{

			132	 	 v.mu.Lock()

			133	 	 defer	v.mu.Unlock()

			134	 	 v.m[key]	=	av

			135	 }

			136	

			137	 func	(v	*Map)	Add(key	string,	delta	int64)	{

			138	 	 v.mu.RLock()

			139	 	 av,	ok	:=	v.m[key]

			140	 	 v.mu.RUnlock()

			141	 	 if	!ok	{

			142	 	 	 //	check	again	under	the	write	lock

			143	 	 	 v.mu.Lock()

			144	 	 	 if	_,	ok	=	v.m[key];	!ok	{

			145	 	 	 	 av	=	new(Int)

			146	 	 	 	 v.m[key]	=	av

			147	 	 	 }

			148	 	 	 v.mu.Unlock()

			149	 	 }

			150	

			151	 	 //	Add	to	Int;	ignore	otherwise.

			152	 	 if	iv,	ok	:=	av.(*Int);	ok	{

			153	 	 	 iv.Add(delta)

			154	 	 }

			155	 }

			156	

			157	 //	AddFloat	adds	delta	to	the	*Float	value	stored	under	the	given	map	key.

			158	 func	(v	*Map)	AddFloat(key	string,	delta	float64)	{

			159	 	 v.mu.RLock()

			160	 	 av,	ok	:=	v.m[key]

			161	 	 v.mu.RUnlock()

			162	 	 if	!ok	{

			163	 	 	 //	check	again	under	the	write	lock

			164	 	 	 v.mu.Lock()

			165	 	 	 if	_,	ok	=	v.m[key];	!ok	{

			166	 	 	 	 av	=	new(Float)

			167	 	 	 	 v.m[key]	=	av

			168	 	 	 }

			169	 	 	 v.mu.Unlock()

			170	 	 }

			171	

			172	 	 //	Add	to	Float;	ignore	otherwise.

			173	 	 if	iv,	ok	:=	av.(*Float);	ok	{

			174	 	 	 iv.Add(delta)

			175	 	 }

			176	 }

			177	

			178	 //	Do	calls	f	for	each	entry	in	the	map.

			179	 //	The	map	is	locked	during	the	iteration,

			180	 //	but	existing	entries	may	be	concurrently	updated.

			181	 func	(v	*Map)	Do(f	func(KeyValue))	{

			182	 	 v.mu.RLock()

			183	 	 defer	v.mu.RUnlock()

			184	 	 for	k,	v	:=	range	v.m	{

			185	 	 	 f(KeyValue{k,	v})

			186	 	 }

			187	 }

			188	

			189	 //	String	is	a	string	variable,	and	satisfies	the	Var	interface.

			190	 type	String	struct	{

			191	 	 s		string

			192	 	 mu	sync.RWMutex

			193	 }

			194	

			195	 func	(v	*String)	String()	string	{

			196	 	 v.mu.RLock()

			197	 	 defer	v.mu.RUnlock()

			198	 	 return	strconv.Quote(v.s)

			199	 }

			200	

			201	 func	(v	*String)	Set(value	string)	{

			202	 	 v.mu.Lock()

			203	 	 defer	v.mu.Unlock()

			204	 	 v.s	=	value

			205	 }

			206	

			207	 //	Func	implements	Var	by	calling	the	function

			208	 //	and	formatting	the	returned	value	using	JSON.

			209	 type	Func	func()	interface{}

			210	

			211	 func	(f	Func)	String()	string	{

			212	 	 v,	_	:=	json.Marshal(f())

			213	 	 return	string(v)

			214	 }

			215	

			216	 //	All	published	variables.

			217	 var	(

			218	 	 mutex	sync.RWMutex

			219	 	 vars		map[string]Var	=	make(map[string]Var)

			220)

			221	

			222	 //	Publish	declares	a	named	exported	variable.	This	should	be	called	from	a

			223	 //	package's	init	function	when	it	creates	its	Vars.	If	the	name	is	already

			224	 //	registered	then	this	will	log.Panic.

			225	 func	Publish(name	string,	v	Var)	{

			226	 	 mutex.Lock()

			227	 	 defer	mutex.Unlock()

			228	 	 if	_,	existing	:=	vars[name];	existing	{

			229	 	 	 log.Panicln("Reuse	of	exported	var	name:",	name)

			230	 	 }

			231	 	 vars[name]	=	v

			232	 }

			233	

			234	 //	Get	retrieves	a	named	exported	variable.

			235	 func	Get(name	string)	Var	{

			236	 	 mutex.RLock()

			237	 	 defer	mutex.RUnlock()

			238	 	 return	vars[name]

			239	 }

			240	

			241	 //	Convenience	functions	for	creating	new	exported	variables.

			242	

			243	 func	NewInt(name	string)	*Int	{

			244	 	 v	:=	new(Int)

			245	 	 Publish(name,	v)

			246	 	 return	v

			247	 }

			248	

			249	 func	NewFloat(name	string)	*Float	{

			250	 	 v	:=	new(Float)

			251	 	 Publish(name,	v)

			252	 	 return	v

			253	 }

			254	

			255	 func	NewMap(name	string)	*Map	{

			256	 	 v	:=	new(Map).Init()

			257	 	 Publish(name,	v)

			258	 	 return	v

			259	 }

			260	

			261	 func	NewString(name	string)	*String	{

			262	 	 v	:=	new(String)

			263	 	 Publish(name,	v)

			264	 	 return	v

			265	 }

			266	

			267	 //	Do	calls	f	for	each	exported	variable.

			268	 //	The	global	variable	map	is	locked	during	the	iteration,

			269	 //	but	existing	entries	may	be	concurrently	updated.

			270	 func	Do(f	func(KeyValue))	{

			271	 	 mutex.RLock()

			272	 	 defer	mutex.RUnlock()

			273	 	 for	k,	v	:=	range	vars	{

			274	 	 	 f(KeyValue{k,	v})

			275	 	 }

			276	 }

			277	

			278	 func	expvarHandler(w	http.ResponseWriter,	r	*http.Request)	{

			279	 	 w.Header().Set("Content-Type",	"application/json;	charset=utf-8")

			280	 	 fmt.Fprintf(w,	"{\n")

			281	 	 first	:=	true

			282	 	 Do(func(kv	KeyValue)	{

			283	 	 	 if	!first	{

			284	 	 	 	 fmt.Fprintf(w,	",\n")

			285	 	 	 }

			286	 	 	 first	=	false

			287	 	 	 fmt.Fprintf(w,	"%q:	%s",	kv.Key,	kv.Value)

			288	 	 })

			289	 	 fmt.Fprintf(w,	"\n}\n")

			290	 }

			291	

			292	 func	cmdline()	interface{}	{

			293	 	 return	os.Args

			294	 }

			295	

			296	 func	memstats()	interface{}	{

			297	 	 stats	:=	new(runtime.MemStats)

			298	 	 runtime.ReadMemStats(stats)

			299	 	 return	*stats

			300	 }

			301	

			302	 func	init()	{

			303	 	 http.HandleFunc("/debug/vars",	expvarHandler)

			304	 	 Publish("cmdline",	Func(cmdline))

			305	 	 Publish("memstats",	Func(memstats))

			306	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/flag/flag.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 	 Package	flag	implements	command-line	flag	parsing.

					7	

					8	 	 Usage:

					9	

				10	 	 Define	flags	using	flag.String(),	Bool(),	Int(),	etc.

				11	

				12	 	 This	declares	an	integer	flag,	-flagname,	stored	in	the	pointer	ip,	with	type	*int.

				13	 	 	 import	"flag"

				14	 	 	 var	ip	=	flag.Int("flagname",	1234,	"help	message	for	flagname")

				15	 	 If	you	like,	you	can	bind	the	flag	to	a	variable	using	the	Var()	functions.

				16	 	 	 var	flagvar	int

				17	 	 	 func	init()	{

				18	 	 	 	 flag.IntVar(&flagvar,	"flagname",	1234,	"help	message	for	flagname")

				19	 	 	 }

				20	 	 Or	you	can	create	custom	flags	that	satisfy	the	Value	interface	(with

				21	 	 pointer	receivers)	and	couple	them	to	flag	parsing	by

				22	 	 	 flag.Var(&flagVal,	"name",	"help	message	for	flagname")

				23	 	 For	such	flags,	the	default	value	is	just	the	initial	value	of	the	variable.

				24	

				25	 	 After	all	flags	are	defined,	call

				26	 	 	 flag.Parse()

				27	 	 to	parse	the	command	line	into	the	defined	flags.

				28	

				29	 	 Flags	may	then	be	used	directly.	If	you're	using	the	flags	themselves,

				30	 	 they	are	all	pointers;	if	you	bind	to	variables,	they're	values.

				31	 	 	 fmt.Println("ip	has	value	",	*ip)

				32	 	 	 fmt.Println("flagvar	has	value	",	flagvar)

				33	

				34	 	 After	parsing,	the	arguments	after	the	flag	are	available	as	the

				35	 	 slice	flag.Args()	or	individually	as	flag.Arg(i).

				36	 	 The	arguments	are	indexed	from	0	up	to	flag.NArg().

				37	

				38	 	 Command	line	flag	syntax:

				39	 	 	 -flag

				40	 	 	 -flag=x

				41	 	 	 -flag	x		//	non-boolean	flags	only

				42	 	 One	or	two	minus	signs	may	be	used;	they	are	equivalent.

				43	 	 The	last	form	is	not	permitted	for	boolean	flags	because	the

				44	 	 meaning	of	the	command

				45	 	 	 cmd	-x	*

				46	 	 will	change	if	there	is	a	file	called	0,	false,	etc.		You	must

				47	 	 use	the	-flag=false	form	to	turn	off	a	boolean	flag.

				48	

				49	 	 Flag	parsing	stops	just	before	the	first	non-flag	argument

				50	 	 ("-"	is	a	non-flag	argument)	or	after	the	terminator	"--".

				51	

				52	 	 Integer	flags	accept	1234,	0664,	0x1234	and	may	be	negative.

				53	 	 Boolean	flags	may	be	1,	0,	t,	f,	true,	false,	TRUE,	FALSE,	True,	False.

				54	 	 Duration	flags	accept	any	input	valid	for	time.ParseDuration.

				55	

				56	 	 The	default	set	of	command-line	flags	is	controlled	by

				57	 	 top-level	functions.		The	FlagSet	type	allows	one	to	define

				58	 	 independent	sets	of	flags,	such	as	to	implement	subcommands

				59	 	 in	a	command-line	interface.	The	methods	of	FlagSet	are

				60	 	 analogous	to	the	top-level	functions	for	the	command-line

				61	 	 flag	set.

				62	 */

				63	 package	flag

				64	

				65	 import	(

				66	 	 "errors"

				67	 	 "fmt"

				68	 	 "io"

				69	 	 "os"

				70	 	 "sort"

				71	 	 "strconv"

				72	 	 "time"

				73)

				74	

				75	 //	ErrHelp	is	the	error	returned	if	the	flag	-help	is	invoked	but	no	such	flag	is	defined.

				76	 var	ErrHelp	=	errors.New("flag:	help	requested")

				77	

				78	 //	--	bool	Value

				79	 type	boolValue	bool

				80	

				81	 func	newBoolValue(val	bool,	p	*bool)	*boolValue	{

				82	 	 *p	=	val

				83	 	 return	(*boolValue)(p)

				84	 }

				85	

				86	 func	(b	*boolValue)	Set(s	string)	error	{

				87	 	 v,	err	:=	strconv.ParseBool(s)

				88	 	 *b	=	boolValue(v)

				89	 	 return	err

				90	 }

				91	

				92	 func	(b	*boolValue)	String()	string	{	return	fmt.Sprintf("%v",	*b)	}

				93	

				94	 //	--	int	Value

				95	 type	intValue	int

				96	

				97	 func	newIntValue(val	int,	p	*int)	*intValue	{

				98	 	 *p	=	val

				99	 	 return	(*intValue)(p)

			100	 }

			101	

			102	 func	(i	*intValue)	Set(s	string)	error	{

			103	 	 v,	err	:=	strconv.ParseInt(s,	0,	64)

			104	 	 *i	=	intValue(v)

			105	 	 return	err

			106	 }

			107	

			108	 func	(i	*intValue)	String()	string	{	return	fmt.Sprintf("%v",	*i)	}

			109	

			110	 //	--	int64	Value

			111	 type	int64Value	int64

			112	

			113	 func	newInt64Value(val	int64,	p	*int64)	*int64Value	{

			114	 	 *p	=	val

			115	 	 return	(*int64Value)(p)

			116	 }

			117	

			118	 func	(i	*int64Value)	Set(s	string)	error	{

			119	 	 v,	err	:=	strconv.ParseInt(s,	0,	64)

			120	 	 *i	=	int64Value(v)

			121	 	 return	err

			122	 }

			123	

			124	 func	(i	*int64Value)	String()	string	{	return	fmt.Sprintf("%v",	*i)	}

			125	

			126	 //	--	uint	Value

			127	 type	uintValue	uint

			128	

			129	 func	newUintValue(val	uint,	p	*uint)	*uintValue	{

			130	 	 *p	=	val

			131	 	 return	(*uintValue)(p)

			132	 }

			133	

			134	 func	(i	*uintValue)	Set(s	string)	error	{

			135	 	 v,	err	:=	strconv.ParseUint(s,	0,	64)

			136	 	 *i	=	uintValue(v)

			137	 	 return	err

			138	 }

			139	

			140	 func	(i	*uintValue)	String()	string	{	return	fmt.Sprintf("%v",	*i)	}

			141	

			142	 //	--	uint64	Value

			143	 type	uint64Value	uint64

			144	

			145	 func	newUint64Value(val	uint64,	p	*uint64)	*uint64Value	{

			146	 	 *p	=	val

			147	 	 return	(*uint64Value)(p)

			148	 }

			149	

			150	 func	(i	*uint64Value)	Set(s	string)	error	{

			151	 	 v,	err	:=	strconv.ParseUint(s,	0,	64)

			152	 	 *i	=	uint64Value(v)

			153	 	 return	err

			154	 }

			155	

			156	 func	(i	*uint64Value)	String()	string	{	return	fmt.Sprintf("%v",	*i)	}

			157	

			158	 //	--	string	Value

			159	 type	stringValue	string

			160	

			161	 func	newStringValue(val	string,	p	*string)	*stringValue	{

			162	 	 *p	=	val

			163	 	 return	(*stringValue)(p)

			164	 }

			165	

			166	 func	(s	*stringValue)	Set(val	string)	error	{

			167	 	 *s	=	stringValue(val)

			168	 	 return	nil

			169	 }

			170	

			171	 func	(s	*stringValue)	String()	string	{	return	fmt.Sprintf("%s",	*s)	}

			172	

			173	 //	--	float64	Value

			174	 type	float64Value	float64

			175	

			176	 func	newFloat64Value(val	float64,	p	*float64)	*float64Value	{

			177	 	 *p	=	val

			178	 	 return	(*float64Value)(p)

			179	 }

			180	

			181	 func	(f	*float64Value)	Set(s	string)	error	{

			182	 	 v,	err	:=	strconv.ParseFloat(s,	64)

			183	 	 *f	=	float64Value(v)

			184	 	 return	err

			185	 }

			186	

			187	 func	(f	*float64Value)	String()	string	{	return	fmt.Sprintf("%v",	*f)	}

			188	

			189	 //	--	time.Duration	Value

			190	 type	durationValue	time.Duration

			191	

			192	 func	newDurationValue(val	time.Duration,	p	*time.Duration)	*durationValue	{

			193	 	 *p	=	val

			194	 	 return	(*durationValue)(p)

			195	 }

			196	

			197	 func	(d	*durationValue)	Set(s	string)	error	{

			198	 	 v,	err	:=	time.ParseDuration(s)

			199	 	 *d	=	durationValue(v)

			200	 	 return	err

			201	 }

			202	

			203	 func	(d	*durationValue)	String()	string	{	return	(*time.Duration)(d).String()	}

			204	

			205	 //	Value	is	the	interface	to	the	dynamic	value	stored	in	a	flag.

			206	 //	(The	default	value	is	represented	as	a	string.)

			207	 type	Value	interface	{

			208	 	 String()	string

			209	 	 Set(string)	error

			210	 }

			211	

			212	 //	ErrorHandling	defines	how	to	handle	flag	parsing	errors.

			213	 type	ErrorHandling	int

			214	

			215	 const	(

			216	 	 ContinueOnError	ErrorHandling	=	iota

			217	 	 ExitOnError

			218	 	 PanicOnError

			219)

			220	

			221	 //	A	FlagSet	represents	a	set	of	defined	flags.

			222	 type	FlagSet	struct	{

			223	 	 //	Usage	is	the	function	called	when	an	error	occurs	while	parsing	flags.

			224	 	 //	The	field	is	a	function	(not	a	method)	that	may	be	changed	to	point	to

			225	 	 //	a	custom	error	handler.

			226	 	 Usage	func()

			227	

			228	 	 name										string

			229	 	 parsed								bool

			230	 	 actual								map[string]*Flag

			231	 	 formal								map[string]*Flag

			232	 	 args										[]string	//	arguments	after	flags

			233	 	 exitOnError			bool					//	does	the	program	exit	if	there's	an	error?

			234	 	 errorHandling	ErrorHandling

			235	 	 output								io.Writer	//	nil	means	stderr;	use	out()	accessor

			236	 }

			237	

			238	 //	A	Flag	represents	the	state	of	a	flag.

			239	 type	Flag	struct	{

			240	 	 Name					string	//	name	as	it	appears	on	command	line

			241	 	 Usage				string	//	help	message

			242	 	 Value				Value		//	value	as	set

			243	 	 DefValue	string	//	default	value	(as	text);	for	usage	message

			244	 }

			245	

			246	 //	sortFlags	returns	the	flags	as	a	slice	in	lexicographical	sorted	order.

			247	 func	sortFlags(flags	map[string]*Flag)	[]*Flag	{

			248	 	 list	:=	make(sort.StringSlice,	len(flags))

			249	 	 i	:=	0

			250	 	 for	_,	f	:=	range	flags	{

			251	 	 	 list[i]	=	f.Name

			252	 	 	 i++

			253	 	 }

			254	 	 list.Sort()

			255	 	 result	:=	make([]*Flag,	len(list))

			256	 	 for	i,	name	:=	range	list	{

			257	 	 	 result[i]	=	flags[name]

			258	 	 }

			259	 	 return	result

			260	 }

			261	

			262	 func	(f	*FlagSet)	out()	io.Writer	{

			263	 	 if	f.output	==	nil	{

			264	 	 	 return	os.Stderr

			265	 	 }

			266	 	 return	f.output

			267	 }

			268	

			269	 //	SetOutput	sets	the	destination	for	usage	and	error	messages.

			270	 //	If	output	is	nil,	os.Stderr	is	used.

			271	 func	(f	*FlagSet)	SetOutput(output	io.Writer)	{

			272	 	 f.output	=	output

			273	 }

			274	

			275	 //	VisitAll	visits	the	flags	in	lexicographical	order,	calling	fn	for	each.

			276	 //	It	visits	all	flags,	even	those	not	set.

			277	 func	(f	*FlagSet)	VisitAll(fn	func(*Flag))	{

			278	 	 for	_,	flag	:=	range	sortFlags(f.formal)	{

			279	 	 	 fn(flag)

			280	 	 }

			281	 }

			282	

			283	 //	VisitAll	visits	the	command-line	flags	in	lexicographical	order,	calling

			284	 //	fn	for	each.		It	visits	all	flags,	even	those	not	set.

			285	 func	VisitAll(fn	func(*Flag))	{

			286	 	 commandLine.VisitAll(fn)

			287	 }

			288	

			289	 //	Visit	visits	the	flags	in	lexicographical	order,	calling	fn	for	each.

			290	 //	It	visits	only	those	flags	that	have	been	set.

			291	 func	(f	*FlagSet)	Visit(fn	func(*Flag))	{

			292	 	 for	_,	flag	:=	range	sortFlags(f.actual)	{

			293	 	 	 fn(flag)

			294	 	 }

			295	 }

			296	

			297	 //	Visit	visits	the	command-line	flags	in	lexicographical	order,	calling	fn

			298	 //	for	each.		It	visits	only	those	flags	that	have	been	set.

			299	 func	Visit(fn	func(*Flag))	{

			300	 	 commandLine.Visit(fn)

			301	 }

			302	

			303	 //	Lookup	returns	the	Flag	structure	of	the	named	flag,	returning	nil	if	none	exists.

			304	 func	(f	*FlagSet)	Lookup(name	string)	*Flag	{

			305	 	 return	f.formal[name]

			306	 }

			307	

			308	 //	Lookup	returns	the	Flag	structure	of	the	named	command-line	flag,

			309	 //	returning	nil	if	none	exists.

			310	 func	Lookup(name	string)	*Flag	{

			311	 	 return	commandLine.formal[name]

			312	 }

			313	

			314	 //	Set	sets	the	value	of	the	named	flag.

			315	 func	(f	*FlagSet)	Set(name,	value	string)	error	{

			316	 	 flag,	ok	:=	f.formal[name]

			317	 	 if	!ok	{

			318	 	 	 return	fmt.Errorf("no	such	flag	-%v",	name)

			319	 	 }

			320	 	 err	:=	flag.Value.Set(value)

			321	 	 if	err	!=	nil	{

			322	 	 	 return	err

			323	 	 }

			324	 	 if	f.actual	==	nil	{

			325	 	 	 f.actual	=	make(map[string]*Flag)

			326	 	 }

			327	 	 f.actual[name]	=	flag

			328	 	 return	nil

			329	 }

			330	

			331	 //	Set	sets	the	value	of	the	named	command-line	flag.

			332	 func	Set(name,	value	string)	error	{

			333	 	 return	commandLine.Set(name,	value)

			334	 }

			335	

			336	 //	PrintDefaults	prints,	to	standard	error	unless	configured

			337	 //	otherwise,	the	default	values	of	all	defined	flags	in	the	set.

			338	 func	(f	*FlagSet)	PrintDefaults()	{

			339	 	 f.VisitAll(func(flag	*Flag)	{

			340	 	 	 format	:=	"		-%s=%s:	%s\n"

			341	 	 	 if	_,	ok	:=	flag.Value.(*stringValue);	ok	{

			342	 	 	 	 //	put	quotes	on	the	value

			343	 	 	 	 format	=	"		-%s=%q:	%s\n"

			344	 	 	 }

			345	 	 	 fmt.Fprintf(f.out(),	format,	flag.Name,	flag.DefValue,	flag.Usage)

			346	 	 })

			347	 }

			348	

			349	 //	PrintDefaults	prints	to	standard	error	the	default	values	of	all	defined	command-line	flags.

			350	 func	PrintDefaults()	{

			351	 	 commandLine.PrintDefaults()

			352	 }

			353	

			354	 //	defaultUsage	is	the	default	function	to	print	a	usage	message.

			355	 func	defaultUsage(f	*FlagSet)	{

			356	 	 fmt.Fprintf(f.out(),	"Usage	of	%s:\n",	f.name)

			357	 	 f.PrintDefaults()

			358	 }

			359	

			360	 //	NOTE:	Usage	is	not	just	defaultUsage(commandLine)

			361	 //	because	it	serves	(via	godoc	flag	Usage)	as	the	example

			362	 //	for	how	to	write	your	own	usage	function.

			363	

			364	 //	Usage	prints	to	standard	error	a	usage	message	documenting	all	defined	command-line	flags.

			365	 //	The	function	is	a	variable	that	may	be	changed	to	point	to	a	custom	function.

			366	 var	Usage	=	func()	{

			367	 	 fmt.Fprintf(os.Stderr,	"Usage	of	%s:\n",	os.Args[0])

			368	 	 PrintDefaults()

			369	 }

			370	

			371	 //	NFlag	returns	the	number	of	flags	that	have	been	set.

			372	 func	(f	*FlagSet)	NFlag()	int	{	return	len(f.actual)	}

			373	

			374	 //	NFlag	returns	the	number	of	command-line	flags	that	have	been	set.

			375	 func	NFlag()	int	{	return	len(commandLine.actual)	}

			376	

			377	 //	Arg	returns	the	i'th	argument.		Arg(0)	is	the	first	remaining	argument

			378	 //	after	flags	have	been	processed.

			379	 func	(f	*FlagSet)	Arg(i	int)	string	{

			380	 	 if	i	<	0	||	i	>=	len(f.args)	{

			381	 	 	 return	""

			382	 	 }

			383	 	 return	f.args[i]

			384	 }

			385	

			386	 //	Arg	returns	the	i'th	command-line	argument.		Arg(0)	is	the	first	remaining	argument

			387	 //	after	flags	have	been	processed.

			388	 func	Arg(i	int)	string	{

			389	 	 return	commandLine.Arg(i)

			390	 }

			391	

			392	 //	NArg	is	the	number	of	arguments	remaining	after	flags	have	been	processed.

			393	 func	(f	*FlagSet)	NArg()	int	{	return	len(f.args)	}

			394	

			395	 //	NArg	is	the	number	of	arguments	remaining	after	flags	have	been	processed.

			396	 func	NArg()	int	{	return	len(commandLine.args)	}

			397	

			398	 //	Args	returns	the	non-flag	arguments.

			399	 func	(f	*FlagSet)	Args()	[]string	{	return	f.args	}

			400	

			401	 //	Args	returns	the	non-flag	command-line	arguments.

			402	 func	Args()	[]string	{	return	commandLine.args	}

			403	

			404	 //	BoolVar	defines	a	bool	flag	with	specified	name,	default	value,	and	usage	string.

			405	 //	The	argument	p	points	to	a	bool	variable	in	which	to	store	the	value	of	the	flag.

			406	 func	(f	*FlagSet)	BoolVar(p	*bool,	name	string,	value	bool,	usage	string)	{

			407	 	 f.Var(newBoolValue(value,	p),	name,	usage)

			408	 }

			409	

			410	 //	BoolVar	defines	a	bool	flag	with	specified	name,	default	value,	and	usage	string.

			411	 //	The	argument	p	points	to	a	bool	variable	in	which	to	store	the	value	of	the	flag.

			412	 func	BoolVar(p	*bool,	name	string,	value	bool,	usage	string)	{

			413	 	 commandLine.Var(newBoolValue(value,	p),	name,	usage)

			414	 }

			415	

			416	 //	Bool	defines	a	bool	flag	with	specified	name,	default	value,	and	usage	string.

			417	 //	The	return	value	is	the	address	of	a	bool	variable	that	stores	the	value	of	the	flag.

			418	 func	(f	*FlagSet)	Bool(name	string,	value	bool,	usage	string)	*bool	{

			419	 	 p	:=	new(bool)

			420	 	 f.BoolVar(p,	name,	value,	usage)

			421	 	 return	p

			422	 }

			423	

			424	 //	Bool	defines	a	bool	flag	with	specified	name,	default	value,	and	usage	string.

			425	 //	The	return	value	is	the	address	of	a	bool	variable	that	stores	the	value	of	the	flag.

			426	 func	Bool(name	string,	value	bool,	usage	string)	*bool	{

			427	 	 return	commandLine.Bool(name,	value,	usage)

			428	 }

			429	

			430	 //	IntVar	defines	an	int	flag	with	specified	name,	default	value,	and	usage	string.

			431	 //	The	argument	p	points	to	an	int	variable	in	which	to	store	the	value	of	the	flag.

			432	 func	(f	*FlagSet)	IntVar(p	*int,	name	string,	value	int,	usage	string)	{

			433	 	 f.Var(newIntValue(value,	p),	name,	usage)

			434	 }

			435	

			436	 //	IntVar	defines	an	int	flag	with	specified	name,	default	value,	and	usage	string.

			437	 //	The	argument	p	points	to	an	int	variable	in	which	to	store	the	value	of	the	flag.

			438	 func	IntVar(p	*int,	name	string,	value	int,	usage	string)	{

			439	 	 commandLine.Var(newIntValue(value,	p),	name,	usage)

			440	 }

			441	

			442	 //	Int	defines	an	int	flag	with	specified	name,	default	value,	and	usage	string.

			443	 //	The	return	value	is	the	address	of	an	int	variable	that	stores	the	value	of	the	flag.

			444	 func	(f	*FlagSet)	Int(name	string,	value	int,	usage	string)	*int	{

			445	 	 p	:=	new(int)

			446	 	 f.IntVar(p,	name,	value,	usage)

			447	 	 return	p

			448	 }

			449	

			450	 //	Int	defines	an	int	flag	with	specified	name,	default	value,	and	usage	string.

			451	 //	The	return	value	is	the	address	of	an	int	variable	that	stores	the	value	of	the	flag.

			452	 func	Int(name	string,	value	int,	usage	string)	*int	{

			453	 	 return	commandLine.Int(name,	value,	usage)

			454	 }

			455	

			456	 //	Int64Var	defines	an	int64	flag	with	specified	name,	default	value,	and	usage	string.

			457	 //	The	argument	p	points	to	an	int64	variable	in	which	to	store	the	value	of	the	flag.

			458	 func	(f	*FlagSet)	Int64Var(p	*int64,	name	string,	value	int64,	usage	string)	{

			459	 	 f.Var(newInt64Value(value,	p),	name,	usage)

			460	 }

			461	

			462	 //	Int64Var	defines	an	int64	flag	with	specified	name,	default	value,	and	usage	string.

			463	 //	The	argument	p	points	to	an	int64	variable	in	which	to	store	the	value	of	the	flag.

			464	 func	Int64Var(p	*int64,	name	string,	value	int64,	usage	string)	{

			465	 	 commandLine.Var(newInt64Value(value,	p),	name,	usage)

			466	 }

			467	

			468	 //	Int64	defines	an	int64	flag	with	specified	name,	default	value,	and	usage	string.

			469	 //	The	return	value	is	the	address	of	an	int64	variable	that	stores	the	value	of	the	flag.

			470	 func	(f	*FlagSet)	Int64(name	string,	value	int64,	usage	string)	*int64	{

			471	 	 p	:=	new(int64)

			472	 	 f.Int64Var(p,	name,	value,	usage)

			473	 	 return	p

			474	 }

			475	

			476	 //	Int64	defines	an	int64	flag	with	specified	name,	default	value,	and	usage	string.

			477	 //	The	return	value	is	the	address	of	an	int64	variable	that	stores	the	value	of	the	flag.

			478	 func	Int64(name	string,	value	int64,	usage	string)	*int64	{

			479	 	 return	commandLine.Int64(name,	value,	usage)

			480	 }

			481	

			482	 //	UintVar	defines	a	uint	flag	with	specified	name,	default	value,	and	usage	string.

			483	 //	The	argument	p	points	to	a	uint	variable	in	which	to	store	the	value	of	the	flag.

			484	 func	(f	*FlagSet)	UintVar(p	*uint,	name	string,	value	uint,	usage	string)	{

			485	 	 f.Var(newUintValue(value,	p),	name,	usage)

			486	 }

			487	

			488	 //	UintVar	defines	a	uint	flag	with	specified	name,	default	value,	and	usage	string.

			489	 //	The	argument	p	points	to	a	uint		variable	in	which	to	store	the	value	of	the	flag.

			490	 func	UintVar(p	*uint,	name	string,	value	uint,	usage	string)	{

			491	 	 commandLine.Var(newUintValue(value,	p),	name,	usage)

			492	 }

			493	

			494	 //	Uint	defines	a	uint	flag	with	specified	name,	default	value,	and	usage	string.

			495	 //	The	return	value	is	the	address	of	a	uint		variable	that	stores	the	value	of	the	flag.

			496	 func	(f	*FlagSet)	Uint(name	string,	value	uint,	usage	string)	*uint	{

			497	 	 p	:=	new(uint)

			498	 	 f.UintVar(p,	name,	value,	usage)

			499	 	 return	p

			500	 }

			501	

			502	 //	Uint	defines	a	uint	flag	with	specified	name,	default	value,	and	usage	string.

			503	 //	The	return	value	is	the	address	of	a	uint		variable	that	stores	the	value	of	the	flag.

			504	 func	Uint(name	string,	value	uint,	usage	string)	*uint	{

			505	 	 return	commandLine.Uint(name,	value,	usage)

			506	 }

			507	

			508	 //	Uint64Var	defines	a	uint64	flag	with	specified	name,	default	value,	and	usage	string.

			509	 //	The	argument	p	points	to	a	uint64	variable	in	which	to	store	the	value	of	the	flag.

			510	 func	(f	*FlagSet)	Uint64Var(p	*uint64,	name	string,	value	uint64,	usage	string)	{

			511	 	 f.Var(newUint64Value(value,	p),	name,	usage)

			512	 }

			513	

			514	 //	Uint64Var	defines	a	uint64	flag	with	specified	name,	default	value,	and	usage	string.

			515	 //	The	argument	p	points	to	a	uint64	variable	in	which	to	store	the	value	of	the	flag.

			516	 func	Uint64Var(p	*uint64,	name	string,	value	uint64,	usage	string)	{

			517	 	 commandLine.Var(newUint64Value(value,	p),	name,	usage)

			518	 }

			519	

			520	 //	Uint64	defines	a	uint64	flag	with	specified	name,	default	value,	and	usage	string.

			521	 //	The	return	value	is	the	address	of	a	uint64	variable	that	stores	the	value	of	the	flag.

			522	 func	(f	*FlagSet)	Uint64(name	string,	value	uint64,	usage	string)	*uint64	{

			523	 	 p	:=	new(uint64)

			524	 	 f.Uint64Var(p,	name,	value,	usage)

			525	 	 return	p

			526	 }

			527	

			528	 //	Uint64	defines	a	uint64	flag	with	specified	name,	default	value,	and	usage	string.

			529	 //	The	return	value	is	the	address	of	a	uint64	variable	that	stores	the	value	of	the	flag.

			530	 func	Uint64(name	string,	value	uint64,	usage	string)	*uint64	{

			531	 	 return	commandLine.Uint64(name,	value,	usage)

			532	 }

			533	

			534	 //	StringVar	defines	a	string	flag	with	specified	name,	default	value,	and	usage	string.

			535	 //	The	argument	p	points	to	a	string	variable	in	which	to	store	the	value	of	the	flag.

			536	 func	(f	*FlagSet)	StringVar(p	*string,	name	string,	value	string,	usage	string)	{

			537	 	 f.Var(newStringValue(value,	p),	name,	usage)

			538	 }

			539	

			540	 //	StringVar	defines	a	string	flag	with	specified	name,	default	value,	and	usage	string.

			541	 //	The	argument	p	points	to	a	string	variable	in	which	to	store	the	value	of	the	flag.

			542	 func	StringVar(p	*string,	name	string,	value	string,	usage	string)	{

			543	 	 commandLine.Var(newStringValue(value,	p),	name,	usage)

			544	 }

			545	

			546	 //	String	defines	a	string	flag	with	specified	name,	default	value,	and	usage	string.

			547	 //	The	return	value	is	the	address	of	a	string	variable	that	stores	the	value	of	the	flag.

			548	 func	(f	*FlagSet)	String(name	string,	value	string,	usage	string)	*string	{

			549	 	 p	:=	new(string)

			550	 	 f.StringVar(p,	name,	value,	usage)

			551	 	 return	p

			552	 }

			553	

			554	 //	String	defines	a	string	flag	with	specified	name,	default	value,	and	usage	string.

			555	 //	The	return	value	is	the	address	of	a	string	variable	that	stores	the	value	of	the	flag.

			556	 func	String(name	string,	value	string,	usage	string)	*string	{

			557	 	 return	commandLine.String(name,	value,	usage)

			558	 }

			559	

			560	 //	Float64Var	defines	a	float64	flag	with	specified	name,	default	value,	and	usage	string.

			561	 //	The	argument	p	points	to	a	float64	variable	in	which	to	store	the	value	of	the	flag.

			562	 func	(f	*FlagSet)	Float64Var(p	*float64,	name	string,	value	float64,	usage	string)	{

			563	 	 f.Var(newFloat64Value(value,	p),	name,	usage)

			564	 }

			565	

			566	 //	Float64Var	defines	a	float64	flag	with	specified	name,	default	value,	and	usage	string.

			567	 //	The	argument	p	points	to	a	float64	variable	in	which	to	store	the	value	of	the	flag.

			568	 func	Float64Var(p	*float64,	name	string,	value	float64,	usage	string)	{

			569	 	 commandLine.Var(newFloat64Value(value,	p),	name,	usage)

			570	 }

			571	

			572	 //	Float64	defines	a	float64	flag	with	specified	name,	default	value,	and	usage	string.

			573	 //	The	return	value	is	the	address	of	a	float64	variable	that	stores	the	value	of	the	flag.

			574	 func	(f	*FlagSet)	Float64(name	string,	value	float64,	usage	string)	*float64	{

			575	 	 p	:=	new(float64)

			576	 	 f.Float64Var(p,	name,	value,	usage)

			577	 	 return	p

			578	 }

			579	

			580	 //	Float64	defines	a	float64	flag	with	specified	name,	default	value,	and	usage	string.

			581	 //	The	return	value	is	the	address	of	a	float64	variable	that	stores	the	value	of	the	flag.

			582	 func	Float64(name	string,	value	float64,	usage	string)	*float64	{

			583	 	 return	commandLine.Float64(name,	value,	usage)

			584	 }

			585	

			586	 //	DurationVar	defines	a	time.Duration	flag	with	specified	name,	default	value,	and	usage	string.

			587	 //	The	argument	p	points	to	a	time.Duration	variable	in	which	to	store	the	value	of	the	flag.

			588	 func	(f	*FlagSet)	DurationVar(p	*time.Duration,	name	string,	value	time.Duration,	usage	string)	{

			589	 	 f.Var(newDurationValue(value,	p),	name,	usage)

			590	 }

			591	

			592	 //	DurationVar	defines	a	time.Duration	flag	with	specified	name,	default	value,	and	usage	string.

			593	 //	The	argument	p	points	to	a	time.Duration	variable	in	which	to	store	the	value	of	the	flag.

			594	 func	DurationVar(p	*time.Duration,	name	string,	value	time.Duration,	usage	string)	{

			595	 	 commandLine.Var(newDurationValue(value,	p),	name,	usage)

			596	 }

			597	

			598	 //	Duration	defines	a	time.Duration	flag	with	specified	name,	default	value,	and	usage	string.

			599	 //	The	return	value	is	the	address	of	a	time.Duration	variable	that	stores	the	value	of	the	flag.

			600	 func	(f	*FlagSet)	Duration(name	string,	value	time.Duration,	usage	string)	*time.Duration	{

			601	 	 p	:=	new(time.Duration)

			602	 	 f.DurationVar(p,	name,	value,	usage)

			603	 	 return	p

			604	 }

			605	

			606	 //	Duration	defines	a	time.Duration	flag	with	specified	name,	default	value,	and	usage	string.

			607	 //	The	return	value	is	the	address	of	a	time.Duration	variable	that	stores	the	value	of	the	flag.

			608	 func	Duration(name	string,	value	time.Duration,	usage	string)	*time.Duration	{

			609	 	 return	commandLine.Duration(name,	value,	usage)

			610	 }

			611	

			612	 //	Var	defines	a	flag	with	the	specified	name	and	usage	string.	The	type	and

			613	 //	value	of	the	flag	are	represented	by	the	first	argument,	of	type	Value,	which

			614	 //	typically	holds	a	user-defined	implementation	of	Value.	For	instance,	the

			615	 //	caller	could	create	a	flag	that	turns	a	comma-separated	string	into	a	slice

			616	 //	of	strings	by	giving	the	slice	the	methods	of	Value;	in	particular,	Set	would

			617	 //	decompose	the	comma-separated	string	into	the	slice.

			618	 func	(f	*FlagSet)	Var(value	Value,	name	string,	usage	string)	{

			619	 	 //	Remember	the	default	value	as	a	string;	it	won't	change.

			620	 	 flag	:=	&Flag{name,	usage,	value,	value.String()}

			621	 	 _,	alreadythere	:=	f.formal[name]

			622	 	 if	alreadythere	{

			623	 	 	 fmt.Fprintf(f.out(),	"%s	flag	redefined:	%s\n",	f.name,	name)

			624	 	 	 panic("flag	redefinition")	//	Happens	only	if	flags	are	declared	with	identical	names

			625	 	 }

			626	 	 if	f.formal	==	nil	{

			627	 	 	 f.formal	=	make(map[string]*Flag)

			628	 	 }

			629	 	 f.formal[name]	=	flag

			630	 }

			631	

			632	 //	Var	defines	a	flag	with	the	specified	name	and	usage	string.	The	type	and

			633	 //	value	of	the	flag	are	represented	by	the	first	argument,	of	type	Value,	which

			634	 //	typically	holds	a	user-defined	implementation	of	Value.	For	instance,	the

			635	 //	caller	could	create	a	flag	that	turns	a	comma-separated	string	into	a	slice

			636	 //	of	strings	by	giving	the	slice	the	methods	of	Value;	in	particular,	Set	would

			637	 //	decompose	the	comma-separated	string	into	the	slice.

			638	 func	Var(value	Value,	name	string,	usage	string)	{

			639	 	 commandLine.Var(value,	name,	usage)

			640	 }

			641	

			642	 //	failf	prints	to	standard	error	a	formatted	error	and	usage	message	and

			643	 //	returns	the	error.

			644	 func	(f	*FlagSet)	failf(format	string,	a	...interface{})	error	{

			645	 	 err	:=	fmt.Errorf(format,	a...)

			646	 	 fmt.Fprintln(f.out(),	err)

			647	 	 f.usage()

			648	 	 return	err

			649	 }

			650	

			651	 //	usage	calls	the	Usage	method	for	the	flag	set,	or	the	usage	function	if

			652	 //	the	flag	set	is	commandLine.

			653	 func	(f	*FlagSet)	usage()	{

			654	 	 if	f	==	commandLine	{

			655	 	 	 Usage()

			656	 	 }	else	if	f.Usage	==	nil	{

			657	 	 	 defaultUsage(f)

			658	 	 }	else	{

			659	 	 	 f.Usage()

			660	 	 }

			661	 }

			662	

			663	 //	parseOne	parses	one	flag.	It	returns	whether	a	flag	was	seen.

			664	 func	(f	*FlagSet)	parseOne()	(bool,	error)	{

			665	 	 if	len(f.args)	==	0	{

			666	 	 	 return	false,	nil

			667	 	 }

			668	 	 s	:=	f.args[0]

			669	 	 if	len(s)	==	0	||	s[0]	!=	'-'	||	len(s)	==	1	{

			670	 	 	 return	false,	nil

			671	 	 }

			672	 	 num_minuses	:=	1

			673	 	 if	s[1]	==	'-'	{

			674	 	 	 num_minuses++

			675	 	 	 if	len(s)	==	2	{	//	"--"	terminates	the	flags

			676	 	 	 	 f.args	=	f.args[1:]

			677	 	 	 	 return	false,	nil

			678	 	 	 }

			679	 	 }

			680	 	 name	:=	s[num_minuses:]

			681	 	 if	len(name)	==	0	||	name[0]	==	'-'	||	name[0]	==	'='	{

			682	 	 	 return	false,	f.failf("bad	flag	syntax:	%s",	s)

			683	 	 }

			684	

			685	 	 //	it's	a	flag.	does	it	have	an	argument?

			686	 	 f.args	=	f.args[1:]

			687	 	 has_value	:=	false

			688	 	 value	:=	""

			689	 	 for	i	:=	1;	i	<	len(name);	i++	{	//	equals	cannot	be	first

			690	 	 	 if	name[i]	==	'='	{

			691	 	 	 	 value	=	name[i+1:]

			692	 	 	 	 has_value	=	true

			693	 	 	 	 name	=	name[0:i]

			694	 	 	 	 break

			695	 	 	 }

			696	 	 }

			697	 	 m	:=	f.formal

			698	 	 flag,	alreadythere	:=	m[name]	//	BUG

			699	 	 if	!alreadythere	{

			700	 	 	 if	name	==	"help"	||	name	==	"h"	{	//	special	case	for	nice	help	message.

			701	 	 	 	 f.usage()

			702	 	 	 	 return	false,	ErrHelp

			703	 	 	 }

			704	 	 	 return	false,	f.failf("flag	provided	but	not	defined:	-%s",	name)

			705	 	 }

			706	 	 if	fv,	ok	:=	flag.Value.(*boolValue);	ok	{	//	special	case:	doesn't	need	an	arg

			707	 	 	 if	has_value	{

			708	 	 	 	 if	err	:=	fv.Set(value);	err	!=	nil	{

			709	 	 	 	 	 f.failf("invalid	boolean	value	%q	for		-%s:	%v",	value,	name,	err)

			710	 	 	 	 }

			711	 	 	 }	else	{

			712	 	 	 	 fv.Set("true")

			713	 	 	 }

			714	 	 }	else	{

			715	 	 	 //	It	must	have	a	value,	which	might	be	the	next	argument.

			716	 	 	 if	!has_value	&&	len(f.args)	>	0	{

			717	 	 	 	 //	value	is	the	next	arg

			718	 	 	 	 has_value	=	true

			719	 	 	 	 value,	f.args	=	f.args[0],	f.args[1:]

			720	 	 	 }

			721	 	 	 if	!has_value	{

			722	 	 	 	 return	false,	f.failf("flag	needs	an	argument:	-%s",	name)

			723	 	 	 }

			724	 	 	 if	err	:=	flag.Value.Set(value);	err	!=	nil	{

			725	 	 	 	 return	false,	f.failf("invalid	value	%q	for	flag	-%s:	%v",	value,	name,	err)

			726	 	 	 }

			727	 	 }

			728	 	 if	f.actual	==	nil	{

			729	 	 	 f.actual	=	make(map[string]*Flag)

			730	 	 }

			731	 	 f.actual[name]	=	flag

			732	 	 return	true,	nil

			733	 }

			734	

			735	 //	Parse	parses	flag	definitions	from	the	argument	list,	which	should	not

			736	 //	include	the	command	name.		Must	be	called	after	all	flags	in	the	FlagSet

			737	 //	are	defined	and	before	flags	are	accessed	by	the	program.

			738	 //	The	return	value	will	be	ErrHelp	if	-help	was	set	but	not	defined.

			739	 func	(f	*FlagSet)	Parse(arguments	[]string)	error	{

			740	 	 f.parsed	=	true

			741	 	 f.args	=	arguments

			742	 	 for	{

			743	 	 	 seen,	err	:=	f.parseOne()

			744	 	 	 if	seen	{

			745	 	 	 	 continue

			746	 	 	 }

			747	 	 	 if	err	==	nil	{

			748	 	 	 	 break

			749	 	 	 }

			750	 	 	 switch	f.errorHandling	{

			751	 	 	 case	ContinueOnError:

			752	 	 	 	 return	err

			753	 	 	 case	ExitOnError:

			754	 	 	 	 os.Exit(2)

			755	 	 	 case	PanicOnError:

			756	 	 	 	 panic(err)

			757	 	 	 }

			758	 	 }

			759	 	 return	nil

			760	 }

			761	

			762	 //	Parsed	reports	whether	f.Parse	has	been	called.

			763	 func	(f	*FlagSet)	Parsed()	bool	{

			764	 	 return	f.parsed

			765	 }

			766	

			767	 //	Parse	parses	the	command-line	flags	from	os.Args[1:].		Must	be	called

			768	 //	after	all	flags	are	defined	and	before	flags	are	accessed	by	the	program.

			769	 func	Parse()	{

			770	 	 //	Ignore	errors;	commandLine	is	set	for	ExitOnError.

			771	 	 commandLine.Parse(os.Args[1:])

			772	 }

			773	

			774	 //	Parsed	returns	true	if	the	command-line	flags	have	been	parsed.

			775	 func	Parsed()	bool	{

			776	 	 return	commandLine.Parsed()

			777	 }

			778	

			779	 //	The	default	set	of	command-line	flags,	parsed	from	os.Args.

			780	 var	commandLine	=	NewFlagSet(os.Args[0],	ExitOnError)

			781	

			782	 //	NewFlagSet	returns	a	new,	empty	flag	set	with	the	specified	name	and

			783	 //	error	handling	property.

			784	 func	NewFlagSet(name	string,	errorHandling	ErrorHandling)	*FlagSet	{

			785	 	 f	:=	&FlagSet{

			786	 	 	 name:										name,

			787	 	 	 errorHandling:	errorHandling,

			788	 	 }

			789	 	 return	f

			790	 }

			791	

			792	 //	Init	sets	the	name	and	error	handling	property	for	a	flag	set.

			793	 //	By	default,	the	zero	FlagSet	uses	an	empty	name	and	the

			794	 //	ContinueOnError	error	handling	policy.

			795	 func	(f	*FlagSet)	Init(name	string,	errorHandling	ErrorHandling)	{

			796	 	 f.name	=	name

			797	 	 f.errorHandling	=	errorHandling

			798	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/fmt/doc.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 	 Package	fmt	implements	formatted	I/O	with	functions	analogous

					7	 	 to	C's	printf	and	scanf.		The	format	'verbs'	are	derived	from	C's	but

					8	 	 are	simpler.

					9	

				10	

				11	 	 Printing

				12	

				13	 	 The	verbs:

				14	

				15	 	 General:

				16	 	 	 %v	 the	value	in	a	default	format.

				17	 	 	 	 when	printing	structs,	the	plus	flag	(%+v)	adds	field	names

				18	 	 	 %#v	 a	Go-syntax	representation	of	the	value

				19	 	 	 %T	 a	Go-syntax	representation	of	the	type	of	the	value

				20	 	 	 %%	 a	literal	percent	sign;	consumes	no	value

				21	

				22	 	 Boolean:

				23	 	 	 %t	 the	word	true	or	false

				24	 	 Integer:

				25	 	 	 %b	 base	2

				26	 	 	 %c	 the	character	represented	by	the	corresponding	Unicode	code	point

				27	 	 	 %d	 base	10

				28	 	 	 %o	 base	8

				29	 	 	 %q	 a	single-quoted	character	literal	safely	escaped	with	Go	syntax.

				30	 	 	 %x	 base	16,	with	lower-case	letters	for	a-f

				31	 	 	 %X	 base	16,	with	upper-case	letters	for	A-F

				32	 	 	 %U	 Unicode	format:	U+1234;	same	as	"U+%04X"

				33	 	 Floating-point	and	complex	constituents:

				34	 	 	 %b	 decimalless	scientific	notation	with	exponent	a	power	of	two,	

				35	 	 	 	 in	the	manner	of	strconv.FormatFloat	with	the	'b'	format,	

				36	 	 	 	 e.g.	-123456p-78

				37	 	 	 %e	 scientific	notation,	e.g.	-1234.456e+78

				38	 	 	 %E	 scientific	notation,	e.g.	-1234.456E+78

				39	 	 	 %f	 decimal	point	but	no	exponent,	e.g.	123.456

				40	 	 	 %g	 whichever	of	%e	or	%f	produces	more	compact	output

				41	 	 	 %G	 whichever	of	%E	or	%f	produces	more	compact	output

				42	 	 String	and	slice	of	bytes:

				43	 	 	 %s	 the	uninterpreted	bytes	of	the	string	or	slice

				44	 	 	 %q	 a	double-quoted	string	safely	escaped	with	Go	syntax

				45	 	 	 %x	 base	16,	lower-case,	two	characters	per	byte

				46	 	 	 %X	 base	16,	upper-case,	two	characters	per	byte

				47	 	 Pointer:

				48	 	 	 %p	 base	16	notation,	with	leading	0x

				49	

				50	 	 There	is	no	'u'	flag.		Integers	are	printed	unsigned	if	they	have	unsigned	type.

				51	 	 Similarly,	there	is	no	need	to	specify	the	size	of	the	operand	(int8,	int64).

				52	

				53	 	 The	width	and	precision	control	formatting	and	are	in	units	of	Unicode

				54	 	 code	points.		(This	differs	from	C's	printf	where	the	units	are	numbers

				55	 	 of	bytes.)	Either	or	both	of	the	flags	may	be	replaced	with	the

				56	 	 character	'*',	causing	their	values	to	be	obtained	from	the	next

				57	 	 operand,	which	must	be	of	type	int.

				58	

				59	 	 For	numeric	values,	width	sets	the	width	of	the	field	and	precision

				60	 	 sets	the	number	of	places	after	the	decimal,	if	appropriate.		For

				61	 	 example,	the	format	%6.2f	prints	123.45.

				62	

				63	 	 For	strings,	width	is	the	minimum	number	of	characters	to	output,

				64	 	 padding	with	spaces	if	necessary,	and	precision	is	the	maximum

				65	 	 number	of	characters	to	output,	truncating	if	necessary.

				66	

				67	 	 Other	flags:

				68	 	 	 +	 always	print	a	sign	for	numeric	values;

				69	 	 	 	 guarantee	ASCII-only	output	for	%q	(%+q)

				70	 	 	 -	 pad	with	spaces	on	the	right	rather	than	the	left	(left-justify	the	field)

				71	 	 	 #	 alternate	format:	add	leading	0	for	octal	(%#o),	0x	for	hex	(%#x);

				72	 	 	 	 0X	for	hex	(%#X);	suppress	0x	for	%p	(%#p);

				73	 	 	 	 print	a	raw	(backquoted)	string	if	possible	for	%q	(%#q);

				74	 	 	 	 write	e.g.	U+0078	'x'	if	the	character	is	printable	for	%U	(%#U).

				75	 	 	 '	'	 (space)	leave	a	space	for	elided	sign	in	numbers	(%	d);

				76	 	 	 	 put	spaces	between	bytes	printing	strings	or	slices	in	hex	(%	x,	%	X)

				77	 	 	 0	 pad	with	leading	zeros	rather	than	spaces

				78	

				79	 	 For	each	Printf-like	function,	there	is	also	a	Print	function

				80	 	 that	takes	no	format	and	is	equivalent	to	saying	%v	for	every

				81	 	 operand.		Another	variant	Println	inserts	blanks	between

				82	 	 operands	and	appends	a	newline.

				83	

				84	 	 Regardless	of	the	verb,	if	an	operand	is	an	interface	value,

				85	 	 the	internal	concrete	value	is	used,	not	the	interface	itself.

				86	 	 Thus:

				87	 	 	 var	i	interface{}	=	23

				88	 	 	 fmt.Printf("%v\n",	i)

				89	 	 will	print	23.

				90	

				91	 	 If	an	operand	implements	interface	Formatter,	that	interface

				92	 	 can	be	used	for	fine	control	of	formatting.

				93	

				94	 	 If	the	format	(which	is	implicitly	%v	for	Println	etc.)	is	valid

				95	 	 for	a	string	(%s	%q	%v	%x	%X),	the	following	two	rules	also	apply:

				96	

				97	 	 1.	If	an	operand	implements	the	error	interface,	the	Error	method

				98	 	 will	be	used	to	convert	the	object	to	a	string,	which	will	then

				99	 	 be	formatted	as	required	by	the	verb	(if	any).

			100	

			101	 	 2.	If	an	operand	implements	method	String()	string,	that	method

			102	 	 will	be	used	to	convert	the	object	to	a	string,	which	will	then

			103	 	 be	formatted	as	required	by	the	verb	(if	any).

			104	

			105	 	 To	avoid	recursion	in	cases	such	as

			106	 	 	 type	X	string

			107	 	 	 func	(x	X)	String()	string	{	return	Sprintf("<%s>",	x)	}

			108	 	 convert	the	value	before	recurring:

			109	 	 	 func	(x	X)	String()	string	{	return	Sprintf("<%s>",	string(x))	}

			110	

			111	 	 Format	errors:

			112	

			113	 	 If	an	invalid	argument	is	given	for	a	verb,	such	as	providing

			114	 	 a	string	to	%d,	the	generated	string	will	contain	a

			115	 	 description	of	the	problem,	as	in	these	examples:

			116	

			117	 	 	 Wrong	type	or	unknown	verb:	%!verb(type=value)

			118	 	 	 	 Printf("%d",	hi):										%!d(string=hi)

			119	 	 	 Too	many	arguments:	%!(EXTRA	type=value)

			120	 	 	 	 Printf("hi",	"guys"):						hi%!(EXTRA	string=guys)

			121	 	 	 Too	few	arguments:	%!verb(MISSING)

			122	 	 	 	 Printf("hi%d"):												hi	%!d(MISSING)

			123	 	 	 Non-int	for	width	or	precision:	%!(BADWIDTH)	or	%!(BADPREC)

			124	 	 	 	 Printf("%*s",	4.5,	"hi"):		%!(BADWIDTH)hi

			125	 	 	 	 Printf("%.*s",	4.5,	"hi"):	%!(BADPREC)hi

			126	

			127	 	 All	errors	begin	with	the	string	"%!"	followed	sometimes

			128	 	 by	a	single	character	(the	verb)	and	end	with	a	parenthesized

			129	 	 description.

			130	

			131	

			132	 	 Scanning

			133	

			134	 	 An	analogous	set	of	functions	scans	formatted	text	to	yield

			135	 	 values.		Scan,	Scanf	and	Scanln	read	from	os.Stdin;	Fscan,

			136	 	 Fscanf	and	Fscanln	read	from	a	specified	io.Reader;	Sscan,

			137	 	 Sscanf	and	Sscanln	read	from	an	argument	string.		Scanln,

			138	 	 Fscanln	and	Sscanln	stop	scanning	at	a	newline	and	require	that

			139	 	 the	items	be	followed	by	one;	Sscanf,	Fscanf	and	Sscanf	require

			140	 	 newlines	in	the	input	to	match	newlines	in	the	format;	the	other

			141	 	 routines	treat	newlines	as	spaces.

			142	

			143	 	 Scanf,	Fscanf,	and	Sscanf	parse	the	arguments	according	to	a

			144	 	 format	string,	analogous	to	that	of	Printf.		For	example,	%x

			145	 	 will	scan	an	integer	as	a	hexadecimal	number,	and	%v	will	scan

			146	 	 the	default	representation	format	for	the	value.

			147	

			148	 	 The	formats	behave	analogously	to	those	of	Printf	with	the

			149	 	 following	exceptions:

			150	

			151	 	 	 %p	is	not	implemented

			152	 	 	 %T	is	not	implemented

			153	 	 	 %e	%E	%f	%F	%g	%G	are	all	equivalent	and	scan	any	floating	point	or	complex	value

			154	 	 	 %s	and	%v	on	strings	scan	a	space-delimited	token

			155	

			156	 	 The	familiar	base-setting	prefixes	0	(octal)	and	0x

			157	 	 (hexadecimal)	are	accepted	when	scanning	integers	without	a

			158	 	 format	or	with	the	%v	verb.

			159	

			160	 	 Width	is	interpreted	in	the	input	text	(%5s	means	at	most

			161	 	 five	runes	of	input	will	be	read	to	scan	a	string)	but	there

			162	 	 is	no	syntax	for	scanning	with	a	precision	(no	%5.2f,	just

			163	 	 %5f).

			164	

			165	 	 When	scanning	with	a	format,	all	non-empty	runs	of	space

			166	 	 characters	(except	newline)	are	equivalent	to	a	single

			167	 	 space	in	both	the	format	and	the	input.		With	that	proviso,

			168	 	 text	in	the	format	string	must	match	the	input	text;	scanning

			169	 	 stops	if	it	does	not,	with	the	return	value	of	the	function

			170	 	 indicating	the	number	of	arguments	scanned.

			171	

			172	 	 In	all	the	scanning	functions,	if	an	operand	implements	method

			173	 	 Scan	(that	is,	it	implements	the	Scanner	interface)	that

			174	 	 method	will	be	used	to	scan	the	text	for	that	operand.		Also,

			175	 	 if	the	number	of	arguments	scanned	is	less	than	the	number	of

			176	 	 arguments	provided,	an	error	is	returned.

			177	

			178	 	 All	arguments	to	be	scanned	must	be	either	pointers	to	basic

			179	 	 types	or	implementations	of	the	Scanner	interface.

			180	

			181	 	 Note:	Fscan	etc.	can	read	one	character	(rune)	past	the	input

			182	 	 they	return,	which	means	that	a	loop	calling	a	scan	routine

			183	 	 may	skip	some	of	the	input.		This	is	usually	a	problem	only

			184	 	 when	there	is	no	space	between	input	values.		If	the	reader

			185	 	 provided	to	Fscan	implements	ReadRune,	that	method	will	be	used

			186	 	 to	read	characters.		If	the	reader	also	implements	UnreadRune,

			187	 	 that	method	will	be	used	to	save	the	character	and	successive

			188	 	 calls	will	not	lose	data.		To	attach	ReadRune	and	UnreadRune

			189	 	 methods	to	a	reader	without	that	capability,	use

			190	 	 bufio.NewReader.

			191	 */

			192	 package	fmt

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/fmt/format.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	fmt

					6	

					7	 import	(

					8	 	 "strconv"

					9	 	 "unicode/utf8"

				10)

				11	

				12	 const	(

				13	 	 nByte	=	65	//	%b	of	an	int64,	plus	a	sign.

				14	

				15	 	 ldigits	=	"0123456789abcdef"

				16	 	 udigits	=	"0123456789ABCDEF"

				17)

				18	

				19	 const	(

				20	 	 signed			=	true

				21	 	 unsigned	=	false

				22)

				23	

				24	 var	padZeroBytes	=	make([]byte,	nByte)

				25	 var	padSpaceBytes	=	make([]byte,	nByte)

				26	

				27	 var	newline	=	[]byte{'\n'}

				28	

				29	 func	init()	{

				30	 	 for	i	:=	0;	i	<	nByte;	i++	{

				31	 	 	 padZeroBytes[i]	=	'0'

				32	 	 	 padSpaceBytes[i]	=	'	'

				33	 	 }

				34	 }

				35	

				36	 //	A	fmt	is	the	raw	formatter	used	by	Printf	etc.

				37	 //	It	prints	into	a	buffer	that	must	be	set	up	separately.

				38	 type	fmt	struct	{

				39	 	 intbuf	[nByte]byte

				40	 	 buf				*buffer

				41	 	 //	width,	precision

				42	 	 wid		int

				43	 	 prec	int

				44	 	 //	flags

				45	 	 widPresent		bool

				46	 	 precPresent	bool

				47	 	 minus							bool

				48	 	 plus								bool

				49	 	 sharp							bool

				50	 	 space							bool

				51	 	 unicode					bool

				52	 	 uniQuote				bool	//	Use	'x'=	prefix	for	%U	if	printable.

				53	 	 zero								bool

				54	 }

				55	

				56	 func	(f	*fmt)	clearflags()	{

				57	 	 f.wid	=	0

				58	 	 f.widPresent	=	false

				59	 	 f.prec	=	0

				60	 	 f.precPresent	=	false

				61	 	 f.minus	=	false

				62	 	 f.plus	=	false

				63	 	 f.sharp	=	false

				64	 	 f.space	=	false

				65	 	 f.unicode	=	false

				66	 	 f.uniQuote	=	false

				67	 	 f.zero	=	false

				68	 }

				69	

				70	 func	(f	*fmt)	init(buf	*buffer)	{

				71	 	 f.buf	=	buf

				72	 	 f.clearflags()

				73	 }

				74	

				75	 //	Compute	left	and	right	padding	widths	(only	one	will	be	non-zero).

				76	 func	(f	*fmt)	computePadding(width	int)	(padding	[]byte,	leftWidth,	rightWidth	int)	{

				77	 	 left	:=	!f.minus

				78	 	 w	:=	f.wid

				79	 	 if	w	<	0	{

				80	 	 	 left	=	false

				81	 	 	 w	=	-w

				82	 	 }

				83	 	 w	-=	width

				84	 	 if	w	>	0	{

				85	 	 	 if	left	&&	f.zero	{

				86	 	 	 	 return	padZeroBytes,	w,	0

				87	 	 	 }

				88	 	 	 if	left	{

				89	 	 	 	 return	padSpaceBytes,	w,	0

				90	 	 	 }	else	{

				91	 	 	 	 //	can't	be	zero	padding	on	the	right

				92	 	 	 	 return	padSpaceBytes,	0,	w

				93	 	 	 }

				94	 	 }

				95	 	 return

				96	 }

				97	

				98	 //	Generate	n	bytes	of	padding.

				99	 func	(f	*fmt)	writePadding(n	int,	padding	[]byte)	{

			100	 	 for	n	>	0	{

			101	 	 	 m	:=	n

			102	 	 	 if	m	>	nByte	{

			103	 	 	 	 m	=	nByte

			104	 	 	 }

			105	 	 	 f.buf.Write(padding[0:m])

			106	 	 	 n	-=	m

			107	 	 }

			108	 }

			109	

			110	 //	Append	b	to	f.buf,	padded	on	left	(w	>	0)	or	right	(w	<	0	or	f.minus)

			111	 //	clear	flags	afterwards.

			112	 func	(f	*fmt)	pad(b	[]byte)	{

			113	 	 var	padding	[]byte

			114	 	 var	left,	right	int

			115	 	 if	f.widPresent	&&	f.wid	!=	0	{

			116	 	 	 padding,	left,	right	=	f.computePadding(len(b))

			117	 	 }

			118	 	 if	left	>	0	{

			119	 	 	 f.writePadding(left,	padding)

			120	 	 }

			121	 	 f.buf.Write(b)

			122	 	 if	right	>	0	{

			123	 	 	 f.writePadding(right,	padding)

			124	 	 }

			125	 }

			126	

			127	 //	append	s	to	buf,	padded	on	left	(w	>	0)	or	right	(w	<	0	or	f.minus).

			128	 //	clear	flags	afterwards.

			129	 func	(f	*fmt)	padString(s	string)	{

			130	 	 var	padding	[]byte

			131	 	 var	left,	right	int

			132	 	 if	f.widPresent	&&	f.wid	!=	0	{

			133	 	 	 padding,	left,	right	=	f.computePadding(utf8.RuneCountInString(s))

			134	 	 }

			135	 	 if	left	>	0	{

			136	 	 	 f.writePadding(left,	padding)

			137	 	 }

			138	 	 f.buf.WriteString(s)

			139	 	 if	right	>	0	{

			140	 	 	 f.writePadding(right,	padding)

			141	 	 }

			142	 }

			143	

			144	 func	putint(buf	[]byte,	base,	val	uint64,	digits	string)	int	{

			145	 	 i	:=	len(buf)	-	1

			146	 	 for	val	>=	base	{

			147	 	 	 buf[i]	=	digits[val%base]

			148	 	 	 i--

			149	 	 	 val	/=	base

			150	 	 }

			151	 	 buf[i]	=	digits[val]

			152	 	 return	i	-	1

			153	 }

			154	

			155	 var	(

			156	 	 trueBytes		=	[]byte("true")

			157	 	 falseBytes	=	[]byte("false")

			158)

			159	

			160	 //	fmt_boolean	formats	a	boolean.

			161	 func	(f	*fmt)	fmt_boolean(v	bool)	{

			162	 	 if	v	{

			163	 	 	 f.pad(trueBytes)

			164	 	 }	else	{

			165	 	 	 f.pad(falseBytes)

			166	 	 }

			167	 }

			168	

			169	 //	integer;	interprets	prec	but	not	wid.		Once	formatted,	result	is	sent	to	pad()

			170	 //	and	then	flags	are	cleared.

			171	 func	(f	*fmt)	integer(a	int64,	base	uint64,	signedness	bool,	digits	string)	{

			172	 	 //	precision	of	0	and	value	of	0	means	"print	nothing"

			173	 	 if	f.precPresent	&&	f.prec	==	0	&&	a	==	0	{

			174	 	 	 return

			175	 	 }

			176	

			177	 	 var	buf	[]byte	=	f.intbuf[0:]

			178	 	 negative	:=	signedness	==	signed	&&	a	<	0

			179	 	 if	negative	{

			180	 	 	 a	=	-a

			181	 	 }

			182	

			183	 	 //	two	ways	to	ask	for	extra	leading	zero	digits:	%.3d	or	%03d.

			184	 	 //	apparently	the	first	cancels	the	second.

			185	 	 prec	:=	0

			186	 	 if	f.precPresent	{

			187	 	 	 prec	=	f.prec

			188	 	 	 f.zero	=	false

			189	 	 }	else	if	f.zero	&&	f.widPresent	&&	!f.minus	&&	f.wid	>	0	{

			190	 	 	 prec	=	f.wid

			191	 	 	 if	negative	||	f.plus	||	f.space	{

			192	 	 	 	 prec--	//	leave	room	for	sign

			193	 	 	 }

			194	 	 }

			195	

			196	 	 //	format	a	into	buf,	ending	at	buf[i].		(printing	is	easier	right-to-left.)

			197	 	 //	a	is	made	into	unsigned	ua.		we	could	make	things

			198	 	 //	marginally	faster	by	splitting	the	32-bit	case	out	into	a	separate

			199	 	 //	block	but	it's	not	worth	the	duplication,	so	ua	has	64	bits.

			200	 	 i	:=	len(f.intbuf)

			201	 	 ua	:=	uint64(a)

			202	 	 for	ua	>=	base	{

			203	 	 	 i--

			204	 	 	 buf[i]	=	digits[ua%base]

			205	 	 	 ua	/=	base

			206	 	 }

			207	 	 i--

			208	 	 buf[i]	=	digits[ua]

			209	 	 for	i	>	0	&&	prec	>	nByte-i	{

			210	 	 	 i--

			211	 	 	 buf[i]	=	'0'

			212	 	 }

			213	

			214	 	 //	Various	prefixes:	0x,	-,	etc.

			215	 	 if	f.sharp	{

			216	 	 	 switch	base	{

			217	 	 	 case	8:

			218	 	 	 	 if	buf[i]	!=	'0'	{

			219	 	 	 	 	 i--

			220	 	 	 	 	 buf[i]	=	'0'

			221	 	 	 	 }

			222	 	 	 case	16:

			223	 	 	 	 i--

			224	 	 	 	 buf[i]	=	'x'	+	digits[10]	-	'a'

			225	 	 	 	 i--

			226	 	 	 	 buf[i]	=	'0'

			227	 	 	 }

			228	 	 }

			229	 	 if	f.unicode	{

			230	 	 	 i--

			231	 	 	 buf[i]	=	'+'

			232	 	 	 i--

			233	 	 	 buf[i]	=	'U'

			234	 	 }

			235	

			236	 	 if	negative	{

			237	 	 	 i--

			238	 	 	 buf[i]	=	'-'

			239	 	 }	else	if	f.plus	{

			240	 	 	 i--

			241	 	 	 buf[i]	=	'+'

			242	 	 }	else	if	f.space	{

			243	 	 	 i--

			244	 	 	 buf[i]	=	'	'

			245	 	 }

			246	

			247	 	 //	If	we	want	a	quoted	char	for	%#U,	move	the	data	up	to	make	room.

			248	 	 if	f.unicode	&&	f.uniQuote	&&	a	>=	0	&&	a	<=	utf8.MaxRune	&&	strconv.IsPrint(rune(a))	{

			249	 	 	 runeWidth	:=	utf8.RuneLen(rune(a))

			250	 	 	 width	:=	1	+	1	+	runeWidth	+	1	//	space,	quote,	rune,	quote

			251	 	 	 copy(buf[i-width:],	buf[i:])			//	guaranteed	to	have	enough	room.

			252	 	 	 i	-=	width

			253	 	 	 //	Now	put	"	'x'"	at	the	end.

			254	 	 	 j	:=	len(buf)	-	width

			255	 	 	 buf[j]	=	'	'

			256	 	 	 j++

			257	 	 	 buf[j]	=	'\''

			258	 	 	 j++

			259	 	 	 utf8.EncodeRune(buf[j:],	rune(a))

			260	 	 	 j	+=	runeWidth

			261	 	 	 buf[j]	=	'\''

			262	 	 }

			263	

			264	 	 f.pad(buf[i:])

			265	 }

			266	

			267	 //	truncate	truncates	the	string	to	the	specified	precision,	if	present.

			268	 func	(f	*fmt)	truncate(s	string)	string	{

			269	 	 if	f.precPresent	&&	f.prec	<	utf8.RuneCountInString(s)	{

			270	 	 	 n	:=	f.prec

			271	 	 	 for	i	:=	range	s	{

			272	 	 	 	 if	n	==	0	{

			273	 	 	 	 	 s	=	s[:i]

			274	 	 	 	 	 break

			275	 	 	 	 }

			276	 	 	 	 n--

			277	 	 	 }

			278	 	 }

			279	 	 return	s

			280	 }

			281	

			282	 //	fmt_s	formats	a	string.

			283	 func	(f	*fmt)	fmt_s(s	string)	{

			284	 	 s	=	f.truncate(s)

			285	 	 f.padString(s)

			286	 }

			287	

			288	 //	fmt_sx	formats	a	string	as	a	hexadecimal	encoding	of	its	bytes.

			289	 func	(f	*fmt)	fmt_sx(s,	digits	string)	{

			290	 	 //	TODO:	Avoid	buffer	by	pre-padding.

			291	 	 var	b	[]byte

			292	 	 for	i	:=	0;	i	<	len(s);	i++	{

			293	 	 	 if	i	>	0	&&	f.space	{

			294	 	 	 	 b	=	append(b,	'	')

			295	 	 	 }

			296	 	 	 v	:=	s[i]

			297	 	 	 b	=	append(b,	digits[v>>4],	digits[v&0xF])

			298	 	 }

			299	 	 f.pad(b)

			300	 }

			301	

			302	 //	fmt_q	formats	a	string	as	a	double-quoted,	escaped	Go	string	constant.

			303	 func	(f	*fmt)	fmt_q(s	string)	{

			304	 	 s	=	f.truncate(s)

			305	 	 var	quoted	string

			306	 	 if	f.sharp	&&	strconv.CanBackquote(s)	{

			307	 	 	 quoted	=	"`"	+	s	+	"`"

			308	 	 }	else	{

			309	 	 	 if	f.plus	{

			310	 	 	 	 quoted	=	strconv.QuoteToASCII(s)

			311	 	 	 }	else	{

			312	 	 	 	 quoted	=	strconv.Quote(s)

			313	 	 	 }

			314	 	 }

			315	 	 f.padString(quoted)

			316	 }

			317	

			318	 //	fmt_qc	formats	the	integer	as	a	single-quoted,	escaped	Go	character	constant.

			319	 //	If	the	character	is	not	valid	Unicode,	it	will	print	'\ufffd'.

			320	 func	(f	*fmt)	fmt_qc(c	int64)	{

			321	 	 var	quoted	[]byte

			322	 	 if	f.plus	{

			323	 	 	 quoted	=	strconv.AppendQuoteRuneToASCII(f.intbuf[0:0],	rune(c))

			324	 	 }	else	{

			325	 	 	 quoted	=	strconv.AppendQuoteRune(f.intbuf[0:0],	rune(c))

			326	 	 }

			327	 	 f.pad(quoted)

			328	 }

			329	

			330	 //	floating-point

			331	

			332	 func	doPrec(f	*fmt,	def	int)	int	{

			333	 	 if	f.precPresent	{

			334	 	 	 return	f.prec

			335	 	 }

			336	 	 return	def

			337	 }

			338	

			339	 //	formatFloat	formats	a	float64;	it	is	an	efficient	equivalent	to		f.pad(strconv.FormatFloat()...).

			340	 func	(f	*fmt)	formatFloat(v	float64,	verb	byte,	prec,	n	int)	{

			341	 	 //	We	leave	one	byte	at	the	beginning	of	f.intbuf	for	a	sign	if	needed,

			342	 	 //	and	make	it	a	space,	which	we	might	be	able	to	use.

			343	 	 f.intbuf[0]	=	'	'

			344	 	 slice	:=	strconv.AppendFloat(f.intbuf[0:1],	v,	verb,	prec,	n)

			345	 	 //	Add	a	plus	sign	or	space	to	the	floating-point	string	representation	if	missing	and	required.

			346	 	 //	The	formatted	number	starts	at	slice[1].

			347	 	 switch	slice[1]	{

			348	 	 case	'-',	'+':

			349	 	 	 //	We're	set;	drop	the	leading	space.

			350	 	 	 slice	=	slice[1:]

			351	 	 default:

			352	 	 	 //	There's	no	sign,	but	we	might	need	one.

			353	 	 	 if	f.plus	{

			354	 	 	 	 slice[0]	=	'+'

			355	 	 	 }	else	if	f.space	{

			356	 	 	 	 //	space	is	already	there

			357	 	 	 }	else	{

			358	 	 	 	 slice	=	slice[1:]

			359	 	 	 }

			360	 	 }

			361	 	 f.pad(slice)

			362	 }

			363	

			364	 //	fmt_e64	formats	a	float64	in	the	form	-1.23e+12.

			365	 func	(f	*fmt)	fmt_e64(v	float64)	{	f.formatFloat(v,	'e',	doPrec(f,	6),	64)	}

			366	

			367	 //	fmt_E64	formats	a	float64	in	the	form	-1.23E+12.

			368	 func	(f	*fmt)	fmt_E64(v	float64)	{	f.formatFloat(v,	'E',	doPrec(f,	6),	64)	}

			369	

			370	 //	fmt_f64	formats	a	float64	in	the	form	-1.23.

			371	 func	(f	*fmt)	fmt_f64(v	float64)	{	f.formatFloat(v,	'f',	doPrec(f,	6),	64)	}

			372	

			373	 //	fmt_g64	formats	a	float64	in	the	'f'	or	'e'	form	according	to	size.

			374	 func	(f	*fmt)	fmt_g64(v	float64)	{	f.formatFloat(v,	'g',	doPrec(f,	-1),	64)	}

			375	

			376	 //	fmt_g64	formats	a	float64	in	the	'f'	or	'E'	form	according	to	size.

			377	 func	(f	*fmt)	fmt_G64(v	float64)	{	f.formatFloat(v,	'G',	doPrec(f,	-1),	64)	}

			378	

			379	 //	fmt_fb64	formats	a	float64	in	the	form	-123p3	(exponent	is	power	of	2).

			380	 func	(f	*fmt)	fmt_fb64(v	float64)	{	f.formatFloat(v,	'b',	0,	64)	}

			381	

			382	 //	float32

			383	 //	cannot	defer	to	float64	versions

			384	 //	because	it	will	get	rounding	wrong	in	corner	cases.

			385	

			386	 //	fmt_e32	formats	a	float32	in	the	form	-1.23e+12.

			387	 func	(f	*fmt)	fmt_e32(v	float32)	{	f.formatFloat(float64(v),	'e',	doPrec(f,	6),	32)	}

			388	

			389	 //	fmt_E32	formats	a	float32	in	the	form	-1.23E+12.

			390	 func	(f	*fmt)	fmt_E32(v	float32)	{	f.formatFloat(float64(v),	'E',	doPrec(f,	6),	32)	}

			391	

			392	 //	fmt_f32	formats	a	float32	in	the	form	-1.23.

			393	 func	(f	*fmt)	fmt_f32(v	float32)	{	f.formatFloat(float64(v),	'f',	doPrec(f,	6),	32)	}

			394	

			395	 //	fmt_g32	formats	a	float32	in	the	'f'	or	'e'	form	according	to	size.

			396	 func	(f	*fmt)	fmt_g32(v	float32)	{	f.formatFloat(float64(v),	'g',	doPrec(f,	-1),	32)	}

			397	

			398	 //	fmt_G32	formats	a	float32	in	the	'f'	or	'E'	form	according	to	size.

			399	 func	(f	*fmt)	fmt_G32(v	float32)	{	f.formatFloat(float64(v),	'G',	doPrec(f,	-1),	32)	}

			400	

			401	 //	fmt_fb32	formats	a	float32	in	the	form	-123p3	(exponent	is	power	of	2).

			402	 func	(f	*fmt)	fmt_fb32(v	float32)	{	f.formatFloat(float64(v),	'b',	0,	32)	}

			403	

			404	 //	fmt_c64	formats	a	complex64	according	to	the	verb.

			405	 func	(f	*fmt)	fmt_c64(v	complex64,	verb	rune)	{

			406	 	 f.buf.WriteByte('(')

			407	 	 r	:=	real(v)

			408	 	 for	i	:=	0;	;	i++	{

			409	 	 	 switch	verb	{

			410	 	 	 case	'e':

			411	 	 	 	 f.fmt_e32(r)

			412	 	 	 case	'E':

			413	 	 	 	 f.fmt_E32(r)

			414	 	 	 case	'f':

			415	 	 	 	 f.fmt_f32(r)

			416	 	 	 case	'g':

			417	 	 	 	 f.fmt_g32(r)

			418	 	 	 case	'G':

			419	 	 	 	 f.fmt_G32(r)

			420	 	 	 }

			421	 	 	 if	i	!=	0	{

			422	 	 	 	 break

			423	 	 	 }

			424	 	 	 f.plus	=	true

			425	 	 	 r	=	imag(v)

			426	 	 }

			427	 	 f.buf.Write(irparenBytes)

			428	 }

			429	

			430	 //	fmt_c128	formats	a	complex128	according	to	the	verb.

			431	 func	(f	*fmt)	fmt_c128(v	complex128,	verb	rune)	{

			432	 	 f.buf.WriteByte('(')

			433	 	 r	:=	real(v)

			434	 	 for	i	:=	0;	;	i++	{

			435	 	 	 switch	verb	{

			436	 	 	 case	'e':

			437	 	 	 	 f.fmt_e64(r)

			438	 	 	 case	'E':

			439	 	 	 	 f.fmt_E64(r)

			440	 	 	 case	'f':

			441	 	 	 	 f.fmt_f64(r)

			442	 	 	 case	'g':

			443	 	 	 	 f.fmt_g64(r)

			444	 	 	 case	'G':

			445	 	 	 	 f.fmt_G64(r)

			446	 	 	 }

			447	 	 	 if	i	!=	0	{

			448	 	 	 	 break

			449	 	 	 }

			450	 	 	 f.plus	=	true

			451	 	 	 r	=	imag(v)

			452	 	 }

			453	 	 f.buf.Write(irparenBytes)

			454	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/fmt/print.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	fmt

					6	

					7	 import	(

					8	 	 "errors"

					9	 	 "io"

				10	 	 "os"

				11	 	 "reflect"

				12	 	 "sync"

				13	 	 "unicode/utf8"

				14)

				15	

				16	 //	Some	constants	in	the	form	of	bytes,	to	avoid	string	overhead.

				17	 //	Needlessly	fastidious,	I	suppose.

				18	 var	(

				19	 	 commaSpaceBytes	=	[]byte(",	")

				20	 	 nilAngleBytes			=	[]byte("<nil>")

				21	 	 nilParenBytes			=	[]byte("(nil)")

				22	 	 nilBytes								=	[]byte("nil")

				23	 	 mapBytes								=	[]byte("map[")

				24	 	 missingBytes				=	[]byte("(MISSING)")

				25	 	 panicBytes						=	[]byte("(PANIC=")

				26	 	 extraBytes						=	[]byte("%!(EXTRA	")

				27	 	 irparenBytes				=	[]byte("i)")

				28	 	 bytesBytes						=	[]byte("[]byte{")

				29	 	 widthBytes						=	[]byte("%!(BADWIDTH)")

				30	 	 precBytes							=	[]byte("%!(BADPREC)")

				31	 	 noVerbBytes					=	[]byte("%!(NOVERB)")

				32)

				33	

				34	 //	State	represents	the	printer	state	passed	to	custom	formatters.

				35	 //	It	provides	access	to	the	io.Writer	interface	plus	information	about

				36	 //	the	flags	and	options	for	the	operand's	format	specifier.

				37	 type	State	interface	{

				38	 	 //	Write	is	the	function	to	call	to	emit	formatted	output	to	be	printed.

				39	 	 Write(b	[]byte)	(ret	int,	err	error)

				40	 	 //	Width	returns	the	value	of	the	width	option	and	whether	it	has	been	set.

				41	 	 Width()	(wid	int,	ok	bool)

				42	 	 //	Precision	returns	the	value	of	the	precision	option	and	whether	it	has	been	set.

				43	 	 Precision()	(prec	int,	ok	bool)

				44	

				45	 	 //	Flag	returns	whether	the	flag	c,	a	character,	has	been	set.

				46	 	 Flag(c	int)	bool

				47	 }

				48	

				49	 //	Formatter	is	the	interface	implemented	by	values	with	a	custom	formatter.

				50	 //	The	implementation	of	Format	may	call	Sprintf	or	Fprintf(f)	etc.

				51	 //	to	generate	its	output.

				52	 type	Formatter	interface	{

				53	 	 Format(f	State,	c	rune)

				54	 }

				55	

				56	 //	Stringer	is	implemented	by	any	value	that	has	a	String	method,

				57	 //	which	defines	the	``native''	format	for	that	value.

				58	 //	The	String	method	is	used	to	print	values	passed	as	an	operand

				59	 //	to	a	%s	or	%v	format	or	to	an	unformatted	printer	such	as	Print.

				60	 type	Stringer	interface	{

				61	 	 String()	string

				62	 }

				63	

				64	 //	GoStringer	is	implemented	by	any	value	that	has	a	GoString	method,

				65	 //	which	defines	the	Go	syntax	for	that	value.

				66	 //	The	GoString	method	is	used	to	print	values	passed	as	an	operand

				67	 //	to	a	%#v	format.

				68	 type	GoStringer	interface	{

				69	 	 GoString()	string

				70	 }

				71	

				72	 //	Use	simple	[]byte	instead	of	bytes.Buffer	to	avoid	large	dependency.

				73	 type	buffer	[]byte

				74	

				75	 func	(b	*buffer)	Write(p	[]byte)	(n	int,	err	error)	{

				76	 	 *b	=	append(*b,	p...)

				77	 	 return	len(p),	nil

				78	 }

				79	

				80	 func	(b	*buffer)	WriteString(s	string)	(n	int,	err	error)	{

				81	 	 *b	=	append(*b,	s...)

				82	 	 return	len(s),	nil

				83	 }

				84	

				85	 func	(b	*buffer)	WriteByte(c	byte)	error	{

				86	 	 *b	=	append(*b,	c)

				87	 	 return	nil

				88	 }

				89	

				90	 func	(bp	*buffer)	WriteRune(r	rune)	error	{

				91	 	 if	r	<	utf8.RuneSelf	{

				92	 	 	 *bp	=	append(*bp,	byte(r))

				93	 	 	 return	nil

				94	 	 }

				95	

				96	 	 b	:=	*bp

				97	 	 n	:=	len(b)

				98	 	 for	n+utf8.UTFMax	>	cap(b)	{

				99	 	 	 b	=	append(b,	0)

			100	 	 }

			101	 	 w	:=	utf8.EncodeRune(b[n:n+utf8.UTFMax],	r)

			102	 	 *bp	=	b[:n+w]

			103	 	 return	nil

			104	 }

			105	

			106	 type	pp	struct	{

			107	 	 n									int

			108	 	 panicking	bool

			109	 	 erroring		bool	//	printing	an	error	condition

			110	 	 buf							buffer

			111	 	 //	field	holds	the	current	item,	as	an	interface{}.

			112	 	 field	interface{}

			113	 	 //	value	holds	the	current	item,	as	a	reflect.Value,	and	will	be

			114	 	 //	the	zero	Value	if	the	item	has	not	been	reflected.

			115	 	 value			reflect.Value

			116	 	 runeBuf	[utf8.UTFMax]byte

			117	 	 fmt					fmt

			118	 }

			119	

			120	 //	A	cache	holds	a	set	of	reusable	objects.

			121	 //	The	slice	is	a	stack	(LIFO).

			122	 //	If	more	are	needed,	the	cache	creates	them	by	calling	new.

			123	 type	cache	struct	{

			124	 	 mu				sync.Mutex

			125	 	 saved	[]interface{}

			126	 	 new			func()	interface{}

			127	 }

			128	

			129	 func	(c	*cache)	put(x	interface{})	{

			130	 	 c.mu.Lock()

			131	 	 if	len(c.saved)	<	cap(c.saved)	{

			132	 	 	 c.saved	=	append(c.saved,	x)

			133	 	 }

			134	 	 c.mu.Unlock()

			135	 }

			136	

			137	 func	(c	*cache)	get()	interface{}	{

			138	 	 c.mu.Lock()

			139	 	 n	:=	len(c.saved)

			140	 	 if	n	==	0	{

			141	 	 	 c.mu.Unlock()

			142	 	 	 return	c.new()

			143	 	 }

			144	 	 x	:=	c.saved[n-1]

			145	 	 c.saved	=	c.saved[0	:	n-1]

			146	 	 c.mu.Unlock()

			147	 	 return	x

			148	 }

			149	

			150	 func	newCache(f	func()	interface{})	*cache	{

			151	 	 return	&cache{saved:	make([]interface{},	0,	100),	new:	f}

			152	 }

			153	

			154	 var	ppFree	=	newCache(func()	interface{}	{	return	new(pp)	})

			155	

			156	 //	Allocate	a	new	pp	struct	or	grab	a	cached	one.

			157	 func	newPrinter()	*pp	{

			158	 	 p	:=	ppFree.get().(*pp)

			159	 	 p.panicking	=	false

			160	 	 p.erroring	=	false

			161	 	 p.fmt.init(&p.buf)

			162	 	 return	p

			163	 }

			164	

			165	 //	Save	used	pp	structs	in	ppFree;	avoids	an	allocation	per	invocation.

			166	 func	(p	*pp)	free()	{

			167	 	 //	Don't	hold	on	to	pp	structs	with	large	buffers.

			168	 	 if	cap(p.buf)	>	1024	{

			169	 	 	 return

			170	 	 }

			171	 	 p.buf	=	p.buf[:0]

			172	 	 p.field	=	nil

			173	 	 p.value	=	reflect.Value{}

			174	 	 ppFree.put(p)

			175	 }

			176	

			177	 func	(p	*pp)	Width()	(wid	int,	ok	bool)	{	return	p.fmt.wid,	p.fmt.widPresent	}

			178	

			179	 func	(p	*pp)	Precision()	(prec	int,	ok	bool)	{	return	p.fmt.prec,	p.fmt.precPresent	}

			180	

			181	 func	(p	*pp)	Flag(b	int)	bool	{

			182	 	 switch	b	{

			183	 	 case	'-':

			184	 	 	 return	p.fmt.minus

			185	 	 case	'+':

			186	 	 	 return	p.fmt.plus

			187	 	 case	'#':

			188	 	 	 return	p.fmt.sharp

			189	 	 case	'	':

			190	 	 	 return	p.fmt.space

			191	 	 case	'0':

			192	 	 	 return	p.fmt.zero

			193	 	 }

			194	 	 return	false

			195	 }

			196	

			197	 func	(p	*pp)	add(c	rune)	{

			198	 	 p.buf.WriteRune(c)

			199	 }

			200	

			201	 //	Implement	Write	so	we	can	call	Fprintf	on	a	pp	(through	State),	for

			202	 //	recursive	use	in	custom	verbs.

			203	 func	(p	*pp)	Write(b	[]byte)	(ret	int,	err	error)	{

			204	 	 return	p.buf.Write(b)

			205	 }

			206	

			207	 //	These	routines	end	in	'f'	and	take	a	format	string.

			208	

			209	 //	Fprintf	formats	according	to	a	format	specifier	and	writes	to	w.

			210	 //	It	returns	the	number	of	bytes	written	and	any	write	error	encountered.

			211	 func	Fprintf(w	io.Writer,	format	string,	a	...interface{})	(n	int,	err	error)	{

			212	 	 p	:=	newPrinter()

			213	 	 p.doPrintf(format,	a)

			214	 	 n64,	err	:=	w.Write(p.buf)

			215	 	 p.free()

			216	 	 return	int(n64),	err

			217	 }

			218	

			219	 //	Printf	formats	according	to	a	format	specifier	and	writes	to	standard	output.

			220	 //	It	returns	the	number	of	bytes	written	and	any	write	error	encountered.

			221	 func	Printf(format	string,	a	...interface{})	(n	int,	err	error)	{

			222	 	 return	Fprintf(os.Stdout,	format,	a...)

			223	 }

			224	

			225	 //	Sprintf	formats	according	to	a	format	specifier	and	returns	the	resulting	string.

			226	 func	Sprintf(format	string,	a	...interface{})	string	{

			227	 	 p	:=	newPrinter()

			228	 	 p.doPrintf(format,	a)

			229	 	 s	:=	string(p.buf)

			230	 	 p.free()

			231	 	 return	s

			232	 }

			233	

			234	 //	Errorf	formats	according	to	a	format	specifier	and	returns	the	string	

			235	 //	as	a	value	that	satisfies	error.

			236	 func	Errorf(format	string,	a	...interface{})	error	{

			237	 	 return	errors.New(Sprintf(format,	a...))

			238	 }

			239	

			240	 //	These	routines	do	not	take	a	format	string

			241	

			242	 //	Fprint	formats	using	the	default	formats	for	its	operands	and	writes	to	w.

			243	 //	Spaces	are	added	between	operands	when	neither	is	a	string.

			244	 //	It	returns	the	number	of	bytes	written	and	any	write	error	encountered.

			245	 func	Fprint(w	io.Writer,	a	...interface{})	(n	int,	err	error)	{

			246	 	 p	:=	newPrinter()

			247	 	 p.doPrint(a,	false,	false)

			248	 	 n64,	err	:=	w.Write(p.buf)

			249	 	 p.free()

			250	 	 return	int(n64),	err

			251	 }

			252	

			253	 //	Print	formats	using	the	default	formats	for	its	operands	and	writes	to	standard	output.

			254	 //	Spaces	are	added	between	operands	when	neither	is	a	string.

			255	 //	It	returns	the	number	of	bytes	written	and	any	write	error	encountered.

			256	 func	Print(a	...interface{})	(n	int,	err	error)	{

			257	 	 return	Fprint(os.Stdout,	a...)

			258	 }

			259	

			260	 //	Sprint	formats	using	the	default	formats	for	its	operands	and	returns	the	resulting	string.

			261	 //	Spaces	are	added	between	operands	when	neither	is	a	string.

			262	 func	Sprint(a	...interface{})	string	{

			263	 	 p	:=	newPrinter()

			264	 	 p.doPrint(a,	false,	false)

			265	 	 s	:=	string(p.buf)

			266	 	 p.free()

			267	 	 return	s

			268	 }

			269	

			270	 //	These	routines	end	in	'ln',	do	not	take	a	format	string,

			271	 //	always	add	spaces	between	operands,	and	add	a	newline

			272	 //	after	the	last	operand.

			273	

			274	 //	Fprintln	formats	using	the	default	formats	for	its	operands	and	writes	to	w.

			275	 //	Spaces	are	always	added	between	operands	and	a	newline	is	appended.

			276	 //	It	returns	the	number	of	bytes	written	and	any	write	error	encountered.

			277	 func	Fprintln(w	io.Writer,	a	...interface{})	(n	int,	err	error)	{

			278	 	 p	:=	newPrinter()

			279	 	 p.doPrint(a,	true,	true)

			280	 	 n64,	err	:=	w.Write(p.buf)

			281	 	 p.free()

			282	 	 return	int(n64),	err

			283	 }

			284	

			285	 //	Println	formats	using	the	default	formats	for	its	operands	and	writes	to	standard	output.

			286	 //	Spaces	are	always	added	between	operands	and	a	newline	is	appended.

			287	 //	It	returns	the	number	of	bytes	written	and	any	write	error	encountered.

			288	 func	Println(a	...interface{})	(n	int,	err	error)	{

			289	 	 return	Fprintln(os.Stdout,	a...)

			290	 }

			291	

			292	 //	Sprintln	formats	using	the	default	formats	for	its	operands	and	returns	the	resulting	string.

			293	 //	Spaces	are	always	added	between	operands	and	a	newline	is	appended.

			294	 func	Sprintln(a	...interface{})	string	{

			295	 	 p	:=	newPrinter()

			296	 	 p.doPrint(a,	true,	true)

			297	 	 s	:=	string(p.buf)

			298	 	 p.free()

			299	 	 return	s

			300	 }

			301	

			302	 //	Get	the	i'th	arg	of	the	struct	value.

			303	 //	If	the	arg	itself	is	an	interface,	return	a	value	for

			304	 //	the	thing	inside	the	interface,	not	the	interface	itself.

			305	 func	getField(v	reflect.Value,	i	int)	reflect.Value	{

			306	 	 val	:=	v.Field(i)

			307	 	 if	val.Kind()	==	reflect.Interface	&&	!val.IsNil()	{

			308	 	 	 val	=	val.Elem()

			309	 	 }

			310	 	 return	val

			311	 }

			312	

			313	 //	Convert	ASCII	to	integer.		n	is	0	(and	got	is	false)	if	no	number	present.

			314	 func	parsenum(s	string,	start,	end	int)	(num	int,	isnum	bool,	newi	int)	{

			315	 	 if	start	>=	end	{

			316	 	 	 return	0,	false,	end

			317	 	 }

			318	 	 for	newi	=	start;	newi	<	end	&&	'0'	<=	s[newi]	&&	s[newi]	<=	'9';	newi++	{

			319	 	 	 num	=	num*10	+	int(s[newi]-'0')

			320	 	 	 isnum	=	true

			321	 	 }

			322	 	 return

			323	 }

			324	

			325	 func	(p	*pp)	unknownType(v	interface{})	{

			326	 	 if	v	==	nil	{

			327	 	 	 p.buf.Write(nilAngleBytes)

			328	 	 	 return

			329	 	 }

			330	 	 p.buf.WriteByte('?')

			331	 	 p.buf.WriteString(reflect.TypeOf(v).String())

			332	 	 p.buf.WriteByte('?')

			333	 }

			334	

			335	 func	(p	*pp)	badVerb(verb	rune)	{

			336	 	 p.erroring	=	true

			337	 	 p.add('%')

			338	 	 p.add('!')

			339	 	 p.add(verb)

			340	 	 p.add('(')

			341	 	 switch	{

			342	 	 case	p.field	!=	nil:

			343	 	 	 p.buf.WriteString(reflect.TypeOf(p.field).String())

			344	 	 	 p.add('=')

			345	 	 	 p.printField(p.field,	'v',	false,	false,	0)

			346	 	 case	p.value.IsValid():

			347	 	 	 p.buf.WriteString(p.value.Type().String())

			348	 	 	 p.add('=')

			349	 	 	 p.printValue(p.value,	'v',	false,	false,	0)

			350	 	 default:

			351	 	 	 p.buf.Write(nilAngleBytes)

			352	 	 }

			353	 	 p.add(')')

			354	 	 p.erroring	=	false

			355	 }

			356	

			357	 func	(p	*pp)	fmtBool(v	bool,	verb	rune)	{

			358	 	 switch	verb	{

			359	 	 case	't',	'v':

			360	 	 	 p.fmt.fmt_boolean(v)

			361	 	 default:

			362	 	 	 p.badVerb(verb)

			363	 	 }

			364	 }

			365	

			366	 //	fmtC	formats	a	rune	for	the	'c'	format.

			367	 func	(p	*pp)	fmtC(c	int64)	{

			368	 	 r	:=	rune(c)	//	Check	for	overflow.

			369	 	 if	int64(r)	!=	c	{

			370	 	 	 r	=	utf8.RuneError

			371	 	 }

			372	 	 w	:=	utf8.EncodeRune(p.runeBuf[0:utf8.UTFMax],	r)

			373	 	 p.fmt.pad(p.runeBuf[0:w])

			374	 }

			375	

			376	 func	(p	*pp)	fmtInt64(v	int64,	verb	rune)	{

			377	 	 switch	verb	{

			378	 	 case	'b':

			379	 	 	 p.fmt.integer(v,	2,	signed,	ldigits)

			380	 	 case	'c':

			381	 	 	 p.fmtC(v)

			382	 	 case	'd',	'v':

			383	 	 	 p.fmt.integer(v,	10,	signed,	ldigits)

			384	 	 case	'o':

			385	 	 	 p.fmt.integer(v,	8,	signed,	ldigits)

			386	 	 case	'q':

			387	 	 	 if	0	<=	v	&&	v	<=	utf8.MaxRune	{

			388	 	 	 	 p.fmt.fmt_qc(v)

			389	 	 	 }	else	{

			390	 	 	 	 p.badVerb(verb)

			391	 	 	 }

			392	 	 case	'x':

			393	 	 	 p.fmt.integer(v,	16,	signed,	ldigits)

			394	 	 case	'U':

			395	 	 	 p.fmtUnicode(v)

			396	 	 case	'X':

			397	 	 	 p.fmt.integer(v,	16,	signed,	udigits)

			398	 	 default:

			399	 	 	 p.badVerb(verb)

			400	 	 }

			401	 }

			402	

			403	 //	fmt0x64	formats	a	uint64	in	hexadecimal	and	prefixes	it	with	0x	or

			404	 //	not,	as	requested,	by	temporarily	setting	the	sharp	flag.

			405	 func	(p	*pp)	fmt0x64(v	uint64,	leading0x	bool)	{

			406	 	 sharp	:=	p.fmt.sharp

			407	 	 p.fmt.sharp	=	leading0x

			408	 	 p.fmt.integer(int64(v),	16,	unsigned,	ldigits)

			409	 	 p.fmt.sharp	=	sharp

			410	 }

			411	

			412	 //	fmtUnicode	formats	a	uint64	in	U+1234	form	by

			413	 //	temporarily	turning	on	the	unicode	flag	and	tweaking	the	precision.

			414	 func	(p	*pp)	fmtUnicode(v	int64)	{

			415	 	 precPresent	:=	p.fmt.precPresent

			416	 	 sharp	:=	p.fmt.sharp

			417	 	 p.fmt.sharp	=	false

			418	 	 prec	:=	p.fmt.prec

			419	 	 if	!precPresent	{

			420	 	 	 //	If	prec	is	already	set,	leave	it	alone;	otherwise	4	is	minimum.

			421	 	 	 p.fmt.prec	=	4

			422	 	 	 p.fmt.precPresent	=	true

			423	 	 }

			424	 	 p.fmt.unicode	=	true	//	turn	on	U+

			425	 	 p.fmt.uniQuote	=	sharp

			426	 	 p.fmt.integer(int64(v),	16,	unsigned,	udigits)

			427	 	 p.fmt.unicode	=	false

			428	 	 p.fmt.uniQuote	=	false

			429	 	 p.fmt.prec	=	prec

			430	 	 p.fmt.precPresent	=	precPresent

			431	 	 p.fmt.sharp	=	sharp

			432	 }

			433	

			434	 func	(p	*pp)	fmtUint64(v	uint64,	verb	rune,	goSyntax	bool)	{

			435	 	 switch	verb	{

			436	 	 case	'b':

			437	 	 	 p.fmt.integer(int64(v),	2,	unsigned,	ldigits)

			438	 	 case	'c':

			439	 	 	 p.fmtC(int64(v))

			440	 	 case	'd':

			441	 	 	 p.fmt.integer(int64(v),	10,	unsigned,	ldigits)

			442	 	 case	'v':

			443	 	 	 if	goSyntax	{

			444	 	 	 	 p.fmt0x64(v,	true)

			445	 	 	 }	else	{

			446	 	 	 	 p.fmt.integer(int64(v),	10,	unsigned,	ldigits)

			447	 	 	 }

			448	 	 case	'o':

			449	 	 	 p.fmt.integer(int64(v),	8,	unsigned,	ldigits)

			450	 	 case	'q':

			451	 	 	 if	0	<=	v	&&	v	<=	utf8.MaxRune	{

			452	 	 	 	 p.fmt.fmt_qc(int64(v))

			453	 	 	 }	else	{

			454	 	 	 	 p.badVerb(verb)

			455	 	 	 }

			456	 	 case	'x':

			457	 	 	 p.fmt.integer(int64(v),	16,	unsigned,	ldigits)

			458	 	 case	'X':

			459	 	 	 p.fmt.integer(int64(v),	16,	unsigned,	udigits)

			460	 	 case	'U':

			461	 	 	 p.fmtUnicode(int64(v))

			462	 	 default:

			463	 	 	 p.badVerb(verb)

			464	 	 }

			465	 }

			466	

			467	 func	(p	*pp)	fmtFloat32(v	float32,	verb	rune)	{

			468	 	 switch	verb	{

			469	 	 case	'b':

			470	 	 	 p.fmt.fmt_fb32(v)

			471	 	 case	'e':

			472	 	 	 p.fmt.fmt_e32(v)

			473	 	 case	'E':

			474	 	 	 p.fmt.fmt_E32(v)

			475	 	 case	'f':

			476	 	 	 p.fmt.fmt_f32(v)

			477	 	 case	'g',	'v':

			478	 	 	 p.fmt.fmt_g32(v)

			479	 	 case	'G':

			480	 	 	 p.fmt.fmt_G32(v)

			481	 	 default:

			482	 	 	 p.badVerb(verb)

			483	 	 }

			484	 }

			485	

			486	 func	(p	*pp)	fmtFloat64(v	float64,	verb	rune)	{

			487	 	 switch	verb	{

			488	 	 case	'b':

			489	 	 	 p.fmt.fmt_fb64(v)

			490	 	 case	'e':

			491	 	 	 p.fmt.fmt_e64(v)

			492	 	 case	'E':

			493	 	 	 p.fmt.fmt_E64(v)

			494	 	 case	'f':

			495	 	 	 p.fmt.fmt_f64(v)

			496	 	 case	'g',	'v':

			497	 	 	 p.fmt.fmt_g64(v)

			498	 	 case	'G':

			499	 	 	 p.fmt.fmt_G64(v)

			500	 	 default:

			501	 	 	 p.badVerb(verb)

			502	 	 }

			503	 }

			504	

			505	 func	(p	*pp)	fmtComplex64(v	complex64,	verb	rune)	{

			506	 	 switch	verb	{

			507	 	 case	'e',	'E',	'f',	'F',	'g',	'G':

			508	 	 	 p.fmt.fmt_c64(v,	verb)

			509	 	 case	'v':

			510	 	 	 p.fmt.fmt_c64(v,	'g')

			511	 	 default:

			512	 	 	 p.badVerb(verb)

			513	 	 }

			514	 }

			515	

			516	 func	(p	*pp)	fmtComplex128(v	complex128,	verb	rune)	{

			517	 	 switch	verb	{

			518	 	 case	'e',	'E',	'f',	'F',	'g',	'G':

			519	 	 	 p.fmt.fmt_c128(v,	verb)

			520	 	 case	'v':

			521	 	 	 p.fmt.fmt_c128(v,	'g')

			522	 	 default:

			523	 	 	 p.badVerb(verb)

			524	 	 }

			525	 }

			526	

			527	 func	(p	*pp)	fmtString(v	string,	verb	rune,	goSyntax	bool)	{

			528	 	 switch	verb	{

			529	 	 case	'v':

			530	 	 	 if	goSyntax	{

			531	 	 	 	 p.fmt.fmt_q(v)

			532	 	 	 }	else	{

			533	 	 	 	 p.fmt.fmt_s(v)

			534	 	 	 }

			535	 	 case	's':

			536	 	 	 p.fmt.fmt_s(v)

			537	 	 case	'x':

			538	 	 	 p.fmt.fmt_sx(v,	ldigits)

			539	 	 case	'X':

			540	 	 	 p.fmt.fmt_sx(v,	udigits)

			541	 	 case	'q':

			542	 	 	 p.fmt.fmt_q(v)

			543	 	 default:

			544	 	 	 p.badVerb(verb)

			545	 	 }

			546	 }

			547	

			548	 func	(p	*pp)	fmtBytes(v	[]byte,	verb	rune,	goSyntax	bool,	depth	int)	{

			549	 	 if	verb	==	'v'	||	verb	==	'd'	{

			550	 	 	 if	goSyntax	{

			551	 	 	 	 p.buf.Write(bytesBytes)

			552	 	 	 }	else	{

			553	 	 	 	 p.buf.WriteByte('[')

			554	 	 	 }

			555	 	 	 for	i,	c	:=	range	v	{

			556	 	 	 	 if	i	>	0	{

			557	 	 	 	 	 if	goSyntax	{

			558	 	 	 	 	 	 p.buf.Write(commaSpaceBytes)

			559	 	 	 	 	 }	else	{

			560	 	 	 	 	 	 p.buf.WriteByte('	')

			561	 	 	 	 	 }

			562	 	 	 	 }

			563	 	 	 	 p.printField(c,	'v',	p.fmt.plus,	goSyntax,	depth+1)

			564	 	 	 }

			565	 	 	 if	goSyntax	{

			566	 	 	 	 p.buf.WriteByte('}')

			567	 	 	 }	else	{

			568	 	 	 	 p.buf.WriteByte(']')

			569	 	 	 }

			570	 	 	 return

			571	 	 }

			572	 	 s	:=	string(v)

			573	 	 switch	verb	{

			574	 	 case	's':

			575	 	 	 p.fmt.fmt_s(s)

			576	 	 case	'x':

			577	 	 	 p.fmt.fmt_sx(s,	ldigits)

			578	 	 case	'X':

			579	 	 	 p.fmt.fmt_sx(s,	udigits)

			580	 	 case	'q':

			581	 	 	 p.fmt.fmt_q(s)

			582	 	 default:

			583	 	 	 p.badVerb(verb)

			584	 	 }

			585	 }

			586	

			587	 func	(p	*pp)	fmtPointer(value	reflect.Value,	verb	rune,	goSyntax	bool)	{

			588	 	 switch	verb	{

			589	 	 case	'p',	'v',	'b',	'd',	'o',	'x',	'X':

			590	 	 	 //	ok

			591	 	 default:

			592	 	 	 p.badVerb(verb)

			593	 	 	 return

			594	 	 }

			595	

			596	 	 var	u	uintptr

			597	 	 switch	value.Kind()	{

			598	 	 case	reflect.Chan,	reflect.Func,	reflect.Map,	reflect.Ptr,	reflect.Slice,	reflect.UnsafePointer:

			599	 	 	 u	=	value.Pointer()

			600	 	 default:

			601	 	 	 p.badVerb(verb)

			602	 	 	 return

			603	 	 }

			604	

			605	 	 if	goSyntax	{

			606	 	 	 p.add('(')

			607	 	 	 p.buf.WriteString(value.Type().String())

			608	 	 	 p.add(')')

			609	 	 	 p.add('(')

			610	 	 	 if	u	==	0	{

			611	 	 	 	 p.buf.Write(nilBytes)

			612	 	 	 }	else	{

			613	 	 	 	 p.fmt0x64(uint64(u),	true)

			614	 	 	 }

			615	 	 	 p.add(')')

			616	 	 }	else	if	verb	==	'v'	&&	u	==	0	{

			617	 	 	 p.buf.Write(nilAngleBytes)

			618	 	 }	else	{

			619	 	 	 p.fmt0x64(uint64(u),	!p.fmt.sharp)

			620	 	 }

			621	 }

			622	

			623	 var	(

			624	 	 intBits					=	reflect.TypeOf(0).Bits()

			625	 	 floatBits			=	reflect.TypeOf(0.0).Bits()

			626	 	 complexBits	=	reflect.TypeOf(1i).Bits()

			627	 	 uintptrBits	=	reflect.TypeOf(uintptr(0)).Bits()

			628)

			629	

			630	 func	(p	*pp)	catchPanic(field	interface{},	verb	rune)	{

			631	 	 if	err	:=	recover();	err	!=	nil	{

			632	 	 	 //	If	it's	a	nil	pointer,	just	say	"<nil>".	The	likeliest	causes	are	a

			633	 	 	 //	Stringer	that	fails	to	guard	against	nil	or	a	nil	pointer	for	a

			634	 	 	 //	value	receiver,	and	in	either	case,	"<nil>"	is	a	nice	result.

			635	 	 	 if	v	:=	reflect.ValueOf(field);	v.Kind()	==	reflect.Ptr	&&	v.IsNil()	{

			636	 	 	 	 p.buf.Write(nilAngleBytes)

			637	 	 	 	 return

			638	 	 	 }

			639	 	 	 //	Otherwise	print	a	concise	panic	message.	Most	of	the	time	the	panic

			640	 	 	 //	value	will	print	itself	nicely.

			641	 	 	 if	p.panicking	{

			642	 	 	 	 //	Nested	panics;	the	recursion	in	printField	cannot	succeed.

			643	 	 	 	 panic(err)

			644	 	 	 }

			645	 	 	 p.buf.WriteByte('%')

			646	 	 	 p.add(verb)

			647	 	 	 p.buf.Write(panicBytes)

			648	 	 	 p.panicking	=	true

			649	 	 	 p.printField(err,	'v',	false,	false,	0)

			650	 	 	 p.panicking	=	false

			651	 	 	 p.buf.WriteByte(')')

			652	 	 }

			653	 }

			654	

			655	 func	(p	*pp)	handleMethods(verb	rune,	plus,	goSyntax	bool,	depth	int)	(wasString,	handled	bool)	{

			656	 	 if	p.erroring	{

			657	 	 	 return

			658	 	 }

			659	 	 //	Is	it	a	Formatter?

			660	 	 if	formatter,	ok	:=	p.field.(Formatter);	ok	{

			661	 	 	 handled	=	true

			662	 	 	 wasString	=	false

			663	 	 	 defer	p.catchPanic(p.field,	verb)

			664	 	 	 formatter.Format(p,	verb)

			665	 	 	 return

			666	 	 }

			667	 	 //	Must	not	touch	flags	before	Formatter	looks	at	them.

			668	 	 if	plus	{

			669	 	 	 p.fmt.plus	=	false

			670	 	 }

			671	

			672	 	 //	If	we're	doing	Go	syntax	and	the	field	knows	how	to	supply	it,	take	care	of	it	now.

			673	 	 if	goSyntax	{

			674	 	 	 p.fmt.sharp	=	false

			675	 	 	 if	stringer,	ok	:=	p.field.(GoStringer);	ok	{

			676	 	 	 	 wasString	=	false

			677	 	 	 	 handled	=	true

			678	 	 	 	 defer	p.catchPanic(p.field,	verb)

			679	 	 	 	 //	Print	the	result	of	GoString	unadorned.

			680	 	 	 	 p.fmtString(stringer.GoString(),	's',	false)

			681	 	 	 	 return

			682	 	 	 }

			683	 	 }	else	{

			684	 	 	 //	If	a	string	is	acceptable	according	to	the	format,	see	if

			685	 	 	 //	the	value	satisfies	one	of	the	string-valued	interfaces.

			686	 	 	 //	Println	etc.	set	verb	to	%v,	which	is	"stringable".

			687	 	 	 switch	verb	{

			688	 	 	 case	'v',	's',	'x',	'X',	'q':

			689	 	 	 	 //	Is	it	an	error	or	Stringer?

			690	 	 	 	 //	The	duplication	in	the	bodies	is	necessary:

			691	 	 	 	 //	setting	wasString	and	handled,	and	deferring	catchPanic,

			692	 	 	 	 //	must	happen	before	calling	the	method.

			693	 	 	 	 switch	v	:=	p.field.(type)	{

			694	 	 	 	 case	error:

			695	 	 	 	 	 wasString	=	false

			696	 	 	 	 	 handled	=	true

			697	 	 	 	 	 defer	p.catchPanic(p.field,	verb)

			698	 	 	 	 	 p.printField(v.Error(),	verb,	plus,	false,	depth)

			699	 	 	 	 	 return

			700	

			701	 	 	 	 case	Stringer:

			702	 	 	 	 	 wasString	=	false

			703	 	 	 	 	 handled	=	true

			704	 	 	 	 	 defer	p.catchPanic(p.field,	verb)

			705	 	 	 	 	 p.printField(v.String(),	verb,	plus,	false,	depth)

			706	 	 	 	 	 return

			707	 	 	 	 }

			708	 	 	 }

			709	 	 }

			710	 	 handled	=	false

			711	 	 return

			712	 }

			713	

			714	 func	(p	*pp)	printField(field	interface{},	verb	rune,	plus,	goSyntax	bool,	depth	int)	(wasString	bool)	{

			715	 	 if	field	==	nil	{

			716	 	 	 if	verb	==	'T'	||	verb	==	'v'	{

			717	 	 	 	 p.buf.Write(nilAngleBytes)

			718	 	 	 }	else	{

			719	 	 	 	 p.badVerb(verb)

			720	 	 	 }

			721	 	 	 return	false

			722	 	 }

			723	

			724	 	 p.field	=	field

			725	 	 p.value	=	reflect.Value{}

			726	 	 //	Special	processing	considerations.

			727	 	 //	%T	(the	value's	type)	and	%p	(its	address)	are	special;	we	always	do	them	first.

			728	 	 switch	verb	{

			729	 	 case	'T':

			730	 	 	 p.printField(reflect.TypeOf(field).String(),	's',	false,	false,	0)

			731	 	 	 return	false

			732	 	 case	'p':

			733	 	 	 p.fmtPointer(reflect.ValueOf(field),	verb,	goSyntax)

			734	 	 	 return	false

			735	 	 }

			736	

			737	 	 if	wasString,	handled	:=	p.handleMethods(verb,	plus,	goSyntax,	depth);	handled	{

			738	 	 	 return	wasString

			739	 	 }

			740	

			741	 	 //	Some	types	can	be	done	without	reflection.

			742	 	 switch	f	:=	field.(type)	{

			743	 	 case	bool:

			744	 	 	 p.fmtBool(f,	verb)

			745	 	 case	float32:

			746	 	 	 p.fmtFloat32(f,	verb)

			747	 	 case	float64:

			748	 	 	 p.fmtFloat64(f,	verb)

			749	 	 case	complex64:

			750	 	 	 p.fmtComplex64(complex64(f),	verb)

			751	 	 case	complex128:

			752	 	 	 p.fmtComplex128(f,	verb)

			753	 	 case	int:

			754	 	 	 p.fmtInt64(int64(f),	verb)

			755	 	 case	int8:

			756	 	 	 p.fmtInt64(int64(f),	verb)

			757	 	 case	int16:

			758	 	 	 p.fmtInt64(int64(f),	verb)

			759	 	 case	int32:

			760	 	 	 p.fmtInt64(int64(f),	verb)

			761	 	 case	int64:

			762	 	 	 p.fmtInt64(f,	verb)

			763	 	 case	uint:

			764	 	 	 p.fmtUint64(uint64(f),	verb,	goSyntax)

			765	 	 case	uint8:

			766	 	 	 p.fmtUint64(uint64(f),	verb,	goSyntax)

			767	 	 case	uint16:

			768	 	 	 p.fmtUint64(uint64(f),	verb,	goSyntax)

			769	 	 case	uint32:

			770	 	 	 p.fmtUint64(uint64(f),	verb,	goSyntax)

			771	 	 case	uint64:

			772	 	 	 p.fmtUint64(f,	verb,	goSyntax)

			773	 	 case	uintptr:

			774	 	 	 p.fmtUint64(uint64(f),	verb,	goSyntax)

			775	 	 case	string:

			776	 	 	 p.fmtString(f,	verb,	goSyntax)

			777	 	 	 wasString	=	verb	==	's'	||	verb	==	'v'

			778	 	 case	[]byte:

			779	 	 	 p.fmtBytes(f,	verb,	goSyntax,	depth)

			780	 	 	 wasString	=	verb	==	's'

			781	 	 default:

			782	 	 	 //	Need	to	use	reflection

			783	 	 	 return	p.printReflectValue(reflect.ValueOf(field),	verb,	plus,	goSyntax,	depth)

			784	 	 }

			785	 	 p.field	=	nil

			786	 	 return

			787	 }

			788	

			789	 //	printValue	is	like	printField	but	starts	with	a	reflect	value,	not	an	interface{}	value.

			790	 func	(p	*pp)	printValue(value	reflect.Value,	verb	rune,	plus,	goSyntax	bool,	depth	int)	(wasString	bool)	{

			791	 	 if	!value.IsValid()	{

			792	 	 	 if	verb	==	'T'	||	verb	==	'v'	{

			793	 	 	 	 p.buf.Write(nilAngleBytes)

			794	 	 	 }	else	{

			795	 	 	 	 p.badVerb(verb)

			796	 	 	 }

			797	 	 	 return	false

			798	 	 }

			799	

			800	 	 //	Special	processing	considerations.

			801	 	 //	%T	(the	value's	type)	and	%p	(its	address)	are	special;	we	always	do	them	first.

			802	 	 switch	verb	{

			803	 	 case	'T':

			804	 	 	 p.printField(value.Type().String(),	's',	false,	false,	0)

			805	 	 	 return	false

			806	 	 case	'p':

			807	 	 	 p.fmtPointer(value,	verb,	goSyntax)

			808	 	 	 return	false

			809	 	 }

			810	

			811	 	 //	Handle	values	with	special	methods.

			812	 	 //	Call	always,	even	when	field	==	nil,	because	handleMethods	clears	p.fmt.plus	for	us.

			813	 	 p.field	=	nil	//	Make	sure	it's	cleared,	for	safety.

			814	 	 if	value.CanInterface()	{

			815	 	 	 p.field	=	value.Interface()

			816	 	 }

			817	 	 if	wasString,	handled	:=	p.handleMethods(verb,	plus,	goSyntax,	depth);	handled	{

			818	 	 	 return	wasString

			819	 	 }

			820	

			821	 	 return	p.printReflectValue(value,	verb,	plus,	goSyntax,	depth)

			822	 }

			823	

			824	 //	printReflectValue	is	the	fallback	for	both	printField	and	printValue.

			825	 //	It	uses	reflect	to	print	the	value.

			826	 func	(p	*pp)	printReflectValue(value	reflect.Value,	verb	rune,	plus,	goSyntax	bool,	depth	int)	(wasString	bool)	{

			827	 	 oldValue	:=	p.value

			828	 	 p.value	=	value

			829	 BigSwitch:

			830	 	 switch	f	:=	value;	f.Kind()	{

			831	 	 case	reflect.Bool:

			832	 	 	 p.fmtBool(f.Bool(),	verb)

			833	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			834	 	 	 p.fmtInt64(f.Int(),	verb)

			835	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

			836	 	 	 p.fmtUint64(uint64(f.Uint()),	verb,	goSyntax)

			837	 	 case	reflect.Float32,	reflect.Float64:

			838	 	 	 if	f.Type().Size()	==	4	{

			839	 	 	 	 p.fmtFloat32(float32(f.Float()),	verb)

			840	 	 	 }	else	{

			841	 	 	 	 p.fmtFloat64(float64(f.Float()),	verb)

			842	 	 	 }

			843	 	 case	reflect.Complex64,	reflect.Complex128:

			844	 	 	 if	f.Type().Size()	==	8	{

			845	 	 	 	 p.fmtComplex64(complex64(f.Complex()),	verb)

			846	 	 	 }	else	{

			847	 	 	 	 p.fmtComplex128(complex128(f.Complex()),	verb)

			848	 	 	 }

			849	 	 case	reflect.String:

			850	 	 	 p.fmtString(f.String(),	verb,	goSyntax)

			851	 	 case	reflect.Map:

			852	 	 	 if	goSyntax	{

			853	 	 	 	 p.buf.WriteString(f.Type().String())

			854	 	 	 	 if	f.IsNil()	{

			855	 	 	 	 	 p.buf.WriteString("(nil)")

			856	 	 	 	 	 break

			857	 	 	 	 }

			858	 	 	 	 p.buf.WriteByte('{')

			859	 	 	 }	else	{

			860	 	 	 	 p.buf.Write(mapBytes)

			861	 	 	 }

			862	 	 	 keys	:=	f.MapKeys()

			863	 	 	 for	i,	key	:=	range	keys	{

			864	 	 	 	 if	i	>	0	{

			865	 	 	 	 	 if	goSyntax	{

			866	 	 	 	 	 	 p.buf.Write(commaSpaceBytes)

			867	 	 	 	 	 }	else	{

			868	 	 	 	 	 	 p.buf.WriteByte('	')

			869	 	 	 	 	 }

			870	 	 	 	 }

			871	 	 	 	 p.printValue(key,	verb,	plus,	goSyntax,	depth+1)

			872	 	 	 	 p.buf.WriteByte(':')

			873	 	 	 	 p.printValue(f.MapIndex(key),	verb,	plus,	goSyntax,	depth+1)

			874	 	 	 }

			875	 	 	 if	goSyntax	{

			876	 	 	 	 p.buf.WriteByte('}')

			877	 	 	 }	else	{

			878	 	 	 	 p.buf.WriteByte(']')

			879	 	 	 }

			880	 	 case	reflect.Struct:

			881	 	 	 if	goSyntax	{

			882	 	 	 	 p.buf.WriteString(value.Type().String())

			883	 	 	 }

			884	 	 	 p.add('{')

			885	 	 	 v	:=	f

			886	 	 	 t	:=	v.Type()

			887	 	 	 for	i	:=	0;	i	<	v.NumField();	i++	{

			888	 	 	 	 if	i	>	0	{

			889	 	 	 	 	 if	goSyntax	{

			890	 	 	 	 	 	 p.buf.Write(commaSpaceBytes)

			891	 	 	 	 	 }	else	{

			892	 	 	 	 	 	 p.buf.WriteByte('	')

			893	 	 	 	 	 }

			894	 	 	 	 }

			895	 	 	 	 if	plus	||	goSyntax	{

			896	 	 	 	 	 if	f	:=	t.Field(i);	f.Name	!=	""	{

			897	 	 	 	 	 	 p.buf.WriteString(f.Name)

			898	 	 	 	 	 	 p.buf.WriteByte(':')

			899	 	 	 	 	 }

			900	 	 	 	 }

			901	 	 	 	 p.printValue(getField(v,	i),	verb,	plus,	goSyntax,	depth+1)

			902	 	 	 }

			903	 	 	 p.buf.WriteByte('}')

			904	 	 case	reflect.Interface:

			905	 	 	 value	:=	f.Elem()

			906	 	 	 if	!value.IsValid()	{

			907	 	 	 	 if	goSyntax	{

			908	 	 	 	 	 p.buf.WriteString(f.Type().String())

			909	 	 	 	 	 p.buf.Write(nilParenBytes)

			910	 	 	 	 }	else	{

			911	 	 	 	 	 p.buf.Write(nilAngleBytes)

			912	 	 	 	 }

			913	 	 	 }	else	{

			914	 	 	 	 wasString	=	p.printValue(value,	verb,	plus,	goSyntax,	depth+1)

			915	 	 	 }

			916	 	 case	reflect.Array,	reflect.Slice:

			917	 	 	 //	Byte	slices	are	special.

			918	 	 	 if	f.Type().Elem().Kind()	==	reflect.Uint8	{

			919	 	 	 	 //	We	know	it's	a	slice	of	bytes,	but	we	also	know	it	does	not	have	static	type

			920	 	 	 	 //	[]byte,	or	it	would	have	been	caught	above.		Therefore	we	cannot	convert

			921	 	 	 	 //	it	directly	in	the	(slightly)	obvious	way:	f.Interface().([]byte);	it	doesn't	have

			922	 	 	 	 //	that	type,	and	we	can't	write	an	expression	of	the	right	type	and	do	a

			923	 	 	 	 //	conversion	because	we	don't	have	a	static	way	to	write	the	right	type.

			924	 	 	 	 //	So	we	build	a	slice	by	hand.		This	is	a	rare	case	but	it	would	be	nice

			925	 	 	 	 //	if	reflection	could	help	a	little	more.

			926	 	 	 	 bytes	:=	make([]byte,	f.Len())

			927	 	 	 	 for	i	:=	range	bytes	{

			928	 	 	 	 	 bytes[i]	=	byte(f.Index(i).Uint())

			929	 	 	 	 }

			930	 	 	 	 p.fmtBytes(bytes,	verb,	goSyntax,	depth)

			931	 	 	 	 wasString	=	verb	==	's'

			932	 	 	 	 break

			933	 	 	 }

			934	 	 	 if	goSyntax	{

			935	 	 	 	 p.buf.WriteString(value.Type().String())

			936	 	 	 	 if	f.Kind()	==	reflect.Slice	&&	f.IsNil()	{

			937	 	 	 	 	 p.buf.WriteString("(nil)")

			938	 	 	 	 	 break

			939	 	 	 	 }

			940	 	 	 	 p.buf.WriteByte('{')

			941	 	 	 }	else	{

			942	 	 	 	 p.buf.WriteByte('[')

			943	 	 	 }

			944	 	 	 for	i	:=	0;	i	<	f.Len();	i++	{

			945	 	 	 	 if	i	>	0	{

			946	 	 	 	 	 if	goSyntax	{

			947	 	 	 	 	 	 p.buf.Write(commaSpaceBytes)

			948	 	 	 	 	 }	else	{

			949	 	 	 	 	 	 p.buf.WriteByte('	')

			950	 	 	 	 	 }

			951	 	 	 	 }

			952	 	 	 	 p.printValue(f.Index(i),	verb,	plus,	goSyntax,	depth+1)

			953	 	 	 }

			954	 	 	 if	goSyntax	{

			955	 	 	 	 p.buf.WriteByte('}')

			956	 	 	 }	else	{

			957	 	 	 	 p.buf.WriteByte(']')

			958	 	 	 }

			959	 	 case	reflect.Ptr:

			960	 	 	 v	:=	f.Pointer()

			961	 	 	 //	pointer	to	array	or	slice	or	struct?		ok	at	top	level

			962	 	 	 //	but	not	embedded	(avoid	loops)

			963	 	 	 if	v	!=	0	&&	depth	==	0	{

			964	 	 	 	 switch	a	:=	f.Elem();	a.Kind()	{

			965	 	 	 	 case	reflect.Array,	reflect.Slice:

			966	 	 	 	 	 p.buf.WriteByte('&')

			967	 	 	 	 	 p.printValue(a,	verb,	plus,	goSyntax,	depth+1)

			968	 	 	 	 	 break	BigSwitch

			969	 	 	 	 case	reflect.Struct:

			970	 	 	 	 	 p.buf.WriteByte('&')

			971	 	 	 	 	 p.printValue(a,	verb,	plus,	goSyntax,	depth+1)

			972	 	 	 	 	 break	BigSwitch

			973	 	 	 	 }

			974	 	 	 }

			975	 	 	 fallthrough

			976	 	 case	reflect.Chan,	reflect.Func,	reflect.UnsafePointer:

			977	 	 	 p.fmtPointer(value,	verb,	goSyntax)

			978	 	 default:

			979	 	 	 p.unknownType(f)

			980	 	 }

			981	 	 p.value	=	oldValue

			982	 	 return	wasString

			983	 }

			984	

			985	 //	intFromArg	gets	the	fieldnumth	element	of	a.	On	return,	isInt	reports	whether	the	argument	has	type	int.

			986	 func	intFromArg(a	[]interface{},	end,	i,	fieldnum	int)	(num	int,	isInt	bool,	newi,	newfieldnum	int)	{

			987	 	 newi,	newfieldnum	=	end,	fieldnum

			988	 	 if	i	<	end	&&	fieldnum	<	len(a)	{

			989	 	 	 num,	isInt	=	a[fieldnum].(int)

			990	 	 	 newi,	newfieldnum	=	i+1,	fieldnum+1

			991	 	 }

			992	 	 return

			993	 }

			994	

			995	 func	(p	*pp)	doPrintf(format	string,	a	[]interface{})	{

			996	 	 end	:=	len(format)

			997	 	 fieldnum	:=	0	//	we	process	one	field	per	non-trivial	format

			998	 	 for	i	:=	0;	i	<	end;	{

			999	 	 	 lasti	:=	i

		1000	 	 	 for	i	<	end	&&	format[i]	!=	'%'	{

		1001	 	 	 	 i++

		1002	 	 	 }

		1003	 	 	 if	i	>	lasti	{

		1004	 	 	 	 p.buf.WriteString(format[lasti:i])

		1005	 	 	 }

		1006	 	 	 if	i	>=	end	{

		1007	 	 	 	 //	done	processing	format	string

		1008	 	 	 	 break

		1009	 	 	 }

		1010	

		1011	 	 	 //	Process	one	verb

		1012	 	 	 i++

		1013	 	 	 //	flags	and	widths

		1014	 	 	 p.fmt.clearflags()

		1015	 	 F:

		1016	 	 	 for	;	i	<	end;	i++	{

		1017	 	 	 	 switch	format[i]	{

		1018	 	 	 	 case	'#':

		1019	 	 	 	 	 p.fmt.sharp	=	true

		1020	 	 	 	 case	'0':

		1021	 	 	 	 	 p.fmt.zero	=	true

		1022	 	 	 	 case	'+':

		1023	 	 	 	 	 p.fmt.plus	=	true

		1024	 	 	 	 case	'-':

		1025	 	 	 	 	 p.fmt.minus	=	true

		1026	 	 	 	 case	'	':

		1027	 	 	 	 	 p.fmt.space	=	true

		1028	 	 	 	 default:

		1029	 	 	 	 	 break	F

		1030	 	 	 	 }

		1031	 	 	 }

		1032	 	 	 //	do	we	have	width?

		1033	 	 	 if	i	<	end	&&	format[i]	==	'*'	{

		1034	 	 	 	 p.fmt.wid,	p.fmt.widPresent,	i,	fieldnum	=	intFromArg(a,	end,	i,	fieldnum)

		1035	 	 	 	 if	!p.fmt.widPresent	{

		1036	 	 	 	 	 p.buf.Write(widthBytes)

		1037	 	 	 	 }

		1038	 	 	 }	else	{

		1039	 	 	 	 p.fmt.wid,	p.fmt.widPresent,	i	=	parsenum(format,	i,	end)

		1040	 	 	 }

		1041	 	 	 //	do	we	have	precision?

		1042	 	 	 if	i	<	end	&&	format[i]	==	'.'	{

		1043	 	 	 	 if	format[i+1]	==	'*'	{

		1044	 	 	 	 	 p.fmt.prec,	p.fmt.precPresent,	i,	fieldnum	=	intFromArg(a,	end,	i+1,	fieldnum)

		1045	 	 	 	 	 if	!p.fmt.precPresent	{

		1046	 	 	 	 	 	 p.buf.Write(precBytes)

		1047	 	 	 	 	 }

		1048	 	 	 	 }	else	{

		1049	 	 	 	 	 p.fmt.prec,	p.fmt.precPresent,	i	=	parsenum(format,	i+1,	end)

		1050	 	 	 	 	 if	!p.fmt.precPresent	{

		1051	 	 	 	 	 	 p.fmt.prec	=	0

		1052	 	 	 	 	 	 p.fmt.precPresent	=	true

		1053	 	 	 	 	 }

		1054	 	 	 	 }

		1055	 	 	 }

		1056	 	 	 if	i	>=	end	{

		1057	 	 	 	 p.buf.Write(noVerbBytes)

		1058	 	 	 	 continue

		1059	 	 	 }

		1060	 	 	 c,	w	:=	utf8.DecodeRuneInString(format[i:])

		1061	 	 	 i	+=	w

		1062	 	 	 //	percent	is	special	-	absorbs	no	operand

		1063	 	 	 if	c	==	'%'	{

		1064	 	 	 	 p.buf.WriteByte('%')	//	We	ignore	width	and	prec.

		1065	 	 	 	 continue

		1066	 	 	 }

		1067	 	 	 if	fieldnum	>=	len(a)	{	//	out	of	operands

		1068	 	 	 	 p.buf.WriteByte('%')

		1069	 	 	 	 p.add(c)

		1070	 	 	 	 p.buf.Write(missingBytes)

		1071	 	 	 	 continue

		1072	 	 	 }

		1073	 	 	 field	:=	a[fieldnum]

		1074	 	 	 fieldnum++

		1075	

		1076	 	 	 goSyntax	:=	c	==	'v'	&&	p.fmt.sharp

		1077	 	 	 plus	:=	c	==	'v'	&&	p.fmt.plus

		1078	 	 	 p.printField(field,	c,	plus,	goSyntax,	0)

		1079	 	 }

		1080	

		1081	 	 if	fieldnum	<	len(a)	{

		1082	 	 	 p.buf.Write(extraBytes)

		1083	 	 	 for	;	fieldnum	<	len(a);	fieldnum++	{

		1084	 	 	 	 field	:=	a[fieldnum]

		1085	 	 	 	 if	field	!=	nil	{

		1086	 	 	 	 	 p.buf.WriteString(reflect.TypeOf(field).String())

		1087	 	 	 	 	 p.buf.WriteByte('=')

		1088	 	 	 	 }

		1089	 	 	 	 p.printField(field,	'v',	false,	false,	0)

		1090	 	 	 	 if	fieldnum+1	<	len(a)	{

		1091	 	 	 	 	 p.buf.Write(commaSpaceBytes)

		1092	 	 	 	 }

		1093	 	 	 }

		1094	 	 	 p.buf.WriteByte(')')

		1095	 	 }

		1096	 }

		1097	

		1098	 func	(p	*pp)	doPrint(a	[]interface{},	addspace,	addnewline	bool)	{

		1099	 	 prevString	:=	false

		1100	 	 for	fieldnum	:=	0;	fieldnum	<	len(a);	fieldnum++	{

		1101	 	 	 p.fmt.clearflags()

		1102	 	 	 //	always	add	spaces	if	we're	doing	println

		1103	 	 	 field	:=	a[fieldnum]

		1104	 	 	 if	fieldnum	>	0	{

		1105	 	 	 	 isString	:=	field	!=	nil	&&	reflect.TypeOf(field).Kind()	==	reflect.String

		1106	 	 	 	 if	addspace	||	!isString	&&	!prevString	{

		1107	 	 	 	 	 p.buf.WriteByte('	')

		1108	 	 	 	 }

		1109	 	 	 }

		1110	 	 	 prevString	=	p.printField(field,	'v',	false,	false,	0)

		1111	 	 }

		1112	 	 if	addnewline	{

		1113	 	 	 p.buf.WriteByte('\n')

		1114	 	 }

		1115	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/fmt/scan.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	fmt

					6	

					7	 import	(

					8	 	 "errors"

					9	 	 "io"

				10	 	 "math"

				11	 	 "os"

				12	 	 "reflect"

				13	 	 "strconv"

				14	 	 "unicode/utf8"

				15)

				16	

				17	 //	runeUnreader	is	the	interface	to	something	that	can	unread	runes.

				18	 //	If	the	object	provided	to	Scan	does	not	satisfy	this	interface,

				19	 //	a	local	buffer	will	be	used	to	back	up	the	input,	but	its	contents

				20	 //	will	be	lost	when	Scan	returns.

				21	 type	runeUnreader	interface	{

				22	 	 UnreadRune()	error

				23	 }

				24	

				25	 //	ScanState	represents	the	scanner	state	passed	to	custom	scanners.

				26	 //	Scanners	may	do	rune-at-a-time	scanning	or	ask	the	ScanState

				27	 //	to	discover	the	next	space-delimited	token.

				28	 type	ScanState	interface	{

				29	 	 //	ReadRune	reads	the	next	rune	(Unicode	code	point)	from	the	input.

				30	 	 //	If	invoked	during	Scanln,	Fscanln,	or	Sscanln,	ReadRune()	will

				31	 	 //	return	EOF	after	returning	the	first	'\n'	or	when	reading	beyond

				32	 	 //	the	specified	width.

				33	 	 ReadRune()	(r	rune,	size	int,	err	error)

				34	 	 //	UnreadRune	causes	the	next	call	to	ReadRune	to	return	the	same	rune.

				35	 	 UnreadRune()	error

				36	 	 //	SkipSpace	skips	space	in	the	input.	Newlines	are	treated	as	space	

				37	 	 //	unless	the	scan	operation	is	Scanln,	Fscanln	or	Sscanln,	in	which	case	

				38	 	 //	a	newline	is	treated	as	EOF.

				39	 	 SkipSpace()

				40	 	 //	Token	skips	space	in	the	input	if	skipSpace	is	true,	then	returns	the

				41	 	 //	run	of	Unicode	code	points	c	satisfying	f(c).		If	f	is	nil,

				42	 	 //	!unicode.IsSpace(c)	is	used;	that	is,	the	token	will	hold	non-space

				43	 	 //	characters.		Newlines	are	treated	as	space	unless	the	scan	operation

				44	 	 //	is	Scanln,	Fscanln	or	Sscanln,	in	which	case	a	newline	is	treated	as

				45	 	 //	EOF.		The	returned	slice	points	to	shared	data	that	may	be	overwritten

				46	 	 //	by	the	next	call	to	Token,	a	call	to	a	Scan	function	using	the	ScanState

				47	 	 //	as	input,	or	when	the	calling	Scan	method	returns.

				48	 	 Token(skipSpace	bool,	f	func(rune)	bool)	(token	[]byte,	err	error)

				49	 	 //	Width	returns	the	value	of	the	width	option	and	whether	it	has	been	set.

				50	 	 //	The	unit	is	Unicode	code	points.

				51	 	 Width()	(wid	int,	ok	bool)

				52	 	 //	Because	ReadRune	is	implemented	by	the	interface,	Read	should	never	be

				53	 	 //	called	by	the	scanning	routines	and	a	valid	implementation	of

				54	 	 //	ScanState	may	choose	always	to	return	an	error	from	Read.

				55	 	 Read(buf	[]byte)	(n	int,	err	error)

				56	 }

				57	

				58	 //	Scanner	is	implemented	by	any	value	that	has	a	Scan	method,	which	scans

				59	 //	the	input	for	the	representation	of	a	value	and	stores	the	result	in	the

				60	 //	receiver,	which	must	be	a	pointer	to	be	useful.		The	Scan	method	is	called

				61	 //	for	any	argument	to	Scan,	Scanf,	or	Scanln	that	implements	it.

				62	 type	Scanner	interface	{

				63	 	 Scan(state	ScanState,	verb	rune)	error

				64	 }

				65	

				66	 //	Scan	scans	text	read	from	standard	input,	storing	successive

				67	 //	space-separated	values	into	successive	arguments.		Newlines	count

				68	 //	as	space.		It	returns	the	number	of	items	successfully	scanned.

				69	 //	If	that	is	less	than	the	number	of	arguments,	err	will	report	why.

				70	 func	Scan(a	...interface{})	(n	int,	err	error)	{

				71	 	 return	Fscan(os.Stdin,	a...)

				72	 }

				73	

				74	 //	Scanln	is	similar	to	Scan,	but	stops	scanning	at	a	newline	and

				75	 //	after	the	final	item	there	must	be	a	newline	or	EOF.

				76	 func	Scanln(a	...interface{})	(n	int,	err	error)	{

				77	 	 return	Fscanln(os.Stdin,	a...)

				78	 }

				79	

				80	 //	Scanf	scans	text	read	from	standard	input,	storing	successive

				81	 //	space-separated	values	into	successive	arguments	as	determined	by

				82	 //	the	format.		It	returns	the	number	of	items	successfully	scanned.

				83	 func	Scanf(format	string,	a	...interface{})	(n	int,	err	error)	{

				84	 	 return	Fscanf(os.Stdin,	format,	a...)

				85	 }

				86	

				87	 type	stringReader	string

				88	

				89	 func	(r	*stringReader)	Read(b	[]byte)	(n	int,	err	error)	{

				90	 	 n	=	copy(b,	*r)

				91	 	 *r	=	(*r)[n:]

				92	 	 if	n	==	0	{

				93	 	 	 err	=	io.EOF

				94	 	 }

				95	 	 return

				96	 }

				97	

				98	 //	Sscan	scans	the	argument	string,	storing	successive	space-separated

				99	 //	values	into	successive	arguments.		Newlines	count	as	space.		It

			100	 //	returns	the	number	of	items	successfully	scanned.		If	that	is	less

			101	 //	than	the	number	of	arguments,	err	will	report	why.

			102	 func	Sscan(str	string,	a	...interface{})	(n	int,	err	error)	{

			103	 	 return	Fscan((*stringReader)(&str),	a...)

			104	 }

			105	

			106	 //	Sscanln	is	similar	to	Sscan,	but	stops	scanning	at	a	newline	and

			107	 //	after	the	final	item	there	must	be	a	newline	or	EOF.

			108	 func	Sscanln(str	string,	a	...interface{})	(n	int,	err	error)	{

			109	 	 return	Fscanln((*stringReader)(&str),	a...)

			110	 }

			111	

			112	 //	Sscanf	scans	the	argument	string,	storing	successive	space-separated

			113	 //	values	into	successive	arguments	as	determined	by	the	format.		It

			114	 //	returns	the	number	of	items	successfully	parsed.

			115	 func	Sscanf(str	string,	format	string,	a	...interface{})	(n	int,	err	error)	{

			116	 	 return	Fscanf((*stringReader)(&str),	format,	a...)

			117	 }

			118	

			119	 //	Fscan	scans	text	read	from	r,	storing	successive	space-separated

			120	 //	values	into	successive	arguments.		Newlines	count	as	space.		It

			121	 //	returns	the	number	of	items	successfully	scanned.		If	that	is	less

			122	 //	than	the	number	of	arguments,	err	will	report	why.

			123	 func	Fscan(r	io.Reader,	a	...interface{})	(n	int,	err	error)	{

			124	 	 s,	old	:=	newScanState(r,	true,	false)

			125	 	 n,	err	=	s.doScan(a)

			126	 	 s.free(old)

			127	 	 return

			128	 }

			129	

			130	 //	Fscanln	is	similar	to	Fscan,	but	stops	scanning	at	a	newline	and

			131	 //	after	the	final	item	there	must	be	a	newline	or	EOF.

			132	 func	Fscanln(r	io.Reader,	a	...interface{})	(n	int,	err	error)	{

			133	 	 s,	old	:=	newScanState(r,	false,	true)

			134	 	 n,	err	=	s.doScan(a)

			135	 	 s.free(old)

			136	 	 return

			137	 }

			138	

			139	 //	Fscanf	scans	text	read	from	r,	storing	successive	space-separated

			140	 //	values	into	successive	arguments	as	determined	by	the	format.		It

			141	 //	returns	the	number	of	items	successfully	parsed.

			142	 func	Fscanf(r	io.Reader,	format	string,	a	...interface{})	(n	int,	err	error)	{

			143	 	 s,	old	:=	newScanState(r,	false,	false)

			144	 	 n,	err	=	s.doScanf(format,	a)

			145	 	 s.free(old)

			146	 	 return

			147	 }

			148	

			149	 //	scanError	represents	an	error	generated	by	the	scanning	software.

			150	 //	It's	used	as	a	unique	signature	to	identify	such	errors	when	recovering.

			151	 type	scanError	struct	{

			152	 	 err	error

			153	 }

			154	

			155	 const	eof	=	-1

			156	

			157	 //	ss	is	the	internal	implementation	of	ScanState.

			158	 type	ss	struct	{

			159	 	 rr							io.RuneReader	//	where	to	read	input

			160	 	 buf						buffer								//	token	accumulator

			161	 	 peekRune	rune										//	one-rune	lookahead

			162	 	 prevRune	rune										//	last	rune	returned	by	ReadRune

			163	 	 count				int											//	runes	consumed	so	far.

			164	 	 atEOF				bool										//	already	read	EOF

			165	 	 ssave

			166	 }

			167	

			168	 //	ssave	holds	the	parts	of	ss	that	need	to	be

			169	 //	saved	and	restored	on	recursive	scans.

			170	 type	ssave	struct	{

			171	 	 validSave		bool	//	is	or	was	a	part	of	an	actual	ss.

			172	 	 nlIsEnd				bool	//	whether	newline	terminates	scan

			173	 	 nlIsSpace		bool	//	whether	newline	counts	as	white	space

			174	 	 fieldLimit	int		//	max	value	of	ss.count	for	this	field;	fieldLimit	<=	limit

			175	 	 limit						int		//	max	value	of	ss.count.

			176	 	 maxWid					int		//	width	of	this	field.

			177	 }

			178	

			179	 //	The	Read	method	is	only	in	ScanState	so	that	ScanState

			180	 //	satisfies	io.Reader.	It	will	never	be	called	when	used	as

			181	 //	intended,	so	there	is	no	need	to	make	it	actually	work.

			182	 func	(s	*ss)	Read(buf	[]byte)	(n	int,	err	error)	{

			183	 	 return	0,	errors.New("ScanState's	Read	should	not	be	called.	Use	ReadRune")

			184	 }

			185	

			186	 func	(s	*ss)	ReadRune()	(r	rune,	size	int,	err	error)	{

			187	 	 if	s.peekRune	>=	0	{

			188	 	 	 s.count++

			189	 	 	 r	=	s.peekRune

			190	 	 	 size	=	utf8.RuneLen(r)

			191	 	 	 s.prevRune	=	r

			192	 	 	 s.peekRune	=	-1

			193	 	 	 return

			194	 	 }

			195	 	 if	s.atEOF	||	s.nlIsEnd	&&	s.prevRune	==	'\n'	||	s.count	>=	s.fieldLimit	{

			196	 	 	 err	=	io.EOF

			197	 	 	 return

			198	 	 }

			199	

			200	 	 r,	size,	err	=	s.rr.ReadRune()

			201	 	 if	err	==	nil	{

			202	 	 	 s.count++

			203	 	 	 s.prevRune	=	r

			204	 	 }	else	if	err	==	io.EOF	{

			205	 	 	 s.atEOF	=	true

			206	 	 }

			207	 	 return

			208	 }

			209	

			210	 func	(s	*ss)	Width()	(wid	int,	ok	bool)	{

			211	 	 if	s.maxWid	==	hugeWid	{

			212	 	 	 return	0,	false

			213	 	 }

			214	 	 return	s.maxWid,	true

			215	 }

			216	

			217	 //	The	public	method	returns	an	error;	this	private	one	panics.

			218	 //	If	getRune	reaches	EOF,	the	return	value	is	EOF	(-1).

			219	 func	(s	*ss)	getRune()	(r	rune)	{

			220	 	 r,	_,	err	:=	s.ReadRune()

			221	 	 if	err	!=	nil	{

			222	 	 	 if	err	==	io.EOF	{

			223	 	 	 	 return	eof

			224	 	 	 }

			225	 	 	 s.error(err)

			226	 	 }

			227	 	 return

			228	 }

			229	

			230	 //	mustReadRune	turns	io.EOF	into	a	panic(io.ErrUnexpectedEOF).

			231	 //	It	is	called	in	cases	such	as	string	scanning	where	an	EOF	is	a

			232	 //	syntax	error.

			233	 func	(s	*ss)	mustReadRune()	(r	rune)	{

			234	 	 r	=	s.getRune()

			235	 	 if	r	==	eof	{

			236	 	 	 s.error(io.ErrUnexpectedEOF)

			237	 	 }

			238	 	 return

			239	 }

			240	

			241	 func	(s	*ss)	UnreadRune()	error	{

			242	 	 if	u,	ok	:=	s.rr.(runeUnreader);	ok	{

			243	 	 	 u.UnreadRune()

			244	 	 }	else	{

			245	 	 	 s.peekRune	=	s.prevRune

			246	 	 }

			247	 	 s.prevRune	=	-1

			248	 	 s.count--

			249	 	 return	nil

			250	 }

			251	

			252	 func	(s	*ss)	error(err	error)	{

			253	 	 panic(scanError{err})

			254	 }

			255	

			256	 func	(s	*ss)	errorString(err	string)	{

			257	 	 panic(scanError{errors.New(err)})

			258	 }

			259	

			260	 func	(s	*ss)	Token(skipSpace	bool,	f	func(rune)	bool)	(tok	[]byte,	err	error)	{

			261	 	 defer	func()	{

			262	 	 	 if	e	:=	recover();	e	!=	nil	{

			263	 	 	 	 if	se,	ok	:=	e.(scanError);	ok	{

			264	 	 	 	 	 err	=	se.err

			265	 	 	 	 }	else	{

			266	 	 	 	 	 panic(e)

			267	 	 	 	 }

			268	 	 	 }

			269	 	 }()

			270	 	 if	f	==	nil	{

			271	 	 	 f	=	notSpace

			272	 	 }

			273	 	 s.buf	=	s.buf[:0]

			274	 	 tok	=	s.token(skipSpace,	f)

			275	 	 return

			276	 }

			277	

			278	 //	space	is	a	copy	of	the	unicode.White_Space	ranges,

			279	 //	to	avoid	depending	on	package	unicode.

			280	 var	space	=	[][2]uint16{

			281	 	 {0x0009,	0x000d},

			282	 	 {0x0020,	0x0020},

			283	 	 {0x0085,	0x0085},

			284	 	 {0x00a0,	0x00a0},

			285	 	 {0x1680,	0x1680},

			286	 	 {0x180e,	0x180e},

			287	 	 {0x2000,	0x200a},

			288	 	 {0x2028,	0x2029},

			289	 	 {0x202f,	0x202f},

			290	 	 {0x205f,	0x205f},

			291	 	 {0x3000,	0x3000},

			292	 }

			293	

			294	 func	isSpace(r	rune)	bool	{

			295	 	 if	r	>=	1<<16	{

			296	 	 	 return	false

			297	 	 }

			298	 	 rx	:=	uint16(r)

			299	 	 for	_,	rng	:=	range	space	{

			300	 	 	 if	rx	<	rng[0]	{

			301	 	 	 	 return	false

			302	 	 	 }

			303	 	 	 if	rx	<=	rng[1]	{

			304	 	 	 	 return	true

			305	 	 	 }

			306	 	 }

			307	 	 return	false

			308	 }

			309	

			310	 //	notSpace	is	the	default	scanning	function	used	in	Token.

			311	 func	notSpace(r	rune)	bool	{

			312	 	 return	!isSpace(r)

			313	 }

			314	

			315	 //	skipSpace	provides	Scan()	methods	the	ability	to	skip	space	and	newline	characters	

			316	 //	in	keeping	with	the	current	scanning	mode	set	by	format	strings	and	Scan()/Scanln().

			317	 func	(s	*ss)	SkipSpace()	{

			318	 	 s.skipSpace(false)

			319	 }

			320	

			321	 //	readRune	is	a	structure	to	enable	reading	UTF-8	encoded	code	points

			322	 //	from	an	io.Reader.		It	is	used	if	the	Reader	given	to	the	scanner	does

			323	 //	not	already	implement	io.RuneReader.

			324	 type	readRune	struct	{

			325	 	 reader		io.Reader

			326	 	 buf					[utf8.UTFMax]byte	//	used	only	inside	ReadRune

			327	 	 pending	int															//	number	of	bytes	in	pendBuf;	only	>0	for	bad	UTF-8

			328	 	 pendBuf	[utf8.UTFMax]byte	//	bytes	left	over

			329	 }

			330	

			331	 //	readByte	returns	the	next	byte	from	the	input,	which	may	be

			332	 //	left	over	from	a	previous	read	if	the	UTF-8	was	ill-formed.

			333	 func	(r	*readRune)	readByte()	(b	byte,	err	error)	{

			334	 	 if	r.pending	>	0	{

			335	 	 	 b	=	r.pendBuf[0]

			336	 	 	 copy(r.pendBuf[0:],	r.pendBuf[1:])

			337	 	 	 r.pending--

			338	 	 	 return

			339	 	 }

			340	 	 _,	err	=	r.reader.Read(r.pendBuf[0:1])

			341	 	 return	r.pendBuf[0],	err

			342	 }

			343	

			344	 //	unread	saves	the	bytes	for	the	next	read.

			345	 func	(r	*readRune)	unread(buf	[]byte)	{

			346	 	 copy(r.pendBuf[r.pending:],	buf)

			347	 	 r.pending	+=	len(buf)

			348	 }

			349	

			350	 //	ReadRune	returns	the	next	UTF-8	encoded	code	point	from	the

			351	 //	io.Reader	inside	r.

			352	 func	(r	*readRune)	ReadRune()	(rr	rune,	size	int,	err	error)	{

			353	 	 r.buf[0],	err	=	r.readByte()

			354	 	 if	err	!=	nil	{

			355	 	 	 return	0,	0,	err

			356	 	 }

			357	 	 if	r.buf[0]	<	utf8.RuneSelf	{	//	fast	check	for	common	ASCII	case

			358	 	 	 rr	=	rune(r.buf[0])

			359	 	 	 return

			360	 	 }

			361	 	 var	n	int

			362	 	 for	n	=	1;	!utf8.FullRune(r.buf[0:n]);	n++	{

			363	 	 	 r.buf[n],	err	=	r.readByte()

			364	 	 	 if	err	!=	nil	{

			365	 	 	 	 if	err	==	io.EOF	{

			366	 	 	 	 	 err	=	nil

			367	 	 	 	 	 break

			368	 	 	 	 }

			369	 	 	 	 return

			370	 	 	 }

			371	 	 }

			372	 	 rr,	size	=	utf8.DecodeRune(r.buf[0:n])

			373	 	 if	size	<	n	{	//	an	error

			374	 	 	 r.unread(r.buf[size:n])

			375	 	 }

			376	 	 return

			377	 }

			378	

			379	 var	ssFree	=	newCache(func()	interface{}	{	return	new(ss)	})

			380	

			381	 //	Allocate	a	new	ss	struct	or	grab	a	cached	one.

			382	 func	newScanState(r	io.Reader,	nlIsSpace,	nlIsEnd	bool)	(s	*ss,	old	ssave)	{

			383	 	 //	If	the	reader	is	a	*ss,	then	we've	got	a	recursive

			384	 	 //	call	to	Scan,	so	re-use	the	scan	state.

			385	 	 s,	ok	:=	r.(*ss)

			386	 	 if	ok	{

			387	 	 	 old	=	s.ssave

			388	 	 	 s.limit	=	s.fieldLimit

			389	 	 	 s.nlIsEnd	=	nlIsEnd	||	s.nlIsEnd

			390	 	 	 s.nlIsSpace	=	nlIsSpace

			391	 	 	 return

			392	 	 }

			393	

			394	 	 s	=	ssFree.get().(*ss)

			395	 	 if	rr,	ok	:=	r.(io.RuneReader);	ok	{

			396	 	 	 s.rr	=	rr

			397	 	 }	else	{

			398	 	 	 s.rr	=	&readRune{reader:	r}

			399	 	 }

			400	 	 s.nlIsSpace	=	nlIsSpace

			401	 	 s.nlIsEnd	=	nlIsEnd

			402	 	 s.prevRune	=	-1

			403	 	 s.peekRune	=	-1

			404	 	 s.atEOF	=	false

			405	 	 s.limit	=	hugeWid

			406	 	 s.fieldLimit	=	hugeWid

			407	 	 s.maxWid	=	hugeWid

			408	 	 s.validSave	=	true

			409	 	 s.count	=	0

			410	 	 return

			411	 }

			412	

			413	 //	Save	used	ss	structs	in	ssFree;	avoid	an	allocation	per	invocation.

			414	 func	(s	*ss)	free(old	ssave)	{

			415	 	 //	If	it	was	used	recursively,	just	restore	the	old	state.

			416	 	 if	old.validSave	{

			417	 	 	 s.ssave	=	old

			418	 	 	 return

			419	 	 }

			420	 	 //	Don't	hold	on	to	ss	structs	with	large	buffers.

			421	 	 if	cap(s.buf)	>	1024	{

			422	 	 	 return

			423	 	 }

			424	 	 s.buf	=	s.buf[:0]

			425	 	 s.rr	=	nil

			426	 	 ssFree.put(s)

			427	 }

			428	

			429	 //	skipSpace	skips	spaces	and	maybe	newlines.

			430	 func	(s	*ss)	skipSpace(stopAtNewline	bool)	{

			431	 	 for	{

			432	 	 	 r	:=	s.getRune()

			433	 	 	 if	r	==	eof	{

			434	 	 	 	 return

			435	 	 	 }

			436	 	 	 if	r	==	'\n'	{

			437	 	 	 	 if	stopAtNewline	{

			438	 	 	 	 	 break

			439	 	 	 	 }

			440	 	 	 	 if	s.nlIsSpace	{

			441	 	 	 	 	 continue

			442	 	 	 	 }

			443	 	 	 	 s.errorString("unexpected	newline")

			444	 	 	 	 return

			445	 	 	 }

			446	 	 	 if	!isSpace(r)	{

			447	 	 	 	 s.UnreadRune()

			448	 	 	 	 break

			449	 	 	 }

			450	 	 }

			451	 }

			452	

			453	 //	token	returns	the	next	space-delimited	string	from	the	input.		It

			454	 //	skips	white	space.		For	Scanln,	it	stops	at	newlines.		For	Scan,

			455	 //	newlines	are	treated	as	spaces.

			456	 func	(s	*ss)	token(skipSpace	bool,	f	func(rune)	bool)	[]byte	{

			457	 	 if	skipSpace	{

			458	 	 	 s.skipSpace(false)

			459	 	 }

			460	 	 //	read	until	white	space	or	newline

			461	 	 for	{

			462	 	 	 r	:=	s.getRune()

			463	 	 	 if	r	==	eof	{

			464	 	 	 	 break

			465	 	 	 }

			466	 	 	 if	!f(r)	{

			467	 	 	 	 s.UnreadRune()

			468	 	 	 	 break

			469	 	 	 }

			470	 	 	 s.buf.WriteRune(r)

			471	 	 }

			472	 	 return	s.buf

			473	 }

			474	

			475	 //	typeError	indicates	that	the	type	of	the	operand	did	not	match	the	format

			476	 func	(s	*ss)	typeError(field	interface{},	expected	string)	{

			477	 	 s.errorString("expected	field	of	type	pointer	to	"	+	expected	+	";	found	"	+	reflect.TypeOf(field).String())

			478	 }

			479	

			480	 var	complexError	=	errors.New("syntax	error	scanning	complex	number")

			481	 var	boolError	=	errors.New("syntax	error	scanning	boolean")

			482	

			483	 func	indexRune(s	string,	r	rune)	int	{

			484	 	 for	i,	c	:=	range	s	{

			485	 	 	 if	c	==	r	{

			486	 	 	 	 return	i

			487	 	 	 }

			488	 	 }

			489	 	 return	-1

			490	 }

			491	

			492	 //	consume	reads	the	next	rune	in	the	input	and	reports	whether	it	is	in	the	ok	string.

			493	 //	If	accept	is	true,	it	puts	the	character	into	the	input	token.

			494	 func	(s	*ss)	consume(ok	string,	accept	bool)	bool	{

			495	 	 r	:=	s.getRune()

			496	 	 if	r	==	eof	{

			497	 	 	 return	false

			498	 	 }

			499	 	 if	indexRune(ok,	r)	>=	0	{

			500	 	 	 if	accept	{

			501	 	 	 	 s.buf.WriteRune(r)

			502	 	 	 }

			503	 	 	 return	true

			504	 	 }

			505	 	 if	r	!=	eof	&&	accept	{

			506	 	 	 s.UnreadRune()

			507	 	 }

			508	 	 return	false

			509	 }

			510	

			511	 //	peek	reports	whether	the	next	character	is	in	the	ok	string,	without	consuming	it.

			512	 func	(s	*ss)	peek(ok	string)	bool	{

			513	 	 r	:=	s.getRune()

			514	 	 if	r	!=	eof	{

			515	 	 	 s.UnreadRune()

			516	 	 }

			517	 	 return	indexRune(ok,	r)	>=	0

			518	 }

			519	

			520	 func	(s	*ss)	notEOF()	{

			521	 	 //	Guarantee	there	is	data	to	be	read.

			522	 	 if	r	:=	s.getRune();	r	==	eof	{

			523	 	 	 panic(io.EOF)

			524	 	 }

			525	 	 s.UnreadRune()

			526	 }

			527	

			528	 //	accept	checks	the	next	rune	in	the	input.		If	it's	a	byte	(sic)	in	the	string,	it	puts	it	in	the

			529	 //	buffer	and	returns	true.	Otherwise	it	return	false.

			530	 func	(s	*ss)	accept(ok	string)	bool	{

			531	 	 return	s.consume(ok,	true)

			532	 }

			533	

			534	 //	okVerb	verifies	that	the	verb	is	present	in	the	list,	setting	s.err	appropriately	if	not.

			535	 func	(s	*ss)	okVerb(verb	rune,	okVerbs,	typ	string)	bool	{

			536	 	 for	_,	v	:=	range	okVerbs	{

			537	 	 	 if	v	==	verb	{

			538	 	 	 	 return	true

			539	 	 	 }

			540	 	 }

			541	 	 s.errorString("bad	verb	%"	+	string(verb)	+	"	for	"	+	typ)

			542	 	 return	false

			543	 }

			544	

			545	 //	scanBool	returns	the	value	of	the	boolean	represented	by	the	next	token.

			546	 func	(s	*ss)	scanBool(verb	rune)	bool	{

			547	 	 s.skipSpace(false)

			548	 	 s.notEOF()

			549	 	 if	!s.okVerb(verb,	"tv",	"boolean")	{

			550	 	 	 return	false

			551	 	 }

			552	 	 //	Syntax-checking	a	boolean	is	annoying.		We're	not	fastidious	about	case.

			553	 	 switch	s.getRune()	{

			554	 	 case	'0':

			555	 	 	 return	false

			556	 	 case	'1':

			557	 	 	 return	true

			558	 	 case	't',	'T':

			559	 	 	 if	s.accept("rR")	&&	(!s.accept("uU")	||	!s.accept("eE"))	{

			560	 	 	 	 s.error(boolError)

			561	 	 	 }

			562	 	 	 return	true

			563	 	 case	'f',	'F':

			564	 	 	 if	s.accept("aA")	&&	(!s.accept("lL")	||	!s.accept("sS")	||	!s.accept("eE"))	{

			565	 	 	 	 s.error(boolError)

			566	 	 	 }

			567	 	 	 return	false

			568	 	 }

			569	 	 return	false

			570	 }

			571	

			572	 //	Numerical	elements

			573	 const	(

			574	 	 binaryDigits						=	"01"

			575	 	 octalDigits							=	"01234567"

			576	 	 decimalDigits					=	"0123456789"

			577	 	 hexadecimalDigits	=	"0123456789aAbBcCdDeEfF"

			578	 	 sign														=	"+-"

			579	 	 period												=	"."

			580	 	 exponent										=	"eEp"

			581)

			582	

			583	 //	getBase	returns	the	numeric	base	represented	by	the	verb	and	its	digit	string.

			584	 func	(s	*ss)	getBase(verb	rune)	(base	int,	digits	string)	{

			585	 	 s.okVerb(verb,	"bdoUxXv",	"integer")	//	sets	s.err

			586	 	 base	=	10

			587	 	 digits	=	decimalDigits

			588	 	 switch	verb	{

			589	 	 case	'b':

			590	 	 	 base	=	2

			591	 	 	 digits	=	binaryDigits

			592	 	 case	'o':

			593	 	 	 base	=	8

			594	 	 	 digits	=	octalDigits

			595	 	 case	'x',	'X',	'U':

			596	 	 	 base	=	16

			597	 	 	 digits	=	hexadecimalDigits

			598	 	 }

			599	 	 return

			600	 }

			601	

			602	 //	scanNumber	returns	the	numerical	string	with	specified	digits	starting	here.

			603	 func	(s	*ss)	scanNumber(digits	string,	haveDigits	bool)	string	{

			604	 	 if	!haveDigits	{

			605	 	 	 s.notEOF()

			606	 	 	 if	!s.accept(digits)	{

			607	 	 	 	 s.errorString("expected	integer")

			608	 	 	 }

			609	 	 }

			610	 	 for	s.accept(digits)	{

			611	 	 }

			612	 	 return	string(s.buf)

			613	 }

			614	

			615	 //	scanRune	returns	the	next	rune	value	in	the	input.

			616	 func	(s	*ss)	scanRune(bitSize	int)	int64	{

			617	 	 s.notEOF()

			618	 	 r	:=	int64(s.getRune())

			619	 	 n	:=	uint(bitSize)

			620	 	 x	:=	(r	<<	(64	-	n))	>>	(64	-	n)

			621	 	 if	x	!=	r	{

			622	 	 	 s.errorString("overflow	on	character	value	"	+	string(r))

			623	 	 }

			624	 	 return	r

			625	 }

			626	

			627	 //	scanBasePrefix	reports	whether	the	integer	begins	with	a	0	or	0x,

			628	 //	and	returns	the	base,	digit	string,	and	whether	a	zero	was	found.

			629	 //	It	is	called	only	if	the	verb	is	%v.

			630	 func	(s	*ss)	scanBasePrefix()	(base	int,	digits	string,	found	bool)	{

			631	 	 if	!s.peek("0")	{

			632	 	 	 return	10,	decimalDigits,	false

			633	 	 }

			634	 	 s.accept("0")

			635	 	 found	=	true	//	We've	put	a	digit	into	the	token	buffer.

			636	 	 //	Special	cases	for	'0'	&&	'0x'

			637	 	 base,	digits	=	8,	octalDigits

			638	 	 if	s.peek("xX")	{

			639	 	 	 s.consume("xX",	false)

			640	 	 	 base,	digits	=	16,	hexadecimalDigits

			641	 	 }

			642	 	 return

			643	 }

			644	

			645	 //	scanInt	returns	the	value	of	the	integer	represented	by	the	next

			646	 //	token,	checking	for	overflow.		Any	error	is	stored	in	s.err.

			647	 func	(s	*ss)	scanInt(verb	rune,	bitSize	int)	int64	{

			648	 	 if	verb	==	'c'	{

			649	 	 	 return	s.scanRune(bitSize)

			650	 	 }

			651	 	 s.skipSpace(false)

			652	 	 s.notEOF()

			653	 	 base,	digits	:=	s.getBase(verb)

			654	 	 haveDigits	:=	false

			655	 	 if	verb	==	'U'	{

			656	 	 	 if	!s.consume("U",	false)	||	!s.consume("+",	false)	{

			657	 	 	 	 s.errorString("bad	unicode	format	")

			658	 	 	 }

			659	 	 }	else	{

			660	 	 	 s.accept(sign)	//	If	there's	a	sign,	it	will	be	left	in	the	token	buffer.

			661	 	 	 if	verb	==	'v'	{

			662	 	 	 	 base,	digits,	haveDigits	=	s.scanBasePrefix()

			663	 	 	 }

			664	 	 }

			665	 	 tok	:=	s.scanNumber(digits,	haveDigits)

			666	 	 i,	err	:=	strconv.ParseInt(tok,	base,	64)

			667	 	 if	err	!=	nil	{

			668	 	 	 s.error(err)

			669	 	 }

			670	 	 n	:=	uint(bitSize)

			671	 	 x	:=	(i	<<	(64	-	n))	>>	(64	-	n)

			672	 	 if	x	!=	i	{

			673	 	 	 s.errorString("integer	overflow	on	token	"	+	tok)

			674	 	 }

			675	 	 return	i

			676	 }

			677	

			678	 //	scanUint	returns	the	value	of	the	unsigned	integer	represented

			679	 //	by	the	next	token,	checking	for	overflow.		Any	error	is	stored	in	s.err.

			680	 func	(s	*ss)	scanUint(verb	rune,	bitSize	int)	uint64	{

			681	 	 if	verb	==	'c'	{

			682	 	 	 return	uint64(s.scanRune(bitSize))

			683	 	 }

			684	 	 s.skipSpace(false)

			685	 	 s.notEOF()

			686	 	 base,	digits	:=	s.getBase(verb)

			687	 	 haveDigits	:=	false

			688	 	 if	verb	==	'U'	{

			689	 	 	 if	!s.consume("U",	false)	||	!s.consume("+",	false)	{

			690	 	 	 	 s.errorString("bad	unicode	format	")

			691	 	 	 }

			692	 	 }	else	if	verb	==	'v'	{

			693	 	 	 base,	digits,	haveDigits	=	s.scanBasePrefix()

			694	 	 }

			695	 	 tok	:=	s.scanNumber(digits,	haveDigits)

			696	 	 i,	err	:=	strconv.ParseUint(tok,	base,	64)

			697	 	 if	err	!=	nil	{

			698	 	 	 s.error(err)

			699	 	 }

			700	 	 n	:=	uint(bitSize)

			701	 	 x	:=	(i	<<	(64	-	n))	>>	(64	-	n)

			702	 	 if	x	!=	i	{

			703	 	 	 s.errorString("unsigned	integer	overflow	on	token	"	+	tok)

			704	 	 }

			705	 	 return	i

			706	 }

			707	

			708	 //	floatToken	returns	the	floating-point	number	starting	here,	no	longer	than	swid

			709	 //	if	the	width	is	specified.	It's	not	rigorous	about	syntax	because	it	doesn't	check	that

			710	 //	we	have	at	least	some	digits,	but	Atof	will	do	that.

			711	 func	(s	*ss)	floatToken()	string	{

			712	 	 s.buf	=	s.buf[:0]

			713	 	 //	NaN?

			714	 	 if	s.accept("nN")	&&	s.accept("aA")	&&	s.accept("nN")	{

			715	 	 	 return	string(s.buf)

			716	 	 }

			717	 	 //	leading	sign?

			718	 	 s.accept(sign)

			719	 	 //	Inf?

			720	 	 if	s.accept("iI")	&&	s.accept("nN")	&&	s.accept("fF")	{

			721	 	 	 return	string(s.buf)

			722	 	 }

			723	 	 //	digits?

			724	 	 for	s.accept(decimalDigits)	{

			725	 	 }

			726	 	 //	decimal	point?

			727	 	 if	s.accept(period)	{

			728	 	 	 //	fraction?

			729	 	 	 for	s.accept(decimalDigits)	{

			730	 	 	 }

			731	 	 }

			732	 	 //	exponent?

			733	 	 if	s.accept(exponent)	{

			734	 	 	 //	leading	sign?

			735	 	 	 s.accept(sign)

			736	 	 	 //	digits?

			737	 	 	 for	s.accept(decimalDigits)	{

			738	 	 	 }

			739	 	 }

			740	 	 return	string(s.buf)

			741	 }

			742	

			743	 //	complexTokens	returns	the	real	and	imaginary	parts	of	the	complex	number	starting	here.

			744	 //	The	number	might	be	parenthesized	and	has	the	format	(N+Ni)	where	N	is	a	floating-point

			745	 //	number	and	there	are	no	spaces	within.

			746	 func	(s	*ss)	complexTokens()	(real,	imag	string)	{

			747	 	 //	TODO:	accept	N	and	Ni	independently?

			748	 	 parens	:=	s.accept("(")

			749	 	 real	=	s.floatToken()

			750	 	 s.buf	=	s.buf[:0]

			751	 	 //	Must	now	have	a	sign.

			752	 	 if	!s.accept("+-")	{

			753	 	 	 s.error(complexError)

			754	 	 }

			755	 	 //	Sign	is	now	in	buffer

			756	 	 imagSign	:=	string(s.buf)

			757	 	 imag	=	s.floatToken()

			758	 	 if	!s.accept("i")	{

			759	 	 	 s.error(complexError)

			760	 	 }

			761	 	 if	parens	&&	!s.accept(")")	{

			762	 	 	 s.error(complexError)

			763	 	 }

			764	 	 return	real,	imagSign	+	imag

			765	 }

			766	

			767	 //	convertFloat	converts	the	string	to	a	float64value.

			768	 func	(s	*ss)	convertFloat(str	string,	n	int)	float64	{

			769	 	 if	p	:=	indexRune(str,	'p');	p	>=	0	{

			770	 	 	 //	Atof	doesn't	handle	power-of-2	exponents,

			771	 	 	 //	but	they're	easy	to	evaluate.

			772	 	 	 f,	err	:=	strconv.ParseFloat(str[:p],	n)

			773	 	 	 if	err	!=	nil	{

			774	 	 	 	 //	Put	full	string	into	error.

			775	 	 	 	 if	e,	ok	:=	err.(*strconv.NumError);	ok	{

			776	 	 	 	 	 e.Num	=	str

			777	 	 	 	 }

			778	 	 	 	 s.error(err)

			779	 	 	 }

			780	 	 	 n,	err	:=	strconv.Atoi(str[p+1:])

			781	 	 	 if	err	!=	nil	{

			782	 	 	 	 //	Put	full	string	into	error.

			783	 	 	 	 if	e,	ok	:=	err.(*strconv.NumError);	ok	{

			784	 	 	 	 	 e.Num	=	str

			785	 	 	 	 }

			786	 	 	 	 s.error(err)

			787	 	 	 }

			788	 	 	 return	math.Ldexp(f,	n)

			789	 	 }

			790	 	 f,	err	:=	strconv.ParseFloat(str,	n)

			791	 	 if	err	!=	nil	{

			792	 	 	 s.error(err)

			793	 	 }

			794	 	 return	f

			795	 }

			796	

			797	 //	convertComplex	converts	the	next	token	to	a	complex128	value.

			798	 //	The	atof	argument	is	a	type-specific	reader	for	the	underlying	type.

			799	 //	If	we're	reading	complex64,	atof	will	parse	float32s	and	convert	them

			800	 //	to	float64's	to	avoid	reproducing	this	code	for	each	complex	type.

			801	 func	(s	*ss)	scanComplex(verb	rune,	n	int)	complex128	{

			802	 	 if	!s.okVerb(verb,	floatVerbs,	"complex")	{

			803	 	 	 return	0

			804	 	 }

			805	 	 s.skipSpace(false)

			806	 	 s.notEOF()

			807	 	 sreal,	simag	:=	s.complexTokens()

			808	 	 real	:=	s.convertFloat(sreal,	n/2)

			809	 	 imag	:=	s.convertFloat(simag,	n/2)

			810	 	 return	complex(real,	imag)

			811	 }

			812	

			813	 //	convertString	returns	the	string	represented	by	the	next	input	characters.

			814	 //	The	format	of	the	input	is	determined	by	the	verb.

			815	 func	(s	*ss)	convertString(verb	rune)	(str	string)	{

			816	 	 if	!s.okVerb(verb,	"svqx",	"string")	{

			817	 	 	 return	""

			818	 	 }

			819	 	 s.skipSpace(false)

			820	 	 s.notEOF()

			821	 	 switch	verb	{

			822	 	 case	'q':

			823	 	 	 str	=	s.quotedString()

			824	 	 case	'x':

			825	 	 	 str	=	s.hexString()

			826	 	 default:

			827	 	 	 str	=	string(s.token(true,	notSpace))	//	%s	and	%v	just	return	the	next	word

			828	 	 }

			829	 	 return

			830	 }

			831	

			832	 //	quotedString	returns	the	double-	or	back-quoted	string	represented	by	the	next	input	characters.

			833	 func	(s	*ss)	quotedString()	string	{

			834	 	 s.notEOF()

			835	 	 quote	:=	s.getRune()

			836	 	 switch	quote	{

			837	 	 case	'`':

			838	 	 	 //	Back-quoted:	Anything	goes	until	EOF	or	back	quote.

			839	 	 	 for	{

			840	 	 	 	 r	:=	s.mustReadRune()

			841	 	 	 	 if	r	==	quote	{

			842	 	 	 	 	 break

			843	 	 	 	 }

			844	 	 	 	 s.buf.WriteRune(r)

			845	 	 	 }

			846	 	 	 return	string(s.buf)

			847	 	 case	'"':

			848	 	 	 //	Double-quoted:	Include	the	quotes	and	let	strconv.Unquote	do	the	backslash	escapes.

			849	 	 	 s.buf.WriteRune(quote)

			850	 	 	 for	{

			851	 	 	 	 r	:=	s.mustReadRune()

			852	 	 	 	 s.buf.WriteRune(r)

			853	 	 	 	 if	r	==	'\\'	{

			854	 	 	 	 	 //	In	a	legal	backslash	escape,	no	matter	how	long,	only	the	character

			855	 	 	 	 	 //	immediately	after	the	escape	can	itself	be	a	backslash	or	quote.

			856	 	 	 	 	 //	Thus	we	only	need	to	protect	the	first	character	after	the	backslash.

			857	 	 	 	 	 r	:=	s.mustReadRune()

			858	 	 	 	 	 s.buf.WriteRune(r)

			859	 	 	 	 }	else	if	r	==	'"'	{

			860	 	 	 	 	 break

			861	 	 	 	 }

			862	 	 	 }

			863	 	 	 result,	err	:=	strconv.Unquote(string(s.buf))

			864	 	 	 if	err	!=	nil	{

			865	 	 	 	 s.error(err)

			866	 	 	 }

			867	 	 	 return	result

			868	 	 default:

			869	 	 	 s.errorString("expected	quoted	string")

			870	 	 }

			871	 	 return	""

			872	 }

			873	

			874	 //	hexDigit	returns	the	value	of	the	hexadecimal	digit

			875	 func	(s	*ss)	hexDigit(d	rune)	int	{

			876	 	 digit	:=	int(d)

			877	 	 switch	digit	{

			878	 	 case	'0',	'1',	'2',	'3',	'4',	'5',	'6',	'7',	'8',	'9':

			879	 	 	 return	digit	-	'0'

			880	 	 case	'a',	'b',	'c',	'd',	'e',	'f':

			881	 	 	 return	10	+	digit	-	'a'

			882	 	 case	'A',	'B',	'C',	'D',	'E',	'F':

			883	 	 	 return	10	+	digit	-	'A'

			884	 	 }

			885	 	 s.errorString("Scan:	illegal	hex	digit")

			886	 	 return	0

			887	 }

			888	

			889	 //	hexByte	returns	the	next	hex-encoded	(two-character)	byte	from	the	input.

			890	 //	There	must	be	either	two	hexadecimal	digits	or	a	space	character	in	the	input.

			891	 func	(s	*ss)	hexByte()	(b	byte,	ok	bool)	{

			892	 	 rune1	:=	s.getRune()

			893	 	 if	rune1	==	eof	{

			894	 	 	 return

			895	 	 }

			896	 	 if	isSpace(rune1)	{

			897	 	 	 s.UnreadRune()

			898	 	 	 return

			899	 	 }

			900	 	 rune2	:=	s.mustReadRune()

			901	 	 return	byte(s.hexDigit(rune1)<<4	|	s.hexDigit(rune2)),	true

			902	 }

			903	

			904	 //	hexString	returns	the	space-delimited	hexpair-encoded	string.

			905	 func	(s	*ss)	hexString()	string	{

			906	 	 s.notEOF()

			907	 	 for	{

			908	 	 	 b,	ok	:=	s.hexByte()

			909	 	 	 if	!ok	{

			910	 	 	 	 break

			911	 	 	 }

			912	 	 	 s.buf.WriteByte(b)

			913	 	 }

			914	 	 if	len(s.buf)	==	0	{

			915	 	 	 s.errorString("Scan:	no	hex	data	for	%x	string")

			916	 	 	 return	""

			917	 	 }

			918	 	 return	string(s.buf)

			919	 }

			920	

			921	 const	floatVerbs	=	"beEfFgGv"

			922	

			923	 const	hugeWid	=	1	<<	30

			924	

			925	 //	scanOne	scans	a	single	value,	deriving	the	scanner	from	the	type	of	the	argument.

			926	 func	(s	*ss)	scanOne(verb	rune,	field	interface{})	{

			927	 	 s.buf	=	s.buf[:0]

			928	 	 var	err	error

			929	 	 //	If	the	parameter	has	its	own	Scan	method,	use	that.

			930	 	 if	v,	ok	:=	field.(Scanner);	ok	{

			931	 	 	 err	=	v.Scan(s,	verb)

			932	 	 	 if	err	!=	nil	{

			933	 	 	 	 if	err	==	io.EOF	{

			934	 	 	 	 	 err	=	io.ErrUnexpectedEOF

			935	 	 	 	 }

			936	 	 	 	 s.error(err)

			937	 	 	 }

			938	 	 	 return

			939	 	 }

			940	

			941	 	 switch	v	:=	field.(type)	{

			942	 	 case	*bool:

			943	 	 	 *v	=	s.scanBool(verb)

			944	 	 case	*complex64:

			945	 	 	 *v	=	complex64(s.scanComplex(verb,	64))

			946	 	 case	*complex128:

			947	 	 	 *v	=	s.scanComplex(verb,	128)

			948	 	 case	*int:

			949	 	 	 *v	=	int(s.scanInt(verb,	intBits))

			950	 	 case	*int8:

			951	 	 	 *v	=	int8(s.scanInt(verb,	8))

			952	 	 case	*int16:

			953	 	 	 *v	=	int16(s.scanInt(verb,	16))

			954	 	 case	*int32:

			955	 	 	 *v	=	int32(s.scanInt(verb,	32))

			956	 	 case	*int64:

			957	 	 	 *v	=	s.scanInt(verb,	64)

			958	 	 case	*uint:

			959	 	 	 *v	=	uint(s.scanUint(verb,	intBits))

			960	 	 case	*uint8:

			961	 	 	 *v	=	uint8(s.scanUint(verb,	8))

			962	 	 case	*uint16:

			963	 	 	 *v	=	uint16(s.scanUint(verb,	16))

			964	 	 case	*uint32:

			965	 	 	 *v	=	uint32(s.scanUint(verb,	32))

			966	 	 case	*uint64:

			967	 	 	 *v	=	s.scanUint(verb,	64)

			968	 	 case	*uintptr:

			969	 	 	 *v	=	uintptr(s.scanUint(verb,	uintptrBits))

			970	 	 //	Floats	are	tricky	because	you	want	to	scan	in	the	precision	of	the	result,	not

			971	 	 //	scan	in	high	precision	and	convert,	in	order	to	preserve	the	correct	error	condition.

			972	 	 case	*float32:

			973	 	 	 if	s.okVerb(verb,	floatVerbs,	"float32")	{

			974	 	 	 	 s.skipSpace(false)

			975	 	 	 	 s.notEOF()

			976	 	 	 	 *v	=	float32(s.convertFloat(s.floatToken(),	32))

			977	 	 	 }

			978	 	 case	*float64:

			979	 	 	 if	s.okVerb(verb,	floatVerbs,	"float64")	{

			980	 	 	 	 s.skipSpace(false)

			981	 	 	 	 s.notEOF()

			982	 	 	 	 *v	=	s.convertFloat(s.floatToken(),	64)

			983	 	 	 }

			984	 	 case	*string:

			985	 	 	 *v	=	s.convertString(verb)

			986	 	 case	*[]byte:

			987	 	 	 //	We	scan	to	string	and	convert	so	we	get	a	copy	of	the	data.

			988	 	 	 //	If	we	scanned	to	bytes,	the	slice	would	point	at	the	buffer.

			989	 	 	 *v	=	[]byte(s.convertString(verb))

			990	 	 default:

			991	 	 	 val	:=	reflect.ValueOf(v)

			992	 	 	 ptr	:=	val

			993	 	 	 if	ptr.Kind()	!=	reflect.Ptr	{

			994	 	 	 	 s.errorString("Scan:	type	not	a	pointer:	"	+	val.Type().String())

			995	 	 	 	 return

			996	 	 	 }

			997	 	 	 switch	v	:=	ptr.Elem();	v.Kind()	{

			998	 	 	 case	reflect.Bool:

			999	 	 	 	 v.SetBool(s.scanBool(verb))

		1000	 	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

		1001	 	 	 	 v.SetInt(s.scanInt(verb,	v.Type().Bits()))

		1002	 	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

		1003	 	 	 	 v.SetUint(s.scanUint(verb,	v.Type().Bits()))

		1004	 	 	 case	reflect.String:

		1005	 	 	 	 v.SetString(s.convertString(verb))

		1006	 	 	 case	reflect.Slice:

		1007	 	 	 	 //	For	now,	can	only	handle	(renamed)	[]byte.

		1008	 	 	 	 typ	:=	v.Type()

		1009	 	 	 	 if	typ.Elem().Kind()	!=	reflect.Uint8	{

		1010	 	 	 	 	 s.errorString("Scan:	can't	handle	type:	"	+	val.Type().String())

		1011	 	 	 	 }

		1012	 	 	 	 str	:=	s.convertString(verb)

		1013	 	 	 	 v.Set(reflect.MakeSlice(typ,	len(str),	len(str)))

		1014	 	 	 	 for	i	:=	0;	i	<	len(str);	i++	{

		1015	 	 	 	 	 v.Index(i).SetUint(uint64(str[i]))

		1016	 	 	 	 }

		1017	 	 	 case	reflect.Float32,	reflect.Float64:

		1018	 	 	 	 s.skipSpace(false)

		1019	 	 	 	 s.notEOF()

		1020	 	 	 	 v.SetFloat(s.convertFloat(s.floatToken(),	v.Type().Bits()))

		1021	 	 	 case	reflect.Complex64,	reflect.Complex128:

		1022	 	 	 	 v.SetComplex(s.scanComplex(verb,	v.Type().Bits()))

		1023	 	 	 default:

		1024	 	 	 	 s.errorString("Scan:	can't	handle	type:	"	+	val.Type().String())

		1025	 	 	 }

		1026	 	 }

		1027	 }

		1028	

		1029	 //	errorHandler	turns	local	panics	into	error	returns.

		1030	 func	errorHandler(errp	*error)	{

		1031	 	 if	e	:=	recover();	e	!=	nil	{

		1032	 	 	 if	se,	ok	:=	e.(scanError);	ok	{	//	catch	local	error

		1033	 	 	 	 *errp	=	se.err

		1034	 	 	 }	else	if	eof,	ok	:=	e.(error);	ok	&&	eof	==	io.EOF	{	

		1035	 	 	 	 *errp	=	eof

		1036	 	 	 }	else	{

		1037	 	 	 	 panic(e)

		1038	 	 	 }

		1039	 	 }

		1040	 }

		1041	

		1042	 //	doScan	does	the	real	work	for	scanning	without	a	format	string.

		1043	 func	(s	*ss)	doScan(a	[]interface{})	(numProcessed	int,	err	error)	{

		1044	 	 defer	errorHandler(&err)

		1045	 	 for	_,	field	:=	range	a	{

		1046	 	 	 s.scanOne('v',	field)

		1047	 	 	 numProcessed++

		1048	 	 }

		1049	 	 //	Check	for	newline	if	required.

		1050	 	 if	!s.nlIsSpace	{

		1051	 	 	 for	{

		1052	 	 	 	 r	:=	s.getRune()

		1053	 	 	 	 if	r	==	'\n'	||	r	==	eof	{

		1054	 	 	 	 	 break

		1055	 	 	 	 }

		1056	 	 	 	 if	!isSpace(r)	{

		1057	 	 	 	 	 s.errorString("Scan:	expected	newline")

		1058	 	 	 	 	 break

		1059	 	 	 	 }

		1060	 	 	 }

		1061	 	 }

		1062	 	 return

		1063	 }

		1064	

		1065	 //	advance	determines	whether	the	next	characters	in	the	input	match

		1066	 //	those	of	the	format.		It	returns	the	number	of	bytes	(sic)	consumed

		1067	 //	in	the	format.	Newlines	included,	all	runs	of	space	characters	in

		1068	 //	either	input	or	format	behave	as	a	single	space.	This	routine	also

		1069	 //	handles	the	%%	case.		If	the	return	value	is	zero,	either	format

		1070	 //	starts	with	a	%	(with	no	following	%)	or	the	input	is	empty.

		1071	 //	If	it	is	negative,	the	input	did	not	match	the	string.

		1072	 func	(s	*ss)	advance(format	string)	(i	int)	{

		1073	 	 for	i	<	len(format)	{

		1074	 	 	 fmtc,	w	:=	utf8.DecodeRuneInString(format[i:])

		1075	 	 	 if	fmtc	==	'%'	{

		1076	 	 	 	 //	%%	acts	like	a	real	percent

		1077	 	 	 	 nextc,	_	:=	utf8.DecodeRuneInString(format[i+w:])	

		1078	 	 	 	 if	nextc	!=	'%'	{

		1079	 	 	 	 	 return

		1080	 	 	 	 }

		1081	 	 	 	 i	+=	w	//	skip	the	first	%

		1082	 	 	 }

		1083	 	 	 sawSpace	:=	false

		1084	 	 	 for	isSpace(fmtc)	&&	i	<	len(format)	{

		1085	 	 	 	 sawSpace	=	true

		1086	 	 	 	 i	+=	w

		1087	 	 	 	 fmtc,	w	=	utf8.DecodeRuneInString(format[i:])

		1088	 	 	 }

		1089	 	 	 if	sawSpace	{

		1090	 	 	 	 //	There	was	space	in	the	format,	so	there	should	be	space	(EOF)

		1091	 	 	 	 //	in	the	input.

		1092	 	 	 	 inputc	:=	s.getRune()

		1093	 	 	 	 if	inputc	==	eof	{

		1094	 	 	 	 	 return

		1095	 	 	 	 }

		1096	 	 	 	 if	!isSpace(inputc)	{

		1097	 	 	 	 	 //	Space	in	format	but	not	in	input:	error

		1098	 	 	 	 	 s.errorString("expected	space	in	input	to	match	format")

		1099	 	 	 	 }

		1100	 	 	 	 s.skipSpace(true)

		1101	 	 	 	 continue

		1102	 	 	 }

		1103	 	 	 inputc	:=	s.mustReadRune()

		1104	 	 	 if	fmtc	!=	inputc	{

		1105	 	 	 	 s.UnreadRune()

		1106	 	 	 	 return	-1

		1107	 	 	 }

		1108	 	 	 i	+=	w

		1109	 	 }

		1110	 	 return

		1111	 }

		1112	

		1113	 //	doScanf	does	the	real	work	when	scanning	with	a	format	string.

		1114	 //		At	the	moment,	it	handles	only	pointers	to	basic	types.

		1115	 func	(s	*ss)	doScanf(format	string,	a	[]interface{})	(numProcessed	int,	err	error)	{

		1116	 	 defer	errorHandler(&err)

		1117	 	 end	:=	len(format)	-	1

		1118	 	 //	We	process	one	item	per	non-trivial	format

		1119	 	 for	i	:=	0;	i	<=	end;	{

		1120	 	 	 w	:=	s.advance(format[i:])

		1121	 	 	 if	w	>	0	{

		1122	 	 	 	 i	+=	w

		1123	 	 	 	 continue

		1124	 	 	 }

		1125	 	 	 //	Either	we	failed	to	advance,	we	have	a	percent	character,	or	we	ran	out	of	input.

		1126	 	 	 if	format[i]	!=	'%'	{

		1127	 	 	 	 //	Can't	advance	format.		Why	not?

		1128	 	 	 	 if	w	<	0	{

		1129	 	 	 	 	 s.errorString("input	does	not	match	format")

		1130	 	 	 	 }

		1131	 	 	 	 //	Otherwise	at	EOF;	"too	many	operands"	error	handled	below

		1132	 	 	 	 break

		1133	 	 	 }

		1134	 	 	 i++	//	%	is	one	byte

		1135	

		1136	 	 	 //	do	we	have	20	(width)?

		1137	 	 	 var	widPresent	bool

		1138	 	 	 s.maxWid,	widPresent,	i	=	parsenum(format,	i,	end)

		1139	 	 	 if	!widPresent	{

		1140	 	 	 	 s.maxWid	=	hugeWid

		1141	 	 	 }

		1142	 	 	 s.fieldLimit	=	s.limit

		1143	 	 	 if	f	:=	s.count	+	s.maxWid;	f	<	s.fieldLimit	{

		1144	 	 	 	 s.fieldLimit	=	f

		1145	 	 	 }

		1146	

		1147	 	 	 c,	w	:=	utf8.DecodeRuneInString(format[i:])

		1148	 	 	 i	+=	w

		1149	

		1150	 	 	 if	numProcessed	>=	len(a)	{	//	out	of	operands

		1151	 	 	 	 s.errorString("too	few	operands	for	format	%"	+	format[i-w:])

		1152	 	 	 	 break

		1153	 	 	 }

		1154	 	 	 field	:=	a[numProcessed]

		1155	

		1156	 	 	 s.scanOne(c,	field)

		1157	 	 	 numProcessed++

		1158	 	 	 s.fieldLimit	=	s.limit

		1159	 	 }

		1160	 	 if	numProcessed	<	len(a)	{

		1161	 	 	 s.errorString("too	many	operands")

		1162	 	 }

		1163	 	 return

		1164	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/ast/ast.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	ast	declares	the	types	used	to	represent	syntax	trees	for	Go

					6	 //	packages.

					7	 //

					8	 package	ast

					9	

				10	 import	(

				11	 	 "go/token"

				12	 	 "strings"

				13	 	 "unicode"

				14	 	 "unicode/utf8"

				15)

				16	

				17	 //	--

				18	 //	Interfaces

				19	 //

				20	 //	There	are	3	main	classes	of	nodes:	Expressions	and	type	nodes,

				21	 //	statement	nodes,	and	declaration	nodes.	The	node	names	usually

				22	 //	match	the	corresponding	Go	spec	production	names	to	which	they

				23	 //	correspond.	The	node	fields	correspond	to	the	individual	parts

				24	 //	of	the	respective	productions.

				25	 //

				26	 //	All	nodes	contain	position	information	marking	the	beginning	of

				27	 //	the	corresponding	source	text	segment;	it	is	accessible	via	the

				28	 //	Pos	accessor	method.	Nodes	may	contain	additional	position	info

				29	 //	for	language	constructs	where	comments	may	be	found	between	parts

				30	 //	of	the	construct	(typically	any	larger,	parenthesized	subpart).

				31	 //	That	position	information	is	needed	to	properly	position	comments

				32	 //	when	printing	the	construct.

				33	

				34	 //	All	node	types	implement	the	Node	interface.

				35	 type	Node	interface	{

				36	 	 Pos()	token.Pos	//	position	of	first	character	belonging	to	the	node

				37	 	 End()	token.Pos	//	position	of	first	character	immediately	after	the	node

				38	 }

				39	

				40	 //	All	expression	nodes	implement	the	Expr	interface.

				41	 type	Expr	interface	{

				42	 	 Node

				43	 	 exprNode()

				44	 }

				45	

				46	 //	All	statement	nodes	implement	the	Stmt	interface.

				47	 type	Stmt	interface	{

				48	 	 Node

				49	 	 stmtNode()

				50	 }

				51	

				52	 //	All	declaration	nodes	implement	the	Decl	interface.

				53	 type	Decl	interface	{

				54	 	 Node

				55	 	 declNode()

				56	 }

				57	

				58	 //	--

				59	 //	Comments

				60	

				61	 //	A	Comment	node	represents	a	single	//-style	or	/*-style	comment.

				62	 type	Comment	struct	{

				63	 	 Slash	token.Pos	//	position	of	"/"	starting	the	comment

				64	 	 Text		string				//	comment	text	(excluding	'\n'	for	//-style	comments)

				65	 }

				66	

				67	 func	(c	*Comment)	Pos()	token.Pos	{	return	c.Slash	}

				68	 func	(c	*Comment)	End()	token.Pos	{	return	token.Pos(int(c.Slash)	+	len(c.Text))	}

				69	

				70	 //	A	CommentGroup	represents	a	sequence	of	comments

				71	 //	with	no	other	tokens	and	no	empty	lines	between.

				72	 //

				73	 type	CommentGroup	struct	{

				74	 	 List	[]*Comment	//	len(List)	>	0

				75	 }

				76	

				77	 func	(g	*CommentGroup)	Pos()	token.Pos	{	return	g.List[0].Pos()	}

				78	 func	(g	*CommentGroup)	End()	token.Pos	{	return	g.List[len(g.List)-1].End()	}

				79	

				80	 func	isWhitespace(ch	byte)	bool	{	return	ch	==	'	'	||	ch	==	'\t'	||	ch	==	'\n'	||	ch	==	'\r'	}

				81	

				82	 func	stripTrailingWhitespace(s	string)	string	{

				83	 	 i	:=	len(s)

				84	 	 for	i	>	0	&&	isWhitespace(s[i-1])	{

				85	 	 	 i--

				86	 	 }

				87	 	 return	s[0:i]

				88	 }

				89	

				90	 //	Text	returns	the	text	of	the	comment,

				91	 //	with	the	comment	markers	-	//,	/*,	and	*/	-	removed.

				92	 func	(g	*CommentGroup)	Text()	string	{

				93	 	 if	g	==	nil	{

				94	 	 	 return	""

				95	 	 }

				96	 	 comments	:=	make([]string,	len(g.List))

				97	 	 for	i,	c	:=	range	g.List	{

				98	 	 	 comments[i]	=	string(c.Text)

				99	 	 }

			100	

			101	 	 lines	:=	make([]string,	0,	10)	//	most	comments	are	less	than	10	lines

			102	 	 for	_,	c	:=	range	comments	{

			103	 	 	 //	Remove	comment	markers.

			104	 	 	 //	The	parser	has	given	us	exactly	the	comment	text.

			105	 	 	 switch	c[1]	{

			106	 	 	 case	'/':

			107	 	 	 	 //-style	comment

			108	 	 	 	 c	=	c[2:]

			109	 	 	 	 //	Remove	leading	space	after	//,	if	there	is	one.

			110	 	 	 	 //	TODO(gri)	This	appears	to	be	necessary	in	isolated

			111	 	 	 	 //											cases	(bignum.RatFromString)	-	why?

			112	 	 	 	 if	len(c)	>	0	&&	c[0]	==	'	'	{

			113	 	 	 	 	 c	=	c[1:]

			114	 	 	 	 }

			115	 	 	 case	'*':

			116	 	 	 	 /*-style	comment	*/

			117	 	 	 	 c	=	c[2	:	len(c)-2]

			118	 	 	 }

			119	

			120	 	 	 //	Split	on	newlines.

			121	 	 	 cl	:=	strings.Split(c,	"\n")

			122	

			123	 	 	 //	Walk	lines,	stripping	trailing	white	space	and	adding	to	list.

			124	 	 	 for	_,	l	:=	range	cl	{

			125	 	 	 	 lines	=	append(lines,	stripTrailingWhitespace(l))

			126	 	 	 }

			127	 	 }

			128	

			129	 	 //	Remove	leading	blank	lines;	convert	runs	of

			130	 	 //	interior	blank	lines	to	a	single	blank	line.

			131	 	 n	:=	0

			132	 	 for	_,	line	:=	range	lines	{

			133	 	 	 if	line	!=	""	||	n	>	0	&&	lines[n-1]	!=	""	{

			134	 	 	 	 lines[n]	=	line

			135	 	 	 	 n++

			136	 	 	 }

			137	 	 }

			138	 	 lines	=	lines[0:n]

			139	

			140	 	 //	Add	final	""	entry	to	get	trailing	newline	from	Join.

			141	 	 if	n	>	0	&&	lines[n-1]	!=	""	{

			142	 	 	 lines	=	append(lines,	"")

			143	 	 }

			144	

			145	 	 return	strings.Join(lines,	"\n")

			146	 }

			147	

			148	 //	--

			149	 //	Expressions	and	types

			150	

			151	 //	A	Field	represents	a	Field	declaration	list	in	a	struct	type,

			152	 //	a	method	list	in	an	interface	type,	or	a	parameter/result	declaration

			153	 //	in	a	signature.

			154	 //

			155	 type	Field	struct	{

			156	 	 Doc					*CommentGroup	//	associated	documentation;	or	nil

			157	 	 Names			[]*Ident						//	field/method/parameter	names;	or	nil	if	anonymous	field

			158	 	 Type				Expr										//	field/method/parameter	type

			159	 	 Tag					*BasicLit					//	field	tag;	or	nil

			160	 	 Comment	*CommentGroup	//	line	comments;	or	nil

			161	 }

			162	

			163	 func	(f	*Field)	Pos()	token.Pos	{

			164	 	 if	len(f.Names)	>	0	{

			165	 	 	 return	f.Names[0].Pos()

			166	 	 }

			167	 	 return	f.Type.Pos()

			168	 }

			169	

			170	 func	(f	*Field)	End()	token.Pos	{

			171	 	 if	f.Tag	!=	nil	{

			172	 	 	 return	f.Tag.End()

			173	 	 }

			174	 	 return	f.Type.End()

			175	 }

			176	

			177	 //	A	FieldList	represents	a	list	of	Fields,	enclosed	by	parentheses	or	braces.

			178	 type	FieldList	struct	{

			179	 	 Opening	token.Pos	//	position	of	opening	parenthesis/brace,	if	any

			180	 	 List				[]*Field		//	field	list;	or	nil

			181	 	 Closing	token.Pos	//	position	of	closing	parenthesis/brace,	if	any

			182	 }

			183	

			184	 func	(f	*FieldList)	Pos()	token.Pos	{

			185	 	 if	f.Opening.IsValid()	{

			186	 	 	 return	f.Opening

			187	 	 }

			188	 	 //	the	list	should	not	be	empty	in	this	case;

			189	 	 //	be	conservative	and	guard	against	bad	ASTs

			190	 	 if	len(f.List)	>	0	{

			191	 	 	 return	f.List[0].Pos()

			192	 	 }

			193	 	 return	token.NoPos

			194	 }

			195	

			196	 func	(f	*FieldList)	End()	token.Pos	{

			197	 	 if	f.Closing.IsValid()	{

			198	 	 	 return	f.Closing	+	1

			199	 	 }

			200	 	 //	the	list	should	not	be	empty	in	this	case;

			201	 	 //	be	conservative	and	guard	against	bad	ASTs

			202	 	 if	n	:=	len(f.List);	n	>	0	{

			203	 	 	 return	f.List[n-1].End()

			204	 	 }

			205	 	 return	token.NoPos

			206	 }

			207	

			208	 //	NumFields	returns	the	number	of	(named	and	anonymous	fields)	in	a	FieldList.

			209	 func	(f	*FieldList)	NumFields()	int	{

			210	 	 n	:=	0

			211	 	 if	f	!=	nil	{

			212	 	 	 for	_,	g	:=	range	f.List	{

			213	 	 	 	 m	:=	len(g.Names)

			214	 	 	 	 if	m	==	0	{

			215	 	 	 	 	 m	=	1	//	anonymous	field

			216	 	 	 	 }

			217	 	 	 	 n	+=	m

			218	 	 	 }

			219	 	 }

			220	 	 return	n

			221	 }

			222	

			223	 //	An	expression	is	represented	by	a	tree	consisting	of	one

			224	 //	or	more	of	the	following	concrete	expression	nodes.

			225	 //

			226	 type	(

			227	 	 //	A	BadExpr	node	is	a	placeholder	for	expressions	containing

			228	 	 //	syntax	errors	for	which	no	correct	expression	nodes	can	be

			229	 	 //	created.

			230	 	 //

			231	 	 BadExpr	struct	{

			232	 	 	 From,	To	token.Pos	//	position	range	of	bad	expression

			233	 	 }

			234	

			235	 	 //	An	Ident	node	represents	an	identifier.

			236	 	 Ident	struct	{

			237	 	 	 NamePos	token.Pos	//	identifier	position

			238	 	 	 Name				string				//	identifier	name

			239	 	 	 Obj					*Object			//	denoted	object;	or	nil

			240	 	 }

			241	

			242	 	 //	An	Ellipsis	node	stands	for	the	"..."	type	in	a

			243	 	 //	parameter	list	or	the	"..."	length	in	an	array	type.

			244	 	 //

			245	 	 Ellipsis	struct	{

			246	 	 	 Ellipsis	token.Pos	//	position	of	"..."

			247	 	 	 Elt						Expr						//	ellipsis	element	type	(parameter	lists	only);	or	nil

			248	 	 }

			249	

			250	 	 //	A	BasicLit	node	represents	a	literal	of	basic	type.

			251	 	 BasicLit	struct	{

			252	 	 	 ValuePos	token.Pos			//	literal	position

			253	 	 	 Kind					token.Token	//	token.INT,	token.FLOAT,	token.IMAG,	token.CHAR,	or	token.STRING

			254	 	 	 Value				string						//	literal	string;	e.g.	42,	0x7f,	3.14,	1e-9,	2.4i,	'a',	'\x7f',	"foo"	or	`\m\n\o`

			255	 	 }

			256	

			257	 	 //	A	FuncLit	node	represents	a	function	literal.

			258	 	 FuncLit	struct	{

			259	 	 	 Type	*FuncType		//	function	type

			260	 	 	 Body	*BlockStmt	//	function	body

			261	 	 }

			262	

			263	 	 //	A	CompositeLit	node	represents	a	composite	literal.

			264	 	 CompositeLit	struct	{

			265	 	 	 Type			Expr						//	literal	type;	or	nil

			266	 	 	 Lbrace	token.Pos	//	position	of	"{"

			267	 	 	 Elts			[]Expr				//	list	of	composite	elements;	or	nil

			268	 	 	 Rbrace	token.Pos	//	position	of	"}"

			269	 	 }

			270	

			271	 	 //	A	ParenExpr	node	represents	a	parenthesized	expression.

			272	 	 ParenExpr	struct	{

			273	 	 	 Lparen	token.Pos	//	position	of	"("

			274	 	 	 X						Expr						//	parenthesized	expression

			275	 	 	 Rparen	token.Pos	//	position	of	")"

			276	 	 }

			277	

			278	 	 //	A	SelectorExpr	node	represents	an	expression	followed	by	a	selector.

			279	 	 SelectorExpr	struct	{

			280	 	 	 X			Expr			//	expression

			281	 	 	 Sel	*Ident	//	field	selector

			282	 	 }

			283	

			284	 	 //	An	IndexExpr	node	represents	an	expression	followed	by	an	index.

			285	 	 IndexExpr	struct	{

			286	 	 	 X						Expr						//	expression

			287	 	 	 Lbrack	token.Pos	//	position	of	"["

			288	 	 	 Index		Expr						//	index	expression

			289	 	 	 Rbrack	token.Pos	//	position	of	"]"

			290	 	 }

			291	

			292	 	 //	An	SliceExpr	node	represents	an	expression	followed	by	slice	indices.

			293	 	 SliceExpr	struct	{

			294	 	 	 X						Expr						//	expression

			295	 	 	 Lbrack	token.Pos	//	position	of	"["

			296	 	 	 Low				Expr						//	begin	of	slice	range;	or	nil

			297	 	 	 High			Expr						//	end	of	slice	range;	or	nil

			298	 	 	 Rbrack	token.Pos	//	position	of	"]"

			299	 	 }

			300	

			301	 	 //	A	TypeAssertExpr	node	represents	an	expression	followed	by	a

			302	 	 //	type	assertion.

			303	 	 //

			304	 	 TypeAssertExpr	struct	{

			305	 	 	 X				Expr	//	expression

			306	 	 	 Type	Expr	//	asserted	type;	nil	means	type	switch	X.(type)

			307	 	 }

			308	

			309	 	 //	A	CallExpr	node	represents	an	expression	followed	by	an	argument	list.

			310	 	 CallExpr	struct	{

			311	 	 	 Fun						Expr						//	function	expression

			312	 	 	 Lparen			token.Pos	//	position	of	"("

			313	 	 	 Args					[]Expr				//	function	arguments;	or	nil

			314	 	 	 Ellipsis	token.Pos	//	position	of	"...",	if	any

			315	 	 	 Rparen			token.Pos	//	position	of	")"

			316	 	 }

			317	

			318	 	 //	A	StarExpr	node	represents	an	expression	of	the	form	"*"	Expression.

			319	 	 //	Semantically	it	could	be	a	unary	"*"	expression,	or	a	pointer	type.

			320	 	 //

			321	 	 StarExpr	struct	{

			322	 	 	 Star	token.Pos	//	position	of	"*"

			323	 	 	 X				Expr						//	operand

			324	 	 }

			325	

			326	 	 //	A	UnaryExpr	node	represents	a	unary	expression.

			327	 	 //	Unary	"*"	expressions	are	represented	via	StarExpr	nodes.

			328	 	 //

			329	 	 UnaryExpr	struct	{

			330	 	 	 OpPos	token.Pos			//	position	of	Op

			331	 	 	 Op				token.Token	//	operator

			332	 	 	 X					Expr								//	operand

			333	 	 }

			334	

			335	 	 //	A	BinaryExpr	node	represents	a	binary	expression.

			336	 	 BinaryExpr	struct	{

			337	 	 	 X					Expr								//	left	operand

			338	 	 	 OpPos	token.Pos			//	position	of	Op

			339	 	 	 Op				token.Token	//	operator

			340	 	 	 Y					Expr								//	right	operand

			341	 	 }

			342	

			343	 	 //	A	KeyValueExpr	node	represents	(key	:	value)	pairs

			344	 	 //	in	composite	literals.

			345	 	 //

			346	 	 KeyValueExpr	struct	{

			347	 	 	 Key			Expr

			348	 	 	 Colon	token.Pos	//	position	of	":"

			349	 	 	 Value	Expr

			350	 	 }

			351)

			352	

			353	 //	The	direction	of	a	channel	type	is	indicated	by	one

			354	 //	of	the	following	constants.

			355	 //

			356	 type	ChanDir	int

			357	

			358	 const	(

			359	 	 SEND	ChanDir	=	1	<<	iota

			360	 	 RECV

			361)

			362	

			363	 //	A	type	is	represented	by	a	tree	consisting	of	one

			364	 //	or	more	of	the	following	type-specific	expression

			365	 //	nodes.

			366	 //

			367	 type	(

			368	 	 //	An	ArrayType	node	represents	an	array	or	slice	type.

			369	 	 ArrayType	struct	{

			370	 	 	 Lbrack	token.Pos	//	position	of	"["

			371	 	 	 Len				Expr						//	Ellipsis	node	for	[...]T	array	types,	nil	for	slice	types

			372	 	 	 Elt				Expr						//	element	type

			373	 	 }

			374	

			375	 	 //	A	StructType	node	represents	a	struct	type.

			376	 	 StructType	struct	{

			377	 	 	 Struct					token.Pos		//	position	of	"struct"	keyword

			378	 	 	 Fields					*FieldList	//	list	of	field	declarations

			379	 	 	 Incomplete	bool							//	true	if	(source)	fields	are	missing	in	the	Fields	list

			380	 	 }

			381	

			382	 	 //	Pointer	types	are	represented	via	StarExpr	nodes.

			383	

			384	 	 //	A	FuncType	node	represents	a	function	type.

			385	 	 FuncType	struct	{

			386	 	 	 Func				token.Pos		//	position	of	"func"	keyword

			387	 	 	 Params		*FieldList	//	(incoming)	parameters;	or	nil

			388	 	 	 Results	*FieldList	//	(outgoing)	results;	or	nil

			389	 	 }

			390	

			391	 	 //	An	InterfaceType	node	represents	an	interface	type.

			392	 	 InterfaceType	struct	{

			393	 	 	 Interface		token.Pos		//	position	of	"interface"	keyword

			394	 	 	 Methods				*FieldList	//	list	of	methods

			395	 	 	 Incomplete	bool							//	true	if	(source)	methods	are	missing	in	the	Methods	list

			396	 	 }

			397	

			398	 	 //	A	MapType	node	represents	a	map	type.

			399	 	 MapType	struct	{

			400	 	 	 Map			token.Pos	//	position	of	"map"	keyword

			401	 	 	 Key			Expr

			402	 	 	 Value	Expr

			403	 	 }

			404	

			405	 	 //	A	ChanType	node	represents	a	channel	type.

			406	 	 ChanType	struct	{

			407	 	 	 Begin	token.Pos	//	position	of	"chan"	keyword	or	"<-"	(whichever	comes	first)

			408	 	 	 Dir			ChanDir			//	channel	direction

			409	 	 	 Value	Expr						//	value	type

			410	 	 }

			411)

			412	

			413	 //	Pos	and	End	implementations	for	expression/type	nodes.

			414	 //

			415	 func	(x	*BadExpr)	Pos()	token.Pos		{	return	x.From	}

			416	 func	(x	*Ident)	Pos()	token.Pos				{	return	x.NamePos	}

			417	 func	(x	*Ellipsis)	Pos()	token.Pos	{	return	x.Ellipsis	}

			418	 func	(x	*BasicLit)	Pos()	token.Pos	{	return	x.ValuePos	}

			419	 func	(x	*FuncLit)	Pos()	token.Pos		{	return	x.Type.Pos()	}

			420	 func	(x	*CompositeLit)	Pos()	token.Pos	{

			421	 	 if	x.Type	!=	nil	{

			422	 	 	 return	x.Type.Pos()

			423	 	 }

			424	 	 return	x.Lbrace

			425	 }

			426	 func	(x	*ParenExpr)	Pos()	token.Pos						{	return	x.Lparen	}

			427	 func	(x	*SelectorExpr)	Pos()	token.Pos			{	return	x.X.Pos()	}

			428	 func	(x	*IndexExpr)	Pos()	token.Pos						{	return	x.X.Pos()	}

			429	 func	(x	*SliceExpr)	Pos()	token.Pos						{	return	x.X.Pos()	}

			430	 func	(x	*TypeAssertExpr)	Pos()	token.Pos	{	return	x.X.Pos()	}

			431	 func	(x	*CallExpr)	Pos()	token.Pos							{	return	x.Fun.Pos()	}

			432	 func	(x	*StarExpr)	Pos()	token.Pos							{	return	x.Star	}

			433	 func	(x	*UnaryExpr)	Pos()	token.Pos						{	return	x.OpPos	}

			434	 func	(x	*BinaryExpr)	Pos()	token.Pos					{	return	x.X.Pos()	}

			435	 func	(x	*KeyValueExpr)	Pos()	token.Pos			{	return	x.Key.Pos()	}

			436	 func	(x	*ArrayType)	Pos()	token.Pos						{	return	x.Lbrack	}

			437	 func	(x	*StructType)	Pos()	token.Pos					{	return	x.Struct	}

			438	 func	(x	*FuncType)	Pos()	token.Pos							{	return	x.Func	}

			439	 func	(x	*InterfaceType)	Pos()	token.Pos		{	return	x.Interface	}

			440	 func	(x	*MapType)	Pos()	token.Pos								{	return	x.Map	}

			441	 func	(x	*ChanType)	Pos()	token.Pos							{	return	x.Begin	}

			442	

			443	 func	(x	*BadExpr)	End()	token.Pos	{	return	x.To	}

			444	 func	(x	*Ident)	End()	token.Pos			{	return	token.Pos(int(x.NamePos)	+	len(x.Name))	}

			445	 func	(x	*Ellipsis)	End()	token.Pos	{

			446	 	 if	x.Elt	!=	nil	{

			447	 	 	 return	x.Elt.End()

			448	 	 }

			449	 	 return	x.Ellipsis	+	3	//	len("...")

			450	 }

			451	 func	(x	*BasicLit)	End()	token.Pos					{	return	token.Pos(int(x.ValuePos)	+	len(x.Value))	}

			452	 func	(x	*FuncLit)	End()	token.Pos						{	return	x.Body.End()	}

			453	 func	(x	*CompositeLit)	End()	token.Pos	{	return	x.Rbrace	+	1	}

			454	 func	(x	*ParenExpr)	End()	token.Pos				{	return	x.Rparen	+	1	}

			455	 func	(x	*SelectorExpr)	End()	token.Pos	{	return	x.Sel.End()	}

			456	 func	(x	*IndexExpr)	End()	token.Pos				{	return	x.Rbrack	+	1	}

			457	 func	(x	*SliceExpr)	End()	token.Pos				{	return	x.Rbrack	+	1	}

			458	 func	(x	*TypeAssertExpr)	End()	token.Pos	{

			459	 	 if	x.Type	!=	nil	{

			460	 	 	 return	x.Type.End()

			461	 	 }

			462	 	 return	x.X.End()

			463	 }

			464	 func	(x	*CallExpr)	End()	token.Pos					{	return	x.Rparen	+	1	}

			465	 func	(x	*StarExpr)	End()	token.Pos					{	return	x.X.End()	}

			466	 func	(x	*UnaryExpr)	End()	token.Pos				{	return	x.X.End()	}

			467	 func	(x	*BinaryExpr)	End()	token.Pos			{	return	x.Y.End()	}

			468	 func	(x	*KeyValueExpr)	End()	token.Pos	{	return	x.Value.End()	}

			469	 func	(x	*ArrayType)	End()	token.Pos				{	return	x.Elt.End()	}

			470	 func	(x	*StructType)	End()	token.Pos			{	return	x.Fields.End()	}

			471	 func	(x	*FuncType)	End()	token.Pos	{

			472	 	 if	x.Results	!=	nil	{

			473	 	 	 return	x.Results.End()

			474	 	 }

			475	 	 return	x.Params.End()

			476	 }

			477	 func	(x	*InterfaceType)	End()	token.Pos	{	return	x.Methods.End()	}

			478	 func	(x	*MapType)	End()	token.Pos							{	return	x.Value.End()	}

			479	 func	(x	*ChanType)	End()	token.Pos						{	return	x.Value.End()	}

			480	

			481	 //	exprNode()	ensures	that	only	expression/type	nodes	can	be

			482	 //	assigned	to	an	ExprNode.

			483	 //

			484	 func	(*BadExpr)	exprNode()								{}

			485	 func	(*Ident)	exprNode()										{}

			486	 func	(*Ellipsis)	exprNode()							{}

			487	 func	(*BasicLit)	exprNode()							{}

			488	 func	(*FuncLit)	exprNode()								{}

			489	 func	(*CompositeLit)	exprNode()			{}

			490	 func	(*ParenExpr)	exprNode()						{}

			491	 func	(*SelectorExpr)	exprNode()			{}

			492	 func	(*IndexExpr)	exprNode()						{}

			493	 func	(*SliceExpr)	exprNode()						{}

			494	 func	(*TypeAssertExpr)	exprNode()	{}

			495	 func	(*CallExpr)	exprNode()							{}

			496	 func	(*StarExpr)	exprNode()							{}

			497	 func	(*UnaryExpr)	exprNode()						{}

			498	 func	(*BinaryExpr)	exprNode()					{}

			499	 func	(*KeyValueExpr)	exprNode()			{}

			500	

			501	 func	(*ArrayType)	exprNode()					{}

			502	 func	(*StructType)	exprNode()				{}

			503	 func	(*FuncType)	exprNode()						{}

			504	 func	(*InterfaceType)	exprNode()	{}

			505	 func	(*MapType)	exprNode()							{}

			506	 func	(*ChanType)	exprNode()						{}

			507	

			508	 //	--

			509	 //	Convenience	functions	for	Idents

			510	

			511	 var	noPos	token.Pos

			512	

			513	 //	NewIdent	creates	a	new	Ident	without	position.

			514	 //	Useful	for	ASTs	generated	by	code	other	than	the	Go	parser.

			515	 //

			516	 func	NewIdent(name	string)	*Ident	{	return	&Ident{noPos,	name,	nil}	}

			517	

			518	 //	IsExported	returns	whether	name	is	an	exported	Go	symbol

			519	 //	(i.e.,	whether	it	begins	with	an	uppercase	letter).

			520	 //

			521	 func	IsExported(name	string)	bool	{

			522	 	 ch,	_	:=	utf8.DecodeRuneInString(name)

			523	 	 return	unicode.IsUpper(ch)

			524	 }

			525	

			526	 //	IsExported	returns	whether	id	is	an	exported	Go	symbol

			527	 //	(i.e.,	whether	it	begins	with	an	uppercase	letter).

			528	 //

			529	 func	(id	*Ident)	IsExported()	bool	{	return	IsExported(id.Name)	}

			530	

			531	 func	(id	*Ident)	String()	string	{

			532	 	 if	id	!=	nil	{

			533	 	 	 return	id.Name

			534	 	 }

			535	 	 return	"<nil>"

			536	 }

			537	

			538	 //	--

			539	 //	Statements

			540	

			541	 //	A	statement	is	represented	by	a	tree	consisting	of	one

			542	 //	or	more	of	the	following	concrete	statement	nodes.

			543	 //

			544	 type	(

			545	 	 //	A	BadStmt	node	is	a	placeholder	for	statements	containing

			546	 	 //	syntax	errors	for	which	no	correct	statement	nodes	can	be

			547	 	 //	created.

			548	 	 //

			549	 	 BadStmt	struct	{

			550	 	 	 From,	To	token.Pos	//	position	range	of	bad	statement

			551	 	 }

			552	

			553	 	 //	A	DeclStmt	node	represents	a	declaration	in	a	statement	list.

			554	 	 DeclStmt	struct	{

			555	 	 	 Decl	Decl

			556	 	 }

			557	

			558	 	 //	An	EmptyStmt	node	represents	an	empty	statement.

			559	 	 //	The	"position"	of	the	empty	statement	is	the	position

			560	 	 //	of	the	immediately	preceding	semicolon.

			561	 	 //

			562	 	 EmptyStmt	struct	{

			563	 	 	 Semicolon	token.Pos	//	position	of	preceding	";"

			564	 	 }

			565	

			566	 	 //	A	LabeledStmt	node	represents	a	labeled	statement.

			567	 	 LabeledStmt	struct	{

			568	 	 	 Label	*Ident

			569	 	 	 Colon	token.Pos	//	position	of	":"

			570	 	 	 Stmt		Stmt

			571	 	 }

			572	

			573	 	 //	An	ExprStmt	node	represents	a	(stand-alone)	expression

			574	 	 //	in	a	statement	list.

			575	 	 //

			576	 	 ExprStmt	struct	{

			577	 	 	 X	Expr	//	expression

			578	 	 }

			579	

			580	 	 //	A	SendStmt	node	represents	a	send	statement.

			581	 	 SendStmt	struct	{

			582	 	 	 Chan		Expr

			583	 	 	 Arrow	token.Pos	//	position	of	"<-"

			584	 	 	 Value	Expr

			585	 	 }

			586	

			587	 	 //	An	IncDecStmt	node	represents	an	increment	or	decrement	statement.

			588	 	 IncDecStmt	struct	{

			589	 	 	 X						Expr

			590	 	 	 TokPos	token.Pos			//	position	of	Tok

			591	 	 	 Tok				token.Token	//	INC	or	DEC

			592	 	 }

			593	

			594	 	 //	An	AssignStmt	node	represents	an	assignment	or

			595	 	 //	a	short	variable	declaration.

			596	 	 //

			597	 	 AssignStmt	struct	{

			598	 	 	 Lhs				[]Expr

			599	 	 	 TokPos	token.Pos			//	position	of	Tok

			600	 	 	 Tok				token.Token	//	assignment	token,	DEFINE

			601	 	 	 Rhs				[]Expr

			602	 	 }

			603	

			604	 	 //	A	GoStmt	node	represents	a	go	statement.

			605	 	 GoStmt	struct	{

			606	 	 	 Go			token.Pos	//	position	of	"go"	keyword

			607	 	 	 Call	*CallExpr

			608	 	 }

			609	

			610	 	 //	A	DeferStmt	node	represents	a	defer	statement.

			611	 	 DeferStmt	struct	{

			612	 	 	 Defer	token.Pos	//	position	of	"defer"	keyword

			613	 	 	 Call		*CallExpr

			614	 	 }

			615	

			616	 	 //	A	ReturnStmt	node	represents	a	return	statement.

			617	 	 ReturnStmt	struct	{

			618	 	 	 Return		token.Pos	//	position	of	"return"	keyword

			619	 	 	 Results	[]Expr				//	result	expressions;	or	nil

			620	 	 }

			621	

			622	 	 //	A	BranchStmt	node	represents	a	break,	continue,	goto,

			623	 	 //	or	fallthrough	statement.

			624	 	 //

			625	 	 BranchStmt	struct	{

			626	 	 	 TokPos	token.Pos			//	position	of	Tok

			627	 	 	 Tok				token.Token	//	keyword	token	(BREAK,	CONTINUE,	GOTO,	FALLTHROUGH)

			628	 	 	 Label		*Ident						//	label	name;	or	nil

			629	 	 }

			630	

			631	 	 //	A	BlockStmt	node	represents	a	braced	statement	list.

			632	 	 BlockStmt	struct	{

			633	 	 	 Lbrace	token.Pos	//	position	of	"{"

			634	 	 	 List			[]Stmt

			635	 	 	 Rbrace	token.Pos	//	position	of	"}"

			636	 	 }

			637	

			638	 	 //	An	IfStmt	node	represents	an	if	statement.

			639	 	 IfStmt	struct	{

			640	 	 	 If			token.Pos	//	position	of	"if"	keyword

			641	 	 	 Init	Stmt						//	initialization	statement;	or	nil

			642	 	 	 Cond	Expr						//	condition

			643	 	 	 Body	*BlockStmt

			644	 	 	 Else	Stmt	//	else	branch;	or	nil

			645	 	 }

			646	

			647	 	 //	A	CaseClause	represents	a	case	of	an	expression	or	type	switch	statement.

			648	 	 CaseClause	struct	{

			649	 	 	 Case		token.Pos	//	position	of	"case"	or	"default"	keyword

			650	 	 	 List		[]Expr				//	list	of	expressions	or	types;	nil	means	default	case

			651	 	 	 Colon	token.Pos	//	position	of	":"

			652	 	 	 Body		[]Stmt				//	statement	list;	or	nil

			653	 	 }

			654	

			655	 	 //	A	SwitchStmt	node	represents	an	expression	switch	statement.

			656	 	 SwitchStmt	struct	{

			657	 	 	 Switch	token.Pos		//	position	of	"switch"	keyword

			658	 	 	 Init			Stmt							//	initialization	statement;	or	nil

			659	 	 	 Tag				Expr							//	tag	expression;	or	nil

			660	 	 	 Body			*BlockStmt	//	CaseClauses	only

			661	 	 }

			662	

			663	 	 //	An	TypeSwitchStmt	node	represents	a	type	switch	statement.

			664	 	 TypeSwitchStmt	struct	{

			665	 	 	 Switch	token.Pos		//	position	of	"switch"	keyword

			666	 	 	 Init			Stmt							//	initialization	statement;	or	nil

			667	 	 	 Assign	Stmt							//	x	:=	y.(type)	or	y.(type)

			668	 	 	 Body			*BlockStmt	//	CaseClauses	only

			669	 	 }

			670	

			671	 	 //	A	CommClause	node	represents	a	case	of	a	select	statement.

			672	 	 CommClause	struct	{

			673	 	 	 Case		token.Pos	//	position	of	"case"	or	"default"	keyword

			674	 	 	 Comm		Stmt						//	send	or	receive	statement;	nil	means	default	case

			675	 	 	 Colon	token.Pos	//	position	of	":"

			676	 	 	 Body		[]Stmt				//	statement	list;	or	nil

			677	 	 }

			678	

			679	 	 //	An	SelectStmt	node	represents	a	select	statement.

			680	 	 SelectStmt	struct	{

			681	 	 	 Select	token.Pos		//	position	of	"select"	keyword

			682	 	 	 Body			*BlockStmt	//	CommClauses	only

			683	 	 }

			684	

			685	 	 //	A	ForStmt	represents	a	for	statement.

			686	 	 ForStmt	struct	{

			687	 	 	 For		token.Pos	//	position	of	"for"	keyword

			688	 	 	 Init	Stmt						//	initialization	statement;	or	nil

			689	 	 	 Cond	Expr						//	condition;	or	nil

			690	 	 	 Post	Stmt						//	post	iteration	statement;	or	nil

			691	 	 	 Body	*BlockStmt

			692	 	 }

			693	

			694	 	 //	A	RangeStmt	represents	a	for	statement	with	a	range	clause.

			695	 	 RangeStmt	struct	{

			696	 	 	 For								token.Pos			//	position	of	"for"	keyword

			697	 	 	 Key,	Value	Expr								//	Value	may	be	nil

			698	 	 	 TokPos					token.Pos			//	position	of	Tok

			699	 	 	 Tok								token.Token	//	ASSIGN,	DEFINE

			700	 	 	 X										Expr								//	value	to	range	over

			701	 	 	 Body							*BlockStmt

			702	 	 }

			703)

			704	

			705	 //	Pos	and	End	implementations	for	statement	nodes.

			706	 //

			707	 func	(s	*BadStmt)	Pos()	token.Pos								{	return	s.From	}

			708	 func	(s	*DeclStmt)	Pos()	token.Pos							{	return	s.Decl.Pos()	}

			709	 func	(s	*EmptyStmt)	Pos()	token.Pos						{	return	s.Semicolon	}

			710	 func	(s	*LabeledStmt)	Pos()	token.Pos				{	return	s.Label.Pos()	}

			711	 func	(s	*ExprStmt)	Pos()	token.Pos							{	return	s.X.Pos()	}

			712	 func	(s	*SendStmt)	Pos()	token.Pos							{	return	s.Chan.Pos()	}

			713	 func	(s	*IncDecStmt)	Pos()	token.Pos					{	return	s.X.Pos()	}

			714	 func	(s	*AssignStmt)	Pos()	token.Pos					{	return	s.Lhs[0].Pos()	}

			715	 func	(s	*GoStmt)	Pos()	token.Pos									{	return	s.Go	}

			716	 func	(s	*DeferStmt)	Pos()	token.Pos						{	return	s.Defer	}

			717	 func	(s	*ReturnStmt)	Pos()	token.Pos					{	return	s.Return	}

			718	 func	(s	*BranchStmt)	Pos()	token.Pos					{	return	s.TokPos	}

			719	 func	(s	*BlockStmt)	Pos()	token.Pos						{	return	s.Lbrace	}

			720	 func	(s	*IfStmt)	Pos()	token.Pos									{	return	s.If	}

			721	 func	(s	*CaseClause)	Pos()	token.Pos					{	return	s.Case	}

			722	 func	(s	*SwitchStmt)	Pos()	token.Pos					{	return	s.Switch	}

			723	 func	(s	*TypeSwitchStmt)	Pos()	token.Pos	{	return	s.Switch	}

			724	 func	(s	*CommClause)	Pos()	token.Pos					{	return	s.Case	}

			725	 func	(s	*SelectStmt)	Pos()	token.Pos					{	return	s.Select	}

			726	 func	(s	*ForStmt)	Pos()	token.Pos								{	return	s.For	}

			727	 func	(s	*RangeStmt)	Pos()	token.Pos						{	return	s.For	}

			728	

			729	 func	(s	*BadStmt)	End()	token.Pos		{	return	s.To	}

			730	 func	(s	*DeclStmt)	End()	token.Pos	{	return	s.Decl.End()	}

			731	 func	(s	*EmptyStmt)	End()	token.Pos	{

			732	 	 return	s.Semicolon	+	1	/*	len(";")	*/

			733	 }

			734	 func	(s	*LabeledStmt)	End()	token.Pos	{	return	s.Stmt.End()	}

			735	 func	(s	*ExprStmt)	End()	token.Pos				{	return	s.X.End()	}

			736	 func	(s	*SendStmt)	End()	token.Pos				{	return	s.Value.End()	}

			737	 func	(s	*IncDecStmt)	End()	token.Pos	{

			738	 	 return	s.TokPos	+	2	/*	len("++")	*/

			739	 }

			740	 func	(s	*AssignStmt)	End()	token.Pos	{	return	s.Rhs[len(s.Rhs)-1].End()	}

			741	 func	(s	*GoStmt)	End()	token.Pos					{	return	s.Call.End()	}

			742	 func	(s	*DeferStmt)	End()	token.Pos		{	return	s.Call.End()	}

			743	 func	(s	*ReturnStmt)	End()	token.Pos	{

			744	 	 if	n	:=	len(s.Results);	n	>	0	{

			745	 	 	 return	s.Results[n-1].End()

			746	 	 }

			747	 	 return	s.Return	+	6	//	len("return")

			748	 }

			749	 func	(s	*BranchStmt)	End()	token.Pos	{

			750	 	 if	s.Label	!=	nil	{

			751	 	 	 return	s.Label.End()

			752	 	 }

			753	 	 return	token.Pos(int(s.TokPos)	+	len(s.Tok.String()))

			754	 }

			755	 func	(s	*BlockStmt)	End()	token.Pos	{	return	s.Rbrace	+	1	}

			756	 func	(s	*IfStmt)	End()	token.Pos	{

			757	 	 if	s.Else	!=	nil	{

			758	 	 	 return	s.Else.End()

			759	 	 }

			760	 	 return	s.Body.End()

			761	 }

			762	 func	(s	*CaseClause)	End()	token.Pos	{

			763	 	 if	n	:=	len(s.Body);	n	>	0	{

			764	 	 	 return	s.Body[n-1].End()

			765	 	 }

			766	 	 return	s.Colon	+	1

			767	 }

			768	 func	(s	*SwitchStmt)	End()	token.Pos					{	return	s.Body.End()	}

			769	 func	(s	*TypeSwitchStmt)	End()	token.Pos	{	return	s.Body.End()	}

			770	 func	(s	*CommClause)	End()	token.Pos	{

			771	 	 if	n	:=	len(s.Body);	n	>	0	{

			772	 	 	 return	s.Body[n-1].End()

			773	 	 }

			774	 	 return	s.Colon	+	1

			775	 }

			776	 func	(s	*SelectStmt)	End()	token.Pos	{	return	s.Body.End()	}

			777	 func	(s	*ForStmt)	End()	token.Pos				{	return	s.Body.End()	}

			778	 func	(s	*RangeStmt)	End()	token.Pos		{	return	s.Body.End()	}

			779	

			780	 //	stmtNode()	ensures	that	only	statement	nodes	can	be

			781	 //	assigned	to	a	StmtNode.

			782	 //

			783	 func	(*BadStmt)	stmtNode()								{}

			784	 func	(*DeclStmt)	stmtNode()							{}

			785	 func	(*EmptyStmt)	stmtNode()						{}

			786	 func	(*LabeledStmt)	stmtNode()				{}

			787	 func	(*ExprStmt)	stmtNode()							{}

			788	 func	(*SendStmt)	stmtNode()							{}

			789	 func	(*IncDecStmt)	stmtNode()					{}

			790	 func	(*AssignStmt)	stmtNode()					{}

			791	 func	(*GoStmt)	stmtNode()									{}

			792	 func	(*DeferStmt)	stmtNode()						{}

			793	 func	(*ReturnStmt)	stmtNode()					{}

			794	 func	(*BranchStmt)	stmtNode()					{}

			795	 func	(*BlockStmt)	stmtNode()						{}

			796	 func	(*IfStmt)	stmtNode()									{}

			797	 func	(*CaseClause)	stmtNode()					{}

			798	 func	(*SwitchStmt)	stmtNode()					{}

			799	 func	(*TypeSwitchStmt)	stmtNode()	{}

			800	 func	(*CommClause)	stmtNode()					{}

			801	 func	(*SelectStmt)	stmtNode()					{}

			802	 func	(*ForStmt)	stmtNode()								{}

			803	 func	(*RangeStmt)	stmtNode()						{}

			804	

			805	 //	--

			806	 //	Declarations

			807	

			808	 //	A	Spec	node	represents	a	single	(non-parenthesized)	import,

			809	 //	constant,	type,	or	variable	declaration.

			810	 //

			811	 type	(

			812	 	 //	The	Spec	type	stands	for	any	of	*ImportSpec,	*ValueSpec,	and	*TypeSpec.

			813	 	 Spec	interface	{

			814	 	 	 Node

			815	 	 	 specNode()

			816	 	 }

			817	

			818	 	 //	An	ImportSpec	node	represents	a	single	package	import.

			819	 	 ImportSpec	struct	{

			820	 	 	 Doc					*CommentGroup	//	associated	documentation;	or	nil

			821	 	 	 Name				*Ident								//	local	package	name	(including	".");	or	nil

			822	 	 	 Path				*BasicLit					//	import	path

			823	 	 	 Comment	*CommentGroup	//	line	comments;	or	nil

			824	 	 	 EndPos		token.Pos					//	end	of	spec	(overrides	Path.Pos	if	nonzero)

			825	 	 }

			826	

			827	 	 //	A	ValueSpec	node	represents	a	constant	or	variable	declaration

			828	 	 //	(ConstSpec	or	VarSpec	production).

			829	 	 //

			830	 	 ValueSpec	struct	{

			831	 	 	 Doc					*CommentGroup	//	associated	documentation;	or	nil

			832	 	 	 Names			[]*Ident						//	value	names	(len(Names)	>	0)

			833	 	 	 Type				Expr										//	value	type;	or	nil

			834	 	 	 Values		[]Expr								//	initial	values;	or	nil

			835	 	 	 Comment	*CommentGroup	//	line	comments;	or	nil

			836	 	 }

			837	

			838	 	 //	A	TypeSpec	node	represents	a	type	declaration	(TypeSpec	production).

			839	 	 TypeSpec	struct	{

			840	 	 	 Doc					*CommentGroup	//	associated	documentation;	or	nil

			841	 	 	 Name				*Ident								//	type	name

			842	 	 	 Type				Expr										//	*Ident,	*ParenExpr,	*SelectorExpr,	*StarExpr,	or	any	of	the	*XxxTypes

			843	 	 	 Comment	*CommentGroup	//	line	comments;	or	nil

			844	 	 }

			845)

			846	

			847	 //	Pos	and	End	implementations	for	spec	nodes.

			848	 //

			849	 func	(s	*ImportSpec)	Pos()	token.Pos	{

			850	 	 if	s.Name	!=	nil	{

			851	 	 	 return	s.Name.Pos()

			852	 	 }

			853	 	 return	s.Path.Pos()

			854	 }

			855	 func	(s	*ValueSpec)	Pos()	token.Pos	{	return	s.Names[0].Pos()	}

			856	 func	(s	*TypeSpec)	Pos()	token.Pos		{	return	s.Name.Pos()	}

			857	

			858	 func	(s	*ImportSpec)	End()	token.Pos	{

			859	 	 if	s.EndPos	!=	0	{

			860	 	 	 return	s.EndPos

			861	 	 }

			862	 	 return	s.Path.End()

			863	 }

			864	

			865	 func	(s	*ValueSpec)	End()	token.Pos	{

			866	 	 if	n	:=	len(s.Values);	n	>	0	{

			867	 	 	 return	s.Values[n-1].End()

			868	 	 }

			869	 	 if	s.Type	!=	nil	{

			870	 	 	 return	s.Type.End()

			871	 	 }

			872	 	 return	s.Names[len(s.Names)-1].End()

			873	 }

			874	 func	(s	*TypeSpec)	End()	token.Pos	{	return	s.Type.End()	}

			875	

			876	 //	specNode()	ensures	that	only	spec	nodes	can	be

			877	 //	assigned	to	a	Spec.

			878	 //

			879	 func	(*ImportSpec)	specNode()	{}

			880	 func	(*ValueSpec)	specNode()		{}

			881	 func	(*TypeSpec)	specNode()			{}

			882	

			883	 //	A	declaration	is	represented	by	one	of	the	following	declaration	nodes.

			884	 //

			885	 type	(

			886	 	 //	A	BadDecl	node	is	a	placeholder	for	declarations	containing

			887	 	 //	syntax	errors	for	which	no	correct	declaration	nodes	can	be

			888	 	 //	created.

			889	 	 //

			890	 	 BadDecl	struct	{

			891	 	 	 From,	To	token.Pos	//	position	range	of	bad	declaration

			892	 	 }

			893	

			894	 	 //	A	GenDecl	node	(generic	declaration	node)	represents	an	import,

			895	 	 //	constant,	type	or	variable	declaration.	A	valid	Lparen	position

			896	 	 //	(Lparen.Line	>	0)	indicates	a	parenthesized	declaration.

			897	 	 //

			898	 	 //	Relationship	between	Tok	value	and	Specs	element	type:

			899	 	 //

			900	 	 //	 token.IMPORT		*ImportSpec

			901	 	 //	 token.CONST			*ValueSpec

			902	 	 //	 token.TYPE				*TypeSpec

			903	 	 //	 token.VAR					*ValueSpec

			904	 	 //

			905	 	 GenDecl	struct	{

			906	 	 	 Doc				*CommentGroup	//	associated	documentation;	or	nil

			907	 	 	 TokPos	token.Pos					//	position	of	Tok

			908	 	 	 Tok				token.Token			//	IMPORT,	CONST,	TYPE,	VAR

			909	 	 	 Lparen	token.Pos					//	position	of	'(',	if	any

			910	 	 	 Specs		[]Spec

			911	 	 	 Rparen	token.Pos	//	position	of	')',	if	any

			912	 	 }

			913	

			914	 	 //	A	FuncDecl	node	represents	a	function	declaration.

			915	 	 FuncDecl	struct	{

			916	 	 	 Doc		*CommentGroup	//	associated	documentation;	or	nil

			917	 	 	 Recv	*FieldList				//	receiver	(methods);	or	nil	(functions)

			918	 	 	 Name	*Ident								//	function/method	name

			919	 	 	 Type	*FuncType					//	position	of	Func	keyword,	parameters	and	results

			920	 	 	 Body	*BlockStmt				//	function	body;	or	nil	(forward	declaration)

			921	 	 }

			922)

			923	

			924	 //	Pos	and	End	implementations	for	declaration	nodes.

			925	 //

			926	 func	(d	*BadDecl)	Pos()	token.Pos		{	return	d.From	}

			927	 func	(d	*GenDecl)	Pos()	token.Pos		{	return	d.TokPos	}

			928	 func	(d	*FuncDecl)	Pos()	token.Pos	{	return	d.Type.Pos()	}

			929	

			930	 func	(d	*BadDecl)	End()	token.Pos	{	return	d.To	}

			931	 func	(d	*GenDecl)	End()	token.Pos	{

			932	 	 if	d.Rparen.IsValid()	{

			933	 	 	 return	d.Rparen	+	1

			934	 	 }

			935	 	 return	d.Specs[0].End()

			936	 }

			937	 func	(d	*FuncDecl)	End()	token.Pos	{

			938	 	 if	d.Body	!=	nil	{

			939	 	 	 return	d.Body.End()

			940	 	 }

			941	 	 return	d.Type.End()

			942	 }

			943	

			944	 //	declNode()	ensures	that	only	declaration	nodes	can	be

			945	 //	assigned	to	a	DeclNode.

			946	 //

			947	 func	(*BadDecl)	declNode()		{}

			948	 func	(*GenDecl)	declNode()		{}

			949	 func	(*FuncDecl)	declNode()	{}

			950	

			951	 //	--

			952	 //	Files	and	packages

			953	

			954	 //	A	File	node	represents	a	Go	source	file.

			955	 //

			956	 //	The	Comments	list	contains	all	comments	in	the	source	file	in	order	of

			957	 //	appearance,	including	the	comments	that	are	pointed	to	from	other	nodes

			958	 //	via	Doc	and	Comment	fields.

			959	 //

			960	 type	File	struct	{

			961	 	 Doc								*CommentGroup			//	associated	documentation;	or	nil

			962	 	 Package				token.Pos							//	position	of	"package"	keyword

			963	 	 Name							*Ident										//	package	name

			964	 	 Decls						[]Decl										//	top-level	declarations;	or	nil

			965	 	 Scope						*Scope										//	package	scope	(this	file	only)

			966	 	 Imports				[]*ImportSpec			//	imports	in	this	file

			967	 	 Unresolved	[]*Ident								//	unresolved	identifiers	in	this	file

			968	 	 Comments			[]*CommentGroup	//	list	of	all	comments	in	the	source	file

			969	 }

			970	

			971	 func	(f	*File)	Pos()	token.Pos	{	return	f.Package	}

			972	 func	(f	*File)	End()	token.Pos	{

			973	 	 if	n	:=	len(f.Decls);	n	>	0	{

			974	 	 	 return	f.Decls[n-1].End()

			975	 	 }

			976	 	 return	f.Name.End()

			977	 }

			978	

			979	 //	A	Package	node	represents	a	set	of	source	files

			980	 //	collectively	building	a	Go	package.

			981	 //

			982	 type	Package	struct	{

			983	 	 Name				string													//	package	name

			984	 	 Scope			*Scope													//	package	scope	across	all	files

			985	 	 Imports	map[string]*Object	//	map	of	package	id	->	package	object

			986	 	 Files			map[string]*File			//	Go	source	files	by	filename

			987	 }

			988	

			989	 func	(p	*Package)	Pos()	token.Pos	{	return	token.NoPos	}

			990	 func	(p	*Package)	End()	token.Pos	{	return	token.NoPos	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/ast/filter.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	ast

					6	

					7	 import	(

					8	 	 "go/token"

					9	 	 "sort"

				10)

				11	

				12	 //	--

				13	 //	Export	filtering

				14	

				15	 //	exportFilter	is	a	special	filter	function	to	extract	exported	nodes.

				16	 func	exportFilter(name	string)	bool	{

				17	 	 return	IsExported(name)

				18	 }

				19	

				20	 //	FileExports	trims	the	AST	for	a	Go	source	file	in	place	such	that

				21	 //	only	exported	nodes	remain:	all	top-level	identifiers	which	are	not	exported

				22	 //	and	their	associated	information	(such	as	type,	initial	value,	or	function

				23	 //	body)	are	removed.	Non-exported	fields	and	methods	of	exported	types	are

				24	 //	stripped.	The	File.Comments	list	is	not	changed.

				25	 //

				26	 //	FileExports	returns	true	if	there	are	exported	declarations;

				27	 //	it	returns	false	otherwise.

				28	 //

				29	 func	FileExports(src	*File)	bool	{

				30	 	 return	filterFile(src,	exportFilter,	true)

				31	 }

				32	

				33	 //	PackageExports	trims	the	AST	for	a	Go	package	in	place	such	that

				34	 //	only	exported	nodes	remain.	The	pkg.Files	list	is	not	changed,	so	that

				35	 //	file	names	and	top-level	package	comments	don't	get	lost.

				36	 //

				37	 //	PackageExports	returns	true	if	there	are	exported	declarations;

				38	 //	it	returns	false	otherwise.

				39	 //

				40	 func	PackageExports(pkg	*Package)	bool	{

				41	 	 return	filterPackage(pkg,	exportFilter,	true)

				42	 }

				43	

				44	 //	--

				45	 //	General	filtering

				46	

				47	 type	Filter	func(string)	bool

				48	

				49	 func	filterIdentList(list	[]*Ident,	f	Filter)	[]*Ident	{

				50	 	 j	:=	0

				51	 	 for	_,	x	:=	range	list	{

				52	 	 	 if	f(x.Name)	{

				53	 	 	 	 list[j]	=	x

				54	 	 	 	 j++

				55	 	 	 }

				56	 	 }

				57	 	 return	list[0:j]

				58	 }

				59	

				60	 //	fieldName	assumes	that	x	is	the	type	of	an	anonymous	field	and

				61	 //	returns	the	corresponding	field	name.	If	x	is	not	an	acceptable

				62	 //	anonymous	field,	the	result	is	nil.

				63	 //

				64	 func	fieldName(x	Expr)	*Ident	{

				65	 	 switch	t	:=	x.(type)	{

				66	 	 case	*Ident:

				67	 	 	 return	t

				68	 	 case	*SelectorExpr:

				69	 	 	 if	_,	ok	:=	t.X.(*Ident);	ok	{

				70	 	 	 	 return	t.Sel

				71	 	 	 }

				72	 	 case	*StarExpr:

				73	 	 	 return	fieldName(t.X)

				74	 	 }

				75	 	 return	nil

				76	 }

				77	

				78	 func	filterFieldList(fields	*FieldList,	filter	Filter,	export	bool)	(removedFields	bool)	{

				79	 	 if	fields	==	nil	{

				80	 	 	 return	false

				81	 	 }

				82	 	 list	:=	fields.List

				83	 	 j	:=	0

				84	 	 for	_,	f	:=	range	list	{

				85	 	 	 keepField	:=	false

				86	 	 	 if	len(f.Names)	==	0	{

				87	 	 	 	 //	anonymous	field

				88	 	 	 	 name	:=	fieldName(f.Type)

				89	 	 	 	 keepField	=	name	!=	nil	&&	filter(name.Name)

				90	 	 	 }	else	{

				91	 	 	 	 n	:=	len(f.Names)

				92	 	 	 	 f.Names	=	filterIdentList(f.Names,	filter)

				93	 	 	 	 if	len(f.Names)	<	n	{

				94	 	 	 	 	 removedFields	=	true

				95	 	 	 	 }

				96	 	 	 	 keepField	=	len(f.Names)	>	0

				97	 	 	 }

				98	 	 	 if	keepField	{

				99	 	 	 	 if	export	{

			100	 	 	 	 	 filterType(f.Type,	filter,	export)

			101	 	 	 	 }

			102	 	 	 	 list[j]	=	f

			103	 	 	 	 j++

			104	 	 	 }

			105	 	 }

			106	 	 if	j	<	len(list)	{

			107	 	 	 removedFields	=	true

			108	 	 }

			109	 	 fields.List	=	list[0:j]

			110	 	 return

			111	 }

			112	

			113	 func	filterParamList(fields	*FieldList,	filter	Filter,	export	bool)	bool	{

			114	 	 if	fields	==	nil	{

			115	 	 	 return	false

			116	 	 }

			117	 	 var	b	bool

			118	 	 for	_,	f	:=	range	fields.List	{

			119	 	 	 if	filterType(f.Type,	filter,	export)	{

			120	 	 	 	 b	=	true

			121	 	 	 }

			122	 	 }

			123	 	 return	b

			124	 }

			125	

			126	 func	filterType(typ	Expr,	f	Filter,	export	bool)	bool	{

			127	 	 switch	t	:=	typ.(type)	{

			128	 	 case	*Ident:

			129	 	 	 return	f(t.Name)

			130	 	 case	*ParenExpr:

			131	 	 	 return	filterType(t.X,	f,	export)

			132	 	 case	*ArrayType:

			133	 	 	 return	filterType(t.Elt,	f,	export)

			134	 	 case	*StructType:

			135	 	 	 if	filterFieldList(t.Fields,	f,	export)	{

			136	 	 	 	 t.Incomplete	=	true

			137	 	 	 }

			138	 	 	 return	len(t.Fields.List)	>	0

			139	 	 case	*FuncType:

			140	 	 	 b1	:=	filterParamList(t.Params,	f,	export)

			141	 	 	 b2	:=	filterParamList(t.Results,	f,	export)

			142	 	 	 return	b1	||	b2

			143	 	 case	*InterfaceType:

			144	 	 	 if	filterFieldList(t.Methods,	f,	export)	{

			145	 	 	 	 t.Incomplete	=	true

			146	 	 	 }

			147	 	 	 return	len(t.Methods.List)	>	0

			148	 	 case	*MapType:

			149	 	 	 b1	:=	filterType(t.Key,	f,	export)

			150	 	 	 b2	:=	filterType(t.Value,	f,	export)

			151	 	 	 return	b1	||	b2

			152	 	 case	*ChanType:

			153	 	 	 return	filterType(t.Value,	f,	export)

			154	 	 }

			155	 	 return	false

			156	 }

			157	

			158	 func	filterSpec(spec	Spec,	f	Filter,	export	bool)	bool	{

			159	 	 switch	s	:=	spec.(type)	{

			160	 	 case	*ValueSpec:

			161	 	 	 s.Names	=	filterIdentList(s.Names,	f)

			162	 	 	 if	len(s.Names)	>	0	{

			163	 	 	 	 if	export	{

			164	 	 	 	 	 filterType(s.Type,	f,	export)

			165	 	 	 	 }

			166	 	 	 	 return	true

			167	 	 	 }

			168	 	 case	*TypeSpec:

			169	 	 	 if	f(s.Name.Name)	{

			170	 	 	 	 if	export	{

			171	 	 	 	 	 filterType(s.Type,	f,	export)

			172	 	 	 	 }

			173	 	 	 	 return	true

			174	 	 	 }

			175	 	 	 if	!export	{

			176	 	 	 	 //	For	general	filtering	(not	just	exports),

			177	 	 	 	 //	filter	type	even	if	name	is	not	filtered

			178	 	 	 	 //	out.

			179	 	 	 	 //	If	the	type	contains	filtered	elements,

			180	 	 	 	 //	keep	the	declaration.

			181	 	 	 	 return	filterType(s.Type,	f,	export)

			182	 	 	 }

			183	 	 }

			184	 	 return	false

			185	 }

			186	

			187	 func	filterSpecList(list	[]Spec,	f	Filter,	export	bool)	[]Spec	{

			188	 	 j	:=	0

			189	 	 for	_,	s	:=	range	list	{

			190	 	 	 if	filterSpec(s,	f,	export)	{

			191	 	 	 	 list[j]	=	s

			192	 	 	 	 j++

			193	 	 	 }

			194	 	 }

			195	 	 return	list[0:j]

			196	 }

			197	

			198	 //	FilterDecl	trims	the	AST	for	a	Go	declaration	in	place	by	removing

			199	 //	all	names	(including	struct	field	and	interface	method	names,	but

			200	 //	not	from	parameter	lists)	that	don't	pass	through	the	filter	f.

			201	 //

			202	 //	FilterDecl	returns	true	if	there	are	any	declared	names	left	after

			203	 //	filtering;	it	returns	false	otherwise.

			204	 //

			205	 func	FilterDecl(decl	Decl,	f	Filter)	bool	{

			206	 	 return	filterDecl(decl,	f,	false)

			207	 }

			208	

			209	 func	filterDecl(decl	Decl,	f	Filter,	export	bool)	bool	{

			210	 	 switch	d	:=	decl.(type)	{

			211	 	 case	*GenDecl:

			212	 	 	 d.Specs	=	filterSpecList(d.Specs,	f,	export)

			213	 	 	 return	len(d.Specs)	>	0

			214	 	 case	*FuncDecl:

			215	 	 	 return	f(d.Name.Name)

			216	 	 }

			217	 	 return	false

			218	 }

			219	

			220	 //	FilterFile	trims	the	AST	for	a	Go	file	in	place	by	removing	all

			221	 //	names	from	top-level	declarations	(including	struct	field	and

			222	 //	interface	method	names,	but	not	from	parameter	lists)	that	don't

			223	 //	pass	through	the	filter	f.	If	the	declaration	is	empty	afterwards,

			224	 //	the	declaration	is	removed	from	the	AST.	The	File.Comments	list

			225	 //	is	not	changed.

			226	 //

			227	 //	FilterFile	returns	true	if	there	are	any	top-level	declarations

			228	 //	left	after	filtering;	it	returns	false	otherwise.

			229	 //

			230	 func	FilterFile(src	*File,	f	Filter)	bool	{

			231	 	 return	filterFile(src,	f,	false)

			232	 }

			233	

			234	 func	filterFile(src	*File,	f	Filter,	export	bool)	bool	{

			235	 	 j	:=	0

			236	 	 for	_,	d	:=	range	src.Decls	{

			237	 	 	 if	filterDecl(d,	f,	export)	{

			238	 	 	 	 src.Decls[j]	=	d

			239	 	 	 	 j++

			240	 	 	 }

			241	 	 }

			242	 	 src.Decls	=	src.Decls[0:j]

			243	 	 return	j	>	0

			244	 }

			245	

			246	 //	FilterPackage	trims	the	AST	for	a	Go	package	in	place	by	removing

			247	 //	all	names	from	top-level	declarations	(including	struct	field	and

			248	 //	interface	method	names,	but	not	from	parameter	lists)	that	don't

			249	 //	pass	through	the	filter	f.	If	the	declaration	is	empty	afterwards,

			250	 //	the	declaration	is	removed	from	the	AST.	The	pkg.Files	list	is	not

			251	 //	changed,	so	that	file	names	and	top-level	package	comments	don't	get

			252	 //	lost.

			253	 //

			254	 //	FilterPackage	returns	true	if	there	are	any	top-level	declarations

			255	 //	left	after	filtering;	it	returns	false	otherwise.

			256	 //

			257	 func	FilterPackage(pkg	*Package,	f	Filter)	bool	{

			258	 	 return	filterPackage(pkg,	f,	false)

			259	 }

			260	

			261	 func	filterPackage(pkg	*Package,	f	Filter,	export	bool)	bool	{

			262	 	 hasDecls	:=	false

			263	 	 for	_,	src	:=	range	pkg.Files	{

			264	 	 	 if	filterFile(src,	f,	export)	{

			265	 	 	 	 hasDecls	=	true

			266	 	 	 }

			267	 	 }

			268	 	 return	hasDecls

			269	 }

			270	

			271	 //	--

			272	 //	Merging	of	package	files

			273	

			274	 //	The	MergeMode	flags	control	the	behavior	of	MergePackageFiles.

			275	 type	MergeMode	uint

			276	

			277	 const	(

			278	 	 //	If	set,	duplicate	function	declarations	are	excluded.

			279	 	 FilterFuncDuplicates	MergeMode	=	1	<<	iota

			280	 	 //	If	set,	comments	that	are	not	associated	with	a	specific

			281	 	 //	AST	node	(as	Doc	or	Comment)	are	excluded.

			282	 	 FilterUnassociatedComments

			283	 	 //	If	set,	duplicate	import	declarations	are	excluded.

			284	 	 FilterImportDuplicates

			285)

			286	

			287	 //	separator	is	an	empty	//-style	comment	that	is	interspersed	between

			288	 //	different	comment	groups	when	they	are	concatenated	into	a	single	group

			289	 //

			290	 var	separator	=	&Comment{noPos,	"//"}

			291	

			292	 //	MergePackageFiles	creates	a	file	AST	by	merging	the	ASTs	of	the

			293	 //	files	belonging	to	a	package.	The	mode	flags	control	merging	behavior.

			294	 //

			295	 func	MergePackageFiles(pkg	*Package,	mode	MergeMode)	*File	{

			296	 	 //	Count	the	number	of	package	docs,	comments	and	declarations	across

			297	 	 //	all	package	files.	Also,	compute	sorted	list	of	filenames,	so	that

			298	 	 //	subsequent	iterations	can	always	iterate	in	the	same	order.

			299	 	 ndocs	:=	0

			300	 	 ncomments	:=	0

			301	 	 ndecls	:=	0

			302	 	 filenames	:=	make([]string,	len(pkg.Files))

			303	 	 i	:=	0

			304	 	 for	filename,	f	:=	range	pkg.Files	{

			305	 	 	 filenames[i]	=	filename

			306	 	 	 i++

			307	 	 	 if	f.Doc	!=	nil	{

			308	 	 	 	 ndocs	+=	len(f.Doc.List)	+	1	//	+1	for	separator

			309	 	 	 }

			310	 	 	 ncomments	+=	len(f.Comments)

			311	 	 	 ndecls	+=	len(f.Decls)

			312	 	 }

			313	 	 sort.Strings(filenames)

			314	

			315	 	 //	Collect	package	comments	from	all	package	files	into	a	single

			316	 	 //	CommentGroup	-	the	collected	package	documentation.	In	general

			317	 	 //	there	should	be	only	one	file	with	a	package	comment;	but	it's

			318	 	 //	better	to	collect	extra	comments	than	drop	them	on	the	floor.

			319	 	 var	doc	*CommentGroup

			320	 	 var	pos	token.Pos

			321	 	 if	ndocs	>	0	{

			322	 	 	 list	:=	make([]*Comment,	ndocs-1)	//	-1:	no	separator	before	first	group

			323	 	 	 i	:=	0

			324	 	 	 for	_,	filename	:=	range	filenames	{

			325	 	 	 	 f	:=	pkg.Files[filename]

			326	 	 	 	 if	f.Doc	!=	nil	{

			327	 	 	 	 	 if	i	>	0	{

			328	 	 	 	 	 	 //	not	the	first	group	-	add	separator

			329	 	 	 	 	 	 list[i]	=	separator

			330	 	 	 	 	 	 i++

			331	 	 	 	 	 }

			332	 	 	 	 	 for	_,	c	:=	range	f.Doc.List	{

			333	 	 	 	 	 	 list[i]	=	c

			334	 	 	 	 	 	 i++

			335	 	 	 	 	 }

			336	 	 	 	 	 if	f.Package	>	pos	{

			337	 	 	 	 	 	 //	Keep	the	maximum	package	clause	position	as

			338	 	 	 	 	 	 //	position	for	the	package	clause	of	the	merged

			339	 	 	 	 	 	 //	files.

			340	 	 	 	 	 	 pos	=	f.Package

			341	 	 	 	 	 }

			342	 	 	 	 }

			343	 	 	 }

			344	 	 	 doc	=	&CommentGroup{list}

			345	 	 }

			346	

			347	 	 //	Collect	declarations	from	all	package	files.

			348	 	 var	decls	[]Decl

			349	 	 if	ndecls	>	0	{

			350	 	 	 decls	=	make([]Decl,	ndecls)

			351	 	 	 funcs	:=	make(map[string]int)	//	map	of	global	function	name	->	decls	index

			352	 	 	 i	:=	0																								//	current	index

			353	 	 	 n	:=	0																								//	number	of	filtered	entries

			354	 	 	 for	_,	filename	:=	range	filenames	{

			355	 	 	 	 f	:=	pkg.Files[filename]

			356	 	 	 	 for	_,	d	:=	range	f.Decls	{

			357	 	 	 	 	 if	mode&FilterFuncDuplicates	!=	0	{

			358	 	 	 	 	 	 //	A	language	entity	may	be	declared	multiple

			359	 	 	 	 	 	 //	times	in	different	package	files;	only	at

			360	 	 	 	 	 	 //	build	time	declarations	must	be	unique.

			361	 	 	 	 	 	 //	For	now,	exclude	multiple	declarations	of

			362	 	 	 	 	 	 //	functions	-	keep	the	one	with	documentation.

			363	 	 	 	 	 	 //

			364	 	 	 	 	 	 //	TODO(gri):	Expand	this	filtering	to	other

			365	 	 	 	 	 	 //												entities	(const,	type,	vars)	if

			366	 	 	 	 	 	 //												multiple	declarations	are	common.

			367	 	 	 	 	 	 if	f,	isFun	:=	d.(*FuncDecl);	isFun	{

			368	 	 	 	 	 	 	 name	:=	f.Name.Name

			369	 	 	 	 	 	 	 if	j,	exists	:=	funcs[name];	exists	{

			370	 	 	 	 	 	 	 	 //	function	declared	already

			371	 	 	 	 	 	 	 	 if	decls[j]	!=	nil	&&	decls[j].(*FuncDecl).Doc	==	nil	{

			372	 	 	 	 	 	 	 	 	

			373	 	 	 	 	 	 	 	 	

			374	 	 	 	 	 	 	 	 	 decls[j]	=	nil

			375	 	 	 	 	 	 	 	 }	else	{

			376	 	 	 	 	 	 	 	 	

			377	 	 	 	 	 	 	 	 	 d	=	nil

			378	 	 	 	 	 	 	 	 }

			379	 	 	 	 	 	 	 	 n++	

			380	 	 	 	 	 	 	 }	else	{

			381	 	 	 	 	 	 	 	 funcs[name]	=	i

			382	 	 	 	 	 	 	 }

			383	 	 	 	 	 	 }

			384	 	 	 	 	 }

			385	 	 	 	 	 decls[i]	=	d

			386	 	 	 	 	 i++

			387	 	 	 	 }

			388	 	 	 }

			389	

			390	 	 	 //	Eliminate	nil	entries	from	the	decls	list	if	entries	were

			391	 	 	 //	filtered.	We	do	this	using	a	2nd	pass	in	order	to	not	disturb

			392	 	 	 //	the	original	declaration	order	in	the	source	(otherwise,	this

			393	 	 	 //	would	also	invalidate	the	monotonically	increasing	position

			394	 	 	 //	info	within	a	single	file).

			395	 	 	 if	n	>	0	{

			396	 	 	 	 i	=	0

			397	 	 	 	 for	_,	d	:=	range	decls	{

			398	 	 	 	 	 if	d	!=	nil	{

			399	 	 	 	 	 	 decls[i]	=	d

			400	 	 	 	 	 	 i++

			401	 	 	 	 	 }

			402	 	 	 	 }

			403	 	 	 	 decls	=	decls[0:i]

			404	 	 	 }

			405	 	 }

			406	

			407	 	 //	Collect	import	specs	from	all	package	files.

			408	 	 var	imports	[]*ImportSpec

			409	 	 if	mode&FilterImportDuplicates	!=	0	{

			410	 	 	 seen	:=	make(map[string]bool)

			411	 	 	 for	_,	filename	:=	range	filenames	{

			412	 	 	 	 f	:=	pkg.Files[filename]

			413	 	 	 	 for	_,	imp	:=	range	f.Imports	{

			414	 	 	 	 	 if	path	:=	imp.Path.Value;	!seen[path]	{

			415	 	 	 	 	 	 //	TODO:	consider	handling	cases	where:

			416	 	 	 	 	 	 //	-	2	imports	exist	with	the	same	import	path	but

			417	 	 	 	 	 	 //			have	different	local	names	(one	should	probably	

			418	 	 	 	 	 	 //			keep	both	of	them)

			419	 	 	 	 	 	 //	-	2	imports	exist	but	only	one	has	a	comment

			420	 	 	 	 	 	 //	-	2	imports	exist	and	they	both	have	(possibly

			421	 	 	 	 	 	 //			different)	comments

			422	 	 	 	 	 	 imports	=	append(imports,	imp)

			423	 	 	 	 	 	 seen[path]	=	true

			424	 	 	 	 	 }

			425	 	 	 	 }

			426	 	 	 }

			427	 	 }	else	{

			428	 	 	 for	_,	f	:=	range	pkg.Files	{

			429	 	 	 	 imports	=	append(imports,	f.Imports...)

			430	 	 	 }

			431	 	 }

			432	

			433	 	 //	Collect	comments	from	all	package	files.

			434	 	 var	comments	[]*CommentGroup

			435	 	 if	mode&FilterUnassociatedComments	==	0	{

			436	 	 	 comments	=	make([]*CommentGroup,	ncomments)

			437	 	 	 i	:=	0

			438	 	 	 for	_,	f	:=	range	pkg.Files	{

			439	 	 	 	 i	+=	copy(comments[i:],	f.Comments)

			440	 	 	 }

			441	 	 }

			442	

			443	 	 //	TODO(gri)	need	to	compute	unresolved	identifiers!

			444	 	 return	&File{doc,	pos,	NewIdent(pkg.Name),	decls,	pkg.Scope,	imports,	nil,	comments}

			445	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/ast/import.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	ast

					6	

					7	 import	(

					8	 	 "go/token"

					9	 	 "sort"

				10	 	 "strconv"

				11)

				12	

				13	 //	SortImports	sorts	runs	of	consecutive	import	lines	in	import	blocks	in	f.

				14	 func	SortImports(fset	*token.FileSet,	f	*File)	{

				15	 	 for	_,	d	:=	range	f.Decls	{

				16	 	 	 d,	ok	:=	d.(*GenDecl)

				17	 	 	 if	!ok	||	d.Tok	!=	token.IMPORT	{

				18	 	 	 	 //	Not	an	import	declaration,	so	we're	done.

				19	 	 	 	 //	Imports	are	always	first.

				20	 	 	 	 break

				21	 	 	 }

				22	

				23	 	 	 if	d.Lparen	==	token.NoPos	{

				24	 	 	 	 //	Not	a	block:	sorted	by	default.

				25	 	 	 	 continue

				26	 	 	 }

				27	

				28	 	 	 //	Identify	and	sort	runs	of	specs	on	successive	lines.

				29	 	 	 i	:=	0

				30	 	 	 for	j,	s	:=	range	d.Specs	{

				31	 	 	 	 if	j	>	i	&&	fset.Position(s.Pos()).Line	>	1+fset.Position(d.Specs[j-1].End()).Line	{

				32	 	 	 	 	 //	j	begins	a	new	run.		End	this	one.

				33	 	 	 	 	 sortSpecs(fset,	f,	d.Specs[i:j])

				34	 	 	 	 	 i	=	j

				35	 	 	 	 }

				36	 	 	 }

				37	 	 	 sortSpecs(fset,	f,	d.Specs[i:])

				38	 	 }

				39	 }

				40	

				41	 func	importPath(s	Spec)	string	{

				42	 	 t,	err	:=	strconv.Unquote(s.(*ImportSpec).Path.Value)

				43	 	 if	err	==	nil	{

				44	 	 	 return	t

				45	 	 }

				46	 	 return	""

				47	 }

				48	

				49	 type	posSpan	struct	{

				50	 	 Start	token.Pos

				51	 	 End			token.Pos

				52	 }

				53	

				54	 func	sortSpecs(fset	*token.FileSet,	f	*File,	specs	[]Spec)	{

				55	 	 //	Avoid	work	if	already	sorted	(also	catches	<	2	entries).

				56	 	 sorted	:=	true

				57	 	 for	i,	s	:=	range	specs	{

				58	 	 	 if	i	>	0	&&	importPath(specs[i-1])	>	importPath(s)	{

				59	 	 	 	 sorted	=	false

				60	 	 	 	 break

				61	 	 	 }

				62	 	 }

				63	 	 if	sorted	{

				64	 	 	 return

				65	 	 }

				66	

				67	 	 //	Record	positions	for	specs.

				68	 	 pos	:=	make([]posSpan,	len(specs))

				69	 	 for	i,	s	:=	range	specs	{

				70	 	 	 pos[i]	=	posSpan{s.Pos(),	s.End()}

				71	 	 }

				72	

				73	 	 //	Identify	comments	in	this	range.

				74	 	 //	Any	comment	from	pos[0].Start	to	the	final	line	counts.

				75	 	 lastLine	:=	fset.Position(pos[len(pos)-1].End).Line

				76	 	 cstart	:=	len(f.Comments)

				77	 	 cend	:=	len(f.Comments)

				78	 	 for	i,	g	:=	range	f.Comments	{

				79	 	 	 if	g.Pos()	<	pos[0].Start	{

				80	 	 	 	 continue

				81	 	 	 }

				82	 	 	 if	i	<	cstart	{

				83	 	 	 	 cstart	=	i

				84	 	 	 }

				85	 	 	 if	fset.Position(g.End()).Line	>	lastLine	{

				86	 	 	 	 cend	=	i

				87	 	 	 	 break

				88	 	 	 }

				89	 	 }

				90	 	 comments	:=	f.Comments[cstart:cend]

				91	

				92	 	 //	Assign	each	comment	to	the	import	spec	preceding	it.

				93	 	 importComment	:=	map[*ImportSpec][]*CommentGroup{}

				94	 	 specIndex	:=	0

				95	 	 for	_,	g	:=	range	comments	{

				96	 	 	 for	specIndex+1	<	len(specs)	&&	pos[specIndex+1].Start	<=	g.Pos()	{

				97	 	 	 	 specIndex++

				98	 	 	 }

				99	 	 	 s	:=	specs[specIndex].(*ImportSpec)

			100	 	 	 importComment[s]	=	append(importComment[s],	g)

			101	 	 }

			102	

			103	 	 //	Sort	the	import	specs	by	import	path.

			104	 	 //	Reassign	the	import	paths	to	have	the	same	position	sequence.

			105	 	 //	Reassign	each	comment	to	abut	the	end	of	its	spec.

			106	 	 //	Sort	the	comments	by	new	position.

			107	 	 sort.Sort(byImportPath(specs))

			108	 	 for	i,	s	:=	range	specs	{

			109	 	 	 s	:=	s.(*ImportSpec)

			110	 	 	 if	s.Name	!=	nil	{

			111	 	 	 	 s.Name.NamePos	=	pos[i].Start

			112	 	 	 }

			113	 	 	 s.Path.ValuePos	=	pos[i].Start

			114	 	 	 s.EndPos	=	pos[i].End

			115	 	 	 for	_,	g	:=	range	importComment[s]	{

			116	 	 	 	 for	_,	c	:=	range	g.List	{

			117	 	 	 	 	 c.Slash	=	pos[i].End

			118	 	 	 	 }

			119	 	 	 }

			120	 	 }

			121	 	 sort.Sort(byCommentPos(comments))

			122	 }

			123	

			124	 type	byImportPath	[]Spec	//	slice	of	*ImportSpec

			125	

			126	 func	(x	byImportPath)	Len()	int											{	return	len(x)	}

			127	 func	(x	byImportPath)	Swap(i,	j	int)						{	x[i],	x[j]	=	x[j],	x[i]	}

			128	 func	(x	byImportPath)	Less(i,	j	int)	bool	{	return	importPath(x[i])	<	importPath(x[j])	}

			129	

			130	 type	byCommentPos	[]*CommentGroup

			131	

			132	 func	(x	byCommentPos)	Len()	int											{	return	len(x)	}

			133	 func	(x	byCommentPos)	Swap(i,	j	int)						{	x[i],	x[j]	=	x[j],	x[i]	}

			134	 func	(x	byCommentPos)	Less(i,	j	int)	bool	{	return	x[i].Pos()	<	x[j].Pos()	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/ast/print.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	This	file	contains	printing	support	for	ASTs.

					6	

					7	 package	ast

					8	

					9	 import	(

				10	 	 "fmt"

				11	 	 "go/token"

				12	 	 "io"

				13	 	 "os"

				14	 	 "reflect"

				15)

				16	

				17	 //	A	FieldFilter	may	be	provided	to	Fprint	to	control	the	output.

				18	 type	FieldFilter	func(name	string,	value	reflect.Value)	bool

				19	

				20	 //	NotNilFilter	returns	true	for	field	values	that	are	not	nil;

				21	 //	it	returns	false	otherwise.

				22	 func	NotNilFilter(_	string,	v	reflect.Value)	bool	{

				23	 	 switch	v.Kind()	{

				24	 	 case	reflect.Chan,	reflect.Func,	reflect.Interface,	reflect.Map,	reflect.Ptr,	reflect.Slice:

				25	 	 	 return	!v.IsNil()

				26	 	 }

				27	 	 return	true

				28	 }

				29	

				30	 //	Fprint	prints	the	(sub-)tree	starting	at	AST	node	x	to	w.

				31	 //	If	fset	!=	nil,	position	information	is	interpreted	relative

				32	 //	to	that	file	set.	Otherwise	positions	are	printed	as	integer

				33	 //	values	(file	set	specific	offsets).

				34	 //

				35	 //	A	non-nil	FieldFilter	f	may	be	provided	to	control	the	output:

				36	 //	struct	fields	for	which	f(fieldname,	fieldvalue)	is	true	are

				37	 //	are	printed;	all	others	are	filtered	from	the	output.

				38	 //

				39	 func	Fprint(w	io.Writer,	fset	*token.FileSet,	x	interface{},	f	FieldFilter)	(err	error)	{

				40	 	 //	setup	printer

				41	 	 p	:=	printer{

				42	 	 	 output:	w,

				43	 	 	 fset:			fset,

				44	 	 	 filter:	f,

				45	 	 	 ptrmap:	make(map[interface{}]int),

				46	 	 	 last:			'\n',	//	force	printing	of	line	number	on	first	line

				47	 	 }

				48	

				49	 	 //	install	error	handler

				50	 	 defer	func()	{

				51	 	 	 if	e	:=	recover();	e	!=	nil	{

				52	 	 	 	 err	=	e.(localError).err	//	re-panics	if	it's	not	a	localError

				53	 	 	 }

				54	 	 }()

				55	

				56	 	 //	print	x

				57	 	 if	x	==	nil	{

				58	 	 	 p.printf("nil\n")

				59	 	 	 return

				60	 	 }

				61	 	 p.print(reflect.ValueOf(x))

				62	 	 p.printf("\n")

				63	

				64	 	 return

				65	 }

				66	

				67	 //	Print	prints	x	to	standard	output,	skipping	nil	fields.

				68	 //	Print(fset,	x)	is	the	same	as	Fprint(os.Stdout,	fset,	x,	NotNilFilter).

				69	 func	Print(fset	*token.FileSet,	x	interface{})	error	{

				70	 	 return	Fprint(os.Stdout,	fset,	x,	NotNilFilter)

				71	 }

				72	

				73	 type	printer	struct	{

				74	 	 output	io.Writer

				75	 	 fset			*token.FileSet

				76	 	 filter	FieldFilter

				77	 	 ptrmap	map[interface{}]int	//	*T	->	line	number

				78	 	 indent	int																	//	current	indentation	level

				79	 	 last			byte																//	the	last	byte	processed	by	Write

				80	 	 line			int																	//	current	line	number

				81	 }

				82	

				83	 var	indent	=	[]byte(".		")

				84	

				85	 func	(p	*printer)	Write(data	[]byte)	(n	int,	err	error)	{

				86	 	 var	m	int

				87	 	 for	i,	b	:=	range	data	{

				88	 	 	 //	invariant:	data[0:n]	has	been	written

				89	 	 	 if	b	==	'\n'	{

				90	 	 	 	 m,	err	=	p.output.Write(data[n	:	i+1])

				91	 	 	 	 n	+=	m

				92	 	 	 	 if	err	!=	nil	{

				93	 	 	 	 	 return

				94	 	 	 	 }

				95	 	 	 	 p.line++

				96	 	 	 }	else	if	p.last	==	'\n'	{

				97	 	 	 	 _,	err	=	fmt.Fprintf(p.output,	"%6d		",	p.line)

				98	 	 	 	 if	err	!=	nil	{

				99	 	 	 	 	 return

			100	 	 	 	 }

			101	 	 	 	 for	j	:=	p.indent;	j	>	0;	j--	{

			102	 	 	 	 	 _,	err	=	p.output.Write(indent)

			103	 	 	 	 	 if	err	!=	nil	{

			104	 	 	 	 	 	 return

			105	 	 	 	 	 }

			106	 	 	 	 }

			107	 	 	 }

			108	 	 	 p.last	=	b

			109	 	 }

			110	 	 m,	err	=	p.output.Write(data[n:])

			111	 	 n	+=	m

			112	 	 return

			113	 }

			114	

			115	 //	localError	wraps	locally	caught	errors	so	we	can	distinguish

			116	 //	them	from	genuine	panics	which	we	don't	want	to	return	as	errors.

			117	 type	localError	struct	{

			118	 	 err	error

			119	 }

			120	

			121	 //	printf	is	a	convenience	wrapper	that	takes	care	of	print	errors.

			122	 func	(p	*printer)	printf(format	string,	args	...interface{})	{

			123	 	 if	_,	err	:=	fmt.Fprintf(p,	format,	args...);	err	!=	nil	{

			124	 	 	 panic(localError{err})

			125	 	 }

			126	 }

			127	

			128	 //	Implementation	note:	Print	is	written	for	AST	nodes	but	could	be

			129	 //	used	to	print	arbitrary	data	structures;	such	a	version	should

			130	 //	probably	be	in	a	different	package.

			131	 //

			132	 //	Note:	This	code	detects	(some)	cycles	created	via	pointers	but

			133	 //	not	cycles	that	are	created	via	slices	or	maps	containing	the

			134	 //	same	slice	or	map.	Code	for	general	data	structures	probably

			135	 //	should	catch	those	as	well.

			136	

			137	 func	(p	*printer)	print(x	reflect.Value)	{

			138	 	 if	!NotNilFilter("",	x)	{

			139	 	 	 p.printf("nil")

			140	 	 	 return

			141	 	 }

			142	

			143	 	 switch	x.Kind()	{

			144	 	 case	reflect.Interface:

			145	 	 	 p.print(x.Elem())

			146	

			147	 	 case	reflect.Map:

			148	 	 	 p.printf("%s	(len	=	%d)	{\n",	x.Type(),	x.Len())

			149	 	 	 p.indent++

			150	 	 	 for	_,	key	:=	range	x.MapKeys()	{

			151	 	 	 	 p.print(key)

			152	 	 	 	 p.printf(":	")

			153	 	 	 	 p.print(x.MapIndex(key))

			154	 	 	 	 p.printf("\n")

			155	 	 	 }

			156	 	 	 p.indent--

			157	 	 	 p.printf("}")

			158	

			159	 	 case	reflect.Ptr:

			160	 	 	 p.printf("*")

			161	 	 	 //	type-checked	ASTs	may	contain	cycles	-	use	ptrmap

			162	 	 	 //	to	keep	track	of	objects	that	have	been	printed

			163	 	 	 //	already	and	print	the	respective	line	number	instead

			164	 	 	 ptr	:=	x.Interface()

			165	 	 	 if	line,	exists	:=	p.ptrmap[ptr];	exists	{

			166	 	 	 	 p.printf("(obj	@	%d)",	line)

			167	 	 	 }	else	{

			168	 	 	 	 p.ptrmap[ptr]	=	p.line

			169	 	 	 	 p.print(x.Elem())

			170	 	 	 }

			171	

			172	 	 case	reflect.Slice:

			173	 	 	 if	s,	ok	:=	x.Interface().([]byte);	ok	{

			174	 	 	 	 p.printf("%#q",	s)

			175	 	 	 	 return

			176	 	 	 }

			177	 	 	 p.printf("%s	(len	=	%d)	{\n",	x.Type(),	x.Len())

			178	 	 	 p.indent++

			179	 	 	 for	i,	n	:=	0,	x.Len();	i	<	n;	i++	{

			180	 	 	 	 p.printf("%d:	",	i)

			181	 	 	 	 p.print(x.Index(i))

			182	 	 	 	 p.printf("\n")

			183	 	 	 }

			184	 	 	 p.indent--

			185	 	 	 p.printf("}")

			186	

			187	 	 case	reflect.Struct:

			188	 	 	 p.printf("%s	{\n",	x.Type())

			189	 	 	 p.indent++

			190	 	 	 t	:=	x.Type()

			191	 	 	 for	i,	n	:=	0,	t.NumField();	i	<	n;	i++	{

			192	 	 	 	 name	:=	t.Field(i).Name

			193	 	 	 	 value	:=	x.Field(i)

			194	 	 	 	 if	p.filter	==	nil	||	p.filter(name,	value)	{

			195	 	 	 	 	 p.printf("%s:	",	name)

			196	 	 	 	 	 p.print(value)

			197	 	 	 	 	 p.printf("\n")

			198	 	 	 	 }

			199	 	 	 }

			200	 	 	 p.indent--

			201	 	 	 p.printf("}")

			202	

			203	 	 default:

			204	 	 	 v	:=	x.Interface()

			205	 	 	 switch	v	:=	v.(type)	{

			206	 	 	 case	string:

			207	 	 	 	 //	print	strings	in	quotes

			208	 	 	 	 p.printf("%q",	v)

			209	 	 	 	 return

			210	 	 	 case	token.Pos:

			211	 	 	 	 //	position	values	can	be	printed	nicely	if	we	have	a	file	set

			212	 	 	 	 if	p.fset	!=	nil	{

			213	 	 	 	 	 p.printf("%s",	p.fset.Position(v))

			214	 	 	 	 	 return

			215	 	 	 	 }

			216	 	 	 }

			217	 	 	 //	default

			218	 	 	 p.printf("%v",	v)

			219	 	 }

			220	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/ast/resolve.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	This	file	implements	NewPackage.

					6	

					7	 package	ast

					8	

					9	 import	(

				10	 	 "fmt"

				11	 	 "go/scanner"

				12	 	 "go/token"

				13	 	 "strconv"

				14)

				15	

				16	 type	pkgBuilder	struct	{

				17	 	 fset			*token.FileSet

				18	 	 errors	scanner.ErrorList

				19	 }

				20	

				21	 func	(p	*pkgBuilder)	error(pos	token.Pos,	msg	string)	{

				22	 	 p.errors.Add(p.fset.Position(pos),	msg)

				23	 }

				24	

				25	 func	(p	*pkgBuilder)	errorf(pos	token.Pos,	format	string,	args	...interface{})	{

				26	 	 p.error(pos,	fmt.Sprintf(format,	args...))

				27	 }

				28	

				29	 func	(p	*pkgBuilder)	declare(scope,	altScope	*Scope,	obj	*Object)	{

				30	 	 alt	:=	scope.Insert(obj)

				31	 	 if	alt	==	nil	&&	altScope	!=	nil	{

				32	 	 	 //	see	if	there	is	a	conflicting	declaration	in	altScope

				33	 	 	 alt	=	altScope.Lookup(obj.Name)

				34	 	 }

				35	 	 if	alt	!=	nil	{

				36	 	 	 prevDecl	:=	""

				37	 	 	 if	pos	:=	alt.Pos();	pos.IsValid()	{

				38	 	 	 	 prevDecl	=	fmt.Sprintf("\n\tprevious	declaration	at	%s",	p.fset.Position(pos))

				39	 	 	 }

				40	 	 	 p.error(obj.Pos(),	fmt.Sprintf("%s	redeclared	in	this	block%s",	obj.Name,	prevDecl))

				41	 	 }

				42	 }

				43	

				44	 func	resolve(scope	*Scope,	ident	*Ident)	bool	{

				45	 	 for	;	scope	!=	nil;	scope	=	scope.Outer	{

				46	 	 	 if	obj	:=	scope.Lookup(ident.Name);	obj	!=	nil	{

				47	 	 	 	 ident.Obj	=	obj

				48	 	 	 	 return	true

				49	 	 	 }

				50	 	 }

				51	 	 return	false

				52	 }

				53	

				54	 //	An	Importer	resolves	import	paths	to	package	Objects.

				55	 //	The	imports	map	records	the	packages	already	imported,

				56	 //	indexed	by	package	id	(canonical	import	path).

				57	 //	An	Importer	must	determine	the	canonical	import	path	and

				58	 //	check	the	map	to	see	if	it	is	already	present	in	the	imports	map.

				59	 //	If	so,	the	Importer	can	return	the	map	entry.		Otherwise,	the

				60	 //	Importer	should	load	the	package	data	for	the	given	path	into	

				61	 //	a	new	*Object	(pkg),	record	pkg	in	the	imports	map,	and	then

				62	 //	return	pkg.

				63	 type	Importer	func(imports	map[string]*Object,	path	string)	(pkg	*Object,	err	error)

				64	

				65	 //	NewPackage	creates	a	new	Package	node	from	a	set	of	File	nodes.	It	resolves

				66	 //	unresolved	identifiers	across	files	and	updates	each	file's	Unresolved	list

				67	 //	accordingly.	If	a	non-nil	importer	and	universe	scope	are	provided,	they	are

				68	 //	used	to	resolve	identifiers	not	declared	in	any	of	the	package	files.	Any

				69	 //	remaining	unresolved	identifiers	are	reported	as	undeclared.	If	the	files

				70	 //	belong	to	different	packages,	one	package	name	is	selected	and	files	with

				71	 //	different	package	names	are	reported	and	then	ignored.

				72	 //	The	result	is	a	package	node	and	a	scanner.ErrorList	if	there	were	errors.

				73	 //

				74	 func	NewPackage(fset	*token.FileSet,	files	map[string]*File,	importer	Importer,	universe	*Scope)	(*Package,	error)	{

				75	 	 var	p	pkgBuilder

				76	 	 p.fset	=	fset

				77	

				78	 	 //	complete	package	scope

				79	 	 pkgName	:=	""

				80	 	 pkgScope	:=	NewScope(universe)

				81	 	 for	_,	file	:=	range	files	{

				82	 	 	 //	package	names	must	match

				83	 	 	 switch	name	:=	file.Name.Name;	{

				84	 	 	 case	pkgName	==	"":

				85	 	 	 	 pkgName	=	name

				86	 	 	 case	name	!=	pkgName:

				87	 	 	 	 p.errorf(file.Package,	"package	%s;	expected	%s",	name,	pkgName)

				88	 	 	 	 continue	//	ignore	this	file

				89	 	 	 }

				90	

				91	 	 	 //	collect	top-level	file	objects	in	package	scope

				92	 	 	 for	_,	obj	:=	range	file.Scope.Objects	{

				93	 	 	 	 p.declare(pkgScope,	nil,	obj)

				94	 	 	 }

				95	 	 }

				96	

				97	 	 //	package	global	mapping	of	imported	package	ids	to	package	objects

				98	 	 imports	:=	make(map[string]*Object)

				99	

			100	 	 //	complete	file	scopes	with	imports	and	resolve	identifiers

			101	 	 for	_,	file	:=	range	files	{

			102	 	 	 //	ignore	file	if	it	belongs	to	a	different	package

			103	 	 	 //	(error	has	already	been	reported)

			104	 	 	 if	file.Name.Name	!=	pkgName	{

			105	 	 	 	 continue

			106	 	 	 }

			107	

			108	 	 	 //	build	file	scope	by	processing	all	imports

			109	 	 	 importErrors	:=	false

			110	 	 	 fileScope	:=	NewScope(pkgScope)

			111	 	 	 for	_,	spec	:=	range	file.Imports	{

			112	 	 	 	 if	importer	==	nil	{

			113	 	 	 	 	 importErrors	=	true

			114	 	 	 	 	 continue

			115	 	 	 	 }

			116	 	 	 	 path,	_	:=	strconv.Unquote(spec.Path.Value)

			117	 	 	 	 pkg,	err	:=	importer(imports,	path)

			118	 	 	 	 if	err	!=	nil	{

			119	 	 	 	 	 p.errorf(spec.Path.Pos(),	"could	not	import	%s	(%s)",	path,	err)

			120	 	 	 	 	 importErrors	=	true

			121	 	 	 	 	 continue

			122	 	 	 	 }

			123	 	 	 	 //	TODO(gri)	If	a	local	package	name	!=	"."	is	provided,

			124	 	 	 	 //	global	identifier	resolution	could	proceed	even	if	the

			125	 	 	 	 //	import	failed.	Consider	adjusting	the	logic	here	a	bit.

			126	

			127	 	 	 	 //	local	name	overrides	imported	package	name

			128	 	 	 	 name	:=	pkg.Name

			129	 	 	 	 if	spec.Name	!=	nil	{

			130	 	 	 	 	 name	=	spec.Name.Name

			131	 	 	 	 }

			132	

			133	 	 	 	 //	add	import	to	file	scope

			134	 	 	 	 if	name	==	"."	{

			135	 	 	 	 	 //	merge	imported	scope	with	file	scope

			136	 	 	 	 	 for	_,	obj	:=	range	pkg.Data.(*Scope).Objects	{

			137	 	 	 	 	 	 p.declare(fileScope,	pkgScope,	obj)

			138	 	 	 	 	 }

			139	 	 	 	 }	else	{

			140	 	 	 	 	 //	declare	imported	package	object	in	file	scope

			141	 	 	 	 	 //	(do	not	re-use	pkg	in	the	file	scope	but	create

			142	 	 	 	 	 //	a	new	object	instead;	the	Decl	field	is	different

			143	 	 	 	 	 //	for	different	files)

			144	 	 	 	 	 obj	:=	NewObj(Pkg,	name)

			145	 	 	 	 	 obj.Decl	=	spec

			146	 	 	 	 	 obj.Data	=	pkg.Data

			147	 	 	 	 	 p.declare(fileScope,	pkgScope,	obj)

			148	 	 	 	 }

			149	 	 	 }

			150	

			151	 	 	 //	resolve	identifiers

			152	 	 	 if	importErrors	{

			153	 	 	 	 //	don't	use	the	universe	scope	without	correct	imports

			154	 	 	 	 //	(objects	in	the	universe	may	be	shadowed	by	imports;

			155	 	 	 	 //	with	missing	imports,	identifiers	might	get	resolved

			156	 	 	 	 //	incorrectly	to	universe	objects)

			157	 	 	 	 pkgScope.Outer	=	nil

			158	 	 	 }

			159	 	 	 i	:=	0

			160	 	 	 for	_,	ident	:=	range	file.Unresolved	{

			161	 	 	 	 if	!resolve(fileScope,	ident)	{

			162	 	 	 	 	 p.errorf(ident.Pos(),	"undeclared	name:	%s",	ident.Name)

			163	 	 	 	 	 file.Unresolved[i]	=	ident

			164	 	 	 	 	 i++

			165	 	 	 	 }

			166	

			167	 	 	 }

			168	 	 	 file.Unresolved	=	file.Unresolved[0:i]

			169	 	 	 pkgScope.Outer	=	universe	//	reset	universe	scope

			170	 	 }

			171	

			172	 	 p.errors.Sort()

			173	 	 return	&Package{pkgName,	pkgScope,	imports,	files},	p.errors.Err()

			174	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/ast/scope.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	This	file	implements	scopes	and	the	objects	they	contain.

					6	

					7	 package	ast

					8	

					9	 import	(

				10	 	 "bytes"

				11	 	 "fmt"

				12	 	 "go/token"

				13)

				14	

				15	 //	A	Scope	maintains	the	set	of	named	language	entities	declared

				16	 //	in	the	scope	and	a	link	to	the	immediately	surrounding	(outer)

				17	 //	scope.

				18	 //

				19	 type	Scope	struct	{

				20	 	 Outer			*Scope

				21	 	 Objects	map[string]*Object

				22	 }

				23	

				24	 //	NewScope	creates	a	new	scope	nested	in	the	outer	scope.

				25	 func	NewScope(outer	*Scope)	*Scope	{

				26	 	 const	n	=	4	//	initial	scope	capacity

				27	 	 return	&Scope{outer,	make(map[string]*Object,	n)}

				28	 }

				29	

				30	 //	Lookup	returns	the	object	with	the	given	name	if	it	is

				31	 //	found	in	scope	s,	otherwise	it	returns	nil.	Outer	scopes

				32	 //	are	ignored.

				33	 //

				34	 func	(s	*Scope)	Lookup(name	string)	*Object	{

				35	 	 return	s.Objects[name]

				36	 }

				37	

				38	 //	Insert	attempts	to	insert	a	named	object	obj	into	the	scope	s.

				39	 //	If	the	scope	already	contains	an	object	alt	with	the	same	name,

				40	 //	Insert	leaves	the	scope	unchanged	and	returns	alt.	Otherwise

				41	 //	it	inserts	obj	and	returns	nil."

				42	 //

				43	 func	(s	*Scope)	Insert(obj	*Object)	(alt	*Object)	{

				44	 	 if	alt	=	s.Objects[obj.Name];	alt	==	nil	{

				45	 	 	 s.Objects[obj.Name]	=	obj

				46	 	 }

				47	 	 return

				48	 }

				49	

				50	 //	Debugging	support

				51	 func	(s	*Scope)	String()	string	{

				52	 	 var	buf	bytes.Buffer

				53	 	 fmt.Fprintf(&buf,	"scope	%p	{",	s)

				54	 	 if	s	!=	nil	&&	len(s.Objects)	>	0	{

				55	 	 	 fmt.Fprintln(&buf)

				56	 	 	 for	_,	obj	:=	range	s.Objects	{

				57	 	 	 	 fmt.Fprintf(&buf,	"\t%s	%s\n",	obj.Kind,	obj.Name)

				58	 	 	 }

				59	 	 }

				60	 	 fmt.Fprintf(&buf,	"}\n")

				61	 	 return	buf.String()

				62	 }

				63	

				64	 //	--

				65	 //	Objects

				66	

				67	 //	TODO(gri)	Consider	replacing	the	Object	struct	with	an	interface

				68	 //											and	a	corresponding	set	of	object	implementations.

				69	

				70	 //	An	Object	describes	a	named	language	entity	such	as	a	package,

				71	 //	constant,	type,	variable,	function	(incl.	methods),	or	label.

				72	 //

				73	 //	The	Data	fields	contains	object-specific	data:

				74	 //

				75	 //	 Kind				Data	type				Data	value

				76	 //	 Pkg	 *Scope							package	scope

				77	 //	 Con					int										iota	for	the	respective	declaration

				78	 //	 Con					!=	nil							constant	value

				79	 //

				80	 type	Object	struct	{

				81	 	 Kind	ObjKind

				82	 	 Name	string						//	declared	name

				83	 	 Decl	interface{}	//	corresponding	Field,	XxxSpec,	FuncDecl,	LabeledStmt,	AssignStmt,	Scope;	or	nil

				84	 	 Data	interface{}	//	object-specific	data;	or	nil

				85	 	 Type	interface{}	//	place	holder	for	type	information;	may	be	nil

				86	 }

				87	

				88	 //	NewObj	creates	a	new	object	of	a	given	kind	and	name.

				89	 func	NewObj(kind	ObjKind,	name	string)	*Object	{

				90	 	 return	&Object{Kind:	kind,	Name:	name}

				91	 }

				92	

				93	 //	Pos	computes	the	source	position	of	the	declaration	of	an	object	name.

				94	 //	The	result	may	be	an	invalid	position	if	it	cannot	be	computed

				95	 //	(obj.Decl	may	be	nil	or	not	correct).

				96	 func	(obj	*Object)	Pos()	token.Pos	{

				97	 	 name	:=	obj.Name

				98	 	 switch	d	:=	obj.Decl.(type)	{

				99	 	 case	*Field:

			100	 	 	 for	_,	n	:=	range	d.Names	{

			101	 	 	 	 if	n.Name	==	name	{

			102	 	 	 	 	 return	n.Pos()

			103	 	 	 	 }

			104	 	 	 }

			105	 	 case	*ImportSpec:

			106	 	 	 if	d.Name	!=	nil	&&	d.Name.Name	==	name	{

			107	 	 	 	 return	d.Name.Pos()

			108	 	 	 }

			109	 	 	 return	d.Path.Pos()

			110	 	 case	*ValueSpec:

			111	 	 	 for	_,	n	:=	range	d.Names	{

			112	 	 	 	 if	n.Name	==	name	{

			113	 	 	 	 	 return	n.Pos()

			114	 	 	 	 }

			115	 	 	 }

			116	 	 case	*TypeSpec:

			117	 	 	 if	d.Name.Name	==	name	{

			118	 	 	 	 return	d.Name.Pos()

			119	 	 	 }

			120	 	 case	*FuncDecl:

			121	 	 	 if	d.Name.Name	==	name	{

			122	 	 	 	 return	d.Name.Pos()

			123	 	 	 }

			124	 	 case	*LabeledStmt:

			125	 	 	 if	d.Label.Name	==	name	{

			126	 	 	 	 return	d.Label.Pos()

			127	 	 	 }

			128	 	 case	*AssignStmt:

			129	 	 	 for	_,	x	:=	range	d.Lhs	{

			130	 	 	 	 if	ident,	isIdent	:=	x.(*Ident);	isIdent	&&	ident.Name	==	name	{

			131	 	 	 	 	 return	ident.Pos()

			132	 	 	 	 }

			133	 	 	 }

			134	 	 case	*Scope:

			135	 	 	 //	predeclared	object	-	nothing	to	do	for	now

			136	 	 }

			137	 	 return	token.NoPos

			138	 }

			139	

			140	 //	ObKind	describes	what	an	object	represents.

			141	 type	ObjKind	int

			142	

			143	 //	The	list	of	possible	Object	kinds.

			144	 const	(

			145	 	 Bad	ObjKind	=	iota	//	for	error	handling

			146	 	 Pkg																//	package

			147	 	 Con																//	constant

			148	 	 Typ																//	type

			149	 	 Var																//	variable

			150	 	 Fun																//	function	or	method

			151	 	 Lbl																//	label

			152)

			153	

			154	 var	objKindStrings	=	[...]string{

			155	 	 Bad:	"bad",

			156	 	 Pkg:	"package",

			157	 	 Con:	"const",

			158	 	 Typ:	"type",

			159	 	 Var:	"var",

			160	 	 Fun:	"func",

			161	 	 Lbl:	"label",

			162	 }

			163	

			164	 func	(kind	ObjKind)	String()	string	{	return	objKindStrings[kind]	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/ast/walk.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	ast

					6	

					7	 import	"fmt"

					8	

					9	 //	A	Visitor's	Visit	method	is	invoked	for	each	node	encountered	by	Walk.

				10	 //	If	the	result	visitor	w	is	not	nil,	Walk	visits	each	of	the	children

				11	 //	of	node	with	the	visitor	w,	followed	by	a	call	of	w.Visit(nil).

				12	 type	Visitor	interface	{

				13	 	 Visit(node	Node)	(w	Visitor)

				14	 }

				15	

				16	 //	Helper	functions	for	common	node	lists.	They	may	be	empty.

				17	

				18	 func	walkIdentList(v	Visitor,	list	[]*Ident)	{

				19	 	 for	_,	x	:=	range	list	{

				20	 	 	 Walk(v,	x)

				21	 	 }

				22	 }

				23	

				24	 func	walkExprList(v	Visitor,	list	[]Expr)	{

				25	 	 for	_,	x	:=	range	list	{

				26	 	 	 Walk(v,	x)

				27	 	 }

				28	 }

				29	

				30	 func	walkStmtList(v	Visitor,	list	[]Stmt)	{

				31	 	 for	_,	x	:=	range	list	{

				32	 	 	 Walk(v,	x)

				33	 	 }

				34	 }

				35	

				36	 func	walkDeclList(v	Visitor,	list	[]Decl)	{

				37	 	 for	_,	x	:=	range	list	{

				38	 	 	 Walk(v,	x)

				39	 	 }

				40	 }

				41	

				42	 //	TODO(gri):	Investigate	if	providing	a	closure	to	Walk	leads	to

				43	 //												simpler	use	(and	may	help	eliminate	Inspect	in	turn).

				44	

				45	 //	Walk	traverses	an	AST	in	depth-first	order:	It	starts	by	calling

				46	 //	v.Visit(node);	node	must	not	be	nil.	If	the	visitor	w	returned	by

				47	 //	v.Visit(node)	is	not	nil,	Walk	is	invoked	recursively	with	visitor

				48	 //	w	for	each	of	the	non-nil	children	of	node,	followed	by	a	call	of

				49	 //	w.Visit(nil).

				50	 //

				51	 func	Walk(v	Visitor,	node	Node)	{

				52	 	 if	v	=	v.Visit(node);	v	==	nil	{

				53	 	 	 return

				54	 	 }

				55	

				56	 	 //	walk	children

				57	 	 //	(the	order	of	the	cases	matches	the	order

				58	 	 //	of	the	corresponding	node	types	in	ast.go)

				59	 	 switch	n	:=	node.(type)	{

				60	 	 //	Comments	and	fields

				61	 	 case	*Comment:

				62	 	 	 //	nothing	to	do

				63	

				64	 	 case	*CommentGroup:

				65	 	 	 for	_,	c	:=	range	n.List	{

				66	 	 	 	 Walk(v,	c)

				67	 	 	 }

				68	

				69	 	 case	*Field:

				70	 	 	 if	n.Doc	!=	nil	{

				71	 	 	 	 Walk(v,	n.Doc)

				72	 	 	 }

				73	 	 	 walkIdentList(v,	n.Names)

				74	 	 	 Walk(v,	n.Type)

				75	 	 	 if	n.Tag	!=	nil	{

				76	 	 	 	 Walk(v,	n.Tag)

				77	 	 	 }

				78	 	 	 if	n.Comment	!=	nil	{

				79	 	 	 	 Walk(v,	n.Comment)

				80	 	 	 }

				81	

				82	 	 case	*FieldList:

				83	 	 	 for	_,	f	:=	range	n.List	{

				84	 	 	 	 Walk(v,	f)

				85	 	 	 }

				86	

				87	 	 //	Expressions

				88	 	 case	*BadExpr,	*Ident,	*BasicLit:

				89	 	 	 //	nothing	to	do

				90	

				91	 	 case	*Ellipsis:

				92	 	 	 if	n.Elt	!=	nil	{

				93	 	 	 	 Walk(v,	n.Elt)

				94	 	 	 }

				95	

				96	 	 case	*FuncLit:

				97	 	 	 Walk(v,	n.Type)

				98	 	 	 Walk(v,	n.Body)

				99	

			100	 	 case	*CompositeLit:

			101	 	 	 if	n.Type	!=	nil	{

			102	 	 	 	 Walk(v,	n.Type)

			103	 	 	 }

			104	 	 	 walkExprList(v,	n.Elts)

			105	

			106	 	 case	*ParenExpr:

			107	 	 	 Walk(v,	n.X)

			108	

			109	 	 case	*SelectorExpr:

			110	 	 	 Walk(v,	n.X)

			111	 	 	 Walk(v,	n.Sel)

			112	

			113	 	 case	*IndexExpr:

			114	 	 	 Walk(v,	n.X)

			115	 	 	 Walk(v,	n.Index)

			116	

			117	 	 case	*SliceExpr:

			118	 	 	 Walk(v,	n.X)

			119	 	 	 if	n.Low	!=	nil	{

			120	 	 	 	 Walk(v,	n.Low)

			121	 	 	 }

			122	 	 	 if	n.High	!=	nil	{

			123	 	 	 	 Walk(v,	n.High)

			124	 	 	 }

			125	

			126	 	 case	*TypeAssertExpr:

			127	 	 	 Walk(v,	n.X)

			128	 	 	 if	n.Type	!=	nil	{

			129	 	 	 	 Walk(v,	n.Type)

			130	 	 	 }

			131	

			132	 	 case	*CallExpr:

			133	 	 	 Walk(v,	n.Fun)

			134	 	 	 walkExprList(v,	n.Args)

			135	

			136	 	 case	*StarExpr:

			137	 	 	 Walk(v,	n.X)

			138	

			139	 	 case	*UnaryExpr:

			140	 	 	 Walk(v,	n.X)

			141	

			142	 	 case	*BinaryExpr:

			143	 	 	 Walk(v,	n.X)

			144	 	 	 Walk(v,	n.Y)

			145	

			146	 	 case	*KeyValueExpr:

			147	 	 	 Walk(v,	n.Key)

			148	 	 	 Walk(v,	n.Value)

			149	

			150	 	 //	Types

			151	 	 case	*ArrayType:

			152	 	 	 if	n.Len	!=	nil	{

			153	 	 	 	 Walk(v,	n.Len)

			154	 	 	 }

			155	 	 	 Walk(v,	n.Elt)

			156	

			157	 	 case	*StructType:

			158	 	 	 Walk(v,	n.Fields)

			159	

			160	 	 case	*FuncType:

			161	 	 	 Walk(v,	n.Params)

			162	 	 	 if	n.Results	!=	nil	{

			163	 	 	 	 Walk(v,	n.Results)

			164	 	 	 }

			165	

			166	 	 case	*InterfaceType:

			167	 	 	 Walk(v,	n.Methods)

			168	

			169	 	 case	*MapType:

			170	 	 	 Walk(v,	n.Key)

			171	 	 	 Walk(v,	n.Value)

			172	

			173	 	 case	*ChanType:

			174	 	 	 Walk(v,	n.Value)

			175	

			176	 	 //	Statements

			177	 	 case	*BadStmt:

			178	 	 	 //	nothing	to	do

			179	

			180	 	 case	*DeclStmt:

			181	 	 	 Walk(v,	n.Decl)

			182	

			183	 	 case	*EmptyStmt:

			184	 	 	 //	nothing	to	do

			185	

			186	 	 case	*LabeledStmt:

			187	 	 	 Walk(v,	n.Label)

			188	 	 	 Walk(v,	n.Stmt)

			189	

			190	 	 case	*ExprStmt:

			191	 	 	 Walk(v,	n.X)

			192	

			193	 	 case	*SendStmt:

			194	 	 	 Walk(v,	n.Chan)

			195	 	 	 Walk(v,	n.Value)

			196	

			197	 	 case	*IncDecStmt:

			198	 	 	 Walk(v,	n.X)

			199	

			200	 	 case	*AssignStmt:

			201	 	 	 walkExprList(v,	n.Lhs)

			202	 	 	 walkExprList(v,	n.Rhs)

			203	

			204	 	 case	*GoStmt:

			205	 	 	 Walk(v,	n.Call)

			206	

			207	 	 case	*DeferStmt:

			208	 	 	 Walk(v,	n.Call)

			209	

			210	 	 case	*ReturnStmt:

			211	 	 	 walkExprList(v,	n.Results)

			212	

			213	 	 case	*BranchStmt:

			214	 	 	 if	n.Label	!=	nil	{

			215	 	 	 	 Walk(v,	n.Label)

			216	 	 	 }

			217	

			218	 	 case	*BlockStmt:

			219	 	 	 walkStmtList(v,	n.List)

			220	

			221	 	 case	*IfStmt:

			222	 	 	 if	n.Init	!=	nil	{

			223	 	 	 	 Walk(v,	n.Init)

			224	 	 	 }

			225	 	 	 Walk(v,	n.Cond)

			226	 	 	 Walk(v,	n.Body)

			227	 	 	 if	n.Else	!=	nil	{

			228	 	 	 	 Walk(v,	n.Else)

			229	 	 	 }

			230	

			231	 	 case	*CaseClause:

			232	 	 	 walkExprList(v,	n.List)

			233	 	 	 walkStmtList(v,	n.Body)

			234	

			235	 	 case	*SwitchStmt:

			236	 	 	 if	n.Init	!=	nil	{

			237	 	 	 	 Walk(v,	n.Init)

			238	 	 	 }

			239	 	 	 if	n.Tag	!=	nil	{

			240	 	 	 	 Walk(v,	n.Tag)

			241	 	 	 }

			242	 	 	 Walk(v,	n.Body)

			243	

			244	 	 case	*TypeSwitchStmt:

			245	 	 	 if	n.Init	!=	nil	{

			246	 	 	 	 Walk(v,	n.Init)

			247	 	 	 }

			248	 	 	 Walk(v,	n.Assign)

			249	 	 	 Walk(v,	n.Body)

			250	

			251	 	 case	*CommClause:

			252	 	 	 if	n.Comm	!=	nil	{

			253	 	 	 	 Walk(v,	n.Comm)

			254	 	 	 }

			255	 	 	 walkStmtList(v,	n.Body)

			256	

			257	 	 case	*SelectStmt:

			258	 	 	 Walk(v,	n.Body)

			259	

			260	 	 case	*ForStmt:

			261	 	 	 if	n.Init	!=	nil	{

			262	 	 	 	 Walk(v,	n.Init)

			263	 	 	 }

			264	 	 	 if	n.Cond	!=	nil	{

			265	 	 	 	 Walk(v,	n.Cond)

			266	 	 	 }

			267	 	 	 if	n.Post	!=	nil	{

			268	 	 	 	 Walk(v,	n.Post)

			269	 	 	 }

			270	 	 	 Walk(v,	n.Body)

			271	

			272	 	 case	*RangeStmt:

			273	 	 	 Walk(v,	n.Key)

			274	 	 	 if	n.Value	!=	nil	{

			275	 	 	 	 Walk(v,	n.Value)

			276	 	 	 }

			277	 	 	 Walk(v,	n.X)

			278	 	 	 Walk(v,	n.Body)

			279	

			280	 	 //	Declarations

			281	 	 case	*ImportSpec:

			282	 	 	 if	n.Doc	!=	nil	{

			283	 	 	 	 Walk(v,	n.Doc)

			284	 	 	 }

			285	 	 	 if	n.Name	!=	nil	{

			286	 	 	 	 Walk(v,	n.Name)

			287	 	 	 }

			288	 	 	 Walk(v,	n.Path)

			289	 	 	 if	n.Comment	!=	nil	{

			290	 	 	 	 Walk(v,	n.Comment)

			291	 	 	 }

			292	

			293	 	 case	*ValueSpec:

			294	 	 	 if	n.Doc	!=	nil	{

			295	 	 	 	 Walk(v,	n.Doc)

			296	 	 	 }

			297	 	 	 walkIdentList(v,	n.Names)

			298	 	 	 if	n.Type	!=	nil	{

			299	 	 	 	 Walk(v,	n.Type)

			300	 	 	 }

			301	 	 	 walkExprList(v,	n.Values)

			302	 	 	 if	n.Comment	!=	nil	{

			303	 	 	 	 Walk(v,	n.Comment)

			304	 	 	 }

			305	

			306	 	 case	*TypeSpec:

			307	 	 	 if	n.Doc	!=	nil	{

			308	 	 	 	 Walk(v,	n.Doc)

			309	 	 	 }

			310	 	 	 Walk(v,	n.Name)

			311	 	 	 Walk(v,	n.Type)

			312	 	 	 if	n.Comment	!=	nil	{

			313	 	 	 	 Walk(v,	n.Comment)

			314	 	 	 }

			315	

			316	 	 case	*BadDecl:

			317	 	 	 //	nothing	to	do

			318	

			319	 	 case	*GenDecl:

			320	 	 	 if	n.Doc	!=	nil	{

			321	 	 	 	 Walk(v,	n.Doc)

			322	 	 	 }

			323	 	 	 for	_,	s	:=	range	n.Specs	{

			324	 	 	 	 Walk(v,	s)

			325	 	 	 }

			326	

			327	 	 case	*FuncDecl:

			328	 	 	 if	n.Doc	!=	nil	{

			329	 	 	 	 Walk(v,	n.Doc)

			330	 	 	 }

			331	 	 	 if	n.Recv	!=	nil	{

			332	 	 	 	 Walk(v,	n.Recv)

			333	 	 	 }

			334	 	 	 Walk(v,	n.Name)

			335	 	 	 Walk(v,	n.Type)

			336	 	 	 if	n.Body	!=	nil	{

			337	 	 	 	 Walk(v,	n.Body)

			338	 	 	 }

			339	

			340	 	 //	Files	and	packages

			341	 	 case	*File:

			342	 	 	 if	n.Doc	!=	nil	{

			343	 	 	 	 Walk(v,	n.Doc)

			344	 	 	 }

			345	 	 	 Walk(v,	n.Name)

			346	 	 	 walkDeclList(v,	n.Decls)

			347	 	 	 for	_,	g	:=	range	n.Comments	{

			348	 	 	 	 Walk(v,	g)

			349	 	 	 }

			350	 	 	 //	don't	walk	n.Comments	-	they	have	been

			351	 	 	 //	visited	already	through	the	individual

			352	 	 	 //	nodes

			353	

			354	 	 case	*Package:

			355	 	 	 for	_,	f	:=	range	n.Files	{

			356	 	 	 	 Walk(v,	f)

			357	 	 	 }

			358	

			359	 	 default:

			360	 	 	 fmt.Printf("ast.Walk:	unexpected	node	type	%T",	n)

			361	 	 	 panic("ast.Walk")

			362	 	 }

			363	

			364	 	 v.Visit(nil)

			365	 }

			366	

			367	 type	inspector	func(Node)	bool

			368	

			369	 func	(f	inspector)	Visit(node	Node)	Visitor	{

			370	 	 if	f(node)	{

			371	 	 	 return	f

			372	 	 }

			373	 	 return	nil

			374	 }

			375	

			376	 //	Inspect	traverses	an	AST	in	depth-first	order:	It	starts	by	calling

			377	 //	f(node);	node	must	not	be	nil.	If	f	returns	true,	Inspect	invokes	f

			378	 //	for	all	the	non-nil	children	of	node,	recursively.

			379	 //

			380	 func	Inspect(node	Node,	f	func(Node)	bool)	{

			381	 	 Walk(inspector(f),	node)

			382	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/build/build.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	build

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "errors"

				10	 	 "fmt"

				11	 	 "go/ast"

				12	 	 "go/doc"

				13	 	 "go/parser"

				14	 	 "go/token"

				15	 	 "io"

				16	 	 "io/ioutil"

				17	 	 "log"

				18	 	 "os"

				19	 	 pathpkg	"path"

				20	 	 "path/filepath"

				21	 	 "runtime"

				22	 	 "sort"

				23	 	 "strconv"

				24	 	 "strings"

				25	 	 "unicode"

				26)

				27	

				28	 //	A	Context	specifies	the	supporting	context	for	a	build.

				29	 type	Context	struct	{

				30	 	 GOARCH						string			//	target	architecture

				31	 	 GOOS								string			//	target	operating	system

				32	 	 GOROOT						string			//	Go	root

				33	 	 GOPATH						string			//	Go	path

				34	 	 CgoEnabled		bool					//	whether	cgo	can	be	used

				35	 	 BuildTags			[]string	//	additional	tags	to	recognize	in	+build	lines

				36	 	 UseAllFiles	bool					//	use	files	regardless	of	+build	lines,	file	names

				37	 	 Compiler				string			//	compiler	to	assume	when	computing	target	paths

				38	

				39	 	 //	By	default,	Import	uses	the	operating	system's	file	system	calls

				40	 	 //	to	read	directories	and	files.		To	read	from	other	sources,

				41	 	 //	callers	can	set	the	following	functions.		They	all	have	default

				42	 	 //	behaviors	that	use	the	local	file	system,	so	clients	need	only	set

				43	 	 //	the	functions	whose	behaviors	they	wish	to	change.

				44	

				45	 	 //	JoinPath	joins	the	sequence	of	path	fragments	into	a	single	path.

				46	 	 //	If	JoinPath	is	nil,	Import	uses	filepath.Join.

				47	 	 JoinPath	func(elem	...string)	string

				48	

				49	 	 //	SplitPathList	splits	the	path	list	into	a	slice	of	individual	paths.

				50	 	 //	If	SplitPathList	is	nil,	Import	uses	filepath.SplitList.

				51	 	 SplitPathList	func(list	string)	[]string

				52	

				53	 	 //	IsAbsPath	reports	whether	path	is	an	absolute	path.

				54	 	 //	If	IsAbsPath	is	nil,	Import	uses	filepath.IsAbs.

				55	 	 IsAbsPath	func(path	string)	bool

				56	

				57	 	 //	IsDir	reports	whether	the	path	names	a	directory.

				58	 	 //	If	IsDir	is	nil,	Import	calls	os.Stat	and	uses	the	result's	IsDir	method.

				59	 	 IsDir	func(path	string)	bool

				60	

				61	 	 //	HasSubdir	reports	whether	dir	is	a	subdirectory	of

				62	 	 //	(perhaps	multiple	levels	below)	root.

				63	 	 //	If	so,	HasSubdir	sets	rel	to	a	slash-separated	path	that

				64	 	 //	can	be	joined	to	root	to	produce	a	path	equivalent	to	dir.

				65	 	 //	If	HasSubdir	is	nil,	Import	uses	an	implementation	built	on

				66	 	 //	filepath.EvalSymlinks.

				67	 	 HasSubdir	func(root,	dir	string)	(rel	string,	ok	bool)

				68	

				69	 	 //	ReadDir	returns	a	slice	of	os.FileInfo,	sorted	by	Name,

				70	 	 //	describing	the	content	of	the	named	directory.

				71	 	 //	If	ReadDir	is	nil,	Import	uses	io.ReadDir.

				72	 	 ReadDir	func(dir	string)	(fi	[]os.FileInfo,	err	error)

				73	

				74	 	 //	OpenFile	opens	a	file	(not	a	directory)	for	reading.

				75	 	 //	If	OpenFile	is	nil,	Import	uses	os.Open.

				76	 	 OpenFile	func(path	string)	(r	io.ReadCloser,	err	error)

				77	 }

				78	

				79	 //	joinPath	calls	ctxt.JoinPath	(if	not	nil)	or	else	filepath.Join.

				80	 func	(ctxt	*Context)	joinPath(elem	...string)	string	{

				81	 	 if	f	:=	ctxt.JoinPath;	f	!=	nil	{

				82	 	 	 return	f(elem...)

				83	 	 }

				84	 	 return	filepath.Join(elem...)

				85	 }

				86	

				87	 //	splitPathList	calls	ctxt.SplitPathList	(if	not	nil)	or	else	filepath.SplitList.

				88	 func	(ctxt	*Context)	splitPathList(s	string)	[]string	{

				89	 	 if	f	:=	ctxt.SplitPathList;	f	!=	nil	{

				90	 	 	 return	f(s)

				91	 	 }

				92	 	 return	filepath.SplitList(s)

				93	 }

				94	

				95	 //	isAbsPath	calls	ctxt.IsAbsSPath	(if	not	nil)	or	else	filepath.IsAbs.

				96	 func	(ctxt	*Context)	isAbsPath(path	string)	bool	{

				97	 	 if	f	:=	ctxt.IsAbsPath;	f	!=	nil	{

				98	 	 	 return	f(path)

				99	 	 }

			100	 	 return	filepath.IsAbs(path)

			101	 }

			102	

			103	 //	isDir	calls	ctxt.IsDir	(if	not	nil)	or	else	uses	os.Stat.

			104	 func	(ctxt	*Context)	isDir(path	string)	bool	{

			105	 	 if	f	:=	ctxt.IsDir;	f	!=	nil	{

			106	 	 	 return	f(path)

			107	 	 }

			108	 	 fi,	err	:=	os.Stat(path)

			109	 	 return	err	==	nil	&&	fi.IsDir()

			110	 }

			111	

			112	 //	hasSubdir	calls	ctxt.HasSubdir	(if	not	nil)	or	else	uses

			113	 //	the	local	file	system	to	answer	the	question.

			114	 func	(ctxt	*Context)	hasSubdir(root,	dir	string)	(rel	string,	ok	bool)	{

			115	 	 if	f	:=	ctxt.HasSubdir;	f	!=	nil	{

			116	 	 	 return	f(root,	dir)

			117	 	 }

			118	

			119	 	 if	p,	err	:=	filepath.EvalSymlinks(root);	err	==	nil	{

			120	 	 	 root	=	p

			121	 	 }

			122	 	 if	p,	err	:=	filepath.EvalSymlinks(dir);	err	==	nil	{

			123	 	 	 dir	=	p

			124	 	 }

			125	 	 const	sep	=	string(filepath.Separator)

			126	 	 root	=	filepath.Clean(root)

			127	 	 if	!strings.HasSuffix(root,	sep)	{

			128	 	 	 root	+=	sep

			129	 	 }

			130	 	 dir	=	filepath.Clean(dir)

			131	 	 if	!strings.HasPrefix(dir,	root)	{

			132	 	 	 return	"",	false

			133	 	 }

			134	 	 return	filepath.ToSlash(dir[len(root):]),	true

			135	 }

			136	

			137	 //	readDir	calls	ctxt.ReadDir	(if	not	nil)	or	else	ioutil.ReadDir.

			138	 func	(ctxt	*Context)	readDir(path	string)	([]os.FileInfo,	error)	{

			139	 	 if	f	:=	ctxt.ReadDir;	f	!=	nil	{

			140	 	 	 return	f(path)

			141	 	 }

			142	 	 return	ioutil.ReadDir(path)

			143	 }

			144	

			145	 //	openFile	calls	ctxt.OpenFile	(if	not	nil)	or	else	os.Open.

			146	 func	(ctxt	*Context)	openFile(path	string)	(io.ReadCloser,	error)	{

			147	 	 if	fn	:=	ctxt.OpenFile;	fn	!=	nil	{

			148	 	 	 return	fn(path)

			149	 	 }

			150	

			151	 	 f,	err	:=	os.Open(path)

			152	 	 if	err	!=	nil	{

			153	 	 	 return	nil,	err	//	nil	interface

			154	 	 }

			155	 	 return	f,	nil

			156	 }

			157	

			158	 //	isFile	determines	whether	path	is	a	file	by	trying	to	open	it.

			159	 //	It	reuses	openFile	instead	of	adding	another	function	to	the

			160	 //	list	in	Context.

			161	 func	(ctxt	*Context)	isFile(path	string)	bool	{

			162	 	 f,	err	:=	ctxt.openFile(path)

			163	 	 if	err	!=	nil	{

			164	 	 	 return	false

			165	 	 }

			166	 	 f.Close()

			167	 	 return	true

			168	 }

			169	

			170	 //	gopath	returns	the	list	of	Go	path	directories.

			171	 func	(ctxt	*Context)	gopath()	[]string	{

			172	 	 var	all	[]string

			173	 	 for	_,	p	:=	range	ctxt.splitPathList(ctxt.GOPATH)	{

			174	 	 	 if	p	==	""	||	p	==	ctxt.GOROOT	{

			175	 	 	 	 //	Empty	paths	are	uninteresting.

			176	 	 	 	 //	If	the	path	is	the	GOROOT,	ignore	it.

			177	 	 	 	 //	People	sometimes	set	GOPATH=$GOROOT,	which	is	useless

			178	 	 	 	 //	but	would	cause	us	to	find	packages	with	import	paths

			179	 	 	 	 //	like	"pkg/math".

			180	 	 	 	 //	Do	not	get	confused	by	this	common	mistake.

			181	 	 	 	 continue

			182	 	 	 }

			183	 	 	 all	=	append(all,	p)

			184	 	 }

			185	 	 return	all

			186	 }

			187	

			188	 //	SrcDirs	returns	a	list	of	package	source	root	directories.

			189	 //	It	draws	from	the	current	Go	root	and	Go	path	but	omits	directories

			190	 //	that	do	not	exist.

			191	 func	(ctxt	*Context)	SrcDirs()	[]string	{

			192	 	 var	all	[]string

			193	 	 if	ctxt.GOROOT	!=	""	{

			194	 	 	 dir	:=	ctxt.joinPath(ctxt.GOROOT,	"src",	"pkg")

			195	 	 	 if	ctxt.isDir(dir)	{

			196	 	 	 	 all	=	append(all,	dir)

			197	 	 	 }

			198	 	 }

			199	 	 for	_,	p	:=	range	ctxt.gopath()	{

			200	 	 	 dir	:=	ctxt.joinPath(p,	"src")

			201	 	 	 if	ctxt.isDir(dir)	{

			202	 	 	 	 all	=	append(all,	dir)

			203	 	 	 }

			204	 	 }

			205	 	 return	all

			206	 }

			207	

			208	 //	Default	is	the	default	Context	for	builds.

			209	 //	It	uses	the	GOARCH,	GOOS,	GOROOT,	and	GOPATH	environment	variables

			210	 //	if	set,	or	else	the	compiled	code's	GOARCH,	GOOS,	and	GOROOT.

			211	 var	Default	Context	=	defaultContext()

			212	

			213	 var	cgoEnabled	=	map[string]bool{

			214	 	 "darwin/386":				true,

			215	 	 "darwin/amd64":		true,

			216	 	 "linux/386":					true,

			217	 	 "linux/amd64":			true,

			218	 	 "freebsd/386":			true,

			219	 	 "freebsd/amd64":	true,

			220	 	 "windows/386":			true,

			221	 	 "windows/amd64":	true,

			222	 }

			223	

			224	 func	defaultContext()	Context	{

			225	 	 var	c	Context

			226	

			227	 	 c.GOARCH	=	envOr("GOARCH",	runtime.GOARCH)

			228	 	 c.GOOS	=	envOr("GOOS",	runtime.GOOS)

			229	 	 c.GOROOT	=	runtime.GOROOT()

			230	 	 c.GOPATH	=	envOr("GOPATH",	"")

			231	 	 c.Compiler	=	runtime.Compiler

			232	

			233	 	 switch	os.Getenv("CGO_ENABLED")	{

			234	 	 case	"1":

			235	 	 	 c.CgoEnabled	=	true

			236	 	 case	"0":

			237	 	 	 c.CgoEnabled	=	false

			238	 	 default:

			239	 	 	 c.CgoEnabled	=	cgoEnabled[c.GOOS+"/"+c.GOARCH]

			240	 	 }

			241	

			242	 	 return	c

			243	 }

			244	

			245	 func	envOr(name,	def	string)	string	{

			246	 	 s	:=	os.Getenv(name)

			247	 	 if	s	==	""	{

			248	 	 	 return	def

			249	 	 }

			250	 	 return	s

			251	 }

			252	

			253	 //	An	ImportMode	controls	the	behavior	of	the	Import	method.

			254	 type	ImportMode	uint

			255	

			256	 const	(

			257	 	 //	If	FindOnly	is	set,	Import	stops	after	locating	the	directory

			258	 	 //	that	should	contain	the	sources	for	a	package.		It	does	not

			259	 	 //	read	any	files	in	the	directory.

			260	 	 FindOnly	ImportMode	=	1	<<	iota

			261	

			262	 	 //	If	AllowBinary	is	set,	Import	can	be	satisfied	by	a	compiled

			263	 	 //	package	object	without	corresponding	sources.

			264	 	 AllowBinary

			265)

			266	

			267	 //	A	Package	describes	the	Go	package	found	in	a	directory.

			268	 type	Package	struct	{

			269	 	 Dir								string	//	directory	containing	package	sources

			270	 	 Name							string	//	package	name

			271	 	 Doc								string	//	documentation	synopsis

			272	 	 ImportPath	string	//	import	path	of	package	(""	if	unknown)

			273	 	 Root							string	//	root	of	Go	tree	where	this	package	lives

			274	 	 SrcRoot				string	//	package	source	root	directory	(""	if	unknown)

			275	 	 PkgRoot				string	//	package	install	root	directory	(""	if	unknown)

			276	 	 BinDir					string	//	command	install	directory	(""	if	unknown)

			277	 	 Goroot					bool			//	package	found	in	Go	root

			278	 	 PkgObj					string	//	installed	.a	file

			279	

			280	 	 //	Source	files

			281	 	 GoFiles			[]string	//	.go	source	files	(excluding	CgoFiles,	TestGoFiles,	XTestGoFiles)

			282	 	 CgoFiles		[]string	//	.go	source	files	that	import	"C"

			283	 	 CFiles				[]string	//	.c	source	files

			284	 	 HFiles				[]string	//	.h	source	files

			285	 	 SFiles				[]string	//	.s	source	files

			286	 	 SysoFiles	[]string	//	.syso	system	object	files	to	add	to	archive

			287	

			288	 	 //	Cgo	directives

			289	 	 CgoPkgConfig	[]string	//	Cgo	pkg-config	directives

			290	 	 CgoCFLAGS				[]string	//	Cgo	CFLAGS	directives

			291	 	 CgoLDFLAGS			[]string	//	Cgo	LDFLAGS	directives

			292	

			293	 	 //	Dependency	information

			294	 	 Imports			[]string																				//	imports	from	GoFiles,	CgoFiles

			295	 	 ImportPos	map[string][]token.Position	//	line	information	for	Imports

			296	

			297	 	 //	Test	information

			298	 	 TestGoFiles				[]string																				//	_test.go	files	in	package

			299	 	 TestImports				[]string																				//	imports	from	TestGoFiles

			300	 	 TestImportPos		map[string][]token.Position	//	line	information	for	TestImports

			301	 	 XTestGoFiles			[]string																				//	_test.go	files	outside	package

			302	 	 XTestImports			[]string																				//	imports	from	XTestGoFiles

			303	 	 XTestImportPos	map[string][]token.Position	//	line	information	for	XTestImports

			304	 }

			305	

			306	 //	IsCommand	reports	whether	the	package	is	considered	a

			307	 //	command	to	be	installed	(not	just	a	library).

			308	 //	Packages	named	"main"	are	treated	as	commands.

			309	 func	(p	*Package)	IsCommand()	bool	{

			310	 	 return	p.Name	==	"main"

			311	 }

			312	

			313	 //	ImportDir	is	like	Import	but	processes	the	Go	package	found	in

			314	 //	the	named	directory.

			315	 func	(ctxt	*Context)	ImportDir(dir	string,	mode	ImportMode)	(*Package,	error)	{

			316	 	 return	ctxt.Import(".",	dir,	mode)

			317	 }

			318	

			319	 //	NoGoError	is	the	error	used	by	Import	to	describe	a	directory

			320	 //	containing	no	Go	source	files.

			321	 type	NoGoError	struct	{

			322	 	 Dir	string

			323	 }

			324	

			325	 func	(e	*NoGoError)	Error()	string	{

			326	 	 return	"no	Go	source	files	in	"	+	e.Dir

			327	 }

			328	

			329	 //	Import	returns	details	about	the	Go	package	named	by	the	import	path,

			330	 //	interpreting	local	import	paths	relative	to	the	srcDir	directory.

			331	 //	If	the	path	is	a	local	import	path	naming	a	package	that	can	be	imported

			332	 //	using	a	standard	import	path,	the	returned	package	will	set	p.ImportPath

			333	 //	to	that	path.

			334	 //

			335	 //	In	the	directory	containing	the	package,	.go,	.c,	.h,	and	.s	files	are

			336	 //	considered	part	of	the	package	except	for:

			337	 //

			338	 //	 -	.go	files	in	package	documentation

			339	 //	 -	files	starting	with	_	or	.	(likely	editor	temporary	files)

			340	 //	 -	files	with	build	constraints	not	satisfied	by	the	context

			341	 //

			342	 //	If	an	error	occurs,	Import	returns	a	non-nil	error	also	returns	a	non-nil

			343	 //	*Package	containing	partial	information.

			344	 //

			345	 func	(ctxt	*Context)	Import(path	string,	srcDir	string,	mode	ImportMode)	(*Package,	error)	{

			346	 	 p	:=	&Package{

			347	 	 	 ImportPath:	path,

			348	 	 }

			349	

			350	 	 var	pkga	string

			351	 	 var	pkgerr	error

			352	 	 switch	ctxt.Compiler	{

			353	 	 case	"gccgo":

			354	 	 	 dir,	elem	:=	pathpkg.Split(p.ImportPath)

			355	 	 	 pkga	=	"pkg/gccgo/"	+	dir	+	"lib"	+	elem	+	".a"

			356	 	 case	"gc":

			357	 	 	 pkga	=	"pkg/"	+	ctxt.GOOS	+	"_"	+	ctxt.GOARCH	+	"/"	+	p.ImportPath	+	".a"

			358	 	 default:

			359	 	 	 //	Save	error	for	end	of	function.

			360	 	 	 pkgerr	=	fmt.Errorf("import	%q:	unknown	compiler	%q",	path,	ctxt.Compiler)

			361	 	 }

			362	

			363	 	 binaryOnly	:=	false

			364	 	 if	IsLocalImport(path)	{

			365	 	 	 pkga	=	""	//	local	imports	have	no	installed	path

			366	 	 	 if	srcDir	==	""	{

			367	 	 	 	 return	p,	fmt.Errorf("import	%q:	import	relative	to	unknown	directory",	path)

			368	 	 	 }

			369	 	 	 if	!ctxt.isAbsPath(path)	{

			370	 	 	 	 p.Dir	=	ctxt.joinPath(srcDir,	path)

			371	 	 	 }

			372	 	 	 //	Determine	canonical	import	path,	if	any.

			373	 	 	 if	ctxt.GOROOT	!=	""	{

			374	 	 	 	 root	:=	ctxt.joinPath(ctxt.GOROOT,	"src",	"pkg")

			375	 	 	 	 if	sub,	ok	:=	ctxt.hasSubdir(root,	p.Dir);	ok	{

			376	 	 	 	 	 p.Goroot	=	true

			377	 	 	 	 	 p.ImportPath	=	sub

			378	 	 	 	 	 p.Root	=	ctxt.GOROOT

			379	 	 	 	 	 goto	Found

			380	 	 	 	 }

			381	 	 	 }

			382	 	 	 all	:=	ctxt.gopath()

			383	 	 	 for	i,	root	:=	range	all	{

			384	 	 	 	 rootsrc	:=	ctxt.joinPath(root,	"src")

			385	 	 	 	 if	sub,	ok	:=	ctxt.hasSubdir(rootsrc,	p.Dir);	ok	{

			386	 	 	 	 	 //	We	found	a	potential	import	path	for	dir,

			387	 	 	 	 	 //	but	check	that	using	it	wouldn't	find	something

			388	 	 	 	 	 //	else	first.

			389	 	 	 	 	 if	ctxt.GOROOT	!=	""	{

			390	 	 	 	 	 	 if	dir	:=	ctxt.joinPath(ctxt.GOROOT,	"src",	"pkg",	sub);	ctxt.isDir(dir)	{

			391	 	 	 	 	 	 	 goto	Found

			392	 	 	 	 	 	 }

			393	 	 	 	 	 }

			394	 	 	 	 	 for	_,	earlyRoot	:=	range	all[:i]	{

			395	 	 	 	 	 	 if	dir	:=	ctxt.joinPath(earlyRoot,	"src",	sub);	ctxt.isDir(dir)	{

			396	 	 	 	 	 	 	 goto	Found

			397	 	 	 	 	 	 }

			398	 	 	 	 	 }

			399	

			400	 	 	 	 	 //	sub	would	not	name	some	other	directory	instead	of	this	one.

			401	 	 	 	 	 //	Record	it.

			402	 	 	 	 	 p.ImportPath	=	sub

			403	 	 	 	 	 p.Root	=	root

			404	 	 	 	 	 goto	Found

			405	 	 	 	 }

			406	 	 	 }

			407	 	 	 //	It's	okay	that	we	didn't	find	a	root	containing	dir.

			408	 	 	 //	Keep	going	with	the	information	we	have.

			409	 	 }	else	{

			410	 	 	 if	strings.HasPrefix(path,	"/")	{

			411	 	 	 	 return	p,	fmt.Errorf("import	%q:	cannot	import	absolute	path",	path)

			412	 	 	 }

			413	 	 	 //	Determine	directory	from	import	path.

			414	 	 	 if	ctxt.GOROOT	!=	""	{

			415	 	 	 	 dir	:=	ctxt.joinPath(ctxt.GOROOT,	"src",	"pkg",	path)

			416	 	 	 	 isDir	:=	ctxt.isDir(dir)

			417	 	 	 	 binaryOnly	=	!isDir	&&	mode&AllowBinary	!=	0	&&	pkga	!=	""	&&	ctxt.isFile(ctxt.joinPath(ctxt.GOROOT,	pkga))

			418	 	 	 	 if	isDir	||	binaryOnly	{

			419	 	 	 	 	 p.Dir	=	dir

			420	 	 	 	 	 p.Goroot	=	true

			421	 	 	 	 	 p.Root	=	ctxt.GOROOT

			422	 	 	 	 	 goto	Found

			423	 	 	 	 }

			424	 	 	 }

			425	 	 	 for	_,	root	:=	range	ctxt.gopath()	{

			426	 	 	 	 dir	:=	ctxt.joinPath(root,	"src",	path)

			427	 	 	 	 isDir	:=	ctxt.isDir(dir)

			428	 	 	 	 binaryOnly	=	!isDir	&&	mode&AllowBinary	!=	0	&&	pkga	!=	""	&&	ctxt.isFile(ctxt.joinPath(root,	pkga))

			429	 	 	 	 if	isDir	||	binaryOnly	{

			430	 	 	 	 	 p.Dir	=	dir

			431	 	 	 	 	 p.Root	=	root

			432	 	 	 	 	 goto	Found

			433	 	 	 	 }

			434	 	 	 }

			435	 	 	 return	p,	fmt.Errorf("import	%q:	cannot	find	package",	path)

			436	 	 }

			437	

			438	 Found:

			439	 	 if	p.Root	!=	""	{

			440	 	 	 if	p.Goroot	{

			441	 	 	 	 p.SrcRoot	=	ctxt.joinPath(p.Root,	"src",	"pkg")

			442	 	 	 }	else	{

			443	 	 	 	 p.SrcRoot	=	ctxt.joinPath(p.Root,	"src")

			444	 	 	 }

			445	 	 	 p.PkgRoot	=	ctxt.joinPath(p.Root,	"pkg")

			446	 	 	 p.BinDir	=	ctxt.joinPath(p.Root,	"bin")

			447	 	 	 if	pkga	!=	""	{

			448	 	 	 	 p.PkgObj	=	ctxt.joinPath(p.Root,	pkga)

			449	 	 	 }

			450	 	 }

			451	

			452	 	 if	mode&FindOnly	!=	0	{

			453	 	 	 return	p,	pkgerr

			454	 	 }

			455	 	 if	binaryOnly	&&	(mode&AllowBinary)	!=	0	{

			456	 	 	 return	p,	pkgerr

			457	 	 }

			458	

			459	 	 dirs,	err	:=	ctxt.readDir(p.Dir)

			460	 	 if	err	!=	nil	{

			461	 	 	 return	p,	err

			462	 	 }

			463	

			464	 	 var	Sfiles	[]string	//	files	with	".S"	(capital	S)

			465	 	 var	firstFile	string

			466	 	 imported	:=	make(map[string][]token.Position)

			467	 	 testImported	:=	make(map[string][]token.Position)

			468	 	 xTestImported	:=	make(map[string][]token.Position)

			469	 	 fset	:=	token.NewFileSet()

			470	 	 for	_,	d	:=	range	dirs	{

			471	 	 	 if	d.IsDir()	{

			472	 	 	 	 continue

			473	 	 	 }

			474	 	 	 name	:=	d.Name()

			475	 	 	 if	strings.HasPrefix(name,	"_")	||

			476	 	 	 	 strings.HasPrefix(name,	".")	{

			477	 	 	 	 continue

			478	 	 	 }

			479	 	 	 if	!ctxt.UseAllFiles	&&	!ctxt.goodOSArchFile(name)	{

			480	 	 	 	 continue

			481	 	 	 }

			482	

			483	 	 	 i	:=	strings.LastIndex(name,	".")

			484	 	 	 if	i	<	0	{

			485	 	 	 	 i	=	len(name)

			486	 	 	 }

			487	 	 	 ext	:=	name[i:]

			488	 	 	 switch	ext	{

			489	 	 	 case	".go",	".c",	".s",	".h",	".S":

			490	 	 	 	 //	tentatively	okay	-	read	to	make	sure

			491	 	 	 case	".syso":

			492	 	 	 	 //	binary	objects	to	add	to	package	archive

			493	 	 	 	 //	Likely	of	the	form	foo_windows.syso,	but

			494	 	 	 	 //	the	name	was	vetted	above	with	goodOSArchFile.

			495	 	 	 	 p.SysoFiles	=	append(p.SysoFiles,	name)

			496	 	 	 	 continue

			497	 	 	 default:

			498	 	 	 	 //	skip

			499	 	 	 	 continue

			500	 	 	 }

			501	

			502	 	 	 filename	:=	ctxt.joinPath(p.Dir,	name)

			503	 	 	 f,	err	:=	ctxt.openFile(filename)

			504	 	 	 if	err	!=	nil	{

			505	 	 	 	 return	p,	err

			506	 	 	 }

			507	 	 	 data,	err	:=	ioutil.ReadAll(f)

			508	 	 	 f.Close()

			509	 	 	 if	err	!=	nil	{

			510	 	 	 	 return	p,	fmt.Errorf("read	%s:	%v",	filename,	err)

			511	 	 	 }

			512	

			513	 	 	 //	Look	for	+build	comments	to	accept	or	reject	the	file.

			514	 	 	 if	!ctxt.UseAllFiles	&&	!ctxt.shouldBuild(data)	{

			515	 	 	 	 continue

			516	 	 	 }

			517	

			518	 	 	 //	Going	to	save	the	file.		For	non-Go	files,	can	stop	here.

			519	 	 	 switch	ext	{

			520	 	 	 case	".c":

			521	 	 	 	 p.CFiles	=	append(p.CFiles,	name)

			522	 	 	 	 continue

			523	 	 	 case	".h":

			524	 	 	 	 p.HFiles	=	append(p.HFiles,	name)

			525	 	 	 	 continue

			526	 	 	 case	".s":

			527	 	 	 	 p.SFiles	=	append(p.SFiles,	name)

			528	 	 	 	 continue

			529	 	 	 case	".S":

			530	 	 	 	 Sfiles	=	append(Sfiles,	name)

			531	 	 	 	 continue

			532	 	 	 }

			533	

			534	 	 	 pf,	err	:=	parser.ParseFile(fset,	filename,	data,	parser.ImportsOnly|parser.ParseComments)

			535	 	 	 if	err	!=	nil	{

			536	 	 	 	 return	p,	err

			537	 	 	 }

			538	

			539	 	 	 pkg	:=	string(pf.Name.Name)

			540	 	 	 if	pkg	==	"documentation"	{

			541	 	 	 	 continue

			542	 	 	 }

			543	

			544	 	 	 isTest	:=	strings.HasSuffix(name,	"_test.go")

			545	 	 	 isXTest	:=	false

			546	 	 	 if	isTest	&&	strings.HasSuffix(pkg,	"_test")	{

			547	 	 	 	 isXTest	=	true

			548	 	 	 	 pkg	=	pkg[:len(pkg)-len("_test")]

			549	 	 	 }

			550	

			551	 	 	 if	p.Name	==	""	{

			552	 	 	 	 p.Name	=	pkg

			553	 	 	 	 firstFile	=	name

			554	 	 	 }	else	if	pkg	!=	p.Name	{

			555	 	 	 	 return	p,	fmt.Errorf("found	packages	%s	(%s)	and	%s	(%s)	in	%s",	p.Name,	firstFile,	pkg,	name,	p.Dir)

			556	 	 	 }

			557	 	 	 if	pf.Doc	!=	nil	&&	p.Doc	==	""	{

			558	 	 	 	 p.Doc	=	doc.Synopsis(pf.Doc.Text())

			559	 	 	 }

			560	

			561	 	 	 //	Record	imports	and	information	about	cgo.

			562	 	 	 isCgo	:=	false

			563	 	 	 for	_,	decl	:=	range	pf.Decls	{

			564	 	 	 	 d,	ok	:=	decl.(*ast.GenDecl)

			565	 	 	 	 if	!ok	{

			566	 	 	 	 	 continue

			567	 	 	 	 }

			568	 	 	 	 for	_,	dspec	:=	range	d.Specs	{

			569	 	 	 	 	 spec,	ok	:=	dspec.(*ast.ImportSpec)

			570	 	 	 	 	 if	!ok	{

			571	 	 	 	 	 	 continue

			572	 	 	 	 	 }

			573	 	 	 	 	 quoted	:=	string(spec.Path.Value)

			574	 	 	 	 	 path,	err	:=	strconv.Unquote(quoted)

			575	 	 	 	 	 if	err	!=	nil	{

			576	 	 	 	 	 	 log.Panicf("%s:	parser	returned	invalid	quoted	string:	<%s>",	filename,	quoted)

			577	 	 	 	 	 }

			578	 	 	 	 	 if	isXTest	{

			579	 	 	 	 	 	 xTestImported[path]	=	append(xTestImported[path],	fset.Position(spec.Pos()))

			580	 	 	 	 	 }	else	if	isTest	{

			581	 	 	 	 	 	 testImported[path]	=	append(testImported[path],	fset.Position(spec.Pos()))

			582	 	 	 	 	 }	else	{

			583	 	 	 	 	 	 imported[path]	=	append(imported[path],	fset.Position(spec.Pos()))

			584	 	 	 	 	 }

			585	 	 	 	 	 if	path	==	"C"	{

			586	 	 	 	 	 	 if	isTest	{

			587	 	 	 	 	 	 	 return	p,	fmt.Errorf("use	of	cgo	in	test	%s	not	supported",	filename)

			588	 	 	 	 	 	 }

			589	 	 	 	 	 	 cg	:=	spec.Doc

			590	 	 	 	 	 	 if	cg	==	nil	&&	len(d.Specs)	==	1	{

			591	 	 	 	 	 	 	 cg	=	d.Doc

			592	 	 	 	 	 	 }

			593	 	 	 	 	 	 if	cg	!=	nil	{

			594	 	 	 	 	 	 	 if	err	:=	ctxt.saveCgo(filename,	p,	cg);	err	!=	nil	{

			595	 	 	 	 	 	 	 	 return	p,	err

			596	 	 	 	 	 	 	 }

			597	 	 	 	 	 	 }

			598	 	 	 	 	 	 isCgo	=	true

			599	 	 	 	 	 }

			600	 	 	 	 }

			601	 	 	 }

			602	 	 	 if	isCgo	{

			603	 	 	 	 if	ctxt.CgoEnabled	{

			604	 	 	 	 	 p.CgoFiles	=	append(p.CgoFiles,	name)

			605	 	 	 	 }

			606	 	 	 }	else	if	isXTest	{

			607	 	 	 	 p.XTestGoFiles	=	append(p.XTestGoFiles,	name)

			608	 	 	 }	else	if	isTest	{

			609	 	 	 	 p.TestGoFiles	=	append(p.TestGoFiles,	name)

			610	 	 	 }	else	{

			611	 	 	 	 p.GoFiles	=	append(p.GoFiles,	name)

			612	 	 	 }

			613	 	 }

			614	 	 if	p.Name	==	""	{

			615	 	 	 return	p,	&NoGoError{p.Dir}

			616	 	 }

			617	

			618	 	 p.Imports,	p.ImportPos	=	cleanImports(imported)

			619	 	 p.TestImports,	p.TestImportPos	=	cleanImports(testImported)

			620	 	 p.XTestImports,	p.XTestImportPos	=	cleanImports(xTestImported)

			621	

			622	 	 //	add	the	.S	files	only	if	we	are	using	cgo

			623	 	 //	(which	means	gcc	will	compile	them).

			624	 	 //	The	standard	assemblers	expect	.s	files.

			625	 	 if	len(p.CgoFiles)	>	0	{

			626	 	 	 p.SFiles	=	append(p.SFiles,	Sfiles...)

			627	 	 	 sort.Strings(p.SFiles)

			628	 	 }

			629	

			630	 	 return	p,	pkgerr

			631	 }

			632	

			633	 func	cleanImports(m	map[string][]token.Position)	([]string,	map[string][]token.Position)	{

			634	 	 all	:=	make([]string,	0,	len(m))

			635	 	 for	path	:=	range	m	{

			636	 	 	 all	=	append(all,	path)

			637	 	 }

			638	 	 sort.Strings(all)

			639	 	 return	all,	m

			640	 }

			641	

			642	 //	Import	is	shorthand	for	Default.Import.

			643	 func	Import(path,	srcDir	string,	mode	ImportMode)	(*Package,	error)	{

			644	 	 return	Default.Import(path,	srcDir,	mode)

			645	 }

			646	

			647	 //	ImportDir	is	shorthand	for	Default.ImportDir.

			648	 func	ImportDir(dir	string,	mode	ImportMode)	(*Package,	error)	{

			649	 	 return	Default.ImportDir(dir,	mode)

			650	 }

			651	

			652	 var	slashslash	=	[]byte("//")

			653	

			654	 //	shouldBuild	reports	whether	it	is	okay	to	use	this	file,

			655	 //	The	rule	is	that	in	the	file's	leading	run	of	//	comments

			656	 //	and	blank	lines,	which	must	be	followed	by	a	blank	line

			657	 //	(to	avoid	including	a	Go	package	clause	doc	comment),

			658	 //	lines	beginning	with	'//	+build'	are	taken	as	build	directives.

			659	 //

			660	 //	The	file	is	accepted	only	if	each	such	line	lists	something

			661	 //	matching	the	file.		For	example:

			662	 //

			663	 //	 //	+build	windows	linux

			664	 //

			665	 //	marks	the	file	as	applicable	only	on	Windows	and	Linux.

			666	 //

			667	 func	(ctxt	*Context)	shouldBuild(content	[]byte)	bool	{

			668	 	 //	Pass	1.	Identify	leading	run	of	//	comments	and	blank	lines,

			669	 	 //	which	must	be	followed	by	a	blank	line.

			670	 	 end	:=	0

			671	 	 p	:=	content

			672	 	 for	len(p)	>	0	{

			673	 	 	 line	:=	p

			674	 	 	 if	i	:=	bytes.IndexByte(line,	'\n');	i	>=	0	{

			675	 	 	 	 line,	p	=	line[:i],	p[i+1:]

			676	 	 	 }	else	{

			677	 	 	 	 p	=	p[len(p):]

			678	 	 	 }

			679	 	 	 line	=	bytes.TrimSpace(line)

			680	 	 	 if	len(line)	==	0	{	//	Blank	line

			681	 	 	 	 end	=	cap(content)	-	cap(line)	//	&line[0]	-	&content[0]

			682	 	 	 	 continue

			683	 	 	 }

			684	 	 	 if	!bytes.HasPrefix(line,	slashslash)	{	//	Not	comment	line

			685	 	 	 	 break

			686	 	 	 }

			687	 	 }

			688	 	 content	=	content[:end]

			689	

			690	 	 //	Pass	2.		Process	each	line	in	the	run.

			691	 	 p	=	content

			692	 	 for	len(p)	>	0	{

			693	 	 	 line	:=	p

			694	 	 	 if	i	:=	bytes.IndexByte(line,	'\n');	i	>=	0	{

			695	 	 	 	 line,	p	=	line[:i],	p[i+1:]

			696	 	 	 }	else	{

			697	 	 	 	 p	=	p[len(p):]

			698	 	 	 }

			699	 	 	 line	=	bytes.TrimSpace(line)

			700	 	 	 if	bytes.HasPrefix(line,	slashslash)	{

			701	 	 	 	 line	=	bytes.TrimSpace(line[len(slashslash):])

			702	 	 	 	 if	len(line)	>	0	&&	line[0]	==	'+'	{

			703	 	 	 	 	 //	Looks	like	a	comment	+line.

			704	 	 	 	 	 f	:=	strings.Fields(string(line))

			705	 	 	 	 	 if	f[0]	==	"+build"	{

			706	 	 	 	 	 	 ok	:=	false

			707	 	 	 	 	 	 for	_,	tok	:=	range	f[1:]	{

			708	 	 	 	 	 	 	 if	ctxt.match(tok)	{

			709	 	 	 	 	 	 	 	 ok	=	true

			710	 	 	 	 	 	 	 	 break

			711	 	 	 	 	 	 	 }

			712	 	 	 	 	 	 }

			713	 	 	 	 	 	 if	!ok	{

			714	 	 	 	 	 	 	 return	false	

			715	 	 	 	 	 	 }

			716	 	 	 	 	 }

			717	 	 	 	 }

			718	 	 	 }

			719	 	 }

			720	 	 return	true	//	everything	matches

			721	 }

			722	

			723	 //	saveCgo	saves	the	information	from	the	#cgo	lines	in	the	import	"C"	comment.

			724	 //	These	lines	set	CFLAGS	and	LDFLAGS	and	pkg-config	directives	that	affect

			725	 //	the	way	cgo's	C	code	is	built.

			726	 //

			727	 //	TODO(rsc):	This	duplicates	code	in	cgo.

			728	 //	Once	the	dust	settles,	remove	this	code	from	cgo.

			729	 func	(ctxt	*Context)	saveCgo(filename	string,	di	*Package,	cg	*ast.CommentGroup)	error	{

			730	 	 text	:=	cg.Text()

			731	 	 for	_,	line	:=	range	strings.Split(text,	"\n")	{

			732	 	 	 orig	:=	line

			733	

			734	 	 	 //	Line	is

			735	 	 	 //	 #cgo	[GOOS/GOARCH...]	LDFLAGS:	stuff

			736	 	 	 //

			737	 	 	 line	=	strings.TrimSpace(line)

			738	 	 	 if	len(line)	<	5	||	line[:4]	!=	"#cgo"	||	(line[4]	!=	'	'	&&	line[4]	!=	'\t')	{

			739	 	 	 	 continue

			740	 	 	 }

			741	

			742	 	 	 //	Split	at	colon.

			743	 	 	 line	=	strings.TrimSpace(line[4:])

			744	 	 	 i	:=	strings.Index(line,	":")

			745	 	 	 if	i	<	0	{

			746	 	 	 	 return	fmt.Errorf("%s:	invalid	#cgo	line:	%s",	filename,	orig)

			747	 	 	 }

			748	 	 	 line,	argstr	:=	line[:i],	line[i+1:]

			749	

			750	 	 	 //	Parse	GOOS/GOARCH	stuff.

			751	 	 	 f	:=	strings.Fields(line)

			752	 	 	 if	len(f)	<	1	{

			753	 	 	 	 return	fmt.Errorf("%s:	invalid	#cgo	line:	%s",	filename,	orig)

			754	 	 	 }

			755	

			756	 	 	 cond,	verb	:=	f[:len(f)-1],	f[len(f)-1]

			757	 	 	 if	len(cond)	>	0	{

			758	 	 	 	 ok	:=	false

			759	 	 	 	 for	_,	c	:=	range	cond	{

			760	 	 	 	 	 if	ctxt.match(c)	{

			761	 	 	 	 	 	 ok	=	true

			762	 	 	 	 	 	 break

			763	 	 	 	 	 }

			764	 	 	 	 }

			765	 	 	 	 if	!ok	{

			766	 	 	 	 	 continue

			767	 	 	 	 }

			768	 	 	 }

			769	

			770	 	 	 args,	err	:=	splitQuoted(argstr)

			771	 	 	 if	err	!=	nil	{

			772	 	 	 	 return	fmt.Errorf("%s:	invalid	#cgo	line:	%s",	filename,	orig)

			773	 	 	 }

			774	 	 	 for	_,	arg	:=	range	args	{

			775	 	 	 	 if	!safeName(arg)	{

			776	 	 	 	 	 return	fmt.Errorf("%s:	malformed	#cgo	argument:	%s",	filename,	arg)

			777	 	 	 	 }

			778	 	 	 }

			779	

			780	 	 	 switch	verb	{

			781	 	 	 case	"CFLAGS":

			782	 	 	 	 di.CgoCFLAGS	=	append(di.CgoCFLAGS,	args...)

			783	 	 	 case	"LDFLAGS":

			784	 	 	 	 di.CgoLDFLAGS	=	append(di.CgoLDFLAGS,	args...)

			785	 	 	 case	"pkg-config":

			786	 	 	 	 di.CgoPkgConfig	=	append(di.CgoPkgConfig,	args...)

			787	 	 	 default:

			788	 	 	 	 return	fmt.Errorf("%s:	invalid	#cgo	verb:	%s",	filename,	orig)

			789	 	 	 }

			790	 	 }

			791	 	 return	nil

			792	 }

			793	

			794	 var	safeBytes	=	[]byte("+-.,/0123456789=ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz:")

			795	

			796	 func	safeName(s	string)	bool	{

			797	 	 if	s	==	""	{

			798	 	 	 return	false

			799	 	 }

			800	 	 for	i	:=	0;	i	<	len(s);	i++	{

			801	 	 	 if	c	:=	s[i];	c	<	0x80	&&	bytes.IndexByte(safeBytes,	c)	<	0	{

			802	 	 	 	 return	false

			803	 	 	 }

			804	 	 }

			805	 	 return	true

			806	 }

			807	

			808	 //	splitQuoted	splits	the	string	s	around	each	instance	of	one	or	more	consecutive

			809	 //	white	space	characters	while	taking	into	account	quotes	and	escaping,	and

			810	 //	returns	an	array	of	substrings	of	s	or	an	empty	list	if	s	contains	only	white	space.

			811	 //	Single	quotes	and	double	quotes	are	recognized	to	prevent	splitting	within	the

			812	 //	quoted	region,	and	are	removed	from	the	resulting	substrings.	If	a	quote	in	s

			813	 //	isn't	closed	err	will	be	set	and	r	will	have	the	unclosed	argument	as	the

			814	 //	last	element.		The	backslash	is	used	for	escaping.

			815	 //

			816	 //	For	example,	the	following	string:

			817	 //

			818	 //					a	b:"c	d"	'e''f'		"g\""

			819	 //

			820	 //	Would	be	parsed	as:

			821	 //

			822	 //					[]string{"a",	"b:c	d",	"ef",	`g"`}

			823	 //

			824	 func	splitQuoted(s	string)	(r	[]string,	err	error)	{

			825	 	 var	args	[]string

			826	 	 arg	:=	make([]rune,	len(s))

			827	 	 escaped	:=	false

			828	 	 quoted	:=	false

			829	 	 quote	:=	'\x00'

			830	 	 i	:=	0

			831	 	 for	_,	rune	:=	range	s	{

			832	 	 	 switch	{

			833	 	 	 case	escaped:

			834	 	 	 	 escaped	=	false

			835	 	 	 case	rune	==	'\\':

			836	 	 	 	 escaped	=	true

			837	 	 	 	 continue

			838	 	 	 case	quote	!=	'\x00':

			839	 	 	 	 if	rune	==	quote	{

			840	 	 	 	 	 quote	=	'\x00'

			841	 	 	 	 	 continue

			842	 	 	 	 }

			843	 	 	 case	rune	==	'"'	||	rune	==	'\'':

			844	 	 	 	 quoted	=	true

			845	 	 	 	 quote	=	rune

			846	 	 	 	 continue

			847	 	 	 case	unicode.IsSpace(rune):

			848	 	 	 	 if	quoted	||	i	>	0	{

			849	 	 	 	 	 quoted	=	false

			850	 	 	 	 	 args	=	append(args,	string(arg[:i]))

			851	 	 	 	 	 i	=	0

			852	 	 	 	 }

			853	 	 	 	 continue

			854	 	 	 }

			855	 	 	 arg[i]	=	rune

			856	 	 	 i++

			857	 	 }

			858	 	 if	quoted	||	i	>	0	{

			859	 	 	 args	=	append(args,	string(arg[:i]))

			860	 	 }

			861	 	 if	quote	!=	0	{

			862	 	 	 err	=	errors.New("unclosed	quote")

			863	 	 }	else	if	escaped	{

			864	 	 	 err	=	errors.New("unfinished	escaping")

			865	 	 }

			866	 	 return	args,	err

			867	 }

			868	

			869	 //	match	returns	true	if	the	name	is	one	of:

			870	 //

			871	 //	 $GOOS

			872	 //	 $GOARCH

			873	 //	 cgo	(if	cgo	is	enabled)

			874	 //	 !cgo	(if	cgo	is	disabled)

			875	 //	 tag	(if	tag	is	listed	in	ctxt.BuildTags)

			876	 //	 !tag	(if	tag	is	not	listed	in	ctxt.BuildTags)

			877	 //	 a	comma-separated	list	of	any	of	these

			878	 //

			879	 func	(ctxt	*Context)	match(name	string)	bool	{

			880	 	 if	name	==	""	{

			881	 	 	 return	false

			882	 	 }

			883	 	 if	i	:=	strings.Index(name,	",");	i	>=	0	{

			884	 	 	 //	comma-separated	list

			885	 	 	 return	ctxt.match(name[:i])	&&	ctxt.match(name[i+1:])

			886	 	 }

			887	 	 if	strings.HasPrefix(name,	"!!")	{	//	bad	syntax,	reject	always

			888	 	 	 return	false

			889	 	 }

			890	 	 if	strings.HasPrefix(name,	"!")	{	//	negation

			891	 	 	 return	len(name)	>	1	&&	!ctxt.match(name[1:])

			892	 	 }

			893	

			894	 	 //	Tags	must	be	letters,	digits,	underscores.

			895	 	 //	Unlike	in	Go	identifiers,	all	digits	are	fine	(e.g.,	"386").

			896	 	 for	_,	c	:=	range	name	{

			897	 	 	 if	!unicode.IsLetter(c)	&&	!unicode.IsDigit(c)	&&	c	!=	'_'	{

			898	 	 	 	 return	false

			899	 	 	 }

			900	 	 }

			901	

			902	 	 //	special	tags

			903	 	 if	ctxt.CgoEnabled	&&	name	==	"cgo"	{

			904	 	 	 return	true

			905	 	 }

			906	 	 if	name	==	ctxt.GOOS	||	name	==	ctxt.GOARCH	{

			907	 	 	 return	true

			908	 	 }

			909	

			910	 	 //	other	tags

			911	 	 for	_,	tag	:=	range	ctxt.BuildTags	{

			912	 	 	 if	tag	==	name	{

			913	 	 	 	 return	true

			914	 	 	 }

			915	 	 }

			916	

			917	 	 return	false

			918	 }

			919	

			920	 //	goodOSArchFile	returns	false	if	the	name	contains	a	$GOOS	or	$GOARCH

			921	 //	suffix	which	does	not	match	the	current	system.

			922	 //	The	recognized	name	formats	are:

			923	 //

			924	 //					name_$(GOOS).*

			925	 //					name_$(GOARCH).*

			926	 //					name_$(GOOS)_$(GOARCH).*

			927	 //					name_$(GOOS)_test.*

			928	 //					name_$(GOARCH)_test.*

			929	 //					name_$(GOOS)_$(GOARCH)_test.*

			930	 //

			931	 func	(ctxt	*Context)	goodOSArchFile(name	string)	bool	{

			932	 	 if	dot	:=	strings.Index(name,	".");	dot	!=	-1	{

			933	 	 	 name	=	name[:dot]

			934	 	 }

			935	 	 l	:=	strings.Split(name,	"_")

			936	 	 if	n	:=	len(l);	n	>	0	&&	l[n-1]	==	"test"	{

			937	 	 	 l	=	l[:n-1]

			938	 	 }

			939	 	 n	:=	len(l)

			940	 	 if	n	>=	2	&&	knownOS[l[n-2]]	&&	knownArch[l[n-1]]	{

			941	 	 	 return	l[n-2]	==	ctxt.GOOS	&&	l[n-1]	==	ctxt.GOARCH

			942	 	 }

			943	 	 if	n	>=	1	&&	knownOS[l[n-1]]	{

			944	 	 	 return	l[n-1]	==	ctxt.GOOS

			945	 	 }

			946	 	 if	n	>=	1	&&	knownArch[l[n-1]]	{

			947	 	 	 return	l[n-1]	==	ctxt.GOARCH

			948	 	 }

			949	 	 return	true

			950	 }

			951	

			952	 var	knownOS	=	make(map[string]bool)

			953	 var	knownArch	=	make(map[string]bool)

			954	

			955	 func	init()	{

			956	 	 for	_,	v	:=	range	strings.Fields(goosList)	{

			957	 	 	 knownOS[v]	=	true

			958	 	 }

			959	 	 for	_,	v	:=	range	strings.Fields(goarchList)	{

			960	 	 	 knownArch[v]	=	true

			961	 	 }

			962	 }

			963	

			964	 //	ToolDir	is	the	directory	containing	build	tools.

			965	 var	ToolDir	=	filepath.Join(runtime.GOROOT(),	"pkg/tool/"+runtime.GOOS+"_"+runtime.GOARCH)

			966	

			967	 //	IsLocalImport	reports	whether	the	import	path	is

			968	 //	a	local	import	path,	like	".",	"..",	"./foo",	or	"../foo".

			969	 func	IsLocalImport(path	string)	bool	{

			970	 	 return	path	==	"."	||	path	==	".."	||

			971	 	 	 strings.HasPrefix(path,	"./")	||	strings.HasPrefix(path,	"../")

			972	 }

			973	

			974	 //	ArchChar	returns	the	architecture	character	for	the	given	goarch.

			975	 //	For	example,	ArchChar("amd64")	returns	"6".

			976	 func	ArchChar(goarch	string)	(string,	error)	{

			977	 	 switch	goarch	{

			978	 	 case	"386":

			979	 	 	 return	"8",	nil

			980	 	 case	"amd64":

			981	 	 	 return	"6",	nil

			982	 	 case	"arm":

			983	 	 	 return	"5",	nil

			984	 	 }

			985	 	 return	"",	errors.New("unsupported	GOARCH	"	+	goarch)

			986	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/build/doc.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	build	gathers	information	about	Go	packages.

					6	 //

					7	 //	Go	Path

					8	 //

					9	 //	The	Go	path	is	a	list	of	directory	trees	containing	Go	source	code.

				10	 //	It	is	consulted	to	resolve	imports	that	cannot	be	found	in	the	standard

				11	 //	Go	tree.		The	default	path	is	the	value	of	the	GOPATH	environment

				12	 //	variable,	interpreted	as	a	path	list	appropriate	to	the	operating	system

				13	 //	(on	Unix,	the	variable	is	a	colon-separated	string;

				14	 //	on	Windows,	a	semicolon-separated	string;

				15	 //	on	Plan	9,	a	list).

				16	 //

				17	 //	Each	directory	listed	in	the	Go	path	must	have	a	prescribed	structure:

				18	 //

				19	 //	The	src/	directory	holds	source	code.		The	path	below	'src'	determines

				20	 //	the	import	path	or	executable	name.

				21	 //

				22	 //	The	pkg/	directory	holds	installed	package	objects.

				23	 //	As	in	the	Go	tree,	each	target	operating	system	and

				24	 //	architecture	pair	has	its	own	subdirectory	of	pkg

				25	 //	(pkg/GOOS_GOARCH).

				26	 //	

				27	 //	If	DIR	is	a	directory	listed	in	the	Go	path,	a	package	with

				28	 //	source	in	DIR/src/foo/bar	can	be	imported	as	"foo/bar"	and

				29	 //	has	its	compiled	form	installed	to	"DIR/pkg/GOOS_GOARCH/foo/bar.a"

				30	 //	(or,	for	gccgo,	"DIR/pkg/gccgo/foo/libbar.a").

				31	 //	

				32	 //	The	bin/	directory	holds	compiled	commands.

				33	 //	Each	command	is	named	for	its	source	directory,	but	only

				34	 //	using	the	final	element,	not	the	entire	path.		That	is,	the

				35	 //	command	with	source	in	DIR/src/foo/quux	is	installed	into

				36	 //	DIR/bin/quux,	not	DIR/bin/foo/quux.		The	foo/	is	stripped

				37	 //	so	that	you	can	add	DIR/bin	to	your	PATH	to	get	at	the

				38	 //	installed	commands.

				39	 //	

				40	 //	Here's	an	example	directory	layout:

				41	 //	

				42	 //	 GOPATH=/home/user/gocode

				43	 //	

				44	 //	 /home/user/gocode/

				45	 //	 				src/

				46	 //	 								foo/

				47	 //	 												bar/															(go	code	in	package	bar)

				48	 //	 																x.go

				49	 //	 												quux/														(go	code	in	package	main)

				50	 //	 																y.go

				51	 //	 				bin/

				52	 //	 								quux																			(installed	command)

				53	 //	 				pkg/

				54	 //	 								linux_amd64/

				55	 //	 												foo/

				56	 //	 																bar.a										(installed	package	object)

				57	 //

				58	 //	Build	Constraints

				59	 //

				60	 //	A	build	constraint	is	a	line	comment	beginning	with	the	directive	+build

				61	 //	that	lists	the	conditions	under	which	a	file	should	be	included	in	the	package.

				62	 //	Constraints	may	appear	in	any	kind	of	source	file	(not	just	Go),	but

				63	 //	they	must	be	appear	near	the	top	of	the	file,	preceded

				64	 //	only	by	blank	lines	and	other	line	comments.

				65	 //

				66	 //	A	build	constraint	is	evaluated	as	the	OR	of	space-separated	options;

				67	 //	each	option	evaluates	as	the	AND	of	its	comma-separated	terms;

				68	 //	and	each	term	is	an	alphanumeric	word	or,	preceded	by	!,	its	negation.

				69	 //	That	is,	the	build	constraint:

				70	 //

				71	 //	 //	+build	linux,386	darwin,!cgo

				72	 //

				73	 //	corresponds	to	the	boolean	formula:

				74	 //

				75	 //	 (linux	AND	386)	OR	(darwin	AND	(NOT	cgo))

				76	 //

				77	 //	During	a	particular	build,	the	following	words	are	satisfied:

				78	 //

				79	 //	 -	the	target	operating	system,	as	spelled	by	runtime.GOOS

				80	 //	 -	the	target	architecture,	as	spelled	by	runtime.GOARCH

				81	 //	 -	"cgo",	if	ctxt.CgoEnabled	is	true

				82	 //	 -	any	additional	words	listed	in	ctxt.BuildTags

				83	 //

				84	 //	If	a	file's	name,	after	stripping	the	extension	and	a	possible	_test	suffix,

				85	 //	matches	*_GOOS,	*_GOARCH,	or	*_GOOS_GOARCH	for	any	known	operating

				86	 //	system	and	architecture	values,	then	the	file	is	considered	to	have	an	implicit

				87	 //	build	constraint	requiring	those	terms.

				88	 //

				89	 //	To	keep	a	file	from	being	considered	for	the	build:

				90	 //

				91	 //	 //	+build	ignore

				92	 //

				93	 //	(any	other	unsatisfied	word	will	work	as	well,	but	``ignore''	is	conventional.)

				94	 //

				95	 //	To	build	a	file	only	when	using	cgo,	and	only	on	Linux	and	OS	X:

				96	 //

				97	 //	 //	+build	linux,cgo	darwin,cgo

				98	 //

				99	 //	Such	a	file	is	usually	paired	with	another	file	implementing	the

			100	 //	default	functionality	for	other	systems,	which	in	this	case	would

			101	 //	carry	the	constraint:

			102	 //

			103	 //	 //	+build	!linux	!darwin	!cgo

			104	 //

			105	 //	Naming	a	file	dns_windows.go	will	cause	it	to	be	included	only	when

			106	 //	building	the	package	for	Windows;	similarly,	math_386.s	will	be	included

			107	 //	only	when	building	the	package	for	32-bit	x86.

			108	 //

			109	 package	build

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/build/syslist.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	build

					6	

					7	 const	goosList	=	"darwin	freebsd	linux	netbsd	openbsd	plan9	windows	"

					8	 const	goarchList	=	"386	amd64	arm	"

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/go/doc/comment.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Godoc	comment	extraction	and	comment	->	HTML	formatting.

					6	

					7	 package	doc

					8	

					9	 import	(

				10	 	 "io"

				11	 	 "regexp"

				12	 	 "strings"

				13	 	 "text/template"	//	for	HTMLEscape

				14	 	 "unicode"

				15	 	 "unicode/utf8"

				16)

				17	

				18	 var	(

				19	 	 ldquo	=	[]byte("“")

				20	 	 rdquo	=	[]byte("”")

				21)

				22	

				23	 //	Escape	comment	text	for	HTML.	If	nice	is	set,

				24	 //	also	turn	``	into	“	and	''	into	”.

				25	 func	commentEscape(w	io.Writer,	text	string,	nice	bool)	{

				26	 	 last	:=	0

				27	 	 if	nice	{

				28	 	 	 for	i	:=	0;	i	<	len(text)-1;	i++	{

				29	 	 	 	 ch	:=	text[i]

				30	 	 	 	 if	ch	==	text[i+1]	&&	(ch	==	'`'	||	ch	==	'\'')	{

				31	 	 	 	 	 template.HTMLEscape(w,	[]byte(text[last:i]))

				32	 	 	 	 	 last	=	i	+	2

				33	 	 	 	 	 switch	ch	{

				34	 	 	 	 	 case	'`':

				35	 	 	 	 	 	 w.Write(ldquo)

				36	 	 	 	 	 case	'\'':

				37	 	 	 	 	 	 w.Write(rdquo)

				38	 	 	 	 	 }

				39	 	 	 	 	 i++	//	loop	will	add	one	more

				40	 	 	 	 }

				41	 	 	 }

				42	 	 }

				43	 	 template.HTMLEscape(w,	[]byte(text[last:]))

				44	 }

				45	

				46	 const	(

				47	 	 //	Regexp	for	Go	identifiers

				48	 	 identRx	=	`[a-zA-Z_][a-zA-Z_0-9]*`	//	TODO(gri)	ASCII	only	for	now	-	fix	this

				49	

				50	 	 //	Regexp	for	URLs

				51	 	 protocol	=	`(https?|ftp|file|gopher|mailto|news|nntp|telnet|wais|prospero):`

				52	 	 hostPart	=	`[a-zA-Z0-9_@\-]+`

				53	 	 filePart	=	`[a-zA-Z0-9_?%#~&/\-+=]+`

				54	 	 urlRx				=	protocol	+	`//`	+	//	http://

				55	 	 	 hostPart	+	`([.:]`	+	hostPart	+	`)*/?`	+	//	//www.google.com:8080/

				56	 	 	 filePart	+	`([:.,]`	+	filePart	+	`)*`

				57)

				58	

				59	 var	matchRx	=	regexp.MustCompile(`(`	+	urlRx	+	`)|(`	+	identRx	+	`)`)

				60	

				61	 var	(

				62	 	 html_a						=	[]byte(`<a	href="`)

				63	 	 html_aq					=	[]byte(`">`)

				64	 	 html_enda			=	[]byte("")

				65	 	 html_i						=	[]byte("<i>")

				66	 	 html_endi			=	[]byte("</i>")

				67	 	 html_p						=	[]byte("<p>\n")

				68	 	 html_endp			=	[]byte("</p>\n")

				69	 	 html_pre				=	[]byte("<pre>")

				70	 	 html_endpre	=	[]byte("</pre>\n")

				71	 	 html_h						=	[]byte(`<h3	id="`)

				72	 	 html_hq					=	[]byte(`">`)

				73	 	 html_endh			=	[]byte("</h3>\n")

				74)

				75	

				76	 //	Emphasize	and	escape	a	line	of	text	for	HTML.	URLs	are	converted	into	links;

				77	 //	if	the	URL	also	appears	in	the	words	map,	the	link	is	taken	from	the	map	(if

				78	 //	the	corresponding	map	value	is	the	empty	string,	the	URL	is	not	converted

				79	 //	into	a	link).	Go	identifiers	that	appear	in	the	words	map	are	italicized;	if

				80	 //	the	corresponding	map	value	is	not	the	empty	string,	it	is	considered	a	URL

				81	 //	and	the	word	is	converted	into	a	link.	If	nice	is	set,	the	remaining	text's

				82	 //	appearance	is	improved	where	it	makes	sense	(e.g.,	``	is	turned	into	“

				83	 //	and	''	into	”).

				84	 func	emphasize(w	io.Writer,	line	string,	words	map[string]string,	nice	bool)	{

				85	 	 for	{

				86	 	 	 m	:=	matchRx.FindStringSubmatchIndex(line)

				87	 	 	 if	m	==	nil	{

				88	 	 	 	 break

				89	 	 	 }

				90	 	 	 //	m	>=	6	(two	parenthesized	sub-regexps	in	matchRx,	1st	one	is	urlRx)

				91	

				92	 	 	 //	write	text	before	match

				93	 	 	 commentEscape(w,	line[0:m[0]],	nice)

				94	

				95	 	 	 //	analyze	match

				96	 	 	 match	:=	line[m[0]:m[1]]

				97	 	 	 url	:=	""

				98	 	 	 italics	:=	false

				99	 	 	 if	words	!=	nil	{

			100	 	 	 	 url,	italics	=	words[string(match)]

			101	 	 	 }

			102	 	 	 if	m[2]	>=	0	{

			103	 	 	 	 //	match	against	first	parenthesized	sub-regexp;	must	be	match	against	urlRx

			104	 	 	 	 if	!italics	{

			105	 	 	 	 	 //	no	alternative	URL	in	words	list,	use	match	instead

			106	 	 	 	 	 url	=	string(match)

			107	 	 	 	 }

			108	 	 	 	 italics	=	false	//	don't	italicize	URLs

			109	 	 	 }

			110	

			111	 	 	 //	write	match

			112	 	 	 if	len(url)	>	0	{

			113	 	 	 	 w.Write(html_a)

			114	 	 	 	 template.HTMLEscape(w,	[]byte(url))

			115	 	 	 	 w.Write(html_aq)

			116	 	 	 }

			117	 	 	 if	italics	{

			118	 	 	 	 w.Write(html_i)

			119	 	 	 }

			120	 	 	 commentEscape(w,	match,	nice)

			121	 	 	 if	italics	{

			122	 	 	 	 w.Write(html_endi)

			123	 	 	 }

			124	 	 	 if	len(url)	>	0	{

			125	 	 	 	 w.Write(html_enda)

			126	 	 	 }

			127	

			128	 	 	 //	advance

			129	 	 	 line	=	line[m[1]:]

			130	 	 }

			131	 	 commentEscape(w,	line,	nice)

			132	 }

			133	

			134	 func	indentLen(s	string)	int	{

			135	 	 i	:=	0

			136	 	 for	i	<	len(s)	&&	(s[i]	==	'	'	||	s[i]	==	'\t')	{

			137	 	 	 i++

			138	 	 }

			139	 	 return	i

			140	 }

			141	

			142	 func	isBlank(s	string)	bool	{

			143	 	 return	len(s)	==	0	||	(len(s)	==	1	&&	s[0]	==	'\n')

			144	 }

			145	

			146	 func	commonPrefix(a,	b	string)	string	{

			147	 	 i	:=	0

			148	 	 for	i	<	len(a)	&&	i	<	len(b)	&&	a[i]	==	b[i]	{

			149	 	 	 i++

			150	 	 }

			151	 	 return	a[0:i]

			152	 }

			153	

			154	 func	unindent(block	[]string)	{

			155	 	 if	len(block)	==	0	{

			156	 	 	 return

			157	 	 }

			158	

			159	 	 //	compute	maximum	common	white	prefix

			160	 	 prefix	:=	block[0][0:indentLen(block[0])]

			161	 	 for	_,	line	:=	range	block	{

			162	 	 	 if	!isBlank(line)	{

			163	 	 	 	 prefix	=	commonPrefix(prefix,	line[0:indentLen(line)])

			164	 	 	 }

			165	 	 }

			166	 	 n	:=	len(prefix)

			167	

			168	 	 //	remove

			169	 	 for	i,	line	:=	range	block	{

			170	 	 	 if	!isBlank(line)	{

			171	 	 	 	 block[i]	=	line[n:]

			172	 	 	 }

			173	 	 }

			174	 }

			175	

			176	 //	heading	returns	the	trimmed	line	if	it	passes	as	a	section	heading;

			177	 //	otherwise	it	returns	the	empty	string.	

			178	 func	heading(line	string)	string	{

			179	 	 line	=	strings.TrimSpace(line)

			180	 	 if	len(line)	==	0	{

			181	 	 	 return	""

			182	 	 }

			183	

			184	 	 //	a	heading	must	start	with	an	uppercase	letter

			185	 	 r,	_	:=	utf8.DecodeRuneInString(line)

			186	 	 if	!unicode.IsLetter(r)	||	!unicode.IsUpper(r)	{

			187	 	 	 return	""

			188	 	 }

			189	

			190	 	 //	it	must	end	in	a	letter	or	digit:

			191	 	 r,	_	=	utf8.DecodeLastRuneInString(line)

			192	 	 if	!unicode.IsLetter(r)	&&	!unicode.IsDigit(r)	{

			193	 	 	 return	""

			194	 	 }

			195	

			196	 	 //	exclude	lines	with	illegal	characters

			197	 	 if	strings.IndexAny(line,	",.;:!?+*/=()[]{}_^°&§~%#@<\">\\")	>=	0	{

			198	 	 	 return	""

			199	 	 }

			200	

			201	 	 //	allow	"'"	for	possessive	"'s"	only

			202	 	 for	b	:=	line;	;	{

			203	 	 	 i	:=	strings.IndexRune(b,	'\'')

			204	 	 	 if	i	<	0	{

			205	 	 	 	 break

			206	 	 	 }

			207	 	 	 if	i+1	>=	len(b)	||	b[i+1]	!=	's'	||	(i+2	<	len(b)	&&	b[i+2]	!=	'	')	{

			208	 	 	 	 return	""	//	not	followed	by	"s	"

			209	 	 	 }

			210	 	 	 b	=	b[i+2:]

			211	 	 }

			212	

			213	 	 return	line

			214	 }

			215	

			216	 type	op	int

			217	

			218	 const	(

			219	 	 opPara	op	=	iota

			220	 	 opHead

			221	 	 opPre

			222)

			223	

			224	 type	block	struct	{

			225	 	 op				op

			226	 	 lines	[]string

			227	 }

			228	

			229	 var	nonAlphaNumRx	=	regexp.MustCompile(`[^a-zA-Z0-9]`)

			230	

			231	 func	anchorID(line	string)	string	{

			232	 	 return	nonAlphaNumRx.ReplaceAllString(line,	"_")

			233	 }

			234	

			235	 //	ToHTML	converts	comment	text	to	formatted	HTML.

			236	 //	The	comment	was	prepared	by	DocReader,

			237	 //	so	it	is	known	not	to	have	leading,	trailing	blank	lines

			238	 //	nor	to	have	trailing	spaces	at	the	end	of	lines.

			239	 //	The	comment	markers	have	already	been	removed.

			240	 //

			241	 //	Turn	each	run	of	multiple	\n	into	</p><p>.

			242	 //	Turn	each	run	of	indented	lines	into	a	<pre>	block	without	indent.

			243	 //	Enclose	headings	with	header	tags.

			244	 //

			245	 //	URLs	in	the	comment	text	are	converted	into	links;	if	the	URL	also	appears

			246	 //	in	the	words	map,	the	link	is	taken	from	the	map	(if	the	corresponding	map

			247	 //	value	is	the	empty	string,	the	URL	is	not	converted	into	a	link).

			248	 //

			249	 //	Go	identifiers	that	appear	in	the	words	map	are	italicized;	if	the	corresponding

			250	 //	map	value	is	not	the	empty	string,	it	is	considered	a	URL	and	the	word	is	converted

			251	 //	into	a	link.

			252	 func	ToHTML(w	io.Writer,	text	string,	words	map[string]string)	{

			253	 	 for	_,	b	:=	range	blocks(text)	{

			254	 	 	 switch	b.op	{

			255	 	 	 case	opPara:

			256	 	 	 	 w.Write(html_p)

			257	 	 	 	 for	_,	line	:=	range	b.lines	{

			258	 	 	 	 	 emphasize(w,	line,	words,	true)

			259	 	 	 	 }

			260	 	 	 	 w.Write(html_endp)

			261	 	 	 case	opHead:

			262	 	 	 	 w.Write(html_h)

			263	 	 	 	 id	:=	""

			264	 	 	 	 for	_,	line	:=	range	b.lines	{

			265	 	 	 	 	 if	id	==	""	{

			266	 	 	 	 	 	 id	=	anchorID(line)

			267	 	 	 	 	 	 w.Write([]byte(id))

			268	 	 	 	 	 	 w.Write(html_hq)

			269	 	 	 	 	 }

			270	 	 	 	 	 commentEscape(w,	line,	true)

			271	 	 	 	 }

			272	 	 	 	 if	id	==	""	{

			273	 	 	 	 	 w.Write(html_hq)

			274	 	 	 	 }

			275	 	 	 	 w.Write(html_endh)

			276	 	 	 case	opPre:

			277	 	 	 	 w.Write(html_pre)

			278	 	 	 	 for	_,	line	:=	range	b.lines	{

			279	 	 	 	 	 emphasize(w,	line,	nil,	false)

			280	 	 	 	 }

			281	 	 	 	 w.Write(html_endpre)

			282	 	 	 }

			283	 	 }

			284	 }

			285	

			286	 func	blocks(text	string)	[]block	{

			287	 	 var	(

			288	 	 	 out		[]block

			289	 	 	 para	[]string

			290	

			291	 	 	 lastWasBlank			=	false

			292	 	 	 lastWasHeading	=	false

			293)

			294	

			295	 	 close	:=	func()	{

			296	 	 	 if	para	!=	nil	{

			297	 	 	 	 out	=	append(out,	block{opPara,	para})

			298	 	 	 	 para	=	nil

			299	 	 	 }

			300	 	 }

			301	

			302	 	 lines	:=	strings.SplitAfter(text,	"\n")

			303	 	 unindent(lines)

			304	 	 for	i	:=	0;	i	<	len(lines);	{

			305	 	 	 line	:=	lines[i]

			306	 	 	 if	isBlank(line)	{

			307	 	 	 	 //	close	paragraph

			308	 	 	 	 close()

			309	 	 	 	 i++

			310	 	 	 	 lastWasBlank	=	true

			311	 	 	 	 continue

			312	 	 	 }

			313	 	 	 if	indentLen(line)	>	0	{

			314	 	 	 	 //	close	paragraph

			315	 	 	 	 close()

			316	

			317	 	 	 	 //	count	indented	or	blank	lines

			318	 	 	 	 j	:=	i	+	1

			319	 	 	 	 for	j	<	len(lines)	&&	(isBlank(lines[j])	||	indentLen(lines[j])	>	0)	{

			320	 	 	 	 	 j++

			321	 	 	 	 }

			322	 	 	 	 //	but	not	trailing	blank	lines

			323	 	 	 	 for	j	>	i	&&	isBlank(lines[j-1])	{

			324	 	 	 	 	 j--

			325	 	 	 	 }

			326	 	 	 	 pre	:=	lines[i:j]

			327	 	 	 	 i	=	j

			328	

			329	 	 	 	 unindent(pre)

			330	

			331	 	 	 	 //	put	those	lines	in	a	pre	block

			332	 	 	 	 out	=	append(out,	block{opPre,	pre})

			333	 	 	 	 lastWasHeading	=	false

			334	 	 	 	 continue

			335	 	 	 }

			336	

			337	 	 	 if	lastWasBlank	&&	!lastWasHeading	&&	i+2	<	len(lines)	&&

			338	 	 	 	 isBlank(lines[i+1])	&&	!isBlank(lines[i+2])	&&	indentLen(lines[i+2])	==	0	{

			339	 	 	 	 //	current	line	is	non-blank,	surrounded	by	blank	lines

			340	 	 	 	 //	and	the	next	non-blank	line	is	not	indented:	this

			341	 	 	 	 //	might	be	a	heading.

			342	 	 	 	 if	head	:=	heading(line);	head	!=	""	{

			343	 	 	 	 	 close()

			344	 	 	 	 	 out	=	append(out,	block{opHead,	[]string{head}})

			345	 	 	 	 	 i	+=	2

			346	 	 	 	 	 lastWasHeading	=	true

			347	 	 	 	 	 continue

			348	 	 	 	 }

			349	 	 	 }

			350	

			351	 	 	 //	open	paragraph

			352	 	 	 lastWasBlank	=	false

			353	 	 	 lastWasHeading	=	false

			354	 	 	 para	=	append(para,	lines[i])

			355	 	 	 i++

			356	 	 }

			357	 	 close()

			358	

			359	 	 return	out

			360	 }

			361	

			362	 //	ToText	prepares	comment	text	for	presentation	in	textual	output.

			363	 //	It	wraps	paragraphs	of	text	to	width	or	fewer	Unicode	code	points

			364	 //	and	then	prefixes	each	line	with	the	indent.		In	preformatted	sections

			365	 //	(such	as	program	text),	it	prefixes	each	non-blank	line	with	preIndent.

			366	 func	ToText(w	io.Writer,	text	string,	indent,	preIndent	string,	width	int)	{

			367	 	 l	:=	lineWrapper{

			368	 	 	 out:				w,

			369	 	 	 width:		width,

			370	 	 	 indent:	indent,

			371	 	 }

			372	 	 for	_,	b	:=	range	blocks(text)	{

			373	 	 	 switch	b.op	{

			374	 	 	 case	opPara:

			375	 	 	 	 //	l.write	will	add	leading	newline	if	required

			376	 	 	 	 for	_,	line	:=	range	b.lines	{

			377	 	 	 	 	 l.write(line)

			378	 	 	 	 }

			379	 	 	 	 l.flush()

			380	 	 	 case	opHead:

			381	 	 	 	 w.Write(nl)

			382	 	 	 	 for	_,	line	:=	range	b.lines	{

			383	 	 	 	 	 l.write(line	+	"\n")

			384	 	 	 	 }

			385	 	 	 	 l.flush()

			386	 	 	 case	opPre:

			387	 	 	 	 w.Write(nl)

			388	 	 	 	 for	_,	line	:=	range	b.lines	{

			389	 	 	 	 	 if	!isBlank(line)	{

			390	 	 	 	 	 	 w.Write([]byte(preIndent))

			391	 	 	 	 	 	 w.Write([]byte(line))

			392	 	 	 	 	 }

			393	 	 	 	 }

			394	 	 	 }

			395	 	 }

			396	 }

			397	

			398	 type	lineWrapper	struct	{

			399	 	 out							io.Writer

			400	 	 printed			bool

			401	 	 width					int

			402	 	 indent				string

			403	 	 n									int

			404	 	 pendSpace	int

			405	 }

			406	

			407	 var	nl	=	[]byte("\n")

			408	 var	space	=	[]byte("	")

			409	

			410	 func	(l	*lineWrapper)	write(text	string)	{

			411	 	 if	l.n	==	0	&&	l.printed	{

			412	 	 	 l.out.Write(nl)	//	blank	line	before	new	paragraph

			413	 	 }

			414	 	 l.printed	=	true

			415	

			416	 	 for	_,	f	:=	range	strings.Fields(text)	{

			417	 	 	 w	:=	utf8.RuneCountInString(f)

			418	 	 	 //	wrap	if	line	is	too	long

			419	 	 	 if	l.n	>	0	&&	l.n+l.pendSpace+w	>	l.width	{

			420	 	 	 	 l.out.Write(nl)

			421	 	 	 	 l.n	=	0

			422	 	 	 	 l.pendSpace	=	0

			423	 	 	 }

			424	 	 	 if	l.n	==	0	{

			425	 	 	 	 l.out.Write([]byte(l.indent))

			426	 	 	 }

			427	 	 	 l.out.Write(space[:l.pendSpace])

			428	 	 	 l.out.Write([]byte(f))

			429	 	 	 l.n	+=	l.pendSpace	+	w

			430	 	 	 l.pendSpace	=	1

			431	 	 }

			432	 }

			433	

			434	 func	(l	*lineWrapper)	flush()	{

			435	 	 if	l.n	==	0	{

			436	 	 	 return

			437	 	 }

			438	 	 l.out.Write(nl)

			439	 	 l.pendSpace	=	0

			440	 	 l.n	=	0

			441	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/doc/doc.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	doc	extracts	source	code	documentation	from	a	Go	AST.

					6	 package	doc

					7	

					8	 import	(

					9	 	 "go/ast"

				10	 	 "go/token"

				11)

				12	

				13	 //	Package	is	the	documentation	for	an	entire	package.

				14	 type	Package	struct	{

				15	 	 Doc								string

				16	 	 Name							string

				17	 	 ImportPath	string

				18	 	 Imports				[]string

				19	 	 Filenames		[]string

				20	 	 Bugs							[]string

				21	

				22	 	 //	declarations

				23	 	 Consts	[]*Value

				24	 	 Types		[]*Type

				25	 	 Vars			[]*Value

				26	 	 Funcs		[]*Func

				27	 }

				28	

				29	 //	Value	is	the	documentation	for	a	(possibly	grouped)	var	or	const	declaration.

				30	 type	Value	struct	{

				31	 	 Doc			string

				32	 	 Names	[]string	//	var	or	const	names	in	declaration	order

				33	 	 Decl		*ast.GenDecl

				34	

				35	 	 order	int

				36	 }

				37	

				38	 //	Type	is	the	documentation	for	a	type	declaration.

				39	 type	Type	struct	{

				40	 	 Doc		string

				41	 	 Name	string

				42	 	 Decl	*ast.GenDecl

				43	

				44	 	 //	associated	declarations

				45	 	 Consts		[]*Value	//	sorted	list	of	constants	of	(mostly)	this	type

				46	 	 Vars				[]*Value	//	sorted	list	of	variables	of	(mostly)	this	type

				47	 	 Funcs			[]*Func		//	sorted	list	of	functions	returning	this	type

				48	 	 Methods	[]*Func		//	sorted	list	of	methods	(including	embedded	ones)	of	this	type

				49	 }

				50	

				51	 //	Func	is	the	documentation	for	a	func	declaration.

				52	 type	Func	struct	{

				53	 	 Doc		string

				54	 	 Name	string

				55	 	 Decl	*ast.FuncDecl

				56	

				57	 	 //	methods

				58	 	 //	(for	functions,	these	fields	have	the	respective	zero	value)

				59	 	 Recv		string	//	actual			receiver	"T"	or	"*T"

				60	 	 Orig		string	//	original	receiver	"T"	or	"*T"

				61	 	 Level	int				//	embedding	level;	0	means	not	embedded

				62	 }

				63	

				64	 //	Mode	values	control	the	operation	of	New.

				65	 type	Mode	int

				66	

				67	 const	(

				68	 	 //	extract	documentation	for	all	package-level	declarations,

				69	 	 //	not	just	exported	ones

				70	 	 AllDecls	Mode	=	1	<<	iota

				71	

				72	 	 //	show	all	embedded	methods,	not	just	the	ones	of

				73	 	 //	invisible	(unexported)	anonymous	fields

				74	 	 AllMethods

				75)

				76	

				77	 //	New	computes	the	package	documentation	for	the	given	package	AST.

				78	 //	New	takes	ownership	of	the	AST	pkg	and	may	edit	or	overwrite	it.

				79	 //

				80	 func	New(pkg	*ast.Package,	importPath	string,	mode	Mode)	*Package	{

				81	 	 var	r	reader

				82	 	 r.readPackage(pkg,	mode)

				83	 	 r.computeMethodSets()

				84	 	 r.cleanupTypes()

				85	 	 return	&Package{

				86	 	 	 Doc:								r.doc,

				87	 	 	 Name:							pkg.Name,

				88	 	 	 ImportPath:	importPath,

				89	 	 	 Imports:				sortedKeys(r.imports),

				90	 	 	 Filenames:		r.filenames,

				91	 	 	 Bugs:							r.bugs,

				92	 	 	 Consts:					sortedValues(r.values,	token.CONST),

				93	 	 	 Types:						sortedTypes(r.types,	mode&AllMethods	!=	0),

				94	 	 	 Vars:							sortedValues(r.values,	token.VAR),

				95	 	 	 Funcs:						sortedFuncs(r.funcs,	true),

				96	 	 }

				97	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/doc/example.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Extract	example	functions	from	file	ASTs.

					6	

					7	 package	doc

					8	

					9	 import	(

				10	 	 "go/ast"

				11	 	 "go/token"

				12	 	 "regexp"

				13	 	 "sort"

				14	 	 "strings"

				15	 	 "unicode"

				16	 	 "unicode/utf8"

				17)

				18	

				19	 type	Example	struct	{

				20	 	 Name					string	//	name	of	the	item	being	exemplified

				21	 	 Doc						string	//	example	function	doc	string

				22	 	 Code					ast.Node

				23	 	 Comments	[]*ast.CommentGroup

				24	 	 Output			string	//	expected	output

				25	 }

				26	

				27	 func	Examples(files	...*ast.File)	[]*Example	{

				28	 	 var	list	[]*Example

				29	 	 for	_,	file	:=	range	files	{

				30	 	 	 hasTests	:=	false	//	file	contains	tests	or	benchmarks

				31	 	 	 numDecl	:=	0						//	number	of	non-import	declarations	in	the	file

				32	 	 	 var	flist	[]*Example

				33	 	 	 for	_,	decl	:=	range	file.Decls	{

				34	 	 	 	 if	g,	ok	:=	decl.(*ast.GenDecl);	ok	&&	g.Tok	!=	token.IMPORT	{

				35	 	 	 	 	 numDecl++

				36	 	 	 	 	 continue

				37	 	 	 	 }

				38	 	 	 	 f,	ok	:=	decl.(*ast.FuncDecl)

				39	 	 	 	 if	!ok	{

				40	 	 	 	 	 continue

				41	 	 	 	 }

				42	 	 	 	 numDecl++

				43	 	 	 	 name	:=	f.Name.Name

				44	 	 	 	 if	isTest(name,	"Test")	||	isTest(name,	"Benchmark")	{

				45	 	 	 	 	 hasTests	=	true

				46	 	 	 	 	 continue

				47	 	 	 	 }

				48	 	 	 	 if	!isTest(name,	"Example")	{

				49	 	 	 	 	 continue

				50	 	 	 	 }

				51	 	 	 	 var	doc	string

				52	 	 	 	 if	f.Doc	!=	nil	{

				53	 	 	 	 	 doc	=	f.Doc.Text()

				54	 	 	 	 }

				55	 	 	 	 flist	=	append(flist,	&Example{

				56	 	 	 	 	 Name:					name[len("Example"):],

				57	 	 	 	 	 Doc:						doc,

				58	 	 	 	 	 Code:					f.Body,

				59	 	 	 	 	 Comments:	file.Comments,

				60	 	 	 	 	 Output:			exampleOutput(f,	file.Comments),

				61	 	 	 	 })

				62	 	 	 }

				63	 	 	 if	!hasTests	&&	numDecl	>	1	&&	len(flist)	==	1	{

				64	 	 	 	 //	If	this	file	only	has	one	example	function,	some

				65	 	 	 	 //	other	top-level	declarations,	and	no	tests	or

				66	 	 	 	 //	benchmarks,	use	the	whole	file	as	the	example.

				67	 	 	 	 flist[0].Code	=	file

				68	 	 	 }

				69	 	 	 list	=	append(list,	flist...)

				70	 	 }

				71	 	 sort.Sort(exampleByName(list))

				72	 	 return	list

				73	 }

				74	

				75	 var	outputPrefix	=	regexp.MustCompile(`(?i)^[[:space:]]*output:`)

				76	

				77	 func	exampleOutput(fun	*ast.FuncDecl,	comments	[]*ast.CommentGroup)	string	{

				78	 	 //	find	the	last	comment	in	the	function

				79	 	 var	last	*ast.CommentGroup

				80	 	 for	_,	cg	:=	range	comments	{

				81	 	 	 if	cg.Pos()	<	fun.Pos()	{

				82	 	 	 	 continue

				83	 	 	 }

				84	 	 	 if	cg.End()	>	fun.End()	{

				85	 	 	 	 break

				86	 	 	 }

				87	 	 	 last	=	cg

				88	 	 }

				89	 	 if	last	!=	nil	{

				90	 	 	 //	test	that	it	begins	with	the	correct	prefix

				91	 	 	 text	:=	last.Text()

				92	 	 	 if	loc	:=	outputPrefix.FindStringIndex(text);	loc	!=	nil	{

				93	 	 	 	 return	strings.TrimSpace(text[loc[1]:])

				94	 	 	 }

				95	 	 }

				96	 	 return	""	//	no	suitable	comment	found

				97	 }

				98	

				99	 //	isTest	tells	whether	name	looks	like	a	test,	example,	or	benchmark.

			100	 //	It	is	a	Test	(say)	if	there	is	a	character	after	Test	that	is	not	a

			101	 //	lower-case	letter.	(We	don't	want	Testiness.)

			102	 func	isTest(name,	prefix	string)	bool	{

			103	 	 if	!strings.HasPrefix(name,	prefix)	{

			104	 	 	 return	false

			105	 	 }

			106	 	 if	len(name)	==	len(prefix)	{	//	"Test"	is	ok

			107	 	 	 return	true

			108	 	 }

			109	 	 rune,	_	:=	utf8.DecodeRuneInString(name[len(prefix):])

			110	 	 return	!unicode.IsLower(rune)

			111	 }

			112	

			113	 type	exampleByName	[]*Example

			114	

			115	 func	(s	exampleByName)	Len()	int											{	return	len(s)	}

			116	 func	(s	exampleByName)	Swap(i,	j	int)						{	s[i],	s[j]	=	s[j],	s[i]	}

			117	 func	(s	exampleByName)	Less(i,	j	int)	bool	{	return	s[i].Name	<	s[j].Name	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/doc/exports.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	This	file	implements	export	filtering	of	an	AST.

					6	

					7	 package	doc

					8	

					9	 import	"go/ast"

				10	

				11	 //	filterIdentList	removes	unexported	names	from	list	in	place

				12	 //	and	returns	the	resulting	list.

				13	 //

				14	 func	filterIdentList(list	[]*ast.Ident)	[]*ast.Ident	{

				15	 	 j	:=	0

				16	 	 for	_,	x	:=	range	list	{

				17	 	 	 if	ast.IsExported(x.Name)	{

				18	 	 	 	 list[j]	=	x

				19	 	 	 	 j++

				20	 	 	 }

				21	 	 }

				22	 	 return	list[0:j]

				23	 }

				24	

				25	 //	removeErrorField	removes	anonymous	fields	named	"error"	from	an	interface.

				26	 //	This	is	called	when	"error"	has	been	determined	to	be	a	local	name,

				27	 //	not	the	predeclared	type.

				28	 //

				29	 func	removeErrorField(ityp	*ast.InterfaceType)	{

				30	 	 list	:=	ityp.Methods.List	//	we	know	that	ityp.Methods	!=	nil

				31	 	 j	:=	0

				32	 	 for	_,	field	:=	range	list	{

				33	 	 	 keepField	:=	true

				34	 	 	 if	n	:=	len(field.Names);	n	==	0	{

				35	 	 	 	 //	anonymous	field

				36	 	 	 	 if	fname,	_	:=	baseTypeName(field.Type);	fname	==	"error"	{

				37	 	 	 	 	 keepField	=	false

				38	 	 	 	 }

				39	 	 	 }

				40	 	 	 if	keepField	{

				41	 	 	 	 list[j]	=	field

				42	 	 	 	 j++

				43	 	 	 }

				44	 	 }

				45	 	 if	j	<	len(list)	{

				46	 	 	 ityp.Incomplete	=	true

				47	 	 }

				48	 	 ityp.Methods.List	=	list[0:j]

				49	 }

				50	

				51	 //	filterFieldList	removes	unexported	fields	(field	names)	from	the	field	list

				52	 //	in	place	and	returns	true	if	fields	were	removed.	Anonymous	fields	are

				53	 //	recorded	with	the	parent	type.	filterType	is	called	with	the	types	of

				54	 //	all	remaining	fields.

				55	 //

				56	 func	(r	*reader)	filterFieldList(parent	*namedType,	fields	*ast.FieldList,	ityp	*ast.InterfaceType)	(removedFields	bool)	{

				57	 	 if	fields	==	nil	{

				58	 	 	 return

				59	 	 }

				60	 	 list	:=	fields.List

				61	 	 j	:=	0

				62	 	 for	_,	field	:=	range	list	{

				63	 	 	 keepField	:=	false

				64	 	 	 if	n	:=	len(field.Names);	n	==	0	{

				65	 	 	 	 //	anonymous	field

				66	 	 	 	 fname	:=	r.recordAnonymousField(parent,	field.Type)

				67	 	 	 	 if	ast.IsExported(fname)	{

				68	 	 	 	 	 keepField	=	true

				69	 	 	 	 }	else	if	ityp	!=	nil	&&	fname	==	"error"	{

				70	 	 	 	 	 //	possibly	the	predeclared	error	interface;	keep

				71	 	 	 	 	 //	it	for	now	but	remember	this	interface	so	that

				72	 	 	 	 	 //	it	can	be	fixed	if	error	is	also	defined	locally

				73	 	 	 	 	 keepField	=	true

				74	 	 	 	 	 r.remember(ityp)

				75	 	 	 	 }

				76	 	 	 }	else	{

				77	 	 	 	 field.Names	=	filterIdentList(field.Names)

				78	 	 	 	 if	len(field.Names)	<	n	{

				79	 	 	 	 	 removedFields	=	true

				80	 	 	 	 }

				81	 	 	 	 if	len(field.Names)	>	0	{

				82	 	 	 	 	 keepField	=	true

				83	 	 	 	 }

				84	 	 	 }

				85	 	 	 if	keepField	{

				86	 	 	 	 r.filterType(nil,	field.Type)

				87	 	 	 	 list[j]	=	field

				88	 	 	 	 j++

				89	 	 	 }

				90	 	 }

				91	 	 if	j	<	len(list)	{

				92	 	 	 removedFields	=	true

				93	 	 }

				94	 	 fields.List	=	list[0:j]

				95	 	 return

				96	 }

				97	

				98	 //	filterParamList	applies	filterType	to	each	parameter	type	in	fields.

				99	 //

			100	 func	(r	*reader)	filterParamList(fields	*ast.FieldList)	{

			101	 	 if	fields	!=	nil	{

			102	 	 	 for	_,	f	:=	range	fields.List	{

			103	 	 	 	 r.filterType(nil,	f.Type)

			104	 	 	 }

			105	 	 }

			106	 }

			107	

			108	 //	filterType	strips	any	unexported	struct	fields	or	method	types	from	typ

			109	 //	in	place.	If	fields	(or	methods)	have	been	removed,	the	corresponding

			110	 //	struct	or	interface	type	has	the	Incomplete	field	set	to	true.	

			111	 //

			112	 func	(r	*reader)	filterType(parent	*namedType,	typ	ast.Expr)	{

			113	 	 switch	t	:=	typ.(type)	{

			114	 	 case	*ast.Ident:

			115	 	 	 //	nothing	to	do

			116	 	 case	*ast.ParenExpr:

			117	 	 	 r.filterType(nil,	t.X)

			118	 	 case	*ast.ArrayType:

			119	 	 	 r.filterType(nil,	t.Elt)

			120	 	 case	*ast.StructType:

			121	 	 	 if	r.filterFieldList(parent,	t.Fields,	nil)	{

			122	 	 	 	 t.Incomplete	=	true

			123	 	 	 }

			124	 	 case	*ast.FuncType:

			125	 	 	 r.filterParamList(t.Params)

			126	 	 	 r.filterParamList(t.Results)

			127	 	 case	*ast.InterfaceType:

			128	 	 	 if	r.filterFieldList(parent,	t.Methods,	t)	{

			129	 	 	 	 t.Incomplete	=	true

			130	 	 	 }

			131	 	 case	*ast.MapType:

			132	 	 	 r.filterType(nil,	t.Key)

			133	 	 	 r.filterType(nil,	t.Value)

			134	 	 case	*ast.ChanType:

			135	 	 	 r.filterType(nil,	t.Value)

			136	 	 }

			137	 }

			138	

			139	 func	(r	*reader)	filterSpec(spec	ast.Spec)	bool	{

			140	 	 switch	s	:=	spec.(type)	{

			141	 	 case	*ast.ImportSpec:

			142	 	 	 //	always	keep	imports	so	we	can	collect	them

			143	 	 	 return	true

			144	 	 case	*ast.ValueSpec:

			145	 	 	 s.Names	=	filterIdentList(s.Names)

			146	 	 	 if	len(s.Names)	>	0	{

			147	 	 	 	 r.filterType(nil,	s.Type)

			148	 	 	 	 return	true

			149	 	 	 }

			150	 	 case	*ast.TypeSpec:

			151	 	 	 if	name	:=	s.Name.Name;	ast.IsExported(name)	{

			152	 	 	 	 r.filterType(r.lookupType(s.Name.Name),	s.Type)

			153	 	 	 	 return	true

			154	 	 	 }	else	if	name	==	"error"	{

			155	 	 	 	 //	special	case:	remember	that	error	is	declared	locally

			156	 	 	 	 r.errorDecl	=	true

			157	 	 	 }

			158	 	 }

			159	 	 return	false

			160	 }

			161	

			162	 func	(r	*reader)	filterSpecList(list	[]ast.Spec)	[]ast.Spec	{

			163	 	 j	:=	0

			164	 	 for	_,	s	:=	range	list	{

			165	 	 	 if	r.filterSpec(s)	{

			166	 	 	 	 list[j]	=	s

			167	 	 	 	 j++

			168	 	 	 }

			169	 	 }

			170	 	 return	list[0:j]

			171	 }

			172	

			173	 func	(r	*reader)	filterDecl(decl	ast.Decl)	bool	{

			174	 	 switch	d	:=	decl.(type)	{

			175	 	 case	*ast.GenDecl:

			176	 	 	 d.Specs	=	r.filterSpecList(d.Specs)

			177	 	 	 return	len(d.Specs)	>	0

			178	 	 case	*ast.FuncDecl:

			179	 	 	 //	ok	to	filter	these	methods	early	because	any

			180	 	 	 //	conflicting	method	will	be	filtered	here,	too	-

			181	 	 	 //	thus,	removing	these	methods	early	will	not	lead

			182	 	 	 //	to	the	false	removal	of	possible	conflicts

			183	 	 	 return	ast.IsExported(d.Name.Name)

			184	 	 }

			185	 	 return	false

			186	 }

			187	

			188	 //	fileExports	removes	unexported	declarations	from	src	in	place.

			189	 //

			190	 func	(r	*reader)	fileExports(src	*ast.File)	{

			191	 	 j	:=	0

			192	 	 for	_,	d	:=	range	src.Decls	{

			193	 	 	 if	r.filterDecl(d)	{

			194	 	 	 	 src.Decls[j]	=	d

			195	 	 	 	 j++

			196	 	 	 }

			197	 	 }

			198	 	 src.Decls	=	src.Decls[0:j]

			199	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/doc/filter.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	doc

					6	

					7	 import	"go/ast"

					8	

					9	 type	Filter	func(string)	bool

				10	

				11	 func	matchFields(fields	*ast.FieldList,	f	Filter)	bool	{

				12	 	 if	fields	!=	nil	{

				13	 	 	 for	_,	field	:=	range	fields.List	{

				14	 	 	 	 for	_,	name	:=	range	field.Names	{

				15	 	 	 	 	 if	f(name.Name)	{

				16	 	 	 	 	 	 return	true

				17	 	 	 	 	 }

				18	 	 	 	 }

				19	 	 	 }

				20	 	 }

				21	 	 return	false

				22	 }

				23	

				24	 func	matchDecl(d	*ast.GenDecl,	f	Filter)	bool	{

				25	 	 for	_,	d	:=	range	d.Specs	{

				26	 	 	 switch	v	:=	d.(type)	{

				27	 	 	 case	*ast.ValueSpec:

				28	 	 	 	 for	_,	name	:=	range	v.Names	{

				29	 	 	 	 	 if	f(name.Name)	{

				30	 	 	 	 	 	 return	true

				31	 	 	 	 	 }

				32	 	 	 	 }

				33	 	 	 case	*ast.TypeSpec:

				34	 	 	 	 if	f(v.Name.Name)	{

				35	 	 	 	 	 return	true

				36	 	 	 	 }

				37	 	 	 	 switch	t	:=	v.Type.(type)	{

				38	 	 	 	 case	*ast.StructType:

				39	 	 	 	 	 if	matchFields(t.Fields,	f)	{

				40	 	 	 	 	 	 return	true

				41	 	 	 	 	 }

				42	 	 	 	 case	*ast.InterfaceType:

				43	 	 	 	 	 if	matchFields(t.Methods,	f)	{

				44	 	 	 	 	 	 return	true

				45	 	 	 	 	 }

				46	 	 	 	 }

				47	 	 	 }

				48	 	 }

				49	 	 return	false

				50	 }

				51	

				52	 func	filterValues(a	[]*Value,	f	Filter)	[]*Value	{

				53	 	 w	:=	0

				54	 	 for	_,	vd	:=	range	a	{

				55	 	 	 if	matchDecl(vd.Decl,	f)	{

				56	 	 	 	 a[w]	=	vd

				57	 	 	 	 w++

				58	 	 	 }

				59	 	 }

				60	 	 return	a[0:w]

				61	 }

				62	

				63	 func	filterFuncs(a	[]*Func,	f	Filter)	[]*Func	{

				64	 	 w	:=	0

				65	 	 for	_,	fd	:=	range	a	{

				66	 	 	 if	f(fd.Name)	{

				67	 	 	 	 a[w]	=	fd

				68	 	 	 	 w++

				69	 	 	 }

				70	 	 }

				71	 	 return	a[0:w]

				72	 }

				73	

				74	 func	filterTypes(a	[]*Type,	f	Filter)	[]*Type	{

				75	 	 w	:=	0

				76	 	 for	_,	td	:=	range	a	{

				77	 	 	 n	:=	0	//	number	of	matches

				78	 	 	 if	matchDecl(td.Decl,	f)	{

				79	 	 	 	 n	=	1

				80	 	 	 }	else	{

				81	 	 	 	 //	type	name	doesn't	match,	but	we	may	have	matching	consts,	vars,	factories	or	methods

				82	 	 	 	 td.Consts	=	filterValues(td.Consts,	f)

				83	 	 	 	 td.Vars	=	filterValues(td.Vars,	f)

				84	 	 	 	 td.Funcs	=	filterFuncs(td.Funcs,	f)

				85	 	 	 	 td.Methods	=	filterFuncs(td.Methods,	f)

				86	 	 	 	 n	+=	len(td.Consts)	+	len(td.Vars)	+	len(td.Funcs)	+	len(td.Methods)

				87	 	 	 }

				88	 	 	 if	n	>	0	{

				89	 	 	 	 a[w]	=	td

				90	 	 	 	 w++

				91	 	 	 }

				92	 	 }

				93	 	 return	a[0:w]

				94	 }

				95	

				96	 //	Filter	eliminates	documentation	for	names	that	don't	pass	through	the	filter	f.

				97	 //	TODO:	Recognize	"Type.Method"	as	a	name.

				98	 //

				99	 func	(p	*Package)	Filter(f	Filter)	{

			100	 	 p.Consts	=	filterValues(p.Consts,	f)

			101	 	 p.Vars	=	filterValues(p.Vars,	f)

			102	 	 p.Types	=	filterTypes(p.Types,	f)

			103	 	 p.Funcs	=	filterFuncs(p.Funcs,	f)

			104	 	 p.Doc	=	""	//	don't	show	top-level	package	doc

			105	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/doc/reader.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	doc

					6	

					7	 import	(

					8	 	 "go/ast"

					9	 	 "go/token"

				10	 	 "regexp"

				11	 	 "sort"

				12	 	 "strconv"

				13)

				14	

				15	 //	--

				16	 //	function/method	sets

				17	 //

				18	 //	Internally,	we	treat	functions	like	methods	and	collect	them	in	method	sets.

				19	

				20	 //	A	methodSet	describes	a	set	of	methods.	Entries	where	Decl	==	nil	are	conflict

				21	 //	entries	(more	then	one	method	with	the	same	name	at	the	same	embedding	level).

				22	 //

				23	 type	methodSet	map[string]*Func

				24	

				25	 //	recvString	returns	a	string	representation	of	recv	of	the

				26	 //	form	"T",	"*T",	or	"BADRECV"	(if	not	a	proper	receiver	type).

				27	 //

				28	 func	recvString(recv	ast.Expr)	string	{

				29	 	 switch	t	:=	recv.(type)	{

				30	 	 case	*ast.Ident:

				31	 	 	 return	t.Name

				32	 	 case	*ast.StarExpr:

				33	 	 	 return	"*"	+	recvString(t.X)

				34	 	 }

				35	 	 return	"BADRECV"

				36	 }

				37	

				38	 //	set	creates	the	corresponding	Func	for	f	and	adds	it	to	mset.

				39	 //	If	there	are	multiple	f's	with	the	same	name,	set	keeps	the	first

				40	 //	one	with	documentation;	conflicts	are	ignored.

				41	 //

				42	 func	(mset	methodSet)	set(f	*ast.FuncDecl)	{

				43	 	 name	:=	f.Name.Name

				44	 	 if	g	:=	mset[name];	g	!=	nil	&&	g.Doc	!=	""	{

				45	 	 	 //	A	function	with	the	same	name	has	already	been	registered;

				46	 	 	 //	since	it	has	documentation,	assume	f	is	simply	another

				47	 	 	 //	implementation	and	ignore	it.	This	does	not	happen	if	the

				48	 	 	 //	caller	is	using	go/build.ScanDir	to	determine	the	list	of

				49	 	 	 //	files	implementing	a	package.	

				50	 	 	 return

				51	 	 }

				52	 	 //	function	doesn't	exist	or	has	no	documentation;	use	f

				53	 	 recv	:=	""

				54	 	 if	f.Recv	!=	nil	{

				55	 	 	 var	typ	ast.Expr

				56	 	 	 //	be	careful	in	case	of	incorrect	ASTs

				57	 	 	 if	list	:=	f.Recv.List;	len(list)	==	1	{

				58	 	 	 	 typ	=	list[0].Type

				59	 	 	 }

				60	 	 	 recv	=	recvString(typ)

				61	 	 }

				62	 	 mset[name]	=	&Func{

				63	 	 	 Doc:		f.Doc.Text(),

				64	 	 	 Name:	name,

				65	 	 	 Decl:	f,

				66	 	 	 Recv:	recv,

				67	 	 	 Orig:	recv,

				68	 	 }

				69	 	 f.Doc	=	nil	//	doc	consumed	-	remove	from	AST

				70	 }

				71	

				72	 //	add	adds	method	m	to	the	method	set;	m	is	ignored	if	the	method	set

				73	 //	already	contains	a	method	with	the	same	name	at	the	same	or	a	higher

				74	 //	level	then	m.

				75	 //

				76	 func	(mset	methodSet)	add(m	*Func)	{

				77	 	 old	:=	mset[m.Name]

				78	 	 if	old	==	nil	||	m.Level	<	old.Level	{

				79	 	 	 mset[m.Name]	=	m

				80	 	 	 return

				81	 	 }

				82	 	 if	old	!=	nil	&&	m.Level	==	old.Level	{

				83	 	 	 //	conflict	-	mark	it	using	a	method	with	nil	Decl

				84	 	 	 mset[m.Name]	=	&Func{

				85	 	 	 	 Name:		m.Name,

				86	 	 	 	 Level:	m.Level,

				87	 	 	 }

				88	 	 }

				89	 }

				90	

				91	 //	--

				92	 //	Named	types

				93	

				94	 //	baseTypeName	returns	the	name	of	the	base	type	of	x	(or	"")

				95	 //	and	whether	the	type	is	imported	or	not.

				96	 //

				97	 func	baseTypeName(x	ast.Expr)	(name	string,	imported	bool)	{

				98	 	 switch	t	:=	x.(type)	{

				99	 	 case	*ast.Ident:

			100	 	 	 return	t.Name,	false

			101	 	 case	*ast.SelectorExpr:

			102	 	 	 if	_,	ok	:=	t.X.(*ast.Ident);	ok	{

			103	 	 	 	 //	only	possible	for	qualified	type	names;

			104	 	 	 	 //	assume	type	is	imported

			105	 	 	 	 return	t.Sel.Name,	true

			106	 	 	 }

			107	 	 case	*ast.StarExpr:

			108	 	 	 return	baseTypeName(t.X)

			109	 	 }

			110	 	 return

			111	 }

			112	

			113	 //	An	embeddedSet	describes	a	set	of	embedded	types.

			114	 type	embeddedSet	map[*namedType]bool

			115	

			116	 //	A	namedType	represents	a	named	unqualified	(package	local,	or	possibly

			117	 //	predeclared)	type.	The	namedType	for	a	type	name	is	always	found	via

			118	 //	reader.lookupType.

			119	 //

			120	 type	namedType	struct	{

			121	 	 doc		string							//	doc	comment	for	type

			122	 	 name	string							//	type	name

			123	 	 decl	*ast.GenDecl	//	nil	if	declaration	hasn't	been	seen	yet

			124	

			125	 	 isEmbedded	bool								//	true	if	this	type	is	embedded

			126	 	 isStruct			bool								//	true	if	this	type	is	a	struct

			127	 	 embedded			embeddedSet	//	true	if	the	embedded	type	is	a	pointer

			128	

			129	 	 //	associated	declarations

			130	 	 values		[]*Value	//	consts	and	vars

			131	 	 funcs			methodSet

			132	 	 methods	methodSet

			133	 }

			134	

			135	 //	--

			136	 //	AST	reader

			137	

			138	 //	reader	accumulates	documentation	for	a	single	package.

			139	 //	It	modifies	the	AST:	Comments	(declaration	documentation)

			140	 //	that	have	been	collected	by	the	reader	are	set	to	nil

			141	 //	in	the	respective	AST	nodes	so	that	they	are	not	printed

			142	 //	twice	(once	when	printing	the	documentation	and	once	when

			143	 //	printing	the	corresponding	AST	node).

			144	 //

			145	 type	reader	struct	{

			146	 	 mode	Mode

			147	

			148	 	 //	package	properties

			149	 	 doc							string	//	package	documentation,	if	any

			150	 	 filenames	[]string

			151	 	 bugs						[]string

			152	

			153	 	 //	declarations

			154	 	 imports	map[string]int

			155	 	 values		[]*Value	//	consts	and	vars

			156	 	 types			map[string]*namedType

			157	 	 funcs			methodSet

			158	

			159	 	 //	support	for	package-local	error	type	declarations

			160	 	 errorDecl	bool																	//	if	set,	type	"error"	was	declared	locally

			161	 	 fixlist			[]*ast.InterfaceType	//	list	of	interfaces	containing	anonymous	field	"error"

			162	 }

			163	

			164	 func	(r	*reader)	isVisible(name	string)	bool	{

			165	 	 return	r.mode&AllDecls	!=	0	||	ast.IsExported(name)

			166	 }

			167	

			168	 //	lookupType	returns	the	base	type	with	the	given	name.

			169	 //	If	the	base	type	has	not	been	encountered	yet,	a	new

			170	 //	type	with	the	given	name	but	no	associated	declaration

			171	 //	is	added	to	the	type	map.

			172	 //

			173	 func	(r	*reader)	lookupType(name	string)	*namedType	{

			174	 	 if	name	==	""	||	name	==	"_"	{

			175	 	 	 return	nil	//	no	type	docs	for	anonymous	types

			176	 	 }

			177	 	 if	typ,	found	:=	r.types[name];	found	{

			178	 	 	 return	typ

			179	 	 }

			180	 	 //	type	not	found	-	add	one	without	declaration

			181	 	 typ	:=	&namedType{

			182	 	 	 name:					name,

			183	 	 	 embedded:	make(embeddedSet),

			184	 	 	 funcs:				make(methodSet),

			185	 	 	 methods:		make(methodSet),

			186	 	 }

			187	 	 r.types[name]	=	typ

			188	 	 return	typ

			189	 }

			190	

			191	 //	recordAnonymousField	registers	fieldType	as	the	type	of	an

			192	 //	anonymous	field	in	the	parent	type.	If	the	field	is	imported

			193	 //	(qualified	name)	or	the	parent	is	nil,	the	field	is	ignored.

			194	 //	The	function	returns	the	field	name.

			195	 //

			196	 func	(r	*reader)	recordAnonymousField(parent	*namedType,	fieldType	ast.Expr)	(fname	string)	{

			197	 	 fname,	imp	:=	baseTypeName(fieldType)

			198	 	 if	parent	==	nil	||	imp	{

			199	 	 	 return

			200	 	 }

			201	 	 if	ftype	:=	r.lookupType(fname);	ftype	!=	nil	{

			202	 	 	 ftype.isEmbedded	=	true

			203	 	 	 _,	ptr	:=	fieldType.(*ast.StarExpr)

			204	 	 	 parent.embedded[ftype]	=	ptr

			205	 	 }

			206	 	 return

			207	 }

			208	

			209	 func	(r	*reader)	readDoc(comment	*ast.CommentGroup)	{

			210	 	 //	By	convention	there	should	be	only	one	package	comment

			211	 	 //	but	collect	all	of	them	if	there	are	more	then	one.

			212	 	 text	:=	comment.Text()

			213	 	 if	r.doc	==	""	{

			214	 	 	 r.doc	=	text

			215	 	 	 return

			216	 	 }

			217	 	 r.doc	+=	"\n"	+	text

			218	 }

			219	

			220	 func	(r	*reader)	remember(typ	*ast.InterfaceType)	{

			221	 	 r.fixlist	=	append(r.fixlist,	typ)

			222	 }

			223	

			224	 func	specNames(specs	[]ast.Spec)	[]string	{

			225	 	 names	:=	make([]string,	0,	len(specs))	//	reasonable	estimate

			226	 	 for	_,	s	:=	range	specs	{

			227	 	 	 //	s	guaranteed	to	be	an	*ast.ValueSpec	by	readValue

			228	 	 	 for	_,	ident	:=	range	s.(*ast.ValueSpec).Names	{

			229	 	 	 	 names	=	append(names,	ident.Name)

			230	 	 	 }

			231	 	 }

			232	 	 return	names

			233	 }

			234	

			235	 //	readValue	processes	a	const	or	var	declaration.

			236	 //

			237	 func	(r	*reader)	readValue(decl	*ast.GenDecl)	{

			238	 	 //	determine	if	decl	should	be	associated	with	a	type

			239	 	 //	Heuristic:	For	each	typed	entry,	determine	the	type	name,	if	any.

			240	 	 //												If	there	is	exactly	one	type	name	that	is	sufficiently

			241	 	 //												frequent,	associate	the	decl	with	the	respective	type.

			242	 	 domName	:=	""

			243	 	 domFreq	:=	0

			244	 	 prev	:=	""

			245	 	 n	:=	0

			246	 	 for	_,	spec	:=	range	decl.Specs	{

			247	 	 	 s,	ok	:=	spec.(*ast.ValueSpec)

			248	 	 	 if	!ok	{

			249	 	 	 	 continue	//	should	not	happen,	but	be	conservative

			250	 	 	 }

			251	 	 	 name	:=	""

			252	 	 	 switch	{

			253	 	 	 case	s.Type	!=	nil:

			254	 	 	 	 //	a	type	is	present;	determine	its	name

			255	 	 	 	 if	n,	imp	:=	baseTypeName(s.Type);	!imp	{

			256	 	 	 	 	 name	=	n

			257	 	 	 	 }

			258	 	 	 case	decl.Tok	==	token.CONST:

			259	 	 	 	 //	no	type	is	present	but	we	have	a	constant	declaration;

			260	 	 	 	 //	use	the	previous	type	name	(w/o	more	type	information

			261	 	 	 	 //	we	cannot	handle	the	case	of	unnamed	variables	with

			262	 	 	 	 //	initializer	expressions	except	for	some	trivial	cases)

			263	 	 	 	 name	=	prev

			264	 	 	 }

			265	 	 	 if	name	!=	""	{

			266	 	 	 	 //	entry	has	a	named	type

			267	 	 	 	 if	domName	!=	""	&&	domName	!=	name	{

			268	 	 	 	 	 //	more	than	one	type	name	-	do	not	associate

			269	 	 	 	 	 //	with	any	type

			270	 	 	 	 	 domName	=	""

			271	 	 	 	 	 break

			272	 	 	 	 }

			273	 	 	 	 domName	=	name

			274	 	 	 	 domFreq++

			275	 	 	 }

			276	 	 	 prev	=	name

			277	 	 	 n++

			278	 	 }

			279	

			280	 	 //	nothing	to	do	w/o	a	legal	declaration

			281	 	 if	n	==	0	{

			282	 	 	 return

			283	 	 }

			284	

			285	 	 //	determine	values	list	with	which	to	associate	the	Value	for	this	decl

			286	 	 values	:=	&r.values

			287	 	 const	threshold	=	0.75

			288	 	 if	domName	!=	""	&&	r.isVisible(domName)	&&	domFreq	>=	int(float64(len(decl.Specs))*threshold)	{

			289	 	 	 //	typed	entries	are	sufficiently	frequent

			290	 	 	 if	typ	:=	r.lookupType(domName);	typ	!=	nil	{

			291	 	 	 	 values	=	&typ.values	//	associate	with	that	type

			292	 	 	 }

			293	 	 }

			294	

			295	 	 *values	=	append(*values,	&Value{

			296	 	 	 Doc:			decl.Doc.Text(),

			297	 	 	 Names:	specNames(decl.Specs),

			298	 	 	 Decl:		decl,

			299	 	 	 order:	len(*values),

			300	 	 })

			301	 	 decl.Doc	=	nil	//	doc	consumed	-	remove	from	AST

			302	 }

			303	

			304	 //	fields	returns	a	struct's	fields	or	an	interface's	methods.

			305	 //

			306	 func	fields(typ	ast.Expr)	(list	[]*ast.Field,	isStruct	bool)	{

			307	 	 var	fields	*ast.FieldList

			308	 	 switch	t	:=	typ.(type)	{

			309	 	 case	*ast.StructType:

			310	 	 	 fields	=	t.Fields

			311	 	 	 isStruct	=	true

			312	 	 case	*ast.InterfaceType:

			313	 	 	 fields	=	t.Methods

			314	 	 }

			315	 	 if	fields	!=	nil	{

			316	 	 	 list	=	fields.List

			317	 	 }

			318	 	 return

			319	 }

			320	

			321	 //	readType	processes	a	type	declaration.

			322	 //

			323	 func	(r	*reader)	readType(decl	*ast.GenDecl,	spec	*ast.TypeSpec)	{

			324	 	 typ	:=	r.lookupType(spec.Name.Name)

			325	 	 if	typ	==	nil	{

			326	 	 	 return	//	no	name	or	blank	name	-	ignore	the	type

			327	 	 }

			328	

			329	 	 //	A	type	should	be	added	at	most	once,	so	typ.decl

			330	 	 //	should	be	nil	-	if	it	is	not,	simply	overwrite	it.

			331	 	 typ.decl	=	decl

			332	

			333	 	 //	compute	documentation

			334	 	 doc	:=	spec.Doc

			335	 	 spec.Doc	=	nil	//	doc	consumed	-	remove	from	AST

			336	 	 if	doc	==	nil	{

			337	 	 	 //	no	doc	associated	with	the	spec,	use	the	declaration	doc,	if	any

			338	 	 	 doc	=	decl.Doc

			339	 	 }

			340	 	 decl.Doc	=	nil	//	doc	consumed	-	remove	from	AST

			341	 	 typ.doc	=	doc.Text()

			342	

			343	 	 //	record	anonymous	fields	(they	may	contribute	methods)

			344	 	 //	(some	fields	may	have	been	recorded	already	when	filtering

			345	 	 //	exports,	but	that's	ok)

			346	 	 var	list	[]*ast.Field

			347	 	 list,	typ.isStruct	=	fields(spec.Type)

			348	 	 for	_,	field	:=	range	list	{

			349	 	 	 if	len(field.Names)	==	0	{

			350	 	 	 	 r.recordAnonymousField(typ,	field.Type)

			351	 	 	 }

			352	 	 }

			353	 }

			354	

			355	 //	readFunc	processes	a	func	or	method	declaration.

			356	 //

			357	 func	(r	*reader)	readFunc(fun	*ast.FuncDecl)	{

			358	 	 //	strip	function	body

			359	 	 fun.Body	=	nil

			360	

			361	 	 //	associate	methods	with	the	receiver	type,	if	any

			362	 	 if	fun.Recv	!=	nil	{

			363	 	 	 //	method

			364	 	 	 recvTypeName,	imp	:=	baseTypeName(fun.Recv.List[0].Type)

			365	 	 	 if	imp	{

			366	 	 	 	 //	should	not	happen	(incorrect	AST);

			367	 	 	 	 //	don't	show	this	method

			368	 	 	 	 return

			369	 	 	 }

			370	 	 	 if	typ	:=	r.lookupType(recvTypeName);	typ	!=	nil	{

			371	 	 	 	 typ.methods.set(fun)

			372	 	 	 }

			373	 	 	 //	otherwise	ignore	the	method

			374	 	 	 //	TODO(gri):	There	may	be	exported	methods	of	non-exported	types

			375	 	 	 //	that	can	be	called	because	of	exported	values	(consts,	vars,	or

			376	 	 	 //	function	results)	of	that	type.	Could	determine	if	that	is	the

			377	 	 	 //	case	and	then	show	those	methods	in	an	appropriate	section.

			378	 	 	 return

			379	 	 }

			380	

			381	 	 //	associate	factory	functions	with	the	first	visible	result	type,	if	any

			382	 	 if	fun.Type.Results.NumFields()	>=	1	{

			383	 	 	 res	:=	fun.Type.Results.List[0]

			384	 	 	 if	len(res.Names)	<=	1	{

			385	 	 	 	 //	exactly	one	(named	or	anonymous)	result	associated

			386	 	 	 	 //	with	the	first	type	in	result	signature	(there	may

			387	 	 	 	 //	be	more	than	one	result)

			388	 	 	 	 if	n,	imp	:=	baseTypeName(res.Type);	!imp	&&	r.isVisible(n)	{

			389	 	 	 	 	 if	typ	:=	r.lookupType(n);	typ	!=	nil	{

			390	 	 	 	 	 	 //	associate	function	with	typ

			391	 	 	 	 	 	 typ.funcs.set(fun)

			392	 	 	 	 	 	 return

			393	 	 	 	 	 }

			394	 	 	 	 }

			395	 	 	 }

			396	 	 }

			397	

			398	 	 //	just	an	ordinary	function

			399	 	 r.funcs.set(fun)

			400	 }

			401	

			402	 var	(

			403	 	 bug_markers	=	regexp.MustCompile("^/[/*][\t]*BUG\\(.*\\):[\t]*")	

			404	 	 bug_content	=	regexp.MustCompile("[^	\n\r\t]+")																				

			405)

			406	

			407	 //	readFile	adds	the	AST	for	a	source	file	to	the	reader.

			408	 //

			409	 func	(r	*reader)	readFile(src	*ast.File)	{

			410	 	 //	add	package	documentation

			411	 	 if	src.Doc	!=	nil	{

			412	 	 	 r.readDoc(src.Doc)

			413	 	 	 src.Doc	=	nil	//	doc	consumed	-	remove	from	AST

			414	 	 }

			415	

			416	 	 //	add	all	declarations

			417	 	 for	_,	decl	:=	range	src.Decls	{

			418	 	 	 switch	d	:=	decl.(type)	{

			419	 	 	 case	*ast.GenDecl:

			420	 	 	 	 switch	d.Tok	{

			421	 	 	 	 case	token.IMPORT:

			422	 	 	 	 	 //	imports	are	handled	individually

			423	 	 	 	 	 for	_,	spec	:=	range	d.Specs	{

			424	 	 	 	 	 	 if	s,	ok	:=	spec.(*ast.ImportSpec);	ok	{

			425	 	 	 	 	 	 	 if	import_,	err	:=	strconv.Unquote(s.Path.Value);	err	==	nil	{

			426	 	 	 	 	 	 	 	 r.imports[import_]	=	1

			427	 	 	 	 	 	 	 }

			428	 	 	 	 	 	 }

			429	 	 	 	 	 }

			430	 	 	 	 case	token.CONST,	token.VAR:

			431	 	 	 	 	 //	constants	and	variables	are	always	handled	as	a	group

			432	 	 	 	 	 r.readValue(d)

			433	 	 	 	 case	token.TYPE:

			434	 	 	 	 	 //	types	are	handled	individually

			435	 	 	 	 	 if	len(d.Specs)	==	1	&&	!d.Lparen.IsValid()	{

			436	 	 	 	 	 	 //	common	case:	single	declaration	w/o	parentheses

			437	 	 	 	 	 	 //	(if	a	single	declaration	is	parenthesized,

			438	 	 	 	 	 	 //	create	a	new	fake	declaration	below,	so	that

			439	 	 	 	 	 	 //	go/doc	type	declarations	always	appear	w/o

			440	 	 	 	 	 	 //	parentheses)

			441	 	 	 	 	 	 if	s,	ok	:=	d.Specs[0].(*ast.TypeSpec);	ok	{

			442	 	 	 	 	 	 	 r.readType(d,	s)

			443	 	 	 	 	 	 }

			444	 	 	 	 	 	 break

			445	 	 	 	 	 }

			446	 	 	 	 	 for	_,	spec	:=	range	d.Specs	{

			447	 	 	 	 	 	 if	s,	ok	:=	spec.(*ast.TypeSpec);	ok	{

			448	 	 	 	 	 	 	 //	use	an	individual	(possibly	fake)	declaration

			449	 	 	 	 	 	 	 //	for	each	type;	this	also	ensures	that	each	type

			450	 	 	 	 	 	 	 //	gets	to	(re-)use	the	declaration	documentation

			451	 	 	 	 	 	 	 //	if	there's	none	associated	with	the	spec	itself

			452	 	 	 	 	 	 	 fake	:=	&ast.GenDecl{

			453	 	 	 	 	 	 	 	 Doc:	d.Doc,

			454	 	 	 	 	 	 	 	 //	don't	use	the	existing	TokPos	because	it

			455	 	 	 	 	 	 	 	 //	will	lead	to	the	wrong	selection	range	for

			456	 	 	 	 	 	 	 	 //	the	fake	declaration	if	there	are	more

			457	 	 	 	 	 	 	 	 //	than	one	type	in	the	group	(this	affects

			458	 	 	 	 	 	 	 	 //	src/cmd/godoc/godoc.go's	posLink_urlFunc)

			459	 	 	 	 	 	 	 	 TokPos:	s.Pos(),

			460	 	 	 	 	 	 	 	 Tok:				token.TYPE,

			461	 	 	 	 	 	 	 	 Specs:		[]ast.Spec{s},

			462	 	 	 	 	 	 	 }

			463	 	 	 	 	 	 	 r.readType(fake,	s)

			464	 	 	 	 	 	 }

			465	 	 	 	 	 }

			466	 	 	 	 }

			467	 	 	 case	*ast.FuncDecl:

			468	 	 	 	 r.readFunc(d)

			469	 	 	 }

			470	 	 }

			471	

			472	 	 //	collect	BUG(...)	comments

			473	 	 for	_,	c	:=	range	src.Comments	{

			474	 	 	 text	:=	c.List[0].Text

			475	 	 	 if	m	:=	bug_markers.FindStringIndex(text);	m	!=	nil	{

			476	 	 	 	 //	found	a	BUG	comment;	maybe	empty

			477	 	 	 	 if	btxt	:=	text[m[1]:];	bug_content.MatchString(btxt)	{

			478	 	 	 	 	 //	non-empty	BUG	comment;	collect	comment	without	BUG	prefix

			479	 	 	 	 	 list	:=	append([]*ast.Comment(nil),	c.List...)	

			480	 	 	 	 	 list[0].Text	=	text[m[1]:]

			481	 	 	 	 	 r.bugs	=	append(r.bugs,	(&ast.CommentGroup{List:	list}).Text())

			482	 	 	 	 }

			483	 	 	 }

			484	 	 }

			485	 	 src.Comments	=	nil	//	consumed	unassociated	comments	-	remove	from	AST

			486	 }

			487	

			488	 func	(r	*reader)	readPackage(pkg	*ast.Package,	mode	Mode)	{

			489	 	 //	initialize	reader

			490	 	 r.filenames	=	make([]string,	len(pkg.Files))

			491	 	 r.imports	=	make(map[string]int)

			492	 	 r.mode	=	mode

			493	 	 r.types	=	make(map[string]*namedType)

			494	 	 r.funcs	=	make(methodSet)

			495	

			496	 	 //	sort	package	files	before	reading	them	so	that	the

			497	 	 //	result	result	does	not	depend	on	map	iteration	order

			498	 	 i	:=	0

			499	 	 for	filename	:=	range	pkg.Files	{

			500	 	 	 r.filenames[i]	=	filename

			501	 	 	 i++

			502	 	 }

			503	 	 sort.Strings(r.filenames)

			504	

			505	 	 //	process	files	in	sorted	order

			506	 	 for	_,	filename	:=	range	r.filenames	{

			507	 	 	 f	:=	pkg.Files[filename]

			508	 	 	 if	mode&AllDecls	==	0	{

			509	 	 	 	 r.fileExports(f)

			510	 	 	 }

			511	 	 	 r.readFile(f)

			512	 	 }

			513	 }

			514	

			515	 //	--

			516	 //	Types

			517	

			518	 var	predeclaredTypes	=	map[string]bool{

			519	 	 "bool":							true,

			520	 	 "byte":							true,

			521	 	 "complex64":		true,

			522	 	 "complex128":	true,

			523	 	 "error":						true,

			524	 	 "float32":				true,

			525	 	 "float64":				true,

			526	 	 "int":								true,

			527	 	 "int8":							true,

			528	 	 "int16":						true,

			529	 	 "int32":						true,

			530	 	 "int64":						true,

			531	 	 "rune":							true,

			532	 	 "string":					true,

			533	 	 "uint":							true,

			534	 	 "uint8":						true,

			535	 	 "uint16":					true,

			536	 	 "uint32":					true,

			537	 	 "uint64":					true,

			538	 	 "uintptr":				true,

			539	 }

			540	

			541	 func	customizeRecv(f	*Func,	recvTypeName	string,	embeddedIsPtr	bool,	level	int)	*Func	{

			542	 	 if	f	==	nil	||	f.Decl	==	nil	||	f.Decl.Recv	==	nil	||	len(f.Decl.Recv.List)	!=	1	{

			543	 	 	 return	f	//	shouldn't	happen,	but	be	safe

			544	 	 }

			545	

			546	 	 //	copy	existing	receiver	field	and	set	new	type

			547	 	 newField	:=	*f.Decl.Recv.List[0]

			548	 	 _,	origRecvIsPtr	:=	newField.Type.(*ast.StarExpr)

			549	 	 var	typ	ast.Expr	=	ast.NewIdent(recvTypeName)

			550	 	 if	!embeddedIsPtr	&&	origRecvIsPtr	{

			551	 	 	 typ	=	&ast.StarExpr{X:	typ}

			552	 	 }

			553	 	 newField.Type	=	typ

			554	

			555	 	 //	copy	existing	receiver	field	list	and	set	new	receiver	field

			556	 	 newFieldList	:=	*f.Decl.Recv

			557	 	 newFieldList.List	=	[]*ast.Field{&newField}

			558	

			559	 	 //	copy	existing	function	declaration	and	set	new	receiver	field	list

			560	 	 newFuncDecl	:=	*f.Decl

			561	 	 newFuncDecl.Recv	=	&newFieldList

			562	

			563	 	 //	copy	existing	function	documentation	and	set	new	declaration

			564	 	 newF	:=	*f

			565	 	 newF.Decl	=	&newFuncDecl

			566	 	 newF.Recv	=	recvString(typ)

			567	 	 //	the	Orig	field	never	changes

			568	 	 newF.Level	=	level

			569	

			570	 	 return	&newF

			571	 }

			572	

			573	 //	collectEmbeddedMethods	collects	the	embedded	methods	of	typ	in	mset.

			574	 //

			575	 func	(r	*reader)	collectEmbeddedMethods(mset	methodSet,	typ	*namedType,	recvTypeName	string,	embeddedIsPtr	bool,	level	int,	visited	embeddedSet)	{

			576	 	 visited[typ]	=	true

			577	 	 for	embedded,	isPtr	:=	range	typ.embedded	{

			578	 	 	 //	Once	an	embedded	type	is	embedded	as	a	pointer	type

			579	 	 	 //	all	embedded	types	in	those	types	are	treated	like

			580	 	 	 //	pointer	types	for	the	purpose	of	the	receiver	type

			581	 	 	 //	computation;	i.e.,	embeddedIsPtr	is	sticky	for	this

			582	 	 	 //	embedding	hierarchy.

			583	 	 	 thisEmbeddedIsPtr	:=	embeddedIsPtr	||	isPtr

			584	 	 	 for	_,	m	:=	range	embedded.methods	{

			585	 	 	 	 //	only	top-level	methods	are	embedded

			586	 	 	 	 if	m.Level	==	0	{

			587	 	 	 	 	 mset.add(customizeRecv(m,	recvTypeName,	thisEmbeddedIsPtr,	level))

			588	 	 	 	 }

			589	 	 	 }

			590	 	 	 if	!visited[embedded]	{

			591	 	 	 	 r.collectEmbeddedMethods(mset,	embedded,	recvTypeName,	thisEmbeddedIsPtr,	level+1,	visited)

			592	 	 	 }

			593	 	 }

			594	 	 delete(visited,	typ)

			595	 }

			596	

			597	 //	computeMethodSets	determines	the	actual	method	sets	for	each	type	encountered.

			598	 //

			599	 func	(r	*reader)	computeMethodSets()	{

			600	 	 for	_,	t	:=	range	r.types	{

			601	 	 	 //	collect	embedded	methods	for	t

			602	 	 	 if	t.isStruct	{

			603	 	 	 	 //	struct

			604	 	 	 	 r.collectEmbeddedMethods(t.methods,	t,	t.name,	false,	1,	make(embeddedSet))

			605	 	 	 }	else	{

			606	 	 	 	 //	interface

			607	 	 	 	 //	TODO(gri)	fix	this

			608	 	 	 }

			609	 	 }

			610	

			611	 	 //	if	error	was	declared	locally,	don't	treat	it	as	exported	field	anymore

			612	 	 if	r.errorDecl	{

			613	 	 	 for	_,	ityp	:=	range	r.fixlist	{

			614	 	 	 	 removeErrorField(ityp)

			615	 	 	 }

			616	 	 }

			617	 }

			618	

			619	 //	cleanupTypes	removes	the	association	of	functions	and	methods	with

			620	 //	types	that	have	no	declaration.	Instead,	these	functions	and	methods

			621	 //	are	shown	at	the	package	level.	It	also	removes	types	with	missing

			622	 //	declarations	or	which	are	not	visible.

			623	 //	

			624	 func	(r	*reader)	cleanupTypes()	{

			625	 	 for	_,	t	:=	range	r.types	{

			626	 	 	 visible	:=	r.isVisible(t.name)

			627	 	 	 if	t.decl	==	nil	&&	(predeclaredTypes[t.name]	||	t.isEmbedded	&&	visible)	{

			628	 	 	 	 //	t.name	is	a	predeclared	type	(and	was	not	redeclared	in	this	package),

			629	 	 	 	 //	or	it	was	embedded	somewhere	but	its	declaration	is	missing	(because

			630	 	 	 	 //	the	AST	is	incomplete):	move	any	associated	values,	funcs,	and	methods

			631	 	 	 	 //	back	to	the	top-level	so	that	they	are	not	lost.

			632	 	 	 	 //	1)	move	values

			633	 	 	 	 r.values	=	append(r.values,	t.values...)

			634	 	 	 	 //	2)	move	factory	functions

			635	 	 	 	 for	name,	f	:=	range	t.funcs	{

			636	 	 	 	 	 //	in	a	correct	AST,	package-level	function	names

			637	 	 	 	 	 //	are	all	different	-	no	need	to	check	for	conflicts

			638	 	 	 	 	 r.funcs[name]	=	f

			639	 	 	 	 }

			640	 	 	 	 //	3)	move	methods

			641	 	 	 	 for	name,	m	:=	range	t.methods	{

			642	 	 	 	 	 //	don't	overwrite	functions	with	the	same	name	-	drop	them

			643	 	 	 	 	 if	_,	found	:=	r.funcs[name];	!found	{

			644	 	 	 	 	 	 r.funcs[name]	=	m

			645	 	 	 	 	 }

			646	 	 	 	 }

			647	 	 	 }

			648	 	 	 //	remove	types	w/o	declaration	or	which	are	not	visible

			649	 	 	 if	t.decl	==	nil	||	!visible	{

			650	 	 	 	 delete(r.types,	t.name)

			651	 	 	 }

			652	 	 }

			653	 }

			654	

			655	 //	--

			656	 //	Sorting

			657	

			658	 type	data	struct	{

			659	 	 n				int

			660	 	 swap	func(i,	j	int)

			661	 	 less	func(i,	j	int)	bool

			662	 }

			663	

			664	 func	(d	*data)	Len()	int											{	return	d.n	}

			665	 func	(d	*data)	Swap(i,	j	int)						{	d.swap(i,	j)	}

			666	 func	(d	*data)	Less(i,	j	int)	bool	{	return	d.less(i,	j)	}

			667	

			668	 //	sortBy	is	a	helper	function	for	sorting

			669	 func	sortBy(less	func(i,	j	int)	bool,	swap	func(i,	j	int),	n	int)	{

			670	 	 sort.Sort(&data{n,	swap,	less})

			671	 }

			672	

			673	 func	sortedKeys(m	map[string]int)	[]string	{

			674	 	 list	:=	make([]string,	len(m))

			675	 	 i	:=	0

			676	 	 for	key	:=	range	m	{

			677	 	 	 list[i]	=	key

			678	 	 	 i++

			679	 	 }

			680	 	 sort.Strings(list)

			681	 	 return	list

			682	 }

			683	

			684	 //	sortingName	returns	the	name	to	use	when	sorting	d	into	place.

			685	 //

			686	 func	sortingName(d	*ast.GenDecl)	string	{

			687	 	 if	len(d.Specs)	==	1	{

			688	 	 	 if	s,	ok	:=	d.Specs[0].(*ast.ValueSpec);	ok	{

			689	 	 	 	 return	s.Names[0].Name

			690	 	 	 }

			691	 	 }

			692	 	 return	""

			693	 }

			694	

			695	 func	sortedValues(m	[]*Value,	tok	token.Token)	[]*Value	{

			696	 	 list	:=	make([]*Value,	len(m))	//	big	enough	in	any	case

			697	 	 i	:=	0

			698	 	 for	_,	val	:=	range	m	{

			699	 	 	 if	val.Decl.Tok	==	tok	{

			700	 	 	 	 list[i]	=	val

			701	 	 	 	 i++

			702	 	 	 }

			703	 	 }

			704	 	 list	=	list[0:i]

			705	

			706	 	 sortBy(

			707	 	 	 func(i,	j	int)	bool	{

			708	 	 	 	 if	ni,	nj	:=	sortingName(list[i].Decl),	sortingName(list[j].Decl);	ni	!=	nj	{

			709	 	 	 	 	 return	ni	<	nj

			710	 	 	 	 }

			711	 	 	 	 return	list[i].order	<	list[j].order

			712	 	 	 },

			713	 	 	 func(i,	j	int)	{	list[i],	list[j]	=	list[j],	list[i]	},

			714	 	 	 len(list),

			715)

			716	

			717	 	 return	list

			718	 }

			719	

			720	 func	sortedTypes(m	map[string]*namedType,	allMethods	bool)	[]*Type	{

			721	 	 list	:=	make([]*Type,	len(m))

			722	 	 i	:=	0

			723	 	 for	_,	t	:=	range	m	{

			724	 	 	 list[i]	=	&Type{

			725	 	 	 	 Doc:					t.doc,

			726	 	 	 	 Name:				t.name,

			727	 	 	 	 Decl:				t.decl,

			728	 	 	 	 Consts:		sortedValues(t.values,	token.CONST),

			729	 	 	 	 Vars:				sortedValues(t.values,	token.VAR),

			730	 	 	 	 Funcs:			sortedFuncs(t.funcs,	true),

			731	 	 	 	 Methods:	sortedFuncs(t.methods,	allMethods),

			732	 	 	 }

			733	 	 	 i++

			734	 	 }

			735	

			736	 	 sortBy(

			737	 	 	 func(i,	j	int)	bool	{	return	list[i].Name	<	list[j].Name	},

			738	 	 	 func(i,	j	int)	{	list[i],	list[j]	=	list[j],	list[i]	},

			739	 	 	 len(list),

			740)

			741	

			742	 	 return	list

			743	 }

			744	

			745	 func	removeStar(s	string)	string	{

			746	 	 if	len(s)	>	0	&&	s[0]	==	'*'	{

			747	 	 	 return	s[1:]

			748	 	 }

			749	 	 return	s

			750	 }

			751	

			752	 func	sortedFuncs(m	methodSet,	allMethods	bool)	[]*Func	{

			753	 	 list	:=	make([]*Func,	len(m))

			754	 	 i	:=	0

			755	 	 for	_,	m	:=	range	m	{

			756	 	 	 //	determine	which	methods	to	include

			757	 	 	 switch	{

			758	 	 	 case	m.Decl	==	nil:

			759	 	 	 	 //	exclude	conflict	entry

			760	 	 	 case	allMethods,	m.Level	==	0,	!ast.IsExported(removeStar(m.Orig)):

			761	 	 	 	 //	forced	inclusion,	method	not	embedded,	or	method

			762	 	 	 	 //	embedded	but	original	receiver	type	not	exported

			763	 	 	 	 list[i]	=	m

			764	 	 	 	 i++

			765	 	 	 }

			766	 	 }

			767	 	 list	=	list[0:i]

			768	 	 sortBy(

			769	 	 	 func(i,	j	int)	bool	{	return	list[i].Name	<	list[j].Name	},

			770	 	 	 func(i,	j	int)	{	list[i],	list[j]	=	list[j],	list[i]	},

			771	 	 	 len(list),

			772)

			773	 	 return	list

			774	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/doc/synopsis.go
					1	 //	Copyright	2012	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	doc

					6	

					7	 import	"unicode"

					8	

					9	 //	firstSentenceLen	returns	the	length	of	the	first	sentence	in	s.

				10	 //	The	sentence	ends	after	the	first	period	followed	by	space	and

				11	 //	not	preceded	by	exactly	one	uppercase	letter.

				12	 //

				13	 func	firstSentenceLen(s	string)	int	{

				14	 	 var	ppp,	pp,	p	rune

				15	 	 for	i,	q	:=	range	s	{

				16	 	 	 if	q	==	'\n'	||	q	==	'\r'	||	q	==	'\t'	{

				17	 	 	 	 q	=	'	'

				18	 	 	 }

				19	 	 	 if	q	==	'	'	&&	p	==	'.'	&&	(!unicode.IsUpper(pp)	||	unicode.IsUpper(ppp))	{

				20	 	 	 	 return	i

				21	 	 	 }

				22	 	 	 ppp,	pp,	p	=	pp,	p,	q

				23	 	 }

				24	 	 return	len(s)

				25	 }

				26	

				27	 //	Synopsis	returns	a	cleaned	version	of	the	first	sentence	in	s.

				28	 //	That	sentence	ends	after	the	first	period	followed	by	space	and

				29	 //	not	preceded	by	exactly	one	uppercase	letter.	The	result	string

				30	 //	has	no	\n,	\r,	or	\t	characters	and	uses	only	single	spaces	between

				31	 //	words.

				32	 //

				33	 func	Synopsis(s	string)	string	{

				34	 	 n	:=	firstSentenceLen(s)

				35	 	 var	b	[]byte

				36	 	 p	:=	byte('	')

				37	 	 for	i	:=	0;	i	<	n;	i++	{

				38	 	 	 q	:=	s[i]

				39	 	 	 if	q	==	'\n'	||	q	==	'\r'	||	q	==	'\t'	{

				40	 	 	 	 q	=	'	'

				41	 	 	 }

				42	 	 	 if	q	!=	'	'	||	p	!=	'	'	{

				43	 	 	 	 b	=	append(b,	q)

				44	 	 	 	 p	=	q

				45	 	 	 }

				46	 	 }

				47	 	 //	remove	trailing	blank,	if	any

				48	 	 if	n	:=	len(b);	n	>	0	&&	p	==	'	'	{

				49	 	 	 b	=	b[0	:	n-1]

				50	 	 }

				51	 	 return	string(b)

				52	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/go/parser/interface.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	This	file	contains	the	exported	entry	points	for	invoking	the	parser.

					6	

					7	 package	parser

					8	

					9	 import	(

				10	 	 "bytes"

				11	 	 "errors"

				12	 	 "go/ast"

				13	 	 "go/token"

				14	 	 "io"

				15	 	 "io/ioutil"

				16	 	 "os"

				17	 	 "path/filepath"

				18)

				19	

				20	 //	If	src	!=	nil,	readSource	converts	src	to	a	[]byte	if	possible;

				21	 //	otherwise	it	returns	an	error.	If	src	==	nil,	readSource	returns

				22	 //	the	result	of	reading	the	file	specified	by	filename.

				23	 //

				24	 func	readSource(filename	string,	src	interface{})	([]byte,	error)	{

				25	 	 if	src	!=	nil	{

				26	 	 	 switch	s	:=	src.(type)	{

				27	 	 	 case	string:

				28	 	 	 	 return	[]byte(s),	nil

				29	 	 	 case	[]byte:

				30	 	 	 	 return	s,	nil

				31	 	 	 case	*bytes.Buffer:

				32	 	 	 	 //	is	io.Reader,	but	src	is	already	available	in	[]byte	form

				33	 	 	 	 if	s	!=	nil	{

				34	 	 	 	 	 return	s.Bytes(),	nil

				35	 	 	 	 }

				36	 	 	 case	io.Reader:

				37	 	 	 	 var	buf	bytes.Buffer

				38	 	 	 	 if	_,	err	:=	io.Copy(&buf,	s);	err	!=	nil	{

				39	 	 	 	 	 return	nil,	err

				40	 	 	 	 }

				41	 	 	 	 return	buf.Bytes(),	nil

				42	 	 	 }

				43	 	 	 return	nil,	errors.New("invalid	source")

				44	 	 }

				45	 	 return	ioutil.ReadFile(filename)

				46	 }

				47	

				48	 //	A	Mode	value	is	a	set	of	flags	(or	0).

				49	 //	They	control	the	amount	of	source	code	parsed	and	other	optional

				50	 //	parser	functionality.

				51	 //

				52	 type	Mode	uint

				53	

				54	 const	(

				55	 	 PackageClauseOnly	Mode	=	1	<<	iota	//	parsing	stops	after	package	clause

				56	 	 ImportsOnly																								//	parsing	stops	after	import	declarations

				57	 	 ParseComments																						//	parse	comments	and	add	them	to	AST

				58	 	 Trace																														//	print	a	trace	of	parsed	productions

				59	 	 DeclarationErrors																		//	report	declaration	errors

				60	 	 SpuriousErrors																					//	report	all	(not	just	the	first)	errors	per	line

				61)

				62	

				63	 //	ParseFile	parses	the	source	code	of	a	single	Go	source	file	and	returns

				64	 //	the	corresponding	ast.File	node.	The	source	code	may	be	provided	via

				65	 //	the	filename	of	the	source	file,	or	via	the	src	parameter.

				66	 //

				67	 //	If	src	!=	nil,	ParseFile	parses	the	source	from	src	and	the	filename	is

				68	 //	only	used	when	recording	position	information.	The	type	of	the	argument

				69	 //	for	the	src	parameter	must	be	string,	[]byte,	or	io.Reader.

				70	 //	If	src	==	nil,	ParseFile	parses	the	file	specified	by	filename.

				71	 //

				72	 //	The	mode	parameter	controls	the	amount	of	source	text	parsed	and	other

				73	 //	optional	parser	functionality.	Position	information	is	recorded	in	the

				74	 //	file	set	fset.

				75	 //

				76	 //	If	the	source	couldn't	be	read,	the	returned	AST	is	nil	and	the	error

				77	 //	indicates	the	specific	failure.	If	the	source	was	read	but	syntax

				78	 //	errors	were	found,	the	result	is	a	partial	AST	(with	ast.Bad*	nodes

				79	 //	representing	the	fragments	of	erroneous	source	code).	Multiple	errors

				80	 //	are	returned	via	a	scanner.ErrorList	which	is	sorted	by	file	position.

				81	 //

				82	 func	ParseFile(fset	*token.FileSet,	filename	string,	src	interface{},	mode	Mode)	(*ast.File,	error)	{

				83	 	 //	get	source

				84	 	 text,	err	:=	readSource(filename,	src)

				85	 	 if	err	!=	nil	{

				86	 	 	 return	nil,	err

				87	 	 }

				88	

				89	 	 //	parse	source

				90	 	 var	p	parser

				91	 	 p.init(fset,	filename,	text,	mode)

				92	 	 f	:=	p.parseFile()

				93	

				94	 	 //	sort	errors

				95	 	 if	p.mode&SpuriousErrors	==	0	{

				96	 	 	 p.errors.RemoveMultiples()

				97	 	 }	else	{

				98	 	 	 p.errors.Sort()

				99	 	 }

			100	

			101	 	 return	f,	p.errors.Err()

			102	 }

			103	

			104	 //	ParseDir	calls	ParseFile	for	the	files	in	the	directory	specified	by	path	and

			105	 //	returns	a	map	of	package	name	->	package	AST	with	all	the	packages	found.	If

			106	 //	filter	!=	nil,	only	the	files	with	os.FileInfo	entries	passing	through	the	filter

			107	 //	are	considered.	The	mode	bits	are	passed	to	ParseFile	unchanged.	Position

			108	 //	information	is	recorded	in	the	file	set	fset.

			109	 //

			110	 //	If	the	directory	couldn't	be	read,	a	nil	map	and	the	respective	error	are

			111	 //	returned.	If	a	parse	error	occurred,	a	non-nil	but	incomplete	map	and	the

			112	 //	first	error	encountered	are	returned.

			113	 //

			114	 func	ParseDir(fset	*token.FileSet,	path	string,	filter	func(os.FileInfo)	bool,	mode	Mode)	(pkgs	map[string]*ast.Package,	first	error)	{

			115	 	 fd,	err	:=	os.Open(path)

			116	 	 if	err	!=	nil	{

			117	 	 	 return	nil,	err

			118	 	 }

			119	 	 defer	fd.Close()

			120	

			121	 	 list,	err	:=	fd.Readdir(-1)

			122	 	 if	err	!=	nil	{

			123	 	 	 return	nil,	err

			124	 	 }

			125	

			126	 	 pkgs	=	make(map[string]*ast.Package)

			127	 	 for	_,	d	:=	range	list	{

			128	 	 	 if	filter	==	nil	||	filter(d)	{

			129	 	 	 	 filename	:=	filepath.Join(path,	d.Name())

			130	 	 	 	 if	src,	err	:=	ParseFile(fset,	filename,	nil,	mode);	err	==	nil	{

			131	 	 	 	 	 name	:=	src.Name.Name

			132	 	 	 	 	 pkg,	found	:=	pkgs[name]

			133	 	 	 	 	 if	!found	{

			134	 	 	 	 	 	 pkg	=	&ast.Package{

			135	 	 	 	 	 	 	 Name:		name,

			136	 	 	 	 	 	 	 Files:	make(map[string]*ast.File),

			137	 	 	 	 	 	 }

			138	 	 	 	 	 	 pkgs[name]	=	pkg

			139	 	 	 	 	 }

			140	 	 	 	 	 pkg.Files[filename]	=	src

			141	 	 	 	 }	else	if	first	==	nil	{

			142	 	 	 	 	 first	=	err

			143	 	 	 	 }

			144	 	 	 }

			145	 	 }

			146	

			147	 	 return

			148	 }

			149	

			150	 //	ParseExpr	is	a	convenience	function	for	obtaining	the	AST	of	an	expression	x.

			151	 //	The	position	information	recorded	in	the	AST	is	undefined.

			152	 //	

			153	 func	ParseExpr(x	string)	(ast.Expr,	error)	{

			154	 	 //	parse	x	within	the	context	of	a	complete	package	for	correct	scopes;

			155	 	 //	use	//line	directive	for	correct	positions	in	error	messages	and	put

			156	 	 //	x	alone	on	a	separate	line	(handles	line	comments),	followed	by	a	';'

			157	 	 //	to	force	an	error	if	the	expression	is	incomplete

			158	 	 file,	err	:=	ParseFile(token.NewFileSet(),	"",	"package	p;func	_(){_=\n//line	:1\n"+x+"\n;}",	0)

			159	 	 if	err	!=	nil	{

			160	 	 	 return	nil,	err

			161	 	 }

			162	 	 return	file.Decls[0].(*ast.FuncDecl).Body.List[0].(*ast.AssignStmt).Rhs[0],	nil

			163	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/go/parser/parser.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	parser	implements	a	parser	for	Go	source	files.	Input	may	be

					6	 //	provided	in	a	variety	of	forms	(see	the	various	Parse*	functions);	the

					7	 //	output	is	an	abstract	syntax	tree	(AST)	representing	the	Go	source.	The

					8	 //	parser	is	invoked	through	one	of	the	Parse*	functions.

					9	 //

				10	 package	parser

				11	

				12	 import	(

				13	 	 "fmt"

				14	 	 "go/ast"

				15	 	 "go/scanner"

				16	 	 "go/token"

				17	 	 "strconv"

				18	 	 "strings"

				19	 	 "unicode"

				20)

				21	

				22	 //	The	parser	structure	holds	the	parser's	internal	state.

				23	 type	parser	struct	{

				24	 	 file				*token.File

				25	 	 errors		scanner.ErrorList

				26	 	 scanner	scanner.Scanner

				27	

				28	 	 //	Tracing/debugging

				29	 	 mode			Mode	//	parsing	mode

				30	 	 trace		bool	//	==	(mode	&	Trace	!=	0)

				31	 	 indent	uint	//	indentation	used	for	tracing	output

				32	

				33	 	 //	Comments

				34	 	 comments				[]*ast.CommentGroup

				35	 	 leadComment	*ast.CommentGroup	//	last	lead	comment

				36	 	 lineComment	*ast.CommentGroup	//	last	line	comment

				37	

				38	 	 //	Next	token

				39	 	 pos	token.Pos			//	token	position

				40	 	 tok	token.Token	//	one	token	look-ahead

				41	 	 lit	string						//	token	literal

				42	

				43	 	 //	Error	recovery

				44	 	 //	(used	to	limit	the	number	of	calls	to	syncXXX	functions

				45	 	 //	w/o	making	scanning	progress	-	avoids	potential	endless

				46	 	 //	loops	across	multiple	parser	functions	during	error	recovery)

				47	 	 syncPos	token.Pos	//	last	synchronization	position

				48	 	 syncCnt	int							//	number	of	calls	to	syncXXX	without	progress

				49	

				50	 	 //	Non-syntactic	parser	control

				51	 	 exprLev	int	//	<	0:	in	control	clause,	>=	0:	in	expression

				52	

				53	 	 //	Ordinary	identifier	scopes

				54	 	 pkgScope			*ast.Scope								//	pkgScope.Outer	==	nil

				55	 	 topScope			*ast.Scope								//	top-most	scope;	may	be	pkgScope

				56	 	 unresolved	[]*ast.Ident						//	unresolved	identifiers

				57	 	 imports				[]*ast.ImportSpec	//	list	of	imports

				58	

				59	 	 //	Label	scope

				60	 	 //	(maintained	by	open/close	LabelScope)

				61	 	 labelScope		*ast.Scope					//	label	scope	for	current	function

				62	 	 targetStack	[][]*ast.Ident	//	stack	of	unresolved	labels

				63	 }

				64	

				65	 func	(p	*parser)	init(fset	*token.FileSet,	filename	string,	src	[]byte,	mode	Mode)	{

				66	 	 p.file	=	fset.AddFile(filename,	fset.Base(),	len(src))

				67	 	 var	m	scanner.Mode

				68	 	 if	mode&ParseComments	!=	0	{

				69	 	 	 m	=	scanner.ScanComments

				70	 	 }

				71	 	 eh	:=	func(pos	token.Position,	msg	string)	{	p.errors.Add(pos,	msg)	}

				72	 	 p.scanner.Init(p.file,	src,	eh,	m)

				73	

				74	 	 p.mode	=	mode

				75	 	 p.trace	=	mode&Trace	!=	0	//	for	convenience	(p.trace	is	used	frequently)

				76	

				77	 	 p.next()

				78	

				79	 	 //	set	up	the	pkgScope	here	(as	opposed	to	in	parseFile)	because

				80	 	 //	there	are	other	parser	entry	points	(ParseExpr,	etc.)

				81	 	 p.openScope()

				82	 	 p.pkgScope	=	p.topScope

				83	

				84	 	 //	for	the	same	reason,	set	up	a	label	scope

				85	 	 p.openLabelScope()

				86	 }

				87	

				88	 //	--

				89	 //	Scoping	support

				90	

				91	 func	(p	*parser)	openScope()	{

				92	 	 p.topScope	=	ast.NewScope(p.topScope)

				93	 }

				94	

				95	 func	(p	*parser)	closeScope()	{

				96	 	 p.topScope	=	p.topScope.Outer

				97	 }

				98	

				99	 func	(p	*parser)	openLabelScope()	{

			100	 	 p.labelScope	=	ast.NewScope(p.labelScope)

			101	 	 p.targetStack	=	append(p.targetStack,	nil)

			102	 }

			103	

			104	 func	(p	*parser)	closeLabelScope()	{

			105	 	 //	resolve	labels

			106	 	 n	:=	len(p.targetStack)	-	1

			107	 	 scope	:=	p.labelScope

			108	 	 for	_,	ident	:=	range	p.targetStack[n]	{

			109	 	 	 ident.Obj	=	scope.Lookup(ident.Name)

			110	 	 	 if	ident.Obj	==	nil	&&	p.mode&DeclarationErrors	!=	0	{

			111	 	 	 	 p.error(ident.Pos(),	fmt.Sprintf("label	%s	undefined",	ident.Name))

			112	 	 	 }

			113	 	 }

			114	 	 //	pop	label	scope

			115	 	 p.targetStack	=	p.targetStack[0:n]

			116	 	 p.labelScope	=	p.labelScope.Outer

			117	 }

			118	

			119	 func	(p	*parser)	declare(decl,	data	interface{},	scope	*ast.Scope,	kind	ast.ObjKind,	idents	...*ast.Ident)	{

			120	 	 for	_,	ident	:=	range	idents	{

			121	 	 	 assert(ident.Obj	==	nil,	"identifier	already	declared	or	resolved")

			122	 	 	 obj	:=	ast.NewObj(kind,	ident.Name)

			123	 	 	 //	remember	the	corresponding	declaration	for	redeclaration

			124	 	 	 //	errors	and	global	variable	resolution/typechecking	phase

			125	 	 	 obj.Decl	=	decl

			126	 	 	 obj.Data	=	data

			127	 	 	 ident.Obj	=	obj

			128	 	 	 if	ident.Name	!=	"_"	{

			129	 	 	 	 if	alt	:=	scope.Insert(obj);	alt	!=	nil	&&	p.mode&DeclarationErrors	!=	0	{

			130	 	 	 	 	 prevDecl	:=	""

			131	 	 	 	 	 if	pos	:=	alt.Pos();	pos.IsValid()	{

			132	 	 	 	 	 	 prevDecl	=	fmt.Sprintf("\n\tprevious	declaration	at	%s",	p.file.Position(pos))

			133	 	 	 	 	 }

			134	 	 	 	 	 p.error(ident.Pos(),	fmt.Sprintf("%s	redeclared	in	this	block%s",	ident.Name,	prevDecl))

			135	 	 	 	 }

			136	 	 	 }

			137	 	 }

			138	 }

			139	

			140	 func	(p	*parser)	shortVarDecl(decl	*ast.AssignStmt,	list	[]ast.Expr)	{

			141	 	 //	Go	spec:	A	short	variable	declaration	may	redeclare	variables

			142	 	 //	provided	they	were	originally	declared	in	the	same	block	with

			143	 	 //	the	same	type,	and	at	least	one	of	the	non-blank	variables	is	new.

			144	 	 n	:=	0	//	number	of	new	variables

			145	 	 for	_,	x	:=	range	list	{

			146	 	 	 if	ident,	isIdent	:=	x.(*ast.Ident);	isIdent	{

			147	 	 	 	 assert(ident.Obj	==	nil,	"identifier	already	declared	or	resolved")

			148	 	 	 	 obj	:=	ast.NewObj(ast.Var,	ident.Name)

			149	 	 	 	 //	remember	corresponding	assignment	for	other	tools

			150	 	 	 	 obj.Decl	=	decl

			151	 	 	 	 ident.Obj	=	obj

			152	 	 	 	 if	ident.Name	!=	"_"	{

			153	 	 	 	 	 if	alt	:=	p.topScope.Insert(obj);	alt	!=	nil	{

			154	 	 	 	 	 	 ident.Obj	=	alt	//	redeclaration

			155	 	 	 	 	 }	else	{

			156	 	 	 	 	 	 n++	//	new	declaration

			157	 	 	 	 	 }

			158	 	 	 	 }

			159	 	 	 }	else	{

			160	 	 	 	 p.errorExpected(x.Pos(),	"identifier")

			161	 	 	 }

			162	 	 }

			163	 	 if	n	==	0	&&	p.mode&DeclarationErrors	!=	0	{

			164	 	 	 p.error(list[0].Pos(),	"no	new	variables	on	left	side	of	:=")

			165	 	 }

			166	 }

			167	

			168	 //	The	unresolved	object	is	a	sentinel	to	mark	identifiers	that	have	been	added

			169	 //	to	the	list	of	unresolved	identifiers.	The	sentinel	is	only	used	for	verifying

			170	 //	internal	consistency.

			171	 var	unresolved	=	new(ast.Object)

			172	

			173	 func	(p	*parser)	resolve(x	ast.Expr)	{

			174	 	 //	nothing	to	do	if	x	is	not	an	identifier	or	the	blank	identifier

			175	 	 ident,	_	:=	x.(*ast.Ident)

			176	 	 if	ident	==	nil	{

			177	 	 	 return

			178	 	 }

			179	 	 assert(ident.Obj	==	nil,	"identifier	already	declared	or	resolved")

			180	 	 if	ident.Name	==	"_"	{

			181	 	 	 return

			182	 	 }

			183	 	 //	try	to	resolve	the	identifier

			184	 	 for	s	:=	p.topScope;	s	!=	nil;	s	=	s.Outer	{

			185	 	 	 if	obj	:=	s.Lookup(ident.Name);	obj	!=	nil	{

			186	 	 	 	 ident.Obj	=	obj

			187	 	 	 	 return

			188	 	 	 }

			189	 	 }

			190	 	 //	all	local	scopes	are	known,	so	any	unresolved	identifier

			191	 	 //	must	be	found	either	in	the	file	scope,	package	scope

			192	 	 //	(perhaps	in	another	file),	or	universe	scope	---	collect

			193	 	 //	them	so	that	they	can	be	resolved	later

			194	 	 ident.Obj	=	unresolved

			195	 	 p.unresolved	=	append(p.unresolved,	ident)

			196	 }

			197	

			198	 //	--

			199	 //	Parsing	support

			200	

			201	 func	(p	*parser)	printTrace(a	...interface{})	{

			202	 	 const	dots	=	".	"	+

			203	 	 	 ".	"

			204	 	 const	n	=	uint(len(dots))

			205	 	 pos	:=	p.file.Position(p.pos)

			206	 	 fmt.Printf("%5d:%3d:	",	pos.Line,	pos.Column)

			207	 	 i	:=	2	*	p.indent

			208	 	 for	;	i	>	n;	i	-=	n	{

			209	 	 	 fmt.Print(dots)

			210	 	 }

			211	 	 fmt.Print(dots[0:i])

			212	 	 fmt.Println(a...)

			213	 }

			214	

			215	 func	trace(p	*parser,	msg	string)	*parser	{

			216	 	 p.printTrace(msg,	"(")

			217	 	 p.indent++

			218	 	 return	p

			219	 }

			220	

			221	 //	Usage	pattern:	defer	un(trace(p,	"..."));

			222	 func	un(p	*parser)	{

			223	 	 p.indent--

			224	 	 p.printTrace(")")

			225	 }

			226	

			227	 //	Advance	to	the	next	token.

			228	 func	(p	*parser)	next0()	{

			229	 	 //	Because	of	one-token	look-ahead,	print	the	previous	token

			230	 	 //	when	tracing	as	it	provides	a	more	readable	output.	The

			231	 	 //	very	first	token	(!p.pos.IsValid())	is	not	initialized

			232	 	 //	(it	is	token.ILLEGAL),	so	don't	print	it	.

			233	 	 if	p.trace	&&	p.pos.IsValid()	{

			234	 	 	 s	:=	p.tok.String()

			235	 	 	 switch	{

			236	 	 	 case	p.tok.IsLiteral():

			237	 	 	 	 p.printTrace(s,	p.lit)

			238	 	 	 case	p.tok.IsOperator(),	p.tok.IsKeyword():

			239	 	 	 	 p.printTrace("\""	+	s	+	"\"")

			240	 	 	 default:

			241	 	 	 	 p.printTrace(s)

			242	 	 	 }

			243	 	 }

			244	

			245	 	 p.pos,	p.tok,	p.lit	=	p.scanner.Scan()

			246	 }

			247	

			248	 //	Consume	a	comment	and	return	it	and	the	line	on	which	it	ends.

			249	 func	(p	*parser)	consumeComment()	(comment	*ast.Comment,	endline	int)	{

			250	 	 //	/*-style	comments	may	end	on	a	different	line	than	where	they	start.

			251	 	 //	Scan	the	comment	for	'\n'	chars	and	adjust	endline	accordingly.

			252	 	 endline	=	p.file.Line(p.pos)

			253	 	 if	p.lit[1]	==	'*'	{

			254	 	 	 //	don't	use	range	here	-	no	need	to	decode	Unicode	code	points

			255	 	 	 for	i	:=	0;	i	<	len(p.lit);	i++	{

			256	 	 	 	 if	p.lit[i]	==	'\n'	{

			257	 	 	 	 	 endline++

			258	 	 	 	 }

			259	 	 	 }

			260	 	 }

			261	

			262	 	 comment	=	&ast.Comment{Slash:	p.pos,	Text:	p.lit}

			263	 	 p.next0()

			264	

			265	 	 return

			266	 }

			267	

			268	 //	Consume	a	group	of	adjacent	comments,	add	it	to	the	parser's

			269	 //	comments	list,	and	return	it	together	with	the	line	at	which

			270	 //	the	last	comment	in	the	group	ends.	An	empty	line	or	non-comment

			271	 //	token	terminates	a	comment	group.

			272	 //

			273	 func	(p	*parser)	consumeCommentGroup()	(comments	*ast.CommentGroup,	endline	int)	{

			274	 	 var	list	[]*ast.Comment

			275	 	 endline	=	p.file.Line(p.pos)

			276	 	 for	p.tok	==	token.COMMENT	&&	endline+1	>=	p.file.Line(p.pos)	{

			277	 	 	 var	comment	*ast.Comment

			278	 	 	 comment,	endline	=	p.consumeComment()

			279	 	 	 list	=	append(list,	comment)

			280	 	 }

			281	

			282	 	 //	add	comment	group	to	the	comments	list

			283	 	 comments	=	&ast.CommentGroup{List:	list}

			284	 	 p.comments	=	append(p.comments,	comments)

			285	

			286	 	 return

			287	 }

			288	

			289	 //	Advance	to	the	next	non-comment	token.	In	the	process,	collect

			290	 //	any	comment	groups	encountered,	and	remember	the	last	lead	and

			291	 //	and	line	comments.

			292	 //

			293	 //	A	lead	comment	is	a	comment	group	that	starts	and	ends	in	a

			294	 //	line	without	any	other	tokens	and	that	is	followed	by	a	non-comment

			295	 //	token	on	the	line	immediately	after	the	comment	group.

			296	 //

			297	 //	A	line	comment	is	a	comment	group	that	follows	a	non-comment

			298	 //	token	on	the	same	line,	and	that	has	no	tokens	after	it	on	the	line

			299	 //	where	it	ends.

			300	 //

			301	 //	Lead	and	line	comments	may	be	considered	documentation	that	is

			302	 //	stored	in	the	AST.

			303	 //

			304	 func	(p	*parser)	next()	{

			305	 	 p.leadComment	=	nil

			306	 	 p.lineComment	=	nil

			307	 	 line	:=	p.file.Line(p.pos)	//	current	line

			308	 	 p.next0()

			309	

			310	 	 if	p.tok	==	token.COMMENT	{

			311	 	 	 var	comment	*ast.CommentGroup

			312	 	 	 var	endline	int

			313	

			314	 	 	 if	p.file.Line(p.pos)	==	line	{

			315	 	 	 	 //	The	comment	is	on	same	line	as	the	previous	token;	it

			316	 	 	 	 //	cannot	be	a	lead	comment	but	may	be	a	line	comment.

			317	 	 	 	 comment,	endline	=	p.consumeCommentGroup()

			318	 	 	 	 if	p.file.Line(p.pos)	!=	endline	{

			319	 	 	 	 	 //	The	next	token	is	on	a	different	line,	thus

			320	 	 	 	 	 //	the	last	comment	group	is	a	line	comment.

			321	 	 	 	 	 p.lineComment	=	comment

			322	 	 	 	 }

			323	 	 	 }

			324	

			325	 	 	 //	consume	successor	comments,	if	any

			326	 	 	 endline	=	-1

			327	 	 	 for	p.tok	==	token.COMMENT	{

			328	 	 	 	 comment,	endline	=	p.consumeCommentGroup()

			329	 	 	 }

			330	

			331	 	 	 if	endline+1	==	p.file.Line(p.pos)	{

			332	 	 	 	 //	The	next	token	is	following	on	the	line	immediately	after	the

			333	 	 	 	 //	comment	group,	thus	the	last	comment	group	is	a	lead	comment.

			334	 	 	 	 p.leadComment	=	comment

			335	 	 	 }

			336	 	 }

			337	 }

			338	

			339	 func	(p	*parser)	error(pos	token.Pos,	msg	string)	{

			340	 	 p.errors.Add(p.file.Position(pos),	msg)

			341	 }

			342	

			343	 func	(p	*parser)	errorExpected(pos	token.Pos,	msg	string)	{

			344	 	 msg	=	"expected	"	+	msg

			345	 	 if	pos	==	p.pos	{

			346	 	 	 //	the	error	happened	at	the	current	position;

			347	 	 	 //	make	the	error	message	more	specific

			348	 	 	 if	p.tok	==	token.SEMICOLON	&&	p.lit	==	"\n"	{

			349	 	 	 	 msg	+=	",	found	newline"

			350	 	 	 }	else	{

			351	 	 	 	 msg	+=	",	found	'"	+	p.tok.String()	+	"'"

			352	 	 	 	 if	p.tok.IsLiteral()	{

			353	 	 	 	 	 msg	+=	"	"	+	p.lit

			354	 	 	 	 }

			355	 	 	 }

			356	 	 }

			357	 	 p.error(pos,	msg)

			358	 }

			359	

			360	 func	(p	*parser)	expect(tok	token.Token)	token.Pos	{

			361	 	 pos	:=	p.pos

			362	 	 if	p.tok	!=	tok	{

			363	 	 	 p.errorExpected(pos,	"'"+tok.String()+"'")

			364	 	 }

			365	 	 p.next()	//	make	progress

			366	 	 return	pos

			367	 }

			368	

			369	 //	expectClosing	is	like	expect	but	provides	a	better	error	message

			370	 //	for	the	common	case	of	a	missing	comma	before	a	newline.

			371	 //

			372	 func	(p	*parser)	expectClosing(tok	token.Token,	context	string)	token.Pos	{

			373	 	 if	p.tok	!=	tok	&&	p.tok	==	token.SEMICOLON	&&	p.lit	==	"\n"	{

			374	 	 	 p.error(p.pos,	"missing	','	before	newline	in	"+context)

			375	 	 	 p.next()

			376	 	 }

			377	 	 return	p.expect(tok)

			378	 }

			379	

			380	 func	(p	*parser)	expectSemi()	{

			381	 	 //	semicolon	is	optional	before	a	closing	')'	or	'}'

			382	 	 if	p.tok	!=	token.RPAREN	&&	p.tok	!=	token.RBRACE	{

			383	 	 	 if	p.tok	==	token.SEMICOLON	{

			384	 	 	 	 p.next()

			385	 	 	 }	else	{

			386	 	 	 	 p.errorExpected(p.pos,	"';'")

			387	 	 	 	 syncStmt(p)

			388	 	 	 }

			389	 	 }

			390	 }

			391	

			392	 func	(p	*parser)	atComma(context	string)	bool	{

			393	 	 if	p.tok	==	token.COMMA	{

			394	 	 	 return	true

			395	 	 }

			396	 	 if	p.tok	==	token.SEMICOLON	&&	p.lit	==	"\n"	{

			397	 	 	 p.error(p.pos,	"missing	','	before	newline	in	"+context)

			398	 	 	 return	true	//	"insert"	the	comma	and	continue

			399	

			400	 	 }

			401	 	 return	false

			402	 }

			403	

			404	 func	assert(cond	bool,	msg	string)	{

			405	 	 if	!cond	{

			406	 	 	 panic("go/parser	internal	error:	"	+	msg)

			407	 	 }

			408	 }

			409	

			410	 //	syncStmt	advances	to	the	next	statement.

			411	 //	Used	for	synchronization	after	an	error.

			412	 //

			413	 func	syncStmt(p	*parser)	{

			414	 	 for	{

			415	 	 	 switch	p.tok	{

			416	 	 	 case	token.BREAK,	token.CONST,	token.CONTINUE,	token.DEFER,

			417	 	 	 	 token.FALLTHROUGH,	token.FOR,	token.GO,	token.GOTO,

			418	 	 	 	 token.IF,	token.RETURN,	token.SELECT,	token.SWITCH,

			419	 	 	 	 token.TYPE,	token.VAR:

			420	 	 	 	 //	Return	only	if	parser	made	some	progress	since	last

			421	 	 	 	 //	sync	or	if	it	has	not	reached	10	sync	calls	without

			422	 	 	 	 //	progress.	Otherwise	consume	at	least	one	token	to

			423	 	 	 	 //	avoid	an	endless	parser	loop	(it	is	possible	that

			424	 	 	 	 //	both	parseOperand	and	parseStmt	call	syncStmt	and

			425	 	 	 	 //	correctly	do	not	advance,	thus	the	need	for	the

			426	 	 	 	 //	invocation	limit	p.syncCnt).

			427	 	 	 	 if	p.pos	==	p.syncPos	&&	p.syncCnt	<	10	{

			428	 	 	 	 	 p.syncCnt++

			429	 	 	 	 	 return

			430	 	 	 	 }

			431	 	 	 	 if	p.pos	>	p.syncPos	{

			432	 	 	 	 	 p.syncPos	=	p.pos

			433	 	 	 	 	 p.syncCnt	=	0

			434	 	 	 	 	 return

			435	 	 	 	 }

			436	 	 	 	 //	Reaching	here	indicates	a	parser	bug,	likely	an

			437	 	 	 	 //	incorrect	token	list	in	this	function,	but	it	only

			438	 	 	 	 //	leads	to	skipping	of	possibly	correct	code	if	a

			439	 	 	 	 //	previous	error	is	present,	and	thus	is	preferred

			440	 	 	 	 //	over	a	non-terminating	parse.

			441	 	 	 case	token.EOF:

			442	 	 	 	 return

			443	 	 	 }

			444	 	 	 p.next()

			445	 	 }

			446	 }

			447	

			448	 //	syncDecl	advances	to	the	next	declaration.

			449	 //	Used	for	synchronization	after	an	error.

			450	 //

			451	 func	syncDecl(p	*parser)	{

			452	 	 for	{

			453	 	 	 switch	p.tok	{

			454	 	 	 case	token.CONST,	token.TYPE,	token.VAR:

			455	 	 	 	 //	see	comments	in	syncStmt

			456	 	 	 	 if	p.pos	==	p.syncPos	&&	p.syncCnt	<	10	{

			457	 	 	 	 	 p.syncCnt++

			458	 	 	 	 	 return

			459	 	 	 	 }

			460	 	 	 	 if	p.pos	>	p.syncPos	{

			461	 	 	 	 	 p.syncPos	=	p.pos

			462	 	 	 	 	 p.syncCnt	=	0

			463	 	 	 	 	 return

			464	 	 	 	 }

			465	 	 	 case	token.EOF:

			466	 	 	 	 return

			467	 	 	 }

			468	 	 	 p.next()

			469	 	 }

			470	 }

			471	

			472	 //	--

			473	 //	Identifiers

			474	

			475	 func	(p	*parser)	parseIdent()	*ast.Ident	{

			476	 	 pos	:=	p.pos

			477	 	 name	:=	"_"

			478	 	 if	p.tok	==	token.IDENT	{

			479	 	 	 name	=	p.lit

			480	 	 	 p.next()

			481	 	 }	else	{

			482	 	 	 p.expect(token.IDENT)	//	use	expect()	error	handling

			483	 	 }

			484	 	 return	&ast.Ident{NamePos:	pos,	Name:	name}

			485	 }

			486	

			487	 func	(p	*parser)	parseIdentList()	(list	[]*ast.Ident)	{

			488	 	 if	p.trace	{

			489	 	 	 defer	un(trace(p,	"IdentList"))

			490	 	 }

			491	

			492	 	 list	=	append(list,	p.parseIdent())

			493	 	 for	p.tok	==	token.COMMA	{

			494	 	 	 p.next()

			495	 	 	 list	=	append(list,	p.parseIdent())

			496	 	 }

			497	

			498	 	 return

			499	 }

			500	

			501	 //	--

			502	 //	Common	productions

			503	

			504	 //	If	lhs	is	set,	result	list	elements	which	are	identifiers	are	not	resolved.

			505	 func	(p	*parser)	parseExprList(lhs	bool)	(list	[]ast.Expr)	{

			506	 	 if	p.trace	{

			507	 	 	 defer	un(trace(p,	"ExpressionList"))

			508	 	 }

			509	

			510	 	 list	=	append(list,	p.checkExpr(p.parseExpr(lhs)))

			511	 	 for	p.tok	==	token.COMMA	{

			512	 	 	 p.next()

			513	 	 	 list	=	append(list,	p.checkExpr(p.parseExpr(lhs)))

			514	 	 }

			515	

			516	 	 return

			517	 }

			518	

			519	 func	(p	*parser)	parseLhsList()	[]ast.Expr	{

			520	 	 list	:=	p.parseExprList(true)

			521	 	 switch	p.tok	{

			522	 	 case	token.DEFINE:

			523	 	 	 //	lhs	of	a	short	variable	declaration

			524	 	 	 //	but	doesn't	enter	scope	until	later:

			525	 	 	 //	caller	must	call	p.shortVarDecl(p.makeIdentList(list))

			526	 	 	 //	at	appropriate	time.

			527	 	 case	token.COLON:

			528	 	 	 //	lhs	of	a	label	declaration	or	a	communication	clause	of	a	select

			529	 	 	 //	statement	(parseLhsList	is	not	called	when	parsing	the	case	clause

			530	 	 	 //	of	a	switch	statement):

			531	 	 	 //	-	labels	are	declared	by	the	caller	of	parseLhsList

			532	 	 	 //	-	for	communication	clauses,	if	there	is	a	stand-alone	identifier

			533	 	 	 //			followed	by	a	colon,	we	have	a	syntax	error;	there	is	no	need

			534	 	 	 //			to	resolve	the	identifier	in	that	case

			535	 	 default:

			536	 	 	 //	identifiers	must	be	declared	elsewhere

			537	 	 	 for	_,	x	:=	range	list	{

			538	 	 	 	 p.resolve(x)

			539	 	 	 }

			540	 	 }

			541	 	 return	list

			542	 }

			543	

			544	 func	(p	*parser)	parseRhsList()	[]ast.Expr	{

			545	 	 return	p.parseExprList(false)

			546	 }

			547	

			548	 //	--

			549	 //	Types

			550	

			551	 func	(p	*parser)	parseType()	ast.Expr	{

			552	 	 if	p.trace	{

			553	 	 	 defer	un(trace(p,	"Type"))

			554	 	 }

			555	

			556	 	 typ	:=	p.tryType()

			557	

			558	 	 if	typ	==	nil	{

			559	 	 	 pos	:=	p.pos

			560	 	 	 p.errorExpected(pos,	"type")

			561	 	 	 p.next()	//	make	progress

			562	 	 	 return	&ast.BadExpr{From:	pos,	To:	p.pos}

			563	 	 }

			564	

			565	 	 return	typ

			566	 }

			567	

			568	 //	If	the	result	is	an	identifier,	it	is	not	resolved.

			569	 func	(p	*parser)	parseTypeName()	ast.Expr	{

			570	 	 if	p.trace	{

			571	 	 	 defer	un(trace(p,	"TypeName"))

			572	 	 }

			573	

			574	 	 ident	:=	p.parseIdent()

			575	 	 //	don't	resolve	ident	yet	-	it	may	be	a	parameter	or	field	name

			576	

			577	 	 if	p.tok	==	token.PERIOD	{

			578	 	 	 //	ident	is	a	package	name

			579	 	 	 p.next()

			580	 	 	 p.resolve(ident)

			581	 	 	 sel	:=	p.parseIdent()

			582	 	 	 return	&ast.SelectorExpr{X:	ident,	Sel:	sel}

			583	 	 }

			584	

			585	 	 return	ident

			586	 }

			587	

			588	 func	(p	*parser)	parseArrayType(ellipsisOk	bool)	ast.Expr	{

			589	 	 if	p.trace	{

			590	 	 	 defer	un(trace(p,	"ArrayType"))

			591	 	 }

			592	

			593	 	 lbrack	:=	p.expect(token.LBRACK)

			594	 	 var	len	ast.Expr

			595	 	 if	ellipsisOk	&&	p.tok	==	token.ELLIPSIS	{

			596	 	 	 len	=	&ast.Ellipsis{Ellipsis:	p.pos}

			597	 	 	 p.next()

			598	 	 }	else	if	p.tok	!=	token.RBRACK	{

			599	 	 	 len	=	p.parseRhs()

			600	 	 }

			601	 	 p.expect(token.RBRACK)

			602	 	 elt	:=	p.parseType()

			603	

			604	 	 return	&ast.ArrayType{Lbrack:	lbrack,	Len:	len,	Elt:	elt}

			605	 }

			606	

			607	 func	(p	*parser)	makeIdentList(list	[]ast.Expr)	[]*ast.Ident	{

			608	 	 idents	:=	make([]*ast.Ident,	len(list))

			609	 	 for	i,	x	:=	range	list	{

			610	 	 	 ident,	isIdent	:=	x.(*ast.Ident)

			611	 	 	 if	!isIdent	{

			612	 	 	 	 if	_,	isBad	:=	x.(*ast.BadExpr);	!isBad	{

			613	 	 	 	 	 //	only	report	error	if	it's	a	new	one

			614	 	 	 	 	 p.errorExpected(x.Pos(),	"identifier")

			615	 	 	 	 }

			616	 	 	 	 ident	=	&ast.Ident{NamePos:	x.Pos(),	Name:	"_"}

			617	 	 	 }

			618	 	 	 idents[i]	=	ident

			619	 	 }

			620	 	 return	idents

			621	 }

			622	

			623	 func	(p	*parser)	parseFieldDecl(scope	*ast.Scope)	*ast.Field	{

			624	 	 if	p.trace	{

			625	 	 	 defer	un(trace(p,	"FieldDecl"))

			626	 	 }

			627	

			628	 	 doc	:=	p.leadComment

			629	

			630	 	 //	fields

			631	 	 list,	typ	:=	p.parseVarList(false)

			632	

			633	 	 //	optional	tag

			634	 	 var	tag	*ast.BasicLit

			635	 	 if	p.tok	==	token.STRING	{

			636	 	 	 tag	=	&ast.BasicLit{ValuePos:	p.pos,	Kind:	p.tok,	Value:	p.lit}

			637	 	 	 p.next()

			638	 	 }

			639	

			640	 	 //	analyze	case

			641	 	 var	idents	[]*ast.Ident

			642	 	 if	typ	!=	nil	{

			643	 	 	 //	IdentifierList	Type

			644	 	 	 idents	=	p.makeIdentList(list)

			645	 	 }	else	{

			646	 	 	 //	["*"]	TypeName	(AnonymousField)

			647	 	 	 typ	=	list[0]	//	we	always	have	at	least	one	element

			648	 	 	 p.resolve(typ)

			649	 	 	 if	n	:=	len(list);	n	>	1	||	!isTypeName(deref(typ))	{

			650	 	 	 	 pos	:=	typ.Pos()

			651	 	 	 	 p.errorExpected(pos,	"anonymous	field")

			652	 	 	 	 typ	=	&ast.BadExpr{From:	pos,	To:	list[n-1].End()}

			653	 	 	 }

			654	 	 }

			655	

			656	 	 p.expectSemi()	//	call	before	accessing	p.linecomment

			657	

			658	 	 field	:=	&ast.Field{Doc:	doc,	Names:	idents,	Type:	typ,	Tag:	tag,	Comment:	p.lineComment}

			659	 	 p.declare(field,	nil,	scope,	ast.Var,	idents...)

			660	

			661	 	 return	field

			662	 }

			663	

			664	 func	(p	*parser)	parseStructType()	*ast.StructType	{

			665	 	 if	p.trace	{

			666	 	 	 defer	un(trace(p,	"StructType"))

			667	 	 }

			668	

			669	 	 pos	:=	p.expect(token.STRUCT)

			670	 	 lbrace	:=	p.expect(token.LBRACE)

			671	 	 scope	:=	ast.NewScope(nil)	//	struct	scope

			672	 	 var	list	[]*ast.Field

			673	 	 for	p.tok	==	token.IDENT	||	p.tok	==	token.MUL	||	p.tok	==	token.LPAREN	{

			674	 	 	 //	a	field	declaration	cannot	start	with	a	'('	but	we	accept

			675	 	 	 //	it	here	for	more	robust	parsing	and	better	error	messages

			676	 	 	 //	(parseFieldDecl	will	check	and	complain	if	necessary)

			677	 	 	 list	=	append(list,	p.parseFieldDecl(scope))

			678	 	 }

			679	 	 rbrace	:=	p.expect(token.RBRACE)

			680	

			681	 	 return	&ast.StructType{

			682	 	 	 Struct:	pos,

			683	 	 	 Fields:	&ast.FieldList{

			684	 	 	 	 Opening:	lbrace,

			685	 	 	 	 List:				list,

			686	 	 	 	 Closing:	rbrace,

			687	 	 	 },

			688	 	 }

			689	 }

			690	

			691	 func	(p	*parser)	parsePointerType()	*ast.StarExpr	{

			692	 	 if	p.trace	{

			693	 	 	 defer	un(trace(p,	"PointerType"))

			694	 	 }

			695	

			696	 	 star	:=	p.expect(token.MUL)

			697	 	 base	:=	p.parseType()

			698	

			699	 	 return	&ast.StarExpr{Star:	star,	X:	base}

			700	 }

			701	

			702	 func	(p	*parser)	tryVarType(isParam	bool)	ast.Expr	{

			703	 	 if	isParam	&&	p.tok	==	token.ELLIPSIS	{

			704	 	 	 pos	:=	p.pos

			705	 	 	 p.next()

			706	 	 	 typ	:=	p.tryIdentOrType(isParam)	//	don't	use	parseType	so	we	can	provide	better	error	message

			707	 	 	 if	typ	==	nil	{

			708	 	 	 	 p.error(pos,	"'...'	parameter	is	missing	type")

			709	 	 	 	 typ	=	&ast.BadExpr{From:	pos,	To:	p.pos}

			710	 	 	 }

			711	 	 	 return	&ast.Ellipsis{Ellipsis:	pos,	Elt:	typ}

			712	 	 }

			713	 	 return	p.tryIdentOrType(false)

			714	 }

			715	

			716	 func	(p	*parser)	parseVarType(isParam	bool)	ast.Expr	{

			717	 	 typ	:=	p.tryVarType(isParam)

			718	 	 if	typ	==	nil	{

			719	 	 	 pos	:=	p.pos

			720	 	 	 p.errorExpected(pos,	"type")

			721	 	 	 p.next()	//	make	progress

			722	 	 	 typ	=	&ast.BadExpr{From:	pos,	To:	p.pos}

			723	 	 }

			724	 	 return	typ

			725	 }

			726	

			727	 func	(p	*parser)	parseVarList(isParam	bool)	(list	[]ast.Expr,	typ	ast.Expr)	{

			728	 	 if	p.trace	{

			729	 	 	 defer	un(trace(p,	"VarList"))

			730	 	 }

			731	

			732	 	 //	a	list	of	identifiers	looks	like	a	list	of	type	names

			733	 	 //

			734	 	 //	parse/tryVarType	accepts	any	type	(including	parenthesized

			735	 	 //	ones)	even	though	the	syntax	does	not	permit	them	here:	we

			736	 	 //	accept	them	all	for	more	robust	parsing	and	complain	later

			737	 	 for	typ	:=	p.parseVarType(isParam);	typ	!=	nil;	{

			738	 	 	 list	=	append(list,	typ)

			739	 	 	 if	p.tok	!=	token.COMMA	{

			740	 	 	 	 break

			741	 	 	 }

			742	 	 	 p.next()

			743	 	 	 typ	=	p.tryVarType(isParam)	//	maybe	nil	as	in:	func	f(int,)	{}

			744	 	 }

			745	

			746	 	 //	if	we	had	a	list	of	identifiers,	it	must	be	followed	by	a	type

			747	 	 if	typ	=	p.tryVarType(isParam);	typ	!=	nil	{

			748	 	 	 p.resolve(typ)

			749	 	 }

			750	

			751	 	 return

			752	 }

			753	

			754	 func	(p	*parser)	parseParameterList(scope	*ast.Scope,	ellipsisOk	bool)	(params	[]*ast.Field)	{

			755	 	 if	p.trace	{

			756	 	 	 defer	un(trace(p,	"ParameterList"))

			757	 	 }

			758	

			759	 	 list,	typ	:=	p.parseVarList(ellipsisOk)

			760	 	 if	typ	!=	nil	{

			761	 	 	 //	IdentifierList	Type

			762	 	 	 idents	:=	p.makeIdentList(list)

			763	 	 	 field	:=	&ast.Field{Names:	idents,	Type:	typ}

			764	 	 	 params	=	append(params,	field)

			765	 	 	 //	Go	spec:	The	scope	of	an	identifier	denoting	a	function

			766	 	 	 //	parameter	or	result	variable	is	the	function	body.

			767	 	 	 p.declare(field,	nil,	scope,	ast.Var,	idents...)

			768	 	 	 if	p.tok	==	token.COMMA	{

			769	 	 	 	 p.next()

			770	 	 	 }

			771	

			772	 	 	 for	p.tok	!=	token.RPAREN	&&	p.tok	!=	token.EOF	{

			773	 	 	 	 idents	:=	p.parseIdentList()

			774	 	 	 	 typ	:=	p.parseVarType(ellipsisOk)

			775	 	 	 	 field	:=	&ast.Field{Names:	idents,	Type:	typ}

			776	 	 	 	 params	=	append(params,	field)

			777	 	 	 	 //	Go	spec:	The	scope	of	an	identifier	denoting	a	function

			778	 	 	 	 //	parameter	or	result	variable	is	the	function	body.

			779	 	 	 	 p.declare(field,	nil,	scope,	ast.Var,	idents...)

			780	 	 	 	 if	!p.atComma("parameter	list")	{

			781	 	 	 	 	 break

			782	 	 	 	 }

			783	 	 	 	 p.next()

			784	 	 	 }

			785	

			786	 	 }	else	{

			787	 	 	 //	Type	{	","	Type	}	(anonymous	parameters)

			788	 	 	 params	=	make([]*ast.Field,	len(list))

			789	 	 	 for	i,	x	:=	range	list	{

			790	 	 	 	 p.resolve(x)

			791	 	 	 	 params[i]	=	&ast.Field{Type:	x}

			792	 	 	 }

			793	 	 }

			794	

			795	 	 return

			796	 }

			797	

			798	 func	(p	*parser)	parseParameters(scope	*ast.Scope,	ellipsisOk	bool)	*ast.FieldList	{

			799	 	 if	p.trace	{

			800	 	 	 defer	un(trace(p,	"Parameters"))

			801	 	 }

			802	

			803	 	 var	params	[]*ast.Field

			804	 	 lparen	:=	p.expect(token.LPAREN)

			805	 	 if	p.tok	!=	token.RPAREN	{

			806	 	 	 params	=	p.parseParameterList(scope,	ellipsisOk)

			807	 	 }

			808	 	 rparen	:=	p.expect(token.RPAREN)

			809	

			810	 	 return	&ast.FieldList{Opening:	lparen,	List:	params,	Closing:	rparen}

			811	 }

			812	

			813	 func	(p	*parser)	parseResult(scope	*ast.Scope)	*ast.FieldList	{

			814	 	 if	p.trace	{

			815	 	 	 defer	un(trace(p,	"Result"))

			816	 	 }

			817	

			818	 	 if	p.tok	==	token.LPAREN	{

			819	 	 	 return	p.parseParameters(scope,	false)

			820	 	 }

			821	

			822	 	 typ	:=	p.tryType()

			823	 	 if	typ	!=	nil	{

			824	 	 	 list	:=	make([]*ast.Field,	1)

			825	 	 	 list[0]	=	&ast.Field{Type:	typ}

			826	 	 	 return	&ast.FieldList{List:	list}

			827	 	 }

			828	

			829	 	 return	nil

			830	 }

			831	

			832	 func	(p	*parser)	parseSignature(scope	*ast.Scope)	(params,	results	*ast.FieldList)	{

			833	 	 if	p.trace	{

			834	 	 	 defer	un(trace(p,	"Signature"))

			835	 	 }

			836	

			837	 	 params	=	p.parseParameters(scope,	true)

			838	 	 results	=	p.parseResult(scope)

			839	

			840	 	 return

			841	 }

			842	

			843	 func	(p	*parser)	parseFuncType()	(*ast.FuncType,	*ast.Scope)	{

			844	 	 if	p.trace	{

			845	 	 	 defer	un(trace(p,	"FuncType"))

			846	 	 }

			847	

			848	 	 pos	:=	p.expect(token.FUNC)

			849	 	 scope	:=	ast.NewScope(p.topScope)	//	function	scope

			850	 	 params,	results	:=	p.parseSignature(scope)

			851	

			852	 	 return	&ast.FuncType{Func:	pos,	Params:	params,	Results:	results},	scope

			853	 }

			854	

			855	 func	(p	*parser)	parseMethodSpec(scope	*ast.Scope)	*ast.Field	{

			856	 	 if	p.trace	{

			857	 	 	 defer	un(trace(p,	"MethodSpec"))

			858	 	 }

			859	

			860	 	 doc	:=	p.leadComment

			861	 	 var	idents	[]*ast.Ident

			862	 	 var	typ	ast.Expr

			863	 	 x	:=	p.parseTypeName()

			864	 	 if	ident,	isIdent	:=	x.(*ast.Ident);	isIdent	&&	p.tok	==	token.LPAREN	{

			865	 	 	 //	method

			866	 	 	 idents	=	[]*ast.Ident{ident}

			867	 	 	 scope	:=	ast.NewScope(nil)	//	method	scope

			868	 	 	 params,	results	:=	p.parseSignature(scope)

			869	 	 	 typ	=	&ast.FuncType{Func:	token.NoPos,	Params:	params,	Results:	results}

			870	 	 }	else	{

			871	 	 	 //	embedded	interface

			872	 	 	 typ	=	x

			873	 	 	 p.resolve(typ)

			874	 	 }

			875	 	 p.expectSemi()	//	call	before	accessing	p.linecomment

			876	

			877	 	 spec	:=	&ast.Field{Doc:	doc,	Names:	idents,	Type:	typ,	Comment:	p.lineComment}

			878	 	 p.declare(spec,	nil,	scope,	ast.Fun,	idents...)

			879	

			880	 	 return	spec

			881	 }

			882	

			883	 func	(p	*parser)	parseInterfaceType()	*ast.InterfaceType	{

			884	 	 if	p.trace	{

			885	 	 	 defer	un(trace(p,	"InterfaceType"))

			886	 	 }

			887	

			888	 	 pos	:=	p.expect(token.INTERFACE)

			889	 	 lbrace	:=	p.expect(token.LBRACE)

			890	 	 scope	:=	ast.NewScope(nil)	//	interface	scope

			891	 	 var	list	[]*ast.Field

			892	 	 for	p.tok	==	token.IDENT	{

			893	 	 	 list	=	append(list,	p.parseMethodSpec(scope))

			894	 	 }

			895	 	 rbrace	:=	p.expect(token.RBRACE)

			896	

			897	 	 return	&ast.InterfaceType{

			898	 	 	 Interface:	pos,

			899	 	 	 Methods:	&ast.FieldList{

			900	 	 	 	 Opening:	lbrace,

			901	 	 	 	 List:				list,

			902	 	 	 	 Closing:	rbrace,

			903	 	 	 },

			904	 	 }

			905	 }

			906	

			907	 func	(p	*parser)	parseMapType()	*ast.MapType	{

			908	 	 if	p.trace	{

			909	 	 	 defer	un(trace(p,	"MapType"))

			910	 	 }

			911	

			912	 	 pos	:=	p.expect(token.MAP)

			913	 	 p.expect(token.LBRACK)

			914	 	 key	:=	p.parseType()

			915	 	 p.expect(token.RBRACK)

			916	 	 value	:=	p.parseType()

			917	

			918	 	 return	&ast.MapType{Map:	pos,	Key:	key,	Value:	value}

			919	 }

			920	

			921	 func	(p	*parser)	parseChanType()	*ast.ChanType	{

			922	 	 if	p.trace	{

			923	 	 	 defer	un(trace(p,	"ChanType"))

			924	 	 }

			925	

			926	 	 pos	:=	p.pos

			927	 	 dir	:=	ast.SEND	|	ast.RECV

			928	 	 if	p.tok	==	token.CHAN	{

			929	 	 	 p.next()

			930	 	 	 if	p.tok	==	token.ARROW	{

			931	 	 	 	 p.next()

			932	 	 	 	 dir	=	ast.SEND

			933	 	 	 }

			934	 	 }	else	{

			935	 	 	 p.expect(token.ARROW)

			936	 	 	 p.expect(token.CHAN)

			937	 	 	 dir	=	ast.RECV

			938	 	 }

			939	 	 value	:=	p.parseType()

			940	

			941	 	 return	&ast.ChanType{Begin:	pos,	Dir:	dir,	Value:	value}

			942	 }

			943	

			944	 //	If	the	result	is	an	identifier,	it	is	not	resolved.

			945	 func	(p	*parser)	tryIdentOrType(ellipsisOk	bool)	ast.Expr	{

			946	 	 switch	p.tok	{

			947	 	 case	token.IDENT:

			948	 	 	 return	p.parseTypeName()

			949	 	 case	token.LBRACK:

			950	 	 	 return	p.parseArrayType(ellipsisOk)

			951	 	 case	token.STRUCT:

			952	 	 	 return	p.parseStructType()

			953	 	 case	token.MUL:

			954	 	 	 return	p.parsePointerType()

			955	 	 case	token.FUNC:

			956	 	 	 typ,	_	:=	p.parseFuncType()

			957	 	 	 return	typ

			958	 	 case	token.INTERFACE:

			959	 	 	 return	p.parseInterfaceType()

			960	 	 case	token.MAP:

			961	 	 	 return	p.parseMapType()

			962	 	 case	token.CHAN,	token.ARROW:

			963	 	 	 return	p.parseChanType()

			964	 	 case	token.LPAREN:

			965	 	 	 lparen	:=	p.pos

			966	 	 	 p.next()

			967	 	 	 typ	:=	p.parseType()

			968	 	 	 rparen	:=	p.expect(token.RPAREN)

			969	 	 	 return	&ast.ParenExpr{Lparen:	lparen,	X:	typ,	Rparen:	rparen}

			970	 	 }

			971	

			972	 	 //	no	type	found

			973	 	 return	nil

			974	 }

			975	

			976	 func	(p	*parser)	tryType()	ast.Expr	{

			977	 	 typ	:=	p.tryIdentOrType(false)

			978	 	 if	typ	!=	nil	{

			979	 	 	 p.resolve(typ)

			980	 	 }

			981	 	 return	typ

			982	 }

			983	

			984	 //	--

			985	 //	Blocks

			986	

			987	 func	(p	*parser)	parseStmtList()	(list	[]ast.Stmt)	{

			988	 	 if	p.trace	{

			989	 	 	 defer	un(trace(p,	"StatementList"))

			990	 	 }

			991	

			992	 	 for	p.tok	!=	token.CASE	&&	p.tok	!=	token.DEFAULT	&&	p.tok	!=	token.RBRACE	&&	p.tok	!=	token.EOF	{

			993	 	 	 list	=	append(list,	p.parseStmt())

			994	 	 }

			995	

			996	 	 return

			997	 }

			998	

			999	 func	(p	*parser)	parseBody(scope	*ast.Scope)	*ast.BlockStmt	{

		1000	 	 if	p.trace	{

		1001	 	 	 defer	un(trace(p,	"Body"))

		1002	 	 }

		1003	

		1004	 	 lbrace	:=	p.expect(token.LBRACE)

		1005	 	 p.topScope	=	scope	//	open	function	scope

		1006	 	 p.openLabelScope()

		1007	 	 list	:=	p.parseStmtList()

		1008	 	 p.closeLabelScope()

		1009	 	 p.closeScope()

		1010	 	 rbrace	:=	p.expect(token.RBRACE)

		1011	

		1012	 	 return	&ast.BlockStmt{Lbrace:	lbrace,	List:	list,	Rbrace:	rbrace}

		1013	 }

		1014	

		1015	 func	(p	*parser)	parseBlockStmt()	*ast.BlockStmt	{

		1016	 	 if	p.trace	{

		1017	 	 	 defer	un(trace(p,	"BlockStmt"))

		1018	 	 }

		1019	

		1020	 	 lbrace	:=	p.expect(token.LBRACE)

		1021	 	 p.openScope()

		1022	 	 list	:=	p.parseStmtList()

		1023	 	 p.closeScope()

		1024	 	 rbrace	:=	p.expect(token.RBRACE)

		1025	

		1026	 	 return	&ast.BlockStmt{Lbrace:	lbrace,	List:	list,	Rbrace:	rbrace}

		1027	 }

		1028	

		1029	 //	--

		1030	 //	Expressions

		1031	

		1032	 func	(p	*parser)	parseFuncTypeOrLit()	ast.Expr	{

		1033	 	 if	p.trace	{

		1034	 	 	 defer	un(trace(p,	"FuncTypeOrLit"))

		1035	 	 }

		1036	

		1037	 	 typ,	scope	:=	p.parseFuncType()

		1038	 	 if	p.tok	!=	token.LBRACE	{

		1039	 	 	 //	function	type	only

		1040	 	 	 return	typ

		1041	 	 }

		1042	

		1043	 	 p.exprLev++

		1044	 	 body	:=	p.parseBody(scope)

		1045	 	 p.exprLev--

		1046	

		1047	 	 return	&ast.FuncLit{Type:	typ,	Body:	body}

		1048	 }

		1049	

		1050	 //	parseOperand	may	return	an	expression	or	a	raw	type	(incl.	array

		1051	 //	types	of	the	form	[...]T.	Callers	must	verify	the	result.

		1052	 //	If	lhs	is	set	and	the	result	is	an	identifier,	it	is	not	resolved.

		1053	 //

		1054	 func	(p	*parser)	parseOperand(lhs	bool)	ast.Expr	{

		1055	 	 if	p.trace	{

		1056	 	 	 defer	un(trace(p,	"Operand"))

		1057	 	 }

		1058	

		1059	 	 switch	p.tok	{

		1060	 	 case	token.IDENT:

		1061	 	 	 x	:=	p.parseIdent()

		1062	 	 	 if	!lhs	{

		1063	 	 	 	 p.resolve(x)

		1064	 	 	 }

		1065	 	 	 return	x

		1066	

		1067	 	 case	token.INT,	token.FLOAT,	token.IMAG,	token.CHAR,	token.STRING:

		1068	 	 	 x	:=	&ast.BasicLit{ValuePos:	p.pos,	Kind:	p.tok,	Value:	p.lit}

		1069	 	 	 p.next()

		1070	 	 	 return	x

		1071	

		1072	 	 case	token.LPAREN:

		1073	 	 	 lparen	:=	p.pos

		1074	 	 	 p.next()

		1075	 	 	 p.exprLev++

		1076	 	 	 x	:=	p.parseRhsOrType()	//	types	may	be	parenthesized:	(some	type)

		1077	 	 	 p.exprLev--

		1078	 	 	 rparen	:=	p.expect(token.RPAREN)

		1079	 	 	 return	&ast.ParenExpr{Lparen:	lparen,	X:	x,	Rparen:	rparen}

		1080	

		1081	 	 case	token.FUNC:

		1082	 	 	 return	p.parseFuncTypeOrLit()

		1083	 	 }

		1084	

		1085	 	 if	typ	:=	p.tryIdentOrType(true);	typ	!=	nil	{

		1086	 	 	 //	could	be	type	for	composite	literal	or	conversion

		1087	 	 	 _,	isIdent	:=	typ.(*ast.Ident)

		1088	 	 	 assert(!isIdent,	"type	cannot	be	identifier")

		1089	 	 	 return	typ

		1090	 	 }

		1091	

		1092	 	 //	we	have	an	error

		1093	 	 pos	:=	p.pos

		1094	 	 p.errorExpected(pos,	"operand")

		1095	 	 syncStmt(p)

		1096	 	 return	&ast.BadExpr{From:	pos,	To:	p.pos}

		1097	 }

		1098	

		1099	 func	(p	*parser)	parseSelector(x	ast.Expr)	ast.Expr	{

		1100	 	 if	p.trace	{

		1101	 	 	 defer	un(trace(p,	"Selector"))

		1102	 	 }

		1103	

		1104	 	 sel	:=	p.parseIdent()

		1105	

		1106	 	 return	&ast.SelectorExpr{X:	x,	Sel:	sel}

		1107	 }

		1108	

		1109	 func	(p	*parser)	parseTypeAssertion(x	ast.Expr)	ast.Expr	{

		1110	 	 if	p.trace	{

		1111	 	 	 defer	un(trace(p,	"TypeAssertion"))

		1112	 	 }

		1113	

		1114	 	 p.expect(token.LPAREN)

		1115	 	 var	typ	ast.Expr

		1116	 	 if	p.tok	==	token.TYPE	{

		1117	 	 	 //	type	switch:	typ	==	nil

		1118	 	 	 p.next()

		1119	 	 }	else	{

		1120	 	 	 typ	=	p.parseType()

		1121	 	 }

		1122	 	 p.expect(token.RPAREN)

		1123	

		1124	 	 return	&ast.TypeAssertExpr{X:	x,	Type:	typ}

		1125	 }

		1126	

		1127	 func	(p	*parser)	parseIndexOrSlice(x	ast.Expr)	ast.Expr	{

		1128	 	 if	p.trace	{

		1129	 	 	 defer	un(trace(p,	"IndexOrSlice"))

		1130	 	 }

		1131	

		1132	 	 lbrack	:=	p.expect(token.LBRACK)

		1133	 	 p.exprLev++

		1134	 	 var	low,	high	ast.Expr

		1135	 	 isSlice	:=	false

		1136	 	 if	p.tok	!=	token.COLON	{

		1137	 	 	 low	=	p.parseRhs()

		1138	 	 }

		1139	 	 if	p.tok	==	token.COLON	{

		1140	 	 	 isSlice	=	true

		1141	 	 	 p.next()

		1142	 	 	 if	p.tok	!=	token.RBRACK	{

		1143	 	 	 	 high	=	p.parseRhs()

		1144	 	 	 }

		1145	 	 }

		1146	 	 p.exprLev--

		1147	 	 rbrack	:=	p.expect(token.RBRACK)

		1148	

		1149	 	 if	isSlice	{

		1150	 	 	 return	&ast.SliceExpr{X:	x,	Lbrack:	lbrack,	Low:	low,	High:	high,	Rbrack:	rbrack}

		1151	 	 }

		1152	 	 return	&ast.IndexExpr{X:	x,	Lbrack:	lbrack,	Index:	low,	Rbrack:	rbrack}

		1153	 }

		1154	

		1155	 func	(p	*parser)	parseCallOrConversion(fun	ast.Expr)	*ast.CallExpr	{

		1156	 	 if	p.trace	{

		1157	 	 	 defer	un(trace(p,	"CallOrConversion"))

		1158	 	 }

		1159	

		1160	 	 lparen	:=	p.expect(token.LPAREN)

		1161	 	 p.exprLev++

		1162	 	 var	list	[]ast.Expr

		1163	 	 var	ellipsis	token.Pos

		1164	 	 for	p.tok	!=	token.RPAREN	&&	p.tok	!=	token.EOF	&&	!ellipsis.IsValid()	{

		1165	 	 	 list	=	append(list,	p.parseRhsOrType())	//	builtins	may	expect	a	type:	make(some	type,	...)

		1166	 	 	 if	p.tok	==	token.ELLIPSIS	{

		1167	 	 	 	 ellipsis	=	p.pos

		1168	 	 	 	 p.next()

		1169	 	 	 }

		1170	 	 	 if	!p.atComma("argument	list")	{

		1171	 	 	 	 break

		1172	 	 	 }

		1173	 	 	 p.next()

		1174	 	 }

		1175	 	 p.exprLev--

		1176	 	 rparen	:=	p.expectClosing(token.RPAREN,	"argument	list")

		1177	

		1178	 	 return	&ast.CallExpr{Fun:	fun,	Lparen:	lparen,	Args:	list,	Ellipsis:	ellipsis,	Rparen:	rparen}

		1179	 }

		1180	

		1181	 func	(p	*parser)	parseElement(keyOk	bool)	ast.Expr	{

		1182	 	 if	p.trace	{

		1183	 	 	 defer	un(trace(p,	"Element"))

		1184	 	 }

		1185	

		1186	 	 if	p.tok	==	token.LBRACE	{

		1187	 	 	 return	p.parseLiteralValue(nil)

		1188	 	 }

		1189	

		1190	 	 x	:=	p.checkExpr(p.parseExpr(keyOk))	//	don't	resolve	if	map	key

		1191	 	 if	keyOk	{

		1192	 	 	 if	p.tok	==	token.COLON	{

		1193	 	 	 	 colon	:=	p.pos

		1194	 	 	 	 p.next()

		1195	 	 	 	 return	&ast.KeyValueExpr{Key:	x,	Colon:	colon,	Value:	p.parseElement(false)}

		1196	 	 	 }

		1197	 	 	 p.resolve(x)	//	not	a	map	key

		1198	 	 }

		1199	

		1200	 	 return	x

		1201	 }

		1202	

		1203	 func	(p	*parser)	parseElementList()	(list	[]ast.Expr)	{

		1204	 	 if	p.trace	{

		1205	 	 	 defer	un(trace(p,	"ElementList"))

		1206	 	 }

		1207	

		1208	 	 for	p.tok	!=	token.RBRACE	&&	p.tok	!=	token.EOF	{

		1209	 	 	 list	=	append(list,	p.parseElement(true))

		1210	 	 	 if	!p.atComma("composite	literal")	{

		1211	 	 	 	 break

		1212	 	 	 }

		1213	 	 	 p.next()

		1214	 	 }

		1215	

		1216	 	 return

		1217	 }

		1218	

		1219	 func	(p	*parser)	parseLiteralValue(typ	ast.Expr)	ast.Expr	{

		1220	 	 if	p.trace	{

		1221	 	 	 defer	un(trace(p,	"LiteralValue"))

		1222	 	 }

		1223	

		1224	 	 lbrace	:=	p.expect(token.LBRACE)

		1225	 	 var	elts	[]ast.Expr

		1226	 	 p.exprLev++

		1227	 	 if	p.tok	!=	token.RBRACE	{

		1228	 	 	 elts	=	p.parseElementList()

		1229	 	 }

		1230	 	 p.exprLev--

		1231	 	 rbrace	:=	p.expectClosing(token.RBRACE,	"composite	literal")

		1232	 	 return	&ast.CompositeLit{Type:	typ,	Lbrace:	lbrace,	Elts:	elts,	Rbrace:	rbrace}

		1233	 }

		1234	

		1235	 //	checkExpr	checks	that	x	is	an	expression	(and	not	a	type).

		1236	 func	(p	*parser)	checkExpr(x	ast.Expr)	ast.Expr	{

		1237	 	 switch	unparen(x).(type)	{

		1238	 	 case	*ast.BadExpr:

		1239	 	 case	*ast.Ident:

		1240	 	 case	*ast.BasicLit:

		1241	 	 case	*ast.FuncLit:

		1242	 	 case	*ast.CompositeLit:

		1243	 	 case	*ast.ParenExpr:

		1244	 	 	 panic("unreachable")

		1245	 	 case	*ast.SelectorExpr:

		1246	 	 case	*ast.IndexExpr:

		1247	 	 case	*ast.SliceExpr:

		1248	 	 case	*ast.TypeAssertExpr:

		1249	 	 	 //	If	t.Type	==	nil	we	have	a	type	assertion	of	the	form

		1250	 	 	 //	y.(type),	which	is	only	allowed	in	type	switch	expressions.

		1251	 	 	 //	It's	hard	to	exclude	those	but	for	the	case	where	we	are	in

		1252	 	 	 //	a	type	switch.	Instead	be	lenient	and	test	this	in	the	type

		1253	 	 	 //	checker.

		1254	 	 case	*ast.CallExpr:

		1255	 	 case	*ast.StarExpr:

		1256	 	 case	*ast.UnaryExpr:

		1257	 	 case	*ast.BinaryExpr:

		1258	 	 default:

		1259	 	 	 //	all	other	nodes	are	not	proper	expressions

		1260	 	 	 p.errorExpected(x.Pos(),	"expression")

		1261	 	 	 x	=	&ast.BadExpr{From:	x.Pos(),	To:	x.End()}

		1262	 	 }

		1263	 	 return	x

		1264	 }

		1265	

		1266	 //	isTypeName	returns	true	iff	x	is	a	(qualified)	TypeName.

		1267	 func	isTypeName(x	ast.Expr)	bool	{

		1268	 	 switch	t	:=	x.(type)	{

		1269	 	 case	*ast.BadExpr:

		1270	 	 case	*ast.Ident:

		1271	 	 case	*ast.SelectorExpr:

		1272	 	 	 _,	isIdent	:=	t.X.(*ast.Ident)

		1273	 	 	 return	isIdent

		1274	 	 default:

		1275	 	 	 return	false	//	all	other	nodes	are	not	type	names

		1276	 	 }

		1277	 	 return	true

		1278	 }

		1279	

		1280	 //	isLiteralType	returns	true	iff	x	is	a	legal	composite	literal	type.

		1281	 func	isLiteralType(x	ast.Expr)	bool	{

		1282	 	 switch	t	:=	x.(type)	{

		1283	 	 case	*ast.BadExpr:

		1284	 	 case	*ast.Ident:

		1285	 	 case	*ast.SelectorExpr:

		1286	 	 	 _,	isIdent	:=	t.X.(*ast.Ident)

		1287	 	 	 return	isIdent

		1288	 	 case	*ast.ArrayType:

		1289	 	 case	*ast.StructType:

		1290	 	 case	*ast.MapType:

		1291	 	 default:

		1292	 	 	 return	false	//	all	other	nodes	are	not	legal	composite	literal	types

		1293	 	 }

		1294	 	 return	true

		1295	 }

		1296	

		1297	 //	If	x	is	of	the	form	*T,	deref	returns	T,	otherwise	it	returns	x.

		1298	 func	deref(x	ast.Expr)	ast.Expr	{

		1299	 	 if	p,	isPtr	:=	x.(*ast.StarExpr);	isPtr	{

		1300	 	 	 x	=	p.X

		1301	 	 }

		1302	 	 return	x

		1303	 }

		1304	

		1305	 //	If	x	is	of	the	form	(T),	unparen	returns	unparen(T),	otherwise	it	returns	x.

		1306	 func	unparen(x	ast.Expr)	ast.Expr	{

		1307	 	 if	p,	isParen	:=	x.(*ast.ParenExpr);	isParen	{

		1308	 	 	 x	=	unparen(p.X)

		1309	 	 }

		1310	 	 return	x

		1311	 }

		1312	

		1313	 //	checkExprOrType	checks	that	x	is	an	expression	or	a	type

		1314	 //	(and	not	a	raw	type	such	as	[...]T).

		1315	 //

		1316	 func	(p	*parser)	checkExprOrType(x	ast.Expr)	ast.Expr	{

		1317	 	 switch	t	:=	unparen(x).(type)	{

		1318	 	 case	*ast.ParenExpr:

		1319	 	 	 panic("unreachable")

		1320	 	 case	*ast.UnaryExpr:

		1321	 	 case	*ast.ArrayType:

		1322	 	 	 if	len,	isEllipsis	:=	t.Len.(*ast.Ellipsis);	isEllipsis	{

		1323	 	 	 	 p.error(len.Pos(),	"expected	array	length,	found	'...'")

		1324	 	 	 	 x	=	&ast.BadExpr{From:	x.Pos(),	To:	x.End()}

		1325	 	 	 }

		1326	 	 }

		1327	

		1328	 	 //	all	other	nodes	are	expressions	or	types

		1329	 	 return	x

		1330	 }

		1331	

		1332	 //	If	lhs	is	set	and	the	result	is	an	identifier,	it	is	not	resolved.

		1333	 func	(p	*parser)	parsePrimaryExpr(lhs	bool)	ast.Expr	{

		1334	 	 if	p.trace	{

		1335	 	 	 defer	un(trace(p,	"PrimaryExpr"))

		1336	 	 }

		1337	

		1338	 	 x	:=	p.parseOperand(lhs)

		1339	 L:

		1340	 	 for	{

		1341	 	 	 switch	p.tok	{

		1342	 	 	 case	token.PERIOD:

		1343	 	 	 	 p.next()

		1344	 	 	 	 if	lhs	{

		1345	 	 	 	 	 p.resolve(x)

		1346	 	 	 	 }

		1347	 	 	 	 switch	p.tok	{

		1348	 	 	 	 case	token.IDENT:

		1349	 	 	 	 	 x	=	p.parseSelector(p.checkExpr(x))

		1350	 	 	 	 case	token.LPAREN:

		1351	 	 	 	 	 x	=	p.parseTypeAssertion(p.checkExpr(x))

		1352	 	 	 	 default:

		1353	 	 	 	 	 pos	:=	p.pos

		1354	 	 	 	 	 p.errorExpected(pos,	"selector	or	type	assertion")

		1355	 	 	 	 	 p.next()	//	make	progress

		1356	 	 	 	 	 x	=	&ast.BadExpr{From:	pos,	To:	p.pos}

		1357	 	 	 	 }

		1358	 	 	 case	token.LBRACK:

		1359	 	 	 	 if	lhs	{

		1360	 	 	 	 	 p.resolve(x)

		1361	 	 	 	 }

		1362	 	 	 	 x	=	p.parseIndexOrSlice(p.checkExpr(x))

		1363	 	 	 case	token.LPAREN:

		1364	 	 	 	 if	lhs	{

		1365	 	 	 	 	 p.resolve(x)

		1366	 	 	 	 }

		1367	 	 	 	 x	=	p.parseCallOrConversion(p.checkExprOrType(x))

		1368	 	 	 case	token.LBRACE:

		1369	 	 	 	 if	isLiteralType(x)	&&	(p.exprLev	>=	0	||	!isTypeName(x))	{

		1370	 	 	 	 	 if	lhs	{

		1371	 	 	 	 	 	 p.resolve(x)

		1372	 	 	 	 	 }

		1373	 	 	 	 	 x	=	p.parseLiteralValue(x)

		1374	 	 	 	 }	else	{

		1375	 	 	 	 	 break	L

		1376	 	 	 	 }

		1377	 	 	 default:

		1378	 	 	 	 break	L

		1379	 	 	 }

		1380	 	 	 lhs	=	false	//	no	need	to	try	to	resolve	again

		1381	 	 }

		1382	

		1383	 	 return	x

		1384	 }

		1385	

		1386	 //	If	lhs	is	set	and	the	result	is	an	identifier,	it	is	not	resolved.

		1387	 func	(p	*parser)	parseUnaryExpr(lhs	bool)	ast.Expr	{

		1388	 	 if	p.trace	{

		1389	 	 	 defer	un(trace(p,	"UnaryExpr"))

		1390	 	 }

		1391	

		1392	 	 switch	p.tok	{

		1393	 	 case	token.ADD,	token.SUB,	token.NOT,	token.XOR,	token.AND:

		1394	 	 	 pos,	op	:=	p.pos,	p.tok

		1395	 	 	 p.next()

		1396	 	 	 x	:=	p.parseUnaryExpr(false)

		1397	 	 	 return	&ast.UnaryExpr{OpPos:	pos,	Op:	op,	X:	p.checkExpr(x)}

		1398	

		1399	 	 case	token.ARROW:

		1400	 	 	 //	channel	type	or	receive	expression

		1401	 	 	 pos	:=	p.pos

		1402	 	 	 p.next()

		1403	 	 	 if	p.tok	==	token.CHAN	{

		1404	 	 	 	 p.next()

		1405	 	 	 	 value	:=	p.parseType()

		1406	 	 	 	 return	&ast.ChanType{Begin:	pos,	Dir:	ast.RECV,	Value:	value}

		1407	 	 	 }

		1408	

		1409	 	 	 x	:=	p.parseUnaryExpr(false)

		1410	 	 	 return	&ast.UnaryExpr{OpPos:	pos,	Op:	token.ARROW,	X:	p.checkExpr(x)}

		1411	

		1412	 	 case	token.MUL:

		1413	 	 	 //	pointer	type	or	unary	"*"	expression

		1414	 	 	 pos	:=	p.pos

		1415	 	 	 p.next()

		1416	 	 	 x	:=	p.parseUnaryExpr(false)

		1417	 	 	 return	&ast.StarExpr{Star:	pos,	X:	p.checkExprOrType(x)}

		1418	 	 }

		1419	

		1420	 	 return	p.parsePrimaryExpr(lhs)

		1421	 }

		1422	

		1423	 //	If	lhs	is	set	and	the	result	is	an	identifier,	it	is	not	resolved.

		1424	 func	(p	*parser)	parseBinaryExpr(lhs	bool,	prec1	int)	ast.Expr	{

		1425	 	 if	p.trace	{

		1426	 	 	 defer	un(trace(p,	"BinaryExpr"))

		1427	 	 }

		1428	

		1429	 	 x	:=	p.parseUnaryExpr(lhs)

		1430	 	 for	prec	:=	p.tok.Precedence();	prec	>=	prec1;	prec--	{

		1431	 	 	 for	p.tok.Precedence()	==	prec	{

		1432	 	 	 	 pos,	op	:=	p.pos,	p.tok

		1433	 	 	 	 p.next()

		1434	 	 	 	 if	lhs	{

		1435	 	 	 	 	 p.resolve(x)

		1436	 	 	 	 	 lhs	=	false

		1437	 	 	 	 }

		1438	 	 	 	 y	:=	p.parseBinaryExpr(false,	prec+1)

		1439	 	 	 	 x	=	&ast.BinaryExpr{X:	p.checkExpr(x),	OpPos:	pos,	Op:	op,	Y:	p.checkExpr(y)}

		1440	 	 	 }

		1441	 	 }

		1442	

		1443	 	 return	x

		1444	 }

		1445	

		1446	 //	If	lhs	is	set	and	the	result	is	an	identifier,	it	is	not	resolved.

		1447	 //	The	result	may	be	a	type	or	even	a	raw	type	([...]int).	Callers	must

		1448	 //	check	the	result	(using	checkExpr	or	checkExprOrType),	depending	on

		1449	 //	context.

		1450	 func	(p	*parser)	parseExpr(lhs	bool)	ast.Expr	{

		1451	 	 if	p.trace	{

		1452	 	 	 defer	un(trace(p,	"Expression"))

		1453	 	 }

		1454	

		1455	 	 return	p.parseBinaryExpr(lhs,	token.LowestPrec+1)

		1456	 }

		1457	

		1458	 func	(p	*parser)	parseRhs()	ast.Expr	{

		1459	 	 return	p.checkExpr(p.parseExpr(false))

		1460	 }

		1461	

		1462	 func	(p	*parser)	parseRhsOrType()	ast.Expr	{

		1463	 	 return	p.checkExprOrType(p.parseExpr(false))

		1464	 }

		1465	

		1466	 //	--

		1467	 //	Statements

		1468	

		1469	 //	Parsing	modes	for	parseSimpleStmt.

		1470	 const	(

		1471	 	 basic	=	iota

		1472	 	 labelOk

		1473	 	 rangeOk

		1474)

		1475	

		1476	 //	parseSimpleStmt	returns	true	as	2nd	result	if	it	parsed	the	assignment

		1477	 //	of	a	range	clause	(with	mode	==	rangeOk).	The	returned	statement	is	an

		1478	 //	assignment	with	a	right-hand	side	that	is	a	single	unary	expression	of

		1479	 //	the	form	"range	x".	No	guarantees	are	given	for	the	left-hand	side.

		1480	 func	(p	*parser)	parseSimpleStmt(mode	int)	(ast.Stmt,	bool)	{

		1481	 	 if	p.trace	{

		1482	 	 	 defer	un(trace(p,	"SimpleStmt"))

		1483	 	 }

		1484	

		1485	 	 x	:=	p.parseLhsList()

		1486	

		1487	 	 switch	p.tok	{

		1488	 	 case

		1489	 	 	 token.DEFINE,	token.ASSIGN,	token.ADD_ASSIGN,

		1490	 	 	 token.SUB_ASSIGN,	token.MUL_ASSIGN,	token.QUO_ASSIGN,

		1491	 	 	 token.REM_ASSIGN,	token.AND_ASSIGN,	token.OR_ASSIGN,

		1492	 	 	 token.XOR_ASSIGN,	token.SHL_ASSIGN,	token.SHR_ASSIGN,	token.AND_NOT_ASSIGN:

		1493	 	 	 //	assignment	statement,	possibly	part	of	a	range	clause

		1494	 	 	 pos,	tok	:=	p.pos,	p.tok

		1495	 	 	 p.next()

		1496	 	 	 var	y	[]ast.Expr

		1497	 	 	 isRange	:=	false

		1498	 	 	 if	mode	==	rangeOk	&&	p.tok	==	token.RANGE	&&	(tok	==	token.DEFINE	||	tok	==	token.ASSIGN)	{

		1499	 	 	 	 pos	:=	p.pos

		1500	 	 	 	 p.next()

		1501	 	 	 	 y	=	[]ast.Expr{&ast.UnaryExpr{OpPos:	pos,	Op:	token.RANGE,	X:	p.parseRhs()}}

		1502	 	 	 	 isRange	=	true

		1503	 	 	 }	else	{

		1504	 	 	 	 y	=	p.parseRhsList()

		1505	 	 	 }

		1506	 	 	 as	:=	&ast.AssignStmt{Lhs:	x,	TokPos:	pos,	Tok:	tok,	Rhs:	y}

		1507	 	 	 if	tok	==	token.DEFINE	{

		1508	 	 	 	 p.shortVarDecl(as,	x)

		1509	 	 	 }

		1510	 	 	 return	as,	isRange

		1511	 	 }

		1512	

		1513	 	 if	len(x)	>	1	{

		1514	 	 	 p.errorExpected(x[0].Pos(),	"1	expression")

		1515	 	 	 //	continue	with	first	expression

		1516	 	 }

		1517	

		1518	 	 switch	p.tok	{

		1519	 	 case	token.COLON:

		1520	 	 	 //	labeled	statement

		1521	 	 	 colon	:=	p.pos

		1522	 	 	 p.next()

		1523	 	 	 if	label,	isIdent	:=	x[0].(*ast.Ident);	mode	==	labelOk	&&	isIdent	{

		1524	 	 	 	 //	Go	spec:	The	scope	of	a	label	is	the	body	of	the	function

		1525	 	 	 	 //	in	which	it	is	declared	and	excludes	the	body	of	any	nested

		1526	 	 	 	 //	function.

		1527	 	 	 	 stmt	:=	&ast.LabeledStmt{Label:	label,	Colon:	colon,	Stmt:	p.parseStmt()}

		1528	 	 	 	 p.declare(stmt,	nil,	p.labelScope,	ast.Lbl,	label)

		1529	 	 	 	 return	stmt,	false

		1530	 	 	 }

		1531	 	 	 //	The	label	declaration	typically	starts	at	x[0].Pos(),	but	the	label

		1532	 	 	 //	declaration	may	be	erroneous	due	to	a	token	after	that	position	(and

		1533	 	 	 //	before	the	':').	If	SpuriousErrors	is	not	set,	the	(only)	error	re-

		1534	 	 	 //	ported	for	the	line	is	the	illegal	label	error	instead	of	the	token

		1535	 	 	 //	before	the	':'	that	caused	the	problem.	Thus,	use	the	(latest)	colon

		1536	 	 	 //	position	for	error	reporting.

		1537	 	 	 p.error(colon,	"illegal	label	declaration")

		1538	 	 	 return	&ast.BadStmt{From:	x[0].Pos(),	To:	colon	+	1},	false

		1539	

		1540	 	 case	token.ARROW:

		1541	 	 	 //	send	statement

		1542	 	 	 arrow	:=	p.pos

		1543	 	 	 p.next()

		1544	 	 	 y	:=	p.parseRhs()

		1545	 	 	 return	&ast.SendStmt{Chan:	x[0],	Arrow:	arrow,	Value:	y},	false

		1546	

		1547	 	 case	token.INC,	token.DEC:

		1548	 	 	 //	increment	or	decrement

		1549	 	 	 s	:=	&ast.IncDecStmt{X:	x[0],	TokPos:	p.pos,	Tok:	p.tok}

		1550	 	 	 p.next()

		1551	 	 	 return	s,	false

		1552	 	 }

		1553	

		1554	 	 //	expression

		1555	 	 return	&ast.ExprStmt{X:	x[0]},	false

		1556	 }

		1557	

		1558	 func	(p	*parser)	parseCallExpr()	*ast.CallExpr	{

		1559	 	 x	:=	p.parseRhsOrType()	//	could	be	a	conversion:	(some	type)(x)

		1560	 	 if	call,	isCall	:=	x.(*ast.CallExpr);	isCall	{

		1561	 	 	 return	call

		1562	 	 }

		1563	 	 if	_,	isBad	:=	x.(*ast.BadExpr);	!isBad	{

		1564	 	 	 //	only	report	error	if	it's	a	new	one

		1565	 	 	 p.errorExpected(x.Pos(),	"function/method	call")

		1566	 	 }

		1567	 	 return	nil

		1568	 }

		1569	

		1570	 func	(p	*parser)	parseGoStmt()	ast.Stmt	{

		1571	 	 if	p.trace	{

		1572	 	 	 defer	un(trace(p,	"GoStmt"))

		1573	 	 }

		1574	

		1575	 	 pos	:=	p.expect(token.GO)

		1576	 	 call	:=	p.parseCallExpr()

		1577	 	 p.expectSemi()

		1578	 	 if	call	==	nil	{

		1579	 	 	 return	&ast.BadStmt{From:	pos,	To:	pos	+	2}	

		1580	 	 }

		1581	

		1582	 	 return	&ast.GoStmt{Go:	pos,	Call:	call}

		1583	 }

		1584	

		1585	 func	(p	*parser)	parseDeferStmt()	ast.Stmt	{

		1586	 	 if	p.trace	{

		1587	 	 	 defer	un(trace(p,	"DeferStmt"))

		1588	 	 }

		1589	

		1590	 	 pos	:=	p.expect(token.DEFER)

		1591	 	 call	:=	p.parseCallExpr()

		1592	 	 p.expectSemi()

		1593	 	 if	call	==	nil	{

		1594	 	 	 return	&ast.BadStmt{From:	pos,	To:	pos	+	5}	

		1595	 	 }

		1596	

		1597	 	 return	&ast.DeferStmt{Defer:	pos,	Call:	call}

		1598	 }

		1599	

		1600	 func	(p	*parser)	parseReturnStmt()	*ast.ReturnStmt	{

		1601	 	 if	p.trace	{

		1602	 	 	 defer	un(trace(p,	"ReturnStmt"))

		1603	 	 }

		1604	

		1605	 	 pos	:=	p.pos

		1606	 	 p.expect(token.RETURN)

		1607	 	 var	x	[]ast.Expr

		1608	 	 if	p.tok	!=	token.SEMICOLON	&&	p.tok	!=	token.RBRACE	{

		1609	 	 	 x	=	p.parseRhsList()

		1610	 	 }

		1611	 	 p.expectSemi()

		1612	

		1613	 	 return	&ast.ReturnStmt{Return:	pos,	Results:	x}

		1614	 }

		1615	

		1616	 func	(p	*parser)	parseBranchStmt(tok	token.Token)	*ast.BranchStmt	{

		1617	 	 if	p.trace	{

		1618	 	 	 defer	un(trace(p,	"BranchStmt"))

		1619	 	 }

		1620	

		1621	 	 pos	:=	p.expect(tok)

		1622	 	 var	label	*ast.Ident

		1623	 	 if	tok	!=	token.FALLTHROUGH	&&	p.tok	==	token.IDENT	{

		1624	 	 	 label	=	p.parseIdent()

		1625	 	 	 //	add	to	list	of	unresolved	targets

		1626	 	 	 n	:=	len(p.targetStack)	-	1

		1627	 	 	 p.targetStack[n]	=	append(p.targetStack[n],	label)

		1628	 	 }

		1629	 	 p.expectSemi()

		1630	

		1631	 	 return	&ast.BranchStmt{TokPos:	pos,	Tok:	tok,	Label:	label}

		1632	 }

		1633	

		1634	 func	(p	*parser)	makeExpr(s	ast.Stmt)	ast.Expr	{

		1635	 	 if	s	==	nil	{

		1636	 	 	 return	nil

		1637	 	 }

		1638	 	 if	es,	isExpr	:=	s.(*ast.ExprStmt);	isExpr	{

		1639	 	 	 return	p.checkExpr(es.X)

		1640	 	 }

		1641	 	 p.error(s.Pos(),	"expected	condition,	found	simple	statement")

		1642	 	 return	&ast.BadExpr{From:	s.Pos(),	To:	s.End()}

		1643	 }

		1644	

		1645	 func	(p	*parser)	parseIfStmt()	*ast.IfStmt	{

		1646	 	 if	p.trace	{

		1647	 	 	 defer	un(trace(p,	"IfStmt"))

		1648	 	 }

		1649	

		1650	 	 pos	:=	p.expect(token.IF)

		1651	 	 p.openScope()

		1652	 	 defer	p.closeScope()

		1653	

		1654	 	 var	s	ast.Stmt

		1655	 	 var	x	ast.Expr

		1656	 	 {

		1657	 	 	 prevLev	:=	p.exprLev

		1658	 	 	 p.exprLev	=	-1

		1659	 	 	 if	p.tok	==	token.SEMICOLON	{

		1660	 	 	 	 p.next()

		1661	 	 	 	 x	=	p.parseRhs()

		1662	 	 	 }	else	{

		1663	 	 	 	 s,	_	=	p.parseSimpleStmt(basic)

		1664	 	 	 	 if	p.tok	==	token.SEMICOLON	{

		1665	 	 	 	 	 p.next()

		1666	 	 	 	 	 x	=	p.parseRhs()

		1667	 	 	 	 }	else	{

		1668	 	 	 	 	 x	=	p.makeExpr(s)

		1669	 	 	 	 	 s	=	nil

		1670	 	 	 	 }

		1671	 	 	 }

		1672	 	 	 p.exprLev	=	prevLev

		1673	 	 }

		1674	

		1675	 	 body	:=	p.parseBlockStmt()

		1676	 	 var	else_	ast.Stmt

		1677	 	 if	p.tok	==	token.ELSE	{

		1678	 	 	 p.next()

		1679	 	 	 else_	=	p.parseStmt()

		1680	 	 }	else	{

		1681	 	 	 p.expectSemi()

		1682	 	 }

		1683	

		1684	 	 return	&ast.IfStmt{If:	pos,	Init:	s,	Cond:	x,	Body:	body,	Else:	else_}

		1685	 }

		1686	

		1687	 func	(p	*parser)	parseTypeList()	(list	[]ast.Expr)	{

		1688	 	 if	p.trace	{

		1689	 	 	 defer	un(trace(p,	"TypeList"))

		1690	 	 }

		1691	

		1692	 	 list	=	append(list,	p.parseType())

		1693	 	 for	p.tok	==	token.COMMA	{

		1694	 	 	 p.next()

		1695	 	 	 list	=	append(list,	p.parseType())

		1696	 	 }

		1697	

		1698	 	 return

		1699	 }

		1700	

		1701	 func	(p	*parser)	parseCaseClause(typeSwitch	bool)	*ast.CaseClause	{

		1702	 	 if	p.trace	{

		1703	 	 	 defer	un(trace(p,	"CaseClause"))

		1704	 	 }

		1705	

		1706	 	 pos	:=	p.pos

		1707	 	 var	list	[]ast.Expr

		1708	 	 if	p.tok	==	token.CASE	{

		1709	 	 	 p.next()

		1710	 	 	 if	typeSwitch	{

		1711	 	 	 	 list	=	p.parseTypeList()

		1712	 	 	 }	else	{

		1713	 	 	 	 list	=	p.parseRhsList()

		1714	 	 	 }

		1715	 	 }	else	{

		1716	 	 	 p.expect(token.DEFAULT)

		1717	 	 }

		1718	

		1719	 	 colon	:=	p.expect(token.COLON)

		1720	 	 p.openScope()

		1721	 	 body	:=	p.parseStmtList()

		1722	 	 p.closeScope()

		1723	

		1724	 	 return	&ast.CaseClause{Case:	pos,	List:	list,	Colon:	colon,	Body:	body}

		1725	 }

		1726	

		1727	 func	isTypeSwitchAssert(x	ast.Expr)	bool	{

		1728	 	 a,	ok	:=	x.(*ast.TypeAssertExpr)

		1729	 	 return	ok	&&	a.Type	==	nil

		1730	 }

		1731	

		1732	 func	isTypeSwitchGuard(s	ast.Stmt)	bool	{

		1733	 	 switch	t	:=	s.(type)	{

		1734	 	 case	*ast.ExprStmt:

		1735	 	 	 //	x.(nil)

		1736	 	 	 return	isTypeSwitchAssert(t.X)

		1737	 	 case	*ast.AssignStmt:

		1738	 	 	 //	v	:=	x.(nil)

		1739	 	 	 return	len(t.Lhs)	==	1	&&	t.Tok	==	token.DEFINE	&&	len(t.Rhs)	==	1	&&	isTypeSwitchAssert(t.Rhs[0])

		1740	 	 }

		1741	 	 return	false

		1742	 }

		1743	

		1744	 func	(p	*parser)	parseSwitchStmt()	ast.Stmt	{

		1745	 	 if	p.trace	{

		1746	 	 	 defer	un(trace(p,	"SwitchStmt"))

		1747	 	 }

		1748	

		1749	 	 pos	:=	p.expect(token.SWITCH)

		1750	 	 p.openScope()

		1751	 	 defer	p.closeScope()

		1752	

		1753	 	 var	s1,	s2	ast.Stmt

		1754	 	 if	p.tok	!=	token.LBRACE	{

		1755	 	 	 prevLev	:=	p.exprLev

		1756	 	 	 p.exprLev	=	-1

		1757	 	 	 if	p.tok	!=	token.SEMICOLON	{

		1758	 	 	 	 s2,	_	=	p.parseSimpleStmt(basic)

		1759	 	 	 }

		1760	 	 	 if	p.tok	==	token.SEMICOLON	{

		1761	 	 	 	 p.next()

		1762	 	 	 	 s1	=	s2

		1763	 	 	 	 s2	=	nil

		1764	 	 	 	 if	p.tok	!=	token.LBRACE	{

		1765	 	 	 	 	 //	A	TypeSwitchGuard	may	declare	a	variable	in	addition

		1766	 	 	 	 	 //	to	the	variable	declared	in	the	initial	SimpleStmt.

		1767	 	 	 	 	 //	Introduce	extra	scope	to	avoid	redeclaration	errors:

		1768	 	 	 	 	 //

		1769	 	 	 	 	 //	 switch	t	:=	0;	t	:=	x.(T)	{	...	}

		1770	 	 	 	 	 //

		1771	 	 	 	 	 //	(this	code	is	not	valid	Go	because	the	first	t	will

		1772	 	 	 	 	 //	cannot	be	accessed	and	thus	is	never	used,	the	extra

		1773	 	 	 	 	 //	scope	is	needed	for	the	correct	error	message).

		1774	 	 	 	 	 //

		1775	 	 	 	 	 //	If	we	don't	have	a	type	switch,	s2	must	be	an	expression.

		1776	 	 	 	 	 //	Having	the	extra	nested	but	empty	scope	won't	affect	it.

		1777	 	 	 	 	 p.openScope()

		1778	 	 	 	 	 defer	p.closeScope()

		1779	 	 	 	 	 s2,	_	=	p.parseSimpleStmt(basic)

		1780	 	 	 	 }

		1781	 	 	 }

		1782	 	 	 p.exprLev	=	prevLev

		1783	 	 }

		1784	

		1785	 	 typeSwitch	:=	isTypeSwitchGuard(s2)

		1786	 	 lbrace	:=	p.expect(token.LBRACE)

		1787	 	 var	list	[]ast.Stmt

		1788	 	 for	p.tok	==	token.CASE	||	p.tok	==	token.DEFAULT	{

		1789	 	 	 list	=	append(list,	p.parseCaseClause(typeSwitch))

		1790	 	 }

		1791	 	 rbrace	:=	p.expect(token.RBRACE)

		1792	 	 p.expectSemi()

		1793	 	 body	:=	&ast.BlockStmt{Lbrace:	lbrace,	List:	list,	Rbrace:	rbrace}

		1794	

		1795	 	 if	typeSwitch	{

		1796	 	 	 return	&ast.TypeSwitchStmt{Switch:	pos,	Init:	s1,	Assign:	s2,	Body:	body}

		1797	 	 }

		1798	

		1799	 	 return	&ast.SwitchStmt{Switch:	pos,	Init:	s1,	Tag:	p.makeExpr(s2),	Body:	body}

		1800	 }

		1801	

		1802	 func	(p	*parser)	parseCommClause()	*ast.CommClause	{

		1803	 	 if	p.trace	{

		1804	 	 	 defer	un(trace(p,	"CommClause"))

		1805	 	 }

		1806	

		1807	 	 p.openScope()

		1808	 	 pos	:=	p.pos

		1809	 	 var	comm	ast.Stmt

		1810	 	 if	p.tok	==	token.CASE	{

		1811	 	 	 p.next()

		1812	 	 	 lhs	:=	p.parseLhsList()

		1813	 	 	 if	p.tok	==	token.ARROW	{

		1814	 	 	 	 //	SendStmt

		1815	 	 	 	 if	len(lhs)	>	1	{

		1816	 	 	 	 	 p.errorExpected(lhs[0].Pos(),	"1	expression")

		1817	 	 	 	 	 //	continue	with	first	expression

		1818	 	 	 	 }

		1819	 	 	 	 arrow	:=	p.pos

		1820	 	 	 	 p.next()

		1821	 	 	 	 rhs	:=	p.parseRhs()

		1822	 	 	 	 comm	=	&ast.SendStmt{Chan:	lhs[0],	Arrow:	arrow,	Value:	rhs}

		1823	 	 	 }	else	{

		1824	 	 	 	 //	RecvStmt

		1825	 	 	 	 if	tok	:=	p.tok;	tok	==	token.ASSIGN	||	tok	==	token.DEFINE	{

		1826	 	 	 	 	 //	RecvStmt	with	assignment

		1827	 	 	 	 	 if	len(lhs)	>	2	{

		1828	 	 	 	 	 	 p.errorExpected(lhs[0].Pos(),	"1	or	2	expressions")

		1829	 	 	 	 	 	 //	continue	with	first	two	expressions

		1830	 	 	 	 	 	 lhs	=	lhs[0:2]

		1831	 	 	 	 	 }

		1832	 	 	 	 	 pos	:=	p.pos

		1833	 	 	 	 	 p.next()

		1834	 	 	 	 	 rhs	:=	p.parseRhs()

		1835	 	 	 	 	 as	:=	&ast.AssignStmt{Lhs:	lhs,	TokPos:	pos,	Tok:	tok,	Rhs:	[]ast.Expr{rhs}}

		1836	 	 	 	 	 if	tok	==	token.DEFINE	{

		1837	 	 	 	 	 	 p.shortVarDecl(as,	lhs)

		1838	 	 	 	 	 }

		1839	 	 	 	 	 comm	=	as

		1840	 	 	 	 }	else	{

		1841	 	 	 	 	 //	lhs	must	be	single	receive	operation

		1842	 	 	 	 	 if	len(lhs)	>	1	{

		1843	 	 	 	 	 	 p.errorExpected(lhs[0].Pos(),	"1	expression")

		1844	 	 	 	 	 	 //	continue	with	first	expression

		1845	 	 	 	 	 }

		1846	 	 	 	 	 comm	=	&ast.ExprStmt{X:	lhs[0]}

		1847	 	 	 	 }

		1848	 	 	 }

		1849	 	 }	else	{

		1850	 	 	 p.expect(token.DEFAULT)

		1851	 	 }

		1852	

		1853	 	 colon	:=	p.expect(token.COLON)

		1854	 	 body	:=	p.parseStmtList()

		1855	 	 p.closeScope()

		1856	

		1857	 	 return	&ast.CommClause{Case:	pos,	Comm:	comm,	Colon:	colon,	Body:	body}

		1858	 }

		1859	

		1860	 func	(p	*parser)	parseSelectStmt()	*ast.SelectStmt	{

		1861	 	 if	p.trace	{

		1862	 	 	 defer	un(trace(p,	"SelectStmt"))

		1863	 	 }

		1864	

		1865	 	 pos	:=	p.expect(token.SELECT)

		1866	 	 lbrace	:=	p.expect(token.LBRACE)

		1867	 	 var	list	[]ast.Stmt

		1868	 	 for	p.tok	==	token.CASE	||	p.tok	==	token.DEFAULT	{

		1869	 	 	 list	=	append(list,	p.parseCommClause())

		1870	 	 }

		1871	 	 rbrace	:=	p.expect(token.RBRACE)

		1872	 	 p.expectSemi()

		1873	 	 body	:=	&ast.BlockStmt{Lbrace:	lbrace,	List:	list,	Rbrace:	rbrace}

		1874	

		1875	 	 return	&ast.SelectStmt{Select:	pos,	Body:	body}

		1876	 }

		1877	

		1878	 func	(p	*parser)	parseForStmt()	ast.Stmt	{

		1879	 	 if	p.trace	{

		1880	 	 	 defer	un(trace(p,	"ForStmt"))

		1881	 	 }

		1882	

		1883	 	 pos	:=	p.expect(token.FOR)

		1884	 	 p.openScope()

		1885	 	 defer	p.closeScope()

		1886	

		1887	 	 var	s1,	s2,	s3	ast.Stmt

		1888	 	 var	isRange	bool

		1889	 	 if	p.tok	!=	token.LBRACE	{

		1890	 	 	 prevLev	:=	p.exprLev

		1891	 	 	 p.exprLev	=	-1

		1892	 	 	 if	p.tok	!=	token.SEMICOLON	{

		1893	 	 	 	 s2,	isRange	=	p.parseSimpleStmt(rangeOk)

		1894	 	 	 }

		1895	 	 	 if	!isRange	&&	p.tok	==	token.SEMICOLON	{

		1896	 	 	 	 p.next()

		1897	 	 	 	 s1	=	s2

		1898	 	 	 	 s2	=	nil

		1899	 	 	 	 if	p.tok	!=	token.SEMICOLON	{

		1900	 	 	 	 	 s2,	_	=	p.parseSimpleStmt(basic)

		1901	 	 	 	 }

		1902	 	 	 	 p.expectSemi()

		1903	 	 	 	 if	p.tok	!=	token.LBRACE	{

		1904	 	 	 	 	 s3,	_	=	p.parseSimpleStmt(basic)

		1905	 	 	 	 }

		1906	 	 	 }

		1907	 	 	 p.exprLev	=	prevLev

		1908	 	 }

		1909	

		1910	 	 body	:=	p.parseBlockStmt()

		1911	 	 p.expectSemi()

		1912	

		1913	 	 if	isRange	{

		1914	 	 	 as	:=	s2.(*ast.AssignStmt)

		1915	 	 	 //	check	lhs

		1916	 	 	 var	key,	value	ast.Expr

		1917	 	 	 switch	len(as.Lhs)	{

		1918	 	 	 case	2:

		1919	 	 	 	 key,	value	=	as.Lhs[0],	as.Lhs[1]

		1920	 	 	 case	1:

		1921	 	 	 	 key	=	as.Lhs[0]

		1922	 	 	 default:

		1923	 	 	 	 p.errorExpected(as.Lhs[0].Pos(),	"1	or	2	expressions")

		1924	 	 	 	 return	&ast.BadStmt{From:	pos,	To:	body.End()}

		1925	 	 	 }

		1926	 	 	 //	parseSimpleStmt	returned	a	right-hand	side	that

		1927	 	 	 //	is	a	single	unary	expression	of	the	form	"range	x"

		1928	 	 	 x	:=	as.Rhs[0].(*ast.UnaryExpr).X

		1929	 	 	 return	&ast.RangeStmt{

		1930	 	 	 	 For:				pos,

		1931	 	 	 	 Key:				key,

		1932	 	 	 	 Value:		value,

		1933	 	 	 	 TokPos:	as.TokPos,

		1934	 	 	 	 Tok:				as.Tok,

		1935	 	 	 	 X:						x,

		1936	 	 	 	 Body:			body,

		1937	 	 	 }

		1938	 	 }

		1939	

		1940	 	 //	regular	for	statement

		1941	 	 return	&ast.ForStmt{

		1942	 	 	 For:		pos,

		1943	 	 	 Init:	s1,

		1944	 	 	 Cond:	p.makeExpr(s2),

		1945	 	 	 Post:	s3,

		1946	 	 	 Body:	body,

		1947	 	 }

		1948	 }

		1949	

		1950	 func	(p	*parser)	parseStmt()	(s	ast.Stmt)	{

		1951	 	 if	p.trace	{

		1952	 	 	 defer	un(trace(p,	"Statement"))

		1953	 	 }

		1954	

		1955	 	 switch	p.tok	{

		1956	 	 case	token.CONST,	token.TYPE,	token.VAR:

		1957	 	 	 s	=	&ast.DeclStmt{Decl:	p.parseDecl(syncStmt)}

		1958	 	 case

		1959	 	 	 //	tokens	that	may	start	an	expression

		1960	 	 	 token.IDENT,	token.INT,	token.FLOAT,	token.IMAG,	token.CHAR,	token.STRING,	token.FUNC,	token.LPAREN,	

		1961	 	 	 token.LBRACK,	token.STRUCT,	//	composite	types

		1962	 	 	 token.ADD,	token.SUB,	token.MUL,	token.AND,	token.XOR,	token.ARROW,	token.NOT:	

		1963	 	 	 s,	_	=	p.parseSimpleStmt(labelOk)

		1964	 	 	 //	because	of	the	required	look-ahead,	labeled	statements	are

		1965	 	 	 //	parsed	by	parseSimpleStmt	-	don't	expect	a	semicolon	after

		1966	 	 	 //	them

		1967	 	 	 if	_,	isLabeledStmt	:=	s.(*ast.LabeledStmt);	!isLabeledStmt	{

		1968	 	 	 	 p.expectSemi()

		1969	 	 	 }

		1970	 	 case	token.GO:

		1971	 	 	 s	=	p.parseGoStmt()

		1972	 	 case	token.DEFER:

		1973	 	 	 s	=	p.parseDeferStmt()

		1974	 	 case	token.RETURN:

		1975	 	 	 s	=	p.parseReturnStmt()

		1976	 	 case	token.BREAK,	token.CONTINUE,	token.GOTO,	token.FALLTHROUGH:

		1977	 	 	 s	=	p.parseBranchStmt(p.tok)

		1978	 	 case	token.LBRACE:

		1979	 	 	 s	=	p.parseBlockStmt()

		1980	 	 	 p.expectSemi()

		1981	 	 case	token.IF:

		1982	 	 	 s	=	p.parseIfStmt()

		1983	 	 case	token.SWITCH:

		1984	 	 	 s	=	p.parseSwitchStmt()

		1985	 	 case	token.SELECT:

		1986	 	 	 s	=	p.parseSelectStmt()

		1987	 	 case	token.FOR:

		1988	 	 	 s	=	p.parseForStmt()

		1989	 	 case	token.SEMICOLON:

		1990	 	 	 s	=	&ast.EmptyStmt{Semicolon:	p.pos}

		1991	 	 	 p.next()

		1992	 	 case	token.RBRACE:

		1993	 	 	 //	a	semicolon	may	be	omitted	before	a	closing	"}"

		1994	 	 	 s	=	&ast.EmptyStmt{Semicolon:	p.pos}

		1995	 	 default:

		1996	 	 	 //	no	statement	found

		1997	 	 	 pos	:=	p.pos

		1998	 	 	 p.errorExpected(pos,	"statement")

		1999	 	 	 syncStmt(p)

		2000	 	 	 s	=	&ast.BadStmt{From:	pos,	To:	p.pos}

		2001	 	 }

		2002	

		2003	 	 return

		2004	 }

		2005	

		2006	 //	--

		2007	 //	Declarations

		2008	

		2009	 type	parseSpecFunction	func(p	*parser,	doc	*ast.CommentGroup,	iota	int)	ast.Spec

		2010	

		2011	 func	isValidImport(lit	string)	bool	{

		2012	 	 const	illegalChars	=	`!"#$%&'()*,:;<=>?[\]^{|}`	+	"`\uFFFD"

		2013	 	 s,	_	:=	strconv.Unquote(lit)	//	go/scanner	returns	a	legal	string	literal

		2014	 	 for	_,	r	:=	range	s	{

		2015	 	 	 if	!unicode.IsGraphic(r)	||	unicode.IsSpace(r)	||	strings.ContainsRune(illegalChars,	r)	{

		2016	 	 	 	 return	false

		2017	 	 	 }

		2018	 	 }

		2019	 	 return	s	!=	""

		2020	 }

		2021	

		2022	 func	parseImportSpec(p	*parser,	doc	*ast.CommentGroup,	_	int)	ast.Spec	{

		2023	 	 if	p.trace	{

		2024	 	 	 defer	un(trace(p,	"ImportSpec"))

		2025	 	 }

		2026	

		2027	 	 var	ident	*ast.Ident

		2028	 	 switch	p.tok	{

		2029	 	 case	token.PERIOD:

		2030	 	 	 ident	=	&ast.Ident{NamePos:	p.pos,	Name:	"."}

		2031	 	 	 p.next()

		2032	 	 case	token.IDENT:

		2033	 	 	 ident	=	p.parseIdent()

		2034	 	 }

		2035	

		2036	 	 var	path	*ast.BasicLit

		2037	 	 if	p.tok	==	token.STRING	{

		2038	 	 	 if	!isValidImport(p.lit)	{

		2039	 	 	 	 p.error(p.pos,	"invalid	import	path:	"+p.lit)

		2040	 	 	 }

		2041	 	 	 path	=	&ast.BasicLit{ValuePos:	p.pos,	Kind:	p.tok,	Value:	p.lit}

		2042	 	 	 p.next()

		2043	 	 }	else	{

		2044	 	 	 p.expect(token.STRING)	//	use	expect()	error	handling

		2045	 	 }

		2046	 	 p.expectSemi()	//	call	before	accessing	p.linecomment

		2047	

		2048	 	 //	collect	imports

		2049	 	 spec	:=	&ast.ImportSpec{

		2050	 	 	 Doc:					doc,

		2051	 	 	 Name:				ident,

		2052	 	 	 Path:				path,

		2053	 	 	 Comment:	p.lineComment,

		2054	 	 }

		2055	 	 p.imports	=	append(p.imports,	spec)

		2056	

		2057	 	 return	spec

		2058	 }

		2059	

		2060	 func	parseConstSpec(p	*parser,	doc	*ast.CommentGroup,	iota	int)	ast.Spec	{

		2061	 	 if	p.trace	{

		2062	 	 	 defer	un(trace(p,	"ConstSpec"))

		2063	 	 }

		2064	

		2065	 	 idents	:=	p.parseIdentList()

		2066	 	 typ	:=	p.tryType()

		2067	 	 var	values	[]ast.Expr

		2068	 	 if	typ	!=	nil	||	p.tok	==	token.ASSIGN	||	iota	==	0	{

		2069	 	 	 p.expect(token.ASSIGN)

		2070	 	 	 values	=	p.parseRhsList()

		2071	 	 }

		2072	 	 p.expectSemi()	//	call	before	accessing	p.linecomment

		2073	

		2074	 	 //	Go	spec:	The	scope	of	a	constant	or	variable	identifier	declared	inside

		2075	 	 //	a	function	begins	at	the	end	of	the	ConstSpec	or	VarSpec	and	ends	at

		2076	 	 //	the	end	of	the	innermost	containing	block.

		2077	 	 //	(Global	identifiers	are	resolved	in	a	separate	phase	after	parsing.)

		2078	 	 spec	:=	&ast.ValueSpec{

		2079	 	 	 Doc:					doc,

		2080	 	 	 Names:			idents,

		2081	 	 	 Type:				typ,

		2082	 	 	 Values:		values,

		2083	 	 	 Comment:	p.lineComment,

		2084	 	 }

		2085	 	 p.declare(spec,	iota,	p.topScope,	ast.Con,	idents...)

		2086	

		2087	 	 return	spec

		2088	 }

		2089	

		2090	 func	parseTypeSpec(p	*parser,	doc	*ast.CommentGroup,	_	int)	ast.Spec	{

		2091	 	 if	p.trace	{

		2092	 	 	 defer	un(trace(p,	"TypeSpec"))

		2093	 	 }

		2094	

		2095	 	 ident	:=	p.parseIdent()

		2096	

		2097	 	 //	Go	spec:	The	scope	of	a	type	identifier	declared	inside	a	function	begins

		2098	 	 //	at	the	identifier	in	the	TypeSpec	and	ends	at	the	end	of	the	innermost

		2099	 	 //	containing	block.

		2100	 	 //	(Global	identifiers	are	resolved	in	a	separate	phase	after	parsing.)

		2101	 	 spec	:=	&ast.TypeSpec{Doc:	doc,	Name:	ident}

		2102	 	 p.declare(spec,	nil,	p.topScope,	ast.Typ,	ident)

		2103	

		2104	 	 spec.Type	=	p.parseType()

		2105	 	 p.expectSemi()	//	call	before	accessing	p.linecomment

		2106	 	 spec.Comment	=	p.lineComment

		2107	

		2108	 	 return	spec

		2109	 }

		2110	

		2111	 func	parseVarSpec(p	*parser,	doc	*ast.CommentGroup,	_	int)	ast.Spec	{

		2112	 	 if	p.trace	{

		2113	 	 	 defer	un(trace(p,	"VarSpec"))

		2114	 	 }

		2115	

		2116	 	 idents	:=	p.parseIdentList()

		2117	 	 typ	:=	p.tryType()

		2118	 	 var	values	[]ast.Expr

		2119	 	 if	typ	==	nil	||	p.tok	==	token.ASSIGN	{

		2120	 	 	 p.expect(token.ASSIGN)

		2121	 	 	 values	=	p.parseRhsList()

		2122	 	 }

		2123	 	 p.expectSemi()	//	call	before	accessing	p.linecomment

		2124	

		2125	 	 //	Go	spec:	The	scope	of	a	constant	or	variable	identifier	declared	inside

		2126	 	 //	a	function	begins	at	the	end	of	the	ConstSpec	or	VarSpec	and	ends	at

		2127	 	 //	the	end	of	the	innermost	containing	block.

		2128	 	 //	(Global	identifiers	are	resolved	in	a	separate	phase	after	parsing.)

		2129	 	 spec	:=	&ast.ValueSpec{

		2130	 	 	 Doc:					doc,

		2131	 	 	 Names:			idents,

		2132	 	 	 Type:				typ,

		2133	 	 	 Values:		values,

		2134	 	 	 Comment:	p.lineComment,

		2135	 	 }

		2136	 	 p.declare(spec,	nil,	p.topScope,	ast.Var,	idents...)

		2137	

		2138	 	 return	spec

		2139	 }

		2140	

		2141	 func	(p	*parser)	parseGenDecl(keyword	token.Token,	f	parseSpecFunction)	*ast.GenDecl	{

		2142	 	 if	p.trace	{

		2143	 	 	 defer	un(trace(p,	"GenDecl("+keyword.String()+")"))

		2144	 	 }

		2145	

		2146	 	 doc	:=	p.leadComment

		2147	 	 pos	:=	p.expect(keyword)

		2148	 	 var	lparen,	rparen	token.Pos

		2149	 	 var	list	[]ast.Spec

		2150	 	 if	p.tok	==	token.LPAREN	{

		2151	 	 	 lparen	=	p.pos

		2152	 	 	 p.next()

		2153	 	 	 for	iota	:=	0;	p.tok	!=	token.RPAREN	&&	p.tok	!=	token.EOF;	iota++	{

		2154	 	 	 	 list	=	append(list,	f(p,	p.leadComment,	iota))

		2155	 	 	 }

		2156	 	 	 rparen	=	p.expect(token.RPAREN)

		2157	 	 	 p.expectSemi()

		2158	 	 }	else	{

		2159	 	 	 list	=	append(list,	f(p,	nil,	0))

		2160	 	 }

		2161	

		2162	 	 return	&ast.GenDecl{

		2163	 	 	 Doc:				doc,

		2164	 	 	 TokPos:	pos,

		2165	 	 	 Tok:				keyword,

		2166	 	 	 Lparen:	lparen,

		2167	 	 	 Specs:		list,

		2168	 	 	 Rparen:	rparen,

		2169	 	 }

		2170	 }

		2171	

		2172	 func	(p	*parser)	parseReceiver(scope	*ast.Scope)	*ast.FieldList	{

		2173	 	 if	p.trace	{

		2174	 	 	 defer	un(trace(p,	"Receiver"))

		2175	 	 }

		2176	

		2177	 	 par	:=	p.parseParameters(scope,	false)

		2178	

		2179	 	 //	must	have	exactly	one	receiver

		2180	 	 if	par.NumFields()	!=	1	{

		2181	 	 	 p.errorExpected(par.Opening,	"exactly	one	receiver")

		2182	 	 	 par.List	=	[]*ast.Field{{Type:	&ast.BadExpr{From:	par.Opening,	To:	par.Closing	+	1}}}

		2183	 	 	 return	par

		2184	 	 }

		2185	

		2186	 	 //	recv	type	must	be	of	the	form	["*"]	identifier

		2187	 	 recv	:=	par.List[0]

		2188	 	 base	:=	deref(recv.Type)

		2189	 	 if	_,	isIdent	:=	base.(*ast.Ident);	!isIdent	{

		2190	 	 	 if	_,	isBad	:=	base.(*ast.BadExpr);	!isBad	{

		2191	 	 	 	 //	only	report	error	if	it's	a	new	one

		2192	 	 	 	 p.errorExpected(base.Pos(),	"(unqualified)	identifier")

		2193	 	 	 }

		2194	 	 	 par.List	=	[]*ast.Field{

		2195	 	 	 	 {Type:	&ast.BadExpr{From:	recv.Pos(),	To:	recv.End()}},

		2196	 	 	 }

		2197	 	 }

		2198	

		2199	 	 return	par

		2200	 }

		2201	

		2202	 func	(p	*parser)	parseFuncDecl()	*ast.FuncDecl	{

		2203	 	 if	p.trace	{

		2204	 	 	 defer	un(trace(p,	"FunctionDecl"))

		2205	 	 }

		2206	

		2207	 	 doc	:=	p.leadComment

		2208	 	 pos	:=	p.expect(token.FUNC)

		2209	 	 scope	:=	ast.NewScope(p.topScope)	//	function	scope

		2210	

		2211	 	 var	recv	*ast.FieldList

		2212	 	 if	p.tok	==	token.LPAREN	{

		2213	 	 	 recv	=	p.parseReceiver(scope)

		2214	 	 }

		2215	

		2216	 	 ident	:=	p.parseIdent()

		2217	

		2218	 	 params,	results	:=	p.parseSignature(scope)

		2219	

		2220	 	 var	body	*ast.BlockStmt

		2221	 	 if	p.tok	==	token.LBRACE	{

		2222	 	 	 body	=	p.parseBody(scope)

		2223	 	 }

		2224	 	 p.expectSemi()

		2225	

		2226	 	 decl	:=	&ast.FuncDecl{

		2227	 	 	 Doc:		doc,

		2228	 	 	 Recv:	recv,

		2229	 	 	 Name:	ident,

		2230	 	 	 Type:	&ast.FuncType{

		2231	 	 	 	 Func:				pos,

		2232	 	 	 	 Params:		params,

		2233	 	 	 	 Results:	results,

		2234	 	 	 },

		2235	 	 	 Body:	body,

		2236	 	 }

		2237	 	 if	recv	==	nil	{

		2238	 	 	 //	Go	spec:	The	scope	of	an	identifier	denoting	a	constant,	type,

		2239	 	 	 //	variable,	or	function	(but	not	method)	declared	at	top	level

		2240	 	 	 //	(outside	any	function)	is	the	package	block.

		2241	 	 	 //

		2242	 	 	 //	init()	functions	cannot	be	referred	to	and	there	may

		2243	 	 	 //	be	more	than	one	-	don't	put	them	in	the	pkgScope

		2244	 	 	 if	ident.Name	!=	"init"	{

		2245	 	 	 	 p.declare(decl,	nil,	p.pkgScope,	ast.Fun,	ident)

		2246	 	 	 }

		2247	 	 }

		2248	

		2249	 	 return	decl

		2250	 }

		2251	

		2252	 func	(p	*parser)	parseDecl(sync	func(*parser))	ast.Decl	{

		2253	 	 if	p.trace	{

		2254	 	 	 defer	un(trace(p,	"Declaration"))

		2255	 	 }

		2256	

		2257	 	 var	f	parseSpecFunction

		2258	 	 switch	p.tok	{

		2259	 	 case	token.CONST:

		2260	 	 	 f	=	parseConstSpec

		2261	

		2262	 	 case	token.TYPE:

		2263	 	 	 f	=	parseTypeSpec

		2264	

		2265	 	 case	token.VAR:

		2266	 	 	 f	=	parseVarSpec

		2267	

		2268	 	 case	token.FUNC:

		2269	 	 	 return	p.parseFuncDecl()

		2270	

		2271	 	 default:

		2272	 	 	 pos	:=	p.pos

		2273	 	 	 p.errorExpected(pos,	"declaration")

		2274	 	 	 sync(p)

		2275	 	 	 return	&ast.BadDecl{From:	pos,	To:	p.pos}

		2276	 	 }

		2277	

		2278	 	 return	p.parseGenDecl(p.tok,	f)

		2279	 }

		2280	

		2281	 //	--

		2282	 //	Source	files

		2283	

		2284	 func	(p	*parser)	parseFile()	*ast.File	{

		2285	 	 if	p.trace	{

		2286	 	 	 defer	un(trace(p,	"File"))

		2287	 	 }

		2288	

		2289	 	 //	package	clause

		2290	 	 doc	:=	p.leadComment

		2291	 	 pos	:=	p.expect(token.PACKAGE)

		2292	 	 //	Go	spec:	The	package	clause	is	not	a	declaration;

		2293	 	 //	the	package	name	does	not	appear	in	any	scope.

		2294	 	 ident	:=	p.parseIdent()

		2295	 	 if	ident.Name	==	"_"	{

		2296	 	 	 p.error(p.pos,	"invalid	package	name	_")

		2297	 	 }

		2298	 	 p.expectSemi()

		2299	

		2300	 	 var	decls	[]ast.Decl

		2301	

		2302	 	 //	Don't	bother	parsing	the	rest	if	we	had	errors	already.

		2303	 	 //	Likely	not	a	Go	source	file	at	all.

		2304	

		2305	 	 if	p.errors.Len()	==	0	&&	p.mode&PackageClauseOnly	==	0	{

		2306	 	 	 //	import	decls

		2307	 	 	 for	p.tok	==	token.IMPORT	{

		2308	 	 	 	 decls	=	append(decls,	p.parseGenDecl(token.IMPORT,	parseImportSpec))

		2309	 	 	 }

		2310	

		2311	 	 	 if	p.mode&ImportsOnly	==	0	{

		2312	 	 	 	 //	rest	of	package	body

		2313	 	 	 	 for	p.tok	!=	token.EOF	{

		2314	 	 	 	 	 decls	=	append(decls,	p.parseDecl(syncDecl))

		2315	 	 	 	 }

		2316	 	 	 }

		2317	 	 }

		2318	

		2319	 	 assert(p.topScope	==	p.pkgScope,	"imbalanced	scopes")

		2320	

		2321	 	 //	resolve	global	identifiers	within	the	same	file

		2322	 	 i	:=	0

		2323	 	 for	_,	ident	:=	range	p.unresolved	{

		2324	 	 	 //	i	<=	index	for	current	ident

		2325	 	 	 assert(ident.Obj	==	unresolved,	"object	already	resolved")

		2326	 	 	 ident.Obj	=	p.pkgScope.Lookup(ident.Name)	//	also	removes	unresolved	sentinel

		2327	 	 	 if	ident.Obj	==	nil	{

		2328	 	 	 	 p.unresolved[i]	=	ident

		2329	 	 	 	 i++

		2330	 	 	 }

		2331	 	 }

		2332	

		2333	 	 return	&ast.File{

		2334	 	 	 Doc:								doc,

		2335	 	 	 Package:				pos,

		2336	 	 	 Name:							ident,

		2337	 	 	 Decls:						decls,

		2338	 	 	 Scope:						p.pkgScope,

		2339	 	 	 Imports:				p.imports,

		2340	 	 	 Unresolved:	p.unresolved[0:i],

		2341	 	 	 Comments:			p.comments,

		2342	 	 }

		2343	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/go/printer/nodes.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	This	file	implements	printing	of	AST	nodes;	specifically

					6	 //	expressions,	statements,	declarations,	and	files.	It	uses

					7	 //	the	print	functionality	implemented	in	printer.go.

					8	

					9	 package	printer

				10	

				11	 import	(

				12	 	 "bytes"

				13	 	 "go/ast"

				14	 	 "go/token"

				15	 	 "unicode/utf8"

				16)

				17	

				18	 //	Formatting	issues:

				19	 //	-	better	comment	formatting	for	/*-style	comments	at	the	end	of	a	line	(e.g.	a	declaration)

				20	 //			when	the	comment	spans	multiple	lines;	if	such	a	comment	is	just	two	lines,	formatting	is

				21	 //			not	idempotent

				22	 //	-	formatting	of	expression	lists

				23	 //	-	should	use	blank	instead	of	tab	to	separate	one-line	function	bodies	from

				24	 //			the	function	header	unless	there	is	a	group	of	consecutive	one-liners

				25	

				26	 //	--

				27	 //	Common	AST	nodes.

				28	

				29	 //	Print	as	many	newlines	as	necessary	(but	at	least	min	newlines)	to	get	to

				30	 //	the	current	line.	ws	is	printed	before	the	first	line	break.	If	newSection

				31	 //	is	set,	the	first	line	break	is	printed	as	formfeed.	Returns	true	if	any

				32	 //	line	break	was	printed;	returns	false	otherwise.

				33	 //

				34	 //	TODO(gri):	linebreak	may	add	too	many	lines	if	the	next	statement	at	"line"

				35	 //												is	preceded	by	comments	because	the	computation	of	n	assumes

				36	 //												the	current	position	before	the	comment	and	the	target	position

				37	 //												after	the	comment.	Thus,	after	interspersing	such	comments,	the

				38	 //												space	taken	up	by	them	is	not	considered	to	reduce	the	number	of

				39	 //												linebreaks.	At	the	moment	there	is	no	easy	way	to	know	about

				40	 //												future	(not	yet	interspersed)	comments	in	this	function.

				41	 //

				42	 func	(p	*printer)	linebreak(line,	min	int,	ws	whiteSpace,	newSection	bool)	(printedBreak	bool)	{

				43	 	 n	:=	nlimit(line	-	p.pos.Line)

				44	 	 if	n	<	min	{

				45	 	 	 n	=	min

				46	 	 }

				47	 	 if	n	>	0	{

				48	 	 	 p.print(ws)

				49	 	 	 if	newSection	{

				50	 	 	 	 p.print(formfeed)

				51	 	 	 	 n--

				52	 	 	 }

				53	 	 	 for	;	n	>	0;	n--	{

				54	 	 	 	 p.print(newline)

				55	 	 	 }

				56	 	 	 printedBreak	=	true

				57	 	 }

				58	 	 return

				59	 }

				60	

				61	 //	setComment	sets	g	as	the	next	comment	if	g	!=	nil	and	if	node	comments

				62	 //	are	enabled	-	this	mode	is	used	when	printing	source	code	fragments	such

				63	 //	as	exports	only.	It	assumes	that	there	are	no	other	pending	comments	to

				64	 //	intersperse.

				65	 func	(p	*printer)	setComment(g	*ast.CommentGroup)	{

				66	 	 if	g	==	nil	||	!p.useNodeComments	{

				67	 	 	 return

				68	 	 }

				69	 	 if	p.comments	==	nil	{

				70	 	 	 //	initialize	p.comments	lazily

				71	 	 	 p.comments	=	make([]*ast.CommentGroup,	1)

				72	 	 }	else	if	p.cindex	<	len(p.comments)	{

				73	 	 	 //	for	some	reason	there	are	pending	comments;	this

				74	 	 	 //	should	never	happen	-	handle	gracefully	and	flush

				75	 	 	 //	all	comments	up	to	g,	ignore	anything	after	that

				76	 	 	 p.flush(p.posFor(g.List[0].Pos()),	token.ILLEGAL)

				77	 	 }

				78	 	 p.comments[0]	=	g

				79	 	 p.cindex	=	0

				80	 	 p.nextComment()	//	get	comment	ready	for	use

				81	 }

				82	

				83	 type	exprListMode	uint

				84	

				85	 const	(

				86	 	 commaTerm	exprListMode	=	1	<<	iota	//	list	is	optionally	terminated	by	a	comma

				87	 	 noIndent																											//	no	extra	indentation	in	multi-line	lists

				88)

				89	

				90	 //	If	indent	is	set,	a	multi-line	identifier	list	is	indented	after	the

				91	 //	first	linebreak	encountered.

				92	 func	(p	*printer)	identList(list	[]*ast.Ident,	indent	bool)	{

				93	 	 //	convert	into	an	expression	list	so	we	can	re-use	exprList	formatting

				94	 	 xlist	:=	make([]ast.Expr,	len(list))

				95	 	 for	i,	x	:=	range	list	{

				96	 	 	 xlist[i]	=	x

				97	 	 }

				98	 	 var	mode	exprListMode

				99	 	 if	!indent	{

			100	 	 	 mode	=	noIndent

			101	 	 }

			102	 	 p.exprList(token.NoPos,	xlist,	1,	mode,	token.NoPos)

			103	 }

			104	

			105	 //	Print	a	list	of	expressions.	If	the	list	spans	multiple

			106	 //	source	lines,	the	original	line	breaks	are	respected	between

			107	 //	expressions.

			108	 //

			109	 //	TODO(gri)	Consider	rewriting	this	to	be	independent	of	[]ast.Expr

			110	 //											so	that	we	can	use	the	algorithm	for	any	kind	of	list

			111	 //											(e.g.,	pass	list	via	a	channel	over	which	to	range).

			112	 func	(p	*printer)	exprList(prev0	token.Pos,	list	[]ast.Expr,	depth	int,	mode	exprListMode,	next0	token.Pos)	{

			113	 	 if	len(list)	==	0	{

			114	 	 	 return

			115	 	 }

			116	

			117	 	 prev	:=	p.posFor(prev0)

			118	 	 next	:=	p.posFor(next0)

			119	 	 line	:=	p.lineFor(list[0].Pos())

			120	 	 endLine	:=	p.lineFor(list[len(list)-1].End())

			121	

			122	 	 if	prev.IsValid()	&&	prev.Line	==	line	&&	line	==	endLine	{

			123	 	 	 //	all	list	entries	on	a	single	line

			124	 	 	 for	i,	x	:=	range	list	{

			125	 	 	 	 if	i	>	0	{

			126	 	 	 	 	 //	use	position	of	expression	following	the	comma	as

			127	 	 	 	 	 //	comma	position	for	correct	comment	placement

			128	 	 	 	 	 p.print(x.Pos(),	token.COMMA,	blank)

			129	 	 	 	 }

			130	 	 	 	 p.expr0(x,	depth)

			131	 	 	 }

			132	 	 	 return

			133	 	 }

			134	

			135	 	 //	list	entries	span	multiple	lines;

			136	 	 //	use	source	code	positions	to	guide	line	breaks

			137	

			138	 	 //	don't	add	extra	indentation	if	noIndent	is	set;

			139	 	 //	i.e.,	pretend	that	the	first	line	is	already	indented

			140	 	 ws	:=	ignore

			141	 	 if	mode&noIndent	==	0	{

			142	 	 	 ws	=	indent

			143	 	 }

			144	

			145	 	 //	the	first	linebreak	is	always	a	formfeed	since	this	section	must	not

			146	 	 //	depend	on	any	previous	formatting

			147	 	 prevBreak	:=	-1	//	index	of	last	expression	that	was	followed	by	a	linebreak

			148	 	 if	prev.IsValid()	&&	prev.Line	<	line	&&	p.linebreak(line,	0,	ws,	true)	{

			149	 	 	 ws	=	ignore

			150	 	 	 prevBreak	=	0

			151	 	 }

			152	

			153	 	 //	initialize	expression/key	size:	a	zero	value	indicates	expr/key	doesn't	fit	on	a	single	line

			154	 	 size	:=	0

			155	

			156	 	 //	print	all	list	elements

			157	 	 for	i,	x	:=	range	list	{

			158	 	 	 prevLine	:=	line

			159	 	 	 line	=	p.lineFor(x.Pos())

			160	

			161	 	 	 //	determine	if	the	next	linebreak,	if	any,	needs	to	use	formfeed:

			162	 	 	 //	in	general,	use	the	entire	node	size	to	make	the	decision;	for

			163	 	 	 //	key:value	expressions,	use	the	key	size

			164	 	 	 //	TODO(gri)	for	a	better	result,	should	probably	incorporate	both

			165	 	 	 //											the	key	and	the	node	size	into	the	decision	process

			166	 	 	 useFF	:=	true

			167	

			168	 	 	 //	determine	element	size:	all	bets	are	off	if	we	don't	have

			169	 	 	 //	position	information	for	the	previous	and	next	token	(likely

			170	 	 	 //	generated	code	-	simply	ignore	the	size	in	this	case	by	setting

			171	 	 	 //	it	to	0)

			172	 	 	 prevSize	:=	size

			173	 	 	 const	infinity	=	1e6	//	larger	than	any	source	line

			174	 	 	 size	=	p.nodeSize(x,	infinity)

			175	 	 	 pair,	isPair	:=	x.(*ast.KeyValueExpr)

			176	 	 	 if	size	<=	infinity	&&	prev.IsValid()	&&	next.IsValid()	{

			177	 	 	 	 //	x	fits	on	a	single	line

			178	 	 	 	 if	isPair	{

			179	 	 	 	 	 size	=	p.nodeSize(pair.Key,	infinity)	

			180	 	 	 	 }

			181	 	 	 }	else	{

			182	 	 	 	 //	size	too	large	or	we	don't	have	good	layout	information

			183	 	 	 	 size	=	0

			184	 	 	 }

			185	

			186	 	 	 //	if	the	previous	line	and	the	current	line	had	single-

			187	 	 	 //	line-expressions	and	the	key	sizes	are	small	or	the

			188	 	 	 //	the	ratio	between	the	key	sizes	does	not	exceed	a

			189	 	 	 //	threshold,	align	columns	and	do	not	use	formfeed

			190	 	 	 if	prevSize	>	0	&&	size	>	0	{

			191	 	 	 	 const	smallSize	=	20

			192	 	 	 	 if	prevSize	<=	smallSize	&&	size	<=	smallSize	{

			193	 	 	 	 	 useFF	=	false

			194	 	 	 	 }	else	{

			195	 	 	 	 	 const	r	=	4	//	threshold

			196	 	 	 	 	 ratio	:=	float64(size)	/	float64(prevSize)

			197	 	 	 	 	 useFF	=	ratio	<=	1/r	||	r	<=	ratio

			198	 	 	 	 }

			199	 	 	 }

			200	

			201	 	 	 if	i	>	0	{

			202	 	 	 	 needsLinebreak	:=	prevLine	<	line	&&	prevLine	>	0	&&	line	>	0

			203	 	 	 	 //	use	position	of	expression	following	the	comma	as

			204	 	 	 	 //	comma	position	for	correct	comment	placement,	but

			205	 	 	 	 //	only	if	the	expression	is	on	the	same	line

			206	 	 	 	 if	!needsLinebreak	{

			207	 	 	 	 	 p.print(x.Pos())

			208	 	 	 	 }

			209	 	 	 	 p.print(token.COMMA)

			210	 	 	 	 needsBlank	:=	true

			211	 	 	 	 if	needsLinebreak	{

			212	 	 	 	 	 //	lines	are	broken	using	newlines	so	comments	remain	aligned

			213	 	 	 	 	 //	unless	forceFF	is	set	or	there	are	multiple	expressions	on

			214	 	 	 	 	 //	the	same	line	in	which	case	formfeed	is	used

			215	 	 	 	 	 if	p.linebreak(line,	0,	ws,	useFF	||	prevBreak+1	<	i)	{

			216	 	 	 	 	 	 ws	=	ignore

			217	 	 	 	 	 	 prevBreak	=	i

			218	 	 	 	 	 	 needsBlank	=	false	//	we	got	a	line	break	instead

			219	 	 	 	 	 }

			220	 	 	 	 }

			221	 	 	 	 if	needsBlank	{

			222	 	 	 	 	 p.print(blank)

			223	 	 	 	 }

			224	 	 	 }

			225	

			226	 	 	 if	isPair	&&	size	>	0	&&	len(list)	>	1	{

			227	 	 	 	 //	we	have	a	key:value	expression	that	fits	onto	one	line	and

			228	 	 	 	 //	is	in	a	list	with	more	then	one	entry:	use	a	column	for	the

			229	 	 	 	 //	key	such	that	consecutive	entries	can	align	if	possible

			230	 	 	 	 p.expr(pair.Key)

			231	 	 	 	 p.print(pair.Colon,	token.COLON,	vtab)

			232	 	 	 	 p.expr(pair.Value)

			233	 	 	 }	else	{

			234	 	 	 	 p.expr0(x,	depth)

			235	 	 	 }

			236	 	 }

			237	

			238	 	 if	mode&commaTerm	!=	0	&&	next.IsValid()	&&	p.pos.Line	<	next.Line	{

			239	 	 	 //	print	a	terminating	comma	if	the	next	token	is	on	a	new	line

			240	 	 	 p.print(token.COMMA)

			241	 	 	 if	ws	==	ignore	&&	mode&noIndent	==	0	{

			242	 	 	 	 //	unindent	if	we	indented

			243	 	 	 	 p.print(unindent)

			244	 	 	 }

			245	 	 	 p.print(formfeed)	//	terminating	comma	needs	a	line	break	to	look	good

			246	 	 	 return

			247	 	 }

			248	

			249	 	 if	ws	==	ignore	&&	mode&noIndent	==	0	{

			250	 	 	 //	unindent	if	we	indented

			251	 	 	 p.print(unindent)

			252	 	 }

			253	 }

			254	

			255	 func	(p	*printer)	parameters(fields	*ast.FieldList)	{

			256	 	 p.print(fields.Opening,	token.LPAREN)

			257	 	 if	len(fields.List)	>	0	{

			258	 	 	 prevLine	:=	p.lineFor(fields.Opening)

			259	 	 	 ws	:=	indent

			260	 	 	 for	i,	par	:=	range	fields.List	{

			261	 	 	 	 //	determine	par	begin	and	end	line	(may	be	different

			262	 	 	 	 //	if	there	are	multiple	parameter	names	for	this	par

			263	 	 	 	 //	or	the	type	is	on	a	separate	line)

			264	 	 	 	 var	parLineBeg	int

			265	 	 	 	 var	parLineEnd	=	p.lineFor(par.Type.Pos())

			266	 	 	 	 if	len(par.Names)	>	0	{

			267	 	 	 	 	 parLineBeg	=	p.lineFor(par.Names[0].Pos())

			268	 	 	 	 }	else	{

			269	 	 	 	 	 parLineBeg	=	parLineEnd

			270	 	 	 	 }

			271	 	 	 	 //	separating	","	if	needed

			272	 	 	 	 needsLinebreak	:=	0	<	prevLine	&&	prevLine	<	parLineBeg

			273	 	 	 	 if	i	>	0	{

			274	 	 	 	 	 //	use	position	of	parameter	following	the	comma	as

			275	 	 	 	 	 //	comma	position	for	correct	comma	placement,	but

			276	 	 	 	 	 //	only	if	the	next	parameter	is	on	the	same	line

			277	 	 	 	 	 if	!needsLinebreak	{

			278	 	 	 	 	 	 p.print(par.Pos())

			279	 	 	 	 	 }

			280	 	 	 	 	 p.print(token.COMMA)

			281	 	 	 	 }

			282	 	 	 	 //	separator	if	needed	(linebreak	or	blank)

			283	 	 	 	 if	needsLinebreak	&&	p.linebreak(parLineBeg,	0,	ws,	true)	{

			284	 	 	 	 	 //	break	line	if	the	opening	"("	or	previous	parameter	ended	on	a	different	line

			285	 	 	 	 	 ws	=	ignore

			286	 	 	 	 }	else	if	i	>	0	{

			287	 	 	 	 	 p.print(blank)

			288	 	 	 	 }

			289	 	 	 	 //	parameter	names

			290	 	 	 	 if	len(par.Names)	>	0	{

			291	 	 	 	 	 //	Very	subtle:	If	we	indented	before	(ws	==	ignore),	identList

			292	 	 	 	 	 //	won't	indent	again.	If	we	didn't	(ws	==	indent),	identList	will

			293	 	 	 	 	 //	indent	if	the	identList	spans	multiple	lines,	and	it	will	outdent

			294	 	 	 	 	 //	again	at	the	end	(and	still	ws	==	indent).	Thus,	a	subsequent	indent

			295	 	 	 	 	 //	by	a	linebreak	call	after	a	type,	or	in	the	next	multi-line	identList

			296	 	 	 	 	 //	will	do	the	right	thing.

			297	 	 	 	 	 p.identList(par.Names,	ws	==	indent)

			298	 	 	 	 	 p.print(blank)

			299	 	 	 	 }

			300	 	 	 	 //	parameter	type

			301	 	 	 	 p.expr(par.Type)

			302	 	 	 	 prevLine	=	parLineEnd

			303	 	 	 }

			304	 	 	 //	if	the	closing	")"	is	on	a	separate	line	from	the	last	parameter,

			305	 	 	 //	print	an	additional	","	and	line	break

			306	 	 	 if	closing	:=	p.lineFor(fields.Closing);	0	<	prevLine	&&	prevLine	<	closing	{

			307	 	 	 	 p.print(token.COMMA)

			308	 	 	 	 p.linebreak(closing,	0,	ignore,	true)

			309	 	 	 }

			310	 	 	 //	unindent	if	we	indented

			311	 	 	 if	ws	==	ignore	{

			312	 	 	 	 p.print(unindent)

			313	 	 	 }

			314	 	 }

			315	 	 p.print(fields.Closing,	token.RPAREN)

			316	 }

			317	

			318	 func	(p	*printer)	signature(params,	result	*ast.FieldList)	{

			319	 	 p.parameters(params)

			320	 	 n	:=	result.NumFields()

			321	 	 if	n	>	0	{

			322	 	 	 p.print(blank)

			323	 	 	 if	n	==	1	&&	result.List[0].Names	==	nil	{

			324	 	 	 	 //	single	anonymous	result;	no	()'s

			325	 	 	 	 p.expr(result.List[0].Type)

			326	 	 	 	 return

			327	 	 	 }

			328	 	 	 p.parameters(result)

			329	 	 }

			330	 }

			331	

			332	 func	identListSize(list	[]*ast.Ident,	maxSize	int)	(size	int)	{

			333	 	 for	i,	x	:=	range	list	{

			334	 	 	 if	i	>	0	{

			335	 	 	 	 size	+=	len(",	")

			336	 	 	 }

			337	 	 	 size	+=	utf8.RuneCountInString(x.Name)

			338	 	 	 if	size	>=	maxSize	{

			339	 	 	 	 break

			340	 	 	 }

			341	 	 }

			342	 	 return

			343	 }

			344	

			345	 func	(p	*printer)	isOneLineFieldList(list	[]*ast.Field)	bool	{

			346	 	 if	len(list)	!=	1	{

			347	 	 	 return	false	//	allow	only	one	field

			348	 	 }

			349	 	 f	:=	list[0]

			350	 	 if	f.Tag	!=	nil	||	f.Comment	!=	nil	{

			351	 	 	 return	false	//	don't	allow	tags	or	comments

			352	 	 }

			353	 	 //	only	name(s)	and	type

			354	 	 const	maxSize	=	30	//	adjust	as	appropriate,	this	is	an	approximate	value

			355	 	 namesSize	:=	identListSize(f.Names,	maxSize)

			356	 	 if	namesSize	>	0	{

			357	 	 	 namesSize	=	1	//	blank	between	names	and	types

			358	 	 }

			359	 	 typeSize	:=	p.nodeSize(f.Type,	maxSize)

			360	 	 return	namesSize+typeSize	<=	maxSize

			361	 }

			362	

			363	 func	(p	*printer)	setLineComment(text	string)	{

			364	 	 p.setComment(&ast.CommentGroup{List:	[]*ast.Comment{{Slash:	token.NoPos,	Text:	text}}})

			365	 }

			366	

			367	 func	(p	*printer)	isMultiLine(n	ast.Node)	bool	{

			368	 	 return	p.lineFor(n.End())-p.lineFor(n.Pos())	>	0

			369	 }

			370	

			371	 func	(p	*printer)	fieldList(fields	*ast.FieldList,	isStruct,	isIncomplete	bool)	{

			372	 	 lbrace	:=	fields.Opening

			373	 	 list	:=	fields.List

			374	 	 rbrace	:=	fields.Closing

			375	 	 hasComments	:=	isIncomplete	||	p.commentBefore(p.posFor(rbrace))

			376	 	 srcIsOneLine	:=	lbrace.IsValid()	&&	rbrace.IsValid()	&&	p.lineFor(lbrace)	==	p.lineFor(rbrace)

			377	

			378	 	 if	!hasComments	&&	srcIsOneLine	{

			379	 	 	 //	possibly	a	one-line	struct/interface

			380	 	 	 if	len(list)	==	0	{

			381	 	 	 	 //	no	blank	between	keyword	and	{}	in	this	case

			382	 	 	 	 p.print(lbrace,	token.LBRACE,	rbrace,	token.RBRACE)

			383	 	 	 	 return

			384	 	 	 }	else	if	isStruct	&&	p.isOneLineFieldList(list)	{	

			385	 	 	 	 //	small	enough	-	print	on	one	line

			386	 	 	 	 //	(don't	use	identList	and	ignore	source	line	breaks)

			387	 	 	 	 p.print(lbrace,	token.LBRACE,	blank)

			388	 	 	 	 f	:=	list[0]

			389	 	 	 	 for	i,	x	:=	range	f.Names	{

			390	 	 	 	 	 if	i	>	0	{

			391	 	 	 	 	 	 //	no	comments	so	no	need	for	comma	position

			392	 	 	 	 	 	 p.print(token.COMMA,	blank)

			393	 	 	 	 	 }

			394	 	 	 	 	 p.expr(x)

			395	 	 	 	 }

			396	 	 	 	 if	len(f.Names)	>	0	{

			397	 	 	 	 	 p.print(blank)

			398	 	 	 	 }

			399	 	 	 	 p.expr(f.Type)

			400	 	 	 	 p.print(blank,	rbrace,	token.RBRACE)

			401	 	 	 	 return

			402	 	 	 }

			403	 	 }

			404	 	 //	hasComments	||	!srcIsOneLine

			405	

			406	 	 p.print(blank,	lbrace,	token.LBRACE,	indent)

			407	 	 if	hasComments	||	len(list)	>	0	{

			408	 	 	 p.print(formfeed)

			409	 	 }

			410	

			411	 	 if	isStruct	{

			412	

			413	 	 	 sep	:=	vtab

			414	 	 	 if	len(list)	==	1	{

			415	 	 	 	 sep	=	blank

			416	 	 	 }

			417	 	 	 newSection	:=	false

			418	 	 	 for	i,	f	:=	range	list	{

			419	 	 	 	 if	i	>	0	{

			420	 	 	 	 	 p.linebreak(p.lineFor(f.Pos()),	1,	ignore,	newSection)

			421	 	 	 	 }

			422	 	 	 	 extraTabs	:=	0

			423	 	 	 	 p.setComment(f.Doc)

			424	 	 	 	 if	len(f.Names)	>	0	{

			425	 	 	 	 	 //	named	fields

			426	 	 	 	 	 p.identList(f.Names,	false)

			427	 	 	 	 	 p.print(sep)

			428	 	 	 	 	 p.expr(f.Type)

			429	 	 	 	 	 extraTabs	=	1

			430	 	 	 	 }	else	{

			431	 	 	 	 	 //	anonymous	field

			432	 	 	 	 	 p.expr(f.Type)

			433	 	 	 	 	 extraTabs	=	2

			434	 	 	 	 }

			435	 	 	 	 if	f.Tag	!=	nil	{

			436	 	 	 	 	 if	len(f.Names)	>	0	&&	sep	==	vtab	{

			437	 	 	 	 	 	 p.print(sep)

			438	 	 	 	 	 }

			439	 	 	 	 	 p.print(sep)

			440	 	 	 	 	 p.expr(f.Tag)

			441	 	 	 	 	 extraTabs	=	0

			442	 	 	 	 }

			443	 	 	 	 if	f.Comment	!=	nil	{

			444	 	 	 	 	 for	;	extraTabs	>	0;	extraTabs--	{

			445	 	 	 	 	 	 p.print(sep)

			446	 	 	 	 	 }

			447	 	 	 	 	 p.setComment(f.Comment)

			448	 	 	 	 }

			449	 	 	 	 newSection	=	p.isMultiLine(f)

			450	 	 	 }

			451	 	 	 if	isIncomplete	{

			452	 	 	 	 if	len(list)	>	0	{

			453	 	 	 	 	 p.print(formfeed)

			454	 	 	 	 }

			455	 	 	 	 p.flush(p.posFor(rbrace),	token.RBRACE)	

			456	 	 	 	 p.setLineComment("//	contains	filtered	or	unexported	fields")

			457	 	 	 }

			458	

			459	 	 }	else	{	//	interface

			460	

			461	 	 	 newSection	:=	false

			462	 	 	 for	i,	f	:=	range	list	{

			463	 	 	 	 if	i	>	0	{

			464	 	 	 	 	 p.linebreak(p.lineFor(f.Pos()),	1,	ignore,	newSection)

			465	 	 	 	 }

			466	 	 	 	 p.setComment(f.Doc)

			467	 	 	 	 if	ftyp,	isFtyp	:=	f.Type.(*ast.FuncType);	isFtyp	{

			468	 	 	 	 	 //	method

			469	 	 	 	 	 p.expr(f.Names[0])

			470	 	 	 	 	 p.signature(ftyp.Params,	ftyp.Results)

			471	 	 	 	 }	else	{

			472	 	 	 	 	 //	embedded	interface

			473	 	 	 	 	 p.expr(f.Type)

			474	 	 	 	 }

			475	 	 	 	 p.setComment(f.Comment)

			476	 	 	 	 newSection	=	p.isMultiLine(f)

			477	 	 	 }

			478	 	 	 if	isIncomplete	{

			479	 	 	 	 if	len(list)	>	0	{

			480	 	 	 	 	 p.print(formfeed)

			481	 	 	 	 }

			482	 	 	 	 p.flush(p.posFor(rbrace),	token.RBRACE)	

			483	 	 	 	 p.setLineComment("//	contains	filtered	or	unexported	methods")

			484	 	 	 }

			485	

			486	 	 }

			487	 	 p.print(unindent,	formfeed,	rbrace,	token.RBRACE)

			488	 }

			489	

			490	 //	--

			491	 //	Expressions

			492	

			493	 func	walkBinary(e	*ast.BinaryExpr)	(has4,	has5	bool,	maxProblem	int)	{

			494	 	 switch	e.Op.Precedence()	{

			495	 	 case	4:

			496	 	 	 has4	=	true

			497	 	 case	5:

			498	 	 	 has5	=	true

			499	 	 }

			500	

			501	 	 switch	l	:=	e.X.(type)	{

			502	 	 case	*ast.BinaryExpr:

			503	 	 	 if	l.Op.Precedence()	<	e.Op.Precedence()	{

			504	 	 	 	 //	parens	will	be	inserted.

			505	 	 	 	 //	pretend	this	is	an	*ast.ParenExpr	and	do	nothing.

			506	 	 	 	 break

			507	 	 	 }

			508	 	 	 h4,	h5,	mp	:=	walkBinary(l)

			509	 	 	 has4	=	has4	||	h4

			510	 	 	 has5	=	has5	||	h5

			511	 	 	 if	maxProblem	<	mp	{

			512	 	 	 	 maxProblem	=	mp

			513	 	 	 }

			514	 	 }

			515	

			516	 	 switch	r	:=	e.Y.(type)	{

			517	 	 case	*ast.BinaryExpr:

			518	 	 	 if	r.Op.Precedence()	<=	e.Op.Precedence()	{

			519	 	 	 	 //	parens	will	be	inserted.

			520	 	 	 	 //	pretend	this	is	an	*ast.ParenExpr	and	do	nothing.

			521	 	 	 	 break

			522	 	 	 }

			523	 	 	 h4,	h5,	mp	:=	walkBinary(r)

			524	 	 	 has4	=	has4	||	h4

			525	 	 	 has5	=	has5	||	h5

			526	 	 	 if	maxProblem	<	mp	{

			527	 	 	 	 maxProblem	=	mp

			528	 	 	 }

			529	

			530	 	 case	*ast.StarExpr:

			531	 	 	 if	e.Op	==	token.QUO	{	//	`*/`

			532	 	 	 	 maxProblem	=	5

			533	 	 	 }

			534	

			535	 	 case	*ast.UnaryExpr:

			536	 	 	 switch	e.Op.String()	+	r.Op.String()	{

			537	 	 	 case	"/*",	"&&",	"&^":

			538	 	 	 	 maxProblem	=	5

			539	 	 	 case	"++",	"--":

			540	 	 	 	 if	maxProblem	<	4	{

			541	 	 	 	 	 maxProblem	=	4

			542	 	 	 	 }

			543	 	 	 }

			544	 	 }

			545	 	 return

			546	 }

			547	

			548	 func	cutoff(e	*ast.BinaryExpr,	depth	int)	int	{

			549	 	 has4,	has5,	maxProblem	:=	walkBinary(e)

			550	 	 if	maxProblem	>	0	{

			551	 	 	 return	maxProblem	+	1

			552	 	 }

			553	 	 if	has4	&&	has5	{

			554	 	 	 if	depth	==	1	{

			555	 	 	 	 return	5

			556	 	 	 }

			557	 	 	 return	4

			558	 	 }

			559	 	 if	depth	==	1	{

			560	 	 	 return	6

			561	 	 }

			562	 	 return	4

			563	 }

			564	

			565	 func	diffPrec(expr	ast.Expr,	prec	int)	int	{

			566	 	 x,	ok	:=	expr.(*ast.BinaryExpr)

			567	 	 if	!ok	||	prec	!=	x.Op.Precedence()	{

			568	 	 	 return	1

			569	 	 }

			570	 	 return	0

			571	 }

			572	

			573	 func	reduceDepth(depth	int)	int	{

			574	 	 depth--

			575	 	 if	depth	<	1	{

			576	 	 	 depth	=	1

			577	 	 }

			578	 	 return	depth

			579	 }

			580	

			581	 //	Format	the	binary	expression:	decide	the	cutoff	and	then	format.

			582	 //	Let's	call	depth	==	1	Normal	mode,	and	depth	>	1	Compact	mode.

			583	 //	(Algorithm	suggestion	by	Russ	Cox.)

			584	 //

			585	 //	The	precedences	are:

			586	 //	 5													*		/		%		<<		>>		&		&^

			587	 //	 4													+		-		|		^

			588	 //	 3													==		!=		<		<=		>		>=

			589	 //	 2													&&

			590	 //	 1													||

			591	 //

			592	 //	The	only	decision	is	whether	there	will	be	spaces	around	levels	4	and	5.

			593	 //	There	are	never	spaces	at	level	6	(unary),	and	always	spaces	at	levels	3	and	below.

			594	 //

			595	 //	To	choose	the	cutoff,	look	at	the	whole	expression	but	excluding	primary

			596	 //	expressions	(function	calls,	parenthesized	exprs),	and	apply	these	rules:

			597	 //

			598	 //	 1)	If	there	is	a	binary	operator	with	a	right	side	unary	operand

			599	 //	 			that	would	clash	without	a	space,	the	cutoff	must	be	(in	order):

			600	 //

			601	 //	 	 /*	 6

			602	 //	 	 &&	 6

			603	 //	 	 &^	 6

			604	 //	 	 ++	 5

			605	 //	 	 --	 5

			606	 //

			607	 //									(Comparison	operators	always	have	spaces	around	them.)

			608	 //

			609	 //	 2)	If	there	is	a	mix	of	level	5	and	level	4	operators,	then	the	cutoff

			610	 //	 			is	5	(use	spaces	to	distinguish	precedence)	in	Normal	mode

			611	 //	 			and	4	(never	use	spaces)	in	Compact	mode.

			612	 //

			613	 //	 3)	If	there	are	no	level	4	operators	or	no	level	5	operators,	then	the

			614	 //	 			cutoff	is	6	(always	use	spaces)	in	Normal	mode

			615	 //	 			and	4	(never	use	spaces)	in	Compact	mode.

			616	 //

			617	 func	(p	*printer)	binaryExpr(x	*ast.BinaryExpr,	prec1,	cutoff,	depth	int)	{

			618	 	 prec	:=	x.Op.Precedence()

			619	 	 if	prec	<	prec1	{

			620	 	 	 //	parenthesis	needed

			621	 	 	 //	Note:	The	parser	inserts	an	ast.ParenExpr	node;	thus	this	case

			622	 	 	 //							can	only	occur	if	the	AST	is	created	in	a	different	way.

			623	 	 	 p.print(token.LPAREN)

			624	 	 	 p.expr0(x,	reduceDepth(depth))	//	parentheses	undo	one	level	of	depth

			625	 	 	 p.print(token.RPAREN)

			626	 	 	 return

			627	 	 }

			628	

			629	 	 printBlank	:=	prec	<	cutoff

			630	

			631	 	 ws	:=	indent

			632	 	 p.expr1(x.X,	prec,	depth+diffPrec(x.X,	prec))

			633	 	 if	printBlank	{

			634	 	 	 p.print(blank)

			635	 	 }

			636	 	 xline	:=	p.pos.Line	//	before	the	operator	(it	may	be	on	the	next	line!)

			637	 	 yline	:=	p.lineFor(x.Y.Pos())

			638	 	 p.print(x.OpPos,	x.Op)

			639	 	 if	xline	!=	yline	&&	xline	>	0	&&	yline	>	0	{

			640	 	 	 //	at	least	one	line	break,	but	respect	an	extra	empty	line

			641	 	 	 //	in	the	source

			642	 	 	 if	p.linebreak(yline,	1,	ws,	true)	{

			643	 	 	 	 ws	=	ignore

			644	 	 	 	 printBlank	=	false	//	no	blank	after	line	break

			645	 	 	 }

			646	 	 }

			647	 	 if	printBlank	{

			648	 	 	 p.print(blank)

			649	 	 }

			650	 	 p.expr1(x.Y,	prec+1,	depth+1)

			651	 	 if	ws	==	ignore	{

			652	 	 	 p.print(unindent)

			653	 	 }

			654	 }

			655	

			656	 func	isBinary(expr	ast.Expr)	bool	{

			657	 	 _,	ok	:=	expr.(*ast.BinaryExpr)

			658	 	 return	ok

			659	 }

			660	

			661	 func	(p	*printer)	expr1(expr	ast.Expr,	prec1,	depth	int)	{

			662	 	 p.print(expr.Pos())

			663	

			664	 	 switch	x	:=	expr.(type)	{

			665	 	 case	*ast.BadExpr:

			666	 	 	 p.print("BadExpr")

			667	

			668	 	 case	*ast.Ident:

			669	 	 	 p.print(x)

			670	

			671	 	 case	*ast.BinaryExpr:

			672	 	 	 if	depth	<	1	{

			673	 	 	 	 p.internalError("depth	<	1:",	depth)

			674	 	 	 	 depth	=	1

			675	 	 	 }

			676	 	 	 p.binaryExpr(x,	prec1,	cutoff(x,	depth),	depth)

			677	

			678	 	 case	*ast.KeyValueExpr:

			679	 	 	 p.expr(x.Key)

			680	 	 	 p.print(x.Colon,	token.COLON,	blank)

			681	 	 	 p.expr(x.Value)

			682	

			683	 	 case	*ast.StarExpr:

			684	 	 	 const	prec	=	token.UnaryPrec

			685	 	 	 if	prec	<	prec1	{

			686	 	 	 	 //	parenthesis	needed

			687	 	 	 	 p.print(token.LPAREN)

			688	 	 	 	 p.print(token.MUL)

			689	 	 	 	 p.expr(x.X)

			690	 	 	 	 p.print(token.RPAREN)

			691	 	 	 }	else	{

			692	 	 	 	 //	no	parenthesis	needed

			693	 	 	 	 p.print(token.MUL)

			694	 	 	 	 p.expr(x.X)

			695	 	 	 }

			696	

			697	 	 case	*ast.UnaryExpr:

			698	 	 	 const	prec	=	token.UnaryPrec

			699	 	 	 if	prec	<	prec1	{

			700	 	 	 	 //	parenthesis	needed

			701	 	 	 	 p.print(token.LPAREN)

			702	 	 	 	 p.expr(x)

			703	 	 	 	 p.print(token.RPAREN)

			704	 	 	 }	else	{

			705	 	 	 	 //	no	parenthesis	needed

			706	 	 	 	 p.print(x.Op)

			707	 	 	 	 if	x.Op	==	token.RANGE	{

			708	 	 	 	 	 //	TODO(gri)	Remove	this	code	if	it	cannot	be	reached.

			709	 	 	 	 	 p.print(blank)

			710	 	 	 	 }

			711	 	 	 	 p.expr1(x.X,	prec,	depth)

			712	 	 	 }

			713	

			714	 	 case	*ast.BasicLit:

			715	 	 	 p.print(x)

			716	

			717	 	 case	*ast.FuncLit:

			718	 	 	 p.expr(x.Type)

			719	 	 	 p.funcBody(x.Body,	p.distance(x.Type.Pos(),	p.pos),	true)

			720	

			721	 	 case	*ast.ParenExpr:

			722	 	 	 if	_,	hasParens	:=	x.X.(*ast.ParenExpr);	hasParens	{

			723	 	 	 	 //	don't	print	parentheses	around	an	already	parenthesized	expression

			724	 	 	 	 //	TODO(gri)	consider	making	this	more	general	and	incorporate	precedence	levels

			725	 	 	 	 p.expr0(x.X,	reduceDepth(depth))	//	parentheses	undo	one	level	of	depth

			726	 	 	 }	else	{

			727	 	 	 	 p.print(token.LPAREN)

			728	 	 	 	 p.expr0(x.X,	reduceDepth(depth))	//	parentheses	undo	one	level	of	depth

			729	 	 	 	 p.print(x.Rparen,	token.RPAREN)

			730	 	 	 }

			731	

			732	 	 case	*ast.SelectorExpr:

			733	 	 	 p.expr1(x.X,	token.HighestPrec,	depth)

			734	 	 	 p.print(token.PERIOD)

			735	 	 	 if	line	:=	p.lineFor(x.Sel.Pos());	p.pos.IsValid()	&&	p.pos.Line	<	line	{

			736	 	 	 	 p.print(indent,	newline,	x.Sel.Pos(),	x.Sel,	unindent)

			737	 	 	 }	else	{

			738	 	 	 	 p.print(x.Sel.Pos(),	x.Sel)

			739	 	 	 }

			740	

			741	 	 case	*ast.TypeAssertExpr:

			742	 	 	 p.expr1(x.X,	token.HighestPrec,	depth)

			743	 	 	 p.print(token.PERIOD,	token.LPAREN)

			744	 	 	 if	x.Type	!=	nil	{

			745	 	 	 	 p.expr(x.Type)

			746	 	 	 }	else	{

			747	 	 	 	 p.print(token.TYPE)

			748	 	 	 }

			749	 	 	 p.print(token.RPAREN)

			750	

			751	 	 case	*ast.IndexExpr:

			752	 	 	 //	TODO(gri):	should	treat[]	like	parentheses	and	undo	one	level	of	depth

			753	 	 	 p.expr1(x.X,	token.HighestPrec,	1)

			754	 	 	 p.print(x.Lbrack,	token.LBRACK)

			755	 	 	 p.expr0(x.Index,	depth+1)

			756	 	 	 p.print(x.Rbrack,	token.RBRACK)

			757	

			758	 	 case	*ast.SliceExpr:

			759	 	 	 //	TODO(gri):	should	treat[]	like	parentheses	and	undo	one	level	of	depth

			760	 	 	 p.expr1(x.X,	token.HighestPrec,	1)

			761	 	 	 p.print(x.Lbrack,	token.LBRACK)

			762	 	 	 if	x.Low	!=	nil	{

			763	 	 	 	 p.expr0(x.Low,	depth+1)

			764	 	 	 }

			765	 	 	 //	blanks	around	":"	if	both	sides	exist	and	either	side	is	a	binary	expression

			766	 	 	 if	depth	<=	1	&&	x.Low	!=	nil	&&	x.High	!=	nil	&&	(isBinary(x.Low)	||	isBinary(x.High))	{

			767	 	 	 	 p.print(blank,	token.COLON,	blank)

			768	 	 	 }	else	{

			769	 	 	 	 p.print(token.COLON)

			770	 	 	 }

			771	 	 	 if	x.High	!=	nil	{

			772	 	 	 	 p.expr0(x.High,	depth+1)

			773	 	 	 }

			774	 	 	 p.print(x.Rbrack,	token.RBRACK)

			775	

			776	 	 case	*ast.CallExpr:

			777	 	 	 if	len(x.Args)	>	1	{

			778	 	 	 	 depth++

			779	 	 	 }

			780	 	 	 p.expr1(x.Fun,	token.HighestPrec,	depth)

			781	 	 	 p.print(x.Lparen,	token.LPAREN)

			782	 	 	 if	x.Ellipsis.IsValid()	{

			783	 	 	 	 p.exprList(x.Lparen,	x.Args,	depth,	0,	x.Ellipsis)

			784	 	 	 	 p.print(x.Ellipsis,	token.ELLIPSIS)

			785	 	 	 	 if	x.Rparen.IsValid()	&&	p.lineFor(x.Ellipsis)	<	p.lineFor(x.Rparen)	{

			786	 	 	 	 	 p.print(token.COMMA,	formfeed)

			787	 	 	 	 }

			788	 	 	 }	else	{

			789	 	 	 	 p.exprList(x.Lparen,	x.Args,	depth,	commaTerm,	x.Rparen)

			790	 	 	 }

			791	 	 	 p.print(x.Rparen,	token.RPAREN)

			792	

			793	 	 case	*ast.CompositeLit:

			794	 	 	 //	composite	literal	elements	that	are	composite	literals	themselves	may	have	the	type	omitted

			795	 	 	 if	x.Type	!=	nil	{

			796	 	 	 	 p.expr1(x.Type,	token.HighestPrec,	depth)

			797	 	 	 }

			798	 	 	 p.print(x.Lbrace,	token.LBRACE)

			799	 	 	 p.exprList(x.Lbrace,	x.Elts,	1,	commaTerm,	x.Rbrace)

			800	 	 	 //	do	not	insert	extra	line	breaks	because	of	comments	before

			801	 	 	 //	the	closing	'}'	as	it	might	break	the	code	if	there	is	no

			802	 	 	 //	trailing	','

			803	 	 	 p.print(noExtraLinebreak,	x.Rbrace,	token.RBRACE,	noExtraLinebreak)

			804	

			805	 	 case	*ast.Ellipsis:

			806	 	 	 p.print(token.ELLIPSIS)

			807	 	 	 if	x.Elt	!=	nil	{

			808	 	 	 	 p.expr(x.Elt)

			809	 	 	 }

			810	

			811	 	 case	*ast.ArrayType:

			812	 	 	 p.print(token.LBRACK)

			813	 	 	 if	x.Len	!=	nil	{

			814	 	 	 	 p.expr(x.Len)

			815	 	 	 }

			816	 	 	 p.print(token.RBRACK)

			817	 	 	 p.expr(x.Elt)

			818	

			819	 	 case	*ast.StructType:

			820	 	 	 p.print(token.STRUCT)

			821	 	 	 p.fieldList(x.Fields,	true,	x.Incomplete)

			822	

			823	 	 case	*ast.FuncType:

			824	 	 	 p.print(token.FUNC)

			825	 	 	 p.signature(x.Params,	x.Results)

			826	

			827	 	 case	*ast.InterfaceType:

			828	 	 	 p.print(token.INTERFACE)

			829	 	 	 p.fieldList(x.Methods,	false,	x.Incomplete)

			830	

			831	 	 case	*ast.MapType:

			832	 	 	 p.print(token.MAP,	token.LBRACK)

			833	 	 	 p.expr(x.Key)

			834	 	 	 p.print(token.RBRACK)

			835	 	 	 p.expr(x.Value)

			836	

			837	 	 case	*ast.ChanType:

			838	 	 	 switch	x.Dir	{

			839	 	 	 case	ast.SEND	|	ast.RECV:

			840	 	 	 	 p.print(token.CHAN)

			841	 	 	 case	ast.RECV:

			842	 	 	 	 p.print(token.ARROW,	token.CHAN)

			843	 	 	 case	ast.SEND:

			844	 	 	 	 p.print(token.CHAN,	token.ARROW)

			845	 	 	 }

			846	 	 	 p.print(blank)

			847	 	 	 p.expr(x.Value)

			848	

			849	 	 default:

			850	 	 	 panic("unreachable")

			851	 	 }

			852	

			853	 	 return

			854	 }

			855	

			856	 func	(p	*printer)	expr0(x	ast.Expr,	depth	int)	{

			857	 	 p.expr1(x,	token.LowestPrec,	depth)

			858	 }

			859	

			860	 func	(p	*printer)	expr(x	ast.Expr)	{

			861	 	 const	depth	=	1

			862	 	 p.expr1(x,	token.LowestPrec,	depth)

			863	 }

			864	

			865	 //	--

			866	 //	Statements

			867	

			868	 //	Print	the	statement	list	indented,	but	without	a	newline	after	the	last	statement.

			869	 //	Extra	line	breaks	between	statements	in	the	source	are	respected	but	at	most	one

			870	 //	empty	line	is	printed	between	statements.

			871	 func	(p	*printer)	stmtList(list	[]ast.Stmt,	_indent	int,	nextIsRBrace	bool)	{

			872	 	 //	TODO(gri):	fix	_indent	code

			873	 	 if	_indent	>	0	{

			874	 	 	 p.print(indent)

			875	 	 }

			876	 	 multiLine	:=	false

			877	 	 for	i,	s	:=	range	list	{

			878	 	 	 //	_indent	==	0	only	for	lists	of	switch/select	case	clauses;

			879	 	 	 //	in	those	cases	each	clause	is	a	new	section

			880	 	 	 p.linebreak(p.lineFor(s.Pos()),	1,	ignore,	i	==	0	||	_indent	==	0	||	multiLine)

			881	 	 	 p.stmt(s,	nextIsRBrace	&&	i	==	len(list)-1)

			882	 	 	 multiLine	=	p.isMultiLine(s)

			883	 	 }

			884	 	 if	_indent	>	0	{

			885	 	 	 p.print(unindent)

			886	 	 }

			887	 }

			888	

			889	 //	block	prints	an	*ast.BlockStmt;	it	always	spans	at	least	two	lines.

			890	 func	(p	*printer)	block(s	*ast.BlockStmt,	indent	int)	{

			891	 	 p.print(s.Pos(),	token.LBRACE)

			892	 	 p.stmtList(s.List,	indent,	true)

			893	 	 p.linebreak(p.lineFor(s.Rbrace),	1,	ignore,	true)

			894	 	 p.print(s.Rbrace,	token.RBRACE)

			895	 }

			896	

			897	 func	isTypeName(x	ast.Expr)	bool	{

			898	 	 switch	t	:=	x.(type)	{

			899	 	 case	*ast.Ident:

			900	 	 	 return	true

			901	 	 case	*ast.SelectorExpr:

			902	 	 	 return	isTypeName(t.X)

			903	 	 }

			904	 	 return	false

			905	 }

			906	

			907	 func	stripParens(x	ast.Expr)	ast.Expr	{

			908	 	 if	px,	strip	:=	x.(*ast.ParenExpr);	strip	{

			909	 	 	 //	parentheses	must	not	be	stripped	if	there	are	any

			910	 	 	 //	unparenthesized	composite	literals	starting	with

			911	 	 	 //	a	type	name

			912	 	 	 ast.Inspect(px.X,	func(node	ast.Node)	bool	{

			913	 	 	 	 switch	x	:=	node.(type)	{

			914	 	 	 	 case	*ast.ParenExpr:

			915	 	 	 	 	 //	parentheses	protect	enclosed	composite	literals

			916	 	 	 	 	 return	false

			917	 	 	 	 case	*ast.CompositeLit:

			918	 	 	 	 	 if	isTypeName(x.Type)	{

			919	 	 	 	 	 	 strip	=	false	//	do	not	strip	parentheses

			920	 	 	 	 	 }

			921	 	 	 	 	 return	false

			922	 	 	 	 }

			923	 	 	 	 //	in	all	other	cases,	keep	inspecting

			924	 	 	 	 return	true

			925	 	 	 })

			926	 	 	 if	strip	{

			927	 	 	 	 return	stripParens(px.X)

			928	 	 	 }

			929	 	 }

			930	 	 return	x

			931	 }

			932	

			933	 func	(p	*printer)	controlClause(isForStmt	bool,	init	ast.Stmt,	expr	ast.Expr,	post	ast.Stmt)	{

			934	 	 p.print(blank)

			935	 	 needsBlank	:=	false

			936	 	 if	init	==	nil	&&	post	==	nil	{

			937	 	 	 //	no	semicolons	required

			938	 	 	 if	expr	!=	nil	{

			939	 	 	 	 p.expr(stripParens(expr))

			940	 	 	 	 needsBlank	=	true

			941	 	 	 }

			942	 	 }	else	{

			943	 	 	 //	all	semicolons	required

			944	 	 	 //	(they	are	not	separators,	print	them	explicitly)

			945	 	 	 if	init	!=	nil	{

			946	 	 	 	 p.stmt(init,	false)

			947	 	 	 }

			948	 	 	 p.print(token.SEMICOLON,	blank)

			949	 	 	 if	expr	!=	nil	{

			950	 	 	 	 p.expr(stripParens(expr))

			951	 	 	 	 needsBlank	=	true

			952	 	 	 }

			953	 	 	 if	isForStmt	{

			954	 	 	 	 p.print(token.SEMICOLON,	blank)

			955	 	 	 	 needsBlank	=	false

			956	 	 	 	 if	post	!=	nil	{

			957	 	 	 	 	 p.stmt(post,	false)

			958	 	 	 	 	 needsBlank	=	true

			959	 	 	 	 }

			960	 	 	 }

			961	 	 }

			962	 	 if	needsBlank	{

			963	 	 	 p.print(blank)

			964	 	 }

			965	 }

			966	

			967	 //	indentList	reports	whether	an	expression	list	would	look	better	if	it

			968	 //	were	indented	wholesale	(starting	with	the	very	first	element,	rather

			969	 //	than	starting	at	the	first	line	break).

			970	 //

			971	 func	(p	*printer)	indentList(list	[]ast.Expr)	bool	{

			972	 	 //	Heuristic:	indentList	returns	true	if	there	are	more	than	one	multi-

			973	 	 //	line	element	in	the	list,	or	if	there	is	any	element	that	is	not

			974	 	 //	starting	on	the	same	line	as	the	previous	one	ends.

			975	 	 if	len(list)	>=	2	{

			976	 	 	 var	b	=	p.lineFor(list[0].Pos())

			977	 	 	 var	e	=	p.lineFor(list[len(list)-1].End())

			978	 	 	 if	0	<	b	&&	b	<	e	{

			979	 	 	 	 //	list	spans	multiple	lines

			980	 	 	 	 n	:=	0	//	multi-line	element	count

			981	 	 	 	 line	:=	b

			982	 	 	 	 for	_,	x	:=	range	list	{

			983	 	 	 	 	 xb	:=	p.lineFor(x.Pos())

			984	 	 	 	 	 xe	:=	p.lineFor(x.End())

			985	 	 	 	 	 if	line	<	xb	{

			986	 	 	 	 	 	 //	x	is	not	starting	on	the	same

			987	 	 	 	 	 	 //	line	as	the	previous	one	ended

			988	 	 	 	 	 	 return	true

			989	 	 	 	 	 }

			990	 	 	 	 	 if	xb	<	xe	{

			991	 	 	 	 	 	 //	x	is	a	multi-line	element

			992	 	 	 	 	 	 n++

			993	 	 	 	 	 }

			994	 	 	 	 	 line	=	xe

			995	 	 	 	 }

			996	 	 	 	 return	n	>	1

			997	 	 	 }

			998	 	 }

			999	 	 return	false

		1000	 }

		1001	

		1002	 func	(p	*printer)	stmt(stmt	ast.Stmt,	nextIsRBrace	bool)	{

		1003	 	 p.print(stmt.Pos())

		1004	

		1005	 	 switch	s	:=	stmt.(type)	{

		1006	 	 case	*ast.BadStmt:

		1007	 	 	 p.print("BadStmt")

		1008	

		1009	 	 case	*ast.DeclStmt:

		1010	 	 	 p.decl(s.Decl)

		1011	

		1012	 	 case	*ast.EmptyStmt:

		1013	 	 	 //	nothing	to	do

		1014	

		1015	 	 case	*ast.LabeledStmt:

		1016	 	 	 //	a	"correcting"	unindent	immediately	following	a	line	break

		1017	 	 	 //	is	applied	before	the	line	break	if	there	is	no	comment

		1018	 	 	 //	between	(see	writeWhitespace)

		1019	 	 	 p.print(unindent)

		1020	 	 	 p.expr(s.Label)

		1021	 	 	 p.print(s.Colon,	token.COLON,	indent)

		1022	 	 	 if	e,	isEmpty	:=	s.Stmt.(*ast.EmptyStmt);	isEmpty	{

		1023	 	 	 	 if	!nextIsRBrace	{

		1024	 	 	 	 	 p.print(newline,	e.Pos(),	token.SEMICOLON)

		1025	 	 	 	 	 break

		1026	 	 	 	 }

		1027	 	 	 }	else	{

		1028	 	 	 	 p.linebreak(p.lineFor(s.Stmt.Pos()),	1,	ignore,	true)

		1029	 	 	 }

		1030	 	 	 p.stmt(s.Stmt,	nextIsRBrace)

		1031	

		1032	 	 case	*ast.ExprStmt:

		1033	 	 	 const	depth	=	1

		1034	 	 	 p.expr0(s.X,	depth)

		1035	

		1036	 	 case	*ast.SendStmt:

		1037	 	 	 const	depth	=	1

		1038	 	 	 p.expr0(s.Chan,	depth)

		1039	 	 	 p.print(blank,	s.Arrow,	token.ARROW,	blank)

		1040	 	 	 p.expr0(s.Value,	depth)

		1041	

		1042	 	 case	*ast.IncDecStmt:

		1043	 	 	 const	depth	=	1

		1044	 	 	 p.expr0(s.X,	depth+1)

		1045	 	 	 p.print(s.TokPos,	s.Tok)

		1046	

		1047	 	 case	*ast.AssignStmt:

		1048	 	 	 var	depth	=	1

		1049	 	 	 if	len(s.Lhs)	>	1	&&	len(s.Rhs)	>	1	{

		1050	 	 	 	 depth++

		1051	 	 	 }

		1052	 	 	 p.exprList(s.Pos(),	s.Lhs,	depth,	0,	s.TokPos)

		1053	 	 	 p.print(blank,	s.TokPos,	s.Tok,	blank)

		1054	 	 	 p.exprList(s.TokPos,	s.Rhs,	depth,	0,	token.NoPos)

		1055	

		1056	 	 case	*ast.GoStmt:

		1057	 	 	 p.print(token.GO,	blank)

		1058	 	 	 p.expr(s.Call)

		1059	

		1060	 	 case	*ast.DeferStmt:

		1061	 	 	 p.print(token.DEFER,	blank)

		1062	 	 	 p.expr(s.Call)

		1063	

		1064	 	 case	*ast.ReturnStmt:

		1065	 	 	 p.print(token.RETURN)

		1066	 	 	 if	s.Results	!=	nil	{

		1067	 	 	 	 p.print(blank)

		1068	 	 	 	 //	Use	indentList	heuristic	to	make	corner	cases	look

		1069	 	 	 	 //	better	(issue	1207).	A	more	systematic	approach	would

		1070	 	 	 	 //	always	indent,	but	this	would	cause	significant

		1071	 	 	 	 //	reformatting	of	the	code	base	and	not	necessarily

		1072	 	 	 	 //	lead	to	more	nicely	formatted	code	in	general.

		1073	 	 	 	 if	p.indentList(s.Results)	{

		1074	 	 	 	 	 p.print(indent)

		1075	 	 	 	 	 p.exprList(s.Pos(),	s.Results,	1,	noIndent,	token.NoPos)

		1076	 	 	 	 	 p.print(unindent)

		1077	 	 	 	 }	else	{

		1078	 	 	 	 	 p.exprList(s.Pos(),	s.Results,	1,	0,	token.NoPos)

		1079	 	 	 	 }

		1080	 	 	 }

		1081	

		1082	 	 case	*ast.BranchStmt:

		1083	 	 	 p.print(s.Tok)

		1084	 	 	 if	s.Label	!=	nil	{

		1085	 	 	 	 p.print(blank)

		1086	 	 	 	 p.expr(s.Label)

		1087	 	 	 }

		1088	

		1089	 	 case	*ast.BlockStmt:

		1090	 	 	 p.block(s,	1)

		1091	

		1092	 	 case	*ast.IfStmt:

		1093	 	 	 p.print(token.IF)

		1094	 	 	 p.controlClause(false,	s.Init,	s.Cond,	nil)

		1095	 	 	 p.block(s.Body,	1)

		1096	 	 	 if	s.Else	!=	nil	{

		1097	 	 	 	 p.print(blank,	token.ELSE,	blank)

		1098	 	 	 	 switch	s.Else.(type)	{

		1099	 	 	 	 case	*ast.BlockStmt,	*ast.IfStmt:

		1100	 	 	 	 	 p.stmt(s.Else,	nextIsRBrace)

		1101	 	 	 	 default:

		1102	 	 	 	 	 p.print(token.LBRACE,	indent,	formfeed)

		1103	 	 	 	 	 p.stmt(s.Else,	true)

		1104	 	 	 	 	 p.print(unindent,	formfeed,	token.RBRACE)

		1105	 	 	 	 }

		1106	 	 	 }

		1107	

		1108	 	 case	*ast.CaseClause:

		1109	 	 	 if	s.List	!=	nil	{

		1110	 	 	 	 p.print(token.CASE,	blank)

		1111	 	 	 	 p.exprList(s.Pos(),	s.List,	1,	0,	s.Colon)

		1112	 	 	 }	else	{

		1113	 	 	 	 p.print(token.DEFAULT)

		1114	 	 	 }

		1115	 	 	 p.print(s.Colon,	token.COLON)

		1116	 	 	 p.stmtList(s.Body,	1,	nextIsRBrace)

		1117	

		1118	 	 case	*ast.SwitchStmt:

		1119	 	 	 p.print(token.SWITCH)

		1120	 	 	 p.controlClause(false,	s.Init,	s.Tag,	nil)

		1121	 	 	 p.block(s.Body,	0)

		1122	

		1123	 	 case	*ast.TypeSwitchStmt:

		1124	 	 	 p.print(token.SWITCH)

		1125	 	 	 if	s.Init	!=	nil	{

		1126	 	 	 	 p.print(blank)

		1127	 	 	 	 p.stmt(s.Init,	false)

		1128	 	 	 	 p.print(token.SEMICOLON)

		1129	 	 	 }

		1130	 	 	 p.print(blank)

		1131	 	 	 p.stmt(s.Assign,	false)

		1132	 	 	 p.print(blank)

		1133	 	 	 p.block(s.Body,	0)

		1134	

		1135	 	 case	*ast.CommClause:

		1136	 	 	 if	s.Comm	!=	nil	{

		1137	 	 	 	 p.print(token.CASE,	blank)

		1138	 	 	 	 p.stmt(s.Comm,	false)

		1139	 	 	 }	else	{

		1140	 	 	 	 p.print(token.DEFAULT)

		1141	 	 	 }

		1142	 	 	 p.print(s.Colon,	token.COLON)

		1143	 	 	 p.stmtList(s.Body,	1,	nextIsRBrace)

		1144	

		1145	 	 case	*ast.SelectStmt:

		1146	 	 	 p.print(token.SELECT,	blank)

		1147	 	 	 body	:=	s.Body

		1148	 	 	 if	len(body.List)	==	0	&&	!p.commentBefore(p.posFor(body.Rbrace))	{

		1149	 	 	 	 //	print	empty	select	statement	w/o	comments	on	one	line

		1150	 	 	 	 p.print(body.Lbrace,	token.LBRACE,	body.Rbrace,	token.RBRACE)

		1151	 	 	 }	else	{

		1152	 	 	 	 p.block(body,	0)

		1153	 	 	 }

		1154	

		1155	 	 case	*ast.ForStmt:

		1156	 	 	 p.print(token.FOR)

		1157	 	 	 p.controlClause(true,	s.Init,	s.Cond,	s.Post)

		1158	 	 	 p.block(s.Body,	1)

		1159	

		1160	 	 case	*ast.RangeStmt:

		1161	 	 	 p.print(token.FOR,	blank)

		1162	 	 	 p.expr(s.Key)

		1163	 	 	 if	s.Value	!=	nil	{

		1164	 	 	 	 //	use	position	of	value	following	the	comma	as

		1165	 	 	 	 //	comma	position	for	correct	comment	placement

		1166	 	 	 	 p.print(s.Value.Pos(),	token.COMMA,	blank)

		1167	 	 	 	 p.expr(s.Value)

		1168	 	 	 }

		1169	 	 	 p.print(blank,	s.TokPos,	s.Tok,	blank,	token.RANGE,	blank)

		1170	 	 	 p.expr(stripParens(s.X))

		1171	 	 	 p.print(blank)

		1172	 	 	 p.block(s.Body,	1)

		1173	

		1174	 	 default:

		1175	 	 	 panic("unreachable")

		1176	 	 }

		1177	

		1178	 	 return

		1179	 }

		1180	

		1181	 //	--

		1182	 //	Declarations

		1183	

		1184	 //	The	keepTypeColumn	function	determines	if	the	type	column	of	a	series	of

		1185	 //	consecutive	const	or	var	declarations	must	be	kept,	or	if	initialization

		1186	 //	values	(V)	can	be	placed	in	the	type	column	(T)	instead.	The	i'th	entry

		1187	 //	in	the	result	slice	is	true	if	the	type	column	in	spec[i]	must	be	kept.

		1188	 //

		1189	 //	For	example,	the	declaration:

		1190	 //

		1191	 //	 const	(

		1192	 //	 	 foobar	int	=	42	//	comment

		1193	 //	 	 x										=	7		//	comment

		1194	 //	 	 foo

		1195	 //														bar	=	991

		1196	 //)

		1197	 //

		1198	 //	leads	to	the	type/values	matrix	below.	A	run	of	value	columns	(V)	can

		1199	 //	be	moved	into	the	type	column	if	there	is	no	type	for	any	of	the	values

		1200	 //	in	that	column	(we	only	move	entire	columns	so	that	they	align	properly).

		1201	 //

		1202	 //	 matrix								formatted					result

		1203	 //																				matrix

		1204	 //	 T		V				->				T		V					->			true						there	is	a	T	and	so	the	type

		1205	 //	 -		V										-		V										true						column	must	be	kept

		1206	 //	 -		-										-		-										false

		1207	 //	 -		V										V		-										false					V	is	moved	into	T	column

		1208	 //

		1209	 func	keepTypeColumn(specs	[]ast.Spec)	[]bool	{

		1210	 	 m	:=	make([]bool,	len(specs))

		1211	

		1212	 	 populate	:=	func(i,	j	int,	keepType	bool)	{

		1213	 	 	 if	keepType	{

		1214	 	 	 	 for	;	i	<	j;	i++	{

		1215	 	 	 	 	 m[i]	=	true

		1216	 	 	 	 }

		1217	 	 	 }

		1218	 	 }

		1219	

		1220	 	 i0	:=	-1	//	if	i0	>=	0	we	are	in	a	run	and	i0	is	the	start	of	the	run

		1221	 	 var	keepType	bool

		1222	 	 for	i,	s	:=	range	specs	{

		1223	 	 	 t	:=	s.(*ast.ValueSpec)

		1224	 	 	 if	t.Values	!=	nil	{

		1225	 	 	 	 if	i0	<	0	{

		1226	 	 	 	 	 //	start	of	a	run	of	ValueSpecs	with	non-nil	Values

		1227	 	 	 	 	 i0	=	i

		1228	 	 	 	 	 keepType	=	false

		1229	 	 	 	 }

		1230	 	 	 }	else	{

		1231	 	 	 	 if	i0	>=	0	{

		1232	 	 	 	 	 //	end	of	a	run

		1233	 	 	 	 	 populate(i0,	i,	keepType)

		1234	 	 	 	 	 i0	=	-1

		1235	 	 	 	 }

		1236	 	 	 }

		1237	 	 	 if	t.Type	!=	nil	{

		1238	 	 	 	 keepType	=	true

		1239	 	 	 }

		1240	 	 }

		1241	 	 if	i0	>=	0	{

		1242	 	 	 //	end	of	a	run

		1243	 	 	 populate(i0,	len(specs),	keepType)

		1244	 	 }

		1245	

		1246	 	 return	m

		1247	 }

		1248	

		1249	 func	(p	*printer)	valueSpec(s	*ast.ValueSpec,	keepType	bool)	{

		1250	 	 p.setComment(s.Doc)

		1251	 	 p.identList(s.Names,	false)	//	always	present

		1252	 	 extraTabs	:=	3

		1253	 	 if	s.Type	!=	nil	||	keepType	{

		1254	 	 	 p.print(vtab)

		1255	 	 	 extraTabs--

		1256	 	 }

		1257	 	 if	s.Type	!=	nil	{

		1258	 	 	 p.expr(s.Type)

		1259	 	 }

		1260	 	 if	s.Values	!=	nil	{

		1261	 	 	 p.print(vtab,	token.ASSIGN,	blank)

		1262	 	 	 p.exprList(token.NoPos,	s.Values,	1,	0,	token.NoPos)

		1263	 	 	 extraTabs--

		1264	 	 }

		1265	 	 if	s.Comment	!=	nil	{

		1266	 	 	 for	;	extraTabs	>	0;	extraTabs--	{

		1267	 	 	 	 p.print(vtab)

		1268	 	 	 }

		1269	 	 	 p.setComment(s.Comment)

		1270	 	 }

		1271	 }

		1272	

		1273	 //	The	parameter	n	is	the	number	of	specs	in	the	group.	If	doIndent	is	set,

		1274	 //	multi-line	identifier	lists	in	the	spec	are	indented	when	the	first

		1275	 //	linebreak	is	encountered.

		1276	 //

		1277	 func	(p	*printer)	spec(spec	ast.Spec,	n	int,	doIndent	bool)	{

		1278	 	 switch	s	:=	spec.(type)	{

		1279	 	 case	*ast.ImportSpec:

		1280	 	 	 p.setComment(s.Doc)

		1281	 	 	 if	s.Name	!=	nil	{

		1282	 	 	 	 p.expr(s.Name)

		1283	 	 	 	 p.print(blank)

		1284	 	 	 }

		1285	 	 	 p.expr(s.Path)

		1286	 	 	 p.setComment(s.Comment)

		1287	 	 	 p.print(s.EndPos)

		1288	

		1289	 	 case	*ast.ValueSpec:

		1290	 	 	 if	n	!=	1	{

		1291	 	 	 	 p.internalError("expected	n	=	1;	got",	n)

		1292	 	 	 }

		1293	 	 	 p.setComment(s.Doc)

		1294	 	 	 p.identList(s.Names,	doIndent)	//	always	present

		1295	 	 	 if	s.Type	!=	nil	{

		1296	 	 	 	 p.print(blank)

		1297	 	 	 	 p.expr(s.Type)

		1298	 	 	 }

		1299	 	 	 if	s.Values	!=	nil	{

		1300	 	 	 	 p.print(blank,	token.ASSIGN,	blank)

		1301	 	 	 	 p.exprList(token.NoPos,	s.Values,	1,	0,	token.NoPos)

		1302	 	 	 }

		1303	 	 	 p.setComment(s.Comment)

		1304	

		1305	 	 case	*ast.TypeSpec:

		1306	 	 	 p.setComment(s.Doc)

		1307	 	 	 p.expr(s.Name)

		1308	 	 	 if	n	==	1	{

		1309	 	 	 	 p.print(blank)

		1310	 	 	 }	else	{

		1311	 	 	 	 p.print(vtab)

		1312	 	 	 }

		1313	 	 	 p.expr(s.Type)

		1314	 	 	 p.setComment(s.Comment)

		1315	

		1316	 	 default:

		1317	 	 	 panic("unreachable")

		1318	 	 }

		1319	 }

		1320	

		1321	 func	(p	*printer)	genDecl(d	*ast.GenDecl)	{

		1322	 	 p.setComment(d.Doc)

		1323	 	 p.print(d.Pos(),	d.Tok,	blank)

		1324	

		1325	 	 if	d.Lparen.IsValid()	{

		1326	 	 	 //	group	of	parenthesized	declarations

		1327	 	 	 p.print(d.Lparen,	token.LPAREN)

		1328	 	 	 if	n	:=	len(d.Specs);	n	>	0	{

		1329	 	 	 	 p.print(indent,	formfeed)

		1330	 	 	 	 if	n	>	1	&&	(d.Tok	==	token.CONST	||	d.Tok	==	token.VAR)	{

		1331	 	 	 	 	 //	two	or	more	grouped	const/var	declarations:

		1332	 	 	 	 	 //	determine	if	the	type	column	must	be	kept

		1333	 	 	 	 	 keepType	:=	keepTypeColumn(d.Specs)

		1334	 	 	 	 	 newSection	:=	false

		1335	 	 	 	 	 for	i,	s	:=	range	d.Specs	{

		1336	 	 	 	 	 	 if	i	>	0	{

		1337	 	 	 	 	 	 	 p.linebreak(p.lineFor(s.Pos()),	1,	ignore,	newSection)

		1338	 	 	 	 	 	 }

		1339	 	 	 	 	 	 p.valueSpec(s.(*ast.ValueSpec),	keepType[i])

		1340	 	 	 	 	 	 newSection	=	p.isMultiLine(s)

		1341	 	 	 	 	 }

		1342	 	 	 	 }	else	{

		1343	 	 	 	 	 newSection	:=	false

		1344	 	 	 	 	 for	i,	s	:=	range	d.Specs	{

		1345	 	 	 	 	 	 if	i	>	0	{

		1346	 	 	 	 	 	 	 p.linebreak(p.lineFor(s.Pos()),	1,	ignore,	newSection)

		1347	 	 	 	 	 	 }

		1348	 	 	 	 	 	 p.spec(s,	n,	false)

		1349	 	 	 	 	 	 newSection	=	p.isMultiLine(s)

		1350	 	 	 	 	 }

		1351	 	 	 	 }

		1352	 	 	 	 p.print(unindent,	formfeed)

		1353	 	 	 }

		1354	 	 	 p.print(d.Rparen,	token.RPAREN)

		1355	

		1356	 	 }	else	{

		1357	 	 	 //	single	declaration

		1358	 	 	 p.spec(d.Specs[0],	1,	true)

		1359	 	 }

		1360	 }

		1361	

		1362	 //	nodeSize	determines	the	size	of	n	in	chars	after	formatting.

		1363	 //	The	result	is	<=	maxSize	if	the	node	fits	on	one	line	with	at

		1364	 //	most	maxSize	chars	and	the	formatted	output	doesn't	contain

		1365	 //	any	control	chars.	Otherwise,	the	result	is	>	maxSize.

		1366	 //

		1367	 func	(p	*printer)	nodeSize(n	ast.Node,	maxSize	int)	(size	int)	{

		1368	 	 //	nodeSize	invokes	the	printer,	which	may	invoke	nodeSize

		1369	 	 //	recursively.	For	deep	composite	literal	nests,	this	can

		1370	 	 //	lead	to	an	exponential	algorithm.	Remember	previous

		1371	 	 //	results	to	prune	the	recursion	(was	issue	1628).

		1372	 	 if	size,	found	:=	p.nodeSizes[n];	found	{

		1373	 	 	 return	size

		1374	 	 }

		1375	

		1376	 	 size	=	maxSize	+	1	//	assume	n	doesn't	fit

		1377	 	 p.nodeSizes[n]	=	size

		1378	

		1379	 	 //	nodeSize	computation	must	be	independent	of	particular

		1380	 	 //	style	so	that	we	always	get	the	same	decision;	print

		1381	 	 //	in	RawFormat

		1382	 	 cfg	:=	Config{Mode:	RawFormat}

		1383	 	 var	buf	bytes.Buffer

		1384	 	 if	err	:=	cfg.fprint(&buf,	p.fset,	n,	p.nodeSizes);	err	!=	nil	{

		1385	 	 	 return

		1386	 	 }

		1387	 	 if	buf.Len()	<=	maxSize	{

		1388	 	 	 for	_,	ch	:=	range	buf.Bytes()	{

		1389	 	 	 	 if	ch	<	'	'	{

		1390	 	 	 	 	 return

		1391	 	 	 	 }

		1392	 	 	 }

		1393	 	 	 size	=	buf.Len()	//	n	fits

		1394	 	 	 p.nodeSizes[n]	=	size

		1395	 	 }

		1396	 	 return

		1397	 }

		1398	

		1399	 func	(p	*printer)	isOneLineFunc(b	*ast.BlockStmt,	headerSize	int)	bool	{

		1400	 	 pos1	:=	b.Pos()

		1401	 	 pos2	:=	b.Rbrace

		1402	 	 if	pos1.IsValid()	&&	pos2.IsValid()	&&	p.lineFor(pos1)	!=	p.lineFor(pos2)	{

		1403	 	 	 //	opening	and	closing	brace	are	on	different	lines	-	don't	make	it	a	one-liner

		1404	 	 	 return	false

		1405	 	 }

		1406	 	 if	len(b.List)	>	5	||	p.commentBefore(p.posFor(pos2))	{

		1407	 	 	 //	too	many	statements	or	there	is	a	comment	inside	-	don't	make	it	a	one-liner

		1408	 	 	 return	false

		1409	 	 }

		1410	 	 //	otherwise,	estimate	body	size

		1411	 	 const	maxSize	=	100

		1412	 	 bodySize	:=	0

		1413	 	 for	i,	s	:=	range	b.List	{

		1414	 	 	 if	i	>	0	{

		1415	 	 	 	 bodySize	+=	2	//	space	for	a	semicolon	and	blank

		1416	 	 	 }

		1417	 	 	 bodySize	+=	p.nodeSize(s,	maxSize)

		1418	 	 }

		1419	 	 return	headerSize+bodySize	<=	maxSize

		1420	 }

		1421	

		1422	 func	(p	*printer)	funcBody(b	*ast.BlockStmt,	headerSize	int,	isLit	bool)	{

		1423	 	 if	b	==	nil	{

		1424	 	 	 return

		1425	 	 }

		1426	

		1427	 	 if	p.isOneLineFunc(b,	headerSize)	{

		1428	 	 	 sep	:=	vtab

		1429	 	 	 if	isLit	{

		1430	 	 	 	 sep	=	blank

		1431	 	 	 }

		1432	 	 	 p.print(sep,	b.Lbrace,	token.LBRACE)

		1433	 	 	 if	len(b.List)	>	0	{

		1434	 	 	 	 p.print(blank)

		1435	 	 	 	 for	i,	s	:=	range	b.List	{

		1436	 	 	 	 	 if	i	>	0	{

		1437	 	 	 	 	 	 p.print(token.SEMICOLON,	blank)

		1438	 	 	 	 	 }

		1439	 	 	 	 	 p.stmt(s,	i	==	len(b.List)-1)

		1440	 	 	 	 }

		1441	 	 	 	 p.print(blank)

		1442	 	 	 }

		1443	 	 	 p.print(b.Rbrace,	token.RBRACE)

		1444	 	 	 return

		1445	 	 }

		1446	

		1447	 	 p.print(blank)

		1448	 	 p.block(b,	1)

		1449	 }

		1450	

		1451	 //	distance	returns	the	column	difference	between	from	and	to	if	both

		1452	 //	are	on	the	same	line;	if	they	are	on	different	lines	(or	unknown)

		1453	 //	the	result	is	infinity.

		1454	 func	(p	*printer)	distance(from0	token.Pos,	to	token.Position)	int	{

		1455	 	 from	:=	p.posFor(from0)

		1456	 	 if	from.IsValid()	&&	to.IsValid()	&&	from.Line	==	to.Line	{

		1457	 	 	 return	to.Column	-	from.Column

		1458	 	 }

		1459	 	 return	infinity

		1460	 }

		1461	

		1462	 func	(p	*printer)	funcDecl(d	*ast.FuncDecl)	{

		1463	 	 p.setComment(d.Doc)

		1464	 	 p.print(d.Pos(),	token.FUNC,	blank)

		1465	 	 if	d.Recv	!=	nil	{

		1466	 	 	 p.parameters(d.Recv)	//	method:	print	receiver

		1467	 	 	 p.print(blank)

		1468	 	 }

		1469	 	 p.expr(d.Name)

		1470	 	 p.signature(d.Type.Params,	d.Type.Results)

		1471	 	 p.funcBody(d.Body,	p.distance(d.Pos(),	p.pos),	false)

		1472	 }

		1473	

		1474	 func	(p	*printer)	decl(decl	ast.Decl)	{

		1475	 	 switch	d	:=	decl.(type)	{

		1476	 	 case	*ast.BadDecl:

		1477	 	 	 p.print(d.Pos(),	"BadDecl")

		1478	 	 case	*ast.GenDecl:

		1479	 	 	 p.genDecl(d)

		1480	 	 case	*ast.FuncDecl:

		1481	 	 	 p.funcDecl(d)

		1482	 	 default:

		1483	 	 	 panic("unreachable")

		1484	 	 }

		1485	 }

		1486	

		1487	 //	--

		1488	 //	Files

		1489	

		1490	 func	declToken(decl	ast.Decl)	(tok	token.Token)	{

		1491	 	 tok	=	token.ILLEGAL

		1492	 	 switch	d	:=	decl.(type)	{

		1493	 	 case	*ast.GenDecl:

		1494	 	 	 tok	=	d.Tok

		1495	 	 case	*ast.FuncDecl:

		1496	 	 	 tok	=	token.FUNC

		1497	 	 }

		1498	 	 return

		1499	 }

		1500	

		1501	 func	(p	*printer)	file(src	*ast.File)	{

		1502	 	 p.setComment(src.Doc)

		1503	 	 p.print(src.Pos(),	token.PACKAGE,	blank)

		1504	 	 p.expr(src.Name)

		1505	

		1506	 	 if	len(src.Decls)	>	0	{

		1507	 	 	 tok	:=	token.ILLEGAL

		1508	 	 	 for	_,	d	:=	range	src.Decls	{

		1509	 	 	 	 prev	:=	tok

		1510	 	 	 	 tok	=	declToken(d)

		1511	 	 	 	 //	if	the	declaration	token	changed	(e.g.,	from	CONST	to	TYPE)

		1512	 	 	 	 //	or	the	next	declaration	has	documentation	associated	with	it,

		1513	 	 	 	 //	print	an	empty	line	between	top-level	declarations

		1514	 	 	 	 //	(because	p.linebreak	is	called	with	the	position	of	d,	which

		1515	 	 	 	 //	is	past	any	documentation,	the	minimum	requirement	is	satisfied

		1516	 	 	 	 //	even	w/o	the	extra	getDoc(d)	nil-check	-	leave	it	in	case	the

		1517	 	 	 	 //	linebreak	logic	improves	-	there's	already	a	TODO).

		1518	 	 	 	 min	:=	1

		1519	 	 	 	 if	prev	!=	tok	||	getDoc(d)	!=	nil	{

		1520	 	 	 	 	 min	=	2

		1521	 	 	 	 }

		1522	 	 	 	 p.linebreak(p.lineFor(d.Pos()),	min,	ignore,	false)

		1523	 	 	 	 p.decl(d)

		1524	 	 	 }

		1525	 	 }

		1526	

		1527	 	 p.print(newline)

		1528	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/go/printer/printer.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	printer	implements	printing	of	AST	nodes.

					6	 package	printer

					7	

					8	 import	(

					9	 	 "fmt"

				10	 	 "go/ast"

				11	 	 "go/token"

				12	 	 "io"

				13	 	 "os"

				14	 	 "strconv"

				15	 	 "strings"

				16	 	 "text/tabwriter"

				17)

				18	

				19	 const	(

				20	 	 maxNewlines	=	2					//	max.	number	of	newlines	between	source	text

				21	 	 debug							=	false	//	enable	for	debugging

				22	 	 infinity				=	1	<<	30

				23)

				24	

				25	 type	whiteSpace	byte

				26	

				27	 const	(

				28	 	 ignore			=	whiteSpace(0)

				29	 	 blank				=	whiteSpace('	')

				30	 	 vtab					=	whiteSpace('\v')

				31	 	 newline		=	whiteSpace('\n')

				32	 	 formfeed	=	whiteSpace('\f')

				33	 	 indent			=	whiteSpace('>')

				34	 	 unindent	=	whiteSpace('<')

				35)

				36	

				37	 //	A	pmode	value	represents	the	current	printer	mode.

				38	 type	pmode	int

				39	

				40	 const	(

				41	 	 noExtraLinebreak	pmode	=	1	<<	iota

				42)

				43	

				44	 type	printer	struct	{

				45	 	 //	Configuration	(does	not	change	after	initialization)

				46	 	 Config

				47	 	 fset	*token.FileSet

				48	

				49	 	 //	Current	state

				50	 	 output						[]byte							//	raw	printer	result

				51	 	 indent						int										//	current	indentation

				52	 	 mode								pmode								//	current	printer	mode

				53	 	 impliedSemi	bool									//	if	set,	a	linebreak	implies	a	semicolon

				54	 	 lastTok					token.Token		//	the	last	token	printed	(token.ILLEGAL	if	it's	whitespace)

				55	 	 wsbuf							[]whiteSpace	//	delayed	white	space

				56	

				57	 	 //	Positions

				58	 	 //	The	out	position	differs	from	the	pos	position	when	the	result

				59	 	 //	formatting	differs	from	the	source	formatting	(in	the	amount	of

				60	 	 //	white	space).	If	there's	a	difference	and	SourcePos	is	set	in

				61	 	 //	ConfigMode,	//line	comments	are	used	in	the	output	to	restore

				62	 	 //	original	source	positions	for	a	reader.

				63	 	 pos		token.Position	//	current	position	in	AST	(source)	space

				64	 	 out		token.Position	//	current	position	in	output	space

				65	 	 last	token.Position	//	value	of	pos	after	calling	writeString

				66	

				67	 	 //	The	list	of	all	source	comments,	in	order	of	appearance.

				68	 	 comments								[]*ast.CommentGroup	//	may	be	nil

				69	 	 cindex										int																	//	current	comment	index

				70	 	 useNodeComments	bool																//	if	not	set,	ignore	lead	and	line	comments	of	nodes

				71	

				72	 	 //	Information	about	p.comments[p.cindex];	set	up	by	nextComment.

				73	 	 comment								*ast.CommentGroup	//	=	p.comments[p.cindex];	or	nil

				74	 	 commentOffset		int															//	=	p.posFor(p.comments[p.cindex].List[0].Pos()).Offset;	or	infinity

				75	 	 commentNewline	bool														//	true	if	the	comment	group	contains	newlines

				76	

				77	 	 //	Cache	of	already	computed	node	sizes.

				78	 	 nodeSizes	map[ast.Node]int

				79	

				80	 	 //	Cache	of	most	recently	computed	line	position.

				81	 	 cachedPos		token.Pos

				82	 	 cachedLine	int	//	line	corresponding	to	cachedPos

				83	 }

				84	

				85	 func	(p	*printer)	init(cfg	*Config,	fset	*token.FileSet,	nodeSizes	map[ast.Node]int)	{

				86	 	 p.Config	=	*cfg

				87	 	 p.fset	=	fset

				88	 	 p.pos	=	token.Position{Line:	1,	Column:	1}

				89	 	 p.out	=	token.Position{Line:	1,	Column:	1}

				90	 	 p.wsbuf	=	make([]whiteSpace,	0,	16)	//	whitespace	sequences	are	short

				91	 	 p.nodeSizes	=	nodeSizes

				92	 	 p.cachedPos	=	-1

				93	 }

				94	

				95	 //	commentsHaveNewline	reports	whether	a	list	of	comments	belonging	to

				96	 //	an	*ast.CommentGroup	contains	newlines.	Because	the	position	information

				97	 //	may	only	be	partially	correct,	we	also	have	to	read	the	comment	text.

				98	 func	(p	*printer)	commentsHaveNewline(list	[]*ast.Comment)	bool	{

				99	 	 //	len(list)	>	0

			100	 	 line	:=	p.lineFor(list[0].Pos())

			101	 	 for	i,	c	:=	range	list	{

			102	 	 	 if	i	>	0	&&	p.lineFor(list[i].Pos())	!=	line	{

			103	 	 	 	 //	not	all	comments	on	the	same	line

			104	 	 	 	 return	true

			105	 	 	 }

			106	 	 	 if	t	:=	c.Text;	len(t)	>=	2	&&	(t[1]	==	'/'	||	strings.Contains(t,	"\n"))	{

			107	 	 	 	 return	true

			108	 	 	 }

			109	 	 }

			110	 	 _	=	line

			111	 	 return	false

			112	 }

			113	

			114	 func	(p	*printer)	nextComment()	{

			115	 	 for	p.cindex	<	len(p.comments)	{

			116	 	 	 c	:=	p.comments[p.cindex]

			117	 	 	 p.cindex++

			118	 	 	 if	list	:=	c.List;	len(list)	>	0	{

			119	 	 	 	 p.comment	=	c

			120	 	 	 	 p.commentOffset	=	p.posFor(list[0].Pos()).Offset

			121	 	 	 	 p.commentNewline	=	p.commentsHaveNewline(list)

			122	 	 	 	 return

			123	 	 	 }

			124	 	 	 //	we	should	not	reach	here	(correct	ASTs	don't	have	empty

			125	 	 	 //	ast.CommentGroup	nodes),	but	be	conservative	and	try	again

			126	 	 }

			127	 	 //	no	more	comments

			128	 	 p.commentOffset	=	infinity

			129	 }

			130	

			131	 func	(p	*printer)	internalError(msg	...interface{})	{

			132	 	 if	debug	{

			133	 	 	 fmt.Print(p.pos.String()	+	":	")

			134	 	 	 fmt.Println(msg...)

			135	 	 	 panic("go/printer")

			136	 	 }

			137	 }

			138	

			139	 func	(p	*printer)	posFor(pos	token.Pos)	token.Position	{

			140	 	 //	not	used	frequently	enough	to	cache	entire	token.Position

			141	 	 return	p.fset.Position(pos)

			142	 }

			143	

			144	 func	(p	*printer)	lineFor(pos	token.Pos)	int	{

			145	 	 if	pos	!=	p.cachedPos	{

			146	 	 	 p.cachedPos	=	pos

			147	 	 	 p.cachedLine	=	p.fset.Position(pos).Line

			148	 	 }

			149	 	 return	p.cachedLine

			150	 }

			151	

			152	 //	atLineBegin	emits	a	//line	comment	if	necessary	and	prints	indentation.

			153	 func	(p	*printer)	atLineBegin(pos	token.Position)	{

			154	 	 //	write	a	//line	comment	if	necessary

			155	 	 if	p.Config.Mode&SourcePos	!=	0	&&	pos.IsValid()	&&	(p.out.Line	!=	pos.Line	||	p.out.Filename	!=	pos.Filename)	{

			156	 	 	 p.output	=	append(p.output,	tabwriter.Escape)	

			157	 	 	 p.output	=	append(p.output,	fmt.Sprintf("//line	%s:%d\n",	pos.Filename,	pos.Line)...)

			158	 	 	 p.output	=	append(p.output,	tabwriter.Escape)

			159	 	 	 //	p.out	must	match	the	//line	comment

			160	 	 	 p.out.Filename	=	pos.Filename

			161	 	 	 p.out.Line	=	pos.Line

			162	 	 }

			163	

			164	 	 //	write	indentation

			165	 	 //	use	"hard"	htabs	-	indentation	columns

			166	 	 //	must	not	be	discarded	by	the	tabwriter

			167	 	 for	i	:=	0;	i	<	p.indent;	i++	{

			168	 	 	 p.output	=	append(p.output,	'\t')

			169	 	 }

			170	

			171	 	 //	update	positions

			172	 	 i	:=	p.indent

			173	 	 p.pos.Offset	+=	i

			174	 	 p.pos.Column	+=	i

			175	 	 p.out.Column	+=	i

			176	 }

			177	

			178	 //	writeByte	writes	ch	n	times	to	p.output	and	updates	p.pos.

			179	 func	(p	*printer)	writeByte(ch	byte,	n	int)	{

			180	 	 if	p.out.Column	==	1	{

			181	 	 	 p.atLineBegin(p.pos)

			182	 	 }

			183	

			184	 	 for	i	:=	0;	i	<	n;	i++	{

			185	 	 	 p.output	=	append(p.output,	ch)

			186	 	 }

			187	

			188	 	 //	update	positions

			189	 	 p.pos.Offset	+=	n

			190	 	 if	ch	==	'\n'	||	ch	==	'\f'	{

			191	 	 	 p.pos.Line	+=	n

			192	 	 	 p.out.Line	+=	n

			193	 	 	 p.pos.Column	=	1

			194	 	 	 p.out.Column	=	1

			195	 	 	 return

			196	 	 }

			197	 	 p.pos.Column	+=	n

			198	 	 p.out.Column	+=	n

			199	 }

			200	

			201	 //	writeString	writes	the	string	s	to	p.output	and	updates	p.pos,	p.out,

			202	 //	and	p.last.	If	isLit	is	set,	s	is	escaped	w/	tabwriter.Escape	characters

			203	 //	to	protect	s	from	being	interpreted	by	the	tabwriter.

			204	 //

			205	 //	Note:	writeString	is	only	used	to	write	Go	tokens,	literals,	and

			206	 //	comments,	all	of	which	must	be	written	literally.	Thus,	it	is	correct

			207	 //	to	always	set	isLit	=	true.	However,	setting	it	explicitly	only	when

			208	 //	needed	(i.e.,	when	we	don't	know	that	s	contains	no	tabs	or	line	breaks)

			209	 //	avoids	processing	extra	escape	characters	and	reduces	run	time	of	the

			210	 //	printer	benchmark	by	up	to	10%.

			211	 //

			212	 func	(p	*printer)	writeString(pos	token.Position,	s	string,	isLit	bool)	{

			213	 	 if	p.out.Column	==	1	{

			214	 	 	 p.atLineBegin(pos)

			215	 	 }

			216	

			217	 	 if	pos.IsValid()	{

			218	 	 	 //	update	p.pos	(if	pos	is	invalid,	continue	with	existing	p.pos)

			219	 	 	 //	Note:	Must	do	this	after	handling	line	beginnings	because

			220	 	 	 //	atLineBegin	updates	p.pos	if	there's	indentation,	but	p.pos

			221	 	 	 //	is	the	position	of	s.

			222	 	 	 p.pos	=	pos

			223	 	 	 //	reset	state	if	the	file	changed

			224	 	 	 //	(used	when	printing	merged	ASTs	of	different	files

			225	 	 	 //	e.g.,	the	result	of	ast.MergePackageFiles)

			226	 	 	 if	p.last.IsValid()	&&	p.last.Filename	!=	pos.Filename	{

			227	 	 	 	 p.indent	=	0

			228	 	 	 	 p.mode	=	0

			229	 	 	 	 p.wsbuf	=	p.wsbuf[0:0]

			230	 	 	 }

			231	 	 }

			232	

			233	 	 if	isLit	{

			234	 	 	 //	Protect	s	such	that	is	passes	through	the	tabwriter

			235	 	 	 //	unchanged.	Note	that	valid	Go	programs	cannot	contain

			236	 	 	 //	tabwriter.Escape	bytes	since	they	do	not	appear	in	legal

			237	 	 	 //	UTF-8	sequences.

			238	 	 	 p.output	=	append(p.output,	tabwriter.Escape)

			239	 	 }

			240	

			241	 	 if	debug	{

			242	 	 	 p.output	=	append(p.output,	fmt.Sprintf("/*%s*/",	pos)...)	

			243	 	 }

			244	 	 p.output	=	append(p.output,	s...)

			245	

			246	 	 //	update	positions

			247	 	 nlines	:=	0

			248	 	 var	li	int	//	index	of	last	newline;	valid	if	nlines	>	0

			249	 	 for	i	:=	0;	i	<	len(s);	i++	{

			250	 	 	 //	Go	tokens	cannot	contain	'\f'	-	no	need	to	look	for	it

			251	 	 	 if	s[i]	==	'\n'	{

			252	 	 	 	 nlines++

			253	 	 	 	 li	=	i

			254	 	 	 }

			255	 	 }

			256	 	 p.pos.Offset	+=	len(s)

			257	 	 if	nlines	>	0	{

			258	 	 	 p.pos.Line	+=	nlines

			259	 	 	 p.out.Line	+=	nlines

			260	 	 	 c	:=	len(s)	-	li

			261	 	 	 p.pos.Column	=	c

			262	 	 	 p.out.Column	=	c

			263	 	 }	else	{

			264	 	 	 p.pos.Column	+=	len(s)

			265	 	 	 p.out.Column	+=	len(s)

			266	 	 }

			267	

			268	 	 if	isLit	{

			269	 	 	 p.output	=	append(p.output,	tabwriter.Escape)

			270	 	 }

			271	

			272	 	 p.last	=	p.pos

			273	 }

			274	

			275	 //	writeCommentPrefix	writes	the	whitespace	before	a	comment.

			276	 //	If	there	is	any	pending	whitespace,	it	consumes	as	much	of

			277	 //	it	as	is	likely	to	help	position	the	comment	nicely.

			278	 //	pos	is	the	comment	position,	next	the	position	of	the	item

			279	 //	after	all	pending	comments,	prev	is	the	previous	comment	in

			280	 //	a	group	of	comments	(or	nil),	and	tok	is	the	next	token.

			281	 //

			282	 func	(p	*printer)	writeCommentPrefix(pos,	next	token.Position,	prev,	comment	*ast.Comment,	tok	token.Token)	{

			283	 	 if	len(p.output)	==	0	{

			284	 	 	 //	the	comment	is	the	first	item	to	be	printed	-	don't	write	any	whitespace

			285	 	 	 return

			286	 	 }

			287	

			288	 	 if	pos.IsValid()	&&	pos.Filename	!=	p.last.Filename	{

			289	 	 	 //	comment	in	a	different	file	-	separate	with	newlines

			290	 	 	 p.writeByte('\f',	maxNewlines)

			291	 	 	 return

			292	 	 }

			293	

			294	 	 if	pos.Line	==	p.last.Line	&&	(prev	==	nil	||	prev.Text[1]	!=	'/')	{

			295	 	 	 //	comment	on	the	same	line	as	last	item:

			296	 	 	 //	separate	with	at	least	one	separator

			297	 	 	 hasSep	:=	false

			298	 	 	 if	prev	==	nil	{

			299	 	 	 	 //	first	comment	of	a	comment	group

			300	 	 	 	 j	:=	0

			301	 	 	 	 for	i,	ch	:=	range	p.wsbuf	{

			302	 	 	 	 	 switch	ch	{

			303	 	 	 	 	 case	blank:

			304	 	 	 	 	 	 //	ignore	any	blanks	before	a	comment

			305	 	 	 	 	 	 p.wsbuf[i]	=	ignore

			306	 	 	 	 	 	 continue

			307	 	 	 	 	 case	vtab:

			308	 	 	 	 	 	 //	respect	existing	tabs	-	important

			309	 	 	 	 	 	 //	for	proper	formatting	of	commented	structs

			310	 	 	 	 	 	 hasSep	=	true

			311	 	 	 	 	 	 continue

			312	 	 	 	 	 case	indent:

			313	 	 	 	 	 	 //	apply	pending	indentation

			314	 	 	 	 	 	 continue

			315	 	 	 	 	 }

			316	 	 	 	 	 j	=	i

			317	 	 	 	 	 break

			318	 	 	 	 }

			319	 	 	 	 p.writeWhitespace(j)

			320	 	 	 }

			321	 	 	 //	make	sure	there	is	at	least	one	separator

			322	 	 	 if	!hasSep	{

			323	 	 	 	 sep	:=	byte('\t')

			324	 	 	 	 if	pos.Line	==	next.Line	{

			325	 	 	 	 	 //	next	item	is	on	the	same	line	as	the	comment

			326	 	 	 	 	 //	(which	must	be	a	/*-style	comment):	separate

			327	 	 	 	 	 //	with	a	blank	instead	of	a	tab

			328	 	 	 	 	 sep	=	'	'

			329	 	 	 	 }

			330	 	 	 	 p.writeByte(sep,	1)

			331	 	 	 }

			332	

			333	 	 }	else	{

			334	 	 	 //	comment	on	a	different	line:

			335	 	 	 //	separate	with	at	least	one	line	break

			336	 	 	 droppedLinebreak	:=	false

			337	 	 	 j	:=	0

			338	 	 	 for	i,	ch	:=	range	p.wsbuf	{

			339	 	 	 	 switch	ch	{

			340	 	 	 	 case	blank,	vtab:

			341	 	 	 	 	 //	ignore	any	horizontal	whitespace	before	line	breaks

			342	 	 	 	 	 p.wsbuf[i]	=	ignore

			343	 	 	 	 	 continue

			344	 	 	 	 case	indent:

			345	 	 	 	 	 //	apply	pending	indentation

			346	 	 	 	 	 continue

			347	 	 	 	 case	unindent:

			348	 	 	 	 	 //	if	this	is	not	the	last	unindent,	apply	it

			349	 	 	 	 	 //	as	it	is	(likely)	belonging	to	the	last

			350	 	 	 	 	 //	construct	(e.g.,	a	multi-line	expression	list)

			351	 	 	 	 	 //	and	is	not	part	of	closing	a	block

			352	 	 	 	 	 if	i+1	<	len(p.wsbuf)	&&	p.wsbuf[i+1]	==	unindent	{

			353	 	 	 	 	 	 continue

			354	 	 	 	 	 }

			355	 	 	 	 	 //	if	the	next	token	is	not	a	closing	},	apply	the	unindent

			356	 	 	 	 	 //	if	it	appears	that	the	comment	is	aligned	with	the

			357	 	 	 	 	 //	token;	otherwise	assume	the	unindent	is	part	of	a

			358	 	 	 	 	 //	closing	block	and	stop	(this	scenario	appears	with

			359	 	 	 	 	 //	comments	before	a	case	label	where	the	comments

			360	 	 	 	 	 //	apply	to	the	next	case	instead	of	the	current	one)

			361	 	 	 	 	 if	tok	!=	token.RBRACE	&&	pos.Column	==	next.Column	{

			362	 	 	 	 	 	 continue

			363	 	 	 	 	 }

			364	 	 	 	 case	newline,	formfeed:

			365	 	 	 	 	 p.wsbuf[i]	=	ignore

			366	 	 	 	 	 droppedLinebreak	=	prev	==	nil	

			367	 	 	 	 }

			368	 	 	 	 j	=	i

			369	 	 	 	 break

			370	 	 	 }

			371	 	 	 p.writeWhitespace(j)

			372	

			373	 	 	 //	determine	number	of	linebreaks	before	the	comment

			374	 	 	 n	:=	0

			375	 	 	 if	pos.IsValid()	&&	p.last.IsValid()	{

			376	 	 	 	 n	=	pos.Line	-	p.last.Line

			377	 	 	 	 if	n	<	0	{	//	should	never	happen

			378	 	 	 	 	 n	=	0

			379	 	 	 	 }

			380	 	 	 }

			381	

			382	 	 	 //	at	the	package	scope	level	only	(p.indent	==	0),

			383	 	 	 //	add	an	extra	newline	if	we	dropped	one	before:

			384	 	 	 //	this	preserves	a	blank	line	before	documentation

			385	 	 	 //	comments	at	the	package	scope	level	(issue	2570)

			386	 	 	 if	p.indent	==	0	&&	droppedLinebreak	{

			387	 	 	 	 n++

			388	 	 	 }

			389	

			390	 	 	 //	make	sure	there	is	at	least	one	line	break

			391	 	 	 //	if	the	previous	comment	was	a	line	comment

			392	 	 	 if	n	==	0	&&	prev	!=	nil	&&	prev.Text[1]	==	'/'	{

			393	 	 	 	 n	=	1

			394	 	 	 }

			395	

			396	 	 	 if	n	>	0	{

			397	 	 	 	 //	use	formfeeds	to	break	columns	before	a	comment;

			398	 	 	 	 //	this	is	analogous	to	using	formfeeds	to	separate

			399	 	 	 	 //	individual	lines	of	/*-style	comments

			400	 	 	 	 p.writeByte('\f',	nlimit(n))

			401	 	 	 }

			402	 	 }

			403	 }

			404	

			405	 //	Split	comment	text	into	lines

			406	 //	(using	strings.Split(text,	"\n")	is	significantly	slower	for

			407	 //	this	specific	purpose,	as	measured	with:	go	test	-bench=Print)

			408	 func	split(text	string)	[]string	{

			409	 	 //	count	lines	(comment	text	never	ends	in	a	newline)

			410	 	 n	:=	1

			411	 	 for	i	:=	0;	i	<	len(text);	i++	{

			412	 	 	 if	text[i]	==	'\n'	{

			413	 	 	 	 n++

			414	 	 	 }

			415	 	 }

			416	

			417	 	 //	split

			418	 	 lines	:=	make([]string,	n)

			419	 	 n	=	0

			420	 	 i	:=	0

			421	 	 for	j	:=	0;	j	<	len(text);	j++	{

			422	 	 	 if	text[j]	==	'\n'	{

			423	 	 	 	 lines[n]	=	text[i:j]	//	exclude	newline

			424	 	 	 	 i	=	j	+	1												//	discard	newline

			425	 	 	 	 n++

			426	 	 	 }

			427	 	 }

			428	 	 lines[n]	=	text[i:]

			429	

			430	 	 return	lines

			431	 }

			432	

			433	 //	Returns	true	if	s	contains	only	white	space

			434	 //	(only	tabs	and	blanks	can	appear	in	the	printer's	context).

			435	 func	isBlank(s	string)	bool	{

			436	 	 for	i	:=	0;	i	<	len(s);	i++	{

			437	 	 	 if	s[i]	>	'	'	{

			438	 	 	 	 return	false

			439	 	 	 }

			440	 	 }

			441	 	 return	true

			442	 }

			443	

			444	 func	commonPrefix(a,	b	string)	string	{

			445	 	 i	:=	0

			446	 	 for	i	<	len(a)	&&	i	<	len(b)	&&	a[i]	==	b[i]	&&	(a[i]	<=	'	'	||	a[i]	==	'*')	{

			447	 	 	 i++

			448	 	 }

			449	 	 return	a[0:i]

			450	 }

			451	

			452	 func	stripCommonPrefix(lines	[]string)	{

			453	 	 if	len(lines)	<	2	{

			454	 	 	 return	//	at	most	one	line	-	nothing	to	do

			455	 	 }

			456	 	 //	len(lines)	>=	2

			457	

			458	 	 //	The	heuristic	in	this	function	tries	to	handle	a	few

			459	 	 //	common	patterns	of	/*-style	comments:	Comments	where

			460	 	 //	the	opening	/*	and	closing	*/	are	aligned	and	the

			461	 	 //	rest	of	the	comment	text	is	aligned	and	indented	with

			462	 	 //	blanks	or	tabs,	cases	with	a	vertical	"line	of	stars"

			463	 	 //	on	the	left,	and	cases	where	the	closing	*/	is	on	the

			464	 	 //	same	line	as	the	last	comment	text.

			465	

			466	 	 //	Compute	maximum	common	white	prefix	of	all	but	the	first,

			467	 	 //	last,	and	blank	lines,	and	replace	blank	lines	with	empty

			468	 	 //	lines	(the	first	line	starts	with	/*	and	has	no	prefix).

			469	 	 //	In	case	of	two-line	comments,	consider	the	last	line	for

			470	 	 //	the	prefix	computation	since	otherwise	the	prefix	would

			471	 	 //	be	empty.

			472	 	 //

			473	 	 //	Note	that	the	first	and	last	line	are	never	empty	(they

			474	 	 //	contain	the	opening	/*	and	closing	*/	respectively)	and

			475	 	 //	thus	they	can	be	ignored	by	the	blank	line	check.

			476	 	 var	prefix	string

			477	 	 if	len(lines)	>	2	{

			478	 	 	 first	:=	true

			479	 	 	 for	i,	line	:=	range	lines[1	:	len(lines)-1]	{

			480	 	 	 	 switch	{

			481	 	 	 	 case	isBlank(line):

			482	 	 	 	 	 lines[1+i]	=	""	//	range	starts	at	line	1

			483	 	 	 	 case	first:

			484	 	 	 	 	 prefix	=	commonPrefix(line,	line)

			485	 	 	 	 	 first	=	false

			486	 	 	 	 default:

			487	 	 	 	 	 prefix	=	commonPrefix(prefix,	line)

			488	 	 	 	 }

			489	 	 	 }

			490	 	 }	else	{	//	len(lines)	==	2,	lines	cannot	be	blank	(contain	/*	and	*/)

			491	 	 	 line	:=	lines[1]

			492	 	 	 prefix	=	commonPrefix(line,	line)

			493	 	 }

			494	

			495	 	 /*

			496	 	 	*	Check	for	vertical	"line	of	stars"	and	correct	prefix	accordingly.

			497	 	 	*/

			498	 	 lineOfStars	:=	false

			499	 	 if	i	:=	strings.Index(prefix,	"*");	i	>=	0	{

			500	 	 	 //	Line	of	stars	present.

			501	 	 	 if	i	>	0	&&	prefix[i-1]	==	'	'	{

			502	 	 	 	 i--	//	remove	trailing	blank	from	prefix	so	stars	remain	aligned

			503	 	 	 }

			504	 	 	 prefix	=	prefix[0:i]

			505	 	 	 lineOfStars	=	true

			506	 	 }	else	{

			507	 	 	 //	No	line	of	stars	present.

			508	 	 	 //	Determine	the	white	space	on	the	first	line	after	the	/*

			509	 	 	 //	and	before	the	beginning	of	the	comment	text,	assume	two

			510	 	 	 //	blanks	instead	of	the	/*	unless	the	first	character	after

			511	 	 	 //	the	/*	is	a	tab.	If	the	first	comment	line	is	empty	but

			512	 	 	 //	for	the	opening	/*,	assume	up	to	3	blanks	or	a	tab.	This

			513	 	 	 //	whitespace	may	be	found	as	suffix	in	the	common	prefix.

			514	 	 	 first	:=	lines[0]

			515	 	 	 if	isBlank(first[2:])	{

			516	 	 	 	 //	no	comment	text	on	the	first	line:

			517	 	 	 	 //	reduce	prefix	by	up	to	3	blanks	or	a	tab

			518	 	 	 	 //	if	present	-	this	keeps	comment	text	indented

			519	 	 	 	 //	relative	to	the	/*	and	*/'s	if	it	was	indented

			520	 	 	 	 //	in	the	first	place

			521	 	 	 	 i	:=	len(prefix)

			522	 	 	 	 for	n	:=	0;	n	<	3	&&	i	>	0	&&	prefix[i-1]	==	'	';	n++	{

			523	 	 	 	 	 i--

			524	 	 	 	 }

			525	 	 	 	 if	i	==	len(prefix)	&&	i	>	0	&&	prefix[i-1]	==	'\t'	{

			526	 	 	 	 	 i--

			527	 	 	 	 }

			528	 	 	 	 prefix	=	prefix[0:i]

			529	 	 	 }	else	{

			530	 	 	 	 //	comment	text	on	the	first	line

			531	 	 	 	 suffix	:=	make([]byte,	len(first))

			532	 	 	 	 n	:=	2	//	start	after	opening	/*

			533	 	 	 	 for	n	<	len(first)	&&	first[n]	<=	'	'	{

			534	 	 	 	 	 suffix[n]	=	first[n]

			535	 	 	 	 	 n++

			536	 	 	 	 }

			537	 	 	 	 if	n	>	2	&&	suffix[2]	==	'\t'	{

			538	 	 	 	 	 //	assume	the	'\t'	compensates	for	the	/*

			539	 	 	 	 	 suffix	=	suffix[2:n]

			540	 	 	 	 }	else	{

			541	 	 	 	 	 //	otherwise	assume	two	blanks

			542	 	 	 	 	 suffix[0],	suffix[1]	=	'	',	'	'

			543	 	 	 	 	 suffix	=	suffix[0:n]

			544	 	 	 	 }

			545	 	 	 	 //	Shorten	the	computed	common	prefix	by	the	length	of

			546	 	 	 	 //	suffix,	if	it	is	found	as	suffix	of	the	prefix.

			547	 	 	 	 if	strings.HasSuffix(prefix,	string(suffix))	{

			548	 	 	 	 	 prefix	=	prefix[0	:	len(prefix)-len(suffix)]

			549	 	 	 	 }

			550	 	 	 }

			551	 	 }

			552	

			553	 	 //	Handle	last	line:	If	it	only	contains	a	closing	*/,	align	it

			554	 	 //	with	the	opening	/*,	otherwise	align	the	text	with	the	other

			555	 	 //	lines.

			556	 	 last	:=	lines[len(lines)-1]

			557	 	 closing	:=	"*/"

			558	 	 i	:=	strings.Index(last,	closing)	//	i	>=	0	(closing	is	always	present)

			559	 	 if	isBlank(last[0:i])	{

			560	 	 	 //	last	line	only	contains	closing	*/

			561	 	 	 if	lineOfStars	{

			562	 	 	 	 closing	=	"	*/"	//	add	blank	to	align	final	star

			563	 	 	 }

			564	 	 	 lines[len(lines)-1]	=	prefix	+	closing

			565	 	 }	else	{

			566	 	 	 //	last	line	contains	more	comment	text	-	assume

			567	 	 	 //	it	is	aligned	like	the	other	lines	and	include

			568	 	 	 //	in	prefix	computation

			569	 	 	 prefix	=	commonPrefix(prefix,	last)

			570	 	 }

			571	

			572	 	 //	Remove	the	common	prefix	from	all	but	the	first	and	empty	lines.

			573	 	 for	i,	line	:=	range	lines[1:]	{

			574	 	 	 if	len(line)	!=	0	{

			575	 	 	 	 lines[1+i]	=	line[len(prefix):]	//	range	starts	at	line	1

			576	 	 	 }

			577	 	 }

			578	 }

			579	

			580	 func	(p	*printer)	writeComment(comment	*ast.Comment)	{

			581	 	 text	:=	comment.Text

			582	 	 pos	:=	p.posFor(comment.Pos())

			583	

			584	 	 const	linePrefix	=	"//line	"

			585	 	 if	strings.HasPrefix(text,	linePrefix)	&&	(!pos.IsValid()	||	pos.Column	==	1)	{

			586	 	 	 //	possibly	a	line	directive

			587	 	 	 ldir	:=	strings.TrimSpace(text[len(linePrefix):])

			588	 	 	 if	i	:=	strings.LastIndex(ldir,	":");	i	>=	0	{

			589	 	 	 	 if	line,	err	:=	strconv.Atoi(ldir[i+1:]);	err	==	nil	&&	line	>	0	{

			590	 	 	 	 	 //	The	line	directive	we	are	about	to	print	changed

			591	 	 	 	 	 //	the	Filename	and	Line	number	used	for	subsequent

			592	 	 	 	 	 //	tokens.	We	have	to	update	our	AST-space	position

			593	 	 	 	 	 //	accordingly	and	suspend	indentation	temporarily.

			594	 	 	 	 	 indent	:=	p.indent

			595	 	 	 	 	 p.indent	=	0

			596	 	 	 	 	 defer	func()	{

			597	 	 	 	 	 	 p.pos.Filename	=	ldir[:i]

			598	 	 	 	 	 	 p.pos.Line	=	line

			599	 	 	 	 	 	 p.pos.Column	=	1

			600	 	 	 	 	 	 p.indent	=	indent

			601	 	 	 	 	 }()

			602	 	 	 	 }

			603	 	 	 }

			604	 	 }

			605	

			606	 	 //	shortcut	common	case	of	//-style	comments

			607	 	 if	text[1]	==	'/'	{

			608	 	 	 p.writeString(pos,	text,	true)

			609	 	 	 return

			610	 	 }

			611	

			612	 	 //	for	/*-style	comments,	print	line	by	line	and	let	the

			613	 	 //	write	function	take	care	of	the	proper	indentation

			614	 	 lines	:=	split(text)

			615	 	 stripCommonPrefix(lines)

			616	

			617	 	 //	write	comment	lines,	separated	by	formfeed,

			618	 	 //	without	a	line	break	after	the	last	line

			619	 	 for	i,	line	:=	range	lines	{

			620	 	 	 if	i	>	0	{

			621	 	 	 	 p.writeByte('\f',	1)

			622	 	 	 	 pos	=	p.pos

			623	 	 	 }

			624	 	 	 if	len(line)	>	0	{

			625	 	 	 	 p.writeString(pos,	line,	true)

			626	 	 	 }

			627	 	 }

			628	 }

			629	

			630	 //	writeCommentSuffix	writes	a	line	break	after	a	comment	if	indicated

			631	 //	and	processes	any	leftover	indentation	information.	If	a	line	break

			632	 //	is	needed,	the	kind	of	break	(newline	vs	formfeed)	depends	on	the

			633	 //	pending	whitespace.	The	writeCommentSuffix	result	indicates	if	a

			634	 //	newline	was	written	or	if	a	formfeed	was	dropped	from	the	whitespace

			635	 //	buffer.

			636	 //

			637	 func	(p	*printer)	writeCommentSuffix(needsLinebreak	bool)	(wroteNewline,	droppedFF	bool)	{

			638	 	 for	i,	ch	:=	range	p.wsbuf	{

			639	 	 	 switch	ch	{

			640	 	 	 case	blank,	vtab:

			641	 	 	 	 //	ignore	trailing	whitespace

			642	 	 	 	 p.wsbuf[i]	=	ignore

			643	 	 	 case	indent,	unindent:

			644	 	 	 	 //	don't	lose	indentation	information

			645	 	 	 case	newline,	formfeed:

			646	 	 	 	 //	if	we	need	a	line	break,	keep	exactly	one

			647	 	 	 	 //	but	remember	if	we	dropped	any	formfeeds

			648	 	 	 	 if	needsLinebreak	{

			649	 	 	 	 	 needsLinebreak	=	false

			650	 	 	 	 	 wroteNewline	=	true

			651	 	 	 	 }	else	{

			652	 	 	 	 	 if	ch	==	formfeed	{

			653	 	 	 	 	 	 droppedFF	=	true

			654	 	 	 	 	 }

			655	 	 	 	 	 p.wsbuf[i]	=	ignore

			656	 	 	 	 }

			657	 	 	 }

			658	 	 }

			659	 	 p.writeWhitespace(len(p.wsbuf))

			660	

			661	 	 //	make	sure	we	have	a	line	break

			662	 	 if	needsLinebreak	{

			663	 	 	 p.writeByte('\n',	1)

			664	 	 	 wroteNewline	=	true

			665	 	 }

			666	

			667	 	 return

			668	 }

			669	

			670	 //	intersperseComments	consumes	all	comments	that	appear	before	the	next	token

			671	 //	tok	and	prints	it	together	with	the	buffered	whitespace	(i.e.,	the	whitespace

			672	 //	that	needs	to	be	written	before	the	next	token).	A	heuristic	is	used	to	mix

			673	 //	the	comments	and	whitespace.	The	intersperseComments	result	indicates	if	a

			674	 //	newline	was	written	or	if	a	formfeed	was	dropped	from	the	whitespace	buffer.

			675	 //

			676	 func	(p	*printer)	intersperseComments(next	token.Position,	tok	token.Token)	(wroteNewline,	droppedFF	bool)	{

			677	 	 var	last	*ast.Comment

			678	 	 for	p.commentBefore(next)	{

			679	 	 	 for	_,	c	:=	range	p.comment.List	{

			680	 	 	 	 p.writeCommentPrefix(p.posFor(c.Pos()),	next,	last,	c,	tok)

			681	 	 	 	 p.writeComment(c)

			682	 	 	 	 last	=	c

			683	 	 	 }

			684	 	 	 p.nextComment()

			685	 	 }

			686	

			687	 	 if	last	!=	nil	{

			688	 	 	 //	if	the	last	comment	is	a	/*-style	comment	and	the	next	item

			689	 	 	 //	follows	on	the	same	line	but	is	not	a	comma	or	a	"closing"

			690	 	 	 //	token,	add	an	extra	blank	for	separation

			691	 	 	 if	last.Text[1]	==	'*'	&&	p.lineFor(last.Pos())	==	next.Line	&&	tok	!=	token.COMMA	&&

			692	 	 	 	 tok	!=	token.RPAREN	&&	tok	!=	token.RBRACK	&&	tok	!=	token.RBRACE	{

			693	 	 	 	 p.writeByte('	',	1)

			694	 	 	 }

			695	 	 	 //	ensure	that	there	is	a	line	break	after	a	//-style	comment,

			696	 	 	 //	before	a	closing	'}'	unless	explicitly	disabled,	or	at	eof

			697	 	 	 needsLinebreak	:=

			698	 	 	 	 last.Text[1]	==	'/'	||

			699	 	 	 	 	 tok	==	token.RBRACE	&&	p.mode&noExtraLinebreak	==	0	||

			700	 	 	 	 	 tok	==	token.EOF

			701	 	 	 return	p.writeCommentSuffix(needsLinebreak)

			702	 	 }

			703	

			704	 	 //	no	comment	was	written	-	we	should	never	reach	here	since

			705	 	 //	intersperseComments	should	not	be	called	in	that	case

			706	 	 p.internalError("intersperseComments	called	without	pending	comments")

			707	 	 return

			708	 }

			709	

			710	 //	whiteWhitespace	writes	the	first	n	whitespace	entries.

			711	 func	(p	*printer)	writeWhitespace(n	int)	{

			712	 	 //	write	entries

			713	 	 for	i	:=	0;	i	<	n;	i++	{

			714	 	 	 switch	ch	:=	p.wsbuf[i];	ch	{

			715	 	 	 case	ignore:

			716	 	 	 	 //	ignore!

			717	 	 	 case	indent:

			718	 	 	 	 p.indent++

			719	 	 	 case	unindent:

			720	 	 	 	 p.indent--

			721	 	 	 	 if	p.indent	<	0	{

			722	 	 	 	 	 p.internalError("negative	indentation:",	p.indent)

			723	 	 	 	 	 p.indent	=	0

			724	 	 	 	 }

			725	 	 	 case	newline,	formfeed:

			726	 	 	 	 //	A	line	break	immediately	followed	by	a	"correcting"

			727	 	 	 	 //	unindent	is	swapped	with	the	unindent	-	this	permits

			728	 	 	 	 //	proper	label	positioning.	If	a	comment	is	between

			729	 	 	 	 //	the	line	break	and	the	label,	the	unindent	is	not

			730	 	 	 	 //	part	of	the	comment	whitespace	prefix	and	the	comment

			731	 	 	 	 //	will	be	positioned	correctly	indented.

			732	 	 	 	 if	i+1	<	n	&&	p.wsbuf[i+1]	==	unindent	{

			733	 	 	 	 	 //	Use	a	formfeed	to	terminate	the	current	section.

			734	 	 	 	 	 //	Otherwise,	a	long	label	name	on	the	next	line	leading

			735	 	 	 	 	 //	to	a	wide	column	may	increase	the	indentation	column

			736	 	 	 	 	 //	of	lines	before	the	label;	effectively	leading	to	wrong

			737	 	 	 	 	 //	indentation.

			738	 	 	 	 	 p.wsbuf[i],	p.wsbuf[i+1]	=	unindent,	formfeed

			739	 	 	 	 	 i--	//	do	it	again

			740	 	 	 	 	 continue

			741	 	 	 	 }

			742	 	 	 	 fallthrough

			743	 	 	 default:

			744	 	 	 	 p.writeByte(byte(ch),	1)

			745	 	 	 }

			746	 	 }

			747	

			748	 	 //	shift	remaining	entries	down

			749	 	 i	:=	0

			750	 	 for	;	n	<	len(p.wsbuf);	n++	{

			751	 	 	 p.wsbuf[i]	=	p.wsbuf[n]

			752	 	 	 i++

			753	 	 }

			754	 	 p.wsbuf	=	p.wsbuf[0:i]

			755	 }

			756	

			757	 //	--

			758	 //	Printing	interface

			759	

			760	 //	nlines	limits	n	to	maxNewlines.

			761	 func	nlimit(n	int)	int	{

			762	 	 if	n	>	maxNewlines	{

			763	 	 	 n	=	maxNewlines

			764	 	 }

			765	 	 return	n

			766	 }

			767	

			768	 func	mayCombine(prev	token.Token,	next	byte)	(b	bool)	{

			769	 	 switch	prev	{

			770	 	 case	token.INT:

			771	 	 	 b	=	next	==	'.'	//	1.

			772	 	 case	token.ADD:

			773	 	 	 b	=	next	==	'+'	//	++

			774	 	 case	token.SUB:

			775	 	 	 b	=	next	==	'-'	//	--

			776	 	 case	token.QUO:

			777	 	 	 b	=	next	==	'*'	//	/*

			778	 	 case	token.LSS:

			779	 	 	 b	=	next	==	'-'	||	next	==	'<'	//	<-	or	<<

			780	 	 case	token.AND:

			781	 	 	 b	=	next	==	'&'	||	next	==	'^'	//	&&	or	&^

			782	 	 }

			783	 	 return

			784	 }

			785	

			786	 //	print	prints	a	list	of	"items"	(roughly	corresponding	to	syntactic

			787	 //	tokens,	but	also	including	whitespace	and	formatting	information).

			788	 //	It	is	the	only	print	function	that	should	be	called	directly	from

			789	 //	any	of	the	AST	printing	functions	in	nodes.go.

			790	 //

			791	 //	Whitespace	is	accumulated	until	a	non-whitespace	token	appears.	Any

			792	 //	comments	that	need	to	appear	before	that	token	are	printed	first,

			793	 //	taking	into	account	the	amount	and	structure	of	any	pending	white-

			794	 //	space	for	best	comment	placement.	Then,	any	leftover	whitespace	is

			795	 //	printed,	followed	by	the	actual	token.

			796	 //

			797	 func	(p	*printer)	print(args	...interface{})	{

			798	 	 for	_,	arg	:=	range	args	{

			799	 	 	 //	information	about	the	current	arg

			800	 	 	 var	data	string

			801	 	 	 var	isLit	bool

			802	 	 	 var	impliedSemi	bool	//	value	for	p.impliedSemi	after	this	arg

			803	

			804	 	 	 switch	x	:=	arg.(type)	{

			805	 	 	 case	pmode:

			806	 	 	 	 //	toggle	printer	mode

			807	 	 	 	 p.mode	^=	x

			808	 	 	 	 continue

			809	

			810	 	 	 case	whiteSpace:

			811	 	 	 	 if	x	==	ignore	{

			812	 	 	 	 	 //	don't	add	ignore's	to	the	buffer;	they

			813	 	 	 	 	 //	may	screw	up	"correcting"	unindents	(see

			814	 	 	 	 	 //	LabeledStmt)

			815	 	 	 	 	 continue

			816	 	 	 	 }

			817	 	 	 	 i	:=	len(p.wsbuf)

			818	 	 	 	 if	i	==	cap(p.wsbuf)	{

			819	 	 	 	 	 //	Whitespace	sequences	are	very	short	so	this	should

			820	 	 	 	 	 //	never	happen.	Handle	gracefully	(but	possibly	with

			821	 	 	 	 	 //	bad	comment	placement)	if	it	does	happen.

			822	 	 	 	 	 p.writeWhitespace(i)

			823	 	 	 	 	 i	=	0

			824	 	 	 	 }

			825	 	 	 	 p.wsbuf	=	p.wsbuf[0	:	i+1]

			826	 	 	 	 p.wsbuf[i]	=	x

			827	 	 	 	 if	x	==	newline	||	x	==	formfeed	{

			828	 	 	 	 	 //	newlines	affect	the	current	state	(p.impliedSemi)

			829	 	 	 	 	 //	and	not	the	state	after	printing	arg	(impliedSemi)

			830	 	 	 	 	 //	because	comments	can	be	interspersed	before	the	arg

			831	 	 	 	 	 //	in	this	case

			832	 	 	 	 	 p.impliedSemi	=	false

			833	 	 	 	 }

			834	 	 	 	 p.lastTok	=	token.ILLEGAL

			835	 	 	 	 continue

			836	

			837	 	 	 case	*ast.Ident:

			838	 	 	 	 data	=	x.Name

			839	 	 	 	 impliedSemi	=	true

			840	 	 	 	 p.lastTok	=	token.IDENT

			841	

			842	 	 	 case	*ast.BasicLit:

			843	 	 	 	 data	=	x.Value

			844	 	 	 	 isLit	=	true

			845	 	 	 	 impliedSemi	=	true

			846	 	 	 	 p.lastTok	=	x.Kind

			847	

			848	 	 	 case	token.Token:

			849	 	 	 	 s	:=	x.String()

			850	 	 	 	 if	mayCombine(p.lastTok,	s[0])	{

			851	 	 	 	 	 //	the	previous	and	the	current	token	must	be

			852	 	 	 	 	 //	separated	by	a	blank	otherwise	they	combine

			853	 	 	 	 	 //	into	a	different	incorrect	token	sequence

			854	 	 	 	 	 //	(except	for	token.INT	followed	by	a	'.'	this

			855	 	 	 	 	 //	should	never	happen	because	it	is	taken	care

			856	 	 	 	 	 //	of	via	binary	expression	formatting)

			857	 	 	 	 	 if	len(p.wsbuf)	!=	0	{

			858	 	 	 	 	 	 p.internalError("whitespace	buffer	not	empty")

			859	 	 	 	 	 }

			860	 	 	 	 	 p.wsbuf	=	p.wsbuf[0:1]

			861	 	 	 	 	 p.wsbuf[0]	=	'	'

			862	 	 	 	 }

			863	 	 	 	 data	=	s

			864	 	 	 	 //	some	keywords	followed	by	a	newline	imply	a	semicolon

			865	 	 	 	 switch	x	{

			866	 	 	 	 case	token.BREAK,	token.CONTINUE,	token.FALLTHROUGH,	token.RETURN,

			867	 	 	 	 	 token.INC,	token.DEC,	token.RPAREN,	token.RBRACK,	token.RBRACE:

			868	 	 	 	 	 impliedSemi	=	true

			869	 	 	 	 }

			870	 	 	 	 p.lastTok	=	x

			871	

			872	 	 	 case	token.Pos:

			873	 	 	 	 if	x.IsValid()	{

			874	 	 	 	 	 p.pos	=	p.posFor(x)	//	accurate	position	of	next	item

			875	 	 	 	 }

			876	 	 	 	 continue

			877	

			878	 	 	 case	string:

			879	 	 	 	 //	incorrect	AST	-	print	error	message

			880	 	 	 	 data	=	x

			881	 	 	 	 isLit	=	true

			882	 	 	 	 impliedSemi	=	true

			883	 	 	 	 p.lastTok	=	token.STRING

			884	

			885	 	 	 default:

			886	 	 	 	 fmt.Fprintf(os.Stderr,	"print:	unsupported	argument	%v	(%T)\n",	arg,	arg)

			887	 	 	 	 panic("go/printer	type")

			888	 	 	 }

			889	 	 	 //	data	!=	""

			890	

			891	 	 	 next	:=	p.pos	//	estimated/accurate	position	of	next	item

			892	 	 	 wroteNewline,	droppedFF	:=	p.flush(next,	p.lastTok)

			893	

			894	 	 	 //	intersperse	extra	newlines	if	present	in	the	source	and

			895	 	 	 //	if	they	don't	cause	extra	semicolons	(don't	do	this	in

			896	 	 	 //	flush	as	it	will	cause	extra	newlines	at	the	end	of	a	file)

			897	 	 	 if	!p.impliedSemi	{

			898	 	 	 	 n	:=	nlimit(next.Line	-	p.pos.Line)

			899	 	 	 	 //	don't	exceed	maxNewlines	if	we	already	wrote	one

			900	 	 	 	 if	wroteNewline	&&	n	==	maxNewlines	{

			901	 	 	 	 	 n	=	maxNewlines	-	1

			902	 	 	 	 }

			903	 	 	 	 if	n	>	0	{

			904	 	 	 	 	 ch	:=	byte('\n')

			905	 	 	 	 	 if	droppedFF	{

			906	 	 	 	 	 	 ch	=	'\f'	//	use	formfeed	since	we	dropped	one	before

			907	 	 	 	 	 }

			908	 	 	 	 	 p.writeByte(ch,	n)

			909	 	 	 	 	 impliedSemi	=	false

			910	 	 	 	 }

			911	 	 	 }

			912	

			913	 	 	 p.writeString(next,	data,	isLit)

			914	 	 	 p.impliedSemi	=	impliedSemi

			915	 	 }

			916	 }

			917	

			918	 //	commentBefore	returns	true	iff	the	current	comment	group	occurs

			919	 //	before	the	next	position	in	the	source	code	and	printing	it	does

			920	 //	not	introduce	implicit	semicolons.

			921	 //

			922	 func	(p	*printer)	commentBefore(next	token.Position)	(result	bool)	{

			923	 	 return	p.commentOffset	<	next.Offset	&&	(!p.impliedSemi	||	!p.commentNewline)

			924	 }

			925	

			926	 //	flush	prints	any	pending	comments	and	whitespace	occurring	textually

			927	 //	before	the	position	of	the	next	token	tok.	The	flush	result	indicates

			928	 //	if	a	newline	was	written	or	if	a	formfeed	was	dropped	from	the	whitespace

			929	 //	buffer.

			930	 //

			931	 func	(p	*printer)	flush(next	token.Position,	tok	token.Token)	(wroteNewline,	droppedFF	bool)	{

			932	 	 if	p.commentBefore(next)	{

			933	 	 	 //	if	there	are	comments	before	the	next	item,	intersperse	them

			934	 	 	 wroteNewline,	droppedFF	=	p.intersperseComments(next,	tok)

			935	 	 }	else	{

			936	 	 	 //	otherwise,	write	any	leftover	whitespace

			937	 	 	 p.writeWhitespace(len(p.wsbuf))

			938	 	 }

			939	 	 return

			940	 }

			941	

			942	 //	getNode	returns	the	ast.CommentGroup	associated	with	n,	if	any.

			943	 func	getDoc(n	ast.Node)	*ast.CommentGroup	{

			944	 	 switch	n	:=	n.(type)	{

			945	 	 case	*ast.Field:

			946	 	 	 return	n.Doc

			947	 	 case	*ast.ImportSpec:

			948	 	 	 return	n.Doc

			949	 	 case	*ast.ValueSpec:

			950	 	 	 return	n.Doc

			951	 	 case	*ast.TypeSpec:

			952	 	 	 return	n.Doc

			953	 	 case	*ast.GenDecl:

			954	 	 	 return	n.Doc

			955	 	 case	*ast.FuncDecl:

			956	 	 	 return	n.Doc

			957	 	 case	*ast.File:

			958	 	 	 return	n.Doc

			959	 	 }

			960	 	 return	nil

			961	 }

			962	

			963	 func	(p	*printer)	printNode(node	interface{})	error	{

			964	 	 //	unpack	*CommentedNode,	if	any

			965	 	 var	comments	[]*ast.CommentGroup

			966	 	 if	cnode,	ok	:=	node.(*CommentedNode);	ok	{

			967	 	 	 node	=	cnode.Node

			968	 	 	 comments	=	cnode.Comments

			969	 	 }

			970	

			971	 	 if	comments	!=	nil	{

			972	 	 	 //	commented	node	-	restrict	comment	list	to	relevant	range

			973	 	 	 n,	ok	:=	node.(ast.Node)

			974	 	 	 if	!ok	{

			975	 	 	 	 goto	unsupported

			976	 	 	 }

			977	 	 	 beg	:=	n.Pos()

			978	 	 	 end	:=	n.End()

			979	 	 	 //	if	the	node	has	associated	documentation,

			980	 	 	 //	include	that	commentgroup	in	the	range

			981	 	 	 //	(the	comment	list	is	sorted	in	the	order

			982	 	 	 //	of	the	comment	appearance	in	the	source	code)

			983	 	 	 if	doc	:=	getDoc(n);	doc	!=	nil	{

			984	 	 	 	 beg	=	doc.Pos()

			985	 	 	 }

			986	 	 	 //	token.Pos	values	are	global	offsets,	we	can

			987	 	 	 //	compare	them	directly

			988	 	 	 i	:=	0

			989	 	 	 for	i	<	len(comments)	&&	comments[i].End()	<	beg	{

			990	 	 	 	 i++

			991	 	 	 }

			992	 	 	 j	:=	i

			993	 	 	 for	j	<	len(comments)	&&	comments[j].Pos()	<	end	{

			994	 	 	 	 j++

			995	 	 	 }

			996	 	 	 if	i	<	j	{

			997	 	 	 	 p.comments	=	comments[i:j]

			998	 	 	 }

			999	 	 }	else	if	n,	ok	:=	node.(*ast.File);	ok	{

		1000	 	 	 //	use	ast.File	comments,	if	any

		1001	 	 	 p.comments	=	n.Comments

		1002	 	 }

		1003	

		1004	 	 //	if	there	are	no	comments,	use	node	comments

		1005	 	 p.useNodeComments	=	p.comments	==	nil

		1006	

		1007	 	 //	get	comments	ready	for	use

		1008	 	 p.nextComment()

		1009	

		1010	 	 //	format	node

		1011	 	 switch	n	:=	node.(type)	{

		1012	 	 case	ast.Expr:

		1013	 	 	 p.expr(n)

		1014	 	 case	ast.Stmt:

		1015	 	 	 //	A	labeled	statement	will	un-indent	to	position	the

		1016	 	 	 //	label.	Set	indent	to	1	so	we	don't	get	indent	"underflow".

		1017	 	 	 if	_,	labeledStmt	:=	n.(*ast.LabeledStmt);	labeledStmt	{

		1018	 	 	 	 p.indent	=	1

		1019	 	 	 }

		1020	 	 	 p.stmt(n,	false)

		1021	 	 case	ast.Decl:

		1022	 	 	 p.decl(n)

		1023	 	 case	ast.Spec:

		1024	 	 	 p.spec(n,	1,	false)

		1025	 	 case	*ast.File:

		1026	 	 	 p.file(n)

		1027	 	 default:

		1028	 	 	 goto	unsupported

		1029	 	 }

		1030	

		1031	 	 return	nil

		1032	

		1033	 unsupported:

		1034	 	 return	fmt.Errorf("go/printer:	unsupported	node	type	%T",	node)

		1035	 }

		1036	

		1037	 //	--

		1038	 //	Trimmer

		1039	

		1040	 //	A	trimmer	is	an	io.Writer	filter	for	stripping	tabwriter.Escape

		1041	 //	characters,	trailing	blanks	and	tabs,	and	for	converting	formfeed

		1042	 //	and	vtab	characters	into	newlines	and	htabs	(in	case	no	tabwriter

		1043	 //	is	used).	Text	bracketed	by	tabwriter.Escape	characters	is	passed

		1044	 //	through	unchanged.

		1045	 //

		1046	 type	trimmer	struct	{

		1047	 	 output	io.Writer

		1048	 	 state		int

		1049	 	 space		[]byte

		1050	 }

		1051	

		1052	 //	trimmer	is	implemented	as	a	state	machine.

		1053	 //	It	can	be	in	one	of	the	following	states:

		1054	 const	(

		1055	 	 inSpace		=	iota	//	inside	space

		1056	 	 inEscape								//	inside	text	bracketed	by	tabwriter.Escapes

		1057	 	 inText										//	inside	text

		1058)

		1059	

		1060	 func	(p	*trimmer)	resetSpace()	{

		1061	 	 p.state	=	inSpace

		1062	 	 p.space	=	p.space[0:0]

		1063	 }

		1064	

		1065	 //	Design	note:	It	is	tempting	to	eliminate	extra	blanks	occurring	in

		1066	 //														whitespace	in	this	function	as	it	could	simplify	some

		1067	 //														of	the	blanks	logic	in	the	node	printing	functions.

		1068	 //														However,	this	would	mess	up	any	formatting	done	by

		1069	 //														the	tabwriter.

		1070	

		1071	 var	aNewline	=	[]byte("\n")

		1072	

		1073	 func	(p	*trimmer)	Write(data	[]byte)	(n	int,	err	error)	{

		1074	 	 //	invariants:

		1075	 	 //	p.state	==	inSpace:

		1076	 	 //	 p.space	is	unwritten

		1077	 	 //	p.state	==	inEscape,	inText:

		1078	 	 //	 data[m:n]	is	unwritten

		1079	 	 m	:=	0

		1080	 	 var	b	byte

		1081	 	 for	n,	b	=	range	data	{

		1082	 	 	 if	b	==	'\v'	{

		1083	 	 	 	 b	=	'\t'	//	convert	to	htab

		1084	 	 	 }

		1085	 	 	 switch	p.state	{

		1086	 	 	 case	inSpace:

		1087	 	 	 	 switch	b	{

		1088	 	 	 	 case	'\t',	'	':

		1089	 	 	 	 	 p.space	=	append(p.space,	b)

		1090	 	 	 	 case	'\n',	'\f':

		1091	 	 	 	 	 p.resetSpace()	//	discard	trailing	space

		1092	 	 	 	 	 _,	err	=	p.output.Write(aNewline)

		1093	 	 	 	 case	tabwriter.Escape:

		1094	 	 	 	 	 _,	err	=	p.output.Write(p.space)

		1095	 	 	 	 	 p.state	=	inEscape

		1096	 	 	 	 	 m	=	n	+	1	//	+1:	skip	tabwriter.Escape

		1097	 	 	 	 default:

		1098	 	 	 	 	 _,	err	=	p.output.Write(p.space)

		1099	 	 	 	 	 p.state	=	inText

		1100	 	 	 	 	 m	=	n

		1101	 	 	 	 }

		1102	 	 	 case	inEscape:

		1103	 	 	 	 if	b	==	tabwriter.Escape	{

		1104	 	 	 	 	 _,	err	=	p.output.Write(data[m:n])

		1105	 	 	 	 	 p.resetSpace()

		1106	 	 	 	 }

		1107	 	 	 case	inText:

		1108	 	 	 	 switch	b	{

		1109	 	 	 	 case	'\t',	'	':

		1110	 	 	 	 	 _,	err	=	p.output.Write(data[m:n])

		1111	 	 	 	 	 p.resetSpace()

		1112	 	 	 	 	 p.space	=	append(p.space,	b)

		1113	 	 	 	 case	'\n',	'\f':

		1114	 	 	 	 	 _,	err	=	p.output.Write(data[m:n])

		1115	 	 	 	 	 p.resetSpace()

		1116	 	 	 	 	 _,	err	=	p.output.Write(aNewline)

		1117	 	 	 	 case	tabwriter.Escape:

		1118	 	 	 	 	 _,	err	=	p.output.Write(data[m:n])

		1119	 	 	 	 	 p.state	=	inEscape

		1120	 	 	 	 	 m	=	n	+	1	//	+1:	skip	tabwriter.Escape

		1121	 	 	 	 }

		1122	 	 	 default:

		1123	 	 	 	 panic("unreachable")

		1124	 	 	 }

		1125	 	 	 if	err	!=	nil	{

		1126	 	 	 	 return

		1127	 	 	 }

		1128	 	 }

		1129	 	 n	=	len(data)

		1130	

		1131	 	 switch	p.state	{

		1132	 	 case	inEscape,	inText:

		1133	 	 	 _,	err	=	p.output.Write(data[m:n])

		1134	 	 	 p.resetSpace()

		1135	 	 }

		1136	

		1137	 	 return

		1138	 }

		1139	

		1140	 //	--

		1141	 //	Public	interface

		1142	

		1143	 //	A	Mode	value	is	a	set	of	flags	(or	0).	They	coontrol	printing.	

		1144	 type	Mode	uint

		1145	

		1146	 const	(

		1147	 	 RawFormat	Mode	=	1	<<	iota	//	do	not	use	a	tabwriter;	if	set,	UseSpaces	is	ignored

		1148	 	 TabIndent																		//	use	tabs	for	indentation	independent	of	UseSpaces

		1149	 	 UseSpaces																		//	use	spaces	instead	of	tabs	for	alignment

		1150	 	 SourcePos																		//	emit	//line	comments	to	preserve	original	source	positions

		1151)

		1152	

		1153	 //	A	Config	node	controls	the	output	of	Fprint.

		1154	 type	Config	struct	{

		1155	 	 Mode					Mode	//	default:	0

		1156	 	 Tabwidth	int		//	default:	8

		1157	 }

		1158	

		1159	 //	fprint	implements	Fprint	and	takes	a	nodesSizes	map	for	setting	up	the	printer	state.

		1160	 func	(cfg	*Config)	fprint(output	io.Writer,	fset	*token.FileSet,	node	interface{},	nodeSizes	map[ast.Node]int)	(err	error)	{

		1161	 	 //	print	node

		1162	 	 var	p	printer

		1163	 	 p.init(cfg,	fset,	nodeSizes)

		1164	 	 if	err	=	p.printNode(node);	err	!=	nil	{

		1165	 	 	 return

		1166	 	 }

		1167	 	 //	print	outstanding	comments

		1168	 	 p.impliedSemi	=	false	//	EOF	acts	like	a	newline

		1169	 	 p.flush(token.Position{Offset:	infinity,	Line:	infinity},	token.EOF)

		1170	

		1171	 	 //	redirect	output	through	a	trimmer	to	eliminate	trailing	whitespace

		1172	 	 //	(Input	to	a	tabwriter	must	be	untrimmed	since	trailing	tabs	provide

		1173	 	 //	formatting	information.	The	tabwriter	could	provide	trimming

		1174	 	 //	functionality	but	no	tabwriter	is	used	when	RawFormat	is	set.)

		1175	 	 output	=	&trimmer{output:	output}

		1176	

		1177	 	 //	redirect	output	through	a	tabwriter	if	necessary

		1178	 	 if	cfg.Mode&RawFormat	==	0	{

		1179	 	 	 minwidth	:=	cfg.Tabwidth

		1180	

		1181	 	 	 padchar	:=	byte('\t')

		1182	 	 	 if	cfg.Mode&UseSpaces	!=	0	{

		1183	 	 	 	 padchar	=	'	'

		1184	 	 	 }

		1185	

		1186	 	 	 twmode	:=	tabwriter.DiscardEmptyColumns

		1187	 	 	 if	cfg.Mode&TabIndent	!=	0	{

		1188	 	 	 	 minwidth	=	0

		1189	 	 	 	 twmode	|=	tabwriter.TabIndent

		1190	 	 	 }

		1191	

		1192	 	 	 output	=	tabwriter.NewWriter(output,	minwidth,	cfg.Tabwidth,	1,	padchar,	twmode)

		1193	 	 }

		1194	

		1195	 	 //	write	printer	result	via	tabwriter/trimmer	to	output

		1196	 	 if	_,	err	=	output.Write(p.output);	err	!=	nil	{

		1197	 	 	 return

		1198	 	 }

		1199	

		1200	 	 //	flush	tabwriter,	if	any

		1201	 	 if	tw,	_	:=	(output).(*tabwriter.Writer);	tw	!=	nil	{

		1202	 	 	 err	=	tw.Flush()

		1203	 	 }

		1204	

		1205	 	 return

		1206	 }

		1207	

		1208	 //	A	CommentedNode	bundles	an	AST	node	and	corresponding	comments.

		1209	 //	It	may	be	provided	as	argument	to	any	of	the	Fprint	functions.

		1210	 //

		1211	 type	CommentedNode	struct	{

		1212	 	 Node					interface{}	//	*ast.File,	or	ast.Expr,	ast.Decl,	ast.Spec,	or	ast.Stmt

		1213	 	 Comments	[]*ast.CommentGroup

		1214	 }

		1215	

		1216	 //	Fprint	"pretty-prints"	an	AST	node	to	output	for	a	given	configuration	cfg.

		1217	 //	Position	information	is	interpreted	relative	to	the	file	set	fset.

		1218	 //	The	node	type	must	be	*ast.File,	*CommentedNode,	or	assignment-compatible

		1219	 //	to	ast.Expr,	ast.Decl,	ast.Spec,	or	ast.Stmt.

		1220	 //

		1221	 func	(cfg	*Config)	Fprint(output	io.Writer,	fset	*token.FileSet,	node	interface{})	error	{

		1222	 	 return	cfg.fprint(output,	fset,	node,	make(map[ast.Node]int))

		1223	 }

		1224	

		1225	 //	Fprint	"pretty-prints"	an	AST	node	to	output.

		1226	 //	It	calls	Config.Fprint	with	default	settings.

		1227	 //

		1228	 func	Fprint(output	io.Writer,	fset	*token.FileSet,	node	interface{})	error	{

		1229	 	 return	(&Config{Tabwidth:	8}).Fprint(output,	fset,	node)

		1230	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/go/scanner/errors.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	scanner

					6	

					7	 import	(

					8	 	 "fmt"

					9	 	 "go/token"

				10	 	 "io"

				11	 	 "sort"

				12)

				13	

				14	 //	In	an	ErrorList,	an	error	is	represented	by	an	*Error.

				15	 //	The	position	Pos,	if	valid,	points	to	the	beginning	of

				16	 //	the	offending	token,	and	the	error	condition	is	described

				17	 //	by	Msg.

				18	 //

				19	 type	Error	struct	{

				20	 	 Pos	token.Position

				21	 	 Msg	string

				22	 }

				23	

				24	 //	Error	implements	the	error	interface.

				25	 func	(e	Error)	Error()	string	{

				26	 	 if	e.Pos.Filename	!=	""	||	e.Pos.IsValid()	{

				27	 	 	 //	don't	print	"<unknown	position>"

				28	 	 	 //	TODO(gri)	reconsider	the	semantics	of	Position.IsValid

				29	 	 	 return	e.Pos.String()	+	":	"	+	e.Msg

				30	 	 }

				31	 	 return	e.Msg

				32	 }

				33	

				34	 //	ErrorList	is	a	list	of	*Errors.

				35	 //	The	zero	value	for	an	ErrorList	is	an	empty	ErrorList	ready	to	use.

				36	 //

				37	 type	ErrorList	[]*Error

				38	

				39	 //	Add	adds	an	Error	with	given	position	and	error	message	to	an	ErrorList.

				40	 func	(p	*ErrorList)	Add(pos	token.Position,	msg	string)	{

				41	 	 *p	=	append(*p,	&Error{pos,	msg})

				42	 }

				43	

				44	 //	Reset	resets	an	ErrorList	to	no	errors.

				45	 func	(p	*ErrorList)	Reset()	{	*p	=	(*p)[0:0]	}

				46	

				47	 //	ErrorList	implements	the	sort	Interface.

				48	 func	(p	ErrorList)	Len()	int						{	return	len(p)	}

				49	 func	(p	ErrorList)	Swap(i,	j	int)	{	p[i],	p[j]	=	p[j],	p[i]	}

				50	

				51	 func	(p	ErrorList)	Less(i,	j	int)	bool	{

				52	 	 e	:=	&p[i].Pos

				53	 	 f	:=	&p[j].Pos

				54	 	 //	Note	that	it	is	not	sufficient	to	simply	compare	file	offsets	because

				55	 	 //	the	offsets	do	not	reflect	modified	line	information	(through	//line

				56	 	 //	comments).

				57	 	 if	e.Filename	<	f.Filename	{

				58	 	 	 return	true

				59	 	 }

				60	 	 if	e.Filename	==	f.Filename	{

				61	 	 	 if	e.Line	<	f.Line	{

				62	 	 	 	 return	true

				63	 	 	 }

				64	 	 	 if	e.Line	==	f.Line	{

				65	 	 	 	 return	e.Column	<	f.Column

				66	 	 	 }

				67	 	 }

				68	 	 return	false

				69	 }

				70	

				71	 //	Sort	sorts	an	ErrorList.	*Error	entries	are	sorted	by	position,

				72	 //	other	errors	are	sorted	by	error	message,	and	before	any	*Error

				73	 //	entry.

				74	 //

				75	 func	(p	ErrorList)	Sort()	{

				76	 	 sort.Sort(p)

				77	 }

				78	

				79	 //	RemoveMultiples	sorts	an	ErrorList	and	removes	all	but	the	first	error	per	line.

				80	 func	(p	*ErrorList)	RemoveMultiples()	{

				81	 	 sort.Sort(p)

				82	 	 var	last	token.Position	//	initial	last.Line	is	!=	any	legal	error	line

				83	 	 i	:=	0

				84	 	 for	_,	e	:=	range	*p	{

				85	 	 	 if	e.Pos.Filename	!=	last.Filename	||	e.Pos.Line	!=	last.Line	{

				86	 	 	 	 last	=	e.Pos

				87	 	 	 	 (*p)[i]	=	e

				88	 	 	 	 i++

				89	 	 	 }

				90	 	 }

				91	 	 (*p)	=	(*p)[0:i]

				92	 }

				93	

				94	 //	An	ErrorList	implements	the	error	interface.

				95	 func	(p	ErrorList)	Error()	string	{

				96	 	 switch	len(p)	{

				97	 	 case	0:

				98	 	 	 return	"no	errors"

				99	 	 case	1:

			100	 	 	 return	p[0].Error()

			101	 	 }

			102	 	 return	fmt.Sprintf("%s	(and	%d	more	errors)",	p[0],	len(p)-1)

			103	 }

			104	

			105	 //	Err	returns	an	error	equivalent	to	this	error	list.

			106	 //	If	the	list	is	empty,	Err	returns	nil.

			107	 func	(p	ErrorList)	Err()	error	{

			108	 	 if	len(p)	==	0	{

			109	 	 	 return	nil

			110	 	 }

			111	 	 return	p

			112	 }

			113	

			114	 //	PrintError	is	a	utility	function	that	prints	a	list	of	errors	to	w,

			115	 //	one	error	per	line,	if	the	err	parameter	is	an	ErrorList.	Otherwise

			116	 //	it	prints	the	err	string.

			117	 //

			118	 func	PrintError(w	io.Writer,	err	error)	{

			119	 	 if	list,	ok	:=	err.(ErrorList);	ok	{

			120	 	 	 for	_,	e	:=	range	list	{

			121	 	 	 	 fmt.Fprintf(w,	"%s\n",	e)

			122	 	 	 }

			123	 	 }	else	{

			124	 	 	 fmt.Fprintf(w,	"%s\n",	err)

			125	 	 }

			126	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/go/scanner/scanner.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	scanner	implements	a	scanner	for	Go	source	text.

					6	 //	It	takes	a	[]byte	as	source	which	can	then	be	tokenized

					7	 //	through	repeated	calls	to	the	Scan	method.

					8	 //

					9	 package	scanner

				10	

				11	 import	(

				12	 	 "bytes"

				13	 	 "fmt"

				14	 	 "go/token"

				15	 	 "path/filepath"

				16	 	 "strconv"

				17	 	 "unicode"

				18	 	 "unicode/utf8"

				19)

				20	

				21	 //	An	ErrorHandler	may	be	provided	to	Scanner.Init.	If	a	syntax	error	is

				22	 //	encountered	and	a	handler	was	installed,	the	handler	is	called	with	a

				23	 //	position	and	an	error	message.	The	position	points	to	the	beginning	of

				24	 //	the	offending	token.

				25	 //

				26	 type	ErrorHandler	func(pos	token.Position,	msg	string)

				27	

				28	 //	A	Scanner	holds	the	scanner's	internal	state	while	processing

				29	 //	a	given	text.		It	can	be	allocated	as	part	of	another	data

				30	 //	structure	but	must	be	initialized	via	Init	before	use.

				31	 //

				32	 type	Scanner	struct	{

				33	 	 //	immutable	state

				34	 	 file	*token.File		//	source	file	handle

				35	 	 dir		string							//	directory	portion	of	file.Name()

				36	 	 src		[]byte							//	source

				37	 	 err		ErrorHandler	//	error	reporting;	or	nil

				38	 	 mode	Mode									//	scanning	mode

				39	

				40	 	 //	scanning	state

				41	 	 ch									rune	//	current	character

				42	 	 offset					int		//	character	offset

				43	 	 rdOffset			int		//	reading	offset	(position	after	current	character)

				44	 	 lineOffset	int		//	current	line	offset

				45	 	 insertSemi	bool	//	insert	a	semicolon	before	next	newline

				46	

				47	 	 //	public	state	-	ok	to	modify

				48	 	 ErrorCount	int	//	number	of	errors	encountered

				49	 }

				50	

				51	 //	Read	the	next	Unicode	char	into	s.ch.

				52	 //	s.ch	<	0	means	end-of-file.

				53	 //

				54	 func	(s	*Scanner)	next()	{

				55	 	 if	s.rdOffset	<	len(s.src)	{

				56	 	 	 s.offset	=	s.rdOffset

				57	 	 	 if	s.ch	==	'\n'	{

				58	 	 	 	 s.lineOffset	=	s.offset

				59	 	 	 	 s.file.AddLine(s.offset)

				60	 	 	 }

				61	 	 	 r,	w	:=	rune(s.src[s.rdOffset]),	1

				62	 	 	 switch	{

				63	 	 	 case	r	==	0:

				64	 	 	 	 s.error(s.offset,	"illegal	character	NUL")

				65	 	 	 case	r	>=	0x80:

				66	 	 	 	 //	not	ASCII

				67	 	 	 	 r,	w	=	utf8.DecodeRune(s.src[s.rdOffset:])

				68	 	 	 	 if	r	==	utf8.RuneError	&&	w	==	1	{

				69	 	 	 	 	 s.error(s.offset,	"illegal	UTF-8	encoding")

				70	 	 	 	 }

				71	 	 	 }

				72	 	 	 s.rdOffset	+=	w

				73	 	 	 s.ch	=	r

				74	 	 }	else	{

				75	 	 	 s.offset	=	len(s.src)

				76	 	 	 if	s.ch	==	'\n'	{

				77	 	 	 	 s.lineOffset	=	s.offset

				78	 	 	 	 s.file.AddLine(s.offset)

				79	 	 	 }

				80	 	 	 s.ch	=	-1	//	eof

				81	 	 }

				82	 }

				83	

				84	 //	A	mode	value	is	set	of	flags	(or	0).

				85	 //	They	control	scanner	behavior.

				86	 //

				87	 type	Mode	uint

				88	

				89	 const	(

				90	 	 ScanComments				Mode	=	1	<<	iota	//	return	comments	as	COMMENT	tokens

				91	 	 dontInsertSemis																		//	do	not	automatically	insert	semicolons	-	for	testing	only

				92)

				93	

				94	 //	Init	prepares	the	scanner	s	to	tokenize	the	text	src	by	setting	the

				95	 //	scanner	at	the	beginning	of	src.	The	scanner	uses	the	file	set	file

				96	 //	for	position	information	and	it	adds	line	information	for	each	line.

				97	 //	It	is	ok	to	re-use	the	same	file	when	re-scanning	the	same	file	as

				98	 //	line	information	which	is	already	present	is	ignored.	Init	causes	a

				99	 //	panic	if	the	file	size	does	not	match	the	src	size.

			100	 //

			101	 //	Calls	to	Scan	will	invoke	the	error	handler	err	if	they	encounter	a

			102	 //	syntax	error	and	err	is	not	nil.	Also,	for	each	error	encountered,

			103	 //	the	Scanner	field	ErrorCount	is	incremented	by	one.	The	mode	parameter

			104	 //	determines	how	comments	are	handled.

			105	 //

			106	 //	Note	that	Init	may	call	err	if	there	is	an	error	in	the	first	character

			107	 //	of	the	file.

			108	 //

			109	 func	(s	*Scanner)	Init(file	*token.File,	src	[]byte,	err	ErrorHandler,	mode	Mode)	{

			110	 	 //	Explicitly	initialize	all	fields	since	a	scanner	may	be	reused.

			111	 	 if	file.Size()	!=	len(src)	{

			112	 	 	 panic(fmt.Sprintf("file	size	(%d)	does	not	match	src	len	(%d)",	file.Size(),	len(src)))

			113	 	 }

			114	 	 s.file	=	file

			115	 	 s.dir,	_	=	filepath.Split(file.Name())

			116	 	 s.src	=	src

			117	 	 s.err	=	err

			118	 	 s.mode	=	mode

			119	

			120	 	 s.ch	=	'	'

			121	 	 s.offset	=	0

			122	 	 s.rdOffset	=	0

			123	 	 s.lineOffset	=	0

			124	 	 s.insertSemi	=	false

			125	 	 s.ErrorCount	=	0

			126	

			127	 	 s.next()

			128	 }

			129	

			130	 func	(s	*Scanner)	error(offs	int,	msg	string)	{

			131	 	 if	s.err	!=	nil	{

			132	 	 	 s.err(s.file.Position(s.file.Pos(offs)),	msg)

			133	 	 }

			134	 	 s.ErrorCount++

			135	 }

			136	

			137	 var	prefix	=	[]byte("//line	")

			138	

			139	 func	(s	*Scanner)	interpretLineComment(text	[]byte)	{

			140	 	 if	bytes.HasPrefix(text,	prefix)	{

			141	 	 	 //	get	filename	and	line	number,	if	any

			142	 	 	 if	i	:=	bytes.LastIndex(text,	[]byte{':'});	i	>	0	{

			143	 	 	 	 if	line,	err	:=	strconv.Atoi(string(text[i+1:]));	err	==	nil	&&	line	>	0	{

			144	 	 	 	 	 //	valid	//line	filename:line	comment;

			145	 	 	 	 	 filename	:=	filepath.Clean(string(text[len(prefix):i]))

			146	 	 	 	 	 if	!filepath.IsAbs(filename)	{

			147	 	 	 	 	 	 //	make	filename	relative	to	current	directory

			148	 	 	 	 	 	 filename	=	filepath.Join(s.dir,	filename)

			149	 	 	 	 	 }

			150	 	 	 	 	 //	update	scanner	position

			151	 	 	 	 	 s.file.AddLineInfo(s.lineOffset+len(text)+1,	filename,	line)	

			152	 	 	 	 }

			153	 	 	 }

			154	 	 }

			155	 }

			156	

			157	 func	(s	*Scanner)	scanComment()	string	{

			158	 	 //	initial	'/'	already	consumed;	s.ch	==	'/'	||	s.ch	==	'*'

			159	 	 offs	:=	s.offset	-	1	//	position	of	initial	'/'

			160	

			161	 	 if	s.ch	==	'/'	{

			162	 	 	 //-style	comment

			163	 	 	 s.next()

			164	 	 	 for	s.ch	!=	'\n'	&&	s.ch	>=	0	{

			165	 	 	 	 s.next()

			166	 	 	 }

			167	 	 	 if	offs	==	s.lineOffset	{

			168	 	 	 	 //	comment	starts	at	the	beginning	of	the	current	line

			169	 	 	 	 s.interpretLineComment(s.src[offs:s.offset])

			170	 	 	 }

			171	 	 	 goto	exit

			172	 	 }

			173	

			174	 	 /*-style	comment	*/

			175	 	 s.next()

			176	 	 for	s.ch	>=	0	{

			177	 	 	 ch	:=	s.ch

			178	 	 	 s.next()

			179	 	 	 if	ch	==	'*'	&&	s.ch	==	'/'	{

			180	 	 	 	 s.next()

			181	 	 	 	 goto	exit

			182	 	 	 }

			183	 	 }

			184	

			185	 	 s.error(offs,	"comment	not	terminated")

			186	

			187	 exit:

			188	 	 return	string(s.src[offs:s.offset])

			189	 }

			190	

			191	 func	(s	*Scanner)	findLineEnd()	bool	{

			192	 	 //	initial	'/'	already	consumed

			193	

			194	 	 defer	func(offs	int)	{

			195	 	 	 //	reset	scanner	state	to	where	it	was	upon	calling	findLineEnd

			196	 	 	 s.ch	=	'/'

			197	 	 	 s.offset	=	offs

			198	 	 	 s.rdOffset	=	offs	+	1

			199	 	 	 s.next()	//	consume	initial	'/'	again

			200	 	 }(s.offset	-	1)

			201	

			202	 	 //	read	ahead	until	a	newline,	EOF,	or	non-comment	token	is	found

			203	 	 for	s.ch	==	'/'	||	s.ch	==	'*'	{

			204	 	 	 if	s.ch	==	'/'	{

			205	 	 	 	 //-style	comment	always	contains	a	newline

			206	 	 	 	 return	true

			207	 	 	 }

			208	 	 	 /*-style	comment:	look	for	newline	*/

			209	 	 	 s.next()

			210	 	 	 for	s.ch	>=	0	{

			211	 	 	 	 ch	:=	s.ch

			212	 	 	 	 if	ch	==	'\n'	{

			213	 	 	 	 	 return	true

			214	 	 	 	 }

			215	 	 	 	 s.next()

			216	 	 	 	 if	ch	==	'*'	&&	s.ch	==	'/'	{

			217	 	 	 	 	 s.next()

			218	 	 	 	 	 break

			219	 	 	 	 }

			220	 	 	 }

			221	 	 	 s.skipWhitespace()	//	s.insertSemi	is	set

			222	 	 	 if	s.ch	<	0	||	s.ch	==	'\n'	{

			223	 	 	 	 return	true

			224	 	 	 }

			225	 	 	 if	s.ch	!=	'/'	{

			226	 	 	 	 //	non-comment	token

			227	 	 	 	 return	false

			228	 	 	 }

			229	 	 	 s.next()	//	consume	'/'

			230	 	 }

			231	

			232	 	 return	false

			233	 }

			234	

			235	 func	isLetter(ch	rune)	bool	{

			236	 	 return	'a'	<=	ch	&&	ch	<=	'z'	||	'A'	<=	ch	&&	ch	<=	'Z'	||	ch	==	'_'	||	ch	>=	0x80	&&	unicode.IsLetter(ch)

			237	 }

			238	

			239	 func	isDigit(ch	rune)	bool	{

			240	 	 return	'0'	<=	ch	&&	ch	<=	'9'	||	ch	>=	0x80	&&	unicode.IsDigit(ch)

			241	 }

			242	

			243	 func	(s	*Scanner)	scanIdentifier()	string	{

			244	 	 offs	:=	s.offset

			245	 	 for	isLetter(s.ch)	||	isDigit(s.ch)	{

			246	 	 	 s.next()

			247	 	 }

			248	 	 return	string(s.src[offs:s.offset])

			249	 }

			250	

			251	 func	digitVal(ch	rune)	int	{

			252	 	 switch	{

			253	 	 case	'0'	<=	ch	&&	ch	<=	'9':

			254	 	 	 return	int(ch	-	'0')

			255	 	 case	'a'	<=	ch	&&	ch	<=	'f':

			256	 	 	 return	int(ch	-	'a'	+	10)

			257	 	 case	'A'	<=	ch	&&	ch	<=	'F':

			258	 	 	 return	int(ch	-	'A'	+	10)

			259	 	 }

			260	 	 return	16	//	larger	than	any	legal	digit	val

			261	 }

			262	

			263	 func	(s	*Scanner)	scanMantissa(base	int)	{

			264	 	 for	digitVal(s.ch)	<	base	{

			265	 	 	 s.next()

			266	 	 }

			267	 }

			268	

			269	 func	(s	*Scanner)	scanNumber(seenDecimalPoint	bool)	(token.Token,	string)	{

			270	 	 //	digitVal(s.ch)	<	10

			271	 	 offs	:=	s.offset

			272	 	 tok	:=	token.INT

			273	

			274	 	 if	seenDecimalPoint	{

			275	 	 	 offs--

			276	 	 	 tok	=	token.FLOAT

			277	 	 	 s.scanMantissa(10)

			278	 	 	 goto	exponent

			279	 	 }

			280	

			281	 	 if	s.ch	==	'0'	{

			282	 	 	 //	int	or	float

			283	 	 	 offs	:=	s.offset

			284	 	 	 s.next()

			285	 	 	 if	s.ch	==	'x'	||	s.ch	==	'X'	{

			286	 	 	 	 //	hexadecimal	int

			287	 	 	 	 s.next()

			288	 	 	 	 s.scanMantissa(16)

			289	 	 	 	 if	s.offset-offs	<=	2	{

			290	 	 	 	 	 //	only	scanned	"0x"	or	"0X"

			291	 	 	 	 	 s.error(offs,	"illegal	hexadecimal	number")

			292	 	 	 	 }

			293	 	 	 }	else	{

			294	 	 	 	 //	octal	int	or	float

			295	 	 	 	 seenDecimalDigit	:=	false

			296	 	 	 	 s.scanMantissa(8)

			297	 	 	 	 if	s.ch	==	'8'	||	s.ch	==	'9'	{

			298	 	 	 	 	 //	illegal	octal	int	or	float

			299	 	 	 	 	 seenDecimalDigit	=	true

			300	 	 	 	 	 s.scanMantissa(10)

			301	 	 	 	 }

			302	 	 	 	 if	s.ch	==	'.'	||	s.ch	==	'e'	||	s.ch	==	'E'	||	s.ch	==	'i'	{

			303	 	 	 	 	 goto	fraction

			304	 	 	 	 }

			305	 	 	 	 //	octal	int

			306	 	 	 	 if	seenDecimalDigit	{

			307	 	 	 	 	 s.error(offs,	"illegal	octal	number")

			308	 	 	 	 }

			309	 	 	 }

			310	 	 	 goto	exit

			311	 	 }

			312	

			313	 	 //	decimal	int	or	float

			314	 	 s.scanMantissa(10)

			315	

			316	 fraction:

			317	 	 if	s.ch	==	'.'	{

			318	 	 	 tok	=	token.FLOAT

			319	 	 	 s.next()

			320	 	 	 s.scanMantissa(10)

			321	 	 }

			322	

			323	 exponent:

			324	 	 if	s.ch	==	'e'	||	s.ch	==	'E'	{

			325	 	 	 tok	=	token.FLOAT

			326	 	 	 s.next()

			327	 	 	 if	s.ch	==	'-'	||	s.ch	==	'+'	{

			328	 	 	 	 s.next()

			329	 	 	 }

			330	 	 	 s.scanMantissa(10)

			331	 	 }

			332	

			333	 	 if	s.ch	==	'i'	{

			334	 	 	 tok	=	token.IMAG

			335	 	 	 s.next()

			336	 	 }

			337	

			338	 exit:

			339	 	 return	tok,	string(s.src[offs:s.offset])

			340	 }

			341	

			342	 func	(s	*Scanner)	scanEscape(quote	rune)	{

			343	 	 offs	:=	s.offset

			344	

			345	 	 var	i,	base,	max	uint32

			346	 	 switch	s.ch	{

			347	 	 case	'a',	'b',	'f',	'n',	'r',	't',	'v',	'\\',	quote:

			348	 	 	 s.next()

			349	 	 	 return

			350	 	 case	'0',	'1',	'2',	'3',	'4',	'5',	'6',	'7':

			351	 	 	 i,	base,	max	=	3,	8,	255

			352	 	 case	'x':

			353	 	 	 s.next()

			354	 	 	 i,	base,	max	=	2,	16,	255

			355	 	 case	'u':

			356	 	 	 s.next()

			357	 	 	 i,	base,	max	=	4,	16,	unicode.MaxRune

			358	 	 case	'U':

			359	 	 	 s.next()

			360	 	 	 i,	base,	max	=	8,	16,	unicode.MaxRune

			361	 	 default:

			362	 	 	 s.next()	//	always	make	progress

			363	 	 	 s.error(offs,	"unknown	escape	sequence")

			364	 	 	 return

			365	 	 }

			366	

			367	 	 var	x	uint32

			368	 	 for	;	i	>	0	&&	s.ch	!=	quote	&&	s.ch	>=	0;	i--	{

			369	 	 	 d	:=	uint32(digitVal(s.ch))

			370	 	 	 if	d	>=	base	{

			371	 	 	 	 s.error(s.offset,	"illegal	character	in	escape	sequence")

			372	 	 	 	 break

			373	 	 	 }

			374	 	 	 x	=	x*base	+	d

			375	 	 	 s.next()

			376	 	 }

			377	 	 //	in	case	of	an	error,	consume	remaining	chars

			378	 	 for	;	i	>	0	&&	s.ch	!=	quote	&&	s.ch	>=	0;	i--	{

			379	 	 	 s.next()

			380	 	 }

			381	 	 if	x	>	max	||	0xd800	<=	x	&&	x	<	0xe000	{

			382	 	 	 s.error(offs,	"escape	sequence	is	invalid	Unicode	code	point")

			383	 	 }

			384	 }

			385	

			386	 func	(s	*Scanner)	scanChar()	string	{

			387	 	 //	'\''	opening	already	consumed

			388	 	 offs	:=	s.offset	-	1

			389	

			390	 	 n	:=	0

			391	 	 for	s.ch	!=	'\''	{

			392	 	 	 ch	:=	s.ch

			393	 	 	 n++

			394	 	 	 s.next()

			395	 	 	 if	ch	==	'\n'	||	ch	<	0	{

			396	 	 	 	 s.error(offs,	"character	literal	not	terminated")

			397	 	 	 	 n	=	1

			398	 	 	 	 break

			399	 	 	 }

			400	 	 	 if	ch	==	'\\'	{

			401	 	 	 	 s.scanEscape('\'')

			402	 	 	 }

			403	 	 }

			404	

			405	 	 s.next()

			406	

			407	 	 if	n	!=	1	{

			408	 	 	 s.error(offs,	"illegal	character	literal")

			409	 	 }

			410	

			411	 	 return	string(s.src[offs:s.offset])

			412	 }

			413	

			414	 func	(s	*Scanner)	scanString()	string	{

			415	 	 //	'"'	opening	already	consumed

			416	 	 offs	:=	s.offset	-	1

			417	

			418	 	 for	s.ch	!=	'"'	{

			419	 	 	 ch	:=	s.ch

			420	 	 	 s.next()

			421	 	 	 if	ch	==	'\n'	||	ch	<	0	{

			422	 	 	 	 s.error(offs,	"string	not	terminated")

			423	 	 	 	 break

			424	 	 	 }

			425	 	 	 if	ch	==	'\\'	{

			426	 	 	 	 s.scanEscape('"')

			427	 	 	 }

			428	 	 }

			429	

			430	 	 s.next()

			431	

			432	 	 return	string(s.src[offs:s.offset])

			433	 }

			434	

			435	 func	stripCR(b	[]byte)	[]byte	{

			436	 	 c	:=	make([]byte,	len(b))

			437	 	 i	:=	0

			438	 	 for	_,	ch	:=	range	b	{

			439	 	 	 if	ch	!=	'\r'	{

			440	 	 	 	 c[i]	=	ch

			441	 	 	 	 i++

			442	 	 	 }

			443	 	 }

			444	 	 return	c[:i]

			445	 }

			446	

			447	 func	(s	*Scanner)	scanRawString()	string	{

			448	 	 //	'`'	opening	already	consumed

			449	 	 offs	:=	s.offset	-	1

			450	

			451	 	 hasCR	:=	false

			452	 	 for	s.ch	!=	'`'	{

			453	 	 	 ch	:=	s.ch

			454	 	 	 s.next()

			455	 	 	 if	ch	==	'\r'	{

			456	 	 	 	 hasCR	=	true

			457	 	 	 }

			458	 	 	 if	ch	<	0	{

			459	 	 	 	 s.error(offs,	"string	not	terminated")

			460	 	 	 	 break

			461	 	 	 }

			462	 	 }

			463	

			464	 	 s.next()

			465	

			466	 	 lit	:=	s.src[offs:s.offset]

			467	 	 if	hasCR	{

			468	 	 	 lit	=	stripCR(lit)

			469	 	 }

			470	

			471	 	 return	string(lit)

			472	 }

			473	

			474	 func	(s	*Scanner)	skipWhitespace()	{

			475	 	 for	s.ch	==	'	'	||	s.ch	==	'\t'	||	s.ch	==	'\n'	&&	!s.insertSemi	||	s.ch	==	'\r'	{

			476	 	 	 s.next()

			477	 	 }

			478	 }

			479	

			480	 //	Helper	functions	for	scanning	multi-byte	tokens	such	as	>>	+=	>>=	.

			481	 //	Different	routines	recognize	different	length	tok_i	based	on	matches

			482	 //	of	ch_i.	If	a	token	ends	in	'=',	the	result	is	tok1	or	tok3

			483	 //	respectively.	Otherwise,	the	result	is	tok0	if	there	was	no	other

			484	 //	matching	character,	or	tok2	if	the	matching	character	was	ch2.

			485	

			486	 func	(s	*Scanner)	switch2(tok0,	tok1	token.Token)	token.Token	{

			487	 	 if	s.ch	==	'='	{

			488	 	 	 s.next()

			489	 	 	 return	tok1

			490	 	 }

			491	 	 return	tok0

			492	 }

			493	

			494	 func	(s	*Scanner)	switch3(tok0,	tok1	token.Token,	ch2	rune,	tok2	token.Token)	token.Token	{

			495	 	 if	s.ch	==	'='	{

			496	 	 	 s.next()

			497	 	 	 return	tok1

			498	 	 }

			499	 	 if	s.ch	==	ch2	{

			500	 	 	 s.next()

			501	 	 	 return	tok2

			502	 	 }

			503	 	 return	tok0

			504	 }

			505	

			506	 func	(s	*Scanner)	switch4(tok0,	tok1	token.Token,	ch2	rune,	tok2,	tok3	token.Token)	token.Token	{

			507	 	 if	s.ch	==	'='	{

			508	 	 	 s.next()

			509	 	 	 return	tok1

			510	 	 }

			511	 	 if	s.ch	==	ch2	{

			512	 	 	 s.next()

			513	 	 	 if	s.ch	==	'='	{

			514	 	 	 	 s.next()

			515	 	 	 	 return	tok3

			516	 	 	 }

			517	 	 	 return	tok2

			518	 	 }

			519	 	 return	tok0

			520	 }

			521	

			522	 //	Scan	scans	the	next	token	and	returns	the	token	position,	the	token,

			523	 //	and	its	literal	string	if	applicable.	The	source	end	is	indicated	by

			524	 //	token.EOF.

			525	 //

			526	 //	If	the	returned	token	is	a	literal	(token.IDENT,	token.INT,	token.FLOAT,

			527	 //	token.IMAG,	token.CHAR,	token.STRING)	or	token.COMMENT,	the	literal	string

			528	 //	has	the	corresponding	value.

			529	 //

			530	 //	If	the	returned	token	is	token.SEMICOLON,	the	corresponding

			531	 //	literal	string	is	";"	if	the	semicolon	was	present	in	the	source,

			532	 //	and	"\n"	if	the	semicolon	was	inserted	because	of	a	newline	or

			533	 //	at	EOF.

			534	 //

			535	 //	If	the	returned	token	is	token.ILLEGAL,	the	literal	string	is	the

			536	 //	offending	character.

			537	 //

			538	 //	In	all	other	cases,	Scan	returns	an	empty	literal	string.

			539	 //

			540	 //	For	more	tolerant	parsing,	Scan	will	return	a	valid	token	if

			541	 //	possible	even	if	a	syntax	error	was	encountered.	Thus,	even

			542	 //	if	the	resulting	token	sequence	contains	no	illegal	tokens,

			543	 //	a	client	may	not	assume	that	no	error	occurred.	Instead	it

			544	 //	must	check	the	scanner's	ErrorCount	or	the	number	of	calls

			545	 //	of	the	error	handler,	if	there	was	one	installed.

			546	 //

			547	 //	Scan	adds	line	information	to	the	file	added	to	the	file

			548	 //	set	with	Init.	Token	positions	are	relative	to	that	file

			549	 //	and	thus	relative	to	the	file	set.

			550	 //

			551	 func	(s	*Scanner)	Scan()	(pos	token.Pos,	tok	token.Token,	lit	string)	{

			552	 scanAgain:

			553	 	 s.skipWhitespace()

			554	

			555	 	 //	current	token	start

			556	 	 pos	=	s.file.Pos(s.offset)

			557	

			558	 	 //	determine	token	value

			559	 	 insertSemi	:=	false

			560	 	 switch	ch	:=	s.ch;	{

			561	 	 case	isLetter(ch):

			562	 	 	 lit	=	s.scanIdentifier()

			563	 	 	 tok	=	token.Lookup(lit)

			564	 	 	 switch	tok	{

			565	 	 	 case	token.IDENT,	token.BREAK,	token.CONTINUE,	token.FALLTHROUGH,	token.RETURN:

			566	 	 	 	 insertSemi	=	true

			567	 	 	 }

			568	 	 case	digitVal(ch)	<	10:

			569	 	 	 insertSemi	=	true

			570	 	 	 tok,	lit	=	s.scanNumber(false)

			571	 	 default:

			572	 	 	 s.next()	//	always	make	progress

			573	 	 	 switch	ch	{

			574	 	 	 case	-1:

			575	 	 	 	 if	s.insertSemi	{

			576	 	 	 	 	 s.insertSemi	=	false	//	EOF	consumed

			577	 	 	 	 	 return	pos,	token.SEMICOLON,	"\n"

			578	 	 	 	 }

			579	 	 	 	 tok	=	token.EOF

			580	 	 	 case	'\n':

			581	 	 	 	 //	we	only	reach	here	if	s.insertSemi	was

			582	 	 	 	 //	set	in	the	first	place	and	exited	early

			583	 	 	 	 //	from	s.skipWhitespace()

			584	 	 	 	 s.insertSemi	=	false	//	newline	consumed

			585	 	 	 	 return	pos,	token.SEMICOLON,	"\n"

			586	 	 	 case	'"':

			587	 	 	 	 insertSemi	=	true

			588	 	 	 	 tok	=	token.STRING

			589	 	 	 	 lit	=	s.scanString()

			590	 	 	 case	'\'':

			591	 	 	 	 insertSemi	=	true

			592	 	 	 	 tok	=	token.CHAR

			593	 	 	 	 lit	=	s.scanChar()

			594	 	 	 case	'`':

			595	 	 	 	 insertSemi	=	true

			596	 	 	 	 tok	=	token.STRING

			597	 	 	 	 lit	=	s.scanRawString()

			598	 	 	 case	':':

			599	 	 	 	 tok	=	s.switch2(token.COLON,	token.DEFINE)

			600	 	 	 case	'.':

			601	 	 	 	 if	digitVal(s.ch)	<	10	{

			602	 	 	 	 	 insertSemi	=	true

			603	 	 	 	 	 tok,	lit	=	s.scanNumber(true)

			604	 	 	 	 }	else	if	s.ch	==	'.'	{

			605	 	 	 	 	 s.next()

			606	 	 	 	 	 if	s.ch	==	'.'	{

			607	 	 	 	 	 	 s.next()

			608	 	 	 	 	 	 tok	=	token.ELLIPSIS

			609	 	 	 	 	 }

			610	 	 	 	 }	else	{

			611	 	 	 	 	 tok	=	token.PERIOD

			612	 	 	 	 }

			613	 	 	 case	',':

			614	 	 	 	 tok	=	token.COMMA

			615	 	 	 case	';':

			616	 	 	 	 tok	=	token.SEMICOLON

			617	 	 	 	 lit	=	";"

			618	 	 	 case	'(':

			619	 	 	 	 tok	=	token.LPAREN

			620	 	 	 case	')':

			621	 	 	 	 insertSemi	=	true

			622	 	 	 	 tok	=	token.RPAREN

			623	 	 	 case	'[':

			624	 	 	 	 tok	=	token.LBRACK

			625	 	 	 case	']':

			626	 	 	 	 insertSemi	=	true

			627	 	 	 	 tok	=	token.RBRACK

			628	 	 	 case	'{':

			629	 	 	 	 tok	=	token.LBRACE

			630	 	 	 case	'}':

			631	 	 	 	 insertSemi	=	true

			632	 	 	 	 tok	=	token.RBRACE

			633	 	 	 case	'+':

			634	 	 	 	 tok	=	s.switch3(token.ADD,	token.ADD_ASSIGN,	'+',	token.INC)

			635	 	 	 	 if	tok	==	token.INC	{

			636	 	 	 	 	 insertSemi	=	true

			637	 	 	 	 }

			638	 	 	 case	'-':

			639	 	 	 	 tok	=	s.switch3(token.SUB,	token.SUB_ASSIGN,	'-',	token.DEC)

			640	 	 	 	 if	tok	==	token.DEC	{

			641	 	 	 	 	 insertSemi	=	true

			642	 	 	 	 }

			643	 	 	 case	'*':

			644	 	 	 	 tok	=	s.switch2(token.MUL,	token.MUL_ASSIGN)

			645	 	 	 case	'/':

			646	 	 	 	 if	s.ch	==	'/'	||	s.ch	==	'*'	{

			647	 	 	 	 	 //	comment

			648	 	 	 	 	 if	s.insertSemi	&&	s.findLineEnd()	{

			649	 	 	 	 	 	 //	reset	position	to	the	beginning	of	the	comment

			650	 	 	 	 	 	 s.ch	=	'/'

			651	 	 	 	 	 	 s.offset	=	s.file.Offset(pos)

			652	 	 	 	 	 	 s.rdOffset	=	s.offset	+	1

			653	 	 	 	 	 	 s.insertSemi	=	false	

			654	 	 	 	 	 	 return	pos,	token.SEMICOLON,	"\n"

			655	 	 	 	 	 }

			656	 	 	 	 	 lit	=	s.scanComment()

			657	 	 	 	 	 if	s.mode&ScanComments	==	0	{

			658	 	 	 	 	 	 //	skip	comment

			659	 	 	 	 	 	 s.insertSemi	=	false	

			660	 	 	 	 	 	 goto	scanAgain

			661	 	 	 	 	 }

			662	 	 	 	 	 tok	=	token.COMMENT

			663	 	 	 	 }	else	{

			664	 	 	 	 	 tok	=	s.switch2(token.QUO,	token.QUO_ASSIGN)

			665	 	 	 	 }

			666	 	 	 case	'%':

			667	 	 	 	 tok	=	s.switch2(token.REM,	token.REM_ASSIGN)

			668	 	 	 case	'^':

			669	 	 	 	 tok	=	s.switch2(token.XOR,	token.XOR_ASSIGN)

			670	 	 	 case	'<':

			671	 	 	 	 if	s.ch	==	'-'	{

			672	 	 	 	 	 s.next()

			673	 	 	 	 	 tok	=	token.ARROW

			674	 	 	 	 }	else	{

			675	 	 	 	 	 tok	=	s.switch4(token.LSS,	token.LEQ,	'<',	token.SHL,	token.SHL_ASSIGN)

			676	 	 	 	 }

			677	 	 	 case	'>':

			678	 	 	 	 tok	=	s.switch4(token.GTR,	token.GEQ,	'>',	token.SHR,	token.SHR_ASSIGN)

			679	 	 	 case	'=':

			680	 	 	 	 tok	=	s.switch2(token.ASSIGN,	token.EQL)

			681	 	 	 case	'!':

			682	 	 	 	 tok	=	s.switch2(token.NOT,	token.NEQ)

			683	 	 	 case	'&':

			684	 	 	 	 if	s.ch	==	'^'	{

			685	 	 	 	 	 s.next()

			686	 	 	 	 	 tok	=	s.switch2(token.AND_NOT,	token.AND_NOT_ASSIGN)

			687	 	 	 	 }	else	{

			688	 	 	 	 	 tok	=	s.switch3(token.AND,	token.AND_ASSIGN,	'&',	token.LAND)

			689	 	 	 	 }

			690	 	 	 case	'|':

			691	 	 	 	 tok	=	s.switch3(token.OR,	token.OR_ASSIGN,	'|',	token.LOR)

			692	 	 	 default:

			693	 	 	 	 s.error(s.file.Offset(pos),	fmt.Sprintf("illegal	character	%#U",	ch))

			694	 	 	 	 insertSemi	=	s.insertSemi	//	preserve	insertSemi	info

			695	 	 	 	 tok	=	token.ILLEGAL

			696	 	 	 	 lit	=	string(ch)

			697	 	 	 }

			698	 	 }

			699	 	 if	s.mode&dontInsertSemis	==	0	{

			700	 	 	 s.insertSemi	=	insertSemi

			701	 	 }

			702	

			703	 	 return

			704	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/go/token/position.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	TODO(gri)	consider	making	this	a	separate	package	outside	the	go	directory.

					6	

					7	 package	token

					8	

					9	 import	(

				10	 	 "fmt"

				11	 	 "sort"

				12	 	 "sync"

				13)

				14	

				15	 //	---

				16	 //	Positions

				17	

				18	 //	Position	describes	an	arbitrary	source	position

				19	 //	including	the	file,	line,	and	column	location.

				20	 //	A	Position	is	valid	if	the	line	number	is	>	0.

				21	 //

				22	 type	Position	struct	{

				23	 	 Filename	string	//	filename,	if	any

				24	 	 Offset			int				//	offset,	starting	at	0

				25	 	 Line					int				//	line	number,	starting	at	1

				26	 	 Column			int				//	column	number,	starting	at	1	(character	count)

				27	 }

				28	

				29	 //	IsValid	returns	true	if	the	position	is	valid.

				30	 func	(pos	*Position)	IsValid()	bool	{	return	pos.Line	>	0	}

				31	

				32	 //	String	returns	a	string	in	one	of	several	forms:

				33	 //

				34	 //	 file:line:column				valid	position	with	file	name

				35	 //	 line:column									valid	position	without	file	name

				36	 //	 file																invalid	position	with	file	name

				37	 //	 -																			invalid	position	without	file	name

				38	 //

				39	 func	(pos	Position)	String()	string	{

				40	 	 s	:=	pos.Filename

				41	 	 if	pos.IsValid()	{

				42	 	 	 if	s	!=	""	{

				43	 	 	 	 s	+=	":"

				44	 	 	 }

				45	 	 	 s	+=	fmt.Sprintf("%d:%d",	pos.Line,	pos.Column)

				46	 	 }

				47	 	 if	s	==	""	{

				48	 	 	 s	=	"-"

				49	 	 }

				50	 	 return	s

				51	 }

				52	

				53	 //	Pos	is	a	compact	encoding	of	a	source	position	within	a	file	set.

				54	 //	It	can	be	converted	into	a	Position	for	a	more	convenient,	but	much

				55	 //	larger,	representation.

				56	 //

				57	 //	The	Pos	value	for	a	given	file	is	a	number	in	the	range	[base,	base+size],

				58	 //	where	base	and	size	are	specified	when	adding	the	file	to	the	file	set	via

				59	 //	AddFile.

				60	 //

				61	 //	To	create	the	Pos	value	for	a	specific	source	offset,	first	add

				62	 //	the	respective	file	to	the	current	file	set	(via	FileSet.AddFile)

				63	 //	and	then	call	File.Pos(offset)	for	that	file.	Given	a	Pos	value	p

				64	 //	for	a	specific	file	set	fset,	the	corresponding	Position	value	is

				65	 //	obtained	by	calling	fset.Position(p).

				66	 //

				67	 //	Pos	values	can	be	compared	directly	with	the	usual	comparison	operators:

				68	 //	If	two	Pos	values	p	and	q	are	in	the	same	file,	comparing	p	and	q	is

				69	 //	equivalent	to	comparing	the	respective	source	file	offsets.	If	p	and	q

				70	 //	are	in	different	files,	p	<	q	is	true	if	the	file	implied	by	p	was	added

				71	 //	to	the	respective	file	set	before	the	file	implied	by	q.

				72	 //

				73	 type	Pos	int

				74	

				75	 //	The	zero	value	for	Pos	is	NoPos;	there	is	no	file	and	line	information

				76	 //	associated	with	it,	and	NoPos().IsValid()	is	false.	NoPos	is	always

				77	 //	smaller	than	any	other	Pos	value.	The	corresponding	Position	value

				78	 //	for	NoPos	is	the	zero	value	for	Position.

				79	 //	

				80	 const	NoPos	Pos	=	0

				81	

				82	 //	IsValid	returns	true	if	the	position	is	valid.

				83	 func	(p	Pos)	IsValid()	bool	{

				84	 	 return	p	!=	NoPos

				85	 }

				86	

				87	 //	---

				88	 //	File

				89	

				90	 //	A	File	is	a	handle	for	a	file	belonging	to	a	FileSet.

				91	 //	A	File	has	a	name,	size,	and	line	offset	table.

				92	 //

				93	 type	File	struct	{

				94	 	 set		*FileSet

				95	 	 name	string	//	file	name	as	provided	to	AddFile

				96	 	 base	int				//	Pos	value	range	for	this	file	is	[base...base+size]

				97	 	 size	int				//	file	size	as	provided	to	AddFile

				98	

				99	 	 //	lines	and	infos	are	protected	by	set.mutex

			100	 	 lines	[]int

			101	 	 infos	[]lineInfo

			102	 }

			103	

			104	 //	Name	returns	the	file	name	of	file	f	as	registered	with	AddFile.

			105	 func	(f	*File)	Name()	string	{

			106	 	 return	f.name

			107	 }

			108	

			109	 //	Base	returns	the	base	offset	of	file	f	as	registered	with	AddFile.

			110	 func	(f	*File)	Base()	int	{

			111	 	 return	f.base

			112	 }

			113	

			114	 //	Size	returns	the	size	of	file	f	as	registered	with	AddFile.

			115	 func	(f	*File)	Size()	int	{

			116	 	 return	f.size

			117	 }

			118	

			119	 //	LineCount	returns	the	number	of	lines	in	file	f.

			120	 func	(f	*File)	LineCount()	int	{

			121	 	 f.set.mutex.RLock()

			122	 	 n	:=	len(f.lines)

			123	 	 f.set.mutex.RUnlock()

			124	 	 return	n

			125	 }

			126	

			127	 //	AddLine	adds	the	line	offset	for	a	new	line.

			128	 //	The	line	offset	must	be	larger	than	the	offset	for	the	previous	line

			129	 //	and	smaller	than	the	file	size;	otherwise	the	line	offset	is	ignored.

			130	 //

			131	 func	(f	*File)	AddLine(offset	int)	{

			132	 	 f.set.mutex.Lock()

			133	 	 if	i	:=	len(f.lines);	(i	==	0	||	f.lines[i-1]	<	offset)	&&	offset	<	f.size	{

			134	 	 	 f.lines	=	append(f.lines,	offset)

			135	 	 }

			136	 	 f.set.mutex.Unlock()

			137	 }

			138	

			139	 //	SetLines	sets	the	line	offsets	for	a	file	and	returns	true	if	successful.

			140	 //	The	line	offsets	are	the	offsets	of	the	first	character	of	each	line;

			141	 //	for	instance	for	the	content	"ab\nc\n"	the	line	offsets	are	{0,	3}.

			142	 //	An	empty	file	has	an	empty	line	offset	table.

			143	 //	Each	line	offset	must	be	larger	than	the	offset	for	the	previous	line

			144	 //	and	smaller	than	the	file	size;	otherwise	SetLines	fails	and	returns

			145	 //	false.

			146	 //

			147	 func	(f	*File)	SetLines(lines	[]int)	bool	{

			148	 	 //	verify	validity	of	lines	table

			149	 	 size	:=	f.size

			150	 	 for	i,	offset	:=	range	lines	{

			151	 	 	 if	i	>	0	&&	offset	<=	lines[i-1]	||	size	<=	offset	{

			152	 	 	 	 return	false

			153	 	 	 }

			154	 	 }

			155	

			156	 	 //	set	lines	table

			157	 	 f.set.mutex.Lock()

			158	 	 f.lines	=	lines

			159	 	 f.set.mutex.Unlock()

			160	 	 return	true

			161	 }

			162	

			163	 //	SetLinesForContent	sets	the	line	offsets	for	the	given	file	content.

			164	 func	(f	*File)	SetLinesForContent(content	[]byte)	{

			165	 	 var	lines	[]int

			166	 	 line	:=	0

			167	 	 for	offset,	b	:=	range	content	{

			168	 	 	 if	line	>=	0	{

			169	 	 	 	 lines	=	append(lines,	line)

			170	 	 	 }

			171	 	 	 line	=	-1

			172	 	 	 if	b	==	'\n'	{

			173	 	 	 	 line	=	offset	+	1

			174	 	 	 }

			175	 	 }

			176	

			177	 	 //	set	lines	table

			178	 	 f.set.mutex.Lock()

			179	 	 f.lines	=	lines

			180	 	 f.set.mutex.Unlock()

			181	 }

			182	

			183	 //	A	lineInfo	object	describes	alternative	file	and	line	number

			184	 //	information	(such	as	provided	via	a	//line	comment	in	a	.go

			185	 //	file)	for	a	given	file	offset.

			186	 type	lineInfo	struct	{

			187	 	 //	fields	are	exported	to	make	them	accessible	to	gob

			188	 	 Offset			int

			189	 	 Filename	string

			190	 	 Line					int

			191	 }

			192	

			193	 //	AddLineInfo	adds	alternative	file	and	line	number	information	for

			194	 //	a	given	file	offset.	The	offset	must	be	larger	than	the	offset	for

			195	 //	the	previously	added	alternative	line	info	and	smaller	than	the

			196	 //	file	size;	otherwise	the	information	is	ignored.

			197	 //

			198	 //	AddLineInfo	is	typically	used	to	register	alternative	position

			199	 //	information	for	//line	filename:line	comments	in	source	files.

			200	 //

			201	 func	(f	*File)	AddLineInfo(offset	int,	filename	string,	line	int)	{

			202	 	 f.set.mutex.Lock()

			203	 	 if	i	:=	len(f.infos);	i	==	0	||	f.infos[i-1].Offset	<	offset	&&	offset	<	f.size	{

			204	 	 	 f.infos	=	append(f.infos,	lineInfo{offset,	filename,	line})

			205	 	 }

			206	 	 f.set.mutex.Unlock()

			207	 }

			208	

			209	 //	Pos	returns	the	Pos	value	for	the	given	file	offset;

			210	 //	the	offset	must	be	<=	f.Size().

			211	 //	f.Pos(f.Offset(p))	==	p.

			212	 //

			213	 func	(f	*File)	Pos(offset	int)	Pos	{

			214	 	 if	offset	>	f.size	{

			215	 	 	 panic("illegal	file	offset")

			216	 	 }

			217	 	 return	Pos(f.base	+	offset)

			218	 }

			219	

			220	 //	Offset	returns	the	offset	for	the	given	file	position	p;

			221	 //	p	must	be	a	valid	Pos	value	in	that	file.

			222	 //	f.Offset(f.Pos(offset))	==	offset.

			223	 //

			224	 func	(f	*File)	Offset(p	Pos)	int	{

			225	 	 if	int(p)	<	f.base	||	int(p)	>	f.base+f.size	{

			226	 	 	 panic("illegal	Pos	value")

			227	 	 }

			228	 	 return	int(p)	-	f.base

			229	 }

			230	

			231	 //	Line	returns	the	line	number	for	the	given	file	position	p;

			232	 //	p	must	be	a	Pos	value	in	that	file	or	NoPos.

			233	 //

			234	 func	(f	*File)	Line(p	Pos)	int	{

			235	 	 //	TODO(gri)	this	can	be	implemented	much	more	efficiently

			236	 	 return	f.Position(p).Line

			237	 }

			238	

			239	 func	searchLineInfos(a	[]lineInfo,	x	int)	int	{

			240	 	 return	sort.Search(len(a),	func(i	int)	bool	{	return	a[i].Offset	>	x	})	-	1

			241	 }

			242	

			243	 //	info	returns	the	file	name,	line,	and	column	number	for	a	file	offset.

			244	 func	(f	*File)	info(offset	int)	(filename	string,	line,	column	int)	{

			245	 	 filename	=	f.name

			246	 	 if	i	:=	searchInts(f.lines,	offset);	i	>=	0	{

			247	 	 	 line,	column	=	i+1,	offset-f.lines[i]+1

			248	 	 }

			249	 	 if	len(f.infos)	>	0	{

			250	 	 	 //	almost	no	files	have	extra	line	infos

			251	 	 	 if	i	:=	searchLineInfos(f.infos,	offset);	i	>=	0	{

			252	 	 	 	 alt	:=	&f.infos[i]

			253	 	 	 	 filename	=	alt.Filename

			254	 	 	 	 if	i	:=	searchInts(f.lines,	alt.Offset);	i	>=	0	{

			255	 	 	 	 	 line	+=	alt.Line	-	i	-	1

			256	 	 	 	 }

			257	 	 	 }

			258	 	 }

			259	 	 return

			260	 }

			261	

			262	 func	(f	*File)	position(p	Pos)	(pos	Position)	{

			263	 	 offset	:=	int(p)	-	f.base

			264	 	 pos.Offset	=	offset

			265	 	 pos.Filename,	pos.Line,	pos.Column	=	f.info(offset)

			266	 	 return

			267	 }

			268	

			269	 //	Position	returns	the	Position	value	for	the	given	file	position	p;

			270	 //	p	must	be	a	Pos	value	in	that	file	or	NoPos.

			271	 //

			272	 func	(f	*File)	Position(p	Pos)	(pos	Position)	{

			273	 	 if	p	!=	NoPos	{

			274	 	 	 if	int(p)	<	f.base	||	int(p)	>	f.base+f.size	{

			275	 	 	 	 panic("illegal	Pos	value")

			276	 	 	 }

			277	 	 	 pos	=	f.position(p)

			278	 	 }

			279	 	 return

			280	 }

			281	

			282	 //	---

			283	 //	FileSet

			284	

			285	 //	A	FileSet	represents	a	set	of	source	files.

			286	 //	Methods	of	file	sets	are	synchronized;	multiple	goroutines

			287	 //	may	invoke	them	concurrently.

			288	 //

			289	 type	FileSet	struct	{

			290	 	 mutex	sync.RWMutex	//	protects	the	file	set

			291	 	 base		int										//	base	offset	for	the	next	file

			292	 	 files	[]*File						//	list	of	files	in	the	order	added	to	the	set

			293	 	 last		*File								//	cache	of	last	file	looked	up

			294	 }

			295	

			296	 //	NewFileSet	creates	a	new	file	set.

			297	 func	NewFileSet()	*FileSet	{

			298	 	 s	:=	new(FileSet)

			299	 	 s.base	=	1	//	0	==	NoPos

			300	 	 return	s

			301	 }

			302	

			303	 //	Base	returns	the	minimum	base	offset	that	must	be	provided	to

			304	 //	AddFile	when	adding	the	next	file.

			305	 //

			306	 func	(s	*FileSet)	Base()	int	{

			307	 	 s.mutex.RLock()

			308	 	 b	:=	s.base

			309	 	 s.mutex.RUnlock()

			310	 	 return	b

			311	

			312	 }

			313	

			314	 //	AddFile	adds	a	new	file	with	a	given	filename,	base	offset,	and	file	size

			315	 //	to	the	file	set	s	and	returns	the	file.	Multiple	files	may	have	the	same

			316	 //	name.	The	base	offset	must	not	be	smaller	than	the	FileSet's	Base(),	and

			317	 //	size	must	not	be	negative.

			318	 //

			319	 //	Adding	the	file	will	set	the	file	set's	Base()	value	to	base	+	size	+	1

			320	 //	as	the	minimum	base	value	for	the	next	file.	The	following	relationship

			321	 //	exists	between	a	Pos	value	p	for	a	given	file	offset	offs:

			322	 //

			323	 //	 int(p)	=	base	+	offs

			324	 //

			325	 //	with	offs	in	the	range	[0,	size]	and	thus	p	in	the	range	[base,	base+size].

			326	 //	For	convenience,	File.Pos	may	be	used	to	create	file-specific	position

			327	 //	values	from	a	file	offset.

			328	 //

			329	 func	(s	*FileSet)	AddFile(filename	string,	base,	size	int)	*File	{

			330	 	 s.mutex.Lock()

			331	 	 defer	s.mutex.Unlock()

			332	 	 if	base	<	s.base	||	size	<	0	{

			333	 	 	 panic("illegal	base	or	size")

			334	 	 }

			335	 	 //	base	>=	s.base	&&	size	>=	0

			336	 	 f	:=	&File{s,	filename,	base,	size,	[]int{0},	nil}

			337	 	 base	+=	size	+	1	//	+1	because	EOF	also	has	a	position

			338	 	 if	base	<	0	{

			339	 	 	 panic("token.Pos	offset	overflow	(>	2G	of	source	code	in	file	set)")

			340	 	 }

			341	 	 //	add	the	file	to	the	file	set

			342	 	 s.base	=	base

			343	 	 s.files	=	append(s.files,	f)

			344	 	 s.last	=	f

			345	 	 return	f

			346	 }

			347	

			348	 //	Iterate	calls	f	for	the	files	in	the	file	set	in	the	order	they	were	added

			349	 //	until	f	returns	false.

			350	 //	

			351	 func	(s	*FileSet)	Iterate(f	func(*File)	bool)	{

			352	 	 for	i	:=	0;	;	i++	{

			353	 	 	 var	file	*File

			354	 	 	 s.mutex.RLock()

			355	 	 	 if	i	<	len(s.files)	{

			356	 	 	 	 file	=	s.files[i]

			357	 	 	 }

			358	 	 	 s.mutex.RUnlock()

			359	 	 	 if	file	==	nil	||	!f(file)	{

			360	 	 	 	 break

			361	 	 	 }

			362	 	 }

			363	 }

			364	

			365	 func	searchFiles(a	[]*File,	x	int)	int	{

			366	 	 return	sort.Search(len(a),	func(i	int)	bool	{	return	a[i].base	>	x	})	-	1

			367	 }

			368	

			369	 func	(s	*FileSet)	file(p	Pos)	*File	{

			370	 	 //	common	case:	p	is	in	last	file

			371	 	 if	f	:=	s.last;	f	!=	nil	&&	f.base	<=	int(p)	&&	int(p)	<=	f.base+f.size	{

			372	 	 	 return	f

			373	 	 }

			374	 	 //	p	is	not	in	last	file	-	search	all	files

			375	 	 if	i	:=	searchFiles(s.files,	int(p));	i	>=	0	{

			376	 	 	 f	:=	s.files[i]

			377	 	 	 //	f.base	<=	int(p)	by	definition	of	searchFiles

			378	 	 	 if	int(p)	<=	f.base+f.size	{

			379	 	 	 	 s.last	=	f

			380	 	 	 	 return	f

			381	 	 	 }

			382	 	 }

			383	 	 return	nil

			384	 }

			385	

			386	 //	File	returns	the	file	that	contains	the	position	p.

			387	 //	If	no	such	file	is	found	(for	instance	for	p	==	NoPos),

			388	 //	the	result	is	nil.

			389	 //

			390	 func	(s	*FileSet)	File(p	Pos)	(f	*File)	{

			391	 	 if	p	!=	NoPos	{

			392	 	 	 s.mutex.RLock()

			393	 	 	 f	=	s.file(p)

			394	 	 	 s.mutex.RUnlock()

			395	 	 }

			396	 	 return

			397	 }

			398	

			399	 //	Position	converts	a	Pos	in	the	fileset	into	a	general	Position.

			400	 func	(s	*FileSet)	Position(p	Pos)	(pos	Position)	{

			401	 	 if	p	!=	NoPos	{

			402	 	 	 s.mutex.RLock()

			403	 	 	 if	f	:=	s.file(p);	f	!=	nil	{

			404	 	 	 	 pos	=	f.position(p)

			405	 	 	 }

			406	 	 	 s.mutex.RUnlock()

			407	 	 }

			408	 	 return

			409	 }

			410	

			411	 //	---

			412	 //	Helper	functions

			413	

			414	 func	searchInts(a	[]int,	x	int)	int	{

			415	 	 //	This	function	body	is	a	manually	inlined	version	of:

			416	 	 //

			417	 	 //			return	sort.Search(len(a),	func(i	int)	bool	{	return	a[i]	>	x	})	-	1

			418	 	 //

			419	 	 //	With	better	compiler	optimizations,	this	may	not	be	needed	in	the

			420	 	 //	future,	but	at	the	moment	this	change	improves	the	go/printer

			421	 	 //	benchmark	performance	by	~30%.	This	has	a	direct	impact	on	the

			422	 	 //	speed	of	gofmt	and	thus	seems	worthwhile	(2011-04-29).

			423	 	 //	TODO(gri):	Remove	this	when	compilers	have	caught	up.

			424	 	 i,	j	:=	0,	len(a)

			425	 	 for	i	<	j	{

			426	 	 	 h	:=	i	+	(j-i)/2	//	avoid	overflow	when	computing	h

			427	 	 	 //	i	≤	h	<	j

			428	 	 	 if	a[h]	<=	x	{

			429	 	 	 	 i	=	h	+	1

			430	 	 	 }	else	{

			431	 	 	 	 j	=	h

			432	 	 	 }

			433	 	 }

			434	 	 return	i	-	1

			435	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/go/token/serialize.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	token

					6	

					7	 type	serializedFile	struct	{

					8	 	 //	fields	correspond	1:1	to	fields	with	same	(lower-case)	name	in	File

					9	 	 Name		string

				10	 	 Base		int

				11	 	 Size		int

				12	 	 Lines	[]int

				13	 	 Infos	[]lineInfo

				14	 }

				15	

				16	 type	serializedFileSet	struct	{

				17	 	 Base		int

				18	 	 Files	[]serializedFile

				19	 }

				20	

				21	 //	Read	calls	decode	to	deserialize	a	file	set	into	s;	s	must	not	be	nil.

				22	 func	(s	*FileSet)	Read(decode	func(interface{})	error)	error	{

				23	 	 var	ss	serializedFileSet

				24	 	 if	err	:=	decode(&ss);	err	!=	nil	{

				25	 	 	 return	err

				26	 	 }

				27	

				28	 	 s.mutex.Lock()

				29	 	 s.base	=	ss.Base

				30	 	 files	:=	make([]*File,	len(ss.Files))

				31	 	 for	i	:=	0;	i	<	len(ss.Files);	i++	{

				32	 	 	 f	:=	&ss.Files[i]

				33	 	 	 files[i]	=	&File{s,	f.Name,	f.Base,	f.Size,	f.Lines,	f.Infos}

				34	 	 }

				35	 	 s.files	=	files

				36	 	 s.last	=	nil

				37	 	 s.mutex.Unlock()

				38	

				39	 	 return	nil

				40	 }

				41	

				42	 //	Write	calls	encode	to	serialize	the	file	set	s.

				43	 func	(s	*FileSet)	Write(encode	func(interface{})	error)	error	{

				44	 	 var	ss	serializedFileSet

				45	

				46	 	 s.mutex.Lock()

				47	 	 ss.Base	=	s.base

				48	 	 files	:=	make([]serializedFile,	len(s.files))

				49	 	 for	i,	f	:=	range	s.files	{

				50	 	 	 files[i]	=	serializedFile{f.name,	f.base,	f.size,	f.lines,	f.infos}

				51	 	 }

				52	 	 ss.Files	=	files

				53	 	 s.mutex.Unlock()

				54	

				55	 	 return	encode(ss)

				56	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/go/token/token.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	token	defines	constants	representing	the	lexical	tokens	of	the	Go

					6	 //	programming	language	and	basic	operations	on	tokens	(printing,	predicates).

					7	 //

					8	 package	token

					9	

				10	 import	"strconv"

				11	

				12	 //	Token	is	the	set	of	lexical	tokens	of	the	Go	programming	language.

				13	 type	Token	int

				14	

				15	 //	The	list	of	tokens.

				16	 const	(

				17	 	 //	Special	tokens

				18	 	 ILLEGAL	Token	=	iota

				19	 	 EOF

				20	 	 COMMENT

				21	

				22	 	 literal_beg

				23	 	 //	Identifiers	and	basic	type	literals

				24	 	 //	(these	tokens	stand	for	classes	of	literals)

				25	 	 IDENT		//	main

				26	 	 INT				//	12345

				27	 	 FLOAT		//	123.45

				28	 	 IMAG			//	123.45i

				29	 	 CHAR			//	'a'

				30	 	 STRING	//	"abc"

				31	 	 literal_end

				32	

				33	 	 operator_beg

				34	 	 //	Operators	and	delimiters

				35	 	 ADD	//	+

				36	 	 SUB	//	-

				37	 	 MUL	//	*

				38	 	 QUO	//	/

				39	 	 REM	//	%

				40	

				41	 	 AND					//	&

				42	 	 OR						//	|

				43	 	 XOR					//	^

				44	 	 SHL					//	<<

				45	 	 SHR					//	>>

				46	 	 AND_NOT	//	&^

				47	

				48	 	 ADD_ASSIGN	//	+=

				49	 	 SUB_ASSIGN	//	-=

				50	 	 MUL_ASSIGN	//	*=

				51	 	 QUO_ASSIGN	//	/=

				52	 	 REM_ASSIGN	//	%=

				53	

				54	 	 AND_ASSIGN					//	&=

				55	 	 OR_ASSIGN						//	|=

				56	 	 XOR_ASSIGN					//	^=

				57	 	 SHL_ASSIGN					//	<<=

				58	 	 SHR_ASSIGN					//	>>=

				59	 	 AND_NOT_ASSIGN	//	&^=

				60	

				61	 	 LAND		//	&&

				62	 	 LOR			//	||

				63	 	 ARROW	//	<-

				64	 	 INC			//	++

				65	 	 DEC			//	--

				66	

				67	 	 EQL				//	==

				68	 	 LSS				//	<

				69	 	 GTR				//	>

				70	 	 ASSIGN	//	=

				71	 	 NOT				//	!

				72	

				73	 	 NEQ						//	!=

				74	 	 LEQ						//	<=

				75	 	 GEQ						//	>=

				76	 	 DEFINE			//	:=

				77	 	 ELLIPSIS	//	...

				78	

				79	 	 LPAREN	//	(

				80	 	 LBRACK	//	[

				81	 	 LBRACE	//	{

				82	 	 COMMA		//	,

				83	 	 PERIOD	//	.

				84	

				85	 	 RPAREN				//)

				86	 	 RBRACK				//]

				87	 	 RBRACE				//	}

				88	 	 SEMICOLON	//	;

				89	 	 COLON					//	:

				90	 	 operator_end

				91	

				92	 	 keyword_beg

				93	 	 //	Keywords

				94	 	 BREAK

				95	 	 CASE

				96	 	 CHAN

				97	 	 CONST

				98	 	 CONTINUE

				99	

			100	 	 DEFAULT

			101	 	 DEFER

			102	 	 ELSE

			103	 	 FALLTHROUGH

			104	 	 FOR

			105	

			106	 	 FUNC

			107	 	 GO

			108	 	 GOTO

			109	 	 IF

			110	 	 IMPORT

			111	

			112	 	 INTERFACE

			113	 	 MAP

			114	 	 PACKAGE

			115	 	 RANGE

			116	 	 RETURN

			117	

			118	 	 SELECT

			119	 	 STRUCT

			120	 	 SWITCH

			121	 	 TYPE

			122	 	 VAR

			123	 	 keyword_end

			124)

			125	

			126	 var	tokens	=	[...]string{

			127	 	 ILLEGAL:	"ILLEGAL",

			128	

			129	 	 EOF:					"EOF",

			130	 	 COMMENT:	"COMMENT",

			131	

			132	 	 IDENT:		"IDENT",

			133	 	 INT:				"INT",

			134	 	 FLOAT:		"FLOAT",

			135	 	 IMAG:			"IMAG",

			136	 	 CHAR:			"CHAR",

			137	 	 STRING:	"STRING",

			138	

			139	 	 ADD:	"+",

			140	 	 SUB:	"-",

			141	 	 MUL:	"*",

			142	 	 QUO:	"/",

			143	 	 REM:	"%",

			144	

			145	 	 AND:					"&",

			146	 	 OR:						"|",

			147	 	 XOR:					"^",

			148	 	 SHL:					"<<",

			149	 	 SHR:					">>",

			150	 	 AND_NOT:	"&^",

			151	

			152	 	 ADD_ASSIGN:	"+=",

			153	 	 SUB_ASSIGN:	"-=",

			154	 	 MUL_ASSIGN:	"*=",

			155	 	 QUO_ASSIGN:	"/=",

			156	 	 REM_ASSIGN:	"%=",

			157	

			158	 	 AND_ASSIGN:					"&=",

			159	 	 OR_ASSIGN:						"|=",

			160	 	 XOR_ASSIGN:					"^=",

			161	 	 SHL_ASSIGN:					"<<=",

			162	 	 SHR_ASSIGN:					">>=",

			163	 	 AND_NOT_ASSIGN:	"&^=",

			164	

			165	 	 LAND:		"&&",

			166	 	 LOR:			"||",

			167	 	 ARROW:	"<-",

			168	 	 INC:			"++",

			169	 	 DEC:			"--",

			170	

			171	 	 EQL:				"==",

			172	 	 LSS:				"<",

			173	 	 GTR:				">",

			174	 	 ASSIGN:	"=",

			175	 	 NOT:				"!",

			176	

			177	 	 NEQ:						"!=",

			178	 	 LEQ:						"<=",

			179	 	 GEQ:						">=",

			180	 	 DEFINE:			":=",

			181	 	 ELLIPSIS:	"...",

			182	

			183	 	 LPAREN:	"(",

			184	 	 LBRACK:	"[",

			185	 	 LBRACE:	"{",

			186	 	 COMMA:		",",

			187	 	 PERIOD:	".",

			188	

			189	 	 RPAREN:				")",

			190	 	 RBRACK:				"]",

			191	 	 RBRACE:				"}",

			192	 	 SEMICOLON:	";",

			193	 	 COLON:					":",

			194	

			195	 	 BREAK:				"break",

			196	 	 CASE:					"case",

			197	 	 CHAN:					"chan",

			198	 	 CONST:				"const",

			199	 	 CONTINUE:	"continue",

			200	

			201	 	 DEFAULT:					"default",

			202	 	 DEFER:							"defer",

			203	 	 ELSE:								"else",

			204	 	 FALLTHROUGH:	"fallthrough",

			205	 	 FOR:									"for",

			206	

			207	 	 FUNC:			"func",

			208	 	 GO:					"go",

			209	 	 GOTO:			"goto",

			210	 	 IF:					"if",

			211	 	 IMPORT:	"import",

			212	

			213	 	 INTERFACE:	"interface",

			214	 	 MAP:							"map",

			215	 	 PACKAGE:			"package",

			216	 	 RANGE:					"range",

			217	 	 RETURN:				"return",

			218	

			219	 	 SELECT:	"select",

			220	 	 STRUCT:	"struct",

			221	 	 SWITCH:	"switch",

			222	 	 TYPE:			"type",

			223	 	 VAR:				"var",

			224	 }

			225	

			226	 //	String	returns	the	string	corresponding	to	the	token	tok.

			227	 //	For	operators,	delimiters,	and	keywords	the	string	is	the	actual

			228	 //	token	character	sequence	(e.g.,	for	the	token	ADD,	the	string	is

			229	 //	"+").	For	all	other	tokens	the	string	corresponds	to	the	token

			230	 //	constant	name	(e.g.	for	the	token	IDENT,	the	string	is	"IDENT").

			231	 //

			232	 func	(tok	Token)	String()	string	{

			233	 	 s	:=	""

			234	 	 if	0	<=	tok	&&	tok	<	Token(len(tokens))	{

			235	 	 	 s	=	tokens[tok]

			236	 	 }

			237	 	 if	s	==	""	{

			238	 	 	 s	=	"token("	+	strconv.Itoa(int(tok))	+	")"

			239	 	 }

			240	 	 return	s

			241	 }

			242	

			243	 //	A	set	of	constants	for	precedence-based	expression	parsing.

			244	 //	Non-operators	have	lowest	precedence,	followed	by	operators

			245	 //	starting	with	precedence	1	up	to	unary	operators.	The	highest

			246	 //	precedence	corresponds	serves	as	"catch-all"	precedence	for

			247	 //	selector,	indexing,	and	other	operator	and	delimiter	tokens.

			248	 //

			249	 const	(

			250	 	 LowestPrec		=	0	//	non-operators

			251	 	 UnaryPrec			=	6

			252	 	 HighestPrec	=	7

			253)

			254	

			255	 //	Precedence	returns	the	operator	precedence	of	the	binary

			256	 //	operator	op.	If	op	is	not	a	binary	operator,	the	result

			257	 //	is	LowestPrecedence.

			258	 //

			259	 func	(op	Token)	Precedence()	int	{

			260	 	 switch	op	{

			261	 	 case	LOR:

			262	 	 	 return	1

			263	 	 case	LAND:

			264	 	 	 return	2

			265	 	 case	EQL,	NEQ,	LSS,	LEQ,	GTR,	GEQ:

			266	 	 	 return	3

			267	 	 case	ADD,	SUB,	OR,	XOR:

			268	 	 	 return	4

			269	 	 case	MUL,	QUO,	REM,	SHL,	SHR,	AND,	AND_NOT:

			270	 	 	 return	5

			271	 	 }

			272	 	 return	LowestPrec

			273	 }

			274	

			275	 var	keywords	map[string]Token

			276	

			277	 func	init()	{

			278	 	 keywords	=	make(map[string]Token)

			279	 	 for	i	:=	keyword_beg	+	1;	i	<	keyword_end;	i++	{

			280	 	 	 keywords[tokens[i]]	=	i

			281	 	 }

			282	 }

			283	

			284	 //	Lookup	maps	an	identifier	to	its	keyword	token	or	IDENT	(if	not	a	keyword).

			285	 //

			286	 func	Lookup(ident	string)	Token	{

			287	 	 if	tok,	is_keyword	:=	keywords[ident];	is_keyword	{

			288	 	 	 return	tok

			289	 	 }

			290	 	 return	IDENT

			291	 }

			292	

			293	 //	Predicates

			294	

			295	 //	IsLiteral	returns	true	for	tokens	corresponding	to	identifiers

			296	 //	and	basic	type	literals;	it	returns	false	otherwise.

			297	 //

			298	 func	(tok	Token)	IsLiteral()	bool	{	return	literal_beg	<	tok	&&	tok	<	literal_end	}

			299	

			300	 //	IsOperator	returns	true	for	tokens	corresponding	to	operators	and

			301	 //	delimiters;	it	returns	false	otherwise.

			302	 //

			303	 func	(tok	Token)	IsOperator()	bool	{	return	operator_beg	<	tok	&&	tok	<	operator_end	}

			304	

			305	 //	IsKeyword	returns	true	for	tokens	corresponding	to	keywords;

			306	 //	it	returns	false	otherwise.

			307	 //

			308	 func	(tok	Token)	IsKeyword()	bool	{	return	keyword_beg	<	tok	&&	tok	<	keyword_end	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/hash/hash.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	hash	provides	interfaces	for	hash	functions.

					6	 package	hash

					7	

					8	 import	"io"

					9	

				10	 //	Hash	is	the	common	interface	implemented	by	all	hash	functions.

				11	 type	Hash	interface	{

				12	 	 //	Write	adds	more	data	to	the	running	hash.

				13	 	 //	It	never	returns	an	error.

				14	 	 io.Writer

				15	

				16	 	 //	Sum	appends	the	current	hash	to	b	and	returns	the	resulting	slice.

				17	 	 //	It	does	not	change	the	underlying	hash	state.

				18	 	 Sum(b	[]byte)	[]byte

				19	

				20	 	 //	Reset	resets	the	hash	to	one	with	zero	bytes	written.

				21	 	 Reset()

				22	

				23	 	 //	Size	returns	the	number	of	bytes	Sum	will	return.

				24	 	 Size()	int

				25	

				26	 	 //	BlockSize	returns	the	hash's	underlying	block	size.

				27	 	 //	The	Write	method	must	be	able	to	accept	any	amount

				28	 	 //	of	data,	but	it	may	operate	more	efficiently	if	all	writes

				29	 	 //	are	a	multiple	of	the	block	size.

				30	 	 BlockSize()	int

				31	 }

				32	

				33	 //	Hash32	is	the	common	interface	implemented	by	all	32-bit	hash	functions.

				34	 type	Hash32	interface	{

				35	 	 Hash

				36	 	 Sum32()	uint32

				37	 }

				38	

				39	 //	Hash64	is	the	common	interface	implemented	by	all	64-bit	hash	functions.

				40	 type	Hash64	interface	{

				41	 	 Hash

				42	 	 Sum64()	uint64

				43	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/hash/adler32/adler32.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	adler32	implements	the	Adler-32	checksum.

					6	 //	Defined	in	RFC	1950:

					7	 //	 Adler-32	is	composed	of	two	sums	accumulated	per	byte:	s1	is

					8	 //	 the	sum	of	all	bytes,	s2	is	the	sum	of	all	s1	values.	Both	sums

					9	 //	 are	done	modulo	65521.	s1	is	initialized	to	1,	s2	to	zero.		The

				10	 //	 Adler-32	checksum	is	stored	as	s2*65536	+	s1	in	most-

				11	 //	 significant-byte	first	(network)	order.

				12	 package	adler32

				13	

				14	 import	"hash"

				15	

				16	 const	(

				17	 	 mod	=	65521

				18)

				19	

				20	 //	The	size	of	an	Adler-32	checksum	in	bytes.

				21	 const	Size	=	4

				22	

				23	 //	digest	represents	the	partial	evaluation	of	a	checksum.

				24	 type	digest	struct	{

				25	 	 //	invariant:	(a	<	mod	&&	b	<	mod)	||	a	<=	b

				26	 	 //	invariant:	a	+	b	+	255	<=	0xffffffff

				27	 	 a,	b	uint32

				28	 }

				29	

				30	 func	(d	*digest)	Reset()	{	d.a,	d.b	=	1,	0	}

				31	

				32	 //	New	returns	a	new	hash.Hash32	computing	the	Adler-32	checksum.

				33	 func	New()	hash.Hash32	{

				34	 	 d	:=	new(digest)

				35	 	 d.Reset()

				36	 	 return	d

				37	 }

				38	

				39	 func	(d	*digest)	Size()	int	{	return	Size	}

				40	

				41	 func	(d	*digest)	BlockSize()	int	{	return	1	}

				42	

				43	 //	Add	p	to	the	running	checksum	a,	b.

				44	 func	update(a,	b	uint32,	p	[]byte)	(aa,	bb	uint32)	{

				45	 	 for	_,	pi	:=	range	p	{

				46	 	 	 a	+=	uint32(pi)

				47	 	 	 b	+=	a

				48	 	 	 //	invariant:	a	<=	b

				49	 	 	 if	b	>	(0xffffffff-255)/2	{

				50	 	 	 	 a	%=	mod

				51	 	 	 	 b	%=	mod

				52	 	 	 	 //	invariant:	a	<	mod	&&	b	<	mod

				53	 	 	 }	else	{

				54	 	 	 	 //	invariant:	a	+	b	+	255	<=	2	*	b	+	255	<=	0xffffffff

				55	 	 	 }

				56	 	 }

				57	 	 return	a,	b

				58	 }

				59	

				60	 //	Return	the	32-bit	checksum	corresponding	to	a,	b.

				61	 func	finish(a,	b	uint32)	uint32	{

				62	 	 if	b	>=	mod	{

				63	 	 	 a	%=	mod

				64	 	 	 b	%=	mod

				65	 	 }

				66	 	 return	b<<16	|	a

				67	 }

				68	

				69	 func	(d	*digest)	Write(p	[]byte)	(nn	int,	err	error)	{

				70	 	 d.a,	d.b	=	update(d.a,	d.b,	p)

				71	 	 return	len(p),	nil

				72	 }

				73	

				74	 func	(d	*digest)	Sum32()	uint32	{	return	finish(d.a,	d.b)	}

				75	

				76	 func	(d	*digest)	Sum(in	[]byte)	[]byte	{

				77	 	 s	:=	d.Sum32()

				78	 	 in	=	append(in,	byte(s>>24))

				79	 	 in	=	append(in,	byte(s>>16))

				80	 	 in	=	append(in,	byte(s>>8))

				81	 	 in	=	append(in,	byte(s))

				82	 	 return	in

				83	 }

				84	

				85	 //	Checksum	returns	the	Adler-32	checksum	of	data.

				86	 func	Checksum(data	[]byte)	uint32	{	return	finish(update(1,	0,	data))	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.

http://code.google.com/policies.html#restrictions

Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/hash/crc32/crc32.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	crc32	implements	the	32-bit	cyclic	redundancy	check,	or	CRC-32,

					6	 //	checksum.	See	http://en.wikipedia.org/wiki/Cyclic_redundancy_check	for

					7	 //	information.

					8	 package	crc32

					9	

				10	 import	(

				11	 	 "hash"

				12	 	 "sync"

				13)

				14	

				15	 //	The	size	of	a	CRC-32	checksum	in	bytes.

				16	 const	Size	=	4

				17	

				18	 //	Predefined	polynomials.

				19	 const	(

				20	 	 //	Far	and	away	the	most	common	CRC-32	polynomial.

				21	 	 //	Used	by	ethernet	(IEEE	802.3),	v.42,	fddi,	gzip,	zip,	png,	mpeg-2,	...

				22	 	 IEEE	=	0xedb88320

				23	

				24	 	 //	Castagnoli's	polynomial,	used	in	iSCSI.

				25	 	 //	Has	better	error	detection	characteristics	than	IEEE.

				26	 	 //	http://dx.doi.org/10.1109/26.231911

				27	 	 Castagnoli	=	0x82f63b78

				28	

				29	 	 //	Koopman's	polynomial.

				30	 	 //	Also	has	better	error	detection	characteristics	than	IEEE.

				31	 	 //	http://dx.doi.org/10.1109/DSN.2002.1028931

				32	 	 Koopman	=	0xeb31d82e

				33)

				34	

				35	 //	Table	is	a	256-word	table	representing	the	polynomial	for	efficient	processing.

				36	 type	Table	[256]uint32

				37	

				38	 //	castagnoliTable	points	to	a	lazily	initialized	Table	for	the	Castagnoli

				39	 //	polynomial.	MakeTable	will	always	return	this	value	when	asked	to	make	a

				40	 //	Castagnoli	table	so	we	can	compare	against	it	to	find	when	the	caller	is

				41	 //	using	this	polynomial.

				42	 var	castagnoliTable	*Table

				43	 var	castagnoliOnce	sync.Once

				44	

				45	 func	castagnoliInit()	{

				46	 	 castagnoliTable	=	makeTable(Castagnoli)

				47	 }

				48	

				49	 //	IEEETable	is	the	table	for	the	IEEE	polynomial.

				50	 var	IEEETable	=	makeTable(IEEE)

				51	

				52	 //	MakeTable	returns	the	Table	constructed	from	the	specified	polynomial.

				53	 func	MakeTable(poly	uint32)	*Table	{

				54	 	 switch	poly	{

				55	 	 case	IEEE:

				56	 	 	 return	IEEETable

				57	 	 case	Castagnoli:

				58	 	 	 castagnoliOnce.Do(castagnoliInit)

				59	 	 	 return	castagnoliTable

				60	 	 }

				61	 	 return	makeTable(poly)

				62	 }

				63	

				64	 //	makeTable	returns	the	Table	constructed	from	the	specified	polynomial.

				65	 func	makeTable(poly	uint32)	*Table	{

				66	 	 t	:=	new(Table)

				67	 	 for	i	:=	0;	i	<	256;	i++	{

				68	 	 	 crc	:=	uint32(i)

				69	 	 	 for	j	:=	0;	j	<	8;	j++	{

				70	 	 	 	 if	crc&1	==	1	{

				71	 	 	 	 	 crc	=	(crc	>>	1)	^	poly

				72	 	 	 	 }	else	{

				73	 	 	 	 	 crc	>>=	1

				74	 	 	 	 }

				75	 	 	 }

				76	 	 	 t[i]	=	crc

				77	 	 }

				78	 	 return	t

				79	 }

				80	

				81	 //	digest	represents	the	partial	evaluation	of	a	checksum.

				82	 type	digest	struct	{

				83	 	 crc	uint32

				84	 	 tab	*Table

				85	 }

				86	

				87	 //	New	creates	a	new	hash.Hash32	computing	the	CRC-32	checksum

				88	 //	using	the	polynomial	represented	by	the	Table.

				89	 func	New(tab	*Table)	hash.Hash32	{	return	&digest{0,	tab}	}

				90	

				91	 //	NewIEEE	creates	a	new	hash.Hash32	computing	the	CRC-32	checksum

				92	 //	using	the	IEEE	polynomial.

				93	 func	NewIEEE()	hash.Hash32	{	return	New(IEEETable)	}

				94	

				95	 func	(d	*digest)	Size()	int	{	return	Size	}

				96	

				97	 func	(d	*digest)	BlockSize()	int	{	return	1	}

				98	

				99	 func	(d	*digest)	Reset()	{	d.crc	=	0	}

			100	

			101	 func	update(crc	uint32,	tab	*Table,	p	[]byte)	uint32	{

			102	 	 crc	=	^crc

			103	 	 for	_,	v	:=	range	p	{

			104	 	 	 crc	=	tab[byte(crc)^v]	^	(crc	>>	8)

			105	 	 }

			106	 	 return	^crc

			107	 }

			108	

			109	 //	Update	returns	the	result	of	adding	the	bytes	in	p	to	the	crc.

			110	 func	Update(crc	uint32,	tab	*Table,	p	[]byte)	uint32	{

			111	 	 if	tab	==	castagnoliTable	{

			112	 	 	 return	updateCastagnoli(crc,	p)

			113	 	 }

			114	 	 return	update(crc,	tab,	p)

			115	 }

			116	

			117	 func	(d	*digest)	Write(p	[]byte)	(n	int,	err	error)	{

			118	 	 d.crc	=	Update(d.crc,	d.tab,	p)

			119	 	 return	len(p),	nil

			120	 }

			121	

			122	 func	(d	*digest)	Sum32()	uint32	{	return	d.crc	}

			123	

			124	 func	(d	*digest)	Sum(in	[]byte)	[]byte	{

			125	 	 s	:=	d.Sum32()

			126	 	 in	=	append(in,	byte(s>>24))

			127	 	 in	=	append(in,	byte(s>>16))

			128	 	 in	=	append(in,	byte(s>>8))

			129	 	 in	=	append(in,	byte(s))

			130	 	 return	in

			131	 }

			132	

			133	 //	Checksum	returns	the	CRC-32	checksum	of	data

			134	 //	using	the	polynomial	represented	by	the	Table.

			135	 func	Checksum(data	[]byte,	tab	*Table)	uint32	{	return	Update(0,	tab,	data)	}

			136	

			137	 //	ChecksumIEEE	returns	the	CRC-32	checksum	of	data

			138	 //	using	the	IEEE	polynomial.

			139	 func	ChecksumIEEE(data	[]byte)	uint32	{	return	update(0,	IEEETable,	data)	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/hash/crc32/crc32_amd64.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	crc32

					6	

					7	 //	This	file	contains	the	code	to	call	the	SSE	4.2	version	of	the	Castagnoli

					8	 //	CRC.

					9	

				10	 //	haveSSE42	is	defined	in	crc_amd64.s	and	uses	CPUID	to	test	for	SSE	4.2

				11	 //	support.

				12	 func	haveSSE42()	bool

				13	

				14	 //	castagnoliSSE42	is	defined	in	crc_amd64.s	and	uses	the	SSE4.2	CRC32

				15	 //	instruction.

				16	 func	castagnoliSSE42(uint32,	[]byte)	uint32

				17	

				18	 var	sse42	=	haveSSE42()

				19	

				20	 func	updateCastagnoli(crc	uint32,	p	[]byte)	uint32	{

				21	 	 if	sse42	{

				22	 	 	 return	castagnoliSSE42(crc,	p)

				23	 	 }

				24	 	 return	update(crc,	castagnoliTable,	p)

				25	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/hash/crc64/crc64.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	crc64	implements	the	64-bit	cyclic	redundancy	check,	or	CRC-64,

					6	 //	checksum.	See	http://en.wikipedia.org/wiki/Cyclic_redundancy_check	for

					7	 //	information.

					8	 package	crc64

					9	

				10	 import	"hash"

				11	

				12	 //	The	size	of	a	CRC-64	checksum	in	bytes.

				13	 const	Size	=	8

				14	

				15	 //	Predefined	polynomials.

				16	 const	(

				17	 	 //	The	ISO	polynomial,	defined	in	ISO	3309	and	used	in	HDLC.

				18	 	 ISO	=	0xD800000000000000

				19	

				20	 	 //	The	ECMA	polynomial,	defined	in	ECMA	182.

				21	 	 ECMA	=	0xC96C5795D7870F42

				22)

				23	

				24	 //	Table	is	a	256-word	table	representing	the	polynomial	for	efficient	processing.

				25	 type	Table	[256]uint64

				26	

				27	 //	MakeTable	returns	the	Table	constructed	from	the	specified	polynomial.

				28	 func	MakeTable(poly	uint64)	*Table	{

				29	 	 t	:=	new(Table)

				30	 	 for	i	:=	0;	i	<	256;	i++	{

				31	 	 	 crc	:=	uint64(i)

				32	 	 	 for	j	:=	0;	j	<	8;	j++	{

				33	 	 	 	 if	crc&1	==	1	{

				34	 	 	 	 	 crc	=	(crc	>>	1)	^	poly

				35	 	 	 	 }	else	{

				36	 	 	 	 	 crc	>>=	1

				37	 	 	 	 }

				38	 	 	 }

				39	 	 	 t[i]	=	crc

				40	 	 }

				41	 	 return	t

				42	 }

				43	

				44	 //	digest	represents	the	partial	evaluation	of	a	checksum.

				45	 type	digest	struct	{

				46	 	 crc	uint64

				47	 	 tab	*Table

				48	 }

				49	

				50	 //	New	creates	a	new	hash.Hash64	computing	the	CRC-64	checksum

				51	 //	using	the	polynomial	represented	by	the	Table.

				52	 func	New(tab	*Table)	hash.Hash64	{	return	&digest{0,	tab}	}

				53	

				54	 func	(d	*digest)	Size()	int	{	return	Size	}

				55	

				56	 func	(d	*digest)	BlockSize()	int	{	return	1	}

				57	

				58	 func	(d	*digest)	Reset()	{	d.crc	=	0	}

				59	

				60	 func	update(crc	uint64,	tab	*Table,	p	[]byte)	uint64	{

				61	 	 crc	=	^crc

				62	 	 for	_,	v	:=	range	p	{

				63	 	 	 crc	=	tab[byte(crc)^v]	^	(crc	>>	8)

				64	 	 }

				65	 	 return	^crc

				66	 }

				67	

				68	 //	Update	returns	the	result	of	adding	the	bytes	in	p	to	the	crc.

				69	 func	Update(crc	uint64,	tab	*Table,	p	[]byte)	uint64	{

				70	 	 return	update(crc,	tab,	p)

				71	 }

				72	

				73	 func	(d	*digest)	Write(p	[]byte)	(n	int,	err	error)	{

				74	 	 d.crc	=	update(d.crc,	d.tab,	p)

				75	 	 return	len(p),	nil

				76	 }

				77	

				78	 func	(d	*digest)	Sum64()	uint64	{	return	d.crc	}

				79	

				80	 func	(d	*digest)	Sum(in	[]byte)	[]byte	{

				81	 	 s	:=	d.Sum64()

				82	 	 in	=	append(in,	byte(s>>56))

				83	 	 in	=	append(in,	byte(s>>48))

				84	 	 in	=	append(in,	byte(s>>40))

				85	 	 in	=	append(in,	byte(s>>32))

				86	 	 in	=	append(in,	byte(s>>24))

				87	 	 in	=	append(in,	byte(s>>16))

				88	 	 in	=	append(in,	byte(s>>8))

				89	 	 in	=	append(in,	byte(s))

				90	 	 return	in

				91	 }

				92	

				93	 //	Checksum	returns	the	CRC-64	checksum	of	data

				94	 //	using	the	polynomial	represented	by	the	Table.

				95	 func	Checksum(data	[]byte,	tab	*Table)	uint64	{	return	update(0,	tab,	data)	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/hash/fnv/fnv.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	fnv	implements	FNV-1	and	FNV-1a,	non-cryptographic	hash	functions

					6	 //	created	by	Glenn	Fowler,	Landon	Curt	Noll,	and	Phong	Vo.

					7	 //	See	http://isthe.com/chongo/tech/comp/fnv/.

					8	 package	fnv

					9	

				10	 import	(

				11	 	 "hash"

				12)

				13	

				14	 type	(

				15	 	 sum32		uint32

				16	 	 sum32a	uint32

				17	 	 sum64		uint64

				18	 	 sum64a	uint64

				19)

				20	

				21	 const	(

				22	 	 offset32	=	2166136261

				23	 	 offset64	=	14695981039346656037

				24	 	 prime32		=	16777619

				25	 	 prime64		=	1099511628211

				26)

				27	

				28	 //	New32	returns	a	new	32-bit	FNV-1	hash.Hash.

				29	 func	New32()	hash.Hash32	{

				30	 	 var	s	sum32	=	offset32

				31	 	 return	&s

				32	 }

				33	

				34	 //	New32a	returns	a	new	32-bit	FNV-1a	hash.Hash.

				35	 func	New32a()	hash.Hash32	{

				36	 	 var	s	sum32a	=	offset32

				37	 	 return	&s

				38	 }

				39	

				40	 //	New64	returns	a	new	64-bit	FNV-1	hash.Hash.

				41	 func	New64()	hash.Hash64	{

				42	 	 var	s	sum64	=	offset64

				43	 	 return	&s

				44	 }

				45	

				46	 //	New64a	returns	a	new	64-bit	FNV-1a	hash.Hash.

				47	 func	New64a()	hash.Hash64	{

				48	 	 var	s	sum64a	=	offset64

				49	 	 return	&s

				50	 }

				51	

				52	 func	(s	*sum32)	Reset()		{	*s	=	offset32	}

				53	 func	(s	*sum32a)	Reset()	{	*s	=	offset32	}

				54	 func	(s	*sum64)	Reset()		{	*s	=	offset64	}

				55	 func	(s	*sum64a)	Reset()	{	*s	=	offset64	}

				56	

				57	 func	(s	*sum32)	Sum32()	uint32		{	return	uint32(*s)	}

				58	 func	(s	*sum32a)	Sum32()	uint32	{	return	uint32(*s)	}

				59	 func	(s	*sum64)	Sum64()	uint64		{	return	uint64(*s)	}

				60	 func	(s	*sum64a)	Sum64()	uint64	{	return	uint64(*s)	}

				61	

				62	 func	(s	*sum32)	Write(data	[]byte)	(int,	error)	{

				63	 	 hash	:=	*s

				64	 	 for	_,	c	:=	range	data	{

				65	 	 	 hash	*=	prime32

				66	 	 	 hash	^=	sum32(c)

				67	 	 }

				68	 	 *s	=	hash

				69	 	 return	len(data),	nil

				70	 }

				71	

				72	 func	(s	*sum32a)	Write(data	[]byte)	(int,	error)	{

				73	 	 hash	:=	*s

				74	 	 for	_,	c	:=	range	data	{

				75	 	 	 hash	^=	sum32a(c)

				76	 	 	 hash	*=	prime32

				77	 	 }

				78	 	 *s	=	hash

				79	 	 return	len(data),	nil

				80	 }

				81	

				82	 func	(s	*sum64)	Write(data	[]byte)	(int,	error)	{

				83	 	 hash	:=	*s

				84	 	 for	_,	c	:=	range	data	{

				85	 	 	 hash	*=	prime64

				86	 	 	 hash	^=	sum64(c)

				87	 	 }

				88	 	 *s	=	hash

				89	 	 return	len(data),	nil

				90	 }

				91	

				92	 func	(s	*sum64a)	Write(data	[]byte)	(int,	error)	{

				93	 	 hash	:=	*s

				94	 	 for	_,	c	:=	range	data	{

				95	 	 	 hash	^=	sum64a(c)

				96	 	 	 hash	*=	prime64

				97	 	 }

				98	 	 *s	=	hash

				99	 	 return	len(data),	nil

			100	 }

			101	

			102	 func	(s	*sum32)	Size()	int		{	return	4	}

			103	 func	(s	*sum32a)	Size()	int	{	return	4	}

			104	 func	(s	*sum64)	Size()	int		{	return	8	}

			105	 func	(s	*sum64a)	Size()	int	{	return	8	}

			106	

			107	 func	(s	*sum32)	BlockSize()	int		{	return	1	}

			108	 func	(s	*sum32a)	BlockSize()	int	{	return	1	}

			109	 func	(s	*sum64)	BlockSize()	int		{	return	1	}

			110	 func	(s	*sum64a)	BlockSize()	int	{	return	1	}

			111	

			112	 func	(s	*sum32)	Sum(in	[]byte)	[]byte	{

			113	 	 v	:=	uint32(*s)

			114	 	 in	=	append(in,	byte(v>>24))

			115	 	 in	=	append(in,	byte(v>>16))

			116	 	 in	=	append(in,	byte(v>>8))

			117	 	 in	=	append(in,	byte(v))

			118	 	 return	in

			119	 }

			120	

			121	 func	(s	*sum32a)	Sum(in	[]byte)	[]byte	{

			122	 	 v	:=	uint32(*s)

			123	 	 in	=	append(in,	byte(v>>24))

			124	 	 in	=	append(in,	byte(v>>16))

			125	 	 in	=	append(in,	byte(v>>8))

			126	 	 in	=	append(in,	byte(v))

			127	 	 return	in

			128	 }

			129	

			130	 func	(s	*sum64)	Sum(in	[]byte)	[]byte	{

			131	 	 v	:=	uint64(*s)

			132	 	 in	=	append(in,	byte(v>>56))

			133	 	 in	=	append(in,	byte(v>>48))

			134	 	 in	=	append(in,	byte(v>>40))

			135	 	 in	=	append(in,	byte(v>>32))

			136	 	 in	=	append(in,	byte(v>>24))

			137	 	 in	=	append(in,	byte(v>>16))

			138	 	 in	=	append(in,	byte(v>>8))

			139	 	 in	=	append(in,	byte(v))

			140	 	 return	in

			141	 }

			142	

			143	 func	(s	*sum64a)	Sum(in	[]byte)	[]byte	{

			144	 	 v	:=	uint64(*s)

			145	 	 in	=	append(in,	byte(v>>56))

			146	 	 in	=	append(in,	byte(v>>48))

			147	 	 in	=	append(in,	byte(v>>40))

			148	 	 in	=	append(in,	byte(v>>32))

			149	 	 in	=	append(in,	byte(v>>24))

			150	 	 in	=	append(in,	byte(v>>16))

			151	 	 in	=	append(in,	byte(v>>8))

			152	 	 in	=	append(in,	byte(v))

			153	 	 return	in

			154	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/html/entity.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	html

					6	

					7	 //	All	entities	that	do	not	end	with	';'	are	6	or	fewer	bytes	long.

					8	 const	longestEntityWithoutSemicolon	=	6

					9	

				10	 //	entity	is	a	map	from	HTML	entity	names	to	their	values.	The	semicolon	matters:

				11	 //	http://www.whatwg.org/specs/web-apps/current-work/multipage/named-character-references.html

				12	 //	lists	both	"amp"	and	"amp;"	as	two	separate	entries.

				13	 //

				14	 //	Note	that	the	HTML5	list	is	larger	than	the	HTML4	list	at

				15	 //	http://www.w3.org/TR/html4/sgml/entities.html

				16	 var	entity	=	map[string]rune{

				17	 	 "AElig;":																											'\U000000C6',

				18	 	 "AMP;":																													'\U00000026',

				19	 	 "Aacute;":																										'\U000000C1',

				20	 	 "Abreve;":																										'\U00000102',

				21	 	 "Acirc;":																											'\U000000C2',

				22	 	 "Acy;":																													'\U00000410',

				23	 	 "Afr;":																													'\U0001D504',

				24	 	 "Agrave;":																										'\U000000C0',

				25	 	 "Alpha;":																											'\U00000391',

				26	 	 "Amacr;":																											'\U00000100',

				27	 	 "And;":																													'\U00002A53',

				28	 	 "Aogon;":																											'\U00000104',

				29	 	 "Aopf;":																												'\U0001D538',

				30	 	 "ApplyFunction;":																			'\U00002061',

				31	 	 "Aring;":																											'\U000000C5',

				32	 	 "Ascr;":																												'\U0001D49C',

				33	 	 "Assign;":																										'\U00002254',

				34	 	 "Atilde;":																										'\U000000C3',

				35	 	 "Auml;":																												'\U000000C4',

				36	 	 "Backslash;":																							'\U00002216',

				37	 	 "Barv;":																												'\U00002AE7',

				38	 	 "Barwed;":																										'\U00002306',

				39	 	 "Bcy;":																													'\U00000411',

				40	 	 "Because;":																									'\U00002235',

				41	 	 "Bernoullis;":																						'\U0000212C',

				42	 	 "Beta;":																												'\U00000392',

				43	 	 "Bfr;":																													'\U0001D505',

				44	 	 "Bopf;":																												'\U0001D539',

				45	 	 "Breve;":																											'\U000002D8',

				46	 	 "Bscr;":																												'\U0000212C',

				47	 	 "Bumpeq;":																										'\U0000224E',

				48	 	 "CHcy;":																												'\U00000427',

				49	 	 "COPY;":																												'\U000000A9',

				50	 	 "Cacute;":																										'\U00000106',

				51	 	 "Cap;":																													'\U000022D2',

				52	 	 "CapitalDifferentialD;":												'\U00002145',

				53	 	 "Cayleys;":																									'\U0000212D',

				54	 	 "Ccaron;":																										'\U0000010C',

				55	 	 "Ccedil;":																										'\U000000C7',

				56	 	 "Ccirc;":																											'\U00000108',

				57	 	 "Cconint;":																									'\U00002230',

				58	 	 "Cdot;":																												'\U0000010A',

				59	 	 "Cedilla;":																									'\U000000B8',

				60	 	 "CenterDot;":																							'\U000000B7',

				61	 	 "Cfr;":																													'\U0000212D',

				62	 	 "Chi;":																													'\U000003A7',

				63	 	 "CircleDot;":																							'\U00002299',

				64	 	 "CircleMinus;":																					'\U00002296',

				65	 	 "CirclePlus;":																						'\U00002295',

				66	 	 "CircleTimes;":																					'\U00002297',

				67	 	 "ClockwiseContourIntegral;":								'\U00002232',

				68	 	 "CloseCurlyDoubleQuote;":											'\U0000201D',

				69	 	 "CloseCurlyQuote;":																	'\U00002019',

				70	 	 "Colon;":																											'\U00002237',

				71	 	 "Colone;":																										'\U00002A74',

				72	 	 "Congruent;":																							'\U00002261',

				73	 	 "Conint;":																										'\U0000222F',

				74	 	 "ContourIntegral;":																	'\U0000222E',

				75	 	 "Copf;":																												'\U00002102',

				76	 	 "Coproduct;":																							'\U00002210',

				77	 	 "CounterClockwiseContourIntegral;":	'\U00002233',

				78	 	 "Cross;":																											'\U00002A2F',

				79	 	 "Cscr;":																												'\U0001D49E',

				80	 	 "Cup;":																													'\U000022D3',

				81	 	 "CupCap;":																										'\U0000224D',

				82	 	 "DD;":																														'\U00002145',

				83	 	 "DDotrahd;":																								'\U00002911',

				84	 	 "DJcy;":																												'\U00000402',

				85	 	 "DScy;":																												'\U00000405',

				86	 	 "DZcy;":																												'\U0000040F',

				87	 	 "Dagger;":																										'\U00002021',

				88	 	 "Darr;":																												'\U000021A1',

				89	 	 "Dashv;":																											'\U00002AE4',

				90	 	 "Dcaron;":																										'\U0000010E',

				91	 	 "Dcy;":																													'\U00000414',

				92	 	 "Del;":																													'\U00002207',

				93	 	 "Delta;":																											'\U00000394',

				94	 	 "Dfr;":																													'\U0001D507',

				95	 	 "DiacriticalAcute;":																'\U000000B4',

				96	 	 "DiacriticalDot;":																		'\U000002D9',

				97	 	 "DiacriticalDoubleAcute;":										'\U000002DD',

				98	 	 "DiacriticalGrave;":																'\U00000060',

				99	 	 "DiacriticalTilde;":																'\U000002DC',

			100	 	 "Diamond;":																									'\U000022C4',

			101	 	 "DifferentialD;":																			'\U00002146',

			102	 	 "Dopf;":																												'\U0001D53B',

			103	 	 "Dot;":																													'\U000000A8',

			104	 	 "DotDot;":																										'\U000020DC',

			105	 	 "DotEqual;":																								'\U00002250',

			106	 	 "DoubleContourIntegral;":											'\U0000222F',

			107	 	 "DoubleDot;":																							'\U000000A8',

			108	 	 "DoubleDownArrow;":																	'\U000021D3',

			109	 	 "DoubleLeftArrow;":																	'\U000021D0',

			110	 	 "DoubleLeftRightArrow;":												'\U000021D4',

			111	 	 "DoubleLeftTee;":																			'\U00002AE4',

			112	 	 "DoubleLongLeftArrow;":													'\U000027F8',

			113	 	 "DoubleLongLeftRightArrow;":								'\U000027FA',

			114	 	 "DoubleLongRightArrow;":												'\U000027F9',

			115	 	 "DoubleRightArrow;":																'\U000021D2',

			116	 	 "DoubleRightTee;":																		'\U000022A8',

			117	 	 "DoubleUpArrow;":																			'\U000021D1',

			118	 	 "DoubleUpDownArrow;":															'\U000021D5',

			119	 	 "DoubleVerticalBar;":															'\U00002225',

			120	 	 "DownArrow;":																							'\U00002193',

			121	 	 "DownArrowBar;":																				'\U00002913',

			122	 	 "DownArrowUpArrow;":																'\U000021F5',

			123	 	 "DownBreve;":																							'\U00000311',

			124	 	 "DownLeftRightVector;":													'\U00002950',

			125	 	 "DownLeftTeeVector;":															'\U0000295E',

			126	 	 "DownLeftVector;":																		'\U000021BD',

			127	 	 "DownLeftVectorBar;":															'\U00002956',

			128	 	 "DownRightTeeVector;":														'\U0000295F',

			129	 	 "DownRightVector;":																	'\U000021C1',

			130	 	 "DownRightVectorBar;":														'\U00002957',

			131	 	 "DownTee;":																									'\U000022A4',

			132	 	 "DownTeeArrow;":																				'\U000021A7',

			133	 	 "Downarrow;":																							'\U000021D3',

			134	 	 "Dscr;":																												'\U0001D49F',

			135	 	 "Dstrok;":																										'\U00000110',

			136	 	 "ENG;":																													'\U0000014A',

			137	 	 "ETH;":																													'\U000000D0',

			138	 	 "Eacute;":																										'\U000000C9',

			139	 	 "Ecaron;":																										'\U0000011A',

			140	 	 "Ecirc;":																											'\U000000CA',

			141	 	 "Ecy;":																													'\U0000042D',

			142	 	 "Edot;":																												'\U00000116',

			143	 	 "Efr;":																													'\U0001D508',

			144	 	 "Egrave;":																										'\U000000C8',

			145	 	 "Element;":																									'\U00002208',

			146	 	 "Emacr;":																											'\U00000112',

			147	 	 "EmptySmallSquare;":																'\U000025FB',

			148	 	 "EmptyVerySmallSquare;":												'\U000025AB',

			149	 	 "Eogon;":																											'\U00000118',

			150	 	 "Eopf;":																												'\U0001D53C',

			151	 	 "Epsilon;":																									'\U00000395',

			152	 	 "Equal;":																											'\U00002A75',

			153	 	 "EqualTilde;":																						'\U00002242',

			154	 	 "Equilibrium;":																					'\U000021CC',

			155	 	 "Escr;":																												'\U00002130',

			156	 	 "Esim;":																												'\U00002A73',

			157	 	 "Eta;":																													'\U00000397',

			158	 	 "Euml;":																												'\U000000CB',

			159	 	 "Exists;":																										'\U00002203',

			160	 	 "ExponentialE;":																				'\U00002147',

			161	 	 "Fcy;":																													'\U00000424',

			162	 	 "Ffr;":																													'\U0001D509',

			163	 	 "FilledSmallSquare;":															'\U000025FC',

			164	 	 "FilledVerySmallSquare;":											'\U000025AA',

			165	 	 "Fopf;":																												'\U0001D53D',

			166	 	 "ForAll;":																										'\U00002200',

			167	 	 "Fouriertrf;":																						'\U00002131',

			168	 	 "Fscr;":																												'\U00002131',

			169	 	 "GJcy;":																												'\U00000403',

			170	 	 "GT;":																														'\U0000003E',

			171	 	 "Gamma;":																											'\U00000393',

			172	 	 "Gammad;":																										'\U000003DC',

			173	 	 "Gbreve;":																										'\U0000011E',

			174	 	 "Gcedil;":																										'\U00000122',

			175	 	 "Gcirc;":																											'\U0000011C',

			176	 	 "Gcy;":																													'\U00000413',

			177	 	 "Gdot;":																												'\U00000120',

			178	 	 "Gfr;":																													'\U0001D50A',

			179	 	 "Gg;":																														'\U000022D9',

			180	 	 "Gopf;":																												'\U0001D53E',

			181	 	 "GreaterEqual;":																				'\U00002265',

			182	 	 "GreaterEqualLess;":																'\U000022DB',

			183	 	 "GreaterFullEqual;":																'\U00002267',

			184	 	 "GreaterGreater;":																		'\U00002AA2',

			185	 	 "GreaterLess;":																					'\U00002277',

			186	 	 "GreaterSlantEqual;":															'\U00002A7E',

			187	 	 "GreaterTilde;":																				'\U00002273',

			188	 	 "Gscr;":																												'\U0001D4A2',

			189	 	 "Gt;":																														'\U0000226B',

			190	 	 "HARDcy;":																										'\U0000042A',

			191	 	 "Hacek;":																											'\U000002C7',

			192	 	 "Hat;":																													'\U0000005E',

			193	 	 "Hcirc;":																											'\U00000124',

			194	 	 "Hfr;":																													'\U0000210C',

			195	 	 "HilbertSpace;":																				'\U0000210B',

			196	 	 "Hopf;":																												'\U0000210D',

			197	 	 "HorizontalLine;":																		'\U00002500',

			198	 	 "Hscr;":																												'\U0000210B',

			199	 	 "Hstrok;":																										'\U00000126',

			200	 	 "HumpDownHump;":																				'\U0000224E',

			201	 	 "HumpEqual;":																							'\U0000224F',

			202	 	 "IEcy;":																												'\U00000415',

			203	 	 "IJlig;":																											'\U00000132',

			204	 	 "IOcy;":																												'\U00000401',

			205	 	 "Iacute;":																										'\U000000CD',

			206	 	 "Icirc;":																											'\U000000CE',

			207	 	 "Icy;":																													'\U00000418',

			208	 	 "Idot;":																												'\U00000130',

			209	 	 "Ifr;":																													'\U00002111',

			210	 	 "Igrave;":																										'\U000000CC',

			211	 	 "Im;":																														'\U00002111',

			212	 	 "Imacr;":																											'\U0000012A',

			213	 	 "ImaginaryI;":																						'\U00002148',

			214	 	 "Implies;":																									'\U000021D2',

			215	 	 "Int;":																													'\U0000222C',

			216	 	 "Integral;":																								'\U0000222B',

			217	 	 "Intersection;":																				'\U000022C2',

			218	 	 "InvisibleComma;":																		'\U00002063',

			219	 	 "InvisibleTimes;":																		'\U00002062',

			220	 	 "Iogon;":																											'\U0000012E',

			221	 	 "Iopf;":																												'\U0001D540',

			222	 	 "Iota;":																												'\U00000399',

			223	 	 "Iscr;":																												'\U00002110',

			224	 	 "Itilde;":																										'\U00000128',

			225	 	 "Iukcy;":																											'\U00000406',

			226	 	 "Iuml;":																												'\U000000CF',

			227	 	 "Jcirc;":																											'\U00000134',

			228	 	 "Jcy;":																													'\U00000419',

			229	 	 "Jfr;":																													'\U0001D50D',

			230	 	 "Jopf;":																												'\U0001D541',

			231	 	 "Jscr;":																												'\U0001D4A5',

			232	 	 "Jsercy;":																										'\U00000408',

			233	 	 "Jukcy;":																											'\U00000404',

			234	 	 "KHcy;":																												'\U00000425',

			235	 	 "KJcy;":																												'\U0000040C',

			236	 	 "Kappa;":																											'\U0000039A',

			237	 	 "Kcedil;":																										'\U00000136',

			238	 	 "Kcy;":																													'\U0000041A',

			239	 	 "Kfr;":																													'\U0001D50E',

			240	 	 "Kopf;":																												'\U0001D542',

			241	 	 "Kscr;":																												'\U0001D4A6',

			242	 	 "LJcy;":																												'\U00000409',

			243	 	 "LT;":																														'\U0000003C',

			244	 	 "Lacute;":																										'\U00000139',

			245	 	 "Lambda;":																										'\U0000039B',

			246	 	 "Lang;":																												'\U000027EA',

			247	 	 "Laplacetrf;":																						'\U00002112',

			248	 	 "Larr;":																												'\U0000219E',

			249	 	 "Lcaron;":																										'\U0000013D',

			250	 	 "Lcedil;":																										'\U0000013B',

			251	 	 "Lcy;":																													'\U0000041B',

			252	 	 "LeftAngleBracket;":																'\U000027E8',

			253	 	 "LeftArrow;":																							'\U00002190',

			254	 	 "LeftArrowBar;":																				'\U000021E4',

			255	 	 "LeftArrowRightArrow;":													'\U000021C6',

			256	 	 "LeftCeiling;":																					'\U00002308',

			257	 	 "LeftDoubleBracket;":															'\U000027E6',

			258	 	 "LeftDownTeeVector;":															'\U00002961',

			259	 	 "LeftDownVector;":																		'\U000021C3',

			260	 	 "LeftDownVectorBar;":															'\U00002959',

			261	 	 "LeftFloor;":																							'\U0000230A',

			262	 	 "LeftRightArrow;":																		'\U00002194',

			263	 	 "LeftRightVector;":																	'\U0000294E',

			264	 	 "LeftTee;":																									'\U000022A3',

			265	 	 "LeftTeeArrow;":																				'\U000021A4',

			266	 	 "LeftTeeVector;":																			'\U0000295A',

			267	 	 "LeftTriangle;":																				'\U000022B2',

			268	 	 "LeftTriangleBar;":																	'\U000029CF',

			269	 	 "LeftTriangleEqual;":															'\U000022B4',

			270	 	 "LeftUpDownVector;":																'\U00002951',

			271	 	 "LeftUpTeeVector;":																	'\U00002960',

			272	 	 "LeftUpVector;":																				'\U000021BF',

			273	 	 "LeftUpVectorBar;":																	'\U00002958',

			274	 	 "LeftVector;":																						'\U000021BC',

			275	 	 "LeftVectorBar;":																			'\U00002952',

			276	 	 "Leftarrow;":																							'\U000021D0',

			277	 	 "Leftrightarrow;":																		'\U000021D4',

			278	 	 "LessEqualGreater;":																'\U000022DA',

			279	 	 "LessFullEqual;":																			'\U00002266',

			280	 	 "LessGreater;":																					'\U00002276',

			281	 	 "LessLess;":																								'\U00002AA1',

			282	 	 "LessSlantEqual;":																		'\U00002A7D',

			283	 	 "LessTilde;":																							'\U00002272',

			284	 	 "Lfr;":																													'\U0001D50F',

			285	 	 "Ll;":																														'\U000022D8',

			286	 	 "Lleftarrow;":																						'\U000021DA',

			287	 	 "Lmidot;":																										'\U0000013F',

			288	 	 "LongLeftArrow;":																			'\U000027F5',

			289	 	 "LongLeftRightArrow;":														'\U000027F7',

			290	 	 "LongRightArrow;":																		'\U000027F6',

			291	 	 "Longleftarrow;":																			'\U000027F8',

			292	 	 "Longleftrightarrow;":														'\U000027FA',

			293	 	 "Longrightarrow;":																		'\U000027F9',

			294	 	 "Lopf;":																												'\U0001D543',

			295	 	 "LowerLeftArrow;":																		'\U00002199',

			296	 	 "LowerRightArrow;":																	'\U00002198',

			297	 	 "Lscr;":																												'\U00002112',

			298	 	 "Lsh;":																													'\U000021B0',

			299	 	 "Lstrok;":																										'\U00000141',

			300	 	 "Lt;":																														'\U0000226A',

			301	 	 "Map;":																													'\U00002905',

			302	 	 "Mcy;":																													'\U0000041C',

			303	 	 "MediumSpace;":																					'\U0000205F',

			304	 	 "Mellintrf;":																							'\U00002133',

			305	 	 "Mfr;":																													'\U0001D510',

			306	 	 "MinusPlus;":																							'\U00002213',

			307	 	 "Mopf;":																												'\U0001D544',

			308	 	 "Mscr;":																												'\U00002133',

			309	 	 "Mu;":																														'\U0000039C',

			310	 	 "NJcy;":																												'\U0000040A',

			311	 	 "Nacute;":																										'\U00000143',

			312	 	 "Ncaron;":																										'\U00000147',

			313	 	 "Ncedil;":																										'\U00000145',

			314	 	 "Ncy;":																													'\U0000041D',

			315	 	 "NegativeMediumSpace;":													'\U0000200B',

			316	 	 "NegativeThickSpace;":														'\U0000200B',

			317	 	 "NegativeThinSpace;":															'\U0000200B',

			318	 	 "NegativeVeryThinSpace;":											'\U0000200B',

			319	 	 "NestedGreaterGreater;":												'\U0000226B',

			320	 	 "NestedLessLess;":																		'\U0000226A',

			321	 	 "NewLine;":																									'\U0000000A',

			322	 	 "Nfr;":																													'\U0001D511',

			323	 	 "NoBreak;":																									'\U00002060',

			324	 	 "NonBreakingSpace;":																'\U000000A0',

			325	 	 "Nopf;":																												'\U00002115',

			326	 	 "Not;":																													'\U00002AEC',

			327	 	 "NotCongruent;":																				'\U00002262',

			328	 	 "NotCupCap;":																							'\U0000226D',

			329	 	 "NotDoubleVerticalBar;":												'\U00002226',

			330	 	 "NotElement;":																						'\U00002209',

			331	 	 "NotEqual;":																								'\U00002260',

			332	 	 "NotExists;":																							'\U00002204',

			333	 	 "NotGreater;":																						'\U0000226F',

			334	 	 "NotGreaterEqual;":																	'\U00002271',

			335	 	 "NotGreaterLess;":																		'\U00002279',

			336	 	 "NotGreaterTilde;":																	'\U00002275',

			337	 	 "NotLeftTriangle;":																	'\U000022EA',

			338	 	 "NotLeftTriangleEqual;":												'\U000022EC',

			339	 	 "NotLess;":																									'\U0000226E',

			340	 	 "NotLessEqual;":																				'\U00002270',

			341	 	 "NotLessGreater;":																		'\U00002278',

			342	 	 "NotLessTilde;":																				'\U00002274',

			343	 	 "NotPrecedes;":																					'\U00002280',

			344	 	 "NotPrecedesSlantEqual;":											'\U000022E0',

			345	 	 "NotReverseElement;":															'\U0000220C',

			346	 	 "NotRightTriangle;":																'\U000022EB',

			347	 	 "NotRightTriangleEqual;":											'\U000022ED',

			348	 	 "NotSquareSubsetEqual;":												'\U000022E2',

			349	 	 "NotSquareSupersetEqual;":										'\U000022E3',

			350	 	 "NotSubsetEqual;":																		'\U00002288',

			351	 	 "NotSucceeds;":																					'\U00002281',

			352	 	 "NotSucceedsSlantEqual;":											'\U000022E1',

			353	 	 "NotSupersetEqual;":																'\U00002289',

			354	 	 "NotTilde;":																								'\U00002241',

			355	 	 "NotTildeEqual;":																			'\U00002244',

			356	 	 "NotTildeFullEqual;":															'\U00002247',

			357	 	 "NotTildeTilde;":																			'\U00002249',

			358	 	 "NotVerticalBar;":																		'\U00002224',

			359	 	 "Nscr;":																												'\U0001D4A9',

			360	 	 "Ntilde;":																										'\U000000D1',

			361	 	 "Nu;":																														'\U0000039D',

			362	 	 "OElig;":																											'\U00000152',

			363	 	 "Oacute;":																										'\U000000D3',

			364	 	 "Ocirc;":																											'\U000000D4',

			365	 	 "Ocy;":																													'\U0000041E',

			366	 	 "Odblac;":																										'\U00000150',

			367	 	 "Ofr;":																													'\U0001D512',

			368	 	 "Ograve;":																										'\U000000D2',

			369	 	 "Omacr;":																											'\U0000014C',

			370	 	 "Omega;":																											'\U000003A9',

			371	 	 "Omicron;":																									'\U0000039F',

			372	 	 "Oopf;":																												'\U0001D546',

			373	 	 "OpenCurlyDoubleQuote;":												'\U0000201C',

			374	 	 "OpenCurlyQuote;":																		'\U00002018',

			375	 	 "Or;":																														'\U00002A54',

			376	 	 "Oscr;":																												'\U0001D4AA',

			377	 	 "Oslash;":																										'\U000000D8',

			378	 	 "Otilde;":																										'\U000000D5',

			379	 	 "Otimes;":																										'\U00002A37',

			380	 	 "Ouml;":																												'\U000000D6',

			381	 	 "OverBar;":																									'\U0000203E',

			382	 	 "OverBrace;":																							'\U000023DE',

			383	 	 "OverBracket;":																					'\U000023B4',

			384	 	 "OverParenthesis;":																	'\U000023DC',

			385	 	 "PartialD;":																								'\U00002202',

			386	 	 "Pcy;":																													'\U0000041F',

			387	 	 "Pfr;":																													'\U0001D513',

			388	 	 "Phi;":																													'\U000003A6',

			389	 	 "Pi;":																														'\U000003A0',

			390	 	 "PlusMinus;":																							'\U000000B1',

			391	 	 "Poincareplane;":																			'\U0000210C',

			392	 	 "Popf;":																												'\U00002119',

			393	 	 "Pr;":																														'\U00002ABB',

			394	 	 "Precedes;":																								'\U0000227A',

			395	 	 "PrecedesEqual;":																			'\U00002AAF',

			396	 	 "PrecedesSlantEqual;":														'\U0000227C',

			397	 	 "PrecedesTilde;":																			'\U0000227E',

			398	 	 "Prime;":																											'\U00002033',

			399	 	 "Product;":																									'\U0000220F',

			400	 	 "Proportion;":																						'\U00002237',

			401	 	 "Proportional;":																				'\U0000221D',

			402	 	 "Pscr;":																												'\U0001D4AB',

			403	 	 "Psi;":																													'\U000003A8',

			404	 	 "QUOT;":																												'\U00000022',

			405	 	 "Qfr;":																													'\U0001D514',

			406	 	 "Qopf;":																												'\U0000211A',

			407	 	 "Qscr;":																												'\U0001D4AC',

			408	 	 "RBarr;":																											'\U00002910',

			409	 	 "REG;":																													'\U000000AE',

			410	 	 "Racute;":																										'\U00000154',

			411	 	 "Rang;":																												'\U000027EB',

			412	 	 "Rarr;":																												'\U000021A0',

			413	 	 "Rarrtl;":																										'\U00002916',

			414	 	 "Rcaron;":																										'\U00000158',

			415	 	 "Rcedil;":																										'\U00000156',

			416	 	 "Rcy;":																													'\U00000420',

			417	 	 "Re;":																														'\U0000211C',

			418	 	 "ReverseElement;":																		'\U0000220B',

			419	 	 "ReverseEquilibrium;":														'\U000021CB',

			420	 	 "ReverseUpEquilibrium;":												'\U0000296F',

			421	 	 "Rfr;":																													'\U0000211C',

			422	 	 "Rho;":																													'\U000003A1',

			423	 	 "RightAngleBracket;":															'\U000027E9',

			424	 	 "RightArrow;":																						'\U00002192',

			425	 	 "RightArrowBar;":																			'\U000021E5',

			426	 	 "RightArrowLeftArrow;":													'\U000021C4',

			427	 	 "RightCeiling;":																				'\U00002309',

			428	 	 "RightDoubleBracket;":														'\U000027E7',

			429	 	 "RightDownTeeVector;":														'\U0000295D',

			430	 	 "RightDownVector;":																	'\U000021C2',

			431	 	 "RightDownVectorBar;":														'\U00002955',

			432	 	 "RightFloor;":																						'\U0000230B',

			433	 	 "RightTee;":																								'\U000022A2',

			434	 	 "RightTeeArrow;":																			'\U000021A6',

			435	 	 "RightTeeVector;":																		'\U0000295B',

			436	 	 "RightTriangle;":																			'\U000022B3',

			437	 	 "RightTriangleBar;":																'\U000029D0',

			438	 	 "RightTriangleEqual;":														'\U000022B5',

			439	 	 "RightUpDownVector;":															'\U0000294F',

			440	 	 "RightUpTeeVector;":																'\U0000295C',

			441	 	 "RightUpVector;":																			'\U000021BE',

			442	 	 "RightUpVectorBar;":																'\U00002954',

			443	 	 "RightVector;":																					'\U000021C0',

			444	 	 "RightVectorBar;":																		'\U00002953',

			445	 	 "Rightarrow;":																						'\U000021D2',

			446	 	 "Ropf;":																												'\U0000211D',

			447	 	 "RoundImplies;":																				'\U00002970',

			448	 	 "Rrightarrow;":																					'\U000021DB',

			449	 	 "Rscr;":																												'\U0000211B',

			450	 	 "Rsh;":																													'\U000021B1',

			451	 	 "RuleDelayed;":																					'\U000029F4',

			452	 	 "SHCHcy;":																										'\U00000429',

			453	 	 "SHcy;":																												'\U00000428',

			454	 	 "SOFTcy;":																										'\U0000042C',

			455	 	 "Sacute;":																										'\U0000015A',

			456	 	 "Sc;":																														'\U00002ABC',

			457	 	 "Scaron;":																										'\U00000160',

			458	 	 "Scedil;":																										'\U0000015E',

			459	 	 "Scirc;":																											'\U0000015C',

			460	 	 "Scy;":																													'\U00000421',

			461	 	 "Sfr;":																													'\U0001D516',

			462	 	 "ShortDownArrow;":																		'\U00002193',

			463	 	 "ShortLeftArrow;":																		'\U00002190',

			464	 	 "ShortRightArrow;":																	'\U00002192',

			465	 	 "ShortUpArrow;":																				'\U00002191',

			466	 	 "Sigma;":																											'\U000003A3',

			467	 	 "SmallCircle;":																					'\U00002218',

			468	 	 "Sopf;":																												'\U0001D54A',

			469	 	 "Sqrt;":																												'\U0000221A',

			470	 	 "Square;":																										'\U000025A1',

			471	 	 "SquareIntersection;":														'\U00002293',

			472	 	 "SquareSubset;":																				'\U0000228F',

			473	 	 "SquareSubsetEqual;":															'\U00002291',

			474	 	 "SquareSuperset;":																		'\U00002290',

			475	 	 "SquareSupersetEqual;":													'\U00002292',

			476	 	 "SquareUnion;":																					'\U00002294',

			477	 	 "Sscr;":																												'\U0001D4AE',

			478	 	 "Star;":																												'\U000022C6',

			479	 	 "Sub;":																													'\U000022D0',

			480	 	 "Subset;":																										'\U000022D0',

			481	 	 "SubsetEqual;":																					'\U00002286',

			482	 	 "Succeeds;":																								'\U0000227B',

			483	 	 "SucceedsEqual;":																			'\U00002AB0',

			484	 	 "SucceedsSlantEqual;":														'\U0000227D',

			485	 	 "SucceedsTilde;":																			'\U0000227F',

			486	 	 "SuchThat;":																								'\U0000220B',

			487	 	 "Sum;":																													'\U00002211',

			488	 	 "Sup;":																													'\U000022D1',

			489	 	 "Superset;":																								'\U00002283',

			490	 	 "SupersetEqual;":																			'\U00002287',

			491	 	 "Supset;":																										'\U000022D1',

			492	 	 "THORN;":																											'\U000000DE',

			493	 	 "TRADE;":																											'\U00002122',

			494	 	 "TSHcy;":																											'\U0000040B',

			495	 	 "TScy;":																												'\U00000426',

			496	 	 "Tab;":																													'\U00000009',

			497	 	 "Tau;":																													'\U000003A4',

			498	 	 "Tcaron;":																										'\U00000164',

			499	 	 "Tcedil;":																										'\U00000162',

			500	 	 "Tcy;":																													'\U00000422',

			501	 	 "Tfr;":																													'\U0001D517',

			502	 	 "Therefore;":																							'\U00002234',

			503	 	 "Theta;":																											'\U00000398',

			504	 	 "ThinSpace;":																							'\U00002009',

			505	 	 "Tilde;":																											'\U0000223C',

			506	 	 "TildeEqual;":																						'\U00002243',

			507	 	 "TildeFullEqual;":																		'\U00002245',

			508	 	 "TildeTilde;":																						'\U00002248',

			509	 	 "Topf;":																												'\U0001D54B',

			510	 	 "TripleDot;":																							'\U000020DB',

			511	 	 "Tscr;":																												'\U0001D4AF',

			512	 	 "Tstrok;":																										'\U00000166',

			513	 	 "Uacute;":																										'\U000000DA',

			514	 	 "Uarr;":																												'\U0000219F',

			515	 	 "Uarrocir;":																								'\U00002949',

			516	 	 "Ubrcy;":																											'\U0000040E',

			517	 	 "Ubreve;":																										'\U0000016C',

			518	 	 "Ucirc;":																											'\U000000DB',

			519	 	 "Ucy;":																													'\U00000423',

			520	 	 "Udblac;":																										'\U00000170',

			521	 	 "Ufr;":																													'\U0001D518',

			522	 	 "Ugrave;":																										'\U000000D9',

			523	 	 "Umacr;":																											'\U0000016A',

			524	 	 "UnderBar;":																								'\U0000005F',

			525	 	 "UnderBrace;":																						'\U000023DF',

			526	 	 "UnderBracket;":																				'\U000023B5',

			527	 	 "UnderParenthesis;":																'\U000023DD',

			528	 	 "Union;":																											'\U000022C3',

			529	 	 "UnionPlus;":																							'\U0000228E',

			530	 	 "Uogon;":																											'\U00000172',

			531	 	 "Uopf;":																												'\U0001D54C',

			532	 	 "UpArrow;":																									'\U00002191',

			533	 	 "UpArrowBar;":																						'\U00002912',

			534	 	 "UpArrowDownArrow;":																'\U000021C5',

			535	 	 "UpDownArrow;":																					'\U00002195',

			536	 	 "UpEquilibrium;":																			'\U0000296E',

			537	 	 "UpTee;":																											'\U000022A5',

			538	 	 "UpTeeArrow;":																						'\U000021A5',

			539	 	 "Uparrow;":																									'\U000021D1',

			540	 	 "Updownarrow;":																					'\U000021D5',

			541	 	 "UpperLeftArrow;":																		'\U00002196',

			542	 	 "UpperRightArrow;":																	'\U00002197',

			543	 	 "Upsi;":																												'\U000003D2',

			544	 	 "Upsilon;":																									'\U000003A5',

			545	 	 "Uring;":																											'\U0000016E',

			546	 	 "Uscr;":																												'\U0001D4B0',

			547	 	 "Utilde;":																										'\U00000168',

			548	 	 "Uuml;":																												'\U000000DC',

			549	 	 "VDash;":																											'\U000022AB',

			550	 	 "Vbar;":																												'\U00002AEB',

			551	 	 "Vcy;":																													'\U00000412',

			552	 	 "Vdash;":																											'\U000022A9',

			553	 	 "Vdashl;":																										'\U00002AE6',

			554	 	 "Vee;":																													'\U000022C1',

			555	 	 "Verbar;":																										'\U00002016',

			556	 	 "Vert;":																												'\U00002016',

			557	 	 "VerticalBar;":																					'\U00002223',

			558	 	 "VerticalLine;":																				'\U0000007C',

			559	 	 "VerticalSeparator;":															'\U00002758',

			560	 	 "VerticalTilde;":																			'\U00002240',

			561	 	 "VeryThinSpace;":																			'\U0000200A',

			562	 	 "Vfr;":																													'\U0001D519',

			563	 	 "Vopf;":																												'\U0001D54D',

			564	 	 "Vscr;":																												'\U0001D4B1',

			565	 	 "Vvdash;":																										'\U000022AA',

			566	 	 "Wcirc;":																											'\U00000174',

			567	 	 "Wedge;":																											'\U000022C0',

			568	 	 "Wfr;":																													'\U0001D51A',

			569	 	 "Wopf;":																												'\U0001D54E',

			570	 	 "Wscr;":																												'\U0001D4B2',

			571	 	 "Xfr;":																													'\U0001D51B',

			572	 	 "Xi;":																														'\U0000039E',

			573	 	 "Xopf;":																												'\U0001D54F',

			574	 	 "Xscr;":																												'\U0001D4B3',

			575	 	 "YAcy;":																												'\U0000042F',

			576	 	 "YIcy;":																												'\U00000407',

			577	 	 "YUcy;":																												'\U0000042E',

			578	 	 "Yacute;":																										'\U000000DD',

			579	 	 "Ycirc;":																											'\U00000176',

			580	 	 "Ycy;":																													'\U0000042B',

			581	 	 "Yfr;":																													'\U0001D51C',

			582	 	 "Yopf;":																												'\U0001D550',

			583	 	 "Yscr;":																												'\U0001D4B4',

			584	 	 "Yuml;":																												'\U00000178',

			585	 	 "ZHcy;":																												'\U00000416',

			586	 	 "Zacute;":																										'\U00000179',

			587	 	 "Zcaron;":																										'\U0000017D',

			588	 	 "Zcy;":																													'\U00000417',

			589	 	 "Zdot;":																												'\U0000017B',

			590	 	 "ZeroWidthSpace;":																		'\U0000200B',

			591	 	 "Zeta;":																												'\U00000396',

			592	 	 "Zfr;":																													'\U00002128',

			593	 	 "Zopf;":																												'\U00002124',

			594	 	 "Zscr;":																												'\U0001D4B5',

			595	 	 "aacute;":																										'\U000000E1',

			596	 	 "abreve;":																										'\U00000103',

			597	 	 "ac;":																														'\U0000223E',

			598	 	 "acd;":																													'\U0000223F',

			599	 	 "acirc;":																											'\U000000E2',

			600	 	 "acute;":																											'\U000000B4',

			601	 	 "acy;":																													'\U00000430',

			602	 	 "aelig;":																											'\U000000E6',

			603	 	 "af;":																														'\U00002061',

			604	 	 "afr;":																													'\U0001D51E',

			605	 	 "agrave;":																										'\U000000E0',

			606	 	 "alefsym;":																									'\U00002135',

			607	 	 "aleph;":																											'\U00002135',

			608	 	 "alpha;":																											'\U000003B1',

			609	 	 "amacr;":																											'\U00000101',

			610	 	 "amalg;":																											'\U00002A3F',

			611	 	 "amp;":																													'\U00000026',

			612	 	 "and;":																													'\U00002227',

			613	 	 "andand;":																										'\U00002A55',

			614	 	 "andd;":																												'\U00002A5C',

			615	 	 "andslope;":																								'\U00002A58',

			616	 	 "andv;":																												'\U00002A5A',

			617	 	 "ang;":																													'\U00002220',

			618	 	 "ange;":																												'\U000029A4',

			619	 	 "angle;":																											'\U00002220',

			620	 	 "angmsd;":																										'\U00002221',

			621	 	 "angmsdaa;":																								'\U000029A8',

			622	 	 "angmsdab;":																								'\U000029A9',

			623	 	 "angmsdac;":																								'\U000029AA',

			624	 	 "angmsdad;":																								'\U000029AB',

			625	 	 "angmsdae;":																								'\U000029AC',

			626	 	 "angmsdaf;":																								'\U000029AD',

			627	 	 "angmsdag;":																								'\U000029AE',

			628	 	 "angmsdah;":																								'\U000029AF',

			629	 	 "angrt;":																											'\U0000221F',

			630	 	 "angrtvb;":																									'\U000022BE',

			631	 	 "angrtvbd;":																								'\U0000299D',

			632	 	 "angsph;":																										'\U00002222',

			633	 	 "angst;":																											'\U000000C5',

			634	 	 "angzarr;":																									'\U0000237C',

			635	 	 "aogon;":																											'\U00000105',

			636	 	 "aopf;":																												'\U0001D552',

			637	 	 "ap;":																														'\U00002248',

			638	 	 "apE;":																													'\U00002A70',

			639	 	 "apacir;":																										'\U00002A6F',

			640	 	 "ape;":																													'\U0000224A',

			641	 	 "apid;":																												'\U0000224B',

			642	 	 "apos;":																												'\U00000027',

			643	 	 "approx;":																										'\U00002248',

			644	 	 "approxeq;":																								'\U0000224A',

			645	 	 "aring;":																											'\U000000E5',

			646	 	 "ascr;":																												'\U0001D4B6',

			647	 	 "ast;":																													'\U0000002A',

			648	 	 "asymp;":																											'\U00002248',

			649	 	 "asympeq;":																									'\U0000224D',

			650	 	 "atilde;":																										'\U000000E3',

			651	 	 "auml;":																												'\U000000E4',

			652	 	 "awconint;":																								'\U00002233',

			653	 	 "awint;":																											'\U00002A11',

			654	 	 "bNot;":																												'\U00002AED',

			655	 	 "backcong;":																								'\U0000224C',

			656	 	 "backepsilon;":																					'\U000003F6',

			657	 	 "backprime;":																							'\U00002035',

			658	 	 "backsim;":																									'\U0000223D',

			659	 	 "backsimeq;":																							'\U000022CD',

			660	 	 "barvee;":																										'\U000022BD',

			661	 	 "barwed;":																										'\U00002305',

			662	 	 "barwedge;":																								'\U00002305',

			663	 	 "bbrk;":																												'\U000023B5',

			664	 	 "bbrktbrk;":																								'\U000023B6',

			665	 	 "bcong;":																											'\U0000224C',

			666	 	 "bcy;":																													'\U00000431',

			667	 	 "bdquo;":																											'\U0000201E',

			668	 	 "becaus;":																										'\U00002235',

			669	 	 "because;":																									'\U00002235',

			670	 	 "bemptyv;":																									'\U000029B0',

			671	 	 "bepsi;":																											'\U000003F6',

			672	 	 "bernou;":																										'\U0000212C',

			673	 	 "beta;":																												'\U000003B2',

			674	 	 "beth;":																												'\U00002136',

			675	 	 "between;":																									'\U0000226C',

			676	 	 "bfr;":																													'\U0001D51F',

			677	 	 "bigcap;":																										'\U000022C2',

			678	 	 "bigcirc;":																									'\U000025EF',

			679	 	 "bigcup;":																										'\U000022C3',

			680	 	 "bigodot;":																									'\U00002A00',

			681	 	 "bigoplus;":																								'\U00002A01',

			682	 	 "bigotimes;":																							'\U00002A02',

			683	 	 "bigsqcup;":																								'\U00002A06',

			684	 	 "bigstar;":																									'\U00002605',

			685	 	 "bigtriangledown;":																	'\U000025BD',

			686	 	 "bigtriangleup;":																			'\U000025B3',

			687	 	 "biguplus;":																								'\U00002A04',

			688	 	 "bigvee;":																										'\U000022C1',

			689	 	 "bigwedge;":																								'\U000022C0',

			690	 	 "bkarow;":																										'\U0000290D',

			691	 	 "blacklozenge;":																				'\U000029EB',

			692	 	 "blacksquare;":																					'\U000025AA',

			693	 	 "blacktriangle;":																			'\U000025B4',

			694	 	 "blacktriangledown;":															'\U000025BE',

			695	 	 "blacktriangleleft;":															'\U000025C2',

			696	 	 "blacktriangleright;":														'\U000025B8',

			697	 	 "blank;":																											'\U00002423',

			698	 	 "blk12;":																											'\U00002592',

			699	 	 "blk14;":																											'\U00002591',

			700	 	 "blk34;":																											'\U00002593',

			701	 	 "block;":																											'\U00002588',

			702	 	 "bnot;":																												'\U00002310',

			703	 	 "bopf;":																												'\U0001D553',

			704	 	 "bot;":																													'\U000022A5',

			705	 	 "bottom;":																										'\U000022A5',

			706	 	 "bowtie;":																										'\U000022C8',

			707	 	 "boxDL;":																											'\U00002557',

			708	 	 "boxDR;":																											'\U00002554',

			709	 	 "boxDl;":																											'\U00002556',

			710	 	 "boxDr;":																											'\U00002553',

			711	 	 "boxH;":																												'\U00002550',

			712	 	 "boxHD;":																											'\U00002566',

			713	 	 "boxHU;":																											'\U00002569',

			714	 	 "boxHd;":																											'\U00002564',

			715	 	 "boxHu;":																											'\U00002567',

			716	 	 "boxUL;":																											'\U0000255D',

			717	 	 "boxUR;":																											'\U0000255A',

			718	 	 "boxUl;":																											'\U0000255C',

			719	 	 "boxUr;":																											'\U00002559',

			720	 	 "boxV;":																												'\U00002551',

			721	 	 "boxVH;":																											'\U0000256C',

			722	 	 "boxVL;":																											'\U00002563',

			723	 	 "boxVR;":																											'\U00002560',

			724	 	 "boxVh;":																											'\U0000256B',

			725	 	 "boxVl;":																											'\U00002562',

			726	 	 "boxVr;":																											'\U0000255F',

			727	 	 "boxbox;":																										'\U000029C9',

			728	 	 "boxdL;":																											'\U00002555',

			729	 	 "boxdR;":																											'\U00002552',

			730	 	 "boxdl;":																											'\U00002510',

			731	 	 "boxdr;":																											'\U0000250C',

			732	 	 "boxh;":																												'\U00002500',

			733	 	 "boxhD;":																											'\U00002565',

			734	 	 "boxhU;":																											'\U00002568',

			735	 	 "boxhd;":																											'\U0000252C',

			736	 	 "boxhu;":																											'\U00002534',

			737	 	 "boxminus;":																								'\U0000229F',

			738	 	 "boxplus;":																									'\U0000229E',

			739	 	 "boxtimes;":																								'\U000022A0',

			740	 	 "boxuL;":																											'\U0000255B',

			741	 	 "boxuR;":																											'\U00002558',

			742	 	 "boxul;":																											'\U00002518',

			743	 	 "boxur;":																											'\U00002514',

			744	 	 "boxv;":																												'\U00002502',

			745	 	 "boxvH;":																											'\U0000256A',

			746	 	 "boxvL;":																											'\U00002561',

			747	 	 "boxvR;":																											'\U0000255E',

			748	 	 "boxvh;":																											'\U0000253C',

			749	 	 "boxvl;":																											'\U00002524',

			750	 	 "boxvr;":																											'\U0000251C',

			751	 	 "bprime;":																										'\U00002035',

			752	 	 "breve;":																											'\U000002D8',

			753	 	 "brvbar;":																										'\U000000A6',

			754	 	 "bscr;":																												'\U0001D4B7',

			755	 	 "bsemi;":																											'\U0000204F',

			756	 	 "bsim;":																												'\U0000223D',

			757	 	 "bsime;":																											'\U000022CD',

			758	 	 "bsol;":																												'\U0000005C',

			759	 	 "bsolb;":																											'\U000029C5',

			760	 	 "bsolhsub;":																								'\U000027C8',

			761	 	 "bull;":																												'\U00002022',

			762	 	 "bullet;":																										'\U00002022',

			763	 	 "bump;":																												'\U0000224E',

			764	 	 "bumpE;":																											'\U00002AAE',

			765	 	 "bumpe;":																											'\U0000224F',

			766	 	 "bumpeq;":																										'\U0000224F',

			767	 	 "cacute;":																										'\U00000107',

			768	 	 "cap;":																													'\U00002229',

			769	 	 "capand;":																										'\U00002A44',

			770	 	 "capbrcup;":																								'\U00002A49',

			771	 	 "capcap;":																										'\U00002A4B',

			772	 	 "capcup;":																										'\U00002A47',

			773	 	 "capdot;":																										'\U00002A40',

			774	 	 "caret;":																											'\U00002041',

			775	 	 "caron;":																											'\U000002C7',

			776	 	 "ccaps;":																											'\U00002A4D',

			777	 	 "ccaron;":																										'\U0000010D',

			778	 	 "ccedil;":																										'\U000000E7',

			779	 	 "ccirc;":																											'\U00000109',

			780	 	 "ccups;":																											'\U00002A4C',

			781	 	 "ccupssm;":																									'\U00002A50',

			782	 	 "cdot;":																												'\U0000010B',

			783	 	 "cedil;":																											'\U000000B8',

			784	 	 "cemptyv;":																									'\U000029B2',

			785	 	 "cent;":																												'\U000000A2',

			786	 	 "centerdot;":																							'\U000000B7',

			787	 	 "cfr;":																													'\U0001D520',

			788	 	 "chcy;":																												'\U00000447',

			789	 	 "check;":																											'\U00002713',

			790	 	 "checkmark;":																							'\U00002713',

			791	 	 "chi;":																													'\U000003C7',

			792	 	 "cir;":																													'\U000025CB',

			793	 	 "cirE;":																												'\U000029C3',

			794	 	 "circ;":																												'\U000002C6',

			795	 	 "circeq;":																										'\U00002257',

			796	 	 "circlearrowleft;":																	'\U000021BA',

			797	 	 "circlearrowright;":																'\U000021BB',

			798	 	 "circledR;":																								'\U000000AE',

			799	 	 "circledS;":																								'\U000024C8',

			800	 	 "circledast;":																						'\U0000229B',

			801	 	 "circledcirc;":																					'\U0000229A',

			802	 	 "circleddash;":																					'\U0000229D',

			803	 	 "cire;":																												'\U00002257',

			804	 	 "cirfnint;":																								'\U00002A10',

			805	 	 "cirmid;":																										'\U00002AEF',

			806	 	 "cirscir;":																									'\U000029C2',

			807	 	 "clubs;":																											'\U00002663',

			808	 	 "clubsuit;":																								'\U00002663',

			809	 	 "colon;":																											'\U0000003A',

			810	 	 "colone;":																										'\U00002254',

			811	 	 "coloneq;":																									'\U00002254',

			812	 	 "comma;":																											'\U0000002C',

			813	 	 "commat;":																										'\U00000040',

			814	 	 "comp;":																												'\U00002201',

			815	 	 "compfn;":																										'\U00002218',

			816	 	 "complement;":																						'\U00002201',

			817	 	 "complexes;":																							'\U00002102',

			818	 	 "cong;":																												'\U00002245',

			819	 	 "congdot;":																									'\U00002A6D',

			820	 	 "conint;":																										'\U0000222E',

			821	 	 "copf;":																												'\U0001D554',

			822	 	 "coprod;":																										'\U00002210',

			823	 	 "copy;":																												'\U000000A9',

			824	 	 "copysr;":																										'\U00002117',

			825	 	 "crarr;":																											'\U000021B5',

			826	 	 "cross;":																											'\U00002717',

			827	 	 "cscr;":																												'\U0001D4B8',

			828	 	 "csub;":																												'\U00002ACF',

			829	 	 "csube;":																											'\U00002AD1',

			830	 	 "csup;":																												'\U00002AD0',

			831	 	 "csupe;":																											'\U00002AD2',

			832	 	 "ctdot;":																											'\U000022EF',

			833	 	 "cudarrl;":																									'\U00002938',

			834	 	 "cudarrr;":																									'\U00002935',

			835	 	 "cuepr;":																											'\U000022DE',

			836	 	 "cuesc;":																											'\U000022DF',

			837	 	 "cularr;":																										'\U000021B6',

			838	 	 "cularrp;":																									'\U0000293D',

			839	 	 "cup;":																													'\U0000222A',

			840	 	 "cupbrcap;":																								'\U00002A48',

			841	 	 "cupcap;":																										'\U00002A46',

			842	 	 "cupcup;":																										'\U00002A4A',

			843	 	 "cupdot;":																										'\U0000228D',

			844	 	 "cupor;":																											'\U00002A45',

			845	 	 "curarr;":																										'\U000021B7',

			846	 	 "curarrm;":																									'\U0000293C',

			847	 	 "curlyeqprec;":																					'\U000022DE',

			848	 	 "curlyeqsucc;":																					'\U000022DF',

			849	 	 "curlyvee;":																								'\U000022CE',

			850	 	 "curlywedge;":																						'\U000022CF',

			851	 	 "curren;":																										'\U000000A4',

			852	 	 "curvearrowleft;":																		'\U000021B6',

			853	 	 "curvearrowright;":																	'\U000021B7',

			854	 	 "cuvee;":																											'\U000022CE',

			855	 	 "cuwed;":																											'\U000022CF',

			856	 	 "cwconint;":																								'\U00002232',

			857	 	 "cwint;":																											'\U00002231',

			858	 	 "cylcty;":																										'\U0000232D',

			859	 	 "dArr;":																												'\U000021D3',

			860	 	 "dHar;":																												'\U00002965',

			861	 	 "dagger;":																										'\U00002020',

			862	 	 "daleth;":																										'\U00002138',

			863	 	 "darr;":																												'\U00002193',

			864	 	 "dash;":																												'\U00002010',

			865	 	 "dashv;":																											'\U000022A3',

			866	 	 "dbkarow;":																									'\U0000290F',

			867	 	 "dblac;":																											'\U000002DD',

			868	 	 "dcaron;":																										'\U0000010F',

			869	 	 "dcy;":																													'\U00000434',

			870	 	 "dd;":																														'\U00002146',

			871	 	 "ddagger;":																									'\U00002021',

			872	 	 "ddarr;":																											'\U000021CA',

			873	 	 "ddotseq;":																									'\U00002A77',

			874	 	 "deg;":																													'\U000000B0',

			875	 	 "delta;":																											'\U000003B4',

			876	 	 "demptyv;":																									'\U000029B1',

			877	 	 "dfisht;":																										'\U0000297F',

			878	 	 "dfr;":																													'\U0001D521',

			879	 	 "dharl;":																											'\U000021C3',

			880	 	 "dharr;":																											'\U000021C2',

			881	 	 "diam;":																												'\U000022C4',

			882	 	 "diamond;":																									'\U000022C4',

			883	 	 "diamondsuit;":																					'\U00002666',

			884	 	 "diams;":																											'\U00002666',

			885	 	 "die;":																													'\U000000A8',

			886	 	 "digamma;":																									'\U000003DD',

			887	 	 "disin;":																											'\U000022F2',

			888	 	 "div;":																													'\U000000F7',

			889	 	 "divide;":																										'\U000000F7',

			890	 	 "divideontimes;":																			'\U000022C7',

			891	 	 "divonx;":																										'\U000022C7',

			892	 	 "djcy;":																												'\U00000452',

			893	 	 "dlcorn;":																										'\U0000231E',

			894	 	 "dlcrop;":																										'\U0000230D',

			895	 	 "dollar;":																										'\U00000024',

			896	 	 "dopf;":																												'\U0001D555',

			897	 	 "dot;":																													'\U000002D9',

			898	 	 "doteq;":																											'\U00002250',

			899	 	 "doteqdot;":																								'\U00002251',

			900	 	 "dotminus;":																								'\U00002238',

			901	 	 "dotplus;":																									'\U00002214',

			902	 	 "dotsquare;":																							'\U000022A1',

			903	 	 "doublebarwedge;":																		'\U00002306',

			904	 	 "downarrow;":																							'\U00002193',

			905	 	 "downdownarrows;":																		'\U000021CA',

			906	 	 "downharpoonleft;":																	'\U000021C3',

			907	 	 "downharpoonright;":																'\U000021C2',

			908	 	 "drbkarow;":																								'\U00002910',

			909	 	 "drcorn;":																										'\U0000231F',

			910	 	 "drcrop;":																										'\U0000230C',

			911	 	 "dscr;":																												'\U0001D4B9',

			912	 	 "dscy;":																												'\U00000455',

			913	 	 "dsol;":																												'\U000029F6',

			914	 	 "dstrok;":																										'\U00000111',

			915	 	 "dtdot;":																											'\U000022F1',

			916	 	 "dtri;":																												'\U000025BF',

			917	 	 "dtrif;":																											'\U000025BE',

			918	 	 "duarr;":																											'\U000021F5',

			919	 	 "duhar;":																											'\U0000296F',

			920	 	 "dwangle;":																									'\U000029A6',

			921	 	 "dzcy;":																												'\U0000045F',

			922	 	 "dzigrarr;":																								'\U000027FF',

			923	 	 "eDDot;":																											'\U00002A77',

			924	 	 "eDot;":																												'\U00002251',

			925	 	 "eacute;":																										'\U000000E9',

			926	 	 "easter;":																										'\U00002A6E',

			927	 	 "ecaron;":																										'\U0000011B',

			928	 	 "ecir;":																												'\U00002256',

			929	 	 "ecirc;":																											'\U000000EA',

			930	 	 "ecolon;":																										'\U00002255',

			931	 	 "ecy;":																													'\U0000044D',

			932	 	 "edot;":																												'\U00000117',

			933	 	 "ee;":																														'\U00002147',

			934	 	 "efDot;":																											'\U00002252',

			935	 	 "efr;":																													'\U0001D522',

			936	 	 "eg;":																														'\U00002A9A',

			937	 	 "egrave;":																										'\U000000E8',

			938	 	 "egs;":																													'\U00002A96',

			939	 	 "egsdot;":																										'\U00002A98',

			940	 	 "el;":																														'\U00002A99',

			941	 	 "elinters;":																								'\U000023E7',

			942	 	 "ell;":																													'\U00002113',

			943	 	 "els;":																													'\U00002A95',

			944	 	 "elsdot;":																										'\U00002A97',

			945	 	 "emacr;":																											'\U00000113',

			946	 	 "empty;":																											'\U00002205',

			947	 	 "emptyset;":																								'\U00002205',

			948	 	 "emptyv;":																										'\U00002205',

			949	 	 "emsp;":																												'\U00002003',

			950	 	 "emsp13;":																										'\U00002004',

			951	 	 "emsp14;":																										'\U00002005',

			952	 	 "eng;":																													'\U0000014B',

			953	 	 "ensp;":																												'\U00002002',

			954	 	 "eogon;":																											'\U00000119',

			955	 	 "eopf;":																												'\U0001D556',

			956	 	 "epar;":																												'\U000022D5',

			957	 	 "eparsl;":																										'\U000029E3',

			958	 	 "eplus;":																											'\U00002A71',

			959	 	 "epsi;":																												'\U000003B5',

			960	 	 "epsilon;":																									'\U000003B5',

			961	 	 "epsiv;":																											'\U000003F5',

			962	 	 "eqcirc;":																										'\U00002256',

			963	 	 "eqcolon;":																									'\U00002255',

			964	 	 "eqsim;":																											'\U00002242',

			965	 	 "eqslantgtr;":																						'\U00002A96',

			966	 	 "eqslantless;":																					'\U00002A95',

			967	 	 "equals;":																										'\U0000003D',

			968	 	 "equest;":																										'\U0000225F',

			969	 	 "equiv;":																											'\U00002261',

			970	 	 "equivDD;":																									'\U00002A78',

			971	 	 "eqvparsl;":																								'\U000029E5',

			972	 	 "erDot;":																											'\U00002253',

			973	 	 "erarr;":																											'\U00002971',

			974	 	 "escr;":																												'\U0000212F',

			975	 	 "esdot;":																											'\U00002250',

			976	 	 "esim;":																												'\U00002242',

			977	 	 "eta;":																													'\U000003B7',

			978	 	 "eth;":																													'\U000000F0',

			979	 	 "euml;":																												'\U000000EB',

			980	 	 "euro;":																												'\U000020AC',

			981	 	 "excl;":																												'\U00000021',

			982	 	 "exist;":																											'\U00002203',

			983	 	 "expectation;":																					'\U00002130',

			984	 	 "exponentiale;":																				'\U00002147',

			985	 	 "fallingdotseq;":																			'\U00002252',

			986	 	 "fcy;":																													'\U00000444',

			987	 	 "female;":																										'\U00002640',

			988	 	 "ffilig;":																										'\U0000FB03',

			989	 	 "fflig;":																											'\U0000FB00',

			990	 	 "ffllig;":																										'\U0000FB04',

			991	 	 "ffr;":																													'\U0001D523',

			992	 	 "filig;":																											'\U0000FB01',

			993	 	 "flat;":																												'\U0000266D',

			994	 	 "fllig;":																											'\U0000FB02',

			995	 	 "fltns;":																											'\U000025B1',

			996	 	 "fnof;":																												'\U00000192',

			997	 	 "fopf;":																												'\U0001D557',

			998	 	 "forall;":																										'\U00002200',

			999	 	 "fork;":																												'\U000022D4',

		1000	 	 "forkv;":																											'\U00002AD9',

		1001	 	 "fpartint;":																								'\U00002A0D',

		1002	 	 "frac12;":																										'\U000000BD',

		1003	 	 "frac13;":																										'\U00002153',

		1004	 	 "frac14;":																										'\U000000BC',

		1005	 	 "frac15;":																										'\U00002155',

		1006	 	 "frac16;":																										'\U00002159',

		1007	 	 "frac18;":																										'\U0000215B',

		1008	 	 "frac23;":																										'\U00002154',

		1009	 	 "frac25;":																										'\U00002156',

		1010	 	 "frac34;":																										'\U000000BE',

		1011	 	 "frac35;":																										'\U00002157',

		1012	 	 "frac38;":																										'\U0000215C',

		1013	 	 "frac45;":																										'\U00002158',

		1014	 	 "frac56;":																										'\U0000215A',

		1015	 	 "frac58;":																										'\U0000215D',

		1016	 	 "frac78;":																										'\U0000215E',

		1017	 	 "frasl;":																											'\U00002044',

		1018	 	 "frown;":																											'\U00002322',

		1019	 	 "fscr;":																												'\U0001D4BB',

		1020	 	 "gE;":																														'\U00002267',

		1021	 	 "gEl;":																													'\U00002A8C',

		1022	 	 "gacute;":																										'\U000001F5',

		1023	 	 "gamma;":																											'\U000003B3',

		1024	 	 "gammad;":																										'\U000003DD',

		1025	 	 "gap;":																													'\U00002A86',

		1026	 	 "gbreve;":																										'\U0000011F',

		1027	 	 "gcirc;":																											'\U0000011D',

		1028	 	 "gcy;":																													'\U00000433',

		1029	 	 "gdot;":																												'\U00000121',

		1030	 	 "ge;":																														'\U00002265',

		1031	 	 "gel;":																													'\U000022DB',

		1032	 	 "geq;":																													'\U00002265',

		1033	 	 "geqq;":																												'\U00002267',

		1034	 	 "geqslant;":																								'\U00002A7E',

		1035	 	 "ges;":																													'\U00002A7E',

		1036	 	 "gescc;":																											'\U00002AA9',

		1037	 	 "gesdot;":																										'\U00002A80',

		1038	 	 "gesdoto;":																									'\U00002A82',

		1039	 	 "gesdotol;":																								'\U00002A84',

		1040	 	 "gesles;":																										'\U00002A94',

		1041	 	 "gfr;":																													'\U0001D524',

		1042	 	 "gg;":																														'\U0000226B',

		1043	 	 "ggg;":																													'\U000022D9',

		1044	 	 "gimel;":																											'\U00002137',

		1045	 	 "gjcy;":																												'\U00000453',

		1046	 	 "gl;":																														'\U00002277',

		1047	 	 "glE;":																													'\U00002A92',

		1048	 	 "gla;":																													'\U00002AA5',

		1049	 	 "glj;":																													'\U00002AA4',

		1050	 	 "gnE;":																													'\U00002269',

		1051	 	 "gnap;":																												'\U00002A8A',

		1052	 	 "gnapprox;":																								'\U00002A8A',

		1053	 	 "gne;":																													'\U00002A88',

		1054	 	 "gneq;":																												'\U00002A88',

		1055	 	 "gneqq;":																											'\U00002269',

		1056	 	 "gnsim;":																											'\U000022E7',

		1057	 	 "gopf;":																												'\U0001D558',

		1058	 	 "grave;":																											'\U00000060',

		1059	 	 "gscr;":																												'\U0000210A',

		1060	 	 "gsim;":																												'\U00002273',

		1061	 	 "gsime;":																											'\U00002A8E',

		1062	 	 "gsiml;":																											'\U00002A90',

		1063	 	 "gt;":																														'\U0000003E',

		1064	 	 "gtcc;":																												'\U00002AA7',

		1065	 	 "gtcir;":																											'\U00002A7A',

		1066	 	 "gtdot;":																											'\U000022D7',

		1067	 	 "gtlPar;":																										'\U00002995',

		1068	 	 "gtquest;":																									'\U00002A7C',

		1069	 	 "gtrapprox;":																							'\U00002A86',

		1070	 	 "gtrarr;":																										'\U00002978',

		1071	 	 "gtrdot;":																										'\U000022D7',

		1072	 	 "gtreqless;":																							'\U000022DB',

		1073	 	 "gtreqqless;":																						'\U00002A8C',

		1074	 	 "gtrless;":																									'\U00002277',

		1075	 	 "gtrsim;":																										'\U00002273',

		1076	 	 "hArr;":																												'\U000021D4',

		1077	 	 "hairsp;":																										'\U0000200A',

		1078	 	 "half;":																												'\U000000BD',

		1079	 	 "hamilt;":																										'\U0000210B',

		1080	 	 "hardcy;":																										'\U0000044A',

		1081	 	 "harr;":																												'\U00002194',

		1082	 	 "harrcir;":																									'\U00002948',

		1083	 	 "harrw;":																											'\U000021AD',

		1084	 	 "hbar;":																												'\U0000210F',

		1085	 	 "hcirc;":																											'\U00000125',

		1086	 	 "hearts;":																										'\U00002665',

		1087	 	 "heartsuit;":																							'\U00002665',

		1088	 	 "hellip;":																										'\U00002026',

		1089	 	 "hercon;":																										'\U000022B9',

		1090	 	 "hfr;":																													'\U0001D525',

		1091	 	 "hksearow;":																								'\U00002925',

		1092	 	 "hkswarow;":																								'\U00002926',

		1093	 	 "hoarr;":																											'\U000021FF',

		1094	 	 "homtht;":																										'\U0000223B',

		1095	 	 "hookleftarrow;":																			'\U000021A9',

		1096	 	 "hookrightarrow;":																		'\U000021AA',

		1097	 	 "hopf;":																												'\U0001D559',

		1098	 	 "horbar;":																										'\U00002015',

		1099	 	 "hscr;":																												'\U0001D4BD',

		1100	 	 "hslash;":																										'\U0000210F',

		1101	 	 "hstrok;":																										'\U00000127',

		1102	 	 "hybull;":																										'\U00002043',

		1103	 	 "hyphen;":																										'\U00002010',

		1104	 	 "iacute;":																										'\U000000ED',

		1105	 	 "ic;":																														'\U00002063',

		1106	 	 "icirc;":																											'\U000000EE',

		1107	 	 "icy;":																													'\U00000438',

		1108	 	 "iecy;":																												'\U00000435',

		1109	 	 "iexcl;":																											'\U000000A1',

		1110	 	 "iff;":																													'\U000021D4',

		1111	 	 "ifr;":																													'\U0001D526',

		1112	 	 "igrave;":																										'\U000000EC',

		1113	 	 "ii;":																														'\U00002148',

		1114	 	 "iiiint;":																										'\U00002A0C',

		1115	 	 "iiint;":																											'\U0000222D',

		1116	 	 "iinfin;":																										'\U000029DC',

		1117	 	 "iiota;":																											'\U00002129',

		1118	 	 "ijlig;":																											'\U00000133',

		1119	 	 "imacr;":																											'\U0000012B',

		1120	 	 "image;":																											'\U00002111',

		1121	 	 "imagline;":																								'\U00002110',

		1122	 	 "imagpart;":																								'\U00002111',

		1123	 	 "imath;":																											'\U00000131',

		1124	 	 "imof;":																												'\U000022B7',

		1125	 	 "imped;":																											'\U000001B5',

		1126	 	 "in;":																														'\U00002208',

		1127	 	 "incare;":																										'\U00002105',

		1128	 	 "infin;":																											'\U0000221E',

		1129	 	 "infintie;":																								'\U000029DD',

		1130	 	 "inodot;":																										'\U00000131',

		1131	 	 "int;":																													'\U0000222B',

		1132	 	 "intcal;":																										'\U000022BA',

		1133	 	 "integers;":																								'\U00002124',

		1134	 	 "intercal;":																								'\U000022BA',

		1135	 	 "intlarhk;":																								'\U00002A17',

		1136	 	 "intprod;":																									'\U00002A3C',

		1137	 	 "iocy;":																												'\U00000451',

		1138	 	 "iogon;":																											'\U0000012F',

		1139	 	 "iopf;":																												'\U0001D55A',

		1140	 	 "iota;":																												'\U000003B9',

		1141	 	 "iprod;":																											'\U00002A3C',

		1142	 	 "iquest;":																										'\U000000BF',

		1143	 	 "iscr;":																												'\U0001D4BE',

		1144	 	 "isin;":																												'\U00002208',

		1145	 	 "isinE;":																											'\U000022F9',

		1146	 	 "isindot;":																									'\U000022F5',

		1147	 	 "isins;":																											'\U000022F4',

		1148	 	 "isinsv;":																										'\U000022F3',

		1149	 	 "isinv;":																											'\U00002208',

		1150	 	 "it;":																														'\U00002062',

		1151	 	 "itilde;":																										'\U00000129',

		1152	 	 "iukcy;":																											'\U00000456',

		1153	 	 "iuml;":																												'\U000000EF',

		1154	 	 "jcirc;":																											'\U00000135',

		1155	 	 "jcy;":																													'\U00000439',

		1156	 	 "jfr;":																													'\U0001D527',

		1157	 	 "jmath;":																											'\U00000237',

		1158	 	 "jopf;":																												'\U0001D55B',

		1159	 	 "jscr;":																												'\U0001D4BF',

		1160	 	 "jsercy;":																										'\U00000458',

		1161	 	 "jukcy;":																											'\U00000454',

		1162	 	 "kappa;":																											'\U000003BA',

		1163	 	 "kappav;":																										'\U000003F0',

		1164	 	 "kcedil;":																										'\U00000137',

		1165	 	 "kcy;":																													'\U0000043A',

		1166	 	 "kfr;":																													'\U0001D528',

		1167	 	 "kgreen;":																										'\U00000138',

		1168	 	 "khcy;":																												'\U00000445',

		1169	 	 "kjcy;":																												'\U0000045C',

		1170	 	 "kopf;":																												'\U0001D55C',

		1171	 	 "kscr;":																												'\U0001D4C0',

		1172	 	 "lAarr;":																											'\U000021DA',

		1173	 	 "lArr;":																												'\U000021D0',

		1174	 	 "lAtail;":																										'\U0000291B',

		1175	 	 "lBarr;":																											'\U0000290E',

		1176	 	 "lE;":																														'\U00002266',

		1177	 	 "lEg;":																													'\U00002A8B',

		1178	 	 "lHar;":																												'\U00002962',

		1179	 	 "lacute;":																										'\U0000013A',

		1180	 	 "laemptyv;":																								'\U000029B4',

		1181	 	 "lagran;":																										'\U00002112',

		1182	 	 "lambda;":																										'\U000003BB',

		1183	 	 "lang;":																												'\U000027E8',

		1184	 	 "langd;":																											'\U00002991',

		1185	 	 "langle;":																										'\U000027E8',

		1186	 	 "lap;":																													'\U00002A85',

		1187	 	 "laquo;":																											'\U000000AB',

		1188	 	 "larr;":																												'\U00002190',

		1189	 	 "larrb;":																											'\U000021E4',

		1190	 	 "larrbfs;":																									'\U0000291F',

		1191	 	 "larrfs;":																										'\U0000291D',

		1192	 	 "larrhk;":																										'\U000021A9',

		1193	 	 "larrlp;":																										'\U000021AB',

		1194	 	 "larrpl;":																										'\U00002939',

		1195	 	 "larrsim;":																									'\U00002973',

		1196	 	 "larrtl;":																										'\U000021A2',

		1197	 	 "lat;":																													'\U00002AAB',

		1198	 	 "latail;":																										'\U00002919',

		1199	 	 "late;":																												'\U00002AAD',

		1200	 	 "lbarr;":																											'\U0000290C',

		1201	 	 "lbbrk;":																											'\U00002772',

		1202	 	 "lbrace;":																										'\U0000007B',

		1203	 	 "lbrack;":																										'\U0000005B',

		1204	 	 "lbrke;":																											'\U0000298B',

		1205	 	 "lbrksld;":																									'\U0000298F',

		1206	 	 "lbrkslu;":																									'\U0000298D',

		1207	 	 "lcaron;":																										'\U0000013E',

		1208	 	 "lcedil;":																										'\U0000013C',

		1209	 	 "lceil;":																											'\U00002308',

		1210	 	 "lcub;":																												'\U0000007B',

		1211	 	 "lcy;":																													'\U0000043B',

		1212	 	 "ldca;":																												'\U00002936',

		1213	 	 "ldquo;":																											'\U0000201C',

		1214	 	 "ldquor;":																										'\U0000201E',

		1215	 	 "ldrdhar;":																									'\U00002967',

		1216	 	 "ldrushar;":																								'\U0000294B',

		1217	 	 "ldsh;":																												'\U000021B2',

		1218	 	 "le;":																														'\U00002264',

		1219	 	 "leftarrow;":																							'\U00002190',

		1220	 	 "leftarrowtail;":																			'\U000021A2',

		1221	 	 "leftharpoondown;":																	'\U000021BD',

		1222	 	 "leftharpoonup;":																			'\U000021BC',

		1223	 	 "leftleftarrows;":																		'\U000021C7',

		1224	 	 "leftrightarrow;":																		'\U00002194',

		1225	 	 "leftrightarrows;":																	'\U000021C6',

		1226	 	 "leftrightharpoons;":															'\U000021CB',

		1227	 	 "leftrightsquigarrow;":													'\U000021AD',

		1228	 	 "leftthreetimes;":																		'\U000022CB',

		1229	 	 "leg;":																													'\U000022DA',

		1230	 	 "leq;":																													'\U00002264',

		1231	 	 "leqq;":																												'\U00002266',

		1232	 	 "leqslant;":																								'\U00002A7D',

		1233	 	 "les;":																													'\U00002A7D',

		1234	 	 "lescc;":																											'\U00002AA8',

		1235	 	 "lesdot;":																										'\U00002A7F',

		1236	 	 "lesdoto;":																									'\U00002A81',

		1237	 	 "lesdotor;":																								'\U00002A83',

		1238	 	 "lesges;":																										'\U00002A93',

		1239	 	 "lessapprox;":																						'\U00002A85',

		1240	 	 "lessdot;":																									'\U000022D6',

		1241	 	 "lesseqgtr;":																							'\U000022DA',

		1242	 	 "lesseqqgtr;":																						'\U00002A8B',

		1243	 	 "lessgtr;":																									'\U00002276',

		1244	 	 "lesssim;":																									'\U00002272',

		1245	 	 "lfisht;":																										'\U0000297C',

		1246	 	 "lfloor;":																										'\U0000230A',

		1247	 	 "lfr;":																													'\U0001D529',

		1248	 	 "lg;":																														'\U00002276',

		1249	 	 "lgE;":																													'\U00002A91',

		1250	 	 "lhard;":																											'\U000021BD',

		1251	 	 "lharu;":																											'\U000021BC',

		1252	 	 "lharul;":																										'\U0000296A',

		1253	 	 "lhblk;":																											'\U00002584',

		1254	 	 "ljcy;":																												'\U00000459',

		1255	 	 "ll;":																														'\U0000226A',

		1256	 	 "llarr;":																											'\U000021C7',

		1257	 	 "llcorner;":																								'\U0000231E',

		1258	 	 "llhard;":																										'\U0000296B',

		1259	 	 "lltri;":																											'\U000025FA',

		1260	 	 "lmidot;":																										'\U00000140',

		1261	 	 "lmoust;":																										'\U000023B0',

		1262	 	 "lmoustache;":																						'\U000023B0',

		1263	 	 "lnE;":																													'\U00002268',

		1264	 	 "lnap;":																												'\U00002A89',

		1265	 	 "lnapprox;":																								'\U00002A89',

		1266	 	 "lne;":																													'\U00002A87',

		1267	 	 "lneq;":																												'\U00002A87',

		1268	 	 "lneqq;":																											'\U00002268',

		1269	 	 "lnsim;":																											'\U000022E6',

		1270	 	 "loang;":																											'\U000027EC',

		1271	 	 "loarr;":																											'\U000021FD',

		1272	 	 "lobrk;":																											'\U000027E6',

		1273	 	 "longleftarrow;":																			'\U000027F5',

		1274	 	 "longleftrightarrow;":														'\U000027F7',

		1275	 	 "longmapsto;":																						'\U000027FC',

		1276	 	 "longrightarrow;":																		'\U000027F6',

		1277	 	 "looparrowleft;":																			'\U000021AB',

		1278	 	 "looparrowright;":																		'\U000021AC',

		1279	 	 "lopar;":																											'\U00002985',

		1280	 	 "lopf;":																												'\U0001D55D',

		1281	 	 "loplus;":																										'\U00002A2D',

		1282	 	 "lotimes;":																									'\U00002A34',

		1283	 	 "lowast;":																										'\U00002217',

		1284	 	 "lowbar;":																										'\U0000005F',

		1285	 	 "loz;":																													'\U000025CA',

		1286	 	 "lozenge;":																									'\U000025CA',

		1287	 	 "lozf;":																												'\U000029EB',

		1288	 	 "lpar;":																												'\U00000028',

		1289	 	 "lparlt;":																										'\U00002993',

		1290	 	 "lrarr;":																											'\U000021C6',

		1291	 	 "lrcorner;":																								'\U0000231F',

		1292	 	 "lrhar;":																											'\U000021CB',

		1293	 	 "lrhard;":																										'\U0000296D',

		1294	 	 "lrm;":																													'\U0000200E',

		1295	 	 "lrtri;":																											'\U000022BF',

		1296	 	 "lsaquo;":																										'\U00002039',

		1297	 	 "lscr;":																												'\U0001D4C1',

		1298	 	 "lsh;":																													'\U000021B0',

		1299	 	 "lsim;":																												'\U00002272',

		1300	 	 "lsime;":																											'\U00002A8D',

		1301	 	 "lsimg;":																											'\U00002A8F',

		1302	 	 "lsqb;":																												'\U0000005B',

		1303	 	 "lsquo;":																											'\U00002018',

		1304	 	 "lsquor;":																										'\U0000201A',

		1305	 	 "lstrok;":																										'\U00000142',

		1306	 	 "lt;":																														'\U0000003C',

		1307	 	 "ltcc;":																												'\U00002AA6',

		1308	 	 "ltcir;":																											'\U00002A79',

		1309	 	 "ltdot;":																											'\U000022D6',

		1310	 	 "lthree;":																										'\U000022CB',

		1311	 	 "ltimes;":																										'\U000022C9',

		1312	 	 "ltlarr;":																										'\U00002976',

		1313	 	 "ltquest;":																									'\U00002A7B',

		1314	 	 "ltrPar;":																										'\U00002996',

		1315	 	 "ltri;":																												'\U000025C3',

		1316	 	 "ltrie;":																											'\U000022B4',

		1317	 	 "ltrif;":																											'\U000025C2',

		1318	 	 "lurdshar;":																								'\U0000294A',

		1319	 	 "luruhar;":																									'\U00002966',

		1320	 	 "mDDot;":																											'\U0000223A',

		1321	 	 "macr;":																												'\U000000AF',

		1322	 	 "male;":																												'\U00002642',

		1323	 	 "malt;":																												'\U00002720',

		1324	 	 "maltese;":																									'\U00002720',

		1325	 	 "map;":																													'\U000021A6',

		1326	 	 "mapsto;":																										'\U000021A6',

		1327	 	 "mapstodown;":																						'\U000021A7',

		1328	 	 "mapstoleft;":																						'\U000021A4',

		1329	 	 "mapstoup;":																								'\U000021A5',

		1330	 	 "marker;":																										'\U000025AE',

		1331	 	 "mcomma;":																										'\U00002A29',

		1332	 	 "mcy;":																													'\U0000043C',

		1333	 	 "mdash;":																											'\U00002014',

		1334	 	 "measuredangle;":																			'\U00002221',

		1335	 	 "mfr;":																													'\U0001D52A',

		1336	 	 "mho;":																													'\U00002127',

		1337	 	 "micro;":																											'\U000000B5',

		1338	 	 "mid;":																													'\U00002223',

		1339	 	 "midast;":																										'\U0000002A',

		1340	 	 "midcir;":																										'\U00002AF0',

		1341	 	 "middot;":																										'\U000000B7',

		1342	 	 "minus;":																											'\U00002212',

		1343	 	 "minusb;":																										'\U0000229F',

		1344	 	 "minusd;":																										'\U00002238',

		1345	 	 "minusdu;":																									'\U00002A2A',

		1346	 	 "mlcp;":																												'\U00002ADB',

		1347	 	 "mldr;":																												'\U00002026',

		1348	 	 "mnplus;":																										'\U00002213',

		1349	 	 "models;":																										'\U000022A7',

		1350	 	 "mopf;":																												'\U0001D55E',

		1351	 	 "mp;":																														'\U00002213',

		1352	 	 "mscr;":																												'\U0001D4C2',

		1353	 	 "mstpos;":																										'\U0000223E',

		1354	 	 "mu;":																														'\U000003BC',

		1355	 	 "multimap;":																								'\U000022B8',

		1356	 	 "mumap;":																											'\U000022B8',

		1357	 	 "nLeftarrow;":																						'\U000021CD',

		1358	 	 "nLeftrightarrow;":																	'\U000021CE',

		1359	 	 "nRightarrow;":																					'\U000021CF',

		1360	 	 "nVDash;":																										'\U000022AF',

		1361	 	 "nVdash;":																										'\U000022AE',

		1362	 	 "nabla;":																											'\U00002207',

		1363	 	 "nacute;":																										'\U00000144',

		1364	 	 "nap;":																													'\U00002249',

		1365	 	 "napos;":																											'\U00000149',

		1366	 	 "napprox;":																									'\U00002249',

		1367	 	 "natur;":																											'\U0000266E',

		1368	 	 "natural;":																									'\U0000266E',

		1369	 	 "naturals;":																								'\U00002115',

		1370	 	 "nbsp;":																												'\U000000A0',

		1371	 	 "ncap;":																												'\U00002A43',

		1372	 	 "ncaron;":																										'\U00000148',

		1373	 	 "ncedil;":																										'\U00000146',

		1374	 	 "ncong;":																											'\U00002247',

		1375	 	 "ncup;":																												'\U00002A42',

		1376	 	 "ncy;":																													'\U0000043D',

		1377	 	 "ndash;":																											'\U00002013',

		1378	 	 "ne;":																														'\U00002260',

		1379	 	 "neArr;":																											'\U000021D7',

		1380	 	 "nearhk;":																										'\U00002924',

		1381	 	 "nearr;":																											'\U00002197',

		1382	 	 "nearrow;":																									'\U00002197',

		1383	 	 "nequiv;":																										'\U00002262',

		1384	 	 "nesear;":																										'\U00002928',

		1385	 	 "nexist;":																										'\U00002204',

		1386	 	 "nexists;":																									'\U00002204',

		1387	 	 "nfr;":																													'\U0001D52B',

		1388	 	 "nge;":																													'\U00002271',

		1389	 	 "ngeq;":																												'\U00002271',

		1390	 	 "ngsim;":																											'\U00002275',

		1391	 	 "ngt;":																													'\U0000226F',

		1392	 	 "ngtr;":																												'\U0000226F',

		1393	 	 "nhArr;":																											'\U000021CE',

		1394	 	 "nharr;":																											'\U000021AE',

		1395	 	 "nhpar;":																											'\U00002AF2',

		1396	 	 "ni;":																														'\U0000220B',

		1397	 	 "nis;":																													'\U000022FC',

		1398	 	 "nisd;":																												'\U000022FA',

		1399	 	 "niv;":																													'\U0000220B',

		1400	 	 "njcy;":																												'\U0000045A',

		1401	 	 "nlArr;":																											'\U000021CD',

		1402	 	 "nlarr;":																											'\U0000219A',

		1403	 	 "nldr;":																												'\U00002025',

		1404	 	 "nle;":																													'\U00002270',

		1405	 	 "nleftarrow;":																						'\U0000219A',

		1406	 	 "nleftrightarrow;":																	'\U000021AE',

		1407	 	 "nleq;":																												'\U00002270',

		1408	 	 "nless;":																											'\U0000226E',

		1409	 	 "nlsim;":																											'\U00002274',

		1410	 	 "nlt;":																													'\U0000226E',

		1411	 	 "nltri;":																											'\U000022EA',

		1412	 	 "nltrie;":																										'\U000022EC',

		1413	 	 "nmid;":																												'\U00002224',

		1414	 	 "nopf;":																												'\U0001D55F',

		1415	 	 "not;":																													'\U000000AC',

		1416	 	 "notin;":																											'\U00002209',

		1417	 	 "notinva;":																									'\U00002209',

		1418	 	 "notinvb;":																									'\U000022F7',

		1419	 	 "notinvc;":																									'\U000022F6',

		1420	 	 "notni;":																											'\U0000220C',

		1421	 	 "notniva;":																									'\U0000220C',

		1422	 	 "notnivb;":																									'\U000022FE',

		1423	 	 "notnivc;":																									'\U000022FD',

		1424	 	 "npar;":																												'\U00002226',

		1425	 	 "nparallel;":																							'\U00002226',

		1426	 	 "npolint;":																									'\U00002A14',

		1427	 	 "npr;":																													'\U00002280',

		1428	 	 "nprcue;":																										'\U000022E0',

		1429	 	 "nprec;":																											'\U00002280',

		1430	 	 "nrArr;":																											'\U000021CF',

		1431	 	 "nrarr;":																											'\U0000219B',

		1432	 	 "nrightarrow;":																					'\U0000219B',

		1433	 	 "nrtri;":																											'\U000022EB',

		1434	 	 "nrtrie;":																										'\U000022ED',

		1435	 	 "nsc;":																													'\U00002281',

		1436	 	 "nsccue;":																										'\U000022E1',

		1437	 	 "nscr;":																												'\U0001D4C3',

		1438	 	 "nshortmid;":																							'\U00002224',

		1439	 	 "nshortparallel;":																		'\U00002226',

		1440	 	 "nsim;":																												'\U00002241',

		1441	 	 "nsime;":																											'\U00002244',

		1442	 	 "nsimeq;":																										'\U00002244',

		1443	 	 "nsmid;":																											'\U00002224',

		1444	 	 "nspar;":																											'\U00002226',

		1445	 	 "nsqsube;":																									'\U000022E2',

		1446	 	 "nsqsupe;":																									'\U000022E3',

		1447	 	 "nsub;":																												'\U00002284',

		1448	 	 "nsube;":																											'\U00002288',

		1449	 	 "nsubseteq;":																							'\U00002288',

		1450	 	 "nsucc;":																											'\U00002281',

		1451	 	 "nsup;":																												'\U00002285',

		1452	 	 "nsupe;":																											'\U00002289',

		1453	 	 "nsupseteq;":																							'\U00002289',

		1454	 	 "ntgl;":																												'\U00002279',

		1455	 	 "ntilde;":																										'\U000000F1',

		1456	 	 "ntlg;":																												'\U00002278',

		1457	 	 "ntriangleleft;":																			'\U000022EA',

		1458	 	 "ntrianglelefteq;":																	'\U000022EC',

		1459	 	 "ntriangleright;":																		'\U000022EB',

		1460	 	 "ntrianglerighteq;":																'\U000022ED',

		1461	 	 "nu;":																														'\U000003BD',

		1462	 	 "num;":																													'\U00000023',

		1463	 	 "numero;":																										'\U00002116',

		1464	 	 "numsp;":																											'\U00002007',

		1465	 	 "nvDash;":																										'\U000022AD',

		1466	 	 "nvHarr;":																										'\U00002904',

		1467	 	 "nvdash;":																										'\U000022AC',

		1468	 	 "nvinfin;":																									'\U000029DE',

		1469	 	 "nvlArr;":																										'\U00002902',

		1470	 	 "nvrArr;":																										'\U00002903',

		1471	 	 "nwArr;":																											'\U000021D6',

		1472	 	 "nwarhk;":																										'\U00002923',

		1473	 	 "nwarr;":																											'\U00002196',

		1474	 	 "nwarrow;":																									'\U00002196',

		1475	 	 "nwnear;":																										'\U00002927',

		1476	 	 "oS;":																														'\U000024C8',

		1477	 	 "oacute;":																										'\U000000F3',

		1478	 	 "oast;":																												'\U0000229B',

		1479	 	 "ocir;":																												'\U0000229A',

		1480	 	 "ocirc;":																											'\U000000F4',

		1481	 	 "ocy;":																													'\U0000043E',

		1482	 	 "odash;":																											'\U0000229D',

		1483	 	 "odblac;":																										'\U00000151',

		1484	 	 "odiv;":																												'\U00002A38',

		1485	 	 "odot;":																												'\U00002299',

		1486	 	 "odsold;":																										'\U000029BC',

		1487	 	 "oelig;":																											'\U00000153',

		1488	 	 "ofcir;":																											'\U000029BF',

		1489	 	 "ofr;":																													'\U0001D52C',

		1490	 	 "ogon;":																												'\U000002DB',

		1491	 	 "ograve;":																										'\U000000F2',

		1492	 	 "ogt;":																													'\U000029C1',

		1493	 	 "ohbar;":																											'\U000029B5',

		1494	 	 "ohm;":																													'\U000003A9',

		1495	 	 "oint;":																												'\U0000222E',

		1496	 	 "olarr;":																											'\U000021BA',

		1497	 	 "olcir;":																											'\U000029BE',

		1498	 	 "olcross;":																									'\U000029BB',

		1499	 	 "oline;":																											'\U0000203E',

		1500	 	 "olt;":																													'\U000029C0',

		1501	 	 "omacr;":																											'\U0000014D',

		1502	 	 "omega;":																											'\U000003C9',

		1503	 	 "omicron;":																									'\U000003BF',

		1504	 	 "omid;":																												'\U000029B6',

		1505	 	 "ominus;":																										'\U00002296',

		1506	 	 "oopf;":																												'\U0001D560',

		1507	 	 "opar;":																												'\U000029B7',

		1508	 	 "operp;":																											'\U000029B9',

		1509	 	 "oplus;":																											'\U00002295',

		1510	 	 "or;":																														'\U00002228',

		1511	 	 "orarr;":																											'\U000021BB',

		1512	 	 "ord;":																													'\U00002A5D',

		1513	 	 "order;":																											'\U00002134',

		1514	 	 "orderof;":																									'\U00002134',

		1515	 	 "ordf;":																												'\U000000AA',

		1516	 	 "ordm;":																												'\U000000BA',

		1517	 	 "origof;":																										'\U000022B6',

		1518	 	 "oror;":																												'\U00002A56',

		1519	 	 "orslope;":																									'\U00002A57',

		1520	 	 "orv;":																													'\U00002A5B',

		1521	 	 "oscr;":																												'\U00002134',

		1522	 	 "oslash;":																										'\U000000F8',

		1523	 	 "osol;":																												'\U00002298',

		1524	 	 "otilde;":																										'\U000000F5',

		1525	 	 "otimes;":																										'\U00002297',

		1526	 	 "otimesas;":																								'\U00002A36',

		1527	 	 "ouml;":																												'\U000000F6',

		1528	 	 "ovbar;":																											'\U0000233D',

		1529	 	 "par;":																													'\U00002225',

		1530	 	 "para;":																												'\U000000B6',

		1531	 	 "parallel;":																								'\U00002225',

		1532	 	 "parsim;":																										'\U00002AF3',

		1533	 	 "parsl;":																											'\U00002AFD',

		1534	 	 "part;":																												'\U00002202',

		1535	 	 "pcy;":																													'\U0000043F',

		1536	 	 "percnt;":																										'\U00000025',

		1537	 	 "period;":																										'\U0000002E',

		1538	 	 "permil;":																										'\U00002030',

		1539	 	 "perp;":																												'\U000022A5',

		1540	 	 "pertenk;":																									'\U00002031',

		1541	 	 "pfr;":																													'\U0001D52D',

		1542	 	 "phi;":																													'\U000003C6',

		1543	 	 "phiv;":																												'\U000003D5',

		1544	 	 "phmmat;":																										'\U00002133',

		1545	 	 "phone;":																											'\U0000260E',

		1546	 	 "pi;":																														'\U000003C0',

		1547	 	 "pitchfork;":																							'\U000022D4',

		1548	 	 "piv;":																													'\U000003D6',

		1549	 	 "planck;":																										'\U0000210F',

		1550	 	 "planckh;":																									'\U0000210E',

		1551	 	 "plankv;":																										'\U0000210F',

		1552	 	 "plus;":																												'\U0000002B',

		1553	 	 "plusacir;":																								'\U00002A23',

		1554	 	 "plusb;":																											'\U0000229E',

		1555	 	 "pluscir;":																									'\U00002A22',

		1556	 	 "plusdo;":																										'\U00002214',

		1557	 	 "plusdu;":																										'\U00002A25',

		1558	 	 "pluse;":																											'\U00002A72',

		1559	 	 "plusmn;":																										'\U000000B1',

		1560	 	 "plussim;":																									'\U00002A26',

		1561	 	 "plustwo;":																									'\U00002A27',

		1562	 	 "pm;":																														'\U000000B1',

		1563	 	 "pointint;":																								'\U00002A15',

		1564	 	 "popf;":																												'\U0001D561',

		1565	 	 "pound;":																											'\U000000A3',

		1566	 	 "pr;":																														'\U0000227A',

		1567	 	 "prE;":																													'\U00002AB3',

		1568	 	 "prap;":																												'\U00002AB7',

		1569	 	 "prcue;":																											'\U0000227C',

		1570	 	 "pre;":																													'\U00002AAF',

		1571	 	 "prec;":																												'\U0000227A',

		1572	 	 "precapprox;":																						'\U00002AB7',

		1573	 	 "preccurlyeq;":																					'\U0000227C',

		1574	 	 "preceq;":																										'\U00002AAF',

		1575	 	 "precnapprox;":																					'\U00002AB9',

		1576	 	 "precneqq;":																								'\U00002AB5',

		1577	 	 "precnsim;":																								'\U000022E8',

		1578	 	 "precsim;":																									'\U0000227E',

		1579	 	 "prime;":																											'\U00002032',

		1580	 	 "primes;":																										'\U00002119',

		1581	 	 "prnE;":																												'\U00002AB5',

		1582	 	 "prnap;":																											'\U00002AB9',

		1583	 	 "prnsim;":																										'\U000022E8',

		1584	 	 "prod;":																												'\U0000220F',

		1585	 	 "profalar;":																								'\U0000232E',

		1586	 	 "profline;":																								'\U00002312',

		1587	 	 "profsurf;":																								'\U00002313',

		1588	 	 "prop;":																												'\U0000221D',

		1589	 	 "propto;":																										'\U0000221D',

		1590	 	 "prsim;":																											'\U0000227E',

		1591	 	 "prurel;":																										'\U000022B0',

		1592	 	 "pscr;":																												'\U0001D4C5',

		1593	 	 "psi;":																													'\U000003C8',

		1594	 	 "puncsp;":																										'\U00002008',

		1595	 	 "qfr;":																													'\U0001D52E',

		1596	 	 "qint;":																												'\U00002A0C',

		1597	 	 "qopf;":																												'\U0001D562',

		1598	 	 "qprime;":																										'\U00002057',

		1599	 	 "qscr;":																												'\U0001D4C6',

		1600	 	 "quaternions;":																					'\U0000210D',

		1601	 	 "quatint;":																									'\U00002A16',

		1602	 	 "quest;":																											'\U0000003F',

		1603	 	 "questeq;":																									'\U0000225F',

		1604	 	 "quot;":																												'\U00000022',

		1605	 	 "rAarr;":																											'\U000021DB',

		1606	 	 "rArr;":																												'\U000021D2',

		1607	 	 "rAtail;":																										'\U0000291C',

		1608	 	 "rBarr;":																											'\U0000290F',

		1609	 	 "rHar;":																												'\U00002964',

		1610	 	 "racute;":																										'\U00000155',

		1611	 	 "radic;":																											'\U0000221A',

		1612	 	 "raemptyv;":																								'\U000029B3',

		1613	 	 "rang;":																												'\U000027E9',

		1614	 	 "rangd;":																											'\U00002992',

		1615	 	 "range;":																											'\U000029A5',

		1616	 	 "rangle;":																										'\U000027E9',

		1617	 	 "raquo;":																											'\U000000BB',

		1618	 	 "rarr;":																												'\U00002192',

		1619	 	 "rarrap;":																										'\U00002975',

		1620	 	 "rarrb;":																											'\U000021E5',

		1621	 	 "rarrbfs;":																									'\U00002920',

		1622	 	 "rarrc;":																											'\U00002933',

		1623	 	 "rarrfs;":																										'\U0000291E',

		1624	 	 "rarrhk;":																										'\U000021AA',

		1625	 	 "rarrlp;":																										'\U000021AC',

		1626	 	 "rarrpl;":																										'\U00002945',

		1627	 	 "rarrsim;":																									'\U00002974',

		1628	 	 "rarrtl;":																										'\U000021A3',

		1629	 	 "rarrw;":																											'\U0000219D',

		1630	 	 "ratail;":																										'\U0000291A',

		1631	 	 "ratio;":																											'\U00002236',

		1632	 	 "rationals;":																							'\U0000211A',

		1633	 	 "rbarr;":																											'\U0000290D',

		1634	 	 "rbbrk;":																											'\U00002773',

		1635	 	 "rbrace;":																										'\U0000007D',

		1636	 	 "rbrack;":																										'\U0000005D',

		1637	 	 "rbrke;":																											'\U0000298C',

		1638	 	 "rbrksld;":																									'\U0000298E',

		1639	 	 "rbrkslu;":																									'\U00002990',

		1640	 	 "rcaron;":																										'\U00000159',

		1641	 	 "rcedil;":																										'\U00000157',

		1642	 	 "rceil;":																											'\U00002309',

		1643	 	 "rcub;":																												'\U0000007D',

		1644	 	 "rcy;":																													'\U00000440',

		1645	 	 "rdca;":																												'\U00002937',

		1646	 	 "rdldhar;":																									'\U00002969',

		1647	 	 "rdquo;":																											'\U0000201D',

		1648	 	 "rdquor;":																										'\U0000201D',

		1649	 	 "rdsh;":																												'\U000021B3',

		1650	 	 "real;":																												'\U0000211C',

		1651	 	 "realine;":																									'\U0000211B',

		1652	 	 "realpart;":																								'\U0000211C',

		1653	 	 "reals;":																											'\U0000211D',

		1654	 	 "rect;":																												'\U000025AD',

		1655	 	 "reg;":																													'\U000000AE',

		1656	 	 "rfisht;":																										'\U0000297D',

		1657	 	 "rfloor;":																										'\U0000230B',

		1658	 	 "rfr;":																													'\U0001D52F',

		1659	 	 "rhard;":																											'\U000021C1',

		1660	 	 "rharu;":																											'\U000021C0',

		1661	 	 "rharul;":																										'\U0000296C',

		1662	 	 "rho;":																													'\U000003C1',

		1663	 	 "rhov;":																												'\U000003F1',

		1664	 	 "rightarrow;":																						'\U00002192',

		1665	 	 "rightarrowtail;":																		'\U000021A3',

		1666	 	 "rightharpoondown;":																'\U000021C1',

		1667	 	 "rightharpoonup;":																		'\U000021C0',

		1668	 	 "rightleftarrows;":																	'\U000021C4',

		1669	 	 "rightleftharpoons;":															'\U000021CC',

		1670	 	 "rightrightarrows;":																'\U000021C9',

		1671	 	 "rightsquigarrow;":																	'\U0000219D',

		1672	 	 "rightthreetimes;":																	'\U000022CC',

		1673	 	 "ring;":																												'\U000002DA',

		1674	 	 "risingdotseq;":																				'\U00002253',

		1675	 	 "rlarr;":																											'\U000021C4',

		1676	 	 "rlhar;":																											'\U000021CC',

		1677	 	 "rlm;":																													'\U0000200F',

		1678	 	 "rmoust;":																										'\U000023B1',

		1679	 	 "rmoustache;":																						'\U000023B1',

		1680	 	 "rnmid;":																											'\U00002AEE',

		1681	 	 "roang;":																											'\U000027ED',

		1682	 	 "roarr;":																											'\U000021FE',

		1683	 	 "robrk;":																											'\U000027E7',

		1684	 	 "ropar;":																											'\U00002986',

		1685	 	 "ropf;":																												'\U0001D563',

		1686	 	 "roplus;":																										'\U00002A2E',

		1687	 	 "rotimes;":																									'\U00002A35',

		1688	 	 "rpar;":																												'\U00000029',

		1689	 	 "rpargt;":																										'\U00002994',

		1690	 	 "rppolint;":																								'\U00002A12',

		1691	 	 "rrarr;":																											'\U000021C9',

		1692	 	 "rsaquo;":																										'\U0000203A',

		1693	 	 "rscr;":																												'\U0001D4C7',

		1694	 	 "rsh;":																													'\U000021B1',

		1695	 	 "rsqb;":																												'\U0000005D',

		1696	 	 "rsquo;":																											'\U00002019',

		1697	 	 "rsquor;":																										'\U00002019',

		1698	 	 "rthree;":																										'\U000022CC',

		1699	 	 "rtimes;":																										'\U000022CA',

		1700	 	 "rtri;":																												'\U000025B9',

		1701	 	 "rtrie;":																											'\U000022B5',

		1702	 	 "rtrif;":																											'\U000025B8',

		1703	 	 "rtriltri;":																								'\U000029CE',

		1704	 	 "ruluhar;":																									'\U00002968',

		1705	 	 "rx;":																														'\U0000211E',

		1706	 	 "sacute;":																										'\U0000015B',

		1707	 	 "sbquo;":																											'\U0000201A',

		1708	 	 "sc;":																														'\U0000227B',

		1709	 	 "scE;":																													'\U00002AB4',

		1710	 	 "scap;":																												'\U00002AB8',

		1711	 	 "scaron;":																										'\U00000161',

		1712	 	 "sccue;":																											'\U0000227D',

		1713	 	 "sce;":																													'\U00002AB0',

		1714	 	 "scedil;":																										'\U0000015F',

		1715	 	 "scirc;":																											'\U0000015D',

		1716	 	 "scnE;":																												'\U00002AB6',

		1717	 	 "scnap;":																											'\U00002ABA',

		1718	 	 "scnsim;":																										'\U000022E9',

		1719	 	 "scpolint;":																								'\U00002A13',

		1720	 	 "scsim;":																											'\U0000227F',

		1721	 	 "scy;":																													'\U00000441',

		1722	 	 "sdot;":																												'\U000022C5',

		1723	 	 "sdotb;":																											'\U000022A1',

		1724	 	 "sdote;":																											'\U00002A66',

		1725	 	 "seArr;":																											'\U000021D8',

		1726	 	 "searhk;":																										'\U00002925',

		1727	 	 "searr;":																											'\U00002198',

		1728	 	 "searrow;":																									'\U00002198',

		1729	 	 "sect;":																												'\U000000A7',

		1730	 	 "semi;":																												'\U0000003B',

		1731	 	 "seswar;":																										'\U00002929',

		1732	 	 "setminus;":																								'\U00002216',

		1733	 	 "setmn;":																											'\U00002216',

		1734	 	 "sext;":																												'\U00002736',

		1735	 	 "sfr;":																													'\U0001D530',

		1736	 	 "sfrown;":																										'\U00002322',

		1737	 	 "sharp;":																											'\U0000266F',

		1738	 	 "shchcy;":																										'\U00000449',

		1739	 	 "shcy;":																												'\U00000448',

		1740	 	 "shortmid;":																								'\U00002223',

		1741	 	 "shortparallel;":																			'\U00002225',

		1742	 	 "shy;":																													'\U000000AD',

		1743	 	 "sigma;":																											'\U000003C3',

		1744	 	 "sigmaf;":																										'\U000003C2',

		1745	 	 "sigmav;":																										'\U000003C2',

		1746	 	 "sim;":																													'\U0000223C',

		1747	 	 "simdot;":																										'\U00002A6A',

		1748	 	 "sime;":																												'\U00002243',

		1749	 	 "simeq;":																											'\U00002243',

		1750	 	 "simg;":																												'\U00002A9E',

		1751	 	 "simgE;":																											'\U00002AA0',

		1752	 	 "siml;":																												'\U00002A9D',

		1753	 	 "simlE;":																											'\U00002A9F',

		1754	 	 "simne;":																											'\U00002246',

		1755	 	 "simplus;":																									'\U00002A24',

		1756	 	 "simrarr;":																									'\U00002972',

		1757	 	 "slarr;":																											'\U00002190',

		1758	 	 "smallsetminus;":																			'\U00002216',

		1759	 	 "smashp;":																										'\U00002A33',

		1760	 	 "smeparsl;":																								'\U000029E4',

		1761	 	 "smid;":																												'\U00002223',

		1762	 	 "smile;":																											'\U00002323',

		1763	 	 "smt;":																													'\U00002AAA',

		1764	 	 "smte;":																												'\U00002AAC',

		1765	 	 "softcy;":																										'\U0000044C',

		1766	 	 "sol;":																													'\U0000002F',

		1767	 	 "solb;":																												'\U000029C4',

		1768	 	 "solbar;":																										'\U0000233F',

		1769	 	 "sopf;":																												'\U0001D564',

		1770	 	 "spades;":																										'\U00002660',

		1771	 	 "spadesuit;":																							'\U00002660',

		1772	 	 "spar;":																												'\U00002225',

		1773	 	 "sqcap;":																											'\U00002293',

		1774	 	 "sqcup;":																											'\U00002294',

		1775	 	 "sqsub;":																											'\U0000228F',

		1776	 	 "sqsube;":																										'\U00002291',

		1777	 	 "sqsubset;":																								'\U0000228F',

		1778	 	 "sqsubseteq;":																						'\U00002291',

		1779	 	 "sqsup;":																											'\U00002290',

		1780	 	 "sqsupe;":																										'\U00002292',

		1781	 	 "sqsupset;":																								'\U00002290',

		1782	 	 "sqsupseteq;":																						'\U00002292',

		1783	 	 "squ;":																													'\U000025A1',

		1784	 	 "square;":																										'\U000025A1',

		1785	 	 "squarf;":																										'\U000025AA',

		1786	 	 "squf;":																												'\U000025AA',

		1787	 	 "srarr;":																											'\U00002192',

		1788	 	 "sscr;":																												'\U0001D4C8',

		1789	 	 "ssetmn;":																										'\U00002216',

		1790	 	 "ssmile;":																										'\U00002323',

		1791	 	 "sstarf;":																										'\U000022C6',

		1792	 	 "star;":																												'\U00002606',

		1793	 	 "starf;":																											'\U00002605',

		1794	 	 "straightepsilon;":																	'\U000003F5',

		1795	 	 "straightphi;":																					'\U000003D5',

		1796	 	 "strns;":																											'\U000000AF',

		1797	 	 "sub;":																													'\U00002282',

		1798	 	 "subE;":																												'\U00002AC5',

		1799	 	 "subdot;":																										'\U00002ABD',

		1800	 	 "sube;":																												'\U00002286',

		1801	 	 "subedot;":																									'\U00002AC3',

		1802	 	 "submult;":																									'\U00002AC1',

		1803	 	 "subnE;":																											'\U00002ACB',

		1804	 	 "subne;":																											'\U0000228A',

		1805	 	 "subplus;":																									'\U00002ABF',

		1806	 	 "subrarr;":																									'\U00002979',

		1807	 	 "subset;":																										'\U00002282',

		1808	 	 "subseteq;":																								'\U00002286',

		1809	 	 "subseteqq;":																							'\U00002AC5',

		1810	 	 "subsetneq;":																							'\U0000228A',

		1811	 	 "subsetneqq;":																						'\U00002ACB',

		1812	 	 "subsim;":																										'\U00002AC7',

		1813	 	 "subsub;":																										'\U00002AD5',

		1814	 	 "subsup;":																										'\U00002AD3',

		1815	 	 "succ;":																												'\U0000227B',

		1816	 	 "succapprox;":																						'\U00002AB8',

		1817	 	 "succcurlyeq;":																					'\U0000227D',

		1818	 	 "succeq;":																										'\U00002AB0',

		1819	 	 "succnapprox;":																					'\U00002ABA',

		1820	 	 "succneqq;":																								'\U00002AB6',

		1821	 	 "succnsim;":																								'\U000022E9',

		1822	 	 "succsim;":																									'\U0000227F',

		1823	 	 "sum;":																													'\U00002211',

		1824	 	 "sung;":																												'\U0000266A',

		1825	 	 "sup;":																													'\U00002283',

		1826	 	 "sup1;":																												'\U000000B9',

		1827	 	 "sup2;":																												'\U000000B2',

		1828	 	 "sup3;":																												'\U000000B3',

		1829	 	 "supE;":																												'\U00002AC6',

		1830	 	 "supdot;":																										'\U00002ABE',

		1831	 	 "supdsub;":																									'\U00002AD8',

		1832	 	 "supe;":																												'\U00002287',

		1833	 	 "supedot;":																									'\U00002AC4',

		1834	 	 "suphsol;":																									'\U000027C9',

		1835	 	 "suphsub;":																									'\U00002AD7',

		1836	 	 "suplarr;":																									'\U0000297B',

		1837	 	 "supmult;":																									'\U00002AC2',

		1838	 	 "supnE;":																											'\U00002ACC',

		1839	 	 "supne;":																											'\U0000228B',

		1840	 	 "supplus;":																									'\U00002AC0',

		1841	 	 "supset;":																										'\U00002283',

		1842	 	 "supseteq;":																								'\U00002287',

		1843	 	 "supseteqq;":																							'\U00002AC6',

		1844	 	 "supsetneq;":																							'\U0000228B',

		1845	 	 "supsetneqq;":																						'\U00002ACC',

		1846	 	 "supsim;":																										'\U00002AC8',

		1847	 	 "supsub;":																										'\U00002AD4',

		1848	 	 "supsup;":																										'\U00002AD6',

		1849	 	 "swArr;":																											'\U000021D9',

		1850	 	 "swarhk;":																										'\U00002926',

		1851	 	 "swarr;":																											'\U00002199',

		1852	 	 "swarrow;":																									'\U00002199',

		1853	 	 "swnwar;":																										'\U0000292A',

		1854	 	 "szlig;":																											'\U000000DF',

		1855	 	 "target;":																										'\U00002316',

		1856	 	 "tau;":																													'\U000003C4',

		1857	 	 "tbrk;":																												'\U000023B4',

		1858	 	 "tcaron;":																										'\U00000165',

		1859	 	 "tcedil;":																										'\U00000163',

		1860	 	 "tcy;":																													'\U00000442',

		1861	 	 "tdot;":																												'\U000020DB',

		1862	 	 "telrec;":																										'\U00002315',

		1863	 	 "tfr;":																													'\U0001D531',

		1864	 	 "there4;":																										'\U00002234',

		1865	 	 "therefore;":																							'\U00002234',

		1866	 	 "theta;":																											'\U000003B8',

		1867	 	 "thetasym;":																								'\U000003D1',

		1868	 	 "thetav;":																										'\U000003D1',

		1869	 	 "thickapprox;":																					'\U00002248',

		1870	 	 "thicksim;":																								'\U0000223C',

		1871	 	 "thinsp;":																										'\U00002009',

		1872	 	 "thkap;":																											'\U00002248',

		1873	 	 "thksim;":																										'\U0000223C',

		1874	 	 "thorn;":																											'\U000000FE',

		1875	 	 "tilde;":																											'\U000002DC',

		1876	 	 "times;":																											'\U000000D7',

		1877	 	 "timesb;":																										'\U000022A0',

		1878	 	 "timesbar;":																								'\U00002A31',

		1879	 	 "timesd;":																										'\U00002A30',

		1880	 	 "tint;":																												'\U0000222D',

		1881	 	 "toea;":																												'\U00002928',

		1882	 	 "top;":																													'\U000022A4',

		1883	 	 "topbot;":																										'\U00002336',

		1884	 	 "topcir;":																										'\U00002AF1',

		1885	 	 "topf;":																												'\U0001D565',

		1886	 	 "topfork;":																									'\U00002ADA',

		1887	 	 "tosa;":																												'\U00002929',

		1888	 	 "tprime;":																										'\U00002034',

		1889	 	 "trade;":																											'\U00002122',

		1890	 	 "triangle;":																								'\U000025B5',

		1891	 	 "triangledown;":																				'\U000025BF',

		1892	 	 "triangleleft;":																				'\U000025C3',

		1893	 	 "trianglelefteq;":																		'\U000022B4',

		1894	 	 "triangleq;":																							'\U0000225C',

		1895	 	 "triangleright;":																			'\U000025B9',

		1896	 	 "trianglerighteq;":																	'\U000022B5',

		1897	 	 "tridot;":																										'\U000025EC',

		1898	 	 "trie;":																												'\U0000225C',

		1899	 	 "triminus;":																								'\U00002A3A',

		1900	 	 "triplus;":																									'\U00002A39',

		1901	 	 "trisb;":																											'\U000029CD',

		1902	 	 "tritime;":																									'\U00002A3B',

		1903	 	 "trpezium;":																								'\U000023E2',

		1904	 	 "tscr;":																												'\U0001D4C9',

		1905	 	 "tscy;":																												'\U00000446',

		1906	 	 "tshcy;":																											'\U0000045B',

		1907	 	 "tstrok;":																										'\U00000167',

		1908	 	 "twixt;":																											'\U0000226C',

		1909	 	 "twoheadleftarrow;":																'\U0000219E',

		1910	 	 "twoheadrightarrow;":															'\U000021A0',

		1911	 	 "uArr;":																												'\U000021D1',

		1912	 	 "uHar;":																												'\U00002963',

		1913	 	 "uacute;":																										'\U000000FA',

		1914	 	 "uarr;":																												'\U00002191',

		1915	 	 "ubrcy;":																											'\U0000045E',

		1916	 	 "ubreve;":																										'\U0000016D',

		1917	 	 "ucirc;":																											'\U000000FB',

		1918	 	 "ucy;":																													'\U00000443',

		1919	 	 "udarr;":																											'\U000021C5',

		1920	 	 "udblac;":																										'\U00000171',

		1921	 	 "udhar;":																											'\U0000296E',

		1922	 	 "ufisht;":																										'\U0000297E',

		1923	 	 "ufr;":																													'\U0001D532',

		1924	 	 "ugrave;":																										'\U000000F9',

		1925	 	 "uharl;":																											'\U000021BF',

		1926	 	 "uharr;":																											'\U000021BE',

		1927	 	 "uhblk;":																											'\U00002580',

		1928	 	 "ulcorn;":																										'\U0000231C',

		1929	 	 "ulcorner;":																								'\U0000231C',

		1930	 	 "ulcrop;":																										'\U0000230F',

		1931	 	 "ultri;":																											'\U000025F8',

		1932	 	 "umacr;":																											'\U0000016B',

		1933	 	 "uml;":																													'\U000000A8',

		1934	 	 "uogon;":																											'\U00000173',

		1935	 	 "uopf;":																												'\U0001D566',

		1936	 	 "uparrow;":																									'\U00002191',

		1937	 	 "updownarrow;":																					'\U00002195',

		1938	 	 "upharpoonleft;":																			'\U000021BF',

		1939	 	 "upharpoonright;":																		'\U000021BE',

		1940	 	 "uplus;":																											'\U0000228E',

		1941	 	 "upsi;":																												'\U000003C5',

		1942	 	 "upsih;":																											'\U000003D2',

		1943	 	 "upsilon;":																									'\U000003C5',

		1944	 	 "upuparrows;":																						'\U000021C8',

		1945	 	 "urcorn;":																										'\U0000231D',

		1946	 	 "urcorner;":																								'\U0000231D',

		1947	 	 "urcrop;":																										'\U0000230E',

		1948	 	 "uring;":																											'\U0000016F',

		1949	 	 "urtri;":																											'\U000025F9',

		1950	 	 "uscr;":																												'\U0001D4CA',

		1951	 	 "utdot;":																											'\U000022F0',

		1952	 	 "utilde;":																										'\U00000169',

		1953	 	 "utri;":																												'\U000025B5',

		1954	 	 "utrif;":																											'\U000025B4',

		1955	 	 "uuarr;":																											'\U000021C8',

		1956	 	 "uuml;":																												'\U000000FC',

		1957	 	 "uwangle;":																									'\U000029A7',

		1958	 	 "vArr;":																												'\U000021D5',

		1959	 	 "vBar;":																												'\U00002AE8',

		1960	 	 "vBarv;":																											'\U00002AE9',

		1961	 	 "vDash;":																											'\U000022A8',

		1962	 	 "vangrt;":																										'\U0000299C',

		1963	 	 "varepsilon;":																						'\U000003F5',

		1964	 	 "varkappa;":																								'\U000003F0',

		1965	 	 "varnothing;":																						'\U00002205',

		1966	 	 "varphi;":																										'\U000003D5',

		1967	 	 "varpi;":																											'\U000003D6',

		1968	 	 "varpropto;":																							'\U0000221D',

		1969	 	 "varr;":																												'\U00002195',

		1970	 	 "varrho;":																										'\U000003F1',

		1971	 	 "varsigma;":																								'\U000003C2',

		1972	 	 "vartheta;":																								'\U000003D1',

		1973	 	 "vartriangleleft;":																	'\U000022B2',

		1974	 	 "vartriangleright;":																'\U000022B3',

		1975	 	 "vcy;":																													'\U00000432',

		1976	 	 "vdash;":																											'\U000022A2',

		1977	 	 "vee;":																													'\U00002228',

		1978	 	 "veebar;":																										'\U000022BB',

		1979	 	 "veeeq;":																											'\U0000225A',

		1980	 	 "vellip;":																										'\U000022EE',

		1981	 	 "verbar;":																										'\U0000007C',

		1982	 	 "vert;":																												'\U0000007C',

		1983	 	 "vfr;":																													'\U0001D533',

		1984	 	 "vltri;":																											'\U000022B2',

		1985	 	 "vopf;":																												'\U0001D567',

		1986	 	 "vprop;":																											'\U0000221D',

		1987	 	 "vrtri;":																											'\U000022B3',

		1988	 	 "vscr;":																												'\U0001D4CB',

		1989	 	 "vzigzag;":																									'\U0000299A',

		1990	 	 "wcirc;":																											'\U00000175',

		1991	 	 "wedbar;":																										'\U00002A5F',

		1992	 	 "wedge;":																											'\U00002227',

		1993	 	 "wedgeq;":																										'\U00002259',

		1994	 	 "weierp;":																										'\U00002118',

		1995	 	 "wfr;":																													'\U0001D534',

		1996	 	 "wopf;":																												'\U0001D568',

		1997	 	 "wp;":																														'\U00002118',

		1998	 	 "wr;":																														'\U00002240',

		1999	 	 "wreath;":																										'\U00002240',

		2000	 	 "wscr;":																												'\U0001D4CC',

		2001	 	 "xcap;":																												'\U000022C2',

		2002	 	 "xcirc;":																											'\U000025EF',

		2003	 	 "xcup;":																												'\U000022C3',

		2004	 	 "xdtri;":																											'\U000025BD',

		2005	 	 "xfr;":																													'\U0001D535',

		2006	 	 "xhArr;":																											'\U000027FA',

		2007	 	 "xharr;":																											'\U000027F7',

		2008	 	 "xi;":																														'\U000003BE',

		2009	 	 "xlArr;":																											'\U000027F8',

		2010	 	 "xlarr;":																											'\U000027F5',

		2011	 	 "xmap;":																												'\U000027FC',

		2012	 	 "xnis;":																												'\U000022FB',

		2013	 	 "xodot;":																											'\U00002A00',

		2014	 	 "xopf;":																												'\U0001D569',

		2015	 	 "xoplus;":																										'\U00002A01',

		2016	 	 "xotime;":																										'\U00002A02',

		2017	 	 "xrArr;":																											'\U000027F9',

		2018	 	 "xrarr;":																											'\U000027F6',

		2019	 	 "xscr;":																												'\U0001D4CD',

		2020	 	 "xsqcup;":																										'\U00002A06',

		2021	 	 "xuplus;":																										'\U00002A04',

		2022	 	 "xutri;":																											'\U000025B3',

		2023	 	 "xvee;":																												'\U000022C1',

		2024	 	 "xwedge;":																										'\U000022C0',

		2025	 	 "yacute;":																										'\U000000FD',

		2026	 	 "yacy;":																												'\U0000044F',

		2027	 	 "ycirc;":																											'\U00000177',

		2028	 	 "ycy;":																													'\U0000044B',

		2029	 	 "yen;":																													'\U000000A5',

		2030	 	 "yfr;":																													'\U0001D536',

		2031	 	 "yicy;":																												'\U00000457',

		2032	 	 "yopf;":																												'\U0001D56A',

		2033	 	 "yscr;":																												'\U0001D4CE',

		2034	 	 "yucy;":																												'\U0000044E',

		2035	 	 "yuml;":																												'\U000000FF',

		2036	 	 "zacute;":																										'\U0000017A',

		2037	 	 "zcaron;":																										'\U0000017E',

		2038	 	 "zcy;":																													'\U00000437',

		2039	 	 "zdot;":																												'\U0000017C',

		2040	 	 "zeetrf;":																										'\U00002128',

		2041	 	 "zeta;":																												'\U000003B6',

		2042	 	 "zfr;":																													'\U0001D537',

		2043	 	 "zhcy;":																												'\U00000436',

		2044	 	 "zigrarr;":																									'\U000021DD',

		2045	 	 "zopf;":																												'\U0001D56B',

		2046	 	 "zscr;":																												'\U0001D4CF',

		2047	 	 "zwj;":																													'\U0000200D',

		2048	 	 "zwnj;":																												'\U0000200C',

		2049	 	 "AElig":																												'\U000000C6',

		2050	 	 "AMP":																														'\U00000026',

		2051	 	 "Aacute":																											'\U000000C1',

		2052	 	 "Acirc":																												'\U000000C2',

		2053	 	 "Agrave":																											'\U000000C0',

		2054	 	 "Aring":																												'\U000000C5',

		2055	 	 "Atilde":																											'\U000000C3',

		2056	 	 "Auml":																													'\U000000C4',

		2057	 	 "COPY":																													'\U000000A9',

		2058	 	 "Ccedil":																											'\U000000C7',

		2059	 	 "ETH":																														'\U000000D0',

		2060	 	 "Eacute":																											'\U000000C9',

		2061	 	 "Ecirc":																												'\U000000CA',

		2062	 	 "Egrave":																											'\U000000C8',

		2063	 	 "Euml":																													'\U000000CB',

		2064	 	 "GT":																															'\U0000003E',

		2065	 	 "Iacute":																											'\U000000CD',

		2066	 	 "Icirc":																												'\U000000CE',

		2067	 	 "Igrave":																											'\U000000CC',

		2068	 	 "Iuml":																													'\U000000CF',

		2069	 	 "LT":																															'\U0000003C',

		2070	 	 "Ntilde":																											'\U000000D1',

		2071	 	 "Oacute":																											'\U000000D3',

		2072	 	 "Ocirc":																												'\U000000D4',

		2073	 	 "Ograve":																											'\U000000D2',

		2074	 	 "Oslash":																											'\U000000D8',

		2075	 	 "Otilde":																											'\U000000D5',

		2076	 	 "Ouml":																													'\U000000D6',

		2077	 	 "QUOT":																													'\U00000022',

		2078	 	 "REG":																														'\U000000AE',

		2079	 	 "THORN":																												'\U000000DE',

		2080	 	 "Uacute":																											'\U000000DA',

		2081	 	 "Ucirc":																												'\U000000DB',

		2082	 	 "Ugrave":																											'\U000000D9',

		2083	 	 "Uuml":																													'\U000000DC',

		2084	 	 "Yacute":																											'\U000000DD',

		2085	 	 "aacute":																											'\U000000E1',

		2086	 	 "acirc":																												'\U000000E2',

		2087	 	 "acute":																												'\U000000B4',

		2088	 	 "aelig":																												'\U000000E6',

		2089	 	 "agrave":																											'\U000000E0',

		2090	 	 "amp":																														'\U00000026',

		2091	 	 "aring":																												'\U000000E5',

		2092	 	 "atilde":																											'\U000000E3',

		2093	 	 "auml":																													'\U000000E4',

		2094	 	 "brvbar":																											'\U000000A6',

		2095	 	 "ccedil":																											'\U000000E7',

		2096	 	 "cedil":																												'\U000000B8',

		2097	 	 "cent":																													'\U000000A2',

		2098	 	 "copy":																													'\U000000A9',

		2099	 	 "curren":																											'\U000000A4',

		2100	 	 "deg":																														'\U000000B0',

		2101	 	 "divide":																											'\U000000F7',

		2102	 	 "eacute":																											'\U000000E9',

		2103	 	 "ecirc":																												'\U000000EA',

		2104	 	 "egrave":																											'\U000000E8',

		2105	 	 "eth":																														'\U000000F0',

		2106	 	 "euml":																													'\U000000EB',

		2107	 	 "frac12":																											'\U000000BD',

		2108	 	 "frac14":																											'\U000000BC',

		2109	 	 "frac34":																											'\U000000BE',

		2110	 	 "gt":																															'\U0000003E',

		2111	 	 "iacute":																											'\U000000ED',

		2112	 	 "icirc":																												'\U000000EE',

		2113	 	 "iexcl":																												'\U000000A1',

		2114	 	 "igrave":																											'\U000000EC',

		2115	 	 "iquest":																											'\U000000BF',

		2116	 	 "iuml":																													'\U000000EF',

		2117	 	 "laquo":																												'\U000000AB',

		2118	 	 "lt":																															'\U0000003C',

		2119	 	 "macr":																													'\U000000AF',

		2120	 	 "micro":																												'\U000000B5',

		2121	 	 "middot":																											'\U000000B7',

		2122	 	 "nbsp":																													'\U000000A0',

		2123	 	 "not":																														'\U000000AC',

		2124	 	 "ntilde":																											'\U000000F1',

		2125	 	 "oacute":																											'\U000000F3',

		2126	 	 "ocirc":																												'\U000000F4',

		2127	 	 "ograve":																											'\U000000F2',

		2128	 	 "ordf":																													'\U000000AA',

		2129	 	 "ordm":																													'\U000000BA',

		2130	 	 "oslash":																											'\U000000F8',

		2131	 	 "otilde":																											'\U000000F5',

		2132	 	 "ouml":																													'\U000000F6',

		2133	 	 "para":																													'\U000000B6',

		2134	 	 "plusmn":																											'\U000000B1',

		2135	 	 "pound":																												'\U000000A3',

		2136	 	 "quot":																													'\U00000022',

		2137	 	 "raquo":																												'\U000000BB',

		2138	 	 "reg":																														'\U000000AE',

		2139	 	 "sect":																													'\U000000A7',

		2140	 	 "shy":																														'\U000000AD',

		2141	 	 "sup1":																													'\U000000B9',

		2142	 	 "sup2":																													'\U000000B2',

		2143	 	 "sup3":																													'\U000000B3',

		2144	 	 "szlig":																												'\U000000DF',

		2145	 	 "thorn":																												'\U000000FE',

		2146	 	 "times":																												'\U000000D7',

		2147	 	 "uacute":																											'\U000000FA',

		2148	 	 "ucirc":																												'\U000000FB',

		2149	 	 "ugrave":																											'\U000000F9',

		2150	 	 "uml":																														'\U000000A8',

		2151	 	 "uuml":																													'\U000000FC',

		2152	 	 "yacute":																											'\U000000FD',

		2153	 	 "yen":																														'\U000000A5',

		2154	 	 "yuml":																													'\U000000FF',

		2155	 }

		2156	

		2157	 //	HTML	entities	that	are	two	unicode	codepoints.

		2158	 var	entity2	=	map[string][2]rune{

		2159	 	 //	TODO(nigeltao):	Handle	replacements	that	are	wider	than	their	names.

		2160	 	 //	"nLt;":																					{'\u226A',	'\u20D2'},

		2161	 	 //	"nGt;":																					{'\u226B',	'\u20D2'},

		2162	 	 "NotEqualTilde;":											{'\u2242',	'\u0338'},

		2163	 	 "NotGreaterFullEqual;":					{'\u2267',	'\u0338'},

		2164	 	 "NotGreaterGreater;":							{'\u226B',	'\u0338'},

		2165	 	 "NotGreaterSlantEqual;":				{'\u2A7E',	'\u0338'},

		2166	 	 "NotHumpDownHump;":									{'\u224E',	'\u0338'},

		2167	 	 "NotHumpEqual;":												{'\u224F',	'\u0338'},

		2168	 	 "NotLeftTriangleBar;":						{'\u29CF',	'\u0338'},

		2169	 	 "NotLessLess;":													{'\u226A',	'\u0338'},

		2170	 	 "NotLessSlantEqual;":							{'\u2A7D',	'\u0338'},

		2171	 	 "NotNestedGreaterGreater;":	{'\u2AA2',	'\u0338'},

		2172	 	 "NotNestedLessLess;":							{'\u2AA1',	'\u0338'},

		2173	 	 "NotPrecedesEqual;":								{'\u2AAF',	'\u0338'},

		2174	 	 "NotRightTriangleBar;":					{'\u29D0',	'\u0338'},

		2175	 	 "NotSquareSubset;":									{'\u228F',	'\u0338'},

		2176	 	 "NotSquareSuperset;":							{'\u2290',	'\u0338'},

		2177	 	 "NotSubset;":															{'\u2282',	'\u20D2'},

		2178	 	 "NotSucceedsEqual;":								{'\u2AB0',	'\u0338'},

		2179	 	 "NotSucceedsTilde;":								{'\u227F',	'\u0338'},

		2180	 	 "NotSuperset;":													{'\u2283',	'\u20D2'},

		2181	 	 "ThickSpace;":														{'\u205F',	'\u200A'},

		2182	 	 "acE;":																					{'\u223E',	'\u0333'},

		2183	 	 "bne;":																					{'\u003D',	'\u20E5'},

		2184	 	 "bnequiv;":																	{'\u2261',	'\u20E5'},

		2185	 	 "caps;":																				{'\u2229',	'\uFE00'},

		2186	 	 "cups;":																				{'\u222A',	'\uFE00'},

		2187	 	 "fjlig;":																			{'\u0066',	'\u006A'},

		2188	 	 "gesl;":																				{'\u22DB',	'\uFE00'},

		2189	 	 "gvertneqq;":															{'\u2269',	'\uFE00'},

		2190	 	 "gvnE;":																				{'\u2269',	'\uFE00'},

		2191	 	 "lates;":																			{'\u2AAD',	'\uFE00'},

		2192	 	 "lesg;":																				{'\u22DA',	'\uFE00'},

		2193	 	 "lvertneqq;":															{'\u2268',	'\uFE00'},

		2194	 	 "lvnE;":																				{'\u2268',	'\uFE00'},

		2195	 	 "nGg;":																					{'\u22D9',	'\u0338'},

		2196	 	 "nGtv;":																				{'\u226B',	'\u0338'},

		2197	 	 "nLl;":																					{'\u22D8',	'\u0338'},

		2198	 	 "nLtv;":																				{'\u226A',	'\u0338'},

		2199	 	 "nang;":																				{'\u2220',	'\u20D2'},

		2200	 	 "napE;":																				{'\u2A70',	'\u0338'},

		2201	 	 "napid;":																			{'\u224B',	'\u0338'},

		2202	 	 "nbump;":																			{'\u224E',	'\u0338'},

		2203	 	 "nbumpe;":																		{'\u224F',	'\u0338'},

		2204	 	 "ncongdot;":																{'\u2A6D',	'\u0338'},

		2205	 	 "nedot;":																			{'\u2250',	'\u0338'},

		2206	 	 "nesim;":																			{'\u2242',	'\u0338'},

		2207	 	 "ngE;":																					{'\u2267',	'\u0338'},

		2208	 	 "ngeqq;":																			{'\u2267',	'\u0338'},

		2209	 	 "ngeqslant;":															{'\u2A7E',	'\u0338'},

		2210	 	 "nges;":																				{'\u2A7E',	'\u0338'},

		2211	 	 "nlE;":																					{'\u2266',	'\u0338'},

		2212	 	 "nleqq;":																			{'\u2266',	'\u0338'},

		2213	 	 "nleqslant;":															{'\u2A7D',	'\u0338'},

		2214	 	 "nles;":																				{'\u2A7D',	'\u0338'},

		2215	 	 "notinE;":																		{'\u22F9',	'\u0338'},

		2216	 	 "notindot;":																{'\u22F5',	'\u0338'},

		2217	 	 "nparsl;":																		{'\u2AFD',	'\u20E5'},

		2218	 	 "npart;":																			{'\u2202',	'\u0338'},

		2219	 	 "npre;":																				{'\u2AAF',	'\u0338'},

		2220	 	 "npreceq;":																	{'\u2AAF',	'\u0338'},

		2221	 	 "nrarrc;":																		{'\u2933',	'\u0338'},

		2222	 	 "nrarrw;":																		{'\u219D',	'\u0338'},

		2223	 	 "nsce;":																				{'\u2AB0',	'\u0338'},

		2224	 	 "nsubE;":																			{'\u2AC5',	'\u0338'},

		2225	 	 "nsubset;":																	{'\u2282',	'\u20D2'},

		2226	 	 "nsubseteqq;":														{'\u2AC5',	'\u0338'},

		2227	 	 "nsucceq;":																	{'\u2AB0',	'\u0338'},

		2228	 	 "nsupE;":																			{'\u2AC6',	'\u0338'},

		2229	 	 "nsupset;":																	{'\u2283',	'\u20D2'},

		2230	 	 "nsupseteqq;":														{'\u2AC6',	'\u0338'},

		2231	 	 "nvap;":																				{'\u224D',	'\u20D2'},

		2232	 	 "nvge;":																				{'\u2265',	'\u20D2'},

		2233	 	 "nvgt;":																				{'\u003E',	'\u20D2'},

		2234	 	 "nvle;":																				{'\u2264',	'\u20D2'},

		2235	 	 "nvlt;":																				{'\u003C',	'\u20D2'},

		2236	 	 "nvltrie;":																	{'\u22B4',	'\u20D2'},

		2237	 	 "nvrtrie;":																	{'\u22B5',	'\u20D2'},

		2238	 	 "nvsim;":																			{'\u223C',	'\u20D2'},

		2239	 	 "race;":																				{'\u223D',	'\u0331'},

		2240	 	 "smtes;":																			{'\u2AAC',	'\uFE00'},

		2241	 	 "sqcaps;":																		{'\u2293',	'\uFE00'},

		2242	 	 "sqcups;":																		{'\u2294',	'\uFE00'},

		2243	 	 "varsubsetneq;":												{'\u228A',	'\uFE00'},

		2244	 	 "varsubsetneqq;":											{'\u2ACB',	'\uFE00'},

		2245	 	 "varsupsetneq;":												{'\u228B',	'\uFE00'},

		2246	 	 "varsupsetneqq;":											{'\u2ACC',	'\uFE00'},

		2247	 	 "vnsub;":																			{'\u2282',	'\u20D2'},

		2248	 	 "vnsup;":																			{'\u2283',	'\u20D2'},

		2249	 	 "vsubnE;":																		{'\u2ACB',	'\uFE00'},

		2250	 	 "vsubne;":																		{'\u228A',	'\uFE00'},

		2251	 	 "vsupnE;":																		{'\u2ACC',	'\uFE00'},

		2252	 	 "vsupne;":																		{'\u228B',	'\uFE00'},

		2253	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/html/escape.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	html	provides	functions	for	escaping	and	unescaping	HTML	text.

					6	 package	html

					7	

					8	 import	(

					9	 	 "bytes"

				10	 	 "strings"

				11	 	 "unicode/utf8"

				12)

				13	

				14	 type	writer	interface	{

				15	 	 WriteString(string)	(int,	error)

				16	 }

				17	

				18	 //	These	replacements	permit	compatibility	with	old	numeric	entities	that	

				19	 //	assumed	Windows-1252	encoding.

				20	 //	http://www.whatwg.org/specs/web-apps/current-work/multipage/tokenization.html#consume-a-character-reference

				21	 var	replacementTable	=	[...]rune{

				22	 	 '\u20AC',	//	First	entry	is	what	0x80	should	be	replaced	with.

				23	 	 '\u0081',

				24	 	 '\u201A',

				25	 	 '\u0192',

				26	 	 '\u201E',

				27	 	 '\u2026',

				28	 	 '\u2020',

				29	 	 '\u2021',

				30	 	 '\u02C6',

				31	 	 '\u2030',

				32	 	 '\u0160',

				33	 	 '\u2039',

				34	 	 '\u0152',

				35	 	 '\u008D',

				36	 	 '\u017D',

				37	 	 '\u008F',

				38	 	 '\u0090',

				39	 	 '\u2018',

				40	 	 '\u2019',

				41	 	 '\u201C',

				42	 	 '\u201D',

				43	 	 '\u2022',

				44	 	 '\u2013',

				45	 	 '\u2014',

				46	 	 '\u02DC',

				47	 	 '\u2122',

				48	 	 '\u0161',

				49	 	 '\u203A',

				50	 	 '\u0153',

				51	 	 '\u009D',

				52	 	 '\u017E',

				53	 	 '\u0178',	//	Last	entry	is	0x9F.

				54	 	 //	0x00->'\uFFFD'	is	handled	programmatically.	

				55	 	 //	0x0D->'\u000D'	is	a	no-op.

				56	 }

				57	

				58	 //	unescapeEntity	reads	an	entity	like	"<"	from	b[src:]	and	writes	the

				59	 //	corresponding	"<"	to	b[dst:],	returning	the	incremented	dst	and	src	cursors.

				60	 //	Precondition:	b[src]	==	'&'	&&	dst	<=	src.

				61	 //	attribute	should	be	true	if	parsing	an	attribute	value.

				62	 func	unescapeEntity(b	[]byte,	dst,	src	int,	attribute	bool)	(dst1,	src1	int)	{

				63	 	 //	http://www.whatwg.org/specs/web-apps/current-work/multipage/tokenization.html#consume-a-character-reference

				64	

				65	 	 //	i	starts	at	1	because	we	already	know	that	s[0]	==	'&'.

				66	 	 i,	s	:=	1,	b[src:]

				67	

				68	 	 if	len(s)	<=	1	{

				69	 	 	 b[dst]	=	b[src]

				70	 	 	 return	dst	+	1,	src	+	1

				71	 	 }

				72	

				73	 	 if	s[i]	==	'#'	{

				74	 	 	 if	len(s)	<=	3	{	//	We	need	to	have	at	least	"&#.".

				75	 	 	 	 b[dst]	=	b[src]

				76	 	 	 	 return	dst	+	1,	src	+	1

				77	 	 	 }

				78	 	 	 i++

				79	 	 	 c	:=	s[i]

				80	 	 	 hex	:=	false

				81	 	 	 if	c	==	'x'	||	c	==	'X'	{

				82	 	 	 	 hex	=	true

				83	 	 	 	 i++

				84	 	 	 }

				85	

				86	 	 	 x	:=	'\x00'

				87	 	 	 for	i	<	len(s)	{

				88	 	 	 	 c	=	s[i]

				89	 	 	 	 i++

				90	 	 	 	 if	hex	{

				91	 	 	 	 	 if	'0'	<=	c	&&	c	<=	'9'	{

				92	 	 	 	 	 	 x	=	16*x	+	rune(c)	-	'0'

				93	 	 	 	 	 	 continue

				94	 	 	 	 	 }	else	if	'a'	<=	c	&&	c	<=	'f'	{

				95	 	 	 	 	 	 x	=	16*x	+	rune(c)	-	'a'	+	10

				96	 	 	 	 	 	 continue

				97	 	 	 	 	 }	else	if	'A'	<=	c	&&	c	<=	'F'	{

				98	 	 	 	 	 	 x	=	16*x	+	rune(c)	-	'A'	+	10

				99	 	 	 	 	 	 continue

			100	 	 	 	 	 }

			101	 	 	 	 }	else	if	'0'	<=	c	&&	c	<=	'9'	{

			102	 	 	 	 	 x	=	10*x	+	rune(c)	-	'0'

			103	 	 	 	 	 continue

			104	 	 	 	 }

			105	 	 	 	 if	c	!=	';'	{

			106	 	 	 	 	 i--

			107	 	 	 	 }

			108	 	 	 	 break

			109	 	 	 }

			110	

			111	 	 	 if	i	<=	3	{	//	No	characters	matched.

			112	 	 	 	 b[dst]	=	b[src]

			113	 	 	 	 return	dst	+	1,	src	+	1

			114	 	 	 }

			115	

			116	 	 	 if	0x80	<=	x	&&	x	<=	0x9F	{

			117	 	 	 	 //	Replace	characters	from	Windows-1252	with	UTF-8	equivalents.

			118	 	 	 	 x	=	replacementTable[x-0x80]

			119	 	 	 }	else	if	x	==	0	||	(0xD800	<=	x	&&	x	<=	0xDFFF)	||	x	>	0x10FFFF	{

			120	 	 	 	 //	Replace	invalid	characters	with	the	replacement	character.

			121	 	 	 	 x	=	'\uFFFD'

			122	 	 	 }

			123	

			124	 	 	 return	dst	+	utf8.EncodeRune(b[dst:],	x),	src	+	i

			125	 	 }

			126	

			127	 	 //	Consume	the	maximum	number	of	characters	possible,	with	the

			128	 	 //	consumed	characters	matching	one	of	the	named	references.

			129	

			130	 	 for	i	<	len(s)	{

			131	 	 	 c	:=	s[i]

			132	 	 	 i++

			133	 	 	 //	Lower-cased	characters	are	more	common	in	entities,	so	we	check	for	them	first.

			134	 	 	 if	'a'	<=	c	&&	c	<=	'z'	||	'A'	<=	c	&&	c	<=	'Z'	||	'0'	<=	c	&&	c	<=	'9'	{

			135	 	 	 	 continue

			136	 	 	 }

			137	 	 	 if	c	!=	';'	{

			138	 	 	 	 i--

			139	 	 	 }

			140	 	 	 break

			141	 	 }

			142	

			143	 	 entityName	:=	string(s[1:i])

			144	 	 if	entityName	==	""	{

			145	 	 	 //	No-op.

			146	 	 }	else	if	attribute	&&	entityName[len(entityName)-1]	!=	';'	&&	len(s)	>	i	&&	s[i]	==	'='	{

			147	 	 	 //	No-op.

			148	 	 }	else	if	x	:=	entity[entityName];	x	!=	0	{

			149	 	 	 return	dst	+	utf8.EncodeRune(b[dst:],	x),	src	+	i

			150	 	 }	else	if	x	:=	entity2[entityName];	x[0]	!=	0	{

			151	 	 	 dst1	:=	dst	+	utf8.EncodeRune(b[dst:],	x[0])

			152	 	 	 return	dst1	+	utf8.EncodeRune(b[dst1:],	x[1]),	src	+	i

			153	 	 }	else	if	!attribute	{

			154	 	 	 maxLen	:=	len(entityName)	-	1

			155	 	 	 if	maxLen	>	longestEntityWithoutSemicolon	{

			156	 	 	 	 maxLen	=	longestEntityWithoutSemicolon

			157	 	 	 }

			158	 	 	 for	j	:=	maxLen;	j	>	1;	j--	{

			159	 	 	 	 if	x	:=	entity[entityName[:j]];	x	!=	0	{

			160	 	 	 	 	 return	dst	+	utf8.EncodeRune(b[dst:],	x),	src	+	j	+	1

			161	 	 	 	 }

			162	 	 	 }

			163	 	 }

			164	

			165	 	 dst1,	src1	=	dst+i,	src+i

			166	 	 copy(b[dst:dst1],	b[src:src1])

			167	 	 return	dst1,	src1

			168	 }

			169	

			170	 //	unescape	unescapes	b's	entities	in-place,	so	that	"a<b"	becomes	"a<b".

			171	 func	unescape(b	[]byte)	[]byte	{

			172	 	 for	i,	c	:=	range	b	{

			173	 	 	 if	c	==	'&'	{

			174	 	 	 	 dst,	src	:=	unescapeEntity(b,	i,	i,	false)

			175	 	 	 	 for	src	<	len(b)	{

			176	 	 	 	 	 c	:=	b[src]

			177	 	 	 	 	 if	c	==	'&'	{

			178	 	 	 	 	 	 dst,	src	=	unescapeEntity(b,	dst,	src,	false)

			179	 	 	 	 	 }	else	{

			180	 	 	 	 	 	 b[dst]	=	c

			181	 	 	 	 	 	 dst,	src	=	dst+1,	src+1

			182	 	 	 	 	 }

			183	 	 	 	 }

			184	 	 	 	 return	b[0:dst]

			185	 	 	 }

			186	 	 }

			187	 	 return	b

			188	 }

			189	

			190	 //	lower	lower-cases	the	A-Z	bytes	in	b	in-place,	so	that	"aBc"	becomes	"abc".

			191	 func	lower(b	[]byte)	[]byte	{

			192	 	 for	i,	c	:=	range	b	{

			193	 	 	 if	'A'	<=	c	&&	c	<=	'Z'	{

			194	 	 	 	 b[i]	=	c	+	'a'	-	'A'

			195	 	 	 }

			196	 	 }

			197	 	 return	b

			198	 }

			199	

			200	 const	escapedChars	=	`&'<>"`

			201	

			202	 func	escape(w	writer,	s	string)	error	{

			203	 	 i	:=	strings.IndexAny(s,	escapedChars)

			204	 	 for	i	!=	-1	{

			205	 	 	 if	_,	err	:=	w.WriteString(s[:i]);	err	!=	nil	{

			206	 	 	 	 return	err

			207	 	 	 }

			208	 	 	 var	esc	string

			209	 	 	 switch	s[i]	{

			210	 	 	 case	'&':

			211	 	 	 	 esc	=	"&"

			212	 	 	 case	'\'':

			213	 	 	 	 //	"'"	is	shorter	than	"'"	and	apos	was	not	in	HTML	until	HTML5.

			214	 	 	 	 esc	=	"'"

			215	 	 	 case	'<':

			216	 	 	 	 esc	=	"<"

			217	 	 	 case	'>':

			218	 	 	 	 esc	=	">"

			219	 	 	 case	'"':

			220	 	 	 	 //	"""	is	shorter	than	""".

			221	 	 	 	 esc	=	"""

			222	 	 	 default:

			223	 	 	 	 panic("unrecognized	escape	character")

			224	 	 	 }

			225	 	 	 s	=	s[i+1:]

			226	 	 	 if	_,	err	:=	w.WriteString(esc);	err	!=	nil	{

			227	 	 	 	 return	err

			228	 	 	 }

			229	 	 	 i	=	strings.IndexAny(s,	escapedChars)

			230	 	 }

			231	 	 _,	err	:=	w.WriteString(s)

			232	 	 return	err

			233	 }

			234	

			235	 //	EscapeString	escapes	special	characters	like	"<"	to	become	"<".	It

			236	 //	escapes	only	five	such	characters:	<,	>,	&,	'	and	".

			237	 //	UnescapeString(EscapeString(s))	==	s	always	holds,	but	the	converse	isn't

			238	 //	always	true.

			239	 func	EscapeString(s	string)	string	{

			240	 	 if	strings.IndexAny(s,	escapedChars)	==	-1	{

			241	 	 	 return	s

			242	 	 }

			243	 	 var	buf	bytes.Buffer

			244	 	 escape(&buf,	s)

			245	 	 return	buf.String()

			246	 }

			247	

			248	 //	UnescapeString	unescapes	entities	like	"<"	to	become	"<".	It	unescapes	a

			249	 //	larger	range	of	entities	than	EscapeString	escapes.	For	example,	"á"

			250	 //	unescapes	to	"á",	as	does	"á"	and	"&xE1;".

			251	 //	UnescapeString(EscapeString(s))	==	s	always	holds,	but	the	converse	isn't

			252	 //	always	true.

			253	 func	UnescapeString(s	string)	string	{

			254	 	 for	_,	c	:=	range	s	{

			255	 	 	 if	c	==	'&'	{

			256	 	 	 	 return	string(unescape([]byte(s)))

			257	 	 	 }

			258	 	 }

			259	 	 return	s

			260	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/html/template/attr.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	template

					6	

					7	 import	(

					8	 	 "strings"

					9)

				10	

				11	 //	attrTypeMap[n]	describes	the	value	of	the	given	attribute.

				12	 //	If	an	attribute	affects	(or	can	mask)	the	encoding	or	interpretation	of

				13	 //	other	content,	or	affects	the	contents,	idempotency,	or	credentials	of	a

				14	 //	network	message,	then	the	value	in	this	map	is	contentTypeUnsafe.

				15	 //	This	map	is	derived	from	HTML5,	specifically

				16	 //	http://www.w3.org/TR/html5/Overview.html#attributes-1

				17	 //	as	well	as	"%URI"-typed	attributes	from

				18	 //	http://www.w3.org/TR/html4/index/attributes.html

				19	 var	attrTypeMap	=	map[string]contentType{

				20	 	 "accept":										contentTypePlain,

				21	 	 "accept-charset":		contentTypeUnsafe,

				22	 	 "action":										contentTypeURL,

				23	 	 "alt":													contentTypePlain,

				24	 	 "archive":									contentTypeURL,

				25	 	 "async":											contentTypeUnsafe,

				26	 	 "autocomplete":				contentTypePlain,

				27	 	 "autofocus":							contentTypePlain,

				28	 	 "autoplay":								contentTypePlain,

				29	 	 "background":						contentTypeURL,

				30	 	 "border":										contentTypePlain,

				31	 	 "checked":									contentTypePlain,

				32	 	 "cite":												contentTypeURL,

				33	 	 "challenge":							contentTypeUnsafe,

				34	 	 "charset":									contentTypeUnsafe,

				35	 	 "class":											contentTypePlain,

				36	 	 "classid":									contentTypeURL,

				37	 	 "codebase":								contentTypeURL,

				38	 	 "cols":												contentTypePlain,

				39	 	 "colspan":									contentTypePlain,

				40	 	 "content":									contentTypeUnsafe,

				41	 	 "contenteditable":	contentTypePlain,

				42	 	 "contextmenu":					contentTypePlain,

				43	 	 "controls":								contentTypePlain,

				44	 	 "coords":										contentTypePlain,

				45	 	 "crossorigin":					contentTypeUnsafe,

				46	 	 "data":												contentTypeURL,

				47	 	 "datetime":								contentTypePlain,

				48	 	 "default":									contentTypePlain,

				49	 	 "defer":											contentTypeUnsafe,

				50	 	 "dir":													contentTypePlain,

				51	 	 "dirname":									contentTypePlain,

				52	 	 "disabled":								contentTypePlain,

				53	 	 "draggable":							contentTypePlain,

				54	 	 "dropzone":								contentTypePlain,

				55	 	 "enctype":									contentTypeUnsafe,

				56	 	 "for":													contentTypePlain,

				57	 	 "form":												contentTypeUnsafe,

				58	 	 "formaction":						contentTypeURL,

				59	 	 "formenctype":					contentTypeUnsafe,

				60	 	 "formmethod":						contentTypeUnsafe,

				61	 	 "formnovalidate":		contentTypeUnsafe,

				62	 	 "formtarget":						contentTypePlain,

				63	 	 "headers":									contentTypePlain,

				64	 	 "height":										contentTypePlain,

				65	 	 "hidden":										contentTypePlain,

				66	 	 "high":												contentTypePlain,

				67	 	 "href":												contentTypeURL,

				68	 	 "hreflang":								contentTypePlain,

				69	 	 "http-equiv":						contentTypeUnsafe,

				70	 	 "icon":												contentTypeURL,

				71	 	 "id":														contentTypePlain,

				72	 	 "ismap":											contentTypePlain,

				73	 	 "keytype":									contentTypeUnsafe,

				74	 	 "kind":												contentTypePlain,

				75	 	 "label":											contentTypePlain,

				76	 	 "lang":												contentTypePlain,

				77	 	 "language":								contentTypeUnsafe,

				78	 	 "list":												contentTypePlain,

				79	 	 "longdesc":								contentTypeURL,

				80	 	 "loop":												contentTypePlain,

				81	 	 "low":													contentTypePlain,

				82	 	 "manifest":								contentTypeURL,

				83	 	 "max":													contentTypePlain,

				84	 	 "maxlength":							contentTypePlain,

				85	 	 "media":											contentTypePlain,

				86	 	 "mediagroup":						contentTypePlain,

				87	 	 "method":										contentTypeUnsafe,

				88	 	 "min":													contentTypePlain,

				89	 	 "multiple":								contentTypePlain,

				90	 	 "name":												contentTypePlain,

				91	 	 "novalidate":						contentTypeUnsafe,

				92	 	 //	Skip	handler	names	from

				93	 	 //	http://www.w3.org/TR/html5/Overview.html#event-handlers-on-elements-document-objects-and-window-objects

				94	 	 //	since	we	have	special	handling	in	attrType.

				95	 	 "open":								contentTypePlain,

				96	 	 "optimum":					contentTypePlain,

				97	 	 "pattern":					contentTypeUnsafe,

				98	 	 "placeholder":	contentTypePlain,

				99	 	 "poster":						contentTypeURL,

			100	 	 "profile":					contentTypeURL,

			101	 	 "preload":					contentTypePlain,

			102	 	 "pubdate":					contentTypePlain,

			103	 	 "radiogroup":		contentTypePlain,

			104	 	 "readonly":				contentTypePlain,

			105	 	 "rel":									contentTypeUnsafe,

			106	 	 "required":				contentTypePlain,

			107	 	 "reversed":				contentTypePlain,

			108	 	 "rows":								contentTypePlain,

			109	 	 "rowspan":					contentTypePlain,

			110	 	 "sandbox":					contentTypeUnsafe,

			111	 	 "spellcheck":		contentTypePlain,

			112	 	 "scope":							contentTypePlain,

			113	 	 "scoped":						contentTypePlain,

			114	 	 "seamless":				contentTypePlain,

			115	 	 "selected":				contentTypePlain,

			116	 	 "shape":							contentTypePlain,

			117	 	 "size":								contentTypePlain,

			118	 	 "sizes":							contentTypePlain,

			119	 	 "span":								contentTypePlain,

			120	 	 "src":									contentTypeURL,

			121	 	 "srcdoc":						contentTypeHTML,

			122	 	 "srclang":					contentTypePlain,

			123	 	 "start":							contentTypePlain,

			124	 	 "step":								contentTypePlain,

			125	 	 "style":							contentTypeCSS,

			126	 	 "tabindex":				contentTypePlain,

			127	 	 "target":						contentTypePlain,

			128	 	 "title":							contentTypePlain,

			129	 	 "type":								contentTypeUnsafe,

			130	 	 "usemap":						contentTypeURL,

			131	 	 "value":							contentTypeUnsafe,

			132	 	 "width":							contentTypePlain,

			133	 	 "wrap":								contentTypePlain,

			134	 	 "xmlns":							contentTypeURL,

			135	 }

			136	

			137	 //	attrType	returns	a	conservative	(upper-bound	on	authority)	guess	at	the

			138	 //	type	of	the	named	attribute.

			139	 func	attrType(name	string)	contentType	{

			140	 	 name	=	strings.ToLower(name)

			141	 	 if	strings.HasPrefix(name,	"data-")	{

			142	 	 	 //	Strip	data-	so	that	custom	attribute	heuristics	below	are

			143	 	 	 //	widely	applied.

			144	 	 	 //	Treat	data-action	as	URL	below.

			145	 	 	 name	=	name[5:]

			146	 	 }	else	if	colon	:=	strings.IndexRune(name,	':');	colon	!=	-1	{

			147	 	 	 if	name[:colon]	==	"xmlns"	{

			148	 	 	 	 return	contentTypeURL

			149	 	 	 }

			150	 	 	 //	Treat	svg:href	and	xlink:href	as	href	below.

			151	 	 	 name	=	name[colon+1:]

			152	 	 }

			153	 	 if	t,	ok	:=	attrTypeMap[name];	ok	{

			154	 	 	 return	t

			155	 	 }

			156	 	 //	Treat	partial	event	handler	names	as	script.

			157	 	 if	strings.HasPrefix(name,	"on")	{

			158	 	 	 return	contentTypeJS

			159	 	 }

			160	

			161	 	 //	Heuristics	to	prevent	"javascript:..."	injection	in	custom

			162	 	 //	data	attributes	and	custom	attributes	like	g:tweetUrl.

			163	 	 //	http://www.w3.org/TR/html5/elements.html#embedding-custom-non-visible-data-with-the-data-attributes:

			164	 	 //	"Custom	data	attributes	are	intended	to	store	custom	data

			165	 	 //		private	to	the	page	or	application,	for	which	there	are	no

			166	 	 //		more	appropriate	attributes	or	elements."

			167	 	 //	Developers	seem	to	store	URL	content	in	data	URLs	that	start

			168	 	 //	or	end	with	"URI"	or	"URL".

			169	 	 if	strings.Contains(name,	"src")	||

			170	 	 	 strings.Contains(name,	"uri")	||

			171	 	 	 strings.Contains(name,	"url")	{

			172	 	 	 return	contentTypeURL

			173	 	 }

			174	 	 return	contentTypePlain

			175	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/html/template/content.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	template

					6	

					7	 import	(

					8	 	 "fmt"

					9	 	 "reflect"

				10)

				11	

				12	 //	Strings	of	content	from	a	trusted	source.

				13	 type	(

				14	 	 //	CSS	encapsulates	known	safe	content	that	matches	any	of:

				15	 	 //			1.	The	CSS3	stylesheet	production,	such	as	`p	{	color:	purple	}`.

				16	 	 //			2.	The	CSS3	rule	production,	such	as	`a[href=~"https:"].foo#bar`.

				17	 	 //			3.	CSS3	declaration	productions,	such	as	`color:	red;	margin:	2px`.

				18	 	 //			4.	The	CSS3	value	production,	such	as	`rgba(0,	0,	255,	127)`.

				19	 	 //	See	http://www.w3.org/TR/css3-syntax/#style

				20	 	 CSS	string

				21	

				22	 	 //	HTML	encapsulates	a	known	safe	HTML	document	fragment.

				23	 	 //	It	should	not	be	used	for	HTML	from	a	third-party,	or	HTML	with

				24	 	 //	unclosed	tags	or	comments.	The	outputs	of	a	sound	HTML	sanitizer

				25	 	 //	and	a	template	escaped	by	this	package	are	fine	for	use	with	HTML.

				26	 	 HTML	string

				27	

				28	 	 //	HTMLAttr	encapsulates	an	HTML	attribute	from	a	trusted	source,

				29	 	 //	for	example,	`	dir="ltr"`.

				30	 	 HTMLAttr	string

				31	

				32	 	 //	JS	encapsulates	a	known	safe	EcmaScript5	Expression,	for	example,

				33	 	 //	`(x	+	y	*	z())`.	

				34	 	 //	Template	authors	are	responsible	for	ensuring	that	typed	expressions

				35	 	 //	do	not	break	the	intended	precedence	and	that	there	is	no

				36	 	 //	statement/expression	ambiguity	as	when	passing	an	expression	like

				37	 	 //	"{	foo:	bar()	}\n['foo']()",	which	is	both	a	valid	Expression	and	a

				38	 	 //	valid	Program	with	a	very	different	meaning.

				39	 	 JS	string

				40	

				41	 	 //	JSStr	encapsulates	a	sequence	of	characters	meant	to	be	embedded

				42	 	 //	between	quotes	in	a	JavaScript	expression.

				43	 	 //	The	string	must	match	a	series	of	StringCharacters:

				44	 	 //			StringCharacter	::	SourceCharacter	but	not	`\`	or	LineTerminator

				45	 	 //																				|	EscapeSequence

				46	 	 //	Note	that	LineContinuations	are	not	allowed.

				47	 	 //	JSStr("foo\\nbar")	is	fine,	but	JSStr("foo\\\nbar")	is	not.

				48	 	 JSStr	string

				49	

				50	 	 //	URL	encapsulates	a	known	safe	URL	as	defined	in	RFC	3896.

				51	 	 //	A	URL	like	`javascript:checkThatFormNotEditedBeforeLeavingPage()`

				52	 	 //	from	a	trusted	source	should	go	in	the	page,	but	by	default	dynamic

				53	 	 //	`javascript:`	URLs	are	filtered	out	since	they	are	a	frequently

				54	 	 //	exploited	injection	vector.

				55	 	 URL	string

				56)

				57	

				58	 type	contentType	uint8

				59	

				60	 const	(

				61	 	 contentTypePlain	contentType	=	iota

				62	 	 contentTypeCSS

				63	 	 contentTypeHTML

				64	 	 contentTypeHTMLAttr

				65	 	 contentTypeJS

				66	 	 contentTypeJSStr

				67	 	 contentTypeURL

				68	 	 //	contentTypeUnsafe	is	used	in	attr.go	for	values	that	affect	how

				69	 	 //	embedded	content	and	network	messages	are	formed,	vetted,

				70	 	 //	or	interpreted;	or	which	credentials	network	messages	carry.

				71	 	 contentTypeUnsafe

				72)

				73	

				74	 //	indirect	returns	the	value,	after	dereferencing	as	many	times

				75	 //	as	necessary	to	reach	the	base	type	(or	nil).

				76	 func	indirect(a	interface{})	interface{}	{

				77	 	 if	t	:=	reflect.TypeOf(a);	t.Kind()	!=	reflect.Ptr	{

				78	 	 	 //	Avoid	creating	a	reflect.Value	if	it's	not	a	pointer.

				79	 	 	 return	a

				80	 	 }

				81	 	 v	:=	reflect.ValueOf(a)

				82	 	 for	v.Kind()	==	reflect.Ptr	&&	!v.IsNil()	{

				83	 	 	 v	=	v.Elem()

				84	 	 }

				85	 	 return	v.Interface()

				86	 }

				87	

				88	 var	(

				89	 	 errorType							=	reflect.TypeOf((*error)(nil)).Elem()

				90	 	 fmtStringerType	=	reflect.TypeOf((*fmt.Stringer)(nil)).Elem()

				91)

				92	

				93	 //	indirectToStringerOrError	returns	the	value,	after	dereferencing	as	many	times

				94	 //	as	necessary	to	reach	the	base	type	(or	nil)	or	an	implementation	of	fmt.Stringer

				95	 //	or	error,

				96	 func	indirectToStringerOrError(a	interface{})	interface{}	{

				97	 	 v	:=	reflect.ValueOf(a)

				98	 	 for	!v.Type().Implements(fmtStringerType)	&&	!v.Type().Implements(errorType)	&&	v.Kind()	==	reflect.Ptr	&&	!v.IsNil()	{

				99	 	 	 v	=	v.Elem()

			100	 	 }

			101	 	 return	v.Interface()

			102	 }

			103	

			104	 //	stringify	converts	its	arguments	to	a	string	and	the	type	of	the	content.

			105	 //	All	pointers	are	dereferenced,	as	in	the	text/template	package.

			106	 func	stringify(args	...interface{})	(string,	contentType)	{

			107	 	 if	len(args)	==	1	{

			108	 	 	 switch	s	:=	indirect(args[0]).(type)	{

			109	 	 	 case	string:

			110	 	 	 	 return	s,	contentTypePlain

			111	 	 	 case	CSS:

			112	 	 	 	 return	string(s),	contentTypeCSS

			113	 	 	 case	HTML:

			114	 	 	 	 return	string(s),	contentTypeHTML

			115	 	 	 case	HTMLAttr:

			116	 	 	 	 return	string(s),	contentTypeHTMLAttr

			117	 	 	 case	JS:

			118	 	 	 	 return	string(s),	contentTypeJS

			119	 	 	 case	JSStr:

			120	 	 	 	 return	string(s),	contentTypeJSStr

			121	 	 	 case	URL:

			122	 	 	 	 return	string(s),	contentTypeURL

			123	 	 	 }

			124	 	 }

			125	 	 for	i,	arg	:=	range	args	{

			126	 	 	 args[i]	=	indirectToStringerOrError(arg)

			127	 	 }

			128	 	 return	fmt.Sprint(args...),	contentTypePlain

			129	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/html/template/context.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	template

					6	

					7	 import	(

					8	 	 "fmt"

					9)

				10	

				11	 //	context	describes	the	state	an	HTML	parser	must	be	in	when	it	reaches	the

				12	 //	portion	of	HTML	produced	by	evaluating	a	particular	template	node.

				13	 //

				14	 //	The	zero	value	of	type	context	is	the	start	context	for	a	template	that

				15	 //	produces	an	HTML	fragment	as	defined	at

				16	 //	http://www.w3.org/TR/html5/the-end.html#parsing-html-fragments

				17	 //	where	the	context	element	is	null.

				18	 type	context	struct	{

				19	 	 state			state

				20	 	 delim			delim

				21	 	 urlPart	urlPart

				22	 	 jsCtx			jsCtx

				23	 	 attr				attr

				24	 	 element	element

				25	 	 err					*Error

				26	 }

				27	

				28	 func	(c	context)	String()	string	{

				29	 	 return	fmt.Sprintf("{%v	%v	%v	%v	%v	%v	%v}",	c.state,	c.delim,	c.urlPart,	c.jsCtx,	c.attr,	c.element,	c.err)

				30	 }

				31	

				32	 //	eq	returns	whether	two	contexts	are	equal.

				33	 func	(c	context)	eq(d	context)	bool	{

				34	 	 return	c.state	==	d.state	&&

				35	 	 	 c.delim	==	d.delim	&&

				36	 	 	 c.urlPart	==	d.urlPart	&&

				37	 	 	 c.jsCtx	==	d.jsCtx	&&

				38	 	 	 c.attr	==	d.attr	&&

				39	 	 	 c.element	==	d.element	&&

				40	 	 	 c.err	==	d.err

				41	 }

				42	

				43	 //	mangle	produces	an	identifier	that	includes	a	suffix	that	distinguishes	it

				44	 //	from	template	names	mangled	with	different	contexts.

				45	 func	(c	context)	mangle(templateName	string)	string	{

				46	 	 //	The	mangled	name	for	the	default	context	is	the	input	templateName.

				47	 	 if	c.state	==	stateText	{

				48	 	 	 return	templateName

				49	 	 }

				50	 	 s	:=	templateName	+	"$htmltemplate_"	+	c.state.String()

				51	 	 if	c.delim	!=	0	{

				52	 	 	 s	+=	"_"	+	c.delim.String()

				53	 	 }

				54	 	 if	c.urlPart	!=	0	{

				55	 	 	 s	+=	"_"	+	c.urlPart.String()

				56	 	 }

				57	 	 if	c.jsCtx	!=	0	{

				58	 	 	 s	+=	"_"	+	c.jsCtx.String()

				59	 	 }

				60	 	 if	c.attr	!=	0	{

				61	 	 	 s	+=	"_"	+	c.attr.String()

				62	 	 }

				63	 	 if	c.element	!=	0	{

				64	 	 	 s	+=	"_"	+	c.element.String()

				65	 	 }

				66	 	 return	s

				67	 }

				68	

				69	 //	state	describes	a	high-level	HTML	parser	state.

				70	 //

				71	 //	It	bounds	the	top	of	the	element	stack,	and	by	extension	the	HTML	insertion

				72	 //	mode,	but	also	contains	state	that	does	not	correspond	to	anything	in	the

				73	 //	HTML5	parsing	algorithm	because	a	single	token	production	in	the	HTML

				74	 //	grammar	may	contain	embedded	actions	in	a	template.	For	instance,	the	quoted

				75	 //	HTML	attribute	produced	by

				76	 //					<div	title="Hello	{{.World}}">

				77	 //	is	a	single	token	in	HTML's	grammar	but	in	a	template	spans	several	nodes.

				78	 type	state	uint8

				79	

				80	 const	(

				81	 	 //	stateText	is	parsed	character	data.	An	HTML	parser	is	in

				82	 	 //	this	state	when	its	parse	position	is	outside	an	HTML	tag,

				83	 	 //	directive,	comment,	and	special	element	body.

				84	 	 stateText	state	=	iota

				85	 	 //	stateTag	occurs	before	an	HTML	attribute	or	the	end	of	a	tag.

				86	 	 stateTag

				87	 	 //	stateAttrName	occurs	inside	an	attribute	name.

				88	 	 //	It	occurs	between	the	^'s	in	`	^name^	=	value`.

				89	 	 stateAttrName

				90	 	 //	stateAfterName	occurs	after	an	attr	name	has	ended	but	before	any

				91	 	 //	equals	sign.	It	occurs	between	the	^'s	in	`	name^	^=	value`.

				92	 	 stateAfterName

				93	 	 //	stateBeforeValue	occurs	after	the	equals	sign	but	before	the	value.

				94	 	 //	It	occurs	between	the	^'s	in	`	name	=^	^value`.

				95	 	 stateBeforeValue

				96	 	 //	stateHTMLCmt	occurs	inside	an	<!--	HTML	comment	-->.

				97	 	 stateHTMLCmt

				98	 	 //	stateRCDATA	occurs	inside	an	RCDATA	element	(<textarea>	or	<title>)

				99	 	 //	as	described	at	http://dev.w3.org/html5/spec/syntax.html#elements-0

			100	 	 stateRCDATA

			101	 	 //	stateAttr	occurs	inside	an	HTML	attribute	whose	content	is	text.

			102	 	 stateAttr

			103	 	 //	stateURL	occurs	inside	an	HTML	attribute	whose	content	is	a	URL.

			104	 	 stateURL

			105	 	 //	stateJS	occurs	inside	an	event	handler	or	script	element.

			106	 	 stateJS

			107	 	 //	stateJSDqStr	occurs	inside	a	JavaScript	double	quoted	string.

			108	 	 stateJSDqStr

			109	 	 //	stateJSSqStr	occurs	inside	a	JavaScript	single	quoted	string.

			110	 	 stateJSSqStr

			111	 	 //	stateJSRegexp	occurs	inside	a	JavaScript	regexp	literal.

			112	 	 stateJSRegexp

			113	 	 //	stateJSBlockCmt	occurs	inside	a	JavaScript	/*	block	comment	*/.

			114	 	 stateJSBlockCmt

			115	 	 //	stateJSLineCmt	occurs	inside	a	JavaScript	//	line	comment.

			116	 	 stateJSLineCmt

			117	 	 //	stateCSS	occurs	inside	a	<style>	element	or	style	attribute.

			118	 	 stateCSS

			119	 	 //	stateCSSDqStr	occurs	inside	a	CSS	double	quoted	string.

			120	 	 stateCSSDqStr

			121	 	 //	stateCSSSqStr	occurs	inside	a	CSS	single	quoted	string.

			122	 	 stateCSSSqStr

			123	 	 //	stateCSSDqURL	occurs	inside	a	CSS	double	quoted	url("...").

			124	 	 stateCSSDqURL

			125	 	 //	stateCSSSqURL	occurs	inside	a	CSS	single	quoted	url('...').

			126	 	 stateCSSSqURL

			127	 	 //	stateCSSURL	occurs	inside	a	CSS	unquoted	url(...).

			128	 	 stateCSSURL

			129	 	 //	stateCSSBlockCmt	occurs	inside	a	CSS	/*	block	comment	*/.

			130	 	 stateCSSBlockCmt

			131	 	 //	stateCSSLineCmt	occurs	inside	a	CSS	//	line	comment.

			132	 	 stateCSSLineCmt

			133	 	 //	stateError	is	an	infectious	error	state	outside	any	valid

			134	 	 //	HTML/CSS/JS	construct.

			135	 	 stateError

			136)

			137	

			138	 var	stateNames	=	[...]string{

			139	 	 stateText:								"stateText",

			140	 	 stateTag:									"stateTag",

			141	 	 stateAttrName:				"stateAttrName",

			142	 	 stateAfterName:			"stateAfterName",

			143	 	 stateBeforeValue:	"stateBeforeValue",

			144	 	 stateHTMLCmt:					"stateHTMLCmt",

			145	 	 stateRCDATA:						"stateRCDATA",

			146	 	 stateAttr:								"stateAttr",

			147	 	 stateURL:									"stateURL",

			148	 	 stateJS:										"stateJS",

			149	 	 stateJSDqStr:					"stateJSDqStr",

			150	 	 stateJSSqStr:					"stateJSSqStr",

			151	 	 stateJSRegexp:				"stateJSRegexp",

			152	 	 stateJSBlockCmt:		"stateJSBlockCmt",

			153	 	 stateJSLineCmt:			"stateJSLineCmt",

			154	 	 stateCSS:									"stateCSS",

			155	 	 stateCSSDqStr:				"stateCSSDqStr",

			156	 	 stateCSSSqStr:				"stateCSSSqStr",

			157	 	 stateCSSDqURL:				"stateCSSDqURL",

			158	 	 stateCSSSqURL:				"stateCSSSqURL",

			159	 	 stateCSSURL:						"stateCSSURL",

			160	 	 stateCSSBlockCmt:	"stateCSSBlockCmt",

			161	 	 stateCSSLineCmt:		"stateCSSLineCmt",

			162	 	 stateError:							"stateError",

			163	 }

			164	

			165	 func	(s	state)	String()	string	{

			166	 	 if	int(s)	<	len(stateNames)	{

			167	 	 	 return	stateNames[s]

			168	 	 }

			169	 	 return	fmt.Sprintf("illegal	state	%d",	int(s))

			170	 }

			171	

			172	 //	isComment	is	true	for	any	state	that	contains	content	meant	for	template

			173	 //	authors	&	maintainers,	not	for	end-users	or	machines.

			174	 func	isComment(s	state)	bool	{

			175	 	 switch	s	{

			176	 	 case	stateHTMLCmt,	stateJSBlockCmt,	stateJSLineCmt,	stateCSSBlockCmt,	stateCSSLineCmt:

			177	 	 	 return	true

			178	 	 }

			179	 	 return	false

			180	 }

			181	

			182	 //	isInTag	return	whether	s	occurs	solely	inside	an	HTML	tag.

			183	 func	isInTag(s	state)	bool	{

			184	 	 switch	s	{

			185	 	 case	stateTag,	stateAttrName,	stateAfterName,	stateBeforeValue,	stateAttr:

			186	 	 	 return	true

			187	 	 }

			188	 	 return	false

			189	 }

			190	

			191	 //	delim	is	the	delimiter	that	will	end	the	current	HTML	attribute.

			192	 type	delim	uint8

			193	

			194	 const	(

			195	 	 //	delimNone	occurs	outside	any	attribute.

			196	 	 delimNone	delim	=	iota

			197	 	 //	delimDoubleQuote	occurs	when	a	double	quote	(")	closes	the	attribute.

			198	 	 delimDoubleQuote

			199	 	 //	delimSingleQuote	occurs	when	a	single	quote	(')	closes	the	attribute.

			200	 	 delimSingleQuote

			201	 	 //	delimSpaceOrTagEnd	occurs	when	a	space	or	right	angle	bracket	(>)

			202	 	 //	closes	the	attribute.

			203	 	 delimSpaceOrTagEnd

			204)

			205	

			206	 var	delimNames	=	[...]string{

			207	 	 delimNone:										"delimNone",

			208	 	 delimDoubleQuote:			"delimDoubleQuote",

			209	 	 delimSingleQuote:			"delimSingleQuote",

			210	 	 delimSpaceOrTagEnd:	"delimSpaceOrTagEnd",

			211	 }

			212	

			213	 func	(d	delim)	String()	string	{

			214	 	 if	int(d)	<	len(delimNames)	{

			215	 	 	 return	delimNames[d]

			216	 	 }

			217	 	 return	fmt.Sprintf("illegal	delim	%d",	int(d))

			218	 }

			219	

			220	 //	urlPart	identifies	a	part	in	an	RFC	3986	hierarchical	URL	to	allow	different

			221	 //	encoding	strategies.

			222	 type	urlPart	uint8

			223	

			224	 const	(

			225	 	 //	urlPartNone	occurs	when	not	in	a	URL,	or	possibly	at	the	start:

			226	 	 //	^	in	"^http://auth/path?k=v#frag".

			227	 	 urlPartNone	urlPart	=	iota

			228	 	 //	urlPartPreQuery	occurs	in	the	scheme,	authority,	or	path;	between	the

			229	 	 //	^s	in	"h^ttp://auth/path^?k=v#frag".

			230	 	 urlPartPreQuery

			231	 	 //	urlPartQueryOrFrag	occurs	in	the	query	portion	between	the	^s	in

			232	 	 //	"http://auth/path?^k=v#frag^".

			233	 	 urlPartQueryOrFrag

			234	 	 //	urlPartUnknown	occurs	due	to	joining	of	contexts	both	before	and

			235	 	 //	after	the	query	separator.

			236	 	 urlPartUnknown

			237)

			238	

			239	 var	urlPartNames	=	[...]string{

			240	 	 urlPartNone:								"urlPartNone",

			241	 	 urlPartPreQuery:				"urlPartPreQuery",

			242	 	 urlPartQueryOrFrag:	"urlPartQueryOrFrag",

			243	 	 urlPartUnknown:					"urlPartUnknown",

			244	 }

			245	

			246	 func	(u	urlPart)	String()	string	{

			247	 	 if	int(u)	<	len(urlPartNames)	{

			248	 	 	 return	urlPartNames[u]

			249	 	 }

			250	 	 return	fmt.Sprintf("illegal	urlPart	%d",	int(u))

			251	 }

			252	

			253	 //	jsCtx	determines	whether	a	'/'	starts	a	regular	expression	literal	or	a

			254	 //	division	operator.

			255	 type	jsCtx	uint8

			256	

			257	 const	(

			258	 	 //	jsCtxRegexp	occurs	where	a	'/'	would	start	a	regexp	literal.

			259	 	 jsCtxRegexp	jsCtx	=	iota

			260	 	 //	jsCtxDivOp	occurs	where	a	'/'	would	start	a	division	operator.

			261	 	 jsCtxDivOp

			262	 	 //	jsCtxUnknown	occurs	where	a	'/'	is	ambiguous	due	to	context	joining.

			263	 	 jsCtxUnknown

			264)

			265	

			266	 func	(c	jsCtx)	String()	string	{

			267	 	 switch	c	{

			268	 	 case	jsCtxRegexp:

			269	 	 	 return	"jsCtxRegexp"

			270	 	 case	jsCtxDivOp:

			271	 	 	 return	"jsCtxDivOp"

			272	 	 case	jsCtxUnknown:

			273	 	 	 return	"jsCtxUnknown"

			274	 	 }

			275	 	 return	fmt.Sprintf("illegal	jsCtx	%d",	int(c))

			276	 }

			277	

			278	 //	element	identifies	the	HTML	element	when	inside	a	start	tag	or	special	body.

			279	 //	Certain	HTML	element	(for	example	<script>	and	<style>)	have	bodies	that	are

			280	 //	treated	differently	from	stateText	so	the	element	type	is	necessary	to

			281	 //	transition	into	the	correct	context	at	the	end	of	a	tag	and	to	identify	the

			282	 //	end	delimiter	for	the	body.

			283	 type	element	uint8

			284	

			285	 const	(

			286	 	 //	elementNone	occurs	outside	a	special	tag	or	special	element	body.

			287	 	 elementNone	element	=	iota

			288	 	 //	elementScript	corresponds	to	the	raw	text	<script>	element.

			289	 	 elementScript

			290	 	 //	elementStyle	corresponds	to	the	raw	text	<style>	element.

			291	 	 elementStyle

			292	 	 //	elementTextarea	corresponds	to	the	RCDATA	<textarea>	element.

			293	 	 elementTextarea

			294	 	 //	elementTitle	corresponds	to	the	RCDATA	<title>	element.

			295	 	 elementTitle

			296)

			297	

			298	 var	elementNames	=	[...]string{

			299	 	 elementNone:					"elementNone",

			300	 	 elementScript:			"elementScript",

			301	 	 elementStyle:				"elementStyle",

			302	 	 elementTextarea:	"elementTextarea",

			303	 	 elementTitle:				"elementTitle",

			304	 }

			305	

			306	 func	(e	element)	String()	string	{

			307	 	 if	int(e)	<	len(elementNames)	{

			308	 	 	 return	elementNames[e]

			309	 	 }

			310	 	 return	fmt.Sprintf("illegal	element	%d",	int(e))

			311	 }

			312	

			313	 //	attr	identifies	the	most	recent	HTML	attribute	when	inside	a	start	tag.

			314	 type	attr	uint8

			315	

			316	 const	(

			317	 	 //	attrNone	corresponds	to	a	normal	attribute	or	no	attribute.

			318	 	 attrNone	attr	=	iota

			319	 	 //	attrScript	corresponds	to	an	event	handler	attribute.

			320	 	 attrScript

			321	 	 //	attrStyle	corresponds	to	the	style	attribute	whose	value	is	CSS.

			322	 	 attrStyle

			323	 	 //	attrURL	corresponds	to	an	attribute	whose	value	is	a	URL.

			324	 	 attrURL

			325)

			326	

			327	 var	attrNames	=	[...]string{

			328	 	 attrNone:			"attrNone",

			329	 	 attrScript:	"attrScript",

			330	 	 attrStyle:		"attrStyle",

			331	 	 attrURL:				"attrURL",

			332	 }

			333	

			334	 func	(a	attr)	String()	string	{

			335	 	 if	int(a)	<	len(attrNames)	{

			336	 	 	 return	attrNames[a]

			337	 	 }

			338	 	 return	fmt.Sprintf("illegal	attr	%d",	int(a))

			339	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/html/template/css.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	template

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "fmt"

				10	 	 "unicode"

				11	 	 "unicode/utf8"

				12)

				13	

				14	 //	endsWithCSSKeyword	returns	whether	b	ends	with	an	ident	that

				15	 //	case-insensitively	matches	the	lower-case	kw.

				16	 func	endsWithCSSKeyword(b	[]byte,	kw	string)	bool	{

				17	 	 i	:=	len(b)	-	len(kw)

				18	 	 if	i	<	0	{

				19	 	 	 //	Too	short.

				20	 	 	 return	false

				21	 	 }

				22	 	 if	i	!=	0	{

				23	 	 	 r,	_	:=	utf8.DecodeLastRune(b[:i])

				24	 	 	 if	isCSSNmchar(r)	{

				25	 	 	 	 //	Too	long.

				26	 	 	 	 return	false

				27	 	 	 }

				28	 	 }

				29	 	 //	Many	CSS	keywords,	such	as	"!important"	can	have	characters	encoded,

				30	 	 //	but	the	URI	production	does	not	allow	that	according	to

				31	 	 //	http://www.w3.org/TR/css3-syntax/#TOK-URI

				32	 	 //	This	does	not	attempt	to	recognize	encoded	keywords.	For	example,

				33	 	 //	given	"\75\72\6c"	and	"url"	this	return	false.

				34	 	 return	string(bytes.ToLower(b[i:]))	==	kw

				35	 }

				36	

				37	 //	isCSSNmchar	returns	whether	rune	is	allowed	anywhere	in	a	CSS	identifier.

				38	 func	isCSSNmchar(r	rune)	bool	{

				39	 	 //	Based	on	the	CSS3	nmchar	production	but	ignores	multi-rune	escape

				40	 	 //	sequences.

				41	 	 //	http://www.w3.org/TR/css3-syntax/#SUBTOK-nmchar

				42	 	 return	'a'	<=	r	&&	r	<=	'z'	||

				43	 	 	 'A'	<=	r	&&	r	<=	'Z'	||

				44	 	 	 '0'	<=	r	&&	r	<=	'9'	||

				45	 	 	 r	==	'-'	||

				46	 	 	 r	==	'_'	||

				47	 	 	 //	Non-ASCII	cases	below.

				48	 	 	 0x80	<=	r	&&	r	<=	0xd7ff	||

				49	 	 	 0xe000	<=	r	&&	r	<=	0xfffd	||

				50	 	 	 0x10000	<=	r	&&	r	<=	0x10ffff

				51	 }

				52	

				53	 //	decodeCSS	decodes	CSS3	escapes	given	a	sequence	of	stringchars.

				54	 //	If	there	is	no	change,	it	returns	the	input,	otherwise	it	returns	a	slice

				55	 //	backed	by	a	new	array.

				56	 //	http://www.w3.org/TR/css3-syntax/#SUBTOK-stringchar	defines	stringchar.

				57	 func	decodeCSS(s	[]byte)	[]byte	{

				58	 	 i	:=	bytes.IndexByte(s,	'\\')

				59	 	 if	i	==	-1	{

				60	 	 	 return	s

				61	 	 }

				62	 	 //	The	UTF-8	sequence	for	a	codepoint	is	never	longer	than	1	+	the

				63	 	 //	number	hex	digits	need	to	represent	that	codepoint,	so	len(s)	is	an

				64	 	 //	upper	bound	on	the	output	length.

				65	 	 b	:=	make([]byte,	0,	len(s))

				66	 	 for	len(s)	!=	0	{

				67	 	 	 i	:=	bytes.IndexByte(s,	'\\')

				68	 	 	 if	i	==	-1	{

				69	 	 	 	 i	=	len(s)

				70	 	 	 }

				71	 	 	 b,	s	=	append(b,	s[:i]...),	s[i:]

				72	 	 	 if	len(s)	<	2	{

				73	 	 	 	 break

				74	 	 	 }

				75	 	 	 //	http://www.w3.org/TR/css3-syntax/#SUBTOK-escape

				76	 	 	 //	escape	::=	unicode	|	'\'	[#x20-#x7E#x80-#xD7FF#xE000-#xFFFD#x10000-#x10FFFF]

				77	 	 	 if	isHex(s[1])	{

				78	 	 	 	 //	http://www.w3.org/TR/css3-syntax/#SUBTOK-unicode

				79	 	 	 	 //			unicode	::=	'\'	[0-9a-fA-F]{1,6}	wc?

				80	 	 	 	 j	:=	2

				81	 	 	 	 for	j	<	len(s)	&&	j	<	7	&&	isHex(s[j])	{

				82	 	 	 	 	 j++

				83	 	 	 	 }

				84	 	 	 	 r	:=	hexDecode(s[1:j])

				85	 	 	 	 if	r	>	unicode.MaxRune	{

				86	 	 	 	 	 r,	j	=	r/16,	j-1

				87	 	 	 	 }

				88	 	 	 	 n	:=	utf8.EncodeRune(b[len(b):cap(b)],	r)

				89	 	 	 	 //	The	optional	space	at	the	end	allows	a	hex

				90	 	 	 	 //	sequence	to	be	followed	by	a	literal	hex.

				91	 	 	 	 //	string(decodeCSS([]byte(`\A	B`)))	==	"\nB"

				92	 	 	 	 b,	s	=	b[:len(b)+n],	skipCSSSpace(s[j:])

				93	 	 	 }	else	{

				94	 	 	 	 //	`\\`	decodes	to	`\`	and	`\"`	to	`"`.

				95	 	 	 	 _,	n	:=	utf8.DecodeRune(s[1:])

				96	 	 	 	 b,	s	=	append(b,	s[1:1+n]...),	s[1+n:]

				97	 	 	 }

				98	 	 }

				99	 	 return	b

			100	 }

			101	

			102	 //	isHex	returns	whether	the	given	character	is	a	hex	digit.

			103	 func	isHex(c	byte)	bool	{

			104	 	 return	'0'	<=	c	&&	c	<=	'9'	||	'a'	<=	c	&&	c	<=	'f'	||	'A'	<=	c	&&	c	<=	'F'

			105	 }

			106	

			107	 //	hexDecode	decodes	a	short	hex	digit	sequence:	"10"	->	16.

			108	 func	hexDecode(s	[]byte)	rune	{

			109	 	 n	:=	'\x00'

			110	 	 for	_,	c	:=	range	s	{

			111	 	 	 n	<<=	4

			112	 	 	 switch	{

			113	 	 	 case	'0'	<=	c	&&	c	<=	'9':

			114	 	 	 	 n	|=	rune(c	-	'0')

			115	 	 	 case	'a'	<=	c	&&	c	<=	'f':

			116	 	 	 	 n	|=	rune(c-'a')	+	10

			117	 	 	 case	'A'	<=	c	&&	c	<=	'F':

			118	 	 	 	 n	|=	rune(c-'A')	+	10

			119	 	 	 default:

			120	 	 	 	 panic(fmt.Sprintf("Bad	hex	digit	in	%q",	s))

			121	 	 	 }

			122	 	 }

			123	 	 return	n

			124	 }

			125	

			126	 //	skipCSSSpace	returns	a	suffix	of	c,	skipping	over	a	single	space.

			127	 func	skipCSSSpace(c	[]byte)	[]byte	{

			128	 	 if	len(c)	==	0	{

			129	 	 	 return	c

			130	 	 }

			131	 	 //	wc	::=	#x9	|	#xA	|	#xC	|	#xD	|	#x20

			132	 	 switch	c[0]	{

			133	 	 case	'\t',	'\n',	'\f',	'	':

			134	 	 	 return	c[1:]

			135	 	 case	'\r':

			136	 	 	 //	This	differs	from	CSS3's	wc	production	because	it	contains	a

			137	 	 	 //	probable	spec	error	whereby	wc	contains	all	the	single	byte

			138	 	 	 //	sequences	in	nl	(newline)	but	not	CRLF.

			139	 	 	 if	len(c)	>=	2	&&	c[1]	==	'\n'	{

			140	 	 	 	 return	c[2:]

			141	 	 	 }

			142	 	 	 return	c[1:]

			143	 	 }

			144	 	 return	c

			145	 }

			146	

			147	 //	isCSSSpace	returns	whether	b	is	a	CSS	space	char	as	defined	in	wc.

			148	 func	isCSSSpace(b	byte)	bool	{

			149	 	 switch	b	{

			150	 	 case	'\t',	'\n',	'\f',	'\r',	'	':

			151	 	 	 return	true

			152	 	 }

			153	 	 return	false

			154	 }

			155	

			156	 //	cssEscaper	escapes	HTML	and	CSS	special	characters	using	\<hex>+	escapes.

			157	 func	cssEscaper(args	...interface{})	string	{

			158	 	 s,	_	:=	stringify(args...)

			159	 	 var	b	bytes.Buffer

			160	 	 written	:=	0

			161	 	 for	i,	r	:=	range	s	{

			162	 	 	 var	repl	string

			163	 	 	 switch	r	{

			164	 	 	 case	0:

			165	 	 	 	 repl	=	`\0`

			166	 	 	 case	'\t':

			167	 	 	 	 repl	=	`\9`

			168	 	 	 case	'\n':

			169	 	 	 	 repl	=	`\a`

			170	 	 	 case	'\f':

			171	 	 	 	 repl	=	`\c`

			172	 	 	 case	'\r':

			173	 	 	 	 repl	=	`\d`

			174	 	 	 //	Encode	HTML	specials	as	hex	so	the	output	can	be	embedded

			175	 	 	 //	in	HTML	attributes	without	further	encoding.

			176	 	 	 case	'"':

			177	 	 	 	 repl	=	`\22`

			178	 	 	 case	'&':

			179	 	 	 	 repl	=	`\26`

			180	 	 	 case	'\'':

			181	 	 	 	 repl	=	`\27`

			182	 	 	 case	'(':

			183	 	 	 	 repl	=	`\28`

			184	 	 	 case	')':

			185	 	 	 	 repl	=	`\29`

			186	 	 	 case	'+':

			187	 	 	 	 repl	=	`\2b`

			188	 	 	 case	'/':

			189	 	 	 	 repl	=	`\2f`

			190	 	 	 case	':':

			191	 	 	 	 repl	=	`\3a`

			192	 	 	 case	';':

			193	 	 	 	 repl	=	`\3b`

			194	 	 	 case	'<':

			195	 	 	 	 repl	=	`\3c`

			196	 	 	 case	'>':

			197	 	 	 	 repl	=	`\3e`

			198	 	 	 case	'\\':

			199	 	 	 	 repl	=	`\\`

			200	 	 	 case	'{':

			201	 	 	 	 repl	=	`\7b`

			202	 	 	 case	'}':

			203	 	 	 	 repl	=	`\7d`

			204	 	 	 default:

			205	 	 	 	 continue

			206	 	 	 }

			207	 	 	 b.WriteString(s[written:i])

			208	 	 	 b.WriteString(repl)

			209	 	 	 written	=	i	+	utf8.RuneLen(r)

			210	 	 	 if	repl	!=	`\\`	&&	(written	==	len(s)	||	isHex(s[written])	||	isCSSSpace(s[written]))	{

			211	 	 	 	 b.WriteByte('	')

			212	 	 	 }

			213	 	 }

			214	 	 if	written	==	0	{

			215	 	 	 return	s

			216	 	 }

			217	 	 b.WriteString(s[written:])

			218	 	 return	b.String()

			219	 }

			220	

			221	 var	expressionBytes	=	[]byte("expression")

			222	 var	mozBindingBytes	=	[]byte("mozbinding")

			223	

			224	 //	cssValueFilter	allows	innocuous	CSS	values	in	the	output	including	CSS

			225	 //	quantities	(10px	or	25%),	ID	or	class	literals	(#foo,	.bar),	keyword	values

			226	 //	(inherit,	blue),	and	colors	(#888).

			227	 //	It	filters	out	unsafe	values,	such	as	those	that	affect	token	boundaries,

			228	 //	and	anything	that	might	execute	scripts.

			229	 func	cssValueFilter(args	...interface{})	string	{

			230	 	 s,	t	:=	stringify(args...)

			231	 	 if	t	==	contentTypeCSS	{

			232	 	 	 return	s

			233	 	 }

			234	 	 b,	id	:=	decodeCSS([]byte(s)),	make([]byte,	0,	64)

			235	

			236	 	 //	CSS3	error	handling	is	specified	as	honoring	string	boundaries	per

			237	 	 //	http://www.w3.org/TR/css3-syntax/#error-handling	:

			238	 	 //					Malformed	declarations.	User	agents	must	handle	unexpected

			239	 	 //					tokens	encountered	while	parsing	a	declaration	by	reading	until

			240	 	 //					the	end	of	the	declaration,	while	observing	the	rules	for

			241	 	 //					matching	pairs	of	(),	[],	{},	"",	and	'',	and	correctly	handling

			242	 	 //					escapes.	For	example,	a	malformed	declaration	may	be	missing	a

			243	 	 //					property,	colon	(:)	or	value.

			244	 	 //	So	we	need	to	make	sure	that	values	do	not	have	mismatched	bracket

			245	 	 //	or	quote	characters	to	prevent	the	browser	from	restarting	parsing

			246	 	 //	inside	a	string	that	might	embed	JavaScript	source.

			247	 	 for	i,	c	:=	range	b	{

			248	 	 	 switch	c	{

			249	 	 	 case	0,	'"',	'\'',	'(',	')',	'/',	';',	'@',	'[',	'\\',	']',	'`',	'{',	'}':

			250	 	 	 	 return	filterFailsafe

			251	 	 	 case	'-':

			252	 	 	 	 //	Disallow	<!--	or	-->.

			253	 	 	 	 //	--	should	not	appear	in	valid	identifiers.

			254	 	 	 	 if	i	!=	0	&&	b[i-1]	==	'-'	{

			255	 	 	 	 	 return	filterFailsafe

			256	 	 	 	 }

			257	 	 	 default:

			258	 	 	 	 if	c	<	0x80	&&	isCSSNmchar(rune(c))	{

			259	 	 	 	 	 id	=	append(id,	c)

			260	 	 	 	 }

			261	 	 	 }

			262	 	 }

			263	 	 id	=	bytes.ToLower(id)

			264	 	 if	bytes.Index(id,	expressionBytes)	!=	-1	||	bytes.Index(id,	mozBindingBytes)	!=	-1	{

			265	 	 	 return	filterFailsafe

			266	 	 }

			267	 	 return	string(b)

			268	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/html/template/doc.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 Package	template	(html/template)	implements	data-driven	templates	for

					7	 generating	HTML	output	safe	against	code	injection.	It	provides	the

					8	 same	interface	as	package	text/template	and	should	be	used	instead	of

					9	 text/template	whenever	the	output	is	HTML.

				10	

				11	 The	documentation	here	focuses	on	the	security	features	of	the	package.

				12	 For	information	about	how	to	program	the	templates	themselves,	see	the

				13	 documentation	for	text/template.

				14	

				15	 Introduction

				16	

				17	 This	package	wraps	package	text/template	so	you	can	share	its	template	API

				18	 to	parse	and	execute	HTML	templates	safely.

				19	

				20	 		tmpl,	err	:=	template.New("name").Parse(...)

				21	 		//	Error	checking	elided

				22	 		err	=	tmpl.Execute(out,	data)

				23	

				24	 If	successful,	tmpl	will	now	be	injection-safe.	Otherwise,	err	is	an	error

				25	 defined	in	the	docs	for	ErrorCode.

				26	

				27	 HTML	templates	treat	data	values	as	plain	text	which	should	be	encoded	so	they

				28	 can	be	safely	embedded	in	an	HTML	document.	The	escaping	is	contextual,	so

				29	 actions	can	appear	within	JavaScript,	CSS,	and	URI	contexts.

				30	

				31	 The	security	model	used	by	this	package	assumes	that	template	authors	are

				32	 trusted,	while	Execute's	data	parameter	is	not.	More	details	are

				33	 provided	below.

				34	

				35	 Example

				36	

				37	 		import	"text/template"

				38	 		...

				39	 		t,	err	:=	template.New("foo").Parse(`{{define	"T"}}Hello,	{{.}}!{{end}}`)

				40	 		err	=	t.ExecuteTemplate(out,	"T",	"<script>alert('you	have	been	pwned')</script>")

				41	

				42	 produces

				43	

				44	 		Hello,	<script>alert('you	have	been	pwned')</script>!

				45	

				46	 but	the	contextual	autoescaping	in	html/template

				47	

				48	 		import	"html/template"

				49	 		...

				50	 		t,	err	:=	template.New("foo").Parse(`{{define	"T"}}Hello,	{{.}}!{{end}}`)

				51	 		err	=	t.ExecuteTemplate(out,	"T",	"<script>alert('you	have	been	pwned')</script>")

				52	

				53	 produces	safe,	escaped	HTML	output

				54	

				55	 		Hello,	<script>alert('you	have	been	pwned')</script>!

				56	

				57	

				58	 Contexts

				59	

				60	 This	package	understands	HTML,	CSS,	JavaScript,	and	URIs.	It	adds	sanitizing

				61	 functions	to	each	simple	action	pipeline,	so	given	the	excerpt

				62	

				63	 		{{.}}

				64	

				65	 At	parse	time	each	{{.}}	is	overwritten	to	add	escaping	functions	as	necessary.

				66	 In	this	case	it	becomes

				67	

				68	 		{{.	|	html}}

				69	

				70	

				71	 Errors

				72	

				73	 See	the	documentation	of	ErrorCode	for	details.

				74	

				75	

				76	 A	fuller	picture

				77	

				78	 The	rest	of	this	package	comment	may	be	skipped	on	first	reading;	it	includes

				79	 details	necessary	to	understand	escaping	contexts	and	error	messages.	Most	users

				80	 will	not	need	to	understand	these	details.

				81	

				82	

				83	 Contexts

				84	

				85	 Assuming	{{.}}	is	`O'Reilly:	How	are	<i>you</i>?`,	the	table	below	shows

				86	 how	{{.}}	appears	when	used	in	the	context	to	the	left.

				87	

				88	 		Context																										{{.}}	After

				89	 		{{.}}																												O'Reilly:	How	are	<i>you</i>?

				90	 																		O'Reilly:	How	are	you?

				91	 																		O'Reilly:	How	are	%3ci%3eyou%3c/i%3e?

				92	 																O'Reilly%3a%20How%20are%3ci%3e...%3f

				93	 															O\x27Reilly:	How	are	\x3ci\x3eyou...?

				94	 																	"O\x27Reilly:	How	are	\x3ci\x3eyou...?"

				95	 							O\x27Reilly:	How	are	\x3ci\x3eyou...\x3f

				96	

				97	 If	used	in	an	unsafe	context,	then	the	value	might	be	filtered	out:

				98	

				99	 		Context																										{{.}}	After

			100	 																			#ZgotmplZ

			101	

			102	 since	"O'Reilly:"	is	not	an	allowed	protocol	like	"http:".

			103	

			104	

			105	 If	{{.}}	is	the	innocuous	word,	`left`,	then	it	can	appear	more	widely,

			106	

			107	 		Context																														{{.}}	After

			108	 		{{.}}																																left

			109	 																						left

			110	 																							left

			111	 																						left

			112	 																		left

			113	 										left

			114	 															left

			115	 									left

			116	 				left

			117	 		<style>p.{{.}}	{color:red}</style>			left

			118	

			119	 Non-string	values	can	be	used	in	JavaScript	contexts.

			120	 If	{{.}}	is

			121	

			122	 		[]struct{A,B	string}{	"foo",	"bar"	}

			123	

			124	 in	the	escaped	template

			125	

			126	 		<script>var	pair	=	{{.}};</script>

			127	

			128	 then	the	template	output	is

			129	

			130	 		<script>var	pair	=	{"A":	"foo",	"B":	"bar"};</script>

			131	

			132	 See	package	json	to	understand	how	non-string	content	is	marshalled	for

			133	 embedding	in	JavaScript	contexts.

			134	

			135	

			136	 Typed	Strings

			137	

			138	 By	default,	this	package	assumes	that	all	pipelines	produce	a	plain	text	string.

			139	 It	adds	escaping	pipeline	stages	necessary	to	correctly	and	safely	embed	that

			140	 plain	text	string	in	the	appropriate	context.

			141	

			142	 When	a	data	value	is	not	plain	text,	you	can	make	sure	it	is	not	over-escaped

			143	 by	marking	it	with	its	type.

			144	

			145	 Types	HTML,	JS,	URL,	and	others	from	content.go	can	carry	safe	content	that	is

			146	 exempted	from	escaping.

			147	

			148	 The	template

			149	

			150	 		Hello,	{{.}}!

			151	

			152	 can	be	invoked	with

			153	

			154	 		tmpl.Execute(out,	HTML(`World`))

			155	

			156	 to	produce

			157	

			158	 		Hello,	World!

			159	

			160	 instead	of	the

			161	

			162	 		Hello,	World!

			163	

			164	 that	would	have	been	produced	if	{{.}}	was	a	regular	string.

			165	

			166	

			167	 Security	Model

			168	

			169	 http://js-quasis-libraries-and-repl.googlecode.com/svn/trunk/safetemplate.html#problem_definition	defines	"safe"	as	used	by	this	package.

			170	

			171	 This	package	assumes	that	template	authors	are	trusted,	that	Execute's	data

			172	 parameter	is	not,	and	seeks	to	preserve	the	properties	below	in	the	face

			173	 of	untrusted	data:

			174	

			175	 Structure	Preservation	Property:

			176	 "...	when	a	template	author	writes	an	HTML	tag	in	a	safe	templating	language,

			177	 the	browser	will	interpret	the	corresponding	portion	of	the	output	as	a	tag

			178	 regardless	of	the	values	of	untrusted	data,	and	similarly	for	other	structures

			179	 such	as	attribute	boundaries	and	JS	and	CSS	string	boundaries."

			180	

			181	 Code	Effect	Property:

			182	 "...	only	code	specified	by	the	template	author	should	run	as	a	result	of

			183	 injecting	the	template	output	into	a	page	and	all	code	specified	by	the

			184	 template	author	should	run	as	a	result	of	the	same."

			185	

			186	 Least	Surprise	Property:

			187	 "A	developer	(or	code	reviewer)	familiar	with	HTML,	CSS,	and	JavaScript,	who

			188	 knows	that	contextual	autoescaping	happens	should	be	able	to	look	at	a	{{.}}

			189	 and	correctly	infer	what	sanitization	happens."

			190	 */

			191	 package	template

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/html/template/error.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	template

					6	

					7	 import	(

					8	 	 "fmt"

					9)

				10	

				11	 //	Error	describes	a	problem	encountered	during	template	Escaping.

				12	 type	Error	struct	{

				13	 	 //	ErrorCode	describes	the	kind	of	error.

				14	 	 ErrorCode	ErrorCode

				15	 	 //	Name	is	the	name	of	the	template	in	which	the	error	was	encountered.

				16	 	 Name	string

				17	 	 //	Line	is	the	line	number	of	the	error	in	the	template	source	or	0.

				18	 	 Line	int

				19	 	 //	Description	is	a	human-readable	description	of	the	problem.

				20	 	 Description	string

				21	 }

				22	

				23	 //	ErrorCode	is	a	code	for	a	kind	of	error.

				24	 type	ErrorCode	int

				25	

				26	 //	We	define	codes	for	each	error	that	manifests	while	escaping	templates,	but

				27	 //	escaped	templates	may	also	fail	at	runtime.

				28	 //

				29	 //	Output:	"ZgotmplZ"

				30	 //	Example:

				31	 //			

				32	 //			where	{{.X}}	evaluates	to	`javascript:...`

				33	 //	Discussion:

				34	 //			"ZgotmplZ"	is	a	special	value	that	indicates	that	unsafe	content	reached	a

				35	 //			CSS	or	URL	context	at	runtime.	The	output	of	the	example	will	be

				36	 //					

				37	 //			If	the	data	comes	from	a	trusted	source,	use	content	types	to	exempt	it

				38	 //			from	filtering:	URL(`javascript:...`).

				39	 const	(

				40	 	 //	OK	indicates	the	lack	of	an	error.

				41	 	 OK	ErrorCode	=	iota

				42	

				43	 	 //	ErrAmbigContext:	"...	appears	in	an	ambiguous	URL	context"

				44	 	 //	Example:

				45	 	 //			<a	href="

				46	 	 //						{{if	.C}}

				47	 	 //								/path/

				48	 	 //						{{else}}

				49	 	 //								/search?q=

				50	 	 //						{{end}}

				51	 	 //						{{.X}}

				52	 	 //			">

				53	 	 //	Discussion:

				54	 	 //			{{.X}}	is	in	an	ambiguous	URL	context	since,	depending	on	{{.C}},

				55	 	 //		it	may	be	either	a	URL	suffix	or	a	query	parameter.

				56	 	 //			Moving	{{.X}}	into	the	condition	removes	the	ambiguity:

				57	 	 //			

				58	 	 ErrAmbigContext

				59	

				60	 	 //	ErrBadHTML:	"expected	space,	attr	name,	or	end	of	tag,	but	got	...",

				61	 	 //			"...	in	unquoted	attr",	"...	in	attribute	name"

				62	 	 //	Example:

				63	 	 //			

				64	 	 //			<href=foo>

				65	 	 //			<form	na<e=...>

				66	 	 //			<option	selected<

				67	 	 //	Discussion:

				68	 	 //			This	is	often	due	to	a	typo	in	an	HTML	element,	but	some	runes

				69	 	 //			are	banned	in	tag	names,	attribute	names,	and	unquoted	attribute

				70	 	 //			values	because	they	can	tickle	parser	ambiguities.

				71	 	 //			Quoting	all	attributes	is	the	best	policy.

				72	 	 ErrBadHTML

				73	

				74	 	 //	ErrBranchEnd:	"{{if}}	branches	end	in	different	contexts"

				75	 	 //	Example:

				76	 	 //			{{if	.C}}<a	href="{{end}}{{.X}}

				77	 	 //	Discussion:

				78	 	 //			Package	html/template	statically	examines	each	path	through	an

				79	 	 //			{{if}},	{{range}},	or	{{with}}	to	escape	any	following	pipelines.

				80	 	 //			The	example	is	ambiguous	since	{{.X}}	might	be	an	HTML	text	node,

				81	 	 //			or	a	URL	prefix	in	an	HTML	attribute.	The	context	of	{{.X}}	is

				82	 	 //			used	to	figure	out	how	to	escape	it,	but	that	context	depends	on

				83	 	 //			the	run-time	value	of	{{.C}}	which	is	not	statically	known.

				84	 	 //

				85	 	 //			The	problem	is	usually	something	like	missing	quotes	or	angle

				86	 	 //			brackets,	or	can	be	avoided	by	refactoring	to	put	the	two	contexts

				87	 	 //			into	different	branches	of	an	if,	range	or	with.	If	the	problem

				88	 	 //			is	in	a	{{range}}	over	a	collection	that	should	never	be	empty,

				89	 	 //			adding	a	dummy	{{else}}	can	help.

				90	 	 ErrBranchEnd

				91	

				92	 	 //	ErrEndContext:	"...	ends	in	a	non-text	context:	..."

				93	 	 //	Examples:

				94	 	 //			<div

				95	 	 //			<div	title="no	close	quote>

				96	 	 //			<script>f()

				97	 	 //	Discussion:

				98	 	 //			Executed	templates	should	produce	a	DocumentFragment	of	HTML.

				99	 	 //			Templates	that	end	without	closing	tags	will	trigger	this	error.

			100	 	 //			Templates	that	should	not	be	used	in	an	HTML	context	or	that

			101	 	 //			produce	incomplete	Fragments	should	not	be	executed	directly.

			102	 	 //

			103	 	 //			{{define	"main"}}	<script>{{template	"helper"}}</script>	{{end}}

			104	 	 //			{{define	"helper"}}	document.write('	<div	title="	')	{{end}}

			105	 	 //	

			106	 	 //			"helper"	does	not	produce	a	valid	document	fragment,	so	should

			107	 	 //			not	be	Executed	directly.

			108	 	 ErrEndContext

			109	

			110	 	 //	ErrNoSuchTemplate:	"no	such	template	..."

			111	 	 //	Examples:

			112	 	 //			{{define	"main"}}<div	{{template	"attrs"}}>{{end}}

			113	 	 //			{{define	"attrs"}}href="{{.URL}}"{{end}}

			114	 	 //	Discussion:

			115	 	 //			Package	html/template	looks	through	template	calls	to	compute	the

			116	 	 //			context.

			117	 	 //			Here	the	{{.URL}}	in	"attrs"	must	be	treated	as	a	URL	when	called

			118	 	 //			from	"main",	but	you	will	get	this	error	if	"attrs"	is	not	defined

			119	 	 //			when	"main"	is	parsed.

			120	 	 ErrNoSuchTemplate

			121	

			122	 	 //	ErrOutputContext:	"cannot	compute	output	context	for	template	..."

			123	 	 //	Examples:

			124	 	 //			{{define	"t"}}{{if	.T}}{{template	"t"	.T}}{{end}}{{.H}}",{{end}}

			125	 	 //	Discussion:

			126	 	 //			A	recursive	template	does	not	end	in	the	same	context	in	which	it

			127	 	 //			starts,	and	a	reliable	output	context	cannot	be	computed.

			128	 	 //			Look	for	typos	in	the	named	template.

			129	 	 //			If	the	template	should	not	be	called	in	the	named	start	context,

			130	 	 //			look	for	calls	to	that	template	in	unexpected	contexts.

			131	 	 //			Maybe	refactor	recursive	templates	to	not	be	recursive.

			132	 	 ErrOutputContext

			133	

			134	 	 //	ErrPartialCharset:	"unfinished	JS	regexp	charset	in	..."

			135	 	 //	Example:

			136	 	 //					<script>var	pattern	=	/foo[{{.Chars}}]/</script>

			137	 	 //	Discussion:

			138	 	 //			Package	html/template	does	not	support	interpolation	into	regular

			139	 	 //			expression	literal	character	sets.

			140	 	 ErrPartialCharset

			141	

			142	 	 //	ErrPartialEscape:	"unfinished	escape	sequence	in	..."

			143	 	 //	Example:

			144	 	 //			<script>alert("\{{.X}}")</script>

			145	 	 //	Discussion:

			146	 	 //			Package	html/template	does	not	support	actions	following	a

			147	 	 //			backslash.

			148	 	 //			This	is	usually	an	error	and	there	are	better	solutions;	for

			149	 	 //			example

			150	 	 //					<script>alert("{{.X}}")</script>

			151	 	 //			should	work,	and	if	{{.X}}	is	a	partial	escape	sequence	such	as

			152	 	 //			"xA0",	mark	the	whole	sequence	as	safe	content:	JSStr(`\xA0`)

			153	 	 ErrPartialEscape

			154	

			155	 	 //	ErrRangeLoopReentry:	"on	range	loop	re-entry:	..."

			156	 	 //	Example:

			157	 	 //			<script>var	x	=	[{{range	.}}'{{.}},{{end}}]</script>

			158	 	 //	Discussion:

			159	 	 //			If	an	iteration	through	a	range	would	cause	it	to	end	in	a

			160	 	 //			different	context	than	an	earlier	pass,	there	is	no	single	context.

			161	 	 //			In	the	example,	there	is	missing	a	quote,	so	it	is	not	clear

			162	 	 //			whether	{{.}}	is	meant	to	be	inside	a	JS	string	or	in	a	JS	value

			163	 	 //			context.		The	second	iteration	would	produce	something	like

			164	 	 //	

			165	 	 //					<script>var	x	=	['firstValue,'secondValue]</script>

			166	 	 ErrRangeLoopReentry

			167	

			168	 	 //	ErrSlashAmbig:	'/'	could	start	a	division	or	regexp.

			169	 	 //	Example:

			170	 	 //			<script>

			171	 	 //					{{if	.C}}var	x	=	1{{end}}

			172	 	 //					/-{{.N}}/i.test(x)	?	doThis	:	doThat();

			173	 	 //			</script>

			174	 	 //	Discussion:

			175	 	 //			The	example	above	could	produce	`var	x	=	1/-2/i.test(s)...`

			176	 	 //			in	which	the	first	'/'	is	a	mathematical	division	operator	or	it

			177	 	 //			could	produce	`/-2/i.test(s)`	in	which	the	first	'/'	starts	a

			178	 	 //			regexp	literal.

			179	 	 //			Look	for	missing	semicolons	inside	branches,	and	maybe	add

			180	 	 //			parentheses	to	make	it	clear	which	interpretation	you	intend.

			181	 	 ErrSlashAmbig

			182)

			183	

			184	 func	(e	*Error)	Error()	string	{

			185	 	 if	e.Line	!=	0	{

			186	 	 	 return	fmt.Sprintf("html/template:%s:%d:	%s",	e.Name,	e.Line,	e.Description)

			187	 	 }	else	if	e.Name	!=	""	{

			188	 	 	 return	fmt.Sprintf("html/template:%s:	%s",	e.Name,	e.Description)

			189	 	 }

			190	 	 return	"html/template:	"	+	e.Description

			191	 }

			192	

			193	 //	errorf	creates	an	error	given	a	format	string	f	and	args.

			194	 //	The	template	Name	still	needs	to	be	supplied.

			195	 func	errorf(k	ErrorCode,	line	int,	f	string,	args	...interface{})	*Error	{

			196	 	 return	&Error{k,	"",	line,	fmt.Sprintf(f,	args...)}

			197	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/html/template/escape.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	template

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "fmt"

				10	 	 "html"

				11	 	 "io"

				12	 	 "text/template"

				13	 	 "text/template/parse"

				14)

				15	

				16	 //	escapeTemplates	rewrites	the	named	templates,	which	must	be

				17	 //	associated	with	t,	to	guarantee	that	the	output	of	any	of	the	named

				18	 //	templates	is	properly	escaped.		Names	should	include	the	names	of

				19	 //	all	templates	that	might	be	Executed	but	need	not	include	helper

				20	 //	templates.		If	no	error	is	returned,	then	the	named	templates	have

				21	 //	been	modified.		Otherwise	the	named	templates	have	been	rendered

				22	 //	unusable.

				23	 func	escapeTemplates(tmpl	*Template,	names	...string)	error	{

				24	 	 e	:=	newEscaper(tmpl)

				25	 	 for	_,	name	:=	range	names	{

				26	 	 	 c,	_	:=	e.escapeTree(context{},	name,	0)

				27	 	 	 var	err	error

				28	 	 	 if	c.err	!=	nil	{

				29	 	 	 	 err,	c.err.Name	=	c.err,	name

				30	 	 	 }	else	if	c.state	!=	stateText	{

				31	 	 	 	 err	=	&Error{ErrEndContext,	name,	0,	fmt.Sprintf("ends	in	a	non-text	context:	%v",	c)}

				32	 	 	 }

				33	 	 	 if	err	!=	nil	{

				34	 	 	 	 //	Prevent	execution	of	unsafe	templates.

				35	 	 	 	 for	_,	name	:=	range	names	{

				36	 	 	 	 	 if	t	:=	tmpl.set[name];	t	!=	nil	{

				37	 	 	 	 	 	 t.text.Tree	=	nil

				38	 	 	 	 	 }

				39	 	 	 	 }

				40	 	 	 	 return	err

				41	 	 	 }

				42	 	 	 tmpl.escaped	=	true

				43	 	 }

				44	 	 e.commit()

				45	 	 return	nil

				46	 }

				47	

				48	 //	funcMap	maps	command	names	to	functions	that	render	their	inputs	safe.

				49	 var	funcMap	=	template.FuncMap{

				50	 	 "html_template_attrescaper":					attrEscaper,

				51	 	 "html_template_commentescaper":		commentEscaper,

				52	 	 "html_template_cssescaper":						cssEscaper,

				53	 	 "html_template_cssvaluefilter":		cssValueFilter,

				54	 	 "html_template_htmlnamefilter":		htmlNameFilter,

				55	 	 "html_template_htmlescaper":					htmlEscaper,

				56	 	 "html_template_jsregexpescaper":	jsRegexpEscaper,

				57	 	 "html_template_jsstrescaper":				jsStrEscaper,

				58	 	 "html_template_jsvalescaper":				jsValEscaper,

				59	 	 "html_template_nospaceescaper":		htmlNospaceEscaper,

				60	 	 "html_template_rcdataescaper":			rcdataEscaper,

				61	 	 "html_template_urlescaper":						urlEscaper,

				62	 	 "html_template_urlfilter":							urlFilter,

				63	 	 "html_template_urlnormalizer":			urlNormalizer,

				64	 }

				65	

				66	 //	equivEscapers	matches	contextual	escapers	to	equivalent	template	builtins.

				67	 var	equivEscapers	=	map[string]string{

				68	 	 "html_template_attrescaper":				"html",

				69	 	 "html_template_htmlescaper":				"html",

				70	 	 "html_template_nospaceescaper":	"html",

				71	 	 "html_template_rcdataescaper":		"html",

				72	 	 "html_template_urlescaper":					"urlquery",

				73	 	 "html_template_urlnormalizer":		"urlquery",

				74	 }

				75	

				76	 //	escaper	collects	type	inferences	about	templates	and	changes	needed	to	make

				77	 //	templates	injection	safe.

				78	 type	escaper	struct	{

				79	 	 tmpl	*Template

				80	 	 //	output[templateName]	is	the	output	context	for	a	templateName	that

				81	 	 //	has	been	mangled	to	include	its	input	context.

				82	 	 output	map[string]context

				83	 	 //	derived[c.mangle(name)]	maps	to	a	template	derived	from	the	template

				84	 	 //	named	name	templateName	for	the	start	context	c.

				85	 	 derived	map[string]*template.Template

				86	 	 //	called[templateName]	is	a	set	of	called	mangled	template	names.

				87	 	 called	map[string]bool

				88	 	 //	xxxNodeEdits	are	the	accumulated	edits	to	apply	during	commit.

				89	 	 //	Such	edits	are	not	applied	immediately	in	case	a	template	set

				90	 	 //	executes	a	given	template	in	different	escaping	contexts.

				91	 	 actionNodeEdits			map[*parse.ActionNode][]string

				92	 	 templateNodeEdits	map[*parse.TemplateNode]string

				93	 	 textNodeEdits					map[*parse.TextNode][]byte

				94	 }

				95	

				96	 //	newEscaper	creates	a	blank	escaper	for	the	given	set.

				97	 func	newEscaper(t	*Template)	*escaper	{

				98	 	 return	&escaper{

				99	 	 	 t,

			100	 	 	 map[string]context{},

			101	 	 	 map[string]*template.Template{},

			102	 	 	 map[string]bool{},

			103	 	 	 map[*parse.ActionNode][]string{},

			104	 	 	 map[*parse.TemplateNode]string{},

			105	 	 	 map[*parse.TextNode][]byte{},

			106	 	 }

			107	 }

			108	

			109	 //	filterFailsafe	is	an	innocuous	word	that	is	emitted	in	place	of	unsafe	values

			110	 //	by	sanitizer	functions.	It	is	not	a	keyword	in	any	programming	language,

			111	 //	contains	no	special	characters,	is	not	empty,	and	when	it	appears	in	output

			112	 //	it	is	distinct	enough	that	a	developer	can	find	the	source	of	the	problem

			113	 //	via	a	search	engine.

			114	 const	filterFailsafe	=	"ZgotmplZ"

			115	

			116	 //	escape	escapes	a	template	node.

			117	 func	(e	*escaper)	escape(c	context,	n	parse.Node)	context	{

			118	 	 switch	n	:=	n.(type)	{

			119	 	 case	*parse.ActionNode:

			120	 	 	 return	e.escapeAction(c,	n)

			121	 	 case	*parse.IfNode:

			122	 	 	 return	e.escapeBranch(c,	&n.BranchNode,	"if")

			123	 	 case	*parse.ListNode:

			124	 	 	 return	e.escapeList(c,	n)

			125	 	 case	*parse.RangeNode:

			126	 	 	 return	e.escapeBranch(c,	&n.BranchNode,	"range")

			127	 	 case	*parse.TemplateNode:

			128	 	 	 return	e.escapeTemplate(c,	n)

			129	 	 case	*parse.TextNode:

			130	 	 	 return	e.escapeText(c,	n)

			131	 	 case	*parse.WithNode:

			132	 	 	 return	e.escapeBranch(c,	&n.BranchNode,	"with")

			133	 	 }

			134	 	 panic("escaping	"	+	n.String()	+	"	is	unimplemented")

			135	 }

			136	

			137	 //	escapeAction	escapes	an	action	template	node.

			138	 func	(e	*escaper)	escapeAction(c	context,	n	*parse.ActionNode)	context	{

			139	 	 if	len(n.Pipe.Decl)	!=	0	{

			140	 	 	 //	A	local	variable	assignment,	not	an	interpolation.

			141	 	 	 return	c

			142	 	 }

			143	 	 c	=	nudge(c)

			144	 	 s	:=	make([]string,	0,	3)

			145	 	 switch	c.state	{

			146	 	 case	stateError:

			147	 	 	 return	c

			148	 	 case	stateURL,	stateCSSDqStr,	stateCSSSqStr,	stateCSSDqURL,	stateCSSSqURL,	stateCSSURL:

			149	 	 	 switch	c.urlPart	{

			150	 	 	 case	urlPartNone:

			151	 	 	 	 s	=	append(s,	"html_template_urlfilter")

			152	 	 	 	 fallthrough

			153	 	 	 case	urlPartPreQuery:

			154	 	 	 	 switch	c.state	{

			155	 	 	 	 case	stateCSSDqStr,	stateCSSSqStr:

			156	 	 	 	 	 s	=	append(s,	"html_template_cssescaper")

			157	 	 	 	 default:

			158	 	 	 	 	 s	=	append(s,	"html_template_urlnormalizer")

			159	 	 	 	 }

			160	 	 	 case	urlPartQueryOrFrag:

			161	 	 	 	 s	=	append(s,	"html_template_urlescaper")

			162	 	 	 case	urlPartUnknown:

			163	 	 	 	 return	context{

			164	 	 	 	 	 state:	stateError,

			165	 	 	 	 	 err:			errorf(ErrAmbigContext,	n.Line,	"%s	appears	in	an	ambiguous	URL	context",	n),

			166	 	 	 	 }

			167	 	 	 default:

			168	 	 	 	 panic(c.urlPart.String())

			169	 	 	 }

			170	 	 case	stateJS:

			171	 	 	 s	=	append(s,	"html_template_jsvalescaper")

			172	 	 	 //	A	slash	after	a	value	starts	a	div	operator.

			173	 	 	 c.jsCtx	=	jsCtxDivOp

			174	 	 case	stateJSDqStr,	stateJSSqStr:

			175	 	 	 s	=	append(s,	"html_template_jsstrescaper")

			176	 	 case	stateJSRegexp:

			177	 	 	 s	=	append(s,	"html_template_jsregexpescaper")

			178	 	 case	stateCSS:

			179	 	 	 s	=	append(s,	"html_template_cssvaluefilter")

			180	 	 case	stateText:

			181	 	 	 s	=	append(s,	"html_template_htmlescaper")

			182	 	 case	stateRCDATA:

			183	 	 	 s	=	append(s,	"html_template_rcdataescaper")

			184	 	 case	stateAttr:

			185	 	 	 //	Handled	below	in	delim	check.

			186	 	 case	stateAttrName,	stateTag:

			187	 	 	 c.state	=	stateAttrName

			188	 	 	 s	=	append(s,	"html_template_htmlnamefilter")

			189	 	 default:

			190	 	 	 if	isComment(c.state)	{

			191	 	 	 	 s	=	append(s,	"html_template_commentescaper")

			192	 	 	 }	else	{

			193	 	 	 	 panic("unexpected	state	"	+	c.state.String())

			194	 	 	 }

			195	 	 }

			196	 	 switch	c.delim	{

			197	 	 case	delimNone:

			198	 	 	 //	No	extra-escaping	needed	for	raw	text	content.

			199	 	 case	delimSpaceOrTagEnd:

			200	 	 	 s	=	append(s,	"html_template_nospaceescaper")

			201	 	 default:

			202	 	 	 s	=	append(s,	"html_template_attrescaper")

			203	 	 }

			204	 	 e.editActionNode(n,	s)

			205	 	 return	c

			206	 }

			207	

			208	 //	ensurePipelineContains	ensures	that	the	pipeline	has	commands	with

			209	 //	the	identifiers	in	s	in	order.

			210	 //	If	the	pipeline	already	has	some	of	the	sanitizers,	do	not	interfere.

			211	 //	For	example,	if	p	is	(.X	|	html)	and	s	is	["escapeJSVal",	"html"]	then	it

			212	 //	has	one	matching,	"html",	and	one	to	insert,	"escapeJSVal",	to	produce

			213	 //	(.X	|	escapeJSVal	|	html).

			214	 func	ensurePipelineContains(p	*parse.PipeNode,	s	[]string)	{

			215	 	 if	len(s)	==	0	{

			216	 	 	 return

			217	 	 }

			218	 	 n	:=	len(p.Cmds)

			219	 	 //	Find	the	identifiers	at	the	end	of	the	command	chain.

			220	 	 idents	:=	p.Cmds

			221	 	 for	i	:=	n	-	1;	i	>=	0;	i--	{

			222	 	 	 if	cmd	:=	p.Cmds[i];	len(cmd.Args)	!=	0	{

			223	 	 	 	 if	id,	ok	:=	cmd.Args[0].(*parse.IdentifierNode);	ok	{

			224	 	 	 	 	 if	id.Ident	==	"noescape"	{

			225	 	 	 	 	 	 return

			226	 	 	 	 	 }

			227	 	 	 	 	 continue

			228	 	 	 	 }

			229	 	 	 }

			230	 	 	 idents	=	p.Cmds[i+1:]

			231	 	 }

			232	 	 dups	:=	0

			233	 	 for	_,	id	:=	range	idents	{

			234	 	 	 if	escFnsEq(s[dups],	(id.Args[0].(*parse.IdentifierNode)).Ident)	{

			235	 	 	 	 dups++

			236	 	 	 	 if	dups	==	len(s)	{

			237	 	 	 	 	 return

			238	 	 	 	 }

			239	 	 	 }

			240	 	 }

			241	 	 newCmds	:=	make([]*parse.CommandNode,	n-len(idents),	n+len(s)-dups)

			242	 	 copy(newCmds,	p.Cmds)

			243	 	 //	Merge	existing	identifier	commands	with	the	sanitizers	needed.

			244	 	 for	_,	id	:=	range	idents	{

			245	 	 	 i	:=	indexOfStr((id.Args[0].(*parse.IdentifierNode)).Ident,	s,	escFnsEq)

			246	 	 	 if	i	!=	-1	{

			247	 	 	 	 for	_,	name	:=	range	s[:i]	{

			248	 	 	 	 	 newCmds	=	appendCmd(newCmds,	newIdentCmd(name))

			249	 	 	 	 }

			250	 	 	 	 s	=	s[i+1:]

			251	 	 	 }

			252	 	 	 newCmds	=	appendCmd(newCmds,	id)

			253	 	 }

			254	 	 //	Create	any	remaining	sanitizers.

			255	 	 for	_,	name	:=	range	s	{

			256	 	 	 newCmds	=	appendCmd(newCmds,	newIdentCmd(name))

			257	 	 }

			258	 	 p.Cmds	=	newCmds

			259	 }

			260	

			261	 //	redundantFuncs[a][b]	implies	that	funcMap[b](funcMap[a](x))	==	funcMap[a](x)

			262	 //	for	all	x.

			263	 var	redundantFuncs	=	map[string]map[string]bool{

			264	 	 "html_template_commentescaper":	{

			265	 	 	 "html_template_attrescaper":				true,

			266	 	 	 "html_template_nospaceescaper":	true,

			267	 	 	 "html_template_htmlescaper":				true,

			268	 	 },

			269	 	 "html_template_cssescaper":	{

			270	 	 	 "html_template_attrescaper":	true,

			271	 	 },

			272	 	 "html_template_jsregexpescaper":	{

			273	 	 	 "html_template_attrescaper":	true,

			274	 	 },

			275	 	 "html_template_jsstrescaper":	{

			276	 	 	 "html_template_attrescaper":	true,

			277	 	 },

			278	 	 "html_template_urlescaper":	{

			279	 	 	 "html_template_urlnormalizer":	true,

			280	 	 },

			281	 }

			282	

			283	 //	appendCmd	appends	the	given	command	to	the	end	of	the	command	pipeline

			284	 //	unless	it	is	redundant	with	the	last	command.

			285	 func	appendCmd(cmds	[]*parse.CommandNode,	cmd	*parse.CommandNode)	[]*parse.CommandNode	{

			286	 	 if	n	:=	len(cmds);	n	!=	0	{

			287	 	 	 last,	ok	:=	cmds[n-1].Args[0].(*parse.IdentifierNode)

			288	 	 	 next,	_	:=	cmd.Args[0].(*parse.IdentifierNode)

			289	 	 	 if	ok	&&	redundantFuncs[last.Ident][next.Ident]	{

			290	 	 	 	 return	cmds

			291	 	 	 }

			292	 	 }

			293	 	 return	append(cmds,	cmd)

			294	 }

			295	

			296	 //	indexOfStr	is	the	first	i	such	that	eq(s,	strs[i])	or	-1	if	s	was	not	found.

			297	 func	indexOfStr(s	string,	strs	[]string,	eq	func(a,	b	string)	bool)	int	{

			298	 	 for	i,	t	:=	range	strs	{

			299	 	 	 if	eq(s,	t)	{

			300	 	 	 	 return	i

			301	 	 	 }

			302	 	 }

			303	 	 return	-1

			304	 }

			305	

			306	 //	escFnsEq	returns	whether	the	two	escaping	functions	are	equivalent.

			307	 func	escFnsEq(a,	b	string)	bool	{

			308	 	 if	e	:=	equivEscapers[a];	e	!=	""	{

			309	 	 	 a	=	e

			310	 	 }

			311	 	 if	e	:=	equivEscapers[b];	e	!=	""	{

			312	 	 	 b	=	e

			313	 	 }

			314	 	 return	a	==	b

			315	 }

			316	

			317	 //	newIdentCmd	produces	a	command	containing	a	single	identifier	node.

			318	 func	newIdentCmd(identifier	string)	*parse.CommandNode	{

			319	 	 return	&parse.CommandNode{

			320	 	 	 NodeType:	parse.NodeCommand,

			321	 	 	 Args:					[]parse.Node{parse.NewIdentifier(identifier)},

			322	 	 }

			323	 }

			324	

			325	 //	nudge	returns	the	context	that	would	result	from	following	empty	string

			326	 //	transitions	from	the	input	context.

			327	 //	For	example,	parsing:

			328	 //					`<a	href=`

			329	 //	will	end	in	context{stateBeforeValue,	attrURL},	but	parsing	one	extra	rune:

			330	 //					`<a	href=x`

			331	 //	will	end	in	context{stateURL,	delimSpaceOrTagEnd,	...}.

			332	 //	There	are	two	transitions	that	happen	when	the	'x'	is	seen:

			333	 //	(1)	Transition	from	a	before-value	state	to	a	start-of-value	state	without

			334	 //					consuming	any	character.

			335	 //	(2)	Consume	'x'	and	transition	past	the	first	value	character.

			336	 //	In	this	case,	nudging	produces	the	context	after	(1)	happens.

			337	 func	nudge(c	context)	context	{

			338	 	 switch	c.state	{

			339	 	 case	stateTag:

			340	 	 	 //	In	`<foo	{{.}}`,	the	action	should	emit	an	attribute.

			341	 	 	 c.state	=	stateAttrName

			342	 	 case	stateBeforeValue:

			343	 	 	 //	In	`<foo	bar={{.}}`,	the	action	is	an	undelimited	value.

			344	 	 	 c.state,	c.delim,	c.attr	=	attrStartStates[c.attr],	delimSpaceOrTagEnd,	attrNone

			345	 	 case	stateAfterName:

			346	 	 	 //	In	`<foo	bar	{{.}}`,	the	action	is	an	attribute	name.

			347	 	 	 c.state,	c.attr	=	stateAttrName,	attrNone

			348	 	 }

			349	 	 return	c

			350	 }

			351	

			352	 //	join	joins	the	two	contexts	of	a	branch	template	node.	The	result	is	an

			353	 //	error	context	if	either	of	the	input	contexts	are	error	contexts,	or	if	the

			354	 //	the	input	contexts	differ.

			355	 func	join(a,	b	context,	line	int,	nodeName	string)	context	{

			356	 	 if	a.state	==	stateError	{

			357	 	 	 return	a

			358	 	 }

			359	 	 if	b.state	==	stateError	{

			360	 	 	 return	b

			361	 	 }

			362	 	 if	a.eq(b)	{

			363	 	 	 return	a

			364	 	 }

			365	

			366	 	 c	:=	a

			367	 	 c.urlPart	=	b.urlPart

			368	 	 if	c.eq(b)	{

			369	 	 	 //	The	contexts	differ	only	by	urlPart.

			370	 	 	 c.urlPart	=	urlPartUnknown

			371	 	 	 return	c

			372	 	 }

			373	

			374	 	 c	=	a

			375	 	 c.jsCtx	=	b.jsCtx

			376	 	 if	c.eq(b)	{

			377	 	 	 //	The	contexts	differ	only	by	jsCtx.

			378	 	 	 c.jsCtx	=	jsCtxUnknown

			379	 	 	 return	c

			380	 	 }

			381	

			382	 	 //	Allow	a	nudged	context	to	join	with	an	unnudged	one.

			383	 	 //	This	means	that

			384	 	 //			<p	title={{if	.C}}{{.}}{{end}}

			385	 	 //	ends	in	an	unquoted	value	state	even	though	the	else	branch

			386	 	 //	ends	in	stateBeforeValue.

			387	 	 if	c,	d	:=	nudge(a),	nudge(b);	!(c.eq(a)	&&	d.eq(b))	{

			388	 	 	 if	e	:=	join(c,	d,	line,	nodeName);	e.state	!=	stateError	{

			389	 	 	 	 return	e

			390	 	 	 }

			391	 	 }

			392	

			393	 	 return	context{

			394	 	 	 state:	stateError,

			395	 	 	 err:			errorf(ErrBranchEnd,	line,	"{{%s}}	branches	end	in	different	contexts:	%v,	%v",	nodeName,	a,	b),

			396	 	 }

			397	 }

			398	

			399	 //	escapeBranch	escapes	a	branch	template	node:	"if",	"range"	and	"with".

			400	 func	(e	*escaper)	escapeBranch(c	context,	n	*parse.BranchNode,	nodeName	string)	context	{

			401	 	 c0	:=	e.escapeList(c,	n.List)

			402	 	 if	nodeName	==	"range"	&&	c0.state	!=	stateError	{

			403	 	 	 //	The	"true"	branch	of	a	"range"	node	can	execute	multiple	times.

			404	 	 	 //	We	check	that	executing	n.List	once	results	in	the	same	context

			405	 	 	 //	as	executing	n.List	twice.

			406	 	 	 c1,	_	:=	e.escapeListConditionally(c0,	n.List,	nil)

			407	 	 	 c0	=	join(c0,	c1,	n.Line,	nodeName)

			408	 	 	 if	c0.state	==	stateError	{

			409	 	 	 	 //	Make	clear	that	this	is	a	problem	on	loop	re-entry

			410	 	 	 	 //	since	developers	tend	to	overlook	that	branch	when

			411	 	 	 	 //	debugging	templates.

			412	 	 	 	 c0.err.Line	=	n.Line

			413	 	 	 	 c0.err.Description	=	"on	range	loop	re-entry:	"	+	c0.err.Description

			414	 	 	 	 return	c0

			415	 	 	 }

			416	 	 }

			417	 	 c1	:=	e.escapeList(c,	n.ElseList)

			418	 	 return	join(c0,	c1,	n.Line,	nodeName)

			419	 }

			420	

			421	 //	escapeList	escapes	a	list	template	node.

			422	 func	(e	*escaper)	escapeList(c	context,	n	*parse.ListNode)	context	{

			423	 	 if	n	==	nil	{

			424	 	 	 return	c

			425	 	 }

			426	 	 for	_,	m	:=	range	n.Nodes	{

			427	 	 	 c	=	e.escape(c,	m)

			428	 	 }

			429	 	 return	c

			430	 }

			431	

			432	 //	escapeListConditionally	escapes	a	list	node	but	only	preserves	edits	and

			433	 //	inferences	in	e	if	the	inferences	and	output	context	satisfy	filter.

			434	 //	It	returns	the	best	guess	at	an	output	context,	and	the	result	of	the	filter

			435	 //	which	is	the	same	as	whether	e	was	updated.

			436	 func	(e	*escaper)	escapeListConditionally(c	context,	n	*parse.ListNode,	filter	func(*escaper,	context)	bool)	(context,	bool)	{

			437	 	 e1	:=	newEscaper(e.tmpl)

			438	 	 //	Make	type	inferences	available	to	f.

			439	 	 for	k,	v	:=	range	e.output	{

			440	 	 	 e1.output[k]	=	v

			441	 	 }

			442	 	 c	=	e1.escapeList(c,	n)

			443	 	 ok	:=	filter	!=	nil	&&	filter(e1,	c)

			444	 	 if	ok	{

			445	 	 	 //	Copy	inferences	and	edits	from	e1	back	into	e.

			446	 	 	 for	k,	v	:=	range	e1.output	{

			447	 	 	 	 e.output[k]	=	v

			448	 	 	 }

			449	 	 	 for	k,	v	:=	range	e1.derived	{

			450	 	 	 	 e.derived[k]	=	v

			451	 	 	 }

			452	 	 	 for	k,	v	:=	range	e1.called	{

			453	 	 	 	 e.called[k]	=	v

			454	 	 	 }

			455	 	 	 for	k,	v	:=	range	e1.actionNodeEdits	{

			456	 	 	 	 e.editActionNode(k,	v)

			457	 	 	 }

			458	 	 	 for	k,	v	:=	range	e1.templateNodeEdits	{

			459	 	 	 	 e.editTemplateNode(k,	v)

			460	 	 	 }

			461	 	 	 for	k,	v	:=	range	e1.textNodeEdits	{

			462	 	 	 	 e.editTextNode(k,	v)

			463	 	 	 }

			464	 	 }

			465	 	 return	c,	ok

			466	 }

			467	

			468	 //	escapeTemplate	escapes	a	{{template}}	call	node.

			469	 func	(e	*escaper)	escapeTemplate(c	context,	n	*parse.TemplateNode)	context	{

			470	 	 c,	name	:=	e.escapeTree(c,	n.Name,	n.Line)

			471	 	 if	name	!=	n.Name	{

			472	 	 	 e.editTemplateNode(n,	name)

			473	 	 }

			474	 	 return	c

			475	 }

			476	

			477	 //	escapeTree	escapes	the	named	template	starting	in	the	given	context	as

			478	 //	necessary	and	returns	its	output	context.

			479	 func	(e	*escaper)	escapeTree(c	context,	name	string,	line	int)	(context,	string)	{

			480	 	 //	Mangle	the	template	name	with	the	input	context	to	produce	a	reliable

			481	 	 //	identifier.

			482	 	 dname	:=	c.mangle(name)

			483	 	 e.called[dname]	=	true

			484	 	 if	out,	ok	:=	e.output[dname];	ok	{

			485	 	 	 //	Already	escaped.

			486	 	 	 return	out,	dname

			487	 	 }

			488	 	 t	:=	e.template(name)

			489	 	 if	t	==	nil	{

			490	 	 	 //	Two	cases:	The	template	exists	but	is	empty,	or	has	never	been	mentioned	at

			491	 	 	 //	all.	Distinguish	the	cases	in	the	error	messages.

			492	 	 	 if	e.tmpl.set[name]	!=	nil	{

			493	 	 	 	 return	context{

			494	 	 	 	 	 state:	stateError,

			495	 	 	 	 	 err:			errorf(ErrNoSuchTemplate,	line,	"%q	is	an	incomplete	or	empty	template",	name),

			496	 	 	 	 },	dname

			497	 	 	 }

			498	 	 	 return	context{

			499	 	 	 	 state:	stateError,

			500	 	 	 	 err:			errorf(ErrNoSuchTemplate,	line,	"no	such	template	%q",	name),

			501	 	 	 },	dname

			502	 	 }

			503	 	 if	dname	!=	name	{

			504	 	 	 //	Use	any	template	derived	during	an	earlier	call	to	escapeTemplate

			505	 	 	 //	with	different	top	level	templates,	or	clone	if	necessary.

			506	 	 	 dt	:=	e.template(dname)

			507	 	 	 if	dt	==	nil	{

			508	 	 	 	 dt	=	template.New(dname)

			509	 	 	 	 dt.Tree	=	&parse.Tree{Name:	dname,	Root:	t.Root.CopyList()}

			510	 	 	 	 e.derived[dname]	=	dt

			511	 	 	 }

			512	 	 	 t	=	dt

			513	 	 }

			514	 	 return	e.computeOutCtx(c,	t),	dname

			515	 }

			516	

			517	 //	computeOutCtx	takes	a	template	and	its	start	context	and	computes	the	output

			518	 //	context	while	storing	any	inferences	in	e.

			519	 func	(e	*escaper)	computeOutCtx(c	context,	t	*template.Template)	context	{

			520	 	 //	Propagate	context	over	the	body.

			521	 	 c1,	ok	:=	e.escapeTemplateBody(c,	t)

			522	 	 if	!ok	{

			523	 	 	 //	Look	for	a	fixed	point	by	assuming	c1	as	the	output	context.

			524	 	 	 if	c2,	ok2	:=	e.escapeTemplateBody(c1,	t);	ok2	{

			525	 	 	 	 c1,	ok	=	c2,	true

			526	 	 	 }

			527	 	 	 //	Use	c1	as	the	error	context	if	neither	assumption	worked.

			528	 	 }

			529	 	 if	!ok	&&	c1.state	!=	stateError	{

			530	 	 	 return	context{

			531	 	 	 	 state:	stateError,

			532	 	 	 	 //	TODO:	Find	the	first	node	with	a	line	in	t.text.Tree.Root

			533	 	 	 	 err:	errorf(ErrOutputContext,	0,	"cannot	compute	output	context	for	template	%s",	t.Name()),

			534	 	 	 }

			535	 	 }

			536	 	 return	c1

			537	 }

			538	

			539	 //	escapeTemplateBody	escapes	the	given	template	assuming	the	given	output

			540	 //	context,	and	returns	the	best	guess	at	the	output	context	and	whether	the

			541	 //	assumption	was	correct.

			542	 func	(e	*escaper)	escapeTemplateBody(c	context,	t	*template.Template)	(context,	bool)	{

			543	 	 filter	:=	func(e1	*escaper,	c1	context)	bool	{

			544	 	 	 if	c1.state	==	stateError	{

			545	 	 	 	 //	Do	not	update	the	input	escaper,	e.

			546	 	 	 	 return	false

			547	 	 	 }

			548	 	 	 if	!e1.called[t.Name()]	{

			549	 	 	 	 //	If	t	is	not	recursively	called,	then	c1	is	an

			550	 	 	 	 //	accurate	output	context.

			551	 	 	 	 return	true

			552	 	 	 }

			553	 	 	 //	c1	is	accurate	if	it	matches	our	assumed	output	context.

			554	 	 	 return	c.eq(c1)

			555	 	 }

			556	 	 //	We	need	to	assume	an	output	context	so	that	recursive	template	calls

			557	 	 //	take	the	fast	path	out	of	escapeTree	instead	of	infinitely	recursing.

			558	 	 //	Naively	assuming	that	the	input	context	is	the	same	as	the	output

			559	 	 //	works	>90%	of	the	time.

			560	 	 e.output[t.Name()]	=	c

			561	 	 return	e.escapeListConditionally(c,	t.Tree.Root,	filter)

			562	 }

			563	

			564	 //	delimEnds	maps	each	delim	to	a	string	of	characters	that	terminate	it.

			565	 var	delimEnds	=	[...]string{

			566	 	 delimDoubleQuote:	`"`,

			567	 	 delimSingleQuote:	"'",

			568	 	 //	Determined	empirically	by	running	the	below	in	various	browsers.

			569	 	 //	var	div	=	document.createElement("DIV");

			570	 	 //	for	(var	i	=	0;	i	<	0x10000;	++i)	{

			571	 	 //			div.innerHTML	=	"";

			572	 	 //			if	(div.getElementsByTagName("SPAN")[0].title.indexOf("bar")	<	0)

			573	 	 //					document.write("<p>U+"	+	i.toString(16));

			574	 	 //	}

			575	 	 delimSpaceOrTagEnd:	"	\t\n\f\r>",

			576	 }

			577	

			578	 var	doctypeBytes	=	[]byte("<!DOCTYPE")

			579	

			580	 //	escapeText	escapes	a	text	template	node.

			581	 func	(e	*escaper)	escapeText(c	context,	n	*parse.TextNode)	context	{

			582	 	 s,	written,	i,	b	:=	n.Text,	0,	0,	new(bytes.Buffer)

			583	 	 for	i	!=	len(s)	{

			584	 	 	 c1,	nread	:=	contextAfterText(c,	s[i:])

			585	 	 	 i1	:=	i	+	nread

			586	 	 	 if	c.state	==	stateText	||	c.state	==	stateRCDATA	{

			587	 	 	 	 end	:=	i1

			588	 	 	 	 if	c1.state	!=	c.state	{

			589	 	 	 	 	 for	j	:=	end	-	1;	j	>=	i;	j--	{

			590	 	 	 	 	 	 if	s[j]	==	'<'	{

			591	 	 	 	 	 	 	 end	=	j

			592	 	 	 	 	 	 	 break

			593	 	 	 	 	 	 }

			594	 	 	 	 	 }

			595	 	 	 	 }

			596	 	 	 	 for	j	:=	i;	j	<	end;	j++	{

			597	 	 	 	 	 if	s[j]	==	'<'	&&	!bytes.HasPrefix(bytes.ToUpper(s[j:]),	doctypeBytes)	{

			598	 	 	 	 	 	 b.Write(s[written:j])

			599	 	 	 	 	 	 b.WriteString("<")

			600	 	 	 	 	 	 written	=	j	+	1

			601	 	 	 	 	 }

			602	 	 	 	 }

			603	 	 	 }	else	if	isComment(c.state)	&&	c.delim	==	delimNone	{

			604	 	 	 	 switch	c.state	{

			605	 	 	 	 case	stateJSBlockCmt:

			606	 	 	 	 	 //	http://es5.github.com/#x7.4:

			607	 	 	 	 	 //	"Comments	behave	like	white	space	and	are

			608	 	 	 	 	 //	discarded	except	that,	if	a	MultiLineComment

			609	 	 	 	 	 //	contains	a	line	terminator	character,	then

			610	 	 	 	 	 //	the	entire	comment	is	considered	to	be	a

			611	 	 	 	 	 //	LineTerminator	for	purposes	of	parsing	by

			612	 	 	 	 	 //	the	syntactic	grammar."

			613	 	 	 	 	 if	bytes.IndexAny(s[written:i1],	"\n\r\u2028\u2029")	!=	-1	{

			614	 	 	 	 	 	 b.WriteByte('\n')

			615	 	 	 	 	 }	else	{

			616	 	 	 	 	 	 b.WriteByte('	')

			617	 	 	 	 	 }

			618	 	 	 	 case	stateCSSBlockCmt:

			619	 	 	 	 	 b.WriteByte('	')

			620	 	 	 	 }

			621	 	 	 	 written	=	i1

			622	 	 	 }

			623	 	 	 if	c.state	!=	c1.state	&&	isComment(c1.state)	&&	c1.delim	==	delimNone	{

			624	 	 	 	 //	Preserve	the	portion	between	written	and	the	comment	start.

			625	 	 	 	 cs	:=	i1	-	2

			626	 	 	 	 if	c1.state	==	stateHTMLCmt	{

			627	 	 	 	 	 //	"<!--"	instead	of	"/*"	or	"//"

			628	 	 	 	 	 cs	-=	2

			629	 	 	 	 }

			630	 	 	 	 b.Write(s[written:cs])

			631	 	 	 	 written	=	i1

			632	 	 	 }

			633	 	 	 if	i	==	i1	&&	c.state	==	c1.state	{

			634	 	 	 	 panic(fmt.Sprintf("infinite	loop	from	%v	to	%v	on	%q..%q",	c,	c1,	s[:i],	s[i:]))

			635	 	 	 }

			636	 	 	 c,	i	=	c1,	i1

			637	 	 }

			638	

			639	 	 if	written	!=	0	&&	c.state	!=	stateError	{

			640	 	 	 if	!isComment(c.state)	||	c.delim	!=	delimNone	{

			641	 	 	 	 b.Write(n.Text[written:])

			642	 	 	 }

			643	 	 	 e.editTextNode(n,	b.Bytes())

			644	 	 }

			645	 	 return	c

			646	 }

			647	

			648	 //	contextAfterText	starts	in	context	c,	consumes	some	tokens	from	the	front	of

			649	 //	s,	then	returns	the	context	after	those	tokens	and	the	unprocessed	suffix.

			650	 func	contextAfterText(c	context,	s	[]byte)	(context,	int)	{

			651	 	 if	c.delim	==	delimNone	{

			652	 	 	 c1,	i	:=	tSpecialTagEnd(c,	s)

			653	 	 	 if	i	==	0	{

			654	 	 	 	 //	A	special	end	tag	(`</script>`)	has	been	seen	and

			655	 	 	 	 //	all	content	preceding	it	has	been	consumed.

			656	 	 	 	 return	c1,	0

			657	 	 	 }

			658	 	 	 //	Consider	all	content	up	to	any	end	tag.

			659	 	 	 return	transitionFunc[c.state](c,	s[:i])

			660	 	 }

			661	

			662	 	 i	:=	bytes.IndexAny(s,	delimEnds[c.delim])

			663	 	 if	i	==	-1	{

			664	 	 	 i	=	len(s)

			665	 	 }

			666	 	 if	c.delim	==	delimSpaceOrTagEnd	{

			667	 	 	 //	http://www.w3.org/TR/html5/tokenization.html#attribute-value-unquoted-state

			668	 	 	 //	lists	the	runes	below	as	error	characters.

			669	 	 	 //	Error	out	because	HTML	parsers	may	differ	on	whether

			670	 	 	 //	"<a	id=	onclick=f("					ends	inside	id's	or	onclick's	value,

			671	 	 	 //	"<a	class=`foo	"								ends	inside	a	value,

			672	 	 	 //	"<a	style=font:'Arial'"	needs	open-quote	fixup.

			673	 	 	 //	IE	treats	'`'	as	a	quotation	character.

			674	 	 	 if	j	:=	bytes.IndexAny(s[:i],	"\"'<=`");	j	>=	0	{

			675	 	 	 	 return	context{

			676	 	 	 	 	 state:	stateError,

			677	 	 	 	 	 err:			errorf(ErrBadHTML,	0,	"%q	in	unquoted	attr:	%q",	s[j:j+1],	s[:i]),

			678	 	 	 	 },	len(s)

			679	 	 	 }

			680	 	 }

			681	 	 if	i	==	len(s)	{

			682	 	 	 //	Remain	inside	the	attribute.

			683	 	 	 //	Decode	the	value	so	non-HTML	rules	can	easily	handle

			684	 	 	 //					<button	onclick="alert("Hi!")">

			685	 	 	 //	without	having	to	entity	decode	token	boundaries.

			686	 	 	 for	u	:=	[]byte(html.UnescapeString(string(s)));	len(u)	!=	0;	{

			687	 	 	 	 c1,	i1	:=	transitionFunc[c.state](c,	u)

			688	 	 	 	 c,	u	=	c1,	u[i1:]

			689	 	 	 }

			690	 	 	 return	c,	len(s)

			691	 	 }

			692	 	 if	c.delim	!=	delimSpaceOrTagEnd	{

			693	 	 	 //	Consume	any	quote.

			694	 	 	 i++

			695	 	 }

			696	 	 //	On	exiting	an	attribute,	we	discard	all	state	information

			697	 	 //	except	the	state	and	element.

			698	 	 return	context{state:	stateTag,	element:	c.element},	i

			699	 }

			700	

			701	 //	editActionNode	records	a	change	to	an	action	pipeline	for	later	commit.

			702	 func	(e	*escaper)	editActionNode(n	*parse.ActionNode,	cmds	[]string)	{

			703	 	 if	_,	ok	:=	e.actionNodeEdits[n];	ok	{

			704	 	 	 panic(fmt.Sprintf("node	%s	shared	between	templates",	n))

			705	 	 }

			706	 	 e.actionNodeEdits[n]	=	cmds

			707	 }

			708	

			709	 //	editTemplateNode	records	a	change	to	a	{{template}}	callee	for	later	commit.

			710	 func	(e	*escaper)	editTemplateNode(n	*parse.TemplateNode,	callee	string)	{

			711	 	 if	_,	ok	:=	e.templateNodeEdits[n];	ok	{

			712	 	 	 panic(fmt.Sprintf("node	%s	shared	between	templates",	n))

			713	 	 }

			714	 	 e.templateNodeEdits[n]	=	callee

			715	 }

			716	

			717	 //	editTextNode	records	a	change	to	a	text	node	for	later	commit.

			718	 func	(e	*escaper)	editTextNode(n	*parse.TextNode,	text	[]byte)	{

			719	 	 if	_,	ok	:=	e.textNodeEdits[n];	ok	{

			720	 	 	 panic(fmt.Sprintf("node	%s	shared	between	templates",	n))

			721	 	 }

			722	 	 e.textNodeEdits[n]	=	text

			723	 }

			724	

			725	 //	commit	applies	changes	to	actions	and	template	calls	needed	to	contextually

			726	 //	autoescape	content	and	adds	any	derived	templates	to	the	set.

			727	 func	(e	*escaper)	commit()	{

			728	 	 for	name	:=	range	e.output	{

			729	 	 	 e.template(name).Funcs(funcMap)

			730	 	 }

			731	 	 for	_,	t	:=	range	e.derived	{

			732	 	 	 if	_,	err	:=	e.tmpl.text.AddParseTree(t.Name(),	t.Tree);	err	!=	nil	{

			733	 	 	 	 panic("error	adding	derived	template")

			734	 	 	 }

			735	 	 }

			736	 	 for	n,	s	:=	range	e.actionNodeEdits	{

			737	 	 	 ensurePipelineContains(n.Pipe,	s)

			738	 	 }

			739	 	 for	n,	name	:=	range	e.templateNodeEdits	{

			740	 	 	 n.Name	=	name

			741	 	 }

			742	 	 for	n,	s	:=	range	e.textNodeEdits	{

			743	 	 	 n.Text	=	s

			744	 	 }

			745	 }

			746	

			747	 //	template	returns	the	named	template	given	a	mangled	template	name.

			748	 func	(e	*escaper)	template(name	string)	*template.Template	{

			749	 	 t	:=	e.tmpl.text.Lookup(name)

			750	 	 if	t	==	nil	{

			751	 	 	 t	=	e.derived[name]

			752	 	 }

			753	 	 return	t

			754	 }

			755	

			756	 //	Forwarding	functions	so	that	clients	need	only	import	this	package

			757	 //	to	reach	the	general	escaping	functions	of	text/template.

			758	

			759	 //	HTMLEscape	writes	to	w	the	escaped	HTML	equivalent	of	the	plain	text	data	b.

			760	 func	HTMLEscape(w	io.Writer,	b	[]byte)	{

			761	 	 template.HTMLEscape(w,	b)

			762	 }

			763	

			764	 //	HTMLEscapeString	returns	the	escaped	HTML	equivalent	of	the	plain	text	data	s.

			765	 func	HTMLEscapeString(s	string)	string	{

			766	 	 return	template.HTMLEscapeString(s)

			767	 }

			768	

			769	 //	HTMLEscaper	returns	the	escaped	HTML	equivalent	of	the	textual

			770	 //	representation	of	its	arguments.

			771	 func	HTMLEscaper(args	...interface{})	string	{

			772	 	 return	template.HTMLEscaper(args...)

			773	 }

			774	

			775	 //	JSEscape	writes	to	w	the	escaped	JavaScript	equivalent	of	the	plain	text	data	b.

			776	 func	JSEscape(w	io.Writer,	b	[]byte)	{

			777	 	 template.JSEscape(w,	b)

			778	 }

			779	

			780	 //	JSEscapeString	returns	the	escaped	JavaScript	equivalent	of	the	plain	text	data	s.

			781	 func	JSEscapeString(s	string)	string	{

			782	 	 return	template.JSEscapeString(s)

			783	 }

			784	

			785	 //	JSEscaper	returns	the	escaped	JavaScript	equivalent	of	the	textual

			786	 //	representation	of	its	arguments.

			787	 func	JSEscaper(args	...interface{})	string	{

			788	 	 return	template.JSEscaper(args...)

			789	 }

			790	

			791	 //	URLQueryEscaper	returns	the	escaped	value	of	the	textual	representation	of

			792	 //	its	arguments	in	a	form	suitable	for	embedding	in	a	URL	query.

			793	 func	URLQueryEscaper(args	...interface{})	string	{

			794	 	 return	template.URLQueryEscaper(args...)

			795	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/html/template/html.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	template

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "fmt"

				10	 	 "strings"

				11	 	 "unicode/utf8"

				12)

				13	

				14	 //	htmlNospaceEscaper	escapes	for	inclusion	in	unquoted	attribute	values.

				15	 func	htmlNospaceEscaper(args	...interface{})	string	{

				16	 	 s,	t	:=	stringify(args...)

				17	 	 if	t	==	contentTypeHTML	{

				18	 	 	 return	htmlReplacer(stripTags(s),	htmlNospaceNormReplacementTable,	false)

				19	 	 }

				20	 	 return	htmlReplacer(s,	htmlNospaceReplacementTable,	false)

				21	 }

				22	

				23	 //	attrEscaper	escapes	for	inclusion	in	quoted	attribute	values.

				24	 func	attrEscaper(args	...interface{})	string	{

				25	 	 s,	t	:=	stringify(args...)

				26	 	 if	t	==	contentTypeHTML	{

				27	 	 	 return	htmlReplacer(stripTags(s),	htmlNormReplacementTable,	true)

				28	 	 }

				29	 	 return	htmlReplacer(s,	htmlReplacementTable,	true)

				30	 }

				31	

				32	 //	rcdataEscaper	escapes	for	inclusion	in	an	RCDATA	element	body.

				33	 func	rcdataEscaper(args	...interface{})	string	{

				34	 	 s,	t	:=	stringify(args...)

				35	 	 if	t	==	contentTypeHTML	{

				36	 	 	 return	htmlReplacer(s,	htmlNormReplacementTable,	true)

				37	 	 }

				38	 	 return	htmlReplacer(s,	htmlReplacementTable,	true)

				39	 }

				40	

				41	 //	htmlEscaper	escapes	for	inclusion	in	HTML	text.

				42	 func	htmlEscaper(args	...interface{})	string	{

				43	 	 s,	t	:=	stringify(args...)

				44	 	 if	t	==	contentTypeHTML	{

				45	 	 	 return	s

				46	 	 }

				47	 	 return	htmlReplacer(s,	htmlReplacementTable,	true)

				48	 }

				49	

				50	 //	htmlReplacementTable	contains	the	runes	that	need	to	be	escaped

				51	 //	inside	a	quoted	attribute	value	or	in	a	text	node.

				52	 var	htmlReplacementTable	=	[]string{

				53	 	 //	http://www.w3.org/TR/html5/tokenization.html#attribute-value-unquoted-state:	"

				54	 	 //	U+0000	NULL	Parse	error.	Append	a	U+FFFD	REPLACEMENT

				55	 	 //	CHARACTER	character	to	the	current	attribute's	value.

				56	 	 //	"

				57	 	 //	and	similarly

				58	 	 //	http://www.w3.org/TR/html5/tokenization.html#before-attribute-value-state

				59	 	 0:				"\uFFFD",

				60	 	 '"':		""",

				61	 	 '&':		"&",

				62	 	 '\'':	"'",

				63	 	 '+':		"+",

				64	 	 '<':		"<",

				65	 	 '>':		">",

				66	 }

				67	

				68	 //	htmlNormReplacementTable	is	like	htmlReplacementTable	but	without	'&'	to

				69	 //	avoid	over-encoding	existing	entities.

				70	 var	htmlNormReplacementTable	=	[]string{

				71	 	 0:				"\uFFFD",

				72	 	 '"':		""",

				73	 	 '\'':	"'",

				74	 	 '+':		"+",

				75	 	 '<':		"<",

				76	 	 '>':		">",

				77	 }

				78	

				79	 //	htmlNospaceReplacementTable	contains	the	runes	that	need	to	be	escaped

				80	 //	inside	an	unquoted	attribute	value.

				81	 //	The	set	of	runes	escaped	is	the	union	of	the	HTML	specials	and

				82	 //	those	determined	by	running	the	JS	below	in	browsers:

				83	 //	<div	id=d></div>

				84	 //	<script>(function	()	{

				85	 //	var	a	=	[],	d	=	document.getElementById("d"),	i,	c,	s;

				86	 //	for	(i	=	0;	i	<	0x10000;	++i)	{

				87	 //			c	=	String.fromCharCode(i);

				88	 //			d.innerHTML	=	""

				89	 //			s	=	d.getElementsByTagName("SPAN")[0];

				90	 //			if	(!s	||	s.title	!==	c	+	"lt"	+	c)	{	a.push(i.toString(16));	}

				91	 //	}

				92	 //	document.write(a.join(",	"));

				93	 //	})()</script>

				94	 var	htmlNospaceReplacementTable	=	[]string{

				95	 	 0:				"�",

				96	 	 '\t':	"	",

				97	 	 '\n':	"
",

				98	 	 '\v':	"",

				99	 	 '\f':	"",

			100	 	 '\r':	"",

			101	 	 '	':		" ",

			102	 	 '"':		""",

			103	 	 '&':		"&",

			104	 	 '\'':	"'",

			105	 	 '+':		"+",

			106	 	 '<':		"<",

			107	 	 '=':		"=",

			108	 	 '>':		">",

			109	 	 //	A	parse	error	in	the	attribute	value	(unquoted)	and	

			110	 	 //	before	attribute	value	states.

			111	 	 //	Treated	as	a	quoting	character	by	IE.

			112	 	 '`':	"`",

			113	 }

			114	

			115	 //	htmlNospaceNormReplacementTable	is	like	htmlNospaceReplacementTable	but

			116	 //	without	'&'	to	avoid	over-encoding	existing	entities.

			117	 var	htmlNospaceNormReplacementTable	=	[]string{

			118	 	 0:				"�",

			119	 	 '\t':	"	",

			120	 	 '\n':	"
",

			121	 	 '\v':	"",

			122	 	 '\f':	"",

			123	 	 '\r':	"",

			124	 	 '	':		" ",

			125	 	 '"':		""",

			126	 	 '\'':	"'",

			127	 	 '+':		"+",

			128	 	 '<':		"<",

			129	 	 '=':		"=",

			130	 	 '>':		">",

			131	 	 //	A	parse	error	in	the	attribute	value	(unquoted)	and	

			132	 	 //	before	attribute	value	states.

			133	 	 //	Treated	as	a	quoting	character	by	IE.

			134	 	 '`':	"`",

			135	 }

			136	

			137	 //	htmlReplacer	returns	s	with	runes	replaced	according	to	replacementTable

			138	 //	and	when	badRunes	is	true,	certain	bad	runes	are	allowed	through	unescaped.

			139	 func	htmlReplacer(s	string,	replacementTable	[]string,	badRunes	bool)	string	{

			140	 	 written,	b	:=	0,	new(bytes.Buffer)

			141	 	 for	i,	r	:=	range	s	{

			142	 	 	 if	int(r)	<	len(replacementTable)	{

			143	 	 	 	 if	repl	:=	replacementTable[r];	len(repl)	!=	0	{

			144	 	 	 	 	 b.WriteString(s[written:i])

			145	 	 	 	 	 b.WriteString(repl)

			146	 	 	 	 	 //	Valid	as	long	as	replacementTable	doesn't	

			147	 	 	 	 	 //	include	anything	above	0x7f.

			148	 	 	 	 	 written	=	i	+	utf8.RuneLen(r)

			149	 	 	 	 }

			150	 	 	 }	else	if	badRunes	{

			151	 	 	 	 //	No-op.

			152	 	 	 	 //	IE	does	not	allow	these	ranges	in	unquoted	attrs.

			153	 	 	 }	else	if	0xfdd0	<=	r	&&	r	<=	0xfdef	||	0xfff0	<=	r	&&	r	<=	0xffff	{

			154	 	 	 	 fmt.Fprintf(b,	"%s&#x%x;",	s[written:i],	r)

			155	 	 	 	 written	=	i	+	utf8.RuneLen(r)

			156	 	 	 }

			157	 	 }

			158	 	 if	written	==	0	{

			159	 	 	 return	s

			160	 	 }

			161	 	 b.WriteString(s[written:])

			162	 	 return	b.String()

			163	 }

			164	

			165	 //	stripTags	takes	a	snippet	of	HTML	and	returns	only	the	text	content.

			166	 //	For	example,	`¡Hi!	<script>...</script>`	->	`¡Hi!	`.

			167	 func	stripTags(html	string)	string	{

			168	 	 var	b	bytes.Buffer

			169	 	 s,	c,	i,	allText	:=	[]byte(html),	context{},	0,	true

			170	 	 //	Using	the	transition	funcs	helps	us	avoid	mangling

			171	 	 //	`<div	title="1>2">`	or	`I	<3	Ponies!`.

			172	 	 for	i	!=	len(s)	{

			173	 	 	 if	c.delim	==	delimNone	{

			174	 	 	 	 st	:=	c.state

			175	 	 	 	 //	Use	RCDATA	instead	of	parsing	into	JS	or	CSS	styles.

			176	 	 	 	 if	c.element	!=	elementNone	&&	!isInTag(st)	{

			177	 	 	 	 	 st	=	stateRCDATA

			178	 	 	 	 }

			179	 	 	 	 d,	nread	:=	transitionFunc[st](c,	s[i:])

			180	 	 	 	 i1	:=	i	+	nread

			181	 	 	 	 if	c.state	==	stateText	||	c.state	==	stateRCDATA	{

			182	 	 	 	 	 //	Emit	text	up	to	the	start	of	the	tag	or	comment.

			183	 	 	 	 	 j	:=	i1

			184	 	 	 	 	 if	d.state	!=	c.state	{

			185	 	 	 	 	 	 for	j1	:=	j	-	1;	j1	>=	i;	j1--	{

			186	 	 	 	 	 	 	 if	s[j1]	==	'<'	{

			187	 	 	 	 	 	 	 	 j	=	j1

			188	 	 	 	 	 	 	 	 break

			189	 	 	 	 	 	 	 }

			190	 	 	 	 	 	 }

			191	 	 	 	 	 }

			192	 	 	 	 	 b.Write(s[i:j])

			193	 	 	 	 }	else	{

			194	 	 	 	 	 allText	=	false

			195	 	 	 	 }

			196	 	 	 	 c,	i	=	d,	i1

			197	 	 	 	 continue

			198	 	 	 }

			199	 	 	 i1	:=	i	+	bytes.IndexAny(s[i:],	delimEnds[c.delim])

			200	 	 	 if	i1	<	i	{

			201	 	 	 	 break

			202	 	 	 }

			203	 	 	 if	c.delim	!=	delimSpaceOrTagEnd	{

			204	 	 	 	 //	Consume	any	quote.

			205	 	 	 	 i1++

			206	 	 	 }

			207	 	 	 c,	i	=	context{state:	stateTag,	element:	c.element},	i1

			208	 	 }

			209	 	 if	allText	{

			210	 	 	 return	html

			211	 	 }	else	if	c.state	==	stateText	||	c.state	==	stateRCDATA	{

			212	 	 	 b.Write(s[i:])

			213	 	 }

			214	 	 return	b.String()

			215	 }

			216	

			217	 //	htmlNameFilter	accepts	valid	parts	of	an	HTML	attribute	or	tag	name	or

			218	 //	a	known-safe	HTML	attribute.

			219	 func	htmlNameFilter(args	...interface{})	string	{

			220	 	 s,	t	:=	stringify(args...)

			221	 	 if	t	==	contentTypeHTMLAttr	{

			222	 	 	 return	s

			223	 	 }

			224	 	 if	len(s)	==	0	{

			225	 	 	 //	Avoid	violation	of	structure	preservation.

			226	 	 	 //	<input	checked	{{.K}}={{.V}}>.

			227	 	 	 //	Without	this,	if	.K	is	empty	then	.V	is	the	value	of

			228	 	 	 //	checked,	but	otherwise	.V	is	the	value	of	the	attribute

			229	 	 	 //	named	.K.

			230	 	 	 return	filterFailsafe

			231	 	 }

			232	 	 s	=	strings.ToLower(s)

			233	 	 if	t	:=	attrType(s);	t	!=	contentTypePlain	{

			234	 	 	 //	TODO:	Split	attr	and	element	name	part	filters	so	we	can	whitelist

			235	 	 	 //	attributes.

			236	 	 	 return	filterFailsafe

			237	 	 }

			238	 	 for	_,	r	:=	range	s	{

			239	 	 	 switch	{

			240	 	 	 case	'0'	<=	r	&&	r	<=	'9':

			241	 	 	 case	'a'	<=	r	&&	r	<=	'z':

			242	 	 	 default:

			243	 	 	 	 return	filterFailsafe

			244	 	 	 }

			245	 	 }

			246	 	 return	s

			247	 }

			248	

			249	 //	commentEscaper	returns	the	empty	string	regardless	of	input.

			250	 //	Comment	content	does	not	correspond	to	any	parsed	structure	or

			251	 //	human-readable	content,	so	the	simplest	and	most	secure	policy	is	to	drop

			252	 //	content	interpolated	into	comments.

			253	 //	This	approach	is	equally	valid	whether	or	not	static	comment	content	is

			254	 //	removed	from	the	template.

			255	 func	commentEscaper(args	...interface{})	string	{

			256	 	 return	""

			257	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/html/template/js.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	template

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "encoding/json"

				10	 	 "fmt"

				11	 	 "reflect"

				12	 	 "strings"

				13	 	 "unicode/utf8"

				14)

				15	

				16	 //	nextJSCtx	returns	the	context	that	determines	whether	a	slash	after	the

				17	 //	given	run	of	tokens	tokens	starts	a	regular	expression	instead	of	a	division

				18	 //	operator:	/	or	/=.

				19	 //

				20	 //	This	assumes	that	the	token	run	does	not	include	any	string	tokens,	comment

				21	 //	tokens,	regular	expression	literal	tokens,	or	division	operators.

				22	 //

				23	 //	This	fails	on	some	valid	but	nonsensical	JavaScript	programs	like

				24	 //	"x	=	++/foo/i"	which	is	quite	different	than	"x++/foo/i",	but	is	not	known	to

				25	 //	fail	on	any	known	useful	programs.	It	is	based	on	the	draft

				26	 //	JavaScript	2.0	lexical	grammar	and	requires	one	token	of	lookbehind:

				27	 //	http://www.mozilla.org/js/language/js20-2000-07/rationale/syntax.html

				28	 func	nextJSCtx(s	[]byte,	preceding	jsCtx)	jsCtx	{

				29	 	 s	=	bytes.TrimRight(s,	"\t\n\f\r	\u2028\u2029")

				30	 	 if	len(s)	==	0	{

				31	 	 	 return	preceding

				32	 	 }

				33	

				34	 	 //	All	cases	below	are	in	the	single-byte	UTF-8	group.

				35	 	 switch	c,	n	:=	s[len(s)-1],	len(s);	c	{

				36	 	 case	'+',	'-':

				37	 	 	 //	++	and	--	are	not	regexp	preceders,	but	+	and	-	are	whether

				38	 	 	 //	they	are	used	as	infix	or	prefix	operators.

				39	 	 	 start	:=	n	-	1

				40	 	 	 //	Count	the	number	of	adjacent	dashes	or	pluses.

				41	 	 	 for	start	>	0	&&	s[start-1]	==	c	{

				42	 	 	 	 start--

				43	 	 	 }

				44	 	 	 if	(n-start)&1	==	1	{

				45	 	 	 	 //	Reached	for	trailing	minus	signs	since	"---"	is	the

				46	 	 	 	 //	same	as	"--	-".

				47	 	 	 	 return	jsCtxRegexp

				48	 	 	 }

				49	 	 	 return	jsCtxDivOp

				50	 	 case	'.':

				51	 	 	 //	Handle	"42."

				52	 	 	 if	n	!=	1	&&	'0'	<=	s[n-2]	&&	s[n-2]	<=	'9'	{

				53	 	 	 	 return	jsCtxDivOp

				54	 	 	 }

				55	 	 	 return	jsCtxRegexp

				56	 	 //	Suffixes	for	all	punctuators	from	section	7.7	of	the	language	spec

				57	 	 //	that	only	end	binary	operators	not	handled	above.

				58	 	 case	',',	'<',	'>',	'=',	'*',	'%',	'&',	'|',	'^',	'?':

				59	 	 	 return	jsCtxRegexp

				60	 	 //	Suffixes	for	all	punctuators	from	section	7.7	of	the	language	spec

				61	 	 //	that	are	prefix	operators	not	handled	above.

				62	 	 case	'!',	'~':

				63	 	 	 return	jsCtxRegexp

				64	 	 //	Matches	all	the	punctuators	from	section	7.7	of	the	language	spec

				65	 	 //	that	are	open	brackets	not	handled	above.

				66	 	 case	'(',	'[':

				67	 	 	 return	jsCtxRegexp

				68	 	 //	Matches	all	the	punctuators	from	section	7.7	of	the	language	spec

				69	 	 //	that	precede	expression	starts.

				70	 	 case	':',	';',	'{':

				71	 	 	 return	jsCtxRegexp

				72	 	 //	CAVEAT:	the	close	punctuators	('}',	']',	')')	precede	div	ops	and

				73	 	 //	are	handled	in	the	default	except	for	'}'	which	can	precede	a

				74	 	 //	division	op	as	in

				75	 	 //				({	valueOf:	function	()	{	return	42	}	}	/	2

				76	 	 //	which	is	valid,	but,	in	practice,	developers	don't	divide	object

				77	 	 //	literals,	so	our	heuristic	works	well	for	code	like

				78	 	 //				function	()	{	...	}		/foo/.test(x)	&&	sideEffect();

				79	 	 //	The	')'	punctuator	can	precede	a	regular	expression	as	in

				80	 	 //					if	(b)	/foo/.test(x)	&&	...

				81	 	 //	but	this	is	much	less	likely	than

				82	 	 //					(a	+	b)	/	c

				83	 	 case	'}':

				84	 	 	 return	jsCtxRegexp

				85	 	 default:

				86	 	 	 //	Look	for	an	IdentifierName	and	see	if	it	is	a	keyword	that

				87	 	 	 //	can	precede	a	regular	expression.

				88	 	 	 j	:=	n

				89	 	 	 for	j	>	0	&&	isJSIdentPart(rune(s[j-1]))	{

				90	 	 	 	 j--

				91	 	 	 }

				92	 	 	 if	regexpPrecederKeywords[string(s[j:])]	{

				93	 	 	 	 return	jsCtxRegexp

				94	 	 	 }

				95	 	 }

				96	 	 //	Otherwise	is	a	punctuator	not	listed	above,	or

				97	 	 //	a	string	which	precedes	a	div	op,	or	an	identifier

				98	 	 //	which	precedes	a	div	op.

				99	 	 return	jsCtxDivOp

			100	 }

			101	

			102	 //	regexPrecederKeywords	is	a	set	of	reserved	JS	keywords	that	can	precede	a

			103	 //	regular	expression	in	JS	source.

			104	 var	regexpPrecederKeywords	=	map[string]bool{

			105	 	 "break":						true,

			106	 	 "case":							true,

			107	 	 "continue":			true,

			108	 	 "delete":					true,

			109	 	 "do":									true,

			110	 	 "else":							true,

			111	 	 "finally":				true,

			112	 	 "in":									true,

			113	 	 "instanceof":	true,

			114	 	 "return":					true,

			115	 	 "throw":						true,

			116	 	 "try":								true,

			117	 	 "typeof":					true,

			118	 	 "void":							true,

			119	 }

			120	

			121	 var	jsonMarshalType	=	reflect.TypeOf((*json.Marshaler)(nil)).Elem()

			122	

			123	 //	indirectToJSONMarshaler	returns	the	value,	after	dereferencing	as	many	times

			124	 //	as	necessary	to	reach	the	base	type	(or	nil)	or	an	implementation	of	json.Marshal.

			125	 func	indirectToJSONMarshaler(a	interface{})	interface{}	{

			126	 	 v	:=	reflect.ValueOf(a)

			127	 	 for	!v.Type().Implements(jsonMarshalType)	&&	v.Kind()	==	reflect.Ptr	&&	!v.IsNil()	{

			128	 	 	 v	=	v.Elem()

			129	 	 }

			130	 	 return	v.Interface()

			131	 }

			132	

			133	 //	jsValEscaper	escapes	its	inputs	to	a	JS	Expression	(section	11.14)	that	has

			134	 //	neither	side-effects	nor	free	variables	outside	(NaN,	Infinity).

			135	 func	jsValEscaper(args	...interface{})	string	{

			136	 	 var	a	interface{}

			137	 	 if	len(args)	==	1	{

			138	 	 	 a	=	indirectToJSONMarshaler(args[0])

			139	 	 	 switch	t	:=	a.(type)	{

			140	 	 	 case	JS:

			141	 	 	 	 return	string(t)

			142	 	 	 case	JSStr:

			143	 	 	 	 //	TODO:	normalize	quotes.

			144	 	 	 	 return	`"`	+	string(t)	+	`"`

			145	 	 	 case	json.Marshaler:

			146	 	 	 	 //	Do	not	treat	as	a	Stringer.

			147	 	 	 case	fmt.Stringer:

			148	 	 	 	 a	=	t.String()

			149	 	 	 }

			150	 	 }	else	{

			151	 	 	 for	i,	arg	:=	range	args	{

			152	 	 	 	 args[i]	=	indirectToJSONMarshaler(arg)

			153	 	 	 }

			154	 	 	 a	=	fmt.Sprint(args...)

			155	 	 }

			156	 	 //	TODO:	detect	cycles	before	calling	Marshal	which	loops	infinitely	on

			157	 	 //	cyclic	data.	This	may	be	an	unacceptable	DoS	risk.

			158	

			159	 	 b,	err	:=	json.Marshal(a)

			160	 	 if	err	!=	nil	{

			161	 	 	 //	Put	a	space	before	comment	so	that	if	it	is	flush	against

			162	 	 	 //	a	division	operator	it	is	not	turned	into	a	line	comment:

			163	 	 	 //					x/{{y}}

			164	 	 	 //	turning	into

			165	 	 	 //					x//*	error	marshalling	y:

			166	 	 	 //										second	line	of	error	message	*/null

			167	 	 	 return	fmt.Sprintf("	/*	%s	*/null	",	strings.Replace(err.Error(),	"*/",	"*	/",	-1))

			168	 	 }

			169	

			170	 	 //	TODO:	maybe	post-process	output	to	prevent	it	from	containing

			171	 	 //	"<!--",	"-->",	"<![CDATA[",	"]]>",	or	"</script"

			172	 	 //	in	case	custom	marshallers	produce	output	containing	those.

			173	

			174	 	 //	TODO:	Maybe	abbreviate	\u00ab	to	\xab	to	produce	more	compact	output.

			175	 	 if	len(b)	==	0	{

			176	 	 	 //	In,	`x=y/{{.}}*z`	a	json.Marshaler	that	produces	""	should

			177	 	 	 //	not	cause	the	output	`x=y/*z`.

			178	 	 	 return	"	null	"

			179	 	 }

			180	 	 first,	_	:=	utf8.DecodeRune(b)

			181	 	 last,	_	:=	utf8.DecodeLastRune(b)

			182	 	 var	buf	bytes.Buffer

			183	 	 //	Prevent	IdentifierNames	and	NumericLiterals	from	running	into

			184	 	 //	keywords:	in,	instanceof,	typeof,	void

			185	 	 pad	:=	isJSIdentPart(first)	||	isJSIdentPart(last)

			186	 	 if	pad	{

			187	 	 	 buf.WriteByte('	')

			188	 	 }

			189	 	 written	:=	0

			190	 	 //	Make	sure	that	json.Marshal	escapes	codepoints	U+2028	&	U+2029

			191	 	 //	so	it	falls	within	the	subset	of	JSON	which	is	valid	JS.

			192	 	 for	i	:=	0;	i	<	len(b);	{

			193	 	 	 rune,	n	:=	utf8.DecodeRune(b[i:])

			194	 	 	 repl	:=	""

			195	 	 	 if	rune	==	0x2028	{

			196	 	 	 	 repl	=	`\u2028`

			197	 	 	 }	else	if	rune	==	0x2029	{

			198	 	 	 	 repl	=	`\u2029`

			199	 	 	 }

			200	 	 	 if	repl	!=	""	{

			201	 	 	 	 buf.Write(b[written:i])

			202	 	 	 	 buf.WriteString(repl)

			203	 	 	 	 written	=	i	+	n

			204	 	 	 }

			205	 	 	 i	+=	n

			206	 	 }

			207	 	 if	buf.Len()	!=	0	{

			208	 	 	 buf.Write(b[written:])

			209	 	 	 if	pad	{

			210	 	 	 	 buf.WriteByte('	')

			211	 	 	 }

			212	 	 	 b	=	buf.Bytes()

			213	 	 }

			214	 	 return	string(b)

			215	 }

			216	

			217	 //	jsStrEscaper	produces	a	string	that	can	be	included	between	quotes	in

			218	 //	JavaScript	source,	in	JavaScript	embedded	in	an	HTML5	<script>	element,

			219	 //	or	in	an	HTML5	event	handler	attribute	such	as	onclick.

			220	 func	jsStrEscaper(args	...interface{})	string	{

			221	 	 s,	t	:=	stringify(args...)

			222	 	 if	t	==	contentTypeJSStr	{

			223	 	 	 return	replace(s,	jsStrNormReplacementTable)

			224	 	 }

			225	 	 return	replace(s,	jsStrReplacementTable)

			226	 }

			227	

			228	 //	jsRegexpEscaper	behaves	like	jsStrEscaper	but	escapes	regular	expression

			229	 //	specials	so	the	result	is	treated	literally	when	included	in	a	regular

			230	 //	expression	literal.	/foo{{.X}}bar/	matches	the	string	"foo"	followed	by

			231	 //	the	literal	text	of	{{.X}}	followed	by	the	string	"bar".

			232	 func	jsRegexpEscaper(args	...interface{})	string	{

			233	 	 s,	_	:=	stringify(args...)

			234	 	 s	=	replace(s,	jsRegexpReplacementTable)

			235	 	 if	s	==	""	{

			236	 	 	 //	/{{.X}}/	should	not	produce	a	line	comment	when	.X	==	"".

			237	 	 	 return	"(?:)"

			238	 	 }

			239	 	 return	s

			240	 }

			241	

			242	 //	replace	replaces	each	rune	r	of	s	with	replacementTable[r],	provided	that

			243	 //	r	<	len(replacementTable).	If	replacementTable[r]	is	the	empty	string	then

			244	 //	no	replacement	is	made.

			245	 //	It	also	replaces	runes	U+2028	and	U+2029	with	the	raw	strings	`\u2028`	and

			246	 //	`\u2029`.

			247	 func	replace(s	string,	replacementTable	[]string)	string	{

			248	 	 var	b	bytes.Buffer

			249	 	 written	:=	0

			250	 	 for	i,	r	:=	range	s	{

			251	 	 	 var	repl	string

			252	 	 	 switch	{

			253	 	 	 case	int(r)	<	len(replacementTable)	&&	replacementTable[r]	!=	"":

			254	 	 	 	 repl	=	replacementTable[r]

			255	 	 	 case	r	==	'\u2028':

			256	 	 	 	 repl	=	`\u2028`

			257	 	 	 case	r	==	'\u2029':

			258	 	 	 	 repl	=	`\u2029`

			259	 	 	 default:

			260	 	 	 	 continue

			261	 	 	 }

			262	 	 	 b.WriteString(s[written:i])

			263	 	 	 b.WriteString(repl)

			264	 	 	 written	=	i	+	utf8.RuneLen(r)

			265	 	 }

			266	 	 if	written	==	0	{

			267	 	 	 return	s

			268	 	 }

			269	 	 b.WriteString(s[written:])

			270	 	 return	b.String()

			271	 }

			272	

			273	 var	jsStrReplacementTable	=	[]string{

			274	 	 0:				`\0`,

			275	 	 '\t':	`\t`,

			276	 	 '\n':	`\n`,

			277	 	 '\v':	`\x0b`,	//	"\v"	==	"v"	on	IE	6.

			278	 	 '\f':	`\f`,

			279	 	 '\r':	`\r`,

			280	 	 //	Encode	HTML	specials	as	hex	so	the	output	can	be	embedded

			281	 	 //	in	HTML	attributes	without	further	encoding.

			282	 	 '"':		`\x22`,

			283	 	 '&':		`\x26`,

			284	 	 '\'':	`\x27`,

			285	 	 '+':		`\x2b`,

			286	 	 '/':		`\/`,

			287	 	 '<':		`\x3c`,

			288	 	 '>':		`\x3e`,

			289	 	 '\\':	`\\`,

			290	 }

			291	

			292	 //	jsStrNormReplacementTable	is	like	jsStrReplacementTable	but	does	not

			293	 //	overencode	existing	escapes	since	this	table	has	no	entry	for	`\`.

			294	 var	jsStrNormReplacementTable	=	[]string{

			295	 	 0:				`\0`,

			296	 	 '\t':	`\t`,

			297	 	 '\n':	`\n`,

			298	 	 '\v':	`\x0b`,	//	"\v"	==	"v"	on	IE	6.

			299	 	 '\f':	`\f`,

			300	 	 '\r':	`\r`,

			301	 	 //	Encode	HTML	specials	as	hex	so	the	output	can	be	embedded

			302	 	 //	in	HTML	attributes	without	further	encoding.

			303	 	 '"':		`\x22`,

			304	 	 '&':		`\x26`,

			305	 	 '\'':	`\x27`,

			306	 	 '+':		`\x2b`,

			307	 	 '/':		`\/`,

			308	 	 '<':		`\x3c`,

			309	 	 '>':		`\x3e`,

			310	 }

			311	

			312	 var	jsRegexpReplacementTable	=	[]string{

			313	 	 0:				`\0`,

			314	 	 '\t':	`\t`,

			315	 	 '\n':	`\n`,

			316	 	 '\v':	`\x0b`,	//	"\v"	==	"v"	on	IE	6.

			317	 	 '\f':	`\f`,

			318	 	 '\r':	`\r`,

			319	 	 //	Encode	HTML	specials	as	hex	so	the	output	can	be	embedded

			320	 	 //	in	HTML	attributes	without	further	encoding.

			321	 	 '"':		`\x22`,

			322	 	 '$':		`\$`,

			323	 	 '&':		`\x26`,

			324	 	 '\'':	`\x27`,

			325	 	 '(':		`\(`,

			326	 	 ')':		`\)`,

			327	 	 '*':		`*`,

			328	 	 '+':		`\x2b`,

			329	 	 '-':		`\-`,

			330	 	 '.':		`\.`,

			331	 	 '/':		`\/`,

			332	 	 '<':		`\x3c`,

			333	 	 '>':		`\x3e`,

			334	 	 '?':		`\?`,

			335	 	 '[':		`\[`,

			336	 	 '\\':	`\\`,

			337	 	 ']':		`\]`,

			338	 	 '^':		`\^`,

			339	 	 '{':		`\{`,

			340	 	 '|':		`\|`,

			341	 	 '}':		`\}`,

			342	 }

			343	

			344	 //	isJSIdentPart	returns	whether	the	given	rune	is	a	JS	identifier	part.

			345	 //	It	does	not	handle	all	the	non-Latin	letters,	joiners,	and	combining	marks,

			346	 //	but	it	does	handle	every	codepoint	that	can	occur	in	a	numeric	literal	or

			347	 //	a	keyword.

			348	 func	isJSIdentPart(r	rune)	bool	{

			349	 	 switch	{

			350	 	 case	r	==	'$':

			351	 	 	 return	true

			352	 	 case	'0'	<=	r	&&	r	<=	'9':

			353	 	 	 return	true

			354	 	 case	'A'	<=	r	&&	r	<=	'Z':

			355	 	 	 return	true

			356	 	 case	r	==	'_':

			357	 	 	 return	true

			358	 	 case	'a'	<=	r	&&	r	<=	'z':

			359	 	 	 return	true

			360	 	 }

			361	 	 return	false

			362	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/html/template/template.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	template

					6	

					7	 import	(

					8	 	 "fmt"

					9	 	 "io"

				10	 	 "io/ioutil"

				11	 	 "path/filepath"

				12	 	 "sync"

				13	 	 "text/template"

				14	 	 "text/template/parse"

				15)

				16	

				17	 //	Template	is	a	specialized	template.Template	that	produces	a	safe	HTML

				18	 //	document	fragment.

				19	 type	Template	struct	{

				20	 	 escaped	bool

				21	 	 //	We	could	embed	the	text/template	field,	but	it's	safer	not	to	because

				22	 	 //	we	need	to	keep	our	version	of	the	name	space	and	the	underlying

				23	 	 //	template's	in	sync.

				24	 	 text							*template.Template

				25	 	 *nameSpace	//	common	to	all	associated	templates

				26	 }

				27	

				28	 //	nameSpace	is	the	data	structure	shared	by	all	templates	in	an	association.

				29	 type	nameSpace	struct	{

				30	 	 mu		sync.Mutex

				31	 	 set	map[string]*Template

				32	 }

				33	

				34	 //	Templates	returns	a	slice	of	the	templates	associated	with	t,	including	t

				35	 //	itself.

				36	 func	(t	*Template)	Templates()	[]*Template	{

				37	 	 ns	:=	t.nameSpace

				38	 	 ns.mu.Lock()

				39	 	 defer	ns.mu.Unlock()

				40	 	 //	Return	a	slice	so	we	don't	expose	the	map.

				41	 	 m	:=	make([]*Template,	0,	len(ns.set))

				42	 	 for	_,	v	:=	range	ns.set	{

				43	 	 	 m	=	append(m,	v)

				44	 	 }

				45	 	 return	m

				46	 }

				47	

				48	 //	Execute	applies	a	parsed	template	to	the	specified	data	object,

				49	 //	writing	the	output	to	wr.

				50	 func	(t	*Template)	Execute(wr	io.Writer,	data	interface{})	(err	error)	{

				51	 	 t.nameSpace.mu.Lock()

				52	 	 if	!t.escaped	{

				53	 	 	 if	err	=	escapeTemplates(t,	t.Name());	err	!=	nil	{

				54	 	 	 	 t.escaped	=	true

				55	 	 	 }

				56	 	 }

				57	 	 t.nameSpace.mu.Unlock()

				58	 	 if	err	!=	nil	{

				59	 	 	 return

				60	 	 }

				61	 	 return	t.text.Execute(wr,	data)

				62	 }

				63	

				64	 //	ExecuteTemplate	applies	the	template	associated	with	t	that	has	the	given

				65	 //	name	to	the	specified	data	object	and	writes	the	output	to	wr.

				66	 func	(t	*Template)	ExecuteTemplate(wr	io.Writer,	name	string,	data	interface{})	error	{

				67	 	 tmpl,	err	:=	t.lookupAndEscapeTemplate(name)

				68	 	 if	err	!=	nil	{

				69	 	 	 return	err

				70	 	 }

				71	 	 return	tmpl.text.Execute(wr,	data)

				72	 }

				73	

				74	 //	lookupAndEscapeTemplate	guarantees	that	the	template	with	the	given	name

				75	 //	is	escaped,	or	returns	an	error	if	it	cannot	be.	It	returns	the	named

				76	 //	template.

				77	 func	(t	*Template)	lookupAndEscapeTemplate(name	string)	(tmpl	*Template,	err	error)	{

				78	 	 t.nameSpace.mu.Lock()

				79	 	 defer	t.nameSpace.mu.Unlock()

				80	 	 tmpl	=	t.set[name]

				81	 	 if	tmpl	==	nil	{

				82	 	 	 return	nil,	fmt.Errorf("html/template:	%q	is	undefined",	name)

				83	 	 }

				84	 	 if	tmpl.text.Tree	==	nil	||	tmpl.text.Root	==	nil	{

				85	 	 	 return	nil,	fmt.Errorf("html/template:	%q	is	an	incomplete	template",	name)

				86	 	 }

				87	 	 if	t.text.Lookup(name)	==	nil	{

				88	 	 	 panic("html/template	internal	error:	template	escaping	out	of	sync")

				89	 	 }

				90	 	 if	tmpl	!=	nil	&&	!tmpl.escaped	{

				91	 	 	 err	=	escapeTemplates(tmpl,	name)

				92	 	 }

				93	 	 return	tmpl,	err

				94	 }

				95	

				96	 //	Parse	parses	a	string	into	a	template.	Nested	template	definitions

				97	 //	will	be	associated	with	the	top-level	template	t.	Parse	may	be

				98	 //	called	multiple	times	to	parse	definitions	of	templates	to	associate

				99	 //	with	t.	It	is	an	error	if	a	resulting	template	is	non-empty	(contains

			100	 //	content	other	than	template	definitions)	and	would	replace	a

			101	 //	non-empty	template	with	the	same	name.		(In	multiple	calls	to	Parse

			102	 //	with	the	same	receiver	template,	only	one	call	can	contain	text

			103	 //	other	than	space,	comments,	and	template	definitions.)

			104	 func	(t	*Template)	Parse(src	string)	(*Template,	error)	{

			105	 	 t.nameSpace.mu.Lock()

			106	 	 t.escaped	=	false

			107	 	 t.nameSpace.mu.Unlock()

			108	 	 ret,	err	:=	t.text.Parse(src)

			109	 	 if	err	!=	nil	{

			110	 	 	 return	nil,	err

			111	 	 }

			112	 	 //	In	general,	all	the	named	templates	might	have	changed	underfoot.

			113	 	 //	Regardless,	some	new	ones	may	have	been	defined.

			114	 	 //	The	template.Template	set	has	been	updated;	update	ours.

			115	 	 t.nameSpace.mu.Lock()

			116	 	 defer	t.nameSpace.mu.Unlock()

			117	 	 for	_,	v	:=	range	ret.Templates()	{

			118	 	 	 name	:=	v.Name()

			119	 	 	 tmpl	:=	t.set[name]

			120	 	 	 if	tmpl	==	nil	{

			121	 	 	 	 tmpl	=	t.new(name)

			122	 	 	 }

			123	 	 	 tmpl.escaped	=	false

			124	 	 	 tmpl.text	=	v

			125	 	 }

			126	 	 return	t,	nil

			127	 }

			128	

			129	 //	AddParseTree	creates	a	new	template	with	the	name	and	parse	tree

			130	 //	and	associates	it	with	t.

			131	 //

			132	 //	It	returns	an	error	if	t	has	already	been	executed.

			133	 func	(t	*Template)	AddParseTree(name	string,	tree	*parse.Tree)	(*Template,	error)	{

			134	 	 t.nameSpace.mu.Lock()

			135	 	 defer	t.nameSpace.mu.Unlock()

			136	 	 if	t.escaped	{

			137	 	 	 return	nil,	fmt.Errorf("html/template:	cannot	AddParseTree	to	%q	after	it	has	executed",	t.Name())

			138	 	 }

			139	 	 text,	err	:=	t.text.AddParseTree(name,	tree)

			140	 	 if	err	!=	nil	{

			141	 	 	 return	nil,	err

			142	 	 }

			143	 	 ret	:=	&Template{

			144	 	 	 false,

			145	 	 	 text,

			146	 	 	 t.nameSpace,

			147	 	 }

			148	 	 t.set[name]	=	ret

			149	 	 return	ret,	nil

			150	 }

			151	

			152	 //	Clone	returns	a	duplicate	of	the	template,	including	all	associated

			153	 //	templates.	The	actual	representation	is	not	copied,	but	the	name	space	of

			154	 //	associated	templates	is,	so	further	calls	to	Parse	in	the	copy	will	add

			155	 //	templates	to	the	copy	but	not	to	the	original.	Clone	can	be	used	to	prepare

			156	 //	common	templates	and	use	them	with	variant	definitions	for	other	templates

			157	 //	by	adding	the	variants	after	the	clone	is	made.

			158	 //

			159	 //	It	returns	an	error	if	t	has	already	been	executed.

			160	 func	(t	*Template)	Clone()	(*Template,	error)	{

			161	 	 t.nameSpace.mu.Lock()

			162	 	 defer	t.nameSpace.mu.Unlock()

			163	 	 if	t.escaped	{

			164	 	 	 return	nil,	fmt.Errorf("html/template:	cannot	Clone	%q	after	it	has	executed",	t.Name())

			165	 	 }

			166	 	 textClone,	err	:=	t.text.Clone()

			167	 	 if	err	!=	nil	{

			168	 	 	 return	nil,	err

			169	 	 }

			170	 	 ret	:=	&Template{

			171	 	 	 false,

			172	 	 	 textClone,

			173	 	 	 &nameSpace{

			174	 	 	 	 set:	make(map[string]*Template),

			175	 	 	 },

			176	 	 }

			177	 	 for	_,	x	:=	range	textClone.Templates()	{

			178	 	 	 name	:=	x.Name()

			179	 	 	 src	:=	t.set[name]

			180	 	 	 if	src	==	nil	||	src.escaped	{

			181	 	 	 	 return	nil,	fmt.Errorf("html/template:	cannot	Clone	%q	after	it	has	executed",	t.Name())

			182	 	 	 }

			183	 	 	 if	x.Tree	!=	nil	{

			184	 	 	 	 x.Tree	=	&parse.Tree{

			185	 	 	 	 	 Name:	x.Tree.Name,

			186	 	 	 	 	 Root:	x.Tree.Root.CopyList(),

			187	 	 	 	 }

			188	 	 	 }

			189	 	 	 ret.set[name]	=	&Template{

			190	 	 	 	 false,

			191	 	 	 	 x,

			192	 	 	 	 ret.nameSpace,

			193	 	 	 }

			194	 	 }

			195	 	 return	ret,	nil

			196	 }

			197	

			198	 //	New	allocates	a	new	HTML	template	with	the	given	name.

			199	 func	New(name	string)	*Template	{

			200	 	 tmpl	:=	&Template{

			201	 	 	 false,

			202	 	 	 template.New(name),

			203	 	 	 &nameSpace{

			204	 	 	 	 set:	make(map[string]*Template),

			205	 	 	 },

			206	 	 }

			207	 	 tmpl.set[name]	=	tmpl

			208	 	 return	tmpl

			209	 }

			210	

			211	 //	New	allocates	a	new	HTML	template	associated	with	the	given	one

			212	 //	and	with	the	same	delimiters.	The	association,	which	is	transitive,

			213	 //	allows	one	template	to	invoke	another	with	a	{{template}}	action.

			214	 func	(t	*Template)	New(name	string)	*Template	{

			215	 	 t.nameSpace.mu.Lock()

			216	 	 defer	t.nameSpace.mu.Unlock()

			217	 	 return	t.new(name)

			218	 }

			219	

			220	 //	new	is	the	implementation	of	New,	without	the	lock.

			221	 func	(t	*Template)	new(name	string)	*Template	{

			222	 	 tmpl	:=	&Template{

			223	 	 	 false,

			224	 	 	 t.text.New(name),

			225	 	 	 t.nameSpace,

			226	 	 }

			227	 	 tmpl.set[name]	=	tmpl

			228	 	 return	tmpl

			229	 }

			230	

			231	 //	Name	returns	the	name	of	the	template.

			232	 func	(t	*Template)	Name()	string	{

			233	 	 return	t.text.Name()

			234	 }

			235	

			236	 //	FuncMap	is	the	type	of	the	map	defining	the	mapping	from	names	to

			237	 //	functions.	Each	function	must	have	either	a	single	return	value,	or	two

			238	 //	return	values	of	which	the	second	has	type	error.	In	that	case,	if	the

			239	 //	second	(error)	argument	evaluates	to	non-nil	during	execution,	execution

			240	 //	terminates	and	Execute	returns	that	error.	FuncMap	has	the	same	base	type

			241	 //	as	template.FuncMap,	copied	here	so	clients	need	not	import	"text/template".

			242	 type	FuncMap	map[string]interface{}

			243	

			244	 //	Funcs	adds	the	elements	of	the	argument	map	to	the	template's	function	map.

			245	 //	It	panics	if	a	value	in	the	map	is	not	a	function	with	appropriate	return

			246	 //	type.	However,	it	is	legal	to	overwrite	elements	of	the	map.	The	return

			247	 //	value	is	the	template,	so	calls	can	be	chained.

			248	 func	(t	*Template)	Funcs(funcMap	FuncMap)	*Template	{

			249	 	 t.text.Funcs(template.FuncMap(funcMap))

			250	 	 return	t

			251	 }

			252	

			253	 //	Delims	sets	the	action	delimiters	to	the	specified	strings,	to	be	used	in

			254	 //	subsequent	calls	to	Parse,	ParseFiles,	or	ParseGlob.	Nested	template

			255	 //	definitions	will	inherit	the	settings.	An	empty	delimiter	stands	for	the

			256	 //	corresponding	default:	{{	or	}}.

			257	 //	The	return	value	is	the	template,	so	calls	can	be	chained.

			258	 func	(t	*Template)	Delims(left,	right	string)	*Template	{

			259	 	 t.text.Delims(left,	right)

			260	 	 return	t

			261	 }

			262	

			263	 //	Lookup	returns	the	template	with	the	given	name	that	is	associated	with	t,

			264	 //	or	nil	if	there	is	no	such	template.

			265	 func	(t	*Template)	Lookup(name	string)	*Template	{

			266	 	 t.nameSpace.mu.Lock()

			267	 	 defer	t.nameSpace.mu.Unlock()

			268	 	 return	t.set[name]

			269	 }

			270	

			271	 //	Must	panics	if	err	is	non-nil	in	the	same	way	as	template.Must.

			272	 func	Must(t	*Template,	err	error)	*Template	{

			273	 	 if	err	!=	nil	{

			274	 	 	 panic(err)

			275	 	 }

			276	 	 return	t

			277	 }

			278	

			279	 //	ParseFiles	creates	a	new	Template	and	parses	the	template	definitions	from

			280	 //	the	named	files.	The	returned	template's	name	will	have	the	(base)	name	and

			281	 //	(parsed)	contents	of	the	first	file.	There	must	be	at	least	one	file.

			282	 //	If	an	error	occurs,	parsing	stops	and	the	returned	*Template	is	nil.

			283	 func	ParseFiles(filenames	...string)	(*Template,	error)	{

			284	 	 return	parseFiles(nil,	filenames...)

			285	 }

			286	

			287	 //	ParseFiles	parses	the	named	files	and	associates	the	resulting	templates	with

			288	 //	t.	If	an	error	occurs,	parsing	stops	and	the	returned	template	is	nil;

			289	 //	otherwise	it	is	t.	There	must	be	at	least	one	file.

			290	 func	(t	*Template)	ParseFiles(filenames	...string)	(*Template,	error)	{

			291	 	 return	parseFiles(t,	filenames...)

			292	 }

			293	

			294	 //	parseFiles	is	the	helper	for	the	method	and	function.	If	the	argument

			295	 //	template	is	nil,	it	is	created	from	the	first	file.

			296	 func	parseFiles(t	*Template,	filenames	...string)	(*Template,	error)	{

			297	 	 if	len(filenames)	==	0	{

			298	 	 	 //	Not	really	a	problem,	but	be	consistent.

			299	 	 	 return	nil,	fmt.Errorf("html/template:	no	files	named	in	call	to	ParseFiles")

			300	 	 }

			301	 	 for	_,	filename	:=	range	filenames	{

			302	 	 	 b,	err	:=	ioutil.ReadFile(filename)

			303	 	 	 if	err	!=	nil	{

			304	 	 	 	 return	nil,	err

			305	 	 	 }

			306	 	 	 s	:=	string(b)

			307	 	 	 name	:=	filepath.Base(filename)

			308	 	 	 //	First	template	becomes	return	value	if	not	already	defined,

			309	 	 	 //	and	we	use	that	one	for	subsequent	New	calls	to	associate

			310	 	 	 //	all	the	templates	together.	Also,	if	this	file	has	the	same	name

			311	 	 	 //	as	t,	this	file	becomes	the	contents	of	t,	so

			312	 	 	 //		t,	err	:=	New(name).Funcs(xxx).ParseFiles(name)

			313	 	 	 //	works.	Otherwise	we	create	a	new	template	associated	with	t.

			314	 	 	 var	tmpl	*Template

			315	 	 	 if	t	==	nil	{

			316	 	 	 	 t	=	New(name)

			317	 	 	 }

			318	 	 	 if	name	==	t.Name()	{

			319	 	 	 	 tmpl	=	t

			320	 	 	 }	else	{

			321	 	 	 	 tmpl	=	t.New(name)

			322	 	 	 }

			323	 	 	 _,	err	=	tmpl.Parse(s)

			324	 	 	 if	err	!=	nil	{

			325	 	 	 	 return	nil,	err

			326	 	 	 }

			327	 	 }

			328	 	 return	t,	nil

			329	 }

			330	

			331	 //	ParseGlob	creates	a	new	Template	and	parses	the	template	definitions	from	the

			332	 //	files	identified	by	the	pattern,	which	must	match	at	least	one	file.	The

			333	 //	returned	template	will	have	the	(base)	name	and	(parsed)	contents	of	the

			334	 //	first	file	matched	by	the	pattern.	ParseGlob	is	equivalent	to	calling

			335	 //	ParseFiles	with	the	list	of	files	matched	by	the	pattern.

			336	 func	ParseGlob(pattern	string)	(*Template,	error)	{

			337	 	 return	parseGlob(nil,	pattern)

			338	 }

			339	

			340	 //	ParseGlob	parses	the	template	definitions	in	the	files	identified	by	the

			341	 //	pattern	and	associates	the	resulting	templates	with	t.	The	pattern	is

			342	 //	processed	by	filepath.Glob	and	must	match	at	least	one	file.	ParseGlob	is

			343	 //	equivalent	to	calling	t.ParseFiles	with	the	list	of	files	matched	by	the

			344	 //	pattern.

			345	 func	(t	*Template)	ParseGlob(pattern	string)	(*Template,	error)	{

			346	 	 return	parseGlob(t,	pattern)

			347	 }

			348	

			349	 //	parseGlob	is	the	implementation	of	the	function	and	method	ParseGlob.

			350	 func	parseGlob(t	*Template,	pattern	string)	(*Template,	error)	{

			351	 	 filenames,	err	:=	filepath.Glob(pattern)

			352	 	 if	err	!=	nil	{

			353	 	 	 return	nil,	err

			354	 	 }

			355	 	 if	len(filenames)	==	0	{

			356	 	 	 return	nil,	fmt.Errorf("html/template:	pattern	matches	no	files:	%#q",	pattern)

			357	 	 }

			358	 	 return	parseFiles(t,	filenames...)

			359	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/html/template/transition.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	template

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "strings"

				10)

				11	

				12	 //	transitionFunc	is	the	array	of	context	transition	functions	for	text	nodes.

				13	 //	A	transition	function	takes	a	context	and	template	text	input,	and	returns

				14	 //	the	updated	context	and	the	number	of	bytes	consumed	from	the	front	of	the

				15	 //	input.

				16	 var	transitionFunc	=	[...]func(context,	[]byte)	(context,	int){

				17	 	 stateText:								tText,

				18	 	 stateTag:									tTag,

				19	 	 stateAttrName:				tAttrName,

				20	 	 stateAfterName:			tAfterName,

				21	 	 stateBeforeValue:	tBeforeValue,

				22	 	 stateHTMLCmt:					tHTMLCmt,

				23	 	 stateRCDATA:						tSpecialTagEnd,

				24	 	 stateAttr:								tAttr,

				25	 	 stateURL:									tURL,

				26	 	 stateJS:										tJS,

				27	 	 stateJSDqStr:					tJSDelimited,

				28	 	 stateJSSqStr:					tJSDelimited,

				29	 	 stateJSRegexp:				tJSDelimited,

				30	 	 stateJSBlockCmt:		tBlockCmt,

				31	 	 stateJSLineCmt:			tLineCmt,

				32	 	 stateCSS:									tCSS,

				33	 	 stateCSSDqStr:				tCSSStr,

				34	 	 stateCSSSqStr:				tCSSStr,

				35	 	 stateCSSDqURL:				tCSSStr,

				36	 	 stateCSSSqURL:				tCSSStr,

				37	 	 stateCSSURL:						tCSSStr,

				38	 	 stateCSSBlockCmt:	tBlockCmt,

				39	 	 stateCSSLineCmt:		tLineCmt,

				40	 	 stateError:							tError,

				41	 }

				42	

				43	 var	commentStart	=	[]byte("<!--")

				44	 var	commentEnd	=	[]byte("-->")

				45	

				46	 //	tText	is	the	context	transition	function	for	the	text	state.

				47	 func	tText(c	context,	s	[]byte)	(context,	int)	{

				48	 	 k	:=	0

				49	 	 for	{

				50	 	 	 i	:=	k	+	bytes.IndexByte(s[k:],	'<')

				51	 	 	 if	i	<	k	||	i+1	==	len(s)	{

				52	 	 	 	 return	c,	len(s)

				53	 	 	 }	else	if	i+4	<=	len(s)	&&	bytes.Equal(commentStart,	s[i:i+4])	{

				54	 	 	 	 return	context{state:	stateHTMLCmt},	i	+	4

				55	 	 	 }

				56	 	 	 i++

				57	 	 	 end	:=	false

				58	 	 	 if	s[i]	==	'/'	{

				59	 	 	 	 if	i+1	==	len(s)	{

				60	 	 	 	 	 return	c,	len(s)

				61	 	 	 	 }

				62	 	 	 	 end,	i	=	true,	i+1

				63	 	 	 }

				64	 	 	 j,	e	:=	eatTagName(s,	i)

				65	 	 	 if	j	!=	i	{

				66	 	 	 	 if	end	{

				67	 	 	 	 	 e	=	elementNone

				68	 	 	 	 }

				69	 	 	 	 //	We've	found	an	HTML	tag.

				70	 	 	 	 return	context{state:	stateTag,	element:	e},	j

				71	 	 	 }

				72	 	 	 k	=	j

				73	 	 }

				74	 	 panic("unreachable")

				75	 }

				76	

				77	 var	elementContentType	=	[...]state{

				78	 	 elementNone:					stateText,

				79	 	 elementScript:			stateJS,

				80	 	 elementStyle:				stateCSS,

				81	 	 elementTextarea:	stateRCDATA,

				82	 	 elementTitle:				stateRCDATA,

				83	 }

				84	

				85	 //	tTag	is	the	context	transition	function	for	the	tag	state.

				86	 func	tTag(c	context,	s	[]byte)	(context,	int)	{

				87	 	 //	Find	the	attribute	name.

				88	 	 i	:=	eatWhiteSpace(s,	0)

				89	 	 if	i	==	len(s)	{

				90	 	 	 return	c,	len(s)

				91	 	 }

				92	 	 if	s[i]	==	'>'	{

				93	 	 	 return	context{

				94	 	 	 	 state:			elementContentType[c.element],

				95	 	 	 	 element:	c.element,

				96	 	 	 },	i	+	1

				97	 	 }

				98	 	 j,	err	:=	eatAttrName(s,	i)

				99	 	 if	err	!=	nil	{

			100	 	 	 return	context{state:	stateError,	err:	err},	len(s)

			101	 	 }

			102	 	 state,	attr	:=	stateTag,	attrNone

			103	 	 if	i	==	j	{

			104	 	 	 return	context{

			105	 	 	 	 state:	stateError,

			106	 	 	 	 err:			errorf(ErrBadHTML,	0,	"expected	space,	attr	name,	or	end	of	tag,	but	got	%q",	s[i:]),

			107	 	 	 },	len(s)

			108	 	 }

			109	 	 switch	attrType(string(s[i:j]))	{

			110	 	 case	contentTypeURL:

			111	 	 	 attr	=	attrURL

			112	 	 case	contentTypeCSS:

			113	 	 	 attr	=	attrStyle

			114	 	 case	contentTypeJS:

			115	 	 	 attr	=	attrScript

			116	 	 }

			117	 	 if	j	==	len(s)	{

			118	 	 	 state	=	stateAttrName

			119	 	 }	else	{

			120	 	 	 state	=	stateAfterName

			121	 	 }

			122	 	 return	context{state:	state,	element:	c.element,	attr:	attr},	j

			123	 }

			124	

			125	 //	tAttrName	is	the	context	transition	function	for	stateAttrName.

			126	 func	tAttrName(c	context,	s	[]byte)	(context,	int)	{

			127	 	 i,	err	:=	eatAttrName(s,	0)

			128	 	 if	err	!=	nil	{

			129	 	 	 return	context{state:	stateError,	err:	err},	len(s)

			130	 	 }	else	if	i	!=	len(s)	{

			131	 	 	 c.state	=	stateAfterName

			132	 	 }

			133	 	 return	c,	i

			134	 }

			135	

			136	 //	tAfterName	is	the	context	transition	function	for	stateAfterName.

			137	 func	tAfterName(c	context,	s	[]byte)	(context,	int)	{

			138	 	 //	Look	for	the	start	of	the	value.

			139	 	 i	:=	eatWhiteSpace(s,	0)

			140	 	 if	i	==	len(s)	{

			141	 	 	 return	c,	len(s)

			142	 	 }	else	if	s[i]	!=	'='	{

			143	 	 	 //	Occurs	due	to	tag	ending	'>',	and	valueless	attribute.

			144	 	 	 c.state	=	stateTag

			145	 	 	 return	c,	i

			146	 	 }

			147	 	 c.state	=	stateBeforeValue

			148	 	 //	Consume	the	"=".

			149	 	 return	c,	i	+	1

			150	 }

			151	

			152	 var	attrStartStates	=	[...]state{

			153	 	 attrNone:			stateAttr,

			154	 	 attrScript:	stateJS,

			155	 	 attrStyle:		stateCSS,

			156	 	 attrURL:				stateURL,

			157	 }

			158	

			159	 //	tBeforeValue	is	the	context	transition	function	for	stateBeforeValue.

			160	 func	tBeforeValue(c	context,	s	[]byte)	(context,	int)	{

			161	 	 i	:=	eatWhiteSpace(s,	0)

			162	 	 if	i	==	len(s)	{

			163	 	 	 return	c,	len(s)

			164	 	 }

			165	 	 //	Find	the	attribute	delimiter.

			166	 	 delim	:=	delimSpaceOrTagEnd

			167	 	 switch	s[i]	{

			168	 	 case	'\'':

			169	 	 	 delim,	i	=	delimSingleQuote,	i+1

			170	 	 case	'"':

			171	 	 	 delim,	i	=	delimDoubleQuote,	i+1

			172	 	 }

			173	 	 c.state,	c.delim,	c.attr	=	attrStartStates[c.attr],	delim,	attrNone

			174	 	 return	c,	i

			175	 }

			176	

			177	 //	tHTMLCmt	is	the	context	transition	function	for	stateHTMLCmt.

			178	 func	tHTMLCmt(c	context,	s	[]byte)	(context,	int)	{

			179	 	 if	i	:=	bytes.Index(s,	commentEnd);	i	!=	-1	{

			180	 	 	 return	context{},	i	+	3

			181	 	 }

			182	 	 return	c,	len(s)

			183	 }

			184	

			185	 //	specialTagEndMarkers	maps	element	types	to	the	character	sequence	that

			186	 //	case-insensitively	signals	the	end	of	the	special	tag	body.

			187	 var	specialTagEndMarkers	=	[...]string{

			188	 	 elementScript:			"</script",

			189	 	 elementStyle:				"</style",

			190	 	 elementTextarea:	"</textarea",

			191	 	 elementTitle:				"</title",

			192	 }

			193	

			194	 //	tSpecialTagEnd	is	the	context	transition	function	for	raw	text	and	RCDATA

			195	 //	element	states.

			196	 func	tSpecialTagEnd(c	context,	s	[]byte)	(context,	int)	{

			197	 	 if	c.element	!=	elementNone	{

			198	 	 	 if	i	:=	strings.Index(strings.ToLower(string(s)),	specialTagEndMarkers[c.element]);	i	!=	-1	{

			199	 	 	 	 return	context{},	i

			200	 	 	 }

			201	 	 }

			202	 	 return	c,	len(s)

			203	 }

			204	

			205	 //	tAttr	is	the	context	transition	function	for	the	attribute	state.

			206	 func	tAttr(c	context,	s	[]byte)	(context,	int)	{

			207	 	 return	c,	len(s)

			208	 }

			209	

			210	 //	tURL	is	the	context	transition	function	for	the	URL	state.

			211	 func	tURL(c	context,	s	[]byte)	(context,	int)	{

			212	 	 if	bytes.IndexAny(s,	"#?")	>=	0	{

			213	 	 	 c.urlPart	=	urlPartQueryOrFrag

			214	 	 }	else	if	len(s)	!=	eatWhiteSpace(s,	0)	&&	c.urlPart	==	urlPartNone	{

			215	 	 	 //	HTML5	uses	"Valid	URL	potentially	surrounded	by	spaces"	for

			216	 	 	 //	attrs:	http://www.w3.org/TR/html5/index.html#attributes-1

			217	 	 	 c.urlPart	=	urlPartPreQuery

			218	 	 }

			219	 	 return	c,	len(s)

			220	 }

			221	

			222	 //	tJS	is	the	context	transition	function	for	the	JS	state.

			223	 func	tJS(c	context,	s	[]byte)	(context,	int)	{

			224	 	 i	:=	bytes.IndexAny(s,	`"'/`)

			225	 	 if	i	==	-1	{

			226	 	 	 //	Entire	input	is	non	string,	comment,	regexp	tokens.

			227	 	 	 c.jsCtx	=	nextJSCtx(s,	c.jsCtx)

			228	 	 	 return	c,	len(s)

			229	 	 }

			230	 	 c.jsCtx	=	nextJSCtx(s[:i],	c.jsCtx)

			231	 	 switch	s[i]	{

			232	 	 case	'"':

			233	 	 	 c.state,	c.jsCtx	=	stateJSDqStr,	jsCtxRegexp

			234	 	 case	'\'':

			235	 	 	 c.state,	c.jsCtx	=	stateJSSqStr,	jsCtxRegexp

			236	 	 case	'/':

			237	 	 	 switch	{

			238	 	 	 case	i+1	<	len(s)	&&	s[i+1]	==	'/':

			239	 	 	 	 c.state,	i	=	stateJSLineCmt,	i+1

			240	 	 	 case	i+1	<	len(s)	&&	s[i+1]	==	'*':

			241	 	 	 	 c.state,	i	=	stateJSBlockCmt,	i+1

			242	 	 	 case	c.jsCtx	==	jsCtxRegexp:

			243	 	 	 	 c.state	=	stateJSRegexp

			244	 	 	 case	c.jsCtx	==	jsCtxDivOp:

			245	 	 	 	 c.jsCtx	=	jsCtxRegexp

			246	 	 	 default:

			247	 	 	 	 return	context{

			248	 	 	 	 	 state:	stateError,

			249	 	 	 	 	 err:			errorf(ErrSlashAmbig,	0,	"'/'	could	start	a	division	or	regexp:	%.32q",	s[i:]),

			250	 	 	 	 },	len(s)

			251	 	 	 }

			252	 	 default:

			253	 	 	 panic("unreachable")

			254	 	 }

			255	 	 return	c,	i	+	1

			256	 }

			257	

			258	 //	tJSDelimited	is	the	context	transition	function	for	the	JS	string	and	regexp

			259	 //	states.

			260	 func	tJSDelimited(c	context,	s	[]byte)	(context,	int)	{

			261	 	 specials	:=	`\"`

			262	 	 switch	c.state	{

			263	 	 case	stateJSSqStr:

			264	 	 	 specials	=	`\'`

			265	 	 case	stateJSRegexp:

			266	 	 	 specials	=	`\/[]`

			267	 	 }

			268	

			269	 	 k,	inCharset	:=	0,	false

			270	 	 for	{

			271	 	 	 i	:=	k	+	bytes.IndexAny(s[k:],	specials)

			272	 	 	 if	i	<	k	{

			273	 	 	 	 break

			274	 	 	 }

			275	 	 	 switch	s[i]	{

			276	 	 	 case	'\\':

			277	 	 	 	 i++

			278	 	 	 	 if	i	==	len(s)	{

			279	 	 	 	 	 return	context{

			280	 	 	 	 	 	 state:	stateError,

			281	 	 	 	 	 	 err:			errorf(ErrPartialEscape,	0,	"unfinished	escape	sequence	in	JS	string:	%q",	s),

			282	 	 	 	 	 },	len(s)

			283	 	 	 	 }

			284	 	 	 case	'[':

			285	 	 	 	 inCharset	=	true

			286	 	 	 case	']':

			287	 	 	 	 inCharset	=	false

			288	 	 	 default:

			289	 	 	 	 //	end	delimiter

			290	 	 	 	 if	!inCharset	{

			291	 	 	 	 	 c.state,	c.jsCtx	=	stateJS,	jsCtxDivOp

			292	 	 	 	 	 return	c,	i	+	1

			293	 	 	 	 }

			294	 	 	 }

			295	 	 	 k	=	i	+	1

			296	 	 }

			297	

			298	 	 if	inCharset	{

			299	 	 	 //	This	can	be	fixed	by	making	context	richer	if	interpolation

			300	 	 	 //	into	charsets	is	desired.

			301	 	 	 return	context{

			302	 	 	 	 state:	stateError,

			303	 	 	 	 err:			errorf(ErrPartialCharset,	0,	"unfinished	JS	regexp	charset:	%q",	s),

			304	 	 	 },	len(s)

			305	 	 }

			306	

			307	 	 return	c,	len(s)

			308	 }

			309	

			310	 var	blockCommentEnd	=	[]byte("*/")

			311	

			312	 //	tBlockCmt	is	the	context	transition	function	for	/*comment*/	states.

			313	 func	tBlockCmt(c	context,	s	[]byte)	(context,	int)	{

			314	 	 i	:=	bytes.Index(s,	blockCommentEnd)

			315	 	 if	i	==	-1	{

			316	 	 	 return	c,	len(s)

			317	 	 }

			318	 	 switch	c.state	{

			319	 	 case	stateJSBlockCmt:

			320	 	 	 c.state	=	stateJS

			321	 	 case	stateCSSBlockCmt:

			322	 	 	 c.state	=	stateCSS

			323	 	 default:

			324	 	 	 panic(c.state.String())

			325	 	 }

			326	 	 return	c,	i	+	2

			327	 }

			328	

			329	 //	tLineCmt	is	the	context	transition	function	for	//comment	states.

			330	 func	tLineCmt(c	context,	s	[]byte)	(context,	int)	{

			331	 	 var	lineTerminators	string

			332	 	 var	endState	state

			333	 	 switch	c.state	{

			334	 	 case	stateJSLineCmt:

			335	 	 	 lineTerminators,	endState	=	"\n\r\u2028\u2029",	stateJS

			336	 	 case	stateCSSLineCmt:

			337	 	 	 lineTerminators,	endState	=	"\n\f\r",	stateCSS

			338	 	 	 //	Line	comments	are	not	part	of	any	published	CSS	standard	but

			339	 	 	 //	are	supported	by	the	4	major	browsers.

			340	 	 	 //	This	defines	line	comments	as

			341	 	 	 //					LINECOMMENT	::=	"//"	[^\n\f\d]*

			342	 	 	 //	since	http://www.w3.org/TR/css3-syntax/#SUBTOK-nl	defines

			343	 	 	 //	newlines:

			344	 	 	 //					nl	::=	#xA	|	#xD	#xA	|	#xD	|	#xC

			345	 	 default:

			346	 	 	 panic(c.state.String())

			347	 	 }

			348	

			349	 	 i	:=	bytes.IndexAny(s,	lineTerminators)

			350	 	 if	i	==	-1	{

			351	 	 	 return	c,	len(s)

			352	 	 }

			353	 	 c.state	=	endState

			354	 	 //	Per	section	7.4	of	EcmaScript	5	:	http://es5.github.com/#x7.4

			355	 	 //	"However,	the	LineTerminator	at	the	end	of	the	line	is	not

			356	 	 //	considered	to	be	part	of	the	single-line	comment;	it	is

			357	 	 //	recognized	separately	by	the	lexical	grammar	and	becomes	part

			358	 	 //	of	the	stream	of	input	elements	for	the	syntactic	grammar."

			359	 	 return	c,	i

			360	 }

			361	

			362	 //	tCSS	is	the	context	transition	function	for	the	CSS	state.

			363	 func	tCSS(c	context,	s	[]byte)	(context,	int)	{

			364	 	 //	CSS	quoted	strings	are	almost	never	used	except	for:

			365	 	 //	(1)	URLs	as	in	background:	"/foo.png"

			366	 	 //	(2)	Multiword	font-names	as	in	font-family:	"Times	New	Roman"

			367	 	 //	(3)	List	separators	in	content	values	as	in	inline-lists:

			368	 	 //				<style>

			369	 	 //				ul.inlineList	{	list-style:	none;	padding:0	}

			370	 	 //				ul.inlineList	>	li	{	display:	inline	}

			371	 	 //				ul.inlineList	>	li:before	{	content:	",	"	}

			372	 	 //				ul.inlineList	>	li:first-child:before	{	content:	""	}

			373	 	 //				</style>

			374	 	 //				<ul	class=inlineList>OneTwoThree

			375	 	 //	(4)	Attribute	value	selectors	as	in	a[href="http://example.com/"]

			376	 	 //

			377	 	 //	We	conservatively	treat	all	strings	as	URLs,	but	make	some

			378	 	 //	allowances	to	avoid	confusion.

			379	 	 //

			380	 	 //	In	(1),	our	conservative	assumption	is	justified.

			381	 	 //	In	(2),	valid	font	names	do	not	contain	':',	'?',	or	'#',	so	our

			382	 	 //	conservative	assumption	is	fine	since	we	will	never	transition	past

			383	 	 //	urlPartPreQuery.

			384	 	 //	In	(3),	our	protocol	heuristic	should	not	be	tripped,	and	there

			385	 	 //	should	not	be	non-space	content	after	a	'?'	or	'#',	so	as	long	as

			386	 	 //	we	only	%-encode	RFC	3986	reserved	characters	we	are	ok.

			387	 	 //	In	(4),	we	should	URL	escape	for	URL	attributes,	and	for	others	we

			388	 	 //	have	the	attribute	name	available	if	our	conservative	assumption

			389	 	 //	proves	problematic	for	real	code.

			390	

			391	 	 k	:=	0

			392	 	 for	{

			393	 	 	 i	:=	k	+	bytes.IndexAny(s[k:],	`("'/`)

			394	 	 	 if	i	<	k	{

			395	 	 	 	 return	c,	len(s)

			396	 	 	 }

			397	 	 	 switch	s[i]	{

			398	 	 	 case	'(':

			399	 	 	 	 //	Look	for	url	to	the	left.

			400	 	 	 	 p	:=	bytes.TrimRight(s[:i],	"\t\n\f\r	")

			401	 	 	 	 if	endsWithCSSKeyword(p,	"url")	{

			402	 	 	 	 	 j	:=	len(s)	-	len(bytes.TrimLeft(s[i+1:],	"\t\n\f\r	"))

			403	 	 	 	 	 switch	{

			404	 	 	 	 	 case	j	!=	len(s)	&&	s[j]	==	'"':

			405	 	 	 	 	 	 c.state,	j	=	stateCSSDqURL,	j+1

			406	 	 	 	 	 case	j	!=	len(s)	&&	s[j]	==	'\'':

			407	 	 	 	 	 	 c.state,	j	=	stateCSSSqURL,	j+1

			408	 	 	 	 	 default:

			409	 	 	 	 	 	 c.state	=	stateCSSURL

			410	 	 	 	 	 }

			411	 	 	 	 	 return	c,	j

			412	 	 	 	 }

			413	 	 	 case	'/':

			414	 	 	 	 if	i+1	<	len(s)	{

			415	 	 	 	 	 switch	s[i+1]	{

			416	 	 	 	 	 case	'/':

			417	 	 	 	 	 	 c.state	=	stateCSSLineCmt

			418	 	 	 	 	 	 return	c,	i	+	2

			419	 	 	 	 	 case	'*':

			420	 	 	 	 	 	 c.state	=	stateCSSBlockCmt

			421	 	 	 	 	 	 return	c,	i	+	2

			422	 	 	 	 	 }

			423	 	 	 	 }

			424	 	 	 case	'"':

			425	 	 	 	 c.state	=	stateCSSDqStr

			426	 	 	 	 return	c,	i	+	1

			427	 	 	 case	'\'':

			428	 	 	 	 c.state	=	stateCSSSqStr

			429	 	 	 	 return	c,	i	+	1

			430	 	 	 }

			431	 	 	 k	=	i	+	1

			432	 	 }

			433	 	 panic("unreachable")

			434	 }

			435	

			436	 //	tCSSStr	is	the	context	transition	function	for	the	CSS	string	and	URL	states.

			437	 func	tCSSStr(c	context,	s	[]byte)	(context,	int)	{

			438	 	 var	endAndEsc	string

			439	 	 switch	c.state	{

			440	 	 case	stateCSSDqStr,	stateCSSDqURL:

			441	 	 	 endAndEsc	=	`\"`

			442	 	 case	stateCSSSqStr,	stateCSSSqURL:

			443	 	 	 endAndEsc	=	`\'`

			444	 	 case	stateCSSURL:

			445	 	 	 //	Unquoted	URLs	end	with	a	newline	or	close	parenthesis.

			446	 	 	 //	The	below	includes	the	wc	(whitespace	character)	and	nl.

			447	 	 	 endAndEsc	=	"\\\t\n\f\r)"

			448	 	 default:

			449	 	 	 panic(c.state.String())

			450	 	 }

			451	

			452	 	 k	:=	0

			453	 	 for	{

			454	 	 	 i	:=	k	+	bytes.IndexAny(s[k:],	endAndEsc)

			455	 	 	 if	i	<	k	{

			456	 	 	 	 c,	nread	:=	tURL(c,	decodeCSS(s[k:]))

			457	 	 	 	 return	c,	k	+	nread

			458	 	 	 }

			459	 	 	 if	s[i]	==	'\\'	{

			460	 	 	 	 i++

			461	 	 	 	 if	i	==	len(s)	{

			462	 	 	 	 	 return	context{

			463	 	 	 	 	 	 state:	stateError,

			464	 	 	 	 	 	 err:			errorf(ErrPartialEscape,	0,	"unfinished	escape	sequence	in	CSS	string:	%q",	s),

			465	 	 	 	 	 },	len(s)

			466	 	 	 	 }

			467	 	 	 }	else	{

			468	 	 	 	 c.state	=	stateCSS

			469	 	 	 	 return	c,	i	+	1

			470	 	 	 }

			471	 	 	 c,	_	=	tURL(c,	decodeCSS(s[:i+1]))

			472	 	 	 k	=	i	+	1

			473	 	 }

			474	 	 panic("unreachable")

			475	 }

			476	

			477	 //	tError	is	the	context	transition	function	for	the	error	state.

			478	 func	tError(c	context,	s	[]byte)	(context,	int)	{

			479	 	 return	c,	len(s)

			480	 }

			481	

			482	 //	eatAttrName	returns	the	largest	j	such	that	s[i:j]	is	an	attribute	name.

			483	 //	It	returns	an	error	if	s[i:]	does	not	look	like	it	begins	with	an

			484	 //	attribute	name,	such	as	encountering	a	quote	mark	without	a	preceding

			485	 //	equals	sign.

			486	 func	eatAttrName(s	[]byte,	i	int)	(int,	*Error)	{

			487	 	 for	j	:=	i;	j	<	len(s);	j++	{

			488	 	 	 switch	s[j]	{

			489	 	 	 case	'	',	'\t',	'\n',	'\f',	'\r',	'=',	'>':

			490	 	 	 	 return	j,	nil

			491	 	 	 case	'\'',	'"',	'<':

			492	 	 	 	 //	These	result	in	a	parse	warning	in	HTML5	and	are

			493	 	 	 	 //	indicative	of	serious	problems	if	seen	in	an	attr

			494	 	 	 	 //	name	in	a	template.

			495	 	 	 	 return	-1,	errorf(ErrBadHTML,	0,	"%q	in	attribute	name:	%.32q",	s[j:j+1],	s)

			496	 	 	 default:

			497	 	 	 	 //	No-op.

			498	 	 	 }

			499	 	 }

			500	 	 return	len(s),	nil

			501	 }

			502	

			503	 var	elementNameMap	=	map[string]element{

			504	 	 "script":			elementScript,

			505	 	 "style":				elementStyle,

			506	 	 "textarea":	elementTextarea,

			507	 	 "title":				elementTitle,

			508	 }

			509	

			510	 //	asciiAlpha	returns	whether	c	is	an	ASCII	letter.

			511	 func	asciiAlpha(c	byte)	bool	{

			512	 	 return	'A'	<=	c	&&	c	<=	'Z'	||	'a'	<=	c	&&	c	<=	'z'

			513	 }

			514	

			515	 //	asciiAlphaNum	returns	whether	c	is	an	ASCII	letter	or	digit.

			516	 func	asciiAlphaNum(c	byte)	bool	{

			517	 	 return	asciiAlpha(c)	||	'0'	<=	c	&&	c	<=	'9'

			518	 }

			519	

			520	 //	eatTagName	returns	the	largest	j	such	that	s[i:j]	is	a	tag	name	and	the	tag	type.

			521	 func	eatTagName(s	[]byte,	i	int)	(int,	element)	{

			522	 	 if	i	==	len(s)	||	!asciiAlpha(s[i])	{

			523	 	 	 return	i,	elementNone

			524	 	 }

			525	 	 j	:=	i	+	1

			526	 	 for	j	<	len(s)	{

			527	 	 	 x	:=	s[j]

			528	 	 	 if	asciiAlphaNum(x)	{

			529	 	 	 	 j++

			530	 	 	 	 continue

			531	 	 	 }

			532	 	 	 //	Allow	"x-y"	or	"x:y"	but	not	"x-",	"-y",	or	"x--y".

			533	 	 	 if	(x	==	':'	||	x	==	'-')	&&	j+1	<	len(s)	&&	asciiAlphaNum(s[j+1])	{

			534	 	 	 	 j	+=	2

			535	 	 	 	 continue

			536	 	 	 }

			537	 	 	 break

			538	 	 }

			539	 	 return	j,	elementNameMap[strings.ToLower(string(s[i:j]))]

			540	 }

			541	

			542	 //	eatWhiteSpace	returns	the	largest	j	such	that	s[i:j]	is	white	space.

			543	 func	eatWhiteSpace(s	[]byte,	i	int)	int	{

			544	 	 for	j	:=	i;	j	<	len(s);	j++	{

			545	 	 	 switch	s[j]	{

			546	 	 	 case	'	',	'\t',	'\n',	'\f',	'\r':

			547	 	 	 	 //	No-op.

			548	 	 	 default:

			549	 	 	 	 return	j

			550	 	 	 }

			551	 	 }

			552	 	 return	len(s)

			553	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/html/template/url.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	template

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "fmt"

				10	 	 "strings"

				11)

				12	

				13	 //	urlFilter	returns	its	input	unless	it	contains	an	unsafe	protocol	in	which

				14	 //	case	it	defangs	the	entire	URL.

				15	 func	urlFilter(args	...interface{})	string	{

				16	 	 s,	t	:=	stringify(args...)

				17	 	 if	t	==	contentTypeURL	{

				18	 	 	 return	s

				19	 	 }

				20	 	 if	i	:=	strings.IndexRune(s,	':');	i	>=	0	&&	strings.IndexRune(s[:i],	'/')	<	0	{

				21	 	 	 protocol	:=	strings.ToLower(s[:i])

				22	 	 	 if	protocol	!=	"http"	&&	protocol	!=	"https"	&&	protocol	!=	"mailto"	{

				23	 	 	 	 return	"#"	+	filterFailsafe

				24	 	 	 }

				25	 	 }

				26	 	 return	s

				27	 }

				28	

				29	 //	urlEscaper	produces	an	output	that	can	be	embedded	in	a	URL	query.

				30	 //	The	output	can	be	embedded	in	an	HTML	attribute	without	further	escaping.

				31	 func	urlEscaper(args	...interface{})	string	{

				32	 	 return	urlProcessor(false,	args...)

				33	 }

				34	

				35	 //	urlEscaper	normalizes	URL	content	so	it	can	be	embedded	in	a	quote-delimited

				36	 //	string	or	parenthesis	delimited	url(...).

				37	 //	The	normalizer	does	not	encode	all	HTML	specials.	Specifically,	it	does	not

				38	 //	encode	'&'	so	correct	embedding	in	an	HTML	attribute	requires	escaping	of

				39	 //	'&'	to	'&'.

				40	 func	urlNormalizer(args	...interface{})	string	{

				41	 	 return	urlProcessor(true,	args...)

				42	 }

				43	

				44	 //	urlProcessor	normalizes	(when	norm	is	true)	or	escapes	its	input	to	produce

				45	 //	a	valid	hierarchical	or	opaque	URL	part.

				46	 func	urlProcessor(norm	bool,	args	...interface{})	string	{

				47	 	 s,	t	:=	stringify(args...)

				48	 	 if	t	==	contentTypeURL	{

				49	 	 	 norm	=	true

				50	 	 }

				51	 	 var	b	bytes.Buffer

				52	 	 written	:=	0

				53	 	 //	The	byte	loop	below	assumes	that	all	URLs	use	UTF-8	as	the

				54	 	 //	content-encoding.	This	is	similar	to	the	URI	to	IRI	encoding	scheme

				55	 	 //	defined	in	section	3.1	of		RFC	3987,	and	behaves	the	same	as	the

				56	 	 //	EcmaScript	builtin	encodeURIComponent.

				57	 	 //	It	should	not	cause	any	misencoding	of	URLs	in	pages	with

				58	 	 //	Content-type:	text/html;charset=UTF-8.

				59	 	 for	i,	n	:=	0,	len(s);	i	<	n;	i++	{

				60	 	 	 c	:=	s[i]

				61	 	 	 switch	c	{

				62	 	 	 //	Single	quote	and	parens	are	sub-delims	in	RFC	3986,	but	we

				63	 	 	 //	escape	them	so	the	output	can	be	embedded	in	in	single

				64	 	 	 //	quoted	attributes	and	unquoted	CSS	url(...)	constructs.

				65	 	 	 //	Single	quotes	are	reserved	in	URLs,	but	are	only	used	in

				66	 	 	 //	the	obsolete	"mark"	rule	in	an	appendix	in	RFC	3986

				67	 	 	 //	so	can	be	safely	encoded.

				68	 	 	 case	'!',	'#',	'$',	'&',	'*',	'+',	',',	'/',	':',	';',	'=',	'?',	'@',	'[',	']':

				69	 	 	 	 if	norm	{

				70	 	 	 	 	 continue

				71	 	 	 	 }

				72	 	 	 //	Unreserved	according	to	RFC	3986	sec	2.3

				73	 	 	 //	"For	consistency,	percent-encoded	octets	in	the	ranges	of

				74	 	 	 //	ALPHA	(%41-%5A	and	%61-%7A),	DIGIT	(%30-%39),	hyphen	(%2D),

				75	 	 	 //	period	(%2E),	underscore	(%5F),	or	tilde	(%7E)	should	not	be

				76	 	 	 //	created	by	URI	producers

				77	 	 	 case	'-',	'.',	'_',	'~':

				78	 	 	 	 continue

				79	 	 	 case	'%':

				80	 	 	 	 //	When	normalizing	do	not	re-encode	valid	escapes.

				81	 	 	 	 if	norm	&&	i+2	<	len(s)	&&	isHex(s[i+1])	&&	isHex(s[i+2])	{

				82	 	 	 	 	 continue

				83	 	 	 	 }

				84	 	 	 default:

				85	 	 	 	 //	Unreserved	according	to	RFC	3986	sec	2.3

				86	 	 	 	 if	'a'	<=	c	&&	c	<=	'z'	{

				87	 	 	 	 	 continue

				88	 	 	 	 }

				89	 	 	 	 if	'A'	<=	c	&&	c	<=	'Z'	{

				90	 	 	 	 	 continue

				91	 	 	 	 }

				92	 	 	 	 if	'0'	<=	c	&&	c	<=	'9'	{

				93	 	 	 	 	 continue

				94	 	 	 	 }

				95	 	 	 }

				96	 	 	 b.WriteString(s[written:i])

				97	 	 	 fmt.Fprintf(&b,	"%%%02x",	c)

				98	 	 	 written	=	i	+	1

				99	 	 }

			100	 	 if	written	==	0	{

			101	 	 	 return	s

			102	 	 }

			103	 	 b.WriteString(s[written:])

			104	 	 return	b.String()

			105	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/image/format.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	image

					6	

					7	 import	(

					8	 	 "bufio"

					9	 	 "errors"

				10	 	 "io"

				11)

				12	

				13	 //	ErrFormat	indicates	that	decoding	encountered	an	unknown	format.

				14	 var	ErrFormat	=	errors.New("image:	unknown	format")

				15	

				16	 //	A	format	holds	an	image	format's	name,	magic	header	and	how	to	decode	it.

				17	 type	format	struct	{

				18	 	 name,	magic		string

				19	 	 decode							func(io.Reader)	(Image,	error)

				20	 	 decodeConfig	func(io.Reader)	(Config,	error)

				21	 }

				22	

				23	 //	Formats	is	the	list	of	registered	formats.

				24	 var	formats	[]format

				25	

				26	 //	RegisterFormat	registers	an	image	format	for	use	by	Decode.

				27	 //	Name	is	the	name	of	the	format,	like	"jpeg"	or	"png".

				28	 //	Magic	is	the	magic	prefix	that	identifies	the	format's	encoding.	The	magic

				29	 //	string	can	contain	"?"	wildcards	that	each	match	any	one	byte.

				30	 //	Decode	is	the	function	that	decodes	the	encoded	image.

				31	 //	DecodeConfig	is	the	function	that	decodes	just	its	configuration.

				32	 func	RegisterFormat(name,	magic	string,	decode	func(io.Reader)	(Image,	error),	decodeConfig	func(io.Reader)	(Config,	error))	{

				33	 	 formats	=	append(formats,	format{name,	magic,	decode,	decodeConfig})

				34	 }

				35	

				36	 //	A	reader	is	an	io.Reader	that	can	also	peek	ahead.

				37	 type	reader	interface	{

				38	 	 io.Reader

				39	 	 Peek(int)	([]byte,	error)

				40	 }

				41	

				42	 //	AsReader	converts	an	io.Reader	to	a	reader.

				43	 func	asReader(r	io.Reader)	reader	{

				44	 	 if	rr,	ok	:=	r.(reader);	ok	{

				45	 	 	 return	rr

				46	 	 }

				47	 	 return	bufio.NewReader(r)

				48	 }

				49	

				50	 //	Match	returns	whether	magic	matches	b.	Magic	may	contain	"?"	wildcards.

				51	 func	match(magic	string,	b	[]byte)	bool	{

				52	 	 if	len(magic)	!=	len(b)	{

				53	 	 	 return	false

				54	 	 }

				55	 	 for	i,	c	:=	range	b	{

				56	 	 	 if	magic[i]	!=	c	&&	magic[i]	!=	'?'	{

				57	 	 	 	 return	false

				58	 	 	 }

				59	 	 }

				60	 	 return	true

				61	 }

				62	

				63	 //	Sniff	determines	the	format	of	r's	data.

				64	 func	sniff(r	reader)	format	{

				65	 	 for	_,	f	:=	range	formats	{

				66	 	 	 b,	err	:=	r.Peek(len(f.magic))

				67	 	 	 if	err	==	nil	&&	match(f.magic,	b)	{

				68	 	 	 	 return	f

				69	 	 	 }

				70	 	 }

				71	 	 return	format{}

				72	 }

				73	

				74	 //	Decode	decodes	an	image	that	has	been	encoded	in	a	registered	format.

				75	 //	The	string	returned	is	the	format	name	used	during	format	registration.

				76	 //	Format	registration	is	typically	done	by	the	init	method	of	the	codec-

				77	 //	specific	package.

				78	 func	Decode(r	io.Reader)	(Image,	string,	error)	{

				79	 	 rr	:=	asReader(r)

				80	 	 f	:=	sniff(rr)

				81	 	 if	f.decode	==	nil	{

				82	 	 	 return	nil,	"",	ErrFormat

				83	 	 }

				84	 	 m,	err	:=	f.decode(rr)

				85	 	 return	m,	f.name,	err

				86	 }

				87	

				88	 //	DecodeConfig	decodes	the	color	model	and	dimensions	of	an	image	that	has

				89	 //	been	encoded	in	a	registered	format.	The	string	returned	is	the	format	name

				90	 //	used	during	format	registration.	Format	registration	is	typically	done	by

				91	 //	the	init	method	of	the	codec-specific	package.

				92	 func	DecodeConfig(r	io.Reader)	(Config,	string,	error)	{

				93	 	 rr	:=	asReader(r)

				94	 	 f	:=	sniff(rr)

				95	 	 if	f.decodeConfig	==	nil	{

				96	 	 	 return	Config{},	"",	ErrFormat

				97	 	 }

				98	 	 c,	err	:=	f.decodeConfig(rr)

				99	 	 return	c,	f.name,	err

			100	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/image/geom.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	image

					6	

					7	 import	(

					8	 	 "strconv"

					9)

				10	

				11	 //	A	Point	is	an	X,	Y	coordinate	pair.	The	axes	increase	right	and	down.

				12	 type	Point	struct	{

				13	 	 X,	Y	int

				14	 }

				15	

				16	 //	String	returns	a	string	representation	of	p	like	"(3,4)".

				17	 func	(p	Point)	String()	string	{

				18	 	 return	"("	+	strconv.Itoa(p.X)	+	","	+	strconv.Itoa(p.Y)	+	")"

				19	 }

				20	

				21	 //	Add	returns	the	vector	p+q.

				22	 func	(p	Point)	Add(q	Point)	Point	{

				23	 	 return	Point{p.X	+	q.X,	p.Y	+	q.Y}

				24	 }

				25	

				26	 //	Sub	returns	the	vector	p-q.

				27	 func	(p	Point)	Sub(q	Point)	Point	{

				28	 	 return	Point{p.X	-	q.X,	p.Y	-	q.Y}

				29	 }

				30	

				31	 //	Mul	returns	the	vector	p*k.

				32	 func	(p	Point)	Mul(k	int)	Point	{

				33	 	 return	Point{p.X	*	k,	p.Y	*	k}

				34	 }

				35	

				36	 //	Div	returns	the	vector	p/k.

				37	 func	(p	Point)	Div(k	int)	Point	{

				38	 	 return	Point{p.X	/	k,	p.Y	/	k}

				39	 }

				40	

				41	 //	In	returns	whether	p	is	in	r.

				42	 func	(p	Point)	In(r	Rectangle)	bool	{

				43	 	 return	r.Min.X	<=	p.X	&&	p.X	<	r.Max.X	&&

				44	 	 	 r.Min.Y	<=	p.Y	&&	p.Y	<	r.Max.Y

				45	 }

				46	

				47	 //	Mod	returns	the	point	q	in	r	such	that	p.X-q.X	is	a	multiple	of	r's	width

				48	 //	and	p.Y-q.Y	is	a	multiple	of	r's	height.

				49	 func	(p	Point)	Mod(r	Rectangle)	Point	{

				50	 	 w,	h	:=	r.Dx(),	r.Dy()

				51	 	 p	=	p.Sub(r.Min)

				52	 	 p.X	=	p.X	%	w

				53	 	 if	p.X	<	0	{

				54	 	 	 p.X	+=	w

				55	 	 }

				56	 	 p.Y	=	p.Y	%	h

				57	 	 if	p.Y	<	0	{

				58	 	 	 p.Y	+=	h

				59	 	 }

				60	 	 return	p.Add(r.Min)

				61	 }

				62	

				63	 //	Eq	returns	whether	p	and	q	are	equal.

				64	 func	(p	Point)	Eq(q	Point)	bool	{

				65	 	 return	p.X	==	q.X	&&	p.Y	==	q.Y

				66	 }

				67	

				68	 //	ZP	is	the	zero	Point.

				69	 var	ZP	Point

				70	

				71	 //	Pt	is	shorthand	for	Point{X,	Y}.

				72	 func	Pt(X,	Y	int)	Point	{

				73	 	 return	Point{X,	Y}

				74	 }

				75	

				76	 //	A	Rectangle	contains	the	points	with	Min.X	<=	X	<	Max.X,	Min.Y	<=	Y	<	Max.Y.

				77	 //	It	is	well-formed	if	Min.X	<=	Max.X	and	likewise	for	Y.	Points	are	always

				78	 //	well-formed.	A	rectangle's	methods	always	return	well-formed	outputs	for

				79	 //	well-formed	inputs.

				80	 type	Rectangle	struct	{

				81	 	 Min,	Max	Point

				82	 }

				83	

				84	 //	String	returns	a	string	representation	of	r	like	"(3,4)-(6,5)".

				85	 func	(r	Rectangle)	String()	string	{

				86	 	 return	r.Min.String()	+	"-"	+	r.Max.String()

				87	 }

				88	

				89	 //	Dx	returns	r's	width.

				90	 func	(r	Rectangle)	Dx()	int	{

				91	 	 return	r.Max.X	-	r.Min.X

				92	 }

				93	

				94	 //	Dy	returns	r's	height.

				95	 func	(r	Rectangle)	Dy()	int	{

				96	 	 return	r.Max.Y	-	r.Min.Y

				97	 }

				98	

				99	 //	Size	returns	r's	width	and	height.

			100	 func	(r	Rectangle)	Size()	Point	{

			101	 	 return	Point{

			102	 	 	 r.Max.X	-	r.Min.X,

			103	 	 	 r.Max.Y	-	r.Min.Y,

			104	 	 }

			105	 }

			106	

			107	 //	Add	returns	the	rectangle	r	translated	by	p.

			108	 func	(r	Rectangle)	Add(p	Point)	Rectangle	{

			109	 	 return	Rectangle{

			110	 	 	 Point{r.Min.X	+	p.X,	r.Min.Y	+	p.Y},

			111	 	 	 Point{r.Max.X	+	p.X,	r.Max.Y	+	p.Y},

			112	 	 }

			113	 }

			114	

			115	 //	Sub	returns	the	rectangle	r	translated	by	-p.

			116	 func	(r	Rectangle)	Sub(p	Point)	Rectangle	{

			117	 	 return	Rectangle{

			118	 	 	 Point{r.Min.X	-	p.X,	r.Min.Y	-	p.Y},

			119	 	 	 Point{r.Max.X	-	p.X,	r.Max.Y	-	p.Y},

			120	 	 }

			121	 }

			122	

			123	 //	Inset	returns	the	rectangle	r	inset	by	n,	which	may	be	negative.	If	either

			124	 //	of	r's	dimensions	is	less	than	2*n	then	an	empty	rectangle	near	the	center

			125	 //	of	r	will	be	returned.

			126	 func	(r	Rectangle)	Inset(n	int)	Rectangle	{

			127	 	 if	r.Dx()	<	2*n	{

			128	 	 	 r.Min.X	=	(r.Min.X	+	r.Max.X)	/	2

			129	 	 	 r.Max.X	=	r.Min.X

			130	 	 }	else	{

			131	 	 	 r.Min.X	+=	n

			132	 	 	 r.Max.X	-=	n

			133	 	 }

			134	 	 if	r.Dy()	<	2*n	{

			135	 	 	 r.Min.Y	=	(r.Min.Y	+	r.Max.Y)	/	2

			136	 	 	 r.Max.Y	=	r.Min.Y

			137	 	 }	else	{

			138	 	 	 r.Min.Y	+=	n

			139	 	 	 r.Max.Y	-=	n

			140	 	 }

			141	 	 return	r

			142	 }

			143	

			144	 //	Intersect	returns	the	largest	rectangle	contained	by	both	r	and	s.	If	the

			145	 //	two	rectangles	do	not	overlap	then	the	zero	rectangle	will	be	returned.

			146	 func	(r	Rectangle)	Intersect(s	Rectangle)	Rectangle	{

			147	 	 if	r.Min.X	<	s.Min.X	{

			148	 	 	 r.Min.X	=	s.Min.X

			149	 	 }

			150	 	 if	r.Min.Y	<	s.Min.Y	{

			151	 	 	 r.Min.Y	=	s.Min.Y

			152	 	 }

			153	 	 if	r.Max.X	>	s.Max.X	{

			154	 	 	 r.Max.X	=	s.Max.X

			155	 	 }

			156	 	 if	r.Max.Y	>	s.Max.Y	{

			157	 	 	 r.Max.Y	=	s.Max.Y

			158	 	 }

			159	 	 if	r.Min.X	>	r.Max.X	||	r.Min.Y	>	r.Max.Y	{

			160	 	 	 return	ZR

			161	 	 }

			162	 	 return	r

			163	 }

			164	

			165	 //	Union	returns	the	smallest	rectangle	that	contains	both	r	and	s.

			166	 func	(r	Rectangle)	Union(s	Rectangle)	Rectangle	{

			167	 	 if	r.Min.X	>	s.Min.X	{

			168	 	 	 r.Min.X	=	s.Min.X

			169	 	 }

			170	 	 if	r.Min.Y	>	s.Min.Y	{

			171	 	 	 r.Min.Y	=	s.Min.Y

			172	 	 }

			173	 	 if	r.Max.X	<	s.Max.X	{

			174	 	 	 r.Max.X	=	s.Max.X

			175	 	 }

			176	 	 if	r.Max.Y	<	s.Max.Y	{

			177	 	 	 r.Max.Y	=	s.Max.Y

			178	 	 }

			179	 	 return	r

			180	 }

			181	

			182	 //	Empty	returns	whether	the	rectangle	contains	no	points.

			183	 func	(r	Rectangle)	Empty()	bool	{

			184	 	 return	r.Min.X	>=	r.Max.X	||	r.Min.Y	>=	r.Max.Y

			185	 }

			186	

			187	 //	Eq	returns	whether	r	and	s	are	equal.

			188	 func	(r	Rectangle)	Eq(s	Rectangle)	bool	{

			189	 	 return	r.Min.X	==	s.Min.X	&&	r.Min.Y	==	s.Min.Y	&&

			190	 	 	 r.Max.X	==	s.Max.X	&&	r.Max.Y	==	s.Max.Y

			191	 }

			192	

			193	 //	Overlaps	returns	whether	r	and	s	have	a	non-empty	intersection.

			194	 func	(r	Rectangle)	Overlaps(s	Rectangle)	bool	{

			195	 	 return	r.Min.X	<	s.Max.X	&&	s.Min.X	<	r.Max.X	&&

			196	 	 	 r.Min.Y	<	s.Max.Y	&&	s.Min.Y	<	r.Max.Y

			197	 }

			198	

			199	 //	In	returns	whether	every	point	in	r	is	in	s.

			200	 func	(r	Rectangle)	In(s	Rectangle)	bool	{

			201	 	 if	r.Empty()	{

			202	 	 	 return	true

			203	 	 }

			204	 	 //	Note	that	r.Max	is	an	exclusive	bound	for	r,	so	that	r.In(s)

			205	 	 //	does	not	require	that	r.Max.In(s).

			206	 	 return	s.Min.X	<=	r.Min.X	&&	r.Max.X	<=	s.Max.X	&&

			207	 	 	 s.Min.Y	<=	r.Min.Y	&&	r.Max.Y	<=	s.Max.Y

			208	 }

			209	

			210	 //	Canon	returns	the	canonical	version	of	r.	The	returned	rectangle	has	minimum

			211	 //	and	maximum	coordinates	swapped	if	necessary	so	that	it	is	well-formed.

			212	 func	(r	Rectangle)	Canon()	Rectangle	{

			213	 	 if	r.Max.X	<	r.Min.X	{

			214	 	 	 r.Min.X,	r.Max.X	=	r.Max.X,	r.Min.X

			215	 	 }

			216	 	 if	r.Max.Y	<	r.Min.Y	{

			217	 	 	 r.Min.Y,	r.Max.Y	=	r.Max.Y,	r.Min.Y

			218	 	 }

			219	 	 return	r

			220	 }

			221	

			222	 //	ZR	is	the	zero	Rectangle.

			223	 var	ZR	Rectangle

			224	

			225	 //	Rect	is	shorthand	for	Rectangle{Pt(x0,	y0),	Pt(x1,	y1)}.

			226	 func	Rect(x0,	y0,	x1,	y1	int)	Rectangle	{

			227	 	 if	x0	>	x1	{

			228	 	 	 x0,	x1	=	x1,	x0

			229	 	 }

			230	 	 if	y0	>	y1	{

			231	 	 	 y0,	y1	=	y1,	y0

			232	 	 }

			233	 	 return	Rectangle{Point{x0,	y0},	Point{x1,	y1}}

			234	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/image/image.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	image	implements	a	basic	2-D	image	library.

					6	 //

					7	 //	The	fundamental	interface	is	called	Image.	An	Image	contains	colors,	which

					8	 //	are	described	in	the	image/color	package.

					9	 //

				10	 //	Values	of	the	Image	interface	are	created	either	by	calling	functions	such

				11	 //	as	NewRGBA	and	NewPaletted,	or	by	calling	Decode	on	an	io.Reader	containing

				12	 //	image	data	in	a	format	such	as	GIF,	JPEG	or	PNG.	Decoding	any	particular

				13	 //	image	format	requires	the	prior	registration	of	a	decoder	function.

				14	 //	Registration	is	typically	automatic	as	a	side	effect	of	initializing	that

				15	 //	format's	package	so	that,	to	decode	a	PNG	image,	it	suffices	to	have

				16	 //	 import	_	"image/png"

				17	 //	in	a	program's	main	package.	The	_	means	to	import	a	package	purely	for	its

				18	 //	initialization	side	effects.

				19	 //

				20	 //	See	"The	Go	image	package"	for	more	details:

				21	 //	http://golang.org/doc/articles/image_package.html

				22	 package	image

				23	

				24	 import	(

				25	 	 "image/color"

				26)

				27	

				28	 //	Config	holds	an	image's	color	model	and	dimensions.

				29	 type	Config	struct	{

				30	 	 ColorModel				color.Model

				31	 	 Width,	Height	int

				32	 }

				33	

				34	 //	Image	is	a	finite	rectangular	grid	of	color.Color	values	taken	from	a	color

				35	 //	model.

				36	 type	Image	interface	{

				37	 	 //	ColorModel	returns	the	Image's	color	model.

				38	 	 ColorModel()	color.Model

				39	 	 //	Bounds	returns	the	domain	for	which	At	can	return	non-zero	color.

				40	 	 //	The	bounds	do	not	necessarily	contain	the	point	(0,	0).

				41	 	 Bounds()	Rectangle

				42	 	 //	At	returns	the	color	of	the	pixel	at	(x,	y).

				43	 	 //	At(Bounds().Min.X,	Bounds().Min.Y)	returns	the	upper-left	pixel	of	the	grid.

				44	 	 //	At(Bounds().Max.X-1,	Bounds().Max.Y-1)	returns	the	lower-right	one.

				45	 	 At(x,	y	int)	color.Color

				46	 }

				47	

				48	 //	PalettedImage	is	an	image	whose	colors	may	come	from	a	limited	palette.

				49	 //	If	m	is	a	PalettedImage	and	m.ColorModel()	returns	a	PalettedColorModel	p,

				50	 //	then	m.At(x,	y)	should	be	equivalent	to	p[m.ColorIndexAt(x,	y)].	If	m's

				51	 //	color	model	is	not	a	PalettedColorModel,	then	ColorIndexAt's	behavior	is

				52	 //	undefined.

				53	 type	PalettedImage	interface	{

				54	 	 //	ColorIndexAt	returns	the	palette	index	of	the	pixel	at	(x,	y).

				55	 	 ColorIndexAt(x,	y	int)	uint8

				56	 	 Image

				57	 }

				58	

				59	 //	RGBA	is	an	in-memory	image	whose	At	method	returns	color.RGBA	values.

				60	 type	RGBA	struct	{

				61	 	 //	Pix	holds	the	image's	pixels,	in	R,	G,	B,	A	order.	The	pixel	at

				62	 	 //	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*4].

				63	 	 Pix	[]uint8

				64	 	 //	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

				65	 	 Stride	int

				66	 	 //	Rect	is	the	image's	bounds.

				67	 	 Rect	Rectangle

				68	 }

				69	

				70	 func	(p	*RGBA)	ColorModel()	color.Model	{	return	color.RGBAModel	}

				71	

				72	 func	(p	*RGBA)	Bounds()	Rectangle	{	return	p.Rect	}

				73	

				74	 func	(p	*RGBA)	At(x,	y	int)	color.Color	{

				75	 	 if	!(Point{x,	y}.In(p.Rect))	{

				76	 	 	 return	color.RGBA{}

				77	 	 }

				78	 	 i	:=	p.PixOffset(x,	y)

				79	 	 return	color.RGBA{p.Pix[i+0],	p.Pix[i+1],	p.Pix[i+2],	p.Pix[i+3]}

				80	 }

				81	

				82	 //	PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to

				83	 //	the	pixel	at	(x,	y).

				84	 func	(p	*RGBA)	PixOffset(x,	y	int)	int	{

				85	 	 return	(y-p.Rect.Min.Y)*p.Stride	+	(x-p.Rect.Min.X)*4

				86	 }

				87	

				88	 func	(p	*RGBA)	Set(x,	y	int,	c	color.Color)	{

				89	 	 if	!(Point{x,	y}.In(p.Rect))	{

				90	 	 	 return

				91	 	 }

				92	 	 i	:=	p.PixOffset(x,	y)

				93	 	 c1	:=	color.RGBAModel.Convert(c).(color.RGBA)

				94	 	 p.Pix[i+0]	=	c1.R

				95	 	 p.Pix[i+1]	=	c1.G

				96	 	 p.Pix[i+2]	=	c1.B

				97	 	 p.Pix[i+3]	=	c1.A

				98	 }

				99	

			100	 func	(p	*RGBA)	SetRGBA(x,	y	int,	c	color.RGBA)	{

			101	 	 if	!(Point{x,	y}.In(p.Rect))	{

			102	 	 	 return

			103	 	 }

			104	 	 i	:=	p.PixOffset(x,	y)

			105	 	 p.Pix[i+0]	=	c.R

			106	 	 p.Pix[i+1]	=	c.G

			107	 	 p.Pix[i+2]	=	c.B

			108	 	 p.Pix[i+3]	=	c.A

			109	 }

			110	

			111	 //	SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible

			112	 //	through	r.	The	returned	value	shares	pixels	with	the	original	image.

			113	 func	(p	*RGBA)	SubImage(r	Rectangle)	Image	{

			114	 	 r	=	r.Intersect(p.Rect)

			115	 	 //	If	r1	and	r2	are	Rectangles,	r1.Intersect(r2)	is	not	guaranteed	to	be	inside

			116	 	 //	either	r1	or	r2	if	the	intersection	is	empty.	Without	explicitly	checking	for

			117	 	 //	this,	the	Pix[i:]	expression	below	can	panic.

			118	 	 if	r.Empty()	{

			119	 	 	 return	&RGBA{}

			120	 	 }

			121	 	 i	:=	p.PixOffset(r.Min.X,	r.Min.Y)

			122	 	 return	&RGBA{

			123	 	 	 Pix:				p.Pix[i:],

			124	 	 	 Stride:	p.Stride,

			125	 	 	 Rect:			r,

			126	 	 }

			127	 }

			128	

			129	 //	Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

			130	 func	(p	*RGBA)	Opaque()	bool	{

			131	 	 if	p.Rect.Empty()	{

			132	 	 	 return	true

			133	 	 }

			134	 	 i0,	i1	:=	3,	p.Rect.Dx()*4

			135	 	 for	y	:=	p.Rect.Min.Y;	y	<	p.Rect.Max.Y;	y++	{

			136	 	 	 for	i	:=	i0;	i	<	i1;	i	+=	4	{

			137	 	 	 	 if	p.Pix[i]	!=	0xff	{

			138	 	 	 	 	 return	false

			139	 	 	 	 }

			140	 	 	 }

			141	 	 	 i0	+=	p.Stride

			142	 	 	 i1	+=	p.Stride

			143	 	 }

			144	 	 return	true

			145	 }

			146	

			147	 //	NewRGBA	returns	a	new	RGBA	with	the	given	bounds.

			148	 func	NewRGBA(r	Rectangle)	*RGBA	{

			149	 	 w,	h	:=	r.Dx(),	r.Dy()

			150	 	 buf	:=	make([]uint8,	4*w*h)

			151	 	 return	&RGBA{buf,	4	*	w,	r}

			152	 }

			153	

			154	 //	RGBA64	is	an	in-memory	image	whose	At	method	returns	color.RGBA64	values.

			155	 type	RGBA64	struct	{

			156	 	 //	Pix	holds	the	image's	pixels,	in	R,	G,	B,	A	order	and	big-endian	format.	The	pixel	at

			157	 	 //	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*8].

			158	 	 Pix	[]uint8

			159	 	 //	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

			160	 	 Stride	int

			161	 	 //	Rect	is	the	image's	bounds.

			162	 	 Rect	Rectangle

			163	 }

			164	

			165	 func	(p	*RGBA64)	ColorModel()	color.Model	{	return	color.RGBA64Model	}

			166	

			167	 func	(p	*RGBA64)	Bounds()	Rectangle	{	return	p.Rect	}

			168	

			169	 func	(p	*RGBA64)	At(x,	y	int)	color.Color	{

			170	 	 if	!(Point{x,	y}.In(p.Rect))	{

			171	 	 	 return	color.RGBA64{}

			172	 	 }

			173	 	 i	:=	p.PixOffset(x,	y)

			174	 	 return	color.RGBA64{

			175	 	 	 uint16(p.Pix[i+0])<<8	|	uint16(p.Pix[i+1]),

			176	 	 	 uint16(p.Pix[i+2])<<8	|	uint16(p.Pix[i+3]),

			177	 	 	 uint16(p.Pix[i+4])<<8	|	uint16(p.Pix[i+5]),

			178	 	 	 uint16(p.Pix[i+6])<<8	|	uint16(p.Pix[i+7]),

			179	 	 }

			180	 }

			181	

			182	 //	PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to

			183	 //	the	pixel	at	(x,	y).

			184	 func	(p	*RGBA64)	PixOffset(x,	y	int)	int	{

			185	 	 return	(y-p.Rect.Min.Y)*p.Stride	+	(x-p.Rect.Min.X)*8

			186	 }

			187	

			188	 func	(p	*RGBA64)	Set(x,	y	int,	c	color.Color)	{

			189	 	 if	!(Point{x,	y}.In(p.Rect))	{

			190	 	 	 return

			191	 	 }

			192	 	 i	:=	p.PixOffset(x,	y)

			193	 	 c1	:=	color.RGBA64Model.Convert(c).(color.RGBA64)

			194	 	 p.Pix[i+0]	=	uint8(c1.R	>>	8)

			195	 	 p.Pix[i+1]	=	uint8(c1.R)

			196	 	 p.Pix[i+2]	=	uint8(c1.G	>>	8)

			197	 	 p.Pix[i+3]	=	uint8(c1.G)

			198	 	 p.Pix[i+4]	=	uint8(c1.B	>>	8)

			199	 	 p.Pix[i+5]	=	uint8(c1.B)

			200	 	 p.Pix[i+6]	=	uint8(c1.A	>>	8)

			201	 	 p.Pix[i+7]	=	uint8(c1.A)

			202	 }

			203	

			204	 func	(p	*RGBA64)	SetRGBA64(x,	y	int,	c	color.RGBA64)	{

			205	 	 if	!(Point{x,	y}.In(p.Rect))	{

			206	 	 	 return

			207	 	 }

			208	 	 i	:=	p.PixOffset(x,	y)

			209	 	 p.Pix[i+0]	=	uint8(c.R	>>	8)

			210	 	 p.Pix[i+1]	=	uint8(c.R)

			211	 	 p.Pix[i+2]	=	uint8(c.G	>>	8)

			212	 	 p.Pix[i+3]	=	uint8(c.G)

			213	 	 p.Pix[i+4]	=	uint8(c.B	>>	8)

			214	 	 p.Pix[i+5]	=	uint8(c.B)

			215	 	 p.Pix[i+6]	=	uint8(c.A	>>	8)

			216	 	 p.Pix[i+7]	=	uint8(c.A)

			217	 }

			218	

			219	 //	SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible

			220	 //	through	r.	The	returned	value	shares	pixels	with	the	original	image.

			221	 func	(p	*RGBA64)	SubImage(r	Rectangle)	Image	{

			222	 	 r	=	r.Intersect(p.Rect)

			223	 	 //	If	r1	and	r2	are	Rectangles,	r1.Intersect(r2)	is	not	guaranteed	to	be	inside

			224	 	 //	either	r1	or	r2	if	the	intersection	is	empty.	Without	explicitly	checking	for

			225	 	 //	this,	the	Pix[i:]	expression	below	can	panic.

			226	 	 if	r.Empty()	{

			227	 	 	 return	&RGBA64{}

			228	 	 }

			229	 	 i	:=	p.PixOffset(r.Min.X,	r.Min.Y)

			230	 	 return	&RGBA64{

			231	 	 	 Pix:				p.Pix[i:],

			232	 	 	 Stride:	p.Stride,

			233	 	 	 Rect:			r,

			234	 	 }

			235	 }

			236	

			237	 //	Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

			238	 func	(p	*RGBA64)	Opaque()	bool	{

			239	 	 if	p.Rect.Empty()	{

			240	 	 	 return	true

			241	 	 }

			242	 	 i0,	i1	:=	6,	p.Rect.Dx()*8

			243	 	 for	y	:=	p.Rect.Min.Y;	y	<	p.Rect.Max.Y;	y++	{

			244	 	 	 for	i	:=	i0;	i	<	i1;	i	+=	8	{

			245	 	 	 	 if	p.Pix[i+0]	!=	0xff	||	p.Pix[i+1]	!=	0xff	{

			246	 	 	 	 	 return	false

			247	 	 	 	 }

			248	 	 	 }

			249	 	 	 i0	+=	p.Stride

			250	 	 	 i1	+=	p.Stride

			251	 	 }

			252	 	 return	true

			253	 }

			254	

			255	 //	NewRGBA64	returns	a	new	RGBA64	with	the	given	bounds.

			256	 func	NewRGBA64(r	Rectangle)	*RGBA64	{

			257	 	 w,	h	:=	r.Dx(),	r.Dy()

			258	 	 pix	:=	make([]uint8,	8*w*h)

			259	 	 return	&RGBA64{pix,	8	*	w,	r}

			260	 }

			261	

			262	 //	NRGBA	is	an	in-memory	image	whose	At	method	returns	color.NRGBA	values.

			263	 type	NRGBA	struct	{

			264	 	 //	Pix	holds	the	image's	pixels,	in	R,	G,	B,	A	order.	The	pixel	at

			265	 	 //	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*4].

			266	 	 Pix	[]uint8

			267	 	 //	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

			268	 	 Stride	int

			269	 	 //	Rect	is	the	image's	bounds.

			270	 	 Rect	Rectangle

			271	 }

			272	

			273	 func	(p	*NRGBA)	ColorModel()	color.Model	{	return	color.NRGBAModel	}

			274	

			275	 func	(p	*NRGBA)	Bounds()	Rectangle	{	return	p.Rect	}

			276	

			277	 func	(p	*NRGBA)	At(x,	y	int)	color.Color	{

			278	 	 if	!(Point{x,	y}.In(p.Rect))	{

			279	 	 	 return	color.NRGBA{}

			280	 	 }

			281	 	 i	:=	p.PixOffset(x,	y)

			282	 	 return	color.NRGBA{p.Pix[i+0],	p.Pix[i+1],	p.Pix[i+2],	p.Pix[i+3]}

			283	 }

			284	

			285	 //	PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to

			286	 //	the	pixel	at	(x,	y).

			287	 func	(p	*NRGBA)	PixOffset(x,	y	int)	int	{

			288	 	 return	(y-p.Rect.Min.Y)*p.Stride	+	(x-p.Rect.Min.X)*4

			289	 }

			290	

			291	 func	(p	*NRGBA)	Set(x,	y	int,	c	color.Color)	{

			292	 	 if	!(Point{x,	y}.In(p.Rect))	{

			293	 	 	 return

			294	 	 }

			295	 	 i	:=	p.PixOffset(x,	y)

			296	 	 c1	:=	color.NRGBAModel.Convert(c).(color.NRGBA)

			297	 	 p.Pix[i+0]	=	c1.R

			298	 	 p.Pix[i+1]	=	c1.G

			299	 	 p.Pix[i+2]	=	c1.B

			300	 	 p.Pix[i+3]	=	c1.A

			301	 }

			302	

			303	 func	(p	*NRGBA)	SetNRGBA(x,	y	int,	c	color.NRGBA)	{

			304	 	 if	!(Point{x,	y}.In(p.Rect))	{

			305	 	 	 return

			306	 	 }

			307	 	 i	:=	p.PixOffset(x,	y)

			308	 	 p.Pix[i+0]	=	c.R

			309	 	 p.Pix[i+1]	=	c.G

			310	 	 p.Pix[i+2]	=	c.B

			311	 	 p.Pix[i+3]	=	c.A

			312	 }

			313	

			314	 //	SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible

			315	 //	through	r.	The	returned	value	shares	pixels	with	the	original	image.

			316	 func	(p	*NRGBA)	SubImage(r	Rectangle)	Image	{

			317	 	 r	=	r.Intersect(p.Rect)

			318	 	 //	If	r1	and	r2	are	Rectangles,	r1.Intersect(r2)	is	not	guaranteed	to	be	inside

			319	 	 //	either	r1	or	r2	if	the	intersection	is	empty.	Without	explicitly	checking	for

			320	 	 //	this,	the	Pix[i:]	expression	below	can	panic.

			321	 	 if	r.Empty()	{

			322	 	 	 return	&NRGBA{}

			323	 	 }

			324	 	 i	:=	p.PixOffset(r.Min.X,	r.Min.Y)

			325	 	 return	&NRGBA{

			326	 	 	 Pix:				p.Pix[i:],

			327	 	 	 Stride:	p.Stride,

			328	 	 	 Rect:			r,

			329	 	 }

			330	 }

			331	

			332	 //	Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

			333	 func	(p	*NRGBA)	Opaque()	bool	{

			334	 	 if	p.Rect.Empty()	{

			335	 	 	 return	true

			336	 	 }

			337	 	 i0,	i1	:=	3,	p.Rect.Dx()*4

			338	 	 for	y	:=	p.Rect.Min.Y;	y	<	p.Rect.Max.Y;	y++	{

			339	 	 	 for	i	:=	i0;	i	<	i1;	i	+=	4	{

			340	 	 	 	 if	p.Pix[i]	!=	0xff	{

			341	 	 	 	 	 return	false

			342	 	 	 	 }

			343	 	 	 }

			344	 	 	 i0	+=	p.Stride

			345	 	 	 i1	+=	p.Stride

			346	 	 }

			347	 	 return	true

			348	 }

			349	

			350	 //	NewNRGBA	returns	a	new	NRGBA	with	the	given	bounds.

			351	 func	NewNRGBA(r	Rectangle)	*NRGBA	{

			352	 	 w,	h	:=	r.Dx(),	r.Dy()

			353	 	 pix	:=	make([]uint8,	4*w*h)

			354	 	 return	&NRGBA{pix,	4	*	w,	r}

			355	 }

			356	

			357	 //	NRGBA64	is	an	in-memory	image	whose	At	method	returns	color.NRGBA64	values.

			358	 type	NRGBA64	struct	{

			359	 	 //	Pix	holds	the	image's	pixels,	in	R,	G,	B,	A	order	and	big-endian	format.	The	pixel	at

			360	 	 //	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*8].

			361	 	 Pix	[]uint8

			362	 	 //	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

			363	 	 Stride	int

			364	 	 //	Rect	is	the	image's	bounds.

			365	 	 Rect	Rectangle

			366	 }

			367	

			368	 func	(p	*NRGBA64)	ColorModel()	color.Model	{	return	color.NRGBA64Model	}

			369	

			370	 func	(p	*NRGBA64)	Bounds()	Rectangle	{	return	p.Rect	}

			371	

			372	 func	(p	*NRGBA64)	At(x,	y	int)	color.Color	{

			373	 	 if	!(Point{x,	y}.In(p.Rect))	{

			374	 	 	 return	color.NRGBA64{}

			375	 	 }

			376	 	 i	:=	p.PixOffset(x,	y)

			377	 	 return	color.NRGBA64{

			378	 	 	 uint16(p.Pix[i+0])<<8	|	uint16(p.Pix[i+1]),

			379	 	 	 uint16(p.Pix[i+2])<<8	|	uint16(p.Pix[i+3]),

			380	 	 	 uint16(p.Pix[i+4])<<8	|	uint16(p.Pix[i+5]),

			381	 	 	 uint16(p.Pix[i+6])<<8	|	uint16(p.Pix[i+7]),

			382	 	 }

			383	 }

			384	

			385	 //	PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to

			386	 //	the	pixel	at	(x,	y).

			387	 func	(p	*NRGBA64)	PixOffset(x,	y	int)	int	{

			388	 	 return	(y-p.Rect.Min.Y)*p.Stride	+	(x-p.Rect.Min.X)*8

			389	 }

			390	

			391	 func	(p	*NRGBA64)	Set(x,	y	int,	c	color.Color)	{

			392	 	 if	!(Point{x,	y}.In(p.Rect))	{

			393	 	 	 return

			394	 	 }

			395	 	 i	:=	p.PixOffset(x,	y)

			396	 	 c1	:=	color.NRGBA64Model.Convert(c).(color.NRGBA64)

			397	 	 p.Pix[i+0]	=	uint8(c1.R	>>	8)

			398	 	 p.Pix[i+1]	=	uint8(c1.R)

			399	 	 p.Pix[i+2]	=	uint8(c1.G	>>	8)

			400	 	 p.Pix[i+3]	=	uint8(c1.G)

			401	 	 p.Pix[i+4]	=	uint8(c1.B	>>	8)

			402	 	 p.Pix[i+5]	=	uint8(c1.B)

			403	 	 p.Pix[i+6]	=	uint8(c1.A	>>	8)

			404	 	 p.Pix[i+7]	=	uint8(c1.A)

			405	 }

			406	

			407	 func	(p	*NRGBA64)	SetNRGBA64(x,	y	int,	c	color.NRGBA64)	{

			408	 	 if	!(Point{x,	y}.In(p.Rect))	{

			409	 	 	 return

			410	 	 }

			411	 	 i	:=	p.PixOffset(x,	y)

			412	 	 p.Pix[i+0]	=	uint8(c.R	>>	8)

			413	 	 p.Pix[i+1]	=	uint8(c.R)

			414	 	 p.Pix[i+2]	=	uint8(c.G	>>	8)

			415	 	 p.Pix[i+3]	=	uint8(c.G)

			416	 	 p.Pix[i+4]	=	uint8(c.B	>>	8)

			417	 	 p.Pix[i+5]	=	uint8(c.B)

			418	 	 p.Pix[i+6]	=	uint8(c.A	>>	8)

			419	 	 p.Pix[i+7]	=	uint8(c.A)

			420	 }

			421	

			422	 //	SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible

			423	 //	through	r.	The	returned	value	shares	pixels	with	the	original	image.

			424	 func	(p	*NRGBA64)	SubImage(r	Rectangle)	Image	{

			425	 	 r	=	r.Intersect(p.Rect)

			426	 	 //	If	r1	and	r2	are	Rectangles,	r1.Intersect(r2)	is	not	guaranteed	to	be	inside

			427	 	 //	either	r1	or	r2	if	the	intersection	is	empty.	Without	explicitly	checking	for

			428	 	 //	this,	the	Pix[i:]	expression	below	can	panic.

			429	 	 if	r.Empty()	{

			430	 	 	 return	&NRGBA64{}

			431	 	 }

			432	 	 i	:=	p.PixOffset(r.Min.X,	r.Min.Y)

			433	 	 return	&NRGBA64{

			434	 	 	 Pix:				p.Pix[i:],

			435	 	 	 Stride:	p.Stride,

			436	 	 	 Rect:			r,

			437	 	 }

			438	 }

			439	

			440	 //	Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

			441	 func	(p	*NRGBA64)	Opaque()	bool	{

			442	 	 if	p.Rect.Empty()	{

			443	 	 	 return	true

			444	 	 }

			445	 	 i0,	i1	:=	6,	p.Rect.Dx()*8

			446	 	 for	y	:=	p.Rect.Min.Y;	y	<	p.Rect.Max.Y;	y++	{

			447	 	 	 for	i	:=	i0;	i	<	i1;	i	+=	8	{

			448	 	 	 	 if	p.Pix[i+0]	!=	0xff	||	p.Pix[i+1]	!=	0xff	{

			449	 	 	 	 	 return	false

			450	 	 	 	 }

			451	 	 	 }

			452	 	 	 i0	+=	p.Stride

			453	 	 	 i1	+=	p.Stride

			454	 	 }

			455	 	 return	true

			456	 }

			457	

			458	 //	NewNRGBA64	returns	a	new	NRGBA64	with	the	given	bounds.

			459	 func	NewNRGBA64(r	Rectangle)	*NRGBA64	{

			460	 	 w,	h	:=	r.Dx(),	r.Dy()

			461	 	 pix	:=	make([]uint8,	8*w*h)

			462	 	 return	&NRGBA64{pix,	8	*	w,	r}

			463	 }

			464	

			465	 //	Alpha	is	an	in-memory	image	whose	At	method	returns	color.Alpha	values.

			466	 type	Alpha	struct	{

			467	 	 //	Pix	holds	the	image's	pixels,	as	alpha	values.	The	pixel	at

			468	 	 //	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*1].

			469	 	 Pix	[]uint8

			470	 	 //	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

			471	 	 Stride	int

			472	 	 //	Rect	is	the	image's	bounds.

			473	 	 Rect	Rectangle

			474	 }

			475	

			476	 func	(p	*Alpha)	ColorModel()	color.Model	{	return	color.AlphaModel	}

			477	

			478	 func	(p	*Alpha)	Bounds()	Rectangle	{	return	p.Rect	}

			479	

			480	 func	(p	*Alpha)	At(x,	y	int)	color.Color	{

			481	 	 if	!(Point{x,	y}.In(p.Rect))	{

			482	 	 	 return	color.Alpha{}

			483	 	 }

			484	 	 i	:=	p.PixOffset(x,	y)

			485	 	 return	color.Alpha{p.Pix[i]}

			486	 }

			487	

			488	 //	PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to

			489	 //	the	pixel	at	(x,	y).

			490	 func	(p	*Alpha)	PixOffset(x,	y	int)	int	{

			491	 	 return	(y-p.Rect.Min.Y)*p.Stride	+	(x-p.Rect.Min.X)*1

			492	 }

			493	

			494	 func	(p	*Alpha)	Set(x,	y	int,	c	color.Color)	{

			495	 	 if	!(Point{x,	y}.In(p.Rect))	{

			496	 	 	 return

			497	 	 }

			498	 	 i	:=	p.PixOffset(x,	y)

			499	 	 p.Pix[i]	=	color.AlphaModel.Convert(c).(color.Alpha).A

			500	 }

			501	

			502	 func	(p	*Alpha)	SetAlpha(x,	y	int,	c	color.Alpha)	{

			503	 	 if	!(Point{x,	y}.In(p.Rect))	{

			504	 	 	 return

			505	 	 }

			506	 	 i	:=	p.PixOffset(x,	y)

			507	 	 p.Pix[i]	=	c.A

			508	 }

			509	

			510	 //	SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible

			511	 //	through	r.	The	returned	value	shares	pixels	with	the	original	image.

			512	 func	(p	*Alpha)	SubImage(r	Rectangle)	Image	{

			513	 	 r	=	r.Intersect(p.Rect)

			514	 	 //	If	r1	and	r2	are	Rectangles,	r1.Intersect(r2)	is	not	guaranteed	to	be	inside

			515	 	 //	either	r1	or	r2	if	the	intersection	is	empty.	Without	explicitly	checking	for

			516	 	 //	this,	the	Pix[i:]	expression	below	can	panic.

			517	 	 if	r.Empty()	{

			518	 	 	 return	&Alpha{}

			519	 	 }

			520	 	 i	:=	p.PixOffset(r.Min.X,	r.Min.Y)

			521	 	 return	&Alpha{

			522	 	 	 Pix:				p.Pix[i:],

			523	 	 	 Stride:	p.Stride,

			524	 	 	 Rect:			r,

			525	 	 }

			526	 }

			527	

			528	 //	Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

			529	 func	(p	*Alpha)	Opaque()	bool	{

			530	 	 if	p.Rect.Empty()	{

			531	 	 	 return	true

			532	 	 }

			533	 	 i0,	i1	:=	0,	p.Rect.Dx()

			534	 	 for	y	:=	p.Rect.Min.Y;	y	<	p.Rect.Max.Y;	y++	{

			535	 	 	 for	i	:=	i0;	i	<	i1;	i++	{

			536	 	 	 	 if	p.Pix[i]	!=	0xff	{

			537	 	 	 	 	 return	false

			538	 	 	 	 }

			539	 	 	 }

			540	 	 	 i0	+=	p.Stride

			541	 	 	 i1	+=	p.Stride

			542	 	 }

			543	 	 return	true

			544	 }

			545	

			546	 //	NewAlpha	returns	a	new	Alpha	with	the	given	bounds.

			547	 func	NewAlpha(r	Rectangle)	*Alpha	{

			548	 	 w,	h	:=	r.Dx(),	r.Dy()

			549	 	 pix	:=	make([]uint8,	1*w*h)

			550	 	 return	&Alpha{pix,	1	*	w,	r}

			551	 }

			552	

			553	 //	Alpha16	is	an	in-memory	image	whose	At	method	returns	color.Alpha64	values.

			554	 type	Alpha16	struct	{

			555	 	 //	Pix	holds	the	image's	pixels,	as	alpha	values	in	big-endian	format.	The	pixel	at

			556	 	 //	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*2].

			557	 	 Pix	[]uint8

			558	 	 //	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

			559	 	 Stride	int

			560	 	 //	Rect	is	the	image's	bounds.

			561	 	 Rect	Rectangle

			562	 }

			563	

			564	 func	(p	*Alpha16)	ColorModel()	color.Model	{	return	color.Alpha16Model	}

			565	

			566	 func	(p	*Alpha16)	Bounds()	Rectangle	{	return	p.Rect	}

			567	

			568	 func	(p	*Alpha16)	At(x,	y	int)	color.Color	{

			569	 	 if	!(Point{x,	y}.In(p.Rect))	{

			570	 	 	 return	color.Alpha16{}

			571	 	 }

			572	 	 i	:=	p.PixOffset(x,	y)

			573	 	 return	color.Alpha16{uint16(p.Pix[i+0])<<8	|	uint16(p.Pix[i+1])}

			574	 }

			575	

			576	 //	PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to

			577	 //	the	pixel	at	(x,	y).

			578	 func	(p	*Alpha16)	PixOffset(x,	y	int)	int	{

			579	 	 return	(y-p.Rect.Min.Y)*p.Stride	+	(x-p.Rect.Min.X)*2

			580	 }

			581	

			582	 func	(p	*Alpha16)	Set(x,	y	int,	c	color.Color)	{

			583	 	 if	!(Point{x,	y}.In(p.Rect))	{

			584	 	 	 return

			585	 	 }

			586	 	 i	:=	p.PixOffset(x,	y)

			587	 	 c1	:=	color.Alpha16Model.Convert(c).(color.Alpha16)

			588	 	 p.Pix[i+0]	=	uint8(c1.A	>>	8)

			589	 	 p.Pix[i+1]	=	uint8(c1.A)

			590	 }

			591	

			592	 func	(p	*Alpha16)	SetAlpha16(x,	y	int,	c	color.Alpha16)	{

			593	 	 if	!(Point{x,	y}.In(p.Rect))	{

			594	 	 	 return

			595	 	 }

			596	 	 i	:=	p.PixOffset(x,	y)

			597	 	 p.Pix[i+0]	=	uint8(c.A	>>	8)

			598	 	 p.Pix[i+1]	=	uint8(c.A)

			599	 }

			600	

			601	 //	SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible

			602	 //	through	r.	The	returned	value	shares	pixels	with	the	original	image.

			603	 func	(p	*Alpha16)	SubImage(r	Rectangle)	Image	{

			604	 	 r	=	r.Intersect(p.Rect)

			605	 	 //	If	r1	and	r2	are	Rectangles,	r1.Intersect(r2)	is	not	guaranteed	to	be	inside

			606	 	 //	either	r1	or	r2	if	the	intersection	is	empty.	Without	explicitly	checking	for

			607	 	 //	this,	the	Pix[i:]	expression	below	can	panic.

			608	 	 if	r.Empty()	{

			609	 	 	 return	&Alpha16{}

			610	 	 }

			611	 	 i	:=	p.PixOffset(r.Min.X,	r.Min.Y)

			612	 	 return	&Alpha16{

			613	 	 	 Pix:				p.Pix[i:],

			614	 	 	 Stride:	p.Stride,

			615	 	 	 Rect:			r,

			616	 	 }

			617	 }

			618	

			619	 //	Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

			620	 func	(p	*Alpha16)	Opaque()	bool	{

			621	 	 if	p.Rect.Empty()	{

			622	 	 	 return	true

			623	 	 }

			624	 	 i0,	i1	:=	0,	p.Rect.Dx()*2

			625	 	 for	y	:=	p.Rect.Min.Y;	y	<	p.Rect.Max.Y;	y++	{

			626	 	 	 for	i	:=	i0;	i	<	i1;	i	+=	2	{

			627	 	 	 	 if	p.Pix[i+0]	!=	0xff	||	p.Pix[i+1]	!=	0xff	{

			628	 	 	 	 	 return	false

			629	 	 	 	 }

			630	 	 	 }

			631	 	 	 i0	+=	p.Stride

			632	 	 	 i1	+=	p.Stride

			633	 	 }

			634	 	 return	true

			635	 }

			636	

			637	 //	NewAlpha16	returns	a	new	Alpha16	with	the	given	bounds.

			638	 func	NewAlpha16(r	Rectangle)	*Alpha16	{

			639	 	 w,	h	:=	r.Dx(),	r.Dy()

			640	 	 pix	:=	make([]uint8,	2*w*h)

			641	 	 return	&Alpha16{pix,	2	*	w,	r}

			642	 }

			643	

			644	 //	Gray	is	an	in-memory	image	whose	At	method	returns	color.Gray	values.

			645	 type	Gray	struct	{

			646	 	 //	Pix	holds	the	image's	pixels,	as	gray	values.	The	pixel	at

			647	 	 //	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*1].

			648	 	 Pix	[]uint8

			649	 	 //	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

			650	 	 Stride	int

			651	 	 //	Rect	is	the	image's	bounds.

			652	 	 Rect	Rectangle

			653	 }

			654	

			655	 func	(p	*Gray)	ColorModel()	color.Model	{	return	color.GrayModel	}

			656	

			657	 func	(p	*Gray)	Bounds()	Rectangle	{	return	p.Rect	}

			658	

			659	 func	(p	*Gray)	At(x,	y	int)	color.Color	{

			660	 	 if	!(Point{x,	y}.In(p.Rect))	{

			661	 	 	 return	color.Gray{}

			662	 	 }

			663	 	 i	:=	p.PixOffset(x,	y)

			664	 	 return	color.Gray{p.Pix[i]}

			665	 }

			666	

			667	 //	PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to

			668	 //	the	pixel	at	(x,	y).

			669	 func	(p	*Gray)	PixOffset(x,	y	int)	int	{

			670	 	 return	(y-p.Rect.Min.Y)*p.Stride	+	(x-p.Rect.Min.X)*1

			671	 }

			672	

			673	 func	(p	*Gray)	Set(x,	y	int,	c	color.Color)	{

			674	 	 if	!(Point{x,	y}.In(p.Rect))	{

			675	 	 	 return

			676	 	 }

			677	 	 i	:=	p.PixOffset(x,	y)

			678	 	 p.Pix[i]	=	color.GrayModel.Convert(c).(color.Gray).Y

			679	 }

			680	

			681	 func	(p	*Gray)	SetGray(x,	y	int,	c	color.Gray)	{

			682	 	 if	!(Point{x,	y}.In(p.Rect))	{

			683	 	 	 return

			684	 	 }

			685	 	 i	:=	p.PixOffset(x,	y)

			686	 	 p.Pix[i]	=	c.Y

			687	 }

			688	

			689	 //	SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible

			690	 //	through	r.	The	returned	value	shares	pixels	with	the	original	image.

			691	 func	(p	*Gray)	SubImage(r	Rectangle)	Image	{

			692	 	 r	=	r.Intersect(p.Rect)

			693	 	 //	If	r1	and	r2	are	Rectangles,	r1.Intersect(r2)	is	not	guaranteed	to	be	inside

			694	 	 //	either	r1	or	r2	if	the	intersection	is	empty.	Without	explicitly	checking	for

			695	 	 //	this,	the	Pix[i:]	expression	below	can	panic.

			696	 	 if	r.Empty()	{

			697	 	 	 return	&Gray{}

			698	 	 }

			699	 	 i	:=	p.PixOffset(r.Min.X,	r.Min.Y)

			700	 	 return	&Gray{

			701	 	 	 Pix:				p.Pix[i:],

			702	 	 	 Stride:	p.Stride,

			703	 	 	 Rect:			r,

			704	 	 }

			705	 }

			706	

			707	 //	Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

			708	 func	(p	*Gray)	Opaque()	bool	{

			709	 	 return	true

			710	 }

			711	

			712	 //	NewGray	returns	a	new	Gray	with	the	given	bounds.

			713	 func	NewGray(r	Rectangle)	*Gray	{

			714	 	 w,	h	:=	r.Dx(),	r.Dy()

			715	 	 pix	:=	make([]uint8,	1*w*h)

			716	 	 return	&Gray{pix,	1	*	w,	r}

			717	 }

			718	

			719	 //	Gray16	is	an	in-memory	image	whose	At	method	returns	color.Gray16	values.

			720	 type	Gray16	struct	{

			721	 	 //	Pix	holds	the	image's	pixels,	as	gray	values	in	big-endian	format.	The	pixel	at

			722	 	 //	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*2].

			723	 	 Pix	[]uint8

			724	 	 //	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

			725	 	 Stride	int

			726	 	 //	Rect	is	the	image's	bounds.

			727	 	 Rect	Rectangle

			728	 }

			729	

			730	 func	(p	*Gray16)	ColorModel()	color.Model	{	return	color.Gray16Model	}

			731	

			732	 func	(p	*Gray16)	Bounds()	Rectangle	{	return	p.Rect	}

			733	

			734	 func	(p	*Gray16)	At(x,	y	int)	color.Color	{

			735	 	 if	!(Point{x,	y}.In(p.Rect))	{

			736	 	 	 return	color.Gray16{}

			737	 	 }

			738	 	 i	:=	p.PixOffset(x,	y)

			739	 	 return	color.Gray16{uint16(p.Pix[i+0])<<8	|	uint16(p.Pix[i+1])}

			740	 }

			741	

			742	 //	PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to

			743	 //	the	pixel	at	(x,	y).

			744	 func	(p	*Gray16)	PixOffset(x,	y	int)	int	{

			745	 	 return	(y-p.Rect.Min.Y)*p.Stride	+	(x-p.Rect.Min.X)*2

			746	 }

			747	

			748	 func	(p	*Gray16)	Set(x,	y	int,	c	color.Color)	{

			749	 	 if	!(Point{x,	y}.In(p.Rect))	{

			750	 	 	 return

			751	 	 }

			752	 	 i	:=	p.PixOffset(x,	y)

			753	 	 c1	:=	color.Gray16Model.Convert(c).(color.Gray16)

			754	 	 p.Pix[i+0]	=	uint8(c1.Y	>>	8)

			755	 	 p.Pix[i+1]	=	uint8(c1.Y)

			756	 }

			757	

			758	 func	(p	*Gray16)	SetGray16(x,	y	int,	c	color.Gray16)	{

			759	 	 if	!(Point{x,	y}.In(p.Rect))	{

			760	 	 	 return

			761	 	 }

			762	 	 i	:=	p.PixOffset(x,	y)

			763	 	 p.Pix[i+0]	=	uint8(c.Y	>>	8)

			764	 	 p.Pix[i+1]	=	uint8(c.Y)

			765	 }

			766	

			767	 //	SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible

			768	 //	through	r.	The	returned	value	shares	pixels	with	the	original	image.

			769	 func	(p	*Gray16)	SubImage(r	Rectangle)	Image	{

			770	 	 r	=	r.Intersect(p.Rect)

			771	 	 //	If	r1	and	r2	are	Rectangles,	r1.Intersect(r2)	is	not	guaranteed	to	be	inside

			772	 	 //	either	r1	or	r2	if	the	intersection	is	empty.	Without	explicitly	checking	for

			773	 	 //	this,	the	Pix[i:]	expression	below	can	panic.

			774	 	 if	r.Empty()	{

			775	 	 	 return	&Gray16{}

			776	 	 }

			777	 	 i	:=	p.PixOffset(r.Min.X,	r.Min.Y)

			778	 	 return	&Gray16{

			779	 	 	 Pix:				p.Pix[i:],

			780	 	 	 Stride:	p.Stride,

			781	 	 	 Rect:			r,

			782	 	 }

			783	 }

			784	

			785	 //	Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

			786	 func	(p	*Gray16)	Opaque()	bool	{

			787	 	 return	true

			788	 }

			789	

			790	 //	NewGray16	returns	a	new	Gray16	with	the	given	bounds.

			791	 func	NewGray16(r	Rectangle)	*Gray16	{

			792	 	 w,	h	:=	r.Dx(),	r.Dy()

			793	 	 pix	:=	make([]uint8,	2*w*h)

			794	 	 return	&Gray16{pix,	2	*	w,	r}

			795	 }

			796	

			797	 //	Paletted	is	an	in-memory	image	of	uint8	indices	into	a	given	palette.

			798	 type	Paletted	struct	{

			799	 	 //	Pix	holds	the	image's	pixels,	as	palette	indices.	The	pixel	at

			800	 	 //	(x,	y)	starts	at	Pix[(y-Rect.Min.Y)*Stride	+	(x-Rect.Min.X)*1].

			801	 	 Pix	[]uint8

			802	 	 //	Stride	is	the	Pix	stride	(in	bytes)	between	vertically	adjacent	pixels.

			803	 	 Stride	int

			804	 	 //	Rect	is	the	image's	bounds.

			805	 	 Rect	Rectangle

			806	 	 //	Palette	is	the	image's	palette.

			807	 	 Palette	color.Palette

			808	 }

			809	

			810	 func	(p	*Paletted)	ColorModel()	color.Model	{	return	p.Palette	}

			811	

			812	 func	(p	*Paletted)	Bounds()	Rectangle	{	return	p.Rect	}

			813	

			814	 func	(p	*Paletted)	At(x,	y	int)	color.Color	{

			815	 	 if	len(p.Palette)	==	0	{

			816	 	 	 return	nil

			817	 	 }

			818	 	 if	!(Point{x,	y}.In(p.Rect))	{

			819	 	 	 return	p.Palette[0]

			820	 	 }

			821	 	 i	:=	p.PixOffset(x,	y)

			822	 	 return	p.Palette[p.Pix[i]]

			823	 }

			824	

			825	 //	PixOffset	returns	the	index	of	the	first	element	of	Pix	that	corresponds	to

			826	 //	the	pixel	at	(x,	y).

			827	 func	(p	*Paletted)	PixOffset(x,	y	int)	int	{

			828	 	 return	(y-p.Rect.Min.Y)*p.Stride	+	(x-p.Rect.Min.X)*1

			829	 }

			830	

			831	 func	(p	*Paletted)	Set(x,	y	int,	c	color.Color)	{

			832	 	 if	!(Point{x,	y}.In(p.Rect))	{

			833	 	 	 return

			834	 	 }

			835	 	 i	:=	p.PixOffset(x,	y)

			836	 	 p.Pix[i]	=	uint8(p.Palette.Index(c))

			837	 }

			838	

			839	 func	(p	*Paletted)	ColorIndexAt(x,	y	int)	uint8	{

			840	 	 if	!(Point{x,	y}.In(p.Rect))	{

			841	 	 	 return	0

			842	 	 }

			843	 	 i	:=	p.PixOffset(x,	y)

			844	 	 return	p.Pix[i]

			845	 }

			846	

			847	 func	(p	*Paletted)	SetColorIndex(x,	y	int,	index	uint8)	{

			848	 	 if	!(Point{x,	y}.In(p.Rect))	{

			849	 	 	 return

			850	 	 }

			851	 	 i	:=	p.PixOffset(x,	y)

			852	 	 p.Pix[i]	=	index

			853	 }

			854	

			855	 //	SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible

			856	 //	through	r.	The	returned	value	shares	pixels	with	the	original	image.

			857	 func	(p	*Paletted)	SubImage(r	Rectangle)	Image	{

			858	 	 r	=	r.Intersect(p.Rect)

			859	 	 //	If	r1	and	r2	are	Rectangles,	r1.Intersect(r2)	is	not	guaranteed	to	be	inside

			860	 	 //	either	r1	or	r2	if	the	intersection	is	empty.	Without	explicitly	checking	for

			861	 	 //	this,	the	Pix[i:]	expression	below	can	panic.

			862	 	 if	r.Empty()	{

			863	 	 	 return	&Paletted{

			864	 	 	 	 Palette:	p.Palette,

			865	 	 	 }

			866	 	 }

			867	 	 i	:=	p.PixOffset(r.Min.X,	r.Min.Y)

			868	 	 return	&Paletted{

			869	 	 	 Pix:					p.Pix[i:],

			870	 	 	 Stride:		p.Stride,

			871	 	 	 Rect:				p.Rect.Intersect(r),

			872	 	 	 Palette:	p.Palette,

			873	 	 }

			874	 }

			875	

			876	 //	Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

			877	 func	(p	*Paletted)	Opaque()	bool	{

			878	 	 var	present	[256]bool

			879	 	 i0,	i1	:=	0,	p.Rect.Dx()

			880	 	 for	y	:=	p.Rect.Min.Y;	y	<	p.Rect.Max.Y;	y++	{

			881	 	 	 for	_,	c	:=	range	p.Pix[i0:i1]	{

			882	 	 	 	 present[c]	=	true

			883	 	 	 }

			884	 	 	 i0	+=	p.Stride

			885	 	 	 i1	+=	p.Stride

			886	 	 }

			887	 	 for	i,	c	:=	range	p.Palette	{

			888	 	 	 if	!present[i]	{

			889	 	 	 	 continue

			890	 	 	 }

			891	 	 	 _,	_,	_,	a	:=	c.RGBA()

			892	 	 	 if	a	!=	0xffff	{

			893	 	 	 	 return	false

			894	 	 	 }

			895	 	 }

			896	 	 return	true

			897	 }

			898	

			899	 //	NewPaletted	returns	a	new	Paletted	with	the	given	width,	height	and	palette.

			900	 func	NewPaletted(r	Rectangle,	p	color.Palette)	*Paletted	{

			901	 	 w,	h	:=	r.Dx(),	r.Dy()

			902	 	 pix	:=	make([]uint8,	1*w*h)

			903	 	 return	&Paletted{pix,	1	*	w,	r,	p}

			904	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/image/names.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	image

					6	

					7	 import	(

					8	 	 "image/color"

					9)

				10	

				11	 var	(

				12	 	 //	Black	is	an	opaque	black	uniform	image.

				13	 	 Black	=	NewUniform(color.Black)

				14	 	 //	White	is	an	opaque	white	uniform	image.

				15	 	 White	=	NewUniform(color.White)

				16	 	 //	Transparent	is	a	fully	transparent	uniform	image.

				17	 	 Transparent	=	NewUniform(color.Transparent)

				18	 	 //	Opaque	is	a	fully	opaque	uniform	image.

				19	 	 Opaque	=	NewUniform(color.Opaque)

				20)

				21	

				22	 //	Uniform	is	an	infinite-sized	Image	of	uniform	color.

				23	 //	It	implements	the	color.Color,	color.ColorModel,	and	Image	interfaces.

				24	 type	Uniform	struct	{

				25	 	 C	color.Color

				26	 }

				27	

				28	 func	(c	*Uniform)	RGBA()	(r,	g,	b,	a	uint32)	{

				29	 	 return	c.C.RGBA()

				30	 }

				31	

				32	 func	(c	*Uniform)	ColorModel()	color.Model	{

				33	 	 return	c

				34	 }

				35	

				36	 func	(c	*Uniform)	Convert(color.Color)	color.Color	{

				37	 	 return	c.C

				38	 }

				39	

				40	 func	(c	*Uniform)	Bounds()	Rectangle	{	return	Rectangle{Point{-1e9,	-1e9},	Point{1e9,	1e9}}	}

				41	

				42	 func	(c	*Uniform)	At(x,	y	int)	color.Color	{	return	c.C	}

				43	

				44	 //	Opaque	scans	the	entire	image	and	returns	whether	or	not	it	is	fully	opaque.

				45	 func	(c	*Uniform)	Opaque()	bool	{

				46	 	 _,	_,	_,	a	:=	c.C.RGBA()

				47	 	 return	a	==	0xffff

				48	 }

				49	

				50	 func	NewUniform(c	color.Color)	*Uniform	{

				51	 	 return	&Uniform{c}

				52	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/image/ycbcr.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	image

					6	

					7	 import	(

					8	 	 "image/color"

					9)

				10	

				11	 //	YCbCrSubsampleRatio	is	the	chroma	subsample	ratio	used	in	a	YCbCr	image.

				12	 type	YCbCrSubsampleRatio	int

				13	

				14	 const	(

				15	 	 YCbCrSubsampleRatio444	YCbCrSubsampleRatio	=	iota

				16	 	 YCbCrSubsampleRatio422

				17	 	 YCbCrSubsampleRatio420

				18)

				19	

				20	 func	(s	YCbCrSubsampleRatio)	String()	string	{

				21	 	 switch	s	{

				22	 	 case	YCbCrSubsampleRatio444:

				23	 	 	 return	"YCbCrSubsampleRatio444"

				24	 	 case	YCbCrSubsampleRatio422:

				25	 	 	 return	"YCbCrSubsampleRatio422"

				26	 	 case	YCbCrSubsampleRatio420:

				27	 	 	 return	"YCbCrSubsampleRatio420"

				28	 	 }

				29	 	 return	"YCbCrSubsampleRatioUnknown"

				30	 }

				31	

				32	 //	YCbCr	is	an	in-memory	image	of	Y'CbCr	colors.	There	is	one	Y	sample	per

				33	 //	pixel,	but	each	Cb	and	Cr	sample	can	span	one	or	more	pixels.

				34	 //	YStride	is	the	Y	slice	index	delta	between	vertically	adjacent	pixels.

				35	 //	CStride	is	the	Cb	and	Cr	slice	index	delta	between	vertically	adjacent	pixels

				36	 //	that	map	to	separate	chroma	samples.

				37	 //	It	is	not	an	absolute	requirement,	but	YStride	and	len(Y)	are	typically

				38	 //	multiples	of	8,	and:

				39	 //	 For	4:4:4,	CStride	==	YStride/1	&&	len(Cb)	==	len(Cr)	==	len(Y)/1.

				40	 //	 For	4:2:2,	CStride	==	YStride/2	&&	len(Cb)	==	len(Cr)	==	len(Y)/2.

				41	 //	 For	4:2:0,	CStride	==	YStride/2	&&	len(Cb)	==	len(Cr)	==	len(Y)/4.

				42	 type	YCbCr	struct	{

				43	 	 Y,	Cb,	Cr						[]uint8

				44	 	 YStride								int

				45	 	 CStride								int

				46	 	 SubsampleRatio	YCbCrSubsampleRatio

				47	 	 Rect											Rectangle

				48	 }

				49	

				50	 func	(p	*YCbCr)	ColorModel()	color.Model	{

				51	 	 return	color.YCbCrModel

				52	 }

				53	

				54	 func	(p	*YCbCr)	Bounds()	Rectangle	{

				55	 	 return	p.Rect

				56	 }

				57	

				58	 func	(p	*YCbCr)	At(x,	y	int)	color.Color	{

				59	 	 if	!(Point{x,	y}.In(p.Rect))	{

				60	 	 	 return	color.YCbCr{}

				61	 	 }

				62	 	 yi	:=	p.YOffset(x,	y)

				63	 	 ci	:=	p.COffset(x,	y)

				64	 	 return	color.YCbCr{

				65	 	 	 p.Y[yi],

				66	 	 	 p.Cb[ci],

				67	 	 	 p.Cr[ci],

				68	 	 }

				69	 }

				70	

				71	 //	YOffset	returns	the	index	of	the	first	element	of	Y	that	corresponds	to

				72	 //	the	pixel	at	(x,	y).

				73	 func	(p	*YCbCr)	YOffset(x,	y	int)	int	{

				74	 	 return	(y-p.Rect.Min.Y)*p.YStride	+	(x	-	p.Rect.Min.X)

				75	 }

				76	

				77	 //	COffset	returns	the	index	of	the	first	element	of	Cb	or	Cr	that	corresponds

				78	 //	to	the	pixel	at	(x,	y).

				79	 func	(p	*YCbCr)	COffset(x,	y	int)	int	{

				80	 	 switch	p.SubsampleRatio	{

				81	 	 case	YCbCrSubsampleRatio422:

				82	 	 	 return	(y-p.Rect.Min.Y)*p.CStride	+	(x/2	-	p.Rect.Min.X/2)

				83	 	 case	YCbCrSubsampleRatio420:

				84	 	 	 return	(y/2-p.Rect.Min.Y/2)*p.CStride	+	(x/2	-	p.Rect.Min.X/2)

				85	 	 }

				86	 	 //	Default	to	4:4:4	subsampling.

				87	 	 return	(y-p.Rect.Min.Y)*p.CStride	+	(x	-	p.Rect.Min.X)

				88	 }

				89	

				90	 //	SubImage	returns	an	image	representing	the	portion	of	the	image	p	visible

				91	 //	through	r.	The	returned	value	shares	pixels	with	the	original	image.

				92	 func	(p	*YCbCr)	SubImage(r	Rectangle)	Image	{

				93	 	 r	=	r.Intersect(p.Rect)

				94	 	 //	If	r1	and	r2	are	Rectangles,	r1.Intersect(r2)	is	not	guaranteed	to	be	inside

				95	 	 //	either	r1	or	r2	if	the	intersection	is	empty.	Without	explicitly	checking	for

				96	 	 //	this,	the	Pix[i:]	expression	below	can	panic.

				97	 	 if	r.Empty()	{

				98	 	 	 return	&YCbCr{

				99	 	 	 	 SubsampleRatio:	p.SubsampleRatio,

			100	 	 	 }

			101	 	 }

			102	 	 yi	:=	p.YOffset(r.Min.X,	r.Min.Y)

			103	 	 ci	:=	p.COffset(r.Min.X,	r.Min.Y)

			104	 	 return	&YCbCr{

			105	 	 	 Y:														p.Y[yi:],

			106	 	 	 Cb:													p.Cb[ci:],

			107	 	 	 Cr:													p.Cr[ci:],

			108	 	 	 SubsampleRatio:	p.SubsampleRatio,

			109	 	 	 YStride:								p.YStride,

			110	 	 	 CStride:								p.CStride,

			111	 	 	 Rect:											r,

			112	 	 }

			113	 }

			114	

			115	 func	(p	*YCbCr)	Opaque()	bool	{

			116	 	 return	true

			117	 }

			118	

			119	 //	NewYCbCr	returns	a	new	YCbCr	with	the	given	bounds	and	subsample	ratio.

			120	 func	NewYCbCr(r	Rectangle,	subsampleRatio	YCbCrSubsampleRatio)	*YCbCr	{

			121	 	 w,	h,	cw,	ch	:=	r.Dx(),	r.Dy(),	0,	0

			122	 	 switch	subsampleRatio	{

			123	 	 case	YCbCrSubsampleRatio422:

			124	 	 	 cw	=	(r.Max.X+1)/2	-	r.Min.X/2

			125	 	 	 ch	=	h

			126	 	 case	YCbCrSubsampleRatio420:

			127	 	 	 cw	=	(r.Max.X+1)/2	-	r.Min.X/2

			128	 	 	 ch	=	(r.Max.Y+1)/2	-	r.Min.Y/2

			129	 	 default:

			130	 	 	 //	Default	to	4:4:4	subsampling.

			131	 	 	 cw	=	w

			132	 	 	 ch	=	h

			133	 	 }

			134	 	 b	:=	make([]byte,	w*h+2*cw*ch)

			135	 	 return	&YCbCr{

			136	 	 	 Y:														b[:w*h],

			137	 	 	 Cb:													b[w*h+0*cw*ch	:	w*h+1*cw*ch],

			138	 	 	 Cr:													b[w*h+1*cw*ch	:	w*h+2*cw*ch],

			139	 	 	 SubsampleRatio:	subsampleRatio,

			140	 	 	 YStride:								w,

			141	 	 	 CStride:								cw,

			142	 	 	 Rect:											r,

			143	 	 }

			144	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/image/color/color.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	color	implements	a	basic	color	library.

					6	 package	color

					7	

					8	 //	Color	can	convert	itself	to	alpha-premultiplied	16-bits	per	channel	RGBA.

					9	 //	The	conversion	may	be	lossy.

				10	 type	Color	interface	{

				11	 	 //	RGBA	returns	the	alpha-premultiplied	red,	green,	blue	and	alpha	values

				12	 	 //	for	the	color.	Each	value	ranges	within	[0,	0xFFFF],	but	is	represented

				13	 	 //	by	a	uint32	so	that	multiplying	by	a	blend	factor	up	to	0xFFFF	will	not

				14	 	 //	overflow.

				15	 	 RGBA()	(r,	g,	b,	a	uint32)

				16	 }

				17	

				18	 //	RGBA	represents	a	traditional	32-bit	alpha-premultiplied	color,

				19	 //	having	8	bits	for	each	of	red,	green,	blue	and	alpha.

				20	 type	RGBA	struct	{

				21	 	 R,	G,	B,	A	uint8

				22	 }

				23	

				24	 func	(c	RGBA)	RGBA()	(r,	g,	b,	a	uint32)	{

				25	 	 r	=	uint32(c.R)

				26	 	 r	|=	r	<<	8

				27	 	 g	=	uint32(c.G)

				28	 	 g	|=	g	<<	8

				29	 	 b	=	uint32(c.B)

				30	 	 b	|=	b	<<	8

				31	 	 a	=	uint32(c.A)

				32	 	 a	|=	a	<<	8

				33	 	 return

				34	 }

				35	

				36	 //	RGBA64	represents	a	64-bit	alpha-premultiplied	color,

				37	 //	having	16	bits	for	each	of	red,	green,	blue	and	alpha.

				38	 type	RGBA64	struct	{

				39	 	 R,	G,	B,	A	uint16

				40	 }

				41	

				42	 func	(c	RGBA64)	RGBA()	(r,	g,	b,	a	uint32)	{

				43	 	 return	uint32(c.R),	uint32(c.G),	uint32(c.B),	uint32(c.A)

				44	 }

				45	

				46	 //	NRGBA	represents	a	non-alpha-premultiplied	32-bit	color.

				47	 type	NRGBA	struct	{

				48	 	 R,	G,	B,	A	uint8

				49	 }

				50	

				51	 func	(c	NRGBA)	RGBA()	(r,	g,	b,	a	uint32)	{

				52	 	 r	=	uint32(c.R)

				53	 	 r	|=	r	<<	8

				54	 	 r	*=	uint32(c.A)

				55	 	 r	/=	0xff

				56	 	 g	=	uint32(c.G)

				57	 	 g	|=	g	<<	8

				58	 	 g	*=	uint32(c.A)

				59	 	 g	/=	0xff

				60	 	 b	=	uint32(c.B)

				61	 	 b	|=	b	<<	8

				62	 	 b	*=	uint32(c.A)

				63	 	 b	/=	0xff

				64	 	 a	=	uint32(c.A)

				65	 	 a	|=	a	<<	8

				66	 	 return

				67	 }

				68	

				69	 //	NRGBA64	represents	a	non-alpha-premultiplied	64-bit	color,

				70	 //	having	16	bits	for	each	of	red,	green,	blue	and	alpha.

				71	 type	NRGBA64	struct	{

				72	 	 R,	G,	B,	A	uint16

				73	 }

				74	

				75	 func	(c	NRGBA64)	RGBA()	(r,	g,	b,	a	uint32)	{

				76	 	 r	=	uint32(c.R)

				77	 	 r	*=	uint32(c.A)

				78	 	 r	/=	0xffff

				79	 	 g	=	uint32(c.G)

				80	 	 g	*=	uint32(c.A)

				81	 	 g	/=	0xffff

				82	 	 b	=	uint32(c.B)

				83	 	 b	*=	uint32(c.A)

				84	 	 b	/=	0xffff

				85	 	 a	=	uint32(c.A)

				86	 	 return

				87	 }

				88	

				89	 //	Alpha	represents	an	8-bit	alpha	color.

				90	 type	Alpha	struct	{

				91	 	 A	uint8

				92	 }

				93	

				94	 func	(c	Alpha)	RGBA()	(r,	g,	b,	a	uint32)	{

				95	 	 a	=	uint32(c.A)

				96	 	 a	|=	a	<<	8

				97	 	 return	a,	a,	a,	a

				98	 }

				99	

			100	 //	Alpha16	represents	a	16-bit	alpha	color.

			101	 type	Alpha16	struct	{

			102	 	 A	uint16

			103	 }

			104	

			105	 func	(c	Alpha16)	RGBA()	(r,	g,	b,	a	uint32)	{

			106	 	 a	=	uint32(c.A)

			107	 	 return	a,	a,	a,	a

			108	 }

			109	

			110	 //	Gray	represents	an	8-bit	grayscale	color.

			111	 type	Gray	struct	{

			112	 	 Y	uint8

			113	 }

			114	

			115	 func	(c	Gray)	RGBA()	(r,	g,	b,	a	uint32)	{

			116	 	 y	:=	uint32(c.Y)

			117	 	 y	|=	y	<<	8

			118	 	 return	y,	y,	y,	0xffff

			119	 }

			120	

			121	 //	Gray16	represents	a	16-bit	grayscale	color.

			122	 type	Gray16	struct	{

			123	 	 Y	uint16

			124	 }

			125	

			126	 func	(c	Gray16)	RGBA()	(r,	g,	b,	a	uint32)	{

			127	 	 y	:=	uint32(c.Y)

			128	 	 return	y,	y,	y,	0xffff

			129	 }

			130	

			131	 //	Model	can	convert	any	Color	to	one	from	its	own	color	model.	The	conversion

			132	 //	may	be	lossy.

			133	 type	Model	interface	{

			134	 	 Convert(c	Color)	Color

			135	 }

			136	

			137	 //	ModelFunc	returns	a	Model	that	invokes	f	to	implement	the	conversion.

			138	 func	ModelFunc(f	func(Color)	Color)	Model	{

			139	 	 //	Note:	using	*modelFunc	as	the	implementation

			140	 	 //	means	that	callers	can	still	use	comparisons

			141	 	 //	like	m	==	RGBAModel.		This	is	not	possible	if

			142	 	 //	we	use	the	func	value	directly,	because	funcs

			143	 	 //	are	no	longer	comparable.

			144	 	 return	&modelFunc{f}

			145	 }

			146	

			147	 type	modelFunc	struct	{

			148	 	 f	func(Color)	Color

			149	 }

			150	

			151	 func	(m	*modelFunc)	Convert(c	Color)	Color	{

			152	 	 return	m.f(c)

			153	 }

			154	

			155	 //	Models	for	the	standard	color	types.

			156	 var	(

			157	 	 RGBAModel				Model	=	ModelFunc(rgbaModel)

			158	 	 RGBA64Model		Model	=	ModelFunc(rgba64Model)

			159	 	 NRGBAModel			Model	=	ModelFunc(nrgbaModel)

			160	 	 NRGBA64Model	Model	=	ModelFunc(nrgba64Model)

			161	 	 AlphaModel			Model	=	ModelFunc(alphaModel)

			162	 	 Alpha16Model	Model	=	ModelFunc(alpha16Model)

			163	 	 GrayModel				Model	=	ModelFunc(grayModel)

			164	 	 Gray16Model		Model	=	ModelFunc(gray16Model)

			165)

			166	

			167	 func	rgbaModel(c	Color)	Color	{

			168	 	 if	_,	ok	:=	c.(RGBA);	ok	{

			169	 	 	 return	c

			170	 	 }

			171	 	 r,	g,	b,	a	:=	c.RGBA()

			172	 	 return	RGBA{uint8(r	>>	8),	uint8(g	>>	8),	uint8(b	>>	8),	uint8(a	>>	8)}

			173	 }

			174	

			175	 func	rgba64Model(c	Color)	Color	{

			176	 	 if	_,	ok	:=	c.(RGBA64);	ok	{

			177	 	 	 return	c

			178	 	 }

			179	 	 r,	g,	b,	a	:=	c.RGBA()

			180	 	 return	RGBA64{uint16(r),	uint16(g),	uint16(b),	uint16(a)}

			181	 }

			182	

			183	 func	nrgbaModel(c	Color)	Color	{

			184	 	 if	_,	ok	:=	c.(NRGBA);	ok	{

			185	 	 	 return	c

			186	 	 }

			187	 	 r,	g,	b,	a	:=	c.RGBA()

			188	 	 if	a	==	0xffff	{

			189	 	 	 return	NRGBA{uint8(r	>>	8),	uint8(g	>>	8),	uint8(b	>>	8),	0xff}

			190	 	 }

			191	 	 if	a	==	0	{

			192	 	 	 return	NRGBA{0,	0,	0,	0}

			193	 	 }

			194	 	 //	Since	Color.RGBA	returns	a	alpha-premultiplied	color,	we	should	have	r	<=	a	&&	g	<=	a	&&	b	<=	a.

			195	 	 r	=	(r	*	0xffff)	/	a

			196	 	 g	=	(g	*	0xffff)	/	a

			197	 	 b	=	(b	*	0xffff)	/	a

			198	 	 return	NRGBA{uint8(r	>>	8),	uint8(g	>>	8),	uint8(b	>>	8),	uint8(a	>>	8)}

			199	 }

			200	

			201	 func	nrgba64Model(c	Color)	Color	{

			202	 	 if	_,	ok	:=	c.(NRGBA64);	ok	{

			203	 	 	 return	c

			204	 	 }

			205	 	 r,	g,	b,	a	:=	c.RGBA()

			206	 	 if	a	==	0xffff	{

			207	 	 	 return	NRGBA64{uint16(r),	uint16(g),	uint16(b),	0xffff}

			208	 	 }

			209	 	 if	a	==	0	{

			210	 	 	 return	NRGBA64{0,	0,	0,	0}

			211	 	 }

			212	 	 //	Since	Color.RGBA	returns	a	alpha-premultiplied	color,	we	should	have	r	<=	a	&&	g	<=	a	&&	b	<=	a.

			213	 	 r	=	(r	*	0xffff)	/	a

			214	 	 g	=	(g	*	0xffff)	/	a

			215	 	 b	=	(b	*	0xffff)	/	a

			216	 	 return	NRGBA64{uint16(r),	uint16(g),	uint16(b),	uint16(a)}

			217	 }

			218	

			219	 func	alphaModel(c	Color)	Color	{

			220	 	 if	_,	ok	:=	c.(Alpha);	ok	{

			221	 	 	 return	c

			222	 	 }

			223	 	 _,	_,	_,	a	:=	c.RGBA()

			224	 	 return	Alpha{uint8(a	>>	8)}

			225	 }

			226	

			227	 func	alpha16Model(c	Color)	Color	{

			228	 	 if	_,	ok	:=	c.(Alpha16);	ok	{

			229	 	 	 return	c

			230	 	 }

			231	 	 _,	_,	_,	a	:=	c.RGBA()

			232	 	 return	Alpha16{uint16(a)}

			233	 }

			234	

			235	 func	grayModel(c	Color)	Color	{

			236	 	 if	_,	ok	:=	c.(Gray);	ok	{

			237	 	 	 return	c

			238	 	 }

			239	 	 r,	g,	b,	_	:=	c.RGBA()

			240	 	 y	:=	(299*r	+	587*g	+	114*b	+	500)	/	1000

			241	 	 return	Gray{uint8(y	>>	8)}

			242	 }

			243	

			244	 func	gray16Model(c	Color)	Color	{

			245	 	 if	_,	ok	:=	c.(Gray16);	ok	{

			246	 	 	 return	c

			247	 	 }

			248	 	 r,	g,	b,	_	:=	c.RGBA()

			249	 	 y	:=	(299*r	+	587*g	+	114*b	+	500)	/	1000

			250	 	 return	Gray16{uint16(y)}

			251	 }

			252	

			253	 //	Palette	is	a	palette	of	colors.

			254	 type	Palette	[]Color

			255	

			256	 func	diff(a,	b	uint32)	uint32	{

			257	 	 if	a	>	b	{

			258	 	 	 return	a	-	b

			259	 	 }

			260	 	 return	b	-	a

			261	 }

			262	

			263	 //	Convert	returns	the	palette	color	closest	to	c	in	Euclidean	R,G,B	space.

			264	 func	(p	Palette)	Convert(c	Color)	Color	{

			265	 	 if	len(p)	==	0	{

			266	 	 	 return	nil

			267	 	 }

			268	 	 return	p[p.Index(c)]

			269	 }

			270	

			271	 //	Index	returns	the	index	of	the	palette	color	closest	to	c	in	Euclidean

			272	 //	R,G,B	space.

			273	 func	(p	Palette)	Index(c	Color)	int	{

			274	 	 cr,	cg,	cb,	_	:=	c.RGBA()

			275	 	 //	Shift	by	1	bit	to	avoid	potential	uint32	overflow	in	sum-squared-difference.

			276	 	 cr	>>=	1

			277	 	 cg	>>=	1

			278	 	 cb	>>=	1

			279	 	 ret,	bestSSD	:=	0,	uint32(1<<32-1)

			280	 	 for	i,	v	:=	range	p	{

			281	 	 	 vr,	vg,	vb,	_	:=	v.RGBA()

			282	 	 	 vr	>>=	1

			283	 	 	 vg	>>=	1

			284	 	 	 vb	>>=	1

			285	 	 	 dr,	dg,	db	:=	diff(cr,	vr),	diff(cg,	vg),	diff(cb,	vb)

			286	 	 	 ssd	:=	(dr	*	dr)	+	(dg	*	dg)	+	(db	*	db)

			287	 	 	 if	ssd	<	bestSSD	{

			288	 	 	 	 if	ssd	==	0	{

			289	 	 	 	 	 return	i

			290	 	 	 	 }

			291	 	 	 	 ret,	bestSSD	=	i,	ssd

			292	 	 	 }

			293	 	 }

			294	 	 return	ret

			295	 }

			296	

			297	 //	Standard	colors.

			298	 var	(

			299	 	 Black							=	Gray16{0}

			300	 	 White							=	Gray16{0xffff}

			301	 	 Transparent	=	Alpha16{0}

			302	 	 Opaque						=	Alpha16{0xffff}

			303)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/image/color/ycbcr.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	color

					6	

					7	 //	RGBToYCbCr	converts	an	RGB	triple	to	a	Y'CbCr	triple.

					8	 func	RGBToYCbCr(r,	g,	b	uint8)	(uint8,	uint8,	uint8)	{

					9	 	 //	The	JFIF	specification	says:

				10	 	 //	 Y'	=		0.2990*R	+	0.5870*G	+	0.1140*B

				11	 	 //	 Cb	=	-0.1687*R	-	0.3313*G	+	0.5000*B	+	128

				12	 	 //	 Cr	=		0.5000*R	-	0.4187*G	-	0.0813*B	+	128

				13	 	 //	http://www.w3.org/Graphics/JPEG/jfif3.pdf	says	Y	but	means	Y'.

				14	 	 r1	:=	int(r)

				15	 	 g1	:=	int(g)

				16	 	 b1	:=	int(b)

				17	 	 yy	:=	(19595*r1	+	38470*g1	+	7471*b1	+	1<<15)	>>	16

				18	 	 cb	:=	(-11056*r1	-	21712*g1	+	32768*b1	+	257<<15)	>>	16

				19	 	 cr	:=	(32768*r1	-	27440*g1	-	5328*b1	+	257<<15)	>>	16

				20	 	 if	yy	<	0	{

				21	 	 	 yy	=	0

				22	 	 }	else	if	yy	>	255	{

				23	 	 	 yy	=	255

				24	 	 }

				25	 	 if	cb	<	0	{

				26	 	 	 cb	=	0

				27	 	 }	else	if	cb	>	255	{

				28	 	 	 cb	=	255

				29	 	 }

				30	 	 if	cr	<	0	{

				31	 	 	 cr	=	0

				32	 	 }	else	if	cr	>	255	{

				33	 	 	 cr	=	255

				34	 	 }

				35	 	 return	uint8(yy),	uint8(cb),	uint8(cr)

				36	 }

				37	

				38	 //	YCbCrToRGB	converts	a	Y'CbCr	triple	to	an	RGB	triple.

				39	 func	YCbCrToRGB(y,	cb,	cr	uint8)	(uint8,	uint8,	uint8)	{

				40	 	 //	The	JFIF	specification	says:

				41	 	 //	 R	=	Y'	+	1.40200*(Cr-128)

				42	 	 //	 G	=	Y'	-	0.34414*(Cb-128)	-	0.71414*(Cr-128)

				43	 	 //	 B	=	Y'	+	1.77200*(Cb-128)

				44	 	 //	http://www.w3.org/Graphics/JPEG/jfif3.pdf	says	Y	but	means	Y'.

				45	 	 yy1	:=	int(y)<<16	+	1<<15

				46	 	 cb1	:=	int(cb)	-	128

				47	 	 cr1	:=	int(cr)	-	128

				48	 	 r	:=	(yy1	+	91881*cr1)	>>	16

				49	 	 g	:=	(yy1	-	22554*cb1	-	46802*cr1)	>>	16

				50	 	 b	:=	(yy1	+	116130*cb1)	>>	16

				51	 	 if	r	<	0	{

				52	 	 	 r	=	0

				53	 	 }	else	if	r	>	255	{

				54	 	 	 r	=	255

				55	 	 }

				56	 	 if	g	<	0	{

				57	 	 	 g	=	0

				58	 	 }	else	if	g	>	255	{

				59	 	 	 g	=	255

				60	 	 }

				61	 	 if	b	<	0	{

				62	 	 	 b	=	0

				63	 	 }	else	if	b	>	255	{

				64	 	 	 b	=	255

				65	 	 }

				66	 	 return	uint8(r),	uint8(g),	uint8(b)

				67	 }

				68	

				69	 //	YCbCr	represents	a	fully	opaque	24-bit	Y'CbCr	color,	having	8	bits	each	for

				70	 //	one	luma	and	two	chroma	components.

				71	 //

				72	 //	JPEG,	VP8,	the	MPEG	family	and	other	codecs	use	this	color	model.	Such

				73	 //	codecs	often	use	the	terms	YUV	and	Y'CbCr	interchangeably,	but	strictly

				74	 //	speaking,	the	term	YUV	applies	only	to	analog	video	signals,	and	Y'	(luma)

				75	 //	is	Y	(luminance)	after	applying	gamma	correction.

				76	 //

				77	 //	Conversion	between	RGB	and	Y'CbCr	is	lossy	and	there	are	multiple,	slightly

				78	 //	different	formulae	for	converting	between	the	two.	This	package	follows

				79	 //	the	JFIF	specification	at	http://www.w3.org/Graphics/JPEG/jfif3.pdf.

				80	 type	YCbCr	struct	{

				81	 	 Y,	Cb,	Cr	uint8

				82	 }

				83	

				84	 func	(c	YCbCr)	RGBA()	(uint32,	uint32,	uint32,	uint32)	{

				85	 	 r,	g,	b	:=	YCbCrToRGB(c.Y,	c.Cb,	c.Cr)

				86	 	 return	uint32(r)	*	0x101,	uint32(g)	*	0x101,	uint32(b)	*	0x101,	0xffff

				87	 }

				88	

				89	 //	YCbCrModel	is	the	Model	for	Y'CbCr	colors.

				90	 var	YCbCrModel	Model	=	ModelFunc(yCbCrModel)

				91	

				92	 func	yCbCrModel(c	Color)	Color	{

				93	 	 if	_,	ok	:=	c.(YCbCr);	ok	{

				94	 	 	 return	c

				95	 	 }

				96	 	 r,	g,	b,	_	:=	c.RGBA()

				97	 	 y,	u,	v	:=	RGBToYCbCr(uint8(r>>8),	uint8(g>>8),	uint8(b>>8))

				98	 	 return	YCbCr{y,	u,	v}

				99	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/image/draw/draw.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	draw	provides	image	composition	functions.

					6	 //

					7	 //	See	"The	Go	image/draw	package"	for	an	introduction	to	this	package:

					8	 //	http://golang.org/doc/articles/image_draw.html

					9	 package	draw

				10	

				11	 import	(

				12	 	 "image"

				13	 	 "image/color"

				14)

				15	

				16	 //	m	is	the	maximum	color	value	returned	by	image.Color.RGBA.

				17	 const	m	=	1<<16	-	1

				18	

				19	 //	Op	is	a	Porter-Duff	compositing	operator.

				20	 type	Op	int

				21	

				22	 const	(

				23	 	 //	Over	specifies	``(src	in	mask)	over	dst''.

				24	 	 Over	Op	=	iota

				25	 	 //	Src	specifies	``src	in	mask''.

				26	 	 Src

				27)

				28	

				29	 //	A	draw.Image	is	an	image.Image	with	a	Set	method	to	change	a	single	pixel.

				30	 type	Image	interface	{

				31	 	 image.Image

				32	 	 Set(x,	y	int,	c	color.Color)

				33	 }

				34	

				35	 //	Draw	calls	DrawMask	with	a	nil	mask.

				36	 func	Draw(dst	Image,	r	image.Rectangle,	src	image.Image,	sp	image.Point,	op	Op)	{

				37	 	 DrawMask(dst,	r,	src,	sp,	nil,	image.ZP,	op)

				38	 }

				39	

				40	 //	clip	clips	r	against	each	image's	bounds	(after	translating	into	the

				41	 //	destination	image's	co-ordinate	space)	and	shifts	the	points	sp	and	mp	by

				42	 //	the	same	amount	as	the	change	in	r.Min.

				43	 func	clip(dst	Image,	r	*image.Rectangle,	src	image.Image,	sp	*image.Point,	mask	image.Image,	mp	*image.Point)	{

				44	 	 orig	:=	r.Min

				45	 	 *r	=	r.Intersect(dst.Bounds())

				46	 	 *r	=	r.Intersect(src.Bounds().Add(orig.Sub(*sp)))

				47	 	 if	mask	!=	nil	{

				48	 	 	 *r	=	r.Intersect(mask.Bounds().Add(orig.Sub(*mp)))

				49	 	 }

				50	 	 dx	:=	r.Min.X	-	orig.X

				51	 	 dy	:=	r.Min.Y	-	orig.Y

				52	 	 if	dx	==	0	&&	dy	==	0	{

				53	 	 	 return

				54	 	 }

				55	 	 (*sp).X	+=	dx

				56	 	 (*sp).Y	+=	dy

				57	 	 (*mp).X	+=	dx

				58	 	 (*mp).Y	+=	dy

				59	 }

				60	

				61	 //	DrawMask	aligns	r.Min	in	dst	with	sp	in	src	and	mp	in	mask	and	then	replaces	the	rectangle	r

				62	 //	in	dst	with	the	result	of	a	Porter-Duff	composition.	A	nil	mask	is	treated	as	opaque.

				63	 func	DrawMask(dst	Image,	r	image.Rectangle,	src	image.Image,	sp	image.Point,	mask	image.Image,	mp	image.Point,	op	Op)	{

				64	 	 clip(dst,	&r,	src,	&sp,	mask,	&mp)

				65	 	 if	r.Empty()	{

				66	 	 	 return

				67	 	 }

				68	

				69	 	 //	Fast	paths	for	special	cases.	If	none	of	them	apply,	then	we	fall	back	to	a	general	but	slow	implementation.

				70	 	 if	dst0,	ok	:=	dst.(*image.RGBA);	ok	{

				71	 	 	 if	op	==	Over	{

				72	 	 	 	 if	mask	==	nil	{

				73	 	 	 	 	 switch	src0	:=	src.(type)	{

				74	 	 	 	 	 case	*image.Uniform:

				75	 	 	 	 	 	 drawFillOver(dst0,	r,	src0)

				76	 	 	 	 	 	 return

				77	 	 	 	 	 case	*image.RGBA:

				78	 	 	 	 	 	 drawCopyOver(dst0,	r,	src0,	sp)

				79	 	 	 	 	 	 return

				80	 	 	 	 	 case	*image.NRGBA:

				81	 	 	 	 	 	 drawNRGBAOver(dst0,	r,	src0,	sp)

				82	 	 	 	 	 	 return

				83	 	 	 	 	 case	*image.YCbCr:

				84	 	 	 	 	 	 drawYCbCr(dst0,	r,	src0,	sp)

				85	 	 	 	 	 	 return

				86	 	 	 	 	 }

				87	 	 	 	 }	else	if	mask0,	ok	:=	mask.(*image.Alpha);	ok	{

				88	 	 	 	 	 switch	src0	:=	src.(type)	{

				89	 	 	 	 	 case	*image.Uniform:

				90	 	 	 	 	 	 drawGlyphOver(dst0,	r,	src0,	mask0,	mp)

				91	 	 	 	 	 	 return

				92	 	 	 	 	 }

				93	 	 	 	 }

				94	 	 	 }	else	{

				95	 	 	 	 if	mask	==	nil	{

				96	 	 	 	 	 switch	src0	:=	src.(type)	{

				97	 	 	 	 	 case	*image.Uniform:

				98	 	 	 	 	 	 drawFillSrc(dst0,	r,	src0)

				99	 	 	 	 	 	 return

			100	 	 	 	 	 case	*image.RGBA:

			101	 	 	 	 	 	 drawCopySrc(dst0,	r,	src0,	sp)

			102	 	 	 	 	 	 return

			103	 	 	 	 	 case	*image.NRGBA:

			104	 	 	 	 	 	 drawNRGBASrc(dst0,	r,	src0,	sp)

			105	 	 	 	 	 	 return

			106	 	 	 	 	 case	*image.YCbCr:

			107	 	 	 	 	 	 drawYCbCr(dst0,	r,	src0,	sp)

			108	 	 	 	 	 	 return

			109	 	 	 	 	 }

			110	 	 	 	 }

			111	 	 	 }

			112	 	 	 drawRGBA(dst0,	r,	src,	sp,	mask,	mp,	op)

			113	 	 	 return

			114	 	 }

			115	

			116	 	 x0,	x1,	dx	:=	r.Min.X,	r.Max.X,	1

			117	 	 y0,	y1,	dy	:=	r.Min.Y,	r.Max.Y,	1

			118	 	 if	image.Image(dst)	==	src	&&	r.Overlaps(r.Add(sp.Sub(r.Min)))	{

			119	 	 	 //	Rectangles	overlap:	process	backward?

			120	 	 	 if	sp.Y	<	r.Min.Y	||	sp.Y	==	r.Min.Y	&&	sp.X	<	r.Min.X	{

			121	 	 	 	 x0,	x1,	dx	=	x1-1,	x0-1,	-1

			122	 	 	 	 y0,	y1,	dy	=	y1-1,	y0-1,	-1

			123	 	 	 }

			124	 	 }

			125	

			126	 	 var	out	*color.RGBA64

			127	 	 sy	:=	sp.Y	+	y0	-	r.Min.Y

			128	 	 my	:=	mp.Y	+	y0	-	r.Min.Y

			129	 	 for	y	:=	y0;	y	!=	y1;	y,	sy,	my	=	y+dy,	sy+dy,	my+dy	{

			130	 	 	 sx	:=	sp.X	+	x0	-	r.Min.X

			131	 	 	 mx	:=	mp.X	+	x0	-	r.Min.X

			132	 	 	 for	x	:=	x0;	x	!=	x1;	x,	sx,	mx	=	x+dx,	sx+dx,	mx+dx	{

			133	 	 	 	 ma	:=	uint32(m)

			134	 	 	 	 if	mask	!=	nil	{

			135	 	 	 	 	 _,	_,	_,	ma	=	mask.At(mx,	my).RGBA()

			136	 	 	 	 }

			137	 	 	 	 switch	{

			138	 	 	 	 case	ma	==	0:

			139	 	 	 	 	 if	op	==	Over	{

			140	 	 	 	 	 	 //	No-op.

			141	 	 	 	 	 }	else	{

			142	 	 	 	 	 	 dst.Set(x,	y,	color.Transparent)

			143	 	 	 	 	 }

			144	 	 	 	 case	ma	==	m	&&	op	==	Src:

			145	 	 	 	 	 dst.Set(x,	y,	src.At(sx,	sy))

			146	 	 	 	 default:

			147	 	 	 	 	 sr,	sg,	sb,	sa	:=	src.At(sx,	sy).RGBA()

			148	 	 	 	 	 if	out	==	nil	{

			149	 	 	 	 	 	 out	=	new(color.RGBA64)

			150	 	 	 	 	 }

			151	 	 	 	 	 if	op	==	Over	{

			152	 	 	 	 	 	 dr,	dg,	db,	da	:=	dst.At(x,	y).RGBA()

			153	 	 	 	 	 	 a	:=	m	-	(sa	*	ma	/	m)

			154	 	 	 	 	 	 out.R	=	uint16((dr*a	+	sr*ma)	/	m)

			155	 	 	 	 	 	 out.G	=	uint16((dg*a	+	sg*ma)	/	m)

			156	 	 	 	 	 	 out.B	=	uint16((db*a	+	sb*ma)	/	m)

			157	 	 	 	 	 	 out.A	=	uint16((da*a	+	sa*ma)	/	m)

			158	 	 	 	 	 }	else	{

			159	 	 	 	 	 	 out.R	=	uint16(sr	*	ma	/	m)

			160	 	 	 	 	 	 out.G	=	uint16(sg	*	ma	/	m)

			161	 	 	 	 	 	 out.B	=	uint16(sb	*	ma	/	m)

			162	 	 	 	 	 	 out.A	=	uint16(sa	*	ma	/	m)

			163	 	 	 	 	 }

			164	 	 	 	 	 dst.Set(x,	y,	out)

			165	 	 	 	 }

			166	 	 	 }

			167	 	 }

			168	 }

			169	

			170	 func	drawFillOver(dst	*image.RGBA,	r	image.Rectangle,	src	*image.Uniform)	{

			171	 	 sr,	sg,	sb,	sa	:=	src.RGBA()

			172	 	 //	The	0x101	is	here	for	the	same	reason	as	in	drawRGBA.

			173	 	 a	:=	(m	-	sa)	*	0x101

			174	 	 i0	:=	dst.PixOffset(r.Min.X,	r.Min.Y)

			175	 	 i1	:=	i0	+	r.Dx()*4

			176	 	 for	y	:=	r.Min.Y;	y	!=	r.Max.Y;	y++	{

			177	 	 	 for	i	:=	i0;	i	<	i1;	i	+=	4	{

			178	 	 	 	 dr	:=	uint32(dst.Pix[i+0])

			179	 	 	 	 dg	:=	uint32(dst.Pix[i+1])

			180	 	 	 	 db	:=	uint32(dst.Pix[i+2])

			181	 	 	 	 da	:=	uint32(dst.Pix[i+3])

			182	

			183	 	 	 	 dst.Pix[i+0]	=	uint8((dr*a/m	+	sr)	>>	8)

			184	 	 	 	 dst.Pix[i+1]	=	uint8((dg*a/m	+	sg)	>>	8)

			185	 	 	 	 dst.Pix[i+2]	=	uint8((db*a/m	+	sb)	>>	8)

			186	 	 	 	 dst.Pix[i+3]	=	uint8((da*a/m	+	sa)	>>	8)

			187	 	 	 }

			188	 	 	 i0	+=	dst.Stride

			189	 	 	 i1	+=	dst.Stride

			190	 	 }

			191	 }

			192	

			193	 func	drawFillSrc(dst	*image.RGBA,	r	image.Rectangle,	src	*image.Uniform)	{

			194	 	 sr,	sg,	sb,	sa	:=	src.RGBA()

			195	 	 //	The	built-in	copy	function	is	faster	than	a	straightforward	for	loop	to	fill	the	destination	with

			196	 	 //	the	color,	but	copy	requires	a	slice	source.	We	therefore	use	a	for	loop	to	fill	the	first	row,	and

			197	 	 //	then	use	the	first	row	as	the	slice	source	for	the	remaining	rows.

			198	 	 i0	:=	dst.PixOffset(r.Min.X,	r.Min.Y)

			199	 	 i1	:=	i0	+	r.Dx()*4

			200	 	 for	i	:=	i0;	i	<	i1;	i	+=	4	{

			201	 	 	 dst.Pix[i+0]	=	uint8(sr	>>	8)

			202	 	 	 dst.Pix[i+1]	=	uint8(sg	>>	8)

			203	 	 	 dst.Pix[i+2]	=	uint8(sb	>>	8)

			204	 	 	 dst.Pix[i+3]	=	uint8(sa	>>	8)

			205	 	 }

			206	 	 firstRow	:=	dst.Pix[i0:i1]

			207	 	 for	y	:=	r.Min.Y	+	1;	y	<	r.Max.Y;	y++	{

			208	 	 	 i0	+=	dst.Stride

			209	 	 	 i1	+=	dst.Stride

			210	 	 	 copy(dst.Pix[i0:i1],	firstRow)

			211	 	 }

			212	 }

			213	

			214	 func	drawCopyOver(dst	*image.RGBA,	r	image.Rectangle,	src	*image.RGBA,	sp	image.Point)	{

			215	 	 dx,	dy	:=	r.Dx(),	r.Dy()

			216	 	 d0	:=	dst.PixOffset(r.Min.X,	r.Min.Y)

			217	 	 s0	:=	src.PixOffset(sp.X,	sp.Y)

			218	 	 var	(

			219	 	 	 ddelta,	sdelta	int

			220	 	 	 i0,	i1,	idelta	int

			221)

			222	 	 if	r.Min.Y	<	sp.Y	||	r.Min.Y	==	sp.Y	&&	r.Min.X	<=	sp.X	{

			223	 	 	 ddelta	=	dst.Stride

			224	 	 	 sdelta	=	src.Stride

			225	 	 	 i0,	i1,	idelta	=	0,	dx*4,	+4

			226	 	 }	else	{

			227	 	 	 //	If	the	source	start	point	is	higher	than	the	destination	start	point,	or	equal	height	but	to	the	left,

			228	 	 	 //	then	we	compose	the	rows	in	right-to-left,	bottom-up	order	instead	of	left-to-right,	top-down.

			229	 	 	 d0	+=	(dy	-	1)	*	dst.Stride

			230	 	 	 s0	+=	(dy	-	1)	*	src.Stride

			231	 	 	 ddelta	=	-dst.Stride

			232	 	 	 sdelta	=	-src.Stride

			233	 	 	 i0,	i1,	idelta	=	(dx-1)*4,	-4,	-4

			234	 	 }

			235	 	 for	;	dy	>	0;	dy--	{

			236	 	 	 dpix	:=	dst.Pix[d0:]

			237	 	 	 spix	:=	src.Pix[s0:]

			238	 	 	 for	i	:=	i0;	i	!=	i1;	i	+=	idelta	{

			239	 	 	 	 sr	:=	uint32(spix[i+0])	*	0x101

			240	 	 	 	 sg	:=	uint32(spix[i+1])	*	0x101

			241	 	 	 	 sb	:=	uint32(spix[i+2])	*	0x101

			242	 	 	 	 sa	:=	uint32(spix[i+3])	*	0x101

			243	

			244	 	 	 	 dr	:=	uint32(dpix[i+0])

			245	 	 	 	 dg	:=	uint32(dpix[i+1])

			246	 	 	 	 db	:=	uint32(dpix[i+2])

			247	 	 	 	 da	:=	uint32(dpix[i+3])

			248	

			249	 	 	 	 //	The	0x101	is	here	for	the	same	reason	as	in	drawRGBA.

			250	 	 	 	 a	:=	(m	-	sa)	*	0x101

			251	

			252	 	 	 	 dpix[i+0]	=	uint8((dr*a/m	+	sr)	>>	8)

			253	 	 	 	 dpix[i+1]	=	uint8((dg*a/m	+	sg)	>>	8)

			254	 	 	 	 dpix[i+2]	=	uint8((db*a/m	+	sb)	>>	8)

			255	 	 	 	 dpix[i+3]	=	uint8((da*a/m	+	sa)	>>	8)

			256	 	 	 }

			257	 	 	 d0	+=	ddelta

			258	 	 	 s0	+=	sdelta

			259	 	 }

			260	 }

			261	

			262	 func	drawCopySrc(dst	*image.RGBA,	r	image.Rectangle,	src	*image.RGBA,	sp	image.Point)	{

			263	 	 n,	dy	:=	4*r.Dx(),	r.Dy()

			264	 	 d0	:=	dst.PixOffset(r.Min.X,	r.Min.Y)

			265	 	 s0	:=	src.PixOffset(sp.X,	sp.Y)

			266	 	 var	ddelta,	sdelta	int

			267	 	 if	r.Min.Y	<=	sp.Y	{

			268	 	 	 ddelta	=	dst.Stride

			269	 	 	 sdelta	=	src.Stride

			270	 	 }	else	{

			271	 	 	 //	If	the	source	start	point	is	higher	than	the	destination	start	point,	then	we	compose	the	rows

			272	 	 	 //	in	bottom-up	order	instead	of	top-down.	Unlike	the	drawCopyOver	function,	we	don't	have	to

			273	 	 	 //	check	the	x	co-ordinates	because	the	built-in	copy	function	can	handle	overlapping	slices.

			274	 	 	 d0	+=	(dy	-	1)	*	dst.Stride

			275	 	 	 s0	+=	(dy	-	1)	*	src.Stride

			276	 	 	 ddelta	=	-dst.Stride

			277	 	 	 sdelta	=	-src.Stride

			278	 	 }

			279	 	 for	;	dy	>	0;	dy--	{

			280	 	 	 copy(dst.Pix[d0:d0+n],	src.Pix[s0:s0+n])

			281	 	 	 d0	+=	ddelta

			282	 	 	 s0	+=	sdelta

			283	 	 }

			284	 }

			285	

			286	 func	drawNRGBAOver(dst	*image.RGBA,	r	image.Rectangle,	src	*image.NRGBA,	sp	image.Point)	{

			287	 	 i0	:=	(r.Min.X	-	dst.Rect.Min.X)	*	4

			288	 	 i1	:=	(r.Max.X	-	dst.Rect.Min.X)	*	4

			289	 	 si0	:=	(sp.X	-	src.Rect.Min.X)	*	4

			290	 	 yMax	:=	r.Max.Y	-	dst.Rect.Min.Y

			291	

			292	 	 y	:=	r.Min.Y	-	dst.Rect.Min.Y

			293	 	 sy	:=	sp.Y	-	src.Rect.Min.Y

			294	 	 for	;	y	!=	yMax;	y,	sy	=	y+1,	sy+1	{

			295	 	 	 dpix	:=	dst.Pix[y*dst.Stride:]

			296	 	 	 spix	:=	src.Pix[sy*src.Stride:]

			297	

			298	 	 	 for	i,	si	:=	i0,	si0;	i	<	i1;	i,	si	=	i+4,	si+4	{

			299	 	 	 	 //	Convert	from	non-premultiplied	color	to	pre-multiplied	color.

			300	 	 	 	 sa	:=	uint32(spix[si+3])	*	0x101

			301	 	 	 	 sr	:=	uint32(spix[si+0])	*	sa	/	0xff

			302	 	 	 	 sg	:=	uint32(spix[si+1])	*	sa	/	0xff

			303	 	 	 	 sb	:=	uint32(spix[si+2])	*	sa	/	0xff

			304	

			305	 	 	 	 dr	:=	uint32(dpix[i+0])

			306	 	 	 	 dg	:=	uint32(dpix[i+1])

			307	 	 	 	 db	:=	uint32(dpix[i+2])

			308	 	 	 	 da	:=	uint32(dpix[i+3])

			309	

			310	 	 	 	 //	The	0x101	is	here	for	the	same	reason	as	in	drawRGBA.

			311	 	 	 	 a	:=	(m	-	sa)	*	0x101

			312	

			313	 	 	 	 dpix[i+0]	=	uint8((dr*a/m	+	sr)	>>	8)

			314	 	 	 	 dpix[i+1]	=	uint8((dg*a/m	+	sg)	>>	8)

			315	 	 	 	 dpix[i+2]	=	uint8((db*a/m	+	sb)	>>	8)

			316	 	 	 	 dpix[i+3]	=	uint8((da*a/m	+	sa)	>>	8)

			317	 	 	 }

			318	 	 }

			319	 }

			320	

			321	 func	drawNRGBASrc(dst	*image.RGBA,	r	image.Rectangle,	src	*image.NRGBA,	sp	image.Point)	{

			322	 	 i0	:=	(r.Min.X	-	dst.Rect.Min.X)	*	4

			323	 	 i1	:=	(r.Max.X	-	dst.Rect.Min.X)	*	4

			324	 	 si0	:=	(sp.X	-	src.Rect.Min.X)	*	4

			325	 	 yMax	:=	r.Max.Y	-	dst.Rect.Min.Y

			326	

			327	 	 y	:=	r.Min.Y	-	dst.Rect.Min.Y

			328	 	 sy	:=	sp.Y	-	src.Rect.Min.Y

			329	 	 for	;	y	!=	yMax;	y,	sy	=	y+1,	sy+1	{

			330	 	 	 dpix	:=	dst.Pix[y*dst.Stride:]

			331	 	 	 spix	:=	src.Pix[sy*src.Stride:]

			332	

			333	 	 	 for	i,	si	:=	i0,	si0;	i	<	i1;	i,	si	=	i+4,	si+4	{

			334	 	 	 	 //	Convert	from	non-premultiplied	color	to	pre-multiplied	color.

			335	 	 	 	 sa	:=	uint32(spix[si+3])	*	0x101

			336	 	 	 	 sr	:=	uint32(spix[si+0])	*	sa	/	0xff

			337	 	 	 	 sg	:=	uint32(spix[si+1])	*	sa	/	0xff

			338	 	 	 	 sb	:=	uint32(spix[si+2])	*	sa	/	0xff

			339	

			340	 	 	 	 dpix[i+0]	=	uint8(sr	>>	8)

			341	 	 	 	 dpix[i+1]	=	uint8(sg	>>	8)

			342	 	 	 	 dpix[i+2]	=	uint8(sb	>>	8)

			343	 	 	 	 dpix[i+3]	=	uint8(sa	>>	8)

			344	 	 	 }

			345	 	 }

			346	 }

			347	

			348	 func	drawYCbCr(dst	*image.RGBA,	r	image.Rectangle,	src	*image.YCbCr,	sp	image.Point)	{

			349	 	 //	An	image.YCbCr	is	always	fully	opaque,	and	so	if	the	mask	is	implicitly	nil

			350	 	 //	(i.e.	fully	opaque)	then	the	op	is	effectively	always	Src.

			351	 	 x0	:=	(r.Min.X	-	dst.Rect.Min.X)	*	4

			352	 	 x1	:=	(r.Max.X	-	dst.Rect.Min.X)	*	4

			353	 	 y0	:=	r.Min.Y	-	dst.Rect.Min.Y

			354	 	 y1	:=	r.Max.Y	-	dst.Rect.Min.Y

			355	 	 switch	src.SubsampleRatio	{

			356	 	 case	image.YCbCrSubsampleRatio422:

			357	 	 	 for	y,	sy	:=	y0,	sp.Y;	y	!=	y1;	y,	sy	=	y+1,	sy+1	{

			358	 	 	 	 dpix	:=	dst.Pix[y*dst.Stride:]

			359	 	 	 	 yi	:=	(sy-src.Rect.Min.Y)*src.YStride	+	(sp.X	-	src.Rect.Min.X)

			360	 	 	 	 ciBase	:=	(sy-src.Rect.Min.Y)*src.CStride	-	src.Rect.Min.X/2

			361	 	 	 	 for	x,	sx	:=	x0,	sp.X;	x	!=	x1;	x,	sx,	yi	=	x+4,	sx+1,	yi+1	{

			362	 	 	 	 	 ci	:=	ciBase	+	sx/2

			363	 	 	 	 	 rr,	gg,	bb	:=	color.YCbCrToRGB(src.Y[yi],	src.Cb[ci],	src.Cr[ci])

			364	 	 	 	 	 dpix[x+0]	=	rr

			365	 	 	 	 	 dpix[x+1]	=	gg

			366	 	 	 	 	 dpix[x+2]	=	bb

			367	 	 	 	 	 dpix[x+3]	=	255

			368	 	 	 	 }

			369	 	 	 }

			370	 	 case	image.YCbCrSubsampleRatio420:

			371	 	 	 for	y,	sy	:=	y0,	sp.Y;	y	!=	y1;	y,	sy	=	y+1,	sy+1	{

			372	 	 	 	 dpix	:=	dst.Pix[y*dst.Stride:]

			373	 	 	 	 yi	:=	(sy-src.Rect.Min.Y)*src.YStride	+	(sp.X	-	src.Rect.Min.X)

			374	 	 	 	 ciBase	:=	(sy/2-src.Rect.Min.Y/2)*src.CStride	-	src.Rect.Min.X/2

			375	 	 	 	 for	x,	sx	:=	x0,	sp.X;	x	!=	x1;	x,	sx,	yi	=	x+4,	sx+1,	yi+1	{

			376	 	 	 	 	 ci	:=	ciBase	+	sx/2

			377	 	 	 	 	 rr,	gg,	bb	:=	color.YCbCrToRGB(src.Y[yi],	src.Cb[ci],	src.Cr[ci])

			378	 	 	 	 	 dpix[x+0]	=	rr

			379	 	 	 	 	 dpix[x+1]	=	gg

			380	 	 	 	 	 dpix[x+2]	=	bb

			381	 	 	 	 	 dpix[x+3]	=	255

			382	 	 	 	 }

			383	 	 	 }

			384	 	 default:

			385	 	 	 //	Default	to	4:4:4	subsampling.

			386	 	 	 for	y,	sy	:=	y0,	sp.Y;	y	!=	y1;	y,	sy	=	y+1,	sy+1	{

			387	 	 	 	 dpix	:=	dst.Pix[y*dst.Stride:]

			388	 	 	 	 yi	:=	(sy-src.Rect.Min.Y)*src.YStride	+	(sp.X	-	src.Rect.Min.X)

			389	 	 	 	 ci	:=	(sy-src.Rect.Min.Y)*src.CStride	+	(sp.X	-	src.Rect.Min.X)

			390	 	 	 	 for	x	:=	x0;	x	!=	x1;	x,	yi,	ci	=	x+4,	yi+1,	ci+1	{

			391	 	 	 	 	 rr,	gg,	bb	:=	color.YCbCrToRGB(src.Y[yi],	src.Cb[ci],	src.Cr[ci])

			392	 	 	 	 	 dpix[x+0]	=	rr

			393	 	 	 	 	 dpix[x+1]	=	gg

			394	 	 	 	 	 dpix[x+2]	=	bb

			395	 	 	 	 	 dpix[x+3]	=	255

			396	 	 	 	 }

			397	 	 	 }

			398	 	 }

			399	 }

			400	

			401	 func	drawGlyphOver(dst	*image.RGBA,	r	image.Rectangle,	src	*image.Uniform,	mask	*image.Alpha,	mp	image.Point)	{

			402	 	 i0	:=	dst.PixOffset(r.Min.X,	r.Min.Y)

			403	 	 i1	:=	i0	+	r.Dx()*4

			404	 	 mi0	:=	mask.PixOffset(mp.X,	mp.Y)

			405	 	 sr,	sg,	sb,	sa	:=	src.RGBA()

			406	 	 for	y,	my	:=	r.Min.Y,	mp.Y;	y	!=	r.Max.Y;	y,	my	=	y+1,	my+1	{

			407	 	 	 for	i,	mi	:=	i0,	mi0;	i	<	i1;	i,	mi	=	i+4,	mi+1	{

			408	 	 	 	 ma	:=	uint32(mask.Pix[mi])

			409	 	 	 	 if	ma	==	0	{

			410	 	 	 	 	 continue

			411	 	 	 	 }

			412	 	 	 	 ma	|=	ma	<<	8

			413	

			414	 	 	 	 dr	:=	uint32(dst.Pix[i+0])

			415	 	 	 	 dg	:=	uint32(dst.Pix[i+1])

			416	 	 	 	 db	:=	uint32(dst.Pix[i+2])

			417	 	 	 	 da	:=	uint32(dst.Pix[i+3])

			418	

			419	 	 	 	 //	The	0x101	is	here	for	the	same	reason	as	in	drawRGBA.

			420	 	 	 	 a	:=	(m	-	(sa	*	ma	/	m))	*	0x101

			421	

			422	 	 	 	 dst.Pix[i+0]	=	uint8((dr*a	+	sr*ma)	/	m	>>	8)

			423	 	 	 	 dst.Pix[i+1]	=	uint8((dg*a	+	sg*ma)	/	m	>>	8)

			424	 	 	 	 dst.Pix[i+2]	=	uint8((db*a	+	sb*ma)	/	m	>>	8)

			425	 	 	 	 dst.Pix[i+3]	=	uint8((da*a	+	sa*ma)	/	m	>>	8)

			426	 	 	 }

			427	 	 	 i0	+=	dst.Stride

			428	 	 	 i1	+=	dst.Stride

			429	 	 	 mi0	+=	mask.Stride

			430	 	 }

			431	 }

			432	

			433	 func	drawRGBA(dst	*image.RGBA,	r	image.Rectangle,	src	image.Image,	sp	image.Point,	mask	image.Image,	mp	image.Point,	op	Op)	{

			434	 	 x0,	x1,	dx	:=	r.Min.X,	r.Max.X,	1

			435	 	 y0,	y1,	dy	:=	r.Min.Y,	r.Max.Y,	1

			436	 	 if	image.Image(dst)	==	src	&&	r.Overlaps(r.Add(sp.Sub(r.Min)))	{

			437	 	 	 if	sp.Y	<	r.Min.Y	||	sp.Y	==	r.Min.Y	&&	sp.X	<	r.Min.X	{

			438	 	 	 	 x0,	x1,	dx	=	x1-1,	x0-1,	-1

			439	 	 	 	 y0,	y1,	dy	=	y1-1,	y0-1,	-1

			440	 	 	 }

			441	 	 }

			442	

			443	 	 sy	:=	sp.Y	+	y0	-	r.Min.Y

			444	 	 my	:=	mp.Y	+	y0	-	r.Min.Y

			445	 	 sx0	:=	sp.X	+	x0	-	r.Min.X

			446	 	 mx0	:=	mp.X	+	x0	-	r.Min.X

			447	 	 sx1	:=	sx0	+	(x1	-	x0)

			448	 	 i0	:=	dst.PixOffset(x0,	y0)

			449	 	 di	:=	dx	*	4

			450	 	 for	y	:=	y0;	y	!=	y1;	y,	sy,	my	=	y+dy,	sy+dy,	my+dy	{

			451	 	 	 for	i,	sx,	mx	:=	i0,	sx0,	mx0;	sx	!=	sx1;	i,	sx,	mx	=	i+di,	sx+dx,	mx+dx	{

			452	 	 	 	 ma	:=	uint32(m)

			453	 	 	 	 if	mask	!=	nil	{

			454	 	 	 	 	 _,	_,	_,	ma	=	mask.At(mx,	my).RGBA()

			455	 	 	 	 }

			456	 	 	 	 sr,	sg,	sb,	sa	:=	src.At(sx,	sy).RGBA()

			457	 	 	 	 if	op	==	Over	{

			458	 	 	 	 	 dr	:=	uint32(dst.Pix[i+0])

			459	 	 	 	 	 dg	:=	uint32(dst.Pix[i+1])

			460	 	 	 	 	 db	:=	uint32(dst.Pix[i+2])

			461	 	 	 	 	 da	:=	uint32(dst.Pix[i+3])

			462	

			463	 	 	 	 	 //	dr,	dg,	db	and	da	are	all	8-bit	color	at	the	moment,	ranging	in	[0,255].

			464	 	 	 	 	 //	We	work	in	16-bit	color,	and	so	would	normally	do:

			465	 	 	 	 	 //	dr	|=	dr	<<	8

			466	 	 	 	 	 //	and	similarly	for	dg,	db	and	da,	but	instead	we	multiply	a

			467	 	 	 	 	 //	(which	is	a	16-bit	color,	ranging	in	[0,65535])	by	0x101.

			468	 	 	 	 	 //	This	yields	the	same	result,	but	is	fewer	arithmetic	operations.

			469	 	 	 	 	 a	:=	(m	-	(sa	*	ma	/	m))	*	0x101

			470	

			471	 	 	 	 	 dst.Pix[i+0]	=	uint8((dr*a	+	sr*ma)	/	m	>>	8)

			472	 	 	 	 	 dst.Pix[i+1]	=	uint8((dg*a	+	sg*ma)	/	m	>>	8)

			473	 	 	 	 	 dst.Pix[i+2]	=	uint8((db*a	+	sb*ma)	/	m	>>	8)

			474	 	 	 	 	 dst.Pix[i+3]	=	uint8((da*a	+	sa*ma)	/	m	>>	8)

			475	

			476	 	 	 	 }	else	{

			477	 	 	 	 	 dst.Pix[i+0]	=	uint8(sr	*	ma	/	m	>>	8)

			478	 	 	 	 	 dst.Pix[i+1]	=	uint8(sg	*	ma	/	m	>>	8)

			479	 	 	 	 	 dst.Pix[i+2]	=	uint8(sb	*	ma	/	m	>>	8)

			480	 	 	 	 	 dst.Pix[i+3]	=	uint8(sa	*	ma	/	m	>>	8)

			481	 	 	 	 }

			482	 	 	 }

			483	 	 	 i0	+=	dy	*	dst.Stride

			484	 	 }

			485	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/image/jpeg/fdct.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	jpeg

					6	

					7	 //	This	file	implements	a	Forward	Discrete	Cosine	Transformation.

					8	

					9	 /*

				10	 It	is	based	on	the	code	in	jfdctint.c	from	the	Independent	JPEG	Group,

				11	 found	at	http://www.ijg.org/files/jpegsrc.v8c.tar.gz.

				12	

				13	 The	"LEGAL	ISSUES"	section	of	the	README	in	that	archive	says:

				14	

				15	 In	plain	English:

				16	

				17	 1.	We	don't	promise	that	this	software	works.		(But	if	you	find	any	bugs,

				18	 			please	let	us	know!)

				19	 2.	You	can	use	this	software	for	whatever	you	want.		You	don't	have	to	pay	us.

				20	 3.	You	may	not	pretend	that	you	wrote	this	software.		If	you	use	it	in	a

				21	 			program,	you	must	acknowledge	somewhere	in	your	documentation	that

				22	 			you've	used	the	IJG	code.

				23	

				24	 In	legalese:

				25	

				26	 The	authors	make	NO	WARRANTY	or	representation,	either	express	or	implied,

				27	 with	respect	to	this	software,	its	quality,	accuracy,	merchantability,	or

				28	 fitness	for	a	particular	purpose.		This	software	is	provided	"AS	IS",	and	you,

				29	 its	user,	assume	the	entire	risk	as	to	its	quality	and	accuracy.

				30	

				31	 This	software	is	copyright	(C)	1991-2011,	Thomas	G.	Lane,	Guido	Vollbeding.

				32	 All	Rights	Reserved	except	as	specified	below.

				33	

				34	 Permission	is	hereby	granted	to	use,	copy,	modify,	and	distribute	this

				35	 software	(or	portions	thereof)	for	any	purpose,	without	fee,	subject	to	these

				36	 conditions:

				37	 (1)	If	any	part	of	the	source	code	for	this	software	is	distributed,	then	this

				38	 README	file	must	be	included,	with	this	copyright	and	no-warranty	notice

				39	 unaltered;	and	any	additions,	deletions,	or	changes	to	the	original	files

				40	 must	be	clearly	indicated	in	accompanying	documentation.

				41	 (2)	If	only	executable	code	is	distributed,	then	the	accompanying

				42	 documentation	must	state	that	"this	software	is	based	in	part	on	the	work	of

				43	 the	Independent	JPEG	Group".

				44	 (3)	Permission	for	use	of	this	software	is	granted	only	if	the	user	accepts

				45	 full	responsibility	for	any	undesirable	consequences;	the	authors	accept

				46	 NO	LIABILITY	for	damages	of	any	kind.

				47	

				48	 These	conditions	apply	to	any	software	derived	from	or	based	on	the	IJG	code,

				49	 not	just	to	the	unmodified	library.		If	you	use	our	work,	you	ought	to

				50	 acknowledge	us.

				51	

				52	 Permission	is	NOT	granted	for	the	use	of	any	IJG	author's	name	or	company	name

				53	 in	advertising	or	publicity	relating	to	this	software	or	products	derived	from

				54	 it.		This	software	may	be	referred	to	only	as	"the	Independent	JPEG	Group's

				55	 software".

				56	

				57	 We	specifically	permit	and	encourage	the	use	of	this	software	as	the	basis	of

				58	 commercial	products,	provided	that	all	warranty	or	liability	claims	are

				59	 assumed	by	the	product	vendor.

				60	 */

				61	

				62	 //	Trigonometric	constants	in	13-bit	fixed	point	format.

				63	 const	(

				64	 	 fix_0_298631336	=	2446

				65	 	 fix_0_390180644	=	3196

				66	 	 fix_0_541196100	=	4433

				67	 	 fix_0_765366865	=	6270

				68	 	 fix_0_899976223	=	7373

				69	 	 fix_1_175875602	=	9633

				70	 	 fix_1_501321110	=	12299

				71	 	 fix_1_847759065	=	15137

				72	 	 fix_1_961570560	=	16069

				73	 	 fix_2_053119869	=	16819

				74	 	 fix_2_562915447	=	20995

				75	 	 fix_3_072711026	=	25172

				76)

				77	

				78	 const	(

				79	 	 constBits					=	13

				80	 	 pass1Bits					=	2

				81	 	 centerJSample	=	128

				82)

				83	

				84	 //	fdct	performs	a	forward	DCT	on	an	8x8	block	of	coefficients,	including	a

				85	 //	level	shift.

				86	 func	fdct(b	*block)	{

				87	 	 //	Pass	1:	process	rows.

				88	 	 for	y	:=	0;	y	<	8;	y++	{

				89	 	 	 x0	:=	b[y*8+0]

				90	 	 	 x1	:=	b[y*8+1]

				91	 	 	 x2	:=	b[y*8+2]

				92	 	 	 x3	:=	b[y*8+3]

				93	 	 	 x4	:=	b[y*8+4]

				94	 	 	 x5	:=	b[y*8+5]

				95	 	 	 x6	:=	b[y*8+6]

				96	 	 	 x7	:=	b[y*8+7]

				97	

				98	 	 	 tmp0	:=	x0	+	x7

				99	 	 	 tmp1	:=	x1	+	x6

			100	 	 	 tmp2	:=	x2	+	x5

			101	 	 	 tmp3	:=	x3	+	x4

			102	

			103	 	 	 tmp10	:=	tmp0	+	tmp3

			104	 	 	 tmp12	:=	tmp0	-	tmp3

			105	 	 	 tmp11	:=	tmp1	+	tmp2

			106	 	 	 tmp13	:=	tmp1	-	tmp2

			107	

			108	 	 	 tmp0	=	x0	-	x7

			109	 	 	 tmp1	=	x1	-	x6

			110	 	 	 tmp2	=	x2	-	x5

			111	 	 	 tmp3	=	x3	-	x4

			112	

			113	 	 	 b[y*8+0]	=	(tmp10	+	tmp11	-	8*centerJSample)	<<	pass1Bits

			114	 	 	 b[y*8+4]	=	(tmp10	-	tmp11)	<<	pass1Bits

			115	 	 	 z1	:=	(tmp12	+	tmp13)	*	fix_0_541196100

			116	 	 	 z1	+=	1	<<	(constBits	-	pass1Bits	-	1)

			117	 	 	 b[y*8+2]	=	(z1	+	tmp12*fix_0_765366865)	>>	(constBits	-	pass1Bits)

			118	 	 	 b[y*8+6]	=	(z1	-	tmp13*fix_1_847759065)	>>	(constBits	-	pass1Bits)

			119	

			120	 	 	 tmp10	=	tmp0	+	tmp3

			121	 	 	 tmp11	=	tmp1	+	tmp2

			122	 	 	 tmp12	=	tmp0	+	tmp2

			123	 	 	 tmp13	=	tmp1	+	tmp3

			124	 	 	 z1	=	(tmp12	+	tmp13)	*	fix_1_175875602

			125	 	 	 z1	+=	1	<<	(constBits	-	pass1Bits	-	1)

			126	 	 	 tmp0	=	tmp0	*	fix_1_501321110

			127	 	 	 tmp1	=	tmp1	*	fix_3_072711026

			128	 	 	 tmp2	=	tmp2	*	fix_2_053119869

			129	 	 	 tmp3	=	tmp3	*	fix_0_298631336

			130	 	 	 tmp10	=	tmp10	*	-fix_0_899976223

			131	 	 	 tmp11	=	tmp11	*	-fix_2_562915447

			132	 	 	 tmp12	=	tmp12	*	-fix_0_390180644

			133	 	 	 tmp13	=	tmp13	*	-fix_1_961570560

			134	

			135	 	 	 tmp12	+=	z1

			136	 	 	 tmp13	+=	z1

			137	 	 	 b[y*8+1]	=	(tmp0	+	tmp10	+	tmp12)	>>	(constBits	-	pass1Bits)

			138	 	 	 b[y*8+3]	=	(tmp1	+	tmp11	+	tmp13)	>>	(constBits	-	pass1Bits)

			139	 	 	 b[y*8+5]	=	(tmp2	+	tmp11	+	tmp12)	>>	(constBits	-	pass1Bits)

			140	 	 	 b[y*8+7]	=	(tmp3	+	tmp10	+	tmp13)	>>	(constBits	-	pass1Bits)

			141	 	 }

			142	 	 //	Pass	2:	process	columns.

			143	 	 //	We	remove	pass1Bits	scaling,	but	leave	results	scaled	up	by	an	overall	factor	of	8.

			144	 	 for	x	:=	0;	x	<	8;	x++	{

			145	 	 	 tmp0	:=	b[0*8+x]	+	b[7*8+x]

			146	 	 	 tmp1	:=	b[1*8+x]	+	b[6*8+x]

			147	 	 	 tmp2	:=	b[2*8+x]	+	b[5*8+x]

			148	 	 	 tmp3	:=	b[3*8+x]	+	b[4*8+x]

			149	

			150	 	 	 tmp10	:=	tmp0	+	tmp3	+	1<<(pass1Bits-1)

			151	 	 	 tmp12	:=	tmp0	-	tmp3

			152	 	 	 tmp11	:=	tmp1	+	tmp2

			153	 	 	 tmp13	:=	tmp1	-	tmp2

			154	

			155	 	 	 tmp0	=	b[0*8+x]	-	b[7*8+x]

			156	 	 	 tmp1	=	b[1*8+x]	-	b[6*8+x]

			157	 	 	 tmp2	=	b[2*8+x]	-	b[5*8+x]

			158	 	 	 tmp3	=	b[3*8+x]	-	b[4*8+x]

			159	

			160	 	 	 b[0*8+x]	=	(tmp10	+	tmp11)	>>	pass1Bits

			161	 	 	 b[4*8+x]	=	(tmp10	-	tmp11)	>>	pass1Bits

			162	

			163	 	 	 z1	:=	(tmp12	+	tmp13)	*	fix_0_541196100

			164	 	 	 z1	+=	1	<<	(constBits	+	pass1Bits	-	1)

			165	 	 	 b[2*8+x]	=	(z1	+	tmp12*fix_0_765366865)	>>	(constBits	+	pass1Bits)

			166	 	 	 b[6*8+x]	=	(z1	-	tmp13*fix_1_847759065)	>>	(constBits	+	pass1Bits)

			167	

			168	 	 	 tmp10	=	tmp0	+	tmp3

			169	 	 	 tmp11	=	tmp1	+	tmp2

			170	 	 	 tmp12	=	tmp0	+	tmp2

			171	 	 	 tmp13	=	tmp1	+	tmp3

			172	 	 	 z1	=	(tmp12	+	tmp13)	*	fix_1_175875602

			173	 	 	 z1	+=	1	<<	(constBits	+	pass1Bits	-	1)

			174	 	 	 tmp0	=	tmp0	*	fix_1_501321110

			175	 	 	 tmp1	=	tmp1	*	fix_3_072711026

			176	 	 	 tmp2	=	tmp2	*	fix_2_053119869

			177	 	 	 tmp3	=	tmp3	*	fix_0_298631336

			178	 	 	 tmp10	=	tmp10	*	-fix_0_899976223

			179	 	 	 tmp11	=	tmp11	*	-fix_2_562915447

			180	 	 	 tmp12	=	tmp12	*	-fix_0_390180644

			181	 	 	 tmp13	=	tmp13	*	-fix_1_961570560

			182	

			183	 	 	 tmp12	+=	z1

			184	 	 	 tmp13	+=	z1

			185	 	 	 b[1*8+x]	=	(tmp0	+	tmp10	+	tmp12)	>>	(constBits	+	pass1Bits)

			186	 	 	 b[3*8+x]	=	(tmp1	+	tmp11	+	tmp13)	>>	(constBits	+	pass1Bits)

			187	 	 	 b[5*8+x]	=	(tmp2	+	tmp11	+	tmp12)	>>	(constBits	+	pass1Bits)

			188	 	 	 b[7*8+x]	=	(tmp3	+	tmp10	+	tmp13)	>>	(constBits	+	pass1Bits)

			189	 	 }

			190	 }

Build	version	go1.0.1.

Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/image/jpeg/huffman.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	jpeg

					6	

					7	 import	"io"

					8	

					9	 //	Each	code	is	at	most	16	bits	long.

				10	 const	maxCodeLength	=	16

				11	

				12	 //	Each	decoded	value	is	a	uint8,	so	there	are	at	most	256	such	values.

				13	 const	maxNumValues	=	256

				14	

				15	 //	Bit	stream	for	the	Huffman	decoder.

				16	 //	The	n	least	significant	bits	of	a	form	the	unread	bits,	to	be	read	in	MSB	to	LSB	order.

				17	 type	bits	struct	{

				18	 	 a	int	//	accumulator.

				19	 	 n	int	//	the	number	of	unread	bits	in	a.

				20	 	 m	int	//	mask.	m==1<<(n-1)	when	n>0,	with	m==0	when	n==0.

				21	 }

				22	

				23	 //	Huffman	table	decoder,	specified	in	section	C.

				24	 type	huffman	struct	{

				25	 	 l								[maxCodeLength]int

				26	 	 length			int																	//	sum	of	l[i].

				27	 	 val						[maxNumValues]uint8	//	the	decoded	values,	as	sorted	by	their	encoding.

				28	 	 size					[maxNumValues]int			//	size[i]	is	the	number	of	bits	to	encode	val[i].

				29	 	 code					[maxNumValues]int			//	code[i]	is	the	encoding	of	val[i].

				30	 	 minCode		[maxCodeLength]int		//	min	codes	of	length	i,	or	-1	if	no	codes	of	that	length.

				31	 	 maxCode		[maxCodeLength]int		//	max	codes	of	length	i,	or	-1	if	no	codes	of	that	length.

				32	 	 valIndex	[maxCodeLength]int		//	index	into	val	of	minCode[i].

				33	 }

				34	

				35	 //	Reads	bytes	from	the	io.Reader	to	ensure	that	bits.n	is	at	least	n.

				36	 func	(d	*decoder)	ensureNBits(n	int)	error	{

				37	 	 for	d.b.n	<	n	{

				38	 	 	 c,	err	:=	d.r.ReadByte()

				39	 	 	 if	err	!=	nil	{

				40	 	 	 	 return	err

				41	 	 	 }

				42	 	 	 d.b.a	=	d.b.a<<8	|	int(c)

				43	 	 	 d.b.n	+=	8

				44	 	 	 if	d.b.m	==	0	{

				45	 	 	 	 d.b.m	=	1	<<	7

				46	 	 	 }	else	{

				47	 	 	 	 d.b.m	<<=	8

				48	 	 	 }

				49	 	 	 //	Byte	stuffing,	specified	in	section	F.1.2.3.

				50	 	 	 if	c	==	0xff	{

				51	 	 	 	 c,	err	=	d.r.ReadByte()

				52	 	 	 	 if	err	!=	nil	{

				53	 	 	 	 	 return	err

				54	 	 	 	 }

				55	 	 	 	 if	c	!=	0x00	{

				56	 	 	 	 	 return	FormatError("missing	0xff00	sequence")

				57	 	 	 	 }

				58	 	 	 }

				59	 	 }

				60	 	 return	nil

				61	 }

				62	

				63	 //	The	composition	of	RECEIVE	and	EXTEND,	specified	in	section	F.2.2.1.

				64	 func	(d	*decoder)	receiveExtend(t	uint8)	(int,	error)	{

				65	 	 err	:=	d.ensureNBits(int(t))

				66	 	 if	err	!=	nil	{

				67	 	 	 return	0,	err

				68	 	 }

				69	 	 d.b.n	-=	int(t)

				70	 	 d.b.m	>>=	t

				71	 	 s	:=	1	<<	t

				72	 	 x	:=	(d.b.a	>>	uint8(d.b.n))	&	(s	-	1)

				73	 	 if	x	<	s>>1	{

				74	 	 	 x	+=	((-1)	<<	t)	+	1

				75	 	 }

				76	 	 return	x,	nil

				77	 }

				78	

				79	 //	Processes	a	Define	Huffman	Table	marker,	and	initializes	a	huffman	struct	from	its	contents.

				80	 //	Specified	in	section	B.2.4.2.

				81	 func	(d	*decoder)	processDHT(n	int)	error	{

				82	 	 for	n	>	0	{

				83	 	 	 if	n	<	17	{

				84	 	 	 	 return	FormatError("DHT	has	wrong	length")

				85	 	 	 }

				86	 	 	 _,	err	:=	io.ReadFull(d.r,	d.tmp[0:17])

				87	 	 	 if	err	!=	nil	{

				88	 	 	 	 return	err

				89	 	 	 }

				90	 	 	 tc	:=	d.tmp[0]	>>	4

				91	 	 	 if	tc	>	maxTc	{

				92	 	 	 	 return	FormatError("bad	Tc	value")

				93	 	 	 }

				94	 	 	 th	:=	d.tmp[0]	&	0x0f

				95	 	 	 const	isBaseline	=	true	//	Progressive	mode	is	not	yet	supported.

				96	 	 	 if	th	>	maxTh	||	isBaseline	&&	th	>	1	{

				97	 	 	 	 return	FormatError("bad	Th	value")

				98	 	 	 }

				99	 	 	 h	:=	&d.huff[tc][th]

			100	

			101	 	 	 //	Read	l	and	val	(and	derive	length).

			102	 	 	 h.length	=	0

			103	 	 	 for	i	:=	0;	i	<	maxCodeLength;	i++	{

			104	 	 	 	 h.l[i]	=	int(d.tmp[i+1])

			105	 	 	 	 h.length	+=	h.l[i]

			106	 	 	 }

			107	 	 	 if	h.length	==	0	{

			108	 	 	 	 return	FormatError("Huffman	table	has	zero	length")

			109	 	 	 }

			110	 	 	 if	h.length	>	maxNumValues	{

			111	 	 	 	 return	FormatError("Huffman	table	has	excessive	length")

			112	 	 	 }

			113	 	 	 n	-=	h.length	+	17

			114	 	 	 if	n	<	0	{

			115	 	 	 	 return	FormatError("DHT	has	wrong	length")

			116	 	 	 }

			117	 	 	 _,	err	=	io.ReadFull(d.r,	h.val[0:h.length])

			118	 	 	 if	err	!=	nil	{

			119	 	 	 	 return	err

			120	 	 	 }

			121	

			122	 	 	 //	Derive	size.

			123	 	 	 k	:=	0

			124	 	 	 for	i	:=	0;	i	<	maxCodeLength;	i++	{

			125	 	 	 	 for	j	:=	0;	j	<	h.l[i];	j++	{

			126	 	 	 	 	 h.size[k]	=	i	+	1

			127	 	 	 	 	 k++

			128	 	 	 	 }

			129	 	 	 }

			130	

			131	 	 	 //	Derive	code.

			132	 	 	 code	:=	0

			133	 	 	 size	:=	h.size[0]

			134	 	 	 for	i	:=	0;	i	<	h.length;	i++	{

			135	 	 	 	 if	size	!=	h.size[i]	{

			136	 	 	 	 	 code	<<=	uint8(h.size[i]	-	size)

			137	 	 	 	 	 size	=	h.size[i]

			138	 	 	 	 }

			139	 	 	 	 h.code[i]	=	code

			140	 	 	 	 code++

			141	 	 	 }

			142	

			143	 	 	 //	Derive	minCode,	maxCode,	and	valIndex.

			144	 	 	 k	=	0

			145	 	 	 index	:=	0

			146	 	 	 for	i	:=	0;	i	<	maxCodeLength;	i++	{

			147	 	 	 	 if	h.l[i]	==	0	{

			148	 	 	 	 	 h.minCode[i]	=	-1

			149	 	 	 	 	 h.maxCode[i]	=	-1

			150	 	 	 	 	 h.valIndex[i]	=	-1

			151	 	 	 	 }	else	{

			152	 	 	 	 	 h.minCode[i]	=	k

			153	 	 	 	 	 h.maxCode[i]	=	k	+	h.l[i]	-	1

			154	 	 	 	 	 h.valIndex[i]	=	index

			155	 	 	 	 	 k	+=	h.l[i]

			156	 	 	 	 	 index	+=	h.l[i]

			157	 	 	 	 }

			158	 	 	 	 k	<<=	1

			159	 	 	 }

			160	 	 }

			161	 	 return	nil

			162	 }

			163	

			164	 //	Returns	the	next	Huffman-coded	value	from	the	bit	stream,	decoded	according	to	h.

			165	 //	TODO(nigeltao):	This	decoding	algorithm	is	simple,	but	slow.	A	lookahead	table,	instead	of	always

			166	 //	peeling	off	only	1	bit	at	at	time,	ought	to	be	faster.

			167	 func	(d	*decoder)	decodeHuffman(h	*huffman)	(uint8,	error)	{

			168	 	 if	h.length	==	0	{

			169	 	 	 return	0,	FormatError("uninitialized	Huffman	table")

			170	 	 }

			171	 	 for	i,	code	:=	0,	0;	i	<	maxCodeLength;	i++	{

			172	 	 	 err	:=	d.ensureNBits(1)

			173	 	 	 if	err	!=	nil	{

			174	 	 	 	 return	0,	err

			175	 	 	 }

			176	 	 	 if	d.b.a&d.b.m	!=	0	{

			177	 	 	 	 code	|=	1

			178	 	 	 }

			179	 	 	 d.b.n--

			180	 	 	 d.b.m	>>=	1

			181	 	 	 if	code	<=	h.maxCode[i]	{

			182	 	 	 	 return	h.val[h.valIndex[i]+code-h.minCode[i]],	nil

			183	 	 	 }

			184	 	 	 code	<<=	1

			185	 	 }

			186	 	 return	0,	FormatError("bad	Huffman	code")

			187	 }

Build	version	go1.0.1.

Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/image/jpeg/idct.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	jpeg

					6	

					7	 //	This	is	a	Go	translation	of	idct.c	from

					8	 //

					9	 //	http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_13818-4_2004_Conformance_Testing/Video/verifier/mpeg2decode_960109.tar.gz

				10	 //

				11	 //	which	carries	the	following	notice:

				12	

				13	 /*	Copyright	(C)	1996,	MPEG	Software	Simulation	Group.	All	Rights	Reserved.	*/

				14	

				15	 /*

				16	 	*	Disclaimer	of	Warranty

				17	 	*

				18	 	*	These	software	programs	are	available	to	the	user	without	any	license	fee	or

				19	 	*	royalty	on	an	"as	is"	basis.		The	MPEG	Software	Simulation	Group	disclaims

				20	 	*	any	and	all	warranties,	whether	express,	implied,	or	statuary,	including	any

				21	 	*	implied	warranties	or	merchantability	or	of	fitness	for	a	particular

				22	 	*	purpose.		In	no	event	shall	the	copyright-holder	be	liable	for	any

				23	 	*	incidental,	punitive,	or	consequential	damages	of	any	kind	whatsoever

				24	 	*	arising	from	the	use	of	these	programs.

				25	 	*

				26	 	*	This	disclaimer	of	warranty	extends	to	the	user	of	these	programs	and	user's

				27	 	*	customers,	employees,	agents,	transferees,	successors,	and	assigns.

				28	 	*

				29	 	*	The	MPEG	Software	Simulation	Group	does	not	represent	or	warrant	that	the

				30	 	*	programs	furnished	hereunder	are	free	of	infringement	of	any	third-party

				31	 	*	patents.

				32	 	*

				33	 	*	Commercial	implementations	of	MPEG-1	and	MPEG-2	video,	including	shareware,

				34	 	*	are	subject	to	royalty	fees	to	patent	holders.		Many	of	these	patents	are

				35	 	*	general	enough	such	that	they	are	unavoidable	regardless	of	implementation

				36	 	*	design.

				37	 	*

				38	 	*/

				39	

				40	 const	(

				41	 	 w1	=	2841	//	2048*sqrt(2)*cos(1*pi/16)

				42	 	 w2	=	2676	//	2048*sqrt(2)*cos(2*pi/16)

				43	 	 w3	=	2408	//	2048*sqrt(2)*cos(3*pi/16)

				44	 	 w5	=	1609	//	2048*sqrt(2)*cos(5*pi/16)

				45	 	 w6	=	1108	//	2048*sqrt(2)*cos(6*pi/16)

				46	 	 w7	=	565		//	2048*sqrt(2)*cos(7*pi/16)

				47	

				48	 	 w1pw7	=	w1	+	w7

				49	 	 w1mw7	=	w1	-	w7

				50	 	 w2pw6	=	w2	+	w6

				51	 	 w2mw6	=	w2	-	w6

				52	 	 w3pw5	=	w3	+	w5

				53	 	 w3mw5	=	w3	-	w5

				54	

				55	 	 r2	=	181	//	256/sqrt(2)

				56)

				57	

				58	 //	idct	performs	a	2-D	Inverse	Discrete	Cosine	Transformation,	followed	by	a

				59	 //	+128	level	shift	and	a	clip	to	[0,	255],	writing	the	results	to	dst.

				60	 //	stride	is	the	number	of	elements	between	successive	rows	of	dst.

				61	 //

				62	 //	The	input	coefficients	should	already	have	been	multiplied	by	the

				63	 //	appropriate	quantization	table.	We	use	fixed-point	computation,	with	the

				64	 //	number	of	bits	for	the	fractional	component	varying	over	the	intermediate

				65	 //	stages.

				66	 //

				67	 //	For	more	on	the	actual	algorithm,	see	Z.	Wang,	"Fast	algorithms	for	the

				68	 //	discrete	W	transform	and	for	the	discrete	Fourier	transform",	IEEE	Trans.	on

				69	 //	ASSP,	Vol.	ASSP-	32,	pp.	803-816,	Aug.	1984.

				70	 func	idct(dst	[]byte,	stride	int,	src	*block)	{

				71	 	 //	Horizontal	1-D	IDCT.

				72	 	 for	y	:=	0;	y	<	8;	y++	{

				73	 	 	 //	If	all	the	AC	components	are	zero,	then	the	IDCT	is	trivial.

				74	 	 	 if	src[y*8+1]	==	0	&&	src[y*8+2]	==	0	&&	src[y*8+3]	==	0	&&

				75	 	 	 	 src[y*8+4]	==	0	&&	src[y*8+5]	==	0	&&	src[y*8+6]	==	0	&&	src[y*8+7]	==	0	{

				76	 	 	 	 dc	:=	src[y*8+0]	<<	3

				77	 	 	 	 src[y*8+0]	=	dc

				78	 	 	 	 src[y*8+1]	=	dc

				79	 	 	 	 src[y*8+2]	=	dc

				80	 	 	 	 src[y*8+3]	=	dc

				81	 	 	 	 src[y*8+4]	=	dc

				82	 	 	 	 src[y*8+5]	=	dc

				83	 	 	 	 src[y*8+6]	=	dc

				84	 	 	 	 src[y*8+7]	=	dc

				85	 	 	 	 continue

				86	 	 	 }

				87	

				88	 	 	 //	Prescale.

				89	 	 	 x0	:=	(src[y*8+0]	<<	11)	+	128

				90	 	 	 x1	:=	src[y*8+4]	<<	11

				91	 	 	 x2	:=	src[y*8+6]

				92	 	 	 x3	:=	src[y*8+2]

				93	 	 	 x4	:=	src[y*8+1]

				94	 	 	 x5	:=	src[y*8+7]

				95	 	 	 x6	:=	src[y*8+5]

				96	 	 	 x7	:=	src[y*8+3]

				97	

				98	 	 	 //	Stage	1.

				99	 	 	 x8	:=	w7	*	(x4	+	x5)

			100	 	 	 x4	=	x8	+	w1mw7*x4

			101	 	 	 x5	=	x8	-	w1pw7*x5

			102	 	 	 x8	=	w3	*	(x6	+	x7)

			103	 	 	 x6	=	x8	-	w3mw5*x6

			104	 	 	 x7	=	x8	-	w3pw5*x7

			105	

			106	 	 	 //	Stage	2.

			107	 	 	 x8	=	x0	+	x1

			108	 	 	 x0	-=	x1

			109	 	 	 x1	=	w6	*	(x3	+	x2)

			110	 	 	 x2	=	x1	-	w2pw6*x2

			111	 	 	 x3	=	x1	+	w2mw6*x3

			112	 	 	 x1	=	x4	+	x6

			113	 	 	 x4	-=	x6

			114	 	 	 x6	=	x5	+	x7

			115	 	 	 x5	-=	x7

			116	

			117	 	 	 //	Stage	3.

			118	 	 	 x7	=	x8	+	x3

			119	 	 	 x8	-=	x3

			120	 	 	 x3	=	x0	+	x2

			121	 	 	 x0	-=	x2

			122	 	 	 x2	=	(r2*(x4+x5)	+	128)	>>	8

			123	 	 	 x4	=	(r2*(x4-x5)	+	128)	>>	8

			124	

			125	 	 	 //	Stage	4.

			126	 	 	 src[8*y+0]	=	(x7	+	x1)	>>	8

			127	 	 	 src[8*y+1]	=	(x3	+	x2)	>>	8

			128	 	 	 src[8*y+2]	=	(x0	+	x4)	>>	8

			129	 	 	 src[8*y+3]	=	(x8	+	x6)	>>	8

			130	 	 	 src[8*y+4]	=	(x8	-	x6)	>>	8

			131	 	 	 src[8*y+5]	=	(x0	-	x4)	>>	8

			132	 	 	 src[8*y+6]	=	(x3	-	x2)	>>	8

			133	 	 	 src[8*y+7]	=	(x7	-	x1)	>>	8

			134	 	 }

			135	

			136	 	 //	Vertical	1-D	IDCT.

			137	 	 for	x	:=	0;	x	<	8;	x++	{

			138	 	 	 //	Similar	to	the	horizontal	1-D	IDCT	case,	if	all	the	AC	components	are	zero,	then	the	IDCT	is	trivial.

			139	 	 	 //	However,	after	performing	the	horizontal	1-D	IDCT,	there	are	typically	non-zero	AC	components,	so

			140	 	 	 //	we	do	not	bother	to	check	for	the	all-zero	case.

			141	

			142	 	 	 //	Prescale.

			143	 	 	 y0	:=	(src[8*0+x]	<<	8)	+	8192

			144	 	 	 y1	:=	src[8*4+x]	<<	8

			145	 	 	 y2	:=	src[8*6+x]

			146	 	 	 y3	:=	src[8*2+x]

			147	 	 	 y4	:=	src[8*1+x]

			148	 	 	 y5	:=	src[8*7+x]

			149	 	 	 y6	:=	src[8*5+x]

			150	 	 	 y7	:=	src[8*3+x]

			151	

			152	 	 	 //	Stage	1.

			153	 	 	 y8	:=	w7*(y4+y5)	+	4

			154	 	 	 y4	=	(y8	+	w1mw7*y4)	>>	3

			155	 	 	 y5	=	(y8	-	w1pw7*y5)	>>	3

			156	 	 	 y8	=	w3*(y6+y7)	+	4

			157	 	 	 y6	=	(y8	-	w3mw5*y6)	>>	3

			158	 	 	 y7	=	(y8	-	w3pw5*y7)	>>	3

			159	

			160	 	 	 //	Stage	2.

			161	 	 	 y8	=	y0	+	y1

			162	 	 	 y0	-=	y1

			163	 	 	 y1	=	w6*(y3+y2)	+	4

			164	 	 	 y2	=	(y1	-	w2pw6*y2)	>>	3

			165	 	 	 y3	=	(y1	+	w2mw6*y3)	>>	3

			166	 	 	 y1	=	y4	+	y6

			167	 	 	 y4	-=	y6

			168	 	 	 y6	=	y5	+	y7

			169	 	 	 y5	-=	y7

			170	

			171	 	 	 //	Stage	3.

			172	 	 	 y7	=	y8	+	y3

			173	 	 	 y8	-=	y3

			174	 	 	 y3	=	y0	+	y2

			175	 	 	 y0	-=	y2

			176	 	 	 y2	=	(r2*(y4+y5)	+	128)	>>	8

			177	 	 	 y4	=	(r2*(y4-y5)	+	128)	>>	8

			178	

			179	 	 	 //	Stage	4.

			180	 	 	 src[8*0+x]	=	(y7	+	y1)	>>	14

			181	 	 	 src[8*1+x]	=	(y3	+	y2)	>>	14

			182	 	 	 src[8*2+x]	=	(y0	+	y4)	>>	14

			183	 	 	 src[8*3+x]	=	(y8	+	y6)	>>	14

			184	 	 	 src[8*4+x]	=	(y8	-	y6)	>>	14

			185	 	 	 src[8*5+x]	=	(y0	-	y4)	>>	14

			186	 	 	 src[8*6+x]	=	(y3	-	y2)	>>	14

			187	 	 	 src[8*7+x]	=	(y7	-	y1)	>>	14

			188	 	 }

			189	

			190	 	 //	Level	shift	by	+128,	clip	to	[0,	255],	and	write	to	dst.

			191	 	 for	y	:=	0;	y	<	8;	y++	{

			192	 	 	 for	x	:=	0;	x	<	8;	x++	{

			193	 	 	 	 c	:=	src[y*8+x]

			194	 	 	 	 if	c	<	-128	{

			195	 	 	 	 	 c	=	0

			196	 	 	 	 }	else	if	c	>	127	{

			197	 	 	 	 	 c	=	255

			198	 	 	 	 }	else	{

			199	 	 	 	 	 c	+=	128

			200	 	 	 	 }

			201	 	 	 	 dst[y*stride+x]	=	uint8(c)

			202	 	 	 }

			203	 	 }

			204	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/image/jpeg/reader.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	jpeg	implements	a	JPEG	image	decoder	and	encoder.

					6	 //

					7	 //	JPEG	is	defined	in	ITU-T	T.81:	http://www.w3.org/Graphics/JPEG/itu-t81.pdf.

					8	 package	jpeg

					9	

				10	 import	(

				11	 	 "bufio"

				12	 	 "image"

				13	 	 "image/color"

				14	 	 "io"

				15)

				16	

				17	 //	TODO(nigeltao):	fix	up	the	doc	comment	style	so	that	sentences	start	with

				18	 //	the	name	of	the	type	or	function	that	they	annotate.

				19	

				20	 //	A	FormatError	reports	that	the	input	is	not	a	valid	JPEG.

				21	 type	FormatError	string

				22	

				23	 func	(e	FormatError)	Error()	string	{	return	"invalid	JPEG	format:	"	+	string(e)	}

				24	

				25	 //	An	UnsupportedError	reports	that	the	input	uses	a	valid	but	unimplemented	JPEG	feature.

				26	 type	UnsupportedError	string

				27	

				28	 func	(e	UnsupportedError)	Error()	string	{	return	"unsupported	JPEG	feature:	"	+	string(e)	}

				29	

				30	 //	Component	specification,	specified	in	section	B.2.2.

				31	 type	component	struct	{

				32	 	 h		int			//	Horizontal	sampling	factor.

				33	 	 v		int			//	Vertical	sampling	factor.

				34	 	 c		uint8	//	Component	identifier.

				35	 	 tq	uint8	//	Quantization	table	destination	selector.

				36	 }

				37	

				38	 type	block	[blockSize]int

				39	

				40	 const	(

				41	 	 blockSize	=	64	//	A	DCT	block	is	8x8.

				42	

				43	 	 dcTable	=	0

				44	 	 acTable	=	1

				45	 	 maxTc			=	1

				46	 	 maxTh			=	3

				47	 	 maxTq			=	3

				48	

				49	 	 //	A	grayscale	JPEG	image	has	only	a	Y	component.

				50	 	 nGrayComponent	=	1

				51	 	 //	A	color	JPEG	image	has	Y,	Cb	and	Cr	components.

				52	 	 nColorComponent	=	3

				53	

				54	 	 //	We	only	support	4:4:4,	4:2:2	and	4:2:0	downsampling,	and	therefore	the

				55	 	 //	number	of	luma	samples	per	chroma	sample	is	at	most	2	in	the	horizontal

				56	 	 //	and	2	in	the	vertical	direction.

				57	 	 maxH	=	2

				58	 	 maxV	=	2

				59)

				60	

				61	 const	(

				62	 	 soiMarker			=	0xd8	//	Start	Of	Image.

				63	 	 eoiMarker			=	0xd9	//	End	Of	Image.

				64	 	 sof0Marker		=	0xc0	//	Start	Of	Frame	(Baseline).

				65	 	 sof2Marker		=	0xc2	//	Start	Of	Frame	(Progressive).

				66	 	 dhtMarker			=	0xc4	//	Define	Huffman	Table.

				67	 	 dqtMarker			=	0xdb	//	Define	Quantization	Table.

				68	 	 sosMarker			=	0xda	//	Start	Of	Scan.

				69	 	 driMarker			=	0xdd	//	Define	Restart	Interval.

				70	 	 rst0Marker		=	0xd0	//	ReSTart	(0).

				71	 	 rst7Marker		=	0xd7	//	ReSTart	(7).

				72	 	 app0Marker		=	0xe0	//	APPlication	specific	(0).

				73	 	 app15Marker	=	0xef	//	APPlication	specific	(15).

				74	 	 comMarker			=	0xfe	//	COMment.

				75)

				76	

				77	 //	Maps	from	the	zig-zag	ordering	to	the	natural	ordering.

				78	 var	unzig	=	[blockSize]int{

				79	 	 0,	1,	8,	16,	9,	2,	3,	10,

				80	 	 17,	24,	32,	25,	18,	11,	4,	5,

				81	 	 12,	19,	26,	33,	40,	48,	41,	34,

				82	 	 27,	20,	13,	6,	7,	14,	21,	28,

				83	 	 35,	42,	49,	56,	57,	50,	43,	36,

				84	 	 29,	22,	15,	23,	30,	37,	44,	51,

				85	 	 58,	59,	52,	45,	38,	31,	39,	46,

				86	 	 53,	60,	61,	54,	47,	55,	62,	63,

				87	 }

				88	

				89	 //	If	the	passed	in	io.Reader	does	not	also	have	ReadByte,	then	Decode	will	introduce	its	own	buffering.

				90	 type	Reader	interface	{

				91	 	 io.Reader

				92	 	 ReadByte()	(c	byte,	err	error)

				93	 }

				94	

				95	 type	decoder	struct	{

				96	 	 r													Reader

				97	 	 width,	height	int

				98	 	 img1										*image.Gray

				99	 	 img3										*image.YCbCr

			100	 	 ri												int	//	Restart	Interval.

			101	 	 nComp									int

			102	 	 comp										[nColorComponent]component

			103	 	 huff										[maxTc	+	1][maxTh	+	1]huffman

			104	 	 quant									[maxTq	+	1]block

			105	 	 b													bits

			106	 	 tmp											[1024]byte

			107	 }

			108	

			109	 //	Reads	and	ignores	the	next	n	bytes.

			110	 func	(d	*decoder)	ignore(n	int)	error	{

			111	 	 for	n	>	0	{

			112	 	 	 m	:=	len(d.tmp)

			113	 	 	 if	m	>	n	{

			114	 	 	 	 m	=	n

			115	 	 	 }

			116	 	 	 _,	err	:=	io.ReadFull(d.r,	d.tmp[0:m])

			117	 	 	 if	err	!=	nil	{

			118	 	 	 	 return	err

			119	 	 	 }

			120	 	 	 n	-=	m

			121	 	 }

			122	 	 return	nil

			123	 }

			124	

			125	 //	Specified	in	section	B.2.2.

			126	 func	(d	*decoder)	processSOF(n	int)	error	{

			127	 	 switch	n	{

			128	 	 case	6	+	3*nGrayComponent:

			129	 	 	 d.nComp	=	nGrayComponent

			130	 	 case	6	+	3*nColorComponent:

			131	 	 	 d.nComp	=	nColorComponent

			132	 	 default:

			133	 	 	 return	UnsupportedError("SOF	has	wrong	length")

			134	 	 }

			135	 	 _,	err	:=	io.ReadFull(d.r,	d.tmp[:n])

			136	 	 if	err	!=	nil	{

			137	 	 	 return	err

			138	 	 }

			139	 	 //	We	only	support	8-bit	precision.

			140	 	 if	d.tmp[0]	!=	8	{

			141	 	 	 return	UnsupportedError("precision")

			142	 	 }

			143	 	 d.height	=	int(d.tmp[1])<<8	+	int(d.tmp[2])

			144	 	 d.width	=	int(d.tmp[3])<<8	+	int(d.tmp[4])

			145	 	 if	int(d.tmp[5])	!=	d.nComp	{

			146	 	 	 return	UnsupportedError("SOF	has	wrong	number	of	image	components")

			147	 	 }

			148	 	 for	i	:=	0;	i	<	d.nComp;	i++	{

			149	 	 	 hv	:=	d.tmp[7+3*i]

			150	 	 	 d.comp[i].h	=	int(hv	>>	4)

			151	 	 	 d.comp[i].v	=	int(hv	&	0x0f)

			152	 	 	 d.comp[i].c	=	d.tmp[6+3*i]

			153	 	 	 d.comp[i].tq	=	d.tmp[8+3*i]

			154	 	 	 if	d.nComp	==	nGrayComponent	{

			155	 	 	 	 continue

			156	 	 	 }

			157	 	 	 //	For	color	images,	we	only	support	4:4:4,	4:2:2	or	4:2:0	chroma

			158	 	 	 //	downsampling	ratios.	This	implies	that	the	(h,	v)	values	for	the	Y

			159	 	 	 //	component	are	either	(1,	1),	(2,	1)	or	(2,	2),	and	the	(h,	v)

			160	 	 	 //	values	for	the	Cr	and	Cb	components	must	be	(1,	1).

			161	 	 	 if	i	==	0	{

			162	 	 	 	 if	hv	!=	0x11	&&	hv	!=	0x21	&&	hv	!=	0x22	{

			163	 	 	 	 	 return	UnsupportedError("luma	downsample	ratio")

			164	 	 	 	 }

			165	 	 	 }	else	if	hv	!=	0x11	{

			166	 	 	 	 return	UnsupportedError("chroma	downsample	ratio")

			167	 	 	 }

			168	 	 }

			169	 	 return	nil

			170	 }

			171	

			172	 //	Specified	in	section	B.2.4.1.

			173	 func	(d	*decoder)	processDQT(n	int)	error	{

			174	 	 const	qtLength	=	1	+	blockSize

			175	 	 for	;	n	>=	qtLength;	n	-=	qtLength	{

			176	 	 	 _,	err	:=	io.ReadFull(d.r,	d.tmp[0:qtLength])

			177	 	 	 if	err	!=	nil	{

			178	 	 	 	 return	err

			179	 	 	 }

			180	 	 	 pq	:=	d.tmp[0]	>>	4

			181	 	 	 if	pq	!=	0	{

			182	 	 	 	 return	UnsupportedError("bad	Pq	value")

			183	 	 	 }

			184	 	 	 tq	:=	d.tmp[0]	&	0x0f

			185	 	 	 if	tq	>	maxTq	{

			186	 	 	 	 return	FormatError("bad	Tq	value")

			187	 	 	 }

			188	 	 	 for	i	:=	range	d.quant[tq]	{

			189	 	 	 	 d.quant[tq][i]	=	int(d.tmp[i+1])

			190	 	 	 }

			191	 	 }

			192	 	 if	n	!=	0	{

			193	 	 	 return	FormatError("DQT	has	wrong	length")

			194	 	 }

			195	 	 return	nil

			196	 }

			197	

			198	 //	makeImg	allocates	and	initializes	the	destination	image.

			199	 func	(d	*decoder)	makeImg(h0,	v0,	mxx,	myy	int)	{

			200	 	 if	d.nComp	==	nGrayComponent	{

			201	 	 	 m	:=	image.NewGray(image.Rect(0,	0,	8*mxx,	8*myy))

			202	 	 	 d.img1	=	m.SubImage(image.Rect(0,	0,	d.width,	d.height)).(*image.Gray)

			203	 	 	 return

			204	 	 }

			205	 	 var	subsampleRatio	image.YCbCrSubsampleRatio

			206	 	 switch	h0	*	v0	{

			207	 	 case	1:

			208	 	 	 subsampleRatio	=	image.YCbCrSubsampleRatio444

			209	 	 case	2:

			210	 	 	 subsampleRatio	=	image.YCbCrSubsampleRatio422

			211	 	 case	4:

			212	 	 	 subsampleRatio	=	image.YCbCrSubsampleRatio420

			213	 	 default:

			214	 	 	 panic("unreachable")

			215	 	 }

			216	 	 m	:=	image.NewYCbCr(image.Rect(0,	0,	8*h0*mxx,	8*v0*myy),	subsampleRatio)

			217	 	 d.img3	=	m.SubImage(image.Rect(0,	0,	d.width,	d.height)).(*image.YCbCr)

			218	 }

			219	

			220	 //	Specified	in	section	B.2.3.

			221	 func	(d	*decoder)	processSOS(n	int)	error	{

			222	 	 if	d.nComp	==	0	{

			223	 	 	 return	FormatError("missing	SOF	marker")

			224	 	 }

			225	 	 if	n	!=	4+2*d.nComp	{

			226	 	 	 return	UnsupportedError("SOS	has	wrong	length")

			227	 	 }

			228	 	 _,	err	:=	io.ReadFull(d.r,	d.tmp[0:4+2*d.nComp])

			229	 	 if	err	!=	nil	{

			230	 	 	 return	err

			231	 	 }

			232	 	 if	int(d.tmp[0])	!=	d.nComp	{

			233	 	 	 return	UnsupportedError("SOS	has	wrong	number	of	image	components")

			234	 	 }

			235	 	 var	scan	[nColorComponent]struct	{

			236	 	 	 td	uint8	//	DC	table	selector.

			237	 	 	 ta	uint8	//	AC	table	selector.

			238	 	 }

			239	 	 for	i	:=	0;	i	<	d.nComp;	i++	{

			240	 	 	 cs	:=	d.tmp[1+2*i]	//	Component	selector.

			241	 	 	 if	cs	!=	d.comp[i].c	{

			242	 	 	 	 return	UnsupportedError("scan	components	out	of	order")

			243	 	 	 }

			244	 	 	 scan[i].td	=	d.tmp[2+2*i]	>>	4

			245	 	 	 scan[i].ta	=	d.tmp[2+2*i]	&	0x0f

			246	 	 }

			247	 	 //	mxx	and	myy	are	the	number	of	MCUs	(Minimum	Coded	Units)	in	the	image.

			248	 	 h0,	v0	:=	d.comp[0].h,	d.comp[0].v	//	The	h	and	v	values	from	the	Y	components.

			249	 	 mxx	:=	(d.width	+	8*h0	-	1)	/	(8	*	h0)

			250	 	 myy	:=	(d.height	+	8*v0	-	1)	/	(8	*	v0)

			251	 	 if	d.img1	==	nil	&&	d.img3	==	nil	{

			252	 	 	 d.makeImg(h0,	v0,	mxx,	myy)

			253	 	 }

			254	

			255	 	 mcu,	expectedRST	:=	0,	uint8(rst0Marker)

			256	 	 var	(

			257	 	 	 b		block

			258	 	 	 dc	[nColorComponent]int

			259)

			260	 	 for	my	:=	0;	my	<	myy;	my++	{

			261	 	 	 for	mx	:=	0;	mx	<	mxx;	mx++	{

			262	 	 	 	 for	i	:=	0;	i	<	d.nComp;	i++	{

			263	 	 	 	 	 qt	:=	&d.quant[d.comp[i].tq]

			264	 	 	 	 	 for	j	:=	0;	j	<	d.comp[i].h*d.comp[i].v;	j++	{

			265	 	 	 	 	 	 //	TODO(nigeltao):	make	this	a	"var	b	block"	once	the	compiler's	escape

			266	 	 	 	 	 	 //	analysis	is	good	enough	to	allocate	it	on	the	stack,	not	the	heap.

			267	 	 	 	 	 	 b	=	block{}

			268	

			269	 	 	 	 	 	 //	Decode	the	DC	coefficient,	as	specified	in	section	F.2.2.1.

			270	 	 	 	 	 	 value,	err	:=	d.decodeHuffman(&d.huff[dcTable][scan[i].td])

			271	 	 	 	 	 	 if	err	!=	nil	{

			272	 	 	 	 	 	 	 return	err

			273	 	 	 	 	 	 }

			274	 	 	 	 	 	 if	value	>	16	{

			275	 	 	 	 	 	 	 return	UnsupportedError("excessive	DC	component")

			276	 	 	 	 	 	 }

			277	 	 	 	 	 	 dcDelta,	err	:=	d.receiveExtend(value)

			278	 	 	 	 	 	 if	err	!=	nil	{

			279	 	 	 	 	 	 	 return	err

			280	 	 	 	 	 	 }

			281	 	 	 	 	 	 dc[i]	+=	dcDelta

			282	 	 	 	 	 	 b[0]	=	dc[i]	*	qt[0]

			283	

			284	 	 	 	 	 	 //	Decode	the	AC	coefficients,	as	specified	in	section	F.2.2.2.

			285	 	 	 	 	 	 for	k	:=	1;	k	<	blockSize;	k++	{

			286	 	 	 	 	 	 	 value,	err	:=	d.decodeHuffman(&d.huff[acTable][scan[i].ta])

			287	 	 	 	 	 	 	 if	err	!=	nil	{

			288	 	 	 	 	 	 	 	 return	err

			289	 	 	 	 	 	 	 }

			290	 	 	 	 	 	 	 val0	:=	value	>>	4

			291	 	 	 	 	 	 	 val1	:=	value	&	0x0f

			292	 	 	 	 	 	 	 if	val1	!=	0	{

			293	 	 	 	 	 	 	 	 k	+=	int(val0)

			294	 	 	 	 	 	 	 	 if	k	>	blockSize	{

			295	 	 	 	 	 	 	 	 	 return	FormatError("bad	DCT	index")

			296	 	 	 	 	 	 	 	 }

			297	 	 	 	 	 	 	 	 ac,	err	:=	d.receiveExtend(val1)

			298	 	 	 	 	 	 	 	 if	err	!=	nil	{

			299	 	 	 	 	 	 	 	 	 return	err

			300	 	 	 	 	 	 	 	 }

			301	 	 	 	 	 	 	 	 b[unzig[k]]	=	ac	*	qt[k]

			302	 	 	 	 	 	 	 }	else	{

			303	 	 	 	 	 	 	 	 if	val0	!=	0x0f	{

			304	 	 	 	 	 	 	 	 	 break

			305	 	 	 	 	 	 	 	 }

			306	 	 	 	 	 	 	 	 k	+=	0x0f

			307	 	 	 	 	 	 	 }

			308	 	 	 	 	 	 }

			309	

			310	 	 	 	 	 	 //	Perform	the	inverse	DCT	and	store	the	MCU	component	to	the	image.

			311	 	 	 	 	 	 if	d.nComp	==	nGrayComponent	{

			312	 	 	 	 	 	 	 idct(d.img1.Pix[8*(my*d.img1.Stride+mx):],	d.img1.Stride,	&b)

			313	 	 	 	 	 	 }	else	{

			314	 	 	 	 	 	 	 switch	i	{

			315	 	 	 	 	 	 	 case	0:

			316	 	 	 	 	 	 	 	 mx0	:=	h0*mx	+	(j	%	2)

			317	 	 	 	 	 	 	 	 my0	:=	v0*my	+	(j	/	2)

			318	 	 	 	 	 	 	 	 idct(d.img3.Y[8*(my0*d.img3.YStride+mx0):],	d.img3.YStride,	&b)

			319	 	 	 	 	 	 	 case	1:

			320	 	 	 	 	 	 	 	 idct(d.img3.Cb[8*(my*d.img3.CStride+mx):],	d.img3.CStride,	&b)

			321	 	 	 	 	 	 	 case	2:

			322	 	 	 	 	 	 	 	 idct(d.img3.Cr[8*(my*d.img3.CStride+mx):],	d.img3.CStride,	&b)

			323	 	 	 	 	 	 	 }

			324	 	 	 	 	 	 }

			325	 	 	 	 	 }	//	for	j

			326	 	 	 	 }	//	for	i

			327	 	 	 	 mcu++

			328	 	 	 	 if	d.ri	>	0	&&	mcu%d.ri	==	0	&&	mcu	<	mxx*myy	{

			329	 	 	 	 	 //	A	more	sophisticated	decoder	could	use	RST[0-7]	markers	to	resynchronize	from	corrupt	input,

			330	 	 	 	 	 //	but	this	one	assumes	well-formed	input,	and	hence	the	restart	marker	follows	immediately.

			331	 	 	 	 	 _,	err	:=	io.ReadFull(d.r,	d.tmp[0:2])

			332	 	 	 	 	 if	err	!=	nil	{

			333	 	 	 	 	 	 return	err

			334	 	 	 	 	 }

			335	 	 	 	 	 if	d.tmp[0]	!=	0xff	||	d.tmp[1]	!=	expectedRST	{

			336	 	 	 	 	 	 return	FormatError("bad	RST	marker")

			337	 	 	 	 	 }

			338	 	 	 	 	 expectedRST++

			339	 	 	 	 	 if	expectedRST	==	rst7Marker+1	{

			340	 	 	 	 	 	 expectedRST	=	rst0Marker

			341	 	 	 	 	 }

			342	 	 	 	 	 //	Reset	the	Huffman	decoder.

			343	 	 	 	 	 d.b	=	bits{}

			344	 	 	 	 	 //	Reset	the	DC	components,	as	per	section	F.2.1.3.1.

			345	 	 	 	 	 dc	=	[nColorComponent]int{}

			346	 	 	 	 }

			347	 	 	 }	//	for	mx

			348	 	 }	//	for	my

			349	

			350	 	 return	nil

			351	 }

			352	

			353	 //	Specified	in	section	B.2.4.4.

			354	 func	(d	*decoder)	processDRI(n	int)	error	{

			355	 	 if	n	!=	2	{

			356	 	 	 return	FormatError("DRI	has	wrong	length")

			357	 	 }

			358	 	 _,	err	:=	io.ReadFull(d.r,	d.tmp[0:2])

			359	 	 if	err	!=	nil	{

			360	 	 	 return	err

			361	 	 }

			362	 	 d.ri	=	int(d.tmp[0])<<8	+	int(d.tmp[1])

			363	 	 return	nil

			364	 }

			365	

			366	 //	decode	reads	a	JPEG	image	from	r	and	returns	it	as	an	image.Image.

			367	 func	(d	*decoder)	decode(r	io.Reader,	configOnly	bool)	(image.Image,	error)	{

			368	 	 if	rr,	ok	:=	r.(Reader);	ok	{

			369	 	 	 d.r	=	rr

			370	 	 }	else	{

			371	 	 	 d.r	=	bufio.NewReader(r)

			372	 	 }

			373	

			374	 	 //	Check	for	the	Start	Of	Image	marker.

			375	 	 _,	err	:=	io.ReadFull(d.r,	d.tmp[0:2])

			376	 	 if	err	!=	nil	{

			377	 	 	 return	nil,	err

			378	 	 }

			379	 	 if	d.tmp[0]	!=	0xff	||	d.tmp[1]	!=	soiMarker	{

			380	 	 	 return	nil,	FormatError("missing	SOI	marker")

			381	 	 }

			382	

			383	 	 //	Process	the	remaining	segments	until	the	End	Of	Image	marker.

			384	 	 for	{

			385	 	 	 _,	err	:=	io.ReadFull(d.r,	d.tmp[0:2])

			386	 	 	 if	err	!=	nil	{

			387	 	 	 	 return	nil,	err

			388	 	 	 }

			389	 	 	 if	d.tmp[0]	!=	0xff	{

			390	 	 	 	 return	nil,	FormatError("missing	0xff	marker	start")

			391	 	 	 }

			392	 	 	 marker	:=	d.tmp[1]

			393	 	 	 if	marker	==	eoiMarker	{	//	End	Of	Image.

			394	 	 	 	 break

			395	 	 	 }

			396	

			397	 	 	 //	Read	the	16-bit	length	of	the	segment.	The	value	includes	the	2	bytes	for	the

			398	 	 	 //	length	itself,	so	we	subtract	2	to	get	the	number	of	remaining	bytes.

			399	 	 	 _,	err	=	io.ReadFull(d.r,	d.tmp[0:2])

			400	 	 	 if	err	!=	nil	{

			401	 	 	 	 return	nil,	err

			402	 	 	 }

			403	 	 	 n	:=	int(d.tmp[0])<<8	+	int(d.tmp[1])	-	2

			404	 	 	 if	n	<	0	{

			405	 	 	 	 return	nil,	FormatError("short	segment	length")

			406	 	 	 }

			407	

			408	 	 	 switch	{

			409	 	 	 case	marker	==	sof0Marker:	//	Start	Of	Frame	(Baseline).

			410	 	 	 	 err	=	d.processSOF(n)

			411	 	 	 	 if	configOnly	{

			412	 	 	 	 	 return	nil,	err

			413	 	 	 	 }

			414	 	 	 case	marker	==	sof2Marker:	//	Start	Of	Frame	(Progressive).

			415	 	 	 	 err	=	UnsupportedError("progressive	mode")

			416	 	 	 case	marker	==	dhtMarker:	//	Define	Huffman	Table.

			417	 	 	 	 err	=	d.processDHT(n)

			418	 	 	 case	marker	==	dqtMarker:	//	Define	Quantization	Table.

			419	 	 	 	 err	=	d.processDQT(n)

			420	 	 	 case	marker	==	sosMarker:	//	Start	Of	Scan.

			421	 	 	 	 err	=	d.processSOS(n)

			422	 	 	 case	marker	==	driMarker:	//	Define	Restart	Interval.

			423	 	 	 	 err	=	d.processDRI(n)

			424	 	 	 case	marker	>=	app0Marker	&&	marker	<=	app15Marker	||	marker	==	comMarker:	

			425	 	 	 	 err	=	d.ignore(n)

			426	 	 	 default:

			427	 	 	 	 err	=	UnsupportedError("unknown	marker")

			428	 	 	 }

			429	 	 	 if	err	!=	nil	{

			430	 	 	 	 return	nil,	err

			431	 	 	 }

			432	 	 }

			433	 	 if	d.img1	!=	nil	{

			434	 	 	 return	d.img1,	nil

			435	 	 }

			436	 	 if	d.img3	!=	nil	{

			437	 	 	 return	d.img3,	nil

			438	 	 }

			439	 	 return	nil,	FormatError("missing	SOS	marker")

			440	 }

			441	

			442	 //	Decode	reads	a	JPEG	image	from	r	and	returns	it	as	an	image.Image.

			443	 func	Decode(r	io.Reader)	(image.Image,	error)	{

			444	 	 var	d	decoder

			445	 	 return	d.decode(r,	false)

			446	 }

			447	

			448	 //	DecodeConfig	returns	the	color	model	and	dimensions	of	a	JPEG	image	without

			449	 //	decoding	the	entire	image.

			450	 func	DecodeConfig(r	io.Reader)	(image.Config,	error)	{

			451	 	 var	d	decoder

			452	 	 if	_,	err	:=	d.decode(r,	true);	err	!=	nil	{

			453	 	 	 return	image.Config{},	err

			454	 	 }

			455	 	 switch	d.nComp	{

			456	 	 case	nGrayComponent:

			457	 	 	 return	image.Config{

			458	 	 	 	 ColorModel:	color.GrayModel,

			459	 	 	 	 Width:						d.width,

			460	 	 	 	 Height:					d.height,

			461	 	 	 },	nil

			462	 	 case	nColorComponent:

			463	 	 	 return	image.Config{

			464	 	 	 	 ColorModel:	color.YCbCrModel,

			465	 	 	 	 Width:						d.width,

			466	 	 	 	 Height:					d.height,

			467	 	 	 },	nil

			468	 	 }

			469	 	 return	image.Config{},	FormatError("missing	SOF	marker")

			470	 }

			471	

			472	 func	init()	{

			473	 	 image.RegisterFormat("jpeg",	"\xff\xd8",	Decode,	DecodeConfig)

			474	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/image/jpeg/writer.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	jpeg

					6	

					7	 import	(

					8	 	 "bufio"

					9	 	 "errors"

				10	 	 "image"

				11	 	 "image/color"

				12	 	 "io"

				13)

				14	

				15	 //	min	returns	the	minimum	of	two	integers.

				16	 func	min(x,	y	int)	int	{

				17	 	 if	x	<	y	{

				18	 	 	 return	x

				19	 	 }

				20	 	 return	y

				21	 }

				22	

				23	 //	div	returns	a/b	rounded	to	the	nearest	integer,	instead	of	rounded	to	zero.

				24	 func	div(a	int,	b	int)	int	{

				25	 	 if	a	>=	0	{

				26	 	 	 return	(a	+	(b	>>	1))	/	b

				27	 	 }

				28	 	 return	-((-a	+	(b	>>	1))	/	b)

				29	 }

				30	

				31	 //	bitCount	counts	the	number	of	bits	needed	to	hold	an	integer.

				32	 var	bitCount	=	[256]byte{

				33	 	 0,	1,	2,	2,	3,	3,	3,	3,	4,	4,	4,	4,	4,	4,	4,	4,

				34	 	 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,

				35	 	 6,	6,	6,	6,	6,	6,	6,	6,	6,	6,	6,	6,	6,	6,	6,	6,

				36	 	 6,	6,	6,	6,	6,	6,	6,	6,	6,	6,	6,	6,	6,	6,	6,	6,

				37	 	 7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,

				38	 	 7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,

				39	 	 7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,

				40	 	 7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,	7,

				41	 	 8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,

				42	 	 8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,

				43	 	 8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,

				44	 	 8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,

				45	 	 8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,

				46	 	 8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,

				47	 	 8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,

				48	 	 8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,	8,

				49	 }

				50	

				51	 type	quantIndex	int

				52	

				53	 const	(

				54	 	 quantIndexLuminance	quantIndex	=	iota

				55	 	 quantIndexChrominance

				56	 	 nQuantIndex

				57)

				58	

				59	 //	unscaledQuant	are	the	unscaled	quantization	tables.	Each	encoder	copies	and

				60	 //	scales	the	tables	according	to	its	quality	parameter.

				61	 var	unscaledQuant	=	[nQuantIndex][blockSize]byte{

				62	 	 //	Luminance.

				63	 	 {

				64	 	 	 16,	11,	10,	16,	24,	40,	51,	61,

				65	 	 	 12,	12,	14,	19,	26,	58,	60,	55,

				66	 	 	 14,	13,	16,	24,	40,	57,	69,	56,

				67	 	 	 14,	17,	22,	29,	51,	87,	80,	62,

				68	 	 	 18,	22,	37,	56,	68,	109,	103,	77,

				69	 	 	 24,	35,	55,	64,	81,	104,	113,	92,

				70	 	 	 49,	64,	78,	87,	103,	121,	120,	101,

				71	 	 	 72,	92,	95,	98,	112,	100,	103,	99,

				72	 	 },

				73	 	 //	Chrominance.

				74	 	 {

				75	 	 	 17,	18,	24,	47,	99,	99,	99,	99,

				76	 	 	 18,	21,	26,	66,	99,	99,	99,	99,

				77	 	 	 24,	26,	56,	99,	99,	99,	99,	99,

				78	 	 	 47,	66,	99,	99,	99,	99,	99,	99,

				79	 	 	 99,	99,	99,	99,	99,	99,	99,	99,

				80	 	 	 99,	99,	99,	99,	99,	99,	99,	99,

				81	 	 	 99,	99,	99,	99,	99,	99,	99,	99,

				82	 	 	 99,	99,	99,	99,	99,	99,	99,	99,

				83	 	 },

				84	 }

				85	

				86	 type	huffIndex	int

				87	

				88	 const	(

				89	 	 huffIndexLuminanceDC	huffIndex	=	iota

				90	 	 huffIndexLuminanceAC

				91	 	 huffIndexChrominanceDC

				92	 	 huffIndexChrominanceAC

				93	 	 nHuffIndex

				94)

				95	

				96	 //	huffmanSpec	specifies	a	Huffman	encoding.

				97	 type	huffmanSpec	struct	{

				98	 	 //	count[i]	is	the	number	of	codes	of	length	i	bits.

				99	 	 count	[16]byte

			100	 	 //	value[i]	is	the	decoded	value	of	the	i'th	codeword.

			101	 	 value	[]byte

			102	 }

			103	

			104	 //	theHuffmanSpec	is	the	Huffman	encoding	specifications.

			105	 //	This	encoder	uses	the	same	Huffman	encoding	for	all	images.

			106	 var	theHuffmanSpec	=	[nHuffIndex]huffmanSpec{

			107	 	 //	Luminance	DC.

			108	 	 {

			109	 	 	 [16]byte{0,	1,	5,	1,	1,	1,	1,	1,	1,	0,	0,	0,	0,	0,	0,	0},

			110	 	 	 []byte{0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11},

			111	 	 },

			112	 	 //	Luminance	AC.

			113	 	 {

			114	 	 	 [16]byte{0,	2,	1,	3,	3,	2,	4,	3,	5,	5,	4,	4,	0,	0,	1,	125},

			115	 	 	 []byte{

			116	 	 	 	 0x01,	0x02,	0x03,	0x00,	0x04,	0x11,	0x05,	0x12,

			117	 	 	 	 0x21,	0x31,	0x41,	0x06,	0x13,	0x51,	0x61,	0x07,

			118	 	 	 	 0x22,	0x71,	0x14,	0x32,	0x81,	0x91,	0xa1,	0x08,

			119	 	 	 	 0x23,	0x42,	0xb1,	0xc1,	0x15,	0x52,	0xd1,	0xf0,

			120	 	 	 	 0x24,	0x33,	0x62,	0x72,	0x82,	0x09,	0x0a,	0x16,

			121	 	 	 	 0x17,	0x18,	0x19,	0x1a,	0x25,	0x26,	0x27,	0x28,

			122	 	 	 	 0x29,	0x2a,	0x34,	0x35,	0x36,	0x37,	0x38,	0x39,

			123	 	 	 	 0x3a,	0x43,	0x44,	0x45,	0x46,	0x47,	0x48,	0x49,

			124	 	 	 	 0x4a,	0x53,	0x54,	0x55,	0x56,	0x57,	0x58,	0x59,

			125	 	 	 	 0x5a,	0x63,	0x64,	0x65,	0x66,	0x67,	0x68,	0x69,

			126	 	 	 	 0x6a,	0x73,	0x74,	0x75,	0x76,	0x77,	0x78,	0x79,

			127	 	 	 	 0x7a,	0x83,	0x84,	0x85,	0x86,	0x87,	0x88,	0x89,

			128	 	 	 	 0x8a,	0x92,	0x93,	0x94,	0x95,	0x96,	0x97,	0x98,

			129	 	 	 	 0x99,	0x9a,	0xa2,	0xa3,	0xa4,	0xa5,	0xa6,	0xa7,

			130	 	 	 	 0xa8,	0xa9,	0xaa,	0xb2,	0xb3,	0xb4,	0xb5,	0xb6,

			131	 	 	 	 0xb7,	0xb8,	0xb9,	0xba,	0xc2,	0xc3,	0xc4,	0xc5,

			132	 	 	 	 0xc6,	0xc7,	0xc8,	0xc9,	0xca,	0xd2,	0xd3,	0xd4,

			133	 	 	 	 0xd5,	0xd6,	0xd7,	0xd8,	0xd9,	0xda,	0xe1,	0xe2,

			134	 	 	 	 0xe3,	0xe4,	0xe5,	0xe6,	0xe7,	0xe8,	0xe9,	0xea,

			135	 	 	 	 0xf1,	0xf2,	0xf3,	0xf4,	0xf5,	0xf6,	0xf7,	0xf8,

			136	 	 	 	 0xf9,	0xfa,

			137	 	 	 },

			138	 	 },

			139	 	 //	Chrominance	DC.

			140	 	 {

			141	 	 	 [16]byte{0,	3,	1,	1,	1,	1,	1,	1,	1,	1,	1,	0,	0,	0,	0,	0},

			142	 	 	 []byte{0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11},

			143	 	 },

			144	 	 //	Chrominance	AC.

			145	 	 {

			146	 	 	 [16]byte{0,	2,	1,	2,	4,	4,	3,	4,	7,	5,	4,	4,	0,	1,	2,	119},

			147	 	 	 []byte{

			148	 	 	 	 0x00,	0x01,	0x02,	0x03,	0x11,	0x04,	0x05,	0x21,

			149	 	 	 	 0x31,	0x06,	0x12,	0x41,	0x51,	0x07,	0x61,	0x71,

			150	 	 	 	 0x13,	0x22,	0x32,	0x81,	0x08,	0x14,	0x42,	0x91,

			151	 	 	 	 0xa1,	0xb1,	0xc1,	0x09,	0x23,	0x33,	0x52,	0xf0,

			152	 	 	 	 0x15,	0x62,	0x72,	0xd1,	0x0a,	0x16,	0x24,	0x34,

			153	 	 	 	 0xe1,	0x25,	0xf1,	0x17,	0x18,	0x19,	0x1a,	0x26,

			154	 	 	 	 0x27,	0x28,	0x29,	0x2a,	0x35,	0x36,	0x37,	0x38,

			155	 	 	 	 0x39,	0x3a,	0x43,	0x44,	0x45,	0x46,	0x47,	0x48,

			156	 	 	 	 0x49,	0x4a,	0x53,	0x54,	0x55,	0x56,	0x57,	0x58,

			157	 	 	 	 0x59,	0x5a,	0x63,	0x64,	0x65,	0x66,	0x67,	0x68,

			158	 	 	 	 0x69,	0x6a,	0x73,	0x74,	0x75,	0x76,	0x77,	0x78,

			159	 	 	 	 0x79,	0x7a,	0x82,	0x83,	0x84,	0x85,	0x86,	0x87,

			160	 	 	 	 0x88,	0x89,	0x8a,	0x92,	0x93,	0x94,	0x95,	0x96,

			161	 	 	 	 0x97,	0x98,	0x99,	0x9a,	0xa2,	0xa3,	0xa4,	0xa5,

			162	 	 	 	 0xa6,	0xa7,	0xa8,	0xa9,	0xaa,	0xb2,	0xb3,	0xb4,

			163	 	 	 	 0xb5,	0xb6,	0xb7,	0xb8,	0xb9,	0xba,	0xc2,	0xc3,

			164	 	 	 	 0xc4,	0xc5,	0xc6,	0xc7,	0xc8,	0xc9,	0xca,	0xd2,

			165	 	 	 	 0xd3,	0xd4,	0xd5,	0xd6,	0xd7,	0xd8,	0xd9,	0xda,

			166	 	 	 	 0xe2,	0xe3,	0xe4,	0xe5,	0xe6,	0xe7,	0xe8,	0xe9,

			167	 	 	 	 0xea,	0xf2,	0xf3,	0xf4,	0xf5,	0xf6,	0xf7,	0xf8,

			168	 	 	 	 0xf9,	0xfa,

			169	 	 	 },

			170	 	 },

			171	 }

			172	

			173	 //	huffmanLUT	is	a	compiled	look-up	table	representation	of	a	huffmanSpec.

			174	 //	Each	value	maps	to	a	uint32	of	which	the	8	most	significant	bits	hold	the

			175	 //	codeword	size	in	bits	and	the	24	least	significant	bits	hold	the	codeword.

			176	 //	The	maximum	codeword	size	is	16	bits.

			177	 type	huffmanLUT	[]uint32

			178	

			179	 func	(h	*huffmanLUT)	init(s	huffmanSpec)	{

			180	 	 maxValue	:=	0

			181	 	 for	_,	v	:=	range	s.value	{

			182	 	 	 if	int(v)	>	maxValue	{

			183	 	 	 	 maxValue	=	int(v)

			184	 	 	 }

			185	 	 }

			186	 	 *h	=	make([]uint32,	maxValue+1)

			187	 	 code,	k	:=	uint32(0),	0

			188	 	 for	i	:=	0;	i	<	len(s.count);	i++	{

			189	 	 	 nBits	:=	uint32(i+1)	<<	24

			190	 	 	 for	j	:=	uint8(0);	j	<	s.count[i];	j++	{

			191	 	 	 	 (*h)[s.value[k]]	=	nBits	|	code

			192	 	 	 	 code++

			193	 	 	 	 k++

			194	 	 	 }

			195	 	 	 code	<<=	1

			196	 	 }

			197	 }

			198	

			199	 //	theHuffmanLUT	are	compiled	representations	of	theHuffmanSpec.

			200	 var	theHuffmanLUT	[4]huffmanLUT

			201	

			202	 func	init()	{

			203	 	 for	i,	s	:=	range	theHuffmanSpec	{

			204	 	 	 theHuffmanLUT[i].init(s)

			205	 	 }

			206	 }

			207	

			208	 //	writer	is	a	buffered	writer.

			209	 type	writer	interface	{

			210	 	 Flush()	error

			211	 	 Write([]byte)	(int,	error)

			212	 	 WriteByte(byte)	error

			213	 }

			214	

			215	 //	encoder	encodes	an	image	to	the	JPEG	format.

			216	 type	encoder	struct	{

			217	 	 //	w	is	the	writer	to	write	to.	err	is	the	first	error	encountered	during

			218	 	 //	writing.	All	attempted	writes	after	the	first	error	become	no-ops.

			219	 	 w			writer

			220	 	 err	error

			221	 	 //	buf	is	a	scratch	buffer.

			222	 	 buf	[16]byte

			223	 	 //	bits	and	nBits	are	accumulated	bits	to	write	to	w.

			224	 	 bits,	nBits	uint32

			225	 	 //	quant	is	the	scaled	quantization	tables.

			226	 	 quant	[nQuantIndex][blockSize]byte

			227	 }

			228	

			229	 func	(e	*encoder)	flush()	{

			230	 	 if	e.err	!=	nil	{

			231	 	 	 return

			232	 	 }

			233	 	 e.err	=	e.w.Flush()

			234	 }

			235	

			236	 func	(e	*encoder)	write(p	[]byte)	{

			237	 	 if	e.err	!=	nil	{

			238	 	 	 return

			239	 	 }

			240	 	 _,	e.err	=	e.w.Write(p)

			241	 }

			242	

			243	 func	(e	*encoder)	writeByte(b	byte)	{

			244	 	 if	e.err	!=	nil	{

			245	 	 	 return

			246	 	 }

			247	 	 e.err	=	e.w.WriteByte(b)

			248	 }

			249	

			250	 //	emit	emits	the	least	significant	nBits	bits	of	bits	to	the	bitstream.

			251	 //	The	precondition	is	bits	<	1<<nBits	&&	nBits	<=	16.

			252	 func	(e	*encoder)	emit(bits,	nBits	uint32)	{

			253	 	 nBits	+=	e.nBits

			254	 	 bits	<<=	32	-	nBits

			255	 	 bits	|=	e.bits

			256	 	 for	nBits	>=	8	{

			257	 	 	 b	:=	uint8(bits	>>	24)

			258	 	 	 e.writeByte(b)

			259	 	 	 if	b	==	0xff	{

			260	 	 	 	 e.writeByte(0x00)

			261	 	 	 }

			262	 	 	 bits	<<=	8

			263	 	 	 nBits	-=	8

			264	 	 }

			265	 	 e.bits,	e.nBits	=	bits,	nBits

			266	 }

			267	

			268	 //	emitHuff	emits	the	given	value	with	the	given	Huffman	encoder.

			269	 func	(e	*encoder)	emitHuff(h	huffIndex,	value	int)	{

			270	 	 x	:=	theHuffmanLUT[h][value]

			271	 	 e.emit(x&(1<<24-1),	x>>24)

			272	 }

			273	

			274	 //	emitHuffRLE	emits	a	run	of	runLength	copies	of	value	encoded	with	the	given

			275	 //	Huffman	encoder.

			276	 func	(e	*encoder)	emitHuffRLE(h	huffIndex,	runLength,	value	int)	{

			277	 	 a,	b	:=	value,	value

			278	 	 if	a	<	0	{

			279	 	 	 a,	b	=	-value,	value-1

			280	 	 }

			281	 	 var	nBits	uint32

			282	 	 if	a	<	0x100	{

			283	 	 	 nBits	=	uint32(bitCount[a])

			284	 	 }	else	{

			285	 	 	 nBits	=	8	+	uint32(bitCount[a>>8])

			286	 	 }

			287	 	 e.emitHuff(h,	runLength<<4|int(nBits))

			288	 	 if	nBits	>	0	{

			289	 	 	 e.emit(uint32(b)&(1<<nBits-1),	nBits)

			290	 	 }

			291	 }

			292	

			293	 //	writeMarkerHeader	writes	the	header	for	a	marker	with	the	given	length.

			294	 func	(e	*encoder)	writeMarkerHeader(marker	uint8,	markerlen	int)	{

			295	 	 e.buf[0]	=	0xff

			296	 	 e.buf[1]	=	marker

			297	 	 e.buf[2]	=	uint8(markerlen	>>	8)

			298	 	 e.buf[3]	=	uint8(markerlen	&	0xff)

			299	 	 e.write(e.buf[:4])

			300	 }

			301	

			302	 //	writeDQT	writes	the	Define	Quantization	Table	marker.

			303	 func	(e	*encoder)	writeDQT()	{

			304	 	 markerlen	:=	2	+	int(nQuantIndex)*(1+blockSize)

			305	 	 e.writeMarkerHeader(dqtMarker,	markerlen)

			306	 	 for	i	:=	range	e.quant	{

			307	 	 	 e.writeByte(uint8(i))

			308	 	 	 e.write(e.quant[i][:])

			309	 	 }

			310	 }

			311	

			312	 //	writeSOF0	writes	the	Start	Of	Frame	(Baseline)	marker.

			313	 func	(e	*encoder)	writeSOF0(size	image.Point)	{

			314	 	 markerlen	:=	8	+	3*nColorComponent

			315	 	 e.writeMarkerHeader(sof0Marker,	markerlen)

			316	 	 e.buf[0]	=	8	//	8-bit	color.

			317	 	 e.buf[1]	=	uint8(size.Y	>>	8)

			318	 	 e.buf[2]	=	uint8(size.Y	&	0xff)

			319	 	 e.buf[3]	=	uint8(size.X	>>	8)

			320	 	 e.buf[4]	=	uint8(size.X	&	0xff)

			321	 	 e.buf[5]	=	nColorComponent

			322	 	 for	i	:=	0;	i	<	nColorComponent;	i++	{

			323	 	 	 e.buf[3*i+6]	=	uint8(i	+	1)

			324	 	 	 //	We	use	4:2:0	chroma	subsampling.

			325	 	 	 e.buf[3*i+7]	=	"\x22\x11\x11"[i]

			326	 	 	 e.buf[3*i+8]	=	"\x00\x01\x01"[i]

			327	 	 }

			328	 	 e.write(e.buf[:3*(nColorComponent-1)+9])

			329	 }

			330	

			331	 //	writeDHT	writes	the	Define	Huffman	Table	marker.

			332	 func	(e	*encoder)	writeDHT()	{

			333	 	 markerlen	:=	2

			334	 	 for	_,	s	:=	range	theHuffmanSpec	{

			335	 	 	 markerlen	+=	1	+	16	+	len(s.value)

			336	 	 }

			337	 	 e.writeMarkerHeader(dhtMarker,	markerlen)

			338	 	 for	i,	s	:=	range	theHuffmanSpec	{

			339	 	 	 e.writeByte("\x00\x10\x01\x11"[i])

			340	 	 	 e.write(s.count[:])

			341	 	 	 e.write(s.value)

			342	 	 }

			343	 }

			344	

			345	 //	writeBlock	writes	a	block	of	pixel	data	using	the	given	quantization	table,

			346	 //	returning	the	post-quantized	DC	value	of	the	DCT-transformed	block.

			347	 func	(e	*encoder)	writeBlock(b	*block,	q	quantIndex,	prevDC	int)	int	{

			348	 	 fdct(b)

			349	 	 //	Emit	the	DC	delta.

			350	 	 dc	:=	div(b[0],	(8	*	int(e.quant[q][0])))

			351	 	 e.emitHuffRLE(huffIndex(2*q+0),	0,	dc-prevDC)

			352	 	 //	Emit	the	AC	components.

			353	 	 h,	runLength	:=	huffIndex(2*q+1),	0

			354	 	 for	k	:=	1;	k	<	blockSize;	k++	{

			355	 	 	 ac	:=	div(b[unzig[k]],	(8	*	int(e.quant[q][k])))

			356	 	 	 if	ac	==	0	{

			357	 	 	 	 runLength++

			358	 	 	 }	else	{

			359	 	 	 	 for	runLength	>	15	{

			360	 	 	 	 	 e.emitHuff(h,	0xf0)

			361	 	 	 	 	 runLength	-=	16

			362	 	 	 	 }

			363	 	 	 	 e.emitHuffRLE(h,	runLength,	ac)

			364	 	 	 	 runLength	=	0

			365	 	 	 }

			366	 	 }

			367	 	 if	runLength	>	0	{

			368	 	 	 e.emitHuff(h,	0x00)

			369	 	 }

			370	 	 return	dc

			371	 }

			372	

			373	 //	toYCbCr	converts	the	8x8	region	of	m	whose	top-left	corner	is	p	to	its

			374	 //	YCbCr	values.

			375	 func	toYCbCr(m	image.Image,	p	image.Point,	yBlock,	cbBlock,	crBlock	*block)	{

			376	 	 b	:=	m.Bounds()

			377	 	 xmax	:=	b.Max.X	-	1

			378	 	 ymax	:=	b.Max.Y	-	1

			379	 	 for	j	:=	0;	j	<	8;	j++	{

			380	 	 	 for	i	:=	0;	i	<	8;	i++	{

			381	 	 	 	 r,	g,	b,	_	:=	m.At(min(p.X+i,	xmax),	min(p.Y+j,	ymax)).RGBA()

			382	 	 	 	 yy,	cb,	cr	:=	color.RGBToYCbCr(uint8(r>>8),	uint8(g>>8),	uint8(b>>8))

			383	 	 	 	 yBlock[8*j+i]	=	int(yy)

			384	 	 	 	 cbBlock[8*j+i]	=	int(cb)

			385	 	 	 	 crBlock[8*j+i]	=	int(cr)

			386	 	 	 }

			387	 	 }

			388	 }

			389	

			390	 //	rgbaToYCbCr	is	a	specialized	version	of	toYCbCr	for	image.RGBA	images.

			391	 func	rgbaToYCbCr(m	*image.RGBA,	p	image.Point,	yBlock,	cbBlock,	crBlock	*block)	{

			392	 	 b	:=	m.Bounds()

			393	 	 xmax	:=	b.Max.X	-	1

			394	 	 ymax	:=	b.Max.Y	-	1

			395	 	 for	j	:=	0;	j	<	8;	j++	{

			396	 	 	 sj	:=	p.Y	+	j

			397	 	 	 if	sj	>	ymax	{

			398	 	 	 	 sj	=	ymax

			399	 	 	 }

			400	 	 	 offset	:=	(sj-b.Min.Y)*m.Stride	-	b.Min.X*4

			401	 	 	 for	i	:=	0;	i	<	8;	i++	{

			402	 	 	 	 sx	:=	p.X	+	i

			403	 	 	 	 if	sx	>	xmax	{

			404	 	 	 	 	 sx	=	xmax

			405	 	 	 	 }

			406	 	 	 	 pix	:=	m.Pix[offset+sx*4:]

			407	 	 	 	 yy,	cb,	cr	:=	color.RGBToYCbCr(pix[0],	pix[1],	pix[2])

			408	 	 	 	 yBlock[8*j+i]	=	int(yy)

			409	 	 	 	 cbBlock[8*j+i]	=	int(cb)

			410	 	 	 	 crBlock[8*j+i]	=	int(cr)

			411	 	 	 }

			412	 	 }

			413	 }

			414	

			415	 //	scale	scales	the	16x16	region	represented	by	the	4	src	blocks	to	the	8x8

			416	 //	dst	block.

			417	 func	scale(dst	*block,	src	*[4]block)	{

			418	 	 for	i	:=	0;	i	<	4;	i++	{

			419	 	 	 dstOff	:=	(i&2)<<4	|	(i&1)<<2

			420	 	 	 for	y	:=	0;	y	<	4;	y++	{

			421	 	 	 	 for	x	:=	0;	x	<	4;	x++	{

			422	 	 	 	 	 j	:=	16*y	+	2*x

			423	 	 	 	 	 sum	:=	src[i][j]	+	src[i][j+1]	+	src[i][j+8]	+	src[i][j+9]

			424	 	 	 	 	 dst[8*y+x+dstOff]	=	(sum	+	2)	>>	2

			425	 	 	 	 }

			426	 	 	 }

			427	 	 }

			428	 }

			429	

			430	 //	sosHeader	is	the	SOS	marker	"\xff\xda"	followed	by	12	bytes:

			431	 //	 -	the	marker	length	"\x00\x0c",

			432	 //	 -	the	number	of	components	"\x03",

			433	 //	 -	component	1	uses	DC	table	0	and	AC	table	0	"\x01\x00",

			434	 //	 -	component	2	uses	DC	table	1	and	AC	table	1	"\x02\x11",

			435	 //	 -	component	3	uses	DC	table	1	and	AC	table	1	"\x03\x11",

			436	 //	 -	padding	"\x00\x00\x00".

			437	 var	sosHeader	=	[]byte{

			438	 	 0xff,	0xda,	0x00,	0x0c,	0x03,	0x01,	0x00,	0x02,

			439	 	 0x11,	0x03,	0x11,	0x00,	0x00,	0x00,

			440	 }

			441	

			442	 //	writeSOS	writes	the	StartOfScan	marker.

			443	 func	(e	*encoder)	writeSOS(m	image.Image)	{

			444	 	 e.write(sosHeader)

			445	 	 var	(

			446	 	 	 //	Scratch	buffers	to	hold	the	YCbCr	values.

			447	 	 	 yBlock		block

			448	 	 	 cbBlock	[4]block

			449	 	 	 crBlock	[4]block

			450	 	 	 cBlock		block

			451	 	 	 //	DC	components	are	delta-encoded.

			452	 	 	 prevDCY,	prevDCCb,	prevDCCr	int

			453)

			454	 	 bounds	:=	m.Bounds()

			455	 	 rgba,	_	:=	m.(*image.RGBA)

			456	 	 for	y	:=	bounds.Min.Y;	y	<	bounds.Max.Y;	y	+=	16	{

			457	 	 	 for	x	:=	bounds.Min.X;	x	<	bounds.Max.X;	x	+=	16	{

			458	 	 	 	 for	i	:=	0;	i	<	4;	i++	{

			459	 	 	 	 	 xOff	:=	(i	&	1)	*	8

			460	 	 	 	 	 yOff	:=	(i	&	2)	*	4

			461	 	 	 	 	 p	:=	image.Pt(x+xOff,	y+yOff)

			462	 	 	 	 	 if	rgba	!=	nil	{

			463	 	 	 	 	 	 rgbaToYCbCr(rgba,	p,	&yBlock,	&cbBlock[i],	&crBlock[i])

			464	 	 	 	 	 }	else	{

			465	 	 	 	 	 	 toYCbCr(m,	p,	&yBlock,	&cbBlock[i],	&crBlock[i])

			466	 	 	 	 	 }

			467	 	 	 	 	 prevDCY	=	e.writeBlock(&yBlock,	0,	prevDCY)

			468	 	 	 	 }

			469	 	 	 	 scale(&cBlock,	&cbBlock)

			470	 	 	 	 prevDCCb	=	e.writeBlock(&cBlock,	1,	prevDCCb)

			471	 	 	 	 scale(&cBlock,	&crBlock)

			472	 	 	 	 prevDCCr	=	e.writeBlock(&cBlock,	1,	prevDCCr)

			473	 	 	 }

			474	 	 }

			475	 	 //	Pad	the	last	byte	with	1's.

			476	 	 e.emit(0x7f,	7)

			477	 }

			478	

			479	 //	DefaultQuality	is	the	default	quality	encoding	parameter.

			480	 const	DefaultQuality	=	75

			481	

			482	 //	Options	are	the	encoding	parameters.

			483	 //	Quality	ranges	from	1	to	100	inclusive,	higher	is	better.

			484	 type	Options	struct	{

			485	 	 Quality	int

			486	 }

			487	

			488	 //	Encode	writes	the	Image	m	to	w	in	JPEG	4:2:0	baseline	format	with	the	given

			489	 //	options.	Default	parameters	are	used	if	a	nil	*Options	is	passed.

			490	 func	Encode(w	io.Writer,	m	image.Image,	o	*Options)	error	{

			491	 	 b	:=	m.Bounds()

			492	 	 if	b.Dx()	>=	1<<16	||	b.Dy()	>=	1<<16	{

			493	 	 	 return	errors.New("jpeg:	image	is	too	large	to	encode")

			494	 	 }

			495	 	 var	e	encoder

			496	 	 if	ww,	ok	:=	w.(writer);	ok	{

			497	 	 	 e.w	=	ww

			498	 	 }	else	{

			499	 	 	 e.w	=	bufio.NewWriter(w)

			500	 	 }

			501	 	 //	Clip	quality	to	[1,	100].

			502	 	 quality	:=	DefaultQuality

			503	 	 if	o	!=	nil	{

			504	 	 	 quality	=	o.Quality

			505	 	 	 if	quality	<	1	{

			506	 	 	 	 quality	=	1

			507	 	 	 }	else	if	quality	>	100	{

			508	 	 	 	 quality	=	100

			509	 	 	 }

			510	 	 }

			511	 	 //	Convert	from	a	quality	rating	to	a	scaling	factor.

			512	 	 var	scale	int

			513	 	 if	quality	<	50	{

			514	 	 	 scale	=	5000	/	quality

			515	 	 }	else	{

			516	 	 	 scale	=	200	-	quality*2

			517	 	 }

			518	 	 //	Initialize	the	quantization	tables.

			519	 	 for	i	:=	range	e.quant	{

			520	 	 	 for	j	:=	range	e.quant[i]	{

			521	 	 	 	 x	:=	int(unscaledQuant[i][j])

			522	 	 	 	 x	=	(x*scale	+	50)	/	100

			523	 	 	 	 if	x	<	1	{

			524	 	 	 	 	 x	=	1

			525	 	 	 	 }	else	if	x	>	255	{

			526	 	 	 	 	 x	=	255

			527	 	 	 	 }

			528	 	 	 	 e.quant[i][j]	=	uint8(x)

			529	 	 	 }

			530	 	 }

			531	 	 //	Write	the	Start	Of	Image	marker.

			532	 	 e.buf[0]	=	0xff

			533	 	 e.buf[1]	=	0xd8

			534	 	 e.write(e.buf[:2])

			535	 	 //	Write	the	quantization	tables.

			536	 	 e.writeDQT()

			537	 	 //	Write	the	image	dimensions.

			538	 	 e.writeSOF0(b.Size())

			539	 	 //	Write	the	Huffman	tables.

			540	 	 e.writeDHT()

			541	 	 //	Write	the	image	data.

			542	 	 e.writeSOS(m)

			543	 	 //	Write	the	End	Of	Image	marker.

			544	 	 e.buf[0]	=	0xff

			545	 	 e.buf[1]	=	0xd9

			546	 	 e.write(e.buf[:2])

			547	 	 e.flush()

			548	 	 return	e.err

			549	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/image/png/reader.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	png	implements	a	PNG	image	decoder	and	encoder.

					6	 //

					7	 //	The	PNG	specification	is	at	http://www.w3.org/TR/PNG/.

					8	 package	png

					9	

				10	 import	(

				11	 	 "compress/zlib"

				12	 	 "encoding/binary"

				13	 	 "fmt"

				14	 	 "hash"

				15	 	 "hash/crc32"

				16	 	 "image"

				17	 	 "image/color"

				18	 	 "io"

				19)

				20	

				21	 //	Color	type,	as	per	the	PNG	spec.

				22	 const	(

				23	 	 ctGrayscale						=	0

				24	 	 ctTrueColor						=	2

				25	 	 ctPaletted							=	3

				26	 	 ctGrayscaleAlpha	=	4

				27	 	 ctTrueColorAlpha	=	6

				28)

				29	

				30	 //	A	cb	is	a	combination	of	color	type	and	bit	depth.

				31	 const	(

				32	 	 cbInvalid	=	iota

				33	 	 cbG1

				34	 	 cbG2

				35	 	 cbG4

				36	 	 cbG8

				37	 	 cbGA8

				38	 	 cbTC8

				39	 	 cbP1

				40	 	 cbP2

				41	 	 cbP4

				42	 	 cbP8

				43	 	 cbTCA8

				44	 	 cbG16

				45	 	 cbGA16

				46	 	 cbTC16

				47	 	 cbTCA16

				48)

				49	

				50	 //	Filter	type,	as	per	the	PNG	spec.

				51	 const	(

				52	 	 ftNone				=	0

				53	 	 ftSub					=	1

				54	 	 ftUp						=	2

				55	 	 ftAverage	=	3

				56	 	 ftPaeth			=	4

				57	 	 nFilter			=	5

				58)

				59	

				60	 //	Decoding	stage.

				61	 //	The	PNG	specification	says	that	the	IHDR,	PLTE	(if	present),	IDAT	and	IEND

				62	 //	chunks	must	appear	in	that	order.	There	may	be	multiple	IDAT	chunks,	and

				63	 //	IDAT	chunks	must	be	sequential	(i.e.	they	may	not	have	any	other	chunks

				64	 //	between	them).

				65	 //	http://www.w3.org/TR/PNG/#5ChunkOrdering

				66	 const	(

				67	 	 dsStart	=	iota

				68	 	 dsSeenIHDR

				69	 	 dsSeenPLTE

				70	 	 dsSeenIDAT

				71	 	 dsSeenIEND

				72)

				73	

				74	 const	pngHeader	=	"\x89PNG\r\n\x1a\n"

				75	

				76	 type	decoder	struct	{

				77	 	 r													io.Reader

				78	 	 img											image.Image

				79	 	 crc											hash.Hash32

				80	 	 width,	height	int

				81	 	 depth									int

				82	 	 palette							color.Palette

				83	 	 cb												int

				84	 	 stage									int

				85	 	 idatLength				uint32

				86	 	 tmp											[3	*	256]byte

				87	 }

				88	

				89	 //	A	FormatError	reports	that	the	input	is	not	a	valid	PNG.

				90	 type	FormatError	string

				91	

				92	 func	(e	FormatError)	Error()	string	{	return	"png:	invalid	format:	"	+	string(e)	}

				93	

				94	 var	chunkOrderError	=	FormatError("chunk	out	of	order")

				95	

				96	 //	An	UnsupportedError	reports	that	the	input	uses	a	valid	but	unimplemented	PNG	feature.

				97	 type	UnsupportedError	string

				98	

				99	 func	(e	UnsupportedError)	Error()	string	{	return	"png:	unsupported	feature:	"	+	string(e)	}

			100	

			101	 func	abs(x	int)	int	{

			102	 	 if	x	<	0	{

			103	 	 	 return	-x

			104	 	 }

			105	 	 return	x

			106	 }

			107	

			108	 func	min(a,	b	int)	int	{

			109	 	 if	a	<	b	{

			110	 	 	 return	a

			111	 	 }

			112	 	 return	b

			113	 }

			114	

			115	 func	(d	*decoder)	parseIHDR(length	uint32)	error	{

			116	 	 if	length	!=	13	{

			117	 	 	 return	FormatError("bad	IHDR	length")

			118	 	 }

			119	 	 if	_,	err	:=	io.ReadFull(d.r,	d.tmp[:13]);	err	!=	nil	{

			120	 	 	 return	err

			121	 	 }

			122	 	 d.crc.Write(d.tmp[:13])

			123	 	 if	d.tmp[10]	!=	0	||	d.tmp[11]	!=	0	||	d.tmp[12]	!=	0	{

			124	 	 	 return	UnsupportedError("compression,	filter	or	interlace	method")

			125	 	 }

			126	 	 w	:=	int32(binary.BigEndian.Uint32(d.tmp[0:4]))

			127	 	 h	:=	int32(binary.BigEndian.Uint32(d.tmp[4:8]))

			128	 	 if	w	<	0	||	h	<	0	{

			129	 	 	 return	FormatError("negative	dimension")

			130	 	 }

			131	 	 nPixels	:=	int64(w)	*	int64(h)

			132	 	 if	nPixels	!=	int64(int(nPixels))	{

			133	 	 	 return	UnsupportedError("dimension	overflow")

			134	 	 }

			135	 	 d.cb	=	cbInvalid

			136	 	 d.depth	=	int(d.tmp[8])

			137	 	 switch	d.depth	{

			138	 	 case	1:

			139	 	 	 switch	d.tmp[9]	{

			140	 	 	 case	ctGrayscale:

			141	 	 	 	 d.cb	=	cbG1

			142	 	 	 case	ctPaletted:

			143	 	 	 	 d.cb	=	cbP1

			144	 	 	 }

			145	 	 case	2:

			146	 	 	 switch	d.tmp[9]	{

			147	 	 	 case	ctGrayscale:

			148	 	 	 	 d.cb	=	cbG2

			149	 	 	 case	ctPaletted:

			150	 	 	 	 d.cb	=	cbP2

			151	 	 	 }

			152	 	 case	4:

			153	 	 	 switch	d.tmp[9]	{

			154	 	 	 case	ctGrayscale:

			155	 	 	 	 d.cb	=	cbG4

			156	 	 	 case	ctPaletted:

			157	 	 	 	 d.cb	=	cbP4

			158	 	 	 }

			159	 	 case	8:

			160	 	 	 switch	d.tmp[9]	{

			161	 	 	 case	ctGrayscale:

			162	 	 	 	 d.cb	=	cbG8

			163	 	 	 case	ctTrueColor:

			164	 	 	 	 d.cb	=	cbTC8

			165	 	 	 case	ctPaletted:

			166	 	 	 	 d.cb	=	cbP8

			167	 	 	 case	ctGrayscaleAlpha:

			168	 	 	 	 d.cb	=	cbGA8

			169	 	 	 case	ctTrueColorAlpha:

			170	 	 	 	 d.cb	=	cbTCA8

			171	 	 	 }

			172	 	 case	16:

			173	 	 	 switch	d.tmp[9]	{

			174	 	 	 case	ctGrayscale:

			175	 	 	 	 d.cb	=	cbG16

			176	 	 	 case	ctTrueColor:

			177	 	 	 	 d.cb	=	cbTC16

			178	 	 	 case	ctGrayscaleAlpha:

			179	 	 	 	 d.cb	=	cbGA16

			180	 	 	 case	ctTrueColorAlpha:

			181	 	 	 	 d.cb	=	cbTCA16

			182	 	 	 }

			183	 	 }

			184	 	 if	d.cb	==	cbInvalid	{

			185	 	 	 return	UnsupportedError(fmt.Sprintf("bit	depth	%d,	color	type	%d",	d.tmp[8],	d.tmp[9]))

			186	 	 }

			187	 	 d.width,	d.height	=	int(w),	int(h)

			188	 	 return	d.verifyChecksum()

			189	 }

			190	

			191	 func	(d	*decoder)	parsePLTE(length	uint32)	error	{

			192	 	 np	:=	int(length	/	3)	//	The	number	of	palette	entries.

			193	 	 if	length%3	!=	0	||	np	<=	0	||	np	>	256	||	np	>	1<<uint(d.depth)	{

			194	 	 	 return	FormatError("bad	PLTE	length")

			195	 	 }

			196	 	 n,	err	:=	io.ReadFull(d.r,	d.tmp[:3*np])

			197	 	 if	err	!=	nil	{

			198	 	 	 return	err

			199	 	 }

			200	 	 d.crc.Write(d.tmp[:n])

			201	 	 switch	d.cb	{

			202	 	 case	cbP1,	cbP2,	cbP4,	cbP8:

			203	 	 	 d.palette	=	color.Palette(make([]color.Color,	np))

			204	 	 	 for	i	:=	0;	i	<	np;	i++	{

			205	 	 	 	 d.palette[i]	=	color.RGBA{d.tmp[3*i+0],	d.tmp[3*i+1],	d.tmp[3*i+2],	0xff}

			206	 	 	 }

			207	 	 case	cbTC8,	cbTCA8,	cbTC16,	cbTCA16:

			208	 	 	 //	As	per	the	PNG	spec,	a	PLTE	chunk	is	optional	(and	for	practical	purposes,

			209	 	 	 //	ignorable)	for	the	ctTrueColor	and	ctTrueColorAlpha	color	types	(section	4.1.2).

			210	 	 default:

			211	 	 	 return	FormatError("PLTE,	color	type	mismatch")

			212	 	 }

			213	 	 return	d.verifyChecksum()

			214	 }

			215	

			216	 func	(d	*decoder)	parsetRNS(length	uint32)	error	{

			217	 	 if	length	>	256	{

			218	 	 	 return	FormatError("bad	tRNS	length")

			219	 	 }

			220	 	 n,	err	:=	io.ReadFull(d.r,	d.tmp[:length])

			221	 	 if	err	!=	nil	{

			222	 	 	 return	err

			223	 	 }

			224	 	 d.crc.Write(d.tmp[:n])

			225	 	 switch	d.cb	{

			226	 	 case	cbG8,	cbG16:

			227	 	 	 return	UnsupportedError("grayscale	transparency")

			228	 	 case	cbTC8,	cbTC16:

			229	 	 	 return	UnsupportedError("truecolor	transparency")

			230	 	 case	cbP1,	cbP2,	cbP4,	cbP8:

			231	 	 	 if	n	>	len(d.palette)	{

			232	 	 	 	 return	FormatError("bad	tRNS	length")

			233	 	 	 }

			234	 	 	 for	i	:=	0;	i	<	n;	i++	{

			235	 	 	 	 rgba	:=	d.palette[i].(color.RGBA)

			236	 	 	 	 d.palette[i]	=	color.RGBA{rgba.R,	rgba.G,	rgba.B,	d.tmp[i]}

			237	 	 	 }

			238	 	 case	cbGA8,	cbGA16,	cbTCA8,	cbTCA16:

			239	 	 	 return	FormatError("tRNS,	color	type	mismatch")

			240	 	 }

			241	 	 return	d.verifyChecksum()

			242	 }

			243	

			244	 //	The	Paeth	filter	function,	as	per	the	PNG	specification.

			245	 func	paeth(a,	b,	c	uint8)	uint8	{

			246	 	 p	:=	int(a)	+	int(b)	-	int(c)

			247	 	 pa	:=	abs(p	-	int(a))

			248	 	 pb	:=	abs(p	-	int(b))

			249	 	 pc	:=	abs(p	-	int(c))

			250	 	 if	pa	<=	pb	&&	pa	<=	pc	{

			251	 	 	 return	a

			252	 	 }	else	if	pb	<=	pc	{

			253	 	 	 return	b

			254	 	 }

			255	 	 return	c

			256	 }

			257	

			258	 //	Read	presents	one	or	more	IDAT	chunks	as	one	continuous	stream	(minus	the

			259	 //	intermediate	chunk	headers	and	footers).	If	the	PNG	data	looked	like:

			260	 //			...	len0	IDAT	xxx	crc0	len1	IDAT	yy	crc1	len2	IEND	crc2

			261	 //	then	this	reader	presents	xxxyy.	For	well-formed	PNG	data,	the	decoder	state

			262	 //	immediately	before	the	first	Read	call	is	that	d.r	is	positioned	between	the

			263	 //	first	IDAT	and	xxx,	and	the	decoder	state	immediately	after	the	last	Read

			264	 //	call	is	that	d.r	is	positioned	between	yy	and	crc1.

			265	 func	(d	*decoder)	Read(p	[]byte)	(int,	error)	{

			266	 	 if	len(p)	==	0	{

			267	 	 	 return	0,	nil

			268	 	 }

			269	 	 for	d.idatLength	==	0	{

			270	 	 	 //	We	have	exhausted	an	IDAT	chunk.	Verify	the	checksum	of	that	chunk.

			271	 	 	 if	err	:=	d.verifyChecksum();	err	!=	nil	{

			272	 	 	 	 return	0,	err

			273	 	 	 }

			274	 	 	 //	Read	the	length	and	chunk	type	of	the	next	chunk,	and	check	that

			275	 	 	 //	it	is	an	IDAT	chunk.

			276	 	 	 if	_,	err	:=	io.ReadFull(d.r,	d.tmp[:8]);	err	!=	nil	{

			277	 	 	 	 return	0,	err

			278	 	 	 }

			279	 	 	 d.idatLength	=	binary.BigEndian.Uint32(d.tmp[:4])

			280	 	 	 if	string(d.tmp[4:8])	!=	"IDAT"	{

			281	 	 	 	 return	0,	FormatError("not	enough	pixel	data")

			282	 	 	 }

			283	 	 	 d.crc.Reset()

			284	 	 	 d.crc.Write(d.tmp[4:8])

			285	 	 }

			286	 	 if	int(d.idatLength)	<	0	{

			287	 	 	 return	0,	UnsupportedError("IDAT	chunk	length	overflow")

			288	 	 }

			289	 	 n,	err	:=	d.r.Read(p[:min(len(p),	int(d.idatLength))])

			290	 	 d.crc.Write(p[:n])

			291	 	 d.idatLength	-=	uint32(n)

			292	 	 return	n,	err

			293	 }

			294	

			295	 //	decode	decodes	the	IDAT	data	into	an	image.

			296	 func	(d	*decoder)	decode()	(image.Image,	error)	{

			297	 	 r,	err	:=	zlib.NewReader(d)

			298	 	 if	err	!=	nil	{

			299	 	 	 return	nil,	err

			300	 	 }

			301	 	 defer	r.Close()

			302	 	 bitsPerPixel	:=	0

			303	 	 maxPalette	:=	uint8(0)

			304	 	 var	(

			305	 	 	 gray					*image.Gray

			306	 	 	 rgba					*image.RGBA

			307	 	 	 paletted	*image.Paletted

			308	 	 	 nrgba				*image.NRGBA

			309	 	 	 gray16			*image.Gray16

			310	 	 	 rgba64			*image.RGBA64

			311	 	 	 nrgba64		*image.NRGBA64

			312	 	 	 img						image.Image

			313)

			314	 	 switch	d.cb	{

			315	 	 case	cbG1,	cbG2,	cbG4,	cbG8:

			316	 	 	 bitsPerPixel	=	d.depth

			317	 	 	 gray	=	image.NewGray(image.Rect(0,	0,	d.width,	d.height))

			318	 	 	 img	=	gray

			319	 	 case	cbGA8:

			320	 	 	 bitsPerPixel	=	16

			321	 	 	 nrgba	=	image.NewNRGBA(image.Rect(0,	0,	d.width,	d.height))

			322	 	 	 img	=	nrgba

			323	 	 case	cbTC8:

			324	 	 	 bitsPerPixel	=	24

			325	 	 	 rgba	=	image.NewRGBA(image.Rect(0,	0,	d.width,	d.height))

			326	 	 	 img	=	rgba

			327	 	 case	cbP1,	cbP2,	cbP4,	cbP8:

			328	 	 	 bitsPerPixel	=	d.depth

			329	 	 	 paletted	=	image.NewPaletted(image.Rect(0,	0,	d.width,	d.height),	d.palette)

			330	 	 	 img	=	paletted

			331	 	 	 maxPalette	=	uint8(len(d.palette)	-	1)

			332	 	 case	cbTCA8:

			333	 	 	 bitsPerPixel	=	32

			334	 	 	 nrgba	=	image.NewNRGBA(image.Rect(0,	0,	d.width,	d.height))

			335	 	 	 img	=	nrgba

			336	 	 case	cbG16:

			337	 	 	 bitsPerPixel	=	16

			338	 	 	 gray16	=	image.NewGray16(image.Rect(0,	0,	d.width,	d.height))

			339	 	 	 img	=	gray16

			340	 	 case	cbGA16:

			341	 	 	 bitsPerPixel	=	32

			342	 	 	 nrgba64	=	image.NewNRGBA64(image.Rect(0,	0,	d.width,	d.height))

			343	 	 	 img	=	nrgba64

			344	 	 case	cbTC16:

			345	 	 	 bitsPerPixel	=	48

			346	 	 	 rgba64	=	image.NewRGBA64(image.Rect(0,	0,	d.width,	d.height))

			347	 	 	 img	=	rgba64

			348	 	 case	cbTCA16:

			349	 	 	 bitsPerPixel	=	64

			350	 	 	 nrgba64	=	image.NewNRGBA64(image.Rect(0,	0,	d.width,	d.height))

			351	 	 	 img	=	nrgba64

			352	 	 }

			353	 	 bytesPerPixel	:=	(bitsPerPixel	+	7)	/	8

			354	

			355	 	 //	cr	and	pr	are	the	bytes	for	the	current	and	previous	row.

			356	 	 //	The	+1	is	for	the	per-row	filter	type,	which	is	at	cr[0].

			357	 	 cr	:=	make([]uint8,	1+(bitsPerPixel*d.width+7)/8)

			358	 	 pr	:=	make([]uint8,	1+(bitsPerPixel*d.width+7)/8)

			359	

			360	 	 for	y	:=	0;	y	<	d.height;	y++	{

			361	 	 	 //	Read	the	decompressed	bytes.

			362	 	 	 _,	err	:=	io.ReadFull(r,	cr)

			363	 	 	 if	err	!=	nil	{

			364	 	 	 	 return	nil,	err

			365	 	 	 }

			366	

			367	 	 	 //	Apply	the	filter.

			368	 	 	 cdat	:=	cr[1:]

			369	 	 	 pdat	:=	pr[1:]

			370	 	 	 switch	cr[0]	{

			371	 	 	 case	ftNone:

			372	 	 	 	 //	No-op.

			373	 	 	 case	ftSub:

			374	 	 	 	 for	i	:=	bytesPerPixel;	i	<	len(cdat);	i++	{

			375	 	 	 	 	 cdat[i]	+=	cdat[i-bytesPerPixel]

			376	 	 	 	 }

			377	 	 	 case	ftUp:

			378	 	 	 	 for	i	:=	0;	i	<	len(cdat);	i++	{

			379	 	 	 	 	 cdat[i]	+=	pdat[i]

			380	 	 	 	 }

			381	 	 	 case	ftAverage:

			382	 	 	 	 for	i	:=	0;	i	<	bytesPerPixel;	i++	{

			383	 	 	 	 	 cdat[i]	+=	pdat[i]	/	2

			384	 	 	 	 }

			385	 	 	 	 for	i	:=	bytesPerPixel;	i	<	len(cdat);	i++	{

			386	 	 	 	 	 cdat[i]	+=	uint8((int(cdat[i-bytesPerPixel])	+	int(pdat[i]))	/	2)

			387	 	 	 	 }

			388	 	 	 case	ftPaeth:

			389	 	 	 	 for	i	:=	0;	i	<	bytesPerPixel;	i++	{

			390	 	 	 	 	 cdat[i]	+=	paeth(0,	pdat[i],	0)

			391	 	 	 	 }

			392	 	 	 	 for	i	:=	bytesPerPixel;	i	<	len(cdat);	i++	{

			393	 	 	 	 	 cdat[i]	+=	paeth(cdat[i-bytesPerPixel],	pdat[i],	pdat[i-bytesPerPixel])

			394	 	 	 	 }

			395	 	 	 default:

			396	 	 	 	 return	nil,	FormatError("bad	filter	type")

			397	 	 	 }

			398	

			399	 	 	 //	Convert	from	bytes	to	colors.

			400	 	 	 switch	d.cb	{

			401	 	 	 case	cbG1:

			402	 	 	 	 for	x	:=	0;	x	<	d.width;	x	+=	8	{

			403	 	 	 	 	 b	:=	cdat[x/8]

			404	 	 	 	 	 for	x2	:=	0;	x2	<	8	&&	x+x2	<	d.width;	x2++	{

			405	 	 	 	 	 	 gray.SetGray(x+x2,	y,	color.Gray{(b	>>	7)	*	0xff})

			406	 	 	 	 	 	 b	<<=	1

			407	 	 	 	 	 }

			408	 	 	 	 }

			409	 	 	 case	cbG2:

			410	 	 	 	 for	x	:=	0;	x	<	d.width;	x	+=	4	{

			411	 	 	 	 	 b	:=	cdat[x/4]

			412	 	 	 	 	 for	x2	:=	0;	x2	<	4	&&	x+x2	<	d.width;	x2++	{

			413	 	 	 	 	 	 gray.SetGray(x+x2,	y,	color.Gray{(b	>>	6)	*	0x55})

			414	 	 	 	 	 	 b	<<=	2

			415	 	 	 	 	 }

			416	 	 	 	 }

			417	 	 	 case	cbG4:

			418	 	 	 	 for	x	:=	0;	x	<	d.width;	x	+=	2	{

			419	 	 	 	 	 b	:=	cdat[x/2]

			420	 	 	 	 	 for	x2	:=	0;	x2	<	2	&&	x+x2	<	d.width;	x2++	{

			421	 	 	 	 	 	 gray.SetGray(x+x2,	y,	color.Gray{(b	>>	4)	*	0x11})

			422	 	 	 	 	 	 b	<<=	4

			423	 	 	 	 	 }

			424	 	 	 	 }

			425	 	 	 case	cbG8:

			426	 	 	 	 for	x	:=	0;	x	<	d.width;	x++	{

			427	 	 	 	 	 gray.SetGray(x,	y,	color.Gray{cdat[x]})

			428	 	 	 	 }

			429	 	 	 case	cbGA8:

			430	 	 	 	 for	x	:=	0;	x	<	d.width;	x++	{

			431	 	 	 	 	 ycol	:=	cdat[2*x+0]

			432	 	 	 	 	 nrgba.SetNRGBA(x,	y,	color.NRGBA{ycol,	ycol,	ycol,	cdat[2*x+1]})

			433	 	 	 	 }

			434	 	 	 case	cbTC8:

			435	 	 	 	 for	x	:=	0;	x	<	d.width;	x++	{

			436	 	 	 	 	 rgba.SetRGBA(x,	y,	color.RGBA{cdat[3*x+0],	cdat[3*x+1],	cdat[3*x+2],	0xff})

			437	 	 	 	 }

			438	 	 	 case	cbP1:

			439	 	 	 	 for	x	:=	0;	x	<	d.width;	x	+=	8	{

			440	 	 	 	 	 b	:=	cdat[x/8]

			441	 	 	 	 	 for	x2	:=	0;	x2	<	8	&&	x+x2	<	d.width;	x2++	{

			442	 	 	 	 	 	 idx	:=	b	>>	7

			443	 	 	 	 	 	 if	idx	>	maxPalette	{

			444	 	 	 	 	 	 	 return	nil,	FormatError("palette	index	out	of	range")

			445	 	 	 	 	 	 }

			446	 	 	 	 	 	 paletted.SetColorIndex(x+x2,	y,	idx)

			447	 	 	 	 	 	 b	<<=	1

			448	 	 	 	 	 }

			449	 	 	 	 }

			450	 	 	 case	cbP2:

			451	 	 	 	 for	x	:=	0;	x	<	d.width;	x	+=	4	{

			452	 	 	 	 	 b	:=	cdat[x/4]

			453	 	 	 	 	 for	x2	:=	0;	x2	<	4	&&	x+x2	<	d.width;	x2++	{

			454	 	 	 	 	 	 idx	:=	b	>>	6

			455	 	 	 	 	 	 if	idx	>	maxPalette	{

			456	 	 	 	 	 	 	 return	nil,	FormatError("palette	index	out	of	range")

			457	 	 	 	 	 	 }

			458	 	 	 	 	 	 paletted.SetColorIndex(x+x2,	y,	idx)

			459	 	 	 	 	 	 b	<<=	2

			460	 	 	 	 	 }

			461	 	 	 	 }

			462	 	 	 case	cbP4:

			463	 	 	 	 for	x	:=	0;	x	<	d.width;	x	+=	2	{

			464	 	 	 	 	 b	:=	cdat[x/2]

			465	 	 	 	 	 for	x2	:=	0;	x2	<	2	&&	x+x2	<	d.width;	x2++	{

			466	 	 	 	 	 	 idx	:=	b	>>	4

			467	 	 	 	 	 	 if	idx	>	maxPalette	{

			468	 	 	 	 	 	 	 return	nil,	FormatError("palette	index	out	of	range")

			469	 	 	 	 	 	 }

			470	 	 	 	 	 	 paletted.SetColorIndex(x+x2,	y,	idx)

			471	 	 	 	 	 	 b	<<=	4

			472	 	 	 	 	 }

			473	 	 	 	 }

			474	 	 	 case	cbP8:

			475	 	 	 	 for	x	:=	0;	x	<	d.width;	x++	{

			476	 	 	 	 	 if	cdat[x]	>	maxPalette	{

			477	 	 	 	 	 	 return	nil,	FormatError("palette	index	out	of	range")

			478	 	 	 	 	 }

			479	 	 	 	 	 paletted.SetColorIndex(x,	y,	cdat[x])

			480	 	 	 	 }

			481	 	 	 case	cbTCA8:

			482	 	 	 	 for	x	:=	0;	x	<	d.width;	x++	{

			483	 	 	 	 	 nrgba.SetNRGBA(x,	y,	color.NRGBA{cdat[4*x+0],	cdat[4*x+1],	cdat[4*x+2],	cdat[4*x+3]})

			484	 	 	 	 }

			485	 	 	 case	cbG16:

			486	 	 	 	 for	x	:=	0;	x	<	d.width;	x++	{

			487	 	 	 	 	 ycol	:=	uint16(cdat[2*x+0])<<8	|	uint16(cdat[2*x+1])

			488	 	 	 	 	 gray16.SetGray16(x,	y,	color.Gray16{ycol})

			489	 	 	 	 }

			490	 	 	 case	cbGA16:

			491	 	 	 	 for	x	:=	0;	x	<	d.width;	x++	{

			492	 	 	 	 	 ycol	:=	uint16(cdat[4*x+0])<<8	|	uint16(cdat[4*x+1])

			493	 	 	 	 	 acol	:=	uint16(cdat[4*x+2])<<8	|	uint16(cdat[4*x+3])

			494	 	 	 	 	 nrgba64.SetNRGBA64(x,	y,	color.NRGBA64{ycol,	ycol,	ycol,	acol})

			495	 	 	 	 }

			496	 	 	 case	cbTC16:

			497	 	 	 	 for	x	:=	0;	x	<	d.width;	x++	{

			498	 	 	 	 	 rcol	:=	uint16(cdat[6*x+0])<<8	|	uint16(cdat[6*x+1])

			499	 	 	 	 	 gcol	:=	uint16(cdat[6*x+2])<<8	|	uint16(cdat[6*x+3])

			500	 	 	 	 	 bcol	:=	uint16(cdat[6*x+4])<<8	|	uint16(cdat[6*x+5])

			501	 	 	 	 	 rgba64.SetRGBA64(x,	y,	color.RGBA64{rcol,	gcol,	bcol,	0xffff})

			502	 	 	 	 }

			503	 	 	 case	cbTCA16:

			504	 	 	 	 for	x	:=	0;	x	<	d.width;	x++	{

			505	 	 	 	 	 rcol	:=	uint16(cdat[8*x+0])<<8	|	uint16(cdat[8*x+1])

			506	 	 	 	 	 gcol	:=	uint16(cdat[8*x+2])<<8	|	uint16(cdat[8*x+3])

			507	 	 	 	 	 bcol	:=	uint16(cdat[8*x+4])<<8	|	uint16(cdat[8*x+5])

			508	 	 	 	 	 acol	:=	uint16(cdat[8*x+6])<<8	|	uint16(cdat[8*x+7])

			509	 	 	 	 	 nrgba64.SetNRGBA64(x,	y,	color.NRGBA64{rcol,	gcol,	bcol,	acol})

			510	 	 	 	 }

			511	 	 	 }

			512	

			513	 	 	 //	The	current	row	for	y	is	the	previous	row	for	y+1.

			514	 	 	 pr,	cr	=	cr,	pr

			515	 	 }

			516	

			517	 	 //	Check	for	EOF,	to	verify	the	zlib	checksum.

			518	 	 n,	err	:=	r.Read(pr[:1])

			519	 	 if	err	!=	io.EOF	{

			520	 	 	 return	nil,	FormatError(err.Error())

			521	 	 }

			522	 	 if	n	!=	0	||	d.idatLength	!=	0	{

			523	 	 	 return	nil,	FormatError("too	much	pixel	data")

			524	 	 }

			525	

			526	 	 return	img,	nil

			527	 }

			528	

			529	 func	(d	*decoder)	parseIDAT(length	uint32)	(err	error)	{

			530	 	 d.idatLength	=	length

			531	 	 d.img,	err	=	d.decode()

			532	 	 if	err	!=	nil	{

			533	 	 	 return	err

			534	 	 }

			535	 	 return	d.verifyChecksum()

			536	 }

			537	

			538	 func	(d	*decoder)	parseIEND(length	uint32)	error	{

			539	 	 if	length	!=	0	{

			540	 	 	 return	FormatError("bad	IEND	length")

			541	 	 }

			542	 	 return	d.verifyChecksum()

			543	 }

			544	

			545	 func	(d	*decoder)	parseChunk()	error	{

			546	 	 //	Read	the	length	and	chunk	type.

			547	 	 n,	err	:=	io.ReadFull(d.r,	d.tmp[:8])

			548	 	 if	err	!=	nil	{

			549	 	 	 return	err

			550	 	 }

			551	 	 length	:=	binary.BigEndian.Uint32(d.tmp[:4])

			552	 	 d.crc.Reset()

			553	 	 d.crc.Write(d.tmp[4:8])

			554	

			555	 	 //	Read	the	chunk	data.

			556	 	 switch	string(d.tmp[4:8])	{

			557	 	 case	"IHDR":

			558	 	 	 if	d.stage	!=	dsStart	{

			559	 	 	 	 return	chunkOrderError

			560	 	 	 }

			561	 	 	 d.stage	=	dsSeenIHDR

			562	 	 	 return	d.parseIHDR(length)

			563	 	 case	"PLTE":

			564	 	 	 if	d.stage	!=	dsSeenIHDR	{

			565	 	 	 	 return	chunkOrderError

			566	 	 	 }

			567	 	 	 d.stage	=	dsSeenPLTE

			568	 	 	 return	d.parsePLTE(length)

			569	 	 case	"tRNS":

			570	 	 	 if	d.stage	!=	dsSeenPLTE	{

			571	 	 	 	 return	chunkOrderError

			572	 	 	 }

			573	 	 	 return	d.parsetRNS(length)

			574	 	 case	"IDAT":

			575	 	 	 if	d.stage	<	dsSeenIHDR	||	d.stage	>	dsSeenIDAT	||	(d.cb	==	cbP8	&&	d.stage	==	dsSeenIHDR)	{

			576	 	 	 	 return	chunkOrderError

			577	 	 	 }

			578	 	 	 d.stage	=	dsSeenIDAT

			579	 	 	 return	d.parseIDAT(length)

			580	 	 case	"IEND":

			581	 	 	 if	d.stage	!=	dsSeenIDAT	{

			582	 	 	 	 return	chunkOrderError

			583	 	 	 }

			584	 	 	 d.stage	=	dsSeenIEND

			585	 	 	 return	d.parseIEND(length)

			586	 	 }

			587	 	 //	Ignore	this	chunk	(of	a	known	length).

			588	 	 var	ignored	[4096]byte

			589	 	 for	length	>	0	{

			590	 	 	 n,	err	=	io.ReadFull(d.r,	ignored[:min(len(ignored),	int(length))])

			591	 	 	 if	err	!=	nil	{

			592	 	 	 	 return	err

			593	 	 	 }

			594	 	 	 d.crc.Write(ignored[:n])

			595	 	 	 length	-=	uint32(n)

			596	 	 }

			597	 	 return	d.verifyChecksum()

			598	 }

			599	

			600	 func	(d	*decoder)	verifyChecksum()	error	{

			601	 	 if	_,	err	:=	io.ReadFull(d.r,	d.tmp[:4]);	err	!=	nil	{

			602	 	 	 return	err

			603	 	 }

			604	 	 if	binary.BigEndian.Uint32(d.tmp[:4])	!=	d.crc.Sum32()	{

			605	 	 	 return	FormatError("invalid	checksum")

			606	 	 }

			607	 	 return	nil

			608	 }

			609	

			610	 func	(d	*decoder)	checkHeader()	error	{

			611	 	 _,	err	:=	io.ReadFull(d.r,	d.tmp[:len(pngHeader)])

			612	 	 if	err	!=	nil	{

			613	 	 	 return	err

			614	 	 }

			615	 	 if	string(d.tmp[:len(pngHeader)])	!=	pngHeader	{

			616	 	 	 return	FormatError("not	a	PNG	file")

			617	 	 }

			618	 	 return	nil

			619	 }

			620	

			621	 //	Decode	reads	a	PNG	image	from	r	and	returns	it	as	an	image.Image.

			622	 //	The	type	of	Image	returned	depends	on	the	PNG	contents.

			623	 func	Decode(r	io.Reader)	(image.Image,	error)	{

			624	 	 d	:=	&decoder{

			625	 	 	 r:			r,

			626	 	 	 crc:	crc32.NewIEEE(),

			627	 	 }

			628	 	 if	err	:=	d.checkHeader();	err	!=	nil	{

			629	 	 	 if	err	==	io.EOF	{

			630	 	 	 	 err	=	io.ErrUnexpectedEOF

			631	 	 	 }

			632	 	 	 return	nil,	err

			633	 	 }

			634	 	 for	d.stage	!=	dsSeenIEND	{

			635	 	 	 if	err	:=	d.parseChunk();	err	!=	nil	{

			636	 	 	 	 if	err	==	io.EOF	{

			637	 	 	 	 	 err	=	io.ErrUnexpectedEOF

			638	 	 	 	 }

			639	 	 	 	 return	nil,	err

			640	 	 	 }

			641	 	 }

			642	 	 return	d.img,	nil

			643	 }

			644	

			645	 //	DecodeConfig	returns	the	color	model	and	dimensions	of	a	PNG	image	without

			646	 //	decoding	the	entire	image.

			647	 func	DecodeConfig(r	io.Reader)	(image.Config,	error)	{

			648	 	 d	:=	&decoder{

			649	 	 	 r:			r,

			650	 	 	 crc:	crc32.NewIEEE(),

			651	 	 }

			652	 	 if	err	:=	d.checkHeader();	err	!=	nil	{

			653	 	 	 if	err	==	io.EOF	{

			654	 	 	 	 err	=	io.ErrUnexpectedEOF

			655	 	 	 }

			656	 	 	 return	image.Config{},	err

			657	 	 }

			658	 	 for	{

			659	 	 	 if	err	:=	d.parseChunk();	err	!=	nil	{

			660	 	 	 	 if	err	==	io.EOF	{

			661	 	 	 	 	 err	=	io.ErrUnexpectedEOF

			662	 	 	 	 }

			663	 	 	 	 return	image.Config{},	err

			664	 	 	 }

			665	 	 	 if	d.stage	==	dsSeenIHDR	&&	d.cb	!=	cbP8	{

			666	 	 	 	 break

			667	 	 	 }

			668	 	 	 if	d.stage	==	dsSeenPLTE	&&	d.cb	==	cbP8	{

			669	 	 	 	 break

			670	 	 	 }

			671	 	 }

			672	 	 var	cm	color.Model

			673	 	 switch	d.cb	{

			674	 	 case	cbG1,	cbG2,	cbG4,	cbG8:

			675	 	 	 cm	=	color.GrayModel

			676	 	 case	cbGA8:

			677	 	 	 cm	=	color.NRGBAModel

			678	 	 case	cbTC8:

			679	 	 	 cm	=	color.RGBAModel

			680	 	 case	cbP1,	cbP2,	cbP4,	cbP8:

			681	 	 	 cm	=	d.palette

			682	 	 case	cbTCA8:

			683	 	 	 cm	=	color.NRGBAModel

			684	 	 case	cbG16:

			685	 	 	 cm	=	color.Gray16Model

			686	 	 case	cbGA16:

			687	 	 	 cm	=	color.NRGBA64Model

			688	 	 case	cbTC16:

			689	 	 	 cm	=	color.RGBA64Model

			690	 	 case	cbTCA16:

			691	 	 	 cm	=	color.NRGBA64Model

			692	 	 }

			693	 	 return	image.Config{

			694	 	 	 ColorModel:	cm,

			695	 	 	 Width:						d.width,

			696	 	 	 Height:					d.height,

			697	 	 },	nil

			698	 }

			699	

			700	 func	init()	{

			701	 	 image.RegisterFormat("png",	pngHeader,	Decode,	DecodeConfig)

			702	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/image/png/writer.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	png

					6	

					7	 import	(

					8	 	 "bufio"

					9	 	 "compress/zlib"

				10	 	 "hash/crc32"

				11	 	 "image"

				12	 	 "image/color"

				13	 	 "io"

				14	 	 "strconv"

				15)

				16	

				17	 type	encoder	struct	{

				18	 	 w						io.Writer

				19	 	 m						image.Image

				20	 	 cb					int

				21	 	 err				error

				22	 	 header	[8]byte

				23	 	 footer	[4]byte

				24	 	 tmp				[3	*	256]byte

				25	 }

				26	

				27	 //	Big-endian.

				28	 func	writeUint32(b	[]uint8,	u	uint32)	{

				29	 	 b[0]	=	uint8(u	>>	24)

				30	 	 b[1]	=	uint8(u	>>	16)

				31	 	 b[2]	=	uint8(u	>>	8)

				32	 	 b[3]	=	uint8(u	>>	0)

				33	 }

				34	

				35	 type	opaquer	interface	{

				36	 	 Opaque()	bool

				37	 }

				38	

				39	 //	Returns	whether	or	not	the	image	is	fully	opaque.

				40	 func	opaque(m	image.Image)	bool	{

				41	 	 if	o,	ok	:=	m.(opaquer);	ok	{

				42	 	 	 return	o.Opaque()

				43	 	 }

				44	 	 b	:=	m.Bounds()

				45	 	 for	y	:=	b.Min.Y;	y	<	b.Max.Y;	y++	{

				46	 	 	 for	x	:=	b.Min.X;	x	<	b.Max.X;	x++	{

				47	 	 	 	 _,	_,	_,	a	:=	m.At(x,	y).RGBA()

				48	 	 	 	 if	a	!=	0xffff	{

				49	 	 	 	 	 return	false

				50	 	 	 	 }

				51	 	 	 }

				52	 	 }

				53	 	 return	true

				54	 }

				55	

				56	 //	The	absolute	value	of	a	byte	interpreted	as	a	signed	int8.

				57	 func	abs8(d	uint8)	int	{

				58	 	 if	d	<	128	{

				59	 	 	 return	int(d)

				60	 	 }

				61	 	 return	256	-	int(d)

				62	 }

				63	

				64	 func	(e	*encoder)	writeChunk(b	[]byte,	name	string)	{

				65	 	 if	e.err	!=	nil	{

				66	 	 	 return

				67	 	 }

				68	 	 n	:=	uint32(len(b))

				69	 	 if	int(n)	!=	len(b)	{

				70	 	 	 e.err	=	UnsupportedError(name	+	"	chunk	is	too	large:	"	+	strconv.Itoa(len(b)))

				71	 	 	 return

				72	 	 }

				73	 	 writeUint32(e.header[0:4],	n)

				74	 	 e.header[4]	=	name[0]

				75	 	 e.header[5]	=	name[1]

				76	 	 e.header[6]	=	name[2]

				77	 	 e.header[7]	=	name[3]

				78	 	 crc	:=	crc32.NewIEEE()

				79	 	 crc.Write(e.header[4:8])

				80	 	 crc.Write(b)

				81	 	 writeUint32(e.footer[0:4],	crc.Sum32())

				82	

				83	 	 _,	e.err	=	e.w.Write(e.header[0:8])

				84	 	 if	e.err	!=	nil	{

				85	 	 	 return

				86	 	 }

				87	 	 _,	e.err	=	e.w.Write(b)

				88	 	 if	e.err	!=	nil	{

				89	 	 	 return

				90	 	 }

				91	 	 _,	e.err	=	e.w.Write(e.footer[0:4])

				92	 }

				93	

				94	 func	(e	*encoder)	writeIHDR()	{

				95	 	 b	:=	e.m.Bounds()

				96	 	 writeUint32(e.tmp[0:4],	uint32(b.Dx()))

				97	 	 writeUint32(e.tmp[4:8],	uint32(b.Dy()))

				98	 	 //	Set	bit	depth	and	color	type.

				99	 	 switch	e.cb	{

			100	 	 case	cbG8:

			101	 	 	 e.tmp[8]	=	8

			102	 	 	 e.tmp[9]	=	ctGrayscale

			103	 	 case	cbTC8:

			104	 	 	 e.tmp[8]	=	8

			105	 	 	 e.tmp[9]	=	ctTrueColor

			106	 	 case	cbP8:

			107	 	 	 e.tmp[8]	=	8

			108	 	 	 e.tmp[9]	=	ctPaletted

			109	 	 case	cbTCA8:

			110	 	 	 e.tmp[8]	=	8

			111	 	 	 e.tmp[9]	=	ctTrueColorAlpha

			112	 	 case	cbG16:

			113	 	 	 e.tmp[8]	=	16

			114	 	 	 e.tmp[9]	=	ctGrayscale

			115	 	 case	cbTC16:

			116	 	 	 e.tmp[8]	=	16

			117	 	 	 e.tmp[9]	=	ctTrueColor

			118	 	 case	cbTCA16:

			119	 	 	 e.tmp[8]	=	16

			120	 	 	 e.tmp[9]	=	ctTrueColorAlpha

			121	 	 }

			122	 	 e.tmp[10]	=	0	//	default	compression	method

			123	 	 e.tmp[11]	=	0	//	default	filter	method

			124	 	 e.tmp[12]	=	0	//	non-interlaced

			125	 	 e.writeChunk(e.tmp[0:13],	"IHDR")

			126	 }

			127	

			128	 func	(e	*encoder)	writePLTE(p	color.Palette)	{

			129	 	 if	len(p)	<	1	||	len(p)	>	256	{

			130	 	 	 e.err	=	FormatError("bad	palette	length:	"	+	strconv.Itoa(len(p)))

			131	 	 	 return

			132	 	 }

			133	 	 for	i,	c	:=	range	p	{

			134	 	 	 r,	g,	b,	_	:=	c.RGBA()

			135	 	 	 e.tmp[3*i+0]	=	uint8(r	>>	8)

			136	 	 	 e.tmp[3*i+1]	=	uint8(g	>>	8)

			137	 	 	 e.tmp[3*i+2]	=	uint8(b	>>	8)

			138	 	 }

			139	 	 e.writeChunk(e.tmp[0:3*len(p)],	"PLTE")

			140	 }

			141	

			142	 func	(e	*encoder)	maybeWritetRNS(p	color.Palette)	{

			143	 	 last	:=	-1

			144	 	 for	i,	c	:=	range	p	{

			145	 	 	 _,	_,	_,	a	:=	c.RGBA()

			146	 	 	 if	a	!=	0xffff	{

			147	 	 	 	 last	=	i

			148	 	 	 }

			149	 	 	 e.tmp[i]	=	uint8(a	>>	8)

			150	 	 }

			151	 	 if	last	==	-1	{

			152	 	 	 return

			153	 	 }

			154	 	 e.writeChunk(e.tmp[:last+1],	"tRNS")

			155	 }

			156	

			157	 //	An	encoder	is	an	io.Writer	that	satisfies	writes	by	writing	PNG	IDAT	chunks,

			158	 //	including	an	8-byte	header	and	4-byte	CRC	checksum	per	Write	call.	Such	calls

			159	 //	should	be	relatively	infrequent,	since	writeIDATs	uses	a	bufio.Writer.

			160	 //

			161	 //	This	method	should	only	be	called	from	writeIDATs	(via	writeImage).

			162	 //	No	other	code	should	treat	an	encoder	as	an	io.Writer.

			163	 func	(e	*encoder)	Write(b	[]byte)	(int,	error)	{

			164	 	 e.writeChunk(b,	"IDAT")

			165	 	 if	e.err	!=	nil	{

			166	 	 	 return	0,	e.err

			167	 	 }

			168	 	 return	len(b),	nil

			169	 }

			170	

			171	 //	Chooses	the	filter	to	use	for	encoding	the	current	row,	and	applies	it.

			172	 //	The	return	value	is	the	index	of	the	filter	and	also	of	the	row	in	cr	that	has	had	it	applied.

			173	 func	filter(cr	*[nFilter][]byte,	pr	[]byte,	bpp	int)	int	{

			174	 	 //	We	try	all	five	filter	types,	and	pick	the	one	that	minimizes	the	sum	of	absolute	differences.

			175	 	 //	This	is	the	same	heuristic	that	libpng	uses,	although	the	filters	are	attempted	in	order	of

			176	 	 //	estimated	most	likely	to	be	minimal	(ftUp,	ftPaeth,	ftNone,	ftSub,	ftAverage),	rather	than

			177	 	 //	in	their	enumeration	order	(ftNone,	ftSub,	ftUp,	ftAverage,	ftPaeth).

			178	 	 cdat0	:=	cr[0][1:]

			179	 	 cdat1	:=	cr[1][1:]

			180	 	 cdat2	:=	cr[2][1:]

			181	 	 cdat3	:=	cr[3][1:]

			182	 	 cdat4	:=	cr[4][1:]

			183	 	 pdat	:=	pr[1:]

			184	 	 n	:=	len(cdat0)

			185	

			186	 	 //	The	up	filter.

			187	 	 sum	:=	0

			188	 	 for	i	:=	0;	i	<	n;	i++	{

			189	 	 	 cdat2[i]	=	cdat0[i]	-	pdat[i]

			190	 	 	 sum	+=	abs8(cdat2[i])

			191	 	 }

			192	 	 best	:=	sum

			193	 	 filter	:=	ftUp

			194	

			195	 	 //	The	Paeth	filter.

			196	 	 sum	=	0

			197	 	 for	i	:=	0;	i	<	bpp;	i++	{

			198	 	 	 cdat4[i]	=	cdat0[i]	-	paeth(0,	pdat[i],	0)

			199	 	 	 sum	+=	abs8(cdat4[i])

			200	 	 }

			201	 	 for	i	:=	bpp;	i	<	n;	i++	{

			202	 	 	 cdat4[i]	=	cdat0[i]	-	paeth(cdat0[i-bpp],	pdat[i],	pdat[i-bpp])

			203	 	 	 sum	+=	abs8(cdat4[i])

			204	 	 	 if	sum	>=	best	{

			205	 	 	 	 break

			206	 	 	 }

			207	 	 }

			208	 	 if	sum	<	best	{

			209	 	 	 best	=	sum

			210	 	 	 filter	=	ftPaeth

			211	 	 }

			212	

			213	 	 //	The	none	filter.

			214	 	 sum	=	0

			215	 	 for	i	:=	0;	i	<	n;	i++	{

			216	 	 	 sum	+=	abs8(cdat0[i])

			217	 	 	 if	sum	>=	best	{

			218	 	 	 	 break

			219	 	 	 }

			220	 	 }

			221	 	 if	sum	<	best	{

			222	 	 	 best	=	sum

			223	 	 	 filter	=	ftNone

			224	 	 }

			225	

			226	 	 //	The	sub	filter.

			227	 	 sum	=	0

			228	 	 for	i	:=	0;	i	<	bpp;	i++	{

			229	 	 	 cdat1[i]	=	cdat0[i]

			230	 	 	 sum	+=	abs8(cdat1[i])

			231	 	 }

			232	 	 for	i	:=	bpp;	i	<	n;	i++	{

			233	 	 	 cdat1[i]	=	cdat0[i]	-	cdat0[i-bpp]

			234	 	 	 sum	+=	abs8(cdat1[i])

			235	 	 	 if	sum	>=	best	{

			236	 	 	 	 break

			237	 	 	 }

			238	 	 }

			239	 	 if	sum	<	best	{

			240	 	 	 best	=	sum

			241	 	 	 filter	=	ftSub

			242	 	 }

			243	

			244	 	 //	The	average	filter.

			245	 	 sum	=	0

			246	 	 for	i	:=	0;	i	<	bpp;	i++	{

			247	 	 	 cdat3[i]	=	cdat0[i]	-	pdat[i]/2

			248	 	 	 sum	+=	abs8(cdat3[i])

			249	 	 }

			250	 	 for	i	:=	bpp;	i	<	n;	i++	{

			251	 	 	 cdat3[i]	=	cdat0[i]	-	uint8((int(cdat0[i-bpp])+int(pdat[i]))/2)

			252	 	 	 sum	+=	abs8(cdat3[i])

			253	 	 	 if	sum	>=	best	{

			254	 	 	 	 break

			255	 	 	 }

			256	 	 }

			257	 	 if	sum	<	best	{

			258	 	 	 best	=	sum

			259	 	 	 filter	=	ftAverage

			260	 	 }

			261	

			262	 	 return	filter

			263	 }

			264	

			265	 func	writeImage(w	io.Writer,	m	image.Image,	cb	int)	error	{

			266	 	 zw	:=	zlib.NewWriter(w)

			267	 	 defer	zw.Close()

			268	

			269	 	 bpp	:=	0	//	Bytes	per	pixel.

			270	

			271	 	 switch	cb	{

			272	 	 case	cbG8:

			273	 	 	 bpp	=	1

			274	 	 case	cbTC8:

			275	 	 	 bpp	=	3

			276	 	 case	cbP8:

			277	 	 	 bpp	=	1

			278	 	 case	cbTCA8:

			279	 	 	 bpp	=	4

			280	 	 case	cbTC16:

			281	 	 	 bpp	=	6

			282	 	 case	cbTCA16:

			283	 	 	 bpp	=	8

			284	 	 case	cbG16:

			285	 	 	 bpp	=	2

			286	 	 }

			287	 	 //	cr[*]	and	pr	are	the	bytes	for	the	current	and	previous	row.

			288	 	 //	cr[0]	is	unfiltered	(or	equivalently,	filtered	with	the	ftNone	filter).

			289	 	 //	cr[ft],	for	non-zero	filter	types	ft,	are	buffers	for	transforming	cr[0]	under	the

			290	 	 //	other	PNG	filter	types.	These	buffers	are	allocated	once	and	re-used	for	each	row.

			291	 	 //	The	+1	is	for	the	per-row	filter	type,	which	is	at	cr[*][0].

			292	 	 b	:=	m.Bounds()

			293	 	 var	cr	[nFilter][]uint8

			294	 	 for	i	:=	range	cr	{

			295	 	 	 cr[i]	=	make([]uint8,	1+bpp*b.Dx())

			296	 	 	 cr[i][0]	=	uint8(i)

			297	 	 }

			298	 	 pr	:=	make([]uint8,	1+bpp*b.Dx())

			299	

			300	 	 for	y	:=	b.Min.Y;	y	<	b.Max.Y;	y++	{

			301	 	 	 //	Convert	from	colors	to	bytes.

			302	 	 	 i	:=	1

			303	 	 	 switch	cb	{

			304	 	 	 case	cbG8:

			305	 	 	 	 for	x	:=	b.Min.X;	x	<	b.Max.X;	x++	{

			306	 	 	 	 	 c	:=	color.GrayModel.Convert(m.At(x,	y)).(color.Gray)

			307	 	 	 	 	 cr[0][i]	=	c.Y

			308	 	 	 	 	 i++

			309	 	 	 	 }

			310	 	 	 case	cbTC8:

			311	 	 	 	 //	We	have	previously	verified	that	the	alpha	value	is	fully	opaque.

			312	 	 	 	 cr0	:=	cr[0]

			313	 	 	 	 if	rgba,	_	:=	m.(*image.RGBA);	rgba	!=	nil	{

			314	 	 	 	 	 j0	:=	(y	-	b.Min.Y)	*	rgba.Stride

			315	 	 	 	 	 j1	:=	j0	+	b.Dx()*4

			316	 	 	 	 	 for	j	:=	j0;	j	<	j1;	j	+=	4	{

			317	 	 	 	 	 	 cr0[i+0]	=	rgba.Pix[j+0]

			318	 	 	 	 	 	 cr0[i+1]	=	rgba.Pix[j+1]

			319	 	 	 	 	 	 cr0[i+2]	=	rgba.Pix[j+2]

			320	 	 	 	 	 	 i	+=	3

			321	 	 	 	 	 }

			322	 	 	 	 }	else	{

			323	 	 	 	 	 for	x	:=	b.Min.X;	x	<	b.Max.X;	x++	{

			324	 	 	 	 	 	 r,	g,	b,	_	:=	m.At(x,	y).RGBA()

			325	 	 	 	 	 	 cr0[i+0]	=	uint8(r	>>	8)

			326	 	 	 	 	 	 cr0[i+1]	=	uint8(g	>>	8)

			327	 	 	 	 	 	 cr0[i+2]	=	uint8(b	>>	8)

			328	 	 	 	 	 	 i	+=	3

			329	 	 	 	 	 }

			330	 	 	 	 }

			331	 	 	 case	cbP8:

			332	 	 	 	 if	p,	_	:=	m.(*image.Paletted);	p	!=	nil	{

			333	 	 	 	 	 offset	:=	(y	-	b.Min.Y)	*	p.Stride

			334	 	 	 	 	 copy(cr[0][1:],	p.Pix[offset:offset+b.Dx()])

			335	 	 	 	 }	else	{

			336	 	 	 	 	 pi	:=	m.(image.PalettedImage)

			337	 	 	 	 	 for	x	:=	b.Min.X;	x	<	b.Max.X;	x++	{

			338	 	 	 	 	 	 cr[0][i]	=	pi.ColorIndexAt(x,	y)

			339	 	 	 	 	 	 i	+=	1

			340	 	 	 	 	 }

			341	 	 	 	 }

			342	 	 	 case	cbTCA8:

			343	 	 	 	 //	Convert	from	image.Image	(which	is	alpha-premultiplied)	to	PNG's	non-alpha-premultiplied.

			344	 	 	 	 for	x	:=	b.Min.X;	x	<	b.Max.X;	x++	{

			345	 	 	 	 	 c	:=	color.NRGBAModel.Convert(m.At(x,	y)).(color.NRGBA)

			346	 	 	 	 	 cr[0][i+0]	=	c.R

			347	 	 	 	 	 cr[0][i+1]	=	c.G

			348	 	 	 	 	 cr[0][i+2]	=	c.B

			349	 	 	 	 	 cr[0][i+3]	=	c.A

			350	 	 	 	 	 i	+=	4

			351	 	 	 	 }

			352	 	 	 case	cbG16:

			353	 	 	 	 for	x	:=	b.Min.X;	x	<	b.Max.X;	x++	{

			354	 	 	 	 	 c	:=	color.Gray16Model.Convert(m.At(x,	y)).(color.Gray16)

			355	 	 	 	 	 cr[0][i+0]	=	uint8(c.Y	>>	8)

			356	 	 	 	 	 cr[0][i+1]	=	uint8(c.Y)

			357	 	 	 	 	 i	+=	2

			358	 	 	 	 }

			359	 	 	 case	cbTC16:

			360	 	 	 	 //	We	have	previously	verified	that	the	alpha	value	is	fully	opaque.

			361	 	 	 	 for	x	:=	b.Min.X;	x	<	b.Max.X;	x++	{

			362	 	 	 	 	 r,	g,	b,	_	:=	m.At(x,	y).RGBA()

			363	 	 	 	 	 cr[0][i+0]	=	uint8(r	>>	8)

			364	 	 	 	 	 cr[0][i+1]	=	uint8(r)

			365	 	 	 	 	 cr[0][i+2]	=	uint8(g	>>	8)

			366	 	 	 	 	 cr[0][i+3]	=	uint8(g)

			367	 	 	 	 	 cr[0][i+4]	=	uint8(b	>>	8)

			368	 	 	 	 	 cr[0][i+5]	=	uint8(b)

			369	 	 	 	 	 i	+=	6

			370	 	 	 	 }

			371	 	 	 case	cbTCA16:

			372	 	 	 	 //	Convert	from	image.Image	(which	is	alpha-premultiplied)	to	PNG's	non-alpha-premultiplied.

			373	 	 	 	 for	x	:=	b.Min.X;	x	<	b.Max.X;	x++	{

			374	 	 	 	 	 c	:=	color.NRGBA64Model.Convert(m.At(x,	y)).(color.NRGBA64)

			375	 	 	 	 	 cr[0][i+0]	=	uint8(c.R	>>	8)

			376	 	 	 	 	 cr[0][i+1]	=	uint8(c.R)

			377	 	 	 	 	 cr[0][i+2]	=	uint8(c.G	>>	8)

			378	 	 	 	 	 cr[0][i+3]	=	uint8(c.G)

			379	 	 	 	 	 cr[0][i+4]	=	uint8(c.B	>>	8)

			380	 	 	 	 	 cr[0][i+5]	=	uint8(c.B)

			381	 	 	 	 	 cr[0][i+6]	=	uint8(c.A	>>	8)

			382	 	 	 	 	 cr[0][i+7]	=	uint8(c.A)

			383	 	 	 	 	 i	+=	8

			384	 	 	 	 }

			385	 	 	 }

			386	

			387	 	 	 //	Apply	the	filter.

			388	 	 	 f	:=	filter(&cr,	pr,	bpp)

			389	

			390	 	 	 //	Write	the	compressed	bytes.

			391	 	 	 if	_,	err	:=	zw.Write(cr[f]);	err	!=	nil	{

			392	 	 	 	 return	err

			393	 	 	 }

			394	

			395	 	 	 //	The	current	row	for	y	is	the	previous	row	for	y+1.

			396	 	 	 pr,	cr[0]	=	cr[0],	pr

			397	 	 }

			398	 	 return	nil

			399	 }

			400	

			401	 //	Write	the	actual	image	data	to	one	or	more	IDAT	chunks.

			402	 func	(e	*encoder)	writeIDATs()	{

			403	 	 if	e.err	!=	nil	{

			404	 	 	 return

			405	 	 }

			406	 	 var	bw	*bufio.Writer

			407	 	 bw	=	bufio.NewWriterSize(e,	1<<15)

			408	 	 e.err	=	writeImage(bw,	e.m,	e.cb)

			409	 	 if	e.err	!=	nil	{

			410	 	 	 return

			411	 	 }

			412	 	 e.err	=	bw.Flush()

			413	 }

			414	

			415	 func	(e	*encoder)	writeIEND()	{	e.writeChunk(e.tmp[0:0],	"IEND")	}

			416	

			417	 //	Encode	writes	the	Image	m	to	w	in	PNG	format.	Any	Image	may	be	encoded,	but

			418	 //	images	that	are	not	image.NRGBA	might	be	encoded	lossily.

			419	 func	Encode(w	io.Writer,	m	image.Image)	error	{

			420	 	 //	Obviously,	negative	widths	and	heights	are	invalid.	Furthermore,	the	PNG

			421	 	 //	spec	section	11.2.2	says	that	zero	is	invalid.	Excessively	large	images	are

			422	 	 //	also	rejected.

			423	 	 mw,	mh	:=	int64(m.Bounds().Dx()),	int64(m.Bounds().Dy())

			424	 	 if	mw	<=	0	||	mh	<=	0	||	mw	>=	1<<32	||	mh	>=	1<<32	{

			425	 	 	 return	FormatError("invalid	image	size:	"	+	strconv.FormatInt(mw,	10)	+	"x"	+	strconv.FormatInt(mw,	10))

			426	 	 }

			427	

			428	 	 var	e	encoder

			429	 	 e.w	=	w

			430	 	 e.m	=	m

			431	

			432	 	 var	pal	color.Palette

			433	 	 //	cbP8	encoding	needs	PalettedImage's	ColorIndexAt	method.

			434	 	 if	_,	ok	:=	m.(image.PalettedImage);	ok	{

			435	 	 	 pal,	_	=	m.ColorModel().(color.Palette)

			436	 	 }

			437	 	 if	pal	!=	nil	{

			438	 	 	 e.cb	=	cbP8

			439	 	 }	else	{

			440	 	 	 switch	m.ColorModel()	{

			441	 	 	 case	color.GrayModel:

			442	 	 	 	 e.cb	=	cbG8

			443	 	 	 case	color.Gray16Model:

			444	 	 	 	 e.cb	=	cbG16

			445	 	 	 case	color.RGBAModel,	color.NRGBAModel,	color.AlphaModel:

			446	 	 	 	 if	opaque(m)	{

			447	 	 	 	 	 e.cb	=	cbTC8

			448	 	 	 	 }	else	{

			449	 	 	 	 	 e.cb	=	cbTCA8

			450	 	 	 	 }

			451	 	 	 default:

			452	 	 	 	 if	opaque(m)	{

			453	 	 	 	 	 e.cb	=	cbTC16

			454	 	 	 	 }	else	{

			455	 	 	 	 	 e.cb	=	cbTCA16

			456	 	 	 	 }

			457	 	 	 }

			458	 	 }

			459	

			460	 	 _,	e.err	=	io.WriteString(w,	pngHeader)

			461	 	 e.writeIHDR()

			462	 	 if	pal	!=	nil	{

			463	 	 	 e.writePLTE(pal)

			464	 	 	 e.maybeWritetRNS(pal)

			465	 	 }

			466	 	 e.writeIDATs()

			467	 	 e.writeIEND()

			468	 	 return	e.err

			469	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/index/suffixarray/qsufsort.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	This	algorithm	is	based	on	"Faster	Suffix	Sorting"

					6	 //			by	N.	Jesper	Larsson	and	Kunihiko	Sadakane

					7	 //	paper:	http://www.larsson.dogma.net/ssrev-tr.pdf

					8	 //	code:		http://www.larsson.dogma.net/qsufsort.c

					9	

				10	 //	This	algorithm	computes	the	suffix	array	sa	by	computing	its	inverse.

				11	 //	Consecutive	groups	of	suffixes	in	sa	are	labeled	as	sorted	groups	or

				12	 //	unsorted	groups.	For	a	given	pass	of	the	sorter,	all	suffixes	are	ordered

				13	 //	up	to	their	first	h	characters,	and	sa	is	h-ordered.	Suffixes	in	their

				14	 //	final	positions	and	unambiguously	sorted	in	h-order	are	in	a	sorted	group.

				15	 //	Consecutive	groups	of	suffixes	with	identical	first	h	characters	are	an

				16	 //	unsorted	group.	In	each	pass	of	the	algorithm,	unsorted	groups	are	sorted

				17	 //	according	to	the	group	number	of	their	following	suffix.

				18	

				19	 //	In	the	implementation,	if	sa[i]	is	negative,	it	indicates	that	i	is

				20	 //	the	first	element	of	a	sorted	group	of	length	-sa[i],	and	can	be	skipped.

				21	 //	An	unsorted	group	sa[i:k]	is	given	the	group	number	of	the	index	of	its

				22	 //	last	element,	k-1.	The	group	numbers	are	stored	in	the	inverse	slice	(inv),

				23	 //	and	when	all	groups	are	sorted,	this	slice	is	the	inverse	suffix	array.

				24	

				25	 package	suffixarray

				26	

				27	 import	"sort"

				28	

				29	 func	qsufsort(data	[]byte)	[]int	{

				30	 	 //	initial	sorting	by	first	byte	of	suffix

				31	 	 sa	:=	sortedByFirstByte(data)

				32	 	 if	len(sa)	<	2	{

				33	 	 	 return	sa

				34	 	 }

				35	 	 //	initialize	the	group	lookup	table

				36	 	 //	this	becomes	the	inverse	of	the	suffix	array	when	all	groups	are	sorted

				37	 	 inv	:=	initGroups(sa,	data)

				38	

				39	 	 //	the	index	starts	1-ordered

				40	 	 sufSortable	:=	&suffixSortable{sa:	sa,	inv:	inv,	h:	1}

				41	

				42	 	 for	sa[0]	>	-len(sa)	{	//	until	all	suffixes	are	one	big	sorted	group

				43	 	 	 //	The	suffixes	are	h-ordered,	make	them	2*h-ordered

				44	 	 	 pi	:=	0	//	pi	is	first	position	of	first	group

				45	 	 	 sl	:=	0	//	sl	is	negated	length	of	sorted	groups

				46	 	 	 for	pi	<	len(sa)	{

				47	 	 	 	 if	s	:=	sa[pi];	s	<	0	{	//	if	pi	starts	sorted	group

				48	 	 	 	 	 pi	-=	s	//	skip	over	sorted	group

				49	 	 	 	 	 sl	+=	s	//	add	negated	length	to	sl

				50	 	 	 	 }	else	{	//	if	pi	starts	unsorted	group

				51	 	 	 	 	 if	sl	!=	0	{

				52	 	 	 	 	 	 sa[pi+sl]	=	sl	//	combine	sorted	groups	before	pi

				53	 	 	 	 	 	 sl	=	0

				54	 	 	 	 	 }

				55	 	 	 	 	 pk	:=	inv[s]	+	1	//	pk-1	is	last	position	of	unsorted	group

				56	 	 	 	 	 sufSortable.sa	=	sa[pi:pk]

				57	 	 	 	 	 sort.Sort(sufSortable)

				58	 	 	 	 	 sufSortable.updateGroups(pi)

				59	 	 	 	 	 pi	=	pk	//	next	group

				60	 	 	 	 }

				61	 	 	 }

				62	 	 	 if	sl	!=	0	{	//	if	the	array	ends	with	a	sorted	group

				63	 	 	 	 sa[pi+sl]	=	sl	//	combine	sorted	groups	at	end	of	sa

				64	 	 	 }

				65	

				66	 	 	 sufSortable.h	*=	2	//	double	sorted	depth

				67	 	 }

				68	

				69	 	 for	i	:=	range	sa	{	//	reconstruct	suffix	array	from	inverse

				70	 	 	 sa[inv[i]]	=	i

				71	 	 }

				72	 	 return	sa

				73	 }

				74	

				75	 func	sortedByFirstByte(data	[]byte)	[]int	{

				76	 	 //	total	byte	counts

				77	 	 var	count	[256]int

				78	 	 for	_,	b	:=	range	data	{

				79	 	 	 count[b]++

				80	 	 }

				81	 	 //	make	count[b]	equal	index	of	first	occurrence	of	b	in	sorted	array

				82	 	 sum	:=	0

				83	 	 for	b	:=	range	count	{

				84	 	 	 count[b],	sum	=	sum,	count[b]+sum

				85	 	 }

				86	 	 //	iterate	through	bytes,	placing	index	into	the	correct	spot	in	sa

				87	 	 sa	:=	make([]int,	len(data))

				88	 	 for	i,	b	:=	range	data	{

				89	 	 	 sa[count[b]]	=	i

				90	 	 	 count[b]++

				91	 	 }

				92	 	 return	sa

				93	 }

				94	

				95	 func	initGroups(sa	[]int,	data	[]byte)	[]int	{

				96	 	 //	label	contiguous	same-letter	groups	with	the	same	group	number

				97	 	 inv	:=	make([]int,	len(data))

				98	 	 prevGroup	:=	len(sa)	-	1

				99	 	 groupByte	:=	data[sa[prevGroup]]

			100	 	 for	i	:=	len(sa)	-	1;	i	>=	0;	i--	{

			101	 	 	 if	b	:=	data[sa[i]];	b	<	groupByte	{

			102	 	 	 	 if	prevGroup	==	i+1	{

			103	 	 	 	 	 sa[i+1]	=	-1

			104	 	 	 	 }

			105	 	 	 	 groupByte	=	b

			106	 	 	 	 prevGroup	=	i

			107	 	 	 }

			108	 	 	 inv[sa[i]]	=	prevGroup

			109	 	 	 if	prevGroup	==	0	{

			110	 	 	 	 sa[0]	=	-1

			111	 	 	 }

			112	 	 }

			113	 	 //	Separate	out	the	final	suffix	to	the	start	of	its	group.

			114	 	 //	This	is	necessary	to	ensure	the	suffix	"a"	is	before	"aba"

			115	 	 //	when	using	a	potentially	unstable	sort.

			116	 	 lastByte	:=	data[len(data)-1]

			117	 	 s	:=	-1

			118	 	 for	i	:=	range	sa	{

			119	 	 	 if	sa[i]	>=	0	{

			120	 	 	 	 if	data[sa[i]]	==	lastByte	&&	s	==	-1	{

			121	 	 	 	 	 s	=	i

			122	 	 	 	 }

			123	 	 	 	 if	sa[i]	==	len(sa)-1	{

			124	 	 	 	 	 sa[i],	sa[s]	=	sa[s],	sa[i]

			125	 	 	 	 	 inv[sa[s]]	=	s

			126	 	 	 	 	 sa[s]	=	-1	//	mark	it	as	an	isolated	sorted	group

			127	 	 	 	 	 break

			128	 	 	 	 }

			129	 	 	 }

			130	 	 }

			131	 	 return	inv

			132	 }

			133	

			134	 type	suffixSortable	struct	{

			135	 	 sa		[]int

			136	 	 inv	[]int

			137	 	 h			int

			138	 	 buf	[]int	//	common	scratch	space

			139	 }

			140	

			141	 func	(x	*suffixSortable)	Len()	int											{	return	len(x.sa)	}

			142	 func	(x	*suffixSortable)	Less(i,	j	int)	bool	{	return	x.inv[x.sa[i]+x.h]	<	x.inv[x.sa[j]+x.h]	}

			143	 func	(x	*suffixSortable)	Swap(i,	j	int)						{	x.sa[i],	x.sa[j]	=	x.sa[j],	x.sa[i]	}

			144	

			145	 func	(x	*suffixSortable)	updateGroups(offset	int)	{

			146	 	 bounds	:=	x.buf[0:0]

			147	 	 group	:=	x.inv[x.sa[0]+x.h]

			148	 	 for	i	:=	1;	i	<	len(x.sa);	i++	{

			149	 	 	 if	g	:=	x.inv[x.sa[i]+x.h];	g	>	group	{

			150	 	 	 	 bounds	=	append(bounds,	i)

			151	 	 	 	 group	=	g

			152	 	 	 }

			153	 	 }

			154	 	 bounds	=	append(bounds,	len(x.sa))

			155	 	 x.buf	=	bounds

			156	

			157	 	 //	update	the	group	numberings	after	all	new	groups	are	determined

			158	 	 prev	:=	0

			159	 	 for	_,	b	:=	range	bounds	{

			160	 	 	 for	i	:=	prev;	i	<	b;	i++	{

			161	 	 	 	 x.inv[x.sa[i]]	=	offset	+	b	-	1

			162	 	 	 }

			163	 	 	 if	b-prev	==	1	{

			164	 	 	 	 x.sa[prev]	=	-1

			165	 	 	 }

			166	 	 	 prev	=	b

			167	 	 }

			168	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/index/suffixarray/suffixarray.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	suffixarray	implements	substring	search	in	logarithmic	time	using

					6	 //	an	in-memory	suffix	array.

					7	 //

					8	 //	Example	use:

					9	 //

				10	 //	 //	create	index	for	some	data

				11	 //	 index	:=	suffixarray.New(data)

				12	 //

				13	 //	 //	lookup	byte	slice	s

				14	 //	 offsets1	:=	index.Lookup(s,	-1)	//	the	list	of	all	indices	where	s	occurs	in	data

				15	 //	 offsets2	:=	index.Lookup(s,	3)		//	the	list	of	at	most	3	indices	where	s	occurs	in	data

				16	 //

				17	 package	suffixarray

				18	

				19	 import	(

				20	 	 "bytes"

				21	 	 "encoding/binary"

				22	 	 "io"

				23	 	 "regexp"

				24	 	 "sort"

				25)

				26	

				27	 //	Index	implements	a	suffix	array	for	fast	substring	search.

				28	 type	Index	struct	{

				29	 	 data	[]byte

				30	 	 sa			[]int	//	suffix	array	for	data;	len(sa)	==	len(data)

				31	 }

				32	

				33	 //	New	creates	a	new	Index	for	data.

				34	 //	Index	creation	time	is	O(N*log(N))	for	N	=	len(data).

				35	 func	New(data	[]byte)	*Index	{

				36	 	 return	&Index{data,	qsufsort(data)}

				37	 }

				38	

				39	 //	writeInt	writes	an	int	x	to	w	using	buf	to	buffer	the	write.

				40	 func	writeInt(w	io.Writer,	buf	[]byte,	x	int)	error	{

				41	 	 binary.PutVarint(buf,	int64(x))

				42	 	 _,	err	:=	w.Write(buf[0:binary.MaxVarintLen64])

				43	 	 return	err

				44	 }

				45	

				46	 //	readInt	reads	an	int	x	from	r	using	buf	to	buffer	the	read	and	returns	x.

				47	 func	readInt(r	io.Reader,	buf	[]byte)	(int,	error)	{

				48	 	 _,	err	:=	io.ReadFull(r,	buf[0:binary.MaxVarintLen64])	

				49	 	 x,	_	:=	binary.Varint(buf)

				50	 	 return	int(x),	err

				51	 }

				52	

				53	 //	writeSlice	writes	data[:n]	to	w	and	returns	n.

				54	 //	It	uses	buf	to	buffer	the	write.

				55	 func	writeSlice(w	io.Writer,	buf	[]byte,	data	[]int)	(n	int,	err	error)	{

				56	 	 //	encode	as	many	elements	as	fit	into	buf

				57	 	 p	:=	binary.MaxVarintLen64

				58	 	 for	;	n	<	len(data)	&&	p+binary.MaxVarintLen64	<=	len(buf);	n++	{

				59	 	 	 p	+=	binary.PutUvarint(buf[p:],	uint64(data[n]))

				60	 	 }

				61	

				62	 	 //	update	buffer	size

				63	 	 binary.PutVarint(buf,	int64(p))

				64	

				65	 	 //	write	buffer

				66	 	 _,	err	=	w.Write(buf[0:p])

				67	 	 return

				68	 }

				69	

				70	 //	readSlice	reads	data[:n]	from	r	and	returns	n.

				71	 //	It	uses	buf	to	buffer	the	read.

				72	 func	readSlice(r	io.Reader,	buf	[]byte,	data	[]int)	(n	int,	err	error)	{

				73	 	 //	read	buffer	size

				74	 	 var	size	int

				75	 	 size,	err	=	readInt(r,	buf)

				76	 	 if	err	!=	nil	{

				77	 	 	 return

				78	 	 }

				79	

				80	 	 //	read	buffer	w/o	the	size

				81	 	 if	_,	err	=	io.ReadFull(r,	buf[binary.MaxVarintLen64:size]);	err	!=	nil	{

				82	 	 	 return

				83	 	 }

				84	

				85	 	 //	decode	as	many	elements	as	present	in	buf

				86	 	 for	p	:=	binary.MaxVarintLen64;	p	<	size;	n++	{

				87	 	 	 x,	w	:=	binary.Uvarint(buf[p:])

				88	 	 	 data[n]	=	int(x)

				89	 	 	 p	+=	w

				90	 	 }

				91	

				92	 	 return

				93	 }

				94	

				95	 const	bufSize	=	16	<<	10	//	reasonable	for	BenchmarkSaveRestore

				96	

				97	 //	Read	reads	the	index	from	r	into	x;	x	must	not	be	nil.

				98	 func	(x	*Index)	Read(r	io.Reader)	error	{

				99	 	 //	buffer	for	all	reads

			100	 	 buf	:=	make([]byte,	bufSize)

			101	

			102	 	 //	read	length

			103	 	 n,	err	:=	readInt(r,	buf)

			104	 	 if	err	!=	nil	{

			105	 	 	 return	err

			106	 	 }

			107	

			108	 	 //	allocate	space

			109	 	 if	2*n	<	cap(x.data)	||	cap(x.data)	<	n	{

			110	 	 	 //	new	data	is	significantly	smaller	or	larger	then

			111	 	 	 //	existing	buffers	-	allocate	new	ones

			112	 	 	 x.data	=	make([]byte,	n)

			113	 	 	 x.sa	=	make([]int,	n)

			114	 	 }	else	{

			115	 	 	 //	re-use	existing	buffers

			116	 	 	 x.data	=	x.data[0:n]

			117	 	 	 x.sa	=	x.sa[0:n]

			118	 	 }

			119	

			120	 	 //	read	data

			121	 	 if	_,	err	:=	io.ReadFull(r,	x.data);	err	!=	nil	{

			122	 	 	 return	err

			123	 	 }

			124	

			125	 	 //	read	index

			126	 	 for	sa	:=	x.sa;	len(sa)	>	0;	{

			127	 	 	 n,	err	:=	readSlice(r,	buf,	sa)

			128	 	 	 if	err	!=	nil	{

			129	 	 	 	 return	err

			130	 	 	 }

			131	 	 	 sa	=	sa[n:]

			132	 	 }

			133	 	 return	nil

			134	 }

			135	

			136	 //	Write	writes	the	index	x	to	w.

			137	 func	(x	*Index)	Write(w	io.Writer)	error	{

			138	 	 //	buffer	for	all	writes

			139	 	 buf	:=	make([]byte,	bufSize)

			140	

			141	 	 //	write	length

			142	 	 if	err	:=	writeInt(w,	buf,	len(x.data));	err	!=	nil	{

			143	 	 	 return	err

			144	 	 }

			145	

			146	 	 //	write	data

			147	 	 if	_,	err	:=	w.Write(x.data);	err	!=	nil	{

			148	 	 	 return	err

			149	 	 }

			150	

			151	 	 //	write	index

			152	 	 for	sa	:=	x.sa;	len(sa)	>	0;	{

			153	 	 	 n,	err	:=	writeSlice(w,	buf,	sa)

			154	 	 	 if	err	!=	nil	{

			155	 	 	 	 return	err

			156	 	 	 }

			157	 	 	 sa	=	sa[n:]

			158	 	 }

			159	 	 return	nil

			160	 }

			161	

			162	 //	Bytes	returns	the	data	over	which	the	index	was	created.

			163	 //	It	must	not	be	modified.

			164	 //

			165	 func	(x	*Index)	Bytes()	[]byte	{

			166	 	 return	x.data

			167	 }

			168	

			169	 func	(x	*Index)	at(i	int)	[]byte	{

			170	 	 return	x.data[x.sa[i]:]

			171	 }

			172	

			173	 //	lookupAll	returns	a	slice	into	the	matching	region	of	the	index.

			174	 //	The	runtime	is	O(log(N)*len(s)).

			175	 func	(x	*Index)	lookupAll(s	[]byte)	[]int	{

			176	 	 //	find	matching	suffix	index	range	[i:j]

			177	 	 //	find	the	first	index	where	s	would	be	the	prefix

			178	 	 i	:=	sort.Search(len(x.sa),	func(i	int)	bool	{	return	bytes.Compare(x.at(i),	s)	>=	0	})

			179	 	 //	starting	at	i,	find	the	first	index	at	which	s	is	not	a	prefix

			180	 	 j	:=	i	+	sort.Search(len(x.sa)-i,	func(j	int)	bool	{	return	!bytes.HasPrefix(x.at(j+i),	s)	})

			181	 	 return	x.sa[i:j]

			182	 }

			183	

			184	 //	Lookup	returns	an	unsorted	list	of	at	most	n	indices	where	the	byte	string	s

			185	 //	occurs	in	the	indexed	data.	If	n	<	0,	all	occurrences	are	returned.

			186	 //	The	result	is	nil	if	s	is	empty,	s	is	not	found,	or	n	==	0.

			187	 //	Lookup	time	is	O(log(N)*len(s)	+	len(result))	where	N	is	the

			188	 //	size	of	the	indexed	data.

			189	 //

			190	 func	(x	*Index)	Lookup(s	[]byte,	n	int)	(result	[]int)	{

			191	 	 if	len(s)	>	0	&&	n	!=	0	{

			192	 	 	 matches	:=	x.lookupAll(s)

			193	 	 	 if	n	<	0	||	len(matches)	<	n	{

			194	 	 	 	 n	=	len(matches)

			195	 	 	 }

			196	 	 	 //	0	<=	n	<=	len(matches)

			197	 	 	 if	n	>	0	{

			198	 	 	 	 result	=	make([]int,	n)

			199	 	 	 	 copy(result,	matches)

			200	 	 	 }

			201	 	 }

			202	 	 return

			203	 }

			204	

			205	 //	FindAllIndex	returns	a	sorted	list	of	non-overlapping	matches	of	the

			206	 //	regular	expression	r,	where	a	match	is	a	pair	of	indices	specifying

			207	 //	the	matched	slice	of	x.Bytes().	If	n	<	0,	all	matches	are	returned

			208	 //	in	successive	order.	Otherwise,	at	most	n	matches	are	returned	and

			209	 //	they	may	not	be	successive.	The	result	is	nil	if	there	are	no	matches,

			210	 //	or	if	n	==	0.

			211	 //

			212	 func	(x	*Index)	FindAllIndex(r	*regexp.Regexp,	n	int)	(result	[][]int)	{

			213	 	 //	a	non-empty	literal	prefix	is	used	to	determine	possible

			214	 	 //	match	start	indices	with	Lookup

			215	 	 prefix,	complete	:=	r.LiteralPrefix()

			216	 	 lit	:=	[]byte(prefix)

			217	

			218	 	 //	worst-case	scenario:	no	literal	prefix

			219	 	 if	prefix	==	""	{

			220	 	 	 return	r.FindAllIndex(x.data,	n)

			221	 	 }

			222	

			223	 	 //	if	regexp	is	a	literal	just	use	Lookup	and	convert	its

			224	 	 //	result	into	match	pairs

			225	 	 if	complete	{

			226	 	 	 //	Lookup	returns	indices	that	may	belong	to	overlapping	matches.

			227	 	 	 //	After	eliminating	them,	we	may	end	up	with	fewer	than	n	matches.

			228	 	 	 //	If	we	don't	have	enough	at	the	end,	redo	the	search	with	an

			229	 	 	 //	increased	value	n1,	but	only	if	Lookup	returned	all	the	requested

			230	 	 	 //	indices	in	the	first	place	(if	it	returned	fewer	than	that	then

			231	 	 	 //	there	cannot	be	more).

			232	 	 	 for	n1	:=	n;	;	n1	+=	2	*	(n	-	len(result))	/*	overflow	ok	*/

			233	 	 	 	 indices	:=	x.Lookup(lit,	n1)

			234	 	 	 	 if	len(indices)	==	0	{

			235	 	 	 	 	 return

			236	 	 	 	 }

			237	 	 	 	 sort.Ints(indices)

			238	 	 	 	 pairs	:=	make([]int,	2*len(indices))

			239	 	 	 	 result	=	make([][]int,	len(indices))

			240	 	 	 	 count	:=	0

			241	 	 	 	 prev	:=	0

			242	 	 	 	 for	_,	i	:=	range	indices	{

			243	 	 	 	 	 if	count	==	n	{

			244	 	 	 	 	 	 break

			245	 	 	 	 	 }

			246	 	 	 	 	 //	ignore	indices	leading	to	overlapping	matches

			247	 	 	 	 	 if	prev	<=	i	{

			248	 	 	 	 	 	 j	:=	2	*	count

			249	 	 	 	 	 	 pairs[j+0]	=	i

			250	 	 	 	 	 	 pairs[j+1]	=	i	+	len(lit)

			251	 	 	 	 	 	 result[count]	=	pairs[j	:	j+2]

			252	 	 	 	 	 	 count++

			253	 	 	 	 	 	 prev	=	i	+	len(lit)

			254	 	 	 	 	 }

			255	 	 	 	 }

			256	 	 	 	 result	=	result[0:count]

			257	 	 	 	 if	len(result)	>=	n	||	len(indices)	!=	n1	{

			258	 	 	 	 	 //	found	all	matches	or	there's	no	chance	to	find	more

			259	 	 	 	 	 //	(n	and	n1	can	be	negative)

			260	 	 	 	 	 break

			261	 	 	 	 }

			262	 	 	 }

			263	 	 	 if	len(result)	==	0	{

			264	 	 	 	 result	=	nil

			265	 	 	 }

			266	 	 	 return

			267	 	 }

			268	

			269	 	 //	regexp	has	a	non-empty	literal	prefix;	Lookup(lit)	computes

			270	 	 //	the	indices	of	possible	complete	matches;	use	these	as	starting

			271	 	 //	points	for	anchored	searches

			272	 	 //	(regexp	"^"	matches	beginning	of	input,	not	beginning	of	line)

			273	 	 r	=	regexp.MustCompile("^"	+	r.String())	//	compiles	because	r	compiled

			274	

			275	 	 //	same	comment	about	Lookup	applies	here	as	in	the	loop	above

			276	 	 for	n1	:=	n;	;	n1	+=	2	*	(n	-	len(result))	/*	overflow	ok	*/

			277	 	 	 indices	:=	x.Lookup(lit,	n1)

			278	 	 	 if	len(indices)	==	0	{

			279	 	 	 	 return

			280	 	 	 }

			281	 	 	 sort.Ints(indices)

			282	 	 	 result	=	result[0:0]

			283	 	 	 prev	:=	0

			284	 	 	 for	_,	i	:=	range	indices	{

			285	 	 	 	 if	len(result)	==	n	{

			286	 	 	 	 	 break

			287	 	 	 	 }

			288	 	 	 	 m	:=	r.FindIndex(x.data[i:])	//	anchored	search	-	will	not	run	off

			289	 	 	 	 //	ignore	indices	leading	to	overlapping	matches

			290	 	 	 	 if	m	!=	nil	&&	prev	<=	i	{

			291	 	 	 	 	 m[0]	=	i	//	correct	m

			292	 	 	 	 	 m[1]	+=	i

			293	 	 	 	 	 result	=	append(result,	m)

			294	 	 	 	 	 prev	=	m[1]

			295	 	 	 	 }

			296	 	 	 }

			297	 	 	 if	len(result)	>=	n	||	len(indices)	!=	n1	{

			298	 	 	 	 //	found	all	matches	or	there's	no	chance	to	find	more

			299	 	 	 	 //	(n	and	n1	can	be	negative)

			300	 	 	 	 break

			301	 	 	 }

			302	 	 }

			303	 	 if	len(result)	==	0	{

			304	 	 	 result	=	nil

			305	 	 }

			306	 	 return

			307	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/io/io.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	io	provides	basic	interfaces	to	I/O	primitives.

					6	 //	Its	primary	job	is	to	wrap	existing	implementations	of	such	primitives,

					7	 //	such	as	those	in	package	os,	into	shared	public	interfaces	that

					8	 //	abstract	the	functionality,	plus	some	other	related	primitives.

					9	 //

				10	 //	Because	these	interfaces	and	primitives	wrap	lower-level	operations	with

				11	 //	various	implementations,	unless	otherwise	informed	clients	should	not

				12	 //	assume	they	are	safe	for	parallel	execution.

				13	 package	io

				14	

				15	 import	(

				16	 	 "errors"

				17)

				18	

				19	 //	ErrShortWrite	means	that	a	write	accepted	fewer	bytes	than	requested

				20	 //	but	failed	to	return	an	explicit	error.

				21	 var	ErrShortWrite	=	errors.New("short	write")

				22	

				23	 //	ErrShortBuffer	means	that	a	read	required	a	longer	buffer	than	was	provided.

				24	 var	ErrShortBuffer	=	errors.New("short	buffer")

				25	

				26	 //	EOF	is	the	error	returned	by	Read	when	no	more	input	is	available.

				27	 //	Functions	should	return	EOF	only	to	signal	a	graceful	end	of	input.

				28	 //	If	the	EOF	occurs	unexpectedly	in	a	structured	data	stream,

				29	 //	the	appropriate	error	is	either	ErrUnexpectedEOF	or	some	other	error

				30	 //	giving	more	detail.

				31	 var	EOF	=	errors.New("EOF")

				32	

				33	 //	ErrUnexpectedEOF	means	that	EOF	was	encountered	in	the

				34	 //	middle	of	reading	a	fixed-size	block	or	data	structure.

				35	 var	ErrUnexpectedEOF	=	errors.New("unexpected	EOF")

				36	

				37	 //	Reader	is	the	interface	that	wraps	the	basic	Read	method.

				38	 //

				39	 //	Read	reads	up	to	len(p)	bytes	into	p.		It	returns	the	number	of	bytes

				40	 //	read	(0	<=	n	<=	len(p))	and	any	error	encountered.		Even	if	Read

				41	 //	returns	n	<	len(p),	it	may	use	all	of	p	as	scratch	space	during	the	call.

				42	 //	If	some	data	is	available	but	not	len(p)	bytes,	Read	conventionally

				43	 //	returns	what	is	available	instead	of	waiting	for	more.

				44	 //

				45	 //	When	Read	encounters	an	error	or	end-of-file	condition	after

				46	 //	successfully	reading	n	>	0	bytes,	it	returns	the	number	of

				47	 //	bytes	read.		It	may	return	the	(non-nil)	error	from	the	same	call

				48	 //	or	return	the	error	(and	n	==	0)	from	a	subsequent	call.

				49	 //	An	instance	of	this	general	case	is	that	a	Reader	returning

				50	 //	a	non-zero	number	of	bytes	at	the	end	of	the	input	stream	may

				51	 //	return	either	err	==	EOF	or	err	==	nil.		The	next	Read	should

				52	 //	return	0,	EOF	regardless.

				53	 //

				54	 //	Callers	should	always	process	the	n	>	0	bytes	returned	before

				55	 //	considering	the	error	err.		Doing	so	correctly	handles	I/O	errors

				56	 //	that	happen	after	reading	some	bytes	and	also	both	of	the

				57	 //	allowed	EOF	behaviors.

				58	 type	Reader	interface	{

				59	 	 Read(p	[]byte)	(n	int,	err	error)

				60	 }

				61	

				62	 //	Writer	is	the	interface	that	wraps	the	basic	Write	method.

				63	 //

				64	 //	Write	writes	len(p)	bytes	from	p	to	the	underlying	data	stream.

				65	 //	It	returns	the	number	of	bytes	written	from	p	(0	<=	n	<=	len(p))

				66	 //	and	any	error	encountered	that	caused	the	write	to	stop	early.

				67	 //	Write	must	return	a	non-nil	error	if	it	returns	n	<	len(p).

				68	 type	Writer	interface	{

				69	 	 Write(p	[]byte)	(n	int,	err	error)

				70	 }

				71	

				72	 //	Closer	is	the	interface	that	wraps	the	basic	Close	method.

				73	 type	Closer	interface	{

				74	 	 Close()	error

				75	 }

				76	

				77	 //	Seeker	is	the	interface	that	wraps	the	basic	Seek	method.

				78	 //

				79	 //	Seek	sets	the	offset	for	the	next	Read	or	Write	to	offset,

				80	 //	interpreted	according	to	whence:	0	means	relative	to	the	origin	of

				81	 //	the	file,	1	means	relative	to	the	current	offset,	and	2	means

				82	 //	relative	to	the	end.		Seek	returns	the	new	offset	and	an	Error,	if

				83	 //	any.

				84	 type	Seeker	interface	{

				85	 	 Seek(offset	int64,	whence	int)	(ret	int64,	err	error)

				86	 }

				87	

				88	 //	ReadWriter	is	the	interface	that	groups	the	basic	Read	and	Write	methods.

				89	 type	ReadWriter	interface	{

				90	 	 Reader

				91	 	 Writer

				92	 }

				93	

				94	 //	ReadCloser	is	the	interface	that	groups	the	basic	Read	and	Close	methods.

				95	 type	ReadCloser	interface	{

				96	 	 Reader

				97	 	 Closer

				98	 }

				99	

			100	 //	WriteCloser	is	the	interface	that	groups	the	basic	Write	and	Close	methods.

			101	 type	WriteCloser	interface	{

			102	 	 Writer

			103	 	 Closer

			104	 }

			105	

			106	 //	ReadWriteCloser	is	the	interface	that	groups	the	basic	Read,	Write	and	Close	methods.

			107	 type	ReadWriteCloser	interface	{

			108	 	 Reader

			109	 	 Writer

			110	 	 Closer

			111	 }

			112	

			113	 //	ReadSeeker	is	the	interface	that	groups	the	basic	Read	and	Seek	methods.

			114	 type	ReadSeeker	interface	{

			115	 	 Reader

			116	 	 Seeker

			117	 }

			118	

			119	 //	WriteSeeker	is	the	interface	that	groups	the	basic	Write	and	Seek	methods.

			120	 type	WriteSeeker	interface	{

			121	 	 Writer

			122	 	 Seeker

			123	 }

			124	

			125	 //	ReadWriteSeeker	is	the	interface	that	groups	the	basic	Read,	Write	and	Seek	methods.

			126	 type	ReadWriteSeeker	interface	{

			127	 	 Reader

			128	 	 Writer

			129	 	 Seeker

			130	 }

			131	

			132	 //	ReaderFrom	is	the	interface	that	wraps	the	ReadFrom	method.

			133	 type	ReaderFrom	interface	{

			134	 	 ReadFrom(r	Reader)	(n	int64,	err	error)

			135	 }

			136	

			137	 //	WriterTo	is	the	interface	that	wraps	the	WriteTo	method.

			138	 type	WriterTo	interface	{

			139	 	 WriteTo(w	Writer)	(n	int64,	err	error)

			140	 }

			141	

			142	 //	ReaderAt	is	the	interface	that	wraps	the	basic	ReadAt	method.

			143	 //

			144	 //	ReadAt	reads	len(p)	bytes	into	p	starting	at	offset	off	in	the

			145	 //	underlying	input	source.		It	returns	the	number	of	bytes

			146	 //	read	(0	<=	n	<=	len(p))	and	any	error	encountered.

			147	 //

			148	 //	When	ReadAt	returns	n	<	len(p),	it	returns	a	non-nil	error

			149	 //	explaining	why	more	bytes	were	not	returned.		In	this	respect,

			150	 //	ReadAt	is	stricter	than	Read.

			151	 //

			152	 //	Even	if	ReadAt	returns	n	<	len(p),	it	may	use	all	of	p	as	scratch

			153	 //	space	during	the	call.		If	some	data	is	available	but	not	len(p)	bytes,

			154	 //	ReadAt	blocks	until	either	all	the	data	is	available	or	an	error	occurs.

			155	 //	In	this	respect	ReadAt	is	different	from	Read.

			156	 //

			157	 //	If	the	n	=	len(p)	bytes	returned	by	ReadAt	are	at	the	end	of	the

			158	 //	input	source,	ReadAt	may	return	either	err	==	EOF	or	err	==	nil.

			159	 //

			160	 //	If	ReadAt	is	reading	from	an	input	source	with	a	seek	offset,

			161	 //	ReadAt	should	not	affect	nor	be	affected	by	the	underlying

			162	 //	seek	offset.

			163	 //

			164	 //	Clients	of	ReadAt	can	execute	parallel	ReadAt	calls	on	the

			165	 //	same	input	source.

			166	 type	ReaderAt	interface	{

			167	 	 ReadAt(p	[]byte,	off	int64)	(n	int,	err	error)

			168	 }

			169	

			170	 //	WriterAt	is	the	interface	that	wraps	the	basic	WriteAt	method.

			171	 //

			172	 //	WriteAt	writes	len(p)	bytes	from	p	to	the	underlying	data	stream

			173	 //	at	offset	off.		It	returns	the	number	of	bytes	written	from	p	(0	<=	n	<=	len(p))

			174	 //	and	any	error	encountered	that	caused	the	write	to	stop	early.

			175	 //	WriteAt	must	return	a	non-nil	error	if	it	returns	n	<	len(p).

			176	 //

			177	 //	If	WriteAt	is	writing	to	a	destination	with	a	seek	offset,

			178	 //	WriteAt	should	not	affect	nor	be	affected	by	the	underlying

			179	 //	seek	offset.

			180	 //

			181	 //	Clients	of	WriteAt	can	execute	parallel	WriteAt	calls	on	the	same

			182	 //	destination	if	the	ranges	do	not	overlap.

			183	 type	WriterAt	interface	{

			184	 	 WriteAt(p	[]byte,	off	int64)	(n	int,	err	error)

			185	 }

			186	

			187	 //	ByteReader	is	the	interface	that	wraps	the	ReadByte	method.

			188	 //

			189	 //	ReadByte	reads	and	returns	the	next	byte	from	the	input.

			190	 //	If	no	byte	is	available,	err	will	be	set.

			191	 type	ByteReader	interface	{

			192	 	 ReadByte()	(c	byte,	err	error)

			193	 }

			194	

			195	 //	ByteScanner	is	the	interface	that	adds	the	UnreadByte	method	to	the

			196	 //	basic	ReadByte	method.

			197	 //

			198	 //	UnreadByte	causes	the	next	call	to	ReadByte	to	return	the	same	byte

			199	 //	as	the	previous	call	to	ReadByte.

			200	 //	It	may	be	an	error	to	call	UnreadByte	twice	without	an	intervening

			201	 //	call	to	ReadByte.

			202	 type	ByteScanner	interface	{

			203	 	 ByteReader

			204	 	 UnreadByte()	error

			205	 }

			206	

			207	 //	RuneReader	is	the	interface	that	wraps	the	ReadRune	method.

			208	 //

			209	 //	ReadRune	reads	a	single	UTF-8	encoded	Unicode	character

			210	 //	and	returns	the	rune	and	its	size	in	bytes.	If	no	character	is

			211	 //	available,	err	will	be	set.

			212	 type	RuneReader	interface	{

			213	 	 ReadRune()	(r	rune,	size	int,	err	error)

			214	 }

			215	

			216	 //	RuneScanner	is	the	interface	that	adds	the	UnreadRune	method	to	the

			217	 //	basic	ReadRune	method.

			218	 //

			219	 //	UnreadRune	causes	the	next	call	to	ReadRune	to	return	the	same	rune

			220	 //	as	the	previous	call	to	ReadRune.

			221	 //	It	may	be	an	error	to	call	UnreadRune	twice	without	an	intervening

			222	 //	call	to	ReadRune.

			223	 type	RuneScanner	interface	{

			224	 	 RuneReader

			225	 	 UnreadRune()	error

			226	 }

			227	

			228	 //	stringWriter	is	the	interface	that	wraps	the	WriteString	method.

			229	 type	stringWriter	interface	{

			230	 	 WriteString(s	string)	(n	int,	err	error)

			231	 }

			232	

			233	 //	WriteString	writes	the	contents	of	the	string	s	to	w,	which	accepts	an	array	of	bytes.

			234	 //	If	w	already	implements	a	WriteString	method,	it	is	invoked	directly.

			235	 func	WriteString(w	Writer,	s	string)	(n	int,	err	error)	{

			236	 	 if	sw,	ok	:=	w.(stringWriter);	ok	{

			237	 	 	 return	sw.WriteString(s)

			238	 	 }

			239	 	 return	w.Write([]byte(s))

			240	 }

			241	

			242	 //	ReadAtLeast	reads	from	r	into	buf	until	it	has	read	at	least	min	bytes.

			243	 //	It	returns	the	number	of	bytes	copied	and	an	error	if	fewer	bytes	were	read.

			244	 //	The	error	is	EOF	only	if	no	bytes	were	read.

			245	 //	If	an	EOF	happens	after	reading	fewer	than	min	bytes,

			246	 //	ReadAtLeast	returns	ErrUnexpectedEOF.

			247	 //	If	min	is	greater	than	the	length	of	buf,	ReadAtLeast	returns	ErrShortBuffer.

			248	 func	ReadAtLeast(r	Reader,	buf	[]byte,	min	int)	(n	int,	err	error)	{

			249	 	 if	len(buf)	<	min	{

			250	 	 	 return	0,	ErrShortBuffer

			251	 	 }

			252	 	 for	n	<	min	&&	err	==	nil	{

			253	 	 	 var	nn	int

			254	 	 	 nn,	err	=	r.Read(buf[n:])

			255	 	 	 n	+=	nn

			256	 	 }

			257	 	 if	err	==	EOF	{

			258	 	 	 if	n	>=	min	{

			259	 	 	 	 err	=	nil

			260	 	 	 }	else	if	n	>	0	{

			261	 	 	 	 err	=	ErrUnexpectedEOF

			262	 	 	 }

			263	 	 }

			264	 	 return

			265	 }

			266	

			267	 //	ReadFull	reads	exactly	len(buf)	bytes	from	r	into	buf.

			268	 //	It	returns	the	number	of	bytes	copied	and	an	error	if	fewer	bytes	were	read.

			269	 //	The	error	is	EOF	only	if	no	bytes	were	read.

			270	 //	If	an	EOF	happens	after	reading	some	but	not	all	the	bytes,

			271	 //	ReadFull	returns	ErrUnexpectedEOF.

			272	 func	ReadFull(r	Reader,	buf	[]byte)	(n	int,	err	error)	{

			273	 	 return	ReadAtLeast(r,	buf,	len(buf))

			274	 }

			275	

			276	 //	CopyN	copies	n	bytes	(or	until	an	error)	from	src	to	dst.

			277	 //	It	returns	the	number	of	bytes	copied	and	the	earliest

			278	 //	error	encountered	while	copying.		Because	Read	can

			279	 //	return	the	full	amount	requested	as	well	as	an	error

			280	 //	(including	EOF),	so	can	CopyN.

			281	 //

			282	 //	If	dst	implements	the	ReaderFrom	interface,

			283	 //	the	copy	is	implemented	using	it.

			284	 func	CopyN(dst	Writer,	src	Reader,	n	int64)	(written	int64,	err	error)	{

			285	 	 //	If	the	writer	has	a	ReadFrom	method,	use	it	to	do	the	copy.

			286	 	 //	Avoids	a	buffer	allocation	and	a	copy.

			287	 	 if	rt,	ok	:=	dst.(ReaderFrom);	ok	{

			288	 	 	 written,	err	=	rt.ReadFrom(LimitReader(src,	n))

			289	 	 	 if	written	<	n	&&	err	==	nil	{

			290	 	 	 	 //	rt	stopped	early;	must	have	been	EOF.

			291	 	 	 	 err	=	EOF

			292	 	 	 }

			293	 	 	 return

			294	 	 }

			295	 	 buf	:=	make([]byte,	32*1024)

			296	 	 for	written	<	n	{

			297	 	 	 l	:=	len(buf)

			298	 	 	 if	d	:=	n	-	written;	d	<	int64(l)	{

			299	 	 	 	 l	=	int(d)

			300	 	 	 }

			301	 	 	 nr,	er	:=	src.Read(buf[0:l])

			302	 	 	 if	nr	>	0	{

			303	 	 	 	 nw,	ew	:=	dst.Write(buf[0:nr])

			304	 	 	 	 if	nw	>	0	{

			305	 	 	 	 	 written	+=	int64(nw)

			306	 	 	 	 }

			307	 	 	 	 if	ew	!=	nil	{

			308	 	 	 	 	 err	=	ew

			309	 	 	 	 	 break

			310	 	 	 	 }

			311	 	 	 	 if	nr	!=	nw	{

			312	 	 	 	 	 err	=	ErrShortWrite

			313	 	 	 	 	 break

			314	 	 	 	 }

			315	 	 	 }

			316	 	 	 if	er	!=	nil	{

			317	 	 	 	 err	=	er

			318	 	 	 	 break

			319	 	 	 }

			320	 	 }

			321	 	 return	written,	err

			322	 }

			323	

			324	 //	Copy	copies	from	src	to	dst	until	either	EOF	is	reached

			325	 //	on	src	or	an	error	occurs.		It	returns	the	number	of	bytes

			326	 //	copied	and	the	first	error	encountered	while	copying,	if	any.

			327	 //

			328	 //	A	successful	Copy	returns	err	==	nil,	not	err	==	EOF.

			329	 //	Because	Copy	is	defined	to	read	from	src	until	EOF,	it	does

			330	 //	not	treat	an	EOF	from	Read	as	an	error	to	be	reported.

			331	 //

			332	 //	If	dst	implements	the	ReaderFrom	interface,

			333	 //	the	copy	is	implemented	by	calling	dst.ReadFrom(src).

			334	 //	Otherwise,	if	src	implements	the	WriterTo	interface,

			335	 //	the	copy	is	implemented	by	calling	src.WriteTo(dst).

			336	 func	Copy(dst	Writer,	src	Reader)	(written	int64,	err	error)	{

			337	 	 //	If	the	writer	has	a	ReadFrom	method,	use	it	to	do	the	copy.

			338	 	 //	Avoids	an	allocation	and	a	copy.

			339	 	 if	rt,	ok	:=	dst.(ReaderFrom);	ok	{

			340	 	 	 return	rt.ReadFrom(src)

			341	 	 }

			342	 	 //	Similarly,	if	the	reader	has	a	WriteTo	method,	use	it	to	do	the	copy.

			343	 	 if	wt,	ok	:=	src.(WriterTo);	ok	{

			344	 	 	 return	wt.WriteTo(dst)

			345	 	 }

			346	 	 buf	:=	make([]byte,	32*1024)

			347	 	 for	{

			348	 	 	 nr,	er	:=	src.Read(buf)

			349	 	 	 if	nr	>	0	{

			350	 	 	 	 nw,	ew	:=	dst.Write(buf[0:nr])

			351	 	 	 	 if	nw	>	0	{

			352	 	 	 	 	 written	+=	int64(nw)

			353	 	 	 	 }

			354	 	 	 	 if	ew	!=	nil	{

			355	 	 	 	 	 err	=	ew

			356	 	 	 	 	 break

			357	 	 	 	 }

			358	 	 	 	 if	nr	!=	nw	{

			359	 	 	 	 	 err	=	ErrShortWrite

			360	 	 	 	 	 break

			361	 	 	 	 }

			362	 	 	 }

			363	 	 	 if	er	==	EOF	{

			364	 	 	 	 break

			365	 	 	 }

			366	 	 	 if	er	!=	nil	{

			367	 	 	 	 err	=	er

			368	 	 	 	 break

			369	 	 	 }

			370	 	 }

			371	 	 return	written,	err

			372	 }

			373	

			374	 //	LimitReader	returns	a	Reader	that	reads	from	r

			375	 //	but	stops	with	EOF	after	n	bytes.

			376	 //	The	underlying	implementation	is	a	*LimitedReader.

			377	 func	LimitReader(r	Reader,	n	int64)	Reader	{	return	&LimitedReader{r,	n}	}

			378	

			379	 //	A	LimitedReader	reads	from	R	but	limits	the	amount	of

			380	 //	data	returned	to	just	N	bytes.	Each	call	to	Read

			381	 //	updates	N	to	reflect	the	new	amount	remaining.

			382	 type	LimitedReader	struct	{

			383	 	 R	Reader	//	underlying	reader

			384	 	 N	int64		//	max	bytes	remaining

			385	 }

			386	

			387	 func	(l	*LimitedReader)	Read(p	[]byte)	(n	int,	err	error)	{

			388	 	 if	l.N	<=	0	{

			389	 	 	 return	0,	EOF

			390	 	 }

			391	 	 if	int64(len(p))	>	l.N	{

			392	 	 	 p	=	p[0:l.N]

			393	 	 }

			394	 	 n,	err	=	l.R.Read(p)

			395	 	 l.N	-=	int64(n)

			396	 	 return

			397	 }

			398	

			399	 //	NewSectionReader	returns	a	SectionReader	that	reads	from	r

			400	 //	starting	at	offset	off	and	stops	with	EOF	after	n	bytes.

			401	 func	NewSectionReader(r	ReaderAt,	off	int64,	n	int64)	*SectionReader	{

			402	 	 return	&SectionReader{r,	off,	off,	off	+	n}

			403	 }

			404	

			405	 //	SectionReader	implements	Read,	Seek,	and	ReadAt	on	a	section

			406	 //	of	an	underlying	ReaderAt.

			407	 type	SectionReader	struct	{

			408	 	 r					ReaderAt

			409	 	 base		int64

			410	 	 off			int64

			411	 	 limit	int64

			412	 }

			413	

			414	 func	(s	*SectionReader)	Read(p	[]byte)	(n	int,	err	error)	{

			415	 	 if	s.off	>=	s.limit	{

			416	 	 	 return	0,	EOF

			417	 	 }

			418	 	 if	max	:=	s.limit	-	s.off;	int64(len(p))	>	max	{

			419	 	 	 p	=	p[0:max]

			420	 	 }

			421	 	 n,	err	=	s.r.ReadAt(p,	s.off)

			422	 	 s.off	+=	int64(n)

			423	 	 return

			424	 }

			425	

			426	 var	errWhence	=	errors.New("Seek:	invalid	whence")

			427	 var	errOffset	=	errors.New("Seek:	invalid	offset")

			428	

			429	 func	(s	*SectionReader)	Seek(offset	int64,	whence	int)	(ret	int64,	err	error)	{

			430	 	 switch	whence	{

			431	 	 default:

			432	 	 	 return	0,	errWhence

			433	 	 case	0:

			434	 	 	 offset	+=	s.base

			435	 	 case	1:

			436	 	 	 offset	+=	s.off

			437	 	 case	2:

			438	 	 	 offset	+=	s.limit

			439	 	 }

			440	 	 if	offset	<	s.base	||	offset	>	s.limit	{

			441	 	 	 return	0,	errOffset

			442	 	 }

			443	 	 s.off	=	offset

			444	 	 return	offset	-	s.base,	nil

			445	 }

			446	

			447	 func	(s	*SectionReader)	ReadAt(p	[]byte,	off	int64)	(n	int,	err	error)	{

			448	 	 if	off	<	0	||	off	>=	s.limit-s.base	{

			449	 	 	 return	0,	EOF

			450	 	 }

			451	 	 off	+=	s.base

			452	 	 if	max	:=	s.limit	-	off;	int64(len(p))	>	max	{

			453	 	 	 p	=	p[0:max]

			454	 	 }

			455	 	 return	s.r.ReadAt(p,	off)

			456	 }

			457	

			458	 //	Size	returns	the	size	of	the	section	in	bytes.

			459	 func	(s	*SectionReader)	Size()	int64	{	return	s.limit	-	s.base	}

			460	

			461	 //	TeeReader	returns	a	Reader	that	writes	to	w	what	it	reads	from	r.

			462	 //	All	reads	from	r	performed	through	it	are	matched	with

			463	 //	corresponding	writes	to	w.		There	is	no	internal	buffering	-

			464	 //	the	write	must	complete	before	the	read	completes.

			465	 //	Any	error	encountered	while	writing	is	reported	as	a	read	error.

			466	 func	TeeReader(r	Reader,	w	Writer)	Reader	{

			467	 	 return	&teeReader{r,	w}

			468	 }

			469	

			470	 type	teeReader	struct	{

			471	 	 r	Reader

			472	 	 w	Writer

			473	 }

			474	

			475	 func	(t	*teeReader)	Read(p	[]byte)	(n	int,	err	error)	{

			476	 	 n,	err	=	t.r.Read(p)

			477	 	 if	n	>	0	{

			478	 	 	 if	n,	err	:=	t.w.Write(p[:n]);	err	!=	nil	{

			479	 	 	 	 return	n,	err

			480	 	 	 }

			481	 	 }

			482	 	 return

			483	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.

http://code.google.com/policies.html#restrictions

Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/io/multi.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	io

					6	

					7	 type	multiReader	struct	{

					8	 	 readers	[]Reader

					9	 }

				10	

				11	 func	(mr	*multiReader)	Read(p	[]byte)	(n	int,	err	error)	{

				12	 	 for	len(mr.readers)	>	0	{

				13	 	 	 n,	err	=	mr.readers[0].Read(p)

				14	 	 	 if	n	>	0	||	err	!=	EOF	{

				15	 	 	 	 if	err	==	EOF	{

				16	 	 	 	 	 //	Don't	return	EOF	yet.	There	may	be	more	bytes

				17	 	 	 	 	 //	in	the	remaining	readers.

				18	 	 	 	 	 err	=	nil

				19	 	 	 	 }

				20	 	 	 	 return

				21	 	 	 }

				22	 	 	 mr.readers	=	mr.readers[1:]

				23	 	 }

				24	 	 return	0,	EOF

				25	 }

				26	

				27	 //	MultiReader	returns	a	Reader	that's	the	logical	concatenation	of

				28	 //	the	provided	input	readers.		They're	read	sequentially.		Once	all

				29	 //	inputs	are	drained,	Read	will	return	EOF.

				30	 func	MultiReader(readers	...Reader)	Reader	{

				31	 	 return	&multiReader{readers}

				32	 }

				33	

				34	 type	multiWriter	struct	{

				35	 	 writers	[]Writer

				36	 }

				37	

				38	 func	(t	*multiWriter)	Write(p	[]byte)	(n	int,	err	error)	{

				39	 	 for	_,	w	:=	range	t.writers	{

				40	 	 	 n,	err	=	w.Write(p)

				41	 	 	 if	err	!=	nil	{

				42	 	 	 	 return

				43	 	 	 }

				44	 	 	 if	n	!=	len(p)	{

				45	 	 	 	 err	=	ErrShortWrite

				46	 	 	 	 return

				47	 	 	 }

				48	 	 }

				49	 	 return	len(p),	nil

				50	 }

				51	

				52	 //	MultiWriter	creates	a	writer	that	duplicates	its	writes	to	all	the

				53	 //	provided	writers,	similar	to	the	Unix	tee(1)	command.

				54	 func	MultiWriter(writers	...Writer)	Writer	{

				55	 	 return	&multiWriter{writers}

				56	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/io/pipe.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Pipe	adapter	to	connect	code	expecting	an	io.Reader

					6	 //	with	code	expecting	an	io.Writer.

					7	

					8	 package	io

					9	

				10	 import	(

				11	 	 "errors"

				12	 	 "sync"

				13)

				14	

				15	 //	ErrClosedPipe	is	the	error	used	for	read	or	write	operations	on	a	closed	pipe.

				16	 var	ErrClosedPipe	=	errors.New("io:	read/write	on	closed	pipe")

				17	

				18	 type	pipeResult	struct	{

				19	 	 n			int

				20	 	 err	error

				21	 }

				22	

				23	 //	A	pipe	is	the	shared	pipe	structure	underlying	PipeReader	and	PipeWriter.

				24	 type	pipe	struct	{

				25	 	 rl				sync.Mutex	//	gates	readers	one	at	a	time

				26	 	 wl				sync.Mutex	//	gates	writers	one	at	a	time

				27	 	 l					sync.Mutex	//	protects	remaining	fields

				28	 	 data		[]byte					//	data	remaining	in	pending	write

				29	 	 rwait	sync.Cond		//	waiting	reader

				30	 	 wwait	sync.Cond		//	waiting	writer

				31	 	 rerr		error						//	if	reader	closed,	error	to	give	writes

				32	 	 werr		error						//	if	writer	closed,	error	to	give	reads

				33	 }

				34	

				35	 func	(p	*pipe)	read(b	[]byte)	(n	int,	err	error)	{

				36	 	 //	One	reader	at	a	time.

				37	 	 p.rl.Lock()

				38	 	 defer	p.rl.Unlock()

				39	

				40	 	 p.l.Lock()

				41	 	 defer	p.l.Unlock()

				42	 	 for	{

				43	 	 	 if	p.rerr	!=	nil	{

				44	 	 	 	 return	0,	ErrClosedPipe

				45	 	 	 }

				46	 	 	 if	p.data	!=	nil	{

				47	 	 	 	 break

				48	 	 	 }

				49	 	 	 if	p.werr	!=	nil	{

				50	 	 	 	 return	0,	p.werr

				51	 	 	 }

				52	 	 	 p.rwait.Wait()

				53	 	 }

				54	 	 n	=	copy(b,	p.data)

				55	 	 p.data	=	p.data[n:]

				56	 	 if	len(p.data)	==	0	{

				57	 	 	 p.data	=	nil

				58	 	 	 p.wwait.Signal()

				59	 	 }

				60	 	 return

				61	 }

				62	

				63	 var	zero	[0]byte

				64	

				65	 func	(p	*pipe)	write(b	[]byte)	(n	int,	err	error)	{

				66	 	 //	pipe	uses	nil	to	mean	not	available

				67	 	 if	b	==	nil	{

				68	 	 	 b	=	zero[:]

				69	 	 }

				70	

				71	 	 //	One	writer	at	a	time.

				72	 	 p.wl.Lock()

				73	 	 defer	p.wl.Unlock()

				74	

				75	 	 p.l.Lock()

				76	 	 defer	p.l.Unlock()

				77	 	 p.data	=	b

				78	 	 p.rwait.Signal()

				79	 	 for	{

				80	 	 	 if	p.data	==	nil	{

				81	 	 	 	 break

				82	 	 	 }

				83	 	 	 if	p.rerr	!=	nil	{

				84	 	 	 	 err	=	p.rerr

				85	 	 	 	 break

				86	 	 	 }

				87	 	 	 if	p.werr	!=	nil	{

				88	 	 	 	 err	=	ErrClosedPipe

				89	 	 	 }

				90	 	 	 p.wwait.Wait()

				91	 	 }

				92	 	 n	=	len(b)	-	len(p.data)

				93	 	 p.data	=	nil	//	in	case	of	rerr	or	werr

				94	 	 return

				95	 }

				96	

				97	 func	(p	*pipe)	rclose(err	error)	{

				98	 	 if	err	==	nil	{

				99	 	 	 err	=	ErrClosedPipe

			100	 	 }

			101	 	 p.l.Lock()

			102	 	 defer	p.l.Unlock()

			103	 	 p.rerr	=	err

			104	 	 p.rwait.Signal()

			105	 	 p.wwait.Signal()

			106	 }

			107	

			108	 func	(p	*pipe)	wclose(err	error)	{

			109	 	 if	err	==	nil	{

			110	 	 	 err	=	EOF

			111	 	 }

			112	 	 p.l.Lock()

			113	 	 defer	p.l.Unlock()

			114	 	 p.werr	=	err

			115	 	 p.rwait.Signal()

			116	 	 p.wwait.Signal()

			117	 }

			118	

			119	 //	A	PipeReader	is	the	read	half	of	a	pipe.

			120	 type	PipeReader	struct	{

			121	 	 p	*pipe

			122	 }

			123	

			124	 //	Read	implements	the	standard	Read	interface:

			125	 //	it	reads	data	from	the	pipe,	blocking	until	a	writer

			126	 //	arrives	or	the	write	end	is	closed.

			127	 //	If	the	write	end	is	closed	with	an	error,	that	error	is

			128	 //	returned	as	err;	otherwise	err	is	EOF.

			129	 func	(r	*PipeReader)	Read(data	[]byte)	(n	int,	err	error)	{

			130	 	 return	r.p.read(data)

			131	 }

			132	

			133	 //	Close	closes	the	reader;	subsequent	writes	to	the

			134	 //	write	half	of	the	pipe	will	return	the	error	ErrClosedPipe.

			135	 func	(r	*PipeReader)	Close()	error	{

			136	 	 return	r.CloseWithError(nil)

			137	 }

			138	

			139	 //	CloseWithError	closes	the	reader;	subsequent	writes

			140	 //	to	the	write	half	of	the	pipe	will	return	the	error	err.

			141	 func	(r	*PipeReader)	CloseWithError(err	error)	error	{

			142	 	 r.p.rclose(err)

			143	 	 return	nil

			144	 }

			145	

			146	 //	A	PipeWriter	is	the	write	half	of	a	pipe.

			147	 type	PipeWriter	struct	{

			148	 	 p	*pipe

			149	 }

			150	

			151	 //	Write	implements	the	standard	Write	interface:

			152	 //	it	writes	data	to	the	pipe,	blocking	until	readers

			153	 //	have	consumed	all	the	data	or	the	read	end	is	closed.

			154	 //	If	the	read	end	is	closed	with	an	error,	that	err	is

			155	 //	returned	as	err;	otherwise	err	is	ErrClosedPipe.

			156	 func	(w	*PipeWriter)	Write(data	[]byte)	(n	int,	err	error)	{

			157	 	 return	w.p.write(data)

			158	 }

			159	

			160	 //	Close	closes	the	writer;	subsequent	reads	from	the

			161	 //	read	half	of	the	pipe	will	return	no	bytes	and	EOF.

			162	 func	(w	*PipeWriter)	Close()	error	{

			163	 	 return	w.CloseWithError(nil)

			164	 }

			165	

			166	 //	CloseWithError	closes	the	writer;	subsequent	reads	from	the

			167	 //	read	half	of	the	pipe	will	return	no	bytes	and	the	error	err.

			168	 func	(w	*PipeWriter)	CloseWithError(err	error)	error	{

			169	 	 w.p.wclose(err)

			170	 	 return	nil

			171	 }

			172	

			173	 //	Pipe	creates	a	synchronous	in-memory	pipe.

			174	 //	It	can	be	used	to	connect	code	expecting	an	io.Reader

			175	 //	with	code	expecting	an	io.Writer.

			176	 //	Reads	on	one	end	are	matched	with	writes	on	the	other,

			177	 //	copying	data	directly	between	the	two;	there	is	no	internal	buffering.

			178	 //	It	is	safe	to	call	Read	and	Write	in	parallel	with	each	other	or	with

			179	 //	Close.	Close	will	complete	once	pending	I/O	is	done.	Parallel	calls	to

			180	 //	Read,	and	parallel	calls	to	Write,	are	also	safe:

			181	 //	the	individual	calls	will	be	gated	sequentially.

			182	 func	Pipe()	(*PipeReader,	*PipeWriter)	{

			183	 	 p	:=	new(pipe)

			184	 	 p.rwait.L	=	&p.l

			185	 	 p.wwait.L	=	&p.l

			186	 	 r	:=	&PipeReader{p}

			187	 	 w	:=	&PipeWriter{p}

			188	 	 return	r,	w

			189	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative

http://code.google.com/policies.html#restrictions

Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/io/ioutil/ioutil.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	ioutil	implements	some	I/O	utility	functions.

					6	 package	ioutil

					7	

					8	 import	(

					9	 	 "bytes"

				10	 	 "io"

				11	 	 "os"

				12	 	 "sort"

				13)

				14	

				15	 //	readAll	reads	from	r	until	an	error	or	EOF	and	returns	the	data	it	read

				16	 //	from	the	internal	buffer	allocated	with	a	specified	capacity.

				17	 func	readAll(r	io.Reader,	capacity	int64)	(b	[]byte,	err	error)	{

				18	 	 buf	:=	bytes.NewBuffer(make([]byte,	0,	capacity))

				19	 	 //	If	the	buffer	overflows,	we	will	get	bytes.ErrTooLarge.

				20	 	 //	Return	that	as	an	error.	Any	other	panic	remains.

				21	 	 defer	func()	{

				22	 	 	 e	:=	recover()

				23	 	 	 if	e	==	nil	{

				24	 	 	 	 return

				25	 	 	 }

				26	 	 	 if	panicErr,	ok	:=	e.(error);	ok	&&	panicErr	==	bytes.ErrTooLarge	{

				27	 	 	 	 err	=	panicErr

				28	 	 	 }	else	{

				29	 	 	 	 panic(e)

				30	 	 	 }

				31	 	 }()

				32	 	 _,	err	=	buf.ReadFrom(r)

				33	 	 return	buf.Bytes(),	err

				34	 }

				35	

				36	 //	ReadAll	reads	from	r	until	an	error	or	EOF	and	returns	the	data	it	read.

				37	 //	A	successful	call	returns	err	==	nil,	not	err	==	EOF.	Because	ReadAll	is

				38	 //	defined	to	read	from	src	until	EOF,	it	does	not	treat	an	EOF	from	Read

				39	 //	as	an	error	to	be	reported.

				40	 func	ReadAll(r	io.Reader)	([]byte,	error)	{

				41	 	 return	readAll(r,	bytes.MinRead)

				42	 }

				43	

				44	 //	ReadFile	reads	the	file	named	by	filename	and	returns	the	contents.

				45	 //	A	successful	call	returns	err	==	nil,	not	err	==	EOF.	Because	ReadFile

				46	 //	reads	the	whole	file,	it	does	not	treat	an	EOF	from	Read	as	an	error

				47	 //	to	be	reported.

				48	 func	ReadFile(filename	string)	([]byte,	error)	{

				49	 	 f,	err	:=	os.Open(filename)

				50	 	 if	err	!=	nil	{

				51	 	 	 return	nil,	err

				52	 	 }

				53	 	 defer	f.Close()

				54	 	 //	It's	a	good	but	not	certain	bet	that	FileInfo	will	tell	us	exactly	how	much	to

				55	 	 //	read,	so	let's	try	it	but	be	prepared	for	the	answer	to	be	wrong.

				56	 	 var	n	int64

				57	

				58	 	 if	fi,	err	:=	f.Stat();	err	==	nil	{

				59	 	 	 //	Don't	preallocate	a	huge	buffer,	just	in	case.

				60	 	 	 if	size	:=	fi.Size();	size	<	1e9	{

				61	 	 	 	 n	=	size

				62	 	 	 }

				63	 	 }

				64	 	 //	As	initial	capacity	for	readAll,	use	n	+	a	little	extra	in	case	Size	is	zero,

				65	 	 //	and	to	avoid	another	allocation	after	Read	has	filled	the	buffer.		The	readAll

				66	 	 //	call	will	read	into	its	allocated	internal	buffer	cheaply.		If	the	size	was

				67	 	 //	wrong,	we'll	either	waste	some	space	off	the	end	or	reallocate	as	needed,	but

				68	 	 //	in	the	overwhelmingly	common	case	we'll	get	it	just	right.

				69	 	 return	readAll(f,	n+bytes.MinRead)

				70	 }

				71	

				72	 //	WriteFile	writes	data	to	a	file	named	by	filename.

				73	 //	If	the	file	does	not	exist,	WriteFile	creates	it	with	permissions	perm;

				74	 //	otherwise	WriteFile	truncates	it	before	writing.

				75	 func	WriteFile(filename	string,	data	[]byte,	perm	os.FileMode)	error	{

				76	 	 f,	err	:=	os.OpenFile(filename,	os.O_WRONLY|os.O_CREATE|os.O_TRUNC,	perm)

				77	 	 if	err	!=	nil	{

				78	 	 	 return	err

				79	 	 }

				80	 	 n,	err	:=	f.Write(data)

				81	 	 f.Close()

				82	 	 if	err	==	nil	&&	n	<	len(data)	{

				83	 	 	 err	=	io.ErrShortWrite

				84	 	 }

				85	 	 return	err

				86	 }

				87	

				88	 //	byName	implements	sort.Interface.

				89	 type	byName	[]os.FileInfo

				90	

				91	 func	(f	byName)	Len()	int											{	return	len(f)	}

				92	 func	(f	byName)	Less(i,	j	int)	bool	{	return	f[i].Name()	<	f[j].Name()	}

				93	 func	(f	byName)	Swap(i,	j	int)						{	f[i],	f[j]	=	f[j],	f[i]	}

				94	

				95	 //	ReadDir	reads	the	directory	named	by	dirname	and	returns

				96	 //	a	list	of	sorted	directory	entries.

				97	 func	ReadDir(dirname	string)	([]os.FileInfo,	error)	{

				98	 	 f,	err	:=	os.Open(dirname)

				99	 	 if	err	!=	nil	{

			100	 	 	 return	nil,	err

			101	 	 }

			102	 	 list,	err	:=	f.Readdir(-1)

			103	 	 f.Close()

			104	 	 if	err	!=	nil	{

			105	 	 	 return	nil,	err

			106	 	 }

			107	 	 sort.Sort(byName(list))

			108	 	 return	list,	nil

			109	 }

			110	

			111	 type	nopCloser	struct	{

			112	 	 io.Reader

			113	 }

			114	

			115	 func	(nopCloser)	Close()	error	{	return	nil	}

			116	

			117	 //	NopCloser	returns	a	ReadCloser	with	a	no-op	Close	method	wrapping

			118	 //	the	provided	Reader	r.

			119	 func	NopCloser(r	io.Reader)	io.ReadCloser	{

			120	 	 return	nopCloser{r}

			121	 }

			122	

			123	 type	devNull	int

			124	

			125	 //	devNull	implements	ReaderFrom	as	an	optimization	so	io.Copy	to

			126	 //	ioutil.Discard	can	avoid	doing	unnecessary	work.

			127	 var	_	io.ReaderFrom	=	devNull(0)

			128	

			129	 func	(devNull)	Write(p	[]byte)	(int,	error)	{

			130	 	 return	len(p),	nil

			131	 }

			132	

			133	 var	blackHole	=	make([]byte,	8192)

			134	

			135	 func	(devNull)	ReadFrom(r	io.Reader)	(n	int64,	err	error)	{

			136	 	 readSize	:=	0

			137	 	 for	{

			138	 	 	 readSize,	err	=	r.Read(blackHole)

			139	 	 	 n	+=	int64(readSize)

			140	 	 	 if	err	!=	nil	{

			141	 	 	 	 if	err	==	io.EOF	{

			142	 	 	 	 	 return	n,	nil

			143	 	 	 	 }

			144	 	 	 	 return

			145	 	 	 }

			146	 	 }

			147	 	 panic("unreachable")

			148	 }

			149	

			150	 //	Discard	is	an	io.Writer	on	which	all	Write	calls	succeed

			151	 //	without	doing	anything.

			152	 var	Discard	io.Writer	=	devNull(0)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/io/ioutil/tempfile.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	ioutil

					6	

					7	 import	(

					8	 	 "os"

					9	 	 "path/filepath"

				10	 	 "strconv"

				11	 	 "time"

				12)

				13	

				14	 //	Random	number	state,	accessed	without	lock;	racy	but	harmless.

				15	 //	We	generate	random	temporary	file	names	so	that	there's	a	good

				16	 //	chance	the	file	doesn't	exist	yet	-	keeps	the	number	of	tries	in

				17	 //	TempFile	to	a	minimum.

				18	 var	rand	uint32

				19	

				20	 func	reseed()	uint32	{

				21	 	 return	uint32(time.Now().UnixNano()	+	int64(os.Getpid()))

				22	 }

				23	

				24	 func	nextSuffix()	string	{

				25	 	 r	:=	rand

				26	 	 if	r	==	0	{

				27	 	 	 r	=	reseed()

				28	 	 }

				29	 	 r	=	r*1664525	+	1013904223	//	constants	from	Numerical	Recipes

				30	 	 rand	=	r

				31	 	 return	strconv.Itoa(int(1e9	+	r%1e9))[1:]

				32	 }

				33	

				34	 //	TempFile	creates	a	new	temporary	file	in	the	directory	dir

				35	 //	with	a	name	beginning	with	prefix,	opens	the	file	for	reading

				36	 //	and	writing,	and	returns	the	resulting	*os.File.

				37	 //	If	dir	is	the	empty	string,	TempFile	uses	the	default	directory

				38	 //	for	temporary	files	(see	os.TempDir).

				39	 //	Multiple	programs	calling	TempFile	simultaneously

				40	 //	will	not	choose	the	same	file.		The	caller	can	use	f.Name()

				41	 //	to	find	the	name	of	the	file.		It	is	the	caller's	responsibility	to

				42	 //	remove	the	file	when	no	longer	needed.

				43	 func	TempFile(dir,	prefix	string)	(f	*os.File,	err	error)	{

				44	 	 if	dir	==	""	{

				45	 	 	 dir	=	os.TempDir()

				46	 	 }

				47	

				48	 	 nconflict	:=	0

				49	 	 for	i	:=	0;	i	<	10000;	i++	{

				50	 	 	 name	:=	filepath.Join(dir,	prefix+nextSuffix())

				51	 	 	 f,	err	=	os.OpenFile(name,	os.O_RDWR|os.O_CREATE|os.O_EXCL,	0600)

				52	 	 	 if	os.IsExist(err)	{

				53	 	 	 	 if	nconflict++;	nconflict	>	10	{

				54	 	 	 	 	 rand	=	reseed()

				55	 	 	 	 }

				56	 	 	 	 continue

				57	 	 	 }

				58	 	 	 break

				59	 	 }

				60	 	 return

				61	 }

				62	

				63	 //	TempDir	creates	a	new	temporary	directory	in	the	directory	dir

				64	 //	with	a	name	beginning	with	prefix	and	returns	the	path	of	the

				65	 //	new	directory.		If	dir	is	the	empty	string,	TempDir	uses	the

				66	 //	default	directory	for	temporary	files	(see	os.TempDir).

				67	 //	Multiple	programs	calling	TempDir	simultaneously

				68	 //	will	not	choose	the	same	directory.		It	is	the	caller's	responsibility

				69	 //	to	remove	the	directory	when	no	longer	needed.

				70	 func	TempDir(dir,	prefix	string)	(name	string,	err	error)	{

				71	 	 if	dir	==	""	{

				72	 	 	 dir	=	os.TempDir()

				73	 	 }

				74	

				75	 	 nconflict	:=	0

				76	 	 for	i	:=	0;	i	<	10000;	i++	{

				77	 	 	 try	:=	filepath.Join(dir,	prefix+nextSuffix())

				78	 	 	 err	=	os.Mkdir(try,	0700)

				79	 	 	 if	os.IsExist(err)	{

				80	 	 	 	 if	nconflict++;	nconflict	>	10	{

				81	 	 	 	 	 rand	=	reseed()

				82	 	 	 	 }

				83	 	 	 	 continue

				84	 	 	 }

				85	 	 	 if	err	==	nil	{

				86	 	 	 	 name	=	try

				87	 	 	 }

				88	 	 	 break

				89	 	 }

				90	 	 return

				91	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/log/log.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	log	implements	a	simple	logging	package.	It	defines	a	type,	Logger,

					6	 //	with	methods	for	formatting	output.	It	also	has	a	predefined	'standard'

					7	 //	Logger	accessible	through	helper	functions	Print[f|ln],	Fatal[f|ln],	and

					8	 //	Panic[f|ln],	which	are	easier	to	use	than	creating	a	Logger	manually.

					9	 //	That	logger	writes	to	standard	error	and	prints	the	date	and	time

				10	 //	of	each	logged	message.

				11	 //	The	Fatal	functions	call	os.Exit(1)	after	writing	the	log	message.

				12	 //	The	Panic	functions	call	panic	after	writing	the	log	message.

				13	 package	log

				14	

				15	 import	(

				16	 	 "fmt"

				17	 	 "io"

				18	 	 "os"

				19	 	 "runtime"

				20	 	 "sync"

				21	 	 "time"

				22)

				23	

				24	 //	These	flags	define	which	text	to	prefix	to	each	log	entry	generated	by	the	Logger.

				25	 const	(

				26	 	 //	Bits	or'ed	together	to	control	what's	printed.	There	is	no	control	over	the

				27	 	 //	order	they	appear	(the	order	listed	here)	or	the	format	they	present	(as

				28	 	 //	described	in	the	comments).		A	colon	appears	after	these	items:

				29	 	 //	 2009/0123	01:23:23.123123	/a/b/c/d.go:23:	message

				30	 	 Ldate									=	1	<<	iota					//	the	date:	2009/01/23

				31	 	 Ltime																									//	the	time:	01:23:23

				32	 	 Lmicroseconds																	//	microsecond	resolution:	01:23:23.123123.		assumes	Ltime.

				33	 	 Llongfile																					//	full	file	name	and	line	number:	/a/b/c/d.go:23

				34	 	 Lshortfile																				//	final	file	name	element	and	line	number:	d.go:23.	overrides	Llongfile

				35	 	 LstdFlags					=	Ldate	|	Ltime	//	initial	values	for	the	standard	logger

				36)

				37	

				38	 //	A	Logger	represents	an	active	logging	object	that	generates	lines	of

				39	 //	output	to	an	io.Writer.		Each	logging	operation	makes	a	single	call	to

				40	 //	the	Writer's	Write	method.		A	Logger	can	be	used	simultaneously	from

				41	 //	multiple	goroutines;	it	guarantees	to	serialize	access	to	the	Writer.

				42	 type	Logger	struct	{

				43	 	 mu					sync.Mutex	//	ensures	atomic	writes;	protects	the	following	fields

				44	 	 prefix	string					//	prefix	to	write	at	beginning	of	each	line

				45	 	 flag			int								//	properties

				46	 	 out				io.Writer		//	destination	for	output

				47	 	 buf				[]byte					//	for	accumulating	text	to	write

				48	 }

				49	

				50	 //	New	creates	a	new	Logger.			The	out	variable	sets	the

				51	 //	destination	to	which	log	data	will	be	written.

				52	 //	The	prefix	appears	at	the	beginning	of	each	generated	log	line.

				53	 //	The	flag	argument	defines	the	logging	properties.

				54	 func	New(out	io.Writer,	prefix	string,	flag	int)	*Logger	{

				55	 	 return	&Logger{out:	out,	prefix:	prefix,	flag:	flag}

				56	 }

				57	

				58	 var	std	=	New(os.Stderr,	"",	LstdFlags)

				59	

				60	 //	Cheap	integer	to	fixed-width	decimal	ASCII.		Give	a	negative	width	to	avoid	zero-padding.

				61	 //	Knows	the	buffer	has	capacity.

				62	 func	itoa(buf	*[]byte,	i	int,	wid	int)	{

				63	 	 var	u	uint	=	uint(i)

				64	 	 if	u	==	0	&&	wid	<=	1	{

				65	 	 	 *buf	=	append(*buf,	'0')

				66	 	 	 return

				67	 	 }

				68	

				69	 	 //	Assemble	decimal	in	reverse	order.

				70	 	 var	b	[32]byte

				71	 	 bp	:=	len(b)

				72	 	 for	;	u	>	0	||	wid	>	0;	u	/=	10	{

				73	 	 	 bp--

				74	 	 	 wid--

				75	 	 	 b[bp]	=	byte(u%10)	+	'0'

				76	 	 }

				77	 	 *buf	=	append(*buf,	b[bp:]...)

				78	 }

				79	

				80	 func	(l	*Logger)	formatHeader(buf	*[]byte,	t	time.Time,	file	string,	line	int)	{

				81	 	 *buf	=	append(*buf,	l.prefix...)

				82	 	 if	l.flag&(Ldate|Ltime|Lmicroseconds)	!=	0	{

				83	 	 	 if	l.flag&Ldate	!=	0	{

				84	 	 	 	 year,	month,	day	:=	t.Date()

				85	 	 	 	 itoa(buf,	year,	4)

				86	 	 	 	 *buf	=	append(*buf,	'/')

				87	 	 	 	 itoa(buf,	int(month),	2)

				88	 	 	 	 *buf	=	append(*buf,	'/')

				89	 	 	 	 itoa(buf,	day,	2)

				90	 	 	 	 *buf	=	append(*buf,	'	')

				91	 	 	 }

				92	 	 	 if	l.flag&(Ltime|Lmicroseconds)	!=	0	{

				93	 	 	 	 hour,	min,	sec	:=	t.Clock()

				94	 	 	 	 itoa(buf,	hour,	2)

				95	 	 	 	 *buf	=	append(*buf,	':')

				96	 	 	 	 itoa(buf,	min,	2)

				97	 	 	 	 *buf	=	append(*buf,	':')

				98	 	 	 	 itoa(buf,	sec,	2)

				99	 	 	 	 if	l.flag&Lmicroseconds	!=	0	{

			100	 	 	 	 	 *buf	=	append(*buf,	'.')

			101	 	 	 	 	 itoa(buf,	t.Nanosecond()/1e3,	6)

			102	 	 	 	 }

			103	 	 	 	 *buf	=	append(*buf,	'	')

			104	 	 	 }

			105	 	 }

			106	 	 if	l.flag&(Lshortfile|Llongfile)	!=	0	{

			107	 	 	 if	l.flag&Lshortfile	!=	0	{

			108	 	 	 	 short	:=	file

			109	 	 	 	 for	i	:=	len(file)	-	1;	i	>	0;	i--	{

			110	 	 	 	 	 if	file[i]	==	'/'	{

			111	 	 	 	 	 	 short	=	file[i+1:]

			112	 	 	 	 	 	 break

			113	 	 	 	 	 }

			114	 	 	 	 }

			115	 	 	 	 file	=	short

			116	 	 	 }

			117	 	 	 *buf	=	append(*buf,	file...)

			118	 	 	 *buf	=	append(*buf,	':')

			119	 	 	 itoa(buf,	line,	-1)

			120	 	 	 *buf	=	append(*buf,	":	"...)

			121	 	 }

			122	 }

			123	

			124	 //	Output	writes	the	output	for	a	logging	event.		The	string	s	contains

			125	 //	the	text	to	print	after	the	prefix	specified	by	the	flags	of	the

			126	 //	Logger.		A	newline	is	appended	if	the	last	character	of	s	is	not

			127	 //	already	a	newline.		Calldepth	is	used	to	recover	the	PC	and	is

			128	 //	provided	for	generality,	although	at	the	moment	on	all	pre-defined

			129	 //	paths	it	will	be	2.

			130	 func	(l	*Logger)	Output(calldepth	int,	s	string)	error	{

			131	 	 now	:=	time.Now()	//	get	this	early.

			132	 	 var	file	string

			133	 	 var	line	int

			134	 	 l.mu.Lock()

			135	 	 defer	l.mu.Unlock()

			136	 	 if	l.flag&(Lshortfile|Llongfile)	!=	0	{

			137	 	 	 //	release	lock	while	getting	caller	info	-	it's	expensive.

			138	 	 	 l.mu.Unlock()

			139	 	 	 var	ok	bool

			140	 	 	 _,	file,	line,	ok	=	runtime.Caller(calldepth)

			141	 	 	 if	!ok	{

			142	 	 	 	 file	=	"???"

			143	 	 	 	 line	=	0

			144	 	 	 }

			145	 	 	 l.mu.Lock()

			146	 	 }

			147	 	 l.buf	=	l.buf[:0]

			148	 	 l.formatHeader(&l.buf,	now,	file,	line)

			149	 	 l.buf	=	append(l.buf,	s...)

			150	 	 if	len(s)	>	0	&&	s[len(s)-1]	!=	'\n'	{

			151	 	 	 l.buf	=	append(l.buf,	'\n')

			152	 	 }

			153	 	 _,	err	:=	l.out.Write(l.buf)

			154	 	 return	err

			155	 }

			156	

			157	 //	Printf	calls	l.Output	to	print	to	the	logger.

			158	 //	Arguments	are	handled	in	the	manner	of	fmt.Printf.

			159	 func	(l	*Logger)	Printf(format	string,	v	...interface{})	{

			160	 	 l.Output(2,	fmt.Sprintf(format,	v...))

			161	 }

			162	

			163	 //	Print	calls	l.Output	to	print	to	the	logger.

			164	 //	Arguments	are	handled	in	the	manner	of	fmt.Print.

			165	 func	(l	*Logger)	Print(v	...interface{})	{	l.Output(2,	fmt.Sprint(v...))	}

			166	

			167	 //	Println	calls	l.Output	to	print	to	the	logger.

			168	 //	Arguments	are	handled	in	the	manner	of	fmt.Println.

			169	 func	(l	*Logger)	Println(v	...interface{})	{	l.Output(2,	fmt.Sprintln(v...))	}

			170	

			171	 //	Fatal	is	equivalent	to	l.Print()	followed	by	a	call	to	os.Exit(1).

			172	 func	(l	*Logger)	Fatal(v	...interface{})	{

			173	 	 l.Output(2,	fmt.Sprint(v...))

			174	 	 os.Exit(1)

			175	 }

			176	

			177	 //	Fatalf	is	equivalent	to	l.Printf()	followed	by	a	call	to	os.Exit(1).

			178	 func	(l	*Logger)	Fatalf(format	string,	v	...interface{})	{

			179	 	 l.Output(2,	fmt.Sprintf(format,	v...))

			180	 	 os.Exit(1)

			181	 }

			182	

			183	 //	Fatalln	is	equivalent	to	l.Println()	followed	by	a	call	to	os.Exit(1).

			184	 func	(l	*Logger)	Fatalln(v	...interface{})	{

			185	 	 l.Output(2,	fmt.Sprintln(v...))

			186	 	 os.Exit(1)

			187	 }

			188	

			189	 //	Panic	is	equivalent	to	l.Print()	followed	by	a	call	to	panic().

			190	 func	(l	*Logger)	Panic(v	...interface{})	{

			191	 	 s	:=	fmt.Sprint(v...)

			192	 	 l.Output(2,	s)

			193	 	 panic(s)

			194	 }

			195	

			196	 //	Panicf	is	equivalent	to	l.Printf()	followed	by	a	call	to	panic().

			197	 func	(l	*Logger)	Panicf(format	string,	v	...interface{})	{

			198	 	 s	:=	fmt.Sprintf(format,	v...)

			199	 	 l.Output(2,	s)

			200	 	 panic(s)

			201	 }

			202	

			203	 //	Panicln	is	equivalent	to	l.Println()	followed	by	a	call	to	panic().

			204	 func	(l	*Logger)	Panicln(v	...interface{})	{

			205	 	 s	:=	fmt.Sprintln(v...)

			206	 	 l.Output(2,	s)

			207	 	 panic(s)

			208	 }

			209	

			210	 //	Flags	returns	the	output	flags	for	the	logger.

			211	 func	(l	*Logger)	Flags()	int	{

			212	 	 l.mu.Lock()

			213	 	 defer	l.mu.Unlock()

			214	 	 return	l.flag

			215	 }

			216	

			217	 //	SetFlags	sets	the	output	flags	for	the	logger.

			218	 func	(l	*Logger)	SetFlags(flag	int)	{

			219	 	 l.mu.Lock()

			220	 	 defer	l.mu.Unlock()

			221	 	 l.flag	=	flag

			222	 }

			223	

			224	 //	Prefix	returns	the	output	prefix	for	the	logger.

			225	 func	(l	*Logger)	Prefix()	string	{

			226	 	 l.mu.Lock()

			227	 	 defer	l.mu.Unlock()

			228	 	 return	l.prefix

			229	 }

			230	

			231	 //	SetPrefix	sets	the	output	prefix	for	the	logger.

			232	 func	(l	*Logger)	SetPrefix(prefix	string)	{

			233	 	 l.mu.Lock()

			234	 	 defer	l.mu.Unlock()

			235	 	 l.prefix	=	prefix

			236	 }

			237	

			238	 //	SetOutput	sets	the	output	destination	for	the	standard	logger.

			239	 func	SetOutput(w	io.Writer)	{

			240	 	 std.mu.Lock()

			241	 	 defer	std.mu.Unlock()

			242	 	 std.out	=	w

			243	 }

			244	

			245	 //	Flags	returns	the	output	flags	for	the	standard	logger.

			246	 func	Flags()	int	{

			247	 	 return	std.Flags()

			248	 }

			249	

			250	 //	SetFlags	sets	the	output	flags	for	the	standard	logger.

			251	 func	SetFlags(flag	int)	{

			252	 	 std.SetFlags(flag)

			253	 }

			254	

			255	 //	Prefix	returns	the	output	prefix	for	the	standard	logger.

			256	 func	Prefix()	string	{

			257	 	 return	std.Prefix()

			258	 }

			259	

			260	 //	SetPrefix	sets	the	output	prefix	for	the	standard	logger.

			261	 func	SetPrefix(prefix	string)	{

			262	 	 std.SetPrefix(prefix)

			263	 }

			264	

			265	 //	These	functions	write	to	the	standard	logger.

			266	

			267	 //	Print	calls	Output	to	print	to	the	standard	logger.

			268	 //	Arguments	are	handled	in	the	manner	of	fmt.Print.

			269	 func	Print(v	...interface{})	{

			270	 	 std.Output(2,	fmt.Sprint(v...))

			271	 }

			272	

			273	 //	Printf	calls	Output	to	print	to	the	standard	logger.

			274	 //	Arguments	are	handled	in	the	manner	of	fmt.Printf.

			275	 func	Printf(format	string,	v	...interface{})	{

			276	 	 std.Output(2,	fmt.Sprintf(format,	v...))

			277	 }

			278	

			279	 //	Println	calls	Output	to	print	to	the	standard	logger.

			280	 //	Arguments	are	handled	in	the	manner	of	fmt.Println.

			281	 func	Println(v	...interface{})	{

			282	 	 std.Output(2,	fmt.Sprintln(v...))

			283	 }

			284	

			285	 //	Fatal	is	equivalent	to	Print()	followed	by	a	call	to	os.Exit(1).

			286	 func	Fatal(v	...interface{})	{

			287	 	 std.Output(2,	fmt.Sprint(v...))

			288	 	 os.Exit(1)

			289	 }

			290	

			291	 //	Fatalf	is	equivalent	to	Printf()	followed	by	a	call	to	os.Exit(1).

			292	 func	Fatalf(format	string,	v	...interface{})	{

			293	 	 std.Output(2,	fmt.Sprintf(format,	v...))

			294	 	 os.Exit(1)

			295	 }

			296	

			297	 //	Fatalln	is	equivalent	to	Println()	followed	by	a	call	to	os.Exit(1).

			298	 func	Fatalln(v	...interface{})	{

			299	 	 std.Output(2,	fmt.Sprintln(v...))

			300	 	 os.Exit(1)

			301	 }

			302	

			303	 //	Panic	is	equivalent	to	Print()	followed	by	a	call	to	panic().

			304	 func	Panic(v	...interface{})	{

			305	 	 s	:=	fmt.Sprint(v...)

			306	 	 std.Output(2,	s)

			307	 	 panic(s)

			308	 }

			309	

			310	 //	Panicf	is	equivalent	to	Printf()	followed	by	a	call	to	panic().

			311	 func	Panicf(format	string,	v	...interface{})	{

			312	 	 s	:=	fmt.Sprintf(format,	v...)

			313	 	 std.Output(2,	s)

			314	 	 panic(s)

			315	 }

			316	

			317	 //	Panicln	is	equivalent	to	Println()	followed	by	a	call	to	panic().

			318	 func	Panicln(v	...interface{})	{

			319	 	 s	:=	fmt.Sprintln(v...)

			320	 	 std.Output(2,	s)

			321	 	 panic(s)

			322	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/log/syslog/syslog.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	!windows,!plan9

					6	

					7	 //	Package	syslog	provides	a	simple	interface	to	the	system	log	service.	It

					8	 //	can	send	messages	to	the	syslog	daemon	using	UNIX	domain	sockets,	UDP,	or

					9	 //	TCP	connections.

				10	 package	syslog

				11	

				12	 import	(

				13	 	 "errors"

				14	 	 "fmt"

				15	 	 "log"

				16	 	 "net"

				17	 	 "os"

				18)

				19	

				20	 type	Priority	int

				21	

				22	 const	(

				23	 	 //	From	/usr/include/sys/syslog.h.

				24	 	 //	These	are	the	same	on	Linux,	BSD,	and	OS	X.

				25	 	 LOG_EMERG	Priority	=	iota

				26	 	 LOG_ALERT

				27	 	 LOG_CRIT

				28	 	 LOG_ERR

				29	 	 LOG_WARNING

				30	 	 LOG_NOTICE

				31	 	 LOG_INFO

				32	 	 LOG_DEBUG

				33)

				34	

				35	 //	A	Writer	is	a	connection	to	a	syslog	server.

				36	 type	Writer	struct	{

				37	 	 priority	Priority

				38	 	 prefix			string

				39	 	 conn					serverConn

				40	 }

				41	

				42	 type	serverConn	interface	{

				43	 	 writeBytes(p	Priority,	prefix	string,	b	[]byte)	(int,	error)

				44	 	 writeString(p	Priority,	prefix	string,	s	string)	(int,	error)

				45	 	 close()	error

				46	 }

				47	

				48	 type	netConn	struct	{

				49	 	 conn	net.Conn

				50	 }

				51	

				52	 //	New	establishes	a	new	connection	to	the	system	log	daemon.

				53	 //	Each	write	to	the	returned	writer	sends	a	log	message	with

				54	 //	the	given	priority	and	prefix.

				55	 func	New(priority	Priority,	prefix	string)	(w	*Writer,	err	error)	{

				56	 	 return	Dial("",	"",	priority,	prefix)

				57	 }

				58	

				59	 //	Dial	establishes	a	connection	to	a	log	daemon	by	connecting

				60	 //	to	address	raddr	on	the	network	net.

				61	 //	Each	write	to	the	returned	writer	sends	a	log	message	with

				62	 //	the	given	priority	and	prefix.

				63	 func	Dial(network,	raddr	string,	priority	Priority,	prefix	string)	(w	*Writer,	err	error)	{

				64	 	 if	prefix	==	""	{

				65	 	 	 prefix	=	os.Args[0]

				66	 	 }

				67	 	 var	conn	serverConn

				68	 	 if	network	==	""	{

				69	 	 	 conn,	err	=	unixSyslog()

				70	 	 }	else	{

				71	 	 	 var	c	net.Conn

				72	 	 	 c,	err	=	net.Dial(network,	raddr)

				73	 	 	 conn	=	netConn{c}

				74	 	 }

				75	 	 return	&Writer{priority,	prefix,	conn},	err

				76	 }

				77	

				78	 //	Write	sends	a	log	message	to	the	syslog	daemon.

				79	 func	(w	*Writer)	Write(b	[]byte)	(int,	error)	{

				80	 	 if	w.priority	>	LOG_DEBUG	||	w.priority	<	LOG_EMERG	{

				81	 	 	 return	0,	errors.New("log/syslog:	invalid	priority")

				82	 	 }

				83	 	 return	w.conn.writeBytes(w.priority,	w.prefix,	b)

				84	 }

				85	

				86	 func	(w	*Writer)	writeString(p	Priority,	s	string)	(int,	error)	{

				87	 	 return	w.conn.writeString(p,	w.prefix,	s)

				88	 }

				89	

				90	 func	(w	*Writer)	Close()	error	{	return	w.conn.close()	}

				91	

				92	 //	Emerg	logs	a	message	using	the	LOG_EMERG	priority.

				93	 func	(w	*Writer)	Emerg(m	string)	(err	error)	{

				94	 	 _,	err	=	w.writeString(LOG_EMERG,	m)

				95	 	 return	err

				96	 }

				97	

				98	 //	Alert	logs	a	message	using	the	LOG_ALERT	priority.

				99	 func	(w	*Writer)	Alert(m	string)	(err	error)	{

			100	 	 _,	err	=	w.writeString(LOG_ALERT,	m)

			101	 	 return	err

			102	 }

			103	

			104	 //	Crit	logs	a	message	using	the	LOG_CRIT	priority.

			105	 func	(w	*Writer)	Crit(m	string)	(err	error)	{

			106	 	 _,	err	=	w.writeString(LOG_CRIT,	m)

			107	 	 return	err

			108	 }

			109	

			110	 //	Err	logs	a	message	using	the	LOG_ERR	priority.

			111	 func	(w	*Writer)	Err(m	string)	(err	error)	{

			112	 	 _,	err	=	w.writeString(LOG_ERR,	m)

			113	 	 return	err

			114	 }

			115	

			116	 //	Warning	logs	a	message	using	the	LOG_WARNING	priority.

			117	 func	(w	*Writer)	Warning(m	string)	(err	error)	{

			118	 	 _,	err	=	w.writeString(LOG_WARNING,	m)

			119	 	 return	err

			120	 }

			121	

			122	 //	Notice	logs	a	message	using	the	LOG_NOTICE	priority.

			123	 func	(w	*Writer)	Notice(m	string)	(err	error)	{

			124	 	 _,	err	=	w.writeString(LOG_NOTICE,	m)

			125	 	 return	err

			126	 }

			127	

			128	 //	Info	logs	a	message	using	the	LOG_INFO	priority.

			129	 func	(w	*Writer)	Info(m	string)	(err	error)	{

			130	 	 _,	err	=	w.writeString(LOG_INFO,	m)

			131	 	 return	err

			132	 }

			133	

			134	 //	Debug	logs	a	message	using	the	LOG_DEBUG	priority.

			135	 func	(w	*Writer)	Debug(m	string)	(err	error)	{

			136	 	 _,	err	=	w.writeString(LOG_DEBUG,	m)

			137	 	 return	err

			138	 }

			139	

			140	 func	(n	netConn)	writeBytes(p	Priority,	prefix	string,	b	[]byte)	(int,	error)	{

			141	 	 _,	err	:=	fmt.Fprintf(n.conn,	"<%d>%s:	%s\n",	p,	prefix,	b)

			142	 	 if	err	!=	nil	{

			143	 	 	 return	0,	err

			144	 	 }

			145	 	 return	len(b),	nil

			146	 }

			147	

			148	 func	(n	netConn)	writeString(p	Priority,	prefix	string,	s	string)	(int,	error)	{

			149	 	 _,	err	:=	fmt.Fprintf(n.conn,	"<%d>%s:	%s\n",	p,	prefix,	s)

			150	 	 if	err	!=	nil	{

			151	 	 	 return	0,	err

			152	 	 }

			153	 	 return	len(s),	nil

			154	 }

			155	

			156	 func	(n	netConn)	close()	error	{

			157	 	 return	n.conn.Close()

			158	 }

			159	

			160	 //	NewLogger	creates	a	log.Logger	whose	output	is	written	to

			161	 //	the	system	log	service	with	the	specified	priority.	The	logFlag

			162	 //	argument	is	the	flag	set	passed	through	to	log.New	to	create

			163	 //	the	Logger.

			164	 func	NewLogger(p	Priority,	logFlag	int)	(*log.Logger,	error)	{

			165	 	 s,	err	:=	New(p,	"")

			166	 	 if	err	!=	nil	{

			167	 	 	 return	nil,	err

			168	 	 }

			169	 	 return	log.New(s,	"",	logFlag),	nil

			170	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/log/syslog/syslog_unix.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	!windows,!plan9

					6	

					7	 package	syslog

					8	

					9	 import	(

				10	 	 "errors"

				11	 	 "net"

				12)

				13	

				14	 //	unixSyslog	opens	a	connection	to	the	syslog	daemon	running	on	the

				15	 //	local	machine	using	a	Unix	domain	socket.

				16	

				17	 func	unixSyslog()	(conn	serverConn,	err	error)	{

				18	 	 logTypes	:=	[]string{"unixgram",	"unix"}

				19	 	 logPaths	:=	[]string{"/dev/log",	"/var/run/syslog"}

				20	 	 var	raddr	string

				21	 	 for	_,	network	:=	range	logTypes	{

				22	 	 	 for	_,	path	:=	range	logPaths	{

				23	 	 	 	 raddr	=	path

				24	 	 	 	 conn,	err	:=	net.Dial(network,	raddr)

				25	 	 	 	 if	err	!=	nil	{

				26	 	 	 	 	 continue

				27	 	 	 	 }	else	{

				28	 	 	 	 	 return	netConn{conn},	nil

				29	 	 	 	 }

				30	 	 	 }

				31	 	 }

				32	 	 return	nil,	errors.New("Unix	syslog	delivery	error")

				33	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/abs.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	Abs	returns	the	absolute	value	of	x.

					8	 //

					9	 //	Special	cases	are:

				10	 //	 Abs(±Inf)	=	+Inf

				11	 //	 Abs(NaN)	=	NaN

				12	 func	Abs(x	float64)	float64

				13	

				14	 func	abs(x	float64)	float64	{

				15	 	 switch	{

				16	 	 case	x	<	0:

				17	 	 	 return	-x

				18	 	 case	x	==	0:

				19	 	 	 return	0	//	return	correctly	abs(-0)

				20	 	 }

				21	 	 return	x

				22	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/acosh.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	The	original	C	code,	the	long	comment,	and	the	constants

					8	 //	below	are	from	FreeBSD's	/usr/src/lib/msun/src/e_acosh.c

					9	 //	and	came	with	this	notice.		The	go	code	is	a	simplified

				10	 //	version	of	the	original	C.

				11	 //

				12	 //	==

				13	 //	Copyright	(C)	1993	by	Sun	Microsystems,	Inc.	All	rights	reserved.

				14	 //

				15	 //	Developed	at	SunPro,	a	Sun	Microsystems,	Inc.	business.

				16	 //	Permission	to	use,	copy,	modify,	and	distribute	this

				17	 //	software	is	freely	granted,	provided	that	this	notice

				18	 //	is	preserved.

				19	 //	==

				20	 //

				21	 //

				22	 //	__ieee754_acosh(x)

				23	 //	Method	:

				24	 //	 Based	on

				25	 //	 								acosh(x)	=	log	[x	+	sqrt(x*x-1)]

				26	 //	 we	have

				27	 //	 								acosh(x)	:=	log(x)+ln2,	if	x	is	large;	else

				28	 //	 								acosh(x)	:=	log(2x-1/(sqrt(x*x-1)+x))	if	x>2;	else

				29	 //	 								acosh(x)	:=	log1p(t+sqrt(2.0*t+t*t));	where	t=x-1.

				30	 //

				31	 //	Special	cases:

				32	 //	 acosh(x)	is	NaN	with	signal	if	x<1.

				33	 //	 acosh(NaN)	is	NaN	without	signal.

				34	 //

				35	

				36	 //	Acosh(x)	calculates	the	inverse	hyperbolic	cosine	of	x.

				37	 //

				38	 //	Special	cases	are:

				39	 //	 Acosh(+Inf)	=	+Inf

				40	 //	 Acosh(x)	=	NaN	if	x	<	1

				41	 //	 Acosh(NaN)	=	NaN

				42	 func	Acosh(x	float64)	float64	{

				43	 	 const	(

				44	 	 	 Ln2			=	6.93147180559945286227e-01	//	0x3FE62E42FEFA39EF

				45	 	 	 Large	=	1	<<	28																				//	2**28

				46)

				47	 	 //	first	case	is	special	case

				48	 	 switch	{

				49	 	 case	x	<	1	||	IsNaN(x):

				50	 	 	 return	NaN()

				51	 	 case	x	==	1:

				52	 	 	 return	0

				53	 	 case	x	>=	Large:

				54	 	 	 return	Log(x)	+	Ln2	//	x	>	2**28

				55	 	 case	x	>	2:

				56	 	 	 return	Log(2*x	-	1/(x+Sqrt(x*x-1)))	//	2**28	>	x	>	2

				57	 	 }

				58	 	 t	:=	x	-	1

				59	 	 return	Log1p(t	+	Sqrt(2*t+t*t))	//	2	>=	x	>	1

				60	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/asin.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 /*

					8	 	 Floating-point	arcsine	and	arccosine.

					9	

				10	 	 They	are	implemented	by	computing	the	arctangent

				11	 	 after	appropriate	range	reduction.

				12	 */

				13	

				14	 //	Asin	returns	the	arcsine	of	x.

				15	 //

				16	 //	Special	cases	are:

				17	 //	 Asin(±0)	=	±0

				18	 //	 Asin(x)	=	NaN	if	x	<	-1	or	x	>	1

				19	 func	Asin(x	float64)	float64

				20	

				21	 func	asin(x	float64)	float64	{

				22	 	 if	x	==	0	{

				23	 	 	 return	x	//	special	case

				24	 	 }

				25	 	 sign	:=	false

				26	 	 if	x	<	0	{

				27	 	 	 x	=	-x

				28	 	 	 sign	=	true

				29	 	 }

				30	 	 if	x	>	1	{

				31	 	 	 return	NaN()	//	special	case

				32	 	 }

				33	

				34	 	 temp	:=	Sqrt(1	-	x*x)

				35	 	 if	x	>	0.7	{

				36	 	 	 temp	=	Pi/2	-	satan(temp/x)

				37	 	 }	else	{

				38	 	 	 temp	=	satan(x	/	temp)

				39	 	 }

				40	

				41	 	 if	sign	{

				42	 	 	 temp	=	-temp

				43	 	 }

				44	 	 return	temp

				45	 }

				46	

				47	 //	Acos	returns	the	arccosine	of	x.

				48	 //

				49	 //	Special	case	is:

				50	 //	 Acos(x)	=	NaN	if	x	<	-1	or	x	>	1

				51	 func	Acos(x	float64)	float64

				52	

				53	 func	acos(x	float64)	float64	{

				54	 	 return	Pi/2	-	Asin(x)

				55	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/asinh.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	The	original	C	code,	the	long	comment,	and	the	constants

					8	 //	below	are	from	FreeBSD's	/usr/src/lib/msun/src/s_asinh.c

					9	 //	and	came	with	this	notice.		The	go	code	is	a	simplified

				10	 //	version	of	the	original	C.

				11	 //

				12	 //	==

				13	 //	Copyright	(C)	1993	by	Sun	Microsystems,	Inc.	All	rights	reserved.

				14	 //

				15	 //	Developed	at	SunPro,	a	Sun	Microsystems,	Inc.	business.

				16	 //	Permission	to	use,	copy,	modify,	and	distribute	this

				17	 //	software	is	freely	granted,	provided	that	this	notice

				18	 //	is	preserved.

				19	 //	==

				20	 //

				21	 //

				22	 //	asinh(x)

				23	 //	Method	:

				24	 //	 Based	on

				25	 //	 								asinh(x)	=	sign(x)	*	log	[|x|	+	sqrt(x*x+1)]

				26	 //	 we	have

				27	 //	 asinh(x)	:=	x		if		1+x*x=1,

				28	 //	 									:=	sign(x)*(log(x)+ln2))	for	large	|x|,	else

				29	 //	 									:=	sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1)))	if|x|>2,	else

				30	 //	 									:=	sign(x)*log1p(|x|	+	x**2/(1	+	sqrt(1+x**2)))

				31	 //

				32	

				33	 //	Asinh(x)	calculates	the	inverse	hyperbolic	sine	of	x.

				34	 //

				35	 //	Special	cases	are:

				36	 //	 Asinh(±0)	=	±0

				37	 //	 Asinh(±Inf)	=	±Inf

				38	 //	 Asinh(NaN)	=	NaN

				39	 func	Asinh(x	float64)	float64	{

				40	 	 const	(

				41	 	 	 Ln2						=	6.93147180559945286227e-01	//	0x3FE62E42FEFA39EF

				42	 	 	 NearZero	=	1.0	/	(1	<<	28)												//	2**-28

				43	 	 	 Large				=	1	<<	28																				//	2**28

				44)

				45	 	 //	special	cases

				46	 	 if	IsNaN(x)	||	IsInf(x,	0)	{

				47	 	 	 return	x

				48	 	 }

				49	 	 sign	:=	false

				50	 	 if	x	<	0	{

				51	 	 	 x	=	-x

				52	 	 	 sign	=	true

				53	 	 }

				54	 	 var	temp	float64

				55	 	 switch	{

				56	 	 case	x	>	Large:

				57	 	 	 temp	=	Log(x)	+	Ln2	//	|x|	>	2**28

				58	 	 case	x	>	2:

				59	 	 	 temp	=	Log(2*x	+	1/(Sqrt(x*x+1)+x))	//	2**28	>	|x|	>	2.0

				60	 	 case	x	<	NearZero:

				61	 	 	 temp	=	x	//	|x|	<	2**-28

				62	 	 default:

				63	 	 	 temp	=	Log1p(x	+	x*x/(1+Sqrt(1+x*x)))	//	2.0	>	|x|	>	2**-28

				64	 	 }

				65	 	 if	sign	{

				66	 	 	 temp	=	-temp

				67	 	 }

				68	 	 return	temp

				69	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/atan.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 /*

					8	 	 Floating-point	arctangent.

					9	

				10	 	 Atan	returns	the	value	of	the	arctangent	of	its

				11	 	 argument	in	the	range	[-pi/2,pi/2].

				12	 	 There	are	no	error	returns.

				13	 	 Coefficients	are	#5077	from	Hart	&	Cheney.	(19.56D)

				14	 */

				15	

				16	 //	xatan	evaluates	a	series	valid	in	the

				17	 //	range	[-0.414...,+0.414...].	(tan(pi/8))

				18	 func	xatan(arg	float64)	float64	{

				19	 	 const	(

				20	 	 	 P4	=	.161536412982230228262e2

				21	 	 	 P3	=	.26842548195503973794141e3

				22	 	 	 P2	=	.11530293515404850115428136e4

				23	 	 	 P1	=	.178040631643319697105464587e4

				24	 	 	 P0	=	.89678597403663861959987488e3

				25	 	 	 Q4	=	.5895697050844462222791e2

				26	 	 	 Q3	=	.536265374031215315104235e3

				27	 	 	 Q2	=	.16667838148816337184521798e4

				28	 	 	 Q1	=	.207933497444540981287275926e4

				29	 	 	 Q0	=	.89678597403663861962481162e3

				30)

				31	 	 sq	:=	arg	*	arg

				32	 	 value	:=	((((P4*sq+P3)*sq+P2)*sq+P1)*sq	+	P0)

				33	 	 value	=	value	/	(((((sq+Q4)*sq+Q3)*sq+Q2)*sq+Q1)*sq	+	Q0)

				34	 	 return	value	*	arg

				35	 }

				36	

				37	 //	satan	reduces	its	argument	(known	to	be	positive)

				38	 //	to	the	range	[0,0.414...]	and	calls	xatan.

				39	 func	satan(arg	float64)	float64	{

				40	 	 if	arg	<	Sqrt2-1	{

				41	 	 	 return	xatan(arg)

				42	 	 }

				43	 	 if	arg	>	Sqrt2+1	{

				44	 	 	 return	Pi/2	-	xatan(1/arg)

				45	 	 }

				46	 	 return	Pi/4	+	xatan((arg-1)/(arg+1))

				47	 }

				48	

				49	 //	Atan	returns	the	arctangent	of	x.

				50	 //

				51	 //	Special	cases	are:

				52	 //	 Atan(±0)	=	±0

				53	 //	 Atan(±Inf)	=	±Pi/2

				54	 func	Atan(x	float64)	float64

				55	

				56	 func	atan(x	float64)	float64	{

				57	 	 if	x	==	0	{

				58	 	 	 return	x

				59	 	 }

				60	 	 if	x	>	0	{

				61	 	 	 return	satan(x)

				62	 	 }

				63	 	 return	-satan(-x)

				64	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/atan2.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	Atan2	returns	the	arc	tangent	of	y/x,	using

					8	 //	the	signs	of	the	two	to	determine	the	quadrant

					9	 //	of	the	return	value.

				10	 //

				11	 //	Special	cases	are	(in	order):

				12	 //	 Atan2(y,	NaN)	=	NaN

				13	 //	 Atan2(NaN,	x)	=	NaN

				14	 //	 Atan2(+0,	x>=0)	=	+0

				15	 //	 Atan2(-0,	x>=0)	=	-0

				16	 //	 Atan2(+0,	x<=-0)	=	+Pi

				17	 //	 Atan2(-0,	x<=-0)	=	-Pi

				18	 //	 Atan2(y>0,	0)	=	+Pi/2

				19	 //	 Atan2(y<0,	0)	=	-Pi/2

				20	 //	 Atan2(+Inf,	+Inf)	=	+Pi/4

				21	 //	 Atan2(-Inf,	+Inf)	=	-Pi/4

				22	 //	 Atan2(+Inf,	-Inf)	=	3Pi/4

				23	 //	 Atan2(-Inf,	-Inf)	=	-3Pi/4

				24	 //	 Atan2(y,	+Inf)	=	0

				25	 //	 Atan2(y>0,	-Inf)	=	+Pi

				26	 //	 Atan2(y<0,	-Inf)	=	-Pi

				27	 //	 Atan2(+Inf,	x)	=	+Pi/2

				28	 //	 Atan2(-Inf,	x)	=	-Pi/2

				29	 func	Atan2(y,	x	float64)	float64

				30	

				31	 func	atan2(y,	x	float64)	float64	{

				32	 	 //	special	cases

				33	 	 switch	{

				34	 	 case	IsNaN(y)	||	IsNaN(x):

				35	 	 	 return	NaN()

				36	 	 case	y	==	0:

				37	 	 	 if	x	>=	0	&&	!Signbit(x)	{

				38	 	 	 	 return	Copysign(0,	y)

				39	 	 	 }

				40	 	 	 return	Copysign(Pi,	y)

				41	 	 case	x	==	0:

				42	 	 	 return	Copysign(Pi/2,	y)

				43	 	 case	IsInf(x,	0):

				44	 	 	 if	IsInf(x,	1)	{

				45	 	 	 	 switch	{

				46	 	 	 	 case	IsInf(y,	0):

				47	 	 	 	 	 return	Copysign(Pi/4,	y)

				48	 	 	 	 default:

				49	 	 	 	 	 return	Copysign(0,	y)

				50	 	 	 	 }

				51	 	 	 }

				52	 	 	 switch	{

				53	 	 	 case	IsInf(y,	0):

				54	 	 	 	 return	Copysign(3*Pi/4,	y)

				55	 	 	 default:

				56	 	 	 	 return	Copysign(Pi,	y)

				57	 	 	 }

				58	 	 case	IsInf(y,	0):

				59	 	 	 return	Copysign(Pi/2,	y)

				60	 	 }

				61	

				62	 	 //	Call	atan	and	determine	the	quadrant.

				63	 	 q	:=	Atan(y	/	x)

				64	 	 if	x	<	0	{

				65	 	 	 if	q	<=	0	{

				66	 	 	 	 return	q	+	Pi

				67	 	 	 }

				68	 	 	 return	q	-	Pi

				69	 	 }

				70	 	 return	q

				71	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/atanh.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	The	original	C	code,	the	long	comment,	and	the	constants

					8	 //	below	are	from	FreeBSD's	/usr/src/lib/msun/src/e_atanh.c

					9	 //	and	came	with	this	notice.		The	go	code	is	a	simplified

				10	 //	version	of	the	original	C.

				11	 //

				12	 //	==

				13	 //	Copyright	(C)	1993	by	Sun	Microsystems,	Inc.	All	rights	reserved.

				14	 //

				15	 //	Developed	at	SunPro,	a	Sun	Microsystems,	Inc.	business.

				16	 //	Permission	to	use,	copy,	modify,	and	distribute	this

				17	 //	software	is	freely	granted,	provided	that	this	notice

				18	 //	is	preserved.

				19	 //	==

				20	 //

				21	 //

				22	 //	__ieee754_atanh(x)

				23	 //	Method	:

				24	 //	 1.	Reduce	x	to	positive	by	atanh(-x)	=	-atanh(x)

				25	 //	 2.	For	x>=0.5

				26	 //	 												1														2x																										x

				27	 //	 atanh(x)	=	---	*	log(1	+	-------)	=	0.5	*	log1p(2	*	--------)

				28	 //	 												2													1	-	x																						1	-	x

				29	 //

				30	 //	 For	x<0.5

				31	 //	 atanh(x)	=	0.5*log1p(2x+2x*x/(1-x))

				32	 //

				33	 //	Special	cases:

				34	 //	 atanh(x)	is	NaN	if	|x|	>	1	with	signal;

				35	 //	 atanh(NaN)	is	that	NaN	with	no	signal;

				36	 //	 atanh(+-1)	is	+-INF	with	signal.

				37	 //

				38	

				39	 //	Atanh(x)	calculates	the	inverse	hyperbolic	tangent	of	x.

				40	 //

				41	 //	Special	cases	are:

				42	 //	 Atanh(1)	=	+Inf

				43	 //	 Atanh(±0)	=	±0

				44	 //	 Atanh(-1)	=	-Inf

				45	 //	 Atanh(x)	=	NaN	if	x	<	-1	or	x	>	1

				46	 //	 Atanh(NaN)	=	NaN

				47	 func	Atanh(x	float64)	float64	{

				48	 	 const	NearZero	=	1.0	/	(1	<<	28)	//	2**-28

				49	 	 //	special	cases

				50	 	 switch	{

				51	 	 case	x	<	-1	||	x	>	1	||	IsNaN(x):

				52	 	 	 return	NaN()

				53	 	 case	x	==	1:

				54	 	 	 return	Inf(1)

				55	 	 case	x	==	-1:

				56	 	 	 return	Inf(-1)

				57	 	 }

				58	 	 sign	:=	false

				59	 	 if	x	<	0	{

				60	 	 	 x	=	-x

				61	 	 	 sign	=	true

				62	 	 }

				63	 	 var	temp	float64

				64	 	 switch	{

				65	 	 case	x	<	NearZero:

				66	 	 	 temp	=	x

				67	 	 case	x	<	0.5:

				68	 	 	 temp	=	x	+	x

				69	 	 	 temp	=	0.5	*	Log1p(temp+temp*x/(1-x))

				70	 	 default:

				71	 	 	 temp	=	0.5	*	Log1p((x+x)/(1-x))

				72	 	 }

				73	 	 if	sign	{

				74	 	 	 temp	=	-temp

				75	 	 }

				76	 	 return	temp

				77	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/bits.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 const	(

					8	 	 uvnan				=	0x7FF0000000000001

					9	 	 uvinf				=	0x7FF0000000000000

				10	 	 uvneginf	=	0xFFF0000000000000

				11	 	 mask					=	0x7FF

				12	 	 shift				=	64	-	11	-	1

				13	 	 bias					=	1023

				14)

				15	

				16	 //	Inf	returns	positive	infinity	if	sign	>=	0,	negative	infinity	if	sign	<	0.

				17	 func	Inf(sign	int)	float64	{

				18	 	 var	v	uint64

				19	 	 if	sign	>=	0	{

				20	 	 	 v	=	uvinf

				21	 	 }	else	{

				22	 	 	 v	=	uvneginf

				23	 	 }

				24	 	 return	Float64frombits(v)

				25	 }

				26	

				27	 //	NaN	returns	an	IEEE	754	``not-a-number''	value.

				28	 func	NaN()	float64	{	return	Float64frombits(uvnan)	}

				29	

				30	 //	IsNaN	returns	whether	f	is	an	IEEE	754	``not-a-number''	value.

				31	 func	IsNaN(f	float64)	(is	bool)	{

				32	 	 //	IEEE	754	says	that	only	NaNs	satisfy	f	!=	f.

				33	 	 //	To	avoid	the	floating-point	hardware,	could	use:

				34	 	 //	 x	:=	Float64bits(f);

				35	 	 //	 return	uint32(x>>shift)&mask	==	mask	&&	x	!=	uvinf	&&	x	!=	uvneginf

				36	 	 return	f	!=	f

				37	 }

				38	

				39	 //	IsInf	returns	whether	f	is	an	infinity,	according	to	sign.

				40	 //	If	sign	>	0,	IsInf	returns	whether	f	is	positive	infinity.

				41	 //	If	sign	<	0,	IsInf	returns	whether	f	is	negative	infinity.

				42	 //	If	sign	==	0,	IsInf	returns	whether	f	is	either	infinity.

				43	 func	IsInf(f	float64,	sign	int)	bool	{

				44	 	 //	Test	for	infinity	by	comparing	against	maximum	float.

				45	 	 //	To	avoid	the	floating-point	hardware,	could	use:

				46	 	 //	 x	:=	Float64bits(f);

				47	 	 //	 return	sign	>=	0	&&	x	==	uvinf	||	sign	<=	0	&&	x	==	uvneginf;

				48	 	 return	sign	>=	0	&&	f	>	MaxFloat64	||	sign	<=	0	&&	f	<	-MaxFloat64

				49	 }

				50	

				51	 //	normalize	returns	a	normal	number	y	and	exponent	exp

				52	 //	satisfying	x	==	y	×	2**exp.	It	assumes	x	is	finite	and	non-zero.

				53	 func	normalize(x	float64)	(y	float64,	exp	int)	{

				54	 	 const	SmallestNormal	=	2.2250738585072014e-308	//	2**-1022

				55	 	 if	Abs(x)	<	SmallestNormal	{

				56	 	 	 return	x	*	(1	<<	52),	-52

				57	 	 }

				58	 	 return	x,	0

				59	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/cbrt.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 /*

					8	 	 The	algorithm	is	based	in	part	on	"Optimal	Partitioning	of

					9	 	 Newton's	Method	for	Calculating	Roots",	by	Gunter	Meinardus

				10	 	 and	G.	D.	Taylor,	Mathematics	of	Computation	©	1980	American

				11	 	 Mathematical	Society.

				12	 	 (http://www.jstor.org/stable/2006387?seq=9,	accessed	11-Feb-2010)

				13	 */

				14	

				15	 //	Cbrt	returns	the	cube	root	of	its	argument.

				16	 //

				17	 //	Special	cases	are:

				18	 //	 Cbrt(±0)	=	±0

				19	 //	 Cbrt(±Inf)	=	±Inf

				20	 //	 Cbrt(NaN)	=	NaN

				21	 func	Cbrt(x	float64)	float64	{

				22	 	 const	(

				23	 	 	 A1	=	1.662848358e-01

				24	 	 	 A2	=	1.096040958e+00

				25	 	 	 A3	=	4.105032829e-01

				26	 	 	 A4	=	5.649335816e-01

				27	 	 	 B1	=	2.639607233e-01

				28	 	 	 B2	=	8.699282849e-01

				29	 	 	 B3	=	1.629083358e-01

				30	 	 	 B4	=	2.824667908e-01

				31	 	 	 C1	=	4.190115298e-01

				32	 	 	 C2	=	6.904625373e-01

				33	 	 	 C3	=	6.46502159e-02

				34	 	 	 C4	=	1.412333954e-01

				35)

				36	 	 //	special	cases

				37	 	 switch	{

				38	 	 case	x	==	0	||	IsNaN(x)	||	IsInf(x,	0):

				39	 	 	 return	x

				40	 	 }

				41	 	 sign	:=	false

				42	 	 if	x	<	0	{

				43	 	 	 x	=	-x

				44	 	 	 sign	=	true

				45	 	 }

				46	 	 //	Reduce	argument	and	estimate	cube	root

				47	 	 f,	e	:=	Frexp(x)	//	0.5	<=	f	<	1.0

				48	 	 m	:=	e	%	3

				49	 	 if	m	>	0	{

				50	 	 	 m	-=	3

				51	 	 	 e	-=	m	//	e	is	multiple	of	3

				52	 	 }

				53	 	 switch	m	{

				54	 	 case	0:	//	0.5	<=	f	<	1.0

				55	 	 	 f	=	A1*f	+	A2	-	A3/(A4+f)

				56	 	 case	-1:

				57	 	 	 f	*=	0.5	//	0.25	<=	f	<	0.5

				58	 	 	 f	=	B1*f	+	B2	-	B3/(B4+f)

				59	 	 default:	//	m	==	-2

				60	 	 	 f	*=	0.25	//	0.125	<=	f	<	0.25

				61	 	 	 f	=	C1*f	+	C2	-	C3/(C4+f)

				62	 	 }

				63	 	 y	:=	Ldexp(f,	e/3)	//	e/3	=	exponent	of	cube	root

				64	

				65	 	 //	Iterate

				66	 	 s	:=	y	*	y	*	y

				67	 	 t	:=	s	+	x

				68	 	 y	*=	(t	+	x)	/	(s	+	t)

				69	 	 //	Reiterate

				70	 	 s	=	(y*y*y	-	x)	/	x

				71	 	 y	-=	y	*	(((14.0/81.0)*s-(2.0/9.0))*s	+	(1.0	/	3.0))	*	s

				72	 	 if	sign	{

				73	 	 	 y	=	-y

				74	 	 }

				75	 	 return	y

				76	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/const.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	math	provides	basic	constants	and	mathematical	functions.

					6	 package	math

					7	

					8	 //	Mathematical	constants.

					9	 //	Reference:	http://oeis.org/Axxxxxx

				10	 const	(

				11	 	 E			=	2.71828182845904523536028747135266249775724709369995957496696763	

				12	 	 Pi		=	3.14159265358979323846264338327950288419716939937510582097494459	

				13	 	 Phi	=	1.61803398874989484820458683436563811772030917980576286213544862	

				14	

				15	 	 Sqrt2			=	1.41421356237309504880168872420969807856967187537694807317667974	

				16	 	 SqrtE			=	1.64872127070012814684865078781416357165377610071014801157507931	

				17	 	 SqrtPi		=	1.77245385090551602729816748334114518279754945612238712821380779	

				18	 	 SqrtPhi	=	1.27201964951406896425242246173749149171560804184009624861664038	

				19	

				20	 	 Ln2				=	0.693147180559945309417232121458176568075500134360255254120680009	

				21	 	 Log2E		=	1	/	Ln2

				22	 	 Ln10			=	2.30258509299404568401799145468436420760110148862877297603332790	

				23	 	 Log10E	=	1	/	Ln10

				24)

				25	

				26	 //	Floating-point	limit	values.

				27	 //	Max	is	the	largest	finite	value	representable	by	the	type.

				28	 //	SmallestNonzero	is	the	smallest	positive,	non-zero	value	representable	by	the	type.

				29	 const	(

				30	 	 MaxFloat32													=	3.40282346638528859811704183484516925440e+38		

				31	 	 SmallestNonzeroFloat32	=	1.401298464324817070923729583289916131280e-45	

				32	

				33	 	 MaxFloat64													=	1.797693134862315708145274237317043567981e+308	

				34	 	 SmallestNonzeroFloat64	=	4.940656458412465441765687928682213723651e-324	

				35)

				36	

				37	 //	Integer	limit	values.

				38	 const	(

				39	 	 MaxInt8			=	1<<7	-	1

				40	 	 MinInt8			=	-1	<<	7

				41	 	 MaxInt16		=	1<<15	-	1

				42	 	 MinInt16		=	-1	<<	15

				43	 	 MaxInt32		=	1<<31	-	1

				44	 	 MinInt32		=	-1	<<	31

				45	 	 MaxInt64		=	1<<63	-	1

				46	 	 MinInt64		=	-1	<<	63

				47	 	 MaxUint8		=	1<<8	-	1

				48	 	 MaxUint16	=	1<<16	-	1

				49	 	 MaxUint32	=	1<<32	-	1

				50	 	 MaxUint64	=	1<<64	-	1

				51)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/copysign.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	Copysign(x,	y)	returns	a	value	with	the	magnitude

					8	 //	of	x	and	the	sign	of	y.

					9	 func	Copysign(x,	y	float64)	float64	{

				10	 	 const	sign	=	1	<<	63

				11	 	 return	Float64frombits(Float64bits(x)&^sign	|	Float64bits(y)&sign)

				12	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/dim.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	Dim	returns	the	maximum	of	x-y	or	0.

					8	 //

					9	 //	Special	cases	are:

				10	 //	 Dim(+Inf,	+Inf)	=	NaN

				11	 //	 Dim(-Inf,	-Inf)	=	NaN

				12	 //	 Dim(x,	NaN)	=	Dim(NaN,	x)	=	NaN

				13	 func	Dim(x,	y	float64)	float64

				14	

				15	 func	dim(x,	y	float64)	float64	{

				16	 	 return	max(x-y,	0)

				17	 }

				18	

				19	 //	Max	returns	the	larger	of	x	or	y.

				20	 //

				21	 //	Special	cases	are:

				22	 //	 Max(x,	+Inf)	=	Max(+Inf,	x)	=	+Inf

				23	 //	 Max(x,	NaN)	=	Max(NaN,	x)	=	NaN

				24	 //	 Max(+0,	±0)	=	Max(±0,	+0)	=	+0

				25	 //	 Max(-0,	-0)	=	-0

				26	 func	Max(x,	y	float64)	float64

				27	

				28	 func	max(x,	y	float64)	float64	{

				29	 	 //	special	cases

				30	 	 switch	{

				31	 	 case	IsInf(x,	1)	||	IsInf(y,	1):

				32	 	 	 return	Inf(1)

				33	 	 case	IsNaN(x)	||	IsNaN(y):

				34	 	 	 return	NaN()

				35	 	 case	x	==	0	&&	x	==	y:

				36	 	 	 if	Signbit(x)	{

				37	 	 	 	 return	y

				38	 	 	 }

				39	 	 	 return	x

				40	 	 }

				41	 	 if	x	>	y	{

				42	 	 	 return	x

				43	 	 }

				44	 	 return	y

				45	 }

				46	

				47	 //	Min	returns	the	smaller	of	x	or	y.

				48	 //

				49	 //	Special	cases	are:

				50	 //	 Min(x,	-Inf)	=	Min(-Inf,	x)	=	-Inf

				51	 //	 Min(x,	NaN)	=	Min(NaN,	x)	=	NaN

				52	 //	 Min(-0,	±0)	=	Min(±0,	-0)	=	-0

				53	 func	Min(x,	y	float64)	float64

				54	

				55	 func	min(x,	y	float64)	float64	{

				56	 	 //	special	cases

				57	 	 switch	{

				58	 	 case	IsInf(x,	-1)	||	IsInf(y,	-1):

				59	 	 	 return	Inf(-1)

				60	 	 case	IsNaN(x)	||	IsNaN(y):

				61	 	 	 return	NaN()

				62	 	 case	x	==	0	&&	x	==	y:

				63	 	 	 if	Signbit(x)	{

				64	 	 	 	 return	x

				65	 	 	 }

				66	 	 	 return	y

				67	 	 }

				68	 	 if	x	<	y	{

				69	 	 	 return	x

				70	 	 }

				71	 	 return	y

				72	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/erf.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 /*

					8	 	 Floating-point	error	function	and	complementary	error	function.

					9	 */

				10	

				11	 //	The	original	C	code	and	the	long	comment	below	are

				12	 //	from	FreeBSD's	/usr/src/lib/msun/src/s_erf.c	and

				13	 //	came	with	this	notice.		The	go	code	is	a	simplified

				14	 //	version	of	the	original	C.

				15	 //

				16	 //	==

				17	 //	Copyright	(C)	1993	by	Sun	Microsystems,	Inc.	All	rights	reserved.

				18	 //

				19	 //	Developed	at	SunPro,	a	Sun	Microsystems,	Inc.	business.

				20	 //	Permission	to	use,	copy,	modify,	and	distribute	this

				21	 //	software	is	freely	granted,	provided	that	this	notice

				22	 //	is	preserved.

				23	 //	==

				24	 //

				25	 //

				26	 //	double	erf(double	x)

				27	 //	double	erfc(double	x)

				28	 //																											x

				29	 //																				2						|\

				30	 //					erf(x)		=		---------		|	exp(-t*t)dt

				31	 //																	sqrt(pi)	\|

				32	 //																											0

				33	 //

				34	 //					erfc(x)	=		1-erf(x)

				35	 //		Note	that

				36	 //														erf(-x)	=	-erf(x)

				37	 //														erfc(-x)	=	2	-	erfc(x)

				38	 //

				39	 //	Method:

				40	 //						1.	For	|x|	in	[0,	0.84375]

				41	 //										erf(x)		=	x	+	x*R(x**2)

				42	 //										erfc(x)	=	1	-	erf(x)											if	x	in	[-.84375,0.25]

				43	 //																		=	0.5	+	((0.5-x)-x*R)		if	x	in	[0.25,0.84375]

				44	 //									where	R	=	P/Q	where	P	is	an	odd	poly	of	degree	8	and

				45	 //									Q	is	an	odd	poly	of	degree	10.

				46	 //																																															-57.90

				47	 //																						|	R	-	(erf(x)-x)/x	|	<=	2

				48	 //

				49	 //

				50	 //									Remark.	The	formula	is	derived	by	noting

				51	 //										erf(x)	=	(2/sqrt(pi))*(x	-	x**3/3	+	x**5/10	-	x**7/42	+)

				52	 //									and	that

				53	 //										2/sqrt(pi)	=	1.128379167095512573896158903121545171688

				54	 //									is	close	to	one.	The	interval	is	chosen	because	the	fix

				55	 //									point	of	erf(x)	is	near	0.6174	(i.e.,	erf(x)=x	when	x	is

				56	 //									near	0.6174),	and	by	some	experiment,	0.84375	is	chosen	to

				57	 //									guarantee	the	error	is	less	than	one	ulp	for	erf.

				58	 //

				59	 //						2.	For	|x|	in	[0.84375,1.25],	let	s	=	|x|	-	1,	and

				60	 //									c	=	0.84506291151	rounded	to	single	(24	bits)

				61	 //														erf(x)		=	sign(x)	*	(c		+	P1(s)/Q1(s))

				62	 //														erfc(x)	=	(1-c)		-	P1(s)/Q1(s)	if	x	>	0

				63	 //																								1+(c+P1(s)/Q1(s))				if	x	<	0

				64	 //														|P1/Q1	-	(erf(|x|)-c)|	<=	2**-59.06

				65	 //									Remark:	here	we	use	the	taylor	series	expansion	at	x=1.

				66	 //														erf(1+s)	=	erf(1)	+	s*Poly(s)

				67	 //																							=	0.845..	+	P1(s)/Q1(s)

				68	 //									That	is,	we	use	rational	approximation	to	approximate

				69	 //																						erf(1+s)	-	(c	=	(single)0.84506291151)

				70	 //									Note	that	|P1/Q1|<	0.078	for	x	in	[0.84375,1.25]

				71	 //									where

				72	 //														P1(s)	=	degree	6	poly	in	s

				73	 //														Q1(s)	=	degree	6	poly	in	s

				74	 //

				75	 //						3.	For	x	in	[1.25,1/0.35(~2.857143)],

				76	 //														erfc(x)	=	(1/x)*exp(-x*x-0.5625+R1/S1)

				77	 //														erf(x)		=	1	-	erfc(x)

				78	 //									where

				79	 //														R1(z)	=	degree	7	poly	in	z,	(z=1/x**2)

				80	 //														S1(z)	=	degree	8	poly	in	z

				81	 //

				82	 //						4.	For	x	in	[1/0.35,28]

				83	 //														erfc(x)	=	(1/x)*exp(-x*x-0.5625+R2/S2)	if	x	>	0

				84	 //																						=	2.0	-	(1/x)*exp(-x*x-0.5625+R2/S2)	if	-6<x<0

				85	 //																						=	2.0	-	tiny												(if	x	<=	-6)

				86	 //														erf(x)		=	sign(x)*(1.0	-	erfc(x))	if	x	<	6,	else

				87	 //														erf(x)		=	sign(x)*(1.0	-	tiny)

				88	 //									where

				89	 //														R2(z)	=	degree	6	poly	in	z,	(z=1/x**2)

				90	 //														S2(z)	=	degree	7	poly	in	z

				91	 //

				92	 //						Note1:

				93	 //									To	compute	exp(-x*x-0.5625+R/S),	let	s	be	a	single

				94	 //									precision	number	and	s	:=	x;	then

				95	 //														-x*x	=	-s*s	+	(s-x)*(s+x)

				96	 //														exp(-x*x-0.5626+R/S)	=

				97	 //																						exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);

				98	 //						Note2:

				99	 //									Here	4	and	5	make	use	of	the	asymptotic	series

			100	 //																								exp(-x*x)

			101	 //														erfc(x)	~	----------	*	(1	+	Poly(1/x**2))

			102	 //																								x*sqrt(pi)

			103	 //									We	use	rational	approximation	to	approximate

			104	 //														g(s)=f(1/x**2)	=	log(erfc(x)*x)	-	x*x	+	0.5625

			105	 //									Here	is	the	error	bound	for	R1/S1	and	R2/S2

			106	 //														|R1/S1	-	f(x)|		<	2**(-62.57)

			107	 //														|R2/S2	-	f(x)|		<	2**(-61.52)

			108	 //

			109	 //						5.	For	inf	>	x	>=	28

			110	 //														erf(x)		=	sign(x)	*(1	-	tiny)		(raise	inexact)

			111	 //														erfc(x)	=	tiny*tiny	(raise	underflow)	if	x	>	0

			112	 //																						=	2	-	tiny	if	x<0

			113	 //

			114	 //						7.	Special	case:

			115	 //														erf(0)		=	0,	erf(inf)		=	1,	erf(-inf)	=	-1,

			116	 //														erfc(0)	=	1,	erfc(inf)	=	0,	erfc(-inf)	=	2,

			117	 //														erfc/erf(NaN)	is	NaN

			118	

			119	 const	(

			120	 	 erx	=	8.45062911510467529297e-01	//	0x3FEB0AC160000000

			121	 	 //	Coefficients	for	approximation	to		erf	in	[0,	0.84375]

			122	 	 efx		=	1.28379167095512586316e-01		//	0x3FC06EBA8214DB69

			123	 	 efx8	=	1.02703333676410069053e+00		//	0x3FF06EBA8214DB69

			124	 	 pp0		=	1.28379167095512558561e-01		//	0x3FC06EBA8214DB68

			125	 	 pp1		=	-3.25042107247001499370e-01	//	0xBFD4CD7D691CB913

			126	 	 pp2		=	-2.84817495755985104766e-02	//	0xBF9D2A51DBD7194F

			127	 	 pp3		=	-5.77027029648944159157e-03	//	0xBF77A291236668E4

			128	 	 pp4		=	-2.37630166566501626084e-05	//	0xBEF8EAD6120016AC

			129	 	 qq1		=	3.97917223959155352819e-01		//	0x3FD97779CDDADC09

			130	 	 qq2		=	6.50222499887672944485e-02		//	0x3FB0A54C5536CEBA

			131	 	 qq3		=	5.08130628187576562776e-03		//	0x3F74D022C4D36B0F

			132	 	 qq4		=	1.32494738004321644526e-04		//	0x3F215DC9221C1A10

			133	 	 qq5		=	-3.96022827877536812320e-06	//	0xBED09C4342A26120

			134	 	 //	Coefficients	for	approximation	to		erf		in	[0.84375,	1.25]

			135	 	 pa0	=	-2.36211856075265944077e-03	//	0xBF6359B8BEF77538

			136	 	 pa1	=	4.14856118683748331666e-01		//	0x3FDA8D00AD92B34D

			137	 	 pa2	=	-3.72207876035701323847e-01	//	0xBFD7D240FBB8C3F1

			138	 	 pa3	=	3.18346619901161753674e-01		//	0x3FD45FCA805120E4

			139	 	 pa4	=	-1.10894694282396677476e-01	//	0xBFBC63983D3E28EC

			140	 	 pa5	=	3.54783043256182359371e-02		//	0x3FA22A36599795EB

			141	 	 pa6	=	-2.16637559486879084300e-03	//	0xBF61BF380A96073F

			142	 	 qa1	=	1.06420880400844228286e-01		//	0x3FBB3E6618EEE323

			143	 	 qa2	=	5.40397917702171048937e-01		//	0x3FE14AF092EB6F33

			144	 	 qa3	=	7.18286544141962662868e-02		//	0x3FB2635CD99FE9A7

			145	 	 qa4	=	1.26171219808761642112e-01		//	0x3FC02660E763351F

			146	 	 qa5	=	1.36370839120290507362e-02		//	0x3F8BEDC26B51DD1C

			147	 	 qa6	=	1.19844998467991074170e-02		//	0x3F888B545735151D

			148	 	 //	Coefficients	for	approximation	to		erfc	in	[1.25,	1/0.35]

			149	 	 ra0	=	-9.86494403484714822705e-03	//	0xBF843412600D6435

			150	 	 ra1	=	-6.93858572707181764372e-01	//	0xBFE63416E4BA7360

			151	 	 ra2	=	-1.05586262253232909814e+01	//	0xC0251E0441B0E726

			152	 	 ra3	=	-6.23753324503260060396e+01	//	0xC04F300AE4CBA38D

			153	 	 ra4	=	-1.62396669462573470355e+02	//	0xC0644CB184282266

			154	 	 ra5	=	-1.84605092906711035994e+02	//	0xC067135CEBCCABB2

			155	 	 ra6	=	-8.12874355063065934246e+01	//	0xC054526557E4D2F2

			156	 	 ra7	=	-9.81432934416914548592e+00	//	0xC023A0EFC69AC25C

			157	 	 sa1	=	1.96512716674392571292e+01		//	0x4033A6B9BD707687

			158	 	 sa2	=	1.37657754143519042600e+02		//	0x4061350C526AE721

			159	 	 sa3	=	4.34565877475229228821e+02		//	0x407B290DD58A1A71

			160	 	 sa4	=	6.45387271733267880336e+02		//	0x40842B1921EC2868

			161	 	 sa5	=	4.29008140027567833386e+02		//	0x407AD02157700314

			162	 	 sa6	=	1.08635005541779435134e+02		//	0x405B28A3EE48AE2C

			163	 	 sa7	=	6.57024977031928170135e+00		//	0x401A47EF8E484A93

			164	 	 sa8	=	-6.04244152148580987438e-02	//	0xBFAEEFF2EE749A62

			165	 	 //	Coefficients	for	approximation	to		erfc	in	[1/.35,	28]

			166	 	 rb0	=	-9.86494292470009928597e-03	//	0xBF84341239E86F4A

			167	 	 rb1	=	-7.99283237680523006574e-01	//	0xBFE993BA70C285DE

			168	 	 rb2	=	-1.77579549177547519889e+01	//	0xC031C209555F995A

			169	 	 rb3	=	-1.60636384855821916062e+02	//	0xC064145D43C5ED98

			170	 	 rb4	=	-6.37566443368389627722e+02	//	0xC083EC881375F228

			171	 	 rb5	=	-1.02509513161107724954e+03	//	0xC09004616A2E5992

			172	 	 rb6	=	-4.83519191608651397019e+02	//	0xC07E384E9BDC383F

			173	 	 sb1	=	3.03380607434824582924e+01		//	0x403E568B261D5190

			174	 	 sb2	=	3.25792512996573918826e+02		//	0x40745CAE221B9F0A

			175	 	 sb3	=	1.53672958608443695994e+03		//	0x409802EB189D5118

			176	 	 sb4	=	3.19985821950859553908e+03		//	0x40A8FFB7688C246A

			177	 	 sb5	=	2.55305040643316442583e+03		//	0x40A3F219CEDF3BE6

			178	 	 sb6	=	4.74528541206955367215e+02		//	0x407DA874E79FE763

			179	 	 sb7	=	-2.24409524465858183362e+01	//	0xC03670E242712D62

			180)

			181	

			182	 //	Erf(x)	returns	the	error	function	of	x.

			183	 //

			184	 //	Special	cases	are:

			185	 //	 Erf(+Inf)	=	1

			186	 //	 Erf(-Inf)	=	-1

			187	 //	 Erf(NaN)	=	NaN

			188	 func	Erf(x	float64)	float64	{

			189	 	 const	(

			190	 	 	 VeryTiny	=	2.848094538889218e-306	//	0x0080000000000000

			191	 	 	 Small				=	1.0	/	(1	<<	28)								//	2**-28

			192)

			193	 	 //	special	cases

			194	 	 switch	{

			195	 	 case	IsNaN(x):

			196	 	 	 return	NaN()

			197	 	 case	IsInf(x,	1):

			198	 	 	 return	1

			199	 	 case	IsInf(x,	-1):

			200	 	 	 return	-1

			201	 	 }

			202	 	 sign	:=	false

			203	 	 if	x	<	0	{

			204	 	 	 x	=	-x

			205	 	 	 sign	=	true

			206	 	 }

			207	 	 if	x	<	0.84375	{	//	|x|	<	0.84375

			208	 	 	 var	temp	float64

			209	 	 	 if	x	<	Small	{	//	|x|	<	2**-28

			210	 	 	 	 if	x	<	VeryTiny	{

			211	 	 	 	 	 temp	=	0.125	*	(8.0*x	+	efx8*x)	

			212	 	 	 	 }	else	{

			213	 	 	 	 	 temp	=	x	+	efx*x

			214	 	 	 	 }

			215	 	 	 }	else	{

			216	 	 	 	 z	:=	x	*	x

			217	 	 	 	 r	:=	pp0	+	z*(pp1+z*(pp2+z*(pp3+z*pp4)))

			218	 	 	 	 s	:=	1	+	z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))

			219	 	 	 	 y	:=	r	/	s

			220	 	 	 	 temp	=	x	+	x*y

			221	 	 	 }

			222	 	 	 if	sign	{

			223	 	 	 	 return	-temp

			224	 	 	 }

			225	 	 	 return	temp

			226	 	 }

			227	 	 if	x	<	1.25	{	//	0.84375	<=	|x|	<	1.25

			228	 	 	 s	:=	x	-	1

			229	 	 	 P	:=	pa0	+	s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))

			230	 	 	 Q	:=	1	+	s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))

			231	 	 	 if	sign	{

			232	 	 	 	 return	-erx	-	P/Q

			233	 	 	 }

			234	 	 	 return	erx	+	P/Q

			235	 	 }

			236	 	 if	x	>=	6	{	//	inf	>	|x|	>=	6

			237	 	 	 if	sign	{

			238	 	 	 	 return	-1

			239	 	 	 }

			240	 	 	 return	1

			241	 	 }

			242	 	 s	:=	1	/	(x	*	x)

			243	 	 var	R,	S	float64

			244	 	 if	x	<	1/0.35	{	//	|x|	<	1	/	0.35		~	2.857143

			245	 	 	 R	=	ra0	+	s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))

			246	 	 	 S	=	1	+	s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))

			247	 	 }	else	{	//	|x|	>=	1	/	0.35		~	2.857143

			248	 	 	 R	=	rb0	+	s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))

			249	 	 	 S	=	1	+	s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))

			250	 	 }

			251	 	 z	:=	Float64frombits(Float64bits(x)	&	0xffffffff00000000)	

			252	 	 r	:=	Exp(-z*z-0.5625)	*	Exp((z-x)*(z+x)+R/S)

			253	 	 if	sign	{

			254	 	 	 return	r/x	-	1

			255	 	 }

			256	 	 return	1	-	r/x

			257	 }

			258	

			259	 //	Erfc(x)	returns	the	complementary	error	function	of	x.

			260	 //

			261	 //	Special	cases	are:

			262	 //	 Erfc(+Inf)	=	0

			263	 //	 Erfc(-Inf)	=	2

			264	 //	 Erfc(NaN)	=	NaN

			265	 func	Erfc(x	float64)	float64	{

			266	 	 const	Tiny	=	1.0	/	(1	<<	56)	//	2**-56

			267	 	 //	special	cases

			268	 	 switch	{

			269	 	 case	IsNaN(x):

			270	 	 	 return	NaN()

			271	 	 case	IsInf(x,	1):

			272	 	 	 return	0

			273	 	 case	IsInf(x,	-1):

			274	 	 	 return	2

			275	 	 }

			276	 	 sign	:=	false

			277	 	 if	x	<	0	{

			278	 	 	 x	=	-x

			279	 	 	 sign	=	true

			280	 	 }

			281	 	 if	x	<	0.84375	{	//	|x|	<	0.84375

			282	 	 	 var	temp	float64

			283	 	 	 if	x	<	Tiny	{	//	|x|	<	2**-56

			284	 	 	 	 temp	=	x

			285	 	 	 }	else	{

			286	 	 	 	 z	:=	x	*	x

			287	 	 	 	 r	:=	pp0	+	z*(pp1+z*(pp2+z*(pp3+z*pp4)))

			288	 	 	 	 s	:=	1	+	z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))

			289	 	 	 	 y	:=	r	/	s

			290	 	 	 	 if	x	<	0.25	{	//	|x|	<	1/4

			291	 	 	 	 	 temp	=	x	+	x*y

			292	 	 	 	 }	else	{

			293	 	 	 	 	 temp	=	0.5	+	(x*y	+	(x	-	0.5))

			294	 	 	 	 }

			295	 	 	 }

			296	 	 	 if	sign	{

			297	 	 	 	 return	1	+	temp

			298	 	 	 }

			299	 	 	 return	1	-	temp

			300	 	 }

			301	 	 if	x	<	1.25	{	//	0.84375	<=	|x|	<	1.25

			302	 	 	 s	:=	x	-	1

			303	 	 	 P	:=	pa0	+	s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))

			304	 	 	 Q	:=	1	+	s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))

			305	 	 	 if	sign	{

			306	 	 	 	 return	1	+	erx	+	P/Q

			307	 	 	 }

			308	 	 	 return	1	-	erx	-	P/Q

			309	

			310	 	 }

			311	 	 if	x	<	28	{	//	|x|	<	28

			312	 	 	 s	:=	1	/	(x	*	x)

			313	 	 	 var	R,	S	float64

			314	 	 	 if	x	<	1/0.35	{	//	|x|	<	1	/	0.35	~	2.857143

			315	 	 	 	 R	=	ra0	+	s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))

			316	 	 	 	 S	=	1	+	s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))

			317	 	 	 }	else	{	//	|x|	>=	1	/	0.35	~	2.857143

			318	 	 	 	 if	sign	&&	x	>	6	{

			319	 	 	 	 	 return	2	//	x	<	-6

			320	 	 	 	 }

			321	 	 	 	 R	=	rb0	+	s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))

			322	 	 	 	 S	=	1	+	s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))

			323	 	 	 }

			324	 	 	 z	:=	Float64frombits(Float64bits(x)	&	0xffffffff00000000)	

			325	 	 	 r	:=	Exp(-z*z-0.5625)	*	Exp((z-x)*(z+x)+R/S)

			326	 	 	 if	sign	{

			327	 	 	 	 return	2	-	r/x

			328	 	 	 }

			329	 	 	 return	r	/	x

			330	 	 }

			331	 	 if	sign	{

			332	 	 	 return	2

			333	 	 }

			334	 	 return	0

			335	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.

http://code.google.com/policies.html#restrictions

Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/exp.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	Exp	returns	e**x,	the	base-e	exponential	of	x.

					8	 //

					9	 //	Special	cases	are:

				10	 //	 Exp(+Inf)	=	+Inf

				11	 //	 Exp(NaN)	=	NaN

				12	 //	Very	large	values	overflow	to	0	or	+Inf.

				13	 //	Very	small	values	underflow	to	1.

				14	 func	Exp(x	float64)	float64

				15	

				16	 //	The	original	C	code,	the	long	comment,	and	the	constants

				17	 //	below	are	from	FreeBSD's	/usr/src/lib/msun/src/e_exp.c

				18	 //	and	came	with	this	notice.		The	go	code	is	a	simplified

				19	 //	version	of	the	original	C.

				20	 //

				21	 //	==

				22	 //	Copyright	(C)	2004	by	Sun	Microsystems,	Inc.	All	rights	reserved.

				23	 //

				24	 //	Permission	to	use,	copy,	modify,	and	distribute	this

				25	 //	software	is	freely	granted,	provided	that	this	notice

				26	 //	is	preserved.

				27	 //	==

				28	 //

				29	 //

				30	 //	exp(x)

				31	 //	Returns	the	exponential	of	x.

				32	 //

				33	 //	Method

				34	 //			1.	Argument	reduction:

				35	 //						Reduce	x	to	an	r	so	that	|r|	<=	0.5*ln2	~	0.34658.

				36	 //						Given	x,	find	r	and	integer	k	such	that

				37	 //

				38	 //															x	=	k*ln2	+	r,		|r|	<=	0.5*ln2.

				39	 //

				40	 //						Here	r	will	be	represented	as	r	=	hi-lo	for	better

				41	 //						accuracy.

				42	 //

				43	 //			2.	Approximation	of	exp(r)	by	a	special	rational	function	on

				44	 //						the	interval	[0,0.34658]:

				45	 //						Write

				46	 //										R(r**2)	=	r*(exp(r)+1)/(exp(r)-1)	=	2	+	r*r/6	-	r**4/360	+	...

				47	 //						We	use	a	special	Remes	algorithm	on	[0,0.34658]	to	generate

				48	 //						a	polynomial	of	degree	5	to	approximate	R.	The	maximum	error

				49	 //						of	this	polynomial	approximation	is	bounded	by	2**-59.	In

				50	 //						other	words,

				51	 //										R(z)	~	2.0	+	P1*z	+	P2*z**2	+	P3*z**3	+	P4*z**4	+	P5*z**5

				52	 //						(where	z=r*r,	and	the	values	of	P1	to	P5	are	listed	below)

				53	 //						and

				54	 //										|																		5										|					-59

				55	 //										|	2.0+P1*z+...+P5*z			-		R(z)	|	<=	2

				56	 //										|																													|

				57	 //						The	computation	of	exp(r)	thus	becomes

				58	 //																													2*r

				59	 //														exp(r)	=	1	+	-------

				60	 //																												R	-	r

				61	 //																																	r*R1(r)

				62	 //																					=	1	+	r	+	-----------	(for	better	accuracy)

				63	 //																																2	-	R1(r)

				64	 //						where

				65	 //																															2							4													10

				66	 //														R1(r)	=	r	-	(P1*r		+	P2*r		+	...	+	P5*r).

				67	 //

				68	 //			3.	Scale	back	to	obtain	exp(x):

				69	 //						From	step	1,	we	have

				70	 //									exp(x)	=	2**k	*	exp(r)

				71	 //

				72	 //	Special	cases:

				73	 //						exp(INF)	is	INF,	exp(NaN)	is	NaN;

				74	 //						exp(-INF)	is	0,	and

				75	 //						for	finite	argument,	only	exp(0)=1	is	exact.

				76	 //

				77	 //	Accuracy:

				78	 //						according	to	an	error	analysis,	the	error	is	always	less	than

				79	 //						1	ulp	(unit	in	the	last	place).

				80	 //

				81	 //	Misc.	info.

				82	 //						For	IEEE	double

				83	 //										if	x	>		7.09782712893383973096e+02	then	exp(x)	overflow

				84	 //										if	x	<	-7.45133219101941108420e+02	then	exp(x)	underflow

				85	 //

				86	 //	Constants:

				87	 //	The	hexadecimal	values	are	the	intended	ones	for	the	following

				88	 //	constants.	The	decimal	values	may	be	used,	provided	that	the

				89	 //	compiler	will	convert	from	decimal	to	binary	accurately	enough

				90	 //	to	produce	the	hexadecimal	values	shown.

				91	

				92	 func	exp(x	float64)	float64	{

				93	 	 const	(

				94	 	 	 Ln2Hi	=	6.93147180369123816490e-01

				95	 	 	 Ln2Lo	=	1.90821492927058770002e-10

				96	 	 	 Log2e	=	1.44269504088896338700e+00

				97	

				98	 	 	 Overflow		=	7.09782712893383973096e+02

				99	 	 	 Underflow	=	-7.45133219101941108420e+02

			100	 	 	 NearZero		=	1.0	/	(1	<<	28)	//	2**-28

			101)

			102	

			103	 	 //	special	cases

			104	 	 switch	{

			105	 	 case	IsNaN(x)	||	IsInf(x,	1):

			106	 	 	 return	x

			107	 	 case	IsInf(x,	-1):

			108	 	 	 return	0

			109	 	 case	x	>	Overflow:

			110	 	 	 return	Inf(1)

			111	 	 case	x	<	Underflow:

			112	 	 	 return	0

			113	 	 case	-NearZero	<	x	&&	x	<	NearZero:

			114	 	 	 return	1	+	x

			115	 	 }

			116	

			117	 	 //	reduce;	computed	as	r	=	hi	-	lo	for	extra	precision.

			118	 	 var	k	int

			119	 	 switch	{

			120	 	 case	x	<	0:

			121	 	 	 k	=	int(Log2e*x	-	0.5)

			122	 	 case	x	>	0:

			123	 	 	 k	=	int(Log2e*x	+	0.5)

			124	 	 }

			125	 	 hi	:=	x	-	float64(k)*Ln2Hi

			126	 	 lo	:=	float64(k)	*	Ln2Lo

			127	

			128	 	 //	compute

			129	 	 return	expmulti(hi,	lo,	k)

			130	 }

			131	

			132	 //	Exp2	returns	2**x,	the	base-2	exponential	of	x.

			133	 //

			134	 //	Special	cases	are	the	same	as	Exp.

			135	 func	Exp2(x	float64)	float64

			136	

			137	 func	exp2(x	float64)	float64	{

			138	 	 const	(

			139	 	 	 Ln2Hi	=	6.93147180369123816490e-01

			140	 	 	 Ln2Lo	=	1.90821492927058770002e-10

			141	

			142	 	 	 Overflow		=	1.0239999999999999e+03

			143	 	 	 Underflow	=	-1.0740e+03

			144)

			145	

			146	 	 //	special	cases

			147	 	 switch	{

			148	 	 case	IsNaN(x)	||	IsInf(x,	1):

			149	 	 	 return	x

			150	 	 case	IsInf(x,	-1):

			151	 	 	 return	0

			152	 	 case	x	>	Overflow:

			153	 	 	 return	Inf(1)

			154	 	 case	x	<	Underflow:

			155	 	 	 return	0

			156	 	 }

			157	

			158	 	 //	argument	reduction;	x	=	r×lg(e)	+	k	with	|r|	≤	ln(2)/2.

			159	 	 //	computed	as	r	=	hi	-	lo	for	extra	precision.

			160	 	 var	k	int

			161	 	 switch	{

			162	 	 case	x	>	0:

			163	 	 	 k	=	int(x	+	0.5)

			164	 	 case	x	<	0:

			165	 	 	 k	=	int(x	-	0.5)

			166	 	 }

			167	 	 t	:=	x	-	float64(k)

			168	 	 hi	:=	t	*	Ln2Hi

			169	 	 lo	:=	-t	*	Ln2Lo

			170	

			171	 	 //	compute

			172	 	 return	expmulti(hi,	lo,	k)

			173	 }

			174	

			175	 //	exp1	returns	e**r	×	2**k	where	r	=	hi	-	lo	and	|r|	≤	ln(2)/2.

			176	 func	expmulti(hi,	lo	float64,	k	int)	float64	{

			177	 	 const	(

			178	 	 	 P1	=	1.66666666666666019037e-01		/*	0x3FC55555;	0x5555553E	*/

			179	 	 	 P2	=	-2.77777777770155933842e-03	/*	0xBF66C16C;	0x16BEBD93	*/

			180	 	 	 P3	=	6.61375632143793436117e-05		/*	0x3F11566A;	0xAF25DE2C	*/

			181	 	 	 P4	=	-1.65339022054652515390e-06	/*	0xBEBBBD41;	0xC5D26BF1	*/

			182	 	 	 P5	=	4.13813679705723846039e-08		/*	0x3E663769;	0x72BEA4D0	*/

			183)

			184	

			185	 	 r	:=	hi	-	lo

			186	 	 t	:=	r	*	r

			187	 	 c	:=	r	-	t*(P1+t*(P2+t*(P3+t*(P4+t*P5))))

			188	 	 y	:=	1	-	((lo	-	(r*c)/(2-c))	-	hi)

			189	 	 //	TODO(rsc):	make	sure	Ldexp	can	handle	boundary	k

			190	 	 return	Ldexp(y,	k)

			191	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/expm1.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	The	original	C	code,	the	long	comment,	and	the	constants

					8	 //	below	are	from	FreeBSD's	/usr/src/lib/msun/src/s_expm1.c

					9	 //	and	came	with	this	notice.		The	go	code	is	a	simplified

				10	 //	version	of	the	original	C.

				11	 //

				12	 //	==

				13	 //	Copyright	(C)	1993	by	Sun	Microsystems,	Inc.	All	rights	reserved.

				14	 //

				15	 //	Developed	at	SunPro,	a	Sun	Microsystems,	Inc.	business.

				16	 //	Permission	to	use,	copy,	modify,	and	distribute	this

				17	 //	software	is	freely	granted,	provided	that	this	notice

				18	 //	is	preserved.

				19	 //	==

				20	 //

				21	 //	expm1(x)

				22	 //	Returns	exp(x)-1,	the	exponential	of	x	minus	1.

				23	 //

				24	 //	Method

				25	 //			1.	Argument	reduction:

				26	 //						Given	x,	find	r	and	integer	k	such	that

				27	 //

				28	 //															x	=	k*ln2	+	r,		|r|	<=	0.5*ln2	~	0.34658

				29	 //

				30	 //						Here	a	correction	term	c	will	be	computed	to	compensate

				31	 //						the	error	in	r	when	rounded	to	a	floating-point	number.

				32	 //

				33	 //			2.	Approximating	expm1(r)	by	a	special	rational	function	on

				34	 //						the	interval	[0,0.34658]:

				35	 //						Since

				36	 //										r*(exp(r)+1)/(exp(r)-1)	=	2+	r**2/6	-	r**4/360	+	...

				37	 //						we	define	R1(r*r)	by

				38	 //										r*(exp(r)+1)/(exp(r)-1)	=	2+	r**2/6	*	R1(r*r)

				39	 //						That	is,

				40	 //										R1(r**2)	=	6/r	*((exp(r)+1)/(exp(r)-1)	-	2/r)

				41	 //																			=	6/r	*	(1	+	2.0*(1/(exp(r)-1)	-	1/r))

				42	 //																			=	1	-	r**2/60	+	r**4/2520	-	r**6/100800	+	...

				43	 //						We	use	a	special	Reme	algorithm	on	[0,0.347]	to	generate

				44	 //						a	polynomial	of	degree	5	in	r*r	to	approximate	R1.	The

				45	 //						maximum	error	of	this	polynomial	approximation	is	bounded

				46	 //						by	2**-61.	In	other	words,

				47	 //										R1(z)	~	1.0	+	Q1*z	+	Q2*z**2	+	Q3*z**3	+	Q4*z**4	+	Q5*z**5

				48	 //						where			Q1		=		-1.6666666666666567384E-2,

				49	 //														Q2		=			3.9682539681370365873E-4,

				50	 //														Q3		=		-9.9206344733435987357E-6,

				51	 //														Q4		=			2.5051361420808517002E-7,

				52	 //														Q5		=		-6.2843505682382617102E-9;

				53	 //						(where	z=r*r,	and	the	values	of	Q1	to	Q5	are	listed	below)

				54	 //						with	error	bounded	by

				55	 //										|																		5											|					-61

				56	 //										|	1.0+Q1*z+...+Q5*z			-		R1(z)	|	<=	2

				57	 //										|																														|

				58	 //

				59	 //						expm1(r)	=	exp(r)-1	is	then	computed	by	the	following

				60	 //						specific	way	which	minimize	the	accumulation	rounding	error:

				61	 //																													2					3

				62	 //																												r					r				[3	-	(R1	+	R1*r/2)]

				63	 //												expm1(r)	=	r	+	---	+	---	*	[--------------------]

				64	 //																												2					2				[6	-	r*(3	-	R1*r/2)]

				65	 //

				66	 //						To	compensate	the	error	in	the	argument	reduction,	we	use

				67	 //														expm1(r+c)	=	expm1(r)	+	c	+	expm1(r)*c

				68	 //																									~	expm1(r)	+	c	+	r*c

				69	 //						Thus	c+r*c	will	be	added	in	as	the	correction	terms	for

				70	 //						expm1(r+c).	Now	rearrange	the	term	to	avoid	optimization

				71	 //						screw	up:

				72	 //																						(2																																				2)

				73	 //																						({		(r				[R1	-		(3	-	R1*r/2)])		}				r)

				74	 //							expm1(r+c)~r	-	({r*(---	*	[--------------------]-c)-c}	-	---)

				75	 //																						({		(2				[6	-	r*(3	-	R1*r/2)])		}				2)

				76	 //																						()

				77	 //

				78	 //																	=	r	-	E

				79	 //			3.	Scale	back	to	obtain	expm1(x):

				80	 //						From	step	1,	we	have

				81	 //									expm1(x)	=	either	2**k*[expm1(r)+1]	-	1

				82	 //																		=	or					2**k*[expm1(r)	+	(1-2**-k)]

				83	 //			4.	Implementation	notes:

				84	 //						(A).	To	save	one	multiplication,	we	scale	the	coefficient	Qi

				85	 //											to	Qi*2**i,	and	replace	z	by	(x**2)/2.

				86	 //						(B).	To	achieve	maximum	accuracy,	we	compute	expm1(x)	by

				87	 //								(i)			if	x	<	-56*ln2,	return	-1.0,	(raise	inexact	if	x!=inf)

				88	 //								(ii)		if	k=0,	return	r-E

				89	 //								(iii)	if	k=-1,	return	0.5*(r-E)-0.5

				90	 //								(iv)		if	k=1	if	r	<	-0.25,	return	2*((r+0.5)-	E)

				91	 //																					else										return		1.0+2.0*(r-E);

				92	 //								(v)			if	(k<-2||k>56)	return	2**k(1-(E-r))	-	1	(or	exp(x)-1)

				93	 //								(vi)		if	k	<=	20,	return	2**k((1-2**-k)-(E-r)),	else

				94	 //								(vii)	return	2**k(1-((E+2**-k)-r))

				95	 //

				96	 //	Special	cases:

				97	 //						expm1(INF)	is	INF,	expm1(NaN)	is	NaN;

				98	 //						expm1(-INF)	is	-1,	and

				99	 //						for	finite	argument,	only	expm1(0)=0	is	exact.

			100	 //

			101	 //	Accuracy:

			102	 //						according	to	an	error	analysis,	the	error	is	always	less	than

			103	 //						1	ulp	(unit	in	the	last	place).

			104	 //

			105	 //	Misc.	info.

			106	 //						For	IEEE	double

			107	 //										if	x	>		7.09782712893383973096e+02	then	expm1(x)	overflow

			108	 //

			109	 //	Constants:

			110	 //	The	hexadecimal	values	are	the	intended	ones	for	the	following

			111	 //	constants.	The	decimal	values	may	be	used,	provided	that	the

			112	 //	compiler	will	convert	from	decimal	to	binary	accurately	enough

			113	 //	to	produce	the	hexadecimal	values	shown.

			114	 //

			115	

			116	 //	Expm1	returns	e**x	-	1,	the	base-e	exponential	of	x	minus	1.

			117	 //	It	is	more	accurate	than	Exp(x)	-	1	when	x	is	near	zero.

			118	 //

			119	 //	Special	cases	are:

			120	 //	 Expm1(+Inf)	=	+Inf

			121	 //	 Expm1(-Inf)	=	-1

			122	 //	 Expm1(NaN)	=	NaN

			123	 //	Very	large	values	overflow	to	-1	or	+Inf.

			124	 func	Expm1(x	float64)	float64

			125	

			126	 func	expm1(x	float64)	float64	{

			127	 	 const	(

			128	 	 	 Othreshold	=	7.09782712893383973096e+02	//	0x40862E42FEFA39EF

			129	 	 	 Ln2X56					=	3.88162421113569373274e+01	//	0x4043687a9f1af2b1

			130	 	 	 Ln2HalfX3		=	1.03972077083991796413e+00	//	0x3ff0a2b23f3bab73

			131	 	 	 Ln2Half				=	3.46573590279972654709e-01	//	0x3fd62e42fefa39ef

			132	 	 	 Ln2Hi						=	6.93147180369123816490e-01	//	0x3fe62e42fee00000

			133	 	 	 Ln2Lo						=	1.90821492927058770002e-10	//	0x3dea39ef35793c76

			134	 	 	 InvLn2					=	1.44269504088896338700e+00	//	0x3ff71547652b82fe

			135	 	 	 Tiny							=	1.0	/	(1	<<	54)												//	2**-54	=	0x3c90000000000000

			136	 	 	 //	scaled	coefficients	related	to	expm1

			137	 	 	 Q1	=	-3.33333333333331316428e-02	//	0xBFA11111111110F4

			138	 	 	 Q2	=	1.58730158725481460165e-03		//	0x3F5A01A019FE5585

			139	 	 	 Q3	=	-7.93650757867487942473e-05	//	0xBF14CE199EAADBB7

			140	 	 	 Q4	=	4.00821782732936239552e-06		//	0x3ED0CFCA86E65239

			141	 	 	 Q5	=	-2.01099218183624371326e-07	//	0xBE8AFDB76E09C32D

			142)

			143	

			144	 	 //	special	cases

			145	 	 switch	{

			146	 	 case	IsInf(x,	1)	||	IsNaN(x):

			147	 	 	 return	x

			148	 	 case	IsInf(x,	-1):

			149	 	 	 return	-1

			150	 	 }

			151	

			152	 	 absx	:=	x

			153	 	 sign	:=	false

			154	 	 if	x	<	0	{

			155	 	 	 absx	=	-absx

			156	 	 	 sign	=	true

			157	 	 }

			158	

			159	 	 //	filter	out	huge	argument

			160	 	 if	absx	>=	Ln2X56	{	//	if	|x|	>=	56	*	ln2

			161	 	 	 if	absx	>=	Othreshold	{	//	if	|x|	>=	709.78...

			162	 	 	 	 return	Inf(1)	//	overflow

			163	 	 	 }

			164	 	 	 if	sign	{

			165	 	 	 	 return	-1	//	x	<	-56*ln2,	return	-1.0

			166	 	 	 }

			167	 	 }

			168	

			169	 	 //	argument	reduction

			170	 	 var	c	float64

			171	 	 var	k	int

			172	 	 if	absx	>	Ln2Half	{	//	if		|x|	>	0.5	*	ln2

			173	 	 	 var	hi,	lo	float64

			174	 	 	 if	absx	<	Ln2HalfX3	{	//	and	|x|	<	1.5	*	ln2

			175	 	 	 	 if	!sign	{

			176	 	 	 	 	 hi	=	x	-	Ln2Hi

			177	 	 	 	 	 lo	=	Ln2Lo

			178	 	 	 	 	 k	=	1

			179	 	 	 	 }	else	{

			180	 	 	 	 	 hi	=	x	+	Ln2Hi

			181	 	 	 	 	 lo	=	-Ln2Lo

			182	 	 	 	 	 k	=	-1

			183	 	 	 	 }

			184	 	 	 }	else	{

			185	 	 	 	 if	!sign	{

			186	 	 	 	 	 k	=	int(InvLn2*x	+	0.5)

			187	 	 	 	 }	else	{

			188	 	 	 	 	 k	=	int(InvLn2*x	-	0.5)

			189	 	 	 	 }

			190	 	 	 	 t	:=	float64(k)

			191	 	 	 	 hi	=	x	-	t*Ln2Hi	//	t	*	Ln2Hi	is	exact	here

			192	 	 	 	 lo	=	t	*	Ln2Lo

			193	 	 	 }

			194	 	 	 x	=	hi	-	lo

			195	 	 	 c	=	(hi	-	x)	-	lo

			196	 	 }	else	if	absx	<	Tiny	{	//	when	|x|	<	2**-54,	return	x

			197	 	 	 return	x

			198	 	 }	else	{

			199	 	 	 k	=	0

			200	 	 }

			201	

			202	 	 //	x	is	now	in	primary	range

			203	 	 hfx	:=	0.5	*	x

			204	 	 hxs	:=	x	*	hfx

			205	 	 r1	:=	1	+	hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))))

			206	 	 t	:=	3	-	r1*hfx

			207	 	 e	:=	hxs	*	((r1	-	t)	/	(6.0	-	x*t))

			208	 	 if	k	!=	0	{

			209	 	 	 e	=	(x*(e-c)	-	c)

			210	 	 	 e	-=	hxs

			211	 	 	 switch	{

			212	 	 	 case	k	==	-1:

			213	 	 	 	 return	0.5*(x-e)	-	0.5

			214	 	 	 case	k	==	1:

			215	 	 	 	 if	x	<	-0.25	{

			216	 	 	 	 	 return	-2	*	(e	-	(x	+	0.5))

			217	 	 	 	 }

			218	 	 	 	 return	1	+	2*(x-e)

			219	 	 	 case	k	<=	-2	||	k	>	56:	//	suffice	to	return	exp(x)-1

			220	 	 	 	 y	:=	1	-	(e	-	x)

			221	 	 	 	 y	=	Float64frombits(Float64bits(y)	+	uint64(k)<<52)	

			222	 	 	 	 return	y	-	1

			223	 	 	 }

			224	 	 	 if	k	<	20	{

			225	 	 	 	 t	:=	Float64frombits(0x3ff0000000000000	-	(0x20000000000000	>>	uint(k)))	

			226	 	 	 	 y	:=	t	-	(e	-	x)

			227	 	 	 	 y	=	Float64frombits(Float64bits(y)	+	uint64(k)<<52)	

			228	 	 	 	 return	y

			229	 	 	 }

			230	 	 	 t	:=	Float64frombits(uint64((0x3ff	-	k)	<<	52))	

			231	 	 	 y	:=	x	-	(e	+	t)

			232	 	 	 y	+=	1

			233	 	 	 y	=	Float64frombits(Float64bits(y)	+	uint64(k)<<52)	

			234	 	 	 return	y

			235	 	 }

			236	 	 return	x	-	(x*e	-	hxs)	//	c	is	0

			237	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.

http://code.google.com/policies.html#restrictions

Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/floor.go
					1	 //	Copyright	2009-2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	Floor	returns	the	greatest	integer	value	less	than	or	equal	to	x.

					8	 //

					9	 //	Special	cases	are:

				10	 //	 Floor(±0)	=	±0

				11	 //	 Floor(±Inf)	=	±Inf

				12	 //	 Floor(NaN)	=	NaN

				13	 func	Floor(x	float64)	float64

				14	

				15	 func	floor(x	float64)	float64	{

				16	 	 if	x	==	0	||	IsNaN(x)	||	IsInf(x,	0)	{

				17	 	 	 return	x

				18	 	 }

				19	 	 if	x	<	0	{

				20	 	 	 d,	fract	:=	Modf(-x)

				21	 	 	 if	fract	!=	0.0	{

				22	 	 	 	 d	=	d	+	1

				23	 	 	 }

				24	 	 	 return	-d

				25	 	 }

				26	 	 d,	_	:=	Modf(x)

				27	 	 return	d

				28	 }

				29	

				30	 //	Ceil	returns	the	least	integer	value	greater	than	or	equal	to	x.

				31	 //

				32	 //	Special	cases	are:

				33	 //	 Ceil(±0)	=	±0

				34	 //	 Ceil(±Inf)	=	±Inf

				35	 //	 Ceil(NaN)	=	NaN

				36	 func	Ceil(x	float64)	float64

				37	

				38	 func	ceil(x	float64)	float64	{

				39	 	 return	-Floor(-x)

				40	 }

				41	

				42	 //	Trunc	returns	the	integer	value	of	x.

				43	 //

				44	 //	Special	cases	are:

				45	 //	 Trunc(±0)	=	±0

				46	 //	 Trunc(±Inf)	=	±Inf

				47	 //	 Trunc(NaN)	=	NaN

				48	 func	Trunc(x	float64)	float64

				49	

				50	 func	trunc(x	float64)	float64	{

				51	 	 if	x	==	0	||	IsNaN(x)	||	IsInf(x,	0)	{

				52	 	 	 return	x

				53	 	 }

				54	 	 d,	_	:=	Modf(x)

				55	 	 return	d

				56	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/frexp.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	Frexp	breaks	f	into	a	normalized	fraction

					8	 //	and	an	integral	power	of	two.

					9	 //	It	returns	frac	and	exp	satisfying	f	==	frac	×	2**exp,

				10	 //	with	the	absolute	value	of	frac	in	the	interval	[½,	1).

				11	 //

				12	 //	Special	cases	are:

				13	 //	 Frexp(±0)	=	±0,	0

				14	 //	 Frexp(±Inf)	=	±Inf,	0

				15	 //	 Frexp(NaN)	=	NaN,	0

				16	 func	Frexp(f	float64)	(frac	float64,	exp	int)

				17	

				18	 func	frexp(f	float64)	(frac	float64,	exp	int)	{

				19	 	 //	special	cases

				20	 	 switch	{

				21	 	 case	f	==	0:

				22	 	 	 return	f,	0	//	correctly	return	-0

				23	 	 case	IsInf(f,	0)	||	IsNaN(f):

				24	 	 	 return	f,	0

				25	 	 }

				26	 	 f,	exp	=	normalize(f)

				27	 	 x	:=	Float64bits(f)

				28	 	 exp	+=	int((x>>shift)&mask)	-	bias	+	1

				29	 	 x	&^=	mask	<<	shift

				30	 	 x	|=	(-1	+	bias)	<<	shift

				31	 	 frac	=	Float64frombits(x)

				32	 	 return

				33	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/gamma.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	The	original	C	code,	the	long	comment,	and	the	constants

					8	 //	below	are	from	http://netlib.sandia.gov/cephes/cprob/gamma.c.

					9	 //	The	go	code	is	a	simplified	version	of	the	original	C.

				10	 //

				11	 //						tgamma.c

				12	 //

				13	 //						Gamma	function

				14	 //

				15	 //	SYNOPSIS:

				16	 //

				17	 //	double	x,	y,	tgamma();

				18	 //	extern	int	signgam;

				19	 //

				20	 //	y	=	tgamma(x);

				21	 //

				22	 //	DESCRIPTION:

				23	 //

				24	 //	Returns	gamma	function	of	the	argument.		The	result	is

				25	 //	correctly	signed,	and	the	sign	(+1	or	-1)	is	also

				26	 //	returned	in	a	global	(extern)	variable	named	signgam.

				27	 //	This	variable	is	also	filled	in	by	the	logarithmic	gamma

				28	 //	function	lgamma().

				29	 //

				30	 //	Arguments	|x|	<=	34	are	reduced	by	recurrence	and	the	function

				31	 //	approximated	by	a	rational	function	of	degree	6/7	in	the

				32	 //	interval	(2,3).		Large	arguments	are	handled	by	Stirling's

				33	 //	formula.	Large	negative	arguments	are	made	positive	using

				34	 //	a	reflection	formula.

				35	 //

				36	 //	ACCURACY:

				37	 //

				38	 //																						Relative	error:

				39	 //	arithmetic			domain					#	trials						peak									rms

				40	 //				DEC						-34,	34						10000							1.3e-16					2.5e-17

				41	 //				IEEE				-170,-33						20000							2.3e-15					3.3e-16

				42	 //				IEEE					-33,		33					20000							9.4e-16					2.2e-16

				43	 //				IEEE						33,	171.6			20000							2.3e-15					3.2e-16

				44	 //

				45	 //	Error	for	arguments	outside	the	test	range	will	be	larger

				46	 //	owing	to	error	amplification	by	the	exponential	function.

				47	 //

				48	 //	Cephes	Math	Library	Release	2.8:		June,	2000

				49	 //	Copyright	1984,	1987,	1989,	1992,	2000	by	Stephen	L.	Moshier

				50	 //

				51	 //	The	readme	file	at	http://netlib.sandia.gov/cephes/	says:

				52	 //				Some	software	in	this	archive	may	be	from	the	book	_Methods	and

				53	 //	Programs	for	Mathematical	Functions_	(Prentice-Hall	or	Simon	&	Schuster

				54	 //	International,	1989)	or	from	the	Cephes	Mathematical	Library,	a

				55	 //	commercial	product.	In	either	event,	it	is	copyrighted	by	the	author.

				56	 //	What	you	see	here	may	be	used	freely	but	it	comes	with	no	support	or

				57	 //	guarantee.

				58	 //

				59	 //			The	two	known	misprints	in	the	book	are	repaired	here	in	the

				60	 //	source	listings	for	the	gamma	function	and	the	incomplete	beta

				61	 //	integral.

				62	 //

				63	 //			Stephen	L.	Moshier

				64	 //			moshier@na-net.ornl.gov

				65	

				66	 var	_gamP	=	[...]float64{

				67	 	 1.60119522476751861407e-04,

				68	 	 1.19135147006586384913e-03,

				69	 	 1.04213797561761569935e-02,

				70	 	 4.76367800457137231464e-02,

				71	 	 2.07448227648435975150e-01,

				72	 	 4.94214826801497100753e-01,

				73	 	 9.99999999999999996796e-01,

				74	 }

				75	 var	_gamQ	=	[...]float64{

				76	 	 -2.31581873324120129819e-05,

				77	 	 5.39605580493303397842e-04,

				78	 	 -4.45641913851797240494e-03,

				79	 	 1.18139785222060435552e-02,

				80	 	 3.58236398605498653373e-02,

				81	 	 -2.34591795718243348568e-01,

				82	 	 7.14304917030273074085e-02,

				83	 	 1.00000000000000000320e+00,

				84	 }

				85	 var	_gamS	=	[...]float64{

				86	 	 7.87311395793093628397e-04,

				87	 	 -2.29549961613378126380e-04,

				88	 	 -2.68132617805781232825e-03,

				89	 	 3.47222221605458667310e-03,

				90	 	 8.33333333333482257126e-02,

				91	 }

				92	

				93	 //	Gamma	function	computed	by	Stirling's	formula.

				94	 //	The	polynomial	is	valid	for	33	<=	x	<=	172.

				95	 func	stirling(x	float64)	float64	{

				96	 	 const	(

				97	 	 	 SqrtTwoPi			=	2.506628274631000502417

				98	 	 	 MaxStirling	=	143.01608

				99)

			100	 	 w	:=	1	/	x

			101	 	 w	=	1	+	w*((((_gamS[0]*w+_gamS[1])*w+_gamS[2])*w+_gamS[3])*w+_gamS[4])

			102	 	 y	:=	Exp(x)

			103	 	 if	x	>	MaxStirling	{	//	avoid	Pow()	overflow

			104	 	 	 v	:=	Pow(x,	0.5*x-0.25)

			105	 	 	 y	=	v	*	(v	/	y)

			106	 	 }	else	{

			107	 	 	 y	=	Pow(x,	x-0.5)	/	y

			108	 	 }

			109	 	 y	=	SqrtTwoPi	*	y	*	w

			110	 	 return	y

			111	 }

			112	

			113	 //	Gamma(x)	returns	the	Gamma	function	of	x.

			114	 //

			115	 //	Special	cases	are:

			116	 //	 Gamma(±Inf)	=	±Inf

			117	 //	 Gamma(NaN)	=	NaN

			118	 //	Large	values	overflow	to	+Inf.

			119	 //	Zero	and	negative	integer	arguments	return	±Inf.

			120	 func	Gamma(x	float64)	float64	{

			121	 	 const	Euler	=	0.57721566490153286060651209008240243104215933593992	

			122	 	 //	special	cases

			123	 	 switch	{

			124	 	 case	IsInf(x,	-1)	||	IsNaN(x):

			125	 	 	 return	x

			126	 	 case	x	<	-170.5674972726612	||	x	>	171.61447887182298:

			127	 	 	 return	Inf(1)

			128	 	 }

			129	 	 q	:=	Abs(x)

			130	 	 p	:=	Floor(q)

			131	 	 if	q	>	33	{

			132	 	 	 if	x	>=	0	{

			133	 	 	 	 return	stirling(x)

			134	 	 	 }

			135	 	 	 signgam	:=	1

			136	 	 	 if	ip	:=	int(p);	ip&1	==	0	{

			137	 	 	 	 signgam	=	-1

			138	 	 	 }

			139	 	 	 z	:=	q	-	p

			140	 	 	 if	z	>	0.5	{

			141	 	 	 	 p	=	p	+	1

			142	 	 	 	 z	=	q	-	p

			143	 	 	 }

			144	 	 	 z	=	q	*	Sin(Pi*z)

			145	 	 	 if	z	==	0	{

			146	 	 	 	 return	Inf(signgam)

			147	 	 	 }

			148	 	 	 z	=	Pi	/	(Abs(z)	*	stirling(q))

			149	 	 	 return	float64(signgam)	*	z

			150	 	 }

			151	

			152	 	 //	Reduce	argument

			153	 	 z	:=	1.0

			154	 	 for	x	>=	3	{

			155	 	 	 x	=	x	-	1

			156	 	 	 z	=	z	*	x

			157	 	 }

			158	 	 for	x	<	0	{

			159	 	 	 if	x	>	-1e-09	{

			160	 	 	 	 goto	small

			161	 	 	 }

			162	 	 	 z	=	z	/	x

			163	 	 	 x	=	x	+	1

			164	 	 }

			165	 	 for	x	<	2	{

			166	 	 	 if	x	<	1e-09	{

			167	 	 	 	 goto	small

			168	 	 	 }

			169	 	 	 z	=	z	/	x

			170	 	 	 x	=	x	+	1

			171	 	 }

			172	

			173	 	 if	x	==	2	{

			174	 	 	 return	z

			175	 	 }

			176	

			177	 	 x	=	x	-	2

			178	 	 p	=	(((((x*_gamP[0]+_gamP[1])*x+_gamP[2])*x+_gamP[3])*x+_gamP[4])*x+_gamP[5])*x	+	_gamP[6]

			179	 	 q	=	((((((x*_gamQ[0]+_gamQ[1])*x+_gamQ[2])*x+_gamQ[3])*x+_gamQ[4])*x+_gamQ[5])*x+_gamQ[6])*x	+	_gamQ[7]

			180	 	 return	z	*	p	/	q

			181	

			182	 small:

			183	 	 if	x	==	0	{

			184	 	 	 return	Inf(1)

			185	 	 }

			186	 	 return	z	/	((1	+	Euler*x)	*	x)

			187	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.

http://code.google.com/policies.html#restrictions

Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/hypot.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 /*

					8	 	 Hypot	--	sqrt(p*p	+	q*q),	but	overflows	only	if	the	result	does.

					9	 */

				10	

				11	 //	Hypot	computes	Sqrt(p*p	+	q*q),	taking	care	to	avoid

				12	 //	unnecessary	overflow	and	underflow.

				13	 //

				14	 //	Special	cases	are:

				15	 //	 Hypot(p,	q)	=	+Inf	if	p	or	q	is	infinite

				16	 //	 Hypot(p,	q)	=	NaN	if	p	or	q	is	NaN

				17	 func	Hypot(p,	q	float64)	float64

				18	

				19	 func	hypot(p,	q	float64)	float64	{

				20	 	 //	special	cases

				21	 	 switch	{

				22	 	 case	IsInf(p,	0)	||	IsInf(q,	0):

				23	 	 	 return	Inf(1)

				24	 	 case	IsNaN(p)	||	IsNaN(q):

				25	 	 	 return	NaN()

				26	 	 }

				27	 	 if	p	<	0	{

				28	 	 	 p	=	-p

				29	 	 }

				30	 	 if	q	<	0	{

				31	 	 	 q	=	-q

				32	 	 }

				33	 	 if	p	<	q	{

				34	 	 	 p,	q	=	q,	p

				35	 	 }

				36	 	 if	p	==	0	{

				37	 	 	 return	0

				38	 	 }

				39	 	 q	=	q	/	p

				40	 	 return	p	*	Sqrt(1+q*q)

				41	 }

Build	version	go1.0.1.

Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/j0.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 /*

					8	 	 Bessel	function	of	the	first	and	second	kinds	of	order	zero.

					9	 */

				10	

				11	 //	The	original	C	code	and	the	long	comment	below	are

				12	 //	from	FreeBSD's	/usr/src/lib/msun/src/e_j0.c	and

				13	 //	came	with	this	notice.		The	go	code	is	a	simplified

				14	 //	version	of	the	original	C.

				15	 //

				16	 //	==

				17	 //	Copyright	(C)	1993	by	Sun	Microsystems,	Inc.	All	rights	reserved.

				18	 //

				19	 //	Developed	at	SunPro,	a	Sun	Microsystems,	Inc.	business.

				20	 //	Permission	to	use,	copy,	modify,	and	distribute	this

				21	 //	software	is	freely	granted,	provided	that	this	notice

				22	 //	is	preserved.

				23	 //	==

				24	 //

				25	 //	__ieee754_j0(x),	__ieee754_y0(x)

				26	 //	Bessel	function	of	the	first	and	second	kinds	of	order	zero.

				27	 //	Method	--	j0(x):

				28	 //						1.	For	tiny	x,	we	use	j0(x)	=	1	-	x**2/4	+	x**4/64	-	...

				29	 //						2.	Reduce	x	to	|x|	since	j0(x)=j0(-x),		and

				30	 //									for	x	in	(0,2)

				31	 //														j0(x)	=	1-z/4+	z**2*R0/S0,		where	z	=	x*x;

				32	 //									(precision:		|j0-1+z/4-z**2R0/S0	|<2**-63.67)

				33	 //									for	x	in	(2,inf)

				34	 //														j0(x)	=	sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))

				35	 //									where	x0	=	x-pi/4.	It	is	better	to	compute	sin(x0),cos(x0)

				36	 //									as	follow:

				37	 //														cos(x0)	=	cos(x)cos(pi/4)+sin(x)sin(pi/4)

				38	 //																						=	1/sqrt(2)	*	(cos(x)	+	sin(x))

				39	 //														sin(x0)	=	sin(x)cos(pi/4)-cos(x)sin(pi/4)

				40	 //																						=	1/sqrt(2)	*	(sin(x)	-	cos(x))

				41	 //									(To	avoid	cancellation,	use

				42	 //														sin(x)	+-	cos(x)	=	-cos(2x)/(sin(x)	-+	cos(x))

				43	 //									to	compute	the	worse	one.)

				44	 //

				45	 //						3	Special	cases

				46	 //														j0(nan)=	nan

				47	 //														j0(0)	=	1

				48	 //														j0(inf)	=	0

				49	 //

				50	 //	Method	--	y0(x):

				51	 //						1.	For	x<2.

				52	 //									Since

				53	 //														y0(x)	=	2/pi*(j0(x)*(ln(x/2)+Euler)	+	x**2/4	-	...)

				54	 //									therefore	y0(x)-2/pi*j0(x)*ln(x)	is	an	even	function.

				55	 //									We	use	the	following	function	to	approximate	y0,

				56	 //														y0(x)	=	U(z)/V(z)	+	(2/pi)*(j0(x)*ln(x)),	z=	x**2

				57	 //									where

				58	 //														U(z)	=	u00	+	u01*z	+	...	+	u06*z**6

				59	 //														V(z)	=	1		+	v01*z	+	...	+	v04*z**4

				60	 //									with	absolute	approximation	error	bounded	by	2**-72.

				61	 //									Note:	For	tiny	x,	U/V	=	u0	and	j0(x)~1,	hence

				62	 //														y0(tiny)	=	u0	+	(2/pi)*ln(tiny),	(choose	tiny<2**-27)

				63	 //						2.	For	x>=2.

				64	 //														y0(x)	=	sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))

				65	 //									where	x0	=	x-pi/4.	It	is	better	to	compute	sin(x0),cos(x0)

				66	 //									by	the	method	mentioned	above.

				67	 //						3.	Special	cases:	y0(0)=-inf,	y0(x<0)=NaN,	y0(inf)=0.

				68	 //

				69	

				70	 //	J0	returns	the	order-zero	Bessel	function	of	the	first	kind.

				71	 //

				72	 //	Special	cases	are:

				73	 //	 J0(±Inf)	=	0

				74	 //	 J0(0)	=	1

				75	 //	 J0(NaN)	=	NaN

				76	 func	J0(x	float64)	float64	{

				77	 	 const	(

				78	 	 	 Huge			=	1e300

				79	 	 	 TwoM27	=	1.0	/	(1	<<	27)	//	2**-27	0x3e40000000000000

				80	 	 	 TwoM13	=	1.0	/	(1	<<	13)	//	2**-13	0x3f20000000000000

				81	 	 	 Two129	=	1	<<	129								//	2**129	0x4800000000000000

				82	 	 	 //	R0/S0	on	[0,	2]

				83	 	 	 R02	=	1.56249999999999947958e-02		//	0x3F8FFFFFFFFFFFFD

				84	 	 	 R03	=	-1.89979294238854721751e-04	//	0xBF28E6A5B61AC6E9

				85	 	 	 R04	=	1.82954049532700665670e-06		//	0x3EBEB1D10C503919

				86	 	 	 R05	=	-4.61832688532103189199e-09	//	0xBE33D5E773D63FCE

				87	 	 	 S01	=	1.56191029464890010492e-02		//	0x3F8FFCE882C8C2A4

				88	 	 	 S02	=	1.16926784663337450260e-04		//	0x3F1EA6D2DD57DBF4

				89	 	 	 S03	=	5.13546550207318111446e-07		//	0x3EA13B54CE84D5A9

				90	 	 	 S04	=	1.16614003333790000205e-09		//	0x3E1408BCF4745D8F

				91)

				92	 	 //	special	cases

				93	 	 switch	{

				94	 	 case	IsNaN(x):

				95	 	 	 return	x

				96	 	 case	IsInf(x,	0):

				97	 	 	 return	0

				98	 	 case	x	==	0:

				99	 	 	 return	1

			100	 	 }

			101	

			102	 	 if	x	<	0	{

			103	 	 	 x	=	-x

			104	 	 }

			105	 	 if	x	>=	2	{

			106	 	 	 s,	c	:=	Sincos(x)

			107	 	 	 ss	:=	s	-	c

			108	 	 	 cc	:=	s	+	c

			109	

			110	 	 	 //	make	sure	x+x	does	not	overflow

			111	 	 	 if	x	<	MaxFloat64/2	{

			112	 	 	 	 z	:=	-Cos(x	+	x)

			113	 	 	 	 if	s*c	<	0	{

			114	 	 	 	 	 cc	=	z	/	ss

			115	 	 	 	 }	else	{

			116	 	 	 	 	 ss	=	z	/	cc

			117	 	 	 	 }

			118	 	 	 }

			119	

			120	 	 	 //	j0(x)	=	1/sqrt(pi)	*	(P(0,x)*cc	-	Q(0,x)*ss)	/	sqrt(x)

			121	 	 	 //	y0(x)	=	1/sqrt(pi)	*	(P(0,x)*ss	+	Q(0,x)*cc)	/	sqrt(x)

			122	

			123	 	 	 var	z	float64

			124	 	 	 if	x	>	Two129	{	//	|x|	>	~6.8056e+38

			125	 	 	 	 z	=	(1	/	SqrtPi)	*	cc	/	Sqrt(x)

			126	 	 	 }	else	{

			127	 	 	 	 u	:=	pzero(x)

			128	 	 	 	 v	:=	qzero(x)

			129	 	 	 	 z	=	(1	/	SqrtPi)	*	(u*cc	-	v*ss)	/	Sqrt(x)

			130	 	 	 }

			131	 	 	 return	z	//	|x|	>=	2.0

			132	 	 }

			133	 	 if	x	<	TwoM13	{	//	|x|	<	~1.2207e-4

			134	 	 	 if	x	<	TwoM27	{

			135	 	 	 	 return	1	//	|x|	<	~7.4506e-9

			136	 	 	 }

			137	 	 	 return	1	-	0.25*x*x	//	~7.4506e-9	<	|x|	<	~1.2207e-4

			138	 	 }

			139	 	 z	:=	x	*	x

			140	 	 r	:=	z	*	(R02	+	z*(R03+z*(R04+z*R05)))

			141	 	 s	:=	1	+	z*(S01+z*(S02+z*(S03+z*S04)))

			142	 	 if	x	<	1	{

			143	 	 	 return	1	+	z*(-0.25+(r/s))	//	|x|	<	1.00

			144	 	 }

			145	 	 u	:=	0.5	*	x

			146	 	 return	(1+u)*(1-u)	+	z*(r/s)	//	1.0	<	|x|	<	2.0

			147	 }

			148	

			149	 //	Y0	returns	the	order-zero	Bessel	function	of	the	second	kind.

			150	 //

			151	 //	Special	cases	are:

			152	 //	 Y0(+Inf)	=	0

			153	 //	 Y0(0)	=	-Inf

			154	 //	 Y0(x	<	0)	=	NaN

			155	 //	 Y0(NaN)	=	NaN

			156	 func	Y0(x	float64)	float64	{

			157	 	 const	(

			158	 	 	 TwoM27	=	1.0	/	(1	<<	27)													//	2**-27	0x3e40000000000000

			159	 	 	 Two129	=	1	<<	129																				//	2**129	0x4800000000000000

			160	 	 	 U00				=	-7.38042951086872317523e-02	//	0xBFB2E4D699CBD01F

			161	 	 	 U01				=	1.76666452509181115538e-01		//	0x3FC69D019DE9E3FC

			162	 	 	 U02				=	-1.38185671945596898896e-02	//	0xBF8C4CE8B16CFA97

			163	 	 	 U03				=	3.47453432093683650238e-04		//	0x3F36C54D20B29B6B

			164	 	 	 U04				=	-3.81407053724364161125e-06	//	0xBECFFEA773D25CAD

			165	 	 	 U05				=	1.95590137035022920206e-08		//	0x3E5500573B4EABD4

			166	 	 	 U06				=	-3.98205194132103398453e-11	//	0xBDC5E43D693FB3C8

			167	 	 	 V01				=	1.27304834834123699328e-02		//	0x3F8A127091C9C71A

			168	 	 	 V02				=	7.60068627350353253702e-05		//	0x3F13ECBBF578C6C1

			169	 	 	 V03				=	2.59150851840457805467e-07		//	0x3E91642D7FF202FD

			170	 	 	 V04				=	4.41110311332675467403e-10		//	0x3DFE50183BD6D9EF

			171)

			172	 	 //	special	cases

			173	 	 switch	{

			174	 	 case	x	<	0	||	IsNaN(x):

			175	 	 	 return	NaN()

			176	 	 case	IsInf(x,	1):

			177	 	 	 return	0

			178	 	 case	x	==	0:

			179	 	 	 return	Inf(-1)

			180	 	 }

			181	

			182	 	 if	x	>=	2	{	//	|x|	>=	2.0

			183	

			184	 	 	 //	y0(x)	=	sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))

			185	 	 	 //					where	x0	=	x-pi/4

			186	 	 	 //	Better	formula:

			187	 	 	 //					cos(x0)	=	cos(x)cos(pi/4)+sin(x)sin(pi/4)

			188	 	 	 //													=		1/sqrt(2)	*	(sin(x)	+	cos(x))

			189	 	 	 //					sin(x0)	=	sin(x)cos(3pi/4)-cos(x)sin(3pi/4)

			190	 	 	 //													=		1/sqrt(2)	*	(sin(x)	-	cos(x))

			191	 	 	 //	To	avoid	cancellation,	use

			192	 	 	 //					sin(x)	+-	cos(x)	=	-cos(2x)/(sin(x)	-+	cos(x))

			193	 	 	 //	to	compute	the	worse	one.

			194	

			195	 	 	 s,	c	:=	Sincos(x)

			196	 	 	 ss	:=	s	-	c

			197	 	 	 cc	:=	s	+	c

			198	

			199	 	 	 //	j0(x)	=	1/sqrt(pi)	*	(P(0,x)*cc	-	Q(0,x)*ss)	/	sqrt(x)

			200	 	 	 //	y0(x)	=	1/sqrt(pi)	*	(P(0,x)*ss	+	Q(0,x)*cc)	/	sqrt(x)

			201	

			202	 	 	 //	make	sure	x+x	does	not	overflow

			203	 	 	 if	x	<	MaxFloat64/2	{

			204	 	 	 	 z	:=	-Cos(x	+	x)

			205	 	 	 	 if	s*c	<	0	{

			206	 	 	 	 	 cc	=	z	/	ss

			207	 	 	 	 }	else	{

			208	 	 	 	 	 ss	=	z	/	cc

			209	 	 	 	 }

			210	 	 	 }

			211	 	 	 var	z	float64

			212	 	 	 if	x	>	Two129	{	//	|x|	>	~6.8056e+38

			213	 	 	 	 z	=	(1	/	SqrtPi)	*	ss	/	Sqrt(x)

			214	 	 	 }	else	{

			215	 	 	 	 u	:=	pzero(x)

			216	 	 	 	 v	:=	qzero(x)

			217	 	 	 	 z	=	(1	/	SqrtPi)	*	(u*ss	+	v*cc)	/	Sqrt(x)

			218	 	 	 }

			219	 	 	 return	z	//	|x|	>=	2.0

			220	 	 }

			221	 	 if	x	<=	TwoM27	{

			222	 	 	 return	U00	+	(2/Pi)*Log(x)	//	|x|	<	~7.4506e-9

			223	 	 }

			224	 	 z	:=	x	*	x

			225	 	 u	:=	U00	+	z*(U01+z*(U02+z*(U03+z*(U04+z*(U05+z*U06)))))

			226	 	 v	:=	1	+	z*(V01+z*(V02+z*(V03+z*V04)))

			227	 	 return	u/v	+	(2/Pi)*J0(x)*Log(x)	//	~7.4506e-9	<	|x|	<	2.0

			228	 }

			229	

			230	 //	The	asymptotic	expansions	of	pzero	is

			231	 //						1	-	9/128	s**2	+	11025/98304	s**4	-	...,	where	s	=	1/x.

			232	 //	For	x	>=	2,	We	approximate	pzero	by

			233	 //		 pzero(x)	=	1	+	(R/S)

			234	 //	where		R	=	pR0	+	pR1*s**2	+	pR2*s**4	+	...	+	pR5*s**10

			235	 //		 		S	=	1	+	pS0*s**2	+	...	+	pS4*s**10

			236	 //	and

			237	 //						|	pzero(x)-1-R/S	|	<=	2		**	(-60.26)

			238	

			239	 //	for	x	in	[inf,	8]=1/[0,0.125]

			240	 var	p0R8	=	[6]float64{

			241	 	 0.00000000000000000000e+00,		//	0x0000000000000000

			242	 	 -7.03124999999900357484e-02,	//	0xBFB1FFFFFFFFFD32

			243	 	 -8.08167041275349795626e+00,	//	0xC02029D0B44FA779

			244	 	 -2.57063105679704847262e+02,	//	0xC07011027B19E863

			245	 	 -2.48521641009428822144e+03,	//	0xC0A36A6ECD4DCAFC

			246	 	 -5.25304380490729545272e+03,	//	0xC0B4850B36CC643D

			247	 }

			248	 var	p0S8	=	[5]float64{

			249	 	 1.16534364619668181717e+02,	//	0x405D223307A96751

			250	 	 3.83374475364121826715e+03,	//	0x40ADF37D50596938

			251	 	 4.05978572648472545552e+04,	//	0x40E3D2BB6EB6B05F

			252	 	 1.16752972564375915681e+05,	//	0x40FC810F8F9FA9BD

			253	 	 4.76277284146730962675e+04,	//	0x40E741774F2C49DC

			254	 }

			255	

			256	 //	for	x	in	[8,4.5454]=1/[0.125,0.22001]

			257	 var	p0R5	=	[6]float64{

			258	 	 -1.14125464691894502584e-11,	//	0xBDA918B147E495CC

			259	 	 -7.03124940873599280078e-02,	//	0xBFB1FFFFE69AFBC6

			260	 	 -4.15961064470587782438e+00,	//	0xC010A370F90C6BBF

			261	 	 -6.76747652265167261021e+01,	//	0xC050EB2F5A7D1783

			262	 	 -3.31231299649172967747e+02,	//	0xC074B3B36742CC63

			263	 	 -3.46433388365604912451e+02,	//	0xC075A6EF28A38BD7

			264	 }

			265	 var	p0S5	=	[5]float64{

			266	 	 6.07539382692300335975e+01,	//	0x404E60810C98C5DE

			267	 	 1.05125230595704579173e+03,	//	0x40906D025C7E2864

			268	 	 5.97897094333855784498e+03,	//	0x40B75AF88FBE1D60

			269	 	 9.62544514357774460223e+03,	//	0x40C2CCB8FA76FA38

			270	 	 2.40605815922939109441e+03,	//	0x40A2CC1DC70BE864

			271	 }

			272	

			273	 //	for	x	in	[4.547,2.8571]=1/[0.2199,0.35001]

			274	 var	p0R3	=	[6]float64{

			275	 	 -2.54704601771951915620e-09,	//	0xBE25E1036FE1AA86

			276	 	 -7.03119616381481654654e-02,	//	0xBFB1FFF6F7C0E24B

			277	 	 -2.40903221549529611423e+00,	//	0xC00345B2AEA48074

			278	 	 -2.19659774734883086467e+01,	//	0xC035F74A4CB94E14

			279	 	 -5.80791704701737572236e+01,	//	0xC04D0A22420A1A45

			280	 	 -3.14479470594888503854e+01,	//	0xC03F72ACA892D80F

			281	 }

			282	 var	p0S3	=	[5]float64{

			283	 	 3.58560338055209726349e+01,	//	0x4041ED9284077DD3

			284	 	 3.61513983050303863820e+02,	//	0x40769839464A7C0E

			285	 	 1.19360783792111533330e+03,	//	0x4092A66E6D1061D6

			286	 	 1.12799679856907414432e+03,	//	0x40919FFCB8C39B7E

			287	 	 1.73580930813335754692e+02,	//	0x4065B296FC379081

			288	 }

			289	

			290	 //	for	x	in	[2.8570,2]=1/[0.3499,0.5]

			291	 var	p0R2	=	[6]float64{

			292	 	 -8.87534333032526411254e-08,	//	0xBE77D316E927026D

			293	 	 -7.03030995483624743247e-02,	//	0xBFB1FF62495E1E42

			294	 	 -1.45073846780952986357e+00,	//	0xBFF736398A24A843

			295	 	 -7.63569613823527770791e+00,	//	0xC01E8AF3EDAFA7F3

			296	 	 -1.11931668860356747786e+01,	//	0xC02662E6C5246303

			297	 	 -3.23364579351335335033e+00,	//	0xC009DE81AF8FE70F

			298	 }

			299	 var	p0S2	=	[5]float64{

			300	 	 2.22202997532088808441e+01,	//	0x40363865908B5959

			301	 	 1.36206794218215208048e+02,	//	0x4061069E0EE8878F

			302	 	 2.70470278658083486789e+02,	//	0x4070E78642EA079B

			303	 	 1.53875394208320329881e+02,	//	0x40633C033AB6FAFF

			304	 	 1.46576176948256193810e+01,	//	0x402D50B344391809

			305	 }

			306	

			307	 func	pzero(x	float64)	float64	{

			308	 	 var	p	[6]float64

			309	 	 var	q	[5]float64

			310	 	 if	x	>=	8	{

			311	 	 	 p	=	p0R8

			312	 	 	 q	=	p0S8

			313	 	 }	else	if	x	>=	4.5454	{

			314	 	 	 p	=	p0R5

			315	 	 	 q	=	p0S5

			316	 	 }	else	if	x	>=	2.8571	{

			317	 	 	 p	=	p0R3

			318	 	 	 q	=	p0S3

			319	 	 }	else	if	x	>=	2	{

			320	 	 	 p	=	p0R2

			321	 	 	 q	=	p0S2

			322	 	 }

			323	 	 z	:=	1	/	(x	*	x)

			324	 	 r	:=	p[0]	+	z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))

			325	 	 s	:=	1	+	z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))))

			326	 	 return	1	+	r/s

			327	 }

			328	

			329	 //	For	x	>=	8,	the	asymptotic	expansions	of	qzero	is

			330	 //						-1/8	s	+	75/1024	s**3	-	...,	where	s	=	1/x.

			331	 //	We	approximate	pzero	by

			332	 //						qzero(x)	=	s*(-1.25	+	(R/S))

			333	 //	where	R	=	qR0	+	qR1*s**2	+	qR2*s**4	+	...	+	qR5*s**10

			334	 //							S	=	1	+	qS0*s**2	+	...	+	qS5*s**12

			335	 //	and

			336	 //						|	qzero(x)/s	+1.25-R/S	|	<=	2**(-61.22)

			337	

			338	 //	for	x	in	[inf,	8]=1/[0,0.125]

			339	 var	q0R8	=	[6]float64{

			340	 	 0.00000000000000000000e+00,	//	0x0000000000000000

			341	 	 7.32421874999935051953e-02,	//	0x3FB2BFFFFFFFFE2C

			342	 	 1.17682064682252693899e+01,	//	0x402789525BB334D6

			343	 	 5.57673380256401856059e+02,	//	0x40816D6315301825

			344	 	 8.85919720756468632317e+03,	//	0x40C14D993E18F46D

			345	 	 3.70146267776887834771e+04,	//	0x40E212D40E901566

			346	 }

			347	 var	q0S8	=	[6]float64{

			348	 	 1.63776026895689824414e+02,		//	0x406478D5365B39BC

			349	 	 8.09834494656449805916e+03,		//	0x40BFA2584E6B0563

			350	 	 1.42538291419120476348e+05,		//	0x4101665254D38C3F

			351	 	 8.03309257119514397345e+05,		//	0x412883DA83A52B43

			352	 	 8.40501579819060512818e+05,		//	0x4129A66B28DE0B3D

			353	 	 -3.43899293537866615225e+05,	//	0xC114FD6D2C9530C5

			354	 }

			355	

			356	 //	for	x	in	[8,4.5454]=1/[0.125,0.22001]

			357	 var	q0R5	=	[6]float64{

			358	 	 1.84085963594515531381e-11,	//	0x3DB43D8F29CC8CD9

			359	 	 7.32421766612684765896e-02,	//	0x3FB2BFFFD172B04C

			360	 	 5.83563508962056953777e+00,	//	0x401757B0B9953DD3

			361	 	 1.35111577286449829671e+02,	//	0x4060E3920A8788E9

			362	 	 1.02724376596164097464e+03,	//	0x40900CF99DC8C481

			363	 	 1.98997785864605384631e+03,	//	0x409F17E953C6E3A6

			364	 }

			365	 var	q0S5	=	[6]float64{

			366	 	 8.27766102236537761883e+01,		//	0x4054B1B3FB5E1543

			367	 	 2.07781416421392987104e+03,		//	0x40A03BA0DA21C0CE

			368	 	 1.88472887785718085070e+04,		//	0x40D267D27B591E6D

			369	 	 5.67511122894947329769e+04,		//	0x40EBB5E397E02372

			370	 	 3.59767538425114471465e+04,		//	0x40E191181F7A54A0

			371	 	 -5.35434275601944773371e+03,	//	0xC0B4EA57BEDBC609

			372	 }

			373	

			374	 //	for	x	in	[4.547,2.8571]=1/[0.2199,0.35001]

			375	 var	q0R3	=	[6]float64{

			376	 	 4.37741014089738620906e-09,	//	0x3E32CD036ADECB82

			377	 	 7.32411180042911447163e-02,	//	0x3FB2BFEE0E8D0842

			378	 	 3.34423137516170720929e+00,	//	0x400AC0FC61149CF5

			379	 	 4.26218440745412650017e+01,	//	0x40454F98962DAEDD

			380	 	 1.70808091340565596283e+02,	//	0x406559DBE25EFD1F

			381	 	 1.66733948696651168575e+02,	//	0x4064D77C81FA21E0

			382	 }

			383	 var	q0S3	=	[6]float64{

			384	 	 4.87588729724587182091e+01,		//	0x40486122BFE343A6

			385	 	 7.09689221056606015736e+02,		//	0x40862D8386544EB3

			386	 	 3.70414822620111362994e+03,		//	0x40ACF04BE44DFC63

			387	 	 6.46042516752568917582e+03,		//	0x40B93C6CD7C76A28

			388	 	 2.51633368920368957333e+03,		//	0x40A3A8AAD94FB1C0

			389	 	 -1.49247451836156386662e+02,	//	0xC062A7EB201CF40F

			390	 }

			391	

			392	 //	for	x	in	[2.8570,2]=1/[0.3499,0.5]

			393	 var	q0R2	=	[6]float64{

			394	 	 1.50444444886983272379e-07,	//	0x3E84313B54F76BDB

			395	 	 7.32234265963079278272e-02,	//	0x3FB2BEC53E883E34

			396	 	 1.99819174093815998816e+00,	//	0x3FFFF897E727779C

			397	 	 1.44956029347885735348e+01,	//	0x402CFDBFAAF96FE5

			398	 	 3.16662317504781540833e+01,	//	0x403FAA8E29FBDC4A

			399	 	 1.62527075710929267416e+01,	//	0x403040B171814BB4

			400	 }

			401	 var	q0S2	=	[6]float64{

			402	 	 3.03655848355219184498e+01,		//	0x403E5D96F7C07AED

			403	 	 2.69348118608049844624e+02,		//	0x4070D591E4D14B40

			404	 	 8.44783757595320139444e+02,		//	0x408A664522B3BF22

			405	 	 8.82935845112488550512e+02,		//	0x408B977C9C5CC214

			406	 	 2.12666388511798828631e+02,		//	0x406A95530E001365

			407	 	 -5.31095493882666946917e+00,	//	0xC0153E6AF8B32931

			408	 }

			409	

			410	 func	qzero(x	float64)	float64	{

			411	 	 var	p,	q	[6]float64

			412	 	 if	x	>=	8	{

			413	 	 	 p	=	q0R8

			414	 	 	 q	=	q0S8

			415	 	 }	else	if	x	>=	4.5454	{

			416	 	 	 p	=	q0R5

			417	 	 	 q	=	q0S5

			418	 	 }	else	if	x	>=	2.8571	{

			419	 	 	 p	=	q0R3

			420	 	 	 q	=	q0S3

			421	 	 }	else	if	x	>=	2	{

			422	 	 	 p	=	q0R2

			423	 	 	 q	=	q0S2

			424	 	 }

			425	 	 z	:=	1	/	(x	*	x)

			426	 	 r	:=	p[0]	+	z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))

			427	 	 s	:=	1	+	z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))))

			428	 	 return	(-0.125	+	r/s)	/	x

			429	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/j1.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 /*

					8	 	 Bessel	function	of	the	first	and	second	kinds	of	order	one.

					9	 */

				10	

				11	 //	The	original	C	code	and	the	long	comment	below	are

				12	 //	from	FreeBSD's	/usr/src/lib/msun/src/e_j1.c	and

				13	 //	came	with	this	notice.		The	go	code	is	a	simplified

				14	 //	version	of	the	original	C.

				15	 //

				16	 //	==

				17	 //	Copyright	(C)	1993	by	Sun	Microsystems,	Inc.	All	rights	reserved.

				18	 //

				19	 //	Developed	at	SunPro,	a	Sun	Microsystems,	Inc.	business.

				20	 //	Permission	to	use,	copy,	modify,	and	distribute	this

				21	 //	software	is	freely	granted,	provided	that	this	notice

				22	 //	is	preserved.

				23	 //	==

				24	 //

				25	 //	__ieee754_j1(x),	__ieee754_y1(x)

				26	 //	Bessel	function	of	the	first	and	second	kinds	of	order	one.

				27	 //	Method	--	j1(x):

				28	 //						1.	For	tiny	x,	we	use	j1(x)	=	x/2	-	x**3/16	+	x**5/384	-	...

				29	 //						2.	Reduce	x	to	|x|	since	j1(x)=-j1(-x),		and

				30	 //									for	x	in	(0,2)

				31	 //														j1(x)	=	x/2	+	x*z*R0/S0,		where	z	=	x*x;

				32	 //									(precision:		|j1/x	-	1/2	-	R0/S0	|<2**-61.51)

				33	 //									for	x	in	(2,inf)

				34	 //														j1(x)	=	sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))

				35	 //														y1(x)	=	sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))

				36	 //									where	x1	=	x-3*pi/4.	It	is	better	to	compute	sin(x1),cos(x1)

				37	 //									as	follow:

				38	 //														cos(x1)	=		cos(x)cos(3pi/4)+sin(x)sin(3pi/4)

				39	 //																						=		1/sqrt(2)	*	(sin(x)	-	cos(x))

				40	 //														sin(x1)	=		sin(x)cos(3pi/4)-cos(x)sin(3pi/4)

				41	 //																						=	-1/sqrt(2)	*	(sin(x)	+	cos(x))

				42	 //									(To	avoid	cancellation,	use

				43	 //														sin(x)	+-	cos(x)	=	-cos(2x)/(sin(x)	-+	cos(x))

				44	 //									to	compute	the	worse	one.)

				45	 //

				46	 //						3	Special	cases

				47	 //														j1(nan)=	nan

				48	 //														j1(0)	=	0

				49	 //														j1(inf)	=	0

				50	 //

				51	 //	Method	--	y1(x):

				52	 //						1.	screen	out	x<=0	cases:	y1(0)=-inf,	y1(x<0)=NaN

				53	 //						2.	For	x<2.

				54	 //									Since

				55	 //														y1(x)	=	2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x**3-...)

				56	 //									therefore	y1(x)-2/pi*j1(x)*ln(x)-1/x	is	an	odd	function.

				57	 //									We	use	the	following	function	to	approximate	y1,

				58	 //														y1(x)	=	x*U(z)/V(z)	+	(2/pi)*(j1(x)*ln(x)-1/x),	z=	x**2

				59	 //									where	for	x	in	[0,2]	(abs	err	less	than	2**-65.89)

				60	 //														U(z)	=	U0[0]	+	U0[1]*z	+	...	+	U0[4]*z**4

				61	 //														V(z)	=	1		+	v0[0]*z	+	...	+	v0[4]*z**5

				62	 //									Note:	For	tiny	x,	1/x	dominate	y1	and	hence

				63	 //														y1(tiny)	=	-2/pi/tiny,	(choose	tiny<2**-54)

				64	 //						3.	For	x>=2.

				65	 //															y1(x)	=	sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))

				66	 //									where	x1	=	x-3*pi/4.	It	is	better	to	compute	sin(x1),cos(x1)

				67	 //									by	method	mentioned	above.

				68	

				69	 //	J1	returns	the	order-one	Bessel	function	of	the	first	kind.

				70	 //

				71	 //	Special	cases	are:

				72	 //	 J1(±Inf)	=	0

				73	 //	 J1(NaN)	=	NaN

				74	 func	J1(x	float64)	float64	{

				75	 	 const	(

				76	 	 	 TwoM27	=	1.0	/	(1	<<	27)	//	2**-27	0x3e40000000000000

				77	 	 	 Two129	=	1	<<	129								//	2**129	0x4800000000000000

				78	 	 	 //	R0/S0	on	[0,	2]

				79	 	 	 R00	=	-6.25000000000000000000e-02	//	0xBFB0000000000000

				80	 	 	 R01	=	1.40705666955189706048e-03		//	0x3F570D9F98472C61

				81	 	 	 R02	=	-1.59955631084035597520e-05	//	0xBEF0C5C6BA169668

				82	 	 	 R03	=	4.96727999609584448412e-08		//	0x3E6AAAFA46CA0BD9

				83	 	 	 S01	=	1.91537599538363460805e-02		//	0x3F939D0B12637E53

				84	 	 	 S02	=	1.85946785588630915560e-04		//	0x3F285F56B9CDF664

				85	 	 	 S03	=	1.17718464042623683263e-06		//	0x3EB3BFF8333F8498

				86	 	 	 S04	=	5.04636257076217042715e-09		//	0x3E35AC88C97DFF2C

				87	 	 	 S05	=	1.23542274426137913908e-11		//	0x3DAB2ACFCFB97ED8

				88)

				89	 	 //	special	cases

				90	 	 switch	{

				91	 	 case	IsNaN(x):

				92	 	 	 return	x

				93	 	 case	IsInf(x,	0)	||	x	==	0:

				94	 	 	 return	0

				95	 	 }

				96	

				97	 	 sign	:=	false

				98	 	 if	x	<	0	{

				99	 	 	 x	=	-x

			100	 	 	 sign	=	true

			101	 	 }

			102	 	 if	x	>=	2	{

			103	 	 	 s,	c	:=	Sincos(x)

			104	 	 	 ss	:=	-s	-	c

			105	 	 	 cc	:=	s	-	c

			106	

			107	 	 	 //	make	sure	x+x	does	not	overflow

			108	 	 	 if	x	<	MaxFloat64/2	{

			109	 	 	 	 z	:=	Cos(x	+	x)

			110	 	 	 	 if	s*c	>	0	{

			111	 	 	 	 	 cc	=	z	/	ss

			112	 	 	 	 }	else	{

			113	 	 	 	 	 ss	=	z	/	cc

			114	 	 	 	 }

			115	 	 	 }

			116	

			117	 	 	 //	j1(x)	=	1/sqrt(pi)	*	(P(1,x)*cc	-	Q(1,x)*ss)	/	sqrt(x)

			118	 	 	 //	y1(x)	=	1/sqrt(pi)	*	(P(1,x)*ss	+	Q(1,x)*cc)	/	sqrt(x)

			119	

			120	 	 	 var	z	float64

			121	 	 	 if	x	>	Two129	{

			122	 	 	 	 z	=	(1	/	SqrtPi)	*	cc	/	Sqrt(x)

			123	 	 	 }	else	{

			124	 	 	 	 u	:=	pone(x)

			125	 	 	 	 v	:=	qone(x)

			126	 	 	 	 z	=	(1	/	SqrtPi)	*	(u*cc	-	v*ss)	/	Sqrt(x)

			127	 	 	 }

			128	 	 	 if	sign	{

			129	 	 	 	 return	-z

			130	 	 	 }

			131	 	 	 return	z

			132	 	 }

			133	 	 if	x	<	TwoM27	{	//	|x|<2**-27

			134	 	 	 return	0.5	*	x	//	inexact	if	x!=0	necessary

			135	 	 }

			136	 	 z	:=	x	*	x

			137	 	 r	:=	z	*	(R00	+	z*(R01+z*(R02+z*R03)))

			138	 	 s	:=	1.0	+	z*(S01+z*(S02+z*(S03+z*(S04+z*S05))))

			139	 	 r	*=	x

			140	 	 z	=	0.5*x	+	r/s

			141	 	 if	sign	{

			142	 	 	 return	-z

			143	 	 }

			144	 	 return	z

			145	 }

			146	

			147	 //	Y1	returns	the	order-one	Bessel	function	of	the	second	kind.

			148	 //

			149	 //	Special	cases	are:

			150	 //	 Y1(+Inf)	=	0

			151	 //	 Y1(0)	=	-Inf

			152	 //	 Y1(x	<	0)	=	NaN

			153	 //	 Y1(NaN)	=	NaN

			154	 func	Y1(x	float64)	float64	{

			155	 	 const	(

			156	 	 	 TwoM54	=	1.0	/	(1	<<	54)													//	2**-54	0x3c90000000000000

			157	 	 	 Two129	=	1	<<	129																				//	2**129	0x4800000000000000

			158	 	 	 U00				=	-1.96057090646238940668e-01	//	0xBFC91866143CBC8A

			159	 	 	 U01				=	5.04438716639811282616e-02		//	0x3FA9D3C776292CD1

			160	 	 	 U02				=	-1.91256895875763547298e-03	//	0xBF5F55E54844F50F

			161	 	 	 U03				=	2.35252600561610495928e-05		//	0x3EF8AB038FA6B88E

			162	 	 	 U04				=	-9.19099158039878874504e-08	//	0xBE78AC00569105B8

			163	 	 	 V00				=	1.99167318236649903973e-02		//	0x3F94650D3F4DA9F0

			164	 	 	 V01				=	2.02552581025135171496e-04		//	0x3F2A8C896C257764

			165	 	 	 V02				=	1.35608801097516229404e-06		//	0x3EB6C05A894E8CA6

			166	 	 	 V03				=	6.22741452364621501295e-09		//	0x3E3ABF1D5BA69A86

			167	 	 	 V04				=	1.66559246207992079114e-11		//	0x3DB25039DACA772A

			168)

			169	 	 //	special	cases

			170	 	 switch	{

			171	 	 case	x	<	0	||	IsNaN(x):

			172	 	 	 return	NaN()

			173	 	 case	IsInf(x,	1):

			174	 	 	 return	0

			175	 	 case	x	==	0:

			176	 	 	 return	Inf(-1)

			177	 	 }

			178	

			179	 	 if	x	>=	2	{

			180	 	 	 s,	c	:=	Sincos(x)

			181	 	 	 ss	:=	-s	-	c

			182	 	 	 cc	:=	s	-	c

			183	

			184	 	 	 //	make	sure	x+x	does	not	overflow

			185	 	 	 if	x	<	MaxFloat64/2	{

			186	 	 	 	 z	:=	Cos(x	+	x)

			187	 	 	 	 if	s*c	>	0	{

			188	 	 	 	 	 cc	=	z	/	ss

			189	 	 	 	 }	else	{

			190	 	 	 	 	 ss	=	z	/	cc

			191	 	 	 	 }

			192	 	 	 }

			193	 	 	 //	y1(x)	=	sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))

			194	 	 	 //	where	x0	=	x-3pi/4

			195	 	 	 //					Better	formula:

			196	 	 	 //									cos(x0)	=	cos(x)cos(3pi/4)+sin(x)sin(3pi/4)

			197	 	 	 //																	=		1/sqrt(2)	*	(sin(x)	-	cos(x))

			198	 	 	 //									sin(x0)	=	sin(x)cos(3pi/4)-cos(x)sin(3pi/4)

			199	 	 	 //																	=	-1/sqrt(2)	*	(cos(x)	+	sin(x))

			200	 	 	 //	To	avoid	cancellation,	use

			201	 	 	 //					sin(x)	+-	cos(x)	=	-cos(2x)/(sin(x)	-+	cos(x))

			202	 	 	 //	to	compute	the	worse	one.

			203	

			204	 	 	 var	z	float64

			205	 	 	 if	x	>	Two129	{

			206	 	 	 	 z	=	(1	/	SqrtPi)	*	ss	/	Sqrt(x)

			207	 	 	 }	else	{

			208	 	 	 	 u	:=	pone(x)

			209	 	 	 	 v	:=	qone(x)

			210	 	 	 	 z	=	(1	/	SqrtPi)	*	(u*ss	+	v*cc)	/	Sqrt(x)

			211	 	 	 }

			212	 	 	 return	z

			213	 	 }

			214	 	 if	x	<=	TwoM54	{	//	x	<	2**-54

			215	 	 	 return	-(2	/	Pi)	/	x

			216	 	 }

			217	 	 z	:=	x	*	x

			218	 	 u	:=	U00	+	z*(U01+z*(U02+z*(U03+z*U04)))

			219	 	 v	:=	1	+	z*(V00+z*(V01+z*(V02+z*(V03+z*V04))))

			220	 	 return	x*(u/v)	+	(2/Pi)*(J1(x)*Log(x)-1/x)

			221	 }

			222	

			223	 //	For	x	>=	8,	the	asymptotic	expansions	of	pone	is

			224	 //						1	+	15/128	s**2	-	4725/2**15	s**4	-	...,	where	s	=	1/x.

			225	 //	We	approximate	pone	by

			226	 //						pone(x)	=	1	+	(R/S)

			227	 //	where	R	=	pr0	+	pr1*s**2	+	pr2*s**4	+	...	+	pr5*s**10

			228	 //							S	=	1	+	ps0*s**2	+	...	+	ps4*s**10

			229	 //	and

			230	 //						|	pone(x)-1-R/S	|	<=	2**(-60.06)

			231	

			232	 //	for	x	in	[inf,	8]=1/[0,0.125]

			233	 var	p1R8	=	[6]float64{

			234	 	 0.00000000000000000000e+00,	//	0x0000000000000000

			235	 	 1.17187499999988647970e-01,	//	0x3FBDFFFFFFFFFCCE

			236	 	 1.32394806593073575129e+01,	//	0x402A7A9D357F7FCE

			237	 	 4.12051854307378562225e+02,	//	0x4079C0D4652EA590

			238	 	 3.87474538913960532227e+03,	//	0x40AE457DA3A532CC

			239	 	 7.91447954031891731574e+03,	//	0x40BEEA7AC32782DD

			240	 }

			241	 var	p1S8	=	[5]float64{

			242	 	 1.14207370375678408436e+02,	//	0x405C8D458E656CAC

			243	 	 3.65093083420853463394e+03,	//	0x40AC85DC964D274F

			244	 	 3.69562060269033463555e+04,	//	0x40E20B8697C5BB7F

			245	 	 9.76027935934950801311e+04,	//	0x40F7D42CB28F17BB

			246	 	 3.08042720627888811578e+04,	//	0x40DE1511697A0B2D

			247	 }

			248	

			249	 //	for	x	in	[8,4.5454]	=	1/[0.125,0.22001]

			250	 var	p1R5	=	[6]float64{

			251	 	 1.31990519556243522749e-11,	//	0x3DAD0667DAE1CA7D

			252	 	 1.17187493190614097638e-01,	//	0x3FBDFFFFE2C10043

			253	 	 6.80275127868432871736e+00,	//	0x401B36046E6315E3

			254	 	 1.08308182990189109773e+02,	//	0x405B13B9452602ED

			255	 	 5.17636139533199752805e+02,	//	0x40802D16D052D649

			256	 	 5.28715201363337541807e+02,	//	0x408085B8BB7E0CB7

			257	 }

			258	 var	p1S5	=	[5]float64{

			259	 	 5.92805987221131331921e+01,	//	0x404DA3EAA8AF633D

			260	 	 9.91401418733614377743e+02,	//	0x408EFB361B066701

			261	 	 5.35326695291487976647e+03,	//	0x40B4E9445706B6FB

			262	 	 7.84469031749551231769e+03,	//	0x40BEA4B0B8A5BB15

			263	 	 1.50404688810361062679e+03,	//	0x40978030036F5E51

			264	 }

			265	

			266	 //	for	x	in[4.5453,2.8571]	=	1/[0.2199,0.35001]

			267	 var	p1R3	=	[6]float64{

			268	 	 3.02503916137373618024e-09,	//	0x3E29FC21A7AD9EDD

			269	 	 1.17186865567253592491e-01,	//	0x3FBDFFF55B21D17B

			270	 	 3.93297750033315640650e+00,	//	0x400F76BCE85EAD8A

			271	 	 3.51194035591636932736e+01,	//	0x40418F489DA6D129

			272	 	 9.10550110750781271918e+01,	//	0x4056C3854D2C1837

			273	 	 4.85590685197364919645e+01,	//	0x4048478F8EA83EE5

			274	 }

			275	 var	p1S3	=	[5]float64{

			276	 	 3.47913095001251519989e+01,	//	0x40416549A134069C

			277	 	 3.36762458747825746741e+02,	//	0x40750C3307F1A75F

			278	 	 1.04687139975775130551e+03,	//	0x40905B7C5037D523

			279	 	 8.90811346398256432622e+02,	//	0x408BD67DA32E31E9

			280	 	 1.03787932439639277504e+02,	//	0x4059F26D7C2EED53

			281	 }

			282	

			283	 //	for	x	in	[2.8570,2]	=	1/[0.3499,0.5]

			284	 var	p1R2	=	[6]float64{

			285	 	 1.07710830106873743082e-07,	//	0x3E7CE9D4F65544F4

			286	 	 1.17176219462683348094e-01,	//	0x3FBDFF42BE760D83

			287	 	 2.36851496667608785174e+00,	//	0x4002F2B7F98FAEC0

			288	 	 1.22426109148261232917e+01,	//	0x40287C377F71A964

			289	 	 1.76939711271687727390e+01,	//	0x4031B1A8177F8EE2

			290	 	 5.07352312588818499250e+00,	//	0x40144B49A574C1FE

			291	 }

			292	 var	p1S2	=	[5]float64{

			293	 	 2.14364859363821409488e+01,	//	0x40356FBD8AD5ECDC

			294	 	 1.25290227168402751090e+02,	//	0x405F529314F92CD5

			295	 	 2.32276469057162813669e+02,	//	0x406D08D8D5A2DBD9

			296	 	 1.17679373287147100768e+02,	//	0x405D6B7ADA1884A9

			297	 	 8.36463893371618283368e+00,	//	0x4020BAB1F44E5192

			298	 }

			299	

			300	 func	pone(x	float64)	float64	{

			301	 	 var	p	[6]float64

			302	 	 var	q	[5]float64

			303	 	 if	x	>=	8	{

			304	 	 	 p	=	p1R8

			305	 	 	 q	=	p1S8

			306	 	 }	else	if	x	>=	4.5454	{

			307	 	 	 p	=	p1R5

			308	 	 	 q	=	p1S5

			309	 	 }	else	if	x	>=	2.8571	{

			310	 	 	 p	=	p1R3

			311	 	 	 q	=	p1S3

			312	 	 }	else	if	x	>=	2	{

			313	 	 	 p	=	p1R2

			314	 	 	 q	=	p1S2

			315	 	 }

			316	 	 z	:=	1	/	(x	*	x)

			317	 	 r	:=	p[0]	+	z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))

			318	 	 s	:=	1.0	+	z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))))

			319	 	 return	1	+	r/s

			320	 }

			321	

			322	 //	For	x	>=	8,	the	asymptotic	expansions	of	qone	is

			323	 //						3/8	s	-	105/1024	s**3	-	...,	where	s	=	1/x.

			324	 //	We	approximate	qone	by

			325	 //						qone(x)	=	s*(0.375	+	(R/S))

			326	 //	where	R	=	qr1*s**2	+	qr2*s**4	+	...	+	qr5*s**10

			327	 //							S	=	1	+	qs1*s**2	+	...	+	qs6*s**12

			328	 //	and

			329	 //						|	qone(x)/s	-0.375-R/S	|	<=	2**(-61.13)

			330	

			331	 //	for	x	in	[inf,	8]	=	1/[0,0.125]

			332	 var	q1R8	=	[6]float64{

			333	 	 0.00000000000000000000e+00,		//	0x0000000000000000

			334	 	 -1.02539062499992714161e-01,	//	0xBFBA3FFFFFFFFDF3

			335	 	 -1.62717534544589987888e+01,	//	0xC0304591A26779F7

			336	 	 -7.59601722513950107896e+02,	//	0xC087BCD053E4B576

			337	 	 -1.18498066702429587167e+04,	//	0xC0C724E740F87415

			338	 	 -4.84385124285750353010e+04,	//	0xC0E7A6D065D09C6A

			339	 }

			340	 var	q1S8	=	[6]float64{

			341	 	 1.61395369700722909556e+02,		//	0x40642CA6DE5BCDE5

			342	 	 7.82538599923348465381e+03,		//	0x40BE9162D0D88419

			343	 	 1.33875336287249578163e+05,		//	0x4100579AB0B75E98

			344	 	 7.19657723683240939863e+05,		//	0x4125F65372869C19

			345	 	 6.66601232617776375264e+05,		//	0x412457D27719AD5C

			346	 	 -2.94490264303834643215e+05,	//	0xC111F9690EA5AA18

			347	 }

			348	

			349	 //	for	x	in	[8,4.5454]	=	1/[0.125,0.22001]

			350	 var	q1R5	=	[6]float64{

			351	 	 -2.08979931141764104297e-11,	//	0xBDB6FA431AA1A098

			352	 	 -1.02539050241375426231e-01,	//	0xBFBA3FFFCB597FEF

			353	 	 -8.05644828123936029840e+00,	//	0xC0201CE6CA03AD4B

			354	 	 -1.83669607474888380239e+02,	//	0xC066F56D6CA7B9B0

			355	 	 -1.37319376065508163265e+03,	//	0xC09574C66931734F

			356	 	 -2.61244440453215656817e+03,	//	0xC0A468E388FDA79D

			357	 }

			358	 var	q1S5	=	[6]float64{

			359	 	 8.12765501384335777857e+01,		//	0x405451B2FF5A11B2

			360	 	 1.99179873460485964642e+03,		//	0x409F1F31E77BF839

			361	 	 1.74684851924908907677e+04,		//	0x40D10F1F0D64CE29

			362	 	 4.98514270910352279316e+04,		//	0x40E8576DAABAD197

			363	 	 2.79480751638918118260e+04,		//	0x40DB4B04CF7C364B

			364	 	 -4.71918354795128470869e+03,	//	0xC0B26F2EFCFFA004

			365	 }

			366	

			367	 //	for	x	in	[4.5454,2.8571]	=	1/[0.2199,0.35001]	???

			368	 var	q1R3	=	[6]float64{

			369	 	 -5.07831226461766561369e-09,	//	0xBE35CFA9D38FC84F

			370	 	 -1.02537829820837089745e-01,	//	0xBFBA3FEB51AEED54

			371	 	 -4.61011581139473403113e+00,	//	0xC01270C23302D9FF

			372	 	 -5.78472216562783643212e+01,	//	0xC04CEC71C25D16DA

			373	 	 -2.28244540737631695038e+02,	//	0xC06C87D34718D55F

			374	 	 -2.19210128478909325622e+02,	//	0xC06B66B95F5C1BF6

			375	 }

			376	 var	q1S3	=	[6]float64{

			377	 	 4.76651550323729509273e+01,		//	0x4047D523CCD367E4

			378	 	 6.73865112676699709482e+02,		//	0x40850EEBC031EE3E

			379	 	 3.38015286679526343505e+03,		//	0x40AA684E448E7C9A

			380	 	 5.54772909720722782367e+03,		//	0x40B5ABBAA61D54A6

			381	 	 1.90311919338810798763e+03,		//	0x409DBC7A0DD4DF4B

			382	 	 -1.35201191444307340817e+02,	//	0xC060E670290A311F

			383	 }

			384	

			385	 //	for	x	in	[2.8570,2]	=	1/[0.3499,0.5]

			386	 var	q1R2	=	[6]float64{

			387	 	 -1.78381727510958865572e-07,	//	0xBE87F12644C626D2

			388	 	 -1.02517042607985553460e-01,	//	0xBFBA3E8E9148B010

			389	 	 -2.75220568278187460720e+00,	//	0xC006048469BB4EDA

			390	 	 -1.96636162643703720221e+01,	//	0xC033A9E2C168907F

			391	 	 -4.23253133372830490089e+01,	//	0xC04529A3DE104AAA

			392	 	 -2.13719211703704061733e+01,	//	0xC0355F3639CF6E52

			393	 }

			394	 var	q1S2	=	[6]float64{

			395	 	 2.95333629060523854548e+01,		//	0x403D888A78AE64FF

			396	 	 2.52981549982190529136e+02,		//	0x406F9F68DB821CBA

			397	 	 7.57502834868645436472e+02,		//	0x4087AC05CE49A0F7

			398	 	 7.39393205320467245656e+02,		//	0x40871B2548D4C029

			399	 	 1.55949003336666123687e+02,		//	0x40637E5E3C3ED8D4

			400	 	 -4.95949898822628210127e+00,	//	0xC013D686E71BE86B

			401	 }

			402	

			403	 func	qone(x	float64)	float64	{

			404	 	 var	p,	q	[6]float64

			405	 	 if	x	>=	8	{

			406	 	 	 p	=	q1R8

			407	 	 	 q	=	q1S8

			408	 	 }	else	if	x	>=	4.5454	{

			409	 	 	 p	=	q1R5

			410	 	 	 q	=	q1S5

			411	 	 }	else	if	x	>=	2.8571	{

			412	 	 	 p	=	q1R3

			413	 	 	 q	=	q1S3

			414	 	 }	else	if	x	>=	2	{

			415	 	 	 p	=	q1R2

			416	 	 	 q	=	q1S2

			417	 	 }

			418	 	 z	:=	1	/	(x	*	x)

			419	 	 r	:=	p[0]	+	z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))

			420	 	 s	:=	1	+	z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))))

			421	 	 return	(0.375	+	r/s)	/	x

			422	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/jn.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 /*

					8	 	 Bessel	function	of	the	first	and	second	kinds	of	order	n.

					9	 */

				10	

				11	 //	The	original	C	code	and	the	long	comment	below	are

				12	 //	from	FreeBSD's	/usr/src/lib/msun/src/e_jn.c	and

				13	 //	came	with	this	notice.		The	go	code	is	a	simplified

				14	 //	version	of	the	original	C.

				15	 //

				16	 //	==

				17	 //	Copyright	(C)	1993	by	Sun	Microsystems,	Inc.	All	rights	reserved.

				18	 //

				19	 //	Developed	at	SunPro,	a	Sun	Microsystems,	Inc.	business.

				20	 //	Permission	to	use,	copy,	modify,	and	distribute	this

				21	 //	software	is	freely	granted,	provided	that	this	notice

				22	 //	is	preserved.

				23	 //	==

				24	 //

				25	 //	__ieee754_jn(n,	x),	__ieee754_yn(n,	x)

				26	 //	floating	point	Bessel's	function	of	the	1st	and	2nd	kind

				27	 //	of	order	n

				28	 //

				29	 //	Special	cases:

				30	 //						y0(0)=y1(0)=yn(n,0)	=	-inf	with	division	by	zero	signal;

				31	 //						y0(-ve)=y1(-ve)=yn(n,-ve)	are	NaN	with	invalid	signal.

				32	 //	Note	2.	About	jn(n,x),	yn(n,x)

				33	 //						For	n=0,	j0(x)	is	called,

				34	 //						for	n=1,	j1(x)	is	called,

				35	 //						for	n<x,	forward	recursion	is	used	starting

				36	 //						from	values	of	j0(x)	and	j1(x).

				37	 //						for	n>x,	a	continued	fraction	approximation	to

				38	 //						j(n,x)/j(n-1,x)	is	evaluated	and	then	backward

				39	 //						recursion	is	used	starting	from	a	supposed	value

				40	 //						for	j(n,x).	The	resulting	value	of	j(0,x)	is

				41	 //						compared	with	the	actual	value	to	correct	the

				42	 //						supposed	value	of	j(n,x).

				43	 //

				44	 //						yn(n,x)	is	similar	in	all	respects,	except

				45	 //						that	forward	recursion	is	used	for	all

				46	 //						values	of	n>1.

				47	

				48	 //	Jn	returns	the	order-n	Bessel	function	of	the	first	kind.

				49	 //

				50	 //	Special	cases	are:

				51	 //	 Jn(n,	±Inf)	=	0

				52	 //	 Jn(n,	NaN)	=	NaN

				53	 func	Jn(n	int,	x	float64)	float64	{

				54	 	 const	(

				55	 	 	 TwoM29	=	1.0	/	(1	<<	29)	//	2**-29	0x3e10000000000000

				56	 	 	 Two302	=	1	<<	302								//	2**302	0x52D0000000000000

				57)

				58	 	 //	special	cases

				59	 	 switch	{

				60	 	 case	IsNaN(x):

				61	 	 	 return	x

				62	 	 case	IsInf(x,	0):

				63	 	 	 return	0

				64	 	 }

				65	 	 //	J(-n,	x)	=	(-1)**n	*	J(n,	x),	J(n,	-x)	=	(-1)**n	*	J(n,	x)

				66	 	 //	Thus,	J(-n,	x)	=	J(n,	-x)

				67	

				68	 	 if	n	==	0	{

				69	 	 	 return	J0(x)

				70	 	 }

				71	 	 if	x	==	0	{

				72	 	 	 return	0

				73	 	 }

				74	 	 if	n	<	0	{

				75	 	 	 n,	x	=	-n,	-x

				76	 	 }

				77	 	 if	n	==	1	{

				78	 	 	 return	J1(x)

				79	 	 }

				80	 	 sign	:=	false

				81	 	 if	x	<	0	{

				82	 	 	 x	=	-x

				83	 	 	 if	n&1	==	1	{

				84	 	 	 	 sign	=	true	//	odd	n	and	negative	x

				85	 	 	 }

				86	 	 }

				87	 	 var	b	float64

				88	 	 if	float64(n)	<=	x	{

				89	 	 	 //	Safe	to	use	J(n+1,x)=2n/x	*J(n,x)-J(n-1,x)

				90	 	 	 if	x	>=	Two302	{	//	x	>	2**302

				91	

				92	 	 	 	 //	(x	>>	n**2)

				93	 	 	 	 //										Jn(x)	=	cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)

				94	 	 	 	 //										Yn(x)	=	sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)

				95	 	 	 	 //										Let	s=sin(x),	c=cos(x),

				96	 	 	 	 //														xn=x-(2n+1)*pi/4,	sqt2	=	sqrt(2),then

				97	 	 	 	 //

				98	 	 	 	 //																	n				sin(xn)*sqt2				cos(xn)*sqt2

				99	 	 	 	 //														----------------------------------

			100	 	 	 	 //																	0					s-c													c+s

			101	 	 	 	 //																	1				-s-c												-c+s

			102	 	 	 	 //																	2				-s+c												-c-s

			103	 	 	 	 //																	3					s+c													c-s

			104	

			105	 	 	 	 var	temp	float64

			106	 	 	 	 switch	n	&	3	{

			107	 	 	 	 case	0:

			108	 	 	 	 	 temp	=	Cos(x)	+	Sin(x)

			109	 	 	 	 case	1:

			110	 	 	 	 	 temp	=	-Cos(x)	+	Sin(x)

			111	 	 	 	 case	2:

			112	 	 	 	 	 temp	=	-Cos(x)	-	Sin(x)

			113	 	 	 	 case	3:

			114	 	 	 	 	 temp	=	Cos(x)	-	Sin(x)

			115	 	 	 	 }

			116	 	 	 	 b	=	(1	/	SqrtPi)	*	temp	/	Sqrt(x)

			117	 	 	 }	else	{

			118	 	 	 	 b	=	J1(x)

			119	 	 	 	 for	i,	a	:=	1,	J0(x);	i	<	n;	i++	{

			120	 	 	 	 	 a,	b	=	b,	b*(float64(i+i)/x)-a	

			121	 	 	 	 }

			122	 	 	 }

			123	 	 }	else	{

			124	 	 	 if	x	<	TwoM29	{	//	x	<	2**-29

			125	 	 	 	 //	x	is	tiny,	return	the	first	Taylor	expansion	of	J(n,x)

			126	 	 	 	 //	J(n,x)	=	1/n!*(x/2)**n		-	...

			127	

			128	 	 	 	 if	n	>	33	{	//	underflow

			129	 	 	 	 	 b	=	0

			130	 	 	 	 }	else	{

			131	 	 	 	 	 temp	:=	x	*	0.5

			132	 	 	 	 	 b	=	temp

			133	 	 	 	 	 a	:=	1.0

			134	 	 	 	 	 for	i	:=	2;	i	<=	n;	i++	{

			135	 	 	 	 	 	 a	*=	float64(i)	//	a	=	n!

			136	 	 	 	 	 	 b	*=	temp							//	b	=	(x/2)**n

			137	 	 	 	 	 }

			138	 	 	 	 	 b	/=	a

			139	 	 	 	 }

			140	 	 	 }	else	{

			141	 	 	 	 //	use	backward	recurrence

			142	 	 	 	 //																						x						x**2						x**2

			143	 	 	 	 //		J(n,x)/J(n-1,x)	=		----			------			------		

			144	 	 	 	 //																						2n		-	2(n+1)	-	2(n+2)

			145	 	 	 	 //

			146	 	 	 	 //																						1						1								1

			147	 	 	 	 //		(for	large	x)			=		----		------			------		

			148	 	 	 	 //																						2n			2(n+1)			2(n+2)

			149	 	 	 	 //																						--	-	------	-	------	-

			150	 	 	 	 //																							x					x									x

			151	 	 	 	 //

			152	 	 	 	 //	Let	w	=	2n/x	and	h=2/x,	then	the	above	quotient

			153	 	 	 	 //	is	equal	to	the	continued	fraction:

			154	 	 	 	 //																		1

			155	 	 	 	 //						=	-----------------------

			156	 	 	 	 //																					1

			157	 	 	 	 //									w	-	-----------------

			158	 	 	 	 //																								1

			159	 	 	 	 //														w+h	-	---------

			160	 	 	 	 //																					w+2h	-	...

			161	 	 	 	 //

			162	 	 	 	 //	To	determine	how	many	terms	needed,	let

			163	 	 	 	 //	Q(0)	=	w,	Q(1)	=	w(w+h)	-	1,

			164	 	 	 	 //	Q(k)	=	(w+k*h)*Q(k-1)	-	Q(k-2),

			165	 	 	 	 //	When	Q(k)	>	1e4	 good	for	single

			166	 	 	 	 //	When	Q(k)	>	1e9	 good	for	double

			167	 	 	 	 //	When	Q(k)	>	1e17	 good	for	quadruple

			168	

			169	 	 	 	 //	determine	k

			170	 	 	 	 w	:=	float64(n+n)	/	x

			171	 	 	 	 h	:=	2	/	x

			172	 	 	 	 q0	:=	w

			173	 	 	 	 z	:=	w	+	h

			174	 	 	 	 q1	:=	w*z	-	1

			175	 	 	 	 k	:=	1

			176	 	 	 	 for	q1	<	1e9	{

			177	 	 	 	 	 k	+=	1

			178	 	 	 	 	 z	+=	h

			179	 	 	 	 	 q0,	q1	=	q1,	z*q1-q0

			180	 	 	 	 }

			181	 	 	 	 m	:=	n	+	n

			182	 	 	 	 t	:=	0.0

			183	 	 	 	 for	i	:=	2	*	(n	+	k);	i	>=	m;	i	-=	2	{

			184	 	 	 	 	 t	=	1	/	(float64(i)/x	-	t)

			185	 	 	 	 }

			186	 	 	 	 a	:=	t

			187	 	 	 	 b	=	1

			188	 	 	 	 //		estimate	log((2/x)**n*n!)	=	n*log(2/x)+n*ln(n)

			189	 	 	 	 //		Hence,	if	n*(log(2n/x))	>	...

			190	 	 	 	 //		single	8.8722839355e+01

			191	 	 	 	 //		double	7.09782712893383973096e+02

			192	 	 	 	 //		long	double	1.1356523406294143949491931077970765006170e+04

			193	 	 	 	 //		then	recurrent	value	may	overflow	and	the	result	is

			194	 	 	 	 //		likely	underflow	to	zero

			195	

			196	 	 	 	 tmp	:=	float64(n)

			197	 	 	 	 v	:=	2	/	x

			198	 	 	 	 tmp	=	tmp	*	Log(Abs(v*tmp))

			199	 	 	 	 if	tmp	<	7.09782712893383973096e+02	{

			200	 	 	 	 	 for	i	:=	n	-	1;	i	>	0;	i--	{

			201	 	 	 	 	 	 di	:=	float64(i	+	i)

			202	 	 	 	 	 	 a,	b	=	b,	b*di/x-a

			203	 	 	 	 	 	 di	-=	2

			204	 	 	 	 	 }

			205	 	 	 	 }	else	{

			206	 	 	 	 	 for	i	:=	n	-	1;	i	>	0;	i--	{

			207	 	 	 	 	 	 di	:=	float64(i	+	i)

			208	 	 	 	 	 	 a,	b	=	b,	b*di/x-a

			209	 	 	 	 	 	 di	-=	2

			210	 	 	 	 	 	 //	scale	b	to	avoid	spurious	overflow

			211	 	 	 	 	 	 if	b	>	1e100	{

			212	 	 	 	 	 	 	 a	/=	b

			213	 	 	 	 	 	 	 t	/=	b

			214	 	 	 	 	 	 	 b	=	1

			215	 	 	 	 	 	 }

			216	 	 	 	 	 }

			217	 	 	 	 }

			218	 	 	 	 b	=	t	*	J0(x)	/	b

			219	 	 	 }

			220	 	 }

			221	 	 if	sign	{

			222	 	 	 return	-b

			223	 	 }

			224	 	 return	b

			225	 }

			226	

			227	 //	Yn	returns	the	order-n	Bessel	function	of	the	second	kind.

			228	 //

			229	 //	Special	cases	are:

			230	 //	 Yn(n,	+Inf)	=	0

			231	 //	 Yn(n	>	0,	0)	=	-Inf

			232	 //	 Yn(n	<	0,	0)	=	+Inf	if	n	is	odd,	-Inf	if	n	is	even

			233	 //	 Y1(n,	x	<	0)	=	NaN

			234	 //	 Y1(n,	NaN)	=	NaN

			235	 func	Yn(n	int,	x	float64)	float64	{

			236	 	 const	Two302	=	1	<<	302	//	2**302	0x52D0000000000000

			237	 	 //	special	cases

			238	 	 switch	{

			239	 	 case	x	<	0	||	IsNaN(x):

			240	 	 	 return	NaN()

			241	 	 case	IsInf(x,	1):

			242	 	 	 return	0

			243	 	 }

			244	

			245	 	 if	n	==	0	{

			246	 	 	 return	Y0(x)

			247	 	 }

			248	 	 if	x	==	0	{

			249	 	 	 if	n	<	0	&&	n&1	==	1	{

			250	 	 	 	 return	Inf(1)

			251	 	 	 }

			252	 	 	 return	Inf(-1)

			253	 	 }

			254	 	 sign	:=	false

			255	 	 if	n	<	0	{

			256	 	 	 n	=	-n

			257	 	 	 if	n&1	==	1	{

			258	 	 	 	 sign	=	true	//	sign	true	if	n	<	0	&&	|n|	odd

			259	 	 	 }

			260	 	 }

			261	 	 if	n	==	1	{

			262	 	 	 if	sign	{

			263	 	 	 	 return	-Y1(x)

			264	 	 	 }

			265	 	 	 return	Y1(x)

			266	 	 }

			267	 	 var	b	float64

			268	 	 if	x	>=	Two302	{	//	x	>	2**302

			269	 	 	 //	(x	>>	n**2)

			270	 	 	 //	 				Jn(x)	=	cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)

			271	 	 	 //	 				Yn(x)	=	sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)

			272	 	 	 //	 				Let	s=sin(x),	c=cos(x),

			273	 	 	 //	 	 xn=x-(2n+1)*pi/4,	sqt2	=	sqrt(2),then

			274	 	 	 //

			275	 	 	 //	 	 			n	 sin(xn)*sqt2	 cos(xn)*sqt2

			276	 	 	 //	 	 ----------------------------------

			277	 	 	 //	 	 			0	 	s-c	 	 	c+s

			278	 	 	 //	 	 			1	 -s-c		 	 -c+s

			279	 	 	 //	 	 			2	 -s+c	 	 -c-s

			280	 	 	 //	 	 			3	 	s+c	 	 	c-s

			281	

			282	 	 	 var	temp	float64

			283	 	 	 switch	n	&	3	{

			284	 	 	 case	0:

			285	 	 	 	 temp	=	Sin(x)	-	Cos(x)

			286	 	 	 case	1:

			287	 	 	 	 temp	=	-Sin(x)	-	Cos(x)

			288	 	 	 case	2:

			289	 	 	 	 temp	=	-Sin(x)	+	Cos(x)

			290	 	 	 case	3:

			291	 	 	 	 temp	=	Sin(x)	+	Cos(x)

			292	 	 	 }

			293	 	 	 b	=	(1	/	SqrtPi)	*	temp	/	Sqrt(x)

			294	 	 }	else	{

			295	 	 	 a	:=	Y0(x)

			296	 	 	 b	=	Y1(x)

			297	 	 	 //	quit	if	b	is	-inf

			298	 	 	 for	i	:=	1;	i	<	n	&&	!IsInf(b,	-1);	i++	{

			299	 	 	 	 a,	b	=	b,	(float64(i+i)/x)*b-a

			300	 	 	 }

			301	 	 }

			302	 	 if	sign	{

			303	 	 	 return	-b

			304	 	 }

			305	 	 return	b

			306	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/ldexp.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	Ldexp	is	the	inverse	of	Frexp.

					8	 //	It	returns	frac	×	2**exp.

					9	 //

				10	 //	Special	cases	are:

				11	 //	 Ldexp(±0,	exp)	=	±0

				12	 //	 Ldexp(±Inf,	exp)	=	±Inf

				13	 //	 Ldexp(NaN,	exp)	=	NaN

				14	 func	Ldexp(frac	float64,	exp	int)	float64

				15	

				16	 func	ldexp(frac	float64,	exp	int)	float64	{

				17	 	 //	special	cases

				18	 	 switch	{

				19	 	 case	frac	==	0:

				20	 	 	 return	frac	//	correctly	return	-0

				21	 	 case	IsInf(frac,	0)	||	IsNaN(frac):

				22	 	 	 return	frac

				23	 	 }

				24	 	 frac,	e	:=	normalize(frac)

				25	 	 exp	+=	e

				26	 	 x	:=	Float64bits(frac)

				27	 	 exp	+=	int(x>>shift)&mask	-	bias

				28	 	 if	exp	<	-1074	{

				29	 	 	 return	Copysign(0,	frac)	//	underflow

				30	 	 }

				31	 	 if	exp	>	1023	{	//	overflow

				32	 	 	 if	frac	<	0	{

				33	 	 	 	 return	Inf(-1)

				34	 	 	 }

				35	 	 	 return	Inf(1)

				36	 	 }

				37	 	 var	m	float64	=	1

				38	 	 if	exp	<	-1022	{	//	denormal

				39	 	 	 exp	+=	52

				40	 	 	 m	=	1.0	/	(1	<<	52)	//	2**-52

				41	 	 }

				42	 	 x	&^=	mask	<<	shift

				43	 	 x	|=	uint64(exp+bias)	<<	shift

				44	 	 return	m	*	Float64frombits(x)

				45	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/lgamma.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 /*

					8	 	 Floating-point	logarithm	of	the	Gamma	function.

					9	 */

				10	

				11	 //	The	original	C	code	and	the	long	comment	below	are

				12	 //	from	FreeBSD's	/usr/src/lib/msun/src/e_lgamma_r.c	and

				13	 //	came	with	this	notice.		The	go	code	is	a	simplified

				14	 //	version	of	the	original	C.

				15	 //

				16	 //	==

				17	 //	Copyright	(C)	1993	by	Sun	Microsystems,	Inc.	All	rights	reserved.

				18	 //

				19	 //	Developed	at	SunPro,	a	Sun	Microsystems,	Inc.	business.

				20	 //	Permission	to	use,	copy,	modify,	and	distribute	this

				21	 //	software	is	freely	granted,	provided	that	this	notice

				22	 //	is	preserved.

				23	 //	==

				24	 //

				25	 //	__ieee754_lgamma_r(x,	signgamp)

				26	 //	Reentrant	version	of	the	logarithm	of	the	Gamma	function

				27	 //	with	user	provided	pointer	for	the	sign	of	Gamma(x).

				28	 //

				29	 //	Method:

				30	 //			1.	Argument	Reduction	for	0	<	x	<=	8

				31	 //						Since	gamma(1+s)=s*gamma(s),	for	x	in	[0,8],	we	may

				32	 //						reduce	x	to	a	number	in	[1.5,2.5]	by

				33	 //														lgamma(1+s)	=	log(s)	+	lgamma(s)

				34	 //						for	example,

				35	 //														lgamma(7.3)	=	log(6.3)	+	lgamma(6.3)

				36	 //																										=	log(6.3*5.3)	+	lgamma(5.3)

				37	 //																										=	log(6.3*5.3*4.3*3.3*2.3)	+	lgamma(2.3)

				38	 //			2.	Polynomial	approximation	of	lgamma	around	its

				39	 //						minimum	(ymin=1.461632144968362245)	to	maintain	monotonicity.

				40	 //						On	[ymin-0.23,	ymin+0.27]	(i.e.,	[1.23164,1.73163]),	use

				41	 //														Let	z	=	x-ymin;

				42	 //														lgamma(x)	=	-1.214862905358496078218	+	z**2*poly(z)

				43	 //														poly(z)	is	a	14	degree	polynomial.

				44	 //			2.	Rational	approximation	in	the	primary	interval	[2,3]

				45	 //						We	use	the	following	approximation:

				46	 //														s	=	x-2.0;

				47	 //														lgamma(x)	=	0.5*s	+	s*P(s)/Q(s)

				48	 //						with	accuracy

				49	 //														|P/Q	-	(lgamma(x)-0.5s)|	<	2**-61.71

				50	 //						Our	algorithms	are	based	on	the	following	observation

				51	 //

				52	 //																													zeta(2)-1				2				zeta(3)-1				3

				53	 //	lgamma(2+s)	=	s*(1-Euler)	+	---------	*	s		-		---------	*	s		+	...

				54	 //																																	2																	3

				55	 //

				56	 //						where	Euler	=	0.5772156649...	is	the	Euler	constant,	which

				57	 //						is	very	close	to	0.5.

				58	 //

				59	 //			3.	For	x>=8,	we	have

				60	 //						lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....

				61	 //						(better	formula:

				62	 //									lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1)	+	...)

				63	 //						Let	z	=	1/x,	then	we	approximation

				64	 //														f(z)	=	lgamma(x)	-	(x-0.5)(log(x)-1)

				65	 //						by

				66	 //																																		3							5													11

				67	 //														w	=	w0	+	w1*z	+	w2*z		+	w3*z		+	...	+	w6*z

				68	 //						where

				69	 //														|w	-	f(z)|	<	2**-58.74

				70	 //

				71	 //			4.	For	negative	x,	since	(G	is	gamma	function)

				72	 //														-x*G(-x)*G(x)	=	pi/sin(pi*x),

				73	 //						we	have

				74	 //														G(x)	=	pi/(sin(pi*x)*(-x)*G(-x))

				75	 //						since	G(-x)	is	positive,	sign(G(x))	=	sign(sin(pi*x))	for	x<0

				76	 //						Hence,	for	x<0,	signgam	=	sign(sin(pi*x))	and

				77	 //														lgamma(x)	=	log(|Gamma(x)|)

				78	 //																								=	log(pi/(|x*sin(pi*x)|))	-	lgamma(-x);

				79	 //						Note:	one	should	avoid	computing	pi*(-x)	directly	in	the

				80	 //												computation	of	sin(pi*(-x)).

				81	 //

				82	 //			5.	Special	Cases

				83	 //														lgamma(2+s)	~	s*(1-Euler)	for	tiny	s

				84	 //														lgamma(1)=lgamma(2)=0

				85	 //														lgamma(x)	~	-log(x)	for	tiny	x

				86	 //														lgamma(0)	=	lgamma(inf)	=	inf

				87	 //														lgamma(-integer)	=	+-inf

				88	 //

				89	 //

				90	

				91	 var	_lgamA	=	[...]float64{

				92	 	 7.72156649015328655494e-02,	//	0x3FB3C467E37DB0C8

				93	 	 3.22467033424113591611e-01,	//	0x3FD4A34CC4A60FAD

				94	 	 6.73523010531292681824e-02,	//	0x3FB13E001A5562A7

				95	 	 2.05808084325167332806e-02,	//	0x3F951322AC92547B

				96	 	 7.38555086081402883957e-03,	//	0x3F7E404FB68FEFE8

				97	 	 2.89051383673415629091e-03,	//	0x3F67ADD8CCB7926B

				98	 	 1.19270763183362067845e-03,	//	0x3F538A94116F3F5D

				99	 	 5.10069792153511336608e-04,	//	0x3F40B6C689B99C00

			100	 	 2.20862790713908385557e-04,	//	0x3F2CF2ECED10E54D

			101	 	 1.08011567247583939954e-04,	//	0x3F1C5088987DFB07

			102	 	 2.52144565451257326939e-05,	//	0x3EFA7074428CFA52

			103	 	 4.48640949618915160150e-05,	//	0x3F07858E90A45837

			104	 }

			105	 var	_lgamR	=	[...]float64{

			106	 	 1.0,	//	placeholder

			107	 	 1.39200533467621045958e+00,	//	0x3FF645A762C4AB74

			108	 	 7.21935547567138069525e-01,	//	0x3FE71A1893D3DCDC

			109	 	 1.71933865632803078993e-01,	//	0x3FC601EDCCFBDF27

			110	 	 1.86459191715652901344e-02,	//	0x3F9317EA742ED475

			111	 	 7.77942496381893596434e-04,	//	0x3F497DDACA41A95B

			112	 	 7.32668430744625636189e-06,	//	0x3EDEBAF7A5B38140

			113	 }

			114	 var	_lgamS	=	[...]float64{

			115	 	 -7.72156649015328655494e-02,	//	0xBFB3C467E37DB0C8

			116	 	 2.14982415960608852501e-01,		//	0x3FCB848B36E20878

			117	 	 3.25778796408930981787e-01,		//	0x3FD4D98F4F139F59

			118	 	 1.46350472652464452805e-01,		//	0x3FC2BB9CBEE5F2F7

			119	 	 2.66422703033638609560e-02,		//	0x3F9B481C7E939961

			120	 	 1.84028451407337715652e-03,		//	0x3F5E26B67368F239

			121	 	 3.19475326584100867617e-05,		//	0x3F00BFECDD17E945

			122	 }

			123	 var	_lgamT	=	[...]float64{

			124	 	 4.83836122723810047042e-01,		//	0x3FDEF72BC8EE38A2

			125	 	 -1.47587722994593911752e-01,	//	0xBFC2E4278DC6C509

			126	 	 6.46249402391333854778e-02,		//	0x3FB08B4294D5419B

			127	 	 -3.27885410759859649565e-02,	//	0xBFA0C9A8DF35B713

			128	 	 1.79706750811820387126e-02,		//	0x3F9266E7970AF9EC

			129	 	 -1.03142241298341437450e-02,	//	0xBF851F9FBA91EC6A

			130	 	 6.10053870246291332635e-03,		//	0x3F78FCE0E370E344

			131	 	 -3.68452016781138256760e-03,	//	0xBF6E2EFFB3E914D7

			132	 	 2.25964780900612472250e-03,		//	0x3F6282D32E15C915

			133	 	 -1.40346469989232843813e-03,	//	0xBF56FE8EBF2D1AF1

			134	 	 8.81081882437654011382e-04,		//	0x3F4CDF0CEF61A8E9

			135	 	 -5.38595305356740546715e-04,	//	0xBF41A6109C73E0EC

			136	 	 3.15632070903625950361e-04,		//	0x3F34AF6D6C0EBBF7

			137	 	 -3.12754168375120860518e-04,	//	0xBF347F24ECC38C38

			138	 	 3.35529192635519073543e-04,		//	0x3F35FD3EE8C2D3F4

			139	 }

			140	 var	_lgamU	=	[...]float64{

			141	 	 -7.72156649015328655494e-02,	//	0xBFB3C467E37DB0C8

			142	 	 6.32827064025093366517e-01,		//	0x3FE4401E8B005DFF

			143	 	 1.45492250137234768737e+00,		//	0x3FF7475CD119BD6F

			144	 	 9.77717527963372745603e-01,		//	0x3FEF497644EA8450

			145	 	 2.28963728064692451092e-01,		//	0x3FCD4EAEF6010924

			146	 	 1.33810918536787660377e-02,		//	0x3F8B678BBF2BAB09

			147	 }

			148	 var	_lgamV	=	[...]float64{

			149	 	 1.0,

			150	 	 2.45597793713041134822e+00,	//	0x4003A5D7C2BD619C

			151	 	 2.12848976379893395361e+00,	//	0x40010725A42B18F5

			152	 	 7.69285150456672783825e-01,	//	0x3FE89DFBE45050AF

			153	 	 1.04222645593369134254e-01,	//	0x3FBAAE55D6537C88

			154	 	 3.21709242282423911810e-03,	//	0x3F6A5ABB57D0CF61

			155	 }

			156	 var	_lgamW	=	[...]float64{

			157	 	 4.18938533204672725052e-01,		//	0x3FDACFE390C97D69

			158	 	 8.33333333333329678849e-02,		//	0x3FB555555555553B

			159	 	 -2.77777777728775536470e-03,	//	0xBF66C16C16B02E5C

			160	 	 7.93650558643019558500e-04,		//	0x3F4A019F98CF38B6

			161	 	 -5.95187557450339963135e-04,	//	0xBF4380CB8C0FE741

			162	 	 8.36339918996282139126e-04,		//	0x3F4B67BA4CDAD5D1

			163	 	 -1.63092934096575273989e-03,	//	0xBF5AB89D0B9E43E4

			164	 }

			165	

			166	 //	Lgamma	returns	the	natural	logarithm	and	sign	(-1	or	+1)	of	Gamma(x).

			167	 //

			168	 //	Special	cases	are:

			169	 //	 Lgamma(+Inf)	=	+Inf

			170	 //	 Lgamma(0)	=	+Inf

			171	 //	 Lgamma(-integer)	=	+Inf

			172	 //	 Lgamma(-Inf)	=	-Inf

			173	 //	 Lgamma(NaN)	=	NaN

			174	 func	Lgamma(x	float64)	(lgamma	float64,	sign	int)	{

			175	 	 const	(

			176	 	 	 Ymin		=	1.461632144968362245

			177	 	 	 Two52	=	1	<<	52																					//	0x4330000000000000	~4.5036e+15

			178	 	 	 Two53	=	1	<<	53																					//	0x4340000000000000	~9.0072e+15

			179	 	 	 Two58	=	1	<<	58																					//	0x4390000000000000	~2.8823e+17

			180	 	 	 Tiny		=	1.0	/	(1	<<	70)													//	0x3b90000000000000	~8.47033e-22

			181	 	 	 Tc				=	1.46163214496836224576e+00		//	0x3FF762D86356BE3F

			182	 	 	 Tf				=	-1.21486290535849611461e-01	//	0xBFBF19B9BCC38A42

			183	 	 	 //	Tt	=	-(tail	of	Tf)

			184	 	 	 Tt	=	-3.63867699703950536541e-18	//	0xBC50C7CAA48A971F

			185)

			186	 	 //	special	cases

			187	 	 sign	=	1

			188	 	 switch	{

			189	 	 case	IsNaN(x):

			190	 	 	 lgamma	=	x

			191	 	 	 return

			192	 	 case	IsInf(x,	0):

			193	 	 	 lgamma	=	x

			194	 	 	 return

			195	 	 case	x	==	0:

			196	 	 	 lgamma	=	Inf(1)

			197	 	 	 return

			198	 	 }

			199	

			200	 	 neg	:=	false

			201	 	 if	x	<	0	{

			202	 	 	 x	=	-x

			203	 	 	 neg	=	true

			204	 	 }

			205	

			206	 	 if	x	<	Tiny	{	//	if	|x|	<	2**-70,	return	-log(|x|)

			207	 	 	 if	neg	{

			208	 	 	 	 sign	=	-1

			209	 	 	 }

			210	 	 	 lgamma	=	-Log(x)

			211	 	 	 return

			212	 	 }

			213	 	 var	nadj	float64

			214	 	 if	neg	{

			215	 	 	 if	x	>=	Two52	{	//	|x|	>=	2**52,	must	be	-integer

			216	 	 	 	 lgamma	=	Inf(1)

			217	 	 	 	 return

			218	 	 	 }

			219	 	 	 t	:=	sinPi(x)

			220	 	 	 if	t	==	0	{

			221	 	 	 	 lgamma	=	Inf(1)	//	-integer

			222	 	 	 	 return

			223	 	 	 }

			224	 	 	 nadj	=	Log(Pi	/	Abs(t*x))

			225	 	 	 if	t	<	0	{

			226	 	 	 	 sign	=	-1

			227	 	 	 }

			228	 	 }

			229	

			230	 	 switch	{

			231	 	 case	x	==	1	||	x	==	2:	//	purge	off	1	and	2

			232	 	 	 lgamma	=	0

			233	 	 	 return

			234	 	 case	x	<	2:	//	use	lgamma(x)	=	lgamma(x+1)	-	log(x)

			235	 	 	 var	y	float64

			236	 	 	 var	i	int

			237	 	 	 if	x	<=	0.9	{

			238	 	 	 	 lgamma	=	-Log(x)

			239	 	 	 	 switch	{

			240	 	 	 	 case	x	>=	(Ymin	-	1	+	0.27):	//	0.7316	<=	x	<=		0.9

			241	 	 	 	 	 y	=	1	-	x

			242	 	 	 	 	 i	=	0

			243	 	 	 	 case	x	>=	(Ymin	-	1	-	0.27):	//	0.2316	<=	x	<	0.7316

			244	 	 	 	 	 y	=	x	-	(Tc	-	1)

			245	 	 	 	 	 i	=	1

			246	 	 	 	 default:	//	0	<	x	<	0.2316

			247	 	 	 	 	 y	=	x

			248	 	 	 	 	 i	=	2

			249	 	 	 	 }

			250	 	 	 }	else	{

			251	 	 	 	 lgamma	=	0

			252	 	 	 	 switch	{

			253	 	 	 	 case	x	>=	(Ymin	+	0.27):	//	1.7316	<=	x	<	2

			254	 	 	 	 	 y	=	2	-	x

			255	 	 	 	 	 i	=	0

			256	 	 	 	 case	x	>=	(Ymin	-	0.27):	//	1.2316	<=	x	<	1.7316

			257	 	 	 	 	 y	=	x	-	Tc

			258	 	 	 	 	 i	=	1

			259	 	 	 	 default:	//	0.9	<	x	<	1.2316

			260	 	 	 	 	 y	=	x	-	1

			261	 	 	 	 	 i	=	2

			262	 	 	 	 }

			263	 	 	 }

			264	 	 	 switch	i	{

			265	 	 	 case	0:

			266	 	 	 	 z	:=	y	*	y

			267	 	 	 	 p1	:=	_lgamA[0]	+	z*(_lgamA[2]+z*(_lgamA[4]+z*(_lgamA[6]+z*(_lgamA[8]+z*_lgamA[10]))))

			268	 	 	 	 p2	:=	z	*	(_lgamA[1]	+	z*(+_lgamA[3]+z*(_lgamA[5]+z*(_lgamA[7]+z*(_lgamA[9]+z*_lgamA[11])))))

			269	 	 	 	 p	:=	y*p1	+	p2

			270	 	 	 	 lgamma	+=	(p	-	0.5*y)

			271	 	 	 case	1:

			272	 	 	 	 z	:=	y	*	y

			273	 	 	 	 w	:=	z	*	y

			274	 	 	 	 p1	:=	_lgamT[0]	+	w*(_lgamT[3]+w*(_lgamT[6]+w*(_lgamT[9]+w*_lgamT[12])))	

			275	 	 	 	 p2	:=	_lgamT[1]	+	w*(_lgamT[4]+w*(_lgamT[7]+w*(_lgamT[10]+w*_lgamT[13])))

			276	 	 	 	 p3	:=	_lgamT[2]	+	w*(_lgamT[5]+w*(_lgamT[8]+w*(_lgamT[11]+w*_lgamT[14])))

			277	 	 	 	 p	:=	z*p1	-	(Tt	-	w*(p2+y*p3))

			278	 	 	 	 lgamma	+=	(Tf	+	p)

			279	 	 	 case	2:

			280	 	 	 	 p1	:=	y	*	(_lgamU[0]	+	y*(_lgamU[1]+y*(_lgamU[2]+y*(_lgamU[3]+y*(_lgamU[4]+y*_lgamU[5])))))

			281	 	 	 	 p2	:=	1	+	y*(_lgamV[1]+y*(_lgamV[2]+y*(_lgamV[3]+y*(_lgamV[4]+y*_lgamV[5]))))

			282	 	 	 	 lgamma	+=	(-0.5*y	+	p1/p2)

			283	 	 	 }

			284	 	 case	x	<	8:	//	2	<=	x	<	8

			285	 	 	 i	:=	int(x)

			286	 	 	 y	:=	x	-	float64(i)

			287	 	 	 p	:=	y	*	(_lgamS[0]	+	y*(_lgamS[1]+y*(_lgamS[2]+y*(_lgamS[3]+y*(_lgamS[4]+y*(_lgamS[5]+y*_lgamS[6]))))))

			288	 	 	 q	:=	1	+	y*(_lgamR[1]+y*(_lgamR[2]+y*(_lgamR[3]+y*(_lgamR[4]+y*(_lgamR[5]+y*_lgamR[6])))))

			289	 	 	 lgamma	=	0.5*y	+	p/q

			290	 	 	 z	:=	1.0	//	Lgamma(1+s)	=	Log(s)	+	Lgamma(s)

			291	 	 	 switch	i	{

			292	 	 	 case	7:

			293	 	 	 	 z	*=	(y	+	6)

			294	 	 	 	 fallthrough

			295	 	 	 case	6:

			296	 	 	 	 z	*=	(y	+	5)

			297	 	 	 	 fallthrough

			298	 	 	 case	5:

			299	 	 	 	 z	*=	(y	+	4)

			300	 	 	 	 fallthrough

			301	 	 	 case	4:

			302	 	 	 	 z	*=	(y	+	3)

			303	 	 	 	 fallthrough

			304	 	 	 case	3:

			305	 	 	 	 z	*=	(y	+	2)

			306	 	 	 	 lgamma	+=	Log(z)

			307	 	 	 }

			308	 	 case	x	<	Two58:	//	8	<=	x	<	2**58

			309	 	 	 t	:=	Log(x)

			310	 	 	 z	:=	1	/	x

			311	 	 	 y	:=	z	*	z

			312	 	 	 w	:=	_lgamW[0]	+	z*(_lgamW[1]+y*(_lgamW[2]+y*(_lgamW[3]+y*(_lgamW[4]+y*(_lgamW[5]+y*_lgamW[6])))))

			313	 	 	 lgamma	=	(x-0.5)*(t-1)	+	w

			314	 	 default:	//	2**58	<=	x	<=	Inf

			315	 	 	 lgamma	=	x	*	(Log(x)	-	1)

			316	 	 }

			317	 	 if	neg	{

			318	 	 	 lgamma	=	nadj	-	lgamma

			319	 	 }

			320	 	 return

			321	 }

			322	

			323	 //	sinPi(x)	is	a	helper	function	for	negative	x

			324	 func	sinPi(x	float64)	float64	{

			325	 	 const	(

			326	 	 	 Two52	=	1	<<	52	//	0x4330000000000000	~4.5036e+15

			327	 	 	 Two53	=	1	<<	53	//	0x4340000000000000	~9.0072e+15

			328)

			329	 	 if	x	<	0.25	{

			330	 	 	 return	-Sin(Pi	*	x)

			331	 	 }

			332	

			333	 	 //	argument	reduction

			334	 	 z	:=	Floor(x)

			335	 	 var	n	int

			336	 	 if	z	!=	x	{	//	inexact

			337	 	 	 x	=	Mod(x,	2)

			338	 	 	 n	=	int(x	*	4)

			339	 	 }	else	{

			340	 	 	 if	x	>=	Two53	{	//	x	must	be	even

			341	 	 	 	 x	=	0

			342	 	 	 	 n	=	0

			343	 	 	 }	else	{

			344	 	 	 	 if	x	<	Two52	{

			345	 	 	 	 	 z	=	x	+	Two52	//	exact

			346	 	 	 	 }

			347	 	 	 	 n	=	int(1	&	Float64bits(z))

			348	 	 	 	 x	=	float64(n)

			349	 	 	 	 n	<<=	2

			350	 	 	 }

			351	 	 }

			352	 	 switch	n	{

			353	 	 case	0:

			354	 	 	 x	=	Sin(Pi	*	x)

			355	 	 case	1,	2:

			356	 	 	 x	=	Cos(Pi	*	(0.5	-	x))

			357	 	 case	3,	4:

			358	 	 	 x	=	Sin(Pi	*	(1	-	x))

			359	 	 case	5,	6:

			360	 	 	 x	=	-Cos(Pi	*	(x	-	1.5))

			361	 	 default:

			362	 	 	 x	=	Sin(Pi	*	(x	-	2))

			363	 	 }

			364	 	 return	-x

			365	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/log.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 /*

					8	 	 Floating-point	logarithm.

					9	 */

				10	

				11	 //	The	original	C	code,	the	long	comment,	and	the	constants

				12	 //	below	are	from	FreeBSD's	/usr/src/lib/msun/src/e_log.c

				13	 //	and	came	with	this	notice.		The	go	code	is	a	simpler

				14	 //	version	of	the	original	C.

				15	 //

				16	 //	==

				17	 //	Copyright	(C)	1993	by	Sun	Microsystems,	Inc.	All	rights	reserved.

				18	 //

				19	 //	Developed	at	SunPro,	a	Sun	Microsystems,	Inc.	business.

				20	 //	Permission	to	use,	copy,	modify,	and	distribute	this

				21	 //	software	is	freely	granted,	provided	that	this	notice

				22	 //	is	preserved.

				23	 //	==

				24	 //

				25	 //	__ieee754_log(x)

				26	 //	Return	the	logarithm	of	x

				27	 //

				28	 //	Method	:

				29	 //			1.	Argument	Reduction:	find	k	and	f	such	that

				30	 //	 	 	 x	=	2**k	*	(1+f),

				31	 //	 			where		sqrt(2)/2	<	1+f	<	sqrt(2)	.

				32	 //

				33	 //			2.	Approximation	of	log(1+f).

				34	 //	 Let	s	=	f/(2+f)	;	based	on	log(1+f)	=	log(1+s)	-	log(1-s)

				35	 //	 	 	=	2s	+	2/3	s**3	+	2/5	s**5	+,

				36	 //	 						 	=	2s	+	s*R

				37	 //						We	use	a	special	Reme	algorithm	on	[0,0.1716]	to	generate

				38	 //	 a	polynomial	of	degree	14	to	approximate	R.		The	maximum	error

				39	 //	 of	this	polynomial	approximation	is	bounded	by	2**-58.45.	In

				40	 //	 other	words,

				41	 //	 	 								2						4						6						8						10						12						14

				42	 //	 				R(z)	~	L1*s	+L2*s	+L3*s	+L4*s	+L5*s		+L6*s		+L7*s

				43	 //	 (the	values	of	L1	to	L7	are	listed	in	the	program)	and

				44	 //	 				|						2										14										|					-58.45

				45	 //	 				|	L1*s	+...+L7*s				-		R(z)	|	<=	2

				46	 //	 				|																													|

				47	 //	 Note	that	2s	=	f	-	s*f	=	f	-	hfsq	+	s*hfsq,	where	hfsq	=	f*f/2.

				48	 //	 In	order	to	guarantee	error	in	log	below	1ulp,	we	compute	log	by

				49	 //	 	 log(1+f)	=	f	-	s*(f	-	R)	 	 (if	f	is	not	too	large)

				50	 //	 	 log(1+f)	=	f	-	(hfsq	-	s*(hfsq+R)).	 (better	accuracy)

				51	 //

				52	 //	 3.	Finally,		log(x)	=	k*Ln2	+	log(1+f).

				53	 //	 	 	 				=	k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo)))

				54	 //	 			Here	Ln2	is	split	into	two	floating	point	number:

				55	 //	 	 	 Ln2_hi	+	Ln2_lo,

				56	 //	 			where	n*Ln2_hi	is	always	exact	for	|n|	<	2000.

				57	 //

				58	 //	Special	cases:

				59	 //	 log(x)	is	NaN	with	signal	if	x	<	0	(including	-INF)	;

				60	 //	 log(+INF)	is	+INF;	log(0)	is	-INF	with	signal;

				61	 //	 log(NaN)	is	that	NaN	with	no	signal.

				62	 //

				63	 //	Accuracy:

				64	 //	 according	to	an	error	analysis,	the	error	is	always	less	than

				65	 //	 1	ulp	(unit	in	the	last	place).

				66	 //

				67	 //	Constants:

				68	 //	The	hexadecimal	values	are	the	intended	ones	for	the	following

				69	 //	constants.	The	decimal	values	may	be	used,	provided	that	the

				70	 //	compiler	will	convert	from	decimal	to	binary	accurately	enough

				71	 //	to	produce	the	hexadecimal	values	shown.

				72	

				73	 //	Log	returns	the	natural	logarithm	of	x.

				74	 //

				75	 //	Special	cases	are:

				76	 //	 Log(+Inf)	=	+Inf

				77	 //	 Log(0)	=	-Inf

				78	 //	 Log(x	<	0)	=	NaN

				79	 //	 Log(NaN)	=	NaN

				80	 func	Log(x	float64)	float64

				81	

				82	 func	log(x	float64)	float64	{

				83	 	 const	(

				84	 	 	 Ln2Hi	=	6.93147180369123816490e-01	/*	3fe62e42	fee00000	*/

				85	 	 	 Ln2Lo	=	1.90821492927058770002e-10	/*	3dea39ef	35793c76	*/

				86	 	 	 L1				=	6.666666666666735130e-01			/*	3FE55555	55555593	*/

				87	 	 	 L2				=	3.999999999940941908e-01			/*	3FD99999	9997FA04	*/

				88	 	 	 L3				=	2.857142874366239149e-01			/*	3FD24924	94229359	*/

				89	 	 	 L4				=	2.222219843214978396e-01			/*	3FCC71C5	1D8E78AF	*/

				90	 	 	 L5				=	1.818357216161805012e-01			/*	3FC74664	96CB03DE	*/

				91	 	 	 L6				=	1.531383769920937332e-01			/*	3FC39A09	D078C69F	*/

				92	 	 	 L7				=	1.479819860511658591e-01			/*	3FC2F112	DF3E5244	*/

				93)

				94	

				95	 	 //	special	cases

				96	 	 switch	{

				97	 	 case	IsNaN(x)	||	IsInf(x,	1):

				98	 	 	 return	x

				99	 	 case	x	<	0:

			100	 	 	 return	NaN()

			101	 	 case	x	==	0:

			102	 	 	 return	Inf(-1)

			103	 	 }

			104	

			105	 	 //	reduce

			106	 	 f1,	ki	:=	Frexp(x)

			107	 	 if	f1	<	Sqrt2/2	{

			108	 	 	 f1	*=	2

			109	 	 	 ki--

			110	 	 }

			111	 	 f	:=	f1	-	1

			112	 	 k	:=	float64(ki)

			113	

			114	 	 //	compute

			115	 	 s	:=	f	/	(2	+	f)

			116	 	 s2	:=	s	*	s

			117	 	 s4	:=	s2	*	s2

			118	 	 t1	:=	s2	*	(L1	+	s4*(L3+s4*(L5+s4*L7)))

			119	 	 t2	:=	s4	*	(L2	+	s4*(L4+s4*L6))

			120	 	 R	:=	t1	+	t2

			121	 	 hfsq	:=	0.5	*	f	*	f

			122	 	 return	k*Ln2Hi	-	((hfsq	-	(s*(hfsq+R)	+	k*Ln2Lo))	-	f)

			123	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/log10.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	Log10	returns	the	decimal	logarithm	of	x.

					8	 //	The	special	cases	are	the	same	as	for	Log.

					9	 func	Log10(x	float64)	float64

				10	

				11	 func	log10(x	float64)	float64	{

				12	 	 return	Log(x)	*	(1	/	Ln10)

				13	 }

				14	

				15	 //	Log2	returns	the	binary	logarithm	of	x.

				16	 //	The	special	cases	are	the	same	as	for	Log.

				17	 func	Log2(x	float64)	float64

				18	

				19	 func	log2(x	float64)	float64	{

				20	 	 return	Log(x)	*	(1	/	Ln2)

				21	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/log1p.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	The	original	C	code,	the	long	comment,	and	the	constants

					8	 //	below	are	from	FreeBSD's	/usr/src/lib/msun/src/s_log1p.c

					9	 //	and	came	with	this	notice.		The	go	code	is	a	simplified

				10	 //	version	of	the	original	C.

				11	 //

				12	 //	==

				13	 //	Copyright	(C)	1993	by	Sun	Microsystems,	Inc.	All	rights	reserved.

				14	 //

				15	 //	Developed	at	SunPro,	a	Sun	Microsystems,	Inc.	business.

				16	 //	Permission	to	use,	copy,	modify,	and	distribute	this

				17	 //	software	is	freely	granted,	provided	that	this	notice

				18	 //	is	preserved.

				19	 //	==

				20	 //

				21	 //

				22	 //	double	log1p(double	x)

				23	 //

				24	 //	Method	:

				25	 //			1.	Argument	Reduction:	find	k	and	f	such	that

				26	 //																						1+x	=	2**k	*	(1+f),

				27	 //									where		sqrt(2)/2	<	1+f	<	sqrt(2)	.

				28	 //

				29	 //						Note.	If	k=0,	then	f=x	is	exact.	However,	if	k!=0,	then	f

				30	 //						may	not	be	representable	exactly.	In	that	case,	a	correction

				31	 //						term	is	need.	Let	u=1+x	rounded.	Let	c	=	(1+x)-u,	then

				32	 //						log(1+x)	-	log(u)	~	c/u.	Thus,	we	proceed	to	compute	log(u),

				33	 //						and	add	back	the	correction	term	c/u.

				34	 //						(Note:	when	x	>	2**53,	one	can	simply	return	log(x))

				35	 //

				36	 //			2.	Approximation	of	log1p(f).

				37	 //						Let	s	=	f/(2+f)	;	based	on	log(1+f)	=	log(1+s)	-	log(1-s)

				38	 //															=	2s	+	2/3	s**3	+	2/5	s**5	+,

				39	 //															=	2s	+	s*R

				40	 //						We	use	a	special	Reme	algorithm	on	[0,0.1716]	to	generate

				41	 //						a	polynomial	of	degree	14	to	approximate	R	The	maximum	error

				42	 //						of	this	polynomial	approximation	is	bounded	by	2**-58.45.	In

				43	 //						other	words,

				44	 //																						2						4						6						8						10						12						14

				45	 //										R(z)	~	Lp1*s	+Lp2*s	+Lp3*s	+Lp4*s	+Lp5*s		+Lp6*s		+Lp7*s

				46	 //						(the	values	of	Lp1	to	Lp7	are	listed	in	the	program)

				47	 //						and

				48	 //										|						2										14										|					-58.45

				49	 //										|	Lp1*s	+...+Lp7*s				-		R(z)	|	<=	2

				50	 //										|																													|

				51	 //						Note	that	2s	=	f	-	s*f	=	f	-	hfsq	+	s*hfsq,	where	hfsq	=	f*f/2.

				52	 //						In	order	to	guarantee	error	in	log	below	1ulp,	we	compute	log

				53	 //						by

				54	 //														log1p(f)	=	f	-	(hfsq	-	s*(hfsq+R)).

				55	 //

				56	 //			3.	Finally,	log1p(x)	=	k*ln2	+	log1p(f).

				57	 //																								=	k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))

				58	 //						Here	ln2	is	split	into	two	floating	point	number:

				59	 //																			ln2_hi	+	ln2_lo,

				60	 //						where	n*ln2_hi	is	always	exact	for	|n|	<	2000.

				61	 //

				62	 //	Special	cases:

				63	 //						log1p(x)	is	NaN	with	signal	if	x	<	-1	(including	-INF)	;

				64	 //						log1p(+INF)	is	+INF;	log1p(-1)	is	-INF	with	signal;

				65	 //						log1p(NaN)	is	that	NaN	with	no	signal.

				66	 //

				67	 //	Accuracy:

				68	 //						according	to	an	error	analysis,	the	error	is	always	less	than

				69	 //						1	ulp	(unit	in	the	last	place).

				70	 //

				71	 //	Constants:

				72	 //	The	hexadecimal	values	are	the	intended	ones	for	the	following

				73	 //	constants.	The	decimal	values	may	be	used,	provided	that	the

				74	 //	compiler	will	convert	from	decimal	to	binary	accurately	enough

				75	 //	to	produce	the	hexadecimal	values	shown.

				76	 //

				77	 //	Note:	Assuming	log()	return	accurate	answer,	the	following

				78	 //							algorithm	can	be	used	to	compute	log1p(x)	to	within	a	few	ULP:

				79	 //

				80	 //														u	=	1+x;

				81	 //														if(u==1.0)	return	x	;	else

				82	 //																									return	log(u)*(x/(u-1.0));

				83	 //

				84	 //							See	HP-15C	Advanced	Functions	Handbook,	p.193.

				85	

				86	 //	Log1p	returns	the	natural	logarithm	of	1	plus	its	argument	x.

				87	 //	It	is	more	accurate	than	Log(1	+	x)	when	x	is	near	zero.

				88	 //

				89	 //	Special	cases	are:

				90	 //	 Log1p(+Inf)	=	+Inf

				91	 //	 Log1p(±0)	=	±0

				92	 //	 Log1p(-1)	=	-Inf

				93	 //	 Log1p(x	<	-1)	=	NaN

				94	 //	 Log1p(NaN)	=	NaN

				95	 func	Log1p(x	float64)	float64

				96	

				97	 func	log1p(x	float64)	float64	{

				98	 	 const	(

				99	 	 	 Sqrt2M1					=	4.142135623730950488017e-01		//	Sqrt(2)-1	=	0x3fda827999fcef34

			100	 	 	 Sqrt2HalfM1	=	-2.928932188134524755992e-01	//	Sqrt(2)/2-1	=	0xbfd2bec333018866

			101	 	 	 Small							=	1.0	/	(1	<<	29)														//	2**-29	=	0x3e20000000000000

			102	 	 	 Tiny								=	1.0	/	(1	<<	54)														//	2**-54

			103	 	 	 Two53							=	1	<<	53																						//	2**53

			104	 	 	 Ln2Hi							=	6.93147180369123816490e-01			//	3fe62e42fee00000

			105	 	 	 Ln2Lo							=	1.90821492927058770002e-10			//	3dea39ef35793c76

			106	 	 	 Lp1									=	6.666666666666735130e-01					//	3FE5555555555593

			107	 	 	 Lp2									=	3.999999999940941908e-01					//	3FD999999997FA04

			108	 	 	 Lp3									=	2.857142874366239149e-01					//	3FD2492494229359

			109	 	 	 Lp4									=	2.222219843214978396e-01					//	3FCC71C51D8E78AF

			110	 	 	 Lp5									=	1.818357216161805012e-01					//	3FC7466496CB03DE

			111	 	 	 Lp6									=	1.531383769920937332e-01					//	3FC39A09D078C69F

			112	 	 	 Lp7									=	1.479819860511658591e-01					//	3FC2F112DF3E5244

			113)

			114	

			115	 	 //	special	cases

			116	 	 switch	{

			117	 	 case	x	<	-1	||	IsNaN(x):	//	includes	-Inf

			118	 	 	 return	NaN()

			119	 	 case	x	==	-1:

			120	 	 	 return	Inf(-1)

			121	 	 case	IsInf(x,	1):

			122	 	 	 return	Inf(1)

			123	 	 }

			124	

			125	 	 absx	:=	x

			126	 	 if	absx	<	0	{

			127	 	 	 absx	=	-absx

			128	 	 }

			129	

			130	 	 var	f	float64

			131	 	 var	iu	uint64

			132	 	 k	:=	1

			133	 	 if	absx	<	Sqrt2M1	{	//		|x|	<	Sqrt(2)-1

			134	 	 	 if	absx	<	Small	{	//	|x|	<	2**-29

			135	 	 	 	 if	absx	<	Tiny	{	//	|x|	<	2**-54

			136	 	 	 	 	 return	x

			137	 	 	 	 }

			138	 	 	 	 return	x	-	x*x*0.5

			139	 	 	 }

			140	 	 	 if	x	>	Sqrt2HalfM1	{	//	Sqrt(2)/2-1	<	x

			141	 	 	 	 //	(Sqrt(2)/2-1)	<	x	<	(Sqrt(2)-1)

			142	 	 	 	 k	=	0

			143	 	 	 	 f	=	x

			144	 	 	 	 iu	=	1

			145	 	 	 }

			146	 	 }

			147	 	 var	c	float64

			148	 	 if	k	!=	0	{

			149	 	 	 var	u	float64

			150	 	 	 if	absx	<	Two53	{	//	1<<53

			151	 	 	 	 u	=	1.0	+	x

			152	 	 	 	 iu	=	Float64bits(u)

			153	 	 	 	 k	=	int((iu	>>	52)	-	1023)

			154	 	 	 	 if	k	>	0	{

			155	 	 	 	 	 c	=	1.0	-	(u	-	x)

			156	 	 	 	 }	else	{

			157	 	 	 	 	 c	=	x	-	(u	-	1.0)	//	correction	term

			158	 	 	 	 	 c	/=	u

			159	 	 	 	 }

			160	 	 	 }	else	{

			161	 	 	 	 u	=	x

			162	 	 	 	 iu	=	Float64bits(u)

			163	 	 	 	 k	=	int((iu	>>	52)	-	1023)

			164	 	 	 	 c	=	0

			165	 	 	 }

			166	 	 	 iu	&=	0x000fffffffffffff

			167	 	 	 if	iu	<	0x0006a09e667f3bcd	{	//	mantissa	of	Sqrt(2)

			168	 	 	 	 u	=	Float64frombits(iu	|	0x3ff0000000000000)	

			169	 	 	 }	else	{

			170	 	 	 	 k	+=	1

			171	 	 	 	 u	=	Float64frombits(iu	|	0x3fe0000000000000)	

			172	 	 	 	 iu	=	(0x0010000000000000	-	iu)	>>	2

			173	 	 	 }

			174	 	 	 f	=	u	-	1.0	//	Sqrt(2)/2	<	u	<	Sqrt(2)

			175	 	 }

			176	 	 hfsq	:=	0.5	*	f	*	f

			177	 	 var	s,	R,	z	float64

			178	 	 if	iu	==	0	{	//	|f|	<	2**-20

			179	 	 	 if	f	==	0	{

			180	 	 	 	 if	k	==	0	{

			181	 	 	 	 	 return	0

			182	 	 	 	 }	else	{

			183	 	 	 	 	 c	+=	float64(k)	*	Ln2Lo

			184	 	 	 	 	 return	float64(k)*Ln2Hi	+	c

			185	 	 	 	 }

			186	 	 	 }

			187	 	 	 R	=	hfsq	*	(1.0	-	0.66666666666666666*f)	//	avoid	division

			188	 	 	 if	k	==	0	{

			189	 	 	 	 return	f	-	R

			190	 	 	 }

			191	 	 	 return	float64(k)*Ln2Hi	-	((R	-	(float64(k)*Ln2Lo	+	c))	-	f)

			192	 	 }

			193	 	 s	=	f	/	(2.0	+	f)

			194	 	 z	=	s	*	s

			195	 	 R	=	z	*	(Lp1	+	z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))))

			196	 	 if	k	==	0	{

			197	 	 	 return	f	-	(hfsq	-	s*(hfsq+R))

			198	 	 }

			199	 	 return	float64(k)*Ln2Hi	-	((hfsq	-	(s*(hfsq+R)	+	(float64(k)*Ln2Lo	+	c)))	-	f)

			200	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/logb.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	Logb(x)	returns	the	binary	exponent	of	x.

					8	 //

					9	 //	Special	cases	are:

				10	 //	 Logb(±Inf)	=	+Inf

				11	 //	 Logb(0)	=	-Inf

				12	 //	 Logb(NaN)	=	NaN

				13	 func	Logb(x	float64)	float64	{

				14	 	 //	special	cases

				15	 	 switch	{

				16	 	 case	x	==	0:

				17	 	 	 return	Inf(-1)

				18	 	 case	IsInf(x,	0):

				19	 	 	 return	Inf(1)

				20	 	 case	IsNaN(x):

				21	 	 	 return	x

				22	 	 }

				23	 	 return	float64(ilogb(x))

				24	 }

				25	

				26	 //	Ilogb(x)	returns	the	binary	exponent	of	x	as	an	integer.

				27	 //

				28	 //	Special	cases	are:

				29	 //	 Ilogb(±Inf)	=	MaxInt32

				30	 //	 Ilogb(0)	=	MinInt32

				31	 //	 Ilogb(NaN)	=	MaxInt32

				32	 func	Ilogb(x	float64)	int	{

				33	 	 //	special	cases

				34	 	 switch	{

				35	 	 case	x	==	0:

				36	 	 	 return	MinInt32

				37	 	 case	IsNaN(x):

				38	 	 	 return	MaxInt32

				39	 	 case	IsInf(x,	0):

				40	 	 	 return	MaxInt32

				41	 	 }

				42	 	 return	ilogb(x)

				43	 }

				44	

				45	 //	logb	returns	the	binary	exponent	of	x.	It	assumes	x	is	finite	and

				46	 //	non-zero.

				47	 func	ilogb(x	float64)	int	{

				48	 	 x,	exp	:=	normalize(x)

				49	 	 return	int((Float64bits(x)>>shift)&mask)	-	bias	+	exp

				50	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/mod.go
					1	 //	Copyright	2009-2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 /*

					8	 	 Floating-point	mod	function.

					9	 */

				10	

				11	 //	Mod	returns	the	floating-point	remainder	of	x/y.

				12	 //	The	magnitude	of	the	result	is	less	than	y	and	its

				13	 //	sign	agrees	with	that	of	x.

				14	 //

				15	 //	Special	cases	are:

				16	 //	 Mod(±Inf,	y)	=	NaN

				17	 //	 Mod(NaN,	y)	=	NaN

				18	 //	 Mod(x,	0)	=	NaN

				19	 //	 Mod(x,	±Inf)	=	x

				20	 //	 Mod(x,	NaN)	=	NaN

				21	 func	Mod(x,	y	float64)	float64

				22	

				23	 func	mod(x,	y	float64)	float64	{

				24	 	 if	y	==	0	||	IsInf(x,	0)	||	IsNaN(x)	||	IsNaN(y)	{

				25	 	 	 return	NaN()

				26	 	 }

				27	 	 if	y	<	0	{

				28	 	 	 y	=	-y

				29	 	 }

				30	

				31	 	 yfr,	yexp	:=	Frexp(y)

				32	 	 sign	:=	false

				33	 	 r	:=	x

				34	 	 if	x	<	0	{

				35	 	 	 r	=	-x

				36	 	 	 sign	=	true

				37	 	 }

				38	

				39	 	 for	r	>=	y	{

				40	 	 	 rfr,	rexp	:=	Frexp(r)

				41	 	 	 if	rfr	<	yfr	{

				42	 	 	 	 rexp	=	rexp	-	1

				43	 	 	 }

				44	 	 	 r	=	r	-	Ldexp(y,	rexp-yexp)

				45	 	 }

				46	 	 if	sign	{

				47	 	 	 r	=	-r

				48	 	 }

				49	 	 return	r

				50	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/modf.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	Modf	returns	integer	and	fractional	floating-point	numbers

					8	 //	that	sum	to	f.		Both	values	have	the	same	sign	as	f.

					9	 //

				10	 //	Special	cases	are:

				11	 //	 Modf(±Inf)	=	±Inf,	NaN

				12	 //	 Modf(NaN)	=	NaN,	NaN

				13	 func	Modf(f	float64)	(int	float64,	frac	float64)

				14	

				15	 func	modf(f	float64)	(int	float64,	frac	float64)	{

				16	 	 if	f	<	1	{

				17	 	 	 if	f	<	0	{

				18	 	 	 	 int,	frac	=	Modf(-f)

				19	 	 	 	 return	-int,	-frac

				20	 	 	 }

				21	 	 	 return	0,	f

				22	 	 }

				23	

				24	 	 x	:=	Float64bits(f)

				25	 	 e	:=	uint(x>>shift)&mask	-	bias

				26	

				27	 	 //	Keep	the	top	12+e	bits,	the	integer	part;	clear	the	rest.

				28	 	 if	e	<	64-12	{

				29	 	 	 x	&^=	1<<(64-12-e)	-	1

				30	 	 }

				31	 	 int	=	Float64frombits(x)

				32	 	 frac	=	f	-	int

				33	 	 return

				34	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/nextafter.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	Nextafter	returns	the	next	representable	value	after	x	towards	y.

					8	 //	If	x	==	y,	then	x	is	returned.

					9	 //

				10	 //	Special	cases	are:

				11	 //						Nextafter(NaN,	y)	=	NaN

				12	 //						Nextafter(x,	NaN)	=	NaN

				13	 func	Nextafter(x,	y	float64)	(r	float64)	{

				14	 	 switch	{

				15	 	 case	IsNaN(x)	||	IsNaN(y):	//	special	case

				16	 	 	 r	=	NaN()

				17	 	 case	x	==	y:

				18	 	 	 r	=	x

				19	 	 case	x	==	0:

				20	 	 	 r	=	Copysign(Float64frombits(1),	y)

				21	 	 case	(y	>	x)	==	(x	>	0):

				22	 	 	 r	=	Float64frombits(Float64bits(x)	+	1)

				23	 	 default:

				24	 	 	 r	=	Float64frombits(Float64bits(x)	-	1)

				25	 	 }

				26	 	 return

				27	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/pow.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 func	isOddInt(x	float64)	bool	{

					8	 	 xi,	xf	:=	Modf(x)

					9	 	 return	xf	==	0	&&	int64(xi)&1	==	1

				10	 }

				11	

				12	 //	Special	cases	taken	from	FreeBSD's	/usr/src/lib/msun/src/e_pow.c

				13	 //	updated	by	IEEE	Std.	754-2008	"Section	9.2.1	Special	values".

				14	

				15	 //	Pow	returns	x**y,	the	base-x	exponential	of	y.

				16	 //

				17	 //	Special	cases	are	(in	order):

				18	 //	 Pow(x,	±0)	=	1	for	any	x

				19	 //	 Pow(1,	y)	=	1	for	any	y

				20	 //	 Pow(x,	1)	=	x	for	any	x

				21	 //	 Pow(NaN,	y)	=	NaN

				22	 //	 Pow(x,	NaN)	=	NaN

				23	 //	 Pow(±0,	y)	=	±Inf	for	y	an	odd	integer	<	0

				24	 //	 Pow(±0,	-Inf)	=	+Inf

				25	 //	 Pow(±0,	+Inf)	=	+0

				26	 //	 Pow(±0,	y)	=	+Inf	for	finite	y	<	0	and	not	an	odd	integer

				27	 //	 Pow(±0,	y)	=	±0	for	y	an	odd	integer	>	0

				28	 //	 Pow(±0,	y)	=	+0	for	finite	y	>	0	and	not	an	odd	integer

				29	 //	 Pow(-1,	±Inf)	=	1

				30	 //	 Pow(x,	+Inf)	=	+Inf	for	|x|	>	1

				31	 //	 Pow(x,	-Inf)	=	+0	for	|x|	>	1

				32	 //	 Pow(x,	+Inf)	=	+0	for	|x|	<	1

				33	 //	 Pow(x,	-Inf)	=	+Inf	for	|x|	<	1

				34	 //	 Pow(+Inf,	y)	=	+Inf	for	y	>	0

				35	 //	 Pow(+Inf,	y)	=	+0	for	y	<	0

				36	 //	 Pow(-Inf,	y)	=	Pow(-0,	-y)

				37	 //	 Pow(x,	y)	=	NaN	for	finite	x	<	0	and	finite	non-integer	y

				38	 func	Pow(x,	y	float64)	float64	{

				39	 	 switch	{

				40	 	 case	y	==	0	||	x	==	1:

				41	 	 	 return	1

				42	 	 case	y	==	1:

				43	 	 	 return	x

				44	 	 case	y	==	0.5:

				45	 	 	 return	Sqrt(x)

				46	 	 case	y	==	-0.5:

				47	 	 	 return	1	/	Sqrt(x)

				48	 	 case	IsNaN(x)	||	IsNaN(y):

				49	 	 	 return	NaN()

				50	 	 case	x	==	0:

				51	 	 	 switch	{

				52	 	 	 case	y	<	0:

				53	 	 	 	 if	isOddInt(y)	{

				54	 	 	 	 	 return	Copysign(Inf(1),	x)

				55	 	 	 	 }

				56	 	 	 	 return	Inf(1)

				57	 	 	 case	y	>	0:

				58	 	 	 	 if	isOddInt(y)	{

				59	 	 	 	 	 return	x

				60	 	 	 	 }

				61	 	 	 	 return	0

				62	 	 	 }

				63	 	 case	IsInf(y,	0):

				64	 	 	 switch	{

				65	 	 	 case	x	==	-1:

				66	 	 	 	 return	1

				67	 	 	 case	(Abs(x)	<	1)	==	IsInf(y,	1):

				68	 	 	 	 return	0

				69	 	 	 default:

				70	 	 	 	 return	Inf(1)

				71	 	 	 }

				72	 	 case	IsInf(x,	0):

				73	 	 	 if	IsInf(x,	-1)	{

				74	 	 	 	 return	Pow(1/x,	-y)	//	Pow(-0,	-y)

				75	 	 	 }

				76	 	 	 switch	{

				77	 	 	 case	y	<	0:

				78	 	 	 	 return	0

				79	 	 	 case	y	>	0:

				80	 	 	 	 return	Inf(1)

				81	 	 	 }

				82	 	 }

				83	

				84	 	 absy	:=	y

				85	 	 flip	:=	false

				86	 	 if	absy	<	0	{

				87	 	 	 absy	=	-absy

				88	 	 	 flip	=	true

				89	 	 }

				90	 	 yi,	yf	:=	Modf(absy)

				91	 	 if	yf	!=	0	&&	x	<	0	{

				92	 	 	 return	NaN()

				93	 	 }

				94	 	 if	yi	>=	1<<63	{

				95	 	 	 return	Exp(y	*	Log(x))

				96	 	 }

				97	

				98	 	 //	ans	=	a1	*	2**ae	(=	1	for	now).

				99	 	 a1	:=	1.0

			100	 	 ae	:=	0

			101	

			102	 	 //	ans	*=	x**yf

			103	 	 if	yf	!=	0	{

			104	 	 	 if	yf	>	0.5	{

			105	 	 	 	 yf--

			106	 	 	 	 yi++

			107	 	 	 }

			108	 	 	 a1	=	Exp(yf	*	Log(x))

			109	 	 }

			110	

			111	 	 //	ans	*=	x**yi

			112	 	 //	by	multiplying	in	successive	squarings

			113	 	 //	of	x	according	to	bits	of	yi.

			114	 	 //	accumulate	powers	of	two	into	exp.

			115	 	 x1,	xe	:=	Frexp(x)

			116	 	 for	i	:=	int64(yi);	i	!=	0;	i	>>=	1	{

			117	 	 	 if	i&1	==	1	{

			118	 	 	 	 a1	*=	x1

			119	 	 	 	 ae	+=	xe

			120	 	 	 }

			121	 	 	 x1	*=	x1

			122	 	 	 xe	<<=	1

			123	 	 	 if	x1	<	.5	{

			124	 	 	 	 x1	+=	x1

			125	 	 	 	 xe--

			126	 	 	 }

			127	 	 }

			128	

			129	 	 //	ans	=	a1*2**ae

			130	 	 //	if	flip	{	ans	=	1	/	ans	}

			131	 	 //	but	in	the	opposite	order

			132	 	 if	flip	{

			133	 	 	 a1	=	1	/	a1

			134	 	 	 ae	=	-ae

			135	 	 }

			136	 	 return	Ldexp(a1,	ae)

			137	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/pow10.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	This	table	might	overflow	127-bit	exponent	representations.

					8	 //	In	that	case,	truncate	it	after	1.0e38.

					9	 var	pow10tab	[70]float64

				10	

				11	 //	Pow10	returns	10**e,	the	base-10	exponential	of	e.

				12	 //

				13	 //	Special	cases	are:

				14	 //	 Pow10(e)	=	+Inf	for	e	>	309

				15	 //	 Pow10(e)	=	0	for	e	<	-324

				16	 func	Pow10(e	int)	float64	{

				17	 	 if	e	<=	-325	{

				18	 	 	 return	0

				19	 	 }	else	if	e	>	309	{

				20	 	 	 return	Inf(1)

				21	 	 }

				22	

				23	 	 if	e	<	0	{

				24	 	 	 return	1	/	Pow10(-e)

				25	 	 }

				26	 	 if	e	<	len(pow10tab)	{

				27	 	 	 return	pow10tab[e]

				28	 	 }

				29	 	 m	:=	e	/	2

				30	 	 return	Pow10(m)	*	Pow10(e-m)

				31	 }

				32	

				33	 func	init()	{

				34	 	 pow10tab[0]	=	1.0e0

				35	 	 pow10tab[1]	=	1.0e1

				36	 	 for	i	:=	2;	i	<	len(pow10tab);	i++	{

				37	 	 	 m	:=	i	/	2

				38	 	 	 pow10tab[i]	=	pow10tab[m]	*	pow10tab[i-m]

				39	 	 }

				40	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative

http://code.google.com/policies.html#restrictions

Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/math/remainder.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	The	original	C	code	and	the	the	comment	below	are	from

					8	 //	FreeBSD's	/usr/src/lib/msun/src/e_remainder.c	and	came

					9	 //	with	this	notice.		The	go	code	is	a	simplified	version	of

				10	 //	the	original	C.

				11	 //

				12	 //	==

				13	 //	Copyright	(C)	1993	by	Sun	Microsystems,	Inc.	All	rights	reserved.

				14	 //

				15	 //	Developed	at	SunPro,	a	Sun	Microsystems,	Inc.	business.

				16	 //	Permission	to	use,	copy,	modify,	and	distribute	this

				17	 //	software	is	freely	granted,	provided	that	this	notice

				18	 //	is	preserved.

				19	 //	==

				20	 //

				21	 //	__ieee754_remainder(x,y)

				22	 //	Return	:

				23	 //						returns		x	REM	y		=		x	-	[x/y]*y		as	if	in	infinite

				24	 //						precision	arithmetic,	where	[x/y]	is	the	(infinite	bit)

				25	 //						integer	nearest	x/y	(in	half	way	cases,	choose	the	even	one).

				26	 //	Method	:

				27	 //						Based	on	Mod()	returning		x	-	[x/y]chopped	*	y		exactly.

				28	

				29	 //	Remainder	returns	the	IEEE	754	floating-point	remainder	of	x/y.

				30	 //

				31	 //	Special	cases	are:

				32	 //	 Remainder(±Inf,	y)	=	NaN

				33	 //	 Remainder(NaN,	y)	=	NaN

				34	 //	 Remainder(x,	0)	=	NaN

				35	 //	 Remainder(x,	±Inf)	=	x

				36	 //	 Remainder(x,	NaN)	=	NaN

				37	 func	Remainder(x,	y	float64)	float64

				38	

				39	 func	remainder(x,	y	float64)	float64	{

				40	 	 const	(

				41	 	 	 Tiny				=	4.45014771701440276618e-308	//	0x0020000000000000

				42	 	 	 HalfMax	=	MaxFloat64	/	2

				43)

				44	 	 //	special	cases

				45	 	 switch	{

				46	 	 case	IsNaN(x)	||	IsNaN(y)	||	IsInf(x,	0)	||	y	==	0:

				47	 	 	 return	NaN()

				48	 	 case	IsInf(y,	0):

				49	 	 	 return	x

				50	 	 }

				51	 	 sign	:=	false

				52	 	 if	x	<	0	{

				53	 	 	 x	=	-x

				54	 	 	 sign	=	true

				55	 	 }

				56	 	 if	y	<	0	{

				57	 	 	 y	=	-y

				58	 	 }

				59	 	 if	x	==	y	{

				60	 	 	 return	0

				61	 	 }

				62	 	 if	y	<=	HalfMax	{

				63	 	 	 x	=	Mod(x,	y+y)	//	now	x	<	2y

				64	 	 }

				65	 	 if	y	<	Tiny	{

				66	 	 	 if	x+x	>	y	{

				67	 	 	 	 x	-=	y

				68	 	 	 	 if	x+x	>=	y	{

				69	 	 	 	 	 x	-=	y

				70	 	 	 	 }

				71	 	 	 }

				72	 	 }	else	{

				73	 	 	 yHalf	:=	0.5	*	y

				74	 	 	 if	x	>	yHalf	{

				75	 	 	 	 x	-=	y

				76	 	 	 	 if	x	>=	yHalf	{

				77	 	 	 	 	 x	-=	y

				78	 	 	 	 }

				79	 	 	 }

				80	 	 }

				81	 	 if	sign	{

				82	 	 	 x	=	-x

				83	 	 }

				84	 	 return	x

				85	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/signbit.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	Signbit	returns	true	if	x	is	negative	or	negative	zero.

					8	 func	Signbit(x	float64)	bool	{

					9	 	 return	Float64bits(x)&(1<<63)	!=	0

				10	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/sin.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 /*

					8	 	 Floating-point	sine	and	cosine.

					9	 */

				10	

				11	 //	The	original	C	code,	the	long	comment,	and	the	constants

				12	 //	below	were	from	http://netlib.sandia.gov/cephes/cmath/sin.c,

				13	 //	available	from	http://www.netlib.org/cephes/cmath.tgz.

				14	 //	The	go	code	is	a	simplified	version	of	the	original	C.

				15	 //

				16	 //						sin.c

				17	 //

				18	 //						Circular	sine

				19	 //

				20	 //	SYNOPSIS:

				21	 //

				22	 //	double	x,	y,	sin();

				23	 //	y	=	sin(x);

				24	 //

				25	 //	DESCRIPTION:

				26	 //

				27	 //	Range	reduction	is	into	intervals	of	pi/4.		The	reduction	error	is	nearly

				28	 //	eliminated	by	contriving	an	extended	precision	modular	arithmetic.

				29	 //

				30	 //	Two	polynomial	approximating	functions	are	employed.

				31	 //	Between	0	and	pi/4	the	sine	is	approximated	by

				32	 //						x		+		x**3	P(x**2).

				33	 //	Between	pi/4	and	pi/2	the	cosine	is	represented	as

				34	 //						1		-		x**2	Q(x**2).

				35	 //

				36	 //	ACCURACY:

				37	 //

				38	 //																						Relative	error:

				39	 //	arithmetic			domain						#	trials						peak									rms

				40	 //				DEC							0,	10							150000							3.0e-17					7.8e-18

				41	 //				IEEE	-1.07e9,+1.07e9		130000							2.1e-16					5.4e-17

				42	 //

				43	 //	Partial	loss	of	accuracy	begins	to	occur	at	x	=	2**30	=	1.074e9.		The	loss

				44	 //	is	not	gradual,	but	jumps	suddenly	to	about	1	part	in	10e7.		Results	may

				45	 //	be	meaningless	for	x	>	2**49	=	5.6e14.

				46	 //

				47	 //						cos.c

				48	 //

				49	 //						Circular	cosine

				50	 //

				51	 //	SYNOPSIS:

				52	 //

				53	 //	double	x,	y,	cos();

				54	 //	y	=	cos(x);

				55	 //

				56	 //	DESCRIPTION:

				57	 //

				58	 //	Range	reduction	is	into	intervals	of	pi/4.		The	reduction	error	is	nearly

				59	 //	eliminated	by	contriving	an	extended	precision	modular	arithmetic.

				60	 //

				61	 //	Two	polynomial	approximating	functions	are	employed.

				62	 //	Between	0	and	pi/4	the	cosine	is	approximated	by

				63	 //						1		-		x**2	Q(x**2).

				64	 //	Between	pi/4	and	pi/2	the	sine	is	represented	as

				65	 //						x		+		x**3	P(x**2).

				66	 //

				67	 //	ACCURACY:

				68	 //

				69	 //																						Relative	error:

				70	 //	arithmetic			domain						#	trials						peak									rms

				71	 //				IEEE	-1.07e9,+1.07e9		130000							2.1e-16					5.4e-17

				72	 //				DEC								0,+1.07e9			17000							3.0e-17					7.2e-18

				73	 //

				74	 //	Cephes	Math	Library	Release	2.8:		June,	2000

				75	 //	Copyright	1984,	1987,	1989,	1992,	2000	by	Stephen	L.	Moshier

				76	 //

				77	 //	The	readme	file	at	http://netlib.sandia.gov/cephes/	says:

				78	 //				Some	software	in	this	archive	may	be	from	the	book	_Methods	and

				79	 //	Programs	for	Mathematical	Functions_	(Prentice-Hall	or	Simon	&	Schuster

				80	 //	International,	1989)	or	from	the	Cephes	Mathematical	Library,	a

				81	 //	commercial	product.	In	either	event,	it	is	copyrighted	by	the	author.

				82	 //	What	you	see	here	may	be	used	freely	but	it	comes	with	no	support	or

				83	 //	guarantee.

				84	 //

				85	 //			The	two	known	misprints	in	the	book	are	repaired	here	in	the

				86	 //	source	listings	for	the	gamma	function	and	the	incomplete	beta

				87	 //	integral.

				88	 //

				89	 //			Stephen	L.	Moshier

				90	 //			moshier@na-net.ornl.gov

				91	

				92	 //	sin	coefficients

				93	 var	_sin	=	[...]float64{

				94	 	 1.58962301576546568060E-10,	//	0x3de5d8fd1fd19ccd

				95	 	 -2.50507477628578072866E-8,	//	0xbe5ae5e5a9291f5d

				96	 	 2.75573136213857245213E-6,		//	0x3ec71de3567d48a1

				97	 	 -1.98412698295895385996E-4,	//	0xbf2a01a019bfdf03

				98	 	 8.33333333332211858878E-3,		//	0x3f8111111110f7d0

				99	 	 -1.66666666666666307295E-1,	//	0xbfc5555555555548

			100	 }

			101	

			102	 //	cos	coefficients

			103	 var	_cos	=	[...]float64{

			104	 	 -1.13585365213876817300E-11,	//	0xbda8fa49a0861a9b

			105	 	 2.08757008419747316778E-9,			//	0x3e21ee9d7b4e3f05

			106	 	 -2.75573141792967388112E-7,		//	0xbe927e4f7eac4bc6

			107	 	 2.48015872888517045348E-5,			//	0x3efa01a019c844f5

			108	 	 -1.38888888888730564116E-3,		//	0xbf56c16c16c14f91

			109	 	 4.16666666666665929218E-2,			//	0x3fa555555555554b

			110	 }

			111	

			112	 //	Cos	returns	the	cosine	of	x.

			113	 //

			114	 //	Special	cases	are:

			115	 //	 Cos(±Inf)	=	NaN

			116	 //	 Cos(NaN)	=	NaN

			117	 func	Cos(x	float64)	float64

			118	

			119	 func	cos(x	float64)	float64	{

			120	 	 const	(

			121	 	 	 PI4A	=	7.85398125648498535156E-1																													

			122	 	 	 PI4B	=	3.77489470793079817668E-8																													

			123	 	 	 PI4C	=	2.69515142907905952645E-15																												

			124	 	 	 M4PI	=	1.273239544735162542821171882678754627704620361328125	

			125)

			126	 	 //	special	cases

			127	 	 switch	{

			128	 	 case	IsNaN(x)	||	IsInf(x,	0):

			129	 	 	 return	NaN()

			130	 	 }

			131	

			132	 	 //	make	argument	positive

			133	 	 sign	:=	false

			134	 	 if	x	<	0	{

			135	 	 	 x	=	-x

			136	 	 }

			137	

			138	 	 j	:=	int64(x	*	M4PI)	//	integer	part	of	x/(Pi/4),	as	integer	for	tests	on	the	phase	angle

			139	 	 y	:=	float64(j)						//	integer	part	of	x/(Pi/4),	as	float

			140	

			141	 	 //	map	zeros	to	origin

			142	 	 if	j&1	==	1	{

			143	 	 	 j	+=	1

			144	 	 	 y	+=	1

			145	 	 }

			146	 	 j	&=	7	//	octant	modulo	2Pi	radians	(360	degrees)

			147	 	 if	j	>	3	{

			148	 	 	 j	-=	4

			149	 	 	 sign	=	!sign

			150	 	 }

			151	 	 if	j	>	1	{

			152	 	 	 sign	=	!sign

			153	 	 }

			154	

			155	 	 z	:=	((x	-	y*PI4A)	-	y*PI4B)	-	y*PI4C	//	Extended	precision	modular	arithmetic

			156	 	 zz	:=	z	*	z

			157	 	 if	j	==	1	||	j	==	2	{

			158	 	 	 y	=	z	+	z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])

			159	 	 }	else	{

			160	 	 	 y	=	1.0	-	0.5*zz	+	zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])

			161	 	 }

			162	 	 if	sign	{

			163	 	 	 y	=	-y

			164	 	 }

			165	 	 return	y

			166	 }

			167	

			168	 //	Sin	returns	the	sine	of	x.

			169	 //

			170	 //	Special	cases	are:

			171	 //	 Sin(±0)	=	±0

			172	 //	 Sin(±Inf)	=	NaN

			173	 //	 Sin(NaN)	=	NaN

			174	 func	Sin(x	float64)	float64

			175	

			176	 func	sin(x	float64)	float64	{

			177	 	 const	(

			178	 	 	 PI4A	=	7.85398125648498535156E-1																													

			179	 	 	 PI4B	=	3.77489470793079817668E-8																													

			180	 	 	 PI4C	=	2.69515142907905952645E-15																												

			181	 	 	 M4PI	=	1.273239544735162542821171882678754627704620361328125	

			182)

			183	 	 //	special	cases

			184	 	 switch	{

			185	 	 case	x	==	0	||	IsNaN(x):

			186	 	 	 return	x	//	return	±0	||	NaN()

			187	 	 case	IsInf(x,	0):

			188	 	 	 return	NaN()

			189	 	 }

			190	

			191	 	 //	make	argument	positive	but	save	the	sign

			192	 	 sign	:=	false

			193	 	 if	x	<	0	{

			194	 	 	 x	=	-x

			195	 	 	 sign	=	true

			196	 	 }

			197	

			198	 	 j	:=	int64(x	*	M4PI)	//	integer	part	of	x/(Pi/4),	as	integer	for	tests	on	the	phase	angle

			199	 	 y	:=	float64(j)						//	integer	part	of	x/(Pi/4),	as	float

			200	

			201	 	 //	map	zeros	to	origin

			202	 	 if	j&1	==	1	{

			203	 	 	 j	+=	1

			204	 	 	 y	+=	1

			205	 	 }

			206	 	 j	&=	7	//	octant	modulo	2Pi	radians	(360	degrees)

			207	 	 //	reflect	in	x	axis

			208	 	 if	j	>	3	{

			209	 	 	 sign	=	!sign

			210	 	 	 j	-=	4

			211	 	 }

			212	

			213	 	 z	:=	((x	-	y*PI4A)	-	y*PI4B)	-	y*PI4C	//	Extended	precision	modular	arithmetic

			214	 	 zz	:=	z	*	z

			215	 	 if	j	==	1	||	j	==	2	{

			216	 	 	 y	=	1.0	-	0.5*zz	+	zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])

			217	 	 }	else	{

			218	 	 	 y	=	z	+	z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])

			219	 	 }

			220	 	 if	sign	{

			221	 	 	 y	=	-y

			222	 	 }

			223	 	 return	y

			224	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/sincos.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	Coefficients	_sin[]	and	_cos[]	are	found	in	pkg/math/sin.go.

					8	

					9	 //	Sincos(x)	returns	Sin(x),	Cos(x).

				10	 //

				11	 //	Special	cases	are:

				12	 //	 Sincos(±0)	=	±0,	1

				13	 //	 Sincos(±Inf)	=	NaN,	NaN

				14	 //	 Sincos(NaN)	=	NaN,	NaN

				15	 func	Sincos(x	float64)	(sin,	cos	float64)

				16	

				17	 func	sincos(x	float64)	(sin,	cos	float64)	{

				18	 	 const	(

				19	 	 	 PI4A	=	7.85398125648498535156E-1																													

				20	 	 	 PI4B	=	3.77489470793079817668E-8																													

				21	 	 	 PI4C	=	2.69515142907905952645E-15																												

				22	 	 	 M4PI	=	1.273239544735162542821171882678754627704620361328125	

				23)

				24	 	 //	special	cases

				25	 	 switch	{

				26	 	 case	x	==	0:

				27	 	 	 return	x,	1	//	return	±0.0,	1.0

				28	 	 case	IsNaN(x)	||	IsInf(x,	0):

				29	 	 	 return	NaN(),	NaN()

				30	 	 }

				31	

				32	 	 //	make	argument	positive

				33	 	 sinSign,	cosSign	:=	false,	false

				34	 	 if	x	<	0	{

				35	 	 	 x	=	-x

				36	 	 	 sinSign	=	true

				37	 	 }

				38	

				39	 	 j	:=	int64(x	*	M4PI)	//	integer	part	of	x/(Pi/4),	as	integer	for	tests	on	the	phase	angle

				40	 	 y	:=	float64(j)						//	integer	part	of	x/(Pi/4),	as	float

				41	

				42	 	 if	j&1	==	1	{	//	map	zeros	to	origin

				43	 	 	 j	+=	1

				44	 	 	 y	+=	1

				45	 	 }

				46	 	 j	&=	7					//	octant	modulo	2Pi	radians	(360	degrees)

				47	 	 if	j	>	3	{	//	reflect	in	x	axis

				48	 	 	 j	-=	4

				49	 	 	 sinSign,	cosSign	=	!sinSign,	!cosSign

				50	 	 }

				51	 	 if	j	>	1	{

				52	 	 	 cosSign	=	!cosSign

				53	 	 }

				54	

				55	 	 z	:=	((x	-	y*PI4A)	-	y*PI4B)	-	y*PI4C	//	Extended	precision	modular	arithmetic

				56	 	 zz	:=	z	*	z

				57	 	 cos	=	1.0	-	0.5*zz	+	zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])

				58	 	 sin	=	z	+	z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])

				59	 	 if	j	==	1	||	j	==	2	{

				60	 	 	 sin,	cos	=	cos,	sin

				61	 	 }

				62	 	 if	cosSign	{

				63	 	 	 cos	=	-cos

				64	 	 }

				65	 	 if	sinSign	{

				66	 	 	 sin	=	-sin

				67	 	 }

				68	 	 return

				69	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/sinh.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 /*

					8	 	 Floating-point	hyperbolic	sine	and	cosine.

					9	

				10	 	 The	exponential	func	is	called	for	arguments

				11	 	 greater	in	magnitude	than	0.5.

				12	

				13	 	 A	series	is	used	for	arguments	smaller	in	magnitude	than	0.5.

				14	

				15	 	 Cosh(x)	is	computed	from	the	exponential	func	for

				16	 	 all	arguments.

				17	 */

				18	

				19	 //	Sinh	returns	the	hyperbolic	sine	of	x.

				20	 //

				21	 //	Special	cases	are:

				22	 //	 Sinh(±0)	=	±0

				23	 //	 Sinh(±Inf)	=	±Inf

				24	 //	 Sinh(NaN)	=	NaN

				25	 func	Sinh(x	float64)	float64	{

				26	 	 //	The	coefficients	are	#2029	from	Hart	&	Cheney.	(20.36D)

				27	 	 const	(

				28	 	 	 P0	=	-0.6307673640497716991184787251e+6

				29	 	 	 P1	=	-0.8991272022039509355398013511e+5

				30	 	 	 P2	=	-0.2894211355989563807284660366e+4

				31	 	 	 P3	=	-0.2630563213397497062819489e+2

				32	 	 	 Q0	=	-0.6307673640497716991212077277e+6

				33	 	 	 Q1	=	0.1521517378790019070696485176e+5

				34	 	 	 Q2	=	-0.173678953558233699533450911e+3

				35)

				36	

				37	 	 sign	:=	false

				38	 	 if	x	<	0	{

				39	 	 	 x	=	-x

				40	 	 	 sign	=	true

				41	 	 }

				42	

				43	 	 var	temp	float64

				44	 	 switch	true	{

				45	 	 case	x	>	21:

				46	 	 	 temp	=	Exp(x)	/	2

				47	

				48	 	 case	x	>	0.5:

				49	 	 	 temp	=	(Exp(x)	-	Exp(-x))	/	2

				50	

				51	 	 default:

				52	 	 	 sq	:=	x	*	x

				53	 	 	 temp	=	(((P3*sq+P2)*sq+P1)*sq	+	P0)	*	x

				54	 	 	 temp	=	temp	/	(((sq+Q2)*sq+Q1)*sq	+	Q0)

				55	 	 }

				56	

				57	 	 if	sign	{

				58	 	 	 temp	=	-temp

				59	 	 }

				60	 	 return	temp

				61	 }

				62	

				63	 //	Cosh	returns	the	hyperbolic	cosine	of	x.

				64	 //

				65	 //	Special	cases	are:

				66	 //	 Cosh(±0)	=	1

				67	 //	 Cosh(±Inf)	=	+Inf

				68	 //	 Cosh(NaN)	=	NaN

				69	 func	Cosh(x	float64)	float64	{

				70	 	 if	x	<	0	{

				71	 	 	 x	=	-x

				72	 	 }

				73	 	 if	x	>	21	{

				74	 	 	 return	Exp(x)	/	2

				75	 	 }

				76	 	 return	(Exp(x)	+	Exp(-x))	/	2

				77	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/sqrt.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 //	Sqrt	returns	the	square	root	of	x.

					8	 //

					9	 //	Special	cases	are:

				10	 //	 Sqrt(+Inf)	=	+Inf

				11	 //	 Sqrt(±0)	=	±0

				12	 //	 Sqrt(x	<	0)	=	NaN

				13	 //	 Sqrt(NaN)	=	NaN

				14	 func	Sqrt(x	float64)	float64

				15	

				16	 //	The	original	C	code	and	the	long	comment	below	are

				17	 //	from	FreeBSD's	/usr/src/lib/msun/src/e_sqrt.c	and

				18	 //	came	with	this	notice.		The	go	code	is	a	simplified

				19	 //	version	of	the	original	C.

				20	 //

				21	 //	==

				22	 //	Copyright	(C)	1993	by	Sun	Microsystems,	Inc.	All	rights	reserved.

				23	 //

				24	 //	Developed	at	SunPro,	a	Sun	Microsystems,	Inc.	business.

				25	 //	Permission	to	use,	copy,	modify,	and	distribute	this

				26	 //	software	is	freely	granted,	provided	that	this	notice

				27	 //	is	preserved.

				28	 //	==

				29	 //

				30	 //	__ieee754_sqrt(x)

				31	 //	Return	correctly	rounded	sqrt.

				32	 //											---

				33	 //											|	Use	the	hardware	sqrt	if	you	have	one	|

				34	 //											---

				35	 //	Method:

				36	 //			Bit	by	bit	method	using	integer	arithmetic.	(Slow,	but	portable)

				37	 //			1.	Normalization

				38	 //						Scale	x	to	y	in	[1,4)	with	even	powers	of	2:

				39	 //						find	an	integer	k	such	that		1	<=	(y=x*2**(2k))	<	4,	then

				40	 //														sqrt(x)	=	2**k	*	sqrt(y)

				41	 //			2.	Bit	by	bit	computation

				42	 //						Let	q		=	sqrt(y)	truncated	to	i	bit	after	binary	point	(q	=	1),

				43	 //											i																																																			0

				44	 //																																					i+1									2

				45	 //										s		=	2*q	,	and						y		=		2			*	(y	-	q).										(1)

				46	 //											i						i												i																	i

				47	 //

				48	 //						To	compute	q				from	q	,	one	checks	whether

				49	 //																		i+1							i

				50	 //

				51	 //																												-(i+1)	2

				52	 //																						(q	+	2)		<=	y.																					(2)

				53	 //																								i

				54	 //																																																												-(i+1)

				55	 //						If	(2)	is	false,	then	q			=	q	;	otherwise	q			=	q		+	2						.

				56	 //																													i+1			i													i+1			i

				57	 //

				58	 //						With	some	algebraic	manipulation,	it	is	not	difficult	to	see

				59	 //						that	(2)	is	equivalent	to

				60	 //																													-(i+1)

				61	 //																						s		+		2							<=	y																							(3)

				62	 //																							i																i

				63	 //

				64	 //						The	advantage	of	(3)	is	that	s		and	y		can	be	computed	by

				65	 //																																				i						i

				66	 //						the	following	recurrence	formula:

				67	 //										if	(3)	is	false

				68	 //

				69	 //										s					=		s		,							y				=	y			;																					(4)

				70	 //											i+1						i										i+1				i

				71	 //

				72	 //						otherwise,

				73	 //																									-i																						-(i+1)

				74	 //										s					=		s		+	2		,		y				=	y		-		s		-	2														(5)

				75	 //											i+1						i										i+1				i					i

				76	 //

				77	 //						One	may	easily	use	induction	to	prove	(4)	and	(5).

				78	 //						Note.	Since	the	left	hand	side	of	(3)	contain	only	i+2	bits,

				79	 //												it	does	not	necessary	to	do	a	full	(53-bit)	comparison

				80	 //												in	(3).

				81	 //			3.	Final	rounding

				82	 //						After	generating	the	53	bits	result,	we	compute	one	more	bit.

				83	 //						Together	with	the	remainder,	we	can	decide	whether	the

				84	 //						result	is	exact,	bigger	than	1/2ulp,	or	less	than	1/2ulp

				85	 //						(it	will	never	equal	to	1/2ulp).

				86	 //						The	rounding	mode	can	be	detected	by	checking	whether

				87	 //						huge	+	tiny	is	equal	to	huge,	and	whether	huge	-	tiny	is

				88	 //						equal	to	huge	for	some	floating	point	number	"huge"	and	"tiny".

				89	 //

				90	 //

				91	 //	Notes:		Rounding	mode	detection	omitted.		The	constants	"mask",	"shift",

				92	 //	and	"bias"	are	found	in	src/pkg/math/bits.go

				93	

				94	 //	Sqrt	returns	the	square	root	of	x.

				95	 //

				96	 //	Special	cases	are:

				97	 //	 Sqrt(+Inf)	=	+Inf

				98	 //	 Sqrt(±0)	=	±0

				99	 //	 Sqrt(x	<	0)	=	NaN

			100	 //	 Sqrt(NaN)	=	NaN

			101	 func	sqrt(x	float64)	float64	{

			102	 	 //	special	cases

			103	 	 switch	{

			104	 	 case	x	==	0	||	IsNaN(x)	||	IsInf(x,	1):

			105	 	 	 return	x

			106	 	 case	x	<	0:

			107	 	 	 return	NaN()

			108	 	 }

			109	 	 ix	:=	Float64bits(x)

			110	 	 //	normalize	x

			111	 	 exp	:=	int((ix	>>	shift)	&	mask)

			112	 	 if	exp	==	0	{	//	subnormal	x

			113	 	 	 for	ix&1<<shift	==	0	{

			114	 	 	 	 ix	<<=	1

			115	 	 	 	 exp--

			116	 	 	 }

			117	 	 	 exp++

			118	 	 }

			119	 	 exp	-=	bias	//	unbias	exponent

			120	 	 ix	&^=	mask	<<	shift

			121	 	 ix	|=	1	<<	shift

			122	 	 if	exp&1	==	1	{	//	odd	exp,	double	x	to	make	it	even

			123	 	 	 ix	<<=	1

			124	 	 }

			125	 	 exp	>>=	1	//	exp	=	exp/2,	exponent	of	square	root

			126	 	 //	generate	sqrt(x)	bit	by	bit

			127	 	 ix	<<=	1

			128	 	 var	q,	s	uint64															//	q	=	sqrt(x)

			129	 	 r	:=	uint64(1	<<	(shift	+	1))	//	r	=	moving	bit	from	MSB	to	LSB

			130	 	 for	r	!=	0	{

			131	 	 	 t	:=	s	+	r

			132	 	 	 if	t	<=	ix	{

			133	 	 	 	 s	=	t	+	r

			134	 	 	 	 ix	-=	t

			135	 	 	 	 q	+=	r

			136	 	 	 }

			137	 	 	 ix	<<=	1

			138	 	 	 r	>>=	1

			139	 	 }

			140	 	 //	final	rounding

			141	 	 if	ix	!=	0	{	//	remainder,	result	not	exact

			142	 	 	 q	+=	q	&	1	//	round	according	to	extra	bit

			143	 	 }

			144	 	 ix	=	q>>1	+	uint64(exp-1+bias)<<shift	//	significand	+	biased	exponent

			145	 	 return	Float64frombits(ix)

			146	 }

			147	

			148	 func	sqrtC(f	float64,	r	*float64)	{

			149	 	 *r	=	sqrt(f)

			150	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/tan.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 /*

					8	 	 Floating-point	tangent.

					9	 */

				10	

				11	 //	The	original	C	code,	the	long	comment,	and	the	constants

				12	 //	below	were	from	http://netlib.sandia.gov/cephes/cmath/sin.c,

				13	 //	available	from	http://www.netlib.org/cephes/cmath.tgz.

				14	 //	The	go	code	is	a	simplified	version	of	the	original	C.

				15	 //

				16	 //						tan.c

				17	 //

				18	 //						Circular	tangent

				19	 //

				20	 //	SYNOPSIS:

				21	 //

				22	 //	double	x,	y,	tan();

				23	 //	y	=	tan(x);

				24	 //

				25	 //	DESCRIPTION:

				26	 //

				27	 //	Returns	the	circular	tangent	of	the	radian	argument	x.

				28	 //

				29	 //	Range	reduction	is	modulo	pi/4.		A	rational	function

				30	 //							x	+	x**3	P(x**2)/Q(x**2)

				31	 //	is	employed	in	the	basic	interval	[0,	pi/4].

				32	 //

				33	 //	ACCURACY:

				34	 //																						Relative	error:

				35	 //	arithmetic			domain					#	trials						peak									rms

				36	 //				DEC						+-1.07e9						44000						4.1e-17					1.0e-17

				37	 //				IEEE					+-1.07e9						30000						2.9e-16					8.1e-17

				38	 //

				39	 //	Partial	loss	of	accuracy	begins	to	occur	at	x	=	2**30	=	1.074e9.		The	loss

				40	 //	is	not	gradual,	but	jumps	suddenly	to	about	1	part	in	10e7.		Results	may

				41	 //	be	meaningless	for	x	>	2**49	=	5.6e14.

				42	 //	[Accuracy	loss	statement	from	sin.go	comments.]

				43	 //

				44	 //	Cephes	Math	Library	Release	2.8:		June,	2000

				45	 //	Copyright	1984,	1987,	1989,	1992,	2000	by	Stephen	L.	Moshier

				46	 //

				47	 //	The	readme	file	at	http://netlib.sandia.gov/cephes/	says:

				48	 //				Some	software	in	this	archive	may	be	from	the	book	_Methods	and

				49	 //	Programs	for	Mathematical	Functions_	(Prentice-Hall	or	Simon	&	Schuster

				50	 //	International,	1989)	or	from	the	Cephes	Mathematical	Library,	a

				51	 //	commercial	product.	In	either	event,	it	is	copyrighted	by	the	author.

				52	 //	What	you	see	here	may	be	used	freely	but	it	comes	with	no	support	or

				53	 //	guarantee.

				54	 //

				55	 //			The	two	known	misprints	in	the	book	are	repaired	here	in	the

				56	 //	source	listings	for	the	gamma	function	and	the	incomplete	beta

				57	 //	integral.

				58	 //

				59	 //			Stephen	L.	Moshier

				60	 //			moshier@na-net.ornl.gov

				61	

				62	 //	tan	coefficients

				63	 var	_tanP	=	[...]float64{

				64	 	 -1.30936939181383777646E4,	//	0xc0c992d8d24f3f38

				65	 	 1.15351664838587416140E6,		//	0x413199eca5fc9ddd

				66	 	 -1.79565251976484877988E7,	//	0xc1711fead3299176

				67	 }

				68	 var	_tanQ	=	[...]float64{

				69	 	 1.00000000000000000000E0,

				70	 	 1.36812963470692954678E4,		//0x40cab8a5eeb36572

				71	 	 -1.32089234440210967447E6,	//0xc13427bc582abc96

				72	 	 2.50083801823357915839E7,		//0x4177d98fc2ead8ef

				73	 	 -5.38695755929454629881E7,	//0xc189afe03cbe5a31

				74	 }

				75	

				76	 //	Tan	returns	the	tangent	of	x.

				77	 //

				78	 //	Special	cases	are:

				79	 //	 Tan(±0)	=	±0

				80	 //	 Tan(±Inf)	=	NaN

				81	 //	 Tan(NaN)	=	NaN

				82	 func	Tan(x	float64)	float64

				83	

				84	 func	tan(x	float64)	float64	{

				85	 	 const	(

				86	 	 	 PI4A	=	7.85398125648498535156E-1																													

				87	 	 	 PI4B	=	3.77489470793079817668E-8																													

				88	 	 	 PI4C	=	2.69515142907905952645E-15																												

				89	 	 	 M4PI	=	1.273239544735162542821171882678754627704620361328125	

				90)

				91	 	 //	special	cases

				92	 	 switch	{

				93	 	 case	x	==	0	||	IsNaN(x):

				94	 	 	 return	x	//	return	±0	||	NaN()

				95	 	 case	IsInf(x,	0):

				96	 	 	 return	NaN()

				97	 	 }

				98	

				99	 	 //	make	argument	positive	but	save	the	sign

			100	 	 sign	:=	false

			101	 	 if	x	<	0	{

			102	 	 	 x	=	-x

			103	 	 	 sign	=	true

			104	 	 }

			105	

			106	 	 j	:=	int64(x	*	M4PI)	//	integer	part	of	x/(Pi/4),	as	integer	for	tests	on	the	phase	angle

			107	 	 y	:=	float64(j)						//	integer	part	of	x/(Pi/4),	as	float

			108	

			109	 	 /*	map	zeros	and	singularities	to	origin	*/

			110	 	 if	j&1	==	1	{

			111	 	 	 j	+=	1

			112	 	 	 y	+=	1

			113	 	 }

			114	

			115	 	 z	:=	((x	-	y*PI4A)	-	y*PI4B)	-	y*PI4C

			116	 	 zz	:=	z	*	z

			117	

			118	 	 if	zz	>	1e-14	{

			119	 	 	 y	=	z	+	z*(zz*(((_tanP[0]*zz)+_tanP[1])*zz+_tanP[2])/((((zz+_tanQ[1])*zz+_tanQ[2])*zz+_tanQ[3])*zz+_tanQ[4]))

			120	 	 }	else	{

			121	 	 	 y	=	z

			122	 	 }

			123	 	 if	j&2	==	2	{

			124	 	 	 y	=	-1	/	y

			125	 	 }

			126	 	 if	sign	{

			127	 	 	 y	=	-y

			128	 	 }

			129	 	 return	y

			130	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/tanh.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 /*

					8	 	 Floating-point	hyperbolic	tangent.

					9	

				10	 	 Sinh	and	Cosh	are	called	except	for	large	arguments,	which

				11	 	 would	cause	overflow	improperly.

				12	 */

				13	

				14	 //	Tanh	computes	the	hyperbolic	tangent	of	x.

				15	 //

				16	 //	Special	cases	are:

				17	 //	 Tanh(±0)	=	±0

				18	 //	 Tanh(±Inf)	=	±1

				19	 //	 Tanh(NaN)	=	NaN

				20	 func	Tanh(x	float64)	float64	{

				21	 	 if	x	<	0	{

				22	 	 	 x	=	-x

				23	 	 	 if	x	>	21	{

				24	 	 	 	 return	-1

				25	 	 	 }

				26	 	 	 return	-Sinh(x)	/	Cosh(x)

				27	 	 }

				28	 	 if	x	>	21	{

				29	 	 	 return	1

				30	 	 }

				31	 	 return	Sinh(x)	/	Cosh(x)

				32	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/unsafe.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	math

					6	

					7	 import	"unsafe"

					8	

					9	 //	Float32bits	returns	the	IEEE	754	binary	representation	of	f.

				10	 func	Float32bits(f	float32)	uint32	{	return	*(*uint32)(unsafe.Pointer(&f))	}

				11	

				12	 //	Float32frombits	returns	the	floating	point	number	corresponding

				13	 //	to	the	IEEE	754	binary	representation	b.

				14	 func	Float32frombits(b	uint32)	float32	{	return	*(*float32)(unsafe.Pointer(&b))	}

				15	

				16	 //	Float64bits	returns	the	IEEE	754	binary	representation	of	f.

				17	 func	Float64bits(f	float64)	uint64	{	return	*(*uint64)(unsafe.Pointer(&f))	}

				18	

				19	 //	Float64frombits	returns	the	floating	point	number	corresponding

				20	 //	the	IEEE	754	binary	representation	b.

				21	 func	Float64frombits(b	uint64)	float64	{	return	*(*float64)(unsafe.Pointer(&b))	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/big/arith.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	This	file	provides	Go	implementations	of	elementary	multi-precision

					6	 //	arithmetic	operations	on	word	vectors.	Needed	for	platforms	without

					7	 //	assembly	implementations	of	these	routines.

					8	

					9	 package	big

				10	

				11	 //	A	Word	represents	a	single	digit	of	a	multi-precision	unsigned	integer.

				12	 type	Word	uintptr

				13	

				14	 const	(

				15	 	 //	Compute	the	size	_S	of	a	Word	in	bytes.

				16	 	 _m				=	^Word(0)

				17	 	 _logS	=	_m>>8&1	+	_m>>16&1	+	_m>>32&1

				18	 	 _S				=	1	<<	_logS

				19	

				20	 	 _W	=	_S	<<	3	//	word	size	in	bits

				21	 	 _B	=	1	<<	_W	//	digit	base

				22	 	 _M	=	_B	-	1		//	digit	mask

				23	

				24	 	 _W2	=	_W	/	2			//	half	word	size	in	bits

				25	 	 _B2	=	1	<<	_W2	//	half	digit	base

				26	 	 _M2	=	_B2	-	1		//	half	digit	mask

				27)

				28	

				29	 //	--

				30	 //	Elementary	operations	on	words

				31	 //

				32	 //	These	operations	are	used	by	the	vector	operations	below.

				33	

				34	 //	z1<<_W	+	z0	=	x+y+c,	with	c	==	0	or	1

				35	 func	addWW_g(x,	y,	c	Word)	(z1,	z0	Word)	{

				36	 	 yc	:=	y	+	c

				37	 	 z0	=	x	+	yc

				38	 	 if	z0	<	x	||	yc	<	y	{

				39	 	 	 z1	=	1

				40	 	 }

				41	 	 return

				42	 }

				43	

				44	 //	z1<<_W	+	z0	=	x-y-c,	with	c	==	0	or	1

				45	 func	subWW_g(x,	y,	c	Word)	(z1,	z0	Word)	{

				46	 	 yc	:=	y	+	c

				47	 	 z0	=	x	-	yc

				48	 	 if	z0	>	x	||	yc	<	y	{

				49	 	 	 z1	=	1

				50	 	 }

				51	 	 return

				52	 }

				53	

				54	 //	z1<<_W	+	z0	=	x*y

				55	 //	Adapted	from	Warren,	Hacker's	Delight,	p.	132.

				56	 func	mulWW_g(x,	y	Word)	(z1,	z0	Word)	{

				57	 	 x0	:=	x	&	_M2

				58	 	 x1	:=	x	>>	_W2

				59	 	 y0	:=	y	&	_M2

				60	 	 y1	:=	y	>>	_W2

				61	 	 w0	:=	x0	*	y0

				62	 	 t	:=	x1*y0	+	w0>>_W2

				63	 	 w1	:=	t	&	_M2

				64	 	 w2	:=	t	>>	_W2

				65	 	 w1	+=	x0	*	y1

				66	 	 z1	=	x1*y1	+	w2	+	w1>>_W2

				67	 	 z0	=	x	*	y

				68	 	 return

				69	 }

				70	

				71	 //	z1<<_W	+	z0	=	x*y	+	c

				72	 func	mulAddWWW_g(x,	y,	c	Word)	(z1,	z0	Word)	{

				73	 	 z1,	zz0	:=	mulWW(x,	y)

				74	 	 if	z0	=	zz0	+	c;	z0	<	zz0	{

				75	 	 	 z1++

				76	 	 }

				77	 	 return

				78	 }

				79	

				80	 //	Length	of	x	in	bits.

				81	 func	bitLen_g(x	Word)	(n	int)	{

				82	 	 for	;	x	>=	0x8000;	x	>>=	16	{

				83	 	 	 n	+=	16

				84	 	 }

				85	 	 if	x	>=	0x80	{

				86	 	 	 x	>>=	8

				87	 	 	 n	+=	8

				88	 	 }

				89	 	 if	x	>=	0x8	{

				90	 	 	 x	>>=	4

				91	 	 	 n	+=	4

				92	 	 }

				93	 	 if	x	>=	0x2	{

				94	 	 	 x	>>=	2

				95	 	 	 n	+=	2

				96	 	 }

				97	 	 if	x	>=	0x1	{

				98	 	 	 n++

				99	 	 }

			100	 	 return

			101	 }

			102	

			103	 //	log2	computes	the	integer	binary	logarithm	of	x.

			104	 //	The	result	is	the	integer	n	for	which	2^n	<=	x	<	2^(n+1).

			105	 //	If	x	==	0,	the	result	is	-1.

			106	 func	log2(x	Word)	int	{

			107	 	 return	bitLen(x)	-	1

			108	 }

			109	

			110	 //	Number	of	leading	zeros	in	x.

			111	 func	leadingZeros(x	Word)	uint	{

			112	 	 return	uint(_W	-	bitLen(x))

			113	 }

			114	

			115	 //	q	=	(u1<<_W	+	u0	-	r)/y

			116	 //	Adapted	from	Warren,	Hacker's	Delight,	p.	152.

			117	 func	divWW_g(u1,	u0,	v	Word)	(q,	r	Word)	{

			118	 	 if	u1	>=	v	{

			119	 	 	 return	1<<_W	-	1,	1<<_W	-	1

			120	 	 }

			121	

			122	 	 s	:=	leadingZeros(v)

			123	 	 v	<<=	s

			124	

			125	 	 vn1	:=	v	>>	_W2

			126	 	 vn0	:=	v	&	_M2

			127	 	 un32	:=	u1<<s	|	u0>>(_W-s)

			128	 	 un10	:=	u0	<<	s

			129	 	 un1	:=	un10	>>	_W2

			130	 	 un0	:=	un10	&	_M2

			131	 	 q1	:=	un32	/	vn1

			132	 	 rhat	:=	un32	-	q1*vn1

			133	

			134	 again1:

			135	 	 if	q1	>=	_B2	||	q1*vn0	>	_B2*rhat+un1	{

			136	 	 	 q1--

			137	 	 	 rhat	+=	vn1

			138	 	 	 if	rhat	<	_B2	{

			139	 	 	 	 goto	again1

			140	 	 	 }

			141	 	 }

			142	

			143	 	 un21	:=	un32*_B2	+	un1	-	q1*v

			144	 	 q0	:=	un21	/	vn1

			145	 	 rhat	=	un21	-	q0*vn1

			146	

			147	 again2:

			148	 	 if	q0	>=	_B2	||	q0*vn0	>	_B2*rhat+un0	{

			149	 	 	 q0--

			150	 	 	 rhat	+=	vn1

			151	 	 	 if	rhat	<	_B2	{

			152	 	 	 	 goto	again2

			153	 	 	 }

			154	 	 }

			155	

			156	 	 return	q1*_B2	+	q0,	(un21*_B2	+	un0	-	q0*v)	>>	s

			157	 }

			158	

			159	 func	addVV_g(z,	x,	y	[]Word)	(c	Word)	{

			160	 	 for	i	:=	range	z	{

			161	 	 	 c,	z[i]	=	addWW_g(x[i],	y[i],	c)

			162	 	 }

			163	 	 return

			164	 }

			165	

			166	 func	subVV_g(z,	x,	y	[]Word)	(c	Word)	{

			167	 	 for	i	:=	range	z	{

			168	 	 	 c,	z[i]	=	subWW_g(x[i],	y[i],	c)

			169	 	 }

			170	 	 return

			171	 }

			172	

			173	 func	addVW_g(z,	x	[]Word,	y	Word)	(c	Word)	{

			174	 	 c	=	y

			175	 	 for	i	:=	range	z	{

			176	 	 	 c,	z[i]	=	addWW_g(x[i],	c,	0)

			177	 	 }

			178	 	 return

			179	 }

			180	

			181	 func	subVW_g(z,	x	[]Word,	y	Word)	(c	Word)	{

			182	 	 c	=	y

			183	 	 for	i	:=	range	z	{

			184	 	 	 c,	z[i]	=	subWW_g(x[i],	c,	0)

			185	 	 }

			186	 	 return

			187	 }

			188	

			189	 func	shlVU_g(z,	x	[]Word,	s	uint)	(c	Word)	{

			190	 	 if	n	:=	len(z);	n	>	0	{

			191	 	 	 ŝ	:=	_W	-	s

			192	 	 	 w1	:=	x[n-1]

			193	 	 	 c	=	w1	>>	ŝ

			194	 	 	 for	i	:=	n	-	1;	i	>	0;	i--	{

			195	 	 	 	 w	:=	w1

			196	 	 	 	 w1	=	x[i-1]

			197	 	 	 	 z[i]	=	w<<s	|	w1>>ŝ

			198	 	 	 }

			199	 	 	 z[0]	=	w1	<<	s

			200	 	 }

			201	 	 return

			202	 }

			203	

			204	 func	shrVU_g(z,	x	[]Word,	s	uint)	(c	Word)	{

			205	 	 if	n	:=	len(z);	n	>	0	{

			206	 	 	 ŝ	:=	_W	-	s

			207	 	 	 w1	:=	x[0]

			208	 	 	 c	=	w1	<<	ŝ

			209	 	 	 for	i	:=	0;	i	<	n-1;	i++	{

			210	 	 	 	 w	:=	w1

			211	 	 	 	 w1	=	x[i+1]

			212	 	 	 	 z[i]	=	w>>s	|	w1<<ŝ

			213	 	 	 }

			214	 	 	 z[n-1]	=	w1	>>	s

			215	 	 }

			216	 	 return

			217	 }

			218	

			219	 func	mulAddVWW_g(z,	x	[]Word,	y,	r	Word)	(c	Word)	{

			220	 	 c	=	r

			221	 	 for	i	:=	range	z	{

			222	 	 	 c,	z[i]	=	mulAddWWW_g(x[i],	y,	c)

			223	 	 }

			224	 	 return

			225	 }

			226	

			227	 func	addMulVVW_g(z,	x	[]Word,	y	Word)	(c	Word)	{

			228	 	 for	i	:=	range	z	{

			229	 	 	 z1,	z0	:=	mulAddWWW_g(x[i],	y,	z[i])

			230	 	 	 c,	z[i]	=	addWW_g(z0,	c,	0)

			231	 	 	 c	+=	z1

			232	 	 }

			233	 	 return

			234	 }

			235	

			236	 func	divWVW_g(z	[]Word,	xn	Word,	x	[]Word,	y	Word)	(r	Word)	{

			237	 	 r	=	xn

			238	 	 for	i	:=	len(z)	-	1;	i	>=	0;	i--	{

			239	 	 	 z[i],	r	=	divWW_g(r,	x[i],	y)

			240	 	 }

			241	 	 return

			242	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/math/big/arith_decl.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	big

					6	

					7	 //	implemented	in	arith_$GOARCH.s

					8	 func	mulWW(x,	y	Word)	(z1,	z0	Word)

					9	 func	divWW(x1,	x0,	y	Word)	(q,	r	Word)

				10	 func	addVV(z,	x,	y	[]Word)	(c	Word)

				11	 func	subVV(z,	x,	y	[]Word)	(c	Word)

				12	 func	addVW(z,	x	[]Word,	y	Word)	(c	Word)

				13	 func	subVW(z,	x	[]Word,	y	Word)	(c	Word)

				14	 func	shlVU(z,	x	[]Word,	s	uint)	(c	Word)

				15	 func	shrVU(z,	x	[]Word,	s	uint)	(c	Word)

				16	 func	mulAddVWW(z,	x	[]Word,	y,	r	Word)	(c	Word)

				17	 func	addMulVVW(z,	x	[]Word,	y	Word)	(c	Word)

				18	 func	divWVW(z	[]Word,	xn	Word,	x	[]Word,	y	Word)	(r	Word)

				19	 func	bitLen(x	Word)	(n	int)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/big/int.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	This	file	implements	signed	multi-precision	integers.

					6	

					7	 package	big

					8	

					9	 import	(

				10	 	 "errors"

				11	 	 "fmt"

				12	 	 "io"

				13	 	 "math/rand"

				14	 	 "strings"

				15)

				16	

				17	 //	An	Int	represents	a	signed	multi-precision	integer.

				18	 //	The	zero	value	for	an	Int	represents	the	value	0.

				19	 type	Int	struct	{

				20	 	 neg	bool	//	sign

				21	 	 abs	nat		//	absolute	value	of	the	integer

				22	 }

				23	

				24	 var	intOne	=	&Int{false,	natOne}

				25	

				26	 //	Sign	returns:

				27	 //

				28	 //	 -1	if	x	<		0

				29	 //	 	0	if	x	==	0

				30	 //	 +1	if	x	>		0

				31	 //

				32	 func	(x	*Int)	Sign()	int	{

				33	 	 if	len(x.abs)	==	0	{

				34	 	 	 return	0

				35	 	 }

				36	 	 if	x.neg	{

				37	 	 	 return	-1

				38	 	 }

				39	 	 return	1

				40	 }

				41	

				42	 //	SetInt64	sets	z	to	x	and	returns	z.

				43	 func	(z	*Int)	SetInt64(x	int64)	*Int	{

				44	 	 neg	:=	false

				45	 	 if	x	<	0	{

				46	 	 	 neg	=	true

				47	 	 	 x	=	-x

				48	 	 }

				49	 	 z.abs	=	z.abs.setUint64(uint64(x))

				50	 	 z.neg	=	neg

				51	 	 return	z

				52	 }

				53	

				54	 //	NewInt	allocates	and	returns	a	new	Int	set	to	x.

				55	 func	NewInt(x	int64)	*Int	{

				56	 	 return	new(Int).SetInt64(x)

				57	 }

				58	

				59	 //	Set	sets	z	to	x	and	returns	z.

				60	 func	(z	*Int)	Set(x	*Int)	*Int	{

				61	 	 if	z	!=	x	{

				62	 	 	 z.abs	=	z.abs.set(x.abs)

				63	 	 	 z.neg	=	x.neg

				64	 	 }

				65	 	 return	z

				66	 }

				67	

				68	 //	Bits	provides	raw	(unchecked	but	fast)	access	to	x	by	returning	its

				69	 //	absolute	value	as	a	little-endian	Word	slice.	The	result	and	x	share

				70	 //	the	same	underlying	array.

				71	 //	Bits	is	intended	to	support	implementation	of	missing	low-level	Int

				72	 //	functionality	outside	this	package;	it	should	be	avoided	otherwise.

				73	 func	(x	*Int)	Bits()	[]Word	{

				74	 	 return	x.abs

				75	 }

				76	

				77	 //	SetBits	provides	raw	(unchecked	but	fast)	access	to	z	by	setting	its

				78	 //	value	to	abs,	interpreted	as	a	little-endian	Word	slice,	and	returning

				79	 //	z.	The	result	and	abs	share	the	same	underlying	array.

				80	 //	SetBits	is	intended	to	support	implementation	of	missing	low-level	Int

				81	 //	functionality	outside	this	package;	it	should	be	avoided	otherwise.

				82	 func	(z	*Int)	SetBits(abs	[]Word)	*Int	{

				83	 	 z.abs	=	nat(abs).norm()

				84	 	 z.neg	=	false

				85	 	 return	z

				86	 }

				87	

				88	 //	Abs	sets	z	to	|x|	(the	absolute	value	of	x)	and	returns	z.

				89	 func	(z	*Int)	Abs(x	*Int)	*Int	{

				90	 	 z.Set(x)

				91	 	 z.neg	=	false

				92	 	 return	z

				93	 }

				94	

				95	 //	Neg	sets	z	to	-x	and	returns	z.

				96	 func	(z	*Int)	Neg(x	*Int)	*Int	{

				97	 	 z.Set(x)

				98	 	 z.neg	=	len(z.abs)	>	0	&&	!z.neg	//	0	has	no	sign

				99	 	 return	z

			100	 }

			101	

			102	 //	Add	sets	z	to	the	sum	x+y	and	returns	z.

			103	 func	(z	*Int)	Add(x,	y	*Int)	*Int	{

			104	 	 neg	:=	x.neg

			105	 	 if	x.neg	==	y.neg	{

			106	 	 	 //	x	+	y	==	x	+	y

			107	 	 	 //	(-x)	+	(-y)	==	-(x	+	y)

			108	 	 	 z.abs	=	z.abs.add(x.abs,	y.abs)

			109	 	 }	else	{

			110	 	 	 //	x	+	(-y)	==	x	-	y	==	-(y	-	x)

			111	 	 	 //	(-x)	+	y	==	y	-	x	==	-(x	-	y)

			112	 	 	 if	x.abs.cmp(y.abs)	>=	0	{

			113	 	 	 	 z.abs	=	z.abs.sub(x.abs,	y.abs)

			114	 	 	 }	else	{

			115	 	 	 	 neg	=	!neg

			116	 	 	 	 z.abs	=	z.abs.sub(y.abs,	x.abs)

			117	 	 	 }

			118	 	 }

			119	 	 z.neg	=	len(z.abs)	>	0	&&	neg	//	0	has	no	sign

			120	 	 return	z

			121	 }

			122	

			123	 //	Sub	sets	z	to	the	difference	x-y	and	returns	z.

			124	 func	(z	*Int)	Sub(x,	y	*Int)	*Int	{

			125	 	 neg	:=	x.neg

			126	 	 if	x.neg	!=	y.neg	{

			127	 	 	 //	x	-	(-y)	==	x	+	y

			128	 	 	 //	(-x)	-	y	==	-(x	+	y)

			129	 	 	 z.abs	=	z.abs.add(x.abs,	y.abs)

			130	 	 }	else	{

			131	 	 	 //	x	-	y	==	x	-	y	==	-(y	-	x)

			132	 	 	 //	(-x)	-	(-y)	==	y	-	x	==	-(x	-	y)

			133	 	 	 if	x.abs.cmp(y.abs)	>=	0	{

			134	 	 	 	 z.abs	=	z.abs.sub(x.abs,	y.abs)

			135	 	 	 }	else	{

			136	 	 	 	 neg	=	!neg

			137	 	 	 	 z.abs	=	z.abs.sub(y.abs,	x.abs)

			138	 	 	 }

			139	 	 }

			140	 	 z.neg	=	len(z.abs)	>	0	&&	neg	//	0	has	no	sign

			141	 	 return	z

			142	 }

			143	

			144	 //	Mul	sets	z	to	the	product	x*y	and	returns	z.

			145	 func	(z	*Int)	Mul(x,	y	*Int)	*Int	{

			146	 	 //	x	*	y	==	x	*	y

			147	 	 //	x	*	(-y)	==	-(x	*	y)

			148	 	 //	(-x)	*	y	==	-(x	*	y)

			149	 	 //	(-x)	*	(-y)	==	x	*	y

			150	 	 z.abs	=	z.abs.mul(x.abs,	y.abs)

			151	 	 z.neg	=	len(z.abs)	>	0	&&	x.neg	!=	y.neg	//	0	has	no	sign

			152	 	 return	z

			153	 }

			154	

			155	 //	MulRange	sets	z	to	the	product	of	all	integers

			156	 //	in	the	range	[a,	b]	inclusively	and	returns	z.

			157	 //	If	a	>	b	(empty	range),	the	result	is	1.

			158	 func	(z	*Int)	MulRange(a,	b	int64)	*Int	{

			159	 	 switch	{

			160	 	 case	a	>	b:

			161	 	 	 return	z.SetInt64(1)	//	empty	range

			162	 	 case	a	<=	0	&&	b	>=	0:

			163	 	 	 return	z.SetInt64(0)	//	range	includes	0

			164	 	 }

			165	 	 //	a	<=	b	&&	(b	<	0	||	a	>	0)

			166	

			167	 	 neg	:=	false

			168	 	 if	a	<	0	{

			169	 	 	 neg	=	(b-a)&1	==	0

			170	 	 	 a,	b	=	-b,	-a

			171	 	 }

			172	

			173	 	 z.abs	=	z.abs.mulRange(uint64(a),	uint64(b))

			174	 	 z.neg	=	neg

			175	 	 return	z

			176	 }

			177	

			178	 //	Binomial	sets	z	to	the	binomial	coefficient	of	(n,	k)	and	returns	z.

			179	 func	(z	*Int)	Binomial(n,	k	int64)	*Int	{

			180	 	 var	a,	b	Int

			181	 	 a.MulRange(n-k+1,	n)

			182	 	 b.MulRange(1,	k)

			183	 	 return	z.Quo(&a,	&b)

			184	 }

			185	

			186	 //	Quo	sets	z	to	the	quotient	x/y	for	y	!=	0	and	returns	z.

			187	 //	If	y	==	0,	a	division-by-zero	run-time	panic	occurs.

			188	 //	Quo	implements	truncated	division	(like	Go);	see	QuoRem	for	more	details.

			189	 func	(z	*Int)	Quo(x,	y	*Int)	*Int	{

			190	 	 z.abs,	_	=	z.abs.div(nil,	x.abs,	y.abs)

			191	 	 z.neg	=	len(z.abs)	>	0	&&	x.neg	!=	y.neg	//	0	has	no	sign

			192	 	 return	z

			193	 }

			194	

			195	 //	Rem	sets	z	to	the	remainder	x%y	for	y	!=	0	and	returns	z.

			196	 //	If	y	==	0,	a	division-by-zero	run-time	panic	occurs.

			197	 //	Rem	implements	truncated	modulus	(like	Go);	see	QuoRem	for	more	details.

			198	 func	(z	*Int)	Rem(x,	y	*Int)	*Int	{

			199	 	 _,	z.abs	=	nat(nil).div(z.abs,	x.abs,	y.abs)

			200	 	 z.neg	=	len(z.abs)	>	0	&&	x.neg	//	0	has	no	sign

			201	 	 return	z

			202	 }

			203	

			204	 //	QuoRem	sets	z	to	the	quotient	x/y	and	r	to	the	remainder	x%y

			205	 //	and	returns	the	pair	(z,	r)	for	y	!=	0.

			206	 //	If	y	==	0,	a	division-by-zero	run-time	panic	occurs.

			207	 //

			208	 //	QuoRem	implements	T-division	and	modulus	(like	Go):

			209	 //

			210	 //	 q	=	x/y						with	the	result	truncated	to	zero

			211	 //	 r	=	x	-	y*q

			212	 //

			213	 //	(See	Daan	Leijen,	``Division	and	Modulus	for	Computer	Scientists''.)

			214	 //	See	DivMod	for	Euclidean	division	and	modulus	(unlike	Go).

			215	 //

			216	 func	(z	*Int)	QuoRem(x,	y,	r	*Int)	(*Int,	*Int)	{

			217	 	 z.abs,	r.abs	=	z.abs.div(r.abs,	x.abs,	y.abs)

			218	 	 z.neg,	r.neg	=	len(z.abs)	>	0	&&	x.neg	!=	y.neg,	len(r.abs)	>	0	&&	x.neg	

			219	 	 return	z,	r

			220	 }

			221	

			222	 //	Div	sets	z	to	the	quotient	x/y	for	y	!=	0	and	returns	z.

			223	 //	If	y	==	0,	a	division-by-zero	run-time	panic	occurs.

			224	 //	Div	implements	Euclidean	division	(unlike	Go);	see	DivMod	for	more	details.

			225	 func	(z	*Int)	Div(x,	y	*Int)	*Int	{

			226	 	 y_neg	:=	y.neg	//	z	may	be	an	alias	for	y

			227	 	 var	r	Int

			228	 	 z.QuoRem(x,	y,	&r)

			229	 	 if	r.neg	{

			230	 	 	 if	y_neg	{

			231	 	 	 	 z.Add(z,	intOne)

			232	 	 	 }	else	{

			233	 	 	 	 z.Sub(z,	intOne)

			234	 	 	 }

			235	 	 }

			236	 	 return	z

			237	 }

			238	

			239	 //	Mod	sets	z	to	the	modulus	x%y	for	y	!=	0	and	returns	z.

			240	 //	If	y	==	0,	a	division-by-zero	run-time	panic	occurs.

			241	 //	Mod	implements	Euclidean	modulus	(unlike	Go);	see	DivMod	for	more	details.

			242	 func	(z	*Int)	Mod(x,	y	*Int)	*Int	{

			243	 	 y0	:=	y	//	save	y

			244	 	 if	z	==	y	||	alias(z.abs,	y.abs)	{

			245	 	 	 y0	=	new(Int).Set(y)

			246	 	 }

			247	 	 var	q	Int

			248	 	 q.QuoRem(x,	y,	z)

			249	 	 if	z.neg	{

			250	 	 	 if	y0.neg	{

			251	 	 	 	 z.Sub(z,	y0)

			252	 	 	 }	else	{

			253	 	 	 	 z.Add(z,	y0)

			254	 	 	 }

			255	 	 }

			256	 	 return	z

			257	 }

			258	

			259	 //	DivMod	sets	z	to	the	quotient	x	div	y	and	m	to	the	modulus	x	mod	y

			260	 //	and	returns	the	pair	(z,	m)	for	y	!=	0.

			261	 //	If	y	==	0,	a	division-by-zero	run-time	panic	occurs.

			262	 //

			263	 //	DivMod	implements	Euclidean	division	and	modulus	(unlike	Go):

			264	 //

			265	 //	 q	=	x	div	y		such	that

			266	 //	 m	=	x	-	y*q		with	0	<=	m	<	|q|

			267	 //

			268	 //	(See	Raymond	T.	Boute,	``The	Euclidean	definition	of	the	functions

			269	 //	div	and	mod''.	ACM	Transactions	on	Programming	Languages	and

			270	 //	Systems	(TOPLAS),	14(2):127-144,	New	York,	NY,	USA,	4/1992.

			271	 //	ACM	press.)

			272	 //	See	QuoRem	for	T-division	and	modulus	(like	Go).

			273	 //

			274	 func	(z	*Int)	DivMod(x,	y,	m	*Int)	(*Int,	*Int)	{

			275	 	 y0	:=	y	//	save	y

			276	 	 if	z	==	y	||	alias(z.abs,	y.abs)	{

			277	 	 	 y0	=	new(Int).Set(y)

			278	 	 }

			279	 	 z.QuoRem(x,	y,	m)

			280	 	 if	m.neg	{

			281	 	 	 if	y0.neg	{

			282	 	 	 	 z.Add(z,	intOne)

			283	 	 	 	 m.Sub(m,	y0)

			284	 	 	 }	else	{

			285	 	 	 	 z.Sub(z,	intOne)

			286	 	 	 	 m.Add(m,	y0)

			287	 	 	 }

			288	 	 }

			289	 	 return	z,	m

			290	 }

			291	

			292	 //	Cmp	compares	x	and	y	and	returns:

			293	 //

			294	 //			-1	if	x	<		y

			295	 //				0	if	x	==	y

			296	 //			+1	if	x	>		y

			297	 //

			298	 func	(x	*Int)	Cmp(y	*Int)	(r	int)	{

			299	 	 //	x	cmp	y	==	x	cmp	y

			300	 	 //	x	cmp	(-y)	==	x

			301	 	 //	(-x)	cmp	y	==	y

			302	 	 //	(-x)	cmp	(-y)	==	-(x	cmp	y)

			303	 	 switch	{

			304	 	 case	x.neg	==	y.neg:

			305	 	 	 r	=	x.abs.cmp(y.abs)

			306	 	 	 if	x.neg	{

			307	 	 	 	 r	=	-r

			308	 	 	 }

			309	 	 case	x.neg:

			310	 	 	 r	=	-1

			311	 	 default:

			312	 	 	 r	=	1

			313	 	 }

			314	 	 return

			315	 }

			316	

			317	 func	(x	*Int)	String()	string	{

			318	 	 switch	{

			319	 	 case	x	==	nil:

			320	 	 	 return	"<nil>"

			321	 	 case	x.neg:

			322	 	 	 return	"-"	+	x.abs.decimalString()

			323	 	 }

			324	 	 return	x.abs.decimalString()

			325	 }

			326	

			327	 func	charset(ch	rune)	string	{

			328	 	 switch	ch	{

			329	 	 case	'b':

			330	 	 	 return	lowercaseDigits[0:2]

			331	 	 case	'o':

			332	 	 	 return	lowercaseDigits[0:8]

			333	 	 case	'd',	's',	'v':

			334	 	 	 return	lowercaseDigits[0:10]

			335	 	 case	'x':

			336	 	 	 return	lowercaseDigits[0:16]

			337	 	 case	'X':

			338	 	 	 return	uppercaseDigits[0:16]

			339	 	 }

			340	 	 return	""	//	unknown	format

			341	 }

			342	

			343	 //	write	count	copies	of	text	to	s

			344	 func	writeMultiple(s	fmt.State,	text	string,	count	int)	{

			345	 	 if	len(text)	>	0	{

			346	 	 	 b	:=	[]byte(text)

			347	 	 	 for	;	count	>	0;	count--	{

			348	 	 	 	 s.Write(b)

			349	 	 	 }

			350	 	 }

			351	 }

			352	

			353	 //	Format	is	a	support	routine	for	fmt.Formatter.	It	accepts

			354	 //	the	formats	'b'	(binary),	'o'	(octal),	'd'	(decimal),	'x'

			355	 //	(lowercase	hexadecimal),	and	'X'	(uppercase	hexadecimal).

			356	 //	Also	supported	are	the	full	suite	of	package	fmt's	format

			357	 //	verbs	for	integral	types,	including	'+',	'-',	and	'	'

			358	 //	for	sign	control,	'#'	for	leading	zero	in	octal	and	for

			359	 //	hexadecimal,	a	leading	"0x"	or	"0X"	for	"%#x"	and	"%#X"

			360	 //	respectively,	specification	of	minimum	digits	precision,

			361	 //	output	field	width,	space	or	zero	padding,	and	left	or

			362	 //	right	justification.

			363	 //

			364	 func	(x	*Int)	Format(s	fmt.State,	ch	rune)	{

			365	 	 cs	:=	charset(ch)

			366	

			367	 	 //	special	cases

			368	 	 switch	{

			369	 	 case	cs	==	"":

			370	 	 	 //	unknown	format

			371	 	 	 fmt.Fprintf(s,	"%%!%c(big.Int=%s)",	ch,	x.String())

			372	 	 	 return

			373	 	 case	x	==	nil:

			374	 	 	 fmt.Fprint(s,	"<nil>")

			375	 	 	 return

			376	 	 }

			377	

			378	 	 //	determine	sign	character

			379	 	 sign	:=	""

			380	 	 switch	{

			381	 	 case	x.neg:

			382	 	 	 sign	=	"-"

			383	 	 case	s.Flag('+'):	//	supersedes	'	'	when	both	specified

			384	 	 	 sign	=	"+"

			385	 	 case	s.Flag('	'):

			386	 	 	 sign	=	"	"

			387	 	 }

			388	

			389	 	 //	determine	prefix	characters	for	indicating	output	base

			390	 	 prefix	:=	""

			391	 	 if	s.Flag('#')	{

			392	 	 	 switch	ch	{

			393	 	 	 case	'o':	//	octal

			394	 	 	 	 prefix	=	"0"

			395	 	 	 case	'x':	//	hexadecimal

			396	 	 	 	 prefix	=	"0x"

			397	 	 	 case	'X':

			398	 	 	 	 prefix	=	"0X"

			399	 	 	 }

			400	 	 }

			401	

			402	 	 //	determine	digits	with	base	set	by	len(cs)	and	digit	characters	from	cs

			403	 	 digits	:=	x.abs.string(cs)

			404	

			405	 	 //	number	of	characters	for	the	three	classes	of	number	padding

			406	 	 var	left	int			//	space	characters	to	left	of	digits	for	right	justification	("%8d")

			407	 	 var	zeroes	int	//	zero	characters	(actually	cs[0])	as	left-most	digits	("%.8d")

			408	 	 var	right	int		//	space	characters	to	right	of	digits	for	left	justification	("%-8d")

			409	

			410	 	 //	determine	number	padding	from	precision:	the	least	number	of	digits	to	output

			411	 	 precision,	precisionSet	:=	s.Precision()

			412	 	 if	precisionSet	{

			413	 	 	 switch	{

			414	 	 	 case	len(digits)	<	precision:

			415	 	 	 	 zeroes	=	precision	-	len(digits)	//	count	of	zero	padding	

			416	 	 	 case	digits	==	"0"	&&	precision	==	0:

			417	 	 	 	 return	//	print	nothing	if	zero	value	(x	==	0)	and	zero	precision	("."	or	".0")

			418	 	 	 }

			419	 	 }

			420	

			421	 	 //	determine	field	pad	from	width:	the	least	number	of	characters	to	output

			422	 	 length	:=	len(sign)	+	len(prefix)	+	zeroes	+	len(digits)

			423	 	 if	width,	widthSet	:=	s.Width();	widthSet	&&	length	<	width	{	

			424	 	 	 switch	d	:=	width	-	length;	{

			425	 	 	 case	s.Flag('-'):

			426	 	 	 	 //	pad	on	the	right	with	spaces;	supersedes	'0'	when	both	specified

			427	 	 	 	 right	=	d

			428	 	 	 case	s.Flag('0')	&&	!precisionSet:

			429	 	 	 	 //	pad	with	zeroes	unless	precision	also	specified

			430	 	 	 	 zeroes	=	d

			431	 	 	 default:

			432	 	 	 	 //	pad	on	the	left	with	spaces

			433	 	 	 	 left	=	d

			434	 	 	 }

			435	 	 }

			436	

			437	 	 //	print	number	as	[left	pad][sign][prefix][zero	pad][digits][right	pad]

			438	 	 writeMultiple(s,	"	",	left)

			439	 	 writeMultiple(s,	sign,	1)

			440	 	 writeMultiple(s,	prefix,	1)

			441	 	 writeMultiple(s,	"0",	zeroes)

			442	 	 writeMultiple(s,	digits,	1)

			443	 	 writeMultiple(s,	"	",	right)

			444	 }

			445	

			446	 //	scan	sets	z	to	the	integer	value	corresponding	to	the	longest	possible	prefix

			447	 //	read	from	r	representing	a	signed	integer	number	in	a	given	conversion	base.

			448	 //	It	returns	z,	the	actual	conversion	base	used,	and	an	error,	if	any.	In	the

			449	 //	error	case,	the	value	of	z	is	undefined	but	the	returned	value	is	nil.	The

			450	 //	syntax	follows	the	syntax	of	integer	literals	in	Go.

			451	 //

			452	 //	The	base	argument	must	be	0	or	a	value	from	2	through	MaxBase.	If	the	base

			453	 //	is	0,	the	string	prefix	determines	the	actual	conversion	base.	A	prefix	of

			454	 //	``0x''	or	``0X''	selects	base	16;	the	``0''	prefix	selects	base	8,	and	a

			455	 //	``0b''	or	``0B''	prefix	selects	base	2.	Otherwise	the	selected	base	is	10.

			456	 //

			457	 func	(z	*Int)	scan(r	io.RuneScanner,	base	int)	(*Int,	int,	error)	{

			458	 	 //	determine	sign

			459	 	 ch,	_,	err	:=	r.ReadRune()

			460	 	 if	err	!=	nil	{

			461	 	 	 return	nil,	0,	err

			462	 	 }

			463	 	 neg	:=	false

			464	 	 switch	ch	{

			465	 	 case	'-':

			466	 	 	 neg	=	true

			467	 	 case	'+':	//	nothing	to	do

			468	 	 default:

			469	 	 	 r.UnreadRune()

			470	 	 }

			471	

			472	 	 //	determine	mantissa

			473	 	 z.abs,	base,	err	=	z.abs.scan(r,	base)

			474	 	 if	err	!=	nil	{

			475	 	 	 return	nil,	base,	err

			476	 	 }

			477	 	 z.neg	=	len(z.abs)	>	0	&&	neg	//	0	has	no	sign

			478	

			479	 	 return	z,	base,	nil

			480	 }

			481	

			482	 //	Scan	is	a	support	routine	for	fmt.Scanner;	it	sets	z	to	the	value	of

			483	 //	the	scanned	number.	It	accepts	the	formats	'b'	(binary),	'o'	(octal),

			484	 //	'd'	(decimal),	'x'	(lowercase	hexadecimal),	and	'X'	(uppercase	hexadecimal).

			485	 func	(z	*Int)	Scan(s	fmt.ScanState,	ch	rune)	error	{

			486	 	 s.SkipSpace()	//	skip	leading	space	characters

			487	 	 base	:=	0

			488	 	 switch	ch	{

			489	 	 case	'b':

			490	 	 	 base	=	2

			491	 	 case	'o':

			492	 	 	 base	=	8

			493	 	 case	'd':

			494	 	 	 base	=	10

			495	 	 case	'x',	'X':

			496	 	 	 base	=	16

			497	 	 case	's',	'v':

			498	 	 	 //	let	scan	determine	the	base

			499	 	 default:

			500	 	 	 return	errors.New("Int.Scan:	invalid	verb")

			501	 	 }

			502	 	 _,	_,	err	:=	z.scan(s,	base)

			503	 	 return	err

			504	 }

			505	

			506	 //	Int64	returns	the	int64	representation	of	x.

			507	 //	If	x	cannot	be	represented	in	an	int64,	the	result	is	undefined.

			508	 func	(x	*Int)	Int64()	int64	{

			509	 	 if	len(x.abs)	==	0	{

			510	 	 	 return	0

			511	 	 }

			512	 	 v	:=	int64(x.abs[0])

			513	 	 if	_W	==	32	&&	len(x.abs)	>	1	{

			514	 	 	 v	|=	int64(x.abs[1])	<<	32

			515	 	 }

			516	 	 if	x.neg	{

			517	 	 	 v	=	-v

			518	 	 }

			519	 	 return	v

			520	 }

			521	

			522	 //	SetString	sets	z	to	the	value	of	s,	interpreted	in	the	given	base,

			523	 //	and	returns	z	and	a	boolean	indicating	success.	If	SetString	fails,

			524	 //	the	value	of	z	is	undefined	but	the	returned	value	is	nil.

			525	 //

			526	 //	The	base	argument	must	be	0	or	a	value	from	2	through	MaxBase.	If	the	base

			527	 //	is	0,	the	string	prefix	determines	the	actual	conversion	base.	A	prefix	of

			528	 //	``0x''	or	``0X''	selects	base	16;	the	``0''	prefix	selects	base	8,	and	a

			529	 //	``0b''	or	``0B''	prefix	selects	base	2.	Otherwise	the	selected	base	is	10.

			530	 //

			531	 func	(z	*Int)	SetString(s	string,	base	int)	(*Int,	bool)	{

			532	 	 r	:=	strings.NewReader(s)

			533	 	 _,	_,	err	:=	z.scan(r,	base)

			534	 	 if	err	!=	nil	{

			535	 	 	 return	nil,	false

			536	 	 }

			537	 	 _,	_,	err	=	r.ReadRune()

			538	 	 if	err	!=	io.EOF	{

			539	 	 	 return	nil,	false

			540	 	 }

			541	 	 return	z,	true	//	err	==	io.EOF	=>	scan	consumed	all	of	s

			542	 }

			543	

			544	 //	SetBytes	interprets	buf	as	the	bytes	of	a	big-endian	unsigned

			545	 //	integer,	sets	z	to	that	value,	and	returns	z.

			546	 func	(z	*Int)	SetBytes(buf	[]byte)	*Int	{

			547	 	 z.abs	=	z.abs.setBytes(buf)

			548	 	 z.neg	=	false

			549	 	 return	z

			550	 }

			551	

			552	 //	Bytes	returns	the	absolute	value	of	z	as	a	big-endian	byte	slice.

			553	 func	(x	*Int)	Bytes()	[]byte	{

			554	 	 buf	:=	make([]byte,	len(x.abs)*_S)

			555	 	 return	buf[x.abs.bytes(buf):]

			556	 }

			557	

			558	 //	BitLen	returns	the	length	of	the	absolute	value	of	z	in	bits.

			559	 //	The	bit	length	of	0	is	0.

			560	 func	(x	*Int)	BitLen()	int	{

			561	 	 return	x.abs.bitLen()

			562	 }

			563	

			564	 //	Exp	sets	z	=	x**y	mod	m	and	returns	z.	If	m	is	nil,	z	=	x**y.

			565	 //	See	Knuth,	volume	2,	section	4.6.3.

			566	 func	(z	*Int)	Exp(x,	y,	m	*Int)	*Int	{

			567	 	 if	y.neg	||	len(y.abs)	==	0	{

			568	 	 	 neg	:=	x.neg

			569	 	 	 z.SetInt64(1)

			570	 	 	 z.neg	=	neg

			571	 	 	 return	z

			572	 	 }

			573	

			574	 	 var	mWords	nat

			575	 	 if	m	!=	nil	{

			576	 	 	 mWords	=	m.abs

			577	 	 }

			578	

			579	 	 z.abs	=	z.abs.expNN(x.abs,	y.abs,	mWords)

			580	 	 z.neg	=	len(z.abs)	>	0	&&	x.neg	&&	y.abs[0]&1	==	1	//	0	has	no	sign

			581	 	 return	z

			582	 }

			583	

			584	 //	GCD	sets	z	to	the	greatest	common	divisor	of	a	and	b,	which	must	be

			585	 //	positive	numbers,	and	returns	z.

			586	 //	If	x	and	y	are	not	nil,	GCD	sets	x	and	y	such	that	z	=	a*x	+	b*y.

			587	 //	If	either	a	or	b	is	not	positive,	GCD	sets	z	=	x	=	y	=	0.

			588	 func	(z	*Int)	GCD(x,	y,	a,	b	*Int)	*Int	{

			589	 	 if	a.neg	||	b.neg	{

			590	 	 	 z.SetInt64(0)

			591	 	 	 if	x	!=	nil	{

			592	 	 	 	 x.SetInt64(0)

			593	 	 	 }

			594	 	 	 if	y	!=	nil	{

			595	 	 	 	 y.SetInt64(0)

			596	 	 	 }

			597	 	 	 return	z

			598	 	 }

			599	

			600	 	 A	:=	new(Int).Set(a)

			601	 	 B	:=	new(Int).Set(b)

			602	

			603	 	 X	:=	new(Int)

			604	 	 Y	:=	new(Int).SetInt64(1)

			605	

			606	 	 lastX	:=	new(Int).SetInt64(1)

			607	 	 lastY	:=	new(Int)

			608	

			609	 	 q	:=	new(Int)

			610	 	 temp	:=	new(Int)

			611	

			612	 	 for	len(B.abs)	>	0	{

			613	 	 	 r	:=	new(Int)

			614	 	 	 q,	r	=	q.QuoRem(A,	B,	r)

			615	

			616	 	 	 A,	B	=	B,	r

			617	

			618	 	 	 temp.Set(X)

			619	 	 	 X.Mul(X,	q)

			620	 	 	 X.neg	=	!X.neg

			621	 	 	 X.Add(X,	lastX)

			622	 	 	 lastX.Set(temp)

			623	

			624	 	 	 temp.Set(Y)

			625	 	 	 Y.Mul(Y,	q)

			626	 	 	 Y.neg	=	!Y.neg

			627	 	 	 Y.Add(Y,	lastY)

			628	 	 	 lastY.Set(temp)

			629	 	 }

			630	

			631	 	 if	x	!=	nil	{

			632	 	 	 *x	=	*lastX

			633	 	 }

			634	

			635	 	 if	y	!=	nil	{

			636	 	 	 *y	=	*lastY

			637	 	 }

			638	

			639	 	 *z	=	*A

			640	 	 return	z

			641	 }

			642	

			643	 //	ProbablyPrime	performs	n	Miller-Rabin	tests	to	check	whether	x	is	prime.

			644	 //	If	it	returns	true,	x	is	prime	with	probability	1	-	1/4^n.

			645	 //	If	it	returns	false,	x	is	not	prime.

			646	 func	(x	*Int)	ProbablyPrime(n	int)	bool	{

			647	 	 return	!x.neg	&&	x.abs.probablyPrime(n)

			648	 }

			649	

			650	 //	Rand	sets	z	to	a	pseudo-random	number	in	[0,	n)	and	returns	z.

			651	 func	(z	*Int)	Rand(rnd	*rand.Rand,	n	*Int)	*Int	{

			652	 	 z.neg	=	false

			653	 	 if	n.neg	==	true	||	len(n.abs)	==	0	{

			654	 	 	 z.abs	=	nil

			655	 	 	 return	z

			656	 	 }

			657	 	 z.abs	=	z.abs.random(rnd,	n.abs,	n.abs.bitLen())

			658	 	 return	z

			659	 }

			660	

			661	 //	ModInverse	sets	z	to	the	multiplicative	inverse	of	g	in	the	group	ℤ/pℤ	(where
			662	 //	p	is	a	prime)	and	returns	z.

			663	 func	(z	*Int)	ModInverse(g,	p	*Int)	*Int	{

			664	 	 var	d	Int

			665	 	 d.GCD(z,	nil,	g,	p)

			666	 	 //	x	and	y	are	such	that	g*x	+	p*y	=	d.	Since	p	is	prime,	d	=	1.	Taking

			667	 	 //	that	modulo	p	results	in	g*x	=	1,	therefore	x	is	the	inverse	element.

			668	 	 if	z.neg	{

			669	 	 	 z.Add(z,	p)

			670	 	 }

			671	 	 return	z

			672	 }

			673	

			674	 //	Lsh	sets	z	=	x	<<	n	and	returns	z.

			675	 func	(z	*Int)	Lsh(x	*Int,	n	uint)	*Int	{

			676	 	 z.abs	=	z.abs.shl(x.abs,	n)

			677	 	 z.neg	=	x.neg

			678	 	 return	z

			679	 }

			680	

			681	 //	Rsh	sets	z	=	x	>>	n	and	returns	z.

			682	 func	(z	*Int)	Rsh(x	*Int,	n	uint)	*Int	{

			683	 	 if	x.neg	{

			684	 	 	 //	(-x)	>>	s	==	^(x-1)	>>	s	==	^((x-1)	>>	s)	==	-(((x-1)	>>	s)	+	1)

			685	 	 	 t	:=	z.abs.sub(x.abs,	natOne)	//	no	underflow	because	|x|	>	0

			686	 	 	 t	=	t.shr(t,	n)

			687	 	 	 z.abs	=	t.add(t,	natOne)

			688	 	 	 z.neg	=	true	//	z	cannot	be	zero	if	x	is	negative

			689	 	 	 return	z

			690	 	 }

			691	

			692	 	 z.abs	=	z.abs.shr(x.abs,	n)

			693	 	 z.neg	=	false

			694	 	 return	z

			695	 }

			696	

			697	 //	Bit	returns	the	value	of	the	i'th	bit	of	x.	That	is,	it

			698	 //	returns	(x>>i)&1.	The	bit	index	i	must	be	>=	0.

			699	 func	(x	*Int)	Bit(i	int)	uint	{

			700	 	 if	i	<	0	{

			701	 	 	 panic("negative	bit	index")

			702	 	 }

			703	 	 if	x.neg	{

			704	 	 	 t	:=	nat(nil).sub(x.abs,	natOne)

			705	 	 	 return	t.bit(uint(i))	^	1

			706	 	 }

			707	

			708	 	 return	x.abs.bit(uint(i))

			709	 }

			710	

			711	 //	SetBit	sets	z	to	x,	with	x's	i'th	bit	set	to	b	(0	or	1).

			712	 //	That	is,	if	bit	is	1	SetBit	sets	z	=	x	|	(1	<<	i);

			713	 //	if	bit	is	0	it	sets	z	=	x	&^	(1	<<	i).	If	bit	is	not	0	or	1,

			714	 //	SetBit	will	panic.

			715	 func	(z	*Int)	SetBit(x	*Int,	i	int,	b	uint)	*Int	{

			716	 	 if	i	<	0	{

			717	 	 	 panic("negative	bit	index")

			718	 	 }

			719	 	 if	x.neg	{

			720	 	 	 t	:=	z.abs.sub(x.abs,	natOne)

			721	 	 	 t	=	t.setBit(t,	uint(i),	b^1)

			722	 	 	 z.abs	=	t.add(t,	natOne)

			723	 	 	 z.neg	=	len(z.abs)	>	0

			724	 	 	 return	z

			725	 	 }

			726	 	 z.abs	=	z.abs.setBit(x.abs,	uint(i),	b)

			727	 	 z.neg	=	false

			728	 	 return	z

			729	 }

			730	

			731	 //	And	sets	z	=	x	&	y	and	returns	z.

			732	 func	(z	*Int)	And(x,	y	*Int)	*Int	{

			733	 	 if	x.neg	==	y.neg	{

			734	 	 	 if	x.neg	{

			735	 	 	 	 //	(-x)	&	(-y)	==	^(x-1)	&	^(y-1)	==	^((x-1)	|	(y-1))	==	-(((x-1)	|	(y-1))	+	1)

			736	 	 	 	 x1	:=	nat(nil).sub(x.abs,	natOne)

			737	 	 	 	 y1	:=	nat(nil).sub(y.abs,	natOne)

			738	 	 	 	 z.abs	=	z.abs.add(z.abs.or(x1,	y1),	natOne)

			739	 	 	 	 z.neg	=	true	//	z	cannot	be	zero	if	x	and	y	are	negative

			740	 	 	 	 return	z

			741	 	 	 }

			742	

			743	 	 	 //	x	&	y	==	x	&	y

			744	 	 	 z.abs	=	z.abs.and(x.abs,	y.abs)

			745	 	 	 z.neg	=	false

			746	 	 	 return	z

			747	 	 }

			748	

			749	 	 //	x.neg	!=	y.neg

			750	 	 if	x.neg	{

			751	 	 	 x,	y	=	y,	x	//	&	is	symmetric

			752	 	 }

			753	

			754	 	 //	x	&	(-y)	==	x	&	^(y-1)	==	x	&^	(y-1)

			755	 	 y1	:=	nat(nil).sub(y.abs,	natOne)

			756	 	 z.abs	=	z.abs.andNot(x.abs,	y1)

			757	 	 z.neg	=	false

			758	 	 return	z

			759	 }

			760	

			761	 //	AndNot	sets	z	=	x	&^	y	and	returns	z.

			762	 func	(z	*Int)	AndNot(x,	y	*Int)	*Int	{

			763	 	 if	x.neg	==	y.neg	{

			764	 	 	 if	x.neg	{

			765	 	 	 	 //	(-x)	&^	(-y)	==	^(x-1)	&^	^(y-1)	==	^(x-1)	&	(y-1)	==	(y-1)	&^	(x-1)

			766	 	 	 	 x1	:=	nat(nil).sub(x.abs,	natOne)

			767	 	 	 	 y1	:=	nat(nil).sub(y.abs,	natOne)

			768	 	 	 	 z.abs	=	z.abs.andNot(y1,	x1)

			769	 	 	 	 z.neg	=	false

			770	 	 	 	 return	z

			771	 	 	 }

			772	

			773	 	 	 //	x	&^	y	==	x	&^	y

			774	 	 	 z.abs	=	z.abs.andNot(x.abs,	y.abs)

			775	 	 	 z.neg	=	false

			776	 	 	 return	z

			777	 	 }

			778	

			779	 	 if	x.neg	{

			780	 	 	 //	(-x)	&^	y	==	^(x-1)	&^	y	==	^(x-1)	&	^y	==	^((x-1)	|	y)	==	-(((x-1)	|	y)	+	1)

			781	 	 	 x1	:=	nat(nil).sub(x.abs,	natOne)

			782	 	 	 z.abs	=	z.abs.add(z.abs.or(x1,	y.abs),	natOne)

			783	 	 	 z.neg	=	true	//	z	cannot	be	zero	if	x	is	negative	and	y	is	positive

			784	 	 	 return	z

			785	 	 }

			786	

			787	 	 //	x	&^	(-y)	==	x	&^	^(y-1)	==	x	&	(y-1)

			788	 	 y1	:=	nat(nil).add(y.abs,	natOne)

			789	 	 z.abs	=	z.abs.and(x.abs,	y1)

			790	 	 z.neg	=	false

			791	 	 return	z

			792	 }

			793	

			794	 //	Or	sets	z	=	x	|	y	and	returns	z.

			795	 func	(z	*Int)	Or(x,	y	*Int)	*Int	{

			796	 	 if	x.neg	==	y.neg	{

			797	 	 	 if	x.neg	{

			798	 	 	 	 //	(-x)	|	(-y)	==	^(x-1)	|	^(y-1)	==	^((x-1)	&	(y-1))	==	-(((x-1)	&	(y-1))	+	1)

			799	 	 	 	 x1	:=	nat(nil).sub(x.abs,	natOne)

			800	 	 	 	 y1	:=	nat(nil).sub(y.abs,	natOne)

			801	 	 	 	 z.abs	=	z.abs.add(z.abs.and(x1,	y1),	natOne)

			802	 	 	 	 z.neg	=	true	//	z	cannot	be	zero	if	x	and	y	are	negative

			803	 	 	 	 return	z

			804	 	 	 }

			805	

			806	 	 	 //	x	|	y	==	x	|	y

			807	 	 	 z.abs	=	z.abs.or(x.abs,	y.abs)

			808	 	 	 z.neg	=	false

			809	 	 	 return	z

			810	 	 }

			811	

			812	 	 //	x.neg	!=	y.neg

			813	 	 if	x.neg	{

			814	 	 	 x,	y	=	y,	x	//	|	is	symmetric

			815	 	 }

			816	

			817	 	 //	x	|	(-y)	==	x	|	^(y-1)	==	^((y-1)	&^	x)	==	-(^((y-1)	&^	x)	+	1)

			818	 	 y1	:=	nat(nil).sub(y.abs,	natOne)

			819	 	 z.abs	=	z.abs.add(z.abs.andNot(y1,	x.abs),	natOne)

			820	 	 z.neg	=	true	//	z	cannot	be	zero	if	one	of	x	or	y	is	negative

			821	 	 return	z

			822	 }

			823	

			824	 //	Xor	sets	z	=	x	^	y	and	returns	z.

			825	 func	(z	*Int)	Xor(x,	y	*Int)	*Int	{

			826	 	 if	x.neg	==	y.neg	{

			827	 	 	 if	x.neg	{

			828	 	 	 	 //	(-x)	^	(-y)	==	^(x-1)	^	^(y-1)	==	(x-1)	^	(y-1)

			829	 	 	 	 x1	:=	nat(nil).sub(x.abs,	natOne)

			830	 	 	 	 y1	:=	nat(nil).sub(y.abs,	natOne)

			831	 	 	 	 z.abs	=	z.abs.xor(x1,	y1)

			832	 	 	 	 z.neg	=	false

			833	 	 	 	 return	z

			834	 	 	 }

			835	

			836	 	 	 //	x	^	y	==	x	^	y

			837	 	 	 z.abs	=	z.abs.xor(x.abs,	y.abs)

			838	 	 	 z.neg	=	false

			839	 	 	 return	z

			840	 	 }

			841	

			842	 	 //	x.neg	!=	y.neg

			843	 	 if	x.neg	{

			844	 	 	 x,	y	=	y,	x	//	^	is	symmetric

			845	 	 }

			846	

			847	 	 //	x	^	(-y)	==	x	^	^(y-1)	==	^(x	^	(y-1))	==	-((x	^	(y-1))	+	1)

			848	 	 y1	:=	nat(nil).sub(y.abs,	natOne)

			849	 	 z.abs	=	z.abs.add(z.abs.xor(x.abs,	y1),	natOne)

			850	 	 z.neg	=	true	//	z	cannot	be	zero	if	only	one	of	x	or	y	is	negative

			851	 	 return	z

			852	 }

			853	

			854	 //	Not	sets	z	=	^x	and	returns	z.

			855	 func	(z	*Int)	Not(x	*Int)	*Int	{

			856	 	 if	x.neg	{

			857	 	 	 //	^(-x)	==	^(^(x-1))	==	x-1

			858	 	 	 z.abs	=	z.abs.sub(x.abs,	natOne)

			859	 	 	 z.neg	=	false

			860	 	 	 return	z

			861	 	 }

			862	

			863	 	 //	^x	==	-x-1	==	-(x+1)

			864	 	 z.abs	=	z.abs.add(x.abs,	natOne)

			865	 	 z.neg	=	true	//	z	cannot	be	zero	if	x	is	positive

			866	 	 return	z

			867	 }

			868	

			869	 //	Gob	codec	version.	Permits	backward-compatible	changes	to	the	encoding.

			870	 const	intGobVersion	byte	=	1

			871	

			872	 //	GobEncode	implements	the	gob.GobEncoder	interface.

			873	 func	(x	*Int)	GobEncode()	([]byte,	error)	{

			874	 	 buf	:=	make([]byte,	1+len(x.abs)*_S)	//	extra	byte	for	version	and	sign	bit

			875	 	 i	:=	x.abs.bytes(buf)	-	1												//	i	>=	0

			876	 	 b	:=	intGobVersion	<<	1														//	make	space	for	sign	bit

			877	 	 if	x.neg	{

			878	 	 	 b	|=	1

			879	 	 }

			880	 	 buf[i]	=	b

			881	 	 return	buf[i:],	nil

			882	 }

			883	

			884	 //	GobDecode	implements	the	gob.GobDecoder	interface.

			885	 func	(z	*Int)	GobDecode(buf	[]byte)	error	{

			886	 	 if	len(buf)	==	0	{

			887	 	 	 return	errors.New("Int.GobDecode:	no	data")

			888	 	 }

			889	 	 b	:=	buf[0]

			890	 	 if	b>>1	!=	intGobVersion	{

			891	 	 	 return	errors.New(fmt.Sprintf("Int.GobDecode:	encoding	version	%d	not	supported",	b>>1))

			892	 	 }

			893	 	 z.neg	=	b&1	!=	0

			894	 	 z.abs	=	z.abs.setBytes(buf[1:])

			895	 	 return	nil

			896	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/big/nat.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	big	implements	multi-precision	arithmetic	(big	numbers).

					6	 //	The	following	numeric	types	are	supported:

					7	 //

					8	 //	 -	Int	 signed	integers

					9	 //	 -	Rat	 rational	numbers

				10	 //

				11	 //	Methods	are	typically	of	the	form:

				12	 //

				13	 //	 func	(z	*Int)	Op(x,	y	*Int)	*Int	 (similar	for	*Rat)

				14	 //

				15	 //	and	implement	operations	z	=	x	Op	y	with	the	result	as	receiver;	if	it

				16	 //	is	one	of	the	operands	it	may	be	overwritten	(and	its	memory	reused).

				17	 //	To	enable	chaining	of	operations,	the	result	is	also	returned.	Methods

				18	 //	returning	a	result	other	than	*Int	or	*Rat	take	one	of	the	operands	as

				19	 //	the	receiver.

				20	 //

				21	 package	big

				22	

				23	 //	This	file	contains	operations	on	unsigned	multi-precision	integers.

				24	 //	These	are	the	building	blocks	for	the	operations	on	signed	integers

				25	 //	and	rationals.

				26	

				27	 import	(

				28	 	 "errors"

				29	 	 "io"

				30	 	 "math"

				31	 	 "math/rand"

				32	 	 "sync"

				33)

				34	

				35	 //	An	unsigned	integer	x	of	the	form

				36	 //

				37	 //			x	=	x[n-1]*_B^(n-1)	+	x[n-2]*_B^(n-2)	+	...	+	x[1]*_B	+	x[0]

				38	 //

				39	 //	with	0	<=	x[i]	<	_B	and	0	<=	i	<	n	is	stored	in	a	slice	of	length	n,

				40	 //	with	the	digits	x[i]	as	the	slice	elements.

				41	 //

				42	 //	A	number	is	normalized	if	the	slice	contains	no	leading	0	digits.

				43	 //	During	arithmetic	operations,	denormalized	values	may	occur	but	are

				44	 //	always	normalized	before	returning	the	final	result.	The	normalized

				45	 //	representation	of	0	is	the	empty	or	nil	slice	(length	=	0).

				46	 //

				47	 type	nat	[]Word

				48	

				49	 var	(

				50	 	 natOne	=	nat{1}

				51	 	 natTwo	=	nat{2}

				52	 	 natTen	=	nat{10}

				53)

				54	

				55	 func	(z	nat)	clear()	{

				56	 	 for	i	:=	range	z	{

				57	 	 	 z[i]	=	0

				58	 	 }

				59	 }

				60	

				61	 func	(z	nat)	norm()	nat	{

				62	 	 i	:=	len(z)

				63	 	 for	i	>	0	&&	z[i-1]	==	0	{

				64	 	 	 i--

				65	 	 }

				66	 	 return	z[0:i]

				67	 }

				68	

				69	 func	(z	nat)	make(n	int)	nat	{

				70	 	 if	n	<=	cap(z)	{

				71	 	 	 return	z[0:n]	//	reuse	z

				72	 	 }

				73	 	 //	Choosing	a	good	value	for	e	has	significant	performance	impact

				74	 	 //	because	it	increases	the	chance	that	a	value	can	be	reused.

				75	 	 const	e	=	4	//	extra	capacity

				76	 	 return	make(nat,	n,	n+e)

				77	 }

				78	

				79	 func	(z	nat)	setWord(x	Word)	nat	{

				80	 	 if	x	==	0	{

				81	 	 	 return	z.make(0)

				82	 	 }

				83	 	 z	=	z.make(1)

				84	 	 z[0]	=	x

				85	 	 return	z

				86	 }

				87	

				88	 func	(z	nat)	setUint64(x	uint64)	nat	{

				89	 	 //	single-digit	values

				90	 	 if	w	:=	Word(x);	uint64(w)	==	x	{

				91	 	 	 return	z.setWord(w)

				92	 	 }

				93	

				94	 	 //	compute	number	of	words	n	required	to	represent	x

				95	 	 n	:=	0

				96	 	 for	t	:=	x;	t	>	0;	t	>>=	_W	{

				97	 	 	 n++

				98	 	 }

				99	

			100	 	 //	split	x	into	n	words

			101	 	 z	=	z.make(n)

			102	 	 for	i	:=	range	z	{

			103	 	 	 z[i]	=	Word(x	&	_M)

			104	 	 	 x	>>=	_W

			105	 	 }

			106	

			107	 	 return	z

			108	 }

			109	

			110	 func	(z	nat)	set(x	nat)	nat	{

			111	 	 z	=	z.make(len(x))

			112	 	 copy(z,	x)

			113	 	 return	z

			114	 }

			115	

			116	 func	(z	nat)	add(x,	y	nat)	nat	{

			117	 	 m	:=	len(x)

			118	 	 n	:=	len(y)

			119	

			120	 	 switch	{

			121	 	 case	m	<	n:

			122	 	 	 return	z.add(y,	x)

			123	 	 case	m	==	0:

			124	 	 	 //	n	==	0	because	m	>=	n;	result	is	0

			125	 	 	 return	z.make(0)

			126	 	 case	n	==	0:

			127	 	 	 //	result	is	x

			128	 	 	 return	z.set(x)

			129	 	 }

			130	 	 //	m	>	0

			131	

			132	 	 z	=	z.make(m	+	1)

			133	 	 c	:=	addVV(z[0:n],	x,	y)

			134	 	 if	m	>	n	{

			135	 	 	 c	=	addVW(z[n:m],	x[n:],	c)

			136	 	 }

			137	 	 z[m]	=	c

			138	

			139	 	 return	z.norm()

			140	 }

			141	

			142	 func	(z	nat)	sub(x,	y	nat)	nat	{

			143	 	 m	:=	len(x)

			144	 	 n	:=	len(y)

			145	

			146	 	 switch	{

			147	 	 case	m	<	n:

			148	 	 	 panic("underflow")

			149	 	 case	m	==	0:

			150	 	 	 //	n	==	0	because	m	>=	n;	result	is	0

			151	 	 	 return	z.make(0)

			152	 	 case	n	==	0:

			153	 	 	 //	result	is	x

			154	 	 	 return	z.set(x)

			155	 	 }

			156	 	 //	m	>	0

			157	

			158	 	 z	=	z.make(m)

			159	 	 c	:=	subVV(z[0:n],	x,	y)

			160	 	 if	m	>	n	{

			161	 	 	 c	=	subVW(z[n:],	x[n:],	c)

			162	 	 }

			163	 	 if	c	!=	0	{

			164	 	 	 panic("underflow")

			165	 	 }

			166	

			167	 	 return	z.norm()

			168	 }

			169	

			170	 func	(x	nat)	cmp(y	nat)	(r	int)	{

			171	 	 m	:=	len(x)

			172	 	 n	:=	len(y)

			173	 	 if	m	!=	n	||	m	==	0	{

			174	 	 	 switch	{

			175	 	 	 case	m	<	n:

			176	 	 	 	 r	=	-1

			177	 	 	 case	m	>	n:

			178	 	 	 	 r	=	1

			179	 	 	 }

			180	 	 	 return

			181	 	 }

			182	

			183	 	 i	:=	m	-	1

			184	 	 for	i	>	0	&&	x[i]	==	y[i]	{

			185	 	 	 i--

			186	 	 }

			187	

			188	 	 switch	{

			189	 	 case	x[i]	<	y[i]:

			190	 	 	 r	=	-1

			191	 	 case	x[i]	>	y[i]:

			192	 	 	 r	=	1

			193	 	 }

			194	 	 return

			195	 }

			196	

			197	 func	(z	nat)	mulAddWW(x	nat,	y,	r	Word)	nat	{

			198	 	 m	:=	len(x)

			199	 	 if	m	==	0	||	y	==	0	{

			200	 	 	 return	z.setWord(r)	//	result	is	r

			201	 	 }

			202	 	 //	m	>	0

			203	

			204	 	 z	=	z.make(m	+	1)

			205	 	 z[m]	=	mulAddVWW(z[0:m],	x,	y,	r)

			206	

			207	 	 return	z.norm()

			208	 }

			209	

			210	 //	basicMul	multiplies	x	and	y	and	leaves	the	result	in	z.

			211	 //	The	(non-normalized)	result	is	placed	in	z[0	:	len(x)	+	len(y)].

			212	 func	basicMul(z,	x,	y	nat)	{

			213	 	 z[0	:	len(x)+len(y)].clear()	//	initialize	z

			214	 	 for	i,	d	:=	range	y	{

			215	 	 	 if	d	!=	0	{

			216	 	 	 	 z[len(x)+i]	=	addMulVVW(z[i:i+len(x)],	x,	d)

			217	 	 	 }

			218	 	 }

			219	 }

			220	

			221	 //	Fast	version	of	z[0:n+n>>1].add(z[0:n+n>>1],	x[0:n])	w/o	bounds	checks.

			222	 //	Factored	out	for	readability	-	do	not	use	outside	karatsuba.

			223	 func	karatsubaAdd(z,	x	nat,	n	int)	{

			224	 	 if	c	:=	addVV(z[0:n],	z,	x);	c	!=	0	{

			225	 	 	 addVW(z[n:n+n>>1],	z[n:],	c)

			226	 	 }

			227	 }

			228	

			229	 //	Like	karatsubaAdd,	but	does	subtract.

			230	 func	karatsubaSub(z,	x	nat,	n	int)	{

			231	 	 if	c	:=	subVV(z[0:n],	z,	x);	c	!=	0	{

			232	 	 	 subVW(z[n:n+n>>1],	z[n:],	c)

			233	 	 }

			234	 }

			235	

			236	 //	Operands	that	are	shorter	than	karatsubaThreshold	are	multiplied	using

			237	 //	"grade	school"	multiplication;	for	longer	operands	the	Karatsuba	algorithm

			238	 //	is	used.

			239	 var	karatsubaThreshold	int	=	32	//	computed	by	calibrate.go

			240	

			241	 //	karatsuba	multiplies	x	and	y	and	leaves	the	result	in	z.

			242	 //	Both	x	and	y	must	have	the	same	length	n	and	n	must	be	a

			243	 //	power	of	2.	The	result	vector	z	must	have	len(z)	>=	6*n.

			244	 //	The	(non-normalized)	result	is	placed	in	z[0	:	2*n].

			245	 func	karatsuba(z,	x,	y	nat)	{

			246	 	 n	:=	len(y)

			247	

			248	 	 //	Switch	to	basic	multiplication	if	numbers	are	odd	or	small.

			249	 	 //	(n	is	always	even	if	karatsubaThreshold	is	even,	but	be

			250	 	 //	conservative)

			251	 	 if	n&1	!=	0	||	n	<	karatsubaThreshold	||	n	<	2	{

			252	 	 	 basicMul(z,	x,	y)

			253	 	 	 return

			254	 	 }

			255	 	 //	n&1	==	0	&&	n	>=	karatsubaThreshold	&&	n	>=	2

			256	

			257	 	 //	Karatsuba	multiplication	is	based	on	the	observation	that

			258	 	 //	for	two	numbers	x	and	y	with:

			259	 	 //

			260	 	 //			x	=	x1*b	+	x0

			261	 	 //			y	=	y1*b	+	y0

			262	 	 //

			263	 	 //	the	product	x*y	can	be	obtained	with	3	products	z2,	z1,	z0

			264	 	 //	instead	of	4:

			265	 	 //

			266	 	 //			x*y	=	x1*y1*b*b	+	(x1*y0	+	x0*y1)*b	+	x0*y0

			267	 	 //							=				z2*b*b	+														z1*b	+				z0

			268	 	 //

			269	 	 //	with:

			270	 	 //

			271	 	 //			xd	=	x1	-	x0

			272	 	 //			yd	=	y0	-	y1

			273	 	 //

			274	 	 //			z1	=						xd*yd																				+	z1	+	z0

			275	 	 //						=	(x1-x0)*(y0	-	y1)													+	z1	+	z0

			276	 	 //						=	x1*y0	-	x1*y1	-	x0*y0	+	x0*y1	+	z1	+	z0

			277	 	 //						=	x1*y0	-				z1	-				z0	+	x0*y1	+	z1	+	z0

			278	 	 //						=	x1*y0																	+	x0*y1

			279	

			280	 	 //	split	x,	y	into	"digits"

			281	 	 n2	:=	n	>>	1														//	n2	>=	1

			282	 	 x1,	x0	:=	x[n2:],	x[0:n2]	//	x	=	x1*b	+	y0

			283	 	 y1,	y0	:=	y[n2:],	y[0:n2]	//	y	=	y1*b	+	y0

			284	

			285	 	 //	z	is	used	for	the	result	and	temporary	storage:

			286	 	 //

			287	 	 //			6*n					5*n					4*n					3*n					2*n					1*n					0*n

			288	 	 //	z	=	[z2	copy|z0	copy|	xd*yd	|	yd:xd	|	x1*y1	|	x0*y0]

			289	 	 //

			290	 	 //	For	each	recursive	call	of	karatsuba,	an	unused	slice	of

			291	 	 //	z	is	passed	in	that	has	(at	least)	half	the	length	of	the

			292	 	 //	caller's	z.

			293	

			294	 	 //	compute	z0	and	z2	with	the	result	"in	place"	in	z

			295	 	 karatsuba(z,	x0,	y0)					//	z0	=	x0*y0

			296	 	 karatsuba(z[n:],	x1,	y1)	//	z2	=	x1*y1

			297	

			298	 	 //	compute	xd	(or	the	negative	value	if	underflow	occurs)

			299	 	 s	:=	1	//	sign	of	product	xd*yd

			300	 	 xd	:=	z[2*n	:	2*n+n2]

			301	 	 if	subVV(xd,	x1,	x0)	!=	0	{	//	x1-x0

			302	 	 	 s	=	-s

			303	 	 	 subVV(xd,	x0,	x1)	//	x0-x1

			304	 	 }

			305	

			306	 	 //	compute	yd	(or	the	negative	value	if	underflow	occurs)

			307	 	 yd	:=	z[2*n+n2	:	3*n]

			308	 	 if	subVV(yd,	y0,	y1)	!=	0	{	//	y0-y1

			309	 	 	 s	=	-s

			310	 	 	 subVV(yd,	y1,	y0)	//	y1-y0

			311	 	 }

			312	

			313	 	 //	p	=	(x1-x0)*(y0-y1)	==	x1*y0	-	x1*y1	-	x0*y0	+	x0*y1	for	s	>	0

			314	 	 //	p	=	(x0-x1)*(y0-y1)	==	x0*y0	-	x0*y1	-	x1*y0	+	x1*y1	for	s	<	0

			315	 	 p	:=	z[n*3:]

			316	 	 karatsuba(p,	xd,	yd)

			317	

			318	 	 //	save	original	z2:z0

			319	 	 //	(ok	to	use	upper	half	of	z	since	we're	done	recursing)

			320	 	 r	:=	z[n*4:]

			321	 	 copy(r,	z)

			322	

			323	 	 //	add	up	all	partial	products

			324	 	 //

			325	 	 //			2*n					n					0

			326	 	 //	z	=	[z2		|	z0]

			327	 	 //			+				[z0]

			328	 	 //			+				[z2]

			329	 	 //			+				[p]

			330	 	 //

			331	 	 karatsubaAdd(z[n2:],	r,	n)

			332	 	 karatsubaAdd(z[n2:],	r[n:],	n)

			333	 	 if	s	>	0	{

			334	 	 	 karatsubaAdd(z[n2:],	p,	n)

			335	 	 }	else	{

			336	 	 	 karatsubaSub(z[n2:],	p,	n)

			337	 	 }

			338	 }

			339	

			340	 //	alias	returns	true	if	x	and	y	share	the	same	base	array.

			341	 func	alias(x,	y	nat)	bool	{

			342	 	 return	cap(x)	>	0	&&	cap(y)	>	0	&&	&x[0:cap(x)][cap(x)-1]	==	&y[0:cap(y)][cap(y)-1]

			343	 }

			344	

			345	 //	addAt	implements	z	+=	x*(1<<(_W*i));	z	must	be	long	enough.

			346	 //	(we	don't	use	nat.add	because	we	need	z	to	stay	the	same

			347	 //	slice,	and	we	don't	need	to	normalize	z	after	each	addition)

			348	 func	addAt(z,	x	nat,	i	int)	{

			349	 	 if	n	:=	len(x);	n	>	0	{

			350	 	 	 if	c	:=	addVV(z[i:i+n],	z[i:],	x);	c	!=	0	{

			351	 	 	 	 j	:=	i	+	n

			352	 	 	 	 if	j	<	len(z)	{

			353	 	 	 	 	 addVW(z[j:],	z[j:],	c)

			354	 	 	 	 }

			355	 	 	 }

			356	 	 }

			357	 }

			358	

			359	 func	max(x,	y	int)	int	{

			360	 	 if	x	>	y	{

			361	 	 	 return	x

			362	 	 }

			363	 	 return	y

			364	 }

			365	

			366	 //	karatsubaLen	computes	an	approximation	to	the	maximum	k	<=	n	such	that

			367	 //	k	=	p<<i	for	a	number	p	<=	karatsubaThreshold	and	an	i	>=	0.	Thus,	the

			368	 //	result	is	the	largest	number	that	can	be	divided	repeatedly	by	2	before

			369	 //	becoming	about	the	value	of	karatsubaThreshold.

			370	 func	karatsubaLen(n	int)	int	{

			371	 	 i	:=	uint(0)

			372	 	 for	n	>	karatsubaThreshold	{

			373	 	 	 n	>>=	1

			374	 	 	 i++

			375	 	 }

			376	 	 return	n	<<	i

			377	 }

			378	

			379	 func	(z	nat)	mul(x,	y	nat)	nat	{

			380	 	 m	:=	len(x)

			381	 	 n	:=	len(y)

			382	

			383	 	 switch	{

			384	 	 case	m	<	n:

			385	 	 	 return	z.mul(y,	x)

			386	 	 case	m	==	0	||	n	==	0:

			387	 	 	 return	z.make(0)

			388	 	 case	n	==	1:

			389	 	 	 return	z.mulAddWW(x,	y[0],	0)

			390	 	 }

			391	 	 //	m	>=	n	>	1

			392	

			393	 	 //	determine	if	z	can	be	reused

			394	 	 if	alias(z,	x)	||	alias(z,	y)	{

			395	 	 	 z	=	nil	//	z	is	an	alias	for	x	or	y	-	cannot	reuse

			396	 	 }

			397	

			398	 	 //	use	basic	multiplication	if	the	numbers	are	small

			399	 	 if	n	<	karatsubaThreshold	||	n	<	2	{

			400	 	 	 z	=	z.make(m	+	n)

			401	 	 	 basicMul(z,	x,	y)

			402	 	 	 return	z.norm()

			403	 	 }

			404	 	 //	m	>=	n	&&	n	>=	karatsubaThreshold	&&	n	>=	2

			405	

			406	 	 //	determine	Karatsuba	length	k	such	that

			407	 	 //

			408	 	 //			x	=	x1*b	+	x0

			409	 	 //			y	=	y1*b	+	y0		(and	k	<=	len(y),	which	implies	k	<=	len(x))

			410	 	 //			b	=	1<<(_W*k)		("base"	of	digits	xi,	yi)

			411	 	 //

			412	 	 k	:=	karatsubaLen(n)

			413	 	 //	k	<=	n

			414	

			415	 	 //	multiply	x0	and	y0	via	Karatsuba

			416	 	 x0	:=	x[0:k]														//	x0	is	not	normalized

			417	 	 y0	:=	y[0:k]														//	y0	is	not	normalized

			418	 	 z	=	z.make(max(6*k,	m+n))	//	enough	space	for	karatsuba	of	x0*y0	and	full	result	of	x*y

			419	 	 karatsuba(z,	x0,	y0)

			420	 	 z	=	z[0	:	m+n]	//	z	has	final	length	but	may	be	incomplete,	upper	portion	is	garbage

			421	

			422	 	 //	If	x1	and/or	y1	are	not	0,	add	missing	terms	to	z	explicitly:

			423	 	 //

			424	 	 //					m+n							2*k							0

			425	 	 //			z	=	[...			|	x0*y0]

			426	 	 //					+			[x1*y1]

			427	 	 //					+			[x1*y0]

			428	 	 //					+			[x0*y1]

			429	 	 //

			430	 	 if	k	<	n	||	m	!=	n	{

			431	 	 	 x1	:=	x[k:]	//	x1	is	normalized	because	x	is

			432	 	 	 y1	:=	y[k:]	//	y1	is	normalized	because	y	is

			433	 	 	 var	t	nat

			434	 	 	 t	=	t.mul(x1,	y1)

			435	 	 	 copy(z[2*k:],	t)

			436	 	 	 z[2*k+len(t):].clear()	//	upper	portion	of	z	is	garbage

			437	 	 	 t	=	t.mul(x1,	y0.norm())

			438	 	 	 addAt(z,	t,	k)

			439	 	 	 t	=	t.mul(x0.norm(),	y1)

			440	 	 	 addAt(z,	t,	k)

			441	 	 }

			442	

			443	 	 return	z.norm()

			444	 }

			445	

			446	 //	mulRange	computes	the	product	of	all	the	unsigned	integers	in	the

			447	 //	range	[a,	b]	inclusively.	If	a	>	b	(empty	range),	the	result	is	1.

			448	 func	(z	nat)	mulRange(a,	b	uint64)	nat	{

			449	 	 switch	{

			450	 	 case	a	==	0:

			451	 	 	 //	cut	long	ranges	short	(optimization)

			452	 	 	 return	z.setUint64(0)

			453	 	 case	a	>	b:

			454	 	 	 return	z.setUint64(1)

			455	 	 case	a	==	b:

			456	 	 	 return	z.setUint64(a)

			457	 	 case	a+1	==	b:

			458	 	 	 return	z.mul(nat(nil).setUint64(a),	nat(nil).setUint64(b))

			459	 	 }

			460	 	 m	:=	(a	+	b)	/	2

			461	 	 return	z.mul(nat(nil).mulRange(a,	m),	nat(nil).mulRange(m+1,	b))

			462	 }

			463	

			464	 //	q	=	(x-r)/y,	with	0	<=	r	<	y

			465	 func	(z	nat)	divW(x	nat,	y	Word)	(q	nat,	r	Word)	{

			466	 	 m	:=	len(x)

			467	 	 switch	{

			468	 	 case	y	==	0:

			469	 	 	 panic("division	by	zero")

			470	 	 case	y	==	1:

			471	 	 	 q	=	z.set(x)	//	result	is	x

			472	 	 	 return

			473	 	 case	m	==	0:

			474	 	 	 q	=	z.make(0)	//	result	is	0

			475	 	 	 return

			476	 	 }

			477	 	 //	m	>	0

			478	 	 z	=	z.make(m)

			479	 	 r	=	divWVW(z,	0,	x,	y)

			480	 	 q	=	z.norm()

			481	 	 return

			482	 }

			483	

			484	 func	(z	nat)	div(z2,	u,	v	nat)	(q,	r	nat)	{

			485	 	 if	len(v)	==	0	{

			486	 	 	 panic("division	by	zero")

			487	 	 }

			488	

			489	 	 if	u.cmp(v)	<	0	{

			490	 	 	 q	=	z.make(0)

			491	 	 	 r	=	z2.set(u)

			492	 	 	 return

			493	 	 }

			494	

			495	 	 if	len(v)	==	1	{

			496	 	 	 var	rprime	Word

			497	 	 	 q,	rprime	=	z.divW(u,	v[0])

			498	 	 	 if	rprime	>	0	{

			499	 	 	 	 r	=	z2.make(1)

			500	 	 	 	 r[0]	=	rprime

			501	 	 	 }	else	{

			502	 	 	 	 r	=	z2.make(0)

			503	 	 	 }

			504	 	 	 return

			505	 	 }

			506	

			507	 	 q,	r	=	z.divLarge(z2,	u,	v)

			508	 	 return

			509	 }

			510	

			511	 //	q	=	(uIn-r)/v,	with	0	<=	r	<	y

			512	 //	Uses	z	as	storage	for	q,	and	u	as	storage	for	r	if	possible.

			513	 //	See	Knuth,	Volume	2,	section	4.3.1,	Algorithm	D.

			514	 //	Preconditions:

			515	 //				len(v)	>=	2

			516	 //				len(uIn)	>=	len(v)

			517	 func	(z	nat)	divLarge(u,	uIn,	v	nat)	(q,	r	nat)	{

			518	 	 n	:=	len(v)

			519	 	 m	:=	len(uIn)	-	n

			520	

			521	 	 //	determine	if	z	can	be	reused

			522	 	 //	TODO(gri)	should	find	a	better	solution	-	this	if	statement

			523	 	 //											is	very	costly	(see	e.g.	time	pidigits	-s	-n	10000)

			524	 	 if	alias(z,	uIn)	||	alias(z,	v)	{

			525	 	 	 z	=	nil	//	z	is	an	alias	for	uIn	or	v	-	cannot	reuse

			526	 	 }

			527	 	 q	=	z.make(m	+	1)

			528	

			529	 	 qhatv	:=	make(nat,	n+1)

			530	 	 if	alias(u,	uIn)	||	alias(u,	v)	{

			531	 	 	 u	=	nil	//	u	is	an	alias	for	uIn	or	v	-	cannot	reuse

			532	 	 }

			533	 	 u	=	u.make(len(uIn)	+	1)

			534	 	 u.clear()

			535	

			536	 	 //	D1.

			537	 	 shift	:=	leadingZeros(v[n-1])

			538	 	 if	shift	>	0	{

			539	 	 	 //	do	not	modify	v,	it	may	be	used	by	another	goroutine	simultaneously

			540	 	 	 v1	:=	make(nat,	n)

			541	 	 	 shlVU(v1,	v,	shift)

			542	 	 	 v	=	v1

			543	 	 }

			544	 	 u[len(uIn)]	=	shlVU(u[0:len(uIn)],	uIn,	shift)

			545	

			546	 	 //	D2.

			547	 	 for	j	:=	m;	j	>=	0;	j--	{

			548	 	 	 //	D3.

			549	 	 	 qhat	:=	Word(_M)

			550	 	 	 if	u[j+n]	!=	v[n-1]	{

			551	 	 	 	 var	rhat	Word

			552	 	 	 	 qhat,	rhat	=	divWW(u[j+n],	u[j+n-1],	v[n-1])

			553	

			554	 	 	 	 //	x1	|	x2	=	q̂v_{n-2}

			555	 	 	 	 x1,	x2	:=	mulWW(qhat,	v[n-2])

			556	 	 	 	 //	test	if	q̂v_{n-2}	>	br̂	+	u_{j+n-2}

			557	 	 	 	 for	greaterThan(x1,	x2,	rhat,	u[j+n-2])	{

			558	 	 	 	 	 qhat--

			559	 	 	 	 	 prevRhat	:=	rhat

			560	 	 	 	 	 rhat	+=	v[n-1]

			561	 	 	 	 	 //	v[n-1]	>=	0,	so	this	tests	for	overflow.

			562	 	 	 	 	 if	rhat	<	prevRhat	{

			563	 	 	 	 	 	 break

			564	 	 	 	 	 }

			565	 	 	 	 	 x1,	x2	=	mulWW(qhat,	v[n-2])

			566	 	 	 	 }

			567	 	 	 }

			568	

			569	 	 	 //	D4.

			570	 	 	 qhatv[n]	=	mulAddVWW(qhatv[0:n],	v,	qhat,	0)

			571	

			572	 	 	 c	:=	subVV(u[j:j+len(qhatv)],	u[j:],	qhatv)

			573	 	 	 if	c	!=	0	{

			574	 	 	 	 c	:=	addVV(u[j:j+n],	u[j:],	v)

			575	 	 	 	 u[j+n]	+=	c

			576	 	 	 	 qhat--

			577	 	 	 }

			578	

			579	 	 	 q[j]	=	qhat

			580	 	 }

			581	

			582	 	 q	=	q.norm()

			583	 	 shrVU(u,	u,	shift)

			584	 	 r	=	u.norm()

			585	

			586	 	 return	q,	r

			587	 }

			588	

			589	 //	Length	of	x	in	bits.	x	must	be	normalized.

			590	 func	(x	nat)	bitLen()	int	{

			591	 	 if	i	:=	len(x)	-	1;	i	>=	0	{

			592	 	 	 return	i*_W	+	bitLen(x[i])

			593	 	 }

			594	 	 return	0

			595	 }

			596	

			597	 //	MaxBase	is	the	largest	number	base	accepted	for	string	conversions.

			598	 const	MaxBase	=	'z'	-	'a'	+	10	+	1	//	=	hexValue('z')	+	1

			599	

			600	 func	hexValue(ch	rune)	Word	{

			601	 	 d	:=	int(MaxBase	+	1)	//	illegal	base

			602	 	 switch	{

			603	 	 case	'0'	<=	ch	&&	ch	<=	'9':

			604	 	 	 d	=	int(ch	-	'0')

			605	 	 case	'a'	<=	ch	&&	ch	<=	'z':

			606	 	 	 d	=	int(ch	-	'a'	+	10)

			607	 	 case	'A'	<=	ch	&&	ch	<=	'Z':

			608	 	 	 d	=	int(ch	-	'A'	+	10)

			609	 	 }

			610	 	 return	Word(d)

			611	 }

			612	

			613	 //	scan	sets	z	to	the	natural	number	corresponding	to	the	longest	possible	prefix

			614	 //	read	from	r	representing	an	unsigned	integer	in	a	given	conversion	base.

			615	 //	It	returns	z,	the	actual	conversion	base	used,	and	an	error,	if	any.	In	the

			616	 //	error	case,	the	value	of	z	is	undefined.	The	syntax	follows	the	syntax	of

			617	 //	unsigned	integer	literals	in	Go.

			618	 //

			619	 //	The	base	argument	must	be	0	or	a	value	from	2	through	MaxBase.	If	the	base

			620	 //	is	0,	the	string	prefix	determines	the	actual	conversion	base.	A	prefix	of

			621	 //	``0x''	or	``0X''	selects	base	16;	the	``0''	prefix	selects	base	8,	and	a

			622	 //	``0b''	or	``0B''	prefix	selects	base	2.	Otherwise	the	selected	base	is	10.

			623	 //

			624	 func	(z	nat)	scan(r	io.RuneScanner,	base	int)	(nat,	int,	error)	{

			625	 	 //	reject	illegal	bases

			626	 	 if	base	<	0	||	base	==	1	||	MaxBase	<	base	{

			627	 	 	 return	z,	0,	errors.New("illegal	number	base")

			628	 	 }

			629	

			630	 	 //	one	char	look-ahead

			631	 	 ch,	_,	err	:=	r.ReadRune()

			632	 	 if	err	!=	nil	{

			633	 	 	 return	z,	0,	err

			634	 	 }

			635	

			636	 	 //	determine	base	if	necessary

			637	 	 b	:=	Word(base)

			638	 	 if	base	==	0	{

			639	 	 	 b	=	10

			640	 	 	 if	ch	==	'0'	{

			641	 	 	 	 switch	ch,	_,	err	=	r.ReadRune();	err	{

			642	 	 	 	 case	nil:

			643	 	 	 	 	 b	=	8

			644	 	 	 	 	 switch	ch	{

			645	 	 	 	 	 case	'x',	'X':

			646	 	 	 	 	 	 b	=	16

			647	 	 	 	 	 case	'b',	'B':

			648	 	 	 	 	 	 b	=	2

			649	 	 	 	 	 }

			650	 	 	 	 	 if	b	==	2	||	b	==	16	{

			651	 	 	 	 	 	 if	ch,	_,	err	=	r.ReadRune();	err	!=	nil	{

			652	 	 	 	 	 	 	 return	z,	0,	err

			653	 	 	 	 	 	 }

			654	 	 	 	 	 }

			655	 	 	 	 case	io.EOF:

			656	 	 	 	 	 return	z.make(0),	10,	nil

			657	 	 	 	 default:

			658	 	 	 	 	 return	z,	10,	err

			659	 	 	 	 }

			660	 	 	 }

			661	 	 }

			662	

			663	 	 //	convert	string

			664	 	 //	-	group	as	many	digits	d	as	possible	together	into	a	"super-digit"	dd	with	"super-base"	bb

			665	 	 //	-	only	when	bb	does	not	fit	into	a	word	anymore,	do	a	full	number	mulAddWW	using	bb	and	dd

			666	 	 z	=	z.make(0)

			667	 	 bb	:=	Word(1)

			668	 	 dd	:=	Word(0)

			669	 	 for	max	:=	_M	/	b;	;	{

			670	 	 	 d	:=	hexValue(ch)

			671	 	 	 if	d	>=	b	{

			672	 	 	 	 r.UnreadRune()	//	ch	does	not	belong	to	number	anymore

			673	 	 	 	 break

			674	 	 	 }

			675	

			676	 	 	 if	bb	<=	max	{

			677	 	 	 	 bb	*=	b

			678	 	 	 	 dd	=	dd*b	+	d

			679	 	 	 }	else	{

			680	 	 	 	 //	bb	*	b	would	overflow

			681	 	 	 	 z	=	z.mulAddWW(z,	bb,	dd)

			682	 	 	 	 bb	=	b

			683	 	 	 	 dd	=	d

			684	 	 	 }

			685	

			686	 	 	 if	ch,	_,	err	=	r.ReadRune();	err	!=	nil	{

			687	 	 	 	 if	err	!=	io.EOF	{

			688	 	 	 	 	 return	z,	int(b),	err

			689	 	 	 	 }

			690	 	 	 	 break

			691	 	 	 }

			692	 	 }

			693	

			694	 	 switch	{

			695	 	 case	bb	>	1:

			696	 	 	 //	there	was	at	least	one	mantissa	digit

			697	 	 	 z	=	z.mulAddWW(z,	bb,	dd)

			698	 	 case	base	==	0	&&	b	==	8:

			699	 	 	 //	there	was	only	the	octal	prefix	0	(possibly	followed	by	digits	>	7);

			700	 	 	 //	return	base	10,	not	8

			701	 	 	 return	z,	10,	nil

			702	 	 case	base	!=	0	||	b	!=	8:

			703	 	 	 //	there	was	neither	a	mantissa	digit	nor	the	octal	prefix	0

			704	 	 	 return	z,	int(b),	errors.New("syntax	error	scanning	number")

			705	 	 }

			706	

			707	 	 return	z.norm(),	int(b),	nil

			708	 }

			709	

			710	 //	Character	sets	for	string	conversion.

			711	 const	(

			712	 	 lowercaseDigits	=	"0123456789abcdefghijklmnopqrstuvwxyz"

			713	 	 uppercaseDigits	=	"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"

			714)

			715	

			716	 //	decimalString	returns	a	decimal	representation	of	x.

			717	 //	It	calls	x.string	with	the	charset	"0123456789".

			718	 func	(x	nat)	decimalString()	string	{

			719	 	 return	x.string(lowercaseDigits[0:10])

			720	 }

			721	

			722	 //	string	converts	x	to	a	string	using	digits	from	a	charset;	a	digit	with

			723	 //	value	d	is	represented	by	charset[d].	The	conversion	base	is	determined

			724	 //	by	len(charset),	which	must	be	>=	2	and	<=	256.

			725	 func	(x	nat)	string(charset	string)	string	{

			726	 	 b	:=	Word(len(charset))

			727	

			728	 	 //	special	cases

			729	 	 switch	{

			730	 	 case	b	<	2	||	MaxBase	>	256:

			731	 	 	 panic("illegal	base")

			732	 	 case	len(x)	==	0:

			733	 	 	 return	string(charset[0])

			734	 	 }

			735	

			736	 	 //	allocate	buffer	for	conversion

			737	 	 i	:=	int(float64(x.bitLen())/math.Log2(float64(b)))	+	1	

			738	 	 s	:=	make([]byte,	i)

			739	

			740	 	 //	convert	power	of	two	and	non	power	of	two	bases	separately

			741	 	 if	b	==	b&-b	{

			742	 	 	 //	shift	is	base-b	digit	size	in	bits

			743	 	 	 shift	:=	uint(trailingZeroBits(b))	//	shift	>	0	because	b	>=	2

			744	 	 	 mask	:=	Word(1)<<shift	-	1

			745	 	 	 w	:=	x[0]

			746	 	 	 nbits	:=	uint(_W)	//	number	of	unprocessed	bits	in	w

			747	

			748	 	 	 //	convert	less-significant	words

			749	 	 	 for	k	:=	1;	k	<	len(x);	k++	{

			750	 	 	 	 //	convert	full	digits

			751	 	 	 	 for	nbits	>=	shift	{

			752	 	 	 	 	 i--

			753	 	 	 	 	 s[i]	=	charset[w&mask]

			754	 	 	 	 	 w	>>=	shift

			755	 	 	 	 	 nbits	-=	shift

			756	 	 	 	 }

			757	

			758	 	 	 	 //	convert	any	partial	leading	digit	and	advance	to	next	word

			759	 	 	 	 if	nbits	==	0	{

			760	 	 	 	 	 //	no	partial	digit	remaining,	just	advance

			761	 	 	 	 	 w	=	x[k]

			762	 	 	 	 	 nbits	=	_W

			763	 	 	 	 }	else	{

			764	 	 	 	 	 //	partial	digit	in	current	(k-1)	and	next	(k)	word

			765	 	 	 	 	 w	|=	x[k]	<<	nbits

			766	 	 	 	 	 i--

			767	 	 	 	 	 s[i]	=	charset[w&mask]

			768	

			769	 	 	 	 	 //	advance

			770	 	 	 	 	 w	=	x[k]	>>	(shift	-	nbits)

			771	 	 	 	 	 nbits	=	_W	-	(shift	-	nbits)

			772	 	 	 	 }

			773	 	 	 }

			774	

			775	 	 	 //	convert	digits	of	most-significant	word	(omit	leading	zeros)

			776	 	 	 for	nbits	>=	0	&&	w	!=	0	{

			777	 	 	 	 i--

			778	 	 	 	 s[i]	=	charset[w&mask]

			779	 	 	 	 w	>>=	shift

			780	 	 	 	 nbits	-=	shift

			781	 	 	 }

			782	

			783	 	 }	else	{

			784	 	 	 //	determine	"big	base";	i.e.,	the	largest	possible	value	bb

			785	 	 	 //	that	is	a	power	of	base	b	and	still	fits	into	a	Word

			786	 	 	 //	(as	in	10^19	for	19	decimal	digits	in	a	64bit	Word)

			787	 	 	 bb	:=	b						//	big	base	is	b**ndigits

			788	 	 	 ndigits	:=	1	//	number	of	base	b	digits

			789	 	 	 for	max	:=	Word(_M	/	b);	bb	<=	max;	bb	*=	b	{

			790	 	 	 	 ndigits++	//	maximize	ndigits	where	bb	=	b**ndigits,	bb	<=	_M

			791	 	 	 }

			792	

			793	 	 	 //	construct	table	of	successive	squares	of	bb*leafSize	to	use	in	subdivisions

			794	 	 	 //	result	(table	!=	nil)	<=>	(len(x)	>	leafSize	>	0)

			795	 	 	 table	:=	divisors(len(x),	b,	ndigits,	bb)

			796	

			797	 	 	 //	preserve	x,	create	local	copy	for	use	by	convertWords

			798	 	 	 q	:=	nat(nil).set(x)

			799	

			800	 	 	 //	convert	q	to	string	s	in	base	b

			801	 	 	 q.convertWords(s,	charset,	b,	ndigits,	bb,	table)

			802	

			803	 	 	 //	strip	leading	zeros

			804	 	 	 //	(x	!=	0;	thus	s	must	contain	at	least	one	non-zero	digit

			805	 	 	 //	and	the	loop	will	terminate)

			806	 	 	 i	=	0

			807	 	 	 for	zero	:=	charset[0];	s[i]	==	zero;	{

			808	 	 	 	 i++

			809	 	 	 }

			810	 	 }

			811	

			812	 	 return	string(s[i:])

			813	 }

			814	

			815	 //	Convert	words	of	q	to	base	b	digits	in	s.	If	q	is	large,	it	is	recursively	"split	in	half"

			816	 //	by	nat/nat	division	using	tabulated	divisors.	Otherwise,	it	is	converted	iteratively	using

			817	 //	repeated	nat/Word	divison.

			818	 //

			819	 //	The	iterative	method	processes	n	Words	by	n	divW()	calls,	each	of	which	visits	every	Word	in	the	

			820	 //	incrementally	shortened	q	for	a	total	of	n	+	(n-1)	+	(n-2)	...	+	2	+	1,	or	n(n+1)/2	divW()'s.	

			821	 //	Recursive	conversion	divides	q	by	its	approximate	square	root,	yielding	two	parts,	each	half	

			822	 //	the	size	of	q.	Using	the	iterative	method	on	both	halves	means	2	*	(n/2)(n/2	+	1)/2	divW()'s

			823	 //	plus	the	expensive	long	div().	Asymptotically,	the	ratio	is	favorable	at	1/2	the	divW()'s,	and

			824	 //	is	made	better	by	splitting	the	subblocks	recursively.	Best	is	to	split	blocks	until	one	more	

			825	 //	split	would	take	longer	(because	of	the	nat/nat	div())	than	the	twice	as	many	divW()'s	of	the	

			826	 //	iterative	approach.	This	threshold	is	represented	by	leafSize.	Benchmarking	of	leafSize	in	the	

			827	 //	range	2..64	shows	that	values	of	8	and	16	work	well,	with	a	4x	speedup	at	medium	lengths	and	

			828	 //	~30x	for	20000	digits.	Use	nat_test.go's	BenchmarkLeafSize	tests	to	optimize	leafSize	for	

			829	 //	specific	hardware.

			830	 //

			831	 func	(q	nat)	convertWords(s	[]byte,	charset	string,	b	Word,	ndigits	int,	bb	Word,	table	[]divisor)	{

			832	 	 //	split	larger	blocks	recursively

			833	 	 if	table	!=	nil	{

			834	 	 	 //	len(q)	>	leafSize	>	0

			835	 	 	 var	r	nat

			836	 	 	 index	:=	len(table)	-	1

			837	 	 	 for	len(q)	>	leafSize	{

			838	 	 	 	 //	find	divisor	close	to	sqrt(q)	if	possible,	but	in	any	case	<	q

			839	 	 	 	 maxLength	:=	q.bitLen()					//	~=	log2	q,	or	at	of	least	largest	possible	q	of	this	bit	length

			840	 	 	 	 minLength	:=	maxLength	>>	1	//	~=	log2	sqrt(q)

			841	 	 	 	 for	index	>	0	&&	table[index-1].nbits	>	minLength	{

			842	 	 	 	 	 index--	//	desired

			843	 	 	 	 }

			844	 	 	 	 if	table[index].nbits	>=	maxLength	&&	table[index].bbb.cmp(q)	>=	0	{

			845	 	 	 	 	 index--

			846	 	 	 	 	 if	index	<	0	{

			847	 	 	 	 	 	 panic("internal	inconsistency")

			848	 	 	 	 	 }

			849	 	 	 	 }

			850	

			851	 	 	 	 //	split	q	into	the	two	digit	number	(q'*bbb	+	r)	to	form	independent	subblocks

			852	 	 	 	 q,	r	=	q.div(r,	q,	table[index].bbb)

			853	

			854	 	 	 	 //	convert	subblocks	and	collect	results	in	s[:h]	and	s[h:]

			855	 	 	 	 h	:=	len(s)	-	table[index].ndigits

			856	 	 	 	 r.convertWords(s[h:],	charset,	b,	ndigits,	bb,	table[0:index])

			857	 	 	 	 s	=	s[:h]	//	==	q.convertWords(s,	charset,	b,	ndigits,	bb,	table[0:index+1])

			858	 	 	 }

			859	 	 }

			860	

			861	 	 //	having	split	any	large	blocks	now	process	the	remaining	(small)	block	iteratively

			862	 	 i	:=	len(s)

			863	 	 var	r	Word

			864	 	 if	b	==	10	{

			865	 	 	 //	hard-coding	for	10	here	speeds	this	up	by	1.25x	(allows	for	/	and	%	by	constants)

			866	 	 	 for	len(q)	>	0	{

			867	 	 	 	 //	extract	least	significant,	base	bb	"digit"

			868	 	 	 	 q,	r	=	q.divW(q,	bb)

			869	 	 	 	 for	j	:=	0;	j	<	ndigits	&&	i	>	0;	j++	{

			870	 	 	 	 	 i--

			871	 	 	 	 	 //	avoid	%	computation	since	r%10	==	r	-	int(r/10)*10;

			872	 	 	 	 	 //	this	appears	to	be	faster	for	BenchmarkString10000Base10

			873	 	 	 	 	 //	and	smaller	strings	(but	a	bit	slower	for	larger	ones)

			874	 	 	 	 	 t	:=	r	/	10

			875	 	 	 	 	 s[i]	=	charset[r-t<<3-t-t]	//	TODO(gri)	replace	w/	t*10	once	compiler	produces	better	code

			876	 	 	 	 	 r	=	t

			877	 	 	 	 }

			878	 	 	 }

			879	 	 }	else	{

			880	 	 	 for	len(q)	>	0	{

			881	 	 	 	 //	extract	least	significant,	base	bb	"digit"

			882	 	 	 	 q,	r	=	q.divW(q,	bb)

			883	 	 	 	 for	j	:=	0;	j	<	ndigits	&&	i	>	0;	j++	{

			884	 	 	 	 	 i--

			885	 	 	 	 	 s[i]	=	charset[r%b]

			886	 	 	 	 	 r	/=	b

			887	 	 	 	 }

			888	 	 	 }

			889	 	 }

			890	

			891	 	 //	prepend	high-order	zeroes

			892	 	 zero	:=	charset[0]

			893	 	 for	i	>	0	{	//	while	need	more	leading	zeroes

			894	 	 	 i--

			895	 	 	 s[i]	=	zero

			896	 	 }

			897	 }

			898	

			899	 //	Split	blocks	greater	than	leafSize	Words	(or	set	to	0	to	disable	recursive	conversion)

			900	 //	Benchmark	and	configure	leafSize	using:	go	test	-bench="Leaf"

			901	 //			8	and	16	effective	on	3.0	GHz	Xeon	"Clovertown"	CPU	(128	byte	cache	lines)

			902	 //			8	and	16	effective	on	2.66	GHz	Core	2	Duo	"Penryn"	CPU

			903	 var	leafSize	int	=	8	//	number	of	Word-size	binary	values	treat	as	a	monolithic	block

			904	

			905	 type	divisor	struct	{

			906	 	 bbb					nat	//	divisor

			907	 	 nbits			int	//	bit	length	of	divisor	(discounting	leading	zeroes)	~=	log2(bbb)

			908	 	 ndigits	int	//	digit	length	of	divisor	in	terms	of	output	base	digits

			909	 }

			910	

			911	 var	cacheBase10	[64]divisor	//	cached	divisors	for	base	10

			912	 var	cacheLock	sync.Mutex				//	protects	cacheBase10

			913	

			914	 //	expWW	computes	x**y

			915	 func	(z	nat)	expWW(x,	y	Word)	nat	{

			916	 	 return	z.expNN(nat(nil).setWord(x),	nat(nil).setWord(y),	nil)

			917	 }

			918	

			919	 //	construct	table	of	powers	of	bb*leafSize	to	use	in	subdivisions

			920	 func	divisors(m	int,	b	Word,	ndigits	int,	bb	Word)	[]divisor	{

			921	 	 //	only	compute	table	when	recursive	conversion	is	enabled	and	x	is	large

			922	 	 if	leafSize	==	0	||	m	<=	leafSize	{

			923	 	 	 return	nil

			924	 	 }

			925	

			926	 	 //	determine	k	where	(bb**leafSize)**(2**k)	>=	sqrt(x)

			927	 	 k	:=	1

			928	 	 for	words	:=	leafSize;	words	<	m>>1	&&	k	<	len(cacheBase10);	words	<<=	1	{

			929	 	 	 k++

			930	 	 }

			931	

			932	 	 //	create	new	table	of	divisors	or	extend	and	reuse	existing	table	as	appropriate

			933	 	 var	table	[]divisor

			934	 	 var	cached	bool

			935	 	 switch	b	{

			936	 	 case	10:

			937	 	 	 table	=	cacheBase10[0:k]	//	reuse	old	table	for	this	conversion

			938	 	 	 cached	=	true

			939	 	 default:

			940	 	 	 table	=	make([]divisor,	k)	//	new	table	for	this	conversion

			941	 	 }

			942	

			943	 	 //	extend	table

			944	 	 if	table[k-1].ndigits	==	0	{

			945	 	 	 if	cached	{

			946	 	 	 	 cacheLock.Lock()	//	begin	critical	section

			947	 	 	 }

			948	

			949	 	 	 //	add	new	entries	as	needed

			950	 	 	 var	larger	nat

			951	 	 	 for	i	:=	0;	i	<	k;	i++	{

			952	 	 	 	 if	table[i].ndigits	==	0	{

			953	 	 	 	 	 if	i	==	0	{

			954	 	 	 	 	 	 table[i].bbb	=	nat(nil).expWW(bb,	Word(leafSize))

			955	 	 	 	 	 	 table[i].ndigits	=	ndigits	*	leafSize

			956	 	 	 	 	 }	else	{

			957	 	 	 	 	 	 table[i].bbb	=	nat(nil).mul(table[i-1].bbb,	table[i-1].bbb)

			958	 	 	 	 	 	 table[i].ndigits	=	2	*	table[i-1].ndigits

			959	 	 	 	 	 }

			960	

			961	 	 	 	 	 //	optimization:	exploit	aggregated	extra	bits	in	macro	blocks

			962	 	 	 	 	 larger	=	nat(nil).set(table[i].bbb)

			963	 	 	 	 	 for	mulAddVWW(larger,	larger,	b,	0)	==	0	{

			964	 	 	 	 	 	 table[i].bbb	=	table[i].bbb.set(larger)

			965	 	 	 	 	 	 table[i].ndigits++

			966	 	 	 	 	 }

			967	

			968	 	 	 	 	 table[i].nbits	=	table[i].bbb.bitLen()

			969	 	 	 	 }

			970	 	 	 }

			971	

			972	 	 	 if	cached	{

			973	 	 	 	 cacheLock.Unlock()	//	end	critical	section

			974	 	 	 }

			975	 	 }

			976	

			977	 	 return	table

			978	 }

			979	

			980	 const	deBruijn32	=	0x077CB531

			981	

			982	 var	deBruijn32Lookup	=	[]byte{

			983	 	 0,	1,	28,	2,	29,	14,	24,	3,	30,	22,	20,	15,	25,	17,	4,	8,

			984	 	 31,	27,	13,	23,	21,	19,	16,	7,	26,	12,	18,	6,	11,	5,	10,	9,

			985	 }

			986	

			987	 const	deBruijn64	=	0x03f79d71b4ca8b09

			988	

			989	 var	deBruijn64Lookup	=	[]byte{

			990	 	 0,	1,	56,	2,	57,	49,	28,	3,	61,	58,	42,	50,	38,	29,	17,	4,

			991	 	 62,	47,	59,	36,	45,	43,	51,	22,	53,	39,	33,	30,	24,	18,	12,	5,

			992	 	 63,	55,	48,	27,	60,	41,	37,	16,	46,	35,	44,	21,	52,	32,	23,	11,

			993	 	 54,	26,	40,	15,	34,	20,	31,	10,	25,	14,	19,	9,	13,	8,	7,	6,

			994	 }

			995	

			996	 //	trailingZeroBits	returns	the	number	of	consecutive	zero	bits	on	the	right

			997	 //	side	of	the	given	Word.

			998	 //	See	Knuth,	volume	4,	section	7.3.1

			999	 func	trailingZeroBits(x	Word)	int	{

		1000	 	 //	x	&	-x	leaves	only	the	right-most	bit	set	in	the	word.	Let	k	be	the

		1001	 	 //	index	of	that	bit.	Since	only	a	single	bit	is	set,	the	value	is	two

		1002	 	 //	to	the	power	of	k.	Multiplying	by	a	power	of	two	is	equivalent	to

		1003	 	 //	left	shifting,	in	this	case	by	k	bits.		The	de	Bruijn	constant	is

		1004	 	 //	such	that	all	six	bit,	consecutive	substrings	are	distinct.

		1005	 	 //	Therefore,	if	we	have	a	left	shifted	version	of	this	constant	we	can

		1006	 	 //	find	by	how	many	bits	it	was	shifted	by	looking	at	which	six	bit

		1007	 	 //	substring	ended	up	at	the	top	of	the	word.

		1008	 	 switch	_W	{

		1009	 	 case	32:

		1010	 	 	 return	int(deBruijn32Lookup[((x&-x)*deBruijn32)>>27])

		1011	 	 case	64:

		1012	 	 	 return	int(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58])

		1013	 	 default:

		1014	 	 	 panic("Unknown	word	size")

		1015	 	 }

		1016	

		1017	 	 return	0

		1018	 }

		1019	

		1020	 //	z	=	x	<<	s

		1021	 func	(z	nat)	shl(x	nat,	s	uint)	nat	{

		1022	 	 m	:=	len(x)

		1023	 	 if	m	==	0	{

		1024	 	 	 return	z.make(0)

		1025	 	 }

		1026	 	 //	m	>	0

		1027	

		1028	 	 n	:=	m	+	int(s/_W)

		1029	 	 z	=	z.make(n	+	1)

		1030	 	 z[n]	=	shlVU(z[n-m:n],	x,	s%_W)

		1031	 	 z[0	:	n-m].clear()

		1032	

		1033	 	 return	z.norm()

		1034	 }

		1035	

		1036	 //	z	=	x	>>	s

		1037	 func	(z	nat)	shr(x	nat,	s	uint)	nat	{

		1038	 	 m	:=	len(x)

		1039	 	 n	:=	m	-	int(s/_W)

		1040	 	 if	n	<=	0	{

		1041	 	 	 return	z.make(0)

		1042	 	 }

		1043	 	 //	n	>	0

		1044	

		1045	 	 z	=	z.make(n)

		1046	 	 shrVU(z,	x[m-n:],	s%_W)

		1047	

		1048	 	 return	z.norm()

		1049	 }

		1050	

		1051	 func	(z	nat)	setBit(x	nat,	i	uint,	b	uint)	nat	{

		1052	 	 j	:=	int(i	/	_W)

		1053	 	 m	:=	Word(1)	<<	(i	%	_W)

		1054	 	 n	:=	len(x)

		1055	 	 switch	b	{

		1056	 	 case	0:

		1057	 	 	 z	=	z.make(n)

		1058	 	 	 copy(z,	x)

		1059	 	 	 if	j	>=	n	{

		1060	 	 	 	 //	no	need	to	grow

		1061	 	 	 	 return	z

		1062	 	 	 }

		1063	 	 	 z[j]	&^=	m

		1064	 	 	 return	z.norm()

		1065	 	 case	1:

		1066	 	 	 if	j	>=	n	{

		1067	 	 	 	 z	=	z.make(j	+	1)

		1068	 	 	 	 z[n:].clear()

		1069	 	 	 }	else	{

		1070	 	 	 	 z	=	z.make(n)

		1071	 	 	 }

		1072	 	 	 copy(z,	x)

		1073	 	 	 z[j]	|=	m

		1074	 	 	 //	no	need	to	normalize

		1075	 	 	 return	z

		1076	 	 }

		1077	 	 panic("set	bit	is	not	0	or	1")

		1078	 }

		1079	

		1080	 func	(z	nat)	bit(i	uint)	uint	{

		1081	 	 j	:=	int(i	/	_W)

		1082	 	 if	j	>=	len(z)	{

		1083	 	 	 return	0

		1084	 	 }

		1085	 	 return	uint(z[j]	>>	(i	%	_W)	&	1)

		1086	 }

		1087	

		1088	 func	(z	nat)	and(x,	y	nat)	nat	{

		1089	 	 m	:=	len(x)

		1090	 	 n	:=	len(y)

		1091	 	 if	m	>	n	{

		1092	 	 	 m	=	n

		1093	 	 }

		1094	 	 //	m	<=	n

		1095	

		1096	 	 z	=	z.make(m)

		1097	 	 for	i	:=	0;	i	<	m;	i++	{

		1098	 	 	 z[i]	=	x[i]	&	y[i]

		1099	 	 }

		1100	

		1101	 	 return	z.norm()

		1102	 }

		1103	

		1104	 func	(z	nat)	andNot(x,	y	nat)	nat	{

		1105	 	 m	:=	len(x)

		1106	 	 n	:=	len(y)

		1107	 	 if	n	>	m	{

		1108	 	 	 n	=	m

		1109	 	 }

		1110	 	 //	m	>=	n

		1111	

		1112	 	 z	=	z.make(m)

		1113	 	 for	i	:=	0;	i	<	n;	i++	{

		1114	 	 	 z[i]	=	x[i]	&^	y[i]

		1115	 	 }

		1116	 	 copy(z[n:m],	x[n:m])

		1117	

		1118	 	 return	z.norm()

		1119	 }

		1120	

		1121	 func	(z	nat)	or(x,	y	nat)	nat	{

		1122	 	 m	:=	len(x)

		1123	 	 n	:=	len(y)

		1124	 	 s	:=	x

		1125	 	 if	m	<	n	{

		1126	 	 	 n,	m	=	m,	n

		1127	 	 	 s	=	y

		1128	 	 }

		1129	 	 //	m	>=	n

		1130	

		1131	 	 z	=	z.make(m)

		1132	 	 for	i	:=	0;	i	<	n;	i++	{

		1133	 	 	 z[i]	=	x[i]	|	y[i]

		1134	 	 }

		1135	 	 copy(z[n:m],	s[n:m])

		1136	

		1137	 	 return	z.norm()

		1138	 }

		1139	

		1140	 func	(z	nat)	xor(x,	y	nat)	nat	{

		1141	 	 m	:=	len(x)

		1142	 	 n	:=	len(y)

		1143	 	 s	:=	x

		1144	 	 if	m	<	n	{

		1145	 	 	 n,	m	=	m,	n

		1146	 	 	 s	=	y

		1147	 	 }

		1148	 	 //	m	>=	n

		1149	

		1150	 	 z	=	z.make(m)

		1151	 	 for	i	:=	0;	i	<	n;	i++	{

		1152	 	 	 z[i]	=	x[i]	^	y[i]

		1153	 	 }

		1154	 	 copy(z[n:m],	s[n:m])

		1155	

		1156	 	 return	z.norm()

		1157	 }

		1158	

		1159	 //	greaterThan	returns	true	iff	(x1<<_W	+	x2)	>	(y1<<_W	+	y2)

		1160	 func	greaterThan(x1,	x2,	y1,	y2	Word)	bool	{

		1161	 	 return	x1	>	y1	||	x1	==	y1	&&	x2	>	y2

		1162	 }

		1163	

		1164	 //	modW	returns	x	%	d.

		1165	 func	(x	nat)	modW(d	Word)	(r	Word)	{

		1166	 	 //	TODO(agl):	we	don't	actually	need	to	store	the	q	value.

		1167	 	 var	q	nat

		1168	 	 q	=	q.make(len(x))

		1169	 	 return	divWVW(q,	0,	x,	d)

		1170	 }

		1171	

		1172	 //	powersOfTwoDecompose	finds	q	and	k	with	x	=	q	*	1<<k	and	q	is	odd,	or	q	and	k	are	0.

		1173	 func	(x	nat)	powersOfTwoDecompose()	(q	nat,	k	int)	{

		1174	 	 if	len(x)	==	0	{

		1175	 	 	 return	x,	0

		1176	 	 }

		1177	

		1178	 	 //	One	of	the	words	must	be	non-zero	by	definition,

		1179	 	 //	so	this	loop	will	terminate	with	i	<	len(x),	and

		1180	 	 //	i	is	the	number	of	0	words.

		1181	 	 i	:=	0

		1182	 	 for	x[i]	==	0	{

		1183	 	 	 i++

		1184	 	 }

		1185	 	 n	:=	trailingZeroBits(x[i])	//	x[i]	!=	0

		1186	

		1187	 	 q	=	make(nat,	len(x)-i)

		1188	 	 shrVU(q,	x[i:],	uint(n))

		1189	

		1190	 	 q	=	q.norm()

		1191	 	 k	=	i*_W	+	n

		1192	 	 return

		1193	 }

		1194	

		1195	 //	random	creates	a	random	integer	in	[0..limit),	using	the	space	in	z	if

		1196	 //	possible.	n	is	the	bit	length	of	limit.

		1197	 func	(z	nat)	random(rand	*rand.Rand,	limit	nat,	n	int)	nat	{

		1198	 	 if	alias(z,	limit)	{

		1199	 	 	 z	=	nil	//	z	is	an	alias	for	limit	-	cannot	reuse

		1200	 	 }

		1201	 	 z	=	z.make(len(limit))

		1202	

		1203	 	 bitLengthOfMSW	:=	uint(n	%	_W)

		1204	 	 if	bitLengthOfMSW	==	0	{

		1205	 	 	 bitLengthOfMSW	=	_W

		1206	 	 }

		1207	 	 mask	:=	Word((1	<<	bitLengthOfMSW)	-	1)

		1208	

		1209	 	 for	{

		1210	 	 	 for	i	:=	range	z	{

		1211	 	 	 	 switch	_W	{

		1212	 	 	 	 case	32:

		1213	 	 	 	 	 z[i]	=	Word(rand.Uint32())

		1214	 	 	 	 case	64:

		1215	 	 	 	 	 z[i]	=	Word(rand.Uint32())	|	Word(rand.Uint32())<<32

		1216	 	 	 	 }

		1217	 	 	 }

		1218	

		1219	 	 	 z[len(limit)-1]	&=	mask

		1220	

		1221	 	 	 if	z.cmp(limit)	<	0	{

		1222	 	 	 	 break

		1223	 	 	 }

		1224	 	 }

		1225	

		1226	 	 return	z.norm()

		1227	 }

		1228	

		1229	 //	If	m	!=	nil,	expNN	calculates	x**y	mod	m.	Otherwise	it	calculates	x**y.	It

		1230	 //	reuses	the	storage	of	z	if	possible.

		1231	 func	(z	nat)	expNN(x,	y,	m	nat)	nat	{

		1232	 	 if	alias(z,	x)	||	alias(z,	y)	{

		1233	 	 	 //	We	cannot	allow	in	place	modification	of	x	or	y.

		1234	 	 	 z	=	nil

		1235	 	 }

		1236	

		1237	 	 if	len(y)	==	0	{

		1238	 	 	 z	=	z.make(1)

		1239	 	 	 z[0]	=	1

		1240	 	 	 return	z

		1241	 	 }

		1242	

		1243	 	 if	m	!=	nil	{

		1244	 	 	 //	We	likely	end	up	being	as	long	as	the	modulus.

		1245	 	 	 z	=	z.make(len(m))

		1246	 	 }

		1247	 	 z	=	z.set(x)

		1248	 	 v	:=	y[len(y)-1]

		1249	 	 //	It's	invalid	for	the	most	significant	word	to	be	zero,	therefore	we

		1250	 	 //	will	find	a	one	bit.

		1251	 	 shift	:=	leadingZeros(v)	+	1

		1252	 	 v	<<=	shift

		1253	 	 var	q	nat

		1254	

		1255	 	 const	mask	=	1	<<	(_W	-	1)

		1256	

		1257	 	 //	We	walk	through	the	bits	of	the	exponent	one	by	one.	Each	time	we

		1258	 	 //	see	a	bit,	we	square,	thus	doubling	the	power.	If	the	bit	is	a	one,

		1259	 	 //	we	also	multiply	by	x,	thus	adding	one	to	the	power.

		1260	

		1261	 	 w	:=	_W	-	int(shift)

		1262	 	 for	j	:=	0;	j	<	w;	j++	{

		1263	 	 	 z	=	z.mul(z,	z)

		1264	

		1265	 	 	 if	v&mask	!=	0	{

		1266	 	 	 	 z	=	z.mul(z,	x)

		1267	 	 	 }

		1268	

		1269	 	 	 if	m	!=	nil	{

		1270	 	 	 	 q,	z	=	q.div(z,	z,	m)

		1271	 	 	 }

		1272	

		1273	 	 	 v	<<=	1

		1274	 	 }

		1275	

		1276	 	 for	i	:=	len(y)	-	2;	i	>=	0;	i--	{

		1277	 	 	 v	=	y[i]

		1278	

		1279	 	 	 for	j	:=	0;	j	<	_W;	j++	{

		1280	 	 	 	 z	=	z.mul(z,	z)

		1281	

		1282	 	 	 	 if	v&mask	!=	0	{

		1283	 	 	 	 	 z	=	z.mul(z,	x)

		1284	 	 	 	 }

		1285	

		1286	 	 	 	 if	m	!=	nil	{

		1287	 	 	 	 	 q,	z	=	q.div(z,	z,	m)

		1288	 	 	 	 }

		1289	

		1290	 	 	 	 v	<<=	1

		1291	 	 	 }

		1292	 	 }

		1293	

		1294	 	 return	z.norm()

		1295	 }

		1296	

		1297	 //	probablyPrime	performs	reps	Miller-Rabin	tests	to	check	whether	n	is	prime.

		1298	 //	If	it	returns	true,	n	is	prime	with	probability	1	-	1/4^reps.

		1299	 //	If	it	returns	false,	n	is	not	prime.

		1300	 func	(n	nat)	probablyPrime(reps	int)	bool	{

		1301	 	 if	len(n)	==	0	{

		1302	 	 	 return	false

		1303	 	 }

		1304	

		1305	 	 if	len(n)	==	1	{

		1306	 	 	 if	n[0]	<	2	{

		1307	 	 	 	 return	false

		1308	 	 	 }

		1309	

		1310	 	 	 if	n[0]%2	==	0	{

		1311	 	 	 	 return	n[0]	==	2

		1312	 	 	 }

		1313	

		1314	 	 	 //	We	have	to	exclude	these	cases	because	we	reject	all

		1315	 	 	 //	multiples	of	these	numbers	below.

		1316	 	 	 switch	n[0]	{

		1317	 	 	 case	3,	5,	7,	11,	13,	17,	19,	23,	29,	31,	37,	41,	43,	47,	53:

		1318	 	 	 	 return	true

		1319	 	 	 }

		1320	 	 }

		1321	

		1322	 	 const	primesProduct32	=	0xC0CFD797									//	Π	{p	∈	primes,	2	<	p	<=	29}
		1323	 	 const	primesProduct64	=	0xE221F97C30E94E1D	//	Π	{p	∈	primes,	2	<	p	<=	53}
		1324	

		1325	 	 var	r	Word

		1326	 	 switch	_W	{

		1327	 	 case	32:

		1328	 	 	 r	=	n.modW(primesProduct32)

		1329	 	 case	64:

		1330	 	 	 r	=	n.modW(primesProduct64	&	_M)

		1331	 	 default:

		1332	 	 	 panic("Unknown	word	size")

		1333	 	 }

		1334	

		1335	 	 if	r%3	==	0	||	r%5	==	0	||	r%7	==	0	||	r%11	==	0	||

		1336	 	 	 r%13	==	0	||	r%17	==	0	||	r%19	==	0	||	r%23	==	0	||	r%29	==	0	{

		1337	 	 	 return	false

		1338	 	 }

		1339	

		1340	 	 if	_W	==	64	&&	(r%31	==	0	||	r%37	==	0	||	r%41	==	0	||

		1341	 	 	 r%43	==	0	||	r%47	==	0	||	r%53	==	0)	{

		1342	 	 	 return	false

		1343	 	 }

		1344	

		1345	 	 nm1	:=	nat(nil).sub(n,	natOne)

		1346	 	 //	1<<k	*	q	=	nm1;

		1347	 	 q,	k	:=	nm1.powersOfTwoDecompose()

		1348	

		1349	 	 nm3	:=	nat(nil).sub(nm1,	natTwo)

		1350	 	 rand	:=	rand.New(rand.NewSource(int64(n[0])))

		1351	

		1352	 	 var	x,	y,	quotient	nat

		1353	 	 nm3Len	:=	nm3.bitLen()

		1354	

		1355	 NextRandom:

		1356	 	 for	i	:=	0;	i	<	reps;	i++	{

		1357	 	 	 x	=	x.random(rand,	nm3,	nm3Len)

		1358	 	 	 x	=	x.add(x,	natTwo)

		1359	 	 	 y	=	y.expNN(x,	q,	n)

		1360	 	 	 if	y.cmp(natOne)	==	0	||	y.cmp(nm1)	==	0	{

		1361	 	 	 	 continue

		1362	 	 	 }

		1363	 	 	 for	j	:=	1;	j	<	k;	j++	{

		1364	 	 	 	 y	=	y.mul(y,	y)

		1365	 	 	 	 quotient,	y	=	quotient.div(y,	y,	n)

		1366	 	 	 	 if	y.cmp(nm1)	==	0	{

		1367	 	 	 	 	 continue	NextRandom

		1368	 	 	 	 }

		1369	 	 	 	 if	y.cmp(natOne)	==	0	{

		1370	 	 	 	 	 return	false

		1371	 	 	 	 }

		1372	 	 	 }

		1373	 	 	 return	false

		1374	 	 }

		1375	

		1376	 	 return	true

		1377	 }

		1378	

		1379	 //	bytes	writes	the	value	of	z	into	buf	using	big-endian	encoding.

		1380	 //	len(buf)	must	be	>=	len(z)*_S.	The	value	of	z	is	encoded	in	the

		1381	 //	slice	buf[i:].	The	number	i	of	unused	bytes	at	the	beginning	of

		1382	 //	buf	is	returned	as	result.

		1383	 func	(z	nat)	bytes(buf	[]byte)	(i	int)	{

		1384	 	 i	=	len(buf)

		1385	 	 for	_,	d	:=	range	z	{

		1386	 	 	 for	j	:=	0;	j	<	_S;	j++	{

		1387	 	 	 	 i--

		1388	 	 	 	 buf[i]	=	byte(d)

		1389	 	 	 	 d	>>=	8

		1390	 	 	 }

		1391	 	 }

		1392	

		1393	 	 for	i	<	len(buf)	&&	buf[i]	==	0	{

		1394	 	 	 i++

		1395	 	 }

		1396	

		1397	 	 return

		1398	 }

		1399	

		1400	 //	setBytes	interprets	buf	as	the	bytes	of	a	big-endian	unsigned

		1401	 //	integer,	sets	z	to	that	value,	and	returns	z.

		1402	 func	(z	nat)	setBytes(buf	[]byte)	nat	{

		1403	 	 z	=	z.make((len(buf)	+	_S	-	1)	/	_S)

		1404	

		1405	 	 k	:=	0

		1406	 	 s	:=	uint(0)

		1407	 	 var	d	Word

		1408	 	 for	i	:=	len(buf);	i	>	0;	i--	{

		1409	 	 	 d	|=	Word(buf[i-1])	<<	s

		1410	 	 	 if	s	+=	8;	s	==	_S*8	{

		1411	 	 	 	 z[k]	=	d

		1412	 	 	 	 k++

		1413	 	 	 	 s	=	0

		1414	 	 	 	 d	=	0

		1415	 	 	 }

		1416	 	 }

		1417	 	 if	k	<	len(z)	{

		1418	 	 	 z[k]	=	d

		1419	 	 }

		1420	

		1421	 	 return	z.norm()

		1422	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative

http://code.google.com/policies.html#restrictions

Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/big/rat.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	This	file	implements	multi-precision	rational	numbers.

					6	

					7	 package	big

					8	

					9	 import	(

				10	 	 "encoding/binary"

				11	 	 "errors"

				12	 	 "fmt"

				13	 	 "strings"

				14)

				15	

				16	 //	A	Rat	represents	a	quotient	a/b	of	arbitrary	precision.

				17	 //	The	zero	value	for	a	Rat	represents	the	value	0.

				18	 type	Rat	struct	{

				19	 	 a	Int

				20	 	 b	nat	//	len(b)	==	0	acts	like	b	==	1

				21	 }

				22	

				23	 //	NewRat	creates	a	new	Rat	with	numerator	a	and	denominator	b.

				24	 func	NewRat(a,	b	int64)	*Rat	{

				25	 	 return	new(Rat).SetFrac64(a,	b)

				26	 }

				27	

				28	 //	SetFrac	sets	z	to	a/b	and	returns	z.

				29	 func	(z	*Rat)	SetFrac(a,	b	*Int)	*Rat	{

				30	 	 z.a.neg	=	a.neg	!=	b.neg

				31	 	 babs	:=	b.abs

				32	 	 if	len(babs)	==	0	{

				33	 	 	 panic("division	by	zero")

				34	 	 }

				35	 	 if	&z.a	==	b	||	alias(z.a.abs,	babs)	{

				36	 	 	 babs	=	nat(nil).set(babs)	//	make	a	copy

				37	 	 }

				38	 	 z.a.abs	=	z.a.abs.set(a.abs)

				39	 	 z.b	=	z.b.set(babs)

				40	 	 return	z.norm()

				41	 }

				42	

				43	 //	SetFrac64	sets	z	to	a/b	and	returns	z.

				44	 func	(z	*Rat)	SetFrac64(a,	b	int64)	*Rat	{

				45	 	 z.a.SetInt64(a)

				46	 	 if	b	==	0	{

				47	 	 	 panic("division	by	zero")

				48	 	 }

				49	 	 if	b	<	0	{

				50	 	 	 b	=	-b

				51	 	 	 z.a.neg	=	!z.a.neg

				52	 	 }

				53	 	 z.b	=	z.b.setUint64(uint64(b))

				54	 	 return	z.norm()

				55	 }

				56	

				57	 //	SetInt	sets	z	to	x	(by	making	a	copy	of	x)	and	returns	z.

				58	 func	(z	*Rat)	SetInt(x	*Int)	*Rat	{

				59	 	 z.a.Set(x)

				60	 	 z.b	=	z.b.make(0)

				61	 	 return	z

				62	 }

				63	

				64	 //	SetInt64	sets	z	to	x	and	returns	z.

				65	 func	(z	*Rat)	SetInt64(x	int64)	*Rat	{

				66	 	 z.a.SetInt64(x)

				67	 	 z.b	=	z.b.make(0)

				68	 	 return	z

				69	 }

				70	

				71	 //	Set	sets	z	to	x	(by	making	a	copy	of	x)	and	returns	z.

				72	 func	(z	*Rat)	Set(x	*Rat)	*Rat	{

				73	 	 if	z	!=	x	{

				74	 	 	 z.a.Set(&x.a)

				75	 	 	 z.b	=	z.b.set(x.b)

				76	 	 }

				77	 	 return	z

				78	 }

				79	

				80	 //	Abs	sets	z	to	|x|	(the	absolute	value	of	x)	and	returns	z.

				81	 func	(z	*Rat)	Abs(x	*Rat)	*Rat	{

				82	 	 z.Set(x)

				83	 	 z.a.neg	=	false

				84	 	 return	z

				85	 }

				86	

				87	 //	Neg	sets	z	to	-x	and	returns	z.

				88	 func	(z	*Rat)	Neg(x	*Rat)	*Rat	{

				89	 	 z.Set(x)

				90	 	 z.a.neg	=	len(z.a.abs)	>	0	&&	!z.a.neg	//	0	has	no	sign

				91	 	 return	z

				92	 }

				93	

				94	 //	Inv	sets	z	to	1/x	and	returns	z.

				95	 func	(z	*Rat)	Inv(x	*Rat)	*Rat	{

				96	 	 if	len(x.a.abs)	==	0	{

				97	 	 	 panic("division	by	zero")

				98	 	 }

				99	 	 z.Set(x)

			100	 	 a	:=	z.b

			101	 	 if	len(a)	==	0	{

			102	 	 	 a	=	a.setWord(1)	//	materialize	numerator

			103	 	 }

			104	 	 b	:=	z.a.abs

			105	 	 if	b.cmp(natOne)	==	0	{

			106	 	 	 b	=	b.make(0)	//	normalize	denominator

			107	 	 }

			108	 	 z.a.abs,	z.b	=	a,	b	//	sign	doesn't	change

			109	 	 return	z

			110	 }

			111	

			112	 //	Sign	returns:

			113	 //

			114	 //	 -1	if	x	<		0

			115	 //	 	0	if	x	==	0

			116	 //	 +1	if	x	>		0

			117	 //

			118	 func	(x	*Rat)	Sign()	int	{

			119	 	 return	x.a.Sign()

			120	 }

			121	

			122	 //	IsInt	returns	true	if	the	denominator	of	x	is	1.

			123	 func	(x	*Rat)	IsInt()	bool	{

			124	 	 return	len(x.b)	==	0	||	x.b.cmp(natOne)	==	0

			125	 }

			126	

			127	 //	Num	returns	the	numerator	of	x;	it	may	be	<=	0.

			128	 //	The	result	is	a	reference	to	x's	numerator;	it

			129	 //	may	change	if	a	new	value	is	assigned	to	x.

			130	 func	(x	*Rat)	Num()	*Int	{

			131	 	 return	&x.a

			132	 }

			133	

			134	 //	Denom	returns	the	denominator	of	x;	it	is	always	>	0.

			135	 //	The	result	is	a	reference	to	x's	denominator;	it

			136	 //	may	change	if	a	new	value	is	assigned	to	x.

			137	 func	(x	*Rat)	Denom()	*Int	{

			138	 	 if	len(x.b)	==	0	{

			139	 	 	 return	&Int{abs:	nat{1}}

			140	 	 }

			141	 	 return	&Int{abs:	x.b}

			142	 }

			143	

			144	 func	gcd(x,	y	nat)	nat	{

			145	 	 //	Euclidean	algorithm.

			146	 	 var	a,	b	nat

			147	 	 a	=	a.set(x)

			148	 	 b	=	b.set(y)

			149	 	 for	len(b)	!=	0	{

			150	 	 	 var	q,	r	nat

			151	 	 	 _,	r	=	q.div(r,	a,	b)

			152	 	 	 a	=	b

			153	 	 	 b	=	r

			154	 	 }

			155	 	 return	a

			156	 }

			157	

			158	 func	(z	*Rat)	norm()	*Rat	{

			159	 	 switch	{

			160	 	 case	len(z.a.abs)	==	0:

			161	 	 	 //	z	==	0	-	normalize	sign	and	denominator

			162	 	 	 z.a.neg	=	false

			163	 	 	 z.b	=	z.b.make(0)

			164	 	 case	len(z.b)	==	0:

			165	 	 	 //	z	is	normalized	int	-	nothing	to	do

			166	 	 case	z.b.cmp(natOne)	==	0:

			167	 	 	 //	z	is	int	-	normalize	denominator

			168	 	 	 z.b	=	z.b.make(0)

			169	 	 default:

			170	 	 	 if	f	:=	gcd(z.a.abs,	z.b);	f.cmp(natOne)	!=	0	{

			171	 	 	 	 z.a.abs,	_	=	z.a.abs.div(nil,	z.a.abs,	f)

			172	 	 	 	 z.b,	_	=	z.b.div(nil,	z.b,	f)

			173	 	 	 }

			174	 	 }

			175	 	 return	z

			176	 }

			177	

			178	 //	mulDenom	sets	z	to	the	denominator	product	x*y	(by	taking	into

			179	 //	account	that	0	values	for	x	or	y	must	be	interpreted	as	1)	and

			180	 //	returns	z.

			181	 func	mulDenom(z,	x,	y	nat)	nat	{

			182	 	 switch	{

			183	 	 case	len(x)	==	0:

			184	 	 	 return	z.set(y)

			185	 	 case	len(y)	==	0:

			186	 	 	 return	z.set(x)

			187	 	 }

			188	 	 return	z.mul(x,	y)

			189	 }

			190	

			191	 //	scaleDenom	computes	x*f.

			192	 //	If	f	==	0	(zero	value	of	denominator),	the	result	is	(a	copy	of)	x.

			193	 func	scaleDenom(x	*Int,	f	nat)	*Int	{

			194	 	 var	z	Int

			195	 	 if	len(f)	==	0	{

			196	 	 	 return	z.Set(x)

			197	 	 }

			198	 	 z.abs	=	z.abs.mul(x.abs,	f)

			199	 	 z.neg	=	x.neg

			200	 	 return	&z

			201	 }

			202	

			203	 //	Cmp	compares	x	and	y	and	returns:

			204	 //

			205	 //			-1	if	x	<		y

			206	 //				0	if	x	==	y

			207	 //			+1	if	x	>		y

			208	 //

			209	 func	(x	*Rat)	Cmp(y	*Rat)	int	{

			210	 	 return	scaleDenom(&x.a,	y.b).Cmp(scaleDenom(&y.a,	x.b))

			211	 }

			212	

			213	 //	Add	sets	z	to	the	sum	x+y	and	returns	z.

			214	 func	(z	*Rat)	Add(x,	y	*Rat)	*Rat	{

			215	 	 a1	:=	scaleDenom(&x.a,	y.b)

			216	 	 a2	:=	scaleDenom(&y.a,	x.b)

			217	 	 z.a.Add(a1,	a2)

			218	 	 z.b	=	mulDenom(z.b,	x.b,	y.b)

			219	 	 return	z.norm()

			220	 }

			221	

			222	 //	Sub	sets	z	to	the	difference	x-y	and	returns	z.

			223	 func	(z	*Rat)	Sub(x,	y	*Rat)	*Rat	{

			224	 	 a1	:=	scaleDenom(&x.a,	y.b)

			225	 	 a2	:=	scaleDenom(&y.a,	x.b)

			226	 	 z.a.Sub(a1,	a2)

			227	 	 z.b	=	mulDenom(z.b,	x.b,	y.b)

			228	 	 return	z.norm()

			229	 }

			230	

			231	 //	Mul	sets	z	to	the	product	x*y	and	returns	z.

			232	 func	(z	*Rat)	Mul(x,	y	*Rat)	*Rat	{

			233	 	 z.a.Mul(&x.a,	&y.a)

			234	 	 z.b	=	mulDenom(z.b,	x.b,	y.b)

			235	 	 return	z.norm()

			236	 }

			237	

			238	 //	Quo	sets	z	to	the	quotient	x/y	and	returns	z.

			239	 //	If	y	==	0,	a	division-by-zero	run-time	panic	occurs.

			240	 func	(z	*Rat)	Quo(x,	y	*Rat)	*Rat	{

			241	 	 if	len(y.a.abs)	==	0	{

			242	 	 	 panic("division	by	zero")

			243	 	 }

			244	 	 a	:=	scaleDenom(&x.a,	y.b)

			245	 	 b	:=	scaleDenom(&y.a,	x.b)

			246	 	 z.a.abs	=	a.abs

			247	 	 z.b	=	b.abs

			248	 	 z.a.neg	=	a.neg	!=	b.neg

			249	 	 return	z.norm()

			250	 }

			251	

			252	 func	ratTok(ch	rune)	bool	{

			253	 	 return	strings.IndexRune("+-/0123456789.eE",	ch)	>=	0

			254	 }

			255	

			256	 //	Scan	is	a	support	routine	for	fmt.Scanner.	It	accepts	the	formats

			257	 //	'e',	'E',	'f',	'F',	'g',	'G',	and	'v'.	All	formats	are	equivalent.

			258	 func	(z	*Rat)	Scan(s	fmt.ScanState,	ch	rune)	error	{

			259	 	 tok,	err	:=	s.Token(true,	ratTok)

			260	 	 if	err	!=	nil	{

			261	 	 	 return	err

			262	 	 }

			263	 	 if	strings.IndexRune("efgEFGv",	ch)	<	0	{

			264	 	 	 return	errors.New("Rat.Scan:	invalid	verb")

			265	 	 }

			266	 	 if	_,	ok	:=	z.SetString(string(tok));	!ok	{

			267	 	 	 return	errors.New("Rat.Scan:	invalid	syntax")

			268	 	 }

			269	 	 return	nil

			270	 }

			271	

			272	 //	SetString	sets	z	to	the	value	of	s	and	returns	z	and	a	boolean	indicating

			273	 //	success.	s	can	be	given	as	a	fraction	"a/b"	or	as	a	floating-point	number

			274	 //	optionally	followed	by	an	exponent.	If	the	operation	failed,	the	value	of

			275	 //	z	is	undefined	but	the	returned	value	is	nil.

			276	 func	(z	*Rat)	SetString(s	string)	(*Rat,	bool)	{

			277	 	 if	len(s)	==	0	{

			278	 	 	 return	nil,	false

			279	 	 }

			280	

			281	 	 //	check	for	a	quotient

			282	 	 sep	:=	strings.Index(s,	"/")

			283	 	 if	sep	>=	0	{

			284	 	 	 if	_,	ok	:=	z.a.SetString(s[0:sep],	10);	!ok	{

			285	 	 	 	 return	nil,	false

			286	 	 	 }

			287	 	 	 s	=	s[sep+1:]

			288	 	 	 var	err	error

			289	 	 	 if	z.b,	_,	err	=	z.b.scan(strings.NewReader(s),	10);	err	!=	nil	{

			290	 	 	 	 return	nil,	false

			291	 	 	 }

			292	 	 	 return	z.norm(),	true

			293	 	 }

			294	

			295	 	 //	check	for	a	decimal	point

			296	 	 sep	=	strings.Index(s,	".")

			297	 	 //	check	for	an	exponent

			298	 	 e	:=	strings.IndexAny(s,	"eE")

			299	 	 var	exp	Int

			300	 	 if	e	>=	0	{

			301	 	 	 if	e	<	sep	{

			302	 	 	 	 //	The	E	must	come	after	the	decimal	point.

			303	 	 	 	 return	nil,	false

			304	 	 	 }

			305	 	 	 if	_,	ok	:=	exp.SetString(s[e+1:],	10);	!ok	{

			306	 	 	 	 return	nil,	false

			307	 	 	 }

			308	 	 	 s	=	s[0:e]

			309	 	 }

			310	 	 if	sep	>=	0	{

			311	 	 	 s	=	s[0:sep]	+	s[sep+1:]

			312	 	 	 exp.Sub(&exp,	NewInt(int64(len(s)-sep)))

			313	 	 }

			314	

			315	 	 if	_,	ok	:=	z.a.SetString(s,	10);	!ok	{

			316	 	 	 return	nil,	false

			317	 	 }

			318	 	 powTen	:=	nat(nil).expNN(natTen,	exp.abs,	nil)

			319	 	 if	exp.neg	{

			320	 	 	 z.b	=	powTen

			321	 	 	 z.norm()

			322	 	 }	else	{

			323	 	 	 z.a.abs	=	z.a.abs.mul(z.a.abs,	powTen)

			324	 	 	 z.b	=	z.b.make(0)

			325	 	 }

			326	

			327	 	 return	z,	true

			328	 }

			329	

			330	 //	String	returns	a	string	representation	of	z	in	the	form	"a/b"	(even	if	b	==	1).

			331	 func	(x	*Rat)	String()	string	{

			332	 	 s	:=	"/1"

			333	 	 if	len(x.b)	!=	0	{

			334	 	 	 s	=	"/"	+	x.b.decimalString()

			335	 	 }

			336	 	 return	x.a.String()	+	s

			337	 }

			338	

			339	 //	RatString	returns	a	string	representation	of	z	in	the	form	"a/b"	if	b	!=	1,

			340	 //	and	in	the	form	"a"	if	b	==	1.

			341	 func	(x	*Rat)	RatString()	string	{

			342	 	 if	x.IsInt()	{

			343	 	 	 return	x.a.String()

			344	 	 }

			345	 	 return	x.String()

			346	 }

			347	

			348	 //	FloatString	returns	a	string	representation	of	z	in	decimal	form	with	prec

			349	 //	digits	of	precision	after	the	decimal	point	and	the	last	digit	rounded.

			350	 func	(x	*Rat)	FloatString(prec	int)	string	{

			351	 	 if	x.IsInt()	{

			352	 	 	 s	:=	x.a.String()

			353	 	 	 if	prec	>	0	{

			354	 	 	 	 s	+=	"."	+	strings.Repeat("0",	prec)

			355	 	 	 }

			356	 	 	 return	s

			357	 	 }

			358	 	 //	x.b	!=	0

			359	

			360	 	 q,	r	:=	nat(nil).div(nat(nil),	x.a.abs,	x.b)

			361	

			362	 	 p	:=	natOne

			363	 	 if	prec	>	0	{

			364	 	 	 p	=	nat(nil).expNN(natTen,	nat(nil).setUint64(uint64(prec)),	nil)

			365	 	 }

			366	

			367	 	 r	=	r.mul(r,	p)

			368	 	 r,	r2	:=	r.div(nat(nil),	r,	x.b)

			369	

			370	 	 //	see	if	we	need	to	round	up

			371	 	 r2	=	r2.add(r2,	r2)

			372	 	 if	x.b.cmp(r2)	<=	0	{

			373	 	 	 r	=	r.add(r,	natOne)

			374	 	 	 if	r.cmp(p)	>=	0	{

			375	 	 	 	 q	=	nat(nil).add(q,	natOne)

			376	 	 	 	 r	=	nat(nil).sub(r,	p)

			377	 	 	 }

			378	 	 }

			379	

			380	 	 s	:=	q.decimalString()

			381	 	 if	x.a.neg	{

			382	 	 	 s	=	"-"	+	s

			383	 	 }

			384	

			385	 	 if	prec	>	0	{

			386	 	 	 rs	:=	r.decimalString()

			387	 	 	 leadingZeros	:=	prec	-	len(rs)

			388	 	 	 s	+=	"."	+	strings.Repeat("0",	leadingZeros)	+	rs

			389	 	 }

			390	

			391	 	 return	s

			392	 }

			393	

			394	 //	Gob	codec	version.	Permits	backward-compatible	changes	to	the	encoding.

			395	 const	ratGobVersion	byte	=	1

			396	

			397	 //	GobEncode	implements	the	gob.GobEncoder	interface.

			398	 func	(x	*Rat)	GobEncode()	([]byte,	error)	{

			399	 	 buf	:=	make([]byte,	1+4+(len(x.a.abs)+len(x.b))*_S)	

			400	 	 i	:=	x.b.bytes(buf)

			401	 	 j	:=	x.a.abs.bytes(buf[0:i])

			402	 	 n	:=	i	-	j

			403	 	 if	int(uint32(n))	!=	n	{

			404	 	 	 //	this	should	never	happen

			405	 	 	 return	nil,	errors.New("Rat.GobEncode:	numerator	too	large")

			406	 	 }

			407	 	 binary.BigEndian.PutUint32(buf[j-4:j],	uint32(n))

			408	 	 j	-=	1	+	4

			409	 	 b	:=	ratGobVersion	<<	1	//	make	space	for	sign	bit

			410	 	 if	x.a.neg	{

			411	 	 	 b	|=	1

			412	 	 }

			413	 	 buf[j]	=	b

			414	 	 return	buf[j:],	nil

			415	 }

			416	

			417	 //	GobDecode	implements	the	gob.GobDecoder	interface.

			418	 func	(z	*Rat)	GobDecode(buf	[]byte)	error	{

			419	 	 if	len(buf)	==	0	{

			420	 	 	 return	errors.New("Rat.GobDecode:	no	data")

			421	 	 }

			422	 	 b	:=	buf[0]

			423	 	 if	b>>1	!=	ratGobVersion	{

			424	 	 	 return	errors.New(fmt.Sprintf("Rat.GobDecode:	encoding	version	%d	not	supported",	b>>1))

			425	 	 }

			426	 	 const	j	=	1	+	4

			427	 	 i	:=	j	+	binary.BigEndian.Uint32(buf[j-4:j])

			428	 	 z.a.neg	=	b&1	!=	0

			429	 	 z.a.abs	=	z.a.abs.setBytes(buf[j:i])

			430	 	 z.b	=	z.b.setBytes(buf[i:])

			431	 	 return	nil

			432	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/math/cmplx/abs.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	cmplx	provides	basic	constants	and	mathematical	functions	for

					6	 //	complex	numbers.

					7	 package	cmplx

					8	

					9	 import	"math"

				10	

				11	 //	Abs	returns	the	absolute	value	(also	called	the	modulus)	of	x.

				12	 func	Abs(x	complex128)	float64	{	return	math.Hypot(real(x),	imag(x))	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/math/cmplx/asin.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	cmplx

					6	

					7	 import	"math"

					8	

					9	 //	The	original	C	code,	the	long	comment,	and	the	constants

				10	 //	below	are	from	http://netlib.sandia.gov/cephes/c9x-complex/clog.c.

				11	 //	The	go	code	is	a	simplified	version	of	the	original	C.

				12	 //

				13	 //	Cephes	Math	Library	Release	2.8:		June,	2000

				14	 //	Copyright	1984,	1987,	1989,	1992,	2000	by	Stephen	L.	Moshier

				15	 //

				16	 //	The	readme	file	at	http://netlib.sandia.gov/cephes/	says:

				17	 //				Some	software	in	this	archive	may	be	from	the	book	_Methods	and

				18	 //	Programs	for	Mathematical	Functions_	(Prentice-Hall	or	Simon	&	Schuster

				19	 //	International,	1989)	or	from	the	Cephes	Mathematical	Library,	a

				20	 //	commercial	product.	In	either	event,	it	is	copyrighted	by	the	author.

				21	 //	What	you	see	here	may	be	used	freely	but	it	comes	with	no	support	or

				22	 //	guarantee.

				23	 //

				24	 //			The	two	known	misprints	in	the	book	are	repaired	here	in	the

				25	 //	source	listings	for	the	gamma	function	and	the	incomplete	beta

				26	 //	integral.

				27	 //

				28	 //			Stephen	L.	Moshier

				29	 //			moshier@na-net.ornl.gov

				30	

				31	 //	Complex	circular	arc	sine

				32	 //

				33	 //	DESCRIPTION:

				34	 //

				35	 //	Inverse	complex	sine:

				36	 //																															2

				37	 //	w	=	-i	clog(iz	+	csqrt(1	-	z)).

				38	 //

				39	 //	casin(z)	=	-i	casinh(iz)

				40	 //

				41	 //	ACCURACY:

				42	 //

				43	 //																						Relative	error:

				44	 //	arithmetic			domain					#	trials						peak									rms

				45	 //				DEC							-10,+10					10100							2.1e-15					3.4e-16

				46	 //				IEEE						-10,+10					30000							2.2e-14					2.7e-15

				47	 //	Larger	relative	error	can	be	observed	for	z	near	zero.

				48	 //	Also	tested	by	csin(casin(z))	=	z.

				49	

				50	 //	Asin	returns	the	inverse	sine	of	x.

				51	 func	Asin(x	complex128)	complex128	{

				52	 	 if	imag(x)	==	0	{

				53	 	 	 if	math.Abs(real(x))	>	1	{

				54	 	 	 	 return	complex(math.Pi/2,	0)	//	DOMAIN	error

				55	 	 	 }

				56	 	 	 return	complex(math.Asin(real(x)),	0)

				57	 	 }

				58	 	 ct	:=	complex(-imag(x),	real(x))	//	i	*	x

				59	 	 xx	:=	x	*	x

				60	 	 x1	:=	complex(1-real(xx),	-imag(xx))	//	1	-	x*x

				61	 	 x2	:=	Sqrt(x1)																							//	x2	=	sqrt(1	-	x*x)

				62	 	 w	:=	Log(ct	+	x2)

				63	 	 return	complex(imag(w),	-real(w))	//	-i	*	w

				64	 }

				65	

				66	 //	Asinh	returns	the	inverse	hyperbolic	sine	of	x.

				67	 func	Asinh(x	complex128)	complex128	{

				68	 	 //	TODO	check	range

				69	 	 if	imag(x)	==	0	{

				70	 	 	 if	math.Abs(real(x))	>	1	{

				71	 	 	 	 return	complex(math.Pi/2,	0)	//	DOMAIN	error

				72	 	 	 }

				73	 	 	 return	complex(math.Asinh(real(x)),	0)

				74	 	 }

				75	 	 xx	:=	x	*	x

				76	 	 x1	:=	complex(1+real(xx),	imag(xx))	//	1	+	x*x

				77	 	 return	Log(x	+	Sqrt(x1))												//	log(x	+	sqrt(1	+	x*x))

				78	 }

				79	

				80	 //	Complex	circular	arc	cosine

				81	 //

				82	 //	DESCRIPTION:

				83	 //

				84	 //	w	=	arccos	z		=		PI/2	-	arcsin	z.

				85	 //

				86	 //	ACCURACY:

				87	 //

				88	 //																						Relative	error:

				89	 //	arithmetic			domain					#	trials						peak									rms

				90	 //				DEC							-10,+10						5200						1.6e-15						2.8e-16

				91	 //				IEEE						-10,+10					30000						1.8e-14						2.2e-15

				92	

				93	 //	Acos	returns	the	inverse	cosine	of	x.

				94	 func	Acos(x	complex128)	complex128	{

				95	 	 w	:=	Asin(x)

				96	 	 return	complex(math.Pi/2-real(w),	-imag(w))

				97	 }

				98	

				99	 //	Acosh	returns	the	inverse	hyperbolic	cosine	of	x.

			100	 func	Acosh(x	complex128)	complex128	{

			101	 	 w	:=	Acos(x)

			102	 	 if	imag(w)	<=	0	{

			103	 	 	 return	complex(-imag(w),	real(w))	//	i	*	w

			104	 	 }

			105	 	 return	complex(imag(w),	-real(w))	//	-i	*	w

			106	 }

			107	

			108	 //	Complex	circular	arc	tangent

			109	 //

			110	 //	DESCRIPTION:

			111	 //

			112	 //	If

			113	 //					z	=	x	+	iy,

			114	 //

			115	 //	then

			116	 //										1							(2x)

			117	 //	Re	w		=		-	arctan(-----------)		+		k	PI

			118	 //										2							(2				2)

			119	 //																		(1	-	x		-	y)

			120	 //

			121	 //															(2									2)

			122	 //										1				(x		+		(y+1))

			123	 //	Im	w		=		-	log(------------)

			124	 //										4				(2									2)

			125	 //															(x		+		(y-1))

			126	 //

			127	 //	Where	k	is	an	arbitrary	integer.

			128	 //

			129	 //	catan(z)	=	-i	catanh(iz).

			130	 //

			131	 //	ACCURACY:

			132	 //

			133	 //																						Relative	error:

			134	 //	arithmetic			domain					#	trials						peak									rms

			135	 //				DEC							-10,+10						5900							1.3e-16					7.8e-18

			136	 //				IEEE						-10,+10					30000							2.3e-15					8.5e-17

			137	 //	The	check	catan(ctan(z))		=		z,	with	|x|	and	|y|	<	PI/2,

			138	 //	had	peak	relative	error	1.5e-16,	rms	relative	error

			139	 //	2.9e-17.		See	also	clog().

			140	

			141	 //	Atan	returns	the	inverse	tangent	of	x.

			142	 func	Atan(x	complex128)	complex128	{

			143	 	 if	real(x)	==	0	&&	imag(x)	>	1	{

			144	 	 	 return	NaN()

			145	 	 }

			146	

			147	 	 x2	:=	real(x)	*	real(x)

			148	 	 a	:=	1	-	x2	-	imag(x)*imag(x)

			149	 	 if	a	==	0	{

			150	 	 	 return	NaN()

			151	 	 }

			152	 	 t	:=	0.5	*	math.Atan2(2*real(x),	a)

			153	 	 w	:=	reducePi(t)

			154	

			155	 	 t	=	imag(x)	-	1

			156	 	 b	:=	x2	+	t*t

			157	 	 if	b	==	0	{

			158	 	 	 return	NaN()

			159	 	 }

			160	 	 t	=	imag(x)	+	1

			161	 	 c	:=	(x2	+	t*t)	/	b

			162	 	 return	complex(w,	0.25*math.Log(c))

			163	 }

			164	

			165	 //	Atanh	returns	the	inverse	hyperbolic	tangent	of	x.

			166	 func	Atanh(x	complex128)	complex128	{

			167	 	 z	:=	complex(-imag(x),	real(x))	//	z	=	i	*	x

			168	 	 z	=	Atan(z)

			169	 	 return	complex(imag(z),	-real(z))	//	z	=	-i	*	z

			170	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/math/cmplx/conj.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	cmplx

					6	

					7	 //	Conj	returns	the	complex	conjugate	of	x.

					8	 func	Conj(x	complex128)	complex128	{	return	complex(real(x),	-imag(x))	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/math/cmplx/exp.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	cmplx

					6	

					7	 import	"math"

					8	

					9	 //	The	original	C	code,	the	long	comment,	and	the	constants

				10	 //	below	are	from	http://netlib.sandia.gov/cephes/c9x-complex/clog.c.

				11	 //	The	go	code	is	a	simplified	version	of	the	original	C.

				12	 //

				13	 //	Cephes	Math	Library	Release	2.8:		June,	2000

				14	 //	Copyright	1984,	1987,	1989,	1992,	2000	by	Stephen	L.	Moshier

				15	 //

				16	 //	The	readme	file	at	http://netlib.sandia.gov/cephes/	says:

				17	 //				Some	software	in	this	archive	may	be	from	the	book	_Methods	and

				18	 //	Programs	for	Mathematical	Functions_	(Prentice-Hall	or	Simon	&	Schuster

				19	 //	International,	1989)	or	from	the	Cephes	Mathematical	Library,	a

				20	 //	commercial	product.	In	either	event,	it	is	copyrighted	by	the	author.

				21	 //	What	you	see	here	may	be	used	freely	but	it	comes	with	no	support	or

				22	 //	guarantee.

				23	 //

				24	 //			The	two	known	misprints	in	the	book	are	repaired	here	in	the

				25	 //	source	listings	for	the	gamma	function	and	the	incomplete	beta

				26	 //	integral.

				27	 //

				28	 //			Stephen	L.	Moshier

				29	 //			moshier@na-net.ornl.gov

				30	

				31	 //	Complex	exponential	function

				32	 //

				33	 //	DESCRIPTION:

				34	 //

				35	 //	Returns	the	complex	exponential	of	the	complex	argument	z.

				36	 //

				37	 //	If

				38	 //					z	=	x	+	iy,

				39	 //					r	=	exp(x),

				40	 //	then

				41	 //					w	=	r	cos	y	+	i	r	sin	y.

				42	 //

				43	 //	ACCURACY:

				44	 //

				45	 //																						Relative	error:

				46	 //	arithmetic			domain					#	trials						peak									rms

				47	 //				DEC							-10,+10						8700							3.7e-17					1.1e-17

				48	 //				IEEE						-10,+10					30000							3.0e-16					8.7e-17

				49	

				50	 //	Exp	returns	e**x,	the	base-e	exponential	of	x.

				51	 func	Exp(x	complex128)	complex128	{

				52	 	 r	:=	math.Exp(real(x))

				53	 	 s,	c	:=	math.Sincos(imag(x))

				54	 	 return	complex(r*c,	r*s)

				55	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/math/cmplx/isinf.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	cmplx

					6	

					7	 import	"math"

					8	

					9	 //	IsInf	returns	true	if	either	real(x)	or	imag(x)	is	an	infinity.

				10	 func	IsInf(x	complex128)	bool	{

				11	 	 if	math.IsInf(real(x),	0)	||	math.IsInf(imag(x),	0)	{

				12	 	 	 return	true

				13	 	 }

				14	 	 return	false

				15	 }

				16	

				17	 //	Inf	returns	a	complex	infinity,	complex(+Inf,	+Inf).

				18	 func	Inf()	complex128	{

				19	 	 inf	:=	math.Inf(1)

				20	 	 return	complex(inf,	inf)

				21	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/math/cmplx/isnan.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	cmplx

					6	

					7	 import	"math"

					8	

					9	 //	IsNaN	returns	true	if	either	real(x)	or	imag(x)	is	NaN

				10	 //	and	neither	is	an	infinity.

				11	 func	IsNaN(x	complex128)	bool	{

				12	 	 switch	{

				13	 	 case	math.IsInf(real(x),	0)	||	math.IsInf(imag(x),	0):

				14	 	 	 return	false

				15	 	 case	math.IsNaN(real(x))	||	math.IsNaN(imag(x)):

				16	 	 	 return	true

				17	 	 }

				18	 	 return	false

				19	 }

				20	

				21	 //	NaN	returns	a	complex	``not-a-number''	value.

				22	 func	NaN()	complex128	{

				23	 	 nan	:=	math.NaN()

				24	 	 return	complex(nan,	nan)

				25	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/cmplx/log.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	cmplx

					6	

					7	 import	"math"

					8	

					9	 //	The	original	C	code,	the	long	comment,	and	the	constants

				10	 //	below	are	from	http://netlib.sandia.gov/cephes/c9x-complex/clog.c.

				11	 //	The	go	code	is	a	simplified	version	of	the	original	C.

				12	 //

				13	 //	Cephes	Math	Library	Release	2.8:		June,	2000

				14	 //	Copyright	1984,	1987,	1989,	1992,	2000	by	Stephen	L.	Moshier

				15	 //

				16	 //	The	readme	file	at	http://netlib.sandia.gov/cephes/	says:

				17	 //				Some	software	in	this	archive	may	be	from	the	book	_Methods	and

				18	 //	Programs	for	Mathematical	Functions_	(Prentice-Hall	or	Simon	&	Schuster

				19	 //	International,	1989)	or	from	the	Cephes	Mathematical	Library,	a

				20	 //	commercial	product.	In	either	event,	it	is	copyrighted	by	the	author.

				21	 //	What	you	see	here	may	be	used	freely	but	it	comes	with	no	support	or

				22	 //	guarantee.

				23	 //

				24	 //			The	two	known	misprints	in	the	book	are	repaired	here	in	the

				25	 //	source	listings	for	the	gamma	function	and	the	incomplete	beta

				26	 //	integral.

				27	 //

				28	 //			Stephen	L.	Moshier

				29	 //			moshier@na-net.ornl.gov

				30	

				31	 //	Complex	natural	logarithm

				32	 //

				33	 //	DESCRIPTION:

				34	 //

				35	 //	Returns	complex	logarithm	to	the	base	e	(2.718...)	of

				36	 //	the	complex	argument	z.

				37	 //

				38	 //	If

				39	 //							z	=	x	+	iy,	r	=	sqrt(x**2	+	y**2),

				40	 //	then

				41	 //							w	=	log(r)	+	i	arctan(y/x).

				42	 //

				43	 //	The	arctangent	ranges	from	-PI	to	+PI.

				44	 //

				45	 //	ACCURACY:

				46	 //

				47	 //																						Relative	error:

				48	 //	arithmetic			domain					#	trials						peak									rms

				49	 //				DEC							-10,+10						7000							8.5e-17					1.9e-17

				50	 //				IEEE						-10,+10					30000							5.0e-15					1.1e-16

				51	 //

				52	 //	Larger	relative	error	can	be	observed	for	z	near	1	+i0.

				53	 //	In	IEEE	arithmetic	the	peak	absolute	error	is	5.2e-16,	rms

				54	 //	absolute	error	1.0e-16.

				55	

				56	 //	Log	returns	the	natural	logarithm	of	x.

				57	 func	Log(x	complex128)	complex128	{

				58	 	 return	complex(math.Log(Abs(x)),	Phase(x))

				59	 }

				60	

				61	 //	Log10	returns	the	decimal	logarithm	of	x.

				62	 func	Log10(x	complex128)	complex128	{

				63	 	 return	math.Log10E	*	Log(x)

				64	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/math/cmplx/phase.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	cmplx

					6	

					7	 import	"math"

					8	

					9	 //	Phase	returns	the	phase	(also	called	the	argument)	of	x.

				10	 //	The	returned	value	is	in	the	range	[-Pi,	Pi].

				11	 func	Phase(x	complex128)	float64	{	return	math.Atan2(imag(x),	real(x))	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/math/cmplx/polar.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	cmplx

					6	

					7	 //	Polar	returns	the	absolute	value	r	and	phase	θ	of	x,

					8	 //	such	that	x	=	r	*	e**θi.

					9	 //	The	phase	is	in	the	range	[-Pi,	Pi].

				10	 func	Polar(x	complex128)	(r,	θ	float64)	{

				11	 	 return	Abs(x),	Phase(x)

				12	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/math/cmplx/pow.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	cmplx

					6	

					7	 import	"math"

					8	

					9	 //	The	original	C	code,	the	long	comment,	and	the	constants

				10	 //	below	are	from	http://netlib.sandia.gov/cephes/c9x-complex/clog.c.

				11	 //	The	go	code	is	a	simplified	version	of	the	original	C.

				12	 //

				13	 //	Cephes	Math	Library	Release	2.8:		June,	2000

				14	 //	Copyright	1984,	1987,	1989,	1992,	2000	by	Stephen	L.	Moshier

				15	 //

				16	 //	The	readme	file	at	http://netlib.sandia.gov/cephes/	says:

				17	 //				Some	software	in	this	archive	may	be	from	the	book	_Methods	and

				18	 //	Programs	for	Mathematical	Functions_	(Prentice-Hall	or	Simon	&	Schuster

				19	 //	International,	1989)	or	from	the	Cephes	Mathematical	Library,	a

				20	 //	commercial	product.	In	either	event,	it	is	copyrighted	by	the	author.

				21	 //	What	you	see	here	may	be	used	freely	but	it	comes	with	no	support	or

				22	 //	guarantee.

				23	 //

				24	 //			The	two	known	misprints	in	the	book	are	repaired	here	in	the

				25	 //	source	listings	for	the	gamma	function	and	the	incomplete	beta

				26	 //	integral.

				27	 //

				28	 //			Stephen	L.	Moshier

				29	 //			moshier@na-net.ornl.gov

				30	

				31	 //	Complex	power	function

				32	 //

				33	 //	DESCRIPTION:

				34	 //

				35	 //	Raises	complex	A	to	the	complex	Zth	power.

				36	 //	Definition	is	per	AMS55	#	4.2.8,

				37	 //	analytically	equivalent	to	cpow(a,z)	=	cexp(z	clog(a)).

				38	 //

				39	 //	ACCURACY:

				40	 //

				41	 //																						Relative	error:

				42	 //	arithmetic			domain					#	trials						peak									rms

				43	 //				IEEE						-10,+10					30000							9.4e-15					1.5e-15

				44	

				45	 //	Pow	returns	x**y,	the	base-x	exponential	of	y.

				46	 func	Pow(x,	y	complex128)	complex128	{

				47	 	 modulus	:=	Abs(x)

				48	 	 if	modulus	==	0	{

				49	 	 	 return	complex(0,	0)

				50	 	 }

				51	 	 r	:=	math.Pow(modulus,	real(y))

				52	 	 arg	:=	Phase(x)

				53	 	 theta	:=	real(y)	*	arg

				54	 	 if	imag(y)	!=	0	{

				55	 	 	 r	*=	math.Exp(-imag(y)	*	arg)

				56	 	 	 theta	+=	imag(y)	*	math.Log(modulus)

				57	 	 }

				58	 	 s,	c	:=	math.Sincos(theta)

				59	 	 return	complex(r*c,	r*s)

				60	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/math/cmplx/rect.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	cmplx

					6	

					7	 import	"math"

					8	

					9	 //	Rect	returns	the	complex	number	x	with	polar	coordinates	r,	θ.

				10	 func	Rect(r,	θ	float64)	complex128	{

				11	 	 s,	c	:=	math.Sincos(θ)

				12	 	 return	complex(r*c,	r*s)

				13	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/cmplx/sin.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	cmplx

					6	

					7	 import	"math"

					8	

					9	 //	The	original	C	code,	the	long	comment,	and	the	constants

				10	 //	below	are	from	http://netlib.sandia.gov/cephes/c9x-complex/clog.c.

				11	 //	The	go	code	is	a	simplified	version	of	the	original	C.

				12	 //

				13	 //	Cephes	Math	Library	Release	2.8:		June,	2000

				14	 //	Copyright	1984,	1987,	1989,	1992,	2000	by	Stephen	L.	Moshier

				15	 //

				16	 //	The	readme	file	at	http://netlib.sandia.gov/cephes/	says:

				17	 //				Some	software	in	this	archive	may	be	from	the	book	_Methods	and

				18	 //	Programs	for	Mathematical	Functions_	(Prentice-Hall	or	Simon	&	Schuster

				19	 //	International,	1989)	or	from	the	Cephes	Mathematical	Library,	a

				20	 //	commercial	product.	In	either	event,	it	is	copyrighted	by	the	author.

				21	 //	What	you	see	here	may	be	used	freely	but	it	comes	with	no	support	or

				22	 //	guarantee.

				23	 //

				24	 //			The	two	known	misprints	in	the	book	are	repaired	here	in	the

				25	 //	source	listings	for	the	gamma	function	and	the	incomplete	beta

				26	 //	integral.

				27	 //

				28	 //			Stephen	L.	Moshier

				29	 //			moshier@na-net.ornl.gov

				30	

				31	 //	Complex	circular	sine

				32	 //

				33	 //	DESCRIPTION:

				34	 //

				35	 //	If

				36	 //					z	=	x	+	iy,

				37	 //

				38	 //	then

				39	 //

				40	 //					w	=	sin	x		cosh	y		+		i	cos	x	sinh	y.

				41	 //

				42	 //	csin(z)	=	-i	csinh(iz).

				43	 //

				44	 //	ACCURACY:

				45	 //

				46	 //																						Relative	error:

				47	 //	arithmetic			domain					#	trials						peak									rms

				48	 //				DEC							-10,+10						8400							5.3e-17					1.3e-17

				49	 //				IEEE						-10,+10					30000							3.8e-16					1.0e-16

				50	 //	Also	tested	by	csin(casin(z))	=	z.

				51	

				52	 //	Sin	returns	the	sine	of	x.

				53	 func	Sin(x	complex128)	complex128	{

				54	 	 s,	c	:=	math.Sincos(real(x))

				55	 	 sh,	ch	:=	sinhcosh(imag(x))

				56	 	 return	complex(s*ch,	c*sh)

				57	 }

				58	

				59	 //	Complex	hyperbolic	sine

				60	 //

				61	 //	DESCRIPTION:

				62	 //

				63	 //	csinh	z	=	(cexp(z)	-	cexp(-z))/2

				64	 //									=	sinh	x	*	cos	y		+		i	cosh	x	*	sin	y	.

				65	 //

				66	 //	ACCURACY:

				67	 //

				68	 //																						Relative	error:

				69	 //	arithmetic			domain					#	trials						peak									rms

				70	 //				IEEE						-10,+10					30000							3.1e-16					8.2e-17

				71	

				72	 //	Sinh	returns	the	hyperbolic	sine	of	x.

				73	 func	Sinh(x	complex128)	complex128	{

				74	 	 s,	c	:=	math.Sincos(imag(x))

				75	 	 sh,	ch	:=	sinhcosh(real(x))

				76	 	 return	complex(c*sh,	s*ch)

				77	 }

				78	

				79	 //	Complex	circular	cosine

				80	 //

				81	 //	DESCRIPTION:

				82	 //

				83	 //	If

				84	 //					z	=	x	+	iy,

				85	 //

				86	 //	then

				87	 //

				88	 //					w	=	cos	x		cosh	y		-		i	sin	x	sinh	y.

				89	 //

				90	 //	ACCURACY:

				91	 //

				92	 //																						Relative	error:

				93	 //	arithmetic			domain					#	trials						peak									rms

				94	 //				DEC							-10,+10						8400							4.5e-17					1.3e-17

				95	 //				IEEE						-10,+10					30000							3.8e-16					1.0e-16

				96	

				97	 //	Cos	returns	the	cosine	of	x.

				98	 func	Cos(x	complex128)	complex128	{

				99	 	 s,	c	:=	math.Sincos(real(x))

			100	 	 sh,	ch	:=	sinhcosh(imag(x))

			101	 	 return	complex(c*ch,	-s*sh)

			102	 }

			103	

			104	 //	Complex	hyperbolic	cosine

			105	 //

			106	 //	DESCRIPTION:

			107	 //

			108	 //	ccosh(z)	=	cosh	x		cos	y	+	i	sinh	x	sin	y	.

			109	 //

			110	 //	ACCURACY:

			111	 //

			112	 //																						Relative	error:

			113	 //	arithmetic			domain					#	trials						peak									rms

			114	 //				IEEE						-10,+10					30000							2.9e-16					8.1e-17

			115	

			116	 //	Cosh	returns	the	hyperbolic	cosine	of	x.

			117	 func	Cosh(x	complex128)	complex128	{

			118	 	 s,	c	:=	math.Sincos(imag(x))

			119	 	 sh,	ch	:=	sinhcosh(real(x))

			120	 	 return	complex(c*ch,	s*sh)

			121	 }

			122	

			123	 //	calculate	sinh	and	cosh

			124	 func	sinhcosh(x	float64)	(sh,	ch	float64)	{

			125	 	 if	math.Abs(x)	<=	0.5	{

			126	 	 	 return	math.Sinh(x),	math.Cosh(x)

			127	 	 }

			128	 	 e	:=	math.Exp(x)

			129	 	 ei	:=	0.5	/	e

			130	 	 e	*=	0.5

			131	 	 return	e	-	ei,	e	+	ei

			132	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/math/cmplx/sqrt.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	cmplx

					6	

					7	 import	"math"

					8	

					9	 //	The	original	C	code,	the	long	comment,	and	the	constants

				10	 //	below	are	from	http://netlib.sandia.gov/cephes/c9x-complex/clog.c.

				11	 //	The	go	code	is	a	simplified	version	of	the	original	C.

				12	 //

				13	 //	Cephes	Math	Library	Release	2.8:		June,	2000

				14	 //	Copyright	1984,	1987,	1989,	1992,	2000	by	Stephen	L.	Moshier

				15	 //

				16	 //	The	readme	file	at	http://netlib.sandia.gov/cephes/	says:

				17	 //				Some	software	in	this	archive	may	be	from	the	book	_Methods	and

				18	 //	Programs	for	Mathematical	Functions_	(Prentice-Hall	or	Simon	&	Schuster

				19	 //	International,	1989)	or	from	the	Cephes	Mathematical	Library,	a

				20	 //	commercial	product.	In	either	event,	it	is	copyrighted	by	the	author.

				21	 //	What	you	see	here	may	be	used	freely	but	it	comes	with	no	support	or

				22	 //	guarantee.

				23	 //

				24	 //			The	two	known	misprints	in	the	book	are	repaired	here	in	the

				25	 //	source	listings	for	the	gamma	function	and	the	incomplete	beta

				26	 //	integral.

				27	 //

				28	 //			Stephen	L.	Moshier

				29	 //			moshier@na-net.ornl.gov

				30	

				31	 //	Complex	square	root

				32	 //

				33	 //	DESCRIPTION:

				34	 //

				35	 //	If	z	=	x	+	iy,		r	=	|z|,	then

				36	 //

				37	 //																							1/2

				38	 //	Re	w		=		[(r	+	x)/2]			,

				39	 //

				40	 //																							1/2

				41	 //	Im	w		=		[(r	-	x)/2]			.

				42	 //

				43	 //	Cancellation	error	in	r-x	or	r+x	is	avoided	by	using	the

				44	 //	identity		2	Re	w	Im	w		=		y.

				45	 //

				46	 //	Note	that	-w	is	also	a	square	root	of	z.		The	root	chosen

				47	 //	is	always	in	the	right	half	plane	and	Im	w	has	the	same	sign	as	y.

				48	 //

				49	 //	ACCURACY:

				50	 //

				51	 //																						Relative	error:

				52	 //	arithmetic			domain					#	trials						peak									rms

				53	 //				DEC							-10,+10					25000							3.2e-17					9.6e-18

				54	 //				IEEE						-10,+10			1,000,000					2.9e-16					6.1e-17

				55	

				56	 //	Sqrt	returns	the	square	root	of	x.

				57	 func	Sqrt(x	complex128)	complex128	{

				58	 	 if	imag(x)	==	0	{

				59	 	 	 if	real(x)	==	0	{

				60	 	 	 	 return	complex(0,	0)

				61	 	 	 }

				62	 	 	 if	real(x)	<	0	{

				63	 	 	 	 return	complex(0,	math.Sqrt(-real(x)))

				64	 	 	 }

				65	 	 	 return	complex(math.Sqrt(real(x)),	0)

				66	 	 }

				67	 	 if	real(x)	==	0	{

				68	 	 	 if	imag(x)	<	0	{

				69	 	 	 	 r	:=	math.Sqrt(-0.5	*	imag(x))

				70	 	 	 	 return	complex(r,	-r)

				71	 	 	 }

				72	 	 	 r	:=	math.Sqrt(0.5	*	imag(x))

				73	 	 	 return	complex(r,	r)

				74	 	 }

				75	 	 a	:=	real(x)

				76	 	 b	:=	imag(x)

				77	 	 var	scale	float64

				78	 	 //	Rescale	to	avoid	internal	overflow	or	underflow.

				79	 	 if	math.Abs(a)	>	4	||	math.Abs(b)	>	4	{

				80	 	 	 a	*=	0.25

				81	 	 	 b	*=	0.25

				82	 	 	 scale	=	2

				83	 	 }	else	{

				84	 	 	 a	*=	1.8014398509481984e16	//	2**54

				85	 	 	 b	*=	1.8014398509481984e16

				86	 	 	 scale	=	7.450580596923828125e-9	//	2**-27

				87	 	 }

				88	 	 r	:=	math.Hypot(a,	b)

				89	 	 var	t	float64

				90	 	 if	a	>	0	{

				91	 	 	 t	=	math.Sqrt(0.5*r	+	0.5*a)

				92	 	 	 r	=	scale	*	math.Abs((0.5*b)/t)

				93	 	 	 t	*=	scale

				94	 	 }	else	{

				95	 	 	 r	=	math.Sqrt(0.5*r	-	0.5*a)

				96	 	 	 t	=	scale	*	math.Abs((0.5*b)/r)

				97	 	 	 r	*=	scale

				98	 	 }

				99	 	 if	b	<	0	{

			100	 	 	 return	complex(t,	-r)

			101	 	 }

			102	 	 return	complex(t,	r)

			103	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/cmplx/tan.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	cmplx

					6	

					7	 import	"math"

					8	

					9	 //	The	original	C	code,	the	long	comment,	and	the	constants

				10	 //	below	are	from	http://netlib.sandia.gov/cephes/c9x-complex/clog.c.

				11	 //	The	go	code	is	a	simplified	version	of	the	original	C.

				12	 //

				13	 //	Cephes	Math	Library	Release	2.8:		June,	2000

				14	 //	Copyright	1984,	1987,	1989,	1992,	2000	by	Stephen	L.	Moshier

				15	 //

				16	 //	The	readme	file	at	http://netlib.sandia.gov/cephes/	says:

				17	 //				Some	software	in	this	archive	may	be	from	the	book	_Methods	and

				18	 //	Programs	for	Mathematical	Functions_	(Prentice-Hall	or	Simon	&	Schuster

				19	 //	International,	1989)	or	from	the	Cephes	Mathematical	Library,	a

				20	 //	commercial	product.	In	either	event,	it	is	copyrighted	by	the	author.

				21	 //	What	you	see	here	may	be	used	freely	but	it	comes	with	no	support	or

				22	 //	guarantee.

				23	 //

				24	 //			The	two	known	misprints	in	the	book	are	repaired	here	in	the

				25	 //	source	listings	for	the	gamma	function	and	the	incomplete	beta

				26	 //	integral.

				27	 //

				28	 //			Stephen	L.	Moshier

				29	 //			moshier@na-net.ornl.gov

				30	

				31	 //	Complex	circular	tangent

				32	 //

				33	 //	DESCRIPTION:

				34	 //

				35	 //	If

				36	 //					z	=	x	+	iy,

				37	 //

				38	 //	then

				39	 //

				40	 //											sin	2x		+		i	sinh	2y

				41	 //					w		=		--------------------.

				42	 //												cos	2x		+		cosh	2y

				43	 //

				44	 //	On	the	real	axis	the	denominator	is	zero	at	odd	multiples

				45	 //	of	PI/2.		The	denominator	is	evaluated	by	its	Taylor

				46	 //	series	near	these	points.

				47	 //

				48	 //	ctan(z)	=	-i	ctanh(iz).

				49	 //

				50	 //	ACCURACY:

				51	 //

				52	 //																						Relative	error:

				53	 //	arithmetic			domain					#	trials						peak									rms

				54	 //				DEC							-10,+10						5200							7.1e-17					1.6e-17

				55	 //				IEEE						-10,+10					30000							7.2e-16					1.2e-16

				56	 //	Also	tested	by	ctan	*	ccot	=	1	and	catan(ctan(z))		=		z.

				57	

				58	 //	Tan	returns	the	tangent	of	x.

				59	 func	Tan(x	complex128)	complex128	{

				60	 	 d	:=	math.Cos(2*real(x))	+	math.Cosh(2*imag(x))

				61	 	 if	math.Abs(d)	<	0.25	{

				62	 	 	 d	=	tanSeries(x)

				63	 	 }

				64	 	 if	d	==	0	{

				65	 	 	 return	Inf()

				66	 	 }

				67	 	 return	complex(math.Sin(2*real(x))/d,	math.Sinh(2*imag(x))/d)

				68	 }

				69	

				70	 //	Complex	hyperbolic	tangent

				71	 //

				72	 //	DESCRIPTION:

				73	 //

				74	 //	tanh	z	=	(sinh	2x		+		i	sin	2y)	/	(cosh	2x	+	cos	2y)	.

				75	 //

				76	 //	ACCURACY:

				77	 //

				78	 //																						Relative	error:

				79	 //	arithmetic			domain					#	trials						peak									rms

				80	 //				IEEE						-10,+10					30000							1.7e-14					2.4e-16

				81	

				82	 //	Tanh	returns	the	hyperbolic	tangent	of	x.

				83	 func	Tanh(x	complex128)	complex128	{

				84	 	 d	:=	math.Cosh(2*real(x))	+	math.Cos(2*imag(x))

				85	 	 if	d	==	0	{

				86	 	 	 return	Inf()

				87	 	 }

				88	 	 return	complex(math.Sinh(2*real(x))/d,	math.Sin(2*imag(x))/d)

				89	 }

				90	

				91	 //	Program	to	subtract	nearest	integer	multiple	of	PI

				92	 func	reducePi(x	float64)	float64	{

				93	 	 const	(

				94	 	 	 //	extended	precision	value	of	PI:

				95	 	 	 DP1	=	3.14159265160560607910E0			//	??	0x400921fb54000000

				96	 	 	 DP2	=	1.98418714791870343106E-9		//	??	0x3e210b4610000000

				97	 	 	 DP3	=	1.14423774522196636802E-17	//	??	0x3c6a62633145c06e

				98)

				99	 	 t	:=	x	/	math.Pi

			100	 	 if	t	>=	0	{

			101	 	 	 t	+=	0.5

			102	 	 }	else	{

			103	 	 	 t	-=	0.5

			104	 	 }

			105	 	 t	=	float64(int64(t))	//	int64(t)	=	the	multiple

			106	 	 return	((x	-	t*DP1)	-	t*DP2)	-	t*DP3

			107	 }

			108	

			109	 //	Taylor	series	expansion	for	cosh(2y)	-	cos(2x)

			110	 func	tanSeries(z	complex128)	float64	{

			111	 	 const	MACHEP	=	1.0	/	(1	<<	53)

			112	 	 x	:=	math.Abs(2	*	real(z))

			113	 	 y	:=	math.Abs(2	*	imag(z))

			114	 	 x	=	reducePi(x)

			115	 	 x	=	x	*	x

			116	 	 y	=	y	*	y

			117	 	 x2	:=	1.0

			118	 	 y2	:=	1.0

			119	 	 f	:=	1.0

			120	 	 rn	:=	0.0

			121	 	 d	:=	0.0

			122	 	 for	{

			123	 	 	 rn	+=	1

			124	 	 	 f	*=	rn

			125	 	 	 rn	+=	1

			126	 	 	 f	*=	rn

			127	 	 	 x2	*=	x

			128	 	 	 y2	*=	y

			129	 	 	 t	:=	y2	+	x2

			130	 	 	 t	/=	f

			131	 	 	 d	+=	t

			132	

			133	 	 	 rn	+=	1

			134	 	 	 f	*=	rn

			135	 	 	 rn	+=	1

			136	 	 	 f	*=	rn

			137	 	 	 x2	*=	x

			138	 	 	 y2	*=	y

			139	 	 	 t	=	y2	-	x2

			140	 	 	 t	/=	f

			141	 	 	 d	+=	t

			142	 	 	 if	math.Abs(t/d)	<=	MACHEP	{

			143	 	 	 	 break

			144	 	 	 }

			145	 	 }

			146	 	 return	d

			147	 }

			148	

			149	 //	Complex	circular	cotangent

			150	 //

			151	 //	DESCRIPTION:

			152	 //

			153	 //	If

			154	 //					z	=	x	+	iy,

			155	 //

			156	 //	then

			157	 //

			158	 //											sin	2x		-		i	sinh	2y

			159	 //					w		=		--------------------.

			160	 //												cosh	2y		-		cos	2x

			161	 //

			162	 //	On	the	real	axis,	the	denominator	has	zeros	at	even

			163	 //	multiples	of	PI/2.		Near	these	points	it	is	evaluated

			164	 //	by	a	Taylor	series.

			165	 //

			166	 //	ACCURACY:

			167	 //

			168	 //																						Relative	error:

			169	 //	arithmetic			domain					#	trials						peak									rms

			170	 //				DEC							-10,+10						3000							6.5e-17					1.6e-17

			171	 //				IEEE						-10,+10					30000							9.2e-16					1.2e-16

			172	 //	Also	tested	by	ctan	*	ccot	=	1	+	i0.

			173	

			174	 //	Cot	returns	the	cotangent	of	x.

			175	 func	Cot(x	complex128)	complex128	{

			176	 	 d	:=	math.Cosh(2*imag(x))	-	math.Cos(2*real(x))

			177	 	 if	math.Abs(d)	<	0.25	{

			178	 	 	 d	=	tanSeries(x)

			179	 	 }

			180	 	 if	d	==	0	{

			181	 	 	 return	Inf()

			182	 	 }

			183	 	 return	complex(math.Sin(2*real(x))/d,	-math.Sinh(2*imag(x))/d)

			184	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/rand/exp.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	rand

					6	

					7	 import	(

					8	 	 "math"

					9)

				10	

				11	 /*

				12	 	*	Exponential	distribution

				13	 	*

				14	 	*	See	"The	Ziggurat	Method	for	Generating	Random	Variables"

				15	 	*	(Marsaglia	&	Tsang,	2000)

				16	 	*	http://www.jstatsoft.org/v05/i08/paper	[pdf]

				17	 	*/

				18	

				19	 const	(

				20	 	 re	=	7.69711747013104972

				21)

				22	

				23	 //	ExpFloat64	returns	an	exponentially	distributed	float64	in	the	range

				24	 //	(0,	+math.MaxFloat64]	with	an	exponential	distribution	whose	rate	parameter

				25	 //	(lambda)	is	1	and	whose	mean	is	1/lambda	(1).

				26	 //	To	produce	a	distribution	with	a	different	rate	parameter,

				27	 //	callers	can	adjust	the	output	using:

				28	 //

				29	 //		sample	=	ExpFloat64()	/	desiredRateParameter

				30	 //

				31	 func	(r	*Rand)	ExpFloat64()	float64	{

				32	 	 for	{

				33	 	 	 j	:=	r.Uint32()

				34	 	 	 i	:=	j	&	0xFF

				35	 	 	 x	:=	float64(j)	*	float64(we[i])

				36	 	 	 if	j	<	ke[i]	{

				37	 	 	 	 return	x

				38	 	 	 }

				39	 	 	 if	i	==	0	{

				40	 	 	 	 return	re	-	math.Log(r.Float64())

				41	 	 	 }

				42	 	 	 if	fe[i]+float32(r.Float64())*(fe[i-1]-fe[i])	<	float32(math.Exp(-x))	{

				43	 	 	 	 return	x

				44	 	 	 }

				45	 	 }

				46	 	 panic("unreachable")

				47	 }

				48	

				49	 var	ke	=	[256]uint32{

				50	 	 0xe290a139,	0x0,	0x9beadebc,	0xc377ac71,	0xd4ddb990,

				51	 	 0xde893fb8,	0xe4a8e87c,	0xe8dff16a,	0xebf2deab,	0xee49a6e8,

				52	 	 0xf0204efd,	0xf19bdb8e,	0xf2d458bb,	0xf3da104b,	0xf4b86d78,

				53	 	 0xf577ad8a,	0xf61de83d,	0xf6afb784,	0xf730a573,	0xf7a37651,

				54	 	 0xf80a5bb6,	0xf867189d,	0xf8bb1b4f,	0xf9079062,	0xf94d70ca,

				55	 	 0xf98d8c7d,	0xf9c8928a,	0xf9ff175b,	0xfa319996,	0xfa6085f8,

				56	 	 0xfa8c3a62,	0xfab5084e,	0xfadb36c8,	0xfaff0410,	0xfb20a6ea,

				57	 	 0xfb404fb4,	0xfb5e2951,	0xfb7a59e9,	0xfb95038c,	0xfbae44ba,

				58	 	 0xfbc638d8,	0xfbdcf892,	0xfbf29a30,	0xfc0731df,	0xfc1ad1ed,

				59	 	 0xfc2d8b02,	0xfc3f6c4d,	0xfc5083ac,	0xfc60ddd1,	0xfc708662,

				60	 	 0xfc7f8810,	0xfc8decb4,	0xfc9bbd62,	0xfca9027c,	0xfcb5c3c3,

				61	 	 0xfcc20864,	0xfccdd70a,	0xfcd935e3,	0xfce42ab0,	0xfceebace,

				62	 	 0xfcf8eb3b,	0xfd02c0a0,	0xfd0c3f59,	0xfd156b7b,	0xfd1e48d6,

				63	 	 0xfd26daff,	0xfd2f2552,	0xfd372af7,	0xfd3eeee5,	0xfd4673e7,

				64	 	 0xfd4dbc9e,	0xfd54cb85,	0xfd5ba2f2,	0xfd62451b,	0xfd68b415,

				65	 	 0xfd6ef1da,	0xfd750047,	0xfd7ae120,	0xfd809612,	0xfd8620b4,

				66	 	 0xfd8b8285,	0xfd90bcf5,	0xfd95d15e,	0xfd9ac10b,	0xfd9f8d36,

				67	 	 0xfda43708,	0xfda8bf9e,	0xfdad2806,	0xfdb17141,	0xfdb59c46,

				68	 	 0xfdb9a9fd,	0xfdbd9b46,	0xfdc170f6,	0xfdc52bd8,	0xfdc8ccac,

				69	 	 0xfdcc542d,	0xfdcfc30b,	0xfdd319ef,	0xfdd6597a,	0xfdd98245,

				70	 	 0xfddc94e5,	0xfddf91e6,	0xfde279ce,	0xfde54d1f,	0xfde80c52,

				71	 	 0xfdeab7de,	0xfded5034,	0xfdefd5be,	0xfdf248e3,	0xfdf4aa06,

				72	 	 0xfdf6f984,	0xfdf937b6,	0xfdfb64f4,	0xfdfd818d,	0xfdff8dd0,

				73	 	 0xfe018a08,	0xfe03767a,	0xfe05536c,	0xfe07211c,	0xfe08dfc9,

				74	 	 0xfe0a8fab,	0xfe0c30fb,	0xfe0dc3ec,	0xfe0f48b1,	0xfe10bf76,

				75	 	 0xfe122869,	0xfe1383b4,	0xfe14d17c,	0xfe1611e7,	0xfe174516,

				76	 	 0xfe186b2a,	0xfe19843e,	0xfe1a9070,	0xfe1b8fd6,	0xfe1c8289,

				77	 	 0xfe1d689b,	0xfe1e4220,	0xfe1f0f26,	0xfe1fcfbc,	0xfe2083ed,

				78	 	 0xfe212bc3,	0xfe21c745,	0xfe225678,	0xfe22d95f,	0xfe234ffb,

				79	 	 0xfe23ba4a,	0xfe241849,	0xfe2469f2,	0xfe24af3c,	0xfe24e81e,

				80	 	 0xfe25148b,	0xfe253474,	0xfe2547c7,	0xfe254e70,	0xfe25485a,

				81	 	 0xfe25356a,	0xfe251586,	0xfe24e88f,	0xfe24ae64,	0xfe2466e1,

				82	 	 0xfe2411df,	0xfe23af34,	0xfe233eb4,	0xfe22c02c,	0xfe22336b,

				83	 	 0xfe219838,	0xfe20ee58,	0xfe20358c,	0xfe1f6d92,	0xfe1e9621,

				84	 	 0xfe1daef0,	0xfe1cb7ac,	0xfe1bb002,	0xfe1a9798,	0xfe196e0d,

				85	 	 0xfe1832fd,	0xfe16e5fe,	0xfe15869d,	0xfe141464,	0xfe128ed3,

				86	 	 0xfe10f565,	0xfe0f478c,	0xfe0d84b1,	0xfe0bac36,	0xfe09bd73,

				87	 	 0xfe07b7b5,	0xfe059a40,	0xfe03644c,	0xfe011504,	0xfdfeab88,

				88	 	 0xfdfc26e9,	0xfdf98629,	0xfdf6c83b,	0xfdf3ec01,	0xfdf0f04a,

				89	 	 0xfdedd3d1,	0xfdea953d,	0xfde7331e,	0xfde3abe9,	0xfddffdfb,

				90	 	 0xfddc2791,	0xfdd826cd,	0xfdd3f9a8,	0xfdcf9dfc,	0xfdcb1176,

				91	 	 0xfdc65198,	0xfdc15bb3,	0xfdbc2ce2,	0xfdb6c206,	0xfdb117be,

				92	 	 0xfdab2a63,	0xfda4f5fd,	0xfd9e7640,	0xfd97a67a,	0xfd908192,

				93	 	 0xfd8901f2,	0xfd812182,	0xfd78d98e,	0xfd7022bb,	0xfd66f4ed,

				94	 	 0xfd5d4732,	0xfd530f9c,	0xfd48432b,	0xfd3cd59a,	0xfd30b936,

				95	 	 0xfd23dea4,	0xfd16349e,	0xfd07a7a3,	0xfcf8219b,	0xfce7895b,

				96	 	 0xfcd5c220,	0xfcc2aadb,	0xfcae1d5e,	0xfc97ed4e,	0xfc7fe6d4,

				97	 	 0xfc65ccf3,	0xfc495762,	0xfc2a2fc8,	0xfc07ee19,	0xfbe213c1,

				98	 	 0xfbb8051a,	0xfb890078,	0xfb5411a5,	0xfb180005,	0xfad33482,

				99	 	 0xfa839276,	0xfa263b32,	0xf9b72d1c,	0xf930a1a2,	0xf889f023,

			100	 	 0xf7b577d2,	0xf69c650c,	0xf51530f0,	0xf2cb0e3c,	0xeeefb15d,

			101	 	 0xe6da6ecf,

			102	 }

			103	 var	we	=	[256]float32{

			104	 	 2.0249555e-09,	1.486674e-11,	2.4409617e-11,	3.1968806e-11,

			105	 	 3.844677e-11,	4.4228204e-11,	4.9516443e-11,	5.443359e-11,

			106	 	 5.905944e-11,	6.344942e-11,	6.7643814e-11,	7.1672945e-11,

			107	 	 7.556032e-11,	7.932458e-11,	8.298079e-11,	8.654132e-11,

			108	 	 9.0016515e-11,	9.3415074e-11,	9.674443e-11,	1.0001099e-10,

			109	 	 1.03220314e-10,	1.06377254e-10,	1.09486115e-10,	1.1255068e-10,

			110	 	 1.1557435e-10,	1.1856015e-10,	1.2151083e-10,	1.2442886e-10,

			111	 	 1.2731648e-10,	1.3017575e-10,	1.3300853e-10,	1.3581657e-10,

			112	 	 1.3860142e-10,	1.4136457e-10,	1.4410738e-10,	1.4683108e-10,

			113	 	 1.4953687e-10,	1.5222583e-10,	1.54899e-10,	1.5755733e-10,

			114	 	 1.6020171e-10,	1.6283301e-10,	1.6545203e-10,	1.6805951e-10,

			115	 	 1.7065617e-10,	1.732427e-10,	1.7581973e-10,	1.7838787e-10,

			116	 	 1.8094774e-10,	1.8349985e-10,	1.8604476e-10,	1.8858298e-10,

			117	 	 1.9111498e-10,	1.9364126e-10,	1.9616223e-10,	1.9867835e-10,

			118	 	 2.0119004e-10,	2.0369768e-10,	2.0620168e-10,	2.087024e-10,

			119	 	 2.1120022e-10,	2.136955e-10,	2.1618855e-10,	2.1867974e-10,

			120	 	 2.2116936e-10,	2.2365775e-10,	2.261452e-10,	2.2863202e-10,

			121	 	 2.311185e-10,	2.3360494e-10,	2.360916e-10,	2.3857874e-10,

			122	 	 2.4106667e-10,	2.4355562e-10,	2.4604588e-10,	2.485377e-10,

			123	 	 2.5103128e-10,	2.5352695e-10,	2.560249e-10,	2.585254e-10,

			124	 	 2.6102867e-10,	2.6353494e-10,	2.6604446e-10,	2.6855745e-10,

			125	 	 2.7107416e-10,	2.7359479e-10,	2.761196e-10,	2.7864877e-10,

			126	 	 2.8118255e-10,	2.8372119e-10,	2.8626485e-10,	2.888138e-10,

			127	 	 2.9136826e-10,	2.939284e-10,	2.9649452e-10,	2.9906677e-10,

			128	 	 3.016454e-10,	3.0423064e-10,	3.0682268e-10,	3.0942177e-10,

			129	 	 3.1202813e-10,	3.1464195e-10,	3.1726352e-10,	3.19893e-10,

			130	 	 3.2253064e-10,	3.251767e-10,	3.2783135e-10,	3.3049485e-10,

			131	 	 3.3316744e-10,	3.3584938e-10,	3.3854083e-10,	3.4124212e-10,

			132	 	 3.4395342e-10,	3.46675e-10,	3.4940711e-10,	3.5215003e-10,

			133	 	 3.5490397e-10,	3.5766917e-10,	3.6044595e-10,	3.6323455e-10,

			134	 	 3.660352e-10,	3.6884823e-10,	3.7167386e-10,	3.745124e-10,

			135	 	 3.773641e-10,	3.802293e-10,	3.8310827e-10,	3.860013e-10,

			136	 	 3.8890866e-10,	3.918307e-10,	3.9476775e-10,	3.9772008e-10,

			137	 	 4.0068804e-10,	4.0367196e-10,	4.0667217e-10,	4.09689e-10,

			138	 	 4.1272286e-10,	4.1577405e-10,	4.1884296e-10,	4.2192994e-10,

			139	 	 4.250354e-10,	4.281597e-10,	4.313033e-10,	4.3446652e-10,

			140	 	 4.3764986e-10,	4.408537e-10,	4.4407847e-10,	4.4732465e-10,

			141	 	 4.5059267e-10,	4.5388301e-10,	4.571962e-10,	4.6053267e-10,

			142	 	 4.6389292e-10,	4.6727755e-10,	4.70687e-10,	4.741219e-10,

			143	 	 4.7758275e-10,	4.810702e-10,	4.845848e-10,	4.8812715e-10,

			144	 	 4.9169796e-10,	4.9529775e-10,	4.989273e-10,	5.0258725e-10,

			145	 	 5.0627835e-10,	5.100013e-10,	5.1375687e-10,	5.1754584e-10,

			146	 	 5.21369e-10,	5.2522725e-10,	5.2912136e-10,	5.330522e-10,

			147	 	 5.370208e-10,	5.4102806e-10,	5.45075e-10,	5.491625e-10,

			148	 	 5.532918e-10,	5.5746385e-10,	5.616799e-10,	5.6594107e-10,

			149	 	 5.7024857e-10,	5.746037e-10,	5.7900773e-10,	5.834621e-10,

			150	 	 5.8796823e-10,	5.925276e-10,	5.971417e-10,	6.018122e-10,

			151	 	 6.065408e-10,	6.113292e-10,	6.1617933e-10,	6.2109295e-10,

			152	 	 6.260722e-10,	6.3111916e-10,	6.3623595e-10,	6.4142497e-10,

			153	 	 6.4668854e-10,	6.5202926e-10,	6.5744976e-10,	6.6295286e-10,

			154	 	 6.6854156e-10,	6.742188e-10,	6.79988e-10,	6.858526e-10,

			155	 	 6.9181616e-10,	6.978826e-10,	7.04056e-10,	7.103407e-10,

			156	 	 7.167412e-10,	7.2326256e-10,	7.2990985e-10,	7.366886e-10,

			157	 	 7.4360473e-10,	7.5066453e-10,	7.5787476e-10,	7.6524265e-10,

			158	 	 7.7277595e-10,	7.80483e-10,	7.883728e-10,	7.9645507e-10,

			159	 	 8.047402e-10,	8.1323964e-10,	8.219657e-10,	8.309319e-10,

			160	 	 8.401528e-10,	8.496445e-10,	8.594247e-10,	8.6951274e-10,

			161	 	 8.799301e-10,	8.9070046e-10,	9.018503e-10,	9.134092e-10,

			162	 	 9.254101e-10,	9.378904e-10,	9.508923e-10,	9.644638e-10,

			163	 	 9.786603e-10,	9.935448e-10,	1.0091913e-09,	1.025686e-09,

			164	 	 1.0431306e-09,	1.0616465e-09,	1.08138e-09,	1.1025096e-09,

			165	 	 1.1252564e-09,	1.1498986e-09,	1.1767932e-09,	1.206409e-09,

			166	 	 1.2393786e-09,	1.276585e-09,	1.3193139e-09,	1.3695435e-09,

			167	 	 1.4305498e-09,	1.508365e-09,	1.6160854e-09,	1.7921248e-09,

			168	 }

			169	 var	fe	=	[256]float32{

			170	 	 1,	0.9381437,	0.90046996,	0.87170434,	0.8477855,	0.8269933,

			171	 	 0.8084217,	0.7915276,	0.77595687,	0.7614634,	0.7478686,

			172	 	 0.7350381,	0.72286767,	0.71127474,	0.70019263,	0.6895665,

			173	 	 0.67935055,	0.6695063,	0.66000086,	0.65080583,	0.6418967,

			174	 	 0.63325197,	0.6248527,	0.6166822,	0.60872537,	0.60096896,

			175	 	 0.5934009,	0.58601034,	0.5787874,	0.57172304,	0.5648092,

			176	 	 0.5580383,	0.5514034,	0.5448982,	0.5385169,	0.53225386,

			177	 	 0.5261042,	0.52006316,	0.5141264,	0.50828975,	0.5025495,

			178	 	 0.496902,	0.49134386,	0.485872,	0.48048335,	0.4751752,

			179	 	 0.46994483,	0.46478975,	0.45970762,	0.45469615,	0.44975325,

			180	 	 0.44487688,	0.44006512,	0.43531612,	0.43062815,	0.42599955,

			181	 	 0.42142874,	0.4169142,	0.41245446,	0.40804818,	0.403694,

			182	 	 0.3993907,	0.39513698,	0.39093173,	0.38677382,	0.38266218,

			183	 	 0.37859577,	0.37457356,	0.37059465,	0.3666581,	0.362763,

			184	 	 0.35890847,	0.35509375,	0.351318,	0.3475805,	0.34388044,

			185	 	 0.34021714,	0.3365899,	0.33299807,	0.32944095,	0.32591796,

			186	 	 0.3224285,	0.3189719,	0.31554767,	0.31215525,	0.30879408,

			187	 	 0.3054636,	0.3021634,	0.29889292,	0.2956517,	0.29243928,

			188	 	 0.28925523,	0.28609908,	0.28297043,	0.27986884,	0.27679393,

			189	 	 0.2737453,	0.2707226,	0.2677254,	0.26475343,	0.26180625,

			190	 	 0.25888354,	0.25598502,	0.2531103,	0.25025907,	0.24743107,

			191	 	 0.24462597,	0.24184346,	0.23908329,	0.23634516,	0.23362878,

			192	 	 0.23093392,	0.2282603,	0.22560766,	0.22297576,	0.22036438,

			193	 	 0.21777324,	0.21520215,	0.21265087,	0.21011916,	0.20760682,

			194	 	 0.20511365,	0.20263945,	0.20018397,	0.19774707,	0.19532852,

			195	 	 0.19292815,	0.19054577,	0.1881812,	0.18583426,	0.18350479,

			196	 	 0.1811926,	0.17889754,	0.17661946,	0.17435817,	0.17211354,

			197	 	 0.1698854,	0.16767362,	0.16547804,	0.16329853,	0.16113494,

			198	 	 0.15898713,	0.15685499,	0.15473837,	0.15263714,	0.15055119,

			199	 	 0.14848037,	0.14642459,	0.14438373,	0.14235765,	0.14034624,

			200	 	 0.13834943,	0.13636707,	0.13439907,	0.13244532,	0.13050574,

			201	 	 0.1285802,	0.12666863,	0.12477092,	0.12288698,	0.12101672,

			202	 	 0.119160056,	0.1173169,	0.115487166,	0.11367077,	0.11186763,

			203	 	 0.11007768,	0.10830083,	0.10653701,	0.10478614,	0.10304816,

			204	 	 0.101323,	0.09961058,	0.09791085,	0.09622374,	0.09454919,

			205	 	 0.09288713,	0.091237515,	0.08960028,	0.087975375,	0.08636274,

			206	 	 0.08476233,	0.083174095,	0.081597984,	0.08003395,	0.07848195,

			207	 	 0.076941945,	0.07541389,	0.07389775,	0.072393484,	0.07090106,

			208	 	 0.069420435,	0.06795159,	0.066494495,	0.06504912,	0.063615434,

			209	 	 0.062193416,	0.060783047,	0.059384305,	0.057997175,

			210	 	 0.05662164,	0.05525769,	0.053905312,	0.052564494,	0.051235236,

			211	 	 0.049917534,	0.048611384,	0.047316793,	0.046033762,	0.0447623,

			212	 	 0.043502413,	0.042254124,	0.041017443,	0.039792392,

			213	 	 0.038578995,	0.037377283,	0.036187284,	0.035009038,

			214	 	 0.033842582,	0.032687962,	0.031545233,	0.030414443,	0.02929566,

			215	 	 0.02818895,	0.027094385,	0.026012046,	0.024942026,	0.023884421,

			216	 	 0.022839336,	0.021806888,	0.020787204,	0.019780423,	0.0187867,

			217	 	 0.0178062,	0.016839107,	0.015885621,	0.014945968,	0.014020392,

			218	 	 0.013109165,	0.012212592,	0.011331013,	0.01046481,	0.009614414,

			219	 	 0.008780315,	0.007963077,	0.0071633533,	0.006381906,

			220	 	 0.0056196423,	0.0048776558,	0.004157295,	0.0034602648,

			221	 	 0.0027887989,	0.0021459677,	0.0015362998,	0.0009672693,

			222	 	 0.00045413437,

			223	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/math/rand/normal.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	rand

					6	

					7	 import	(

					8	 	 "math"

					9)

				10	

				11	 /*

				12	 	*	Normal	distribution

				13	 	*

				14	 	*	See	"The	Ziggurat	Method	for	Generating	Random	Variables"

				15	 	*	(Marsaglia	&	Tsang,	2000)

				16	 	*	http://www.jstatsoft.org/v05/i08/paper	[pdf]

				17	 	*/

				18	

				19	 const	(

				20	 	 rn	=	3.442619855899

				21)

				22	

				23	 func	absInt32(i	int32)	uint32	{

				24	 	 if	i	<	0	{

				25	 	 	 return	uint32(-i)

				26	 	 }

				27	 	 return	uint32(i)

				28	 }

				29	

				30	 //	NormFloat64	returns	a	normally	distributed	float64	in	the	range

				31	 //	[-math.MaxFloat64,	+math.MaxFloat64]	with

				32	 //	standard	normal	distribution	(mean	=	0,	stddev	=	1).

				33	 //	To	produce	a	different	normal	distribution,	callers	can

				34	 //	adjust	the	output	using:

				35	 //

				36	 //		sample	=	NormFloat64()	*	desiredStdDev	+	desiredMean

				37	 //

				38	 func	(r	*Rand)	NormFloat64()	float64	{

				39	 	 for	{

				40	 	 	 j	:=	int32(r.Uint32())	//	Possibly	negative

				41	 	 	 i	:=	j	&	0x7F

				42	 	 	 x	:=	float64(j)	*	float64(wn[i])

				43	 	 	 if	absInt32(j)	<	kn[i]	{

				44	 	 	 	 //	This	case	should	be	hit	better	than	99%	of	the	time.

				45	 	 	 	 return	x

				46	 	 	 }

				47	

				48	 	 	 if	i	==	0	{

				49	 	 	 	 //	This	extra	work	is	only	required	for	the	base	strip.

				50	 	 	 	 for	{

				51	 	 	 	 	 x	=	-math.Log(r.Float64())	*	(1.0	/	rn)

				52	 	 	 	 	 y	:=	-math.Log(r.Float64())

				53	 	 	 	 	 if	y+y	>=	x*x	{

				54	 	 	 	 	 	 break

				55	 	 	 	 	 }

				56	 	 	 	 }

				57	 	 	 	 if	j	>	0	{

				58	 	 	 	 	 return	rn	+	x

				59	 	 	 	 }

				60	 	 	 	 return	-rn	-	x

				61	 	 	 }

				62	 	 	 if	fn[i]+float32(r.Float64())*(fn[i-1]-fn[i])	<	float32(math.Exp(-.5*x*x))	{

				63	 	 	 	 return	x

				64	 	 	 }

				65	 	 }

				66	 	 panic("unreachable")

				67	 }

				68	

				69	 var	kn	=	[128]uint32{

				70	 	 0x76ad2212,	0x0,	0x600f1b53,	0x6ce447a6,	0x725b46a2,

				71	 	 0x7560051d,	0x774921eb,	0x789a25bd,	0x799045c3,	0x7a4bce5d,

				72	 	 0x7adf629f,	0x7b5682a6,	0x7bb8a8c6,	0x7c0ae722,	0x7c50cce7,

				73	 	 0x7c8cec5b,	0x7cc12cd6,	0x7ceefed2,	0x7d177e0b,	0x7d3b8883,

				74	 	 0x7d5bce6c,	0x7d78dd64,	0x7d932886,	0x7dab0e57,	0x7dc0dd30,

				75	 	 0x7dd4d688,	0x7de73185,	0x7df81cea,	0x7e07c0a3,	0x7e163efa,

				76	 	 0x7e23b587,	0x7e303dfd,	0x7e3beec2,	0x7e46db77,	0x7e51155d,

				77	 	 0x7e5aabb3,	0x7e63abf7,	0x7e6c222c,	0x7e741906,	0x7e7b9a18,

				78	 	 0x7e82adfa,	0x7e895c63,	0x7e8fac4b,	0x7e95a3fb,	0x7e9b4924,

				79	 	 0x7ea0a0ef,	0x7ea5b00d,	0x7eaa7ac3,	0x7eaf04f3,	0x7eb3522a,

				80	 	 0x7eb765a5,	0x7ebb4259,	0x7ebeeafd,	0x7ec2620a,	0x7ec5a9c4,

				81	 	 0x7ec8c441,	0x7ecbb365,	0x7ece78ed,	0x7ed11671,	0x7ed38d62,

				82	 	 0x7ed5df12,	0x7ed80cb4,	0x7eda175c,	0x7edc0005,	0x7eddc78e,

				83	 	 0x7edf6ebf,	0x7ee0f647,	0x7ee25ebe,	0x7ee3a8a9,	0x7ee4d473,

				84	 	 0x7ee5e276,	0x7ee6d2f5,	0x7ee7a620,	0x7ee85c10,	0x7ee8f4cd,

				85	 	 0x7ee97047,	0x7ee9ce59,	0x7eea0eca,	0x7eea3147,	0x7eea3568,

				86	 	 0x7eea1aab,	0x7ee9e071,	0x7ee98602,	0x7ee90a88,	0x7ee86d08,

				87	 	 0x7ee7ac6a,	0x7ee6c769,	0x7ee5bc9c,	0x7ee48a67,	0x7ee32efc,

				88	 	 0x7ee1a857,	0x7edff42f,	0x7ede0ffa,	0x7edbf8d9,	0x7ed9ab94,

				89	 	 0x7ed7248d,	0x7ed45fae,	0x7ed1585c,	0x7ece095f,	0x7eca6ccb,

				90	 	 0x7ec67be2,	0x7ec22eee,	0x7ebd7d1a,	0x7eb85c35,	0x7eb2c075,

				91	 	 0x7eac9c20,	0x7ea5df27,	0x7e9e769f,	0x7e964c16,	0x7e8d44ba,

				92	 	 0x7e834033,	0x7e781728,	0x7e6b9933,	0x7e5d8a1a,	0x7e4d9ded,

				93	 	 0x7e3b737a,	0x7e268c2f,	0x7e0e3ff5,	0x7df1aa5d,	0x7dcf8c72,

				94	 	 0x7da61a1e,	0x7d72a0fb,	0x7d30e097,	0x7cd9b4ab,	0x7c600f1a,

				95	 	 0x7ba90bdc,	0x7a722176,	0x77d664e5,

				96	 }

				97	 var	wn	=	[128]float32{

				98	 	 1.7290405e-09,	1.2680929e-10,	1.6897518e-10,	1.9862688e-10,

				99	 	 2.2232431e-10,	2.4244937e-10,	2.601613e-10,	2.7611988e-10,

			100	 	 2.9073963e-10,	3.042997e-10,	3.1699796e-10,	3.289802e-10,

			101	 	 3.4035738e-10,	3.5121603e-10,	3.616251e-10,	3.7164058e-10,

			102	 	 3.8130857e-10,	3.9066758e-10,	3.9975012e-10,	4.08584e-10,

			103	 	 4.1719309e-10,	4.2559822e-10,	4.338176e-10,	4.418672e-10,

			104	 	 4.497613e-10,	4.5751258e-10,	4.651324e-10,	4.7263105e-10,

			105	 	 4.8001775e-10,	4.87301e-10,	4.944885e-10,	5.015873e-10,

			106	 	 5.0860405e-10,	5.155446e-10,	5.2241467e-10,	5.2921934e-10,

			107	 	 5.359635e-10,	5.426517e-10,	5.4928817e-10,	5.5587696e-10,

			108	 	 5.624219e-10,	5.6892646e-10,	5.753941e-10,	5.818282e-10,

			109	 	 5.882317e-10,	5.946077e-10,	6.00959e-10,	6.072884e-10,

			110	 	 6.135985e-10,	6.19892e-10,	6.2617134e-10,	6.3243905e-10,

			111	 	 6.386974e-10,	6.449488e-10,	6.511956e-10,	6.5744005e-10,

			112	 	 6.6368433e-10,	6.699307e-10,	6.7618144e-10,	6.824387e-10,

			113	 	 6.8870465e-10,	6.949815e-10,	7.012715e-10,	7.075768e-10,

			114	 	 7.1389966e-10,	7.202424e-10,	7.266073e-10,	7.329966e-10,

			115	 	 7.394128e-10,	7.4585826e-10,	7.5233547e-10,	7.58847e-10,

			116	 	 7.653954e-10,	7.719835e-10,	7.7861395e-10,	7.852897e-10,

			117	 	 7.920138e-10,	7.987892e-10,	8.0561924e-10,	8.125073e-10,

			118	 	 8.194569e-10,	8.2647167e-10,	8.3355556e-10,	8.407127e-10,

			119	 	 8.479473e-10,	8.55264e-10,	8.6266755e-10,	8.7016316e-10,

			120	 	 8.777562e-10,	8.8545243e-10,	8.932582e-10,	9.0117996e-10,

			121	 	 9.09225e-10,	9.174008e-10,	9.2571584e-10,	9.341788e-10,

			122	 	 9.427997e-10,	9.515889e-10,	9.605579e-10,	9.697193e-10,

			123	 	 9.790869e-10,	9.88676e-10,	9.985036e-10,	1.0085882e-09,

			124	 	 1.0189509e-09,	1.0296151e-09,	1.0406069e-09,	1.0519566e-09,

			125	 	 1.063698e-09,	1.0758702e-09,	1.0885183e-09,	1.1016947e-09,

			126	 	 1.1154611e-09,	1.1298902e-09,	1.1450696e-09,	1.1611052e-09,

			127	 	 1.1781276e-09,	1.1962995e-09,	1.2158287e-09,	1.2369856e-09,

			128	 	 1.2601323e-09,	1.2857697e-09,	1.3146202e-09,	1.347784e-09,

			129	 	 1.3870636e-09,	1.4357403e-09,	1.5008659e-09,	1.6030948e-09,

			130	 }

			131	 var	fn	=	[128]float32{

			132	 	 1,	0.9635997,	0.9362827,	0.9130436,	0.89228165,	0.87324303,

			133	 	 0.8555006,	0.8387836,	0.8229072,	0.8077383,	0.793177,

			134	 	 0.7791461,	0.7655842,	0.7524416,	0.73967725,	0.7272569,

			135	 	 0.7151515,	0.7033361,	0.69178915,	0.68049186,	0.6694277,

			136	 	 0.658582,	0.6479418,	0.63749546,	0.6272325,	0.6171434,

			137	 	 0.6072195,	0.5974532,	0.58783704,	0.5783647,	0.56903,

			138	 	 0.5598274,	0.5507518,	0.54179835,	0.5329627,	0.52424055,

			139	 	 0.5156282,	0.50712204,	0.49871865,	0.49041483,	0.48220766,

			140	 	 0.4740943,	0.46607214,	0.4581387,	0.45029163,	0.44252872,

			141	 	 0.43484783,	0.427247,	0.41972435,	0.41227803,	0.40490642,

			142	 	 0.39760786,	0.3903808,	0.3832238,	0.37613547,	0.36911446,

			143	 	 0.3621595,	0.35526937,	0.34844297,	0.34167916,	0.33497685,

			144	 	 0.3283351,	0.3217529,	0.3152294,	0.30876362,	0.30235484,

			145	 	 0.29600215,	0.28970486,	0.2834622,	0.2772735,	0.27113807,

			146	 	 0.2650553,	0.25902456,	0.2530453,	0.24711695,	0.241239,

			147	 	 0.23541094,	0.22963232,	0.2239027,	0.21822165,	0.21258877,

			148	 	 0.20700371,	0.20146611,	0.19597565,	0.19053204,	0.18513499,

			149	 	 0.17978427,	0.17447963,	0.1692209,	0.16400786,	0.15884037,

			150	 	 0.15371831,	0.14864157,	0.14361008,	0.13862377,	0.13368265,

			151	 	 0.12878671,	0.12393598,	0.119130544,	0.11437051,	0.10965602,

			152	 	 0.104987256,	0.10036444,	0.095787846,	0.0912578,	0.08677467,

			153	 	 0.0823389,	0.077950984,	0.073611505,	0.06932112,	0.06508058,

			154	 	 0.06089077,	0.056752663,	0.0526674,	0.048636295,	0.044660863,

			155	 	 0.040742867,	0.03688439,	0.033087887,	0.029356318,

			156	 	 0.025693292,	0.022103304,	0.018592102,	0.015167298,

			157	 	 0.011839478,	0.008624485,	0.005548995,	0.0026696292,

			158	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/math/rand/rand.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	rand	implements	pseudo-random	number	generators.

					6	 package	rand

					7	

					8	 import	"sync"

					9	

				10	 //	A	Source	represents	a	source	of	uniformly-distributed

				11	 //	pseudo-random	int64	values	in	the	range	[0,	1<<63).

				12	 type	Source	interface	{

				13	 	 Int63()	int64

				14	 	 Seed(seed	int64)

				15	 }

				16	

				17	 //	NewSource	returns	a	new	pseudo-random	Source	seeded	with	the	given	value.

				18	 func	NewSource(seed	int64)	Source	{

				19	 	 var	rng	rngSource

				20	 	 rng.Seed(seed)

				21	 	 return	&rng

				22	 }

				23	

				24	 //	A	Rand	is	a	source	of	random	numbers.

				25	 type	Rand	struct	{

				26	 	 src	Source

				27	 }

				28	

				29	 //	New	returns	a	new	Rand	that	uses	random	values	from	src

				30	 //	to	generate	other	random	values.

				31	 func	New(src	Source)	*Rand	{	return	&Rand{src}	}

				32	

				33	 //	Seed	uses	the	provided	seed	value	to	initialize	the	generator	to	a	deterministic	state.

				34	 func	(r	*Rand)	Seed(seed	int64)	{	r.src.Seed(seed)	}

				35	

				36	 //	Int63	returns	a	non-negative	pseudo-random	63-bit	integer	as	an	int64.

				37	 func	(r	*Rand)	Int63()	int64	{	return	r.src.Int63()	}

				38	

				39	 //	Uint32	returns	a	pseudo-random	32-bit	value	as	a	uint32.

				40	 func	(r	*Rand)	Uint32()	uint32	{	return	uint32(r.Int63()	>>	31)	}

				41	

				42	 //	Int31	returns	a	non-negative	pseudo-random	31-bit	integer	as	an	int32.

				43	 func	(r	*Rand)	Int31()	int32	{	return	int32(r.Int63()	>>	32)	}

				44	

				45	 //	Int	returns	a	non-negative	pseudo-random	int.

				46	 func	(r	*Rand)	Int()	int	{

				47	 	 u	:=	uint(r.Int63())

				48	 	 return	int(u	<<	1	>>	1)	//	clear	sign	bit	if	int	==	int32

				49	 }

				50	

				51	 //	Int63n	returns,	as	an	int64,	a	non-negative	pseudo-random	number	in	[0,n).

				52	 //	It	panics	if	n	<=	0.

				53	 func	(r	*Rand)	Int63n(n	int64)	int64	{

				54	 	 if	n	<=	0	{

				55	 	 	 panic("invalid	argument	to	Int63n")

				56	 	 }

				57	 	 max	:=	int64((1	<<	63)	-	1	-	(1<<63)%uint64(n))

				58	 	 v	:=	r.Int63()

				59	 	 for	v	>	max	{

				60	 	 	 v	=	r.Int63()

				61	 	 }

				62	 	 return	v	%	n

				63	 }

				64	

				65	 //	Int31n	returns,	as	an	int32,	a	non-negative	pseudo-random	number	in	[0,n).

				66	 //	It	panics	if	n	<=	0.

				67	 func	(r	*Rand)	Int31n(n	int32)	int32	{

				68	 	 if	n	<=	0	{

				69	 	 	 panic("invalid	argument	to	Int31n")

				70	 	 }

				71	 	 max	:=	int32((1	<<	31)	-	1	-	(1<<31)%uint32(n))

				72	 	 v	:=	r.Int31()

				73	 	 for	v	>	max	{

				74	 	 	 v	=	r.Int31()

				75	 	 }

				76	 	 return	v	%	n

				77	 }

				78	

				79	 //	Intn	returns,	as	an	int,	a	non-negative	pseudo-random	number	in	[0,n).

				80	 //	It	panics	if	n	<=	0.

				81	 func	(r	*Rand)	Intn(n	int)	int	{

				82	 	 if	n	<=	0	{

				83	 	 	 panic("invalid	argument	to	Intn")

				84	 	 }

				85	 	 if	n	<=	1<<31-1	{

				86	 	 	 return	int(r.Int31n(int32(n)))

				87	 	 }

				88	 	 return	int(r.Int63n(int64(n)))

				89	 }

				90	

				91	 //	Float64	returns,	as	a	float64,	a	pseudo-random	number	in	[0.0,1.0).

				92	 func	(r	*Rand)	Float64()	float64	{	return	float64(r.Int63())	/	(1	<<	63)	}

				93	

				94	 //	Float32	returns,	as	a	float32,	a	pseudo-random	number	in	[0.0,1.0).

				95	 func	(r	*Rand)	Float32()	float32	{	return	float32(r.Float64())	}

				96	

				97	 //	Perm	returns,	as	a	slice	of	n	ints,	a	pseudo-random	permutation	of	the	integers	[0,n).

				98	 func	(r	*Rand)	Perm(n	int)	[]int	{

				99	 	 m	:=	make([]int,	n)

			100	 	 for	i	:=	0;	i	<	n;	i++	{

			101	 	 	 m[i]	=	i

			102	 	 }

			103	 	 for	i	:=	0;	i	<	n;	i++	{

			104	 	 	 j	:=	r.Intn(i	+	1)

			105	 	 	 m[i],	m[j]	=	m[j],	m[i]

			106	 	 }

			107	 	 return	m

			108	 }

			109	

			110	 /*

			111	 	*	Top-level	convenience	functions

			112	 	*/

			113	

			114	 var	globalRand	=	New(&lockedSource{src:	NewSource(1)})

			115	

			116	 //	Seed	uses	the	provided	seed	value	to	initialize	the	generator	to	a

			117	 //	deterministic	state.	If	Seed	is	not	called,	the	generator	behaves	as

			118	 //	if	seeded	by	Seed(1).

			119	 func	Seed(seed	int64)	{	globalRand.Seed(seed)	}

			120	

			121	 //	Int63	returns	a	non-negative	pseudo-random	63-bit	integer	as	an	int64.

			122	 func	Int63()	int64	{	return	globalRand.Int63()	}

			123	

			124	 //	Uint32	returns	a	pseudo-random	32-bit	value	as	a	uint32.

			125	 func	Uint32()	uint32	{	return	globalRand.Uint32()	}

			126	

			127	 //	Int31	returns	a	non-negative	pseudo-random	31-bit	integer	as	an	int32.

			128	 func	Int31()	int32	{	return	globalRand.Int31()	}

			129	

			130	 //	Int	returns	a	non-negative	pseudo-random	int.

			131	 func	Int()	int	{	return	globalRand.Int()	}

			132	

			133	 //	Int63n	returns,	as	an	int64,	a	non-negative	pseudo-random	number	in	[0,n).

			134	 //	It	panics	if	n	<=	0.

			135	 func	Int63n(n	int64)	int64	{	return	globalRand.Int63n(n)	}

			136	

			137	 //	Int31n	returns,	as	an	int32,	a	non-negative	pseudo-random	number	in	[0,n).

			138	 //	It	panics	if	n	<=	0.

			139	 func	Int31n(n	int32)	int32	{	return	globalRand.Int31n(n)	}

			140	

			141	 //	Intn	returns,	as	an	int,	a	non-negative	pseudo-random	number	in	[0,n).

			142	 //	It	panics	if	n	<=	0.

			143	 func	Intn(n	int)	int	{	return	globalRand.Intn(n)	}

			144	

			145	 //	Float64	returns,	as	a	float64,	a	pseudo-random	number	in	[0.0,1.0).

			146	 func	Float64()	float64	{	return	globalRand.Float64()	}

			147	

			148	 //	Float32	returns,	as	a	float32,	a	pseudo-random	number	in	[0.0,1.0).

			149	 func	Float32()	float32	{	return	globalRand.Float32()	}

			150	

			151	 //	Perm	returns,	as	a	slice	of	n	ints,	a	pseudo-random	permutation	of	the	integers	[0,n).

			152	 func	Perm(n	int)	[]int	{	return	globalRand.Perm(n)	}

			153	

			154	 //	NormFloat64	returns	a	normally	distributed	float64	in	the	range

			155	 //	[-math.MaxFloat64,	+math.MaxFloat64]	with

			156	 //	standard	normal	distribution	(mean	=	0,	stddev	=	1).

			157	 //	To	produce	a	different	normal	distribution,	callers	can

			158	 //	adjust	the	output	using:

			159	 //

			160	 //		sample	=	NormFloat64()	*	desiredStdDev	+	desiredMean

			161	 //

			162	 func	NormFloat64()	float64	{	return	globalRand.NormFloat64()	}

			163	

			164	 //	ExpFloat64	returns	an	exponentially	distributed	float64	in	the	range

			165	 //	(0,	+math.MaxFloat64]	with	an	exponential	distribution	whose	rate	parameter

			166	 //	(lambda)	is	1	and	whose	mean	is	1/lambda	(1).

			167	 //	To	produce	a	distribution	with	a	different	rate	parameter,

			168	 //	callers	can	adjust	the	output	using:

			169	 //

			170	 //		sample	=	ExpFloat64()	/	desiredRateParameter

			171	 //

			172	 func	ExpFloat64()	float64	{	return	globalRand.ExpFloat64()	}

			173	

			174	 type	lockedSource	struct	{

			175	 	 lk		sync.Mutex

			176	 	 src	Source

			177	 }

			178	

			179	 func	(r	*lockedSource)	Int63()	(n	int64)	{

			180	 	 r.lk.Lock()

			181	 	 n	=	r.src.Int63()

			182	 	 r.lk.Unlock()

			183	 	 return

			184	 }

			185	

			186	 func	(r	*lockedSource)	Seed(seed	int64)	{

			187	 	 r.lk.Lock()

			188	 	 r.src.Seed(seed)

			189	 	 r.lk.Unlock()

			190	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/rand/rng.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	rand

					6	

					7	 /*

					8	 	*	Uniform	distribution

					9	 	*

				10	 	*	algorithm	by

				11	 	*	DP	Mitchell	and	JA	Reeds

				12	 	*/

				13	

				14	 const	(

				15	 	 _LEN		=	607

				16	 	 _TAP		=	273

				17	 	 _MAX		=	1	<<	63

				18	 	 _MASK	=	_MAX	-	1

				19	 	 _A				=	48271

				20	 	 _M				=	(1	<<	31)	-	1

				21	 	 _Q				=	44488

				22	 	 _R				=	3399

				23)

				24	

				25	 var	(

				26	 	 //	cooked	random	numbers

				27	 	 //	the	state	of	the	rng

				28	 	 //	after	780e10	iterations

				29	 	 rng_cooked	[_LEN]int64	=	[...]int64{

				30	 	 	 5041579894721019882,	4646389086726545243,	1395769623340756751,	5333664234075297259,

				31	 	 	 2875692520355975054,	9033628115061424579,	7143218595135194537,	4812947590706362721,

				32	 	 	 7937252194349799378,	5307299880338848416,	8209348851763925077,	2115741599318814044,

				33	 	 	 4593015457530856296,	8140875735541888011,	3319429241265089026,	8619815648190321034,

				34	 	 	 1727074043483619500,	113108499721038619,	4569519971459345583,	5062833859075314731,

				35	 	 	 2387618771259064424,	2716131344356686112,	6559392774825876886,	7650093201692370310,

				36	 	 	 7684323884043752161,	257867835996031390,	6593456519409015164,	271327514973697897,

				37	 	 	 2789386447340118284,	1065192797246149621,	3344507881999356393,	4459797941780066633,

				38	 	 	 7465081662728599889,	1014950805555097187,	4449440729345990775,	3481109366438502643,

				39	 	 	 2418672789110888383,	5796562887576294778,	4484266064449540171,	3738982361971787048,

				40	 	 	 4523597184512354423,	10530508058128498,	8633833783282346118,	2625309929628791628,

				41	 	 	 8660405965245884302,	10162832508971942,	6540714680961817391,	7031802312784620857,

				42	 	 	 6240911277345944669,	831864355460801054,	8004434137542152891,	2116287251661052151,

				43	 	 	 2202309800992166967,	9161020366945053561,	4069299552407763864,	4936383537992622449,

				44	 	 	 457351505131524928,	342195045928179354,	2847771682816600509,	2068020115986376518,

				45	 	 	 4368649989588021065,	887231587095185257,	5563591506886576496,	6816225200251950296,

				46	 	 	 5616972787034086048,	8471809303394836566,	1686575021641186857,	4045484338074262002,

				47	 	 	 4244156215201778923,	7848217333783577387,	5632136521049761902,	833283142057835272,

				48	 	 	 9029726508369077193,	3243583134664087292,	4316371101804477087,	8937849979965997980,

				49	 	 	 6446940406810434101,	1679342092332374735,	6050638460742422078,	6993520719509581582,

				50	 	 	 7640877852514293609,	5881353426285907985,	812786550756860885,	4541845584483343330,

				51	 	 	 2725470216277009086,	4980675660146853729,	5210769080603236061,	8894283318990530821,

				52	 	 	 6326442804750084282,	1495812843684243920,	7069751578799128019,	7370257291860230865,

				53	 	 	 6756929275356942261,	4706794511633873654,	7824520467827898663,	8549875090542453214,

				54	 	 	 33650829478596156,	1328918435751322643,	7297902601803624459,	1011190183918857495,

				55	 	 	 2238025036817854944,	5147159997473910359,	896512091560522982,	2659470849286379941,

				56	 	 	 6097729358393448602,	1731725986304753684,	4106255841983812711,	8327155210721535508,

				57	 	 	 8477511620686074402,	5803876044675762232,	8435417780860221662,	5988852856651071244,

				58	 	 	 4715837297103951910,	7566171971264485114,	505808562678895611,	5070098180695063370,

				59	 	 	 842110666775871513,	572156825025677802,	1791881013492340891,	3393267094866038768,

				60	 	 	 3778721850472236509,	2352769483186201278,	1292459583847367458,	8897907043675088419,

				61	 	 	 5781809037144163536,	2733958794029492513,	5092019688680754699,	8996124554772526841,

				62	 	 	 4234737173186232084,	5027558287275472836,	4635198586344772304,	8687338893267139351,

				63	 	 	 5907508150730407386,	784756255473944452,	972392927514829904,	5422057694808175112,

				64	 	 	 5158420642969283891,	9048531678558643225,	2407211146698877100,	7583282216521099569,

				65	 	 	 3940796514530962282,	3341174631045206375,	3095313889586102949,	7405321895688238710,

				66	 	 	 5832080132947175283,	7890064875145919662,	8184139210799583195,	1149859861409226130,

				67	 	 	 1464597243840211302,	4641648007187991873,	3516491885471466898,	956288521791657692,

				68	 	 	 6657089965014657519,	5220884358887979358,	1796677326474620641,	5340761970648932916,

				69	 	 	 1147977171614181568,	5066037465548252321,	2574765911837859848,	1085848279845204775,

				70	 	 	 3350107529868390359,	6116438694366558490,	2107701075971293812,	1803294065921269267,

				71	 	 	 2469478054175558874,	7368243281019965984,	3791908367843677526,	185046971116456637,

				72	 	 	 2257095756513439648,	7217693971077460129,	909049953079504259,	7196649268545224266,

				73	 	 	 5637660345400869599,	3955544945427965183,	8057528650917418961,	4139268440301127643,

				74	 	 	 6621926588513568059,	1373361136802681441,	6527366231383600011,	3507654575162700890,

				75	 	 	 9202058512774729859,	1954818376891585542,	6640380907130175705,	8299563319178235687,

				76	 	 	 3901867355218954373,	7046310742295574065,	6847195391333990232,	1572638100518868053,

				77	 	 	 8850422670118399721,	3631909142291992901,	5158881091950831288,	2882958317343121593,

				78	 	 	 4763258931815816403,	6280052734341785344,	4243789408204964850,	2043464728020827976,

				79	 	 	 6545300466022085465,	4562580375758598164,	5495451168795427352,	1738312861590151095,

				80	 	 	 553004618757816492,	6895160632757959823,	8233623922264685171,	7139506338801360852,

				81	 	 	 8550891222387991669,	5535668688139305547,	2430933853350256242,	5401941257863201076,

				82	 	 	 8159640039107728799,	6157493831600770366,	7632066283658143750,	6308328381617103346,

				83	 	 	 3681878764086140361,	3289686137190109749,	6587997200611086848,	244714774258135476,

				84	 	 	 4079788377417136100,	8090302575944624335,	2945117363431356361,	864324395848741045,

				85	 	 	 3009039260312620700,	8430027460082534031,	401084700045993341,	7254622446438694921,

				86	 	 	 4707864159563588614,	5640248530963493951,	5982507712689997893,	3315098242282210105,

				87	 	 	 5503847578771918426,	3941971367175193882,	8118566580304798074,	3839261274019871296,

				88	 	 	 7062410411742090847,	741381002980207668,	6027994129690250817,	2497829994150063930,

				89	 	 	 6251390334426228834,	1368930247903518833,	8809096399316380241,	6492004350391900708,

				90	 	 	 2462145737463489636,	404828418920299174,	4153026434231690595,	261785715255475940,

				91	 	 	 5464715384600071357,	592710404378763017,	6764129236657751224,	8513655718539357449,

				92	 	 	 5820343663801914208,	385298524683789911,	5224135003438199467,	6303131641338802145,

				93	 	 	 7150122561309371392,	368107899140673753,	3115186834558311558,	2915636353584281051,

				94	 	 	 4782583894627718279,	6718292300699989587,	8387085186914375220,	3387513132024756289,

				95	 	 	 4654329375432538231,	8930667561363381602,	5374373436876319273,	7623042350483453954,

				96	 	 	 7725442901813263321,	9186225467561587250,	4091027289597503355,	2357631606492579800,

				97	 	 	 2530936820058611833,	1636551876240043639,	5564664674334965799,	1452244145334316253,

				98	 	 	 2061642381019690829,	1279580266495294036,	9108481583171221009,	6023278686734049809,

				99	 	 	 5007630032676973346,	2153168792952589781,	6720334534964750538,	6041546491134794105,

			100	 	 	 3433922409283786309,	2285479922797300912,	3110614940896576130,	6366559590722842893,

			101	 	 	 5418791419666136509,	7163298419643543757,	4891138053923696990,	580618510277907015,

			102	 	 	 1684034065251686769,	4429514767357295841,	330346578555450005,	1119637995812174675,

			103	 	 	 7177515271653460134,	4589042248470800257,	7693288629059004563,	143607045258444228,

			104	 	 	 246994305896273627,	866417324803099287,	6473547110565816071,	3092379936208876896,

			105	 	 	 2058427839513754051,	5133784708526867938,	8785882556301281247,	6149332666841167611,

			106	 	 	 8585842181454472135,	6137678347805511274,	2070447184436970006,	5708223427705576541,

			107	 	 	 5999657892458244504,	4358391411789012426,	325123008708389849,	6837621693887290924,

			108	 	 	 4843721905315627004,	6010651222149276415,	5398352198963874652,	4602025990114250980,

			109	 	 	 1044646352569048800,	9106614159853161675,	829256115228593269,	4919284369102997000,

			110	 	 	 2681532557646850893,	3681559472488511871,	5307999518958214035,	6334130388442829274,

			111	 	 	 2658708232916537604,	1163313865052186287,	581945337509520675,	3648778920718647903,

			112	 	 	 4423673246306544414,	1620799783996955743,	220828013409515943,	8150384699999389761,

			113	 	 	 4287360518296753003,	4590000184845883843,	5513660857261085186,	6964829100392774275,

			114	 	 	 478991688350776035,	8746140185685648781,	228500091334420247,	1356187007457302238,

			115	 	 	 3019253992034194581,	3152601605678500003,	430152752706002213,	5559581553696971176,

			116	 	 	 4916432985369275664,	663574931734554391,	3420773838927732076,	2868348622579915573,

			117	 	 	 1999319134044418520,	3328689518636282723,	2587672709781371173,	1517255313529399333,

			118	 	 	 3092343956317362483,	3662252519007064108,	972445599196498113,	7664865435875959367,

			119	 	 	 1708913533482282562,	6917817162668868494,	3217629022545312900,	2570043027221707107,

			120	 	 	 8739788839543624613,	2488075924621352812,	4694002395387436668,	4559628481798514356,

			121	 	 	 2997203966153298104,	1282559373026354493,	240113143146674385,	8665713329246516443,

			122	 	 	 628141331766346752,	4571950817186770476,	1472811188152235408,	7596648026010355826,

			123	 	 	 6091219417754424743,	7834161864828164065,	7103445518877254909,	4390861237357459201,

			124	 	 	 4442653864240571734,	8903482404847331368,	622261699494173647,	6037261250297213248,

			125	 	 	 504404948065709118,	7275215526217113061,	1011176780856001400,	2194750105623461063,

			126	 	 	 2623071828615234808,	5157313728073836108,	3738405111966602044,	2539767524076729570,

			127	 	 	 2467284396349269342,	5256026990536851868,	7841086888628396109,	6640857538655893162,

			128	 	 	 1202087339038317498,	2113514992440715978,	7534350895342931403,	4925284734898484745,

			129	 	 	 5145623771477493805,	8225140880134972332,	2719520354384050532,	9132346697815513771,

			130	 	 	 4332154495710163773,	7137789594094346916,	6994721091344268833,	6667228574869048934,

			131	 	 	 655440045726677499,	59934747298466858,	6124974028078036405,	8957774780655365418,

			132	 	 	 2332206071942466437,	1701056712286369627,	3154897383618636503,	1637766181387607527,

			133	 	 	 2460521277767576533,	197309393502684135,	643677854385267315,	2543179307861934850,

			134	 	 	 4350769010207485119,	4754652089410667672,	2015595502641514512,	7999059458976458608,

			135	 	 	 4287946071480840813,	8362686366770308971,	6486469209321732151,	3617727845841796026,

			136	 	 	 7554353525834302244,	4450022655153542367,	1605195740213535749,	5327014565305508387,

			137	 	 	 4626575813550328320,	2692222020597705149,	241045573717249868,	5098046974627094010,

			138	 	 	 7916882295460730264,	884817090297530579,	5329160409530630596,	7790979528857726136,

			139	 	 	 4955070238059373407,	4918537275422674302,	3008076183950404629,	3007769226071157901,

			140	 	 	 2470346235617803020,	8928702772696731736,	7856187920214445904,	4474874585391974885,

			141	 	 	 7900176660600710914,	2140571127916226672,	2425445057265199971,	2486055153341847830,

			142	 	 	 4186670094382025798,	1883939007446035042,	8808666044074867985,	3734134241178479257,

			143	 	 	 4065968871360089196,	6953124200385847784,	1305686814738899057,	1637739099014457647,

			144	 	 	 3656125660947993209,	3966759634633167020,	3106378204088556331,	6328899822778449810,

			145	 	 	 4565385105440252958,	1979884289539493806,	2331793186920865425,	3783206694208922581,

			146	 	 	 8464961209802336085,	2843963751609577687,	3030678195484896323,	4793717574095772604,

			147	 	 	 4459239494808162889,	402587895800087237,	8057891408711167515,	4541888170938985079,

			148	 	 	 1042662272908816815,	5557303057122568958,	2647678726283249984,	2144477441549833761,

			149	 	 	 5806352215355387087,	7117771003473903623,	5916597177708541638,	462597715452321361,

			150	 	 	 8833658097025758785,	5970273481425315300,	563813119381731307,	2768349550652697015,

			151	 	 	 1598828206250873866,	5206393647403558110,	6235043485709261823,	3152217402014639496,

			152	 	 	 8469693267274066490,	125672920241807416,	5311079624024060938,	6663754932310491587,

			153	 	 	 8736848295048751716,	4488039774992061878,	5923302823487327109,	140891791083103236,

			154	 	 	 7414942793393574290,	7990420780896957397,	4317817392807076702,	3625184369705367340,

			155	 	 	 2740722765288122703,	5743100009702758344,	5997898640509039159,	8854493341352484163,

			156	 	 	 5242208035432907801,	701338899890987198,	7609280429197514109,	3020985755112334161,

			157	 	 	 6651322707055512866,	2635195723621160615,	5144520864246028816,	1035086515727829828,

			158	 	 	 1567242097116389047,	8172389260191636581,	6337820351429292273,	2163012566996458925,

			159	 	 	 2743190902890262681,	1906367633221323427,	6011544915663598137,	5932255307352610768,

			160	 	 	 2241128460406315459,	895504896216695588,	3094483003111372717,	4583857460292963101,

			161	 	 	 9079887171656594975,	8839289181930711403,	5762740387243057873,	4225072055348026230,

			162	 	 	 1838220598389033063,	3801620336801580414,	8823526620080073856,	1776617605585100335,

			163	 	 	 7899055018877642622,	5421679761463003041,	5521102963086275121,	4248279443559365898,

			164	 	 	 8735487530905098534,	1760527091573692978,	7142485049657745894,	8222656872927218123,

			165	 	 	 4969531564923704323,	3394475942196872480,	6424174453260338141,	359248545074932887,

			166	 	 	 3273651282831730598,	6797106199797138596,	3030918217665093212,	145600834617314036,

			167	 	 	 6036575856065626233,	740416251634527158,	7080427635449935582,	6951781370868335478,

			168	 	 	 399922722363687927,	294902314447253185,	7844950936339178523,	880320858634709042,

			169	 	 	 6192655680808675579,	411604686384710388,	9026808440365124461,	6440783557497587732,

			170	 	 	 4615674634722404292,	539897290441580544,	2096238225866883852,	8751955639408182687,

			171	 	 	 1907224908052289603,	7381039757301768559,	6157238513393239656,	7749994231914157575,

			172	 	 	 8629571604380892756,	5280433031239081479,	7101611890139813254,	2479018537985767835,

			173	 	 	 7169176924412769570,	7942066497793203302,	1357759729055557688,	2278447439451174845,

			174	 	 	 3625338785743880657,	6477479539006708521,	8976185375579272206,	5511371554711836120,

			175	 	 	 1326024180520890843,	7537449876596048829,	5464680203499696154,	3189671183162196045,

			176	 	 	 6346751753565857109,	241159987320630307,	3095793449658682053,	8978332846736310159,

			177	 	 	 2902794662273147216,	7208698530190629697,	7276901792339343736,	1732385229314443140,

			178	 	 	 4133292154170828382,	2918308698224194548,	1519461397937144458,	5293934712616591764,

			179	 	 	 4922828954023452664,	2879211533496425641,	5896236396443472108,	8465043815351752425,

			180	 	 	 7329020396871624740,	8915471717014488588,	2944902635677463047,	7052079073493465134,

			181	 	 	 8382142935188824023,	9103922860780351547,	4152330101494654406,

			182	 	 }

			183)

			184	

			185	 type	rngSource	struct	{

			186	 	 tap		int									//	index	into	vec

			187	 	 feed	int									//	index	into	vec

			188	 	 vec		[_LEN]int64	//	current	feedback	register

			189	 }

			190	

			191	 //	seed	rng	x[n+1]	=	48271	*	x[n]	mod	(2**31	-	1)

			192	 func	seedrand(x	int32)	int32	{

			193	 	 hi	:=	x	/	_Q

			194	 	 lo	:=	x	%	_Q

			195	 	 x	=	_A*lo	-	_R*hi

			196	 	 if	x	<	0	{

			197	 	 	 x	+=	_M

			198	 	 }

			199	 	 return	x

			200	 }

			201	

			202	 //	Seed	uses	the	provided	seed	value	to	initialize	the	generator	to	a	deterministic	state.

			203	 func	(rng	*rngSource)	Seed(seed	int64)	{

			204	 	 rng.tap	=	0

			205	 	 rng.feed	=	_LEN	-	_TAP

			206	

			207	 	 seed	=	seed	%	_M

			208	 	 if	seed	<	0	{

			209	 	 	 seed	+=	_M

			210	 	 }

			211	 	 if	seed	==	0	{

			212	 	 	 seed	=	89482311

			213	 	 }

			214	

			215	 	 x	:=	int32(seed)

			216	 	 for	i	:=	-20;	i	<	_LEN;	i++	{

			217	 	 	 x	=	seedrand(x)

			218	 	 	 if	i	>=	0	{

			219	 	 	 	 var	u	int64

			220	 	 	 	 u	=	int64(x)	<<	40

			221	 	 	 	 x	=	seedrand(x)

			222	 	 	 	 u	^=	int64(x)	<<	20

			223	 	 	 	 x	=	seedrand(x)

			224	 	 	 	 u	^=	int64(x)

			225	 	 	 	 u	^=	rng_cooked[i]

			226	 	 	 	 rng.vec[i]	=	u	&	_MASK

			227	 	 	 }

			228	 	 }

			229	 }

			230	

			231	 //	Int63	returns	a	non-negative	pseudo-random	63-bit	integer	as	an	int64.

			232	 func	(rng	*rngSource)	Int63()	int64	{

			233	 	 rng.tap--

			234	 	 if	rng.tap	<	0	{

			235	 	 	 rng.tap	+=	_LEN

			236	 	 }

			237	

			238	 	 rng.feed--

			239	 	 if	rng.feed	<	0	{

			240	 	 	 rng.feed	+=	_LEN

			241	 	 }

			242	

			243	 	 x	:=	(rng.vec[rng.feed]	+	rng.vec[rng.tap])	&	_MASK

			244	 	 rng.vec[rng.feed]	=	x

			245	 	 return	x

			246	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/math/rand/zipf.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	W.Hormann,	G.Derflinger:

					6	 //	"Rejection-Inversion	to	Generate	Variates

					7	 //	from	Monotone	Discrete	Distributions"

					8	 //	http://eeyore.wu-wien.ac.at/papers/96-04-04.wh-der.ps.gz

					9	

				10	 package	rand

				11	

				12	 import	"math"

				13	

				14	 //	A	Zipf	generates	Zipf	distributed	variates.

				15	 type	Zipf	struct	{

				16	 	 r												*Rand

				17	 	 imax									float64

				18	 	 v												float64

				19	 	 q												float64

				20	 	 s												float64

				21	 	 oneminusQ				float64

				22	 	 oneminusQinv	float64

				23	 	 hxm										float64

				24	 	 hx0minusHxm		float64

				25	 }

				26	

				27	 func	(z	*Zipf)	h(x	float64)	float64	{

				28	 	 return	math.Exp(z.oneminusQ*math.Log(z.v+x))	*	z.oneminusQinv

				29	 }

				30	

				31	 func	(z	*Zipf)	hinv(x	float64)	float64	{

				32	 	 return	math.Exp(z.oneminusQinv*math.Log(z.oneminusQ*x))	-	z.v

				33	 }

				34	

				35	 //	NewZipf	returns	a	Zipf	generating	variates	p(k)	on	[0,	imax]

				36	 //	proportional	to	(v+k)**(-s)	where	s>1	and	k>=0,	and	v>=1.

				37	 //

				38	 func	NewZipf(r	*Rand,	s	float64,	v	float64,	imax	uint64)	*Zipf	{

				39	 	 z	:=	new(Zipf)

				40	 	 if	s	<=	1.0	||	v	<	1	{

				41	 	 	 return	nil

				42	 	 }

				43	 	 z.r	=	r

				44	 	 z.imax	=	float64(imax)

				45	 	 z.v	=	v

				46	 	 z.q	=	s

				47	 	 z.oneminusQ	=	1.0	-	z.q

				48	 	 z.oneminusQinv	=	1.0	/	z.oneminusQ

				49	 	 z.hxm	=	z.h(z.imax	+	0.5)

				50	 	 z.hx0minusHxm	=	z.h(0.5)	-	math.Exp(math.Log(z.v)*(-z.q))	-	z.hxm

				51	 	 z.s	=	1	-	z.hinv(z.h(1.5)-math.Exp(-z.q*math.Log(z.v+1.0)))

				52	 	 return	z

				53	 }

				54	

				55	 //	Uint64	returns	a	value	drawn	from	the	Zipf	distributed	described

				56	 //	by	the	Zipf	object.

				57	 func	(z	*Zipf)	Uint64()	uint64	{

				58	 	 k	:=	0.0

				59	

				60	 	 for	{

				61	 	 	 r	:=	z.r.Float64()	//	r	on	[0,1]

				62	 	 	 ur	:=	z.hxm	+	r*z.hx0minusHxm

				63	 	 	 x	:=	z.hinv(ur)

				64	 	 	 k	=	math.Floor(x	+	0.5)

				65	 	 	 if	k-x	<=	z.s	{

				66	 	 	 	 break

				67	 	 	 }

				68	 	 	 if	ur	>=	z.h(k+0.5)-math.Exp(-math.Log(k+z.v)*z.q)	{

				69	 	 	 	 break

				70	 	 	 }

				71	 	 }

				72	 	 return	uint64(k)

				73	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/mime/grammar.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	mime

					6	

					7	 import	(

					8	 	 "strings"

					9)

				10	

				11	 //	isTSpecial	returns	true	if	rune	is	in	'tspecials'	as	defined	by	RFC

				12	 //	1521	and	RFC	2045.

				13	 func	isTSpecial(r	rune)	bool	{

				14	 	 return	strings.IndexRune(`()<>@,;:\"/[]?=`,	r)	!=	-1

				15	 }

				16	

				17	 //	isTokenChar	returns	true	if	rune	is	in	'token'	as	defined	by	RFC

				18	 //	1521	and	RFC	2045.

				19	 func	isTokenChar(r	rune)	bool	{

				20	 	 //	token	:=	1*<any	(US-ASCII)	CHAR	except	SPACE,	CTLs,

				21	 	 //													or	tspecials>

				22	 	 return	r	>	0x20	&&	r	<	0x7f	&&	!isTSpecial(r)

				23	 }

				24	

				25	 //	isToken	returns	true	if	s	is	a	'token'	as	as	defined	by	RFC	1521

				26	 //	and	RFC	2045.

				27	 func	isToken(s	string)	bool	{

				28	 	 if	s	==	""	{

				29	 	 	 return	false

				30	 	 }

				31	 	 return	strings.IndexFunc(s,	isNotTokenChar)	<	0

				32	 }

				33	

				34	 //	isQText	returns	true	if	rune	is	in	'qtext'	as	defined	by	RFC	822.

				35	 func	isQText(r	int)	bool	{

				36	 	 //	CHAR								=		<any	ASCII	character>								;	(0-177,		0.-127.)

				37	 	 //	qtext							=		<any	CHAR	excepting	<">,					;	=>	may	be	folded

				38	 	 //																"\"	&	CR,	and	including

				39	 	 //																linear-white-space>

				40	 	 switch	r	{

				41	 	 case	'"',	'\\',	'\r':

				42	 	 	 return	false

				43	 	 }

				44	 	 return	r	<	0x80

				45	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/mime/mediatype.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	mime

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "errors"

				10	 	 "fmt"

				11	 	 "strings"

				12	 	 "unicode"

				13)

				14	

				15	 //	FormatMediaType	serializes	mediatype	t	and	the	parameters

				16	 //	param	as	a	media	type	conforming	to	RFC	2045	and	RFC	2616.

				17	 //	The	type	and	parameter	names	are	written	in	lower-case.

				18	 //	When	any	of	the	arguments	result	in	a	standard	violation	then

				19	 //	FormatMediaType	returns	the	empty	string.

				20	 func	FormatMediaType(t	string,	param	map[string]string)	string	{

				21	 	 slash	:=	strings.Index(t,	"/")

				22	 	 if	slash	==	-1	{

				23	 	 	 return	""

				24	 	 }

				25	 	 major,	sub	:=	t[:slash],	t[slash+1:]

				26	 	 if	!isToken(major)	||	!isToken(sub)	{

				27	 	 	 return	""

				28	 	 }

				29	 	 var	b	bytes.Buffer

				30	 	 b.WriteString(strings.ToLower(major))

				31	 	 b.WriteByte('/')

				32	 	 b.WriteString(strings.ToLower(sub))

				33	

				34	 	 for	attribute,	value	:=	range	param	{

				35	 	 	 b.WriteByte(';')

				36	 	 	 b.WriteByte('	')

				37	 	 	 if	!isToken(attribute)	{

				38	 	 	 	 return	""

				39	 	 	 }

				40	 	 	 b.WriteString(strings.ToLower(attribute))

				41	 	 	 b.WriteByte('=')

				42	 	 	 if	isToken(value)	{

				43	 	 	 	 b.WriteString(value)

				44	 	 	 	 continue

				45	 	 	 }

				46	

				47	 	 	 b.WriteByte('"')

				48	 	 	 offset	:=	0

				49	 	 	 for	index,	character	:=	range	value	{

				50	 	 	 	 if	character	==	'"'	||	character	==	'\r'	{

				51	 	 	 	 	 b.WriteString(value[offset:index])

				52	 	 	 	 	 offset	=	index

				53	 	 	 	 	 b.WriteByte('\\')

				54	 	 	 	 }

				55	 	 	 	 if	character&0x80	!=	0	{

				56	 	 	 	 	 return	""

				57	 	 	 	 }

				58	 	 	 }

				59	 	 	 b.WriteString(value[offset:])

				60	 	 	 b.WriteByte('"')

				61	 	 }

				62	 	 return	b.String()

				63	 }

				64	

				65	 func	checkMediaTypeDisposition(s	string)	error	{

				66	 	 typ,	rest	:=	consumeToken(s)

				67	 	 if	typ	==	""	{

				68	 	 	 return	errors.New("mime:	no	media	type")

				69	 	 }

				70	 	 if	rest	==	""	{

				71	 	 	 return	nil

				72	 	 }

				73	 	 if	!strings.HasPrefix(rest,	"/")	{

				74	 	 	 return	errors.New("mime:	expected	slash	after	first	token")

				75	 	 }

				76	 	 subtype,	rest	:=	consumeToken(rest[1:])

				77	 	 if	subtype	==	""	{

				78	 	 	 return	errors.New("mime:	expected	token	after	slash")

				79	 	 }

				80	 	 if	rest	!=	""	{

				81	 	 	 return	errors.New("mime:	unexpected	content	after	media	subtype")

				82	 	 }

				83	 	 return	nil

				84	 }

				85	

				86	 //	ParseMediaType	parses	a	media	type	value	and	any	optional

				87	 //	parameters,	per	RFC	1521.		Media	types	are	the	values	in

				88	 //	Content-Type	and	Content-Disposition	headers	(RFC	2183).

				89	 //	On	success,	ParseMediaType	returns	the	media	type	converted

				90	 //	to	lowercase	and	trimmed	of	white	space	and	a	non-nil	map.

				91	 //	The	returned	map,	params,	maps	from	the	lowercase

				92	 //	attribute	to	the	attribute	value	with	its	case	preserved.

				93	 func	ParseMediaType(v	string)	(mediatype	string,	params	map[string]string,	err	error)	{

				94	 	 i	:=	strings.Index(v,	";")

				95	 	 if	i	==	-1	{

				96	 	 	 i	=	len(v)

				97	 	 }

				98	 	 mediatype	=	strings.TrimSpace(strings.ToLower(v[0:i]))

				99	

			100	 	 err	=	checkMediaTypeDisposition(mediatype)

			101	 	 if	err	!=	nil	{

			102	 	 	 return	"",	nil,	err

			103	 	 }

			104	

			105	 	 params	=	make(map[string]string)

			106	

			107	 	 //	Map	of	base	parameter	name	->	parameter	name	->	value

			108	 	 //	for	parameters	containing	a	'*'	character.

			109	 	 //	Lazily	initialized.

			110	 	 var	continuation	map[string]map[string]string

			111	

			112	 	 v	=	v[i:]

			113	 	 for	len(v)	>	0	{

			114	 	 	 v	=	strings.TrimLeftFunc(v,	unicode.IsSpace)

			115	 	 	 if	len(v)	==	0	{

			116	 	 	 	 break

			117	 	 	 }

			118	 	 	 key,	value,	rest	:=	consumeMediaParam(v)

			119	 	 	 if	key	==	""	{

			120	 	 	 	 if	strings.TrimSpace(rest)	==	";"	{

			121	 	 	 	 	 //	Ignore	trailing	semicolons.

			122	 	 	 	 	 //	Not	an	error.

			123	 	 	 	 	 return

			124	 	 	 	 }

			125	 	 	 	 //	Parse	error.

			126	 	 	 	 return	"",	nil,	errors.New("mime:	invalid	media	parameter")

			127	 	 	 }

			128	

			129	 	 	 pmap	:=	params

			130	 	 	 if	idx	:=	strings.Index(key,	"*");	idx	!=	-1	{

			131	 	 	 	 baseName	:=	key[:idx]

			132	 	 	 	 if	continuation	==	nil	{

			133	 	 	 	 	 continuation	=	make(map[string]map[string]string)

			134	 	 	 	 }

			135	 	 	 	 var	ok	bool

			136	 	 	 	 if	pmap,	ok	=	continuation[baseName];	!ok	{

			137	 	 	 	 	 continuation[baseName]	=	make(map[string]string)

			138	 	 	 	 	 pmap	=	continuation[baseName]

			139	 	 	 	 }

			140	 	 	 }

			141	 	 	 if	_,	exists	:=	pmap[key];	exists	{

			142	 	 	 	 //	Duplicate	parameter	name	is	bogus.

			143	 	 	 	 return	"",	nil,	errors.New("mime:	duplicate	parameter	name")

			144	 	 	 }

			145	 	 	 pmap[key]	=	value

			146	 	 	 v	=	rest

			147	 	 }

			148	

			149	 	 //	Stitch	together	any	continuations	or	things	with	stars

			150	 	 //	(i.e.	RFC	2231	things	with	stars:	"foo*0"	or	"foo*")

			151	 	 var	buf	bytes.Buffer

			152	 	 for	key,	pieceMap	:=	range	continuation	{

			153	 	 	 singlePartKey	:=	key	+	"*"

			154	 	 	 if	v,	ok	:=	pieceMap[singlePartKey];	ok	{

			155	 	 	 	 decv	:=	decode2231Enc(v)

			156	 	 	 	 params[key]	=	decv

			157	 	 	 	 continue

			158	 	 	 }

			159	

			160	 	 	 buf.Reset()

			161	 	 	 valid	:=	false

			162	 	 	 for	n	:=	0;	;	n++	{

			163	 	 	 	 simplePart	:=	fmt.Sprintf("%s*%d",	key,	n)

			164	 	 	 	 if	v,	ok	:=	pieceMap[simplePart];	ok	{

			165	 	 	 	 	 valid	=	true

			166	 	 	 	 	 buf.WriteString(v)

			167	 	 	 	 	 continue

			168	 	 	 	 }

			169	 	 	 	 encodedPart	:=	simplePart	+	"*"

			170	 	 	 	 if	v,	ok	:=	pieceMap[encodedPart];	ok	{

			171	 	 	 	 	 valid	=	true

			172	 	 	 	 	 if	n	==	0	{

			173	 	 	 	 	 	 buf.WriteString(decode2231Enc(v))

			174	 	 	 	 	 }	else	{

			175	 	 	 	 	 	 decv,	_	:=	percentHexUnescape(v)

			176	 	 	 	 	 	 buf.WriteString(decv)

			177	 	 	 	 	 }

			178	 	 	 	 }	else	{

			179	 	 	 	 	 break

			180	 	 	 	 }

			181	 	 	 }

			182	 	 	 if	valid	{

			183	 	 	 	 params[key]	=	buf.String()

			184	 	 	 }

			185	 	 }

			186	

			187	 	 return

			188	 }

			189	

			190	 func	decode2231Enc(v	string)	string	{

			191	 	 sv	:=	strings.SplitN(v,	"'",	3)

			192	 	 if	len(sv)	!=	3	{

			193	 	 	 return	""

			194	 	 }

			195	 	 //	TODO:	ignoring	lang	in	sv[1]	for	now.	If	anybody	needs	it	we'll

			196	 	 //	need	to	decide	how	to	expose	it	in	the	API.	But	I'm	not	sure

			197	 	 //	anybody	uses	it	in	practice.

			198	 	 charset	:=	strings.ToLower(sv[0])

			199	 	 if	charset	!=	"us-ascii"	&&	charset	!=	"utf-8"	{

			200	 	 	 //	TODO:	unsupported	encoding

			201	 	 	 return	""

			202	 	 }

			203	 	 encv,	_	:=	percentHexUnescape(sv[2])

			204	 	 return	encv

			205	 }

			206	

			207	 func	isNotTokenChar(r	rune)	bool	{

			208	 	 return	!isTokenChar(r)

			209	 }

			210	

			211	 //	consumeToken	consumes	a	token	from	the	beginning	of	provided

			212	 //	string,	per	RFC	2045	section	5.1	(referenced	from	2183),	and	return

			213	 //	the	token	consumed	and	the	rest	of	the	string.		Returns	("",	v)	on

			214	 //	failure	to	consume	at	least	one	character.

			215	 func	consumeToken(v	string)	(token,	rest	string)	{

			216	 	 notPos	:=	strings.IndexFunc(v,	isNotTokenChar)

			217	 	 if	notPos	==	-1	{

			218	 	 	 return	v,	""

			219	 	 }

			220	 	 if	notPos	==	0	{

			221	 	 	 return	"",	v

			222	 	 }

			223	 	 return	v[0:notPos],	v[notPos:]

			224	 }

			225	

			226	 //	consumeValue	consumes	a	"value"	per	RFC	2045,	where	a	value	is

			227	 //	either	a	'token'	or	a	'quoted-string'.		On	success,	consumeValue

			228	 //	returns	the	value	consumed	(and	de-quoted/escaped,	if	a

			229	 //	quoted-string)	and	the	rest	of	the	string.		On	failure,	returns

			230	 //	("",	v).

			231	 func	consumeValue(v	string)	(value,	rest	string)	{

			232	 	 if	!strings.HasPrefix(v,	`"`)	&&	!strings.HasPrefix(v,	`'`)	{

			233	 	 	 return	consumeToken(v)

			234	 	 }

			235	

			236	 	 leadQuote	:=	rune(v[0])

			237	

			238	 	 //	parse	a	quoted-string

			239	 	 rest	=	v[1:]	//	consume	the	leading	quote

			240	 	 buffer	:=	new(bytes.Buffer)

			241	 	 var	idx	int

			242	 	 var	r	rune

			243	 	 var	nextIsLiteral	bool

			244	 	 for	idx,	r	=	range	rest	{

			245	 	 	 switch	{

			246	 	 	 case	nextIsLiteral:

			247	 	 	 	 buffer.WriteRune(r)

			248	 	 	 	 nextIsLiteral	=	false

			249	 	 	 case	r	==	leadQuote:

			250	 	 	 	 return	buffer.String(),	rest[idx+1:]

			251	 	 	 case	r	==	'\\':

			252	 	 	 	 nextIsLiteral	=	true

			253	 	 	 case	r	!=	'\r'	&&	r	!=	'\n':

			254	 	 	 	 buffer.WriteRune(r)

			255	 	 	 default:

			256	 	 	 	 return	"",	v

			257	 	 	 }

			258	 	 }

			259	 	 return	"",	v

			260	 }

			261	

			262	 func	consumeMediaParam(v	string)	(param,	value,	rest	string)	{

			263	 	 rest	=	strings.TrimLeftFunc(v,	unicode.IsSpace)

			264	 	 if	!strings.HasPrefix(rest,	";")	{

			265	 	 	 return	"",	"",	v

			266	 	 }

			267	

			268	 	 rest	=	rest[1:]	//	consume	semicolon

			269	 	 rest	=	strings.TrimLeftFunc(rest,	unicode.IsSpace)

			270	 	 param,	rest	=	consumeToken(rest)

			271	 	 param	=	strings.ToLower(param)

			272	 	 if	param	==	""	{

			273	 	 	 return	"",	"",	v

			274	 	 }

			275	

			276	 	 rest	=	strings.TrimLeftFunc(rest,	unicode.IsSpace)

			277	 	 if	!strings.HasPrefix(rest,	"=")	{

			278	 	 	 return	"",	"",	v

			279	 	 }

			280	 	 rest	=	rest[1:]	//	consume	equals	sign

			281	 	 rest	=	strings.TrimLeftFunc(rest,	unicode.IsSpace)

			282	 	 value,	rest	=	consumeValue(rest)

			283	 	 if	value	==	""	{

			284	 	 	 return	"",	"",	v

			285	 	 }

			286	 	 return	param,	value,	rest

			287	 }

			288	

			289	 func	percentHexUnescape(s	string)	(string,	error)	{

			290	 	 //	Count	%,	check	that	they're	well-formed.

			291	 	 percents	:=	0

			292	 	 for	i	:=	0;	i	<	len(s);	{

			293	 	 	 if	s[i]	!=	'%'	{

			294	 	 	 	 i++

			295	 	 	 	 continue

			296	 	 	 }

			297	 	 	 percents++

			298	 	 	 if	i+2	>=	len(s)	||	!ishex(s[i+1])	||	!ishex(s[i+2])	{

			299	 	 	 	 s	=	s[i:]

			300	 	 	 	 if	len(s)	>	3	{

			301	 	 	 	 	 s	=	s[0:3]

			302	 	 	 	 }

			303	 	 	 	 return	"",	fmt.Errorf("mime:	bogus	characters	after	%%:	%q",	s)

			304	 	 	 }

			305	 	 	 i	+=	3

			306	 	 }

			307	 	 if	percents	==	0	{

			308	 	 	 return	s,	nil

			309	 	 }

			310	

			311	 	 t	:=	make([]byte,	len(s)-2*percents)

			312	 	 j	:=	0

			313	 	 for	i	:=	0;	i	<	len(s);	{

			314	 	 	 switch	s[i]	{

			315	 	 	 case	'%':

			316	 	 	 	 t[j]	=	unhex(s[i+1])<<4	|	unhex(s[i+2])

			317	 	 	 	 j++

			318	 	 	 	 i	+=	3

			319	 	 	 default:

			320	 	 	 	 t[j]	=	s[i]

			321	 	 	 	 j++

			322	 	 	 	 i++

			323	 	 	 }

			324	 	 }

			325	 	 return	string(t),	nil

			326	 }

			327	

			328	 func	ishex(c	byte)	bool	{

			329	 	 switch	{

			330	 	 case	'0'	<=	c	&&	c	<=	'9':

			331	 	 	 return	true

			332	 	 case	'a'	<=	c	&&	c	<=	'f':

			333	 	 	 return	true

			334	 	 case	'A'	<=	c	&&	c	<=	'F':

			335	 	 	 return	true

			336	 	 }

			337	 	 return	false

			338	 }

			339	

			340	 func	unhex(c	byte)	byte	{

			341	 	 switch	{

			342	 	 case	'0'	<=	c	&&	c	<=	'9':

			343	 	 	 return	c	-	'0'

			344	 	 case	'a'	<=	c	&&	c	<=	'f':

			345	 	 	 return	c	-	'a'	+	10

			346	 	 case	'A'	<=	c	&&	c	<=	'F':

			347	 	 	 return	c	-	'A'	+	10

			348	 	 }

			349	 	 return	0

			350	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/mime/type.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	mime	implements	parts	of	the	MIME	spec.

					6	 package	mime

					7	

					8	 import	(

					9	 	 "fmt"

				10	 	 "strings"

				11	 	 "sync"

				12)

				13	

				14	 var	mimeTypes	=	map[string]string{

				15	 	 ".css":		"text/css;	charset=utf-8",

				16	 	 ".gif":		"image/gif",

				17	 	 ".htm":		"text/html;	charset=utf-8",

				18	 	 ".html":	"text/html;	charset=utf-8",

				19	 	 ".jpg":		"image/jpeg",

				20	 	 ".js":			"application/x-javascript",

				21	 	 ".pdf":		"application/pdf",

				22	 	 ".png":		"image/png",

				23	 	 ".xml":		"text/xml;	charset=utf-8",

				24	 }

				25	

				26	 var	mimeLock	sync.RWMutex

				27	

				28	 var	once	sync.Once

				29	

				30	 //	TypeByExtension	returns	the	MIME	type	associated	with	the	file	extension	ext.

				31	 //	The	extension	ext	should	begin	with	a	leading	dot,	as	in	".html".

				32	 //	When	ext	has	no	associated	type,	TypeByExtension	returns	"".

				33	 //

				34	 //	The	built-in	table	is	small	but	on	unix	it	is	augmented	by	the	local

				35	 //	system's	mime.types	file(s)	if	available	under	one	or	more	of	these

				36	 //	names:

				37	 //

				38	 //			/etc/mime.types

				39	 //			/etc/apache2/mime.types

				40	 //			/etc/apache/mime.types

				41	 //

				42	 //	Windows	system	mime	types	are	extracted	from	registry.

				43	 //

				44	 //	Text	types	have	the	charset	parameter	set	to	"utf-8"	by	default.

				45	 func	TypeByExtension(ext	string)	string	{

				46	 	 once.Do(initMime)

				47	 	 mimeLock.RLock()

				48	 	 typename	:=	mimeTypes[ext]

				49	 	 mimeLock.RUnlock()

				50	 	 return	typename

				51	 }

				52	

				53	 //	AddExtensionType	sets	the	MIME	type	associated	with

				54	 //	the	extension	ext	to	typ.		The	extension	should	begin	with

				55	 //	a	leading	dot,	as	in	".html".

				56	 func	AddExtensionType(ext,	typ	string)	error	{

				57	 	 if	ext	==	""	||	ext[0]	!=	'.'	{

				58	 	 	 return	fmt.Errorf(`mime:	extension	"%s"	misses	dot`,	ext)

				59	 	 }

				60	 	 once.Do(initMime)

				61	 	 return	setExtensionType(ext,	typ)

				62	 }

				63	

				64	 func	setExtensionType(extension,	mimeType	string)	error	{

				65	 	 _,	param,	err	:=	ParseMediaType(mimeType)

				66	 	 if	err	!=	nil	{

				67	 	 	 return	err

				68	 	 }

				69	 	 if	strings.HasPrefix(mimeType,	"text/")	&&	param["charset"]	==	""	{

				70	 	 	 param["charset"]	=	"utf-8"

				71	 	 	 mimeType	=	FormatMediaType(mimeType,	param)

				72	 	 }

				73	 	 mimeLock.Lock()

				74	 	 mimeTypes[extension]	=	mimeType

				75	 	 mimeLock.Unlock()

				76	 	 return	nil

				77	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/mime/type_unix.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd	plan9

					6	

					7	 package	mime

					8	

					9	 import	(

				10	 	 "bufio"

				11	 	 "os"

				12	 	 "strings"

				13)

				14	

				15	 var	typeFiles	=	[]string{

				16	 	 "/etc/mime.types",

				17	 	 "/etc/apache2/mime.types",

				18	 	 "/etc/apache/mime.types",

				19	 }

				20	

				21	 func	loadMimeFile(filename	string)	{

				22	 	 f,	err	:=	os.Open(filename)

				23	 	 if	err	!=	nil	{

				24	 	 	 return

				25	 	 }

				26	

				27	 	 reader	:=	bufio.NewReader(f)

				28	 	 for	{

				29	 	 	 line,	err	:=	reader.ReadString('\n')

				30	 	 	 if	err	!=	nil	{

				31	 	 	 	 f.Close()

				32	 	 	 	 return

				33	 	 	 }

				34	 	 	 fields	:=	strings.Fields(line)

				35	 	 	 if	len(fields)	<=	1	||	fields[0][0]	==	'#'	{

				36	 	 	 	 continue

				37	 	 	 }

				38	 	 	 mimeType	:=	fields[0]

				39	 	 	 for	_,	ext	:=	range	fields[1:]	{

				40	 	 	 	 if	ext[0]	==	'#'	{

				41	 	 	 	 	 break

				42	 	 	 	 }

				43	 	 	 	 setExtensionType("."+ext,	mimeType)

				44	 	 	 }

				45	 	 }

				46	 }

				47	

				48	 func	initMime()	{

				49	 	 for	_,	filename	:=	range	typeFiles	{

				50	 	 	 loadMimeFile(filename)

				51	 	 }

				52	 }

				53	

				54	 func	initMimeForTests()	map[string]string	{

				55	 	 typeFiles	=	[]string{"test.types"}

				56	 	 return	map[string]string{

				57	 	 	 ".t1":		"application/test",

				58	 	 	 ".t2":		"text/test;	charset=utf-8",

				59	 	 	 ".png":	"image/png",

				60	 	 }

				61	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/mime/multipart/formdata.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	multipart

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "errors"

				10	 	 "io"

				11	 	 "io/ioutil"

				12	 	 "net/textproto"

				13	 	 "os"

				14)

				15	

				16	 //	TODO(adg,bradfitz):	find	a	way	to	unify	the	DoS-prevention	strategy	here

				17	 //	with	that	of	the	http	package's	ParseForm.

				18	

				19	 //	ReadForm	parses	an	entire	multipart	message	whose	parts	have

				20	 //	a	Content-Disposition	of	"form-data".

				21	 //	It	stores	up	to	maxMemory	bytes	of	the	file	parts	in	memory

				22	 //	and	the	remainder	on	disk	in	temporary	files.

				23	 func	(r	*Reader)	ReadForm(maxMemory	int64)	(f	*Form,	err	error)	{

				24	 	 form	:=	&Form{make(map[string][]string),	make(map[string][]*FileHeader)}

				25	 	 defer	func()	{

				26	 	 	 if	err	!=	nil	{

				27	 	 	 	 form.RemoveAll()

				28	 	 	 }

				29	 	 }()

				30	

				31	 	 maxValueBytes	:=	int64(10	<<	20)	//	10	MB	is	a	lot	of	text.

				32	 	 for	{

				33	 	 	 p,	err	:=	r.NextPart()

				34	 	 	 if	err	==	io.EOF	{

				35	 	 	 	 break

				36	 	 	 }

				37	 	 	 if	err	!=	nil	{

				38	 	 	 	 return	nil,	err

				39	 	 	 }

				40	

				41	 	 	 name	:=	p.FormName()

				42	 	 	 if	name	==	""	{

				43	 	 	 	 continue

				44	 	 	 }

				45	 	 	 filename	:=	p.FileName()

				46	

				47	 	 	 var	b	bytes.Buffer

				48	

				49	 	 	 if	filename	==	""	{

				50	 	 	 	 //	value,	store	as	string	in	memory

				51	 	 	 	 n,	err	:=	io.CopyN(&b,	p,	maxValueBytes)

				52	 	 	 	 if	err	!=	nil	&&	err	!=	io.EOF	{

				53	 	 	 	 	 return	nil,	err

				54	 	 	 	 }

				55	 	 	 	 maxValueBytes	-=	n

				56	 	 	 	 if	maxValueBytes	==	0	{

				57	 	 	 	 	 return	nil,	errors.New("multipart:	message	too	large")

				58	 	 	 	 }

				59	 	 	 	 form.Value[name]	=	append(form.Value[name],	b.String())

				60	 	 	 	 continue

				61	 	 	 }

				62	

				63	 	 	 //	file,	store	in	memory	or	on	disk

				64	 	 	 fh	:=	&FileHeader{

				65	 	 	 	 Filename:	filename,

				66	 	 	 	 Header:			p.Header,

				67	 	 	 }

				68	 	 	 n,	err	:=	io.CopyN(&b,	p,	maxMemory+1)

				69	 	 	 if	err	!=	nil	&&	err	!=	io.EOF	{

				70	 	 	 	 return	nil,	err

				71	 	 	 }

				72	 	 	 if	n	>	maxMemory	{

				73	 	 	 	 //	too	big,	write	to	disk	and	flush	buffer

				74	 	 	 	 file,	err	:=	ioutil.TempFile("",	"multipart-")

				75	 	 	 	 if	err	!=	nil	{

				76	 	 	 	 	 return	nil,	err

				77	 	 	 	 }

				78	 	 	 	 defer	file.Close()

				79	 	 	 	 _,	err	=	io.Copy(file,	io.MultiReader(&b,	p))

				80	 	 	 	 if	err	!=	nil	{

				81	 	 	 	 	 os.Remove(file.Name())

				82	 	 	 	 	 return	nil,	err

				83	 	 	 	 }

				84	 	 	 	 fh.tmpfile	=	file.Name()

				85	 	 	 }	else	{

				86	 	 	 	 fh.content	=	b.Bytes()

				87	 	 	 	 maxMemory	-=	n

				88	 	 	 }

				89	 	 	 form.File[name]	=	append(form.File[name],	fh)

				90	 	 }

				91	

				92	 	 return	form,	nil

				93	 }

				94	

				95	 //	Form	is	a	parsed	multipart	form.

				96	 //	Its	File	parts	are	stored	either	in	memory	or	on	disk,

				97	 //	and	are	accessible	via	the	*FileHeader's	Open	method.

				98	 //	Its	Value	parts	are	stored	as	strings.

				99	 //	Both	are	keyed	by	field	name.

			100	 type	Form	struct	{

			101	 	 Value	map[string][]string

			102	 	 File		map[string][]*FileHeader

			103	 }

			104	

			105	 //	RemoveAll	removes	any	temporary	files	associated	with	a	Form.

			106	 func	(f	*Form)	RemoveAll()	error	{

			107	 	 var	err	error

			108	 	 for	_,	fhs	:=	range	f.File	{

			109	 	 	 for	_,	fh	:=	range	fhs	{

			110	 	 	 	 if	fh.tmpfile	!=	""	{

			111	 	 	 	 	 e	:=	os.Remove(fh.tmpfile)

			112	 	 	 	 	 if	e	!=	nil	&&	err	==	nil	{

			113	 	 	 	 	 	 err	=	e

			114	 	 	 	 	 }

			115	 	 	 	 }

			116	 	 	 }

			117	 	 }

			118	 	 return	err

			119	 }

			120	

			121	 //	A	FileHeader	describes	a	file	part	of	a	multipart	request.

			122	 type	FileHeader	struct	{

			123	 	 Filename	string

			124	 	 Header			textproto.MIMEHeader

			125	

			126	 	 content	[]byte

			127	 	 tmpfile	string

			128	 }

			129	

			130	 //	Open	opens	and	returns	the	FileHeader's	associated	File.

			131	 func	(fh	*FileHeader)	Open()	(File,	error)	{

			132	 	 if	b	:=	fh.content;	b	!=	nil	{

			133	 	 	 r	:=	io.NewSectionReader(bytes.NewReader(b),	0,	int64(len(b)))

			134	 	 	 return	sectionReadCloser{r},	nil

			135	 	 }

			136	 	 return	os.Open(fh.tmpfile)

			137	 }

			138	

			139	 //	File	is	an	interface	to	access	the	file	part	of	a	multipart	message.

			140	 //	Its	contents	may	be	either	stored	in	memory	or	on	disk.

			141	 //	If	stored	on	disk,	the	File's	underlying	concrete	type	will	be	an	*os.File.

			142	 type	File	interface	{

			143	 	 io.Reader

			144	 	 io.ReaderAt

			145	 	 io.Seeker

			146	 	 io.Closer

			147	 }

			148	

			149	 //	helper	types	to	turn	a	[]byte	into	a	File

			150	

			151	 type	sectionReadCloser	struct	{

			152	 	 *io.SectionReader

			153	 }

			154	

			155	 func	(rc	sectionReadCloser)	Close()	error	{

			156	 	 return	nil

			157	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/mime/multipart/multipart.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	 //

					5	

					6	 /*

					7	 Package	multipart	implements	MIME	multipart	parsing,	as	defined	in	RFC

					8	 2046.

					9	

				10	 The	implementation	is	sufficient	for	HTTP	(RFC	2388)	and	the	multipart

				11	 bodies	generated	by	popular	browsers.

				12	 */

				13	 package	multipart

				14	

				15	 import	(

				16	 	 "bufio"

				17	 	 "bytes"

				18	 	 "fmt"

				19	 	 "io"

				20	 	 "io/ioutil"

				21	 	 "mime"

				22	 	 "net/textproto"

				23)

				24	

				25	 //	TODO(bradfitz):	inline	these	once	the	compiler	can	inline	them	in

				26	 //	read-only	situation	(such	as	bytes.HasSuffix)

				27	 var	lf	=	[]byte("\n")

				28	 var	crlf	=	[]byte("\r\n")

				29	

				30	 var	emptyParams	=	make(map[string]string)

				31	

				32	 //	A	Part	represents	a	single	part	in	a	multipart	body.

				33	 type	Part	struct	{

				34	 	 //	The	headers	of	the	body,	if	any,	with	the	keys	canonicalized

				35	 	 //	in	the	same	fashion	that	the	Go	http.Request	headers	are.

				36	 	 //	i.e.	"foo-bar"	changes	case	to	"Foo-Bar"

				37	 	 Header	textproto.MIMEHeader

				38	

				39	 	 buffer	*bytes.Buffer

				40	 	 mr					*Reader

				41	

				42	 	 disposition							string

				43	 	 dispositionParams	map[string]string

				44	 }

				45	

				46	 //	FormName	returns	the	name	parameter	if	p	has	a	Content-Disposition

				47	 //	of	type	"form-data".		Otherwise	it	returns	the	empty	string.

				48	 func	(p	*Part)	FormName()	string	{

				49	 	 //	See	http://tools.ietf.org/html/rfc2183	section	2	for	EBNF

				50	 	 //	of	Content-Disposition	value	format.

				51	 	 if	p.dispositionParams	==	nil	{

				52	 	 	 p.parseContentDisposition()

				53	 	 }

				54	 	 if	p.disposition	!=	"form-data"	{

				55	 	 	 return	""

				56	 	 }

				57	 	 return	p.dispositionParams["name"]

				58	 }

				59	

				60	 //	FileName	returns	the	filename	parameter	of	the	Part's

				61	 //	Content-Disposition	header.

				62	 func	(p	*Part)	FileName()	string	{

				63	 	 if	p.dispositionParams	==	nil	{

				64	 	 	 p.parseContentDisposition()

				65	 	 }

				66	 	 return	p.dispositionParams["filename"]

				67	 }

				68	

				69	 func	(p	*Part)	parseContentDisposition()	{

				70	 	 v	:=	p.Header.Get("Content-Disposition")

				71	 	 var	err	error

				72	 	 p.disposition,	p.dispositionParams,	err	=	mime.ParseMediaType(v)

				73	 	 if	err	!=	nil	{

				74	 	 	 p.dispositionParams	=	emptyParams

				75	 	 }

				76	 }

				77	

				78	 //	NewReader	creates	a	new	multipart	Reader	reading	from	r	using	the

				79	 //	given	MIME	boundary.

				80	 func	NewReader(reader	io.Reader,	boundary	string)	*Reader	{

				81	 	 b	:=	[]byte("\r\n--"	+	boundary	+	"--")

				82	 	 return	&Reader{

				83	 	 	 bufReader:	bufio.NewReader(reader),

				84	

				85	 	 	 nl:															b[:2],

				86	 	 	 nlDashBoundary:			b[:len(b)-2],

				87	 	 	 dashBoundaryDash:	b[2:],

				88	 	 	 dashBoundary:					b[2	:	len(b)-2],

				89	 	 }

				90	 }

				91	

				92	 func	newPart(mr	*Reader)	(*Part,	error)	{

				93	 	 bp	:=	&Part{

				94	 	 	 Header:	make(map[string][]string),

				95	 	 	 mr:					mr,

				96	 	 	 buffer:	new(bytes.Buffer),

				97	 	 }

				98	 	 if	err	:=	bp.populateHeaders();	err	!=	nil	{

				99	 	 	 return	nil,	err

			100	 	 }

			101	 	 return	bp,	nil

			102	 }

			103	

			104	 func	(bp	*Part)	populateHeaders()	error	{

			105	 	 r	:=	textproto.NewReader(bp.mr.bufReader)

			106	 	 header,	err	:=	r.ReadMIMEHeader()

			107	 	 if	err	==	nil	{

			108	 	 	 bp.Header	=	header

			109	 	 }

			110	 	 return	err

			111	 }

			112	

			113	 //	Read	reads	the	body	of	a	part,	after	its	headers	and	before	the

			114	 //	next	part	(if	any)	begins.

			115	 func	(p	*Part)	Read(d	[]byte)	(n	int,	err	error)	{

			116	 	 if	p.buffer.Len()	>=	len(d)	{

			117	 	 	 //	Internal	buffer	of	unconsumed	data	is	large	enough	for

			118	 	 	 //	the	read	request.		No	need	to	parse	more	at	the	moment.

			119	 	 	 return	p.buffer.Read(d)

			120	 	 }

			121	 	 peek,	err	:=	p.mr.bufReader.Peek(4096)	//	TODO(bradfitz):	add	buffer	size	accessor

			122	 	 unexpectedEof	:=	err	==	io.EOF

			123	 	 if	err	!=	nil	&&	!unexpectedEof	{

			124	 	 	 return	0,	fmt.Errorf("multipart:	Part	Read:	%v",	err)

			125	 	 }

			126	 	 if	peek	==	nil	{

			127	 	 	 panic("nil	peek	buf")

			128	 	 }

			129	

			130	 	 //	Search	the	peek	buffer	for	"\r\n--boundary".	If	found,

			131	 	 //	consume	everything	up	to	the	boundary.	If	not,	consume	only

			132	 	 //	as	much	of	the	peek	buffer	as	cannot	hold	the	boundary

			133	 	 //	string.

			134	 	 nCopy	:=	0

			135	 	 foundBoundary	:=	false

			136	 	 if	idx	:=	bytes.Index(peek,	p.mr.nlDashBoundary);	idx	!=	-1	{

			137	 	 	 nCopy	=	idx

			138	 	 	 foundBoundary	=	true

			139	 	 }	else	if	safeCount	:=	len(peek)	-	len(p.mr.nlDashBoundary);	safeCount	>	0	{

			140	 	 	 nCopy	=	safeCount

			141	 	 }	else	if	unexpectedEof	{

			142	 	 	 //	If	we've	run	out	of	peek	buffer	and	the	boundary

			143	 	 	 //	wasn't	found	(and	can't	possibly	fit),	we	must	have

			144	 	 	 //	hit	the	end	of	the	file	unexpectedly.

			145	 	 	 return	0,	io.ErrUnexpectedEOF

			146	 	 }

			147	 	 if	nCopy	>	0	{

			148	 	 	 if	_,	err	:=	io.CopyN(p.buffer,	p.mr.bufReader,	int64(nCopy));	err	!=	nil	{

			149	 	 	 	 return	0,	err

			150	 	 	 }

			151	 	 }

			152	 	 n,	err	=	p.buffer.Read(d)

			153	 	 if	err	==	io.EOF	&&	!foundBoundary	{

			154	 	 	 //	If	the	boundary	hasn't	been	reached	there's	more	to

			155	 	 	 //	read,	so	don't	pass	through	an	EOF	from	the	buffer

			156	 	 	 err	=	nil

			157	 	 }

			158	 	 return

			159	 }

			160	

			161	 func	(p	*Part)	Close()	error	{

			162	 	 io.Copy(ioutil.Discard,	p)

			163	 	 return	nil

			164	 }

			165	

			166	 //	Reader	is	an	iterator	over	parts	in	a	MIME	multipart	body.

			167	 //	Reader's	underlying	parser	consumes	its	input	as	needed.		Seeking

			168	 //	isn't	supported.

			169	 type	Reader	struct	{

			170	 	 bufReader	*bufio.Reader

			171	

			172	 	 currentPart	*Part

			173	 	 partsRead			int

			174	

			175	 	 nl,	nlDashBoundary,	dashBoundaryDash,	dashBoundary	[]byte

			176	 }

			177	

			178	 //	NextPart	returns	the	next	part	in	the	multipart	or	an	error.

			179	 //	When	there	are	no	more	parts,	the	error	io.EOF	is	returned.

			180	 func	(r	*Reader)	NextPart()	(*Part,	error)	{

			181	 	 if	r.currentPart	!=	nil	{

			182	 	 	 r.currentPart.Close()

			183	 	 }

			184	

			185	 	 expectNewPart	:=	false

			186	 	 for	{

			187	 	 	 line,	err	:=	r.bufReader.ReadSlice('\n')

			188	 	 	 if	err	==	io.EOF	&&	bytes.Equal(line,	r.dashBoundaryDash)	{

			189	 	 	 	 //	If	the	buffer	ends	in	"--boundary--"	without	the

			190	 	 	 	 //	trailing	"\r\n",	ReadSlice	will	return	an	error

			191	 	 	 	 //	(since	it's	missing	the	'\n'),	but	this	is	a	valid

			192	 	 	 	 //	multipart	EOF	so	we	need	to	return	io.EOF	instead	of

			193	 	 	 	 //	a	fmt-wrapped	one.

			194	 	 	 	 return	nil,	io.EOF

			195	 	 	 }

			196	 	 	 if	err	!=	nil	{

			197	 	 	 	 return	nil,	fmt.Errorf("multipart:	NextPart:	%v",	err)

			198	 	 	 }

			199	

			200	 	 	 if	r.isBoundaryDelimiterLine(line)	{

			201	 	 	 	 r.partsRead++

			202	 	 	 	 bp,	err	:=	newPart(r)

			203	 	 	 	 if	err	!=	nil	{

			204	 	 	 	 	 return	nil,	err

			205	 	 	 	 }

			206	 	 	 	 r.currentPart	=	bp

			207	 	 	 	 return	bp,	nil

			208	 	 	 }

			209	

			210	 	 	 if	hasPrefixThenNewline(line,	r.dashBoundaryDash)	{

			211	 	 	 	 //	Expected	EOF

			212	 	 	 	 return	nil,	io.EOF

			213	 	 	 }

			214	

			215	 	 	 if	expectNewPart	{

			216	 	 	 	 return	nil,	fmt.Errorf("multipart:	expecting	a	new	Part;	got	line	%q",	string(line))

			217	 	 	 }

			218	

			219	 	 	 if	r.partsRead	==	0	{

			220	 	 	 	 //	skip	line

			221	 	 	 	 continue

			222	 	 	 }

			223	

			224	 	 	 //	Consume	the	"\n"	or	"\r\n"	separator	between	the

			225	 	 	 //	body	of	the	previous	part	and	the	boundary	line	we

			226	 	 	 //	now	expect	will	follow.	(either	a	new	part	or	the

			227	 	 	 //	end	boundary)

			228	 	 	 if	bytes.Equal(line,	r.nl)	{

			229	 	 	 	 expectNewPart	=	true

			230	 	 	 	 continue

			231	 	 	 }

			232	

			233	 	 	 return	nil,	fmt.Errorf("multipart:	unexpected	line	in	Next():	%q",	line)

			234	 	 }

			235	 	 panic("unreachable")

			236	 }

			237	

			238	 func	(mr	*Reader)	isBoundaryDelimiterLine(line	[]byte)	bool	{

			239	 	 //	http://tools.ietf.org/html/rfc2046#section-5.1

			240	 	 //			The	boundary	delimiter	line	is	then	defined	as	a	line

			241	 	 //			consisting	entirely	of	two	hyphen	characters	("-",

			242	 	 //			decimal	value	45)	followed	by	the	boundary	parameter

			243	 	 //			value	from	the	Content-Type	header	field,	optional	linear

			244	 	 //			whitespace,	and	a	terminating	CRLF.

			245	 	 if	!bytes.HasPrefix(line,	mr.dashBoundary)	{

			246	 	 	 return	false

			247	 	 }

			248	 	 if	bytes.HasSuffix(line,	mr.nl)	{

			249	 	 	 return	onlyHorizontalWhitespace(line[len(mr.dashBoundary)	:	len(line)-len(mr.nl)])

			250	 	 }

			251	 	 //	Violate	the	spec	and	also	support	newlines	without	the

			252	 	 //	carriage	return...

			253	 	 if	mr.partsRead	==	0	&&	bytes.HasSuffix(line,	lf)	{

			254	 	 	 if	onlyHorizontalWhitespace(line[len(mr.dashBoundary)	:	len(line)-1])	{

			255	 	 	 	 mr.nl	=	mr.nl[1:]

			256	 	 	 	 mr.nlDashBoundary	=	mr.nlDashBoundary[1:]

			257	 	 	 	 return	true

			258	 	 	 }

			259	 	 }

			260	 	 return	false

			261	 }

			262	

			263	 func	onlyHorizontalWhitespace(s	[]byte)	bool	{

			264	 	 for	_,	b	:=	range	s	{

			265	 	 	 if	b	!=	'	'	&&	b	!=	'\t'	{

			266	 	 	 	 return	false

			267	 	 	 }

			268	 	 }

			269	 	 return	true

			270	 }

			271	

			272	 func	hasPrefixThenNewline(s,	prefix	[]byte)	bool	{

			273	 	 return	bytes.HasPrefix(s,	prefix)	&&

			274	 	 	 (len(s)	==	len(prefix)+1	&&	s[len(s)-1]	==	'\n'	||

			275	 	 	 	 len(s)	==	len(prefix)+2	&&	bytes.HasSuffix(s,	crlf))

			276	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/mime/multipart/writer.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	multipart

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "crypto/rand"

				10	 	 "errors"

				11	 	 "fmt"

				12	 	 "io"

				13	 	 "net/textproto"

				14	 	 "strings"

				15)

				16	

				17	 //	A	Writer	generates	multipart	messages.

				18	 type	Writer	struct	{

				19	 	 w								io.Writer

				20	 	 boundary	string

				21	 	 lastpart	*part

				22	 }

				23	

				24	 //	NewWriter	returns	a	new	multipart	Writer	with	a	random	boundary,

				25	 //	writing	to	w.

				26	 func	NewWriter(w	io.Writer)	*Writer	{

				27	 	 return	&Writer{

				28	 	 	 w:								w,

				29	 	 	 boundary:	randomBoundary(),

				30	 	 }

				31	 }

				32	

				33	 //	Boundary	returns	the	Writer's	randomly	selected	boundary	string.

				34	 func	(w	*Writer)	Boundary()	string	{

				35	 	 return	w.boundary

				36	 }

				37	

				38	 //	FormDataContentType	returns	the	Content-Type	for	an	HTTP

				39	 //	multipart/form-data	with	this	Writer's	Boundary.

				40	 func	(w	*Writer)	FormDataContentType()	string	{

				41	 	 return	"multipart/form-data;	boundary="	+	w.boundary

				42	 }

				43	

				44	 func	randomBoundary()	string	{

				45	 	 var	buf	[30]byte

				46	 	 _,	err	:=	io.ReadFull(rand.Reader,	buf[:])

				47	 	 if	err	!=	nil	{

				48	 	 	 panic(err)

				49	 	 }

				50	 	 return	fmt.Sprintf("%x",	buf[:])

				51	 }

				52	

				53	 //	CreatePart	creates	a	new	multipart	section	with	the	provided

				54	 //	header.	The	body	of	the	part	should	be	written	to	the	returned

				55	 //	Writer.	After	calling	CreatePart,	any	previous	part	may	no	longer

				56	 //	be	written	to.

				57	 func	(w	*Writer)	CreatePart(header	textproto.MIMEHeader)	(io.Writer,	error)	{

				58	 	 if	w.lastpart	!=	nil	{

				59	 	 	 if	err	:=	w.lastpart.close();	err	!=	nil	{

				60	 	 	 	 return	nil,	err

				61	 	 	 }

				62	 	 }

				63	 	 var	b	bytes.Buffer

				64	 	 if	w.lastpart	!=	nil	{

				65	 	 	 fmt.Fprintf(&b,	"\r\n--%s\r\n",	w.boundary)

				66	 	 }	else	{

				67	 	 	 fmt.Fprintf(&b,	"--%s\r\n",	w.boundary)

				68	 	 }

				69	 	 //	TODO(bradfitz):	move	this	to	textproto.MimeHeader.Write(w),	have	it	sort

				70	 	 //	and	clean,	like	http.Header.Write(w)	does.

				71	 	 for	k,	vv	:=	range	header	{

				72	 	 	 for	_,	v	:=	range	vv	{

				73	 	 	 	 fmt.Fprintf(&b,	"%s:	%s\r\n",	k,	v)

				74	 	 	 }

				75	 	 }

				76	 	 fmt.Fprintf(&b,	"\r\n")

				77	 	 _,	err	:=	io.Copy(w.w,	&b)

				78	 	 if	err	!=	nil	{

				79	 	 	 return	nil,	err

				80	 	 }

				81	 	 p	:=	&part{

				82	 	 	 mw:	w,

				83	 	 }

				84	 	 w.lastpart	=	p

				85	 	 return	p,	nil

				86	 }

				87	

				88	 var	quoteEscaper	=	strings.NewReplacer("\\",	"\\\\",	`"`,	"\\\"")

				89	

				90	 func	escapeQuotes(s	string)	string	{

				91	 	 return	quoteEscaper.Replace(s)

				92	 }

				93	

				94	 //	CreateFormFile	is	a	convenience	wrapper	around	CreatePart.	It	creates

				95	 //	a	new	form-data	header	with	the	provided	field	name	and	file	name.

				96	 func	(w	*Writer)	CreateFormFile(fieldname,	filename	string)	(io.Writer,	error)	{

				97	 	 h	:=	make(textproto.MIMEHeader)

				98	 	 h.Set("Content-Disposition",

				99	 	 	 fmt.Sprintf(`form-data;	name="%s";	filename="%s"`,

			100	 	 	 	 escapeQuotes(fieldname),	escapeQuotes(filename)))

			101	 	 h.Set("Content-Type",	"application/octet-stream")

			102	 	 return	w.CreatePart(h)

			103	 }

			104	

			105	 //	CreateFormField	calls	CreatePart	with	a	header	using	the

			106	 //	given	field	name.

			107	 func	(w	*Writer)	CreateFormField(fieldname	string)	(io.Writer,	error)	{

			108	 	 h	:=	make(textproto.MIMEHeader)

			109	 	 h.Set("Content-Disposition",

			110	 	 	 fmt.Sprintf(`form-data;	name="%s"`,	escapeQuotes(fieldname)))

			111	 	 return	w.CreatePart(h)

			112	 }

			113	

			114	 //	WriteField	calls	CreateFormField	and	then	writes	the	given	value.

			115	 func	(w	*Writer)	WriteField(fieldname,	value	string)	error	{

			116	 	 p,	err	:=	w.CreateFormField(fieldname)

			117	 	 if	err	!=	nil	{

			118	 	 	 return	err

			119	 	 }

			120	 	 _,	err	=	p.Write([]byte(value))

			121	 	 return	err

			122	 }

			123	

			124	 //	Close	finishes	the	multipart	message	and	writes	the	trailing

			125	 //	boundary	end	line	to	the	output.

			126	 func	(w	*Writer)	Close()	error	{

			127	 	 if	w.lastpart	!=	nil	{

			128	 	 	 if	err	:=	w.lastpart.close();	err	!=	nil	{

			129	 	 	 	 return	err

			130	 	 	 }

			131	 	 	 w.lastpart	=	nil

			132	 	 }

			133	 	 _,	err	:=	fmt.Fprintf(w.w,	"\r\n--%s--\r\n",	w.boundary)

			134	 	 return	err

			135	 }

			136	

			137	 type	part	struct	{

			138	 	 mw					*Writer

			139	 	 closed	bool

			140	 	 we					error	//	last	error	that	occurred	writing

			141	 }

			142	

			143	 func	(p	*part)	close()	error	{

			144	 	 p.closed	=	true

			145	 	 return	p.we

			146	 }

			147	

			148	 func	(p	*part)	Write(d	[]byte)	(n	int,	err	error)	{

			149	 	 if	p.closed	{

			150	 	 	 return	0,	errors.New("multipart:	can't	write	to	finished	part")

			151	 	 }

			152	 	 n,	err	=	p.mw.w.Write(d)

			153	 	 if	err	!=	nil	{

			154	 	 	 p.we	=	err

			155	 	 }

			156	 	 return

			157	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/cgo_linux.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	net

					6	

					7	 /*

					8	 #include	<netdb.h>

					9	 */

				10	 import	"C"

				11	

				12	 func	cgoAddrInfoMask()	C.int	{

				13	 	 return	C.AI_CANONNAME	|	C.AI_V4MAPPED	|	C.AI_ALL

				14	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/cgo_unix.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux

					6	

					7	 package	net

					8	

					9	 /*

				10	 #include	<sys/types.h>

				11	 #include	<sys/socket.h>

				12	 #include	<netinet/in.h>

				13	 #include	<netdb.h>

				14	 #include	<stdlib.h>

				15	 #include	<unistd.h>

				16	 #include	<string.h>

				17	 */

				18	 import	"C"

				19	

				20	 import	(

				21	 	 "syscall"

				22	 	 "unsafe"

				23)

				24	

				25	 func	cgoLookupHost(name	string)	(addrs	[]string,	err	error,	completed	bool)	{

				26	 	 ip,	err,	completed	:=	cgoLookupIP(name)

				27	 	 for	_,	p	:=	range	ip	{

				28	 	 	 addrs	=	append(addrs,	p.String())

				29	 	 }

				30	 	 return

				31	 }

				32	

				33	 func	cgoLookupPort(net,	service	string)	(port	int,	err	error,	completed	bool)	{

				34	 	 var	res	*C.struct_addrinfo

				35	 	 var	hints	C.struct_addrinfo

				36	

				37	 	 switch	net	{

				38	 	 case	"":

				39	 	 	 //	no	hints

				40	 	 case	"tcp",	"tcp4",	"tcp6":

				41	 	 	 hints.ai_socktype	=	C.SOCK_STREAM

				42	 	 	 hints.ai_protocol	=	C.IPPROTO_TCP

				43	 	 case	"udp",	"udp4",	"udp6":

				44	 	 	 hints.ai_socktype	=	C.SOCK_DGRAM

				45	 	 	 hints.ai_protocol	=	C.IPPROTO_UDP

				46	 	 default:

				47	 	 	 return	0,	UnknownNetworkError(net),	true

				48	 	 }

				49	 	 if	len(net)	>=	4	{

				50	 	 	 switch	net[3]	{

				51	 	 	 case	'4':

				52	 	 	 	 hints.ai_family	=	C.AF_INET

				53	 	 	 case	'6':

				54	 	 	 	 hints.ai_family	=	C.AF_INET6

				55	 	 	 }

				56	 	 }

				57	

				58	 	 s	:=	C.CString(service)

				59	 	 defer	C.free(unsafe.Pointer(s))

				60	 	 if	C.getaddrinfo(nil,	s,	&hints,	&res)	==	0	{

				61	 	 	 defer	C.freeaddrinfo(res)

				62	 	 	 for	r	:=	res;	r	!=	nil;	r	=	r.ai_next	{

				63	 	 	 	 switch	r.ai_family	{

				64	 	 	 	 default:

				65	 	 	 	 	 continue

				66	 	 	 	 case	C.AF_INET:

				67	 	 	 	 	 sa	:=	(*syscall.RawSockaddrInet4)(unsafe.Pointer(r.ai_addr))

				68	 	 	 	 	 p	:=	(*[2]byte)(unsafe.Pointer(&sa.Port))

				69	 	 	 	 	 return	int(p[0])<<8	|	int(p[1]),	nil,	true

				70	 	 	 	 case	C.AF_INET6:

				71	 	 	 	 	 sa	:=	(*syscall.RawSockaddrInet6)(unsafe.Pointer(r.ai_addr))

				72	 	 	 	 	 p	:=	(*[2]byte)(unsafe.Pointer(&sa.Port))

				73	 	 	 	 	 return	int(p[0])<<8	|	int(p[1]),	nil,	true

				74	 	 	 	 }

				75	 	 	 }

				76	 	 }

				77	 	 return	0,	&AddrError{"unknown	port",	net	+	"/"	+	service},	true

				78	 }

				79	

				80	 func	cgoLookupIPCNAME(name	string)	(addrs	[]IP,	cname	string,	err	error,	completed	bool)	{

				81	 	 var	res	*C.struct_addrinfo

				82	 	 var	hints	C.struct_addrinfo

				83	

				84	 	 //	NOTE(rsc):	In	theory	there	are	approximately	balanced

				85	 	 //	arguments	for	and	against	including	AI_ADDRCONFIG

				86	 	 //	in	the	flags	(it	includes	IPv4	results	only	on	IPv4	systems,

				87	 	 //	and	similarly	for	IPv6),	but	in	practice	setting	it	causes

				88	 	 //	getaddrinfo	to	return	the	wrong	canonical	name	on	Linux.

				89	 	 //	So	definitely	leave	it	out.

				90	 	 hints.ai_flags	=	(C.AI_ALL	|	C.AI_V4MAPPED	|	C.AI_CANONNAME)	&	cgoAddrInfoMask()

				91	

				92	 	 h	:=	C.CString(name)

				93	 	 defer	C.free(unsafe.Pointer(h))

				94	 	 gerrno,	err	:=	C.getaddrinfo(h,	nil,	&hints,	&res)

				95	 	 if	gerrno	!=	0	{

				96	 	 	 var	str	string

				97	 	 	 if	gerrno	==	C.EAI_NONAME	{

				98	 	 	 	 str	=	noSuchHost

				99	 	 	 }	else	if	gerrno	==	C.EAI_SYSTEM	{

			100	 	 	 	 str	=	err.Error()

			101	 	 	 }	else	{

			102	 	 	 	 str	=	C.GoString(C.gai_strerror(gerrno))

			103	 	 	 }

			104	 	 	 return	nil,	"",	&DNSError{Err:	str,	Name:	name},	true

			105	 	 }

			106	 	 defer	C.freeaddrinfo(res)

			107	 	 if	res	!=	nil	{

			108	 	 	 cname	=	C.GoString(res.ai_canonname)

			109	 	 	 if	cname	==	""	{

			110	 	 	 	 cname	=	name

			111	 	 	 }

			112	 	 	 if	len(cname)	>	0	&&	cname[len(cname)-1]	!=	'.'	{

			113	 	 	 	 cname	+=	"."

			114	 	 	 }

			115	 	 }

			116	 	 for	r	:=	res;	r	!=	nil;	r	=	r.ai_next	{

			117	 	 	 //	Everything	comes	back	twice,	once	for	UDP	and	once	for	TCP.

			118	 	 	 if	r.ai_socktype	!=	C.SOCK_STREAM	{

			119	 	 	 	 continue

			120	 	 	 }

			121	 	 	 switch	r.ai_family	{

			122	 	 	 default:

			123	 	 	 	 continue

			124	 	 	 case	C.AF_INET:

			125	 	 	 	 sa	:=	(*syscall.RawSockaddrInet4)(unsafe.Pointer(r.ai_addr))

			126	 	 	 	 addrs	=	append(addrs,	copyIP(sa.Addr[:]))

			127	 	 	 case	C.AF_INET6:

			128	 	 	 	 sa	:=	(*syscall.RawSockaddrInet6)(unsafe.Pointer(r.ai_addr))

			129	 	 	 	 addrs	=	append(addrs,	copyIP(sa.Addr[:]))

			130	 	 	 }

			131	 	 }

			132	 	 return	addrs,	cname,	nil,	true

			133	 }

			134	

			135	 func	cgoLookupIP(name	string)	(addrs	[]IP,	err	error,	completed	bool)	{

			136	 	 addrs,	_,	err,	completed	=	cgoLookupIPCNAME(name)

			137	 	 return

			138	 }

			139	

			140	 func	cgoLookupCNAME(name	string)	(cname	string,	err	error,	completed	bool)	{

			141	 	 _,	cname,	err,	completed	=	cgoLookupIPCNAME(name)

			142	 	 return

			143	 }

			144	

			145	 func	copyIP(x	IP)	IP	{

			146	 	 y	:=	make(IP,	len(x))

			147	 	 copy(y,	x)

			148	 	 return	y

			149	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/dial.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	net

					6	

					7	 import	(

					8	 	 "time"

					9)

				10	

				11	 func	parseDialNetwork(net	string)	(afnet	string,	proto	int,	err	error)	{

				12	 	 i	:=	last(net,	':')

				13	 	 if	i	<	0	{	//	no	colon

				14	 	 	 switch	net	{

				15	 	 	 case	"tcp",	"tcp4",	"tcp6":

				16	 	 	 case	"udp",	"udp4",	"udp6":

				17	 	 	 case	"unix",	"unixgram",	"unixpacket":

				18	 	 	 default:

				19	 	 	 	 return	"",	0,	UnknownNetworkError(net)

				20	 	 	 }

				21	 	 	 return	net,	0,	nil

				22	 	 }

				23	 	 afnet	=	net[:i]

				24	 	 switch	afnet	{

				25	 	 case	"ip",	"ip4",	"ip6":

				26	 	 	 protostr	:=	net[i+1:]

				27	 	 	 proto,	i,	ok	:=	dtoi(protostr,	0)

				28	 	 	 if	!ok	||	i	!=	len(protostr)	{

				29	 	 	 	 proto,	err	=	lookupProtocol(protostr)

				30	 	 	 	 if	err	!=	nil	{

				31	 	 	 	 	 return	"",	0,	err

				32	 	 	 	 }

				33	 	 	 }

				34	 	 	 return	afnet,	proto,	nil

				35	 	 }

				36	 	 return	"",	0,	UnknownNetworkError(net)

				37	 }

				38	

				39	 func	resolveNetAddr(op,	net,	addr	string)	(afnet	string,	a	Addr,	err	error)	{

				40	 	 afnet,	_,	err	=	parseDialNetwork(net)

				41	 	 if	err	!=	nil	{

				42	 	 	 return	"",	nil,	&OpError{op,	net,	nil,	err}

				43	 	 }

				44	 	 if	op	==	"dial"	&&	addr	==	""	{

				45	 	 	 return	"",	nil,	&OpError{op,	net,	nil,	errMissingAddress}

				46	 	 }

				47	 	 switch	afnet	{

				48	 	 case	"tcp",	"tcp4",	"tcp6":

				49	 	 	 if	addr	!=	""	{

				50	 	 	 	 a,	err	=	ResolveTCPAddr(afnet,	addr)

				51	 	 	 }

				52	 	 case	"udp",	"udp4",	"udp6":

				53	 	 	 if	addr	!=	""	{

				54	 	 	 	 a,	err	=	ResolveUDPAddr(afnet,	addr)

				55	 	 	 }

				56	 	 case	"ip",	"ip4",	"ip6":

				57	 	 	 if	addr	!=	""	{

				58	 	 	 	 a,	err	=	ResolveIPAddr(afnet,	addr)

				59	 	 	 }

				60	 	 case	"unix",	"unixgram",	"unixpacket":

				61	 	 	 if	addr	!=	""	{

				62	 	 	 	 a,	err	=	ResolveUnixAddr(afnet,	addr)

				63	 	 	 }

				64	 	 }

				65	 	 return

				66	 }

				67	

				68	 //	Dial	connects	to	the	address	addr	on	the	network	net.

				69	 //

				70	 //	Known	networks	are	"tcp",	"tcp4"	(IPv4-only),	"tcp6"	(IPv6-only),

				71	 //	"udp",	"udp4"	(IPv4-only),	"udp6"	(IPv6-only),	"ip",	"ip4"

				72	 //	(IPv4-only),	"ip6"	(IPv6-only),	"unix"	and	"unixpacket".

				73	 //

				74	 //	For	TCP	and	UDP	networks,	addresses	have	the	form	host:port.

				75	 //	If	host	is	a	literal	IPv6	address,	it	must	be	enclosed

				76	 //	in	square	brackets.		The	functions	JoinHostPort	and	SplitHostPort

				77	 //	manipulate	addresses	in	this	form.

				78	 //

				79	 //	Examples:

				80	 //	 Dial("tcp",	"12.34.56.78:80")

				81	 //	 Dial("tcp",	"google.com:80")

				82	 //	 Dial("tcp",	"[de:ad:be:ef::ca:fe]:80")

				83	 //

				84	 //	For	IP	networks,	addr	must	be	"ip",	"ip4"	or	"ip6"	followed

				85	 //	by	a	colon	and	a	protocol	number	or	name.

				86	 //

				87	 //	Examples:

				88	 //	 Dial("ip4:1",	"127.0.0.1")

				89	 //	 Dial("ip6:ospf",	"::1")

				90	 //

				91	 func	Dial(net,	addr	string)	(Conn,	error)	{

				92	 	 _,	addri,	err	:=	resolveNetAddr("dial",	net,	addr)

				93	 	 if	err	!=	nil	{

				94	 	 	 return	nil,	err

				95	 	 }

				96	 	 return	dialAddr(net,	addr,	addri)

				97	 }

				98	

				99	 func	dialAddr(net,	addr	string,	addri	Addr)	(c	Conn,	err	error)	{

			100	 	 switch	ra	:=	addri.(type)	{

			101	 	 case	*TCPAddr:

			102	 	 	 c,	err	=	DialTCP(net,	nil,	ra)

			103	 	 case	*UDPAddr:

			104	 	 	 c,	err	=	DialUDP(net,	nil,	ra)

			105	 	 case	*IPAddr:

			106	 	 	 c,	err	=	DialIP(net,	nil,	ra)

			107	 	 case	*UnixAddr:

			108	 	 	 c,	err	=	DialUnix(net,	nil,	ra)

			109	 	 default:

			110	 	 	 err	=	&OpError{"dial",	net	+	"	"	+	addr,	nil,	UnknownNetworkError(net)}

			111	 	 }

			112	 	 if	err	!=	nil	{

			113	 	 	 return	nil,	err

			114	 	 }

			115	 	 return

			116	 }

			117	

			118	 //	DialTimeout	acts	like	Dial	but	takes	a	timeout.

			119	 //	The	timeout	includes	name	resolution,	if	required.

			120	 func	DialTimeout(net,	addr	string,	timeout	time.Duration)	(Conn,	error)	{

			121	 	 //	TODO(bradfitz):	the	timeout	should	be	pushed	down	into	the

			122	 	 //	net	package's	event	loop,	so	on	timeout	to	dead	hosts	we

			123	 	 //	don't	have	a	goroutine	sticking	around	for	the	default	of

			124	 	 //	~3	minutes.

			125	 	 t	:=	time.NewTimer(timeout)

			126	 	 defer	t.Stop()

			127	 	 type	pair	struct	{

			128	 	 	 Conn

			129	 	 	 error

			130	 	 }

			131	 	 ch	:=	make(chan	pair,	1)

			132	 	 resolvedAddr	:=	make(chan	Addr,	1)

			133	 	 go	func()	{

			134	 	 	 _,	addri,	err	:=	resolveNetAddr("dial",	net,	addr)

			135	 	 	 if	err	!=	nil	{

			136	 	 	 	 ch	<-	pair{nil,	err}

			137	 	 	 	 return

			138	 	 	 }

			139	 	 	 resolvedAddr	<-	addri	//	in	case	we	need	it	for	OpError

			140	 	 	 c,	err	:=	dialAddr(net,	addr,	addri)

			141	 	 	 ch	<-	pair{c,	err}

			142	 	 }()

			143	 	 select	{

			144	 	 case	<-t.C:

			145	 	 	 //	Try	to	use	the	real	Addr	in	our	OpError,	if	we	resolved	it

			146	 	 	 //	before	the	timeout.	Otherwise	we	just	use	stringAddr.

			147	 	 	 var	addri	Addr

			148	 	 	 select	{

			149	 	 	 case	a	:=	<-resolvedAddr:

			150	 	 	 	 addri	=	a

			151	 	 	 default:

			152	 	 	 	 addri	=	&stringAddr{net,	addr}

			153	 	 	 }

			154	 	 	 err	:=	&OpError{

			155	 	 	 	 Op:			"dial",

			156	 	 	 	 Net:		net,

			157	 	 	 	 Addr:	addri,

			158	 	 	 	 Err:		&timeoutError{},

			159	 	 	 }

			160	 	 	 return	nil,	err

			161	 	 case	p	:=	<-ch:

			162	 	 	 return	p.Conn,	p.error

			163	 	 }

			164	 	 panic("unreachable")

			165	 }

			166	

			167	 type	stringAddr	struct	{

			168	 	 net,	addr	string

			169	 }

			170	

			171	 func	(a	stringAddr)	Network()	string	{	return	a.net	}

			172	 func	(a	stringAddr)	String()	string		{	return	a.addr	}

			173	

			174	 //	Listen	announces	on	the	local	network	address	laddr.

			175	 //	The	network	string	net	must	be	a	stream-oriented	network:

			176	 //	"tcp",	"tcp4",	"tcp6",	or	"unix",	or	"unixpacket".

			177	 func	Listen(net,	laddr	string)	(Listener,	error)	{

			178	 	 afnet,	a,	err	:=	resolveNetAddr("listen",	net,	laddr)

			179	 	 if	err	!=	nil	{

			180	 	 	 return	nil,	err

			181	 	 }

			182	 	 switch	afnet	{

			183	 	 case	"tcp",	"tcp4",	"tcp6":

			184	 	 	 var	la	*TCPAddr

			185	 	 	 if	a	!=	nil	{

			186	 	 	 	 la	=	a.(*TCPAddr)

			187	 	 	 }

			188	 	 	 return	ListenTCP(net,	la)

			189	 	 case	"unix",	"unixpacket":

			190	 	 	 var	la	*UnixAddr

			191	 	 	 if	a	!=	nil	{

			192	 	 	 	 la	=	a.(*UnixAddr)

			193	 	 	 }

			194	 	 	 return	ListenUnix(net,	la)

			195	 	 }

			196	 	 return	nil,	UnknownNetworkError(net)

			197	 }

			198	

			199	 //	ListenPacket	announces	on	the	local	network	address	laddr.

			200	 //	The	network	string	net	must	be	a	packet-oriented	network:

			201	 //	"udp",	"udp4",	"udp6",	"ip",	"ip4",	"ip6"	or	"unixgram".

			202	 func	ListenPacket(net,	addr	string)	(PacketConn,	error)	{

			203	 	 afnet,	a,	err	:=	resolveNetAddr("listen",	net,	addr)

			204	 	 if	err	!=	nil	{

			205	 	 	 return	nil,	err

			206	 	 }

			207	 	 switch	afnet	{

			208	 	 case	"udp",	"udp4",	"udp6":

			209	 	 	 var	la	*UDPAddr

			210	 	 	 if	a	!=	nil	{

			211	 	 	 	 la	=	a.(*UDPAddr)

			212	 	 	 }

			213	 	 	 return	ListenUDP(net,	la)

			214	 	 case	"ip",	"ip4",	"ip6":

			215	 	 	 var	la	*IPAddr

			216	 	 	 if	a	!=	nil	{

			217	 	 	 	 la	=	a.(*IPAddr)

			218	 	 	 }

			219	 	 	 return	ListenIP(net,	la)

			220	 	 case	"unixgram":

			221	 	 	 var	la	*UnixAddr

			222	 	 	 if	a	!=	nil	{

			223	 	 	 	 la	=	a.(*UnixAddr)

			224	 	 	 }

			225	 	 	 return	DialUnix(net,	la,	nil)

			226	 	 }

			227	 	 return	nil,	UnknownNetworkError(net)

			228	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/dnsclient.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	net

					6	

					7	 import	(

					8	 	 "math/rand"

					9	 	 "sort"

				10)

				11	

				12	 //	DNSError	represents	a	DNS	lookup	error.

				13	 type	DNSError	struct	{

				14	 	 Err							string	//	description	of	the	error

				15	 	 Name						string	//	name	looked	for

				16	 	 Server				string	//	server	used

				17	 	 IsTimeout	bool

				18	 }

				19	

				20	 func	(e	*DNSError)	Error()	string	{

				21	 	 if	e	==	nil	{

				22	 	 	 return	"<nil>"

				23	 	 }

				24	 	 s	:=	"lookup	"	+	e.Name

				25	 	 if	e.Server	!=	""	{

				26	 	 	 s	+=	"	on	"	+	e.Server

				27	 	 }

				28	 	 s	+=	":	"	+	e.Err

				29	 	 return	s

				30	 }

				31	

				32	 func	(e	*DNSError)	Timeout()	bool			{	return	e.IsTimeout	}

				33	 func	(e	*DNSError)	Temporary()	bool	{	return	e.IsTimeout	}

				34	

				35	 const	noSuchHost	=	"no	such	host"

				36	

				37	 //	reverseaddr	returns	the	in-addr.arpa.	or	ip6.arpa.	hostname	of	the	IP

				38	 //	address	addr	suitable	for	rDNS	(PTR)	record	lookup	or	an	error	if	it	fails

				39	 //	to	parse	the	IP	address.

				40	 func	reverseaddr(addr	string)	(arpa	string,	err	error)	{

				41	 	 ip	:=	ParseIP(addr)

				42	 	 if	ip	==	nil	{

				43	 	 	 return	"",	&DNSError{Err:	"unrecognized	address",	Name:	addr}

				44	 	 }

				45	 	 if	ip.To4()	!=	nil	{

				46	 	 	 return	itoa(int(ip[15]))	+	"."	+	itoa(int(ip[14]))	+	"."	+	itoa(int(ip[13]))	+	"."	+

				47	 	 	 	 itoa(int(ip[12]))	+	".in-addr.arpa.",	nil

				48	 	 }

				49	 	 //	Must	be	IPv6

				50	 	 buf	:=	make([]byte,	0,	len(ip)*4+len("ip6.arpa."))

				51	 	 //	Add	it,	in	reverse,	to	the	buffer

				52	 	 for	i	:=	len(ip)	-	1;	i	>=	0;	i--	{

				53	 	 	 v	:=	ip[i]

				54	 	 	 buf	=	append(buf,	hexDigit[v&0xF])

				55	 	 	 buf	=	append(buf,	'.')

				56	 	 	 buf	=	append(buf,	hexDigit[v>>4])

				57	 	 	 buf	=	append(buf,	'.')

				58	 	 }

				59	 	 //	Append	"ip6.arpa."	and	return	(buf	already	has	the	final	.)

				60	 	 buf	=	append(buf,	"ip6.arpa."...)

				61	 	 return	string(buf),	nil

				62	 }

				63	

				64	 //	Find	answer	for	name	in	dns	message.

				65	 //	On	return,	if	err	==	nil,	addrs	!=	nil.

				66	 func	answer(name,	server	string,	dns	*dnsMsg,	qtype	uint16)	(cname	string,	addrs	[]dnsRR,	err	error)	{

				67	 	 addrs	=	make([]dnsRR,	0,	len(dns.answer))

				68	

				69	 	 if	dns.rcode	==	dnsRcodeNameError	&&	dns.recursion_available	{

				70	 	 	 return	"",	nil,	&DNSError{Err:	noSuchHost,	Name:	name}

				71	 	 }

				72	 	 if	dns.rcode	!=	dnsRcodeSuccess	{

				73	 	 	 //	None	of	the	error	codes	make	sense

				74	 	 	 //	for	the	query	we	sent.		If	we	didn't	get

				75	 	 	 //	a	name	error	and	we	didn't	get	success,

				76	 	 	 //	the	server	is	behaving	incorrectly.

				77	 	 	 return	"",	nil,	&DNSError{Err:	"server	misbehaving",	Name:	name,	Server:	server}

				78	 	 }

				79	

				80	 	 //	Look	for	the	name.

				81	 	 //	Presotto	says	it's	okay	to	assume	that	servers	listed	in

				82	 	 //	/etc/resolv.conf	are	recursive	resolvers.

				83	 	 //	We	asked	for	recursion,	so	it	should	have	included

				84	 	 //	all	the	answers	we	need	in	this	one	packet.

				85	 Cname:

				86	 	 for	cnameloop	:=	0;	cnameloop	<	10;	cnameloop++	{

				87	 	 	 addrs	=	addrs[0:0]

				88	 	 	 for	_,	rr	:=	range	dns.answer	{

				89	 	 	 	 if	_,	justHeader	:=	rr.(*dnsRR_Header);	justHeader	{

				90	 	 	 	 	 //	Corrupt	record:	we	only	have	a

				91	 	 	 	 	 //	header.	That	header	might	say	it's

				92	 	 	 	 	 //	of	type	qtype,	but	we	don't

				93	 	 	 	 	 //	actually	have	it.	Skip.

				94	 	 	 	 	 continue

				95	 	 	 	 }

				96	 	 	 	 h	:=	rr.Header()

				97	 	 	 	 if	h.Class	==	dnsClassINET	&&	h.Name	==	name	{

				98	 	 	 	 	 switch	h.Rrtype	{

				99	 	 	 	 	 case	qtype:

			100	 	 	 	 	 	 addrs	=	append(addrs,	rr)

			101	 	 	 	 	 case	dnsTypeCNAME:

			102	 	 	 	 	 	 //	redirect	to	cname

			103	 	 	 	 	 	 name	=	rr.(*dnsRR_CNAME).Cname

			104	 	 	 	 	 	 continue	Cname

			105	 	 	 	 	 }

			106	 	 	 	 }

			107	 	 	 }

			108	 	 	 if	len(addrs)	==	0	{

			109	 	 	 	 return	"",	nil,	&DNSError{Err:	noSuchHost,	Name:	name,	Server:	server}

			110	 	 	 }

			111	 	 	 return	name,	addrs,	nil

			112	 	 }

			113	

			114	 	 return	"",	nil,	&DNSError{Err:	"too	many	redirects",	Name:	name,	Server:	server}

			115	 }

			116	

			117	 func	isDomainName(s	string)	bool	{

			118	 	 //	See	RFC	1035,	RFC	3696.

			119	 	 if	len(s)	==	0	{

			120	 	 	 return	false

			121	 	 }

			122	 	 if	len(s)	>	255	{

			123	 	 	 return	false

			124	 	 }

			125	 	 if	s[len(s)-1]	!=	'.'	{	//	simplify	checking	loop:	make	name	end	in	dot

			126	 	 	 s	+=	"."

			127	 	 }

			128	

			129	 	 last	:=	byte('.')

			130	 	 ok	:=	false	//	ok	once	we've	seen	a	letter

			131	 	 partlen	:=	0

			132	 	 for	i	:=	0;	i	<	len(s);	i++	{

			133	 	 	 c	:=	s[i]

			134	 	 	 switch	{

			135	 	 	 default:

			136	 	 	 	 return	false

			137	 	 	 case	'a'	<=	c	&&	c	<=	'z'	||	'A'	<=	c	&&	c	<=	'Z'	||	c	==	'_':

			138	 	 	 	 ok	=	true

			139	 	 	 	 partlen++

			140	 	 	 case	'0'	<=	c	&&	c	<=	'9':

			141	 	 	 	 //	fine

			142	 	 	 	 partlen++

			143	 	 	 case	c	==	'-':

			144	 	 	 	 //	byte	before	dash	cannot	be	dot

			145	 	 	 	 if	last	==	'.'	{

			146	 	 	 	 	 return	false

			147	 	 	 	 }

			148	 	 	 	 partlen++

			149	 	 	 case	c	==	'.':

			150	 	 	 	 //	byte	before	dot	cannot	be	dot,	dash

			151	 	 	 	 if	last	==	'.'	||	last	==	'-'	{

			152	 	 	 	 	 return	false

			153	 	 	 	 }

			154	 	 	 	 if	partlen	>	63	||	partlen	==	0	{

			155	 	 	 	 	 return	false

			156	 	 	 	 }

			157	 	 	 	 partlen	=	0

			158	 	 	 }

			159	 	 	 last	=	c

			160	 	 }

			161	

			162	 	 return	ok

			163	 }

			164	

			165	 //	An	SRV	represents	a	single	DNS	SRV	record.

			166	 type	SRV	struct	{

			167	 	 Target			string

			168	 	 Port					uint16

			169	 	 Priority	uint16

			170	 	 Weight			uint16

			171	 }

			172	

			173	 //	byPriorityWeight	sorts	SRV	records	by	ascending	priority	and	weight.

			174	 type	byPriorityWeight	[]*SRV

			175	

			176	 func	(s	byPriorityWeight)	Len()	int	{	return	len(s)	}

			177	

			178	 func	(s	byPriorityWeight)	Swap(i,	j	int)	{	s[i],	s[j]	=	s[j],	s[i]	}

			179	

			180	 func	(s	byPriorityWeight)	Less(i,	j	int)	bool	{

			181	 	 return	s[i].Priority	<	s[j].Priority	||

			182	 	 	 (s[i].Priority	==	s[j].Priority	&&	s[i].Weight	<	s[j].Weight)

			183	 }

			184	

			185	 //	shuffleByWeight	shuffles	SRV	records	by	weight	using	the	algorithm

			186	 //	described	in	RFC	2782.		

			187	 func	(addrs	byPriorityWeight)	shuffleByWeight()	{

			188	 	 sum	:=	0

			189	 	 for	_,	addr	:=	range	addrs	{

			190	 	 	 sum	+=	int(addr.Weight)

			191	 	 }

			192	 	 for	sum	>	0	&&	len(addrs)	>	1	{

			193	 	 	 s	:=	0

			194	 	 	 n	:=	rand.Intn(sum	+	1)

			195	 	 	 for	i	:=	range	addrs	{

			196	 	 	 	 s	+=	int(addrs[i].Weight)

			197	 	 	 	 if	s	>=	n	{

			198	 	 	 	 	 if	i	>	0	{

			199	 	 	 	 	 	 t	:=	addrs[i]

			200	 	 	 	 	 	 copy(addrs[1:i+1],	addrs[0:i])

			201	 	 	 	 	 	 addrs[0]	=	t

			202	 	 	 	 	 }

			203	 	 	 	 	 break

			204	 	 	 	 }

			205	 	 	 }

			206	 	 	 sum	-=	int(addrs[0].Weight)

			207	 	 	 addrs	=	addrs[1:]

			208	 	 }

			209	 }

			210	

			211	 //	sort	reorders	SRV	records	as	specified	in	RFC	2782.

			212	 func	(addrs	byPriorityWeight)	sort()	{

			213	 	 sort.Sort(addrs)

			214	 	 i	:=	0

			215	 	 for	j	:=	1;	j	<	len(addrs);	j++	{

			216	 	 	 if	addrs[i].Priority	!=	addrs[j].Priority	{

			217	 	 	 	 addrs[i:j].shuffleByWeight()

			218	 	 	 	 i	=	j

			219	 	 	 }

			220	 	 }

			221	 	 addrs[i:].shuffleByWeight()

			222	 }

			223	

			224	 //	An	MX	represents	a	single	DNS	MX	record.

			225	 type	MX	struct	{

			226	 	 Host	string

			227	 	 Pref	uint16

			228	 }

			229	

			230	 //	byPref	implements	sort.Interface	to	sort	MX	records	by	preference

			231	 type	byPref	[]*MX

			232	

			233	 func	(s	byPref)	Len()	int	{	return	len(s)	}

			234	

			235	 func	(s	byPref)	Less(i,	j	int)	bool	{	return	s[i].Pref	<	s[j].Pref	}

			236	

			237	 func	(s	byPref)	Swap(i,	j	int)	{	s[i],	s[j]	=	s[j],	s[i]	}

			238	

			239	 //	sort	reorders	MX	records	as	specified	in	RFC	5321.

			240	 func	(s	byPref)	sort()	{

			241	 	 for	i	:=	range	s	{

			242	 	 	 j	:=	rand.Intn(i	+	1)

			243	 	 	 s[i],	s[j]	=	s[j],	s[i]

			244	 	 }

			245	 	 sort.Sort(s)

			246	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/dnsclient_unix.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 //	DNS	client:	see	RFC	1035.

					8	 //	Has	to	be	linked	into	package	net	for	Dial.

					9	

				10	 //	TODO(rsc):

				11	 //	 Check	periodically	whether	/etc/resolv.conf	has	changed.

				12	 //	 Could	potentially	handle	many	outstanding	lookups	faster.

				13	 //	 Could	have	a	small	cache.

				14	 //	 Random	UDP	source	port	(net.Dial	should	do	that	for	us).

				15	 //	 Random	request	IDs.

				16	

				17	 package	net

				18	

				19	 import	(

				20	 	 "math/rand"

				21	 	 "sync"

				22	 	 "time"

				23)

				24	

				25	 //	Send	a	request	on	the	connection	and	hope	for	a	reply.

				26	 //	Up	to	cfg.attempts	attempts.

				27	 func	exchange(cfg	*dnsConfig,	c	Conn,	name	string,	qtype	uint16)	(*dnsMsg,	error)	{

				28	 	 if	len(name)	>=	256	{

				29	 	 	 return	nil,	&DNSError{Err:	"name	too	long",	Name:	name}

				30	 	 }

				31	 	 out	:=	new(dnsMsg)

				32	 	 out.id	=	uint16(rand.Int())	^	uint16(time.Now().UnixNano())

				33	 	 out.question	=	[]dnsQuestion{

				34	 	 	 {name,	qtype,	dnsClassINET},

				35	 	 }

				36	 	 out.recursion_desired	=	true

				37	 	 msg,	ok	:=	out.Pack()

				38	 	 if	!ok	{

				39	 	 	 return	nil,	&DNSError{Err:	"internal	error	-	cannot	pack	message",	Name:	name}

				40	 	 }

				41	

				42	 	 for	attempt	:=	0;	attempt	<	cfg.attempts;	attempt++	{

				43	 	 	 n,	err	:=	c.Write(msg)

				44	 	 	 if	err	!=	nil	{

				45	 	 	 	 return	nil,	err

				46	 	 	 }

				47	

				48	 	 	 if	cfg.timeout	==	0	{

				49	 	 	 	 c.SetReadDeadline(time.Time{})

				50	 	 	 }	else	{

				51	 	 	 	 c.SetReadDeadline(time.Now().Add(time.Duration(cfg.timeout)	*	time.Second))

				52	 	 	 }

				53	

				54	 	 	 buf	:=	make([]byte,	2000)	//	More	than	enough.

				55	 	 	 n,	err	=	c.Read(buf)

				56	 	 	 if	err	!=	nil	{

				57	 	 	 	 if	e,	ok	:=	err.(Error);	ok	&&	e.Timeout()	{

				58	 	 	 	 	 continue

				59	 	 	 	 }

				60	 	 	 	 return	nil,	err

				61	 	 	 }

				62	 	 	 buf	=	buf[0:n]

				63	 	 	 in	:=	new(dnsMsg)

				64	 	 	 if	!in.Unpack(buf)	||	in.id	!=	out.id	{

				65	 	 	 	 continue

				66	 	 	 }

				67	 	 	 return	in,	nil

				68	 	 }

				69	 	 var	server	string

				70	 	 if	a	:=	c.RemoteAddr();	a	!=	nil	{

				71	 	 	 server	=	a.String()

				72	 	 }

				73	 	 return	nil,	&DNSError{Err:	"no	answer	from	server",	Name:	name,	Server:	server,	IsTimeout:	true}

				74	 }

				75	

				76	 //	Do	a	lookup	for	a	single	name,	which	must	be	rooted

				77	 //	(otherwise	answer	will	not	find	the	answers).

				78	 func	tryOneName(cfg	*dnsConfig,	name	string,	qtype	uint16)	(cname	string,	addrs	[]dnsRR,	err	error)	{

				79	 	 if	len(cfg.servers)	==	0	{

				80	 	 	 return	"",	nil,	&DNSError{Err:	"no	DNS	servers",	Name:	name}

				81	 	 }

				82	 	 for	i	:=	0;	i	<	len(cfg.servers);	i++	{

				83	 	 	 //	Calling	Dial	here	is	scary	--	we	have	to	be	sure

				84	 	 	 //	not	to	dial	a	name	that	will	require	a	DNS	lookup,

				85	 	 	 //	or	Dial	will	call	back	here	to	translate	it.

				86	 	 	 //	The	DNS	config	parser	has	already	checked	that

				87	 	 	 //	all	the	cfg.servers[i]	are	IP	addresses,	which

				88	 	 	 //	Dial	will	use	without	a	DNS	lookup.

				89	 	 	 server	:=	cfg.servers[i]	+	":53"

				90	 	 	 c,	cerr	:=	Dial("udp",	server)

				91	 	 	 if	cerr	!=	nil	{

				92	 	 	 	 err	=	cerr

				93	 	 	 	 continue

				94	 	 	 }

				95	 	 	 msg,	merr	:=	exchange(cfg,	c,	name,	qtype)

				96	 	 	 c.Close()

				97	 	 	 if	merr	!=	nil	{

				98	 	 	 	 err	=	merr

				99	 	 	 	 continue

			100	 	 	 }

			101	 	 	 cname,	addrs,	err	=	answer(name,	server,	msg,	qtype)

			102	 	 	 if	err	==	nil	||	err.(*DNSError).Err	==	noSuchHost	{

			103	 	 	 	 break

			104	 	 	 }

			105	 	 }

			106	 	 return

			107	 }

			108	

			109	 func	convertRR_A(records	[]dnsRR)	[]IP	{

			110	 	 addrs	:=	make([]IP,	len(records))

			111	 	 for	i,	rr	:=	range	records	{

			112	 	 	 a	:=	rr.(*dnsRR_A).A

			113	 	 	 addrs[i]	=	IPv4(byte(a>>24),	byte(a>>16),	byte(a>>8),	byte(a))

			114	 	 }

			115	 	 return	addrs

			116	 }

			117	

			118	 func	convertRR_AAAA(records	[]dnsRR)	[]IP	{

			119	 	 addrs	:=	make([]IP,	len(records))

			120	 	 for	i,	rr	:=	range	records	{

			121	 	 	 a	:=	make(IP,	IPv6len)

			122	 	 	 copy(a,	rr.(*dnsRR_AAAA).AAAA[:])

			123	 	 	 addrs[i]	=	a

			124	 	 }

			125	 	 return	addrs

			126	 }

			127	

			128	 var	cfg	*dnsConfig

			129	 var	dnserr	error

			130	

			131	 func	loadConfig()	{	cfg,	dnserr	=	dnsReadConfig()	}

			132	

			133	 var	onceLoadConfig	sync.Once

			134	

			135	 func	lookup(name	string,	qtype	uint16)	(cname	string,	addrs	[]dnsRR,	err	error)	{

			136	 	 if	!isDomainName(name)	{

			137	 	 	 return	name,	nil,	&DNSError{Err:	"invalid	domain	name",	Name:	name}

			138	 	 }

			139	 	 onceLoadConfig.Do(loadConfig)

			140	 	 if	dnserr	!=	nil	||	cfg	==	nil	{

			141	 	 	 err	=	dnserr

			142	 	 	 return

			143	 	 }

			144	 	 //	If	name	is	rooted	(trailing	dot)	or	has	enough	dots,

			145	 	 //	try	it	by	itself	first.

			146	 	 rooted	:=	len(name)	>	0	&&	name[len(name)-1]	==	'.'

			147	 	 if	rooted	||	count(name,	'.')	>=	cfg.ndots	{

			148	 	 	 rname	:=	name

			149	 	 	 if	!rooted	{

			150	 	 	 	 rname	+=	"."

			151	 	 	 }

			152	 	 	 //	Can	try	as	ordinary	name.

			153	 	 	 cname,	addrs,	err	=	tryOneName(cfg,	rname,	qtype)

			154	 	 	 if	err	==	nil	{

			155	 	 	 	 return

			156	 	 	 }

			157	 	 }

			158	 	 if	rooted	{

			159	 	 	 return

			160	 	 }

			161	

			162	 	 //	Otherwise,	try	suffixes.

			163	 	 for	i	:=	0;	i	<	len(cfg.search);	i++	{

			164	 	 	 rname	:=	name	+	"."	+	cfg.search[i]

			165	 	 	 if	rname[len(rname)-1]	!=	'.'	{

			166	 	 	 	 rname	+=	"."

			167	 	 	 }

			168	 	 	 cname,	addrs,	err	=	tryOneName(cfg,	rname,	qtype)

			169	 	 	 if	err	==	nil	{

			170	 	 	 	 return

			171	 	 	 }

			172	 	 }

			173	

			174	 	 //	Last	ditch	effort:	try	unsuffixed.

			175	 	 rname	:=	name

			176	 	 if	!rooted	{

			177	 	 	 rname	+=	"."

			178	 	 }

			179	 	 cname,	addrs,	err	=	tryOneName(cfg,	rname,	qtype)

			180	 	 if	err	==	nil	{

			181	 	 	 return

			182	 	 }

			183	 	 return

			184	 }

			185	

			186	 //	goLookupHost	is	the	native	Go	implementation	of	LookupHost.

			187	 //	Used	only	if	cgoLookupHost	refuses	to	handle	the	request

			188	 //	(that	is,	only	if	cgoLookupHost	is	the	stub	in	cgo_stub.go).

			189	 //	Normally	we	let	cgo	use	the	C	library	resolver	instead	of

			190	 //	depending	on	our	lookup	code,	so	that	Go	and	C	get	the	same

			191	 //	answers.

			192	 func	goLookupHost(name	string)	(addrs	[]string,	err	error)	{

			193	 	 //	Use	entries	from	/etc/hosts	if	they	match.

			194	 	 addrs	=	lookupStaticHost(name)

			195	 	 if	len(addrs)	>	0	{

			196	 	 	 return

			197	 	 }

			198	 	 onceLoadConfig.Do(loadConfig)

			199	 	 if	dnserr	!=	nil	||	cfg	==	nil	{

			200	 	 	 err	=	dnserr

			201	 	 	 return

			202	 	 }

			203	 	 ips,	err	:=	goLookupIP(name)

			204	 	 if	err	!=	nil	{

			205	 	 	 return

			206	 	 }

			207	 	 addrs	=	make([]string,	0,	len(ips))

			208	 	 for	_,	ip	:=	range	ips	{

			209	 	 	 addrs	=	append(addrs,	ip.String())

			210	 	 }

			211	 	 return

			212	 }

			213	

			214	 //	goLookupIP	is	the	native	Go	implementation	of	LookupIP.

			215	 //	Used	only	if	cgoLookupIP	refuses	to	handle	the	request

			216	 //	(that	is,	only	if	cgoLookupIP	is	the	stub	in	cgo_stub.go).

			217	 //	Normally	we	let	cgo	use	the	C	library	resolver	instead	of

			218	 //	depending	on	our	lookup	code,	so	that	Go	and	C	get	the	same

			219	 //	answers.

			220	 func	goLookupIP(name	string)	(addrs	[]IP,	err	error)	{

			221	 	 //	Use	entries	from	/etc/hosts	if	possible.

			222	 	 haddrs	:=	lookupStaticHost(name)

			223	 	 if	len(haddrs)	>	0	{

			224	 	 	 for	_,	haddr	:=	range	haddrs	{

			225	 	 	 	 if	ip	:=	ParseIP(haddr);	ip	!=	nil	{

			226	 	 	 	 	 addrs	=	append(addrs,	ip)

			227	 	 	 	 }

			228	 	 	 }

			229	 	 	 if	len(addrs)	>	0	{

			230	 	 	 	 return

			231	 	 	 }

			232	 	 }

			233	 	 onceLoadConfig.Do(loadConfig)

			234	 	 if	dnserr	!=	nil	||	cfg	==	nil	{

			235	 	 	 err	=	dnserr

			236	 	 	 return

			237	 	 }

			238	 	 var	records	[]dnsRR

			239	 	 var	cname	string

			240	 	 cname,	records,	err	=	lookup(name,	dnsTypeA)

			241	 	 if	err	!=	nil	{

			242	 	 	 return

			243	 	 }

			244	 	 addrs	=	convertRR_A(records)

			245	 	 if	cname	!=	""	{

			246	 	 	 name	=	cname

			247	 	 }

			248	 	 _,	records,	err	=	lookup(name,	dnsTypeAAAA)

			249	 	 if	err	!=	nil	&&	len(addrs)	>	0	{

			250	 	 	 //	Ignore	error	because	A	lookup	succeeded.

			251	 	 	 err	=	nil

			252	 	 }

			253	 	 if	err	!=	nil	{

			254	 	 	 return

			255	 	 }

			256	 	 addrs	=	append(addrs,	convertRR_AAAA(records)...)

			257	 	 return

			258	 }

			259	

			260	 //	goLookupCNAME	is	the	native	Go	implementation	of	LookupCNAME.

			261	 //	Used	only	if	cgoLookupCNAME	refuses	to	handle	the	request

			262	 //	(that	is,	only	if	cgoLookupCNAME	is	the	stub	in	cgo_stub.go).

			263	 //	Normally	we	let	cgo	use	the	C	library	resolver	instead	of

			264	 //	depending	on	our	lookup	code,	so	that	Go	and	C	get	the	same

			265	 //	answers.

			266	 func	goLookupCNAME(name	string)	(cname	string,	err	error)	{

			267	 	 onceLoadConfig.Do(loadConfig)

			268	 	 if	dnserr	!=	nil	||	cfg	==	nil	{

			269	 	 	 err	=	dnserr

			270	 	 	 return

			271	 	 }

			272	 	 _,	rr,	err	:=	lookup(name,	dnsTypeCNAME)

			273	 	 if	err	!=	nil	{

			274	 	 	 return

			275	 	 }

			276	 	 cname	=	rr[0].(*dnsRR_CNAME).Cname

			277	 	 return

			278	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/dnsconfig.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 //	Read	system	DNS	config	from	/etc/resolv.conf

					8	

					9	 package	net

				10	

				11	 type	dnsConfig	struct	{

				12	 	 servers		[]string	//	servers	to	use

				13	 	 search			[]string	//	suffixes	to	append	to	local	name

				14	 	 ndots				int						//	number	of	dots	in	name	to	trigger	absolute	lookup

				15	 	 timeout		int						//	seconds	before	giving	up	on	packet

				16	 	 attempts	int						//	lost	packets	before	giving	up	on	server

				17	 	 rotate			bool					//	round	robin	among	servers

				18	 }

				19	

				20	 //	See	resolv.conf(5)	on	a	Linux	machine.

				21	 //	TODO(rsc):	Supposed	to	call	uname()	and	chop	the	beginning

				22	 //	of	the	host	name	to	get	the	default	search	domain.

				23	 //	We	assume	it's	in	resolv.conf	anyway.

				24	 func	dnsReadConfig()	(*dnsConfig,	error)	{

				25	 	 file,	err	:=	open("/etc/resolv.conf")

				26	 	 if	err	!=	nil	{

				27	 	 	 return	nil,	&DNSConfigError{err}

				28	 	 }

				29	 	 conf	:=	new(dnsConfig)

				30	 	 conf.servers	=	make([]string,	3)[0:0]	//	small,	but	the	standard	limit

				31	 	 conf.search	=	make([]string,	0)

				32	 	 conf.ndots	=	1

				33	 	 conf.timeout	=	5

				34	 	 conf.attempts	=	2

				35	 	 conf.rotate	=	false

				36	 	 for	line,	ok	:=	file.readLine();	ok;	line,	ok	=	file.readLine()	{

				37	 	 	 f	:=	getFields(line)

				38	 	 	 if	len(f)	<	1	{

				39	 	 	 	 continue

				40	 	 	 }

				41	 	 	 switch	f[0]	{

				42	 	 	 case	"nameserver":	//	add	one	name	server

				43	 	 	 	 a	:=	conf.servers

				44	 	 	 	 n	:=	len(a)

				45	 	 	 	 if	len(f)	>	1	&&	n	<	cap(a)	{

				46	 	 	 	 	 //	One	more	check:	make	sure	server	name	is

				47	 	 	 	 	 //	just	an	IP	address.		Otherwise	we	need	DNS

				48	 	 	 	 	 //	to	look	it	up.

				49	 	 	 	 	 name	:=	f[1]

				50	 	 	 	 	 switch	len(ParseIP(name))	{

				51	 	 	 	 	 case	16:

				52	 	 	 	 	 	 name	=	"["	+	name	+	"]"

				53	 	 	 	 	 	 fallthrough

				54	 	 	 	 	 case	4:

				55	 	 	 	 	 	 a	=	a[0	:	n+1]

				56	 	 	 	 	 	 a[n]	=	name

				57	 	 	 	 	 	 conf.servers	=	a

				58	 	 	 	 	 }

				59	 	 	 	 }

				60	

				61	 	 	 case	"domain":	//	set	search	path	to	just	this	domain

				62	 	 	 	 if	len(f)	>	1	{

				63	 	 	 	 	 conf.search	=	make([]string,	1)

				64	 	 	 	 	 conf.search[0]	=	f[1]

				65	 	 	 	 }	else	{

				66	 	 	 	 	 conf.search	=	make([]string,	0)

				67	 	 	 	 }

				68	

				69	 	 	 case	"search":	//	set	search	path	to	given	servers

				70	 	 	 	 conf.search	=	make([]string,	len(f)-1)

				71	 	 	 	 for	i	:=	0;	i	<	len(conf.search);	i++	{

				72	 	 	 	 	 conf.search[i]	=	f[i+1]

				73	 	 	 	 }

				74	

				75	 	 	 case	"options":	//	magic	options

				76	 	 	 	 for	i	:=	1;	i	<	len(f);	i++	{

				77	 	 	 	 	 s	:=	f[i]

				78	 	 	 	 	 switch	{

				79	 	 	 	 	 case	len(s)	>=	6	&&	s[0:6]	==	"ndots:":

				80	 	 	 	 	 	 n,	_,	_	:=	dtoi(s,	6)

				81	 	 	 	 	 	 if	n	<	1	{

				82	 	 	 	 	 	 	 n	=	1

				83	 	 	 	 	 	 }

				84	 	 	 	 	 	 conf.ndots	=	n

				85	 	 	 	 	 case	len(s)	>=	8	&&	s[0:8]	==	"timeout:":

				86	 	 	 	 	 	 n,	_,	_	:=	dtoi(s,	8)

				87	 	 	 	 	 	 if	n	<	1	{

				88	 	 	 	 	 	 	 n	=	1

				89	 	 	 	 	 	 }

				90	 	 	 	 	 	 conf.timeout	=	n

				91	 	 	 	 	 case	len(s)	>=	8	&&	s[0:9]	==	"attempts:":

				92	 	 	 	 	 	 n,	_,	_	:=	dtoi(s,	9)

				93	 	 	 	 	 	 if	n	<	1	{

				94	 	 	 	 	 	 	 n	=	1

				95	 	 	 	 	 	 }

				96	 	 	 	 	 	 conf.attempts	=	n

				97	 	 	 	 	 case	s	==	"rotate":

				98	 	 	 	 	 	 conf.rotate	=	true

				99	 	 	 	 	 }

			100	 	 	 	 }

			101	 	 	 }

			102	 	 }

			103	 	 file.close()

			104	

			105	 	 return	conf,	nil

			106	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/dnsmsg.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	DNS	packet	assembly.		See	RFC	1035.

					6	 //

					7	 //	This	is	intended	to	support	name	resolution	during	Dial.

					8	 //	It	doesn't	have	to	be	blazing	fast.

					9	 //

				10	 //	Each	message	structure	has	a	Walk	method	that	is	used	by

				11	 //	a	generic	pack/unpack	routine.	Thus,	if	in	the	future	we	need

				12	 //	to	define	new	message	structs,	no	new	pack/unpack/printing	code

				13	 //	needs	to	be	written.

				14	 //

				15	 //	The	first	half	of	this	file	defines	the	DNS	message	formats.

				16	 //	The	second	half	implements	the	conversion	to	and	from	wire	format.

				17	 //	A	few	of	the	structure	elements	have	string	tags	to	aid	the

				18	 //	generic	pack/unpack	routines.

				19	 //

				20	 //	TODO(rsc):		There	are	enough	names	defined	in	this	file	that	they're	all

				21	 //	prefixed	with	dns.		Perhaps	put	this	in	its	own	package	later.

				22	

				23	 package	net

				24	

				25	 //	Packet	formats

				26	

				27	 //	Wire	constants.

				28	 const	(

				29	 	 //	valid	dnsRR_Header.Rrtype	and	dnsQuestion.qtype

				30	 	 dnsTypeA					=	1

				31	 	 dnsTypeNS				=	2

				32	 	 dnsTypeMD				=	3

				33	 	 dnsTypeMF				=	4

				34	 	 dnsTypeCNAME	=	5

				35	 	 dnsTypeSOA			=	6

				36	 	 dnsTypeMB				=	7

				37	 	 dnsTypeMG				=	8

				38	 	 dnsTypeMR				=	9

				39	 	 dnsTypeNULL		=	10

				40	 	 dnsTypeWKS			=	11

				41	 	 dnsTypePTR			=	12

				42	 	 dnsTypeHINFO	=	13

				43	 	 dnsTypeMINFO	=	14

				44	 	 dnsTypeMX				=	15

				45	 	 dnsTypeTXT			=	16

				46	 	 dnsTypeAAAA		=	28

				47	 	 dnsTypeSRV			=	33

				48	

				49	 	 //	valid	dnsQuestion.qtype	only

				50	 	 dnsTypeAXFR		=	252

				51	 	 dnsTypeMAILB	=	253

				52	 	 dnsTypeMAILA	=	254

				53	 	 dnsTypeALL			=	255

				54	

				55	 	 //	valid	dnsQuestion.qclass

				56	 	 dnsClassINET			=	1

				57	 	 dnsClassCSNET		=	2

				58	 	 dnsClassCHAOS		=	3

				59	 	 dnsClassHESIOD	=	4

				60	 	 dnsClassANY				=	255

				61	

				62	 	 //	dnsMsg.rcode

				63	 	 dnsRcodeSuccess								=	0

				64	 	 dnsRcodeFormatError				=	1

				65	 	 dnsRcodeServerFailure		=	2

				66	 	 dnsRcodeNameError						=	3

				67	 	 dnsRcodeNotImplemented	=	4

				68	 	 dnsRcodeRefused								=	5

				69)

				70	

				71	 //	A	dnsStruct	describes	how	to	iterate	over	its	fields	to	emulate

				72	 //	reflective	marshalling.

				73	 type	dnsStruct	interface	{

				74	 	 //	Walk	iterates	over	fields	of	a	structure	and	calls	f

				75	 	 //	with	a	reference	to	that	field,	the	name	of	the	field

				76	 	 //	and	a	tag	("",	"domain",	"ipv4",	"ipv6")	specifying

				77	 	 //	particular	encodings.	Possible	concrete	types

				78	 	 //	for	v	are	*uint16,	*uint32,	*string,	or	[]byte,	and

				79	 	 //	*int,	*bool	in	the	case	of	dnsMsgHdr.

				80	 	 //	Whenever	f	returns	false,	Walk	must	stop	and	return

				81	 	 //	false,	and	otherwise	return	true.

				82	 	 Walk(f	func(v	interface{},	name,	tag	string)	(ok	bool))	(ok	bool)

				83	 }

				84	

				85	 //	The	wire	format	for	the	DNS	packet	header.

				86	 type	dnsHeader	struct	{

				87	 	 Id																																	uint16

				88	 	 Bits																															uint16

				89	 	 Qdcount,	Ancount,	Nscount,	Arcount	uint16

				90	 }

				91	

				92	 func	(h	*dnsHeader)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

				93	 	 return	f(&h.Id,	"Id",	"")	&&

				94	 	 	 f(&h.Bits,	"Bits",	"")	&&

				95	 	 	 f(&h.Qdcount,	"Qdcount",	"")	&&

				96	 	 	 f(&h.Ancount,	"Ancount",	"")	&&

				97	 	 	 f(&h.Nscount,	"Nscount",	"")	&&

				98	 	 	 f(&h.Arcount,	"Arcount",	"")

				99	 }

			100	

			101	 const	(

			102	 	 //	dnsHeader.Bits

			103	 	 _QR	=	1	<<	15	//	query/response	(response=1)

			104	 	 _AA	=	1	<<	10	//	authoritative

			105	 	 _TC	=	1	<<	9		//	truncated

			106	 	 _RD	=	1	<<	8		//	recursion	desired

			107	 	 _RA	=	1	<<	7		//	recursion	available

			108)

			109	

			110	 //	DNS	queries.

			111	 type	dnsQuestion	struct	{

			112	 	 Name			string	`net:"domain-name"`	//	`net:"domain-name"`	specifies	encoding;	see	packers	below

			113	 	 Qtype		uint16

			114	 	 Qclass	uint16

			115	 }

			116	

			117	 func	(q	*dnsQuestion)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			118	 	 return	f(&q.Name,	"Name",	"domain")	&&

			119	 	 	 f(&q.Qtype,	"Qtype",	"")	&&

			120	 	 	 f(&q.Qclass,	"Qclass",	"")

			121	 }

			122	

			123	 //	DNS	responses	(resource	records).

			124	 //	There	are	many	types	of	messages,

			125	 //	but	they	all	share	the	same	header.

			126	 type	dnsRR_Header	struct	{

			127	 	 Name					string	`net:"domain-name"`

			128	 	 Rrtype			uint16

			129	 	 Class				uint16

			130	 	 Ttl						uint32

			131	 	 Rdlength	uint16	//	length	of	data	after	header

			132	 }

			133	

			134	 func	(h	*dnsRR_Header)	Header()	*dnsRR_Header	{

			135	 	 return	h

			136	 }

			137	

			138	 func	(h	*dnsRR_Header)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			139	 	 return	f(&h.Name,	"Name",	"domain")	&&

			140	 	 	 f(&h.Rrtype,	"Rrtype",	"")	&&

			141	 	 	 f(&h.Class,	"Class",	"")	&&

			142	 	 	 f(&h.Ttl,	"Ttl",	"")	&&

			143	 	 	 f(&h.Rdlength,	"Rdlength",	"")

			144	 }

			145	

			146	 type	dnsRR	interface	{

			147	 	 dnsStruct

			148	 	 Header()	*dnsRR_Header

			149	 }

			150	

			151	 //	Specific	DNS	RR	formats	for	each	query	type.

			152	

			153	 type	dnsRR_CNAME	struct	{

			154	 	 Hdr			dnsRR_Header

			155	 	 Cname	string	`net:"domain-name"`

			156	 }

			157	

			158	 func	(rr	*dnsRR_CNAME)	Header()	*dnsRR_Header	{

			159	 	 return	&rr.Hdr

			160	 }

			161	

			162	 func	(rr	*dnsRR_CNAME)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			163	 	 return	rr.Hdr.Walk(f)	&&	f(&rr.Cname,	"Cname",	"domain")

			164	 }

			165	

			166	 type	dnsRR_HINFO	struct	{

			167	 	 Hdr	dnsRR_Header

			168	 	 Cpu	string

			169	 	 Os		string

			170	 }

			171	

			172	 func	(rr	*dnsRR_HINFO)	Header()	*dnsRR_Header	{

			173	 	 return	&rr.Hdr

			174	 }

			175	

			176	 func	(rr	*dnsRR_HINFO)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			177	 	 return	rr.Hdr.Walk(f)	&&	f(&rr.Cpu,	"Cpu",	"")	&&	f(&rr.Os,	"Os",	"")

			178	 }

			179	

			180	 type	dnsRR_MB	struct	{

			181	 	 Hdr	dnsRR_Header

			182	 	 Mb		string	`net:"domain-name"`

			183	 }

			184	

			185	 func	(rr	*dnsRR_MB)	Header()	*dnsRR_Header	{

			186	 	 return	&rr.Hdr

			187	 }

			188	

			189	 func	(rr	*dnsRR_MB)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			190	 	 return	rr.Hdr.Walk(f)	&&	f(&rr.Mb,	"Mb",	"domain")

			191	 }

			192	

			193	 type	dnsRR_MG	struct	{

			194	 	 Hdr	dnsRR_Header

			195	 	 Mg		string	`net:"domain-name"`

			196	 }

			197	

			198	 func	(rr	*dnsRR_MG)	Header()	*dnsRR_Header	{

			199	 	 return	&rr.Hdr

			200	 }

			201	

			202	 func	(rr	*dnsRR_MG)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			203	 	 return	rr.Hdr.Walk(f)	&&	f(&rr.Mg,	"Mg",	"domain")

			204	 }

			205	

			206	 type	dnsRR_MINFO	struct	{

			207	 	 Hdr			dnsRR_Header

			208	 	 Rmail	string	`net:"domain-name"`

			209	 	 Email	string	`net:"domain-name"`

			210	 }

			211	

			212	 func	(rr	*dnsRR_MINFO)	Header()	*dnsRR_Header	{

			213	 	 return	&rr.Hdr

			214	 }

			215	

			216	 func	(rr	*dnsRR_MINFO)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			217	 	 return	rr.Hdr.Walk(f)	&&	f(&rr.Rmail,	"Rmail",	"domain")	&&	f(&rr.Email,	"Email",	"domain")

			218	 }

			219	

			220	 type	dnsRR_MR	struct	{

			221	 	 Hdr	dnsRR_Header

			222	 	 Mr		string	`net:"domain-name"`

			223	 }

			224	

			225	 func	(rr	*dnsRR_MR)	Header()	*dnsRR_Header	{

			226	 	 return	&rr.Hdr

			227	 }

			228	

			229	 func	(rr	*dnsRR_MR)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			230	 	 return	rr.Hdr.Walk(f)	&&	f(&rr.Mr,	"Mr",	"domain")

			231	 }

			232	

			233	 type	dnsRR_MX	struct	{

			234	 	 Hdr		dnsRR_Header

			235	 	 Pref	uint16

			236	 	 Mx			string	`net:"domain-name"`

			237	 }

			238	

			239	 func	(rr	*dnsRR_MX)	Header()	*dnsRR_Header	{

			240	 	 return	&rr.Hdr

			241	 }

			242	

			243	 func	(rr	*dnsRR_MX)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			244	 	 return	rr.Hdr.Walk(f)	&&	f(&rr.Pref,	"Pref",	"")	&&	f(&rr.Mx,	"Mx",	"domain")

			245	 }

			246	

			247	 type	dnsRR_NS	struct	{

			248	 	 Hdr	dnsRR_Header

			249	 	 Ns		string	`net:"domain-name"`

			250	 }

			251	

			252	 func	(rr	*dnsRR_NS)	Header()	*dnsRR_Header	{

			253	 	 return	&rr.Hdr

			254	 }

			255	

			256	 func	(rr	*dnsRR_NS)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			257	 	 return	rr.Hdr.Walk(f)	&&	f(&rr.Ns,	"Ns",	"domain")

			258	 }

			259	

			260	 type	dnsRR_PTR	struct	{

			261	 	 Hdr	dnsRR_Header

			262	 	 Ptr	string	`net:"domain-name"`

			263	 }

			264	

			265	 func	(rr	*dnsRR_PTR)	Header()	*dnsRR_Header	{

			266	 	 return	&rr.Hdr

			267	 }

			268	

			269	 func	(rr	*dnsRR_PTR)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			270	 	 return	rr.Hdr.Walk(f)	&&	f(&rr.Ptr,	"Ptr",	"domain")

			271	 }

			272	

			273	 type	dnsRR_SOA	struct	{

			274	 	 Hdr					dnsRR_Header

			275	 	 Ns						string	`net:"domain-name"`

			276	 	 Mbox				string	`net:"domain-name"`

			277	 	 Serial		uint32

			278	 	 Refresh	uint32

			279	 	 Retry			uint32

			280	 	 Expire		uint32

			281	 	 Minttl		uint32

			282	 }

			283	

			284	 func	(rr	*dnsRR_SOA)	Header()	*dnsRR_Header	{

			285	 	 return	&rr.Hdr

			286	 }

			287	

			288	 func	(rr	*dnsRR_SOA)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			289	 	 return	rr.Hdr.Walk(f)	&&

			290	 	 	 f(&rr.Ns,	"Ns",	"domain")	&&

			291	 	 	 f(&rr.Mbox,	"Mbox",	"domain")	&&

			292	 	 	 f(&rr.Serial,	"Serial",	"")	&&

			293	 	 	 f(&rr.Refresh,	"Refresh",	"")	&&

			294	 	 	 f(&rr.Retry,	"Retry",	"")	&&

			295	 	 	 f(&rr.Expire,	"Expire",	"")	&&

			296	 	 	 f(&rr.Minttl,	"Minttl",	"")

			297	 }

			298	

			299	 type	dnsRR_TXT	struct	{

			300	 	 Hdr	dnsRR_Header

			301	 	 Txt	string	//	not	domain	name

			302	 }

			303	

			304	 func	(rr	*dnsRR_TXT)	Header()	*dnsRR_Header	{

			305	 	 return	&rr.Hdr

			306	 }

			307	

			308	 func	(rr	*dnsRR_TXT)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			309	 	 return	rr.Hdr.Walk(f)	&&	f(&rr.Txt,	"Txt",	"")

			310	 }

			311	

			312	 type	dnsRR_SRV	struct	{

			313	 	 Hdr						dnsRR_Header

			314	 	 Priority	uint16

			315	 	 Weight			uint16

			316	 	 Port					uint16

			317	 	 Target			string	`net:"domain-name"`

			318	 }

			319	

			320	 func	(rr	*dnsRR_SRV)	Header()	*dnsRR_Header	{

			321	 	 return	&rr.Hdr

			322	 }

			323	

			324	 func	(rr	*dnsRR_SRV)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			325	 	 return	rr.Hdr.Walk(f)	&&

			326	 	 	 f(&rr.Priority,	"Priority",	"")	&&

			327	 	 	 f(&rr.Weight,	"Weight",	"")	&&

			328	 	 	 f(&rr.Port,	"Port",	"")	&&

			329	 	 	 f(&rr.Target,	"Target",	"domain")

			330	 }

			331	

			332	 type	dnsRR_A	struct	{

			333	 	 Hdr	dnsRR_Header

			334	 	 A			uint32	`net:"ipv4"`

			335	 }

			336	

			337	 func	(rr	*dnsRR_A)	Header()	*dnsRR_Header	{

			338	 	 return	&rr.Hdr

			339	 }

			340	

			341	 func	(rr	*dnsRR_A)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			342	 	 return	rr.Hdr.Walk(f)	&&	f(&rr.A,	"A",	"ipv4")

			343	 }

			344	

			345	 type	dnsRR_AAAA	struct	{

			346	 	 Hdr		dnsRR_Header

			347	 	 AAAA	[16]byte	`net:"ipv6"`

			348	 }

			349	

			350	 func	(rr	*dnsRR_AAAA)	Header()	*dnsRR_Header	{

			351	 	 return	&rr.Hdr

			352	 }

			353	

			354	 func	(rr	*dnsRR_AAAA)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			355	 	 return	rr.Hdr.Walk(f)	&&	f(rr.AAAA[:],	"AAAA",	"ipv6")

			356	 }

			357	

			358	 //	Packing	and	unpacking.

			359	 //

			360	 //	All	the	packers	and	unpackers	take	a	(msg	[]byte,	off	int)

			361	 //	and	return	(off1	int,	ok	bool).		If	they	return	ok==false,	they

			362	 //	also	return	off1==len(msg),	so	that	the	next	unpacker	will

			363	 //	also	fail.		This	lets	us	avoid	checks	of	ok	until	the	end	of	a

			364	 //	packing	sequence.

			365	

			366	 //	Map	of	constructors	for	each	RR	wire	type.

			367	 var	rr_mk	=	map[int]func()	dnsRR{

			368	 	 dnsTypeCNAME:	func()	dnsRR	{	return	new(dnsRR_CNAME)	},

			369	 	 dnsTypeHINFO:	func()	dnsRR	{	return	new(dnsRR_HINFO)	},

			370	 	 dnsTypeMB:				func()	dnsRR	{	return	new(dnsRR_MB)	},

			371	 	 dnsTypeMG:				func()	dnsRR	{	return	new(dnsRR_MG)	},

			372	 	 dnsTypeMINFO:	func()	dnsRR	{	return	new(dnsRR_MINFO)	},

			373	 	 dnsTypeMR:				func()	dnsRR	{	return	new(dnsRR_MR)	},

			374	 	 dnsTypeMX:				func()	dnsRR	{	return	new(dnsRR_MX)	},

			375	 	 dnsTypeNS:				func()	dnsRR	{	return	new(dnsRR_NS)	},

			376	 	 dnsTypePTR:			func()	dnsRR	{	return	new(dnsRR_PTR)	},

			377	 	 dnsTypeSOA:			func()	dnsRR	{	return	new(dnsRR_SOA)	},

			378	 	 dnsTypeTXT:			func()	dnsRR	{	return	new(dnsRR_TXT)	},

			379	 	 dnsTypeSRV:			func()	dnsRR	{	return	new(dnsRR_SRV)	},

			380	 	 dnsTypeA:					func()	dnsRR	{	return	new(dnsRR_A)	},

			381	 	 dnsTypeAAAA:		func()	dnsRR	{	return	new(dnsRR_AAAA)	},

			382	 }

			383	

			384	 //	Pack	a	domain	name	s	into	msg[off:].

			385	 //	Domain	names	are	a	sequence	of	counted	strings

			386	 //	split	at	the	dots.		They	end	with	a	zero-length	string.

			387	 func	packDomainName(s	string,	msg	[]byte,	off	int)	(off1	int,	ok	bool)	{

			388	 	 //	Add	trailing	dot	to	canonicalize	name.

			389	 	 if	n	:=	len(s);	n	==	0	||	s[n-1]	!=	'.'	{

			390	 	 	 s	+=	"."

			391	 	 }

			392	

			393	 	 //	Each	dot	ends	a	segment	of	the	name.

			394	 	 //	We	trade	each	dot	byte	for	a	length	byte.

			395	 	 //	There	is	also	a	trailing	zero.

			396	 	 //	Check	that	we	have	all	the	space	we	need.

			397	 	 tot	:=	len(s)	+	1

			398	 	 if	off+tot	>	len(msg)	{

			399	 	 	 return	len(msg),	false

			400	 	 }

			401	

			402	 	 //	Emit	sequence	of	counted	strings,	chopping	at	dots.

			403	 	 begin	:=	0

			404	 	 for	i	:=	0;	i	<	len(s);	i++	{

			405	 	 	 if	s[i]	==	'.'	{

			406	 	 	 	 if	i-begin	>=	1<<6	{	//	top	two	bits	of	length	must	be	clear

			407	 	 	 	 	 return	len(msg),	false

			408	 	 	 	 }

			409	 	 	 	 msg[off]	=	byte(i	-	begin)

			410	 	 	 	 off++

			411	 	 	 	 for	j	:=	begin;	j	<	i;	j++	{

			412	 	 	 	 	 msg[off]	=	s[j]

			413	 	 	 	 	 off++

			414	 	 	 	 }

			415	 	 	 	 begin	=	i	+	1

			416	 	 	 }

			417	 	 }

			418	 	 msg[off]	=	0

			419	 	 off++

			420	 	 return	off,	true

			421	 }

			422	

			423	 //	Unpack	a	domain	name.

			424	 //	In	addition	to	the	simple	sequences	of	counted	strings	above,

			425	 //	domain	names	are	allowed	to	refer	to	strings	elsewhere	in	the

			426	 //	packet,	to	avoid	repeating	common	suffixes	when	returning

			427	 //	many	entries	in	a	single	domain.		The	pointers	are	marked

			428	 //	by	a	length	byte	with	the	top	two	bits	set.		Ignoring	those

			429	 //	two	bits,	that	byte	and	the	next	give	a	14	bit	offset	from	msg[0]

			430	 //	where	we	should	pick	up	the	trail.

			431	 //	Note	that	if	we	jump	elsewhere	in	the	packet,

			432	 //	we	return	off1	==	the	offset	after	the	first	pointer	we	found,

			433	 //	which	is	where	the	next	record	will	start.

			434	 //	In	theory,	the	pointers	are	only	allowed	to	jump	backward.

			435	 //	We	let	them	jump	anywhere	and	stop	jumping	after	a	while.

			436	 func	unpackDomainName(msg	[]byte,	off	int)	(s	string,	off1	int,	ok	bool)	{

			437	 	 s	=	""

			438	 	 ptr	:=	0	//	number	of	pointers	followed

			439	 Loop:

			440	 	 for	{

			441	 	 	 if	off	>=	len(msg)	{

			442	 	 	 	 return	"",	len(msg),	false

			443	 	 	 }

			444	 	 	 c	:=	int(msg[off])

			445	 	 	 off++

			446	 	 	 switch	c	&	0xC0	{

			447	 	 	 case	0x00:

			448	 	 	 	 if	c	==	0x00	{

			449	 	 	 	 	 //	end	of	name

			450	 	 	 	 	 break	Loop

			451	 	 	 	 }

			452	 	 	 	 //	literal	string

			453	 	 	 	 if	off+c	>	len(msg)	{

			454	 	 	 	 	 return	"",	len(msg),	false

			455	 	 	 	 }

			456	 	 	 	 s	+=	string(msg[off:off+c])	+	"."

			457	 	 	 	 off	+=	c

			458	 	 	 case	0xC0:

			459	 	 	 	 //	pointer	to	somewhere	else	in	msg.

			460	 	 	 	 //	remember	location	after	first	ptr,

			461	 	 	 	 //	since	that's	how	many	bytes	we	consumed.

			462	 	 	 	 //	also,	don't	follow	too	many	pointers	--

			463	 	 	 	 //	maybe	there's	a	loop.

			464	 	 	 	 if	off	>=	len(msg)	{

			465	 	 	 	 	 return	"",	len(msg),	false

			466	 	 	 	 }

			467	 	 	 	 c1	:=	msg[off]

			468	 	 	 	 off++

			469	 	 	 	 if	ptr	==	0	{

			470	 	 	 	 	 off1	=	off

			471	 	 	 	 }

			472	 	 	 	 if	ptr++;	ptr	>	10	{

			473	 	 	 	 	 return	"",	len(msg),	false

			474	 	 	 	 }

			475	 	 	 	 off	=	(c^0xC0)<<8	|	int(c1)

			476	 	 	 default:

			477	 	 	 	 //	0x80	and	0x40	are	reserved

			478	 	 	 	 return	"",	len(msg),	false

			479	 	 	 }

			480	 	 }

			481	 	 if	ptr	==	0	{

			482	 	 	 off1	=	off

			483	 	 }

			484	 	 return	s,	off1,	true

			485	 }

			486	

			487	 //	packStruct	packs	a	structure	into	msg	at	specified	offset	off,	and

			488	 //	returns	off1	such	that	msg[off:off1]	is	the	encoded	data.

			489	 func	packStruct(any	dnsStruct,	msg	[]byte,	off	int)	(off1	int,	ok	bool)	{

			490	 	 ok	=	any.Walk(func(field	interface{},	name,	tag	string)	bool	{

			491	 	 	 switch	fv	:=	field.(type)	{

			492	 	 	 default:

			493	 	 	 	 println("net:	dns:	unknown	packing	type")

			494	 	 	 	 return	false

			495	 	 	 case	*uint16:

			496	 	 	 	 i	:=	*fv

			497	 	 	 	 if	off+2	>	len(msg)	{

			498	 	 	 	 	 return	false

			499	 	 	 	 }

			500	 	 	 	 msg[off]	=	byte(i	>>	8)

			501	 	 	 	 msg[off+1]	=	byte(i)

			502	 	 	 	 off	+=	2

			503	 	 	 case	*uint32:

			504	 	 	 	 i	:=	*fv

			505	 	 	 	 msg[off]	=	byte(i	>>	24)

			506	 	 	 	 msg[off+1]	=	byte(i	>>	16)

			507	 	 	 	 msg[off+2]	=	byte(i	>>	8)

			508	 	 	 	 msg[off+3]	=	byte(i)

			509	 	 	 	 off	+=	4

			510	 	 	 case	[]byte:

			511	 	 	 	 n	:=	len(fv)

			512	 	 	 	 if	off+n	>	len(msg)	{

			513	 	 	 	 	 return	false

			514	 	 	 	 }

			515	 	 	 	 copy(msg[off:off+n],	fv)

			516	 	 	 	 off	+=	n

			517	 	 	 case	*string:

			518	 	 	 	 s	:=	*fv

			519	 	 	 	 switch	tag	{

			520	 	 	 	 default:

			521	 	 	 	 	 println("net:	dns:	unknown	string	tag",	tag)

			522	 	 	 	 	 return	false

			523	 	 	 	 case	"domain":

			524	 	 	 	 	 off,	ok	=	packDomainName(s,	msg,	off)

			525	 	 	 	 	 if	!ok	{

			526	 	 	 	 	 	 return	false

			527	 	 	 	 	 }

			528	 	 	 	 case	"":

			529	 	 	 	 	 //	Counted	string:	1	byte	length.

			530	 	 	 	 	 if	len(s)	>	255	||	off+1+len(s)	>	len(msg)	{

			531	 	 	 	 	 	 return	false

			532	 	 	 	 	 }

			533	 	 	 	 	 msg[off]	=	byte(len(s))

			534	 	 	 	 	 off++

			535	 	 	 	 	 off	+=	copy(msg[off:],	s)

			536	 	 	 	 }

			537	 	 	 }

			538	 	 	 return	true

			539	 	 })

			540	 	 if	!ok	{

			541	 	 	 return	len(msg),	false

			542	 	 }

			543	 	 return	off,	true

			544	 }

			545	

			546	 //	unpackStruct	decodes	msg[off:]	into	the	given	structure,	and

			547	 //	returns	off1	such	that	msg[off:off1]	is	the	encoded	data.

			548	 func	unpackStruct(any	dnsStruct,	msg	[]byte,	off	int)	(off1	int,	ok	bool)	{

			549	 	 ok	=	any.Walk(func(field	interface{},	name,	tag	string)	bool	{

			550	 	 	 switch	fv	:=	field.(type)	{

			551	 	 	 default:

			552	 	 	 	 println("net:	dns:	unknown	packing	type")

			553	 	 	 	 return	false

			554	 	 	 case	*uint16:

			555	 	 	 	 if	off+2	>	len(msg)	{

			556	 	 	 	 	 return	false

			557	 	 	 	 }

			558	 	 	 	 *fv	=	uint16(msg[off])<<8	|	uint16(msg[off+1])

			559	 	 	 	 off	+=	2

			560	 	 	 case	*uint32:

			561	 	 	 	 if	off+4	>	len(msg)	{

			562	 	 	 	 	 return	false

			563	 	 	 	 }

			564	 	 	 	 *fv	=	uint32(msg[off])<<24	|	uint32(msg[off+1])<<16	|

			565	 	 	 	 	 uint32(msg[off+2])<<8	|	uint32(msg[off+3])

			566	 	 	 	 off	+=	4

			567	 	 	 case	[]byte:

			568	 	 	 	 n	:=	len(fv)

			569	 	 	 	 if	off+n	>	len(msg)	{

			570	 	 	 	 	 return	false

			571	 	 	 	 }

			572	 	 	 	 copy(fv,	msg[off:off+n])

			573	 	 	 	 off	+=	n

			574	 	 	 case	*string:

			575	 	 	 	 var	s	string

			576	 	 	 	 switch	tag	{

			577	 	 	 	 default:

			578	 	 	 	 	 println("net:	dns:	unknown	string	tag",	tag)

			579	 	 	 	 	 return	false

			580	 	 	 	 case	"domain":

			581	 	 	 	 	 s,	off,	ok	=	unpackDomainName(msg,	off)

			582	 	 	 	 	 if	!ok	{

			583	 	 	 	 	 	 return	false

			584	 	 	 	 	 }

			585	 	 	 	 case	"":

			586	 	 	 	 	 if	off	>=	len(msg)	||	off+1+int(msg[off])	>	len(msg)	{

			587	 	 	 	 	 	 return	false

			588	 	 	 	 	 }

			589	 	 	 	 	 n	:=	int(msg[off])

			590	 	 	 	 	 off++

			591	 	 	 	 	 b	:=	make([]byte,	n)

			592	 	 	 	 	 for	i	:=	0;	i	<	n;	i++	{

			593	 	 	 	 	 	 b[i]	=	msg[off+i]

			594	 	 	 	 	 }

			595	 	 	 	 	 off	+=	n

			596	 	 	 	 	 s	=	string(b)

			597	 	 	 	 }

			598	 	 	 	 *fv	=	s

			599	 	 	 }

			600	 	 	 return	true

			601	 	 })

			602	 	 if	!ok	{

			603	 	 	 return	len(msg),	false

			604	 	 }

			605	 	 return	off,	true

			606	 }

			607	

			608	 //	Generic	struct	printer.	Prints	fields	with	tag	"ipv4"	or	"ipv6"

			609	 //	as	IP	addresses.

			610	 func	printStruct(any	dnsStruct)	string	{

			611	 	 s	:=	"{"

			612	 	 i	:=	0

			613	 	 any.Walk(func(val	interface{},	name,	tag	string)	bool	{

			614	 	 	 i++

			615	 	 	 if	i	>	1	{

			616	 	 	 	 s	+=	",	"

			617	 	 	 }

			618	 	 	 s	+=	name	+	"="

			619	 	 	 switch	tag	{

			620	 	 	 case	"ipv4":

			621	 	 	 	 i	:=	val.(uint32)

			622	 	 	 	 s	+=	IPv4(byte(i>>24),	byte(i>>16),	byte(i>>8),	byte(i)).String()

			623	 	 	 case	"ipv6":

			624	 	 	 	 i	:=	val.([]byte)

			625	 	 	 	 s	+=	IP(i).String()

			626	 	 	 default:

			627	 	 	 	 var	i	int64

			628	 	 	 	 switch	v	:=	val.(type)	{

			629	 	 	 	 default:

			630	 	 	 	 	 //	can't	really	happen.

			631	 	 	 	 	 s	+=	"<unknown	type>"

			632	 	 	 	 	 return	true

			633	 	 	 	 case	*string:

			634	 	 	 	 	 s	+=	*v

			635	 	 	 	 	 return	true

			636	 	 	 	 case	[]byte:

			637	 	 	 	 	 s	+=	string(v)

			638	 	 	 	 	 return	true

			639	 	 	 	 case	*bool:

			640	 	 	 	 	 if	*v	{

			641	 	 	 	 	 	 s	+=	"true"

			642	 	 	 	 	 }	else	{

			643	 	 	 	 	 	 s	+=	"false"

			644	 	 	 	 	 }

			645	 	 	 	 	 return	true

			646	 	 	 	 case	*int:

			647	 	 	 	 	 i	=	int64(*v)

			648	 	 	 	 case	*uint:

			649	 	 	 	 	 i	=	int64(*v)

			650	 	 	 	 case	*uint8:

			651	 	 	 	 	 i	=	int64(*v)

			652	 	 	 	 case	*uint16:

			653	 	 	 	 	 i	=	int64(*v)

			654	 	 	 	 case	*uint32:

			655	 	 	 	 	 i	=	int64(*v)

			656	 	 	 	 case	*uint64:

			657	 	 	 	 	 i	=	int64(*v)

			658	 	 	 	 case	*uintptr:

			659	 	 	 	 	 i	=	int64(*v)

			660	 	 	 	 }

			661	 	 	 	 s	+=	itoa(int(i))

			662	 	 	 }

			663	 	 	 return	true

			664	 	 })

			665	 	 s	+=	"}"

			666	 	 return	s

			667	 }

			668	

			669	 //	Resource	record	packer.

			670	 func	packRR(rr	dnsRR,	msg	[]byte,	off	int)	(off2	int,	ok	bool)	{

			671	 	 var	off1	int

			672	 	 //	pack	twice,	once	to	find	end	of	header

			673	 	 //	and	again	to	find	end	of	packet.

			674	 	 //	a	bit	inefficient	but	this	doesn't	need	to	be	fast.

			675	 	 //	off1	is	end	of	header

			676	 	 //	off2	is	end	of	rr

			677	 	 off1,	ok	=	packStruct(rr.Header(),	msg,	off)

			678	 	 off2,	ok	=	packStruct(rr,	msg,	off)

			679	 	 if	!ok	{

			680	 	 	 return	len(msg),	false

			681	 	 }

			682	 	 //	pack	a	third	time;	redo	header	with	correct	data	length

			683	 	 rr.Header().Rdlength	=	uint16(off2	-	off1)

			684	 	 packStruct(rr.Header(),	msg,	off)

			685	 	 return	off2,	true

			686	 }

			687	

			688	 //	Resource	record	unpacker.

			689	 func	unpackRR(msg	[]byte,	off	int)	(rr	dnsRR,	off1	int,	ok	bool)	{

			690	 	 //	unpack	just	the	header,	to	find	the	rr	type	and	length

			691	 	 var	h	dnsRR_Header

			692	 	 off0	:=	off

			693	 	 if	off,	ok	=	unpackStruct(&h,	msg,	off);	!ok	{

			694	 	 	 return	nil,	len(msg),	false

			695	 	 }

			696	 	 end	:=	off	+	int(h.Rdlength)

			697	

			698	 	 //	make	an	rr	of	that	type	and	re-unpack.

			699	 	 //	again	inefficient	but	doesn't	need	to	be	fast.

			700	 	 mk,	known	:=	rr_mk[int(h.Rrtype)]

			701	 	 if	!known	{

			702	 	 	 return	&h,	end,	true

			703	 	 }

			704	 	 rr	=	mk()

			705	 	 off,	ok	=	unpackStruct(rr,	msg,	off0)

			706	 	 if	off	!=	end	{

			707	 	 	 return	&h,	end,	true

			708	 	 }

			709	 	 return	rr,	off,	ok

			710	 }

			711	

			712	 //	Usable	representation	of	a	DNS	packet.

			713	

			714	 //	A	manually-unpacked	version	of	(id,	bits).

			715	 //	This	is	in	its	own	struct	for	easy	printing.

			716	 type	dnsMsgHdr	struct	{

			717	 	 id																		uint16

			718	 	 response												bool

			719	 	 opcode														int

			720	 	 authoritative							bool

			721	 	 truncated											bool

			722	 	 recursion_desired			bool

			723	 	 recursion_available	bool

			724	 	 rcode															int

			725	 }

			726	

			727	 func	(h	*dnsMsgHdr)	Walk(f	func(v	interface{},	name,	tag	string)	bool)	bool	{

			728	 	 return	f(&h.id,	"id",	"")	&&

			729	 	 	 f(&h.response,	"response",	"")	&&

			730	 	 	 f(&h.opcode,	"opcode",	"")	&&

			731	 	 	 f(&h.authoritative,	"authoritative",	"")	&&

			732	 	 	 f(&h.truncated,	"truncated",	"")	&&

			733	 	 	 f(&h.recursion_desired,	"recursion_desired",	"")	&&

			734	 	 	 f(&h.recursion_available,	"recursion_available",	"")	&&

			735	 	 	 f(&h.rcode,	"rcode",	"")

			736	 }

			737	

			738	 type	dnsMsg	struct	{

			739	 	 dnsMsgHdr

			740	 	 question	[]dnsQuestion

			741	 	 answer			[]dnsRR

			742	 	 ns							[]dnsRR

			743	 	 extra				[]dnsRR

			744	 }

			745	

			746	 func	(dns	*dnsMsg)	Pack()	(msg	[]byte,	ok	bool)	{

			747	 	 var	dh	dnsHeader

			748	

			749	 	 //	Convert	convenient	dnsMsg	into	wire-like	dnsHeader.

			750	 	 dh.Id	=	dns.id

			751	 	 dh.Bits	=	uint16(dns.opcode)<<11	|	uint16(dns.rcode)

			752	 	 if	dns.recursion_available	{

			753	 	 	 dh.Bits	|=	_RA

			754	 	 }

			755	 	 if	dns.recursion_desired	{

			756	 	 	 dh.Bits	|=	_RD

			757	 	 }

			758	 	 if	dns.truncated	{

			759	 	 	 dh.Bits	|=	_TC

			760	 	 }

			761	 	 if	dns.authoritative	{

			762	 	 	 dh.Bits	|=	_AA

			763	 	 }

			764	 	 if	dns.response	{

			765	 	 	 dh.Bits	|=	_QR

			766	 	 }

			767	

			768	 	 //	Prepare	variable	sized	arrays.

			769	 	 question	:=	dns.question

			770	 	 answer	:=	dns.answer

			771	 	 ns	:=	dns.ns

			772	 	 extra	:=	dns.extra

			773	

			774	 	 dh.Qdcount	=	uint16(len(question))

			775	 	 dh.Ancount	=	uint16(len(answer))

			776	 	 dh.Nscount	=	uint16(len(ns))

			777	 	 dh.Arcount	=	uint16(len(extra))

			778	

			779	 	 //	Could	work	harder	to	calculate	message	size,

			780	 	 //	but	this	is	far	more	than	we	need	and	not

			781	 	 //	big	enough	to	hurt	the	allocator.

			782	 	 msg	=	make([]byte,	2000)

			783	

			784	 	 //	Pack	it	in:	header	and	then	the	pieces.

			785	 	 off	:=	0

			786	 	 off,	ok	=	packStruct(&dh,	msg,	off)

			787	 	 for	i	:=	0;	i	<	len(question);	i++	{

			788	 	 	 off,	ok	=	packStruct(&question[i],	msg,	off)

			789	 	 }

			790	 	 for	i	:=	0;	i	<	len(answer);	i++	{

			791	 	 	 off,	ok	=	packRR(answer[i],	msg,	off)

			792	 	 }

			793	 	 for	i	:=	0;	i	<	len(ns);	i++	{

			794	 	 	 off,	ok	=	packRR(ns[i],	msg,	off)

			795	 	 }

			796	 	 for	i	:=	0;	i	<	len(extra);	i++	{

			797	 	 	 off,	ok	=	packRR(extra[i],	msg,	off)

			798	 	 }

			799	 	 if	!ok	{

			800	 	 	 return	nil,	false

			801	 	 }

			802	 	 return	msg[0:off],	true

			803	 }

			804	

			805	 func	(dns	*dnsMsg)	Unpack(msg	[]byte)	bool	{

			806	 	 //	Header.

			807	 	 var	dh	dnsHeader

			808	 	 off	:=	0

			809	 	 var	ok	bool

			810	 	 if	off,	ok	=	unpackStruct(&dh,	msg,	off);	!ok	{

			811	 	 	 return	false

			812	 	 }

			813	 	 dns.id	=	dh.Id

			814	 	 dns.response	=	(dh.Bits	&	_QR)	!=	0

			815	 	 dns.opcode	=	int(dh.Bits>>11)	&	0xF

			816	 	 dns.authoritative	=	(dh.Bits	&	_AA)	!=	0

			817	 	 dns.truncated	=	(dh.Bits	&	_TC)	!=	0

			818	 	 dns.recursion_desired	=	(dh.Bits	&	_RD)	!=	0

			819	 	 dns.recursion_available	=	(dh.Bits	&	_RA)	!=	0

			820	 	 dns.rcode	=	int(dh.Bits	&	0xF)

			821	

			822	 	 //	Arrays.

			823	 	 dns.question	=	make([]dnsQuestion,	dh.Qdcount)

			824	 	 dns.answer	=	make([]dnsRR,	0,	dh.Ancount)

			825	 	 dns.ns	=	make([]dnsRR,	0,	dh.Nscount)

			826	 	 dns.extra	=	make([]dnsRR,	0,	dh.Arcount)

			827	

			828	 	 var	rec	dnsRR

			829	

			830	 	 for	i	:=	0;	i	<	len(dns.question);	i++	{

			831	 	 	 off,	ok	=	unpackStruct(&dns.question[i],	msg,	off)

			832	 	 }

			833	 	 for	i	:=	0;	i	<	int(dh.Ancount);	i++	{

			834	 	 	 rec,	off,	ok	=	unpackRR(msg,	off)

			835	 	 	 if	!ok	{

			836	 	 	 	 return	false

			837	 	 	 }

			838	 	 	 dns.answer	=	append(dns.answer,	rec)

			839	 	 }

			840	 	 for	i	:=	0;	i	<	int(dh.Nscount);	i++	{

			841	 	 	 rec,	off,	ok	=	unpackRR(msg,	off)

			842	 	 	 if	!ok	{

			843	 	 	 	 return	false

			844	 	 	 }

			845	 	 	 dns.ns	=	append(dns.ns,	rec)

			846	 	 }

			847	 	 for	i	:=	0;	i	<	int(dh.Arcount);	i++	{

			848	 	 	 rec,	off,	ok	=	unpackRR(msg,	off)

			849	 	 	 if	!ok	{

			850	 	 	 	 return	false

			851	 	 	 }

			852	 	 	 dns.extra	=	append(dns.extra,	rec)

			853	 	 }

			854	 	 //	 if	off	!=	len(msg)	{

			855	 	 //	 	 println("extra	bytes	in	dns	packet",	off,	"<",	len(msg));

			856	 	 //	 }

			857	 	 return	true

			858	 }

			859	

			860	 func	(dns	*dnsMsg)	String()	string	{

			861	 	 s	:=	"DNS:	"	+	printStruct(&dns.dnsMsgHdr)	+	"\n"

			862	 	 if	len(dns.question)	>	0	{

			863	 	 	 s	+=	"--	Questions\n"

			864	 	 	 for	i	:=	0;	i	<	len(dns.question);	i++	{

			865	 	 	 	 s	+=	printStruct(&dns.question[i])	+	"\n"

			866	 	 	 }

			867	 	 }

			868	 	 if	len(dns.answer)	>	0	{

			869	 	 	 s	+=	"--	Answers\n"

			870	 	 	 for	i	:=	0;	i	<	len(dns.answer);	i++	{

			871	 	 	 	 s	+=	printStruct(dns.answer[i])	+	"\n"

			872	 	 	 }

			873	 	 }

			874	 	 if	len(dns.ns)	>	0	{

			875	 	 	 s	+=	"--	Name	servers\n"

			876	 	 	 for	i	:=	0;	i	<	len(dns.ns);	i++	{

			877	 	 	 	 s	+=	printStruct(dns.ns[i])	+	"\n"

			878	 	 	 }

			879	 	 }

			880	 	 if	len(dns.extra)	>	0	{

			881	 	 	 s	+=	"--	Extra\n"

			882	 	 	 for	i	:=	0;	i	<	len(dns.extra);	i++	{

			883	 	 	 	 s	+=	printStruct(dns.extra[i])	+	"\n"

			884	 	 	 }

			885	 	 }

			886	 	 return	s

			887	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/doc.go
					1	 //	Copyright	2012	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	net

					6	

					7	 //	LookupHost	looks	up	the	given	host	using	the	local	resolver.

					8	 //	It	returns	an	array	of	that	host's	addresses.

					9	 func	LookupHost(host	string)	(addrs	[]string,	err	error)	{

				10	 	 return	lookupHost(host)

				11	 }

				12	

				13	 //	LookupIP	looks	up	host	using	the	local	resolver.

				14	 //	It	returns	an	array	of	that	host's	IPv4	and	IPv6	addresses.

				15	 func	LookupIP(host	string)	(addrs	[]IP,	err	error)	{

				16	 	 return	lookupIP(host)

				17	 }

				18	

				19	 //	LookupPort	looks	up	the	port	for	the	given	network	and	service.

				20	 func	LookupPort(network,	service	string)	(port	int,	err	error)	{

				21	 	 return	lookupPort(network,	service)

				22	 }

				23	

				24	 //	LookupCNAME	returns	the	canonical	DNS	host	for	the	given	name.

				25	 //	Callers	that	do	not	care	about	the	canonical	name	can	call

				26	 //	LookupHost	or	LookupIP	directly;	both	take	care	of	resolving

				27	 //	the	canonical	name	as	part	of	the	lookup.

				28	 func	LookupCNAME(name	string)	(cname	string,	err	error)	{

				29	 	 return	lookupCNAME(name)

				30	 }

				31	

				32	 //	LookupSRV	tries	to	resolve	an	SRV	query	of	the	given	service,

				33	 //	protocol,	and	domain	name.		The	proto	is	"tcp"	or	"udp".

				34	 //	The	returned	records	are	sorted	by	priority	and	randomized

				35	 //	by	weight	within	a	priority.

				36	 //

				37	 //	LookupSRV	constructs	the	DNS	name	to	look	up	following	RFC	2782.

				38	 //	That	is,	it	looks	up	_service._proto.name.		To	accommodate	services

				39	 //	publishing	SRV	records	under	non-standard	names,	if	both	service

				40	 //	and	proto	are	empty	strings,	LookupSRV	looks	up	name	directly.

				41	 func	LookupSRV(service,	proto,	name	string)	(cname	string,	addrs	[]*SRV,	err	error)	{

				42	 	 return	lookupSRV(service,	proto,	name)

				43	 }

				44	

				45	 //	LookupMX	returns	the	DNS	MX	records	for	the	given	domain	name	sorted	by	preference.

				46	 func	LookupMX(name	string)	(mx	[]*MX,	err	error)	{

				47	 	 return	lookupMX(name)

				48	 }

				49	

				50	 //	LookupTXT	returns	the	DNS	TXT	records	for	the	given	domain	name.

				51	 func	LookupTXT(name	string)	(txt	[]string,	err	error)	{

				52	 	 return	lookupTXT(name)

				53	 }

				54	

				55	 //	LookupAddr	performs	a	reverse	lookup	for	the	given	address,	returning	a	list

				56	 //	of	names	mapping	to	that	address.

				57	 func	LookupAddr(addr	string)	(name	[]string,	err	error)	{

				58	 	 return	lookupAddr(addr)

				59	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/fd.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 package	net

					8	

					9	 import	(

				10	 	 "errors"

				11	 	 "io"

				12	 	 "os"

				13	 	 "sync"

				14	 	 "syscall"

				15	 	 "time"

				16)

				17	

				18	 //	Network	file	descriptor.

				19	 type	netFD	struct	{

				20	 	 //	locking/lifetime	of	sysfd

				21	 	 sysmu		sync.Mutex

				22	 	 sysref	int

				23	

				24	 	 //	must	lock	both	sysmu	and	pollserver	to	write

				25	 	 //	can	lock	either	to	read

				26	 	 closing	bool

				27	

				28	 	 //	immutable	until	Close

				29	 	 sysfd							int

				30	 	 family						int

				31	 	 sotype						int

				32	 	 isConnected	bool

				33	 	 sysfile					*os.File

				34	 	 cr										chan	error

				35	 	 cw										chan	error

				36	 	 net									string

				37	 	 laddr							Addr

				38	 	 raddr							Addr

				39	

				40	 	 //	owned	by	client

				41	 	 rdeadline	int64

				42	 	 rio							sync.Mutex

				43	 	 wdeadline	int64

				44	 	 wio							sync.Mutex

				45	

				46	 	 //	owned	by	fd	wait	server

				47	 	 ncr,	ncw	int

				48	 }

				49	

				50	 //	A	pollServer	helps	FDs	determine	when	to	retry	a	non-blocking

				51	 //	read	or	write	after	they	get	EAGAIN.		When	an	FD	needs	to	wait,

				52	 //	send	the	fd	on	s.cr	(for	a	read)	or	s.cw	(for	a	write)	to	pass	the

				53	 //	request	to	the	poll	server.		Then	receive	on	fd.cr/fd.cw.

				54	 //	When	the	pollServer	finds	that	i/o	on	FD	should	be	possible

				55	 //	again,	it	will	send	fd	on	fd.cr/fd.cw	to	wake	any	waiting	processes.

				56	 //	This	protocol	is	implemented	as	s.WaitRead()	and	s.WaitWrite().

				57	 //

				58	 //	There	is	one	subtlety:	when	sending	on	s.cr/s.cw,	the

				59	 //	poll	server	is	probably	in	a	system	call,	waiting	for	an	fd

				60	 //	to	become	ready.		It's	not	looking	at	the	request	channels.

				61	 //	To	resolve	this,	the	poll	server	waits	not	just	on	the	FDs	it	has

				62	 //	been	given	but	also	its	own	pipe.		After	sending	on	the

				63	 //	buffered	channel	s.cr/s.cw,	WaitRead/WaitWrite	writes	a

				64	 //	byte	to	the	pipe,	causing	the	pollServer's	poll	system	call	to

				65	 //	return.		In	response	to	the	pipe	being	readable,	the	pollServer

				66	 //	re-polls	its	request	channels.

				67	 //

				68	 //	Note	that	the	ordering	is	"send	request"	and	then	"wake	up	server".

				69	 //	If	the	operations	were	reversed,	there	would	be	a	race:	the	poll

				70	 //	server	might	wake	up	and	look	at	the	request	channel,	see	that	it

				71	 //	was	empty,	and	go	back	to	sleep,	all	before	the	requester	managed

				72	 //	to	send	the	request.		Because	the	send	must	complete	before	the	wakeup,

				73	 //	the	request	channel	must	be	buffered.		A	buffer	of	size	1	is	sufficient

				74	 //	for	any	request	load.		If	many	processes	are	trying	to	submit	requests,

				75	 //	one	will	succeed,	the	pollServer	will	read	the	request,	and	then	the

				76	 //	channel	will	be	empty	for	the	next	process's	request.		A	larger	buffer

				77	 //	might	help	batch	requests.

				78	 //

				79	 //	To	avoid	races	in	closing,	all	fd	operations	are	locked	and

				80	 //	refcounted.	when	netFD.Close()	is	called,	it	calls	syscall.Shutdown

				81	 //	and	sets	a	closing	flag.	Only	when	the	last	reference	is	removed

				82	 //	will	the	fd	be	closed.

				83	

				84	 type	pollServer	struct	{

				85	 	 cr,	cw					chan	*netFD	//	buffered	>=	1

				86	 	 pr,	pw					*os.File

				87	 	 poll							*pollster	//	low-level	OS	hooks

				88	 	 sync.Mutex											//	controls	pending	and	deadline

				89	 	 pending				map[int]*netFD

				90	 	 deadline			int64	//	next	deadline	(nsec	since	1970)

				91	 }

				92	

				93	 func	(s	*pollServer)	AddFD(fd	*netFD,	mode	int)	error	{

				94	 	 s.Lock()

				95	 	 intfd	:=	fd.sysfd

				96	 	 if	intfd	<	0	||	fd.closing	{

				97	 	 	 //	fd	closed	underfoot

				98	 	 	 s.Unlock()

				99	 	 	 return	errClosing

			100	 	 }

			101	

			102	 	 var	t	int64

			103	 	 key	:=	intfd	<<	1

			104	 	 if	mode	==	'r'	{

			105	 	 	 fd.ncr++

			106	 	 	 t	=	fd.rdeadline

			107	 	 }	else	{

			108	 	 	 fd.ncw++

			109	 	 	 key++

			110	 	 	 t	=	fd.wdeadline

			111	 	 }

			112	 	 s.pending[key]	=	fd

			113	 	 doWakeup	:=	false

			114	 	 if	t	>	0	&&	(s.deadline	==	0	||	t	<	s.deadline)	{

			115	 	 	 s.deadline	=	t

			116	 	 	 doWakeup	=	true

			117	 	 }

			118	

			119	 	 wake,	err	:=	s.poll.AddFD(intfd,	mode,	false)

			120	 	 if	err	!=	nil	{

			121	 	 	 panic("pollServer	AddFD	"	+	err.Error())

			122	 	 }

			123	 	 if	wake	{

			124	 	 	 doWakeup	=	true

			125	 	 }

			126	 	 s.Unlock()

			127	

			128	 	 if	doWakeup	{

			129	 	 	 s.Wakeup()

			130	 	 }

			131	 	 return	nil

			132	 }

			133	

			134	 //	Evict	evicts	fd	from	the	pending	list,	unblocking

			135	 //	any	I/O	running	on	fd.		The	caller	must	have	locked

			136	 //	pollserver.

			137	 func	(s	*pollServer)	Evict(fd	*netFD)	{

			138	 	 if	s.pending[fd.sysfd<<1]	==	fd	{

			139	 	 	 s.WakeFD(fd,	'r',	errClosing)

			140	 	 	 s.poll.DelFD(fd.sysfd,	'r')

			141	 	 	 delete(s.pending,	fd.sysfd<<1)

			142	 	 }

			143	 	 if	s.pending[fd.sysfd<<1|1]	==	fd	{

			144	 	 	 s.WakeFD(fd,	'w',	errClosing)

			145	 	 	 s.poll.DelFD(fd.sysfd,	'w')

			146	 	 	 delete(s.pending,	fd.sysfd<<1|1)

			147	 	 }

			148	 }

			149	

			150	 var	wakeupbuf	[1]byte

			151	

			152	 func	(s	*pollServer)	Wakeup()	{	s.pw.Write(wakeupbuf[0:])	}

			153	

			154	 func	(s	*pollServer)	LookupFD(fd	int,	mode	int)	*netFD	{

			155	 	 key	:=	fd	<<	1

			156	 	 if	mode	==	'w'	{

			157	 	 	 key++

			158	 	 }

			159	 	 netfd,	ok	:=	s.pending[key]

			160	 	 if	!ok	{

			161	 	 	 return	nil

			162	 	 }

			163	 	 delete(s.pending,	key)

			164	 	 return	netfd

			165	 }

			166	

			167	 func	(s	*pollServer)	WakeFD(fd	*netFD,	mode	int,	err	error)	{

			168	 	 if	mode	==	'r'	{

			169	 	 	 for	fd.ncr	>	0	{

			170	 	 	 	 fd.ncr--

			171	 	 	 	 fd.cr	<-	err

			172	 	 	 }

			173	 	 }	else	{

			174	 	 	 for	fd.ncw	>	0	{

			175	 	 	 	 fd.ncw--

			176	 	 	 	 fd.cw	<-	err

			177	 	 	 }

			178	 	 }

			179	 }

			180	

			181	 func	(s	*pollServer)	Now()	int64	{

			182	 	 return	time.Now().UnixNano()

			183	 }

			184	

			185	 func	(s	*pollServer)	CheckDeadlines()	{

			186	 	 now	:=	s.Now()

			187	 	 //	TODO(rsc):	This	will	need	to	be	handled	more	efficiently,

			188	 	 //	probably	with	a	heap	indexed	by	wakeup	time.

			189	

			190	 	 var	next_deadline	int64

			191	 	 for	key,	fd	:=	range	s.pending	{

			192	 	 	 var	t	int64

			193	 	 	 var	mode	int

			194	 	 	 if	key&1	==	0	{

			195	 	 	 	 mode	=	'r'

			196	 	 	 }	else	{

			197	 	 	 	 mode	=	'w'

			198	 	 	 }

			199	 	 	 if	mode	==	'r'	{

			200	 	 	 	 t	=	fd.rdeadline

			201	 	 	 }	else	{

			202	 	 	 	 t	=	fd.wdeadline

			203	 	 	 }

			204	 	 	 if	t	>	0	{

			205	 	 	 	 if	t	<=	now	{

			206	 	 	 	 	 delete(s.pending,	key)

			207	 	 	 	 	 if	mode	==	'r'	{

			208	 	 	 	 	 	 s.poll.DelFD(fd.sysfd,	mode)

			209	 	 	 	 	 	 fd.rdeadline	=	-1

			210	 	 	 	 	 }	else	{

			211	 	 	 	 	 	 s.poll.DelFD(fd.sysfd,	mode)

			212	 	 	 	 	 	 fd.wdeadline	=	-1

			213	 	 	 	 	 }

			214	 	 	 	 	 s.WakeFD(fd,	mode,	nil)

			215	 	 	 	 }	else	if	next_deadline	==	0	||	t	<	next_deadline	{

			216	 	 	 	 	 next_deadline	=	t

			217	 	 	 	 }

			218	 	 	 }

			219	 	 }

			220	 	 s.deadline	=	next_deadline

			221	 }

			222	

			223	 func	(s	*pollServer)	Run()	{

			224	 	 var	scratch	[100]byte

			225	 	 s.Lock()

			226	 	 defer	s.Unlock()

			227	 	 for	{

			228	 	 	 var	t	=	s.deadline

			229	 	 	 if	t	>	0	{

			230	 	 	 	 t	=	t	-	s.Now()

			231	 	 	 	 if	t	<=	0	{

			232	 	 	 	 	 s.CheckDeadlines()

			233	 	 	 	 	 continue

			234	 	 	 	 }

			235	 	 	 }

			236	 	 	 fd,	mode,	err	:=	s.poll.WaitFD(s,	t)

			237	 	 	 if	err	!=	nil	{

			238	 	 	 	 print("pollServer	WaitFD:	",	err.Error(),	"\n")

			239	 	 	 	 return

			240	 	 	 }

			241	 	 	 if	fd	<	0	{

			242	 	 	 	 //	Timeout	happened.

			243	 	 	 	 s.CheckDeadlines()

			244	 	 	 	 continue

			245	 	 	 }

			246	 	 	 if	fd	==	int(s.pr.Fd())	{

			247	 	 	 	 //	Drain	our	wakeup	pipe	(we	could	loop	here,

			248	 	 	 	 //	but	it's	unlikely	that	there	are	more	than

			249	 	 	 	 //	len(scratch)	wakeup	calls).

			250	 	 	 	 s.pr.Read(scratch[0:])

			251	 	 	 	 s.CheckDeadlines()

			252	 	 	 }	else	{

			253	 	 	 	 netfd	:=	s.LookupFD(fd,	mode)

			254	 	 	 	 if	netfd	==	nil	{

			255	 	 	 	 	 //	This	can	happen	because	the	WaitFD	runs	without

			256	 	 	 	 	 //	holding	s's	lock,	so	there	might	be	a	pending	wakeup

			257	 	 	 	 	 //	for	an	fd	that	has	been	evicted.		No	harm	done.

			258	 	 	 	 	 continue

			259	 	 	 	 }

			260	 	 	 	 s.WakeFD(netfd,	mode,	nil)

			261	 	 	 }

			262	 	 }

			263	 }

			264	

			265	 func	(s	*pollServer)	WaitRead(fd	*netFD)	error	{

			266	 	 err	:=	s.AddFD(fd,	'r')

			267	 	 if	err	==	nil	{

			268	 	 	 err	=	<-fd.cr

			269	 	 }

			270	 	 return	err

			271	 }

			272	

			273	 func	(s	*pollServer)	WaitWrite(fd	*netFD)	error	{

			274	 	 err	:=	s.AddFD(fd,	'w')

			275	 	 if	err	==	nil	{

			276	 	 	 err	=	<-fd.cw

			277	 	 }

			278	 	 return	err

			279	 }

			280	

			281	 //	Network	FD	methods.

			282	 //	All	the	network	FDs	use	a	single	pollServer.

			283	

			284	 var	pollserver	*pollServer

			285	 var	onceStartServer	sync.Once

			286	

			287	 func	startServer()	{

			288	 	 p,	err	:=	newPollServer()

			289	 	 if	err	!=	nil	{

			290	 	 	 print("Start	pollServer:	",	err.Error(),	"\n")

			291	 	 }

			292	 	 pollserver	=	p

			293	 }

			294	

			295	 func	newFD(fd,	family,	sotype	int,	net	string)	(*netFD,	error)	{

			296	 	 onceStartServer.Do(startServer)

			297	 	 if	err	:=	syscall.SetNonblock(fd,	true);	err	!=	nil	{

			298	 	 	 return	nil,	err

			299	 	 }

			300	 	 netfd	:=	&netFD{

			301	 	 	 sysfd:		fd,

			302	 	 	 family:	family,

			303	 	 	 sotype:	sotype,

			304	 	 	 net:				net,

			305	 	 }

			306	 	 netfd.cr	=	make(chan	error,	1)

			307	 	 netfd.cw	=	make(chan	error,	1)

			308	 	 return	netfd,	nil

			309	 }

			310	

			311	 func	(fd	*netFD)	setAddr(laddr,	raddr	Addr)	{

			312	 	 fd.laddr	=	laddr

			313	 	 fd.raddr	=	raddr

			314	 	 var	ls,	rs	string

			315	 	 if	laddr	!=	nil	{

			316	 	 	 ls	=	laddr.String()

			317	 	 }

			318	 	 if	raddr	!=	nil	{

			319	 	 	 rs	=	raddr.String()

			320	 	 }

			321	 	 fd.sysfile	=	os.NewFile(uintptr(fd.sysfd),	fd.net+":"+ls+"->"+rs)

			322	 }

			323	

			324	 func	(fd	*netFD)	connect(ra	syscall.Sockaddr)	error	{

			325	 	 err	:=	syscall.Connect(fd.sysfd,	ra)

			326	 	 if	err	==	syscall.EINPROGRESS	{

			327	 	 	 if	err	=	pollserver.WaitWrite(fd);	err	!=	nil	{

			328	 	 	 	 return	err

			329	 	 	 }

			330	 	 	 var	e	int

			331	 	 	 e,	err	=	syscall.GetsockoptInt(fd.sysfd,	syscall.SOL_SOCKET,	syscall.SO_ERROR)

			332	 	 	 if	err	!=	nil	{

			333	 	 	 	 return	os.NewSyscallError("getsockopt",	err)

			334	 	 	 }

			335	 	 	 if	e	!=	0	{

			336	 	 	 	 err	=	syscall.Errno(e)

			337	 	 	 }

			338	 	 }

			339	 	 return	err

			340	 }

			341	

			342	 var	errClosing	=	errors.New("use	of	closed	network	connection")

			343	

			344	 //	Add	a	reference	to	this	fd.

			345	 //	If	closing==true,	pollserver	must	be	locked;	mark	the	fd	as	closing.

			346	 //	Returns	an	error	if	the	fd	cannot	be	used.

			347	 func	(fd	*netFD)	incref(closing	bool)	error	{

			348	 	 if	fd	==	nil	{

			349	 	 	 return	errClosing

			350	 	 }

			351	 	 fd.sysmu.Lock()

			352	 	 if	fd.closing	{

			353	 	 	 fd.sysmu.Unlock()

			354	 	 	 return	errClosing

			355	 	 }

			356	 	 fd.sysref++

			357	 	 if	closing	{

			358	 	 	 fd.closing	=	true

			359	 	 }

			360	 	 fd.sysmu.Unlock()

			361	 	 return	nil

			362	 }

			363	

			364	 //	Remove	a	reference	to	this	FD	and	close	if	we've	been	asked	to	do	so	(and

			365	 //	there	are	no	references	left.

			366	 func	(fd	*netFD)	decref()	{

			367	 	 if	fd	==	nil	{

			368	 	 	 return

			369	 	 }

			370	 	 fd.sysmu.Lock()

			371	 	 fd.sysref--

			372	 	 if	fd.closing	&&	fd.sysref	==	0	&&	fd.sysfile	!=	nil	{

			373	 	 	 fd.sysfile.Close()

			374	 	 	 fd.sysfile	=	nil

			375	 	 	 fd.sysfd	=	-1

			376	 	 }

			377	 	 fd.sysmu.Unlock()

			378	 }

			379	

			380	 func	(fd	*netFD)	Close()	error	{

			381	 	 pollserver.Lock()	//	needed	for	both	fd.incref(true)	and	pollserver.Evict

			382	 	 defer	pollserver.Unlock()

			383	 	 if	err	:=	fd.incref(true);	err	!=	nil	{

			384	 	 	 return	err

			385	 	 }

			386	 	 //	Unblock	any	I/O.		Once	it	all	unblocks	and	returns,

			387	 	 //	so	that	it	cannot	be	referring	to	fd.sysfd	anymore,

			388	 	 //	the	final	decref	will	close	fd.sysfd.		This	should	happen

			389	 	 //	fairly	quickly,	since	all	the	I/O	is	non-blocking,	and	any

			390	 	 //	attempts	to	block	in	the	pollserver	will	return	errClosing.

			391	 	 pollserver.Evict(fd)

			392	 	 fd.decref()

			393	 	 return	nil

			394	 }

			395	

			396	 func	(fd	*netFD)	shutdown(how	int)	error	{

			397	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			398	 	 	 return	err

			399	 	 }

			400	 	 defer	fd.decref()

			401	 	 err	:=	syscall.Shutdown(fd.sysfd,	how)

			402	 	 if	err	!=	nil	{

			403	 	 	 return	&OpError{"shutdown",	fd.net,	fd.laddr,	err}

			404	 	 }

			405	 	 return	nil

			406	 }

			407	

			408	 func	(fd	*netFD)	CloseRead()	error	{

			409	 	 return	fd.shutdown(syscall.SHUT_RD)

			410	 }

			411	

			412	 func	(fd	*netFD)	CloseWrite()	error	{

			413	 	 return	fd.shutdown(syscall.SHUT_WR)

			414	 }

			415	

			416	 func	(fd	*netFD)	Read(p	[]byte)	(n	int,	err	error)	{

			417	 	 fd.rio.Lock()

			418	 	 defer	fd.rio.Unlock()

			419	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			420	 	 	 return	0,	err

			421	 	 }

			422	 	 defer	fd.decref()

			423	 	 for	{

			424	 	 	 n,	err	=	syscall.Read(int(fd.sysfd),	p)

			425	 	 	 if	err	==	syscall.EAGAIN	{

			426	 	 	 	 err	=	errTimeout

			427	 	 	 	 if	fd.rdeadline	>=	0	{

			428	 	 	 	 	 if	err	=	pollserver.WaitRead(fd);	err	==	nil	{

			429	 	 	 	 	 	 continue

			430	 	 	 	 	 }

			431	 	 	 	 }

			432	 	 	 }

			433	 	 	 if	err	!=	nil	{

			434	 	 	 	 n	=	0

			435	 	 	 }	else	if	n	==	0	&&	err	==	nil	&&	fd.sotype	!=	syscall.SOCK_DGRAM	{

			436	 	 	 	 err	=	io.EOF

			437	 	 	 }

			438	 	 	 break

			439	 	 }

			440	 	 if	err	!=	nil	&&	err	!=	io.EOF	{

			441	 	 	 err	=	&OpError{"read",	fd.net,	fd.raddr,	err}

			442	 	 }

			443	 	 return

			444	 }

			445	

			446	 func	(fd	*netFD)	ReadFrom(p	[]byte)	(n	int,	sa	syscall.Sockaddr,	err	error)	{

			447	 	 fd.rio.Lock()

			448	 	 defer	fd.rio.Unlock()

			449	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			450	 	 	 return	0,	nil,	err

			451	 	 }

			452	 	 defer	fd.decref()

			453	 	 for	{

			454	 	 	 n,	sa,	err	=	syscall.Recvfrom(fd.sysfd,	p,	0)

			455	 	 	 if	err	==	syscall.EAGAIN	{

			456	 	 	 	 err	=	errTimeout

			457	 	 	 	 if	fd.rdeadline	>=	0	{

			458	 	 	 	 	 if	err	=	pollserver.WaitRead(fd);	err	==	nil	{

			459	 	 	 	 	 	 continue

			460	 	 	 	 	 }

			461	 	 	 	 }

			462	 	 	 }

			463	 	 	 if	err	!=	nil	{

			464	 	 	 	 n	=	0

			465	 	 	 }

			466	 	 	 break

			467	 	 }

			468	 	 if	err	!=	nil	&&	err	!=	io.EOF	{

			469	 	 	 err	=	&OpError{"read",	fd.net,	fd.laddr,	err}

			470	 	 }

			471	 	 return

			472	 }

			473	

			474	 func	(fd	*netFD)	ReadMsg(p	[]byte,	oob	[]byte)	(n,	oobn,	flags	int,	sa	syscall.Sockaddr,	err	error)	{

			475	 	 fd.rio.Lock()

			476	 	 defer	fd.rio.Unlock()

			477	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			478	 	 	 return	0,	0,	0,	nil,	err

			479	 	 }

			480	 	 defer	fd.decref()

			481	 	 for	{

			482	 	 	 n,	oobn,	flags,	sa,	err	=	syscall.Recvmsg(fd.sysfd,	p,	oob,	0)

			483	 	 	 if	err	==	syscall.EAGAIN	{

			484	 	 	 	 err	=	errTimeout

			485	 	 	 	 if	fd.rdeadline	>=	0	{

			486	 	 	 	 	 if	err	=	pollserver.WaitRead(fd);	err	==	nil	{

			487	 	 	 	 	 	 continue

			488	 	 	 	 	 }

			489	 	 	 	 }

			490	 	 	 }

			491	 	 	 if	err	==	nil	&&	n	==	0	{

			492	 	 	 	 err	=	io.EOF

			493	 	 	 }

			494	 	 	 break

			495	 	 }

			496	 	 if	err	!=	nil	&&	err	!=	io.EOF	{

			497	 	 	 err	=	&OpError{"read",	fd.net,	fd.laddr,	err}

			498	 	 	 return

			499	 	 }

			500	 	 return

			501	 }

			502	

			503	 func	(fd	*netFD)	Write(p	[]byte)	(int,	error)	{

			504	 	 fd.wio.Lock()

			505	 	 defer	fd.wio.Unlock()

			506	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			507	 	 	 return	0,	err

			508	 	 }

			509	 	 defer	fd.decref()

			510	 	 if	fd.sysfile	==	nil	{

			511	 	 	 return	0,	syscall.EINVAL

			512	 	 }

			513	

			514	 	 var	err	error

			515	 	 nn	:=	0

			516	 	 for	{

			517	 	 	 var	n	int

			518	 	 	 n,	err	=	syscall.Write(int(fd.sysfd),	p[nn:])

			519	 	 	 if	n	>	0	{

			520	 	 	 	 nn	+=	n

			521	 	 	 }

			522	 	 	 if	nn	==	len(p)	{

			523	 	 	 	 break

			524	 	 	 }

			525	 	 	 if	err	==	syscall.EAGAIN	{

			526	 	 	 	 err	=	errTimeout

			527	 	 	 	 if	fd.wdeadline	>=	0	{

			528	 	 	 	 	 if	err	=	pollserver.WaitWrite(fd);	err	==	nil	{

			529	 	 	 	 	 	 continue

			530	 	 	 	 	 }

			531	 	 	 	 }

			532	 	 	 }

			533	 	 	 if	err	!=	nil	{

			534	 	 	 	 n	=	0

			535	 	 	 	 break

			536	 	 	 }

			537	 	 	 if	n	==	0	{

			538	 	 	 	 err	=	io.ErrUnexpectedEOF

			539	 	 	 	 break

			540	 	 	 }

			541	 	 }

			542	 	 if	err	!=	nil	{

			543	 	 	 err	=	&OpError{"write",	fd.net,	fd.raddr,	err}

			544	 	 }

			545	 	 return	nn,	err

			546	 }

			547	

			548	 func	(fd	*netFD)	WriteTo(p	[]byte,	sa	syscall.Sockaddr)	(n	int,	err	error)	{

			549	 	 fd.wio.Lock()

			550	 	 defer	fd.wio.Unlock()

			551	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			552	 	 	 return	0,	err

			553	 	 }

			554	 	 defer	fd.decref()

			555	 	 for	{

			556	 	 	 err	=	syscall.Sendto(fd.sysfd,	p,	0,	sa)

			557	 	 	 if	err	==	syscall.EAGAIN	{

			558	 	 	 	 err	=	errTimeout

			559	 	 	 	 if	fd.wdeadline	>=	0	{

			560	 	 	 	 	 if	err	=	pollserver.WaitWrite(fd);	err	==	nil	{

			561	 	 	 	 	 	 continue

			562	 	 	 	 	 }

			563	 	 	 	 }

			564	 	 	 }

			565	 	 	 break

			566	 	 }

			567	 	 if	err	==	nil	{

			568	 	 	 n	=	len(p)

			569	 	 }	else	{

			570	 	 	 err	=	&OpError{"write",	fd.net,	fd.raddr,	err}

			571	 	 }

			572	 	 return

			573	 }

			574	

			575	 func	(fd	*netFD)	WriteMsg(p	[]byte,	oob	[]byte,	sa	syscall.Sockaddr)	(n	int,	oobn	int,	err	error)	{

			576	 	 fd.wio.Lock()

			577	 	 defer	fd.wio.Unlock()

			578	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			579	 	 	 return	0,	0,	err

			580	 	 }

			581	 	 defer	fd.decref()

			582	 	 for	{

			583	 	 	 err	=	syscall.Sendmsg(fd.sysfd,	p,	oob,	sa,	0)

			584	 	 	 if	err	==	syscall.EAGAIN	{

			585	 	 	 	 err	=	errTimeout

			586	 	 	 	 if	fd.wdeadline	>=	0	{

			587	 	 	 	 	 if	err	=	pollserver.WaitWrite(fd);	err	==	nil	{

			588	 	 	 	 	 	 continue

			589	 	 	 	 	 }

			590	 	 	 	 }

			591	 	 	 }

			592	 	 	 break

			593	 	 }

			594	 	 if	err	==	nil	{

			595	 	 	 n	=	len(p)

			596	 	 	 oobn	=	len(oob)

			597	 	 }	else	{

			598	 	 	 err	=	&OpError{"write",	fd.net,	fd.raddr,	err}

			599	 	 }

			600	 	 return

			601	 }

			602	

			603	 func	(fd	*netFD)	accept(toAddr	func(syscall.Sockaddr)	Addr)	(netfd	*netFD,	err	error)	{

			604	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			605	 	 	 return	nil,	err

			606	 	 }

			607	 	 defer	fd.decref()

			608	

			609	 	 //	See	../syscall/exec.go	for	description	of	ForkLock.

			610	 	 //	It	is	okay	to	hold	the	lock	across	syscall.Accept

			611	 	 //	because	we	have	put	fd.sysfd	into	non-blocking	mode.

			612	 	 var	s	int

			613	 	 var	rsa	syscall.Sockaddr

			614	 	 for	{

			615	 	 	 syscall.ForkLock.RLock()

			616	 	 	 s,	rsa,	err	=	syscall.Accept(fd.sysfd)

			617	 	 	 if	err	!=	nil	{

			618	 	 	 	 syscall.ForkLock.RUnlock()

			619	 	 	 	 if	err	==	syscall.EAGAIN	{

			620	 	 	 	 	 err	=	errTimeout

			621	 	 	 	 	 if	fd.rdeadline	>=	0	{

			622	 	 	 	 	 	 if	err	=	pollserver.WaitRead(fd);	err	==	nil	{

			623	 	 	 	 	 	 	 continue

			624	 	 	 	 	 	 }

			625	 	 	 	 	 }

			626	 	 	 	 }	else	if	err	==	syscall.ECONNABORTED	{

			627	 	 	 	 	 //	This	means	that	a	socket	on	the	listen	queue	was	closed

			628	 	 	 	 	 //	before	we	Accept()ed	it;	it's	a	silly	error,	so	try	again.

			629	 	 	 	 	 continue

			630	 	 	 	 }

			631	 	 	 	 return	nil,	&OpError{"accept",	fd.net,	fd.laddr,	err}

			632	 	 	 }

			633	 	 	 break

			634	 	 }

			635	 	 syscall.CloseOnExec(s)

			636	 	 syscall.ForkLock.RUnlock()

			637	

			638	 	 if	netfd,	err	=	newFD(s,	fd.family,	fd.sotype,	fd.net);	err	!=	nil	{

			639	 	 	 syscall.Close(s)

			640	 	 	 return	nil,	err

			641	 	 }

			642	 	 lsa,	_	:=	syscall.Getsockname(netfd.sysfd)

			643	 	 netfd.setAddr(toAddr(lsa),	toAddr(rsa))

			644	 	 return	netfd,	nil

			645	 }

			646	

			647	 func	(fd	*netFD)	dup()	(f	*os.File,	err	error)	{

			648	 	 ns,	err	:=	syscall.Dup(fd.sysfd)

			649	 	 if	err	!=	nil	{

			650	 	 	 return	nil,	&OpError{"dup",	fd.net,	fd.laddr,	err}

			651	 	 }

			652	

			653	 	 //	We	want	blocking	mode	for	the	new	fd,	hence	the	double	negative.

			654	 	 if	err	=	syscall.SetNonblock(ns,	false);	err	!=	nil	{

			655	 	 	 return	nil,	&OpError{"setnonblock",	fd.net,	fd.laddr,	err}

			656	 	 }

			657	

			658	 	 return	os.NewFile(uintptr(ns),	fd.sysfile.Name()),	nil

			659	 }

			660	

			661	 func	closesocket(s	int)	error	{

			662	 	 return	syscall.Close(s)

			663	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/fd_linux.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Waiting	for	FDs	via	epoll(7).

					6	

					7	 package	net

					8	

					9	 import	(

				10	 	 "os"

				11	 	 "syscall"

				12)

				13	

				14	 const	(

				15	 	 readFlags		=	syscall.EPOLLIN	|	syscall.EPOLLRDHUP

				16	 	 writeFlags	=	syscall.EPOLLOUT

				17)

				18	

				19	 type	pollster	struct	{

				20	 	 epfd	int

				21	

				22	 	 //	Events	we're	already	waiting	for

				23	 	 //	Must	hold	pollServer	lock

				24	 	 events	map[int]uint32

				25	

				26	 	 //	An	event	buffer	for	EpollWait.

				27	 	 //	Used	without	a	lock,	may	only	be	used	by	WaitFD.

				28	 	 waitEventBuf	[10]syscall.EpollEvent

				29	 	 waitEvents			[]syscall.EpollEvent

				30	

				31	 	 //	An	event	buffer	for	EpollCtl,	to	avoid	a	malloc.

				32	 	 //	Must	hold	pollServer	lock.

				33	 	 ctlEvent	syscall.EpollEvent

				34	 }

				35	

				36	 func	newpollster()	(p	*pollster,	err	error)	{

				37	 	 p	=	new(pollster)

				38	 	 if	p.epfd,	err	=	syscall.EpollCreate1(syscall.EPOLL_CLOEXEC);	err	!=	nil	{

				39	 	 	 if	err	!=	syscall.ENOSYS	{

				40	 	 	 	 return	nil,	os.NewSyscallError("epoll_create1",	err)

				41	 	 	 }

				42	 	 	 //	The	arg	to	epoll_create	is	a	hint	to	the	kernel

				43	 	 	 //	about	the	number	of	FDs	we	will	care	about.

				44	 	 	 //	We	don't	know,	and	since	2.6.8	the	kernel	ignores	it	anyhow.

				45	 	 	 if	p.epfd,	err	=	syscall.EpollCreate(16);	err	!=	nil	{

				46	 	 	 	 return	nil,	os.NewSyscallError("epoll_create",	err)

				47	 	 	 }

				48	 	 	 syscall.CloseOnExec(p.epfd)

				49	 	 }

				50	 	 p.events	=	make(map[int]uint32)

				51	 	 return	p,	nil

				52	 }

				53	

				54	 func	(p	*pollster)	AddFD(fd	int,	mode	int,	repeat	bool)	(bool,	error)	{

				55	 	 //	pollServer	is	locked.

				56	

				57	 	 var	already	bool

				58	 	 p.ctlEvent.Fd	=	int32(fd)

				59	 	 p.ctlEvent.Events,	already	=	p.events[fd]

				60	 	 if	!repeat	{

				61	 	 	 p.ctlEvent.Events	|=	syscall.EPOLLONESHOT

				62	 	 }

				63	 	 if	mode	==	'r'	{

				64	 	 	 p.ctlEvent.Events	|=	readFlags

				65	 	 }	else	{

				66	 	 	 p.ctlEvent.Events	|=	writeFlags

				67	 	 }

				68	

				69	 	 var	op	int

				70	 	 if	already	{

				71	 	 	 op	=	syscall.EPOLL_CTL_MOD

				72	 	 }	else	{

				73	 	 	 op	=	syscall.EPOLL_CTL_ADD

				74	 	 }

				75	 	 if	err	:=	syscall.EpollCtl(p.epfd,	op,	fd,	&p.ctlEvent);	err	!=	nil	{

				76	 	 	 return	false,	os.NewSyscallError("epoll_ctl",	err)

				77	 	 }

				78	 	 p.events[fd]	=	p.ctlEvent.Events

				79	 	 return	false,	nil

				80	 }

				81	

				82	 func	(p	*pollster)	StopWaiting(fd	int,	bits	uint)	{

				83	 	 //	pollServer	is	locked.

				84	

				85	 	 events,	already	:=	p.events[fd]

				86	 	 if	!already	{

				87	 	 	 //	The	fd	returned	by	the	kernel	may	have	been

				88	 	 	 //	cancelled	already;	return	silently.

				89	 	 	 return

				90	 	 }

				91	

				92	 	 //	If	syscall.EPOLLONESHOT	is	not	set,	the	wait

				93	 	 //	is	a	repeating	wait,	so	don't	change	it.

				94	 	 if	events&syscall.EPOLLONESHOT	==	0	{

				95	 	 	 return

				96	 	 }

				97	

				98	 	 //	Disable	the	given	bits.

				99	 	 //	If	we're	still	waiting	for	other	events,	modify	the	fd

			100	 	 //	event	in	the	kernel.		Otherwise,	delete	it.

			101	 	 events	&=	^uint32(bits)

			102	 	 if	int32(events)&^syscall.EPOLLONESHOT	!=	0	{

			103	 	 	 p.ctlEvent.Fd	=	int32(fd)

			104	 	 	 p.ctlEvent.Events	=	events

			105	 	 	 if	err	:=	syscall.EpollCtl(p.epfd,	syscall.EPOLL_CTL_MOD,	fd,	&p.ctlEvent);	err	!=	nil	{

			106	 	 	 	 print("Epoll	modify	fd=",	fd,	":	",	err.Error(),	"\n")

			107	 	 	 }

			108	 	 	 p.events[fd]	=	events

			109	 	 }	else	{

			110	 	 	 if	err	:=	syscall.EpollCtl(p.epfd,	syscall.EPOLL_CTL_DEL,	fd,	nil);	err	!=	nil	{

			111	 	 	 	 print("Epoll	delete	fd=",	fd,	":	",	err.Error(),	"\n")

			112	 	 	 }

			113	 	 	 delete(p.events,	fd)

			114	 	 }

			115	 }

			116	

			117	 func	(p	*pollster)	DelFD(fd	int,	mode	int)	{

			118	 	 //	pollServer	is	locked.

			119	

			120	 	 if	mode	==	'r'	{

			121	 	 	 p.StopWaiting(fd,	readFlags)

			122	 	 }	else	{

			123	 	 	 p.StopWaiting(fd,	writeFlags)

			124	 	 }

			125	

			126	 	 //	Discard	any	queued	up	events.

			127	 	 i	:=	0

			128	 	 for	i	<	len(p.waitEvents)	{

			129	 	 	 if	fd	==	int(p.waitEvents[i].Fd)	{

			130	 	 	 	 copy(p.waitEvents[i:],	p.waitEvents[i+1:])

			131	 	 	 	 p.waitEvents	=	p.waitEvents[:len(p.waitEvents)-1]

			132	 	 	 }	else	{

			133	 	 	 	 i++

			134	 	 	 }

			135	 	 }

			136	 }

			137	

			138	 func	(p	*pollster)	WaitFD(s	*pollServer,	nsec	int64)	(fd	int,	mode	int,	err	error)	{

			139	 	 for	len(p.waitEvents)	==	0	{

			140	 	 	 var	msec	int	=	-1

			141	 	 	 if	nsec	>	0	{

			142	 	 	 	 msec	=	int((nsec	+	1e6	-	1)	/	1e6)

			143	 	 	 }

			144	

			145	 	 	 s.Unlock()

			146	 	 	 n,	err	:=	syscall.EpollWait(p.epfd,	p.waitEventBuf[0:],	msec)

			147	 	 	 s.Lock()

			148	

			149	 	 	 if	err	!=	nil	{

			150	 	 	 	 if	err	==	syscall.EAGAIN	||	err	==	syscall.EINTR	{

			151	 	 	 	 	 continue

			152	 	 	 	 }

			153	 	 	 	 return	-1,	0,	os.NewSyscallError("epoll_wait",	err)

			154	 	 	 }

			155	 	 	 if	n	==	0	{

			156	 	 	 	 return	-1,	0,	nil

			157	 	 	 }

			158	 	 	 p.waitEvents	=	p.waitEventBuf[0:n]

			159	 	 }

			160	

			161	 	 ev	:=	&p.waitEvents[0]

			162	 	 p.waitEvents	=	p.waitEvents[1:]

			163	

			164	 	 fd	=	int(ev.Fd)

			165	

			166	 	 if	ev.Events&writeFlags	!=	0	{

			167	 	 	 p.StopWaiting(fd,	writeFlags)

			168	 	 	 return	fd,	'w',	nil

			169	 	 }

			170	 	 if	ev.Events&readFlags	!=	0	{

			171	 	 	 p.StopWaiting(fd,	readFlags)

			172	 	 	 return	fd,	'r',	nil

			173	 	 }

			174	

			175	 	 //	Other	events	are	error	conditions	-	wake	whoever	is	waiting.

			176	 	 events,	_	:=	p.events[fd]

			177	 	 if	events&writeFlags	!=	0	{

			178	 	 	 p.StopWaiting(fd,	writeFlags)

			179	 	 	 return	fd,	'w',	nil

			180	 	 }

			181	 	 p.StopWaiting(fd,	readFlags)

			182	 	 return	fd,	'r',	nil

			183	 }

			184	

			185	 func	(p	*pollster)	Close()	error	{

			186	 	 return	os.NewSyscallError("close",	syscall.Close(p.epfd))

			187	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.

http://code.google.com/policies.html#restrictions

Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/file.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 package	net

					8	

					9	 import	(

				10	 	 "os"

				11	 	 "syscall"

				12)

				13	

				14	 func	newFileFD(f	*os.File)	(*netFD,	error)	{

				15	 	 fd,	err	:=	syscall.Dup(int(f.Fd()))

				16	 	 if	err	!=	nil	{

				17	 	 	 return	nil,	os.NewSyscallError("dup",	err)

				18	 	 }

				19	

				20	 	 proto,	err	:=	syscall.GetsockoptInt(fd,	syscall.SOL_SOCKET,	syscall.SO_TYPE)

				21	 	 if	err	!=	nil	{

				22	 	 	 return	nil,	os.NewSyscallError("getsockopt",	err)

				23	 	 }

				24	

				25	 	 family	:=	syscall.AF_UNSPEC

				26	 	 toAddr	:=	sockaddrToTCP

				27	 	 sa,	_	:=	syscall.Getsockname(fd)

				28	 	 switch	sa.(type)	{

				29	 	 default:

				30	 	 	 closesocket(fd)

				31	 	 	 return	nil,	syscall.EINVAL

				32	 	 case	*syscall.SockaddrInet4:

				33	 	 	 family	=	syscall.AF_INET

				34	 	 	 if	proto	==	syscall.SOCK_DGRAM	{

				35	 	 	 	 toAddr	=	sockaddrToUDP

				36	 	 	 }	else	if	proto	==	syscall.SOCK_RAW	{

				37	 	 	 	 toAddr	=	sockaddrToIP

				38	 	 	 }

				39	 	 case	*syscall.SockaddrInet6:

				40	 	 	 family	=	syscall.AF_INET6

				41	 	 	 if	proto	==	syscall.SOCK_DGRAM	{

				42	 	 	 	 toAddr	=	sockaddrToUDP

				43	 	 	 }	else	if	proto	==	syscall.SOCK_RAW	{

				44	 	 	 	 toAddr	=	sockaddrToIP

				45	 	 	 }

				46	 	 case	*syscall.SockaddrUnix:

				47	 	 	 family	=	syscall.AF_UNIX

				48	 	 	 toAddr	=	sockaddrToUnix

				49	 	 	 if	proto	==	syscall.SOCK_DGRAM	{

				50	 	 	 	 toAddr	=	sockaddrToUnixgram

				51	 	 	 }	else	if	proto	==	syscall.SOCK_SEQPACKET	{

				52	 	 	 	 toAddr	=	sockaddrToUnixpacket

				53	 	 	 }

				54	 	 }

				55	 	 laddr	:=	toAddr(sa)

				56	 	 sa,	_	=	syscall.Getpeername(fd)

				57	 	 raddr	:=	toAddr(sa)

				58	

				59	 	 netfd,	err	:=	newFD(fd,	family,	proto,	laddr.Network())

				60	 	 if	err	!=	nil	{

				61	 	 	 return	nil,	err

				62	 	 }

				63	 	 netfd.setAddr(laddr,	raddr)

				64	 	 return	netfd,	nil

				65	 }

				66	

				67	 //	FileConn	returns	a	copy	of	the	network	connection	corresponding	to

				68	 //	the	open	file	f.		It	is	the	caller's	responsibility	to	close	f	when

				69	 //	finished.		Closing	c	does	not	affect	f,	and	closing	f	does	not

				70	 //	affect	c.

				71	 func	FileConn(f	*os.File)	(c	Conn,	err	error)	{

				72	 	 fd,	err	:=	newFileFD(f)

				73	 	 if	err	!=	nil	{

				74	 	 	 return	nil,	err

				75	 	 }

				76	 	 switch	fd.laddr.(type)	{

				77	 	 case	*TCPAddr:

				78	 	 	 return	newTCPConn(fd),	nil

				79	 	 case	*UDPAddr:

				80	 	 	 return	newUDPConn(fd),	nil

				81	 	 case	*UnixAddr:

				82	 	 	 return	newUnixConn(fd),	nil

				83	 	 case	*IPAddr:

				84	 	 	 return	newIPConn(fd),	nil

				85	 	 }

				86	 	 fd.Close()

				87	 	 return	nil,	syscall.EINVAL

				88	 }

				89	

				90	 //	FileListener	returns	a	copy	of	the	network	listener	corresponding

				91	 //	to	the	open	file	f.		It	is	the	caller's	responsibility	to	close	l

				92	 //	when	finished.		Closing	c	does	not	affect	l,	and	closing	l	does	not

				93	 //	affect	c.

				94	 func	FileListener(f	*os.File)	(l	Listener,	err	error)	{

				95	 	 fd,	err	:=	newFileFD(f)

				96	 	 if	err	!=	nil	{

				97	 	 	 return	nil,	err

				98	 	 }

				99	 	 switch	laddr	:=	fd.laddr.(type)	{

			100	 	 case	*TCPAddr:

			101	 	 	 return	&TCPListener{fd},	nil

			102	 	 case	*UnixAddr:

			103	 	 	 return	&UnixListener{fd,	laddr.Name},	nil

			104	 	 }

			105	 	 fd.Close()

			106	 	 return	nil,	syscall.EINVAL

			107	 }

			108	

			109	 //	FilePacketConn	returns	a	copy	of	the	packet	network	connection

			110	 //	corresponding	to	the	open	file	f.		It	is	the	caller's

			111	 //	responsibility	to	close	f	when	finished.		Closing	c	does	not	affect

			112	 //	f,	and	closing	f	does	not	affect	c.

			113	 func	FilePacketConn(f	*os.File)	(c	PacketConn,	err	error)	{

			114	 	 fd,	err	:=	newFileFD(f)

			115	 	 if	err	!=	nil	{

			116	 	 	 return	nil,	err

			117	 	 }

			118	 	 switch	fd.laddr.(type)	{

			119	 	 case	*UDPAddr:

			120	 	 	 return	newUDPConn(fd),	nil

			121	 	 case	*UnixAddr:

			122	 	 	 return	newUnixConn(fd),	nil

			123	 	 }

			124	 	 fd.Close()

			125	 	 return	nil,	syscall.EINVAL

			126	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/hosts.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Read	static	host/IP	entries	from	/etc/hosts.

					6	

					7	 package	net

					8	

					9	 import	(

				10	 	 "sync"

				11	 	 "time"

				12)

				13	

				14	 const	cacheMaxAge	=	5	*	time.Minute

				15	

				16	 //	hostsPath	points	to	the	file	with	static	IP/address	entries.

				17	 var	hostsPath	=	"/etc/hosts"

				18	

				19	 //	Simple	cache.

				20	 var	hosts	struct	{

				21	 	 sync.Mutex

				22	 	 byName	map[string][]string

				23	 	 byAddr	map[string][]string

				24	 	 expire	time.Time

				25	 	 path			string

				26	 }

				27	

				28	 func	readHosts()	{

				29	 	 now	:=	time.Now()

				30	 	 hp	:=	hostsPath

				31	 	 if	len(hosts.byName)	==	0	||	now.After(hosts.expire)	||	hosts.path	!=	hp	{

				32	 	 	 hs	:=	make(map[string][]string)

				33	 	 	 is	:=	make(map[string][]string)

				34	 	 	 var	file	*file

				35	 	 	 if	file,	_	=	open(hp);	file	==	nil	{

				36	 	 	 	 return

				37	 	 	 }

				38	 	 	 for	line,	ok	:=	file.readLine();	ok;	line,	ok	=	file.readLine()	{

				39	 	 	 	 if	i	:=	byteIndex(line,	'#');	i	>=	0	{

				40	 	 	 	 	 //	Discard	comments.

				41	 	 	 	 	 line	=	line[0:i]

				42	 	 	 	 }

				43	 	 	 	 f	:=	getFields(line)

				44	 	 	 	 if	len(f)	<	2	||	ParseIP(f[0])	==	nil	{

				45	 	 	 	 	 continue

				46	 	 	 	 }

				47	 	 	 	 for	i	:=	1;	i	<	len(f);	i++	{

				48	 	 	 	 	 h	:=	f[i]

				49	 	 	 	 	 hs[h]	=	append(hs[h],	f[0])

				50	 	 	 	 	 is[f[0]]	=	append(is[f[0]],	h)

				51	 	 	 	 }

				52	 	 	 }

				53	 	 	 //	Update	the	data	cache.

				54	 	 	 hosts.expire	=	time.Now().Add(cacheMaxAge)

				55	 	 	 hosts.path	=	hp

				56	 	 	 hosts.byName	=	hs

				57	 	 	 hosts.byAddr	=	is

				58	 	 	 file.close()

				59	 	 }

				60	 }

				61	

				62	 //	lookupStaticHost	looks	up	the	addresses	for	the	given	host	from	/etc/hosts.

				63	 func	lookupStaticHost(host	string)	[]string	{

				64	 	 hosts.Lock()

				65	 	 defer	hosts.Unlock()

				66	 	 readHosts()

				67	 	 if	len(hosts.byName)	!=	0	{

				68	 	 	 if	ips,	ok	:=	hosts.byName[host];	ok	{

				69	 	 	 	 return	ips

				70	 	 	 }

				71	 	 }

				72	 	 return	nil

				73	 }

				74	

				75	 //	lookupStaticAddr	looks	up	the	hosts	for	the	given	address	from	/etc/hosts.

				76	 func	lookupStaticAddr(addr	string)	[]string	{

				77	 	 hosts.Lock()

				78	 	 defer	hosts.Unlock()

				79	 	 readHosts()

				80	 	 if	len(hosts.byAddr)	!=	0	{

				81	 	 	 if	hosts,	ok	:=	hosts.byAddr[addr];	ok	{

				82	 	 	 	 return	hosts

				83	 	 	 }

				84	 	 }

				85	 	 return	nil

				86	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/interface.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Network	interface	identification

					6	

					7	 package	net

					8	

					9	 import	"errors"

				10	

				11	 var	(

				12	 	 errInvalidInterface									=	errors.New("net:	invalid	interface")

				13	 	 errInvalidInterfaceIndex				=	errors.New("net:	invalid	interface	index")

				14	 	 errInvalidInterfaceName					=	errors.New("net:	invalid	interface	name")

				15	 	 errNoSuchInterface										=	errors.New("net:	no	such	interface")

				16	 	 errNoSuchMulticastInterface	=	errors.New("net:	no	such	multicast	interface")

				17)

				18	

				19	 //	Interface	represents	a	mapping	between	network	interface	name

				20	 //	and	index.		It	also	represents	network	interface	facility

				21	 //	information.

				22	 type	Interface	struct	{

				23	 	 Index								int										//	positive	integer	that	starts	at	one,	zero	is	never	used

				24	 	 MTU										int										//	maximum	transmission	unit

				25	 	 Name									string							//	e.g.,	"en0",	"lo0",	"eth0.100"

				26	 	 HardwareAddr	HardwareAddr	//	IEEE	MAC-48,	EUI-48	and	EUI-64	form

				27	 	 Flags								Flags								//	e.g.,	FlagUp,	FlagLoopback,	FlagMulticast

				28	 }

				29	

				30	 type	Flags	uint

				31	

				32	 const	(

				33	 	 FlagUp											Flags	=	1	<<	iota	//	interface	is	up

				34	 	 FlagBroadcast																						//	interface	supports	broadcast	access	capability

				35	 	 FlagLoopback																							//	interface	is	a	loopback	interface

				36	 	 FlagPointToPoint																			//	interface	belongs	to	a	point-to-point	link

				37	 	 FlagMulticast																						//	interface	supports	multicast	access	capability

				38)

				39	

				40	 var	flagNames	=	[]string{

				41	 	 "up",

				42	 	 "broadcast",

				43	 	 "loopback",

				44	 	 "pointtopoint",

				45	 	 "multicast",

				46	 }

				47	

				48	 func	(f	Flags)	String()	string	{

				49	 	 s	:=	""

				50	 	 for	i,	name	:=	range	flagNames	{

				51	 	 	 if	f&(1<<uint(i))	!=	0	{

				52	 	 	 	 if	s	!=	""	{

				53	 	 	 	 	 s	+=	"|"

				54	 	 	 	 }

				55	 	 	 	 s	+=	name

				56	 	 	 }

				57	 	 }

				58	 	 if	s	==	""	{

				59	 	 	 s	=	"0"

				60	 	 }

				61	 	 return	s

				62	 }

				63	

				64	 //	Addrs	returns	interface	addresses	for	a	specific	interface.

				65	 func	(ifi	*Interface)	Addrs()	([]Addr,	error)	{

				66	 	 if	ifi	==	nil	{

				67	 	 	 return	nil,	errInvalidInterface

				68	 	 }

				69	 	 return	interfaceAddrTable(ifi.Index)

				70	 }

				71	

				72	 //	MulticastAddrs	returns	multicast,	joined	group	addresses	for

				73	 //	a	specific	interface.

				74	 func	(ifi	*Interface)	MulticastAddrs()	([]Addr,	error)	{

				75	 	 if	ifi	==	nil	{

				76	 	 	 return	nil,	errInvalidInterface

				77	 	 }

				78	 	 return	interfaceMulticastAddrTable(ifi.Index)

				79	 }

				80	

				81	 //	Interfaces	returns	a	list	of	the	system's	network	interfaces.

				82	 func	Interfaces()	([]Interface,	error)	{

				83	 	 return	interfaceTable(0)

				84	 }

				85	

				86	 //	InterfaceAddrs	returns	a	list	of	the	system's	network	interface

				87	 //	addresses.

				88	 func	InterfaceAddrs()	([]Addr,	error)	{

				89	 	 return	interfaceAddrTable(0)

				90	 }

				91	

				92	 //	InterfaceByIndex	returns	the	interface	specified	by	index.

				93	 func	InterfaceByIndex(index	int)	(*Interface,	error)	{

				94	 	 if	index	<=	0	{

				95	 	 	 return	nil,	errInvalidInterfaceIndex

				96	 	 }

				97	 	 ift,	err	:=	interfaceTable(index)

				98	 	 if	err	!=	nil	{

				99	 	 	 return	nil,	err

			100	 	 }

			101	 	 for	_,	ifi	:=	range	ift	{

			102	 	 	 return	&ifi,	nil

			103	 	 }

			104	 	 return	nil,	errNoSuchInterface

			105	 }

			106	

			107	 //	InterfaceByName	returns	the	interface	specified	by	name.

			108	 func	InterfaceByName(name	string)	(*Interface,	error)	{

			109	 	 if	name	==	""	{

			110	 	 	 return	nil,	errInvalidInterfaceName

			111	 	 }

			112	 	 ift,	err	:=	interfaceTable(0)

			113	 	 if	err	!=	nil	{

			114	 	 	 return	nil,	err

			115	 	 }

			116	 	 for	_,	ifi	:=	range	ift	{

			117	 	 	 if	name	==	ifi.Name	{

			118	 	 	 	 return	&ifi,	nil

			119	 	 	 }

			120	 	 }

			121	 	 return	nil,	errNoSuchInterface

			122	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/interface_linux.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Network	interface	identification	for	Linux

					6	

					7	 package	net

					8	

					9	 import	(

				10	 	 "os"

				11	 	 "syscall"

				12	 	 "unsafe"

				13)

				14	

				15	 //	If	the	ifindex	is	zero,	interfaceTable	returns	mappings	of	all

				16	 //	network	interfaces.		Otherwise	it	returns	a	mapping	of	a	specific

				17	 //	interface.

				18	 func	interfaceTable(ifindex	int)	([]Interface,	error)	{

				19	 	 tab,	err	:=	syscall.NetlinkRIB(syscall.RTM_GETLINK,	syscall.AF_UNSPEC)

				20	 	 if	err	!=	nil	{

				21	 	 	 return	nil,	os.NewSyscallError("netlink	rib",	err)

				22	 	 }

				23	

				24	 	 msgs,	err	:=	syscall.ParseNetlinkMessage(tab)

				25	 	 if	err	!=	nil	{

				26	 	 	 return	nil,	os.NewSyscallError("netlink	message",	err)

				27	 	 }

				28	

				29	 	 var	ift	[]Interface

				30	 	 for	_,	m	:=	range	msgs	{

				31	 	 	 switch	m.Header.Type	{

				32	 	 	 case	syscall.NLMSG_DONE:

				33	 	 	 	 goto	done

				34	 	 	 case	syscall.RTM_NEWLINK:

				35	 	 	 	 ifim	:=	(*syscall.IfInfomsg)(unsafe.Pointer(&m.Data[0]))

				36	 	 	 	 if	ifindex	==	0	||	ifindex	==	int(ifim.Index)	{

				37	 	 	 	 	 attrs,	err	:=	syscall.ParseNetlinkRouteAttr(&m)

				38	 	 	 	 	 if	err	!=	nil	{

				39	 	 	 	 	 	 return	nil,	os.NewSyscallError("netlink	routeattr",	err)

				40	 	 	 	 	 }

				41	 	 	 	 	 ifi	:=	newLink(ifim,	attrs)

				42	 	 	 	 	 ift	=	append(ift,	ifi)

				43	 	 	 	 }

				44	 	 	 }

				45	 	 }

				46	 done:

				47	 	 return	ift,	nil

				48	 }

				49	

				50	 func	newLink(ifim	*syscall.IfInfomsg,	attrs	[]syscall.NetlinkRouteAttr)	Interface	{

				51	 	 ifi	:=	Interface{Index:	int(ifim.Index),	Flags:	linkFlags(ifim.Flags)}

				52	 	 for	_,	a	:=	range	attrs	{

				53	 	 	 switch	a.Attr.Type	{

				54	 	 	 case	syscall.IFLA_ADDRESS:

				55	 	 	 	 var	nonzero	bool

				56	 	 	 	 for	_,	b	:=	range	a.Value	{

				57	 	 	 	 	 if	b	!=	0	{

				58	 	 	 	 	 	 nonzero	=	true

				59	 	 	 	 	 }

				60	 	 	 	 }

				61	 	 	 	 if	nonzero	{

				62	 	 	 	 	 ifi.HardwareAddr	=	a.Value[:]

				63	 	 	 	 }

				64	 	 	 case	syscall.IFLA_IFNAME:

				65	 	 	 	 ifi.Name	=	string(a.Value[:len(a.Value)-1])

				66	 	 	 case	syscall.IFLA_MTU:

				67	 	 	 	 ifi.MTU	=	int(uint32(a.Value[3])<<24	|	uint32(a.Value[2])<<16	|	uint32(a.Value[1])<<8	|	uint32(a.Value[0]))

				68	 	 	 }

				69	 	 }

				70	 	 return	ifi

				71	 }

				72	

				73	 func	linkFlags(rawFlags	uint32)	Flags	{

				74	 	 var	f	Flags

				75	 	 if	rawFlags&syscall.IFF_UP	!=	0	{

				76	 	 	 f	|=	FlagUp

				77	 	 }

				78	 	 if	rawFlags&syscall.IFF_BROADCAST	!=	0	{

				79	 	 	 f	|=	FlagBroadcast

				80	 	 }

				81	 	 if	rawFlags&syscall.IFF_LOOPBACK	!=	0	{

				82	 	 	 f	|=	FlagLoopback

				83	 	 }

				84	 	 if	rawFlags&syscall.IFF_POINTOPOINT	!=	0	{

				85	 	 	 f	|=	FlagPointToPoint

				86	 	 }

				87	 	 if	rawFlags&syscall.IFF_MULTICAST	!=	0	{

				88	 	 	 f	|=	FlagMulticast

				89	 	 }

				90	 	 return	f

				91	 }

				92	

				93	 //	If	the	ifindex	is	zero,	interfaceAddrTable	returns	addresses

				94	 //	for	all	network	interfaces.		Otherwise	it	returns	addresses

				95	 //	for	a	specific	interface.

				96	 func	interfaceAddrTable(ifindex	int)	([]Addr,	error)	{

				97	 	 tab,	err	:=	syscall.NetlinkRIB(syscall.RTM_GETADDR,	syscall.AF_UNSPEC)

				98	 	 if	err	!=	nil	{

				99	 	 	 return	nil,	os.NewSyscallError("netlink	rib",	err)

			100	 	 }

			101	

			102	 	 msgs,	err	:=	syscall.ParseNetlinkMessage(tab)

			103	 	 if	err	!=	nil	{

			104	 	 	 return	nil,	os.NewSyscallError("netlink	message",	err)

			105	 	 }

			106	

			107	 	 ifat,	err	:=	addrTable(msgs,	ifindex)

			108	 	 if	err	!=	nil	{

			109	 	 	 return	nil,	err

			110	 	 }

			111	 	 return	ifat,	nil

			112	 }

			113	

			114	 func	addrTable(msgs	[]syscall.NetlinkMessage,	ifindex	int)	([]Addr,	error)	{

			115	 	 var	ifat	[]Addr

			116	 	 for	_,	m	:=	range	msgs	{

			117	 	 	 switch	m.Header.Type	{

			118	 	 	 case	syscall.NLMSG_DONE:

			119	 	 	 	 goto	done

			120	 	 	 case	syscall.RTM_NEWADDR:

			121	 	 	 	 ifam	:=	(*syscall.IfAddrmsg)(unsafe.Pointer(&m.Data[0]))

			122	 	 	 	 if	ifindex	==	0	||	ifindex	==	int(ifam.Index)	{

			123	 	 	 	 	 attrs,	err	:=	syscall.ParseNetlinkRouteAttr(&m)

			124	 	 	 	 	 if	err	!=	nil	{

			125	 	 	 	 	 	 return	nil,	os.NewSyscallError("netlink	routeattr",	err)

			126	 	 	 	 	 }

			127	 	 	 	 	 ifat	=	append(ifat,	newAddr(attrs,	int(ifam.Family),	int(ifam.Prefixlen)))

			128	 	 	 	 }

			129	 	 	 }

			130	 	 }

			131	 done:

			132	 	 return	ifat,	nil

			133	 }

			134	

			135	 func	newAddr(attrs	[]syscall.NetlinkRouteAttr,	family,	pfxlen	int)	Addr	{

			136	 	 ifa	:=	&IPNet{}

			137	 	 for	_,	a	:=	range	attrs	{

			138	 	 	 switch	a.Attr.Type	{

			139	 	 	 case	syscall.IFA_ADDRESS:

			140	 	 	 	 switch	family	{

			141	 	 	 	 case	syscall.AF_INET:

			142	 	 	 	 	 ifa.IP	=	IPv4(a.Value[0],	a.Value[1],	a.Value[2],	a.Value[3])

			143	 	 	 	 	 ifa.Mask	=	CIDRMask(pfxlen,	8*IPv4len)

			144	 	 	 	 case	syscall.AF_INET6:

			145	 	 	 	 	 ifa.IP	=	make(IP,	IPv6len)

			146	 	 	 	 	 copy(ifa.IP,	a.Value[:])

			147	 	 	 	 	 ifa.Mask	=	CIDRMask(pfxlen,	8*IPv6len)

			148	 	 	 	 }

			149	 	 	 }

			150	 	 }

			151	 	 return	ifa

			152	 }

			153	

			154	 //	If	the	ifindex	is	zero,	interfaceMulticastAddrTable	returns

			155	 //	addresses	for	all	network	interfaces.		Otherwise	it	returns

			156	 //	addresses	for	a	specific	interface.

			157	 func	interfaceMulticastAddrTable(ifindex	int)	([]Addr,	error)	{

			158	 	 var	(

			159	 	 	 err	error

			160	 	 	 ifi	*Interface

			161)

			162	 	 if	ifindex	>	0	{

			163	 	 	 ifi,	err	=	InterfaceByIndex(ifindex)

			164	 	 	 if	err	!=	nil	{

			165	 	 	 	 return	nil,	err

			166	 	 	 }

			167	 	 }

			168	 	 ifmat4	:=	parseProcNetIGMP("/proc/net/igmp",	ifi)

			169	 	 ifmat6	:=	parseProcNetIGMP6("/proc/net/igmp6",	ifi)

			170	 	 return	append(ifmat4,	ifmat6...),	nil

			171	 }

			172	

			173	 func	parseProcNetIGMP(path	string,	ifi	*Interface)	[]Addr	{

			174	 	 fd,	err	:=	open(path)

			175	 	 if	err	!=	nil	{

			176	 	 	 return	nil

			177	 	 }

			178	 	 defer	fd.close()

			179	

			180	 	 var	(

			181	 	 	 ifmat	[]Addr

			182	 	 	 name		string

			183)

			184	 	 fd.readLine()	//	skip	first	line

			185	 	 b	:=	make([]byte,	IPv4len)

			186	 	 for	l,	ok	:=	fd.readLine();	ok;	l,	ok	=	fd.readLine()	{

			187	 	 	 f	:=	splitAtBytes(l,	"	:\r\t\n")

			188	 	 	 if	len(f)	<	4	{

			189	 	 	 	 continue

			190	 	 	 }

			191	 	 	 switch	{

			192	 	 	 case	l[0]	!=	'	'	&&	l[0]	!=	'\t':	//	new	interface	line

			193	 	 	 	 name	=	f[1]

			194	 	 	 case	len(f[0])	==	8:

			195	 	 	 	 if	ifi	==	nil	||	name	==	ifi.Name	{

			196	 	 	 	 	 for	i	:=	0;	i+1	<	len(f[0]);	i	+=	2	{

			197	 	 	 	 	 	 b[i/2],	_	=	xtoi2(f[0][i:i+2],	0)

			198	 	 	 	 	 }

			199	 	 	 	 	 ifma	:=	IPAddr{IP:	IPv4(b[3],	b[2],	b[1],	b[0])}

			200	 	 	 	 	 ifmat	=	append(ifmat,	ifma.toAddr())

			201	 	 	 	 }

			202	 	 	 }

			203	 	 }

			204	 	 return	ifmat

			205	 }

			206	

			207	 func	parseProcNetIGMP6(path	string,	ifi	*Interface)	[]Addr	{

			208	 	 fd,	err	:=	open(path)

			209	 	 if	err	!=	nil	{

			210	 	 	 return	nil

			211	 	 }

			212	 	 defer	fd.close()

			213	

			214	 	 var	ifmat	[]Addr

			215	 	 b	:=	make([]byte,	IPv6len)

			216	 	 for	l,	ok	:=	fd.readLine();	ok;	l,	ok	=	fd.readLine()	{

			217	 	 	 f	:=	splitAtBytes(l,	"	\r\t\n")

			218	 	 	 if	len(f)	<	6	{

			219	 	 	 	 continue

			220	 	 	 }

			221	 	 	 if	ifi	==	nil	||	f[1]	==	ifi.Name	{

			222	 	 	 	 for	i	:=	0;	i+1	<	len(f[2]);	i	+=	2	{

			223	 	 	 	 	 b[i/2],	_	=	xtoi2(f[2][i:i+2],	0)

			224	 	 	 	 }

			225	 	 	 	 ifma	:=	IPAddr{IP:	IP{b[0],	b[1],	b[2],	b[3],	b[4],	b[5],	b[6],	b[7],	b[8],	b[9],	b[10],	b[11],	b[12],	b[13],	b[14],	b[15]}}

			226	 	 	 	 ifmat	=	append(ifmat,	ifma.toAddr())

			227	 	 	 }

			228	 	 }

			229	 	 return	ifmat

			230	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/ip.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	IP	address	manipulations

					6	 //

					7	 //	IPv4	addresses	are	4	bytes;	IPv6	addresses	are	16	bytes.

					8	 //	An	IPv4	address	can	be	converted	to	an	IPv6	address	by

					9	 //	adding	a	canonical	prefix	(10	zeros,	2	0xFFs).

				10	 //	This	library	accepts	either	size	of	byte	array	but	always

				11	 //	returns	16-byte	addresses.

				12	

				13	 package	net

				14	

				15	 //	IP	address	lengths	(bytes).

				16	 const	(

				17	 	 IPv4len	=	4

				18	 	 IPv6len	=	16

				19)

				20	

				21	 //	An	IP	is	a	single	IP	address,	an	array	of	bytes.

				22	 //	Functions	in	this	package	accept	either	4-byte	(IPv4)

				23	 //	or	16-byte	(IPv6)	arrays	as	input.

				24	 //

				25	 //	Note	that	in	this	documentation,	referring	to	an

				26	 //	IP	address	as	an	IPv4	address	or	an	IPv6	address

				27	 //	is	a	semantic	property	of	the	address,	not	just	the

				28	 //	length	of	the	byte	array:	a	16-byte	array	can	still

				29	 //	be	an	IPv4	address.

				30	 type	IP	[]byte

				31	

				32	 //	An	IP	mask	is	an	IP	address.

				33	 type	IPMask	[]byte

				34	

				35	 //	An	IPNet	represents	an	IP	network.

				36	 type	IPNet	struct	{

				37	 	 IP			IP					//	network	number

				38	 	 Mask	IPMask	//	network	mask

				39	 }

				40	

				41	 //	IPv4	returns	the	IP	address	(in	16-byte	form)	of	the

				42	 //	IPv4	address	a.b.c.d.

				43	 func	IPv4(a,	b,	c,	d	byte)	IP	{

				44	 	 p	:=	make(IP,	IPv6len)

				45	 	 copy(p,	v4InV6Prefix)

				46	 	 p[12]	=	a

				47	 	 p[13]	=	b

				48	 	 p[14]	=	c

				49	 	 p[15]	=	d

				50	 	 return	p

				51	 }

				52	

				53	 var	v4InV6Prefix	=	[]byte{0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0xff,	0xff}

				54	

				55	 //	IPv4Mask	returns	the	IP	mask	(in	4-byte	form)	of	the

				56	 //	IPv4	mask	a.b.c.d.

				57	 func	IPv4Mask(a,	b,	c,	d	byte)	IPMask	{

				58	 	 p	:=	make(IPMask,	IPv4len)

				59	 	 p[0]	=	a

				60	 	 p[1]	=	b

				61	 	 p[2]	=	c

				62	 	 p[3]	=	d

				63	 	 return	p

				64	 }

				65	

				66	 //	CIDRMask	returns	an	IPMask	consisting	of	`ones'	1	bits

				67	 //	followed	by	0s	up	to	a	total	length	of	`bits'	bits.

				68	 //	For	a	mask	of	this	form,	CIDRMask	is	the	inverse	of	IPMask.Size.

				69	 func	CIDRMask(ones,	bits	int)	IPMask	{

				70	 	 if	bits	!=	8*IPv4len	&&	bits	!=	8*IPv6len	{

				71	 	 	 return	nil

				72	 	 }

				73	 	 if	ones	<	0	||	ones	>	bits	{

				74	 	 	 return	nil

				75	 	 }

				76	 	 l	:=	bits	/	8

				77	 	 m	:=	make(IPMask,	l)

				78	 	 n	:=	uint(ones)

				79	 	 for	i	:=	0;	i	<	l;	i++	{

				80	 	 	 if	n	>=	8	{

				81	 	 	 	 m[i]	=	0xff

				82	 	 	 	 n	-=	8

				83	 	 	 	 continue

				84	 	 	 }

				85	 	 	 m[i]	=	^byte(0xff	>>	n)

				86	 	 	 n	=	0

				87	 	 }

				88	 	 return	m

				89	 }

				90	

				91	 //	Well-known	IPv4	addresses

				92	 var	(

				93	 	 IPv4bcast					=	IPv4(255,	255,	255,	255)	//	broadcast

				94	 	 IPv4allsys				=	IPv4(224,	0,	0,	1)							//	all	systems

				95	 	 IPv4allrouter	=	IPv4(224,	0,	0,	2)							//	all	routers

				96	 	 IPv4zero						=	IPv4(0,	0,	0,	0)									//	all	zeros

				97)

				98	

				99	 //	Well-known	IPv6	addresses

			100	 var	(

			101	 	 IPv6zero																			=	IP{0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0}

			102	 	 IPv6unspecified												=	IP{0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0}

			103	 	 IPv6loopback															=	IP{0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	1}

			104	 	 IPv6interfacelocalallnodes	=	IP{0xff,	0x01,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0x01}

			105	 	 IPv6linklocalallnodes						=	IP{0xff,	0x02,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0x01}

			106	 	 IPv6linklocalallrouters				=	IP{0xff,	0x02,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0x02}

			107)

			108	

			109	 //	IsUnspecified	returns	true	if	ip	is	an	unspecified	address.

			110	 func	(ip	IP)	IsUnspecified()	bool	{

			111	 	 if	ip.Equal(IPv4zero)	||	ip.Equal(IPv6unspecified)	{

			112	 	 	 return	true

			113	 	 }

			114	 	 return	false

			115	 }

			116	

			117	 //	IsLoopback	returns	true	if	ip	is	a	loopback	address.

			118	 func	(ip	IP)	IsLoopback()	bool	{

			119	 	 if	ip4	:=	ip.To4();	ip4	!=	nil	&&	ip4[0]	==	127	{

			120	 	 	 return	true

			121	 	 }

			122	 	 return	ip.Equal(IPv6loopback)

			123	 }

			124	

			125	 //	IsMulticast	returns	true	if	ip	is	a	multicast	address.

			126	 func	(ip	IP)	IsMulticast()	bool	{

			127	 	 if	ip4	:=	ip.To4();	ip4	!=	nil	&&	ip4[0]&0xf0	==	0xe0	{

			128	 	 	 return	true

			129	 	 }

			130	 	 return	ip[0]	==	0xff

			131	 }

			132	

			133	 //	IsInterfaceLinkLocalMulticast	returns	true	if	ip	is

			134	 //	an	interface-local	multicast	address.

			135	 func	(ip	IP)	IsInterfaceLocalMulticast()	bool	{

			136	 	 return	len(ip)	==	IPv6len	&&	ip[0]	==	0xff	&&	ip[1]&0x0f	==	0x01

			137	 }

			138	

			139	 //	IsLinkLocalMulticast	returns	true	if	ip	is	a	link-local

			140	 //	multicast	address.

			141	 func	(ip	IP)	IsLinkLocalMulticast()	bool	{

			142	 	 if	ip4	:=	ip.To4();	ip4	!=	nil	&&	ip4[0]	==	224	&&	ip4[1]	==	0	&&	ip4[2]	==	0	{

			143	 	 	 return	true

			144	 	 }

			145	 	 return	ip[0]	==	0xff	&&	ip[1]&0x0f	==	0x02

			146	 }

			147	

			148	 //	IsLinkLocalUnicast	returns	true	if	ip	is	a	link-local

			149	 //	unicast	address.

			150	 func	(ip	IP)	IsLinkLocalUnicast()	bool	{

			151	 	 if	ip4	:=	ip.To4();	ip4	!=	nil	&&	ip4[0]	==	169	&&	ip4[1]	==	254	{

			152	 	 	 return	true

			153	 	 }

			154	 	 return	ip[0]	==	0xfe	&&	ip[1]&0xc0	==	0x80

			155	 }

			156	

			157	 //	IsGlobalUnicast	returns	true	if	ip	is	a	global	unicast

			158	 //	address.

			159	 func	(ip	IP)	IsGlobalUnicast()	bool	{

			160	 	 return	!ip.IsUnspecified()	&&

			161	 	 	 !ip.IsLoopback()	&&

			162	 	 	 !ip.IsMulticast()	&&

			163	 	 	 !ip.IsLinkLocalUnicast()

			164	 }

			165	

			166	 //	Is	p	all	zeros?

			167	 func	isZeros(p	IP)	bool	{

			168	 	 for	i	:=	0;	i	<	len(p);	i++	{

			169	 	 	 if	p[i]	!=	0	{

			170	 	 	 	 return	false

			171	 	 	 }

			172	 	 }

			173	 	 return	true

			174	 }

			175	

			176	 //	To4	converts	the	IPv4	address	ip	to	a	4-byte	representation.

			177	 //	If	ip	is	not	an	IPv4	address,	To4	returns	nil.

			178	 func	(ip	IP)	To4()	IP	{

			179	 	 if	len(ip)	==	IPv4len	{

			180	 	 	 return	ip

			181	 	 }

			182	 	 if	len(ip)	==	IPv6len	&&

			183	 	 	 isZeros(ip[0:10])	&&

			184	 	 	 ip[10]	==	0xff	&&

			185	 	 	 ip[11]	==	0xff	{

			186	 	 	 return	ip[12:16]

			187	 	 }

			188	 	 return	nil

			189	 }

			190	

			191	 //	To16	converts	the	IP	address	ip	to	a	16-byte	representation.

			192	 //	If	ip	is	not	an	IP	address	(it	is	the	wrong	length),	To16	returns	nil.

			193	 func	(ip	IP)	To16()	IP	{

			194	 	 if	len(ip)	==	IPv4len	{

			195	 	 	 return	IPv4(ip[0],	ip[1],	ip[2],	ip[3])

			196	 	 }

			197	 	 if	len(ip)	==	IPv6len	{

			198	 	 	 return	ip

			199	 	 }

			200	 	 return	nil

			201	 }

			202	

			203	 //	Default	route	masks	for	IPv4.

			204	 var	(

			205	 	 classAMask	=	IPv4Mask(0xff,	0,	0,	0)

			206	 	 classBMask	=	IPv4Mask(0xff,	0xff,	0,	0)

			207	 	 classCMask	=	IPv4Mask(0xff,	0xff,	0xff,	0)

			208)

			209	

			210	 //	DefaultMask	returns	the	default	IP	mask	for	the	IP	address	ip.

			211	 //	Only	IPv4	addresses	have	default	masks;	DefaultMask	returns

			212	 //	nil	if	ip	is	not	a	valid	IPv4	address.

			213	 func	(ip	IP)	DefaultMask()	IPMask	{

			214	 	 if	ip	=	ip.To4();	ip	==	nil	{

			215	 	 	 return	nil

			216	 	 }

			217	 	 switch	true	{

			218	 	 case	ip[0]	<	0x80:

			219	 	 	 return	classAMask

			220	 	 case	ip[0]	<	0xC0:

			221	 	 	 return	classBMask

			222	 	 default:

			223	 	 	 return	classCMask

			224	 	 }

			225	 	 return	nil	//	not	reached

			226	 }

			227	

			228	 func	allFF(b	[]byte)	bool	{

			229	 	 for	_,	c	:=	range	b	{

			230	 	 	 if	c	!=	0xff	{

			231	 	 	 	 return	false

			232	 	 	 }

			233	 	 }

			234	 	 return	true

			235	 }

			236	

			237	 //	Mask	returns	the	result	of	masking	the	IP	address	ip	with	mask.

			238	 func	(ip	IP)	Mask(mask	IPMask)	IP	{

			239	 	 if	len(mask)	==	IPv6len	&&	len(ip)	==	IPv4len	&&	allFF(mask[:12])	{

			240	 	 	 mask	=	mask[12:]

			241	 	 }

			242	 	 if	len(mask)	==	IPv4len	&&	len(ip)	==	IPv6len	&&	bytesEqual(ip[:12],	v4InV6Prefix)	{

			243	 	 	 ip	=	ip[12:]

			244	 	 }

			245	 	 n	:=	len(ip)

			246	 	 if	n	!=	len(mask)	{

			247	 	 	 return	nil

			248	 	 }

			249	 	 out	:=	make(IP,	n)

			250	 	 for	i	:=	0;	i	<	n;	i++	{

			251	 	 	 out[i]	=	ip[i]	&	mask[i]

			252	 	 }

			253	 	 return	out

			254	 }

			255	

			256	 //	String	returns	the	string	form	of	the	IP	address	ip.

			257	 //	If	the	address	is	an	IPv4	address,	the	string	representation

			258	 //	is	dotted	decimal	("74.125.19.99").		Otherwise	the	representation

			259	 //	is	IPv6	("2001:4860:0:2001::68").

			260	 func	(ip	IP)	String()	string	{

			261	 	 p	:=	ip

			262	

			263	 	 if	len(ip)	==	0	{

			264	 	 	 return	"<nil>"

			265	 	 }

			266	

			267	 	 //	If	IPv4,	use	dotted	notation.

			268	 	 if	p4	:=	p.To4();	len(p4)	==	IPv4len	{

			269	 	 	 return	itod(uint(p4[0]))	+	"."	+

			270	 	 	 	 itod(uint(p4[1]))	+	"."	+

			271	 	 	 	 itod(uint(p4[2]))	+	"."	+

			272	 	 	 	 itod(uint(p4[3]))

			273	 	 }

			274	 	 if	len(p)	!=	IPv6len	{

			275	 	 	 return	"?"

			276	 	 }

			277	

			278	 	 //	Find	longest	run	of	zeros.

			279	 	 e0	:=	-1

			280	 	 e1	:=	-1

			281	 	 for	i	:=	0;	i	<	IPv6len;	i	+=	2	{

			282	 	 	 j	:=	i

			283	 	 	 for	j	<	IPv6len	&&	p[j]	==	0	&&	p[j+1]	==	0	{

			284	 	 	 	 j	+=	2

			285	 	 	 }

			286	 	 	 if	j	>	i	&&	j-i	>	e1-e0	{

			287	 	 	 	 e0	=	i

			288	 	 	 	 e1	=	j

			289	 	 	 }

			290	 	 }

			291	 	 //	The	symbol	"::"	MUST	NOT	be	used	to	shorten	just	one	16	bit	0	field.

			292	 	 if	e1-e0	<=	2	{

			293	 	 	 e0	=	-1

			294	 	 	 e1	=	-1

			295	 	 }

			296	

			297	 	 //	Print	with	possible	::	in	place	of	run	of	zeros

			298	 	 var	s	string

			299	 	 for	i	:=	0;	i	<	IPv6len;	i	+=	2	{

			300	 	 	 if	i	==	e0	{

			301	 	 	 	 s	+=	"::"

			302	 	 	 	 i	=	e1

			303	 	 	 	 if	i	>=	IPv6len	{

			304	 	 	 	 	 break

			305	 	 	 	 }

			306	 	 	 }	else	if	i	>	0	{

			307	 	 	 	 s	+=	":"

			308	 	 	 }

			309	 	 	 s	+=	itox((uint(p[i])<<8)|uint(p[i+1]),	1)

			310	 	 }

			311	 	 return	s

			312	 }

			313	

			314	 //	Equal	returns	true	if	ip	and	x	are	the	same	IP	address.

			315	 //	An	IPv4	address	and	that	same	address	in	IPv6	form	are

			316	 //	considered	to	be	equal.

			317	 func	(ip	IP)	Equal(x	IP)	bool	{

			318	 	 if	len(ip)	==	len(x)	{

			319	 	 	 return	bytesEqual(ip,	x)

			320	 	 }

			321	 	 if	len(ip)	==	IPv4len	&&	len(x)	==	IPv6len	{

			322	 	 	 return	bytesEqual(x[0:12],	v4InV6Prefix)	&&	bytesEqual(ip,	x[12:])

			323	 	 }

			324	 	 if	len(ip)	==	IPv6len	&&	len(x)	==	IPv4len	{

			325	 	 	 return	bytesEqual(ip[0:12],	v4InV6Prefix)	&&	bytesEqual(ip[12:],	x)

			326	 	 }

			327	 	 return	false

			328	 }

			329	

			330	 func	bytesEqual(x,	y	[]byte)	bool	{

			331	 	 if	len(x)	!=	len(y)	{

			332	 	 	 return	false

			333	 	 }

			334	 	 for	i,	b	:=	range	x	{

			335	 	 	 if	y[i]	!=	b	{

			336	 	 	 	 return	false

			337	 	 	 }

			338	 	 }

			339	 	 return	true

			340	 }

			341	

			342	 //	If	mask	is	a	sequence	of	1	bits	followed	by	0	bits,

			343	 //	return	the	number	of	1	bits.

			344	 func	simpleMaskLength(mask	IPMask)	int	{

			345	 	 var	n	int

			346	 	 for	i,	v	:=	range	mask	{

			347	 	 	 if	v	==	0xff	{

			348	 	 	 	 n	+=	8

			349	 	 	 	 continue

			350	 	 	 }

			351	 	 	 //	found	non-ff	byte

			352	 	 	 //	count	1	bits

			353	 	 	 for	v&0x80	!=	0	{

			354	 	 	 	 n++

			355	 	 	 	 v	<<=	1

			356	 	 	 }

			357	 	 	 //	rest	must	be	0	bits

			358	 	 	 if	v	!=	0	{

			359	 	 	 	 return	-1

			360	 	 	 }

			361	 	 	 for	i++;	i	<	len(mask);	i++	{

			362	 	 	 	 if	mask[i]	!=	0	{

			363	 	 	 	 	 return	-1

			364	 	 	 	 }

			365	 	 	 }

			366	 	 	 break

			367	 	 }

			368	 	 return	n

			369	 }

			370	

			371	 //	Size	returns	the	number	of	leading	ones	and	total	bits	in	the	mask.

			372	 //	If	the	mask	is	not	in	the	canonical	form--ones	followed	by	zeros--then

			373	 //	Size	returns	0,	0.

			374	 func	(m	IPMask)	Size()	(ones,	bits	int)	{

			375	 	 ones,	bits	=	simpleMaskLength(m),	len(m)*8

			376	 	 if	ones	==	-1	{

			377	 	 	 return	0,	0

			378	 	 }

			379	 	 return

			380	 }

			381	

			382	 //	String	returns	the	hexadecimal	form	of	m,	with	no	punctuation.

			383	 func	(m	IPMask)	String()	string	{

			384	 	 s	:=	""

			385	 	 for	_,	b	:=	range	m	{

			386	 	 	 s	+=	itox(uint(b),	2)

			387	 	 }

			388	 	 if	len(s)	==	0	{

			389	 	 	 return	"<nil>"

			390	 	 }

			391	 	 return	s

			392	 }

			393	

			394	 func	networkNumberAndMask(n	*IPNet)	(ip	IP,	m	IPMask)	{

			395	 	 if	ip	=	n.IP.To4();	ip	==	nil	{

			396	 	 	 ip	=	n.IP

			397	 	 	 if	len(ip)	!=	IPv6len	{

			398	 	 	 	 return	nil,	nil

			399	 	 	 }

			400	 	 }

			401	 	 m	=	n.Mask

			402	 	 switch	len(m)	{

			403	 	 case	IPv4len:

			404	 	 	 if	len(ip)	!=	IPv4len	{

			405	 	 	 	 return	nil,	nil

			406	 	 	 }

			407	 	 case	IPv6len:

			408	 	 	 if	len(ip)	==	IPv4len	{

			409	 	 	 	 m	=	m[12:]

			410	 	 	 }

			411	 	 default:

			412	 	 	 return	nil,	nil

			413	 	 }

			414	 	 return

			415	 }

			416	

			417	 //	Contains	reports	whether	the	network	includes	ip.

			418	 func	(n	*IPNet)	Contains(ip	IP)	bool	{

			419	 	 nn,	m	:=	networkNumberAndMask(n)

			420	 	 if	x	:=	ip.To4();	x	!=	nil	{

			421	 	 	 ip	=	x

			422	 	 }

			423	 	 l	:=	len(ip)

			424	 	 if	l	!=	len(nn)	{

			425	 	 	 return	false

			426	 	 }

			427	 	 for	i	:=	0;	i	<	l;	i++	{

			428	 	 	 if	nn[i]&m[i]	!=	ip[i]&m[i]	{

			429	 	 	 	 return	false

			430	 	 	 }

			431	 	 }

			432	 	 return	true

			433	 }

			434	

			435	 //	String	returns	the	CIDR	notation	of	n	like	"192.168.100.1/24"

			436	 //	or	"2001:DB8::/48"	as	defined	in	RFC	4632	and	RFC	4291.

			437	 //	If	the	mask	is	not	in	the	canonical	form,	it	returns	the

			438	 //	string	which	consists	of	an	IP	address,	followed	by	a	slash

			439	 //	character	and	a	mask	expressed	as	hexadecimal	form	with	no

			440	 //	punctuation	like	"192.168.100.1/c000ff00".

			441	 func	(n	*IPNet)	String()	string	{

			442	 	 nn,	m	:=	networkNumberAndMask(n)

			443	 	 if	nn	==	nil	||	m	==	nil	{

			444	 	 	 return	"<nil>"

			445	 	 }

			446	 	 l	:=	simpleMaskLength(m)

			447	 	 if	l	==	-1	{

			448	 	 	 return	nn.String()	+	"/"	+	m.String()

			449	 	 }

			450	 	 return	nn.String()	+	"/"	+	itod(uint(l))

			451	 }

			452	

			453	 //	Network	returns	the	address's	network	name,	"ip+net".

			454	 func	(n	*IPNet)	Network()	string	{	return	"ip+net"	}

			455	

			456	 //	Parse	IPv4	address	(d.d.d.d).

			457	 func	parseIPv4(s	string)	IP	{

			458	 	 var	p	[IPv4len]byte

			459	 	 i	:=	0

			460	 	 for	j	:=	0;	j	<	IPv4len;	j++	{

			461	 	 	 if	i	>=	len(s)	{

			462	 	 	 	 //	Missing	octets.

			463	 	 	 	 return	nil

			464	 	 	 }

			465	 	 	 if	j	>	0	{

			466	 	 	 	 if	s[i]	!=	'.'	{

			467	 	 	 	 	 return	nil

			468	 	 	 	 }

			469	 	 	 	 i++

			470	 	 	 }

			471	 	 	 var	(

			472	 	 	 	 n		int

			473	 	 	 	 ok	bool

			474)

			475	 	 	 n,	i,	ok	=	dtoi(s,	i)

			476	 	 	 if	!ok	||	n	>	0xFF	{

			477	 	 	 	 return	nil

			478	 	 	 }

			479	 	 	 p[j]	=	byte(n)

			480	 	 }

			481	 	 if	i	!=	len(s)	{

			482	 	 	 return	nil

			483	 	 }

			484	 	 return	IPv4(p[0],	p[1],	p[2],	p[3])

			485	 }

			486	

			487	 //	Parse	IPv6	address.		Many	forms.

			488	 //	The	basic	form	is	a	sequence	of	eight	colon-separated

			489	 //	16-bit	hex	numbers	separated	by	colons,

			490	 //	as	in	0123:4567:89ab:cdef:0123:4567:89ab:cdef.

			491	 //	Two	exceptions:

			492	 //	 *	A	run	of	zeros	can	be	replaced	with	"::".

			493	 //	 *	The	last	32	bits	can	be	in	IPv4	form.

			494	 //	Thus,	::ffff:1.2.3.4	is	the	IPv4	address	1.2.3.4.

			495	 func	parseIPv6(s	string)	IP	{

			496	 	 p	:=	make(IP,	IPv6len)

			497	 	 ellipsis	:=	-1	//	position	of	ellipsis	in	p

			498	 	 i	:=	0									//	index	in	string	s

			499	

			500	 	 //	Might	have	leading	ellipsis

			501	 	 if	len(s)	>=	2	&&	s[0]	==	':'	&&	s[1]	==	':'	{

			502	 	 	 ellipsis	=	0

			503	 	 	 i	=	2

			504	 	 	 //	Might	be	only	ellipsis

			505	 	 	 if	i	==	len(s)	{

			506	 	 	 	 return	p

			507	 	 	 }

			508	 	 }

			509	

			510	 	 //	Loop,	parsing	hex	numbers	followed	by	colon.

			511	 	 j	:=	0

			512	 	 for	j	<	IPv6len	{

			513	 	 	 //	Hex	number.

			514	 	 	 n,	i1,	ok	:=	xtoi(s,	i)

			515	 	 	 if	!ok	||	n	>	0xFFFF	{

			516	 	 	 	 return	nil

			517	 	 	 }

			518	

			519	 	 	 //	If	followed	by	dot,	might	be	in	trailing	IPv4.

			520	 	 	 if	i1	<	len(s)	&&	s[i1]	==	'.'	{

			521	 	 	 	 if	ellipsis	<	0	&&	j	!=	IPv6len-IPv4len	{

			522	 	 	 	 	 //	Not	the	right	place.

			523	 	 	 	 	 return	nil

			524	 	 	 	 }

			525	 	 	 	 if	j+IPv4len	>	IPv6len	{

			526	 	 	 	 	 //	Not	enough	room.

			527	 	 	 	 	 return	nil

			528	 	 	 	 }

			529	 	 	 	 p4	:=	parseIPv4(s[i:])

			530	 	 	 	 if	p4	==	nil	{

			531	 	 	 	 	 return	nil

			532	 	 	 	 }

			533	 	 	 	 p[j]	=	p4[12]

			534	 	 	 	 p[j+1]	=	p4[13]

			535	 	 	 	 p[j+2]	=	p4[14]

			536	 	 	 	 p[j+3]	=	p4[15]

			537	 	 	 	 i	=	len(s)

			538	 	 	 	 j	+=	IPv4len

			539	 	 	 	 break

			540	 	 	 }

			541	

			542	 	 	 //	Save	this	16-bit	chunk.

			543	 	 	 p[j]	=	byte(n	>>	8)

			544	 	 	 p[j+1]	=	byte(n)

			545	 	 	 j	+=	2

			546	

			547	 	 	 //	Stop	at	end	of	string.

			548	 	 	 i	=	i1

			549	 	 	 if	i	==	len(s)	{

			550	 	 	 	 break

			551	 	 	 }

			552	

			553	 	 	 //	Otherwise	must	be	followed	by	colon	and	more.

			554	 	 	 if	s[i]	!=	':'	||	i+1	==	len(s)	{

			555	 	 	 	 return	nil

			556	 	 	 }

			557	 	 	 i++

			558	

			559	 	 	 //	Look	for	ellipsis.

			560	 	 	 if	s[i]	==	':'	{

			561	 	 	 	 if	ellipsis	>=	0	{	//	already	have	one

			562	 	 	 	 	 return	nil

			563	 	 	 	 }

			564	 	 	 	 ellipsis	=	j

			565	 	 	 	 if	i++;	i	==	len(s)	{	//	can	be	at	end

			566	 	 	 	 	 break

			567	 	 	 	 }

			568	 	 	 }

			569	 	 }

			570	

			571	 	 //	Must	have	used	entire	string.

			572	 	 if	i	!=	len(s)	{

			573	 	 	 return	nil

			574	 	 }

			575	

			576	 	 //	If	didn't	parse	enough,	expand	ellipsis.

			577	 	 if	j	<	IPv6len	{

			578	 	 	 if	ellipsis	<	0	{

			579	 	 	 	 return	nil

			580	 	 	 }

			581	 	 	 n	:=	IPv6len	-	j

			582	 	 	 for	k	:=	j	-	1;	k	>=	ellipsis;	k--	{

			583	 	 	 	 p[k+n]	=	p[k]

			584	 	 	 }

			585	 	 	 for	k	:=	ellipsis	+	n	-	1;	k	>=	ellipsis;	k--	{

			586	 	 	 	 p[k]	=	0

			587	 	 	 }

			588	 	 }

			589	 	 return	p

			590	 }

			591	

			592	 //	A	ParseError	represents	a	malformed	text	string	and	the	type	of	string	that	was	expected.

			593	 type	ParseError	struct	{

			594	 	 Type	string

			595	 	 Text	string

			596	 }

			597	

			598	 func	(e	*ParseError)	Error()	string	{

			599	 	 return	"invalid	"	+	e.Type	+	":	"	+	e.Text

			600	 }

			601	

			602	 func	parseIP(s	string)	IP	{

			603	 	 if	p	:=	parseIPv4(s);	p	!=	nil	{

			604	 	 	 return	p

			605	 	 }

			606	 	 if	p	:=	parseIPv6(s);	p	!=	nil	{

			607	 	 	 return	p

			608	 	 }

			609	 	 return	nil

			610	 }

			611	

			612	 //	ParseIP	parses	s	as	an	IP	address,	returning	the	result.

			613	 //	The	string	s	can	be	in	dotted	decimal	("74.125.19.99")

			614	 //	or	IPv6	("2001:4860:0:2001::68")	form.

			615	 //	If	s	is	not	a	valid	textual	representation	of	an	IP	address,

			616	 //	ParseIP	returns	nil.

			617	 func	ParseIP(s	string)	IP	{

			618	 	 if	p	:=	parseIPv4(s);	p	!=	nil	{

			619	 	 	 return	p

			620	 	 }

			621	 	 return	parseIPv6(s)

			622	 }

			623	

			624	 //	ParseCIDR	parses	s	as	a	CIDR	notation	IP	address	and	mask,

			625	 //	like	"192.168.100.1/24"	or	"2001:DB8::/48",	as	defined	in

			626	 //	RFC	4632	and	RFC	4291.

			627	 //

			628	 //	It	returns	the	IP	address	and	the	network	implied	by	the	IP

			629	 //	and	mask.		For	example,	ParseCIDR("192.168.100.1/16")	returns

			630	 //	the	IP	address	192.168.100.1	and	the	network	192.168.0.0/16.

			631	 func	ParseCIDR(s	string)	(IP,	*IPNet,	error)	{

			632	 	 i	:=	byteIndex(s,	'/')

			633	 	 if	i	<	0	{

			634	 	 	 return	nil,	nil,	&ParseError{"CIDR	address",	s}

			635	 	 }

			636	 	 ipstr,	maskstr	:=	s[:i],	s[i+1:]

			637	 	 iplen	:=	IPv4len

			638	 	 ip	:=	parseIPv4(ipstr)

			639	 	 if	ip	==	nil	{

			640	 	 	 iplen	=	IPv6len

			641	 	 	 ip	=	parseIPv6(ipstr)

			642	 	 }

			643	 	 n,	i,	ok	:=	dtoi(maskstr,	0)

			644	 	 if	ip	==	nil	||	!ok	||	i	!=	len(maskstr)	||	n	<	0	||	n	>	8*iplen	{

			645	 	 	 return	nil,	nil,	&ParseError{"CIDR	address",	s}

			646	 	 }

			647	 	 m	:=	CIDRMask(n,	8*iplen)

			648	 	 return	ip,	&IPNet{ip.Mask(m),	m},	nil

			649	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/iprawsock.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	(Raw)	IP	sockets

					6	

					7	 package	net

					8	

					9	 //	IPAddr	represents	the	address	of	a	IP	end	point.

				10	 type	IPAddr	struct	{

				11	 	 IP	IP

				12	 }

				13	

				14	 //	Network	returns	the	address's	network	name,	"ip".

				15	 func	(a	*IPAddr)	Network()	string	{	return	"ip"	}

				16	

				17	 func	(a	*IPAddr)	String()	string	{

				18	 	 if	a	==	nil	{

				19	 	 	 return	"<nil>"

				20	 	 }

				21	 	 return	a.IP.String()

				22	 }

				23	

				24	 //	ResolveIPAddr	parses	addr	as	a	IP	address	and	resolves	domain

				25	 //	names	to	numeric	addresses	on	the	network	net,	which	must	be

				26	 //	"ip",	"ip4"	or	"ip6".		A	literal	IPv6	host	address	must	be

				27	 //	enclosed	in	square	brackets,	as	in	"[::]".

				28	 func	ResolveIPAddr(net,	addr	string)	(*IPAddr,	error)	{

				29	 	 ip,	err	:=	hostToIP(net,	addr)

				30	 	 if	err	!=	nil	{

				31	 	 	 return	nil,	err

				32	 	 }

				33	 	 return	&IPAddr{ip},	nil

				34	 }

				35	

				36	 //	Convert	"host"	into	IP	address.

				37	 func	hostToIP(net,	host	string)	(ip	IP,	err	error)	{

				38	 	 var	addr	IP

				39	 	 //	Try	as	an	IP	address.

				40	 	 addr	=	ParseIP(host)

				41	 	 if	addr	==	nil	{

				42	 	 	 filter	:=	anyaddr

				43	 	 	 if	net	!=	""	&&	net[len(net)-1]	==	'4'	{

				44	 	 	 	 filter	=	ipv4only

				45	 	 	 }

				46	 	 	 if	net	!=	""	&&	net[len(net)-1]	==	'6'	{

				47	 	 	 	 filter	=	ipv6only

				48	 	 	 }

				49	 	 	 //	Not	an	IP	address.		Try	as	a	DNS	name.

				50	 	 	 addrs,	err1	:=	LookupHost(host)

				51	 	 	 if	err1	!=	nil	{

				52	 	 	 	 err	=	err1

				53	 	 	 	 goto	Error

				54	 	 	 }

				55	 	 	 addr	=	firstFavoriteAddr(filter,	addrs)

				56	 	 	 if	addr	==	nil	{

				57	 	 	 	 //	should	not	happen

				58	 	 	 	 err	=	&AddrError{"LookupHost	returned	no	suitable	address",	addrs[0]}

				59	 	 	 	 goto	Error

				60	 	 	 }

				61	 	 }

				62	 	 return	addr,	nil

				63	 Error:

				64	 	 return	nil,	err

				65	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/iprawsock_posix.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd	windows

					6	

					7	 //	(Raw)	IP	sockets

					8	

					9	 package	net

				10	

				11	 import	(

				12	 	 "os"

				13	 	 "syscall"

				14	 	 "time"

				15)

				16	

				17	 func	sockaddrToIP(sa	syscall.Sockaddr)	Addr	{

				18	 	 switch	sa	:=	sa.(type)	{

				19	 	 case	*syscall.SockaddrInet4:

				20	 	 	 return	&IPAddr{sa.Addr[0:]}

				21	 	 case	*syscall.SockaddrInet6:

				22	 	 	 return	&IPAddr{sa.Addr[0:]}

				23	 	 }

				24	 	 return	nil

				25	 }

				26	

				27	 func	(a	*IPAddr)	family()	int	{

				28	 	 if	a	==	nil	||	len(a.IP)	<=	IPv4len	{

				29	 	 	 return	syscall.AF_INET

				30	 	 }

				31	 	 if	a.IP.To4()	!=	nil	{

				32	 	 	 return	syscall.AF_INET

				33	 	 }

				34	 	 return	syscall.AF_INET6

				35	 }

				36	

				37	 func	(a	*IPAddr)	isWildcard()	bool	{

				38	 	 if	a	==	nil	||	a.IP	==	nil	{

				39	 	 	 return	true

				40	 	 }

				41	 	 return	a.IP.IsUnspecified()

				42	 }

				43	

				44	 func	(a	*IPAddr)	sockaddr(family	int)	(syscall.Sockaddr,	error)	{

				45	 	 return	ipToSockaddr(family,	a.IP,	0)

				46	 }

				47	

				48	 func	(a	*IPAddr)	toAddr()	sockaddr	{

				49	 	 if	a	==	nil	{	//	nil	*IPAddr

				50	 	 	 return	nil	//	nil	interface

				51	 	 }

				52	 	 return	a

				53	 }

				54	

				55	 //	IPConn	is	the	implementation	of	the	Conn	and	PacketConn

				56	 //	interfaces	for	IP	network	connections.

				57	 type	IPConn	struct	{

				58	 	 fd	*netFD

				59	 }

				60	

				61	 func	newIPConn(fd	*netFD)	*IPConn	{	return	&IPConn{fd}	}

				62	

				63	 func	(c	*IPConn)	ok()	bool	{	return	c	!=	nil	&&	c.fd	!=	nil	}

				64	

				65	 //	Implementation	of	the	Conn	interface	-	see	Conn	for	documentation.

				66	

				67	 //	Read	implements	the	Conn	Read	method.

				68	 func	(c	*IPConn)	Read(b	[]byte)	(int,	error)	{

				69	 	 n,	_,	err	:=	c.ReadFrom(b)

				70	 	 return	n,	err

				71	 }

				72	

				73	 //	Write	implements	the	Conn	Write	method.

				74	 func	(c	*IPConn)	Write(b	[]byte)	(int,	error)	{

				75	 	 if	!c.ok()	{

				76	 	 	 return	0,	syscall.EINVAL

				77	 	 }

				78	 	 return	c.fd.Write(b)

				79	 }

				80	

				81	 //	Close	closes	the	IP	connection.

				82	 func	(c	*IPConn)	Close()	error	{

				83	 	 if	!c.ok()	{

				84	 	 	 return	syscall.EINVAL

				85	 	 }

				86	 	 return	c.fd.Close()

				87	 }

				88	

				89	 //	LocalAddr	returns	the	local	network	address.

				90	 func	(c	*IPConn)	LocalAddr()	Addr	{

				91	 	 if	!c.ok()	{

				92	 	 	 return	nil

				93	 	 }

				94	 	 return	c.fd.laddr

				95	 }

				96	

				97	 //	RemoteAddr	returns	the	remote	network	address,	a	*IPAddr.

				98	 func	(c	*IPConn)	RemoteAddr()	Addr	{

				99	 	 if	!c.ok()	{

			100	 	 	 return	nil

			101	 	 }

			102	 	 return	c.fd.raddr

			103	 }

			104	

			105	 //	SetDeadline	implements	the	Conn	SetDeadline	method.

			106	 func	(c	*IPConn)	SetDeadline(t	time.Time)	error	{

			107	 	 if	!c.ok()	{

			108	 	 	 return	syscall.EINVAL

			109	 	 }

			110	 	 return	setDeadline(c.fd,	t)

			111	 }

			112	

			113	 //	SetReadDeadline	implements	the	Conn	SetReadDeadline	method.

			114	 func	(c	*IPConn)	SetReadDeadline(t	time.Time)	error	{

			115	 	 if	!c.ok()	{

			116	 	 	 return	syscall.EINVAL

			117	 	 }

			118	 	 return	setReadDeadline(c.fd,	t)

			119	 }

			120	

			121	 //	SetWriteDeadline	implements	the	Conn	SetWriteDeadline	method.

			122	 func	(c	*IPConn)	SetWriteDeadline(t	time.Time)	error	{

			123	 	 if	!c.ok()	{

			124	 	 	 return	syscall.EINVAL

			125	 	 }

			126	 	 return	setWriteDeadline(c.fd,	t)

			127	 }

			128	

			129	 //	SetReadBuffer	sets	the	size	of	the	operating	system's

			130	 //	receive	buffer	associated	with	the	connection.

			131	 func	(c	*IPConn)	SetReadBuffer(bytes	int)	error	{

			132	 	 if	!c.ok()	{

			133	 	 	 return	syscall.EINVAL

			134	 	 }

			135	 	 return	setReadBuffer(c.fd,	bytes)

			136	 }

			137	

			138	 //	SetWriteBuffer	sets	the	size	of	the	operating	system's

			139	 //	transmit	buffer	associated	with	the	connection.

			140	 func	(c	*IPConn)	SetWriteBuffer(bytes	int)	error	{

			141	 	 if	!c.ok()	{

			142	 	 	 return	syscall.EINVAL

			143	 	 }

			144	 	 return	setWriteBuffer(c.fd,	bytes)

			145	 }

			146	

			147	 //	IP-specific	methods.

			148	

			149	 //	ReadFromIP	reads	a	IP	packet	from	c,	copying	the	payload	into	b.

			150	 //	It	returns	the	number	of	bytes	copied	into	b	and	the	return	address

			151	 //	that	was	on	the	packet.

			152	 //

			153	 //	ReadFromIP	can	be	made	to	time	out	and	return	an	error	with

			154	 //	Timeout()	==	true	after	a	fixed	time	limit;	see	SetDeadline	and

			155	 //	SetReadDeadline.

			156	 func	(c	*IPConn)	ReadFromIP(b	[]byte)	(int,	*IPAddr,	error)	{

			157	 	 if	!c.ok()	{

			158	 	 	 return	0,	nil,	syscall.EINVAL

			159	 	 }

			160	 	 //	TODO(cw,rsc):	consider	using	readv	if	we	know	the	family

			161	 	 //	type	to	avoid	the	header	trim/copy

			162	 	 var	addr	*IPAddr

			163	 	 n,	sa,	err	:=	c.fd.ReadFrom(b)

			164	 	 switch	sa	:=	sa.(type)	{

			165	 	 case	*syscall.SockaddrInet4:

			166	 	 	 addr	=	&IPAddr{sa.Addr[0:]}

			167	 	 	 if	len(b)	>=	IPv4len	{	//	discard	ipv4	header

			168	 	 	 	 hsize	:=	(int(b[0])	&	0xf)	*	4

			169	 	 	 	 copy(b,	b[hsize:])

			170	 	 	 	 n	-=	hsize

			171	 	 	 }

			172	 	 case	*syscall.SockaddrInet6:

			173	 	 	 addr	=	&IPAddr{sa.Addr[0:]}

			174	 	 }

			175	 	 return	n,	addr,	err

			176	 }

			177	

			178	 //	ReadFrom	implements	the	PacketConn	ReadFrom	method.

			179	 func	(c	*IPConn)	ReadFrom(b	[]byte)	(int,	Addr,	error)	{

			180	 	 if	!c.ok()	{

			181	 	 	 return	0,	nil,	syscall.EINVAL

			182	 	 }

			183	 	 n,	uaddr,	err	:=	c.ReadFromIP(b)

			184	 	 return	n,	uaddr.toAddr(),	err

			185	 }

			186	

			187	 //	WriteToIP	writes	a	IP	packet	to	addr	via	c,	copying	the	payload	from	b.

			188	 //

			189	 //	WriteToIP	can	be	made	to	time	out	and	return

			190	 //	an	error	with	Timeout()	==	true	after	a	fixed	time	limit;

			191	 //	see	SetDeadline	and	SetWriteDeadline.

			192	 //	On	packet-oriented	connections,	write	timeouts	are	rare.

			193	 func	(c	*IPConn)	WriteToIP(b	[]byte,	addr	*IPAddr)	(int,	error)	{

			194	 	 if	!c.ok()	{

			195	 	 	 return	0,	syscall.EINVAL

			196	 	 }

			197	 	 sa,	err	:=	addr.sockaddr(c.fd.family)

			198	 	 if	err	!=	nil	{

			199	 	 	 return	0,	&OpError{"write",	c.fd.net,	addr,	err}

			200	 	 }

			201	 	 return	c.fd.WriteTo(b,	sa)

			202	 }

			203	

			204	 //	WriteTo	implements	the	PacketConn	WriteTo	method.

			205	 func	(c	*IPConn)	WriteTo(b	[]byte,	addr	Addr)	(int,	error)	{

			206	 	 if	!c.ok()	{

			207	 	 	 return	0,	syscall.EINVAL

			208	 	 }

			209	 	 a,	ok	:=	addr.(*IPAddr)

			210	 	 if	!ok	{

			211	 	 	 return	0,	&OpError{"write",	c.fd.net,	addr,	syscall.EINVAL}

			212	 	 }

			213	 	 return	c.WriteToIP(b,	a)

			214	 }

			215	

			216	 //	DialIP	connects	to	the	remote	address	raddr	on	the	network	protocol	netProto,

			217	 //	which	must	be	"ip",	"ip4",	or	"ip6"	followed	by	a	colon	and	a	protocol	number	or	name.

			218	 func	DialIP(netProto	string,	laddr,	raddr	*IPAddr)	(*IPConn,	error)	{

			219	 	 net,	proto,	err	:=	parseDialNetwork(netProto)

			220	 	 if	err	!=	nil	{

			221	 	 	 return	nil,	err

			222	 	 }

			223	 	 switch	net	{

			224	 	 case	"ip",	"ip4",	"ip6":

			225	 	 default:

			226	 	 	 return	nil,	UnknownNetworkError(net)

			227	 	 }

			228	 	 if	raddr	==	nil	{

			229	 	 	 return	nil,	&OpError{"dial",	netProto,	nil,	errMissingAddress}

			230	 	 }

			231	 	 fd,	err	:=	internetSocket(net,	laddr.toAddr(),	raddr.toAddr(),	syscall.SOCK_RAW,	proto,	"dial",	sockaddrToIP)

			232	 	 if	err	!=	nil	{

			233	 	 	 return	nil,	err

			234	 	 }

			235	 	 return	newIPConn(fd),	nil

			236	 }

			237	

			238	 //	ListenIP	listens	for	incoming	IP	packets	addressed	to	the

			239	 //	local	address	laddr.		The	returned	connection	c's	ReadFrom

			240	 //	and	WriteTo	methods	can	be	used	to	receive	and	send	IP

			241	 //	packets	with	per-packet	addressing.

			242	 func	ListenIP(netProto	string,	laddr	*IPAddr)	(*IPConn,	error)	{

			243	 	 net,	proto,	err	:=	parseDialNetwork(netProto)

			244	 	 if	err	!=	nil	{

			245	 	 	 return	nil,	err

			246	 	 }

			247	 	 switch	net	{

			248	 	 case	"ip",	"ip4",	"ip6":

			249	 	 default:

			250	 	 	 return	nil,	UnknownNetworkError(net)

			251	 	 }

			252	 	 fd,	err	:=	internetSocket(net,	laddr.toAddr(),	nil,	syscall.SOCK_RAW,	proto,	"listen",	sockaddrToIP)

			253	 	 if	err	!=	nil	{

			254	 	 	 return	nil,	err

			255	 	 }

			256	 	 return	newIPConn(fd),	nil

			257	 }

			258	

			259	 //	File	returns	a	copy	of	the	underlying	os.File,	set	to	blocking	mode.

			260	 //	It	is	the	caller's	responsibility	to	close	f	when	finished.

			261	 //	Closing	c	does	not	affect	f,	and	closing	f	does	not	affect	c.

			262	 func	(c	*IPConn)	File()	(f	*os.File,	err	error)	{	return	c.fd.dup()	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/ipsock.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	IP	sockets

					6	

					7	 package	net

					8	

					9	 var	supportsIPv6,	supportsIPv4map	=	probeIPv6Stack()

				10	

				11	 func	firstFavoriteAddr(filter	func(IP)	IP,	addrs	[]string)	(addr	IP)	{

				12	 	 if	filter	==	nil	{

				13	 	 	 //	We'll	take	any	IP	address,	but	since	the	dialing	code

				14	 	 	 //	does	not	yet	try	multiple	addresses,	prefer	to	use

				15	 	 	 //	an	IPv4	address	if	possible.		This	is	especially	relevant

				16	 	 	 //	if	localhost	resolves	to	[ipv6-localhost,	ipv4-localhost].

				17	 	 	 //	Too	much	code	assumes	localhost	==	ipv4-localhost.

				18	 	 	 addr	=	firstSupportedAddr(ipv4only,	addrs)

				19	 	 	 if	addr	==	nil	{

				20	 	 	 	 addr	=	firstSupportedAddr(anyaddr,	addrs)

				21	 	 	 }

				22	 	 }	else	{

				23	 	 	 addr	=	firstSupportedAddr(filter,	addrs)

				24	 	 }

				25	 	 return

				26	 }

				27	

				28	 func	firstSupportedAddr(filter	func(IP)	IP,	addrs	[]string)	IP	{

				29	 	 for	_,	s	:=	range	addrs	{

				30	 	 	 if	addr	:=	filter(ParseIP(s));	addr	!=	nil	{

				31	 	 	 	 return	addr

				32	 	 	 }

				33	 	 }

				34	 	 return	nil

				35	 }

				36	

				37	 func	anyaddr(x	IP)	IP	{

				38	 	 if	x4	:=	x.To4();	x4	!=	nil	{

				39	 	 	 return	x4

				40	 	 }

				41	 	 if	supportsIPv6	{

				42	 	 	 return	x

				43	 	 }

				44	 	 return	nil

				45	 }

				46	

				47	 func	ipv4only(x	IP)	IP	{	return	x.To4()	}

				48	

				49	 func	ipv6only(x	IP)	IP	{

				50	 	 //	Only	return	addresses	that	we	can	use

				51	 	 //	with	the	kernel's	IPv6	addressing	modes.

				52	 	 if	len(x)	==	IPv6len	&&	x.To4()	==	nil	&&	supportsIPv6	{

				53	 	 	 return	x

				54	 	 }

				55	 	 return	nil

				56	 }

				57	

				58	 type	InvalidAddrError	string

				59	

				60	 func	(e	InvalidAddrError)	Error()	string			{	return	string(e)	}

				61	 func	(e	InvalidAddrError)	Timeout()	bool			{	return	false	}

				62	 func	(e	InvalidAddrError)	Temporary()	bool	{	return	false	}

				63	

				64	 //	SplitHostPort	splits	a	network	address	of	the	form

				65	 //	"host:port"	or	"[host]:port"	into	host	and	port.

				66	 //	The	latter	form	must	be	used	when	host	contains	a	colon.

				67	 func	SplitHostPort(hostport	string)	(host,	port	string,	err	error)	{

				68	 	 //	The	port	starts	after	the	last	colon.

				69	 	 i	:=	last(hostport,	':')

				70	 	 if	i	<	0	{

				71	 	 	 err	=	&AddrError{"missing	port	in	address",	hostport}

				72	 	 	 return

				73	 	 }

				74	

				75	 	 host,	port	=	hostport[0:i],	hostport[i+1:]

				76	

				77	 	 //	Can	put	brackets	around	host	...

				78	 	 if	len(host)	>	0	&&	host[0]	==	'['	&&	host[len(host)-1]	==	']'	{

				79	 	 	 host	=	host[1	:	len(host)-1]

				80	 	 }	else	{

				81	 	 	 //	...	but	if	there	are	no	brackets,	no	colons.

				82	 	 	 if	byteIndex(host,	':')	>=	0	{

				83	 	 	 	 err	=	&AddrError{"too	many	colons	in	address",	hostport}

				84	 	 	 	 return

				85	 	 	 }

				86	 	 }

				87	 	 return

				88	 }

				89	

				90	 //	JoinHostPort	combines	host	and	port	into	a	network	address

				91	 //	of	the	form	"host:port"	or,	if	host	contains	a	colon,	"[host]:port".

				92	 func	JoinHostPort(host,	port	string)	string	{

				93	 	 //	If	host	has	colons,	have	to	bracket	it.

				94	 	 if	byteIndex(host,	':')	>=	0	{

				95	 	 	 return	"["	+	host	+	"]:"	+	port

				96	 	 }

				97	 	 return	host	+	":"	+	port

				98	 }

				99	

			100	 //	Convert	"host:port"	into	IP	address	and	port.

			101	 func	hostPortToIP(net,	hostport	string)	(ip	IP,	iport	int,	err	error)	{

			102	 	 host,	port,	err	:=	SplitHostPort(hostport)

			103	 	 if	err	!=	nil	{

			104	 	 	 return	nil,	0,	err

			105	 	 }

			106	

			107	 	 var	addr	IP

			108	 	 if	host	!=	""	{

			109	 	 	 //	Try	as	an	IP	address.

			110	 	 	 addr	=	ParseIP(host)

			111	 	 	 if	addr	==	nil	{

			112	 	 	 	 var	filter	func(IP)	IP

			113	 	 	 	 if	net	!=	""	&&	net[len(net)-1]	==	'4'	{

			114	 	 	 	 	 filter	=	ipv4only

			115	 	 	 	 }

			116	 	 	 	 if	net	!=	""	&&	net[len(net)-1]	==	'6'	{

			117	 	 	 	 	 filter	=	ipv6only

			118	 	 	 	 }

			119	 	 	 	 //	Not	an	IP	address.		Try	as	a	DNS	name.

			120	 	 	 	 addrs,	err	:=	LookupHost(host)

			121	 	 	 	 if	err	!=	nil	{

			122	 	 	 	 	 return	nil,	0,	err

			123	 	 	 	 }

			124	 	 	 	 addr	=	firstFavoriteAddr(filter,	addrs)

			125	 	 	 	 if	addr	==	nil	{

			126	 	 	 	 	 //	should	not	happen

			127	 	 	 	 	 return	nil,	0,	&AddrError{"LookupHost	returned	no	suitable	address",	addrs[0]}

			128	 	 	 	 }

			129	 	 	 }

			130	 	 }

			131	

			132	 	 p,	i,	ok	:=	dtoi(port,	0)

			133	 	 if	!ok	||	i	!=	len(port)	{

			134	 	 	 p,	err	=	LookupPort(net,	port)

			135	 	 	 if	err	!=	nil	{

			136	 	 	 	 return	nil,	0,	err

			137	 	 	 }

			138	 	 }

			139	 	 if	p	<	0	||	p	>	0xFFFF	{

			140	 	 	 return	nil,	0,	&AddrError{"invalid	port",	port}

			141	 	 }

			142	

			143	 	 return	addr,	p,	nil

			144	

			145	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/ipsock_posix.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd	windows

					6	

					7	 package	net

					8	

					9	 import	"syscall"

				10	

				11	 //	Should	we	try	to	use	the	IPv4	socket	interface	if	we're

				12	 //	only	dealing	with	IPv4	sockets?		As	long	as	the	host	system

				13	 //	understands	IPv6,	it's	okay	to	pass	IPv4	addresses	to	the	IPv6

				14	 //	interface.		That	simplifies	our	code	and	is	most	general.

				15	 //	Unfortunately,	we	need	to	run	on	kernels	built	without	IPv6

				16	 //	support	too.		So	probe	the	kernel	to	figure	it	out.

				17	 //

				18	 //	probeIPv6Stack	probes	both	basic	IPv6	capability	and	IPv6	IPv4-

				19	 //	mapping	capability	which	is	controlled	by	IPV6_V6ONLY	socket

				20	 //	option	and/or	kernel	state	"net.inet6.ip6.v6only".

				21	 //	It	returns	two	boolean	values.		If	the	first	boolean	value	is

				22	 //	true,	kernel	supports	basic	IPv6	functionality.		If	the	second

				23	 //	boolean	value	is	true,	kernel	supports	IPv6	IPv4-mapping.

				24	 func	probeIPv6Stack()	(supportsIPv6,	supportsIPv4map	bool)	{

				25	 	 var	probes	=	[]struct	{

				26	 	 	 la	TCPAddr

				27	 	 	 ok	bool

				28	 	 }{

				29	 	 	 //	IPv6	communication	capability

				30	 	 	 {TCPAddr{IP:	ParseIP("::1")},	false},

				31	 	 	 //	IPv6	IPv4-mapped	address	communication	capability

				32	 	 	 {TCPAddr{IP:	IPv4(127,	0,	0,	1)},	false},

				33	 	 }

				34	

				35	 	 for	i	:=	range	probes	{

				36	 	 	 s,	err	:=	syscall.Socket(syscall.AF_INET6,	syscall.SOCK_STREAM,	syscall.IPPROTO_TCP)

				37	 	 	 if	err	!=	nil	{

				38	 	 	 	 continue

				39	 	 	 }

				40	 	 	 defer	closesocket(s)

				41	 	 	 syscall.SetsockoptInt(s,	syscall.IPPROTO_IPV6,	syscall.IPV6_V6ONLY,	0)

				42	 	 	 sa,	err	:=	probes[i].la.toAddr().sockaddr(syscall.AF_INET6)

				43	 	 	 if	err	!=	nil	{

				44	 	 	 	 continue

				45	 	 	 }

				46	 	 	 err	=	syscall.Bind(s,	sa)

				47	 	 	 if	err	!=	nil	{

				48	 	 	 	 continue

				49	 	 	 }

				50	 	 	 probes[i].ok	=	true

				51	 	 }

				52	

				53	 	 return	probes[0].ok,	probes[1].ok

				54	 }

				55	

				56	 //	favoriteAddrFamily	returns	the	appropriate	address	family	to

				57	 //	the	given	net,	laddr,	raddr	and	mode.		At	first	it	figures

				58	 //	address	family	out	from	the	net.		If	mode	indicates	"listen"

				59	 //	and	laddr	is	a	wildcard,	it	assumes	that	the	user	wants	to

				60	 //	make	a	passive	connection	with	a	wildcard	address	family,	both

				61	 //	AF_INET	and	AF_INET6,	and	a	wildcard	address	like	following:

				62	 //

				63	 //	 1.	A	wild-wild	listen,	"tcp"	+	""

				64	 //	 If	the	platform	supports	both	IPv6	and	IPv6	IPv4-mapping

				65	 //	 capabilities,	we	assume	that	the	user	want	to	listen	on

				66	 //	 both	IPv4	and	IPv6	wildcard	address	over	an	AF_INET6

				67	 //	 socket	with	IPV6_V6ONLY=0.		Otherwise	we	prefer	an	IPv4

				68	 //	 wildcard	address	listen	over	an	AF_INET	socket.

				69	 //

				70	 //	 2.	A	wild-ipv4wild	listen,	"tcp"	+	"0.0.0.0"

				71	 //	 Same	as	1.

				72	 //

				73	 //	 3.	A	wild-ipv6wild	listen,	"tcp"	+	"[::]"

				74	 //	 Almost	same	as	1	but	we	prefer	an	IPv6	wildcard	address

				75	 //	 listen	over	an	AF_INET6	socket	with	IPV6_V6ONLY=0	when

				76	 //	 the	platform	supports	IPv6	capability	but	not	IPv6	IPv4-

				77	 //	 mapping	capability.

				78	 //

				79	 //	 4.	A	ipv4-ipv4wild	listen,	"tcp4"	+	""	or	"0.0.0.0"

				80	 //	 We	use	an	IPv4	(AF_INET)	wildcard	address	listen.

				81	 //

				82	 //	 5.	A	ipv6-ipv6wild	listen,	"tcp6"	+	""	or	"[::]"

				83	 //	 We	use	an	IPv6	(AF_INET6,	IPV6_V6ONLY=1)	wildcard	address

				84	 //	 listen.

				85	 //

				86	 //	Otherwise	guess:	if	the	addresses	are	IPv4	then	returns	AF_INET,

				87	 //	or	else	returns	AF_INET6.		It	also	returns	a	boolean	value	what

				88	 //	designates	IPV6_V6ONLY	option.

				89	 //

				90	 //	Note	that	OpenBSD	allows	neither	"net.inet6.ip6.v6only=1"	change

				91	 //	nor	IPPROTO_IPV6	level	IPV6_V6ONLY	socket	option	setting.

				92	 func	favoriteAddrFamily(net	string,	laddr,	raddr	sockaddr,	mode	string)	(family	int,	ipv6only	bool)	{

				93	 	 switch	net[len(net)-1]	{

				94	 	 case	'4':

				95	 	 	 return	syscall.AF_INET,	false

				96	 	 case	'6':

				97	 	 	 return	syscall.AF_INET6,	true

				98	 	 }

				99	

			100	 	 if	mode	==	"listen"	&&	laddr.isWildcard()	{

			101	 	 	 if	supportsIPv4map	{

			102	 	 	 	 return	syscall.AF_INET6,	false

			103	 	 	 }

			104	 	 	 return	laddr.family(),	false

			105	 	 }

			106	

			107	 	 if	(laddr	==	nil	||	laddr.family()	==	syscall.AF_INET)	&&

			108	 	 	 (raddr	==	nil	||	raddr.family()	==	syscall.AF_INET)	{

			109	 	 	 return	syscall.AF_INET,	false

			110	 	 }

			111	 	 return	syscall.AF_INET6,	false

			112	 }

			113	

			114	 //	Internet	sockets	(TCP,	UDP,	IP)

			115	

			116	 //	A	sockaddr	represents	a	TCP,	UDP	or	IP	network	address	that	can

			117	 //	be	converted	into	a	syscall.Sockaddr.

			118	 type	sockaddr	interface	{

			119	 	 Addr

			120	 	 family()	int

			121	 	 isWildcard()	bool

			122	 	 sockaddr(family	int)	(syscall.Sockaddr,	error)

			123	 }

			124	

			125	 func	internetSocket(net	string,	laddr,	raddr	sockaddr,	sotype,	proto	int,	mode	string,	toAddr	func(syscall.Sockaddr)	Addr)	(fd	*netFD,	err	error)	{

			126	 	 var	la,	ra	syscall.Sockaddr

			127	 	 family,	ipv6only	:=	favoriteAddrFamily(net,	laddr,	raddr,	mode)

			128	 	 if	laddr	!=	nil	{

			129	 	 	 if	la,	err	=	laddr.sockaddr(family);	err	!=	nil	{

			130	 	 	 	 goto	Error

			131	 	 	 }

			132	 	 }

			133	 	 if	raddr	!=	nil	{

			134	 	 	 if	ra,	err	=	raddr.sockaddr(family);	err	!=	nil	{

			135	 	 	 	 goto	Error

			136	 	 	 }

			137	 	 }

			138	 	 fd,	err	=	socket(net,	family,	sotype,	proto,	ipv6only,	la,	ra,	toAddr)

			139	 	 if	err	!=	nil	{

			140	 	 	 goto	Error

			141	 	 }

			142	 	 return	fd,	nil

			143	

			144	 Error:

			145	 	 addr	:=	raddr

			146	 	 if	mode	==	"listen"	{

			147	 	 	 addr	=	laddr

			148	 	 }

			149	 	 return	nil,	&OpError{mode,	net,	addr,	err}

			150	 }

			151	

			152	 func	ipToSockaddr(family	int,	ip	IP,	port	int)	(syscall.Sockaddr,	error)	{

			153	 	 switch	family	{

			154	 	 case	syscall.AF_INET:

			155	 	 	 if	len(ip)	==	0	{

			156	 	 	 	 ip	=	IPv4zero

			157	 	 	 }

			158	 	 	 if	ip	=	ip.To4();	ip	==	nil	{

			159	 	 	 	 return	nil,	InvalidAddrError("non-IPv4	address")

			160	 	 	 }

			161	 	 	 s	:=	new(syscall.SockaddrInet4)

			162	 	 	 for	i	:=	0;	i	<	IPv4len;	i++	{

			163	 	 	 	 s.Addr[i]	=	ip[i]

			164	 	 	 }

			165	 	 	 s.Port	=	port

			166	 	 	 return	s,	nil

			167	 	 case	syscall.AF_INET6:

			168	 	 	 if	len(ip)	==	0	{

			169	 	 	 	 ip	=	IPv6zero

			170	 	 	 }

			171	 	 	 //	IPv4	callers	use	0.0.0.0	to	mean	"announce	on	any	available	address".

			172	 	 	 //	In	IPv6	mode,	Linux	treats	that	as	meaning	"announce	on	0.0.0.0",

			173	 	 	 //	which	it	refuses	to	do.		Rewrite	to	the	IPv6	unspecified	address.

			174	 	 	 if	ip.Equal(IPv4zero)	{

			175	 	 	 	 ip	=	IPv6zero

			176	 	 	 }

			177	 	 	 if	ip	=	ip.To16();	ip	==	nil	{

			178	 	 	 	 return	nil,	InvalidAddrError("non-IPv6	address")

			179	 	 	 }

			180	 	 	 s	:=	new(syscall.SockaddrInet6)

			181	 	 	 for	i	:=	0;	i	<	IPv6len;	i++	{

			182	 	 	 	 s.Addr[i]	=	ip[i]

			183	 	 	 }

			184	 	 	 s.Port	=	port

			185	 	 	 return	s,	nil

			186	 	 }

			187	 	 return	nil,	InvalidAddrError("unexpected	socket	family")

			188	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/lookup_unix.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 package	net

					8	

					9	 import	(

				10	 	 "errors"

				11	 	 "sync"

				12)

				13	

				14	 var	(

				15	 	 protocols									map[string]int

				16	 	 onceReadProtocols	sync.Once

				17)

				18	

				19	 //	readProtocols	loads	contents	of	/etc/protocols	into	protocols	map

				20	 //	for	quick	access.

				21	 func	readProtocols()	{

				22	 	 protocols	=	make(map[string]int)

				23	 	 if	file,	err	:=	open("/etc/protocols");	err	==	nil	{

				24	 	 	 for	line,	ok	:=	file.readLine();	ok;	line,	ok	=	file.readLine()	{

				25	 	 	 	 //	tcp				6			TCP				#	transmission	control	protocol

				26	 	 	 	 if	i	:=	byteIndex(line,	'#');	i	>=	0	{

				27	 	 	 	 	 line	=	line[0:i]

				28	 	 	 	 }

				29	 	 	 	 f	:=	getFields(line)

				30	 	 	 	 if	len(f)	<	2	{

				31	 	 	 	 	 continue

				32	 	 	 	 }

				33	 	 	 	 if	proto,	_,	ok	:=	dtoi(f[1],	0);	ok	{

				34	 	 	 	 	 protocols[f[0]]	=	proto

				35	 	 	 	 	 for	_,	alias	:=	range	f[2:]	{

				36	 	 	 	 	 	 protocols[alias]	=	proto

				37	 	 	 	 	 }

				38	 	 	 	 }

				39	 	 	 }

				40	 	 	 file.close()

				41	 	 }

				42	 }

				43	

				44	 //	lookupProtocol	looks	up	IP	protocol	name	in	/etc/protocols	and

				45	 //	returns	correspondent	protocol	number.

				46	 func	lookupProtocol(name	string)	(proto	int,	err	error)	{

				47	 	 onceReadProtocols.Do(readProtocols)

				48	 	 proto,	found	:=	protocols[name]

				49	 	 if	!found	{

				50	 	 	 return	0,	errors.New("unknown	IP	protocol	specified:	"	+	name)

				51	 	 }

				52	 	 return

				53	 }

				54	

				55	 func	lookupHost(host	string)	(addrs	[]string,	err	error)	{

				56	 	 addrs,	err,	ok	:=	cgoLookupHost(host)

				57	 	 if	!ok	{

				58	 	 	 addrs,	err	=	goLookupHost(host)

				59	 	 }

				60	 	 return

				61	 }

				62	

				63	 func	lookupIP(host	string)	(addrs	[]IP,	err	error)	{

				64	 	 addrs,	err,	ok	:=	cgoLookupIP(host)

				65	 	 if	!ok	{

				66	 	 	 addrs,	err	=	goLookupIP(host)

				67	 	 }

				68	 	 return

				69	 }

				70	

				71	 func	lookupPort(network,	service	string)	(port	int,	err	error)	{

				72	 	 port,	err,	ok	:=	cgoLookupPort(network,	service)

				73	 	 if	!ok	{

				74	 	 	 port,	err	=	goLookupPort(network,	service)

				75	 	 }

				76	 	 return

				77	 }

				78	

				79	 func	lookupCNAME(name	string)	(cname	string,	err	error)	{

				80	 	 cname,	err,	ok	:=	cgoLookupCNAME(name)

				81	 	 if	!ok	{

				82	 	 	 cname,	err	=	goLookupCNAME(name)

				83	 	 }

				84	 	 return

				85	 }

				86	

				87	 func	lookupSRV(service,	proto,	name	string)	(cname	string,	addrs	[]*SRV,	err	error)	{

				88	 	 var	target	string

				89	 	 if	service	==	""	&&	proto	==	""	{

				90	 	 	 target	=	name

				91	 	 }	else	{

				92	 	 	 target	=	"_"	+	service	+	"._"	+	proto	+	"."	+	name

				93	 	 }

				94	 	 var	records	[]dnsRR

				95	 	 cname,	records,	err	=	lookup(target,	dnsTypeSRV)

				96	 	 if	err	!=	nil	{

				97	 	 	 return

				98	 	 }

				99	 	 addrs	=	make([]*SRV,	len(records))

			100	 	 for	i,	rr	:=	range	records	{

			101	 	 	 r	:=	rr.(*dnsRR_SRV)

			102	 	 	 addrs[i]	=	&SRV{r.Target,	r.Port,	r.Priority,	r.Weight}

			103	 	 }

			104	 	 byPriorityWeight(addrs).sort()

			105	 	 return

			106	 }

			107	

			108	 func	lookupMX(name	string)	(mx	[]*MX,	err	error)	{

			109	 	 _,	records,	err	:=	lookup(name,	dnsTypeMX)

			110	 	 if	err	!=	nil	{

			111	 	 	 return

			112	 	 }

			113	 	 mx	=	make([]*MX,	len(records))

			114	 	 for	i,	rr	:=	range	records	{

			115	 	 	 r	:=	rr.(*dnsRR_MX)

			116	 	 	 mx[i]	=	&MX{r.Mx,	r.Pref}

			117	 	 }

			118	 	 byPref(mx).sort()

			119	 	 return

			120	 }

			121	

			122	 func	lookupTXT(name	string)	(txt	[]string,	err	error)	{

			123	 	 _,	records,	err	:=	lookup(name,	dnsTypeTXT)

			124	 	 if	err	!=	nil	{

			125	 	 	 return

			126	 	 }

			127	 	 txt	=	make([]string,	len(records))

			128	 	 for	i,	r	:=	range	records	{

			129	 	 	 txt[i]	=	r.(*dnsRR_TXT).Txt

			130	 	 }

			131	 	 return

			132	 }

			133	

			134	 func	lookupAddr(addr	string)	(name	[]string,	err	error)	{

			135	 	 name	=	lookupStaticAddr(addr)

			136	 	 if	len(name)	>	0	{

			137	 	 	 return

			138	 	 }

			139	 	 var	arpa	string

			140	 	 arpa,	err	=	reverseaddr(addr)

			141	 	 if	err	!=	nil	{

			142	 	 	 return

			143	 	 }

			144	 	 var	records	[]dnsRR

			145	 	 _,	records,	err	=	lookup(arpa,	dnsTypePTR)

			146	 	 if	err	!=	nil	{

			147	 	 	 return

			148	 	 }

			149	 	 name	=	make([]string,	len(records))

			150	 	 for	i	:=	range	records	{

			151	 	 	 r	:=	records[i].(*dnsRR_PTR)

			152	 	 	 name[i]	=	r.Ptr

			153	 	 }

			154	 	 return

			155	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/mac.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	MAC	address	manipulations

					6	

					7	 package	net

					8	

					9	 import	"errors"

				10	

				11	 const	hexDigit	=	"0123456789abcdef"

				12	

				13	 //	A	HardwareAddr	represents	a	physical	hardware	address.

				14	 type	HardwareAddr	[]byte

				15	

				16	 func	(a	HardwareAddr)	String()	string	{

				17	 	 if	len(a)	==	0	{

				18	 	 	 return	""

				19	 	 }

				20	 	 buf	:=	make([]byte,	0,	len(a)*3-1)

				21	 	 for	i,	b	:=	range	a	{

				22	 	 	 if	i	>	0	{

				23	 	 	 	 buf	=	append(buf,	':')

				24	 	 	 }

				25	 	 	 buf	=	append(buf,	hexDigit[b>>4])

				26	 	 	 buf	=	append(buf,	hexDigit[b&0xF])

				27	 	 }

				28	 	 return	string(buf)

				29	 }

				30	

				31	 //	ParseMAC	parses	s	as	an	IEEE	802	MAC-48,	EUI-48,	or	EUI-64	using	one	of	the

				32	 //	following	formats:

				33	 //			01:23:45:67:89:ab

				34	 //			01:23:45:67:89:ab:cd:ef

				35	 //			01-23-45-67-89-ab

				36	 //			01-23-45-67-89-ab-cd-ef

				37	 //			0123.4567.89ab

				38	 //			0123.4567.89ab.cdef

				39	 func	ParseMAC(s	string)	(hw	HardwareAddr,	err	error)	{

				40	 	 if	len(s)	<	14	{

				41	 	 	 goto	error

				42	 	 }

				43	

				44	 	 if	s[2]	==	':'	||	s[2]	==	'-'	{

				45	 	 	 if	(len(s)+1)%3	!=	0	{

				46	 	 	 	 goto	error

				47	 	 	 }

				48	 	 	 n	:=	(len(s)	+	1)	/	3

				49	 	 	 if	n	!=	6	&&	n	!=	8	{

				50	 	 	 	 goto	error

				51	 	 	 }

				52	 	 	 hw	=	make(HardwareAddr,	n)

				53	 	 	 for	x,	i	:=	0,	0;	i	<	n;	i++	{

				54	 	 	 	 var	ok	bool

				55	 	 	 	 if	hw[i],	ok	=	xtoi2(s[x:],	s[2]);	!ok	{

				56	 	 	 	 	 goto	error

				57	 	 	 	 }

				58	 	 	 	 x	+=	3

				59	 	 	 }

				60	 	 }	else	if	s[4]	==	'.'	{

				61	 	 	 if	(len(s)+1)%5	!=	0	{

				62	 	 	 	 goto	error

				63	 	 	 }

				64	 	 	 n	:=	2	*	(len(s)	+	1)	/	5

				65	 	 	 if	n	!=	6	&&	n	!=	8	{

				66	 	 	 	 goto	error

				67	 	 	 }

				68	 	 	 hw	=	make(HardwareAddr,	n)

				69	 	 	 for	x,	i	:=	0,	0;	i	<	n;	i	+=	2	{

				70	 	 	 	 var	ok	bool

				71	 	 	 	 if	hw[i],	ok	=	xtoi2(s[x:x+2],	0);	!ok	{

				72	 	 	 	 	 goto	error

				73	 	 	 	 }

				74	 	 	 	 if	hw[i+1],	ok	=	xtoi2(s[x+2:],	s[4]);	!ok	{

				75	 	 	 	 	 goto	error

				76	 	 	 	 }

				77	 	 	 	 x	+=	5

				78	 	 	 }

				79	 	 }	else	{

				80	 	 	 goto	error

				81	 	 }

				82	 	 return	hw,	nil

				83	

				84	 error:

				85	 	 return	nil,	errors.New("invalid	MAC	address:	"	+	s)

				86	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/net.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 Package	net	provides	a	portable	interface	for	network	I/O,	including

					7	 TCP/IP,	UDP,	domain	name	resolution,	and	Unix	domain	sockets.

					8	

					9	 Although	the	package	provides	access	to	low-level	networking

				10	 primitives,	most	clients	will	need	only	the	basic	interface	provided

				11	 by	the	Dial,	Listen,	and	Accept	functions	and	the	associated

				12	 Conn	and	Listener	interfaces.	The	crypto/tls	package	uses

				13	 the	same	interfaces	and	similar	Dial	and	Listen	functions.

				14	

				15	 The	Dial	function	connects	to	a	server:

				16	

				17	 	 conn,	err	:=	net.Dial("tcp",	"google.com:80")

				18	 	 if	err	!=	nil	{

				19	 	 	 //	handle	error

				20	 	 }

				21	 	 fmt.Fprintf(conn,	"GET	/	HTTP/1.0\r\n\r\n")

				22	 	 status,	err	:=	bufio.NewReader(conn).ReadString('\n')

				23	 	 //	...

				24	

				25	 The	Listen	function	creates	servers:

				26	

				27	 	 ln,	err	:=	net.Listen("tcp",	":8080")

				28	 	 if	err	!=	nil	{

				29	 	 	 //	handle	error

				30	 	 }

				31	 	 for	{

				32	 	 	 conn,	err	:=	ln.Accept()

				33	 	 	 if	err	!=	nil	{

				34	 	 	 	 //	handle	error

				35	 	 	 	 continue

				36	 	 	 }

				37	 	 	 go	handleConnection(conn)

				38	 	 }

				39	 */

				40	 package	net

				41	

				42	 //	TODO(rsc):

				43	 //	 support	for	raw	ethernet	sockets

				44	

				45	 import	(

				46	 	 "errors"

				47	 	 "time"

				48)

				49	

				50	 //	Addr	represents	a	network	end	point	address.

				51	 type	Addr	interface	{

				52	 	 Network()	string	//	name	of	the	network

				53	 	 String()	string		//	string	form	of	address

				54	 }

				55	

				56	 //	Conn	is	a	generic	stream-oriented	network	connection.

				57	 //

				58	 //	Multiple	goroutines	may	invoke	methods	on	a	Conn	simultaneously.

				59	 type	Conn	interface	{

				60	 	 //	Read	reads	data	from	the	connection.

				61	 	 //	Read	can	be	made	to	time	out	and	return	a	Error	with	Timeout()	==	true

				62	 	 //	after	a	fixed	time	limit;	see	SetDeadline	and	SetReadDeadline.

				63	 	 Read(b	[]byte)	(n	int,	err	error)

				64	

				65	 	 //	Write	writes	data	to	the	connection.

				66	 	 //	Write	can	be	made	to	time	out	and	return	a	Error	with	Timeout()	==	true

				67	 	 //	after	a	fixed	time	limit;	see	SetDeadline	and	SetWriteDeadline.

				68	 	 Write(b	[]byte)	(n	int,	err	error)

				69	

				70	 	 //	Close	closes	the	connection.

				71	 	 //	Any	blocked	Read	or	Write	operations	will	be	unblocked	and	return	errors.

				72	 	 Close()	error

				73	

				74	 	 //	LocalAddr	returns	the	local	network	address.

				75	 	 LocalAddr()	Addr

				76	

				77	 	 //	RemoteAddr	returns	the	remote	network	address.

				78	 	 RemoteAddr()	Addr

				79	

				80	 	 //	SetDeadline	sets	the	read	and	write	deadlines	associated

				81	 	 //	with	the	connection.	It	is	equivalent	to	calling	both

				82	 	 //	SetReadDeadline	and	SetWriteDeadline.

				83	 	 //

				84	 	 //	A	deadline	is	an	absolute	time	after	which	I/O	operations

				85	 	 //	fail	with	a	timeout	(see	type	Error)	instead	of

				86	 	 //	blocking.	The	deadline	applies	to	all	future	I/O,	not	just

				87	 	 //	the	immediately	following	call	to	Read	or	Write.

				88	 	 //

				89	 	 //	An	idle	timeout	can	be	implemented	by	repeatedly	extending

				90	 	 //	the	deadline	after	successful	Read	or	Write	calls.

				91	 	 //

				92	 	 //	A	zero	value	for	t	means	I/O	operations	will	not	time	out.

				93	 	 SetDeadline(t	time.Time)	error

				94	

				95	 	 //	SetReadDeadline	sets	the	deadline	for	future	Read	calls.

				96	 	 //	A	zero	value	for	t	means	Read	will	not	time	out.

				97	 	 SetReadDeadline(t	time.Time)	error

				98	

				99	 	 //	SetWriteDeadline	sets	the	deadline	for	future	Write	calls.

			100	 	 //	Even	if	write	times	out,	it	may	return	n	>	0,	indicating	that

			101	 	 //	some	of	the	data	was	successfully	written.

			102	 	 //	A	zero	value	for	t	means	Write	will	not	time	out.

			103	 	 SetWriteDeadline(t	time.Time)	error

			104	 }

			105	

			106	 //	An	Error	represents	a	network	error.

			107	 type	Error	interface	{

			108	 	 error

			109	 	 Timeout()	bool			//	Is	the	error	a	timeout?

			110	 	 Temporary()	bool	//	Is	the	error	temporary?

			111	 }

			112	

			113	 //	PacketConn	is	a	generic	packet-oriented	network	connection.

			114	 //

			115	 //	Multiple	goroutines	may	invoke	methods	on	a	PacketConn	simultaneously.

			116	 type	PacketConn	interface	{

			117	 	 //	ReadFrom	reads	a	packet	from	the	connection,

			118	 	 //	copying	the	payload	into	b.		It	returns	the	number	of

			119	 	 //	bytes	copied	into	b	and	the	return	address	that

			120	 	 //	was	on	the	packet.

			121	 	 //	ReadFrom	can	be	made	to	time	out	and	return

			122	 	 //	an	error	with	Timeout()	==	true	after	a	fixed	time	limit;

			123	 	 //	see	SetDeadline	and	SetReadDeadline.

			124	 	 ReadFrom(b	[]byte)	(n	int,	addr	Addr,	err	error)

			125	

			126	 	 //	WriteTo	writes	a	packet	with	payload	b	to	addr.

			127	 	 //	WriteTo	can	be	made	to	time	out	and	return

			128	 	 //	an	error	with	Timeout()	==	true	after	a	fixed	time	limit;

			129	 	 //	see	SetDeadline	and	SetWriteDeadline.

			130	 	 //	On	packet-oriented	connections,	write	timeouts	are	rare.

			131	 	 WriteTo(b	[]byte,	addr	Addr)	(n	int,	err	error)

			132	

			133	 	 //	Close	closes	the	connection.

			134	 	 //	Any	blocked	ReadFrom	or	WriteTo	operations	will	be	unblocked	and	return	errors.

			135	 	 Close()	error

			136	

			137	 	 //	LocalAddr	returns	the	local	network	address.

			138	 	 LocalAddr()	Addr

			139	

			140	 	 //	SetDeadline	sets	the	read	and	write	deadlines	associated

			141	 	 //	with	the	connection.

			142	 	 SetDeadline(t	time.Time)	error

			143	

			144	 	 //	SetReadDeadline	sets	the	deadline	for	future	Read	calls.

			145	 	 //	If	the	deadline	is	reached,	Read	will	fail	with	a	timeout

			146	 	 //	(see	type	Error)	instead	of	blocking.

			147	 	 //	A	zero	value	for	t	means	Read	will	not	time	out.

			148	 	 SetReadDeadline(t	time.Time)	error

			149	

			150	 	 //	SetWriteDeadline	sets	the	deadline	for	future	Write	calls.

			151	 	 //	If	the	deadline	is	reached,	Write	will	fail	with	a	timeout

			152	 	 //	(see	type	Error)	instead	of	blocking.

			153	 	 //	A	zero	value	for	t	means	Write	will	not	time	out.

			154	 	 //	Even	if	write	times	out,	it	may	return	n	>	0,	indicating	that

			155	 	 //	some	of	the	data	was	successfully	written.

			156	 	 SetWriteDeadline(t	time.Time)	error

			157	 }

			158	

			159	 //	A	Listener	is	a	generic	network	listener	for	stream-oriented	protocols.

			160	 //

			161	 //	Multiple	goroutines	may	invoke	methods	on	a	Listener	simultaneously.

			162	 type	Listener	interface	{

			163	 	 //	Accept	waits	for	and	returns	the	next	connection	to	the	listener.

			164	 	 Accept()	(c	Conn,	err	error)

			165	

			166	 	 //	Close	closes	the	listener.

			167	 	 //	Any	blocked	Accept	operations	will	be	unblocked	and	return	errors.

			168	 	 Close()	error

			169	

			170	 	 //	Addr	returns	the	listener's	network	address.

			171	 	 Addr()	Addr

			172	 }

			173	

			174	 var	errMissingAddress	=	errors.New("missing	address")

			175	

			176	 type	OpError	struct	{

			177	 	 Op			string

			178	 	 Net		string

			179	 	 Addr	Addr

			180	 	 Err		error

			181	 }

			182	

			183	 func	(e	*OpError)	Error()	string	{

			184	 	 if	e	==	nil	{

			185	 	 	 return	"<nil>"

			186	 	 }

			187	 	 s	:=	e.Op

			188	 	 if	e.Net	!=	""	{

			189	 	 	 s	+=	"	"	+	e.Net

			190	 	 }

			191	 	 if	e.Addr	!=	nil	{

			192	 	 	 s	+=	"	"	+	e.Addr.String()

			193	 	 }

			194	 	 s	+=	":	"	+	e.Err.Error()

			195	 	 return	s

			196	 }

			197	

			198	 type	temporary	interface	{

			199	 	 Temporary()	bool

			200	 }

			201	

			202	 func	(e	*OpError)	Temporary()	bool	{

			203	 	 t,	ok	:=	e.Err.(temporary)

			204	 	 return	ok	&&	t.Temporary()

			205	 }

			206	

			207	 type	timeout	interface	{

			208	 	 Timeout()	bool

			209	 }

			210	

			211	 func	(e	*OpError)	Timeout()	bool	{

			212	 	 t,	ok	:=	e.Err.(timeout)

			213	 	 return	ok	&&	t.Timeout()

			214	 }

			215	

			216	 type	timeoutError	struct{}

			217	

			218	 func	(e	*timeoutError)	Error()	string			{	return	"i/o	timeout"	}

			219	 func	(e	*timeoutError)	Timeout()	bool			{	return	true	}

			220	 func	(e	*timeoutError)	Temporary()	bool	{	return	true	}

			221	

			222	 var	errTimeout	error	=	&timeoutError{}

			223	

			224	 type	AddrError	struct	{

			225	 	 Err		string

			226	 	 Addr	string

			227	 }

			228	

			229	 func	(e	*AddrError)	Error()	string	{

			230	 	 if	e	==	nil	{

			231	 	 	 return	"<nil>"

			232	 	 }

			233	 	 s	:=	e.Err

			234	 	 if	e.Addr	!=	""	{

			235	 	 	 s	+=	"	"	+	e.Addr

			236	 	 }

			237	 	 return	s

			238	 }

			239	

			240	 func	(e	*AddrError)	Temporary()	bool	{

			241	 	 return	false

			242	 }

			243	

			244	 func	(e	*AddrError)	Timeout()	bool	{

			245	 	 return	false

			246	 }

			247	

			248	 type	UnknownNetworkError	string

			249	

			250	 func	(e	UnknownNetworkError)	Error()	string			{	return	"unknown	network	"	+	string(e)	}

			251	 func	(e	UnknownNetworkError)	Temporary()	bool	{	return	false	}

			252	 func	(e	UnknownNetworkError)	Timeout()	bool			{	return	false	}

			253	

			254	 //	DNSConfigError	represents	an	error	reading	the	machine's	DNS	configuration.

			255	 type	DNSConfigError	struct	{

			256	 	 Err	error

			257	 }

			258	

			259	 func	(e	*DNSConfigError)	Error()	string	{

			260	 	 return	"error	reading	DNS	config:	"	+	e.Err.Error()

			261	 }

			262	

			263	 func	(e	*DNSConfigError)	Timeout()	bool			{	return	false	}

			264	 func	(e	*DNSConfigError)	Temporary()	bool	{	return	false	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/newpollserver.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 package	net

					8	

					9	 import	(

				10	 	 "os"

				11	 	 "syscall"

				12)

				13	

				14	 func	newPollServer()	(s	*pollServer,	err	error)	{

				15	 	 s	=	new(pollServer)

				16	 	 s.cr	=	make(chan	*netFD,	1)

				17	 	 s.cw	=	make(chan	*netFD,	1)

				18	 	 if	s.pr,	s.pw,	err	=	os.Pipe();	err	!=	nil	{

				19	 	 	 return	nil,	err

				20	 	 }

				21	 	 if	err	=	syscall.SetNonblock(int(s.pr.Fd()),	true);	err	!=	nil	{

				22	 	 	 goto	Errno

				23	 	 }

				24	 	 if	err	=	syscall.SetNonblock(int(s.pw.Fd()),	true);	err	!=	nil	{

				25	 	 	 goto	Errno

				26	 	 }

				27	 	 if	s.poll,	err	=	newpollster();	err	!=	nil	{

				28	 	 	 goto	Error

				29	 	 }

				30	 	 if	_,	err	=	s.poll.AddFD(int(s.pr.Fd()),	'r',	true);	err	!=	nil	{

				31	 	 	 s.poll.Close()

				32	 	 	 goto	Error

				33	 	 }

				34	 	 s.pending	=	make(map[int]*netFD)

				35	 	 go	s.Run()

				36	 	 return	s,	nil

				37	

				38	 Errno:

				39	 	 err	=	&os.PathError{

				40	 	 	 Op:			"setnonblock",

				41	 	 	 Path:	s.pr.Name(),

				42	 	 	 Err:		err,

				43	 	 }

				44	 Error:

				45	 	 s.pr.Close()

				46	 	 s.pw.Close()

				47	 	 return	nil,	err

				48	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/parse.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Simple	file	i/o	and	string	manipulation,	to	avoid

					6	 //	depending	on	strconv	and	bufio	and	strings.

					7	

					8	 package	net

					9	

				10	 import	(

				11	 	 "io"

				12	 	 "os"

				13)

				14	

				15	 type	file	struct	{

				16	 	 file		*os.File

				17	 	 data		[]byte

				18	 	 atEOF	bool

				19	 }

				20	

				21	 func	(f	*file)	close()	{	f.file.Close()	}

				22	

				23	 func	(f	*file)	getLineFromData()	(s	string,	ok	bool)	{

				24	 	 data	:=	f.data

				25	 	 i	:=	0

				26	 	 for	i	=	0;	i	<	len(data);	i++	{

				27	 	 	 if	data[i]	==	'\n'	{

				28	 	 	 	 s	=	string(data[0:i])

				29	 	 	 	 ok	=	true

				30	 	 	 	 //	move	data

				31	 	 	 	 i++

				32	 	 	 	 n	:=	len(data)	-	i

				33	 	 	 	 copy(data[0:],	data[i:])

				34	 	 	 	 f.data	=	data[0:n]

				35	 	 	 	 return

				36	 	 	 }

				37	 	 }

				38	 	 if	f.atEOF	&&	len(f.data)	>	0	{

				39	 	 	 //	EOF,	return	all	we	have

				40	 	 	 s	=	string(data)

				41	 	 	 f.data	=	f.data[0:0]

				42	 	 	 ok	=	true

				43	 	 }

				44	 	 return

				45	 }

				46	

				47	 func	(f	*file)	readLine()	(s	string,	ok	bool)	{

				48	 	 if	s,	ok	=	f.getLineFromData();	ok	{

				49	 	 	 return

				50	 	 }

				51	 	 if	len(f.data)	<	cap(f.data)	{

				52	 	 	 ln	:=	len(f.data)

				53	 	 	 n,	err	:=	io.ReadFull(f.file,	f.data[ln:cap(f.data)])

				54	 	 	 if	n	>=	0	{

				55	 	 	 	 f.data	=	f.data[0	:	ln+n]

				56	 	 	 }

				57	 	 	 if	err	==	io.EOF	{

				58	 	 	 	 f.atEOF	=	true

				59	 	 	 }

				60	 	 }

				61	 	 s,	ok	=	f.getLineFromData()

				62	 	 return

				63	 }

				64	

				65	 func	open(name	string)	(*file,	error)	{

				66	 	 fd,	err	:=	os.Open(name)

				67	 	 if	err	!=	nil	{

				68	 	 	 return	nil,	err

				69	 	 }

				70	 	 return	&file{fd,	make([]byte,	os.Getpagesize())[0:0],	false},	nil

				71	 }

				72	

				73	 func	byteIndex(s	string,	c	byte)	int	{

				74	 	 for	i	:=	0;	i	<	len(s);	i++	{

				75	 	 	 if	s[i]	==	c	{

				76	 	 	 	 return	i

				77	 	 	 }

				78	 	 }

				79	 	 return	-1

				80	 }

				81	

				82	 //	Count	occurrences	in	s	of	any	bytes	in	t.

				83	 func	countAnyByte(s	string,	t	string)	int	{

				84	 	 n	:=	0

				85	 	 for	i	:=	0;	i	<	len(s);	i++	{

				86	 	 	 if	byteIndex(t,	s[i])	>=	0	{

				87	 	 	 	 n++

				88	 	 	 }

				89	 	 }

				90	 	 return	n

				91	 }

				92	

				93	 //	Split	s	at	any	bytes	in	t.

				94	 func	splitAtBytes(s	string,	t	string)	[]string	{

				95	 	 a	:=	make([]string,	1+countAnyByte(s,	t))

				96	 	 n	:=	0

				97	 	 last	:=	0

				98	 	 for	i	:=	0;	i	<	len(s);	i++	{

				99	 	 	 if	byteIndex(t,	s[i])	>=	0	{

			100	 	 	 	 if	last	<	i	{

			101	 	 	 	 	 a[n]	=	string(s[last:i])

			102	 	 	 	 	 n++

			103	 	 	 	 }

			104	 	 	 	 last	=	i	+	1

			105	 	 	 }

			106	 	 }

			107	 	 if	last	<	len(s)	{

			108	 	 	 a[n]	=	string(s[last:])

			109	 	 	 n++

			110	 	 }

			111	 	 return	a[0:n]

			112	 }

			113	

			114	 func	getFields(s	string)	[]string	{	return	splitAtBytes(s,	"	\r\t\n")	}

			115	

			116	 //	Bigger	than	we	need,	not	too	big	to	worry	about	overflow

			117	 const	big	=	0xFFFFFF

			118	

			119	 //	Decimal	to	integer	starting	at	&s[i0].

			120	 //	Returns	number,	new	offset,	success.

			121	 func	dtoi(s	string,	i0	int)	(n	int,	i	int,	ok	bool)	{

			122	 	 n	=	0

			123	 	 for	i	=	i0;	i	<	len(s)	&&	'0'	<=	s[i]	&&	s[i]	<=	'9';	i++	{

			124	 	 	 n	=	n*10	+	int(s[i]-'0')

			125	 	 	 if	n	>=	big	{

			126	 	 	 	 return	0,	i,	false

			127	 	 	 }

			128	 	 }

			129	 	 if	i	==	i0	{

			130	 	 	 return	0,	i,	false

			131	 	 }

			132	 	 return	n,	i,	true

			133	 }

			134	

			135	 //	Hexadecimal	to	integer	starting	at	&s[i0].

			136	 //	Returns	number,	new	offset,	success.

			137	 func	xtoi(s	string,	i0	int)	(n	int,	i	int,	ok	bool)	{

			138	 	 n	=	0

			139	 	 for	i	=	i0;	i	<	len(s);	i++	{

			140	 	 	 if	'0'	<=	s[i]	&&	s[i]	<=	'9'	{

			141	 	 	 	 n	*=	16

			142	 	 	 	 n	+=	int(s[i]	-	'0')

			143	 	 	 }	else	if	'a'	<=	s[i]	&&	s[i]	<=	'f'	{

			144	 	 	 	 n	*=	16

			145	 	 	 	 n	+=	int(s[i]-'a')	+	10

			146	 	 	 }	else	if	'A'	<=	s[i]	&&	s[i]	<=	'F'	{

			147	 	 	 	 n	*=	16

			148	 	 	 	 n	+=	int(s[i]-'A')	+	10

			149	 	 	 }	else	{

			150	 	 	 	 break

			151	 	 	 }

			152	 	 	 if	n	>=	big	{

			153	 	 	 	 return	0,	i,	false

			154	 	 	 }

			155	 	 }

			156	 	 if	i	==	i0	{

			157	 	 	 return	0,	i,	false

			158	 	 }

			159	 	 return	n,	i,	true

			160	 }

			161	

			162	 //	xtoi2	converts	the	next	two	hex	digits	of	s	into	a	byte.

			163	 //	If	s	is	longer	than	2	bytes	then	the	third	byte	must	be	e.

			164	 //	If	the	first	two	bytes	of	s	are	not	hex	digits	or	the	third	byte

			165	 //	does	not	match	e,	false	is	returned.

			166	 func	xtoi2(s	string,	e	byte)	(byte,	bool)	{

			167	 	 if	len(s)	>	2	&&	s[2]	!=	e	{

			168	 	 	 return	0,	false

			169	 	 }

			170	 	 n,	ei,	ok	:=	xtoi(s[:2],	0)

			171	 	 return	byte(n),	ok	&&	ei	==	2

			172	 }

			173	

			174	 //	Integer	to	decimal.

			175	 func	itoa(i	int)	string	{

			176	 	 var	buf	[30]byte

			177	 	 n	:=	len(buf)

			178	 	 neg	:=	false

			179	 	 if	i	<	0	{

			180	 	 	 i	=	-i

			181	 	 	 neg	=	true

			182	 	 }

			183	 	 ui	:=	uint(i)

			184	 	 for	ui	>	0	||	n	==	len(buf)	{

			185	 	 	 n--

			186	 	 	 buf[n]	=	byte('0'	+	ui%10)

			187	 	 	 ui	/=	10

			188	 	 }

			189	 	 if	neg	{

			190	 	 	 n--

			191	 	 	 buf[n]	=	'-'

			192	 	 }

			193	 	 return	string(buf[n:])

			194	 }

			195	

			196	 //	Convert	i	to	decimal	string.

			197	 func	itod(i	uint)	string	{

			198	 	 if	i	==	0	{

			199	 	 	 return	"0"

			200	 	 }

			201	

			202	 	 //	Assemble	decimal	in	reverse	order.

			203	 	 var	b	[32]byte

			204	 	 bp	:=	len(b)

			205	 	 for	;	i	>	0;	i	/=	10	{

			206	 	 	 bp--

			207	 	 	 b[bp]	=	byte(i%10)	+	'0'

			208	 	 }

			209	

			210	 	 return	string(b[bp:])

			211	 }

			212	

			213	 //	Convert	i	to	hexadecimal	string.

			214	 func	itox(i	uint,	min	int)	string	{

			215	 	 //	Assemble	hexadecimal	in	reverse	order.

			216	 	 var	b	[32]byte

			217	 	 bp	:=	len(b)

			218	 	 for	;	i	>	0	||	min	>	0;	i	/=	16	{

			219	 	 	 bp--

			220	 	 	 b[bp]	=	"0123456789abcdef"[byte(i%16)]

			221	 	 	 min--

			222	 	 }

			223	

			224	 	 return	string(b[bp:])

			225	 }

			226	

			227	 //	Number	of	occurrences	of	b	in	s.

			228	 func	count(s	string,	b	byte)	int	{

			229	 	 n	:=	0

			230	 	 for	i	:=	0;	i	<	len(s);	i++	{

			231	 	 	 if	s[i]	==	b	{

			232	 	 	 	 n++

			233	 	 	 }

			234	 	 }

			235	 	 return	n

			236	 }

			237	

			238	 //	Index	of	rightmost	occurrence	of	b	in	s.

			239	 func	last(s	string,	b	byte)	int	{

			240	 	 i	:=	len(s)

			241	 	 for	i--;	i	>=	0;	i--	{

			242	 	 	 if	s[i]	==	b	{

			243	 	 	 	 break

			244	 	 	 }

			245	 	 }

			246	 	 return	i

			247	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/pipe.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	net

					6	

					7	 import	(

					8	 	 "errors"

					9	 	 "io"

				10	 	 "time"

				11)

				12	

				13	 //	Pipe	creates	a	synchronous,	in-memory,	full	duplex

				14	 //	network	connection;	both	ends	implement	the	Conn	interface.

				15	 //	Reads	on	one	end	are	matched	with	writes	on	the	other,

				16	 //	copying	data	directly	between	the	two;	there	is	no	internal

				17	 //	buffering.

				18	 func	Pipe()	(Conn,	Conn)	{

				19	 	 r1,	w1	:=	io.Pipe()

				20	 	 r2,	w2	:=	io.Pipe()

				21	

				22	 	 return	&pipe{r1,	w2},	&pipe{r2,	w1}

				23	 }

				24	

				25	 type	pipe	struct	{

				26	 	 *io.PipeReader

				27	 	 *io.PipeWriter

				28	 }

				29	

				30	 type	pipeAddr	int

				31	

				32	 func	(pipeAddr)	Network()	string	{

				33	 	 return	"pipe"

				34	 }

				35	

				36	 func	(pipeAddr)	String()	string	{

				37	 	 return	"pipe"

				38	 }

				39	

				40	 func	(p	*pipe)	Close()	error	{

				41	 	 err	:=	p.PipeReader.Close()

				42	 	 err1	:=	p.PipeWriter.Close()

				43	 	 if	err	==	nil	{

				44	 	 	 err	=	err1

				45	 	 }

				46	 	 return	err

				47	 }

				48	

				49	 func	(p	*pipe)	LocalAddr()	Addr	{

				50	 	 return	pipeAddr(0)

				51	 }

				52	

				53	 func	(p	*pipe)	RemoteAddr()	Addr	{

				54	 	 return	pipeAddr(0)

				55	 }

				56	

				57	 func	(p	*pipe)	SetDeadline(t	time.Time)	error	{

				58	 	 return	errors.New("net.Pipe	does	not	support	deadlines")

				59	 }

				60	

				61	 func	(p	*pipe)	SetReadDeadline(t	time.Time)	error	{

				62	 	 return	errors.New("net.Pipe	does	not	support	deadlines")

				63	 }

				64	

				65	 func	(p	*pipe)	SetWriteDeadline(t	time.Time)	error	{

				66	 	 return	errors.New("net.Pipe	does	not	support	deadlines")

				67	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/port.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 //	Read	system	port	mappings	from	/etc/services

					8	

					9	 package	net

				10	

				11	 import	"sync"

				12	

				13	 var	services	map[string]map[string]int

				14	 var	servicesError	error

				15	 var	onceReadServices	sync.Once

				16	

				17	 func	readServices()	{

				18	 	 services	=	make(map[string]map[string]int)

				19	 	 var	file	*file

				20	 	 if	file,	servicesError	=	open("/etc/services");	servicesError	!=	nil	{

				21	 	 	 return

				22	 	 }

				23	 	 for	line,	ok	:=	file.readLine();	ok;	line,	ok	=	file.readLine()	{

				24	 	 	 //	"http	80/tcp	www	www-http	#	World	Wide	Web	HTTP"

				25	 	 	 if	i	:=	byteIndex(line,	'#');	i	>=	0	{

				26	 	 	 	 line	=	line[0:i]

				27	 	 	 }

				28	 	 	 f	:=	getFields(line)

				29	 	 	 if	len(f)	<	2	{

				30	 	 	 	 continue

				31	 	 	 }

				32	 	 	 portnet	:=	f[1]	//	"tcp/80"

				33	 	 	 port,	j,	ok	:=	dtoi(portnet,	0)

				34	 	 	 if	!ok	||	port	<=	0	||	j	>=	len(portnet)	||	portnet[j]	!=	'/'	{

				35	 	 	 	 continue

				36	 	 	 }

				37	 	 	 netw	:=	portnet[j+1:]	//	"tcp"

				38	 	 	 m,	ok1	:=	services[netw]

				39	 	 	 if	!ok1	{

				40	 	 	 	 m	=	make(map[string]int)

				41	 	 	 	 services[netw]	=	m

				42	 	 	 }

				43	 	 	 for	i	:=	0;	i	<	len(f);	i++	{

				44	 	 	 	 if	i	!=	1	{	//	f[1]	was	port/net

				45	 	 	 	 	 m[f[i]]	=	port

				46	 	 	 	 }

				47	 	 	 }

				48	 	 }

				49	 	 file.close()

				50	 }

				51	

				52	 //	goLookupPort	is	the	native	Go	implementation	of	LookupPort.

				53	 func	goLookupPort(network,	service	string)	(port	int,	err	error)	{

				54	 	 onceReadServices.Do(readServices)

				55	

				56	 	 switch	network	{

				57	 	 case	"tcp4",	"tcp6":

				58	 	 	 network	=	"tcp"

				59	 	 case	"udp4",	"udp6":

				60	 	 	 network	=	"udp"

				61	 	 }

				62	

				63	 	 if	m,	ok	:=	services[network];	ok	{

				64	 	 	 if	port,	ok	=	m[service];	ok	{

				65	 	 	 	 return

				66	 	 	 }

				67	 	 }

				68	 	 return	0,	&AddrError{"unknown	port",	network	+	"/"	+	service}

				69	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/sendfile_linux.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	net

					6	

					7	 import	(

					8	 	 "io"

					9	 	 "os"

				10	 	 "syscall"

				11)

				12	

				13	 //	maxSendfileSize	is	the	largest	chunk	size	we	ask	the	kernel	to	copy

				14	 //	at	a	time.

				15	 const	maxSendfileSize	int	=	4	<<	20

				16	

				17	 //	sendFile	copies	the	contents	of	r	to	c	using	the	sendfile

				18	 //	system	call	to	minimize	copies.

				19	 //

				20	 //	if	handled	==	true,	sendFile	returns	the	number	of	bytes	copied	and	any

				21	 //	non-EOF	error.

				22	 //

				23	 //	if	handled	==	false,	sendFile	performed	no	work.

				24	 func	sendFile(c	*netFD,	r	io.Reader)	(written	int64,	err	error,	handled	bool)	{

				25	 	 var	remain	int64	=	1	<<	62	//	by	default,	copy	until	EOF

				26	

				27	 	 lr,	ok	:=	r.(*io.LimitedReader)

				28	 	 if	ok	{

				29	 	 	 remain,	r	=	lr.N,	lr.R

				30	 	 	 if	remain	<=	0	{

				31	 	 	 	 return	0,	nil,	true

				32	 	 	 }

				33	 	 }

				34	 	 f,	ok	:=	r.(*os.File)

				35	 	 if	!ok	{

				36	 	 	 return	0,	nil,	false

				37	 	 }

				38	

				39	 	 c.wio.Lock()

				40	 	 defer	c.wio.Unlock()

				41	 	 if	err	:=	c.incref(false);	err	!=	nil	{

				42	 	 	 return	0,	err,	true

				43	 	 }

				44	 	 defer	c.decref()

				45	

				46	 	 dst	:=	c.sysfd

				47	 	 src	:=	int(f.Fd())

				48	 	 for	remain	>	0	{

				49	 	 	 n	:=	maxSendfileSize

				50	 	 	 if	int64(n)	>	remain	{

				51	 	 	 	 n	=	int(remain)

				52	 	 	 }

				53	 	 	 n,	err1	:=	syscall.Sendfile(dst,	src,	nil,	n)

				54	 	 	 if	n	>	0	{

				55	 	 	 	 written	+=	int64(n)

				56	 	 	 	 remain	-=	int64(n)

				57	 	 	 }

				58	 	 	 if	n	==	0	&&	err1	==	nil	{

				59	 	 	 	 break

				60	 	 	 }

				61	 	 	 if	err1	==	syscall.EAGAIN	&&	c.wdeadline	>=	0	{

				62	 	 	 	 if	err1	=	pollserver.WaitWrite(c);	err1	==	nil	{

				63	 	 	 	 	 continue

				64	 	 	 	 }

				65	 	 	 }

				66	 	 	 if	err1	!=	nil	{

				67	 	 	 	 //	This	includes	syscall.ENOSYS	(no	kernel

				68	 	 	 	 //	support)	and	syscall.EINVAL	(fd	types	which

				69	 	 	 	 //	don't	implement	sendfile	together)

				70	 	 	 	 err	=	&OpError{"sendfile",	c.net,	c.raddr,	err1}

				71	 	 	 	 break

				72	 	 	 }

				73	 	 }

				74	 	 if	lr	!=	nil	{

				75	 	 	 lr.N	=	remain

				76	 	 }

				77	 	 return	written,	err,	written	>	0

				78	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/sock.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd	windows

					6	

					7	 //	Sockets

					8	

					9	 package	net

				10	

				11	 import	(

				12	 	 "io"

				13	 	 "syscall"

				14)

				15	

				16	 var	listenerBacklog	=	maxListenerBacklog()

				17	

				18	 //	Generic	socket	creation.

				19	 func	socket(net	string,	f,	t,	p	int,	ipv6only	bool,	la,	ra	syscall.Sockaddr,	toAddr	func(syscall.Sockaddr)	Addr)	(fd	*netFD,	err	error)	{

				20	 	 //	See	../syscall/exec.go	for	description	of	ForkLock.

				21	 	 syscall.ForkLock.RLock()

				22	 	 s,	err	:=	syscall.Socket(f,	t,	p)

				23	 	 if	err	!=	nil	{

				24	 	 	 syscall.ForkLock.RUnlock()

				25	 	 	 return	nil,	err

				26	 	 }

				27	 	 syscall.CloseOnExec(s)

				28	 	 syscall.ForkLock.RUnlock()

				29	

				30	 	 err	=	setDefaultSockopts(s,	f,	t,	ipv6only)

				31	 	 if	err	!=	nil	{

				32	 	 	 closesocket(s)

				33	 	 	 return	nil,	err

				34	 	 }

				35	

				36	 	 var	bla	syscall.Sockaddr

				37	 	 if	la	!=	nil	{

				38	 	 	 bla,	err	=	listenerSockaddr(s,	f,	la,	toAddr)

				39	 	 	 if	err	!=	nil	{

				40	 	 	 	 closesocket(s)

				41	 	 	 	 return	nil,	err

				42	 	 	 }

				43	 	 	 err	=	syscall.Bind(s,	bla)

				44	 	 	 if	err	!=	nil	{

				45	 	 	 	 closesocket(s)

				46	 	 	 	 return	nil,	err

				47	 	 	 }

				48	 	 }

				49	

				50	 	 if	fd,	err	=	newFD(s,	f,	t,	net);	err	!=	nil	{

				51	 	 	 closesocket(s)

				52	 	 	 return	nil,	err

				53	 	 }

				54	

				55	 	 if	ra	!=	nil	{

				56	 	 	 if	err	=	fd.connect(ra);	err	!=	nil	{

				57	 	 	 	 closesocket(s)

				58	 	 	 	 fd.Close()

				59	 	 	 	 return	nil,	err

				60	 	 	 }

				61	 	 	 fd.isConnected	=	true

				62	 	 }

				63	

				64	 	 sa,	_	:=	syscall.Getsockname(s)

				65	 	 var	laddr	Addr

				66	 	 if	la	!=	nil	&&	bla	!=	la	{

				67	 	 	 laddr	=	toAddr(la)

				68	 	 }	else	{

				69	 	 	 laddr	=	toAddr(sa)

				70	 	 }

				71	 	 sa,	_	=	syscall.Getpeername(s)

				72	 	 raddr	:=	toAddr(sa)

				73	

				74	 	 fd.setAddr(laddr,	raddr)

				75	 	 return	fd,	nil

				76	 }

				77	

				78	 type	writerOnly	struct	{

				79	 	 io.Writer

				80	 }

				81	

				82	 //	Fallback	implementation	of	io.ReaderFrom's	ReadFrom,	when	sendfile	isn't

				83	 //	applicable.

				84	 func	genericReadFrom(w	io.Writer,	r	io.Reader)	(n	int64,	err	error)	{

				85	 	 //	Use	wrapper	to	hide	existing	r.ReadFrom	from	io.Copy.

				86	 	 return	io.Copy(writerOnly{w},	r)

				87	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/sock_linux.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Sockets	for	Linux

					6	

					7	 package	net

					8	

					9	 import	"syscall"

				10	

				11	 func	maxListenerBacklog()	int	{

				12	 	 fd,	err	:=	open("/proc/sys/net/core/somaxconn")

				13	 	 if	err	!=	nil	{

				14	 	 	 return	syscall.SOMAXCONN

				15	 	 }

				16	 	 defer	fd.close()

				17	 	 l,	ok	:=	fd.readLine()

				18	 	 if	!ok	{

				19	 	 	 return	syscall.SOMAXCONN

				20	 	 }

				21	 	 f	:=	getFields(l)

				22	 	 n,	_,	ok	:=	dtoi(f[0],	0)

				23	 	 if	n	==	0	||	!ok	{

				24	 	 	 return	syscall.SOMAXCONN

				25	 	 }

				26	 	 return	n

				27	 }

				28	

				29	 func	listenerSockaddr(s,	f	int,	la	syscall.Sockaddr,	toAddr	func(syscall.Sockaddr)	Addr)	(syscall.Sockaddr,	error)	{

				30	 	 a	:=	toAddr(la)

				31	 	 if	a	==	nil	{

				32	 	 	 return	la,	nil

				33	 	 }

				34	 	 switch	v	:=	a.(type)	{

				35	 	 case	*TCPAddr,	*UnixAddr:

				36	 	 	 err	:=	setDefaultListenerSockopts(s)

				37	 	 	 if	err	!=	nil	{

				38	 	 	 	 return	nil,	err

				39	 	 	 }

				40	 	 case	*UDPAddr:

				41	 	 	 if	v.IP.IsMulticast()	{

				42	 	 	 	 err	:=	setDefaultMulticastSockopts(s)

				43	 	 	 	 if	err	!=	nil	{

				44	 	 	 	 	 return	nil,	err

				45	 	 	 	 }

				46	 	 	 	 switch	f	{

				47	 	 	 	 case	syscall.AF_INET:

				48	 	 	 	 	 v.IP	=	IPv4zero

				49	 	 	 	 case	syscall.AF_INET6:

				50	 	 	 	 	 v.IP	=	IPv6unspecified

				51	 	 	 	 }

				52	 	 	 	 return	v.sockaddr(f)

				53	 	 	 }

				54	 	 }

				55	 	 return	la,	nil

				56	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/sockopt.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd	windows

					6	

					7	 //	Socket	options

					8	

					9	 package	net

				10	

				11	 import	(

				12	 	 "os"

				13	 	 "syscall"

				14	 	 "time"

				15)

				16	

				17	 //	Boolean	to	int.

				18	 func	boolint(b	bool)	int	{

				19	 	 if	b	{

				20	 	 	 return	1

				21	 	 }

				22	 	 return	0

				23	 }

				24	

				25	 func	ipv4AddrToInterface(ip	IP)	(*Interface,	error)	{

				26	 	 ift,	err	:=	Interfaces()

				27	 	 if	err	!=	nil	{

				28	 	 	 return	nil,	err

				29	 	 }

				30	 	 for	_,	ifi	:=	range	ift	{

				31	 	 	 ifat,	err	:=	ifi.Addrs()

				32	 	 	 if	err	!=	nil	{

				33	 	 	 	 return	nil,	err

				34	 	 	 }

				35	 	 	 for	_,	ifa	:=	range	ifat	{

				36	 	 	 	 switch	v	:=	ifa.(type)	{

				37	 	 	 	 case	*IPAddr:

				38	 	 	 	 	 if	ip.Equal(v.IP)	{

				39	 	 	 	 	 	 return	&ifi,	nil

				40	 	 	 	 	 }

				41	 	 	 	 case	*IPNet:

				42	 	 	 	 	 if	ip.Equal(v.IP)	{

				43	 	 	 	 	 	 return	&ifi,	nil

				44	 	 	 	 	 }

				45	 	 	 	 }

				46	 	 	 }

				47	 	 }

				48	 	 if	ip.Equal(IPv4zero)	{

				49	 	 	 return	nil,	nil

				50	 	 }

				51	 	 return	nil,	errNoSuchInterface

				52	 }

				53	

				54	 func	interfaceToIPv4Addr(ifi	*Interface)	(IP,	error)	{

				55	 	 if	ifi	==	nil	{

				56	 	 	 return	IPv4zero,	nil

				57	 	 }

				58	 	 ifat,	err	:=	ifi.Addrs()

				59	 	 if	err	!=	nil	{

				60	 	 	 return	nil,	err

				61	 	 }

				62	 	 for	_,	ifa	:=	range	ifat	{

				63	 	 	 switch	v	:=	ifa.(type)	{

				64	 	 	 case	*IPAddr:

				65	 	 	 	 if	v.IP.To4()	!=	nil	{

				66	 	 	 	 	 return	v.IP,	nil

				67	 	 	 	 }

				68	 	 	 case	*IPNet:

				69	 	 	 	 if	v.IP.To4()	!=	nil	{

				70	 	 	 	 	 return	v.IP,	nil

				71	 	 	 	 }

				72	 	 	 }

				73	 	 }

				74	 	 return	nil,	errNoSuchInterface

				75	 }

				76	

				77	 func	setIPv4MreqToInterface(mreq	*syscall.IPMreq,	ifi	*Interface)	error	{

				78	 	 if	ifi	==	nil	{

				79	 	 	 return	nil

				80	 	 }

				81	 	 ifat,	err	:=	ifi.Addrs()

				82	 	 if	err	!=	nil	{

				83	 	 	 return	err

				84	 	 }

				85	 	 for	_,	ifa	:=	range	ifat	{

				86	 	 	 switch	v	:=	ifa.(type)	{

				87	 	 	 case	*IPAddr:

				88	 	 	 	 if	a	:=	v.IP.To4();	a	!=	nil	{

				89	 	 	 	 	 copy(mreq.Interface[:],	a)

				90	 	 	 	 	 goto	done

				91	 	 	 	 }

				92	 	 	 case	*IPNet:

				93	 	 	 	 if	a	:=	v.IP.To4();	a	!=	nil	{

				94	 	 	 	 	 copy(mreq.Interface[:],	a)

				95	 	 	 	 	 goto	done

				96	 	 	 	 }

				97	 	 	 }

				98	 	 }

				99	 done:

			100	 	 if	bytesEqual(mreq.Multiaddr[:],	IPv4zero.To4())	{

			101	 	 	 return	errNoSuchMulticastInterface

			102	 	 }

			103	 	 return	nil

			104	 }

			105	

			106	 func	setReadBuffer(fd	*netFD,	bytes	int)	error	{

			107	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			108	 	 	 return	err

			109	 	 }

			110	 	 defer	fd.decref()

			111	 	 return	os.NewSyscallError("setsockopt",	syscall.SetsockoptInt(fd.sysfd,	syscall.SOL_SOCKET,	syscall.SO_RCVBUF,	bytes))

			112	 }

			113	

			114	 func	setWriteBuffer(fd	*netFD,	bytes	int)	error	{

			115	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			116	 	 	 return	err

			117	 	 }

			118	 	 defer	fd.decref()

			119	 	 return	os.NewSyscallError("setsockopt",	syscall.SetsockoptInt(fd.sysfd,	syscall.SOL_SOCKET,	syscall.SO_SNDBUF,	bytes))

			120	 }

			121	

			122	 func	setReadDeadline(fd	*netFD,	t	time.Time)	error	{

			123	 	 if	t.IsZero()	{

			124	 	 	 fd.rdeadline	=	0

			125	 	 }	else	{

			126	 	 	 fd.rdeadline	=	t.UnixNano()

			127	 	 }

			128	 	 return	nil

			129	 }

			130	

			131	 func	setWriteDeadline(fd	*netFD,	t	time.Time)	error	{

			132	 	 if	t.IsZero()	{

			133	 	 	 fd.wdeadline	=	0

			134	 	 }	else	{

			135	 	 	 fd.wdeadline	=	t.UnixNano()

			136	 	 }

			137	 	 return	nil

			138	 }

			139	

			140	 func	setDeadline(fd	*netFD,	t	time.Time)	error	{

			141	 	 if	err	:=	setReadDeadline(fd,	t);	err	!=	nil	{

			142	 	 	 return	err

			143	 	 }

			144	 	 return	setWriteDeadline(fd,	t)

			145	 }

			146	

			147	 func	setReuseAddr(fd	*netFD,	reuse	bool)	error	{

			148	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			149	 	 	 return	err

			150	 	 }

			151	 	 defer	fd.decref()

			152	 	 return	os.NewSyscallError("setsockopt",	syscall.SetsockoptInt(fd.sysfd,	syscall.SOL_SOCKET,	syscall.SO_REUSEADDR,	boolint(reuse)))

			153	 }

			154	

			155	 func	setDontRoute(fd	*netFD,	dontroute	bool)	error	{

			156	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			157	 	 	 return	err

			158	 	 }

			159	 	 defer	fd.decref()

			160	 	 return	os.NewSyscallError("setsockopt",	syscall.SetsockoptInt(fd.sysfd,	syscall.SOL_SOCKET,	syscall.SO_DONTROUTE,	boolint(dontroute)))

			161	 }

			162	

			163	 func	setKeepAlive(fd	*netFD,	keepalive	bool)	error	{

			164	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			165	 	 	 return	err

			166	 	 }

			167	 	 defer	fd.decref()

			168	 	 return	os.NewSyscallError("setsockopt",	syscall.SetsockoptInt(fd.sysfd,	syscall.SOL_SOCKET,	syscall.SO_KEEPALIVE,	boolint(keepalive)))

			169	 }

			170	

			171	 func	setNoDelay(fd	*netFD,	noDelay	bool)	error	{

			172	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			173	 	 	 return	err

			174	 	 }

			175	 	 defer	fd.decref()

			176	 	 return	os.NewSyscallError("setsockopt",	syscall.SetsockoptInt(fd.sysfd,	syscall.IPPROTO_TCP,	syscall.TCP_NODELAY,	boolint(noDelay)))

			177	 }

			178	

			179	 func	setLinger(fd	*netFD,	sec	int)	error	{

			180	 	 var	l	syscall.Linger

			181	 	 if	sec	>=	0	{

			182	 	 	 l.Onoff	=	1

			183	 	 	 l.Linger	=	int32(sec)

			184	 	 }	else	{

			185	 	 	 l.Onoff	=	0

			186	 	 	 l.Linger	=	0

			187	 	 }

			188	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			189	 	 	 return	err

			190	 	 }

			191	 	 defer	fd.decref()

			192	 	 return	os.NewSyscallError("setsockopt",	syscall.SetsockoptLinger(fd.sysfd,	syscall.SOL_SOCKET,	syscall.SO_LINGER,	&l))

			193	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/sockopt_linux.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Socket	options	for	Linux

					6	

					7	 package	net

					8	

					9	 import	(

				10	 	 "os"

				11	 	 "syscall"

				12)

				13	

				14	 func	setDefaultSockopts(s,	f,	t	int,	ipv6only	bool)	error	{

				15	 	 switch	f	{

				16	 	 case	syscall.AF_INET6:

				17	 	 	 if	ipv6only	{

				18	 	 	 	 syscall.SetsockoptInt(s,	syscall.IPPROTO_IPV6,	syscall.IPV6_V6ONLY,	1)

				19	 	 	 }	else	{

				20	 	 	 	 //	Allow	both	IP	versions	even	if	the	OS	default

				21	 	 	 	 //	is	otherwise.		Note	that	some	operating	systems

				22	 	 	 	 //	never	admit	this	option.

				23	 	 	 	 syscall.SetsockoptInt(s,	syscall.IPPROTO_IPV6,	syscall.IPV6_V6ONLY,	0)

				24	 	 	 }

				25	 	 }

				26	 	 //	Allow	broadcast.

				27	 	 err	:=	syscall.SetsockoptInt(s,	syscall.SOL_SOCKET,	syscall.SO_BROADCAST,	1)

				28	 	 if	err	!=	nil	{

				29	 	 	 return	os.NewSyscallError("setsockopt",	err)

				30	 	 }

				31	 	 return	nil

				32	 }

				33	

				34	 func	setDefaultListenerSockopts(s	int)	error	{

				35	 	 //	Allow	reuse	of	recently-used	addresses.

				36	 	 err	:=	syscall.SetsockoptInt(s,	syscall.SOL_SOCKET,	syscall.SO_REUSEADDR,	1)

				37	 	 if	err	!=	nil	{

				38	 	 	 return	os.NewSyscallError("setsockopt",	err)

				39	 	 }

				40	 	 return	nil

				41	 }

				42	

				43	 func	setDefaultMulticastSockopts(s	int)	error	{

				44	 	 //	Allow	multicast	UDP	and	raw	IP	datagram	sockets	to	listen

				45	 	 //	concurrently	across	multiple	listeners.

				46	 	 err	:=	syscall.SetsockoptInt(s,	syscall.SOL_SOCKET,	syscall.SO_REUSEADDR,	1)

				47	 	 if	err	!=	nil	{

				48	 	 	 return	os.NewSyscallError("setsockopt",	err)

				49	 	 }

				50	 	 return	nil

				51	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/sockoptip.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd	windows

					6	

					7	 //	IP-level	socket	options

					8	

					9	 package	net

				10	

				11	 import	(

				12	 	 "os"

				13	 	 "syscall"

				14)

				15	

				16	 func	ipv4TOS(fd	*netFD)	(int,	error)	{

				17	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

				18	 	 	 return	0,	err

				19	 	 }

				20	 	 defer	fd.decref()

				21	 	 v,	err	:=	syscall.GetsockoptInt(fd.sysfd,	syscall.IPPROTO_IP,	syscall.IP_TOS)

				22	 	 if	err	!=	nil	{

				23	 	 	 return	0,	os.NewSyscallError("getsockopt",	err)

				24	 	 }

				25	 	 return	v,	nil

				26	 }

				27	

				28	 func	setIPv4TOS(fd	*netFD,	v	int)	error	{

				29	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

				30	 	 	 return	err

				31	 	 }

				32	 	 defer	fd.decref()

				33	 	 err	:=	syscall.SetsockoptInt(fd.sysfd,	syscall.IPPROTO_IP,	syscall.IP_TOS,	v)

				34	 	 if	err	!=	nil	{

				35	 	 	 return	os.NewSyscallError("setsockopt",	err)

				36	 	 }

				37	 	 return	nil

				38	 }

				39	

				40	 func	ipv4TTL(fd	*netFD)	(int,	error)	{

				41	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

				42	 	 	 return	0,	err

				43	 	 }

				44	 	 defer	fd.decref()

				45	 	 v,	err	:=	syscall.GetsockoptInt(fd.sysfd,	syscall.IPPROTO_IP,	syscall.IP_TTL)

				46	 	 if	err	!=	nil	{

				47	 	 	 return	0,	os.NewSyscallError("getsockopt",	err)

				48	 	 }

				49	 	 return	v,	nil

				50	 }

				51	

				52	 func	setIPv4TTL(fd	*netFD,	v	int)	error	{

				53	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

				54	 	 	 return	err

				55	 	 }

				56	 	 defer	fd.decref()

				57	 	 err	:=	syscall.SetsockoptInt(fd.sysfd,	syscall.IPPROTO_IP,	syscall.IP_TTL,	v)

				58	 	 if	err	!=	nil	{

				59	 	 	 return	os.NewSyscallError("setsockopt",	err)

				60	 	 }

				61	 	 return	nil

				62	 }

				63	

				64	 func	joinIPv4Group(fd	*netFD,	ifi	*Interface,	ip	IP)	error	{

				65	 	 mreq	:=	&syscall.IPMreq{Multiaddr:	[4]byte{ip[0],	ip[1],	ip[2],	ip[3]}}

				66	 	 if	err	:=	setIPv4MreqToInterface(mreq,	ifi);	err	!=	nil	{

				67	 	 	 return	err

				68	 	 }

				69	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

				70	 	 	 return	err

				71	 	 }

				72	 	 defer	fd.decref()

				73	 	 return	os.NewSyscallError("setsockopt",	syscall.SetsockoptIPMreq(fd.sysfd,	syscall.IPPROTO_IP,	syscall.IP_ADD_MEMBERSHIP,	mreq))

				74	 }

				75	

				76	 func	leaveIPv4Group(fd	*netFD,	ifi	*Interface,	ip	IP)	error	{

				77	 	 mreq	:=	&syscall.IPMreq{Multiaddr:	[4]byte{ip[0],	ip[1],	ip[2],	ip[3]}}

				78	 	 if	err	:=	setIPv4MreqToInterface(mreq,	ifi);	err	!=	nil	{

				79	 	 	 return	err

				80	 	 }

				81	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

				82	 	 	 return	err

				83	 	 }

				84	 	 defer	fd.decref()

				85	 	 return	os.NewSyscallError("setsockopt",	syscall.SetsockoptIPMreq(fd.sysfd,	syscall.IPPROTO_IP,	syscall.IP_DROP_MEMBERSHIP,	mreq))

				86	 }

				87	

				88	 func	ipv6HopLimit(fd	*netFD)	(int,	error)	{

				89	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

				90	 	 	 return	0,	err

				91	 	 }

				92	 	 defer	fd.decref()

				93	 	 v,	err	:=	syscall.GetsockoptInt(fd.sysfd,	syscall.IPPROTO_IPV6,	syscall.IPV6_UNICAST_HOPS)

				94	 	 if	err	!=	nil	{

				95	 	 	 return	0,	os.NewSyscallError("getsockopt",	err)

				96	 	 }

				97	 	 return	v,	nil

				98	 }

				99	

			100	 func	setIPv6HopLimit(fd	*netFD,	v	int)	error	{

			101	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			102	 	 	 return	err

			103	 	 }

			104	 	 defer	fd.decref()

			105	 	 err	:=	syscall.SetsockoptInt(fd.sysfd,	syscall.IPPROTO_IPV6,	syscall.IPV6_UNICAST_HOPS,	v)

			106	 	 if	err	!=	nil	{

			107	 	 	 return	os.NewSyscallError("setsockopt",	err)

			108	 	 }

			109	 	 return	nil

			110	 }

			111	

			112	 func	ipv6MulticastInterface(fd	*netFD)	(*Interface,	error)	{

			113	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			114	 	 	 return	nil,	err

			115	 	 }

			116	 	 defer	fd.decref()

			117	 	 v,	err	:=	syscall.GetsockoptInt(fd.sysfd,	syscall.IPPROTO_IPV6,	syscall.IPV6_MULTICAST_IF)

			118	 	 if	err	!=	nil	{

			119	 	 	 return	nil,	os.NewSyscallError("getsockopt",	err)

			120	 	 }

			121	 	 if	v	==	0	{

			122	 	 	 return	nil,	nil

			123	 	 }

			124	 	 ifi,	err	:=	InterfaceByIndex(v)

			125	 	 if	err	!=	nil	{

			126	 	 	 return	nil,	err

			127	 	 }

			128	 	 return	ifi,	nil

			129	 }

			130	

			131	 func	setIPv6MulticastInterface(fd	*netFD,	ifi	*Interface)	error	{

			132	 	 var	v	int

			133	 	 if	ifi	!=	nil	{

			134	 	 	 v	=	ifi.Index

			135	 	 }

			136	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			137	 	 	 return	err

			138	 	 }

			139	 	 defer	fd.decref()

			140	 	 err	:=	syscall.SetsockoptInt(fd.sysfd,	syscall.IPPROTO_IPV6,	syscall.IPV6_MULTICAST_IF,	v)

			141	 	 if	err	!=	nil	{

			142	 	 	 return	os.NewSyscallError("setsockopt",	err)

			143	 	 }

			144	 	 return	nil

			145	 }

			146	

			147	 func	ipv6MulticastHopLimit(fd	*netFD)	(int,	error)	{

			148	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			149	 	 	 return	0,	err

			150	 	 }

			151	 	 defer	fd.decref()

			152	 	 v,	err	:=	syscall.GetsockoptInt(fd.sysfd,	syscall.IPPROTO_IPV6,	syscall.IPV6_MULTICAST_HOPS)

			153	 	 if	err	!=	nil	{

			154	 	 	 return	0,	os.NewSyscallError("getsockopt",	err)

			155	 	 }

			156	 	 return	v,	nil

			157	 }

			158	

			159	 func	setIPv6MulticastHopLimit(fd	*netFD,	v	int)	error	{

			160	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			161	 	 	 return	err

			162	 	 }

			163	 	 defer	fd.decref()

			164	 	 err	:=	syscall.SetsockoptInt(fd.sysfd,	syscall.IPPROTO_IPV6,	syscall.IPV6_MULTICAST_HOPS,	v)

			165	 	 if	err	!=	nil	{

			166	 	 	 return	os.NewSyscallError("setsockopt",	err)

			167	 	 }

			168	 	 return	nil

			169	 }

			170	

			171	 func	ipv6MulticastLoopback(fd	*netFD)	(bool,	error)	{

			172	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			173	 	 	 return	false,	err

			174	 	 }

			175	 	 defer	fd.decref()

			176	 	 v,	err	:=	syscall.GetsockoptInt(fd.sysfd,	syscall.IPPROTO_IPV6,	syscall.IPV6_MULTICAST_LOOP)

			177	 	 if	err	!=	nil	{

			178	 	 	 return	false,	os.NewSyscallError("getsockopt",	err)

			179	 	 }

			180	 	 return	v	==	1,	nil

			181	 }

			182	

			183	 func	setIPv6MulticastLoopback(fd	*netFD,	v	bool)	error	{

			184	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			185	 	 	 return	err

			186	 	 }

			187	 	 defer	fd.decref()

			188	 	 err	:=	syscall.SetsockoptInt(fd.sysfd,	syscall.IPPROTO_IPV6,	syscall.IPV6_MULTICAST_LOOP,	boolint(v))

			189	 	 if	err	!=	nil	{

			190	 	 	 return	os.NewSyscallError("setsockopt",	err)

			191	 	 }

			192	 	 return	nil

			193	 }

			194	

			195	 func	joinIPv6Group(fd	*netFD,	ifi	*Interface,	ip	IP)	error	{

			196	 	 mreq	:=	&syscall.IPv6Mreq{}

			197	 	 copy(mreq.Multiaddr[:],	ip)

			198	 	 if	ifi	!=	nil	{

			199	 	 	 mreq.Interface	=	uint32(ifi.Index)

			200	 	 }

			201	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			202	 	 	 return	err

			203	 	 }

			204	 	 defer	fd.decref()

			205	 	 return	os.NewSyscallError("setsockopt",	syscall.SetsockoptIPv6Mreq(fd.sysfd,	syscall.IPPROTO_IPV6,	syscall.IPV6_JOIN_GROUP,	mreq))

			206	 }

			207	

			208	 func	leaveIPv6Group(fd	*netFD,	ifi	*Interface,	ip	IP)	error	{

			209	 	 mreq	:=	&syscall.IPv6Mreq{}

			210	 	 copy(mreq.Multiaddr[:],	ip)

			211	 	 if	ifi	!=	nil	{

			212	 	 	 mreq.Interface	=	uint32(ifi.Index)

			213	 	 }

			214	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			215	 	 	 return	err

			216	 	 }

			217	 	 defer	fd.decref()

			218	 	 return	os.NewSyscallError("setsockopt",	syscall.SetsockoptIPv6Mreq(fd.sysfd,	syscall.IPPROTO_IPV6,	syscall.IPV6_LEAVE_GROUP,	mreq))

			219	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/sockoptip_linux.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	IP-level	socket	options	for	Linux

					6	

					7	 package	net

					8	

					9	 import	(

				10	 	 "os"

				11	 	 "syscall"

				12)

				13	

				14	 func	ipv4MulticastInterface(fd	*netFD)	(*Interface,	error)	{

				15	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

				16	 	 	 return	nil,	err

				17	 	 }

				18	 	 defer	fd.decref()

				19	 	 mreq,	err	:=	syscall.GetsockoptIPMreqn(fd.sysfd,	syscall.IPPROTO_IP,	syscall.IP_MULTICAST_IF)

				20	 	 if	err	!=	nil	{

				21	 	 	 return	nil,	os.NewSyscallError("getsockopt",	err)

				22	 	 }

				23	 	 if	int(mreq.Ifindex)	==	0	{

				24	 	 	 return	nil,	nil

				25	 	 }

				26	 	 return	InterfaceByIndex(int(mreq.Ifindex))

				27	 }

				28	

				29	 func	setIPv4MulticastInterface(fd	*netFD,	ifi	*Interface)	error	{

				30	 	 var	v	int32

				31	 	 if	ifi	!=	nil	{

				32	 	 	 v	=	int32(ifi.Index)

				33	 	 }

				34	 	 mreq	:=	&syscall.IPMreqn{Ifindex:	v}

				35	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

				36	 	 	 return	err

				37	 	 }

				38	 	 defer	fd.decref()

				39	 	 err	:=	syscall.SetsockoptIPMreqn(fd.sysfd,	syscall.IPPROTO_IP,	syscall.IP_MULTICAST_IF,	mreq)

				40	 	 if	err	!=	nil	{

				41	 	 	 return	os.NewSyscallError("setsockopt",	err)

				42	 	 }

				43	 	 return	nil

				44	 }

				45	

				46	 func	ipv4MulticastTTL(fd	*netFD)	(int,	error)	{

				47	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

				48	 	 	 return	0,	err

				49	 	 }

				50	 	 defer	fd.decref()

				51	 	 v,	err	:=	syscall.GetsockoptInt(fd.sysfd,	syscall.IPPROTO_IP,	syscall.IP_MULTICAST_TTL)

				52	 	 if	err	!=	nil	{

				53	 	 	 return	-1,	os.NewSyscallError("getsockopt",	err)

				54	 	 }

				55	 	 return	v,	nil

				56	 }

				57	

				58	 func	setIPv4MulticastTTL(fd	*netFD,	v	int)	error	{

				59	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

				60	 	 	 return	err

				61	 	 }

				62	 	 defer	fd.decref()

				63	 	 err	:=	syscall.SetsockoptInt(fd.sysfd,	syscall.IPPROTO_IP,	syscall.IP_MULTICAST_TTL,	v)

				64	 	 if	err	!=	nil	{

				65	 	 	 return	os.NewSyscallError("setsockopt",	err)

				66	 	 }

				67	 	 return	nil

				68	 }

				69	

				70	 func	ipv4MulticastLoopback(fd	*netFD)	(bool,	error)	{

				71	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

				72	 	 	 return	false,	err

				73	 	 }

				74	 	 defer	fd.decref()

				75	 	 v,	err	:=	syscall.GetsockoptInt(fd.sysfd,	syscall.IPPROTO_IP,	syscall.IP_MULTICAST_LOOP)

				76	 	 if	err	!=	nil	{

				77	 	 	 return	false,	os.NewSyscallError("getsockopt",	err)

				78	 	 }

				79	 	 return	v	==	1,	nil

				80	 }

				81	

				82	 func	setIPv4MulticastLoopback(fd	*netFD,	v	bool)	error	{

				83	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

				84	 	 	 return	err

				85	 	 }

				86	 	 defer	fd.decref()

				87	 	 err	:=	syscall.SetsockoptInt(fd.sysfd,	syscall.IPPROTO_IP,	syscall.IP_MULTICAST_LOOP,	boolint(v))

				88	 	 if	err	!=	nil	{

				89	 	 	 return	os.NewSyscallError("setsockopt",	err)

				90	 	 }

				91	 	 return	nil

				92	 }

				93	

				94	 func	ipv4ReceiveInterface(fd	*netFD)	(bool,	error)	{

				95	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

				96	 	 	 return	false,	err

				97	 	 }

				98	 	 defer	fd.decref()

				99	 	 v,	err	:=	syscall.GetsockoptInt(fd.sysfd,	syscall.IPPROTO_IP,	syscall.IP_PKTINFO)

			100	 	 if	err	!=	nil	{

			101	 	 	 return	false,	os.NewSyscallError("getsockopt",	err)

			102	 	 }

			103	 	 return	v	==	1,	nil

			104	 }

			105	

			106	 func	setIPv4ReceiveInterface(fd	*netFD,	v	bool)	error	{

			107	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			108	 	 	 return	err

			109	 	 }

			110	 	 defer	fd.decref()

			111	 	 err	:=	syscall.SetsockoptInt(fd.sysfd,	syscall.IPPROTO_IP,	syscall.IP_PKTINFO,	boolint(v))

			112	 	 if	err	!=	nil	{

			113	 	 	 return	os.NewSyscallError("setsockopt",	err)

			114	 	 }

			115	 	 return	nil

			116	 }

			117	

			118	 func	ipv6TrafficClass(fd	*netFD)	(int,	error)	{

			119	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			120	 	 	 return	0,	err

			121	 	 }

			122	 	 defer	fd.decref()

			123	 	 v,	err	:=	syscall.GetsockoptInt(fd.sysfd,	syscall.IPPROTO_IPV6,	syscall.IPV6_TCLASS)

			124	 	 if	err	!=	nil	{

			125	 	 	 return	0,	os.NewSyscallError("getsockopt",	err)

			126	 	 }

			127	 	 return	v,	nil

			128	 }

			129	

			130	 func	setIPv6TrafficClass(fd	*netFD,	v	int)	error	{

			131	 	 if	err	:=	fd.incref(false);	err	!=	nil	{

			132	 	 	 return	err

			133	 	 }

			134	 	 defer	fd.decref()

			135	 	 err	:=	syscall.SetsockoptInt(fd.sysfd,	syscall.IPPROTO_IPV6,	syscall.IPV6_TCLASS,	v)

			136	 	 if	err	!=	nil	{

			137	 	 	 return	os.NewSyscallError("setsockopt",	err)

			138	 	 }

			139	 	 return	nil

			140	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/tcpsock.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	TCP	sockets

					6	

					7	 package	net

					8	

					9	 //	TCPAddr	represents	the	address	of	a	TCP	end	point.

				10	 type	TCPAddr	struct	{

				11	 	 IP			IP

				12	 	 Port	int

				13	 }

				14	

				15	 //	Network	returns	the	address's	network	name,	"tcp".

				16	 func	(a	*TCPAddr)	Network()	string	{	return	"tcp"	}

				17	

				18	 func	(a	*TCPAddr)	String()	string	{

				19	 	 if	a	==	nil	{

				20	 	 	 return	"<nil>"

				21	 	 }

				22	 	 return	JoinHostPort(a.IP.String(),	itoa(a.Port))

				23	 }

				24	

				25	 //	ResolveTCPAddr	parses	addr	as	a	TCP	address	of	the	form

				26	 //	host:port	and	resolves	domain	names	or	port	names	to

				27	 //	numeric	addresses	on	the	network	net,	which	must	be	"tcp",

				28	 //	"tcp4"	or	"tcp6".		A	literal	IPv6	host	address	must	be

				29	 //	enclosed	in	square	brackets,	as	in	"[::]:80".

				30	 func	ResolveTCPAddr(net,	addr	string)	(*TCPAddr,	error)	{

				31	 	 ip,	port,	err	:=	hostPortToIP(net,	addr)

				32	 	 if	err	!=	nil	{

				33	 	 	 return	nil,	err

				34	 	 }

				35	 	 return	&TCPAddr{ip,	port},	nil

				36	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/tcpsock_posix.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd	windows

					6	

					7	 //	TCP	sockets

					8	

					9	 package	net

				10	

				11	 import	(

				12	 	 "io"

				13	 	 "os"

				14	 	 "syscall"

				15	 	 "time"

				16)

				17	

				18	 //	BUG(rsc):	On	OpenBSD,	listening	on	the	"tcp"	network	does	not	listen	for

				19	 //	both	IPv4	and	IPv6	connections.	This	is	due	to	the	fact	that	IPv4	traffic

				20	 //	will	not	be	routed	to	an	IPv6	socket	-	two	separate	sockets	are	required

				21	 //	if	both	AFs	are	to	be	supported.	See	inet6(4)	on	OpenBSD	for	details.

				22	

				23	 func	sockaddrToTCP(sa	syscall.Sockaddr)	Addr	{

				24	 	 switch	sa	:=	sa.(type)	{

				25	 	 case	*syscall.SockaddrInet4:

				26	 	 	 return	&TCPAddr{sa.Addr[0:],	sa.Port}

				27	 	 case	*syscall.SockaddrInet6:

				28	 	 	 return	&TCPAddr{sa.Addr[0:],	sa.Port}

				29	 	 default:

				30	 	 	 if	sa	!=	nil	{

				31	 	 	 	 //	Diagnose	when	we	will	turn	a	non-nil	sockaddr	into	a	nil.

				32	 	 	 	 panic("unexpected	type	in	sockaddrToTCP")

				33	 	 	 }

				34	 	 }

				35	 	 return	nil

				36	 }

				37	

				38	 func	(a	*TCPAddr)	family()	int	{

				39	 	 if	a	==	nil	||	len(a.IP)	<=	IPv4len	{

				40	 	 	 return	syscall.AF_INET

				41	 	 }

				42	 	 if	a.IP.To4()	!=	nil	{

				43	 	 	 return	syscall.AF_INET

				44	 	 }

				45	 	 return	syscall.AF_INET6

				46	 }

				47	

				48	 func	(a	*TCPAddr)	isWildcard()	bool	{

				49	 	 if	a	==	nil	||	a.IP	==	nil	{

				50	 	 	 return	true

				51	 	 }

				52	 	 return	a.IP.IsUnspecified()

				53	 }

				54	

				55	 func	(a	*TCPAddr)	sockaddr(family	int)	(syscall.Sockaddr,	error)	{

				56	 	 return	ipToSockaddr(family,	a.IP,	a.Port)

				57	 }

				58	

				59	 func	(a	*TCPAddr)	toAddr()	sockaddr	{

				60	 	 if	a	==	nil	{	//	nil	*TCPAddr

				61	 	 	 return	nil	//	nil	interface

				62	 	 }

				63	 	 return	a

				64	 }

				65	

				66	 //	TCPConn	is	an	implementation	of	the	Conn	interface

				67	 //	for	TCP	network	connections.

				68	 type	TCPConn	struct	{

				69	 	 fd	*netFD

				70	 }

				71	

				72	 func	newTCPConn(fd	*netFD)	*TCPConn	{

				73	 	 c	:=	&TCPConn{fd}

				74	 	 c.SetNoDelay(true)

				75	 	 return	c

				76	 }

				77	

				78	 func	(c	*TCPConn)	ok()	bool	{	return	c	!=	nil	&&	c.fd	!=	nil	}

				79	

				80	 //	Implementation	of	the	Conn	interface	-	see	Conn	for	documentation.

				81	

				82	 //	Read	implements	the	Conn	Read	method.

				83	 func	(c	*TCPConn)	Read(b	[]byte)	(n	int,	err	error)	{

				84	 	 if	!c.ok()	{

				85	 	 	 return	0,	syscall.EINVAL

				86	 	 }

				87	 	 return	c.fd.Read(b)

				88	 }

				89	

				90	 //	ReadFrom	implements	the	io.ReaderFrom	ReadFrom	method.

				91	 func	(c	*TCPConn)	ReadFrom(r	io.Reader)	(int64,	error)	{

				92	 	 if	n,	err,	handled	:=	sendFile(c.fd,	r);	handled	{

				93	 	 	 return	n,	err

				94	 	 }

				95	 	 return	genericReadFrom(c,	r)

				96	 }

				97	

				98	 //	Write	implements	the	Conn	Write	method.

				99	 func	(c	*TCPConn)	Write(b	[]byte)	(n	int,	err	error)	{

			100	 	 if	!c.ok()	{

			101	 	 	 return	0,	syscall.EINVAL

			102	 	 }

			103	 	 return	c.fd.Write(b)

			104	 }

			105	

			106	 //	Close	closes	the	TCP	connection.

			107	 func	(c	*TCPConn)	Close()	error	{

			108	 	 if	!c.ok()	{

			109	 	 	 return	syscall.EINVAL

			110	 	 }

			111	 	 return	c.fd.Close()

			112	 }

			113	

			114	 //	CloseRead	shuts	down	the	reading	side	of	the	TCP	connection.

			115	 //	Most	callers	should	just	use	Close.

			116	 func	(c	*TCPConn)	CloseRead()	error	{

			117	 	 if	!c.ok()	{

			118	 	 	 return	syscall.EINVAL

			119	 	 }

			120	 	 return	c.fd.CloseRead()

			121	 }

			122	

			123	 //	CloseWrite	shuts	down	the	writing	side	of	the	TCP	connection.

			124	 //	Most	callers	should	just	use	Close.

			125	 func	(c	*TCPConn)	CloseWrite()	error	{

			126	 	 if	!c.ok()	{

			127	 	 	 return	syscall.EINVAL

			128	 	 }

			129	 	 return	c.fd.CloseWrite()

			130	 }

			131	

			132	 //	LocalAddr	returns	the	local	network	address,	a	*TCPAddr.

			133	 func	(c	*TCPConn)	LocalAddr()	Addr	{

			134	 	 if	!c.ok()	{

			135	 	 	 return	nil

			136	 	 }

			137	 	 return	c.fd.laddr

			138	 }

			139	

			140	 //	RemoteAddr	returns	the	remote	network	address,	a	*TCPAddr.

			141	 func	(c	*TCPConn)	RemoteAddr()	Addr	{

			142	 	 if	!c.ok()	{

			143	 	 	 return	nil

			144	 	 }

			145	 	 return	c.fd.raddr

			146	 }

			147	

			148	 //	SetDeadline	implements	the	Conn	SetDeadline	method.

			149	 func	(c	*TCPConn)	SetDeadline(t	time.Time)	error	{

			150	 	 if	!c.ok()	{

			151	 	 	 return	syscall.EINVAL

			152	 	 }

			153	 	 return	setDeadline(c.fd,	t)

			154	 }

			155	

			156	 //	SetReadDeadline	implements	the	Conn	SetReadDeadline	method.

			157	 func	(c	*TCPConn)	SetReadDeadline(t	time.Time)	error	{

			158	 	 if	!c.ok()	{

			159	 	 	 return	syscall.EINVAL

			160	 	 }

			161	 	 return	setReadDeadline(c.fd,	t)

			162	 }

			163	

			164	 //	SetWriteDeadline	implements	the	Conn	SetWriteDeadline	method.

			165	 func	(c	*TCPConn)	SetWriteDeadline(t	time.Time)	error	{

			166	 	 if	!c.ok()	{

			167	 	 	 return	syscall.EINVAL

			168	 	 }

			169	 	 return	setWriteDeadline(c.fd,	t)

			170	 }

			171	

			172	 //	SetReadBuffer	sets	the	size	of	the	operating	system's

			173	 //	receive	buffer	associated	with	the	connection.

			174	 func	(c	*TCPConn)	SetReadBuffer(bytes	int)	error	{

			175	 	 if	!c.ok()	{

			176	 	 	 return	syscall.EINVAL

			177	 	 }

			178	 	 return	setReadBuffer(c.fd,	bytes)

			179	 }

			180	

			181	 //	SetWriteBuffer	sets	the	size	of	the	operating	system's

			182	 //	transmit	buffer	associated	with	the	connection.

			183	 func	(c	*TCPConn)	SetWriteBuffer(bytes	int)	error	{

			184	 	 if	!c.ok()	{

			185	 	 	 return	syscall.EINVAL

			186	 	 }

			187	 	 return	setWriteBuffer(c.fd,	bytes)

			188	 }

			189	

			190	 //	SetLinger	sets	the	behavior	of	Close()	on	a	connection

			191	 //	which	still	has	data	waiting	to	be	sent	or	to	be	acknowledged.

			192	 //

			193	 //	If	sec	<	0	(the	default),	Close	returns	immediately	and

			194	 //	the	operating	system	finishes	sending	the	data	in	the	background.

			195	 //

			196	 //	If	sec	==	0,	Close	returns	immediately	and	the	operating	system

			197	 //	discards	any	unsent	or	unacknowledged	data.

			198	 //

			199	 //	If	sec	>	0,	Close	blocks	for	at	most	sec	seconds	waiting	for

			200	 //	data	to	be	sent	and	acknowledged.

			201	 func	(c	*TCPConn)	SetLinger(sec	int)	error	{

			202	 	 if	!c.ok()	{

			203	 	 	 return	syscall.EINVAL

			204	 	 }

			205	 	 return	setLinger(c.fd,	sec)

			206	 }

			207	

			208	 //	SetKeepAlive	sets	whether	the	operating	system	should	send

			209	 //	keepalive	messages	on	the	connection.

			210	 func	(c	*TCPConn)	SetKeepAlive(keepalive	bool)	error	{

			211	 	 if	!c.ok()	{

			212	 	 	 return	syscall.EINVAL

			213	 	 }

			214	 	 return	setKeepAlive(c.fd,	keepalive)

			215	 }

			216	

			217	 //	SetNoDelay	controls	whether	the	operating	system	should	delay

			218	 //	packet	transmission	in	hopes	of	sending	fewer	packets

			219	 //	(Nagle's	algorithm).		The	default	is	true	(no	delay),	meaning

			220	 //	that	data	is	sent	as	soon	as	possible	after	a	Write.

			221	 func	(c	*TCPConn)	SetNoDelay(noDelay	bool)	error	{

			222	 	 if	!c.ok()	{

			223	 	 	 return	syscall.EINVAL

			224	 	 }

			225	 	 return	setNoDelay(c.fd,	noDelay)

			226	 }

			227	

			228	 //	File	returns	a	copy	of	the	underlying	os.File,	set	to	blocking	mode.

			229	 //	It	is	the	caller's	responsibility	to	close	f	when	finished.

			230	 //	Closing	c	does	not	affect	f,	and	closing	f	does	not	affect	c.

			231	 func	(c	*TCPConn)	File()	(f	*os.File,	err	error)	{	return	c.fd.dup()	}

			232	

			233	 //	DialTCP	connects	to	the	remote	address	raddr	on	the	network	net,

			234	 //	which	must	be	"tcp",	"tcp4",	or	"tcp6".		If	laddr	is	not	nil,	it	is	used

			235	 //	as	the	local	address	for	the	connection.

			236	 func	DialTCP(net	string,	laddr,	raddr	*TCPAddr)	(*TCPConn,	error)	{

			237	 	 if	raddr	==	nil	{

			238	 	 	 return	nil,	&OpError{"dial",	net,	nil,	errMissingAddress}

			239	 	 }

			240	

			241	 	 fd,	err	:=	internetSocket(net,	laddr.toAddr(),	raddr.toAddr(),	syscall.SOCK_STREAM,	0,	"dial",	sockaddrToTCP)

			242	

			243	 	 //	TCP	has	a	rarely	used	mechanism	called	a	'simultaneous	connection'	in

			244	 	 //	which	Dial("tcp",	addr1,	addr2)	run	on	the	machine	at	addr1	can

			245	 	 //	connect	to	a	simultaneous	Dial("tcp",	addr2,	addr1)	run	on	the	machine

			246	 	 //	at	addr2,	without	either	machine	executing	Listen.		If	laddr	==	nil,

			247	 	 //	it	means	we	want	the	kernel	to	pick	an	appropriate	originating	local

			248	 	 //	address.		Some	Linux	kernels	cycle	blindly	through	a	fixed	range	of

			249	 	 //	local	ports,	regardless	of	destination	port.		If	a	kernel	happens	to

			250	 	 //	pick	local	port	50001	as	the	source	for	a	Dial("tcp",	"",	"localhost:50001"),

			251	 	 //	then	the	Dial	will	succeed,	having	simultaneously	connected	to	itself.

			252	 	 //	This	can	only	happen	when	we	are	letting	the	kernel	pick	a	port	(laddr	==	nil)

			253	 	 //	and	when	there	is	no	listener	for	the	destination	address.

			254	 	 //	It's	hard	to	argue	this	is	anything	other	than	a	kernel	bug.		If	we

			255	 	 //	see	this	happen,	rather	than	expose	the	buggy	effect	to	users,	we

			256	 	 //	close	the	fd	and	try	again.		If	it	happens	twice	more,	we	relent	and

			257	 	 //	use	the	result.		See	also:

			258	 	 //	 http://golang.org/issue/2690

			259	 	 //	 http://stackoverflow.com/questions/4949858/

			260	 	 for	i	:=	0;	i	<	2	&&	err	==	nil	&&	laddr	==	nil	&&	selfConnect(fd);	i++	{

			261	 	 	 fd.Close()

			262	 	 	 fd,	err	=	internetSocket(net,	laddr.toAddr(),	raddr.toAddr(),	syscall.SOCK_STREAM,	0,	"dial",	sockaddrToTCP)

			263	 	 }

			264	

			265	 	 if	err	!=	nil	{

			266	 	 	 return	nil,	err

			267	 	 }

			268	 	 return	newTCPConn(fd),	nil

			269	 }

			270	

			271	 func	selfConnect(fd	*netFD)	bool	{

			272	 	 //	The	socket	constructor	can	return	an	fd	with	raddr	nil	under	certain

			273	 	 //	unknown	conditions.	The	errors	in	the	calls	there	to	Getpeername

			274	 	 //	are	discarded,	but	we	can't	catch	the	problem	there	because	those

			275	 	 //	calls	are	sometimes	legally	erroneous	with	a	"socket	not	connected".

			276	 	 //	Since	this	code	(selfConnect)	is	already	trying	to	work	around

			277	 	 //	a	problem,	we	make	sure	if	this	happens	we	recognize	trouble	and

			278	 	 //	ask	the	DialTCP	routine	to	try	again.

			279	 	 //	TODO:	try	to	understand	what's	really	going	on.

			280	 	 if	fd.laddr	==	nil	||	fd.raddr	==	nil	{

			281	 	 	 return	true

			282	 	 }

			283	 	 l	:=	fd.laddr.(*TCPAddr)

			284	 	 r	:=	fd.raddr.(*TCPAddr)

			285	 	 return	l.Port	==	r.Port	&&	l.IP.Equal(r.IP)

			286	 }

			287	

			288	 //	TCPListener	is	a	TCP	network	listener.

			289	 //	Clients	should	typically	use	variables	of	type	Listener

			290	 //	instead	of	assuming	TCP.

			291	 type	TCPListener	struct	{

			292	 	 fd	*netFD

			293	 }

			294	

			295	 //	ListenTCP	announces	on	the	TCP	address	laddr	and	returns	a	TCP	listener.

			296	 //	Net	must	be	"tcp",	"tcp4",	or	"tcp6".

			297	 //	If	laddr	has	a	port	of	0,	it	means	to	listen	on	some	available	port.

			298	 //	The	caller	can	use	l.Addr()	to	retrieve	the	chosen	address.

			299	 func	ListenTCP(net	string,	laddr	*TCPAddr)	(*TCPListener,	error)	{

			300	 	 fd,	err	:=	internetSocket(net,	laddr.toAddr(),	nil,	syscall.SOCK_STREAM,	0,	"listen",	sockaddrToTCP)

			301	 	 if	err	!=	nil	{

			302	 	 	 return	nil,	err

			303	 	 }

			304	 	 err	=	syscall.Listen(fd.sysfd,	listenerBacklog)

			305	 	 if	err	!=	nil	{

			306	 	 	 closesocket(fd.sysfd)

			307	 	 	 return	nil,	&OpError{"listen",	net,	laddr,	err}

			308	 	 }

			309	 	 l	:=	new(TCPListener)

			310	 	 l.fd	=	fd

			311	 	 return	l,	nil

			312	 }

			313	

			314	 //	AcceptTCP	accepts	the	next	incoming	call	and	returns	the	new	connection

			315	 //	and	the	remote	address.

			316	 func	(l	*TCPListener)	AcceptTCP()	(c	*TCPConn,	err	error)	{

			317	 	 if	l	==	nil	||	l.fd	==	nil	||	l.fd.sysfd	<	0	{

			318	 	 	 return	nil,	syscall.EINVAL

			319	 	 }

			320	 	 fd,	err	:=	l.fd.accept(sockaddrToTCP)

			321	 	 if	err	!=	nil	{

			322	 	 	 return	nil,	err

			323	 	 }

			324	 	 return	newTCPConn(fd),	nil

			325	 }

			326	

			327	 //	Accept	implements	the	Accept	method	in	the	Listener	interface;

			328	 //	it	waits	for	the	next	call	and	returns	a	generic	Conn.

			329	 func	(l	*TCPListener)	Accept()	(c	Conn,	err	error)	{

			330	 	 c1,	err	:=	l.AcceptTCP()

			331	 	 if	err	!=	nil	{

			332	 	 	 return	nil,	err

			333	 	 }

			334	 	 return	c1,	nil

			335	 }

			336	

			337	 //	Close	stops	listening	on	the	TCP	address.

			338	 //	Already	Accepted	connections	are	not	closed.

			339	 func	(l	*TCPListener)	Close()	error	{

			340	 	 if	l	==	nil	||	l.fd	==	nil	{

			341	 	 	 return	syscall.EINVAL

			342	 	 }

			343	 	 return	l.fd.Close()

			344	 }

			345	

			346	 //	Addr	returns	the	listener's	network	address,	a	*TCPAddr.

			347	 func	(l	*TCPListener)	Addr()	Addr	{	return	l.fd.laddr	}

			348	

			349	 //	SetDeadline	sets	the	deadline	associated	with	the	listener.

			350	 //	A	zero	time	value	disables	the	deadline.

			351	 func	(l	*TCPListener)	SetDeadline(t	time.Time)	error	{

			352	 	 if	l	==	nil	||	l.fd	==	nil	{

			353	 	 	 return	syscall.EINVAL

			354	 	 }

			355	 	 return	setDeadline(l.fd,	t)

			356	 }

			357	

			358	 //	File	returns	a	copy	of	the	underlying	os.File,	set	to	blocking	mode.

			359	 //	It	is	the	caller's	responsibility	to	close	f	when	finished.

			360	 //	Closing	l	does	not	affect	f,	and	closing	f	does	not	affect	l.

			361	 func	(l	*TCPListener)	File()	(f	*os.File,	err	error)	{	return	l.fd.dup()	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/udpsock.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	UDP	sockets

					6	

					7	 package	net

					8	

					9	 //	UDPAddr	represents	the	address	of	a	UDP	end	point.

				10	 type	UDPAddr	struct	{

				11	 	 IP			IP

				12	 	 Port	int

				13	 }

				14	

				15	 //	Network	returns	the	address's	network	name,	"udp".

				16	 func	(a	*UDPAddr)	Network()	string	{	return	"udp"	}

				17	

				18	 func	(a	*UDPAddr)	String()	string	{

				19	 	 if	a	==	nil	{

				20	 	 	 return	"<nil>"

				21	 	 }

				22	 	 return	JoinHostPort(a.IP.String(),	itoa(a.Port))

				23	 }

				24	

				25	 //	ResolveUDPAddr	parses	addr	as	a	UDP	address	of	the	form

				26	 //	host:port	and	resolves	domain	names	or	port	names	to

				27	 //	numeric	addresses	on	the	network	net,	which	must	be	"udp",

				28	 //	"udp4"	or	"udp6".		A	literal	IPv6	host	address	must	be

				29	 //	enclosed	in	square	brackets,	as	in	"[::]:80".

				30	 func	ResolveUDPAddr(net,	addr	string)	(*UDPAddr,	error)	{

				31	 	 ip,	port,	err	:=	hostPortToIP(net,	addr)

				32	 	 if	err	!=	nil	{

				33	 	 	 return	nil,	err

				34	 	 }

				35	 	 return	&UDPAddr{ip,	port},	nil

				36	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/udpsock_posix.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd	windows

					6	

					7	 //	UDP	sockets

					8	

					9	 package	net

				10	

				11	 import	(

				12	 	 "errors"

				13	 	 "os"

				14	 	 "syscall"

				15	 	 "time"

				16)

				17	

				18	 var	ErrWriteToConnected	=	errors.New("use	of	WriteTo	with	pre-connected	UDP")

				19	

				20	 func	sockaddrToUDP(sa	syscall.Sockaddr)	Addr	{

				21	 	 switch	sa	:=	sa.(type)	{

				22	 	 case	*syscall.SockaddrInet4:

				23	 	 	 return	&UDPAddr{sa.Addr[0:],	sa.Port}

				24	 	 case	*syscall.SockaddrInet6:

				25	 	 	 return	&UDPAddr{sa.Addr[0:],	sa.Port}

				26	 	 }

				27	 	 return	nil

				28	 }

				29	

				30	 func	(a	*UDPAddr)	family()	int	{

				31	 	 if	a	==	nil	||	len(a.IP)	<=	IPv4len	{

				32	 	 	 return	syscall.AF_INET

				33	 	 }

				34	 	 if	a.IP.To4()	!=	nil	{

				35	 	 	 return	syscall.AF_INET

				36	 	 }

				37	 	 return	syscall.AF_INET6

				38	 }

				39	

				40	 func	(a	*UDPAddr)	isWildcard()	bool	{

				41	 	 if	a	==	nil	||	a.IP	==	nil	{

				42	 	 	 return	true

				43	 	 }

				44	 	 return	a.IP.IsUnspecified()

				45	 }

				46	

				47	 func	(a	*UDPAddr)	sockaddr(family	int)	(syscall.Sockaddr,	error)	{

				48	 	 return	ipToSockaddr(family,	a.IP,	a.Port)

				49	 }

				50	

				51	 func	(a	*UDPAddr)	toAddr()	sockaddr	{

				52	 	 if	a	==	nil	{	//	nil	*UDPAddr

				53	 	 	 return	nil	//	nil	interface

				54	 	 }

				55	 	 return	a

				56	 }

				57	

				58	 //	UDPConn	is	the	implementation	of	the	Conn	and	PacketConn

				59	 //	interfaces	for	UDP	network	connections.

				60	 type	UDPConn	struct	{

				61	 	 fd	*netFD

				62	 }

				63	

				64	 func	newUDPConn(fd	*netFD)	*UDPConn	{	return	&UDPConn{fd}	}

				65	

				66	 func	(c	*UDPConn)	ok()	bool	{	return	c	!=	nil	&&	c.fd	!=	nil	}

				67	

				68	 //	Implementation	of	the	Conn	interface	-	see	Conn	for	documentation.

				69	

				70	 //	Read	implements	the	Conn	Read	method.

				71	 func	(c	*UDPConn)	Read(b	[]byte)	(int,	error)	{

				72	 	 if	!c.ok()	{

				73	 	 	 return	0,	syscall.EINVAL

				74	 	 }

				75	 	 return	c.fd.Read(b)

				76	 }

				77	

				78	 //	Write	implements	the	Conn	Write	method.

				79	 func	(c	*UDPConn)	Write(b	[]byte)	(int,	error)	{

				80	 	 if	!c.ok()	{

				81	 	 	 return	0,	syscall.EINVAL

				82	 	 }

				83	 	 return	c.fd.Write(b)

				84	 }

				85	

				86	 //	Close	closes	the	UDP	connection.

				87	 func	(c	*UDPConn)	Close()	error	{

				88	 	 if	!c.ok()	{

				89	 	 	 return	syscall.EINVAL

				90	 	 }

				91	 	 return	c.fd.Close()

				92	 }

				93	

				94	 //	LocalAddr	returns	the	local	network	address.

				95	 func	(c	*UDPConn)	LocalAddr()	Addr	{

				96	 	 if	!c.ok()	{

				97	 	 	 return	nil

				98	 	 }

				99	 	 return	c.fd.laddr

			100	 }

			101	

			102	 //	RemoteAddr	returns	the	remote	network	address,	a	*UDPAddr.

			103	 func	(c	*UDPConn)	RemoteAddr()	Addr	{

			104	 	 if	!c.ok()	{

			105	 	 	 return	nil

			106	 	 }

			107	 	 return	c.fd.raddr

			108	 }

			109	

			110	 //	SetDeadline	implements	the	Conn	SetDeadline	method.

			111	 func	(c	*UDPConn)	SetDeadline(t	time.Time)	error	{

			112	 	 if	!c.ok()	{

			113	 	 	 return	syscall.EINVAL

			114	 	 }

			115	 	 return	setDeadline(c.fd,	t)

			116	 }

			117	

			118	 //	SetReadDeadline	implements	the	Conn	SetReadDeadline	method.

			119	 func	(c	*UDPConn)	SetReadDeadline(t	time.Time)	error	{

			120	 	 if	!c.ok()	{

			121	 	 	 return	syscall.EINVAL

			122	 	 }

			123	 	 return	setReadDeadline(c.fd,	t)

			124	 }

			125	

			126	 //	SetWriteDeadline	implements	the	Conn	SetWriteDeadline	method.

			127	 func	(c	*UDPConn)	SetWriteDeadline(t	time.Time)	error	{

			128	 	 if	!c.ok()	{

			129	 	 	 return	syscall.EINVAL

			130	 	 }

			131	 	 return	setWriteDeadline(c.fd,	t)

			132	 }

			133	

			134	 //	SetReadBuffer	sets	the	size	of	the	operating	system's

			135	 //	receive	buffer	associated	with	the	connection.

			136	 func	(c	*UDPConn)	SetReadBuffer(bytes	int)	error	{

			137	 	 if	!c.ok()	{

			138	 	 	 return	syscall.EINVAL

			139	 	 }

			140	 	 return	setReadBuffer(c.fd,	bytes)

			141	 }

			142	

			143	 //	SetWriteBuffer	sets	the	size	of	the	operating	system's

			144	 //	transmit	buffer	associated	with	the	connection.

			145	 func	(c	*UDPConn)	SetWriteBuffer(bytes	int)	error	{

			146	 	 if	!c.ok()	{

			147	 	 	 return	syscall.EINVAL

			148	 	 }

			149	 	 return	setWriteBuffer(c.fd,	bytes)

			150	 }

			151	

			152	 //	UDP-specific	methods.

			153	

			154	 //	ReadFromUDP	reads	a	UDP	packet	from	c,	copying	the	payload	into	b.

			155	 //	It	returns	the	number	of	bytes	copied	into	b	and	the	return	address

			156	 //	that	was	on	the	packet.

			157	 //

			158	 //	ReadFromUDP	can	be	made	to	time	out	and	return	an	error	with	Timeout()	==	true

			159	 //	after	a	fixed	time	limit;	see	SetDeadline	and	SetReadDeadline.

			160	 func	(c	*UDPConn)	ReadFromUDP(b	[]byte)	(n	int,	addr	*UDPAddr,	err	error)	{

			161	 	 if	!c.ok()	{

			162	 	 	 return	0,	nil,	syscall.EINVAL

			163	 	 }

			164	 	 n,	sa,	err	:=	c.fd.ReadFrom(b)

			165	 	 switch	sa	:=	sa.(type)	{

			166	 	 case	*syscall.SockaddrInet4:

			167	 	 	 addr	=	&UDPAddr{sa.Addr[0:],	sa.Port}

			168	 	 case	*syscall.SockaddrInet6:

			169	 	 	 addr	=	&UDPAddr{sa.Addr[0:],	sa.Port}

			170	 	 }

			171	 	 return

			172	 }

			173	

			174	 //	ReadFrom	implements	the	PacketConn	ReadFrom	method.

			175	 func	(c	*UDPConn)	ReadFrom(b	[]byte)	(int,	Addr,	error)	{

			176	 	 if	!c.ok()	{

			177	 	 	 return	0,	nil,	syscall.EINVAL

			178	 	 }

			179	 	 n,	uaddr,	err	:=	c.ReadFromUDP(b)

			180	 	 return	n,	uaddr.toAddr(),	err

			181	 }

			182	

			183	 //	WriteToUDP	writes	a	UDP	packet	to	addr	via	c,	copying	the	payload	from	b.

			184	 //

			185	 //	WriteToUDP	can	be	made	to	time	out	and	return

			186	 //	an	error	with	Timeout()	==	true	after	a	fixed	time	limit;

			187	 //	see	SetDeadline	and	SetWriteDeadline.

			188	 //	On	packet-oriented	connections,	write	timeouts	are	rare.

			189	 func	(c	*UDPConn)	WriteToUDP(b	[]byte,	addr	*UDPAddr)	(int,	error)	{

			190	 	 if	!c.ok()	{

			191	 	 	 return	0,	syscall.EINVAL

			192	 	 }

			193	 	 if	c.fd.isConnected	{

			194	 	 	 return	0,	&OpError{"write",	c.fd.net,	addr,	ErrWriteToConnected}

			195	 	 }

			196	 	 sa,	err	:=	addr.sockaddr(c.fd.family)

			197	 	 if	err	!=	nil	{

			198	 	 	 return	0,	&OpError{"write",	c.fd.net,	addr,	err}

			199	 	 }

			200	 	 return	c.fd.WriteTo(b,	sa)

			201	 }

			202	

			203	 //	WriteTo	implements	the	PacketConn	WriteTo	method.

			204	 func	(c	*UDPConn)	WriteTo(b	[]byte,	addr	Addr)	(int,	error)	{

			205	 	 if	!c.ok()	{

			206	 	 	 return	0,	syscall.EINVAL

			207	 	 }

			208	 	 a,	ok	:=	addr.(*UDPAddr)

			209	 	 if	!ok	{

			210	 	 	 return	0,	&OpError{"write",	c.fd.net,	addr,	syscall.EINVAL}

			211	 	 }

			212	 	 return	c.WriteToUDP(b,	a)

			213	 }

			214	

			215	 //	File	returns	a	copy	of	the	underlying	os.File,	set	to	blocking	mode.

			216	 //	It	is	the	caller's	responsibility	to	close	f	when	finished.

			217	 //	Closing	c	does	not	affect	f,	and	closing	f	does	not	affect	c.

			218	 func	(c	*UDPConn)	File()	(f	*os.File,	err	error)	{	return	c.fd.dup()	}

			219	

			220	 //	DialUDP	connects	to	the	remote	address	raddr	on	the	network	net,

			221	 //	which	must	be	"udp",	"udp4",	or	"udp6".		If	laddr	is	not	nil,	it	is	used

			222	 //	as	the	local	address	for	the	connection.

			223	 func	DialUDP(net	string,	laddr,	raddr	*UDPAddr)	(*UDPConn,	error)	{

			224	 	 switch	net	{

			225	 	 case	"udp",	"udp4",	"udp6":

			226	 	 default:

			227	 	 	 return	nil,	UnknownNetworkError(net)

			228	 	 }

			229	 	 if	raddr	==	nil	{

			230	 	 	 return	nil,	&OpError{"dial",	net,	nil,	errMissingAddress}

			231	 	 }

			232	 	 fd,	err	:=	internetSocket(net,	laddr.toAddr(),	raddr.toAddr(),	syscall.SOCK_DGRAM,	0,	"dial",	sockaddrToUDP)

			233	 	 if	err	!=	nil	{

			234	 	 	 return	nil,	err

			235	 	 }

			236	 	 return	newUDPConn(fd),	nil

			237	 }

			238	

			239	 //	ListenUDP	listens	for	incoming	UDP	packets	addressed	to	the

			240	 //	local	address	laddr.		The	returned	connection	c's	ReadFrom

			241	 //	and	WriteTo	methods	can	be	used	to	receive	and	send	UDP

			242	 //	packets	with	per-packet	addressing.

			243	 func	ListenUDP(net	string,	laddr	*UDPAddr)	(*UDPConn,	error)	{

			244	 	 switch	net	{

			245	 	 case	"udp",	"udp4",	"udp6":

			246	 	 default:

			247	 	 	 return	nil,	UnknownNetworkError(net)

			248	 	 }

			249	 	 if	laddr	==	nil	{

			250	 	 	 return	nil,	&OpError{"listen",	net,	nil,	errMissingAddress}

			251	 	 }

			252	 	 fd,	err	:=	internetSocket(net,	laddr.toAddr(),	nil,	syscall.SOCK_DGRAM,	0,	"listen",	sockaddrToUDP)

			253	 	 if	err	!=	nil	{

			254	 	 	 return	nil,	err

			255	 	 }

			256	 	 return	newUDPConn(fd),	nil

			257	 }

			258	

			259	 //	ListenMulticastUDP	listens	for	incoming	multicast	UDP	packets

			260	 //	addressed	to	the	group	address	gaddr	on	ifi,	which	specifies

			261	 //	the	interface	to	join.		ListenMulticastUDP	uses	default

			262	 //	multicast	interface	if	ifi	is	nil.

			263	 func	ListenMulticastUDP(net	string,	ifi	*Interface,	gaddr	*UDPAddr)	(*UDPConn,	error)	{

			264	 	 switch	net	{

			265	 	 case	"udp",	"udp4",	"udp6":

			266	 	 default:

			267	 	 	 return	nil,	UnknownNetworkError(net)

			268	 	 }

			269	 	 if	gaddr	==	nil	||	gaddr.IP	==	nil	{

			270	 	 	 return	nil,	&OpError{"listenmulticast",	net,	nil,	errMissingAddress}

			271	 	 }

			272	 	 fd,	err	:=	internetSocket(net,	gaddr.toAddr(),	nil,	syscall.SOCK_DGRAM,	0,	"listen",	sockaddrToUDP)

			273	 	 if	err	!=	nil	{

			274	 	 	 return	nil,	err

			275	 	 }

			276	 	 c	:=	newUDPConn(fd)

			277	 	 ip4	:=	gaddr.IP.To4()

			278	 	 if	ip4	!=	nil	{

			279	 	 	 err	:=	listenIPv4MulticastUDP(c,	ifi,	ip4)

			280	 	 	 if	err	!=	nil	{

			281	 	 	 	 c.Close()

			282	 	 	 	 return	nil,	err

			283	 	 	 }

			284	 	 }	else	{

			285	 	 	 err	:=	listenIPv6MulticastUDP(c,	ifi,	gaddr.IP)

			286	 	 	 if	err	!=	nil	{

			287	 	 	 	 c.Close()

			288	 	 	 	 return	nil,	err

			289	 	 	 }

			290	 	 }

			291	 	 return	c,	nil

			292	 }

			293	

			294	 func	listenIPv4MulticastUDP(c	*UDPConn,	ifi	*Interface,	ip	IP)	error	{

			295	 	 if	ifi	!=	nil	{

			296	 	 	 err	:=	setIPv4MulticastInterface(c.fd,	ifi)

			297	 	 	 if	err	!=	nil	{

			298	 	 	 	 return	err

			299	 	 	 }

			300	 	 }

			301	 	 err	:=	setIPv4MulticastLoopback(c.fd,	false)

			302	 	 if	err	!=	nil	{

			303	 	 	 return	err

			304	 	 }

			305	 	 err	=	joinIPv4GroupUDP(c,	ifi,	ip)

			306	 	 if	err	!=	nil	{

			307	 	 	 return	err

			308	 	 }

			309	 	 return	nil

			310	 }

			311	

			312	 func	listenIPv6MulticastUDP(c	*UDPConn,	ifi	*Interface,	ip	IP)	error	{

			313	 	 if	ifi	!=	nil	{

			314	 	 	 err	:=	setIPv6MulticastInterface(c.fd,	ifi)

			315	 	 	 if	err	!=	nil	{

			316	 	 	 	 return	err

			317	 	 	 }

			318	 	 }

			319	 	 err	:=	setIPv6MulticastLoopback(c.fd,	false)

			320	 	 if	err	!=	nil	{

			321	 	 	 return	err

			322	 	 }

			323	 	 err	=	joinIPv6GroupUDP(c,	ifi,	ip)

			324	 	 if	err	!=	nil	{

			325	 	 	 return	err

			326	 	 }

			327	 	 return	nil

			328	 }

			329	

			330	 func	joinIPv4GroupUDP(c	*UDPConn,	ifi	*Interface,	ip	IP)	error	{

			331	 	 err	:=	joinIPv4Group(c.fd,	ifi,	ip)

			332	 	 if	err	!=	nil	{

			333	 	 	 return	&OpError{"joinipv4group",	c.fd.net,	&IPAddr{ip},	err}

			334	 	 }

			335	 	 return	nil

			336	 }

			337	

			338	 func	leaveIPv4GroupUDP(c	*UDPConn,	ifi	*Interface,	ip	IP)	error	{

			339	 	 err	:=	leaveIPv4Group(c.fd,	ifi,	ip)

			340	 	 if	err	!=	nil	{

			341	 	 	 return	&OpError{"leaveipv4group",	c.fd.net,	&IPAddr{ip},	err}

			342	 	 }

			343	 	 return	nil

			344	 }

			345	

			346	 func	joinIPv6GroupUDP(c	*UDPConn,	ifi	*Interface,	ip	IP)	error	{

			347	 	 err	:=	joinIPv6Group(c.fd,	ifi,	ip)

			348	 	 if	err	!=	nil	{

			349	 	 	 return	&OpError{"joinipv6group",	c.fd.net,	&IPAddr{ip},	err}

			350	 	 }

			351	 	 return	nil

			352	 }

			353	

			354	 func	leaveIPv6GroupUDP(c	*UDPConn,	ifi	*Interface,	ip	IP)	error	{

			355	 	 err	:=	leaveIPv6Group(c.fd,	ifi,	ip)

			356	 	 if	err	!=	nil	{

			357	 	 	 return	&OpError{"leaveipv6group",	c.fd.net,	&IPAddr{ip},	err}

			358	 	 }

			359	 	 return	nil

			360	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/unixsock.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Unix	domain	sockets

					6	

					7	 package	net

					8	

					9	 //	UnixAddr	represents	the	address	of	a	Unix	domain	socket	end	point.

				10	 type	UnixAddr	struct	{

				11	 	 Name	string

				12	 	 Net		string

				13	 }

				14	

				15	 //	Network	returns	the	address's	network	name,	"unix"	or	"unixgram".

				16	 func	(a	*UnixAddr)	Network()	string	{

				17	 	 return	a.Net

				18	 }

				19	

				20	 func	(a	*UnixAddr)	String()	string	{

				21	 	 if	a	==	nil	{

				22	 	 	 return	"<nil>"

				23	 	 }

				24	 	 return	a.Name

				25	 }

				26	

				27	 func	(a	*UnixAddr)	toAddr()	Addr	{

				28	 	 if	a	==	nil	{	//	nil	*UnixAddr

				29	 	 	 return	nil	//	nil	interface

				30	 	 }

				31	 	 return	a

				32	 }

				33	

				34	 //	ResolveUnixAddr	parses	addr	as	a	Unix	domain	socket	address.

				35	 //	The	string	net	gives	the	network	name,	"unix",	"unixgram"	or

				36	 //	"unixpacket".

				37	 func	ResolveUnixAddr(net,	addr	string)	(*UnixAddr,	error)	{

				38	 	 switch	net	{

				39	 	 case	"unix":

				40	 	 case	"unixpacket":

				41	 	 case	"unixgram":

				42	 	 default:

				43	 	 	 return	nil,	UnknownNetworkError(net)

				44	 	 }

				45	 	 return	&UnixAddr{addr,	net},	nil

				46	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/unixsock_posix.go
					1	 //	Copyright	2009	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd	windows

					6	

					7	 //	Unix	domain	sockets

					8	

					9	 package	net

				10	

				11	 import	(

				12	 	 "os"

				13	 	 "syscall"

				14	 	 "time"

				15)

				16	

				17	 func	unixSocket(net	string,	laddr,	raddr	*UnixAddr,	mode	string)	(fd	*netFD,	err	error)	{

				18	 	 var	sotype	int

				19	 	 switch	net	{

				20	 	 default:

				21	 	 	 return	nil,	UnknownNetworkError(net)

				22	 	 case	"unix":

				23	 	 	 sotype	=	syscall.SOCK_STREAM

				24	 	 case	"unixgram":

				25	 	 	 sotype	=	syscall.SOCK_DGRAM

				26	 	 case	"unixpacket":

				27	 	 	 sotype	=	syscall.SOCK_SEQPACKET

				28	 	 }

				29	

				30	 	 var	la,	ra	syscall.Sockaddr

				31	 	 switch	mode	{

				32	 	 default:

				33	 	 	 panic("unixSocket	mode	"	+	mode)

				34	

				35	 	 case	"dial":

				36	 	 	 if	laddr	!=	nil	{

				37	 	 	 	 la	=	&syscall.SockaddrUnix{Name:	laddr.Name}

				38	 	 	 }

				39	 	 	 if	raddr	!=	nil	{

				40	 	 	 	 ra	=	&syscall.SockaddrUnix{Name:	raddr.Name}

				41	 	 	 }	else	if	sotype	!=	syscall.SOCK_DGRAM	||	laddr	==	nil	{

				42	 	 	 	 return	nil,	&OpError{Op:	mode,	Net:	net,	Err:	errMissingAddress}

				43	 	 	 }

				44	

				45	 	 case	"listen":

				46	 	 	 if	laddr	==	nil	{

				47	 	 	 	 return	nil,	&OpError{mode,	net,	nil,	errMissingAddress}

				48	 	 	 }

				49	 	 	 la	=	&syscall.SockaddrUnix{Name:	laddr.Name}

				50	 	 	 if	raddr	!=	nil	{

				51	 	 	 	 return	nil,	&OpError{Op:	mode,	Net:	net,	Addr:	raddr,	Err:	&AddrError{Err:	"unexpected	remote	address",	Addr:	raddr.String()}}

				52	 	 	 }

				53	 	 }

				54	

				55	 	 f	:=	sockaddrToUnix

				56	 	 if	sotype	==	syscall.SOCK_DGRAM	{

				57	 	 	 f	=	sockaddrToUnixgram

				58	 	 }	else	if	sotype	==	syscall.SOCK_SEQPACKET	{

				59	 	 	 f	=	sockaddrToUnixpacket

				60	 	 }

				61	

				62	 	 fd,	err	=	socket(net,	syscall.AF_UNIX,	sotype,	0,	false,	la,	ra,	f)

				63	 	 if	err	!=	nil	{

				64	 	 	 goto	Error

				65	 	 }

				66	 	 return	fd,	nil

				67	

				68	 Error:

				69	 	 addr	:=	raddr

				70	 	 if	mode	==	"listen"	{

				71	 	 	 addr	=	laddr

				72	 	 }

				73	 	 return	nil,	&OpError{Op:	mode,	Net:	net,	Addr:	addr,	Err:	err}

				74	 }

				75	

				76	 func	sockaddrToUnix(sa	syscall.Sockaddr)	Addr	{

				77	 	 if	s,	ok	:=	sa.(*syscall.SockaddrUnix);	ok	{

				78	 	 	 return	&UnixAddr{s.Name,	"unix"}

				79	 	 }

				80	 	 return	nil

				81	 }

				82	

				83	 func	sockaddrToUnixgram(sa	syscall.Sockaddr)	Addr	{

				84	 	 if	s,	ok	:=	sa.(*syscall.SockaddrUnix);	ok	{

				85	 	 	 return	&UnixAddr{s.Name,	"unixgram"}

				86	 	 }

				87	 	 return	nil

				88	 }

				89	

				90	 func	sockaddrToUnixpacket(sa	syscall.Sockaddr)	Addr	{

				91	 	 if	s,	ok	:=	sa.(*syscall.SockaddrUnix);	ok	{

				92	 	 	 return	&UnixAddr{s.Name,	"unixpacket"}

				93	 	 }

				94	 	 return	nil

				95	 }

				96	

				97	 func	sotypeToNet(sotype	int)	string	{

				98	 	 switch	sotype	{

				99	 	 case	syscall.SOCK_STREAM:

			100	 	 	 return	"unix"

			101	 	 case	syscall.SOCK_SEQPACKET:

			102	 	 	 return	"unixpacket"

			103	 	 case	syscall.SOCK_DGRAM:

			104	 	 	 return	"unixgram"

			105	 	 default:

			106	 	 	 panic("sotypeToNet	unknown	socket	type")

			107	 	 }

			108	 	 return	""

			109	 }

			110	

			111	 //	UnixConn	is	an	implementation	of	the	Conn	interface

			112	 //	for	connections	to	Unix	domain	sockets.

			113	 type	UnixConn	struct	{

			114	 	 fd	*netFD

			115	 }

			116	

			117	 func	newUnixConn(fd	*netFD)	*UnixConn	{	return	&UnixConn{fd}	}

			118	

			119	 func	(c	*UnixConn)	ok()	bool	{	return	c	!=	nil	&&	c.fd	!=	nil	}

			120	

			121	 //	Implementation	of	the	Conn	interface	-	see	Conn	for	documentation.

			122	

			123	 //	Read	implements	the	Conn	Read	method.

			124	 func	(c	*UnixConn)	Read(b	[]byte)	(n	int,	err	error)	{

			125	 	 if	!c.ok()	{

			126	 	 	 return	0,	syscall.EINVAL

			127	 	 }

			128	 	 return	c.fd.Read(b)

			129	 }

			130	

			131	 //	Write	implements	the	Conn	Write	method.

			132	 func	(c	*UnixConn)	Write(b	[]byte)	(n	int,	err	error)	{

			133	 	 if	!c.ok()	{

			134	 	 	 return	0,	syscall.EINVAL

			135	 	 }

			136	 	 return	c.fd.Write(b)

			137	 }

			138	

			139	 //	Close	closes	the	Unix	domain	connection.

			140	 func	(c	*UnixConn)	Close()	error	{

			141	 	 if	!c.ok()	{

			142	 	 	 return	syscall.EINVAL

			143	 	 }

			144	 	 return	c.fd.Close()

			145	 }

			146	

			147	 //	LocalAddr	returns	the	local	network	address,	a	*UnixAddr.

			148	 //	Unlike	in	other	protocols,	LocalAddr	is	usually	nil	for	dialed	connections.

			149	 func	(c	*UnixConn)	LocalAddr()	Addr	{

			150	 	 if	!c.ok()	{

			151	 	 	 return	nil

			152	 	 }

			153	 	 return	c.fd.laddr

			154	 }

			155	

			156	 //	RemoteAddr	returns	the	remote	network	address,	a	*UnixAddr.

			157	 //	Unlike	in	other	protocols,	RemoteAddr	is	usually	nil	for	connections

			158	 //	accepted	by	a	listener.

			159	 func	(c	*UnixConn)	RemoteAddr()	Addr	{

			160	 	 if	!c.ok()	{

			161	 	 	 return	nil

			162	 	 }

			163	 	 return	c.fd.raddr

			164	 }

			165	

			166	 //	SetDeadline	implements	the	Conn	SetDeadline	method.

			167	 func	(c	*UnixConn)	SetDeadline(t	time.Time)	error	{

			168	 	 if	!c.ok()	{

			169	 	 	 return	syscall.EINVAL

			170	 	 }

			171	 	 return	setDeadline(c.fd,	t)

			172	 }

			173	

			174	 //	SetReadDeadline	implements	the	Conn	SetReadDeadline	method.

			175	 func	(c	*UnixConn)	SetReadDeadline(t	time.Time)	error	{

			176	 	 if	!c.ok()	{

			177	 	 	 return	syscall.EINVAL

			178	 	 }

			179	 	 return	setReadDeadline(c.fd,	t)

			180	 }

			181	

			182	 //	SetWriteDeadline	implements	the	Conn	SetWriteDeadline	method.

			183	 func	(c	*UnixConn)	SetWriteDeadline(t	time.Time)	error	{

			184	 	 if	!c.ok()	{

			185	 	 	 return	syscall.EINVAL

			186	 	 }

			187	 	 return	setWriteDeadline(c.fd,	t)

			188	 }

			189	

			190	 //	SetReadBuffer	sets	the	size	of	the	operating	system's

			191	 //	receive	buffer	associated	with	the	connection.

			192	 func	(c	*UnixConn)	SetReadBuffer(bytes	int)	error	{

			193	 	 if	!c.ok()	{

			194	 	 	 return	syscall.EINVAL

			195	 	 }

			196	 	 return	setReadBuffer(c.fd,	bytes)

			197	 }

			198	

			199	 //	SetWriteBuffer	sets	the	size	of	the	operating	system's

			200	 //	transmit	buffer	associated	with	the	connection.

			201	 func	(c	*UnixConn)	SetWriteBuffer(bytes	int)	error	{

			202	 	 if	!c.ok()	{

			203	 	 	 return	syscall.EINVAL

			204	 	 }

			205	 	 return	setWriteBuffer(c.fd,	bytes)

			206	 }

			207	

			208	 //	ReadFromUnix	reads	a	packet	from	c,	copying	the	payload	into	b.

			209	 //	It	returns	the	number	of	bytes	copied	into	b	and	the	source	address

			210	 //	of	the	packet.

			211	 //

			212	 //	ReadFromUnix	can	be	made	to	time	out	and	return

			213	 //	an	error	with	Timeout()	==	true	after	a	fixed	time	limit;

			214	 //	see	SetDeadline	and	SetReadDeadline.

			215	 func	(c	*UnixConn)	ReadFromUnix(b	[]byte)	(n	int,	addr	*UnixAddr,	err	error)	{

			216	 	 if	!c.ok()	{

			217	 	 	 return	0,	nil,	syscall.EINVAL

			218	 	 }

			219	 	 n,	sa,	err	:=	c.fd.ReadFrom(b)

			220	 	 switch	sa	:=	sa.(type)	{

			221	 	 case	*syscall.SockaddrUnix:

			222	 	 	 addr	=	&UnixAddr{sa.Name,	sotypeToNet(c.fd.sotype)}

			223	 	 }

			224	 	 return

			225	 }

			226	

			227	 //	ReadFrom	implements	the	PacketConn	ReadFrom	method.

			228	 func	(c	*UnixConn)	ReadFrom(b	[]byte)	(n	int,	addr	Addr,	err	error)	{

			229	 	 if	!c.ok()	{

			230	 	 	 return	0,	nil,	syscall.EINVAL

			231	 	 }

			232	 	 n,	uaddr,	err	:=	c.ReadFromUnix(b)

			233	 	 return	n,	uaddr.toAddr(),	err

			234	 }

			235	

			236	 //	WriteToUnix	writes	a	packet	to	addr	via	c,	copying	the	payload	from	b.

			237	 //

			238	 //	WriteToUnix	can	be	made	to	time	out	and	return

			239	 //	an	error	with	Timeout()	==	true	after	a	fixed	time	limit;

			240	 //	see	SetDeadline	and	SetWriteDeadline.

			241	 //	On	packet-oriented	connections,	write	timeouts	are	rare.

			242	 func	(c	*UnixConn)	WriteToUnix(b	[]byte,	addr	*UnixAddr)	(n	int,	err	error)	{

			243	 	 if	!c.ok()	{

			244	 	 	 return	0,	syscall.EINVAL

			245	 	 }

			246	 	 if	addr.Net	!=	sotypeToNet(c.fd.sotype)	{

			247	 	 	 return	0,	syscall.EAFNOSUPPORT

			248	 	 }

			249	 	 sa	:=	&syscall.SockaddrUnix{Name:	addr.Name}

			250	 	 return	c.fd.WriteTo(b,	sa)

			251	 }

			252	

			253	 //	WriteTo	implements	the	PacketConn	WriteTo	method.

			254	 func	(c	*UnixConn)	WriteTo(b	[]byte,	addr	Addr)	(n	int,	err	error)	{

			255	 	 if	!c.ok()	{

			256	 	 	 return	0,	syscall.EINVAL

			257	 	 }

			258	 	 a,	ok	:=	addr.(*UnixAddr)

			259	 	 if	!ok	{

			260	 	 	 return	0,	&OpError{"write",	c.fd.net,	addr,	syscall.EINVAL}

			261	 	 }

			262	 	 return	c.WriteToUnix(b,	a)

			263	 }

			264	

			265	 //	ReadMsgUnix	reads	a	packet	from	c,	copying	the	payload	into	b

			266	 //	and	the	associated	out-of-band	data	into	oob.

			267	 //	It	returns	the	number	of	bytes	copied	into	b,	the	number	of

			268	 //	bytes	copied	into	oob,	the	flags	that	were	set	on	the	packet,

			269	 //	and	the	source	address	of	the	packet.

			270	 func	(c	*UnixConn)	ReadMsgUnix(b,	oob	[]byte)	(n,	oobn,	flags	int,	addr	*UnixAddr,	err	error)	{

			271	 	 if	!c.ok()	{

			272	 	 	 return	0,	0,	0,	nil,	syscall.EINVAL

			273	 	 }

			274	 	 n,	oobn,	flags,	sa,	err	:=	c.fd.ReadMsg(b,	oob)

			275	 	 switch	sa	:=	sa.(type)	{

			276	 	 case	*syscall.SockaddrUnix:

			277	 	 	 addr	=	&UnixAddr{sa.Name,	sotypeToNet(c.fd.sotype)}

			278	 	 }

			279	 	 return

			280	 }

			281	

			282	 //	WriteMsgUnix	writes	a	packet	to	addr	via	c,	copying	the	payload	from	b

			283	 //	and	the	associated	out-of-band	data	from	oob.		It	returns	the	number

			284	 //	of	payload	and	out-of-band	bytes	written.

			285	 func	(c	*UnixConn)	WriteMsgUnix(b,	oob	[]byte,	addr	*UnixAddr)	(n,	oobn	int,	err	error)	{

			286	 	 if	!c.ok()	{

			287	 	 	 return	0,	0,	syscall.EINVAL

			288	 	 }

			289	 	 if	addr	!=	nil	{

			290	 	 	 if	addr.Net	!=	sotypeToNet(c.fd.sotype)	{

			291	 	 	 	 return	0,	0,	syscall.EAFNOSUPPORT

			292	 	 	 }

			293	 	 	 sa	:=	&syscall.SockaddrUnix{Name:	addr.Name}

			294	 	 	 return	c.fd.WriteMsg(b,	oob,	sa)

			295	 	 }

			296	 	 return	c.fd.WriteMsg(b,	oob,	nil)

			297	 }

			298	

			299	 //	File	returns	a	copy	of	the	underlying	os.File,	set	to	blocking	mode.

			300	 //	It	is	the	caller's	responsibility	to	close	f	when	finished.

			301	 //	Closing	c	does	not	affect	f,	and	closing	f	does	not	affect	c.

			302	 func	(c	*UnixConn)	File()	(f	*os.File,	err	error)	{	return	c.fd.dup()	}

			303	

			304	 //	DialUnix	connects	to	the	remote	address	raddr	on	the	network	net,

			305	 //	which	must	be	"unix"	or	"unixgram".		If	laddr	is	not	nil,	it	is	used

			306	 //	as	the	local	address	for	the	connection.

			307	 func	DialUnix(net	string,	laddr,	raddr	*UnixAddr)	(*UnixConn,	error)	{

			308	 	 fd,	err	:=	unixSocket(net,	laddr,	raddr,	"dial")

			309	 	 if	err	!=	nil	{

			310	 	 	 return	nil,	err

			311	 	 }

			312	 	 return	newUnixConn(fd),	nil

			313	 }

			314	

			315	 //	UnixListener	is	a	Unix	domain	socket	listener.

			316	 //	Clients	should	typically	use	variables	of	type	Listener

			317	 //	instead	of	assuming	Unix	domain	sockets.

			318	 type	UnixListener	struct	{

			319	 	 fd			*netFD

			320	 	 path	string

			321	 }

			322	

			323	 //	ListenUnix	announces	on	the	Unix	domain	socket	laddr	and	returns	a	Unix	listener.

			324	 //	Net	must	be	"unix"	(stream	sockets).

			325	 func	ListenUnix(net	string,	laddr	*UnixAddr)	(*UnixListener,	error)	{

			326	 	 if	net	!=	"unix"	&&	net	!=	"unixgram"	&&	net	!=	"unixpacket"	{

			327	 	 	 return	nil,	UnknownNetworkError(net)

			328	 	 }

			329	 	 if	laddr	!=	nil	{

			330	 	 	 laddr	=	&UnixAddr{laddr.Name,	net}	//	make	our	own	copy

			331	 	 }

			332	 	 fd,	err	:=	unixSocket(net,	laddr,	nil,	"listen")

			333	 	 if	err	!=	nil	{

			334	 	 	 return	nil,	err

			335	 	 }

			336	 	 err	=	syscall.Listen(fd.sysfd,	listenerBacklog)

			337	 	 if	err	!=	nil	{

			338	 	 	 closesocket(fd.sysfd)

			339	 	 	 return	nil,	&OpError{Op:	"listen",	Net:	net,	Addr:	laddr,	Err:	err}

			340	 	 }

			341	 	 return	&UnixListener{fd,	laddr.Name},	nil

			342	 }

			343	

			344	 //	AcceptUnix	accepts	the	next	incoming	call	and	returns	the	new	connection

			345	 //	and	the	remote	address.

			346	 func	(l	*UnixListener)	AcceptUnix()	(*UnixConn,	error)	{

			347	 	 if	l	==	nil	||	l.fd	==	nil	{

			348	 	 	 return	nil,	syscall.EINVAL

			349	 	 }

			350	 	 fd,	err	:=	l.fd.accept(sockaddrToUnix)

			351	 	 if	err	!=	nil	{

			352	 	 	 return	nil,	err

			353	 	 }

			354	 	 c	:=	newUnixConn(fd)

			355	 	 return	c,	nil

			356	 }

			357	

			358	 //	Accept	implements	the	Accept	method	in	the	Listener	interface;

			359	 //	it	waits	for	the	next	call	and	returns	a	generic	Conn.

			360	 func	(l	*UnixListener)	Accept()	(c	Conn,	err	error)	{

			361	 	 c1,	err	:=	l.AcceptUnix()

			362	 	 if	err	!=	nil	{

			363	 	 	 return	nil,	err

			364	 	 }

			365	 	 return	c1,	nil

			366	 }

			367	

			368	 //	Close	stops	listening	on	the	Unix	address.

			369	 //	Already	accepted	connections	are	not	closed.

			370	 func	(l	*UnixListener)	Close()	error	{

			371	 	 if	l	==	nil	||	l.fd	==	nil	{

			372	 	 	 return	syscall.EINVAL

			373	 	 }

			374	

			375	 	 //	The	operating	system	doesn't	clean	up

			376	 	 //	the	file	that	announcing	created,	so

			377	 	 //	we	have	to	clean	it	up	ourselves.

			378	 	 //	There's	a	race	here--we	can't	know	for

			379	 	 //	sure	whether	someone	else	has	come	along

			380	 	 //	and	replaced	our	socket	name	already--

			381	 	 //	but	this	sequence	(remove	then	close)

			382	 	 //	is	at	least	compatible	with	the	auto-remove

			383	 	 //	sequence	in	ListenUnix.		It's	only	non-Go

			384	 	 //	programs	that	can	mess	us	up.

			385	 	 if	l.path[0]	!=	'@'	{

			386	 	 	 syscall.Unlink(l.path)

			387	 	 }

			388	 	 err	:=	l.fd.Close()

			389	 	 l.fd	=	nil

			390	 	 return	err

			391	 }

			392	

			393	 //	Addr	returns	the	listener's	network	address.

			394	 func	(l	*UnixListener)	Addr()	Addr	{	return	l.fd.laddr	}

			395	

			396	 //	SetDeadline	sets	the	deadline	associated	with	the	listener.

			397	 //	A	zero	time	value	disables	the	deadline.

			398	 func	(l	*UnixListener)	SetDeadline(t	time.Time)	(err	error)	{

			399	 	 if	l	==	nil	||	l.fd	==	nil	{

			400	 	 	 return	syscall.EINVAL

			401	 	 }

			402	 	 return	setDeadline(l.fd,	t)

			403	 }

			404	

			405	 //	File	returns	a	copy	of	the	underlying	os.File,	set	to	blocking	mode.

			406	 //	It	is	the	caller's	responsibility	to	close	f	when	finished.

			407	 //	Closing	l	does	not	affect	f,	and	closing	f	does	not	affect	l.

			408	 func	(l	*UnixListener)	File()	(f	*os.File,	err	error)	{	return	l.fd.dup()	}

			409	

			410	 //	ListenUnixgram	listens	for	incoming	Unix	datagram	packets	addressed	to	the

			411	 //	local	address	laddr.		The	returned	connection	c's	ReadFrom

			412	 //	and	WriteTo	methods	can	be	used	to	receive	and	send	UDP

			413	 //	packets	with	per-packet	addressing.		The	network	net	must	be	"unixgram".

			414	 func	ListenUnixgram(net	string,	laddr	*UnixAddr)	(*UDPConn,	error)	{

			415	 	 switch	net	{

			416	 	 case	"unixgram":

			417	 	 default:

			418	 	 	 return	nil,	UnknownNetworkError(net)

			419	 	 }

			420	 	 if	laddr	==	nil	{

			421	 	 	 return	nil,	&OpError{"listen",	net,	nil,	errMissingAddress}

			422	 	 }

			423	 	 fd,	err	:=	unixSocket(net,	laddr,	nil,	"listen")

			424	 	 if	err	!=	nil	{

			425	 	 	 return	nil,	err

			426	 	 }

			427	 	 return	newUDPConn(fd),	nil

			428	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/chunked.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	The	wire	protocol	for	HTTP's	"chunked"	Transfer-Encoding.

					6	

					7	 //	This	code	is	duplicated	in	httputil/chunked.go.

					8	 //	Please	make	any	changes	in	both	files.

					9	

				10	 package	http

				11	

				12	 import	(

				13	 	 "bufio"

				14	 	 "bytes"

				15	 	 "errors"

				16	 	 "io"

				17	 	 "strconv"

				18)

				19	

				20	 const	maxLineLength	=	4096	//	assumed	<=	bufio.defaultBufSize

				21	

				22	 var	ErrLineTooLong	=	errors.New("header	line	too	long")

				23	

				24	 //	newChunkedReader	returns	a	new	chunkedReader	that	translates	the	data	read	from	r

				25	 //	out	of	HTTP	"chunked"	format	before	returning	it.	

				26	 //	The	chunkedReader	returns	io.EOF	when	the	final	0-length	chunk	is	read.

				27	 //

				28	 //	newChunkedReader	is	not	needed	by	normal	applications.	The	http	package

				29	 //	automatically	decodes	chunking	when	reading	response	bodies.

				30	 func	newChunkedReader(r	io.Reader)	io.Reader	{

				31	 	 br,	ok	:=	r.(*bufio.Reader)

				32	 	 if	!ok	{

				33	 	 	 br	=	bufio.NewReader(r)

				34	 	 }

				35	 	 return	&chunkedReader{r:	br}

				36	 }

				37	

				38	 type	chunkedReader	struct	{

				39	 	 r			*bufio.Reader

				40	 	 n			uint64	//	unread	bytes	in	chunk

				41	 	 err	error

				42	 }

				43	

				44	 func	(cr	*chunkedReader)	beginChunk()	{

				45	 	 //	chunk-size	CRLF

				46	 	 var	line	string

				47	 	 line,	cr.err	=	readLine(cr.r)

				48	 	 if	cr.err	!=	nil	{

				49	 	 	 return

				50	 	 }

				51	 	 cr.n,	cr.err	=	strconv.ParseUint(line,	16,	64)

				52	 	 if	cr.err	!=	nil	{

				53	 	 	 return

				54	 	 }

				55	 	 if	cr.n	==	0	{

				56	 	 	 cr.err	=	io.EOF

				57	 	 }

				58	 }

				59	

				60	 func	(cr	*chunkedReader)	Read(b	[]uint8)	(n	int,	err	error)	{

				61	 	 if	cr.err	!=	nil	{

				62	 	 	 return	0,	cr.err

				63	 	 }

				64	 	 if	cr.n	==	0	{

				65	 	 	 cr.beginChunk()

				66	 	 	 if	cr.err	!=	nil	{

				67	 	 	 	 return	0,	cr.err

				68	 	 	 }

				69	 	 }

				70	 	 if	uint64(len(b))	>	cr.n	{

				71	 	 	 b	=	b[0:cr.n]

				72	 	 }

				73	 	 n,	cr.err	=	cr.r.Read(b)

				74	 	 cr.n	-=	uint64(n)

				75	 	 if	cr.n	==	0	&&	cr.err	==	nil	{

				76	 	 	 //	end	of	chunk	(CRLF)

				77	 	 	 b	:=	make([]byte,	2)

				78	 	 	 if	_,	cr.err	=	io.ReadFull(cr.r,	b);	cr.err	==	nil	{

				79	 	 	 	 if	b[0]	!=	'\r'	||	b[1]	!=	'\n'	{

				80	 	 	 	 	 cr.err	=	errors.New("malformed	chunked	encoding")

				81	 	 	 	 }

				82	 	 	 }

				83	 	 }

				84	 	 return	n,	cr.err

				85	 }

				86	

				87	 //	Read	a	line	of	bytes	(up	to	\n)	from	b.

				88	 //	Give	up	if	the	line	exceeds	maxLineLength.

				89	 //	The	returned	bytes	are	a	pointer	into	storage	in

				90	 //	the	bufio,	so	they	are	only	valid	until	the	next	bufio	read.

				91	 func	readLineBytes(b	*bufio.Reader)	(p	[]byte,	err	error)	{

				92	 	 if	p,	err	=	b.ReadSlice('\n');	err	!=	nil	{

				93	 	 	 //	We	always	know	when	EOF	is	coming.

				94	 	 	 //	If	the	caller	asked	for	a	line,	there	should	be	a	line.

				95	 	 	 if	err	==	io.EOF	{

				96	 	 	 	 err	=	io.ErrUnexpectedEOF

				97	 	 	 }	else	if	err	==	bufio.ErrBufferFull	{

				98	 	 	 	 err	=	ErrLineTooLong

				99	 	 	 }

			100	 	 	 return	nil,	err

			101	 	 }

			102	 	 if	len(p)	>=	maxLineLength	{

			103	 	 	 return	nil,	ErrLineTooLong

			104	 	 }

			105	

			106	 	 //	Chop	off	trailing	white	space.

			107	 	 p	=	bytes.TrimRight(p,	"	\r\t\n")

			108	

			109	 	 return	p,	nil

			110	 }

			111	

			112	 //	readLineBytes,	but	convert	the	bytes	into	a	string.

			113	 func	readLine(b	*bufio.Reader)	(s	string,	err	error)	{

			114	 	 p,	e	:=	readLineBytes(b)

			115	 	 if	e	!=	nil	{

			116	 	 	 return	"",	e

			117	 	 }

			118	 	 return	string(p),	nil

			119	 }

			120	

			121	 //	newChunkedWriter	returns	a	new	chunkedWriter	that	translates	writes	into	HTTP

			122	 //	"chunked"	format	before	writing	them	to	w.	Closing	the	returned	chunkedWriter

			123	 //	sends	the	final	0-length	chunk	that	marks	the	end	of	the	stream.

			124	 //

			125	 //	newChunkedWriter	is	not	needed	by	normal	applications.	The	http

			126	 //	package	adds	chunking	automatically	if	handlers	don't	set	a

			127	 //	Content-Length	header.	Using	newChunkedWriter	inside	a	handler

			128	 //	would	result	in	double	chunking	or	chunking	with	a	Content-Length

			129	 //	length,	both	of	which	are	wrong.

			130	 func	newChunkedWriter(w	io.Writer)	io.WriteCloser	{

			131	 	 return	&chunkedWriter{w}

			132	 }

			133	

			134	 //	Writing	to	chunkedWriter	translates	to	writing	in	HTTP	chunked	Transfer

			135	 //	Encoding	wire	format	to	the	underlying	Wire	chunkedWriter.

			136	 type	chunkedWriter	struct	{

			137	 	 Wire	io.Writer

			138	 }

			139	

			140	 //	Write	the	contents	of	data	as	one	chunk	to	Wire.

			141	 //	NOTE:	Note	that	the	corresponding	chunk-writing	procedure	in	Conn.Write	has

			142	 //	a	bug	since	it	does	not	check	for	success	of	io.WriteString

			143	 func	(cw	*chunkedWriter)	Write(data	[]byte)	(n	int,	err	error)	{

			144	

			145	 	 //	Don't	send	0-length	data.	It	looks	like	EOF	for	chunked	encoding.

			146	 	 if	len(data)	==	0	{

			147	 	 	 return	0,	nil

			148	 	 }

			149	

			150	 	 head	:=	strconv.FormatInt(int64(len(data)),	16)	+	"\r\n"

			151	

			152	 	 if	_,	err	=	io.WriteString(cw.Wire,	head);	err	!=	nil	{

			153	 	 	 return	0,	err

			154	 	 }

			155	 	 if	n,	err	=	cw.Wire.Write(data);	err	!=	nil	{

			156	 	 	 return

			157	 	 }

			158	 	 if	n	!=	len(data)	{

			159	 	 	 err	=	io.ErrShortWrite

			160	 	 	 return

			161	 	 }

			162	 	 _,	err	=	io.WriteString(cw.Wire,	"\r\n")

			163	

			164	 	 return

			165	 }

			166	

			167	 func	(cw	*chunkedWriter)	Close()	error	{

			168	 	 _,	err	:=	io.WriteString(cw.Wire,	"0\r\n")

			169	 	 return	err

			170	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/http/client.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	HTTP	client.	See	RFC	2616.

					6	 //	

					7	 //	This	is	the	high-level	Client	interface.

					8	 //	The	low-level	implementation	is	in	transport.go.

					9	

				10	 package	http

				11	

				12	 import	(

				13	 	 "encoding/base64"

				14	 	 "errors"

				15	 	 "fmt"

				16	 	 "io"

				17	 	 "net/url"

				18	 	 "strings"

				19)

				20	

				21	 //	A	Client	is	an	HTTP	client.	Its	zero	value	(DefaultClient)	is	a	usable	client

				22	 //	that	uses	DefaultTransport.

				23	 //

				24	 //	The	Client's	Transport	typically	has	internal	state	(cached

				25	 //	TCP	connections),	so	Clients	should	be	reused	instead	of	created	as

				26	 //	needed.	Clients	are	safe	for	concurrent	use	by	multiple	goroutines.

				27	 type	Client	struct	{

				28	 	 //	Transport	specifies	the	mechanism	by	which	individual

				29	 	 //	HTTP	requests	are	made.

				30	 	 //	If	nil,	DefaultTransport	is	used.

				31	 	 Transport	RoundTripper

				32	

				33	 	 //	CheckRedirect	specifies	the	policy	for	handling	redirects.

				34	 	 //	If	CheckRedirect	is	not	nil,	the	client	calls	it	before

				35	 	 //	following	an	HTTP	redirect.	The	arguments	req	and	via

				36	 	 //	are	the	upcoming	request	and	the	requests	made	already,

				37	 	 //	oldest	first.	If	CheckRedirect	returns	an	error,	the	client

				38	 	 //	returns	that	error	instead	of	issue	the	Request	req.

				39	 	 //

				40	 	 //	If	CheckRedirect	is	nil,	the	Client	uses	its	default	policy,

				41	 	 //	which	is	to	stop	after	10	consecutive	requests.

				42	 	 CheckRedirect	func(req	*Request,	via	[]*Request)	error

				43	

				44	 	 //	Jar	specifies	the	cookie	jar.	

				45	 	 //	If	Jar	is	nil,	cookies	are	not	sent	in	requests	and	ignored	

				46	 	 //	in	responses.

				47	 	 Jar	CookieJar

				48	 }

				49	

				50	 //	DefaultClient	is	the	default	Client	and	is	used	by	Get,	Head,	and	Post.

				51	 var	DefaultClient	=	&Client{}

				52	

				53	 //	RoundTripper	is	an	interface	representing	the	ability	to	execute	a

				54	 //	single	HTTP	transaction,	obtaining	the	Response	for	a	given	Request.

				55	 //

				56	 //	A	RoundTripper	must	be	safe	for	concurrent	use	by	multiple

				57	 //	goroutines.

				58	 type	RoundTripper	interface	{

				59	 	 //	RoundTrip	executes	a	single	HTTP	transaction,	returning

				60	 	 //	the	Response	for	the	request	req.		RoundTrip	should	not

				61	 	 //	attempt	to	interpret	the	response.		In	particular,

				62	 	 //	RoundTrip	must	return	err	==	nil	if	it	obtained	a	response,

				63	 	 //	regardless	of	the	response's	HTTP	status	code.		A	non-nil

				64	 	 //	err	should	be	reserved	for	failure	to	obtain	a	response.

				65	 	 //	Similarly,	RoundTrip	should	not	attempt	to	handle

				66	 	 //	higher-level	protocol	details	such	as	redirects,

				67	 	 //	authentication,	or	cookies.

				68	 	 //

				69	 	 //	RoundTrip	should	not	modify	the	request,	except	for

				70	 	 //	consuming	the	Body.		The	request's	URL	and	Header	fields

				71	 	 //	are	guaranteed	to	be	initialized.

				72	 	 RoundTrip(*Request)	(*Response,	error)

				73	 }

				74	

				75	 //	Given	a	string	of	the	form	"host",	"host:port",	or	"[ipv6::address]:port",

				76	 //	return	true	if	the	string	includes	a	port.

				77	 func	hasPort(s	string)	bool	{	return	strings.LastIndex(s,	":")	>	strings.LastIndex(s,	"]")	}

				78	

				79	 //	Used	in	Send	to	implement	io.ReadCloser	by	bundling	together	the

				80	 //	bufio.Reader	through	which	we	read	the	response,	and	the	underlying

				81	 //	network	connection.

				82	 type	readClose	struct	{

				83	 	 io.Reader

				84	 	 io.Closer

				85	 }

				86	

				87	 //	Do	sends	an	HTTP	request	and	returns	an	HTTP	response,	following

				88	 //	policy	(e.g.	redirects,	cookies,	auth)	as	configured	on	the	client.

				89	 //

				90	 //	A	non-nil	response	always	contains	a	non-nil	resp.Body.

				91	 //

				92	 //	Callers	should	close	resp.Body	when	done	reading	from	it.	If

				93	 //	resp.Body	is	not	closed,	the	Client's	underlying	RoundTripper

				94	 //	(typically	Transport)	may	not	be	able	to	re-use	a	persistent	TCP

				95	 //	connection	to	the	server	for	a	subsequent	"keep-alive"	request.

				96	 //

				97	 //	Generally	Get,	Post,	or	PostForm	will	be	used	instead	of	Do.

				98	 func	(c	*Client)	Do(req	*Request)	(resp	*Response,	err	error)	{

				99	 	 if	req.Method	==	"GET"	||	req.Method	==	"HEAD"	{

			100	 	 	 return	c.doFollowingRedirects(req)

			101	 	 }

			102	 	 return	send(req,	c.Transport)

			103	 }

			104	

			105	 //	send	issues	an	HTTP	request.		Caller	should	close	resp.Body	when	done	reading	from	it.

			106	 func	send(req	*Request,	t	RoundTripper)	(resp	*Response,	err	error)	{

			107	 	 if	t	==	nil	{

			108	 	 	 t	=	DefaultTransport

			109	 	 	 if	t	==	nil	{

			110	 	 	 	 err	=	errors.New("http:	no	Client.Transport	or	DefaultTransport")

			111	 	 	 	 return

			112	 	 	 }

			113	 	 }

			114	

			115	 	 if	req.URL	==	nil	{

			116	 	 	 return	nil,	errors.New("http:	nil	Request.URL")

			117	 	 }

			118	

			119	 	 if	req.RequestURI	!=	""	{

			120	 	 	 return	nil,	errors.New("http:	Request.RequestURI	can't	be	set	in	client	requests.")

			121	 	 }

			122	

			123	 	 //	Most	the	callers	of	send	(Get,	Post,	et	al)	don't	need

			124	 	 //	Headers,	leaving	it	uninitialized.		We	guarantee	to	the

			125	 	 //	Transport	that	this	has	been	initialized,	though.

			126	 	 if	req.Header	==	nil	{

			127	 	 	 req.Header	=	make(Header)

			128	 	 }

			129	

			130	 	 if	u	:=	req.URL.User;	u	!=	nil	{

			131	 	 	 req.Header.Set("Authorization",	"Basic	"+base64.URLEncoding.EncodeToString([]byte(u.String())))

			132	 	 }

			133	 	 return	t.RoundTrip(req)

			134	 }

			135	

			136	 //	True	if	the	specified	HTTP	status	code	is	one	for	which	the	Get	utility	should

			137	 //	automatically	redirect.

			138	 func	shouldRedirect(statusCode	int)	bool	{

			139	 	 switch	statusCode	{

			140	 	 case	StatusMovedPermanently,	StatusFound,	StatusSeeOther,	StatusTemporaryRedirect:

			141	 	 	 return	true

			142	 	 }

			143	 	 return	false

			144	 }

			145	

			146	 //	Get	issues	a	GET	to	the	specified	URL.		If	the	response	is	one	of	the	following

			147	 //	redirect	codes,	Get	follows	the	redirect,	up	to	a	maximum	of	10	redirects:

			148	 //

			149	 //				301	(Moved	Permanently)

			150	 //				302	(Found)

			151	 //				303	(See	Other)

			152	 //				307	(Temporary	Redirect)

			153	 //

			154	 //	Caller	should	close	r.Body	when	done	reading	from	it.

			155	 //

			156	 //	Get	is	a	wrapper	around	DefaultClient.Get.

			157	 func	Get(url	string)	(r	*Response,	err	error)	{

			158	 	 return	DefaultClient.Get(url)

			159	 }

			160	

			161	 //	Get	issues	a	GET	to	the	specified	URL.		If	the	response	is	one	of	the

			162	 //	following	redirect	codes,	Get	follows	the	redirect	after	calling	the

			163	 //	Client's	CheckRedirect	function.

			164	 //

			165	 //				301	(Moved	Permanently)

			166	 //				302	(Found)

			167	 //				303	(See	Other)

			168	 //				307	(Temporary	Redirect)

			169	 //

			170	 //	Caller	should	close	r.Body	when	done	reading	from	it.

			171	 func	(c	*Client)	Get(url	string)	(r	*Response,	err	error)	{

			172	 	 req,	err	:=	NewRequest("GET",	url,	nil)

			173	 	 if	err	!=	nil	{

			174	 	 	 return	nil,	err

			175	 	 }

			176	 	 return	c.doFollowingRedirects(req)

			177	 }

			178	

			179	 func	(c	*Client)	doFollowingRedirects(ireq	*Request)	(r	*Response,	err	error)	{

			180	 	 //	TODO:	if/when	we	add	cookie	support,	the	redirected	request	shouldn't

			181	 	 //	necessarily	supply	the	same	cookies	as	the	original.

			182	 	 var	base	*url.URL

			183	 	 redirectChecker	:=	c.CheckRedirect

			184	 	 if	redirectChecker	==	nil	{

			185	 	 	 redirectChecker	=	defaultCheckRedirect

			186	 	 }

			187	 	 var	via	[]*Request

			188	

			189	 	 if	ireq.URL	==	nil	{

			190	 	 	 return	nil,	errors.New("http:	nil	Request.URL")

			191	 	 }

			192	

			193	 	 jar	:=	c.Jar

			194	 	 if	jar	==	nil	{

			195	 	 	 jar	=	blackHoleJar{}

			196	 	 }

			197	

			198	 	 req	:=	ireq

			199	 	 urlStr	:=	""	//	next	relative	or	absolute	URL	to	fetch	(after	first	request)

			200	 	 for	redirect	:=	0;	;	redirect++	{

			201	 	 	 if	redirect	!=	0	{

			202	 	 	 	 req	=	new(Request)

			203	 	 	 	 req.Method	=	ireq.Method

			204	 	 	 	 req.Header	=	make(Header)

			205	 	 	 	 req.URL,	err	=	base.Parse(urlStr)

			206	 	 	 	 if	err	!=	nil	{

			207	 	 	 	 	 break

			208	 	 	 	 }

			209	 	 	 	 if	len(via)	>	0	{

			210	 	 	 	 	 //	Add	the	Referer	header.

			211	 	 	 	 	 lastReq	:=	via[len(via)-1]

			212	 	 	 	 	 if	lastReq.URL.Scheme	!=	"https"	{

			213	 	 	 	 	 	 req.Header.Set("Referer",	lastReq.URL.String())

			214	 	 	 	 	 }

			215	

			216	 	 	 	 	 err	=	redirectChecker(req,	via)

			217	 	 	 	 	 if	err	!=	nil	{

			218	 	 	 	 	 	 break

			219	 	 	 	 	 }

			220	 	 	 	 }

			221	 	 	 }

			222	

			223	 	 	 for	_,	cookie	:=	range	jar.Cookies(req.URL)	{

			224	 	 	 	 req.AddCookie(cookie)

			225	 	 	 }

			226	 	 	 urlStr	=	req.URL.String()

			227	 	 	 if	r,	err	=	send(req,	c.Transport);	err	!=	nil	{

			228	 	 	 	 break

			229	 	 	 }

			230	 	 	 if	c	:=	r.Cookies();	len(c)	>	0	{

			231	 	 	 	 jar.SetCookies(req.URL,	c)

			232	 	 	 }

			233	

			234	 	 	 if	shouldRedirect(r.StatusCode)	{

			235	 	 	 	 r.Body.Close()

			236	 	 	 	 if	urlStr	=	r.Header.Get("Location");	urlStr	==	""	{

			237	 	 	 	 	 err	=	errors.New(fmt.Sprintf("%d	response	missing	Location	header",	r.StatusCode))

			238	 	 	 	 	 break

			239	 	 	 	 }

			240	 	 	 	 base	=	req.URL

			241	 	 	 	 via	=	append(via,	req)

			242	 	 	 	 continue

			243	 	 	 }

			244	 	 	 return

			245	 	 }

			246	

			247	 	 method	:=	ireq.Method

			248	 	 err	=	&url.Error{

			249	 	 	 Op:		method[0:1]	+	strings.ToLower(method[1:]),

			250	 	 	 URL:	urlStr,

			251	 	 	 Err:	err,

			252	 	 }

			253	 	 return

			254	 }

			255	

			256	 func	defaultCheckRedirect(req	*Request,	via	[]*Request)	error	{

			257	 	 if	len(via)	>=	10	{

			258	 	 	 return	errors.New("stopped	after	10	redirects")

			259	 	 }

			260	 	 return	nil

			261	 }

			262	

			263	 //	Post	issues	a	POST	to	the	specified	URL.

			264	 //

			265	 //	Caller	should	close	r.Body	when	done	reading	from	it.

			266	 //

			267	 //	Post	is	a	wrapper	around	DefaultClient.Post

			268	 func	Post(url	string,	bodyType	string,	body	io.Reader)	(r	*Response,	err	error)	{

			269	 	 return	DefaultClient.Post(url,	bodyType,	body)

			270	 }

			271	

			272	 //	Post	issues	a	POST	to	the	specified	URL.

			273	 //

			274	 //	Caller	should	close	r.Body	when	done	reading	from	it.

			275	 func	(c	*Client)	Post(url	string,	bodyType	string,	body	io.Reader)	(r	*Response,	err	error)	{

			276	 	 req,	err	:=	NewRequest("POST",	url,	body)

			277	 	 if	err	!=	nil	{

			278	 	 	 return	nil,	err

			279	 	 }

			280	 	 req.Header.Set("Content-Type",	bodyType)

			281	 	 r,	err	=	send(req,	c.Transport)

			282	 	 if	err	==	nil	&&	c.Jar	!=	nil	{

			283	 	 	 c.Jar.SetCookies(req.URL,	r.Cookies())

			284	 	 }

			285	 	 return	r,	err

			286	 }

			287	

			288	 //	PostForm	issues	a	POST	to	the	specified	URL,	

			289	 //	with	data's	keys	and	values	urlencoded	as	the	request	body.

			290	 //

			291	 //	Caller	should	close	r.Body	when	done	reading	from	it.

			292	 //

			293	 //	PostForm	is	a	wrapper	around	DefaultClient.PostForm

			294	 func	PostForm(url	string,	data	url.Values)	(r	*Response,	err	error)	{

			295	 	 return	DefaultClient.PostForm(url,	data)

			296	 }

			297	

			298	 //	PostForm	issues	a	POST	to	the	specified	URL,	

			299	 //	with	data's	keys	and	values	urlencoded	as	the	request	body.

			300	 //

			301	 //	Caller	should	close	r.Body	when	done	reading	from	it.

			302	 func	(c	*Client)	PostForm(url	string,	data	url.Values)	(r	*Response,	err	error)	{

			303	 	 return	c.Post(url,	"application/x-www-form-urlencoded",	strings.NewReader(data.Encode()))

			304	 }

			305	

			306	 //	Head	issues	a	HEAD	to	the	specified	URL.		If	the	response	is	one	of	the

			307	 //	following	redirect	codes,	Head	follows	the	redirect	after	calling	the

			308	 //	Client's	CheckRedirect	function.

			309	 //

			310	 //				301	(Moved	Permanently)

			311	 //				302	(Found)

			312	 //				303	(See	Other)

			313	 //				307	(Temporary	Redirect)

			314	 //

			315	 //	Head	is	a	wrapper	around	DefaultClient.Head

			316	 func	Head(url	string)	(r	*Response,	err	error)	{

			317	 	 return	DefaultClient.Head(url)

			318	 }

			319	

			320	 //	Head	issues	a	HEAD	to	the	specified	URL.		If	the	response	is	one	of	the

			321	 //	following	redirect	codes,	Head	follows	the	redirect	after	calling	the

			322	 //	Client's	CheckRedirect	function.

			323	 //

			324	 //				301	(Moved	Permanently)

			325	 //				302	(Found)

			326	 //				303	(See	Other)

			327	 //				307	(Temporary	Redirect)

			328	 func	(c	*Client)	Head(url	string)	(r	*Response,	err	error)	{

			329	 	 req,	err	:=	NewRequest("HEAD",	url,	nil)

			330	 	 if	err	!=	nil	{

			331	 	 	 return	nil,	err

			332	 	 }

			333	 	 return	c.doFollowingRedirects(req)

			334	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/http/cookie.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	http

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "fmt"

				10	 	 "strconv"

				11	 	 "strings"

				12	 	 "time"

				13)

				14	

				15	 //	This	implementation	is	done	according	to	RFC	6265:

				16	 //

				17	 //				http://tools.ietf.org/html/rfc6265

				18	

				19	 //	A	Cookie	represents	an	HTTP	cookie	as	sent	in	the	Set-Cookie	header	of	an

				20	 //	HTTP	response	or	the	Cookie	header	of	an	HTTP	request.

				21	 type	Cookie	struct	{

				22	 	 Name							string

				23	 	 Value						string

				24	 	 Path							string

				25	 	 Domain					string

				26	 	 Expires				time.Time

				27	 	 RawExpires	string

				28	

				29	 	 //	MaxAge=0	means	no	'Max-Age'	attribute	specified.	

				30	 	 //	MaxAge<0	means	delete	cookie	now,	equivalently	'Max-Age:	0'

				31	 	 //	MaxAge>0	means	Max-Age	attribute	present	and	given	in	seconds

				32	 	 MaxAge			int

				33	 	 Secure			bool

				34	 	 HttpOnly	bool

				35	 	 Raw						string

				36	 	 Unparsed	[]string	//	Raw	text	of	unparsed	attribute-value	pairs

				37	 }

				38	

				39	 //	readSetCookies	parses	all	"Set-Cookie"	values	from

				40	 //	the	header	h	and	returns	the	successfully	parsed	Cookies.

				41	 func	readSetCookies(h	Header)	[]*Cookie	{

				42	 	 cookies	:=	[]*Cookie{}

				43	 	 for	_,	line	:=	range	h["Set-Cookie"]	{

				44	 	 	 parts	:=	strings.Split(strings.TrimSpace(line),	";")

				45	 	 	 if	len(parts)	==	1	&&	parts[0]	==	""	{

				46	 	 	 	 continue

				47	 	 	 }

				48	 	 	 parts[0]	=	strings.TrimSpace(parts[0])

				49	 	 	 j	:=	strings.Index(parts[0],	"=")

				50	 	 	 if	j	<	0	{

				51	 	 	 	 continue

				52	 	 	 }

				53	 	 	 name,	value	:=	parts[0][:j],	parts[0][j+1:]

				54	 	 	 if	!isCookieNameValid(name)	{

				55	 	 	 	 continue

				56	 	 	 }

				57	 	 	 value,	success	:=	parseCookieValue(value)

				58	 	 	 if	!success	{

				59	 	 	 	 continue

				60	 	 	 }

				61	 	 	 c	:=	&Cookie{

				62	 	 	 	 Name:		name,

				63	 	 	 	 Value:	value,

				64	 	 	 	 Raw:			line,

				65	 	 	 }

				66	 	 	 for	i	:=	1;	i	<	len(parts);	i++	{

				67	 	 	 	 parts[i]	=	strings.TrimSpace(parts[i])

				68	 	 	 	 if	len(parts[i])	==	0	{

				69	 	 	 	 	 continue

				70	 	 	 	 }

				71	

				72	 	 	 	 attr,	val	:=	parts[i],	""

				73	 	 	 	 if	j	:=	strings.Index(attr,	"=");	j	>=	0	{

				74	 	 	 	 	 attr,	val	=	attr[:j],	attr[j+1:]

				75	 	 	 	 }

				76	 	 	 	 lowerAttr	:=	strings.ToLower(attr)

				77	 	 	 	 parseCookieValueFn	:=	parseCookieValue

				78	 	 	 	 if	lowerAttr	==	"expires"	{

				79	 	 	 	 	 parseCookieValueFn	=	parseCookieExpiresValue

				80	 	 	 	 }

				81	 	 	 	 val,	success	=	parseCookieValueFn(val)

				82	 	 	 	 if	!success	{

				83	 	 	 	 	 c.Unparsed	=	append(c.Unparsed,	parts[i])

				84	 	 	 	 	 continue

				85	 	 	 	 }

				86	 	 	 	 switch	lowerAttr	{

				87	 	 	 	 case	"secure":

				88	 	 	 	 	 c.Secure	=	true

				89	 	 	 	 	 continue

				90	 	 	 	 case	"httponly":

				91	 	 	 	 	 c.HttpOnly	=	true

				92	 	 	 	 	 continue

				93	 	 	 	 case	"domain":

				94	 	 	 	 	 c.Domain	=	val

				95	 	 	 	 	 //	TODO:	Add	domain	parsing

				96	 	 	 	 	 continue

				97	 	 	 	 case	"max-age":

				98	 	 	 	 	 secs,	err	:=	strconv.Atoi(val)

				99	 	 	 	 	 if	err	!=	nil	||	secs	!=	0	&&	val[0]	==	'0'	{

			100	 	 	 	 	 	 break

			101	 	 	 	 	 }

			102	 	 	 	 	 if	secs	<=	0	{

			103	 	 	 	 	 	 c.MaxAge	=	-1

			104	 	 	 	 	 }	else	{

			105	 	 	 	 	 	 c.MaxAge	=	secs

			106	 	 	 	 	 }

			107	 	 	 	 	 continue

			108	 	 	 	 case	"expires":

			109	 	 	 	 	 c.RawExpires	=	val

			110	 	 	 	 	 exptime,	err	:=	time.Parse(time.RFC1123,	val)

			111	 	 	 	 	 if	err	!=	nil	{

			112	 	 	 	 	 	 exptime,	err	=	time.Parse("Mon,	02-Jan-2006	15:04:05	MST",	val)

			113	 	 	 	 	 	 if	err	!=	nil	{

			114	 	 	 	 	 	 	 c.Expires	=	time.Time{}

			115	 	 	 	 	 	 	 break

			116	 	 	 	 	 	 }

			117	 	 	 	 	 }

			118	 	 	 	 	 c.Expires	=	exptime.UTC()

			119	 	 	 	 	 continue

			120	 	 	 	 case	"path":

			121	 	 	 	 	 c.Path	=	val

			122	 	 	 	 	 //	TODO:	Add	path	parsing

			123	 	 	 	 	 continue

			124	 	 	 	 }

			125	 	 	 	 c.Unparsed	=	append(c.Unparsed,	parts[i])

			126	 	 	 }

			127	 	 	 cookies	=	append(cookies,	c)

			128	 	 }

			129	 	 return	cookies

			130	 }

			131	

			132	 //	SetCookie	adds	a	Set-Cookie	header	to	the	provided	ResponseWriter's	headers.

			133	 func	SetCookie(w	ResponseWriter,	cookie	*Cookie)	{

			134	 	 w.Header().Add("Set-Cookie",	cookie.String())

			135	 }

			136	

			137	 //	String	returns	the	serialization	of	the	cookie	for	use	in	a	Cookie

			138	 //	header	(if	only	Name	and	Value	are	set)	or	a	Set-Cookie	response

			139	 //	header	(if	other	fields	are	set).

			140	 func	(c	*Cookie)	String()	string	{

			141	 	 var	b	bytes.Buffer

			142	 	 fmt.Fprintf(&b,	"%s=%s",	sanitizeName(c.Name),	sanitizeValue(c.Value))

			143	 	 if	len(c.Path)	>	0	{

			144	 	 	 fmt.Fprintf(&b,	";	Path=%s",	sanitizeValue(c.Path))

			145	 	 }

			146	 	 if	len(c.Domain)	>	0	{

			147	 	 	 fmt.Fprintf(&b,	";	Domain=%s",	sanitizeValue(c.Domain))

			148	 	 }

			149	 	 if	c.Expires.Unix()	>	0	{

			150	 	 	 fmt.Fprintf(&b,	";	Expires=%s",	c.Expires.UTC().Format(time.RFC1123))

			151	 	 }

			152	 	 if	c.MaxAge	>	0	{

			153	 	 	 fmt.Fprintf(&b,	";	Max-Age=%d",	c.MaxAge)

			154	 	 }	else	if	c.MaxAge	<	0	{

			155	 	 	 fmt.Fprintf(&b,	";	Max-Age=0")

			156	 	 }

			157	 	 if	c.HttpOnly	{

			158	 	 	 fmt.Fprintf(&b,	";	HttpOnly")

			159	 	 }

			160	 	 if	c.Secure	{

			161	 	 	 fmt.Fprintf(&b,	";	Secure")

			162	 	 }

			163	 	 return	b.String()

			164	 }

			165	

			166	 //	readCookies	parses	all	"Cookie"	values	from	the	header	h	and

			167	 //	returns	the	successfully	parsed	Cookies.

			168	 //

			169	 //	if	filter	isn't	empty,	only	cookies	of	that	name	are	returned

			170	 func	readCookies(h	Header,	filter	string)	[]*Cookie	{

			171	 	 cookies	:=	[]*Cookie{}

			172	 	 lines,	ok	:=	h["Cookie"]

			173	 	 if	!ok	{

			174	 	 	 return	cookies

			175	 	 }

			176	

			177	 	 for	_,	line	:=	range	lines	{

			178	 	 	 parts	:=	strings.Split(strings.TrimSpace(line),	";")

			179	 	 	 if	len(parts)	==	1	&&	parts[0]	==	""	{

			180	 	 	 	 continue

			181	 	 	 }

			182	 	 	 //	Per-line	attributes

			183	 	 	 parsedPairs	:=	0

			184	 	 	 for	i	:=	0;	i	<	len(parts);	i++	{

			185	 	 	 	 parts[i]	=	strings.TrimSpace(parts[i])

			186	 	 	 	 if	len(parts[i])	==	0	{

			187	 	 	 	 	 continue

			188	 	 	 	 }

			189	 	 	 	 name,	val	:=	parts[i],	""

			190	 	 	 	 if	j	:=	strings.Index(name,	"=");	j	>=	0	{

			191	 	 	 	 	 name,	val	=	name[:j],	name[j+1:]

			192	 	 	 	 }

			193	 	 	 	 if	!isCookieNameValid(name)	{

			194	 	 	 	 	 continue

			195	 	 	 	 }

			196	 	 	 	 if	filter	!=	""	&&	filter	!=	name	{

			197	 	 	 	 	 continue

			198	 	 	 	 }

			199	 	 	 	 val,	success	:=	parseCookieValue(val)

			200	 	 	 	 if	!success	{

			201	 	 	 	 	 continue

			202	 	 	 	 }

			203	 	 	 	 cookies	=	append(cookies,	&Cookie{Name:	name,	Value:	val})

			204	 	 	 	 parsedPairs++

			205	 	 	 }

			206	 	 }

			207	 	 return	cookies

			208	 }

			209	

			210	 var	cookieNameSanitizer	=	strings.NewReplacer("\n",	"-",	"\r",	"-")

			211	

			212	 func	sanitizeName(n	string)	string	{

			213	 	 return	cookieNameSanitizer.Replace(n)

			214	 }

			215	

			216	 var	cookieValueSanitizer	=	strings.NewReplacer("\n",	"	",	"\r",	"	",	";",	"	")

			217	

			218	 func	sanitizeValue(v	string)	string	{

			219	 	 return	cookieValueSanitizer.Replace(v)

			220	 }

			221	

			222	 func	unquoteCookieValue(v	string)	string	{

			223	 	 if	len(v)	>	1	&&	v[0]	==	'"'	&&	v[len(v)-1]	==	'"'	{

			224	 	 	 return	v[1	:	len(v)-1]

			225	 	 }

			226	 	 return	v

			227	 }

			228	

			229	 func	isCookieByte(c	byte)	bool	{

			230	 	 switch	{

			231	 	 case	c	==	0x21,	0x23	<=	c	&&	c	<=	0x2b,	0x2d	<=	c	&&	c	<=	0x3a,

			232	 	 	 0x3c	<=	c	&&	c	<=	0x5b,	0x5d	<=	c	&&	c	<=	0x7e:

			233	 	 	 return	true

			234	 	 }

			235	 	 return	false

			236	 }

			237	

			238	 func	isCookieExpiresByte(c	byte)	(ok	bool)	{

			239	 	 return	isCookieByte(c)	||	c	==	','	||	c	==	'	'

			240	 }

			241	

			242	 func	parseCookieValue(raw	string)	(string,	bool)	{

			243	 	 return	parseCookieValueUsing(raw,	isCookieByte)

			244	 }

			245	

			246	 func	parseCookieExpiresValue(raw	string)	(string,	bool)	{

			247	 	 return	parseCookieValueUsing(raw,	isCookieExpiresByte)

			248	 }

			249	

			250	 func	parseCookieValueUsing(raw	string,	validByte	func(byte)	bool)	(string,	bool)	{

			251	 	 raw	=	unquoteCookieValue(raw)

			252	 	 for	i	:=	0;	i	<	len(raw);	i++	{

			253	 	 	 if	!validByte(raw[i])	{

			254	 	 	 	 return	"",	false

			255	 	 	 }

			256	 	 }

			257	 	 return	raw,	true

			258	 }

			259	

			260	 func	isCookieNameValid(raw	string)	bool	{

			261	 	 for	_,	c	:=	range	raw	{

			262	 	 	 if	!isToken(byte(c))	{

			263	 	 	 	 return	false

			264	 	 	 }

			265	 	 }

			266	 	 return	true

			267	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/http/doc.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 Package	http	provides	HTTP	client	and	server	implementations.

					7	

					8	 Get,	Head,	Post,	and	PostForm	make	HTTP	requests:

					9	

				10	 	 resp,	err	:=	http.Get("http://example.com/")

				11	 	 ...

				12	 	 resp,	err	:=	http.Post("http://example.com/upload",	"image/jpeg",	&buf)

				13	 	 ...

				14	 	 resp,	err	:=	http.PostForm("http://example.com/form",

				15	 	 	 url.Values{"key":	{"Value"},	"id":	{"123"}})

				16	

				17	 The	client	must	close	the	response	body	when	finished	with	it:

				18	

				19	 	 resp,	err	:=	http.Get("http://example.com/")

				20	 	 if	err	!=	nil	{

				21	 	 	 //	handle	error

				22	 	 }

				23	 	 defer	resp.Body.Close()

				24	 	 body,	err	:=	ioutil.ReadAll(resp.Body)

				25	 	 //	...

				26	

				27	 For	control	over	HTTP	client	headers,	redirect	policy,	and	other

				28	 settings,	create	a	Client:

				29	

				30	 	 client	:=	&http.Client{

				31	 	 	 CheckRedirect:	redirectPolicyFunc,

				32	 	 }

				33	

				34	 	 resp,	err	:=	client.Get("http://example.com")

				35	 	 //	...

				36	

				37	 	 req,	err	:=	http.NewRequest("GET",	"http://example.com",	nil)

				38	 	 //	...

				39	 	 req.Header.Add("If-None-Match",	`W/"wyzzy"`)

				40	 	 resp,	err	:=	client.Do(req)

				41	 	 //	...

				42	

				43	 For	control	over	proxies,	TLS	configuration,	keep-alives,

				44	 compression,	and	other	settings,	create	a	Transport:

				45	

				46	 	 tr	:=	&http.Transport{

				47	 	 	 TLSClientConfig:				&tls.Config{RootCAs:	pool},

				48	 	 	 DisableCompression:	true,

				49	 	 }

				50	 	 client	:=	&http.Client{Transport:	tr}

				51	 	 resp,	err	:=	client.Get("https://example.com")

				52	

				53	 Clients	and	Transports	are	safe	for	concurrent	use	by	multiple

				54	 goroutines	and	for	efficiency	should	only	be	created	once	and	re-used.

				55	

				56	 ListenAndServe	starts	an	HTTP	server	with	a	given	address	and	handler.

				57	 The	handler	is	usually	nil,	which	means	to	use	DefaultServeMux.

				58	 Handle	and	HandleFunc	add	handlers	to	DefaultServeMux:

				59	

				60	 	 http.Handle("/foo",	fooHandler)

				61	

				62	 	 http.HandleFunc("/bar",	func(w	http.ResponseWriter,	r	*http.Request)	{

				63	 	 	 fmt.Fprintf(w,	"Hello,	%q",	html.EscapeString(r.URL.Path))

				64	 	 })

				65	

				66	 	 log.Fatal(http.ListenAndServe(":8080",	nil))

				67	

				68	 More	control	over	the	server's	behavior	is	available	by	creating	a

				69	 custom	Server:

				70	

				71	 	 s	:=	&http.Server{

				72	 	 	 Addr:											":8080",

				73	 	 	 Handler:								myHandler,

				74	 	 	 ReadTimeout:				10	*	time.Second,

				75	 	 	 WriteTimeout:			10	*	time.Second,

				76	 	 	 MaxHeaderBytes:	1	<<	20,

				77	 	 }

				78	 	 log.Fatal(s.ListenAndServe())

				79	 */

				80	 package	http

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/filetransport.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	http

					6	

					7	 import	(

					8	 	 "fmt"

					9	 	 "io"

				10)

				11	

				12	 //	fileTransport	implements	RoundTripper	for	the	'file'	protocol.

				13	 type	fileTransport	struct	{

				14	 	 fh	fileHandler

				15	 }

				16	

				17	 //	NewFileTransport	returns	a	new	RoundTripper,	serving	the	provided

				18	 //	FileSystem.	The	returned	RoundTripper	ignores	the	URL	host	in	its

				19	 //	incoming	requests,	as	well	as	most	other	properties	of	the

				20	 //	request.

				21	 //

				22	 //	The	typical	use	case	for	NewFileTransport	is	to	register	the	"file"

				23	 //	protocol	with	a	Transport,	as	in:

				24	 //

				25	 //			t	:=	&http.Transport{}

				26	 //			t.RegisterProtocol("file",	http.NewFileTransport(http.Dir("/")))

				27	 //			c	:=	&http.Client{Transport:	t}

				28	 //			res,	err	:=	c.Get("file:///etc/passwd")

				29	 //			...

				30	 func	NewFileTransport(fs	FileSystem)	RoundTripper	{

				31	 	 return	fileTransport{fileHandler{fs}}

				32	 }

				33	

				34	 func	(t	fileTransport)	RoundTrip(req	*Request)	(resp	*Response,	err	error)	{

				35	 	 //	We	start	ServeHTTP	in	a	goroutine,	which	may	take	a	long

				36	 	 //	time	if	the	file	is	large.		The	newPopulateResponseWriter

				37	 	 //	call	returns	a	channel	which	either	ServeHTTP	or	finish()

				38	 	 //	sends	our	*Response	on,	once	the	*Response	itself	has	been

				39	 	 //	populated	(even	if	the	body	itself	is	still	being

				40	 	 //	written	to	the	res.Body,	a	pipe)

				41	 	 rw,	resc	:=	newPopulateResponseWriter()

				42	 	 go	func()	{

				43	 	 	 t.fh.ServeHTTP(rw,	req)

				44	 	 	 rw.finish()

				45	 	 }()

				46	 	 return	<-resc,	nil

				47	 }

				48	

				49	 func	newPopulateResponseWriter()	(*populateResponse,	<-chan	*Response)	{

				50	 	 pr,	pw	:=	io.Pipe()

				51	 	 rw	:=	&populateResponse{

				52	 	 	 ch:	make(chan	*Response),

				53	 	 	 pw:	pw,

				54	 	 	 res:	&Response{

				55	 	 	 	 Proto:						"HTTP/1.0",

				56	 	 	 	 ProtoMajor:	1,

				57	 	 	 	 Header:					make(Header),

				58	 	 	 	 Close:						true,

				59	 	 	 	 Body:							pr,

				60	 	 	 },

				61	 	 }

				62	 	 return	rw,	rw.ch

				63	 }

				64	

				65	 //	populateResponse	is	a	ResponseWriter	that	populates	the	*Response

				66	 //	in	res,	and	writes	its	body	to	a	pipe	connected	to	the	response

				67	 //	body.	Once	writes	begin	or	finish()	is	called,	the	response	is	sent

				68	 //	on	ch.

				69	 type	populateResponse	struct	{

				70	 	 res										*Response

				71	 	 ch											chan	*Response

				72	 	 wroteHeader		bool

				73	 	 hasContent			bool

				74	 	 sentResponse	bool

				75	 	 pw											*io.PipeWriter

				76	 }

				77	

				78	 func	(pr	*populateResponse)	finish()	{

				79	 	 if	!pr.wroteHeader	{

				80	 	 	 pr.WriteHeader(500)

				81	 	 }

				82	 	 if	!pr.sentResponse	{

				83	 	 	 pr.sendResponse()

				84	 	 }

				85	 	 pr.pw.Close()

				86	 }

				87	

				88	 func	(pr	*populateResponse)	sendResponse()	{

				89	 	 if	pr.sentResponse	{

				90	 	 	 return

				91	 	 }

				92	 	 pr.sentResponse	=	true

				93	

				94	 	 if	pr.hasContent	{

				95	 	 	 pr.res.ContentLength	=	-1

				96	 	 }

				97	 	 pr.ch	<-	pr.res

				98	 }

				99	

			100	 func	(pr	*populateResponse)	Header()	Header	{

			101	 	 return	pr.res.Header

			102	 }

			103	

			104	 func	(pr	*populateResponse)	WriteHeader(code	int)	{

			105	 	 if	pr.wroteHeader	{

			106	 	 	 return

			107	 	 }

			108	 	 pr.wroteHeader	=	true

			109	

			110	 	 pr.res.StatusCode	=	code

			111	 	 pr.res.Status	=	fmt.Sprintf("%d	%s",	code,	StatusText(code))

			112	 }

			113	

			114	 func	(pr	*populateResponse)	Write(p	[]byte)	(n	int,	err	error)	{

			115	 	 if	!pr.wroteHeader	{

			116	 	 	 pr.WriteHeader(StatusOK)

			117	 	 }

			118	 	 pr.hasContent	=	true

			119	 	 if	!pr.sentResponse	{

			120	 	 	 pr.sendResponse()

			121	 	 }

			122	 	 return	pr.pw.Write(p)

			123	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/http/fs.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	HTTP	file	system	request	handler

					6	

					7	 package	http

					8	

					9	 import	(

				10	 	 "errors"

				11	 	 "fmt"

				12	 	 "io"

				13	 	 "mime"

				14	 	 "os"

				15	 	 "path"

				16	 	 "path/filepath"

				17	 	 "strconv"

				18	 	 "strings"

				19	 	 "time"

				20)

				21	

				22	 //	A	Dir	implements	http.FileSystem	using	the	native	file

				23	 //	system	restricted	to	a	specific	directory	tree.

				24	 //

				25	 //	An	empty	Dir	is	treated	as	".".

				26	 type	Dir	string

				27	

				28	 func	(d	Dir)	Open(name	string)	(File,	error)	{

				29	 	 if	filepath.Separator	!=	'/'	&&	strings.IndexRune(name,	filepath.Separator)	>=	0	{

				30	 	 	 return	nil,	errors.New("http:	invalid	character	in	file	path")

				31	 	 }

				32	 	 dir	:=	string(d)

				33	 	 if	dir	==	""	{

				34	 	 	 dir	=	"."

				35	 	 }

				36	 	 f,	err	:=	os.Open(filepath.Join(dir,	filepath.FromSlash(path.Clean("/"+name))))

				37	 	 if	err	!=	nil	{

				38	 	 	 return	nil,	err

				39	 	 }

				40	 	 return	f,	nil

				41	 }

				42	

				43	 //	A	FileSystem	implements	access	to	a	collection	of	named	files.

				44	 //	The	elements	in	a	file	path	are	separated	by	slash	('/',	U+002F)

				45	 //	characters,	regardless	of	host	operating	system	convention.

				46	 type	FileSystem	interface	{

				47	 	 Open(name	string)	(File,	error)

				48	 }

				49	

				50	 //	A	File	is	returned	by	a	FileSystem's	Open	method	and	can	be

				51	 //	served	by	the	FileServer	implementation.

				52	 type	File	interface	{

				53	 	 Close()	error

				54	 	 Stat()	(os.FileInfo,	error)

				55	 	 Readdir(count	int)	([]os.FileInfo,	error)

				56	 	 Read([]byte)	(int,	error)

				57	 	 Seek(offset	int64,	whence	int)	(int64,	error)

				58	 }

				59	

				60	 func	dirList(w	ResponseWriter,	f	File)	{

				61	 	 w.Header().Set("Content-Type",	"text/html;	charset=utf-8")

				62	 	 fmt.Fprintf(w,	"<pre>\n")

				63	 	 for	{

				64	 	 	 dirs,	err	:=	f.Readdir(100)

				65	 	 	 if	err	!=	nil	||	len(dirs)	==	0	{

				66	 	 	 	 break

				67	 	 	 }

				68	 	 	 for	_,	d	:=	range	dirs	{

				69	 	 	 	 name	:=	d.Name()

				70	 	 	 	 if	d.IsDir()	{

				71	 	 	 	 	 name	+=	"/"

				72	 	 	 	 }

				73	 	 	 	 //	TODO	htmlescape

				74	 	 	 	 fmt.Fprintf(w,	"%s\n",	name,	name)

				75	 	 	 }

				76	 	 }

				77	 	 fmt.Fprintf(w,	"</pre>\n")

				78	 }

				79	

				80	 //	ServeContent	replies	to	the	request	using	the	content	in	the

				81	 //	provided	ReadSeeker.		The	main	benefit	of	ServeContent	over	io.Copy

				82	 //	is	that	it	handles	Range	requests	properly,	sets	the	MIME	type,	and

				83	 //	handles	If-Modified-Since	requests.

				84	 //

				85	 //	If	the	response's	Content-Type	header	is	not	set,	ServeContent

				86	 //	first	tries	to	deduce	the	type	from	name's	file	extension	and,

				87	 //	if	that	fails,	falls	back	to	reading	the	first	block	of	the	content

				88	 //	and	passing	it	to	DetectContentType.

				89	 //	The	name	is	otherwise	unused;	in	particular	it	can	be	empty	and	is

				90	 //	never	sent	in	the	response.

				91	 //

				92	 //	If	modtime	is	not	the	zero	time,	ServeContent	includes	it	in	a

				93	 //	Last-Modified	header	in	the	response.		If	the	request	includes	an

				94	 //	If-Modified-Since	header,	ServeContent	uses	modtime	to	decide

				95	 //	whether	the	content	needs	to	be	sent	at	all.

				96	 //

				97	 //	The	content's	Seek	method	must	work:	ServeContent	uses

				98	 //	a	seek	to	the	end	of	the	content	to	determine	its	size.

				99	 //

			100	 //	Note	that	*os.File	implements	the	io.ReadSeeker	interface.

			101	 func	ServeContent(w	ResponseWriter,	req	*Request,	name	string,	modtime	time.Time,	content	io.ReadSeeker)	{

			102	 	 size,	err	:=	content.Seek(0,	os.SEEK_END)

			103	 	 if	err	!=	nil	{

			104	 	 	 Error(w,	"seeker	can't	seek",	StatusInternalServerError)

			105	 	 	 return

			106	 	 }

			107	 	 _,	err	=	content.Seek(0,	os.SEEK_SET)

			108	 	 if	err	!=	nil	{

			109	 	 	 Error(w,	"seeker	can't	seek",	StatusInternalServerError)

			110	 	 	 return

			111	 	 }

			112	 	 serveContent(w,	req,	name,	modtime,	size,	content)

			113	 }

			114	

			115	 //	if	name	is	empty,	filename	is	unknown.	(used	for	mime	type,	before	sniffing)

			116	 //	if	modtime.IsZero(),	modtime	is	unknown.

			117	 //	content	must	be	seeked	to	the	beginning	of	the	file.

			118	 func	serveContent(w	ResponseWriter,	r	*Request,	name	string,	modtime	time.Time,	size	int64,	content	io.ReadSeeker)	{

			119	 	 if	checkLastModified(w,	r,	modtime)	{

			120	 	 	 return

			121	 	 }

			122	

			123	 	 code	:=	StatusOK

			124	

			125	 	 //	If	Content-Type	isn't	set,	use	the	file's	extension	to	find	it.

			126	 	 if	w.Header().Get("Content-Type")	==	""	{

			127	 	 	 ctype	:=	mime.TypeByExtension(filepath.Ext(name))

			128	 	 	 if	ctype	==	""	{

			129	 	 	 	 //	read	a	chunk	to	decide	between	utf-8	text	and	binary

			130	 	 	 	 var	buf	[1024]byte

			131	 	 	 	 n,	_	:=	io.ReadFull(content,	buf[:])

			132	 	 	 	 b	:=	buf[:n]

			133	 	 	 	 ctype	=	DetectContentType(b)

			134	 	 	 	 _,	err	:=	content.Seek(0,	os.SEEK_SET)	

			135	 	 	 	 if	err	!=	nil	{

			136	 	 	 	 	 Error(w,	"seeker	can't	seek",	StatusInternalServerError)

			137	 	 	 	 	 return

			138	 	 	 	 }

			139	 	 	 }

			140	 	 	 w.Header().Set("Content-Type",	ctype)

			141	 	 }

			142	

			143	 	 //	handle	Content-Range	header.

			144	 	 //	TODO(adg):	handle	multiple	ranges

			145	 	 sendSize	:=	size

			146	 	 if	size	>=	0	{

			147	 	 	 ranges,	err	:=	parseRange(r.Header.Get("Range"),	size)

			148	 	 	 if	err	==	nil	&&	len(ranges)	>	1	{

			149	 	 	 	 err	=	errors.New("multiple	ranges	not	supported")

			150	 	 	 }

			151	 	 	 if	err	!=	nil	{

			152	 	 	 	 Error(w,	err.Error(),	StatusRequestedRangeNotSatisfiable)

			153	 	 	 	 return

			154	 	 	 }

			155	 	 	 if	len(ranges)	==	1	{

			156	 	 	 	 ra	:=	ranges[0]

			157	 	 	 	 if	_,	err	:=	content.Seek(ra.start,	os.SEEK_SET);	err	!=	nil	{

			158	 	 	 	 	 Error(w,	err.Error(),	StatusRequestedRangeNotSatisfiable)

			159	 	 	 	 	 return

			160	 	 	 	 }

			161	 	 	 	 sendSize	=	ra.length

			162	 	 	 	 code	=	StatusPartialContent

			163	 	 	 	 w.Header().Set("Content-Range",	fmt.Sprintf("bytes	%d-%d/%d",	ra.start,	ra.start+ra.length-1,	size))

			164	 	 	 }

			165	

			166	 	 	 w.Header().Set("Accept-Ranges",	"bytes")

			167	 	 	 if	w.Header().Get("Content-Encoding")	==	""	{

			168	 	 	 	 w.Header().Set("Content-Length",	strconv.FormatInt(sendSize,	10))

			169	 	 	 }

			170	 	 }

			171	

			172	 	 w.WriteHeader(code)

			173	

			174	 	 if	r.Method	!=	"HEAD"	{

			175	 	 	 if	sendSize	==	-1	{

			176	 	 	 	 io.Copy(w,	content)

			177	 	 	 }	else	{

			178	 	 	 	 io.CopyN(w,	content,	sendSize)

			179	 	 	 }

			180	 	 }

			181	 }

			182	

			183	 //	modtime	is	the	modification	time	of	the	resource	to	be	served,	or	IsZero().

			184	 //	return	value	is	whether	this	request	is	now	complete.

			185	 func	checkLastModified(w	ResponseWriter,	r	*Request,	modtime	time.Time)	bool	{

			186	 	 if	modtime.IsZero()	{

			187	 	 	 return	false

			188	 	 }

			189	

			190	 	 //	The	Date-Modified	header	truncates	sub-second	precision,	so

			191	 	 //	use	mtime	<	t+1s	instead	of	mtime	<=	t	to	check	for	unmodified.

			192	 	 if	t,	err	:=	time.Parse(TimeFormat,	r.Header.Get("If-Modified-Since"));	err	==	nil	&&	modtime.Before(t.Add(1*time.Second))	{

			193	 	 	 w.WriteHeader(StatusNotModified)

			194	 	 	 return	true

			195	 	 }

			196	 	 w.Header().Set("Last-Modified",	modtime.UTC().Format(TimeFormat))

			197	 	 return	false

			198	 }

			199	

			200	 //	name	is	'/'-separated,	not	filepath.Separator.

			201	 func	serveFile(w	ResponseWriter,	r	*Request,	fs	FileSystem,	name	string,	redirect	bool)	{

			202	 	 const	indexPage	=	"/index.html"

			203	

			204	 	 //	redirect	.../index.html	to	.../

			205	 	 //	can't	use	Redirect()	because	that	would	make	the	path	absolute,

			206	 	 //	which	would	be	a	problem	running	under	StripPrefix

			207	 	 if	strings.HasSuffix(r.URL.Path,	indexPage)	{

			208	 	 	 localRedirect(w,	r,	"./")

			209	 	 	 return

			210	 	 }

			211	

			212	 	 f,	err	:=	fs.Open(name)

			213	 	 if	err	!=	nil	{

			214	 	 	 //	TODO	expose	actual	error?

			215	 	 	 NotFound(w,	r)

			216	 	 	 return

			217	 	 }

			218	 	 defer	f.Close()

			219	

			220	 	 d,	err1	:=	f.Stat()

			221	 	 if	err1	!=	nil	{

			222	 	 	 //	TODO	expose	actual	error?

			223	 	 	 NotFound(w,	r)

			224	 	 	 return

			225	 	 }

			226	

			227	 	 if	redirect	{

			228	 	 	 //	redirect	to	canonical	path:	/	at	end	of	directory	url

			229	 	 	 //	r.URL.Path	always	begins	with	/

			230	 	 	 url	:=	r.URL.Path

			231	 	 	 if	d.IsDir()	{

			232	 	 	 	 if	url[len(url)-1]	!=	'/'	{

			233	 	 	 	 	 localRedirect(w,	r,	path.Base(url)+"/")

			234	 	 	 	 	 return

			235	 	 	 	 }

			236	 	 	 }	else	{

			237	 	 	 	 if	url[len(url)-1]	==	'/'	{

			238	 	 	 	 	 localRedirect(w,	r,	"../"+path.Base(url))

			239	 	 	 	 	 return

			240	 	 	 	 }

			241	 	 	 }

			242	 	 }

			243	

			244	 	 //	use	contents	of	index.html	for	directory,	if	present

			245	 	 if	d.IsDir()	{

			246	 	 	 if	checkLastModified(w,	r,	d.ModTime())	{

			247	 	 	 	 return

			248	 	 	 }

			249	 	 	 index	:=	name	+	indexPage

			250	 	 	 ff,	err	:=	fs.Open(index)

			251	 	 	 if	err	==	nil	{

			252	 	 	 	 defer	ff.Close()

			253	 	 	 	 dd,	err	:=	ff.Stat()

			254	 	 	 	 if	err	==	nil	{

			255	 	 	 	 	 name	=	index

			256	 	 	 	 	 d	=	dd

			257	 	 	 	 	 f	=	ff

			258	 	 	 	 }

			259	 	 	 }

			260	 	 }

			261	

			262	 	 if	d.IsDir()	{

			263	 	 	 dirList(w,	f)

			264	 	 	 return

			265	 	 }

			266	

			267	 	 serveContent(w,	r,	d.Name(),	d.ModTime(),	d.Size(),	f)

			268	 }

			269	

			270	 //	localRedirect	gives	a	Moved	Permanently	response.

			271	 //	It	does	not	convert	relative	paths	to	absolute	paths	like	Redirect	does.

			272	 func	localRedirect(w	ResponseWriter,	r	*Request,	newPath	string)	{

			273	 	 if	q	:=	r.URL.RawQuery;	q	!=	""	{

			274	 	 	 newPath	+=	"?"	+	q

			275	 	 }

			276	 	 w.Header().Set("Location",	newPath)

			277	 	 w.WriteHeader(StatusMovedPermanently)

			278	 }

			279	

			280	 //	ServeFile	replies	to	the	request	with	the	contents	of	the	named	file	or	directory.

			281	 func	ServeFile(w	ResponseWriter,	r	*Request,	name	string)	{

			282	 	 dir,	file	:=	filepath.Split(name)

			283	 	 serveFile(w,	r,	Dir(dir),	file,	false)

			284	 }

			285	

			286	 type	fileHandler	struct	{

			287	 	 root	FileSystem

			288	 }

			289	

			290	 //	FileServer	returns	a	handler	that	serves	HTTP	requests

			291	 //	with	the	contents	of	the	file	system	rooted	at	root.

			292	 //

			293	 //	To	use	the	operating	system's	file	system	implementation,

			294	 //	use	http.Dir:

			295	 //

			296	 //					http.Handle("/",	http.FileServer(http.Dir("/tmp")))

			297	 func	FileServer(root	FileSystem)	Handler	{

			298	 	 return	&fileHandler{root}

			299	 }

			300	

			301	 func	(f	*fileHandler)	ServeHTTP(w	ResponseWriter,	r	*Request)	{

			302	 	 upath	:=	r.URL.Path

			303	 	 if	!strings.HasPrefix(upath,	"/")	{

			304	 	 	 upath	=	"/"	+	upath

			305	 	 	 r.URL.Path	=	upath

			306	 	 }

			307	 	 serveFile(w,	r,	f.root,	path.Clean(upath),	true)

			308	 }

			309	

			310	 //	httpRange	specifies	the	byte	range	to	be	sent	to	the	client.

			311	 type	httpRange	struct	{

			312	 	 start,	length	int64

			313	 }

			314	

			315	 //	parseRange	parses	a	Range	header	string	as	per	RFC	2616.

			316	 func	parseRange(s	string,	size	int64)	([]httpRange,	error)	{

			317	 	 if	s	==	""	{

			318	 	 	 return	nil,	nil	//	header	not	present

			319	 	 }

			320	 	 const	b	=	"bytes="

			321	 	 if	!strings.HasPrefix(s,	b)	{

			322	 	 	 return	nil,	errors.New("invalid	range")

			323	 	 }

			324	 	 var	ranges	[]httpRange

			325	 	 for	_,	ra	:=	range	strings.Split(s[len(b):],	",")	{

			326	 	 	 i	:=	strings.Index(ra,	"-")

			327	 	 	 if	i	<	0	{

			328	 	 	 	 return	nil,	errors.New("invalid	range")

			329	 	 	 }

			330	 	 	 start,	end	:=	ra[:i],	ra[i+1:]

			331	 	 	 var	r	httpRange

			332	 	 	 if	start	==	""	{

			333	 	 	 	 //	If	no	start	is	specified,	end	specifies	the

			334	 	 	 	 //	range	start	relative	to	the	end	of	the	file.

			335	 	 	 	 i,	err	:=	strconv.ParseInt(end,	10,	64)

			336	 	 	 	 if	err	!=	nil	{

			337	 	 	 	 	 return	nil,	errors.New("invalid	range")

			338	 	 	 	 }

			339	 	 	 	 if	i	>	size	{

			340	 	 	 	 	 i	=	size

			341	 	 	 	 }

			342	 	 	 	 r.start	=	size	-	i

			343	 	 	 	 r.length	=	size	-	r.start

			344	 	 	 }	else	{

			345	 	 	 	 i,	err	:=	strconv.ParseInt(start,	10,	64)

			346	 	 	 	 if	err	!=	nil	||	i	>	size	||	i	<	0	{

			347	 	 	 	 	 return	nil,	errors.New("invalid	range")

			348	 	 	 	 }

			349	 	 	 	 r.start	=	i

			350	 	 	 	 if	end	==	""	{

			351	 	 	 	 	 //	If	no	end	is	specified,	range	extends	to	end	of	the	file.

			352	 	 	 	 	 r.length	=	size	-	r.start

			353	 	 	 	 }	else	{

			354	 	 	 	 	 i,	err	:=	strconv.ParseInt(end,	10,	64)

			355	 	 	 	 	 if	err	!=	nil	||	r.start	>	i	{

			356	 	 	 	 	 	 return	nil,	errors.New("invalid	range")

			357	 	 	 	 	 }

			358	 	 	 	 	 if	i	>=	size	{

			359	 	 	 	 	 	 i	=	size	-	1

			360	 	 	 	 	 }

			361	 	 	 	 	 r.length	=	i	-	r.start	+	1

			362	 	 	 	 }

			363	 	 	 }

			364	 	 	 ranges	=	append(ranges,	r)

			365	 	 }

			366	 	 return	ranges,	nil

			367	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/http/header.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	http

					6	

					7	 import	(

					8	 	 "fmt"

					9	 	 "io"

				10	 	 "net/textproto"

				11	 	 "sort"

				12	 	 "strings"

				13)

				14	

				15	 //	A	Header	represents	the	key-value	pairs	in	an	HTTP	header.

				16	 type	Header	map[string][]string

				17	

				18	 //	Add	adds	the	key,	value	pair	to	the	header.

				19	 //	It	appends	to	any	existing	values	associated	with	key.

				20	 func	(h	Header)	Add(key,	value	string)	{

				21	 	 textproto.MIMEHeader(h).Add(key,	value)

				22	 }

				23	

				24	 //	Set	sets	the	header	entries	associated	with	key	to

				25	 //	the	single	element	value.		It	replaces	any	existing

				26	 //	values	associated	with	key.

				27	 func	(h	Header)	Set(key,	value	string)	{

				28	 	 textproto.MIMEHeader(h).Set(key,	value)

				29	 }

				30	

				31	 //	Get	gets	the	first	value	associated	with	the	given	key.

				32	 //	If	there	are	no	values	associated	with	the	key,	Get	returns	"".

				33	 //	To	access	multiple	values	of	a	key,	access	the	map	directly

				34	 //	with	CanonicalHeaderKey.

				35	 func	(h	Header)	Get(key	string)	string	{

				36	 	 return	textproto.MIMEHeader(h).Get(key)

				37	 }

				38	

				39	 //	Del	deletes	the	values	associated	with	key.

				40	 func	(h	Header)	Del(key	string)	{

				41	 	 textproto.MIMEHeader(h).Del(key)

				42	 }

				43	

				44	 //	Write	writes	a	header	in	wire	format.

				45	 func	(h	Header)	Write(w	io.Writer)	error	{

				46	 	 return	h.WriteSubset(w,	nil)

				47	 }

				48	

				49	 var	headerNewlineToSpace	=	strings.NewReplacer("\n",	"	",	"\r",	"	")

				50	

				51	 //	WriteSubset	writes	a	header	in	wire	format.

				52	 //	If	exclude	is	not	nil,	keys	where	exclude[key]	==	true	are	not	written.

				53	 func	(h	Header)	WriteSubset(w	io.Writer,	exclude	map[string]bool)	error	{

				54	 	 keys	:=	make([]string,	0,	len(h))

				55	 	 for	k	:=	range	h	{

				56	 	 	 if	exclude	==	nil	||	!exclude[k]	{

				57	 	 	 	 keys	=	append(keys,	k)

				58	 	 	 }

				59	 	 }

				60	 	 sort.Strings(keys)

				61	 	 for	_,	k	:=	range	keys	{

				62	 	 	 for	_,	v	:=	range	h[k]	{

				63	 	 	 	 v	=	headerNewlineToSpace.Replace(v)

				64	 	 	 	 v	=	strings.TrimSpace(v)

				65	 	 	 	 if	_,	err	:=	fmt.Fprintf(w,	"%s:	%s\r\n",	k,	v);	err	!=	nil	{

				66	 	 	 	 	 return	err

				67	 	 	 	 }

				68	 	 	 }

				69	 	 }

				70	 	 return	nil

				71	 }

				72	

				73	 //	CanonicalHeaderKey	returns	the	canonical	format	of	the

				74	 //	header	key	s.		The	canonicalization	converts	the	first

				75	 //	letter	and	any	letter	following	a	hyphen	to	upper	case;

				76	 //	the	rest	are	converted	to	lowercase.		For	example,	the

				77	 //	canonical	key	for	"accept-encoding"	is	"Accept-Encoding".

				78	 func	CanonicalHeaderKey(s	string)	string	{	return	textproto.CanonicalMIMEHeaderKey(s)	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/http/jar.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	http

					6	

					7	 import	(

					8	 	 "net/url"

					9)

				10	

				11	 //	A	CookieJar	manages	storage	and	use	of	cookies	in	HTTP	requests.	

				12	 //

				13	 //	Implementations	of	CookieJar	must	be	safe	for	concurrent	use	by	multiple

				14	 //	goroutines.

				15	 type	CookieJar	interface	{

				16	 	 //	SetCookies	handles	the	receipt	of	the	cookies	in	a	reply	for	the	

				17	 	 //	given	URL.		It	may	or	may	not	choose	to	save	the	cookies,	depending	

				18	 	 //	on	the	jar's	policy	and	implementation.	

				19	 	 SetCookies(u	*url.URL,	cookies	[]*Cookie)

				20	

				21	 	 //	Cookies	returns	the	cookies	to	send	in	a	request	for	the	given	URL.

				22	 	 //	It	is	up	to	the	implementation	to	honor	the	standard	cookie	use	

				23	 	 //	restrictions	such	as	in	RFC	6265.	

				24	 	 Cookies(u	*url.URL)	[]*Cookie

				25	 }

				26	

				27	 type	blackHoleJar	struct{}

				28	

				29	 func	(blackHoleJar)	SetCookies(u	*url.URL,	cookies	[]*Cookie)	{}

				30	 func	(blackHoleJar)	Cookies(u	*url.URL)	[]*Cookie													{	return	nil	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/http/lex.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	http

					6	

					7	 //	This	file	deals	with	lexical	matters	of	HTTP

					8	

					9	 func	isSeparator(c	byte)	bool	{

				10	 	 switch	c	{

				11	 	 case	'(',	')',	'<',	'>',	'@',	',',	';',	':',	'\\',	'"',	'/',	'[',	']',	'?',	'=',	'{',	'}',	'	',	'\t':

				12	 	 	 return	true

				13	 	 }

				14	 	 return	false

				15	 }

				16	

				17	 func	isCtl(c	byte)	bool	{	return	(0	<=	c	&&	c	<=	31)	||	c	==	127	}

				18	

				19	 func	isChar(c	byte)	bool	{	return	0	<=	c	&&	c	<=	127	}

				20	

				21	 func	isAnyText(c	byte)	bool	{	return	!isCtl(c)	}

				22	

				23	 func	isQdText(c	byte)	bool	{	return	isAnyText(c)	&&	c	!=	'"'	}

				24	

				25	 func	isToken(c	byte)	bool	{	return	isChar(c)	&&	!isCtl(c)	&&	!isSeparator(c)	}

				26	

				27	 //	Valid	escaped	sequences	are	not	specified	in	RFC	2616,	so	for	now,	we	assume

				28	 //	that	they	coincide	with	the	common	sense	ones	used	by	GO.	Malformed

				29	 //	characters	should	probably	not	be	treated	as	errors	by	a	robust	(forgiving)

				30	 //	parser,	so	we	replace	them	with	the	'?'	character.

				31	 func	httpUnquotePair(b	byte)	byte	{

				32	 	 //	skip	the	first	byte,	which	should	always	be	'\'

				33	 	 switch	b	{

				34	 	 case	'a':

				35	 	 	 return	'\a'

				36	 	 case	'b':

				37	 	 	 return	'\b'

				38	 	 case	'f':

				39	 	 	 return	'\f'

				40	 	 case	'n':

				41	 	 	 return	'\n'

				42	 	 case	'r':

				43	 	 	 return	'\r'

				44	 	 case	't':

				45	 	 	 return	'\t'

				46	 	 case	'v':

				47	 	 	 return	'\v'

				48	 	 case	'\\':

				49	 	 	 return	'\\'

				50	 	 case	'\'':

				51	 	 	 return	'\''

				52	 	 case	'"':

				53	 	 	 return	'"'

				54	 	 }

				55	 	 return	'?'

				56	 }

				57	

				58	 //	raw	must	begin	with	a	valid	quoted	string.	Only	the	first	quoted	string	is

				59	 //	parsed	and	is	unquoted	in	result.	eaten	is	the	number	of	bytes	parsed,	or	-1

				60	 //	upon	failure.

				61	 func	httpUnquote(raw	[]byte)	(eaten	int,	result	string)	{

				62	 	 buf	:=	make([]byte,	len(raw))

				63	 	 if	raw[0]	!=	'"'	{

				64	 	 	 return	-1,	""

				65	 	 }

				66	 	 eaten	=	1

				67	 	 j	:=	0	//	#	of	bytes	written	in	buf

				68	 	 for	i	:=	1;	i	<	len(raw);	i++	{

				69	 	 	 switch	b	:=	raw[i];	b	{

				70	 	 	 case	'"':

				71	 	 	 	 eaten++

				72	 	 	 	 buf	=	buf[0:j]

				73	 	 	 	 return	i	+	1,	string(buf)

				74	 	 	 case	'\\':

				75	 	 	 	 if	len(raw)	<	i+2	{

				76	 	 	 	 	 return	-1,	""

				77	 	 	 	 }

				78	 	 	 	 buf[j]	=	httpUnquotePair(raw[i+1])

				79	 	 	 	 eaten	+=	2

				80	 	 	 	 j++

				81	 	 	 	 i++

				82	 	 	 default:

				83	 	 	 	 if	isQdText(b)	{

				84	 	 	 	 	 buf[j]	=	b

				85	 	 	 	 }	else	{

				86	 	 	 	 	 buf[j]	=	'?'

				87	 	 	 	 }

				88	 	 	 	 eaten++

				89	 	 	 	 j++

				90	 	 	 }

				91	 	 }

				92	 	 return	-1,	""

				93	 }

				94	

				95	 //	This	is	a	best	effort	parse,	so	errors	are	not	returned,	instead	not	all	of

				96	 //	the	input	string	might	be	parsed.	result	is	always	non-nil.

				97	 func	httpSplitFieldValue(fv	string)	(eaten	int,	result	[]string)	{

				98	 	 result	=	make([]string,	0,	len(fv))

				99	 	 raw	:=	[]byte(fv)

			100	 	 i	:=	0

			101	 	 chunk	:=	""

			102	 	 for	i	<	len(raw)	{

			103	 	 	 b	:=	raw[i]

			104	 	 	 switch	{

			105	 	 	 case	b	==	'"':

			106	 	 	 	 eaten,	unq	:=	httpUnquote(raw[i:len(raw)])

			107	 	 	 	 if	eaten	<	0	{

			108	 	 	 	 	 return	i,	result

			109	 	 	 	 }	else	{

			110	 	 	 	 	 i	+=	eaten

			111	 	 	 	 	 chunk	+=	unq

			112	 	 	 	 }

			113	 	 	 case	isSeparator(b):

			114	 	 	 	 if	chunk	!=	""	{

			115	 	 	 	 	 result	=	result[0	:	len(result)+1]

			116	 	 	 	 	 result[len(result)-1]	=	chunk

			117	 	 	 	 	 chunk	=	""

			118	 	 	 	 }

			119	 	 	 	 i++

			120	 	 	 case	isToken(b):

			121	 	 	 	 chunk	+=	string(b)

			122	 	 	 	 i++

			123	 	 	 case	b	==	'\n'	||	b	==	'\r':

			124	 	 	 	 i++

			125	 	 	 default:

			126	 	 	 	 chunk	+=	"?"

			127	 	 	 	 i++

			128	 	 	 }

			129	 	 }

			130	 	 if	chunk	!=	""	{

			131	 	 	 result	=	result[0	:	len(result)+1]

			132	 	 	 result[len(result)-1]	=	chunk

			133	 	 	 chunk	=	""

			134	 	 }

			135	 	 return	i,	result

			136	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/http/request.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	HTTP	Request	reading	and	parsing.

					6	

					7	 package	http

					8	

					9	 import	(

				10	 	 "bufio"

				11	 	 "bytes"

				12	 	 "crypto/tls"

				13	 	 "encoding/base64"

				14	 	 "errors"

				15	 	 "fmt"

				16	 	 "io"

				17	 	 "io/ioutil"

				18	 	 "mime"

				19	 	 "mime/multipart"

				20	 	 "net/textproto"

				21	 	 "net/url"

				22	 	 "strings"

				23)

				24	

				25	 const	(

				26	 	 maxValueLength			=	4096

				27	 	 maxHeaderLines			=	1024

				28	 	 chunkSize								=	4	<<	10		//	4	KB	chunks

				29	 	 defaultMaxMemory	=	32	<<	20	//	32	MB

				30)

				31	

				32	 //	ErrMissingFile	is	returned	by	FormFile	when	the	provided	file	field	name

				33	 //	is	either	not	present	in	the	request	or	not	a	file	field.

				34	 var	ErrMissingFile	=	errors.New("http:	no	such	file")

				35	

				36	 //	HTTP	request	parsing	errors.

				37	 type	ProtocolError	struct	{

				38	 	 ErrorString	string

				39	 }

				40	

				41	 func	(err	*ProtocolError)	Error()	string	{	return	err.ErrorString	}

				42	

				43	 var	(

				44	 	 ErrHeaderTooLong								=	&ProtocolError{"header	too	long"}

				45	 	 ErrShortBody												=	&ProtocolError{"entity	body	too	short"}

				46	 	 ErrNotSupported									=	&ProtocolError{"feature	not	supported"}

				47	 	 ErrUnexpectedTrailer				=	&ProtocolError{"trailer	header	without	chunked	transfer	encoding"}

				48	 	 ErrMissingContentLength	=	&ProtocolError{"missing	ContentLength	in	HEAD	response"}

				49	 	 ErrNotMultipart									=	&ProtocolError{"request	Content-Type	isn't	multipart/form-data"}

				50	 	 ErrMissingBoundary						=	&ProtocolError{"no	multipart	boundary	param	Content-Type"}

				51)

				52	

				53	 type	badStringError	struct	{

				54	 	 what	string

				55	 	 str		string

				56	 }

				57	

				58	 func	(e	*badStringError)	Error()	string	{	return	fmt.Sprintf("%s	%q",	e.what,	e.str)	}

				59	

				60	 //	Headers	that	Request.Write	handles	itself	and	should	be	skipped.

				61	 var	reqWriteExcludeHeader	=	map[string]bool{

				62	 	 "Host":														true,	//	not	in	Header	map	anyway

				63	 	 "User-Agent":								true,

				64	 	 "Content-Length":				true,

				65	 	 "Transfer-Encoding":	true,

				66	 	 "Trailer":											true,

				67	 }

				68	

				69	 //	A	Request	represents	an	HTTP	request	received	by	a	server

				70	 //	or	to	be	sent	by	a	client.

				71	 type	Request	struct	{

				72	 	 Method	string	//	GET,	POST,	PUT,	etc.

				73	 	 URL				*url.URL

				74	

				75	 	 //	The	protocol	version	for	incoming	requests.

				76	 	 //	Outgoing	requests	always	use	HTTP/1.1.

				77	 	 Proto						string	//	"HTTP/1.0"

				78	 	 ProtoMajor	int				//	1

				79	 	 ProtoMinor	int				//	0

				80	

				81	 	 //	A	header	maps	request	lines	to	their	values.

				82	 	 //	If	the	header	says

				83	 	 //

				84	 	 //	 accept-encoding:	gzip,	deflate

				85	 	 //	 Accept-Language:	en-us

				86	 	 //	 Connection:	keep-alive

				87	 	 //

				88	 	 //	then

				89	 	 //

				90	 	 //	 Header	=	map[string][]string{

				91	 	 //	 	 "Accept-Encoding":	{"gzip,	deflate"},

				92	 	 //	 	 "Accept-Language":	{"en-us"},

				93	 	 //	 	 "Connection":	{"keep-alive"},

				94	 	 //	 }

				95	 	 //

				96	 	 //	HTTP	defines	that	header	names	are	case-insensitive.

				97	 	 //	The	request	parser	implements	this	by	canonicalizing	the

				98	 	 //	name,	making	the	first	character	and	any	characters

				99	 	 //	following	a	hyphen	uppercase	and	the	rest	lowercase.

			100	 	 Header	Header

			101	

			102	 	 //	The	message	body.

			103	 	 Body	io.ReadCloser

			104	

			105	 	 //	ContentLength	records	the	length	of	the	associated	content.

			106	 	 //	The	value	-1	indicates	that	the	length	is	unknown.

			107	 	 //	Values	>=	0	indicate	that	the	given	number	of	bytes	may

			108	 	 //	be	read	from	Body.

			109	 	 //	For	outgoing	requests,	a	value	of	0	means	unknown	if	Body	is	not	nil.

			110	 	 ContentLength	int64

			111	

			112	 	 //	TransferEncoding	lists	the	transfer	encodings	from	outermost	to

			113	 	 //	innermost.	An	empty	list	denotes	the	"identity"	encoding.

			114	 	 //	TransferEncoding	can	usually	be	ignored;	chunked	encoding	is

			115	 	 //	automatically	added	and	removed	as	necessary	when	sending	and

			116	 	 //	receiving	requests.

			117	 	 TransferEncoding	[]string

			118	

			119	 	 //	Close	indicates	whether	to	close	the	connection	after

			120	 	 //	replying	to	this	request.

			121	 	 Close	bool

			122	

			123	 	 //	The	host	on	which	the	URL	is	sought.

			124	 	 //	Per	RFC	2616,	this	is	either	the	value	of	the	Host:	header

			125	 	 //	or	the	host	name	given	in	the	URL	itself.

			126	 	 Host	string

			127	

			128	 	 //	Form	contains	the	parsed	form	data,	including	both	the	URL

			129	 	 //	field's	query	parameters	and	the	POST	or	PUT	form	data.

			130	 	 //	This	field	is	only	available	after	ParseForm	is	called.

			131	 	 //	The	HTTP	client	ignores	Form	and	uses	Body	instead.

			132	 	 Form	url.Values

			133	

			134	 	 //	MultipartForm	is	the	parsed	multipart	form,	including	file	uploads.

			135	 	 //	This	field	is	only	available	after	ParseMultipartForm	is	called.

			136	 	 //	The	HTTP	client	ignores	MultipartForm	and	uses	Body	instead.

			137	 	 MultipartForm	*multipart.Form

			138	

			139	 	 //	Trailer	maps	trailer	keys	to	values.		Like	for	Header,	if	the

			140	 	 //	response	has	multiple	trailer	lines	with	the	same	key,	they	will	be

			141	 	 //	concatenated,	delimited	by	commas.

			142	 	 //	For	server	requests,	Trailer	is	only	populated	after	Body	has	been

			143	 	 //	closed	or	fully	consumed.

			144	 	 //	Trailer	support	is	only	partially	complete.

			145	 	 Trailer	Header

			146	

			147	 	 //	RemoteAddr	allows	HTTP	servers	and	other	software	to	record

			148	 	 //	the	network	address	that	sent	the	request,	usually	for

			149	 	 //	logging.	This	field	is	not	filled	in	by	ReadRequest	and

			150	 	 //	has	no	defined	format.	The	HTTP	server	in	this	package

			151	 	 //	sets	RemoteAddr	to	an	"IP:port"	address	before	invoking	a

			152	 	 //	handler.

			153	 	 //	This	field	is	ignored	by	the	HTTP	client.

			154	 	 RemoteAddr	string

			155	

			156	 	 //	RequestURI	is	the	unmodified	Request-URI	of	the

			157	 	 //	Request-Line	(RFC	2616,	Section	5.1)	as	sent	by	the	client

			158	 	 //	to	a	server.	Usually	the	URL	field	should	be	used	instead.

			159	 	 //	It	is	an	error	to	set	this	field	in	an	HTTP	client	request.

			160	 	 RequestURI	string

			161	

			162	 	 //	TLS	allows	HTTP	servers	and	other	software	to	record

			163	 	 //	information	about	the	TLS	connection	on	which	the	request

			164	 	 //	was	received.	This	field	is	not	filled	in	by	ReadRequest.

			165	 	 //	The	HTTP	server	in	this	package	sets	the	field	for

			166	 	 //	TLS-enabled	connections	before	invoking	a	handler;

			167	 	 //	otherwise	it	leaves	the	field	nil.

			168	 	 //	This	field	is	ignored	by	the	HTTP	client.

			169	 	 TLS	*tls.ConnectionState

			170	 }

			171	

			172	 //	ProtoAtLeast	returns	whether	the	HTTP	protocol	used

			173	 //	in	the	request	is	at	least	major.minor.

			174	 func	(r	*Request)	ProtoAtLeast(major,	minor	int)	bool	{

			175	 	 return	r.ProtoMajor	>	major	||

			176	 	 	 r.ProtoMajor	==	major	&&	r.ProtoMinor	>=	minor

			177	 }

			178	

			179	 //	UserAgent	returns	the	client's	User-Agent,	if	sent	in	the	request.

			180	 func	(r	*Request)	UserAgent()	string	{

			181	 	 return	r.Header.Get("User-Agent")

			182	 }

			183	

			184	 //	Cookies	parses	and	returns	the	HTTP	cookies	sent	with	the	request.

			185	 func	(r	*Request)	Cookies()	[]*Cookie	{

			186	 	 return	readCookies(r.Header,	"")

			187	 }

			188	

			189	 var	ErrNoCookie	=	errors.New("http:	named	cookie	not	present")

			190	

			191	 //	Cookie	returns	the	named	cookie	provided	in	the	request	or

			192	 //	ErrNoCookie	if	not	found.

			193	 func	(r	*Request)	Cookie(name	string)	(*Cookie,	error)	{

			194	 	 for	_,	c	:=	range	readCookies(r.Header,	name)	{

			195	 	 	 return	c,	nil

			196	 	 }

			197	 	 return	nil,	ErrNoCookie

			198	 }

			199	

			200	 //	AddCookie	adds	a	cookie	to	the	request.		Per	RFC	6265	section	5.4,

			201	 //	AddCookie	does	not	attach	more	than	one	Cookie	header	field.		That

			202	 //	means	all	cookies,	if	any,	are	written	into	the	same	line,

			203	 //	separated	by	semicolon.

			204	 func	(r	*Request)	AddCookie(c	*Cookie)	{

			205	 	 s	:=	fmt.Sprintf("%s=%s",	sanitizeName(c.Name),	sanitizeValue(c.Value))

			206	 	 if	c	:=	r.Header.Get("Cookie");	c	!=	""	{

			207	 	 	 r.Header.Set("Cookie",	c+";	"+s)

			208	 	 }	else	{

			209	 	 	 r.Header.Set("Cookie",	s)

			210	 	 }

			211	 }

			212	

			213	 //	Referer	returns	the	referring	URL,	if	sent	in	the	request.

			214	 //

			215	 //	Referer	is	misspelled	as	in	the	request	itself,	a	mistake	from	the

			216	 //	earliest	days	of	HTTP.		This	value	can	also	be	fetched	from	the

			217	 //	Header	map	as	Header["Referer"];	the	benefit	of	making	it	available

			218	 //	as	a	method	is	that	the	compiler	can	diagnose	programs	that	use	the

			219	 //	alternate	(correct	English)	spelling	req.Referrer()	but	cannot

			220	 //	diagnose	programs	that	use	Header["Referrer"].

			221	 func	(r	*Request)	Referer()	string	{

			222	 	 return	r.Header.Get("Referer")

			223	 }

			224	

			225	 //	multipartByReader	is	a	sentinel	value.

			226	 //	Its	presence	in	Request.MultipartForm	indicates	that	parsing	of	the	request

			227	 //	body	has	been	handed	off	to	a	MultipartReader	instead	of	ParseMultipartFrom.

			228	 var	multipartByReader	=	&multipart.Form{

			229	 	 Value:	make(map[string][]string),

			230	 	 File:		make(map[string][]*multipart.FileHeader),

			231	 }

			232	

			233	 //	MultipartReader	returns	a	MIME	multipart	reader	if	this	is	a

			234	 //	multipart/form-data	POST	request,	else	returns	nil	and	an	error.

			235	 //	Use	this	function	instead	of	ParseMultipartForm	to

			236	 //	process	the	request	body	as	a	stream.

			237	 func	(r	*Request)	MultipartReader()	(*multipart.Reader,	error)	{

			238	 	 if	r.MultipartForm	==	multipartByReader	{

			239	 	 	 return	nil,	errors.New("http:	MultipartReader	called	twice")

			240	 	 }

			241	 	 if	r.MultipartForm	!=	nil	{

			242	 	 	 return	nil,	errors.New("http:	multipart	handled	by	ParseMultipartForm")

			243	 	 }

			244	 	 r.MultipartForm	=	multipartByReader

			245	 	 return	r.multipartReader()

			246	 }

			247	

			248	 func	(r	*Request)	multipartReader()	(*multipart.Reader,	error)	{

			249	 	 v	:=	r.Header.Get("Content-Type")

			250	 	 if	v	==	""	{

			251	 	 	 return	nil,	ErrNotMultipart

			252	 	 }

			253	 	 d,	params,	err	:=	mime.ParseMediaType(v)

			254	 	 if	err	!=	nil	||	d	!=	"multipart/form-data"	{

			255	 	 	 return	nil,	ErrNotMultipart

			256	 	 }

			257	 	 boundary,	ok	:=	params["boundary"]

			258	 	 if	!ok	{

			259	 	 	 return	nil,	ErrMissingBoundary

			260	 	 }

			261	 	 return	multipart.NewReader(r.Body,	boundary),	nil

			262	 }

			263	

			264	 //	Return	value	if	nonempty,	def	otherwise.

			265	 func	valueOrDefault(value,	def	string)	string	{

			266	 	 if	value	!=	""	{

			267	 	 	 return	value

			268	 	 }

			269	 	 return	def

			270	 }

			271	

			272	 const	defaultUserAgent	=	"Go	http	package"

			273	

			274	 //	Write	writes	an	HTTP/1.1	request	--	header	and	body	--	in	wire	format.

			275	 //	This	method	consults	the	following	fields	of	the	request:

			276	 //	 Host

			277	 //	 URL

			278	 //	 Method	(defaults	to	"GET")

			279	 //	 Header

			280	 //	 ContentLength

			281	 //	 TransferEncoding

			282	 //	 Body

			283	 //

			284	 //	If	Body	is	present,	Content-Length	is	<=	0	and	TransferEncoding

			285	 //	hasn't	been	set	to	"identity",	Write	adds	"Transfer-Encoding:

			286	 //	chunked"	to	the	header.	Body	is	closed	after	it	is	sent.

			287	 func	(r	*Request)	Write(w	io.Writer)	error	{

			288	 	 return	r.write(w,	false,	nil)

			289	 }

			290	

			291	 //	WriteProxy	is	like	Write	but	writes	the	request	in	the	form

			292	 //	expected	by	an	HTTP	proxy.		In	particular,	WriteProxy	writes	the

			293	 //	initial	Request-URI	line	of	the	request	with	an	absolute	URI,	per

			294	 //	section	5.1.2	of	RFC	2616,	including	the	scheme	and	host.

			295	 //	In	either	case,	WriteProxy	also	writes	a	Host	header,	using

			296	 //	either	r.Host	or	r.URL.Host.

			297	 func	(r	*Request)	WriteProxy(w	io.Writer)	error	{

			298	 	 return	r.write(w,	true,	nil)

			299	 }

			300	

			301	 //	extraHeaders	may	be	nil

			302	 func	(req	*Request)	write(w	io.Writer,	usingProxy	bool,	extraHeaders	Header)	error	{

			303	 	 host	:=	req.Host

			304	 	 if	host	==	""	{

			305	 	 	 if	req.URL	==	nil	{

			306	 	 	 	 return	errors.New("http:	Request.Write	on	Request	with	no	Host	or	URL	set")

			307	 	 	 }

			308	 	 	 host	=	req.URL.Host

			309	 	 }

			310	

			311	 	 ruri	:=	req.URL.RequestURI()

			312	 	 if	usingProxy	&&	req.URL.Scheme	!=	""	&&	req.URL.Opaque	==	""	{

			313	 	 	 ruri	=	req.URL.Scheme	+	"://"	+	host	+	ruri

			314	 	 }	else	if	req.Method	==	"CONNECT"	&&	req.URL.Path	==	""	{

			315	 	 	 //	CONNECT	requests	normally	give	just	the	host	and	port,	not	a	full	URL.

			316	 	 	 ruri	=	host

			317	 	 }

			318	 	 //	TODO(bradfitz):	escape	at	least	newlines	in	ruri?

			319	

			320	 	 bw	:=	bufio.NewWriter(w)

			321	 	 fmt.Fprintf(bw,	"%s	%s	HTTP/1.1\r\n",	valueOrDefault(req.Method,	"GET"),	ruri)

			322	

			323	 	 //	Header	lines

			324	 	 fmt.Fprintf(bw,	"Host:	%s\r\n",	host)

			325	

			326	 	 //	Use	the	defaultUserAgent	unless	the	Header	contains	one,	which

			327	 	 //	may	be	blank	to	not	send	the	header.

			328	 	 userAgent	:=	defaultUserAgent

			329	 	 if	req.Header	!=	nil	{

			330	 	 	 if	ua	:=	req.Header["User-Agent"];	len(ua)	>	0	{

			331	 	 	 	 userAgent	=	ua[0]

			332	 	 	 }

			333	 	 }

			334	 	 if	userAgent	!=	""	{

			335	 	 	 fmt.Fprintf(bw,	"User-Agent:	%s\r\n",	userAgent)

			336	 	 }

			337	

			338	 	 //	Process	Body,ContentLength,Close,Trailer

			339	 	 tw,	err	:=	newTransferWriter(req)

			340	 	 if	err	!=	nil	{

			341	 	 	 return	err

			342	 	 }

			343	 	 err	=	tw.WriteHeader(bw)

			344	 	 if	err	!=	nil	{

			345	 	 	 return	err

			346	 	 }

			347	

			348	 	 //	TODO:	split	long	values?		(If	so,	should	share	code	with	Conn.Write)

			349	 	 err	=	req.Header.WriteSubset(bw,	reqWriteExcludeHeader)

			350	 	 if	err	!=	nil	{

			351	 	 	 return	err

			352	 	 }

			353	

			354	 	 if	extraHeaders	!=	nil	{

			355	 	 	 err	=	extraHeaders.Write(bw)

			356	 	 	 if	err	!=	nil	{

			357	 	 	 	 return	err

			358	 	 	 }

			359	 	 }

			360	

			361	 	 io.WriteString(bw,	"\r\n")

			362	

			363	 	 //	Write	body	and	trailer

			364	 	 err	=	tw.WriteBody(bw)

			365	 	 if	err	!=	nil	{

			366	 	 	 return	err

			367	 	 }

			368	

			369	 	 return	bw.Flush()

			370	 }

			371	

			372	 //	Convert	decimal	at	s[i:len(s)]	to	integer,

			373	 //	returning	value,	string	position	where	the	digits	stopped,

			374	 //	and	whether	there	was	a	valid	number	(digits,	not	too	big).

			375	 func	atoi(s	string,	i	int)	(n,	i1	int,	ok	bool)	{

			376	 	 const	Big	=	1000000

			377	 	 if	i	>=	len(s)	||	s[i]	<	'0'	||	s[i]	>	'9'	{

			378	 	 	 return	0,	0,	false

			379	 	 }

			380	 	 n	=	0

			381	 	 for	;	i	<	len(s)	&&	'0'	<=	s[i]	&&	s[i]	<=	'9';	i++	{

			382	 	 	 n	=	n*10	+	int(s[i]-'0')

			383	 	 	 if	n	>	Big	{

			384	 	 	 	 return	0,	0,	false

			385	 	 	 }

			386	 	 }

			387	 	 return	n,	i,	true

			388	 }

			389	

			390	 //	ParseHTTPVersion	parses	a	HTTP	version	string.

			391	 //	"HTTP/1.0"	returns	(1,	0,	true).

			392	 func	ParseHTTPVersion(vers	string)	(major,	minor	int,	ok	bool)	{

			393	 	 if	len(vers)	<	5	||	vers[0:5]	!=	"HTTP/"	{

			394	 	 	 return	0,	0,	false

			395	 	 }

			396	 	 major,	i,	ok	:=	atoi(vers,	5)

			397	 	 if	!ok	||	i	>=	len(vers)	||	vers[i]	!=	'.'	{

			398	 	 	 return	0,	0,	false

			399	 	 }

			400	 	 minor,	i,	ok	=	atoi(vers,	i+1)

			401	 	 if	!ok	||	i	!=	len(vers)	{

			402	 	 	 return	0,	0,	false

			403	 	 }

			404	 	 return	major,	minor,	true

			405	 }

			406	

			407	 //	NewRequest	returns	a	new	Request	given	a	method,	URL,	and	optional	body.

			408	 func	NewRequest(method,	urlStr	string,	body	io.Reader)	(*Request,	error)	{

			409	 	 u,	err	:=	url.Parse(urlStr)

			410	 	 if	err	!=	nil	{

			411	 	 	 return	nil,	err

			412	 	 }

			413	 	 rc,	ok	:=	body.(io.ReadCloser)

			414	 	 if	!ok	&&	body	!=	nil	{

			415	 	 	 rc	=	ioutil.NopCloser(body)

			416	 	 }

			417	 	 req	:=	&Request{

			418	 	 	 Method:					method,

			419	 	 	 URL:								u,

			420	 	 	 Proto:						"HTTP/1.1",

			421	 	 	 ProtoMajor:	1,

			422	 	 	 ProtoMinor:	1,

			423	 	 	 Header:					make(Header),

			424	 	 	 Body:							rc,

			425	 	 	 Host:							u.Host,

			426	 	 }

			427	 	 if	body	!=	nil	{

			428	 	 	 switch	v	:=	body.(type)	{

			429	 	 	 case	*strings.Reader:

			430	 	 	 	 req.ContentLength	=	int64(v.Len())

			431	 	 	 case	*bytes.Buffer:

			432	 	 	 	 req.ContentLength	=	int64(v.Len())

			433	 	 	 }

			434	 	 }

			435	

			436	 	 return	req,	nil

			437	 }

			438	

			439	 //	SetBasicAuth	sets	the	request's	Authorization	header	to	use	HTTP

			440	 //	Basic	Authentication	with	the	provided	username	and	password.

			441	 //

			442	 //	With	HTTP	Basic	Authentication	the	provided	username	and	password

			443	 //	are	not	encrypted.

			444	 func	(r	*Request)	SetBasicAuth(username,	password	string)	{

			445	 	 s	:=	username	+	":"	+	password

			446	 	 r.Header.Set("Authorization",	"Basic	"+base64.StdEncoding.EncodeToString([]byte(s)))

			447	 }

			448	

			449	 //	ReadRequest	reads	and	parses	a	request	from	b.

			450	 func	ReadRequest(b	*bufio.Reader)	(req	*Request,	err	error)	{

			451	

			452	 	 tp	:=	textproto.NewReader(b)

			453	 	 req	=	new(Request)

			454	

			455	 	 //	First	line:	GET	/index.html	HTTP/1.0

			456	 	 var	s	string

			457	 	 if	s,	err	=	tp.ReadLine();	err	!=	nil	{

			458	 	 	 return	nil,	err

			459	 	 }

			460	 	 defer	func()	{

			461	 	 	 if	err	==	io.EOF	{

			462	 	 	 	 err	=	io.ErrUnexpectedEOF

			463	 	 	 }

			464	 	 }()

			465	

			466	 	 var	f	[]string

			467	 	 if	f	=	strings.SplitN(s,	"	",	3);	len(f)	<	3	{

			468	 	 	 return	nil,	&badStringError{"malformed	HTTP	request",	s}

			469	 	 }

			470	 	 req.Method,	req.RequestURI,	req.Proto	=	f[0],	f[1],	f[2]

			471	 	 rawurl	:=	req.RequestURI

			472	 	 var	ok	bool

			473	 	 if	req.ProtoMajor,	req.ProtoMinor,	ok	=	ParseHTTPVersion(req.Proto);	!ok	{

			474	 	 	 return	nil,	&badStringError{"malformed	HTTP	version",	req.Proto}

			475	 	 }

			476	

			477	 	 //	CONNECT	requests	are	used	two	different	ways,	and	neither	uses	a	full	URL:

			478	 	 //	The	standard	use	is	to	tunnel	HTTPS	through	an	HTTP	proxy.

			479	 	 //	It	looks	like	"CONNECT	www.google.com:443	HTTP/1.1",	and	the	parameter	is

			480	 	 //	just	the	authority	section	of	a	URL.	This	information	should	go	in	req.URL.Host.

			481	 	 //

			482	 	 //	The	net/rpc	package	also	uses	CONNECT,	but	there	the	parameter	is	a	path

			483	 	 //	that	starts	with	a	slash.	It	can	be	parsed	with	the	regular	URL	parser,

			484	 	 //	and	the	path	will	end	up	in	req.URL.Path,	where	it	needs	to	be	in	order	for

			485	 	 //	RPC	to	work.

			486	 	 justAuthority	:=	req.Method	==	"CONNECT"	&&	!strings.HasPrefix(rawurl,	"/")

			487	 	 if	justAuthority	{

			488	 	 	 rawurl	=	"http://"	+	rawurl

			489	 	 }

			490	

			491	 	 if	req.URL,	err	=	url.ParseRequestURI(rawurl);	err	!=	nil	{

			492	 	 	 return	nil,	err

			493	 	 }

			494	

			495	 	 if	justAuthority	{

			496	 	 	 //	Strip	the	bogus	"http://"	back	off.

			497	 	 	 req.URL.Scheme	=	""

			498	 	 }

			499	

			500	 	 //	Subsequent	lines:	Key:	value.

			501	 	 mimeHeader,	err	:=	tp.ReadMIMEHeader()

			502	 	 if	err	!=	nil	{

			503	 	 	 return	nil,	err

			504	 	 }

			505	 	 req.Header	=	Header(mimeHeader)

			506	

			507	 	 //	RFC2616:	Must	treat

			508	 	 //	 GET	/index.html	HTTP/1.1

			509	 	 //	 Host:	www.google.com

			510	 	 //	and

			511	 	 //	 GET	http://www.google.com/index.html	HTTP/1.1

			512	 	 //	 Host:	doesntmatter

			513	 	 //	the	same.		In	the	second	case,	any	Host	line	is	ignored.

			514	 	 req.Host	=	req.URL.Host

			515	 	 if	req.Host	==	""	{

			516	 	 	 req.Host	=	req.Header.Get("Host")

			517	 	 }

			518	 	 req.Header.Del("Host")

			519	

			520	 	 fixPragmaCacheControl(req.Header)

			521	

			522	 	 //	TODO:	Parse	specific	header	values:

			523	 	 //	 Accept

			524	 	 //	 Accept-Encoding

			525	 	 //	 Accept-Language

			526	 	 //	 Authorization

			527	 	 //	 Cache-Control

			528	 	 //	 Connection

			529	 	 //	 Date

			530	 	 //	 Expect

			531	 	 //	 From

			532	 	 //	 If-Match

			533	 	 //	 If-Modified-Since

			534	 	 //	 If-None-Match

			535	 	 //	 If-Range

			536	 	 //	 If-Unmodified-Since

			537	 	 //	 Max-Forwards

			538	 	 //	 Proxy-Authorization

			539	 	 //	 Referer	[sic]

			540	 	 //	 TE	(transfer-codings)

			541	 	 //	 Trailer

			542	 	 //	 Transfer-Encoding

			543	 	 //	 Upgrade

			544	 	 //	 User-Agent

			545	 	 //	 Via

			546	 	 //	 Warning

			547	

			548	 	 err	=	readTransfer(req,	b)

			549	 	 if	err	!=	nil	{

			550	 	 	 return	nil,	err

			551	 	 }

			552	

			553	 	 return	req,	nil

			554	 }

			555	

			556	 //	MaxBytesReader	is	similar	to	io.LimitReader	but	is	intended	for

			557	 //	limiting	the	size	of	incoming	request	bodies.	In	contrast	to

			558	 //	io.LimitReader,	MaxBytesReader's	result	is	a	ReadCloser,	returns	a

			559	 //	non-EOF	error	for	a	Read	beyond	the	limit,	and	Closes	the

			560	 //	underlying	reader	when	its	Close	method	is	called.

			561	 //

			562	 //	MaxBytesReader	prevents	clients	from	accidentally	or	maliciously

			563	 //	sending	a	large	request	and	wasting	server	resources.

			564	 func	MaxBytesReader(w	ResponseWriter,	r	io.ReadCloser,	n	int64)	io.ReadCloser	{

			565	 	 return	&maxBytesReader{w:	w,	r:	r,	n:	n}

			566	 }

			567	

			568	 type	maxBytesReader	struct	{

			569	 	 w							ResponseWriter

			570	 	 r							io.ReadCloser	//	underlying	reader

			571	 	 n							int64									//	max	bytes	remaining

			572	 	 stopped	bool

			573	 }

			574	

			575	 func	(l	*maxBytesReader)	Read(p	[]byte)	(n	int,	err	error)	{

			576	 	 if	l.n	<=	0	{

			577	 	 	 if	!l.stopped	{

			578	 	 	 	 l.stopped	=	true

			579	 	 	 	 if	res,	ok	:=	l.w.(*response);	ok	{

			580	 	 	 	 	 res.requestTooLarge()

			581	 	 	 	 }

			582	 	 	 }

			583	 	 	 return	0,	errors.New("http:	request	body	too	large")

			584	 	 }

			585	 	 if	int64(len(p))	>	l.n	{

			586	 	 	 p	=	p[:l.n]

			587	 	 }

			588	 	 n,	err	=	l.r.Read(p)

			589	 	 l.n	-=	int64(n)

			590	 	 return

			591	 }

			592	

			593	 func	(l	*maxBytesReader)	Close()	error	{

			594	 	 return	l.r.Close()

			595	 }

			596	

			597	 //	ParseForm	parses	the	raw	query	from	the	URL.

			598	 //

			599	 //	For	POST	or	PUT	requests,	it	also	parses	the	request	body	as	a	form.

			600	 //	If	the	request	Body's	size	has	not	already	been	limited	by	MaxBytesReader,

			601	 //	the	size	is	capped	at	10MB.

			602	 //

			603	 //	ParseMultipartForm	calls	ParseForm	automatically.

			604	 //	It	is	idempotent.

			605	 func	(r	*Request)	ParseForm()	(err	error)	{

			606	 	 if	r.Form	!=	nil	{

			607	 	 	 return

			608	 	 }

			609	 	 if	r.URL	!=	nil	{

			610	 	 	 r.Form,	err	=	url.ParseQuery(r.URL.RawQuery)

			611	 	 }

			612	 	 if	r.Method	==	"POST"	||	r.Method	==	"PUT"	{

			613	 	 	 if	r.Body	==	nil	{

			614	 	 	 	 return	errors.New("missing	form	body")

			615	 	 	 }

			616	 	 	 ct	:=	r.Header.Get("Content-Type")

			617	 	 	 ct,	_,	err	=	mime.ParseMediaType(ct)

			618	 	 	 switch	{

			619	 	 	 case	ct	==	"application/x-www-form-urlencoded":

			620	 	 	 	 var	reader	io.Reader	=	r.Body

			621	 	 	 	 maxFormSize	:=	int64(1<<63	-	1)

			622	 	 	 	 if	_,	ok	:=	r.Body.(*maxBytesReader);	!ok	{

			623	 	 	 	 	 maxFormSize	=	int64(10	<<	20)	

			624	 	 	 	 	 reader	=	io.LimitReader(r.Body,	maxFormSize+1)

			625	 	 	 	 }

			626	 	 	 	 b,	e	:=	ioutil.ReadAll(reader)

			627	 	 	 	 if	e	!=	nil	{

			628	 	 	 	 	 if	err	==	nil	{

			629	 	 	 	 	 	 err	=	e

			630	 	 	 	 	 }

			631	 	 	 	 	 break

			632	 	 	 	 }

			633	 	 	 	 if	int64(len(b))	>	maxFormSize	{

			634	 	 	 	 	 return	errors.New("http:	POST	too	large")

			635	 	 	 	 }

			636	 	 	 	 var	newValues	url.Values

			637	 	 	 	 newValues,	e	=	url.ParseQuery(string(b))

			638	 	 	 	 if	err	==	nil	{

			639	 	 	 	 	 err	=	e

			640	 	 	 	 }

			641	 	 	 	 if	r.Form	==	nil	{

			642	 	 	 	 	 r.Form	=	make(url.Values)

			643	 	 	 	 }

			644	 	 	 	 //	Copy	values	into	r.Form.	TODO:	make	this	smoother.

			645	 	 	 	 for	k,	vs	:=	range	newValues	{

			646	 	 	 	 	 for	_,	value	:=	range	vs	{

			647	 	 	 	 	 	 r.Form.Add(k,	value)

			648	 	 	 	 	 }

			649	 	 	 	 }

			650	 	 	 case	ct	==	"multipart/form-data":

			651	 	 	 	 //	handled	by	ParseMultipartForm	(which	is	calling	us,	or	should	be)

			652	 	 	 	 //	TODO(bradfitz):	there	are	too	many	possible

			653	 	 	 	 //	orders	to	call	too	many	functions	here.

			654	 	 	 	 //	Clean	this	up	and	write	more	tests.

			655	 	 	 	 //	request_test.go	contains	the	start	of	this,

			656	 	 	 	 //	in	TestRequestMultipartCallOrder.

			657	 	 	 }

			658	 	 }

			659	 	 return	err

			660	 }

			661	

			662	 //	ParseMultipartForm	parses	a	request	body	as	multipart/form-data.

			663	 //	The	whole	request	body	is	parsed	and	up	to	a	total	of	maxMemory	bytes	of

			664	 //	its	file	parts	are	stored	in	memory,	with	the	remainder	stored	on

			665	 //	disk	in	temporary	files.

			666	 //	ParseMultipartForm	calls	ParseForm	if	necessary.

			667	 //	After	one	call	to	ParseMultipartForm,	subsequent	calls	have	no	effect.

			668	 func	(r	*Request)	ParseMultipartForm(maxMemory	int64)	error	{

			669	 	 if	r.MultipartForm	==	multipartByReader	{

			670	 	 	 return	errors.New("http:	multipart	handled	by	MultipartReader")

			671	 	 }

			672	 	 if	r.Form	==	nil	{

			673	 	 	 err	:=	r.ParseForm()

			674	 	 	 if	err	!=	nil	{

			675	 	 	 	 return	err

			676	 	 	 }

			677	 	 }

			678	 	 if	r.MultipartForm	!=	nil	{

			679	 	 	 return	nil

			680	 	 }

			681	

			682	 	 mr,	err	:=	r.multipartReader()

			683	 	 if	err	==	ErrNotMultipart	{

			684	 	 	 return	nil

			685	 	 }	else	if	err	!=	nil	{

			686	 	 	 return	err

			687	 	 }

			688	

			689	 	 f,	err	:=	mr.ReadForm(maxMemory)

			690	 	 if	err	!=	nil	{

			691	 	 	 return	err

			692	 	 }

			693	 	 for	k,	v	:=	range	f.Value	{

			694	 	 	 r.Form[k]	=	append(r.Form[k],	v...)

			695	 	 }

			696	 	 r.MultipartForm	=	f

			697	

			698	 	 return	nil

			699	 }

			700	

			701	 //	FormValue	returns	the	first	value	for	the	named	component	of	the	query.

			702	 //	FormValue	calls	ParseMultipartForm	and	ParseForm	if	necessary.

			703	 func	(r	*Request)	FormValue(key	string)	string	{

			704	 	 if	r.Form	==	nil	{

			705	 	 	 r.ParseMultipartForm(defaultMaxMemory)

			706	 	 }

			707	 	 if	vs	:=	r.Form[key];	len(vs)	>	0	{

			708	 	 	 return	vs[0]

			709	 	 }

			710	 	 return	""

			711	 }

			712	

			713	 //	FormFile	returns	the	first	file	for	the	provided	form	key.

			714	 //	FormFile	calls	ParseMultipartForm	and	ParseForm	if	necessary.

			715	 func	(r	*Request)	FormFile(key	string)	(multipart.File,	*multipart.FileHeader,	error)	{

			716	 	 if	r.MultipartForm	==	multipartByReader	{

			717	 	 	 return	nil,	nil,	errors.New("http:	multipart	handled	by	MultipartReader")

			718	 	 }

			719	 	 if	r.MultipartForm	==	nil	{

			720	 	 	 err	:=	r.ParseMultipartForm(defaultMaxMemory)

			721	 	 	 if	err	!=	nil	{

			722	 	 	 	 return	nil,	nil,	err

			723	 	 	 }

			724	 	 }

			725	 	 if	r.MultipartForm	!=	nil	&&	r.MultipartForm.File	!=	nil	{

			726	 	 	 if	fhs	:=	r.MultipartForm.File[key];	len(fhs)	>	0	{

			727	 	 	 	 f,	err	:=	fhs[0].Open()

			728	 	 	 	 return	f,	fhs[0],	err

			729	 	 	 }

			730	 	 }

			731	 	 return	nil,	nil,	ErrMissingFile

			732	 }

			733	

			734	 func	(r	*Request)	expectsContinue()	bool	{

			735	 	 return	strings.ToLower(r.Header.Get("Expect"))	==	"100-continue"

			736	 }

			737	

			738	 func	(r	*Request)	wantsHttp10KeepAlive()	bool	{

			739	 	 if	r.ProtoMajor	!=	1	||	r.ProtoMinor	!=	0	{

			740	 	 	 return	false

			741	 	 }

			742	 	 return	strings.Contains(strings.ToLower(r.Header.Get("Connection")),	"keep-alive")

			743	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/response.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	HTTP	Response	reading	and	parsing.

					6	

					7	 package	http

					8	

					9	 import	(

				10	 	 "bufio"

				11	 	 "errors"

				12	 	 "io"

				13	 	 "net/textproto"

				14	 	 "net/url"

				15	 	 "strconv"

				16	 	 "strings"

				17)

				18	

				19	 var	respExcludeHeader	=	map[string]bool{

				20	 	 "Content-Length":				true,

				21	 	 "Transfer-Encoding":	true,

				22	 	 "Trailer":											true,

				23	 }

				24	

				25	 //	Response	represents	the	response	from	an	HTTP	request.

				26	 //

				27	 type	Response	struct	{

				28	 	 Status					string	//	e.g.	"200	OK"

				29	 	 StatusCode	int				//	e.g.	200

				30	 	 Proto						string	//	e.g.	"HTTP/1.0"

				31	 	 ProtoMajor	int				//	e.g.	1

				32	 	 ProtoMinor	int				//	e.g.	0

				33	

				34	 	 //	Header	maps	header	keys	to	values.		If	the	response	had	multiple

				35	 	 //	headers	with	the	same	key,	they	will	be	concatenated,	with	comma

				36	 	 //	delimiters.		(Section	4.2	of	RFC	2616	requires	that	multiple	headers

				37	 	 //	be	semantically	equivalent	to	a	comma-delimited	sequence.)	Values

				38	 	 //	duplicated	by	other	fields	in	this	struct	(e.g.,	ContentLength)	are

				39	 	 //	omitted	from	Header.

				40	 	 //

				41	 	 //	Keys	in	the	map	are	canonicalized	(see	CanonicalHeaderKey).

				42	 	 Header	Header

				43	

				44	 	 //	Body	represents	the	response	body.

				45	 	 //

				46	 	 //	The	http	Client	and	Transport	guarantee	that	Body	is	always

				47	 	 //	non-nil,	even	on	responses	without	a	body	or	responses	with

				48	 	 //	a	zero-lengthed	body.

				49	 	 Body	io.ReadCloser

				50	

				51	 	 //	ContentLength	records	the	length	of	the	associated	content.		The

				52	 	 //	value	-1	indicates	that	the	length	is	unknown.		Unless	RequestMethod

				53	 	 //	is	"HEAD",	values	>=	0	indicate	that	the	given	number	of	bytes	may

				54	 	 //	be	read	from	Body.

				55	 	 ContentLength	int64

				56	

				57	 	 //	Contains	transfer	encodings	from	outer-most	to	inner-most.	Value	is

				58	 	 //	nil,	means	that	"identity"	encoding	is	used.

				59	 	 TransferEncoding	[]string

				60	

				61	 	 //	Close	records	whether	the	header	directed	that	the	connection	be

				62	 	 //	closed	after	reading	Body.		The	value	is	advice	for	clients:	neither

				63	 	 //	ReadResponse	nor	Response.Write	ever	closes	a	connection.

				64	 	 Close	bool

				65	

				66	 	 //	Trailer	maps	trailer	keys	to	values,	in	the	same

				67	 	 //	format	as	the	header.

				68	 	 Trailer	Header

				69	

				70	 	 //	The	Request	that	was	sent	to	obtain	this	Response.

				71	 	 //	Request's	Body	is	nil	(having	already	been	consumed).

				72	 	 //	This	is	only	populated	for	Client	requests.

				73	 	 Request	*Request

				74	 }

				75	

				76	 //	Cookies	parses	and	returns	the	cookies	set	in	the	Set-Cookie	headers.

				77	 func	(r	*Response)	Cookies()	[]*Cookie	{

				78	 	 return	readSetCookies(r.Header)

				79	 }

				80	

				81	 var	ErrNoLocation	=	errors.New("http:	no	Location	header	in	response")

				82	

				83	 //	Location	returns	the	URL	of	the	response's	"Location"	header,

				84	 //	if	present.		Relative	redirects	are	resolved	relative	to

				85	 //	the	Response's	Request.		ErrNoLocation	is	returned	if	no

				86	 //	Location	header	is	present.

				87	 func	(r	*Response)	Location()	(*url.URL,	error)	{

				88	 	 lv	:=	r.Header.Get("Location")

				89	 	 if	lv	==	""	{

				90	 	 	 return	nil,	ErrNoLocation

				91	 	 }

				92	 	 if	r.Request	!=	nil	&&	r.Request.URL	!=	nil	{

				93	 	 	 return	r.Request.URL.Parse(lv)

				94	 	 }

				95	 	 return	url.Parse(lv)

				96	 }

				97	

				98	 //	ReadResponse	reads	and	returns	an	HTTP	response	from	r.		The

				99	 //	req	parameter	specifies	the	Request	that	corresponds	to

			100	 //	this	Response.		Clients	must	call	resp.Body.Close	when	finished

			101	 //	reading	resp.Body.		After	that	call,	clients	can	inspect

			102	 //	resp.Trailer	to	find	key/value	pairs	included	in	the	response

			103	 //	trailer.

			104	 func	ReadResponse(r	*bufio.Reader,	req	*Request)	(resp	*Response,	err	error)	{

			105	

			106	 	 tp	:=	textproto.NewReader(r)

			107	 	 resp	=	new(Response)

			108	

			109	 	 resp.Request	=	req

			110	 	 resp.Request.Method	=	strings.ToUpper(resp.Request.Method)

			111	

			112	 	 //	Parse	the	first	line	of	the	response.

			113	 	 line,	err	:=	tp.ReadLine()

			114	 	 if	err	!=	nil	{

			115	 	 	 if	err	==	io.EOF	{

			116	 	 	 	 err	=	io.ErrUnexpectedEOF

			117	 	 	 }

			118	 	 	 return	nil,	err

			119	 	 }

			120	 	 f	:=	strings.SplitN(line,	"	",	3)

			121	 	 if	len(f)	<	2	{

			122	 	 	 return	nil,	&badStringError{"malformed	HTTP	response",	line}

			123	 	 }

			124	 	 reasonPhrase	:=	""

			125	 	 if	len(f)	>	2	{

			126	 	 	 reasonPhrase	=	f[2]

			127	 	 }

			128	 	 resp.Status	=	f[1]	+	"	"	+	reasonPhrase

			129	 	 resp.StatusCode,	err	=	strconv.Atoi(f[1])

			130	 	 if	err	!=	nil	{

			131	 	 	 return	nil,	&badStringError{"malformed	HTTP	status	code",	f[1]}

			132	 	 }

			133	

			134	 	 resp.Proto	=	f[0]

			135	 	 var	ok	bool

			136	 	 if	resp.ProtoMajor,	resp.ProtoMinor,	ok	=	ParseHTTPVersion(resp.Proto);	!ok	{

			137	 	 	 return	nil,	&badStringError{"malformed	HTTP	version",	resp.Proto}

			138	 	 }

			139	

			140	 	 //	Parse	the	response	headers.

			141	 	 mimeHeader,	err	:=	tp.ReadMIMEHeader()

			142	 	 if	err	!=	nil	{

			143	 	 	 return	nil,	err

			144	 	 }

			145	 	 resp.Header	=	Header(mimeHeader)

			146	

			147	 	 fixPragmaCacheControl(resp.Header)

			148	

			149	 	 err	=	readTransfer(resp,	r)

			150	 	 if	err	!=	nil	{

			151	 	 	 return	nil,	err

			152	 	 }

			153	

			154	 	 return	resp,	nil

			155	 }

			156	

			157	 //	RFC2616:	Should	treat

			158	 //	 Pragma:	no-cache

			159	 //	like

			160	 //	 Cache-Control:	no-cache

			161	 func	fixPragmaCacheControl(header	Header)	{

			162	 	 if	hp,	ok	:=	header["Pragma"];	ok	&&	len(hp)	>	0	&&	hp[0]	==	"no-cache"	{

			163	 	 	 if	_,	presentcc	:=	header["Cache-Control"];	!presentcc	{

			164	 	 	 	 header["Cache-Control"]	=	[]string{"no-cache"}

			165	 	 	 }

			166	 	 }

			167	 }

			168	

			169	 //	ProtoAtLeast	returns	whether	the	HTTP	protocol	used

			170	 //	in	the	response	is	at	least	major.minor.

			171	 func	(r	*Response)	ProtoAtLeast(major,	minor	int)	bool	{

			172	 	 return	r.ProtoMajor	>	major	||

			173	 	 	 r.ProtoMajor	==	major	&&	r.ProtoMinor	>=	minor

			174	 }

			175	

			176	 //	Writes	the	response	(header,	body	and	trailer)	in	wire	format.	This	method

			177	 //	consults	the	following	fields	of	the	response:

			178	 //

			179	 //		StatusCode

			180	 //		ProtoMajor

			181	 //		ProtoMinor

			182	 //		RequestMethod

			183	 //		TransferEncoding

			184	 //		Trailer

			185	 //		Body

			186	 //		ContentLength

			187	 //		Header,	values	for	non-canonical	keys	will	have	unpredictable	behavior

			188	 //

			189	 func	(r	*Response)	Write(w	io.Writer)	error	{

			190	

			191	 	 //	RequestMethod	should	be	upper-case

			192	 	 if	r.Request	!=	nil	{

			193	 	 	 r.Request.Method	=	strings.ToUpper(r.Request.Method)

			194	 	 }

			195	

			196	 	 //	Status	line

			197	 	 text	:=	r.Status

			198	 	 if	text	==	""	{

			199	 	 	 var	ok	bool

			200	 	 	 text,	ok	=	statusText[r.StatusCode]

			201	 	 	 if	!ok	{

			202	 	 	 	 text	=	"status	code	"	+	strconv.Itoa(r.StatusCode)

			203	 	 	 }

			204	 	 }

			205	 	 io.WriteString(w,	"HTTP/"+strconv.Itoa(r.ProtoMajor)+".")

			206	 	 io.WriteString(w,	strconv.Itoa(r.ProtoMinor)+"	")

			207	 	 io.WriteString(w,	strconv.Itoa(r.StatusCode)+"	"+text+"\r\n")

			208	

			209	 	 //	Process	Body,ContentLength,Close,Trailer

			210	 	 tw,	err	:=	newTransferWriter(r)

			211	 	 if	err	!=	nil	{

			212	 	 	 return	err

			213	 	 }

			214	 	 err	=	tw.WriteHeader(w)

			215	 	 if	err	!=	nil	{

			216	 	 	 return	err

			217	 	 }

			218	

			219	 	 //	Rest	of	header

			220	 	 err	=	r.Header.WriteSubset(w,	respExcludeHeader)

			221	 	 if	err	!=	nil	{

			222	 	 	 return	err

			223	 	 }

			224	

			225	 	 //	End-of-header

			226	 	 io.WriteString(w,	"\r\n")

			227	

			228	 	 //	Write	body	and	trailer

			229	 	 err	=	tw.WriteBody(w)

			230	 	 if	err	!=	nil	{

			231	 	 	 return	err

			232	 	 }

			233	

			234	 	 //	Success

			235	 	 return	nil

			236	 }

Build	version	go1.0.1.

Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/http/server.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	HTTP	server.		See	RFC	2616.

					6	

					7	 //	TODO(rsc):

					8	 //	 logging

					9	

				10	 package	http

				11	

				12	 import	(

				13	 	 "bufio"

				14	 	 "bytes"

				15	 	 "crypto/tls"

				16	 	 "errors"

				17	 	 "fmt"

				18	 	 "io"

				19	 	 "io/ioutil"

				20	 	 "log"

				21	 	 "net"

				22	 	 "net/url"

				23	 	 "path"

				24	 	 "runtime/debug"

				25	 	 "strconv"

				26	 	 "strings"

				27	 	 "sync"

				28	 	 "time"

				29)

				30	

				31	 //	Errors	introduced	by	the	HTTP	server.

				32	 var	(

				33	 	 ErrWriteAfterFlush	=	errors.New("Conn.Write	called	after	Flush")

				34	 	 ErrBodyNotAllowed		=	errors.New("http:	response	status	code	does	not	allow	body")

				35	 	 ErrHijacked								=	errors.New("Conn	has	been	hijacked")

				36	 	 ErrContentLength			=	errors.New("Conn.Write	wrote	more	than	the	declared	Content-Length")

				37)

				38	

				39	 //	Objects	implementing	the	Handler	interface	can	be

				40	 //	registered	to	serve	a	particular	path	or	subtree

				41	 //	in	the	HTTP	server.

				42	 //

				43	 //	ServeHTTP	should	write	reply	headers	and	data	to	the	ResponseWriter

				44	 //	and	then	return.		Returning	signals	that	the	request	is	finished

				45	 //	and	that	the	HTTP	server	can	move	on	to	the	next	request	on

				46	 //	the	connection.

				47	 type	Handler	interface	{

				48	 	 ServeHTTP(ResponseWriter,	*Request)

				49	 }

				50	

				51	 //	A	ResponseWriter	interface	is	used	by	an	HTTP	handler	to

				52	 //	construct	an	HTTP	response.

				53	 type	ResponseWriter	interface	{

				54	 	 //	Header	returns	the	header	map	that	will	be	sent	by	WriteHeader.

				55	 	 //	Changing	the	header	after	a	call	to	WriteHeader	(or	Write)	has

				56	 	 //	no	effect.

				57	 	 Header()	Header

				58	

				59	 	 //	Write	writes	the	data	to	the	connection	as	part	of	an	HTTP	reply.

				60	 	 //	If	WriteHeader	has	not	yet	been	called,	Write	calls	WriteHeader(http.StatusOK)

				61	 	 //	before	writing	the	data.		If	the	Header	does	not	contain	a

				62	 	 //	Content-Type	line,	Write	adds	a	Content-Type	set	to	the	result	of	passing

				63	 	 //	the	initial	512	bytes	of	written	data	to	DetectContentType.

				64	 	 Write([]byte)	(int,	error)

				65	

				66	 	 //	WriteHeader	sends	an	HTTP	response	header	with	status	code.

				67	 	 //	If	WriteHeader	is	not	called	explicitly,	the	first	call	to	Write

				68	 	 //	will	trigger	an	implicit	WriteHeader(http.StatusOK).

				69	 	 //	Thus	explicit	calls	to	WriteHeader	are	mainly	used	to

				70	 	 //	send	error	codes.

				71	 	 WriteHeader(int)

				72	 }

				73	

				74	 //	The	Flusher	interface	is	implemented	by	ResponseWriters	that	allow

				75	 //	an	HTTP	handler	to	flush	buffered	data	to	the	client.

				76	 //

				77	 //	Note	that	even	for	ResponseWriters	that	support	Flush,

				78	 //	if	the	client	is	connected	through	an	HTTP	proxy,

				79	 //	the	buffered	data	may	not	reach	the	client	until	the	response

				80	 //	completes.

				81	 type	Flusher	interface	{

				82	 	 //	Flush	sends	any	buffered	data	to	the	client.

				83	 	 Flush()

				84	 }

				85	

				86	 //	The	Hijacker	interface	is	implemented	by	ResponseWriters	that	allow

				87	 //	an	HTTP	handler	to	take	over	the	connection.

				88	 type	Hijacker	interface	{

				89	 	 //	Hijack	lets	the	caller	take	over	the	connection.

				90	 	 //	After	a	call	to	Hijack(),	the	HTTP	server	library

				91	 	 //	will	not	do	anything	else	with	the	connection.

				92	 	 //	It	becomes	the	caller's	responsibility	to	manage

				93	 	 //	and	close	the	connection.

				94	 	 Hijack()	(net.Conn,	*bufio.ReadWriter,	error)

				95	 }

				96	

				97	 //	A	conn	represents	the	server	side	of	an	HTTP	connection.

				98	 type	conn	struct	{

				99	 	 remoteAddr	string															//	network	address	of	remote	side

			100	 	 server					*Server														//	the	Server	on	which	the	connection	arrived

			101	 	 rwc								net.Conn													//	i/o	connection

			102	 	 lr									*io.LimitedReader				//	io.LimitReader(rwc)

			103	 	 buf								*bufio.ReadWriter				//	buffered(lr,rwc),	reading	from	bufio->limitReader->rwc

			104	 	 hijacked			bool																	//	connection	has	been	hijacked	by	handler

			105	 	 tlsState			*tls.ConnectionState	//	or	nil	when	not	using	TLS

			106	 	 body							[]byte

			107	 }

			108	

			109	 //	A	response	represents	the	server	side	of	an	HTTP	response.

			110	 type	response	struct	{

			111	 	 conn										*conn

			112	 	 req											*Request	//	request	for	this	response

			113	 	 chunking						bool					//	using	chunked	transfer	encoding	for	reply	body

			114	 	 wroteHeader			bool					//	reply	header	has	been	written

			115	 	 wroteContinue	bool					//	100	Continue	response	was	written

			116	 	 header								Header			//	reply	header	parameters

			117	 	 written							int64				//	number	of	bytes	written	in	body

			118	 	 contentLength	int64				//	explicitly-declared	Content-Length;	or	-1

			119	 	 status								int						//	status	code	passed	to	WriteHeader

			120	 	 needSniff					bool					//	need	to	sniff	to	find	Content-Type

			121	

			122	 	 //	close	connection	after	this	reply.		set	on	request	and

			123	 	 //	updated	after	response	from	handler	if	there's	a

			124	 	 //	"Connection:	keep-alive"	response	header	and	a

			125	 	 //	Content-Length.

			126	 	 closeAfterReply	bool

			127	

			128	 	 //	requestBodyLimitHit	is	set	by	requestTooLarge	when

			129	 	 //	maxBytesReader	hits	its	max	size.	It	is	checked	in

			130	 	 //	WriteHeader,	to	make	sure	we	don't	consume	the	the

			131	 	 //	remaining	request	body	to	try	to	advance	to	the	next	HTTP

			132	 	 //	request.	Instead,	when	this	is	set,	we	stop	doing

			133	 	 //	subsequent	requests	on	this	connection	and	stop	reading

			134	 	 //	input	from	it.

			135	 	 requestBodyLimitHit	bool

			136	 }

			137	

			138	 //	requestTooLarge	is	called	by	maxBytesReader	when	too	much	input	has

			139	 //	been	read	from	the	client.

			140	 func	(w	*response)	requestTooLarge()	{

			141	 	 w.closeAfterReply	=	true

			142	 	 w.requestBodyLimitHit	=	true

			143	 	 if	!w.wroteHeader	{

			144	 	 	 w.Header().Set("Connection",	"close")

			145	 	 }

			146	 }

			147	

			148	 type	writerOnly	struct	{

			149	 	 io.Writer

			150	 }

			151	

			152	 func	(w	*response)	ReadFrom(src	io.Reader)	(n	int64,	err	error)	{

			153	 	 //	Call	WriteHeader	before	checking	w.chunking	if	it	hasn't

			154	 	 //	been	called	yet,	since	WriteHeader	is	what	sets	w.chunking.

			155	 	 if	!w.wroteHeader	{

			156	 	 	 w.WriteHeader(StatusOK)

			157	 	 }

			158	 	 if	!w.chunking	&&	w.bodyAllowed()	&&	!w.needSniff	{

			159	 	 	 w.Flush()

			160	 	 	 if	rf,	ok	:=	w.conn.rwc.(io.ReaderFrom);	ok	{

			161	 	 	 	 n,	err	=	rf.ReadFrom(src)

			162	 	 	 	 w.written	+=	n

			163	 	 	 	 return

			164	 	 	 }

			165	 	 }

			166	 	 //	Fall	back	to	default	io.Copy	implementation.

			167	 	 //	Use	wrapper	to	hide	w.ReadFrom	from	io.Copy.

			168	 	 return	io.Copy(writerOnly{w},	src)

			169	 }

			170	

			171	 //	noLimit	is	an	effective	infinite	upper	bound	for	io.LimitedReader

			172	 const	noLimit	int64	=	(1	<<	63)	-	1

			173	

			174	 //	Create	new	connection	from	rwc.

			175	 func	(srv	*Server)	newConn(rwc	net.Conn)	(c	*conn,	err	error)	{

			176	 	 c	=	new(conn)

			177	 	 c.remoteAddr	=	rwc.RemoteAddr().String()

			178	 	 c.server	=	srv

			179	 	 c.rwc	=	rwc

			180	 	 c.body	=	make([]byte,	sniffLen)

			181	 	 c.lr	=	io.LimitReader(rwc,	noLimit).(*io.LimitedReader)

			182	 	 br	:=	bufio.NewReader(c.lr)

			183	 	 bw	:=	bufio.NewWriter(rwc)

			184	 	 c.buf	=	bufio.NewReadWriter(br,	bw)

			185	 	 return	c,	nil

			186	 }

			187	

			188	 //	DefaultMaxHeaderBytes	is	the	maximum	permitted	size	of	the	headers

			189	 //	in	an	HTTP	request.

			190	 //	This	can	be	overridden	by	setting	Server.MaxHeaderBytes.

			191	 const	DefaultMaxHeaderBytes	=	1	<<	20	//	1	MB

			192	

			193	 func	(srv	*Server)	maxHeaderBytes()	int	{

			194	 	 if	srv.MaxHeaderBytes	>	0	{

			195	 	 	 return	srv.MaxHeaderBytes

			196	 	 }

			197	 	 return	DefaultMaxHeaderBytes

			198	 }

			199	

			200	 //	wrapper	around	io.ReaderCloser	which	on	first	read,	sends	an

			201	 //	HTTP/1.1	100	Continue	header

			202	 type	expectContinueReader	struct	{

			203	 	 resp							*response

			204	 	 readCloser	io.ReadCloser

			205	 	 closed					bool

			206	 }

			207	

			208	 func	(ecr	*expectContinueReader)	Read(p	[]byte)	(n	int,	err	error)	{

			209	 	 if	ecr.closed	{

			210	 	 	 return	0,	errors.New("http:	Read	after	Close	on	request	Body")

			211	 	 }

			212	 	 if	!ecr.resp.wroteContinue	&&	!ecr.resp.conn.hijacked	{

			213	 	 	 ecr.resp.wroteContinue	=	true

			214	 	 	 io.WriteString(ecr.resp.conn.buf,	"HTTP/1.1	100	Continue\r\n\r\n")

			215	 	 	 ecr.resp.conn.buf.Flush()

			216	 	 }

			217	 	 return	ecr.readCloser.Read(p)

			218	 }

			219	

			220	 func	(ecr	*expectContinueReader)	Close()	error	{

			221	 	 ecr.closed	=	true

			222	 	 return	ecr.readCloser.Close()

			223	 }

			224	

			225	 //	TimeFormat	is	the	time	format	to	use	with

			226	 //	time.Parse	and	time.Time.Format	when	parsing

			227	 //	or	generating	times	in	HTTP	headers.

			228	 //	It	is	like	time.RFC1123	but	hard	codes	GMT	as	the	time	zone.

			229	 const	TimeFormat	=	"Mon,	02	Jan	2006	15:04:05	GMT"

			230	

			231	 var	errTooLarge	=	errors.New("http:	request	too	large")

			232	

			233	 //	Read	next	request	from	connection.

			234	 func	(c	*conn)	readRequest()	(w	*response,	err	error)	{

			235	 	 if	c.hijacked	{

			236	 	 	 return	nil,	ErrHijacked

			237	 	 }

			238	 	 c.lr.N	=	int64(c.server.maxHeaderBytes())	+	4096	/*	bufio	slop	*/

			239	 	 var	req	*Request

			240	 	 if	req,	err	=	ReadRequest(c.buf.Reader);	err	!=	nil	{

			241	 	 	 if	c.lr.N	==	0	{

			242	 	 	 	 return	nil,	errTooLarge

			243	 	 	 }

			244	 	 	 return	nil,	err

			245	 	 }

			246	 	 c.lr.N	=	noLimit

			247	

			248	 	 req.RemoteAddr	=	c.remoteAddr

			249	 	 req.TLS	=	c.tlsState

			250	

			251	 	 w	=	new(response)

			252	 	 w.conn	=	c

			253	 	 w.req	=	req

			254	 	 w.header	=	make(Header)

			255	 	 w.contentLength	=	-1

			256	 	 c.body	=	c.body[:0]

			257	 	 return	w,	nil

			258	 }

			259	

			260	 func	(w	*response)	Header()	Header	{

			261	 	 return	w.header

			262	 }

			263	

			264	 //	maxPostHandlerReadBytes	is	the	max	number	of	Request.Body	bytes	not

			265	 //	consumed	by	a	handler	that	the	server	will	read	from	the	client

			266	 //	in	order	to	keep	a	connection	alive.		If	there	are	more	bytes	than

			267	 //	this	then	the	server	to	be	paranoid	instead	sends	a	"Connection:

			268	 //	close"	response.

			269	 //

			270	 //	This	number	is	approximately	what	a	typical	machine's	TCP	buffer

			271	 //	size	is	anyway.		(if	we	have	the	bytes	on	the	machine,	we	might	as

			272	 //	well	read	them)

			273	 const	maxPostHandlerReadBytes	=	256	<<	10

			274	

			275	 func	(w	*response)	WriteHeader(code	int)	{

			276	 	 if	w.conn.hijacked	{

			277	 	 	 log.Print("http:	response.WriteHeader	on	hijacked	connection")

			278	 	 	 return

			279	 	 }

			280	 	 if	w.wroteHeader	{

			281	 	 	 log.Print("http:	multiple	response.WriteHeader	calls")

			282	 	 	 return

			283	 	 }

			284	 	 w.wroteHeader	=	true

			285	 	 w.status	=	code

			286	

			287	 	 //	Check	for	a	explicit	(and	valid)	Content-Length	header.

			288	 	 var	hasCL	bool

			289	 	 var	contentLength	int64

			290	 	 if	clenStr	:=	w.header.Get("Content-Length");	clenStr	!=	""	{

			291	 	 	 var	err	error

			292	 	 	 contentLength,	err	=	strconv.ParseInt(clenStr,	10,	64)

			293	 	 	 if	err	==	nil	{

			294	 	 	 	 hasCL	=	true

			295	 	 	 }	else	{

			296	 	 	 	 log.Printf("http:	invalid	Content-Length	of	%q	sent",	clenStr)

			297	 	 	 	 w.header.Del("Content-Length")

			298	 	 	 }

			299	 	 }

			300	

			301	 	 if	w.req.wantsHttp10KeepAlive()	&&	(w.req.Method	==	"HEAD"	||	hasCL)	{

			302	 	 	 _,	connectionHeaderSet	:=	w.header["Connection"]

			303	 	 	 if	!connectionHeaderSet	{

			304	 	 	 	 w.header.Set("Connection",	"keep-alive")

			305	 	 	 }

			306	 	 }	else	if	!w.req.ProtoAtLeast(1,	1)	{

			307	 	 	 //	Client	did	not	ask	to	keep	connection	alive.

			308	 	 	 w.closeAfterReply	=	true

			309	 	 }

			310	

			311	 	 if	w.header.Get("Connection")	==	"close"	{

			312	 	 	 w.closeAfterReply	=	true

			313	 	 }

			314	

			315	 	 //	Per	RFC	2616,	we	should	consume	the	request	body	before

			316	 	 //	replying,	if	the	handler	hasn't	already	done	so.		But	we

			317	 	 //	don't	want	to	do	an	unbounded	amount	of	reading	here	for

			318	 	 //	DoS	reasons,	so	we	only	try	up	to	a	threshold.

			319	 	 if	w.req.ContentLength	!=	0	&&	!w.closeAfterReply	{

			320	 	 	 ecr,	isExpecter	:=	w.req.Body.(*expectContinueReader)

			321	 	 	 if	!isExpecter	||	ecr.resp.wroteContinue	{

			322	 	 	 	 n,	_	:=	io.CopyN(ioutil.Discard,	w.req.Body,	maxPostHandlerReadBytes+1)

			323	 	 	 	 if	n	>=	maxPostHandlerReadBytes	{

			324	 	 	 	 	 w.requestTooLarge()

			325	 	 	 	 	 w.header.Set("Connection",	"close")

			326	 	 	 	 }	else	{

			327	 	 	 	 	 w.req.Body.Close()

			328	 	 	 	 }

			329	 	 	 }

			330	 	 }

			331	

			332	 	 if	code	==	StatusNotModified	{

			333	 	 	 //	Must	not	have	body.

			334	 	 	 for	_,	header	:=	range	[]string{"Content-Type",	"Content-Length",	"Transfer-Encoding"}	{

			335	 	 	 	 if	w.header.Get(header)	!=	""	{

			336	 	 	 	 	 //	TODO:	return	an	error	if	WriteHeader	gets	a	return	parameter

			337	 	 	 	 	 //	or	set	a	flag	on	w	to	make	future	Writes()	write	an	error	page?

			338	 	 	 	 	 //	for	now	just	log	and	drop	the	header.

			339	 	 	 	 	 log.Printf("http:	StatusNotModified	response	with	header	%q	defined",	header)

			340	 	 	 	 	 w.header.Del(header)

			341	 	 	 	 }

			342	 	 	 }

			343	 	 }	else	{

			344	 	 	 //	If	no	content	type,	apply	sniffing	algorithm	to	body.

			345	 	 	 if	w.header.Get("Content-Type")	==	""	&&	w.req.Method	!=	"HEAD"	{

			346	 	 	 	 w.needSniff	=	true

			347	 	 	 }

			348	 	 }

			349	

			350	 	 if	_,	ok	:=	w.header["Date"];	!ok	{

			351	 	 	 w.Header().Set("Date",	time.Now().UTC().Format(TimeFormat))

			352	 	 }

			353	

			354	 	 te	:=	w.header.Get("Transfer-Encoding")

			355	 	 hasTE	:=	te	!=	""

			356	 	 if	hasCL	&&	hasTE	&&	te	!=	"identity"	{

			357	 	 	 //	TODO:	return	an	error	if	WriteHeader	gets	a	return	parameter

			358	 	 	 //	For	now	just	ignore	the	Content-Length.

			359	 	 	 log.Printf("http:	WriteHeader	called	with	both	Transfer-Encoding	of	%q	and	a	Content-Length	of	%d",

			360	 	 	 	 te,	contentLength)

			361	 	 	 w.header.Del("Content-Length")

			362	 	 	 hasCL	=	false

			363	 	 }

			364	

			365	 	 if	w.req.Method	==	"HEAD"	||	code	==	StatusNotModified	{

			366	 	 	 //	do	nothing

			367	 	 }	else	if	hasCL	{

			368	 	 	 w.contentLength	=	contentLength

			369	 	 	 w.header.Del("Transfer-Encoding")

			370	 	 }	else	if	w.req.ProtoAtLeast(1,	1)	{

			371	 	 	 //	HTTP/1.1	or	greater:	use	chunked	transfer	encoding

			372	 	 	 //	to	avoid	closing	the	connection	at	EOF.

			373	 	 	 //	TODO:	this	blows	away	any	custom	or	stacked	Transfer-Encoding	they

			374	 	 	 //	might	have	set.		Deal	with	that	as	need	arises	once	we	have	a	valid

			375	 	 	 //	use	case.

			376	 	 	 w.chunking	=	true

			377	 	 	 w.header.Set("Transfer-Encoding",	"chunked")

			378	 	 }	else	{

			379	 	 	 //	HTTP	version	<	1.1:	cannot	do	chunked	transfer

			380	 	 	 //	encoding	and	we	don't	know	the	Content-Length	so

			381	 	 	 //	signal	EOF	by	closing	connection.

			382	 	 	 w.closeAfterReply	=	true

			383	 	 	 w.header.Del("Transfer-Encoding")	//	in	case	already	set

			384	 	 }

			385	

			386	 	 //	Cannot	use	Content-Length	with	non-identity	Transfer-Encoding.

			387	 	 if	w.chunking	{

			388	 	 	 w.header.Del("Content-Length")

			389	 	 }

			390	 	 if	!w.req.ProtoAtLeast(1,	0)	{

			391	 	 	 return

			392	 	 }

			393	 	 proto	:=	"HTTP/1.0"

			394	 	 if	w.req.ProtoAtLeast(1,	1)	{

			395	 	 	 proto	=	"HTTP/1.1"

			396	 	 }

			397	 	 codestring	:=	strconv.Itoa(code)

			398	 	 text,	ok	:=	statusText[code]

			399	 	 if	!ok	{

			400	 	 	 text	=	"status	code	"	+	codestring

			401	 	 }

			402	 	 io.WriteString(w.conn.buf,	proto+"	"+codestring+"	"+text+"\r\n")

			403	 	 w.header.Write(w.conn.buf)

			404	

			405	 	 //	If	we	need	to	sniff	the	body,	leave	the	header	open.

			406	 	 //	Otherwise,	end	it	here.

			407	 	 if	!w.needSniff	{

			408	 	 	 io.WriteString(w.conn.buf,	"\r\n")

			409	 	 }

			410	 }

			411	

			412	 //	sniff	uses	the	first	block	of	written	data,

			413	 //	stored	in	w.conn.body,	to	decide	the	Content-Type

			414	 //	for	the	HTTP	body.

			415	 func	(w	*response)	sniff()	{

			416	 	 if	!w.needSniff	{

			417	 	 	 return

			418	 	 }

			419	 	 w.needSniff	=	false

			420	

			421	 	 data	:=	w.conn.body

			422	 	 fmt.Fprintf(w.conn.buf,	"Content-Type:	%s\r\n\r\n",	DetectContentType(data))

			423	

			424	 	 if	len(data)	==	0	{

			425	 	 	 return

			426	 	 }

			427	 	 if	w.chunking	{

			428	 	 	 fmt.Fprintf(w.conn.buf,	"%x\r\n",	len(data))

			429	 	 }

			430	 	 _,	err	:=	w.conn.buf.Write(data)

			431	 	 if	w.chunking	&&	err	==	nil	{

			432	 	 	 io.WriteString(w.conn.buf,	"\r\n")

			433	 	 }

			434	 }

			435	

			436	 //	bodyAllowed	returns	true	if	a	Write	is	allowed	for	this	response	type.

			437	 //	It's	illegal	to	call	this	before	the	header	has	been	flushed.

			438	 func	(w	*response)	bodyAllowed()	bool	{

			439	 	 if	!w.wroteHeader	{

			440	 	 	 panic("")

			441	 	 }

			442	 	 return	w.status	!=	StatusNotModified	&&	w.req.Method	!=	"HEAD"

			443	 }

			444	

			445	 func	(w	*response)	Write(data	[]byte)	(n	int,	err	error)	{

			446	 	 if	w.conn.hijacked	{

			447	 	 	 log.Print("http:	response.Write	on	hijacked	connection")

			448	 	 	 return	0,	ErrHijacked

			449	 	 }

			450	 	 if	!w.wroteHeader	{

			451	 	 	 w.WriteHeader(StatusOK)

			452	 	 }

			453	 	 if	len(data)	==	0	{

			454	 	 	 return	0,	nil

			455	 	 }

			456	 	 if	!w.bodyAllowed()	{

			457	 	 	 return	0,	ErrBodyNotAllowed

			458	 	 }

			459	

			460	 	 w.written	+=	int64(len(data))	//	ignoring	errors,	for	errorKludge

			461	 	 if	w.contentLength	!=	-1	&&	w.written	>	w.contentLength	{

			462	 	 	 return	0,	ErrContentLength

			463	 	 }

			464	

			465	 	 var	m	int

			466	 	 if	w.needSniff	{

			467	 	 	 //	We	need	to	sniff	the	beginning	of	the	output	to

			468	 	 	 //	determine	the	content	type.		Accumulate	the

			469	 	 	 //	initial	writes	in	w.conn.body.

			470	 	 	 //	Cap	m	so	that	append	won't	allocate.

			471	 	 	 m	=	cap(w.conn.body)	-	len(w.conn.body)

			472	 	 	 if	m	>	len(data)	{

			473	 	 	 	 m	=	len(data)

			474	 	 	 }

			475	 	 	 w.conn.body	=	append(w.conn.body,	data[:m]...)

			476	 	 	 data	=	data[m:]

			477	 	 	 if	len(data)	==	0	{

			478	 	 	 	 //	Copied	everything	into	the	buffer.

			479	 	 	 	 //	Wait	for	next	write.

			480	 	 	 	 return	m,	nil

			481	 	 	 }

			482	

			483	 	 	 //	Filled	the	buffer;	more	data	remains.

			484	 	 	 //	Sniff	the	content	(flushes	the	buffer)

			485	 	 	 //	and	then	proceed	with	the	remainder

			486	 	 	 //	of	the	data	as	a	normal	Write.

			487	 	 	 //	Calling	sniff	clears	needSniff.

			488	 	 	 w.sniff()

			489	 	 }

			490	

			491	 	 //	TODO(rsc):	if	chunking	happened	after	the	buffering,

			492	 	 //	then	there	would	be	fewer	chunk	headers.

			493	 	 //	On	the	other	hand,	it	would	make	hijacking	more	difficult.

			494	 	 if	w.chunking	{

			495	 	 	 fmt.Fprintf(w.conn.buf,	"%x\r\n",	len(data))	

			496	 	 }

			497	 	 n,	err	=	w.conn.buf.Write(data)

			498	 	 if	err	==	nil	&&	w.chunking	{

			499	 	 	 if	n	!=	len(data)	{

			500	 	 	 	 err	=	io.ErrShortWrite

			501	 	 	 }

			502	 	 	 if	err	==	nil	{

			503	 	 	 	 io.WriteString(w.conn.buf,	"\r\n")

			504	 	 	 }

			505	 	 }

			506	

			507	 	 return	m	+	n,	err

			508	 }

			509	

			510	 func	(w	*response)	finishRequest()	{

			511	 	 //	If	this	was	an	HTTP/1.0	request	with	keep-alive	and	we	sent	a	Content-Length

			512	 	 //	back,	we	can	make	this	a	keep-alive	response	...

			513	 	 if	w.req.wantsHttp10KeepAlive()	{

			514	 	 	 sentLength	:=	w.header.Get("Content-Length")	!=	""

			515	 	 	 if	sentLength	&&	w.header.Get("Connection")	==	"keep-alive"	{

			516	 	 	 	 w.closeAfterReply	=	false

			517	 	 	 }

			518	 	 }

			519	 	 if	!w.wroteHeader	{

			520	 	 	 w.WriteHeader(StatusOK)

			521	 	 }

			522	 	 if	w.needSniff	{

			523	 	 	 w.sniff()

			524	 	 }

			525	 	 if	w.chunking	{

			526	 	 	 io.WriteString(w.conn.buf,	"0\r\n")

			527	 	 	 //	trailer	key/value	pairs,	followed	by	blank	line

			528	 	 	 io.WriteString(w.conn.buf,	"\r\n")

			529	 	 }

			530	 	 w.conn.buf.Flush()

			531	 	 //	Close	the	body,	unless	we're	about	to	close	the	whole	TCP	connection

			532	 	 //	anyway.

			533	 	 if	!w.closeAfterReply	{

			534	 	 	 w.req.Body.Close()

			535	 	 }

			536	 	 if	w.req.MultipartForm	!=	nil	{

			537	 	 	 w.req.MultipartForm.RemoveAll()

			538	 	 }

			539	

			540	 	 if	w.contentLength	!=	-1	&&	w.contentLength	!=	w.written	{

			541	 	 	 //	Did	not	write	enough.	Avoid	getting	out	of	sync.

			542	 	 	 w.closeAfterReply	=	true

			543	 	 }

			544	 }

			545	

			546	 func	(w	*response)	Flush()	{

			547	 	 if	!w.wroteHeader	{

			548	 	 	 w.WriteHeader(StatusOK)

			549	 	 }

			550	 	 w.sniff()

			551	 	 w.conn.buf.Flush()

			552	 }

			553	

			554	 //	Close	the	connection.

			555	 func	(c	*conn)	close()	{

			556	 	 if	c.buf	!=	nil	{

			557	 	 	 c.buf.Flush()

			558	 	 	 c.buf	=	nil

			559	 	 }

			560	 	 if	c.rwc	!=	nil	{

			561	 	 	 c.rwc.Close()

			562	 	 	 c.rwc	=	nil

			563	 	 }

			564	 }

			565	

			566	 //	Serve	a	new	connection.

			567	 func	(c	*conn)	serve()	{

			568	 	 defer	func()	{

			569	 	 	 err	:=	recover()

			570	 	 	 if	err	==	nil	{

			571	 	 	 	 return

			572	 	 	 }

			573	

			574	 	 	 var	buf	bytes.Buffer

			575	 	 	 fmt.Fprintf(&buf,	"http:	panic	serving	%v:	%v\n",	c.remoteAddr,	err)

			576	 	 	 buf.Write(debug.Stack())

			577	 	 	 log.Print(buf.String())

			578	

			579	 	 	 if	c.rwc	!=	nil	{	//	may	be	nil	if	connection	hijacked

			580	 	 	 	 c.rwc.Close()

			581	 	 	 }

			582	 	 }()

			583	

			584	 	 if	tlsConn,	ok	:=	c.rwc.(*tls.Conn);	ok	{

			585	 	 	 if	err	:=	tlsConn.Handshake();	err	!=	nil	{

			586	 	 	 	 c.close()

			587	 	 	 	 return

			588	 	 	 }

			589	 	 	 c.tlsState	=	new(tls.ConnectionState)

			590	 	 	 *c.tlsState	=	tlsConn.ConnectionState()

			591	 	 }

			592	

			593	 	 for	{

			594	 	 	 w,	err	:=	c.readRequest()

			595	 	 	 if	err	!=	nil	{

			596	 	 	 	 msg	:=	"400	Bad	Request"

			597	 	 	 	 if	err	==	errTooLarge	{

			598	 	 	 	 	 //	Their	HTTP	client	may	or	may	not	be

			599	 	 	 	 	 //	able	to	read	this	if	we're

			600	 	 	 	 	 //	responding	to	them	and	hanging	up

			601	 	 	 	 	 //	while	they're	still	writing	their

			602	 	 	 	 	 //	request.		Undefined	behavior.

			603	 	 	 	 	 msg	=	"413	Request	Entity	Too	Large"

			604	 	 	 	 }	else	if	err	==	io.EOF	{

			605	 	 	 	 	 break	//	Don't	reply

			606	 	 	 	 }	else	if	neterr,	ok	:=	err.(net.Error);	ok	&&	neterr.Timeout()	{

			607	 	 	 	 	 break	//	Don't	reply

			608	 	 	 	 }

			609	 	 	 	 fmt.Fprintf(c.rwc,	"HTTP/1.1	%s\r\n\r\n",	msg)

			610	 	 	 	 break

			611	 	 	 }

			612	

			613	 	 	 //	Expect	100	Continue	support

			614	 	 	 req	:=	w.req

			615	 	 	 if	req.expectsContinue()	{

			616	 	 	 	 if	req.ProtoAtLeast(1,	1)	{

			617	 	 	 	 	 //	Wrap	the	Body	reader	with	one	that	replies	on	the	connection

			618	 	 	 	 	 req.Body	=	&expectContinueReader{readCloser:	req.Body,	resp:	w}

			619	 	 	 	 }

			620	 	 	 	 if	req.ContentLength	==	0	{

			621	 	 	 	 	 w.Header().Set("Connection",	"close")

			622	 	 	 	 	 w.WriteHeader(StatusBadRequest)

			623	 	 	 	 	 w.finishRequest()

			624	 	 	 	 	 break

			625	 	 	 	 }

			626	 	 	 	 req.Header.Del("Expect")

			627	 	 	 }	else	if	req.Header.Get("Expect")	!=	""	{

			628	 	 	 	 //	TODO(bradfitz):	let	ServeHTTP	handlers	handle

			629	 	 	 	 //	requests	with	non-standard	expectation[s]?	Seems

			630	 	 	 	 //	theoretical	at	best,	and	doesn't	fit	into	the

			631	 	 	 	 //	current	ServeHTTP	model	anyway.		We'd	need	to

			632	 	 	 	 //	make	the	ResponseWriter	an	optional

			633	 	 	 	 //	"ExpectReplier"	interface	or	something.

			634	 	 	 	 //

			635	 	 	 	 //	For	now	we'll	just	obey	RFC	2616	14.20	which	says

			636	 	 	 	 //	"If	a	server	receives	a	request	containing	an

			637	 	 	 	 //	Expect	field	that	includes	an	expectation-

			638	 	 	 	 //	extension	that	it	does	not	support,	it	MUST

			639	 	 	 	 //	respond	with	a	417	(Expectation	Failed)	status."

			640	 	 	 	 w.Header().Set("Connection",	"close")

			641	 	 	 	 w.WriteHeader(StatusExpectationFailed)

			642	 	 	 	 w.finishRequest()

			643	 	 	 	 break

			644	 	 	 }

			645	

			646	 	 	 handler	:=	c.server.Handler

			647	 	 	 if	handler	==	nil	{

			648	 	 	 	 handler	=	DefaultServeMux

			649	 	 	 }

			650	

			651	 	 	 //	HTTP	cannot	have	multiple	simultaneous	active	requests.[*]

			652	 	 	 //	Until	the	server	replies	to	this	request,	it	can't	read	another,

			653	 	 	 //	so	we	might	as	well	run	the	handler	in	this	goroutine.

			654	 	 	 //	[*]	Not	strictly	true:	HTTP	pipelining.		We	could	let	them	all	process

			655	 	 	 //	in	parallel	even	if	their	responses	need	to	be	serialized.

			656	 	 	 handler.ServeHTTP(w,	w.req)

			657	 	 	 if	c.hijacked	{

			658	 	 	 	 return

			659	 	 	 }

			660	 	 	 w.finishRequest()

			661	 	 	 if	w.closeAfterReply	{

			662	 	 	 	 break

			663	 	 	 }

			664	 	 }

			665	 	 c.close()

			666	 }

			667	

			668	 //	Hijack	implements	the	Hijacker.Hijack	method.	Our	response	is	both	a	ResponseWriter

			669	 //	and	a	Hijacker.

			670	 func	(w	*response)	Hijack()	(rwc	net.Conn,	buf	*bufio.ReadWriter,	err	error)	{

			671	 	 if	w.conn.hijacked	{

			672	 	 	 return	nil,	nil,	ErrHijacked

			673	 	 }

			674	 	 w.conn.hijacked	=	true

			675	 	 rwc	=	w.conn.rwc

			676	 	 buf	=	w.conn.buf

			677	 	 w.conn.rwc	=	nil

			678	 	 w.conn.buf	=	nil

			679	 	 return

			680	 }

			681	

			682	 //	The	HandlerFunc	type	is	an	adapter	to	allow	the	use	of

			683	 //	ordinary	functions	as	HTTP	handlers.		If	f	is	a	function

			684	 //	with	the	appropriate	signature,	HandlerFunc(f)	is	a

			685	 //	Handler	object	that	calls	f.

			686	 type	HandlerFunc	func(ResponseWriter,	*Request)

			687	

			688	 //	ServeHTTP	calls	f(w,	r).

			689	 func	(f	HandlerFunc)	ServeHTTP(w	ResponseWriter,	r	*Request)	{

			690	 	 f(w,	r)

			691	 }

			692	

			693	 //	Helper	handlers

			694	

			695	 //	Error	replies	to	the	request	with	the	specified	error	message	and	HTTP	code.

			696	 func	Error(w	ResponseWriter,	error	string,	code	int)	{

			697	 	 w.Header().Set("Content-Type",	"text/plain;	charset=utf-8")

			698	 	 w.WriteHeader(code)

			699	 	 fmt.Fprintln(w,	error)

			700	 }

			701	

			702	 //	NotFound	replies	to	the	request	with	an	HTTP	404	not	found	error.

			703	 func	NotFound(w	ResponseWriter,	r	*Request)	{	Error(w,	"404	page	not	found",	StatusNotFound)	}

			704	

			705	 //	NotFoundHandler	returns	a	simple	request	handler

			706	 //	that	replies	to	each	request	with	a	``404	page	not	found''	reply.

			707	 func	NotFoundHandler()	Handler	{	return	HandlerFunc(NotFound)	}

			708	

			709	 //	StripPrefix	returns	a	handler	that	serves	HTTP	requests

			710	 //	by	removing	the	given	prefix	from	the	request	URL's	Path

			711	 //	and	invoking	the	handler	h.	StripPrefix	handles	a

			712	 //	request	for	a	path	that	doesn't	begin	with	prefix	by

			713	 //	replying	with	an	HTTP	404	not	found	error.

			714	 func	StripPrefix(prefix	string,	h	Handler)	Handler	{

			715	 	 return	HandlerFunc(func(w	ResponseWriter,	r	*Request)	{

			716	 	 	 if	!strings.HasPrefix(r.URL.Path,	prefix)	{

			717	 	 	 	 NotFound(w,	r)

			718	 	 	 	 return

			719	 	 	 }

			720	 	 	 r.URL.Path	=	r.URL.Path[len(prefix):]

			721	 	 	 h.ServeHTTP(w,	r)

			722	 	 })

			723	 }

			724	

			725	 //	Redirect	replies	to	the	request	with	a	redirect	to	url,

			726	 //	which	may	be	a	path	relative	to	the	request	path.

			727	 func	Redirect(w	ResponseWriter,	r	*Request,	urlStr	string,	code	int)	{

			728	 	 if	u,	err	:=	url.Parse(urlStr);	err	==	nil	{

			729	 	 	 //	If	url	was	relative,	make	absolute	by

			730	 	 	 //	combining	with	request	path.

			731	 	 	 //	The	browser	would	probably	do	this	for	us,

			732	 	 	 //	but	doing	it	ourselves	is	more	reliable.

			733	

			734	 	 	 //	NOTE(rsc):	RFC	2616	says	that	the	Location

			735	 	 	 //	line	must	be	an	absolute	URI,	like

			736	 	 	 //	"http://www.google.com/redirect/",

			737	 	 	 //	not	a	path	like	"/redirect/".

			738	 	 	 //	Unfortunately,	we	don't	know	what	to

			739	 	 	 //	put	in	the	host	name	section	to	get	the

			740	 	 	 //	client	to	connect	to	us	again,	so	we	can't

			741	 	 	 //	know	the	right	absolute	URI	to	send	back.

			742	 	 	 //	Because	of	this	problem,	no	one	pays	attention

			743	 	 	 //	to	the	RFC;	they	all	send	back	just	a	new	path.

			744	 	 	 //	So	do	we.

			745	 	 	 oldpath	:=	r.URL.Path

			746	 	 	 if	oldpath	==	""	{	//	should	not	happen,	but	avoid	a	crash	if	it	does

			747	 	 	 	 oldpath	=	"/"

			748	 	 	 }

			749	 	 	 if	u.Scheme	==	""	{

			750	 	 	 	 //	no	leading	http://server

			751	 	 	 	 if	urlStr	==	""	||	urlStr[0]	!=	'/'	{

			752	 	 	 	 	 //	make	relative	path	absolute

			753	 	 	 	 	 olddir,	_	:=	path.Split(oldpath)

			754	 	 	 	 	 urlStr	=	olddir	+	urlStr

			755	 	 	 	 }

			756	

			757	 	 	 	 var	query	string

			758	 	 	 	 if	i	:=	strings.Index(urlStr,	"?");	i	!=	-1	{

			759	 	 	 	 	 urlStr,	query	=	urlStr[:i],	urlStr[i:]

			760	 	 	 	 }

			761	

			762	 	 	 	 //	clean	up	but	preserve	trailing	slash

			763	 	 	 	 trailing	:=	urlStr[len(urlStr)-1]	==	'/'

			764	 	 	 	 urlStr	=	path.Clean(urlStr)

			765	 	 	 	 if	trailing	&&	urlStr[len(urlStr)-1]	!=	'/'	{

			766	 	 	 	 	 urlStr	+=	"/"

			767	 	 	 	 }

			768	 	 	 	 urlStr	+=	query

			769	 	 	 }

			770	 	 }

			771	

			772	 	 w.Header().Set("Location",	urlStr)

			773	 	 w.WriteHeader(code)

			774	

			775	 	 //	RFC2616	recommends	that	a	short	note	"SHOULD"	be	included	in	the

			776	 	 //	response	because	older	user	agents	may	not	understand	301/307.

			777	 	 //	Shouldn't	send	the	response	for	POST	or	HEAD;	that	leaves	GET.

			778	 	 if	r.Method	==	"GET"	{

			779	 	 	 note	:=	""	+	statusText[code]	+	".\n"

			780	 	 	 fmt.Fprintln(w,	note)

			781	 	 }

			782	 }

			783	

			784	 var	htmlReplacer	=	strings.NewReplacer(

			785	 	 "&",	"&",

			786	 	 "<",	"<",

			787	 	 ">",	">",

			788	 	 //	"""	is	shorter	than	""".

			789	 	 `"`,	""",

			790	 	 //	"'"	is	shorter	than	"'"	and	apos	was	not	in	HTML	until	HTML5.

			791	 	 "'",	"'",

			792)

			793	

			794	 func	htmlEscape(s	string)	string	{

			795	 	 return	htmlReplacer.Replace(s)

			796	 }

			797	

			798	 //	Redirect	to	a	fixed	URL

			799	 type	redirectHandler	struct	{

			800	 	 url		string

			801	 	 code	int

			802	 }

			803	

			804	 func	(rh	*redirectHandler)	ServeHTTP(w	ResponseWriter,	r	*Request)	{

			805	 	 Redirect(w,	r,	rh.url,	rh.code)

			806	 }

			807	

			808	 //	RedirectHandler	returns	a	request	handler	that	redirects

			809	 //	each	request	it	receives	to	the	given	url	using	the	given

			810	 //	status	code.

			811	 func	RedirectHandler(url	string,	code	int)	Handler	{

			812	 	 return	&redirectHandler{url,	code}

			813	 }

			814	

			815	 //	ServeMux	is	an	HTTP	request	multiplexer.

			816	 //	It	matches	the	URL	of	each	incoming	request	against	a	list	of	registered

			817	 //	patterns	and	calls	the	handler	for	the	pattern	that

			818	 //	most	closely	matches	the	URL.

			819	 //

			820	 //	Patterns	named	fixed,	rooted	paths,	like	"/favicon.ico",

			821	 //	or	rooted	subtrees,	like	"/images/"	(note	the	trailing	slash).

			822	 //	Longer	patterns	take	precedence	over	shorter	ones,	so	that

			823	 //	if	there	are	handlers	registered	for	both	"/images/"

			824	 //	and	"/images/thumbnails/",	the	latter	handler	will	be

			825	 //	called	for	paths	beginning	"/images/thumbnails/"	and	the

			826	 //	former	will	receiver	requests	for	any	other	paths	in	the

			827	 //	"/images/"	subtree.

			828	 //

			829	 //	Patterns	may	optionally	begin	with	a	host	name,	restricting	matches	to

			830	 //	URLs	on	that	host	only.		Host-specific	patterns	take	precedence	over

			831	 //	general	patterns,	so	that	a	handler	might	register	for	the	two	patterns

			832	 //	"/codesearch"	and	"codesearch.google.com/"	without	also	taking	over

			833	 //	requests	for	"http://www.google.com/".

			834	 //

			835	 //	ServeMux	also	takes	care	of	sanitizing	the	URL	request	path,

			836	 //	redirecting	any	request	containing	.	or	..	elements	to	an

			837	 //	equivalent	.-	and	..-free	URL.

			838	 type	ServeMux	struct	{

			839	 	 mu	sync.RWMutex

			840	 	 m		map[string]muxEntry

			841	 }

			842	

			843	 type	muxEntry	struct	{

			844	 	 explicit	bool

			845	 	 h								Handler

			846	 }

			847	

			848	 //	NewServeMux	allocates	and	returns	a	new	ServeMux.

			849	 func	NewServeMux()	*ServeMux	{	return	&ServeMux{m:	make(map[string]muxEntry)}	}

			850	

			851	 //	DefaultServeMux	is	the	default	ServeMux	used	by	Serve.

			852	 var	DefaultServeMux	=	NewServeMux()

			853	

			854	 //	Does	path	match	pattern?

			855	 func	pathMatch(pattern,	path	string)	bool	{

			856	 	 if	len(pattern)	==	0	{

			857	 	 	 //	should	not	happen

			858	 	 	 return	false

			859	 	 }

			860	 	 n	:=	len(pattern)

			861	 	 if	pattern[n-1]	!=	'/'	{

			862	 	 	 return	pattern	==	path

			863	 	 }

			864	 	 return	len(path)	>=	n	&&	path[0:n]	==	pattern

			865	 }

			866	

			867	 //	Return	the	canonical	path	for	p,	eliminating	.	and	..	elements.

			868	 func	cleanPath(p	string)	string	{

			869	 	 if	p	==	""	{

			870	 	 	 return	"/"

			871	 	 }

			872	 	 if	p[0]	!=	'/'	{

			873	 	 	 p	=	"/"	+	p

			874	 	 }

			875	 	 np	:=	path.Clean(p)

			876	 	 //	path.Clean	removes	trailing	slash	except	for	root;

			877	 	 //	put	the	trailing	slash	back	if	necessary.

			878	 	 if	p[len(p)-1]	==	'/'	&&	np	!=	"/"	{

			879	 	 	 np	+=	"/"

			880	 	 }

			881	 	 return	np

			882	 }

			883	

			884	 //	Find	a	handler	on	a	handler	map	given	a	path	string

			885	 //	Most-specific	(longest)	pattern	wins

			886	 func	(mux	*ServeMux)	match(path	string)	Handler	{

			887	 	 var	h	Handler

			888	 	 var	n	=	0

			889	 	 for	k,	v	:=	range	mux.m	{

			890	 	 	 if	!pathMatch(k,	path)	{

			891	 	 	 	 continue

			892	 	 	 }

			893	 	 	 if	h	==	nil	||	len(k)	>	n	{

			894	 	 	 	 n	=	len(k)

			895	 	 	 	 h	=	v.h

			896	 	 	 }

			897	 	 }

			898	 	 return	h

			899	 }

			900	

			901	 //	handler	returns	the	handler	to	use	for	the	request	r.

			902	 func	(mux	*ServeMux)	handler(r	*Request)	Handler	{

			903	 	 mux.mu.RLock()

			904	 	 defer	mux.mu.RUnlock()

			905	

			906	 	 //	Host-specific	pattern	takes	precedence	over	generic	ones

			907	 	 h	:=	mux.match(r.Host	+	r.URL.Path)

			908	 	 if	h	==	nil	{

			909	 	 	 h	=	mux.match(r.URL.Path)

			910	 	 }

			911	 	 if	h	==	nil	{

			912	 	 	 h	=	NotFoundHandler()

			913	 	 }

			914	 	 return	h

			915	 }

			916	

			917	 //	ServeHTTP	dispatches	the	request	to	the	handler	whose

			918	 //	pattern	most	closely	matches	the	request	URL.

			919	 func	(mux	*ServeMux)	ServeHTTP(w	ResponseWriter,	r	*Request)	{

			920	 	 //	Clean	path	to	canonical	form	and	redirect.

			921	 	 if	p	:=	cleanPath(r.URL.Path);	p	!=	r.URL.Path	{

			922	 	 	 w.Header().Set("Location",	p)

			923	 	 	 w.WriteHeader(StatusMovedPermanently)

			924	 	 	 return

			925	 	 }

			926	 	 mux.handler(r).ServeHTTP(w,	r)

			927	 }

			928	

			929	 //	Handle	registers	the	handler	for	the	given	pattern.

			930	 //	If	a	handler	already	exists	for	pattern,	Handle	panics.

			931	 func	(mux	*ServeMux)	Handle(pattern	string,	handler	Handler)	{

			932	 	 mux.mu.Lock()

			933	 	 defer	mux.mu.Unlock()

			934	

			935	 	 if	pattern	==	""	{

			936	 	 	 panic("http:	invalid	pattern	"	+	pattern)

			937	 	 }

			938	 	 if	handler	==	nil	{

			939	 	 	 panic("http:	nil	handler")

			940	 	 }

			941	 	 if	mux.m[pattern].explicit	{

			942	 	 	 panic("http:	multiple	registrations	for	"	+	pattern)

			943	 	 }

			944	

			945	 	 mux.m[pattern]	=	muxEntry{explicit:	true,	h:	handler}

			946	

			947	 	 //	Helpful	behavior:

			948	 	 //	If	pattern	is	/tree/,	insert	an	implicit	permanent	redirect	for	/tree.

			949	 	 //	It	can	be	overridden	by	an	explicit	registration.

			950	 	 n	:=	len(pattern)

			951	 	 if	n	>	0	&&	pattern[n-1]	==	'/'	&&	!mux.m[pattern[0:n-1]].explicit	{

			952	 	 	 mux.m[pattern[0:n-1]]	=	muxEntry{h:	RedirectHandler(pattern,	StatusMovedPermanently)}

			953	 	 }

			954	 }

			955	

			956	 //	HandleFunc	registers	the	handler	function	for	the	given	pattern.

			957	 func	(mux	*ServeMux)	HandleFunc(pattern	string,	handler	func(ResponseWriter,	*Request))	{

			958	 	 mux.Handle(pattern,	HandlerFunc(handler))

			959	 }

			960	

			961	 //	Handle	registers	the	handler	for	the	given	pattern

			962	 //	in	the	DefaultServeMux.

			963	 //	The	documentation	for	ServeMux	explains	how	patterns	are	matched.

			964	 func	Handle(pattern	string,	handler	Handler)	{	DefaultServeMux.Handle(pattern,	handler)	}

			965	

			966	 //	HandleFunc	registers	the	handler	function	for	the	given	pattern

			967	 //	in	the	DefaultServeMux.

			968	 //	The	documentation	for	ServeMux	explains	how	patterns	are	matched.

			969	 func	HandleFunc(pattern	string,	handler	func(ResponseWriter,	*Request))	{

			970	 	 DefaultServeMux.HandleFunc(pattern,	handler)

			971	 }

			972	

			973	 //	Serve	accepts	incoming	HTTP	connections	on	the	listener	l,

			974	 //	creating	a	new	service	thread	for	each.		The	service	threads

			975	 //	read	requests	and	then	call	handler	to	reply	to	them.

			976	 //	Handler	is	typically	nil,	in	which	case	the	DefaultServeMux	is	used.

			977	 func	Serve(l	net.Listener,	handler	Handler)	error	{

			978	 	 srv	:=	&Server{Handler:	handler}

			979	 	 return	srv.Serve(l)

			980	 }

			981	

			982	 //	A	Server	defines	parameters	for	running	an	HTTP	server.

			983	 type	Server	struct	{

			984	 	 Addr											string								//	TCP	address	to	listen	on,	":http"	if	empty

			985	 	 Handler								Handler							//	handler	to	invoke,	http.DefaultServeMux	if	nil

			986	 	 ReadTimeout				time.Duration	//	maximum	duration	before	timing	out	read	of	the	request

			987	 	 WriteTimeout			time.Duration	//	maximum	duration	before	timing	out	write	of	the	response

			988	 	 MaxHeaderBytes	int											//	maximum	size	of	request	headers,	DefaultMaxHeaderBytes	if	0

			989	 	 TLSConfig						*tls.Config			//	optional	TLS	config,	used	by	ListenAndServeTLS

			990	 }

			991	

			992	 //	ListenAndServe	listens	on	the	TCP	network	address	srv.Addr	and	then

			993	 //	calls	Serve	to	handle	requests	on	incoming	connections.		If

			994	 //	srv.Addr	is	blank,	":http"	is	used.

			995	 func	(srv	*Server)	ListenAndServe()	error	{

			996	 	 addr	:=	srv.Addr

			997	 	 if	addr	==	""	{

			998	 	 	 addr	=	":http"

			999	 	 }

		1000	 	 l,	e	:=	net.Listen("tcp",	addr)

		1001	 	 if	e	!=	nil	{

		1002	 	 	 return	e

		1003	 	 }

		1004	 	 return	srv.Serve(l)

		1005	 }

		1006	

		1007	 //	Serve	accepts	incoming	connections	on	the	Listener	l,	creating	a

		1008	 //	new	service	thread	for	each.		The	service	threads	read	requests	and

		1009	 //	then	call	srv.Handler	to	reply	to	them.

		1010	 func	(srv	*Server)	Serve(l	net.Listener)	error	{

		1011	 	 defer	l.Close()

		1012	 	 var	tempDelay	time.Duration	//	how	long	to	sleep	on	accept	failure

		1013	 	 for	{

		1014	 	 	 rw,	e	:=	l.Accept()

		1015	 	 	 if	e	!=	nil	{

		1016	 	 	 	 if	ne,	ok	:=	e.(net.Error);	ok	&&	ne.Temporary()	{

		1017	 	 	 	 	 if	tempDelay	==	0	{

		1018	 	 	 	 	 	 tempDelay	=	5	*	time.Millisecond

		1019	 	 	 	 	 }	else	{

		1020	 	 	 	 	 	 tempDelay	*=	2

		1021	 	 	 	 	 }

		1022	 	 	 	 	 if	max	:=	1	*	time.Second;	tempDelay	>	max	{

		1023	 	 	 	 	 	 tempDelay	=	max

		1024	 	 	 	 	 }

		1025	 	 	 	 	 log.Printf("http:	Accept	error:	%v;	retrying	in	%v",	e,	tempDelay)

		1026	 	 	 	 	 time.Sleep(tempDelay)

		1027	 	 	 	 	 continue

		1028	 	 	 	 }

		1029	 	 	 	 return	e

		1030	 	 	 }

		1031	 	 	 tempDelay	=	0

		1032	 	 	 if	srv.ReadTimeout	!=	0	{

		1033	 	 	 	 rw.SetReadDeadline(time.Now().Add(srv.ReadTimeout))

		1034	 	 	 }

		1035	 	 	 if	srv.WriteTimeout	!=	0	{

		1036	 	 	 	 rw.SetWriteDeadline(time.Now().Add(srv.WriteTimeout))

		1037	 	 	 }

		1038	 	 	 c,	err	:=	srv.newConn(rw)

		1039	 	 	 if	err	!=	nil	{

		1040	 	 	 	 continue

		1041	 	 	 }

		1042	 	 	 go	c.serve()

		1043	 	 }

		1044	 	 panic("not	reached")

		1045	 }

		1046	

		1047	 //	ListenAndServe	listens	on	the	TCP	network	address	addr

		1048	 //	and	then	calls	Serve	with	handler	to	handle	requests

		1049	 //	on	incoming	connections.		Handler	is	typically	nil,

		1050	 //	in	which	case	the	DefaultServeMux	is	used.

		1051	 //

		1052	 //	A	trivial	example	server	is:

		1053	 //

		1054	 //	 package	main

		1055	 //

		1056	 //	 import	(

		1057	 //	 	 "io"

		1058	 //	 	 "net/http"

		1059	 //	 	 "log"

		1060	 //)

		1061	 //

		1062	 //	 //	hello	world,	the	web	server

		1063	 //	 func	HelloServer(w	http.ResponseWriter,	req	*http.Request)	{

		1064	 //	 	 io.WriteString(w,	"hello,	world!\n")

		1065	 //	 }

		1066	 //

		1067	 //	 func	main()	{

		1068	 //	 	 http.HandleFunc("/hello",	HelloServer)

		1069	 //	 	 err	:=	http.ListenAndServe(":12345",	nil)

		1070	 //	 	 if	err	!=	nil	{

		1071	 //	 	 	 log.Fatal("ListenAndServe:	",	err)

		1072	 //	 	 }

		1073	 //	 }

		1074	 func	ListenAndServe(addr	string,	handler	Handler)	error	{

		1075	 	 server	:=	&Server{Addr:	addr,	Handler:	handler}

		1076	 	 return	server.ListenAndServe()

		1077	 }

		1078	

		1079	 //	ListenAndServeTLS	acts	identically	to	ListenAndServe,	except	that	it

		1080	 //	expects	HTTPS	connections.	Additionally,	files	containing	a	certificate	and

		1081	 //	matching	private	key	for	the	server	must	be	provided.	If	the	certificate

		1082	 //	is	signed	by	a	certificate	authority,	the	certFile	should	be	the	concatenation

		1083	 //	of	the	server's	certificate	followed	by	the	CA's	certificate.

		1084	 //

		1085	 //	A	trivial	example	server	is:

		1086	 //

		1087	 //	 import	(

		1088	 //	 	 "log"

		1089	 //	 	 "net/http"

		1090	 //)

		1091	 //

		1092	 //	 func	handler(w	http.ResponseWriter,	req	*http.Request)	{

		1093	 //	 	 w.Header().Set("Content-Type",	"text/plain")

		1094	 //	 	 w.Write([]byte("This	is	an	example	server.\n"))

		1095	 //	 }

		1096	 //

		1097	 //	 func	main()	{

		1098	 //	 	 http.HandleFunc("/",	handler)

		1099	 //	 	 log.Printf("About	to	listen	on	10443.	Go	to	https://127.0.0.1:10443/")

		1100	 //	 	 err	:=	http.ListenAndServeTLS(":10443",	"cert.pem",	"key.pem",	nil)

		1101	 //	 	 if	err	!=	nil	{

		1102	 //	 	 	 log.Fatal(err)

		1103	 //	 	 }

		1104	 //	 }

		1105	 //

		1106	 //	One	can	use	generate_cert.go	in	crypto/tls	to	generate	cert.pem	and	key.pem.

		1107	 func	ListenAndServeTLS(addr	string,	certFile	string,	keyFile	string,	handler	Handler)	error	{

		1108	 	 server	:=	&Server{Addr:	addr,	Handler:	handler}

		1109	 	 return	server.ListenAndServeTLS(certFile,	keyFile)

		1110	 }

		1111	

		1112	 //	ListenAndServeTLS	listens	on	the	TCP	network	address	srv.Addr	and

		1113	 //	then	calls	Serve	to	handle	requests	on	incoming	TLS	connections.

		1114	 //

		1115	 //	Filenames	containing	a	certificate	and	matching	private	key	for

		1116	 //	the	server	must	be	provided.	If	the	certificate	is	signed	by	a

		1117	 //	certificate	authority,	the	certFile	should	be	the	concatenation

		1118	 //	of	the	server's	certificate	followed	by	the	CA's	certificate.

		1119	 //

		1120	 //	If	srv.Addr	is	blank,	":https"	is	used.

		1121	 func	(srv	*Server)	ListenAndServeTLS(certFile,	keyFile	string)	error	{

		1122	 	 addr	:=	srv.Addr

		1123	 	 if	addr	==	""	{

		1124	 	 	 addr	=	":https"

		1125	 	 }

		1126	 	 config	:=	&tls.Config{}

		1127	 	 if	srv.TLSConfig	!=	nil	{

		1128	 	 	 *config	=	*srv.TLSConfig

		1129	 	 }

		1130	 	 if	config.NextProtos	==	nil	{

		1131	 	 	 config.NextProtos	=	[]string{"http/1.1"}

		1132	 	 }

		1133	

		1134	 	 var	err	error

		1135	 	 config.Certificates	=	make([]tls.Certificate,	1)

		1136	 	 config.Certificates[0],	err	=	tls.LoadX509KeyPair(certFile,	keyFile)

		1137	 	 if	err	!=	nil	{

		1138	 	 	 return	err

		1139	 	 }

		1140	

		1141	 	 conn,	err	:=	net.Listen("tcp",	addr)

		1142	 	 if	err	!=	nil	{

		1143	 	 	 return	err

		1144	 	 }

		1145	

		1146	 	 tlsListener	:=	tls.NewListener(conn,	config)

		1147	 	 return	srv.Serve(tlsListener)

		1148	 }

		1149	

		1150	 //	TimeoutHandler	returns	a	Handler	that	runs	h	with	the	given	time	limit.

		1151	 //

		1152	 //	The	new	Handler	calls	h.ServeHTTP	to	handle	each	request,	but	if	a

		1153	 //	call	runs	for	more	than	ns	nanoseconds,	the	handler	responds	with

		1154	 //	a	503	Service	Unavailable	error	and	the	given	message	in	its	body.

		1155	 //	(If	msg	is	empty,	a	suitable	default	message	will	be	sent.)

		1156	 //	After	such	a	timeout,	writes	by	h	to	its	ResponseWriter	will	return

		1157	 //	ErrHandlerTimeout.

		1158	 func	TimeoutHandler(h	Handler,	dt	time.Duration,	msg	string)	Handler	{

		1159	 	 f	:=	func()	<-chan	time.Time	{

		1160	 	 	 return	time.After(dt)

		1161	 	 }

		1162	 	 return	&timeoutHandler{h,	f,	msg}

		1163	 }

		1164	

		1165	 //	ErrHandlerTimeout	is	returned	on	ResponseWriter	Write	calls

		1166	 //	in	handlers	which	have	timed	out.

		1167	 var	ErrHandlerTimeout	=	errors.New("http:	Handler	timeout")

		1168	

		1169	 type	timeoutHandler	struct	{

		1170	 	 handler	Handler

		1171	 	 timeout	func()	<-chan	time.Time	//	returns	channel	producing	a	timeout

		1172	 	 body				string

		1173	 }

		1174	

		1175	 func	(h	*timeoutHandler)	errorBody()	string	{

		1176	 	 if	h.body	!=	""	{

		1177	 	 	 return	h.body

		1178	 	 }

		1179	 	 return	"<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"

		1180	 }

		1181	

		1182	 func	(h	*timeoutHandler)	ServeHTTP(w	ResponseWriter,	r	*Request)	{

		1183	 	 done	:=	make(chan	bool)

		1184	 	 tw	:=	&timeoutWriter{w:	w}

		1185	 	 go	func()	{

		1186	 	 	 h.handler.ServeHTTP(tw,	r)

		1187	 	 	 done	<-	true

		1188	 	 }()

		1189	 	 select	{

		1190	 	 case	<-done:

		1191	 	 	 return

		1192	 	 case	<-h.timeout():

		1193	 	 	 tw.mu.Lock()

		1194	 	 	 defer	tw.mu.Unlock()

		1195	 	 	 if	!tw.wroteHeader	{

		1196	 	 	 	 tw.w.WriteHeader(StatusServiceUnavailable)

		1197	 	 	 	 tw.w.Write([]byte(h.errorBody()))

		1198	 	 	 }

		1199	 	 	 tw.timedOut	=	true

		1200	 	 }

		1201	 }

		1202	

		1203	 type	timeoutWriter	struct	{

		1204	 	 w	ResponseWriter

		1205	

		1206	 	 mu										sync.Mutex

		1207	 	 timedOut				bool

		1208	 	 wroteHeader	bool

		1209	 }

		1210	

		1211	 func	(tw	*timeoutWriter)	Header()	Header	{

		1212	 	 return	tw.w.Header()

		1213	 }

		1214	

		1215	 func	(tw	*timeoutWriter)	Write(p	[]byte)	(int,	error)	{

		1216	 	 tw.mu.Lock()

		1217	 	 timedOut	:=	tw.timedOut

		1218	 	 tw.mu.Unlock()

		1219	 	 if	timedOut	{

		1220	 	 	 return	0,	ErrHandlerTimeout

		1221	 	 }

		1222	 	 return	tw.w.Write(p)

		1223	 }

		1224	

		1225	 func	(tw	*timeoutWriter)	WriteHeader(code	int)	{

		1226	 	 tw.mu.Lock()

		1227	 	 if	tw.timedOut	||	tw.wroteHeader	{

		1228	 	 	 tw.mu.Unlock()

		1229	 	 	 return

		1230	 	 }

		1231	 	 tw.wroteHeader	=	true

		1232	 	 tw.mu.Unlock()

		1233	 	 tw.w.WriteHeader(code)

		1234	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/http/sniff.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	http

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "encoding/binary"

				10)

				11	

				12	 //	The	algorithm	uses	at	most	sniffLen	bytes	to	make	its	decision.

				13	 const	sniffLen	=	512

				14	

				15	 //	DetectContentType	implements	the	algorithm	described

				16	 //	at	http://mimesniff.spec.whatwg.org/	to	determine	the

				17	 //	Content-Type	of	the	given	data.		It	considers	at	most	the

				18	 //	first	512	bytes	of	data.		DetectContentType	always	returns

				19	 //	a	valid	MIME	type:	if	it	cannot	determine	a	more	specific	one,	it

				20	 //	returns	"application/octet-stream".

				21	 func	DetectContentType(data	[]byte)	string	{

				22	 	 if	len(data)	>	sniffLen	{

				23	 	 	 data	=	data[:sniffLen]

				24	 	 }

				25	

				26	 	 //	Index	of	the	first	non-whitespace	byte	in	data.

				27	 	 firstNonWS	:=	0

				28	 	 for	;	firstNonWS	<	len(data)	&&	isWS(data[firstNonWS]);	firstNonWS++	{

				29	 	 }

				30	

				31	 	 for	_,	sig	:=	range	sniffSignatures	{

				32	 	 	 if	ct	:=	sig.match(data,	firstNonWS);	ct	!=	""	{

				33	 	 	 	 return	ct

				34	 	 	 }

				35	 	 }

				36	

				37	 	 return	"application/octet-stream"	//	fallback

				38	 }

				39	

				40	 func	isWS(b	byte)	bool	{

				41	 	 return	bytes.IndexByte([]byte("\t\n\x0C\r	"),	b)	!=	-1

				42	 }

				43	

				44	 type	sniffSig	interface	{

				45	 	 //	match	returns	the	MIME	type	of	the	data,	or	""	if	unknown.

				46	 	 match(data	[]byte,	firstNonWS	int)	string

				47	 }

				48	

				49	 //	Data	matching	the	table	in	section	6.

				50	 var	sniffSignatures	=	[]sniffSig{

				51	 	 htmlSig("<!DOCTYPE	HTML"),

				52	 	 htmlSig("<HTML"),

				53	 	 htmlSig("<HEAD"),

				54	 	 htmlSig("<SCRIPT"),

				55	 	 htmlSig("<IFRAME"),

				56	 	 htmlSig("<H1"),

				57	 	 htmlSig("<DIV"),

				58	 	 htmlSig("<FONT"),

				59	 	 htmlSig("<TABLE"),

				60	 	 htmlSig("<A"),

				61	 	 htmlSig("<STYLE"),

				62	 	 htmlSig("<TITLE"),

				63	 	 htmlSig("<B"),

				64	 	 htmlSig("<BODY"),

				65	 	 htmlSig("<BR"),

				66	 	 htmlSig("<P"),

				67	 	 htmlSig("<!--"),

				68	

				69	 	 &maskedSig{mask:	[]byte("\xFF\xFF\xFF\xFF\xFF"),	pat:	[]byte("<?xml"),	skipWS:	true,	ct:	"text/xml;	charset=utf-8"},

				70	

				71	 	 &exactSig{[]byte("%PDF-"),	"application/pdf"},

				72	 	 &exactSig{[]byte("%!PS-Adobe-"),	"application/postscript"},

				73	

				74	 	 //	UTF	BOMs.

				75	 	 &maskedSig{mask:	[]byte("\xFF\xFF\x00\x00"),	pat:	[]byte("\xFE\xFF\x00\x00"),	ct:	"text/plain;	charset=utf-16be"},

				76	 	 &maskedSig{mask:	[]byte("\xFF\xFF\x00\x00"),	pat:	[]byte("\xFF\xFE\x00\x00"),	ct:	"text/plain;	charset=utf-16le"},

				77	 	 &maskedSig{mask:	[]byte("\xFF\xFF\xFF\x00"),	pat:	[]byte("\xEF\xBB\xBF\x00"),	ct:	"text/plain;	charset=utf-8"},

				78	

				79	 	 &exactSig{[]byte("GIF87a"),	"image/gif"},

				80	 	 &exactSig{[]byte("GIF89a"),	"image/gif"},

				81	 	 &exactSig{[]byte("\x89\x50\x4E\x47\x0D\x0A\x1A\x0A"),	"image/png"},

				82	 	 &exactSig{[]byte("\xFF\xD8\xFF"),	"image/jpeg"},

				83	 	 &exactSig{[]byte("BM"),	"image/bmp"},

				84	 	 &maskedSig{

				85	 	 	 mask:	[]byte("\xFF\xFF\xFF\xFF\x00\x00\x00\x00\xFF\xFF\xFF\xFF\xFF\xFF"),

				86	 	 	 pat:		[]byte("RIFF\x00\x00\x00\x00WEBPVP"),

				87	 	 	 ct:			"image/webp",

				88	 	 },

				89	 	 &exactSig{[]byte("\x00\x00\x01\x00"),	"image/vnd.microsoft.icon"},

				90	 	 &exactSig{[]byte("\x4F\x67\x67\x53\x00"),	"application/ogg"},

				91	 	 &maskedSig{

				92	 	 	 mask:	[]byte("\xFF\xFF\xFF\xFF\x00\x00\x00\x00\xFF\xFF\xFF\xFF"),

				93	 	 	 pat:		[]byte("RIFF\x00\x00\x00\x00WAVE"),

				94	 	 	 ct:			"audio/wave",

				95	 	 },

				96	 	 &exactSig{[]byte("\x1A\x45\xDF\xA3"),	"video/webm"},

				97	 	 &exactSig{[]byte("\x52\x61\x72\x20\x1A\x07\x00"),	"application/x-rar-compressed"},

				98	 	 &exactSig{[]byte("\x50\x4B\x03\x04"),	"application/zip"},

				99	 	 &exactSig{[]byte("\x1F\x8B\x08"),	"application/x-gzip"},

			100	

			101	 	 //	TODO(dsymonds):	Re-enable	this	when	the	spec	is	sorted	w.r.t.	MP4.

			102	 	 //mp4Sig(0),

			103	

			104	 	 textSig(0),	//	should	be	last

			105	 }

			106	

			107	 type	exactSig	struct	{

			108	 	 sig	[]byte

			109	 	 ct		string

			110	 }

			111	

			112	 func	(e	*exactSig)	match(data	[]byte,	firstNonWS	int)	string	{

			113	 	 if	bytes.HasPrefix(data,	e.sig)	{

			114	 	 	 return	e.ct

			115	 	 }

			116	 	 return	""

			117	 }

			118	

			119	 type	maskedSig	struct	{

			120	 	 mask,	pat	[]byte

			121	 	 skipWS				bool

			122	 	 ct								string

			123	 }

			124	

			125	 func	(m	*maskedSig)	match(data	[]byte,	firstNonWS	int)	string	{

			126	 	 if	m.skipWS	{

			127	 	 	 data	=	data[firstNonWS:]

			128	 	 }

			129	 	 if	len(data)	<	len(m.mask)	{

			130	 	 	 return	""

			131	 	 }

			132	 	 for	i,	mask	:=	range	m.mask	{

			133	 	 	 db	:=	data[i]	&	mask

			134	 	 	 if	db	!=	m.pat[i]	{

			135	 	 	 	 return	""

			136	 	 	 }

			137	 	 }

			138	 	 return	m.ct

			139	 }

			140	

			141	 type	htmlSig	[]byte

			142	

			143	 func	(h	htmlSig)	match(data	[]byte,	firstNonWS	int)	string	{

			144	 	 data	=	data[firstNonWS:]

			145	 	 if	len(data)	<	len(h)+1	{

			146	 	 	 return	""

			147	 	 }

			148	 	 for	i,	b	:=	range	h	{

			149	 	 	 db	:=	data[i]

			150	 	 	 if	'A'	<=	b	&&	b	<=	'Z'	{

			151	 	 	 	 db	&=	0xDF

			152	 	 	 }

			153	 	 	 if	b	!=	db	{

			154	 	 	 	 return	""

			155	 	 	 }

			156	 	 }

			157	 	 //	Next	byte	must	be	space	or	right	angle	bracket.

			158	 	 if	db	:=	data[len(h)];	db	!=	'	'	&&	db	!=	'>'	{

			159	 	 	 return	""

			160	 	 }

			161	 	 return	"text/html;	charset=utf-8"

			162	 }

			163	

			164	 type	mp4Sig	int

			165	

			166	 func	(mp4Sig)	match(data	[]byte,	firstNonWS	int)	string	{

			167	 	 //	c.f.	section	6.1.

			168	 	 if	len(data)	<	8	{

			169	 	 	 return	""

			170	 	 }

			171	 	 boxSize	:=	int(binary.BigEndian.Uint32(data[:4]))

			172	 	 if	boxSize%4	!=	0	||	len(data)	<	boxSize	{

			173	 	 	 return	""

			174	 	 }

			175	 	 if	!bytes.Equal(data[4:8],	[]byte("ftyp"))	{

			176	 	 	 return	""

			177	 	 }

			178	 	 for	st	:=	8;	st	<	boxSize;	st	+=	4	{

			179	 	 	 if	st	==	12	{

			180	 	 	 	 //	minor	version	number

			181	 	 	 	 continue

			182	 	 	 }

			183	 	 	 seg	:=	string(data[st	:	st+3])

			184	 	 	 switch	seg	{

			185	 	 	 case	"mp4",	"iso",	"M4V",	"M4P",	"M4B":

			186	 	 	 	 return	"video/mp4"

			187	 	 	 	 /*	The	remainder	are	not	in	the	spec.

			188	 	 	 	 case	"M4A":

			189	 	 	 	 	 return	"audio/mp4"

			190	 	 	 	 case	"3gp":

			191	 	 	 	 	 return	"video/3gpp"

			192	 	 	 	 case	"jp2":

			193	 	 	 	 	 return	"image/jp2"	//	JPEG	2000

			194	 	 	 	 */

			195	 	 	 }

			196	 	 }

			197	 	 return	""

			198	 }

			199	

			200	 type	textSig	int

			201	

			202	 func	(textSig)	match(data	[]byte,	firstNonWS	int)	string	{

			203	 	 //	c.f.	section	5,	step	4.

			204	 	 for	_,	b	:=	range	data[firstNonWS:]	{

			205	 	 	 switch	{

			206	 	 	 case	0x00	<=	b	&&	b	<=	0x08,

			207	 	 	 	 b	==	0x0B,

			208	 	 	 	 0x0E	<=	b	&&	b	<=	0x1A,

			209	 	 	 	 0x1C	<=	b	&&	b	<=	0x1F:

			210	 	 	 	 return	""

			211	 	 	 }

			212	 	 }

			213	 	 return	"text/plain;	charset=utf-8"

			214	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/http/status.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	http

					6	

					7	 //	HTTP	status	codes,	defined	in	RFC	2616.

					8	 const	(

					9	 	 StatusContinue											=	100

				10	 	 StatusSwitchingProtocols	=	101

				11	

				12	 	 StatusOK																			=	200

				13	 	 StatusCreated														=	201

				14	 	 StatusAccepted													=	202

				15	 	 StatusNonAuthoritativeInfo	=	203

				16	 	 StatusNoContent												=	204

				17	 	 StatusResetContent									=	205

				18	 	 StatusPartialContent							=	206

				19	

				20	 	 StatusMultipleChoices			=	300

				21	 	 StatusMovedPermanently		=	301

				22	 	 StatusFound													=	302

				23	 	 StatusSeeOther										=	303

				24	 	 StatusNotModified							=	304

				25	 	 StatusUseProxy										=	305

				26	 	 StatusTemporaryRedirect	=	307

				27	

				28	 	 StatusBadRequest																			=	400

				29	 	 StatusUnauthorized																	=	401

				30	 	 StatusPaymentRequired														=	402

				31	 	 StatusForbidden																				=	403

				32	 	 StatusNotFound																					=	404

				33	 	 StatusMethodNotAllowed													=	405

				34	 	 StatusNotAcceptable																=	406

				35	 	 StatusProxyAuthRequired												=	407

				36	 	 StatusRequestTimeout															=	408

				37	 	 StatusConflict																					=	409

				38	 	 StatusGone																									=	410

				39	 	 StatusLengthRequired															=	411

				40	 	 StatusPreconditionFailed											=	412

				41	 	 StatusRequestEntityTooLarge								=	413

				42	 	 StatusRequestURITooLong												=	414

				43	 	 StatusUnsupportedMediaType									=	415

				44	 	 StatusRequestedRangeNotSatisfiable	=	416

				45	 	 StatusExpectationFailed												=	417

				46	 	 StatusTeapot																							=	418

				47	

				48	 	 StatusInternalServerError					=	500

				49	 	 StatusNotImplemented										=	501

				50	 	 StatusBadGateway														=	502

				51	 	 StatusServiceUnavailable						=	503

				52	 	 StatusGatewayTimeout										=	504

				53	 	 StatusHTTPVersionNotSupported	=	505

				54)

				55	

				56	 var	statusText	=	map[int]string{

				57	 	 StatusContinue:											"Continue",

				58	 	 StatusSwitchingProtocols:	"Switching	Protocols",

				59	

				60	 	 StatusOK:																			"OK",

				61	 	 StatusCreated:														"Created",

				62	 	 StatusAccepted:													"Accepted",

				63	 	 StatusNonAuthoritativeInfo:	"Non-Authoritative	Information",

				64	 	 StatusNoContent:												"No	Content",

				65	 	 StatusResetContent:									"Reset	Content",

				66	 	 StatusPartialContent:							"Partial	Content",

				67	

				68	 	 StatusMultipleChoices:			"Multiple	Choices",

				69	 	 StatusMovedPermanently:		"Moved	Permanently",

				70	 	 StatusFound:													"Found",

				71	 	 StatusSeeOther:										"See	Other",

				72	 	 StatusNotModified:							"Not	Modified",

				73	 	 StatusUseProxy:										"Use	Proxy",

				74	 	 StatusTemporaryRedirect:	"Temporary	Redirect",

				75	

				76	 	 StatusBadRequest:																			"Bad	Request",

				77	 	 StatusUnauthorized:																	"Unauthorized",

				78	 	 StatusPaymentRequired:														"Payment	Required",

				79	 	 StatusForbidden:																				"Forbidden",

				80	 	 StatusNotFound:																					"Not	Found",

				81	 	 StatusMethodNotAllowed:													"Method	Not	Allowed",

				82	 	 StatusNotAcceptable:																"Not	Acceptable",

				83	 	 StatusProxyAuthRequired:												"Proxy	Authentication	Required",

				84	 	 StatusRequestTimeout:															"Request	Timeout",

				85	 	 StatusConflict:																					"Conflict",

				86	 	 StatusGone:																									"Gone",

				87	 	 StatusLengthRequired:															"Length	Required",

				88	 	 StatusPreconditionFailed:											"Precondition	Failed",

				89	 	 StatusRequestEntityTooLarge:								"Request	Entity	Too	Large",

				90	 	 StatusRequestURITooLong:												"Request	URI	Too	Long",

				91	 	 StatusUnsupportedMediaType:									"Unsupported	Media	Type",

				92	 	 StatusRequestedRangeNotSatisfiable:	"Requested	Range	Not	Satisfiable",

				93	 	 StatusExpectationFailed:												"Expectation	Failed",

				94	 	 StatusTeapot:																							"I'm	a	teapot",

				95	

				96	 	 StatusInternalServerError:					"Internal	Server	Error",

				97	 	 StatusNotImplemented:										"Not	Implemented",

				98	 	 StatusBadGateway:														"Bad	Gateway",

				99	 	 StatusServiceUnavailable:						"Service	Unavailable",

			100	 	 StatusGatewayTimeout:										"Gateway	Timeout",

			101	 	 StatusHTTPVersionNotSupported:	"HTTP	Version	Not	Supported",

			102	 }

			103	

			104	 //	StatusText	returns	a	text	for	the	HTTP	status	code.	It	returns	the	empty

			105	 //	string	if	the	code	is	unknown.

			106	 func	StatusText(code	int)	string	{

			107	 	 return	statusText[code]

			108	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/transfer.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	http

					6	

					7	 import	(

					8	 	 "bufio"

					9	 	 "bytes"

				10	 	 "errors"

				11	 	 "fmt"

				12	 	 "io"

				13	 	 "io/ioutil"

				14	 	 "net/textproto"

				15	 	 "strconv"

				16	 	 "strings"

				17)

				18	

				19	 //	transferWriter	inspects	the	fields	of	a	user-supplied	Request	or	Response,

				20	 //	sanitizes	them	without	changing	the	user	object	and	provides	methods	for

				21	 //	writing	the	respective	header,	body	and	trailer	in	wire	format.

				22	 type	transferWriter	struct	{

				23	 	 Method											string

				24	 	 Body													io.Reader

				25	 	 BodyCloser							io.Closer

				26	 	 ResponseToHEAD			bool

				27	 	 ContentLength				int64	//	-1	means	unknown,	0	means	exactly	none

				28	 	 Close												bool

				29	 	 TransferEncoding	[]string

				30	 	 Trailer										Header

				31	 }

				32	

				33	 func	newTransferWriter(r	interface{})	(t	*transferWriter,	err	error)	{

				34	 	 t	=	&transferWriter{}

				35	

				36	 	 //	Extract	relevant	fields

				37	 	 atLeastHTTP11	:=	false

				38	 	 switch	rr	:=	r.(type)	{

				39	 	 case	*Request:

				40	 	 	 if	rr.ContentLength	!=	0	&&	rr.Body	==	nil	{

				41	 	 	 	 return	nil,	fmt.Errorf("http:	Request.ContentLength=%d	with	nil	Body",	rr.ContentLength)

				42	 	 	 }

				43	 	 	 t.Method	=	rr.Method

				44	 	 	 t.Body	=	rr.Body

				45	 	 	 t.BodyCloser	=	rr.Body

				46	 	 	 t.ContentLength	=	rr.ContentLength

				47	 	 	 t.Close	=	rr.Close

				48	 	 	 t.TransferEncoding	=	rr.TransferEncoding

				49	 	 	 t.Trailer	=	rr.Trailer

				50	 	 	 atLeastHTTP11	=	rr.ProtoAtLeast(1,	1)

				51	 	 	 if	t.Body	!=	nil	&&	len(t.TransferEncoding)	==	0	&&	atLeastHTTP11	{

				52	 	 	 	 if	t.ContentLength	==	0	{

				53	 	 	 	 	 //	Test	to	see	if	it's	actually	zero	or	just	unset.

				54	 	 	 	 	 var	buf	[1]byte

				55	 	 	 	 	 n,	_	:=	io.ReadFull(t.Body,	buf[:])

				56	 	 	 	 	 if	n	==	1	{

				57	 	 	 	 	 	 //	Oh,	guess	there	is	data	in	this	Body	Reader	after	all.

				58	 	 	 	 	 	 //	The	ContentLength	field	just	wasn't	set.

				59	 	 	 	 	 	 //	Stich	the	Body	back	together	again,	re-attaching	our

				60	 	 	 	 	 	 //	consumed	byte.

				61	 	 	 	 	 	 t.ContentLength	=	-1

				62	 	 	 	 	 	 t.Body	=	io.MultiReader(bytes.NewBuffer(buf[:]),	t.Body)

				63	 	 	 	 	 }	else	{

				64	 	 	 	 	 	 //	Body	is	actually	empty.

				65	 	 	 	 	 	 t.Body	=	nil

				66	 	 	 	 	 	 t.BodyCloser	=	nil

				67	 	 	 	 	 }

				68	 	 	 	 }

				69	 	 	 	 if	t.ContentLength	<	0	{

				70	 	 	 	 	 t.TransferEncoding	=	[]string{"chunked"}

				71	 	 	 	 }

				72	 	 	 }

				73	 	 case	*Response:

				74	 	 	 t.Method	=	rr.Request.Method

				75	 	 	 t.Body	=	rr.Body

				76	 	 	 t.BodyCloser	=	rr.Body

				77	 	 	 t.ContentLength	=	rr.ContentLength

				78	 	 	 t.Close	=	rr.Close

				79	 	 	 t.TransferEncoding	=	rr.TransferEncoding

				80	 	 	 t.Trailer	=	rr.Trailer

				81	 	 	 atLeastHTTP11	=	rr.ProtoAtLeast(1,	1)

				82	 	 	 t.ResponseToHEAD	=	noBodyExpected(rr.Request.Method)

				83	 	 }

				84	

				85	 	 //	Sanitize	Body,ContentLength,TransferEncoding

				86	 	 if	t.ResponseToHEAD	{

				87	 	 	 t.Body	=	nil

				88	 	 	 t.TransferEncoding	=	nil

				89	 	 	 //	ContentLength	is	expected	to	hold	Content-Length

				90	 	 	 if	t.ContentLength	<	0	{

				91	 	 	 	 return	nil,	ErrMissingContentLength

				92	 	 	 }

				93	 	 }	else	{

				94	 	 	 if	!atLeastHTTP11	||	t.Body	==	nil	{

				95	 	 	 	 t.TransferEncoding	=	nil

				96	 	 	 }

				97	 	 	 if	chunked(t.TransferEncoding)	{

				98	 	 	 	 t.ContentLength	=	-1

				99	 	 	 }	else	if	t.Body	==	nil	{	//	no	chunking,	no	body

			100	 	 	 	 t.ContentLength	=	0

			101	 	 	 }

			102	 	 }

			103	

			104	 	 //	Sanitize	Trailer

			105	 	 if	!chunked(t.TransferEncoding)	{

			106	 	 	 t.Trailer	=	nil

			107	 	 }

			108	

			109	 	 return	t,	nil

			110	 }

			111	

			112	 func	noBodyExpected(requestMethod	string)	bool	{

			113	 	 return	requestMethod	==	"HEAD"

			114	 }

			115	

			116	 func	(t	*transferWriter)	shouldSendContentLength()	bool	{

			117	 	 if	chunked(t.TransferEncoding)	{

			118	 	 	 return	false

			119	 	 }

			120	 	 if	t.ContentLength	>	0	{

			121	 	 	 return	true

			122	 	 }

			123	 	 if	t.ResponseToHEAD	{

			124	 	 	 return	true

			125	 	 }

			126	 	 //	Many	servers	expect	a	Content-Length	for	these	methods

			127	 	 if	t.Method	==	"POST"	||	t.Method	==	"PUT"	{

			128	 	 	 return	true

			129	 	 }

			130	 	 if	t.ContentLength	==	0	&&	isIdentity(t.TransferEncoding)	{

			131	 	 	 return	true

			132	 	 }

			133	

			134	 	 return	false

			135	 }

			136	

			137	 func	(t	*transferWriter)	WriteHeader(w	io.Writer)	(err	error)	{

			138	 	 if	t.Close	{

			139	 	 	 _,	err	=	io.WriteString(w,	"Connection:	close\r\n")

			140	 	 	 if	err	!=	nil	{

			141	 	 	 	 return

			142	 	 	 }

			143	 	 }

			144	

			145	 	 //	Write	Content-Length	and/or	Transfer-Encoding	whose	values	are	a

			146	 	 //	function	of	the	sanitized	field	triple	(Body,	ContentLength,

			147	 	 //	TransferEncoding)

			148	 	 if	t.shouldSendContentLength()	{

			149	 	 	 io.WriteString(w,	"Content-Length:	")

			150	 	 	 _,	err	=	io.WriteString(w,	strconv.FormatInt(t.ContentLength,	10)+"\r\n")

			151	 	 	 if	err	!=	nil	{

			152	 	 	 	 return

			153	 	 	 }

			154	 	 }	else	if	chunked(t.TransferEncoding)	{

			155	 	 	 _,	err	=	io.WriteString(w,	"Transfer-Encoding:	chunked\r\n")

			156	 	 	 if	err	!=	nil	{

			157	 	 	 	 return

			158	 	 	 }

			159	 	 }

			160	

			161	 	 //	Write	Trailer	header

			162	 	 if	t.Trailer	!=	nil	{

			163	 	 	 //	TODO:	At	some	point,	there	should	be	a	generic	mechanism	for

			164	 	 	 //	writing	long	headers,	using	HTTP	line	splitting

			165	 	 	 io.WriteString(w,	"Trailer:	")

			166	 	 	 needComma	:=	false

			167	 	 	 for	k	:=	range	t.Trailer	{

			168	 	 	 	 k	=	CanonicalHeaderKey(k)

			169	 	 	 	 switch	k	{

			170	 	 	 	 case	"Transfer-Encoding",	"Trailer",	"Content-Length":

			171	 	 	 	 	 return	&badStringError{"invalid	Trailer	key",	k}

			172	 	 	 	 }

			173	 	 	 	 if	needComma	{

			174	 	 	 	 	 io.WriteString(w,	",")

			175	 	 	 	 }

			176	 	 	 	 io.WriteString(w,	k)

			177	 	 	 	 needComma	=	true

			178	 	 	 }

			179	 	 	 _,	err	=	io.WriteString(w,	"\r\n")

			180	 	 }

			181	

			182	 	 return

			183	 }

			184	

			185	 func	(t	*transferWriter)	WriteBody(w	io.Writer)	(err	error)	{

			186	 	 var	ncopy	int64

			187	

			188	 	 //	Write	body

			189	 	 if	t.Body	!=	nil	{

			190	 	 	 if	chunked(t.TransferEncoding)	{

			191	 	 	 	 cw	:=	newChunkedWriter(w)

			192	 	 	 	 _,	err	=	io.Copy(cw,	t.Body)

			193	 	 	 	 if	err	==	nil	{

			194	 	 	 	 	 err	=	cw.Close()

			195	 	 	 	 }

			196	 	 	 }	else	if	t.ContentLength	==	-1	{

			197	 	 	 	 ncopy,	err	=	io.Copy(w,	t.Body)

			198	 	 	 }	else	{

			199	 	 	 	 ncopy,	err	=	io.Copy(w,	io.LimitReader(t.Body,	t.ContentLength))

			200	 	 	 	 nextra,	err	:=	io.Copy(ioutil.Discard,	t.Body)

			201	 	 	 	 if	err	!=	nil	{

			202	 	 	 	 	 return	err

			203	 	 	 	 }

			204	 	 	 	 ncopy	+=	nextra

			205	 	 	 }

			206	 	 	 if	err	!=	nil	{

			207	 	 	 	 return	err

			208	 	 	 }

			209	 	 	 if	err	=	t.BodyCloser.Close();	err	!=	nil	{

			210	 	 	 	 return	err

			211	 	 	 }

			212	 	 }

			213	

			214	 	 if	t.ContentLength	!=	-1	&&	t.ContentLength	!=	ncopy	{

			215	 	 	 return	fmt.Errorf("http:	Request.ContentLength=%d	with	Body	length	%d",

			216	 	 	 	 t.ContentLength,	ncopy)

			217	 	 }

			218	

			219	 	 //	TODO(petar):	Place	trailer	writer	code	here.

			220	 	 if	chunked(t.TransferEncoding)	{

			221	 	 	 //	Last	chunk,	empty	trailer

			222	 	 	 _,	err	=	io.WriteString(w,	"\r\n")

			223	 	 }

			224	

			225	 	 return

			226	 }

			227	

			228	 type	transferReader	struct	{

			229	 	 //	Input

			230	 	 Header								Header

			231	 	 StatusCode				int

			232	 	 RequestMethod	string

			233	 	 ProtoMajor				int

			234	 	 ProtoMinor				int

			235	 	 //	Output

			236	 	 Body													io.ReadCloser

			237	 	 ContentLength				int64

			238	 	 TransferEncoding	[]string

			239	 	 Close												bool

			240	 	 Trailer										Header

			241	 }

			242	

			243	 //	bodyAllowedForStatus	returns	whether	a	given	response	status	code

			244	 //	permits	a	body.		See	RFC2616,	section	4.4.

			245	 func	bodyAllowedForStatus(status	int)	bool	{

			246	 	 switch	{

			247	 	 case	status	>=	100	&&	status	<=	199:

			248	 	 	 return	false

			249	 	 case	status	==	204:

			250	 	 	 return	false

			251	 	 case	status	==	304:

			252	 	 	 return	false

			253	 	 }

			254	 	 return	true

			255	 }

			256	

			257	 //	msg	is	*Request	or	*Response.

			258	 func	readTransfer(msg	interface{},	r	*bufio.Reader)	(err	error)	{

			259	 	 t	:=	&transferReader{}

			260	

			261	 	 //	Unify	input

			262	 	 isResponse	:=	false

			263	 	 switch	rr	:=	msg.(type)	{

			264	 	 case	*Response:

			265	 	 	 t.Header	=	rr.Header

			266	 	 	 t.StatusCode	=	rr.StatusCode

			267	 	 	 t.RequestMethod	=	rr.Request.Method

			268	 	 	 t.ProtoMajor	=	rr.ProtoMajor

			269	 	 	 t.ProtoMinor	=	rr.ProtoMinor

			270	 	 	 t.Close	=	shouldClose(t.ProtoMajor,	t.ProtoMinor,	t.Header)

			271	 	 	 isResponse	=	true

			272	 	 case	*Request:

			273	 	 	 t.Header	=	rr.Header

			274	 	 	 t.ProtoMajor	=	rr.ProtoMajor

			275	 	 	 t.ProtoMinor	=	rr.ProtoMinor

			276	 	 	 //	Transfer	semantics	for	Requests	are	exactly	like	those	for

			277	 	 	 //	Responses	with	status	code	200,	responding	to	a	GET	method

			278	 	 	 t.StatusCode	=	200

			279	 	 	 t.RequestMethod	=	"GET"

			280	 	 default:

			281	 	 	 panic("unexpected	type")

			282	 	 }

			283	

			284	 	 //	Default	to	HTTP/1.1

			285	 	 if	t.ProtoMajor	==	0	&&	t.ProtoMinor	==	0	{

			286	 	 	 t.ProtoMajor,	t.ProtoMinor	=	1,	1

			287	 	 }

			288	

			289	 	 //	Transfer	encoding,	content	length

			290	 	 t.TransferEncoding,	err	=	fixTransferEncoding(t.RequestMethod,	t.Header)

			291	 	 if	err	!=	nil	{

			292	 	 	 return	err

			293	 	 }

			294	

			295	 	 t.ContentLength,	err	=	fixLength(isResponse,	t.StatusCode,	t.RequestMethod,	t.Header,	t.TransferEncoding)

			296	 	 if	err	!=	nil	{

			297	 	 	 return	err

			298	 	 }

			299	

			300	 	 //	Trailer

			301	 	 t.Trailer,	err	=	fixTrailer(t.Header,	t.TransferEncoding)

			302	 	 if	err	!=	nil	{

			303	 	 	 return	err

			304	 	 }

			305	

			306	 	 //	If	there	is	no	Content-Length	or	chunked	Transfer-Encoding	on	a	*Response

			307	 	 //	and	the	status	is	not	1xx,	204	or	304,	then	the	body	is	unbounded.

			308	 	 //	See	RFC2616,	section	4.4.

			309	 	 switch	msg.(type)	{

			310	 	 case	*Response:

			311	 	 	 if	t.ContentLength	==	-1	&&

			312	 	 	 	 !chunked(t.TransferEncoding)	&&

			313	 	 	 	 bodyAllowedForStatus(t.StatusCode)	{

			314	 	 	 	 //	Unbounded	body.

			315	 	 	 	 t.Close	=	true

			316	 	 	 }

			317	 	 }

			318	

			319	 	 //	Prepare	body	reader.		ContentLength	<	0	means	chunked	encoding

			320	 	 //	or	close	connection	when	finished,	since	multipart	is	not	supported	yet

			321	 	 switch	{

			322	 	 case	chunked(t.TransferEncoding):

			323	 	 	 t.Body	=	&body{Reader:	newChunkedReader(r),	hdr:	msg,	r:	r,	closing:	t.Close}

			324	 	 case	t.ContentLength	>=	0:

			325	 	 	 //	TODO:	limit	the	Content-Length.	This	is	an	easy	DoS	vector.

			326	 	 	 t.Body	=	&body{Reader:	io.LimitReader(r,	t.ContentLength),	closing:	t.Close}

			327	 	 default:

			328	 	 	 //	t.ContentLength	<	0,	i.e.	"Content-Length"	not	mentioned	in	header

			329	 	 	 if	t.Close	{

			330	 	 	 	 //	Close	semantics	(i.e.	HTTP/1.0)

			331	 	 	 	 t.Body	=	&body{Reader:	r,	closing:	t.Close}

			332	 	 	 }	else	{

			333	 	 	 	 //	Persistent	connection	(i.e.	HTTP/1.1)

			334	 	 	 	 t.Body	=	&body{Reader:	io.LimitReader(r,	0),	closing:	t.Close}

			335	 	 	 }

			336	 	 }

			337	

			338	 	 //	Unify	output

			339	 	 switch	rr	:=	msg.(type)	{

			340	 	 case	*Request:

			341	 	 	 rr.Body	=	t.Body

			342	 	 	 rr.ContentLength	=	t.ContentLength

			343	 	 	 rr.TransferEncoding	=	t.TransferEncoding

			344	 	 	 rr.Close	=	t.Close

			345	 	 	 rr.Trailer	=	t.Trailer

			346	 	 case	*Response:

			347	 	 	 rr.Body	=	t.Body

			348	 	 	 rr.ContentLength	=	t.ContentLength

			349	 	 	 rr.TransferEncoding	=	t.TransferEncoding

			350	 	 	 rr.Close	=	t.Close

			351	 	 	 rr.Trailer	=	t.Trailer

			352	 	 }

			353	

			354	 	 return	nil

			355	 }

			356	

			357	 //	Checks	whether	chunked	is	part	of	the	encodings	stack

			358	 func	chunked(te	[]string)	bool	{	return	len(te)	>	0	&&	te[0]	==	"chunked"	}

			359	

			360	 //	Checks	whether	the	encoding	is	explicitly	"identity".

			361	 func	isIdentity(te	[]string)	bool	{	return	len(te)	==	1	&&	te[0]	==	"identity"	}

			362	

			363	 //	Sanitize	transfer	encoding

			364	 func	fixTransferEncoding(requestMethod	string,	header	Header)	([]string,	error)	{

			365	 	 raw,	present	:=	header["Transfer-Encoding"]

			366	 	 if	!present	{

			367	 	 	 return	nil,	nil

			368	 	 }

			369	

			370	 	 delete(header,	"Transfer-Encoding")

			371	

			372	 	 //	Head	responses	have	no	bodies,	so	the	transfer	encoding

			373	 	 //	should	be	ignored.

			374	 	 if	requestMethod	==	"HEAD"	{

			375	 	 	 return	nil,	nil

			376	 	 }

			377	

			378	 	 encodings	:=	strings.Split(raw[0],	",")

			379	 	 te	:=	make([]string,	0,	len(encodings))

			380	 	 //	TODO:	Even	though	we	only	support	"identity"	and	"chunked"

			381	 	 //	encodings,	the	loop	below	is	designed	with	foresight.	One

			382	 	 //	invariant	that	must	be	maintained	is	that,	if	present,

			383	 	 //	chunked	encoding	must	always	come	first.

			384	 	 for	_,	encoding	:=	range	encodings	{

			385	 	 	 encoding	=	strings.ToLower(strings.TrimSpace(encoding))

			386	 	 	 //	"identity"	encoding	is	not	recorded

			387	 	 	 if	encoding	==	"identity"	{

			388	 	 	 	 break

			389	 	 	 }

			390	 	 	 if	encoding	!=	"chunked"	{

			391	 	 	 	 return	nil,	&badStringError{"unsupported	transfer	encoding",	encoding}

			392	 	 	 }

			393	 	 	 te	=	te[0	:	len(te)+1]

			394	 	 	 te[len(te)-1]	=	encoding

			395	 	 }

			396	 	 if	len(te)	>	1	{

			397	 	 	 return	nil,	&badStringError{"too	many	transfer	encodings",	strings.Join(te,	",")}

			398	 	 }

			399	 	 if	len(te)	>	0	{

			400	 	 	 //	Chunked	encoding	trumps	Content-Length.	See	RFC	2616

			401	 	 	 //	Section	4.4.	Currently	len(te)	>	0	implies	chunked

			402	 	 	 //	encoding.

			403	 	 	 delete(header,	"Content-Length")

			404	 	 	 return	te,	nil

			405	 	 }

			406	

			407	 	 return	nil,	nil

			408	 }

			409	

			410	 //	Determine	the	expected	body	length,	using	RFC	2616	Section	4.4.	This

			411	 //	function	is	not	a	method,	because	ultimately	it	should	be	shared	by

			412	 //	ReadResponse	and	ReadRequest.

			413	 func	fixLength(isResponse	bool,	status	int,	requestMethod	string,	header	Header,	te	[]string)	(int64,	error)	{

			414	

			415	 	 //	Logic	based	on	response	type	or	status

			416	 	 if	noBodyExpected(requestMethod)	{

			417	 	 	 return	0,	nil

			418	 	 }

			419	 	 if	status/100	==	1	{

			420	 	 	 return	0,	nil

			421	 	 }

			422	 	 switch	status	{

			423	 	 case	204,	304:

			424	 	 	 return	0,	nil

			425	 	 }

			426	

			427	 	 //	Logic	based	on	Transfer-Encoding

			428	 	 if	chunked(te)	{

			429	 	 	 return	-1,	nil

			430	 	 }

			431	

			432	 	 //	Logic	based	on	Content-Length

			433	 	 cl	:=	strings.TrimSpace(header.Get("Content-Length"))

			434	 	 if	cl	!=	""	{

			435	 	 	 n,	err	:=	strconv.ParseInt(cl,	10,	64)

			436	 	 	 if	err	!=	nil	||	n	<	0	{

			437	 	 	 	 return	-1,	&badStringError{"bad	Content-Length",	cl}

			438	 	 	 }

			439	 	 	 return	n,	nil

			440	 	 }	else	{

			441	 	 	 header.Del("Content-Length")

			442	 	 }

			443	

			444	 	 if	!isResponse	&&	requestMethod	==	"GET"	{

			445	 	 	 //	RFC	2616	doesn't	explicitly	permit	nor	forbid	an

			446	 	 	 //	entity-body	on	a	GET	request	so	we	permit	one	if

			447	 	 	 //	declared,	but	we	default	to	0	here	(not	-1	below)

			448	 	 	 //	if	there's	no	mention	of	a	body.

			449	 	 	 return	0,	nil

			450	 	 }

			451	

			452	 	 //	Logic	based	on	media	type.	The	purpose	of	the	following	code	is	just

			453	 	 //	to	detect	whether	the	unsupported	"multipart/byteranges"	is	being

			454	 	 //	used.	A	proper	Content-Type	parser	is	needed	in	the	future.

			455	 	 if	strings.Contains(strings.ToLower(header.Get("Content-Type")),	"multipart/byteranges")	{

			456	 	 	 return	-1,	ErrNotSupported

			457	 	 }

			458	

			459	 	 //	Body-EOF	logic	based	on	other	methods	(like	closing,	or	chunked	coding)

			460	 	 return	-1,	nil

			461	 }

			462	

			463	 //	Determine	whether	to	hang	up	after	sending	a	request	and	body,	or

			464	 //	receiving	a	response	and	body

			465	 //	'header'	is	the	request	headers

			466	 func	shouldClose(major,	minor	int,	header	Header)	bool	{

			467	 	 if	major	<	1	{

			468	 	 	 return	true

			469	 	 }	else	if	major	==	1	&&	minor	==	0	{

			470	 	 	 if	!strings.Contains(strings.ToLower(header.Get("Connection")),	"keep-alive")	{

			471	 	 	 	 return	true

			472	 	 	 }

			473	 	 	 return	false

			474	 	 }	else	{

			475	 	 	 //	TODO:	Should	split	on	commas,	toss	surrounding	white	space,

			476	 	 	 //	and	check	each	field.

			477	 	 	 if	strings.ToLower(header.Get("Connection"))	==	"close"	{

			478	 	 	 	 header.Del("Connection")

			479	 	 	 	 return	true

			480	 	 	 }

			481	 	 }

			482	 	 return	false

			483	 }

			484	

			485	 //	Parse	the	trailer	header

			486	 func	fixTrailer(header	Header,	te	[]string)	(Header,	error)	{

			487	 	 raw	:=	header.Get("Trailer")

			488	 	 if	raw	==	""	{

			489	 	 	 return	nil,	nil

			490	 	 }

			491	

			492	 	 header.Del("Trailer")

			493	 	 trailer	:=	make(Header)

			494	 	 keys	:=	strings.Split(raw,	",")

			495	 	 for	_,	key	:=	range	keys	{

			496	 	 	 key	=	CanonicalHeaderKey(strings.TrimSpace(key))

			497	 	 	 switch	key	{

			498	 	 	 case	"Transfer-Encoding",	"Trailer",	"Content-Length":

			499	 	 	 	 return	nil,	&badStringError{"bad	trailer	key",	key}

			500	 	 	 }

			501	 	 	 trailer.Del(key)

			502	 	 }

			503	 	 if	len(trailer)	==	0	{

			504	 	 	 return	nil,	nil

			505	 	 }

			506	 	 if	!chunked(te)	{

			507	 	 	 //	Trailer	and	no	chunking

			508	 	 	 return	nil,	ErrUnexpectedTrailer

			509	 	 }

			510	 	 return	trailer,	nil

			511	 }

			512	

			513	 //	body	turns	a	Reader	into	a	ReadCloser.

			514	 //	Close	ensures	that	the	body	has	been	fully	read

			515	 //	and	then	reads	the	trailer	if	necessary.

			516	 type	body	struct	{

			517	 	 io.Reader

			518	 	 hdr					interface{}			//	non-nil	(Response	or	Request)	value	means	read	trailer

			519	 	 r							*bufio.Reader	//	underlying	wire-format	reader	for	the	trailer

			520	 	 closing	bool										//	is	the	connection	to	be	closed	after	reading	body?

			521	 	 closed		bool

			522	

			523	 	 res	*response	//	response	writer	for	server	requests,	else	nil

			524	 }

			525	

			526	 //	ErrBodyReadAfterClose	is	returned	when	reading	a	Request	Body	after

			527	 //	the	body	has	been	closed.	This	typically	happens	when	the	body	is

			528	 //	read	after	an	HTTP	Handler	calls	WriteHeader	or	Write	on	its

			529	 //	ResponseWriter.

			530	 var	ErrBodyReadAfterClose	=	errors.New("http:	invalid	Read	on	closed	request	Body")

			531	

			532	 func	(b	*body)	Read(p	[]byte)	(n	int,	err	error)	{

			533	 	 if	b.closed	{

			534	 	 	 return	0,	ErrBodyReadAfterClose

			535	 	 }

			536	 	 n,	err	=	b.Reader.Read(p)

			537	

			538	 	 //	Read	the	final	trailer	once	we	hit	EOF.

			539	 	 if	err	==	io.EOF	&&	b.hdr	!=	nil	{

			540	 	 	 if	e	:=	b.readTrailer();	e	!=	nil	{

			541	 	 	 	 err	=	e

			542	 	 	 }

			543	 	 	 b.hdr	=	nil

			544	 	 }

			545	 	 return	n,	err

			546	 }

			547	

			548	 var	(

			549	 	 singleCRLF	=	[]byte("\r\n")

			550	 	 doubleCRLF	=	[]byte("\r\n\r\n")

			551)

			552	

			553	 func	seeUpcomingDoubleCRLF(r	*bufio.Reader)	bool	{

			554	 	 for	peekSize	:=	4;	;	peekSize++	{

			555	 	 	 //	This	loop	stops	when	Peek	returns	an	error,

			556	 	 	 //	which	it	does	when	r's	buffer	has	been	filled.

			557	 	 	 buf,	err	:=	r.Peek(peekSize)

			558	 	 	 if	bytes.HasSuffix(buf,	doubleCRLF)	{

			559	 	 	 	 return	true

			560	 	 	 }

			561	 	 	 if	err	!=	nil	{

			562	 	 	 	 break

			563	 	 	 }

			564	 	 }

			565	 	 return	false

			566	 }

			567	

			568	 func	(b	*body)	readTrailer()	error	{

			569	 	 //	The	common	case,	since	nobody	uses	trailers.

			570	 	 buf,	_	:=	b.r.Peek(2)

			571	 	 if	bytes.Equal(buf,	singleCRLF)	{

			572	 	 	 b.r.ReadByte()

			573	 	 	 b.r.ReadByte()

			574	 	 	 return	nil

			575	 	 }

			576	

			577	 	 //	Make	sure	there's	a	header	terminator	coming	up,	to	prevent

			578	 	 //	a	DoS	with	an	unbounded	size	Trailer.		It's	not	easy	to

			579	 	 //	slip	in	a	LimitReader	here,	as	textproto.NewReader	requires

			580	 	 //	a	concrete	*bufio.Reader.		Also,	we	can't	get	all	the	way

			581	 	 //	back	up	to	our	conn's	LimitedReader	that	*might*	be	backing

			582	 	 //	this	bufio.Reader.		Instead,	a	hack:	we	iteratively	Peek	up

			583	 	 //	to	the	bufio.Reader's	max	size,	looking	for	a	double	CRLF.

			584	 	 //	This	limits	the	trailer	to	the	underlying	buffer	size,	typically	4kB.

			585	 	 if	!seeUpcomingDoubleCRLF(b.r)	{

			586	 	 	 return	errors.New("http:	suspiciously	long	trailer	after	chunked	body")

			587	 	 }

			588	

			589	 	 hdr,	err	:=	textproto.NewReader(b.r).ReadMIMEHeader()

			590	 	 if	err	!=	nil	{

			591	 	 	 return	err

			592	 	 }

			593	 	 switch	rr	:=	b.hdr.(type)	{

			594	 	 case	*Request:

			595	 	 	 rr.Trailer	=	Header(hdr)

			596	 	 case	*Response:

			597	 	 	 rr.Trailer	=	Header(hdr)

			598	 	 }

			599	 	 return	nil

			600	 }

			601	

			602	 func	(b	*body)	Close()	error	{

			603	 	 if	b.closed	{

			604	 	 	 return	nil

			605	 	 }

			606	 	 defer	func()	{

			607	 	 	 b.closed	=	true

			608	 	 }()

			609	 	 if	b.hdr	==	nil	&&	b.closing	{

			610	 	 	 //	no	trailer	and	closing	the	connection	next.

			611	 	 	 //	no	point	in	reading	to	EOF.

			612	 	 	 return	nil

			613	 	 }

			614	

			615	 	 //	In	a	server	request,	don't	continue	reading	from	the	client

			616	 	 //	if	we've	already	hit	the	maximum	body	size	set	by	the

			617	 	 //	handler.	If	this	is	set,	that	also	means	the	TCP	connection

			618	 	 //	is	about	to	be	closed,	so	getting	to	the	next	HTTP	request

			619	 	 //	in	the	stream	is	not	necessary.

			620	 	 if	b.res	!=	nil	&&	b.res.requestBodyLimitHit	{

			621	 	 	 return	nil

			622	 	 }

			623	

			624	 	 //	Fully	consume	the	body,	which	will	also	lead	to	us	reading

			625	 	 //	the	trailer	headers	after	the	body,	if	present.

			626	 	 if	_,	err	:=	io.Copy(ioutil.Discard,	b);	err	!=	nil	{

			627	 	 	 return	err

			628	 	 }

			629	 	 return	nil

			630	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative

http://code.google.com/policies.html#restrictions

Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/transport.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	HTTP	client	implementation.	See	RFC	2616.

					6	 //	

					7	 //	This	is	the	low-level	Transport	implementation	of	RoundTripper.

					8	 //	The	high-level	interface	is	in	client.go.

					9	

				10	 package	http

				11	

				12	 import	(

				13	 	 "bufio"

				14	 	 "compress/gzip"

				15	 	 "crypto/tls"

				16	 	 "encoding/base64"

				17	 	 "errors"

				18	 	 "fmt"

				19	 	 "io"

				20	 	 "io/ioutil"

				21	 	 "log"

				22	 	 "net"

				23	 	 "net/url"

				24	 	 "os"

				25	 	 "strings"

				26	 	 "sync"

				27)

				28	

				29	 //	DefaultTransport	is	the	default	implementation	of	Transport	and	is

				30	 //	used	by	DefaultClient.		It	establishes	a	new	network	connection	for

				31	 //	each	call	to	Do	and	uses	HTTP	proxies	as	directed	by	the

				32	 //	$HTTP_PROXY	and	$NO_PROXY	(or	$http_proxy	and	$no_proxy)

				33	 //	environment	variables.

				34	 var	DefaultTransport	RoundTripper	=	&Transport{Proxy:	ProxyFromEnvironment}

				35	

				36	 //	DefaultMaxIdleConnsPerHost	is	the	default	value	of	Transport's

				37	 //	MaxIdleConnsPerHost.

				38	 const	DefaultMaxIdleConnsPerHost	=	2

				39	

				40	 //	Transport	is	an	implementation	of	RoundTripper	that	supports	http,

				41	 //	https,	and	http	proxies	(for	either	http	or	https	with	CONNECT).

				42	 //	Transport	can	also	cache	connections	for	future	re-use.

				43	 type	Transport	struct	{

				44	 	 lk							sync.Mutex

				45	 	 idleConn	map[string][]*persistConn

				46	 	 altProto	map[string]RoundTripper	//	nil	or	map	of	URI	scheme	=>	RoundTripper

				47	

				48	 	 //	TODO:	tunable	on	global	max	cached	connections

				49	 	 //	TODO:	tunable	on	timeout	on	cached	connections

				50	 	 //	TODO:	optional	pipelining

				51	

				52	 	 //	Proxy	specifies	a	function	to	return	a	proxy	for	a	given

				53	 	 //	Request.	If	the	function	returns	a	non-nil	error,	the

				54	 	 //	request	is	aborted	with	the	provided	error.

				55	 	 //	If	Proxy	is	nil	or	returns	a	nil	*URL,	no	proxy	is	used.

				56	 	 Proxy	func(*Request)	(*url.URL,	error)

				57	

				58	 	 //	Dial	specifies	the	dial	function	for	creating	TCP

				59	 	 //	connections.

				60	 	 //	If	Dial	is	nil,	net.Dial	is	used.

				61	 	 Dial	func(net,	addr	string)	(c	net.Conn,	err	error)

				62	

				63	 	 //	TLSClientConfig	specifies	the	TLS	configuration	to	use	with

				64	 	 //	tls.Client.	If	nil,	the	default	configuration	is	used.

				65	 	 TLSClientConfig	*tls.Config

				66	

				67	 	 DisableKeepAlives		bool

				68	 	 DisableCompression	bool

				69	

				70	 	 //	MaxIdleConnsPerHost,	if	non-zero,	controls	the	maximum	idle

				71	 	 //	(keep-alive)	to	keep	to	keep	per-host.		If	zero,

				72	 	 //	DefaultMaxIdleConnsPerHost	is	used.

				73	 	 MaxIdleConnsPerHost	int

				74	 }

				75	

				76	 //	ProxyFromEnvironment	returns	the	URL	of	the	proxy	to	use	for	a

				77	 //	given	request,	as	indicated	by	the	environment	variables

				78	 //	$HTTP_PROXY	and	$NO_PROXY	(or	$http_proxy	and	$no_proxy).

				79	 //	An	error	is	returned	if	the	proxy	environment	is	invalid.

				80	 //	A	nil	URL	and	nil	error	are	returned	if	no	proxy	is	defined	in	the

				81	 //	environment,	or	a	proxy	should	not	be	used	for	the	given	request.

				82	 func	ProxyFromEnvironment(req	*Request)	(*url.URL,	error)	{

				83	 	 proxy	:=	getenvEitherCase("HTTP_PROXY")

				84	 	 if	proxy	==	""	{

				85	 	 	 return	nil,	nil

				86	 	 }

				87	 	 if	!useProxy(canonicalAddr(req.URL))	{

				88	 	 	 return	nil,	nil

				89	 	 }

				90	 	 proxyURL,	err	:=	url.Parse(proxy)

				91	 	 if	err	!=	nil	||	proxyURL.Scheme	==	""	{

				92	 	 	 if	u,	err	:=	url.Parse("http://"	+	proxy);	err	==	nil	{

				93	 	 	 	 proxyURL	=	u

				94	 	 	 	 err	=	nil

				95	 	 	 }

				96	 	 }

				97	 	 if	err	!=	nil	{

				98	 	 	 return	nil,	fmt.Errorf("invalid	proxy	address	%q:	%v",	proxy,	err)

				99	 	 }

			100	 	 return	proxyURL,	nil

			101	 }

			102	

			103	 //	ProxyURL	returns	a	proxy	function	(for	use	in	a	Transport)

			104	 //	that	always	returns	the	same	URL.

			105	 func	ProxyURL(fixedURL	*url.URL)	func(*Request)	(*url.URL,	error)	{

			106	 	 return	func(*Request)	(*url.URL,	error)	{

			107	 	 	 return	fixedURL,	nil

			108	 	 }

			109	 }

			110	

			111	 //	transportRequest	is	a	wrapper	around	a	*Request	that	adds

			112	 //	optional	extra	headers	to	write.

			113	 type	transportRequest	struct	{

			114	 	 *Request								//	original	request,	not	to	be	mutated

			115	 	 extra				Header	//	extra	headers	to	write,	or	nil

			116	 }

			117	

			118	 func	(tr	*transportRequest)	extraHeaders()	Header	{

			119	 	 if	tr.extra	==	nil	{

			120	 	 	 tr.extra	=	make(Header)

			121	 	 }

			122	 	 return	tr.extra

			123	 }

			124	

			125	 //	RoundTrip	implements	the	RoundTripper	interface.

			126	 func	(t	*Transport)	RoundTrip(req	*Request)	(resp	*Response,	err	error)	{

			127	 	 if	req.URL	==	nil	{

			128	 	 	 return	nil,	errors.New("http:	nil	Request.URL")

			129	 	 }

			130	 	 if	req.Header	==	nil	{

			131	 	 	 return	nil,	errors.New("http:	nil	Request.Header")

			132	 	 }

			133	 	 if	req.URL.Scheme	!=	"http"	&&	req.URL.Scheme	!=	"https"	{

			134	 	 	 t.lk.Lock()

			135	 	 	 var	rt	RoundTripper

			136	 	 	 if	t.altProto	!=	nil	{

			137	 	 	 	 rt	=	t.altProto[req.URL.Scheme]

			138	 	 	 }

			139	 	 	 t.lk.Unlock()

			140	 	 	 if	rt	==	nil	{

			141	 	 	 	 return	nil,	&badStringError{"unsupported	protocol	scheme",	req.URL.Scheme}

			142	 	 	 }

			143	 	 	 return	rt.RoundTrip(req)

			144	 	 }

			145	 	 treq	:=	&transportRequest{Request:	req}

			146	 	 cm,	err	:=	t.connectMethodForRequest(treq)

			147	 	 if	err	!=	nil	{

			148	 	 	 return	nil,	err

			149	 	 }

			150	

			151	 	 //	Get	the	cached	or	newly-created	connection	to	either	the

			152	 	 //	host	(for	http	or	https),	the	http	proxy,	or	the	http	proxy

			153	 	 //	pre-CONNECTed	to	https	server.		In	any	case,	we'll	be	ready

			154	 	 //	to	send	it	requests.

			155	 	 pconn,	err	:=	t.getConn(cm)

			156	 	 if	err	!=	nil	{

			157	 	 	 return	nil,	err

			158	 	 }

			159	

			160	 	 return	pconn.roundTrip(treq)

			161	 }

			162	

			163	 //	RegisterProtocol	registers	a	new	protocol	with	scheme.

			164	 //	The	Transport	will	pass	requests	using	the	given	scheme	to	rt.

			165	 //	It	is	rt's	responsibility	to	simulate	HTTP	request	semantics.

			166	 //

			167	 //	RegisterProtocol	can	be	used	by	other	packages	to	provide

			168	 //	implementations	of	protocol	schemes	like	"ftp"	or	"file".

			169	 func	(t	*Transport)	RegisterProtocol(scheme	string,	rt	RoundTripper)	{

			170	 	 if	scheme	==	"http"	||	scheme	==	"https"	{

			171	 	 	 panic("protocol	"	+	scheme	+	"	already	registered")

			172	 	 }

			173	 	 t.lk.Lock()

			174	 	 defer	t.lk.Unlock()

			175	 	 if	t.altProto	==	nil	{

			176	 	 	 t.altProto	=	make(map[string]RoundTripper)

			177	 	 }

			178	 	 if	_,	exists	:=	t.altProto[scheme];	exists	{

			179	 	 	 panic("protocol	"	+	scheme	+	"	already	registered")

			180	 	 }

			181	 	 t.altProto[scheme]	=	rt

			182	 }

			183	

			184	 //	CloseIdleConnections	closes	any	connections	which	were	previously

			185	 //	connected	from	previous	requests	but	are	now	sitting	idle	in

			186	 //	a	"keep-alive"	state.	It	does	not	interrupt	any	connections	currently

			187	 //	in	use.

			188	 func	(t	*Transport)	CloseIdleConnections()	{

			189	 	 t.lk.Lock()

			190	 	 defer	t.lk.Unlock()

			191	 	 if	t.idleConn	==	nil	{

			192	 	 	 return

			193	 	 }

			194	 	 for	_,	conns	:=	range	t.idleConn	{

			195	 	 	 for	_,	pconn	:=	range	conns	{

			196	 	 	 	 pconn.close()

			197	 	 	 }

			198	 	 }

			199	 	 t.idleConn	=	make(map[string][]*persistConn)

			200	 }

			201	

			202	 //

			203	 //	Private	implementation	past	this	point.

			204	 //

			205	

			206	 func	getenvEitherCase(k	string)	string	{

			207	 	 if	v	:=	os.Getenv(strings.ToUpper(k));	v	!=	""	{

			208	 	 	 return	v

			209	 	 }

			210	 	 return	os.Getenv(strings.ToLower(k))

			211	 }

			212	

			213	 func	(t	*Transport)	connectMethodForRequest(treq	*transportRequest)	(*connectMethod,	error)	{

			214	 	 cm	:=	&connectMethod{

			215	 	 	 targetScheme:	treq.URL.Scheme,

			216	 	 	 targetAddr:			canonicalAddr(treq.URL),

			217	 	 }

			218	 	 if	t.Proxy	!=	nil	{

			219	 	 	 var	err	error

			220	 	 	 cm.proxyURL,	err	=	t.Proxy(treq.Request)

			221	 	 	 if	err	!=	nil	{

			222	 	 	 	 return	nil,	err

			223	 	 	 }

			224	 	 }

			225	 	 return	cm,	nil

			226	 }

			227	

			228	 //	proxyAuth	returns	the	Proxy-Authorization	header	to	set

			229	 //	on	requests,	if	applicable.

			230	 func	(cm	*connectMethod)	proxyAuth()	string	{

			231	 	 if	cm.proxyURL	==	nil	{

			232	 	 	 return	""

			233	 	 }

			234	 	 if	u	:=	cm.proxyURL.User;	u	!=	nil	{

			235	 	 	 return	"Basic	"	+	base64.URLEncoding.EncodeToString([]byte(u.String()))

			236	 	 }

			237	 	 return	""

			238	 }

			239	

			240	 //	putIdleConn	adds	pconn	to	the	list	of	idle	persistent	connections	awaiting

			241	 //	a	new	request.

			242	 //	If	pconn	is	no	longer	needed	or	not	in	a	good	state,	putIdleConn

			243	 //	returns	false.

			244	 func	(t	*Transport)	putIdleConn(pconn	*persistConn)	bool	{

			245	 	 t.lk.Lock()

			246	 	 defer	t.lk.Unlock()

			247	 	 if	t.DisableKeepAlives	||	t.MaxIdleConnsPerHost	<	0	{

			248	 	 	 pconn.close()

			249	 	 	 return	false

			250	 	 }

			251	 	 if	pconn.isBroken()	{

			252	 	 	 return	false

			253	 	 }

			254	 	 key	:=	pconn.cacheKey

			255	 	 max	:=	t.MaxIdleConnsPerHost

			256	 	 if	max	==	0	{

			257	 	 	 max	=	DefaultMaxIdleConnsPerHost

			258	 	 }

			259	 	 if	len(t.idleConn[key])	>=	max	{

			260	 	 	 pconn.close()

			261	 	 	 return	false

			262	 	 }

			263	 	 t.idleConn[key]	=	append(t.idleConn[key],	pconn)

			264	 	 return	true

			265	 }

			266	

			267	 func	(t	*Transport)	getIdleConn(cm	*connectMethod)	(pconn	*persistConn)	{

			268	 	 t.lk.Lock()

			269	 	 defer	t.lk.Unlock()

			270	 	 if	t.idleConn	==	nil	{

			271	 	 	 t.idleConn	=	make(map[string][]*persistConn)

			272	 	 }

			273	 	 key	:=	cm.String()

			274	 	 for	{

			275	 	 	 pconns,	ok	:=	t.idleConn[key]

			276	 	 	 if	!ok	{

			277	 	 	 	 return	nil

			278	 	 	 }

			279	 	 	 if	len(pconns)	==	1	{

			280	 	 	 	 pconn	=	pconns[0]

			281	 	 	 	 delete(t.idleConn,	key)

			282	 	 	 }	else	{

			283	 	 	 	 //	2	or	more	cached	connections;	pop	last

			284	 	 	 	 //	TODO:	queue?

			285	 	 	 	 pconn	=	pconns[len(pconns)-1]

			286	 	 	 	 t.idleConn[key]	=	pconns[0	:	len(pconns)-1]

			287	 	 	 }

			288	 	 	 if	!pconn.isBroken()	{

			289	 	 	 	 return

			290	 	 	 }

			291	 	 }

			292	 	 return

			293	 }

			294	

			295	 func	(t	*Transport)	dial(network,	addr	string)	(c	net.Conn,	err	error)	{

			296	 	 if	t.Dial	!=	nil	{

			297	 	 	 return	t.Dial(network,	addr)

			298	 	 }

			299	 	 return	net.Dial(network,	addr)

			300	 }

			301	

			302	 //	getConn	dials	and	creates	a	new	persistConn	to	the	target	as

			303	 //	specified	in	the	connectMethod.		This	includes	doing	a	proxy	CONNECT

			304	 //	and/or	setting	up	TLS.		If	this	doesn't	return	an	error,	the	persistConn

			305	 //	is	ready	to	write	requests	to.

			306	 func	(t	*Transport)	getConn(cm	*connectMethod)	(*persistConn,	error)	{

			307	 	 if	pc	:=	t.getIdleConn(cm);	pc	!=	nil	{

			308	 	 	 return	pc,	nil

			309	 	 }

			310	

			311	 	 conn,	err	:=	t.dial("tcp",	cm.addr())

			312	 	 if	err	!=	nil	{

			313	 	 	 if	cm.proxyURL	!=	nil	{

			314	 	 	 	 err	=	fmt.Errorf("http:	error	connecting	to	proxy	%s:	%v",	cm.proxyURL,	err)

			315	 	 	 }

			316	 	 	 return	nil,	err

			317	 	 }

			318	

			319	 	 pa	:=	cm.proxyAuth()

			320	

			321	 	 pconn	:=	&persistConn{

			322	 	 	 t:								t,

			323	 	 	 cacheKey:	cm.String(),

			324	 	 	 conn:					conn,

			325	 	 	 reqch:				make(chan	requestAndChan,	50),

			326	 	 }

			327	

			328	 	 switch	{

			329	 	 case	cm.proxyURL	==	nil:

			330	 	 	 //	Do	nothing.

			331	 	 case	cm.targetScheme	==	"http":

			332	 	 	 pconn.isProxy	=	true

			333	 	 	 if	pa	!=	""	{

			334	 	 	 	 pconn.mutateHeaderFunc	=	func(h	Header)	{

			335	 	 	 	 	 h.Set("Proxy-Authorization",	pa)

			336	 	 	 	 }

			337	 	 	 }

			338	 	 case	cm.targetScheme	==	"https":

			339	 	 	 connectReq	:=	&Request{

			340	 	 	 	 Method:	"CONNECT",

			341	 	 	 	 URL:				&url.URL{Opaque:	cm.targetAddr},

			342	 	 	 	 Host:			cm.targetAddr,

			343	 	 	 	 Header:	make(Header),

			344	 	 	 }

			345	 	 	 if	pa	!=	""	{

			346	 	 	 	 connectReq.Header.Set("Proxy-Authorization",	pa)

			347	 	 	 }

			348	 	 	 connectReq.Write(conn)

			349	

			350	 	 	 //	Read	response.

			351	 	 	 //	Okay	to	use	and	discard	buffered	reader	here,	because

			352	 	 	 //	TLS	server	will	not	speak	until	spoken	to.

			353	 	 	 br	:=	bufio.NewReader(conn)

			354	 	 	 resp,	err	:=	ReadResponse(br,	connectReq)

			355	 	 	 if	err	!=	nil	{

			356	 	 	 	 conn.Close()

			357	 	 	 	 return	nil,	err

			358	 	 	 }

			359	 	 	 if	resp.StatusCode	!=	200	{

			360	 	 	 	 f	:=	strings.SplitN(resp.Status,	"	",	2)

			361	 	 	 	 conn.Close()

			362	 	 	 	 return	nil,	errors.New(f[1])

			363	 	 	 }

			364	 	 }

			365	

			366	 	 if	cm.targetScheme	==	"https"	{

			367	 	 	 //	Initiate	TLS	and	check	remote	host	name	against	certificate.

			368	 	 	 conn	=	tls.Client(conn,	t.TLSClientConfig)

			369	 	 	 if	err	=	conn.(*tls.Conn).Handshake();	err	!=	nil	{

			370	 	 	 	 return	nil,	err

			371	 	 	 }

			372	 	 	 if	t.TLSClientConfig	==	nil	||	!t.TLSClientConfig.InsecureSkipVerify	{

			373	 	 	 	 if	err	=	conn.(*tls.Conn).VerifyHostname(cm.tlsHost());	err	!=	nil	{

			374	 	 	 	 	 return	nil,	err

			375	 	 	 	 }

			376	 	 	 }

			377	 	 	 pconn.conn	=	conn

			378	 	 }

			379	

			380	 	 pconn.br	=	bufio.NewReader(pconn.conn)

			381	 	 pconn.bw	=	bufio.NewWriter(pconn.conn)

			382	 	 go	pconn.readLoop()

			383	 	 return	pconn,	nil

			384	 }

			385	

			386	 //	useProxy	returns	true	if	requests	to	addr	should	use	a	proxy,

			387	 //	according	to	the	NO_PROXY	or	no_proxy	environment	variable.

			388	 //	addr	is	always	a	canonicalAddr	with	a	host	and	port.

			389	 func	useProxy(addr	string)	bool	{

			390	 	 if	len(addr)	==	0	{

			391	 	 	 return	true

			392	 	 }

			393	 	 host,	_,	err	:=	net.SplitHostPort(addr)

			394	 	 if	err	!=	nil	{

			395	 	 	 return	false

			396	 	 }

			397	 	 if	host	==	"localhost"	{

			398	 	 	 return	false

			399	 	 }

			400	 	 if	ip	:=	net.ParseIP(host);	ip	!=	nil	{

			401	 	 	 if	ip.IsLoopback()	{

			402	 	 	 	 return	false

			403	 	 	 }

			404	 	 }

			405	

			406	 	 no_proxy	:=	getenvEitherCase("NO_PROXY")

			407	 	 if	no_proxy	==	"*"	{

			408	 	 	 return	false

			409	 	 }

			410	

			411	 	 addr	=	strings.ToLower(strings.TrimSpace(addr))

			412	 	 if	hasPort(addr)	{

			413	 	 	 addr	=	addr[:strings.LastIndex(addr,	":")]

			414	 	 }

			415	

			416	 	 for	_,	p	:=	range	strings.Split(no_proxy,	",")	{

			417	 	 	 p	=	strings.ToLower(strings.TrimSpace(p))

			418	 	 	 if	len(p)	==	0	{

			419	 	 	 	 continue

			420	 	 	 }

			421	 	 	 if	hasPort(p)	{

			422	 	 	 	 p	=	p[:strings.LastIndex(p,	":")]

			423	 	 	 }

			424	 	 	 if	addr	==	p	||	(p[0]	==	'.'	&&	(strings.HasSuffix(addr,	p)	||	addr	==	p[1:]))	{

			425	 	 	 	 return	false

			426	 	 	 }

			427	 	 }

			428	 	 return	true

			429	 }

			430	

			431	 //	connectMethod	is	the	map	key	(in	its	String	form)	for	keeping	persistent

			432	 //	TCP	connections	alive	for	subsequent	HTTP	requests.

			433	 //

			434	 //	A	connect	method	may	be	of	the	following	types:

			435	 //

			436	 //	Cache	key	form																Description

			437	 //	-----------------													-------------------------

			438	 //	||http|foo.com																http	directly	to	server,	no	proxy

			439	 //	||https|foo.com															https	directly	to	server,	no	proxy

			440	 //	http://proxy.com|https|foo.com		http	to	proxy,	then	CONNECT	to	foo.com

			441	 //	http://proxy.com|http											http	to	proxy,	http	to	anywhere	after	that

			442	 //

			443	 //	Note:	no	support	to	https	to	the	proxy	yet.

			444	 //

			445	 type	connectMethod	struct	{

			446	 	 proxyURL					*url.URL	//	nil	for	no	proxy,	else	full	proxy	URL

			447	 	 targetScheme	string			//	"http"	or	"https"

			448	 	 targetAddr			string			//	Not	used	if	proxy	+	http	targetScheme	(4th	example	in	table)

			449	 }

			450	

			451	 func	(ck	*connectMethod)	String()	string	{

			452	 	 proxyStr	:=	""

			453	 	 if	ck.proxyURL	!=	nil	{

			454	 	 	 proxyStr	=	ck.proxyURL.String()

			455	 	 }

			456	 	 return	strings.Join([]string{proxyStr,	ck.targetScheme,	ck.targetAddr},	"|")

			457	 }

			458	

			459	 //	addr	returns	the	first	hop	"host:port"	to	which	we	need	to	TCP	connect.

			460	 func	(cm	*connectMethod)	addr()	string	{

			461	 	 if	cm.proxyURL	!=	nil	{

			462	 	 	 return	canonicalAddr(cm.proxyURL)

			463	 	 }

			464	 	 return	cm.targetAddr

			465	 }

			466	

			467	 //	tlsHost	returns	the	host	name	to	match	against	the	peer's

			468	 //	TLS	certificate.

			469	 func	(cm	*connectMethod)	tlsHost()	string	{

			470	 	 h	:=	cm.targetAddr

			471	 	 if	hasPort(h)	{

			472	 	 	 h	=	h[:strings.LastIndex(h,	":")]

			473	 	 }

			474	 	 return	h

			475	 }

			476	

			477	 //	persistConn	wraps	a	connection,	usually	a	persistent	one

			478	 //	(but	may	be	used	for	non-keep-alive	requests	as	well)

			479	 type	persistConn	struct	{

			480	 	 t								*Transport

			481	 	 cacheKey	string	//	its	connectMethod.String()

			482	 	 conn					net.Conn

			483	 	 br							*bufio.Reader							//	from	conn

			484	 	 bw							*bufio.Writer							//	to	conn

			485	 	 reqch				chan	requestAndChan	//	written	by	roundTrip();	read	by	readLoop()

			486	 	 isProxy		bool

			487	

			488	 	 //	mutateHeaderFunc	is	an	optional	func	to	modify	extra

			489	 	 //	headers	on	each	outbound	request	before	it's	written.	(the

			490	 	 //	original	Request	given	to	RoundTrip	is	not	modified)

			491	 	 mutateHeaderFunc	func(Header)

			492	

			493	 	 lk																			sync.Mutex	//	guards	numExpectedResponses	and	broken

			494	 	 numExpectedResponses	int

			495	 	 broken															bool	//	an	error	has	happened	on	this	connection;	marked	broken	so	it's	not	reused.

			496	 }

			497	

			498	 func	(pc	*persistConn)	isBroken()	bool	{

			499	 	 pc.lk.Lock()

			500	 	 defer	pc.lk.Unlock()

			501	 	 return	pc.broken

			502	 }

			503	

			504	 var	remoteSideClosedFunc	func(error)	bool	//	or	nil	to	use	default

			505	

			506	 func	remoteSideClosed(err	error)	bool	{

			507	 	 if	err	==	io.EOF	{

			508	 	 	 return	true

			509	 	 }

			510	 	 if	remoteSideClosedFunc	!=	nil	{

			511	 	 	 return	remoteSideClosedFunc(err)

			512	 	 }

			513	 	 return	false

			514	 }

			515	

			516	 func	(pc	*persistConn)	readLoop()	{

			517	 	 alive	:=	true

			518	 	 var	lastbody	io.ReadCloser	//	last	response	body,	if	any,	read	on	this	connection

			519	

			520	 	 for	alive	{

			521	 	 	 pb,	err	:=	pc.br.Peek(1)

			522	

			523	 	 	 pc.lk.Lock()

			524	 	 	 if	pc.numExpectedResponses	==	0	{

			525	 	 	 	 pc.closeLocked()

			526	 	 	 	 pc.lk.Unlock()

			527	 	 	 	 if	len(pb)	>	0	{

			528	 	 	 	 	 log.Printf("Unsolicited	response	received	on	idle	HTTP	channel	starting	with	%q;	err=%v",

			529	 	 	 	 	 	 string(pb),	err)

			530	 	 	 	 }

			531	 	 	 	 return

			532	 	 	 }

			533	 	 	 pc.lk.Unlock()

			534	

			535	 	 	 rc	:=	<-pc.reqch

			536	

			537	 	 	 //	Advance	past	the	previous	response's	body,	if	the

			538	 	 	 //	caller	hasn't	done	so.

			539	 	 	 if	lastbody	!=	nil	{

			540	 	 	 	 lastbody.Close()	//	assumed	idempotent

			541	 	 	 	 lastbody	=	nil

			542	 	 	 }

			543	 	 	 resp,	err	:=	ReadResponse(pc.br,	rc.req)

			544	

			545	 	 	 if	err	!=	nil	{

			546	 	 	 	 pc.close()

			547	 	 	 }	else	{

			548	 	 	 	 hasBody	:=	rc.req.Method	!=	"HEAD"	&&	resp.ContentLength	!=	0

			549	 	 	 	 if	rc.addedGzip	&&	hasBody	&&	resp.Header.Get("Content-Encoding")	==	"gzip"	{

			550	 	 	 	 	 resp.Header.Del("Content-Encoding")

			551	 	 	 	 	 resp.Header.Del("Content-Length")

			552	 	 	 	 	 resp.ContentLength	=	-1

			553	 	 	 	 	 gzReader,	zerr	:=	gzip.NewReader(resp.Body)

			554	 	 	 	 	 if	zerr	!=	nil	{

			555	 	 	 	 	 	 pc.close()

			556	 	 	 	 	 	 err	=	zerr

			557	 	 	 	 	 }	else	{

			558	 	 	 	 	 	 resp.Body	=	&readFirstCloseBoth{&discardOnCloseReadCloser{gzReader},	resp.Body}

			559	 	 	 	 	 }

			560	 	 	 	 }

			561	 	 	 	 resp.Body	=	&bodyEOFSignal{body:	resp.Body}

			562	 	 	 }

			563	

			564	 	 	 if	err	!=	nil	||	resp.Close	||	rc.req.Close	{

			565	 	 	 	 alive	=	false

			566	 	 	 }

			567	

			568	 	 	 hasBody	:=	resp	!=	nil	&&	resp.ContentLength	!=	0

			569	 	 	 var	waitForBodyRead	chan	bool

			570	 	 	 if	alive	{

			571	 	 	 	 if	hasBody	{

			572	 	 	 	 	 lastbody	=	resp.Body

			573	 	 	 	 	 waitForBodyRead	=	make(chan	bool)

			574	 	 	 	 	 resp.Body.(*bodyEOFSignal).fn	=	func()	{

			575	 	 	 	 	 	 if	!pc.t.putIdleConn(pc)	{

			576	 	 	 	 	 	 	 alive	=	false

			577	 	 	 	 	 	 }

			578	 	 	 	 	 	 waitForBodyRead	<-	true

			579	 	 	 	 	 }

			580	 	 	 	 }	else	{

			581	 	 	 	 	 //	When	there's	no	response	body,	we	immediately

			582	 	 	 	 	 //	reuse	the	TCP	connection	(putIdleConn),	but

			583	 	 	 	 	 //	we	need	to	prevent	ClientConn.Read	from

			584	 	 	 	 	 //	closing	the	Response.Body	on	the	next

			585	 	 	 	 	 //	loop,	otherwise	it	might	close	the	body

			586	 	 	 	 	 //	before	the	client	code	has	had	a	chance	to

			587	 	 	 	 	 //	read	it	(even	though	it'll	just	be	0,	EOF).

			588	 	 	 	 	 lastbody	=	nil

			589	

			590	 	 	 	 	 if	!pc.t.putIdleConn(pc)	{

			591	 	 	 	 	 	 alive	=	false

			592	 	 	 	 	 }

			593	 	 	 	 }

			594	 	 	 }

			595	

			596	 	 	 rc.ch	<-	responseAndError{resp,	err}

			597	

			598	 	 	 //	Wait	for	the	just-returned	response	body	to	be	fully	consumed

			599	 	 	 //	before	we	race	and	peek	on	the	underlying	bufio	reader.

			600	 	 	 if	waitForBodyRead	!=	nil	{

			601	 	 	 	 <-waitForBodyRead

			602	 	 	 }

			603	 	 }

			604	 }

			605	

			606	 type	responseAndError	struct	{

			607	 	 res	*Response

			608	 	 err	error

			609	 }

			610	

			611	 type	requestAndChan	struct	{

			612	 	 req	*Request

			613	 	 ch		chan	responseAndError

			614	

			615	 	 //	did	the	Transport	(as	opposed	to	the	client	code)	add	an

			616	 	 //	Accept-Encoding	gzip	header?	only	if	it	we	set	it	do

			617	 	 //	we	transparently	decode	the	gzip.

			618	 	 addedGzip	bool

			619	 }

			620	

			621	 func	(pc	*persistConn)	roundTrip(req	*transportRequest)	(resp	*Response,	err	error)	{

			622	 	 if	pc.mutateHeaderFunc	!=	nil	{

			623	 	 	 pc.mutateHeaderFunc(req.extraHeaders())

			624	 	 }

			625	

			626	 	 //	Ask	for	a	compressed	version	if	the	caller	didn't	set	their

			627	 	 //	own	value	for	Accept-Encoding.	We	only	attempted	to

			628	 	 //	uncompress	the	gzip	stream	if	we	were	the	layer	that

			629	 	 //	requested	it.

			630	 	 requestedGzip	:=	false

			631	 	 if	!pc.t.DisableCompression	&&	req.Header.Get("Accept-Encoding")	==	""	{

			632	 	 	 //	Request	gzip	only,	not	deflate.	Deflate	is	ambiguous	and	

			633	 	 	 //	not	as	universally	supported	anyway.

			634	 	 	 //	See:	http://www.gzip.org/zlib/zlib_faq.html#faq38

			635	 	 	 requestedGzip	=	true

			636	 	 	 req.extraHeaders().Set("Accept-Encoding",	"gzip")

			637	 	 }

			638	

			639	 	 pc.lk.Lock()

			640	 	 pc.numExpectedResponses++

			641	 	 pc.lk.Unlock()

			642	

			643	 	 err	=	req.Request.write(pc.bw,	pc.isProxy,	req.extra)

			644	 	 if	err	!=	nil	{

			645	 	 	 pc.close()

			646	 	 	 return

			647	 	 }

			648	 	 pc.bw.Flush()

			649	

			650	 	 ch	:=	make(chan	responseAndError,	1)

			651	 	 pc.reqch	<-	requestAndChan{req.Request,	ch,	requestedGzip}

			652	 	 re	:=	<-ch

			653	 	 pc.lk.Lock()

			654	 	 pc.numExpectedResponses--

			655	 	 pc.lk.Unlock()

			656	

			657	 	 return	re.res,	re.err

			658	 }

			659	

			660	 func	(pc	*persistConn)	close()	{

			661	 	 pc.lk.Lock()

			662	 	 defer	pc.lk.Unlock()

			663	 	 pc.closeLocked()

			664	 }

			665	

			666	 func	(pc	*persistConn)	closeLocked()	{

			667	 	 pc.broken	=	true

			668	 	 pc.conn.Close()

			669	 	 pc.mutateHeaderFunc	=	nil

			670	 }

			671	

			672	 var	portMap	=	map[string]string{

			673	 	 "http":		"80",

			674	 	 "https":	"443",

			675	 }

			676	

			677	 //	canonicalAddr	returns	url.Host	but	always	with	a	":port"	suffix

			678	 func	canonicalAddr(url	*url.URL)	string	{

			679	 	 addr	:=	url.Host

			680	 	 if	!hasPort(addr)	{

			681	 	 	 return	addr	+	":"	+	portMap[url.Scheme]

			682	 	 }

			683	 	 return	addr

			684	 }

			685	

			686	 func	responseIsKeepAlive(res	*Response)	bool	{

			687	 	 //	TODO:	implement.		for	now	just	always	shutting	down	the	connection.

			688	 	 return	false

			689	 }

			690	

			691	 //	bodyEOFSignal	wraps	a	ReadCloser	but	runs	fn	(if	non-nil)	at	most

			692	 //	once,	right	before	the	final	Read()	or	Close()	call	returns,	but	after

			693	 //	EOF	has	been	seen.

			694	 type	bodyEOFSignal	struct	{

			695	 	 body					io.ReadCloser

			696	 	 fn							func()

			697	 	 isClosed	bool

			698	 }

			699	

			700	 func	(es	*bodyEOFSignal)	Read(p	[]byte)	(n	int,	err	error)	{

			701	 	 n,	err	=	es.body.Read(p)

			702	 	 if	es.isClosed	&&	n	>	0	{

			703	 	 	 panic("http:	unexpected	bodyEOFSignal	Read	after	Close;	see	issue	1725")

			704	 	 }

			705	 	 if	err	==	io.EOF	&&	es.fn	!=	nil	{

			706	 	 	 es.fn()

			707	 	 	 es.fn	=	nil

			708	 	 }

			709	 	 return

			710	 }

			711	

			712	 func	(es	*bodyEOFSignal)	Close()	(err	error)	{

			713	 	 if	es.isClosed	{

			714	 	 	 return	nil

			715	 	 }

			716	 	 es.isClosed	=	true

			717	 	 err	=	es.body.Close()

			718	 	 if	err	==	nil	&&	es.fn	!=	nil	{

			719	 	 	 es.fn()

			720	 	 	 es.fn	=	nil

			721	 	 }

			722	 	 return

			723	 }

			724	

			725	 type	readFirstCloseBoth	struct	{

			726	 	 io.ReadCloser

			727	 	 io.Closer

			728	 }

			729	

			730	 func	(r	*readFirstCloseBoth)	Close()	error	{

			731	 	 if	err	:=	r.ReadCloser.Close();	err	!=	nil	{

			732	 	 	 r.Closer.Close()

			733	 	 	 return	err

			734	 	 }

			735	 	 if	err	:=	r.Closer.Close();	err	!=	nil	{

			736	 	 	 return	err

			737	 	 }

			738	 	 return	nil

			739	 }

			740	

			741	 //	discardOnCloseReadCloser	consumes	all	its	input	on	Close.

			742	 type	discardOnCloseReadCloser	struct	{

			743	 	 io.ReadCloser

			744	 }

			745	

			746	 func	(d	*discardOnCloseReadCloser)	Close()	error	{

			747	 	 io.Copy(ioutil.Discard,	d.ReadCloser)	//	ignore	errors;	likely	invalid	or	already	closed

			748	 	 return	d.ReadCloser.Close()

			749	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/cgi/child.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	This	file	implements	CGI	from	the	perspective	of	a	child

					6	 //	process.

					7	

					8	 package	cgi

					9	

				10	 import	(

				11	 	 "bufio"

				12	 	 "crypto/tls"

				13	 	 "errors"

				14	 	 "fmt"

				15	 	 "io"

				16	 	 "io/ioutil"

				17	 	 "net"

				18	 	 "net/http"

				19	 	 "net/url"

				20	 	 "os"

				21	 	 "strconv"

				22	 	 "strings"

				23)

				24	

				25	 //	Request	returns	the	HTTP	request	as	represented	in	the	current

				26	 //	environment.	This	assumes	the	current	program	is	being	run

				27	 //	by	a	web	server	in	a	CGI	environment.

				28	 //	The	returned	Request's	Body	is	populated,	if	applicable.

				29	 func	Request()	(*http.Request,	error)	{

				30	 	 r,	err	:=	RequestFromMap(envMap(os.Environ()))

				31	 	 if	err	!=	nil	{

				32	 	 	 return	nil,	err

				33	 	 }

				34	 	 if	r.ContentLength	>	0	{

				35	 	 	 r.Body	=	ioutil.NopCloser(io.LimitReader(os.Stdin,	r.ContentLength))

				36	 	 }

				37	 	 return	r,	nil

				38	 }

				39	

				40	 func	envMap(env	[]string)	map[string]string	{

				41	 	 m	:=	make(map[string]string)

				42	 	 for	_,	kv	:=	range	env	{

				43	 	 	 if	idx	:=	strings.Index(kv,	"=");	idx	!=	-1	{

				44	 	 	 	 m[kv[:idx]]	=	kv[idx+1:]

				45	 	 	 }

				46	 	 }

				47	 	 return	m

				48	 }

				49	

				50	 //	RequestFromMap	creates	an	http.Request	from	CGI	variables.

				51	 //	The	returned	Request's	Body	field	is	not	populated.

				52	 func	RequestFromMap(params	map[string]string)	(*http.Request,	error)	{

				53	 	 r	:=	new(http.Request)

				54	 	 r.Method	=	params["REQUEST_METHOD"]

				55	 	 if	r.Method	==	""	{

				56	 	 	 return	nil,	errors.New("cgi:	no	REQUEST_METHOD	in	environment")

				57	 	 }

				58	

				59	 	 r.Proto	=	params["SERVER_PROTOCOL"]

				60	 	 var	ok	bool

				61	 	 r.ProtoMajor,	r.ProtoMinor,	ok	=	http.ParseHTTPVersion(r.Proto)

				62	 	 if	!ok	{

				63	 	 	 return	nil,	errors.New("cgi:	invalid	SERVER_PROTOCOL	version")

				64	 	 }

				65	

				66	 	 r.Close	=	true

				67	 	 r.Trailer	=	http.Header{}

				68	 	 r.Header	=	http.Header{}

				69	

				70	 	 r.Host	=	params["HTTP_HOST"]

				71	

				72	 	 if	lenstr	:=	params["CONTENT_LENGTH"];	lenstr	!=	""	{

				73	 	 	 clen,	err	:=	strconv.ParseInt(lenstr,	10,	64)

				74	 	 	 if	err	!=	nil	{

				75	 	 	 	 return	nil,	errors.New("cgi:	bad	CONTENT_LENGTH	in	environment:	"	+	lenstr)

				76	 	 	 }

				77	 	 	 r.ContentLength	=	clen

				78	 	 }

				79	

				80	 	 if	ct	:=	params["CONTENT_TYPE"];	ct	!=	""	{

				81	 	 	 r.Header.Set("Content-Type",	ct)

				82	 	 }

				83	

				84	 	 //	Copy	"HTTP_FOO_BAR"	variables	to	"Foo-Bar"	Headers

				85	 	 for	k,	v	:=	range	params	{

				86	 	 	 if	!strings.HasPrefix(k,	"HTTP_")	||	k	==	"HTTP_HOST"	{

				87	 	 	 	 continue

				88	 	 	 }

				89	 	 	 r.Header.Add(strings.Replace(k[5:],	"_",	"-",	-1),	v)

				90	 	 }

				91	

				92	 	 //	TODO:	cookies.		parsing	them	isn't	exported,	though.

				93	

				94	 	 if	r.Host	!=	""	{

				95	 	 	 //	Hostname	is	provided,	so	we	can	reasonably	construct	a	URL,

				96	 	 	 //	even	if	we	have	to	assume	'http'	for	the	scheme.

				97	 	 	 rawurl	:=	"http://"	+	r.Host	+	params["REQUEST_URI"]

				98	 	 	 url,	err	:=	url.Parse(rawurl)

				99	 	 	 if	err	!=	nil	{

			100	 	 	 	 return	nil,	errors.New("cgi:	failed	to	parse	host	and	REQUEST_URI	into	a	URL:	"	+	rawurl)

			101	 	 	 }

			102	 	 	 r.URL	=	url

			103	 	 }

			104	 	 //	Fallback	logic	if	we	don't	have	a	Host	header	or	the	URL

			105	 	 //	failed	to	parse

			106	 	 if	r.URL	==	nil	{

			107	 	 	 uriStr	:=	params["REQUEST_URI"]

			108	 	 	 url,	err	:=	url.Parse(uriStr)

			109	 	 	 if	err	!=	nil	{

			110	 	 	 	 return	nil,	errors.New("cgi:	failed	to	parse	REQUEST_URI	into	a	URL:	"	+	uriStr)

			111	 	 	 }

			112	 	 	 r.URL	=	url

			113	 	 }

			114	

			115	 	 //	There's	apparently	a	de-facto	standard	for	this.

			116	 	 //	http://docstore.mik.ua/orelly/linux/cgi/ch03_02.htm#ch03-35636

			117	 	 if	s	:=	params["HTTPS"];	s	==	"on"	||	s	==	"ON"	||	s	==	"1"	{

			118	 	 	 r.TLS	=	&tls.ConnectionState{HandshakeComplete:	true}

			119	 	 }

			120	

			121	 	 //	Request.RemoteAddr	has	its	port	set	by	Go's	standard	http

			122	 	 //	server,	so	we	do	here	too.	We	don't	have	one,	though,	so	we

			123	 	 //	use	a	dummy	one.

			124	 	 r.RemoteAddr	=	net.JoinHostPort(params["REMOTE_ADDR"],	"0")

			125	

			126	 	 return	r,	nil

			127	 }

			128	

			129	 //	Serve	executes	the	provided	Handler	on	the	currently	active	CGI

			130	 //	request,	if	any.	If	there's	no	current	CGI	environment

			131	 //	an	error	is	returned.	The	provided	handler	may	be	nil	to	use

			132	 //	http.DefaultServeMux.

			133	 func	Serve(handler	http.Handler)	error	{

			134	 	 req,	err	:=	Request()

			135	 	 if	err	!=	nil	{

			136	 	 	 return	err

			137	 	 }

			138	 	 if	handler	==	nil	{

			139	 	 	 handler	=	http.DefaultServeMux

			140	 	 }

			141	 	 rw	:=	&response{

			142	 	 	 req:				req,

			143	 	 	 header:	make(http.Header),

			144	 	 	 bufw:			bufio.NewWriter(os.Stdout),

			145	 	 }

			146	 	 handler.ServeHTTP(rw,	req)

			147	 	 rw.Write(nil)	//	make	sure	a	response	is	sent

			148	 	 if	err	=	rw.bufw.Flush();	err	!=	nil	{

			149	 	 	 return	err

			150	 	 }

			151	 	 return	nil

			152	 }

			153	

			154	 type	response	struct	{

			155	 	 req								*http.Request

			156	 	 header					http.Header

			157	 	 bufw							*bufio.Writer

			158	 	 headerSent	bool

			159	 }

			160	

			161	 func	(r	*response)	Flush()	{

			162	 	 r.bufw.Flush()

			163	 }

			164	

			165	 func	(r	*response)	Header()	http.Header	{

			166	 	 return	r.header

			167	 }

			168	

			169	 func	(r	*response)	Write(p	[]byte)	(n	int,	err	error)	{

			170	 	 if	!r.headerSent	{

			171	 	 	 r.WriteHeader(http.StatusOK)

			172	 	 }

			173	 	 return	r.bufw.Write(p)

			174	 }

			175	

			176	 func	(r	*response)	WriteHeader(code	int)	{

			177	 	 if	r.headerSent	{

			178	 	 	 //	Note:	explicitly	using	Stderr,	as	Stdout	is	our	HTTP	output.

			179	 	 	 fmt.Fprintf(os.Stderr,	"CGI	attempted	to	write	header	twice	on	request	for	%s",	r.req.URL)

			180	 	 	 return

			181	 	 }

			182	 	 r.headerSent	=	true

			183	 	 fmt.Fprintf(r.bufw,	"Status:	%d	%s\r\n",	code,	http.StatusText(code))

			184	

			185	 	 //	Set	a	default	Content-Type

			186	 	 if	_,	hasType	:=	r.header["Content-Type"];	!hasType	{

			187	 	 	 r.header.Add("Content-Type",	"text/html;	charset=utf-8")

			188	 	 }

			189	

			190	 	 r.header.Write(r.bufw)

			191	 	 r.bufw.WriteString("\r\n")

			192	 	 r.bufw.Flush()

			193	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/cgi/host.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	This	file	implements	the	host	side	of	CGI	(being	the	webserver

					6	 //	parent	process).

					7	

					8	 //	Package	cgi	implements	CGI	(Common	Gateway	Interface)	as	specified

					9	 //	in	RFC	3875.

				10	 //

				11	 //	Note	that	using	CGI	means	starting	a	new	process	to	handle	each

				12	 //	request,	which	is	typically	less	efficient	than	using	a

				13	 //	long-running	server.		This	package	is	intended	primarily	for

				14	 //	compatibility	with	existing	systems.

				15	 package	cgi

				16	

				17	 import	(

				18	 	 "bufio"

				19	 	 "fmt"

				20	 	 "io"

				21	 	 "log"

				22	 	 "net/http"

				23	 	 "os"

				24	 	 "os/exec"

				25	 	 "path/filepath"

				26	 	 "regexp"

				27	 	 "runtime"

				28	 	 "strconv"

				29	 	 "strings"

				30)

				31	

				32	 var	trailingPort	=	regexp.MustCompile(`:([0-9]+)$`)

				33	

				34	 var	osDefaultInheritEnv	=	map[string][]string{

				35	 	 "darwin":		{"DYLD_LIBRARY_PATH"},

				36	 	 "freebsd":	{"LD_LIBRARY_PATH"},

				37	 	 "hpux":				{"LD_LIBRARY_PATH",	"SHLIB_PATH"},

				38	 	 "irix":				{"LD_LIBRARY_PATH",	"LD_LIBRARYN32_PATH",	"LD_LIBRARY64_PATH"},

				39	 	 "linux":			{"LD_LIBRARY_PATH"},

				40	 	 "openbsd":	{"LD_LIBRARY_PATH"},

				41	 	 "solaris":	{"LD_LIBRARY_PATH",	"LD_LIBRARY_PATH_32",	"LD_LIBRARY_PATH_64"},

				42	 	 "windows":	{"SystemRoot",	"COMSPEC",	"PATHEXT",	"WINDIR"},

				43	 }

				44	

				45	 //	Handler	runs	an	executable	in	a	subprocess	with	a	CGI	environment.

				46	 type	Handler	struct	{

				47	 	 Path	string	//	path	to	the	CGI	executable

				48	 	 Root	string	//	root	URI	prefix	of	handler	or	empty	for	"/"

				49	

				50	 	 //	Dir	specifies	the	CGI	executable's	working	directory.

				51	 	 //	If	Dir	is	empty,	the	base	directory	of	Path	is	used.

				52	 	 //	If	Path	has	no	base	directory,	the	current	working

				53	 	 //	directory	is	used.

				54	 	 Dir	string

				55	

				56	 	 Env								[]string				//	extra	environment	variables	to	set,	if	any,	as	"key=value"

				57	 	 InheritEnv	[]string				//	environment	variables	to	inherit	from	host,	as	"key"

				58	 	 Logger					*log.Logger	//	optional	log	for	errors	or	nil	to	use	log.Print

				59	 	 Args							[]string				//	optional	arguments	to	pass	to	child	process

				60	

				61	 	 //	PathLocationHandler	specifies	the	root	http	Handler	that

				62	 	 //	should	handle	internal	redirects	when	the	CGI	process

				63	 	 //	returns	a	Location	header	value	starting	with	a	"/",	as

				64	 	 //	specified	in	RFC	3875	§	6.3.2.	This	will	likely	be

				65	 	 //	http.DefaultServeMux.

				66	 	 //

				67	 	 //	If	nil,	a	CGI	response	with	a	local	URI	path	is	instead	sent

				68	 	 //	back	to	the	client	and	not	redirected	internally.

				69	 	 PathLocationHandler	http.Handler

				70	 }

				71	

				72	 //	removeLeadingDuplicates	remove	leading	duplicate	in	environments.

				73	 //	It's	possible	to	override	environment	like	following.

				74	 //				cgi.Handler{

				75	 //						...

				76	 //						Env:	[]string{"SCRIPT_FILENAME=foo.php"},

				77	 //				}

				78	 func	removeLeadingDuplicates(env	[]string)	(ret	[]string)	{

				79	 	 n	:=	len(env)

				80	 	 for	i	:=	0;	i	<	n;	i++	{

				81	 	 	 e	:=	env[i]

				82	 	 	 s	:=	strings.SplitN(e,	"=",	2)[0]

				83	 	 	 found	:=	false

				84	 	 	 for	j	:=	i	+	1;	j	<	n;	j++	{

				85	 	 	 	 if	s	==	strings.SplitN(env[j],	"=",	2)[0]	{

				86	 	 	 	 	 found	=	true

				87	 	 	 	 	 break

				88	 	 	 	 }

				89	 	 	 }

				90	 	 	 if	!found	{

				91	 	 	 	 ret	=	append(ret,	e)

				92	 	 	 }

				93	 	 }

				94	 	 return

				95	 }

				96	

				97	 func	(h	*Handler)	ServeHTTP(rw	http.ResponseWriter,	req	*http.Request)	{

				98	 	 root	:=	h.Root

				99	 	 if	root	==	""	{

			100	 	 	 root	=	"/"

			101	 	 }

			102	

			103	 	 if	len(req.TransferEncoding)	>	0	&&	req.TransferEncoding[0]	==	"chunked"	{

			104	 	 	 rw.WriteHeader(http.StatusBadRequest)

			105	 	 	 rw.Write([]byte("Chunked	request	bodies	are	not	supported	by	CGI."))

			106	 	 	 return

			107	 	 }

			108	

			109	 	 pathInfo	:=	req.URL.Path

			110	 	 if	root	!=	"/"	&&	strings.HasPrefix(pathInfo,	root)	{

			111	 	 	 pathInfo	=	pathInfo[len(root):]

			112	 	 }

			113	

			114	 	 port	:=	"80"

			115	 	 if	matches	:=	trailingPort.FindStringSubmatch(req.Host);	len(matches)	!=	0	{

			116	 	 	 port	=	matches[1]

			117	 	 }

			118	

			119	 	 env	:=	[]string{

			120	 	 	 "SERVER_SOFTWARE=go",

			121	 	 	 "SERVER_NAME="	+	req.Host,

			122	 	 	 "SERVER_PROTOCOL=HTTP/1.1",

			123	 	 	 "HTTP_HOST="	+	req.Host,

			124	 	 	 "GATEWAY_INTERFACE=CGI/1.1",

			125	 	 	 "REQUEST_METHOD="	+	req.Method,

			126	 	 	 "QUERY_STRING="	+	req.URL.RawQuery,

			127	 	 	 "REQUEST_URI="	+	req.URL.RequestURI(),

			128	 	 	 "PATH_INFO="	+	pathInfo,

			129	 	 	 "SCRIPT_NAME="	+	root,

			130	 	 	 "SCRIPT_FILENAME="	+	h.Path,

			131	 	 	 "REMOTE_ADDR="	+	req.RemoteAddr,

			132	 	 	 "REMOTE_HOST="	+	req.RemoteAddr,

			133	 	 	 "SERVER_PORT="	+	port,

			134	 	 }

			135	

			136	 	 if	req.TLS	!=	nil	{

			137	 	 	 env	=	append(env,	"HTTPS=on")

			138	 	 }

			139	

			140	 	 for	k,	v	:=	range	req.Header	{

			141	 	 	 k	=	strings.Map(upperCaseAndUnderscore,	k)

			142	 	 	 joinStr	:=	",	"

			143	 	 	 if	k	==	"COOKIE"	{

			144	 	 	 	 joinStr	=	";	"

			145	 	 	 }

			146	 	 	 env	=	append(env,	"HTTP_"+k+"="+strings.Join(v,	joinStr))

			147	 	 }

			148	

			149	 	 if	req.ContentLength	>	0	{

			150	 	 	 env	=	append(env,	fmt.Sprintf("CONTENT_LENGTH=%d",	req.ContentLength))

			151	 	 }

			152	 	 if	ctype	:=	req.Header.Get("Content-Type");	ctype	!=	""	{

			153	 	 	 env	=	append(env,	"CONTENT_TYPE="+ctype)

			154	 	 }

			155	

			156	 	 if	h.Env	!=	nil	{

			157	 	 	 env	=	append(env,	h.Env...)

			158	 	 }

			159	

			160	 	 envPath	:=	os.Getenv("PATH")

			161	 	 if	envPath	==	""	{

			162	 	 	 envPath	=	"/bin:/usr/bin:/usr/ucb:/usr/bsd:/usr/local/bin"

			163	 	 }

			164	 	 env	=	append(env,	"PATH="+envPath)

			165	

			166	 	 for	_,	e	:=	range	h.InheritEnv	{

			167	 	 	 if	v	:=	os.Getenv(e);	v	!=	""	{

			168	 	 	 	 env	=	append(env,	e+"="+v)

			169	 	 	 }

			170	 	 }

			171	

			172	 	 for	_,	e	:=	range	osDefaultInheritEnv[runtime.GOOS]	{

			173	 	 	 if	v	:=	os.Getenv(e);	v	!=	""	{

			174	 	 	 	 env	=	append(env,	e+"="+v)

			175	 	 	 }

			176	 	 }

			177	

			178	 	 env	=	removeLeadingDuplicates(env)

			179	

			180	 	 var	cwd,	path	string

			181	 	 if	h.Dir	!=	""	{

			182	 	 	 path	=	h.Path

			183	 	 	 cwd	=	h.Dir

			184	 	 }	else	{

			185	 	 	 cwd,	path	=	filepath.Split(h.Path)

			186	 	 }

			187	 	 if	cwd	==	""	{

			188	 	 	 cwd	=	"."

			189	 	 }

			190	

			191	 	 internalError	:=	func(err	error)	{

			192	 	 	 rw.WriteHeader(http.StatusInternalServerError)

			193	 	 	 h.printf("CGI	error:	%v",	err)

			194	 	 }

			195	

			196	 	 cmd	:=	&exec.Cmd{

			197	 	 	 Path:			path,

			198	 	 	 Args:			append([]string{h.Path},	h.Args...),

			199	 	 	 Dir:				cwd,

			200	 	 	 Env:				env,

			201	 	 	 Stderr:	os.Stderr,	//	for	now

			202	 	 }

			203	 	 if	req.ContentLength	!=	0	{

			204	 	 	 cmd.Stdin	=	req.Body

			205	 	 }

			206	 	 stdoutRead,	err	:=	cmd.StdoutPipe()

			207	 	 if	err	!=	nil	{

			208	 	 	 internalError(err)

			209	 	 	 return

			210	 	 }

			211	

			212	 	 err	=	cmd.Start()

			213	 	 if	err	!=	nil	{

			214	 	 	 internalError(err)

			215	 	 	 return

			216	 	 }

			217	 	 defer	cmd.Wait()

			218	 	 defer	stdoutRead.Close()

			219	

			220	 	 linebody	:=	bufio.NewReaderSize(stdoutRead,	1024)

			221	 	 headers	:=	make(http.Header)

			222	 	 statusCode	:=	0

			223	 	 for	{

			224	 	 	 line,	isPrefix,	err	:=	linebody.ReadLine()

			225	 	 	 if	isPrefix	{

			226	 	 	 	 rw.WriteHeader(http.StatusInternalServerError)

			227	 	 	 	 h.printf("cgi:	long	header	line	from	subprocess.")

			228	 	 	 	 return

			229	 	 	 }

			230	 	 	 if	err	==	io.EOF	{

			231	 	 	 	 break

			232	 	 	 }

			233	 	 	 if	err	!=	nil	{

			234	 	 	 	 rw.WriteHeader(http.StatusInternalServerError)

			235	 	 	 	 h.printf("cgi:	error	reading	headers:	%v",	err)

			236	 	 	 	 return

			237	 	 	 }

			238	 	 	 if	len(line)	==	0	{

			239	 	 	 	 break

			240	 	 	 }

			241	 	 	 parts	:=	strings.SplitN(string(line),	":",	2)

			242	 	 	 if	len(parts)	<	2	{

			243	 	 	 	 h.printf("cgi:	bogus	header	line:	%s",	string(line))

			244	 	 	 	 continue

			245	 	 	 }

			246	 	 	 header,	val	:=	parts[0],	parts[1]

			247	 	 	 header	=	strings.TrimSpace(header)

			248	 	 	 val	=	strings.TrimSpace(val)

			249	 	 	 switch	{

			250	 	 	 case	header	==	"Status":

			251	 	 	 	 if	len(val)	<	3	{

			252	 	 	 	 	 h.printf("cgi:	bogus	status	(short):	%q",	val)

			253	 	 	 	 	 return

			254	 	 	 	 }

			255	 	 	 	 code,	err	:=	strconv.Atoi(val[0:3])

			256	 	 	 	 if	err	!=	nil	{

			257	 	 	 	 	 h.printf("cgi:	bogus	status:	%q",	val)

			258	 	 	 	 	 h.printf("cgi:	line	was	%q",	line)

			259	 	 	 	 	 return

			260	 	 	 	 }

			261	 	 	 	 statusCode	=	code

			262	 	 	 default:

			263	 	 	 	 headers.Add(header,	val)

			264	 	 	 }

			265	 	 }

			266	

			267	 	 if	loc	:=	headers.Get("Location");	loc	!=	""	{

			268	 	 	 if	strings.HasPrefix(loc,	"/")	&&	h.PathLocationHandler	!=	nil	{

			269	 	 	 	 h.handleInternalRedirect(rw,	req,	loc)

			270	 	 	 	 return

			271	 	 	 }

			272	 	 	 if	statusCode	==	0	{

			273	 	 	 	 statusCode	=	http.StatusFound

			274	 	 	 }

			275	 	 }

			276	

			277	 	 if	statusCode	==	0	{

			278	 	 	 statusCode	=	http.StatusOK

			279	 	 }

			280	

			281	 	 //	Copy	headers	to	rw's	headers,	after	we've	decided	not	to

			282	 	 //	go	into	handleInternalRedirect,	which	won't	want	its	rw

			283	 	 //	headers	to	have	been	touched.

			284	 	 for	k,	vv	:=	range	headers	{

			285	 	 	 for	_,	v	:=	range	vv	{

			286	 	 	 	 rw.Header().Add(k,	v)

			287	 	 	 }

			288	 	 }

			289	

			290	 	 rw.WriteHeader(statusCode)

			291	

			292	 	 _,	err	=	io.Copy(rw,	linebody)

			293	 	 if	err	!=	nil	{

			294	 	 	 h.printf("cgi:	copy	error:	%v",	err)

			295	 	 }

			296	 }

			297	

			298	 func	(h	*Handler)	printf(format	string,	v	...interface{})	{

			299	 	 if	h.Logger	!=	nil	{

			300	 	 	 h.Logger.Printf(format,	v...)

			301	 	 }	else	{

			302	 	 	 log.Printf(format,	v...)

			303	 	 }

			304	 }

			305	

			306	 func	(h	*Handler)	handleInternalRedirect(rw	http.ResponseWriter,	req	*http.Request,	path	string)	{

			307	 	 url,	err	:=	req.URL.Parse(path)

			308	 	 if	err	!=	nil	{

			309	 	 	 rw.WriteHeader(http.StatusInternalServerError)

			310	 	 	 h.printf("cgi:	error	resolving	local	URI	path	%q:	%v",	path,	err)

			311	 	 	 return

			312	 	 }

			313	 	 //	TODO:	RFC	3875	isn't	clear	if	only	GET	is	supported,	but	it

			314	 	 //	suggests	so:	"Note	that	any	message-body	attached	to	the

			315	 	 //	request	(such	as	for	a	POST	request)	may	not	be	available

			316	 	 //	to	the	resource	that	is	the	target	of	the	redirect."		We

			317	 	 //	should	do	some	tests	against	Apache	to	see	how	it	handles

			318	 	 //	POST,	HEAD,	etc.	Does	the	internal	redirect	get	the	same

			319	 	 //	method	or	just	GET?	What	about	incoming	headers?

			320	 	 //	(e.g.	Cookies)	Which	headers,	if	any,	are	copied	into	the

			321	 	 //	second	request?

			322	 	 newReq	:=	&http.Request{

			323	 	 	 Method:					"GET",

			324	 	 	 URL:								url,

			325	 	 	 Proto:						"HTTP/1.1",

			326	 	 	 ProtoMajor:	1,

			327	 	 	 ProtoMinor:	1,

			328	 	 	 Header:					make(http.Header),

			329	 	 	 Host:							url.Host,

			330	 	 	 RemoteAddr:	req.RemoteAddr,

			331	 	 	 TLS:								req.TLS,

			332	 	 }

			333	 	 h.PathLocationHandler.ServeHTTP(rw,	newReq)

			334	 }

			335	

			336	 func	upperCaseAndUnderscore(r	rune)	rune	{

			337	 	 switch	{

			338	 	 case	r	>=	'a'	&&	r	<=	'z':

			339	 	 	 return	r	-	('a'	-	'A')

			340	 	 case	r	==	'-':

			341	 	 	 return	'_'

			342	 	 case	r	==	'=':

			343	 	 	 //	Maybe	not	part	of	the	CGI	'spec'	but	would	mess	up

			344	 	 	 //	the	environment	in	any	case,	as	Go	represents	the

			345	 	 	 //	environment	as	a	slice	of	"key=value"	strings.

			346	 	 	 return	'_'

			347	 	 }

			348	 	 //	TODO:	other	transformations	in	spec	or	practice?

			349	 	 return	r

			350	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/fcgi/child.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	fcgi

					6	

					7	 //	This	file	implements	FastCGI	from	the	perspective	of	a	child	process.

					8	

					9	 import	(

				10	 	 "errors"

				11	 	 "fmt"

				12	 	 "io"

				13	 	 "net"

				14	 	 "net/http"

				15	 	 "net/http/cgi"

				16	 	 "os"

				17	 	 "time"

				18)

				19	

				20	 //	request	holds	the	state	for	an	in-progress	request.	As	soon	as	it's	complete,

				21	 //	it's	converted	to	an	http.Request.

				22	 type	request	struct	{

				23	 	 pw								*io.PipeWriter

				24	 	 reqId					uint16

				25	 	 params				map[string]string

				26	 	 buf							[1024]byte

				27	 	 rawParams	[]byte

				28	 	 keepConn		bool

				29	 }

				30	

				31	 func	newRequest(reqId	uint16,	flags	uint8)	*request	{

				32	 	 r	:=	&request{

				33	 	 	 reqId:				reqId,

				34	 	 	 params:			map[string]string{},

				35	 	 	 keepConn:	flags&flagKeepConn	!=	0,

				36	 	 }

				37	 	 r.rawParams	=	r.buf[:0]

				38	 	 return	r

				39	 }

				40	

				41	 //	parseParams	reads	an	encoded	[]byte	into	Params.

				42	 func	(r	*request)	parseParams()	{

				43	 	 text	:=	r.rawParams

				44	 	 r.rawParams	=	nil

				45	 	 for	len(text)	>	0	{

				46	 	 	 keyLen,	n	:=	readSize(text)

				47	 	 	 if	n	==	0	{

				48	 	 	 	 return

				49	 	 	 }

				50	 	 	 text	=	text[n:]

				51	 	 	 valLen,	n	:=	readSize(text)

				52	 	 	 if	n	==	0	{

				53	 	 	 	 return

				54	 	 	 }

				55	 	 	 text	=	text[n:]

				56	 	 	 key	:=	readString(text,	keyLen)

				57	 	 	 text	=	text[keyLen:]

				58	 	 	 val	:=	readString(text,	valLen)

				59	 	 	 text	=	text[valLen:]

				60	 	 	 r.params[key]	=	val

				61	 	 }

				62	 }

				63	

				64	 //	response	implements	http.ResponseWriter.

				65	 type	response	struct	{

				66	 	 req									*request

				67	 	 header						http.Header

				68	 	 w											*bufWriter

				69	 	 wroteHeader	bool

				70	 }

				71	

				72	 func	newResponse(c	*child,	req	*request)	*response	{

				73	 	 return	&response{

				74	 	 	 req:				req,

				75	 	 	 header:	http.Header{},

				76	 	 	 w:						newWriter(c.conn,	typeStdout,	req.reqId),

				77	 	 }

				78	 }

				79	

				80	 func	(r	*response)	Header()	http.Header	{

				81	 	 return	r.header

				82	 }

				83	

				84	 func	(r	*response)	Write(data	[]byte)	(int,	error)	{

				85	 	 if	!r.wroteHeader	{

				86	 	 	 r.WriteHeader(http.StatusOK)

				87	 	 }

				88	 	 return	r.w.Write(data)

				89	 }

				90	

				91	 func	(r	*response)	WriteHeader(code	int)	{

				92	 	 if	r.wroteHeader	{

				93	 	 	 return

				94	 	 }

				95	 	 r.wroteHeader	=	true

				96	 	 if	code	==	http.StatusNotModified	{

				97	 	 	 //	Must	not	have	body.

				98	 	 	 r.header.Del("Content-Type")

				99	 	 	 r.header.Del("Content-Length")

			100	 	 	 r.header.Del("Transfer-Encoding")

			101	 	 }	else	if	r.header.Get("Content-Type")	==	""	{

			102	 	 	 r.header.Set("Content-Type",	"text/html;	charset=utf-8")

			103	 	 }

			104	

			105	 	 if	r.header.Get("Date")	==	""	{

			106	 	 	 r.header.Set("Date",	time.Now().UTC().Format(http.TimeFormat))

			107	 	 }

			108	

			109	 	 fmt.Fprintf(r.w,	"Status:	%d	%s\r\n",	code,	http.StatusText(code))

			110	 	 r.header.Write(r.w)

			111	 	 r.w.WriteString("\r\n")

			112	 }

			113	

			114	 func	(r	*response)	Flush()	{

			115	 	 if	!r.wroteHeader	{

			116	 	 	 r.WriteHeader(http.StatusOK)

			117	 	 }

			118	 	 r.w.Flush()

			119	 }

			120	

			121	 func	(r	*response)	Close()	error	{

			122	 	 r.Flush()

			123	 	 return	r.w.Close()

			124	 }

			125	

			126	 type	child	struct	{

			127	 	 conn					*conn

			128	 	 handler		http.Handler

			129	 	 requests	map[uint16]*request	//	keyed	by	request	ID

			130	 }

			131	

			132	 func	newChild(rwc	io.ReadWriteCloser,	handler	http.Handler)	*child	{

			133	 	 return	&child{

			134	 	 	 conn:					newConn(rwc),

			135	 	 	 handler:		handler,

			136	 	 	 requests:	make(map[uint16]*request),

			137	 	 }

			138	 }

			139	

			140	 func	(c	*child)	serve()	{

			141	 	 defer	c.conn.Close()

			142	 	 var	rec	record

			143	 	 for	{

			144	 	 	 if	err	:=	rec.read(c.conn.rwc);	err	!=	nil	{

			145	 	 	 	 return

			146	 	 	 }

			147	 	 	 if	err	:=	c.handleRecord(&rec);	err	!=	nil	{

			148	 	 	 	 return

			149	 	 	 }

			150	 	 }

			151	 }

			152	

			153	 var	errCloseConn	=	errors.New("fcgi:	connection	should	be	closed")

			154	

			155	 func	(c	*child)	handleRecord(rec	*record)	error	{

			156	 	 req,	ok	:=	c.requests[rec.h.Id]

			157	 	 if	!ok	&&	rec.h.Type	!=	typeBeginRequest	&&	rec.h.Type	!=	typeGetValues	{

			158	 	 	 //	The	spec	says	to	ignore	unknown	request	IDs.

			159	 	 	 return	nil

			160	 	 }

			161	 	 if	ok	&&	rec.h.Type	==	typeBeginRequest	{

			162	 	 	 //	The	server	is	trying	to	begin	a	request	with	the	same	ID

			163	 	 	 //	as	an	in-progress	request.	This	is	an	error.

			164	 	 	 return	errors.New("fcgi:	received	ID	that	is	already	in-flight")

			165	 	 }

			166	

			167	 	 switch	rec.h.Type	{

			168	 	 case	typeBeginRequest:

			169	 	 	 var	br	beginRequest

			170	 	 	 if	err	:=	br.read(rec.content());	err	!=	nil	{

			171	 	 	 	 return	err

			172	 	 	 }

			173	 	 	 if	br.role	!=	roleResponder	{

			174	 	 	 	 c.conn.writeEndRequest(rec.h.Id,	0,	statusUnknownRole)

			175	 	 	 	 return	nil

			176	 	 	 }

			177	 	 	 c.requests[rec.h.Id]	=	newRequest(rec.h.Id,	br.flags)

			178	 	 case	typeParams:

			179	 	 	 //	NOTE(eds):	Technically	a	key-value	pair	can	straddle	the	boundary

			180	 	 	 //	between	two	packets.	We	buffer	until	we've	received	all	parameters.

			181	 	 	 if	len(rec.content())	>	0	{

			182	 	 	 	 req.rawParams	=	append(req.rawParams,	rec.content()...)

			183	 	 	 	 return	nil

			184	 	 	 }

			185	 	 	 req.parseParams()

			186	 	 case	typeStdin:

			187	 	 	 content	:=	rec.content()

			188	 	 	 if	req.pw	==	nil	{

			189	 	 	 	 var	body	io.ReadCloser

			190	 	 	 	 if	len(content)	>	0	{

			191	 	 	 	 	 //	body	could	be	an	io.LimitReader,	but	it	shouldn't	matter

			192	 	 	 	 	 //	as	long	as	both	sides	are	behaving.

			193	 	 	 	 	 body,	req.pw	=	io.Pipe()

			194	 	 	 	 }

			195	 	 	 	 go	c.serveRequest(req,	body)

			196	 	 	 }

			197	 	 	 if	len(content)	>	0	{

			198	 	 	 	 //	TODO(eds):	This	blocks	until	the	handler	reads	from	the	pipe.

			199	 	 	 	 //	If	the	handler	takes	a	long	time,	it	might	be	a	problem.

			200	 	 	 	 req.pw.Write(content)

			201	 	 	 }	else	if	req.pw	!=	nil	{

			202	 	 	 	 req.pw.Close()

			203	 	 	 }

			204	 	 case	typeGetValues:

			205	 	 	 values	:=	map[string]string{"FCGI_MPXS_CONNS":	"1"}

			206	 	 	 c.conn.writePairs(typeGetValuesResult,	0,	values)

			207	 	 case	typeData:

			208	 	 	 //	If	the	filter	role	is	implemented,	read	the	data	stream	here.

			209	 	 case	typeAbortRequest:

			210	 	 	 delete(c.requests,	rec.h.Id)

			211	 	 	 c.conn.writeEndRequest(rec.h.Id,	0,	statusRequestComplete)

			212	 	 	 if	!req.keepConn	{

			213	 	 	 	 //	connection	will	close	upon	return

			214	 	 	 	 return	errCloseConn

			215	 	 	 }

			216	 	 default:

			217	 	 	 b	:=	make([]byte,	8)

			218	 	 	 b[0]	=	byte(rec.h.Type)

			219	 	 	 c.conn.writeRecord(typeUnknownType,	0,	b)

			220	 	 }

			221	 	 return	nil

			222	 }

			223	

			224	 func	(c	*child)	serveRequest(req	*request,	body	io.ReadCloser)	{

			225	 	 r	:=	newResponse(c,	req)

			226	 	 httpReq,	err	:=	cgi.RequestFromMap(req.params)

			227	 	 if	err	!=	nil	{

			228	 	 	 //	there	was	an	error	reading	the	request

			229	 	 	 r.WriteHeader(http.StatusInternalServerError)

			230	 	 	 c.conn.writeRecord(typeStderr,	req.reqId,	[]byte(err.Error()))

			231	 	 }	else	{

			232	 	 	 httpReq.Body	=	body

			233	 	 	 c.handler.ServeHTTP(r,	httpReq)

			234	 	 }

			235	 	 if	body	!=	nil	{

			236	 	 	 body.Close()

			237	 	 }

			238	 	 r.Close()

			239	 	 c.conn.writeEndRequest(req.reqId,	0,	statusRequestComplete)

			240	 	 if	!req.keepConn	{

			241	 	 	 c.conn.Close()

			242	 	 }

			243	 }

			244	

			245	 //	Serve	accepts	incoming	FastCGI	connections	on	the	listener	l,	creating	a	new

			246	 //	goroutine	for	each.	The	goroutine	reads	requests	and	then	calls	handler

			247	 //	to	reply	to	them.

			248	 //	If	l	is	nil,	Serve	accepts	connections	from	os.Stdin.

			249	 //	If	handler	is	nil,	http.DefaultServeMux	is	used.

			250	 func	Serve(l	net.Listener,	handler	http.Handler)	error	{

			251	 	 if	l	==	nil	{

			252	 	 	 var	err	error

			253	 	 	 l,	err	=	net.FileListener(os.Stdin)

			254	 	 	 if	err	!=	nil	{

			255	 	 	 	 return	err

			256	 	 	 }

			257	 	 	 defer	l.Close()

			258	 	 }

			259	 	 if	handler	==	nil	{

			260	 	 	 handler	=	http.DefaultServeMux

			261	 	 }

			262	 	 for	{

			263	 	 	 rw,	err	:=	l.Accept()

			264	 	 	 if	err	!=	nil	{

			265	 	 	 	 return	err

			266	 	 	 }

			267	 	 	 c	:=	newChild(rw,	handler)

			268	 	 	 go	c.serve()

			269	 	 }

			270	 	 panic("unreachable")

			271	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/fcgi/fcgi.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	fcgi	implements	the	FastCGI	protocol.

					6	 //	Currently	only	the	responder	role	is	supported.

					7	 //	The	protocol	is	defined	at	http://www.fastcgi.com/drupal/node/6?q=node/22

					8	 package	fcgi

					9	

				10	 //	This	file	defines	the	raw	protocol	and	some	utilities	used	by	the	child	and

				11	 //	the	host.

				12	

				13	 import	(

				14	 	 "bufio"

				15	 	 "bytes"

				16	 	 "encoding/binary"

				17	 	 "errors"

				18	 	 "io"

				19	 	 "sync"

				20)

				21	

				22	 //	recType	is	a	record	type,	as	defined	by

				23	 //	http://www.fastcgi.com/devkit/doc/fcgi-spec.html#S8

				24	 type	recType	uint8

				25	

				26	 const	(

				27	 	 typeBeginRequest				recType	=	1

				28	 	 typeAbortRequest				recType	=	2

				29	 	 typeEndRequest						recType	=	3

				30	 	 typeParams										recType	=	4

				31	 	 typeStdin											recType	=	5

				32	 	 typeStdout										recType	=	6

				33	 	 typeStderr										recType	=	7

				34	 	 typeData												recType	=	8

				35	 	 typeGetValues							recType	=	9

				36	 	 typeGetValuesResult	recType	=	10

				37	 	 typeUnknownType					recType	=	11

				38)

				39	

				40	 //	keep	the	connection	between	web-server	and	responder	open	after	request

				41	 const	flagKeepConn	=	1

				42	

				43	 const	(

				44	 	 maxWrite	=	65535	//	maximum	record	body

				45	 	 maxPad			=	255

				46)

				47	

				48	 const	(

				49	 	 roleResponder	=	iota	+	1	//	only	Responders	are	implemented.

				50	 	 roleAuthorizer

				51	 	 roleFilter

				52)

				53	

				54	 const	(

				55	 	 statusRequestComplete	=	iota

				56	 	 statusCantMultiplex

				57	 	 statusOverloaded

				58	 	 statusUnknownRole

				59)

				60	

				61	 const	headerLen	=	8

				62	

				63	 type	header	struct	{

				64	 	 Version							uint8

				65	 	 Type										recType

				66	 	 Id												uint16

				67	 	 ContentLength	uint16

				68	 	 PaddingLength	uint8

				69	 	 Reserved						uint8

				70	 }

				71	

				72	 type	beginRequest	struct	{

				73	 	 role					uint16

				74	 	 flags				uint8

				75	 	 reserved	[5]uint8

				76	 }

				77	

				78	 func	(br	*beginRequest)	read(content	[]byte)	error	{

				79	 	 if	len(content)	!=	8	{

				80	 	 	 return	errors.New("fcgi:	invalid	begin	request	record")

				81	 	 }

				82	 	 br.role	=	binary.BigEndian.Uint16(content)

				83	 	 br.flags	=	content[2]

				84	 	 return	nil

				85	 }

				86	

				87	 //	for	padding	so	we	don't	have	to	allocate	all	the	time

				88	 //	not	synchronized	because	we	don't	care	what	the	contents	are

				89	 var	pad	[maxPad]byte

				90	

				91	 func	(h	*header)	init(recType	recType,	reqId	uint16,	contentLength	int)	{

				92	 	 h.Version	=	1

				93	 	 h.Type	=	recType

				94	 	 h.Id	=	reqId

				95	 	 h.ContentLength	=	uint16(contentLength)

				96	 	 h.PaddingLength	=	uint8(-contentLength	&	7)

				97	 }

				98	

				99	 //	conn	sends	records	over	rwc

			100	 type	conn	struct	{

			101	 	 mutex	sync.Mutex

			102	 	 rwc			io.ReadWriteCloser

			103	

			104	 	 //	to	avoid	allocations

			105	 	 buf	bytes.Buffer

			106	 	 h			header

			107	 }

			108	

			109	 func	newConn(rwc	io.ReadWriteCloser)	*conn	{

			110	 	 return	&conn{rwc:	rwc}

			111	 }

			112	

			113	 func	(c	*conn)	Close()	error	{

			114	 	 c.mutex.Lock()

			115	 	 defer	c.mutex.Unlock()

			116	 	 return	c.rwc.Close()

			117	 }

			118	

			119	 type	record	struct	{

			120	 	 h			header

			121	 	 buf	[maxWrite	+	maxPad]byte

			122	 }

			123	

			124	 func	(rec	*record)	read(r	io.Reader)	(err	error)	{

			125	 	 if	err	=	binary.Read(r,	binary.BigEndian,	&rec.h);	err	!=	nil	{

			126	 	 	 return	err

			127	 	 }

			128	 	 if	rec.h.Version	!=	1	{

			129	 	 	 return	errors.New("fcgi:	invalid	header	version")

			130	 	 }

			131	 	 n	:=	int(rec.h.ContentLength)	+	int(rec.h.PaddingLength)

			132	 	 if	_,	err	=	io.ReadFull(r,	rec.buf[:n]);	err	!=	nil	{

			133	 	 	 return	err

			134	 	 }

			135	 	 return	nil

			136	 }

			137	

			138	 func	(r	*record)	content()	[]byte	{

			139	 	 return	r.buf[:r.h.ContentLength]

			140	 }

			141	

			142	 //	writeRecord	writes	and	sends	a	single	record.

			143	 func	(c	*conn)	writeRecord(recType	recType,	reqId	uint16,	b	[]byte)	error	{

			144	 	 c.mutex.Lock()

			145	 	 defer	c.mutex.Unlock()

			146	 	 c.buf.Reset()

			147	 	 c.h.init(recType,	reqId,	len(b))

			148	 	 if	err	:=	binary.Write(&c.buf,	binary.BigEndian,	c.h);	err	!=	nil	{

			149	 	 	 return	err

			150	 	 }

			151	 	 if	_,	err	:=	c.buf.Write(b);	err	!=	nil	{

			152	 	 	 return	err

			153	 	 }

			154	 	 if	_,	err	:=	c.buf.Write(pad[:c.h.PaddingLength]);	err	!=	nil	{

			155	 	 	 return	err

			156	 	 }

			157	 	 _,	err	:=	c.rwc.Write(c.buf.Bytes())

			158	 	 return	err

			159	 }

			160	

			161	 func	(c	*conn)	writeBeginRequest(reqId	uint16,	role	uint16,	flags	uint8)	error	{

			162	 	 b	:=	[8]byte{byte(role	>>	8),	byte(role),	flags}

			163	 	 return	c.writeRecord(typeBeginRequest,	reqId,	b[:])

			164	 }

			165	

			166	 func	(c	*conn)	writeEndRequest(reqId	uint16,	appStatus	int,	protocolStatus	uint8)	error	{

			167	 	 b	:=	make([]byte,	8)

			168	 	 binary.BigEndian.PutUint32(b,	uint32(appStatus))

			169	 	 b[4]	=	protocolStatus

			170	 	 return	c.writeRecord(typeEndRequest,	reqId,	b)

			171	 }

			172	

			173	 func	(c	*conn)	writePairs(recType	recType,	reqId	uint16,	pairs	map[string]string)	error	{

			174	 	 w	:=	newWriter(c,	recType,	reqId)

			175	 	 b	:=	make([]byte,	8)

			176	 	 for	k,	v	:=	range	pairs	{

			177	 	 	 n	:=	encodeSize(b,	uint32(len(k)))

			178	 	 	 n	+=	encodeSize(b[n:],	uint32(len(v)))

			179	 	 	 if	_,	err	:=	w.Write(b[:n]);	err	!=	nil	{

			180	 	 	 	 return	err

			181	 	 	 }

			182	 	 	 if	_,	err	:=	w.WriteString(k);	err	!=	nil	{

			183	 	 	 	 return	err

			184	 	 	 }

			185	 	 	 if	_,	err	:=	w.WriteString(v);	err	!=	nil	{

			186	 	 	 	 return	err

			187	 	 	 }

			188	 	 }

			189	 	 w.Close()

			190	 	 return	nil

			191	 }

			192	

			193	 func	readSize(s	[]byte)	(uint32,	int)	{

			194	 	 if	len(s)	==	0	{

			195	 	 	 return	0,	0

			196	 	 }

			197	 	 size,	n	:=	uint32(s[0]),	1

			198	 	 if	size&(1<<7)	!=	0	{

			199	 	 	 if	len(s)	<	4	{

			200	 	 	 	 return	0,	0

			201	 	 	 }

			202	 	 	 n	=	4

			203	 	 	 size	=	binary.BigEndian.Uint32(s)

			204	 	 	 size	&^=	1	<<	31

			205	 	 }

			206	 	 return	size,	n

			207	 }

			208	

			209	 func	readString(s	[]byte,	size	uint32)	string	{

			210	 	 if	size	>	uint32(len(s))	{

			211	 	 	 return	""

			212	 	 }

			213	 	 return	string(s[:size])

			214	 }

			215	

			216	 func	encodeSize(b	[]byte,	size	uint32)	int	{

			217	 	 if	size	>	127	{

			218	 	 	 size	|=	1	<<	31

			219	 	 	 binary.BigEndian.PutUint32(b,	size)

			220	 	 	 return	4

			221	 	 }

			222	 	 b[0]	=	byte(size)

			223	 	 return	1

			224	 }

			225	

			226	 //	bufWriter	encapsulates	bufio.Writer	but	also	closes	the	underlying	stream	when

			227	 //	Closed.

			228	 type	bufWriter	struct	{

			229	 	 closer	io.Closer

			230	 	 *bufio.Writer

			231	 }

			232	

			233	 func	(w	*bufWriter)	Close()	error	{

			234	 	 if	err	:=	w.Writer.Flush();	err	!=	nil	{

			235	 	 	 w.closer.Close()

			236	 	 	 return	err

			237	 	 }

			238	 	 return	w.closer.Close()

			239	 }

			240	

			241	 func	newWriter(c	*conn,	recType	recType,	reqId	uint16)	*bufWriter	{

			242	 	 s	:=	&streamWriter{c:	c,	recType:	recType,	reqId:	reqId}

			243	 	 w	:=	bufio.NewWriterSize(s,	maxWrite)

			244	 	 return	&bufWriter{s,	w}

			245	 }

			246	

			247	 //	streamWriter	abstracts	out	the	separation	of	a	stream	into	discrete	records.

			248	 //	It	only	writes	maxWrite	bytes	at	a	time.

			249	 type	streamWriter	struct	{

			250	 	 c							*conn

			251	 	 recType	recType

			252	 	 reqId			uint16

			253	 }

			254	

			255	 func	(w	*streamWriter)	Write(p	[]byte)	(int,	error)	{

			256	 	 nn	:=	0

			257	 	 for	len(p)	>	0	{

			258	 	 	 n	:=	len(p)

			259	 	 	 if	n	>	maxWrite	{

			260	 	 	 	 n	=	maxWrite

			261	 	 	 }

			262	 	 	 if	err	:=	w.c.writeRecord(w.recType,	w.reqId,	p[:n]);	err	!=	nil	{

			263	 	 	 	 return	nn,	err

			264	 	 	 }

			265	 	 	 nn	+=	n

			266	 	 	 p	=	p[n:]

			267	 	 }

			268	 	 return	nn,	nil

			269	 }

			270	

			271	 func	(w	*streamWriter)	Close()	error	{

			272	 	 //	send	empty	record	to	close	the	stream

			273	 	 return	w.c.writeRecord(w.recType,	w.reqId,	nil)

			274	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/httptest/recorder.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	httptest	provides	utilities	for	HTTP	testing.

					6	 package	httptest

					7	

					8	 import	(

					9	 	 "bytes"

				10	 	 "net/http"

				11)

				12	

				13	 //	ResponseRecorder	is	an	implementation	of	http.ResponseWriter	that

				14	 //	records	its	mutations	for	later	inspection	in	tests.

				15	 type	ResponseRecorder	struct	{

				16	 	 Code						int											//	the	HTTP	response	code	from	WriteHeader

				17	 	 HeaderMap	http.Header			//	the	HTTP	response	headers

				18	 	 Body						*bytes.Buffer	//	if	non-nil,	the	bytes.Buffer	to	append	written	data	to

				19	 	 Flushed			bool

				20	 }

				21	

				22	 //	NewRecorder	returns	an	initialized	ResponseRecorder.

				23	 func	NewRecorder()	*ResponseRecorder	{

				24	 	 return	&ResponseRecorder{

				25	 	 	 HeaderMap:	make(http.Header),

				26	 	 	 Body:						new(bytes.Buffer),

				27	 	 }

				28	 }

				29	

				30	 //	DefaultRemoteAddr	is	the	default	remote	address	to	return	in	RemoteAddr	if

				31	 //	an	explicit	DefaultRemoteAddr	isn't	set	on	ResponseRecorder.

				32	 const	DefaultRemoteAddr	=	"1.2.3.4"

				33	

				34	 //	Header	returns	the	response	headers.

				35	 func	(rw	*ResponseRecorder)	Header()	http.Header	{

				36	 	 return	rw.HeaderMap

				37	 }

				38	

				39	 //	Write	always	succeeds	and	writes	to	rw.Body,	if	not	nil.

				40	 func	(rw	*ResponseRecorder)	Write(buf	[]byte)	(int,	error)	{

				41	 	 if	rw.Body	!=	nil	{

				42	 	 	 rw.Body.Write(buf)

				43	 	 }

				44	 	 if	rw.Code	==	0	{

				45	 	 	 rw.Code	=	http.StatusOK

				46	 	 }

				47	 	 return	len(buf),	nil

				48	 }

				49	

				50	 //	WriteHeader	sets	rw.Code.

				51	 func	(rw	*ResponseRecorder)	WriteHeader(code	int)	{

				52	 	 rw.Code	=	code

				53	 }

				54	

				55	 //	Flush	sets	rw.Flushed	to	true.

				56	 func	(rw	*ResponseRecorder)	Flush()	{

				57	 	 rw.Flushed	=	true

				58	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/httptest/server.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Implementation	of	Server

					6	

					7	 package	httptest

					8	

					9	 import	(

				10	 	 "crypto/tls"

				11	 	 "flag"

				12	 	 "fmt"

				13	 	 "net"

				14	 	 "net/http"

				15	 	 "os"

				16	 	 "sync"

				17)

				18	

				19	 //	A	Server	is	an	HTTP	server	listening	on	a	system-chosen	port	on	the

				20	 //	local	loopback	interface,	for	use	in	end-to-end	HTTP	tests.

				21	 type	Server	struct	{

				22	 	 URL						string	//	base	URL	of	form	http://ipaddr:port	with	no	trailing	slash

				23	 	 Listener	net.Listener

				24	 	 TLS						*tls.Config	//	nil	if	not	using	using	TLS

				25	

				26	 	 //	Config	may	be	changed	after	calling	NewUnstartedServer	and

				27	 	 //	before	Start	or	StartTLS.

				28	 	 Config	*http.Server

				29	

				30	 	 //	wg	counts	the	number	of	outstanding	HTTP	requests	on	this	server.

				31	 	 //	Close	blocks	until	all	requests	are	finished.

				32	 	 wg	sync.WaitGroup

				33	 }

				34	

				35	 //	historyListener	keeps	track	of	all	connections	that	it's	ever

				36	 //	accepted.

				37	 type	historyListener	struct	{

				38	 	 net.Listener

				39	 	 history	[]net.Conn

				40	 }

				41	

				42	 func	(hs	*historyListener)	Accept()	(c	net.Conn,	err	error)	{

				43	 	 c,	err	=	hs.Listener.Accept()

				44	 	 if	err	==	nil	{

				45	 	 	 hs.history	=	append(hs.history,	c)

				46	 	 }

				47	 	 return

				48	 }

				49	

				50	 func	newLocalListener()	net.Listener	{

				51	 	 if	*serve	!=	""	{

				52	 	 	 l,	err	:=	net.Listen("tcp",	*serve)

				53	 	 	 if	err	!=	nil	{

				54	 	 	 	 panic(fmt.Sprintf("httptest:	failed	to	listen	on	%v:	%v",	*serve,	err))

				55	 	 	 }

				56	 	 	 return	l

				57	 	 }

				58	 	 l,	err	:=	net.Listen("tcp",	"127.0.0.1:0")

				59	 	 if	err	!=	nil	{

				60	 	 	 if	l,	err	=	net.Listen("tcp6",	"[::1]:0");	err	!=	nil	{

				61	 	 	 	 panic(fmt.Sprintf("httptest:	failed	to	listen	on	a	port:	%v",	err))

				62	 	 	 }

				63	 	 }

				64	 	 return	l

				65	 }

				66	

				67	 //	When	debugging	a	particular	http	server-based	test,

				68	 //	this	flag	lets	you	run

				69	 //	 go	test	-run=BrokenTest	-httptest.serve=127.0.0.1:8000

				70	 //	to	start	the	broken	server	so	you	can	interact	with	it	manually.

				71	 var	serve	=	flag.String("httptest.serve",	"",	"if	non-empty,	httptest.NewServer	serves	on	this	address	and	blocks")

				72	

				73	 //	NewServer	starts	and	returns	a	new	Server.

				74	 //	The	caller	should	call	Close	when	finished,	to	shut	it	down.

				75	 func	NewServer(handler	http.Handler)	*Server	{

				76	 	 ts	:=	NewUnstartedServer(handler)

				77	 	 ts.Start()

				78	 	 return	ts

				79	 }

				80	

				81	 //	NewUnstartedServer	returns	a	new	Server	but	doesn't	start	it.

				82	 //

				83	 //	After	changing	its	configuration,	the	caller	should	call	Start	or

				84	 //	StartTLS.

				85	 //

				86	 //	The	caller	should	call	Close	when	finished,	to	shut	it	down.

				87	 func	NewUnstartedServer(handler	http.Handler)	*Server	{

				88	 	 return	&Server{

				89	 	 	 Listener:	newLocalListener(),

				90	 	 	 Config:			&http.Server{Handler:	handler},

				91	 	 }

				92	 }

				93	

				94	 //	Start	starts	a	server	from	NewUnstartedServer.

				95	 func	(s	*Server)	Start()	{

				96	 	 if	s.URL	!=	""	{

				97	 	 	 panic("Server	already	started")

				98	 	 }

				99	 	 s.Listener	=	&historyListener{s.Listener,	make([]net.Conn,	0)}

			100	 	 s.URL	=	"http://"	+	s.Listener.Addr().String()

			101	 	 s.wrapHandler()

			102	 	 go	s.Config.Serve(s.Listener)

			103	 	 if	*serve	!=	""	{

			104	 	 	 fmt.Fprintln(os.Stderr,	"httptest:	serving	on",	s.URL)

			105	 	 	 select	{}

			106	 	 }

			107	 }

			108	

			109	 //	StartTLS	starts	TLS	on	a	server	from	NewUnstartedServer.

			110	 func	(s	*Server)	StartTLS()	{

			111	 	 if	s.URL	!=	""	{

			112	 	 	 panic("Server	already	started")

			113	 	 }

			114	 	 cert,	err	:=	tls.X509KeyPair(localhostCert,	localhostKey)

			115	 	 if	err	!=	nil	{

			116	 	 	 panic(fmt.Sprintf("httptest:	NewTLSServer:	%v",	err))

			117	 	 }

			118	

			119	 	 s.TLS	=	&tls.Config{

			120	 	 	 NextProtos:			[]string{"http/1.1"},

			121	 	 	 Certificates:	[]tls.Certificate{cert},

			122	 	 }

			123	 	 tlsListener	:=	tls.NewListener(s.Listener,	s.TLS)

			124	

			125	 	 s.Listener	=	&historyListener{tlsListener,	make([]net.Conn,	0)}

			126	 	 s.URL	=	"https://"	+	s.Listener.Addr().String()

			127	 	 s.wrapHandler()

			128	 	 go	s.Config.Serve(s.Listener)

			129	 }

			130	

			131	 func	(s	*Server)	wrapHandler()	{

			132	 	 h	:=	s.Config.Handler

			133	 	 if	h	==	nil	{

			134	 	 	 h	=	http.DefaultServeMux

			135	 	 }

			136	 	 s.Config.Handler	=	&waitGroupHandler{

			137	 	 	 s:	s,

			138	 	 	 h:	h,

			139	 	 }

			140	 }

			141	

			142	 //	NewTLSServer	starts	and	returns	a	new	Server	using	TLS.

			143	 //	The	caller	should	call	Close	when	finished,	to	shut	it	down.

			144	 func	NewTLSServer(handler	http.Handler)	*Server	{

			145	 	 ts	:=	NewUnstartedServer(handler)

			146	 	 ts.StartTLS()

			147	 	 return	ts

			148	 }

			149	

			150	 //	Close	shuts	down	the	server	and	blocks	until	all	outstanding

			151	 //	requests	on	this	server	have	completed.

			152	 func	(s	*Server)	Close()	{

			153	 	 s.Listener.Close()

			154	 	 s.wg.Wait()

			155	 }

			156	

			157	 //	CloseClientConnections	closes	any	currently	open	HTTP	connections

			158	 //	to	the	test	Server.

			159	 func	(s	*Server)	CloseClientConnections()	{

			160	 	 hl,	ok	:=	s.Listener.(*historyListener)

			161	 	 if	!ok	{

			162	 	 	 return

			163	 	 }

			164	 	 for	_,	conn	:=	range	hl.history	{

			165	 	 	 conn.Close()

			166	 	 }

			167	 }

			168	

			169	 //	waitGroupHandler	wraps	a	handler,	incrementing	and	decrementing	a

			170	 //	sync.WaitGroup	on	each	request,	to	enable	Server.Close	to	block

			171	 //	until	outstanding	requests	are	finished.

			172	 type	waitGroupHandler	struct	{

			173	 	 s	*Server

			174	 	 h	http.Handler	//	non-nil

			175	 }

			176	

			177	 func	(h	*waitGroupHandler)	ServeHTTP(w	http.ResponseWriter,	r	*http.Request)	{

			178	 	 h.s.wg.Add(1)

			179	 	 defer	h.s.wg.Done()	//	a	defer,	in	case	ServeHTTP	below	panics

			180	 	 h.h.ServeHTTP(w,	r)

			181	 }

			182	

			183	 //	localhostCert	is	a	PEM-encoded	TLS	cert	with	SAN	DNS	names

			184	 //	"127.0.0.1"	and	"[::1]",	expiring	at	the	last	second	of	2049	(the	end

			185	 //	of	ASN.1	time).

			186	 var	localhostCert	=	[]byte(`-----BEGIN	CERTIFICATE-----

			187	 MIIBOTCB5qADAgECAgEAMAsGCSqGSIb3DQEBBTAAMB4XDTcwMDEwMTAwMDAwMFoX

			188	 DTQ5MTIzMTIzNTk1OVowADBaMAsGCSqGSIb3DQEBAQNLADBIAkEAsuA5mAFMj6Q7

			189	 qoBzcvKzIq4kzuT5epSp2AkcQfyBHm7K13Ws7u+0b5Vb9gqTf5cAiIKcrtrXVqkL

			190	 8i1UQF6AzwIDAQABo08wTTAOBgNVHQ8BAf8EBAMCACQwDQYDVR0OBAYEBAECAwQw

			191	 DwYDVR0jBAgwBoAEAQIDBDAbBgNVHREEFDASggkxMjcuMC4wLjGCBVs6OjFdMAsG

			192	 CSqGSIb3DQEBBQNBAJH30zjLWRztrWpOCgJL8RQWLaKzhK79pVhAx6q/3NrF16C7

			193	 +l1BRZstTwIGdoGId8BRpErK1TXkniFb95ZMynM=

			194	 -----END	CERTIFICATE-----

			195	 `)

			196	

			197	 //	localhostKey	is	the	private	key	for	localhostCert.

			198	 var	localhostKey	=	[]byte(`-----BEGIN	RSA	PRIVATE	KEY-----

			199	 MIIBPQIBAAJBALLgOZgBTI+kO6qAc3LysyKuJM7k+XqUqdgJHEH8gR5uytd1rO7v

			200	 tG+VW/YKk3+XAIiCnK7a11apC/ItVEBegM8CAwEAAQJBAI5sxq7naeR9ahyqRkJi

			201	 SIv2iMxLuPEHaezf5CYOPWjSjBPyVhyRevkhtqEjF/WkgL7C2nWpYHsUcBDBQVF0

			202	 3KECIQDtEGB2ulnkZAahl3WuJziXGLB+p8Wgx7wzSM6bHu1c6QIhAMEp++CaS+SJ

			203	 /TrU0zwY/fW4SvQeb49BPZUF3oqR8Xz3AiEA1rAJHBzBgdOQKdE3ksMUPcnvNJSN

			204	 poCcELmz2clVXtkCIQCLytuLV38XHToTipR4yMl6O+6arzAjZ56uq7m7ZRV0TwIh

			205	 AM65XAOw8Dsg9Kq78aYXiOEDc5DL0sbFUu/SlmRcCg93

			206	 -----END	RSA	PRIVATE	KEY-----

			207	 `)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/httputil/chunked.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	The	wire	protocol	for	HTTP's	"chunked"	Transfer-Encoding.

					6	

					7	 //	This	code	is	a	duplicate	of	../chunked.go	with	these	edits:

					8	 //	 s/newChunked/NewChunked/g

					9	 //	 s/package	http/package	httputil/

				10	 //	Please	make	any	changes	in	both	files.

				11	

				12	 package	httputil

				13	

				14	 import	(

				15	 	 "bufio"

				16	 	 "bytes"

				17	 	 "errors"

				18	 	 "io"

				19	 	 "strconv"

				20)

				21	

				22	 const	maxLineLength	=	4096	//	assumed	<=	bufio.defaultBufSize

				23	

				24	 var	ErrLineTooLong	=	errors.New("header	line	too	long")

				25	

				26	 //	NewChunkedReader	returns	a	new	chunkedReader	that	translates	the	data	read	from	r

				27	 //	out	of	HTTP	"chunked"	format	before	returning	it.	

				28	 //	The	chunkedReader	returns	io.EOF	when	the	final	0-length	chunk	is	read.

				29	 //

				30	 //	NewChunkedReader	is	not	needed	by	normal	applications.	The	http	package

				31	 //	automatically	decodes	chunking	when	reading	response	bodies.

				32	 func	NewChunkedReader(r	io.Reader)	io.Reader	{

				33	 	 br,	ok	:=	r.(*bufio.Reader)

				34	 	 if	!ok	{

				35	 	 	 br	=	bufio.NewReader(r)

				36	 	 }

				37	 	 return	&chunkedReader{r:	br}

				38	 }

				39	

				40	 type	chunkedReader	struct	{

				41	 	 r			*bufio.Reader

				42	 	 n			uint64	//	unread	bytes	in	chunk

				43	 	 err	error

				44	 }

				45	

				46	 func	(cr	*chunkedReader)	beginChunk()	{

				47	 	 //	chunk-size	CRLF

				48	 	 var	line	string

				49	 	 line,	cr.err	=	readLine(cr.r)

				50	 	 if	cr.err	!=	nil	{

				51	 	 	 return

				52	 	 }

				53	 	 cr.n,	cr.err	=	strconv.ParseUint(line,	16,	64)

				54	 	 if	cr.err	!=	nil	{

				55	 	 	 return

				56	 	 }

				57	 	 if	cr.n	==	0	{

				58	 	 	 cr.err	=	io.EOF

				59	 	 }

				60	 }

				61	

				62	 func	(cr	*chunkedReader)	Read(b	[]uint8)	(n	int,	err	error)	{

				63	 	 if	cr.err	!=	nil	{

				64	 	 	 return	0,	cr.err

				65	 	 }

				66	 	 if	cr.n	==	0	{

				67	 	 	 cr.beginChunk()

				68	 	 	 if	cr.err	!=	nil	{

				69	 	 	 	 return	0,	cr.err

				70	 	 	 }

				71	 	 }

				72	 	 if	uint64(len(b))	>	cr.n	{

				73	 	 	 b	=	b[0:cr.n]

				74	 	 }

				75	 	 n,	cr.err	=	cr.r.Read(b)

				76	 	 cr.n	-=	uint64(n)

				77	 	 if	cr.n	==	0	&&	cr.err	==	nil	{

				78	 	 	 //	end	of	chunk	(CRLF)

				79	 	 	 b	:=	make([]byte,	2)

				80	 	 	 if	_,	cr.err	=	io.ReadFull(cr.r,	b);	cr.err	==	nil	{

				81	 	 	 	 if	b[0]	!=	'\r'	||	b[1]	!=	'\n'	{

				82	 	 	 	 	 cr.err	=	errors.New("malformed	chunked	encoding")

				83	 	 	 	 }

				84	 	 	 }

				85	 	 }

				86	 	 return	n,	cr.err

				87	 }

				88	

				89	 //	Read	a	line	of	bytes	(up	to	\n)	from	b.

				90	 //	Give	up	if	the	line	exceeds	maxLineLength.

				91	 //	The	returned	bytes	are	a	pointer	into	storage	in

				92	 //	the	bufio,	so	they	are	only	valid	until	the	next	bufio	read.

				93	 func	readLineBytes(b	*bufio.Reader)	(p	[]byte,	err	error)	{

				94	 	 if	p,	err	=	b.ReadSlice('\n');	err	!=	nil	{

				95	 	 	 //	We	always	know	when	EOF	is	coming.

				96	 	 	 //	If	the	caller	asked	for	a	line,	there	should	be	a	line.

				97	 	 	 if	err	==	io.EOF	{

				98	 	 	 	 err	=	io.ErrUnexpectedEOF

				99	 	 	 }	else	if	err	==	bufio.ErrBufferFull	{

			100	 	 	 	 err	=	ErrLineTooLong

			101	 	 	 }

			102	 	 	 return	nil,	err

			103	 	 }

			104	 	 if	len(p)	>=	maxLineLength	{

			105	 	 	 return	nil,	ErrLineTooLong

			106	 	 }

			107	

			108	 	 //	Chop	off	trailing	white	space.

			109	 	 p	=	bytes.TrimRight(p,	"	\r\t\n")

			110	

			111	 	 return	p,	nil

			112	 }

			113	

			114	 //	readLineBytes,	but	convert	the	bytes	into	a	string.

			115	 func	readLine(b	*bufio.Reader)	(s	string,	err	error)	{

			116	 	 p,	e	:=	readLineBytes(b)

			117	 	 if	e	!=	nil	{

			118	 	 	 return	"",	e

			119	 	 }

			120	 	 return	string(p),	nil

			121	 }

			122	

			123	 //	NewChunkedWriter	returns	a	new	chunkedWriter	that	translates	writes	into	HTTP

			124	 //	"chunked"	format	before	writing	them	to	w.	Closing	the	returned	chunkedWriter

			125	 //	sends	the	final	0-length	chunk	that	marks	the	end	of	the	stream.

			126	 //

			127	 //	NewChunkedWriter	is	not	needed	by	normal	applications.	The	http

			128	 //	package	adds	chunking	automatically	if	handlers	don't	set	a

			129	 //	Content-Length	header.	Using	NewChunkedWriter	inside	a	handler

			130	 //	would	result	in	double	chunking	or	chunking	with	a	Content-Length

			131	 //	length,	both	of	which	are	wrong.

			132	 func	NewChunkedWriter(w	io.Writer)	io.WriteCloser	{

			133	 	 return	&chunkedWriter{w}

			134	 }

			135	

			136	 //	Writing	to	chunkedWriter	translates	to	writing	in	HTTP	chunked	Transfer

			137	 //	Encoding	wire	format	to	the	underlying	Wire	chunkedWriter.

			138	 type	chunkedWriter	struct	{

			139	 	 Wire	io.Writer

			140	 }

			141	

			142	 //	Write	the	contents	of	data	as	one	chunk	to	Wire.

			143	 //	NOTE:	Note	that	the	corresponding	chunk-writing	procedure	in	Conn.Write	has

			144	 //	a	bug	since	it	does	not	check	for	success	of	io.WriteString

			145	 func	(cw	*chunkedWriter)	Write(data	[]byte)	(n	int,	err	error)	{

			146	

			147	 	 //	Don't	send	0-length	data.	It	looks	like	EOF	for	chunked	encoding.

			148	 	 if	len(data)	==	0	{

			149	 	 	 return	0,	nil

			150	 	 }

			151	

			152	 	 head	:=	strconv.FormatInt(int64(len(data)),	16)	+	"\r\n"

			153	

			154	 	 if	_,	err	=	io.WriteString(cw.Wire,	head);	err	!=	nil	{

			155	 	 	 return	0,	err

			156	 	 }

			157	 	 if	n,	err	=	cw.Wire.Write(data);	err	!=	nil	{

			158	 	 	 return

			159	 	 }

			160	 	 if	n	!=	len(data)	{

			161	 	 	 err	=	io.ErrShortWrite

			162	 	 	 return

			163	 	 }

			164	 	 _,	err	=	io.WriteString(cw.Wire,	"\r\n")

			165	

			166	 	 return

			167	 }

			168	

			169	 func	(cw	*chunkedWriter)	Close()	error	{

			170	 	 _,	err	:=	io.WriteString(cw.Wire,	"0\r\n")

			171	 	 return	err

			172	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/httputil/dump.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	httputil

					6	

					7	 import	(

					8	 	 "bufio"

					9	 	 "bytes"

				10	 	 "fmt"

				11	 	 "io"

				12	 	 "io/ioutil"

				13	 	 "net"

				14	 	 "net/http"

				15	 	 "net/url"

				16	 	 "strings"

				17	 	 "time"

				18)

				19	

				20	 //	One	of	the	copies,	say	from	b	to	r2,	could	be	avoided	by	using	a	more

				21	 //	elaborate	trick	where	the	other	copy	is	made	during	Request/Response.Write.

				22	 //	This	would	complicate	things	too	much,	given	that	these	functions	are	for

				23	 //	debugging	only.

				24	 func	drainBody(b	io.ReadCloser)	(r1,	r2	io.ReadCloser,	err	error)	{

				25	 	 var	buf	bytes.Buffer

				26	 	 if	_,	err	=	buf.ReadFrom(b);	err	!=	nil	{

				27	 	 	 return	nil,	nil,	err

				28	 	 }

				29	 	 if	err	=	b.Close();	err	!=	nil	{

				30	 	 	 return	nil,	nil,	err

				31	 	 }

				32	 	 return	ioutil.NopCloser(&buf),	ioutil.NopCloser(bytes.NewBuffer(buf.Bytes())),	nil

				33	 }

				34	

				35	 //	dumpConn	is	a	net.Conn	which	writes	to	Writer	and	reads	from	Reader

				36	 type	dumpConn	struct	{

				37	 	 io.Writer

				38	 	 io.Reader

				39	 }

				40	

				41	 func	(c	*dumpConn)	Close()	error																							{	return	nil	}

				42	 func	(c	*dumpConn)	LocalAddr()	net.Addr																{	return	nil	}

				43	 func	(c	*dumpConn)	RemoteAddr()	net.Addr															{	return	nil	}

				44	 func	(c	*dumpConn)	SetDeadline(t	time.Time)	error						{	return	nil	}

				45	 func	(c	*dumpConn)	SetReadDeadline(t	time.Time)	error		{	return	nil	}

				46	 func	(c	*dumpConn)	SetWriteDeadline(t	time.Time)	error	{	return	nil	}

				47	

				48	 //	DumpRequestOut	is	like	DumpRequest	but	includes

				49	 //	headers	that	the	standard	http.Transport	adds,

				50	 //	such	as	User-Agent.

				51	 func	DumpRequestOut(req	*http.Request,	body	bool)	([]byte,	error)	{

				52	 	 save	:=	req.Body

				53	 	 if	!body	||	req.Body	==	nil	{

				54	 	 	 req.Body	=	nil

				55	 	 }	else	{

				56	 	 	 var	err	error

				57	 	 	 save,	req.Body,	err	=	drainBody(req.Body)

				58	 	 	 if	err	!=	nil	{

				59	 	 	 	 return	nil,	err

				60	 	 	 }

				61	 	 }

				62	

				63	 	 //	Since	we're	using	the	actual	Transport	code	to	write	the	request,

				64	 	 //	switch	to	http	so	the	Transport	doesn't	try	to	do	an	SSL

				65	 	 //	negotiation	with	our	dumpConn	and	its	bytes.Buffer	&	pipe.

				66	 	 //	The	wire	format	for	https	and	http	are	the	same,	anyway.

				67	 	 reqSend	:=	req

				68	 	 if	req.URL.Scheme	==	"https"	{

				69	 	 	 reqSend	=	new(http.Request)

				70	 	 	 *reqSend	=	*req

				71	 	 	 reqSend.URL	=	new(url.URL)

				72	 	 	 *reqSend.URL	=	*req.URL

				73	 	 	 reqSend.URL.Scheme	=	"http"

				74	 	 }

				75	

				76	 	 //	Use	the	actual	Transport	code	to	record	what	we	would	send

				77	 	 //	on	the	wire,	but	not	using	TCP.		Use	a	Transport	with	a

				78	 	 //	customer	dialer	that	returns	a	fake	net.Conn	that	waits

				79	 	 //	for	the	full	input	(and	recording	it),	and	then	responds

				80	 	 //	with	a	dummy	response.

				81	 	 var	buf	bytes.Buffer	//	records	the	output

				82	 	 pr,	pw	:=	io.Pipe()

				83	 	 dr	:=	&delegateReader{c:	make(chan	io.Reader)}

				84	 	 //	Wait	for	the	request	before	replying	with	a	dummy	response:

				85	 	 go	func()	{

				86	 	 	 http.ReadRequest(bufio.NewReader(pr))

				87	 	 	 dr.c	<-	strings.NewReader("HTTP/1.1	204	No	Content\r\n\r\n")

				88	 	 }()

				89	

				90	 	 t	:=	&http.Transport{

				91	 	 	 Dial:	func(net,	addr	string)	(net.Conn,	error)	{

				92	 	 	 	 return	&dumpConn{io.MultiWriter(pw,	&buf),	dr},	nil

				93	 	 	 },

				94	 	 }

				95	

				96	 	 _,	err	:=	t.RoundTrip(reqSend)

				97	

				98	 	 req.Body	=	save

				99	 	 if	err	!=	nil	{

			100	 	 	 return	nil,	err

			101	 	 }

			102	 	 return	buf.Bytes(),	nil

			103	 }

			104	

			105	 //	delegateReader	is	a	reader	that	delegates	to	another	reader,

			106	 //	once	it	arrives	on	a	channel.

			107	 type	delegateReader	struct	{

			108	 	 c	chan	io.Reader

			109	 	 r	io.Reader	//	nil	until	received	from	c

			110	 }

			111	

			112	 func	(r	*delegateReader)	Read(p	[]byte)	(int,	error)	{

			113	 	 if	r.r	==	nil	{

			114	 	 	 r.r	=	<-r.c

			115	 	 }

			116	 	 return	r.r.Read(p)

			117	 }

			118	

			119	 //	Return	value	if	nonempty,	def	otherwise.

			120	 func	valueOrDefault(value,	def	string)	string	{

			121	 	 if	value	!=	""	{

			122	 	 	 return	value

			123	 	 }

			124	 	 return	def

			125	 }

			126	

			127	 var	reqWriteExcludeHeaderDump	=	map[string]bool{

			128	 	 "Host":														true,	//	not	in	Header	map	anyway

			129	 	 "Content-Length":				true,

			130	 	 "Transfer-Encoding":	true,

			131	 	 "Trailer":											true,

			132	 }

			133	

			134	 //	dumpAsReceived	writes	req	to	w	in	the	form	as	it	was	received,	or

			135	 //	at	least	as	accurately	as	possible	from	the	information	retained	in

			136	 //	the	request.

			137	 func	dumpAsReceived(req	*http.Request,	w	io.Writer)	error	{

			138	 	 return	nil

			139	 }

			140	

			141	 //	DumpRequest	returns	the	as-received	wire	representation	of	req,

			142	 //	optionally	including	the	request	body,	for	debugging.

			143	 //	DumpRequest	is	semantically	a	no-op,	but	in	order	to

			144	 //	dump	the	body,	it	reads	the	body	data	into	memory	and

			145	 //	changes	req.Body	to	refer	to	the	in-memory	copy.

			146	 //	The	documentation	for	http.Request.Write	details	which	fields

			147	 //	of	req	are	used.

			148	 func	DumpRequest(req	*http.Request,	body	bool)	(dump	[]byte,	err	error)	{

			149	 	 save	:=	req.Body

			150	 	 if	!body	||	req.Body	==	nil	{

			151	 	 	 req.Body	=	nil

			152	 	 }	else	{

			153	 	 	 save,	req.Body,	err	=	drainBody(req.Body)

			154	 	 	 if	err	!=	nil	{

			155	 	 	 	 return

			156	 	 	 }

			157	 	 }

			158	

			159	 	 var	b	bytes.Buffer

			160	

			161	 	 fmt.Fprintf(&b,	"%s	%s	HTTP/%d.%d\r\n",	valueOrDefault(req.Method,	"GET"),

			162	 	 	 req.URL.RequestURI(),	req.ProtoMajor,	req.ProtoMinor)

			163	

			164	 	 host	:=	req.Host

			165	 	 if	host	==	""	&&	req.URL	!=	nil	{

			166	 	 	 host	=	req.URL.Host

			167	 	 }

			168	 	 if	host	!=	""	{

			169	 	 	 fmt.Fprintf(&b,	"Host:	%s\r\n",	host)

			170	 	 }

			171	

			172	 	 chunked	:=	len(req.TransferEncoding)	>	0	&&	req.TransferEncoding[0]	==	"chunked"

			173	 	 if	len(req.TransferEncoding)	>	0	{

			174	 	 	 fmt.Fprintf(&b,	"Transfer-Encoding:	%s\r\n",	strings.Join(req.TransferEncoding,	","))

			175	 	 }

			176	 	 if	req.Close	{

			177	 	 	 fmt.Fprintf(&b,	"Connection:	close\r\n")

			178	 	 }

			179	

			180	 	 err	=	req.Header.WriteSubset(&b,	reqWriteExcludeHeaderDump)

			181	 	 if	err	!=	nil	{

			182	 	 	 return

			183	 	 }

			184	

			185	 	 io.WriteString(&b,	"\r\n")

			186	

			187	 	 if	req.Body	!=	nil	{

			188	 	 	 var	dest	io.Writer	=	&b

			189	 	 	 if	chunked	{

			190	 	 	 	 dest	=	NewChunkedWriter(dest)

			191	 	 	 }

			192	 	 	 _,	err	=	io.Copy(dest,	req.Body)

			193	 	 	 if	chunked	{

			194	 	 	 	 dest.(io.Closer).Close()

			195	 	 	 	 io.WriteString(&b,	"\r\n")

			196	 	 	 }

			197	 	 }

			198	

			199	 	 req.Body	=	save

			200	 	 if	err	!=	nil	{

			201	 	 	 return

			202	 	 }

			203	 	 dump	=	b.Bytes()

			204	 	 return

			205	 }

			206	

			207	 //	DumpResponse	is	like	DumpRequest	but	dumps	a	response.

			208	 func	DumpResponse(resp	*http.Response,	body	bool)	(dump	[]byte,	err	error)	{

			209	 	 var	b	bytes.Buffer

			210	 	 save	:=	resp.Body

			211	 	 savecl	:=	resp.ContentLength

			212	 	 if	!body	||	resp.Body	==	nil	{

			213	 	 	 resp.Body	=	nil

			214	 	 	 resp.ContentLength	=	0

			215	 	 }	else	{

			216	 	 	 save,	resp.Body,	err	=	drainBody(resp.Body)

			217	 	 	 if	err	!=	nil	{

			218	 	 	 	 return

			219	 	 	 }

			220	 	 }

			221	 	 err	=	resp.Write(&b)

			222	 	 resp.Body	=	save

			223	 	 resp.ContentLength	=	savecl

			224	 	 if	err	!=	nil	{

			225	 	 	 return

			226	 	 }

			227	 	 dump	=	b.Bytes()

			228	 	 return

			229	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/httputil/persist.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	httputil	provides	HTTP	utility	functions,	complementing	the

					6	 //	more	common	ones	in	the	net/http	package.

					7	 package	httputil

					8	

					9	 import	(

				10	 	 "bufio"

				11	 	 "errors"

				12	 	 "io"

				13	 	 "net"

				14	 	 "net/http"

				15	 	 "net/textproto"

				16	 	 "sync"

				17)

				18	

				19	 var	(

				20	 	 ErrPersistEOF	=	&http.ProtocolError{ErrorString:	"persistent	connection	closed"}

				21	 	 ErrClosed					=	&http.ProtocolError{ErrorString:	"connection	closed	by	user"}

				22	 	 ErrPipeline			=	&http.ProtocolError{ErrorString:	"pipeline	error"}

				23)

				24	

				25	 //	This	is	an	API	usage	error	-	the	local	side	is	closed.

				26	 //	ErrPersistEOF	(above)	reports	that	the	remote	side	is	closed.

				27	 var	errClosed	=	errors.New("i/o	operation	on	closed	connection")

				28	

				29	 //	A	ServerConn	reads	requests	and	sends	responses	over	an	underlying

				30	 //	connection,	until	the	HTTP	keepalive	logic	commands	an	end.	ServerConn

				31	 //	also	allows	hijacking	the	underlying	connection	by	calling	Hijack

				32	 //	to	regain	control	over	the	connection.	ServerConn	supports	pipe-lining,

				33	 //	i.e.	requests	can	be	read	out	of	sync	(but	in	the	same	order)	while	the

				34	 //	respective	responses	are	sent.

				35	 //

				36	 //	ServerConn	is	low-level	and	should	not	be	needed	by	most	applications.

				37	 //	See	Server.

				38	 type	ServerConn	struct	{

				39	 	 lk														sync.Mutex	//	read-write	protects	the	following	fields

				40	 	 c															net.Conn

				41	 	 r															*bufio.Reader

				42	 	 re,	we										error	//	read/write	errors

				43	 	 lastbody								io.ReadCloser

				44	 	 nread,	nwritten	int

				45	 	 pipereq									map[*http.Request]uint

				46	

				47	 	 pipe	textproto.Pipeline

				48	 }

				49	

				50	 //	NewServerConn	returns	a	new	ServerConn	reading	and	writing	c.		If	r	is	not

				51	 //	nil,	it	is	the	buffer	to	use	when	reading	c.

				52	 func	NewServerConn(c	net.Conn,	r	*bufio.Reader)	*ServerConn	{

				53	 	 if	r	==	nil	{

				54	 	 	 r	=	bufio.NewReader(c)

				55	 	 }

				56	 	 return	&ServerConn{c:	c,	r:	r,	pipereq:	make(map[*http.Request]uint)}

				57	 }

				58	

				59	 //	Hijack	detaches	the	ServerConn	and	returns	the	underlying	connection	as	well

				60	 //	as	the	read-side	bufio	which	may	have	some	left	over	data.	Hijack	may	be

				61	 //	called	before	Read	has	signaled	the	end	of	the	keep-alive	logic.	The	user

				62	 //	should	not	call	Hijack	while	Read	or	Write	is	in	progress.

				63	 func	(sc	*ServerConn)	Hijack()	(c	net.Conn,	r	*bufio.Reader)	{

				64	 	 sc.lk.Lock()

				65	 	 defer	sc.lk.Unlock()

				66	 	 c	=	sc.c

				67	 	 r	=	sc.r

				68	 	 sc.c	=	nil

				69	 	 sc.r	=	nil

				70	 	 return

				71	 }

				72	

				73	 //	Close	calls	Hijack	and	then	also	closes	the	underlying	connection

				74	 func	(sc	*ServerConn)	Close()	error	{

				75	 	 c,	_	:=	sc.Hijack()

				76	 	 if	c	!=	nil	{

				77	 	 	 return	c.Close()

				78	 	 }

				79	 	 return	nil

				80	 }

				81	

				82	 //	Read	returns	the	next	request	on	the	wire.	An	ErrPersistEOF	is	returned	if

				83	 //	it	is	gracefully	determined	that	there	are	no	more	requests	(e.g.	after	the

				84	 //	first	request	on	an	HTTP/1.0	connection,	or	after	a	Connection:close	on	a

				85	 //	HTTP/1.1	connection).

				86	 func	(sc	*ServerConn)	Read()	(req	*http.Request,	err	error)	{

				87	

				88	 	 //	Ensure	ordered	execution	of	Reads	and	Writes

				89	 	 id	:=	sc.pipe.Next()

				90	 	 sc.pipe.StartRequest(id)

				91	 	 defer	func()	{

				92	 	 	 sc.pipe.EndRequest(id)

				93	 	 	 if	req	==	nil	{

				94	 	 	 	 sc.pipe.StartResponse(id)

				95	 	 	 	 sc.pipe.EndResponse(id)

				96	 	 	 }	else	{

				97	 	 	 	 //	Remember	the	pipeline	id	of	this	request

				98	 	 	 	 sc.lk.Lock()

				99	 	 	 	 sc.pipereq[req]	=	id

			100	 	 	 	 sc.lk.Unlock()

			101	 	 	 }

			102	 	 }()

			103	

			104	 	 sc.lk.Lock()

			105	 	 if	sc.we	!=	nil	{	//	no	point	receiving	if	write-side	broken	or	closed

			106	 	 	 defer	sc.lk.Unlock()

			107	 	 	 return	nil,	sc.we

			108	 	 }

			109	 	 if	sc.re	!=	nil	{

			110	 	 	 defer	sc.lk.Unlock()

			111	 	 	 return	nil,	sc.re

			112	 	 }

			113	 	 if	sc.r	==	nil	{	//	connection	closed	by	user	in	the	meantime

			114	 	 	 defer	sc.lk.Unlock()

			115	 	 	 return	nil,	errClosed

			116	 	 }

			117	 	 r	:=	sc.r

			118	 	 lastbody	:=	sc.lastbody

			119	 	 sc.lastbody	=	nil

			120	 	 sc.lk.Unlock()

			121	

			122	 	 //	Make	sure	body	is	fully	consumed,	even	if	user	does	not	call	body.Close

			123	 	 if	lastbody	!=	nil	{

			124	 	 	 //	body.Close	is	assumed	to	be	idempotent	and	multiple	calls	to

			125	 	 	 //	it	should	return	the	error	that	its	first	invocation

			126	 	 	 //	returned.

			127	 	 	 err	=	lastbody.Close()

			128	 	 	 if	err	!=	nil	{

			129	 	 	 	 sc.lk.Lock()

			130	 	 	 	 defer	sc.lk.Unlock()

			131	 	 	 	 sc.re	=	err

			132	 	 	 	 return	nil,	err

			133	 	 	 }

			134	 	 }

			135	

			136	 	 req,	err	=	http.ReadRequest(r)

			137	 	 sc.lk.Lock()

			138	 	 defer	sc.lk.Unlock()

			139	 	 if	err	!=	nil	{

			140	 	 	 if	err	==	io.ErrUnexpectedEOF	{

			141	 	 	 	 //	A	close	from	the	opposing	client	is	treated	as	a

			142	 	 	 	 //	graceful	close,	even	if	there	was	some	unparse-able

			143	 	 	 	 //	data	before	the	close.

			144	 	 	 	 sc.re	=	ErrPersistEOF

			145	 	 	 	 return	nil,	sc.re

			146	 	 	 }	else	{

			147	 	 	 	 sc.re	=	err

			148	 	 	 	 return	req,	err

			149	 	 	 }

			150	 	 }

			151	 	 sc.lastbody	=	req.Body

			152	 	 sc.nread++

			153	 	 if	req.Close	{

			154	 	 	 sc.re	=	ErrPersistEOF

			155	 	 	 return	req,	sc.re

			156	 	 }

			157	 	 return	req,	err

			158	 }

			159	

			160	 //	Pending	returns	the	number	of	unanswered	requests

			161	 //	that	have	been	received	on	the	connection.

			162	 func	(sc	*ServerConn)	Pending()	int	{

			163	 	 sc.lk.Lock()

			164	 	 defer	sc.lk.Unlock()

			165	 	 return	sc.nread	-	sc.nwritten

			166	 }

			167	

			168	 //	Write	writes	resp	in	response	to	req.	To	close	the	connection	gracefully,	set	the

			169	 //	Response.Close	field	to	true.	Write	should	be	considered	operational	until

			170	 //	it	returns	an	error,	regardless	of	any	errors	returned	on	the	Read	side.

			171	 func	(sc	*ServerConn)	Write(req	*http.Request,	resp	*http.Response)	error	{

			172	

			173	 	 //	Retrieve	the	pipeline	ID	of	this	request/response	pair

			174	 	 sc.lk.Lock()

			175	 	 id,	ok	:=	sc.pipereq[req]

			176	 	 delete(sc.pipereq,	req)

			177	 	 if	!ok	{

			178	 	 	 sc.lk.Unlock()

			179	 	 	 return	ErrPipeline

			180	 	 }

			181	 	 sc.lk.Unlock()

			182	

			183	 	 //	Ensure	pipeline	order

			184	 	 sc.pipe.StartResponse(id)

			185	 	 defer	sc.pipe.EndResponse(id)

			186	

			187	 	 sc.lk.Lock()

			188	 	 if	sc.we	!=	nil	{

			189	 	 	 defer	sc.lk.Unlock()

			190	 	 	 return	sc.we

			191	 	 }

			192	 	 if	sc.c	==	nil	{	//	connection	closed	by	user	in	the	meantime

			193	 	 	 defer	sc.lk.Unlock()

			194	 	 	 return	ErrClosed

			195	 	 }

			196	 	 c	:=	sc.c

			197	 	 if	sc.nread	<=	sc.nwritten	{

			198	 	 	 defer	sc.lk.Unlock()

			199	 	 	 return	errors.New("persist	server	pipe	count")

			200	 	 }

			201	 	 if	resp.Close	{

			202	 	 	 //	After	signaling	a	keep-alive	close,	any	pipelined	unread

			203	 	 	 //	requests	will	be	lost.	It	is	up	to	the	user	to	drain	them

			204	 	 	 //	before	signaling.

			205	 	 	 sc.re	=	ErrPersistEOF

			206	 	 }

			207	 	 sc.lk.Unlock()

			208	

			209	 	 err	:=	resp.Write(c)

			210	 	 sc.lk.Lock()

			211	 	 defer	sc.lk.Unlock()

			212	 	 if	err	!=	nil	{

			213	 	 	 sc.we	=	err

			214	 	 	 return	err

			215	 	 }

			216	 	 sc.nwritten++

			217	

			218	 	 return	nil

			219	 }

			220	

			221	 //	A	ClientConn	sends	request	and	receives	headers	over	an	underlying

			222	 //	connection,	while	respecting	the	HTTP	keepalive	logic.	ClientConn

			223	 //	supports	hijacking	the	connection	calling	Hijack	to

			224	 //	regain	control	of	the	underlying	net.Conn	and	deal	with	it	as	desired.

			225	 //

			226	 //	ClientConn	is	low-level	and	should	not	be	needed	by	most	applications.

			227	 //	See	Client.

			228	 type	ClientConn	struct	{

			229	 	 lk														sync.Mutex	//	read-write	protects	the	following	fields

			230	 	 c															net.Conn

			231	 	 r															*bufio.Reader

			232	 	 re,	we										error	//	read/write	errors

			233	 	 lastbody								io.ReadCloser

			234	 	 nread,	nwritten	int

			235	 	 pipereq									map[*http.Request]uint

			236	

			237	 	 pipe					textproto.Pipeline

			238	 	 writeReq	func(*http.Request,	io.Writer)	error

			239	 }

			240	

			241	 //	NewClientConn	returns	a	new	ClientConn	reading	and	writing	c.		If	r	is	not

			242	 //	nil,	it	is	the	buffer	to	use	when	reading	c.

			243	 func	NewClientConn(c	net.Conn,	r	*bufio.Reader)	*ClientConn	{

			244	 	 if	r	==	nil	{

			245	 	 	 r	=	bufio.NewReader(c)

			246	 	 }

			247	 	 return	&ClientConn{

			248	 	 	 c:								c,

			249	 	 	 r:								r,

			250	 	 	 pipereq:		make(map[*http.Request]uint),

			251	 	 	 writeReq:	(*http.Request).Write,

			252	 	 }

			253	 }

			254	

			255	 //	NewProxyClientConn	works	like	NewClientConn	but	writes	Requests

			256	 //	using	Request's	WriteProxy	method.

			257	 func	NewProxyClientConn(c	net.Conn,	r	*bufio.Reader)	*ClientConn	{

			258	 	 cc	:=	NewClientConn(c,	r)

			259	 	 cc.writeReq	=	(*http.Request).WriteProxy

			260	 	 return	cc

			261	 }

			262	

			263	 //	Hijack	detaches	the	ClientConn	and	returns	the	underlying	connection	as	well

			264	 //	as	the	read-side	bufio	which	may	have	some	left	over	data.	Hijack	may	be

			265	 //	called	before	the	user	or	Read	have	signaled	the	end	of	the	keep-alive

			266	 //	logic.	The	user	should	not	call	Hijack	while	Read	or	Write	is	in	progress.

			267	 func	(cc	*ClientConn)	Hijack()	(c	net.Conn,	r	*bufio.Reader)	{

			268	 	 cc.lk.Lock()

			269	 	 defer	cc.lk.Unlock()

			270	 	 c	=	cc.c

			271	 	 r	=	cc.r

			272	 	 cc.c	=	nil

			273	 	 cc.r	=	nil

			274	 	 return

			275	 }

			276	

			277	 //	Close	calls	Hijack	and	then	also	closes	the	underlying	connection

			278	 func	(cc	*ClientConn)	Close()	error	{

			279	 	 c,	_	:=	cc.Hijack()

			280	 	 if	c	!=	nil	{

			281	 	 	 return	c.Close()

			282	 	 }

			283	 	 return	nil

			284	 }

			285	

			286	 //	Write	writes	a	request.	An	ErrPersistEOF	error	is	returned	if	the	connection

			287	 //	has	been	closed	in	an	HTTP	keepalive	sense.	If	req.Close	equals	true,	the

			288	 //	keepalive	connection	is	logically	closed	after	this	request	and	the	opposing

			289	 //	server	is	informed.	An	ErrUnexpectedEOF	indicates	the	remote	closed	the

			290	 //	underlying	TCP	connection,	which	is	usually	considered	as	graceful	close.

			291	 func	(cc	*ClientConn)	Write(req	*http.Request)	(err	error)	{

			292	

			293	 	 //	Ensure	ordered	execution	of	Writes

			294	 	 id	:=	cc.pipe.Next()

			295	 	 cc.pipe.StartRequest(id)

			296	 	 defer	func()	{

			297	 	 	 cc.pipe.EndRequest(id)

			298	 	 	 if	err	!=	nil	{

			299	 	 	 	 cc.pipe.StartResponse(id)

			300	 	 	 	 cc.pipe.EndResponse(id)

			301	 	 	 }	else	{

			302	 	 	 	 //	Remember	the	pipeline	id	of	this	request

			303	 	 	 	 cc.lk.Lock()

			304	 	 	 	 cc.pipereq[req]	=	id

			305	 	 	 	 cc.lk.Unlock()

			306	 	 	 }

			307	 	 }()

			308	

			309	 	 cc.lk.Lock()

			310	 	 if	cc.re	!=	nil	{	//	no	point	sending	if	read-side	closed	or	broken

			311	 	 	 defer	cc.lk.Unlock()

			312	 	 	 return	cc.re

			313	 	 }

			314	 	 if	cc.we	!=	nil	{

			315	 	 	 defer	cc.lk.Unlock()

			316	 	 	 return	cc.we

			317	 	 }

			318	 	 if	cc.c	==	nil	{	//	connection	closed	by	user	in	the	meantime

			319	 	 	 defer	cc.lk.Unlock()

			320	 	 	 return	errClosed

			321	 	 }

			322	 	 c	:=	cc.c

			323	 	 if	req.Close	{

			324	 	 	 //	We	write	the	EOF	to	the	write-side	error,	because	there

			325	 	 	 //	still	might	be	some	pipelined	reads

			326	 	 	 cc.we	=	ErrPersistEOF

			327	 	 }

			328	 	 cc.lk.Unlock()

			329	

			330	 	 err	=	cc.writeReq(req,	c)

			331	 	 cc.lk.Lock()

			332	 	 defer	cc.lk.Unlock()

			333	 	 if	err	!=	nil	{

			334	 	 	 cc.we	=	err

			335	 	 	 return	err

			336	 	 }

			337	 	 cc.nwritten++

			338	

			339	 	 return	nil

			340	 }

			341	

			342	 //	Pending	returns	the	number	of	unanswered	requests

			343	 //	that	have	been	sent	on	the	connection.

			344	 func	(cc	*ClientConn)	Pending()	int	{

			345	 	 cc.lk.Lock()

			346	 	 defer	cc.lk.Unlock()

			347	 	 return	cc.nwritten	-	cc.nread

			348	 }

			349	

			350	 //	Read	reads	the	next	response	from	the	wire.	A	valid	response	might	be

			351	 //	returned	together	with	an	ErrPersistEOF,	which	means	that	the	remote

			352	 //	requested	that	this	be	the	last	request	serviced.	Read	can	be	called

			353	 //	concurrently	with	Write,	but	not	with	another	Read.

			354	 func	(cc	*ClientConn)	Read(req	*http.Request)	(resp	*http.Response,	err	error)	{

			355	 	 //	Retrieve	the	pipeline	ID	of	this	request/response	pair

			356	 	 cc.lk.Lock()

			357	 	 id,	ok	:=	cc.pipereq[req]

			358	 	 delete(cc.pipereq,	req)

			359	 	 if	!ok	{

			360	 	 	 cc.lk.Unlock()

			361	 	 	 return	nil,	ErrPipeline

			362	 	 }

			363	 	 cc.lk.Unlock()

			364	

			365	 	 //	Ensure	pipeline	order

			366	 	 cc.pipe.StartResponse(id)

			367	 	 defer	cc.pipe.EndResponse(id)

			368	

			369	 	 cc.lk.Lock()

			370	 	 if	cc.re	!=	nil	{

			371	 	 	 defer	cc.lk.Unlock()

			372	 	 	 return	nil,	cc.re

			373	 	 }

			374	 	 if	cc.r	==	nil	{	//	connection	closed	by	user	in	the	meantime

			375	 	 	 defer	cc.lk.Unlock()

			376	 	 	 return	nil,	errClosed

			377	 	 }

			378	 	 r	:=	cc.r

			379	 	 lastbody	:=	cc.lastbody

			380	 	 cc.lastbody	=	nil

			381	 	 cc.lk.Unlock()

			382	

			383	 	 //	Make	sure	body	is	fully	consumed,	even	if	user	does	not	call	body.Close

			384	 	 if	lastbody	!=	nil	{

			385	 	 	 //	body.Close	is	assumed	to	be	idempotent	and	multiple	calls	to

			386	 	 	 //	it	should	return	the	error	that	its	first	invocation

			387	 	 	 //	returned.

			388	 	 	 err	=	lastbody.Close()

			389	 	 	 if	err	!=	nil	{

			390	 	 	 	 cc.lk.Lock()

			391	 	 	 	 defer	cc.lk.Unlock()

			392	 	 	 	 cc.re	=	err

			393	 	 	 	 return	nil,	err

			394	 	 	 }

			395	 	 }

			396	

			397	 	 resp,	err	=	http.ReadResponse(r,	req)

			398	 	 cc.lk.Lock()

			399	 	 defer	cc.lk.Unlock()

			400	 	 if	err	!=	nil	{

			401	 	 	 cc.re	=	err

			402	 	 	 return	resp,	err

			403	 	 }

			404	 	 cc.lastbody	=	resp.Body

			405	

			406	 	 cc.nread++

			407	

			408	 	 if	resp.Close	{

			409	 	 	 cc.re	=	ErrPersistEOF	//	don't	send	any	more	requests

			410	 	 	 return	resp,	cc.re

			411	 	 }

			412	 	 return	resp,	err

			413	 }

			414	

			415	 //	Do	is	convenience	method	that	writes	a	request	and	reads	a	response.

			416	 func	(cc	*ClientConn)	Do(req	*http.Request)	(resp	*http.Response,	err	error)	{

			417	 	 err	=	cc.Write(req)

			418	 	 if	err	!=	nil	{

			419	 	 	 return

			420	 	 }

			421	 	 return	cc.Read(req)

			422	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/httputil/reverseproxy.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	HTTP	reverse	proxy	handler

					6	

					7	 package	httputil

					8	

					9	 import	(

				10	 	 "io"

				11	 	 "log"

				12	 	 "net"

				13	 	 "net/http"

				14	 	 "net/url"

				15	 	 "strings"

				16	 	 "sync"

				17	 	 "time"

				18)

				19	

				20	 //	ReverseProxy	is	an	HTTP	Handler	that	takes	an	incoming	request	and

				21	 //	sends	it	to	another	server,	proxying	the	response	back	to	the

				22	 //	client.

				23	 type	ReverseProxy	struct	{

				24	 	 //	Director	must	be	a	function	which	modifies

				25	 	 //	the	request	into	a	new	request	to	be	sent

				26	 	 //	using	Transport.	Its	response	is	then	copied

				27	 	 //	back	to	the	original	client	unmodified.

				28	 	 Director	func(*http.Request)

				29	

				30	 	 //	The	transport	used	to	perform	proxy	requests.

				31	 	 //	If	nil,	http.DefaultTransport	is	used.

				32	 	 Transport	http.RoundTripper

				33	

				34	 	 //	FlushInterval	specifies	the	flush	interval

				35	 	 //	to	flush	to	the	client	while	copying	the

				36	 	 //	response	body.

				37	 	 //	If	zero,	no	periodic	flushing	is	done.

				38	 	 FlushInterval	time.Duration

				39	 }

				40	

				41	 func	singleJoiningSlash(a,	b	string)	string	{

				42	 	 aslash	:=	strings.HasSuffix(a,	"/")

				43	 	 bslash	:=	strings.HasPrefix(b,	"/")

				44	 	 switch	{

				45	 	 case	aslash	&&	bslash:

				46	 	 	 return	a	+	b[1:]

				47	 	 case	!aslash	&&	!bslash:

				48	 	 	 return	a	+	"/"	+	b

				49	 	 }

				50	 	 return	a	+	b

				51	 }

				52	

				53	 //	NewSingleHostReverseProxy	returns	a	new	ReverseProxy	that	rewrites

				54	 //	URLs	to	the	scheme,	host,	and	base	path	provided	in	target.	If	the

				55	 //	target's	path	is	"/base"	and	the	incoming	request	was	for	"/dir",

				56	 //	the	target	request	will	be	for	/base/dir.

				57	 func	NewSingleHostReverseProxy(target	*url.URL)	*ReverseProxy	{

				58	 	 targetQuery	:=	target.RawQuery

				59	 	 director	:=	func(req	*http.Request)	{

				60	 	 	 req.URL.Scheme	=	target.Scheme

				61	 	 	 req.URL.Host	=	target.Host

				62	 	 	 req.URL.Path	=	singleJoiningSlash(target.Path,	req.URL.Path)

				63	 	 	 if	targetQuery	==	""	||	req.URL.RawQuery	==	""	{

				64	 	 	 	 req.URL.RawQuery	=	targetQuery	+	req.URL.RawQuery

				65	 	 	 }	else	{

				66	 	 	 	 req.URL.RawQuery	=	targetQuery	+	"&"	+	req.URL.RawQuery

				67	 	 	 }

				68	 	 }

				69	 	 return	&ReverseProxy{Director:	director}

				70	 }

				71	

				72	 func	copyHeader(dst,	src	http.Header)	{

				73	 	 for	k,	vv	:=	range	src	{

				74	 	 	 for	_,	v	:=	range	vv	{

				75	 	 	 	 dst.Add(k,	v)

				76	 	 	 }

				77	 	 }

				78	 }

				79	

				80	 func	(p	*ReverseProxy)	ServeHTTP(rw	http.ResponseWriter,	req	*http.Request)	{

				81	 	 transport	:=	p.Transport

				82	 	 if	transport	==	nil	{

				83	 	 	 transport	=	http.DefaultTransport

				84	 	 }

				85	

				86	 	 outreq	:=	new(http.Request)

				87	 	 *outreq	=	*req	//	includes	shallow	copies	of	maps,	but	okay

				88	

				89	 	 p.Director(outreq)

				90	 	 outreq.Proto	=	"HTTP/1.1"

				91	 	 outreq.ProtoMajor	=	1

				92	 	 outreq.ProtoMinor	=	1

				93	 	 outreq.Close	=	false

				94	

				95	 	 //	Remove	the	connection	header	to	the	backend.		We	want	a

				96	 	 //	persistent	connection,	regardless	of	what	the	client	sent

				97	 	 //	to	us.		This	is	modifying	the	same	underlying	map	from	req

				98	 	 //	(shallow	copied	above)	so	we	only	copy	it	if	necessary.

				99	 	 if	outreq.Header.Get("Connection")	!=	""	{

			100	 	 	 outreq.Header	=	make(http.Header)

			101	 	 	 copyHeader(outreq.Header,	req.Header)

			102	 	 	 outreq.Header.Del("Connection")

			103	 	 }

			104	

			105	 	 if	clientIp,	_,	err	:=	net.SplitHostPort(req.RemoteAddr);	err	==	nil	{

			106	 	 	 outreq.Header.Set("X-Forwarded-For",	clientIp)

			107	 	 }

			108	

			109	 	 res,	err	:=	transport.RoundTrip(outreq)

			110	 	 if	err	!=	nil	{

			111	 	 	 log.Printf("http:	proxy	error:	%v",	err)

			112	 	 	 rw.WriteHeader(http.StatusInternalServerError)

			113	 	 	 return

			114	 	 }

			115	

			116	 	 copyHeader(rw.Header(),	res.Header)

			117	

			118	 	 rw.WriteHeader(res.StatusCode)

			119	

			120	 	 if	res.Body	!=	nil	{

			121	 	 	 var	dst	io.Writer	=	rw

			122	 	 	 if	p.FlushInterval	!=	0	{

			123	 	 	 	 if	wf,	ok	:=	rw.(writeFlusher);	ok	{

			124	 	 	 	 	 dst	=	&maxLatencyWriter{dst:	wf,	latency:	p.FlushInterval}

			125	 	 	 	 }

			126	 	 	 }

			127	 	 	 io.Copy(dst,	res.Body)

			128	 	 }

			129	 }

			130	

			131	 type	writeFlusher	interface	{

			132	 	 io.Writer

			133	 	 http.Flusher

			134	 }

			135	

			136	 type	maxLatencyWriter	struct	{

			137	 	 dst					writeFlusher

			138	 	 latency	time.Duration

			139	

			140	 	 lk			sync.Mutex	//	protects	init	of	done,	as	well	Write	+	Flush

			141	 	 done	chan	bool

			142	 }

			143	

			144	 func	(m	*maxLatencyWriter)	Write(p	[]byte)	(n	int,	err	error)	{

			145	 	 m.lk.Lock()

			146	 	 defer	m.lk.Unlock()

			147	 	 if	m.done	==	nil	{

			148	 	 	 m.done	=	make(chan	bool)

			149	 	 	 go	m.flushLoop()

			150	 	 }

			151	 	 n,	err	=	m.dst.Write(p)

			152	 	 if	err	!=	nil	{

			153	 	 	 m.done	<-	true

			154	 	 }

			155	 	 return

			156	 }

			157	

			158	 func	(m	*maxLatencyWriter)	flushLoop()	{

			159	 	 t	:=	time.NewTicker(m.latency)

			160	 	 defer	t.Stop()

			161	 	 for	{

			162	 	 	 select	{

			163	 	 	 case	<-t.C:

			164	 	 	 	 m.lk.Lock()

			165	 	 	 	 m.dst.Flush()

			166	 	 	 	 m.lk.Unlock()

			167	 	 	 case	<-m.done:

			168	 	 	 	 return

			169	 	 	 }

			170	 	 }

			171	 	 panic("unreached")

			172	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/http/pprof/pprof.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	pprof	serves	via	its	HTTP	server	runtime	profiling	data

					6	 //	in	the	format	expected	by	the	pprof	visualization	tool.

					7	 //	For	more	information	about	pprof,	see

					8	 //	http://code.google.com/p/google-perftools/.

					9	 //

				10	 //	The	package	is	typically	only	imported	for	the	side	effect	of

				11	 //	registering	its	HTTP	handlers.

				12	 //	The	handled	paths	all	begin	with	/debug/pprof/.

				13	 //

				14	 //	To	use	pprof,	link	this	package	into	your	program:

				15	 //	 import	_	"net/http/pprof"

				16	 //

				17	 //	Then	use	the	pprof	tool	to	look	at	the	heap	profile:

				18	 //

				19	 //	 go	tool	pprof	http://localhost:6060/debug/pprof/heap

				20	 //

				21	 //	Or	to	look	at	a	30-second	CPU	profile:

				22	 //

				23	 //	 go	tool	pprof	http://localhost:6060/debug/pprof/profile

				24	 //

				25	 //	Or	to	view	all	available	profiles:

				26	 //

				27	 //	 go	tool	pprof	http://localhost:6060/debug/pprof/

				28	 //

				29	 //	For	a	study	of	the	facility	in	action,	visit

				30	 //

				31	 //	 http://blog.golang.org/2011/06/profiling-go-programs.html

				32	 //

				33	 package	pprof

				34	

				35	 import	(

				36	 	 "bufio"

				37	 	 "bytes"

				38	 	 "fmt"

				39	 	 "html/template"

				40	 	 "io"

				41	 	 "log"

				42	 	 "net/http"

				43	 	 "os"

				44	 	 "runtime"

				45	 	 "runtime/pprof"

				46	 	 "strconv"

				47	 	 "strings"

				48	 	 "time"

				49)

				50	

				51	 func	init()	{

				52	 	 http.Handle("/debug/pprof/",	http.HandlerFunc(Index))

				53	 	 http.Handle("/debug/pprof/cmdline",	http.HandlerFunc(Cmdline))

				54	 	 http.Handle("/debug/pprof/profile",	http.HandlerFunc(Profile))

				55	 	 http.Handle("/debug/pprof/symbol",	http.HandlerFunc(Symbol))

				56	 }

				57	

				58	 //	Cmdline	responds	with	the	running	program's

				59	 //	command	line,	with	arguments	separated	by	NUL	bytes.

				60	 //	The	package	initialization	registers	it	as	/debug/pprof/cmdline.

				61	 func	Cmdline(w	http.ResponseWriter,	r	*http.Request)	{

				62	 	 w.Header().Set("Content-Type",	"text/plain;	charset=utf-8")

				63	 	 fmt.Fprintf(w,	strings.Join(os.Args,	"\x00"))

				64	 }

				65	

				66	 //	Profile	responds	with	the	pprof-formatted	cpu	profile.

				67	 //	The	package	initialization	registers	it	as	/debug/pprof/profile.

				68	 func	Profile(w	http.ResponseWriter,	r	*http.Request)	{

				69	 	 sec,	_	:=	strconv.ParseInt(r.FormValue("seconds"),	10,	64)

				70	 	 if	sec	==	0	{

				71	 	 	 sec	=	30

				72	 	 }

				73	

				74	 	 //	Set	Content	Type	assuming	StartCPUProfile	will	work,

				75	 	 //	because	if	it	does	it	starts	writing.

				76	 	 w.Header().Set("Content-Type",	"application/octet-stream")

				77	 	 if	err	:=	pprof.StartCPUProfile(w);	err	!=	nil	{

				78	 	 	 //	StartCPUProfile	failed,	so	no	writes	yet.

				79	 	 	 //	Can	change	header	back	to	text	content

				80	 	 	 //	and	send	error	code.

				81	 	 	 w.Header().Set("Content-Type",	"text/plain;	charset=utf-8")

				82	 	 	 w.WriteHeader(http.StatusInternalServerError)

				83	 	 	 fmt.Fprintf(w,	"Could	not	enable	CPU	profiling:	%s\n",	err)

				84	 	 	 return

				85	 	 }

				86	 	 time.Sleep(time.Duration(sec)	*	time.Second)

				87	 	 pprof.StopCPUProfile()

				88	 }

				89	

				90	 //	Symbol	looks	up	the	program	counters	listed	in	the	request,

				91	 //	responding	with	a	table	mapping	program	counters	to	function	names.

				92	 //	The	package	initialization	registers	it	as	/debug/pprof/symbol.

				93	 func	Symbol(w	http.ResponseWriter,	r	*http.Request)	{

				94	 	 w.Header().Set("Content-Type",	"text/plain;	charset=utf-8")

				95	

				96	 	 //	We	have	to	read	the	whole	POST	body	before

				97	 	 //	writing	any	output.		Buffer	the	output	here.

				98	 	 var	buf	bytes.Buffer

				99	

			100	 	 //	We	don't	know	how	many	symbols	we	have,	but	we

			101	 	 //	do	have	symbol	information.		Pprof	only	cares	whether

			102	 	 //	this	number	is	0	(no	symbols	available)	or	>	0.

			103	 	 fmt.Fprintf(&buf,	"num_symbols:	1\n")

			104	

			105	 	 var	b	*bufio.Reader

			106	 	 if	r.Method	==	"POST"	{

			107	 	 	 b	=	bufio.NewReader(r.Body)

			108	 	 }	else	{

			109	 	 	 b	=	bufio.NewReader(strings.NewReader(r.URL.RawQuery))

			110	 	 }

			111	

			112	 	 for	{

			113	 	 	 word,	err	:=	b.ReadSlice('+')

			114	 	 	 if	err	==	nil	{

			115	 	 	 	 word	=	word[0	:	len(word)-1]	//	trim	+

			116	 	 	 }

			117	 	 	 pc,	_	:=	strconv.ParseUint(string(word),	0,	64)

			118	 	 	 if	pc	!=	0	{

			119	 	 	 	 f	:=	runtime.FuncForPC(uintptr(pc))

			120	 	 	 	 if	f	!=	nil	{

			121	 	 	 	 	 fmt.Fprintf(&buf,	"%#x	%s\n",	pc,	f.Name())

			122	 	 	 	 }

			123	 	 	 }

			124	

			125	 	 	 //	Wait	until	here	to	check	for	err;	the	last

			126	 	 	 //	symbol	will	have	an	err	because	it	doesn't	end	in	+.

			127	 	 	 if	err	!=	nil	{

			128	 	 	 	 if	err	!=	io.EOF	{

			129	 	 	 	 	 fmt.Fprintf(&buf,	"reading	request:	%v\n",	err)

			130	 	 	 	 }

			131	 	 	 	 break

			132	 	 	 }

			133	 	 }

			134	

			135	 	 w.Write(buf.Bytes())

			136	 }

			137	

			138	 //	Handler	returns	an	HTTP	handler	that	serves	the	named	profile.

			139	 func	Handler(name	string)	http.Handler	{

			140	 	 return	handler(name)

			141	 }

			142	

			143	 type	handler	string

			144	

			145	 func	(name	handler)	ServeHTTP(w	http.ResponseWriter,	r	*http.Request)	{

			146	 	 w.Header().Set("Content-Type",	"text/plain;	charset=utf-8")

			147	 	 debug,	_	:=	strconv.Atoi(r.FormValue("debug"))

			148	 	 p	:=	pprof.Lookup(string(name))

			149	 	 if	p	==	nil	{

			150	 	 	 w.WriteHeader(404)

			151	 	 	 fmt.Fprintf(w,	"Unknown	profile:	%s\n",	name)

			152	 	 	 return

			153	 	 }

			154	 	 p.WriteTo(w,	debug)

			155	 	 return

			156	 }

			157	

			158	 //	Index	responds	with	the	pprof-formatted	profile	named	by	the	request.

			159	 //	For	example,	"/debug/pprof/heap"	serves	the	"heap"	profile.

			160	 //	Index	responds	to	a	request	for	"/debug/pprof/"	with	an	HTML	page

			161	 //	listing	the	available	profiles.

			162	 func	Index(w	http.ResponseWriter,	r	*http.Request)	{

			163	 	 if	strings.HasPrefix(r.URL.Path,	"/debug/pprof/")	{

			164	 	 	 name	:=	r.URL.Path[len("/debug/pprof/"):]

			165	 	 	 if	name	!=	""	{

			166	 	 	 	 handler(name).ServeHTTP(w,	r)

			167	 	 	 	 return

			168	 	 	 }

			169	 	 }

			170	

			171	 	 profiles	:=	pprof.Profiles()

			172	 	 if	err	:=	indexTmpl.Execute(w,	profiles);	err	!=	nil	{

			173	 	 	 log.Print(err)

			174	 	 }

			175	 }

			176	

			177	 var	indexTmpl	=	template.Must(template.New("index").Parse(`<html>

			178	 <head>

			179	 <title>/debug/pprof/</title>

			180	 </head>

			181	 /debug/pprof/

			182	

			183	 <body>

			184	 profiles:

			185	 <table>

			186	 {{range	.}}

			187	 <tr><td	align=right>{{.Count}}<td>{{.Name}}

			188	 {{end}}

			189	 </table>

			190	

			191	 full	goroutine	stack	dump

			192	 </body>

			193	 </html>

			194	 `))

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/mail/message.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 Package	mail	implements	parsing	of	mail	messages.

					7	

					8	 For	the	most	part,	this	package	follows	the	syntax	as	specified	by	RFC	5322.

					9	 Notable	divergences:

				10	 	 *	Obsolete	address	formats	are	not	parsed,	including	addresses	with

				11	 	 		embedded	route	information.

				12	 	 *	Group	addresses	are	not	parsed.

				13	 	 *	The	full	range	of	spacing	(the	CFWS	syntax	element)	is	not	supported,

				14	 	 		such	as	breaking	addresses	across	lines.

				15	 */

				16	 package	mail

				17	

				18	 import	(

				19	 	 "bufio"

				20	 	 "bytes"

				21	 	 "encoding/base64"

				22	 	 "errors"

				23	 	 "fmt"

				24	 	 "io"

				25	 	 "io/ioutil"

				26	 	 "log"

				27	 	 "net/textproto"

				28	 	 "strconv"

				29	 	 "strings"

				30	 	 "time"

				31)

				32	

				33	 var	debug	=	debugT(false)

				34	

				35	 type	debugT	bool

				36	

				37	 func	(d	debugT)	Printf(format	string,	args	...interface{})	{

				38	 	 if	d	{

				39	 	 	 log.Printf(format,	args...)

				40	 	 }

				41	 }

				42	

				43	 //	A	Message	represents	a	parsed	mail	message.

				44	 type	Message	struct	{

				45	 	 Header	Header

				46	 	 Body			io.Reader

				47	 }

				48	

				49	 //	ReadMessage	reads	a	message	from	r.

				50	 //	The	headers	are	parsed,	and	the	body	of	the	message	will	be	reading	from	r.

				51	 func	ReadMessage(r	io.Reader)	(msg	*Message,	err	error)	{

				52	 	 tp	:=	textproto.NewReader(bufio.NewReader(r))

				53	

				54	 	 hdr,	err	:=	tp.ReadMIMEHeader()

				55	 	 if	err	!=	nil	{

				56	 	 	 return	nil,	err

				57	 	 }

				58	

				59	 	 return	&Message{

				60	 	 	 Header:	Header(hdr),

				61	 	 	 Body:			tp.R,

				62	 	 },	nil

				63	 }

				64	

				65	 //	Layouts	suitable	for	passing	to	time.Parse.

				66	 //	These	are	tried	in	order.

				67	 var	dateLayouts	[]string

				68	

				69	 func	init()	{

				70	 	 //	Generate	layouts	based	on	RFC	5322,	section	3.3.

				71	

				72	 	 dows	:=	[...]string{"",	"Mon,	"}					//	day-of-week

				73	 	 days	:=	[...]string{"2",	"02"}							//	day	=	1*2DIGIT

				74	 	 years	:=	[...]string{"2006",	"06"}			//	year	=	4*DIGIT	/	2*DIGIT

				75	 	 seconds	:=	[...]string{":05",	""}				//	second

				76	 	 zones	:=	[...]string{"-0700",	"MST"}	//	zone	=	(("+"	/	"-")	4DIGIT)	/	"GMT"	/	...

				77	

				78	 	 for	_,	dow	:=	range	dows	{

				79	 	 	 for	_,	day	:=	range	days	{

				80	 	 	 	 for	_,	year	:=	range	years	{

				81	 	 	 	 	 for	_,	second	:=	range	seconds	{

				82	 	 	 	 	 	 for	_,	zone	:=	range	zones	{

				83	 	 	 	 	 	 	 s	:=	dow	+	day	+	"	Jan	"	+	year	+	"	15:04"	+	second	+	"	"	+	zone

				84	 	 	 	 	 	 	 dateLayouts	=	append(dateLayouts,	s)

				85	 	 	 	 	 	 }

				86	 	 	 	 	 }

				87	 	 	 	 }

				88	 	 	 }

				89	 	 }

				90	 }

				91	

				92	 func	parseDate(date	string)	(time.Time,	error)	{

				93	 	 for	_,	layout	:=	range	dateLayouts	{

				94	 	 	 t,	err	:=	time.Parse(layout,	date)

				95	 	 	 if	err	==	nil	{

				96	 	 	 	 return	t,	nil

				97	 	 	 }

				98	 	 }

				99	 	 return	time.Time{},	errors.New("mail:	header	could	not	be	parsed")

			100	 }

			101	

			102	 //	A	Header	represents	the	key-value	pairs	in	a	mail	message	header.

			103	 type	Header	map[string][]string

			104	

			105	 //	Get	gets	the	first	value	associated	with	the	given	key.

			106	 //	If	there	are	no	values	associated	with	the	key,	Get	returns	"".

			107	 func	(h	Header)	Get(key	string)	string	{

			108	 	 return	textproto.MIMEHeader(h).Get(key)

			109	 }

			110	

			111	 var	ErrHeaderNotPresent	=	errors.New("mail:	header	not	in	message")

			112	

			113	 //	Date	parses	the	Date	header	field.

			114	 func	(h	Header)	Date()	(time.Time,	error)	{

			115	 	 hdr	:=	h.Get("Date")

			116	 	 if	hdr	==	""	{

			117	 	 	 return	time.Time{},	ErrHeaderNotPresent

			118	 	 }

			119	 	 return	parseDate(hdr)

			120	 }

			121	

			122	 //	AddressList	parses	the	named	header	field	as	a	list	of	addresses.

			123	 func	(h	Header)	AddressList(key	string)	([]*Address,	error)	{

			124	 	 hdr	:=	h.Get(key)

			125	 	 if	hdr	==	""	{

			126	 	 	 return	nil,	ErrHeaderNotPresent

			127	 	 }

			128	 	 return	newAddrParser(hdr).parseAddressList()

			129	 }

			130	

			131	 //	Address	represents	a	single	mail	address.

			132	 //	An	address	such	as	"Barry	Gibbs	<bg@example.com>"	is	represented

			133	 //	as	Address{Name:	"Barry	Gibbs",	Address:	"bg@example.com"}.

			134	 type	Address	struct	{

			135	 	 Name				string	//	Proper	name;	may	be	empty.

			136	 	 Address	string	//	user@domain

			137	 }

			138	

			139	 //	String	formats	the	address	as	a	valid	RFC	5322	address.

			140	 //	If	the	address's	name	contains	non-ASCII	characters

			141	 //	the	name	will	be	rendered	according	to	RFC	2047.

			142	 func	(a	*Address)	String()	string	{

			143	 	 s	:=	"<"	+	a.Address	+	">"

			144	 	 if	a.Name	==	""	{

			145	 	 	 return	s

			146	 	 }

			147	 	 //	If	every	character	is	printable	ASCII,	quoting	is	simple.

			148	 	 allPrintable	:=	true

			149	 	 for	i	:=	0;	i	<	len(a.Name);	i++	{

			150	 	 	 if	!isVchar(a.Name[i])	{

			151	 	 	 	 allPrintable	=	false

			152	 	 	 	 break

			153	 	 	 }

			154	 	 }

			155	 	 if	allPrintable	{

			156	 	 	 b	:=	bytes.NewBufferString(`"`)

			157	 	 	 for	i	:=	0;	i	<	len(a.Name);	i++	{

			158	 	 	 	 if	!isQtext(a.Name[i])	{

			159	 	 	 	 	 b.WriteByte('\\')

			160	 	 	 	 }

			161	 	 	 	 b.WriteByte(a.Name[i])

			162	 	 	 }

			163	 	 	 b.WriteString(`"	`)

			164	 	 	 b.WriteString(s)

			165	 	 	 return	b.String()

			166	 	 }

			167	

			168	 	 //	UTF-8	"Q"	encoding

			169	 	 b	:=	bytes.NewBufferString("=?utf-8?q?")

			170	 	 for	i	:=	0;	i	<	len(a.Name);	i++	{

			171	 	 	 switch	c	:=	a.Name[i];	{

			172	 	 	 case	c	==	'	':

			173	 	 	 	 b.WriteByte('_')

			174	 	 	 case	isVchar(c)	&&	c	!=	'='	&&	c	!=	'?'	&&	c	!=	'_':

			175	 	 	 	 b.WriteByte(c)

			176	 	 	 default:

			177	 	 	 	 fmt.Fprintf(b,	"=%02X",	c)

			178	 	 	 }

			179	 	 }

			180	 	 b.WriteString("?=	")

			181	 	 b.WriteString(s)

			182	 	 return	b.String()

			183	 }

			184	

			185	 type	addrParser	[]byte

			186	

			187	 func	newAddrParser(s	string)	*addrParser	{

			188	 	 p	:=	addrParser(s)

			189	 	 return	&p

			190	 }

			191	

			192	 func	(p	*addrParser)	parseAddressList()	([]*Address,	error)	{

			193	 	 var	list	[]*Address

			194	 	 for	{

			195	 	 	 p.skipSpace()

			196	 	 	 addr,	err	:=	p.parseAddress()

			197	 	 	 if	err	!=	nil	{

			198	 	 	 	 return	nil,	err

			199	 	 	 }

			200	 	 	 list	=	append(list,	addr)

			201	

			202	 	 	 p.skipSpace()

			203	 	 	 if	p.empty()	{

			204	 	 	 	 break

			205	 	 	 }

			206	 	 	 if	!p.consume(',')	{

			207	 	 	 	 return	nil,	errors.New("mail:	expected	comma")

			208	 	 	 }

			209	 	 }

			210	 	 return	list,	nil

			211	 }

			212	

			213	 //	parseAddress	parses	a	single	RFC	5322	address	at	the	start	of	p.

			214	 func	(p	*addrParser)	parseAddress()	(addr	*Address,	err	error)	{

			215	 	 debug.Printf("parseAddress:	%q",	*p)

			216	 	 p.skipSpace()

			217	 	 if	p.empty()	{

			218	 	 	 return	nil,	errors.New("mail:	no	address")

			219	 	 }

			220	

			221	 	 //	address	=	name-addr	/	addr-spec

			222	 	 //	TODO(dsymonds):	Support	parsing	group	address.

			223	

			224	 	 //	addr-spec	has	a	more	restricted	grammar	than	name-addr,

			225	 	 //	so	try	parsing	it	first,	and	fallback	to	name-addr.

			226	 	 //	TODO(dsymonds):	Is	this	really	correct?

			227	 	 spec,	err	:=	p.consumeAddrSpec()

			228	 	 if	err	==	nil	{

			229	 	 	 return	&Address{

			230	 	 	 	 Address:	spec,

			231	 	 	 },	err

			232	 	 }

			233	 	 debug.Printf("parseAddress:	not	an	addr-spec:	%v",	err)

			234	 	 debug.Printf("parseAddress:	state	is	now	%q",	*p)

			235	

			236	 	 //	display-name

			237	 	 var	displayName	string

			238	 	 if	p.peek()	!=	'<'	{

			239	 	 	 displayName,	err	=	p.consumePhrase()

			240	 	 	 if	err	!=	nil	{

			241	 	 	 	 return	nil,	err

			242	 	 	 }

			243	 	 }

			244	 	 debug.Printf("parseAddress:	displayName=%q",	displayName)

			245	

			246	 	 //	angle-addr	=	"<"	addr-spec	">"

			247	 	 p.skipSpace()

			248	 	 if	!p.consume('<')	{

			249	 	 	 return	nil,	errors.New("mail:	no	angle-addr")

			250	 	 }

			251	 	 spec,	err	=	p.consumeAddrSpec()

			252	 	 if	err	!=	nil	{

			253	 	 	 return	nil,	err

			254	 	 }

			255	 	 if	!p.consume('>')	{

			256	 	 	 return	nil,	errors.New("mail:	unclosed	angle-addr")

			257	 	 }

			258	 	 debug.Printf("parseAddress:	spec=%q",	spec)

			259	

			260	 	 return	&Address{

			261	 	 	 Name:				displayName,

			262	 	 	 Address:	spec,

			263	 	 },	nil

			264	 }

			265	

			266	 //	consumeAddrSpec	parses	a	single	RFC	5322	addr-spec	at	the	start	of	p.

			267	 func	(p	*addrParser)	consumeAddrSpec()	(spec	string,	err	error)	{

			268	 	 debug.Printf("consumeAddrSpec:	%q",	*p)

			269	

			270	 	 orig	:=	*p

			271	 	 defer	func()	{

			272	 	 	 if	err	!=	nil	{

			273	 	 	 	 *p	=	orig

			274	 	 	 }

			275	 	 }()

			276	

			277	 	 //	local-part	=	dot-atom	/	quoted-string

			278	 	 var	localPart	string

			279	 	 p.skipSpace()

			280	 	 if	p.empty()	{

			281	 	 	 return	"",	errors.New("mail:	no	addr-spec")

			282	 	 }

			283	 	 if	p.peek()	==	'"'	{

			284	 	 	 //	quoted-string

			285	 	 	 debug.Printf("consumeAddrSpec:	parsing	quoted-string")

			286	 	 	 localPart,	err	=	p.consumeQuotedString()

			287	 	 }	else	{

			288	 	 	 //	dot-atom

			289	 	 	 debug.Printf("consumeAddrSpec:	parsing	dot-atom")

			290	 	 	 localPart,	err	=	p.consumeAtom(true)

			291	 	 }

			292	 	 if	err	!=	nil	{

			293	 	 	 debug.Printf("consumeAddrSpec:	failed:	%v",	err)

			294	 	 	 return	"",	err

			295	 	 }

			296	

			297	 	 if	!p.consume('@')	{

			298	 	 	 return	"",	errors.New("mail:	missing	@	in	addr-spec")

			299	 	 }

			300	

			301	 	 //	domain	=	dot-atom	/	domain-literal

			302	 	 var	domain	string

			303	 	 p.skipSpace()

			304	 	 if	p.empty()	{

			305	 	 	 return	"",	errors.New("mail:	no	domain	in	addr-spec")

			306	 	 }

			307	 	 //	TODO(dsymonds):	Handle	domain-literal

			308	 	 domain,	err	=	p.consumeAtom(true)

			309	 	 if	err	!=	nil	{

			310	 	 	 return	"",	err

			311	 	 }

			312	

			313	 	 return	localPart	+	"@"	+	domain,	nil

			314	 }

			315	

			316	 //	consumePhrase	parses	the	RFC	5322	phrase	at	the	start	of	p.

			317	 func	(p	*addrParser)	consumePhrase()	(phrase	string,	err	error)	{

			318	 	 debug.Printf("consumePhrase:	[%s]",	*p)

			319	 	 //	phrase	=	1*word

			320	 	 var	words	[]string

			321	 	 for	{

			322	 	 	 //	word	=	atom	/	quoted-string

			323	 	 	 var	word	string

			324	 	 	 p.skipSpace()

			325	 	 	 if	p.empty()	{

			326	 	 	 	 return	"",	errors.New("mail:	missing	phrase")

			327	 	 	 }

			328	 	 	 if	p.peek()	==	'"'	{

			329	 	 	 	 //	quoted-string

			330	 	 	 	 word,	err	=	p.consumeQuotedString()

			331	 	 	 }	else	{

			332	 	 	 	 //	atom

			333	 	 	 	 word,	err	=	p.consumeAtom(false)

			334	 	 	 }

			335	

			336	 	 	 //	RFC	2047	encoded-word	starts	with	=?,	ends	with	?=,	and	has	two	other	?s.

			337	 	 	 if	err	==	nil	&&	strings.HasPrefix(word,	"=?")	&&	strings.HasSuffix(word,	"?=")	&&	strings.Count(word,	"?")	==	4	{

			338	 	 	 	 word,	err	=	decodeRFC2047Word(word)

			339	 	 	 }

			340	

			341	 	 	 if	err	!=	nil	{

			342	 	 	 	 break

			343	 	 	 }

			344	 	 	 debug.Printf("consumePhrase:	consumed	%q",	word)

			345	 	 	 words	=	append(words,	word)

			346	 	 }

			347	 	 //	Ignore	any	error	if	we	got	at	least	one	word.

			348	 	 if	err	!=	nil	&&	len(words)	==	0	{

			349	 	 	 debug.Printf("consumePhrase:	hit	err:	%v",	err)

			350	 	 	 return	"",	errors.New("mail:	missing	word	in	phrase")

			351	 	 }

			352	 	 phrase	=	strings.Join(words,	"	")

			353	 	 return	phrase,	nil

			354	 }

			355	

			356	 //	consumeQuotedString	parses	the	quoted	string	at	the	start	of	p.

			357	 func	(p	*addrParser)	consumeQuotedString()	(qs	string,	err	error)	{

			358	 	 //	Assume	first	byte	is	'"'.

			359	 	 i	:=	1

			360	 	 qsb	:=	make([]byte,	0,	10)

			361	 Loop:

			362	 	 for	{

			363	 	 	 if	i	>=	p.len()	{

			364	 	 	 	 return	"",	errors.New("mail:	unclosed	quoted-string")

			365	 	 	 }

			366	 	 	 switch	c	:=	(*p)[i];	{

			367	 	 	 case	c	==	'"':

			368	 	 	 	 break	Loop

			369	 	 	 case	c	==	'\\':

			370	 	 	 	 if	i+1	==	p.len()	{

			371	 	 	 	 	 return	"",	errors.New("mail:	unclosed	quoted-string")

			372	 	 	 	 }

			373	 	 	 	 qsb	=	append(qsb,	(*p)[i+1])

			374	 	 	 	 i	+=	2

			375	 	 	 case	isQtext(c),	c	==	'	'	||	c	==	'\t':

			376	 	 	 	 //	qtext	(printable	US-ASCII	excluding	"	and	\),	or

			377	 	 	 	 //	FWS	(almost;	we're	ignoring	CRLF)

			378	 	 	 	 qsb	=	append(qsb,	c)

			379	 	 	 	 i++

			380	 	 	 default:

			381	 	 	 	 return	"",	fmt.Errorf("mail:	bad	character	in	quoted-string:	%q",	c)

			382	 	 	 }

			383	 	 }

			384	 	 *p	=	(*p)[i+1:]

			385	 	 return	string(qsb),	nil

			386	 }

			387	

			388	 //	consumeAtom	parses	an	RFC	5322	atom	at	the	start	of	p.

			389	 //	If	dot	is	true,	consumeAtom	parses	an	RFC	5322	dot-atom	instead.

			390	 func	(p	*addrParser)	consumeAtom(dot	bool)	(atom	string,	err	error)	{

			391	 	 if	!isAtext(p.peek(),	false)	{

			392	 	 	 return	"",	errors.New("mail:	invalid	string")

			393	 	 }

			394	 	 i	:=	1

			395	 	 for	;	i	<	p.len()	&&	isAtext((*p)[i],	dot);	i++	{

			396	 	 }

			397	 	 atom,	*p	=	string((*p)[:i]),	(*p)[i:]

			398	 	 return	atom,	nil

			399	 }

			400	

			401	 func	(p	*addrParser)	consume(c	byte)	bool	{

			402	 	 if	p.empty()	||	p.peek()	!=	c	{

			403	 	 	 return	false

			404	 	 }

			405	 	 *p	=	(*p)[1:]

			406	 	 return	true

			407	 }

			408	

			409	 //	skipSpace	skips	the	leading	space	and	tab	characters.

			410	 func	(p	*addrParser)	skipSpace()	{

			411	 	 *p	=	bytes.TrimLeft(*p,	"	\t")

			412	 }

			413	

			414	 func	(p	*addrParser)	peek()	byte	{

			415	 	 return	(*p)[0]

			416	 }

			417	

			418	 func	(p	*addrParser)	empty()	bool	{

			419	 	 return	p.len()	==	0

			420	 }

			421	

			422	 func	(p	*addrParser)	len()	int	{

			423	 	 return	len(*p)

			424	 }

			425	

			426	 func	decodeRFC2047Word(s	string)	(string,	error)	{

			427	 	 fields	:=	strings.Split(s,	"?")

			428	 	 if	len(fields)	!=	5	||	fields[0]	!=	"="	||	fields[4]	!=	"="	{

			429	 	 	 return	"",	errors.New("mail:	address	not	RFC	2047	encoded")

			430	 	 }

			431	 	 charset,	enc	:=	strings.ToLower(fields[1]),	strings.ToLower(fields[2])

			432	 	 if	charset	!=	"iso-8859-1"	&&	charset	!=	"utf-8"	{

			433	 	 	 return	"",	fmt.Errorf("mail:	charset	not	supported:	%q",	charset)

			434	 	 }

			435	

			436	 	 in	:=	bytes.NewBufferString(fields[3])

			437	 	 var	r	io.Reader

			438	 	 switch	enc	{

			439	 	 case	"b":

			440	 	 	 r	=	base64.NewDecoder(base64.StdEncoding,	in)

			441	 	 case	"q":

			442	 	 	 r	=	qDecoder{r:	in}

			443	 	 default:

			444	 	 	 return	"",	fmt.Errorf("mail:	RFC	2047	encoding	not	supported:	%q",	enc)

			445	 	 }

			446	

			447	 	 dec,	err	:=	ioutil.ReadAll(r)

			448	 	 if	err	!=	nil	{

			449	 	 	 return	"",	err

			450	 	 }

			451	

			452	 	 switch	charset	{

			453	 	 case	"iso-8859-1":

			454	 	 	 b	:=	new(bytes.Buffer)

			455	 	 	 for	_,	c	:=	range	dec	{

			456	 	 	 	 b.WriteRune(rune(c))

			457	 	 	 }

			458	 	 	 return	b.String(),	nil

			459	 	 case	"utf-8":

			460	 	 	 return	string(dec),	nil

			461	 	 }

			462	 	 panic("unreachable")

			463	 }

			464	

			465	 type	qDecoder	struct	{

			466	 	 r							io.Reader

			467	 	 scratch	[2]byte

			468	 }

			469	

			470	 func	(qd	qDecoder)	Read(p	[]byte)	(n	int,	err	error)	{

			471	 	 //	This	method	writes	at	most	one	byte	into	p.

			472	 	 if	len(p)	==	0	{

			473	 	 	 return	0,	nil

			474	 	 }

			475	 	 if	_,	err	:=	qd.r.Read(qd.scratch[:1]);	err	!=	nil	{

			476	 	 	 return	0,	err

			477	 	 }

			478	 	 switch	c	:=	qd.scratch[0];	{

			479	 	 case	c	==	'=':

			480	 	 	 if	_,	err	:=	io.ReadFull(qd.r,	qd.scratch[:2]);	err	!=	nil	{

			481	 	 	 	 return	0,	err

			482	 	 	 }

			483	 	 	 x,	err	:=	strconv.ParseInt(string(qd.scratch[:2]),	16,	64)

			484	 	 	 if	err	!=	nil	{

			485	 	 	 	 return	0,	fmt.Errorf("mail:	invalid	RFC	2047	encoding:	%q",	qd.scratch[:2])

			486	 	 	 }

			487	 	 	 p[0]	=	byte(x)

			488	 	 case	c	==	'_':

			489	 	 	 p[0]	=	'	'

			490	 	 default:

			491	 	 	 p[0]	=	c

			492	 	 }

			493	 	 return	1,	nil

			494	 }

			495	

			496	 var	atextChars	=	[]byte("ABCDEFGHIJKLMNOPQRSTUVWXYZ"	+

			497	 	 "abcdefghijklmnopqrstuvwxyz"	+

			498	 	 "0123456789"	+

			499	 	 "!#$%&'*+-/=?^_`{|}~")

			500	

			501	 //	isAtext	returns	true	if	c	is	an	RFC	5322	atext	character.

			502	 //	If	dot	is	true,	period	is	included.

			503	 func	isAtext(c	byte,	dot	bool)	bool	{

			504	 	 if	dot	&&	c	==	'.'	{

			505	 	 	 return	true

			506	 	 }

			507	 	 return	bytes.IndexByte(atextChars,	c)	>=	0

			508	 }

			509	

			510	 //	isQtext	returns	true	if	c	is	an	RFC	5322	qtest	character.

			511	 func	isQtext(c	byte)	bool	{

			512	 	 //	Printable	US-ASCII,	excluding	backslash	or	quote.

			513	 	 if	c	==	'\\'	||	c	==	'"'	{

			514	 	 	 return	false

			515	 	 }

			516	 	 return	'!'	<=	c	&&	c	<=	'~'

			517	 }

			518	

			519	 //	isVchar	returns	true	if	c	is	an	RFC	5322	VCHAR	character.

			520	 func	isVchar(c	byte)	bool	{

			521	 	 //	Visible	(printing)	characters.

			522	 	 return	'!'	<=	c	&&	c	<=	'~'

			523	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/rpc/client.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	rpc

					6	

					7	 import	(

					8	 	 "bufio"

					9	 	 "encoding/gob"

				10	 	 "errors"

				11	 	 "io"

				12	 	 "log"

				13	 	 "net"

				14	 	 "net/http"

				15	 	 "sync"

				16)

				17	

				18	 //	ServerError	represents	an	error	that	has	been	returned	from

				19	 //	the	remote	side	of	the	RPC	connection.

				20	 type	ServerError	string

				21	

				22	 func	(e	ServerError)	Error()	string	{

				23	 	 return	string(e)

				24	 }

				25	

				26	 var	ErrShutdown	=	errors.New("connection	is	shut	down")

				27	

				28	 //	Call	represents	an	active	RPC.

				29	 type	Call	struct	{

				30	 	 ServiceMethod	string						//	The	name	of	the	service	and	method	to	call.

				31	 	 Args										interface{}	//	The	argument	to	the	function	(*struct).

				32	 	 Reply									interface{}	//	The	reply	from	the	function	(*struct).

				33	 	 Error									error							//	After	completion,	the	error	status.

				34	 	 Done										chan	*Call		//	Strobes	when	call	is	complete.

				35	 }

				36	

				37	 //	Client	represents	an	RPC	Client.

				38	 //	There	may	be	multiple	outstanding	Calls	associated

				39	 //	with	a	single	Client,	and	a	Client	may	be	used	by

				40	 //	multiple	goroutines	simultaneously.

				41	 type	Client	struct	{

				42	 	 mutex				sync.Mutex	//	protects	pending,	seq,	request

				43	 	 sending		sync.Mutex

				44	 	 request		Request

				45	 	 seq						uint64

				46	 	 codec				ClientCodec

				47	 	 pending		map[uint64]*Call

				48	 	 closing		bool

				49	 	 shutdown	bool

				50	 }

				51	

				52	 //	A	ClientCodec	implements	writing	of	RPC	requests	and

				53	 //	reading	of	RPC	responses	for	the	client	side	of	an	RPC	session.

				54	 //	The	client	calls	WriteRequest	to	write	a	request	to	the	connection

				55	 //	and	calls	ReadResponseHeader	and	ReadResponseBody	in	pairs

				56	 //	to	read	responses.		The	client	calls	Close	when	finished	with	the

				57	 //	connection.	ReadResponseBody	may	be	called	with	a	nil

				58	 //	argument	to	force	the	body	of	the	response	to	be	read	and	then

				59	 //	discarded.

				60	 type	ClientCodec	interface	{

				61	 	 WriteRequest(*Request,	interface{})	error

				62	 	 ReadResponseHeader(*Response)	error

				63	 	 ReadResponseBody(interface{})	error

				64	

				65	 	 Close()	error

				66	 }

				67	

				68	 func	(client	*Client)	send(call	*Call)	{

				69	 	 client.sending.Lock()

				70	 	 defer	client.sending.Unlock()

				71	

				72	 	 //	Register	this	call.

				73	 	 client.mutex.Lock()

				74	 	 if	client.shutdown	{

				75	 	 	 call.Error	=	ErrShutdown

				76	 	 	 client.mutex.Unlock()

				77	 	 	 call.done()

				78	 	 	 return

				79	 	 }

				80	 	 seq	:=	client.seq

				81	 	 client.seq++

				82	 	 client.pending[seq]	=	call

				83	 	 client.mutex.Unlock()

				84	

				85	 	 //	Encode	and	send	the	request.

				86	 	 client.request.Seq	=	seq

				87	 	 client.request.ServiceMethod	=	call.ServiceMethod

				88	 	 err	:=	client.codec.WriteRequest(&client.request,	call.Args)

				89	 	 if	err	!=	nil	{

				90	 	 	 client.mutex.Lock()

				91	 	 	 delete(client.pending,	seq)

				92	 	 	 client.mutex.Unlock()

				93	 	 	 call.Error	=	err

				94	 	 	 call.done()

				95	 	 }

				96	 }

				97	

				98	 func	(client	*Client)	input()	{

				99	 	 var	err	error

			100	 	 var	response	Response

			101	 	 for	err	==	nil	{

			102	 	 	 response	=	Response{}

			103	 	 	 err	=	client.codec.ReadResponseHeader(&response)

			104	 	 	 if	err	!=	nil	{

			105	 	 	 	 if	err	==	io.EOF	&&	!client.closing	{

			106	 	 	 	 	 err	=	io.ErrUnexpectedEOF

			107	 	 	 	 }

			108	 	 	 	 break

			109	 	 	 }

			110	 	 	 seq	:=	response.Seq

			111	 	 	 client.mutex.Lock()

			112	 	 	 call	:=	client.pending[seq]

			113	 	 	 delete(client.pending,	seq)

			114	 	 	 client.mutex.Unlock()

			115	

			116	 	 	 if	response.Error	==	""	{

			117	 	 	 	 err	=	client.codec.ReadResponseBody(call.Reply)

			118	 	 	 	 if	err	!=	nil	{

			119	 	 	 	 	 call.Error	=	errors.New("reading	body	"	+	err.Error())

			120	 	 	 	 }

			121	 	 	 }	else	{

			122	 	 	 	 //	We've	got	an	error	response.	Give	this	to	the	request;

			123	 	 	 	 //	any	subsequent	requests	will	get	the	ReadResponseBody

			124	 	 	 	 //	error	if	there	is	one.

			125	 	 	 	 call.Error	=	ServerError(response.Error)

			126	 	 	 	 err	=	client.codec.ReadResponseBody(nil)

			127	 	 	 	 if	err	!=	nil	{

			128	 	 	 	 	 err	=	errors.New("reading	error	body:	"	+	err.Error())

			129	 	 	 	 }

			130	 	 	 }

			131	 	 	 call.done()

			132	 	 }

			133	 	 //	Terminate	pending	calls.

			134	 	 client.sending.Lock()

			135	 	 client.mutex.Lock()

			136	 	 client.shutdown	=	true

			137	 	 closing	:=	client.closing

			138	 	 for	_,	call	:=	range	client.pending	{

			139	 	 	 call.Error	=	err

			140	 	 	 call.done()

			141	 	 }

			142	 	 client.mutex.Unlock()

			143	 	 client.sending.Unlock()

			144	 	 if	err	!=	io.EOF	&&	!closing	{

			145	 	 	 log.Println("rpc:	client	protocol	error:",	err)

			146	 	 }

			147	 }

			148	

			149	 func	(call	*Call)	done()	{

			150	 	 select	{

			151	 	 case	call.Done	<-	call:

			152	 	 	 //	ok

			153	 	 default:

			154	 	 	 //	We	don't	want	to	block	here.		It	is	the	caller's	responsibility	to	make

			155	 	 	 //	sure	the	channel	has	enough	buffer	space.	See	comment	in	Go().

			156	 	 	 log.Println("rpc:	discarding	Call	reply	due	to	insufficient	Done	chan	capacity")

			157	 	 }

			158	 }

			159	

			160	 //	NewClient	returns	a	new	Client	to	handle	requests	to	the

			161	 //	set	of	services	at	the	other	end	of	the	connection.

			162	 //	It	adds	a	buffer	to	the	write	side	of	the	connection	so

			163	 //	the	header	and	payload	are	sent	as	a	unit.

			164	 func	NewClient(conn	io.ReadWriteCloser)	*Client	{

			165	 	 encBuf	:=	bufio.NewWriter(conn)

			166	 	 client	:=	&gobClientCodec{conn,	gob.NewDecoder(conn),	gob.NewEncoder(encBuf),	encBuf}

			167	 	 return	NewClientWithCodec(client)

			168	 }

			169	

			170	 //	NewClientWithCodec	is	like	NewClient	but	uses	the	specified

			171	 //	codec	to	encode	requests	and	decode	responses.

			172	 func	NewClientWithCodec(codec	ClientCodec)	*Client	{

			173	 	 client	:=	&Client{

			174	 	 	 codec:			codec,

			175	 	 	 pending:	make(map[uint64]*Call),

			176	 	 }

			177	 	 go	client.input()

			178	 	 return	client

			179	 }

			180	

			181	 type	gobClientCodec	struct	{

			182	 	 rwc				io.ReadWriteCloser

			183	 	 dec				*gob.Decoder

			184	 	 enc				*gob.Encoder

			185	 	 encBuf	*bufio.Writer

			186	 }

			187	

			188	 func	(c	*gobClientCodec)	WriteRequest(r	*Request,	body	interface{})	(err	error)	{

			189	 	 if	err	=	c.enc.Encode(r);	err	!=	nil	{

			190	 	 	 return

			191	 	 }

			192	 	 if	err	=	c.enc.Encode(body);	err	!=	nil	{

			193	 	 	 return

			194	 	 }

			195	 	 return	c.encBuf.Flush()

			196	 }

			197	

			198	 func	(c	*gobClientCodec)	ReadResponseHeader(r	*Response)	error	{

			199	 	 return	c.dec.Decode(r)

			200	 }

			201	

			202	 func	(c	*gobClientCodec)	ReadResponseBody(body	interface{})	error	{

			203	 	 return	c.dec.Decode(body)

			204	 }

			205	

			206	 func	(c	*gobClientCodec)	Close()	error	{

			207	 	 return	c.rwc.Close()

			208	 }

			209	

			210	 //	DialHTTP	connects	to	an	HTTP	RPC	server	at	the	specified	network	address

			211	 //	listening	on	the	default	HTTP	RPC	path.

			212	 func	DialHTTP(network,	address	string)	(*Client,	error)	{

			213	 	 return	DialHTTPPath(network,	address,	DefaultRPCPath)

			214	 }

			215	

			216	 //	DialHTTPPath	connects	to	an	HTTP	RPC	server	

			217	 //	at	the	specified	network	address	and	path.

			218	 func	DialHTTPPath(network,	address,	path	string)	(*Client,	error)	{

			219	 	 var	err	error

			220	 	 conn,	err	:=	net.Dial(network,	address)

			221	 	 if	err	!=	nil	{

			222	 	 	 return	nil,	err

			223	 	 }

			224	 	 io.WriteString(conn,	"CONNECT	"+path+"	HTTP/1.0\n\n")

			225	

			226	 	 //	Require	successful	HTTP	response

			227	 	 //	before	switching	to	RPC	protocol.

			228	 	 resp,	err	:=	http.ReadResponse(bufio.NewReader(conn),	&http.Request{Method:	"CONNECT"})

			229	 	 if	err	==	nil	&&	resp.Status	==	connected	{

			230	 	 	 return	NewClient(conn),	nil

			231	 	 }

			232	 	 if	err	==	nil	{

			233	 	 	 err	=	errors.New("unexpected	HTTP	response:	"	+	resp.Status)

			234	 	 }

			235	 	 conn.Close()

			236	 	 return	nil,	&net.OpError{

			237	 	 	 Op:			"dial-http",

			238	 	 	 Net:		network	+	"	"	+	address,

			239	 	 	 Addr:	nil,

			240	 	 	 Err:		err,

			241	 	 }

			242	 }

			243	

			244	 //	Dial	connects	to	an	RPC	server	at	the	specified	network	address.

			245	 func	Dial(network,	address	string)	(*Client,	error)	{

			246	 	 conn,	err	:=	net.Dial(network,	address)

			247	 	 if	err	!=	nil	{

			248	 	 	 return	nil,	err

			249	 	 }

			250	 	 return	NewClient(conn),	nil

			251	 }

			252	

			253	 func	(client	*Client)	Close()	error	{

			254	 	 client.mutex.Lock()

			255	 	 if	client.shutdown	||	client.closing	{

			256	 	 	 client.mutex.Unlock()

			257	 	 	 return	ErrShutdown

			258	 	 }

			259	 	 client.closing	=	true

			260	 	 client.mutex.Unlock()

			261	 	 return	client.codec.Close()

			262	 }

			263	

			264	 //	Go	invokes	the	function	asynchronously.		It	returns	the	Call	structure	representing

			265	 //	the	invocation.		The	done	channel	will	signal	when	the	call	is	complete	by	returning

			266	 //	the	same	Call	object.		If	done	is	nil,	Go	will	allocate	a	new	channel.

			267	 //	If	non-nil,	done	must	be	buffered	or	Go	will	deliberately	crash.

			268	 func	(client	*Client)	Go(serviceMethod	string,	args	interface{},	reply	interface{},	done	chan	*Call)	*Call	{

			269	 	 call	:=	new(Call)

			270	 	 call.ServiceMethod	=	serviceMethod

			271	 	 call.Args	=	args

			272	 	 call.Reply	=	reply

			273	 	 if	done	==	nil	{

			274	 	 	 done	=	make(chan	*Call,	10)	//	buffered.

			275	 	 }	else	{

			276	 	 	 //	If	caller	passes	done	!=	nil,	it	must	arrange	that

			277	 	 	 //	done	has	enough	buffer	for	the	number	of	simultaneous

			278	 	 	 //	RPCs	that	will	be	using	that	channel.		If	the	channel

			279	 	 	 //	is	totally	unbuffered,	it's	best	not	to	run	at	all.

			280	 	 	 if	cap(done)	==	0	{

			281	 	 	 	 log.Panic("rpc:	done	channel	is	unbuffered")

			282	 	 	 }

			283	 	 }

			284	 	 call.Done	=	done

			285	 	 client.send(call)

			286	 	 return	call

			287	 }

			288	

			289	 //	Call	invokes	the	named	function,	waits	for	it	to	complete,	and	returns	its	error	status.

			290	 func	(client	*Client)	Call(serviceMethod	string,	args	interface{},	reply	interface{})	error	{

			291	 	 call	:=	<-client.Go(serviceMethod,	args,	reply,	make(chan	*Call,	1)).Done

			292	 	 return	call.Error

			293	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/rpc/debug.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	rpc

					6	

					7	 /*

					8	 	 Some	HTML	presented	at	http://machine:port/debug/rpc

					9	 	 Lists	services,	their	methods,	and	some	statistics,	still	rudimentary.

				10	 */

				11	

				12	 import	(

				13	 	 "fmt"

				14	 	 "net/http"

				15	 	 "sort"

				16	 	 "text/template"

				17)

				18	

				19	 const	debugText	=	`<html>

				20	 	 <body>

				21	 	 <title>Services</title>

				22	 	 {{range	.}}

				23	 	 <hr>

				24	 	 Service	{{.Name}}

				25	 	 <hr>

				26	 	 	 <table>

				27	 	 	 <th	align=center>Method</th><th	align=center>Calls</th>

				28	 	 	 {{range	.Method}}

				29	 	 	 	 <tr>

				30	 	 	 	 <td	align=left	font=fixed>{{.Name}}({{.Type.ArgType}},	{{.Type.ReplyType}})	error</td>

				31	 	 	 	 <td	align=center>{{.Type.NumCalls}}</td>

				32	 	 	 	 </tr>

				33	 	 	 {{end}}

				34	 	 	 </table>

				35	 	 {{end}}

				36	 	 </body>

				37	 	 </html>`

				38	

				39	 var	debug	=	template.Must(template.New("RPC	debug").Parse(debugText))

				40	

				41	 type	debugMethod	struct	{

				42	 	 Type	*methodType

				43	 	 Name	string

				44	 }

				45	

				46	 type	methodArray	[]debugMethod

				47	

				48	 type	debugService	struct	{

				49	 	 Service	*service

				50	 	 Name				string

				51	 	 Method		methodArray

				52	 }

				53	

				54	 type	serviceArray	[]debugService

				55	

				56	 func	(s	serviceArray)	Len()	int											{	return	len(s)	}

				57	 func	(s	serviceArray)	Less(i,	j	int)	bool	{	return	s[i].Name	<	s[j].Name	}

				58	 func	(s	serviceArray)	Swap(i,	j	int)						{	s[i],	s[j]	=	s[j],	s[i]	}

				59	

				60	 func	(m	methodArray)	Len()	int											{	return	len(m)	}

				61	 func	(m	methodArray)	Less(i,	j	int)	bool	{	return	m[i].Name	<	m[j].Name	}

				62	 func	(m	methodArray)	Swap(i,	j	int)						{	m[i],	m[j]	=	m[j],	m[i]	}

				63	

				64	 type	debugHTTP	struct	{

				65	 	 *Server

				66	 }

				67	

				68	 //	Runs	at	/debug/rpc

				69	 func	(server	debugHTTP)	ServeHTTP(w	http.ResponseWriter,	req	*http.Request)	{

				70	 	 //	Build	a	sorted	version	of	the	data.

				71	 	 var	services	=	make(serviceArray,	len(server.serviceMap))

				72	 	 i	:=	0

				73	 	 server.mu.Lock()

				74	 	 for	sname,	service	:=	range	server.serviceMap	{

				75	 	 	 services[i]	=	debugService{service,	sname,	make(methodArray,	len(service.method))}

				76	 	 	 j	:=	0

				77	 	 	 for	mname,	method	:=	range	service.method	{

				78	 	 	 	 services[i].Method[j]	=	debugMethod{method,	mname}

				79	 	 	 	 j++

				80	 	 	 }

				81	 	 	 sort.Sort(services[i].Method)

				82	 	 	 i++

				83	 	 }

				84	 	 server.mu.Unlock()

				85	 	 sort.Sort(services)

				86	 	 err	:=	debug.Execute(w,	services)

				87	 	 if	err	!=	nil	{

				88	 	 	 fmt.Fprintln(w,	"rpc:	error	executing	template:",	err.Error())

				89	 	 }

				90	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative

http://code.google.com/policies.html#restrictions

Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/rpc/server.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 	 Package	rpc	provides	access	to	the	exported	methods	of	an	object	across	a

					7	 	 network	or	other	I/O	connection.		A	server	registers	an	object,	making	it	visible

					8	 	 as	a	service	with	the	name	of	the	type	of	the	object.		After	registration,	exported

					9	 	 methods	of	the	object	will	be	accessible	remotely.		A	server	may	register	multiple

				10	 	 objects	(services)	of	different	types	but	it	is	an	error	to	register	multiple

				11	 	 objects	of	the	same	type.

				12	

				13	 	 Only	methods	that	satisfy	these	criteria	will	be	made	available	for	remote	access;

				14	 	 other	methods	will	be	ignored:

				15	

				16	 	 	 -	the	method	is	exported.

				17	 	 	 -	the	method	has	two	arguments,	both	exported	(or	builtin)	types.

				18	 	 	 -	the	method's	second	argument	is	a	pointer.

				19	 	 	 -	the	method	has	return	type	error.

				20	

				21	 	 In	effect,	the	method	must	look	schematically	like

				22	

				23	 	 	 func	(t	*T)	MethodName(argType	T1,	replyType	*T2)	error

				24	

				25	 	 where	T,	T1	and	T2	can	be	marshaled	by	encoding/gob.

				26	 	 These	requirements	apply	even	if	a	different	codec	is	used.

				27	 	 (In	future,	these	requirements	may	soften	for	custom	codecs.)

				28	

				29	 	 The	method's	first	argument	represents	the	arguments	provided	by	the	caller;	the

				30	 	 second	argument	represents	the	result	parameters	to	be	returned	to	the	caller.

				31	 	 The	method's	return	value,	if	non-nil,	is	passed	back	as	a	string	that	the	client

				32	 	 sees	as	if	created	by	errors.New.

				33	

				34	 	 The	server	may	handle	requests	on	a	single	connection	by	calling	ServeConn.		More

				35	 	 typically	it	will	create	a	network	listener	and	call	Accept	or,	for	an	HTTP

				36	 	 listener,	HandleHTTP	and	http.Serve.

				37	

				38	 	 A	client	wishing	to	use	the	service	establishes	a	connection	and	then	invokes

				39	 	 NewClient	on	the	connection.		The	convenience	function	Dial	(DialHTTP)	performs

				40	 	 both	steps	for	a	raw	network	connection	(an	HTTP	connection).		The	resulting

				41	 	 Client	object	has	two	methods,	Call	and	Go,	that	specify	the	service	and	method	to

				42	 	 call,	a	pointer	containing	the	arguments,	and	a	pointer	to	receive	the	result

				43	 	 parameters.

				44	

				45	 	 The	Call	method	waits	for	the	remote	call	to	complete	while	the	Go	method

				46	 	 launches	the	call	asynchronously	and	signals	completion	using	the	Call

				47	 	 structure's	Done	channel.

				48	

				49	 	 Unless	an	explicit	codec	is	set	up,	package	encoding/gob	is	used	to

				50	 	 transport	the	data.

				51	

				52	 	 Here	is	a	simple	example.		A	server	wishes	to	export	an	object	of	type	Arith:

				53	

				54	 	 	 package	server

				55	

				56	 	 	 type	Args	struct	{

				57	 	 	 	 A,	B	int

				58	 	 	 }

				59	

				60	 	 	 type	Quotient	struct	{

				61	 	 	 	 Quo,	Rem	int

				62	 	 	 }

				63	

				64	 	 	 type	Arith	int

				65	

				66	 	 	 func	(t	*Arith)	Multiply(args	*Args,	reply	*int)	error	{

				67	 	 	 	 *reply	=	args.A	*	args.B

				68	 	 	 	 return	nil

				69	 	 	 }

				70	

				71	 	 	 func	(t	*Arith)	Divide(args	*Args,	quo	*Quotient)	error	{

				72	 	 	 	 if	args.B	==	0	{

				73	 	 	 	 	 return	errors.New("divide	by	zero")

				74	 	 	 	 }

				75	 	 	 	 quo.Quo	=	args.A	/	args.B

				76	 	 	 	 quo.Rem	=	args.A	%	args.B

				77	 	 	 	 return	nil

				78	 	 	 }

				79	

				80	 	 The	server	calls	(for	HTTP	service):

				81	

				82	 	 	 arith	:=	new(Arith)

				83	 	 	 rpc.Register(arith)

				84	 	 	 rpc.HandleHTTP()

				85	 	 	 l,	e	:=	net.Listen("tcp",	":1234")

				86	 	 	 if	e	!=	nil	{

				87	 	 	 	 log.Fatal("listen	error:",	e)

				88	 	 	 }

				89	 	 	 go	http.Serve(l,	nil)

				90	

				91	 	 At	this	point,	clients	can	see	a	service	"Arith"	with	methods	"Arith.Multiply"	and

				92	 	 "Arith.Divide".		To	invoke	one,	a	client	first	dials	the	server:

				93	

				94	 	 	 client,	err	:=	rpc.DialHTTP("tcp",	serverAddress	+	":1234")

				95	 	 	 if	err	!=	nil	{

				96	 	 	 	 log.Fatal("dialing:",	err)

				97	 	 	 }

				98	

				99	 	 Then	it	can	make	a	remote	call:

			100	

			101	 	 	 //	Synchronous	call

			102	 	 	 args	:=	&server.Args{7,8}

			103	 	 	 var	reply	int

			104	 	 	 err	=	client.Call("Arith.Multiply",	args,	&reply)

			105	 	 	 if	err	!=	nil	{

			106	 	 	 	 log.Fatal("arith	error:",	err)

			107	 	 	 }

			108	 	 	 fmt.Printf("Arith:	%d*%d=%d",	args.A,	args.B,	reply)

			109	

			110	 	 or

			111	

			112	 	 	 //	Asynchronous	call

			113	 	 	 quotient	:=	new(Quotient)

			114	 	 	 divCall	:=	client.Go("Arith.Divide",	args,	"ient,	nil)

			115	 	 	 replyCall	:=	<-divCall.Done	 //	will	be	equal	to	divCall

			116	 	 	 //	check	errors,	print,	etc.

			117	

			118	 	 A	server	implementation	will	often	provide	a	simple,	type-safe	wrapper	for	the

			119	 	 client.

			120	 */

			121	 package	rpc

			122	

			123	 import	(

			124	 	 "bufio"

			125	 	 "encoding/gob"

			126	 	 "errors"

			127	 	 "io"

			128	 	 "log"

			129	 	 "net"

			130	 	 "net/http"

			131	 	 "reflect"

			132	 	 "strings"

			133	 	 "sync"

			134	 	 "unicode"

			135	 	 "unicode/utf8"

			136)

			137	

			138	 const	(

			139	 	 //	Defaults	used	by	HandleHTTP

			140	 	 DefaultRPCPath			=	"/_goRPC_"

			141	 	 DefaultDebugPath	=	"/debug/rpc"

			142)

			143	

			144	 //	Precompute	the	reflect	type	for	error.		Can't	use	error	directly

			145	 //	because	Typeof	takes	an	empty	interface	value.		This	is	annoying.

			146	 var	typeOfError	=	reflect.TypeOf((*error)(nil)).Elem()

			147	

			148	 type	methodType	struct	{

			149	 	 sync.Mutex	//	protects	counters

			150	 	 method					reflect.Method

			151	 	 ArgType				reflect.Type

			152	 	 ReplyType		reflect.Type

			153	 	 numCalls			uint

			154	 }

			155	

			156	 type	service	struct	{

			157	 	 name			string																	//	name	of	service

			158	 	 rcvr			reflect.Value										//	receiver	of	methods	for	the	service

			159	 	 typ				reflect.Type											//	type	of	the	receiver

			160	 	 method	map[string]*methodType	//	registered	methods

			161	 }

			162	

			163	 //	Request	is	a	header	written	before	every	RPC	call.		It	is	used	internally

			164	 //	but	documented	here	as	an	aid	to	debugging,	such	as	when	analyzing

			165	 //	network	traffic.

			166	 type	Request	struct	{

			167	 	 ServiceMethod	string			//	format:	"Service.Method"

			168	 	 Seq											uint64			//	sequence	number	chosen	by	client

			169	 	 next										*Request	//	for	free	list	in	Server

			170	 }

			171	

			172	 //	Response	is	a	header	written	before	every	RPC	return.		It	is	used	internally

			173	 //	but	documented	here	as	an	aid	to	debugging,	such	as	when	analyzing

			174	 //	network	traffic.

			175	 type	Response	struct	{

			176	 	 ServiceMethod	string				//	echoes	that	of	the	Request

			177	 	 Seq											uint64				//	echoes	that	of	the	request

			178	 	 Error									string				//	error,	if	any.

			179	 	 next										*Response	//	for	free	list	in	Server

			180	 }

			181	

			182	 //	Server	represents	an	RPC	Server.

			183	 type	Server	struct	{

			184	 	 mu									sync.Mutex	//	protects	the	serviceMap

			185	 	 serviceMap	map[string]*service

			186	 	 reqLock				sync.Mutex	//	protects	freeReq

			187	 	 freeReq				*Request

			188	 	 respLock			sync.Mutex	//	protects	freeResp

			189	 	 freeResp			*Response

			190	 }

			191	

			192	 //	NewServer	returns	a	new	Server.

			193	 func	NewServer()	*Server	{

			194	 	 return	&Server{serviceMap:	make(map[string]*service)}

			195	 }

			196	

			197	 //	DefaultServer	is	the	default	instance	of	*Server.

			198	 var	DefaultServer	=	NewServer()

			199	

			200	 //	Is	this	an	exported	-	upper	case	-	name?

			201	 func	isExported(name	string)	bool	{

			202	 	 rune,	_	:=	utf8.DecodeRuneInString(name)

			203	 	 return	unicode.IsUpper(rune)

			204	 }

			205	

			206	 //	Is	this	type	exported	or	a	builtin?

			207	 func	isExportedOrBuiltinType(t	reflect.Type)	bool	{

			208	 	 for	t.Kind()	==	reflect.Ptr	{

			209	 	 	 t	=	t.Elem()

			210	 	 }

			211	 	 //	PkgPath	will	be	non-empty	even	for	an	exported	type,

			212	 	 //	so	we	need	to	check	the	type	name	as	well.

			213	 	 return	isExported(t.Name())	||	t.PkgPath()	==	""

			214	 }

			215	

			216	 //	Register	publishes	in	the	server	the	set	of	methods	of	the

			217	 //	receiver	value	that	satisfy	the	following	conditions:

			218	 //	 -	exported	method

			219	 //	 -	two	arguments,	both	pointers	to	exported	structs

			220	 //	 -	one	return	value,	of	type	error

			221	 //	It	returns	an	error	if	the	receiver	is	not	an	exported	type	or	has	no

			222	 //	suitable	methods.

			223	 //	The	client	accesses	each	method	using	a	string	of	the	form	"Type.Method",

			224	 //	where	Type	is	the	receiver's	concrete	type.

			225	 func	(server	*Server)	Register(rcvr	interface{})	error	{

			226	 	 return	server.register(rcvr,	"",	false)

			227	 }

			228	

			229	 //	RegisterName	is	like	Register	but	uses	the	provided	name	for	the	type	

			230	 //	instead	of	the	receiver's	concrete	type.

			231	 func	(server	*Server)	RegisterName(name	string,	rcvr	interface{})	error	{

			232	 	 return	server.register(rcvr,	name,	true)

			233	 }

			234	

			235	 func	(server	*Server)	register(rcvr	interface{},	name	string,	useName	bool)	error	{

			236	 	 server.mu.Lock()

			237	 	 defer	server.mu.Unlock()

			238	 	 if	server.serviceMap	==	nil	{

			239	 	 	 server.serviceMap	=	make(map[string]*service)

			240	 	 }

			241	 	 s	:=	new(service)

			242	 	 s.typ	=	reflect.TypeOf(rcvr)

			243	 	 s.rcvr	=	reflect.ValueOf(rcvr)

			244	 	 sname	:=	reflect.Indirect(s.rcvr).Type().Name()

			245	 	 if	useName	{

			246	 	 	 sname	=	name

			247	 	 }

			248	 	 if	sname	==	""	{

			249	 	 	 log.Fatal("rpc:	no	service	name	for	type",	s.typ.String())

			250	 	 }

			251	 	 if	!isExported(sname)	&&	!useName	{

			252	 	 	 s	:=	"rpc	Register:	type	"	+	sname	+	"	is	not	exported"

			253	 	 	 log.Print(s)

			254	 	 	 return	errors.New(s)

			255	 	 }

			256	 	 if	_,	present	:=	server.serviceMap[sname];	present	{

			257	 	 	 return	errors.New("rpc:	service	already	defined:	"	+	sname)

			258	 	 }

			259	 	 s.name	=	sname

			260	 	 s.method	=	make(map[string]*methodType)

			261	

			262	 	 //	Install	the	methods

			263	 	 for	m	:=	0;	m	<	s.typ.NumMethod();	m++	{

			264	 	 	 method	:=	s.typ.Method(m)

			265	 	 	 mtype	:=	method.Type

			266	 	 	 mname	:=	method.Name

			267	 	 	 //	Method	must	be	exported.

			268	 	 	 if	method.PkgPath	!=	""	{

			269	 	 	 	 continue

			270	 	 	 }

			271	 	 	 //	Method	needs	three	ins:	receiver,	*args,	*reply.

			272	 	 	 if	mtype.NumIn()	!=	3	{

			273	 	 	 	 log.Println("method",	mname,	"has	wrong	number	of	ins:",	mtype.NumIn())

			274	 	 	 	 continue

			275	 	 	 }

			276	 	 	 //	First	arg	need	not	be	a	pointer.

			277	 	 	 argType	:=	mtype.In(1)

			278	 	 	 if	!isExportedOrBuiltinType(argType)	{

			279	 	 	 	 log.Println(mname,	"argument	type	not	exported:",	argType)

			280	 	 	 	 continue

			281	 	 	 }

			282	 	 	 //	Second	arg	must	be	a	pointer.

			283	 	 	 replyType	:=	mtype.In(2)

			284	 	 	 if	replyType.Kind()	!=	reflect.Ptr	{

			285	 	 	 	 log.Println("method",	mname,	"reply	type	not	a	pointer:",	replyType)

			286	 	 	 	 continue

			287	 	 	 }

			288	 	 	 //	Reply	type	must	be	exported.

			289	 	 	 if	!isExportedOrBuiltinType(replyType)	{

			290	 	 	 	 log.Println("method",	mname,	"reply	type	not	exported:",	replyType)

			291	 	 	 	 continue

			292	 	 	 }

			293	 	 	 //	Method	needs	one	out.

			294	 	 	 if	mtype.NumOut()	!=	1	{

			295	 	 	 	 log.Println("method",	mname,	"has	wrong	number	of	outs:",	mtype.NumOut())

			296	 	 	 	 continue

			297	 	 	 }

			298	 	 	 //	The	return	type	of	the	method	must	be	error.

			299	 	 	 if	returnType	:=	mtype.Out(0);	returnType	!=	typeOfError	{

			300	 	 	 	 log.Println("method",	mname,	"returns",	returnType.String(),	"not	error")

			301	 	 	 	 continue

			302	 	 	 }

			303	 	 	 s.method[mname]	=	&methodType{method:	method,	ArgType:	argType,	ReplyType:	replyType}

			304	 	 }

			305	

			306	 	 if	len(s.method)	==	0	{

			307	 	 	 s	:=	"rpc	Register:	type	"	+	sname	+	"	has	no	exported	methods	of	suitable	type"

			308	 	 	 log.Print(s)

			309	 	 	 return	errors.New(s)

			310	 	 }

			311	 	 server.serviceMap[s.name]	=	s

			312	 	 return	nil

			313	 }

			314	

			315	 //	A	value	sent	as	a	placeholder	for	the	server's	response	value	when	the	server

			316	 //	receives	an	invalid	request.	It	is	never	decoded	by	the	client	since	the	Response

			317	 //	contains	an	error	when	it	is	used.

			318	 var	invalidRequest	=	struct{}{}

			319	

			320	 func	(server	*Server)	sendResponse(sending	*sync.Mutex,	req	*Request,	reply	interface{},	codec	ServerCodec,	errmsg	string)	{

			321	 	 resp	:=	server.getResponse()

			322	 	 //	Encode	the	response	header

			323	 	 resp.ServiceMethod	=	req.ServiceMethod

			324	 	 if	errmsg	!=	""	{

			325	 	 	 resp.Error	=	errmsg

			326	 	 	 reply	=	invalidRequest

			327	 	 }

			328	 	 resp.Seq	=	req.Seq

			329	 	 sending.Lock()

			330	 	 err	:=	codec.WriteResponse(resp,	reply)

			331	 	 if	err	!=	nil	{

			332	 	 	 log.Println("rpc:	writing	response:",	err)

			333	 	 }

			334	 	 sending.Unlock()

			335	 	 server.freeResponse(resp)

			336	 }

			337	

			338	 func	(m	*methodType)	NumCalls()	(n	uint)	{

			339	 	 m.Lock()

			340	 	 n	=	m.numCalls

			341	 	 m.Unlock()

			342	 	 return	n

			343	 }

			344	

			345	 func	(s	*service)	call(server	*Server,	sending	*sync.Mutex,	mtype	*methodType,	req	*Request,	argv,	replyv	reflect.Value,	codec	ServerCodec)	{

			346	 	 mtype.Lock()

			347	 	 mtype.numCalls++

			348	 	 mtype.Unlock()

			349	 	 function	:=	mtype.method.Func

			350	 	 //	Invoke	the	method,	providing	a	new	value	for	the	reply.

			351	 	 returnValues	:=	function.Call([]reflect.Value{s.rcvr,	argv,	replyv})

			352	 	 //	The	return	value	for	the	method	is	an	error.

			353	 	 errInter	:=	returnValues[0].Interface()

			354	 	 errmsg	:=	""

			355	 	 if	errInter	!=	nil	{

			356	 	 	 errmsg	=	errInter.(error).Error()

			357	 	 }

			358	 	 server.sendResponse(sending,	req,	replyv.Interface(),	codec,	errmsg)

			359	 	 server.freeRequest(req)

			360	 }

			361	

			362	 type	gobServerCodec	struct	{

			363	 	 rwc				io.ReadWriteCloser

			364	 	 dec				*gob.Decoder

			365	 	 enc				*gob.Encoder

			366	 	 encBuf	*bufio.Writer

			367	 }

			368	

			369	 func	(c	*gobServerCodec)	ReadRequestHeader(r	*Request)	error	{

			370	 	 return	c.dec.Decode(r)

			371	 }

			372	

			373	 func	(c	*gobServerCodec)	ReadRequestBody(body	interface{})	error	{

			374	 	 return	c.dec.Decode(body)

			375	 }

			376	

			377	 func	(c	*gobServerCodec)	WriteResponse(r	*Response,	body	interface{})	(err	error)	{

			378	 	 if	err	=	c.enc.Encode(r);	err	!=	nil	{

			379	 	 	 return

			380	 	 }

			381	 	 if	err	=	c.enc.Encode(body);	err	!=	nil	{

			382	 	 	 return

			383	 	 }

			384	 	 return	c.encBuf.Flush()

			385	 }

			386	

			387	 func	(c	*gobServerCodec)	Close()	error	{

			388	 	 return	c.rwc.Close()

			389	 }

			390	

			391	 //	ServeConn	runs	the	server	on	a	single	connection.

			392	 //	ServeConn	blocks,	serving	the	connection	until	the	client	hangs	up.

			393	 //	The	caller	typically	invokes	ServeConn	in	a	go	statement.

			394	 //	ServeConn	uses	the	gob	wire	format	(see	package	gob)	on	the

			395	 //	connection.		To	use	an	alternate	codec,	use	ServeCodec.

			396	 func	(server	*Server)	ServeConn(conn	io.ReadWriteCloser)	{

			397	 	 buf	:=	bufio.NewWriter(conn)

			398	 	 srv	:=	&gobServerCodec{conn,	gob.NewDecoder(conn),	gob.NewEncoder(buf),	buf}

			399	 	 server.ServeCodec(srv)

			400	 }

			401	

			402	 //	ServeCodec	is	like	ServeConn	but	uses	the	specified	codec	to

			403	 //	decode	requests	and	encode	responses.

			404	 func	(server	*Server)	ServeCodec(codec	ServerCodec)	{

			405	 	 sending	:=	new(sync.Mutex)

			406	 	 for	{

			407	 	 	 service,	mtype,	req,	argv,	replyv,	keepReading,	err	:=	server.readRequest(codec)

			408	 	 	 if	err	!=	nil	{

			409	 	 	 	 if	err	!=	io.EOF	{

			410	 	 	 	 	 log.Println("rpc:",	err)

			411	 	 	 	 }

			412	 	 	 	 if	!keepReading	{

			413	 	 	 	 	 break

			414	 	 	 	 }

			415	 	 	 	 //	send	a	response	if	we	actually	managed	to	read	a	header.

			416	 	 	 	 if	req	!=	nil	{

			417	 	 	 	 	 server.sendResponse(sending,	req,	invalidRequest,	codec,	err.Error())

			418	 	 	 	 	 server.freeRequest(req)

			419	 	 	 	 }

			420	 	 	 	 continue

			421	 	 	 }

			422	 	 	 go	service.call(server,	sending,	mtype,	req,	argv,	replyv,	codec)

			423	 	 }

			424	 	 codec.Close()

			425	 }

			426	

			427	 //	ServeRequest	is	like	ServeCodec	but	synchronously	serves	a	single	request.

			428	 //	It	does	not	close	the	codec	upon	completion.

			429	 func	(server	*Server)	ServeRequest(codec	ServerCodec)	error	{

			430	 	 sending	:=	new(sync.Mutex)

			431	 	 service,	mtype,	req,	argv,	replyv,	keepReading,	err	:=	server.readRequest(codec)

			432	 	 if	err	!=	nil	{

			433	 	 	 if	!keepReading	{

			434	 	 	 	 return	err

			435	 	 	 }

			436	 	 	 //	send	a	response	if	we	actually	managed	to	read	a	header.

			437	 	 	 if	req	!=	nil	{

			438	 	 	 	 server.sendResponse(sending,	req,	invalidRequest,	codec,	err.Error())

			439	 	 	 	 server.freeRequest(req)

			440	 	 	 }

			441	 	 	 return	err

			442	 	 }

			443	 	 service.call(server,	sending,	mtype,	req,	argv,	replyv,	codec)

			444	 	 return	nil

			445	 }

			446	

			447	 func	(server	*Server)	getRequest()	*Request	{

			448	 	 server.reqLock.Lock()

			449	 	 req	:=	server.freeReq

			450	 	 if	req	==	nil	{

			451	 	 	 req	=	new(Request)

			452	 	 }	else	{

			453	 	 	 server.freeReq	=	req.next

			454	 	 	 *req	=	Request{}

			455	 	 }

			456	 	 server.reqLock.Unlock()

			457	 	 return	req

			458	 }

			459	

			460	 func	(server	*Server)	freeRequest(req	*Request)	{

			461	 	 server.reqLock.Lock()

			462	 	 req.next	=	server.freeReq

			463	 	 server.freeReq	=	req

			464	 	 server.reqLock.Unlock()

			465	 }

			466	

			467	 func	(server	*Server)	getResponse()	*Response	{

			468	 	 server.respLock.Lock()

			469	 	 resp	:=	server.freeResp

			470	 	 if	resp	==	nil	{

			471	 	 	 resp	=	new(Response)

			472	 	 }	else	{

			473	 	 	 server.freeResp	=	resp.next

			474	 	 	 *resp	=	Response{}

			475	 	 }

			476	 	 server.respLock.Unlock()

			477	 	 return	resp

			478	 }

			479	

			480	 func	(server	*Server)	freeResponse(resp	*Response)	{

			481	 	 server.respLock.Lock()

			482	 	 resp.next	=	server.freeResp

			483	 	 server.freeResp	=	resp

			484	 	 server.respLock.Unlock()

			485	 }

			486	

			487	 func	(server	*Server)	readRequest(codec	ServerCodec)	(service	*service,	mtype	*methodType,	req	*Request,	argv,	replyv	reflect.Value,	keepReading	bool,	err	error)	{

			488	 	 service,	mtype,	req,	keepReading,	err	=	server.readRequestHeader(codec)

			489	 	 if	err	!=	nil	{

			490	 	 	 if	!keepReading	{

			491	 	 	 	 return

			492	 	 	 }

			493	 	 	 //	discard	body

			494	 	 	 codec.ReadRequestBody(nil)

			495	 	 	 return

			496	 	 }

			497	

			498	 	 //	Decode	the	argument	value.

			499	 	 argIsValue	:=	false	//	if	true,	need	to	indirect	before	calling.

			500	 	 if	mtype.ArgType.Kind()	==	reflect.Ptr	{

			501	 	 	 argv	=	reflect.New(mtype.ArgType.Elem())

			502	 	 }	else	{

			503	 	 	 argv	=	reflect.New(mtype.ArgType)

			504	 	 	 argIsValue	=	true

			505	 	 }

			506	 	 //	argv	guaranteed	to	be	a	pointer	now.

			507	 	 if	err	=	codec.ReadRequestBody(argv.Interface());	err	!=	nil	{

			508	 	 	 return

			509	 	 }

			510	 	 if	argIsValue	{

			511	 	 	 argv	=	argv.Elem()

			512	 	 }

			513	

			514	 	 replyv	=	reflect.New(mtype.ReplyType.Elem())

			515	 	 return

			516	 }

			517	

			518	 func	(server	*Server)	readRequestHeader(codec	ServerCodec)	(service	*service,	mtype	*methodType,	req	*Request,	keepReading	bool,	err	error)	{

			519	 	 //	Grab	the	request	header.

			520	 	 req	=	server.getRequest()

			521	 	 err	=	codec.ReadRequestHeader(req)

			522	 	 if	err	!=	nil	{

			523	 	 	 req	=	nil

			524	 	 	 if	err	==	io.EOF	||	err	==	io.ErrUnexpectedEOF	{

			525	 	 	 	 return

			526	 	 	 }

			527	 	 	 err	=	errors.New("rpc:	server	cannot	decode	request:	"	+	err.Error())

			528	 	 	 return

			529	 	 }

			530	

			531	 	 //	We	read	the	header	successfully.		If	we	see	an	error	now,

			532	 	 //	we	can	still	recover	and	move	on	to	the	next	request.

			533	 	 keepReading	=	true

			534	

			535	 	 serviceMethod	:=	strings.Split(req.ServiceMethod,	".")

			536	 	 if	len(serviceMethod)	!=	2	{

			537	 	 	 err	=	errors.New("rpc:	service/method	request	ill-formed:	"	+	req.ServiceMethod)

			538	 	 	 return

			539	 	 }

			540	 	 //	Look	up	the	request.

			541	 	 server.mu.Lock()

			542	 	 service	=	server.serviceMap[serviceMethod[0]]

			543	 	 server.mu.Unlock()

			544	 	 if	service	==	nil	{

			545	 	 	 err	=	errors.New("rpc:	can't	find	service	"	+	req.ServiceMethod)

			546	 	 	 return

			547	 	 }

			548	 	 mtype	=	service.method[serviceMethod[1]]

			549	 	 if	mtype	==	nil	{

			550	 	 	 err	=	errors.New("rpc:	can't	find	method	"	+	req.ServiceMethod)

			551	 	 }

			552	 	 return

			553	 }

			554	

			555	 //	Accept	accepts	connections	on	the	listener	and	serves	requests

			556	 //	for	each	incoming	connection.		Accept	blocks;	the	caller	typically

			557	 //	invokes	it	in	a	go	statement.

			558	 func	(server	*Server)	Accept(lis	net.Listener)	{

			559	 	 for	{

			560	 	 	 conn,	err	:=	lis.Accept()

			561	 	 	 if	err	!=	nil	{

			562	 	 	 	 log.Fatal("rpc.Serve:	accept:",	err.Error())	

			563	 	 	 }

			564	 	 	 go	server.ServeConn(conn)

			565	 	 }

			566	 }

			567	

			568	 //	Register	publishes	the	receiver's	methods	in	the	DefaultServer.

			569	 func	Register(rcvr	interface{})	error	{	return	DefaultServer.Register(rcvr)	}

			570	

			571	 //	RegisterName	is	like	Register	but	uses	the	provided	name	for	the	type	

			572	 //	instead	of	the	receiver's	concrete	type.

			573	 func	RegisterName(name	string,	rcvr	interface{})	error	{

			574	 	 return	DefaultServer.RegisterName(name,	rcvr)

			575	 }

			576	

			577	 //	A	ServerCodec	implements	reading	of	RPC	requests	and	writing	of

			578	 //	RPC	responses	for	the	server	side	of	an	RPC	session.

			579	 //	The	server	calls	ReadRequestHeader	and	ReadRequestBody	in	pairs

			580	 //	to	read	requests	from	the	connection,	and	it	calls	WriteResponse	to

			581	 //	write	a	response	back.		The	server	calls	Close	when	finished	with	the

			582	 //	connection.	ReadRequestBody	may	be	called	with	a	nil

			583	 //	argument	to	force	the	body	of	the	request	to	be	read	and	discarded.

			584	 type	ServerCodec	interface	{

			585	 	 ReadRequestHeader(*Request)	error

			586	 	 ReadRequestBody(interface{})	error

			587	 	 WriteResponse(*Response,	interface{})	error

			588	

			589	 	 Close()	error

			590	 }

			591	

			592	 //	ServeConn	runs	the	DefaultServer	on	a	single	connection.

			593	 //	ServeConn	blocks,	serving	the	connection	until	the	client	hangs	up.

			594	 //	The	caller	typically	invokes	ServeConn	in	a	go	statement.

			595	 //	ServeConn	uses	the	gob	wire	format	(see	package	gob)	on	the

			596	 //	connection.		To	use	an	alternate	codec,	use	ServeCodec.

			597	 func	ServeConn(conn	io.ReadWriteCloser)	{

			598	 	 DefaultServer.ServeConn(conn)

			599	 }

			600	

			601	 //	ServeCodec	is	like	ServeConn	but	uses	the	specified	codec	to

			602	 //	decode	requests	and	encode	responses.

			603	 func	ServeCodec(codec	ServerCodec)	{

			604	 	 DefaultServer.ServeCodec(codec)

			605	 }

			606	

			607	 //	ServeRequest	is	like	ServeCodec	but	synchronously	serves	a	single	request.

			608	 //	It	does	not	close	the	codec	upon	completion.

			609	 func	ServeRequest(codec	ServerCodec)	error	{

			610	 	 return	DefaultServer.ServeRequest(codec)

			611	 }

			612	

			613	 //	Accept	accepts	connections	on	the	listener	and	serves	requests

			614	 //	to	DefaultServer	for	each	incoming	connection.		

			615	 //	Accept	blocks;	the	caller	typically	invokes	it	in	a	go	statement.

			616	 func	Accept(lis	net.Listener)	{	DefaultServer.Accept(lis)	}

			617	

			618	 //	Can	connect	to	RPC	service	using	HTTP	CONNECT	to	rpcPath.

			619	 var	connected	=	"200	Connected	to	Go	RPC"

			620	

			621	 //	ServeHTTP	implements	an	http.Handler	that	answers	RPC	requests.

			622	 func	(server	*Server)	ServeHTTP(w	http.ResponseWriter,	req	*http.Request)	{

			623	 	 if	req.Method	!=	"CONNECT"	{

			624	 	 	 w.Header().Set("Content-Type",	"text/plain;	charset=utf-8")

			625	 	 	 w.WriteHeader(http.StatusMethodNotAllowed)

			626	 	 	 io.WriteString(w,	"405	must	CONNECT\n")

			627	 	 	 return

			628	 	 }

			629	 	 conn,	_,	err	:=	w.(http.Hijacker).Hijack()

			630	 	 if	err	!=	nil	{

			631	 	 	 log.Print("rpc	hijacking	",	req.RemoteAddr,	":	",	err.Error())

			632	 	 	 return

			633	 	 }

			634	 	 io.WriteString(conn,	"HTTP/1.0	"+connected+"\n\n")

			635	 	 server.ServeConn(conn)

			636	 }

			637	

			638	 //	HandleHTTP	registers	an	HTTP	handler	for	RPC	messages	on	rpcPath,

			639	 //	and	a	debugging	handler	on	debugPath.

			640	 //	It	is	still	necessary	to	invoke	http.Serve(),	typically	in	a	go	statement.

			641	 func	(server	*Server)	HandleHTTP(rpcPath,	debugPath	string)	{

			642	 	 http.Handle(rpcPath,	server)

			643	 	 http.Handle(debugPath,	debugHTTP{server})

			644	 }

			645	

			646	 //	HandleHTTP	registers	an	HTTP	handler	for	RPC	messages	to	DefaultServer

			647	 //	on	DefaultRPCPath	and	a	debugging	handler	on	DefaultDebugPath.

			648	 //	It	is	still	necessary	to	invoke	http.Serve(),	typically	in	a	go	statement.

			649	 func	HandleHTTP()	{

			650	 	 DefaultServer.HandleHTTP(DefaultRPCPath,	DefaultDebugPath)

			651	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/rpc/jsonrpc/client.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	jsonrpc	implements	a	JSON-RPC	ClientCodec	and	ServerCodec

					6	 //	for	the	rpc	package.

					7	 package	jsonrpc

					8	

					9	 import	(

				10	 	 "encoding/json"

				11	 	 "fmt"

				12	 	 "io"

				13	 	 "net"

				14	 	 "net/rpc"

				15	 	 "sync"

				16)

				17	

				18	 type	clientCodec	struct	{

				19	 	 dec	*json.Decoder	//	for	reading	JSON	values

				20	 	 enc	*json.Encoder	//	for	writing	JSON	values

				21	 	 c			io.Closer

				22	

				23	 	 //	temporary	work	space

				24	 	 req		clientRequest

				25	 	 resp	clientResponse

				26	

				27	 	 //	JSON-RPC	responses	include	the	request	id	but	not	the	request	method.

				28	 	 //	Package	rpc	expects	both.

				29	 	 //	We	save	the	request	method	in	pending	when	sending	a	request

				30	 	 //	and	then	look	it	up	by	request	ID	when	filling	out	the	rpc	Response.

				31	 	 mutex			sync.Mutex								//	protects	pending

				32	 	 pending	map[uint64]string	//	map	request	id	to	method	name

				33	 }

				34	

				35	 //	NewClientCodec	returns	a	new	rpc.ClientCodec	using	JSON-RPC	on	conn.

				36	 func	NewClientCodec(conn	io.ReadWriteCloser)	rpc.ClientCodec	{

				37	 	 return	&clientCodec{

				38	 	 	 dec:					json.NewDecoder(conn),

				39	 	 	 enc:					json.NewEncoder(conn),

				40	 	 	 c:							conn,

				41	 	 	 pending:	make(map[uint64]string),

				42	 	 }

				43	 }

				44	

				45	 type	clientRequest	struct	{

				46	 	 Method	string									`json:"method"`

				47	 	 Params	[1]interface{}	`json:"params"`

				48	 	 Id					uint64									`json:"id"`

				49	 }

				50	

				51	 func	(c	*clientCodec)	WriteRequest(r	*rpc.Request,	param	interface{})	error	{

				52	 	 c.mutex.Lock()

				53	 	 c.pending[r.Seq]	=	r.ServiceMethod

				54	 	 c.mutex.Unlock()

				55	 	 c.req.Method	=	r.ServiceMethod

				56	 	 c.req.Params[0]	=	param

				57	 	 c.req.Id	=	r.Seq

				58	 	 return	c.enc.Encode(&c.req)

				59	 }

				60	

				61	 type	clientResponse	struct	{

				62	 	 Id					uint64											`json:"id"`

				63	 	 Result	*json.RawMessage	`json:"result"`

				64	 	 Error		interface{}						`json:"error"`

				65	 }

				66	

				67	 func	(r	*clientResponse)	reset()	{

				68	 	 r.Id	=	0

				69	 	 r.Result	=	nil

				70	 	 r.Error	=	nil

				71	 }

				72	

				73	 func	(c	*clientCodec)	ReadResponseHeader(r	*rpc.Response)	error	{

				74	 	 c.resp.reset()

				75	 	 if	err	:=	c.dec.Decode(&c.resp);	err	!=	nil	{

				76	 	 	 return	err

				77	 	 }

				78	

				79	 	 c.mutex.Lock()

				80	 	 r.ServiceMethod	=	c.pending[c.resp.Id]

				81	 	 delete(c.pending,	c.resp.Id)

				82	 	 c.mutex.Unlock()

				83	

				84	 	 r.Error	=	""

				85	 	 r.Seq	=	c.resp.Id

				86	 	 if	c.resp.Error	!=	nil	{

				87	 	 	 x,	ok	:=	c.resp.Error.(string)

				88	 	 	 if	!ok	{

				89	 	 	 	 return	fmt.Errorf("invalid	error	%v",	c.resp.Error)

				90	 	 	 }

				91	 	 	 if	x	==	""	{

				92	 	 	 	 x	=	"unspecified	error"

				93	 	 	 }

				94	 	 	 r.Error	=	x

				95	 	 }

				96	 	 return	nil

				97	 }

				98	

				99	 func	(c	*clientCodec)	ReadResponseBody(x	interface{})	error	{

			100	 	 if	x	==	nil	{

			101	 	 	 return	nil

			102	 	 }

			103	 	 return	json.Unmarshal(*c.resp.Result,	x)

			104	 }

			105	

			106	 func	(c	*clientCodec)	Close()	error	{

			107	 	 return	c.c.Close()

			108	 }

			109	

			110	 //	NewClient	returns	a	new	rpc.Client	to	handle	requests	to	the

			111	 //	set	of	services	at	the	other	end	of	the	connection.

			112	 func	NewClient(conn	io.ReadWriteCloser)	*rpc.Client	{

			113	 	 return	rpc.NewClientWithCodec(NewClientCodec(conn))

			114	 }

			115	

			116	 //	Dial	connects	to	a	JSON-RPC	server	at	the	specified	network	address.

			117	 func	Dial(network,	address	string)	(*rpc.Client,	error)	{

			118	 	 conn,	err	:=	net.Dial(network,	address)

			119	 	 if	err	!=	nil	{

			120	 	 	 return	nil,	err

			121	 	 }

			122	 	 return	NewClient(conn),	err

			123	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/rpc/jsonrpc/server.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	jsonrpc

					6	

					7	 import	(

					8	 	 "encoding/json"

					9	 	 "errors"

				10	 	 "io"

				11	 	 "net/rpc"

				12	 	 "sync"

				13)

				14	

				15	 type	serverCodec	struct	{

				16	 	 dec	*json.Decoder	//	for	reading	JSON	values

				17	 	 enc	*json.Encoder	//	for	writing	JSON	values

				18	 	 c			io.Closer

				19	

				20	 	 //	temporary	work	space

				21	 	 req		serverRequest

				22	 	 resp	serverResponse

				23	

				24	 	 //	JSON-RPC	clients	can	use	arbitrary	json	values	as	request	IDs.

				25	 	 //	Package	rpc	expects	uint64	request	IDs.

				26	 	 //	We	assign	uint64	sequence	numbers	to	incoming	requests

				27	 	 //	but	save	the	original	request	ID	in	the	pending	map.

				28	 	 //	When	rpc	responds,	we	use	the	sequence	number	in

				29	 	 //	the	response	to	find	the	original	request	ID.

				30	 	 mutex			sync.Mutex	//	protects	seq,	pending

				31	 	 seq					uint64

				32	 	 pending	map[uint64]*json.RawMessage

				33	 }

				34	

				35	 //	NewServerCodec	returns	a	new	rpc.ServerCodec	using	JSON-RPC	on	conn.

				36	 func	NewServerCodec(conn	io.ReadWriteCloser)	rpc.ServerCodec	{

				37	 	 return	&serverCodec{

				38	 	 	 dec:					json.NewDecoder(conn),

				39	 	 	 enc:					json.NewEncoder(conn),

				40	 	 	 c:							conn,

				41	 	 	 pending:	make(map[uint64]*json.RawMessage),

				42	 	 }

				43	 }

				44	

				45	 type	serverRequest	struct	{

				46	 	 Method	string											`json:"method"`

				47	 	 Params	*json.RawMessage	`json:"params"`

				48	 	 Id					*json.RawMessage	`json:"id"`

				49	 }

				50	

				51	 func	(r	*serverRequest)	reset()	{

				52	 	 r.Method	=	""

				53	 	 if	r.Params	!=	nil	{

				54	 	 	 *r.Params	=	(*r.Params)[0:0]

				55	 	 }

				56	 	 if	r.Id	!=	nil	{

				57	 	 	 *r.Id	=	(*r.Id)[0:0]

				58	 	 }

				59	 }

				60	

				61	 type	serverResponse	struct	{

				62	 	 Id					*json.RawMessage	`json:"id"`

				63	 	 Result	interface{}						`json:"result"`

				64	 	 Error		interface{}						`json:"error"`

				65	 }

				66	

				67	 func	(c	*serverCodec)	ReadRequestHeader(r	*rpc.Request)	error	{

				68	 	 c.req.reset()

				69	 	 if	err	:=	c.dec.Decode(&c.req);	err	!=	nil	{

				70	 	 	 return	err

				71	 	 }

				72	 	 r.ServiceMethod	=	c.req.Method

				73	

				74	 	 //	JSON	request	id	can	be	any	JSON	value;

				75	 	 //	RPC	package	expects	uint64.		Translate	to

				76	 	 //	internal	uint64	and	save	JSON	on	the	side.

				77	 	 c.mutex.Lock()

				78	 	 c.seq++

				79	 	 c.pending[c.seq]	=	c.req.Id

				80	 	 c.req.Id	=	nil

				81	 	 r.Seq	=	c.seq

				82	 	 c.mutex.Unlock()

				83	

				84	 	 return	nil

				85	 }

				86	

				87	 func	(c	*serverCodec)	ReadRequestBody(x	interface{})	error	{

				88	 	 if	x	==	nil	{

				89	 	 	 return	nil

				90	 	 }

				91	 	 //	JSON	params	is	array	value.

				92	 	 //	RPC	params	is	struct.

				93	 	 //	Unmarshal	into	array	containing	struct	for	now.

				94	 	 //	Should	think	about	making	RPC	more	general.

				95	 	 var	params	[1]interface{}

				96	 	 params[0]	=	x

				97	 	 return	json.Unmarshal(*c.req.Params,	¶ms)

				98	 }

				99	

			100	 var	null	=	json.RawMessage([]byte("null"))

			101	

			102	 func	(c	*serverCodec)	WriteResponse(r	*rpc.Response,	x	interface{})	error	{

			103	 	 var	resp	serverResponse

			104	 	 c.mutex.Lock()

			105	 	 b,	ok	:=	c.pending[r.Seq]

			106	 	 if	!ok	{

			107	 	 	 c.mutex.Unlock()

			108	 	 	 return	errors.New("invalid	sequence	number	in	response")

			109	 	 }

			110	 	 delete(c.pending,	r.Seq)

			111	 	 c.mutex.Unlock()

			112	

			113	 	 if	b	==	nil	{

			114	 	 	 //	Invalid	request	so	no	id.		Use	JSON	null.

			115	 	 	 b	=	&null

			116	 	 }

			117	 	 resp.Id	=	b

			118	 	 resp.Result	=	x

			119	 	 if	r.Error	==	""	{

			120	 	 	 resp.Error	=	nil

			121	 	 }	else	{

			122	 	 	 resp.Error	=	r.Error

			123	 	 }

			124	 	 return	c.enc.Encode(resp)

			125	 }

			126	

			127	 func	(c	*serverCodec)	Close()	error	{

			128	 	 return	c.c.Close()

			129	 }

			130	

			131	 //	ServeConn	runs	the	JSON-RPC	server	on	a	single	connection.

			132	 //	ServeConn	blocks,	serving	the	connection	until	the	client	hangs	up.

			133	 //	The	caller	typically	invokes	ServeConn	in	a	go	statement.

			134	 func	ServeConn(conn	io.ReadWriteCloser)	{

			135	 	 rpc.ServeCodec(NewServerCodec(conn))

			136	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.

http://code.google.com/policies.html#restrictions

Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/smtp/auth.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	smtp

					6	

					7	 import	(

					8	 	 "crypto/hmac"

					9	 	 "crypto/md5"

				10	 	 "errors"

				11	 	 "fmt"

				12)

				13	

				14	 //	Auth	is	implemented	by	an	SMTP	authentication	mechanism.

				15	 type	Auth	interface	{

				16	 	 //	Start	begins	an	authentication	with	a	server.

				17	 	 //	It	returns	the	name	of	the	authentication	protocol

				18	 	 //	and	optionally	data	to	include	in	the	initial	AUTH	message

				19	 	 //	sent	to	the	server.	It	can	return	proto	==	""	to	indicate

				20	 	 //	that	the	authentication	should	be	skipped.

				21	 	 //	If	it	returns	a	non-nil	error,	the	SMTP	client	aborts

				22	 	 //	the	authentication	attempt	and	closes	the	connection.

				23	 	 Start(server	*ServerInfo)	(proto	string,	toServer	[]byte,	err	error)

				24	

				25	 	 //	Next	continues	the	authentication.	The	server	has	just	sent

				26	 	 //	the	fromServer	data.	If	more	is	true,	the	server	expects	a

				27	 	 //	response,	which	Next	should	return	as	toServer;	otherwise

				28	 	 //	Next	should	return	toServer	==	nil.

				29	 	 //	If	Next	returns	a	non-nil	error,	the	SMTP	client	aborts

				30	 	 //	the	authentication	attempt	and	closes	the	connection.

				31	 	 Next(fromServer	[]byte,	more	bool)	(toServer	[]byte,	err	error)

				32	 }

				33	

				34	 //	ServerInfo	records	information	about	an	SMTP	server.

				35	 type	ServerInfo	struct	{

				36	 	 Name	string			//	SMTP	server	name

				37	 	 TLS		bool					//	using	TLS,	with	valid	certificate	for	Name

				38	 	 Auth	[]string	//	advertised	authentication	mechanisms

				39	 }

				40	

				41	 type	plainAuth	struct	{

				42	 	 identity,	username,	password	string

				43	 	 host																									string

				44	 }

				45	

				46	 //	PlainAuth	returns	an	Auth	that	implements	the	PLAIN	authentication

				47	 //	mechanism	as	defined	in	RFC	4616.

				48	 //	The	returned	Auth	uses	the	given	username	and	password	to	authenticate

				49	 //	on	TLS	connections	to	host	and	act	as	identity.	Usually	identity	will	be

				50	 //	left	blank	to	act	as	username.

				51	 func	PlainAuth(identity,	username,	password,	host	string)	Auth	{

				52	 	 return	&plainAuth{identity,	username,	password,	host}

				53	 }

				54	

				55	 func	(a	*plainAuth)	Start(server	*ServerInfo)	(string,	[]byte,	error)	{

				56	 	 if	!server.TLS	{

				57	 	 	 return	"",	nil,	errors.New("unencrypted	connection")

				58	 	 }

				59	 	 if	server.Name	!=	a.host	{

				60	 	 	 return	"",	nil,	errors.New("wrong	host	name")

				61	 	 }

				62	 	 resp	:=	[]byte(a.identity	+	"\x00"	+	a.username	+	"\x00"	+	a.password)

				63	 	 return	"PLAIN",	resp,	nil

				64	 }

				65	

				66	 func	(a	*plainAuth)	Next(fromServer	[]byte,	more	bool)	([]byte,	error)	{

				67	 	 if	more	{

				68	 	 	 //	We've	already	sent	everything.

				69	 	 	 return	nil,	errors.New("unexpected	server	challenge")

				70	 	 }

				71	 	 return	nil,	nil

				72	 }

				73	

				74	 type	cramMD5Auth	struct	{

				75	 	 username,	secret	string

				76	 }

				77	

				78	 //	CRAMMD5Auth	returns	an	Auth	that	implements	the	CRAM-MD5	authentication

				79	 //	mechanism	as	defined	in	RFC	2195.

				80	 //	The	returned	Auth	uses	the	given	username	and	secret	to	authenticate

				81	 //	to	the	server	using	the	challenge-response	mechanism.

				82	 func	CRAMMD5Auth(username,	secret	string)	Auth	{

				83	 	 return	&cramMD5Auth{username,	secret}

				84	 }

				85	

				86	 func	(a	*cramMD5Auth)	Start(server	*ServerInfo)	(string,	[]byte,	error)	{

				87	 	 return	"CRAM-MD5",	nil,	nil

				88	 }

				89	

				90	 func	(a	*cramMD5Auth)	Next(fromServer	[]byte,	more	bool)	([]byte,	error)	{

				91	 	 if	more	{

				92	 	 	 d	:=	hmac.New(md5.New,	[]byte(a.secret))

				93	 	 	 d.Write(fromServer)

				94	 	 	 s	:=	make([]byte,	0,	d.Size())

				95	 	 	 return	[]byte(fmt.Sprintf("%s	%x",	a.username,	d.Sum(s))),	nil

				96	 	 }

				97	 	 return	nil,	nil

				98	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/smtp/smtp.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	smtp	implements	the	Simple	Mail	Transfer	Protocol	as	defined	in	RFC	5321.

					6	 //	It	also	implements	the	following	extensions:

					7	 //	 8BITMIME		RFC	1652

					8	 //	 AUTH						RFC	2554

					9	 //	 STARTTLS		RFC	3207

				10	 //	Additional	extensions	may	be	handled	by	clients.

				11	 package	smtp

				12	

				13	 import	(

				14	 	 "crypto/tls"

				15	 	 "encoding/base64"

				16	 	 "io"

				17	 	 "net"

				18	 	 "net/textproto"

				19	 	 "strings"

				20)

				21	

				22	 //	A	Client	represents	a	client	connection	to	an	SMTP	server.

				23	 type	Client	struct	{

				24	 	 //	Text	is	the	textproto.Conn	used	by	the	Client.	It	is	exported	to	allow	for

				25	 	 //	clients	to	add	extensions.

				26	 	 Text	*textproto.Conn

				27	 	 //	keep	a	reference	to	the	connection	so	it	can	be	used	to	create	a	TLS

				28	 	 //	connection	later

				29	 	 conn	net.Conn

				30	 	 //	whether	the	Client	is	using	TLS

				31	 	 tls								bool

				32	 	 serverName	string

				33	 	 //	map	of	supported	extensions

				34	 	 ext	map[string]string

				35	 	 //	supported	auth	mechanisms

				36	 	 auth	[]string

				37	 }

				38	

				39	 //	Dial	returns	a	new	Client	connected	to	an	SMTP	server	at	addr.

				40	 func	Dial(addr	string)	(*Client,	error)	{

				41	 	 conn,	err	:=	net.Dial("tcp",	addr)

				42	 	 if	err	!=	nil	{

				43	 	 	 return	nil,	err

				44	 	 }

				45	 	 host	:=	addr[:strings.Index(addr,	":")]

				46	 	 return	NewClient(conn,	host)

				47	 }

				48	

				49	 //	NewClient	returns	a	new	Client	using	an	existing	connection	and	host	as	a

				50	 //	server	name	to	be	used	when	authenticating.

				51	 func	NewClient(conn	net.Conn,	host	string)	(*Client,	error)	{

				52	 	 text	:=	textproto.NewConn(conn)

				53	 	 _,	_,	err	:=	text.ReadResponse(220)

				54	 	 if	err	!=	nil	{

				55	 	 	 text.Close()

				56	 	 	 return	nil,	err

				57	 	 }

				58	 	 c	:=	&Client{Text:	text,	conn:	conn,	serverName:	host}

				59	 	 err	=	c.ehlo()

				60	 	 if	err	!=	nil	{

				61	 	 	 err	=	c.helo()

				62	 	 }

				63	 	 return	c,	err

				64	 }

				65	

				66	 //	cmd	is	a	convenience	function	that	sends	a	command	and	returns	the	response

				67	 func	(c	*Client)	cmd(expectCode	int,	format	string,	args	...interface{})	(int,	string,	error)	{

				68	 	 id,	err	:=	c.Text.Cmd(format,	args...)

				69	 	 if	err	!=	nil	{

				70	 	 	 return	0,	"",	err

				71	 	 }

				72	 	 c.Text.StartResponse(id)

				73	 	 defer	c.Text.EndResponse(id)

				74	 	 code,	msg,	err	:=	c.Text.ReadResponse(expectCode)

				75	 	 return	code,	msg,	err

				76	 }

				77	

				78	 //	helo	sends	the	HELO	greeting	to	the	server.	It	should	be	used	only	when	the

				79	 //	server	does	not	support	ehlo.

				80	 func	(c	*Client)	helo()	error	{

				81	 	 c.ext	=	nil

				82	 	 _,	_,	err	:=	c.cmd(250,	"HELO	localhost")

				83	 	 return	err

				84	 }

				85	

				86	 //	ehlo	sends	the	EHLO	(extended	hello)	greeting	to	the	server.	It

				87	 //	should	be	the	preferred	greeting	for	servers	that	support	it.

				88	 func	(c	*Client)	ehlo()	error	{

				89	 	 _,	msg,	err	:=	c.cmd(250,	"EHLO	localhost")

				90	 	 if	err	!=	nil	{

				91	 	 	 return	err

				92	 	 }

				93	 	 ext	:=	make(map[string]string)

				94	 	 extList	:=	strings.Split(msg,	"\n")

				95	 	 if	len(extList)	>	1	{

				96	 	 	 extList	=	extList[1:]

				97	 	 	 for	_,	line	:=	range	extList	{

				98	 	 	 	 args	:=	strings.SplitN(line,	"	",	2)

				99	 	 	 	 if	len(args)	>	1	{

			100	 	 	 	 	 ext[args[0]]	=	args[1]

			101	 	 	 	 }	else	{

			102	 	 	 	 	 ext[args[0]]	=	""

			103	 	 	 	 }

			104	 	 	 }

			105	 	 }

			106	 	 if	mechs,	ok	:=	ext["AUTH"];	ok	{

			107	 	 	 c.auth	=	strings.Split(mechs,	"	")

			108	 	 }

			109	 	 c.ext	=	ext

			110	 	 return	err

			111	 }

			112	

			113	 //	StartTLS	sends	the	STARTTLS	command	and	encrypts	all	further	communication.

			114	 //	Only	servers	that	advertise	the	STARTTLS	extension	support	this	function.

			115	 func	(c	*Client)	StartTLS(config	*tls.Config)	error	{

			116	 	 _,	_,	err	:=	c.cmd(220,	"STARTTLS")

			117	 	 if	err	!=	nil	{

			118	 	 	 return	err

			119	 	 }

			120	 	 c.conn	=	tls.Client(c.conn,	config)

			121	 	 c.Text	=	textproto.NewConn(c.conn)

			122	 	 c.tls	=	true

			123	 	 return	c.ehlo()

			124	 }

			125	

			126	 //	Verify	checks	the	validity	of	an	email	address	on	the	server.

			127	 //	If	Verify	returns	nil,	the	address	is	valid.	A	non-nil	return

			128	 //	does	not	necessarily	indicate	an	invalid	address.	Many	servers

			129	 //	will	not	verify	addresses	for	security	reasons.

			130	 func	(c	*Client)	Verify(addr	string)	error	{

			131	 	 _,	_,	err	:=	c.cmd(250,	"VRFY	%s",	addr)

			132	 	 return	err

			133	 }

			134	

			135	 //	Auth	authenticates	a	client	using	the	provided	authentication	mechanism.

			136	 //	A	failed	authentication	closes	the	connection.

			137	 //	Only	servers	that	advertise	the	AUTH	extension	support	this	function.

			138	 func	(c	*Client)	Auth(a	Auth)	error	{

			139	 	 encoding	:=	base64.StdEncoding

			140	 	 mech,	resp,	err	:=	a.Start(&ServerInfo{c.serverName,	c.tls,	c.auth})

			141	 	 if	err	!=	nil	{

			142	 	 	 c.Quit()

			143	 	 	 return	err

			144	 	 }

			145	 	 resp64	:=	make([]byte,	encoding.EncodedLen(len(resp)))

			146	 	 encoding.Encode(resp64,	resp)

			147	 	 code,	msg64,	err	:=	c.cmd(0,	"AUTH	%s	%s",	mech,	resp64)

			148	 	 for	err	==	nil	{

			149	 	 	 var	msg	[]byte

			150	 	 	 switch	code	{

			151	 	 	 case	334:

			152	 	 	 	 msg,	err	=	encoding.DecodeString(msg64)

			153	 	 	 case	235:

			154	 	 	 	 //	the	last	message	isn't	base64	because	it	isn't	a	challenge

			155	 	 	 	 msg	=	[]byte(msg64)

			156	 	 	 default:

			157	 	 	 	 err	=	&textproto.Error{Code:	code,	Msg:	msg64}

			158	 	 	 }

			159	 	 	 resp,	err	=	a.Next(msg,	code	==	334)

			160	 	 	 if	err	!=	nil	{

			161	 	 	 	 //	abort	the	AUTH

			162	 	 	 	 c.cmd(501,	"*")

			163	 	 	 	 c.Quit()

			164	 	 	 	 break

			165	 	 	 }

			166	 	 	 if	resp	==	nil	{

			167	 	 	 	 break

			168	 	 	 }

			169	 	 	 resp64	=	make([]byte,	encoding.EncodedLen(len(resp)))

			170	 	 	 encoding.Encode(resp64,	resp)

			171	 	 	 code,	msg64,	err	=	c.cmd(0,	string(resp64))

			172	 	 }

			173	 	 return	err

			174	 }

			175	

			176	 //	Mail	issues	a	MAIL	command	to	the	server	using	the	provided	email	address.

			177	 //	If	the	server	supports	the	8BITMIME	extension,	Mail	adds	the	BODY=8BITMIME

			178	 //	parameter.

			179	 //	This	initiates	a	mail	transaction	and	is	followed	by	one	or	more	Rcpt	calls.

			180	 func	(c	*Client)	Mail(from	string)	error	{

			181	 	 cmdStr	:=	"MAIL	FROM:<%s>"

			182	 	 if	c.ext	!=	nil	{

			183	 	 	 if	_,	ok	:=	c.ext["8BITMIME"];	ok	{

			184	 	 	 	 cmdStr	+=	"	BODY=8BITMIME"

			185	 	 	 }

			186	 	 }

			187	 	 _,	_,	err	:=	c.cmd(250,	cmdStr,	from)

			188	 	 return	err

			189	 }

			190	

			191	 //	Rcpt	issues	a	RCPT	command	to	the	server	using	the	provided	email	address.

			192	 //	A	call	to	Rcpt	must	be	preceded	by	a	call	to	Mail	and	may	be	followed	by

			193	 //	a	Data	call	or	another	Rcpt	call.

			194	 func	(c	*Client)	Rcpt(to	string)	error	{

			195	 	 _,	_,	err	:=	c.cmd(25,	"RCPT	TO:<%s>",	to)

			196	 	 return	err

			197	 }

			198	

			199	 type	dataCloser	struct	{

			200	 	 c	*Client

			201	 	 io.WriteCloser

			202	 }

			203	

			204	 func	(d	*dataCloser)	Close()	error	{

			205	 	 d.WriteCloser.Close()

			206	 	 _,	_,	err	:=	d.c.Text.ReadResponse(250)

			207	 	 return	err

			208	 }

			209	

			210	 //	Data	issues	a	DATA	command	to	the	server	and	returns	a	writer	that

			211	 //	can	be	used	to	write	the	data.	The	caller	should	close	the	writer

			212	 //	before	calling	any	more	methods	on	c.

			213	 //	A	call	to	Data	must	be	preceded	by	one	or	more	calls	to	Rcpt.

			214	 func	(c	*Client)	Data()	(io.WriteCloser,	error)	{

			215	 	 _,	_,	err	:=	c.cmd(354,	"DATA")

			216	 	 if	err	!=	nil	{

			217	 	 	 return	nil,	err

			218	 	 }

			219	 	 return	&dataCloser{c,	c.Text.DotWriter()},	nil

			220	 }

			221	

			222	 //	SendMail	connects	to	the	server	at	addr,	switches	to	TLS	if	possible,

			223	 //	authenticates	with	mechanism	a	if	possible,	and	then	sends	an	email	from

			224	 //	address	from,	to	addresses	to,	with	message	msg.

			225	 func	SendMail(addr	string,	a	Auth,	from	string,	to	[]string,	msg	[]byte)	error	{

			226	 	 c,	err	:=	Dial(addr)

			227	 	 if	err	!=	nil	{

			228	 	 	 return	err

			229	 	 }

			230	 	 if	ok,	_	:=	c.Extension("STARTTLS");	ok	{

			231	 	 	 if	err	=	c.StartTLS(nil);	err	!=	nil	{

			232	 	 	 	 return	err

			233	 	 	 }

			234	 	 }

			235	 	 if	a	!=	nil	&&	c.ext	!=	nil	{

			236	 	 	 if	_,	ok	:=	c.ext["AUTH"];	ok	{

			237	 	 	 	 if	err	=	c.Auth(a);	err	!=	nil	{

			238	 	 	 	 	 return	err

			239	 	 	 	 }

			240	 	 	 }

			241	 	 }

			242	 	 if	err	=	c.Mail(from);	err	!=	nil	{

			243	 	 	 return	err

			244	 	 }

			245	 	 for	_,	addr	:=	range	to	{

			246	 	 	 if	err	=	c.Rcpt(addr);	err	!=	nil	{

			247	 	 	 	 return	err

			248	 	 	 }

			249	 	 }

			250	 	 w,	err	:=	c.Data()

			251	 	 if	err	!=	nil	{

			252	 	 	 return	err

			253	 	 }

			254	 	 _,	err	=	w.Write(msg)

			255	 	 if	err	!=	nil	{

			256	 	 	 return	err

			257	 	 }

			258	 	 err	=	w.Close()

			259	 	 if	err	!=	nil	{

			260	 	 	 return	err

			261	 	 }

			262	 	 return	c.Quit()

			263	 }

			264	

			265	 //	Extension	reports	whether	an	extension	is	support	by	the	server.

			266	 //	The	extension	name	is	case-insensitive.	If	the	extension	is	supported,

			267	 //	Extension	also	returns	a	string	that	contains	any	parameters	the

			268	 //	server	specifies	for	the	extension.

			269	 func	(c	*Client)	Extension(ext	string)	(bool,	string)	{

			270	 	 if	c.ext	==	nil	{

			271	 	 	 return	false,	""

			272	 	 }

			273	 	 ext	=	strings.ToUpper(ext)

			274	 	 param,	ok	:=	c.ext[ext]

			275	 	 return	ok,	param

			276	 }

			277	

			278	 //	Reset	sends	the	RSET	command	to	the	server,	aborting	the	current	mail

			279	 //	transaction.

			280	 func	(c	*Client)	Reset()	error	{

			281	 	 _,	_,	err	:=	c.cmd(250,	"RSET")

			282	 	 return	err

			283	 }

			284	

			285	 //	Quit	sends	the	QUIT	command	and	closes	the	connection	to	the	server.

			286	 func	(c	*Client)	Quit()	error	{

			287	 	 _,	_,	err	:=	c.cmd(221,	"QUIT")

			288	 	 if	err	!=	nil	{

			289	 	 	 return	err

			290	 	 }

			291	 	 return	c.Text.Close()

			292	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/textproto/header.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	textproto

					6	

					7	 //	A	MIMEHeader	represents	a	MIME-style	header	mapping

					8	 //	keys	to	sets	of	values.

					9	 type	MIMEHeader	map[string][]string

				10	

				11	 //	Add	adds	the	key,	value	pair	to	the	header.

				12	 //	It	appends	to	any	existing	values	associated	with	key.

				13	 func	(h	MIMEHeader)	Add(key,	value	string)	{

				14	 	 key	=	CanonicalMIMEHeaderKey(key)

				15	 	 h[key]	=	append(h[key],	value)

				16	 }

				17	

				18	 //	Set	sets	the	header	entries	associated	with	key	to

				19	 //	the	single	element	value.		It	replaces	any	existing

				20	 //	values	associated	with	key.

				21	 func	(h	MIMEHeader)	Set(key,	value	string)	{

				22	 	 h[CanonicalMIMEHeaderKey(key)]	=	[]string{value}

				23	 }

				24	

				25	 //	Get	gets	the	first	value	associated	with	the	given	key.

				26	 //	If	there	are	no	values	associated	with	the	key,	Get	returns	"".

				27	 //	Get	is	a	convenience	method.		For	more	complex	queries,

				28	 //	access	the	map	directly.

				29	 func	(h	MIMEHeader)	Get(key	string)	string	{

				30	 	 if	h	==	nil	{

				31	 	 	 return	""

				32	 	 }

				33	 	 v	:=	h[CanonicalMIMEHeaderKey(key)]

				34	 	 if	len(v)	==	0	{

				35	 	 	 return	""

				36	 	 }

				37	 	 return	v[0]

				38	 }

				39	

				40	 //	Del	deletes	the	values	associated	with	key.

				41	 func	(h	MIMEHeader)	Del(key	string)	{

				42	 	 delete(h,	CanonicalMIMEHeaderKey(key))

				43	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/textproto/pipeline.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	textproto

					6	

					7	 import	(

					8	 	 "sync"

					9)

				10	

				11	 //	A	Pipeline	manages	a	pipelined	in-order	request/response	sequence.

				12	 //

				13	 //	To	use	a	Pipeline	p	to	manage	multiple	clients	on	a	connection,

				14	 //	each	client	should	run:

				15	 //

				16	 //	 id	:=	p.Next()	 //	take	a	number

				17	 //

				18	 //	 p.StartRequest(id)	 //	wait	for	turn	to	send	request

				19	 //	 «send	request»

				20	 //	 p.EndRequest(id)	 //	notify	Pipeline	that	request	is	sent

				21	 //

				22	 //	 p.StartResponse(id)	 //	wait	for	turn	to	read	response

				23	 //	 «read	response»

				24	 //	 p.EndResponse(id)	 //	notify	Pipeline	that	response	is	read

				25	 //

				26	 //	A	pipelined	server	can	use	the	same	calls	to	ensure	that

				27	 //	responses	computed	in	parallel	are	written	in	the	correct	order.

				28	 type	Pipeline	struct	{

				29	 	 mu							sync.Mutex

				30	 	 id							uint

				31	 	 request		sequencer

				32	 	 response	sequencer

				33	 }

				34	

				35	 //	Next	returns	the	next	id	for	a	request/response	pair.

				36	 func	(p	*Pipeline)	Next()	uint	{

				37	 	 p.mu.Lock()

				38	 	 id	:=	p.id

				39	 	 p.id++

				40	 	 p.mu.Unlock()

				41	 	 return	id

				42	 }

				43	

				44	 //	StartRequest	blocks	until	it	is	time	to	send	(or,	if	this	is	a	server,	receive)

				45	 //	the	request	with	the	given	id.

				46	 func	(p	*Pipeline)	StartRequest(id	uint)	{

				47	 	 p.request.Start(id)

				48	 }

				49	

				50	 //	EndRequest	notifies	p	that	the	request	with	the	given	id	has	been	sent

				51	 //	(or,	if	this	is	a	server,	received).

				52	 func	(p	*Pipeline)	EndRequest(id	uint)	{

				53	 	 p.request.End(id)

				54	 }

				55	

				56	 //	StartResponse	blocks	until	it	is	time	to	receive	(or,	if	this	is	a	server,	send)

				57	 //	the	request	with	the	given	id.

				58	 func	(p	*Pipeline)	StartResponse(id	uint)	{

				59	 	 p.response.Start(id)

				60	 }

				61	

				62	 //	EndResponse	notifies	p	that	the	response	with	the	given	id	has	been	received

				63	 //	(or,	if	this	is	a	server,	sent).

				64	 func	(p	*Pipeline)	EndResponse(id	uint)	{

				65	 	 p.response.End(id)

				66	 }

				67	

				68	 //	A	sequencer	schedules	a	sequence	of	numbered	events	that	must

				69	 //	happen	in	order,	one	after	the	other.		The	event	numbering	must	start

				70	 //	at	0	and	increment	without	skipping.		The	event	number	wraps	around

				71	 //	safely	as	long	as	there	are	not	2^32	simultaneous	events	pending.

				72	 type	sequencer	struct	{

				73	 	 mu			sync.Mutex

				74	 	 id			uint

				75	 	 wait	map[uint]chan	uint

				76	 }

				77	

				78	 //	Start	waits	until	it	is	time	for	the	event	numbered	id	to	begin.

				79	 //	That	is,	except	for	the	first	event,	it	waits	until	End(id-1)	has

				80	 //	been	called.

				81	 func	(s	*sequencer)	Start(id	uint)	{

				82	 	 s.mu.Lock()

				83	 	 if	s.id	==	id	{

				84	 	 	 s.mu.Unlock()

				85	 	 	 return

				86	 	 }

				87	 	 c	:=	make(chan	uint)

				88	 	 if	s.wait	==	nil	{

				89	 	 	 s.wait	=	make(map[uint]chan	uint)

				90	 	 }

				91	 	 s.wait[id]	=	c

				92	 	 s.mu.Unlock()

				93	 	 <-c

				94	 }

				95	

				96	 //	End	notifies	the	sequencer	that	the	event	numbered	id	has	completed,

				97	 //	allowing	it	to	schedule	the	event	numbered	id+1.		It	is	a	run-time	error

				98	 //	to	call	End	with	an	id	that	is	not	the	number	of	the	active	event.

				99	 func	(s	*sequencer)	End(id	uint)	{

			100	 	 s.mu.Lock()

			101	 	 if	s.id	!=	id	{

			102	 	 	 panic("out	of	sync")

			103	 	 }

			104	 	 id++

			105	 	 s.id	=	id

			106	 	 if	s.wait	==	nil	{

			107	 	 	 s.wait	=	make(map[uint]chan	uint)

			108	 	 }

			109	 	 c,	ok	:=	s.wait[id]

			110	 	 if	ok	{

			111	 	 	 delete(s.wait,	id)

			112	 	 }

			113	 	 s.mu.Unlock()

			114	 	 if	ok	{

			115	 	 	 c	<-	1

			116	 	 }

			117	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/textproto/reader.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	textproto

					6	

					7	 import	(

					8	 	 "bufio"

					9	 	 "bytes"

				10	 	 "io"

				11	 	 "io/ioutil"

				12	 	 "strconv"

				13	 	 "strings"

				14)

				15	

				16	 //	BUG(rsc):	To	let	callers	manage	exposure	to	denial	of	service

				17	 //	attacks,	Reader	should	allow	them	to	set	and	reset	a	limit	on

				18	 //	the	number	of	bytes	read	from	the	connection.

				19	

				20	 //	A	Reader	implements	convenience	methods	for	reading	requests

				21	 //	or	responses	from	a	text	protocol	network	connection.

				22	 type	Reader	struct	{

				23	 	 R			*bufio.Reader

				24	 	 dot	*dotReader

				25	 	 buf	[]byte	//	a	re-usable	buffer	for	readContinuedLineSlice

				26	 }

				27	

				28	 //	NewReader	returns	a	new	Reader	reading	from	r.

				29	 func	NewReader(r	*bufio.Reader)	*Reader	{

				30	 	 return	&Reader{R:	r}

				31	 }

				32	

				33	 //	ReadLine	reads	a	single	line	from	r,

				34	 //	eliding	the	final	\n	or	\r\n	from	the	returned	string.

				35	 func	(r	*Reader)	ReadLine()	(string,	error)	{

				36	 	 line,	err	:=	r.readLineSlice()

				37	 	 return	string(line),	err

				38	 }

				39	

				40	 //	ReadLineBytes	is	like	ReadLine	but	returns	a	[]byte	instead	of	a	string.

				41	 func	(r	*Reader)	ReadLineBytes()	([]byte,	error)	{

				42	 	 line,	err	:=	r.readLineSlice()

				43	 	 if	line	!=	nil	{

				44	 	 	 buf	:=	make([]byte,	len(line))

				45	 	 	 copy(buf,	line)

				46	 	 	 line	=	buf

				47	 	 }

				48	 	 return	line,	err

				49	 }

				50	

				51	 func	(r	*Reader)	readLineSlice()	([]byte,	error)	{

				52	 	 r.closeDot()

				53	 	 var	line	[]byte

				54	 	 for	{

				55	 	 	 l,	more,	err	:=	r.R.ReadLine()

				56	 	 	 if	err	!=	nil	{

				57	 	 	 	 return	nil,	err

				58	 	 	 }

				59	 	 	 //	Avoid	the	copy	if	the	first	call	produced	a	full	line.

				60	 	 	 if	line	==	nil	&&	!more	{

				61	 	 	 	 return	l,	nil

				62	 	 	 }

				63	 	 	 line	=	append(line,	l...)

				64	 	 	 if	!more	{

				65	 	 	 	 break

				66	 	 	 }

				67	 	 }

				68	 	 return	line,	nil

				69	 }

				70	

				71	 //	ReadContinuedLine	reads	a	possibly	continued	line	from	r,

				72	 //	eliding	the	final	trailing	ASCII	white	space.

				73	 //	Lines	after	the	first	are	considered	continuations	if	they

				74	 //	begin	with	a	space	or	tab	character.		In	the	returned	data,

				75	 //	continuation	lines	are	separated	from	the	previous	line

				76	 //	only	by	a	single	space:	the	newline	and	leading	white	space

				77	 //	are	removed.

				78	 //

				79	 //	For	example,	consider	this	input:

				80	 //

				81	 //	 Line	1

				82	 //	 		continued...

				83	 //	 Line	2

				84	 //

				85	 //	The	first	call	to	ReadContinuedLine	will	return	"Line	1	continued..."

				86	 //	and	the	second	will	return	"Line	2".

				87	 //

				88	 //	A	line	consisting	of	only	white	space	is	never	continued.

				89	 //

				90	 func	(r	*Reader)	ReadContinuedLine()	(string,	error)	{

				91	 	 line,	err	:=	r.readContinuedLineSlice()

				92	 	 return	string(line),	err

				93	 }

				94	

				95	 //	trim	returns	s	with	leading	and	trailing	spaces	and	tabs	removed.

				96	 //	It	does	not	assume	Unicode	or	UTF-8.

				97	 func	trim(s	[]byte)	[]byte	{

				98	 	 i	:=	0

				99	 	 for	i	<	len(s)	&&	(s[i]	==	'	'	||	s[i]	==	'\t')	{

			100	 	 	 i++

			101	 	 }

			102	 	 n	:=	len(s)

			103	 	 for	n	>	i	&&	(s[n-1]	==	'	'	||	s[n-1]	==	'\t')	{

			104	 	 	 n--

			105	 	 }

			106	 	 return	s[i:n]

			107	 }

			108	

			109	 //	ReadContinuedLineBytes	is	like	ReadContinuedLine	but

			110	 //	returns	a	[]byte	instead	of	a	string.

			111	 func	(r	*Reader)	ReadContinuedLineBytes()	([]byte,	error)	{

			112	 	 line,	err	:=	r.readContinuedLineSlice()

			113	 	 if	line	!=	nil	{

			114	 	 	 buf	:=	make([]byte,	len(line))

			115	 	 	 copy(buf,	line)

			116	 	 	 line	=	buf

			117	 	 }

			118	 	 return	line,	err

			119	 }

			120	

			121	 func	(r	*Reader)	readContinuedLineSlice()	([]byte,	error)	{

			122	 	 //	Read	the	first	line.

			123	 	 line,	err	:=	r.readLineSlice()

			124	 	 if	err	!=	nil	{

			125	 	 	 return	nil,	err

			126	 	 }

			127	 	 if	len(line)	==	0	{	//	blank	line	-	no	continuation

			128	 	 	 return	line,	nil

			129	 	 }

			130	

			131	 	 //	ReadByte	or	the	next	readLineSlice	will	flush	the	read	buffer;

			132	 	 //	copy	the	slice	into	buf.

			133	 	 r.buf	=	append(r.buf[:0],	trim(line)...)

			134	

			135	 	 //	Read	continuation	lines.

			136	 	 for	r.skipSpace()	>	0	{

			137	 	 	 line,	err	:=	r.readLineSlice()

			138	 	 	 if	err	!=	nil	{

			139	 	 	 	 break

			140	 	 	 }

			141	 	 	 r.buf	=	append(r.buf,	'	')

			142	 	 	 r.buf	=	append(r.buf,	line...)

			143	 	 }

			144	 	 return	r.buf,	nil

			145	 }

			146	

			147	 //	skipSpace	skips	R	over	all	spaces	and	returns	the	number	of	bytes	skipped.

			148	 func	(r	*Reader)	skipSpace()	int	{

			149	 	 n	:=	0

			150	 	 for	{

			151	 	 	 c,	err	:=	r.R.ReadByte()

			152	 	 	 if	err	!=	nil	{

			153	 	 	 	 //	Bufio	will	keep	err	until	next	read.

			154	 	 	 	 break

			155	 	 	 }

			156	 	 	 if	c	!=	'	'	&&	c	!=	'\t'	{

			157	 	 	 	 r.R.UnreadByte()

			158	 	 	 	 break

			159	 	 	 }

			160	 	 	 n++

			161	 	 }

			162	 	 return	n

			163	 }

			164	

			165	 func	(r	*Reader)	readCodeLine(expectCode	int)	(code	int,	continued	bool,	message	string,	err	error)	{

			166	 	 line,	err	:=	r.ReadLine()

			167	 	 if	err	!=	nil	{

			168	 	 	 return

			169	 	 }

			170	 	 return	parseCodeLine(line,	expectCode)

			171	 }

			172	

			173	 func	parseCodeLine(line	string,	expectCode	int)	(code	int,	continued	bool,	message	string,	err	error)	{

			174	 	 if	len(line)	<	4	||	line[3]	!=	'	'	&&	line[3]	!=	'-'	{

			175	 	 	 err	=	ProtocolError("short	response:	"	+	line)

			176	 	 	 return

			177	 	 }

			178	 	 continued	=	line[3]	==	'-'

			179	 	 code,	err	=	strconv.Atoi(line[0:3])

			180	 	 if	err	!=	nil	||	code	<	100	{

			181	 	 	 err	=	ProtocolError("invalid	response	code:	"	+	line)

			182	 	 	 return

			183	 	 }

			184	 	 message	=	line[4:]

			185	 	 if	1	<=	expectCode	&&	expectCode	<	10	&&	code/100	!=	expectCode	||

			186	 	 	 10	<=	expectCode	&&	expectCode	<	100	&&	code/10	!=	expectCode	||

			187	 	 	 100	<=	expectCode	&&	expectCode	<	1000	&&	code	!=	expectCode	{

			188	 	 	 err	=	&Error{code,	message}

			189	 	 }

			190	 	 return

			191	 }

			192	

			193	 //	ReadCodeLine	reads	a	response	code	line	of	the	form

			194	 //	 code	message

			195	 //	where	code	is	a	3-digit	status	code	and	the	message

			196	 //	extends	to	the	rest	of	the	line.		An	example	of	such	a	line	is:

			197	 //	 220	plan9.bell-labs.com	ESMTP

			198	 //

			199	 //	If	the	prefix	of	the	status	does	not	match	the	digits	in	expectCode,

			200	 //	ReadCodeLine	returns	with	err	set	to	&Error{code,	message}.

			201	 //	For	example,	if	expectCode	is	31,	an	error	will	be	returned	if

			202	 //	the	status	is	not	in	the	range	[310,319].

			203	 //

			204	 //	If	the	response	is	multi-line,	ReadCodeLine	returns	an	error.

			205	 //

			206	 //	An	expectCode	<=	0	disables	the	check	of	the	status	code.

			207	 //

			208	 func	(r	*Reader)	ReadCodeLine(expectCode	int)	(code	int,	message	string,	err	error)	{

			209	 	 code,	continued,	message,	err	:=	r.readCodeLine(expectCode)

			210	 	 if	err	==	nil	&&	continued	{

			211	 	 	 err	=	ProtocolError("unexpected	multi-line	response:	"	+	message)

			212	 	 }

			213	 	 return

			214	 }

			215	

			216	 //	ReadResponse	reads	a	multi-line	response	of	the	form:

			217	 //

			218	 //	 code-message	line	1

			219	 //	 code-message	line	2

			220	 //	 ...

			221	 //	 code	message	line	n

			222	 //

			223	 //	where	code	is	a	3-digit	status	code.	The	first	line	starts	with	the

			224	 //	code	and	a	hyphen.	The	response	is	terminated	by	a	line	that	starts

			225	 //	with	the	same	code	followed	by	a	space.	Each	line	in	message	is

			226	 //	separated	by	a	newline	(\n).

			227	 //

			228	 //	See	page	36	of	RFC	959	(http://www.ietf.org/rfc/rfc959.txt)	for

			229	 //	details.

			230	 //

			231	 //	If	the	prefix	of	the	status	does	not	match	the	digits	in	expectCode,

			232	 //	ReadResponse	returns	with	err	set	to	&Error{code,	message}.

			233	 //	For	example,	if	expectCode	is	31,	an	error	will	be	returned	if

			234	 //	the	status	is	not	in	the	range	[310,319].

			235	 //

			236	 //	An	expectCode	<=	0	disables	the	check	of	the	status	code.

			237	 //

			238	 func	(r	*Reader)	ReadResponse(expectCode	int)	(code	int,	message	string,	err	error)	{

			239	 	 code,	continued,	message,	err	:=	r.readCodeLine(expectCode)

			240	 	 for	err	==	nil	&&	continued	{

			241	 	 	 line,	err	:=	r.ReadLine()

			242	 	 	 if	err	!=	nil	{

			243	 	 	 	 return	0,	"",	err

			244	 	 	 }

			245	

			246	 	 	 var	code2	int

			247	 	 	 var	moreMessage	string

			248	 	 	 code2,	continued,	moreMessage,	err	=	parseCodeLine(line,	expectCode)

			249	 	 	 if	err	!=	nil	||	code2	!=	code	{

			250	 	 	 	 message	+=	"\n"	+	strings.TrimRight(line,	"\r\n")

			251	 	 	 	 continued	=	true

			252	 	 	 	 continue

			253	 	 	 }

			254	 	 	 message	+=	"\n"	+	moreMessage

			255	 	 }

			256	 	 return

			257	 }

			258	

			259	 //	DotReader	returns	a	new	Reader	that	satisfies	Reads	using	the

			260	 //	decoded	text	of	a	dot-encoded	block	read	from	r.

			261	 //	The	returned	Reader	is	only	valid	until	the	next	call

			262	 //	to	a	method	on	r.

			263	 //

			264	 //	Dot	encoding	is	a	common	framing	used	for	data	blocks

			265	 //	in	text	protocols	such	as	SMTP.		The	data	consists	of	a	sequence

			266	 //	of	lines,	each	of	which	ends	in	"\r\n".		The	sequence	itself

			267	 //	ends	at	a	line	containing	just	a	dot:	".\r\n".		Lines	beginning

			268	 //	with	a	dot	are	escaped	with	an	additional	dot	to	avoid

			269	 //	looking	like	the	end	of	the	sequence.

			270	 //

			271	 //	The	decoded	form	returned	by	the	Reader's	Read	method

			272	 //	rewrites	the	"\r\n"	line	endings	into	the	simpler	"\n",

			273	 //	removes	leading	dot	escapes	if	present,	and	stops	with	error	io.EOF

			274	 //	after	consuming	(and	discarding)	the	end-of-sequence	line.

			275	 func	(r	*Reader)	DotReader()	io.Reader	{

			276	 	 r.closeDot()

			277	 	 r.dot	=	&dotReader{r:	r}

			278	 	 return	r.dot

			279	 }

			280	

			281	 type	dotReader	struct	{

			282	 	 r					*Reader

			283	 	 state	int

			284	 }

			285	

			286	 //	Read	satisfies	reads	by	decoding	dot-encoded	data	read	from	d.r.

			287	 func	(d	*dotReader)	Read(b	[]byte)	(n	int,	err	error)	{

			288	 	 //	Run	data	through	a	simple	state	machine	to

			289	 	 //	elide	leading	dots,	rewrite	trailing	\r\n	into	\n,

			290	 	 //	and	detect	ending	.\r\n	line.

			291	 	 const	(

			292	 	 	 stateBeginLine	=	iota	//	beginning	of	line;	initial	state;	must	be	zero

			293	 	 	 stateDot														//	read	.	at	beginning	of	line

			294	 	 	 stateDotCR												//	read	.\r	at	beginning	of	line

			295	 	 	 stateCR															//	read	\r	(possibly	at	end	of	line)

			296	 	 	 stateData													//	reading	data	in	middle	of	line

			297	 	 	 stateEOF														//	reached	.\r\n	end	marker	line

			298)

			299	 	 br	:=	d.r.R

			300	 	 for	n	<	len(b)	&&	d.state	!=	stateEOF	{

			301	 	 	 var	c	byte

			302	 	 	 c,	err	=	br.ReadByte()

			303	 	 	 if	err	!=	nil	{

			304	 	 	 	 if	err	==	io.EOF	{

			305	 	 	 	 	 err	=	io.ErrUnexpectedEOF

			306	 	 	 	 }

			307	 	 	 	 break

			308	 	 	 }

			309	 	 	 switch	d.state	{

			310	 	 	 case	stateBeginLine:

			311	 	 	 	 if	c	==	'.'	{

			312	 	 	 	 	 d.state	=	stateDot

			313	 	 	 	 	 continue

			314	 	 	 	 }

			315	 	 	 	 if	c	==	'\r'	{

			316	 	 	 	 	 d.state	=	stateCR

			317	 	 	 	 	 continue

			318	 	 	 	 }

			319	 	 	 	 d.state	=	stateData

			320	

			321	 	 	 case	stateDot:

			322	 	 	 	 if	c	==	'\r'	{

			323	 	 	 	 	 d.state	=	stateDotCR

			324	 	 	 	 	 continue

			325	 	 	 	 }

			326	 	 	 	 if	c	==	'\n'	{

			327	 	 	 	 	 d.state	=	stateEOF

			328	 	 	 	 	 continue

			329	 	 	 	 }

			330	 	 	 	 d.state	=	stateData

			331	

			332	 	 	 case	stateDotCR:

			333	 	 	 	 if	c	==	'\n'	{

			334	 	 	 	 	 d.state	=	stateEOF

			335	 	 	 	 	 continue

			336	 	 	 	 }

			337	 	 	 	 //	Not	part	of	.\r\n.

			338	 	 	 	 //	Consume	leading	dot	and	emit	saved	\r.

			339	 	 	 	 br.UnreadByte()

			340	 	 	 	 c	=	'\r'

			341	 	 	 	 d.state	=	stateData

			342	

			343	 	 	 case	stateCR:

			344	 	 	 	 if	c	==	'\n'	{

			345	 	 	 	 	 d.state	=	stateBeginLine

			346	 	 	 	 	 break

			347	 	 	 	 }

			348	 	 	 	 //	Not	part	of	\r\n.		Emit	saved	\r

			349	 	 	 	 br.UnreadByte()

			350	 	 	 	 c	=	'\r'

			351	 	 	 	 d.state	=	stateData

			352	

			353	 	 	 case	stateData:

			354	 	 	 	 if	c	==	'\r'	{

			355	 	 	 	 	 d.state	=	stateCR

			356	 	 	 	 	 continue

			357	 	 	 	 }

			358	 	 	 	 if	c	==	'\n'	{

			359	 	 	 	 	 d.state	=	stateBeginLine

			360	 	 	 	 }

			361	 	 	 }

			362	 	 	 b[n]	=	c

			363	 	 	 n++

			364	 	 }

			365	 	 if	err	==	nil	&&	d.state	==	stateEOF	{

			366	 	 	 err	=	io.EOF

			367	 	 }

			368	 	 if	err	!=	nil	&&	d.r.dot	==	d	{

			369	 	 	 d.r.dot	=	nil

			370	 	 }

			371	 	 return

			372	 }

			373	

			374	 //	closeDot	drains	the	current	DotReader	if	any,

			375	 //	making	sure	that	it	reads	until	the	ending	dot	line.

			376	 func	(r	*Reader)	closeDot()	{

			377	 	 if	r.dot	==	nil	{

			378	 	 	 return

			379	 	 }

			380	 	 buf	:=	make([]byte,	128)

			381	 	 for	r.dot	!=	nil	{

			382	 	 	 //	When	Read	reaches	EOF	or	an	error,

			383	 	 	 //	it	will	set	r.dot	==	nil.

			384	 	 	 r.dot.Read(buf)

			385	 	 }

			386	 }

			387	

			388	 //	ReadDotBytes	reads	a	dot-encoding	and	returns	the	decoded	data.

			389	 //

			390	 //	See	the	documentation	for	the	DotReader	method	for	details	about	dot-encoding.

			391	 func	(r	*Reader)	ReadDotBytes()	([]byte,	error)	{

			392	 	 return	ioutil.ReadAll(r.DotReader())

			393	 }

			394	

			395	 //	ReadDotLines	reads	a	dot-encoding	and	returns	a	slice

			396	 //	containing	the	decoded	lines,	with	the	final	\r\n	or	\n	elided	from	each.

			397	 //

			398	 //	See	the	documentation	for	the	DotReader	method	for	details	about	dot-encoding.

			399	 func	(r	*Reader)	ReadDotLines()	([]string,	error)	{

			400	 	 //	We	could	use	ReadDotBytes	and	then	Split	it,

			401	 	 //	but	reading	a	line	at	a	time	avoids	needing	a

			402	 	 //	large	contiguous	block	of	memory	and	is	simpler.

			403	 	 var	v	[]string

			404	 	 var	err	error

			405	 	 for	{

			406	 	 	 var	line	string

			407	 	 	 line,	err	=	r.ReadLine()

			408	 	 	 if	err	!=	nil	{

			409	 	 	 	 if	err	==	io.EOF	{

			410	 	 	 	 	 err	=	io.ErrUnexpectedEOF

			411	 	 	 	 }

			412	 	 	 	 break

			413	 	 	 }

			414	

			415	 	 	 //	Dot	by	itself	marks	end;	otherwise	cut	one	dot.

			416	 	 	 if	len(line)	>	0	&&	line[0]	==	'.'	{

			417	 	 	 	 if	len(line)	==	1	{

			418	 	 	 	 	 break

			419	 	 	 	 }

			420	 	 	 	 line	=	line[1:]

			421	 	 	 }

			422	 	 	 v	=	append(v,	line)

			423	 	 }

			424	 	 return	v,	err

			425	 }

			426	

			427	 //	ReadMIMEHeader	reads	a	MIME-style	header	from	r.

			428	 //	The	header	is	a	sequence	of	possibly	continued	Key:	Value	lines

			429	 //	ending	in	a	blank	line.

			430	 //	The	returned	map	m	maps	CanonicalMIMEHeaderKey(key)	to	a

			431	 //	sequence	of	values	in	the	same	order	encountered	in	the	input.

			432	 //

			433	 //	For	example,	consider	this	input:

			434	 //

			435	 //	 My-Key:	Value	1

			436	 //	 Long-Key:	Even

			437	 //	 							Longer	Value

			438	 //	 My-Key:	Value	2

			439	 //

			440	 //	Given	that	input,	ReadMIMEHeader	returns	the	map:

			441	 //

			442	 //	 map[string][]string{

			443	 //	 	 "My-Key":	{"Value	1",	"Value	2"},

			444	 //	 	 "Long-Key":	{"Even	Longer	Value"},

			445	 //	 }

			446	 //

			447	 func	(r	*Reader)	ReadMIMEHeader()	(MIMEHeader,	error)	{

			448	 	 m	:=	make(MIMEHeader)

			449	 	 for	{

			450	 	 	 kv,	err	:=	r.readContinuedLineSlice()

			451	 	 	 if	len(kv)	==	0	{

			452	 	 	 	 return	m,	err

			453	 	 	 }

			454	

			455	 	 	 //	Key	ends	at	first	colon;	must	not	have	spaces.

			456	 	 	 i	:=	bytes.IndexByte(kv,	':')

			457	 	 	 if	i	<	0	{

			458	 	 	 	 return	m,	ProtocolError("malformed	MIME	header	line:	"	+	string(kv))

			459	 	 	 }

			460	 	 	 key	:=	string(kv[0:i])

			461	 	 	 if	strings.Index(key,	"	")	>=	0	{

			462	 	 	 	 key	=	strings.TrimRight(key,	"	")

			463	 	 	 }

			464	 	 	 key	=	CanonicalMIMEHeaderKey(key)

			465	

			466	 	 	 //	Skip	initial	spaces	in	value.

			467	 	 	 i++	//	skip	colon

			468	 	 	 for	i	<	len(kv)	&&	(kv[i]	==	'	'	||	kv[i]	==	'\t')	{

			469	 	 	 	 i++

			470	 	 	 }

			471	 	 	 value	:=	string(kv[i:])

			472	

			473	 	 	 m[key]	=	append(m[key],	value)

			474	

			475	 	 	 if	err	!=	nil	{

			476	 	 	 	 return	m,	err

			477	 	 	 }

			478	 	 }

			479	 	 panic("unreachable")

			480	 }

			481	

			482	 //	CanonicalMIMEHeaderKey	returns	the	canonical	format	of	the

			483	 //	MIME	header	key	s.		The	canonicalization	converts	the	first

			484	 //	letter	and	any	letter	following	a	hyphen	to	upper	case;

			485	 //	the	rest	are	converted	to	lowercase.		For	example,	the

			486	 //	canonical	key	for	"accept-encoding"	is	"Accept-Encoding".

			487	 func	CanonicalMIMEHeaderKey(s	string)	string	{

			488	 	 //	Quick	check	for	canonical	encoding.

			489	 	 needUpper	:=	true

			490	 	 for	i	:=	0;	i	<	len(s);	i++	{

			491	 	 	 c	:=	s[i]

			492	 	 	 if	needUpper	&&	'a'	<=	c	&&	c	<=	'z'	{

			493	 	 	 	 goto	MustRewrite

			494	 	 	 }

			495	 	 	 if	!needUpper	&&	'A'	<=	c	&&	c	<=	'Z'	{

			496	 	 	 	 goto	MustRewrite

			497	 	 	 }

			498	 	 	 needUpper	=	c	==	'-'

			499	 	 }

			500	 	 return	s

			501	

			502	 MustRewrite:

			503	 	 //	Canonicalize:	first	letter	upper	case

			504	 	 //	and	upper	case	after	each	dash.

			505	 	 //	(Host,	User-Agent,	If-Modified-Since).

			506	 	 //	MIME	headers	are	ASCII	only,	so	no	Unicode	issues.

			507	 	 a	:=	[]byte(s)

			508	 	 upper	:=	true

			509	 	 for	i,	v	:=	range	a	{

			510	 	 	 if	v	==	'	'	{

			511	 	 	 	 a[i]	=	'-'

			512	 	 	 	 upper	=	true

			513	 	 	 	 continue

			514	 	 	 }

			515	 	 	 if	upper	&&	'a'	<=	v	&&	v	<=	'z'	{

			516	 	 	 	 a[i]	=	v	+	'A'	-	'a'

			517	 	 	 }

			518	 	 	 if	!upper	&&	'A'	<=	v	&&	v	<=	'Z'	{

			519	 	 	 	 a[i]	=	v	+	'a'	-	'A'

			520	 	 	 }

			521	 	 	 upper	=	v	==	'-'

			522	 	 }

			523	 	 return	string(a)

			524	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/textproto/textproto.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	textproto	implements	generic	support	for	text-based	request/response

					6	 //	protocols	in	the	style	of	HTTP,	NNTP,	and	SMTP.

					7	 //

					8	 //	The	package	provides:

					9	 //

				10	 //	Error,	which	represents	a	numeric	error	response	from

				11	 //	a	server.

				12	 //

				13	 //	Pipeline,	to	manage	pipelined	requests	and	responses

				14	 //	in	a	client.

				15	 //

				16	 //	Reader,	to	read	numeric	response	code	lines,

				17	 //	key:	value	headers,	lines	wrapped	with	leading	spaces

				18	 //	on	continuation	lines,	and	whole	text	blocks	ending

				19	 //	with	a	dot	on	a	line	by	itself.

				20	 //

				21	 //	Writer,	to	write	dot-encoded	text	blocks.

				22	 //

				23	 //	Conn,	a	convenient	packaging	of	Reader,	Writer,	and	Pipeline	for	use

				24	 //	with	a	single	network	connection.

				25	 //

				26	 package	textproto

				27	

				28	 import	(

				29	 	 "bufio"

				30	 	 "fmt"

				31	 	 "io"

				32	 	 "net"

				33)

				34	

				35	 //	An	Error	represents	a	numeric	error	response	from	a	server.

				36	 type	Error	struct	{

				37	 	 Code	int

				38	 	 Msg		string

				39	 }

				40	

				41	 func	(e	*Error)	Error()	string	{

				42	 	 return	fmt.Sprintf("%03d	%s",	e.Code,	e.Msg)

				43	 }

				44	

				45	 //	A	ProtocolError	describes	a	protocol	violation	such

				46	 //	as	an	invalid	response	or	a	hung-up	connection.

				47	 type	ProtocolError	string

				48	

				49	 func	(p	ProtocolError)	Error()	string	{

				50	 	 return	string(p)

				51	 }

				52	

				53	 //	A	Conn	represents	a	textual	network	protocol	connection.

				54	 //	It	consists	of	a	Reader	and	Writer	to	manage	I/O

				55	 //	and	a	Pipeline	to	sequence	concurrent	requests	on	the	connection.

				56	 //	These	embedded	types	carry	methods	with	them;

				57	 //	see	the	documentation	of	those	types	for	details.

				58	 type	Conn	struct	{

				59	 	 Reader

				60	 	 Writer

				61	 	 Pipeline

				62	 	 conn	io.ReadWriteCloser

				63	 }

				64	

				65	 //	NewConn	returns	a	new	Conn	using	conn	for	I/O.

				66	 func	NewConn(conn	io.ReadWriteCloser)	*Conn	{

				67	 	 return	&Conn{

				68	 	 	 Reader:	Reader{R:	bufio.NewReader(conn)},

				69	 	 	 Writer:	Writer{W:	bufio.NewWriter(conn)},

				70	 	 	 conn:			conn,

				71	 	 }

				72	 }

				73	

				74	 //	Close	closes	the	connection.

				75	 func	(c	*Conn)	Close()	error	{

				76	 	 return	c.conn.Close()

				77	 }

				78	

				79	 //	Dial	connects	to	the	given	address	on	the	given	network	using	net.Dial

				80	 //	and	then	returns	a	new	Conn	for	the	connection.

				81	 func	Dial(network,	addr	string)	(*Conn,	error)	{

				82	 	 c,	err	:=	net.Dial(network,	addr)

				83	 	 if	err	!=	nil	{

				84	 	 	 return	nil,	err

				85	 	 }

				86	 	 return	NewConn(c),	nil

				87	 }

				88	

				89	 //	Cmd	is	a	convenience	method	that	sends	a	command	after

				90	 //	waiting	its	turn	in	the	pipeline.		The	command	text	is	the

				91	 //	result	of	formatting	format	with	args	and	appending	\r\n.

				92	 //	Cmd	returns	the	id	of	the	command,	for	use	with	StartResponse	and	EndResponse.

				93	 //

				94	 //	For	example,	a	client	might	run	a	HELP	command	that	returns	a	dot-body

				95	 //	by	using:

				96	 //

				97	 //	 id,	err	:=	c.Cmd("HELP")

				98	 //	 if	err	!=	nil	{

				99	 //	 	 return	nil,	err

			100	 //	 }

			101	 //

			102	 //	 c.StartResponse(id)

			103	 //	 defer	c.EndResponse(id)

			104	 //

			105	 //	 if	_,	_,	err	=	c.ReadCodeLine(110);	err	!=	nil	{

			106	 //	 	 return	nil,	err

			107	 //	 }

			108	 //	 text,	err	:=	c.ReadDotAll()

			109	 //	 if	err	!=	nil	{

			110	 //	 	 return	nil,	err

			111	 //	 }

			112	 //	 return	c.ReadCodeLine(250)

			113	 //

			114	 func	(c	*Conn)	Cmd(format	string,	args	...interface{})	(id	uint,	err	error)	{

			115	 	 id	=	c.Next()

			116	 	 c.StartRequest(id)

			117	 	 err	=	c.PrintfLine(format,	args...)

			118	 	 c.EndRequest(id)

			119	 	 if	err	!=	nil	{

			120	 	 	 return	0,	err

			121	 	 }

			122	 	 return	id,	nil

			123	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/net/textproto/writer.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	textproto

					6	

					7	 import	(

					8	 	 "bufio"

					9	 	 "fmt"

				10	 	 "io"

				11)

				12	

				13	 //	A	Writer	implements	convenience	methods	for	writing

				14	 //	requests	or	responses	to	a	text	protocol	network	connection.

				15	 type	Writer	struct	{

				16	 	 W			*bufio.Writer

				17	 	 dot	*dotWriter

				18	 }

				19	

				20	 //	NewWriter	returns	a	new	Writer	writing	to	w.

				21	 func	NewWriter(w	*bufio.Writer)	*Writer	{

				22	 	 return	&Writer{W:	w}

				23	 }

				24	

				25	 var	crnl	=	[]byte{'\r',	'\n'}

				26	 var	dotcrnl	=	[]byte{'.',	'\r',	'\n'}

				27	

				28	 //	PrintfLine	writes	the	formatted	output	followed	by	\r\n.

				29	 func	(w	*Writer)	PrintfLine(format	string,	args	...interface{})	error	{

				30	 	 w.closeDot()

				31	 	 fmt.Fprintf(w.W,	format,	args...)

				32	 	 w.W.Write(crnl)

				33	 	 return	w.W.Flush()

				34	 }

				35	

				36	 //	DotWriter	returns	a	writer	that	can	be	used	to	write	a	dot-encoding	to	w.

				37	 //	It	takes	care	of	inserting	leading	dots	when	necessary,

				38	 //	translating	line-ending	\n	into	\r\n,	and	adding	the	final	.\r\n	line

				39	 //	when	the	DotWriter	is	closed.		The	caller	should	close	the

				40	 //	DotWriter	before	the	next	call	to	a	method	on	w.

				41	 //

				42	 //	See	the	documentation	for	Reader's	DotReader	method	for	details	about	dot-encoding.

				43	 func	(w	*Writer)	DotWriter()	io.WriteCloser	{

				44	 	 w.closeDot()

				45	 	 w.dot	=	&dotWriter{w:	w}

				46	 	 return	w.dot

				47	 }

				48	

				49	 func	(w	*Writer)	closeDot()	{

				50	 	 if	w.dot	!=	nil	{

				51	 	 	 w.dot.Close()	//	sets	w.dot	=	nil

				52	 	 }

				53	 }

				54	

				55	 type	dotWriter	struct	{

				56	 	 w					*Writer

				57	 	 state	int

				58	 }

				59	

				60	 const	(

				61	 	 wstateBeginLine	=	iota	//	beginning	of	line;	initial	state;	must	be	zero

				62	 	 wstateCR															//	wrote	\r	(possibly	at	end	of	line)

				63	 	 wstateData													//	writing	data	in	middle	of	line

				64)

				65	

				66	 func	(d	*dotWriter)	Write(b	[]byte)	(n	int,	err	error)	{

				67	 	 bw	:=	d.w.W

				68	 	 for	n	<	len(b)	{

				69	 	 	 c	:=	b[n]

				70	 	 	 switch	d.state	{

				71	 	 	 case	wstateBeginLine:

				72	 	 	 	 d.state	=	wstateData

				73	 	 	 	 if	c	==	'.'	{

				74	 	 	 	 	 //	escape	leading	dot

				75	 	 	 	 	 bw.WriteByte('.')

				76	 	 	 	 }

				77	 	 	 	 fallthrough

				78	

				79	 	 	 case	wstateData:

				80	 	 	 	 if	c	==	'\r'	{

				81	 	 	 	 	 d.state	=	wstateCR

				82	 	 	 	 }

				83	 	 	 	 if	c	==	'\n'	{

				84	 	 	 	 	 bw.WriteByte('\r')

				85	 	 	 	 	 d.state	=	wstateBeginLine

				86	 	 	 	 }

				87	

				88	 	 	 case	wstateCR:

				89	 	 	 	 d.state	=	wstateData

				90	 	 	 	 if	c	==	'\n'	{

				91	 	 	 	 	 d.state	=	wstateBeginLine

				92	 	 	 	 }

				93	 	 	 }

				94	 	 	 if	err	=	bw.WriteByte(c);	err	!=	nil	{

				95	 	 	 	 break

				96	 	 	 }

				97	 	 	 n++

				98	 	 }

				99	 	 return

			100	 }

			101	

			102	 func	(d	*dotWriter)	Close()	error	{

			103	 	 if	d.w.dot	==	d	{

			104	 	 	 d.w.dot	=	nil

			105	 	 }

			106	 	 bw	:=	d.w.W

			107	 	 switch	d.state	{

			108	 	 default:

			109	 	 	 bw.WriteByte('\r')

			110	 	 	 fallthrough

			111	 	 case	wstateCR:

			112	 	 	 bw.WriteByte('\n')

			113	 	 	 fallthrough

			114	 	 case	wstateBeginLine:

			115	 	 	 bw.Write(dotcrnl)

			116	 	 }

			117	 	 return	bw.Flush()

			118	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/net/url/url.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	url	parses	URLs	and	implements	query	escaping.

					6	 //	See	RFC	3986.

					7	 package	url

					8	

					9	 import	(

				10	 	 "errors"

				11	 	 "strconv"

				12	 	 "strings"

				13)

				14	

				15	 //	Error	reports	an	error	and	the	operation	and	URL	that	caused	it.

				16	 type	Error	struct	{

				17	 	 Op		string

				18	 	 URL	string

				19	 	 Err	error

				20	 }

				21	

				22	 func	(e	*Error)	Error()	string	{	return	e.Op	+	"	"	+	e.URL	+	":	"	+	e.Err.Error()	}

				23	

				24	 func	ishex(c	byte)	bool	{

				25	 	 switch	{

				26	 	 case	'0'	<=	c	&&	c	<=	'9':

				27	 	 	 return	true

				28	 	 case	'a'	<=	c	&&	c	<=	'f':

				29	 	 	 return	true

				30	 	 case	'A'	<=	c	&&	c	<=	'F':

				31	 	 	 return	true

				32	 	 }

				33	 	 return	false

				34	 }

				35	

				36	 func	unhex(c	byte)	byte	{

				37	 	 switch	{

				38	 	 case	'0'	<=	c	&&	c	<=	'9':

				39	 	 	 return	c	-	'0'

				40	 	 case	'a'	<=	c	&&	c	<=	'f':

				41	 	 	 return	c	-	'a'	+	10

				42	 	 case	'A'	<=	c	&&	c	<=	'F':

				43	 	 	 return	c	-	'A'	+	10

				44	 	 }

				45	 	 return	0

				46	 }

				47	

				48	 type	encoding	int

				49	

				50	 const	(

				51	 	 encodePath	encoding	=	1	+	iota

				52	 	 encodeUserPassword

				53	 	 encodeQueryComponent

				54	 	 encodeFragment

				55)

				56	

				57	 type	EscapeError	string

				58	

				59	 func	(e	EscapeError)	Error()	string	{

				60	 	 return	"invalid	URL	escape	"	+	strconv.Quote(string(e))

				61	 }

				62	

				63	 //	Return	true	if	the	specified	character	should	be	escaped	when

				64	 //	appearing	in	a	URL	string,	according	to	RFC	3986.

				65	 //	When	'all'	is	true	the	full	range	of	reserved	characters	are	matched.

				66	 func	shouldEscape(c	byte,	mode	encoding)	bool	{

				67	 	 //	§2.3	Unreserved	characters	(alphanum)

				68	 	 if	'A'	<=	c	&&	c	<=	'Z'	||	'a'	<=	c	&&	c	<=	'z'	||	'0'	<=	c	&&	c	<=	'9'	{

				69	 	 	 return	false

				70	 	 }

				71	

				72	 	 switch	c	{

				73	 	 case	'-',	'_',	'.',	'~':	//	§2.3	Unreserved	characters	(mark)

				74	 	 	 return	false

				75	

				76	 	 case	'$',	'&',	'+',	',',	'/',	':',	';',	'=',	'?',	'@':	

				77	 	 	 //	Different	sections	of	the	URL	allow	a	few	of

				78	 	 	 //	the	reserved	characters	to	appear	unescaped.

				79	 	 	 switch	mode	{

				80	 	 	 case	encodePath:	//	§3.3

				81	 	 	 	 //	The	RFC	allows	:	@	&	=	+	$	but	saves	/	;	,	for	assigning

				82	 	 	 	 //	meaning	to	individual	path	segments.	This	package

				83	 	 	 	 //	only	manipulates	the	path	as	a	whole,	so	we	allow	those

				84	 	 	 	 //	last	two	as	well.	That	leaves	only	?	to	escape.

				85	 	 	 	 return	c	==	'?'

				86	

				87	 	 	 case	encodeUserPassword:	//	§3.2.2

				88	 	 	 	 //	The	RFC	allows	;	:	&	=	+	$,	in	userinfo,	so	we	must	escape	only	@	and	/.

				89	 	 	 	 //	The	parsing	of	userinfo	treats	:	as	special	so	we	must	escape	that	too.

				90	 	 	 	 return	c	==	'@'	||	c	==	'/'	||	c	==	':'

				91	

				92	 	 	 case	encodeQueryComponent:	//	§3.4

				93	 	 	 	 //	The	RFC	reserves	(so	we	must	escape)	everything.

				94	 	 	 	 return	true

				95	

				96	 	 	 case	encodeFragment:	//	§4.1

				97	 	 	 	 //	The	RFC	text	is	silent	but	the	grammar	allows

				98	 	 	 	 //	everything,	so	escape	nothing.

				99	 	 	 	 return	false

			100	 	 	 }

			101	 	 }

			102	

			103	 	 //	Everything	else	must	be	escaped.

			104	 	 return	true

			105	 }

			106	

			107	 //	QueryUnescape	does	the	inverse	transformation	of	QueryEscape,	converting

			108	 //	%AB	into	the	byte	0xAB	and	'+'	into	'	'	(space).	It	returns	an	error	if

			109	 //	any	%	is	not	followed	by	two	hexadecimal	digits.

			110	 func	QueryUnescape(s	string)	(string,	error)	{

			111	 	 return	unescape(s,	encodeQueryComponent)

			112	 }

			113	

			114	 //	unescape	unescapes	a	string;	the	mode	specifies

			115	 //	which	section	of	the	URL	string	is	being	unescaped.

			116	 func	unescape(s	string,	mode	encoding)	(string,	error)	{

			117	 	 //	Count	%,	check	that	they're	well-formed.

			118	 	 n	:=	0

			119	 	 hasPlus	:=	false

			120	 	 for	i	:=	0;	i	<	len(s);	{

			121	 	 	 switch	s[i]	{

			122	 	 	 case	'%':

			123	 	 	 	 n++

			124	 	 	 	 if	i+2	>=	len(s)	||	!ishex(s[i+1])	||	!ishex(s[i+2])	{

			125	 	 	 	 	 s	=	s[i:]

			126	 	 	 	 	 if	len(s)	>	3	{

			127	 	 	 	 	 	 s	=	s[0:3]

			128	 	 	 	 	 }

			129	 	 	 	 	 return	"",	EscapeError(s)

			130	 	 	 	 }

			131	 	 	 	 i	+=	3

			132	 	 	 case	'+':

			133	 	 	 	 hasPlus	=	mode	==	encodeQueryComponent

			134	 	 	 	 i++

			135	 	 	 default:

			136	 	 	 	 i++

			137	 	 	 }

			138	 	 }

			139	

			140	 	 if	n	==	0	&&	!hasPlus	{

			141	 	 	 return	s,	nil

			142	 	 }

			143	

			144	 	 t	:=	make([]byte,	len(s)-2*n)

			145	 	 j	:=	0

			146	 	 for	i	:=	0;	i	<	len(s);	{

			147	 	 	 switch	s[i]	{

			148	 	 	 case	'%':

			149	 	 	 	 t[j]	=	unhex(s[i+1])<<4	|	unhex(s[i+2])

			150	 	 	 	 j++

			151	 	 	 	 i	+=	3

			152	 	 	 case	'+':

			153	 	 	 	 if	mode	==	encodeQueryComponent	{

			154	 	 	 	 	 t[j]	=	'	'

			155	 	 	 	 }	else	{

			156	 	 	 	 	 t[j]	=	'+'

			157	 	 	 	 }

			158	 	 	 	 j++

			159	 	 	 	 i++

			160	 	 	 default:

			161	 	 	 	 t[j]	=	s[i]

			162	 	 	 	 j++

			163	 	 	 	 i++

			164	 	 	 }

			165	 	 }

			166	 	 return	string(t),	nil

			167	 }

			168	

			169	 //	QueryEscape	escapes	the	string	so	it	can	be	safely	placed

			170	 //	inside	a	URL	query.

			171	 func	QueryEscape(s	string)	string	{

			172	 	 return	escape(s,	encodeQueryComponent)

			173	 }

			174	

			175	 func	escape(s	string,	mode	encoding)	string	{

			176	 	 spaceCount,	hexCount	:=	0,	0

			177	 	 for	i	:=	0;	i	<	len(s);	i++	{

			178	 	 	 c	:=	s[i]

			179	 	 	 if	shouldEscape(c,	mode)	{

			180	 	 	 	 if	c	==	'	'	&&	mode	==	encodeQueryComponent	{

			181	 	 	 	 	 spaceCount++

			182	 	 	 	 }	else	{

			183	 	 	 	 	 hexCount++

			184	 	 	 	 }

			185	 	 	 }

			186	 	 }

			187	

			188	 	 if	spaceCount	==	0	&&	hexCount	==	0	{

			189	 	 	 return	s

			190	 	 }

			191	

			192	 	 t	:=	make([]byte,	len(s)+2*hexCount)

			193	 	 j	:=	0

			194	 	 for	i	:=	0;	i	<	len(s);	i++	{

			195	 	 	 switch	c	:=	s[i];	{

			196	 	 	 case	c	==	'	'	&&	mode	==	encodeQueryComponent:

			197	 	 	 	 t[j]	=	'+'

			198	 	 	 	 j++

			199	 	 	 case	shouldEscape(c,	mode):

			200	 	 	 	 t[j]	=	'%'

			201	 	 	 	 t[j+1]	=	"0123456789ABCDEF"[c>>4]

			202	 	 	 	 t[j+2]	=	"0123456789ABCDEF"[c&15]

			203	 	 	 	 j	+=	3

			204	 	 	 default:

			205	 	 	 	 t[j]	=	s[i]

			206	 	 	 	 j++

			207	 	 	 }

			208	 	 }

			209	 	 return	string(t)

			210	 }

			211	

			212	 //	A	URL	represents	a	parsed	URL	(technically,	a	URI	reference).

			213	 //	The	general	form	represented	is:

			214	 //

			215	 //	 scheme://[userinfo@]host/path[?query][#fragment]

			216	 //

			217	 //	URLs	that	do	not	start	with	a	slash	after	the	scheme	are	interpreted	as:

			218	 //

			219	 //	 scheme:opaque[?query][#fragment]

			220	 //

			221	 type	URL	struct	{

			222	 	 Scheme			string

			223	 	 Opaque			string				//	encoded	opaque	data

			224	 	 User					*Userinfo	//	username	and	password	information

			225	 	 Host					string

			226	 	 Path					string

			227	 	 RawQuery	string	//	encoded	query	values,	without	'?'

			228	 	 Fragment	string	//	fragment	for	references,	without	'#'

			229	 }

			230	

			231	 //	User	returns	a	Userinfo	containing	the	provided	username

			232	 //	and	no	password	set.

			233	 func	User(username	string)	*Userinfo	{

			234	 	 return	&Userinfo{username,	"",	false}

			235	 }

			236	

			237	 //	UserPassword	returns	a	Userinfo	containing	the	provided	username

			238	 //	and	password.

			239	 //	This	functionality	should	only	be	used	with	legacy	web	sites.

			240	 //	RFC	2396	warns	that	interpreting	Userinfo	this	way

			241	 //	``is	NOT	RECOMMENDED,	because	the	passing	of	authentication

			242	 //	information	in	clear	text	(such	as	URI)	has	proven	to	be	a

			243	 //	security	risk	in	almost	every	case	where	it	has	been	used.''

			244	 func	UserPassword(username,	password	string)	*Userinfo	{

			245	 	 return	&Userinfo{username,	password,	true}

			246	 }

			247	

			248	 //	The	Userinfo	type	is	an	immutable	encapsulation	of	username	and

			249	 //	password	details	for	a	URL.	An	existing	Userinfo	value	is	guaranteed

			250	 //	to	have	a	username	set	(potentially	empty,	as	allowed	by	RFC	2396),

			251	 //	and	optionally	a	password.

			252	 type	Userinfo	struct	{

			253	 	 username				string

			254	 	 password				string

			255	 	 passwordSet	bool

			256	 }

			257	

			258	 //	Username	returns	the	username.

			259	 func	(u	*Userinfo)	Username()	string	{

			260	 	 return	u.username

			261	 }

			262	

			263	 //	Password	returns	the	password	in	case	it	is	set,	and	whether	it	is	set.

			264	 func	(u	*Userinfo)	Password()	(string,	bool)	{

			265	 	 if	u.passwordSet	{

			266	 	 	 return	u.password,	true

			267	 	 }

			268	 	 return	"",	false

			269	 }

			270	

			271	 //	String	returns	the	encoded	userinfo	information	in	the	standard	form

			272	 //	of	"username[:password]".

			273	 func	(u	*Userinfo)	String()	string	{

			274	 	 s	:=	escape(u.username,	encodeUserPassword)

			275	 	 if	u.passwordSet	{

			276	 	 	 s	+=	":"	+	escape(u.password,	encodeUserPassword)

			277	 	 }

			278	 	 return	s

			279	 }

			280	

			281	 //	Maybe	rawurl	is	of	the	form	scheme:path.

			282	 //	(Scheme	must	be	[a-zA-Z][a-zA-Z0-9+-.]*)

			283	 //	If	so,	return	scheme,	path;	else	return	"",	rawurl.

			284	 func	getscheme(rawurl	string)	(scheme,	path	string,	err	error)	{

			285	 	 for	i	:=	0;	i	<	len(rawurl);	i++	{

			286	 	 	 c	:=	rawurl[i]

			287	 	 	 switch	{

			288	 	 	 case	'a'	<=	c	&&	c	<=	'z'	||	'A'	<=	c	&&	c	<=	'Z':

			289	 	 	 //	do	nothing

			290	 	 	 case	'0'	<=	c	&&	c	<=	'9'	||	c	==	'+'	||	c	==	'-'	||	c	==	'.':

			291	 	 	 	 if	i	==	0	{

			292	 	 	 	 	 return	"",	rawurl,	nil

			293	 	 	 	 }

			294	 	 	 case	c	==	':':

			295	 	 	 	 if	i	==	0	{

			296	 	 	 	 	 return	"",	"",	errors.New("missing	protocol	scheme")

			297	 	 	 	 }

			298	 	 	 	 return	rawurl[0:i],	rawurl[i+1:],	nil

			299	 	 	 default:

			300	 	 	 	 //	we	have	encountered	an	invalid	character,

			301	 	 	 	 //	so	there	is	no	valid	scheme

			302	 	 	 	 return	"",	rawurl,	nil

			303	 	 	 }

			304	 	 }

			305	 	 return	"",	rawurl,	nil

			306	 }

			307	

			308	 //	Maybe	s	is	of	the	form	t	c	u.

			309	 //	If	so,	return	t,	c	u	(or	t,	u	if	cutc	==	true).

			310	 //	If	not,	return	s,	"".

			311	 func	split(s	string,	c	byte,	cutc	bool)	(string,	string)	{

			312	 	 for	i	:=	0;	i	<	len(s);	i++	{

			313	 	 	 if	s[i]	==	c	{

			314	 	 	 	 if	cutc	{

			315	 	 	 	 	 return	s[0:i],	s[i+1:]

			316	 	 	 	 }

			317	 	 	 	 return	s[0:i],	s[i:]

			318	 	 	 }

			319	 	 }

			320	 	 return	s,	""

			321	 }

			322	

			323	 //	Parse	parses	rawurl	into	a	URL	structure.

			324	 //	The	rawurl	may	be	relative	or	absolute.

			325	 func	Parse(rawurl	string)	(url	*URL,	err	error)	{

			326	 	 //	Cut	off	#frag

			327	 	 u,	frag	:=	split(rawurl,	'#',	true)

			328	 	 if	url,	err	=	parse(u,	false);	err	!=	nil	{

			329	 	 	 return	nil,	err

			330	 	 }

			331	 	 if	frag	==	""	{

			332	 	 	 return	url,	nil

			333	 	 }

			334	 	 if	url.Fragment,	err	=	unescape(frag,	encodeFragment);	err	!=	nil	{

			335	 	 	 return	nil,	&Error{"parse",	rawurl,	err}

			336	 	 }

			337	 	 return	url,	nil

			338	 }

			339	

			340	 //	ParseRequestURI	parses	rawurl	into	a	URL	structure.		It	assumes	that

			341	 //	rawurl	was	received	in	an	HTTP	request,	so	the	rawurl	is	interpreted

			342	 //	only	as	an	absolute	URI	or	an	absolute	path.

			343	 //	The	string	rawurl	is	assumed	not	to	have	a	#fragment	suffix.

			344	 //	(Web	browsers	strip	#fragment	before	sending	the	URL	to	a	web	server.)

			345	 func	ParseRequestURI(rawurl	string)	(url	*URL,	err	error)	{

			346	 	 return	parse(rawurl,	true)

			347	 }

			348	

			349	 //	parse	parses	a	URL	from	a	string	in	one	of	two	contexts.		If

			350	 //	viaRequest	is	true,	the	URL	is	assumed	to	have	arrived	via	an	HTTP	request,

			351	 //	in	which	case	only	absolute	URLs	or	path-absolute	relative	URLs	are	allowed.

			352	 //	If	viaRequest	is	false,	all	forms	of	relative	URLs	are	allowed.

			353	 func	parse(rawurl	string,	viaRequest	bool)	(url	*URL,	err	error)	{

			354	 	 var	rest	string

			355	

			356	 	 if	rawurl	==	""	{

			357	 	 	 err	=	errors.New("empty	url")

			358	 	 	 goto	Error

			359	 	 }

			360	 	 url	=	new(URL)

			361	

			362	 	 //	Split	off	possible	leading	"http:",	"mailto:",	etc.

			363	 	 //	Cannot	contain	escaped	characters.

			364	 	 if	url.Scheme,	rest,	err	=	getscheme(rawurl);	err	!=	nil	{

			365	 	 	 goto	Error

			366	 	 }

			367	

			368	 	 rest,	url.RawQuery	=	split(rest,	'?',	true)

			369	

			370	 	 if	!strings.HasPrefix(rest,	"/")	{

			371	 	 	 if	url.Scheme	!=	""	{

			372	 	 	 	 //	We	consider	rootless	paths	per	RFC	3986	as	opaque.

			373	 	 	 	 url.Opaque	=	rest

			374	 	 	 	 return	url,	nil

			375	 	 	 }

			376	 	 	 if	viaRequest	{

			377	 	 	 	 err	=	errors.New("invalid	URI	for	request")

			378	 	 	 	 goto	Error

			379	 	 	 }

			380	 	 }

			381	

			382	 	 if	(url.Scheme	!=	""	||	!viaRequest)	&&	strings.HasPrefix(rest,	"//")	&&	!strings.HasPrefix(rest,	"///")	{

			383	 	 	 var	authority	string

			384	 	 	 authority,	rest	=	split(rest[2:],	'/',	false)

			385	 	 	 url.User,	url.Host,	err	=	parseAuthority(authority)

			386	 	 	 if	err	!=	nil	{

			387	 	 	 	 goto	Error

			388	 	 	 }

			389	 	 	 if	strings.Contains(url.Host,	"%")	{

			390	 	 	 	 err	=	errors.New("hexadecimal	escape	in	host")

			391	 	 	 	 goto	Error

			392	 	 	 }

			393	 	 }

			394	 	 if	url.Path,	err	=	unescape(rest,	encodePath);	err	!=	nil	{

			395	 	 	 goto	Error

			396	 	 }

			397	 	 return	url,	nil

			398	

			399	 Error:

			400	 	 return	nil,	&Error{"parse",	rawurl,	err}

			401	 }

			402	

			403	 func	parseAuthority(authority	string)	(user	*Userinfo,	host	string,	err	error)	{

			404	 	 if	strings.Index(authority,	"@")	<	0	{

			405	 	 	 host	=	authority

			406	 	 	 return

			407	 	 }

			408	 	 userinfo,	host	:=	split(authority,	'@',	true)

			409	 	 if	strings.Index(userinfo,	":")	<	0	{

			410	 	 	 if	userinfo,	err	=	unescape(userinfo,	encodeUserPassword);	err	!=	nil	{

			411	 	 	 	 return

			412	 	 	 }

			413	 	 	 user	=	User(userinfo)

			414	 	 }	else	{

			415	 	 	 username,	password	:=	split(userinfo,	':',	true)

			416	 	 	 if	username,	err	=	unescape(username,	encodeUserPassword);	err	!=	nil	{

			417	 	 	 	 return

			418	 	 	 }

			419	 	 	 if	password,	err	=	unescape(password,	encodeUserPassword);	err	!=	nil	{

			420	 	 	 	 return

			421	 	 	 }

			422	 	 	 user	=	UserPassword(username,	password)

			423	 	 }

			424	 	 return

			425	 }

			426	

			427	 //	String	reassembles	the	URL	into	a	valid	URL	string.

			428	 func	(u	*URL)	String()	string	{

			429	 	 //	TODO:	Rewrite	to	use	bytes.Buffer

			430	 	 result	:=	""

			431	 	 if	u.Scheme	!=	""	{

			432	 	 	 result	+=	u.Scheme	+	":"

			433	 	 }

			434	 	 if	u.Opaque	!=	""	{

			435	 	 	 result	+=	u.Opaque

			436	 	 }	else	{

			437	 	 	 if	u.Host	!=	""	||	u.User	!=	nil	{

			438	 	 	 	 result	+=	"//"

			439	 	 	 	 if	u	:=	u.User;	u	!=	nil	{

			440	 	 	 	 	 result	+=	u.String()	+	"@"

			441	 	 	 	 }

			442	 	 	 	 result	+=	u.Host

			443	 	 	 }

			444	 	 	 result	+=	escape(u.Path,	encodePath)

			445	 	 }

			446	 	 if	u.RawQuery	!=	""	{

			447	 	 	 result	+=	"?"	+	u.RawQuery

			448	 	 }

			449	 	 if	u.Fragment	!=	""	{

			450	 	 	 result	+=	"#"	+	escape(u.Fragment,	encodeFragment)

			451	 	 }

			452	 	 return	result

			453	 }

			454	

			455	 //	Values	maps	a	string	key	to	a	list	of	values.

			456	 //	It	is	typically	used	for	query	parameters	and	form	values.

			457	 //	Unlike	in	the	http.Header	map,	the	keys	in	a	Values	map

			458	 //	are	case-sensitive.

			459	 type	Values	map[string][]string

			460	

			461	 //	Get	gets	the	first	value	associated	with	the	given	key.

			462	 //	If	there	are	no	values	associated	with	the	key,	Get	returns

			463	 //	the	empty	string.	To	access	multiple	values,	use	the	map

			464	 //	directly.

			465	 func	(v	Values)	Get(key	string)	string	{

			466	 	 if	v	==	nil	{

			467	 	 	 return	""

			468	 	 }

			469	 	 vs,	ok	:=	v[key]

			470	 	 if	!ok	||	len(vs)	==	0	{

			471	 	 	 return	""

			472	 	 }

			473	 	 return	vs[0]

			474	 }

			475	

			476	 //	Set	sets	the	key	to	value.	It	replaces	any	existing

			477	 //	values.

			478	 func	(v	Values)	Set(key,	value	string)	{

			479	 	 v[key]	=	[]string{value}

			480	 }

			481	

			482	 //	Add	adds	the	key	to	value.	It	appends	to	any	existing

			483	 //	values	associated	with	key.

			484	 func	(v	Values)	Add(key,	value	string)	{

			485	 	 v[key]	=	append(v[key],	value)

			486	 }

			487	

			488	 //	Del	deletes	the	values	associated	with	key.

			489	 func	(v	Values)	Del(key	string)	{

			490	 	 delete(v,	key)

			491	 }

			492	

			493	 //	ParseQuery	parses	the	URL-encoded	query	string	and	returns

			494	 //	a	map	listing	the	values	specified	for	each	key.

			495	 //	ParseQuery	always	returns	a	non-nil	map	containing	all	the

			496	 //	valid	query	parameters	found;	err	describes	the	first	decoding	error

			497	 //	encountered,	if	any.

			498	 func	ParseQuery(query	string)	(m	Values,	err	error)	{

			499	 	 m	=	make(Values)

			500	 	 err	=	parseQuery(m,	query)

			501	 	 return

			502	 }

			503	

			504	 func	parseQuery(m	Values,	query	string)	(err	error)	{

			505	 	 for	query	!=	""	{

			506	 	 	 key	:=	query

			507	 	 	 if	i	:=	strings.IndexAny(key,	"&;");	i	>=	0	{

			508	 	 	 	 key,	query	=	key[:i],	key[i+1:]

			509	 	 	 }	else	{

			510	 	 	 	 query	=	""

			511	 	 	 }

			512	 	 	 if	key	==	""	{

			513	 	 	 	 continue

			514	 	 	 }

			515	 	 	 value	:=	""

			516	 	 	 if	i	:=	strings.Index(key,	"=");	i	>=	0	{

			517	 	 	 	 key,	value	=	key[:i],	key[i+1:]

			518	 	 	 }

			519	 	 	 key,	err1	:=	QueryUnescape(key)

			520	 	 	 if	err1	!=	nil	{

			521	 	 	 	 err	=	err1

			522	 	 	 	 continue

			523	 	 	 }

			524	 	 	 value,	err1	=	QueryUnescape(value)

			525	 	 	 if	err1	!=	nil	{

			526	 	 	 	 err	=	err1

			527	 	 	 	 continue

			528	 	 	 }

			529	 	 	 m[key]	=	append(m[key],	value)

			530	 	 }

			531	 	 return	err

			532	 }

			533	

			534	 //	Encode	encodes	the	values	into	``URL	encoded''	form.

			535	 //	e.g.	"foo=bar&bar=baz"

			536	 func	(v	Values)	Encode()	string	{

			537	 	 if	v	==	nil	{

			538	 	 	 return	""

			539	 	 }

			540	 	 parts	:=	make([]string,	0,	len(v))	//	will	be	large	enough	for	most	uses

			541	 	 for	k,	vs	:=	range	v	{

			542	 	 	 prefix	:=	QueryEscape(k)	+	"="

			543	 	 	 for	_,	v	:=	range	vs	{

			544	 	 	 	 parts	=	append(parts,	prefix+QueryEscape(v))

			545	 	 	 }

			546	 	 }

			547	 	 return	strings.Join(parts,	"&")

			548	 }

			549	

			550	 //	resolvePath	applies	special	path	segments	from	refs	and	applies

			551	 //	them	to	base,	per	RFC	2396.

			552	 func	resolvePath(basepath	string,	refpath	string)	string	{

			553	 	 base	:=	strings.Split(basepath,	"/")

			554	 	 refs	:=	strings.Split(refpath,	"/")

			555	 	 if	len(base)	==	0	{

			556	 	 	 base	=	[]string{""}

			557	 	 }

			558	 	 for	idx,	ref	:=	range	refs	{

			559	 	 	 switch	{

			560	 	 	 case	ref	==	".":

			561	 	 	 	 base[len(base)-1]	=	""

			562	 	 	 case	ref	==	"..":

			563	 	 	 	 newLen	:=	len(base)	-	1

			564	 	 	 	 if	newLen	<	1	{

			565	 	 	 	 	 newLen	=	1

			566	 	 	 	 }

			567	 	 	 	 base	=	base[0:newLen]

			568	 	 	 	 base[len(base)-1]	=	""

			569	 	 	 default:

			570	 	 	 	 if	idx	==	0	||	base[len(base)-1]	==	""	{

			571	 	 	 	 	 base[len(base)-1]	=	ref

			572	 	 	 	 }	else	{

			573	 	 	 	 	 base	=	append(base,	ref)

			574	 	 	 	 }

			575	 	 	 }

			576	 	 }

			577	 	 return	strings.Join(base,	"/")

			578	 }

			579	

			580	 //	IsAbs	returns	true	if	the	URL	is	absolute.

			581	 func	(u	*URL)	IsAbs()	bool	{

			582	 	 return	u.Scheme	!=	""

			583	 }

			584	

			585	 //	Parse	parses	a	URL	in	the	context	of	the	receiver.		The	provided	URL

			586	 //	may	be	relative	or	absolute.		Parse	returns	nil,	err	on	parse

			587	 //	failure,	otherwise	its	return	value	is	the	same	as	ResolveReference.

			588	 func	(u	*URL)	Parse(ref	string)	(*URL,	error)	{

			589	 	 refurl,	err	:=	Parse(ref)

			590	 	 if	err	!=	nil	{

			591	 	 	 return	nil,	err

			592	 	 }

			593	 	 return	u.ResolveReference(refurl),	nil

			594	 }

			595	

			596	 //	ResolveReference	resolves	a	URI	reference	to	an	absolute	URI	from

			597	 //	an	absolute	base	URI,	per	RFC	2396	Section	5.2.		The	URI	reference

			598	 //	may	be	relative	or	absolute.		ResolveReference	always	returns	a	new

			599	 //	URL	instance,	even	if	the	returned	URL	is	identical	to	either	the

			600	 //	base	or	reference.	If	ref	is	an	absolute	URL,	then	ResolveReference

			601	 //	ignores	base	and	returns	a	copy	of	ref.

			602	 func	(u	*URL)	ResolveReference(ref	*URL)	*URL	{

			603	 	 if	ref.IsAbs()	{

			604	 	 	 url	:=	*ref

			605	 	 	 return	&url

			606	 	 }

			607	 	 //	relativeURI	=	(net_path	|	abs_path	|	rel_path)	["?"	query]

			608	 	 url	:=	*u

			609	 	 url.RawQuery	=	ref.RawQuery

			610	 	 url.Fragment	=	ref.Fragment

			611	 	 if	ref.Opaque	!=	""	{

			612	 	 	 url.Opaque	=	ref.Opaque

			613	 	 	 url.User	=	nil

			614	 	 	 url.Host	=	""

			615	 	 	 url.Path	=	""

			616	 	 	 return	&url

			617	 	 }

			618	 	 if	ref.Host	!=	""	||	ref.User	!=	nil	{

			619	 	 	 //	The	"net_path"	case.

			620	 	 	 url.Host	=	ref.Host

			621	 	 	 url.User	=	ref.User

			622	 	 }

			623	 	 if	strings.HasPrefix(ref.Path,	"/")	{

			624	 	 	 //	The	"abs_path"	case.

			625	 	 	 url.Path	=	ref.Path

			626	 	 }	else	{

			627	 	 	 //	The	"rel_path"	case.

			628	 	 	 path	:=	resolvePath(u.Path,	ref.Path)

			629	 	 	 if	!strings.HasPrefix(path,	"/")	{

			630	 	 	 	 path	=	"/"	+	path

			631	 	 	 }

			632	 	 	 url.Path	=	path

			633	 	 }

			634	 	 return	&url

			635	 }

			636	

			637	 //	Query	parses	RawQuery	and	returns	the	corresponding	values.

			638	 func	(u	*URL)	Query()	Values	{

			639	 	 v,	_	:=	ParseQuery(u.RawQuery)

			640	 	 return	v

			641	 }

			642	

			643	 //	RequestURI	returns	the	encoded	path?query	or	opaque?query

			644	 //	string	that	would	be	used	in	an	HTTP	request	for	u.

			645	 func	(u	*URL)	RequestURI()	string	{

			646	 	 result	:=	u.Opaque

			647	 	 if	result	==	""	{

			648	 	 	 result	=	escape(u.Path,	encodePath)

			649	 	 	 if	result	==	""	{

			650	 	 	 	 result	=	"/"

			651	 	 	 }

			652	 	 }

			653	 	 if	u.RawQuery	!=	""	{

			654	 	 	 result	+=	"?"	+	u.RawQuery

			655	 	 }

			656	 	 return	result

			657	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/dir_unix.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 package	os

					8	

					9	 import	(

				10	 	 "io"

				11	 	 "syscall"

				12)

				13	

				14	 const	(

				15	 	 blockSize	=	4096

				16)

				17	

				18	 func	(f	*File)	readdirnames(n	int)	(names	[]string,	err	error)	{

				19	 	 //	If	this	file	has	no	dirinfo,	create	one.

				20	 	 if	f.dirinfo	==	nil	{

				21	 	 	 f.dirinfo	=	new(dirInfo)

				22	 	 	 //	The	buffer	must	be	at	least	a	block	long.

				23	 	 	 f.dirinfo.buf	=	make([]byte,	blockSize)

				24	 	 }

				25	 	 d	:=	f.dirinfo

				26	

				27	 	 size	:=	n

				28	 	 if	size	<=	0	{

				29	 	 	 size	=	100

				30	 	 	 n	=	-1

				31	 	 }

				32	

				33	 	 names	=	make([]string,	0,	size)	//	Empty	with	room	to	grow.

				34	 	 for	n	!=	0	{

				35	 	 	 //	Refill	the	buffer	if	necessary

				36	 	 	 if	d.bufp	>=	d.nbuf	{

				37	 	 	 	 d.bufp	=	0

				38	 	 	 	 var	errno	error

				39	 	 	 	 d.nbuf,	errno	=	syscall.ReadDirent(f.fd,	d.buf)

				40	 	 	 	 if	errno	!=	nil	{

				41	 	 	 	 	 return	names,	NewSyscallError("readdirent",	errno)

				42	 	 	 	 }

				43	 	 	 	 if	d.nbuf	<=	0	{

				44	 	 	 	 	 break	//	EOF

				45	 	 	 	 }

				46	 	 	 }

				47	

				48	 	 	 //	Drain	the	buffer

				49	 	 	 var	nb,	nc	int

				50	 	 	 nb,	nc,	names	=	syscall.ParseDirent(d.buf[d.bufp:d.nbuf],	n,	names)

				51	 	 	 d.bufp	+=	nb

				52	 	 	 n	-=	nc

				53	 	 }

				54	 	 if	n	>=	0	&&	len(names)	==	0	{

				55	 	 	 return	names,	io.EOF

				56	 	 }

				57	 	 return	names,	nil

				58	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/doc.go
					1	 //	Copyright	2012	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	os

					6	

					7	 import	"time"

					8	

					9	 //	FindProcess	looks	for	a	running	process	by	its	pid.

				10	 //	The	Process	it	returns	can	be	used	to	obtain	information

				11	 //	about	the	underlying	operating	system	process.

				12	 func	FindProcess(pid	int)	(p	*Process,	err	error)	{

				13	 	 return	findProcess(pid)

				14	 }

				15	

				16	 //	StartProcess	starts	a	new	process	with	the	program,	arguments	and	attributes

				17	 //	specified	by	name,	argv	and	attr.

				18	 //

				19	 //	StartProcess	is	a	low-level	interface.	The	os/exec	package	provides

				20	 //	higher-level	interfaces.

				21	 //

				22	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

				23	 func	StartProcess(name	string,	argv	[]string,	attr	*ProcAttr)	(*Process,	error)	{

				24	 	 return	startProcess(name,	argv,	attr)

				25	 }

				26	

				27	 //	Release	releases	any	resources	associated	with	the	Process	p,

				28	 //	rendering	it	unusable	in	the	future.

				29	 //	Release	only	needs	to	be	called	if	Wait	is	not.

				30	 func	(p	*Process)	Release()	error	{

				31	 	 return	p.release()

				32	 }

				33	

				34	 //	Kill	causes	the	Process	to	exit	immediately.

				35	 func	(p	*Process)	Kill()	error	{

				36	 	 return	p.kill()

				37	 }

				38	

				39	 //	Wait	waits	for	the	Process	to	exit,	and	then	returns	a

				40	 //	ProcessState	describing	its	status	and	an	error,	if	any.

				41	 //	Wait	releases	any	resources	associated	with	the	Process.

				42	 func	(p	*Process)	Wait()	(*ProcessState,	error)	{

				43	 	 return	p.wait()

				44	 }

				45	

				46	 //	Signal	sends	a	signal	to	the	Process.

				47	 func	(p	*Process)	Signal(sig	Signal)	error	{

				48	 	 return	p.signal(sig)

				49	 }

				50	

				51	 //	UserTime	returns	the	user	CPU	time	of	the	exited	process	and	its	children.

				52	 func	(p	*ProcessState)	UserTime()	time.Duration	{

				53	 	 return	p.userTime()

				54	 }

				55	

				56	 //	SystemTime	returns	the	system	CPU	time	of	the	exited	process	and	its	children.

				57	 func	(p	*ProcessState)	SystemTime()	time.Duration	{

				58	 	 return	p.systemTime()

				59	 }

				60	

				61	 //	Exited	returns	whether	the	program	has	exited.

				62	 func	(p	*ProcessState)	Exited()	bool	{

				63	 	 return	p.exited()

				64	 }

				65	

				66	 //	Success	reports	whether	the	program	exited	successfully,

				67	 //	such	as	with	exit	status	0	on	Unix.

				68	 func	(p	*ProcessState)	Success()	bool	{

				69	 	 return	p.success()

				70	 }

				71	

				72	 //	Sys	returns	system-dependent	exit	information	about

				73	 //	the	process.		Convert	it	to	the	appropriate	underlying

				74	 //	type,	such	as	syscall.WaitStatus	on	Unix,	to	access	its	contents.

				75	 func	(p	*ProcessState)	Sys()	interface{}	{

				76	 	 return	p.sys()

				77	 }

				78	

				79	 //	SysUsage	returns	system-dependent	resource	usage	information	about

				80	 //	the	exited	process.		Convert	it	to	the	appropriate	underlying

				81	 //	type,	such	as	*syscall.Rusage	on	Unix,	to	access	its	contents.

				82	 func	(p	*ProcessState)	SysUsage()	interface{}	{

				83	 	 return	p.sysUsage()

				84	 }

				85	

				86	 //	Hostname	returns	the	host	name	reported	by	the	kernel.

				87	 func	Hostname()	(name	string,	err	error)	{

				88	 	 return	hostname()

				89	 }

				90	

				91	 //	Readdir	reads	the	contents	of	the	directory	associated	with	file	and

				92	 //	returns	an	array	of	up	to	n	FileInfo	values,	as	would	be	returned

				93	 //	by	Lstat,	in	directory	order.	Subsequent	calls	on	the	same	file	will	yield

				94	 //	further	FileInfos.

				95	 //

				96	 //	If	n	>	0,	Readdir	returns	at	most	n	FileInfo	structures.	In	this	case,	if

				97	 //	Readdir	returns	an	empty	slice,	it	will	return	a	non-nil	error

				98	 //	explaining	why.	At	the	end	of	a	directory,	the	error	is	io.EOF.

				99	 //

			100	 //	If	n	<=	0,	Readdir	returns	all	the	FileInfo	from	the	directory	in

			101	 //	a	single	slice.	In	this	case,	if	Readdir	succeeds	(reads	all

			102	 //	the	way	to	the	end	of	the	directory),	it	returns	the	slice	and	a

			103	 //	nil	error.	If	it	encounters	an	error	before	the	end	of	the

			104	 //	directory,	Readdir	returns	the	FileInfo	read	until	that	point

			105	 //	and	a	non-nil	error.

			106	 func	(f	*File)	Readdir(n	int)	(fi	[]FileInfo,	err	error)	{

			107	 	 return	f.readdir(n)

			108	 }

			109	

			110	 //	Readdirnames	reads	and	returns	a	slice	of	names	from	the	directory	f.

			111	 //

			112	 //	If	n	>	0,	Readdirnames	returns	at	most	n	names.	In	this	case,	if

			113	 //	Readdirnames	returns	an	empty	slice,	it	will	return	a	non-nil	error

			114	 //	explaining	why.	At	the	end	of	a	directory,	the	error	is	io.EOF.

			115	 //

			116	 //	If	n	<=	0,	Readdirnames	returns	all	the	names	from	the	directory	in

			117	 //	a	single	slice.	In	this	case,	if	Readdirnames	succeeds	(reads	all

			118	 //	the	way	to	the	end	of	the	directory),	it	returns	the	slice	and	a

			119	 //	nil	error.	If	it	encounters	an	error	before	the	end	of	the

			120	 //	directory,	Readdirnames	returns	the	names	read	until	that	point	and

			121	 //	a	non-nil	error.

			122	 func	(f	*File)	Readdirnames(n	int)	(names	[]string,	err	error)	{

			123	 	 return	f.readdirnames(n)

			124	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/env.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	General	environment	variables.

					6	

					7	 package	os

					8	

					9	 import	"syscall"

				10	

				11	 //	Expand	replaces	${var}	or	$var	in	the	string	based	on	the	mapping	function.

				12	 //	Invocations	of	undefined	variables	are	replaced	with	the	empty	string.

				13	 func	Expand(s	string,	mapping	func(string)	string)	string	{

				14	 	 buf	:=	make([]byte,	0,	2*len(s))

				15	 	 //	${}	is	all	ASCII,	so	bytes	are	fine	for	this	operation.

				16	 	 i	:=	0

				17	 	 for	j	:=	0;	j	<	len(s);	j++	{

				18	 	 	 if	s[j]	==	'$'	&&	j+1	<	len(s)	{

				19	 	 	 	 buf	=	append(buf,	s[i:j]...)

				20	 	 	 	 name,	w	:=	getShellName(s[j+1:])

				21	 	 	 	 buf	=	append(buf,	mapping(name)...)

				22	 	 	 	 j	+=	w

				23	 	 	 	 i	=	j	+	1

				24	 	 	 }

				25	 	 }

				26	 	 return	string(buf)	+	s[i:]

				27	 }

				28	

				29	 //	ExpandEnv	replaces	${var}	or	$var	in	the	string	according	to	the	values

				30	 //	of	the	current	environment	variables.		References	to	undefined

				31	 //	variables	are	replaced	by	the	empty	string.

				32	 func	ExpandEnv(s	string)	string	{

				33	 	 return	Expand(s,	Getenv)

				34	 }

				35	

				36	 //	isSpellSpecialVar	reports	whether	the	character	identifies	a	special

				37	 //	shell	variable	such	as	$*.

				38	 func	isShellSpecialVar(c	uint8)	bool	{

				39	 	 switch	c	{

				40	 	 case	'*',	'#',	'$',	'@',	'!',	'?',	'0',	'1',	'2',	'3',	'4',	'5',	'6',	'7',	'8',	'9':

				41	 	 	 return	true

				42	 	 }

				43	 	 return	false

				44	 }

				45	

				46	 //	isAlphaNum	reports	whether	the	byte	is	an	ASCII	letter,	number,	or	underscore

				47	 func	isAlphaNum(c	uint8)	bool	{

				48	 	 return	c	==	'_'	||	'0'	<=	c	&&	c	<=	'9'	||	'a'	<=	c	&&	c	<=	'z'	||	'A'	<=	c	&&	c	<=	'Z'

				49	 }

				50	

				51	 //	getName	returns	the	name	that	begins	the	string	and	the	number	of	bytes

				52	 //	consumed	to	extract	it.		If	the	name	is	enclosed	in	{},	it's	part	of	a	${}

				53	 //	expansion	and	two	more	bytes	are	needed	than	the	length	of	the	name.

				54	 func	getShellName(s	string)	(string,	int)	{

				55	 	 switch	{

				56	 	 case	s[0]	==	'{':

				57	 	 	 if	len(s)	>	2	&&	isShellSpecialVar(s[1])	&&	s[2]	==	'}'	{

				58	 	 	 	 return	s[1:2],	3

				59	 	 	 }

				60	 	 	 //	Scan	to	closing	brace

				61	 	 	 for	i	:=	1;	i	<	len(s);	i++	{

				62	 	 	 	 if	s[i]	==	'}'	{

				63	 	 	 	 	 return	s[1:i],	i	+	1

				64	 	 	 	 }

				65	 	 	 }

				66	 	 	 return	"",	1	//	Bad	syntax;	just	eat	the	brace.

				67	 	 case	isShellSpecialVar(s[0]):

				68	 	 	 return	s[0:1],	1

				69	 	 }

				70	 	 //	Scan	alphanumerics.

				71	 	 var	i	int

				72	 	 for	i	=	0;	i	<	len(s)	&&	isAlphaNum(s[i]);	i++	{

				73	 	 }

				74	 	 return	s[:i],	i

				75	 }

				76	

				77	 //	Getenv	retrieves	the	value	of	the	environment	variable	named	by	the	key.

				78	 //	It	returns	the	value,	which	will	be	empty	if	the	variable	is	not	present.

				79	 func	Getenv(key	string)	string	{

				80	 	 v,	_	:=	syscall.Getenv(key)

				81	 	 return	v

				82	 }

				83	

				84	 //	Setenv	sets	the	value	of	the	environment	variable	named	by	the	key.

				85	 //	It	returns	an	error,	if	any.

				86	 func	Setenv(key,	value	string)	error	{

				87	 	 err	:=	syscall.Setenv(key,	value)

				88	 	 if	err	!=	nil	{

				89	 	 	 return	NewSyscallError("setenv",	err)

				90	 	 }

				91	 	 return	nil

				92	 }

				93	

				94	 //	Clearenv	deletes	all	environment	variables.

				95	 func	Clearenv()	{

				96	 	 syscall.Clearenv()

				97	 }

				98	

				99	 //	Environ	returns	a	copy	of	strings	representing	the	environment,

			100	 //	in	the	form	"key=value".

			101	 func	Environ()	[]string	{

			102	 	 return	syscall.Environ()

			103	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/error.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	os

					6	

					7	 import	(

					8	 	 "errors"

					9)

				10	

				11	 //	Portable	analogs	of	some	common	system	call	errors.

				12	 var	(

				13	 	 ErrInvalid				=	errors.New("invalid	argument")

				14	 	 ErrPermission	=	errors.New("permission	denied")

				15	 	 ErrExist						=	errors.New("file	already	exists")

				16	 	 ErrNotExist			=	errors.New("file	does	not	exist")

				17)

				18	

				19	 //	PathError	records	an	error	and	the	operation	and	file	path	that	caused	it.

				20	 type	PathError	struct	{

				21	 	 Op			string

				22	 	 Path	string

				23	 	 Err		error

				24	 }

				25	

				26	 func	(e	*PathError)	Error()	string	{	return	e.Op	+	"	"	+	e.Path	+	":	"	+	e.Err.Error()	}

				27	

				28	 //	SyscallError	records	an	error	from	a	specific	system	call.

				29	 type	SyscallError	struct	{

				30	 	 Syscall	string

				31	 	 Err					error

				32	 }

				33	

				34	 func	(e	*SyscallError)	Error()	string	{	return	e.Syscall	+	":	"	+	e.Err.Error()	}

				35	

				36	 //	NewSyscallError	returns,	as	an	error,	a	new	SyscallError

				37	 //	with	the	given	system	call	name	and	error	details.

				38	 //	As	a	convenience,	if	err	is	nil,	NewSyscallError	returns	nil.

				39	 func	NewSyscallError(syscall	string,	err	error)	error	{

				40	 	 if	err	==	nil	{

				41	 	 	 return	nil

				42	 	 }

				43	 	 return	&SyscallError{syscall,	err}

				44	 }

				45	

				46	 //	IsExist	returns	whether	the	error	is	known	to	report	that	a	file	or	directory	

				47	 //	already	exists.	It	is	satisfied	by	ErrExist	as	well	as	some	syscall	errors.

				48	 func	IsExist(err	error)	bool	{

				49	 	 return	isExist(err)

				50	 }

				51	

				52	 //	IsNotExist	returns	whether	the	error	is	known	to	report	that	a	file	or	directory

				53	 //	does	not	exist.	It	is	satisfied	by	ErrNotExist	as	well	as	some	syscall	errors.

				54	 func	IsNotExist(err	error)	bool	{

				55	 	 return	isNotExist(err)

				56	 }

				57	

				58	 //	IsPermission	returns	whether	the	error	is	known	to	report	that	permission	is	denied.

				59	 //	It	is	satisfied	by	ErrPermission	as	well	as	some	syscall	errors.

				60	 func	IsPermission(err	error)	bool	{

				61	 	 return	isPermission(err)

				62	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/error_posix.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 package	os

					8	

					9	 import	"syscall"

				10	

				11	 func	isExist(err	error)	bool	{

				12	 	 if	pe,	ok	:=	err.(*PathError);	ok	{

				13	 	 	 err	=	pe.Err

				14	 	 }

				15	 	 return	err	==	syscall.EEXIST	||	err	==	ErrExist

				16	 }

				17	

				18	 func	isNotExist(err	error)	bool	{

				19	 	 if	pe,	ok	:=	err.(*PathError);	ok	{

				20	 	 	 err	=	pe.Err

				21	 	 }

				22	 	 return	err	==	syscall.ENOENT	||	err	==	ErrNotExist

				23	 }

				24	

				25	 func	isPermission(err	error)	bool	{

				26	 	 if	pe,	ok	:=	err.(*PathError);	ok	{

				27	 	 	 err	=	pe.Err

				28	 	 }

				29	 	 return	err	==	syscall.EACCES	||	err	==	syscall.EPERM	||	err	==	ErrPermission

				30	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/exec.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	os

					6	

					7	 import	(

					8	 	 "runtime"

					9	 	 "syscall"

				10)

				11	

				12	 //	Process	stores	the	information	about	a	process	created	by	StartProcess.

				13	 type	Process	struct	{

				14	 	 Pid				int

				15	 	 handle	uintptr

				16	 	 done			bool	//	process	has	been	successfully	waited	on

				17	 }

				18	

				19	 func	newProcess(pid	int,	handle	uintptr)	*Process	{

				20	 	 p	:=	&Process{Pid:	pid,	handle:	handle}

				21	 	 runtime.SetFinalizer(p,	(*Process).Release)

				22	 	 return	p

				23	 }

				24	

				25	 //	ProcAttr	holds	the	attributes	that	will	be	applied	to	a	new	process

				26	 //	started	by	StartProcess.

				27	 type	ProcAttr	struct	{

				28	 	 //	If	Dir	is	non-empty,	the	child	changes	into	the	directory	before

				29	 	 //	creating	the	process.

				30	 	 Dir	string

				31	 	 //	If	Env	is	non-nil,	it	gives	the	environment	variables	for	the

				32	 	 //	new	process	in	the	form	returned	by	Environ.

				33	 	 //	If	it	is	nil,	the	result	of	Environ	will	be	used.

				34	 	 Env	[]string

				35	 	 //	Files	specifies	the	open	files	inherited	by	the	new	process.		The

				36	 	 //	first	three	entries	correspond	to	standard	input,	standard	output,	and

				37	 	 //	standard	error.		An	implementation	may	support	additional	entries,

				38	 	 //	depending	on	the	underlying	operating	system.		A	nil	entry	corresponds

				39	 	 //	to	that	file	being	closed	when	the	process	starts.

				40	 	 Files	[]*File

				41	

				42	 	 //	Operating	system-specific	process	creation	attributes.

				43	 	 //	Note	that	setting	this	field	means	that	your	program

				44	 	 //	may	not	execute	properly	or	even	compile	on	some

				45	 	 //	operating	systems.

				46	 	 Sys	*syscall.SysProcAttr

				47	 }

				48	

				49	 //	A	Signal	represents	an	operating	system	signal.

				50	 //	The	usual	underlying	implementation	is	operating	system-dependent:

				51	 //	on	Unix	it	is	syscall.Signal.

				52	 type	Signal	interface	{

				53	 	 String()	string

				54	 	 Signal()	//	to	distinguish	from	other	Stringers

				55	 }

				56	

				57	 //	The	only	signal	values	guaranteed	to	be	present	on	all	systems

				58	 //	are	Interrupt	(send	the	process	an	interrupt)	and

				59	 //	Kill	(force	the	process	to	exit).

				60	 var	(

				61	 	 Interrupt	Signal	=	syscall.SIGINT

				62	 	 Kill						Signal	=	syscall.SIGKILL

				63)

				64	

				65	 //	Getpid	returns	the	process	id	of	the	caller.

				66	 func	Getpid()	int	{	return	syscall.Getpid()	}

				67	

				68	 //	Getppid	returns	the	process	id	of	the	caller's	parent.

				69	 func	Getppid()	int	{	return	syscall.Getppid()	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/exec_posix.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd	windows

					6	

					7	 package	os

					8	

					9	 import	(

				10	 	 "syscall"

				11)

				12	

				13	 func	startProcess(name	string,	argv	[]string,	attr	*ProcAttr)	(p	*Process,	err	error)	{

				14	 	 //	Double-check	existence	of	the	directory	we	want

				15	 	 //	to	chdir	into.		We	can	make	the	error	clearer	this	way.

				16	 	 if	attr	!=	nil	&&	attr.Dir	!=	""	{

				17	 	 	 if	_,	err	:=	Stat(attr.Dir);	err	!=	nil	{

				18	 	 	 	 pe	:=	err.(*PathError)

				19	 	 	 	 pe.Op	=	"chdir"

				20	 	 	 	 return	nil,	pe

				21	 	 	 }

				22	 	 }

				23	

				24	 	 sysattr	:=	&syscall.ProcAttr{

				25	 	 	 Dir:	attr.Dir,

				26	 	 	 Env:	attr.Env,

				27	 	 	 Sys:	attr.Sys,

				28	 	 }

				29	 	 if	sysattr.Env	==	nil	{

				30	 	 	 sysattr.Env	=	Environ()

				31	 	 }

				32	 	 for	_,	f	:=	range	attr.Files	{

				33	 	 	 sysattr.Files	=	append(sysattr.Files,	f.Fd())

				34	 	 }

				35	

				36	 	 pid,	h,	e	:=	syscall.StartProcess(name,	argv,	sysattr)

				37	 	 if	e	!=	nil	{

				38	 	 	 return	nil,	&PathError{"fork/exec",	name,	e}

				39	 	 }

				40	 	 return	newProcess(pid,	h),	nil

				41	 }

				42	

				43	 func	(p	*Process)	kill()	error	{

				44	 	 return	p.Signal(Kill)

				45	 }

				46	

				47	 //	ProcessState	stores	information	about	a	process,	as	reported	by	Wait.

				48	 type	ProcessState	struct	{

				49	 	 pid				int																//	The	process's	id.

				50	 	 status	syscall.WaitStatus	//	System-dependent	status	info.

				51	 	 rusage	*syscall.Rusage

				52	 }

				53	

				54	 //	Pid	returns	the	process	id	of	the	exited	process.

				55	 func	(p	*ProcessState)	Pid()	int	{

				56	 	 return	p.pid

				57	 }

				58	

				59	 func	(p	*ProcessState)	exited()	bool	{

				60	 	 return	p.status.Exited()

				61	 }

				62	

				63	 func	(p	*ProcessState)	success()	bool	{

				64	 	 return	p.status.ExitStatus()	==	0

				65	 }

				66	

				67	 func	(p	*ProcessState)	sys()	interface{}	{

				68	 	 return	p.status

				69	 }

				70	

				71	 func	(p	*ProcessState)	sysUsage()	interface{}	{

				72	 	 return	p.rusage

				73	 }

				74	

				75	 //	Convert	i	to	decimal	string.

				76	 func	itod(i	int)	string	{

				77	 	 if	i	==	0	{

				78	 	 	 return	"0"

				79	 	 }

				80	

				81	 	 u	:=	uint64(i)

				82	 	 if	i	<	0	{

				83	 	 	 u	=	-u

				84	 	 }

				85	

				86	 	 //	Assemble	decimal	in	reverse	order.

				87	 	 var	b	[32]byte

				88	 	 bp	:=	len(b)

				89	 	 for	;	u	>	0;	u	/=	10	{

				90	 	 	 bp--

				91	 	 	 b[bp]	=	byte(u%10)	+	'0'

				92	 	 }

				93	

				94	 	 if	i	<	0	{

				95	 	 	 bp--

				96	 	 	 b[bp]	=	'-'

				97	 	 }

				98	

				99	 	 return	string(b[bp:])

			100	 }

			101	

			102	 func	(p	*ProcessState)	String()	string	{

			103	 	 if	p	==	nil	{

			104	 	 	 return	"<nil>"

			105	 	 }

			106	 	 status	:=	p.Sys().(syscall.WaitStatus)

			107	 	 res	:=	""

			108	 	 switch	{

			109	 	 case	status.Exited():

			110	 	 	 res	=	"exit	status	"	+	itod(status.ExitStatus())

			111	 	 case	status.Signaled():

			112	 	 	 res	=	"signal	"	+	itod(int(status.Signal()))

			113	 	 case	status.Stopped():

			114	 	 	 res	=	"stop	signal	"	+	itod(int(status.StopSignal()))

			115	 	 	 if	status.StopSignal()	==	syscall.SIGTRAP	&&	status.TrapCause()	!=	0	{

			116	 	 	 	 res	+=	"	(trap	"	+	itod(status.TrapCause())	+	")"

			117	 	 	 }

			118	 	 case	status.Continued():

			119	 	 	 res	=	"continued"

			120	 	 }

			121	 	 if	status.CoreDump()	{

			122	 	 	 res	+=	"	(core	dumped)"

			123	 	 }

			124	 	 return	res

			125	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/exec_unix.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 package	os

					8	

					9	 import	(

				10	 	 "errors"

				11	 	 "runtime"

				12	 	 "syscall"

				13	 	 "time"

				14)

				15	

				16	 func	(p	*Process)	wait()	(ps	*ProcessState,	err	error)	{

				17	 	 if	p.Pid	==	-1	{

				18	 	 	 return	nil,	syscall.EINVAL

				19	 	 }

				20	 	 var	status	syscall.WaitStatus

				21	 	 var	rusage	syscall.Rusage

				22	 	 pid1,	e	:=	syscall.Wait4(p.Pid,	&status,	0,	&rusage)

				23	 	 if	e	!=	nil	{

				24	 	 	 return	nil,	NewSyscallError("wait",	e)

				25	 	 }

				26	 	 if	pid1	!=	0	{

				27	 	 	 p.done	=	true

				28	 	 }

				29	 	 ps	=	&ProcessState{

				30	 	 	 pid:				pid1,

				31	 	 	 status:	status,

				32	 	 	 rusage:	&rusage,

				33	 	 }

				34	 	 return	ps,	nil

				35	 }

				36	

				37	 func	(p	*Process)	signal(sig	Signal)	error	{

				38	 	 if	p.done	{

				39	 	 	 return	errors.New("os:	process	already	finished")

				40	 	 }

				41	 	 s,	ok	:=	sig.(syscall.Signal)

				42	 	 if	!ok	{

				43	 	 	 return	errors.New("os:	unsupported	signal	type")

				44	 	 }

				45	 	 if	e	:=	syscall.Kill(p.Pid,	s);	e	!=	nil	{

				46	 	 	 return	e

				47	 	 }

				48	 	 return	nil

				49	 }

				50	

				51	 func	(p	*Process)	release()	error	{

				52	 	 //	NOOP	for	unix.

				53	 	 p.Pid	=	-1

				54	 	 //	no	need	for	a	finalizer	anymore

				55	 	 runtime.SetFinalizer(p,	nil)

				56	 	 return	nil

				57	 }

				58	

				59	 func	findProcess(pid	int)	(p	*Process,	err	error)	{

				60	 	 //	NOOP	for	unix.

				61	 	 return	newProcess(pid,	0),	nil

				62	 }

				63	

				64	 func	(p	*ProcessState)	userTime()	time.Duration	{

				65	 	 return	time.Duration(p.rusage.Utime.Nano())	*	time.Nanosecond

				66	 }

				67	

				68	 func	(p	*ProcessState)	systemTime()	time.Duration	{

				69	 	 return	time.Duration(p.rusage.Stime.Nano())	*	time.Nanosecond

				70	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/file.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	os	provides	a	platform-independent	interface	to	operating	system

					6	 //	functionality.	The	design	is	Unix-like,	although	the	error	handling	is

					7	 //	Go-like;	failing	calls	return	values	of	type	error	rather	than	error	numbers.

					8	 //	Often,	more	information	is	available	within	the	error.	For	example,

					9	 //	if	a	call	that	takes	a	file	name	fails,	such	as	Open	or	Stat,	the	error

				10	 //	will	include	the	failing	file	name	when	printed	and	will	be	of	type

				11	 //	*PathError,	which	may	be	unpacked	for	more	information.

				12	 //	

				13	 //	The	os	interface	is	intended	to	be	uniform	across	all	operating	systems.

				14	 //	Features	not	generally	available	appear	in	the	system-specific	package	syscall.

				15	 //

				16	 //	Here	is	a	simple	example,	opening	a	file	and	reading	some	of	it.

				17	 //

				18	 //	 file,	err	:=	os.Open("file.go")	//	For	read	access.

				19	 //	 if	err	!=	nil	{

				20	 //	 	 log.Fatal(err)

				21	 //	 }

				22	 //

				23	 //	If	the	open	fails,	the	error	string	will	be	self-explanatory,	like

				24	 //

				25	 //	 open	file.go:	no	such	file	or	directory

				26	 //

				27	 //	The	file's	data	can	then	be	read	into	a	slice	of	bytes.	Read	and

				28	 //	Write	take	their	byte	counts	from	the	length	of	the	argument	slice.

				29	 //

				30	 //	 data	:=	make([]byte,	100)

				31	 //	 count,	err	:=	file.Read(data)

				32	 //	 if	err	!=	nil	{

				33	 //	 	 log.Fatal(err)

				34	 //	 }

				35	 //	 fmt.Printf("read	%d	bytes:	%q\n",	count,	data[:count])

				36	 //

				37	 package	os

				38	

				39	 import	(

				40	 	 "io"

				41	 	 "syscall"

				42)

				43	

				44	 //	Name	returns	the	name	of	the	file	as	presented	to	Open.

				45	 func	(f	*File)	Name()	string	{	return	f.name	}

				46	

				47	 //	Stdin,	Stdout,	and	Stderr	are	open	Files	pointing	to	the	standard	input,

				48	 //	standard	output,	and	standard	error	file	descriptors.

				49	 var	(

				50	 	 Stdin		=	NewFile(uintptr(syscall.Stdin),	"/dev/stdin")

				51	 	 Stdout	=	NewFile(uintptr(syscall.Stdout),	"/dev/stdout")

				52	 	 Stderr	=	NewFile(uintptr(syscall.Stderr),	"/dev/stderr")

				53)

				54	

				55	 //	Flags	to	Open	wrapping	those	of	the	underlying	system.	Not	all	flags

				56	 //	may	be	implemented	on	a	given	system.

				57	 const	(

				58	 	 O_RDONLY	int	=	syscall.O_RDONLY	//	open	the	file	read-only.

				59	 	 O_WRONLY	int	=	syscall.O_WRONLY	//	open	the	file	write-only.

				60	 	 O_RDWR			int	=	syscall.O_RDWR			//	open	the	file	read-write.

				61	 	 O_APPEND	int	=	syscall.O_APPEND	//	append	data	to	the	file	when	writing.

				62	 	 O_CREATE	int	=	syscall.O_CREAT		//	create	a	new	file	if	none	exists.

				63	 	 O_EXCL			int	=	syscall.O_EXCL			//	used	with	O_CREATE,	file	must	not	exist

				64	 	 O_SYNC			int	=	syscall.O_SYNC			//	open	for	synchronous	I/O.

				65	 	 O_TRUNC		int	=	syscall.O_TRUNC		//	if	possible,	truncate	file	when	opened.

				66)

				67	

				68	 //	Seek	whence	values.

				69	 const	(

				70	 	 SEEK_SET	int	=	0	//	seek	relative	to	the	origin	of	the	file

				71	 	 SEEK_CUR	int	=	1	//	seek	relative	to	the	current	offset

				72	 	 SEEK_END	int	=	2	//	seek	relative	to	the	end

				73)

				74	

				75	 //	LinkError	records	an	error	during	a	link	or	symlink	or	rename

				76	 //	system	call	and	the	paths	that	caused	it.

				77	 type	LinkError	struct	{

				78	 	 Op		string

				79	 	 Old	string

				80	 	 New	string

				81	 	 Err	error

				82	 }

				83	

				84	 func	(e	*LinkError)	Error()	string	{

				85	 	 return	e.Op	+	"	"	+	e.Old	+	"	"	+	e.New	+	":	"	+	e.Err.Error()

				86	 }

				87	

				88	 //	Read	reads	up	to	len(b)	bytes	from	the	File.

				89	 //	It	returns	the	number	of	bytes	read	and	an	error,	if	any.

				90	 //	EOF	is	signaled	by	a	zero	count	with	err	set	to	io.EOF.

				91	 func	(f	*File)	Read(b	[]byte)	(n	int,	err	error)	{

				92	 	 if	f	==	nil	{

				93	 	 	 return	0,	ErrInvalid

				94	 	 }

				95	 	 n,	e	:=	f.read(b)

				96	 	 if	n	<	0	{

				97	 	 	 n	=	0

				98	 	 }

				99	 	 if	n	==	0	&&	len(b)	>	0	&&	e	==	nil	{

			100	 	 	 return	0,	io.EOF

			101	 	 }

			102	 	 if	e	!=	nil	{

			103	 	 	 err	=	&PathError{"read",	f.name,	e}

			104	 	 }

			105	 	 return	n,	err

			106	 }

			107	

			108	 //	ReadAt	reads	len(b)	bytes	from	the	File	starting	at	byte	offset	off.

			109	 //	It	returns	the	number	of	bytes	read	and	the	error,	if	any.

			110	 //	ReadAt	always	returns	a	non-nil	error	when	n	<	len(b).

			111	 //	At	end	of	file,	that	error	is	io.EOF.

			112	 func	(f	*File)	ReadAt(b	[]byte,	off	int64)	(n	int,	err	error)	{

			113	 	 if	f	==	nil	{

			114	 	 	 return	0,	ErrInvalid

			115	 	 }

			116	 	 for	len(b)	>	0	{

			117	 	 	 m,	e	:=	f.pread(b,	off)

			118	 	 	 if	m	==	0	&&	e	==	nil	{

			119	 	 	 	 return	n,	io.EOF

			120	 	 	 }

			121	 	 	 if	e	!=	nil	{

			122	 	 	 	 err	=	&PathError{"read",	f.name,	e}

			123	 	 	 	 break

			124	 	 	 }

			125	 	 	 n	+=	m

			126	 	 	 b	=	b[m:]

			127	 	 	 off	+=	int64(m)

			128	 	 }

			129	 	 return

			130	 }

			131	

			132	 //	Write	writes	len(b)	bytes	to	the	File.

			133	 //	It	returns	the	number	of	bytes	written	and	an	error,	if	any.

			134	 //	Write	returns	a	non-nil	error	when	n	!=	len(b).

			135	 func	(f	*File)	Write(b	[]byte)	(n	int,	err	error)	{

			136	 	 if	f	==	nil	{

			137	 	 	 return	0,	ErrInvalid

			138	 	 }

			139	 	 n,	e	:=	f.write(b)

			140	 	 if	n	<	0	{

			141	 	 	 n	=	0

			142	 	 }

			143	

			144	 	 epipecheck(f,	e)

			145	

			146	 	 if	e	!=	nil	{

			147	 	 	 err	=	&PathError{"write",	f.name,	e}

			148	 	 }

			149	 	 return	n,	err

			150	 }

			151	

			152	 //	WriteAt	writes	len(b)	bytes	to	the	File	starting	at	byte	offset	off.

			153	 //	It	returns	the	number	of	bytes	written	and	an	error,	if	any.

			154	 //	WriteAt	returns	a	non-nil	error	when	n	!=	len(b).

			155	 func	(f	*File)	WriteAt(b	[]byte,	off	int64)	(n	int,	err	error)	{

			156	 	 if	f	==	nil	{

			157	 	 	 return	0,	ErrInvalid

			158	 	 }

			159	 	 for	len(b)	>	0	{

			160	 	 	 m,	e	:=	f.pwrite(b,	off)

			161	 	 	 if	e	!=	nil	{

			162	 	 	 	 err	=	&PathError{"write",	f.name,	e}

			163	 	 	 	 break

			164	 	 	 }

			165	 	 	 n	+=	m

			166	 	 	 b	=	b[m:]

			167	 	 	 off	+=	int64(m)

			168	 	 }

			169	 	 return

			170	 }

			171	

			172	 //	Seek	sets	the	offset	for	the	next	Read	or	Write	on	file	to	offset,	interpreted

			173	 //	according	to	whence:	0	means	relative	to	the	origin	of	the	file,	1	means

			174	 //	relative	to	the	current	offset,	and	2	means	relative	to	the	end.

			175	 //	It	returns	the	new	offset	and	an	error,	if	any.

			176	 func	(f	*File)	Seek(offset	int64,	whence	int)	(ret	int64,	err	error)	{

			177	 	 r,	e	:=	f.seek(offset,	whence)

			178	 	 if	e	==	nil	&&	f.dirinfo	!=	nil	&&	r	!=	0	{

			179	 	 	 e	=	syscall.EISDIR

			180	 	 }

			181	 	 if	e	!=	nil	{

			182	 	 	 return	0,	&PathError{"seek",	f.name,	e}

			183	 	 }

			184	 	 return	r,	nil

			185	 }

			186	

			187	 //	WriteString	is	like	Write,	but	writes	the	contents	of	string	s	rather	than

			188	 //	an	array	of	bytes.

			189	 func	(f	*File)	WriteString(s	string)	(ret	int,	err	error)	{

			190	 	 if	f	==	nil	{

			191	 	 	 return	0,	ErrInvalid

			192	 	 }

			193	 	 return	f.Write([]byte(s))

			194	 }

			195	

			196	 //	Mkdir	creates	a	new	directory	with	the	specified	name	and	permission	bits.

			197	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			198	 func	Mkdir(name	string,	perm	FileMode)	error	{

			199	 	 e	:=	syscall.Mkdir(name,	syscallMode(perm))

			200	 	 if	e	!=	nil	{

			201	 	 	 return	&PathError{"mkdir",	name,	e}

			202	 	 }

			203	 	 return	nil

			204	 }

			205	

			206	 //	Chdir	changes	the	current	working	directory	to	the	named	directory.

			207	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			208	 func	Chdir(dir	string)	error	{

			209	 	 if	e	:=	syscall.Chdir(dir);	e	!=	nil	{

			210	 	 	 return	&PathError{"chdir",	dir,	e}

			211	 	 }

			212	 	 return	nil

			213	 }

			214	

			215	 //	Chdir	changes	the	current	working	directory	to	the	file,

			216	 //	which	must	be	a	directory.

			217	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			218	 func	(f	*File)	Chdir()	error	{

			219	 	 if	e	:=	syscall.Fchdir(f.fd);	e	!=	nil	{

			220	 	 	 return	&PathError{"chdir",	f.name,	e}

			221	 	 }

			222	 	 return	nil

			223	 }

			224	

			225	 //	Open	opens	the	named	file	for	reading.		If	successful,	methods	on

			226	 //	the	returned	file	can	be	used	for	reading;	the	associated	file

			227	 //	descriptor	has	mode	O_RDONLY.

			228	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			229	 func	Open(name	string)	(file	*File,	err	error)	{

			230	 	 return	OpenFile(name,	O_RDONLY,	0)

			231	 }

			232	

			233	 //	Create	creates	the	named	file	mode	0666	(before	umask),	truncating

			234	 //	it	if	it	already	exists.		If	successful,	methods	on	the	returned

			235	 //	File	can	be	used	for	I/O;	the	associated	file	descriptor	has	mode

			236	 //	O_RDWR.

			237	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			238	 func	Create(name	string)	(file	*File,	err	error)	{

			239	 	 return	OpenFile(name,	O_RDWR|O_CREATE|O_TRUNC,	0666)

			240	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/file_posix.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd	windows

					6	

					7	 package	os

					8	

					9	 import	(

				10	 	 "syscall"

				11	 	 "time"

				12)

				13	

				14	 func	sigpipe()	//	implemented	in	package	runtime

				15	

				16	 func	epipecheck(file	*File,	e	error)	{

				17	 	 if	e	==	syscall.EPIPE	{

				18	 	 	 file.nepipe++

				19	 	 	 if	file.nepipe	>=	10	{

				20	 	 	 	 sigpipe()

				21	 	 	 }

				22	 	 }	else	{

				23	 	 	 file.nepipe	=	0

				24	 	 }

				25	 }

				26	

				27	 //	Link	creates	newname	as	a	hard	link	to	the	oldname	file.

				28	 //	If	there	is	an	error,	it	will	be	of	type	*LinkError.

				29	 func	Link(oldname,	newname	string)	error	{

				30	 	 e	:=	syscall.Link(oldname,	newname)

				31	 	 if	e	!=	nil	{

				32	 	 	 return	&LinkError{"link",	oldname,	newname,	e}

				33	 	 }

				34	 	 return	nil

				35	 }

				36	

				37	 //	Symlink	creates	newname	as	a	symbolic	link	to	oldname.

				38	 //	If	there	is	an	error,	it	will	be	of	type	*LinkError.

				39	 func	Symlink(oldname,	newname	string)	error	{

				40	 	 e	:=	syscall.Symlink(oldname,	newname)

				41	 	 if	e	!=	nil	{

				42	 	 	 return	&LinkError{"symlink",	oldname,	newname,	e}

				43	 	 }

				44	 	 return	nil

				45	 }

				46	

				47	 //	Readlink	returns	the	destination	of	the	named	symbolic	link.

				48	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

				49	 func	Readlink(name	string)	(string,	error)	{

				50	 	 for	len	:=	128;	;	len	*=	2	{

				51	 	 	 b	:=	make([]byte,	len)

				52	 	 	 n,	e	:=	syscall.Readlink(name,	b)

				53	 	 	 if	e	!=	nil	{

				54	 	 	 	 return	"",	&PathError{"readlink",	name,	e}

				55	 	 	 }

				56	 	 	 if	n	<	len	{

				57	 	 	 	 return	string(b[0:n]),	nil

				58	 	 	 }

				59	 	 }

				60	 	 //	Silence	6g.

				61	 	 return	"",	nil

				62	 }

				63	

				64	 //	Rename	renames	a	file.

				65	 func	Rename(oldname,	newname	string)	error	{

				66	 	 e	:=	syscall.Rename(oldname,	newname)

				67	 	 if	e	!=	nil	{

				68	 	 	 return	&LinkError{"rename",	oldname,	newname,	e}

				69	 	 }

				70	 	 return	nil

				71	 }

				72	

				73	 //	syscallMode	returns	the	syscall-specific	mode	bits	from	Go's	portable	mode	bits.

				74	 func	syscallMode(i	FileMode)	(o	uint32)	{

				75	 	 o	|=	uint32(i.Perm())

				76	 	 if	i&ModeSetuid	!=	0	{

				77	 	 	 o	|=	syscall.S_ISUID

				78	 	 }

				79	 	 if	i&ModeSetgid	!=	0	{

				80	 	 	 o	|=	syscall.S_ISGID

				81	 	 }

				82	 	 if	i&ModeSticky	!=	0	{

				83	 	 	 o	|=	syscall.S_ISVTX

				84	 	 }

				85	 	 //	No	mapping	for	Go's	ModeTemporary	(plan9	only).

				86	 	 return

				87	 }

				88	

				89	 //	Chmod	changes	the	mode	of	the	named	file	to	mode.

				90	 //	If	the	file	is	a	symbolic	link,	it	changes	the	mode	of	the	link's	target.

				91	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

				92	 func	Chmod(name	string,	mode	FileMode)	error	{

				93	 	 if	e	:=	syscall.Chmod(name,	syscallMode(mode));	e	!=	nil	{

				94	 	 	 return	&PathError{"chmod",	name,	e}

				95	 	 }

				96	 	 return	nil

				97	 }

				98	

				99	 //	Chmod	changes	the	mode	of	the	file	to	mode.

			100	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			101	 func	(f	*File)	Chmod(mode	FileMode)	error	{

			102	 	 if	e	:=	syscall.Fchmod(f.fd,	syscallMode(mode));	e	!=	nil	{

			103	 	 	 return	&PathError{"chmod",	f.name,	e}

			104	 	 }

			105	 	 return	nil

			106	 }

			107	

			108	 //	Chown	changes	the	numeric	uid	and	gid	of	the	named	file.

			109	 //	If	the	file	is	a	symbolic	link,	it	changes	the	uid	and	gid	of	the	link's	target.

			110	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			111	 func	Chown(name	string,	uid,	gid	int)	error	{

			112	 	 if	e	:=	syscall.Chown(name,	uid,	gid);	e	!=	nil	{

			113	 	 	 return	&PathError{"chown",	name,	e}

			114	 	 }

			115	 	 return	nil

			116	 }

			117	

			118	 //	Lchown	changes	the	numeric	uid	and	gid	of	the	named	file.

			119	 //	If	the	file	is	a	symbolic	link,	it	changes	the	uid	and	gid	of	the	link	itself.

			120	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			121	 func	Lchown(name	string,	uid,	gid	int)	error	{

			122	 	 if	e	:=	syscall.Lchown(name,	uid,	gid);	e	!=	nil	{

			123	 	 	 return	&PathError{"lchown",	name,	e}

			124	 	 }

			125	 	 return	nil

			126	 }

			127	

			128	 //	Chown	changes	the	numeric	uid	and	gid	of	the	named	file.

			129	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			130	 func	(f	*File)	Chown(uid,	gid	int)	error	{

			131	 	 if	e	:=	syscall.Fchown(f.fd,	uid,	gid);	e	!=	nil	{

			132	 	 	 return	&PathError{"chown",	f.name,	e}

			133	 	 }

			134	 	 return	nil

			135	 }

			136	

			137	 //	Truncate	changes	the	size	of	the	file.

			138	 //	It	does	not	change	the	I/O	offset.

			139	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			140	 func	(f	*File)	Truncate(size	int64)	error	{

			141	 	 if	e	:=	syscall.Ftruncate(f.fd,	size);	e	!=	nil	{

			142	 	 	 return	&PathError{"truncate",	f.name,	e}

			143	 	 }

			144	 	 return	nil

			145	 }

			146	

			147	 //	Sync	commits	the	current	contents	of	the	file	to	stable	storage.

			148	 //	Typically,	this	means	flushing	the	file	system's	in-memory	copy

			149	 //	of	recently	written	data	to	disk.

			150	 func	(f	*File)	Sync()	(err	error)	{

			151	 	 if	f	==	nil	{

			152	 	 	 return	syscall.EINVAL

			153	 	 }

			154	 	 if	e	:=	syscall.Fsync(f.fd);	e	!=	nil	{

			155	 	 	 return	NewSyscallError("fsync",	e)

			156	 	 }

			157	 	 return	nil

			158	 }

			159	

			160	 //	Chtimes	changes	the	access	and	modification	times	of	the	named

			161	 //	file,	similar	to	the	Unix	utime()	or	utimes()	functions.

			162	 //

			163	 //	The	underlying	filesystem	may	truncate	or	round	the	values	to	a

			164	 //	less	precise	time	unit.

			165	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			166	 func	Chtimes(name	string,	atime	time.Time,	mtime	time.Time)	error	{

			167	 	 var	utimes	[2]syscall.Timeval

			168	 	 atime_ns	:=	atime.Unix()*1e9	+	int64(atime.Nanosecond())

			169	 	 mtime_ns	:=	mtime.Unix()*1e9	+	int64(mtime.Nanosecond())

			170	 	 utimes[0]	=	syscall.NsecToTimeval(atime_ns)

			171	 	 utimes[1]	=	syscall.NsecToTimeval(mtime_ns)

			172	 	 if	e	:=	syscall.Utimes(name,	utimes[0:]);	e	!=	nil	{

			173	 	 	 return	&PathError{"chtimes",	name,	e}

			174	 	 }

			175	 	 return	nil

			176	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/file_unix.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 package	os

					8	

					9	 import	(

				10	 	 "runtime"

				11	 	 "syscall"

				12)

				13	

				14	 //	File	represents	an	open	file	descriptor.

				15	 type	File	struct	{

				16	 	 *file

				17	 }

				18	

				19	 //	file	is	the	real	representation	of	*File.

				20	 //	The	extra	level	of	indirection	ensures	that	no	clients	of	os

				21	 //	can	overwrite	this	data,	which	could	cause	the	finalizer

				22	 //	to	close	the	wrong	file	descriptor.

				23	 type	file	struct	{

				24	 	 fd						int

				25	 	 name				string

				26	 	 dirinfo	*dirInfo	//	nil	unless	directory	being	read

				27	 	 nepipe		int						//	number	of	consecutive	EPIPE	in	Write

				28	 }

				29	

				30	 //	Fd	returns	the	integer	Unix	file	descriptor	referencing	the	open	file.

				31	 func	(f	*File)	Fd()	uintptr	{

				32	 	 if	f	==	nil	{

				33	 	 	 return	^(uintptr(0))

				34	 	 }

				35	 	 return	uintptr(f.fd)

				36	 }

				37	

				38	 //	NewFile	returns	a	new	File	with	the	given	file	descriptor	and	name.

				39	 func	NewFile(fd	uintptr,	name	string)	*File	{

				40	 	 fdi	:=	int(fd)

				41	 	 if	fdi	<	0	{

				42	 	 	 return	nil

				43	 	 }

				44	 	 f	:=	&File{&file{fd:	fdi,	name:	name}}

				45	 	 runtime.SetFinalizer(f.file,	(*file).close)

				46	 	 return	f

				47	 }

				48	

				49	 //	Auxiliary	information	if	the	File	describes	a	directory

				50	 type	dirInfo	struct	{

				51	 	 buf		[]byte	//	buffer	for	directory	I/O

				52	 	 nbuf	int				//	length	of	buf;	return	value	from	Getdirentries

				53	 	 bufp	int				//	location	of	next	record	in	buf.

				54	 }

				55	

				56	 //	DevNull	is	the	name	of	the	operating	system's	``null	device.''

				57	 //	On	Unix-like	systems,	it	is	"/dev/null";	on	Windows,	"NUL".

				58	 const	DevNull	=	"/dev/null"

				59	

				60	 //	OpenFile	is	the	generalized	open	call;	most	users	will	use	Open

				61	 //	or	Create	instead.		It	opens	the	named	file	with	specified	flag

				62	 //	(O_RDONLY	etc.)	and	perm,	(0666	etc.)	if	applicable.		If	successful,

				63	 //	methods	on	the	returned	File	can	be	used	for	I/O.

				64	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

				65	 func	OpenFile(name	string,	flag	int,	perm	FileMode)	(file	*File,	err	error)	{

				66	 	 r,	e	:=	syscall.Open(name,	flag|syscall.O_CLOEXEC,	syscallMode(perm))

				67	 	 if	e	!=	nil	{

				68	 	 	 return	nil,	&PathError{"open",	name,	e}

				69	 	 }

				70	

				71	 	 //	There's	a	race	here	with	fork/exec,	which	we	are

				72	 	 //	content	to	live	with.		See	../syscall/exec_unix.go.

				73	 	 //	On	OS	X	10.6,	the	O_CLOEXEC	flag	is	not	respected.

				74	 	 //	On	OS	X	10.7,	the	O_CLOEXEC	flag	works.

				75	 	 //	Without	a	cheap	&	reliable	way	to	detect	10.6	vs	10.7	at

				76	 	 //	runtime,	we	just	always	call	syscall.CloseOnExec	on	Darwin.

				77	 	 //	Once	>=10.7	is	prevalent,	this	extra	call	can	removed.

				78	 	 if	syscall.O_CLOEXEC	==	0	||	runtime.GOOS	==	"darwin"	{	

				79	 	 	 syscall.CloseOnExec(r)

				80	 	 }

				81	

				82	 	 return	NewFile(uintptr(r),	name),	nil

				83	 }

				84	

				85	 //	Close	closes	the	File,	rendering	it	unusable	for	I/O.

				86	 //	It	returns	an	error,	if	any.

				87	 func	(f	*File)	Close()	error	{

				88	 	 return	f.file.close()

				89	 }

				90	

				91	 func	(file	*file)	close()	error	{

				92	 	 if	file	==	nil	||	file.fd	<	0	{

				93	 	 	 return	syscall.EINVAL

				94	 	 }

				95	 	 var	err	error

				96	 	 if	e	:=	syscall.Close(file.fd);	e	!=	nil	{

				97	 	 	 err	=	&PathError{"close",	file.name,	e}

				98	 	 }

				99	 	 file.fd	=	-1	//	so	it	can't	be	closed	again

			100	

			101	 	 //	no	need	for	a	finalizer	anymore

			102	 	 runtime.SetFinalizer(file,	nil)

			103	 	 return	err

			104	 }

			105	

			106	 //	Stat	returns	the	FileInfo	structure	describing	file.

			107	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			108	 func	(f	*File)	Stat()	(fi	FileInfo,	err	error)	{

			109	 	 var	stat	syscall.Stat_t

			110	 	 err	=	syscall.Fstat(f.fd,	&stat)

			111	 	 if	err	!=	nil	{

			112	 	 	 return	nil,	&PathError{"stat",	f.name,	err}

			113	 	 }

			114	 	 return	fileInfoFromStat(&stat,	f.name),	nil

			115	 }

			116	

			117	 //	Stat	returns	a	FileInfo	describing	the	named	file.

			118	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			119	 func	Stat(name	string)	(fi	FileInfo,	err	error)	{

			120	 	 var	stat	syscall.Stat_t

			121	 	 err	=	syscall.Stat(name,	&stat)

			122	 	 if	err	!=	nil	{

			123	 	 	 return	nil,	&PathError{"stat",	name,	err}

			124	 	 }

			125	 	 return	fileInfoFromStat(&stat,	name),	nil

			126	 }

			127	

			128	 //	Lstat	returns	a	FileInfo	describing	the	named	file.

			129	 //	If	the	file	is	a	symbolic	link,	the	returned	FileInfo

			130	 //	describes	the	symbolic	link.		Lstat	makes	no	attempt	to	follow	the	link.

			131	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			132	 func	Lstat(name	string)	(fi	FileInfo,	err	error)	{

			133	 	 var	stat	syscall.Stat_t

			134	 	 err	=	syscall.Lstat(name,	&stat)

			135	 	 if	err	!=	nil	{

			136	 	 	 return	nil,	&PathError{"lstat",	name,	err}

			137	 	 }

			138	 	 return	fileInfoFromStat(&stat,	name),	nil

			139	 }

			140	

			141	 func	(f	*File)	readdir(n	int)	(fi	[]FileInfo,	err	error)	{

			142	 	 dirname	:=	f.name

			143	 	 if	dirname	==	""	{

			144	 	 	 dirname	=	"."

			145	 	 }

			146	 	 dirname	+=	"/"

			147	 	 names,	err	:=	f.Readdirnames(n)

			148	 	 fi	=	make([]FileInfo,	len(names))

			149	 	 for	i,	filename	:=	range	names	{

			150	 	 	 fip,	err	:=	Lstat(dirname	+	filename)

			151	 	 	 if	err	==	nil	{

			152	 	 	 	 fi[i]	=	fip

			153	 	 	 }	else	{

			154	 	 	 	 fi[i]	=	&fileStat{name:	filename}

			155	 	 	 }

			156	 	 }

			157	 	 return	fi,	err

			158	 }

			159	

			160	 //	read	reads	up	to	len(b)	bytes	from	the	File.

			161	 //	It	returns	the	number	of	bytes	read	and	an	error,	if	any.

			162	 func	(f	*File)	read(b	[]byte)	(n	int,	err	error)	{

			163	 	 return	syscall.Read(f.fd,	b)

			164	 }

			165	

			166	 //	pread	reads	len(b)	bytes	from	the	File	starting	at	byte	offset	off.

			167	 //	It	returns	the	number	of	bytes	read	and	the	error,	if	any.

			168	 //	EOF	is	signaled	by	a	zero	count	with	err	set	to	0.

			169	 func	(f	*File)	pread(b	[]byte,	off	int64)	(n	int,	err	error)	{

			170	 	 return	syscall.Pread(f.fd,	b,	off)

			171	 }

			172	

			173	 //	write	writes	len(b)	bytes	to	the	File.

			174	 //	It	returns	the	number	of	bytes	written	and	an	error,	if	any.

			175	 func	(f	*File)	write(b	[]byte)	(n	int,	err	error)	{

			176	 	 for	{

			177	 	 	 m,	err	:=	syscall.Write(f.fd,	b)

			178	 	 	 n	+=	m

			179	

			180	 	 	 //	If	the	syscall	wrote	some	data	but	not	all	(short	write)

			181	 	 	 //	or	it	returned	EINTR,	then	assume	it	stopped	early	for

			182	 	 	 //	reasons	that	are	uninteresting	to	the	caller,	and	try	again.

			183	 	 	 if	0	<	m	&&	m	<	len(b)	||	err	==	syscall.EINTR	{

			184	 	 	 	 b	=	b[m:]

			185	 	 	 	 continue

			186	 	 	 }

			187	

			188	 	 	 return	n,	err

			189	 	 }

			190	 	 panic("not	reached")

			191	 }

			192	

			193	 //	pwrite	writes	len(b)	bytes	to	the	File	starting	at	byte	offset	off.

			194	 //	It	returns	the	number	of	bytes	written	and	an	error,	if	any.

			195	 func	(f	*File)	pwrite(b	[]byte,	off	int64)	(n	int,	err	error)	{

			196	 	 return	syscall.Pwrite(f.fd,	b,	off)

			197	 }

			198	

			199	 //	seek	sets	the	offset	for	the	next	Read	or	Write	on	file	to	offset,	interpreted

			200	 //	according	to	whence:	0	means	relative	to	the	origin	of	the	file,	1	means

			201	 //	relative	to	the	current	offset,	and	2	means	relative	to	the	end.

			202	 //	It	returns	the	new	offset	and	an	error,	if	any.

			203	 func	(f	*File)	seek(offset	int64,	whence	int)	(ret	int64,	err	error)	{

			204	 	 return	syscall.Seek(f.fd,	offset,	whence)

			205	 }

			206	

			207	 //	Truncate	changes	the	size	of	the	named	file.

			208	 //	If	the	file	is	a	symbolic	link,	it	changes	the	size	of	the	link's	target.

			209	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			210	 func	Truncate(name	string,	size	int64)	error	{

			211	 	 if	e	:=	syscall.Truncate(name,	size);	e	!=	nil	{

			212	 	 	 return	&PathError{"truncate",	name,	e}

			213	 	 }

			214	 	 return	nil

			215	 }

			216	

			217	 //	Remove	removes	the	named	file	or	directory.

			218	 //	If	there	is	an	error,	it	will	be	of	type	*PathError.

			219	 func	Remove(name	string)	error	{

			220	 	 //	System	call	interface	forces	us	to	know

			221	 	 //	whether	name	is	a	file	or	directory.

			222	 	 //	Try	both:	it	is	cheaper	on	average	than

			223	 	 //	doing	a	Stat	plus	the	right	one.

			224	 	 e	:=	syscall.Unlink(name)

			225	 	 if	e	==	nil	{

			226	 	 	 return	nil

			227	 	 }

			228	 	 e1	:=	syscall.Rmdir(name)

			229	 	 if	e1	==	nil	{

			230	 	 	 return	nil

			231	 	 }

			232	

			233	 	 //	Both	failed:	figure	out	which	error	to	return.

			234	 	 //	OS	X	and	Linux	differ	on	whether	unlink(dir)

			235	 	 //	returns	EISDIR,	so	can't	use	that.		However,

			236	 	 //	both	agree	that	rmdir(file)	returns	ENOTDIR,

			237	 	 //	so	we	can	use	that	to	decide	which	error	is	real.

			238	 	 //	Rmdir	might	also	return	ENOTDIR	if	given	a	bad

			239	 	 //	file	path,	like	/etc/passwd/foo,	but	in	that	case,

			240	 	 //	both	errors	will	be	ENOTDIR,	so	it's	okay	to

			241	 	 //	use	the	error	from	unlink.

			242	 	 if	e1	!=	syscall.ENOTDIR	{

			243	 	 	 e	=	e1

			244	 	 }

			245	 	 return	&PathError{"remove",	name,	e}

			246	 }

			247	

			248	 //	basename	removes	trailing	slashes	and	the	leading	directory	name	from	path	name

			249	 func	basename(name	string)	string	{

			250	 	 i	:=	len(name)	-	1

			251	 	 //	Remove	trailing	slashes

			252	 	 for	;	i	>	0	&&	name[i]	==	'/';	i--	{

			253	 	 	 name	=	name[:i]

			254	 	 }

			255	 	 //	Remove	leading	directory	name

			256	 	 for	i--;	i	>=	0;	i--	{

			257	 	 	 if	name[i]	==	'/'	{

			258	 	 	 	 name	=	name[i+1:]

			259	 	 	 	 break

			260	 	 	 }

			261	 	 }

			262	

			263	 	 return	name

			264	 }

			265	

			266	 //	Pipe	returns	a	connected	pair	of	Files;	reads	from	r	return	bytes	written	to	w.

			267	 //	It	returns	the	files	and	an	error,	if	any.

			268	 func	Pipe()	(r	*File,	w	*File,	err	error)	{

			269	 	 var	p	[2]int

			270	

			271	 	 //	See	../syscall/exec.go	for	description	of	lock.

			272	 	 syscall.ForkLock.RLock()

			273	 	 e	:=	syscall.Pipe(p[0:])

			274	 	 if	e	!=	nil	{

			275	 	 	 syscall.ForkLock.RUnlock()

			276	 	 	 return	nil,	nil,	NewSyscallError("pipe",	e)

			277	 	 }

			278	 	 syscall.CloseOnExec(p[0])

			279	 	 syscall.CloseOnExec(p[1])

			280	 	 syscall.ForkLock.RUnlock()

			281	

			282	 	 return	NewFile(uintptr(p[0]),	"|0"),	NewFile(uintptr(p[1]),	"|1"),	nil

			283	 }

			284	

			285	 //	TempDir	returns	the	default	directory	to	use	for	temporary	files.

			286	 func	TempDir()	string	{

			287	 	 dir	:=	Getenv("TMPDIR")

			288	 	 if	dir	==	""	{

			289	 	 	 dir	=	"/tmp"

			290	 	 }

			291	 	 return	dir

			292	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/getwd.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	os

					6	

					7	 import	(

					8	 	 "syscall"

					9)

				10	

				11	 //	Getwd	returns	a	rooted	path	name	corresponding	to	the

				12	 //	current	directory.		If	the	current	directory	can	be

				13	 //	reached	via	multiple	paths	(due	to	symbolic	links),

				14	 //	Getwd	may	return	any	one	of	them.

				15	 func	Getwd()	(pwd	string,	err	error)	{

				16	 	 //	If	the	operating	system	provides	a	Getwd	call,	use	it.

				17	 	 if	syscall.ImplementsGetwd	{

				18	 	 	 s,	e	:=	syscall.Getwd()

				19	 	 	 return	s,	NewSyscallError("getwd",	e)

				20	 	 }

				21	

				22	 	 //	Otherwise,	we're	trying	to	find	our	way	back	to	".".

				23	 	 dot,	err	:=	Stat(".")

				24	 	 if	err	!=	nil	{

				25	 	 	 return	"",	err

				26	 	 }

				27	

				28	 	 //	Clumsy	but	widespread	kludge:

				29	 	 //	if	$PWD	is	set	and	matches	".",	use	it.

				30	 	 pwd	=	Getenv("PWD")

				31	 	 if	len(pwd)	>	0	&&	pwd[0]	==	'/'	{

				32	 	 	 d,	err	:=	Stat(pwd)

				33	 	 	 if	err	==	nil	&&	SameFile(dot,	d)	{

				34	 	 	 	 return	pwd,	nil

				35	 	 	 }

				36	 	 }

				37	

				38	 	 //	Root	is	a	special	case	because	it	has	no	parent

				39	 	 //	and	ends	in	a	slash.

				40	 	 root,	err	:=	Stat("/")

				41	 	 if	err	!=	nil	{

				42	 	 	 //	Can't	stat	root	-	no	hope.

				43	 	 	 return	"",	err

				44	 	 }

				45	 	 if	SameFile(root,	dot)	{

				46	 	 	 return	"/",	nil

				47	 	 }

				48	

				49	 	 //	General	algorithm:	find	name	in	parent

				50	 	 //	and	then	find	name	of	parent.		Each	iteration

				51	 	 //	adds	/name	to	the	beginning	of	pwd.

				52	 	 pwd	=	""

				53	 	 for	parent	:=	"..";	;	parent	=	"../"	+	parent	{

				54	 	 	 if	len(parent)	>=	1024	{	//	Sanity	check

				55	 	 	 	 return	"",	syscall.ENAMETOOLONG

				56	 	 	 }

				57	 	 	 fd,	err	:=	Open(parent)

				58	 	 	 if	err	!=	nil	{

				59	 	 	 	 return	"",	err

				60	 	 	 }

				61	

				62	 	 	 for	{

				63	 	 	 	 names,	err	:=	fd.Readdirnames(100)

				64	 	 	 	 if	err	!=	nil	{

				65	 	 	 	 	 fd.Close()

				66	 	 	 	 	 return	"",	err

				67	 	 	 	 }

				68	 	 	 	 for	_,	name	:=	range	names	{

				69	 	 	 	 	 d,	_	:=	Lstat(parent	+	"/"	+	name)

				70	 	 	 	 	 if	SameFile(d,	dot)	{

				71	 	 	 	 	 	 pwd	=	"/"	+	name	+	pwd

				72	 	 	 	 	 	 goto	Found

				73	 	 	 	 	 }

				74	 	 	 	 }

				75	 	 	 }

				76	 	 	 fd.Close()

				77	 	 	 return	"",	ErrNotExist

				78	

				79	 	 Found:

				80	 	 	 pd,	err	:=	fd.Stat()

				81	 	 	 if	err	!=	nil	{

				82	 	 	 	 return	"",	err

				83	 	 	 }

				84	 	 	 fd.Close()

				85	 	 	 if	SameFile(pd,	root)	{

				86	 	 	 	 break

				87	 	 	 }

				88	 	 	 //	Set	up	for	next	round.

				89	 	 	 dot	=	pd

				90	 	 }

				91	 	 return	pwd,	nil

				92	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/path.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	os

					6	

					7	 import	(

					8	 	 "io"

					9	 	 "syscall"

				10)

				11	

				12	 //	MkdirAll	creates	a	directory	named	path,

				13	 //	along	with	any	necessary	parents,	and	returns	nil,

				14	 //	or	else	returns	an	error.

				15	 //	The	permission	bits	perm	are	used	for	all

				16	 //	directories	that	MkdirAll	creates.

				17	 //	If	path	is	already	a	directory,	MkdirAll	does	nothing

				18	 //	and	returns	nil.

				19	 func	MkdirAll(path	string,	perm	FileMode)	error	{

				20	 	 //	If	path	exists,	stop	with	success	or	error.

				21	 	 dir,	err	:=	Stat(path)

				22	 	 if	err	==	nil	{

				23	 	 	 if	dir.IsDir()	{

				24	 	 	 	 return	nil

				25	 	 	 }

				26	 	 	 return	&PathError{"mkdir",	path,	syscall.ENOTDIR}

				27	 	 }

				28	

				29	 	 //	Doesn't	already	exist;	make	sure	parent	does.

				30	 	 i	:=	len(path)

				31	 	 for	i	>	0	&&	IsPathSeparator(path[i-1])	{	//	Skip	trailing	path	separator.

				32	 	 	 i--

				33	 	 }

				34	

				35	 	 j	:=	i

				36	 	 for	j	>	0	&&	!IsPathSeparator(path[j-1])	{	//	Scan	backward	over	element.

				37	 	 	 j--

				38	 	 }

				39	

				40	 	 if	j	>	1	{

				41	 	 	 //	Create	parent

				42	 	 	 err	=	MkdirAll(path[0:j-1],	perm)

				43	 	 	 if	err	!=	nil	{

				44	 	 	 	 return	err

				45	 	 	 }

				46	 	 }

				47	

				48	 	 //	Now	parent	exists,	try	to	create.

				49	 	 err	=	Mkdir(path,	perm)

				50	 	 if	err	!=	nil	{

				51	 	 	 //	Handle	arguments	like	"foo/."	by

				52	 	 	 //	double-checking	that	directory	doesn't	exist.

				53	 	 	 dir,	err1	:=	Lstat(path)

				54	 	 	 if	err1	==	nil	&&	dir.IsDir()	{

				55	 	 	 	 return	nil

				56	 	 	 }

				57	 	 	 return	err

				58	 	 }

				59	 	 return	nil

				60	 }

				61	

				62	 //	RemoveAll	removes	path	and	any	children	it	contains.

				63	 //	It	removes	everything	it	can	but	returns	the	first	error

				64	 //	it	encounters.		If	the	path	does	not	exist,	RemoveAll

				65	 //	returns	nil	(no	error).

				66	 func	RemoveAll(path	string)	error	{

				67	 	 //	Simple	case:	if	Remove	works,	we're	done.

				68	 	 err	:=	Remove(path)

				69	 	 if	err	==	nil	{

				70	 	 	 return	nil

				71	 	 }

				72	

				73	 	 //	Otherwise,	is	this	a	directory	we	need	to	recurse	into?

				74	 	 dir,	serr	:=	Lstat(path)

				75	 	 if	serr	!=	nil	{

				76	 	 	 if	serr,	ok	:=	serr.(*PathError);	ok	&&	(IsNotExist(serr.Err)	||	serr.Err	==	syscall.ENOTDIR)	{

				77	 	 	 	 return	nil

				78	 	 	 }

				79	 	 	 return	serr

				80	 	 }

				81	 	 if	!dir.IsDir()	{

				82	 	 	 //	Not	a	directory;	return	the	error	from	Remove.

				83	 	 	 return	err

				84	 	 }

				85	

				86	 	 //	Directory.

				87	 	 fd,	err	:=	Open(path)

				88	 	 if	err	!=	nil	{

				89	 	 	 return	err

				90	 	 }

				91	

				92	 	 //	Remove	contents	&	return	first	error.

				93	 	 err	=	nil

				94	 	 for	{

				95	 	 	 names,	err1	:=	fd.Readdirnames(100)

				96	 	 	 for	_,	name	:=	range	names	{

				97	 	 	 	 err1	:=	RemoveAll(path	+	string(PathSeparator)	+	name)

				98	 	 	 	 if	err	==	nil	{

				99	 	 	 	 	 err	=	err1

			100	 	 	 	 }

			101	 	 	 }

			102	 	 	 if	err1	==	io.EOF	{

			103	 	 	 	 break

			104	 	 	 }

			105	 	 	 //	If	Readdirnames	returned	an	error,	use	it.

			106	 	 	 if	err	==	nil	{

			107	 	 	 	 err	=	err1

			108	 	 	 }

			109	 	 	 if	len(names)	==	0	{

			110	 	 	 	 break

			111	 	 	 }

			112	 	 }

			113	

			114	 	 //	Close	directory,	because	windows	won't	remove	opened	directory.

			115	 	 fd.Close()

			116	

			117	 	 //	Remove	directory.

			118	 	 err1	:=	Remove(path)

			119	 	 if	err	==	nil	{

			120	 	 	 err	=	err1

			121	 	 }

			122	 	 return	err

			123	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/path_unix.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 package	os

					8	

					9	 const	(

				10	 	 PathSeparator					=	'/'	//	OS-specific	path	separator

				11	 	 PathListSeparator	=	':'	//	OS-specific	path	list	separator

				12)

				13	

				14	 //	IsPathSeparator	returns	true	if	c	is	a	directory	separator	character.

				15	 func	IsPathSeparator(c	uint8)	bool	{

				16	 	 return	PathSeparator	==	c

				17	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/proc.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Process	etc.

					6	

					7	 package	os

					8	

					9	 import	"syscall"

				10	

				11	 //	Args	hold	the	command-line	arguments,	starting	with	the	program	name.

				12	 var	Args	[]string

				13	

				14	 //	Getuid	returns	the	numeric	user	id	of	the	caller.

				15	 func	Getuid()	int	{	return	syscall.Getuid()	}

				16	

				17	 //	Geteuid	returns	the	numeric	effective	user	id	of	the	caller.

				18	 func	Geteuid()	int	{	return	syscall.Geteuid()	}

				19	

				20	 //	Getgid	returns	the	numeric	group	id	of	the	caller.

				21	 func	Getgid()	int	{	return	syscall.Getgid()	}

				22	

				23	 //	Getegid	returns	the	numeric	effective	group	id	of	the	caller.

				24	 func	Getegid()	int	{	return	syscall.Getegid()	}

				25	

				26	 //	Getgroups	returns	a	list	of	the	numeric	ids	of	groups	that	the	caller	belongs	to.

				27	 func	Getgroups()	([]int,	error)	{

				28	 	 gids,	e	:=	syscall.Getgroups()

				29	 	 return	gids,	NewSyscallError("getgroups",	e)

				30	 }

				31	

				32	 //	Exit	causes	the	current	program	to	exit	with	the	given	status	code.

				33	 //	Conventionally,	code	zero	indicates	success,	non-zero	an	error.

				34	 func	Exit(code	int)	{	syscall.Exit(code)	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/stat_linux.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	os

					6	

					7	 import	(

					8	 	 "syscall"

					9	 	 "time"

				10)

				11	

				12	 func	sameFile(sys1,	sys2	interface{})	bool	{

				13	 	 stat1	:=	sys1.(*syscall.Stat_t)

				14	 	 stat2	:=	sys2.(*syscall.Stat_t)

				15	 	 return	stat1.Dev	==	stat2.Dev	&&	stat1.Ino	==	stat2.Ino

				16	 }

				17	

				18	 func	fileInfoFromStat(st	*syscall.Stat_t,	name	string)	FileInfo	{

				19	 	 fs	:=	&fileStat{

				20	 	 	 name:				basename(name),

				21	 	 	 size:				int64(st.Size),

				22	 	 	 modTime:	timespecToTime(st.Mtim),

				23	 	 	 sys:					st,

				24	 	 }

				25	 	 fs.mode	=	FileMode(st.Mode	&	0777)

				26	 	 switch	st.Mode	&	syscall.S_IFMT	{

				27	 	 case	syscall.S_IFBLK:

				28	 	 	 fs.mode	|=	ModeDevice

				29	 	 case	syscall.S_IFCHR:

				30	 	 	 fs.mode	|=	ModeDevice	|	ModeCharDevice

				31	 	 case	syscall.S_IFDIR:

				32	 	 	 fs.mode	|=	ModeDir

				33	 	 case	syscall.S_IFIFO:

				34	 	 	 fs.mode	|=	ModeNamedPipe

				35	 	 case	syscall.S_IFLNK:

				36	 	 	 fs.mode	|=	ModeSymlink

				37	 	 case	syscall.S_IFREG:

				38	 	 	 //	nothing	to	do

				39	 	 case	syscall.S_IFSOCK:

				40	 	 	 fs.mode	|=	ModeSocket

				41	 	 }

				42	 	 if	st.Mode&syscall.S_ISGID	!=	0	{

				43	 	 	 fs.mode	|=	ModeSetgid

				44	 	 }

				45	 	 if	st.Mode&syscall.S_ISUID	!=	0	{

				46	 	 	 fs.mode	|=	ModeSetuid

				47	 	 }

				48	 	 if	st.Mode&syscall.S_ISVTX	!=	0	{

				49	 	 	 fs.mode	|=	ModeSticky

				50	 	 }

				51	 	 return	fs

				52	 }

				53	

				54	 func	timespecToTime(ts	syscall.Timespec)	time.Time	{

				55	 	 return	time.Unix(int64(ts.Sec),	int64(ts.Nsec))

				56	 }

				57	

				58	 //	For	testing.

				59	 func	atime(fi	FileInfo)	time.Time	{

				60	 	 return	timespecToTime(fi.Sys().(*syscall.Stat_t).Atim)

				61	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/sys_linux.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Linux-specific

					6	

					7	 package	os

					8	

					9	 func	hostname()	(name	string,	err	error)	{

				10	 	 f,	err	:=	Open("/proc/sys/kernel/hostname")

				11	 	 if	err	!=	nil	{

				12	 	 	 return	"",	err

				13	 	 }

				14	 	 defer	f.Close()

				15	

				16	 	 var	buf	[512]byte	//	Enough	for	a	DNS	name.

				17	 	 n,	err	:=	f.Read(buf[0:])

				18	 	 if	err	!=	nil	{

				19	 	 	 return	"",	err

				20	 	 }

				21	

				22	 	 if	n	>	0	&&	buf[n-1]	==	'\n'	{

				23	 	 	 n--

				24	 	 }

				25	 	 return	string(buf[0:n]),	nil

				26	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/types.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	os

					6	

					7	 import	(

					8	 	 "syscall"

					9	 	 "time"

				10)

				11	

				12	 //	Getpagesize	returns	the	underlying	system's	memory	page	size.

				13	 func	Getpagesize()	int	{	return	syscall.Getpagesize()	}

				14	

				15	 //	A	FileInfo	describes	a	file	and	is	returned	by	Stat	and	Lstat

				16	 type	FileInfo	interface	{

				17	 	 Name()	string							//	base	name	of	the	file

				18	 	 Size()	int64								//	length	in	bytes	for	regular	files;	system-dependent	for	others

				19	 	 Mode()	FileMode					//	file	mode	bits

				20	 	 ModTime()	time.Time	//	modification	time

				21	 	 IsDir()	bool								//	abbreviation	for	Mode().IsDir()

				22	 	 Sys()	interface{}			//	underlying	data	source	(can	return	nil)

				23	 }

				24	

				25	 //	A	FileMode	represents	a	file's	mode	and	permission	bits.

				26	 //	The	bits	have	the	same	definition	on	all	systems,	so	that

				27	 //	information	about	files	can	be	moved	from	one	system

				28	 //	to	another	portably.		Not	all	bits	apply	to	all	systems.

				29	 //	The	only	required	bit	is	ModeDir	for	directories.

				30	 type	FileMode	uint32

				31	

				32	 //	The	defined	file	mode	bits	are	the	most	significant	bits	of	the	FileMode.

				33	 //	The	nine	least-significant	bits	are	the	standard	Unix	rwxrwxrwx	permissions.

				34	 //	The	values	of	these	bits	should	be	considered	part	of	the	public	API	and

				35	 //	may	be	used	in	wire	protocols	or	disk	representations:	they	must	not	be

				36	 //	changed,	although	new	bits	might	be	added.

				37	 const	(

				38	 	 //	The	single	letters	are	the	abbreviations

				39	 	 //	used	by	the	String	method's	formatting.

				40	 	 ModeDir								FileMode	=	1	<<	(32	-	1	-	iota)	//	d:	is	a	directory

				41	 	 ModeAppend																																					//	a:	append-only

				42	 	 ModeExclusive																																		//	l:	exclusive	use

				43	 	 ModeTemporary																																		//	T:	temporary	file	(not	backed	up)

				44	 	 ModeSymlink																																				//	L:	symbolic	link

				45	 	 ModeDevice																																					//	D:	device	file

				46	 	 ModeNamedPipe																																		//	p:	named	pipe	(FIFO)

				47	 	 ModeSocket																																					//	S:	Unix	domain	socket

				48	 	 ModeSetuid																																					//	u:	setuid

				49	 	 ModeSetgid																																					//	g:	setgid

				50	 	 ModeCharDevice																																	//	c:	Unix	character	device,	when	ModeDevice	is	set

				51	 	 ModeSticky																																					//	t:	sticky

				52	

				53	 	 //	Mask	for	the	type	bits.	For	regular	files,	none	will	be	set.

				54	 	 ModeType	=	ModeDir	|	ModeSymlink	|	ModeNamedPipe	|	ModeSocket	|	ModeDevice

				55	

				56	 	 ModePerm	FileMode	=	0777	//	permission	bits

				57)

				58	

				59	 func	(m	FileMode)	String()	string	{

				60	 	 const	str	=	"dalTLDpSugct"

				61	 	 var	buf	[32]byte	//	Mode	is	uint32.

				62	 	 w	:=	0

				63	 	 for	i,	c	:=	range	str	{

				64	 	 	 if	m&(1<<uint(32-1-i))	!=	0	{

				65	 	 	 	 buf[w]	=	byte(c)

				66	 	 	 	 w++

				67	 	 	 }

				68	 	 }

				69	 	 if	w	==	0	{

				70	 	 	 buf[w]	=	'-'

				71	 	 	 w++

				72	 	 }

				73	 	 const	rwx	=	"rwxrwxrwx"

				74	 	 for	i,	c	:=	range	rwx	{

				75	 	 	 if	m&(1<<uint(9-1-i))	!=	0	{

				76	 	 	 	 buf[w]	=	byte(c)

				77	 	 	 }	else	{

				78	 	 	 	 buf[w]	=	'-'

				79	 	 	 }

				80	 	 	 w++

				81	 	 }

				82	 	 return	string(buf[:w])

				83	 }

				84	

				85	 //	IsDir	reports	whether	m	describes	a	directory.

				86	 //	That	is,	it	tests	for	the	ModeDir	bit	being	set	in	m.

				87	 func	(m	FileMode)	IsDir()	bool	{

				88	 	 return	m&ModeDir	!=	0

				89	 }

				90	

				91	 //	Perm	returns	the	Unix	permission	bits	in	m.

				92	 func	(m	FileMode)	Perm()	FileMode	{

				93	 	 return	m	&	ModePerm

				94	 }

				95	

				96	 //	A	fileStat	is	the	implementation	of	FileInfo	returned	by	Stat	and	Lstat.

				97	 type	fileStat	struct	{

				98	 	 name				string

				99	 	 size				int64

			100	 	 mode				FileMode

			101	 	 modTime	time.Time

			102	 	 sys					interface{}

			103	 }

			104	

			105	 func	(fs	*fileStat)	Name()	string							{	return	fs.name	}

			106	 func	(fs	*fileStat)	Size()	int64								{	return	fs.size	}

			107	 func	(fs	*fileStat)	Mode()	FileMode					{	return	fs.mode	}

			108	 func	(fs	*fileStat)	ModTime()	time.Time	{	return	fs.modTime	}

			109	 func	(fs	*fileStat)	IsDir()	bool								{	return	fs.mode.IsDir()	}

			110	 func	(fs	*fileStat)	Sys()	interface{}			{	return	fs.sys	}

			111	

			112	 //	SameFile	reports	whether	fi1	and	fi2	describe	the	same	file.

			113	 //	For	example,	on	Unix	this	means	that	the	device	and	inode	fields

			114	 //	of	the	two	underlying	structures	are	identical;	on	other	systems

			115	 //	the	decision	may	be	based	on	the	path	names.

			116	 //	SameFile	only	applies	to	results	returned	by	this	package's	Stat.

			117	 //	It	returns	false	in	other	cases.

			118	 func	SameFile(fi1,	fi2	FileInfo)	bool	{

			119	 	 fs1,	ok1	:=	fi1.(*fileStat)

			120	 	 fs2,	ok2	:=	fi2.(*fileStat)

			121	 	 if	!ok1	||	!ok2	{

			122	 	 	 return	false

			123	 	 }

			124	 	 return	sameFile(fs1.sys,	fs2.sys)

			125	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/exec/exec.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	exec	runs	external	commands.	It	wraps	os.StartProcess	to	make	it

					6	 //	easier	to	remap	stdin	and	stdout,	connect	I/O	with	pipes,	and	do	other

					7	 //	adjustments.

					8	 package	exec

					9	

				10	 import	(

				11	 	 "bytes"

				12	 	 "errors"

				13	 	 "io"

				14	 	 "os"

				15	 	 "strconv"

				16	 	 "syscall"

				17)

				18	

				19	 //	Error	records	the	name	of	a	binary	that	failed	to	be	be	executed

				20	 //	and	the	reason	it	failed.

				21	 type	Error	struct	{

				22	 	 Name	string

				23	 	 Err		error

				24	 }

				25	

				26	 func	(e	*Error)	Error()	string	{

				27	 	 return	"exec:	"	+	strconv.Quote(e.Name)	+	":	"	+	e.Err.Error()

				28	 }

				29	

				30	 //	Cmd	represents	an	external	command	being	prepared	or	run.

				31	 type	Cmd	struct	{

				32	 	 //	Path	is	the	path	of	the	command	to	run.

				33	 	 //

				34	 	 //	This	is	the	only	field	that	must	be	set	to	a	non-zero

				35	 	 //	value.

				36	 	 Path	string

				37	

				38	 	 //	Args	holds	command	line	arguments,	including	the	command	as	Args[0].

				39	 	 //	If	the	Args	field	is	empty	or	nil,	Run	uses	{Path}.

				40	 	 //	

				41	 	 //	In	typical	use,	both	Path	and	Args	are	set	by	calling	Command.

				42	 	 Args	[]string

				43	

				44	 	 //	Env	specifies	the	environment	of	the	process.

				45	 	 //	If	Env	is	nil,	Run	uses	the	current	process's	environment.

				46	 	 Env	[]string

				47	

				48	 	 //	Dir	specifies	the	working	directory	of	the	command.

				49	 	 //	If	Dir	is	the	empty	string,	Run	runs	the	command	in	the

				50	 	 //	calling	process's	current	directory.

				51	 	 Dir	string

				52	

				53	 	 //	Stdin	specifies	the	process's	standard	input.	If	Stdin	is

				54	 	 //	nil,	the	process	reads	from	the	null	device	(os.DevNull).

				55	 	 Stdin	io.Reader

				56	

				57	 	 //	Stdout	and	Stderr	specify	the	process's	standard	output	and	error.

				58	 	 //

				59	 	 //	If	either	is	nil,	Run	connects	the	corresponding	file	descriptor

				60	 	 //	to	the	null	device	(os.DevNull).

				61	 	 //

				62	 	 //	If	Stdout	and	Stderr	are	the	same	writer,	at	most	one

				63	 	 //	goroutine	at	a	time	will	call	Write.

				64	 	 Stdout	io.Writer

				65	 	 Stderr	io.Writer

				66	

				67	 	 //	ExtraFiles	specifies	additional	open	files	to	be	inherited	by	the

				68	 	 //	new	process.	It	does	not	include	standard	input,	standard	output,	or

				69	 	 //	standard	error.	If	non-nil,	entry	i	becomes	file	descriptor	3+i.

				70	 	 //

				71	 	 //	BUG:	on	OS	X	10.6,	child	processes	may	sometimes	inherit	unwanted	fds.

				72	 	 //	http://golang.org/issue/2603

				73	 	 ExtraFiles	[]*os.File

				74	

				75	 	 //	SysProcAttr	holds	optional,	operating	system-specific	attributes.

				76	 	 //	Run	passes	it	to	os.StartProcess	as	the	os.ProcAttr's	Sys	field.

				77	 	 SysProcAttr	*syscall.SysProcAttr

				78	

				79	 	 //	Process	is	the	underlying	process,	once	started.

				80	 	 Process	*os.Process

				81	

				82	 	 //	ProcessState	contains	information	about	an	exited	process,

				83	 	 //	available	after	a	call	to	Wait	or	Run.

				84	 	 ProcessState	*os.ProcessState

				85	

				86	 	 err													error	//	last	error	(from	LookPath,	stdin,	stdout,	stderr)

				87	 	 finished								bool		//	when	Wait	was	called

				88	 	 childFiles						[]*os.File

				89	 	 closeAfterStart	[]io.Closer

				90	 	 closeAfterWait		[]io.Closer

				91	 	 goroutine							[]func()	error

				92	 	 errch											chan	error	//	one	send	per	goroutine

				93	 }

				94	

				95	 //	Command	returns	the	Cmd	struct	to	execute	the	named	program	with

				96	 //	the	given	arguments.

				97	 //

				98	 //	It	sets	Path	and	Args	in	the	returned	structure	and	zeroes	the

				99	 //	other	fields.

			100	 //

			101	 //	If	name	contains	no	path	separators,	Command	uses	LookPath	to

			102	 //	resolve	the	path	to	a	complete	name	if	possible.	Otherwise	it	uses

			103	 //	name	directly.

			104	 //

			105	 //	The	returned	Cmd's	Args	field	is	constructed	from	the	command	name

			106	 //	followed	by	the	elements	of	arg,	so	arg	should	not	include	the

			107	 //	command	name	itself.	For	example,	Command("echo",	"hello")

			108	 func	Command(name	string,	arg	...string)	*Cmd	{

			109	 	 aname,	err	:=	LookPath(name)

			110	 	 if	err	!=	nil	{

			111	 	 	 aname	=	name

			112	 	 }

			113	 	 return	&Cmd{

			114	 	 	 Path:	aname,

			115	 	 	 Args:	append([]string{name},	arg...),

			116	 	 	 err:		err,

			117	 	 }

			118	 }

			119	

			120	 //	interfaceEqual	protects	against	panics	from	doing	equality	tests	on

			121	 //	two	interfaces	with	non-comparable	underlying	types

			122	 func	interfaceEqual(a,	b	interface{})	bool	{

			123	 	 defer	func()	{

			124	 	 	 recover()

			125	 	 }()

			126	 	 return	a	==	b

			127	 }

			128	

			129	 func	(c	*Cmd)	envv()	[]string	{

			130	 	 if	c.Env	!=	nil	{

			131	 	 	 return	c.Env

			132	 	 }

			133	 	 return	os.Environ()

			134	 }

			135	

			136	 func	(c	*Cmd)	argv()	[]string	{

			137	 	 if	len(c.Args)	>	0	{

			138	 	 	 return	c.Args

			139	 	 }

			140	 	 return	[]string{c.Path}

			141	 }

			142	

			143	 func	(c	*Cmd)	stdin()	(f	*os.File,	err	error)	{

			144	 	 if	c.Stdin	==	nil	{

			145	 	 	 f,	err	=	os.Open(os.DevNull)

			146	 	 	 c.closeAfterStart	=	append(c.closeAfterStart,	f)

			147	 	 	 return

			148	 	 }

			149	

			150	 	 if	f,	ok	:=	c.Stdin.(*os.File);	ok	{

			151	 	 	 return	f,	nil

			152	 	 }

			153	

			154	 	 pr,	pw,	err	:=	os.Pipe()

			155	 	 if	err	!=	nil	{

			156	 	 	 return

			157	 	 }

			158	

			159	 	 c.closeAfterStart	=	append(c.closeAfterStart,	pr)

			160	 	 c.closeAfterWait	=	append(c.closeAfterWait,	pw)

			161	 	 c.goroutine	=	append(c.goroutine,	func()	error	{

			162	 	 	 _,	err	:=	io.Copy(pw,	c.Stdin)

			163	 	 	 if	err1	:=	pw.Close();	err	==	nil	{

			164	 	 	 	 err	=	err1

			165	 	 	 }

			166	 	 	 return	err

			167	 	 })

			168	 	 return	pr,	nil

			169	 }

			170	

			171	 func	(c	*Cmd)	stdout()	(f	*os.File,	err	error)	{

			172	 	 return	c.writerDescriptor(c.Stdout)

			173	 }

			174	

			175	 func	(c	*Cmd)	stderr()	(f	*os.File,	err	error)	{

			176	 	 if	c.Stderr	!=	nil	&&	interfaceEqual(c.Stderr,	c.Stdout)	{

			177	 	 	 return	c.childFiles[1],	nil

			178	 	 }

			179	 	 return	c.writerDescriptor(c.Stderr)

			180	 }

			181	

			182	 func	(c	*Cmd)	writerDescriptor(w	io.Writer)	(f	*os.File,	err	error)	{

			183	 	 if	w	==	nil	{

			184	 	 	 f,	err	=	os.OpenFile(os.DevNull,	os.O_WRONLY,	0)

			185	 	 	 c.closeAfterStart	=	append(c.closeAfterStart,	f)

			186	 	 	 return

			187	 	 }

			188	

			189	 	 if	f,	ok	:=	w.(*os.File);	ok	{

			190	 	 	 return	f,	nil

			191	 	 }

			192	

			193	 	 pr,	pw,	err	:=	os.Pipe()

			194	 	 if	err	!=	nil	{

			195	 	 	 return

			196	 	 }

			197	

			198	 	 c.closeAfterStart	=	append(c.closeAfterStart,	pw)

			199	 	 c.closeAfterWait	=	append(c.closeAfterWait,	pr)

			200	 	 c.goroutine	=	append(c.goroutine,	func()	error	{

			201	 	 	 _,	err	:=	io.Copy(w,	pr)

			202	 	 	 return	err

			203	 	 })

			204	 	 return	pw,	nil

			205	 }

			206	

			207	 //	Run	starts	the	specified	command	and	waits	for	it	to	complete.

			208	 //

			209	 //	The	returned	error	is	nil	if	the	command	runs,	has	no	problems

			210	 //	copying	stdin,	stdout,	and	stderr,	and	exits	with	a	zero	exit

			211	 //	status.

			212	 //

			213	 //	If	the	command	fails	to	run	or	doesn't	complete	successfully,	the

			214	 //	error	is	of	type	*ExitError.	Other	error	types	may	be

			215	 //	returned	for	I/O	problems.

			216	 func	(c	*Cmd)	Run()	error	{

			217	 	 if	err	:=	c.Start();	err	!=	nil	{

			218	 	 	 return	err

			219	 	 }

			220	 	 return	c.Wait()

			221	 }

			222	

			223	 //	Start	starts	the	specified	command	but	does	not	wait	for	it	to	complete.

			224	 func	(c	*Cmd)	Start()	error	{

			225	 	 if	c.err	!=	nil	{

			226	 	 	 return	c.err

			227	 	 }

			228	 	 if	c.Process	!=	nil	{

			229	 	 	 return	errors.New("exec:	already	started")

			230	 	 }

			231	

			232	 	 type	F	func(*Cmd)	(*os.File,	error)

			233	 	 for	_,	setupFd	:=	range	[]F{(*Cmd).stdin,	(*Cmd).stdout,	(*Cmd).stderr}	{

			234	 	 	 fd,	err	:=	setupFd(c)

			235	 	 	 if	err	!=	nil	{

			236	 	 	 	 return	err

			237	 	 	 }

			238	 	 	 c.childFiles	=	append(c.childFiles,	fd)

			239	 	 }

			240	 	 c.childFiles	=	append(c.childFiles,	c.ExtraFiles...)

			241	

			242	 	 var	err	error

			243	 	 c.Process,	err	=	os.StartProcess(c.Path,	c.argv(),	&os.ProcAttr{

			244	 	 	 Dir:			c.Dir,

			245	 	 	 Files:	c.childFiles,

			246	 	 	 Env:			c.envv(),

			247	 	 	 Sys:			c.SysProcAttr,

			248	 	 })

			249	 	 if	err	!=	nil	{

			250	 	 	 return	err

			251	 	 }

			252	

			253	 	 for	_,	fd	:=	range	c.closeAfterStart	{

			254	 	 	 fd.Close()

			255	 	 }

			256	

			257	 	 c.errch	=	make(chan	error,	len(c.goroutine))

			258	 	 for	_,	fn	:=	range	c.goroutine	{

			259	 	 	 go	func(fn	func()	error)	{

			260	 	 	 	 c.errch	<-	fn()

			261	 	 	 }(fn)

			262	 	 }

			263	

			264	 	 return	nil

			265	 }

			266	

			267	 //	An	ExitError	reports	an	unsuccessful	exit	by	a	command.

			268	 type	ExitError	struct	{

			269	 	 *os.ProcessState

			270	 }

			271	

			272	 func	(e	*ExitError)	Error()	string	{

			273	 	 return	e.ProcessState.String()

			274	 }

			275	

			276	 //	Wait	waits	for	the	command	to	exit.

			277	 //	It	must	have	been	started	by	Start.

			278	 //

			279	 //	The	returned	error	is	nil	if	the	command	runs,	has	no	problems

			280	 //	copying	stdin,	stdout,	and	stderr,	and	exits	with	a	zero	exit

			281	 //	status.

			282	 //

			283	 //	If	the	command	fails	to	run	or	doesn't	complete	successfully,	the

			284	 //	error	is	of	type	*ExitError.	Other	error	types	may	be

			285	 //	returned	for	I/O	problems.

			286	 func	(c	*Cmd)	Wait()	error	{

			287	 	 if	c.Process	==	nil	{

			288	 	 	 return	errors.New("exec:	not	started")

			289	 	 }

			290	 	 if	c.finished	{

			291	 	 	 return	errors.New("exec:	Wait	was	already	called")

			292	 	 }

			293	 	 c.finished	=	true

			294	 	 state,	err	:=	c.Process.Wait()

			295	 	 c.ProcessState	=	state

			296	

			297	 	 var	copyError	error

			298	 	 for	_	=	range	c.goroutine	{

			299	 	 	 if	err	:=	<-c.errch;	err	!=	nil	&&	copyError	==	nil	{

			300	 	 	 	 copyError	=	err

			301	 	 	 }

			302	 	 }

			303	

			304	 	 for	_,	fd	:=	range	c.closeAfterWait	{

			305	 	 	 fd.Close()

			306	 	 }

			307	

			308	 	 if	err	!=	nil	{

			309	 	 	 return	err

			310	 	 }	else	if	!state.Success()	{

			311	 	 	 return	&ExitError{state}

			312	 	 }

			313	

			314	 	 return	copyError

			315	 }

			316	

			317	 //	Output	runs	the	command	and	returns	its	standard	output.

			318	 func	(c	*Cmd)	Output()	([]byte,	error)	{

			319	 	 if	c.Stdout	!=	nil	{

			320	 	 	 return	nil,	errors.New("exec:	Stdout	already	set")

			321	 	 }

			322	 	 var	b	bytes.Buffer

			323	 	 c.Stdout	=	&b

			324	 	 err	:=	c.Run()

			325	 	 return	b.Bytes(),	err

			326	 }

			327	

			328	 //	CombinedOutput	runs	the	command	and	returns	its	combined	standard

			329	 //	output	and	standard	error.

			330	 func	(c	*Cmd)	CombinedOutput()	([]byte,	error)	{

			331	 	 if	c.Stdout	!=	nil	{

			332	 	 	 return	nil,	errors.New("exec:	Stdout	already	set")

			333	 	 }

			334	 	 if	c.Stderr	!=	nil	{

			335	 	 	 return	nil,	errors.New("exec:	Stderr	already	set")

			336	 	 }

			337	 	 var	b	bytes.Buffer

			338	 	 c.Stdout	=	&b

			339	 	 c.Stderr	=	&b

			340	 	 err	:=	c.Run()

			341	 	 return	b.Bytes(),	err

			342	 }

			343	

			344	 //	StdinPipe	returns	a	pipe	that	will	be	connected	to	the	command's

			345	 //	standard	input	when	the	command	starts.

			346	 func	(c	*Cmd)	StdinPipe()	(io.WriteCloser,	error)	{

			347	 	 if	c.Stdin	!=	nil	{

			348	 	 	 return	nil,	errors.New("exec:	Stdin	already	set")

			349	 	 }

			350	 	 if	c.Process	!=	nil	{

			351	 	 	 return	nil,	errors.New("exec:	StdinPipe	after	process	started")

			352	 	 }

			353	 	 pr,	pw,	err	:=	os.Pipe()

			354	 	 if	err	!=	nil	{

			355	 	 	 return	nil,	err

			356	 	 }

			357	 	 c.Stdin	=	pr

			358	 	 c.closeAfterStart	=	append(c.closeAfterStart,	pr)

			359	 	 c.closeAfterWait	=	append(c.closeAfterWait,	pw)

			360	 	 return	pw,	nil

			361	 }

			362	

			363	 //	StdoutPipe	returns	a	pipe	that	will	be	connected	to	the	command's

			364	 //	standard	output	when	the	command	starts.

			365	 //	The	pipe	will	be	closed	automatically	after	Wait	sees	the	command	exit.

			366	 func	(c	*Cmd)	StdoutPipe()	(io.ReadCloser,	error)	{

			367	 	 if	c.Stdout	!=	nil	{

			368	 	 	 return	nil,	errors.New("exec:	Stdout	already	set")

			369	 	 }

			370	 	 if	c.Process	!=	nil	{

			371	 	 	 return	nil,	errors.New("exec:	StdoutPipe	after	process	started")

			372	 	 }

			373	 	 pr,	pw,	err	:=	os.Pipe()

			374	 	 if	err	!=	nil	{

			375	 	 	 return	nil,	err

			376	 	 }

			377	 	 c.Stdout	=	pw

			378	 	 c.closeAfterStart	=	append(c.closeAfterStart,	pw)

			379	 	 c.closeAfterWait	=	append(c.closeAfterWait,	pr)

			380	 	 return	pr,	nil

			381	 }

			382	

			383	 //	StderrPipe	returns	a	pipe	that	will	be	connected	to	the	command's

			384	 //	standard	error	when	the	command	starts.

			385	 //	The	pipe	will	be	closed	automatically	after	Wait	sees	the	command	exit.

			386	 func	(c	*Cmd)	StderrPipe()	(io.ReadCloser,	error)	{

			387	 	 if	c.Stderr	!=	nil	{

			388	 	 	 return	nil,	errors.New("exec:	Stderr	already	set")

			389	 	 }

			390	 	 if	c.Process	!=	nil	{

			391	 	 	 return	nil,	errors.New("exec:	StderrPipe	after	process	started")

			392	 	 }

			393	 	 pr,	pw,	err	:=	os.Pipe()

			394	 	 if	err	!=	nil	{

			395	 	 	 return	nil,	err

			396	 	 }

			397	 	 c.Stderr	=	pw

			398	 	 c.closeAfterStart	=	append(c.closeAfterStart,	pw)

			399	 	 c.closeAfterWait	=	append(c.closeAfterWait,	pr)

			400	 	 return	pr,	nil

			401	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/exec/lp_unix.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 package	exec

					8	

					9	 import	(

				10	 	 "errors"

				11	 	 "os"

				12	 	 "strings"

				13)

				14	

				15	 //	ErrNotFound	is	the	error	resulting	if	a	path	search	failed	to	find	an	executable	file.

				16	 var	ErrNotFound	=	errors.New("executable	file	not	found	in	$PATH")

				17	

				18	 func	findExecutable(file	string)	error	{

				19	 	 d,	err	:=	os.Stat(file)

				20	 	 if	err	!=	nil	{

				21	 	 	 return	err

				22	 	 }

				23	 	 if	m	:=	d.Mode();	!m.IsDir()	&&	m&0111	!=	0	{

				24	 	 	 return	nil

				25	 	 }

				26	 	 return	os.ErrPermission

				27	 }

				28	

				29	 //	LookPath	searches	for	an	executable	binary	named	file

				30	 //	in	the	directories	named	by	the	PATH	environment	variable.

				31	 //	If	file	contains	a	slash,	it	is	tried	directly	and	the	PATH	is	not	consulted.

				32	 func	LookPath(file	string)	(string,	error)	{

				33	 	 //	NOTE(rsc):	I	wish	we	could	use	the	Plan	9	behavior	here

				34	 	 //	(only	bypass	the	path	if	file	begins	with	/	or	./	or	../)

				35	 	 //	but	that	would	not	match	all	the	Unix	shells.

				36	

				37	 	 if	strings.Contains(file,	"/")	{

				38	 	 	 err	:=	findExecutable(file)

				39	 	 	 if	err	==	nil	{

				40	 	 	 	 return	file,	nil

				41	 	 	 }

				42	 	 	 return	"",	&Error{file,	err}

				43	 	 }

				44	 	 pathenv	:=	os.Getenv("PATH")

				45	 	 for	_,	dir	:=	range	strings.Split(pathenv,	":")	{

				46	 	 	 if	dir	==	""	{

				47	 	 	 	 //	Unix	shell	semantics:	path	element	""	means	"."

				48	 	 	 	 dir	=	"."

				49	 	 	 }

				50	 	 	 path	:=	dir	+	"/"	+	file

				51	 	 	 if	err	:=	findExecutable(path);	err	==	nil	{

				52	 	 	 	 return	path,	nil

				53	 	 	 }

				54	 	 }

				55	 	 return	"",	&Error{file,	ErrNotFound}

				56	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/signal/signal.go
					1	 //	Copyright	2012	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	signal	implements	access	to	incoming	signals.

					6	 package	signal

					7	

					8	 //	BUG(rsc):	This	package	is	not	yet	implemented	on	Plan	9	and	Windows.

					9	

				10	 import	(

				11	 	 "os"

				12	 	 "sync"

				13)

				14	

				15	 var	handlers	struct	{

				16	 	 sync.Mutex

				17	 	 list	[]handler

				18	 }

				19	

				20	 type	handler	struct	{

				21	 	 c			chan<-	os.Signal

				22	 	 sig	os.Signal

				23	 	 all	bool

				24	 }

				25	

				26	 //	Notify	causes	package	signal	to	relay	incoming	signals	to	c.

				27	 //	If	no	signals	are	listed,	all	incoming	signals	will	be	relayed	to	c.

				28	 //	Otherwise,	just	the	listed	signals	will.

				29	 //

				30	 //	Package	signal	will	not	block	sending	to	c:	the	caller	must	ensure

				31	 //	that	c	has	sufficient	buffer	space	to	keep	up	with	the	expected

				32	 //	signal	rate.		For	a	channel	used	for	notification	of	just	one	signal	value,

				33	 //	a	buffer	of	size	1	is	sufficient.

				34	 //

				35	 func	Notify(c	chan<-	os.Signal,	sig	...os.Signal)	{

				36	 	 if	c	==	nil	{

				37	 	 	 panic("os/signal:	Notify	using	nil	channel")

				38	 	 }

				39	

				40	 	 handlers.Lock()

				41	 	 defer	handlers.Unlock()

				42	 	 if	len(sig)	==	0	{

				43	 	 	 enableSignal(nil)

				44	 	 	 handlers.list	=	append(handlers.list,	handler{c:	c,	all:	true})

				45	 	 }	else	{

				46	 	 	 for	_,	s	:=	range	sig	{

				47	 	 	 	 //	We	use	nil	as	a	special	wildcard	value	for	enableSignal,

				48	 	 	 	 //	so	filter	it	out	of	the	list	of	arguments.		This	is	safe	because

				49	 	 	 	 //	we	will	never	get	an	incoming	nil	signal,	so	discarding	the

				50	 	 	 	 //	registration	cannot	affect	the	observed	behavior.

				51	 	 	 	 if	s	!=	nil	{

				52	 	 	 	 	 enableSignal(s)

				53	 	 	 	 	 handlers.list	=	append(handlers.list,	handler{c:	c,	sig:	s})

				54	 	 	 	 }

				55	 	 	 }

				56	 	 }

				57	 }

				58	

				59	 func	process(sig	os.Signal)	{

				60	 	 handlers.Lock()

				61	 	 defer	handlers.Unlock()

				62	

				63	 	 for	_,	h	:=	range	handlers.list	{

				64	 	 	 if	h.all	||	h.sig	==	sig	{

				65	 	 	 	 //	send	but	do	not	block	for	it

				66	 	 	 	 select	{

				67	 	 	 	 case	h.c	<-	sig:

				68	 	 	 	 default:

				69	 	 	 	 }

				70	 	 	 }

				71	 	 }

				72	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/os/signal/signal_unix.go
					1	 //	Copyright	2012	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd	windows

					6	

					7	 package	signal

					8	

					9	 import	(

				10	 	 "os"

				11	 	 "syscall"

				12)

				13	

				14	 //	In	assembly.

				15	 func	signal_enable(uint32)

				16	 func	signal_recv()	uint32

				17	

				18	 func	loop()	{

				19	 	 for	{

				20	 	 	 process(syscall.Signal(signal_recv()))

				21	 	 }

				22	 }

				23	

				24	 func	init()	{

				25	 	 signal_enable(0)	//	first	call	-	initialize

				26	 	 go	loop()

				27	 }

				28	

				29	 func	enableSignal(sig	os.Signal)	{

				30	 	 switch	sig	:=	sig.(type)	{

				31	 	 case	nil:

				32	 	 	 signal_enable(^uint32(0))

				33	 	 case	syscall.Signal:

				34	 	 	 signal_enable(uint32(sig))

				35	 	 default:

				36	 	 	 //	Can	ignore:	this	signal	(whatever	it	is)	will	never	come	in.

				37	 	 }

				38	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative

http://code.google.com/policies.html#restrictions

Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/os/user/lookup_unix.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux

					6	 //	+build	cgo

					7	

					8	 package	user

					9	

				10	 import	(

				11	 	 "fmt"

				12	 	 "runtime"

				13	 	 "strconv"

				14	 	 "strings"

				15	 	 "syscall"

				16	 	 "unsafe"

				17)

				18	

				19	 /*

				20	 #include	<unistd.h>

				21	 #include	<sys/types.h>

				22	 #include	<pwd.h>

				23	 #include	<stdlib.h>

				24	

				25	 static	int	mygetpwuid_r(int	uid,	struct	passwd	*pwd,

				26	 	 char	*buf,	size_t	buflen,	struct	passwd	**result)	{

				27	 	return	getpwuid_r(uid,	pwd,	buf,	buflen,	result);

				28	 }

				29	 */

				30	 import	"C"

				31	

				32	 //	Current	returns	the	current	user.	

				33	 func	Current()	(*User,	error)	{

				34	 	 return	lookup(syscall.Getuid(),	"",	false)

				35	 }

				36	

				37	 //	Lookup	looks	up	a	user	by	username.	If	the	user	cannot	be	found,

				38	 //	the	returned	error	is	of	type	UnknownUserError.

				39	 func	Lookup(username	string)	(*User,	error)	{

				40	 	 return	lookup(-1,	username,	true)

				41	 }

				42	

				43	 //	LookupId	looks	up	a	user	by	userid.	If	the	user	cannot	be	found,

				44	 //	the	returned	error	is	of	type	UnknownUserIdError.

				45	 func	LookupId(uid	string)	(*User,	error)	{

				46	 	 i,	e	:=	strconv.Atoi(uid)

				47	 	 if	e	!=	nil	{

				48	 	 	 return	nil,	e

				49	 	 }

				50	 	 return	lookup(i,	"",	false)

				51	 }

				52	

				53	 func	lookup(uid	int,	username	string,	lookupByName	bool)	(*User,	error)	{

				54	 	 var	pwd	C.struct_passwd

				55	 	 var	result	*C.struct_passwd

				56	

				57	 	 var	bufSize	C.long

				58	 	 if	runtime.GOOS	==	"freebsd"	{

				59	 	 	 //	FreeBSD	doesn't	have	_SC_GETPW_R_SIZE_MAX

				60	 	 	 //	and	just	returns	-1.		So	just	use	the	same

				61	 	 	 //	size	that	Linux	returns

				62	 	 	 bufSize	=	1024

				63	 	 }	else	{

				64	 	 	 bufSize	=	C.sysconf(C._SC_GETPW_R_SIZE_MAX)

				65	 	 	 if	bufSize	<=	0	||	bufSize	>	1<<20	{

				66	 	 	 	 return	nil,	fmt.Errorf("user:	unreasonable	_SC_GETPW_R_SIZE_MAX	of	%d",	bufSize)

				67	 	 	 }

				68	 	 }

				69	 	 buf	:=	C.malloc(C.size_t(bufSize))

				70	 	 defer	C.free(buf)

				71	 	 var	rv	C.int

				72	 	 if	lookupByName	{

				73	 	 	 nameC	:=	C.CString(username)

				74	 	 	 defer	C.free(unsafe.Pointer(nameC))

				75	 	 	 rv	=	C.getpwnam_r(nameC,

				76	 	 	 	 &pwd,

				77	 	 	 	 (*C.char)(buf),

				78	 	 	 	 C.size_t(bufSize),

				79	 	 	 	 &result)

				80	 	 	 if	rv	!=	0	{

				81	 	 	 	 return	nil,	fmt.Errorf("user:	lookup	username	%s:	%s",	username,	syscall.Errno(rv))

				82	 	 	 }

				83	 	 	 if	result	==	nil	{

				84	 	 	 	 return	nil,	UnknownUserError(username)

				85	 	 	 }

				86	 	 }	else	{

				87	 	 	 //	mygetpwuid_r	is	a	wrapper	around	getpwuid_r	to

				88	 	 	 //	to	avoid	using	uid_t	because	C.uid_t(uid)	for

				89	 	 	 //	unknown	reasons	doesn't	work	on	linux.

				90	 	 	 rv	=	C.mygetpwuid_r(C.int(uid),

				91	 	 	 	 &pwd,

				92	 	 	 	 (*C.char)(buf),

				93	 	 	 	 C.size_t(bufSize),

				94	 	 	 	 &result)

				95	 	 	 if	rv	!=	0	{

				96	 	 	 	 return	nil,	fmt.Errorf("user:	lookup	userid	%d:	%s",	uid,	syscall.Errno(rv))

				97	 	 	 }

				98	 	 	 if	result	==	nil	{

				99	 	 	 	 return	nil,	UnknownUserIdError(uid)

			100	 	 	 }

			101	 	 }

			102	 	 u	:=	&User{

			103	 	 	 Uid:						strconv.Itoa(int(pwd.pw_uid)),

			104	 	 	 Gid:						strconv.Itoa(int(pwd.pw_gid)),

			105	 	 	 Username:	C.GoString(pwd.pw_name),

			106	 	 	 Name:					C.GoString(pwd.pw_gecos),

			107	 	 	 HomeDir:		C.GoString(pwd.pw_dir),

			108	 	 }

			109	 	 //	The	pw_gecos	field	isn't	quite	standardized.		Some	docs

			110	 	 //	say:	"It	is	expected	to	be	a	comma	separated	list	of

			111	 	 //	personal	data	where	the	first	item	is	the	full	name	of	the

			112	 	 //	user."

			113	 	 if	i	:=	strings.Index(u.Name,	",");	i	>=	0	{

			114	 	 	 u.Name	=	u.Name[:i]

			115	 	 }

			116	 	 return	u,	nil

			117	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/os/user/user.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	user	allows	user	account	lookups	by	name	or	id.

					6	 package	user

					7	

					8	 import	(

					9	 	 "strconv"

				10)

				11	

				12	 var	implemented	=	true	//	set	to	false	by	lookup_stubs.go's	init

				13	

				14	 //	User	represents	a	user	account.

				15	 //

				16	 //	On	posix	systems	Uid	and	Gid	contain	a	decimal	number

				17	 //	representing	uid	and	gid.	On	windows	Uid	and	Gid

				18	 //	contain	security	identifier	(SID)	in	a	string	format.

				19	 type	User	struct	{

				20	 	 Uid						string	//	user	id

				21	 	 Gid						string	//	primary	group	id

				22	 	 Username	string

				23	 	 Name					string

				24	 	 HomeDir		string

				25	 }

				26	

				27	 //	UnknownUserIdError	is	returned	by	LookupId	when

				28	 //	a	user	cannot	be	found.

				29	 type	UnknownUserIdError	int

				30	

				31	 func	(e	UnknownUserIdError)	Error()	string	{

				32	 	 return	"user:	unknown	userid	"	+	strconv.Itoa(int(e))

				33	 }

				34	

				35	 //	UnknownUserError	is	returned	by	Lookup	when

				36	 //	a	user	cannot	be	found.

				37	 type	UnknownUserError	string

				38	

				39	 func	(e	UnknownUserError)	Error()	string	{

				40	 	 return	"user:	unknown	user	"	+	string(e)

				41	 }

Build	version	go1.0.1.

Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/path/match.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	path

					6	

					7	 import	(

					8	 	 "errors"

					9	 	 "strings"

				10	 	 "unicode/utf8"

				11)

				12	

				13	 //	ErrBadPattern	indicates	a	globbing	pattern	was	malformed.

				14	 var	ErrBadPattern	=	errors.New("syntax	error	in	pattern")

				15	

				16	 //	Match	returns	true	if	name	matches	the	shell	file	name	pattern.

				17	 //	The	pattern	syntax	is:

				18	 //

				19	 //	 pattern:

				20	 //	 	 {	term	}

				21	 //	 term:

				22	 //	 	 '*'									matches	any	sequence	of	non-/	characters

				23	 //	 	 '?'									matches	any	single	non-/	character

				24	 //	 	 '['	['^']	{	character-range	}	']'

				25	 //	 	 												character	class	(must	be	non-empty)

				26	 //	 	 c											matches	character	c	(c	!=	'*',	'?',	'\\',	'[')

				27	 //	 	 '\\'	c						matches	character	c

				28	 //

				29	 //	 character-range:

				30	 //	 	 c											matches	character	c	(c	!=	'\\',	'-',	']')

				31	 //	 	 '\\'	c						matches	character	c

				32	 //	 	 lo	'-'	hi			matches	character	c	for	lo	<=	c	<=	hi

				33	 //

				34	 //	Match	requires	pattern	to	match	all	of	name,	not	just	a	substring.

				35	 //	The	only	possible	returned	error	is	ErrBadPattern,	when	pattern

				36	 //	is	malformed.

				37	 //

				38	 func	Match(pattern,	name	string)	(matched	bool,	err	error)	{

				39	 Pattern:

				40	 	 for	len(pattern)	>	0	{

				41	 	 	 var	star	bool

				42	 	 	 var	chunk	string

				43	 	 	 star,	chunk,	pattern	=	scanChunk(pattern)

				44	 	 	 if	star	&&	chunk	==	""	{

				45	 	 	 	 //	Trailing	*	matches	rest	of	string	unless	it	has	a	/.

				46	 	 	 	 return	strings.Index(name,	"/")	<	0,	nil

				47	 	 	 }

				48	 	 	 //	Look	for	match	at	current	position.

				49	 	 	 t,	ok,	err	:=	matchChunk(chunk,	name)

				50	 	 	 //	if	we're	the	last	chunk,	make	sure	we've	exhausted	the	name

				51	 	 	 //	otherwise	we'll	give	a	false	result	even	if	we	could	still	match

				52	 	 	 //	using	the	star

				53	 	 	 if	ok	&&	(len(t)	==	0	||	len(pattern)	>	0)	{

				54	 	 	 	 name	=	t

				55	 	 	 	 continue

				56	 	 	 }

				57	 	 	 if	err	!=	nil	{

				58	 	 	 	 return	false,	err

				59	 	 	 }

				60	 	 	 if	star	{

				61	 	 	 	 //	Look	for	match	skipping	i+1	bytes.

				62	 	 	 	 //	Cannot	skip	/.

				63	 	 	 	 for	i	:=	0;	i	<	len(name)	&&	name[i]	!=	'/';	i++	{

				64	 	 	 	 	 t,	ok,	err	:=	matchChunk(chunk,	name[i+1:])

				65	 	 	 	 	 if	ok	{

				66	 	 	 	 	 	 //	if	we're	the	last	chunk,	make	sure	we	exhausted	the	name

				67	 	 	 	 	 	 if	len(pattern)	==	0	&&	len(t)	>	0	{

				68	 	 	 	 	 	 	 continue

				69	 	 	 	 	 	 }

				70	 	 	 	 	 	 name	=	t

				71	 	 	 	 	 	 continue	Pattern

				72	 	 	 	 	 }

				73	 	 	 	 	 if	err	!=	nil	{

				74	 	 	 	 	 	 return	false,	err

				75	 	 	 	 	 }

				76	 	 	 	 }

				77	 	 	 }

				78	 	 	 return	false,	nil

				79	 	 }

				80	 	 return	len(name)	==	0,	nil

				81	 }

				82	

				83	 //	scanChunk	gets	the	next	segment	of	pattern,	which	is	a	non-star	string

				84	 //	possibly	preceded	by	a	star.

				85	 func	scanChunk(pattern	string)	(star	bool,	chunk,	rest	string)	{

				86	 	 for	len(pattern)	>	0	&&	pattern[0]	==	'*'	{

				87	 	 	 pattern	=	pattern[1:]

				88	 	 	 star	=	true

				89	 	 }

				90	 	 inrange	:=	false

				91	 	 var	i	int

				92	 Scan:

				93	 	 for	i	=	0;	i	<	len(pattern);	i++	{

				94	 	 	 switch	pattern[i]	{

				95	 	 	 case	'\\':

				96	 	 	 	 //	error	check	handled	in	matchChunk:	bad	pattern.

				97	 	 	 	 if	i+1	<	len(pattern)	{

				98	 	 	 	 	 i++

				99	 	 	 	 }

			100	 	 	 case	'[':

			101	 	 	 	 inrange	=	true

			102	 	 	 case	']':

			103	 	 	 	 inrange	=	false

			104	 	 	 case	'*':

			105	 	 	 	 if	!inrange	{

			106	 	 	 	 	 break	Scan

			107	 	 	 	 }

			108	 	 	 }

			109	 	 }

			110	 	 return	star,	pattern[0:i],	pattern[i:]

			111	 }

			112	

			113	 //	matchChunk	checks	whether	chunk	matches	the	beginning	of	s.

			114	 //	If	so,	it	returns	the	remainder	of	s	(after	the	match).

			115	 //	Chunk	is	all	single-character	operators:	literals,	char	classes,	and	?.

			116	 func	matchChunk(chunk,	s	string)	(rest	string,	ok	bool,	err	error)	{

			117	 	 for	len(chunk)	>	0	{

			118	 	 	 if	len(s)	==	0	{

			119	 	 	 	 return

			120	 	 	 }

			121	 	 	 switch	chunk[0]	{

			122	 	 	 case	'[':

			123	 	 	 	 //	character	class

			124	 	 	 	 r,	n	:=	utf8.DecodeRuneInString(s)

			125	 	 	 	 s	=	s[n:]

			126	 	 	 	 chunk	=	chunk[1:]

			127	 	 	 	 //	possibly	negated

			128	 	 	 	 notNegated	:=	true

			129	 	 	 	 if	len(chunk)	>	0	&&	chunk[0]	==	'^'	{

			130	 	 	 	 	 notNegated	=	false

			131	 	 	 	 	 chunk	=	chunk[1:]

			132	 	 	 	 }

			133	 	 	 	 //	parse	all	ranges

			134	 	 	 	 match	:=	false

			135	 	 	 	 nrange	:=	0

			136	 	 	 	 for	{

			137	 	 	 	 	 if	len(chunk)	>	0	&&	chunk[0]	==	']'	&&	nrange	>	0	{

			138	 	 	 	 	 	 chunk	=	chunk[1:]

			139	 	 	 	 	 	 break

			140	 	 	 	 	 }

			141	 	 	 	 	 var	lo,	hi	rune

			142	 	 	 	 	 if	lo,	chunk,	err	=	getEsc(chunk);	err	!=	nil	{

			143	 	 	 	 	 	 return

			144	 	 	 	 	 }

			145	 	 	 	 	 hi	=	lo

			146	 	 	 	 	 if	chunk[0]	==	'-'	{

			147	 	 	 	 	 	 if	hi,	chunk,	err	=	getEsc(chunk[1:]);	err	!=	nil	{

			148	 	 	 	 	 	 	 return

			149	 	 	 	 	 	 }

			150	 	 	 	 	 }

			151	 	 	 	 	 if	lo	<=	r	&&	r	<=	hi	{

			152	 	 	 	 	 	 match	=	true

			153	 	 	 	 	 }

			154	 	 	 	 	 nrange++

			155	 	 	 	 }

			156	 	 	 	 if	match	!=	notNegated	{

			157	 	 	 	 	 return

			158	 	 	 	 }

			159	

			160	 	 	 case	'?':

			161	 	 	 	 if	s[0]	==	'/'	{

			162	 	 	 	 	 return

			163	 	 	 	 }

			164	 	 	 	 _,	n	:=	utf8.DecodeRuneInString(s)

			165	 	 	 	 s	=	s[n:]

			166	 	 	 	 chunk	=	chunk[1:]

			167	

			168	 	 	 case	'\\':

			169	 	 	 	 chunk	=	chunk[1:]

			170	 	 	 	 if	len(chunk)	==	0	{

			171	 	 	 	 	 err	=	ErrBadPattern

			172	 	 	 	 	 return

			173	 	 	 	 }

			174	 	 	 	 fallthrough

			175	

			176	 	 	 default:

			177	 	 	 	 if	chunk[0]	!=	s[0]	{

			178	 	 	 	 	 return

			179	 	 	 	 }

			180	 	 	 	 s	=	s[1:]

			181	 	 	 	 chunk	=	chunk[1:]

			182	 	 	 }

			183	 	 }

			184	 	 return	s,	true,	nil

			185	 }

			186	

			187	 //	getEsc	gets	a	possibly-escaped	character	from	chunk,	for	a	character	class.

			188	 func	getEsc(chunk	string)	(r	rune,	nchunk	string,	err	error)	{

			189	 	 if	len(chunk)	==	0	||	chunk[0]	==	'-'	||	chunk[0]	==	']'	{

			190	 	 	 err	=	ErrBadPattern

			191	 	 	 return

			192	 	 }

			193	 	 if	chunk[0]	==	'\\'	{

			194	 	 	 chunk	=	chunk[1:]

			195	 	 	 if	len(chunk)	==	0	{

			196	 	 	 	 err	=	ErrBadPattern

			197	 	 	 	 return

			198	 	 	 }

			199	 	 }

			200	 	 r,	n	:=	utf8.DecodeRuneInString(chunk)

			201	 	 if	r	==	utf8.RuneError	&&	n	==	1	{

			202	 	 	 err	=	ErrBadPattern

			203	 	 }

			204	 	 nchunk	=	chunk[n:]

			205	 	 if	len(nchunk)	==	0	{

			206	 	 	 err	=	ErrBadPattern

			207	 	 }

			208	 	 return

			209	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/path/path.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	path	implements	utility	routines	for	manipulating	slash-separated

					6	 //	paths.

					7	 package	path

					8	

					9	 import	(

				10	 	 "strings"

				11)

				12	

				13	 //	Clean	returns	the	shortest	path	name	equivalent	to	path

				14	 //	by	purely	lexical	processing.		It	applies	the	following	rules

				15	 //	iteratively	until	no	further	processing	can	be	done:

				16	 //

				17	 //	 1.	Replace	multiple	slashes	with	a	single	slash.

				18	 //	 2.	Eliminate	each	.	path	name	element	(the	current	directory).

				19	 //	 3.	Eliminate	each	inner	..	path	name	element	(the	parent	directory)

				20	 //	 			along	with	the	non-..	element	that	precedes	it.

				21	 //	 4.	Eliminate	..	elements	that	begin	a	rooted	path:

				22	 //	 			that	is,	replace	"/.."	by	"/"	at	the	beginning	of	a	path.

				23	 //

				24	 //	The	returned	path	ends	in	a	slash	only	if	it	is	the	root	"/".

				25	 //

				26	 //	If	the	result	of	this	process	is	an	empty	string,	Clean

				27	 //	returns	the	string	".".

				28	 //

				29	 //	See	also	Rob	Pike,	``Lexical	File	Names	in	Plan	9	or

				30	 //	Getting	Dot-Dot	Right,''

				31	 //	http://plan9.bell-labs.com/sys/doc/lexnames.html

				32	 func	Clean(path	string)	string	{

				33	 	 if	path	==	""	{

				34	 	 	 return	"."

				35	 	 }

				36	

				37	 	 rooted	:=	path[0]	==	'/'

				38	 	 n	:=	len(path)

				39	

				40	 	 //	Invariants:

				41	 	 //	 reading	from	path;	r	is	index	of	next	byte	to	process.

				42	 	 //	 writing	to	buf;	w	is	index	of	next	byte	to	write.

				43	 	 //	 dotdot	is	index	in	buf	where	..	must	stop,	either	because

				44	 	 //	 	 it	is	the	leading	slash	or	it	is	a	leading	../../..	prefix.

				45	 	 buf	:=	[]byte(path)

				46	 	 r,	w,	dotdot	:=	0,	0,	0

				47	 	 if	rooted	{

				48	 	 	 r,	w,	dotdot	=	1,	1,	1

				49	 	 }

				50	

				51	 	 for	r	<	n	{

				52	 	 	 switch	{

				53	 	 	 case	path[r]	==	'/':

				54	 	 	 	 //	empty	path	element

				55	 	 	 	 r++

				56	 	 	 case	path[r]	==	'.'	&&	(r+1	==	n	||	path[r+1]	==	'/'):

				57	 	 	 	 //	.	element

				58	 	 	 	 r++

				59	 	 	 case	path[r]	==	'.'	&&	path[r+1]	==	'.'	&&	(r+2	==	n	||	path[r+2]	==	'/'):

				60	 	 	 	 //	..	element:	remove	to	last	/

				61	 	 	 	 r	+=	2

				62	 	 	 	 switch	{

				63	 	 	 	 case	w	>	dotdot:

				64	 	 	 	 	 //	can	backtrack

				65	 	 	 	 	 w--

				66	 	 	 	 	 for	w	>	dotdot	&&	buf[w]	!=	'/'	{

				67	 	 	 	 	 	 w--

				68	 	 	 	 	 }

				69	 	 	 	 case	!rooted:

				70	 	 	 	 	 //	cannot	backtrack,	but	not	rooted,	so	append	..	element.

				71	 	 	 	 	 if	w	>	0	{

				72	 	 	 	 	 	 buf[w]	=	'/'

				73	 	 	 	 	 	 w++

				74	 	 	 	 	 }

				75	 	 	 	 	 buf[w]	=	'.'

				76	 	 	 	 	 w++

				77	 	 	 	 	 buf[w]	=	'.'

				78	 	 	 	 	 w++

				79	 	 	 	 	 dotdot	=	w

				80	 	 	 	 }

				81	 	 	 default:

				82	 	 	 	 //	real	path	element.

				83	 	 	 	 //	add	slash	if	needed

				84	 	 	 	 if	rooted	&&	w	!=	1	||	!rooted	&&	w	!=	0	{

				85	 	 	 	 	 buf[w]	=	'/'

				86	 	 	 	 	 w++

				87	 	 	 	 }

				88	 	 	 	 //	copy	element

				89	 	 	 	 for	;	r	<	n	&&	path[r]	!=	'/';	r++	{

				90	 	 	 	 	 buf[w]	=	path[r]

				91	 	 	 	 	 w++

				92	 	 	 	 }

				93	 	 	 }

				94	 	 }

				95	

				96	 	 //	Turn	empty	string	into	"."

				97	 	 if	w	==	0	{

				98	 	 	 buf[w]	=	'.'

				99	 	 	 w++

			100	 	 }

			101	

			102	 	 return	string(buf[0:w])

			103	 }

			104	

			105	 //	Split	splits	path	immediately	following	the	final	slash.

			106	 //	separating	it	into	a	directory	and	file	name	component.

			107	 //	If	there	is	no	slash	path,	Split	returns	an	empty	dir	and

			108	 //	file	set	to	path.

			109	 //	The	returned	values	have	the	property	that	path	=	dir+file.

			110	 func	Split(path	string)	(dir,	file	string)	{

			111	 	 i	:=	strings.LastIndex(path,	"/")

			112	 	 return	path[:i+1],	path[i+1:]

			113	 }

			114	

			115	 //	Join	joins	any	number	of	path	elements	into	a	single	path,	adding	a

			116	 //	separating	slash	if	necessary.	The	result	is	Cleaned;	in	particular,

			117	 //	all	empty	strings	are	ignored.

			118	 func	Join(elem	...string)	string	{

			119	 	 for	i,	e	:=	range	elem	{

			120	 	 	 if	e	!=	""	{

			121	 	 	 	 return	Clean(strings.Join(elem[i:],	"/"))

			122	 	 	 }

			123	 	 }

			124	 	 return	""

			125	 }

			126	

			127	 //	Ext	returns	the	file	name	extension	used	by	path.

			128	 //	The	extension	is	the	suffix	beginning	at	the	final	dot

			129	 //	in	the	final	slash-separated	element	of	path;

			130	 //	it	is	empty	if	there	is	no	dot.

			131	 func	Ext(path	string)	string	{

			132	 	 for	i	:=	len(path)	-	1;	i	>=	0	&&	path[i]	!=	'/';	i--	{

			133	 	 	 if	path[i]	==	'.'	{

			134	 	 	 	 return	path[i:]

			135	 	 	 }

			136	 	 }

			137	 	 return	""

			138	 }

			139	

			140	 //	Base	returns	the	last	element	of	path.

			141	 //	Trailing	slashes	are	removed	before	extracting	the	last	element.

			142	 //	If	the	path	is	empty,	Base	returns	".".

			143	 //	If	the	path	consists	entirely	of	slashes,	Base	returns	"/".

			144	 func	Base(path	string)	string	{

			145	 	 if	path	==	""	{

			146	 	 	 return	"."

			147	 	 }

			148	 	 //	Strip	trailing	slashes.

			149	 	 for	len(path)	>	0	&&	path[len(path)-1]	==	'/'	{

			150	 	 	 path	=	path[0	:	len(path)-1]

			151	 	 }

			152	 	 //	Find	the	last	element

			153	 	 if	i	:=	strings.LastIndex(path,	"/");	i	>=	0	{

			154	 	 	 path	=	path[i+1:]

			155	 	 }

			156	 	 //	If	empty	now,	it	had	only	slashes.

			157	 	 if	path	==	""	{

			158	 	 	 return	"/"

			159	 	 }

			160	 	 return	path

			161	 }

			162	

			163	 //	IsAbs	returns	true	if	the	path	is	absolute.

			164	 func	IsAbs(path	string)	bool	{

			165	 	 return	len(path)	>	0	&&	path[0]	==	'/'

			166	 }

			167	

			168	 //	Dir	returns	all	but	the	last	element	of	path,	typically	the	path's	directory.

			169	 //	The	path	is	Cleaned	and	trailing	slashes	are	removed	before	processing.

			170	 //	If	the	path	is	empty,	Dir	returns	".".

			171	 //	If	the	path	consists	entirely	of	slashes	followed	by	non-slash	bytes,	Dir

			172	 //	returns	a	single	slash.	In	any	other	case,	the	returned	path	does	not	end	in	a

			173	 //	slash.

			174	 func	Dir(path	string)	string	{

			175	 	 dir,	_	:=	Split(path)

			176	 	 dir	=	Clean(dir)

			177	 	 last	:=	len(dir)	-	1

			178	 	 if	last	>	0	&&	dir[last]	==	'/'	{

			179	 	 	 dir	=	dir[:last]

			180	 	 }

			181	 	 if	dir	==	""	{

			182	 	 	 dir	=	"."

			183	 	 }

			184	 	 return	dir

			185	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/path/filepath/match.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	filepath

					6	

					7	 import	(

					8	 	 "errors"

					9	 	 "os"

				10	 	 "runtime"

				11	 	 "sort"

				12	 	 "strings"

				13	 	 "unicode/utf8"

				14)

				15	

				16	 //	ErrBadPattern	indicates	a	globbing	pattern	was	malformed.

				17	 var	ErrBadPattern	=	errors.New("syntax	error	in	pattern")

				18	

				19	 //	Match	returns	true	if	name	matches	the	shell	file	name	pattern.

				20	 //	The	pattern	syntax	is:

				21	 //

				22	 //	 pattern:

				23	 //	 	 {	term	}

				24	 //	 term:

				25	 //	 	 '*'									matches	any	sequence	of	non-Separator	characters

				26	 //	 	 '?'									matches	any	single	non-Separator	character

				27	 //	 	 '['	['^']	{	character-range	}	']'

				28	 //	 	 												character	class	(must	be	non-empty)

				29	 //	 	 c											matches	character	c	(c	!=	'*',	'?',	'\\',	'[')

				30	 //	 	 '\\'	c						matches	character	c

				31	 //

				32	 //	 character-range:

				33	 //	 	 c											matches	character	c	(c	!=	'\\',	'-',	']')

				34	 //	 	 '\\'	c						matches	character	c

				35	 //	 	 lo	'-'	hi			matches	character	c	for	lo	<=	c	<=	hi

				36	 //

				37	 //	Match	requires	pattern	to	match	all	of	name,	not	just	a	substring.

				38	 //	The	only	possible	returned	error	is	ErrBadPattern,	when	pattern

				39	 //	is	malformed.

				40	 //

				41	 //	On	Windows,	escaping	is	disabled.	Instead,	'\\'	is	treated	as

				42	 //	path	separator.

				43	 //

				44	 func	Match(pattern,	name	string)	(matched	bool,	err	error)	{

				45	 Pattern:

				46	 	 for	len(pattern)	>	0	{

				47	 	 	 var	star	bool

				48	 	 	 var	chunk	string

				49	 	 	 star,	chunk,	pattern	=	scanChunk(pattern)

				50	 	 	 if	star	&&	chunk	==	""	{

				51	 	 	 	 //	Trailing	*	matches	rest	of	string	unless	it	has	a	/.

				52	 	 	 	 return	strings.Index(name,	string(Separator))	<	0,	nil

				53	 	 	 }

				54	 	 	 //	Look	for	match	at	current	position.

				55	 	 	 t,	ok,	err	:=	matchChunk(chunk,	name)

				56	 	 	 //	if	we're	the	last	chunk,	make	sure	we've	exhausted	the	name

				57	 	 	 //	otherwise	we'll	give	a	false	result	even	if	we	could	still	match

				58	 	 	 //	using	the	star

				59	 	 	 if	ok	&&	(len(t)	==	0	||	len(pattern)	>	0)	{

				60	 	 	 	 name	=	t

				61	 	 	 	 continue

				62	 	 	 }

				63	 	 	 if	err	!=	nil	{

				64	 	 	 	 return	false,	err

				65	 	 	 }

				66	 	 	 if	star	{

				67	 	 	 	 //	Look	for	match	skipping	i+1	bytes.

				68	 	 	 	 //	Cannot	skip	/.

				69	 	 	 	 for	i	:=	0;	i	<	len(name)	&&	name[i]	!=	Separator;	i++	{

				70	 	 	 	 	 t,	ok,	err	:=	matchChunk(chunk,	name[i+1:])

				71	 	 	 	 	 if	ok	{

				72	 	 	 	 	 	 //	if	we're	the	last	chunk,	make	sure	we	exhausted	the	name

				73	 	 	 	 	 	 if	len(pattern)	==	0	&&	len(t)	>	0	{

				74	 	 	 	 	 	 	 continue

				75	 	 	 	 	 	 }

				76	 	 	 	 	 	 name	=	t

				77	 	 	 	 	 	 continue	Pattern

				78	 	 	 	 	 }

				79	 	 	 	 	 if	err	!=	nil	{

				80	 	 	 	 	 	 return	false,	err

				81	 	 	 	 	 }

				82	 	 	 	 }

				83	 	 	 }

				84	 	 	 return	false,	nil

				85	 	 }

				86	 	 return	len(name)	==	0,	nil

				87	 }

				88	

				89	 //	scanChunk	gets	the	next	segment	of	pattern,	which	is	a	non-star	string

				90	 //	possibly	preceded	by	a	star.

				91	 func	scanChunk(pattern	string)	(star	bool,	chunk,	rest	string)	{

				92	 	 for	len(pattern)	>	0	&&	pattern[0]	==	'*'	{

				93	 	 	 pattern	=	pattern[1:]

				94	 	 	 star	=	true

				95	 	 }

				96	 	 inrange	:=	false

				97	 	 var	i	int

				98	 Scan:

				99	 	 for	i	=	0;	i	<	len(pattern);	i++	{

			100	 	 	 switch	pattern[i]	{

			101	 	 	 case	'\\':

			102	 	 	 	 if	runtime.GOOS	!=	"windows"	{

			103	 	 	 	 	 //	error	check	handled	in	matchChunk:	bad	pattern.

			104	 	 	 	 	 if	i+1	<	len(pattern)	{

			105	 	 	 	 	 	 i++

			106	 	 	 	 	 }

			107	 	 	 	 }

			108	 	 	 case	'[':

			109	 	 	 	 inrange	=	true

			110	 	 	 case	']':

			111	 	 	 	 inrange	=	false

			112	 	 	 case	'*':

			113	 	 	 	 if	!inrange	{

			114	 	 	 	 	 break	Scan

			115	 	 	 	 }

			116	 	 	 }

			117	 	 }

			118	 	 return	star,	pattern[0:i],	pattern[i:]

			119	 }

			120	

			121	 //	matchChunk	checks	whether	chunk	matches	the	beginning	of	s.

			122	 //	If	so,	it	returns	the	remainder	of	s	(after	the	match).

			123	 //	Chunk	is	all	single-character	operators:	literals,	char	classes,	and	?.

			124	 func	matchChunk(chunk,	s	string)	(rest	string,	ok	bool,	err	error)	{

			125	 	 for	len(chunk)	>	0	{

			126	 	 	 if	len(s)	==	0	{

			127	 	 	 	 return

			128	 	 	 }

			129	 	 	 switch	chunk[0]	{

			130	 	 	 case	'[':

			131	 	 	 	 //	character	class

			132	 	 	 	 r,	n	:=	utf8.DecodeRuneInString(s)

			133	 	 	 	 s	=	s[n:]

			134	 	 	 	 chunk	=	chunk[1:]

			135	 	 	 	 //	possibly	negated

			136	 	 	 	 negated	:=	chunk[0]	==	'^'

			137	 	 	 	 if	negated	{

			138	 	 	 	 	 chunk	=	chunk[1:]

			139	 	 	 	 }

			140	 	 	 	 //	parse	all	ranges

			141	 	 	 	 match	:=	false

			142	 	 	 	 nrange	:=	0

			143	 	 	 	 for	{

			144	 	 	 	 	 if	len(chunk)	>	0	&&	chunk[0]	==	']'	&&	nrange	>	0	{

			145	 	 	 	 	 	 chunk	=	chunk[1:]

			146	 	 	 	 	 	 break

			147	 	 	 	 	 }

			148	 	 	 	 	 var	lo,	hi	rune

			149	 	 	 	 	 if	lo,	chunk,	err	=	getEsc(chunk);	err	!=	nil	{

			150	 	 	 	 	 	 return

			151	 	 	 	 	 }

			152	 	 	 	 	 hi	=	lo

			153	 	 	 	 	 if	chunk[0]	==	'-'	{

			154	 	 	 	 	 	 if	hi,	chunk,	err	=	getEsc(chunk[1:]);	err	!=	nil	{

			155	 	 	 	 	 	 	 return

			156	 	 	 	 	 	 }

			157	 	 	 	 	 }

			158	 	 	 	 	 if	lo	<=	r	&&	r	<=	hi	{

			159	 	 	 	 	 	 match	=	true

			160	 	 	 	 	 }

			161	 	 	 	 	 nrange++

			162	 	 	 	 }

			163	 	 	 	 if	match	==	negated	{

			164	 	 	 	 	 return

			165	 	 	 	 }

			166	

			167	 	 	 case	'?':

			168	 	 	 	 if	s[0]	==	Separator	{

			169	 	 	 	 	 return

			170	 	 	 	 }

			171	 	 	 	 _,	n	:=	utf8.DecodeRuneInString(s)

			172	 	 	 	 s	=	s[n:]

			173	 	 	 	 chunk	=	chunk[1:]

			174	

			175	 	 	 case	'\\':

			176	 	 	 	 if	runtime.GOOS	!=	"windows"	{

			177	 	 	 	 	 chunk	=	chunk[1:]

			178	 	 	 	 	 if	len(chunk)	==	0	{

			179	 	 	 	 	 	 err	=	ErrBadPattern

			180	 	 	 	 	 	 return

			181	 	 	 	 	 }

			182	 	 	 	 }

			183	 	 	 	 fallthrough

			184	

			185	 	 	 default:

			186	 	 	 	 if	chunk[0]	!=	s[0]	{

			187	 	 	 	 	 return

			188	 	 	 	 }

			189	 	 	 	 s	=	s[1:]

			190	 	 	 	 chunk	=	chunk[1:]

			191	 	 	 }

			192	 	 }

			193	 	 return	s,	true,	nil

			194	 }

			195	

			196	 //	getEsc	gets	a	possibly-escaped	character	from	chunk,	for	a	character	class.

			197	 func	getEsc(chunk	string)	(r	rune,	nchunk	string,	err	error)	{

			198	 	 if	len(chunk)	==	0	||	chunk[0]	==	'-'	||	chunk[0]	==	']'	{

			199	 	 	 err	=	ErrBadPattern

			200	 	 	 return

			201	 	 }

			202	 	 if	chunk[0]	==	'\\'	&&	runtime.GOOS	!=	"windows"	{

			203	 	 	 chunk	=	chunk[1:]

			204	 	 	 if	len(chunk)	==	0	{

			205	 	 	 	 err	=	ErrBadPattern

			206	 	 	 	 return

			207	 	 	 }

			208	 	 }

			209	 	 r,	n	:=	utf8.DecodeRuneInString(chunk)

			210	 	 if	r	==	utf8.RuneError	&&	n	==	1	{

			211	 	 	 err	=	ErrBadPattern

			212	 	 }

			213	 	 nchunk	=	chunk[n:]

			214	 	 if	len(nchunk)	==	0	{

			215	 	 	 err	=	ErrBadPattern

			216	 	 }

			217	 	 return

			218	 }

			219	

			220	 //	Glob	returns	the	names	of	all	files	matching	pattern	or	nil

			221	 //	if	there	is	no	matching	file.	The	syntax	of	patterns	is	the	same

			222	 //	as	in	Match.	The	pattern	may	describe	hierarchical	names	such	as

			223	 //	/usr/*/bin/ed	(assuming	the	Separator	is	'/').

			224	 //

			225	 func	Glob(pattern	string)	(matches	[]string,	err	error)	{

			226	 	 if	!hasMeta(pattern)	{

			227	 	 	 if	_,	err	=	os.Stat(pattern);	err	!=	nil	{

			228	 	 	 	 return	nil,	nil

			229	 	 	 }

			230	 	 	 return	[]string{pattern},	nil

			231	 	 }

			232	

			233	 	 dir,	file	:=	Split(pattern)

			234	 	 switch	dir	{

			235	 	 case	"":

			236	 	 	 dir	=	"."

			237	 	 case	string(Separator):

			238	 	 	 //	nothing

			239	 	 default:

			240	 	 	 dir	=	dir[0	:	len(dir)-1]	//	chop	off	trailing	separator

			241	 	 }

			242	

			243	 	 if	!hasMeta(dir)	{

			244	 	 	 return	glob(dir,	file,	nil)

			245	 	 }

			246	

			247	 	 var	m	[]string

			248	 	 m,	err	=	Glob(dir)

			249	 	 if	err	!=	nil	{

			250	 	 	 return

			251	 	 }

			252	 	 for	_,	d	:=	range	m	{

			253	 	 	 matches,	err	=	glob(d,	file,	matches)

			254	 	 	 if	err	!=	nil	{

			255	 	 	 	 return

			256	 	 	 }

			257	 	 }

			258	 	 return

			259	 }

			260	

			261	 //	glob	searches	for	files	matching	pattern	in	the	directory	dir

			262	 //	and	appends	them	to	matches.	If	the	directory	cannot	be

			263	 //	opened,	it	returns	the	existing	matches.	New	matches	are

			264	 //	added	in	lexicographical	order.

			265	 func	glob(dir,	pattern	string,	matches	[]string)	(m	[]string,	e	error)	{

			266	 	 m	=	matches

			267	 	 fi,	err	:=	os.Stat(dir)

			268	 	 if	err	!=	nil	{

			269	 	 	 return

			270	 	 }

			271	 	 if	!fi.IsDir()	{

			272	 	 	 return

			273	 	 }

			274	 	 d,	err	:=	os.Open(dir)

			275	 	 if	err	!=	nil	{

			276	 	 	 return

			277	 	 }

			278	 	 defer	d.Close()

			279	

			280	 	 names,	err	:=	d.Readdirnames(-1)

			281	 	 if	err	!=	nil	{

			282	 	 	 return

			283	 	 }

			284	 	 sort.Strings(names)

			285	

			286	 	 for	_,	n	:=	range	names	{

			287	 	 	 matched,	err	:=	Match(pattern,	n)

			288	 	 	 if	err	!=	nil	{

			289	 	 	 	 return	m,	err

			290	 	 	 }

			291	 	 	 if	matched	{

			292	 	 	 	 m	=	append(m,	Join(dir,	n))

			293	 	 	 }

			294	 	 }

			295	 	 return

			296	 }

			297	

			298	 //	hasMeta	returns	true	if	path	contains	any	of	the	magic	characters

			299	 //	recognized	by	Match.

			300	 func	hasMeta(path	string)	bool	{

			301	 	 //	TODO(niemeyer):	Should	other	magic	characters	be	added	here?

			302	 	 return	strings.IndexAny(path,	"*?[")	>=	0

			303	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/path/filepath/path.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	filepath	implements	utility	routines	for	manipulating	filename	paths

					6	 //	in	a	way	compatible	with	the	target	operating	system-defined	file	paths.

					7	 package	filepath

					8	

					9	 import	(

				10	 	 "errors"

				11	 	 "os"

				12	 	 "sort"

				13	 	 "strings"

				14)

				15	

				16	 const	(

				17	 	 Separator					=	os.PathSeparator

				18	 	 ListSeparator	=	os.PathListSeparator

				19)

				20	

				21	 //	Clean	returns	the	shortest	path	name	equivalent	to	path

				22	 //	by	purely	lexical	processing.		It	applies	the	following	rules

				23	 //	iteratively	until	no	further	processing	can	be	done:

				24	 //

				25	 //	 1.	Replace	multiple	Separator	elements	with	a	single	one.

				26	 //	 2.	Eliminate	each	.	path	name	element	(the	current	directory).

				27	 //	 3.	Eliminate	each	inner	..	path	name	element	(the	parent	directory)

				28	 //	 			along	with	the	non-..	element	that	precedes	it.

				29	 //	 4.	Eliminate	..	elements	that	begin	a	rooted	path:

				30	 //	 			that	is,	replace	"/.."	by	"/"	at	the	beginning	of	a	path,

				31	 //									assuming	Separator	is	'/'.

				32	 //

				33	 //	The	returned	path	ends	in	a	slash	only	if	it	represents	a	root	directory,

				34	 //	such	as	"/"	on	Unix	or	`C:\`	on	Windows.

				35	 //

				36	 //	If	the	result	of	this	process	is	an	empty	string,	Clean

				37	 //	returns	the	string	".".

				38	 //

				39	 //	See	also	Rob	Pike,	``Lexical	File	Names	in	Plan	9	or

				40	 //	Getting	Dot-Dot	Right,''

				41	 //	http://plan9.bell-labs.com/sys/doc/lexnames.html

				42	 func	Clean(path	string)	string	{

				43	 	 vol	:=	VolumeName(path)

				44	 	 path	=	path[len(vol):]

				45	 	 if	path	==	""	{

				46	 	 	 if	len(vol)	>	1	&&	vol[1]	!=	':'	{

				47	 	 	 	 //	should	be	UNC

				48	 	 	 	 return	FromSlash(vol)

				49	 	 	 }

				50	 	 	 return	vol	+	"."

				51	 	 }

				52	 	 rooted	:=	os.IsPathSeparator(path[0])

				53	

				54	 	 //	Invariants:

				55	 	 //	 reading	from	path;	r	is	index	of	next	byte	to	process.

				56	 	 //	 writing	to	buf;	w	is	index	of	next	byte	to	write.

				57	 	 //	 dotdot	is	index	in	buf	where	..	must	stop,	either	because

				58	 	 //	 	 it	is	the	leading	slash	or	it	is	a	leading	../../..	prefix.

				59	 	 n	:=	len(path)

				60	 	 buf	:=	[]byte(path)

				61	 	 r,	w,	dotdot	:=	0,	0,	0

				62	 	 if	rooted	{

				63	 	 	 buf[0]	=	Separator

				64	 	 	 r,	w,	dotdot	=	1,	1,	1

				65	 	 }

				66	

				67	 	 for	r	<	n	{

				68	 	 	 switch	{

				69	 	 	 case	os.IsPathSeparator(path[r]):

				70	 	 	 	 //	empty	path	element

				71	 	 	 	 r++

				72	 	 	 case	path[r]	==	'.'	&&	(r+1	==	n	||	os.IsPathSeparator(path[r+1])):

				73	 	 	 	 //	.	element

				74	 	 	 	 r++

				75	 	 	 case	path[r]	==	'.'	&&	path[r+1]	==	'.'	&&	(r+2	==	n	||	os.IsPathSeparator(path[r+2])):

				76	 	 	 	 //	..	element:	remove	to	last	separator

				77	 	 	 	 r	+=	2

				78	 	 	 	 switch	{

				79	 	 	 	 case	w	>	dotdot:

				80	 	 	 	 	 //	can	backtrack

				81	 	 	 	 	 w--

				82	 	 	 	 	 for	w	>	dotdot	&&	!os.IsPathSeparator(buf[w])	{

				83	 	 	 	 	 	 w--

				84	 	 	 	 	 }

				85	 	 	 	 case	!rooted:

				86	 	 	 	 	 //	cannot	backtrack,	but	not	rooted,	so	append	..	element.

				87	 	 	 	 	 if	w	>	0	{

				88	 	 	 	 	 	 buf[w]	=	Separator

				89	 	 	 	 	 	 w++

				90	 	 	 	 	 }

				91	 	 	 	 	 buf[w]	=	'.'

				92	 	 	 	 	 w++

				93	 	 	 	 	 buf[w]	=	'.'

				94	 	 	 	 	 w++

				95	 	 	 	 	 dotdot	=	w

				96	 	 	 	 }

				97	 	 	 default:

				98	 	 	 	 //	real	path	element.

				99	 	 	 	 //	add	slash	if	needed

			100	 	 	 	 if	rooted	&&	w	!=	1	||	!rooted	&&	w	!=	0	{

			101	 	 	 	 	 buf[w]	=	Separator

			102	 	 	 	 	 w++

			103	 	 	 	 }

			104	 	 	 	 //	copy	element

			105	 	 	 	 for	;	r	<	n	&&	!os.IsPathSeparator(path[r]);	r++	{

			106	 	 	 	 	 buf[w]	=	path[r]

			107	 	 	 	 	 w++

			108	 	 	 	 }

			109	 	 	 }

			110	 	 }

			111	

			112	 	 //	Turn	empty	string	into	"."

			113	 	 if	w	==	0	{

			114	 	 	 buf[w]	=	'.'

			115	 	 	 w++

			116	 	 }

			117	

			118	 	 return	FromSlash(vol	+	string(buf[0:w]))

			119	 }

			120	

			121	 //	ToSlash	returns	the	result	of	replacing	each	separator	character

			122	 //	in	path	with	a	slash	('/')	character.	Multiple	separators	are

			123	 //	replaced	by	multiple	slashes.

			124	 func	ToSlash(path	string)	string	{

			125	 	 if	Separator	==	'/'	{

			126	 	 	 return	path

			127	 	 }

			128	 	 return	strings.Replace(path,	string(Separator),	"/",	-1)

			129	 }

			130	

			131	 //	FromSlash	returns	the	result	of	replacing	each	slash	('/')	character

			132	 //	in	path	with	a	separator	character.	Multiple	slashes	are	replaced

			133	 //	by	multiple	separators.

			134	 func	FromSlash(path	string)	string	{

			135	 	 if	Separator	==	'/'	{

			136	 	 	 return	path

			137	 	 }

			138	 	 return	strings.Replace(path,	"/",	string(Separator),	-1)

			139	 }

			140	

			141	 //	SplitList	splits	a	list	of	paths	joined	by	the	OS-specific	ListSeparator,

			142	 //	usually	found	in	PATH	or	GOPATH	environment	variables.

			143	 //	Unlike	strings.Split,	SplitList	returns	an	empty	slice	when	passed	an	empty	string.

			144	 func	SplitList(path	string)	[]string	{

			145	 	 if	path	==	""	{

			146	 	 	 return	[]string{}

			147	 	 }

			148	 	 return	strings.Split(path,	string(ListSeparator))

			149	 }

			150	

			151	 //	Split	splits	path	immediately	following	the	final	Separator,

			152	 //	separating	it	into	a	directory	and	file	name	component.

			153	 //	If	there	is	no	Separator	in	path,	Split	returns	an	empty	dir

			154	 //	and	file	set	to	path.

			155	 //	The	returned	values	have	the	property	that	path	=	dir+file.

			156	 func	Split(path	string)	(dir,	file	string)	{

			157	 	 vol	:=	VolumeName(path)

			158	 	 i	:=	len(path)	-	1

			159	 	 for	i	>=	len(vol)	&&	!os.IsPathSeparator(path[i])	{

			160	 	 	 i--

			161	 	 }

			162	 	 return	path[:i+1],	path[i+1:]

			163	 }

			164	

			165	 //	Join	joins	any	number	of	path	elements	into	a	single	path,	adding

			166	 //	a	Separator	if	necessary.	The	result	is	Cleaned,	in	particular

			167	 //	all	empty	strings	are	ignored.

			168	 func	Join(elem	...string)	string	{

			169	 	 for	i,	e	:=	range	elem	{

			170	 	 	 if	e	!=	""	{

			171	 	 	 	 return	Clean(strings.Join(elem[i:],	string(Separator)))

			172	 	 	 }

			173	 	 }

			174	 	 return	""

			175	 }

			176	

			177	 //	Ext	returns	the	file	name	extension	used	by	path.

			178	 //	The	extension	is	the	suffix	beginning	at	the	final	dot

			179	 //	in	the	final	element	of	path;	it	is	empty	if	there	is

			180	 //	no	dot.

			181	 func	Ext(path	string)	string	{

			182	 	 for	i	:=	len(path)	-	1;	i	>=	0	&&	!os.IsPathSeparator(path[i]);	i--	{

			183	 	 	 if	path[i]	==	'.'	{

			184	 	 	 	 return	path[i:]

			185	 	 	 }

			186	 	 }

			187	 	 return	""

			188	 }

			189	

			190	 //	EvalSymlinks	returns	the	path	name	after	the	evaluation	of	any	symbolic

			191	 //	links.

			192	 //	If	path	is	relative	the	result	will	be	relative	to	the	current	directory,

			193	 //	unless	one	of	the	components	is	an	absolute	symbolic	link.

			194	 func	EvalSymlinks(path	string)	(string,	error)	{

			195	 	 return	evalSymlinks(path)

			196	 }

			197	

			198	 //	Abs	returns	an	absolute	representation	of	path.

			199	 //	If	the	path	is	not	absolute	it	will	be	joined	with	the	current

			200	 //	working	directory	to	turn	it	into	an	absolute	path.		The	absolute

			201	 //	path	name	for	a	given	file	is	not	guaranteed	to	be	unique.

			202	 func	Abs(path	string)	(string,	error)	{

			203	 	 if	IsAbs(path)	{

			204	 	 	 return	Clean(path),	nil

			205	 	 }

			206	 	 wd,	err	:=	os.Getwd()

			207	 	 if	err	!=	nil	{

			208	 	 	 return	"",	err

			209	 	 }

			210	 	 return	Join(wd,	path),	nil

			211	 }

			212	

			213	 //	Rel	returns	a	relative	path	that	is	lexically	equivalent	to	targpath	when

			214	 //	joined	to	basepath	with	an	intervening	separator.	That	is,

			215	 //	Join(basepath,	Rel(basepath,	targpath))	is	equivalent	to	targpath	itself.

			216	 //	On	success,	the	returned	path	will	always	be	relative	to	basepath,

			217	 //	even	if	basepath	and	targpath	share	no	elements.

			218	 //	An	error	is	returned	if	targpath	can't	be	made	relative	to	basepath	or	if

			219	 //	knowing	the	current	working	directory	would	be	necessary	to	compute	it.

			220	 func	Rel(basepath,	targpath	string)	(string,	error)	{

			221	 	 baseVol	:=	VolumeName(basepath)

			222	 	 targVol	:=	VolumeName(targpath)

			223	 	 base	:=	Clean(basepath)

			224	 	 targ	:=	Clean(targpath)

			225	 	 if	targ	==	base	{

			226	 	 	 return	".",	nil

			227	 	 }

			228	 	 base	=	base[len(baseVol):]

			229	 	 targ	=	targ[len(targVol):]

			230	 	 if	base	==	"."	{

			231	 	 	 base	=	""

			232	 	 }

			233	 	 //	Can't	use	IsAbs	-	`\a`	and	`a`	are	both	relative	in	Windows.

			234	 	 baseSlashed	:=	len(base)	>	0	&&	base[0]	==	Separator

			235	 	 targSlashed	:=	len(targ)	>	0	&&	targ[0]	==	Separator

			236	 	 if	baseSlashed	!=	targSlashed	||	baseVol	!=	targVol	{

			237	 	 	 return	"",	errors.New("Rel:	can't	make	"	+	targ	+	"	relative	to	"	+	base)

			238	 	 }

			239	 	 //	Position	base[b0:bi]	and	targ[t0:ti]	at	the	first	differing	elements.

			240	 	 bl	:=	len(base)

			241	 	 tl	:=	len(targ)

			242	 	 var	b0,	bi,	t0,	ti	int

			243	 	 for	{

			244	 	 	 for	bi	<	bl	&&	base[bi]	!=	Separator	{

			245	 	 	 	 bi++

			246	 	 	 }

			247	 	 	 for	ti	<	tl	&&	targ[ti]	!=	Separator	{

			248	 	 	 	 ti++

			249	 	 	 }

			250	 	 	 if	targ[t0:ti]	!=	base[b0:bi]	{

			251	 	 	 	 break

			252	 	 	 }

			253	 	 	 if	bi	<	bl	{

			254	 	 	 	 bi++

			255	 	 	 }

			256	 	 	 if	ti	<	tl	{

			257	 	 	 	 ti++

			258	 	 	 }

			259	 	 	 b0	=	bi

			260	 	 	 t0	=	ti

			261	 	 }

			262	 	 if	base[b0:bi]	==	".."	{

			263	 	 	 return	"",	errors.New("Rel:	can't	make	"	+	targ	+	"	relative	to	"	+	base)

			264	 	 }

			265	 	 if	b0	!=	bl	{

			266	 	 	 //	Base	elements	left.	Must	go	up	before	going	down.

			267	 	 	 seps	:=	strings.Count(base[b0:bl],	string(Separator))

			268	 	 	 size	:=	2	+	seps*3

			269	 	 	 if	tl	!=	t0	{

			270	 	 	 	 size	+=	1	+	tl	-	t0

			271	 	 	 }

			272	 	 	 buf	:=	make([]byte,	size)

			273	 	 	 n	:=	copy(buf,	"..")

			274	 	 	 for	i	:=	0;	i	<	seps;	i++	{

			275	 	 	 	 buf[n]	=	Separator

			276	 	 	 	 copy(buf[n+1:],	"..")

			277	 	 	 	 n	+=	3

			278	 	 	 }

			279	 	 	 if	t0	!=	tl	{

			280	 	 	 	 buf[n]	=	Separator

			281	 	 	 	 copy(buf[n+1:],	targ[t0:])

			282	 	 	 }

			283	 	 	 return	string(buf),	nil

			284	 	 }

			285	 	 return	targ[t0:],	nil

			286	 }

			287	

			288	 //	SkipDir	is	used	as	a	return	value	from	WalkFuncs	to	indicate	that

			289	 //	the	directory	named	in	the	call	is	to	be	skipped.	It	is	not	returned

			290	 //	as	an	error	by	any	function.

			291	 var	SkipDir	=	errors.New("skip	this	directory")

			292	

			293	 //	WalkFunc	is	the	type	of	the	function	called	for	each	file	or	directory

			294	 //	visited	by	Walk.		If	there	was	a	problem	walking	to	the	file	or	directory

			295	 //	named	by	path,	the	incoming	error	will	describe	the	problem	and	the

			296	 //	function	can	decide	how	to	handle	that	error	(and	Walk	will	not	descend

			297	 //	into	that	directory).		If	an	error	is	returned,	processing	stops.		The

			298	 //	sole	exception	is	that	if	path	is	a	directory	and	the	function	returns	the

			299	 //	special	value	SkipDir,	the	contents	of	the	directory	are	skipped

			300	 //	and	processing	continues	as	usual	on	the	next	file.

			301	 type	WalkFunc	func(path	string,	info	os.FileInfo,	err	error)	error

			302	

			303	 //	walk	recursively	descends	path,	calling	w.

			304	 func	walk(path	string,	info	os.FileInfo,	walkFn	WalkFunc)	error	{

			305	 	 err	:=	walkFn(path,	info,	nil)

			306	 	 if	err	!=	nil	{

			307	 	 	 if	info.IsDir()	&&	err	==	SkipDir	{

			308	 	 	 	 return	nil

			309	 	 	 }

			310	 	 	 return	err

			311	 	 }

			312	

			313	 	 if	!info.IsDir()	{

			314	 	 	 return	nil

			315	 	 }

			316	

			317	 	 list,	err	:=	readDir(path)

			318	 	 if	err	!=	nil	{

			319	 	 	 return	walkFn(path,	info,	err)

			320	 	 }

			321	

			322	 	 for	_,	fileInfo	:=	range	list	{

			323	 	 	 if	err	=	walk(Join(path,	fileInfo.Name()),	fileInfo,	walkFn);	err	!=	nil	{

			324	 	 	 	 return	err

			325	 	 	 }

			326	 	 }

			327	 	 return	nil

			328	 }

			329	

			330	 //	Walk	walks	the	file	tree	rooted	at	root,	calling	walkFn	for	each	file	or

			331	 //	directory	in	the	tree,	including	root.	All	errors	that	arise	visiting	files

			332	 //	and	directories	are	filtered	by	walkFn.	The	files	are	walked	in	lexical

			333	 //	order,	which	makes	the	output	deterministic	but	means	that	for	very

			334	 //	large	directories	Walk	can	be	inefficient.

			335	 func	Walk(root	string,	walkFn	WalkFunc)	error	{

			336	 	 info,	err	:=	os.Lstat(root)

			337	 	 if	err	!=	nil	{

			338	 	 	 return	walkFn(root,	nil,	err)

			339	 	 }

			340	 	 return	walk(root,	info,	walkFn)

			341	 }

			342	

			343	 //	readDir	reads	the	directory	named	by	dirname	and	returns

			344	 //	a	sorted	list	of	directory	entries.

			345	 //	Copied	from	io/ioutil	to	avoid	the	circular	import.

			346	 func	readDir(dirname	string)	([]os.FileInfo,	error)	{

			347	 	 f,	err	:=	os.Open(dirname)

			348	 	 if	err	!=	nil	{

			349	 	 	 return	nil,	err

			350	 	 }

			351	 	 list,	err	:=	f.Readdir(-1)

			352	 	 f.Close()

			353	 	 if	err	!=	nil	{

			354	 	 	 return	nil,	err

			355	 	 }

			356	 	 sort.Sort(byName(list))

			357	 	 return	list,	nil

			358	 }

			359	

			360	 //	byName	implements	sort.Interface.

			361	 type	byName	[]os.FileInfo

			362	

			363	 func	(f	byName)	Len()	int											{	return	len(f)	}

			364	 func	(f	byName)	Less(i,	j	int)	bool	{	return	f[i].Name()	<	f[j].Name()	}

			365	 func	(f	byName)	Swap(i,	j	int)						{	f[i],	f[j]	=	f[j],	f[i]	}

			366	

			367	 //	Base	returns	the	last	element	of	path.

			368	 //	Trailing	path	separators	are	removed	before	extracting	the	last	element.

			369	 //	If	the	path	is	empty,	Base	returns	".".

			370	 //	If	the	path	consists	entirely	of	separators,	Base	returns	a	single	separator.

			371	 func	Base(path	string)	string	{

			372	 	 if	path	==	""	{

			373	 	 	 return	"."

			374	 	 }

			375	 	 //	Strip	trailing	slashes.

			376	 	 for	len(path)	>	0	&&	os.IsPathSeparator(path[len(path)-1])	{

			377	 	 	 path	=	path[0	:	len(path)-1]

			378	 	 }

			379	 	 //	Throw	away	volume	name

			380	 	 path	=	path[len(VolumeName(path)):]

			381	 	 //	Find	the	last	element

			382	 	 i	:=	len(path)	-	1

			383	 	 for	i	>=	0	&&	!os.IsPathSeparator(path[i])	{

			384	 	 	 i--

			385	 	 }

			386	 	 if	i	>=	0	{

			387	 	 	 path	=	path[i+1:]

			388	 	 }

			389	 	 //	If	empty	now,	it	had	only	slashes.

			390	 	 if	path	==	""	{

			391	 	 	 return	string(Separator)

			392	 	 }

			393	 	 return	path

			394	 }

			395	

			396	 //	Dir	returns	all	but	the	last	element	of	path,	typically	the	path's	directory.

			397	 //	Trailing	path	separators	are	removed	before	processing.

			398	 //	If	the	path	is	empty,	Dir	returns	".".

			399	 //	If	the	path	consists	entirely	of	separators,	Dir	returns	a	single	separator.

			400	 //	The	returned	path	does	not	end	in	a	separator	unless	it	is	the	root	directory.

			401	 func	Dir(path	string)	string	{

			402	 	 vol	:=	VolumeName(path)

			403	 	 i	:=	len(path)	-	1

			404	 	 for	i	>=	len(vol)	&&	!os.IsPathSeparator(path[i])	{

			405	 	 	 i--

			406	 	 }

			407	 	 dir	:=	Clean(path[len(vol)	:	i+1])

			408	 	 last	:=	len(dir)	-	1

			409	 	 if	last	>	0	&&	os.IsPathSeparator(dir[last])	{

			410	 	 	 dir	=	dir[:last]

			411	 	 }

			412	 	 if	dir	==	""	{

			413	 	 	 dir	=	"."

			414	 	 }

			415	 	 return	vol	+	dir

			416	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/path/filepath/path_unix.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 package	filepath

					8	

					9	 import	"strings"

				10	

				11	 //	IsAbs	returns	true	if	the	path	is	absolute.

				12	 func	IsAbs(path	string)	bool	{

				13	 	 return	strings.HasPrefix(path,	"/")

				14	 }

				15	

				16	 //	VolumeName	returns	the	leading	volume	name	on	Windows.

				17	 //	It	returns	""	elsewhere.

				18	 func	VolumeName(path	string)	string	{

				19	 	 return	""

				20	 }

				21	

				22	 //	HasPrefix	exists	for	historical	compatibility	and	should	not	be	used.

				23	 func	HasPrefix(p,	prefix	string)	bool	{

				24	 	 return	strings.HasPrefix(p,	prefix)

				25	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/path/filepath/symlink.go
					1	 //	Copyright	2012	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	!windows

					6	

					7	 package	filepath

					8	

					9	 import	(

				10	 	 "bytes"

				11	 	 "errors"

				12	 	 "os"

				13	 	 "strings"

				14)

				15	

				16	 func	evalSymlinks(path	string)	(string,	error)	{

				17	 	 const	maxIter	=	255

				18	 	 originalPath	:=	path

				19	 	 //	consume	path	by	taking	each	frontmost	path	element,

				20	 	 //	expanding	it	if	it's	a	symlink,	and	appending	it	to	b

				21	 	 var	b	bytes.Buffer

				22	 	 for	n	:=	0;	path	!=	"";	n++	{

				23	 	 	 if	n	>	maxIter	{

				24	 	 	 	 return	"",	errors.New("EvalSymlinks:	too	many	links	in	"	+	originalPath)

				25	 	 	 }

				26	

				27	 	 	 //	find	next	path	component,	p

				28	 	 	 i	:=	strings.IndexRune(path,	Separator)

				29	 	 	 var	p	string

				30	 	 	 if	i	==	-1	{

				31	 	 	 	 p,	path	=	path,	""

				32	 	 	 }	else	{

				33	 	 	 	 p,	path	=	path[:i],	path[i+1:]

				34	 	 	 }

				35	

				36	 	 	 if	p	==	""	{

				37	 	 	 	 if	b.Len()	==	0	{

				38	 	 	 	 	 //	must	be	absolute	path

				39	 	 	 	 	 b.WriteRune(Separator)

				40	 	 	 	 }

				41	 	 	 	 continue

				42	 	 	 }

				43	

				44	 	 	 fi,	err	:=	os.Lstat(b.String()	+	p)

				45	 	 	 if	err	!=	nil	{

				46	 	 	 	 return	"",	err

				47	 	 	 }

				48	 	 	 if	fi.Mode()&os.ModeSymlink	==	0	{

				49	 	 	 	 b.WriteString(p)

				50	 	 	 	 if	path	!=	""	{

				51	 	 	 	 	 b.WriteRune(Separator)

				52	 	 	 	 }

				53	 	 	 	 continue

				54	 	 	 }

				55	

				56	 	 	 //	it's	a	symlink,	put	it	at	the	front	of	path

				57	 	 	 dest,	err	:=	os.Readlink(b.String()	+	p)

				58	 	 	 if	err	!=	nil	{

				59	 	 	 	 return	"",	err

				60	 	 	 }

				61	 	 	 if	IsAbs(dest)	{

				62	 	 	 	 b.Reset()

				63	 	 	 }

				64	 	 	 path	=	dest	+	string(Separator)	+	path

				65	 	 }

				66	 	 return	Clean(b.String()),	nil

				67	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/reflect/deepequal.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Deep	equality	test	via	reflection

					6	

					7	 package	reflect

					8	

					9	 //	During	deepValueEqual,	must	keep	track	of	checks	that	are

				10	 //	in	progress.		The	comparison	algorithm	assumes	that	all

				11	 //	checks	in	progress	are	true	when	it	reencounters	them.

				12	 //	Visited	are	stored	in	a	map	indexed	by	17	*	a1	+	a2;

				13	 type	visit	struct	{

				14	 	 a1			uintptr

				15	 	 a2			uintptr

				16	 	 typ		Type

				17	 	 next	*visit

				18	 }

				19	

				20	 //	Tests	for	deep	equality	using	reflected	types.	The	map	argument	tracks

				21	 //	comparisons	that	have	already	been	seen,	which	allows	short	circuiting	on

				22	 //	recursive	types.

				23	 func	deepValueEqual(v1,	v2	Value,	visited	map[uintptr]*visit,	depth	int)	(b	bool)	{

				24	 	 if	!v1.IsValid()	||	!v2.IsValid()	{

				25	 	 	 return	v1.IsValid()	==	v2.IsValid()

				26	 	 }

				27	 	 if	v1.Type()	!=	v2.Type()	{

				28	 	 	 return	false

				29	 	 }

				30	

				31	 	 //	if	depth	>	10	{	panic("deepValueEqual")	}	 //	for	debugging

				32	

				33	 	 if	v1.CanAddr()	&&	v2.CanAddr()	{

				34	 	 	 addr1	:=	v1.UnsafeAddr()

				35	 	 	 addr2	:=	v2.UnsafeAddr()

				36	 	 	 if	addr1	>	addr2	{

				37	 	 	 	 //	Canonicalize	order	to	reduce	number	of	entries	in	visited.

				38	 	 	 	 addr1,	addr2	=	addr2,	addr1

				39	 	 	 }

				40	

				41	 	 	 //	Short	circuit	if	references	are	identical	...

				42	 	 	 if	addr1	==	addr2	{

				43	 	 	 	 return	true

				44	 	 	 }

				45	

				46	 	 	 //	...	or	already	seen

				47	 	 	 h	:=	17*addr1	+	addr2

				48	 	 	 seen	:=	visited[h]

				49	 	 	 typ	:=	v1.Type()

				50	 	 	 for	p	:=	seen;	p	!=	nil;	p	=	p.next	{

				51	 	 	 	 if	p.a1	==	addr1	&&	p.a2	==	addr2	&&	p.typ	==	typ	{

				52	 	 	 	 	 return	true

				53	 	 	 	 }

				54	 	 	 }

				55	

				56	 	 	 //	Remember	for	later.

				57	 	 	 visited[h]	=	&visit{addr1,	addr2,	typ,	seen}

				58	 	 }

				59	

				60	 	 switch	v1.Kind()	{

				61	 	 case	Array:

				62	 	 	 if	v1.Len()	!=	v2.Len()	{

				63	 	 	 	 return	false

				64	 	 	 }

				65	 	 	 for	i	:=	0;	i	<	v1.Len();	i++	{

				66	 	 	 	 if	!deepValueEqual(v1.Index(i),	v2.Index(i),	visited,	depth+1)	{

				67	 	 	 	 	 return	false

				68	 	 	 	 }

				69	 	 	 }

				70	 	 	 return	true

				71	 	 case	Slice:

				72	 	 	 if	v1.IsNil()	!=	v2.IsNil()	{

				73	 	 	 	 return	false

				74	 	 	 }

				75	 	 	 if	v1.Len()	!=	v2.Len()	{

				76	 	 	 	 return	false

				77	 	 	 }

				78	 	 	 for	i	:=	0;	i	<	v1.Len();	i++	{

				79	 	 	 	 if	!deepValueEqual(v1.Index(i),	v2.Index(i),	visited,	depth+1)	{

				80	 	 	 	 	 return	false

				81	 	 	 	 }

				82	 	 	 }

				83	 	 	 return	true

				84	 	 case	Interface:

				85	 	 	 if	v1.IsNil()	||	v2.IsNil()	{

				86	 	 	 	 return	v1.IsNil()	==	v2.IsNil()

				87	 	 	 }

				88	 	 	 return	deepValueEqual(v1.Elem(),	v2.Elem(),	visited,	depth+1)

				89	 	 case	Ptr:

				90	 	 	 return	deepValueEqual(v1.Elem(),	v2.Elem(),	visited,	depth+1)

				91	 	 case	Struct:

				92	 	 	 for	i,	n	:=	0,	v1.NumField();	i	<	n;	i++	{

				93	 	 	 	 if	!deepValueEqual(v1.Field(i),	v2.Field(i),	visited,	depth+1)	{

				94	 	 	 	 	 return	false

				95	 	 	 	 }

				96	 	 	 }

				97	 	 	 return	true

				98	 	 case	Map:

				99	 	 	 if	v1.IsNil()	!=	v2.IsNil()	{

			100	 	 	 	 return	false

			101	 	 	 }

			102	 	 	 if	v1.Len()	!=	v2.Len()	{

			103	 	 	 	 return	false

			104	 	 	 }

			105	 	 	 for	_,	k	:=	range	v1.MapKeys()	{

			106	 	 	 	 if	!deepValueEqual(v1.MapIndex(k),	v2.MapIndex(k),	visited,	depth+1)	{

			107	 	 	 	 	 return	false

			108	 	 	 	 }

			109	 	 	 }

			110	 	 	 return	true

			111	 	 case	Func:

			112	 	 	 if	v1.IsNil()	&&	v2.IsNil()	{

			113	 	 	 	 return	true

			114	 	 	 }

			115	 	 	 //	Can't	do	better	than	this:

			116	 	 	 return	false

			117	 	 default:

			118	 	 	 //	Normal	equality	suffices

			119	 	 	 return	valueInterface(v1,	false)	==	valueInterface(v2,	false)

			120	 	 }

			121	

			122	 	 panic("Not	reached")

			123	 }

			124	

			125	 //	DeepEqual	tests	for	deep	equality.	It	uses	normal	==	equality	where	possible

			126	 //	but	will	scan	members	of	arrays,	slices,	maps,	and	fields	of	structs.	It	correctly

			127	 //	handles	recursive	types.	Functions	are	equal	only	if	they	are	both	nil.

			128	 func	DeepEqual(a1,	a2	interface{})	bool	{

			129	 	 if	a1	==	nil	||	a2	==	nil	{

			130	 	 	 return	a1	==	a2

			131	 	 }

			132	 	 v1	:=	ValueOf(a1)

			133	 	 v2	:=	ValueOf(a2)

			134	 	 if	v1.Type()	!=	v2.Type()	{

			135	 	 	 return	false

			136	 	 }

			137	 	 return	deepValueEqual(v1,	v2,	make(map[uintptr]*visit),	0)

			138	 }

Build	version	go1.0.1.

Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/reflect/type.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	reflect	implements	run-time	reflection,	allowing	a	program	to

					6	 //	manipulate	objects	with	arbitrary	types.		The	typical	use	is	to	take	a	value

					7	 //	with	static	type	interface{}	and	extract	its	dynamic	type	information	by

					8	 //	calling	TypeOf,	which	returns	a	Type.

					9	 //

				10	 //	A	call	to	ValueOf	returns	a	Value	representing	the	run-time	data.

				11	 //	Zero	takes	a	Type	and	returns	a	Value	representing	a	zero	value

				12	 //	for	that	type.

				13	 //

				14	 //	See	"The	Laws	of	Reflection"	for	an	introduction	to	reflection	in	Go:

				15	 //	http://golang.org/doc/articles/laws_of_reflection.html

				16	 package	reflect

				17	

				18	 import	(

				19	 	 "strconv"

				20	 	 "sync"

				21	 	 "unsafe"

				22)

				23	

				24	 //	Type	is	the	representation	of	a	Go	type.

				25	 //

				26	 //	Not	all	methods	apply	to	all	kinds	of	types.		Restrictions,

				27	 //	if	any,	are	noted	in	the	documentation	for	each	method.

				28	 //	Use	the	Kind	method	to	find	out	the	kind	of	type	before

				29	 //	calling	kind-specific	methods.		Calling	a	method

				30	 //	inappropriate	to	the	kind	of	type	causes	a	run-time	panic.

				31	 type	Type	interface	{

				32	 	 //	Methods	applicable	to	all	types.

				33	

				34	 	 //	Align	returns	the	alignment	in	bytes	of	a	value	of

				35	 	 //	this	type	when	allocated	in	memory.

				36	 	 Align()	int

				37	

				38	 	 //	FieldAlign	returns	the	alignment	in	bytes	of	a	value	of

				39	 	 //	this	type	when	used	as	a	field	in	a	struct.

				40	 	 FieldAlign()	int

				41	

				42	 	 //	Method	returns	the	i'th	method	in	the	type's	method	set.

				43	 	 //	It	panics	if	i	is	not	in	the	range	[0,	NumMethod()).

				44	 	 //

				45	 	 //	For	a	non-interface	type	T	or	*T,	the	returned	Method's	Type	and	Func

				46	 	 //	fields	describe	a	function	whose	first	argument	is	the	receiver.

				47	 	 //

				48	 	 //	For	an	interface	type,	the	returned	Method's	Type	field	gives	the

				49	 	 //	method	signature,	without	a	receiver,	and	the	Func	field	is	nil.

				50	 	 Method(int)	Method

				51	

				52	 	 //	MethodByName	returns	the	method	with	that	name	in	the	type's

				53	 	 //	method	set	and	a	boolean	indicating	if	the	method	was	found.

				54	 	 //

				55	 	 //	For	a	non-interface	type	T	or	*T,	the	returned	Method's	Type	and	Func

				56	 	 //	fields	describe	a	function	whose	first	argument	is	the	receiver.

				57	 	 //

				58	 	 //	For	an	interface	type,	the	returned	Method's	Type	field	gives	the

				59	 	 //	method	signature,	without	a	receiver,	and	the	Func	field	is	nil.

				60	 	 MethodByName(string)	(Method,	bool)

				61	

				62	 	 //	NumMethod	returns	the	number	of	methods	in	the	type's	method	set.

				63	 	 NumMethod()	int

				64	

				65	 	 //	Name	returns	the	type's	name	within	its	package.

				66	 	 //	It	returns	an	empty	string	for	unnamed	types.

				67	 	 Name()	string

				68	

				69	 	 //	PkgPath	returns	a	named	type's	package	path,	that	is,	the	import	path

				70	 	 //	that	uniquely	identifies	the	package,	such	as	"encoding/base64".

				71	 	 //	If	the	type	was	predeclared	(string,	error)	or	unnamed	(*T,	struct{},	[]int),

				72	 	 //	the	package	path	will	be	the	empty	string.

				73	 	 PkgPath()	string

				74	

				75	 	 //	Size	returns	the	number	of	bytes	needed	to	store

				76	 	 //	a	value	of	the	given	type;	it	is	analogous	to	unsafe.Sizeof.

				77	 	 Size()	uintptr

				78	

				79	 	 //	String	returns	a	string	representation	of	the	type.

				80	 	 //	The	string	representation	may	use	shortened	package	names

				81	 	 //	(e.g.,	base64	instead	of	"encoding/base64")	and	is	not

				82	 	 //	guaranteed	to	be	unique	among	types.		To	test	for	equality,

				83	 	 //	compare	the	Types	directly.

				84	 	 String()	string

				85	

				86	 	 //	Kind	returns	the	specific	kind	of	this	type.

				87	 	 Kind()	Kind

				88	

				89	 	 //	Implements	returns	true	if	the	type	implements	the	interface	type	u.

				90	 	 Implements(u	Type)	bool

				91	

				92	 	 //	AssignableTo	returns	true	if	a	value	of	the	type	is	assignable	to	type	u.

				93	 	 AssignableTo(u	Type)	bool

				94	

				95	 	 //	Methods	applicable	only	to	some	types,	depending	on	Kind.

				96	 	 //	The	methods	allowed	for	each	kind	are:

				97	 	 //

				98	 	 //	 Int*,	Uint*,	Float*,	Complex*:	Bits

				99	 	 //	 Array:	Elem,	Len

			100	 	 //	 Chan:	ChanDir,	Elem

			101	 	 //	 Func:	In,	NumIn,	Out,	NumOut,	IsVariadic.

			102	 	 //	 Map:	Key,	Elem

			103	 	 //	 Ptr:	Elem

			104	 	 //	 Slice:	Elem

			105	 	 //	 Struct:	Field,	FieldByIndex,	FieldByName,	FieldByNameFunc,	NumField

			106	

			107	 	 //	Bits	returns	the	size	of	the	type	in	bits.

			108	 	 //	It	panics	if	the	type's	Kind	is	not	one	of	the

			109	 	 //	sized	or	unsized	Int,	Uint,	Float,	or	Complex	kinds.

			110	 	 Bits()	int

			111	

			112	 	 //	ChanDir	returns	a	channel	type's	direction.

			113	 	 //	It	panics	if	the	type's	Kind	is	not	Chan.

			114	 	 ChanDir()	ChanDir

			115	

			116	 	 //	IsVariadic	returns	true	if	a	function	type's	final	input	parameter

			117	 	 //	is	a	"..."	parameter.		If	so,	t.In(t.NumIn()	-	1)	returns	the	parameter's

			118	 	 //	implicit	actual	type	[]T.

			119	 	 //

			120	 	 //	For	concreteness,	if	t	represents	func(x	int,	y	...	float64),	then

			121	 	 //

			122	 	 //	 t.NumIn()	==	2

			123	 	 //	 t.In(0)	is	the	reflect.Type	for	"int"

			124	 	 //	 t.In(1)	is	the	reflect.Type	for	"[]float64"

			125	 	 //	 t.IsVariadic()	==	true

			126	 	 //

			127	 	 //	IsVariadic	panics	if	the	type's	Kind	is	not	Func.

			128	 	 IsVariadic()	bool

			129	

			130	 	 //	Elem	returns	a	type's	element	type.

			131	 	 //	It	panics	if	the	type's	Kind	is	not	Array,	Chan,	Map,	Ptr,	or	Slice.

			132	 	 Elem()	Type

			133	

			134	 	 //	Field	returns	a	struct	type's	i'th	field.

			135	 	 //	It	panics	if	the	type's	Kind	is	not	Struct.

			136	 	 //	It	panics	if	i	is	not	in	the	range	[0,	NumField()).

			137	 	 Field(i	int)	StructField

			138	

			139	 	 //	FieldByIndex	returns	the	nested	field	corresponding

			140	 	 //	to	the	index	sequence.		It	is	equivalent	to	calling	Field

			141	 	 //	successively	for	each	index	i.

			142	 	 //	It	panics	if	the	type's	Kind	is	not	Struct.

			143	 	 FieldByIndex(index	[]int)	StructField

			144	

			145	 	 //	FieldByName	returns	the	struct	field	with	the	given	name

			146	 	 //	and	a	boolean	indicating	if	the	field	was	found.

			147	 	 FieldByName(name	string)	(StructField,	bool)

			148	

			149	 	 //	FieldByNameFunc	returns	the	first	struct	field	with	a	name

			150	 	 //	that	satisfies	the	match	function	and	a	boolean	indicating	if

			151	 	 //	the	field	was	found.

			152	 	 FieldByNameFunc(match	func(string)	bool)	(StructField,	bool)

			153	

			154	 	 //	In	returns	the	type	of	a	function	type's	i'th	input	parameter.

			155	 	 //	It	panics	if	the	type's	Kind	is	not	Func.

			156	 	 //	It	panics	if	i	is	not	in	the	range	[0,	NumIn()).

			157	 	 In(i	int)	Type

			158	

			159	 	 //	Key	returns	a	map	type's	key	type.

			160	 	 //	It	panics	if	the	type's	Kind	is	not	Map.

			161	 	 Key()	Type

			162	

			163	 	 //	Len	returns	an	array	type's	length.

			164	 	 //	It	panics	if	the	type's	Kind	is	not	Array.

			165	 	 Len()	int

			166	

			167	 	 //	NumField	returns	a	struct	type's	field	count.

			168	 	 //	It	panics	if	the	type's	Kind	is	not	Struct.

			169	 	 NumField()	int

			170	

			171	 	 //	NumIn	returns	a	function	type's	input	parameter	count.

			172	 	 //	It	panics	if	the	type's	Kind	is	not	Func.

			173	 	 NumIn()	int

			174	

			175	 	 //	NumOut	returns	a	function	type's	output	parameter	count.

			176	 	 //	It	panics	if	the	type's	Kind	is	not	Func.

			177	 	 NumOut()	int

			178	

			179	 	 //	Out	returns	the	type	of	a	function	type's	i'th	output	parameter.

			180	 	 //	It	panics	if	the	type's	Kind	is	not	Func.

			181	 	 //	It	panics	if	i	is	not	in	the	range	[0,	NumOut()).

			182	 	 Out(i	int)	Type

			183	

			184	 	 runtimeType()	*runtimeType

			185	 	 common()	*commonType

			186	 	 uncommon()	*uncommonType

			187	 }

			188	

			189	 //	A	Kind	represents	the	specific	kind	of	type	that	a	Type	represents.

			190	 //	The	zero	Kind	is	not	a	valid	kind.

			191	 type	Kind	uint

			192	

			193	 const	(

			194	 	 Invalid	Kind	=	iota

			195	 	 Bool

			196	 	 Int

			197	 	 Int8

			198	 	 Int16

			199	 	 Int32

			200	 	 Int64

			201	 	 Uint

			202	 	 Uint8

			203	 	 Uint16

			204	 	 Uint32

			205	 	 Uint64

			206	 	 Uintptr

			207	 	 Float32

			208	 	 Float64

			209	 	 Complex64

			210	 	 Complex128

			211	 	 Array

			212	 	 Chan

			213	 	 Func

			214	 	 Interface

			215	 	 Map

			216	 	 Ptr

			217	 	 Slice

			218	 	 String

			219	 	 Struct

			220	 	 UnsafePointer

			221)

			222	

			223	 /*

			224	 	*	These	data	structures	are	known	to	the	compiler	(../../cmd/gc/reflect.c).

			225	 	*	A	few	are	known	to	../runtime/type.go	to	convey	to	debuggers.

			226	 	*/

			227	

			228	 //	The	compiler	can	only	construct	empty	interface	values	at

			229	 //	compile	time;	non-empty	interface	values	get	created

			230	 //	during	initialization.		Type	is	an	empty	interface

			231	 //	so	that	the	compiler	can	lay	out	references	as	data.

			232	 //	The	underlying	type	is	*reflect.ArrayType	and	so	on.

			233	 type	runtimeType	interface{}

			234	

			235	 //	commonType	is	the	common	implementation	of	most	values.

			236	 //	It	is	embedded	in	other,	public	struct	types,	but	always

			237	 //	with	a	unique	tag	like	`reflect:"array"`	or	`reflect:"ptr"`

			238	 //	so	that	code	cannot	convert	from,	say,	*arrayType	to	*ptrType.

			239	 type	commonType	struct	{

			240	 	 size										uintptr						//	size	in	bytes

			241	 	 hash										uint32							//	hash	of	type;	avoids	computation	in	hash	tables

			242	 	 _													uint8								//	unused/padding

			243	 	 align									uint8								//	alignment	of	variable	with	this	type

			244	 	 fieldAlign				uint8								//	alignment	of	struct	field	with	this	type

			245	 	 kind										uint8								//	enumeration	for	C

			246	 	 alg											*uintptr					//	algorithm	table	(../runtime/runtime.h:/Alg)

			247	 	 string								*string						//	string	form;	unnecessary	but	undeniably	useful

			248	 	 *uncommonType														//	(relatively)	uncommon	fields

			249	 	 ptrToThis					*runtimeType	//	pointer	to	this	type,	if	used	in	binary	or	has	methods

			250	 }

			251	

			252	 //	Method	on	non-interface	type

			253	 type	method	struct	{

			254	 	 name				*string								//	name	of	method

			255	 	 pkgPath	*string								//	nil	for	exported	Names;	otherwise	import	path

			256	 	 mtyp				*runtimeType			//	method	type	(without	receiver)

			257	 	 typ					*runtimeType			//	.(*FuncType)	underneath	(with	receiver)

			258	 	 ifn					unsafe.Pointer	//	fn	used	in	interface	call	(one-word	receiver)

			259	 	 tfn					unsafe.Pointer	//	fn	used	for	normal	method	call

			260	 }

			261	

			262	 //	uncommonType	is	present	only	for	types	with	names	or	methods

			263	 //	(if	T	is	a	named	type,	the	uncommonTypes	for	T	and	*T	have	methods).

			264	 //	Using	a	pointer	to	this	struct	reduces	the	overall	size	required

			265	 //	to	describe	an	unnamed	type	with	no	methods.

			266	 type	uncommonType	struct	{

			267	 	 name				*string		//	name	of	type

			268	 	 pkgPath	*string		//	import	path;	nil	for	built-in	types	like	int,	string

			269	 	 methods	[]method	//	methods	associated	with	type

			270	 }

			271	

			272	 //	ChanDir	represents	a	channel	type's	direction.

			273	 type	ChanDir	int

			274	

			275	 const	(

			276	 	 RecvDir	ChanDir													=	1	<<	iota	//	<-chan

			277	 	 SendDir																																	//	chan<-

			278	 	 BothDir	=	RecvDir	|	SendDir													//	chan

			279)

			280	

			281	 //	arrayType	represents	a	fixed	array	type.

			282	 type	arrayType	struct	{

			283	 	 commonType	`reflect:"array"`

			284	 	 elem							*runtimeType	//	array	element	type

			285	 	 slice						*runtimeType	//	slice	type

			286	 	 len								uintptr

			287	 }

			288	

			289	 //	chanType	represents	a	channel	type.

			290	 type	chanType	struct	{

			291	 	 commonType	`reflect:"chan"`

			292	 	 elem							*runtimeType	//	channel	element	type

			293	 	 dir								uintptr						//	channel	direction	(ChanDir)

			294	 }

			295	

			296	 //	funcType	represents	a	function	type.

			297	 type	funcType	struct	{

			298	 	 commonType	`reflect:"func"`

			299	 	 dotdotdot		bool											//	last	input	parameter	is	...

			300	 	 in									[]*runtimeType	//	input	parameter	types

			301	 	 out								[]*runtimeType	//	output	parameter	types

			302	 }

			303	

			304	 //	imethod	represents	a	method	on	an	interface	type

			305	 type	imethod	struct	{

			306	 	 name				*string						//	name	of	method

			307	 	 pkgPath	*string						//	nil	for	exported	Names;	otherwise	import	path

			308	 	 typ					*runtimeType	//	.(*FuncType)	underneath

			309	 }

			310	

			311	 //	interfaceType	represents	an	interface	type.

			312	 type	interfaceType	struct	{

			313	 	 commonType	`reflect:"interface"`

			314	 	 methods				[]imethod	//	sorted	by	hash

			315	 }

			316	

			317	 //	mapType	represents	a	map	type.

			318	 type	mapType	struct	{

			319	 	 commonType	`reflect:"map"`

			320	 	 key								*runtimeType	//	map	key	type

			321	 	 elem							*runtimeType	//	map	element	(value)	type

			322	 }

			323	

			324	 //	ptrType	represents	a	pointer	type.

			325	 type	ptrType	struct	{

			326	 	 commonType	`reflect:"ptr"`

			327	 	 elem							*runtimeType	//	pointer	element	(pointed	at)	type

			328	 }

			329	

			330	 //	sliceType	represents	a	slice	type.

			331	 type	sliceType	struct	{

			332	 	 commonType	`reflect:"slice"`

			333	 	 elem							*runtimeType	//	slice	element	type

			334	 }

			335	

			336	 //	Struct	field

			337	 type	structField	struct	{

			338	 	 name				*string						//	nil	for	embedded	fields

			339	 	 pkgPath	*string						//	nil	for	exported	Names;	otherwise	import	path

			340	 	 typ					*runtimeType	//	type	of	field

			341	 	 tag					*string						//	nil	if	no	tag

			342	 	 offset		uintptr						//	byte	offset	of	field	within	struct

			343	 }

			344	

			345	 //	structType	represents	a	struct	type.

			346	 type	structType	struct	{

			347	 	 commonType	`reflect:"struct"`

			348	 	 fields					[]structField	//	sorted	by	offset

			349	 }

			350	

			351	 /*

			352	 	*	The	compiler	knows	the	exact	layout	of	all	the	data	structures	above.

			353	 	*	The	compiler	does	not	know	about	the	data	structures	and	methods	below.

			354	 	*/

			355	

			356	 //	Method	represents	a	single	method.

			357	 type	Method	struct	{

			358	 	 //	Name	is	the	method	name.

			359	 	 //	PkgPath	is	the	package	path	that	qualifies	a	lower	case	(unexported)

			360	 	 //	method	name.		It	is	empty	for	upper	case	(exported)	method	names.

			361	 	 //	The	combination	of	PkgPath	and	Name	uniquely	identifies	a	method

			362	 	 //	in	a	method	set.	

			363	 	 //	See	http://golang.org/ref/spec#Uniqueness_of_identifiers

			364	 	 Name				string

			365	 	 PkgPath	string

			366	

			367	 	 Type		Type		//	method	type

			368	 	 Func		Value	//	func	with	receiver	as	first	argument

			369	 	 Index	int			//	index	for	Type.Method

			370	 }

			371	

			372	 //	High	bit	says	whether	type	has

			373	 //	embedded	pointers,to	help	garbage	collector.

			374	 const	kindMask	=	0x7f

			375	

			376	 func	(k	Kind)	String()	string	{

			377	 	 if	int(k)	<	len(kindNames)	{

			378	 	 	 return	kindNames[k]

			379	 	 }

			380	 	 return	"kind"	+	strconv.Itoa(int(k))

			381	 }

			382	

			383	 var	kindNames	=	[]string{

			384	 	 Invalid:							"invalid",

			385	 	 Bool:										"bool",

			386	 	 Int:											"int",

			387	 	 Int8:										"int8",

			388	 	 Int16:									"int16",

			389	 	 Int32:									"int32",

			390	 	 Int64:									"int64",

			391	 	 Uint:										"uint",

			392	 	 Uint8:									"uint8",

			393	 	 Uint16:								"uint16",

			394	 	 Uint32:								"uint32",

			395	 	 Uint64:								"uint64",

			396	 	 Uintptr:							"uintptr",

			397	 	 Float32:							"float32",

			398	 	 Float64:							"float64",

			399	 	 Complex64:					"complex64",

			400	 	 Complex128:				"complex128",

			401	 	 Array:									"array",

			402	 	 Chan:										"chan",

			403	 	 Func:										"func",

			404	 	 Interface:					"interface",

			405	 	 Map:											"map",

			406	 	 Ptr:											"ptr",

			407	 	 Slice:									"slice",

			408	 	 String:								"string",

			409	 	 Struct:								"struct",

			410	 	 UnsafePointer:	"unsafe.Pointer",

			411	 }

			412	

			413	 func	(t	*uncommonType)	uncommon()	*uncommonType	{

			414	 	 return	t

			415	 }

			416	

			417	 func	(t	*uncommonType)	PkgPath()	string	{

			418	 	 if	t	==	nil	||	t.pkgPath	==	nil	{

			419	 	 	 return	""

			420	 	 }

			421	 	 return	*t.pkgPath

			422	 }

			423	

			424	 func	(t	*uncommonType)	Name()	string	{

			425	 	 if	t	==	nil	||	t.name	==	nil	{

			426	 	 	 return	""

			427	 	 }

			428	 	 return	*t.name

			429	 }

			430	

			431	 func	(t	*commonType)	toType()	Type	{

			432	 	 if	t	==	nil	{

			433	 	 	 return	nil

			434	 	 }

			435	 	 return	t

			436	 }

			437	

			438	 func	(t	*commonType)	String()	string	{	return	*t.string	}

			439	

			440	 func	(t	*commonType)	Size()	uintptr	{	return	t.size	}

			441	

			442	 func	(t	*commonType)	Bits()	int	{

			443	 	 if	t	==	nil	{

			444	 	 	 panic("reflect:	Bits	of	nil	Type")

			445	 	 }

			446	 	 k	:=	t.Kind()

			447	 	 if	k	<	Int	||	k	>	Complex128	{

			448	 	 	 panic("reflect:	Bits	of	non-arithmetic	Type	"	+	t.String())

			449	 	 }

			450	 	 return	int(t.size)	*	8

			451	 }

			452	

			453	 func	(t	*commonType)	Align()	int	{	return	int(t.align)	}

			454	

			455	 func	(t	*commonType)	FieldAlign()	int	{	return	int(t.fieldAlign)	}

			456	

			457	 func	(t	*commonType)	Kind()	Kind	{	return	Kind(t.kind	&	kindMask)	}

			458	

			459	 func	(t	*commonType)	common()	*commonType	{	return	t	}

			460	

			461	 func	(t	*uncommonType)	Method(i	int)	(m	Method)	{

			462	 	 if	t	==	nil	||	i	<	0	||	i	>=	len(t.methods)	{

			463	 	 	 panic("reflect:	Method	index	out	of	range")

			464	 	 }

			465	 	 p	:=	&t.methods[i]

			466	 	 if	p.name	!=	nil	{

			467	 	 	 m.Name	=	*p.name

			468	 	 }

			469	 	 fl	:=	flag(Func)	<<	flagKindShift

			470	 	 if	p.pkgPath	!=	nil	{

			471	 	 	 m.PkgPath	=	*p.pkgPath

			472	 	 	 fl	|=	flagRO

			473	 	 }

			474	 	 mt	:=	toCommonType(p.typ)

			475	 	 m.Type	=	mt

			476	 	 fn	:=	p.tfn

			477	 	 m.Func	=	Value{mt,	fn,	fl}

			478	 	 m.Index	=	i

			479	 	 return

			480	 }

			481	

			482	 func	(t	*uncommonType)	NumMethod()	int	{

			483	 	 if	t	==	nil	{

			484	 	 	 return	0

			485	 	 }

			486	 	 return	len(t.methods)

			487	 }

			488	

			489	 func	(t	*uncommonType)	MethodByName(name	string)	(m	Method,	ok	bool)	{

			490	 	 if	t	==	nil	{

			491	 	 	 return

			492	 	 }

			493	 	 var	p	*method

			494	 	 for	i	:=	range	t.methods	{

			495	 	 	 p	=	&t.methods[i]

			496	 	 	 if	p.name	!=	nil	&&	*p.name	==	name	{

			497	 	 	 	 return	t.Method(i),	true

			498	 	 	 }

			499	 	 }

			500	 	 return

			501	 }

			502	

			503	 //	TODO(rsc):	6g	supplies	these,	but	they	are	not

			504	 //	as	efficient	as	they	could	be:	they	have	commonType

			505	 //	as	the	receiver	instead	of	*commonType.

			506	 func	(t	*commonType)	NumMethod()	int	{

			507	 	 if	t.Kind()	==	Interface	{

			508	 	 	 tt	:=	(*interfaceType)(unsafe.Pointer(t))

			509	 	 	 return	tt.NumMethod()

			510	 	 }

			511	 	 return	t.uncommonType.NumMethod()

			512	 }

			513	

			514	 func	(t	*commonType)	Method(i	int)	(m	Method)	{

			515	 	 if	t.Kind()	==	Interface	{

			516	 	 	 tt	:=	(*interfaceType)(unsafe.Pointer(t))

			517	 	 	 return	tt.Method(i)

			518	 	 }

			519	 	 return	t.uncommonType.Method(i)

			520	 }

			521	

			522	 func	(t	*commonType)	MethodByName(name	string)	(m	Method,	ok	bool)	{

			523	 	 if	t.Kind()	==	Interface	{

			524	 	 	 tt	:=	(*interfaceType)(unsafe.Pointer(t))

			525	 	 	 return	tt.MethodByName(name)

			526	 	 }

			527	 	 return	t.uncommonType.MethodByName(name)

			528	 }

			529	

			530	 func	(t	*commonType)	PkgPath()	string	{

			531	 	 return	t.uncommonType.PkgPath()

			532	 }

			533	

			534	 func	(t	*commonType)	Name()	string	{

			535	 	 return	t.uncommonType.Name()

			536	 }

			537	

			538	 func	(t	*commonType)	ChanDir()	ChanDir	{

			539	 	 if	t.Kind()	!=	Chan	{

			540	 	 	 panic("reflect:	ChanDir	of	non-chan	type")

			541	 	 }

			542	 	 tt	:=	(*chanType)(unsafe.Pointer(t))

			543	 	 return	ChanDir(tt.dir)

			544	 }

			545	

			546	 func	(t	*commonType)	IsVariadic()	bool	{

			547	 	 if	t.Kind()	!=	Func	{

			548	 	 	 panic("reflect:	IsVariadic	of	non-func	type")

			549	 	 }

			550	 	 tt	:=	(*funcType)(unsafe.Pointer(t))

			551	 	 return	tt.dotdotdot

			552	 }

			553	

			554	 func	(t	*commonType)	Elem()	Type	{

			555	 	 switch	t.Kind()	{

			556	 	 case	Array:

			557	 	 	 tt	:=	(*arrayType)(unsafe.Pointer(t))

			558	 	 	 return	toType(tt.elem)

			559	 	 case	Chan:

			560	 	 	 tt	:=	(*chanType)(unsafe.Pointer(t))

			561	 	 	 return	toType(tt.elem)

			562	 	 case	Map:

			563	 	 	 tt	:=	(*mapType)(unsafe.Pointer(t))

			564	 	 	 return	toType(tt.elem)

			565	 	 case	Ptr:

			566	 	 	 tt	:=	(*ptrType)(unsafe.Pointer(t))

			567	 	 	 return	toType(tt.elem)

			568	 	 case	Slice:

			569	 	 	 tt	:=	(*sliceType)(unsafe.Pointer(t))

			570	 	 	 return	toType(tt.elem)

			571	 	 }

			572	 	 panic("reflect:	Elem	of	invalid	type")

			573	 }

			574	

			575	 func	(t	*commonType)	Field(i	int)	StructField	{

			576	 	 if	t.Kind()	!=	Struct	{

			577	 	 	 panic("reflect:	Field	of	non-struct	type")

			578	 	 }

			579	 	 tt	:=	(*structType)(unsafe.Pointer(t))

			580	 	 return	tt.Field(i)

			581	 }

			582	

			583	 func	(t	*commonType)	FieldByIndex(index	[]int)	StructField	{

			584	 	 if	t.Kind()	!=	Struct	{

			585	 	 	 panic("reflect:	FieldByIndex	of	non-struct	type")

			586	 	 }

			587	 	 tt	:=	(*structType)(unsafe.Pointer(t))

			588	 	 return	tt.FieldByIndex(index)

			589	 }

			590	

			591	 func	(t	*commonType)	FieldByName(name	string)	(StructField,	bool)	{

			592	 	 if	t.Kind()	!=	Struct	{

			593	 	 	 panic("reflect:	FieldByName	of	non-struct	type")

			594	 	 }

			595	 	 tt	:=	(*structType)(unsafe.Pointer(t))

			596	 	 return	tt.FieldByName(name)

			597	 }

			598	

			599	 func	(t	*commonType)	FieldByNameFunc(match	func(string)	bool)	(StructField,	bool)	{

			600	 	 if	t.Kind()	!=	Struct	{

			601	 	 	 panic("reflect:	FieldByNameFunc	of	non-struct	type")

			602	 	 }

			603	 	 tt	:=	(*structType)(unsafe.Pointer(t))

			604	 	 return	tt.FieldByNameFunc(match)

			605	 }

			606	

			607	 func	(t	*commonType)	In(i	int)	Type	{

			608	 	 if	t.Kind()	!=	Func	{

			609	 	 	 panic("reflect:	In	of	non-func	type")

			610	 	 }

			611	 	 tt	:=	(*funcType)(unsafe.Pointer(t))

			612	 	 return	toType(tt.in[i])

			613	 }

			614	

			615	 func	(t	*commonType)	Key()	Type	{

			616	 	 if	t.Kind()	!=	Map	{

			617	 	 	 panic("reflect:	Key	of	non-map	type")

			618	 	 }

			619	 	 tt	:=	(*mapType)(unsafe.Pointer(t))

			620	 	 return	toType(tt.key)

			621	 }

			622	

			623	 func	(t	*commonType)	Len()	int	{

			624	 	 if	t.Kind()	!=	Array	{

			625	 	 	 panic("reflect:	Len	of	non-array	type")

			626	 	 }

			627	 	 tt	:=	(*arrayType)(unsafe.Pointer(t))

			628	 	 return	int(tt.len)

			629	 }

			630	

			631	 func	(t	*commonType)	NumField()	int	{

			632	 	 if	t.Kind()	!=	Struct	{

			633	 	 	 panic("reflect:	NumField	of	non-struct	type")

			634	 	 }

			635	 	 tt	:=	(*structType)(unsafe.Pointer(t))

			636	 	 return	len(tt.fields)

			637	 }

			638	

			639	 func	(t	*commonType)	NumIn()	int	{

			640	 	 if	t.Kind()	!=	Func	{

			641	 	 	 panic("reflect:	NumIn	of	non-func	type")

			642	 	 }

			643	 	 tt	:=	(*funcType)(unsafe.Pointer(t))

			644	 	 return	len(tt.in)

			645	 }

			646	

			647	 func	(t	*commonType)	NumOut()	int	{

			648	 	 if	t.Kind()	!=	Func	{

			649	 	 	 panic("reflect:	NumOut	of	non-func	type")

			650	 	 }

			651	 	 tt	:=	(*funcType)(unsafe.Pointer(t))

			652	 	 return	len(tt.out)

			653	 }

			654	

			655	 func	(t	*commonType)	Out(i	int)	Type	{

			656	 	 if	t.Kind()	!=	Func	{

			657	 	 	 panic("reflect:	Out	of	non-func	type")

			658	 	 }

			659	 	 tt	:=	(*funcType)(unsafe.Pointer(t))

			660	 	 return	toType(tt.out[i])

			661	 }

			662	

			663	 func	(d	ChanDir)	String()	string	{

			664	 	 switch	d	{

			665	 	 case	SendDir:

			666	 	 	 return	"chan<-"

			667	 	 case	RecvDir:

			668	 	 	 return	"<-chan"

			669	 	 case	BothDir:

			670	 	 	 return	"chan"

			671	 	 }

			672	 	 return	"ChanDir"	+	strconv.Itoa(int(d))

			673	 }

			674	

			675	 //	Method	returns	the	i'th	method	in	the	type's	method	set.

			676	 func	(t	*interfaceType)	Method(i	int)	(m	Method)	{

			677	 	 if	i	<	0	||	i	>=	len(t.methods)	{

			678	 	 	 return

			679	 	 }

			680	 	 p	:=	&t.methods[i]

			681	 	 m.Name	=	*p.name

			682	 	 if	p.pkgPath	!=	nil	{

			683	 	 	 m.PkgPath	=	*p.pkgPath

			684	 	 }

			685	 	 m.Type	=	toType(p.typ)

			686	 	 m.Index	=	i

			687	 	 return

			688	 }

			689	

			690	 //	NumMethod	returns	the	number	of	interface	methods	in	the	type's	method	set.

			691	 func	(t	*interfaceType)	NumMethod()	int	{	return	len(t.methods)	}

			692	

			693	 //	MethodByName	method	with	the	given	name	in	the	type's	method	set.

			694	 func	(t	*interfaceType)	MethodByName(name	string)	(m	Method,	ok	bool)	{

			695	 	 if	t	==	nil	{

			696	 	 	 return

			697	 	 }

			698	 	 var	p	*imethod

			699	 	 for	i	:=	range	t.methods	{

			700	 	 	 p	=	&t.methods[i]

			701	 	 	 if	*p.name	==	name	{

			702	 	 	 	 return	t.Method(i),	true

			703	 	 	 }

			704	 	 }

			705	 	 return

			706	 }

			707	

			708	 //	A	StructField	describes	a	single	field	in	a	struct.

			709	 type	StructField	struct	{

			710	 	 //	Name	is	the	field	name.

			711	 	 //	PkgPath	is	the	package	path	that	qualifies	a	lower	case	(unexported)

			712	 	 //	field	name.		It	is	empty	for	upper	case	(exported)	field	names.

			713	 	 //	See	http://golang.org/ref/spec#Uniqueness_of_identifiers

			714	 	 Name				string

			715	 	 PkgPath	string

			716	

			717	 	 Type						Type						//	field	type

			718	 	 Tag							StructTag	//	field	tag	string

			719	 	 Offset				uintptr			//	offset	within	struct,	in	bytes

			720	 	 Index					[]int					//	index	sequence	for	Type.FieldByIndex

			721	 	 Anonymous	bool						//	is	an	anonymous	field

			722	 }

			723	

			724	 //	A	StructTag	is	the	tag	string	in	a	struct	field.

			725	 //

			726	 //	By	convention,	tag	strings	are	a	concatenation	of

			727	 //	optionally	space-separated	key:"value"	pairs.

			728	 //	Each	key	is	a	non-empty	string	consisting	of	non-control

			729	 //	characters	other	than	space	(U+0020	'	'),	quote	(U+0022	'"'),

			730	 //	and	colon	(U+003A	':').		Each	value	is	quoted	using	U+0022	'"'

			731	 //	characters	and	Go	string	literal	syntax.

			732	 type	StructTag	string

			733	

			734	 //	Get	returns	the	value	associated	with	key	in	the	tag	string.

			735	 //	If	there	is	no	such	key	in	the	tag,	Get	returns	the	empty	string.

			736	 //	If	the	tag	does	not	have	the	conventional	format,	the	value

			737	 //	returned	by	Get	is	unspecified.

			738	 func	(tag	StructTag)	Get(key	string)	string	{

			739	 	 for	tag	!=	""	{

			740	 	 	 //	skip	leading	space

			741	 	 	 i	:=	0

			742	 	 	 for	i	<	len(tag)	&&	tag[i]	==	'	'	{

			743	 	 	 	 i++

			744	 	 	 }

			745	 	 	 tag	=	tag[i:]

			746	 	 	 if	tag	==	""	{

			747	 	 	 	 break

			748	 	 	 }

			749	

			750	 	 	 //	scan	to	colon.

			751	 	 	 //	a	space	or	a	quote	is	a	syntax	error

			752	 	 	 i	=	0

			753	 	 	 for	i	<	len(tag)	&&	tag[i]	!=	'	'	&&	tag[i]	!=	':'	&&	tag[i]	!=	'"'	{

			754	 	 	 	 i++

			755	 	 	 }

			756	 	 	 if	i+1	>=	len(tag)	||	tag[i]	!=	':'	||	tag[i+1]	!=	'"'	{

			757	 	 	 	 break

			758	 	 	 }

			759	 	 	 name	:=	string(tag[:i])

			760	 	 	 tag	=	tag[i+1:]

			761	

			762	 	 	 //	scan	quoted	string	to	find	value

			763	 	 	 i	=	1

			764	 	 	 for	i	<	len(tag)	&&	tag[i]	!=	'"'	{

			765	 	 	 	 if	tag[i]	==	'\\'	{

			766	 	 	 	 	 i++

			767	 	 	 	 }

			768	 	 	 	 i++

			769	 	 	 }

			770	 	 	 if	i	>=	len(tag)	{

			771	 	 	 	 break

			772	 	 	 }

			773	 	 	 qvalue	:=	string(tag[:i+1])

			774	 	 	 tag	=	tag[i+1:]

			775	

			776	 	 	 if	key	==	name	{

			777	 	 	 	 value,	_	:=	strconv.Unquote(qvalue)

			778	 	 	 	 return	value

			779	 	 	 }

			780	 	 }

			781	 	 return	""

			782	 }

			783	

			784	 //	Field	returns	the	i'th	struct	field.

			785	 func	(t	*structType)	Field(i	int)	(f	StructField)	{

			786	 	 if	i	<	0	||	i	>=	len(t.fields)	{

			787	 	 	 return

			788	 	 }

			789	 	 p	:=	&t.fields[i]

			790	 	 f.Type	=	toType(p.typ)

			791	 	 if	p.name	!=	nil	{

			792	 	 	 f.Name	=	*p.name

			793	 	 }	else	{

			794	 	 	 t	:=	f.Type

			795	 	 	 if	t.Kind()	==	Ptr	{

			796	 	 	 	 t	=	t.Elem()

			797	 	 	 }

			798	 	 	 f.Name	=	t.Name()

			799	 	 	 f.Anonymous	=	true

			800	 	 }

			801	 	 if	p.pkgPath	!=	nil	{

			802	 	 	 f.PkgPath	=	*p.pkgPath

			803	 	 }

			804	 	 if	p.tag	!=	nil	{

			805	 	 	 f.Tag	=	StructTag(*p.tag)

			806	 	 }

			807	 	 f.Offset	=	p.offset

			808	

			809	 	 //	NOTE(rsc):	This	is	the	only	allocation	in	the	interface

			810	 	 //	presented	by	a	reflect.Type.		It	would	be	nice	to	avoid,

			811	 	 //	at	least	in	the	common	cases,	but	we	need	to	make	sure

			812	 	 //	that	misbehaving	clients	of	reflect	cannot	affect	other

			813	 	 //	uses	of	reflect.		One	possibility	is	CL	5371098,	but	we

			814	 	 //	postponed	that	ugliness	until	there	is	a	demonstrated

			815	 	 //	need	for	the	performance.		This	is	issue	2320.

			816	 	 f.Index	=	[]int{i}

			817	 	 return

			818	 }

			819	

			820	 //	TODO(gri):	Should	there	be	an	error/bool	indicator	if	the	index

			821	 //												is	wrong	for	FieldByIndex?

			822	

			823	 //	FieldByIndex	returns	the	nested	field	corresponding	to	index.

			824	 func	(t	*structType)	FieldByIndex(index	[]int)	(f	StructField)	{

			825	 	 f.Type	=	Type(t.toType())

			826	 	 for	i,	x	:=	range	index	{

			827	 	 	 if	i	>	0	{

			828	 	 	 	 ft	:=	f.Type

			829	 	 	 	 if	ft.Kind()	==	Ptr	&&	ft.Elem().Kind()	==	Struct	{

			830	 	 	 	 	 ft	=	ft.Elem()

			831	 	 	 	 }

			832	 	 	 	 f.Type	=	ft

			833	 	 	 }

			834	 	 	 f	=	f.Type.Field(x)

			835	 	 }

			836	 	 return

			837	 }

			838	

			839	 const	inf	=	1	<<	30	//	infinity	-	no	struct	has	that	many	nesting	levels

			840	

			841	 func	(t	*structType)	fieldByNameFunc(match	func(string)	bool,	mark	map[*structType]bool,	depth	int)	(ff	StructField,	fd	int)	{

			842	 	 fd	=	inf	//	field	depth

			843	

			844	 	 if	mark[t]	{

			845	 	 	 //	Struct	already	seen.

			846	 	 	 return

			847	 	 }

			848	 	 mark[t]	=	true

			849	

			850	 	 var	fi	int	//	field	index

			851	 	 n	:=	0					//	number	of	matching	fields	at	depth	fd

			852	 L:

			853	 	 for	i	:=	range	t.fields	{

			854	 	 	 f	:=	t.Field(i)

			855	 	 	 d	:=	inf

			856	 	 	 switch	{

			857	 	 	 case	match(f.Name):

			858	 	 	 	 //	Matching	top-level	field.

			859	 	 	 	 d	=	depth

			860	 	 	 case	f.Anonymous:

			861	 	 	 	 ft	:=	f.Type

			862	 	 	 	 if	ft.Kind()	==	Ptr	{

			863	 	 	 	 	 ft	=	ft.Elem()

			864	 	 	 	 }

			865	 	 	 	 switch	{

			866	 	 	 	 case	match(ft.Name()):

			867	 	 	 	 	 //	Matching	anonymous	top-level	field.

			868	 	 	 	 	 d	=	depth

			869	 	 	 	 case	fd	>	depth:

			870	 	 	 	 	 //	No	top-level	field	yet;	look	inside	nested	structs.

			871	 	 	 	 	 if	ft.Kind()	==	Struct	{

			872	 	 	 	 	 	 st	:=	(*structType)(unsafe.Pointer(ft.(*commonType)))

			873	 	 	 	 	 	 f,	d	=	st.fieldByNameFunc(match,	mark,	depth+1)

			874	 	 	 	 	 }

			875	 	 	 	 }

			876	 	 	 }

			877	

			878	 	 	 switch	{

			879	 	 	 case	d	<	fd:

			880	 	 	 	 //	Found	field	at	shallower	depth.

			881	 	 	 	 ff,	fi,	fd	=	f,	i,	d

			882	 	 	 	 n	=	1

			883	 	 	 case	d	==	fd:

			884	 	 	 	 //	More	than	one	matching	field	at	the	same	depth	(or	d,	fd	==	inf).

			885	 	 	 	 //	Same	as	no	field	found	at	this	depth.

			886	 	 	 	 n++

			887	 	 	 	 if	d	==	depth	{

			888	 	 	 	 	 //	Impossible	to	find	a	field	at	lower	depth.

			889	 	 	 	 	 break	L

			890	 	 	 	 }

			891	 	 	 }

			892	 	 }

			893	

			894	 	 if	n	==	1	{

			895	 	 	 //	Found	matching	field.

			896	 	 	 if	depth	>=	len(ff.Index)	{

			897	 	 	 	 ff.Index	=	make([]int,	depth+1)

			898	 	 	 }

			899	 	 	 if	len(ff.Index)	>	1	{

			900	 	 	 	 ff.Index[depth]	=	fi

			901	 	 	 }

			902	 	 }	else	{

			903	 	 	 //	None	or	more	than	one	matching	field	found.

			904	 	 	 fd	=	inf

			905	 	 }

			906	

			907	 	 delete(mark,	t)

			908	 	 return

			909	 }

			910	

			911	 //	FieldByName	returns	the	struct	field	with	the	given	name

			912	 //	and	a	boolean	to	indicate	if	the	field	was	found.

			913	 func	(t	*structType)	FieldByName(name	string)	(f	StructField,	present	bool)	{

			914	 	 return	t.FieldByNameFunc(func(s	string)	bool	{	return	s	==	name	})

			915	 }

			916	

			917	 //	FieldByNameFunc	returns	the	struct	field	with	a	name	that	satisfies	the

			918	 //	match	function	and	a	boolean	to	indicate	if	the	field	was	found.

			919	 func	(t	*structType)	FieldByNameFunc(match	func(string)	bool)	(f	StructField,	present	bool)	{

			920	 	 if	ff,	fd	:=	t.fieldByNameFunc(match,	make(map[*structType]bool),	0);	fd	<	inf	{

			921	 	 	 ff.Index	=	ff.Index[0	:	fd+1]

			922	 	 	 f,	present	=	ff,	true

			923	 	 }

			924	 	 return

			925	 }

			926	

			927	 //	Convert	runtime	type	to	reflect	type.

			928	 func	toCommonType(p	*runtimeType)	*commonType	{

			929	 	 if	p	==	nil	{

			930	 	 	 return	nil

			931	 	 }

			932	 	 return	(*p).(*commonType)

			933	 }

			934	

			935	 func	toType(p	*runtimeType)	Type	{

			936	 	 if	p	==	nil	{

			937	 	 	 return	nil

			938	 	 }

			939	 	 return	(*p).(*commonType)

			940	 }

			941	

			942	 //	TypeOf	returns	the	reflection	Type	of	the	value	in	the	interface{}.

			943	 //	TypeOf(nil)	returns	nil.

			944	 func	TypeOf(i	interface{})	Type	{

			945	 	 eface	:=	*(*emptyInterface)(unsafe.Pointer(&i))

			946	 	 return	toType(eface.typ)

			947	 }

			948	

			949	 //	ptrMap	is	the	cache	for	PtrTo.

			950	 var	ptrMap	struct	{

			951	 	 sync.RWMutex

			952	 	 m	map[*commonType]*ptrType

			953	 }

			954	

			955	 func	(t	*commonType)	runtimeType()	*runtimeType	{

			956	 	 //	The	runtimeType	always	precedes	the	commonType	in	memory.

			957	 	 //	Adjust	pointer	to	find	it.

			958	 	 var	rt	struct	{

			959	 	 	 i		runtimeType

			960	 	 	 ct	commonType

			961	 	 }

			962	 	 return	(*runtimeType)(unsafe.Pointer(uintptr(unsafe.Pointer(t))	-	unsafe.Offsetof(rt.ct)))

			963	 }

			964	

			965	 //	PtrTo	returns	the	pointer	type	with	element	t.

			966	 //	For	example,	if	t	represents	type	Foo,	PtrTo(t)	represents	*Foo.

			967	 func	PtrTo(t	Type)	Type	{

			968	 	 return	t.(*commonType).ptrTo()

			969	 }

			970	

			971	 func	(ct	*commonType)	ptrTo()	*commonType	{

			972	 	 if	p	:=	ct.ptrToThis;	p	!=	nil	{

			973	 	 	 return	toCommonType(p)

			974	 	 }

			975	

			976	 	 //	Otherwise,	synthesize	one.

			977	 	 //	This	only	happens	for	pointers	with	no	methods.

			978	 	 //	We	keep	the	mapping	in	a	map	on	the	side,	because

			979	 	 //	this	operation	is	rare	and	a	separate	map	lets	us	keep

			980	 	 //	the	type	structures	in	read-only	memory.

			981	 	 ptrMap.RLock()

			982	 	 if	m	:=	ptrMap.m;	m	!=	nil	{

			983	 	 	 if	p	:=	m[ct];	p	!=	nil	{

			984	 	 	 	 ptrMap.RUnlock()

			985	 	 	 	 return	&p.commonType

			986	 	 	 }

			987	 	 }

			988	 	 ptrMap.RUnlock()

			989	 	 ptrMap.Lock()

			990	 	 if	ptrMap.m	==	nil	{

			991	 	 	 ptrMap.m	=	make(map[*commonType]*ptrType)

			992	 	 }

			993	 	 p	:=	ptrMap.m[ct]

			994	 	 if	p	!=	nil	{

			995	 	 	 //	some	other	goroutine	won	the	race	and	created	it

			996	 	 	 ptrMap.Unlock()

			997	 	 	 return	&p.commonType

			998	 	 }

			999	

		1000	 	 var	rt	struct	{

		1001	 	 	 i	runtimeType

		1002	 	 	 ptrType

		1003	 	 }

		1004	 	 rt.i	=	&rt.commonType

		1005	

		1006	 	 //	initialize	p	using	*byte's	ptrType	as	a	prototype.

		1007	 	 p	=	&rt.ptrType

		1008	 	 var	ibyte	interface{}	=	(*byte)(nil)

		1009	 	 bp	:=	(*ptrType)(unsafe.Pointer((**(**runtimeType)(unsafe.Pointer(&ibyte))).(*commonType)))

		1010	 	 *p	=	*bp

		1011	

		1012	 	 s	:=	"*"	+	*ct.string

		1013	 	 p.string	=	&s

		1014	

		1015	 	 //	For	the	type	structures	linked	into	the	binary,	the

		1016	 	 //	compiler	provides	a	good	hash	of	the	string.

		1017	 	 //	Create	a	good	hash	for	the	new	string	by	using

		1018	 	 //	the	FNV-1	hash's	mixing	function	to	combine	the

		1019	 	 //	old	hash	and	the	new	"*".

		1020	 	 p.hash	=	ct.hash*16777619	^	'*'

		1021	

		1022	 	 p.uncommonType	=	nil

		1023	 	 p.ptrToThis	=	nil

		1024	 	 p.elem	=	(*runtimeType)(unsafe.Pointer(uintptr(unsafe.Pointer(ct))	-	unsafe.Offsetof(rt.ptrType)))

		1025	

		1026	 	 ptrMap.m[ct]	=	p

		1027	 	 ptrMap.Unlock()

		1028	 	 return	&p.commonType

		1029	 }

		1030	

		1031	 func	(t	*commonType)	Implements(u	Type)	bool	{

		1032	 	 if	u	==	nil	{

		1033	 	 	 panic("reflect:	nil	type	passed	to	Type.Implements")

		1034	 	 }

		1035	 	 if	u.Kind()	!=	Interface	{

		1036	 	 	 panic("reflect:	non-interface	type	passed	to	Type.Implements")

		1037	 	 }

		1038	 	 return	implements(u.(*commonType),	t)

		1039	 }

		1040	

		1041	 func	(t	*commonType)	AssignableTo(u	Type)	bool	{

		1042	 	 if	u	==	nil	{

		1043	 	 	 panic("reflect:	nil	type	passed	to	Type.AssignableTo")

		1044	 	 }

		1045	 	 uu	:=	u.(*commonType)

		1046	 	 return	directlyAssignable(uu,	t)	||	implements(uu,	t)

		1047	 }

		1048	

		1049	 //	implements	returns	true	if	the	type	V	implements	the	interface	type	T.

		1050	 func	implements(T,	V	*commonType)	bool	{

		1051	 	 if	T.Kind()	!=	Interface	{

		1052	 	 	 return	false

		1053	 	 }

		1054	 	 t	:=	(*interfaceType)(unsafe.Pointer(T))

		1055	 	 if	len(t.methods)	==	0	{

		1056	 	 	 return	true

		1057	 	 }

		1058	

		1059	 	 //	The	same	algorithm	applies	in	both	cases,	but	the

		1060	 	 //	method	tables	for	an	interface	type	and	a	concrete	type

		1061	 	 //	are	different,	so	the	code	is	duplicated.

		1062	 	 //	In	both	cases	the	algorithm	is	a	linear	scan	over	the	two

		1063	 	 //	lists	-	T's	methods	and	V's	methods	-	simultaneously.

		1064	 	 //	Since	method	tables	are	stored	in	a	unique	sorted	order

		1065	 	 //	(alphabetical,	with	no	duplicate	method	names),	the	scan

		1066	 	 //	through	V's	methods	must	hit	a	match	for	each	of	T's

		1067	 	 //	methods	along	the	way,	or	else	V	does	not	implement	T.

		1068	 	 //	This	lets	us	run	the	scan	in	overall	linear	time	instead	of

		1069	 	 //	the	quadratic	time		a	naive	search	would	require.

		1070	 	 //	See	also	../runtime/iface.c.

		1071	 	 if	V.Kind()	==	Interface	{

		1072	 	 	 v	:=	(*interfaceType)(unsafe.Pointer(V))

		1073	 	 	 i	:=	0

		1074	 	 	 for	j	:=	0;	j	<	len(v.methods);	j++	{

		1075	 	 	 	 tm	:=	&t.methods[i]

		1076	 	 	 	 vm	:=	&v.methods[j]

		1077	 	 	 	 if	vm.name	==	tm.name	&&	vm.pkgPath	==	tm.pkgPath	&&	vm.typ	==	tm.typ	{

		1078	 	 	 	 	 if	i++;	i	>=	len(t.methods)	{

		1079	 	 	 	 	 	 return	true

		1080	 	 	 	 	 }

		1081	 	 	 	 }

		1082	 	 	 }

		1083	 	 	 return	false

		1084	 	 }

		1085	

		1086	 	 v	:=	V.uncommon()

		1087	 	 if	v	==	nil	{

		1088	 	 	 return	false

		1089	 	 }

		1090	 	 i	:=	0

		1091	 	 for	j	:=	0;	j	<	len(v.methods);	j++	{

		1092	 	 	 tm	:=	&t.methods[i]

		1093	 	 	 vm	:=	&v.methods[j]

		1094	 	 	 if	vm.name	==	tm.name	&&	vm.pkgPath	==	tm.pkgPath	&&	vm.mtyp	==	tm.typ	{

		1095	 	 	 	 if	i++;	i	>=	len(t.methods)	{

		1096	 	 	 	 	 return	true

		1097	 	 	 	 }

		1098	 	 	 }

		1099	 	 }

		1100	 	 return	false

		1101	 }

		1102	

		1103	 //	directlyAssignable	returns	true	if	a	value	x	of	type	V	can	be	directly

		1104	 //	assigned	(using	memmove)	to	a	value	of	type	T.

		1105	 //	http://golang.org/doc/go_spec.html#Assignability

		1106	 //	Ignoring	the	interface	rules	(implemented	elsewhere)

		1107	 //	and	the	ideal	constant	rules	(no	ideal	constants	at	run	time).

		1108	 func	directlyAssignable(T,	V	*commonType)	bool	{

		1109	 	 //	x's	type	V	is	identical	to	T?

		1110	 	 if	T	==	V	{

		1111	 	 	 return	true

		1112	 	 }

		1113	

		1114	 	 //	Otherwise	at	least	one	of	T	and	V	must	be	unnamed

		1115	 	 //	and	they	must	have	the	same	kind.

		1116	 	 if	T.Name()	!=	""	&&	V.Name()	!=	""	||	T.Kind()	!=	V.Kind()	{

		1117	 	 	 return	false

		1118	 	 }

		1119	

		1120	 	 //	x's	type	T	and	V	have	identical	underlying	types.

		1121	 	 //	Since	at	least	one	is	unnamed,	only	the	composite	types

		1122	 	 //	need	to	be	considered.

		1123	 	 switch	T.Kind()	{

		1124	 	 case	Array:

		1125	 	 	 return	T.Elem()	==	V.Elem()	&&	T.Len()	==	V.Len()

		1126	

		1127	 	 case	Chan:

		1128	 	 	 //	Special	case:

		1129	 	 	 //	x	is	a	bidirectional	channel	value,	T	is	a	channel	type,

		1130	 	 	 //	and	x's	type	V	and	T	have	identical	element	types.

		1131	 	 	 if	V.ChanDir()	==	BothDir	&&	T.Elem()	==	V.Elem()	{

		1132	 	 	 	 return	true

		1133	 	 	 }

		1134	

		1135	 	 	 //	Otherwise	continue	test	for	identical	underlying	type.

		1136	 	 	 return	V.ChanDir()	==	T.ChanDir()	&&	T.Elem()	==	V.Elem()

		1137	

		1138	 	 case	Func:

		1139	 	 	 t	:=	(*funcType)(unsafe.Pointer(T))

		1140	 	 	 v	:=	(*funcType)(unsafe.Pointer(V))

		1141	 	 	 if	t.dotdotdot	!=	v.dotdotdot	||	len(t.in)	!=	len(v.in)	||	len(t.out)	!=	len(v.out)	{

		1142	 	 	 	 return	false

		1143	 	 	 }

		1144	 	 	 for	i,	typ	:=	range	t.in	{

		1145	 	 	 	 if	typ	!=	v.in[i]	{

		1146	 	 	 	 	 return	false

		1147	 	 	 	 }

		1148	 	 	 }

		1149	 	 	 for	i,	typ	:=	range	t.out	{

		1150	 	 	 	 if	typ	!=	v.out[i]	{

		1151	 	 	 	 	 return	false

		1152	 	 	 	 }

		1153	 	 	 }

		1154	 	 	 return	true

		1155	

		1156	 	 case	Interface:

		1157	 	 	 t	:=	(*interfaceType)(unsafe.Pointer(T))

		1158	 	 	 v	:=	(*interfaceType)(unsafe.Pointer(V))

		1159	 	 	 if	len(t.methods)	==	0	&&	len(v.methods)	==	0	{

		1160	 	 	 	 return	true

		1161	 	 	 }

		1162	 	 	 //	Might	have	the	same	methods	but	still

		1163	 	 	 //	need	a	run	time	conversion.

		1164	 	 	 return	false

		1165	

		1166	 	 case	Map:

		1167	 	 	 return	T.Key()	==	V.Key()	&&	T.Elem()	==	V.Elem()

		1168	

		1169	 	 case	Ptr,	Slice:

		1170	 	 	 return	T.Elem()	==	V.Elem()

		1171	

		1172	 	 case	Struct:

		1173	 	 	 t	:=	(*structType)(unsafe.Pointer(T))

		1174	 	 	 v	:=	(*structType)(unsafe.Pointer(V))

		1175	 	 	 if	len(t.fields)	!=	len(v.fields)	{

		1176	 	 	 	 return	false

		1177	 	 	 }

		1178	 	 	 for	i	:=	range	t.fields	{

		1179	 	 	 	 tf	:=	&t.fields[i]

		1180	 	 	 	 vf	:=	&v.fields[i]

		1181	 	 	 	 if	tf.name	!=	vf.name	||	tf.pkgPath	!=	vf.pkgPath	||

		1182	 	 	 	 	 tf.typ	!=	vf.typ	||	tf.tag	!=	vf.tag	||	tf.offset	!=	vf.offset	{

		1183	 	 	 	 	 return	false

		1184	 	 	 	 }

		1185	 	 	 }

		1186	 	 	 return	true

		1187	 	 }

		1188	

		1189	 	 return	false

		1190	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/reflect/value.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	reflect

					6	

					7	 import	(

					8	 	 "math"

					9	 	 "runtime"

				10	 	 "strconv"

				11	 	 "unsafe"

				12)

				13	

				14	 const	bigEndian	=	false	//	can	be	smarter	if	we	find	a	big-endian	machine

				15	 const	ptrSize	=	unsafe.Sizeof((*byte)(nil))

				16	 const	cannotSet	=	"cannot	set	value	obtained	from	unexported	struct	field"

				17	

				18	 //	TODO:	This	will	have	to	go	away	when

				19	 //	the	new	gc	goes	in.

				20	 func	memmove(adst,	asrc	unsafe.Pointer,	n	uintptr)	{

				21	 	 dst	:=	uintptr(adst)

				22	 	 src	:=	uintptr(asrc)

				23	 	 switch	{

				24	 	 case	src	<	dst	&&	src+n	>	dst:

				25	 	 	 //	byte	copy	backward

				26	 	 	 //	careful:	i	is	unsigned

				27	 	 	 for	i	:=	n;	i	>	0;	{

				28	 	 	 	 i--

				29	 	 	 	 *(*byte)(unsafe.Pointer(dst	+	i))	=	*(*byte)(unsafe.Pointer(src	+	i))

				30	 	 	 }

				31	 	 case	(n|src|dst)&(ptrSize-1)	!=	0:

				32	 	 	 //	byte	copy	forward

				33	 	 	 for	i	:=	uintptr(0);	i	<	n;	i++	{

				34	 	 	 	 *(*byte)(unsafe.Pointer(dst	+	i))	=	*(*byte)(unsafe.Pointer(src	+	i))

				35	 	 	 }

				36	 	 default:

				37	 	 	 //	word	copy	forward

				38	 	 	 for	i	:=	uintptr(0);	i	<	n;	i	+=	ptrSize	{

				39	 	 	 	 *(*uintptr)(unsafe.Pointer(dst	+	i))	=	*(*uintptr)(unsafe.Pointer(src	+	i))

				40	 	 	 }

				41	 	 }

				42	 }

				43	

				44	 //	Value	is	the	reflection	interface	to	a	Go	value.

				45	 //

				46	 //	Not	all	methods	apply	to	all	kinds	of	values.		Restrictions,

				47	 //	if	any,	are	noted	in	the	documentation	for	each	method.

				48	 //	Use	the	Kind	method	to	find	out	the	kind	of	value	before

				49	 //	calling	kind-specific	methods.		Calling	a	method

				50	 //	inappropriate	to	the	kind	of	type	causes	a	run	time	panic.

				51	 //

				52	 //	The	zero	Value	represents	no	value.

				53	 //	Its	IsValid	method	returns	false,	its	Kind	method	returns	Invalid,

				54	 //	its	String	method	returns	"<invalid	Value>",	and	all	other	methods	panic.

				55	 //	Most	functions	and	methods	never	return	an	invalid	value.

				56	 //	If	one	does,	its	documentation	states	the	conditions	explicitly.

				57	 //

				58	 //	A	Value	can	be	used	concurrently	by	multiple	goroutines	provided	that

				59	 //	the	underlying	Go	value	can	be	used	concurrently	for	the	equivalent

				60	 //	direct	operations.

				61	 type	Value	struct	{

				62	 	 //	typ	holds	the	type	of	the	value	represented	by	a	Value.

				63	 	 typ	*commonType

				64	

				65	 	 //	val	holds	the	1-word	representation	of	the	value.

				66	 	 //	If	flag's	flagIndir	bit	is	set,	then	val	is	a	pointer	to	the	data.

				67	 	 //	Otherwise	val	is	a	word	holding	the	actual	data.

				68	 	 //	When	the	data	is	smaller	than	a	word,	it	begins	at

				69	 	 //	the	first	byte	(in	the	memory	address	sense)	of	val.

				70	 	 //	We	use	unsafe.Pointer	so	that	the	garbage	collector

				71	 	 //	knows	that	val	could	be	a	pointer.

				72	 	 val	unsafe.Pointer

				73	

				74	 	 //	flag	holds	metadata	about	the	value.

				75	 	 //	The	lowest	bits	are	flag	bits:

				76	 	 //	 -	flagRO:	obtained	via	unexported	field,	so	read-only

				77	 	 //	 -	flagIndir:	val	holds	a	pointer	to	the	data

				78	 	 //	 -	flagAddr:	v.CanAddr	is	true	(implies	flagIndir)

				79	 	 //	 -	flagMethod:	v	is	a	method	value.

				80	 	 //	The	next	five	bits	give	the	Kind	of	the	value.

				81	 	 //	This	repeats	typ.Kind()	except	for	method	values.

				82	 	 //	The	remaining	23+	bits	give	a	method	number	for	method	values.

				83	 	 //	If	flag.kind()	!=	Func,	code	can	assume	that	flagMethod	is	unset.

				84	 	 //	If	typ.size	>	ptrSize,	code	can	assume	that	flagIndir	is	set.

				85	 	 flag

				86	

				87	 	 //	A	method	value	represents	a	curried	method	invocation

				88	 	 //	like	r.Read	for	some	receiver	r.		The	typ+val+flag	bits	describe

				89	 	 //	the	receiver	r,	but	the	flag's	Kind	bits	say	Func	(methods	are

				90	 	 //	functions),	and	the	top	bits	of	the	flag	give	the	method	number

				91	 	 //	in	r's	type's	method	table.

				92	 }

				93	

				94	 type	flag	uintptr

				95	

				96	 const	(

				97	 	 flagRO	flag	=	1	<<	iota

				98	 	 flagIndir

				99	 	 flagAddr

			100	 	 flagMethod

			101	 	 flagKindShift								=	iota

			102	 	 flagKindWidth								=	5	//	there	are	27	kinds

			103	 	 flagKindMask				flag	=	1<<flagKindWidth	-	1

			104	 	 flagMethodShift						=	flagKindShift	+	flagKindWidth

			105)

			106	

			107	 func	(f	flag)	kind()	Kind	{

			108	 	 return	Kind((f	>>	flagKindShift)	&	flagKindMask)

			109	 }

			110	

			111	 //	A	ValueError	occurs	when	a	Value	method	is	invoked	on

			112	 //	a	Value	that	does	not	support	it.		Such	cases	are	documented

			113	 //	in	the	description	of	each	method.

			114	 type	ValueError	struct	{

			115	 	 Method	string

			116	 	 Kind			Kind

			117	 }

			118	

			119	 func	(e	*ValueError)	Error()	string	{

			120	 	 if	e.Kind	==	0	{

			121	 	 	 return	"reflect:	call	of	"	+	e.Method	+	"	on	zero	Value"

			122	 	 }

			123	 	 return	"reflect:	call	of	"	+	e.Method	+	"	on	"	+	e.Kind.String()	+	"	Value"

			124	 }

			125	

			126	 //	methodName	returns	the	name	of	the	calling	method,

			127	 //	assumed	to	be	two	stack	frames	above.

			128	 func	methodName()	string	{

			129	 	 pc,	_,	_,	_	:=	runtime.Caller(2)

			130	 	 f	:=	runtime.FuncForPC(pc)

			131	 	 if	f	==	nil	{

			132	 	 	 return	"unknown	method"

			133	 	 }

			134	 	 return	f.Name()

			135	 }

			136	

			137	 //	An	iword	is	the	word	that	would	be	stored	in	an

			138	 //	interface	to	represent	a	given	value	v.		Specifically,	if	v	is

			139	 //	bigger	than	a	pointer,	its	word	is	a	pointer	to	v's	data.

			140	 //	Otherwise,	its	word	holds	the	data	stored

			141	 //	in	its	leading	bytes	(so	is	not	a	pointer).

			142	 //	Because	the	value	sometimes	holds	a	pointer,	we	use

			143	 //	unsafe.Pointer	to	represent	it,	so	that	if	iword	appears

			144	 //	in	a	struct,	the	garbage	collector	knows	that	might	be

			145	 //	a	pointer.

			146	 type	iword	unsafe.Pointer

			147	

			148	 func	(v	Value)	iword()	iword	{

			149	 	 if	v.flag&flagIndir	!=	0	&&	v.typ.size	<=	ptrSize	{

			150	 	 	 //	Have	indirect	but	want	direct	word.

			151	 	 	 return	loadIword(v.val,	v.typ.size)

			152	 	 }

			153	 	 return	iword(v.val)

			154	 }

			155	

			156	 //	loadIword	loads	n	bytes	at	p	from	memory	into	an	iword.

			157	 func	loadIword(p	unsafe.Pointer,	n	uintptr)	iword	{

			158	 	 //	Run	the	copy	ourselves	instead	of	calling	memmove

			159	 	 //	to	avoid	moving	w	to	the	heap.

			160	 	 var	w	iword

			161	 	 switch	n	{

			162	 	 default:

			163	 	 	 panic("reflect:	internal	error:	loadIword	of	"	+	strconv.Itoa(int(n))	+	"-byte	value")

			164	 	 case	0:

			165	 	 case	1:

			166	 	 	 *(*uint8)(unsafe.Pointer(&w))	=	*(*uint8)(p)

			167	 	 case	2:

			168	 	 	 *(*uint16)(unsafe.Pointer(&w))	=	*(*uint16)(p)

			169	 	 case	3:

			170	 	 	 *(*[3]byte)(unsafe.Pointer(&w))	=	*(*[3]byte)(p)

			171	 	 case	4:

			172	 	 	 *(*uint32)(unsafe.Pointer(&w))	=	*(*uint32)(p)

			173	 	 case	5:

			174	 	 	 *(*[5]byte)(unsafe.Pointer(&w))	=	*(*[5]byte)(p)

			175	 	 case	6:

			176	 	 	 *(*[6]byte)(unsafe.Pointer(&w))	=	*(*[6]byte)(p)

			177	 	 case	7:

			178	 	 	 *(*[7]byte)(unsafe.Pointer(&w))	=	*(*[7]byte)(p)

			179	 	 case	8:

			180	 	 	 *(*uint64)(unsafe.Pointer(&w))	=	*(*uint64)(p)

			181	 	 }

			182	 	 return	w

			183	 }

			184	

			185	 //	storeIword	stores	n	bytes	from	w	into	p.

			186	 func	storeIword(p	unsafe.Pointer,	w	iword,	n	uintptr)	{

			187	 	 //	Run	the	copy	ourselves	instead	of	calling	memmove

			188	 	 //	to	avoid	moving	w	to	the	heap.

			189	 	 switch	n	{

			190	 	 default:

			191	 	 	 panic("reflect:	internal	error:	storeIword	of	"	+	strconv.Itoa(int(n))	+	"-byte	value")

			192	 	 case	0:

			193	 	 case	1:

			194	 	 	 *(*uint8)(p)	=	*(*uint8)(unsafe.Pointer(&w))

			195	 	 case	2:

			196	 	 	 *(*uint16)(p)	=	*(*uint16)(unsafe.Pointer(&w))

			197	 	 case	3:

			198	 	 	 *(*[3]byte)(p)	=	*(*[3]byte)(unsafe.Pointer(&w))

			199	 	 case	4:

			200	 	 	 *(*uint32)(p)	=	*(*uint32)(unsafe.Pointer(&w))

			201	 	 case	5:

			202	 	 	 *(*[5]byte)(p)	=	*(*[5]byte)(unsafe.Pointer(&w))

			203	 	 case	6:

			204	 	 	 *(*[6]byte)(p)	=	*(*[6]byte)(unsafe.Pointer(&w))

			205	 	 case	7:

			206	 	 	 *(*[7]byte)(p)	=	*(*[7]byte)(unsafe.Pointer(&w))

			207	 	 case	8:

			208	 	 	 *(*uint64)(p)	=	*(*uint64)(unsafe.Pointer(&w))

			209	 	 }

			210	 }

			211	

			212	 //	emptyInterface	is	the	header	for	an	interface{}	value.

			213	 type	emptyInterface	struct	{

			214	 	 typ		*runtimeType

			215	 	 word	iword

			216	 }

			217	

			218	 //	nonEmptyInterface	is	the	header	for	a	interface	value	with	methods.

			219	 type	nonEmptyInterface	struct	{

			220	 	 //	see	../runtime/iface.c:/Itab

			221	 	 itab	*struct	{

			222	 	 	 ityp			*runtimeType	//	static	interface	type

			223	 	 	 typ				*runtimeType	//	dynamic	concrete	type

			224	 	 	 link			unsafe.Pointer

			225	 	 	 bad				int32

			226	 	 	 unused	int32

			227	 	 	 fun				[100000]unsafe.Pointer	//	method	table

			228	 	 }

			229	 	 word	iword

			230	 }

			231	

			232	 //	mustBe	panics	if	f's	kind	is	not	expected.

			233	 //	Making	this	a	method	on	flag	instead	of	on	Value

			234	 //	(and	embedding	flag	in	Value)	means	that	we	can	write

			235	 //	the	very	clear	v.mustBe(Bool)	and	have	it	compile	into

			236	 //	v.flag.mustBe(Bool),	which	will	only	bother	to	copy	the

			237	 //	single	important	word	for	the	receiver.

			238	 func	(f	flag)	mustBe(expected	Kind)	{

			239	 	 k	:=	f.kind()

			240	 	 if	k	!=	expected	{

			241	 	 	 panic(&ValueError{methodName(),	k})

			242	 	 }

			243	 }

			244	

			245	 //	mustBeExported	panics	if	f	records	that	the	value	was	obtained	using

			246	 //	an	unexported	field.

			247	 func	(f	flag)	mustBeExported()	{

			248	 	 if	f	==	0	{

			249	 	 	 panic(&ValueError{methodName(),	0})

			250	 	 }

			251	 	 if	f&flagRO	!=	0	{

			252	 	 	 panic(methodName()	+	"	using	value	obtained	using	unexported	field")

			253	 	 }

			254	 }

			255	

			256	 //	mustBeAssignable	panics	if	f	records	that	the	value	is	not	assignable,

			257	 //	which	is	to	say	that	either	it	was	obtained	using	an	unexported	field

			258	 //	or	it	is	not	addressable.

			259	 func	(f	flag)	mustBeAssignable()	{

			260	 	 if	f	==	0	{

			261	 	 	 panic(&ValueError{methodName(),	Invalid})

			262	 	 }

			263	 	 //	Assignable	if	addressable	and	not	read-only.

			264	 	 if	f&flagRO	!=	0	{

			265	 	 	 panic(methodName()	+	"	using	value	obtained	using	unexported	field")

			266	 	 }

			267	 	 if	f&flagAddr	==	0	{

			268	 	 	 panic(methodName()	+	"	using	unaddressable	value")

			269	 	 }

			270	 }

			271	

			272	 //	Addr	returns	a	pointer	value	representing	the	address	of	v.

			273	 //	It	panics	if	CanAddr()	returns	false.

			274	 //	Addr	is	typically	used	to	obtain	a	pointer	to	a	struct	field

			275	 //	or	slice	element	in	order	to	call	a	method	that	requires	a

			276	 //	pointer	receiver.

			277	 func	(v	Value)	Addr()	Value	{

			278	 	 if	v.flag&flagAddr	==	0	{

			279	 	 	 panic("reflect.Value.Addr	of	unaddressable	value")

			280	 	 }

			281	 	 return	Value{v.typ.ptrTo(),	v.val,	(v.flag	&	flagRO)	|	flag(Ptr)<<flagKindShift}

			282	 }

			283	

			284	 //	Bool	returns	v's	underlying	value.

			285	 //	It	panics	if	v's	kind	is	not	Bool.

			286	 func	(v	Value)	Bool()	bool	{

			287	 	 v.mustBe(Bool)

			288	 	 if	v.flag&flagIndir	!=	0	{

			289	 	 	 return	*(*bool)(v.val)

			290	 	 }

			291	 	 return	*(*bool)(unsafe.Pointer(&v.val))

			292	 }

			293	

			294	 //	Bytes	returns	v's	underlying	value.

			295	 //	It	panics	if	v's	underlying	value	is	not	a	slice	of	bytes.

			296	 func	(v	Value)	Bytes()	[]byte	{

			297	 	 v.mustBe(Slice)

			298	 	 if	v.typ.Elem().Kind()	!=	Uint8	{

			299	 	 	 panic("reflect.Value.Bytes	of	non-byte	slice")

			300	 	 }

			301	 	 //	Slice	is	always	bigger	than	a	word;	assume	flagIndir.

			302	 	 return	*(*[]byte)(v.val)

			303	 }

			304	

			305	 //	CanAddr	returns	true	if	the	value's	address	can	be	obtained	with	Addr.

			306	 //	Such	values	are	called	addressable.		A	value	is	addressable	if	it	is

			307	 //	an	element	of	a	slice,	an	element	of	an	addressable	array,

			308	 //	a	field	of	an	addressable	struct,	or	the	result	of	dereferencing	a	pointer.

			309	 //	If	CanAddr	returns	false,	calling	Addr	will	panic.

			310	 func	(v	Value)	CanAddr()	bool	{

			311	 	 return	v.flag&flagAddr	!=	0

			312	 }

			313	

			314	 //	CanSet	returns	true	if	the	value	of	v	can	be	changed.

			315	 //	A	Value	can	be	changed	only	if	it	is	addressable	and	was	not

			316	 //	obtained	by	the	use	of	unexported	struct	fields.

			317	 //	If	CanSet	returns	false,	calling	Set	or	any	type-specific

			318	 //	setter	(e.g.,	SetBool,	SetInt64)	will	panic.

			319	 func	(v	Value)	CanSet()	bool	{

			320	 	 return	v.flag&(flagAddr|flagRO)	==	flagAddr

			321	 }

			322	

			323	 //	Call	calls	the	function	v	with	the	input	arguments	in.

			324	 //	For	example,	if	len(in)	==	3,	v.Call(in)	represents	the	Go	call	v(in[0],	in[1],	in[2]).

			325	 //	Call	panics	if	v's	Kind	is	not	Func.

			326	 //	It	returns	the	output	results	as	Values.

			327	 //	As	in	Go,	each	input	argument	must	be	assignable	to	the

			328	 //	type	of	the	function's	corresponding	input	parameter.

			329	 //	If	v	is	a	variadic	function,	Call	creates	the	variadic	slice	parameter

			330	 //	itself,	copying	in	the	corresponding	values.

			331	 func	(v	Value)	Call(in	[]Value)	[]Value	{

			332	 	 v.mustBe(Func)

			333	 	 v.mustBeExported()

			334	 	 return	v.call("Call",	in)

			335	 }

			336	

			337	 //	CallSlice	calls	the	variadic	function	v	with	the	input	arguments	in,

			338	 //	assigning	the	slice	in[len(in)-1]	to	v's	final	variadic	argument.		

			339	 //	For	example,	if	len(in)	==	3,	v.Call(in)	represents	the	Go	call	v(in[0],	in[1],	in[2]...).

			340	 //	Call	panics	if	v's	Kind	is	not	Func	or	if	v	is	not	variadic.

			341	 //	It	returns	the	output	results	as	Values.

			342	 //	As	in	Go,	each	input	argument	must	be	assignable	to	the

			343	 //	type	of	the	function's	corresponding	input	parameter.

			344	 func	(v	Value)	CallSlice(in	[]Value)	[]Value	{

			345	 	 v.mustBe(Func)

			346	 	 v.mustBeExported()

			347	 	 return	v.call("CallSlice",	in)

			348	 }

			349	

			350	 func	(v	Value)	call(method	string,	in	[]Value)	[]Value	{

			351	 	 //	Get	function	pointer,	type.

			352	 	 t	:=	v.typ

			353	 	 var	(

			354	 	 	 fn			unsafe.Pointer

			355	 	 	 rcvr	iword

			356)

			357	 	 if	v.flag&flagMethod	!=	0	{

			358	 	 	 i	:=	int(v.flag)	>>	flagMethodShift

			359	 	 	 if	v.typ.Kind()	==	Interface	{

			360	 	 	 	 tt	:=	(*interfaceType)(unsafe.Pointer(v.typ))

			361	 	 	 	 if	i	<	0	||	i	>=	len(tt.methods)	{

			362	 	 	 	 	 panic("reflect:	broken	Value")

			363	 	 	 	 }

			364	 	 	 	 m	:=	&tt.methods[i]

			365	 	 	 	 if	m.pkgPath	!=	nil	{

			366	 	 	 	 	 panic(method	+	"	of	unexported	method")

			367	 	 	 	 }

			368	 	 	 	 t	=	toCommonType(m.typ)

			369	 	 	 	 iface	:=	(*nonEmptyInterface)(v.val)

			370	 	 	 	 if	iface.itab	==	nil	{

			371	 	 	 	 	 panic(method	+	"	of	method	on	nil	interface	value")

			372	 	 	 	 }

			373	 	 	 	 fn	=	iface.itab.fun[i]

			374	 	 	 	 rcvr	=	iface.word

			375	 	 	 }	else	{

			376	 	 	 	 ut	:=	v.typ.uncommon()

			377	 	 	 	 if	ut	==	nil	||	i	<	0	||	i	>=	len(ut.methods)	{

			378	 	 	 	 	 panic("reflect:	broken	Value")

			379	 	 	 	 }

			380	 	 	 	 m	:=	&ut.methods[i]

			381	 	 	 	 if	m.pkgPath	!=	nil	{

			382	 	 	 	 	 panic(method	+	"	of	unexported	method")

			383	 	 	 	 }

			384	 	 	 	 fn	=	m.ifn

			385	 	 	 	 t	=	toCommonType(m.mtyp)

			386	 	 	 	 rcvr	=	v.iword()

			387	 	 	 }

			388	 	 }	else	if	v.flag&flagIndir	!=	0	{

			389	 	 	 fn	=	*(*unsafe.Pointer)(v.val)

			390	 	 }	else	{

			391	 	 	 fn	=	v.val

			392	 	 }

			393	

			394	 	 if	fn	==	nil	{

			395	 	 	 panic("reflect.Value.Call:	call	of	nil	function")

			396	 	 }

			397	

			398	 	 isSlice	:=	method	==	"CallSlice"

			399	 	 n	:=	t.NumIn()

			400	 	 if	isSlice	{

			401	 	 	 if	!t.IsVariadic()	{

			402	 	 	 	 panic("reflect:	CallSlice	of	non-variadic	function")

			403	 	 	 }

			404	 	 	 if	len(in)	<	n	{

			405	 	 	 	 panic("reflect:	CallSlice	with	too	few	input	arguments")

			406	 	 	 }

			407	 	 	 if	len(in)	>	n	{

			408	 	 	 	 panic("reflect:	CallSlice	with	too	many	input	arguments")

			409	 	 	 }

			410	 	 }	else	{

			411	 	 	 if	t.IsVariadic()	{

			412	 	 	 	 n--

			413	 	 	 }

			414	 	 	 if	len(in)	<	n	{

			415	 	 	 	 panic("reflect:	Call	with	too	few	input	arguments")

			416	 	 	 }

			417	 	 	 if	!t.IsVariadic()	&&	len(in)	>	n	{

			418	 	 	 	 panic("reflect:	Call	with	too	many	input	arguments")

			419	 	 	 }

			420	 	 }

			421	 	 for	_,	x	:=	range	in	{

			422	 	 	 if	x.Kind()	==	Invalid	{

			423	 	 	 	 panic("reflect:	"	+	method	+	"	using	zero	Value	argument")

			424	 	 	 }

			425	 	 }

			426	 	 for	i	:=	0;	i	<	n;	i++	{

			427	 	 	 if	xt,	targ	:=	in[i].Type(),	t.In(i);	!xt.AssignableTo(targ)	{

			428	 	 	 	 panic("reflect:	"	+	method	+	"	using	"	+	xt.String()	+	"	as	type	"	+	targ.String())

			429	 	 	 }

			430	 	 }

			431	 	 if	!isSlice	&&	t.IsVariadic()	{

			432	 	 	 //	prepare	slice	for	remaining	values

			433	 	 	 m	:=	len(in)	-	n

			434	 	 	 slice	:=	MakeSlice(t.In(n),	m,	m)

			435	 	 	 elem	:=	t.In(n).Elem()

			436	 	 	 for	i	:=	0;	i	<	m;	i++	{

			437	 	 	 	 x	:=	in[n+i]

			438	 	 	 	 if	xt	:=	x.Type();	!xt.AssignableTo(elem)	{

			439	 	 	 	 	 panic("reflect:	cannot	use	"	+	xt.String()	+	"	as	type	"	+	elem.String()	+	"	in	"	+	method)

			440	 	 	 	 }

			441	 	 	 	 slice.Index(i).Set(x)

			442	 	 	 }

			443	 	 	 origIn	:=	in

			444	 	 	 in	=	make([]Value,	n+1)

			445	 	 	 copy(in[:n],	origIn)

			446	 	 	 in[n]	=	slice

			447	 	 }

			448	

			449	 	 nin	:=	len(in)

			450	 	 if	nin	!=	t.NumIn()	{

			451	 	 	 panic("reflect.Value.Call:	wrong	argument	count")

			452	 	 }

			453	 	 nout	:=	t.NumOut()

			454	

			455	 	 //	Compute	arg	size	&	allocate.

			456	 	 //	This	computation	is	5g/6g/8g-dependent

			457	 	 //	and	probably	wrong	for	gccgo,	but	so

			458	 	 //	is	most	of	this	function.

			459	 	 size	:=	uintptr(0)

			460	 	 if	v.flag&flagMethod	!=	0	{

			461	 	 	 //	extra	word	for	receiver	interface	word

			462	 	 	 size	+=	ptrSize

			463	 	 }

			464	 	 for	i	:=	0;	i	<	nin;	i++	{

			465	 	 	 tv	:=	t.In(i)

			466	 	 	 a	:=	uintptr(tv.Align())

			467	 	 	 size	=	(size	+	a	-	1)	&^	(a	-	1)

			468	 	 	 size	+=	tv.Size()

			469	 	 }

			470	 	 size	=	(size	+	ptrSize	-	1)	&^	(ptrSize	-	1)

			471	 	 for	i	:=	0;	i	<	nout;	i++	{

			472	 	 	 tv	:=	t.Out(i)

			473	 	 	 a	:=	uintptr(tv.Align())

			474	 	 	 size	=	(size	+	a	-	1)	&^	(a	-	1)

			475	 	 	 size	+=	tv.Size()

			476	 	 }

			477	

			478	 	 //	size	must	be	>	0	in	order	for	&args[0]	to	be	valid.

			479	 	 //	the	argument	copying	is	going	to	round	it	up	to

			480	 	 //	a	multiple	of	ptrSize	anyway,	so	make	it	ptrSize	to	begin	with.

			481	 	 if	size	<	ptrSize	{

			482	 	 	 size	=	ptrSize

			483	 	 }

			484	

			485	 	 //	round	to	pointer	size

			486	 	 size	=	(size	+	ptrSize	-	1)	&^	(ptrSize	-	1)

			487	

			488	 	 //	Copy	into	args.

			489	 	 //

			490	 	 //	TODO(rsc):	revisit	when	reference	counting	happens.

			491	 	 //	The	values	are	holding	up	the	in	references	for	us,

			492	 	 //	but	something	must	be	done	for	the	out	references.

			493	 	 //	For	now	make	everything	look	like	a	pointer	by	pretending

			494	 	 //	to	allocate	a	[]*int.

			495	 	 args	:=	make([]*int,	size/ptrSize)

			496	 	 ptr	:=	uintptr(unsafe.Pointer(&args[0]))

			497	 	 off	:=	uintptr(0)

			498	 	 if	v.flag&flagMethod	!=	0	{

			499	 	 	 //	Hard-wired	first	argument.

			500	 	 	 *(*iword)(unsafe.Pointer(ptr))	=	rcvr

			501	 	 	 off	=	ptrSize

			502	 	 }

			503	 	 for	i,	v	:=	range	in	{

			504	 	 	 v.mustBeExported()

			505	 	 	 targ	:=	t.In(i).(*commonType)

			506	 	 	 a	:=	uintptr(targ.align)

			507	 	 	 off	=	(off	+	a	-	1)	&^	(a	-	1)

			508	 	 	 n	:=	targ.size

			509	 	 	 addr	:=	unsafe.Pointer(ptr	+	off)

			510	 	 	 v	=	v.assignTo("reflect.Value.Call",	targ,	(*interface{})(addr))

			511	 	 	 if	v.flag&flagIndir	==	0	{

			512	 	 	 	 storeIword(addr,	iword(v.val),	n)

			513	 	 	 }	else	{

			514	 	 	 	 memmove(addr,	v.val,	n)

			515	 	 	 }

			516	 	 	 off	+=	n

			517	 	 }

			518	 	 off	=	(off	+	ptrSize	-	1)	&^	(ptrSize	-	1)

			519	

			520	 	 //	Call.

			521	 	 call(fn,	unsafe.Pointer(ptr),	uint32(size))

			522	

			523	 	 //	Copy	return	values	out	of	args.

			524	 	 //

			525	 	 //	TODO(rsc):	revisit	like	above.

			526	 	 ret	:=	make([]Value,	nout)

			527	 	 for	i	:=	0;	i	<	nout;	i++	{

			528	 	 	 tv	:=	t.Out(i)

			529	 	 	 a	:=	uintptr(tv.Align())

			530	 	 	 off	=	(off	+	a	-	1)	&^	(a	-	1)

			531	 	 	 fl	:=	flagIndir	|	flag(tv.Kind())<<flagKindShift

			532	 	 	 ret[i]	=	Value{tv.common(),	unsafe.Pointer(ptr	+	off),	fl}

			533	 	 	 off	+=	tv.Size()

			534	 	 }

			535	

			536	 	 return	ret

			537	 }

			538	

			539	 //	Cap	returns	v's	capacity.

			540	 //	It	panics	if	v's	Kind	is	not	Array,	Chan,	or	Slice.

			541	 func	(v	Value)	Cap()	int	{

			542	 	 k	:=	v.kind()

			543	 	 switch	k	{

			544	 	 case	Array:

			545	 	 	 return	v.typ.Len()

			546	 	 case	Chan:

			547	 	 	 return	int(chancap(v.iword()))

			548	 	 case	Slice:

			549	 	 	 //	Slice	is	always	bigger	than	a	word;	assume	flagIndir.

			550	 	 	 return	(*SliceHeader)(v.val).Cap

			551	 	 }

			552	 	 panic(&ValueError{"reflect.Value.Cap",	k})

			553	 }

			554	

			555	 //	Close	closes	the	channel	v.

			556	 //	It	panics	if	v's	Kind	is	not	Chan.

			557	 func	(v	Value)	Close()	{

			558	 	 v.mustBe(Chan)

			559	 	 v.mustBeExported()

			560	 	 chanclose(v.iword())

			561	 }

			562	

			563	 //	Complex	returns	v's	underlying	value,	as	a	complex128.

			564	 //	It	panics	if	v's	Kind	is	not	Complex64	or	Complex128

			565	 func	(v	Value)	Complex()	complex128	{

			566	 	 k	:=	v.kind()

			567	 	 switch	k	{

			568	 	 case	Complex64:

			569	 	 	 if	v.flag&flagIndir	!=	0	{

			570	 	 	 	 return	complex128(*(*complex64)(v.val))

			571	 	 	 }

			572	 	 	 return	complex128(*(*complex64)(unsafe.Pointer(&v.val)))

			573	 	 case	Complex128:

			574	 	 	 //	complex128	is	always	bigger	than	a	word;	assume	flagIndir.

			575	 	 	 return	*(*complex128)(v.val)

			576	 	 }

			577	 	 panic(&ValueError{"reflect.Value.Complex",	k})

			578	 }

			579	

			580	 //	Elem	returns	the	value	that	the	interface	v	contains

			581	 //	or	that	the	pointer	v	points	to.

			582	 //	It	panics	if	v's	Kind	is	not	Interface	or	Ptr.

			583	 //	It	returns	the	zero	Value	if	v	is	nil.

			584	 func	(v	Value)	Elem()	Value	{

			585	 	 k	:=	v.kind()

			586	 	 switch	k	{

			587	 	 case	Interface:

			588	 	 	 var	(

			589	 	 	 	 typ	*commonType

			590	 	 	 	 val	unsafe.Pointer

			591)

			592	 	 	 if	v.typ.NumMethod()	==	0	{

			593	 	 	 	 eface	:=	(*emptyInterface)(v.val)

			594	 	 	 	 if	eface.typ	==	nil	{

			595	 	 	 	 	 //	nil	interface	value

			596	 	 	 	 	 return	Value{}

			597	 	 	 	 }

			598	 	 	 	 typ	=	toCommonType(eface.typ)

			599	 	 	 	 val	=	unsafe.Pointer(eface.word)

			600	 	 	 }	else	{

			601	 	 	 	 iface	:=	(*nonEmptyInterface)(v.val)

			602	 	 	 	 if	iface.itab	==	nil	{

			603	 	 	 	 	 //	nil	interface	value

			604	 	 	 	 	 return	Value{}

			605	 	 	 	 }

			606	 	 	 	 typ	=	toCommonType(iface.itab.typ)

			607	 	 	 	 val	=	unsafe.Pointer(iface.word)

			608	 	 	 }

			609	 	 	 fl	:=	v.flag	&	flagRO

			610	 	 	 fl	|=	flag(typ.Kind())	<<	flagKindShift

			611	 	 	 if	typ.size	>	ptrSize	{

			612	 	 	 	 fl	|=	flagIndir

			613	 	 	 }

			614	 	 	 return	Value{typ,	val,	fl}

			615	

			616	 	 case	Ptr:

			617	 	 	 val	:=	v.val

			618	 	 	 if	v.flag&flagIndir	!=	0	{

			619	 	 	 	 val	=	*(*unsafe.Pointer)(val)

			620	 	 	 }

			621	 	 	 //	The	returned	value's	address	is	v's	value.

			622	 	 	 if	val	==	nil	{

			623	 	 	 	 return	Value{}

			624	 	 	 }

			625	 	 	 tt	:=	(*ptrType)(unsafe.Pointer(v.typ))

			626	 	 	 typ	:=	toCommonType(tt.elem)

			627	 	 	 fl	:=	v.flag&flagRO	|	flagIndir	|	flagAddr

			628	 	 	 fl	|=	flag(typ.Kind()	<<	flagKindShift)

			629	 	 	 return	Value{typ,	val,	fl}

			630	 	 }

			631	 	 panic(&ValueError{"reflect.Value.Elem",	k})

			632	 }

			633	

			634	 //	Field	returns	the	i'th	field	of	the	struct	v.

			635	 //	It	panics	if	v's	Kind	is	not	Struct	or	i	is	out	of	range.

			636	 func	(v	Value)	Field(i	int)	Value	{

			637	 	 v.mustBe(Struct)

			638	 	 tt	:=	(*structType)(unsafe.Pointer(v.typ))

			639	 	 if	i	<	0	||	i	>=	len(tt.fields)	{

			640	 	 	 panic("reflect:	Field	index	out	of	range")

			641	 	 }

			642	 	 field	:=	&tt.fields[i]

			643	 	 typ	:=	toCommonType(field.typ)

			644	

			645	 	 //	Inherit	permission	bits	from	v.

			646	 	 fl	:=	v.flag	&	(flagRO	|	flagIndir	|	flagAddr)

			647	 	 //	Using	an	unexported	field	forces	flagRO.

			648	 	 if	field.pkgPath	!=	nil	{

			649	 	 	 fl	|=	flagRO

			650	 	 }

			651	 	 fl	|=	flag(typ.Kind())	<<	flagKindShift

			652	

			653	 	 var	val	unsafe.Pointer

			654	 	 switch	{

			655	 	 case	fl&flagIndir	!=	0:

			656	 	 	 //	Indirect.		Just	bump	pointer.

			657	 	 	 val	=	unsafe.Pointer(uintptr(v.val)	+	field.offset)

			658	 	 case	bigEndian:

			659	 	 	 //	Direct.		Discard	leading	bytes.

			660	 	 	 val	=	unsafe.Pointer(uintptr(v.val)	<<	(field.offset	*	8))

			661	 	 default:

			662	 	 	 //	Direct.		Discard	leading	bytes.

			663	 	 	 val	=	unsafe.Pointer(uintptr(v.val)	>>	(field.offset	*	8))

			664	 	 }

			665	

			666	 	 return	Value{typ,	val,	fl}

			667	 }

			668	

			669	 //	FieldByIndex	returns	the	nested	field	corresponding	to	index.

			670	 //	It	panics	if	v's	Kind	is	not	struct.

			671	 func	(v	Value)	FieldByIndex(index	[]int)	Value	{

			672	 	 v.mustBe(Struct)

			673	 	 for	i,	x	:=	range	index	{

			674	 	 	 if	i	>	0	{

			675	 	 	 	 if	v.Kind()	==	Ptr	&&	v.Elem().Kind()	==	Struct	{

			676	 	 	 	 	 v	=	v.Elem()

			677	 	 	 	 }

			678	 	 	 }

			679	 	 	 v	=	v.Field(x)

			680	 	 }

			681	 	 return	v

			682	 }

			683	

			684	 //	FieldByName	returns	the	struct	field	with	the	given	name.

			685	 //	It	returns	the	zero	Value	if	no	field	was	found.

			686	 //	It	panics	if	v's	Kind	is	not	struct.

			687	 func	(v	Value)	FieldByName(name	string)	Value	{

			688	 	 v.mustBe(Struct)

			689	 	 if	f,	ok	:=	v.typ.FieldByName(name);	ok	{

			690	 	 	 return	v.FieldByIndex(f.Index)

			691	 	 }

			692	 	 return	Value{}

			693	 }

			694	

			695	 //	FieldByNameFunc	returns	the	struct	field	with	a	name

			696	 //	that	satisfies	the	match	function.

			697	 //	It	panics	if	v's	Kind	is	not	struct.

			698	 //	It	returns	the	zero	Value	if	no	field	was	found.

			699	 func	(v	Value)	FieldByNameFunc(match	func(string)	bool)	Value	{

			700	 	 v.mustBe(Struct)

			701	 	 if	f,	ok	:=	v.typ.FieldByNameFunc(match);	ok	{

			702	 	 	 return	v.FieldByIndex(f.Index)

			703	 	 }

			704	 	 return	Value{}

			705	 }

			706	

			707	 //	Float	returns	v's	underlying	value,	as	a	float64.

			708	 //	It	panics	if	v's	Kind	is	not	Float32	or	Float64

			709	 func	(v	Value)	Float()	float64	{

			710	 	 k	:=	v.kind()

			711	 	 switch	k	{

			712	 	 case	Float32:

			713	 	 	 if	v.flag&flagIndir	!=	0	{

			714	 	 	 	 return	float64(*(*float32)(v.val))

			715	 	 	 }

			716	 	 	 return	float64(*(*float32)(unsafe.Pointer(&v.val)))

			717	 	 case	Float64:

			718	 	 	 if	v.flag&flagIndir	!=	0	{

			719	 	 	 	 return	*(*float64)(v.val)

			720	 	 	 }

			721	 	 	 return	*(*float64)(unsafe.Pointer(&v.val))

			722	 	 }

			723	 	 panic(&ValueError{"reflect.Value.Float",	k})

			724	 }

			725	

			726	 //	Index	returns	v's	i'th	element.

			727	 //	It	panics	if	v's	Kind	is	not	Array	or	Slice	or	i	is	out	of	range.

			728	 func	(v	Value)	Index(i	int)	Value	{

			729	 	 k	:=	v.kind()

			730	 	 switch	k	{

			731	 	 case	Array:

			732	 	 	 tt	:=	(*arrayType)(unsafe.Pointer(v.typ))

			733	 	 	 if	i	<	0	||	i	>	int(tt.len)	{

			734	 	 	 	 panic("reflect:	array	index	out	of	range")

			735	 	 	 }

			736	 	 	 typ	:=	toCommonType(tt.elem)

			737	 	 	 fl	:=	v.flag	&	(flagRO	|	flagIndir	|	flagAddr)	

			738	 	 	 fl	|=	flag(typ.Kind())	<<	flagKindShift

			739	 	 	 offset	:=	uintptr(i)	*	typ.size

			740	

			741	 	 	 var	val	unsafe.Pointer

			742	 	 	 switch	{

			743	 	 	 case	fl&flagIndir	!=	0:

			744	 	 	 	 //	Indirect.		Just	bump	pointer.

			745	 	 	 	 val	=	unsafe.Pointer(uintptr(v.val)	+	offset)

			746	 	 	 case	bigEndian:

			747	 	 	 	 //	Direct.		Discard	leading	bytes.

			748	 	 	 	 val	=	unsafe.Pointer(uintptr(v.val)	<<	(offset	*	8))

			749	 	 	 default:

			750	 	 	 	 //	Direct.		Discard	leading	bytes.

			751	 	 	 	 val	=	unsafe.Pointer(uintptr(v.val)	>>	(offset	*	8))

			752	 	 	 }

			753	 	 	 return	Value{typ,	val,	fl}

			754	

			755	 	 case	Slice:

			756	 	 	 //	Element	flag	same	as	Elem	of	Ptr.

			757	 	 	 //	Addressable,	indirect,	possibly	read-only.

			758	 	 	 fl	:=	flagAddr	|	flagIndir	|	v.flag&flagRO

			759	 	 	 s	:=	(*SliceHeader)(v.val)

			760	 	 	 if	i	<	0	||	i	>=	s.Len	{

			761	 	 	 	 panic("reflect:	slice	index	out	of	range")

			762	 	 	 }

			763	 	 	 tt	:=	(*sliceType)(unsafe.Pointer(v.typ))

			764	 	 	 typ	:=	toCommonType(tt.elem)

			765	 	 	 fl	|=	flag(typ.Kind())	<<	flagKindShift

			766	 	 	 val	:=	unsafe.Pointer(s.Data	+	uintptr(i)*typ.size)

			767	 	 	 return	Value{typ,	val,	fl}

			768	 	 }

			769	 	 panic(&ValueError{"reflect.Value.Index",	k})

			770	 }

			771	

			772	 //	Int	returns	v's	underlying	value,	as	an	int64.

			773	 //	It	panics	if	v's	Kind	is	not	Int,	Int8,	Int16,	Int32,	or	Int64.

			774	 func	(v	Value)	Int()	int64	{

			775	 	 k	:=	v.kind()

			776	 	 var	p	unsafe.Pointer

			777	 	 if	v.flag&flagIndir	!=	0	{

			778	 	 	 p	=	v.val

			779	 	 }	else	{

			780	 	 	 //	The	escape	analysis	is	good	enough	that	&v.val

			781	 	 	 //	does	not	trigger	a	heap	allocation.

			782	 	 	 p	=	unsafe.Pointer(&v.val)

			783	 	 }

			784	 	 switch	k	{

			785	 	 case	Int:

			786	 	 	 return	int64(*(*int)(p))

			787	 	 case	Int8:

			788	 	 	 return	int64(*(*int8)(p))

			789	 	 case	Int16:

			790	 	 	 return	int64(*(*int16)(p))

			791	 	 case	Int32:

			792	 	 	 return	int64(*(*int32)(p))

			793	 	 case	Int64:

			794	 	 	 return	int64(*(*int64)(p))

			795	 	 }

			796	 	 panic(&ValueError{"reflect.Value.Int",	k})

			797	 }

			798	

			799	 //	CanInterface	returns	true	if	Interface	can	be	used	without	panicking.

			800	 func	(v	Value)	CanInterface()	bool	{

			801	 	 if	v.flag	==	0	{

			802	 	 	 panic(&ValueError{"reflect.Value.CanInterface",	Invalid})

			803	 	 }

			804	 	 return	v.flag&(flagMethod|flagRO)	==	0

			805	 }

			806	

			807	 //	Interface	returns	v's	current	value	as	an	interface{}.

			808	 //	It	is	equivalent	to:

			809	 //	 var	i	interface{}	=	(v's	underlying	value)

			810	 //	If	v	is	a	method	obtained	by	invoking	Value.Method

			811	 //	(as	opposed	to	Type.Method),	Interface	cannot	return	an

			812	 //	interface	value,	so	it	panics.

			813	 //	It	also	panics	if	the	Value	was	obtained	by	accessing

			814	 //	unexported	struct	fields.

			815	 func	(v	Value)	Interface()	(i	interface{})	{

			816	 	 return	valueInterface(v,	true)

			817	 }

			818	

			819	 func	valueInterface(v	Value,	safe	bool)	interface{}	{

			820	 	 if	v.flag	==	0	{

			821	 	 	 panic(&ValueError{"reflect.Value.Interface",	0})

			822	 	 }

			823	 	 if	v.flag&flagMethod	!=	0	{

			824	 	 	 panic("reflect.Value.Interface:	cannot	create	interface	value	for	method	with	bound	receiver")

			825	 	 }

			826	

			827	 	 if	safe	&&	v.flag&flagRO	!=	0	{

			828	 	 	 //	Do	not	allow	access	to	unexported	values	via	Interface,

			829	 	 	 //	because	they	might	be	pointers	that	should	not	be	

			830	 	 	 //	writable	or	methods	or	function	that	should	not	be	callable.

			831	 	 	 panic("reflect.Value.Interface:	cannot	return	value	obtained	from	unexported	field	or	method")

			832	 	 }

			833	

			834	 	 k	:=	v.kind()

			835	 	 if	k	==	Interface	{

			836	 	 	 //	Special	case:	return	the	element	inside	the	interface.

			837	 	 	 //	Empty	interface	has	one	layout,	all	interfaces	with

			838	 	 	 //	methods	have	a	second	layout.

			839	 	 	 if	v.NumMethod()	==	0	{

			840	 	 	 	 return	*(*interface{})(v.val)

			841	 	 	 }

			842	 	 	 return	*(*interface	{

			843	 	 	 	 M()

			844	 	 	 })(v.val)

			845	 	 }

			846	

			847	 	 //	Non-interface	value.

			848	 	 var	eface	emptyInterface

			849	 	 eface.typ	=	v.typ.runtimeType()

			850	 	 eface.word	=	v.iword()

			851	

			852	 	 if	v.flag&flagIndir	!=	0	&&	v.typ.size	>	ptrSize	{

			853	 	 	 //	eface.word	is	a	pointer	to	the	actual	data,

			854	 	 	 //	which	might	be	changed.		We	need	to	return

			855	 	 	 //	a	pointer	to	unchanging	data,	so	make	a	copy.

			856	 	 	 ptr	:=	unsafe_New(v.typ)

			857	 	 	 memmove(ptr,	unsafe.Pointer(eface.word),	v.typ.size)

			858	 	 	 eface.word	=	iword(ptr)

			859	 	 }

			860	

			861	 	 return	*(*interface{})(unsafe.Pointer(&eface))

			862	 }

			863	

			864	 //	InterfaceData	returns	the	interface	v's	value	as	a	uintptr	pair.

			865	 //	It	panics	if	v's	Kind	is	not	Interface.

			866	 func	(v	Value)	InterfaceData()	[2]uintptr	{

			867	 	 v.mustBe(Interface)

			868	 	 //	We	treat	this	as	a	read	operation,	so	we	allow

			869	 	 //	it	even	for	unexported	data,	because	the	caller

			870	 	 //	has	to	import	"unsafe"	to	turn	it	into	something

			871	 	 //	that	can	be	abused.

			872	 	 //	Interface	value	is	always	bigger	than	a	word;	assume	flagIndir.

			873	 	 return	*(*[2]uintptr)(v.val)

			874	 }

			875	

			876	 //	IsNil	returns	true	if	v	is	a	nil	value.

			877	 //	It	panics	if	v's	Kind	is	not	Chan,	Func,	Interface,	Map,	Ptr,	or	Slice.

			878	 func	(v	Value)	IsNil()	bool	{

			879	 	 k	:=	v.kind()

			880	 	 switch	k	{

			881	 	 case	Chan,	Func,	Map,	Ptr:

			882	 	 	 if	v.flag&flagMethod	!=	0	{

			883	 	 	 	 panic("reflect:	IsNil	of	method	Value")

			884	 	 	 }

			885	 	 	 ptr	:=	v.val

			886	 	 	 if	v.flag&flagIndir	!=	0	{

			887	 	 	 	 ptr	=	*(*unsafe.Pointer)(ptr)

			888	 	 	 }

			889	 	 	 return	ptr	==	nil

			890	 	 case	Interface,	Slice:

			891	 	 	 //	Both	interface	and	slice	are	nil	if	first	word	is	0.

			892	 	 	 //	Both	are	always	bigger	than	a	word;	assume	flagIndir.

			893	 	 	 return	*(*unsafe.Pointer)(v.val)	==	nil

			894	 	 }

			895	 	 panic(&ValueError{"reflect.Value.IsNil",	k})

			896	 }

			897	

			898	 //	IsValid	returns	true	if	v	represents	a	value.

			899	 //	It	returns	false	if	v	is	the	zero	Value.

			900	 //	If	IsValid	returns	false,	all	other	methods	except	String	panic.

			901	 //	Most	functions	and	methods	never	return	an	invalid	value.

			902	 //	If	one	does,	its	documentation	states	the	conditions	explicitly.

			903	 func	(v	Value)	IsValid()	bool	{

			904	 	 return	v.flag	!=	0

			905	 }

			906	

			907	 //	Kind	returns	v's	Kind.

			908	 //	If	v	is	the	zero	Value	(IsValid	returns	false),	Kind	returns	Invalid.

			909	 func	(v	Value)	Kind()	Kind	{

			910	 	 return	v.kind()

			911	 }

			912	

			913	 //	Len	returns	v's	length.

			914	 //	It	panics	if	v's	Kind	is	not	Array,	Chan,	Map,	Slice,	or	String.

			915	 func	(v	Value)	Len()	int	{

			916	 	 k	:=	v.kind()

			917	 	 switch	k	{

			918	 	 case	Array:

			919	 	 	 tt	:=	(*arrayType)(unsafe.Pointer(v.typ))

			920	 	 	 return	int(tt.len)

			921	 	 case	Chan:

			922	 	 	 return	int(chanlen(v.iword()))

			923	 	 case	Map:

			924	 	 	 return	int(maplen(v.iword()))

			925	 	 case	Slice:

			926	 	 	 //	Slice	is	bigger	than	a	word;	assume	flagIndir.

			927	 	 	 return	(*SliceHeader)(v.val).Len

			928	 	 case	String:

			929	 	 	 //	String	is	bigger	than	a	word;	assume	flagIndir.

			930	 	 	 return	(*StringHeader)(v.val).Len

			931	 	 }

			932	 	 panic(&ValueError{"reflect.Value.Len",	k})

			933	 }

			934	

			935	 //	MapIndex	returns	the	value	associated	with	key	in	the	map	v.

			936	 //	It	panics	if	v's	Kind	is	not	Map.

			937	 //	It	returns	the	zero	Value	if	key	is	not	found	in	the	map	or	if	v	represents	a	nil	map.

			938	 //	As	in	Go,	the	key's	value	must	be	assignable	to	the	map's	key	type.

			939	 func	(v	Value)	MapIndex(key	Value)	Value	{

			940	 	 v.mustBe(Map)

			941	 	 tt	:=	(*mapType)(unsafe.Pointer(v.typ))

			942	

			943	 	 //	Do	not	require	key	to	be	exported,	so	that	DeepEqual

			944	 	 //	and	other	programs	can	use	all	the	keys	returned	by

			945	 	 //	MapKeys	as	arguments	to	MapIndex.		If	either	the	map

			946	 	 //	or	the	key	is	unexported,	though,	the	result	will	be

			947	 	 //	considered	unexported.		This	is	consistent	with	the

			948	 	 //	behavior	for	structs,	which	allow	read	but	not	write

			949	 	 //	of	unexported	fields.

			950	 	 key	=	key.assignTo("reflect.Value.MapIndex",	toCommonType(tt.key),	nil)

			951	

			952	 	 word,	ok	:=	mapaccess(v.typ.runtimeType(),	v.iword(),	key.iword())

			953	 	 if	!ok	{

			954	 	 	 return	Value{}

			955	 	 }

			956	 	 typ	:=	toCommonType(tt.elem)

			957	 	 fl	:=	(v.flag	|	key.flag)	&	flagRO

			958	 	 if	typ.size	>	ptrSize	{

			959	 	 	 fl	|=	flagIndir

			960	 	 }

			961	 	 fl	|=	flag(typ.Kind())	<<	flagKindShift

			962	 	 return	Value{typ,	unsafe.Pointer(word),	fl}

			963	 }

			964	

			965	 //	MapKeys	returns	a	slice	containing	all	the	keys	present	in	the	map,

			966	 //	in	unspecified	order.

			967	 //	It	panics	if	v's	Kind	is	not	Map.

			968	 //	It	returns	an	empty	slice	if	v	represents	a	nil	map.

			969	 func	(v	Value)	MapKeys()	[]Value	{

			970	 	 v.mustBe(Map)

			971	 	 tt	:=	(*mapType)(unsafe.Pointer(v.typ))

			972	 	 keyType	:=	toCommonType(tt.key)

			973	

			974	 	 fl	:=	v.flag	&	flagRO

			975	 	 fl	|=	flag(keyType.Kind())	<<	flagKindShift

			976	 	 if	keyType.size	>	ptrSize	{

			977	 	 	 fl	|=	flagIndir

			978	 	 }

			979	

			980	 	 m	:=	v.iword()

			981	 	 mlen	:=	int32(0)

			982	 	 if	m	!=	nil	{

			983	 	 	 mlen	=	maplen(m)

			984	 	 }

			985	 	 it	:=	mapiterinit(v.typ.runtimeType(),	m)

			986	 	 a	:=	make([]Value,	mlen)

			987	 	 var	i	int

			988	 	 for	i	=	0;	i	<	len(a);	i++	{

			989	 	 	 keyWord,	ok	:=	mapiterkey(it)

			990	 	 	 if	!ok	{

			991	 	 	 	 break

			992	 	 	 }

			993	 	 	 a[i]	=	Value{keyType,	unsafe.Pointer(keyWord),	fl}

			994	 	 	 mapiternext(it)

			995	 	 }

			996	 	 return	a[:i]

			997	 }

			998	

			999	 //	Method	returns	a	function	value	corresponding	to	v's	i'th	method.

		1000	 //	The	arguments	to	a	Call	on	the	returned	function	should	not	include

		1001	 //	a	receiver;	the	returned	function	will	always	use	v	as	the	receiver.

		1002	 //	Method	panics	if	i	is	out	of	range.

		1003	 func	(v	Value)	Method(i	int)	Value	{

		1004	 	 if	v.typ	==	nil	{

		1005	 	 	 panic(&ValueError{"reflect.Value.Method",	Invalid})

		1006	 	 }

		1007	 	 if	v.flag&flagMethod	!=	0	||	i	<	0	||	i	>=	v.typ.NumMethod()	{

		1008	 	 	 panic("reflect:	Method	index	out	of	range")

		1009	 	 }

		1010	 	 fl	:=	v.flag	&	(flagRO	|	flagAddr	|	flagIndir)

		1011	 	 fl	|=	flag(Func)	<<	flagKindShift

		1012	 	 fl	|=	flag(i)<<flagMethodShift	|	flagMethod

		1013	 	 return	Value{v.typ,	v.val,	fl}

		1014	 }

		1015	

		1016	 //	NumMethod	returns	the	number	of	methods	in	the	value's	method	set.

		1017	 func	(v	Value)	NumMethod()	int	{

		1018	 	 if	v.typ	==	nil	{

		1019	 	 	 panic(&ValueError{"reflect.Value.NumMethod",	Invalid})

		1020	 	 }

		1021	 	 if	v.flag&flagMethod	!=	0	{

		1022	 	 	 return	0

		1023	 	 }

		1024	 	 return	v.typ.NumMethod()

		1025	 }

		1026	

		1027	 //	MethodByName	returns	a	function	value	corresponding	to	the	method

		1028	 //	of	v	with	the	given	name.

		1029	 //	The	arguments	to	a	Call	on	the	returned	function	should	not	include

		1030	 //	a	receiver;	the	returned	function	will	always	use	v	as	the	receiver.

		1031	 //	It	returns	the	zero	Value	if	no	method	was	found.

		1032	 func	(v	Value)	MethodByName(name	string)	Value	{

		1033	 	 if	v.typ	==	nil	{

		1034	 	 	 panic(&ValueError{"reflect.Value.MethodByName",	Invalid})

		1035	 	 }

		1036	 	 if	v.flag&flagMethod	!=	0	{

		1037	 	 	 return	Value{}

		1038	 	 }

		1039	 	 m,	ok	:=	v.typ.MethodByName(name)

		1040	 	 if	!ok	{

		1041	 	 	 return	Value{}

		1042	 	 }

		1043	 	 return	v.Method(m.Index)

		1044	 }

		1045	

		1046	 //	NumField	returns	the	number	of	fields	in	the	struct	v.

		1047	 //	It	panics	if	v's	Kind	is	not	Struct.

		1048	 func	(v	Value)	NumField()	int	{

		1049	 	 v.mustBe(Struct)

		1050	 	 tt	:=	(*structType)(unsafe.Pointer(v.typ))

		1051	 	 return	len(tt.fields)

		1052	 }

		1053	

		1054	 //	OverflowComplex	returns	true	if	the	complex128	x	cannot	be	represented	by	v's	type.

		1055	 //	It	panics	if	v's	Kind	is	not	Complex64	or	Complex128.

		1056	 func	(v	Value)	OverflowComplex(x	complex128)	bool	{

		1057	 	 k	:=	v.kind()

		1058	 	 switch	k	{

		1059	 	 case	Complex64:

		1060	 	 	 return	overflowFloat32(real(x))	||	overflowFloat32(imag(x))

		1061	 	 case	Complex128:

		1062	 	 	 return	false

		1063	 	 }

		1064	 	 panic(&ValueError{"reflect.Value.OverflowComplex",	k})

		1065	 }

		1066	

		1067	 //	OverflowFloat	returns	true	if	the	float64	x	cannot	be	represented	by	v's	type.

		1068	 //	It	panics	if	v's	Kind	is	not	Float32	or	Float64.

		1069	 func	(v	Value)	OverflowFloat(x	float64)	bool	{

		1070	 	 k	:=	v.kind()

		1071	 	 switch	k	{

		1072	 	 case	Float32:

		1073	 	 	 return	overflowFloat32(x)

		1074	 	 case	Float64:

		1075	 	 	 return	false

		1076	 	 }

		1077	 	 panic(&ValueError{"reflect.Value.OverflowFloat",	k})

		1078	 }

		1079	

		1080	 func	overflowFloat32(x	float64)	bool	{

		1081	 	 if	x	<	0	{

		1082	 	 	 x	=	-x

		1083	 	 }

		1084	 	 return	math.MaxFloat32	<=	x	&&	x	<=	math.MaxFloat64

		1085	 }

		1086	

		1087	 //	OverflowInt	returns	true	if	the	int64	x	cannot	be	represented	by	v's	type.

		1088	 //	It	panics	if	v's	Kind	is	not	Int,	Int8,	int16,	Int32,	or	Int64.

		1089	 func	(v	Value)	OverflowInt(x	int64)	bool	{

		1090	 	 k	:=	v.kind()

		1091	 	 switch	k	{

		1092	 	 case	Int,	Int8,	Int16,	Int32,	Int64:

		1093	 	 	 bitSize	:=	v.typ.size	*	8

		1094	 	 	 trunc	:=	(x	<<	(64	-	bitSize))	>>	(64	-	bitSize)

		1095	 	 	 return	x	!=	trunc

		1096	 	 }

		1097	 	 panic(&ValueError{"reflect.Value.OverflowInt",	k})

		1098	 }

		1099	

		1100	 //	OverflowUint	returns	true	if	the	uint64	x	cannot	be	represented	by	v's	type.

		1101	 //	It	panics	if	v's	Kind	is	not	Uint,	Uintptr,	Uint8,	Uint16,	Uint32,	or	Uint64.

		1102	 func	(v	Value)	OverflowUint(x	uint64)	bool	{

		1103	 	 k	:=	v.kind()

		1104	 	 switch	k	{

		1105	 	 case	Uint,	Uintptr,	Uint8,	Uint16,	Uint32,	Uint64:

		1106	 	 	 bitSize	:=	v.typ.size	*	8

		1107	 	 	 trunc	:=	(x	<<	(64	-	bitSize))	>>	(64	-	bitSize)

		1108	 	 	 return	x	!=	trunc

		1109	 	 }

		1110	 	 panic(&ValueError{"reflect.Value.OverflowUint",	k})

		1111	 }

		1112	

		1113	 //	Pointer	returns	v's	value	as	a	uintptr.

		1114	 //	It	returns	uintptr	instead	of	unsafe.Pointer	so	that

		1115	 //	code	using	reflect	cannot	obtain	unsafe.Pointers

		1116	 //	without	importing	the	unsafe	package	explicitly.

		1117	 //	It	panics	if	v's	Kind	is	not	Chan,	Func,	Map,	Ptr,	Slice,	or	UnsafePointer.

		1118	 func	(v	Value)	Pointer()	uintptr	{

		1119	 	 k	:=	v.kind()

		1120	 	 switch	k	{

		1121	 	 case	Chan,	Func,	Map,	Ptr,	UnsafePointer:

		1122	 	 	 if	k	==	Func	&&	v.flag&flagMethod	!=	0	{

		1123	 	 	 	 panic("reflect.Value.Pointer	of	method	Value")

		1124	 	 	 }

		1125	 	 	 p	:=	v.val

		1126	 	 	 if	v.flag&flagIndir	!=	0	{

		1127	 	 	 	 p	=	*(*unsafe.Pointer)(p)

		1128	 	 	 }

		1129	 	 	 return	uintptr(p)

		1130	 	 case	Slice:

		1131	 	 	 return	(*SliceHeader)(v.val).Data

		1132	 	 }

		1133	 	 panic(&ValueError{"reflect.Value.Pointer",	k})

		1134	 }

		1135	

		1136	 //	Recv	receives	and	returns	a	value	from	the	channel	v.

		1137	 //	It	panics	if	v's	Kind	is	not	Chan.

		1138	 //	The	receive	blocks	until	a	value	is	ready.

		1139	 //	The	boolean	value	ok	is	true	if	the	value	x	corresponds	to	a	send

		1140	 //	on	the	channel,	false	if	it	is	a	zero	value	received	because	the	channel	is	closed.

		1141	 func	(v	Value)	Recv()	(x	Value,	ok	bool)	{

		1142	 	 v.mustBe(Chan)

		1143	 	 v.mustBeExported()

		1144	 	 return	v.recv(false)

		1145	 }

		1146	

		1147	 //	internal	recv,	possibly	non-blocking	(nb).

		1148	 //	v	is	known	to	be	a	channel.

		1149	 func	(v	Value)	recv(nb	bool)	(val	Value,	ok	bool)	{

		1150	 	 tt	:=	(*chanType)(unsafe.Pointer(v.typ))

		1151	 	 if	ChanDir(tt.dir)&RecvDir	==	0	{

		1152	 	 	 panic("recv	on	send-only	channel")

		1153	 	 }

		1154	 	 word,	selected,	ok	:=	chanrecv(v.typ.runtimeType(),	v.iword(),	nb)

		1155	 	 if	selected	{

		1156	 	 	 typ	:=	toCommonType(tt.elem)

		1157	 	 	 fl	:=	flag(typ.Kind())	<<	flagKindShift

		1158	 	 	 if	typ.size	>	ptrSize	{

		1159	 	 	 	 fl	|=	flagIndir

		1160	 	 	 }

		1161	 	 	 val	=	Value{typ,	unsafe.Pointer(word),	fl}

		1162	 	 }

		1163	 	 return

		1164	 }

		1165	

		1166	 //	Send	sends	x	on	the	channel	v.

		1167	 //	It	panics	if	v's	kind	is	not	Chan	or	if	x's	type	is	not	the	same	type	as	v's	element	type.

		1168	 //	As	in	Go,	x's	value	must	be	assignable	to	the	channel's	element	type.

		1169	 func	(v	Value)	Send(x	Value)	{

		1170	 	 v.mustBe(Chan)

		1171	 	 v.mustBeExported()

		1172	 	 v.send(x,	false)

		1173	 }

		1174	

		1175	 //	internal	send,	possibly	non-blocking.

		1176	 //	v	is	known	to	be	a	channel.

		1177	 func	(v	Value)	send(x	Value,	nb	bool)	(selected	bool)	{

		1178	 	 tt	:=	(*chanType)(unsafe.Pointer(v.typ))

		1179	 	 if	ChanDir(tt.dir)&SendDir	==	0	{

		1180	 	 	 panic("send	on	recv-only	channel")

		1181	 	 }

		1182	 	 x.mustBeExported()

		1183	 	 x	=	x.assignTo("reflect.Value.Send",	toCommonType(tt.elem),	nil)

		1184	 	 return	chansend(v.typ.runtimeType(),	v.iword(),	x.iword(),	nb)

		1185	 }

		1186	

		1187	 //	Set	assigns	x	to	the	value	v.

		1188	 //	It	panics	if	CanSet	returns	false.

		1189	 //	As	in	Go,	x's	value	must	be	assignable	to	v's	type.

		1190	 func	(v	Value)	Set(x	Value)	{

		1191	 	 v.mustBeAssignable()

		1192	 	 x.mustBeExported()	//	do	not	let	unexported	x	leak

		1193	 	 var	target	*interface{}

		1194	 	 if	v.kind()	==	Interface	{

		1195	 	 	 target	=	(*interface{})(v.val)

		1196	 	 }

		1197	 	 x	=	x.assignTo("reflect.Set",	v.typ,	target)

		1198	 	 if	x.flag&flagIndir	!=	0	{

		1199	 	 	 memmove(v.val,	x.val,	v.typ.size)

		1200	 	 }	else	{

		1201	 	 	 storeIword(v.val,	iword(x.val),	v.typ.size)

		1202	 	 }

		1203	 }

		1204	

		1205	 //	SetBool	sets	v's	underlying	value.

		1206	 //	It	panics	if	v's	Kind	is	not	Bool	or	if	CanSet()	is	false.

		1207	 func	(v	Value)	SetBool(x	bool)	{

		1208	 	 v.mustBeAssignable()

		1209	 	 v.mustBe(Bool)

		1210	 	 *(*bool)(v.val)	=	x

		1211	 }

		1212	

		1213	 //	SetBytes	sets	v's	underlying	value.

		1214	 //	It	panics	if	v's	underlying	value	is	not	a	slice	of	bytes.

		1215	 func	(v	Value)	SetBytes(x	[]byte)	{

		1216	 	 v.mustBeAssignable()

		1217	 	 v.mustBe(Slice)

		1218	 	 if	v.typ.Elem().Kind()	!=	Uint8	{

		1219	 	 	 panic("reflect.Value.SetBytes	of	non-byte	slice")

		1220	 	 }

		1221	 	 *(*[]byte)(v.val)	=	x

		1222	 }

		1223	

		1224	 //	SetComplex	sets	v's	underlying	value	to	x.

		1225	 //	It	panics	if	v's	Kind	is	not	Complex64	or	Complex128,	or	if	CanSet()	is	false.

		1226	 func	(v	Value)	SetComplex(x	complex128)	{

		1227	 	 v.mustBeAssignable()

		1228	 	 switch	k	:=	v.kind();	k	{

		1229	 	 default:

		1230	 	 	 panic(&ValueError{"reflect.Value.SetComplex",	k})

		1231	 	 case	Complex64:

		1232	 	 	 *(*complex64)(v.val)	=	complex64(x)

		1233	 	 case	Complex128:

		1234	 	 	 *(*complex128)(v.val)	=	x

		1235	 	 }

		1236	 }

		1237	

		1238	 //	SetFloat	sets	v's	underlying	value	to	x.

		1239	 //	It	panics	if	v's	Kind	is	not	Float32	or	Float64,	or	if	CanSet()	is	false.

		1240	 func	(v	Value)	SetFloat(x	float64)	{

		1241	 	 v.mustBeAssignable()

		1242	 	 switch	k	:=	v.kind();	k	{

		1243	 	 default:

		1244	 	 	 panic(&ValueError{"reflect.Value.SetFloat",	k})

		1245	 	 case	Float32:

		1246	 	 	 *(*float32)(v.val)	=	float32(x)

		1247	 	 case	Float64:

		1248	 	 	 *(*float64)(v.val)	=	x

		1249	 	 }

		1250	 }

		1251	

		1252	 //	SetInt	sets	v's	underlying	value	to	x.

		1253	 //	It	panics	if	v's	Kind	is	not	Int,	Int8,	Int16,	Int32,	or	Int64,	or	if	CanSet()	is	false.

		1254	 func	(v	Value)	SetInt(x	int64)	{

		1255	 	 v.mustBeAssignable()

		1256	 	 switch	k	:=	v.kind();	k	{

		1257	 	 default:

		1258	 	 	 panic(&ValueError{"reflect.Value.SetInt",	k})

		1259	 	 case	Int:

		1260	 	 	 *(*int)(v.val)	=	int(x)

		1261	 	 case	Int8:

		1262	 	 	 *(*int8)(v.val)	=	int8(x)

		1263	 	 case	Int16:

		1264	 	 	 *(*int16)(v.val)	=	int16(x)

		1265	 	 case	Int32:

		1266	 	 	 *(*int32)(v.val)	=	int32(x)

		1267	 	 case	Int64:

		1268	 	 	 *(*int64)(v.val)	=	x

		1269	 	 }

		1270	 }

		1271	

		1272	 //	SetLen	sets	v's	length	to	n.

		1273	 //	It	panics	if	v's	Kind	is	not	Slice	or	if	n	is	negative	or

		1274	 //	greater	than	the	capacity	of	the	slice.

		1275	 func	(v	Value)	SetLen(n	int)	{

		1276	 	 v.mustBeAssignable()

		1277	 	 v.mustBe(Slice)

		1278	 	 s	:=	(*SliceHeader)(v.val)

		1279	 	 if	n	<	0	||	n	>	int(s.Cap)	{

		1280	 	 	 panic("reflect:	slice	length	out	of	range	in	SetLen")

		1281	 	 }

		1282	 	 s.Len	=	n

		1283	 }

		1284	

		1285	 //	SetMapIndex	sets	the	value	associated	with	key	in	the	map	v	to	val.

		1286	 //	It	panics	if	v's	Kind	is	not	Map.

		1287	 //	If	val	is	the	zero	Value,	SetMapIndex	deletes	the	key	from	the	map.

		1288	 //	As	in	Go,	key's	value	must	be	assignable	to	the	map's	key	type,

		1289	 //	and	val's	value	must	be	assignable	to	the	map's	value	type.

		1290	 func	(v	Value)	SetMapIndex(key,	val	Value)	{

		1291	 	 v.mustBe(Map)

		1292	 	 v.mustBeExported()

		1293	 	 key.mustBeExported()

		1294	 	 tt	:=	(*mapType)(unsafe.Pointer(v.typ))

		1295	 	 key	=	key.assignTo("reflect.Value.SetMapIndex",	toCommonType(tt.key),	nil)

		1296	 	 if	val.typ	!=	nil	{

		1297	 	 	 val.mustBeExported()

		1298	 	 	 val	=	val.assignTo("reflect.Value.SetMapIndex",	toCommonType(tt.elem),	nil)

		1299	 	 }

		1300	 	 mapassign(v.typ.runtimeType(),	v.iword(),	key.iword(),	val.iword(),	val.typ	!=	nil)

		1301	 }

		1302	

		1303	 //	SetUint	sets	v's	underlying	value	to	x.

		1304	 //	It	panics	if	v's	Kind	is	not	Uint,	Uintptr,	Uint8,	Uint16,	Uint32,	or	Uint64,	or	if	CanSet()	is	false.

		1305	 func	(v	Value)	SetUint(x	uint64)	{

		1306	 	 v.mustBeAssignable()

		1307	 	 switch	k	:=	v.kind();	k	{

		1308	 	 default:

		1309	 	 	 panic(&ValueError{"reflect.Value.SetUint",	k})

		1310	 	 case	Uint:

		1311	 	 	 *(*uint)(v.val)	=	uint(x)

		1312	 	 case	Uint8:

		1313	 	 	 *(*uint8)(v.val)	=	uint8(x)

		1314	 	 case	Uint16:

		1315	 	 	 *(*uint16)(v.val)	=	uint16(x)

		1316	 	 case	Uint32:

		1317	 	 	 *(*uint32)(v.val)	=	uint32(x)

		1318	 	 case	Uint64:

		1319	 	 	 *(*uint64)(v.val)	=	x

		1320	 	 case	Uintptr:

		1321	 	 	 *(*uintptr)(v.val)	=	uintptr(x)

		1322	 	 }

		1323	 }

		1324	

		1325	 //	SetPointer	sets	the	unsafe.Pointer	value	v	to	x.

		1326	 //	It	panics	if	v's	Kind	is	not	UnsafePointer.

		1327	 func	(v	Value)	SetPointer(x	unsafe.Pointer)	{

		1328	 	 v.mustBeAssignable()

		1329	 	 v.mustBe(UnsafePointer)

		1330	 	 *(*unsafe.Pointer)(v.val)	=	x

		1331	 }

		1332	

		1333	 //	SetString	sets	v's	underlying	value	to	x.

		1334	 //	It	panics	if	v's	Kind	is	not	String	or	if	CanSet()	is	false.

		1335	 func	(v	Value)	SetString(x	string)	{

		1336	 	 v.mustBeAssignable()

		1337	 	 v.mustBe(String)

		1338	 	 *(*string)(v.val)	=	x

		1339	 }

		1340	

		1341	 //	Slice	returns	a	slice	of	v.

		1342	 //	It	panics	if	v's	Kind	is	not	Array	or	Slice.

		1343	 func	(v	Value)	Slice(beg,	end	int)	Value	{

		1344	 	 var	(

		1345	 	 	 cap		int

		1346	 	 	 typ		*sliceType

		1347	 	 	 base	unsafe.Pointer

		1348)

		1349	 	 switch	k	:=	v.kind();	k	{

		1350	 	 default:

		1351	 	 	 panic(&ValueError{"reflect.Value.Slice",	k})

		1352	 	 case	Array:

		1353	 	 	 if	v.flag&flagAddr	==	0	{

		1354	 	 	 	 panic("reflect.Value.Slice:	slice	of	unaddressable	array")

		1355	 	 	 }

		1356	 	 	 tt	:=	(*arrayType)(unsafe.Pointer(v.typ))

		1357	 	 	 cap	=	int(tt.len)

		1358	 	 	 typ	=	(*sliceType)(unsafe.Pointer(toCommonType(tt.slice)))

		1359	 	 	 base	=	v.val

		1360	 	 case	Slice:

		1361	 	 	 typ	=	(*sliceType)(unsafe.Pointer(v.typ))

		1362	 	 	 s	:=	(*SliceHeader)(v.val)

		1363	 	 	 base	=	unsafe.Pointer(s.Data)

		1364	 	 	 cap	=	s.Cap

		1365	

		1366	 	 }

		1367	 	 if	beg	<	0	||	end	<	beg	||	end	>	cap	{

		1368	 	 	 panic("reflect.Value.Slice:	slice	index	out	of	bounds")

		1369	 	 }

		1370	

		1371	 	 //	Declare	slice	so	that	gc	can	see	the	base	pointer	in	it.

		1372	 	 var	x	[]byte

		1373	

		1374	 	 //	Reinterpret	as	*SliceHeader	to	edit.

		1375	 	 s	:=	(*SliceHeader)(unsafe.Pointer(&x))

		1376	 	 s.Data	=	uintptr(base)	+	uintptr(beg)*toCommonType(typ.elem).Size()

		1377	 	 s.Len	=	end	-	beg

		1378	 	 s.Cap	=	cap	-	beg

		1379	

		1380	 	 fl	:=	v.flag&flagRO	|	flagIndir	|	flag(Slice)<<flagKindShift

		1381	 	 return	Value{typ.common(),	unsafe.Pointer(&x),	fl}

		1382	 }

		1383	

		1384	 //	String	returns	the	string	v's	underlying	value,	as	a	string.

		1385	 //	String	is	a	special	case	because	of	Go's	String	method	convention.

		1386	 //	Unlike	the	other	getters,	it	does	not	panic	if	v's	Kind	is	not	String.

		1387	 //	Instead,	it	returns	a	string	of	the	form	"<T	value>"	where	T	is	v's	type.

		1388	 func	(v	Value)	String()	string	{

		1389	 	 switch	k	:=	v.kind();	k	{

		1390	 	 case	Invalid:

		1391	 	 	 return	"<invalid	Value>"

		1392	 	 case	String:

		1393	 	 	 return	*(*string)(v.val)

		1394	 	 }

		1395	 	 //	If	you	call	String	on	a	reflect.Value	of	other	type,	it's	better	to

		1396	 	 //	print	something	than	to	panic.	Useful	in	debugging.

		1397	 	 return	"<"	+	v.typ.String()	+	"	Value>"

		1398	 }

		1399	

		1400	 //	TryRecv	attempts	to	receive	a	value	from	the	channel	v	but	will	not	block.

		1401	 //	It	panics	if	v's	Kind	is	not	Chan.

		1402	 //	If	the	receive	cannot	finish	without	blocking,	x	is	the	zero	Value.

		1403	 //	The	boolean	ok	is	true	if	the	value	x	corresponds	to	a	send

		1404	 //	on	the	channel,	false	if	it	is	a	zero	value	received	because	the	channel	is	closed.

		1405	 func	(v	Value)	TryRecv()	(x	Value,	ok	bool)	{

		1406	 	 v.mustBe(Chan)

		1407	 	 v.mustBeExported()

		1408	 	 return	v.recv(true)

		1409	 }

		1410	

		1411	 //	TrySend	attempts	to	send	x	on	the	channel	v	but	will	not	block.

		1412	 //	It	panics	if	v's	Kind	is	not	Chan.

		1413	 //	It	returns	true	if	the	value	was	sent,	false	otherwise.

		1414	 //	As	in	Go,	x's	value	must	be	assignable	to	the	channel's	element	type.

		1415	 func	(v	Value)	TrySend(x	Value)	bool	{

		1416	 	 v.mustBe(Chan)

		1417	 	 v.mustBeExported()

		1418	 	 return	v.send(x,	true)

		1419	 }

		1420	

		1421	 //	Type	returns	v's	type.

		1422	 func	(v	Value)	Type()	Type	{

		1423	 	 f	:=	v.flag

		1424	 	 if	f	==	0	{

		1425	 	 	 panic(&ValueError{"reflect.Value.Type",	Invalid})

		1426	 	 }

		1427	 	 if	f&flagMethod	==	0	{

		1428	 	 	 //	Easy	case

		1429	 	 	 return	v.typ

		1430	 	 }

		1431	

		1432	 	 //	Method	value.

		1433	 	 //	v.typ	describes	the	receiver,	not	the	method	type.

		1434	 	 i	:=	int(v.flag)	>>	flagMethodShift

		1435	 	 if	v.typ.Kind()	==	Interface	{

		1436	 	 	 //	Method	on	interface.

		1437	 	 	 tt	:=	(*interfaceType)(unsafe.Pointer(v.typ))

		1438	 	 	 if	i	<	0	||	i	>=	len(tt.methods)	{

		1439	 	 	 	 panic("reflect:	broken	Value")

		1440	 	 	 }

		1441	 	 	 m	:=	&tt.methods[i]

		1442	 	 	 return	toCommonType(m.typ)

		1443	 	 }

		1444	 	 //	Method	on	concrete	type.

		1445	 	 ut	:=	v.typ.uncommon()

		1446	 	 if	ut	==	nil	||	i	<	0	||	i	>=	len(ut.methods)	{

		1447	 	 	 panic("reflect:	broken	Value")

		1448	 	 }

		1449	 	 m	:=	&ut.methods[i]

		1450	 	 return	toCommonType(m.mtyp)

		1451	 }

		1452	

		1453	 //	Uint	returns	v's	underlying	value,	as	a	uint64.

		1454	 //	It	panics	if	v's	Kind	is	not	Uint,	Uintptr,	Uint8,	Uint16,	Uint32,	or	Uint64.

		1455	 func	(v	Value)	Uint()	uint64	{

		1456	 	 k	:=	v.kind()

		1457	 	 var	p	unsafe.Pointer

		1458	 	 if	v.flag&flagIndir	!=	0	{

		1459	 	 	 p	=	v.val

		1460	 	 }	else	{

		1461	 	 	 //	The	escape	analysis	is	good	enough	that	&v.val

		1462	 	 	 //	does	not	trigger	a	heap	allocation.

		1463	 	 	 p	=	unsafe.Pointer(&v.val)

		1464	 	 }

		1465	 	 switch	k	{

		1466	 	 case	Uint:

		1467	 	 	 return	uint64(*(*uint)(p))

		1468	 	 case	Uint8:

		1469	 	 	 return	uint64(*(*uint8)(p))

		1470	 	 case	Uint16:

		1471	 	 	 return	uint64(*(*uint16)(p))

		1472	 	 case	Uint32:

		1473	 	 	 return	uint64(*(*uint32)(p))

		1474	 	 case	Uint64:

		1475	 	 	 return	uint64(*(*uint64)(p))

		1476	 	 case	Uintptr:

		1477	 	 	 return	uint64(*(*uintptr)(p))

		1478	 	 }

		1479	 	 panic(&ValueError{"reflect.Value.Uint",	k})

		1480	 }

		1481	

		1482	 //	UnsafeAddr	returns	a	pointer	to	v's	data.

		1483	 //	It	is	for	advanced	clients	that	also	import	the	"unsafe"	package.

		1484	 //	It	panics	if	v	is	not	addressable.

		1485	 func	(v	Value)	UnsafeAddr()	uintptr	{

		1486	 	 if	v.typ	==	nil	{

		1487	 	 	 panic(&ValueError{"reflect.Value.UnsafeAddr",	Invalid})

		1488	 	 }

		1489	 	 if	v.flag&flagAddr	==	0	{

		1490	 	 	 panic("reflect.Value.UnsafeAddr	of	unaddressable	value")

		1491	 	 }

		1492	 	 return	uintptr(v.val)

		1493	 }

		1494	

		1495	 //	StringHeader	is	the	runtime	representation	of	a	string.

		1496	 //	It	cannot	be	used	safely	or	portably.

		1497	 type	StringHeader	struct	{

		1498	 	 Data	uintptr

		1499	 	 Len		int

		1500	 }

		1501	

		1502	 //	SliceHeader	is	the	runtime	representation	of	a	slice.

		1503	 //	It	cannot	be	used	safely	or	portably.

		1504	 type	SliceHeader	struct	{

		1505	 	 Data	uintptr

		1506	 	 Len		int

		1507	 	 Cap		int

		1508	 }

		1509	

		1510	 func	typesMustMatch(what	string,	t1,	t2	Type)	{

		1511	 	 if	t1	!=	t2	{

		1512	 	 	 panic(what	+	":	"	+	t1.String()	+	"	!=	"	+	t2.String())

		1513	 	 }

		1514	 }

		1515	

		1516	 //	grow	grows	the	slice	s	so	that	it	can	hold	extra	more	values,	allocating

		1517	 //	more	capacity	if	needed.	It	also	returns	the	old	and	new	slice	lengths.

		1518	 func	grow(s	Value,	extra	int)	(Value,	int,	int)	{

		1519	 	 i0	:=	s.Len()

		1520	 	 i1	:=	i0	+	extra

		1521	 	 if	i1	<	i0	{

		1522	 	 	 panic("reflect.Append:	slice	overflow")

		1523	 	 }

		1524	 	 m	:=	s.Cap()

		1525	 	 if	i1	<=	m	{

		1526	 	 	 return	s.Slice(0,	i1),	i0,	i1

		1527	 	 }

		1528	 	 if	m	==	0	{

		1529	 	 	 m	=	extra

		1530	 	 }	else	{

		1531	 	 	 for	m	<	i1	{

		1532	 	 	 	 if	i0	<	1024	{

		1533	 	 	 	 	 m	+=	m

		1534	 	 	 	 }	else	{

		1535	 	 	 	 	 m	+=	m	/	4

		1536	 	 	 	 }

		1537	 	 	 }

		1538	 	 }

		1539	 	 t	:=	MakeSlice(s.Type(),	i1,	m)

		1540	 	 Copy(t,	s)

		1541	 	 return	t,	i0,	i1

		1542	 }

		1543	

		1544	 //	Append	appends	the	values	x	to	a	slice	s	and	returns	the	resulting	slice.

		1545	 //	As	in	Go,	each	x's	value	must	be	assignable	to	the	slice's	element	type.

		1546	 func	Append(s	Value,	x	...Value)	Value	{

		1547	 	 s.mustBe(Slice)

		1548	 	 s,	i0,	i1	:=	grow(s,	len(x))

		1549	 	 for	i,	j	:=	i0,	0;	i	<	i1;	i,	j	=	i+1,	j+1	{

		1550	 	 	 s.Index(i).Set(x[j])

		1551	 	 }

		1552	 	 return	s

		1553	 }

		1554	

		1555	 //	AppendSlice	appends	a	slice	t	to	a	slice	s	and	returns	the	resulting	slice.

		1556	 //	The	slices	s	and	t	must	have	the	same	element	type.

		1557	 func	AppendSlice(s,	t	Value)	Value	{

		1558	 	 s.mustBe(Slice)

		1559	 	 t.mustBe(Slice)

		1560	 	 typesMustMatch("reflect.AppendSlice",	s.Type().Elem(),	t.Type().Elem())

		1561	 	 s,	i0,	i1	:=	grow(s,	t.Len())

		1562	 	 Copy(s.Slice(i0,	i1),	t)

		1563	 	 return	s

		1564	 }

		1565	

		1566	 //	Copy	copies	the	contents	of	src	into	dst	until	either

		1567	 //	dst	has	been	filled	or	src	has	been	exhausted.

		1568	 //	It	returns	the	number	of	elements	copied.

		1569	 //	Dst	and	src	each	must	have	kind	Slice	or	Array,	and

		1570	 //	dst	and	src	must	have	the	same	element	type.

		1571	 func	Copy(dst,	src	Value)	int	{

		1572	 	 dk	:=	dst.kind()

		1573	 	 if	dk	!=	Array	&&	dk	!=	Slice	{

		1574	 	 	 panic(&ValueError{"reflect.Copy",	dk})

		1575	 	 }

		1576	 	 if	dk	==	Array	{

		1577	 	 	 dst.mustBeAssignable()

		1578	 	 }

		1579	 	 dst.mustBeExported()

		1580	

		1581	 	 sk	:=	src.kind()

		1582	 	 if	sk	!=	Array	&&	sk	!=	Slice	{

		1583	 	 	 panic(&ValueError{"reflect.Copy",	sk})

		1584	 	 }

		1585	 	 src.mustBeExported()

		1586	

		1587	 	 de	:=	dst.typ.Elem()

		1588	 	 se	:=	src.typ.Elem()

		1589	 	 typesMustMatch("reflect.Copy",	de,	se)

		1590	

		1591	 	 n	:=	dst.Len()

		1592	 	 if	sn	:=	src.Len();	n	>	sn	{

		1593	 	 	 n	=	sn

		1594	 	 }

		1595	

		1596	 	 //	If	sk	is	an	in-line	array,	cannot	take	its	address.

		1597	 	 //	Instead,	copy	element	by	element.

		1598	 	 if	src.flag&flagIndir	==	0	{

		1599	 	 	 for	i	:=	0;	i	<	n;	i++	{

		1600	 	 	 	 dst.Index(i).Set(src.Index(i))

		1601	 	 	 }

		1602	 	 	 return	n

		1603	 	 }

		1604	

		1605	 	 //	Copy	via	memmove.

		1606	 	 var	da,	sa	unsafe.Pointer

		1607	 	 if	dk	==	Array	{

		1608	 	 	 da	=	dst.val

		1609	 	 }	else	{

		1610	 	 	 da	=	unsafe.Pointer((*SliceHeader)(dst.val).Data)

		1611	 	 }

		1612	 	 if	sk	==	Array	{

		1613	 	 	 sa	=	src.val

		1614	 	 }	else	{

		1615	 	 	 sa	=	unsafe.Pointer((*SliceHeader)(src.val).Data)

		1616	 	 }

		1617	 	 memmove(da,	sa,	uintptr(n)*de.Size())

		1618	 	 return	n

		1619	 }

		1620	

		1621	 /*

		1622	 	*	constructors

		1623	 	*/

		1624	

		1625	 //	implemented	in	package	runtime

		1626	 func	unsafe_New(Type)	unsafe.Pointer

		1627	 func	unsafe_NewArray(Type,	int)	unsafe.Pointer

		1628	

		1629	 //	MakeSlice	creates	a	new	zero-initialized	slice	value

		1630	 //	for	the	specified	slice	type,	length,	and	capacity.

		1631	 func	MakeSlice(typ	Type,	len,	cap	int)	Value	{

		1632	 	 if	typ.Kind()	!=	Slice	{

		1633	 	 	 panic("reflect.MakeSlice	of	non-slice	type")

		1634	 	 }

		1635	 	 if	len	<	0	{

		1636	 	 	 panic("reflect.MakeSlice:	negative	len")

		1637	 	 }

		1638	 	 if	cap	<	0	{

		1639	 	 	 panic("reflect.MakeSlice:	negative	cap")

		1640	 	 }

		1641	 	 if	len	>	cap	{

		1642	 	 	 panic("reflect.MakeSlice:	len	>	cap")

		1643	 	 }

		1644	

		1645	 	 //	Declare	slice	so	that	gc	can	see	the	base	pointer	in	it.

		1646	 	 var	x	[]byte

		1647	

		1648	 	 //	Reinterpret	as	*SliceHeader	to	edit.

		1649	 	 s	:=	(*SliceHeader)(unsafe.Pointer(&x))

		1650	 	 s.Data	=	uintptr(unsafe_NewArray(typ.Elem(),	cap))

		1651	 	 s.Len	=	len

		1652	 	 s.Cap	=	cap

		1653	

		1654	 	 return	Value{typ.common(),	unsafe.Pointer(&x),	flagIndir	|	flag(Slice)<<flagKindShift}

		1655	 }

		1656	

		1657	 //	MakeChan	creates	a	new	channel	with	the	specified	type	and	buffer	size.

		1658	 func	MakeChan(typ	Type,	buffer	int)	Value	{

		1659	 	 if	typ.Kind()	!=	Chan	{

		1660	 	 	 panic("reflect.MakeChan	of	non-chan	type")

		1661	 	 }

		1662	 	 if	buffer	<	0	{

		1663	 	 	 panic("reflect.MakeChan:	negative	buffer	size")

		1664	 	 }

		1665	 	 if	typ.ChanDir()	!=	BothDir	{

		1666	 	 	 panic("reflect.MakeChan:	unidirectional	channel	type")

		1667	 	 }

		1668	 	 ch	:=	makechan(typ.runtimeType(),	uint32(buffer))

		1669	 	 return	Value{typ.common(),	unsafe.Pointer(ch),	flag(Chan)	<<	flagKindShift}

		1670	 }

		1671	

		1672	 //	MakeMap	creates	a	new	map	of	the	specified	type.

		1673	 func	MakeMap(typ	Type)	Value	{

		1674	 	 if	typ.Kind()	!=	Map	{

		1675	 	 	 panic("reflect.MakeMap	of	non-map	type")

		1676	 	 }

		1677	 	 m	:=	makemap(typ.runtimeType())

		1678	 	 return	Value{typ.common(),	unsafe.Pointer(m),	flag(Map)	<<	flagKindShift}

		1679	 }

		1680	

		1681	 //	Indirect	returns	the	value	that	v	points	to.

		1682	 //	If	v	is	a	nil	pointer,	Indirect	returns	a	zero	Value.

		1683	 //	If	v	is	not	a	pointer,	Indirect	returns	v.

		1684	 func	Indirect(v	Value)	Value	{

		1685	 	 if	v.Kind()	!=	Ptr	{

		1686	 	 	 return	v

		1687	 	 }

		1688	 	 return	v.Elem()

		1689	 }

		1690	

		1691	 //	ValueOf	returns	a	new	Value	initialized	to	the	concrete	value

		1692	 //	stored	in	the	interface	i.		ValueOf(nil)	returns	the	zero	Value.

		1693	 func	ValueOf(i	interface{})	Value	{

		1694	 	 if	i	==	nil	{

		1695	 	 	 return	Value{}

		1696	 	 }

		1697	

		1698	 	 //	TODO(rsc):	Eliminate	this	terrible	hack.

		1699	 	 //	In	the	call	to	packValue,	eface.typ	doesn't	escape,

		1700	 	 //	and	eface.word	is	an	integer.		So	it	looks	like

		1701	 	 //	i	(=	eface)	doesn't	escape.		But	really	it	does,

		1702	 	 //	because	eface.word	is	actually	a	pointer.

		1703	 	 escapes(i)

		1704	

		1705	 	 //	For	an	interface	value	with	the	noAddr	bit	set,

		1706	 	 //	the	representation	is	identical	to	an	empty	interface.

		1707	 	 eface	:=	*(*emptyInterface)(unsafe.Pointer(&i))

		1708	 	 typ	:=	toCommonType(eface.typ)

		1709	 	 fl	:=	flag(typ.Kind())	<<	flagKindShift

		1710	 	 if	typ.size	>	ptrSize	{

		1711	 	 	 fl	|=	flagIndir

		1712	 	 }

		1713	 	 return	Value{typ,	unsafe.Pointer(eface.word),	fl}

		1714	 }

		1715	

		1716	 //	Zero	returns	a	Value	representing	a	zero	value	for	the	specified	type.

		1717	 //	The	result	is	different	from	the	zero	value	of	the	Value	struct,

		1718	 //	which	represents	no	value	at	all.

		1719	 //	For	example,	Zero(TypeOf(42))	returns	a	Value	with	Kind	Int	and	value	0.

		1720	 func	Zero(typ	Type)	Value	{

		1721	 	 if	typ	==	nil	{

		1722	 	 	 panic("reflect:	Zero(nil)")

		1723	 	 }

		1724	 	 t	:=	typ.common()

		1725	 	 fl	:=	flag(t.Kind())	<<	flagKindShift

		1726	 	 if	t.size	<=	ptrSize	{

		1727	 	 	 return	Value{t,	nil,	fl}

		1728	 	 }

		1729	 	 return	Value{t,	unsafe_New(typ),	fl	|	flagIndir}

		1730	 }

		1731	

		1732	 //	New	returns	a	Value	representing	a	pointer	to	a	new	zero	value

		1733	 //	for	the	specified	type.		That	is,	the	returned	Value's	Type	is	PtrTo(t).

		1734	 func	New(typ	Type)	Value	{

		1735	 	 if	typ	==	nil	{

		1736	 	 	 panic("reflect:	New(nil)")

		1737	 	 }

		1738	 	 ptr	:=	unsafe_New(typ)

		1739	 	 fl	:=	flag(Ptr)	<<	flagKindShift

		1740	 	 return	Value{typ.common().ptrTo(),	ptr,	fl}

		1741	 }

		1742	

		1743	 //	NewAt	returns	a	Value	representing	a	pointer	to	a	value	of	the

		1744	 //	specified	type,	using	p	as	that	pointer.

		1745	 func	NewAt(typ	Type,	p	unsafe.Pointer)	Value	{

		1746	 	 fl	:=	flag(Ptr)	<<	flagKindShift

		1747	 	 return	Value{typ.common().ptrTo(),	p,	fl}

		1748	 }

		1749	

		1750	 //	assignTo	returns	a	value	v	that	can	be	assigned	directly	to	typ.

		1751	 //	It	panics	if	v	is	not	assignable	to	typ.

		1752	 //	For	a	conversion	to	an	interface	type,	target	is	a	suggested	scratch	space	to	use.

		1753	 func	(v	Value)	assignTo(context	string,	dst	*commonType,	target	*interface{})	Value	{

		1754	 	 if	v.flag&flagMethod	!=	0	{

		1755	 	 	 panic(context	+	":	cannot	assign	method	value	to	type	"	+	dst.String())

		1756	 	 }

		1757	

		1758	 	 switch	{

		1759	 	 case	directlyAssignable(dst,	v.typ):

		1760	 	 	 //	Overwrite	type	so	that	they	match.

		1761	 	 	 //	Same	memory	layout,	so	no	harm	done.

		1762	 	 	 v.typ	=	dst

		1763	 	 	 fl	:=	v.flag	&	(flagRO	|	flagAddr	|	flagIndir)

		1764	 	 	 fl	|=	flag(dst.Kind())	<<	flagKindShift

		1765	 	 	 return	Value{dst,	v.val,	fl}

		1766	

		1767	 	 case	implements(dst,	v.typ):

		1768	 	 	 if	target	==	nil	{

		1769	 	 	 	 target	=	new(interface{})

		1770	 	 	 }

		1771	 	 	 x	:=	valueInterface(v,	false)

		1772	 	 	 if	dst.NumMethod()	==	0	{

		1773	 	 	 	 *target	=	x

		1774	 	 	 }	else	{

		1775	 	 	 	 ifaceE2I(dst.runtimeType(),	x,	unsafe.Pointer(target))

		1776	 	 	 }

		1777	 	 	 return	Value{dst,	unsafe.Pointer(target),	flagIndir	|	flag(Interface)<<flagKindShift}

		1778	 	 }

		1779	

		1780	 	 //	Failed.

		1781	 	 panic(context	+	":	value	of	type	"	+	v.typ.String()	+	"	is	not	assignable	to	type	"	+	dst.String())

		1782	 }

		1783	

		1784	 //	implemented	in	../pkg/runtime

		1785	 func	chancap(ch	iword)	int32

		1786	 func	chanclose(ch	iword)

		1787	 func	chanlen(ch	iword)	int32

		1788	 func	chanrecv(t	*runtimeType,	ch	iword,	nb	bool)	(val	iword,	selected,	received	bool)

		1789	 func	chansend(t	*runtimeType,	ch	iword,	val	iword,	nb	bool)	bool

		1790	

		1791	 func	makechan(typ	*runtimeType,	size	uint32)	(ch	iword)

		1792	 func	makemap(t	*runtimeType)	(m	iword)

		1793	 func	mapaccess(t	*runtimeType,	m	iword,	key	iword)	(val	iword,	ok	bool)

		1794	 func	mapassign(t	*runtimeType,	m	iword,	key,	val	iword,	ok	bool)

		1795	 func	mapiterinit(t	*runtimeType,	m	iword)	*byte

		1796	 func	mapiterkey(it	*byte)	(key	iword,	ok	bool)

		1797	 func	mapiternext(it	*byte)

		1798	 func	maplen(m	iword)	int32

		1799	

		1800	 func	call(fn,	arg	unsafe.Pointer,	n	uint32)

		1801	 func	ifaceE2I(t	*runtimeType,	src	interface{},	dst	unsafe.Pointer)

		1802	

		1803	 //	Dummy	annotation	marking	that	the	value	x	escapes,

		1804	 //	for	use	in	cases	where	the	reflect	code	is	so	clever	that

		1805	 //	the	compiler	cannot	follow.

		1806	 func	escapes(x	interface{})	{

		1807	 	 if	dummy.b	{

		1808	 	 	 dummy.x	=	x

		1809	 	 }

		1810	 }

		1811	

		1812	 var	dummy	struct	{

		1813	 	 b	bool

		1814	 	 x	interface{}

		1815	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.

http://code.google.com/policies.html#restrictions

Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/regexp/exec.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	regexp

					6	

					7	 import	(

					8	 	 "io"

					9	 	 "regexp/syntax"

				10)

				11	

				12	 //	A	queue	is	a	'sparse	array'	holding	pending	threads	of	execution.

				13	 //	See	http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html

				14	 type	queue	struct	{

				15	 	 sparse	[]uint32

				16	 	 dense		[]entry

				17	 }

				18	

				19	 //	A	entry	is	an	entry	on	a	queue.

				20	 //	It	holds	both	the	instruction	pc	and	the	actual	thread.

				21	 //	Some	queue	entries	are	just	place	holders	so	that	the	machine

				22	 //	knows	it	has	considered	that	pc.		Such	entries	have	t	==	nil.

				23	 type	entry	struct	{

				24	 	 pc	uint32

				25	 	 t		*thread

				26	 }

				27	

				28	 //	A	thread	is	the	state	of	a	single	path	through	the	machine:

				29	 //	an	instruction	and	a	corresponding	capture	array.

				30	 //	See	http://swtch.com/~rsc/regexp/regexp2.html

				31	 type	thread	struct	{

				32	 	 inst	*syntax.Inst

				33	 	 cap		[]int

				34	 }

				35	

				36	 //	A	machine	holds	all	the	state	during	an	NFA	simulation	for	p.

				37	 type	machine	struct	{

				38	 	 re							*Regexp						//	corresponding	Regexp

				39	 	 p								*syntax.Prog	//	compiled	program

				40	 	 q0,	q1			queue								//	two	queues	for	runq,	nextq

				41	 	 pool					[]*thread				//	pool	of	available	threads

				42	 	 matched		bool									//	whether	a	match	was	found

				43	 	 matchcap	[]int								//	capture	information	for	the	match

				44	

				45	 	 //	cached	inputs,	to	avoid	allocation

				46	 	 inputBytes		inputBytes

				47	 	 inputString	inputString

				48	 	 inputReader	inputReader

				49	 }

				50	

				51	 func	(m	*machine)	newInputBytes(b	[]byte)	input	{

				52	 	 m.inputBytes.str	=	b

				53	 	 return	&m.inputBytes

				54	 }

				55	

				56	 func	(m	*machine)	newInputString(s	string)	input	{

				57	 	 m.inputString.str	=	s

				58	 	 return	&m.inputString

				59	 }

				60	

				61	 func	(m	*machine)	newInputReader(r	io.RuneReader)	input	{

				62	 	 m.inputReader.r	=	r

				63	 	 m.inputReader.atEOT	=	false

				64	 	 m.inputReader.pos	=	0

				65	 	 return	&m.inputReader

				66	 }

				67	

				68	 //	progMachine	returns	a	new	machine	running	the	prog	p.

				69	 func	progMachine(p	*syntax.Prog)	*machine	{

				70	 	 m	:=	&machine{p:	p}

				71	 	 n	:=	len(m.p.Inst)

				72	 	 m.q0	=	queue{make([]uint32,	n),	make([]entry,	0,	n)}

				73	 	 m.q1	=	queue{make([]uint32,	n),	make([]entry,	0,	n)}

				74	 	 ncap	:=	p.NumCap

				75	 	 if	ncap	<	2	{

				76	 	 	 ncap	=	2

				77	 	 }

				78	 	 m.matchcap	=	make([]int,	ncap)

				79	 	 return	m

				80	 }

				81	

				82	 func	(m	*machine)	init(ncap	int)	{

				83	 	 for	_,	t	:=	range	m.pool	{

				84	 	 	 t.cap	=	t.cap[:ncap]

				85	 	 }

				86	 	 m.matchcap	=	m.matchcap[:ncap]

				87	 }

				88	

				89	 //	alloc	allocates	a	new	thread	with	the	given	instruction.

				90	 //	It	uses	the	free	pool	if	possible.

				91	 func	(m	*machine)	alloc(i	*syntax.Inst)	*thread	{

				92	 	 var	t	*thread

				93	 	 if	n	:=	len(m.pool);	n	>	0	{

				94	 	 	 t	=	m.pool[n-1]

				95	 	 	 m.pool	=	m.pool[:n-1]

				96	 	 }	else	{

				97	 	 	 t	=	new(thread)

				98	 	 	 t.cap	=	make([]int,	len(m.matchcap),	cap(m.matchcap))

				99	 	 }

			100	 	 t.inst	=	i

			101	 	 return	t

			102	 }

			103	

			104	 //	free	returns	t	to	the	free	pool.

			105	 func	(m	*machine)	free(t	*thread)	{

			106	 	 m.inputBytes.str	=	nil

			107	 	 m.inputString.str	=	""

			108	 	 m.inputReader.r	=	nil

			109	 	 m.pool	=	append(m.pool,	t)

			110	 }

			111	

			112	 //	match	runs	the	machine	over	the	input	starting	at	pos.

			113	 //	It	reports	whether	a	match	was	found.

			114	 //	If	so,	m.matchcap	holds	the	submatch	information.

			115	 func	(m	*machine)	match(i	input,	pos	int)	bool	{

			116	 	 startCond	:=	m.re.cond

			117	 	 if	startCond	==	^syntax.EmptyOp(0)	{	//	impossible

			118	 	 	 return	false

			119	 	 }

			120	 	 m.matched	=	false

			121	 	 for	i	:=	range	m.matchcap	{

			122	 	 	 m.matchcap[i]	=	-1

			123	 	 }

			124	 	 runq,	nextq	:=	&m.q0,	&m.q1

			125	 	 r,	r1	:=	endOfText,	endOfText

			126	 	 width,	width1	:=	0,	0

			127	 	 r,	width	=	i.step(pos)

			128	 	 if	r	!=	endOfText	{

			129	 	 	 r1,	width1	=	i.step(pos	+	width)

			130	 	 }

			131	 	 var	flag	syntax.EmptyOp

			132	 	 if	pos	==	0	{

			133	 	 	 flag	=	syntax.EmptyOpContext(-1,	r)

			134	 	 }	else	{

			135	 	 	 flag	=	i.context(pos)

			136	 	 }

			137	 	 for	{

			138	 	 	 if	len(runq.dense)	==	0	{

			139	 	 	 	 if	startCond&syntax.EmptyBeginText	!=	0	&&	pos	!=	0	{

			140	 	 	 	 	 //	Anchored	match,	past	beginning	of	text.

			141	 	 	 	 	 break

			142	 	 	 	 }

			143	 	 	 	 if	m.matched	{

			144	 	 	 	 	 //	Have	match;	finished	exploring	alternatives.

			145	 	 	 	 	 break

			146	 	 	 	 }

			147	 	 	 	 if	len(m.re.prefix)	>	0	&&	r1	!=	m.re.prefixRune	&&	i.canCheckPrefix()	{

			148	 	 	 	 	 //	Match	requires	literal	prefix;	fast	search	for	it.

			149	 	 	 	 	 advance	:=	i.index(m.re,	pos)

			150	 	 	 	 	 if	advance	<	0	{

			151	 	 	 	 	 	 break

			152	 	 	 	 	 }

			153	 	 	 	 	 pos	+=	advance

			154	 	 	 	 	 r,	width	=	i.step(pos)

			155	 	 	 	 	 r1,	width1	=	i.step(pos	+	width)

			156	 	 	 	 }

			157	 	 	 }

			158	 	 	 if	!m.matched	{

			159	 	 	 	 if	len(m.matchcap)	>	0	{

			160	 	 	 	 	 m.matchcap[0]	=	pos

			161	 	 	 	 }

			162	 	 	 	 m.add(runq,	uint32(m.p.Start),	pos,	m.matchcap,	flag,	nil)

			163	 	 	 }

			164	 	 	 flag	=	syntax.EmptyOpContext(r,	r1)

			165	 	 	 m.step(runq,	nextq,	pos,	pos+width,	r,	flag)

			166	 	 	 if	width	==	0	{

			167	 	 	 	 break

			168	 	 	 }

			169	 	 	 if	len(m.matchcap)	==	0	&&	m.matched	{

			170	 	 	 	 //	Found	a	match	and	not	paying	attention

			171	 	 	 	 //	to	where	it	is,	so	any	match	will	do.

			172	 	 	 	 break

			173	 	 	 }

			174	 	 	 pos	+=	width

			175	 	 	 r,	width	=	r1,	width1

			176	 	 	 if	r	!=	endOfText	{

			177	 	 	 	 r1,	width1	=	i.step(pos	+	width)

			178	 	 	 }

			179	 	 	 runq,	nextq	=	nextq,	runq

			180	 	 }

			181	 	 m.clear(nextq)

			182	 	 return	m.matched

			183	 }

			184	

			185	 //	clear	frees	all	threads	on	the	thread	queue.

			186	 func	(m	*machine)	clear(q	*queue)	{

			187	 	 for	_,	d	:=	range	q.dense	{

			188	 	 	 if	d.t	!=	nil	{

			189	 	 	 	 //	m.free(d.t)

			190	 	 	 	 m.pool	=	append(m.pool,	d.t)

			191	 	 	 }

			192	 	 }

			193	 	 q.dense	=	q.dense[:0]

			194	 }

			195	

			196	 //	step	executes	one	step	of	the	machine,	running	each	of	the	threads

			197	 //	on	runq	and	appending	new	threads	to	nextq.

			198	 //	The	step	processes	the	rune	c	(which	may	be	endOfText),

			199	 //	which	starts	at	position	pos	and	ends	at	nextPos.

			200	 //	nextCond	gives	the	setting	for	the	empty-width	flags	after	c.

			201	 func	(m	*machine)	step(runq,	nextq	*queue,	pos,	nextPos	int,	c	rune,	nextCond	syntax.EmptyOp)	{

			202	 	 longest	:=	m.re.longest

			203	 	 for	j	:=	0;	j	<	len(runq.dense);	j++	{

			204	 	 	 d	:=	&runq.dense[j]

			205	 	 	 t	:=	d.t

			206	 	 	 if	t	==	nil	{

			207	 	 	 	 continue

			208	 	 	 }

			209	 	 	 if	longest	&&	m.matched	&&	len(t.cap)	>	0	&&	m.matchcap[0]	<	t.cap[0]	{

			210	 	 	 	 //	m.free(t)

			211	 	 	 	 m.pool	=	append(m.pool,	t)

			212	 	 	 	 continue

			213	 	 	 }

			214	 	 	 i	:=	t.inst

			215	 	 	 add	:=	false

			216	 	 	 switch	i.Op	{

			217	 	 	 default:

			218	 	 	 	 panic("bad	inst")

			219	

			220	 	 	 case	syntax.InstMatch:

			221	 	 	 	 if	len(t.cap)	>	0	&&	(!longest	||	!m.matched	||	m.matchcap[1]	<	pos)	{

			222	 	 	 	 	 t.cap[1]	=	pos

			223	 	 	 	 	 copy(m.matchcap,	t.cap)

			224	 	 	 	 }

			225	 	 	 	 if	!longest	{

			226	 	 	 	 	 //	First-match	mode:	cut	off	all	lower-priority	threads.

			227	 	 	 	 	 for	_,	d	:=	range	runq.dense[j+1:]	{

			228	 	 	 	 	 	 if	d.t	!=	nil	{

			229	 	 	 	 	 	 	 //	m.free(d.t)

			230	 	 	 	 	 	 	 m.pool	=	append(m.pool,	d.t)

			231	 	 	 	 	 	 }

			232	 	 	 	 	 }

			233	 	 	 	 	 runq.dense	=	runq.dense[:0]

			234	 	 	 	 }

			235	 	 	 	 m.matched	=	true

			236	

			237	 	 	 case	syntax.InstRune:

			238	 	 	 	 add	=	i.MatchRune(c)

			239	 	 	 case	syntax.InstRune1:

			240	 	 	 	 add	=	c	==	i.Rune[0]

			241	 	 	 case	syntax.InstRuneAny:

			242	 	 	 	 add	=	true

			243	 	 	 case	syntax.InstRuneAnyNotNL:

			244	 	 	 	 add	=	c	!=	'\n'

			245	 	 	 }

			246	 	 	 if	add	{

			247	 	 	 	 t	=	m.add(nextq,	i.Out,	nextPos,	t.cap,	nextCond,	t)

			248	 	 	 }

			249	 	 	 if	t	!=	nil	{

			250	 	 	 	 //	m.free(t)

			251	 	 	 	 m.pool	=	append(m.pool,	t)

			252	 	 	 }

			253	 	 }

			254	 	 runq.dense	=	runq.dense[:0]

			255	 }

			256	

			257	 //	add	adds	an	entry	to	q	for	pc,	unless	the	q	already	has	such	an	entry.

			258	 //	It	also	recursively	adds	an	entry	for	all	instructions	reachable	from	pc	by	following

			259	 //	empty-width	conditions	satisfied	by	cond.		pos	gives	the	current	position

			260	 //	in	the	input.

			261	 func	(m	*machine)	add(q	*queue,	pc	uint32,	pos	int,	cap	[]int,	cond	syntax.EmptyOp,	t	*thread)	*thread	{

			262	 	 if	pc	==	0	{

			263	 	 	 return	t

			264	 	 }

			265	 	 if	j	:=	q.sparse[pc];	j	<	uint32(len(q.dense))	&&	q.dense[j].pc	==	pc	{

			266	 	 	 return	t

			267	 	 }

			268	

			269	 	 j	:=	len(q.dense)

			270	 	 q.dense	=	q.dense[:j+1]

			271	 	 d	:=	&q.dense[j]

			272	 	 d.t	=	nil

			273	 	 d.pc	=	pc

			274	 	 q.sparse[pc]	=	uint32(j)

			275	

			276	 	 i	:=	&m.p.Inst[pc]

			277	 	 switch	i.Op	{

			278	 	 default:

			279	 	 	 panic("unhandled")

			280	 	 case	syntax.InstFail:

			281	 	 	 //	nothing

			282	 	 case	syntax.InstAlt,	syntax.InstAltMatch:

			283	 	 	 t	=	m.add(q,	i.Out,	pos,	cap,	cond,	t)

			284	 	 	 t	=	m.add(q,	i.Arg,	pos,	cap,	cond,	t)

			285	 	 case	syntax.InstEmptyWidth:

			286	 	 	 if	syntax.EmptyOp(i.Arg)&^cond	==	0	{

			287	 	 	 	 t	=	m.add(q,	i.Out,	pos,	cap,	cond,	t)

			288	 	 	 }

			289	 	 case	syntax.InstNop:

			290	 	 	 t	=	m.add(q,	i.Out,	pos,	cap,	cond,	t)

			291	 	 case	syntax.InstCapture:

			292	 	 	 if	int(i.Arg)	<	len(cap)	{

			293	 	 	 	 opos	:=	cap[i.Arg]

			294	 	 	 	 cap[i.Arg]	=	pos

			295	 	 	 	 m.add(q,	i.Out,	pos,	cap,	cond,	nil)

			296	 	 	 	 cap[i.Arg]	=	opos

			297	 	 	 }	else	{

			298	 	 	 	 t	=	m.add(q,	i.Out,	pos,	cap,	cond,	t)

			299	 	 	 }

			300	 	 case	syntax.InstMatch,	syntax.InstRune,	syntax.InstRune1,	syntax.InstRuneAny,	syntax.InstRuneAnyNotNL:

			301	 	 	 if	t	==	nil	{

			302	 	 	 	 t	=	m.alloc(i)

			303	 	 	 }	else	{

			304	 	 	 	 t.inst	=	i

			305	 	 	 }

			306	 	 	 if	len(cap)	>	0	&&	&t.cap[0]	!=	&cap[0]	{

			307	 	 	 	 copy(t.cap,	cap)

			308	 	 	 }

			309	 	 	 d.t	=	t

			310	 	 	 t	=	nil

			311	 	 }

			312	 	 return	t

			313	 }

			314	

			315	 //	empty	is	a	non-nil	0-element	slice,

			316	 //	so	doExecute	can	avoid	an	allocation

			317	 //	when	0	captures	are	requested	from	a	successful	match.

			318	 var	empty	=	make([]int,	0)

			319	

			320	 //	doExecute	finds	the	leftmost	match	in	the	input	and	returns

			321	 //	the	position	of	its	subexpressions.

			322	 func	(re	*Regexp)	doExecute(r	io.RuneReader,	b	[]byte,	s	string,	pos	int,	ncap	int)	[]int	{

			323	 	 m	:=	re.get()

			324	 	 var	i	input

			325	 	 if	r	!=	nil	{

			326	 	 	 i	=	m.newInputReader(r)

			327	 	 }	else	if	b	!=	nil	{

			328	 	 	 i	=	m.newInputBytes(b)

			329	 	 }	else	{

			330	 	 	 i	=	m.newInputString(s)

			331	 	 }

			332	 	 m.init(ncap)

			333	 	 if	!m.match(i,	pos)	{

			334	 	 	 re.put(m)

			335	 	 	 return	nil

			336	 	 }

			337	 	 if	ncap	==	0	{

			338	 	 	 re.put(m)

			339	 	 	 return	empty	//	empty	but	not	nil

			340	 	 }

			341	 	 cap	:=	make([]int,	ncap)

			342	 	 copy(cap,	m.matchcap)

			343	 	 re.put(m)

			344	 	 return	cap

			345	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/regexp/regexp.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	regexp	implements	regular	expression	search.

					6	 //

					7	 //	The	syntax	of	the	regular	expressions	accepted	is	the	same

					8	 //	general	syntax	used	by	Perl,	Python,	and	other	languages.

					9	 //	More	precisely,	it	is	the	syntax	accepted	by	RE2	and	described	at

				10	 //	http://code.google.com/p/re2/wiki/Syntax,	except	for	\C.

				11	 //

				12	 //	All	characters	are	UTF-8-encoded	code	points.

				13	 //

				14	 //	There	are	16	methods	of	Regexp	that	match	a	regular	expression	and	identify

				15	 //	the	matched	text.		Their	names	are	matched	by	this	regular	expression:

				16	 //

				17	 //	 Find(All)?(String)?(Submatch)?(Index)?

				18	 //

				19	 //	If	'All'	is	present,	the	routine	matches	successive	non-overlapping

				20	 //	matches	of	the	entire	expression.		Empty	matches	abutting	a	preceding

				21	 //	match	are	ignored.		The	return	value	is	a	slice	containing	the	successive

				22	 //	return	values	of	the	corresponding	non-'All'	routine.		These	routines	take

				23	 //	an	extra	integer	argument,	n;	if	n	>=	0,	the	function	returns	at	most	n

				24	 //	matches/submatches.

				25	 //

				26	 //	If	'String'	is	present,	the	argument	is	a	string;	otherwise	it	is	a	slice

				27	 //	of	bytes;	return	values	are	adjusted	as	appropriate.

				28	 //

				29	 //	If	'Submatch'	is	present,	the	return	value	is	a	slice	identifying	the

				30	 //	successive	submatches	of	the	expression.		Submatches	are	matches	of

				31	 //	parenthesized	subexpressions	within	the	regular	expression,	numbered	from

				32	 //	left	to	right	in	order	of	opening	parenthesis.		Submatch	0	is	the	match	of

				33	 //	the	entire	expression,	submatch	1	the	match	of	the	first	parenthesized

				34	 //	subexpression,	and	so	on.

				35	 //

				36	 //	If	'Index'	is	present,	matches	and	submatches	are	identified	by	byte	index

				37	 //	pairs	within	the	input	string:	result[2*n:2*n+1]	identifies	the	indexes	of

				38	 //	the	nth	submatch.		The	pair	for	n==0	identifies	the	match	of	the	entire

				39	 //	expression.		If	'Index'	is	not	present,	the	match	is	identified	by	the

				40	 //	text	of	the	match/submatch.		If	an	index	is	negative,	it	means	that

				41	 //	subexpression	did	not	match	any	string	in	the	input.

				42	 //

				43	 //	There	is	also	a	subset	of	the	methods	that	can	be	applied	to	text	read

				44	 //	from	a	RuneReader:

				45	 //

				46	 //	 MatchReader,	FindReaderIndex,	FindReaderSubmatchIndex

				47	 //

				48	 //	This	set	may	grow.		Note	that	regular	expression	matches	may	need	to

				49	 //	examine	text	beyond	the	text	returned	by	a	match,	so	the	methods	that

				50	 //	match	text	from	a	RuneReader	may	read	arbitrarily	far	into	the	input

				51	 //	before	returning.

				52	 //

				53	 //	(There	are	a	few	other	methods	that	do	not	match	this	pattern.)

				54	 //

				55	 package	regexp

				56	

				57	 import	(

				58	 	 "bytes"

				59	 	 "io"

				60	 	 "regexp/syntax"

				61	 	 "strconv"

				62	 	 "strings"

				63	 	 "sync"

				64	 	 "unicode"

				65	 	 "unicode/utf8"

				66)

				67	

				68	 var	debug	=	false

				69	

				70	 //	Regexp	is	the	representation	of	a	compiled	regular	expression.

				71	 //	The	public	interface	is	entirely	through	methods.

				72	 //	A	Regexp	is	safe	for	concurrent	use	by	multiple	goroutines.

				73	 type	Regexp	struct	{

				74	 	 //	read-only	after	Compile

				75	 	 expr											string									//	as	passed	to	Compile

				76	 	 prog											*syntax.Prog			//	compiled	program

				77	 	 prefix									string									//	required	prefix	in	unanchored	matches

				78	 	 prefixBytes				[]byte									//	prefix,	as	a	[]byte

				79	 	 prefixComplete	bool											//	prefix	is	the	entire	regexp

				80	 	 prefixRune					rune											//	first	rune	in	prefix

				81	 	 cond											syntax.EmptyOp	//	empty-width	conditions	required	at	start	of	match

				82	 	 numSubexp						int

				83	 	 subexpNames				[]string

				84	 	 longest								bool

				85	

				86	 	 //	cache	of	machines	for	running	regexp

				87	 	 mu						sync.Mutex

				88	 	 machine	[]*machine

				89	 }

				90	

				91	 //	String	returns	the	source	text	used	to	compile	the	regular	expression.

				92	 func	(re	*Regexp)	String()	string	{

				93	 	 return	re.expr

				94	 }

				95	

				96	 //	Compile	parses	a	regular	expression	and	returns,	if	successful,

				97	 //	a	Regexp	object	that	can	be	used	to	match	against	text.

				98	 //

				99	 //	When	matching	against	text,	the	regexp	returns	a	match	that

			100	 //	begins	as	early	as	possible	in	the	input	(leftmost),	and	among	those

			101	 //	it	chooses	the	one	that	a	backtracking	search	would	have	found	first.

			102	 //	This	so-called	leftmost-first	matching	is	the	same	semantics

			103	 //	that	Perl,	Python,	and	other	implementations	use,	although	this

			104	 //	package	implements	it	without	the	expense	of	backtracking.

			105	 //	For	POSIX	leftmost-longest	matching,	see	CompilePOSIX.

			106	 func	Compile(expr	string)	(*Regexp,	error)	{

			107	 	 return	compile(expr,	syntax.Perl,	false)

			108	 }

			109	

			110	 //	CompilePOSIX	is	like	Compile	but	restricts	the	regular	expression

			111	 //	to	POSIX	ERE	(egrep)	syntax	and	changes	the	match	semantics	to

			112	 //	leftmost-longest.

			113	 //

			114	 //	That	is,	when	matching	against	text,	the	regexp	returns	a	match	that

			115	 //	begins	as	early	as	possible	in	the	input	(leftmost),	and	among	those

			116	 //	it	chooses	a	match	that	is	as	long	as	possible.

			117	 //	This	so-called	leftmost-longest	matching	is	the	same	semantics

			118	 //	that	early	regular	expression	implementations	used	and	that	POSIX

			119	 //	specifies.

			120	 //

			121	 //	However,	there	can	be	multiple	leftmost-longest	matches,	with	different

			122	 //	submatch	choices,	and	here	this	package	diverges	from	POSIX.

			123	 //	Among	the	possible	leftmost-longest	matches,	this	package	chooses

			124	 //	the	one	that	a	backtracking	search	would	have	found	first,	while	POSIX

			125	 //	specifies	that	the	match	be	chosen	to	maximize	the	length	of	the	first

			126	 //	subexpression,	then	the	second,	and	so	on	from	left	to	right.

			127	 //	The	POSIX	rule	is	computationally	prohibitive	and	not	even	well-defined.

			128	 //	See	http://swtch.com/~rsc/regexp/regexp2.html#posix	for	details.

			129	 func	CompilePOSIX(expr	string)	(*Regexp,	error)	{

			130	 	 return	compile(expr,	syntax.POSIX,	true)

			131	 }

			132	

			133	 func	compile(expr	string,	mode	syntax.Flags,	longest	bool)	(*Regexp,	error)	{

			134	 	 re,	err	:=	syntax.Parse(expr,	mode)

			135	 	 if	err	!=	nil	{

			136	 	 	 return	nil,	err

			137	 	 }

			138	 	 maxCap	:=	re.MaxCap()

			139	 	 capNames	:=	re.CapNames()

			140	

			141	 	 re	=	re.Simplify()

			142	 	 prog,	err	:=	syntax.Compile(re)

			143	 	 if	err	!=	nil	{

			144	 	 	 return	nil,	err

			145	 	 }

			146	 	 regexp	:=	&Regexp{

			147	 	 	 expr:								expr,

			148	 	 	 prog:								prog,

			149	 	 	 numSubexp:			maxCap,

			150	 	 	 subexpNames:	capNames,

			151	 	 	 cond:								prog.StartCond(),

			152	 	 	 longest:					longest,

			153	 	 }

			154	 	 regexp.prefix,	regexp.prefixComplete	=	prog.Prefix()

			155	 	 if	regexp.prefix	!=	""	{

			156	 	 	 //	TODO(rsc):	Remove	this	allocation	by	adding

			157	 	 	 //	IndexString	to	package	bytes.

			158	 	 	 regexp.prefixBytes	=	[]byte(regexp.prefix)

			159	 	 	 regexp.prefixRune,	_	=	utf8.DecodeRuneInString(regexp.prefix)

			160	 	 }

			161	 	 return	regexp,	nil

			162	 }

			163	

			164	 //	get	returns	a	machine	to	use	for	matching	re.

			165	 //	It	uses	the	re's	machine	cache	if	possible,	to	avoid

			166	 //	unnecessary	allocation.

			167	 func	(re	*Regexp)	get()	*machine	{

			168	 	 re.mu.Lock()

			169	 	 if	n	:=	len(re.machine);	n	>	0	{

			170	 	 	 z	:=	re.machine[n-1]

			171	 	 	 re.machine	=	re.machine[:n-1]

			172	 	 	 re.mu.Unlock()

			173	 	 	 return	z

			174	 	 }

			175	 	 re.mu.Unlock()

			176	 	 z	:=	progMachine(re.prog)

			177	 	 z.re	=	re

			178	 	 return	z

			179	 }

			180	

			181	 //	put	returns	a	machine	to	the	re's	machine	cache.

			182	 //	There	is	no	attempt	to	limit	the	size	of	the	cache,	so	it	will

			183	 //	grow	to	the	maximum	number	of	simultaneous	matches

			184	 //	run	using	re.		(The	cache	empties	when	re	gets	garbage	collected.)

			185	 func	(re	*Regexp)	put(z	*machine)	{

			186	 	 re.mu.Lock()

			187	 	 re.machine	=	append(re.machine,	z)

			188	 	 re.mu.Unlock()

			189	 }

			190	

			191	 //	MustCompile	is	like	Compile	but	panics	if	the	expression	cannot	be	parsed.

			192	 //	It	simplifies	safe	initialization	of	global	variables	holding	compiled	regular

			193	 //	expressions.

			194	 func	MustCompile(str	string)	*Regexp	{

			195	 	 regexp,	error	:=	Compile(str)

			196	 	 if	error	!=	nil	{

			197	 	 	 panic(`regexp:	Compile(`	+	quote(str)	+	`):	`	+	error.Error())

			198	 	 }

			199	 	 return	regexp

			200	 }

			201	

			202	 //	MustCompilePOSIX	is	like	CompilePOSIX	but	panics	if	the	expression	cannot	be	parsed.

			203	 //	It	simplifies	safe	initialization	of	global	variables	holding	compiled	regular

			204	 //	expressions.

			205	 func	MustCompilePOSIX(str	string)	*Regexp	{

			206	 	 regexp,	error	:=	CompilePOSIX(str)

			207	 	 if	error	!=	nil	{

			208	 	 	 panic(`regexp:	CompilePOSIX(`	+	quote(str)	+	`):	`	+	error.Error())

			209	 	 }

			210	 	 return	regexp

			211	 }

			212	

			213	 func	quote(s	string)	string	{

			214	 	 if	strconv.CanBackquote(s)	{

			215	 	 	 return	"`"	+	s	+	"`"

			216	 	 }

			217	 	 return	strconv.Quote(s)

			218	 }

			219	

			220	 //	NumSubexp	returns	the	number	of	parenthesized	subexpressions	in	this	Regexp.

			221	 func	(re	*Regexp)	NumSubexp()	int	{

			222	 	 return	re.numSubexp

			223	 }

			224	

			225	 //	SubexpNames	returns	the	names	of	the	parenthesized	subexpressions

			226	 //	in	this	Regexp.		The	name	for	the	first	sub-expression	is	names[1],

			227	 //	so	that	if	m	is	a	match	slice,	the	name	for	m[i]	is	SubexpNames()[i].

			228	 //	Since	the	Regexp	as	a	whole	cannot	be	named,	names[0]	is	always

			229	 //	the	empty	string.		The	slice	should	not	be	modified.

			230	 func	(re	*Regexp)	SubexpNames()	[]string	{

			231	 	 return	re.subexpNames

			232	 }

			233	

			234	 const	endOfText	rune	=	-1

			235	

			236	 //	input	abstracts	different	representations	of	the	input	text.	It	provides

			237	 //	one-character	lookahead.

			238	 type	input	interface	{

			239	 	 step(pos	int)	(r	rune,	width	int)	//	advance	one	rune

			240	 	 canCheckPrefix()	bool													//	can	we	look	ahead	without	losing	info?

			241	 	 hasPrefix(re	*Regexp)	bool

			242	 	 index(re	*Regexp,	pos	int)	int

			243	 	 context(pos	int)	syntax.EmptyOp

			244	 }

			245	

			246	 //	inputString	scans	a	string.

			247	 type	inputString	struct	{

			248	 	 str	string

			249	 }

			250	

			251	 func	(i	*inputString)	step(pos	int)	(rune,	int)	{

			252	 	 if	pos	<	len(i.str)	{

			253	 	 	 c	:=	i.str[pos]

			254	 	 	 if	c	<	utf8.RuneSelf	{

			255	 	 	 	 return	rune(c),	1

			256	 	 	 }

			257	 	 	 return	utf8.DecodeRuneInString(i.str[pos:])

			258	 	 }

			259	 	 return	endOfText,	0

			260	 }

			261	

			262	 func	(i	*inputString)	canCheckPrefix()	bool	{

			263	 	 return	true

			264	 }

			265	

			266	 func	(i	*inputString)	hasPrefix(re	*Regexp)	bool	{

			267	 	 return	strings.HasPrefix(i.str,	re.prefix)

			268	 }

			269	

			270	 func	(i	*inputString)	index(re	*Regexp,	pos	int)	int	{

			271	 	 return	strings.Index(i.str[pos:],	re.prefix)

			272	 }

			273	

			274	 func	(i	*inputString)	context(pos	int)	syntax.EmptyOp	{

			275	 	 r1,	r2	:=	endOfText,	endOfText

			276	 	 if	pos	>	0	&&	pos	<=	len(i.str)	{

			277	 	 	 r1,	_	=	utf8.DecodeLastRuneInString(i.str[:pos])

			278	 	 }

			279	 	 if	pos	<	len(i.str)	{

			280	 	 	 r2,	_	=	utf8.DecodeRuneInString(i.str[pos:])

			281	 	 }

			282	 	 return	syntax.EmptyOpContext(r1,	r2)

			283	 }

			284	

			285	 //	inputBytes	scans	a	byte	slice.

			286	 type	inputBytes	struct	{

			287	 	 str	[]byte

			288	 }

			289	

			290	 func	(i	*inputBytes)	step(pos	int)	(rune,	int)	{

			291	 	 if	pos	<	len(i.str)	{

			292	 	 	 c	:=	i.str[pos]

			293	 	 	 if	c	<	utf8.RuneSelf	{

			294	 	 	 	 return	rune(c),	1

			295	 	 	 }

			296	 	 	 return	utf8.DecodeRune(i.str[pos:])

			297	 	 }

			298	 	 return	endOfText,	0

			299	 }

			300	

			301	 func	(i	*inputBytes)	canCheckPrefix()	bool	{

			302	 	 return	true

			303	 }

			304	

			305	 func	(i	*inputBytes)	hasPrefix(re	*Regexp)	bool	{

			306	 	 return	bytes.HasPrefix(i.str,	re.prefixBytes)

			307	 }

			308	

			309	 func	(i	*inputBytes)	index(re	*Regexp,	pos	int)	int	{

			310	 	 return	bytes.Index(i.str[pos:],	re.prefixBytes)

			311	 }

			312	

			313	 func	(i	*inputBytes)	context(pos	int)	syntax.EmptyOp	{

			314	 	 r1,	r2	:=	endOfText,	endOfText

			315	 	 if	pos	>	0	&&	pos	<=	len(i.str)	{

			316	 	 	 r1,	_	=	utf8.DecodeLastRune(i.str[:pos])

			317	 	 }

			318	 	 if	pos	<	len(i.str)	{

			319	 	 	 r2,	_	=	utf8.DecodeRune(i.str[pos:])

			320	 	 }

			321	 	 return	syntax.EmptyOpContext(r1,	r2)

			322	 }

			323	

			324	 //	inputReader	scans	a	RuneReader.

			325	 type	inputReader	struct	{

			326	 	 r					io.RuneReader

			327	 	 atEOT	bool

			328	 	 pos			int

			329	 }

			330	

			331	 func	(i	*inputReader)	step(pos	int)	(rune,	int)	{

			332	 	 if	!i.atEOT	&&	pos	!=	i.pos	{

			333	 	 	 return	endOfText,	0

			334	

			335	 	 }

			336	 	 r,	w,	err	:=	i.r.ReadRune()

			337	 	 if	err	!=	nil	{

			338	 	 	 i.atEOT	=	true

			339	 	 	 return	endOfText,	0

			340	 	 }

			341	 	 i.pos	+=	w

			342	 	 return	r,	w

			343	 }

			344	

			345	 func	(i	*inputReader)	canCheckPrefix()	bool	{

			346	 	 return	false

			347	 }

			348	

			349	 func	(i	*inputReader)	hasPrefix(re	*Regexp)	bool	{

			350	 	 return	false

			351	 }

			352	

			353	 func	(i	*inputReader)	index(re	*Regexp,	pos	int)	int	{

			354	 	 return	-1

			355	 }

			356	

			357	 func	(i	*inputReader)	context(pos	int)	syntax.EmptyOp	{

			358	 	 return	0

			359	 }

			360	

			361	 //	LiteralPrefix	returns	a	literal	string	that	must	begin	any	match

			362	 //	of	the	regular	expression	re.		It	returns	the	boolean	true	if	the

			363	 //	literal	string	comprises	the	entire	regular	expression.

			364	 func	(re	*Regexp)	LiteralPrefix()	(prefix	string,	complete	bool)	{

			365	 	 return	re.prefix,	re.prefixComplete

			366	 }

			367	

			368	 //	MatchReader	returns	whether	the	Regexp	matches	the	text	read	by	the

			369	 //	RuneReader.		The	return	value	is	a	boolean:	true	for	match,	false	for	no

			370	 //	match.

			371	 func	(re	*Regexp)	MatchReader(r	io.RuneReader)	bool	{

			372	 	 return	re.doExecute(r,	nil,	"",	0,	0)	!=	nil

			373	 }

			374	

			375	 //	MatchString	returns	whether	the	Regexp	matches	the	string	s.

			376	 //	The	return	value	is	a	boolean:	true	for	match,	false	for	no	match.

			377	 func	(re	*Regexp)	MatchString(s	string)	bool	{

			378	 	 return	re.doExecute(nil,	nil,	s,	0,	0)	!=	nil

			379	 }

			380	

			381	 //	Match	returns	whether	the	Regexp	matches	the	byte	slice	b.

			382	 //	The	return	value	is	a	boolean:	true	for	match,	false	for	no	match.

			383	 func	(re	*Regexp)	Match(b	[]byte)	bool	{

			384	 	 return	re.doExecute(nil,	b,	"",	0,	0)	!=	nil

			385	 }

			386	

			387	 //	MatchReader	checks	whether	a	textual	regular	expression	matches	the	text

			388	 //	read	by	the	RuneReader.		More	complicated	queries	need	to	use	Compile	and

			389	 //	the	full	Regexp	interface.

			390	 func	MatchReader(pattern	string,	r	io.RuneReader)	(matched	bool,	error	error)	{

			391	 	 re,	err	:=	Compile(pattern)

			392	 	 if	err	!=	nil	{

			393	 	 	 return	false,	err

			394	 	 }

			395	 	 return	re.MatchReader(r),	nil

			396	 }

			397	

			398	 //	MatchString	checks	whether	a	textual	regular	expression

			399	 //	matches	a	string.		More	complicated	queries	need

			400	 //	to	use	Compile	and	the	full	Regexp	interface.

			401	 func	MatchString(pattern	string,	s	string)	(matched	bool,	error	error)	{

			402	 	 re,	err	:=	Compile(pattern)

			403	 	 if	err	!=	nil	{

			404	 	 	 return	false,	err

			405	 	 }

			406	 	 return	re.MatchString(s),	nil

			407	 }

			408	

			409	 //	Match	checks	whether	a	textual	regular	expression

			410	 //	matches	a	byte	slice.		More	complicated	queries	need

			411	 //	to	use	Compile	and	the	full	Regexp	interface.

			412	 func	Match(pattern	string,	b	[]byte)	(matched	bool,	error	error)	{

			413	 	 re,	err	:=	Compile(pattern)

			414	 	 if	err	!=	nil	{

			415	 	 	 return	false,	err

			416	 	 }

			417	 	 return	re.Match(b),	nil

			418	 }

			419	

			420	 //	ReplaceAllString	returns	a	copy	of	src,	replacing	matches	of	the	Regexp

			421	 //	with	the	replacement	string	repl.		Inside	repl,	$	signs	are	interpreted	as

			422	 //	in	Expand,	so	for	instance	$1	represents	the	text	of	the	first	submatch.

			423	 func	(re	*Regexp)	ReplaceAllString(src,	repl	string)	string	{

			424	 	 n	:=	2

			425	 	 if	strings.Index(repl,	"$")	>=	0	{

			426	 	 	 n	=	2	*	(re.numSubexp	+	1)

			427	 	 }

			428	 	 b	:=	re.replaceAll(nil,	src,	n,	func(dst	[]byte,	match	[]int)	[]byte	{

			429	 	 	 return	re.expand(dst,	repl,	nil,	src,	match)

			430	 	 })

			431	 	 return	string(b)

			432	 }

			433	

			434	 //	ReplaceAllStringLiteral	returns	a	copy	of	src,	replacing	matches	of	the	Regexp

			435	 //	with	the	replacement	string	repl.		The	replacement	repl	is	substituted	directly,

			436	 //	without	using	Expand.

			437	 func	(re	*Regexp)	ReplaceAllLiteralString(src,	repl	string)	string	{

			438	 	 return	string(re.replaceAll(nil,	src,	2,	func(dst	[]byte,	match	[]int)	[]byte	{

			439	 	 	 return	append(dst,	repl...)

			440	 	 }))

			441	 }

			442	

			443	 //	ReplaceAllStringFunc	returns	a	copy	of	src	in	which	all	matches	of	the

			444	 //	Regexp	have	been	replaced	by	the	return	value	of	of	function	repl	applied

			445	 //	to	the	matched	substring.		The	replacement	returned	by	repl	is	substituted

			446	 //	directly,	without	using	Expand.

			447	 func	(re	*Regexp)	ReplaceAllStringFunc(src	string,	repl	func(string)	string)	string	{

			448	 	 b	:=	re.replaceAll(nil,	src,	2,	func(dst	[]byte,	match	[]int)	[]byte	{

			449	 	 	 return	append(dst,	repl(src[match[0]:match[1]])...)

			450	 	 })

			451	 	 return	string(b)

			452	 }

			453	

			454	 func	(re	*Regexp)	replaceAll(bsrc	[]byte,	src	string,	nmatch	int,	repl	func(dst	[]byte,	m	[]int)	[]byte)	[]byte	{

			455	 	 lastMatchEnd	:=	0	//	end	position	of	the	most	recent	match

			456	 	 searchPos	:=	0				//	position	where	we	next	look	for	a	match

			457	 	 var	buf	[]byte

			458	 	 var	endPos	int

			459	 	 if	bsrc	!=	nil	{

			460	 	 	 endPos	=	len(bsrc)

			461	 	 }	else	{

			462	 	 	 endPos	=	len(src)

			463	 	 }

			464	 	 for	searchPos	<=	endPos	{

			465	 	 	 a	:=	re.doExecute(nil,	bsrc,	src,	searchPos,	nmatch)

			466	 	 	 if	len(a)	==	0	{

			467	 	 	 	 break	//	no	more	matches

			468	 	 	 }

			469	

			470	 	 	 //	Copy	the	unmatched	characters	before	this	match.

			471	 	 	 if	bsrc	!=	nil	{

			472	 	 	 	 buf	=	append(buf,	bsrc[lastMatchEnd:a[0]]...)

			473	 	 	 }	else	{

			474	 	 	 	 buf	=	append(buf,	src[lastMatchEnd:a[0]]...)

			475	 	 	 }

			476	

			477	 	 	 //	Now	insert	a	copy	of	the	replacement	string,	but	not	for	a

			478	 	 	 //	match	of	the	empty	string	immediately	after	another	match.

			479	 	 	 //	(Otherwise,	we	get	double	replacement	for	patterns	that

			480	 	 	 //	match	both	empty	and	nonempty	strings.)

			481	 	 	 if	a[1]	>	lastMatchEnd	||	a[0]	==	0	{

			482	 	 	 	 buf	=	repl(buf,	a)

			483	 	 	 }

			484	 	 	 lastMatchEnd	=	a[1]

			485	

			486	 	 	 //	Advance	past	this	match;	always	advance	at	least	one	character.

			487	 	 	 var	width	int

			488	 	 	 if	bsrc	!=	nil	{

			489	 	 	 	 _,	width	=	utf8.DecodeRune(bsrc[searchPos:])

			490	 	 	 }	else	{

			491	 	 	 	 _,	width	=	utf8.DecodeRuneInString(src[searchPos:])

			492	 	 	 }

			493	 	 	 if	searchPos+width	>	a[1]	{

			494	 	 	 	 searchPos	+=	width

			495	 	 	 }	else	if	searchPos+1	>	a[1]	{

			496	 	 	 	 //	This	clause	is	only	needed	at	the	end	of	the	input

			497	 	 	 	 //	string.		In	that	case,	DecodeRuneInString	returns	width=0.

			498	 	 	 	 searchPos++

			499	 	 	 }	else	{

			500	 	 	 	 searchPos	=	a[1]

			501	 	 	 }

			502	 	 }

			503	

			504	 	 //	Copy	the	unmatched	characters	after	the	last	match.

			505	 	 if	bsrc	!=	nil	{

			506	 	 	 buf	=	append(buf,	bsrc[lastMatchEnd:]...)

			507	 	 }	else	{

			508	 	 	 buf	=	append(buf,	src[lastMatchEnd:]...)

			509	 	 }

			510	

			511	 	 return	buf

			512	 }

			513	

			514	 //	ReplaceAll	returns	a	copy	of	src,	replacing	matches	of	the	Regexp

			515	 //	with	the	replacement	string	repl.		Inside	repl,	$	signs	are	interpreted	as

			516	 //	in	Expand,	so	for	instance	$1	represents	the	text	of	the	first	submatch.

			517	 func	(re	*Regexp)	ReplaceAll(src,	repl	[]byte)	[]byte	{

			518	 	 n	:=	2

			519	 	 if	bytes.IndexByte(repl,	'$')	>=	0	{

			520	 	 	 n	=	2	*	(re.numSubexp	+	1)

			521	 	 }

			522	 	 srepl	:=	""

			523	 	 b	:=	re.replaceAll(src,	"",	n,	func(dst	[]byte,	match	[]int)	[]byte	{

			524	 	 	 if	len(srepl)	!=	len(repl)	{

			525	 	 	 	 srepl	=	string(repl)

			526	 	 	 }

			527	 	 	 return	re.expand(dst,	srepl,	src,	"",	match)

			528	 	 })

			529	 	 return	b

			530	 }

			531	

			532	 //	ReplaceAllLiteral	returns	a	copy	of	src,	replacing	matches	of	the	Regexp

			533	 //	with	the	replacement	bytes	repl.		The	replacement	repl	is	substituted	directly,

			534	 //	without	using	Expand.

			535	 func	(re	*Regexp)	ReplaceAllLiteral(src,	repl	[]byte)	[]byte	{

			536	 	 return	re.replaceAll(src,	"",	2,	func(dst	[]byte,	match	[]int)	[]byte	{

			537	 	 	 return	append(dst,	repl...)

			538	 	 })

			539	 }

			540	

			541	 //	ReplaceAllFunc	returns	a	copy	of	src	in	which	all	matches	of	the

			542	 //	Regexp	have	been	replaced	by	the	return	value	of	of	function	repl	applied

			543	 //	to	the	matched	byte	slice.		The	replacement	returned	by	repl	is	substituted

			544	 //	directly,	without	using	Expand.

			545	 func	(re	*Regexp)	ReplaceAllFunc(src	[]byte,	repl	func([]byte)	[]byte)	[]byte	{

			546	 	 return	re.replaceAll(src,	"",	2,	func(dst	[]byte,	match	[]int)	[]byte	{

			547	 	 	 return	append(dst,	repl(src[match[0]:match[1]])...)

			548	 	 })

			549	 }

			550	

			551	 var	specialBytes	=	[]byte(`\.+*?()|[]{}^$`)

			552	

			553	 func	special(b	byte)	bool	{

			554	 	 return	bytes.IndexByte(specialBytes,	b)	>=	0

			555	 }

			556	

			557	 //	QuoteMeta	returns	a	string	that	quotes	all	regular	expression	metacharacters

			558	 //	inside	the	argument	text;	the	returned	string	is	a	regular	expression	matching

			559	 //	the	literal	text.		For	example,	QuoteMeta(`[foo]`)	returns	`\[foo\]`.

			560	 func	QuoteMeta(s	string)	string	{

			561	 	 b	:=	make([]byte,	2*len(s))

			562	

			563	 	 //	A	byte	loop	is	correct	because	all	metacharacters	are	ASCII.

			564	 	 j	:=	0

			565	 	 for	i	:=	0;	i	<	len(s);	i++	{

			566	 	 	 if	special(s[i])	{

			567	 	 	 	 b[j]	=	'\\'

			568	 	 	 	 j++

			569	 	 	 }

			570	 	 	 b[j]	=	s[i]

			571	 	 	 j++

			572	 	 }

			573	 	 return	string(b[0:j])

			574	 }

			575	

			576	 //	The	number	of	capture	values	in	the	program	may	correspond

			577	 //	to	fewer	capturing	expressions	than	are	in	the	regexp.

			578	 //	For	example,	"(a){0}"	turns	into	an	empty	program,	so	the

			579	 //	maximum	capture	in	the	program	is	0	but	we	need	to	return

			580	 //	an	expression	for	\1.		Pad	appends	-1s	to	the	slice	a	as	needed.

			581	 func	(re	*Regexp)	pad(a	[]int)	[]int	{

			582	 	 if	a	==	nil	{

			583	 	 	 //	No	match.

			584	 	 	 return	nil

			585	 	 }

			586	 	 n	:=	(1	+	re.numSubexp)	*	2

			587	 	 for	len(a)	<	n	{

			588	 	 	 a	=	append(a,	-1)

			589	 	 }

			590	 	 return	a

			591	 }

			592	

			593	 //	Find	matches	in	slice	b	if	b	is	non-nil,	otherwise	find	matches	in	string	s.

			594	 func	(re	*Regexp)	allMatches(s	string,	b	[]byte,	n	int,	deliver	func([]int))	{

			595	 	 var	end	int

			596	 	 if	b	==	nil	{

			597	 	 	 end	=	len(s)

			598	 	 }	else	{

			599	 	 	 end	=	len(b)

			600	 	 }

			601	

			602	 	 for	pos,	i,	prevMatchEnd	:=	0,	0,	-1;	i	<	n	&&	pos	<=	end;	{

			603	 	 	 matches	:=	re.doExecute(nil,	b,	s,	pos,	re.prog.NumCap)

			604	 	 	 if	len(matches)	==	0	{

			605	 	 	 	 break

			606	 	 	 }

			607	

			608	 	 	 accept	:=	true

			609	 	 	 if	matches[1]	==	pos	{

			610	 	 	 	 //	We've	found	an	empty	match.

			611	 	 	 	 if	matches[0]	==	prevMatchEnd	{

			612	 	 	 	 	 //	We	don't	allow	an	empty	match	right

			613	 	 	 	 	 //	after	a	previous	match,	so	ignore	it.

			614	 	 	 	 	 accept	=	false

			615	 	 	 	 }

			616	 	 	 	 var	width	int

			617	 	 	 	 //	TODO:	use	step()

			618	 	 	 	 if	b	==	nil	{

			619	 	 	 	 	 _,	width	=	utf8.DecodeRuneInString(s[pos:end])

			620	 	 	 	 }	else	{

			621	 	 	 	 	 _,	width	=	utf8.DecodeRune(b[pos:end])

			622	 	 	 	 }

			623	 	 	 	 if	width	>	0	{

			624	 	 	 	 	 pos	+=	width

			625	 	 	 	 }	else	{

			626	 	 	 	 	 pos	=	end	+	1

			627	 	 	 	 }

			628	 	 	 }	else	{

			629	 	 	 	 pos	=	matches[1]

			630	 	 	 }

			631	 	 	 prevMatchEnd	=	matches[1]

			632	

			633	 	 	 if	accept	{

			634	 	 	 	 deliver(re.pad(matches))

			635	 	 	 	 i++

			636	 	 	 }

			637	 	 }

			638	 }

			639	

			640	 //	Find	returns	a	slice	holding	the	text	of	the	leftmost	match	in	b	of	the	regular	expression.

			641	 //	A	return	value	of	nil	indicates	no	match.

			642	 func	(re	*Regexp)	Find(b	[]byte)	[]byte	{

			643	 	 a	:=	re.doExecute(nil,	b,	"",	0,	2)

			644	 	 if	a	==	nil	{

			645	 	 	 return	nil

			646	 	 }

			647	 	 return	b[a[0]:a[1]]

			648	 }

			649	

			650	 //	FindIndex	returns	a	two-element	slice	of	integers	defining	the	location	of

			651	 //	the	leftmost	match	in	b	of	the	regular	expression.		The	match	itself	is	at

			652	 //	b[loc[0]:loc[1]].

			653	 //	A	return	value	of	nil	indicates	no	match.

			654	 func	(re	*Regexp)	FindIndex(b	[]byte)	(loc	[]int)	{

			655	 	 a	:=	re.doExecute(nil,	b,	"",	0,	2)

			656	 	 if	a	==	nil	{

			657	 	 	 return	nil

			658	 	 }

			659	 	 return	a[0:2]

			660	 }

			661	

			662	 //	FindString	returns	a	string	holding	the	text	of	the	leftmost	match	in	s	of	the	regular

			663	 //	expression.		If	there	is	no	match,	the	return	value	is	an	empty	string,

			664	 //	but	it	will	also	be	empty	if	the	regular	expression	successfully	matches

			665	 //	an	empty	string.		Use	FindStringIndex	or	FindStringSubmatch	if	it	is

			666	 //	necessary	to	distinguish	these	cases.

			667	 func	(re	*Regexp)	FindString(s	string)	string	{

			668	 	 a	:=	re.doExecute(nil,	nil,	s,	0,	2)

			669	 	 if	a	==	nil	{

			670	 	 	 return	""

			671	 	 }

			672	 	 return	s[a[0]:a[1]]

			673	 }

			674	

			675	 //	FindStringIndex	returns	a	two-element	slice	of	integers	defining	the

			676	 //	location	of	the	leftmost	match	in	s	of	the	regular	expression.		The	match

			677	 //	itself	is	at	s[loc[0]:loc[1]].

			678	 //	A	return	value	of	nil	indicates	no	match.

			679	 func	(re	*Regexp)	FindStringIndex(s	string)	(loc	[]int)	{

			680	 	 a	:=	re.doExecute(nil,	nil,	s,	0,	2)

			681	 	 if	a	==	nil	{

			682	 	 	 return	nil

			683	 	 }

			684	 	 return	a[0:2]

			685	 }

			686	

			687	 //	FindReaderIndex	returns	a	two-element	slice	of	integers	defining	the

			688	 //	location	of	the	leftmost	match	of	the	regular	expression	in	text	read	from

			689	 //	the	RuneReader.		The	match	itself	is	at	s[loc[0]:loc[1]].		A	return

			690	 //	value	of	nil	indicates	no	match.

			691	 func	(re	*Regexp)	FindReaderIndex(r	io.RuneReader)	(loc	[]int)	{

			692	 	 a	:=	re.doExecute(r,	nil,	"",	0,	2)

			693	 	 if	a	==	nil	{

			694	 	 	 return	nil

			695	 	 }

			696	 	 return	a[0:2]

			697	 }

			698	

			699	 //	FindSubmatch	returns	a	slice	of	slices	holding	the	text	of	the	leftmost

			700	 //	match	of	the	regular	expression	in	b	and	the	matches,	if	any,	of	its

			701	 //	subexpressions,	as	defined	by	the	'Submatch'	descriptions	in	the	package

			702	 //	comment.

			703	 //	A	return	value	of	nil	indicates	no	match.

			704	 func	(re	*Regexp)	FindSubmatch(b	[]byte)	[][]byte	{

			705	 	 a	:=	re.doExecute(nil,	b,	"",	0,	re.prog.NumCap)

			706	 	 if	a	==	nil	{

			707	 	 	 return	nil

			708	 	 }

			709	 	 ret	:=	make([][]byte,	1+re.numSubexp)

			710	 	 for	i	:=	range	ret	{

			711	 	 	 if	2*i	<	len(a)	&&	a[2*i]	>=	0	{

			712	 	 	 	 ret[i]	=	b[a[2*i]:a[2*i+1]]

			713	 	 	 }

			714	 	 }

			715	 	 return	ret

			716	 }

			717	

			718	 //	Expand	appends	template	to	dst	and	returns	the	result;	during	the

			719	 //	append,	Expand	replaces	variables	in	the	template	with	corresponding

			720	 //	matches	drawn	from	src.		The	match	slice	should	have	been	returned	by

			721	 //	FindSubmatchIndex.

			722	 //	

			723	 //	In	the	template,	a	variable	is	denoted	by	a	substring	of	the	form

			724	 //	$name	or	${name},	where	name	is	a	non-empty	sequence	of	letters,

			725	 //	digits,	and	underscores.		A	purely	numeric	name	like	$1	refers	to

			726	 //	the	submatch	with	the	corresponding	index;	other	names	refer	to

			727	 //	capturing	parentheses	named	with	the	(?P<name>...)	syntax.		A

			728	 //	reference	to	an	out	of	range	or	unmatched	index	or	a	name	that	is	not

			729	 //	present	in	the	regular	expression	is	replaced	with	an	empty	string.

			730	 //	

			731	 //	In	the	$name	form,	name	is	taken	to	be	as	long	as	possible:	$1x	is

			732	 //	equivalent	to	${1x},	not	${1}x,	and,	$10	is	equivalent	to	${10},	not	${1}0.

			733	 //	

			734	 //	To	insert	a	literal	$	in	the	output,	use	$$	in	the	template.

			735	 func	(re	*Regexp)	Expand(dst	[]byte,	template	[]byte,	src	[]byte,	match	[]int)	[]byte	{

			736	 	 return	re.expand(dst,	string(template),	src,	"",	match)

			737	 }

			738	

			739	 //	ExpandString	is	like	Expand	but	the	template	and	source	are	strings.

			740	 //	It	appends	to	and	returns	a	byte	slice	in	order	to	give	the	calling

			741	 //	code	control	over	allocation.

			742	 func	(re	*Regexp)	ExpandString(dst	[]byte,	template	string,	src	string,	match	[]int)	[]byte	{

			743	 	 return	re.expand(dst,	template,	nil,	src,	match)

			744	 }

			745	

			746	 func	(re	*Regexp)	expand(dst	[]byte,	template	string,	bsrc	[]byte,	src	string,	match	[]int)	[]byte	{

			747	 	 for	len(template)	>	0	{

			748	 	 	 i	:=	strings.Index(template,	"$")

			749	 	 	 if	i	<	0	{

			750	 	 	 	 break

			751	 	 	 }

			752	 	 	 dst	=	append(dst,	template[:i]...)

			753	 	 	 template	=	template[i:]

			754	 	 	 if	len(template)	>	1	&&	template[1]	==	'$'	{

			755	 	 	 	 //	Treat	$$	as	$.

			756	 	 	 	 dst	=	append(dst,	'$')

			757	 	 	 	 template	=	template[2:]

			758	 	 	 	 continue

			759	 	 	 }

			760	 	 	 name,	num,	rest,	ok	:=	extract(template)

			761	 	 	 if	!ok	{

			762	 	 	 	 //	Malformed;	treat	$	as	raw	text.

			763	 	 	 	 dst	=	append(dst,	'$')

			764	 	 	 	 template	=	template[1:]

			765	 	 	 	 continue

			766	 	 	 }

			767	 	 	 template	=	rest

			768	 	 	 if	num	>=	0	{

			769	 	 	 	 if	2*num+1	<	len(match)	{

			770	 	 	 	 	 if	bsrc	!=	nil	{

			771	 	 	 	 	 	 dst	=	append(dst,	bsrc[match[2*num]:match[2*num+1]]...)

			772	 	 	 	 	 }	else	{

			773	 	 	 	 	 	 dst	=	append(dst,	src[match[2*num]:match[2*num+1]]...)

			774	 	 	 	 	 }

			775	 	 	 	 }

			776	 	 	 }	else	{

			777	 	 	 	 for	i,	namei	:=	range	re.subexpNames	{

			778	 	 	 	 	 if	name	==	namei	&&	2*i+1	<	len(match)	&&	match[2*i]	>=	0	{

			779	 	 	 	 	 	 if	bsrc	!=	nil	{

			780	 	 	 	 	 	 	 dst	=	append(dst,	bsrc[match[2*i]:match[2*i+1]]...)

			781	 	 	 	 	 	 }	else	{

			782	 	 	 	 	 	 	 dst	=	append(dst,	src[match[2*i]:match[2*i+1]]...)

			783	 	 	 	 	 	 }

			784	 	 	 	 	 	 break

			785	 	 	 	 	 }

			786	 	 	 	 }

			787	 	 	 }

			788	 	 }

			789	 	 dst	=	append(dst,	template...)

			790	 	 return	dst

			791	 }

			792	

			793	 //	extract	returns	the	name	from	a	leading	"$name"	or	"${name}"	in	str.

			794	 //	If	it	is	a	number,	extract	returns	num	set	to	that	number;	otherwise	num	=	-1.

			795	 func	extract(str	string)	(name	string,	num	int,	rest	string,	ok	bool)	{

			796	 	 if	len(str)	<	2	||	str[0]	!=	'$'	{

			797	 	 	 return

			798	 	 }

			799	 	 brace	:=	false

			800	 	 if	str[1]	==	'{'	{

			801	 	 	 brace	=	true

			802	 	 	 str	=	str[2:]

			803	 	 }	else	{

			804	 	 	 str	=	str[1:]

			805	 	 }

			806	 	 i	:=	0

			807	 	 for	i	<	len(str)	{

			808	 	 	 rune,	size	:=	utf8.DecodeRuneInString(str[i:])

			809	 	 	 if	!unicode.IsLetter(rune)	&&	!unicode.IsDigit(rune)	&&	rune	!=	'_'	{

			810	 	 	 	 break

			811	 	 	 }

			812	 	 	 i	+=	size

			813	 	 }

			814	 	 if	i	==	0	{

			815	 	 	 //	empty	name	is	not	okay

			816	 	 	 return

			817	 	 }

			818	 	 name	=	str[:i]

			819	 	 if	brace	{

			820	 	 	 if	i	>=	len(str)	||	str[i]	!=	'}'	{

			821	 	 	 	 //	missing	closing	brace

			822	 	 	 	 return

			823	 	 	 }

			824	 	 	 i++

			825	 	 }

			826	

			827	 	 //	Parse	number.

			828	 	 num	=	0

			829	 	 for	i	:=	0;	i	<	len(name);	i++	{

			830	 	 	 if	name[i]	<	'0'	||	'9'	<	name[i]	||	num	>=	1e8	{

			831	 	 	 	 num	=	-1

			832	 	 	 	 break

			833	 	 	 }

			834	 	 	 num	=	num*10	+	int(name[i])	-	'0'

			835	 	 }

			836	 	 //	Disallow	leading	zeros.

			837	 	 if	name[0]	==	'0'	&&	len(name)	>	1	{

			838	 	 	 num	=	-1

			839	 	 }

			840	

			841	 	 rest	=	str[i:]

			842	 	 ok	=	true

			843	 	 return

			844	 }

			845	

			846	 //	FindSubmatchIndex	returns	a	slice	holding	the	index	pairs	identifying	the

			847	 //	leftmost	match	of	the	regular	expression	in	b	and	the	matches,	if	any,	of

			848	 //	its	subexpressions,	as	defined	by	the	'Submatch'	and	'Index'	descriptions

			849	 //	in	the	package	comment.

			850	 //	A	return	value	of	nil	indicates	no	match.

			851	 func	(re	*Regexp)	FindSubmatchIndex(b	[]byte)	[]int	{

			852	 	 return	re.pad(re.doExecute(nil,	b,	"",	0,	re.prog.NumCap))

			853	 }

			854	

			855	 //	FindStringSubmatch	returns	a	slice	of	strings	holding	the	text	of	the

			856	 //	leftmost	match	of	the	regular	expression	in	s	and	the	matches,	if	any,	of

			857	 //	its	subexpressions,	as	defined	by	the	'Submatch'	description	in	the

			858	 //	package	comment.

			859	 //	A	return	value	of	nil	indicates	no	match.

			860	 func	(re	*Regexp)	FindStringSubmatch(s	string)	[]string	{

			861	 	 a	:=	re.doExecute(nil,	nil,	s,	0,	re.prog.NumCap)

			862	 	 if	a	==	nil	{

			863	 	 	 return	nil

			864	 	 }

			865	 	 ret	:=	make([]string,	1+re.numSubexp)

			866	 	 for	i	:=	range	ret	{

			867	 	 	 if	2*i	<	len(a)	&&	a[2*i]	>=	0	{

			868	 	 	 	 ret[i]	=	s[a[2*i]:a[2*i+1]]

			869	 	 	 }

			870	 	 }

			871	 	 return	ret

			872	 }

			873	

			874	 //	FindStringSubmatchIndex	returns	a	slice	holding	the	index	pairs

			875	 //	identifying	the	leftmost	match	of	the	regular	expression	in	s	and	the

			876	 //	matches,	if	any,	of	its	subexpressions,	as	defined	by	the	'Submatch'	and

			877	 //	'Index'	descriptions	in	the	package	comment.

			878	 //	A	return	value	of	nil	indicates	no	match.

			879	 func	(re	*Regexp)	FindStringSubmatchIndex(s	string)	[]int	{

			880	 	 return	re.pad(re.doExecute(nil,	nil,	s,	0,	re.prog.NumCap))

			881	 }

			882	

			883	 //	FindReaderSubmatchIndex	returns	a	slice	holding	the	index	pairs

			884	 //	identifying	the	leftmost	match	of	the	regular	expression	of	text	read	by

			885	 //	the	RuneReader,	and	the	matches,	if	any,	of	its	subexpressions,	as	defined

			886	 //	by	the	'Submatch'	and	'Index'	descriptions	in	the	package	comment.		A

			887	 //	return	value	of	nil	indicates	no	match.

			888	 func	(re	*Regexp)	FindReaderSubmatchIndex(r	io.RuneReader)	[]int	{

			889	 	 return	re.pad(re.doExecute(r,	nil,	"",	0,	re.prog.NumCap))

			890	 }

			891	

			892	 const	startSize	=	10	//	The	size	at	which	to	start	a	slice	in	the	'All'	routines.

			893	

			894	 //	FindAll	is	the	'All'	version	of	Find;	it	returns	a	slice	of	all	successive

			895	 //	matches	of	the	expression,	as	defined	by	the	'All'	description	in	the

			896	 //	package	comment.

			897	 //	A	return	value	of	nil	indicates	no	match.

			898	 func	(re	*Regexp)	FindAll(b	[]byte,	n	int)	[][]byte	{

			899	 	 if	n	<	0	{

			900	 	 	 n	=	len(b)	+	1

			901	 	 }

			902	 	 result	:=	make([][]byte,	0,	startSize)

			903	 	 re.allMatches("",	b,	n,	func(match	[]int)	{

			904	 	 	 result	=	append(result,	b[match[0]:match[1]])

			905	 	 })

			906	 	 if	len(result)	==	0	{

			907	 	 	 return	nil

			908	 	 }

			909	 	 return	result

			910	 }

			911	

			912	 //	FindAllIndex	is	the	'All'	version	of	FindIndex;	it	returns	a	slice	of	all

			913	 //	successive	matches	of	the	expression,	as	defined	by	the	'All'	description

			914	 //	in	the	package	comment.

			915	 //	A	return	value	of	nil	indicates	no	match.

			916	 func	(re	*Regexp)	FindAllIndex(b	[]byte,	n	int)	[][]int	{

			917	 	 if	n	<	0	{

			918	 	 	 n	=	len(b)	+	1

			919	 	 }

			920	 	 result	:=	make([][]int,	0,	startSize)

			921	 	 re.allMatches("",	b,	n,	func(match	[]int)	{

			922	 	 	 result	=	append(result,	match[0:2])

			923	 	 })

			924	 	 if	len(result)	==	0	{

			925	 	 	 return	nil

			926	 	 }

			927	 	 return	result

			928	 }

			929	

			930	 //	FindAllString	is	the	'All'	version	of	FindString;	it	returns	a	slice	of	all

			931	 //	successive	matches	of	the	expression,	as	defined	by	the	'All'	description

			932	 //	in	the	package	comment.

			933	 //	A	return	value	of	nil	indicates	no	match.

			934	 func	(re	*Regexp)	FindAllString(s	string,	n	int)	[]string	{

			935	 	 if	n	<	0	{

			936	 	 	 n	=	len(s)	+	1

			937	 	 }

			938	 	 result	:=	make([]string,	0,	startSize)

			939	 	 re.allMatches(s,	nil,	n,	func(match	[]int)	{

			940	 	 	 result	=	append(result,	s[match[0]:match[1]])

			941	 	 })

			942	 	 if	len(result)	==	0	{

			943	 	 	 return	nil

			944	 	 }

			945	 	 return	result

			946	 }

			947	

			948	 //	FindAllStringIndex	is	the	'All'	version	of	FindStringIndex;	it	returns	a

			949	 //	slice	of	all	successive	matches	of	the	expression,	as	defined	by	the	'All'

			950	 //	description	in	the	package	comment.

			951	 //	A	return	value	of	nil	indicates	no	match.

			952	 func	(re	*Regexp)	FindAllStringIndex(s	string,	n	int)	[][]int	{

			953	 	 if	n	<	0	{

			954	 	 	 n	=	len(s)	+	1

			955	 	 }

			956	 	 result	:=	make([][]int,	0,	startSize)

			957	 	 re.allMatches(s,	nil,	n,	func(match	[]int)	{

			958	 	 	 result	=	append(result,	match[0:2])

			959	 	 })

			960	 	 if	len(result)	==	0	{

			961	 	 	 return	nil

			962	 	 }

			963	 	 return	result

			964	 }

			965	

			966	 //	FindAllSubmatch	is	the	'All'	version	of	FindSubmatch;	it	returns	a	slice

			967	 //	of	all	successive	matches	of	the	expression,	as	defined	by	the	'All'

			968	 //	description	in	the	package	comment.

			969	 //	A	return	value	of	nil	indicates	no	match.

			970	 func	(re	*Regexp)	FindAllSubmatch(b	[]byte,	n	int)	[][][]byte	{

			971	 	 if	n	<	0	{

			972	 	 	 n	=	len(b)	+	1

			973	 	 }

			974	 	 result	:=	make([][][]byte,	0,	startSize)

			975	 	 re.allMatches("",	b,	n,	func(match	[]int)	{

			976	 	 	 slice	:=	make([][]byte,	len(match)/2)

			977	 	 	 for	j	:=	range	slice	{

			978	 	 	 	 if	match[2*j]	>=	0	{

			979	 	 	 	 	 slice[j]	=	b[match[2*j]:match[2*j+1]]

			980	 	 	 	 }

			981	 	 	 }

			982	 	 	 result	=	append(result,	slice)

			983	 	 })

			984	 	 if	len(result)	==	0	{

			985	 	 	 return	nil

			986	 	 }

			987	 	 return	result

			988	 }

			989	

			990	 //	FindAllSubmatchIndex	is	the	'All'	version	of	FindSubmatchIndex;	it	returns

			991	 //	a	slice	of	all	successive	matches	of	the	expression,	as	defined	by	the

			992	 //	'All'	description	in	the	package	comment.

			993	 //	A	return	value	of	nil	indicates	no	match.

			994	 func	(re	*Regexp)	FindAllSubmatchIndex(b	[]byte,	n	int)	[][]int	{

			995	 	 if	n	<	0	{

			996	 	 	 n	=	len(b)	+	1

			997	 	 }

			998	 	 result	:=	make([][]int,	0,	startSize)

			999	 	 re.allMatches("",	b,	n,	func(match	[]int)	{

		1000	 	 	 result	=	append(result,	match)

		1001	 	 })

		1002	 	 if	len(result)	==	0	{

		1003	 	 	 return	nil

		1004	 	 }

		1005	 	 return	result

		1006	 }

		1007	

		1008	 //	FindAllStringSubmatch	is	the	'All'	version	of	FindStringSubmatch;	it

		1009	 //	returns	a	slice	of	all	successive	matches	of	the	expression,	as	defined	by

		1010	 //	the	'All'	description	in	the	package	comment.

		1011	 //	A	return	value	of	nil	indicates	no	match.

		1012	 func	(re	*Regexp)	FindAllStringSubmatch(s	string,	n	int)	[][]string	{

		1013	 	 if	n	<	0	{

		1014	 	 	 n	=	len(s)	+	1

		1015	 	 }

		1016	 	 result	:=	make([][]string,	0,	startSize)

		1017	 	 re.allMatches(s,	nil,	n,	func(match	[]int)	{

		1018	 	 	 slice	:=	make([]string,	len(match)/2)

		1019	 	 	 for	j	:=	range	slice	{

		1020	 	 	 	 if	match[2*j]	>=	0	{

		1021	 	 	 	 	 slice[j]	=	s[match[2*j]:match[2*j+1]]

		1022	 	 	 	 }

		1023	 	 	 }

		1024	 	 	 result	=	append(result,	slice)

		1025	 	 })

		1026	 	 if	len(result)	==	0	{

		1027	 	 	 return	nil

		1028	 	 }

		1029	 	 return	result

		1030	 }

		1031	

		1032	 //	FindAllStringSubmatchIndex	is	the	'All'	version	of

		1033	 //	FindStringSubmatchIndex;	it	returns	a	slice	of	all	successive	matches	of

		1034	 //	the	expression,	as	defined	by	the	'All'	description	in	the	package

		1035	 //	comment.

		1036	 //	A	return	value	of	nil	indicates	no	match.

		1037	 func	(re	*Regexp)	FindAllStringSubmatchIndex(s	string,	n	int)	[][]int	{

		1038	 	 if	n	<	0	{

		1039	 	 	 n	=	len(s)	+	1

		1040	 	 }

		1041	 	 result	:=	make([][]int,	0,	startSize)

		1042	 	 re.allMatches(s,	nil,	n,	func(match	[]int)	{

		1043	 	 	 result	=	append(result,	match)

		1044	 	 })

		1045	 	 if	len(result)	==	0	{

		1046	 	 	 return	nil

		1047	 	 }

		1048	 	 return	result

		1049	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/regexp/syntax/compile.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	syntax

					6	

					7	 import	"unicode"

					8	

					9	 //	A	patchList	is	a	list	of	instruction	pointers	that	need	to	be	filled	in	(patched).

				10	 //	Because	the	pointers	haven't	been	filled	in	yet,	we	can	reuse	their	storage

				11	 //	to	hold	the	list.		It's	kind	of	sleazy,	but	works	well	in	practice.

				12	 //	See	http://swtch.com/~rsc/regexp/regexp1.html	for	inspiration.

				13	 //	

				14	 //	These	aren't	really	pointers:	they're	integers,	so	we	can	reinterpret	them

				15	 //	this	way	without	using	package	unsafe.		A	value	l	denotes

				16	 //	p.inst[l>>1].Out	(l&1==0)	or	.Arg	(l&1==1).	

				17	 //	l	==	0	denotes	the	empty	list,	okay	because	we	start	every	program

				18	 //	with	a	fail	instruction,	so	we'll	never	want	to	point	at	its	output	link.

				19	 type	patchList	uint32

				20	

				21	 func	(l	patchList)	next(p	*Prog)	patchList	{

				22	 	 i	:=	&p.Inst[l>>1]

				23	 	 if	l&1	==	0	{

				24	 	 	 return	patchList(i.Out)

				25	 	 }

				26	 	 return	patchList(i.Arg)

				27	 }

				28	

				29	 func	(l	patchList)	patch(p	*Prog,	val	uint32)	{

				30	 	 for	l	!=	0	{

				31	 	 	 i	:=	&p.Inst[l>>1]

				32	 	 	 if	l&1	==	0	{

				33	 	 	 	 l	=	patchList(i.Out)

				34	 	 	 	 i.Out	=	val

				35	 	 	 }	else	{

				36	 	 	 	 l	=	patchList(i.Arg)

				37	 	 	 	 i.Arg	=	val

				38	 	 	 }

				39	 	 }

				40	 }

				41	

				42	 func	(l1	patchList)	append(p	*Prog,	l2	patchList)	patchList	{

				43	 	 if	l1	==	0	{

				44	 	 	 return	l2

				45	 	 }

				46	 	 if	l2	==	0	{

				47	 	 	 return	l1

				48	 	 }

				49	

				50	 	 last	:=	l1

				51	 	 for	{

				52	 	 	 next	:=	last.next(p)

				53	 	 	 if	next	==	0	{

				54	 	 	 	 break

				55	 	 	 }

				56	 	 	 last	=	next

				57	 	 }

				58	

				59	 	 i	:=	&p.Inst[last>>1]

				60	 	 if	last&1	==	0	{

				61	 	 	 i.Out	=	uint32(l2)

				62	 	 }	else	{

				63	 	 	 i.Arg	=	uint32(l2)

				64	 	 }

				65	 	 return	l1

				66	 }

				67	

				68	 //	A	frag	represents	a	compiled	program	fragment.

				69	 type	frag	struct	{

				70	 	 i			uint32				//	index	of	first	instruction

				71	 	 out	patchList	//	where	to	record	end	instruction

				72	 }

				73	

				74	 type	compiler	struct	{

				75	 	 p	*Prog

				76	 }

				77	

				78	 //	Compile	compiles	the	regexp	into	a	program	to	be	executed.

				79	 //	The	regexp	should	have	been	simplified	already	(returned	from	re.Simplify).

				80	 func	Compile(re	*Regexp)	(*Prog,	error)	{

				81	 	 var	c	compiler

				82	 	 c.init()

				83	 	 f	:=	c.compile(re)

				84	 	 f.out.patch(c.p,	c.inst(InstMatch).i)

				85	 	 c.p.Start	=	int(f.i)

				86	 	 return	c.p,	nil

				87	 }

				88	

				89	 func	(c	*compiler)	init()	{

				90	 	 c.p	=	new(Prog)

				91	 	 c.p.NumCap	=	2	//	implicit	(and)	for	whole	match	$0

				92	 	 c.inst(InstFail)

				93	 }

				94	

				95	 var	anyRuneNotNL	=	[]rune{0,	'\n'	-	1,	'\n'	+	1,	unicode.MaxRune}

				96	 var	anyRune	=	[]rune{0,	unicode.MaxRune}

				97	

				98	 func	(c	*compiler)	compile(re	*Regexp)	frag	{

				99	 	 switch	re.Op	{

			100	 	 case	OpNoMatch:

			101	 	 	 return	c.fail()

			102	 	 case	OpEmptyMatch:

			103	 	 	 return	c.nop()

			104	 	 case	OpLiteral:

			105	 	 	 if	len(re.Rune)	==	0	{

			106	 	 	 	 return	c.nop()

			107	 	 	 }

			108	 	 	 var	f	frag

			109	 	 	 for	j	:=	range	re.Rune	{

			110	 	 	 	 f1	:=	c.rune(re.Rune[j:j+1],	re.Flags)

			111	 	 	 	 if	j	==	0	{

			112	 	 	 	 	 f	=	f1

			113	 	 	 	 }	else	{

			114	 	 	 	 	 f	=	c.cat(f,	f1)

			115	 	 	 	 }

			116	 	 	 }

			117	 	 	 return	f

			118	 	 case	OpCharClass:

			119	 	 	 return	c.rune(re.Rune,	re.Flags)

			120	 	 case	OpAnyCharNotNL:

			121	 	 	 return	c.rune(anyRuneNotNL,	0)

			122	 	 case	OpAnyChar:

			123	 	 	 return	c.rune(anyRune,	0)

			124	 	 case	OpBeginLine:

			125	 	 	 return	c.empty(EmptyBeginLine)

			126	 	 case	OpEndLine:

			127	 	 	 return	c.empty(EmptyEndLine)

			128	 	 case	OpBeginText:

			129	 	 	 return	c.empty(EmptyBeginText)

			130	 	 case	OpEndText:

			131	 	 	 return	c.empty(EmptyEndText)

			132	 	 case	OpWordBoundary:

			133	 	 	 return	c.empty(EmptyWordBoundary)

			134	 	 case	OpNoWordBoundary:

			135	 	 	 return	c.empty(EmptyNoWordBoundary)

			136	 	 case	OpCapture:

			137	 	 	 bra	:=	c.cap(uint32(re.Cap	<<	1))

			138	 	 	 sub	:=	c.compile(re.Sub[0])

			139	 	 	 ket	:=	c.cap(uint32(re.Cap<<1	|	1))

			140	 	 	 return	c.cat(c.cat(bra,	sub),	ket)

			141	 	 case	OpStar:

			142	 	 	 return	c.star(c.compile(re.Sub[0]),	re.Flags&NonGreedy	!=	0)

			143	 	 case	OpPlus:

			144	 	 	 return	c.plus(c.compile(re.Sub[0]),	re.Flags&NonGreedy	!=	0)

			145	 	 case	OpQuest:

			146	 	 	 return	c.quest(c.compile(re.Sub[0]),	re.Flags&NonGreedy	!=	0)

			147	 	 case	OpConcat:

			148	 	 	 if	len(re.Sub)	==	0	{

			149	 	 	 	 return	c.nop()

			150	 	 	 }

			151	 	 	 var	f	frag

			152	 	 	 for	i,	sub	:=	range	re.Sub	{

			153	 	 	 	 if	i	==	0	{

			154	 	 	 	 	 f	=	c.compile(sub)

			155	 	 	 	 }	else	{

			156	 	 	 	 	 f	=	c.cat(f,	c.compile(sub))

			157	 	 	 	 }

			158	 	 	 }

			159	 	 	 return	f

			160	 	 case	OpAlternate:

			161	 	 	 var	f	frag

			162	 	 	 for	_,	sub	:=	range	re.Sub	{

			163	 	 	 	 f	=	c.alt(f,	c.compile(sub))

			164	 	 	 }

			165	 	 	 return	f

			166	 	 }

			167	 	 panic("regexp:	unhandled	case	in	compile")

			168	 }

			169	

			170	 func	(c	*compiler)	inst(op	InstOp)	frag	{

			171	 	 //	TODO:	impose	length	limit

			172	 	 f	:=	frag{i:	uint32(len(c.p.Inst))}

			173	 	 c.p.Inst	=	append(c.p.Inst,	Inst{Op:	op})

			174	 	 return	f

			175	 }

			176	

			177	 func	(c	*compiler)	nop()	frag	{

			178	 	 f	:=	c.inst(InstNop)

			179	 	 f.out	=	patchList(f.i	<<	1)

			180	 	 return	f

			181	 }

			182	

			183	 func	(c	*compiler)	fail()	frag	{

			184	 	 return	frag{}

			185	 }

			186	

			187	 func	(c	*compiler)	cap(arg	uint32)	frag	{

			188	 	 f	:=	c.inst(InstCapture)

			189	 	 f.out	=	patchList(f.i	<<	1)

			190	 	 c.p.Inst[f.i].Arg	=	arg

			191	

			192	 	 if	c.p.NumCap	<	int(arg)+1	{

			193	 	 	 c.p.NumCap	=	int(arg)	+	1

			194	 	 }

			195	 	 return	f

			196	 }

			197	

			198	 func	(c	*compiler)	cat(f1,	f2	frag)	frag	{

			199	 	 //	concat	of	failure	is	failure

			200	 	 if	f1.i	==	0	||	f2.i	==	0	{

			201	 	 	 return	frag{}

			202	 	 }

			203	

			204	 	 //	TODO:	elide	nop

			205	

			206	 	 f1.out.patch(c.p,	f2.i)

			207	 	 return	frag{f1.i,	f2.out}

			208	 }

			209	

			210	 func	(c	*compiler)	alt(f1,	f2	frag)	frag	{

			211	 	 //	alt	of	failure	is	other

			212	 	 if	f1.i	==	0	{

			213	 	 	 return	f2

			214	 	 }

			215	 	 if	f2.i	==	0	{

			216	 	 	 return	f1

			217	 	 }

			218	

			219	 	 f	:=	c.inst(InstAlt)

			220	 	 i	:=	&c.p.Inst[f.i]

			221	 	 i.Out	=	f1.i

			222	 	 i.Arg	=	f2.i

			223	 	 f.out	=	f1.out.append(c.p,	f2.out)

			224	 	 return	f

			225	 }

			226	

			227	 func	(c	*compiler)	quest(f1	frag,	nongreedy	bool)	frag	{

			228	 	 f	:=	c.inst(InstAlt)

			229	 	 i	:=	&c.p.Inst[f.i]

			230	 	 if	nongreedy	{

			231	 	 	 i.Arg	=	f1.i

			232	 	 	 f.out	=	patchList(f.i	<<	1)

			233	 	 }	else	{

			234	 	 	 i.Out	=	f1.i

			235	 	 	 f.out	=	patchList(f.i<<1	|	1)

			236	 	 }

			237	 	 f.out	=	f.out.append(c.p,	f1.out)

			238	 	 return	f

			239	 }

			240	

			241	 func	(c	*compiler)	star(f1	frag,	nongreedy	bool)	frag	{

			242	 	 f	:=	c.inst(InstAlt)

			243	 	 i	:=	&c.p.Inst[f.i]

			244	 	 if	nongreedy	{

			245	 	 	 i.Arg	=	f1.i

			246	 	 	 f.out	=	patchList(f.i	<<	1)

			247	 	 }	else	{

			248	 	 	 i.Out	=	f1.i

			249	 	 	 f.out	=	patchList(f.i<<1	|	1)

			250	 	 }

			251	 	 f1.out.patch(c.p,	f.i)

			252	 	 return	f

			253	 }

			254	

			255	 func	(c	*compiler)	plus(f1	frag,	nongreedy	bool)	frag	{

			256	 	 return	frag{f1.i,	c.star(f1,	nongreedy).out}

			257	 }

			258	

			259	 func	(c	*compiler)	empty(op	EmptyOp)	frag	{

			260	 	 f	:=	c.inst(InstEmptyWidth)

			261	 	 c.p.Inst[f.i].Arg	=	uint32(op)

			262	 	 f.out	=	patchList(f.i	<<	1)

			263	 	 return	f

			264	 }

			265	

			266	 func	(c	*compiler)	rune(r	[]rune,	flags	Flags)	frag	{

			267	 	 f	:=	c.inst(InstRune)

			268	 	 i	:=	&c.p.Inst[f.i]

			269	 	 i.Rune	=	r

			270	 	 flags	&=	FoldCase	//	only	relevant	flag	is	FoldCase

			271	 	 if	len(r)	!=	1	||	unicode.SimpleFold(r[0])	==	r[0]	{

			272	 	 	 //	and	sometimes	not	even	that

			273	 	 	 flags	&^=	FoldCase

			274	 	 }

			275	 	 i.Arg	=	uint32(flags)

			276	 	 f.out	=	patchList(f.i	<<	1)

			277	

			278	 	 //	Special	cases	for	exec	machine.

			279	 	 switch	{

			280	 	 case	flags&FoldCase	==	0	&&	(len(r)	==	1	||	len(r)	==	2	&&	r[0]	==	r[1]):

			281	 	 	 i.Op	=	InstRune1

			282	 	 case	len(r)	==	2	&&	r[0]	==	0	&&	r[1]	==	unicode.MaxRune:

			283	 	 	 i.Op	=	InstRuneAny

			284	 	 case	len(r)	==	4	&&	r[0]	==	0	&&	r[1]	==	'\n'-1	&&	r[2]	==	'\n'+1	&&	r[3]	==	unicode.MaxRune:

			285	 	 	 i.Op	=	InstRuneAnyNotNL

			286	 	 }

			287	

			288	 	 return	f

			289	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/regexp/syntax/parse.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	syntax	parses	regular	expressions	into	parse	trees	and	compiles

					6	 //	parse	trees	into	programs.	Most	clients	of	regular	expressions	will	use

					7	 //	the	facilities	of	package	regexp	(such	as	Compile	and	Match)	instead	of

					8	 //	this	package.

					9	 package	syntax

				10	

				11	 import	(

				12	 	 "sort"

				13	 	 "strings"

				14	 	 "unicode"

				15	 	 "unicode/utf8"

				16)

				17	

				18	 //	An	Error	describes	a	failure	to	parse	a	regular	expression

				19	 //	and	gives	the	offending	expression.

				20	 type	Error	struct	{

				21	 	 Code	ErrorCode

				22	 	 Expr	string

				23	 }

				24	

				25	 func	(e	*Error)	Error()	string	{

				26	 	 return	"error	parsing	regexp:	"	+	e.Code.String()	+	":	`"	+	e.Expr	+	"`"

				27	 }

				28	

				29	 //	An	ErrorCode	describes	a	failure	to	parse	a	regular	expression.

				30	 type	ErrorCode	string

				31	

				32	 const	(

				33	 	 //	Unexpected	error

				34	 	 ErrInternalError	ErrorCode	=	"regexp/syntax:	internal	error"

				35	

				36	 	 //	Parse	errors

				37	 	 ErrInvalidCharClass						ErrorCode	=	"invalid	character	class"

				38	 	 ErrInvalidCharRange						ErrorCode	=	"invalid	character	class	range"

				39	 	 ErrInvalidEscape									ErrorCode	=	"invalid	escape	sequence"

				40	 	 ErrInvalidNamedCapture			ErrorCode	=	"invalid	named	capture"

				41	 	 ErrInvalidPerlOp									ErrorCode	=	"invalid	or	unsupported	Perl	syntax"

				42	 	 ErrInvalidRepeatOp							ErrorCode	=	"invalid	nested	repetition	operator"

				43	 	 ErrInvalidRepeatSize					ErrorCode	=	"invalid	repeat	count"

				44	 	 ErrInvalidUTF8											ErrorCode	=	"invalid	UTF-8"

				45	 	 ErrMissingBracket								ErrorCode	=	"missing	closing]"

				46	 	 ErrMissingParen										ErrorCode	=	"missing	closing)"

				47	 	 ErrMissingRepeatArgument	ErrorCode	=	"missing	argument	to	repetition	operator"

				48	 	 ErrTrailingBackslash					ErrorCode	=	"trailing	backslash	at	end	of	expression"

				49)

				50	

				51	 func	(e	ErrorCode)	String()	string	{

				52	 	 return	string(e)

				53	 }

				54	

				55	 //	Flags	control	the	behavior	of	the	parser	and	record	information	about	regexp	context.

				56	 type	Flags	uint16

				57	

				58	 const	(

				59	 	 FoldCase						Flags	=	1	<<	iota	//	case-insensitive	match

				60	 	 Literal																									//	treat	pattern	as	literal	string

				61	 	 ClassNL																									//	allow	character	classes	like	[^a-z]	and	[[:space:]]	to	match	newline

				62	 	 DotNL																											//	allow	.	to	match	newline

				63	 	 OneLine																									//	treat	^	and	$	as	only	matching	at	beginning	and	end	of	text

				64	 	 NonGreedy																							//	make	repetition	operators	default	to	non-greedy

				65	 	 PerlX																											//	allow	Perl	extensions

				66	 	 UnicodeGroups																			//	allow	\p{Han},	\P{Han}	for	Unicode	group	and	negation

				67	 	 WasDollar																							//	regexp	OpEndText	was	$,	not	\z

				68	 	 Simple																										//	regexp	contains	no	counted	repetition

				69	

				70	 	 MatchNL	=	ClassNL	|	DotNL

				71	

				72	 	 Perl								=	ClassNL	|	OneLine	|	PerlX	|	UnicodeGroups	

				73	 	 POSIX	Flags	=	0																																									

				74)

				75	

				76	 //	Pseudo-ops	for	parsing	stack.

				77	 const	(

				78	 	 opLeftParen	=	opPseudo	+	iota

				79	 	 opVerticalBar

				80)

				81	

				82	 type	parser	struct	{

				83	 	 flags							Flags					//	parse	mode	flags

				84	 	 stack							[]*Regexp	//	stack	of	parsed	expressions

				85	 	 free								*Regexp

				86	 	 numCap						int	//	number	of	capturing	groups	seen

				87	 	 wholeRegexp	string

				88	 	 tmpClass				[]rune	//	temporary	char	class	work	space

				89	 }

				90	

				91	 func	(p	*parser)	newRegexp(op	Op)	*Regexp	{

				92	 	 re	:=	p.free

				93	 	 if	re	!=	nil	{

				94	 	 	 p.free	=	re.Sub0[0]

				95	 	 	 *re	=	Regexp{}

				96	 	 }	else	{

				97	 	 	 re	=	new(Regexp)

				98	 	 }

				99	 	 re.Op	=	op

			100	 	 return	re

			101	 }

			102	

			103	 func	(p	*parser)	reuse(re	*Regexp)	{

			104	 	 re.Sub0[0]	=	p.free

			105	 	 p.free	=	re

			106	 }

			107	

			108	 //	Parse	stack	manipulation.

			109	

			110	 //	push	pushes	the	regexp	re	onto	the	parse	stack	and	returns	the	regexp.

			111	 func	(p	*parser)	push(re	*Regexp)	*Regexp	{

			112	 	 if	re.Op	==	OpCharClass	&&	len(re.Rune)	==	2	&&	re.Rune[0]	==	re.Rune[1]	{

			113	 	 	 //	Single	rune.

			114	 	 	 if	p.maybeConcat(re.Rune[0],	p.flags&^FoldCase)	{

			115	 	 	 	 return	nil

			116	 	 	 }

			117	 	 	 re.Op	=	OpLiteral

			118	 	 	 re.Rune	=	re.Rune[:1]

			119	 	 	 re.Flags	=	p.flags	&^	FoldCase

			120	 	 }	else	if	re.Op	==	OpCharClass	&&	len(re.Rune)	==	4	&&

			121	 	 	 re.Rune[0]	==	re.Rune[1]	&&	re.Rune[2]	==	re.Rune[3]	&&

			122	 	 	 unicode.SimpleFold(re.Rune[0])	==	re.Rune[2]	&&

			123	 	 	 unicode.SimpleFold(re.Rune[2])	==	re.Rune[0]	||

			124	 	 	 re.Op	==	OpCharClass	&&	len(re.Rune)	==	2	&&

			125	 	 	 	 re.Rune[0]+1	==	re.Rune[1]	&&

			126	 	 	 	 unicode.SimpleFold(re.Rune[0])	==	re.Rune[1]	&&

			127	 	 	 	 unicode.SimpleFold(re.Rune[1])	==	re.Rune[0]	{

			128	 	 	 //	Case-insensitive	rune	like	[Aa]	or	[Δδ].

			129	 	 	 if	p.maybeConcat(re.Rune[0],	p.flags|FoldCase)	{

			130	 	 	 	 return	nil

			131	 	 	 }

			132	

			133	 	 	 //	Rewrite	as	(case-insensitive)	literal.

			134	 	 	 re.Op	=	OpLiteral

			135	 	 	 re.Rune	=	re.Rune[:1]

			136	 	 	 re.Flags	=	p.flags	|	FoldCase

			137	 	 }	else	{

			138	 	 	 //	Incremental	concatenation.

			139	 	 	 p.maybeConcat(-1,	0)

			140	 	 }

			141	

			142	 	 p.stack	=	append(p.stack,	re)

			143	 	 return	re

			144	 }

			145	

			146	 //	maybeConcat	implements	incremental	concatenation

			147	 //	of	literal	runes	into	string	nodes.		The	parser	calls	this

			148	 //	before	each	push,	so	only	the	top	fragment	of	the	stack

			149	 //	might	need	processing.		Since	this	is	called	before	a	push,

			150	 //	the	topmost	literal	is	no	longer	subject	to	operators	like	*

			151	 //	(Otherwise	ab*	would	turn	into	(ab)*.)

			152	 //	If	r	>=	0	and	there's	a	node	left	over,	maybeConcat	uses	it

			153	 //	to	push	r	with	the	given	flags.

			154	 //	maybeConcat	reports	whether	r	was	pushed.

			155	 func	(p	*parser)	maybeConcat(r	rune,	flags	Flags)	bool	{

			156	 	 n	:=	len(p.stack)

			157	 	 if	n	<	2	{

			158	 	 	 return	false

			159	 	 }

			160	

			161	 	 re1	:=	p.stack[n-1]

			162	 	 re2	:=	p.stack[n-2]

			163	 	 if	re1.Op	!=	OpLiteral	||	re2.Op	!=	OpLiteral	||	re1.Flags&FoldCase	!=	re2.Flags&FoldCase	{

			164	 	 	 return	false

			165	 	 }

			166	

			167	 	 //	Push	re1	into	re2.

			168	 	 re2.Rune	=	append(re2.Rune,	re1.Rune...)

			169	

			170	 	 //	Reuse	re1	if	possible.

			171	 	 if	r	>=	0	{

			172	 	 	 re1.Rune	=	re1.Rune0[:1]

			173	 	 	 re1.Rune[0]	=	r

			174	 	 	 re1.Flags	=	flags

			175	 	 	 return	true

			176	 	 }

			177	

			178	 	 p.stack	=	p.stack[:n-1]

			179	 	 p.reuse(re1)

			180	 	 return	false	//	did	not	push	r

			181	 }

			182	

			183	 //	newLiteral	returns	a	new	OpLiteral	Regexp	with	the	given	flags

			184	 func	(p	*parser)	newLiteral(r	rune,	flags	Flags)	*Regexp	{

			185	 	 re	:=	p.newRegexp(OpLiteral)

			186	 	 re.Flags	=	flags

			187	 	 if	flags&FoldCase	!=	0	{

			188	 	 	 r	=	minFoldRune(r)

			189	 	 }

			190	 	 re.Rune0[0]	=	r

			191	 	 re.Rune	=	re.Rune0[:1]

			192	 	 return	re

			193	 }

			194	

			195	 //	minFoldRune	returns	the	minimum	rune	fold-equivalent	to	r.

			196	 func	minFoldRune(r	rune)	rune	{

			197	 	 if	r	<	minFold	||	r	>	maxFold	{

			198	 	 	 return	r

			199	 	 }

			200	 	 min	:=	r

			201	 	 r0	:=	r

			202	 	 for	r	=	unicode.SimpleFold(r);	r	!=	r0;	r	=	unicode.SimpleFold(r)	{

			203	 	 	 if	min	>	r	{

			204	 	 	 	 min	=	r

			205	 	 	 }

			206	 	 }

			207	 	 return	min

			208	 }

			209	

			210	 //	literal	pushes	a	literal	regexp	for	the	rune	r	on	the	stack

			211	 //	and	returns	that	regexp.

			212	 func	(p	*parser)	literal(r	rune)	{

			213	 	 p.push(p.newLiteral(r,	p.flags))

			214	 }

			215	

			216	 //	op	pushes	a	regexp	with	the	given	op	onto	the	stack

			217	 //	and	returns	that	regexp.

			218	 func	(p	*parser)	op(op	Op)	*Regexp	{

			219	 	 re	:=	p.newRegexp(op)

			220	 	 re.Flags	=	p.flags

			221	 	 return	p.push(re)

			222	 }

			223	

			224	 //	repeat	replaces	the	top	stack	element	with	itself	repeated	according	to	op,	min,	max.

			225	 //	before	is	the	regexp	suffix	starting	at	the	repetition	operator.

			226	 //	after	is	the	regexp	suffix	following	after	the	repetition	operator.

			227	 //	repeat	returns	an	updated	'after'	and	an	error,	if	any.

			228	 func	(p	*parser)	repeat(op	Op,	min,	max	int,	before,	after,	lastRepeat	string)	(string,	error)	{

			229	 	 flags	:=	p.flags

			230	 	 if	p.flags&PerlX	!=	0	{

			231	 	 	 if	len(after)	>	0	&&	after[0]	==	'?'	{

			232	 	 	 	 after	=	after[1:]

			233	 	 	 	 flags	^=	NonGreedy

			234	 	 	 }

			235	 	 	 if	lastRepeat	!=	""	{

			236	 	 	 	 //	In	Perl	it	is	not	allowed	to	stack	repetition	operators:

			237	 	 	 	 //	a**	is	a	syntax	error,	not	a	doubled	star,	and	a++	means

			238	 	 	 	 //	something	else	entirely,	which	we	don't	support!

			239	 	 	 	 return	"",	&Error{ErrInvalidRepeatOp,	lastRepeat[:len(lastRepeat)-len(after)]}

			240	 	 	 }

			241	 	 }

			242	 	 n	:=	len(p.stack)

			243	 	 if	n	==	0	{

			244	 	 	 return	"",	&Error{ErrMissingRepeatArgument,	before[:len(before)-len(after)]}

			245	 	 }

			246	 	 sub	:=	p.stack[n-1]

			247	 	 if	sub.Op	>=	opPseudo	{

			248	 	 	 return	"",	&Error{ErrMissingRepeatArgument,	before[:len(before)-len(after)]}

			249	 	 }

			250	 	 re	:=	p.newRegexp(op)

			251	 	 re.Min	=	min

			252	 	 re.Max	=	max

			253	 	 re.Flags	=	flags

			254	 	 re.Sub	=	re.Sub0[:1]

			255	 	 re.Sub[0]	=	sub

			256	 	 p.stack[n-1]	=	re

			257	 	 return	after,	nil

			258	 }

			259	

			260	 //	concat	replaces	the	top	of	the	stack	(above	the	topmost	'|'	or	'(')	with	its	concatenation.

			261	 func	(p	*parser)	concat()	*Regexp	{

			262	 	 p.maybeConcat(-1,	0)

			263	

			264	 	 //	Scan	down	to	find	pseudo-operator	|	or	(.

			265	 	 i	:=	len(p.stack)

			266	 	 for	i	>	0	&&	p.stack[i-1].Op	<	opPseudo	{

			267	 	 	 i--

			268	 	 }

			269	 	 subs	:=	p.stack[i:]

			270	 	 p.stack	=	p.stack[:i]

			271	

			272	 	 //	Empty	concatenation	is	special	case.

			273	 	 if	len(subs)	==	0	{

			274	 	 	 return	p.push(p.newRegexp(OpEmptyMatch))

			275	 	 }

			276	

			277	 	 return	p.push(p.collapse(subs,	OpConcat))

			278	 }

			279	

			280	 //	alternate	replaces	the	top	of	the	stack	(above	the	topmost	'(')	with	its	alternation.

			281	 func	(p	*parser)	alternate()	*Regexp	{

			282	 	 //	Scan	down	to	find	pseudo-operator	(.

			283	 	 //	There	are	no	|	above	(.

			284	 	 i	:=	len(p.stack)

			285	 	 for	i	>	0	&&	p.stack[i-1].Op	<	opPseudo	{

			286	 	 	 i--

			287	 	 }

			288	 	 subs	:=	p.stack[i:]

			289	 	 p.stack	=	p.stack[:i]

			290	

			291	 	 //	Make	sure	top	class	is	clean.

			292	 	 //	All	the	others	already	are	(see	swapVerticalBar).

			293	 	 if	len(subs)	>	0	{

			294	 	 	 cleanAlt(subs[len(subs)-1])

			295	 	 }

			296	

			297	 	 //	Empty	alternate	is	special	case

			298	 	 //	(shouldn't	happen	but	easy	to	handle).

			299	 	 if	len(subs)	==	0	{

			300	 	 	 return	p.push(p.newRegexp(OpNoMatch))

			301	 	 }

			302	

			303	 	 return	p.push(p.collapse(subs,	OpAlternate))

			304	 }

			305	

			306	 //	cleanAlt	cleans	re	for	eventual	inclusion	in	an	alternation.

			307	 func	cleanAlt(re	*Regexp)	{

			308	 	 switch	re.Op	{

			309	 	 case	OpCharClass:

			310	 	 	 re.Rune	=	cleanClass(&re.Rune)

			311	 	 	 if	len(re.Rune)	==	2	&&	re.Rune[0]	==	0	&&	re.Rune[1]	==	unicode.MaxRune	{

			312	 	 	 	 re.Rune	=	nil

			313	 	 	 	 re.Op	=	OpAnyChar

			314	 	 	 	 return

			315	 	 	 }

			316	 	 	 if	len(re.Rune)	==	4	&&	re.Rune[0]	==	0	&&	re.Rune[1]	==	'\n'-1	&&	re.Rune[2]	==	'\n'+1	&&	re.Rune[3]	==	unicode.MaxRune	{

			317	 	 	 	 re.Rune	=	nil

			318	 	 	 	 re.Op	=	OpAnyCharNotNL

			319	 	 	 	 return

			320	 	 	 }

			321	 	 	 if	cap(re.Rune)-len(re.Rune)	>	100	{

			322	 	 	 	 //	re.Rune	will	not	grow	any	more.

			323	 	 	 	 //	Make	a	copy	or	inline	to	reclaim	storage.

			324	 	 	 	 re.Rune	=	append(re.Rune0[:0],	re.Rune...)

			325	 	 	 }

			326	 	 }

			327	 }

			328	

			329	 //	collapse	returns	the	result	of	applying	op	to	sub.

			330	 //	If	sub	contains	op	nodes,	they	all	get	hoisted	up

			331	 //	so	that	there	is	never	a	concat	of	a	concat	or	an

			332	 //	alternate	of	an	alternate.

			333	 func	(p	*parser)	collapse(subs	[]*Regexp,	op	Op)	*Regexp	{

			334	 	 if	len(subs)	==	1	{

			335	 	 	 return	subs[0]

			336	 	 }

			337	 	 re	:=	p.newRegexp(op)

			338	 	 re.Sub	=	re.Sub0[:0]

			339	 	 for	_,	sub	:=	range	subs	{

			340	 	 	 if	sub.Op	==	op	{

			341	 	 	 	 re.Sub	=	append(re.Sub,	sub.Sub...)

			342	 	 	 	 p.reuse(sub)

			343	 	 	 }	else	{

			344	 	 	 	 re.Sub	=	append(re.Sub,	sub)

			345	 	 	 }

			346	 	 }

			347	 	 if	op	==	OpAlternate	{

			348	 	 	 re.Sub	=	p.factor(re.Sub,	re.Flags)

			349	 	 	 if	len(re.Sub)	==	1	{

			350	 	 	 	 old	:=	re

			351	 	 	 	 re	=	re.Sub[0]

			352	 	 	 	 p.reuse(old)

			353	 	 	 }

			354	 	 }

			355	 	 return	re

			356	 }

			357	

			358	 //	factor	factors	common	prefixes	from	the	alternation	list	sub.

			359	 //	It	returns	a	replacement	list	that	reuses	the	same	storage	and

			360	 //	frees	(passes	to	p.reuse)	any	removed	*Regexps.

			361	 //

			362	 //	For	example,

			363	 //					ABC|ABD|AEF|BCX|BCY

			364	 //	simplifies	by	literal	prefix	extraction	to

			365	 //					A(B(C|D)|EF)|BC(X|Y)

			366	 //	which	simplifies	by	character	class	introduction	to

			367	 //					A(B[CD]|EF)|BC[XY]

			368	 //

			369	 func	(p	*parser)	factor(sub	[]*Regexp,	flags	Flags)	[]*Regexp	{

			370	 	 if	len(sub)	<	2	{

			371	 	 	 return	sub

			372	 	 }

			373	

			374	 	 //	Round	1:	Factor	out	common	literal	prefixes.

			375	 	 var	str	[]rune

			376	 	 var	strflags	Flags

			377	 	 start	:=	0

			378	 	 out	:=	sub[:0]

			379	 	 for	i	:=	0;	i	<=	len(sub);	i++	{

			380	 	 	 //	Invariant:	the	Regexps	that	were	in	sub[0:start]	have	been

			381	 	 	 //	used	or	marked	for	reuse,	and	the	slice	space	has	been	reused

			382	 	 	 //	for	out	(len(out)	<=	start).

			383	 	 	 //

			384	 	 	 //	Invariant:	sub[start:i]	consists	of	regexps	that	all	begin

			385	 	 	 //	with	str	as	modified	by	strflags.

			386	 	 	 var	istr	[]rune

			387	 	 	 var	iflags	Flags

			388	 	 	 if	i	<	len(sub)	{

			389	 	 	 	 istr,	iflags	=	p.leadingString(sub[i])

			390	 	 	 	 if	iflags	==	strflags	{

			391	 	 	 	 	 same	:=	0

			392	 	 	 	 	 for	same	<	len(str)	&&	same	<	len(istr)	&&	str[same]	==	istr[same]	{

			393	 	 	 	 	 	 same++

			394	 	 	 	 	 }

			395	 	 	 	 	 if	same	>	0	{

			396	 	 	 	 	 	 //	Matches	at	least	one	rune	in	current	range.

			397	 	 	 	 	 	 //	Keep	going	around.

			398	 	 	 	 	 	 str	=	str[:same]

			399	 	 	 	 	 	 continue

			400	 	 	 	 	 }

			401	 	 	 	 }

			402	 	 	 }

			403	

			404	 	 	 //	Found	end	of	a	run	with	common	leading	literal	string:

			405	 	 	 //	sub[start:i]	all	begin	with	str[0:len(str)],	but	sub[i]

			406	 	 	 //	does	not	even	begin	with	str[0].

			407	 	 	 //

			408	 	 	 //	Factor	out	common	string	and	append	factored	expression	to	out.

			409	 	 	 if	i	==	start	{

			410	 	 	 	 //	Nothing	to	do	-	run	of	length	0.

			411	 	 	 }	else	if	i	==	start+1	{

			412	 	 	 	 //	Just	one:	don't	bother	factoring.

			413	 	 	 	 out	=	append(out,	sub[start])

			414	 	 	 }	else	{

			415	 	 	 	 //	Construct	factored	form:	prefix(suffix1|suffix2|...)

			416	 	 	 	 prefix	:=	p.newRegexp(OpLiteral)

			417	 	 	 	 prefix.Flags	=	strflags

			418	 	 	 	 prefix.Rune	=	append(prefix.Rune[:0],	str...)

			419	

			420	 	 	 	 for	j	:=	start;	j	<	i;	j++	{

			421	 	 	 	 	 sub[j]	=	p.removeLeadingString(sub[j],	len(str))

			422	 	 	 	 }

			423	 	 	 	 suffix	:=	p.collapse(sub[start:i],	OpAlternate)	

			424	

			425	 	 	 	 re	:=	p.newRegexp(OpConcat)

			426	 	 	 	 re.Sub	=	append(re.Sub[:0],	prefix,	suffix)

			427	 	 	 	 out	=	append(out,	re)

			428	 	 	 }

			429	

			430	 	 	 //	Prepare	for	next	iteration.

			431	 	 	 start	=	i

			432	 	 	 str	=	istr

			433	 	 	 strflags	=	iflags

			434	 	 }

			435	 	 sub	=	out

			436	

			437	 	 //	Round	2:	Factor	out	common	complex	prefixes,

			438	 	 //	just	the	first	piece	of	each	concatenation,

			439	 	 //	whatever	it	is.		This	is	good	enough	a	lot	of	the	time.

			440	 	 start	=	0

			441	 	 out	=	sub[:0]

			442	 	 var	first	*Regexp

			443	 	 for	i	:=	0;	i	<=	len(sub);	i++	{

			444	 	 	 //	Invariant:	the	Regexps	that	were	in	sub[0:start]	have	been

			445	 	 	 //	used	or	marked	for	reuse,	and	the	slice	space	has	been	reused

			446	 	 	 //	for	out	(len(out)	<=	start).

			447	 	 	 //

			448	 	 	 //	Invariant:	sub[start:i]	consists	of	regexps	that	all	begin	with	ifirst.

			449	 	 	 var	ifirst	*Regexp

			450	 	 	 if	i	<	len(sub)	{

			451	 	 	 	 ifirst	=	p.leadingRegexp(sub[i])

			452	 	 	 	 if	first	!=	nil	&&	first.Equal(ifirst)	{

			453	 	 	 	 	 continue

			454	 	 	 	 }

			455	 	 	 }

			456	

			457	 	 	 //	Found	end	of	a	run	with	common	leading	regexp:

			458	 	 	 //	sub[start:i]	all	begin	with	first	but	sub[i]	does	not.

			459	 	 	 //

			460	 	 	 //	Factor	out	common	regexp	and	append	factored	expression	to	out.

			461	 	 	 if	i	==	start	{

			462	 	 	 	 //	Nothing	to	do	-	run	of	length	0.

			463	 	 	 }	else	if	i	==	start+1	{

			464	 	 	 	 //	Just	one:	don't	bother	factoring.

			465	 	 	 	 out	=	append(out,	sub[start])

			466	 	 	 }	else	{

			467	 	 	 	 //	Construct	factored	form:	prefix(suffix1|suffix2|...)

			468	 	 	 	 prefix	:=	first

			469	 	 	 	 for	j	:=	start;	j	<	i;	j++	{

			470	 	 	 	 	 reuse	:=	j	!=	start	//	prefix	came	from	sub[start]	

			471	 	 	 	 	 sub[j]	=	p.removeLeadingRegexp(sub[j],	reuse)

			472	 	 	 	 }

			473	 	 	 	 suffix	:=	p.collapse(sub[start:i],	OpAlternate)	

			474	

			475	 	 	 	 re	:=	p.newRegexp(OpConcat)

			476	 	 	 	 re.Sub	=	append(re.Sub[:0],	prefix,	suffix)

			477	 	 	 	 out	=	append(out,	re)

			478	 	 	 }

			479	

			480	 	 	 //	Prepare	for	next	iteration.

			481	 	 	 start	=	i

			482	 	 	 first	=	ifirst

			483	 	 }

			484	 	 sub	=	out

			485	

			486	 	 //	Round	3:	Collapse	runs	of	single	literals	into	character	classes.

			487	 	 start	=	0

			488	 	 out	=	sub[:0]

			489	 	 for	i	:=	0;	i	<=	len(sub);	i++	{

			490	 	 	 //	Invariant:	the	Regexps	that	were	in	sub[0:start]	have	been

			491	 	 	 //	used	or	marked	for	reuse,	and	the	slice	space	has	been	reused

			492	 	 	 //	for	out	(len(out)	<=	start).

			493	 	 	 //

			494	 	 	 //	Invariant:	sub[start:i]	consists	of	regexps	that	are	either

			495	 	 	 //	literal	runes	or	character	classes.

			496	 	 	 if	i	<	len(sub)	&&	isCharClass(sub[i])	{

			497	 	 	 	 continue

			498	 	 	 }

			499	

			500	 	 	 //	sub[i]	is	not	a	char	or	char	class;

			501	 	 	 //	emit	char	class	for	sub[start:i]...

			502	 	 	 if	i	==	start	{

			503	 	 	 	 //	Nothing	to	do	-	run	of	length	0.

			504	 	 	 }	else	if	i	==	start+1	{

			505	 	 	 	 out	=	append(out,	sub[start])

			506	 	 	 }	else	{

			507	 	 	 	 //	Make	new	char	class.

			508	 	 	 	 //	Start	with	most	complex	regexp	in	sub[start].

			509	 	 	 	 max	:=	start

			510	 	 	 	 for	j	:=	start	+	1;	j	<	i;	j++	{

			511	 	 	 	 	 if	sub[max].Op	<	sub[j].Op	||	sub[max].Op	==	sub[j].Op	&&	len(sub[max].Rune)	<	len(sub[j].Rune)	{

			512	 	 	 	 	 	 max	=	j

			513	 	 	 	 	 }

			514	 	 	 	 }

			515	 	 	 	 sub[start],	sub[max]	=	sub[max],	sub[start]

			516	

			517	 	 	 	 for	j	:=	start	+	1;	j	<	i;	j++	{

			518	 	 	 	 	 mergeCharClass(sub[start],	sub[j])

			519	 	 	 	 	 p.reuse(sub[j])

			520	 	 	 	 }

			521	 	 	 	 cleanAlt(sub[start])

			522	 	 	 	 out	=	append(out,	sub[start])

			523	 	 	 }

			524	

			525	 	 	 //	...	and	then	emit	sub[i].

			526	 	 	 if	i	<	len(sub)	{

			527	 	 	 	 out	=	append(out,	sub[i])

			528	 	 	 }

			529	 	 	 start	=	i	+	1

			530	 	 }

			531	 	 sub	=	out

			532	

			533	 	 //	Round	4:	Collapse	runs	of	empty	matches	into	a	single	empty	match.

			534	 	 start	=	0

			535	 	 out	=	sub[:0]

			536	 	 for	i	:=	range	sub	{

			537	 	 	 if	i+1	<	len(sub)	&&	sub[i].Op	==	OpEmptyMatch	&&	sub[i+1].Op	==	OpEmptyMatch	{

			538	 	 	 	 continue

			539	 	 	 }

			540	 	 	 out	=	append(out,	sub[i])

			541	 	 }

			542	 	 sub	=	out

			543	

			544	 	 return	sub

			545	 }

			546	

			547	 //	leadingString	returns	the	leading	literal	string	that	re	begins	with.

			548	 //	The	string	refers	to	storage	in	re	or	its	children.

			549	 func	(p	*parser)	leadingString(re	*Regexp)	([]rune,	Flags)	{

			550	 	 if	re.Op	==	OpConcat	&&	len(re.Sub)	>	0	{

			551	 	 	 re	=	re.Sub[0]

			552	 	 }

			553	 	 if	re.Op	!=	OpLiteral	{

			554	 	 	 return	nil,	0

			555	 	 }

			556	 	 return	re.Rune,	re.Flags	&	FoldCase

			557	 }

			558	

			559	 //	removeLeadingString	removes	the	first	n	leading	runes

			560	 //	from	the	beginning	of	re.		It	returns	the	replacement	for	re.

			561	 func	(p	*parser)	removeLeadingString(re	*Regexp,	n	int)	*Regexp	{

			562	 	 if	re.Op	==	OpConcat	&&	len(re.Sub)	>	0	{

			563	 	 	 //	Removing	a	leading	string	in	a	concatenation

			564	 	 	 //	might	simplify	the	concatenation.

			565	 	 	 sub	:=	re.Sub[0]

			566	 	 	 sub	=	p.removeLeadingString(sub,	n)

			567	 	 	 re.Sub[0]	=	sub

			568	 	 	 if	sub.Op	==	OpEmptyMatch	{

			569	 	 	 	 p.reuse(sub)

			570	 	 	 	 switch	len(re.Sub)	{

			571	 	 	 	 case	0,	1:

			572	 	 	 	 	 //	Impossible	but	handle.

			573	 	 	 	 	 re.Op	=	OpEmptyMatch

			574	 	 	 	 	 re.Sub	=	nil

			575	 	 	 	 case	2:

			576	 	 	 	 	 old	:=	re

			577	 	 	 	 	 re	=	re.Sub[1]

			578	 	 	 	 	 p.reuse(old)

			579	 	 	 	 default:

			580	 	 	 	 	 copy(re.Sub,	re.Sub[1:])

			581	 	 	 	 	 re.Sub	=	re.Sub[:len(re.Sub)-1]

			582	 	 	 	 }

			583	 	 	 }

			584	 	 	 return	re

			585	 	 }

			586	

			587	 	 if	re.Op	==	OpLiteral	{

			588	 	 	 re.Rune	=	re.Rune[:copy(re.Rune,	re.Rune[n:])]

			589	 	 	 if	len(re.Rune)	==	0	{

			590	 	 	 	 re.Op	=	OpEmptyMatch

			591	 	 	 }

			592	 	 }

			593	 	 return	re

			594	 }

			595	

			596	 //	leadingRegexp	returns	the	leading	regexp	that	re	begins	with.

			597	 //	The	regexp	refers	to	storage	in	re	or	its	children.

			598	 func	(p	*parser)	leadingRegexp(re	*Regexp)	*Regexp	{

			599	 	 if	re.Op	==	OpEmptyMatch	{

			600	 	 	 return	nil

			601	 	 }

			602	 	 if	re.Op	==	OpConcat	&&	len(re.Sub)	>	0	{

			603	 	 	 sub	:=	re.Sub[0]

			604	 	 	 if	sub.Op	==	OpEmptyMatch	{

			605	 	 	 	 return	nil

			606	 	 	 }

			607	 	 	 return	sub

			608	 	 }

			609	 	 return	re

			610	 }

			611	

			612	 //	removeLeadingRegexp	removes	the	leading	regexp	in	re.

			613	 //	It	returns	the	replacement	for	re.

			614	 //	If	reuse	is	true,	it	passes	the	removed	regexp	(if	no	longer	needed)	to	p.reuse.

			615	 func	(p	*parser)	removeLeadingRegexp(re	*Regexp,	reuse	bool)	*Regexp	{

			616	 	 if	re.Op	==	OpConcat	&&	len(re.Sub)	>	0	{

			617	 	 	 if	reuse	{

			618	 	 	 	 p.reuse(re.Sub[0])

			619	 	 	 }

			620	 	 	 re.Sub	=	re.Sub[:copy(re.Sub,	re.Sub[1:])]

			621	 	 	 switch	len(re.Sub)	{

			622	 	 	 case	0:

			623	 	 	 	 re.Op	=	OpEmptyMatch

			624	 	 	 	 re.Sub	=	nil

			625	 	 	 case	1:

			626	 	 	 	 old	:=	re

			627	 	 	 	 re	=	re.Sub[0]

			628	 	 	 	 p.reuse(old)

			629	 	 	 }

			630	 	 	 return	re

			631	 	 }

			632	 	 if	reuse	{

			633	 	 	 p.reuse(re)

			634	 	 }

			635	 	 return	p.newRegexp(OpEmptyMatch)

			636	 }

			637	

			638	 func	literalRegexp(s	string,	flags	Flags)	*Regexp	{

			639	 	 re	:=	&Regexp{Op:	OpLiteral}

			640	 	 re.Flags	=	flags

			641	 	 re.Rune	=	re.Rune0[:0]	//	use	local	storage	for	small	strings

			642	 	 for	_,	c	:=	range	s	{

			643	 	 	 if	len(re.Rune)	>=	cap(re.Rune)	{

			644	 	 	 	 //	string	is	too	long	to	fit	in	Rune0.		let	Go	handle	it

			645	 	 	 	 re.Rune	=	[]rune(s)

			646	 	 	 	 break

			647	 	 	 }

			648	 	 	 re.Rune	=	append(re.Rune,	c)

			649	 	 }

			650	 	 return	re

			651	 }

			652	

			653	 //	Parsing.

			654	

			655	 //	Parse	parses	a	regular	expression	string	s,	controlled	by	the	specified

			656	 //	Flags,	and	returns	a	regular	expression	parse	tree.	The	syntax	is

			657	 //	described	in	the	top-level	comment	for	package	regexp.

			658	 func	Parse(s	string,	flags	Flags)	(*Regexp,	error)	{

			659	 	 if	flags&Literal	!=	0	{

			660	 	 	 //	Trivial	parser	for	literal	string.

			661	 	 	 if	err	:=	checkUTF8(s);	err	!=	nil	{

			662	 	 	 	 return	nil,	err

			663	 	 	 }

			664	 	 	 return	literalRegexp(s,	flags),	nil

			665	 	 }

			666	

			667	 	 //	Otherwise,	must	do	real	work.

			668	 	 var	(

			669	 	 	 p										parser

			670	 	 	 err								error

			671	 	 	 c										rune

			672	 	 	 op									Op

			673	 	 	 lastRepeat	string

			674	 	 	 min,	max			int

			675)

			676	 	 p.flags	=	flags

			677	 	 p.wholeRegexp	=	s

			678	 	 t	:=	s

			679	 	 for	t	!=	""	{

			680	 	 	 repeat	:=	""

			681	 	 BigSwitch:

			682	 	 	 switch	t[0]	{

			683	 	 	 default:

			684	 	 	 	 if	c,	t,	err	=	nextRune(t);	err	!=	nil	{

			685	 	 	 	 	 return	nil,	err

			686	 	 	 	 }

			687	 	 	 	 p.literal(c)

			688	

			689	 	 	 case	'(':

			690	 	 	 	 if	p.flags&PerlX	!=	0	&&	len(t)	>=	2	&&	t[1]	==	'?'	{

			691	 	 	 	 	 //	Flag	changes	and	non-capturing	groups.

			692	 	 	 	 	 if	t,	err	=	p.parsePerlFlags(t);	err	!=	nil	{

			693	 	 	 	 	 	 return	nil,	err

			694	 	 	 	 	 }

			695	 	 	 	 	 break

			696	 	 	 	 }

			697	 	 	 	 p.numCap++

			698	 	 	 	 p.op(opLeftParen).Cap	=	p.numCap

			699	 	 	 	 t	=	t[1:]

			700	 	 	 case	'|':

			701	 	 	 	 if	err	=	p.parseVerticalBar();	err	!=	nil	{

			702	 	 	 	 	 return	nil,	err

			703	 	 	 	 }

			704	 	 	 	 t	=	t[1:]

			705	 	 	 case	')':

			706	 	 	 	 if	err	=	p.parseRightParen();	err	!=	nil	{

			707	 	 	 	 	 return	nil,	err

			708	 	 	 	 }

			709	 	 	 	 t	=	t[1:]

			710	 	 	 case	'^':

			711	 	 	 	 if	p.flags&OneLine	!=	0	{

			712	 	 	 	 	 p.op(OpBeginText)

			713	 	 	 	 }	else	{

			714	 	 	 	 	 p.op(OpBeginLine)

			715	 	 	 	 }

			716	 	 	 	 t	=	t[1:]

			717	 	 	 case	'$':

			718	 	 	 	 if	p.flags&OneLine	!=	0	{

			719	 	 	 	 	 p.op(OpEndText).Flags	|=	WasDollar

			720	 	 	 	 }	else	{

			721	 	 	 	 	 p.op(OpEndLine)

			722	 	 	 	 }

			723	 	 	 	 t	=	t[1:]

			724	 	 	 case	'.':

			725	 	 	 	 if	p.flags&DotNL	!=	0	{

			726	 	 	 	 	 p.op(OpAnyChar)

			727	 	 	 	 }	else	{

			728	 	 	 	 	 p.op(OpAnyCharNotNL)

			729	 	 	 	 }

			730	 	 	 	 t	=	t[1:]

			731	 	 	 case	'[':

			732	 	 	 	 if	t,	err	=	p.parseClass(t);	err	!=	nil	{

			733	 	 	 	 	 return	nil,	err

			734	 	 	 	 }

			735	 	 	 case	'*',	'+',	'?':

			736	 	 	 	 before	:=	t

			737	 	 	 	 switch	t[0]	{

			738	 	 	 	 case	'*':

			739	 	 	 	 	 op	=	OpStar

			740	 	 	 	 case	'+':

			741	 	 	 	 	 op	=	OpPlus

			742	 	 	 	 case	'?':

			743	 	 	 	 	 op	=	OpQuest

			744	 	 	 	 }

			745	 	 	 	 after	:=	t[1:]

			746	 	 	 	 if	after,	err	=	p.repeat(op,	min,	max,	before,	after,	lastRepeat);	err	!=	nil	{

			747	 	 	 	 	 return	nil,	err

			748	 	 	 	 }

			749	 	 	 	 repeat	=	before

			750	 	 	 	 t	=	after

			751	 	 	 case	'{':

			752	 	 	 	 op	=	OpRepeat

			753	 	 	 	 before	:=	t

			754	 	 	 	 min,	max,	after,	ok	:=	p.parseRepeat(t)

			755	 	 	 	 if	!ok	{

			756	 	 	 	 	 //	If	the	repeat	cannot	be	parsed,	{	is	a	literal.

			757	 	 	 	 	 p.literal('{')

			758	 	 	 	 	 t	=	t[1:]

			759	 	 	 	 	 break

			760	 	 	 	 }

			761	 	 	 	 if	min	<	0	||	min	>	1000	||	max	>	1000	||	max	>=	0	&&	min	>	max	{

			762	 	 	 	 	 //	Numbers	were	too	big,	or	max	is	present	and	min	>	max.

			763	 	 	 	 	 return	nil,	&Error{ErrInvalidRepeatSize,	before[:len(before)-len(after)]}

			764	 	 	 	 }

			765	 	 	 	 if	after,	err	=	p.repeat(op,	min,	max,	before,	after,	lastRepeat);	err	!=	nil	{

			766	 	 	 	 	 return	nil,	err

			767	 	 	 	 }

			768	 	 	 	 repeat	=	before

			769	 	 	 	 t	=	after

			770	 	 	 case	'\\':

			771	 	 	 	 if	p.flags&PerlX	!=	0	&&	len(t)	>=	2	{

			772	 	 	 	 	 switch	t[1]	{

			773	 	 	 	 	 case	'A':

			774	 	 	 	 	 	 p.op(OpBeginText)

			775	 	 	 	 	 	 t	=	t[2:]

			776	 	 	 	 	 	 break	BigSwitch

			777	 	 	 	 	 case	'b':

			778	 	 	 	 	 	 p.op(OpWordBoundary)

			779	 	 	 	 	 	 t	=	t[2:]

			780	 	 	 	 	 	 break	BigSwitch

			781	 	 	 	 	 case	'B':

			782	 	 	 	 	 	 p.op(OpNoWordBoundary)

			783	 	 	 	 	 	 t	=	t[2:]

			784	 	 	 	 	 	 break	BigSwitch

			785	 	 	 	 	 case	'C':

			786	 	 	 	 	 	 //	any	byte;	not	supported

			787	 	 	 	 	 	 return	nil,	&Error{ErrInvalidEscape,	t[:2]}

			788	 	 	 	 	 case	'Q':

			789	 	 	 	 	 	 //	\Q	...	\E:	the	...	is	always	literals

			790	 	 	 	 	 	 var	lit	string

			791	 	 	 	 	 	 if	i	:=	strings.Index(t,	`\E`);	i	<	0	{

			792	 	 	 	 	 	 	 lit	=	t[2:]

			793	 	 	 	 	 	 	 t	=	""

			794	 	 	 	 	 	 }	else	{

			795	 	 	 	 	 	 	 lit	=	t[2:i]

			796	 	 	 	 	 	 	 t	=	t[i+2:]

			797	 	 	 	 	 	 }

			798	 	 	 	 	 	 p.push(literalRegexp(lit,	p.flags))

			799	 	 	 	 	 	 break	BigSwitch

			800	 	 	 	 	 case	'z':

			801	 	 	 	 	 	 p.op(OpEndText)

			802	 	 	 	 	 	 t	=	t[2:]

			803	 	 	 	 	 	 break	BigSwitch

			804	 	 	 	 	 }

			805	 	 	 	 }

			806	

			807	 	 	 	 re	:=	p.newRegexp(OpCharClass)

			808	 	 	 	 re.Flags	=	p.flags

			809	

			810	 	 	 	 //	Look	for	Unicode	character	group	like	\p{Han}

			811	 	 	 	 if	len(t)	>=	2	&&	(t[1]	==	'p'	||	t[1]	==	'P')	{

			812	 	 	 	 	 r,	rest,	err	:=	p.parseUnicodeClass(t,	re.Rune0[:0])

			813	 	 	 	 	 if	err	!=	nil	{

			814	 	 	 	 	 	 return	nil,	err

			815	 	 	 	 	 }

			816	 	 	 	 	 if	r	!=	nil	{

			817	 	 	 	 	 	 re.Rune	=	r

			818	 	 	 	 	 	 t	=	rest

			819	 	 	 	 	 	 p.push(re)

			820	 	 	 	 	 	 break	BigSwitch

			821	 	 	 	 	 }

			822	 	 	 	 }

			823	

			824	 	 	 	 //	Perl	character	class	escape.

			825	 	 	 	 if	r,	rest	:=	p.parsePerlClassEscape(t,	re.Rune0[:0]);	r	!=	nil	{

			826	 	 	 	 	 re.Rune	=	r

			827	 	 	 	 	 t	=	rest

			828	 	 	 	 	 p.push(re)

			829	 	 	 	 	 break	BigSwitch

			830	 	 	 	 }

			831	 	 	 	 p.reuse(re)

			832	

			833	 	 	 	 //	Ordinary	single-character	escape.

			834	 	 	 	 if	c,	t,	err	=	p.parseEscape(t);	err	!=	nil	{

			835	 	 	 	 	 return	nil,	err

			836	 	 	 	 }

			837	 	 	 	 p.literal(c)

			838	 	 	 }

			839	 	 	 lastRepeat	=	repeat

			840	 	 }

			841	

			842	 	 p.concat()

			843	 	 if	p.swapVerticalBar()	{

			844	 	 	 //	pop	vertical	bar

			845	 	 	 p.stack	=	p.stack[:len(p.stack)-1]

			846	 	 }

			847	 	 p.alternate()

			848	

			849	 	 n	:=	len(p.stack)

			850	 	 if	n	!=	1	{

			851	 	 	 return	nil,	&Error{ErrMissingParen,	s}

			852	 	 }

			853	 	 return	p.stack[0],	nil

			854	 }

			855	

			856	 //	parseRepeat	parses	{min}	(max=min)	or	{min,}	(max=-1)	or	{min,max}.

			857	 //	If	s	is	not	of	that	form,	it	returns	ok	==	false.

			858	 //	If	s	has	the	right	form	but	the	values	are	too	big,	it	returns	min	==	-1,	ok	==	true.

			859	 func	(p	*parser)	parseRepeat(s	string)	(min,	max	int,	rest	string,	ok	bool)	{

			860	 	 if	s	==	""	||	s[0]	!=	'{'	{

			861	 	 	 return

			862	 	 }

			863	 	 s	=	s[1:]

			864	 	 var	ok1	bool

			865	 	 if	min,	s,	ok1	=	p.parseInt(s);	!ok1	{

			866	 	 	 return

			867	 	 }

			868	 	 if	s	==	""	{

			869	 	 	 return

			870	 	 }

			871	 	 if	s[0]	!=	','	{

			872	 	 	 max	=	min

			873	 	 }	else	{

			874	 	 	 s	=	s[1:]

			875	 	 	 if	s	==	""	{

			876	 	 	 	 return

			877	 	 	 }

			878	 	 	 if	s[0]	==	'}'	{

			879	 	 	 	 max	=	-1

			880	 	 	 }	else	if	max,	s,	ok1	=	p.parseInt(s);	!ok1	{

			881	 	 	 	 return

			882	 	 	 }	else	if	max	<	0	{

			883	 	 	 	 //	parseInt	found	too	big	a	number

			884	 	 	 	 min	=	-1

			885	 	 	 }

			886	 	 }

			887	 	 if	s	==	""	||	s[0]	!=	'}'	{

			888	 	 	 return

			889	 	 }

			890	 	 rest	=	s[1:]

			891	 	 ok	=	true

			892	 	 return

			893	 }

			894	

			895	 //	parsePerlFlags	parses	a	Perl	flag	setting	or	non-capturing	group	or	both,

			896	 //	like	(?i)	or	(?:	or	(?i:.		It	removes	the	prefix	from	s	and	updates	the	parse	state.

			897	 //	The	caller	must	have	ensured	that	s	begins	with	"(?".

			898	 func	(p	*parser)	parsePerlFlags(s	string)	(rest	string,	err	error)	{

			899	 	 t	:=	s

			900	

			901	 	 //	Check	for	named	captures,	first	introduced	in	Python's	regexp	library.

			902	 	 //	As	usual,	there	are	three	slightly	different	syntaxes:

			903	 	 //

			904	 	 //			(?P<name>expr)			the	original,	introduced	by	Python

			905	 	 //			(?<name>expr)				the	.NET	alteration,	adopted	by	Perl	5.10

			906	 	 //			(?'name'expr)				another	.NET	alteration,	adopted	by	Perl	5.10

			907	 	 //

			908	 	 //	Perl	5.10	gave	in	and	implemented	the	Python	version	too,

			909	 	 //	but	they	claim	that	the	last	two	are	the	preferred	forms.

			910	 	 //	PCRE	and	languages	based	on	it	(specifically,	PHP	and	Ruby)

			911	 	 //	support	all	three	as	well.		EcmaScript	4	uses	only	the	Python	form.

			912	 	 //

			913	 	 //	In	both	the	open	source	world	(via	Code	Search)	and	the

			914	 	 //	Google	source	tree,	(?P<expr>name)	is	the	dominant	form,

			915	 	 //	so	that's	the	one	we	implement.		One	is	enough.

			916	 	 if	len(t)	>	4	&&	t[2]	==	'P'	&&	t[3]	==	'<'	{

			917	 	 	 //	Pull	out	name.

			918	 	 	 end	:=	strings.IndexRune(t,	'>')

			919	 	 	 if	end	<	0	{

			920	 	 	 	 if	err	=	checkUTF8(t);	err	!=	nil	{

			921	 	 	 	 	 return	"",	err

			922	 	 	 	 }

			923	 	 	 	 return	"",	&Error{ErrInvalidNamedCapture,	s}

			924	 	 	 }

			925	

			926	 	 	 capture	:=	t[:end+1]	//	"(?P<name>"

			927	 	 	 name	:=	t[4:end]					//	"name"

			928	 	 	 if	err	=	checkUTF8(name);	err	!=	nil	{

			929	 	 	 	 return	"",	err

			930	 	 	 }

			931	 	 	 if	!isValidCaptureName(name)	{

			932	 	 	 	 return	"",	&Error{ErrInvalidNamedCapture,	capture}

			933	 	 	 }

			934	

			935	 	 	 //	Like	ordinary	capture,	but	named.

			936	 	 	 p.numCap++

			937	 	 	 re	:=	p.op(opLeftParen)

			938	 	 	 re.Cap	=	p.numCap

			939	 	 	 re.Name	=	name

			940	 	 	 return	t[end+1:],	nil

			941	 	 }

			942	

			943	 	 //	Non-capturing	group.		Might	also	twiddle	Perl	flags.

			944	 	 var	c	rune

			945	 	 t	=	t[2:]	//	skip	(?

			946	 	 flags	:=	p.flags

			947	 	 sign	:=	+1

			948	 	 sawFlag	:=	false

			949	 Loop:

			950	 	 for	t	!=	""	{

			951	 	 	 if	c,	t,	err	=	nextRune(t);	err	!=	nil	{

			952	 	 	 	 return	"",	err

			953	 	 	 }

			954	 	 	 switch	c	{

			955	 	 	 default:

			956	 	 	 	 break	Loop

			957	

			958	 	 	 //	Flags.

			959	 	 	 case	'i':

			960	 	 	 	 flags	|=	FoldCase

			961	 	 	 	 sawFlag	=	true

			962	 	 	 case	'm':

			963	 	 	 	 flags	&^=	OneLine

			964	 	 	 	 sawFlag	=	true

			965	 	 	 case	's':

			966	 	 	 	 flags	|=	DotNL

			967	 	 	 	 sawFlag	=	true

			968	 	 	 case	'U':

			969	 	 	 	 flags	|=	NonGreedy

			970	 	 	 	 sawFlag	=	true

			971	

			972	 	 	 //	Switch	to	negation.

			973	 	 	 case	'-':

			974	 	 	 	 if	sign	<	0	{

			975	 	 	 	 	 break	Loop

			976	 	 	 	 }

			977	 	 	 	 sign	=	-1

			978	 	 	 	 //	Invert	flags	so	that	|	above	turn	into	&^	and	vice	versa.

			979	 	 	 	 //	We'll	invert	flags	again	before	using	it	below.

			980	 	 	 	 flags	=	^flags

			981	 	 	 	 sawFlag	=	false

			982	

			983	 	 	 //	End	of	flags,	starting	group	or	not.

			984	 	 	 case	':',	')':

			985	 	 	 	 if	sign	<	0	{

			986	 	 	 	 	 if	!sawFlag	{

			987	 	 	 	 	 	 break	Loop

			988	 	 	 	 	 }

			989	 	 	 	 	 flags	=	^flags

			990	 	 	 	 }

			991	 	 	 	 if	c	==	':'	{

			992	 	 	 	 	 //	Open	new	group

			993	 	 	 	 	 p.op(opLeftParen)

			994	 	 	 	 }

			995	 	 	 	 p.flags	=	flags

			996	 	 	 	 return	t,	nil

			997	 	 	 }

			998	 	 }

			999	

		1000	 	 return	"",	&Error{ErrInvalidPerlOp,	s[:len(s)-len(t)]}

		1001	 }

		1002	

		1003	 //	isValidCaptureName	reports	whether	name

		1004	 //	is	a	valid	capture	name:	[A-Za-z0-9_]+.

		1005	 //	PCRE	limits	names	to	32	bytes.

		1006	 //	Python	rejects	names	starting	with	digits.

		1007	 //	We	don't	enforce	either	of	those.

		1008	 func	isValidCaptureName(name	string)	bool	{

		1009	 	 if	name	==	""	{

		1010	 	 	 return	false

		1011	 	 }

		1012	 	 for	_,	c	:=	range	name	{

		1013	 	 	 if	c	!=	'_'	&&	!isalnum(c)	{

		1014	 	 	 	 return	false

		1015	 	 	 }

		1016	 	 }

		1017	 	 return	true

		1018	 }

		1019	

		1020	 //	parseInt	parses	a	decimal	integer.

		1021	 func	(p	*parser)	parseInt(s	string)	(n	int,	rest	string,	ok	bool)	{

		1022	 	 if	s	==	""	||	s[0]	<	'0'	||	'9'	<	s[0]	{

		1023	 	 	 return

		1024	 	 }

		1025	 	 //	Disallow	leading	zeros.

		1026	 	 if	len(s)	>=	2	&&	s[0]	==	'0'	&&	'0'	<=	s[1]	&&	s[1]	<=	'9'	{

		1027	 	 	 return

		1028	 	 }

		1029	 	 t	:=	s

		1030	 	 for	s	!=	""	&&	'0'	<=	s[0]	&&	s[0]	<=	'9'	{

		1031	 	 	 s	=	s[1:]

		1032	 	 }

		1033	 	 rest	=	s

		1034	 	 ok	=	true

		1035	 	 //	Have	digits,	compute	value.

		1036	 	 t	=	t[:len(t)-len(s)]

		1037	 	 for	i	:=	0;	i	<	len(t);	i++	{

		1038	 	 	 //	Avoid	overflow.

		1039	 	 	 if	n	>=	1e8	{

		1040	 	 	 	 n	=	-1

		1041	 	 	 	 break

		1042	 	 	 }

		1043	 	 	 n	=	n*10	+	int(t[i])	-	'0'

		1044	 	 }

		1045	 	 return

		1046	 }

		1047	

		1048	 //	can	this	be	represented	as	a	character	class?

		1049	 //	single-rune	literal	string,	char	class,	.,	and	.|\n.

		1050	 func	isCharClass(re	*Regexp)	bool	{

		1051	 	 return	re.Op	==	OpLiteral	&&	len(re.Rune)	==	1	||

		1052	 	 	 re.Op	==	OpCharClass	||

		1053	 	 	 re.Op	==	OpAnyCharNotNL	||

		1054	 	 	 re.Op	==	OpAnyChar

		1055	 }

		1056	

		1057	 //	does	re	match	r?

		1058	 func	matchRune(re	*Regexp,	r	rune)	bool	{

		1059	 	 switch	re.Op	{

		1060	 	 case	OpLiteral:

		1061	 	 	 return	len(re.Rune)	==	1	&&	re.Rune[0]	==	r

		1062	 	 case	OpCharClass:

		1063	 	 	 for	i	:=	0;	i	<	len(re.Rune);	i	+=	2	{

		1064	 	 	 	 if	re.Rune[i]	<=	r	&&	r	<=	re.Rune[i+1]	{

		1065	 	 	 	 	 return	true

		1066	 	 	 	 }

		1067	 	 	 }

		1068	 	 	 return	false

		1069	 	 case	OpAnyCharNotNL:

		1070	 	 	 return	r	!=	'\n'

		1071	 	 case	OpAnyChar:

		1072	 	 	 return	true

		1073	 	 }

		1074	 	 return	false

		1075	 }

		1076	

		1077	 //	parseVerticalBar	handles	a	|	in	the	input.

		1078	 func	(p	*parser)	parseVerticalBar()	error	{

		1079	 	 p.concat()

		1080	

		1081	 	 //	The	concatenation	we	just	parsed	is	on	top	of	the	stack.

		1082	 	 //	If	it	sits	above	an	opVerticalBar,	swap	it	below

		1083	 	 //	(things	below	an	opVerticalBar	become	an	alternation).

		1084	 	 //	Otherwise,	push	a	new	vertical	bar.

		1085	 	 if	!p.swapVerticalBar()	{

		1086	 	 	 p.op(opVerticalBar)

		1087	 	 }

		1088	

		1089	 	 return	nil

		1090	 }

		1091	

		1092	 //	mergeCharClass	makes	dst	=	dst|src.

		1093	 //	The	caller	must	ensure	that	dst.Op	>=	src.Op,

		1094	 //	to	reduce	the	amount	of	copying.

		1095	 func	mergeCharClass(dst,	src	*Regexp)	{

		1096	 	 switch	dst.Op	{

		1097	 	 case	OpAnyChar:

		1098	 	 	 //	src	doesn't	add	anything.

		1099	 	 case	OpAnyCharNotNL:

		1100	 	 	 //	src	might	add	\n

		1101	 	 	 if	matchRune(src,	'\n')	{

		1102	 	 	 	 dst.Op	=	OpAnyChar

		1103	 	 	 }

		1104	 	 case	OpCharClass:

		1105	 	 	 //	src	is	simpler,	so	either	literal	or	char	class

		1106	 	 	 if	src.Op	==	OpLiteral	{

		1107	 	 	 	 dst.Rune	=	appendLiteral(dst.Rune,	src.Rune[0],	src.Flags)

		1108	 	 	 }	else	{

		1109	 	 	 	 dst.Rune	=	appendClass(dst.Rune,	src.Rune)

		1110	 	 	 }

		1111	 	 case	OpLiteral:

		1112	 	 	 //	both	literal

		1113	 	 	 if	src.Rune[0]	==	dst.Rune[0]	&&	src.Flags	==	dst.Flags	{

		1114	 	 	 	 break

		1115	 	 	 }

		1116	 	 	 dst.Op	=	OpCharClass

		1117	 	 	 dst.Rune	=	appendLiteral(dst.Rune[:0],	dst.Rune[0],	dst.Flags)

		1118	 	 	 dst.Rune	=	appendLiteral(dst.Rune,	src.Rune[0],	src.Flags)

		1119	 	 }

		1120	 }

		1121	

		1122	 //	If	the	top	of	the	stack	is	an	element	followed	by	an	opVerticalBar

		1123	 //	swapVerticalBar	swaps	the	two	and	returns	true.

		1124	 //	Otherwise	it	returns	false.

		1125	 func	(p	*parser)	swapVerticalBar()	bool	{

		1126	 	 //	If	above	and	below	vertical	bar	are	literal	or	char	class,

		1127	 	 //	can	merge	into	a	single	char	class.

		1128	 	 n	:=	len(p.stack)

		1129	 	 if	n	>=	3	&&	p.stack[n-2].Op	==	opVerticalBar	&&	isCharClass(p.stack[n-1])	&&	isCharClass(p.stack[n-3])	{

		1130	 	 	 re1	:=	p.stack[n-1]

		1131	 	 	 re3	:=	p.stack[n-3]

		1132	 	 	 //	Make	re3	the	more	complex	of	the	two.

		1133	 	 	 if	re1.Op	>	re3.Op	{

		1134	 	 	 	 re1,	re3	=	re3,	re1

		1135	 	 	 	 p.stack[n-3]	=	re3

		1136	 	 	 }

		1137	 	 	 mergeCharClass(re3,	re1)

		1138	 	 	 p.reuse(re1)

		1139	 	 	 p.stack	=	p.stack[:n-1]

		1140	 	 	 return	true

		1141	 	 }

		1142	

		1143	 	 if	n	>=	2	{

		1144	 	 	 re1	:=	p.stack[n-1]

		1145	 	 	 re2	:=	p.stack[n-2]

		1146	 	 	 if	re2.Op	==	opVerticalBar	{

		1147	 	 	 	 if	n	>=	3	{

		1148	 	 	 	 	 //	Now	out	of	reach.

		1149	 	 	 	 	 //	Clean	opportunistically.

		1150	 	 	 	 	 cleanAlt(p.stack[n-3])

		1151	 	 	 	 }

		1152	 	 	 	 p.stack[n-2]	=	re1

		1153	 	 	 	 p.stack[n-1]	=	re2

		1154	 	 	 	 return	true

		1155	 	 	 }

		1156	 	 }

		1157	 	 return	false

		1158	 }

		1159	

		1160	 //	parseRightParen	handles	a)	in	the	input.

		1161	 func	(p	*parser)	parseRightParen()	error	{

		1162	 	 p.concat()

		1163	 	 if	p.swapVerticalBar()	{

		1164	 	 	 //	pop	vertical	bar

		1165	 	 	 p.stack	=	p.stack[:len(p.stack)-1]

		1166	 	 }

		1167	 	 p.alternate()

		1168	

		1169	 	 n	:=	len(p.stack)

		1170	 	 if	n	<	2	{

		1171	 	 	 return	&Error{ErrInternalError,	""}

		1172	 	 }

		1173	 	 re1	:=	p.stack[n-1]

		1174	 	 re2	:=	p.stack[n-2]

		1175	 	 p.stack	=	p.stack[:n-2]

		1176	 	 if	re2.Op	!=	opLeftParen	{

		1177	 	 	 return	&Error{ErrMissingParen,	p.wholeRegexp}

		1178	 	 }

		1179	 	 //	Restore	flags	at	time	of	paren.

		1180	 	 p.flags	=	re2.Flags

		1181	 	 if	re2.Cap	==	0	{

		1182	 	 	 //	Just	for	grouping.

		1183	 	 	 p.push(re1)

		1184	 	 }	else	{

		1185	 	 	 re2.Op	=	OpCapture

		1186	 	 	 re2.Sub	=	re2.Sub0[:1]

		1187	 	 	 re2.Sub[0]	=	re1

		1188	 	 	 p.push(re2)

		1189	 	 }

		1190	 	 return	nil

		1191	 }

		1192	

		1193	 //	parseEscape	parses	an	escape	sequence	at	the	beginning	of	s

		1194	 //	and	returns	the	rune.

		1195	 func	(p	*parser)	parseEscape(s	string)	(r	rune,	rest	string,	err	error)	{

		1196	 	 t	:=	s[1:]

		1197	 	 if	t	==	""	{

		1198	 	 	 return	0,	"",	&Error{ErrTrailingBackslash,	""}

		1199	 	 }

		1200	 	 c,	t,	err	:=	nextRune(t)

		1201	 	 if	err	!=	nil	{

		1202	 	 	 return	0,	"",	err

		1203	 	 }

		1204	

		1205	 Switch:

		1206	 	 switch	c	{

		1207	 	 default:

		1208	 	 	 if	c	<	utf8.RuneSelf	&&	!isalnum(c)	{

		1209	 	 	 	 //	Escaped	non-word	characters	are	always	themselves.

		1210	 	 	 	 //	PCRE	is	not	quite	so	rigorous:	it	accepts	things	like

		1211	 	 	 	 //	\q,	but	we	don't.		We	once	rejected	_,	but	too	many

		1212	 	 	 	 //	programs	and	people	insist	on	using	it,	so	allow	_.

		1213	 	 	 	 return	c,	t,	nil

		1214	 	 	 }

		1215	

		1216	 	 //	Octal	escapes.

		1217	 	 case	'1',	'2',	'3',	'4',	'5',	'6',	'7':

		1218	 	 	 //	Single	non-zero	digit	is	a	backreference;	not	supported

		1219	 	 	 if	t	==	""	||	t[0]	<	'0'	||	t[0]	>	'7'	{

		1220	 	 	 	 break

		1221	 	 	 }

		1222	 	 	 fallthrough

		1223	 	 case	'0':

		1224	 	 	 //	Consume	up	to	three	octal	digits;	already	have	one.

		1225	 	 	 r	=	c	-	'0'

		1226	 	 	 for	i	:=	1;	i	<	3;	i++	{

		1227	 	 	 	 if	t	==	""	||	t[0]	<	'0'	||	t[0]	>	'7'	{

		1228	 	 	 	 	 break

		1229	 	 	 	 }

		1230	 	 	 	 r	=	r*8	+	rune(t[0])	-	'0'

		1231	 	 	 	 t	=	t[1:]

		1232	 	 	 }

		1233	 	 	 return	r,	t,	nil

		1234	

		1235	 	 //	Hexadecimal	escapes.

		1236	 	 case	'x':

		1237	 	 	 if	t	==	""	{

		1238	 	 	 	 break

		1239	 	 	 }

		1240	 	 	 if	c,	t,	err	=	nextRune(t);	err	!=	nil	{

		1241	 	 	 	 return	0,	"",	err

		1242	 	 	 }

		1243	 	 	 if	c	==	'{'	{

		1244	 	 	 	 //	Any	number	of	digits	in	braces.

		1245	 	 	 	 //	Perl	accepts	any	text	at	all;	it	ignores	all	text

		1246	 	 	 	 //	after	the	first	non-hex	digit.		We	require	only	hex	digits,

		1247	 	 	 	 //	and	at	least	one.

		1248	 	 	 	 nhex	:=	0

		1249	 	 	 	 r	=	0

		1250	 	 	 	 for	{

		1251	 	 	 	 	 if	t	==	""	{

		1252	 	 	 	 	 	 break	Switch

		1253	 	 	 	 	 }

		1254	 	 	 	 	 if	c,	t,	err	=	nextRune(t);	err	!=	nil	{

		1255	 	 	 	 	 	 return	0,	"",	err

		1256	 	 	 	 	 }

		1257	 	 	 	 	 if	c	==	'}'	{

		1258	 	 	 	 	 	 break

		1259	 	 	 	 	 }

		1260	 	 	 	 	 v	:=	unhex(c)

		1261	 	 	 	 	 if	v	<	0	{

		1262	 	 	 	 	 	 break	Switch

		1263	 	 	 	 	 }

		1264	 	 	 	 	 r	=	r*16	+	v

		1265	 	 	 	 	 if	r	>	unicode.MaxRune	{

		1266	 	 	 	 	 	 break	Switch

		1267	 	 	 	 	 }

		1268	 	 	 	 	 nhex++

		1269	 	 	 	 }

		1270	 	 	 	 if	nhex	==	0	{

		1271	 	 	 	 	 break	Switch

		1272	 	 	 	 }

		1273	 	 	 	 return	r,	t,	nil

		1274	 	 	 }

		1275	

		1276	 	 	 //	Easy	case:	two	hex	digits.

		1277	 	 	 x	:=	unhex(c)

		1278	 	 	 if	c,	t,	err	=	nextRune(t);	err	!=	nil	{

		1279	 	 	 	 return	0,	"",	err

		1280	 	 	 }

		1281	 	 	 y	:=	unhex(c)

		1282	 	 	 if	x	<	0	||	y	<	0	{

		1283	 	 	 	 break

		1284	 	 	 }

		1285	 	 	 return	x*16	+	y,	t,	nil

		1286	

		1287	 	 //	C	escapes.		There	is	no	case	'b',	to	avoid	misparsing

		1288	 	 //	the	Perl	word-boundary	\b	as	the	C	backspace	\b

		1289	 	 //	when	in	POSIX	mode.		In	Perl,	/\b/	means	word-boundary

		1290	 	 //	but	/[\b]/	means	backspace.		We	don't	support	that.

		1291	 	 //	If	you	want	a	backspace,	embed	a	literal	backspace

		1292	 	 //	character	or	use	\x08.

		1293	 	 case	'a':

		1294	 	 	 return	'\a',	t,	err

		1295	 	 case	'f':

		1296	 	 	 return	'\f',	t,	err

		1297	 	 case	'n':

		1298	 	 	 return	'\n',	t,	err

		1299	 	 case	'r':

		1300	 	 	 return	'\r',	t,	err

		1301	 	 case	't':

		1302	 	 	 return	'\t',	t,	err

		1303	 	 case	'v':

		1304	 	 	 return	'\v',	t,	err

		1305	 	 }

		1306	 	 return	0,	"",	&Error{ErrInvalidEscape,	s[:len(s)-len(t)]}

		1307	 }

		1308	

		1309	 //	parseClassChar	parses	a	character	class	character	at	the	beginning	of	s

		1310	 //	and	returns	it.

		1311	 func	(p	*parser)	parseClassChar(s,	wholeClass	string)	(r	rune,	rest	string,	err	error)	{

		1312	 	 if	s	==	""	{

		1313	 	 	 return	0,	"",	&Error{Code:	ErrMissingBracket,	Expr:	wholeClass}

		1314	 	 }

		1315	

		1316	 	 //	Allow	regular	escape	sequences	even	though

		1317	 	 //	many	need	not	be	escaped	in	this	context.

		1318	 	 if	s[0]	==	'\\'	{

		1319	 	 	 return	p.parseEscape(s)

		1320	 	 }

		1321	

		1322	 	 return	nextRune(s)

		1323	 }

		1324	

		1325	 type	charGroup	struct	{

		1326	 	 sign		int

		1327	 	 class	[]rune

		1328	 }

		1329	

		1330	 //	parsePerlClassEscape	parses	a	leading	Perl	character	class	escape	like	\d

		1331	 //	from	the	beginning	of	s.		If	one	is	present,	it	appends	the	characters	to	r

		1332	 //	and	returns	the	new	slice	r	and	the	remainder	of	the	string.

		1333	 func	(p	*parser)	parsePerlClassEscape(s	string,	r	[]rune)	(out	[]rune,	rest	string)	{

		1334	 	 if	p.flags&PerlX	==	0	||	len(s)	<	2	||	s[0]	!=	'\\'	{

		1335	 	 	 return

		1336	 	 }

		1337	 	 g	:=	perlGroup[s[0:2]]

		1338	 	 if	g.sign	==	0	{

		1339	 	 	 return

		1340	 	 }

		1341	 	 return	p.appendGroup(r,	g),	s[2:]

		1342	 }

		1343	

		1344	 //	parseNamedClass	parses	a	leading	POSIX	named	character	class	like	[:alnum:]

		1345	 //	from	the	beginning	of	s.		If	one	is	present,	it	appends	the	characters	to	r

		1346	 //	and	returns	the	new	slice	r	and	the	remainder	of	the	string.

		1347	 func	(p	*parser)	parseNamedClass(s	string,	r	[]rune)	(out	[]rune,	rest	string,	err	error)	{

		1348	 	 if	len(s)	<	2	||	s[0]	!=	'['	||	s[1]	!=	':'	{

		1349	 	 	 return

		1350	 	 }

		1351	

		1352	 	 i	:=	strings.Index(s[2:],	":]")

		1353	 	 if	i	<	0	{

		1354	 	 	 return

		1355	 	 }

		1356	 	 i	+=	2

		1357	 	 name,	s	:=	s[0:i+2],	s[i+2:]

		1358	 	 g	:=	posixGroup[name]

		1359	 	 if	g.sign	==	0	{

		1360	 	 	 return	nil,	"",	&Error{ErrInvalidCharRange,	name}

		1361	 	 }

		1362	 	 return	p.appendGroup(r,	g),	s,	nil

		1363	 }

		1364	

		1365	 func	(p	*parser)	appendGroup(r	[]rune,	g	charGroup)	[]rune	{

		1366	 	 if	p.flags&FoldCase	==	0	{

		1367	 	 	 if	g.sign	<	0	{

		1368	 	 	 	 r	=	appendNegatedClass(r,	g.class)

		1369	 	 	 }	else	{

		1370	 	 	 	 r	=	appendClass(r,	g.class)

		1371	 	 	 }

		1372	 	 }	else	{

		1373	 	 	 tmp	:=	p.tmpClass[:0]

		1374	 	 	 tmp	=	appendFoldedClass(tmp,	g.class)

		1375	 	 	 p.tmpClass	=	tmp

		1376	 	 	 tmp	=	cleanClass(&p.tmpClass)

		1377	 	 	 if	g.sign	<	0	{

		1378	 	 	 	 r	=	appendNegatedClass(r,	tmp)

		1379	 	 	 }	else	{

		1380	 	 	 	 r	=	appendClass(r,	tmp)

		1381	 	 	 }

		1382	 	 }

		1383	 	 return	r

		1384	 }

		1385	

		1386	 var	anyTable	=	&unicode.RangeTable{

		1387	 	 R16:	[]unicode.Range16{{Lo:	0,	Hi:	1<<16	-	1,	Stride:	1}},

		1388	 	 R32:	[]unicode.Range32{{Lo:	1	<<	16,	Hi:	unicode.MaxRune,	Stride:	1}},

		1389	 }

		1390	

		1391	 //	unicodeTable	returns	the	unicode.RangeTable	identified	by	name

		1392	 //	and	the	table	of	additional	fold-equivalent	code	points.

		1393	 func	unicodeTable(name	string)	(*unicode.RangeTable,	*unicode.RangeTable)	{

		1394	 	 //	Special	case:	"Any"	means	any.

		1395	 	 if	name	==	"Any"	{

		1396	 	 	 return	anyTable,	anyTable

		1397	 	 }

		1398	 	 if	t	:=	unicode.Categories[name];	t	!=	nil	{

		1399	 	 	 return	t,	unicode.FoldCategory[name]

		1400	 	 }

		1401	 	 if	t	:=	unicode.Scripts[name];	t	!=	nil	{

		1402	 	 	 return	t,	unicode.FoldScript[name]

		1403	 	 }

		1404	 	 return	nil,	nil

		1405	 }

		1406	

		1407	 //	parseUnicodeClass	parses	a	leading	Unicode	character	class	like	\p{Han}

		1408	 //	from	the	beginning	of	s.		If	one	is	present,	it	appends	the	characters	to	r

		1409	 //	and	returns	the	new	slice	r	and	the	remainder	of	the	string.

		1410	 func	(p	*parser)	parseUnicodeClass(s	string,	r	[]rune)	(out	[]rune,	rest	string,	err	error)	{

		1411	 	 if	p.flags&UnicodeGroups	==	0	||	len(s)	<	2	||	s[0]	!=	'\\'	||	s[1]	!=	'p'	&&	s[1]	!=	'P'	{

		1412	 	 	 return

		1413	 	 }

		1414	

		1415	 	 //	Committed	to	parse	or	return	error.

		1416	 	 sign	:=	+1

		1417	 	 if	s[1]	==	'P'	{

		1418	 	 	 sign	=	-1

		1419	 	 }

		1420	 	 t	:=	s[2:]

		1421	 	 c,	t,	err	:=	nextRune(t)

		1422	 	 if	err	!=	nil	{

		1423	 	 	 return

		1424	 	 }

		1425	 	 var	seq,	name	string

		1426	 	 if	c	!=	'{'	{

		1427	 	 	 //	Single-letter	name.

		1428	 	 	 seq	=	s[:len(s)-len(t)]

		1429	 	 	 name	=	seq[2:]

		1430	 	 }	else	{

		1431	 	 	 //	Name	is	in	braces.

		1432	 	 	 end	:=	strings.IndexRune(s,	'}')

		1433	 	 	 if	end	<	0	{

		1434	 	 	 	 if	err	=	checkUTF8(s);	err	!=	nil	{

		1435	 	 	 	 	 return

		1436	 	 	 	 }

		1437	 	 	 	 return	nil,	"",	&Error{ErrInvalidCharRange,	s}

		1438	 	 	 }

		1439	 	 	 seq,	t	=	s[:end+1],	s[end+1:]

		1440	 	 	 name	=	s[3:end]

		1441	 	 	 if	err	=	checkUTF8(name);	err	!=	nil	{

		1442	 	 	 	 return

		1443	 	 	 }

		1444	 	 }

		1445	

		1446	 	 //	Group	can	have	leading	negation	too.		\p{^Han}	==	\P{Han},	\P{^Han}	==	\p{Han}.

		1447	 	 if	name	!=	""	&&	name[0]	==	'^'	{

		1448	 	 	 sign	=	-sign

		1449	 	 	 name	=	name[1:]

		1450	 	 }

		1451	

		1452	 	 tab,	fold	:=	unicodeTable(name)

		1453	 	 if	tab	==	nil	{

		1454	 	 	 return	nil,	"",	&Error{ErrInvalidCharRange,	seq}

		1455	 	 }

		1456	

		1457	 	 if	p.flags&FoldCase	==	0	||	fold	==	nil	{

		1458	 	 	 if	sign	>	0	{

		1459	 	 	 	 r	=	appendTable(r,	tab)

		1460	 	 	 }	else	{

		1461	 	 	 	 r	=	appendNegatedTable(r,	tab)

		1462	 	 	 }

		1463	 	 }	else	{

		1464	 	 	 //	Merge	and	clean	tab	and	fold	in	a	temporary	buffer.

		1465	 	 	 //	This	is	necessary	for	the	negative	case	and	just	tidy

		1466	 	 	 //	for	the	positive	case.

		1467	 	 	 tmp	:=	p.tmpClass[:0]

		1468	 	 	 tmp	=	appendTable(tmp,	tab)

		1469	 	 	 tmp	=	appendTable(tmp,	fold)

		1470	 	 	 p.tmpClass	=	tmp

		1471	 	 	 tmp	=	cleanClass(&p.tmpClass)

		1472	 	 	 if	sign	>	0	{

		1473	 	 	 	 r	=	appendClass(r,	tmp)

		1474	 	 	 }	else	{

		1475	 	 	 	 r	=	appendNegatedClass(r,	tmp)

		1476	 	 	 }

		1477	 	 }

		1478	 	 return	r,	t,	nil

		1479	 }

		1480	

		1481	 //	parseClass	parses	a	character	class	at	the	beginning	of	s

		1482	 //	and	pushes	it	onto	the	parse	stack.

		1483	 func	(p	*parser)	parseClass(s	string)	(rest	string,	err	error)	{

		1484	 	 t	:=	s[1:]	//	chop	[

		1485	 	 re	:=	p.newRegexp(OpCharClass)

		1486	 	 re.Flags	=	p.flags

		1487	 	 re.Rune	=	re.Rune0[:0]

		1488	

		1489	 	 sign	:=	+1

		1490	 	 if	t	!=	""	&&	t[0]	==	'^'	{

		1491	 	 	 sign	=	-1

		1492	 	 	 t	=	t[1:]

		1493	

		1494	 	 	 //	If	character	class	does	not	match	\n,	add	it	here,

		1495	 	 	 //	so	that	negation	later	will	do	the	right	thing.

		1496	 	 	 if	p.flags&ClassNL	==	0	{

		1497	 	 	 	 re.Rune	=	append(re.Rune,	'\n',	'\n')

		1498	 	 	 }

		1499	 	 }

		1500	

		1501	 	 class	:=	re.Rune

		1502	 	 first	:=	true	//]	and	-	are	okay	as	first	char	in	class

		1503	 	 for	t	==	""	||	t[0]	!=	']'	||	first	{

		1504	 	 	 //	POSIX:	-	is	only	okay	unescaped	as	first	or	last	in	class.

		1505	 	 	 //	Perl:	-	is	okay	anywhere.

		1506	 	 	 if	t	!=	""	&&	t[0]	==	'-'	&&	p.flags&PerlX	==	0	&&	!first	&&	(len(t)	==	1	||	t[1]	!=	']')	{

		1507	 	 	 	 _,	size	:=	utf8.DecodeRuneInString(t[1:])

		1508	 	 	 	 return	"",	&Error{Code:	ErrInvalidCharRange,	Expr:	t[:1+size]}

		1509	 	 	 }

		1510	 	 	 first	=	false

		1511	

		1512	 	 	 //	Look	for	POSIX	[:alnum:]	etc.

		1513	 	 	 if	len(t)	>	2	&&	t[0]	==	'['	&&	t[1]	==	':'	{

		1514	 	 	 	 nclass,	nt,	err	:=	p.parseNamedClass(t,	class)

		1515	 	 	 	 if	err	!=	nil	{

		1516	 	 	 	 	 return	"",	err

		1517	 	 	 	 }

		1518	 	 	 	 if	nclass	!=	nil	{

		1519	 	 	 	 	 class,	t	=	nclass,	nt

		1520	 	 	 	 	 continue

		1521	 	 	 	 }

		1522	 	 	 }

		1523	

		1524	 	 	 //	Look	for	Unicode	character	group	like	\p{Han}.

		1525	 	 	 nclass,	nt,	err	:=	p.parseUnicodeClass(t,	class)

		1526	 	 	 if	err	!=	nil	{

		1527	 	 	 	 return	"",	err

		1528	 	 	 }

		1529	 	 	 if	nclass	!=	nil	{

		1530	 	 	 	 class,	t	=	nclass,	nt

		1531	 	 	 	 continue

		1532	 	 	 }

		1533	

		1534	 	 	 //	Look	for	Perl	character	class	symbols	(extension).

		1535	 	 	 if	nclass,	nt	:=	p.parsePerlClassEscape(t,	class);	nclass	!=	nil	{

		1536	 	 	 	 class,	t	=	nclass,	nt

		1537	 	 	 	 continue

		1538	 	 	 }

		1539	

		1540	 	 	 //	Single	character	or	simple	range.

		1541	 	 	 rng	:=	t

		1542	 	 	 var	lo,	hi	rune

		1543	 	 	 if	lo,	t,	err	=	p.parseClassChar(t,	s);	err	!=	nil	{

		1544	 	 	 	 return	"",	err

		1545	 	 	 }

		1546	 	 	 hi	=	lo

		1547	 	 	 //	[a-]	means	(a|-)	so	check	for	final].

		1548	 	 	 if	len(t)	>=	2	&&	t[0]	==	'-'	&&	t[1]	!=	']'	{

		1549	 	 	 	 t	=	t[1:]

		1550	 	 	 	 if	hi,	t,	err	=	p.parseClassChar(t,	s);	err	!=	nil	{

		1551	 	 	 	 	 return	"",	err

		1552	 	 	 	 }

		1553	 	 	 	 if	hi	<	lo	{

		1554	 	 	 	 	 rng	=	rng[:len(rng)-len(t)]

		1555	 	 	 	 	 return	"",	&Error{Code:	ErrInvalidCharRange,	Expr:	rng}

		1556	 	 	 	 }

		1557	 	 	 }

		1558	 	 	 if	p.flags&FoldCase	==	0	{

		1559	 	 	 	 class	=	appendRange(class,	lo,	hi)

		1560	 	 	 }	else	{

		1561	 	 	 	 class	=	appendFoldedRange(class,	lo,	hi)

		1562	 	 	 }

		1563	 	 }

		1564	 	 t	=	t[1:]	//	chop]

		1565	

		1566	 	 //	Use	&re.Rune	instead	of	&class	to	avoid	allocation.

		1567	 	 re.Rune	=	class

		1568	 	 class	=	cleanClass(&re.Rune)

		1569	 	 if	sign	<	0	{

		1570	 	 	 class	=	negateClass(class)

		1571	 	 }

		1572	 	 re.Rune	=	class

		1573	 	 p.push(re)

		1574	 	 return	t,	nil

		1575	 }

		1576	

		1577	 //	cleanClass	sorts	the	ranges	(pairs	of	elements	of	r),

		1578	 //	merges	them,	and	eliminates	duplicates.

		1579	 func	cleanClass(rp	*[]rune)	[]rune	{

		1580	

		1581	 	 //	Sort	by	lo	increasing,	hi	decreasing	to	break	ties.

		1582	 	 sort.Sort(ranges{rp})

		1583	

		1584	 	 r	:=	*rp

		1585	 	 if	len(r)	<	2	{

		1586	 	 	 return	r

		1587	 	 }

		1588	

		1589	 	 //	Merge	abutting,	overlapping.

		1590	 	 w	:=	2	//	write	index

		1591	 	 for	i	:=	2;	i	<	len(r);	i	+=	2	{

		1592	 	 	 lo,	hi	:=	r[i],	r[i+1]

		1593	 	 	 if	lo	<=	r[w-1]+1	{

		1594	 	 	 	 //	merge	with	previous	range

		1595	 	 	 	 if	hi	>	r[w-1]	{

		1596	 	 	 	 	 r[w-1]	=	hi

		1597	 	 	 	 }

		1598	 	 	 	 continue

		1599	 	 	 }

		1600	 	 	 //	new	disjoint	range

		1601	 	 	 r[w]	=	lo

		1602	 	 	 r[w+1]	=	hi

		1603	 	 	 w	+=	2

		1604	 	 }

		1605	

		1606	 	 return	r[:w]

		1607	 }

		1608	

		1609	 //	appendLiteral	returns	the	result	of	appending	the	literal	x	to	the	class	r.

		1610	 func	appendLiteral(r	[]rune,	x	rune,	flags	Flags)	[]rune	{

		1611	 	 if	flags&FoldCase	!=	0	{

		1612	 	 	 return	appendFoldedRange(r,	x,	x)

		1613	 	 }

		1614	 	 return	appendRange(r,	x,	x)

		1615	 }

		1616	

		1617	 //	appendRange	returns	the	result	of	appending	the	range	lo-hi	to	the	class	r.

		1618	 func	appendRange(r	[]rune,	lo,	hi	rune)	[]rune	{

		1619	 	 //	Expand	last	range	or	next	to	last	range	if	it	overlaps	or	abuts.

		1620	 	 //	Checking	two	ranges	helps	when	appending	case-folded

		1621	 	 //	alphabets,	so	that	one	range	can	be	expanding	A-Z	and	the

		1622	 	 //	other	expanding	a-z.

		1623	 	 n	:=	len(r)

		1624	 	 for	i	:=	2;	i	<=	4;	i	+=	2	{	//	twice,	using	i=2,	i=4

		1625	 	 	 if	n	>=	i	{

		1626	 	 	 	 rlo,	rhi	:=	r[n-i],	r[n-i+1]

		1627	 	 	 	 if	lo	<=	rhi+1	&&	rlo	<=	hi+1	{

		1628	 	 	 	 	 if	lo	<	rlo	{

		1629	 	 	 	 	 	 r[n-i]	=	lo

		1630	 	 	 	 	 }

		1631	 	 	 	 	 if	hi	>	rhi	{

		1632	 	 	 	 	 	 r[n-i+1]	=	hi

		1633	 	 	 	 	 }

		1634	 	 	 	 	 return	r

		1635	 	 	 	 }

		1636	 	 	 }

		1637	 	 }

		1638	

		1639	 	 return	append(r,	lo,	hi)

		1640	 }

		1641	

		1642	 const	(

		1643	 	 //	minimum	and	maximum	runes	involved	in	folding.

		1644	 	 //	checked	during	test.

		1645	 	 minFold	=	0x0041

		1646	 	 maxFold	=	0x1044f

		1647)

		1648	

		1649	 //	appendFoldedRange	returns	the	result	of	appending	the	range	lo-hi

		1650	 //	and	its	case	folding-equivalent	runes	to	the	class	r.

		1651	 func	appendFoldedRange(r	[]rune,	lo,	hi	rune)	[]rune	{

		1652	 	 //	Optimizations.

		1653	 	 if	lo	<=	minFold	&&	hi	>=	maxFold	{

		1654	 	 	 //	Range	is	full:	folding	can't	add	more.

		1655	 	 	 return	appendRange(r,	lo,	hi)

		1656	 	 }

		1657	 	 if	hi	<	minFold	||	lo	>	maxFold	{

		1658	 	 	 //	Range	is	outside	folding	possibilities.

		1659	 	 	 return	appendRange(r,	lo,	hi)

		1660	 	 }

		1661	 	 if	lo	<	minFold	{

		1662	 	 	 //	[lo,	minFold-1]	needs	no	folding.

		1663	 	 	 r	=	appendRange(r,	lo,	minFold-1)

		1664	 	 	 lo	=	minFold

		1665	 	 }

		1666	 	 if	hi	>	maxFold	{

		1667	 	 	 //	[maxFold+1,	hi]	needs	no	folding.

		1668	 	 	 r	=	appendRange(r,	maxFold+1,	hi)

		1669	 	 	 hi	=	maxFold

		1670	 	 }

		1671	

		1672	 	 //	Brute	force.		Depend	on	appendRange	to	coalesce	ranges	on	the	fly.

		1673	 	 for	c	:=	lo;	c	<=	hi;	c++	{

		1674	 	 	 r	=	appendRange(r,	c,	c)

		1675	 	 	 f	:=	unicode.SimpleFold(c)

		1676	 	 	 for	f	!=	c	{

		1677	 	 	 	 r	=	appendRange(r,	f,	f)

		1678	 	 	 	 f	=	unicode.SimpleFold(f)

		1679	 	 	 }

		1680	 	 }

		1681	 	 return	r

		1682	 }

		1683	

		1684	 //	appendClass	returns	the	result	of	appending	the	class	x	to	the	class	r.

		1685	 //	It	assume	x	is	clean.

		1686	 func	appendClass(r	[]rune,	x	[]rune)	[]rune	{

		1687	 	 for	i	:=	0;	i	<	len(x);	i	+=	2	{

		1688	 	 	 r	=	appendRange(r,	x[i],	x[i+1])

		1689	 	 }

		1690	 	 return	r

		1691	 }

		1692	

		1693	 //	appendFolded	returns	the	result	of	appending	the	case	folding	of	the	class	x	to	the	class	r.

		1694	 func	appendFoldedClass(r	[]rune,	x	[]rune)	[]rune	{

		1695	 	 for	i	:=	0;	i	<	len(x);	i	+=	2	{

		1696	 	 	 r	=	appendFoldedRange(r,	x[i],	x[i+1])

		1697	 	 }

		1698	 	 return	r

		1699	 }

		1700	

		1701	 //	appendNegatedClass	returns	the	result	of	appending	the	negation	of	the	class	x	to	the	class	r.

		1702	 //	It	assumes	x	is	clean.

		1703	 func	appendNegatedClass(r	[]rune,	x	[]rune)	[]rune	{

		1704	 	 nextLo	:=	'\u0000'

		1705	 	 for	i	:=	0;	i	<	len(x);	i	+=	2	{

		1706	 	 	 lo,	hi	:=	x[i],	x[i+1]

		1707	 	 	 if	nextLo	<=	lo-1	{

		1708	 	 	 	 r	=	appendRange(r,	nextLo,	lo-1)

		1709	 	 	 }

		1710	 	 	 nextLo	=	hi	+	1

		1711	 	 }

		1712	 	 if	nextLo	<=	unicode.MaxRune	{

		1713	 	 	 r	=	appendRange(r,	nextLo,	unicode.MaxRune)

		1714	 	 }

		1715	 	 return	r

		1716	 }

		1717	

		1718	 //	appendTable	returns	the	result	of	appending	x	to	the	class	r.

		1719	 func	appendTable(r	[]rune,	x	*unicode.RangeTable)	[]rune	{

		1720	 	 for	_,	xr	:=	range	x.R16	{

		1721	 	 	 lo,	hi,	stride	:=	rune(xr.Lo),	rune(xr.Hi),	rune(xr.Stride)

		1722	 	 	 if	stride	==	1	{

		1723	 	 	 	 r	=	appendRange(r,	lo,	hi)

		1724	 	 	 	 continue

		1725	 	 	 }

		1726	 	 	 for	c	:=	lo;	c	<=	hi;	c	+=	stride	{

		1727	 	 	 	 r	=	appendRange(r,	c,	c)

		1728	 	 	 }

		1729	 	 }

		1730	 	 for	_,	xr	:=	range	x.R32	{

		1731	 	 	 lo,	hi,	stride	:=	rune(xr.Lo),	rune(xr.Hi),	rune(xr.Stride)

		1732	 	 	 if	stride	==	1	{

		1733	 	 	 	 r	=	appendRange(r,	lo,	hi)

		1734	 	 	 	 continue

		1735	 	 	 }

		1736	 	 	 for	c	:=	lo;	c	<=	hi;	c	+=	stride	{

		1737	 	 	 	 r	=	appendRange(r,	c,	c)

		1738	 	 	 }

		1739	 	 }

		1740	 	 return	r

		1741	 }

		1742	

		1743	 //	appendNegatedTable	returns	the	result	of	appending	the	negation	of	x	to	the	class	r.

		1744	 func	appendNegatedTable(r	[]rune,	x	*unicode.RangeTable)	[]rune	{

		1745	 	 nextLo	:=	'\u0000'	//	lo	end	of	next	class	to	add

		1746	 	 for	_,	xr	:=	range	x.R16	{

		1747	 	 	 lo,	hi,	stride	:=	rune(xr.Lo),	rune(xr.Hi),	rune(xr.Stride)

		1748	 	 	 if	stride	==	1	{

		1749	 	 	 	 if	nextLo	<=	lo-1	{

		1750	 	 	 	 	 r	=	appendRange(r,	nextLo,	lo-1)

		1751	 	 	 	 }

		1752	 	 	 	 nextLo	=	hi	+	1

		1753	 	 	 	 continue

		1754	 	 	 }

		1755	 	 	 for	c	:=	lo;	c	<=	hi;	c	+=	stride	{

		1756	 	 	 	 if	nextLo	<=	c-1	{

		1757	 	 	 	 	 r	=	appendRange(r,	nextLo,	c-1)

		1758	 	 	 	 }

		1759	 	 	 	 nextLo	=	c	+	1

		1760	 	 	 }

		1761	 	 }

		1762	 	 for	_,	xr	:=	range	x.R32	{

		1763	 	 	 lo,	hi,	stride	:=	rune(xr.Lo),	rune(xr.Hi),	rune(xr.Stride)

		1764	 	 	 if	stride	==	1	{

		1765	 	 	 	 if	nextLo	<=	lo-1	{

		1766	 	 	 	 	 r	=	appendRange(r,	nextLo,	lo-1)

		1767	 	 	 	 }

		1768	 	 	 	 nextLo	=	hi	+	1

		1769	 	 	 	 continue

		1770	 	 	 }

		1771	 	 	 for	c	:=	lo;	c	<=	hi;	c	+=	stride	{

		1772	 	 	 	 if	nextLo	<=	c-1	{

		1773	 	 	 	 	 r	=	appendRange(r,	nextLo,	c-1)

		1774	 	 	 	 }

		1775	 	 	 	 nextLo	=	c	+	1

		1776	 	 	 }

		1777	 	 }

		1778	 	 if	nextLo	<=	unicode.MaxRune	{

		1779	 	 	 r	=	appendRange(r,	nextLo,	unicode.MaxRune)

		1780	 	 }

		1781	 	 return	r

		1782	 }

		1783	

		1784	 //	negateClass	overwrites	r	and	returns	r's	negation.

		1785	 //	It	assumes	the	class	r	is	already	clean.

		1786	 func	negateClass(r	[]rune)	[]rune	{

		1787	 	 nextLo	:=	'\u0000'	//	lo	end	of	next	class	to	add

		1788	 	 w	:=	0													//	write	index

		1789	 	 for	i	:=	0;	i	<	len(r);	i	+=	2	{

		1790	 	 	 lo,	hi	:=	r[i],	r[i+1]

		1791	 	 	 if	nextLo	<=	lo-1	{

		1792	 	 	 	 r[w]	=	nextLo

		1793	 	 	 	 r[w+1]	=	lo	-	1

		1794	 	 	 	 w	+=	2

		1795	 	 	 }

		1796	 	 	 nextLo	=	hi	+	1

		1797	 	 }

		1798	 	 r	=	r[:w]

		1799	 	 if	nextLo	<=	unicode.MaxRune	{

		1800	 	 	 //	It's	possible	for	the	negation	to	have	one	more

		1801	 	 	 //	range	-	this	one	-	than	the	original	class,	so	use	append.

		1802	 	 	 r	=	append(r,	nextLo,	unicode.MaxRune)

		1803	 	 }

		1804	 	 return	r

		1805	 }

		1806	

		1807	 //	ranges	implements	sort.Interface	on	a	[]rune.

		1808	 //	The	choice	of	receiver	type	definition	is	strange

		1809	 //	but	avoids	an	allocation	since	we	already	have

		1810	 //	a	*[]rune.

		1811	 type	ranges	struct	{

		1812	 	 p	*[]rune

		1813	 }

		1814	

		1815	 func	(ra	ranges)	Less(i,	j	int)	bool	{

		1816	 	 p	:=	*ra.p

		1817	 	 i	*=	2

		1818	 	 j	*=	2

		1819	 	 return	p[i]	<	p[j]	||	p[i]	==	p[j]	&&	p[i+1]	>	p[j+1]

		1820	 }

		1821	

		1822	 func	(ra	ranges)	Len()	int	{

		1823	 	 return	len(*ra.p)	/	2

		1824	 }

		1825	

		1826	 func	(ra	ranges)	Swap(i,	j	int)	{

		1827	 	 p	:=	*ra.p

		1828	 	 i	*=	2

		1829	 	 j	*=	2

		1830	 	 p[i],	p[i+1],	p[j],	p[j+1]	=	p[j],	p[j+1],	p[i],	p[i+1]

		1831	 }

		1832	

		1833	 func	checkUTF8(s	string)	error	{

		1834	 	 for	s	!=	""	{

		1835	 	 	 rune,	size	:=	utf8.DecodeRuneInString(s)

		1836	 	 	 if	rune	==	utf8.RuneError	&&	size	==	1	{

		1837	 	 	 	 return	&Error{Code:	ErrInvalidUTF8,	Expr:	s}

		1838	 	 	 }

		1839	 	 	 s	=	s[size:]

		1840	 	 }

		1841	 	 return	nil

		1842	 }

		1843	

		1844	 func	nextRune(s	string)	(c	rune,	t	string,	err	error)	{

		1845	 	 c,	size	:=	utf8.DecodeRuneInString(s)

		1846	 	 if	c	==	utf8.RuneError	&&	size	==	1	{

		1847	 	 	 return	0,	"",	&Error{Code:	ErrInvalidUTF8,	Expr:	s}

		1848	 	 }

		1849	 	 return	c,	s[size:],	nil

		1850	 }

		1851	

		1852	 func	isalnum(c	rune)	bool	{

		1853	 	 return	'0'	<=	c	&&	c	<=	'9'	||	'A'	<=	c	&&	c	<=	'Z'	||	'a'	<=	c	&&	c	<=	'z'

		1854	 }

		1855	

		1856	 func	unhex(c	rune)	rune	{

		1857	 	 if	'0'	<=	c	&&	c	<=	'9'	{

		1858	 	 	 return	c	-	'0'

		1859	 	 }

		1860	 	 if	'a'	<=	c	&&	c	<=	'f'	{

		1861	 	 	 return	c	-	'a'	+	10

		1862	 	 }

		1863	 	 if	'A'	<=	c	&&	c	<=	'F'	{

		1864	 	 	 return	c	-	'A'	+	10

		1865	 	 }

		1866	 	 return	-1

		1867	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/regexp/syntax/perl_groups.go
					1	 //	GENERATED	BY	make_perl_groups.pl;	DO	NOT	EDIT.

					2	 //	make_perl_groups.pl	>perl_groups.go

					3	

					4	 package	syntax

					5	

					6	 var	code1	=	[]rune{	/*	\d	*/

					7	 	 0x30,	0x39,

					8	 }

					9	

				10	 var	code2	=	[]rune{	/*	\s	*/

				11	 	 0x9,	0xa,

				12	 	 0xc,	0xd,

				13	 	 0x20,	0x20,

				14	 }

				15	

				16	 var	code3	=	[]rune{	/*	\w	*/

				17	 	 0x30,	0x39,

				18	 	 0x41,	0x5a,

				19	 	 0x5f,	0x5f,

				20	 	 0x61,	0x7a,

				21	 }

				22	

				23	 var	perlGroup	=	map[string]charGroup{

				24	 	 `\d`:	{+1,	code1},

				25	 	 `\D`:	{-1,	code1},

				26	 	 `\s`:	{+1,	code2},

				27	 	 `\S`:	{-1,	code2},

				28	 	 `\w`:	{+1,	code3},

				29	 	 `\W`:	{-1,	code3},

				30	 }

				31	 var	code4	=	[]rune{	/*	[:alnum:]	*/

				32	 	 0x30,	0x39,

				33	 	 0x41,	0x5a,

				34	 	 0x61,	0x7a,

				35	 }

				36	

				37	 var	code5	=	[]rune{	/*	[:alpha:]	*/

				38	 	 0x41,	0x5a,

				39	 	 0x61,	0x7a,

				40	 }

				41	

				42	 var	code6	=	[]rune{	/*	[:ascii:]	*/

				43	 	 0x0,	0x7f,

				44	 }

				45	

				46	 var	code7	=	[]rune{	/*	[:blank:]	*/

				47	 	 0x9,	0x9,

				48	 	 0x20,	0x20,

				49	 }

				50	

				51	 var	code8	=	[]rune{	/*	[:cntrl:]	*/

				52	 	 0x0,	0x1f,

				53	 	 0x7f,	0x7f,

				54	 }

				55	

				56	 var	code9	=	[]rune{	/*	[:digit:]	*/

				57	 	 0x30,	0x39,

				58	 }

				59	

				60	 var	code10	=	[]rune{	/*	[:graph:]	*/

				61	 	 0x21,	0x7e,

				62	 }

				63	

				64	 var	code11	=	[]rune{	/*	[:lower:]	*/

				65	 	 0x61,	0x7a,

				66	 }

				67	

				68	 var	code12	=	[]rune{	/*	[:print:]	*/

				69	 	 0x20,	0x7e,

				70	 }

				71	

				72	 var	code13	=	[]rune{	/*	[:punct:]	*/

				73	 	 0x21,	0x2f,

				74	 	 0x3a,	0x40,

				75	 	 0x5b,	0x60,

				76	 	 0x7b,	0x7e,

				77	 }

				78	

				79	 var	code14	=	[]rune{	/*	[:space:]	*/

				80	 	 0x9,	0xd,

				81	 	 0x20,	0x20,

				82	 }

				83	

				84	 var	code15	=	[]rune{	/*	[:upper:]	*/

				85	 	 0x41,	0x5a,

				86	 }

				87	

				88	 var	code16	=	[]rune{	/*	[:word:]	*/

				89	 	 0x30,	0x39,

				90	 	 0x41,	0x5a,

				91	 	 0x5f,	0x5f,

				92	 	 0x61,	0x7a,

				93	 }

				94	

				95	 var	code17	=	[]rune{	/*	[:xdigit:]	*/

				96	 	 0x30,	0x39,

				97	 	 0x41,	0x46,

				98	 	 0x61,	0x66,

				99	 }

			100	

			101	 var	posixGroup	=	map[string]charGroup{

			102	 	 `[:alnum:]`:			{+1,	code4},

			103	 	 `[:^alnum:]`:		{-1,	code4},

			104	 	 `[:alpha:]`:			{+1,	code5},

			105	 	 `[:^alpha:]`:		{-1,	code5},

			106	 	 `[:ascii:]`:			{+1,	code6},

			107	 	 `[:^ascii:]`:		{-1,	code6},

			108	 	 `[:blank:]`:			{+1,	code7},

			109	 	 `[:^blank:]`:		{-1,	code7},

			110	 	 `[:cntrl:]`:			{+1,	code8},

			111	 	 `[:^cntrl:]`:		{-1,	code8},

			112	 	 `[:digit:]`:			{+1,	code9},

			113	 	 `[:^digit:]`:		{-1,	code9},

			114	 	 `[:graph:]`:			{+1,	code10},

			115	 	 `[:^graph:]`:		{-1,	code10},

			116	 	 `[:lower:]`:			{+1,	code11},

			117	 	 `[:^lower:]`:		{-1,	code11},

			118	 	 `[:print:]`:			{+1,	code12},

			119	 	 `[:^print:]`:		{-1,	code12},

			120	 	 `[:punct:]`:			{+1,	code13},

			121	 	 `[:^punct:]`:		{-1,	code13},

			122	 	 `[:space:]`:			{+1,	code14},

			123	 	 `[:^space:]`:		{-1,	code14},

			124	 	 `[:upper:]`:			{+1,	code15},

			125	 	 `[:^upper:]`:		{-1,	code15},

			126	 	 `[:word:]`:				{+1,	code16},

			127	 	 `[:^word:]`:			{-1,	code16},

			128	 	 `[:xdigit:]`:		{+1,	code17},

			129	 	 `[:^xdigit:]`:	{-1,	code17},

			130	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/regexp/syntax/prog.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	syntax

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "strconv"

				10	 	 "unicode"

				11)

				12	

				13	 //	Compiled	program.

				14	 //	May	not	belong	in	this	package,	but	convenient	for	now.

				15	

				16	 //	A	Prog	is	a	compiled	regular	expression	program.

				17	 type	Prog	struct	{

				18	 	 Inst			[]Inst

				19	 	 Start		int	//	index	of	start	instruction

				20	 	 NumCap	int	//	number	of	InstCapture	insts	in	re

				21	 }

				22	

				23	 //	An	InstOp	is	an	instruction	opcode.

				24	 type	InstOp	uint8

				25	

				26	 const	(

				27	 	 InstAlt	InstOp	=	iota

				28	 	 InstAltMatch

				29	 	 InstCapture

				30	 	 InstEmptyWidth

				31	 	 InstMatch

				32	 	 InstFail

				33	 	 InstNop

				34	 	 InstRune

				35	 	 InstRune1

				36	 	 InstRuneAny

				37	 	 InstRuneAnyNotNL

				38)

				39	

				40	 //	An	EmptyOp	specifies	a	kind	or	mixture	of	zero-width	assertions.

				41	 type	EmptyOp	uint8

				42	

				43	 const	(

				44	 	 EmptyBeginLine	EmptyOp	=	1	<<	iota

				45	 	 EmptyEndLine

				46	 	 EmptyBeginText

				47	 	 EmptyEndText

				48	 	 EmptyWordBoundary

				49	 	 EmptyNoWordBoundary

				50)

				51	

				52	 //	EmptyOpContext	returns	the	zero-width	assertions

				53	 //	satisfied	at	the	position	between	the	runes	r1	and	r2.

				54	 //	Passing	r1	==	-1	indicates	that	the	position	is

				55	 //	at	the	beginning	of	the	text.

				56	 //	Passing	r2	==	-1	indicates	that	the	position	is

				57	 //	at	the	end	of	the	text.

				58	 func	EmptyOpContext(r1,	r2	rune)	EmptyOp	{

				59	 	 var	op	EmptyOp

				60	 	 if	r1	<	0	{

				61	 	 	 op	|=	EmptyBeginText	|	EmptyBeginLine

				62	 	 }

				63	 	 if	r1	==	'\n'	{

				64	 	 	 op	|=	EmptyBeginLine

				65	 	 }

				66	 	 if	r2	<	0	{

				67	 	 	 op	|=	EmptyEndText	|	EmptyEndLine

				68	 	 }

				69	 	 if	r2	==	'\n'	{

				70	 	 	 op	|=	EmptyEndLine

				71	 	 }

				72	 	 if	IsWordChar(r1)	!=	IsWordChar(r2)	{

				73	 	 	 op	|=	EmptyWordBoundary

				74	 	 }	else	{

				75	 	 	 op	|=	EmptyNoWordBoundary

				76	 	 }

				77	 	 return	op

				78	 }

				79	

				80	 //	IsWordChar	reports	whether	r	is	consider	a	``word	character''

				81	 //	during	the	evaluation	of	the	\b	and	\B	zero-width	assertions.

				82	 //	These	assertions	are	ASCII-only:	the	word	characters	are	[A-Za-z0-9_].

				83	 func	IsWordChar(r	rune)	bool	{

				84	 	 return	'A'	<=	r	&&	r	<=	'Z'	||	'a'	<=	r	&&	r	<=	'z'	||	'0'	<=	r	&&	r	<=	'9'	||	r	==	'_'

				85	 }

				86	

				87	 //	An	Inst	is	a	single	instruction	in	a	regular	expression	program.

				88	 type	Inst	struct	{

				89	 	 Op			InstOp

				90	 	 Out		uint32	//	all	but	InstMatch,	InstFail

				91	 	 Arg		uint32	//	InstAlt,	InstAltMatch,	InstCapture,	InstEmptyWidth

				92	 	 Rune	[]rune

				93	 }

				94	

				95	 func	(p	*Prog)	String()	string	{

				96	 	 var	b	bytes.Buffer

				97	 	 dumpProg(&b,	p)

				98	 	 return	b.String()

				99	 }

			100	

			101	 //	skipNop	follows	any	no-op	or	capturing	instructions

			102	 //	and	returns	the	resulting	pc.

			103	 func	(p	*Prog)	skipNop(pc	uint32)	*Inst	{

			104	 	 i	:=	&p.Inst[pc]

			105	 	 for	i.Op	==	InstNop	||	i.Op	==	InstCapture	{

			106	 	 	 pc	=	i.Out

			107	 	 	 i	=	&p.Inst[pc]

			108	 	 }

			109	 	 return	i

			110	 }

			111	

			112	 //	op	returns	i.Op	but	merges	all	the	Rune	special	cases	into	InstRune

			113	 func	(i	*Inst)	op()	InstOp	{

			114	 	 op	:=	i.Op

			115	 	 switch	op	{

			116	 	 case	InstRune1,	InstRuneAny,	InstRuneAnyNotNL:

			117	 	 	 op	=	InstRune

			118	 	 }

			119	 	 return	op

			120	 }

			121	

			122	 //	Prefix	returns	a	literal	string	that	all	matches	for	the

			123	 //	regexp	must	start	with.		Complete	is	true	if	the	prefix

			124	 //	is	the	entire	match.

			125	 func	(p	*Prog)	Prefix()	(prefix	string,	complete	bool)	{

			126	 	 i	:=	p.skipNop(uint32(p.Start))

			127	

			128	 	 //	Avoid	allocation	of	buffer	if	prefix	is	empty.

			129	 	 if	i.op()	!=	InstRune	||	len(i.Rune)	!=	1	{

			130	 	 	 return	"",	i.Op	==	InstMatch

			131	 	 }

			132	

			133	 	 //	Have	prefix;	gather	characters.

			134	 	 var	buf	bytes.Buffer

			135	 	 for	i.op()	==	InstRune	&&	len(i.Rune)	==	1	&&	Flags(i.Arg)&FoldCase	==	0	{

			136	 	 	 buf.WriteRune(i.Rune[0])

			137	 	 	 i	=	p.skipNop(i.Out)

			138	 	 }

			139	 	 return	buf.String(),	i.Op	==	InstMatch

			140	 }

			141	

			142	 //	StartCond	returns	the	leading	empty-width	conditions	that	must

			143	 //	be	true	in	any	match.		It	returns	^EmptyOp(0)	if	no	matches	are	possible.

			144	 func	(p	*Prog)	StartCond()	EmptyOp	{

			145	 	 var	flag	EmptyOp

			146	 	 pc	:=	uint32(p.Start)

			147	 	 i	:=	&p.Inst[pc]

			148	 Loop:

			149	 	 for	{

			150	 	 	 switch	i.Op	{

			151	 	 	 case	InstEmptyWidth:

			152	 	 	 	 flag	|=	EmptyOp(i.Arg)

			153	 	 	 case	InstFail:

			154	 	 	 	 return	^EmptyOp(0)

			155	 	 	 case	InstCapture,	InstNop:

			156	 	 	 	 //	skip

			157	 	 	 default:

			158	 	 	 	 break	Loop

			159	 	 	 }

			160	 	 	 pc	=	i.Out

			161	 	 	 i	=	&p.Inst[pc]

			162	 	 }

			163	 	 return	flag

			164	 }

			165	

			166	 //	MatchRune	returns	true	if	the	instruction	matches	(and	consumes)	r.

			167	 //	It	should	only	be	called	when	i.Op	==	InstRune.

			168	 func	(i	*Inst)	MatchRune(r	rune)	bool	{

			169	 	 rune	:=	i.Rune

			170	

			171	 	 //	Special	case:	single-rune	slice	is	from	literal	string,	not	char	class.

			172	 	 if	len(rune)	==	1	{

			173	 	 	 r0	:=	rune[0]

			174	 	 	 if	r	==	r0	{

			175	 	 	 	 return	true

			176	 	 	 }

			177	 	 	 if	Flags(i.Arg)&FoldCase	!=	0	{

			178	 	 	 	 for	r1	:=	unicode.SimpleFold(r0);	r1	!=	r0;	r1	=	unicode.SimpleFold(r1)	{

			179	 	 	 	 	 if	r	==	r1	{

			180	 	 	 	 	 	 return	true

			181	 	 	 	 	 }

			182	 	 	 	 }

			183	 	 	 }

			184	 	 	 return	false

			185	 	 }

			186	

			187	 	 //	Peek	at	the	first	few	pairs.

			188	 	 //	Should	handle	ASCII	well.

			189	 	 for	j	:=	0;	j	<	len(rune)	&&	j	<=	8;	j	+=	2	{

			190	 	 	 if	r	<	rune[j]	{

			191	 	 	 	 return	false

			192	 	 	 }

			193	 	 	 if	r	<=	rune[j+1]	{

			194	 	 	 	 return	true

			195	 	 	 }

			196	 	 }

			197	

			198	 	 //	Otherwise	binary	search.

			199	 	 lo	:=	0

			200	 	 hi	:=	len(rune)	/	2

			201	 	 for	lo	<	hi	{

			202	 	 	 m	:=	lo	+	(hi-lo)/2

			203	 	 	 if	c	:=	rune[2*m];	c	<=	r	{

			204	 	 	 	 if	r	<=	rune[2*m+1]	{

			205	 	 	 	 	 return	true

			206	 	 	 	 }

			207	 	 	 	 lo	=	m	+	1

			208	 	 	 }	else	{

			209	 	 	 	 hi	=	m

			210	 	 	 }

			211	 	 }

			212	 	 return	false

			213	 }

			214	

			215	 //	As	per	re2's	Prog::IsWordChar.	Determines	whether	rune	is	an	ASCII	word	char.

			216	 //	Since	we	act	on	runes,	it	would	be	easy	to	support	Unicode	here.

			217	 func	wordRune(r	rune)	bool	{

			218	 	 return	r	==	'_'	||

			219	 	 	 ('A'	<=	r	&&	r	<=	'Z')	||

			220	 	 	 ('a'	<=	r	&&	r	<=	'z')	||

			221	 	 	 ('0'	<=	r	&&	r	<=	'9')

			222	 }

			223	

			224	 //	MatchEmptyWidth	returns	true	if	the	instruction	matches

			225	 //	an	empty	string	between	the	runes	before	and	after.

			226	 //	It	should	only	be	called	when	i.Op	==	InstEmptyWidth.

			227	 func	(i	*Inst)	MatchEmptyWidth(before	rune,	after	rune)	bool	{

			228	 	 switch	EmptyOp(i.Arg)	{

			229	 	 case	EmptyBeginLine:

			230	 	 	 return	before	==	'\n'	||	before	==	-1

			231	 	 case	EmptyEndLine:

			232	 	 	 return	after	==	'\n'	||	after	==	-1

			233	 	 case	EmptyBeginText:

			234	 	 	 return	before	==	-1

			235	 	 case	EmptyEndText:

			236	 	 	 return	after	==	-1

			237	 	 case	EmptyWordBoundary:

			238	 	 	 return	wordRune(before)	!=	wordRune(after)

			239	 	 case	EmptyNoWordBoundary:

			240	 	 	 return	wordRune(before)	==	wordRune(after)

			241	 	 }

			242	 	 panic("unknown	empty	width	arg")

			243	 }

			244	

			245	 func	(i	*Inst)	String()	string	{

			246	 	 var	b	bytes.Buffer

			247	 	 dumpInst(&b,	i)

			248	 	 return	b.String()

			249	 }

			250	

			251	 func	bw(b	*bytes.Buffer,	args	...string)	{

			252	 	 for	_,	s	:=	range	args	{

			253	 	 	 b.WriteString(s)

			254	 	 }

			255	 }

			256	

			257	 func	dumpProg(b	*bytes.Buffer,	p	*Prog)	{

			258	 	 for	j	:=	range	p.Inst	{

			259	 	 	 i	:=	&p.Inst[j]

			260	 	 	 pc	:=	strconv.Itoa(j)

			261	 	 	 if	len(pc)	<	3	{

			262	 	 	 	 b.WriteString("			"[len(pc):])

			263	 	 	 }

			264	 	 	 if	j	==	p.Start	{

			265	 	 	 	 pc	+=	"*"

			266	 	 	 }

			267	 	 	 bw(b,	pc,	"\t")

			268	 	 	 dumpInst(b,	i)

			269	 	 	 bw(b,	"\n")

			270	 	 }

			271	 }

			272	

			273	 func	u32(i	uint32)	string	{

			274	 	 return	strconv.FormatUint(uint64(i),	10)

			275	 }

			276	

			277	 func	dumpInst(b	*bytes.Buffer,	i	*Inst)	{

			278	 	 switch	i.Op	{

			279	 	 case	InstAlt:

			280	 	 	 bw(b,	"alt	->	",	u32(i.Out),	",	",	u32(i.Arg))

			281	 	 case	InstAltMatch:

			282	 	 	 bw(b,	"altmatch	->	",	u32(i.Out),	",	",	u32(i.Arg))

			283	 	 case	InstCapture:

			284	 	 	 bw(b,	"cap	",	u32(i.Arg),	"	->	",	u32(i.Out))

			285	 	 case	InstEmptyWidth:

			286	 	 	 bw(b,	"empty	",	u32(i.Arg),	"	->	",	u32(i.Out))

			287	 	 case	InstMatch:

			288	 	 	 bw(b,	"match")

			289	 	 case	InstFail:

			290	 	 	 bw(b,	"fail")

			291	 	 case	InstNop:

			292	 	 	 bw(b,	"nop	->	",	u32(i.Out))

			293	 	 case	InstRune:

			294	 	 	 if	i.Rune	==	nil	{

			295	 	 	 	 //	shouldn't	happen

			296	 	 	 	 bw(b,	"rune	<nil>")

			297	 	 	 }

			298	 	 	 bw(b,	"rune	",	strconv.QuoteToASCII(string(i.Rune)))

			299	 	 	 if	Flags(i.Arg)&FoldCase	!=	0	{

			300	 	 	 	 bw(b,	"/i")

			301	 	 	 }

			302	 	 	 bw(b,	"	->	",	u32(i.Out))

			303	 	 case	InstRune1:

			304	 	 	 bw(b,	"rune1	",	strconv.QuoteToASCII(string(i.Rune)),	"	->	",	u32(i.Out))

			305	 	 case	InstRuneAny:

			306	 	 	 bw(b,	"any	->	",	u32(i.Out))

			307	 	 case	InstRuneAnyNotNL:

			308	 	 	 bw(b,	"anynotnl	->	",	u32(i.Out))

			309	 	 }

			310	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/regexp/syntax/regexp.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	syntax

					6	

					7	 //	Note	to	implementers:

					8	 //	In	this	package,	re	is	always	a	*Regexp	and	r	is	always	a	rune.

					9	

				10	 import	(

				11	 	 "bytes"

				12	 	 "strconv"

				13	 	 "strings"

				14	 	 "unicode"

				15)

				16	

				17	 //	A	Regexp	is	a	node	in	a	regular	expression	syntax	tree.

				18	 type	Regexp	struct	{

				19	 	 Op							Op	//	operator

				20	 	 Flags				Flags

				21	 	 Sub						[]*Regexp		//	subexpressions,	if	any

				22	 	 Sub0					[1]*Regexp	//	storage	for	short	Sub

				23	 	 Rune					[]rune					//	matched	runes,	for	OpLiteral,	OpCharClass

				24	 	 Rune0				[2]rune				//	storage	for	short	Rune

				25	 	 Min,	Max	int								//	min,	max	for	OpRepeat

				26	 	 Cap						int								//	capturing	index,	for	OpCapture

				27	 	 Name					string					//	capturing	name,	for	OpCapture

				28	 }

				29	

				30	 //	An	Op	is	a	single	regular	expression	operator.

				31	 type	Op	uint8

				32	

				33	 //	Operators	are	listed	in	precedence	order,	tightest	binding	to	weakest.

				34	 //	Character	class	operators	are	listed	simplest	to	most	complex

				35	 //	(OpLiteral,	OpCharClass,	OpAnyCharNotNL,	OpAnyChar).

				36	

				37	 const	(

				38	 	 OpNoMatch								Op	=	1	+	iota	//	matches	no	strings

				39	 	 OpEmptyMatch																			//	matches	empty	string

				40	 	 OpLiteral																						//	matches	Runes	sequence

				41	 	 OpCharClass																				//	matches	Runes	interpreted	as	range	pair	list

				42	 	 OpAnyCharNotNL																	//	matches	any	character

				43	 	 OpAnyChar																						//	matches	any	character

				44	 	 OpBeginLine																				//	matches	empty	string	at	beginning	of	line

				45	 	 OpEndLine																						//	matches	empty	string	at	end	of	line

				46	 	 OpBeginText																				//	matches	empty	string	at	beginning	of	text

				47	 	 OpEndText																						//	matches	empty	string	at	end	of	text

				48	 	 OpWordBoundary																	//	matches	word	boundary	`\b`

				49	 	 OpNoWordBoundary															//	matches	word	non-boundary	`\B`

				50	 	 OpCapture																						//	capturing	subexpression	with	index	Cap,	optional	name	Name

				51	 	 OpStar																									//	matches	Sub[0]	zero	or	more	times

				52	 	 OpPlus																									//	matches	Sub[0]	one	or	more	times

				53	 	 OpQuest																								//	matches	Sub[0]	zero	or	one	times

				54	 	 OpRepeat																							//	matches	Sub[0]	at	least	Min	times,	at	most	Max	(Max	==	-1	is	no	limit)

				55	 	 OpConcat																							//	matches	concatenation	of	Subs

				56	 	 OpAlternate																				//	matches	alternation	of	Subs

				57)

				58	

				59	 const	opPseudo	Op	=	128	//	where	pseudo-ops	start

				60	

				61	 //	Equal	returns	true	if	x	and	y	have	identical	structure.

				62	 func	(x	*Regexp)	Equal(y	*Regexp)	bool	{

				63	 	 if	x	==	nil	||	y	==	nil	{

				64	 	 	 return	x	==	y

				65	 	 }

				66	 	 if	x.Op	!=	y.Op	{

				67	 	 	 return	false

				68	 	 }

				69	 	 switch	x.Op	{

				70	 	 case	OpEndText:

				71	 	 	 //	The	parse	flags	remember	whether	this	is	\z	or	\Z.

				72	 	 	 if	x.Flags&WasDollar	!=	y.Flags&WasDollar	{

				73	 	 	 	 return	false

				74	 	 	 }

				75	

				76	 	 case	OpLiteral,	OpCharClass:

				77	 	 	 if	len(x.Rune)	!=	len(y.Rune)	{

				78	 	 	 	 return	false

				79	 	 	 }

				80	 	 	 for	i,	r	:=	range	x.Rune	{

				81	 	 	 	 if	r	!=	y.Rune[i]	{

				82	 	 	 	 	 return	false

				83	 	 	 	 }

				84	 	 	 }

				85	

				86	 	 case	OpAlternate,	OpConcat:

				87	 	 	 if	len(x.Sub)	!=	len(y.Sub)	{

				88	 	 	 	 return	false

				89	 	 	 }

				90	 	 	 for	i,	sub	:=	range	x.Sub	{

				91	 	 	 	 if	!sub.Equal(y.Sub[i])	{

				92	 	 	 	 	 return	false

				93	 	 	 	 }

				94	 	 	 }

				95	

				96	 	 case	OpStar,	OpPlus,	OpQuest:

				97	 	 	 if	x.Flags&NonGreedy	!=	y.Flags&NonGreedy	||	!x.Sub[0].Equal(y.Sub[0])	{

				98	 	 	 	 return	false

				99	 	 	 }

			100	

			101	 	 case	OpRepeat:

			102	 	 	 if	x.Flags&NonGreedy	!=	y.Flags&NonGreedy	||	x.Min	!=	y.Min	||	x.Max	!=	y.Max	||	!x.Sub[0].Equal(y.Sub[0])	{

			103	 	 	 	 return	false

			104	 	 	 }

			105	

			106	 	 case	OpCapture:

			107	 	 	 if	x.Cap	!=	y.Cap	||	x.Name	!=	y.Name	||	!x.Sub[0].Equal(y.Sub[0])	{

			108	 	 	 	 return	false

			109	 	 	 }

			110	 	 }

			111	 	 return	true

			112	 }

			113	

			114	 //	writeRegexp	writes	the	Perl	syntax	for	the	regular	expression	re	to	b.

			115	 func	writeRegexp(b	*bytes.Buffer,	re	*Regexp)	{

			116	 	 switch	re.Op	{

			117	 	 default:

			118	 	 	 b.WriteString("<invalid	op"	+	strconv.Itoa(int(re.Op))	+	">")

			119	 	 case	OpNoMatch:

			120	 	 	 b.WriteString(`[^\x00-\x{10FFFF}]`)

			121	 	 case	OpEmptyMatch:

			122	 	 	 b.WriteString(`(?:)`)

			123	 	 case	OpLiteral:

			124	 	 	 if	re.Flags&FoldCase	!=	0	{

			125	 	 	 	 b.WriteString(`(?i:`)

			126	 	 	 }

			127	 	 	 for	_,	r	:=	range	re.Rune	{

			128	 	 	 	 escape(b,	r,	false)

			129	 	 	 }

			130	 	 	 if	re.Flags&FoldCase	!=	0	{

			131	 	 	 	 b.WriteString(`)`)

			132	 	 	 }

			133	 	 case	OpCharClass:

			134	 	 	 if	len(re.Rune)%2	!=	0	{

			135	 	 	 	 b.WriteString(`[invalid	char	class]`)

			136	 	 	 	 break

			137	 	 	 }

			138	 	 	 b.WriteRune('[')

			139	 	 	 if	len(re.Rune)	==	0	{

			140	 	 	 	 b.WriteString(`^\x00-\x{10FFFF}`)

			141	 	 	 }	else	if	re.Rune[0]	==	0	&&	re.Rune[len(re.Rune)-1]	==	unicode.MaxRune	{

			142	 	 	 	 //	Contains	0	and	MaxRune.		Probably	a	negated	class.

			143	 	 	 	 //	Print	the	gaps.

			144	 	 	 	 b.WriteRune('^')

			145	 	 	 	 for	i	:=	1;	i	<	len(re.Rune)-1;	i	+=	2	{

			146	 	 	 	 	 lo,	hi	:=	re.Rune[i]+1,	re.Rune[i+1]-1

			147	 	 	 	 	 escape(b,	lo,	lo	==	'-')

			148	 	 	 	 	 if	lo	!=	hi	{

			149	 	 	 	 	 	 b.WriteRune('-')

			150	 	 	 	 	 	 escape(b,	hi,	hi	==	'-')

			151	 	 	 	 	 }

			152	 	 	 	 }

			153	 	 	 }	else	{

			154	 	 	 	 for	i	:=	0;	i	<	len(re.Rune);	i	+=	2	{

			155	 	 	 	 	 lo,	hi	:=	re.Rune[i],	re.Rune[i+1]

			156	 	 	 	 	 escape(b,	lo,	lo	==	'-')

			157	 	 	 	 	 if	lo	!=	hi	{

			158	 	 	 	 	 	 b.WriteRune('-')

			159	 	 	 	 	 	 escape(b,	hi,	hi	==	'-')

			160	 	 	 	 	 }

			161	 	 	 	 }

			162	 	 	 }

			163	 	 	 b.WriteRune(']')

			164	 	 case	OpAnyCharNotNL:

			165	 	 	 b.WriteString(`(?-s:.)`)

			166	 	 case	OpAnyChar:

			167	 	 	 b.WriteString(`(?s:.)`)

			168	 	 case	OpBeginLine:

			169	 	 	 b.WriteRune('^')

			170	 	 case	OpEndLine:

			171	 	 	 b.WriteRune('$')

			172	 	 case	OpBeginText:

			173	 	 	 b.WriteString(`\A`)

			174	 	 case	OpEndText:

			175	 	 	 if	re.Flags&WasDollar	!=	0	{

			176	 	 	 	 b.WriteString(`(?-m:$)`)

			177	 	 	 }	else	{

			178	 	 	 	 b.WriteString(`\z`)

			179	 	 	 }

			180	 	 case	OpWordBoundary:

			181	 	 	 b.WriteString(`\b`)

			182	 	 case	OpNoWordBoundary:

			183	 	 	 b.WriteString(`\B`)

			184	 	 case	OpCapture:

			185	 	 	 if	re.Name	!=	""	{

			186	 	 	 	 b.WriteString(`(?P<`)

			187	 	 	 	 b.WriteString(re.Name)

			188	 	 	 	 b.WriteRune('>')

			189	 	 	 }	else	{

			190	 	 	 	 b.WriteRune('(')

			191	 	 	 }

			192	 	 	 if	re.Sub[0].Op	!=	OpEmptyMatch	{

			193	 	 	 	 writeRegexp(b,	re.Sub[0])

			194	 	 	 }

			195	 	 	 b.WriteRune(')')

			196	 	 case	OpStar,	OpPlus,	OpQuest,	OpRepeat:

			197	 	 	 if	sub	:=	re.Sub[0];	sub.Op	>	OpCapture	||	sub.Op	==	OpLiteral	&&	len(sub.Rune)	>	1	{

			198	 	 	 	 b.WriteString(`(?:`)

			199	 	 	 	 writeRegexp(b,	sub)

			200	 	 	 	 b.WriteString(`)`)

			201	 	 	 }	else	{

			202	 	 	 	 writeRegexp(b,	sub)

			203	 	 	 }

			204	 	 	 switch	re.Op	{

			205	 	 	 case	OpStar:

			206	 	 	 	 b.WriteRune('*')

			207	 	 	 case	OpPlus:

			208	 	 	 	 b.WriteRune('+')

			209	 	 	 case	OpQuest:

			210	 	 	 	 b.WriteRune('?')

			211	 	 	 case	OpRepeat:

			212	 	 	 	 b.WriteRune('{')

			213	 	 	 	 b.WriteString(strconv.Itoa(re.Min))

			214	 	 	 	 if	re.Max	!=	re.Min	{

			215	 	 	 	 	 b.WriteRune(',')

			216	 	 	 	 	 if	re.Max	>=	0	{

			217	 	 	 	 	 	 b.WriteString(strconv.Itoa(re.Max))

			218	 	 	 	 	 }

			219	 	 	 	 }

			220	 	 	 	 b.WriteRune('}')

			221	 	 	 }

			222	 	 	 if	re.Flags&NonGreedy	!=	0	{

			223	 	 	 	 b.WriteRune('?')

			224	 	 	 }

			225	 	 case	OpConcat:

			226	 	 	 for	_,	sub	:=	range	re.Sub	{

			227	 	 	 	 if	sub.Op	==	OpAlternate	{

			228	 	 	 	 	 b.WriteString(`(?:`)

			229	 	 	 	 	 writeRegexp(b,	sub)

			230	 	 	 	 	 b.WriteString(`)`)

			231	 	 	 	 }	else	{

			232	 	 	 	 	 writeRegexp(b,	sub)

			233	 	 	 	 }

			234	 	 	 }

			235	 	 case	OpAlternate:

			236	 	 	 for	i,	sub	:=	range	re.Sub	{

			237	 	 	 	 if	i	>	0	{

			238	 	 	 	 	 b.WriteRune('|')

			239	 	 	 	 }

			240	 	 	 	 writeRegexp(b,	sub)

			241	 	 	 }

			242	 	 }

			243	 }

			244	

			245	 func	(re	*Regexp)	String()	string	{

			246	 	 var	b	bytes.Buffer

			247	 	 writeRegexp(&b,	re)

			248	 	 return	b.String()

			249	 }

			250	

			251	 const	meta	=	`\.+*?()|[]{}^$`

			252	

			253	 func	escape(b	*bytes.Buffer,	r	rune,	force	bool)	{

			254	 	 if	unicode.IsPrint(r)	{

			255	 	 	 if	strings.IndexRune(meta,	r)	>=	0	||	force	{

			256	 	 	 	 b.WriteRune('\\')

			257	 	 	 }

			258	 	 	 b.WriteRune(r)

			259	 	 	 return

			260	 	 }

			261	

			262	 	 switch	r	{

			263	 	 case	'\a':

			264	 	 	 b.WriteString(`\a`)

			265	 	 case	'\f':

			266	 	 	 b.WriteString(`\f`)

			267	 	 case	'\n':

			268	 	 	 b.WriteString(`\n`)

			269	 	 case	'\r':

			270	 	 	 b.WriteString(`\r`)

			271	 	 case	'\t':

			272	 	 	 b.WriteString(`\t`)

			273	 	 case	'\v':

			274	 	 	 b.WriteString(`\v`)

			275	 	 default:

			276	 	 	 if	r	<	0x100	{

			277	 	 	 	 b.WriteString(`\x`)

			278	 	 	 	 s	:=	strconv.FormatInt(int64(r),	16)

			279	 	 	 	 if	len(s)	==	1	{

			280	 	 	 	 	 b.WriteRune('0')

			281	 	 	 	 }

			282	 	 	 	 b.WriteString(s)

			283	 	 	 	 break

			284	 	 	 }

			285	 	 	 b.WriteString(`\x{`)

			286	 	 	 b.WriteString(strconv.FormatInt(int64(r),	16))

			287	 	 	 b.WriteString(`}`)

			288	 	 }

			289	 }

			290	

			291	 //	MaxCap	walks	the	regexp	to	find	the	maximum	capture	index.

			292	 func	(re	*Regexp)	MaxCap()	int	{

			293	 	 m	:=	0

			294	 	 if	re.Op	==	OpCapture	{

			295	 	 	 m	=	re.Cap

			296	 	 }

			297	 	 for	_,	sub	:=	range	re.Sub	{

			298	 	 	 if	n	:=	sub.MaxCap();	m	<	n	{

			299	 	 	 	 m	=	n

			300	 	 	 }

			301	 	 }

			302	 	 return	m

			303	 }

			304	

			305	 //	CapNames	walks	the	regexp	to	find	the	names	of	capturing	groups.

			306	 func	(re	*Regexp)	CapNames()	[]string	{

			307	 	 names	:=	make([]string,	re.MaxCap()+1)

			308	 	 re.capNames(names)

			309	 	 return	names

			310	 }

			311	

			312	 func	(re	*Regexp)	capNames(names	[]string)	{

			313	 	 if	re.Op	==	OpCapture	{

			314	 	 	 names[re.Cap]	=	re.Name

			315	 	 }

			316	 	 for	_,	sub	:=	range	re.Sub	{

			317	 	 	 sub.capNames(names)

			318	 	 }

			319	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/regexp/syntax/simplify.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	syntax

					6	

					7	 //	Simplify	returns	a	regexp	equivalent	to	re	but	without	counted	repetitions

					8	 //	and	with	various	other	simplifications,	such	as	rewriting	/(?:a+)+/	to	/a+/.

					9	 //	The	resulting	regexp	will	execute	correctly	but	its	string	representation

				10	 //	will	not	produce	the	same	parse	tree,	because	capturing	parentheses

				11	 //	may	have	been	duplicated	or	removed.		For	example,	the	simplified	form

				12	 //	for	/(x){1,2}/	is	/(x)(x)?/	but	both	parentheses	capture	as	$1.

				13	 //	The	returned	regexp	may	share	structure	with	or	be	the	original.

				14	 func	(re	*Regexp)	Simplify()	*Regexp	{

				15	 	 if	re	==	nil	{

				16	 	 	 return	nil

				17	 	 }

				18	 	 switch	re.Op	{

				19	 	 case	OpCapture,	OpConcat,	OpAlternate:

				20	 	 	 //	Simplify	children,	building	new	Regexp	if	children	change.

				21	 	 	 nre	:=	re

				22	 	 	 for	i,	sub	:=	range	re.Sub	{

				23	 	 	 	 nsub	:=	sub.Simplify()

				24	 	 	 	 if	nre	==	re	&&	nsub	!=	sub	{

				25	 	 	 	 	 //	Start	a	copy.

				26	 	 	 	 	 nre	=	new(Regexp)

				27	 	 	 	 	 *nre	=	*re

				28	 	 	 	 	 nre.Rune	=	nil

				29	 	 	 	 	 nre.Sub	=	append(nre.Sub0[:0],	re.Sub[:i]...)

				30	 	 	 	 }

				31	 	 	 	 if	nre	!=	re	{

				32	 	 	 	 	 nre.Sub	=	append(nre.Sub,	nsub)

				33	 	 	 	 }

				34	 	 	 }

				35	 	 	 return	nre

				36	

				37	 	 case	OpStar,	OpPlus,	OpQuest:

				38	 	 	 sub	:=	re.Sub[0].Simplify()

				39	 	 	 return	simplify1(re.Op,	re.Flags,	sub,	re)

				40	

				41	 	 case	OpRepeat:

				42	 	 	 //	Special	special	case:	x{0}	matches	the	empty	string

				43	 	 	 //	and	doesn't	even	need	to	consider	x.

				44	 	 	 if	re.Min	==	0	&&	re.Max	==	0	{

				45	 	 	 	 return	&Regexp{Op:	OpEmptyMatch}

				46	 	 	 }

				47	

				48	 	 	 //	The	fun	begins.

				49	 	 	 sub	:=	re.Sub[0].Simplify()

				50	

				51	 	 	 //	x{n,}	means	at	least	n	matches	of	x.

				52	 	 	 if	re.Max	==	-1	{

				53	 	 	 	 //	Special	case:	x{0,}	is	x*.

				54	 	 	 	 if	re.Min	==	0	{

				55	 	 	 	 	 return	simplify1(OpStar,	re.Flags,	sub,	nil)

				56	 	 	 	 }

				57	

				58	 	 	 	 //	Special	case:	x{1,}	is	x+.

				59	 	 	 	 if	re.Min	==	1	{

				60	 	 	 	 	 return	simplify1(OpPlus,	re.Flags,	sub,	nil)

				61	 	 	 	 }

				62	

				63	 	 	 	 //	General	case:	x{4,}	is	xxxx+.

				64	 	 	 	 nre	:=	&Regexp{Op:	OpConcat}

				65	 	 	 	 nre.Sub	=	nre.Sub0[:0]

				66	 	 	 	 for	i	:=	0;	i	<	re.Min-1;	i++	{

				67	 	 	 	 	 nre.Sub	=	append(nre.Sub,	sub)

				68	 	 	 	 }

				69	 	 	 	 nre.Sub	=	append(nre.Sub,	simplify1(OpPlus,	re.Flags,	sub,	nil))

				70	 	 	 	 return	nre

				71	 	 	 }

				72	

				73	 	 	 //	Special	case	x{0}	handled	above.

				74	

				75	 	 	 //	Special	case:	x{1}	is	just	x.

				76	 	 	 if	re.Min	==	1	&&	re.Max	==	1	{

				77	 	 	 	 return	sub

				78	 	 	 }

				79	

				80	 	 	 //	General	case:	x{n,m}	means	n	copies	of	x	and	m	copies	of	x?

				81	 	 	 //	The	machine	will	do	less	work	if	we	nest	the	final	m	copies,

				82	 	 	 //	so	that	x{2,5}	=	xx(x(x(x)?)?)?

				83	

				84	 	 	 //	Build	leading	prefix:	xx.

				85	 	 	 var	prefix	*Regexp

				86	 	 	 if	re.Min	>	0	{

				87	 	 	 	 prefix	=	&Regexp{Op:	OpConcat}

				88	 	 	 	 prefix.Sub	=	prefix.Sub0[:0]

				89	 	 	 	 for	i	:=	0;	i	<	re.Min;	i++	{

				90	 	 	 	 	 prefix.Sub	=	append(prefix.Sub,	sub)

				91	 	 	 	 }

				92	 	 	 }

				93	

				94	 	 	 //	Build	and	attach	suffix:	(x(x(x)?)?)?

				95	 	 	 if	re.Max	>	re.Min	{

				96	 	 	 	 suffix	:=	simplify1(OpQuest,	re.Flags,	sub,	nil)

				97	 	 	 	 for	i	:=	re.Min	+	1;	i	<	re.Max;	i++	{

				98	 	 	 	 	 nre2	:=	&Regexp{Op:	OpConcat}

				99	 	 	 	 	 nre2.Sub	=	append(nre2.Sub0[:0],	sub,	suffix)

			100	 	 	 	 	 suffix	=	simplify1(OpQuest,	re.Flags,	nre2,	nil)

			101	 	 	 	 }

			102	 	 	 	 if	prefix	==	nil	{

			103	 	 	 	 	 return	suffix

			104	 	 	 	 }

			105	 	 	 	 prefix.Sub	=	append(prefix.Sub,	suffix)

			106	 	 	 }

			107	 	 	 if	prefix	!=	nil	{

			108	 	 	 	 return	prefix

			109	 	 	 }

			110	

			111	 	 	 //	Some	degenerate	case	like	min	>	max	or	min	<	max	<	0.

			112	 	 	 //	Handle	as	impossible	match.

			113	 	 	 return	&Regexp{Op:	OpNoMatch}

			114	 	 }

			115	

			116	 	 return	re

			117	 }

			118	

			119	 //	simplify1	implements	Simplify	for	the	unary	OpStar,

			120	 //	OpPlus,	and	OpQuest	operators.		It	returns	the	simple	regexp

			121	 //	equivalent	to

			122	 //

			123	 //	 Regexp{Op:	op,	Flags:	flags,	Sub:	{sub}}

			124	 //

			125	 //	under	the	assumption	that	sub	is	already	simple,	and

			126	 //	without	first	allocating	that	structure.		If	the	regexp

			127	 //	to	be	returned	turns	out	to	be	equivalent	to	re,	simplify1

			128	 //	returns	re	instead.

			129	 //

			130	 //	simplify1	is	factored	out	of	Simplify	because	the	implementation

			131	 //	for	other	operators	generates	these	unary	expressions.

			132	 //	Letting	them	call	simplify1	makes	sure	the	expressions	they

			133	 //	generate	are	simple.

			134	 func	simplify1(op	Op,	flags	Flags,	sub,	re	*Regexp)	*Regexp	{

			135	 	 //	Special	case:	repeat	the	empty	string	as	much	as

			136	 	 //	you	want,	but	it's	still	the	empty	string.

			137	 	 if	sub.Op	==	OpEmptyMatch	{

			138	 	 	 return	sub

			139	 	 }

			140	 	 //	The	operators	are	idempotent	if	the	flags	match.

			141	 	 if	op	==	sub.Op	&&	flags&NonGreedy	==	sub.Flags&NonGreedy	{

			142	 	 	 return	sub

			143	 	 }

			144	 	 if	re	!=	nil	&&	re.Op	==	op	&&	re.Flags&NonGreedy	==	flags&NonGreedy	&&	sub	==	re.Sub[0]	{

			145	 	 	 return	re

			146	 	 }

			147	

			148	 	 re	=	&Regexp{Op:	op,	Flags:	flags}

			149	 	 re.Sub	=	append(re.Sub0[:0],	sub)

			150	 	 return	re

			151	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/runtime/compiler.go
					1	 //	Copyright	2012	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	runtime

					6	

					7	 //	Compiler	is	the	name	of	the	compiler	toolchain	that	built	the

					8	 //	running	binary.		Known	toolchains	are:

					9	 //

				10	 //	 gc						The	5g/6g/8g	compiler	suite	at	code.google.com/p/go.

				11	 //	 gccgo			The	gccgo	front	end,	part	of	the	GCC	compiler	suite.

				12	 //

				13	 const	Compiler	=	"gc"

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/runtime/debug.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	runtime

					6	

					7	 //	Breakpoint()	executes	a	breakpoint	trap.

					8	 func	Breakpoint()

					9	

				10	 //	LockOSThread	wires	the	calling	goroutine	to	its	current	operating	system	thread.

				11	 //	Until	the	calling	goroutine	exits	or	calls	UnlockOSThread,	it	will	always

				12	 //	execute	in	that	thread,	and	no	other	goroutine	can.

				13	 func	LockOSThread()

				14	

				15	 //	UnlockOSThread	unwires	the	calling	goroutine	from	its	fixed	operating	system	thread.

				16	 //	If	the	calling	goroutine	has	not	called	LockOSThread,	UnlockOSThread	is	a	no-op.

				17	 func	UnlockOSThread()

				18	

				19	 //	GOMAXPROCS	sets	the	maximum	number	of	CPUs	that	can	be	executing

				20	 //	simultaneously	and	returns	the	previous	setting.		If	n	<	1,	it	does	not

				21	 //	change	the	current	setting.

				22	 //	The	number	of	logical	CPUs	on	the	local	machine	can	be	queried	with	NumCPU.

				23	 //	This	call	will	go	away	when	the	scheduler	improves.

				24	 func	GOMAXPROCS(n	int)	int

				25	

				26	 //	NumCPU	returns	the	number	of	logical	CPUs	on	the	local	machine.

				27	 func	NumCPU()	int

				28	

				29	 //	NumCgoCall	returns	the	number	of	cgo	calls	made	by	the	current	process.

				30	 func	NumCgoCall()	int64

				31	

				32	 //	NumGoroutine	returns	the	number	of	goroutines	that	currently	exist.

				33	 func	NumGoroutine()	int

				34	

				35	 //	MemProfileRate	controls	the	fraction	of	memory	allocations

				36	 //	that	are	recorded	and	reported	in	the	memory	profile.

				37	 //	The	profiler	aims	to	sample	an	average	of

				38	 //	one	allocation	per	MemProfileRate	bytes	allocated.

				39	 //

				40	 //	To	include	every	allocated	block	in	the	profile,	set	MemProfileRate	to	1.

				41	 //	To	turn	off	profiling	entirely,	set	MemProfileRate	to	0.

				42	 //

				43	 //	The	tools	that	process	the	memory	profiles	assume	that	the

				44	 //	profile	rate	is	constant	across	the	lifetime	of	the	program

				45	 //	and	equal	to	the	current	value.		Programs	that	change	the

				46	 //	memory	profiling	rate	should	do	so	just	once,	as	early	as

				47	 //	possible	in	the	execution	of	the	program	(for	example,

				48	 //	at	the	beginning	of	main).

				49	 var	MemProfileRate	int	=	512	*	1024

				50	

				51	 //	A	MemProfileRecord	describes	the	live	objects	allocated

				52	 //	by	a	particular	call	sequence	(stack	trace).

				53	 type	MemProfileRecord	struct	{

				54	 	 AllocBytes,	FreeBytes					int64							//	number	of	bytes	allocated,	freed

				55	 	 AllocObjects,	FreeObjects	int64							//	number	of	objects	allocated,	freed

				56	 	 Stack0																				[32]uintptr	//	stack	trace	for	this	record;	ends	at	first	0	entry

				57	 }

				58	

				59	 //	InUseBytes	returns	the	number	of	bytes	in	use	(AllocBytes	-	FreeBytes).

				60	 func	(r	*MemProfileRecord)	InUseBytes()	int64	{	return	r.AllocBytes	-	r.FreeBytes	}

				61	

				62	 //	InUseObjects	returns	the	number	of	objects	in	use	(AllocObjects	-	FreeObjects).

				63	 func	(r	*MemProfileRecord)	InUseObjects()	int64	{

				64	 	 return	r.AllocObjects	-	r.FreeObjects

				65	 }

				66	

				67	 //	Stack	returns	the	stack	trace	associated	with	the	record,

				68	 //	a	prefix	of	r.Stack0.

				69	 func	(r	*MemProfileRecord)	Stack()	[]uintptr	{

				70	 	 for	i,	v	:=	range	r.Stack0	{

				71	 	 	 if	v	==	0	{

				72	 	 	 	 return	r.Stack0[0:i]

				73	 	 	 }

				74	 	 }

				75	 	 return	r.Stack0[0:]

				76	 }

				77	

				78	 //	MemProfile	returns	n,	the	number	of	records	in	the	current	memory	profile.

				79	 //	If	len(p)	>=	n,	MemProfile	copies	the	profile	into	p	and	returns	n,	true.

				80	 //	If	len(p)	<	n,	MemProfile	does	not	change	p	and	returns	n,	false.

				81	 //

				82	 //	If	inuseZero	is	true,	the	profile	includes	allocation	records

				83	 //	where	r.AllocBytes	>	0	but	r.AllocBytes	==	r.FreeBytes.

				84	 //	These	are	sites	where	memory	was	allocated,	but	it	has	all

				85	 //	been	released	back	to	the	runtime.

				86	 //

				87	 //	Most	clients	should	use	the	runtime/pprof	package	or

				88	 //	the	testing	package's	-test.memprofile	flag	instead

				89	 //	of	calling	MemProfile	directly.

				90	 func	MemProfile(p	[]MemProfileRecord,	inuseZero	bool)	(n	int,	ok	bool)

				91	

				92	 //	A	StackRecord	describes	a	single	execution	stack.

				93	 type	StackRecord	struct	{

				94	 	 Stack0	[32]uintptr	//	stack	trace	for	this	record;	ends	at	first	0	entry

				95	 }

				96	

				97	 //	Stack	returns	the	stack	trace	associated	with	the	record,

				98	 //	a	prefix	of	r.Stack0.

				99	 func	(r	*StackRecord)	Stack()	[]uintptr	{

			100	 	 for	i,	v	:=	range	r.Stack0	{

			101	 	 	 if	v	==	0	{

			102	 	 	 	 return	r.Stack0[0:i]

			103	 	 	 }

			104	 	 }

			105	 	 return	r.Stack0[0:]

			106	 }

			107	

			108	 //	ThreadCreateProfile	returns	n,	the	number	of	records	in	the	thread	creation	profile.

			109	 //	If	len(p)	>=	n,	ThreadCreateProfile	copies	the	profile	into	p	and	returns	n,	true.

			110	 //	If	len(p)	<	n,	ThreadCreateProfile	does	not	change	p	and	returns	n,	false.

			111	 //

			112	 //	Most	clients	should	use	the	runtime/pprof	package	instead

			113	 //	of	calling	ThreadCreateProfile	directly.

			114	 func	ThreadCreateProfile(p	[]StackRecord)	(n	int,	ok	bool)

			115	

			116	 //	GoroutineProfile	returns	n,	the	number	of	records	in	the	active	goroutine	stack	profile.

			117	 //	If	len(p)	>=	n,	GoroutineProfile	copies	the	profile	into	p	and	returns	n,	true.

			118	 //	If	len(p)	<	n,	GoroutineProfile	does	not	change	p	and	returns	n,	false.

			119	 //

			120	 //	Most	clients	should	use	the	runtime/pprof	package	instead

			121	 //	of	calling	GoroutineProfile	directly.

			122	 func	GoroutineProfile(p	[]StackRecord)	(n	int,	ok	bool)

			123	

			124	 //	CPUProfile	returns	the	next	chunk	of	binary	CPU	profiling	stack	trace	data,

			125	 //	blocking	until	data	is	available.		If	profiling	is	turned	off	and	all	the	profile

			126	 //	data	accumulated	while	it	was	on	has	been	returned,	CPUProfile	returns	nil.

			127	 //	The	caller	must	save	the	returned	data	before	calling	CPUProfile	again.

			128	 //	Most	clients	should	use	the	runtime/pprof	package	or

			129	 //	the	testing	package's	-test.cpuprofile	flag	instead	of	calling

			130	 //	CPUProfile	directly.

			131	 func	CPUProfile()	[]byte

			132	

			133	 //	SetCPUProfileRate	sets	the	CPU	profiling	rate	to	hz	samples	per	second.

			134	 //	If	hz	<=	0,	SetCPUProfileRate	turns	off	profiling.

			135	 //	If	the	profiler	is	on,	the	rate	cannot	be	changed	without	first	turning	it	off.

			136	 //	Most	clients	should	use	the	runtime/pprof	package	or

			137	 //	the	testing	package's	-test.cpuprofile	flag	instead	of	calling

			138	 //	SetCPUProfileRate	directly.

			139	 func	SetCPUProfileRate(hz	int)

			140	

			141	 //	Stack	formats	a	stack	trace	of	the	calling	goroutine	into	buf

			142	 //	and	returns	the	number	of	bytes	written	to	buf.

			143	 //	If	all	is	true,	Stack	formats	stack	traces	of	all	other	goroutines

			144	 //	into	buf	after	the	trace	for	the	current	goroutine.

			145	 func	Stack(buf	[]byte,	all	bool)	int

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/runtime/error.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	runtime

					6	

					7	 //	The	Error	interface	identifies	a	run	time	error.

					8	 type	Error	interface	{

					9	 	 error

				10	

				11	 	 //	RuntimeError	is	a	no-op	function	but

				12	 	 //	serves	to	distinguish	types	that	are	runtime

				13	 	 //	errors	from	ordinary	errors:	a	type	is	a

				14	 	 //	runtime	error	if	it	has	a	RuntimeError	method.

				15	 	 RuntimeError()

				16	 }

				17	

				18	 //	A	TypeAssertionError	explains	a	failed	type	assertion.

				19	 type	TypeAssertionError	struct	{

				20	 	 interfaceString	string

				21	 	 concreteString		string

				22	 	 assertedString		string

				23	 	 missingMethod			string	//	one	method	needed	by	Interface,	missing	from	Concrete

				24	 }

				25	

				26	 func	(*TypeAssertionError)	RuntimeError()	{}

				27	

				28	 func	(e	*TypeAssertionError)	Error()	string	{

				29	 	 inter	:=	e.interfaceString

				30	 	 if	inter	==	""	{

				31	 	 	 inter	=	"interface"

				32	 	 }

				33	 	 if	e.concreteString	==	""	{

				34	 	 	 return	"interface	conversion:	"	+	inter	+	"	is	nil,	not	"	+	e.assertedString

				35	 	 }

				36	 	 if	e.missingMethod	==	""	{

				37	 	 	 return	"interface	conversion:	"	+	inter	+	"	is	"	+	e.concreteString	+

				38	 	 	 	 ",	not	"	+	e.assertedString

				39	 	 }

				40	 	 return	"interface	conversion:	"	+	e.concreteString	+	"	is	not	"	+	e.assertedString	+

				41	 	 	 ":	missing	method	"	+	e.missingMethod

				42	 }

				43	

				44	 //	For	calling	from	C.

				45	 func	newTypeAssertionError(ps1,	ps2,	ps3	*string,	pmeth	*string,	ret	*interface{})	{

				46	 	 var	s1,	s2,	s3,	meth	string

				47	

				48	 	 if	ps1	!=	nil	{

				49	 	 	 s1	=	*ps1

				50	 	 }

				51	 	 if	ps2	!=	nil	{

				52	 	 	 s2	=	*ps2

				53	 	 }

				54	 	 if	ps3	!=	nil	{

				55	 	 	 s3	=	*ps3

				56	 	 }

				57	 	 if	pmeth	!=	nil	{

				58	 	 	 meth	=	*pmeth

				59	 	 }

				60	 	 *ret	=	&TypeAssertionError{s1,	s2,	s3,	meth}

				61	 }

				62	

				63	 //	An	errorString	represents	a	runtime	error	described	by	a	single	string.

				64	 type	errorString	string

				65	

				66	 func	(e	errorString)	RuntimeError()	{}

				67	

				68	 func	(e	errorString)	Error()	string	{

				69	 	 return	"runtime	error:	"	+	string(e)

				70	 }

				71	

				72	 //	For	calling	from	C.

				73	 func	newErrorString(s	string,	ret	*interface{})	{

				74	 	 *ret	=	errorString(s)

				75	 }

				76	

				77	 type	stringer	interface	{

				78	 	 String()	string

				79	 }

				80	

				81	 func	typestring(interface{})	string

				82	

				83	 //	For	calling	from	C.

				84	 //	Prints	an	argument	passed	to	panic.

				85	 //	There's	room	for	arbitrary	complexity	here,	but	we	keep	it

				86	 //	simple	and	handle	just	a	few	important	cases:	int,	string,	and	Stringer.

				87	 func	printany(i	interface{})	{

				88	 	 switch	v	:=	i.(type)	{

				89	 	 case	nil:

				90	 	 	 print("nil")

				91	 	 case	stringer:

				92	 	 	 print(v.String())

				93	 	 case	error:

				94	 	 	 print(v.Error())

				95	 	 case	int:

				96	 	 	 print(v)

				97	 	 case	string:

				98	 	 	 print(v)

				99	 	 default:

			100	 	 	 print("(",	typestring(i),	")	",	i)

			101	 	 }

			102	 }

			103	

			104	 //	called	from	generated	code

			105	 func	panicwrap(pkg,	typ,	meth	string)	{

			106	 	 panic("value	method	"	+	pkg	+	"."	+	typ	+	"."	+	meth	+	"	called	using	nil	*"	+	typ	+	"	pointer")

			107	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/runtime/extern.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 	 Package	runtime	contains	operations	that	interact	with	Go's	runtime	system,

					7	 	 such	as	functions	to	control	goroutines.	It	also	includes	the	low-level	type	information

					8	 	 used	by	the	reflect	package;	see	reflect's	documentation	for	the	programmable

					9	 	 interface	to	the	run-time	type	system.

				10	 */

				11	 package	runtime

				12	

				13	 //	Gosched	yields	the	processor,	allowing	other	goroutines	to	run.		It	does	not

				14	 //	suspend	the	current	goroutine,	so	execution	resumes	automatically.

				15	 func	Gosched()

				16	

				17	 //	Goexit	terminates	the	goroutine	that	calls	it.		No	other	goroutine	is	affected.

				18	 //	Goexit	runs	all	deferred	calls	before	terminating	the	goroutine.

				19	 func	Goexit()

				20	

				21	 //	Caller	reports	file	and	line	number	information	about	function	invocations	on

				22	 //	the	calling	goroutine's	stack.		The	argument	skip	is	the	number	of	stack	frames

				23	 //	to	ascend,	with	1	identifying	the	caller	of	Caller.		(For	historical	reasons	the

				24	 //	meaning	of	skip	differs	between	Caller	and	Callers.)	The	return	values	report	the

				25	 //	program	counter,	file	name,	and	line	number	within	the	file	of	the	corresponding

				26	 //	call.		The	boolean	ok	is	false	if	it	was	not	possible	to	recover	the	information.

				27	 func	Caller(skip	int)	(pc	uintptr,	file	string,	line	int,	ok	bool)

				28	

				29	 //	Callers	fills	the	slice	pc	with	the	program	counters	of	function	invocations

				30	 //	on	the	calling	goroutine's	stack.		The	argument	skip	is	the	number	of	stack	frames

				31	 //	to	skip	before	recording	in	pc,	with	0	starting	at	the	caller	of	Callers.

				32	 //	It	returns	the	number	of	entries	written	to	pc.

				33	 func	Callers(skip	int,	pc	[]uintptr)	int

				34	

				35	 type	Func	struct	{	//	Keep	in	sync	with	runtime.h:struct	Func

				36	 	 name			string

				37	 	 typ				string		//	go	type	string

				38	 	 src				string		//	src	file	name

				39	 	 pcln			[]byte		//	pc/ln	tab	for	this	func

				40	 	 entry		uintptr	//	entry	pc

				41	 	 pc0				uintptr	//	starting	pc,	ln	for	table

				42	 	 ln0				int32

				43	 	 frame		int32	//	stack	frame	size

				44	 	 args			int32	//	number	of	32-bit	in/out	args

				45	 	 locals	int32	//	number	of	32-bit	locals

				46	 }

				47	

				48	 //	FuncForPC	returns	a	*Func	describing	the	function	that	contains	the

				49	 //	given	program	counter	address,	or	else	nil.

				50	 func	FuncForPC(pc	uintptr)	*Func

				51	

				52	 //	Name	returns	the	name	of	the	function.

				53	 func	(f	*Func)	Name()	string	{	return	f.name	}

				54	

				55	 //	Entry	returns	the	entry	address	of	the	function.

				56	 func	(f	*Func)	Entry()	uintptr	{	return	f.entry	}

				57	

				58	 //	FileLine	returns	the	file	name	and	line	number	of	the

				59	 //	source	code	corresponding	to	the	program	counter	pc.

				60	 //	The	result	will	not	be	accurate	if	pc	is	not	a	program

				61	 //	counter	within	f.

				62	 func	(f	*Func)	FileLine(pc	uintptr)	(file	string,	line	int)	{

				63	 	 return	funcline_go(f,	pc)

				64	 }

				65	

				66	 //	implemented	in	symtab.c

				67	 func	funcline_go(*Func,	uintptr)	(string,	int)

				68	

				69	 //	mid	returns	the	current	os	thread	(m)	id.

				70	 func	mid()	uint32

				71	

				72	 //	SetFinalizer	sets	the	finalizer	associated	with	x	to	f.

				73	 //	When	the	garbage	collector	finds	an	unreachable	block

				74	 //	with	an	associated	finalizer,	it	clears	the	association	and	runs

				75	 //	f(x)	in	a	separate	goroutine.		This	makes	x	reachable	again,	but

				76	 //	now	without	an	associated	finalizer.		Assuming	that	SetFinalizer

				77	 //	is	not	called	again,	the	next	time	the	garbage	collector	sees

				78	 //	that	x	is	unreachable,	it	will	free	x.

				79	 //

				80	 //	SetFinalizer(x,	nil)	clears	any	finalizer	associated	with	x.

				81	 //

				82	 //	The	argument	x	must	be	a	pointer	to	an	object	allocated	by

				83	 //	calling	new	or	by	taking	the	address	of	a	composite	literal.

				84	 //	The	argument	f	must	be	a	function	that	takes	a	single	argument

				85	 //	of	x's	type	and	can	have	arbitrary	ignored	return	values.

				86	 //	If	either	of	these	is	not	true,	SetFinalizer	aborts	the	program.

				87	 //

				88	 //	Finalizers	are	run	in	dependency	order:	if	A	points	at	B,	both	have

				89	 //	finalizers,	and	they	are	otherwise	unreachable,	only	the	finalizer

				90	 //	for	A	runs;	once	A	is	freed,	the	finalizer	for	B	can	run.

				91	 //	If	a	cyclic	structure	includes	a	block	with	a	finalizer,	that

				92	 //	cycle	is	not	guaranteed	to	be	garbage	collected	and	the	finalizer

				93	 //	is	not	guaranteed	to	run,	because	there	is	no	ordering	that

				94	 //	respects	the	dependencies.

				95	 //

				96	 //	The	finalizer	for	x	is	scheduled	to	run	at	some	arbitrary	time	after

				97	 //	x	becomes	unreachable.

				98	 //	There	is	no	guarantee	that	finalizers	will	run	before	a	program	exits,

				99	 //	so	typically	they	are	useful	only	for	releasing	non-memory	resources

			100	 //	associated	with	an	object	during	a	long-running	program.

			101	 //	For	example,	an	os.File	object	could	use	a	finalizer	to	close	the

			102	 //	associated	operating	system	file	descriptor	when	a	program	discards

			103	 //	an	os.File	without	calling	Close,	but	it	would	be	a	mistake

			104	 //	to	depend	on	a	finalizer	to	flush	an	in-memory	I/O	buffer	such	as	a

			105	 //	bufio.Writer,	because	the	buffer	would	not	be	flushed	at	program	exit.

			106	 //

			107	 //	A	single	goroutine	runs	all	finalizers	for	a	program,	sequentially.

			108	 //	If	a	finalizer	must	run	for	a	long	time,	it	should	do	so	by	starting

			109	 //	a	new	goroutine.

			110	 func	SetFinalizer(x,	f	interface{})

			111	

			112	 func	getgoroot()	string

			113	

			114	 //	GOROOT	returns	the	root	of	the	Go	tree.

			115	 //	It	uses	the	GOROOT	environment	variable,	if	set,

			116	 //	or	else	the	root	used	during	the	Go	build.

			117	 func	GOROOT()	string	{

			118	 	 s	:=	getgoroot()

			119	 	 if	s	!=	""	{

			120	 	 	 return	s

			121	 	 }

			122	 	 return	defaultGoroot

			123	 }

			124	

			125	 //	Version	returns	the	Go	tree's	version	string.

			126	 //	It	is	either	a	sequence	number	or,	when	possible,

			127	 //	a	release	tag	like	"release.2010-03-04".

			128	 //	A	trailing	+	indicates	that	the	tree	had	local	modifications

			129	 //	at	the	time	of	the	build.

			130	 func	Version()	string	{

			131	 	 return	theVersion

			132	 }

			133	

			134	 //	GOOS	is	the	running	program's	operating	system	target:

			135	 //	one	of	darwin,	freebsd,	linux,	and	so	on.

			136	 const	GOOS	string	=	theGoos

			137	

			138	 //	GOARCH	is	the	running	program's	architecture	target:

			139	 //	386,	amd64,	or	arm.

			140	 const	GOARCH	string	=	theGoarch

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative

http://code.google.com/policies.html#restrictions

Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/runtime/mem.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	runtime

					6	

					7	 import	"unsafe"

					8	

					9	 //	A	MemStats	records	statistics	about	the	memory	allocator.

				10	 type	MemStats	struct	{

				11	 	 //	General	statistics.

				12	 	 Alloc						uint64	//	bytes	allocated	and	still	in	use

				13	 	 TotalAlloc	uint64	//	bytes	allocated	(even	if	freed)

				14	 	 Sys								uint64	//	bytes	obtained	from	system	(should	be	sum	of	XxxSys	below)

				15	 	 Lookups				uint64	//	number	of	pointer	lookups

				16	 	 Mallocs				uint64	//	number	of	mallocs

				17	 	 Frees						uint64	//	number	of	frees

				18	

				19	 	 //	Main	allocation	heap	statistics.

				20	 	 HeapAlloc				uint64	//	bytes	allocated	and	still	in	use

				21	 	 HeapSys						uint64	//	bytes	obtained	from	system

				22	 	 HeapIdle					uint64	//	bytes	in	idle	spans

				23	 	 HeapInuse				uint64	//	bytes	in	non-idle	span

				24	 	 HeapReleased	uint64	//	bytes	released	to	the	OS

				25	 	 HeapObjects		uint64	//	total	number	of	allocated	objects

				26	

				27	 	 //	Low-level	fixed-size	structure	allocator	statistics.

				28	 	 //	 Inuse	is	bytes	used	now.

				29	 	 //	 Sys	is	bytes	obtained	from	system.

				30	 	 StackInuse		uint64	//	bootstrap	stacks

				31	 	 StackSys				uint64

				32	 	 MSpanInuse		uint64	//	mspan	structures

				33	 	 MSpanSys				uint64

				34	 	 MCacheInuse	uint64	//	mcache	structures

				35	 	 MCacheSys			uint64

				36	 	 BuckHashSys	uint64	//	profiling	bucket	hash	table

				37	

				38	 	 //	Garbage	collector	statistics.

				39	 	 NextGC							uint64	//	next	run	in	HeapAlloc	time	(bytes)

				40	 	 LastGC							uint64	//	last	run	in	absolute	time	(ns)

				41	 	 PauseTotalNs	uint64

				42	 	 PauseNs						[256]uint64	//	most	recent	GC	pause	times

				43	 	 NumGC								uint32

				44	 	 EnableGC					bool

				45	 	 DebugGC						bool

				46	

				47	 	 //	Per-size	allocation	statistics.

				48	 	 //	61	is	NumSizeClasses	in	the	C	code.

				49	 	 BySize	[61]struct	{

				50	 	 	 Size				uint32

				51	 	 	 Mallocs	uint64

				52	 	 	 Frees			uint64

				53	 	 }

				54	 }

				55	

				56	 var	sizeof_C_MStats	uintptr	//	filled	in	by	malloc.goc

				57	

				58	 var	memStats	MemStats

				59	

				60	 func	init()	{

				61	 	 if	sizeof_C_MStats	!=	unsafe.Sizeof(memStats)	{

				62	 	 	 println(sizeof_C_MStats,	unsafe.Sizeof(memStats))

				63	 	 	 panic("MStats	vs	MemStatsType	size	mismatch")

				64	 	 }

				65	 }

				66	

				67	 //	ReadMemStats	populates	m	with	memory	allocator	statistics.

				68	 func	ReadMemStats(m	*MemStats)

				69	

				70	 //	GC	runs	a	garbage	collection.

				71	 func	GC()

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/runtime/softfloat64.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Software	IEEE754	64-bit	floating	point.

					6	 //	Only	referred	to	(and	thus	linked	in)	by	arm	port

					7	 //	and	by	tests	in	this	directory.

					8	

					9	 package	runtime

				10	

				11	 const	(

				12	 	 mantbits64	uint	=	52

				13	 	 expbits64		uint	=	11

				14	 	 bias64										=	-1<<(expbits64-1)	+	1

				15	

				16	 	 nan64	uint64	=	(1<<expbits64-1)<<mantbits64	+	1

				17	 	 inf64	uint64	=	(1<<expbits64	-	1)	<<	mantbits64

				18	 	 neg64	uint64	=	1	<<	(expbits64	+	mantbits64)

				19	

				20	 	 mantbits32	uint	=	23

				21	 	 expbits32		uint	=	8

				22	 	 bias32										=	-1<<(expbits32-1)	+	1

				23	

				24	 	 nan32	uint32	=	(1<<expbits32-1)<<mantbits32	+	1

				25	 	 inf32	uint32	=	(1<<expbits32	-	1)	<<	mantbits32

				26	 	 neg32	uint32	=	1	<<	(expbits32	+	mantbits32)

				27)

				28	

				29	 func	funpack64(f	uint64)	(sign,	mant	uint64,	exp	int,	inf,	nan	bool)	{

				30	 	 sign	=	f	&	(1	<<	(mantbits64	+	expbits64))

				31	 	 mant	=	f	&	(1<<mantbits64	-	1)

				32	 	 exp	=	int(f>>mantbits64)	&	(1<<expbits64	-	1)

				33	

				34	 	 switch	exp	{

				35	 	 case	1<<expbits64	-	1:

				36	 	 	 if	mant	!=	0	{

				37	 	 	 	 nan	=	true

				38	 	 	 	 return

				39	 	 	 }

				40	 	 	 inf	=	true

				41	 	 	 return

				42	

				43	 	 case	0:

				44	 	 	 //	denormalized

				45	 	 	 if	mant	!=	0	{

				46	 	 	 	 exp	+=	bias64	+	1

				47	 	 	 	 for	mant	<	1<<mantbits64	{

				48	 	 	 	 	 mant	<<=	1

				49	 	 	 	 	 exp--

				50	 	 	 	 }

				51	 	 	 }

				52	

				53	 	 default:

				54	 	 	 //	add	implicit	top	bit

				55	 	 	 mant	|=	1	<<	mantbits64

				56	 	 	 exp	+=	bias64

				57	 	 }

				58	 	 return

				59	 }

				60	

				61	 func	funpack32(f	uint32)	(sign,	mant	uint32,	exp	int,	inf,	nan	bool)	{

				62	 	 sign	=	f	&	(1	<<	(mantbits32	+	expbits32))

				63	 	 mant	=	f	&	(1<<mantbits32	-	1)

				64	 	 exp	=	int(f>>mantbits32)	&	(1<<expbits32	-	1)

				65	

				66	 	 switch	exp	{

				67	 	 case	1<<expbits32	-	1:

				68	 	 	 if	mant	!=	0	{

				69	 	 	 	 nan	=	true

				70	 	 	 	 return

				71	 	 	 }

				72	 	 	 inf	=	true

				73	 	 	 return

				74	

				75	 	 case	0:

				76	 	 	 //	denormalized

				77	 	 	 if	mant	!=	0	{

				78	 	 	 	 exp	+=	bias32	+	1

				79	 	 	 	 for	mant	<	1<<mantbits32	{

				80	 	 	 	 	 mant	<<=	1

				81	 	 	 	 	 exp--

				82	 	 	 	 }

				83	 	 	 }

				84	

				85	 	 default:

				86	 	 	 //	add	implicit	top	bit

				87	 	 	 mant	|=	1	<<	mantbits32

				88	 	 	 exp	+=	bias32

				89	 	 }

				90	 	 return

				91	 }

				92	

				93	 func	fpack64(sign,	mant	uint64,	exp	int,	trunc	uint64)	uint64	{

				94	 	 mant0,	exp0,	trunc0	:=	mant,	exp,	trunc

				95	 	 if	mant	==	0	{

				96	 	 	 return	sign

				97	 	 }

				98	 	 for	mant	<	1<<mantbits64	{

				99	 	 	 mant	<<=	1

			100	 	 	 exp--

			101	 	 }

			102	 	 for	mant	>=	4<<mantbits64	{

			103	 	 	 trunc	|=	mant	&	1

			104	 	 	 mant	>>=	1

			105	 	 	 exp++

			106	 	 }

			107	 	 if	mant	>=	2<<mantbits64	{

			108	 	 	 if	mant&1	!=	0	&&	(trunc	!=	0	||	mant&2	!=	0)	{

			109	 	 	 	 mant++

			110	 	 	 	 if	mant	>=	4<<mantbits64	{

			111	 	 	 	 	 mant	>>=	1

			112	 	 	 	 	 exp++

			113	 	 	 	 }

			114	 	 	 }

			115	 	 	 mant	>>=	1

			116	 	 	 exp++

			117	 	 }

			118	 	 if	exp	>=	1<<expbits64-1+bias64	{

			119	 	 	 return	sign	^	inf64

			120	 	 }

			121	 	 if	exp	<	bias64+1	{

			122	 	 	 if	exp	<	bias64-int(mantbits64)	{

			123	 	 	 	 return	sign	|	0

			124	 	 	 }

			125	 	 	 //	repeat	expecting	denormal

			126	 	 	 mant,	exp,	trunc	=	mant0,	exp0,	trunc0

			127	 	 	 for	exp	<	bias64	{

			128	 	 	 	 trunc	|=	mant	&	1

			129	 	 	 	 mant	>>=	1

			130	 	 	 	 exp++

			131	 	 	 }

			132	 	 	 if	mant&1	!=	0	&&	(trunc	!=	0	||	mant&2	!=	0)	{

			133	 	 	 	 mant++

			134	 	 	 }

			135	 	 	 mant	>>=	1

			136	 	 	 exp++

			137	 	 	 if	mant	<	1<<mantbits64	{

			138	 	 	 	 return	sign	|	mant

			139	 	 	 }

			140	 	 }

			141	 	 return	sign	|	uint64(exp-bias64)<<mantbits64	|	mant&(1<<mantbits64-1)

			142	 }

			143	

			144	 func	fpack32(sign,	mant	uint32,	exp	int,	trunc	uint32)	uint32	{

			145	 	 mant0,	exp0,	trunc0	:=	mant,	exp,	trunc

			146	 	 if	mant	==	0	{

			147	 	 	 return	sign

			148	 	 }

			149	 	 for	mant	<	1<<mantbits32	{

			150	 	 	 mant	<<=	1

			151	 	 	 exp--

			152	 	 }

			153	 	 for	mant	>=	4<<mantbits32	{

			154	 	 	 trunc	|=	mant	&	1

			155	 	 	 mant	>>=	1

			156	 	 	 exp++

			157	 	 }

			158	 	 if	mant	>=	2<<mantbits32	{

			159	 	 	 if	mant&1	!=	0	&&	(trunc	!=	0	||	mant&2	!=	0)	{

			160	 	 	 	 mant++

			161	 	 	 	 if	mant	>=	4<<mantbits32	{

			162	 	 	 	 	 mant	>>=	1

			163	 	 	 	 	 exp++

			164	 	 	 	 }

			165	 	 	 }

			166	 	 	 mant	>>=	1

			167	 	 	 exp++

			168	 	 }

			169	 	 if	exp	>=	1<<expbits32-1+bias32	{

			170	 	 	 return	sign	^	inf32

			171	 	 }

			172	 	 if	exp	<	bias32+1	{

			173	 	 	 if	exp	<	bias32-int(mantbits32)	{

			174	 	 	 	 return	sign	|	0

			175	 	 	 }

			176	 	 	 //	repeat	expecting	denormal

			177	 	 	 mant,	exp,	trunc	=	mant0,	exp0,	trunc0

			178	 	 	 for	exp	<	bias32	{

			179	 	 	 	 trunc	|=	mant	&	1

			180	 	 	 	 mant	>>=	1

			181	 	 	 	 exp++

			182	 	 	 }

			183	 	 	 if	mant&1	!=	0	&&	(trunc	!=	0	||	mant&2	!=	0)	{

			184	 	 	 	 mant++

			185	 	 	 }

			186	 	 	 mant	>>=	1

			187	 	 	 exp++

			188	 	 	 if	mant	<	1<<mantbits32	{

			189	 	 	 	 return	sign	|	mant

			190	 	 	 }

			191	 	 }

			192	 	 return	sign	|	uint32(exp-bias32)<<mantbits32	|	mant&(1<<mantbits32-1)

			193	 }

			194	

			195	 func	fadd64(f,	g	uint64)	uint64	{

			196	 	 fs,	fm,	fe,	fi,	fn	:=	funpack64(f)

			197	 	 gs,	gm,	ge,	gi,	gn	:=	funpack64(g)

			198	

			199	 	 //	Special	cases.

			200	 	 switch	{

			201	 	 case	fn	||	gn:	//	NaN	+	x	or	x	+	NaN	=	NaN

			202	 	 	 return	nan64

			203	

			204	 	 case	fi	&&	gi	&&	fs	!=	gs:	//	+Inf	+	-Inf	or	-Inf	+	+Inf	=	NaN

			205	 	 	 return	nan64

			206	

			207	 	 case	fi:	//	±Inf	+	g	=	±Inf

			208	 	 	 return	f

			209	

			210	 	 case	gi:	//	f	+	±Inf	=	±Inf

			211	 	 	 return	g

			212	

			213	 	 case	fm	==	0	&&	gm	==	0	&&	fs	!=	0	&&	gs	!=	0:	//	-0	+	-0	=	-0

			214	 	 	 return	f

			215	

			216	 	 case	fm	==	0:	//	0	+	g	=	g	but	0	+	-0	=	+0

			217	 	 	 if	gm	==	0	{

			218	 	 	 	 g	^=	gs

			219	 	 	 }

			220	 	 	 return	g

			221	

			222	 	 case	gm	==	0:	//	f	+	0	=	f

			223	 	 	 return	f

			224	

			225	 	 }

			226	

			227	 	 if	fe	<	ge	||	fe	==	ge	&&	fm	<	gm	{

			228	 	 	 f,	g,	fs,	fm,	fe,	gs,	gm,	ge	=	g,	f,	gs,	gm,	ge,	fs,	fm,	fe

			229	 	 }

			230	

			231	 	 shift	:=	uint(fe	-	ge)

			232	 	 fm	<<=	2

			233	 	 gm	<<=	2

			234	 	 trunc	:=	gm	&	(1<<shift	-	1)

			235	 	 gm	>>=	shift

			236	 	 if	fs	==	gs	{

			237	 	 	 fm	+=	gm

			238	 	 }	else	{

			239	 	 	 fm	-=	gm

			240	 	 	 if	trunc	!=	0	{

			241	 	 	 	 fm--

			242	 	 	 }

			243	 	 }

			244	 	 if	fm	==	0	{

			245	 	 	 fs	=	0

			246	 	 }

			247	 	 return	fpack64(fs,	fm,	fe-2,	trunc)

			248	 }

			249	

			250	 func	fsub64(f,	g	uint64)	uint64	{

			251	 	 return	fadd64(f,	fneg64(g))

			252	 }

			253	

			254	 func	fneg64(f	uint64)	uint64	{

			255	 	 return	f	^	(1	<<	(mantbits64	+	expbits64))

			256	 }

			257	

			258	 func	fmul64(f,	g	uint64)	uint64	{

			259	 	 fs,	fm,	fe,	fi,	fn	:=	funpack64(f)

			260	 	 gs,	gm,	ge,	gi,	gn	:=	funpack64(g)

			261	

			262	 	 //	Special	cases.

			263	 	 switch	{

			264	 	 case	fn	||	gn:	//	NaN	*	g	or	f	*	NaN	=	NaN

			265	 	 	 return	nan64

			266	

			267	 	 case	fi	&&	gi:	//	Inf	*	Inf	=	Inf	(with	sign	adjusted)

			268	 	 	 return	f	^	gs

			269	

			270	 	 case	fi	&&	gm	==	0,	fm	==	0	&&	gi:	//	0	*	Inf	=	Inf	*	0	=	NaN

			271	 	 	 return	nan64

			272	

			273	 	 case	fm	==	0:	//	0	*	x	=	0	(with	sign	adjusted)

			274	 	 	 return	f	^	gs

			275	

			276	 	 case	gm	==	0:	//	x	*	0	=	0	(with	sign	adjusted)

			277	 	 	 return	g	^	fs

			278	 	 }

			279	

			280	 	 //	53-bit	*	53-bit	=	107-	or	108-bit

			281	 	 lo,	hi	:=	mullu(fm,	gm)

			282	 	 shift	:=	mantbits64	-	1

			283	 	 trunc	:=	lo	&	(1<<shift	-	1)

			284	 	 mant	:=	hi<<(64-shift)	|	lo>>shift

			285	 	 return	fpack64(fs^gs,	mant,	fe+ge-1,	trunc)

			286	 }

			287	

			288	 func	fdiv64(f,	g	uint64)	uint64	{

			289	 	 fs,	fm,	fe,	fi,	fn	:=	funpack64(f)

			290	 	 gs,	gm,	ge,	gi,	gn	:=	funpack64(g)

			291	

			292	 	 //	Special	cases.

			293	 	 switch	{

			294	 	 case	fn	||	gn:	//	NaN	/	g	=	f	/	NaN	=	NaN

			295	 	 	 return	nan64

			296	

			297	 	 case	fi	&&	gi:	//	±Inf	/	±Inf	=	NaN

			298	 	 	 return	nan64

			299	

			300	 	 case	!fi	&&	!gi	&&	fm	==	0	&&	gm	==	0:	//	0	/	0	=	NaN

			301	 	 	 return	nan64

			302	

			303	 	 case	fi,	!gi	&&	gm	==	0:	//	Inf	/	g	=	f	/	0	=	Inf

			304	 	 	 return	fs	^	gs	^	inf64

			305	

			306	 	 case	gi,	fm	==	0:	//	f	/	Inf	=	0	/	g	=	Inf

			307	 	 	 return	fs	^	gs	^	0

			308	 	 }

			309	 	 _,	_,	_,	_	=	fi,	fn,	gi,	gn

			310	

			311	 	 //	53-bit<<54	/	53-bit	=	53-	or	54-bit.

			312	 	 shift	:=	mantbits64	+	2

			313	 	 q,	r	:=	divlu(fm>>(64-shift),	fm<<shift,	gm)

			314	 	 return	fpack64(fs^gs,	q,	fe-ge-2,	r)

			315	 }

			316	

			317	 func	f64to32(f	uint64)	uint32	{

			318	 	 fs,	fm,	fe,	fi,	fn	:=	funpack64(f)

			319	 	 if	fn	{

			320	 	 	 return	nan32

			321	 	 }

			322	 	 fs32	:=	uint32(fs	>>	32)

			323	 	 if	fi	{

			324	 	 	 return	fs32	^	inf32

			325	 	 }

			326	 	 const	d	=	mantbits64	-	mantbits32	-	1

			327	 	 return	fpack32(fs32,	uint32(fm>>d),	fe-1,	uint32(fm&(1<<d-1)))

			328	 }

			329	

			330	 func	f32to64(f	uint32)	uint64	{

			331	 	 const	d	=	mantbits64	-	mantbits32

			332	 	 fs,	fm,	fe,	fi,	fn	:=	funpack32(f)

			333	 	 if	fn	{

			334	 	 	 return	nan64

			335	 	 }

			336	 	 fs64	:=	uint64(fs)	<<	32

			337	 	 if	fi	{

			338	 	 	 return	fs64	^	inf64

			339	 	 }

			340	 	 return	fpack64(fs64,	uint64(fm)<<d,	fe,	0)

			341	 }

			342	

			343	 func	fcmp64(f,	g	uint64)	(cmp	int,	isnan	bool)	{

			344	 	 fs,	fm,	_,	fi,	fn	:=	funpack64(f)

			345	 	 gs,	gm,	_,	gi,	gn	:=	funpack64(g)

			346	

			347	 	 switch	{

			348	 	 case	fn,	gn:	//	flag	NaN

			349	 	 	 return	0,	true

			350	

			351	 	 case	!fi	&&	!gi	&&	fm	==	0	&&	gm	==	0:	//	±0	==	±0

			352	 	 	 return	0,	false

			353	

			354	 	 case	fs	>	gs:	//	f	<	0,	g	>	0

			355	 	 	 return	-1,	false

			356	

			357	 	 case	fs	<	gs:	//	f	>	0,	g	<	0

			358	 	 	 return	+1,	false

			359	

			360	 	 //	Same	sign,	not	NaN.

			361	 	 //	Can	compare	encodings	directly	now.

			362	 	 //	Reverse	for	sign.

			363	 	 case	fs	==	0	&&	f	<	g,	fs	!=	0	&&	f	>	g:

			364	 	 	 return	-1,	false

			365	

			366	 	 case	fs	==	0	&&	f	>	g,	fs	!=	0	&&	f	<	g:

			367	 	 	 return	+1,	false

			368	 	 }

			369	

			370	 	 //	f	==	g

			371	 	 return	0,	false

			372	 }

			373	

			374	 func	f64toint(f	uint64)	(val	int64,	ok	bool)	{

			375	 	 fs,	fm,	fe,	fi,	fn	:=	funpack64(f)

			376	

			377	 	 switch	{

			378	 	 case	fi,	fn:	//	NaN

			379	 	 	 return	0,	false

			380	

			381	 	 case	fe	<	-1:	//	f	<	0.5

			382	 	 	 return	0,	false

			383	

			384	 	 case	fe	>	63:	//	f	>=	2^63

			385	 	 	 if	fs	!=	0	&&	fm	==	0	{	//	f	==	-2^63

			386	 	 	 	 return	-1	<<	63,	true

			387	 	 	 }

			388	 	 	 if	fs	!=	0	{

			389	 	 	 	 return	0,	false

			390	 	 	 }

			391	 	 	 return	0,	false

			392	 	 }

			393	

			394	 	 for	fe	>	int(mantbits64)	{

			395	 	 	 fe--

			396	 	 	 fm	<<=	1

			397	 	 }

			398	 	 for	fe	<	int(mantbits64)	{

			399	 	 	 fe++

			400	 	 	 fm	>>=	1

			401	 	 }

			402	 	 val	=	int64(fm)

			403	 	 if	fs	!=	0	{

			404	 	 	 val	=	-val

			405	 	 }

			406	 	 return	val,	true

			407	 }

			408	

			409	 func	fintto64(val	int64)	(f	uint64)	{

			410	 	 fs	:=	uint64(val)	&	(1	<<	63)

			411	 	 mant	:=	uint64(val)

			412	 	 if	fs	!=	0	{

			413	 	 	 mant	=	-mant

			414	 	 }

			415	 	 return	fpack64(fs,	mant,	int(mantbits64),	0)

			416	 }

			417	

			418	 //	64x64	->	128	multiply.

			419	 //	adapted	from	hacker's	delight.

			420	 func	mullu(u,	v	uint64)	(lo,	hi	uint64)	{

			421	 	 const	(

			422	 	 	 s				=	32

			423	 	 	 mask	=	1<<s	-	1

			424)

			425	 	 u0	:=	u	&	mask

			426	 	 u1	:=	u	>>	s

			427	 	 v0	:=	v	&	mask

			428	 	 v1	:=	v	>>	s

			429	 	 w0	:=	u0	*	v0

			430	 	 t	:=	u1*v0	+	w0>>s

			431	 	 w1	:=	t	&	mask

			432	 	 w2	:=	t	>>	s

			433	 	 w1	+=	u0	*	v1

			434	 	 return	u	*	v,	u1*v1	+	w2	+	w1>>s

			435	 }

			436	

			437	 //	128/64	->	64	quotient,	64	remainder.

			438	 //	adapted	from	hacker's	delight

			439	 func	divlu(u1,	u0,	v	uint64)	(q,	r	uint64)	{

			440	 	 const	b	=	1	<<	32

			441	

			442	 	 if	u1	>=	v	{

			443	 	 	 return	1<<64	-	1,	1<<64	-	1

			444	 	 }

			445	

			446	 	 //	s	=	nlz(v);	v	<<=	s

			447	 	 s	:=	uint(0)

			448	 	 for	v&(1<<63)	==	0	{

			449	 	 	 s++

			450	 	 	 v	<<=	1

			451	 	 }

			452	

			453	 	 vn1	:=	v	>>	32

			454	 	 vn0	:=	v	&	(1<<32	-	1)

			455	 	 un32	:=	u1<<s	|	u0>>(64-s)

			456	 	 un10	:=	u0	<<	s

			457	 	 un1	:=	un10	>>	32

			458	 	 un0	:=	un10	&	(1<<32	-	1)

			459	 	 q1	:=	un32	/	vn1

			460	 	 rhat	:=	un32	-	q1*vn1

			461	

			462	 again1:

			463	 	 if	q1	>=	b	||	q1*vn0	>	b*rhat+un1	{

			464	 	 	 q1--

			465	 	 	 rhat	+=	vn1

			466	 	 	 if	rhat	<	b	{

			467	 	 	 	 goto	again1

			468	 	 	 }

			469	 	 }

			470	

			471	 	 un21	:=	un32*b	+	un1	-	q1*v

			472	 	 q0	:=	un21	/	vn1

			473	 	 rhat	=	un21	-	q0*vn1

			474	

			475	 again2:

			476	 	 if	q0	>=	b	||	q0*vn0	>	b*rhat+un0	{

			477	 	 	 q0--

			478	 	 	 rhat	+=	vn1

			479	 	 	 if	rhat	<	b	{

			480	 	 	 	 goto	again2

			481	 	 	 }

			482	 	 }

			483	

			484	 	 return	q1*b	+	q0,	(un21*b	+	un0	-	q0*v)	>>	s

			485	 }

			486	

			487	 //	callable	from	C

			488	

			489	 func	fadd64c(f,	g	uint64,	ret	*uint64)												{	*ret	=	fadd64(f,	g)	}

			490	 func	fsub64c(f,	g	uint64,	ret	*uint64)												{	*ret	=	fsub64(f,	g)	}

			491	 func	fmul64c(f,	g	uint64,	ret	*uint64)												{	*ret	=	fmul64(f,	g)	}

			492	 func	fdiv64c(f,	g	uint64,	ret	*uint64)												{	*ret	=	fdiv64(f,	g)	}

			493	 func	fneg64c(f	uint64,	ret	*uint64)															{	*ret	=	fneg64(f)	}

			494	 func	f32to64c(f	uint32,	ret	*uint64)														{	*ret	=	f32to64(f)	}

			495	 func	f64to32c(f	uint64,	ret	*uint32)														{	*ret	=	f64to32(f)	}

			496	 func	fcmp64c(f,	g	uint64,	ret	*int,	retnan	*bool)	{	*ret,	*retnan	=	fcmp64(f,	g)	}

			497	 func	fintto64c(val	int64,	ret	*uint64)												{	*ret	=	fintto64(val)	}

			498	 func	f64tointc(f	uint64,	ret	*int64,	retok	*bool)	{	*ret,	*retok	=	f64toint(f)	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/runtime/type.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 	*	Runtime	type	representation.

					7	 	*	This	file	exists	only	to	provide	types	that	6l	can	turn	into

					8	 	*	DWARF	information	for	use	by	gdb.		Nothing	else	uses	these.

					9	 	*	They	should	match	the	same	types	in	../reflect/type.go.

				10	 	*	For	comments	see	../reflect/type.go.

				11	 	*/

				12	

				13	 package	runtime

				14	

				15	 import	"unsafe"

				16	

				17	 type	commonType	struct	{

				18	 	 size							uintptr

				19	 	 hash							uint32

				20	 	 _										uint8

				21	 	 align						uint8

				22	 	 fieldAlign	uint8

				23	 	 kind							uint8

				24	 	 alg								*uintptr

				25	 	 string					*string

				26	 	 *uncommonType

				27	 	 ptrToThis	*interface{}

				28	 }

				29	

				30	 type	_method	struct	{

				31	 	 name				*string

				32	 	 pkgPath	*string

				33	 	 mtyp				*interface{}

				34	 	 typ					*interface{}

				35	 	 ifn					unsafe.Pointer

				36	 	 tfn					unsafe.Pointer

				37	 }

				38	

				39	 type	uncommonType	struct	{

				40	 	 name				*string

				41	 	 pkgPath	*string

				42	 	 methods	[]_method

				43	 }

				44	

				45	 type	_imethod	struct	{

				46	 	 name				*string

				47	 	 pkgPath	*string

				48	 	 typ					*interface{}

				49	 }

				50	

				51	 type	interfaceType	struct	{

				52	 	 commonType

				53	 	 methods	[]_imethod

				54	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/runtime/zgoarch_amd64.go
					1	 //	auto	generated	by	go	tool	dist

					2	

					3	 package	runtime

					4	

					5	 const	theGoarch	=	`amd64`

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/runtime/zgoos_linux.go
					1	 //	auto	generated	by	go	tool	dist

					2	

					3	 package	runtime

					4	

					5	 const	theGoos	=	`linux`

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/runtime/zruntime_defs_linux_amd64.go
					1	 //	auto	generated	by	go	tool	dist

					2	

					3	 package	runtime

					4	 import	"unsafe"

					5	 var	_	unsafe.Pointer

					6	

					7	 type	lock	struct	{

					8	 	 //	(union)	 key	 uint

					9	 	 waitm	 *m

				10	 }

				11	

				12	 type	note	struct	{

				13	 	 //	(union)	 key	 uint

				14	 	 waitm	 *m

				15	 }

				16	

				17	 type	_string	struct	{

				18	 	 str	 *uint8

				19	 	 len	 int

				20	 }

				21	

				22	 type	iface	struct	{

				23	 	 tab	 *itab

				24	 	 data	 unsafe.Pointer

				25	 }

				26	

				27	 type	eface	struct	{

				28	 	 _type	 *_type

				29	 	 data	 unsafe.Pointer

				30	 }

				31	

				32	 type	_complex64	struct	{

				33	 	 real	 float32

				34	 	 imag	 float32

				35	 }

				36	

				37	 type	_complex128	struct	{

				38	 	 real	 float64

				39	 	 imag	 float64

				40	 }

				41	

				42	 type	slice	struct	{

				43	 	 array	 *uint8

				44	 	 len	 uint

				45	 	 cap	 uint

				46	 }

				47	

				48	 type	gobuf	struct	{

				49	 	 sp	 *uint8

				50	 	 pc	 *uint8

				51	 	 g	 *g

				52	 }

				53	

				54	 type	g	struct	{

				55	 	 stackguard	 *uint8

				56	 	 stackbase	 *uint8

				57	 	 _defer	 *_defer

				58	 	 _panic	 *_panic

				59	 	 sched	 gobuf

				60	 	 gcstack	*uint8

				61	 	 gcsp	 *uint8

				62	 	 gcguard	*uint8

				63	 	 stack0	 *uint8

				64	 	 entry	 *uint8

				65	 	 alllink	*g

				66	 	 param	 unsafe.Pointer

				67	 	 status	 int16

				68	 	 goid	 int

				69	 	 selgen	 uint

				70	 	 waitreason	 *int8

				71	 	 schedlink	 *g

				72	 	 readyonstop	 uint8

				73	 	 ispanic	uint8

				74	 	 m	 *m

				75	 	 lockedm	*m

				76	 	 idlem	 *m

				77	 	 sig	 int

				78	 	 writenbuf	 int

				79	 	 writebuf	 *uint8

				80	 	 sigcode0	 uint64

				81	 	 sigcode1	 uint64

				82	 	 sigpc	 uint64

				83	 	 gopc	 uint64

				84	 	 end	 [0]uint64

				85	 }

				86	

				87	 type	m	struct	{

				88	 	 g0	 *g

				89	 	 morepc	 func()

				90	 	 moreargp	 unsafe.Pointer

				91	 	 morebuf	gobuf

				92	 	 moreframesize	 uint

				93	 	 moreargsize	 uint

				94	 	 cret	 uint64

				95	 	 procid	 uint64

				96	 	 gsignal	*g

				97	 	 tls	 [8]uint

				98	 	 curg	 *g

				99	 	 id	 int

			100	 	 mallocing	 int

			101	 	 gcing	 int

			102	 	 locks	 int

			103	 	 nomemprof	 int

			104	 	 waitnextg	 int

			105	 	 dying	 int

			106	 	 profilehz	 int

			107	 	 helpgc	 int

			108	 	 fastrand	 uint

			109	 	 ncgocall	 uint64

			110	 	 havenextg	 note

			111	 	 nextg	 *g

			112	 	 alllink	*m

			113	 	 schedlink	 *m

			114	 	 machport	 uint

			115	 	 mcache	 *mcache

			116	 	 stackalloc	 *fixalloc

			117	 	 lockedg	*g

			118	 	 idleg	 *g

			119	 	 createstack	 [32]uint64

			120	 	 freglo	 [16]uint

			121	 	 freghi	 [16]uint

			122	 	 fflag	 uint

			123	 	 nextwaitm	 *m

			124	 	 waitsema	 uint64

			125	 	 waitsemacount	 uint

			126	 	 waitsemalock	 uint

			127	 	 end	 [0]uint64

			128	 }

			129	

			130	 type	stktop	struct	{

			131	 	 stackguard	 *uint8

			132	 	 stackbase	 *uint8

			133	 	 gobuf	 gobuf

			134	 	 argsize	uint

			135	 	 argp	 *uint8

			136	 	 free	 uint64

			137	 	 _panic	 uint8

			138	 }

			139	

			140	 type	sigtab	struct	{

			141	 	 flags	 int

			142	 	 name	 *int8

			143	 }

			144	

			145	 type	_func	struct	{

			146	 	 name	 string

			147	 	 _type	 string

			148	 	 src	 string

			149	 	 pcln	 []byte

			150	 	 entry	 uint64

			151	 	 pc0	 uint64

			152	 	 ln0	 int

			153	 	 frame	 int

			154	 	 args	 int

			155	 	 locals	 int

			156	 }

			157	

			158	 type	wincall	struct	{

			159	 	 fn	 func(unsafe.Pointer)

			160	 	 n	 uint64

			161	 	 args	 unsafe.Pointer

			162	 	 r1	 uint64

			163	 	 r2	 uint64

			164	 	 err	 uint64

			165	 }

			166	

			167	 type	timers	struct	{

			168	 	 lock

			169	 	 timerproc	 *g

			170	 	 sleeping	 uint8

			171	 	 rescheduling	 uint8

			172	 	 waitnote	 note

			173	 	 t	 **timer

			174	 	 len	 int

			175	 	 cap	 int

			176	 }

			177	

			178	 type	timer	struct	{

			179	 	 i	 int

			180	 	 when	 int64

			181	 	 period	 int64

			182	 	 f	 func(int64,	eface)

			183	 	 arg	 eface

			184	 }

			185	

			186	 type	alg	struct	{

			187	 	 hash	 func(*uint64,	uint64,	unsafe.Pointer)

			188	 	 equal	 func(*uint8,	uint64,	unsafe.Pointer,	unsafe.Pointer)

			189	 	 print	 func(uint64,	unsafe.Pointer)

			190	 	 copy	 func(uint64,	unsafe.Pointer,	unsafe.Pointer)

			191	 }

			192	

			193	 var	algarray	 [22]alg

			194	 type	_defer	struct	{

			195	 	 siz	 int

			196	 	 nofree	 uint8

			197	 	 argp	 *uint8

			198	 	 pc	 *uint8

			199	 	 fn	 *uint8

			200	 	 link	 *_defer

			201	 	 args	 [8]uint8

			202	 }

			203	

			204	 type	_panic	struct	{

			205	 	 arg	 eface

			206	 	 stackbase	 *uint8

			207	 	 link	 *_panic

			208	 	 recovered	 uint8

			209	 }

			210	

			211	 var	emptystring	string

			212	 var	allg	 *g

			213	 var	lastg	 *g

			214	 var	allm	 *m

			215	 var	gomaxprocs	 int

			216	 var	singleproc	 uint8

			217	 var	panicking	 uint

			218	 var	gcwaiting	 int

			219	 var	goos	 *int8

			220	 var	ncpu	 int

			221	 var	iscgo	 uint8

			222	 var	worldsema	 uint

			223	 type	timespec	struct	{

			224	 	 tv_sec	 int64

			225	 	 tv_nsec	int64

			226	 }

			227	

			228	 type	timeval	struct	{

			229	 	 tv_sec	 int64

			230	 	 tv_usec	int64

			231	 }

			232	

			233	 type	sigaction	struct	{

			234	 	 sa_handler	 unsafe.Pointer

			235	 	 sa_flags	 uint64

			236	 	 sa_restorer	 unsafe.Pointer

			237	 	 sa_mask	uint64

			238	 }

			239	

			240	 type	siginfo	struct	{

			241	 	 si_signo	 int

			242	 	 si_errno	 int

			243	 	 si_code	int

			244	 	 pad_cgo_0	 [4]uint8

			245	 	 _sifields	 [112]uint8

			246	 }

			247	

			248	 type	itimerval	struct	{

			249	 	 it_interval	 timeval

			250	 	 it_value	 timeval

			251	 }

			252	

			253	 type	usigset	struct	{

			254	 	 __val	 [16]uint64

			255	 }

			256	

			257	 type	fpxreg	struct	{

			258	 	 significand	 [4]uint16

			259	 	 exponent	 uint16

			260	 	 padding	[3]uint16

			261	 }

			262	

			263	 type	xmmreg	struct	{

			264	 	 element	[4]uint

			265	 }

			266	

			267	 type	fpstate	struct	{

			268	 	 cwd	 uint16

			269	 	 swd	 uint16

			270	 	 ftw	 uint16

			271	 	 fop	 uint16

			272	 	 rip	 uint64

			273	 	 rdp	 uint64

			274	 	 mxcsr	 uint

			275	 	 mxcr_mask	 uint

			276	 	 _st	 [8]fpxreg

			277	 	 _xmm	 [16]xmmreg

			278	 	 padding	[24]uint

			279	 }

			280	

			281	 type	fpxreg1	struct	{

			282	 	 significand	 [4]uint16

			283	 	 exponent	 uint16

			284	 	 padding	[3]uint16

			285	 }

			286	

			287	 type	xmmreg1	struct	{

			288	 	 element	[4]uint

			289	 }

			290	

			291	 type	fpstate1	struct	{

			292	 	 cwd	 uint16

			293	 	 swd	 uint16

			294	 	 ftw	 uint16

			295	 	 fop	 uint16

			296	 	 rip	 uint64

			297	 	 rdp	 uint64

			298	 	 mxcsr	 uint

			299	 	 mxcr_mask	 uint

			300	 	 _st	 [8]fpxreg1

			301	 	 _xmm	 [16]xmmreg1

			302	 	 padding	[24]uint

			303	 }

			304	

			305	 type	fpreg1	struct	{

			306	 	 significand	 [4]uint16

			307	 	 exponent	 uint16

			308	 }

			309	

			310	 type	sigaltstack	struct	{

			311	 	 ss_sp	 *uint8

			312	 	 ss_flags	 int

			313	 	 pad_cgo_0	 [4]uint8

			314	 	 ss_size	uint64

			315	 }

			316	

			317	 type	mcontext	struct	{

			318	 	 gregs	 [23]int64

			319	 	 fpregs	 *fpstate

			320	 	 __reserved1	 [8]uint64

			321	 }

			322	

			323	 type	ucontext	struct	{

			324	 	 uc_flags	 uint64

			325	 	 uc_link	*ucontext

			326	 	 uc_stack	 sigaltstack

			327	 	 uc_mcontext	 mcontext

			328	 	 uc_sigmask	 usigset

			329	 	 __fpregs_mem	 fpstate

			330	 }

			331	

			332	 type	sigcontext	struct	{

			333	 	 r8	 uint64

			334	 	 r9	 uint64

			335	 	 r10	 uint64

			336	 	 r11	 uint64

			337	 	 r12	 uint64

			338	 	 r13	 uint64

			339	 	 r14	 uint64

			340	 	 r15	 uint64

			341	 	 rdi	 uint64

			342	 	 rsi	 uint64

			343	 	 rbp	 uint64

			344	 	 rbx	 uint64

			345	 	 rdx	 uint64

			346	 	 rax	 uint64

			347	 	 rcx	 uint64

			348	 	 rsp	 uint64

			349	 	 rip	 uint64

			350	 	 eflags	 uint64

			351	 	 cs	 uint16

			352	 	 gs	 uint16

			353	 	 fs	 uint16

			354	 	 __pad0	 uint16

			355	 	 err	 uint64

			356	 	 trapno	 uint64

			357	 	 oldmask	uint64

			358	 	 cr2	 uint64

			359	 	 fpstate	*fpstate1

			360	 	 __reserved1	 [8]uint64

			361	 }

			362	

			363	 type	mlink	struct	{

			364	 	 next	 *mlink

			365	 }

			366	

			367	 type	fixalloc	struct	{

			368	 	 size	 uint64

			369	 	 alloc	 func(uint64)	unsafe.Pointer

			370	 	 first	 func(unsafe.Pointer,	*uint8)

			371	 	 arg	 unsafe.Pointer

			372	 	 list	 *mlink

			373	 	 chunk	 *uint8

			374	 	 nchunk	 uint

			375	 	 inuse	 uint64

			376	 	 sys	 uint64

			377	 }

			378	

			379	 type	_1_	struct	{

			380	 	 size	 uint

			381	 	 nmalloc	uint64

			382	 	 nfree	 uint64

			383	 }

			384	

			385	 type	mstats	struct	{

			386	 	 alloc	 uint64

			387	 	 total_alloc	 uint64

			388	 	 sys	 uint64

			389	 	 nlookup	uint64

			390	 	 nmalloc	uint64

			391	 	 nfree	 uint64

			392	 	 heap_alloc	 uint64

			393	 	 heap_sys	 uint64

			394	 	 heap_idle	 uint64

			395	 	 heap_inuse	 uint64

			396	 	 heap_released	 uint64

			397	 	 heap_objects	 uint64

			398	 	 stacks_inuse	 uint64

			399	 	 stacks_sys	 uint64

			400	 	 mspan_inuse	 uint64

			401	 	 mspan_sys	 uint64

			402	 	 mcache_inuse	 uint64

			403	 	 mcache_sys	 uint64

			404	 	 buckhash_sys	 uint64

			405	 	 next_gc	uint64

			406	 	 last_gc	uint64

			407	 	 pause_total_ns	 uint64

			408	 	 pause_ns	 [256]uint64

			409	 	 numgc	 uint

			410	 	 enablegc	 uint8

			411	 	 debuggc	uint8

			412	 	 by_size	[61]_1_

			413	 }

			414	

			415	 var	memstats	 mstats

			416	 var	class_to_size	 [61]int

			417	 var	class_to_allocnpages	 [61]int

			418	 var	class_to_transfercount	 [61]int

			419	 type	mcachelist	struct	{

			420	 	 list	 *mlink

			421	 	 nlist	 uint

			422	 	 nlistmin	 uint

			423	 }

			424	

			425	 type	_2_	struct	{

			426	 	 nmalloc	int64

			427	 	 nfree	 int64

			428	 }

			429	

			430	 type	mcache	struct	{

			431	 	 list	 [61]mcachelist

			432	 	 size	 uint64

			433	 	 local_cachealloc	 int64

			434	 	 local_objects	 int64

			435	 	 local_alloc	 int64

			436	 	 local_total_alloc	 int64

			437	 	 local_nmalloc	 int64

			438	 	 local_nfree	 int64

			439	 	 local_nlookup	 int64

			440	 	 next_sample	 int

			441	 	 local_by_size	 [61]_2_

			442	 }

			443	

			444	 type	mspan	struct	{

			445	 	 next	 *mspan

			446	 	 prev	 *mspan

			447	 	 allnext	*mspan

			448	 	 start	 uint64

			449	 	 npages	 uint64

			450	 	 freelist	 *mlink

			451	 	 ref	 uint

			452	 	 sizeclass	 uint

			453	 	 state	 uint

			454	 	 unusedsince	 int64

			455	 	 npreleased	 uint64

			456	 	 limit	 *uint8

			457	 }

			458	

			459	 type	mcentral	struct	{

			460	 	 lock

			461	 	 sizeclass	 int

			462	 	 nonempty	 mspan

			463	 	 empty	 mspan

			464	 	 nfree	 int

			465	 }

			466	

			467	 type	_3_	struct	{

			468	 	 mcentral

			469	 	 //	(union)	 pad	 [64]uint8

			470	 }

			471	

			472	 type	mheap	struct	{

			473	 	 lock

			474	 	 free	 [256]mspan

			475	 	 large	 mspan

			476	 	 allspans	 *mspan

			477	 	 _map	 [4194304]*mspan

			478	 	 bitmap	 *uint8

			479	 	 bitmap_mapped	 uint64

			480	 	 arena_start	 *uint8

			481	 	 arena_used	 *uint8

			482	 	 arena_end	 *uint8

			483	 	 central	[61]_3_

			484	 	 spanalloc	 fixalloc

			485	 	 cachealloc	 fixalloc

			486	 }

			487	

			488	 var	checking	 int

			489	 type	sigset	struct	{

			490	 	 mask	 [2]uint

			491	 }

			492	

			493	 type	rlimit	struct	{

			494	 	 rlim_cur	 uint64

			495	 	 rlim_max	 uint64

			496	 }

			497	

			498	 var	m0	 m

			499	 var	g0	 g

			500	 var	debug	 int

			501	 type	sched	struct	{

			502	 	 lock

			503	 	 gfree	 *g

			504	 	 goidgen	int

			505	 	 ghead	 *g

			506	 	 gtail	 *g

			507	 	 gwait	 int

			508	 	 gcount	 int

			509	 	 grunning	 int

			510	 	 mhead	 *m

			511	 	 mwait	 int

			512	 	 mcount	 int

			513	 	 atomic	 uint

			514	 	 profilehz	 int

			515	 	 init	 uint8

			516	 	 lockmain	 uint8

			517	 	 stopped	note

			518	 }

			519	

			520	 var	mwakeup	 *m

			521	 var	scvg	 *g

			522	 var	libcgo_thread_start	func(unsafe.Pointer)

			523	 type	cgothreadstart	struct	{

			524	 	 m	 *m

			525	 	 g	 *g

			526	 	 fn	 func()

			527	 }

			528	

			529	 type	_4_	struct	{

			530	 	 lock

			531	 	 fn	 func(*uint64,	int)

			532	 	 hz	 int

			533	 	 pcbuf	 [100]uint64

			534	 }

			535	

			536	 var	prof	 _4_

			537	 var	libcgo_setenv	 func(**uint8)

			538	

			539	

			540	

			541	

			542	

			543	

			544	

			545	

			546	

			547	

			548	

			549	

			550	

			551	

			552	

			553	

			554	

			555	

			556	

			557	

			558	 type	commontype	struct	{

			559	 	 size	 uint64

			560	 	 hash	 uint

			561	 	 _unused	uint8

			562	 	 align	 uint8

			563	 	 fieldalign	 uint8

			564	 	 kind	 uint8

			565	 	 alg	 *alg

			566	 	 _string	*string

			567	 	 x	 *uncommontype

			568	 	 ptrto	 *_type

			569	 }

			570	

			571	 type	method	struct	{

			572	 	 name	 *string

			573	 	 pkgpath	*string

			574	 	 mtyp	 *_type

			575	 	 typ	 *_type

			576	 	 ifn	 func()

			577	 	 tfn	 func()

			578	 }

			579	

			580	 type	uncommontype	struct	{

			581	 	 name	 *string

			582	 	 pkgpath	*string

			583	 	 mhdr	 []byte

			584	 	 m	 [0]method

			585	 }

			586	

			587	 type	_type	struct	{

			588	 	 _type	 unsafe.Pointer

			589	 	 ptr	 unsafe.Pointer

			590	 	 commontype

			591	 }

			592	

			593	 type	imethod	struct	{

			594	 	 name	 *string

			595	 	 pkgpath	*string

			596	 	 _type	 *_type

			597	 }

			598	

			599	 type	interfacetype	struct	{

			600	 	 _type

			601	 	 mhdr	 []byte

			602	 	 m	 [0]imethod

			603	 }

			604	

			605	 type	maptype	struct	{

			606	 	 _type

			607	 	 key	 *_type

			608	 	 elem	 *_type

			609	 }

			610	

			611	 type	chantype	struct	{

			612	 	 _type

			613	 	 elem	 *_type

			614	 	 dir	 uint64

			615	 }

			616	

			617	 type	slicetype	struct	{

			618	 	 _type

			619	 	 elem	 *_type

			620	 }

			621	

			622	 type	functype	struct	{

			623	 	 _type

			624	 	 dotdotdot	 uint8

			625	 	 in	 []byte

			626	 	 out	 []byte

			627	 }

			628	

			629	

			630	

			631	

			632	

			633	

			634	

			635	

			636	

			637	

			638	

			639	

			640	 type	itab	struct	{

			641	 	 inter	 *interfacetype

			642	 	 _type	 *_type

			643	 	 link	 *itab

			644	 	 bad	 int

			645	 	 unused	 int

			646	 	 fun	 [0]func()

			647	 }

			648	

			649	 var	hash	 [1009]*itab

			650	 var	ifacelock	 lock

			651	

			652	

			653	

			654	

			655	

			656	

			657	

			658	

			659	

			660	

			661	

			662	

			663	

			664	

			665	

			666	

			667	

			668	

			669	

			670	

			671	 type	hash_iter_sub	struct	{

			672	 	 e	 *hash_entry

			673	 	 start	 *hash_entry

			674	 	 last	 *hash_entry

			675	 }

			676	

			677	 type	hash_iter	struct	{

			678	 	 data	 *uint8

			679	 	 elemsize	 int

			680	 	 changes	int

			681	 	 i	 int

			682	 	 cycled	 uint8

			683	 	 last_hash	 uint64

			684	 	 cycle	 uint64

			685	 	 h	 *hmap

			686	 	 t	 *maptype

			687	 	 subtable_state	 [4]hash_iter_sub

			688	 }

			689	

			690	

			691	

			692	

			693	

			694	

			695	

			696	

			697	

			698	

			699	

			700	 type	hmap	struct	{

			701	 	 count	 uint

			702	 	 datasize	 uint8

			703	 	 max_power	 uint8

			704	 	 indirectval	 uint8

			705	 	 valoff	 uint8

			706	 	 changes	int

			707	 	 hash0	 uint64

			708	 	 st	 *hash_subtable

			709	 }

			710	

			711	 type	hash_entry	struct	{

			712	 	 hash	 uint64

			713	 	 data	 [1]uint8

			714	 }

			715	

			716	 type	hash_subtable	struct	{

			717	 	 power	 uint8

			718	 	 used	 uint8

			719	 	 datasize	 uint8

			720	 	 max_probes	 uint8

			721	 	 limit_bytes	 int16

			722	 	 last	 *hash_entry

			723	 	 entry	 [1]hash_entry

			724	 }

			725	

			726	

			727	

			728	

			729	

			730	

			731	

			732	

			733	

			734	

			735	

			736	

			737	

			738	

			739	

			740	

			741	

			742	

			743	

			744	

			745	

			746	

			747	

			748	

			749	

			750	

			751	

			752	

			753	

			754	

			755	

			756	 type	sudog	struct	{

			757	 	 g	 *g

			758	 	 selgen	 uint

			759	 	 link	 *sudog

			760	 	 elem	 *uint8

			761	 }

			762	

			763	 type	waitq	struct	{

			764	 	 first	 *sudog

			765	 	 last	 *sudog

			766	 }

			767	

			768	 type	hchan	struct	{

			769	 	 qcount	 uint

			770	 	 dataqsiz	 uint

			771	 	 elemsize	 uint16

			772	 	 closed	 uint8

			773	 	 elemalign	 uint8

			774	 	 elemalg	*alg

			775	 	 sendx	 uint

			776	 	 recvx	 uint

			777	 	 recvq	 waitq

			778	 	 sendq	 waitq

			779	 	 lock

			780	 }

			781	

			782	 type	scase	struct	{

			783	 	 sg	 sudog

			784	 	 _chan	 *hchan

			785	 	 pc	 *uint8

			786	 	 kind	 uint16

			787	 	 so	 uint16

			788	 	 receivedp	 *uint8

			789	 }

			790	

			791	 type	_select	struct	{

			792	 	 tcase	 uint16

			793	 	 ncase	 uint16

			794	 	 pollorder	 *uint16

			795	 	 lockorder	 **hchan

			796	 	 scase	 [1]scase

			797	 }

			798	

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/runtime/zversion.go
					1	 //	auto	generated	by	go	tool	dist

					2	

					3	 package	runtime

					4	

					5	 const	defaultGoroot	=	`/tmp/adg/godoc/go`

					6	 const	theVersion	=	`go1.0.1`

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/runtime/cgo/cgo.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 Package	cgo	contains	runtime	support	for	code	generated

					7	 by	the	cgo	tool.		See	the	documentation	for	the	cgo	command

					8	 for	details	on	using	cgo.

					9	 */

				10	 package	cgo

				11	

				12	 /*

				13	

				14	 #cgo	darwin	LDFLAGS:	-lpthread

				15	 #cgo	freebsd	LDFLAGS:	-lpthread

				16	 #cgo	linux	LDFLAGS:	-lpthread

				17	 #cgo	netbsd	LDFLAGS:	-lpthread

				18	 #cgo	openbsd	LDFLAGS:	-lpthread

				19	 #cgo	windows	LDFLAGS:	-lm	-mthreads

				20	

				21	 */

				22	 import	"C"

				23	

				24	 //	Supports	_cgo_panic	by	converting	a	string	constant	to	an	empty

				25	 //	interface.

				26	

				27	 func	cgoStringToEface(s	string,	ret	*interface{})	{

				28	 	 *ret	=	s

				29	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/runtime/debug/stack.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	debug	contains	facilities	for	programs	to	debug	themselves	while

					6	 //	they	are	running.

					7	 package	debug

					8	

					9	 import	(

				10	 	 "bytes"

				11	 	 "fmt"

				12	 	 "io/ioutil"

				13	 	 "os"

				14	 	 "runtime"

				15)

				16	

				17	 var	(

				18	 	 dunno					=	[]byte("???")

				19	 	 centerDot	=	[]byte("·")

				20	 	 dot							=	[]byte(".")

				21)

				22	

				23	 //	PrintStack	prints	to	standard	error	the	stack	trace	returned	by	Stack.

				24	 func	PrintStack()	{

				25	 	 os.Stderr.Write(stack())

				26	 }

				27	

				28	 //	Stack	returns	a	formatted	stack	trace	of	the	goroutine	that	calls	it.

				29	 //	For	each	routine,	it	includes	the	source	line	information	and	PC	value,

				30	 //	then	attempts	to	discover,	for	Go	functions,	the	calling	function	or

				31	 //	method	and	the	text	of	the	line	containing	the	invocation.

				32	 func	Stack()	[]byte	{

				33	 	 return	stack()

				34	 }

				35	

				36	 //	stack	implements	Stack,	skipping	2	frames

				37	 func	stack()	[]byte	{

				38	 	 buf	:=	new(bytes.Buffer)	//	the	returned	data

				39	 	 //	As	we	loop,	we	open	files	and	read	them.	These	variables	record	the	currently

				40	 	 //	loaded	file.

				41	 	 var	lines	[][]byte

				42	 	 var	lastFile	string

				43	 	 for	i	:=	2;	;	i++	{	//	Caller	we	care	about	is	the	user,	2	frames	up

				44	 	 	 pc,	file,	line,	ok	:=	runtime.Caller(i)

				45	 	 	 if	!ok	{

				46	 	 	 	 break

				47	 	 	 }

				48	 	 	 //	Print	this	much	at	least.		If	we	can't	find	the	source,	it	won't	show.

				49	 	 	 fmt.Fprintf(buf,	"%s:%d	(0x%x)\n",	file,	line,	pc)

				50	 	 	 if	file	!=	lastFile	{

				51	 	 	 	 data,	err	:=	ioutil.ReadFile(file)

				52	 	 	 	 if	err	!=	nil	{

				53	 	 	 	 	 continue

				54	 	 	 	 }

				55	 	 	 	 lines	=	bytes.Split(data,	[]byte{'\n'})

				56	 	 	 	 lastFile	=	file

				57	 	 	 }

				58	 	 	 line--	//	in	stack	trace,	lines	are	1-indexed	but	our	array	is	0-indexed

				59	 	 	 fmt.Fprintf(buf,	"\t%s:	%s\n",	function(pc),	source(lines,	line))

				60	 	 }

				61	 	 return	buf.Bytes()

				62	 }

				63	

				64	 //	source	returns	a	space-trimmed	slice	of	the	n'th	line.

				65	 func	source(lines	[][]byte,	n	int)	[]byte	{

				66	 	 if	n	<	0	||	n	>=	len(lines)	{

				67	 	 	 return	dunno

				68	 	 }

				69	 	 return	bytes.Trim(lines[n],	"	\t")

				70	 }

				71	

				72	 //	function	returns,	if	possible,	the	name	of	the	function	containing	the	PC.

				73	 func	function(pc	uintptr)	[]byte	{

				74	 	 fn	:=	runtime.FuncForPC(pc)

				75	 	 if	fn	==	nil	{

				76	 	 	 return	dunno

				77	 	 }

				78	 	 name	:=	[]byte(fn.Name())

				79	 	 //	The	name	includes	the	path	name	to	the	package,	which	is	unnecessary

				80	 	 //	since	the	file	name	is	already	included.		Plus,	it	has	center	dots.

				81	 	 //	That	is,	we	see

				82	 	 //	 runtime/debug.*T·ptrmethod

				83	 	 //	and	want

				84	 	 //	 *T.ptrmethod

				85	 	 if	period	:=	bytes.Index(name,	dot);	period	>=	0	{

				86	 	 	 name	=	name[period+1:]

				87	 	 }

				88	 	 name	=	bytes.Replace(name,	centerDot,	dot,	-1)

				89	 	 return	name

				90	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/runtime/pprof/pprof.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	pprof	writes	runtime	profiling	data	in	the	format	expected

					6	 //	by	the	pprof	visualization	tool.

					7	 //	For	more	information	about	pprof,	see

					8	 //	http://code.google.com/p/google-perftools/.

					9	 package	pprof

				10	

				11	 import	(

				12	 	 "bufio"

				13	 	 "bytes"

				14	 	 "fmt"

				15	 	 "io"

				16	 	 "runtime"

				17	 	 "sort"

				18	 	 "strings"

				19	 	 "sync"

				20	 	 "text/tabwriter"

				21)

				22	

				23	 //	BUG(rsc):	A	bug	in	the	OS	X	Snow	Leopard	64-bit	kernel	prevents

				24	 //	CPU	profiling	from	giving	accurate	results	on	that	system.

				25	

				26	 //	A	Profile	is	a	collection	of	stack	traces	showing	the	call	sequences

				27	 //	that	led	to	instances	of	a	particular	event,	such	as	allocation.

				28	 //	Packages	can	create	and	maintain	their	own	profiles;	the	most	common

				29	 //	use	is	for	tracking	resources	that	must	be	explicitly	closed,	such	as	files

				30	 //	or	network	connections.

				31	 //

				32	 //	A	Profile's	methods	can	be	called	from	multiple	goroutines	simultaneously.

				33	 //

				34	 //	Each	Profile	has	a	unique	name.		A	few	profiles	are	predefined:

				35	 //

				36	 //	 goroutine				-	stack	traces	of	all	current	goroutines

				37	 //	 heap									-	a	sampling	of	all	heap	allocations

				38	 //	 threadcreate	-	stack	traces	that	led	to	the	creation	of	new	OS	threads

				39	 //

				40	 //	These	predefine	profiles	maintain	themselves	and	panic	on	an	explicit

				41	 //	Add	or	Remove	method	call.

				42	 //

				43	 //	The	CPU	profile	is	not	available	as	a	Profile.		It	has	a	special	API,

				44	 //	the	StartCPUProfile	and	StopCPUProfile	functions,	because	it	streams

				45	 //	output	to	a	writer	during	profiling.

				46	 //

				47	 type	Profile	struct	{

				48	 	 name		string

				49	 	 mu				sync.Mutex

				50	 	 m					map[interface{}][]uintptr

				51	 	 count	func()	int

				52	 	 write	func(io.Writer,	int)	error

				53	 }

				54	

				55	 //	profiles	records	all	registered	profiles.

				56	 var	profiles	struct	{

				57	 	 mu	sync.Mutex

				58	 	 m		map[string]*Profile

				59	 }

				60	

				61	 var	goroutineProfile	=	&Profile{

				62	 	 name:		"goroutine",

				63	 	 count:	countGoroutine,

				64	 	 write:	writeGoroutine,

				65	 }

				66	

				67	 var	threadcreateProfile	=	&Profile{

				68	 	 name:		"threadcreate",

				69	 	 count:	countThreadCreate,

				70	 	 write:	writeThreadCreate,

				71	 }

				72	

				73	 var	heapProfile	=	&Profile{

				74	 	 name:		"heap",

				75	 	 count:	countHeap,

				76	 	 write:	writeHeap,

				77	 }

				78	

				79	 func	lockProfiles()	{

				80	 	 profiles.mu.Lock()

				81	 	 if	profiles.m	==	nil	{

				82	 	 	 //	Initial	built-in	profiles.

				83	 	 	 profiles.m	=	map[string]*Profile{

				84	 	 	 	 "goroutine":				goroutineProfile,

				85	 	 	 	 "threadcreate":	threadcreateProfile,

				86	 	 	 	 "heap":									heapProfile,

				87	 	 	 }

				88	 	 }

				89	 }

				90	

				91	 func	unlockProfiles()	{

				92	 	 profiles.mu.Unlock()

				93	 }

				94	

				95	 //	NewProfile	creates	a	new	profile	with	the	given	name.

				96	 //	If	a	profile	with	that	name	already	exists,	NewProfile	panics.

				97	 //	The	convention	is	to	use	a	'import/path.'	prefix	to	create

				98	 //	separate	name	spaces	for	each	package.

				99	 func	NewProfile(name	string)	*Profile	{

			100	 	 lockProfiles()

			101	 	 defer	unlockProfiles()

			102	 	 if	name	==	""	{

			103	 	 	 panic("pprof:	NewProfile	with	empty	name")

			104	 	 }

			105	 	 if	profiles.m[name]	!=	nil	{

			106	 	 	 panic("pprof:	NewProfile	name	already	in	use:	"	+	name)

			107	 	 }

			108	 	 p	:=	&Profile{

			109	 	 	 name:	name,

			110	 	 	 m:				map[interface{}][]uintptr{},

			111	 	 }

			112	 	 profiles.m[name]	=	p

			113	 	 return	p

			114	 }

			115	

			116	 //	Lookup	returns	the	profile	with	the	given	name,	or	nil	if	no	such	profile	exists.

			117	 func	Lookup(name	string)	*Profile	{

			118	 	 lockProfiles()

			119	 	 defer	unlockProfiles()

			120	 	 return	profiles.m[name]

			121	 }

			122	

			123	 //	Profiles	returns	a	slice	of	all	the	known	profiles,	sorted	by	name.

			124	 func	Profiles()	[]*Profile	{

			125	 	 lockProfiles()

			126	 	 defer	unlockProfiles()

			127	

			128	 	 var	all	[]*Profile

			129	 	 for	_,	p	:=	range	profiles.m	{

			130	 	 	 all	=	append(all,	p)

			131	 	 }

			132	

			133	 	 sort.Sort(byName(all))

			134	 	 return	all

			135	 }

			136	

			137	 type	byName	[]*Profile

			138	

			139	 func	(x	byName)	Len()	int											{	return	len(x)	}

			140	 func	(x	byName)	Swap(i,	j	int)						{	x[i],	x[j]	=	x[j],	x[i]	}

			141	 func	(x	byName)	Less(i,	j	int)	bool	{	return	x[i].name	<	x[j].name	}

			142	

			143	 //	Name	returns	this	profile's	name,	which	can	be	passed	to	Lookup	to	reobtain	the	profile.

			144	 func	(p	*Profile)	Name()	string	{

			145	 	 return	p.name

			146	 }

			147	

			148	 //	Count	returns	the	number	of	execution	stacks	currently	in	the	profile.

			149	 func	(p	*Profile)	Count()	int	{

			150	 	 p.mu.Lock()

			151	 	 defer	p.mu.Unlock()

			152	 	 if	p.count	!=	nil	{

			153	 	 	 return	p.count()

			154	 	 }

			155	 	 return	len(p.m)

			156	 }

			157	

			158	 //	Add	adds	the	current	execution	stack	to	the	profile,	associated	with	value.

			159	 //	Add	stores	value	in	an	internal	map,	so	value	must	be	suitable	for	use	as

			160	 //	a	map	key	and	will	not	be	garbage	collected	until	the	corresponding

			161	 //	call	to	Remove.		Add	panics	if	the	profile	already	contains	a	stack	for	value.

			162	 //

			163	 //	The	skip	parameter	has	the	same	meaning	as	runtime.Caller's	skip

			164	 //	and	controls	where	the	stack	trace	begins.		Passing	skip=0	begins	the

			165	 //	trace	in	the	function	calling	Add.		For	example,	given	this

			166	 //	execution	stack:

			167	 //

			168	 //	 Add

			169	 //	 called	from	rpc.NewClient

			170	 //	 called	from	mypkg.Run

			171	 //	 called	from	main.main

			172	 //

			173	 //	Passing	skip=0	begins	the	stack	trace	at	the	call	to	Add	inside	rpc.NewClient.

			174	 //	Passing	skip=1	begins	the	stack	trace	at	the	call	to	NewClient	inside	mypkg.Run.

			175	 //

			176	 func	(p	*Profile)	Add(value	interface{},	skip	int)	{

			177	 	 if	p.name	==	""	{

			178	 	 	 panic("pprof:	use	of	uninitialized	Profile")

			179	 	 }

			180	 	 if	p.write	!=	nil	{

			181	 	 	 panic("pprof:	Add	called	on	built-in	Profile	"	+	p.name)

			182	 	 }

			183	

			184	 	 stk	:=	make([]uintptr,	32)

			185	 	 n	:=	runtime.Callers(skip+1,	stk[:])

			186	

			187	 	 p.mu.Lock()

			188	 	 defer	p.mu.Unlock()

			189	 	 if	p.m[value]	!=	nil	{

			190	 	 	 panic("pprof:	Profile.Add	of	duplicate	value")

			191	 	 }

			192	 	 p.m[value]	=	stk[:n]

			193	 }

			194	

			195	 //	Remove	removes	the	execution	stack	associated	with	value	from	the	profile.

			196	 //	It	is	a	no-op	if	the	value	is	not	in	the	profile.

			197	 func	(p	*Profile)	Remove(value	interface{})	{

			198	 	 p.mu.Lock()

			199	 	 defer	p.mu.Unlock()

			200	 	 delete(p.m,	value)

			201	 }

			202	

			203	 //	WriteTo	writes	a	pprof-formatted	snapshot	of	the	profile	to	w.

			204	 //	If	a	write	to	w	returns	an	error,	WriteTo	returns	that	error.

			205	 //	Otherwise,	WriteTo	returns	nil.

			206	 //

			207	 //	The	debug	parameter	enables	additional	output.

			208	 //	Passing	debug=0	prints	only	the	hexadecimal	addresses	that	pprof	needs.

			209	 //	Passing	debug=1	adds	comments	translating	addresses	to	function	names

			210	 //	and	line	numbers,	so	that	a	programmer	can	read	the	profile	without	tools.

			211	 //

			212	 //	The	predefined	profiles	may	assign	meaning	to	other	debug	values;

			213	 //	for	example,	when	printing	the	"goroutine"	profile,	debug=2	means	to

			214	 //	print	the	goroutine	stacks	in	the	same	form	that	a	Go	program	uses

			215	 //	when	dying	due	to	an	unrecovered	panic.

			216	 func	(p	*Profile)	WriteTo(w	io.Writer,	debug	int)	error	{

			217	 	 if	p.name	==	""	{

			218	 	 	 panic("pprof:	use	of	zero	Profile")

			219	 	 }

			220	 	 if	p.write	!=	nil	{

			221	 	 	 return	p.write(w,	debug)

			222	 	 }

			223	

			224	 	 //	Obtain	consistent	snapshot	under	lock;	then	process	without	lock.

			225	 	 var	all	[][]uintptr

			226	 	 p.mu.Lock()

			227	 	 for	_,	stk	:=	range	p.m	{

			228	 	 	 all	=	append(all,	stk)

			229	 	 }

			230	 	 p.mu.Unlock()

			231	

			232	 	 //	Map	order	is	non-deterministic;	make	output	deterministic.

			233	 	 sort.Sort(stackProfile(all))

			234	

			235	 	 return	printCountProfile(w,	debug,	p.name,	stackProfile(all))

			236	 }

			237	

			238	 type	stackProfile	[][]uintptr

			239	

			240	 func	(x	stackProfile)	Len()	int														{	return	len(x)	}

			241	 func	(x	stackProfile)	Stack(i	int)	[]uintptr	{	return	x[i]	}

			242	 func	(x	stackProfile)	Swap(i,	j	int)									{	x[i],	x[j]	=	x[j],	x[i]	}

			243	 func	(x	stackProfile)	Less(i,	j	int)	bool	{

			244	 	 t,	u	:=	x[i],	x[j]

			245	 	 for	k	:=	0;	k	<	len(t)	&&	k	<	len(u);	k++	{

			246	 	 	 if	t[k]	!=	u[k]	{

			247	 	 	 	 return	t[k]	<	u[k]

			248	 	 	 }

			249	 	 }

			250	 	 return	len(t)	<	len(u)

			251	 }

			252	

			253	 //	A	countProfile	is	a	set	of	stack	traces	to	be	printed	as	counts

			254	 //	grouped	by	stack	trace.		There	are	multiple	implementations:

			255	 //	all	that	matters	is	that	we	can	find	out	how	many	traces	there	are

			256	 //	and	obtain	each	trace	in	turn.

			257	 type	countProfile	interface	{

			258	 	 Len()	int

			259	 	 Stack(i	int)	[]uintptr

			260	 }

			261	

			262	 //	printCountProfile	prints	a	countProfile	at	the	specified	debug	level.

			263	 func	printCountProfile(w	io.Writer,	debug	int,	name	string,	p	countProfile)	error	{

			264	 	 b	:=	bufio.NewWriter(w)

			265	 	 var	tw	*tabwriter.Writer

			266	 	 w	=	b

			267	 	 if	debug	>	0	{

			268	 	 	 tw	=	tabwriter.NewWriter(w,	1,	8,	1,	'\t',	0)

			269	 	 	 w	=	tw

			270	 	 }

			271	

			272	 	 fmt.Fprintf(w,	"%s	profile:	total	%d\n",	name,	p.Len())

			273	

			274	 	 //	Build	count	of	each	stack.

			275	 	 var	buf	bytes.Buffer

			276	 	 key	:=	func(stk	[]uintptr)	string	{

			277	 	 	 buf.Reset()

			278	 	 	 fmt.Fprintf(&buf,	"@")

			279	 	 	 for	_,	pc	:=	range	stk	{

			280	 	 	 	 fmt.Fprintf(&buf,	"	%#x",	pc)

			281	 	 	 }

			282	 	 	 return	buf.String()

			283	 	 }

			284	 	 m	:=	map[string]int{}

			285	 	 n	:=	p.Len()

			286	 	 for	i	:=	0;	i	<	n;	i++	{

			287	 	 	 m[key(p.Stack(i))]++

			288	 	 }

			289	

			290	 	 //	Print	stacks,	listing	count	on	first	occurrence	of	a	unique	stack.

			291	 	 for	i	:=	0;	i	<	n;	i++	{

			292	 	 	 stk	:=	p.Stack(i)

			293	 	 	 s	:=	key(stk)

			294	 	 	 if	count	:=	m[s];	count	!=	0	{

			295	 	 	 	 fmt.Fprintf(w,	"%d	%s\n",	count,	s)

			296	 	 	 	 if	debug	>	0	{

			297	 	 	 	 	 printStackRecord(w,	stk,	false)

			298	 	 	 	 }

			299	 	 	 	 delete(m,	s)

			300	 	 	 }

			301	 	 }

			302	

			303	 	 if	tw	!=	nil	{

			304	 	 	 tw.Flush()

			305	 	 }

			306	 	 return	b.Flush()

			307	 }

			308	

			309	 //	printStackRecord	prints	the	function	+	source	line	information

			310	 //	for	a	single	stack	trace.

			311	 func	printStackRecord(w	io.Writer,	stk	[]uintptr,	allFrames	bool)	{

			312	 	 show	:=	allFrames

			313	 	 for	_,	pc	:=	range	stk	{

			314	 	 	 f	:=	runtime.FuncForPC(pc)

			315	 	 	 if	f	==	nil	{

			316	 	 	 	 show	=	true

			317	 	 	 	 fmt.Fprintf(w,	"#\t%#x\n",	pc)

			318	 	 	 }	else	{

			319	 	 	 	 file,	line	:=	f.FileLine(pc)

			320	 	 	 	 name	:=	f.Name()

			321	 	 	 	 //	Hide	runtime.goexit	and	any	runtime	functions	at	the	beginning.

			322	 	 	 	 //	This	is	useful	mainly	for	allocation	traces.

			323	 	 	 	 if	name	==	"runtime.goexit"	||	!show	&&	strings.HasPrefix(name,	"runtime.")	{

			324	 	 	 	 	 continue

			325	 	 	 	 }

			326	 	 	 	 show	=	true

			327	 	 	 	 fmt.Fprintf(w,	"#\t%#x\t%s+%#x\t%s:%d\n",	pc,	f.Name(),	pc-f.Entry(),	file,	line)

			328	 	 	 }

			329	 	 }

			330	 	 if	!show	{

			331	 	 	 //	We	didn't	print	anything;	do	it	again,

			332	 	 	 //	and	this	time	include	runtime	functions.

			333	 	 	 printStackRecord(w,	stk,	true)

			334	 	 	 return

			335	 	 }

			336	 	 fmt.Fprintf(w,	"\n")

			337	 }

			338	

			339	 //	Interface	to	system	profiles.

			340	

			341	 type	byInUseBytes	[]runtime.MemProfileRecord

			342	

			343	 func	(x	byInUseBytes)	Len()	int											{	return	len(x)	}

			344	 func	(x	byInUseBytes)	Swap(i,	j	int)						{	x[i],	x[j]	=	x[j],	x[i]	}

			345	 func	(x	byInUseBytes)	Less(i,	j	int)	bool	{	return	x[i].InUseBytes()	>	x[j].InUseBytes()	}

			346	

			347	 //	WriteHeapProfile	is	shorthand	for	Lookup("heap").WriteTo(w,	0).

			348	 //	It	is	preserved	for	backwards	compatibility.

			349	 func	WriteHeapProfile(w	io.Writer)	error	{

			350	 	 return	writeHeap(w,	0)

			351	 }

			352	

			353	 //	countHeap	returns	the	number	of	records	in	the	heap	profile.

			354	 func	countHeap()	int	{

			355	 	 n,	_	:=	runtime.MemProfile(nil,	false)

			356	 	 return	n

			357	 }

			358	

			359	 //	writeHeapProfile	writes	the	current	runtime	heap	profile	to	w.

			360	 func	writeHeap(w	io.Writer,	debug	int)	error	{

			361	 	 //	Find	out	how	many	records	there	are	(MemProfile(nil,	false)),

			362	 	 //	allocate	that	many	records,	and	get	the	data.

			363	 	 //	There's	a	race—more	records	might	be	added	between

			364	 	 //	the	two	calls—so	allocate	a	few	extra	records	for	safety

			365	 	 //	and	also	try	again	if	we're	very	unlucky.

			366	 	 //	The	loop	should	only	execute	one	iteration	in	the	common	case.

			367	 	 var	p	[]runtime.MemProfileRecord

			368	 	 n,	ok	:=	runtime.MemProfile(nil,	false)

			369	 	 for	{

			370	 	 	 //	Allocate	room	for	a	slightly	bigger	profile,

			371	 	 	 //	in	case	a	few	more	entries	have	been	added

			372	 	 	 //	since	the	call	to	MemProfile.

			373	 	 	 p	=	make([]runtime.MemProfileRecord,	n+50)

			374	 	 	 n,	ok	=	runtime.MemProfile(p,	false)

			375	 	 	 if	ok	{

			376	 	 	 	 p	=	p[0:n]

			377	 	 	 	 break

			378	 	 	 }

			379	 	 	 //	Profile	grew;	try	again.

			380	 	 }

			381	

			382	 	 sort.Sort(byInUseBytes(p))

			383	

			384	 	 b	:=	bufio.NewWriter(w)

			385	 	 var	tw	*tabwriter.Writer

			386	 	 w	=	b

			387	 	 if	debug	>	0	{

			388	 	 	 tw	=	tabwriter.NewWriter(w,	1,	8,	1,	'\t',	0)

			389	 	 	 w	=	tw

			390	 	 }

			391	

			392	 	 var	total	runtime.MemProfileRecord

			393	 	 for	i	:=	range	p	{

			394	 	 	 r	:=	&p[i]

			395	 	 	 total.AllocBytes	+=	r.AllocBytes

			396	 	 	 total.AllocObjects	+=	r.AllocObjects

			397	 	 	 total.FreeBytes	+=	r.FreeBytes

			398	 	 	 total.FreeObjects	+=	r.FreeObjects

			399	 	 }

			400	

			401	 	 //	Technically	the	rate	is	MemProfileRate	not	2*MemProfileRate,

			402	 	 //	but	early	versions	of	the	C++	heap	profiler	reported	2*MemProfileRate,

			403	 	 //	so	that's	what	pprof	has	come	to	expect.

			404	 	 fmt.Fprintf(w,	"heap	profile:	%d:	%d	[%d:	%d]	@	heap/%d\n",

			405	 	 	 total.InUseObjects(),	total.InUseBytes(),

			406	 	 	 total.AllocObjects,	total.AllocBytes,

			407	 	 	 2*runtime.MemProfileRate)

			408	

			409	 	 for	i	:=	range	p	{

			410	 	 	 r	:=	&p[i]

			411	 	 	 fmt.Fprintf(w,	"%d:	%d	[%d:	%d]	@",

			412	 	 	 	 r.InUseObjects(),	r.InUseBytes(),

			413	 	 	 	 r.AllocObjects,	r.AllocBytes)

			414	 	 	 for	_,	pc	:=	range	r.Stack()	{

			415	 	 	 	 fmt.Fprintf(w,	"	%#x",	pc)

			416	 	 	 }

			417	 	 	 fmt.Fprintf(w,	"\n")

			418	 	 	 if	debug	>	0	{

			419	 	 	 	 printStackRecord(w,	r.Stack(),	false)

			420	 	 	 }

			421	 	 }

			422	

			423	 	 //	Print	memstats	information	too.

			424	 	 //	Pprof	will	ignore,	but	useful	for	people

			425	 	 if	debug	>	0	{

			426	 	 	 s	:=	new(runtime.MemStats)

			427	 	 	 runtime.ReadMemStats(s)

			428	 	 	 fmt.Fprintf(w,	"\n#	runtime.MemStats\n")

			429	 	 	 fmt.Fprintf(w,	"#	Alloc	=	%d\n",	s.Alloc)

			430	 	 	 fmt.Fprintf(w,	"#	TotalAlloc	=	%d\n",	s.TotalAlloc)

			431	 	 	 fmt.Fprintf(w,	"#	Sys	=	%d\n",	s.Sys)

			432	 	 	 fmt.Fprintf(w,	"#	Lookups	=	%d\n",	s.Lookups)

			433	 	 	 fmt.Fprintf(w,	"#	Mallocs	=	%d\n",	s.Mallocs)

			434	

			435	 	 	 fmt.Fprintf(w,	"#	HeapAlloc	=	%d\n",	s.HeapAlloc)

			436	 	 	 fmt.Fprintf(w,	"#	HeapSys	=	%d\n",	s.HeapSys)

			437	 	 	 fmt.Fprintf(w,	"#	HeapIdle	=	%d\n",	s.HeapIdle)

			438	 	 	 fmt.Fprintf(w,	"#	HeapInuse	=	%d\n",	s.HeapInuse)

			439	

			440	 	 	 fmt.Fprintf(w,	"#	Stack	=	%d	/	%d\n",	s.StackInuse,	s.StackSys)

			441	 	 	 fmt.Fprintf(w,	"#	MSpan	=	%d	/	%d\n",	s.MSpanInuse,	s.MSpanSys)

			442	 	 	 fmt.Fprintf(w,	"#	MCache	=	%d	/	%d\n",	s.MCacheInuse,	s.MCacheSys)

			443	 	 	 fmt.Fprintf(w,	"#	BuckHashSys	=	%d\n",	s.BuckHashSys)

			444	

			445	 	 	 fmt.Fprintf(w,	"#	NextGC	=	%d\n",	s.NextGC)

			446	 	 	 fmt.Fprintf(w,	"#	PauseNs	=	%d\n",	s.PauseNs)

			447	 	 	 fmt.Fprintf(w,	"#	NumGC	=	%d\n",	s.NumGC)

			448	 	 	 fmt.Fprintf(w,	"#	EnableGC	=	%v\n",	s.EnableGC)

			449	 	 	 fmt.Fprintf(w,	"#	DebugGC	=	%v\n",	s.DebugGC)

			450	 	 }

			451	

			452	 	 if	tw	!=	nil	{

			453	 	 	 tw.Flush()

			454	 	 }

			455	 	 return	b.Flush()

			456	 }

			457	

			458	 //	countThreadCreate	returns	the	size	of	the	current	ThreadCreateProfile.

			459	 func	countThreadCreate()	int	{

			460	 	 n,	_	:=	runtime.ThreadCreateProfile(nil)

			461	 	 return	n

			462	 }

			463	

			464	 //	writeThreadCreate	writes	the	current	runtime	ThreadCreateProfile	to	w.

			465	 func	writeThreadCreate(w	io.Writer,	debug	int)	error	{

			466	 	 return	writeRuntimeProfile(w,	debug,	"threadcreate",	runtime.ThreadCreateProfile)

			467	 }

			468	

			469	 //	countGoroutine	returns	the	number	of	goroutines.

			470	 func	countGoroutine()	int	{

			471	 	 return	runtime.NumGoroutine()

			472	 }

			473	

			474	 //	writeGoroutine	writes	the	current	runtime	GoroutineProfile	to	w.

			475	 func	writeGoroutine(w	io.Writer,	debug	int)	error	{

			476	 	 if	debug	>=	2	{

			477	 	 	 return	writeGoroutineStacks(w)

			478	 	 }

			479	 	 return	writeRuntimeProfile(w,	debug,	"goroutine",	runtime.GoroutineProfile)

			480	 }

			481	

			482	 func	writeGoroutineStacks(w	io.Writer)	error	{

			483	 	 //	We	don't	know	how	big	the	buffer	needs	to	be	to	collect

			484	 	 //	all	the	goroutines.		Start	with	1	MB	and	try	a	few	times,	doubling	each	time.

			485	 	 //	Give	up	and	use	a	truncated	trace	if	64	MB	is	not	enough.

			486	 	 buf	:=	make([]byte,	1<<20)

			487	 	 for	i	:=	0;	;	i++	{

			488	 	 	 n	:=	runtime.Stack(buf,	true)

			489	 	 	 if	n	<	len(buf)	{

			490	 	 	 	 buf	=	buf[:n]

			491	 	 	 	 break

			492	 	 	 }

			493	 	 	 if	len(buf)	>=	64<<20	{

			494	 	 	 	 //	Filled	64	MB	-	stop	there.

			495	 	 	 	 break

			496	 	 	 }

			497	 	 	 buf	=	make([]byte,	2*len(buf))

			498	 	 }

			499	 	 _,	err	:=	w.Write(buf)

			500	 	 return	err

			501	 }

			502	

			503	 func	writeRuntimeProfile(w	io.Writer,	debug	int,	name	string,	fetch	func([]runtime.StackRecord)	(int,	bool))	error	{

			504	 	 //	Find	out	how	many	records	there	are	(fetch(nil)),

			505	 	 //	allocate	that	many	records,	and	get	the	data.

			506	 	 //	There's	a	race—more	records	might	be	added	between

			507	 	 //	the	two	calls—so	allocate	a	few	extra	records	for	safety

			508	 	 //	and	also	try	again	if	we're	very	unlucky.

			509	 	 //	The	loop	should	only	execute	one	iteration	in	the	common	case.

			510	 	 var	p	[]runtime.StackRecord

			511	 	 n,	ok	:=	fetch(nil)

			512	 	 for	{

			513	 	 	 //	Allocate	room	for	a	slightly	bigger	profile,

			514	 	 	 //	in	case	a	few	more	entries	have	been	added

			515	 	 	 //	since	the	call	to	ThreadProfile.

			516	 	 	 p	=	make([]runtime.StackRecord,	n+10)

			517	 	 	 n,	ok	=	fetch(p)

			518	 	 	 if	ok	{

			519	 	 	 	 p	=	p[0:n]

			520	 	 	 	 break

			521	 	 	 }

			522	 	 	 //	Profile	grew;	try	again.

			523	 	 }

			524	

			525	 	 return	printCountProfile(w,	debug,	name,	runtimeProfile(p))

			526	 }

			527	

			528	 type	runtimeProfile	[]runtime.StackRecord

			529	

			530	 func	(p	runtimeProfile)	Len()	int														{	return	len(p)	}

			531	 func	(p	runtimeProfile)	Stack(i	int)	[]uintptr	{	return	p[i].Stack()	}

			532	

			533	 var	cpu	struct	{

			534	 	 sync.Mutex

			535	 	 profiling	bool

			536	 	 done						chan	bool

			537	 }

			538	

			539	 //	StartCPUProfile	enables	CPU	profiling	for	the	current	process.

			540	 //	While	profiling,	the	profile	will	be	buffered	and	written	to	w.

			541	 //	StartCPUProfile	returns	an	error	if	profiling	is	already	enabled.

			542	 func	StartCPUProfile(w	io.Writer)	error	{

			543	 	 //	The	runtime	routines	allow	a	variable	profiling	rate,

			544	 	 //	but	in	practice	operating	systems	cannot	trigger	signals

			545	 	 //	at	more	than	about	500	Hz,	and	our	processing	of	the

			546	 	 //	signal	is	not	cheap	(mostly	getting	the	stack	trace).

			547	 	 //	100	Hz	is	a	reasonable	choice:	it	is	frequent	enough	to

			548	 	 //	produce	useful	data,	rare	enough	not	to	bog	down	the

			549	 	 //	system,	and	a	nice	round	number	to	make	it	easy	to

			550	 	 //	convert	sample	counts	to	seconds.		Instead	of	requiring

			551	 	 //	each	client	to	specify	the	frequency,	we	hard	code	it.

			552	 	 const	hz	=	100

			553	

			554	 	 //	Avoid	queueing	behind	StopCPUProfile.

			555	 	 //	Could	use	TryLock	instead	if	we	had	it.

			556	 	 if	cpu.profiling	{

			557	 	 	 return	fmt.Errorf("cpu	profiling	already	in	use")

			558	 	 }

			559	

			560	 	 cpu.Lock()

			561	 	 defer	cpu.Unlock()

			562	 	 if	cpu.done	==	nil	{

			563	 	 	 cpu.done	=	make(chan	bool)

			564	 	 }

			565	 	 //	Double-check.

			566	 	 if	cpu.profiling	{

			567	 	 	 return	fmt.Errorf("cpu	profiling	already	in	use")

			568	 	 }

			569	 	 cpu.profiling	=	true

			570	 	 runtime.SetCPUProfileRate(hz)

			571	 	 go	profileWriter(w)

			572	 	 return	nil

			573	 }

			574	

			575	 func	profileWriter(w	io.Writer)	{

			576	 	 for	{

			577	 	 	 data	:=	runtime.CPUProfile()

			578	 	 	 if	data	==	nil	{

			579	 	 	 	 break

			580	 	 	 }

			581	 	 	 w.Write(data)

			582	 	 }

			583	 	 cpu.done	<-	true

			584	 }

			585	

			586	 //	StopCPUProfile	stops	the	current	CPU	profile,	if	any.

			587	 //	StopCPUProfile	only	returns	after	all	the	writes	for	the

			588	 //	profile	have	completed.

			589	 func	StopCPUProfile()	{

			590	 	 cpu.Lock()

			591	 	 defer	cpu.Unlock()

			592	

			593	 	 if	!cpu.profiling	{

			594	 	 	 return

			595	 	 }

			596	 	 cpu.profiling	=	false

			597	 	 runtime.SetCPUProfileRate(0)

			598	 	 <-cpu.done

			599	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/sort/search.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	This	file	implements	binary	search.

					6	

					7	 package	sort

					8	

					9	 //	Search	uses	binary	search	to	find	and	return	the	smallest	index	i

				10	 //	in	[0,	n)	at	which	f(i)	is	true,	assuming	that	on	the	range	[0,	n),	

				11	 //	f(i)	==	true	implies	f(i+1)	==	true.		That	is,	Search	requires	that

				12	 //	f	is	false	for	some	(possibly	empty)	prefix	of	the	input	range	[0,	n)

				13	 //	and	then	true	for	the	(possibly	empty)	remainder;	Search	returns

				14	 //	the	first	true	index.		If	there	is	no	such	index,	Search	returns	n.

				15	 //	Search	calls	f(i)	only	for	i	in	the	range	[0,	n).

				16	 //

				17	 //	A	common	use	of	Search	is	to	find	the	index	i	for	a	value	x	in

				18	 //	a	sorted,	indexable	data	structure	such	as	an	array	or	slice.

				19	 //	In	this	case,	the	argument	f,	typically	a	closure,	captures	the	value

				20	 //	to	be	searched	for,	and	how	the	data	structure	is	indexed	and

				21	 //	ordered.

				22	 //

				23	 //	For	instance,	given	a	slice	data	sorted	in	ascending	order,

				24	 //	the	call	Search(len(data),	func(i	int)	bool	{	return	data[i]	>=	23	})

				25	 //	returns	the	smallest	index	i	such	that	data[i]	>=	23.		If	the	caller

				26	 //	wants	to	find	whether	23	is	in	the	slice,	it	must	test	data[i]	==	23

				27	 //	separately.

				28	 //

				29	 //	Searching	data	sorted	in	descending	order	would	use	the	<=

				30	 //	operator	instead	of	the	>=	operator.

				31	 //

				32	 //	To	complete	the	example	above,	the	following	code	tries	to	find	the	value

				33	 //	x	in	an	integer	slice	data	sorted	in	ascending	order:

				34	 //

				35	 //	 x	:=	23

				36	 //	 i	:=	sort.Search(len(data),	func(i	int)	bool	{	return	data[i]	>=	x	})

				37	 //	 if	i	<	len(data)	&&	data[i]	==	x	{

				38	 //	 	 //	x	is	present	at	data[i]

				39	 //	 }	else	{

				40	 //	 	 //	x	is	not	present	in	data,

				41	 //	 	 //	but	i	is	the	index	where	it	would	be	inserted.

				42	 //	 }

				43	 //

				44	 //	As	a	more	whimsical	example,	this	program	guesses	your	number:

				45	 //

				46	 //	 func	GuessingGame()	{

				47	 //	 	 var	s	string

				48	 //	 	 fmt.Printf("Pick	an	integer	from	0	to	100.\n")

				49	 //	 	 answer	:=	sort.Search(100,	func(i	int)	bool	{

				50	 //	 	 	 fmt.Printf("Is	your	number	<=	%d?	",	i)

				51	 //	 	 	 fmt.Scanf("%s",	&s)

				52	 //	 	 	 return	s	!=	""	&&	s[0]	==	'y'

				53	 //	 	 })

				54	 //	 	 fmt.Printf("Your	number	is	%d.\n",	answer)

				55	 //	 }

				56	 //

				57	 func	Search(n	int,	f	func(int)	bool)	int	{

				58	 	 //	Define	f(-1)	==	false	and	f(n)	==	true.

				59	 	 //	Invariant:	f(i-1)	==	false,	f(j)	==	true.

				60	 	 i,	j	:=	0,	n

				61	 	 for	i	<	j	{

				62	 	 	 h	:=	i	+	(j-i)/2	//	avoid	overflow	when	computing	h

				63	 	 	 //	i	≤	h	<	j

				64	 	 	 if	!f(h)	{

				65	 	 	 	 i	=	h	+	1	//	preserves	f(i-1)	==	false

				66	 	 	 }	else	{

				67	 	 	 	 j	=	h	//	preserves	f(j)	==	true

				68	 	 	 }

				69	 	 }

				70	 	 //	i	==	j,	f(i-1)	==	false,	and	f(j)	(=	f(i))	==	true		=>		answer	is	i.

				71	 	 return	i

				72	 }

				73	

				74	 //	Convenience	wrappers	for	common	cases.

				75	

				76	 //	SearchInts	searches	for	x	in	a	sorted	slice	of	ints	and	returns	the	index

				77	 //	as	specified	by	Search.	The	slice	must	be	sorted	in	ascending	order.

				78	 //

				79	 func	SearchInts(a	[]int,	x	int)	int	{

				80	 	 return	Search(len(a),	func(i	int)	bool	{	return	a[i]	>=	x	})

				81	 }

				82	

				83	 //	SearchFloat64s	searches	for	x	in	a	sorted	slice	of	float64s	and	returns	the	index

				84	 //	as	specified	by	Search.	The	slice	must	be	sorted	in	ascending	order.

				85	 //	

				86	 func	SearchFloat64s(a	[]float64,	x	float64)	int	{

				87	 	 return	Search(len(a),	func(i	int)	bool	{	return	a[i]	>=	x	})

				88	 }

				89	

				90	 //	SearchStrings	searches	for	x	slice	a	sorted	slice	of	strings	and	returns	the	index

				91	 //	as	specified	by	Search.	The	slice	must	be	sorted	in	ascending	order.

				92	 //	

				93	 func	SearchStrings(a	[]string,	x	string)	int	{

				94	 	 return	Search(len(a),	func(i	int)	bool	{	return	a[i]	>=	x	})

				95	 }

				96	

				97	 //	Search	returns	the	result	of	applying	SearchInts	to	the	receiver	and	x.

				98	 func	(p	IntSlice)	Search(x	int)	int	{	return	SearchInts(p,	x)	}

				99	

			100	 //	Search	returns	the	result	of	applying	SearchFloat64s	to	the	receiver	and	x.

			101	 func	(p	Float64Slice)	Search(x	float64)	int	{	return	SearchFloat64s(p,	x)	}

			102	

			103	 //	Search	returns	the	result	of	applying	SearchStrings	to	the	receiver	and	x.

			104	 func	(p	StringSlice)	Search(x	string)	int	{	return	SearchStrings(p,	x)	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/sort/sort.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	sort	provides	primitives	for	sorting	slices	and	user-defined

					6	 //	collections.

					7	 package	sort

					8	

					9	 import	"math"

				10	

				11	 //	A	type,	typically	a	collection,	that	satisfies	sort.Interface	can	be

				12	 //	sorted	by	the	routines	in	this	package.		The	methods	require	that	the

				13	 //	elements	of	the	collection	be	enumerated	by	an	integer	index.

				14	 type	Interface	interface	{

				15	 	 //	Len	is	the	number	of	elements	in	the	collection.

				16	 	 Len()	int

				17	 	 //	Less	returns	whether	the	element	with	index	i	should	sort

				18	 	 //	before	the	element	with	index	j.

				19	 	 Less(i,	j	int)	bool

				20	 	 //	Swap	swaps	the	elements	with	indexes	i	and	j.

				21	 	 Swap(i,	j	int)

				22	 }

				23	

				24	 func	min(a,	b	int)	int	{

				25	 	 if	a	<	b	{

				26	 	 	 return	a

				27	 	 }

				28	 	 return	b

				29	 }

				30	

				31	 //	Insertion	sort

				32	 func	insertionSort(data	Interface,	a,	b	int)	{

				33	 	 for	i	:=	a	+	1;	i	<	b;	i++	{

				34	 	 	 for	j	:=	i;	j	>	a	&&	data.Less(j,	j-1);	j--	{

				35	 	 	 	 data.Swap(j,	j-1)

				36	 	 	 }

				37	 	 }

				38	 }

				39	

				40	 //	siftDown	implements	the	heap	property	on	data[lo,	hi).

				41	 //	first	is	an	offset	into	the	array	where	the	root	of	the	heap	lies.

				42	 func	siftDown(data	Interface,	lo,	hi,	first	int)	{

				43	 	 root	:=	lo

				44	 	 for	{

				45	 	 	 child	:=	2*root	+	1

				46	 	 	 if	child	>=	hi	{

				47	 	 	 	 break

				48	 	 	 }

				49	 	 	 if	child+1	<	hi	&&	data.Less(first+child,	first+child+1)	{

				50	 	 	 	 child++

				51	 	 	 }

				52	 	 	 if	!data.Less(first+root,	first+child)	{

				53	 	 	 	 return

				54	 	 	 }

				55	 	 	 data.Swap(first+root,	first+child)

				56	 	 	 root	=	child

				57	 	 }

				58	 }

				59	

				60	 func	heapSort(data	Interface,	a,	b	int)	{

				61	 	 first	:=	a

				62	 	 lo	:=	0

				63	 	 hi	:=	b	-	a

				64	

				65	 	 //	Build	heap	with	greatest	element	at	top.

				66	 	 for	i	:=	(hi	-	1)	/	2;	i	>=	0;	i--	{

				67	 	 	 siftDown(data,	i,	hi,	first)

				68	 	 }

				69	

				70	 	 //	Pop	elements,	largest	first,	into	end	of	data.

				71	 	 for	i	:=	hi	-	1;	i	>=	0;	i--	{

				72	 	 	 data.Swap(first,	first+i)

				73	 	 	 siftDown(data,	lo,	i,	first)

				74	 	 }

				75	 }

				76	

				77	 //	Quicksort,	following	Bentley	and	McIlroy,

				78	 //	``Engineering	a	Sort	Function,''	SP&E	November	1993.

				79	

				80	 //	medianOfThree	moves	the	median	of	the	three	values	data[a],	data[b],	data[c]	into	data[a].

				81	 func	medianOfThree(data	Interface,	a,	b,	c	int)	{

				82	 	 m0	:=	b

				83	 	 m1	:=	a

				84	 	 m2	:=	c

				85	 	 //	bubble	sort	on	3	elements

				86	 	 if	data.Less(m1,	m0)	{

				87	 	 	 data.Swap(m1,	m0)

				88	 	 }

				89	 	 if	data.Less(m2,	m1)	{

				90	 	 	 data.Swap(m2,	m1)

				91	 	 }

				92	 	 if	data.Less(m1,	m0)	{

				93	 	 	 data.Swap(m1,	m0)

				94	 	 }

				95	 	 //	now	data[m0]	<=	data[m1]	<=	data[m2]

				96	 }

				97	

				98	 func	swapRange(data	Interface,	a,	b,	n	int)	{

				99	 	 for	i	:=	0;	i	<	n;	i++	{

			100	 	 	 data.Swap(a+i,	b+i)

			101	 	 }

			102	 }

			103	

			104	 func	doPivot(data	Interface,	lo,	hi	int)	(midlo,	midhi	int)	{

			105	 	 m	:=	lo	+	(hi-lo)/2	//	Written	like	this	to	avoid	integer	overflow.

			106	 	 if	hi-lo	>	40	{

			107	 	 	 //	Tukey's	``Ninther,''	median	of	three	medians	of	three.

			108	 	 	 s	:=	(hi	-	lo)	/	8

			109	 	 	 medianOfThree(data,	lo,	lo+s,	lo+2*s)

			110	 	 	 medianOfThree(data,	m,	m-s,	m+s)

			111	 	 	 medianOfThree(data,	hi-1,	hi-1-s,	hi-1-2*s)

			112	 	 }

			113	 	 medianOfThree(data,	lo,	m,	hi-1)

			114	

			115	 	 //	Invariants	are:

			116	 	 //	 data[lo]	=	pivot	(set	up	by	ChoosePivot)

			117	 	 //	 data[lo	<=	i	<	a]	=	pivot

			118	 	 //	 data[a	<=	i	<	b]	<	pivot

			119	 	 //	 data[b	<=	i	<	c]	is	unexamined

			120	 	 //	 data[c	<=	i	<	d]	>	pivot

			121	 	 //	 data[d	<=	i	<	hi]	=	pivot

			122	 	 //

			123	 	 //	Once	b	meets	c,	can	swap	the	"=	pivot"	sections

			124	 	 //	into	the	middle	of	the	slice.

			125	 	 pivot	:=	lo

			126	 	 a,	b,	c,	d	:=	lo+1,	lo+1,	hi,	hi

			127	 	 for	b	<	c	{

			128	 	 	 if	data.Less(b,	pivot)	{	//	data[b]	<	pivot

			129	 	 	 	 b++

			130	 	 	 	 continue

			131	 	 	 }

			132	 	 	 if	!data.Less(pivot,	b)	{	//	data[b]	=	pivot

			133	 	 	 	 data.Swap(a,	b)

			134	 	 	 	 a++

			135	 	 	 	 b++

			136	 	 	 	 continue

			137	 	 	 }

			138	 	 	 if	data.Less(pivot,	c-1)	{	//	data[c-1]	>	pivot

			139	 	 	 	 c--

			140	 	 	 	 continue

			141	 	 	 }

			142	 	 	 if	!data.Less(c-1,	pivot)	{	//	data[c-1]	=	pivot

			143	 	 	 	 data.Swap(c-1,	d-1)

			144	 	 	 	 c--

			145	 	 	 	 d--

			146	 	 	 	 continue

			147	 	 	 }

			148	 	 	 //	data[b]	>	pivot;	data[c-1]	<	pivot

			149	 	 	 data.Swap(b,	c-1)

			150	 	 	 b++

			151	 	 	 c--

			152	 	 }

			153	

			154	 	 n	:=	min(b-a,	a-lo)

			155	 	 swapRange(data,	lo,	b-n,	n)

			156	

			157	 	 n	=	min(hi-d,	d-c)

			158	 	 swapRange(data,	c,	hi-n,	n)

			159	

			160	 	 return	lo	+	b	-	a,	hi	-	(d	-	c)

			161	 }

			162	

			163	 func	quickSort(data	Interface,	a,	b,	maxDepth	int)	{

			164	 	 for	b-a	>	7	{

			165	 	 	 if	maxDepth	==	0	{

			166	 	 	 	 heapSort(data,	a,	b)

			167	 	 	 	 return

			168	 	 	 }

			169	 	 	 maxDepth--

			170	 	 	 mlo,	mhi	:=	doPivot(data,	a,	b)

			171	 	 	 //	Avoiding	recursion	on	the	larger	subproblem	guarantees

			172	 	 	 //	a	stack	depth	of	at	most	lg(b-a).

			173	 	 	 if	mlo-a	<	b-mhi	{

			174	 	 	 	 quickSort(data,	a,	mlo,	maxDepth)

			175	 	 	 	 a	=	mhi	//	i.e.,	quickSort(data,	mhi,	b)

			176	 	 	 }	else	{

			177	 	 	 	 quickSort(data,	mhi,	b,	maxDepth)

			178	 	 	 	 b	=	mlo	//	i.e.,	quickSort(data,	a,	mlo)

			179	 	 	 }

			180	 	 }

			181	 	 if	b-a	>	1	{

			182	 	 	 insertionSort(data,	a,	b)

			183	 	 }

			184	 }

			185	

			186	 //	Sort	sorts	data.

			187	 //	It	makes	one	call	to	data.Len	to	determine	n,	and	O(n*log(n))	calls	to

			188	 //	data.Less	and	data.Swap.	The	sort	is	not	guaranteed	to	be	stable.

			189	 func	Sort(data	Interface)	{

			190	 	 //	Switch	to	heapsort	if	depth	of	2*ceil(lg(n+1))	is	reached.

			191	 	 n	:=	data.Len()

			192	 	 maxDepth	:=	0

			193	 	 for	i	:=	n;	i	>	0;	i	>>=	1	{

			194	 	 	 maxDepth++

			195	 	 }

			196	 	 maxDepth	*=	2

			197	 	 quickSort(data,	0,	n,	maxDepth)

			198	 }

			199	

			200	 //	IsSorted	reports	whether	data	is	sorted.

			201	 func	IsSorted(data	Interface)	bool	{

			202	 	 n	:=	data.Len()

			203	 	 for	i	:=	n	-	1;	i	>	0;	i--	{

			204	 	 	 if	data.Less(i,	i-1)	{

			205	 	 	 	 return	false

			206	 	 	 }

			207	 	 }

			208	 	 return	true

			209	 }

			210	

			211	 //	Convenience	types	for	common	cases

			212	

			213	 //	IntSlice	attaches	the	methods	of	Interface	to	[]int,	sorting	in	increasing	order.

			214	 type	IntSlice	[]int

			215	

			216	 func	(p	IntSlice)	Len()	int											{	return	len(p)	}

			217	 func	(p	IntSlice)	Less(i,	j	int)	bool	{	return	p[i]	<	p[j]	}

			218	 func	(p	IntSlice)	Swap(i,	j	int)						{	p[i],	p[j]	=	p[j],	p[i]	}

			219	

			220	 //	Sort	is	a	convenience	method.

			221	 func	(p	IntSlice)	Sort()	{	Sort(p)	}

			222	

			223	 //	Float64Slice	attaches	the	methods	of	Interface	to	[]float64,	sorting	in	increasing	order.

			224	 type	Float64Slice	[]float64

			225	

			226	 func	(p	Float64Slice)	Len()	int											{	return	len(p)	}

			227	 func	(p	Float64Slice)	Less(i,	j	int)	bool	{	return	p[i]	<	p[j]	||	math.IsNaN(p[i])	&&	!math.IsNaN(p[j])	}

			228	 func	(p	Float64Slice)	Swap(i,	j	int)						{	p[i],	p[j]	=	p[j],	p[i]	}

			229	

			230	 //	Sort	is	a	convenience	method.

			231	 func	(p	Float64Slice)	Sort()	{	Sort(p)	}

			232	

			233	 //	StringSlice	attaches	the	methods	of	Interface	to	[]string,	sorting	in	increasing	order.

			234	 type	StringSlice	[]string

			235	

			236	 func	(p	StringSlice)	Len()	int											{	return	len(p)	}

			237	 func	(p	StringSlice)	Less(i,	j	int)	bool	{	return	p[i]	<	p[j]	}

			238	 func	(p	StringSlice)	Swap(i,	j	int)						{	p[i],	p[j]	=	p[j],	p[i]	}

			239	

			240	 //	Sort	is	a	convenience	method.

			241	 func	(p	StringSlice)	Sort()	{	Sort(p)	}

			242	

			243	 //	Convenience	wrappers	for	common	cases

			244	

			245	 //	Ints	sorts	a	slice	of	ints	in	increasing	order.

			246	 func	Ints(a	[]int)	{	Sort(IntSlice(a))	}

			247	

			248	 //	Float64s	sorts	a	slice	of	float64s	in	increasing	order.

			249	 func	Float64s(a	[]float64)	{	Sort(Float64Slice(a))	}

			250	

			251	 //	Strings	sorts	a	slice	of	strings	in	increasing	order.

			252	 func	Strings(a	[]string)	{	Sort(StringSlice(a))	}

			253	

			254	 //	IntsAreSorted	tests	whether	a	slice	of	ints	is	sorted	in	increasing	order.

			255	 func	IntsAreSorted(a	[]int)	bool	{	return	IsSorted(IntSlice(a))	}

			256	

			257	 //	Float64sAreSorted	tests	whether	a	slice	of	float64s	is	sorted	in	increasing	order.

			258	 func	Float64sAreSorted(a	[]float64)	bool	{	return	IsSorted(Float64Slice(a))	}

			259	

			260	 //	StringsAreSorted	tests	whether	a	slice	of	strings	is	sorted	in	increasing	order.

			261	 func	StringsAreSorted(a	[]string)	bool	{	return	IsSorted(StringSlice(a))	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/strconv/atob.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	strconv

					6	

					7	 //	ParseBool	returns	the	boolean	value	represented	by	the	string.

					8	 //	It	accepts	1,	t,	T,	TRUE,	true,	True,	0,	f,	F,	FALSE,	false,	False.

					9	 //	Any	other	value	returns	an	error.

				10	 func	ParseBool(str	string)	(value	bool,	err	error)	{

				11	 	 switch	str	{

				12	 	 case	"1",	"t",	"T",	"true",	"TRUE",	"True":

				13	 	 	 return	true,	nil

				14	 	 case	"0",	"f",	"F",	"false",	"FALSE",	"False":

				15	 	 	 return	false,	nil

				16	 	 }

				17	 	 return	false,	syntaxError("ParseBool",	str)

				18	 }

				19	

				20	 //	FormatBool	returns	"true"	or	"false"	according	to	the	value	of	b

				21	 func	FormatBool(b	bool)	string	{

				22	 	 if	b	{

				23	 	 	 return	"true"

				24	 	 }

				25	 	 return	"false"

				26	 }

				27	

				28	 //	AppendBool	appends	"true"	or	"false",	according	to	the	value	of	b,

				29	 //	to	dst	and	returns	the	extended	buffer.

				30	 func	AppendBool(dst	[]byte,	b	bool)	[]byte	{

				31	 	 if	b	{

				32	 	 	 return	append(dst,	"true"...)

				33	 	 }

				34	 	 return	append(dst,	"false"...)

				35	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/strconv/atof.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	strconv	implements	conversions	to	and	from	string	representations

					6	 //	of	basic	data	types.

					7	 package	strconv

					8	

					9	 //	decimal	to	binary	floating	point	conversion.

				10	 //	Algorithm:

				11	 //			1)	Store	input	in	multiprecision	decimal.

				12	 //			2)	Multiply/divide	decimal	by	powers	of	two	until	in	range	[0.5,	1)

				13	 //			3)	Multiply	by	2^precision	and	round	to	get	mantissa.

				14	

				15	 import	"math"

				16	

				17	 var	optimize	=	true	//	can	change	for	testing

				18	

				19	 func	equalIgnoreCase(s1,	s2	string)	bool	{

				20	 	 if	len(s1)	!=	len(s2)	{

				21	 	 	 return	false

				22	 	 }

				23	 	 for	i	:=	0;	i	<	len(s1);	i++	{

				24	 	 	 c1	:=	s1[i]

				25	 	 	 if	'A'	<=	c1	&&	c1	<=	'Z'	{

				26	 	 	 	 c1	+=	'a'	-	'A'

				27	 	 	 }

				28	 	 	 c2	:=	s2[i]

				29	 	 	 if	'A'	<=	c2	&&	c2	<=	'Z'	{

				30	 	 	 	 c2	+=	'a'	-	'A'

				31	 	 	 }

				32	 	 	 if	c1	!=	c2	{

				33	 	 	 	 return	false

				34	 	 	 }

				35	 	 }

				36	 	 return	true

				37	 }

				38	

				39	 func	special(s	string)	(f	float64,	ok	bool)	{

				40	 	 switch	{

				41	 	 case	equalIgnoreCase(s,	"nan"):

				42	 	 	 return	math.NaN(),	true

				43	 	 case	equalIgnoreCase(s,	"-inf"),

				44	 	 	 equalIgnoreCase(s,	"-infinity"):

				45	 	 	 return	math.Inf(-1),	true

				46	 	 case	equalIgnoreCase(s,	"+inf"),

				47	 	 	 equalIgnoreCase(s,	"+infinity"),

				48	 	 	 equalIgnoreCase(s,	"inf"),

				49	 	 	 equalIgnoreCase(s,	"infinity"):

				50	 	 	 return	math.Inf(1),	true

				51	 	 }

				52	 	 return

				53	 }

				54	

				55	 func	(b	*decimal)	set(s	string)	(ok	bool)	{

				56	 	 i	:=	0

				57	 	 b.neg	=	false

				58	 	 b.trunc	=	false

				59	

				60	 	 //	optional	sign

				61	 	 if	i	>=	len(s)	{

				62	 	 	 return

				63	 	 }

				64	 	 switch	{

				65	 	 case	s[i]	==	'+':

				66	 	 	 i++

				67	 	 case	s[i]	==	'-':

				68	 	 	 b.neg	=	true

				69	 	 	 i++

				70	 	 }

				71	

				72	 	 //	digits

				73	 	 sawdot	:=	false

				74	 	 sawdigits	:=	false

				75	 	 for	;	i	<	len(s);	i++	{

				76	 	 	 switch	{

				77	 	 	 case	s[i]	==	'.':

				78	 	 	 	 if	sawdot	{

				79	 	 	 	 	 return

				80	 	 	 	 }

				81	 	 	 	 sawdot	=	true

				82	 	 	 	 b.dp	=	b.nd

				83	 	 	 	 continue

				84	

				85	 	 	 case	'0'	<=	s[i]	&&	s[i]	<=	'9':

				86	 	 	 	 sawdigits	=	true

				87	 	 	 	 if	s[i]	==	'0'	&&	b.nd	==	0	{	//	ignore	leading	zeros

				88	 	 	 	 	 b.dp--

				89	 	 	 	 	 continue

				90	 	 	 	 }

				91	 	 	 	 if	b.nd	<	len(b.d)	{

				92	 	 	 	 	 b.d[b.nd]	=	s[i]

				93	 	 	 	 	 b.nd++

				94	 	 	 	 }	else	if	s[i]	!=	'0'	{

				95	 	 	 	 	 b.trunc	=	true

				96	 	 	 	 }

				97	 	 	 	 continue

				98	 	 	 }

				99	 	 	 break

			100	 	 }

			101	 	 if	!sawdigits	{

			102	 	 	 return

			103	 	 }

			104	 	 if	!sawdot	{

			105	 	 	 b.dp	=	b.nd

			106	 	 }

			107	

			108	 	 //	optional	exponent	moves	decimal	point.

			109	 	 //	if	we	read	a	very	large,	very	long	number,

			110	 	 //	just	be	sure	to	move	the	decimal	point	by

			111	 	 //	a	lot	(say,	100000).		it	doesn't	matter	if	it's

			112	 	 //	not	the	exact	number.

			113	 	 if	i	<	len(s)	&&	(s[i]	==	'e'	||	s[i]	==	'E')	{

			114	 	 	 i++

			115	 	 	 if	i	>=	len(s)	{

			116	 	 	 	 return

			117	 	 	 }

			118	 	 	 esign	:=	1

			119	 	 	 if	s[i]	==	'+'	{

			120	 	 	 	 i++

			121	 	 	 }	else	if	s[i]	==	'-'	{

			122	 	 	 	 i++

			123	 	 	 	 esign	=	-1

			124	 	 	 }

			125	 	 	 if	i	>=	len(s)	||	s[i]	<	'0'	||	s[i]	>	'9'	{

			126	 	 	 	 return

			127	 	 	 }

			128	 	 	 e	:=	0

			129	 	 	 for	;	i	<	len(s)	&&	'0'	<=	s[i]	&&	s[i]	<=	'9';	i++	{

			130	 	 	 	 if	e	<	10000	{

			131	 	 	 	 	 e	=	e*10	+	int(s[i])	-	'0'

			132	 	 	 	 }

			133	 	 	 }

			134	 	 	 b.dp	+=	e	*	esign

			135	 	 }

			136	

			137	 	 if	i	!=	len(s)	{

			138	 	 	 return

			139	 	 }

			140	

			141	 	 ok	=	true

			142	 	 return

			143	 }

			144	

			145	 //	decimal	power	of	ten	to	binary	power	of	two.

			146	 var	powtab	=	[]int{1,	3,	6,	9,	13,	16,	19,	23,	26}

			147	

			148	 func	(d	*decimal)	floatBits(flt	*floatInfo)	(b	uint64,	overflow	bool)	{

			149	 	 var	exp	int

			150	 	 var	mant	uint64

			151	

			152	 	 //	Zero	is	always	a	special	case.

			153	 	 if	d.nd	==	0	{

			154	 	 	 mant	=	0

			155	 	 	 exp	=	flt.bias

			156	 	 	 goto	out

			157	 	 }

			158	

			159	 	 //	Obvious	overflow/underflow.

			160	 	 //	These	bounds	are	for	64-bit	floats.

			161	 	 //	Will	have	to	change	if	we	want	to	support	80-bit	floats	in	the	future.

			162	 	 if	d.dp	>	310	{

			163	 	 	 goto	overflow

			164	 	 }

			165	 	 if	d.dp	<	-330	{

			166	 	 	 //	zero

			167	 	 	 mant	=	0

			168	 	 	 exp	=	flt.bias

			169	 	 	 goto	out

			170	 	 }

			171	

			172	 	 //	Scale	by	powers	of	two	until	in	range	[0.5,	1.0)

			173	 	 exp	=	0

			174	 	 for	d.dp	>	0	{

			175	 	 	 var	n	int

			176	 	 	 if	d.dp	>=	len(powtab)	{

			177	 	 	 	 n	=	27

			178	 	 	 }	else	{

			179	 	 	 	 n	=	powtab[d.dp]

			180	 	 	 }

			181	 	 	 d.Shift(-n)

			182	 	 	 exp	+=	n

			183	 	 }

			184	 	 for	d.dp	<	0	||	d.dp	==	0	&&	d.d[0]	<	'5'	{

			185	 	 	 var	n	int

			186	 	 	 if	-d.dp	>=	len(powtab)	{

			187	 	 	 	 n	=	27

			188	 	 	 }	else	{

			189	 	 	 	 n	=	powtab[-d.dp]

			190	 	 	 }

			191	 	 	 d.Shift(n)

			192	 	 	 exp	-=	n

			193	 	 }

			194	

			195	 	 //	Our	range	is	[0.5,1)	but	floating	point	range	is	[1,2).

			196	 	 exp--

			197	

			198	 	 //	Minimum	representable	exponent	is	flt.bias+1.

			199	 	 //	If	the	exponent	is	smaller,	move	it	up	and

			200	 	 //	adjust	d	accordingly.

			201	 	 if	exp	<	flt.bias+1	{

			202	 	 	 n	:=	flt.bias	+	1	-	exp

			203	 	 	 d.Shift(-n)

			204	 	 	 exp	+=	n

			205	 	 }

			206	

			207	 	 if	exp-flt.bias	>=	1<<flt.expbits-1	{

			208	 	 	 goto	overflow

			209	 	 }

			210	

			211	 	 //	Extract	1+flt.mantbits	bits.

			212	 	 d.Shift(int(1	+	flt.mantbits))

			213	 	 mant	=	d.RoundedInteger()

			214	

			215	 	 //	Rounding	might	have	added	a	bit;	shift	down.

			216	 	 if	mant	==	2<<flt.mantbits	{

			217	 	 	 mant	>>=	1

			218	 	 	 exp++

			219	 	 	 if	exp-flt.bias	>=	1<<flt.expbits-1	{

			220	 	 	 	 goto	overflow

			221	 	 	 }

			222	 	 }

			223	

			224	 	 //	Denormalized?

			225	 	 if	mant&(1<<flt.mantbits)	==	0	{

			226	 	 	 exp	=	flt.bias

			227	 	 }

			228	 	 goto	out

			229	

			230	 overflow:

			231	 	 //	±Inf

			232	 	 mant	=	0

			233	 	 exp	=	1<<flt.expbits	-	1	+	flt.bias

			234	 	 overflow	=	true

			235	

			236	 out:

			237	 	 //	Assemble	bits.

			238	 	 bits	:=	mant	&	(uint64(1)<<flt.mantbits	-	1)

			239	 	 bits	|=	uint64((exp-flt.bias)&(1<<flt.expbits-1))	<<	flt.mantbits

			240	 	 if	d.neg	{

			241	 	 	 bits	|=	1	<<	flt.mantbits	<<	flt.expbits

			242	 	 }

			243	 	 return	bits,	overflow

			244	 }

			245	

			246	 //	Compute	exact	floating-point	integer	from	d's	digits.

			247	 //	Caller	is	responsible	for	avoiding	overflow.

			248	 func	(d	*decimal)	atof64int()	float64	{

			249	 	 f	:=	0.0

			250	 	 for	i	:=	0;	i	<	d.nd;	i++	{

			251	 	 	 f	=	f*10	+	float64(d.d[i]-'0')

			252	 	 }

			253	 	 if	d.neg	{

			254	 	 	 f	=	-f

			255	 	 }

			256	 	 return	f

			257	 }

			258	

			259	 func	(d	*decimal)	atof32int()	float32	{

			260	 	 f	:=	float32(0)

			261	 	 for	i	:=	0;	i	<	d.nd;	i++	{

			262	 	 	 f	=	f*10	+	float32(d.d[i]-'0')

			263	 	 }

			264	 	 if	d.neg	{

			265	 	 	 f	=	-f

			266	 	 }

			267	 	 return	f

			268	 }

			269	

			270	 //	Reads	a	uint64	decimal	mantissa,	which	might	be	truncated.

			271	 func	(d	*decimal)	atou64()	(mant	uint64,	digits	int)	{

			272	 	 const	uint64digits	=	19

			273	 	 for	i,	c	:=	range	d.d[:d.nd]	{

			274	 	 	 if	i	==	uint64digits	{

			275	 	 	 	 return	mant,	i

			276	 	 	 }

			277	 	 	 mant	=	10*mant	+	uint64(c-'0')

			278	 	 }

			279	 	 return	mant,	d.nd

			280	 }

			281	

			282	 //	Exact	powers	of	10.

			283	 var	float64pow10	=	[]float64{

			284	 	 1e0,	1e1,	1e2,	1e3,	1e4,	1e5,	1e6,	1e7,	1e8,	1e9,

			285	 	 1e10,	1e11,	1e12,	1e13,	1e14,	1e15,	1e16,	1e17,	1e18,	1e19,

			286	 	 1e20,	1e21,	1e22,

			287	 }

			288	 var	float32pow10	=	[]float32{1e0,	1e1,	1e2,	1e3,	1e4,	1e5,	1e6,	1e7,	1e8,	1e9,	1e10}

			289	

			290	 //	If	possible	to	convert	decimal	d	to	64-bit	float	f	exactly,

			291	 //	entirely	in	floating-point	math,	do	so,	avoiding	the	expense	of	decimalToFloatBits.

			292	 //	Three	common	cases:

			293	 //	 value	is	exact	integer

			294	 //	 value	is	exact	integer	*	exact	power	of	ten

			295	 //	 value	is	exact	integer	/	exact	power	of	ten

			296	 //	These	all	produce	potentially	inexact	but	correctly	rounded	answers.

			297	 func	(d	*decimal)	atof64()	(f	float64,	ok	bool)	{

			298	 	 //	Exact	integers	are	<=	10^15.

			299	 	 //	Exact	powers	of	ten	are	<=	10^22.

			300	 	 if	d.nd	>	15	{

			301	 	 	 return

			302	 	 }

			303	 	 switch	{

			304	 	 case	d.dp	==	d.nd:	//	int

			305	 	 	 f	:=	d.atof64int()

			306	 	 	 return	f,	true

			307	

			308	 	 case	d.dp	>	d.nd	&&	d.dp	<=	15+22:	//	int	*	10^k

			309	 	 	 f	:=	d.atof64int()

			310	 	 	 k	:=	d.dp	-	d.nd

			311	 	 	 //	If	exponent	is	big	but	number	of	digits	is	not,

			312	 	 	 //	can	move	a	few	zeros	into	the	integer	part.

			313	 	 	 if	k	>	22	{

			314	 	 	 	 f	*=	float64pow10[k-22]

			315	 	 	 	 k	=	22

			316	 	 	 }

			317	 	 	 return	f	*	float64pow10[k],	true

			318	

			319	 	 case	d.dp	<	d.nd	&&	d.nd-d.dp	<=	22:	//	int	/	10^k

			320	 	 	 f	:=	d.atof64int()

			321	 	 	 return	f	/	float64pow10[d.nd-d.dp],	true

			322	 	 }

			323	 	 return

			324	 }

			325	

			326	 //	If	possible	to	convert	decimal	d	to	32-bit	float	f	exactly,

			327	 //	entirely	in	floating-point	math,	do	so,	avoiding	the	machinery	above.

			328	 func	(d	*decimal)	atof32()	(f	float32,	ok	bool)	{

			329	 	 //	Exact	integers	are	<=	10^7.

			330	 	 //	Exact	powers	of	ten	are	<=	10^10.

			331	 	 if	d.nd	>	7	{

			332	 	 	 return

			333	 	 }

			334	 	 switch	{

			335	 	 case	d.dp	==	d.nd:	//	int

			336	 	 	 f	:=	d.atof32int()

			337	 	 	 return	f,	true

			338	

			339	 	 case	d.dp	>	d.nd	&&	d.dp	<=	7+10:	//	int	*	10^k

			340	 	 	 f	:=	d.atof32int()

			341	 	 	 k	:=	d.dp	-	d.nd

			342	 	 	 //	If	exponent	is	big	but	number	of	digits	is	not,

			343	 	 	 //	can	move	a	few	zeros	into	the	integer	part.

			344	 	 	 if	k	>	10	{

			345	 	 	 	 f	*=	float32pow10[k-10]

			346	 	 	 	 k	=	10

			347	 	 	 }

			348	 	 	 return	f	*	float32pow10[k],	true

			349	

			350	 	 case	d.dp	<	d.nd	&&	d.nd-d.dp	<=	10:	//	int	/	10^k

			351	 	 	 f	:=	d.atof32int()

			352	 	 	 return	f	/	float32pow10[d.nd-d.dp],	true

			353	 	 }

			354	 	 return

			355	 }

			356	

			357	 const	fnParseFloat	=	"ParseFloat"

			358	

			359	 func	atof32(s	string)	(f	float32,	err	error)	{

			360	 	 if	val,	ok	:=	special(s);	ok	{

			361	 	 	 return	float32(val),	nil

			362	 	 }

			363	

			364	 	 var	d	decimal

			365	 	 if	!d.set(s)	{

			366	 	 	 return	0,	syntaxError(fnParseFloat,	s)

			367	 	 }

			368	 	 if	optimize	{

			369	 	 	 if	f,	ok	:=	d.atof32();	ok	{

			370	 	 	 	 return	f,	nil

			371	 	 	 }

			372	 	 }

			373	 	 b,	ovf	:=	d.floatBits(&float32info)

			374	 	 f	=	math.Float32frombits(uint32(b))

			375	 	 if	ovf	{

			376	 	 	 err	=	rangeError(fnParseFloat,	s)

			377	 	 }

			378	 	 return	f,	err

			379	 }

			380	

			381	 func	atof64(s	string)	(f	float64,	err	error)	{

			382	 	 if	val,	ok	:=	special(s);	ok	{

			383	 	 	 return	val,	nil

			384	 	 }

			385	

			386	 	 var	d	decimal

			387	 	 if	!d.set(s)	{

			388	 	 	 return	0,	syntaxError(fnParseFloat,	s)

			389	 	 }

			390	 	 if	optimize	{

			391	 	 	 if	f,	ok	:=	d.atof64();	ok	{

			392	 	 	 	 return	f,	nil

			393	 	 	 }

			394	

			395	 	 	 //	Try	another	fast	path.

			396	 	 	 ext	:=	new(extFloat)

			397	 	 	 if	ok	:=	ext.AssignDecimal(&d);	ok	{

			398	 	 	 	 b,	ovf	:=	ext.floatBits()

			399	 	 	 	 f	=	math.Float64frombits(b)

			400	 	 	 	 if	ovf	{

			401	 	 	 	 	 err	=	rangeError(fnParseFloat,	s)

			402	 	 	 	 }

			403	 	 	 	 return	f,	err

			404	 	 	 }

			405	 	 }

			406	 	 b,	ovf	:=	d.floatBits(&float64info)

			407	 	 f	=	math.Float64frombits(b)

			408	 	 if	ovf	{

			409	 	 	 err	=	rangeError(fnParseFloat,	s)

			410	 	 }

			411	 	 return	f,	err

			412	 }

			413	

			414	 //	ParseFloat	converts	the	string	s	to	a	floating-point	number

			415	 //	with	the	precision	specified	by	bitSize:	32	for	float32,	or	64	for	float64.

			416	 //	When	bitSize=32,	the	result	still	has	type	float64,	but	it	will	be

			417	 //	convertible	to	float32	without	changing	its	value.

			418	 //

			419	 //	If	s	is	well-formed	and	near	a	valid	floating	point	number,

			420	 //	ParseFloat	returns	the	nearest	floating	point	number	rounded

			421	 //	using	IEEE754	unbiased	rounding.

			422	 //

			423	 //	The	errors	that	ParseFloat	returns	have	concrete	type	*NumError

			424	 //	and	include	err.Num	=	s.

			425	 //

			426	 //	If	s	is	not	syntactically	well-formed,	ParseFloat	returns	err.Error	=	ErrSyntax.

			427	 //

			428	 //	If	s	is	syntactically	well-formed	but	is	more	than	1/2	ULP

			429	 //	away	from	the	largest	floating	point	number	of	the	given	size,

			430	 //	ParseFloat	returns	f	=	±Inf,	err.Error	=	ErrRange.

			431	 func	ParseFloat(s	string,	bitSize	int)	(f	float64,	err	error)	{

			432	 	 if	bitSize	==	32	{

			433	 	 	 f1,	err1	:=	atof32(s)

			434	 	 	 return	float64(f1),	err1

			435	 	 }

			436	 	 f1,	err1	:=	atof64(s)

			437	 	 return	f1,	err1

			438	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/strconv/atoi.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	strconv

					6	

					7	 import	"errors"

					8	

					9	 //	ErrRange	indicates	that	a	value	is	out	of	range	for	the	target	type.

				10	 var	ErrRange	=	errors.New("value	out	of	range")

				11	

				12	 //	ErrSyntax	indicates	that	a	value	does	not	have	the	right	syntax	for	the	target	type.

				13	 var	ErrSyntax	=	errors.New("invalid	syntax")

				14	

				15	 //	A	NumError	records	a	failed	conversion.

				16	 type	NumError	struct	{

				17	 	 Func	string	//	the	failing	function	(ParseBool,	ParseInt,	ParseUint,	ParseFloat)

				18	 	 Num		string	//	the	input

				19	 	 Err		error		//	the	reason	the	conversion	failed	(ErrRange,	ErrSyntax)

				20	 }

				21	

				22	 func	(e	*NumError)	Error()	string	{

				23	 	 return	"strconv."	+	e.Func	+	":	"	+	`parsing	"`	+	e.Num	+	`":	`	+	e.Err.Error()

				24	 }

				25	

				26	 func	syntaxError(fn,	str	string)	*NumError	{

				27	 	 return	&NumError{fn,	str,	ErrSyntax}

				28	 }

				29	

				30	 func	rangeError(fn,	str	string)	*NumError	{

				31	 	 return	&NumError{fn,	str,	ErrRange}

				32	 }

				33	

				34	 const	intSize	=	32	<<	uint(^uint(0)>>63)

				35	

				36	 const	IntSize	=	intSize	//	number	of	bits	in	int,	uint	(32	or	64)

				37	

				38	 //	Return	the	first	number	n	such	that	n*base	>=	1<<64.

				39	 func	cutoff64(base	int)	uint64	{

				40	 	 if	base	<	2	{

				41	 	 	 return	0

				42	 	 }

				43	 	 return	(1<<64-1)/uint64(base)	+	1

				44	 }

				45	

				46	 //	ParseUint	is	like	ParseInt	but	for	unsigned	numbers.

				47	 func	ParseUint(s	string,	b	int,	bitSize	int)	(n	uint64,	err	error)	{

				48	 	 var	cutoff,	maxVal	uint64

				49	

				50	 	 if	bitSize	==	0	{

				51	 	 	 bitSize	=	int(IntSize)

				52	 	 }

				53	

				54	 	 s0	:=	s

				55	 	 switch	{

				56	 	 case	len(s)	<	1:

				57	 	 	 err	=	ErrSyntax

				58	 	 	 goto	Error

				59	

				60	 	 case	2	<=	b	&&	b	<=	36:

				61	 	 	 //	valid	base;	nothing	to	do

				62	

				63	 	 case	b	==	0:

				64	 	 	 //	Look	for	octal,	hex	prefix.

				65	 	 	 switch	{

				66	 	 	 case	s[0]	==	'0'	&&	len(s)	>	1	&&	(s[1]	==	'x'	||	s[1]	==	'X'):

				67	 	 	 	 b	=	16

				68	 	 	 	 s	=	s[2:]

				69	 	 	 	 if	len(s)	<	1	{

				70	 	 	 	 	 err	=	ErrSyntax

				71	 	 	 	 	 goto	Error

				72	 	 	 	 }

				73	 	 	 case	s[0]	==	'0':

				74	 	 	 	 b	=	8

				75	 	 	 default:

				76	 	 	 	 b	=	10

				77	 	 	 }

				78	

				79	 	 default:

				80	 	 	 err	=	errors.New("invalid	base	"	+	Itoa(b))

				81	 	 	 goto	Error

				82	 	 }

				83	

				84	 	 n	=	0

				85	 	 cutoff	=	cutoff64(b)

				86	 	 maxVal	=	1<<uint(bitSize)	-	1

				87	

				88	 	 for	i	:=	0;	i	<	len(s);	i++	{

				89	 	 	 var	v	byte

				90	 	 	 d	:=	s[i]

				91	 	 	 switch	{

				92	 	 	 case	'0'	<=	d	&&	d	<=	'9':

				93	 	 	 	 v	=	d	-	'0'

				94	 	 	 case	'a'	<=	d	&&	d	<=	'z':

				95	 	 	 	 v	=	d	-	'a'	+	10

				96	 	 	 case	'A'	<=	d	&&	d	<=	'Z':

				97	 	 	 	 v	=	d	-	'A'	+	10

				98	 	 	 default:

				99	 	 	 	 n	=	0

			100	 	 	 	 err	=	ErrSyntax

			101	 	 	 	 goto	Error

			102	 	 	 }

			103	 	 	 if	int(v)	>=	b	{

			104	 	 	 	 n	=	0

			105	 	 	 	 err	=	ErrSyntax

			106	 	 	 	 goto	Error

			107	 	 	 }

			108	

			109	 	 	 if	n	>=	cutoff	{

			110	 	 	 	 //	n*b	overflows

			111	 	 	 	 n	=	1<<64	-	1

			112	 	 	 	 err	=	ErrRange

			113	 	 	 	 goto	Error

			114	 	 	 }

			115	 	 	 n	*=	uint64(b)

			116	

			117	 	 	 n1	:=	n	+	uint64(v)

			118	 	 	 if	n1	<	n	||	n1	>	maxVal	{

			119	 	 	 	 //	n+v	overflows

			120	 	 	 	 n	=	1<<64	-	1

			121	 	 	 	 err	=	ErrRange

			122	 	 	 	 goto	Error

			123	 	 	 }

			124	 	 	 n	=	n1

			125	 	 }

			126	

			127	 	 return	n,	nil

			128	

			129	 Error:

			130	 	 return	n,	&NumError{"ParseUint",	s0,	err}

			131	 }

			132	

			133	 //	ParseInt	interprets	a	string	s	in	the	given	base	(2	to	36)	and

			134	 //	returns	the	corresponding	value	i.		If	base	==	0,	the	base	is

			135	 //	implied	by	the	string's	prefix:	base	16	for	"0x",	base	8	for

			136	 //	"0",	and	base	10	otherwise.

			137	 //

			138	 //	The	bitSize	argument	specifies	the	integer	type

			139	 //	that	the	result	must	fit	into.		Bit	sizes	0,	8,	16,	32,	and	64

			140	 //	correspond	to	int,	int8,	int16,	int32,	and	int64.

			141	 //

			142	 //	The	errors	that	ParseInt	returns	have	concrete	type	*NumError

			143	 //	and	include	err.Num	=	s.		If	s	is	empty	or	contains	invalid

			144	 //	digits,	err.Error	=	ErrSyntax;	if	the	value	corresponding

			145	 //	to	s	cannot	be	represented	by	a	signed	integer	of	the

			146	 //	given	size,	err.Error	=	ErrRange.

			147	 func	ParseInt(s	string,	base	int,	bitSize	int)	(i	int64,	err	error)	{

			148	 	 const	fnParseInt	=	"ParseInt"

			149	

			150	 	 if	bitSize	==	0	{

			151	 	 	 bitSize	=	int(IntSize)

			152	 	 }

			153	

			154	 	 //	Empty	string	bad.

			155	 	 if	len(s)	==	0	{

			156	 	 	 return	0,	syntaxError(fnParseInt,	s)

			157	 	 }

			158	

			159	 	 //	Pick	off	leading	sign.

			160	 	 s0	:=	s

			161	 	 neg	:=	false

			162	 	 if	s[0]	==	'+'	{

			163	 	 	 s	=	s[1:]

			164	 	 }	else	if	s[0]	==	'-'	{

			165	 	 	 neg	=	true

			166	 	 	 s	=	s[1:]

			167	 	 }

			168	

			169	 	 //	Convert	unsigned	and	check	range.

			170	 	 var	un	uint64

			171	 	 un,	err	=	ParseUint(s,	base,	bitSize)

			172	 	 if	err	!=	nil	&&	err.(*NumError).Err	!=	ErrRange	{

			173	 	 	 err.(*NumError).Func	=	fnParseInt

			174	 	 	 err.(*NumError).Num	=	s0

			175	 	 	 return	0,	err

			176	 	 }

			177	 	 cutoff	:=	uint64(1	<<	uint(bitSize-1))

			178	 	 if	!neg	&&	un	>=	cutoff	{

			179	 	 	 return	int64(cutoff	-	1),	rangeError(fnParseInt,	s0)

			180	 	 }

			181	 	 if	neg	&&	un	>	cutoff	{

			182	 	 	 return	-int64(cutoff),	rangeError(fnParseInt,	s0)

			183	 	 }

			184	 	 n	:=	int64(un)

			185	 	 if	neg	{

			186	 	 	 n	=	-n

			187	 	 }

			188	 	 return	n,	nil

			189	 }

			190	

			191	 //	Atoi	is	shorthand	for	ParseInt(s,	10,	0).

			192	 func	Atoi(s	string)	(i	int,	err	error)	{

			193	 	 i64,	err	:=	ParseInt(s,	10,	0)

			194	 	 return	int(i64),	err

			195	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/strconv/decimal.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Multiprecision	decimal	numbers.

					6	 //	For	floating-point	formatting	only;	not	general	purpose.

					7	 //	Only	operations	are	assign	and	(binary)	left/right	shift.

					8	 //	Can	do	binary	floating	point	in	multiprecision	decimal	precisely

					9	 //	because	2	divides	10;	cannot	do	decimal	floating	point

				10	 //	in	multiprecision	binary	precisely.

				11	

				12	 package	strconv

				13	

				14	 type	decimal	struct	{

				15	 	 d					[800]byte	//	digits

				16	 	 nd				int							//	number	of	digits	used

				17	 	 dp				int							//	decimal	point

				18	 	 neg			bool

				19	 	 trunc	bool	//	discarded	nonzero	digits	beyond	d[:nd]

				20	 }

				21	

				22	 func	(a	*decimal)	String()	string	{

				23	 	 n	:=	10	+	a.nd

				24	 	 if	a.dp	>	0	{

				25	 	 	 n	+=	a.dp

				26	 	 }

				27	 	 if	a.dp	<	0	{

				28	 	 	 n	+=	-a.dp

				29	 	 }

				30	

				31	 	 buf	:=	make([]byte,	n)

				32	 	 w	:=	0

				33	 	 switch	{

				34	 	 case	a.nd	==	0:

				35	 	 	 return	"0"

				36	

				37	 	 case	a.dp	<=	0:

				38	 	 	 //	zeros	fill	space	between	decimal	point	and	digits

				39	 	 	 buf[w]	=	'0'

				40	 	 	 w++

				41	 	 	 buf[w]	=	'.'

				42	 	 	 w++

				43	 	 	 w	+=	digitZero(buf[w	:	w+-a.dp])

				44	 	 	 w	+=	copy(buf[w:],	a.d[0:a.nd])

				45	

				46	 	 case	a.dp	<	a.nd:

				47	 	 	 //	decimal	point	in	middle	of	digits

				48	 	 	 w	+=	copy(buf[w:],	a.d[0:a.dp])

				49	 	 	 buf[w]	=	'.'

				50	 	 	 w++

				51	 	 	 w	+=	copy(buf[w:],	a.d[a.dp:a.nd])

				52	

				53	 	 default:

				54	 	 	 //	zeros	fill	space	between	digits	and	decimal	point

				55	 	 	 w	+=	copy(buf[w:],	a.d[0:a.nd])

				56	 	 	 w	+=	digitZero(buf[w	:	w+a.dp-a.nd])

				57	 	 }

				58	 	 return	string(buf[0:w])

				59	 }

				60	

				61	 func	digitZero(dst	[]byte)	int	{

				62	 	 for	i	:=	range	dst	{

				63	 	 	 dst[i]	=	'0'

				64	 	 }

				65	 	 return	len(dst)

				66	 }

				67	

				68	 //	trim	trailing	zeros	from	number.

				69	 //	(They	are	meaningless;	the	decimal	point	is	tracked

				70	 //	independent	of	the	number	of	digits.)

				71	 func	trim(a	*decimal)	{

				72	 	 for	a.nd	>	0	&&	a.d[a.nd-1]	==	'0'	{

				73	 	 	 a.nd--

				74	 	 }

				75	 	 if	a.nd	==	0	{

				76	 	 	 a.dp	=	0

				77	 	 }

				78	 }

				79	

				80	 //	Assign	v	to	a.

				81	 func	(a	*decimal)	Assign(v	uint64)	{

				82	 	 var	buf	[50]byte

				83	

				84	 	 //	Write	reversed	decimal	in	buf.

				85	 	 n	:=	0

				86	 	 for	v	>	0	{

				87	 	 	 v1	:=	v	/	10

				88	 	 	 v	-=	10	*	v1

				89	 	 	 buf[n]	=	byte(v	+	'0')

				90	 	 	 n++

				91	 	 	 v	=	v1

				92	 	 }

				93	

				94	 	 //	Reverse	again	to	produce	forward	decimal	in	a.d.

				95	 	 a.nd	=	0

				96	 	 for	n--;	n	>=	0;	n--	{

				97	 	 	 a.d[a.nd]	=	buf[n]

				98	 	 	 a.nd++

				99	 	 }

			100	 	 a.dp	=	a.nd

			101	 	 trim(a)

			102	 }

			103	

			104	 //	Maximum	shift	that	we	can	do	in	one	pass	without	overflow.

			105	 //	Signed	int	has	31	bits,	and	we	have	to	be	able	to	accommodate	9<<k.

			106	 const	maxShift	=	27

			107	

			108	 //	Binary	shift	right	(*	2)	by	k	bits.		k	<=	maxShift	to	avoid	overflow.

			109	 func	rightShift(a	*decimal,	k	uint)	{

			110	 	 r	:=	0	//	read	pointer

			111	 	 w	:=	0	//	write	pointer

			112	

			113	 	 //	Pick	up	enough	leading	digits	to	cover	first	shift.

			114	 	 n	:=	0

			115	 	 for	;	n>>k	==	0;	r++	{

			116	 	 	 if	r	>=	a.nd	{

			117	 	 	 	 if	n	==	0	{

			118	 	 	 	 	 //	a	==	0;	shouldn't	get	here,	but	handle	anyway.

			119	 	 	 	 	 a.nd	=	0

			120	 	 	 	 	 return

			121	 	 	 	 }

			122	 	 	 	 for	n>>k	==	0	{

			123	 	 	 	 	 n	=	n	*	10

			124	 	 	 	 	 r++

			125	 	 	 	 }

			126	 	 	 	 break

			127	 	 	 }

			128	 	 	 c	:=	int(a.d[r])

			129	 	 	 n	=	n*10	+	c	-	'0'

			130	 	 }

			131	 	 a.dp	-=	r	-	1

			132	

			133	 	 //	Pick	up	a	digit,	put	down	a	digit.

			134	 	 for	;	r	<	a.nd;	r++	{

			135	 	 	 c	:=	int(a.d[r])

			136	 	 	 dig	:=	n	>>	k

			137	 	 	 n	-=	dig	<<	k

			138	 	 	 a.d[w]	=	byte(dig	+	'0')

			139	 	 	 w++

			140	 	 	 n	=	n*10	+	c	-	'0'

			141	 	 }

			142	

			143	 	 //	Put	down	extra	digits.

			144	 	 for	n	>	0	{

			145	 	 	 dig	:=	n	>>	k

			146	 	 	 n	-=	dig	<<	k

			147	 	 	 if	w	<	len(a.d)	{

			148	 	 	 	 a.d[w]	=	byte(dig	+	'0')

			149	 	 	 	 w++

			150	 	 	 }	else	if	dig	>	0	{

			151	 	 	 	 a.trunc	=	true

			152	 	 	 }

			153	 	 	 n	=	n	*	10

			154	 	 }

			155	

			156	 	 a.nd	=	w

			157	 	 trim(a)

			158	 }

			159	

			160	 //	Cheat	sheet	for	left	shift:	table	indexed	by	shift	count	giving

			161	 //	number	of	new	digits	that	will	be	introduced	by	that	shift.

			162	 //

			163	 //	For	example,	leftcheats[4]	=	{2,	"625"}.		That	means	that

			164	 //	if	we	are	shifting	by	4	(multiplying	by	16),	it	will	add	2	digits

			165	 //	when	the	string	prefix	is	"625"	through	"999",	and	one	fewer	digit

			166	 //	if	the	string	prefix	is	"000"	through	"624".

			167	 //

			168	 //	Credit	for	this	trick	goes	to	Ken.

			169	

			170	 type	leftCheat	struct	{

			171	 	 delta		int				//	number	of	new	digits

			172	 	 cutoff	string	//			minus	one	digit	if	original	<	a.

			173	 }

			174	

			175	 var	leftcheats	=	[]leftCheat{

			176	 	 //	Leading	digits	of	1/2^i	=	5^i.

			177	 	 //	5^23	is	not	an	exact	64-bit	floating	point	number,

			178	 	 //	so	have	to	use	bc	for	the	math.

			179	 	 /*

			180	 	 	 seq	27	|	sed	's/^/5^/'	|	bc	|

			181	 	 	 awk	'BEGIN{	print	"\tleftCheat{	0,	\"\"	},"	}

			182	 	 	 {

			183	 	 	 	 log2	=	log(2)/log(10)

			184	 	 	 	 printf("\tleftCheat{	%d,	\"%s\"	},\t//	*	%d\n",

			185	 	 	 	 	 int(log2*NR+1),	$0,	2**NR)

			186	 	 	 }'

			187	 	 */

			188	 	 {0,	""},

			189	 	 {1,	"5"},																			//	*	2

			190	 	 {1,	"25"},																		//	*	4

			191	 	 {1,	"125"},																	//	*	8

			192	 	 {2,	"625"},																	//	*	16

			193	 	 {2,	"3125"},																//	*	32

			194	 	 {2,	"15625"},															//	*	64

			195	 	 {3,	"78125"},															//	*	128

			196	 	 {3,	"390625"},														//	*	256

			197	 	 {3,	"1953125"},													//	*	512

			198	 	 {4,	"9765625"},													//	*	1024

			199	 	 {4,	"48828125"},												//	*	2048

			200	 	 {4,	"244140625"},											//	*	4096

			201	 	 {4,	"1220703125"},										//	*	8192

			202	 	 {5,	"6103515625"},										//	*	16384

			203	 	 {5,	"30517578125"},									//	*	32768

			204	 	 {5,	"152587890625"},								//	*	65536

			205	 	 {6,	"762939453125"},								//	*	131072

			206	 	 {6,	"3814697265625"},							//	*	262144

			207	 	 {6,	"19073486328125"},						//	*	524288

			208	 	 {7,	"95367431640625"},						//	*	1048576

			209	 	 {7,	"476837158203125"},					//	*	2097152

			210	 	 {7,	"2384185791015625"},				//	*	4194304

			211	 	 {7,	"11920928955078125"},			//	*	8388608

			212	 	 {8,	"59604644775390625"},			//	*	16777216

			213	 	 {8,	"298023223876953125"},		//	*	33554432

			214	 	 {8,	"1490116119384765625"},	//	*	67108864

			215	 	 {9,	"7450580596923828125"},	//	*	134217728

			216	 }

			217	

			218	 //	Is	the	leading	prefix	of	b	lexicographically	less	than	s?

			219	 func	prefixIsLessThan(b	[]byte,	s	string)	bool	{

			220	 	 for	i	:=	0;	i	<	len(s);	i++	{

			221	 	 	 if	i	>=	len(b)	{

			222	 	 	 	 return	true

			223	 	 	 }

			224	 	 	 if	b[i]	!=	s[i]	{

			225	 	 	 	 return	b[i]	<	s[i]

			226	 	 	 }

			227	 	 }

			228	 	 return	false

			229	 }

			230	

			231	 //	Binary	shift	left	(/	2)	by	k	bits.		k	<=	maxShift	to	avoid	overflow.

			232	 func	leftShift(a	*decimal,	k	uint)	{

			233	 	 delta	:=	leftcheats[k].delta

			234	 	 if	prefixIsLessThan(a.d[0:a.nd],	leftcheats[k].cutoff)	{

			235	 	 	 delta--

			236	 	 }

			237	

			238	 	 r	:=	a.nd									//	read	index

			239	 	 w	:=	a.nd	+	delta	//	write	index

			240	 	 n	:=	0

			241	

			242	 	 //	Pick	up	a	digit,	put	down	a	digit.

			243	 	 for	r--;	r	>=	0;	r--	{

			244	 	 	 n	+=	(int(a.d[r])	-	'0')	<<	k

			245	 	 	 quo	:=	n	/	10

			246	 	 	 rem	:=	n	-	10*quo

			247	 	 	 w--

			248	 	 	 if	w	<	len(a.d)	{

			249	 	 	 	 a.d[w]	=	byte(rem	+	'0')

			250	 	 	 }	else	if	rem	!=	0	{

			251	 	 	 	 a.trunc	=	true

			252	 	 	 }

			253	 	 	 n	=	quo

			254	 	 }

			255	

			256	 	 //	Put	down	extra	digits.

			257	 	 for	n	>	0	{

			258	 	 	 quo	:=	n	/	10

			259	 	 	 rem	:=	n	-	10*quo

			260	 	 	 w--

			261	 	 	 if	w	<	len(a.d)	{

			262	 	 	 	 a.d[w]	=	byte(rem	+	'0')

			263	 	 	 }	else	if	rem	!=	0	{

			264	 	 	 	 a.trunc	=	true

			265	 	 	 }

			266	 	 	 n	=	quo

			267	 	 }

			268	

			269	 	 a.nd	+=	delta

			270	 	 if	a.nd	>=	len(a.d)	{

			271	 	 	 a.nd	=	len(a.d)

			272	 	 }

			273	 	 a.dp	+=	delta

			274	 	 trim(a)

			275	 }

			276	

			277	 //	Binary	shift	left	(k	>	0)	or	right	(k	<	0).

			278	 func	(a	*decimal)	Shift(k	int)	{

			279	 	 switch	{

			280	 	 case	a.nd	==	0:

			281	 	 	 //	nothing	to	do:	a	==	0

			282	 	 case	k	>	0:

			283	 	 	 for	k	>	maxShift	{

			284	 	 	 	 leftShift(a,	maxShift)

			285	 	 	 	 k	-=	maxShift

			286	 	 	 }

			287	 	 	 leftShift(a,	uint(k))

			288	 	 case	k	<	0:

			289	 	 	 for	k	<	-maxShift	{

			290	 	 	 	 rightShift(a,	maxShift)

			291	 	 	 	 k	+=	maxShift

			292	 	 	 }

			293	 	 	 rightShift(a,	uint(-k))

			294	 	 }

			295	 }

			296	

			297	 //	If	we	chop	a	at	nd	digits,	should	we	round	up?

			298	 func	shouldRoundUp(a	*decimal,	nd	int)	bool	{

			299	 	 if	nd	<	0	||	nd	>=	a.nd	{

			300	 	 	 return	false

			301	 	 }

			302	 	 if	a.d[nd]	==	'5'	&&	nd+1	==	a.nd	{	//	exactly	halfway	-	round	to	even

			303	 	 	 //	if	we	truncated,	a	little	higher	than	what's	recorded	-	always	round	up

			304	 	 	 if	a.trunc	{

			305	 	 	 	 return	true

			306	 	 	 }

			307	 	 	 return	nd	>	0	&&	(a.d[nd-1]-'0')%2	!=	0

			308	 	 }

			309	 	 //	not	halfway	-	digit	tells	all

			310	 	 return	a.d[nd]	>=	'5'

			311	 }

			312	

			313	 //	Round	a	to	nd	digits	(or	fewer).

			314	 //	If	nd	is	zero,	it	means	we're	rounding

			315	 //	just	to	the	left	of	the	digits,	as	in

			316	 //	0.09	->	0.1.

			317	 func	(a	*decimal)	Round(nd	int)	{

			318	 	 if	nd	<	0	||	nd	>=	a.nd	{

			319	 	 	 return

			320	 	 }

			321	 	 if	shouldRoundUp(a,	nd)	{

			322	 	 	 a.RoundUp(nd)

			323	 	 }	else	{

			324	 	 	 a.RoundDown(nd)

			325	 	 }

			326	 }

			327	

			328	 //	Round	a	down	to	nd	digits	(or	fewer).

			329	 func	(a	*decimal)	RoundDown(nd	int)	{

			330	 	 if	nd	<	0	||	nd	>=	a.nd	{

			331	 	 	 return

			332	 	 }

			333	 	 a.nd	=	nd

			334	 	 trim(a)

			335	 }

			336	

			337	 //	Round	a	up	to	nd	digits	(or	fewer).

			338	 func	(a	*decimal)	RoundUp(nd	int)	{

			339	 	 if	nd	<	0	||	nd	>=	a.nd	{

			340	 	 	 return

			341	 	 }

			342	

			343	 	 //	round	up

			344	 	 for	i	:=	nd	-	1;	i	>=	0;	i--	{

			345	 	 	 c	:=	a.d[i]

			346	 	 	 if	c	<	'9'	{	//	can	stop	after	this	digit

			347	 	 	 	 a.d[i]++

			348	 	 	 	 a.nd	=	i	+	1

			349	 	 	 	 return

			350	 	 	 }

			351	 	 }

			352	

			353	 	 //	Number	is	all	9s.

			354	 	 //	Change	to	single	1	with	adjusted	decimal	point.

			355	 	 a.d[0]	=	'1'

			356	 	 a.nd	=	1

			357	 	 a.dp++

			358	 }

			359	

			360	 //	Extract	integer	part,	rounded	appropriately.

			361	 //	No	guarantees	about	overflow.

			362	 func	(a	*decimal)	RoundedInteger()	uint64	{

			363	 	 if	a.dp	>	20	{

			364	 	 	 return	0xFFFFFFFFFFFFFFFF

			365	 	 }

			366	 	 var	i	int

			367	 	 n	:=	uint64(0)

			368	 	 for	i	=	0;	i	<	a.dp	&&	i	<	a.nd;	i++	{

			369	 	 	 n	=	n*10	+	uint64(a.d[i]-'0')

			370	 	 }

			371	 	 for	;	i	<	a.dp;	i++	{

			372	 	 	 n	*=	10

			373	 	 }

			374	 	 if	shouldRoundUp(a,	a.dp)	{

			375	 	 	 n++

			376	 	 }

			377	 	 return	n

			378	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/strconv/extfloat.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	strconv

					6	

					7	 import	"math"

					8	

					9	 //	An	extFloat	represents	an	extended	floating-point	number,	with	more

				10	 //	precision	than	a	float64.	It	does	not	try	to	save	bits:	the

				11	 //	number	represented	by	the	structure	is	mant*(2^exp),	with	a	negative

				12	 //	sign	if	neg	is	true.

				13	 type	extFloat	struct	{

				14	 	 mant	uint64

				15	 	 exp		int

				16	 	 neg		bool

				17	 }

				18	

				19	 //	Powers	of	ten	taken	from	double-conversion	library.

				20	 //	http://code.google.com/p/double-conversion/

				21	 const	(

				22	 	 firstPowerOfTen	=	-348

				23	 	 stepPowerOfTen		=	8

				24)

				25	

				26	 var	smallPowersOfTen	=	[...]extFloat{

				27	 	 {1	<<	63,	-63,	false},								//	1

				28	 	 {0xa	<<	60,	-60,	false},						//	1e1

				29	 	 {0x64	<<	57,	-57,	false},					//	1e2

				30	 	 {0x3e8	<<	54,	-54,	false},				//	1e3

				31	 	 {0x2710	<<	50,	-50,	false},			//	1e4

				32	 	 {0x186a0	<<	47,	-47,	false},		//	1e5

				33	 	 {0xf4240	<<	44,	-44,	false},		//	1e6

				34	 	 {0x989680	<<	40,	-40,	false},	//	1e7

				35	 }

				36	

				37	 var	powersOfTen	=	[...]extFloat{

				38	 	 {0xfa8fd5a0081c0288,	-1220,	false},	//	10^-348

				39	 	 {0xbaaee17fa23ebf76,	-1193,	false},	//	10^-340

				40	 	 {0x8b16fb203055ac76,	-1166,	false},	//	10^-332

				41	 	 {0xcf42894a5dce35ea,	-1140,	false},	//	10^-324

				42	 	 {0x9a6bb0aa55653b2d,	-1113,	false},	//	10^-316

				43	 	 {0xe61acf033d1a45df,	-1087,	false},	//	10^-308

				44	 	 {0xab70fe17c79ac6ca,	-1060,	false},	//	10^-300

				45	 	 {0xff77b1fcbebcdc4f,	-1034,	false},	//	10^-292

				46	 	 {0xbe5691ef416bd60c,	-1007,	false},	//	10^-284

				47	 	 {0x8dd01fad907ffc3c,	-980,	false},		//	10^-276

				48	 	 {0xd3515c2831559a83,	-954,	false},		//	10^-268

				49	 	 {0x9d71ac8fada6c9b5,	-927,	false},		//	10^-260

				50	 	 {0xea9c227723ee8bcb,	-901,	false},		//	10^-252

				51	 	 {0xaecc49914078536d,	-874,	false},		//	10^-244

				52	 	 {0x823c12795db6ce57,	-847,	false},		//	10^-236

				53	 	 {0xc21094364dfb5637,	-821,	false},		//	10^-228

				54	 	 {0x9096ea6f3848984f,	-794,	false},		//	10^-220

				55	 	 {0xd77485cb25823ac7,	-768,	false},		//	10^-212

				56	 	 {0xa086cfcd97bf97f4,	-741,	false},		//	10^-204

				57	 	 {0xef340a98172aace5,	-715,	false},		//	10^-196

				58	 	 {0xb23867fb2a35b28e,	-688,	false},		//	10^-188

				59	 	 {0x84c8d4dfd2c63f3b,	-661,	false},		//	10^-180

				60	 	 {0xc5dd44271ad3cdba,	-635,	false},		//	10^-172

				61	 	 {0x936b9fcebb25c996,	-608,	false},		//	10^-164

				62	 	 {0xdbac6c247d62a584,	-582,	false},		//	10^-156

				63	 	 {0xa3ab66580d5fdaf6,	-555,	false},		//	10^-148

				64	 	 {0xf3e2f893dec3f126,	-529,	false},		//	10^-140

				65	 	 {0xb5b5ada8aaff80b8,	-502,	false},		//	10^-132

				66	 	 {0x87625f056c7c4a8b,	-475,	false},		//	10^-124

				67	 	 {0xc9bcff6034c13053,	-449,	false},		//	10^-116

				68	 	 {0x964e858c91ba2655,	-422,	false},		//	10^-108

				69	 	 {0xdff9772470297ebd,	-396,	false},		//	10^-100

				70	 	 {0xa6dfbd9fb8e5b88f,	-369,	false},		//	10^-92

				71	 	 {0xf8a95fcf88747d94,	-343,	false},		//	10^-84

				72	 	 {0xb94470938fa89bcf,	-316,	false},		//	10^-76

				73	 	 {0x8a08f0f8bf0f156b,	-289,	false},		//	10^-68

				74	 	 {0xcdb02555653131b6,	-263,	false},		//	10^-60

				75	 	 {0x993fe2c6d07b7fac,	-236,	false},		//	10^-52

				76	 	 {0xe45c10c42a2b3b06,	-210,	false},		//	10^-44

				77	 	 {0xaa242499697392d3,	-183,	false},		//	10^-36

				78	 	 {0xfd87b5f28300ca0e,	-157,	false},		//	10^-28

				79	 	 {0xbce5086492111aeb,	-130,	false},		//	10^-20

				80	 	 {0x8cbccc096f5088cc,	-103,	false},		//	10^-12

				81	 	 {0xd1b71758e219652c,	-77,	false},			//	10^-4

				82	 	 {0x9c40000000000000,	-50,	false},			//	10^4

				83	 	 {0xe8d4a51000000000,	-24,	false},			//	10^12

				84	 	 {0xad78ebc5ac620000,	3,	false},					//	10^20

				85	 	 {0x813f3978f8940984,	30,	false},				//	10^28

				86	 	 {0xc097ce7bc90715b3,	56,	false},				//	10^36

				87	 	 {0x8f7e32ce7bea5c70,	83,	false},				//	10^44

				88	 	 {0xd5d238a4abe98068,	109,	false},			//	10^52

				89	 	 {0x9f4f2726179a2245,	136,	false},			//	10^60

				90	 	 {0xed63a231d4c4fb27,	162,	false},			//	10^68

				91	 	 {0xb0de65388cc8ada8,	189,	false},			//	10^76

				92	 	 {0x83c7088e1aab65db,	216,	false},			//	10^84

				93	 	 {0xc45d1df942711d9a,	242,	false},			//	10^92

				94	 	 {0x924d692ca61be758,	269,	false},			//	10^100

				95	 	 {0xda01ee641a708dea,	295,	false},			//	10^108

				96	 	 {0xa26da3999aef774a,	322,	false},			//	10^116

				97	 	 {0xf209787bb47d6b85,	348,	false},			//	10^124

				98	 	 {0xb454e4a179dd1877,	375,	false},			//	10^132

				99	 	 {0x865b86925b9bc5c2,	402,	false},			//	10^140

			100	 	 {0xc83553c5c8965d3d,	428,	false},			//	10^148

			101	 	 {0x952ab45cfa97a0b3,	455,	false},			//	10^156

			102	 	 {0xde469fbd99a05fe3,	481,	false},			//	10^164

			103	 	 {0xa59bc234db398c25,	508,	false},			//	10^172

			104	 	 {0xf6c69a72a3989f5c,	534,	false},			//	10^180

			105	 	 {0xb7dcbf5354e9bece,	561,	false},			//	10^188

			106	 	 {0x88fcf317f22241e2,	588,	false},			//	10^196

			107	 	 {0xcc20ce9bd35c78a5,	614,	false},			//	10^204

			108	 	 {0x98165af37b2153df,	641,	false},			//	10^212

			109	 	 {0xe2a0b5dc971f303a,	667,	false},			//	10^220

			110	 	 {0xa8d9d1535ce3b396,	694,	false},			//	10^228

			111	 	 {0xfb9b7cd9a4a7443c,	720,	false},			//	10^236

			112	 	 {0xbb764c4ca7a44410,	747,	false},			//	10^244

			113	 	 {0x8bab8eefb6409c1a,	774,	false},			//	10^252

			114	 	 {0xd01fef10a657842c,	800,	false},			//	10^260

			115	 	 {0x9b10a4e5e9913129,	827,	false},			//	10^268

			116	 	 {0xe7109bfba19c0c9d,	853,	false},			//	10^276

			117	 	 {0xac2820d9623bf429,	880,	false},			//	10^284

			118	 	 {0x80444b5e7aa7cf85,	907,	false},			//	10^292

			119	 	 {0xbf21e44003acdd2d,	933,	false},			//	10^300

			120	 	 {0x8e679c2f5e44ff8f,	960,	false},			//	10^308

			121	 	 {0xd433179d9c8cb841,	986,	false},			//	10^316

			122	 	 {0x9e19db92b4e31ba9,	1013,	false},		//	10^324

			123	 	 {0xeb96bf6ebadf77d9,	1039,	false},		//	10^332

			124	 	 {0xaf87023b9bf0ee6b,	1066,	false},		//	10^340

			125	 }

			126	

			127	 //	floatBits	returns	the	bits	of	the	float64	that	best	approximates

			128	 //	the	extFloat	passed	as	receiver.	Overflow	is	set	to	true	if

			129	 //	the	resulting	float64	is	±Inf.

			130	 func	(f	*extFloat)	floatBits()	(bits	uint64,	overflow	bool)	{

			131	 	 flt	:=	&float64info

			132	 	 f.Normalize()

			133	

			134	 	 exp	:=	f.exp	+	63

			135	

			136	 	 //	Exponent	too	small.

			137	 	 if	exp	<	flt.bias+1	{

			138	 	 	 n	:=	flt.bias	+	1	-	exp

			139	 	 	 f.mant	>>=	uint(n)

			140	 	 	 exp	+=	n

			141	 	 }

			142	

			143	 	 //	Extract	1+flt.mantbits	bits.

			144	 	 mant	:=	f.mant	>>	(63	-	flt.mantbits)

			145	 	 if	f.mant&(1<<(62-flt.mantbits))	!=	0	{

			146	 	 	 //	Round	up.

			147	 	 	 mant	+=	1

			148	 	 }

			149	

			150	 	 //	Rounding	might	have	added	a	bit;	shift	down.

			151	 	 if	mant	==	2<<flt.mantbits	{

			152	 	 	 mant	>>=	1

			153	 	 	 exp++

			154	 	 }

			155	

			156	 	 //	Infinities.

			157	 	 if	exp-flt.bias	>=	1<<flt.expbits-1	{

			158	 	 	 goto	overflow

			159	 	 }

			160	

			161	 	 //	Denormalized?

			162	 	 if	mant&(1<<flt.mantbits)	==	0	{

			163	 	 	 exp	=	flt.bias

			164	 	 }

			165	 	 goto	out

			166	

			167	 overflow:

			168	 	 //	±Inf

			169	 	 mant	=	0

			170	 	 exp	=	1<<flt.expbits	-	1	+	flt.bias

			171	 	 overflow	=	true

			172	

			173	 out:

			174	 	 //	Assemble	bits.

			175	 	 bits	=	mant	&	(uint64(1)<<flt.mantbits	-	1)

			176	 	 bits	|=	uint64((exp-flt.bias)&(1<<flt.expbits-1))	<<	flt.mantbits

			177	 	 if	f.neg	{

			178	 	 	 bits	|=	1	<<	(flt.mantbits	+	flt.expbits)

			179	 	 }

			180	 	 return

			181	 }

			182	

			183	 //	Assign	sets	f	to	the	value	of	x.

			184	 func	(f	*extFloat)	Assign(x	float64)	{

			185	 	 if	x	<	0	{

			186	 	 	 x	=	-x

			187	 	 	 f.neg	=	true

			188	 	 }

			189	 	 x,	f.exp	=	math.Frexp(x)

			190	 	 f.mant	=	uint64(x	*	float64(1<<64))

			191	 	 f.exp	-=	64

			192	 }

			193	

			194	 //	AssignComputeBounds	sets	f	to	the	value	of	x	and	returns

			195	 //	lower,	upper	such	that	any	number	in	the	closed	interval

			196	 //	[lower,	upper]	is	converted	back	to	x.

			197	 func	(f	*extFloat)	AssignComputeBounds(x	float64)	(lower,	upper	extFloat)	{

			198	 	 //	Special	cases.

			199	 	 bits	:=	math.Float64bits(x)

			200	 	 flt	:=	&float64info

			201	 	 neg	:=	bits>>(flt.expbits+flt.mantbits)	!=	0

			202	 	 expBiased	:=	int(bits>>flt.mantbits)	&	(1<<flt.expbits	-	1)

			203	 	 mant	:=	bits	&	(uint64(1)<<flt.mantbits	-	1)

			204	

			205	 	 if	expBiased	==	0	{

			206	 	 	 //	denormalized.

			207	 	 	 f.mant	=	mant

			208	 	 	 f.exp	=	1	+	flt.bias	-	int(flt.mantbits)

			209	 	 }	else	{

			210	 	 	 f.mant	=	mant	|	1<<flt.mantbits

			211	 	 	 f.exp	=	expBiased	+	flt.bias	-	int(flt.mantbits)

			212	 	 }

			213	 	 f.neg	=	neg

			214	

			215	 	 upper	=	extFloat{mant:	2*f.mant	+	1,	exp:	f.exp	-	1,	neg:	f.neg}

			216	 	 if	mant	!=	0	||	expBiased	==	1	{

			217	 	 	 lower	=	extFloat{mant:	2*f.mant	-	1,	exp:	f.exp	-	1,	neg:	f.neg}

			218	 	 }	else	{

			219	 	 	 lower	=	extFloat{mant:	4*f.mant	-	1,	exp:	f.exp	-	2,	neg:	f.neg}

			220	 	 }

			221	 	 return

			222	 }

			223	

			224	 //	Normalize	normalizes	f	so	that	the	highest	bit	of	the	mantissa	is

			225	 //	set,	and	returns	the	number	by	which	the	mantissa	was	left-shifted.

			226	 func	(f	*extFloat)	Normalize()	uint	{

			227	 	 if	f.mant	==	0	{

			228	 	 	 return	0

			229	 	 }

			230	 	 exp_before	:=	f.exp

			231	 	 for	f.mant	<	(1	<<	55)	{

			232	 	 	 f.mant	<<=	8

			233	 	 	 f.exp	-=	8

			234	 	 }

			235	 	 for	f.mant	<	(1	<<	63)	{

			236	 	 	 f.mant	<<=	1

			237	 	 	 f.exp	-=	1

			238	 	 }

			239	 	 return	uint(exp_before	-	f.exp)

			240	 }

			241	

			242	 //	Multiply	sets	f	to	the	product	f*g:	the	result	is	correctly	rounded,

			243	 //	but	not	normalized.

			244	 func	(f	*extFloat)	Multiply(g	extFloat)	{

			245	 	 fhi,	flo	:=	f.mant>>32,	uint64(uint32(f.mant))

			246	 	 ghi,	glo	:=	g.mant>>32,	uint64(uint32(g.mant))

			247	

			248	 	 //	Cross	products.

			249	 	 cross1	:=	fhi	*	glo

			250	 	 cross2	:=	flo	*	ghi

			251	

			252	 	 //	f.mant*g.mant	is	fhi*ghi	<<	64	+	(cross1+cross2)	<<	32	+	flo*glo

			253	 	 f.mant	=	fhi*ghi	+	(cross1	>>	32)	+	(cross2	>>	32)

			254	 	 rem	:=	uint64(uint32(cross1))	+	uint64(uint32(cross2))	+	((flo	*	glo)	>>	32)

			255	 	 //	Round	up.

			256	 	 rem	+=	(1	<<	31)

			257	

			258	 	 f.mant	+=	(rem	>>	32)

			259	 	 f.exp	=	f.exp	+	g.exp	+	64

			260	 }

			261	

			262	 var	uint64pow10	=	[...]uint64{

			263	 	 1,	1e1,	1e2,	1e3,	1e4,	1e5,	1e6,	1e7,	1e8,	1e9,

			264	 	 1e10,	1e11,	1e12,	1e13,	1e14,	1e15,	1e16,	1e17,	1e18,	1e19,

			265	 }

			266	

			267	 //	AssignDecimal	sets	f	to	an	approximate	value	of	the	decimal	d.	It

			268	 //	returns	true	if	the	value	represented	by	f	is	guaranteed	to	be	the

			269	 //	best	approximation	of	d	after	being	rounded	to	a	float64.	

			270	 func	(f	*extFloat)	AssignDecimal(d	*decimal)	(ok	bool)	{

			271	 	 const	uint64digits	=	19

			272	 	 const	errorscale	=	8

			273	 	 mant10,	digits	:=	d.atou64()

			274	 	 exp10	:=	d.dp	-	digits

			275	 	 errors	:=	0	//	An	upper	bound	for	error,	computed	in	errorscale*ulp.

			276	

			277	 	 if	digits	<	d.nd	{

			278	 	 	 //	the	decimal	number	was	truncated.

			279	 	 	 errors	+=	errorscale	/	2

			280	 	 }

			281	

			282	 	 f.mant	=	mant10

			283	 	 f.exp	=	0

			284	 	 f.neg	=	d.neg

			285	

			286	 	 //	Multiply	by	powers	of	ten.

			287	 	 i	:=	(exp10	-	firstPowerOfTen)	/	stepPowerOfTen

			288	 	 if	exp10	<	firstPowerOfTen	||	i	>=	len(powersOfTen)	{

			289	 	 	 return	false

			290	 	 }

			291	 	 adjExp	:=	(exp10	-	firstPowerOfTen)	%	stepPowerOfTen

			292	

			293	 	 //	We	multiply	by	exp%step

			294	 	 if	digits+adjExp	<=	uint64digits	{

			295	 	 	 //	We	can	multiply	the	mantissa

			296	 	 	 f.mant	*=	uint64(float64pow10[adjExp])

			297	 	 	 f.Normalize()

			298	 	 }	else	{

			299	 	 	 f.Normalize()

			300	 	 	 f.Multiply(smallPowersOfTen[adjExp])

			301	 	 	 errors	+=	errorscale	/	2

			302	 	 }

			303	

			304	 	 //	We	multiply	by	10	to	the	exp	-	exp%step.

			305	 	 f.Multiply(powersOfTen[i])

			306	 	 if	errors	>	0	{

			307	 	 	 errors	+=	1

			308	 	 }

			309	 	 errors	+=	errorscale	/	2

			310	

			311	 	 //	Normalize

			312	 	 shift	:=	f.Normalize()

			313	 	 errors	<<=	shift

			314	

			315	 	 //	Now	f	is	a	good	approximation	of	the	decimal.

			316	 	 //	Check	whether	the	error	is	too	large:	that	is,	if	the	mantissa

			317	 	 //	is	perturbated	by	the	error,	the	resulting	float64	will	change.

			318	 	 //	The	64	bits	mantissa	is	1	+	52	bits	for	float64	+	11	extra	bits.

			319	 	 //

			320	 	 //	In	many	cases	the	approximation	will	be	good	enough.

			321	 	 const	denormalExp	=	-1023	-	63

			322	 	 flt	:=	&float64info

			323	 	 var	extrabits	uint

			324	 	 if	f.exp	<=	denormalExp	{

			325	 	 	 extrabits	=	uint(63	-	flt.mantbits	+	1	+	uint(denormalExp-f.exp))

			326	 	 }	else	{

			327	 	 	 extrabits	=	uint(63	-	flt.mantbits)

			328	 	 }

			329	

			330	 	 halfway	:=	uint64(1)	<<	(extrabits	-	1)

			331	 	 mant_extra	:=	f.mant	&	(1<<extrabits	-	1)

			332	

			333	 	 //	Do	a	signed	comparison	here!	If	the	error	estimate	could	make

			334	 	 //	the	mantissa	round	differently	for	the	conversion	to	double,

			335	 	 //	then	we	can't	give	a	definite	answer.

			336	 	 if	int64(halfway)-int64(errors)	<	int64(mant_extra)	&&

			337	 	 	 int64(mant_extra)	<	int64(halfway)+int64(errors)	{

			338	 	 	 return	false

			339	 	 }

			340	 	 return	true

			341	 }

			342	

			343	 //	Frexp10	is	an	analogue	of	math.Frexp	for	decimal	powers.	It	scales

			344	 //	f	by	an	approximate	power	of	ten	10^-exp,	and	returns	exp10,	so

			345	 //	that	f*10^exp10	has	the	same	value	as	the	old	f,	up	to	an	ulp,

			346	 //	as	well	as	the	index	of	10^-exp	in	the	powersOfTen	table.

			347	 //	The	arguments	expMin	and	expMax	constrain	the	final	value	of	the

			348	 //	binary	exponent	of	f.

			349	 func	(f	*extFloat)	frexp10(expMin,	expMax	int)	(exp10,	index	int)	{

			350	 	 //	it	is	illegal	to	call	this	function	with	a	too	restrictive	exponent	range.

			351	 	 if	expMax-expMin	<=	25	{

			352	 	 	 panic("strconv:	invalid	exponent	range")

			353	 	 }

			354	 	 //	Find	power	of	ten	such	that	x	*	10^n	has	a	binary	exponent

			355	 	 //	between	expMin	and	expMax

			356	 	 approxExp10	:=	-(f.exp	+	100)	*	28	/	93	//	log(10)/log(2)	is	close	to	93/28.

			357	 	 i	:=	(approxExp10	-	firstPowerOfTen)	/	stepPowerOfTen

			358	 Loop:

			359	 	 for	{

			360	 	 	 exp	:=	f.exp	+	powersOfTen[i].exp	+	64

			361	 	 	 switch	{

			362	 	 	 case	exp	<	expMin:

			363	 	 	 	 i++

			364	 	 	 case	exp	>	expMax:

			365	 	 	 	 i--

			366	 	 	 default:

			367	 	 	 	 break	Loop

			368	 	 	 }

			369	 	 }

			370	 	 //	Apply	the	desired	decimal	shift	on	f.	It	will	have	exponent

			371	 	 //	in	the	desired	range.	This	is	multiplication	by	10^-exp10.

			372	 	 f.Multiply(powersOfTen[i])

			373	

			374	 	 return	-(firstPowerOfTen	+	i*stepPowerOfTen),	i

			375	 }

			376	

			377	 //	frexp10Many	applies	a	common	shift	by	a	power	of	ten	to	a,	b,	c.

			378	 func	frexp10Many(expMin,	expMax	int,	a,	b,	c	*extFloat)	(exp10	int)	{

			379	 	 exp10,	i	:=	c.frexp10(expMin,	expMax)

			380	 	 a.Multiply(powersOfTen[i])

			381	 	 b.Multiply(powersOfTen[i])

			382	 	 return

			383	 }

			384	

			385	 //	ShortestDecimal	stores	in	d	the	shortest	decimal	representation	of	f

			386	 //	which	belongs	to	the	open	interval	(lower,	upper),	where	f	is	supposed

			387	 //	to	lie.	It	returns	false	whenever	the	result	is	unsure.	The	implementation

			388	 //	uses	the	Grisu3	algorithm.

			389	 func	(f	*extFloat)	ShortestDecimal(d	*decimal,	lower,	upper	*extFloat)	bool	{

			390	 	 if	f.mant	==	0	{

			391	 	 	 d.d[0]	=	'0'

			392	 	 	 d.nd	=	1

			393	 	 	 d.dp	=	0

			394	 	 	 d.neg	=	f.neg

			395	 	 }

			396	 	 const	minExp	=	-60

			397	 	 const	maxExp	=	-32

			398	 	 upper.Normalize()

			399	 	 //	Uniformize	exponents.

			400	 	 if	f.exp	>	upper.exp	{

			401	 	 	 f.mant	<<=	uint(f.exp	-	upper.exp)

			402	 	 	 f.exp	=	upper.exp

			403	 	 }

			404	 	 if	lower.exp	>	upper.exp	{

			405	 	 	 lower.mant	<<=	uint(lower.exp	-	upper.exp)

			406	 	 	 lower.exp	=	upper.exp

			407	 	 }

			408	

			409	 	 exp10	:=	frexp10Many(minExp,	maxExp,	lower,	f,	upper)

			410	 	 //	Take	a	safety	margin	due	to	rounding	in	frexp10Many,	but	we	lose	precision.

			411	 	 upper.mant++

			412	 	 lower.mant--

			413	

			414	 	 //	The	shortest	representation	of	f	is	either	rounded	up	or	down,	but

			415	 	 //	in	any	case,	it	is	a	truncation	of	upper.

			416	 	 shift	:=	uint(-upper.exp)

			417	 	 integer	:=	uint32(upper.mant	>>	shift)

			418	 	 fraction	:=	upper.mant	-	(uint64(integer)	<<	shift)

			419	

			420	 	 //	How	far	we	can	go	down	from	upper	until	the	result	is	wrong.

			421	 	 allowance	:=	upper.mant	-	lower.mant

			422	 	 //	How	far	we	should	go	to	get	a	very	precise	result.

			423	 	 targetDiff	:=	upper.mant	-	f.mant

			424	

			425	 	 //	Count	integral	digits:	there	are	at	most	10.

			426	 	 var	integerDigits	int

			427	 	 for	i,	pow	:=	range	uint64pow10	{

			428	 	 	 if	uint64(integer)	>=	pow	{

			429	 	 	 	 integerDigits	=	i	+	1

			430	 	 	 }

			431	 	 }

			432	 	 for	i	:=	0;	i	<	integerDigits;	i++	{

			433	 	 	 pow	:=	uint64pow10[integerDigits-i-1]

			434	 	 	 digit	:=	integer	/	uint32(pow)

			435	 	 	 d.d[i]	=	byte(digit	+	'0')

			436	 	 	 integer	-=	digit	*	uint32(pow)

			437	 	 	 //	evaluate	whether	we	should	stop.

			438	 	 	 if	currentDiff	:=	uint64(integer)<<shift	+	fraction;	currentDiff	<	allowance	{

			439	 	 	 	 d.nd	=	i	+	1

			440	 	 	 	 d.dp	=	integerDigits	+	exp10

			441	 	 	 	 d.neg	=	f.neg

			442	 	 	 	 //	Sometimes	allowance	is	so	large	the	last	digit	might	need	to	be

			443	 	 	 	 //	decremented	to	get	closer	to	f.

			444	 	 	 	 return	adjustLastDigit(d,	currentDiff,	targetDiff,	allowance,	pow<<shift,	2)

			445	 	 	 }

			446	 	 }

			447	 	 d.nd	=	integerDigits

			448	 	 d.dp	=	d.nd	+	exp10

			449	 	 d.neg	=	f.neg

			450	

			451	 	 //	Compute	digits	of	the	fractional	part.	At	each	step	fraction	does	not

			452	 	 //	overflow.	The	choice	of	minExp	implies	that	fraction	is	less	than	2^60.

			453	 	 var	digit	int

			454	 	 multiplier	:=	uint64(1)

			455	 	 for	{

			456	 	 	 fraction	*=	10

			457	 	 	 multiplier	*=	10

			458	 	 	 digit	=	int(fraction	>>	shift)

			459	 	 	 d.d[d.nd]	=	byte(digit	+	'0')

			460	 	 	 d.nd++

			461	 	 	 fraction	-=	uint64(digit)	<<	shift

			462	 	 	 if	fraction	<	allowance*multiplier	{

			463	 	 	 	 //	We	are	in	the	admissible	range.	Note	that	if	allowance	is	about	to

			464	 	 	 	 //	overflow,	that	is,	allowance	>	2^64/10,	the	condition	is	automatically

			465	 	 	 	 //	true	due	to	the	limited	range	of	fraction.

			466	 	 	 	 return	adjustLastDigit(d,

			467	 	 	 	 	 fraction,	targetDiff*multiplier,	allowance*multiplier,

			468	 	 	 	 	 1<<shift,	multiplier*2)

			469	 	 	 }

			470	 	 }

			471	 	 return	false

			472	 }

			473	

			474	 //	adjustLastDigit	modifies	d	=	x-currentDiff*ε,	to	get	closest	to	

			475	 //	d	=	x-targetDiff*ε,	without	becoming	smaller	than	x-maxDiff*ε.

			476	 //	It	assumes	that	a	decimal	digit	is	worth	ulpDecimal*ε,	and	that

			477	 //	all	data	is	known	with	a	error	estimate	of	ulpBinary*ε.

			478	 func	adjustLastDigit(d	*decimal,	currentDiff,	targetDiff,	maxDiff,	ulpDecimal,	ulpBinary	uint64)	bool	{

			479	 	 if	ulpDecimal	<	2*ulpBinary	{

			480	 	 	 //	Approximation	is	too	wide.

			481	 	 	 return	false

			482	 	 }

			483	 	 for	currentDiff+ulpDecimal/2+ulpBinary	<	targetDiff	{

			484	 	 	 d.d[d.nd-1]--

			485	 	 	 currentDiff	+=	ulpDecimal

			486	 	 }

			487	 	 if	currentDiff+ulpDecimal	<=	targetDiff+ulpDecimal/2+ulpBinary	{

			488	 	 	 //	we	have	two	choices,	and	don't	know	what	to	do.

			489	 	 	 return	false

			490	 	 }

			491	 	 if	currentDiff	<	ulpBinary	||	currentDiff	>	maxDiff-ulpBinary	{

			492	 	 	 //	we	went	too	far

			493	 	 	 return	false

			494	 	 }

			495	 	 if	d.nd	==	1	&&	d.d[0]	==	'0'	{

			496	 	 	 //	the	number	has	actually	reached	zero.

			497	 	 	 d.nd	=	0

			498	 	 	 d.dp	=	0

			499	 	 }

			500	 	 return	true

			501	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/strconv/ftoa.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Binary	to	decimal	floating	point	conversion.

					6	 //	Algorithm:

					7	 //			1)	store	mantissa	in	multiprecision	decimal

					8	 //			2)	shift	decimal	by	exponent

					9	 //			3)	read	digits	out	&	format

				10	

				11	 package	strconv

				12	

				13	 import	"math"

				14	

				15	 //	TODO:	move	elsewhere?

				16	 type	floatInfo	struct	{

				17	 	 mantbits	uint

				18	 	 expbits		uint

				19	 	 bias					int

				20	 }

				21	

				22	 var	float32info	=	floatInfo{23,	8,	-127}

				23	 var	float64info	=	floatInfo{52,	11,	-1023}

				24	

				25	 //	FormatFloat	converts	the	floating-point	number	f	to	a	string,

				26	 //	according	to	the	format	fmt	and	precision	prec.		It	rounds	the

				27	 //	result	assuming	that	the	original	was	obtained	from	a	floating-point

				28	 //	value	of	bitSize	bits	(32	for	float32,	64	for	float64).

				29	 //

				30	 //	The	format	fmt	is	one	of

				31	 //	'b'	(-ddddp±ddd,	a	binary	exponent),

				32	 //	'e'	(-d.dddde±dd,	a	decimal	exponent),

				33	 //	'E'	(-d.ddddE±dd,	a	decimal	exponent),

				34	 //	'f'	(-ddd.dddd,	no	exponent),

				35	 //	'g'	('e'	for	large	exponents,	'f'	otherwise),	or

				36	 //	'G'	('E'	for	large	exponents,	'f'	otherwise).

				37	 //

				38	 //	The	precision	prec	controls	the	number	of	digits

				39	 //	(excluding	the	exponent)	printed	by	the	'e',	'E',	'f',	'g',	and	'G'	formats.

				40	 //	For	'e',	'E',	and	'f'	it	is	the	number	of	digits	after	the	decimal	point.

				41	 //	For	'g'	and	'G'	it	is	the	total	number	of	digits.

				42	 //	The	special	precision	-1	uses	the	smallest	number	of	digits

				43	 //	necessary	such	that	ParseFloat	will	return	f	exactly.

				44	 func	FormatFloat(f	float64,	fmt	byte,	prec,	bitSize	int)	string	{

				45	 	 return	string(genericFtoa(make([]byte,	0,	max(prec+4,	24)),	f,	fmt,	prec,	bitSize))

				46	 }

				47	

				48	 //	AppendFloat	appends	the	string	form	of	the	floating-point	number	f,

				49	 //	as	generated	by	FormatFloat,	to	dst	and	returns	the	extended	buffer.

				50	 func	AppendFloat(dst	[]byte,	f	float64,	fmt	byte,	prec	int,	bitSize	int)	[]byte	{

				51	 	 return	genericFtoa(dst,	f,	fmt,	prec,	bitSize)

				52	 }

				53	

				54	 func	genericFtoa(dst	[]byte,	val	float64,	fmt	byte,	prec,	bitSize	int)	[]byte	{

				55	 	 var	bits	uint64

				56	 	 var	flt	*floatInfo

				57	 	 switch	bitSize	{

				58	 	 case	32:

				59	 	 	 bits	=	uint64(math.Float32bits(float32(val)))

				60	 	 	 flt	=	&float32info

				61	 	 case	64:

				62	 	 	 bits	=	math.Float64bits(val)

				63	 	 	 flt	=	&float64info

				64	 	 default:

				65	 	 	 panic("strconv:	illegal	AppendFloat/FormatFloat	bitSize")

				66	 	 }

				67	

				68	 	 neg	:=	bits>>(flt.expbits+flt.mantbits)	!=	0

				69	 	 exp	:=	int(bits>>flt.mantbits)	&	(1<<flt.expbits	-	1)

				70	 	 mant	:=	bits	&	(uint64(1)<<flt.mantbits	-	1)

				71	

				72	 	 switch	exp	{

				73	 	 case	1<<flt.expbits	-	1:

				74	 	 	 //	Inf,	NaN

				75	 	 	 var	s	string

				76	 	 	 switch	{

				77	 	 	 case	mant	!=	0:

				78	 	 	 	 s	=	"NaN"

				79	 	 	 case	neg:

				80	 	 	 	 s	=	"-Inf"

				81	 	 	 default:

				82	 	 	 	 s	=	"+Inf"

				83	 	 	 }

				84	 	 	 return	append(dst,	s...)

				85	

				86	 	 case	0:

				87	 	 	 //	denormalized

				88	 	 	 exp++

				89	

				90	 	 default:

				91	 	 	 //	add	implicit	top	bit

				92	 	 	 mant	|=	uint64(1)	<<	flt.mantbits

				93	 	 }

				94	 	 exp	+=	flt.bias

				95	

				96	 	 //	Pick	off	easy	binary	format.

				97	 	 if	fmt	==	'b'	{

				98	 	 	 return	fmtB(dst,	neg,	mant,	exp,	flt)

				99	 	 }

			100	

			101	 	 //	Negative	precision	means	"only	as	much	as	needed	to	be	exact."

			102	 	 shortest	:=	prec	<	0

			103	

			104	 	 d	:=	new(decimal)

			105	 	 if	shortest	{

			106	 	 	 ok	:=	false

			107	 	 	 if	optimize	&&	bitSize	==	64	{

			108	 	 	 	 //	Try	Grisu3	algorithm.

			109	 	 	 	 f	:=	new(extFloat)

			110	 	 	 	 lower,	upper	:=	f.AssignComputeBounds(val)

			111	 	 	 	 ok	=	f.ShortestDecimal(d,	&lower,	&upper)

			112	 	 	 }

			113	 	 	 if	!ok	{

			114	 	 	 	 //	Create	exact	decimal	representation.

			115	 	 	 	 //	The	shift	is	exp	-	flt.mantbits	because	mant	is	a	1-bit	integer

			116	 	 	 	 //	followed	by	a	flt.mantbits	fraction,	and	we	are	treating	it	as

			117	 	 	 	 //	a	1+flt.mantbits-bit	integer.

			118	 	 	 	 d.Assign(mant)

			119	 	 	 	 d.Shift(exp	-	int(flt.mantbits))

			120	 	 	 	 roundShortest(d,	mant,	exp,	flt)

			121	 	 	 }

			122	 	 	 //	Precision	for	shortest	representation	mode.

			123	 	 	 if	prec	<	0	{

			124	 	 	 	 switch	fmt	{

			125	 	 	 	 case	'e',	'E':

			126	 	 	 	 	 prec	=	d.nd	-	1

			127	 	 	 	 case	'f':

			128	 	 	 	 	 prec	=	max(d.nd-d.dp,	0)

			129	 	 	 	 case	'g',	'G':

			130	 	 	 	 	 prec	=	d.nd

			131	 	 	 	 }

			132	 	 	 }

			133	 	 }	else	{

			134	 	 	 //	Create	exact	decimal	representation.

			135	 	 	 d.Assign(mant)

			136	 	 	 d.Shift(exp	-	int(flt.mantbits))

			137	 	 	 //	Round	appropriately.

			138	 	 	 switch	fmt	{

			139	 	 	 case	'e',	'E':

			140	 	 	 	 d.Round(prec	+	1)

			141	 	 	 case	'f':

			142	 	 	 	 d.Round(d.dp	+	prec)

			143	 	 	 case	'g',	'G':

			144	 	 	 	 if	prec	==	0	{

			145	 	 	 	 	 prec	=	1

			146	 	 	 	 }

			147	 	 	 	 d.Round(prec)

			148	 	 	 }

			149	 	 }

			150	

			151	 	 switch	fmt	{

			152	 	 case	'e',	'E':

			153	 	 	 return	fmtE(dst,	neg,	d,	prec,	fmt)

			154	 	 case	'f':

			155	 	 	 return	fmtF(dst,	neg,	d,	prec)

			156	 	 case	'g',	'G':

			157	 	 	 //	trailing	fractional	zeros	in	'e'	form	will	be	trimmed.

			158	 	 	 eprec	:=	prec

			159	 	 	 if	eprec	>	d.nd	&&	d.nd	>=	d.dp	{

			160	 	 	 	 eprec	=	d.nd

			161	 	 	 }

			162	 	 	 //	%e	is	used	if	the	exponent	from	the	conversion

			163	 	 	 //	is	less	than	-4	or	greater	than	or	equal	to	the	precision.

			164	 	 	 //	if	precision	was	the	shortest	possible,	use	precision	6	for	this	decision.

			165	 	 	 if	shortest	{

			166	 	 	 	 eprec	=	6

			167	 	 	 }

			168	 	 	 exp	:=	d.dp	-	1

			169	 	 	 if	exp	<	-4	||	exp	>=	eprec	{

			170	 	 	 	 if	prec	>	d.nd	{

			171	 	 	 	 	 prec	=	d.nd

			172	 	 	 	 }

			173	 	 	 	 return	fmtE(dst,	neg,	d,	prec-1,	fmt+'e'-'g')

			174	 	 	 }

			175	 	 	 if	prec	>	d.dp	{

			176	 	 	 	 prec	=	d.nd

			177	 	 	 }

			178	 	 	 return	fmtF(dst,	neg,	d,	max(prec-d.dp,	0))

			179	 	 }

			180	

			181	 	 //	unknown	format

			182	 	 return	append(dst,	'%',	fmt)

			183	 }

			184	

			185	 //	Round	d	(=	mant	*	2^exp)	to	the	shortest	number	of	digits

			186	 //	that	will	let	the	original	floating	point	value	be	precisely

			187	 //	reconstructed.		Size	is	original	floating	point	size	(64	or	32).

			188	 func	roundShortest(d	*decimal,	mant	uint64,	exp	int,	flt	*floatInfo)	{

			189	 	 //	If	mantissa	is	zero,	the	number	is	zero;	stop	now.

			190	 	 if	mant	==	0	{

			191	 	 	 d.nd	=	0

			192	 	 	 return

			193	 	 }

			194	

			195	 	 //	Compute	upper	and	lower	such	that	any	decimal	number

			196	 	 //	between	upper	and	lower	(possibly	inclusive)

			197	 	 //	will	round	to	the	original	floating	point	number.

			198	

			199	 	 //	We	may	see	at	once	that	the	number	is	already	shortest.

			200	 	 //

			201	 	 //	Suppose	d	is	not	denormal,	so	that	2^exp	<=	d	<	10^dp.

			202	 	 //	The	closest	shorter	number	is	at	least	10^(dp-nd)	away.

			203	 	 //	The	lower/upper	bounds	computed	below	are	at	distance

			204	 	 //	at	most	2^(exp-mantbits).

			205	 	 //

			206	 	 //	So	the	number	is	already	shortest	if	10^(dp-nd)	>	2^(exp-mantbits),

			207	 	 //	or	equivalently	log2(10)*(dp-nd)	>	exp-mantbits.

			208	 	 //	It	is	true	if	332/100*(dp-nd)	>=	exp-mantbits	(log2(10)	>	3.32).

			209	 	 minexp	:=	flt.bias	+	1	//	minimum	possible	exponent

			210	 	 if	exp	>	minexp	&&	332*(d.dp-d.nd)	>=	100*(exp-int(flt.mantbits))	{

			211	 	 	 //	The	number	is	already	shortest.

			212	 	 	 return

			213	 	 }

			214	

			215	 	 //	d	=	mant	<<	(exp	-	mantbits)

			216	 	 //	Next	highest	floating	point	number	is	mant+1	<<	exp-mantbits.

			217	 	 //	Our	upper	bound	is	halfway	inbetween,	mant*2+1	<<	exp-mantbits-1.

			218	 	 upper	:=	new(decimal)

			219	 	 upper.Assign(mant*2	+	1)

			220	 	 upper.Shift(exp	-	int(flt.mantbits)	-	1)

			221	

			222	 	 //	d	=	mant	<<	(exp	-	mantbits)

			223	 	 //	Next	lowest	floating	point	number	is	mant-1	<<	exp-mantbits,

			224	 	 //	unless	mant-1	drops	the	significant	bit	and	exp	is	not	the	minimum	exp,

			225	 	 //	in	which	case	the	next	lowest	is	mant*2-1	<<	exp-mantbits-1.

			226	 	 //	Either	way,	call	it	mantlo	<<	explo-mantbits.

			227	 	 //	Our	lower	bound	is	halfway	inbetween,	mantlo*2+1	<<	explo-mantbits-1.

			228	 	 var	mantlo	uint64

			229	 	 var	explo	int

			230	 	 if	mant	>	1<<flt.mantbits	||	exp	==	minexp	{

			231	 	 	 mantlo	=	mant	-	1

			232	 	 	 explo	=	exp

			233	 	 }	else	{

			234	 	 	 mantlo	=	mant*2	-	1

			235	 	 	 explo	=	exp	-	1

			236	 	 }

			237	 	 lower	:=	new(decimal)

			238	 	 lower.Assign(mantlo*2	+	1)

			239	 	 lower.Shift(explo	-	int(flt.mantbits)	-	1)

			240	

			241	 	 //	The	upper	and	lower	bounds	are	possible	outputs	only	if

			242	 	 //	the	original	mantissa	is	even,	so	that	IEEE	round-to-even

			243	 	 //	would	round	to	the	original	mantissa	and	not	the	neighbors.

			244	 	 inclusive	:=	mant%2	==	0

			245	

			246	 	 //	Now	we	can	figure	out	the	minimum	number	of	digits	required.

			247	 	 //	Walk	along	until	d	has	distinguished	itself	from	upper	and	lower.

			248	 	 for	i	:=	0;	i	<	d.nd;	i++	{

			249	 	 	 var	l,	m,	u	byte	//	lower,	middle,	upper	digits

			250	 	 	 if	i	<	lower.nd	{

			251	 	 	 	 l	=	lower.d[i]

			252	 	 	 }	else	{

			253	 	 	 	 l	=	'0'

			254	 	 	 }

			255	 	 	 m	=	d.d[i]

			256	 	 	 if	i	<	upper.nd	{

			257	 	 	 	 u	=	upper.d[i]

			258	 	 	 }	else	{

			259	 	 	 	 u	=	'0'

			260	 	 	 }

			261	

			262	 	 	 //	Okay	to	round	down	(truncate)	if	lower	has	a	different	digit

			263	 	 	 //	or	if	lower	is	inclusive	and	is	exactly	the	result	of	rounding	down.

			264	 	 	 okdown	:=	l	!=	m	||	(inclusive	&&	l	==	m	&&	i+1	==	lower.nd)

			265	

			266	 	 	 //	Okay	to	round	up	if	upper	has	a	different	digit	and

			267	 	 	 //	either	upper	is	inclusive	or	upper	is	bigger	than	the	result	of	rounding	up.

			268	 	 	 okup	:=	m	!=	u	&&	(inclusive	||	m+1	<	u	||	i+1	<	upper.nd)

			269	

			270	 	 	 //	If	it's	okay	to	do	either,	then	round	to	the	nearest	one.

			271	 	 	 //	If	it's	okay	to	do	only	one,	do	it.

			272	 	 	 switch	{

			273	 	 	 case	okdown	&&	okup:

			274	 	 	 	 d.Round(i	+	1)

			275	 	 	 	 return

			276	 	 	 case	okdown:

			277	 	 	 	 d.RoundDown(i	+	1)

			278	 	 	 	 return

			279	 	 	 case	okup:

			280	 	 	 	 d.RoundUp(i	+	1)

			281	 	 	 	 return

			282	 	 	 }

			283	 	 }

			284	 }

			285	

			286	 //	%e:	-d.ddddde±dd

			287	 func	fmtE(dst	[]byte,	neg	bool,	d	*decimal,	prec	int,	fmt	byte)	[]byte	{

			288	 	 //	sign

			289	 	 if	neg	{

			290	 	 	 dst	=	append(dst,	'-')

			291	 	 }

			292	

			293	 	 //	first	digit

			294	 	 ch	:=	byte('0')

			295	 	 if	d.nd	!=	0	{

			296	 	 	 ch	=	d.d[0]

			297	 	 }

			298	 	 dst	=	append(dst,	ch)

			299	

			300	 	 //	.moredigits

			301	 	 if	prec	>	0	{

			302	 	 	 dst	=	append(dst,	'.')

			303	 	 	 for	i	:=	1;	i	<=	prec;	i++	{

			304	 	 	 	 ch	=	'0'

			305	 	 	 	 if	i	<	d.nd	{

			306	 	 	 	 	 ch	=	d.d[i]

			307	 	 	 	 }

			308	 	 	 	 dst	=	append(dst,	ch)

			309	 	 	 }

			310	 	 }

			311	

			312	 	 //	e±

			313	 	 dst	=	append(dst,	fmt)

			314	 	 exp	:=	d.dp	-	1

			315	 	 if	d.nd	==	0	{	//	special	case:	0	has	exponent	0

			316	 	 	 exp	=	0

			317	 	 }

			318	 	 if	exp	<	0	{

			319	 	 	 ch	=	'-'

			320	 	 	 exp	=	-exp

			321	 	 }	else	{

			322	 	 	 ch	=	'+'

			323	 	 }

			324	 	 dst	=	append(dst,	ch)

			325	

			326	 	 //	dddd

			327	 	 var	buf	[3]byte

			328	 	 i	:=	len(buf)

			329	 	 for	exp	>=	10	{

			330	 	 	 i--

			331	 	 	 buf[i]	=	byte(exp%10	+	'0')

			332	 	 	 exp	/=	10

			333	 	 }

			334	 	 //	exp	<	10

			335	 	 i--

			336	 	 buf[i]	=	byte(exp	+	'0')

			337	

			338	 	 //	leading	zeroes

			339	 	 if	i	>	len(buf)-2	{

			340	 	 	 i--

			341	 	 	 buf[i]	=	'0'

			342	 	 }

			343	

			344	 	 return	append(dst,	buf[i:]...)

			345	 }

			346	

			347	 //	%f:	-ddddddd.ddddd

			348	 func	fmtF(dst	[]byte,	neg	bool,	d	*decimal,	prec	int)	[]byte	{

			349	 	 //	sign

			350	 	 if	neg	{

			351	 	 	 dst	=	append(dst,	'-')

			352	 	 }

			353	

			354	 	 //	integer,	padded	with	zeros	as	needed.

			355	 	 if	d.dp	>	0	{

			356	 	 	 var	i	int

			357	 	 	 for	i	=	0;	i	<	d.dp	&&	i	<	d.nd;	i++	{

			358	 	 	 	 dst	=	append(dst,	d.d[i])

			359	 	 	 }

			360	 	 	 for	;	i	<	d.dp;	i++	{

			361	 	 	 	 dst	=	append(dst,	'0')

			362	 	 	 }

			363	 	 }	else	{

			364	 	 	 dst	=	append(dst,	'0')

			365	 	 }

			366	

			367	 	 //	fraction

			368	 	 if	prec	>	0	{

			369	 	 	 dst	=	append(dst,	'.')

			370	 	 	 for	i	:=	0;	i	<	prec;	i++	{

			371	 	 	 	 ch	:=	byte('0')

			372	 	 	 	 if	j	:=	d.dp	+	i;	0	<=	j	&&	j	<	d.nd	{

			373	 	 	 	 	 ch	=	d.d[j]

			374	 	 	 	 }

			375	 	 	 	 dst	=	append(dst,	ch)

			376	 	 	 }

			377	 	 }

			378	

			379	 	 return	dst

			380	 }

			381	

			382	 //	%b:	-ddddddddp+ddd

			383	 func	fmtB(dst	[]byte,	neg	bool,	mant	uint64,	exp	int,	flt	*floatInfo)	[]byte	{

			384	 	 var	buf	[50]byte

			385	 	 w	:=	len(buf)

			386	 	 exp	-=	int(flt.mantbits)

			387	 	 esign	:=	byte('+')

			388	 	 if	exp	<	0	{

			389	 	 	 esign	=	'-'

			390	 	 	 exp	=	-exp

			391	 	 }

			392	 	 n	:=	0

			393	 	 for	exp	>	0	||	n	<	1	{

			394	 	 	 n++

			395	 	 	 w--

			396	 	 	 buf[w]	=	byte(exp%10	+	'0')

			397	 	 	 exp	/=	10

			398	 	 }

			399	 	 w--

			400	 	 buf[w]	=	esign

			401	 	 w--

			402	 	 buf[w]	=	'p'

			403	 	 n	=	0

			404	 	 for	mant	>	0	||	n	<	1	{

			405	 	 	 n++

			406	 	 	 w--

			407	 	 	 buf[w]	=	byte(mant%10	+	'0')

			408	 	 	 mant	/=	10

			409	 	 }

			410	 	 if	neg	{

			411	 	 	 w--

			412	 	 	 buf[w]	=	'-'

			413	 	 }

			414	 	 return	append(dst,	buf[w:]...)

			415	 }

			416	

			417	 func	max(a,	b	int)	int	{

			418	 	 if	a	>	b	{

			419	 	 	 return	a

			420	 	 }

			421	 	 return	b

			422	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/strconv/isprint.go
					1	 //	DO	NOT	EDIT.		GENERATED	BY

					2	 //					go	run	makeisprint.go	>x	&&	mv	x	isprint.go

					3	

					4	 package	strconv

					5	

					6	 //	(474+134+42)*2	+	(180)*4	=	2020	bytes

					7	

					8	 var	isPrint16	=	[]uint16{

					9	 	 0x0020,	0x007e,

				10	 	 0x00a1,	0x0377,

				11	 	 0x037a,	0x037e,

				12	 	 0x0384,	0x0527,

				13	 	 0x0531,	0x0556,

				14	 	 0x0559,	0x058a,

				15	 	 0x0591,	0x05c7,

				16	 	 0x05d0,	0x05ea,

				17	 	 0x05f0,	0x05f4,

				18	 	 0x0606,	0x061b,

				19	 	 0x061e,	0x070d,

				20	 	 0x0710,	0x074a,

				21	 	 0x074d,	0x07b1,

				22	 	 0x07c0,	0x07fa,

				23	 	 0x0800,	0x082d,

				24	 	 0x0830,	0x085b,

				25	 	 0x085e,	0x085e,

				26	 	 0x0900,	0x098c,

				27	 	 0x098f,	0x0990,

				28	 	 0x0993,	0x09b2,

				29	 	 0x09b6,	0x09b9,

				30	 	 0x09bc,	0x09c4,

				31	 	 0x09c7,	0x09c8,

				32	 	 0x09cb,	0x09ce,

				33	 	 0x09d7,	0x09d7,

				34	 	 0x09dc,	0x09e3,

				35	 	 0x09e6,	0x09fb,

				36	 	 0x0a01,	0x0a0a,

				37	 	 0x0a0f,	0x0a10,

				38	 	 0x0a13,	0x0a39,

				39	 	 0x0a3c,	0x0a42,

				40	 	 0x0a47,	0x0a48,

				41	 	 0x0a4b,	0x0a4d,

				42	 	 0x0a51,	0x0a51,

				43	 	 0x0a59,	0x0a5e,

				44	 	 0x0a66,	0x0a75,

				45	 	 0x0a81,	0x0ab9,

				46	 	 0x0abc,	0x0acd,

				47	 	 0x0ad0,	0x0ad0,

				48	 	 0x0ae0,	0x0ae3,

				49	 	 0x0ae6,	0x0af1,

				50	 	 0x0b01,	0x0b0c,

				51	 	 0x0b0f,	0x0b10,

				52	 	 0x0b13,	0x0b39,

				53	 	 0x0b3c,	0x0b44,

				54	 	 0x0b47,	0x0b48,

				55	 	 0x0b4b,	0x0b4d,

				56	 	 0x0b56,	0x0b57,

				57	 	 0x0b5c,	0x0b63,

				58	 	 0x0b66,	0x0b77,

				59	 	 0x0b82,	0x0b8a,

				60	 	 0x0b8e,	0x0b95,

				61	 	 0x0b99,	0x0b9f,

				62	 	 0x0ba3,	0x0ba4,

				63	 	 0x0ba8,	0x0baa,

				64	 	 0x0bae,	0x0bb9,

				65	 	 0x0bbe,	0x0bc2,

				66	 	 0x0bc6,	0x0bcd,

				67	 	 0x0bd0,	0x0bd0,

				68	 	 0x0bd7,	0x0bd7,

				69	 	 0x0be6,	0x0bfa,

				70	 	 0x0c01,	0x0c39,

				71	 	 0x0c3d,	0x0c4d,

				72	 	 0x0c55,	0x0c59,

				73	 	 0x0c60,	0x0c63,

				74	 	 0x0c66,	0x0c6f,

				75	 	 0x0c78,	0x0c7f,

				76	 	 0x0c82,	0x0cb9,

				77	 	 0x0cbc,	0x0ccd,

				78	 	 0x0cd5,	0x0cd6,

				79	 	 0x0cde,	0x0ce3,

				80	 	 0x0ce6,	0x0cf2,

				81	 	 0x0d02,	0x0d3a,

				82	 	 0x0d3d,	0x0d4e,

				83	 	 0x0d57,	0x0d57,

				84	 	 0x0d60,	0x0d63,

				85	 	 0x0d66,	0x0d75,

				86	 	 0x0d79,	0x0d7f,

				87	 	 0x0d82,	0x0d96,

				88	 	 0x0d9a,	0x0dbd,

				89	 	 0x0dc0,	0x0dc6,

				90	 	 0x0dca,	0x0dca,

				91	 	 0x0dcf,	0x0ddf,

				92	 	 0x0df2,	0x0df4,

				93	 	 0x0e01,	0x0e3a,

				94	 	 0x0e3f,	0x0e5b,

				95	 	 0x0e81,	0x0e84,

				96	 	 0x0e87,	0x0e8a,

				97	 	 0x0e8d,	0x0e8d,

				98	 	 0x0e94,	0x0ea7,

				99	 	 0x0eaa,	0x0ebd,

			100	 	 0x0ec0,	0x0ecd,

			101	 	 0x0ed0,	0x0ed9,

			102	 	 0x0edc,	0x0edd,

			103	 	 0x0f00,	0x0f6c,

			104	 	 0x0f71,	0x0fda,

			105	 	 0x1000,	0x10c5,

			106	 	 0x10d0,	0x10fc,

			107	 	 0x1100,	0x124d,

			108	 	 0x1250,	0x125d,

			109	 	 0x1260,	0x128d,

			110	 	 0x1290,	0x12b5,

			111	 	 0x12b8,	0x12c5,

			112	 	 0x12c8,	0x1315,

			113	 	 0x1318,	0x135a,

			114	 	 0x135d,	0x137c,

			115	 	 0x1380,	0x1399,

			116	 	 0x13a0,	0x13f4,

			117	 	 0x1400,	0x169c,

			118	 	 0x16a0,	0x16f0,

			119	 	 0x1700,	0x1714,

			120	 	 0x1720,	0x1736,

			121	 	 0x1740,	0x1753,

			122	 	 0x1760,	0x1773,

			123	 	 0x1780,	0x17b3,

			124	 	 0x17b6,	0x17dd,

			125	 	 0x17e0,	0x17e9,

			126	 	 0x17f0,	0x17f9,

			127	 	 0x1800,	0x180d,

			128	 	 0x1810,	0x1819,

			129	 	 0x1820,	0x1877,

			130	 	 0x1880,	0x18aa,

			131	 	 0x18b0,	0x18f5,

			132	 	 0x1900,	0x191c,

			133	 	 0x1920,	0x192b,

			134	 	 0x1930,	0x193b,

			135	 	 0x1940,	0x1940,

			136	 	 0x1944,	0x196d,

			137	 	 0x1970,	0x1974,

			138	 	 0x1980,	0x19ab,

			139	 	 0x19b0,	0x19c9,

			140	 	 0x19d0,	0x19da,

			141	 	 0x19de,	0x1a1b,

			142	 	 0x1a1e,	0x1a7c,

			143	 	 0x1a7f,	0x1a89,

			144	 	 0x1a90,	0x1a99,

			145	 	 0x1aa0,	0x1aad,

			146	 	 0x1b00,	0x1b4b,

			147	 	 0x1b50,	0x1b7c,

			148	 	 0x1b80,	0x1baa,

			149	 	 0x1bae,	0x1bb9,

			150	 	 0x1bc0,	0x1bf3,

			151	 	 0x1bfc,	0x1c37,

			152	 	 0x1c3b,	0x1c49,

			153	 	 0x1c4d,	0x1c7f,

			154	 	 0x1cd0,	0x1cf2,

			155	 	 0x1d00,	0x1de6,

			156	 	 0x1dfc,	0x1f15,

			157	 	 0x1f18,	0x1f1d,

			158	 	 0x1f20,	0x1f45,

			159	 	 0x1f48,	0x1f4d,

			160	 	 0x1f50,	0x1f7d,

			161	 	 0x1f80,	0x1fd3,

			162	 	 0x1fd6,	0x1fef,

			163	 	 0x1ff2,	0x1ffe,

			164	 	 0x2010,	0x2027,

			165	 	 0x2030,	0x205e,

			166	 	 0x2070,	0x2071,

			167	 	 0x2074,	0x209c,

			168	 	 0x20a0,	0x20b9,

			169	 	 0x20d0,	0x20f0,

			170	 	 0x2100,	0x2189,

			171	 	 0x2190,	0x23f3,

			172	 	 0x2400,	0x2426,

			173	 	 0x2440,	0x244a,

			174	 	 0x2460,	0x2b4c,

			175	 	 0x2b50,	0x2b59,

			176	 	 0x2c00,	0x2cf1,

			177	 	 0x2cf9,	0x2d25,

			178	 	 0x2d30,	0x2d65,

			179	 	 0x2d6f,	0x2d70,

			180	 	 0x2d7f,	0x2d96,

			181	 	 0x2da0,	0x2e31,

			182	 	 0x2e80,	0x2ef3,

			183	 	 0x2f00,	0x2fd5,

			184	 	 0x2ff0,	0x2ffb,

			185	 	 0x3001,	0x3096,

			186	 	 0x3099,	0x30ff,

			187	 	 0x3105,	0x312d,

			188	 	 0x3131,	0x31ba,

			189	 	 0x31c0,	0x31e3,

			190	 	 0x31f0,	0x4db5,

			191	 	 0x4dc0,	0x9fcb,

			192	 	 0xa000,	0xa48c,

			193	 	 0xa490,	0xa4c6,

			194	 	 0xa4d0,	0xa62b,

			195	 	 0xa640,	0xa673,

			196	 	 0xa67c,	0xa697,

			197	 	 0xa6a0,	0xa6f7,

			198	 	 0xa700,	0xa791,

			199	 	 0xa7a0,	0xa7a9,

			200	 	 0xa7fa,	0xa82b,

			201	 	 0xa830,	0xa839,

			202	 	 0xa840,	0xa877,

			203	 	 0xa880,	0xa8c4,

			204	 	 0xa8ce,	0xa8d9,

			205	 	 0xa8e0,	0xa8fb,

			206	 	 0xa900,	0xa953,

			207	 	 0xa95f,	0xa97c,

			208	 	 0xa980,	0xa9d9,

			209	 	 0xa9de,	0xa9df,

			210	 	 0xaa00,	0xaa36,

			211	 	 0xaa40,	0xaa4d,

			212	 	 0xaa50,	0xaa59,

			213	 	 0xaa5c,	0xaa7b,

			214	 	 0xaa80,	0xaac2,

			215	 	 0xaadb,	0xaadf,

			216	 	 0xab01,	0xab06,

			217	 	 0xab09,	0xab0e,

			218	 	 0xab11,	0xab16,

			219	 	 0xab20,	0xab2e,

			220	 	 0xabc0,	0xabed,

			221	 	 0xabf0,	0xabf9,

			222	 	 0xac00,	0xd7a3,

			223	 	 0xd7b0,	0xd7c6,

			224	 	 0xd7cb,	0xd7fb,

			225	 	 0xf900,	0xfa2d,

			226	 	 0xfa30,	0xfa6d,

			227	 	 0xfa70,	0xfad9,

			228	 	 0xfb00,	0xfb06,

			229	 	 0xfb13,	0xfb17,

			230	 	 0xfb1d,	0xfbc1,

			231	 	 0xfbd3,	0xfd3f,

			232	 	 0xfd50,	0xfd8f,

			233	 	 0xfd92,	0xfdc7,

			234	 	 0xfdf0,	0xfdfd,

			235	 	 0xfe00,	0xfe19,

			236	 	 0xfe20,	0xfe26,

			237	 	 0xfe30,	0xfe6b,

			238	 	 0xfe70,	0xfefc,

			239	 	 0xff01,	0xffbe,

			240	 	 0xffc2,	0xffc7,

			241	 	 0xffca,	0xffcf,

			242	 	 0xffd2,	0xffd7,

			243	 	 0xffda,	0xffdc,

			244	 	 0xffe0,	0xffee,

			245	 	 0xfffc,	0xfffd,

			246	 }

			247	

			248	 var	isNotPrint16	=	[]uint16{

			249	 	 0x00ad,

			250	 	 0x038b,

			251	 	 0x038d,

			252	 	 0x03a2,

			253	 	 0x0560,

			254	 	 0x0588,

			255	 	 0x06dd,

			256	 	 0x083f,

			257	 	 0x0978,

			258	 	 0x0980,

			259	 	 0x0984,

			260	 	 0x09a9,

			261	 	 0x09b1,

			262	 	 0x09de,

			263	 	 0x0a04,

			264	 	 0x0a29,

			265	 	 0x0a31,

			266	 	 0x0a34,

			267	 	 0x0a37,

			268	 	 0x0a3d,

			269	 	 0x0a5d,

			270	 	 0x0a84,

			271	 	 0x0a8e,

			272	 	 0x0a92,

			273	 	 0x0aa9,

			274	 	 0x0ab1,

			275	 	 0x0ab4,

			276	 	 0x0ac6,

			277	 	 0x0aca,

			278	 	 0x0af0,

			279	 	 0x0b04,

			280	 	 0x0b29,

			281	 	 0x0b31,

			282	 	 0x0b34,

			283	 	 0x0b5e,

			284	 	 0x0b84,

			285	 	 0x0b91,

			286	 	 0x0b9b,

			287	 	 0x0b9d,

			288	 	 0x0bc9,

			289	 	 0x0c04,

			290	 	 0x0c0d,

			291	 	 0x0c11,

			292	 	 0x0c29,

			293	 	 0x0c34,

			294	 	 0x0c45,

			295	 	 0x0c49,

			296	 	 0x0c57,

			297	 	 0x0c84,

			298	 	 0x0c8d,

			299	 	 0x0c91,

			300	 	 0x0ca9,

			301	 	 0x0cb4,

			302	 	 0x0cc5,

			303	 	 0x0cc9,

			304	 	 0x0cdf,

			305	 	 0x0cf0,

			306	 	 0x0d04,

			307	 	 0x0d0d,

			308	 	 0x0d11,

			309	 	 0x0d45,

			310	 	 0x0d49,

			311	 	 0x0d84,

			312	 	 0x0db2,

			313	 	 0x0dbc,

			314	 	 0x0dd5,

			315	 	 0x0dd7,

			316	 	 0x0e83,

			317	 	 0x0e89,

			318	 	 0x0e98,

			319	 	 0x0ea0,

			320	 	 0x0ea4,

			321	 	 0x0ea6,

			322	 	 0x0eac,

			323	 	 0x0eba,

			324	 	 0x0ec5,

			325	 	 0x0ec7,

			326	 	 0x0f48,

			327	 	 0x0f98,

			328	 	 0x0fbd,

			329	 	 0x0fcd,

			330	 	 0x1249,

			331	 	 0x1257,

			332	 	 0x1259,

			333	 	 0x1289,

			334	 	 0x12b1,

			335	 	 0x12bf,

			336	 	 0x12c1,

			337	 	 0x12d7,

			338	 	 0x1311,

			339	 	 0x1680,

			340	 	 0x170d,

			341	 	 0x176d,

			342	 	 0x1771,

			343	 	 0x1a5f,

			344	 	 0x1f58,

			345	 	 0x1f5a,

			346	 	 0x1f5c,

			347	 	 0x1f5e,

			348	 	 0x1fb5,

			349	 	 0x1fc5,

			350	 	 0x1fdc,

			351	 	 0x1ff5,

			352	 	 0x208f,

			353	 	 0x2700,

			354	 	 0x27cb,

			355	 	 0x27cd,

			356	 	 0x2c2f,

			357	 	 0x2c5f,

			358	 	 0x2da7,

			359	 	 0x2daf,

			360	 	 0x2db7,

			361	 	 0x2dbf,

			362	 	 0x2dc7,

			363	 	 0x2dcf,

			364	 	 0x2dd7,

			365	 	 0x2ddf,

			366	 	 0x2e9a,

			367	 	 0x3040,

			368	 	 0x318f,

			369	 	 0x321f,

			370	 	 0x32ff,

			371	 	 0xa78f,

			372	 	 0xa9ce,

			373	 	 0xab27,

			374	 	 0xfb37,

			375	 	 0xfb3d,

			376	 	 0xfb3f,

			377	 	 0xfb42,

			378	 	 0xfb45,

			379	 	 0xfe53,

			380	 	 0xfe67,

			381	 	 0xfe75,

			382	 	 0xffe7,

			383	 }

			384	

			385	 var	isPrint32	=	[]uint32{

			386	 	 0x010000,	0x01004d,

			387	 	 0x010050,	0x01005d,

			388	 	 0x010080,	0x0100fa,

			389	 	 0x010100,	0x010102,

			390	 	 0x010107,	0x010133,

			391	 	 0x010137,	0x01018a,

			392	 	 0x010190,	0x01019b,

			393	 	 0x0101d0,	0x0101fd,

			394	 	 0x010280,	0x01029c,

			395	 	 0x0102a0,	0x0102d0,

			396	 	 0x010300,	0x010323,

			397	 	 0x010330,	0x01034a,

			398	 	 0x010380,	0x0103c3,

			399	 	 0x0103c8,	0x0103d5,

			400	 	 0x010400,	0x01049d,

			401	 	 0x0104a0,	0x0104a9,

			402	 	 0x010800,	0x010805,

			403	 	 0x010808,	0x010838,

			404	 	 0x01083c,	0x01083c,

			405	 	 0x01083f,	0x01085f,

			406	 	 0x010900,	0x01091b,

			407	 	 0x01091f,	0x010939,

			408	 	 0x01093f,	0x01093f,

			409	 	 0x010a00,	0x010a06,

			410	 	 0x010a0c,	0x010a33,

			411	 	 0x010a38,	0x010a3a,

			412	 	 0x010a3f,	0x010a47,

			413	 	 0x010a50,	0x010a58,

			414	 	 0x010a60,	0x010a7f,

			415	 	 0x010b00,	0x010b35,

			416	 	 0x010b39,	0x010b55,

			417	 	 0x010b58,	0x010b72,

			418	 	 0x010b78,	0x010b7f,

			419	 	 0x010c00,	0x010c48,

			420	 	 0x010e60,	0x010e7e,

			421	 	 0x011000,	0x01104d,

			422	 	 0x011052,	0x01106f,

			423	 	 0x011080,	0x0110c1,

			424	 	 0x012000,	0x01236e,

			425	 	 0x012400,	0x012462,

			426	 	 0x012470,	0x012473,

			427	 	 0x013000,	0x01342e,

			428	 	 0x016800,	0x016a38,

			429	 	 0x01b000,	0x01b001,

			430	 	 0x01d000,	0x01d0f5,

			431	 	 0x01d100,	0x01d126,

			432	 	 0x01d129,	0x01d172,

			433	 	 0x01d17b,	0x01d1dd,

			434	 	 0x01d200,	0x01d245,

			435	 	 0x01d300,	0x01d356,

			436	 	 0x01d360,	0x01d371,

			437	 	 0x01d400,	0x01d49f,

			438	 	 0x01d4a2,	0x01d4a2,

			439	 	 0x01d4a5,	0x01d4a6,

			440	 	 0x01d4a9,	0x01d50a,

			441	 	 0x01d50d,	0x01d546,

			442	 	 0x01d54a,	0x01d6a5,

			443	 	 0x01d6a8,	0x01d7cb,

			444	 	 0x01d7ce,	0x01d7ff,

			445	 	 0x01f000,	0x01f02b,

			446	 	 0x01f030,	0x01f093,

			447	 	 0x01f0a0,	0x01f0ae,

			448	 	 0x01f0b1,	0x01f0be,

			449	 	 0x01f0c1,	0x01f0df,

			450	 	 0x01f100,	0x01f10a,

			451	 	 0x01f110,	0x01f169,

			452	 	 0x01f170,	0x01f19a,

			453	 	 0x01f1e6,	0x01f202,

			454	 	 0x01f210,	0x01f23a,

			455	 	 0x01f240,	0x01f248,

			456	 	 0x01f250,	0x01f251,

			457	 	 0x01f300,	0x01f320,

			458	 	 0x01f330,	0x01f37c,

			459	 	 0x01f380,	0x01f393,

			460	 	 0x01f3a0,	0x01f3ca,

			461	 	 0x01f3e0,	0x01f3f0,

			462	 	 0x01f400,	0x01f4fc,

			463	 	 0x01f500,	0x01f53d,

			464	 	 0x01f550,	0x01f567,

			465	 	 0x01f5fb,	0x01f625,

			466	 	 0x01f628,	0x01f62d,

			467	 	 0x01f630,	0x01f640,

			468	 	 0x01f645,	0x01f64f,

			469	 	 0x01f680,	0x01f6c5,

			470	 	 0x01f700,	0x01f773,

			471	 	 0x020000,	0x02a6d6,

			472	 	 0x02a700,	0x02b734,

			473	 	 0x02b740,	0x02b81d,

			474	 	 0x02f800,	0x02fa1d,

			475	 	 0x0e0100,	0x0e01ef,

			476	 }

			477	

			478	 var	isNotPrint32	=	[]uint16{	//	add	0x10000	to	each	entry

			479	 	 0x000c,

			480	 	 0x0027,

			481	 	 0x003b,

			482	 	 0x003e,

			483	 	 0x031f,

			484	 	 0x039e,

			485	 	 0x0809,

			486	 	 0x0836,

			487	 	 0x0856,

			488	 	 0x0a04,

			489	 	 0x0a14,

			490	 	 0x0a18,

			491	 	 0x10bd,

			492	 	 0xd455,

			493	 	 0xd49d,

			494	 	 0xd4ad,

			495	 	 0xd4ba,

			496	 	 0xd4bc,

			497	 	 0xd4c4,

			498	 	 0xd506,

			499	 	 0xd515,

			500	 	 0xd51d,

			501	 	 0xd53a,

			502	 	 0xd53f,

			503	 	 0xd545,

			504	 	 0xd551,

			505	 	 0xf0d0,

			506	 	 0xf12f,

			507	 	 0xf336,

			508	 	 0xf3c5,

			509	 	 0xf43f,

			510	 	 0xf441,

			511	 	 0xf4f8,

			512	 	 0xf600,

			513	 	 0xf611,

			514	 	 0xf615,

			515	 	 0xf617,

			516	 	 0xf619,

			517	 	 0xf61b,

			518	 	 0xf61f,

			519	 	 0xf62c,

			520	 	 0xf634,

			521	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/strconv/itoa.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	strconv

					6	

					7	 //	FormatUint	returns	the	string	representation	of	i	in	the	given	base.

					8	 func	FormatUint(i	uint64,	base	int)	string	{

					9	 	 _,	s	:=	formatBits(nil,	i,	base,	false,	false)

				10	 	 return	s

				11	 }

				12	

				13	 //	FormatInt	returns	the	string	representation	of	i	in	the	given	base.

				14	 func	FormatInt(i	int64,	base	int)	string	{

				15	 	 _,	s	:=	formatBits(nil,	uint64(i),	base,	i	<	0,	false)

				16	 	 return	s

				17	 }

				18	

				19	 //	Itoa	is	shorthand	for	FormatInt(i,	10).

				20	 func	Itoa(i	int)	string	{

				21	 	 return	FormatInt(int64(i),	10)

				22	 }

				23	

				24	 //	AppendInt	appends	the	string	form	of	the	integer	i,

				25	 //	as	generated	by	FormatInt,	to	dst	and	returns	the	extended	buffer.

				26	 func	AppendInt(dst	[]byte,	i	int64,	base	int)	[]byte	{

				27	 	 dst,	_	=	formatBits(dst,	uint64(i),	base,	i	<	0,	true)

				28	 	 return	dst

				29	 }

				30	

				31	 //	AppendUint	appends	the	string	form	of	the	unsigned	integer	i,

				32	 //	as	generated	by	FormatUint,	to	dst	and	returns	the	extended	buffer.

				33	 func	AppendUint(dst	[]byte,	i	uint64,	base	int)	[]byte	{

				34	 	 dst,	_	=	formatBits(dst,	i,	base,	false,	true)

				35	 	 return	dst

				36	 }

				37	

				38	 const	(

				39	 	 digits			=	"0123456789abcdefghijklmnopqrstuvwxyz"

				40	 	 digits01	=	"0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789"

				41	 	 digits10	=	"0000000000111111111122222222223333333333444444444455555555556666666666777777777788888888889999999999"

				42)

				43	

				44	 var	shifts	=	[len(digits)	+	1]uint{

				45	 	 1	<<	1:	1,

				46	 	 1	<<	2:	2,

				47	 	 1	<<	3:	3,

				48	 	 1	<<	4:	4,

				49	 	 1	<<	5:	5,

				50	 }

				51	

				52	 //	formatBits	computes	the	string	representation	of	u	in	the	given	base.

				53	 //	If	neg	is	set,	u	is	treated	as	negative	int64	value.	If	append_	is

				54	 //	set,	the	string	is	appended	to	dst	and	the	resulting	byte	slice	is

				55	 //	returned	as	the	first	result	value;	otherwise	the	string	is	returned

				56	 //	as	the	second	result	value.

				57	 //

				58	 func	formatBits(dst	[]byte,	u	uint64,	base	int,	neg,	append_	bool)	(d	[]byte,	s	string)	{

				59	 	 if	base	<	2	||	base	>	len(digits)	{

				60	 	 	 panic("strconv:	illegal	AppendInt/FormatInt	base")

				61	 	 }

				62	 	 //	2	<=	base	&&	base	<=	len(digits)

				63	

				64	 	 var	a	[64	+	1]byte	//	+1	for	sign	of	64bit	value	in	base	2

				65	 	 i	:=	len(a)

				66	

				67	 	 if	neg	{

				68	 	 	 u	=	-u

				69	 	 }

				70	

				71	 	 //	convert	bits

				72	 	 if	base	==	10	{

				73	 	 	 //	common	case:	use	constants	for	/	and	%	because

				74	 	 	 //	the	compiler	can	optimize	it	into	a	multiply+shift,

				75	 	 	 //	and	unroll	loop

				76	 	 	 for	u	>=	100	{

				77	 	 	 	 i	-=	2

				78	 	 	 	 q	:=	u	/	100

				79	 	 	 	 j	:=	uintptr(u	-	q*100)

				80	 	 	 	 a[i+1]	=	digits01[j]

				81	 	 	 	 a[i+0]	=	digits10[j]

				82	 	 	 	 u	=	q

				83	 	 	 }

				84	 	 	 if	u	>=	10	{

				85	 	 	 	 i--

				86	 	 	 	 q	:=	u	/	10

				87	 	 	 	 a[i]	=	digits[uintptr(u-q*10)]

				88	 	 	 	 u	=	q

				89	 	 	 }

				90	

				91	 	 }	else	if	s	:=	shifts[base];	s	>	0	{

				92	 	 	 //	base	is	power	of	2:	use	shifts	and	masks	instead	of	/	and	%

				93	 	 	 b	:=	uint64(base)

				94	 	 	 m	:=	uintptr(b)	-	1	//	==	1<<s	-	1

				95	 	 	 for	u	>=	b	{

				96	 	 	 	 i--

				97	 	 	 	 a[i]	=	digits[uintptr(u)&m]

				98	 	 	 	 u	>>=	s

				99	 	 	 }

			100	

			101	 	 }	else	{

			102	 	 	 //	general	case

			103	 	 	 b	:=	uint64(base)

			104	 	 	 for	u	>=	b	{

			105	 	 	 	 i--

			106	 	 	 	 a[i]	=	digits[uintptr(u%b)]

			107	 	 	 	 u	/=	b

			108	 	 	 }

			109	 	 }

			110	

			111	 	 //	u	<	base

			112	 	 i--

			113	 	 a[i]	=	digits[uintptr(u)]

			114	

			115	 	 //	add	sign,	if	any

			116	 	 if	neg	{

			117	 	 	 i--

			118	 	 	 a[i]	=	'-'

			119	 	 }

			120	

			121	 	 if	append_	{

			122	 	 	 d	=	append(dst,	a[i:]...)

			123	 	 	 return

			124	 	 }

			125	 	 s	=	string(a[i:])

			126	 	 return

			127	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/strconv/quote.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	strconv

					6	

					7	 import	(

					8	 	 "unicode/utf8"

					9)

				10	

				11	 const	lowerhex	=	"0123456789abcdef"

				12	

				13	 func	quoteWith(s	string,	quote	byte,	ASCIIonly	bool)	string	{

				14	 	 var	runeTmp	[utf8.UTFMax]byte

				15	 	 buf	:=	make([]byte,	0,	3*len(s)/2)	//	Try	to	avoid	more	allocations.

				16	 	 buf	=	append(buf,	quote)

				17	 	 for	width	:=	0;	len(s)	>	0;	s	=	s[width:]	{

				18	 	 	 r	:=	rune(s[0])

				19	 	 	 width	=	1

				20	 	 	 if	r	>=	utf8.RuneSelf	{

				21	 	 	 	 r,	width	=	utf8.DecodeRuneInString(s)

				22	 	 	 }

				23	 	 	 if	width	==	1	&&	r	==	utf8.RuneError	{

				24	 	 	 	 buf	=	append(buf,	`\x`...)

				25	 	 	 	 buf	=	append(buf,	lowerhex[s[0]>>4])

				26	 	 	 	 buf	=	append(buf,	lowerhex[s[0]&0xF])

				27	 	 	 	 continue

				28	 	 	 }

				29	 	 	 if	r	==	rune(quote)	||	r	==	'\\'	{	//	always	backslashed

				30	 	 	 	 buf	=	append(buf,	'\\')

				31	 	 	 	 buf	=	append(buf,	byte(r))

				32	 	 	 	 continue

				33	 	 	 }

				34	 	 	 if	ASCIIonly	{

				35	 	 	 	 if	r	<	utf8.RuneSelf	&&	IsPrint(r)	{

				36	 	 	 	 	 buf	=	append(buf,	byte(r))

				37	 	 	 	 	 continue

				38	 	 	 	 }

				39	 	 	 }	else	if	IsPrint(r)	{

				40	 	 	 	 n	:=	utf8.EncodeRune(runeTmp[:],	r)

				41	 	 	 	 buf	=	append(buf,	runeTmp[:n]...)

				42	 	 	 	 continue

				43	 	 	 }

				44	 	 	 switch	r	{

				45	 	 	 case	'\a':

				46	 	 	 	 buf	=	append(buf,	`\a`...)

				47	 	 	 case	'\b':

				48	 	 	 	 buf	=	append(buf,	`\b`...)

				49	 	 	 case	'\f':

				50	 	 	 	 buf	=	append(buf,	`\f`...)

				51	 	 	 case	'\n':

				52	 	 	 	 buf	=	append(buf,	`\n`...)

				53	 	 	 case	'\r':

				54	 	 	 	 buf	=	append(buf,	`\r`...)

				55	 	 	 case	'\t':

				56	 	 	 	 buf	=	append(buf,	`\t`...)

				57	 	 	 case	'\v':

				58	 	 	 	 buf	=	append(buf,	`\v`...)

				59	 	 	 default:

				60	 	 	 	 switch	{

				61	 	 	 	 case	r	<	'	':

				62	 	 	 	 	 buf	=	append(buf,	`\x`...)

				63	 	 	 	 	 buf	=	append(buf,	lowerhex[s[0]>>4])

				64	 	 	 	 	 buf	=	append(buf,	lowerhex[s[0]&0xF])

				65	 	 	 	 case	r	>	utf8.MaxRune:

				66	 	 	 	 	 r	=	0xFFFD

				67	 	 	 	 	 fallthrough

				68	 	 	 	 case	r	<	0x10000:

				69	 	 	 	 	 buf	=	append(buf,	`\u`...)

				70	 	 	 	 	 for	s	:=	12;	s	>=	0;	s	-=	4	{

				71	 	 	 	 	 	 buf	=	append(buf,	lowerhex[r>>uint(s)&0xF])

				72	 	 	 	 	 }

				73	 	 	 	 default:

				74	 	 	 	 	 buf	=	append(buf,	`\U`...)

				75	 	 	 	 	 for	s	:=	28;	s	>=	0;	s	-=	4	{

				76	 	 	 	 	 	 buf	=	append(buf,	lowerhex[r>>uint(s)&0xF])

				77	 	 	 	 	 }

				78	 	 	 	 }

				79	 	 	 }

				80	 	 }

				81	 	 buf	=	append(buf,	quote)

				82	 	 return	string(buf)

				83	

				84	 }

				85	

				86	 //	Quote	returns	a	double-quoted	Go	string	literal	representing	s.		The

				87	 //	returned	string	uses	Go	escape	sequences	(\t,	\n,	\xFF,	\u0100)	for

				88	 //	control	characters	and	non-printable	characters	as	defined	by

				89	 //	IsPrint.

				90	 func	Quote(s	string)	string	{

				91	 	 return	quoteWith(s,	'"',	false)

				92	 }

				93	

				94	 //	AppendQuote	appends	a	double-quoted	Go	string	literal	representing	s,

				95	 //	as	generated	by	Quote,	to	dst	and	returns	the	extended	buffer.

				96	 func	AppendQuote(dst	[]byte,	s	string)	[]byte	{

				97	 	 return	append(dst,	Quote(s)...)

				98	 }

				99	

			100	 //	QuoteToASCII	returns	a	double-quoted	Go	string	literal	representing	s.

			101	 //	The	returned	string	uses	Go	escape	sequences	(\t,	\n,	\xFF,	\u0100)	for

			102	 //	non-ASCII	characters	and	non-printable	characters	as	defined	by	IsPrint.

			103	 func	QuoteToASCII(s	string)	string	{

			104	 	 return	quoteWith(s,	'"',	true)

			105	 }

			106	

			107	 //	AppendQuoteToASCII	appends	a	double-quoted	Go	string	literal	representing	s,

			108	 //	as	generated	by	QuoteToASCII,	to	dst	and	returns	the	extended	buffer.

			109	 func	AppendQuoteToASCII(dst	[]byte,	s	string)	[]byte	{

			110	 	 return	append(dst,	QuoteToASCII(s)...)

			111	 }

			112	

			113	 //	QuoteRune	returns	a	single-quoted	Go	character	literal	representing	the

			114	 //	rune.		The	returned	string	uses	Go	escape	sequences	(\t,	\n,	\xFF,	\u0100)

			115	 //	for	control	characters	and	non-printable	characters	as	defined	by	IsPrint.

			116	 func	QuoteRune(r	rune)	string	{

			117	 	 //	TODO:	avoid	the	allocation	here.

			118	 	 return	quoteWith(string(r),	'\'',	false)

			119	 }

			120	

			121	 //	AppendQuoteRune	appends	a	single-quoted	Go	character	literal	representing	the	rune,

			122	 //	as	generated	by	QuoteRune,	to	dst	and	returns	the	extended	buffer.

			123	 func	AppendQuoteRune(dst	[]byte,	r	rune)	[]byte	{

			124	 	 return	append(dst,	QuoteRune(r)...)

			125	 }

			126	

			127	 //	QuoteRuneToASCII	returns	a	single-quoted	Go	character	literal	representing

			128	 //	the	rune.		The	returned	string	uses	Go	escape	sequences	(\t,	\n,	\xFF,

			129	 //	\u0100)	for	non-ASCII	characters	and	non-printable	characters	as	defined

			130	 //	by	IsPrint.

			131	 func	QuoteRuneToASCII(r	rune)	string	{

			132	 	 //	TODO:	avoid	the	allocation	here.

			133	 	 return	quoteWith(string(r),	'\'',	true)

			134	 }

			135	

			136	 //	AppendQuoteRune	appends	a	single-quoted	Go	character	literal	representing	the	rune,

			137	 //	as	generated	by	QuoteRuneToASCII,	to	dst	and	returns	the	extended	buffer.

			138	 func	AppendQuoteRuneToASCII(dst	[]byte,	r	rune)	[]byte	{

			139	 	 return	append(dst,	QuoteRuneToASCII(r)...)

			140	 }

			141	

			142	 //	CanBackquote	returns	whether	the	string	s	would	be

			143	 //	a	valid	Go	string	literal	if	enclosed	in	backquotes.

			144	 func	CanBackquote(s	string)	bool	{

			145	 	 for	i	:=	0;	i	<	len(s);	i++	{

			146	 	 	 if	(s[i]	<	'	'	&&	s[i]	!=	'\t')	||	s[i]	==	'`'	{

			147	 	 	 	 return	false

			148	 	 	 }

			149	 	 }

			150	 	 return	true

			151	 }

			152	

			153	 func	unhex(b	byte)	(v	rune,	ok	bool)	{

			154	 	 c	:=	rune(b)

			155	 	 switch	{

			156	 	 case	'0'	<=	c	&&	c	<=	'9':

			157	 	 	 return	c	-	'0',	true

			158	 	 case	'a'	<=	c	&&	c	<=	'f':

			159	 	 	 return	c	-	'a'	+	10,	true

			160	 	 case	'A'	<=	c	&&	c	<=	'F':

			161	 	 	 return	c	-	'A'	+	10,	true

			162	 	 }

			163	 	 return

			164	 }

			165	

			166	 //	UnquoteChar	decodes	the	first	character	or	byte	in	the	escaped	string

			167	 //	or	character	literal	represented	by	the	string	s.

			168	 //	It	returns	four	values:

			169	 //

			170	 //	 1)	value,	the	decoded	Unicode	code	point	or	byte	value;

			171	 //	 2)	multibyte,	a	boolean	indicating	whether	the	decoded	character	requires	a	multibyte	UTF-8	representation;

			172	 //	 3)	tail,	the	remainder	of	the	string	after	the	character;	and

			173	 //	 4)	an	error	that	will	be	nil	if	the	character	is	syntactically	valid.

			174	 //

			175	 //	The	second	argument,	quote,	specifies	the	type	of	literal	being	parsed

			176	 //	and	therefore	which	escaped	quote	character	is	permitted.

			177	 //	If	set	to	a	single	quote,	it	permits	the	sequence	\'	and	disallows	unescaped	'.

			178	 //	If	set	to	a	double	quote,	it	permits	\"	and	disallows	unescaped	".

			179	 //	If	set	to	zero,	it	does	not	permit	either	escape	and	allows	both	quote	characters	to	appear	unescaped.

			180	 func	UnquoteChar(s	string,	quote	byte)	(value	rune,	multibyte	bool,	tail	string,	err	error)	{

			181	 	 //	easy	cases

			182	 	 switch	c	:=	s[0];	{

			183	 	 case	c	==	quote	&&	(quote	==	'\''	||	quote	==	'"'):

			184	 	 	 err	=	ErrSyntax

			185	 	 	 return

			186	 	 case	c	>=	utf8.RuneSelf:

			187	 	 	 r,	size	:=	utf8.DecodeRuneInString(s)

			188	 	 	 return	r,	true,	s[size:],	nil

			189	 	 case	c	!=	'\\':

			190	 	 	 return	rune(s[0]),	false,	s[1:],	nil

			191	 	 }

			192	

			193	 	 //	hard	case:	c	is	backslash

			194	 	 if	len(s)	<=	1	{

			195	 	 	 err	=	ErrSyntax

			196	 	 	 return

			197	 	 }

			198	 	 c	:=	s[1]

			199	 	 s	=	s[2:]

			200	

			201	 	 switch	c	{

			202	 	 case	'a':

			203	 	 	 value	=	'\a'

			204	 	 case	'b':

			205	 	 	 value	=	'\b'

			206	 	 case	'f':

			207	 	 	 value	=	'\f'

			208	 	 case	'n':

			209	 	 	 value	=	'\n'

			210	 	 case	'r':

			211	 	 	 value	=	'\r'

			212	 	 case	't':

			213	 	 	 value	=	'\t'

			214	 	 case	'v':

			215	 	 	 value	=	'\v'

			216	 	 case	'x',	'u',	'U':

			217	 	 	 n	:=	0

			218	 	 	 switch	c	{

			219	 	 	 case	'x':

			220	 	 	 	 n	=	2

			221	 	 	 case	'u':

			222	 	 	 	 n	=	4

			223	 	 	 case	'U':

			224	 	 	 	 n	=	8

			225	 	 	 }

			226	 	 	 var	v	rune

			227	 	 	 if	len(s)	<	n	{

			228	 	 	 	 err	=	ErrSyntax

			229	 	 	 	 return

			230	 	 	 }

			231	 	 	 for	j	:=	0;	j	<	n;	j++	{

			232	 	 	 	 x,	ok	:=	unhex(s[j])

			233	 	 	 	 if	!ok	{

			234	 	 	 	 	 err	=	ErrSyntax

			235	 	 	 	 	 return

			236	 	 	 	 }

			237	 	 	 	 v	=	v<<4	|	x

			238	 	 	 }

			239	 	 	 s	=	s[n:]

			240	 	 	 if	c	==	'x'	{

			241	 	 	 	 //	single-byte	string,	possibly	not	UTF-8

			242	 	 	 	 value	=	v

			243	 	 	 	 break

			244	 	 	 }

			245	 	 	 if	v	>	utf8.MaxRune	{

			246	 	 	 	 err	=	ErrSyntax

			247	 	 	 	 return

			248	 	 	 }

			249	 	 	 value	=	v

			250	 	 	 multibyte	=	true

			251	 	 case	'0',	'1',	'2',	'3',	'4',	'5',	'6',	'7':

			252	 	 	 v	:=	rune(c)	-	'0'

			253	 	 	 if	len(s)	<	2	{

			254	 	 	 	 err	=	ErrSyntax

			255	 	 	 	 return

			256	 	 	 }

			257	 	 	 for	j	:=	0;	j	<	2;	j++	{	//	one	digit	already;	two	more

			258	 	 	 	 x	:=	rune(s[j])	-	'0'

			259	 	 	 	 if	x	<	0	||	x	>	7	{

			260	 	 	 	 	 err	=	ErrSyntax

			261	 	 	 	 	 return

			262	 	 	 	 }

			263	 	 	 	 v	=	(v	<<	3)	|	x

			264	 	 	 }

			265	 	 	 s	=	s[2:]

			266	 	 	 if	v	>	255	{

			267	 	 	 	 err	=	ErrSyntax

			268	 	 	 	 return

			269	 	 	 }

			270	 	 	 value	=	v

			271	 	 case	'\\':

			272	 	 	 value	=	'\\'

			273	 	 case	'\'',	'"':

			274	 	 	 if	c	!=	quote	{

			275	 	 	 	 err	=	ErrSyntax

			276	 	 	 	 return

			277	 	 	 }

			278	 	 	 value	=	rune(c)

			279	 	 default:

			280	 	 	 err	=	ErrSyntax

			281	 	 	 return

			282	 	 }

			283	 	 tail	=	s

			284	 	 return

			285	 }

			286	

			287	 //	Unquote	interprets	s	as	a	single-quoted,	double-quoted,

			288	 //	or	backquoted	Go	string	literal,	returning	the	string	value

			289	 //	that	s	quotes.		(If	s	is	single-quoted,	it	would	be	a	Go

			290	 //	character	literal;	Unquote	returns	the	corresponding

			291	 //	one-character	string.)

			292	 func	Unquote(s	string)	(t	string,	err	error)	{

			293	 	 n	:=	len(s)

			294	 	 if	n	<	2	{

			295	 	 	 return	"",	ErrSyntax

			296	 	 }

			297	 	 quote	:=	s[0]

			298	 	 if	quote	!=	s[n-1]	{

			299	 	 	 return	"",	ErrSyntax

			300	 	 }

			301	 	 s	=	s[1	:	n-1]

			302	

			303	 	 if	quote	==	'`'	{

			304	 	 	 if	contains(s,	'`')	{

			305	 	 	 	 return	"",	ErrSyntax

			306	 	 	 }

			307	 	 	 return	s,	nil

			308	 	 }

			309	 	 if	quote	!=	'"'	&&	quote	!=	'\''	{

			310	 	 	 return	"",	ErrSyntax

			311	 	 }

			312	 	 if	contains(s,	'\n')	{

			313	 	 	 return	"",	ErrSyntax

			314	 	 }

			315	

			316	 	 //	Is	it	trivial?		Avoid	allocation.

			317	 	 if	!contains(s,	'\\')	&&	!contains(s,	quote)	{

			318	 	 	 switch	quote	{

			319	 	 	 case	'"':

			320	 	 	 	 return	s,	nil

			321	 	 	 case	'\'':

			322	 	 	 	 r,	size	:=	utf8.DecodeRuneInString(s)

			323	 	 	 	 if	size	==	len(s)	&&	(r	!=	utf8.RuneError	||	size	!=	1)	{

			324	 	 	 	 	 return	s,	nil

			325	 	 	 	 }

			326	 	 	 }

			327	 	 }

			328	

			329	 	 var	runeTmp	[utf8.UTFMax]byte

			330	 	 buf	:=	make([]byte,	0,	3*len(s)/2)	//	Try	to	avoid	more	allocations.

			331	 	 for	len(s)	>	0	{

			332	 	 	 c,	multibyte,	ss,	err	:=	UnquoteChar(s,	quote)

			333	 	 	 if	err	!=	nil	{

			334	 	 	 	 return	"",	err

			335	 	 	 }

			336	 	 	 s	=	ss

			337	 	 	 if	c	<	utf8.RuneSelf	||	!multibyte	{

			338	 	 	 	 buf	=	append(buf,	byte(c))

			339	 	 	 }	else	{

			340	 	 	 	 n	:=	utf8.EncodeRune(runeTmp[:],	c)

			341	 	 	 	 buf	=	append(buf,	runeTmp[:n]...)

			342	 	 	 }

			343	 	 	 if	quote	==	'\''	&&	len(s)	!=	0	{

			344	 	 	 	 //	single-quoted	must	be	single	character

			345	 	 	 	 return	"",	ErrSyntax

			346	 	 	 }

			347	 	 }

			348	 	 return	string(buf),	nil

			349	 }

			350	

			351	 //	contains	reports	whether	the	string	contains	the	byte	c.

			352	 func	contains(s	string,	c	byte)	bool	{

			353	 	 for	i	:=	0;	i	<	len(s);	i++	{

			354	 	 	 if	s[i]	==	c	{

			355	 	 	 	 return	true

			356	 	 	 }

			357	 	 }

			358	 	 return	false

			359	 }

			360	

			361	 //	bsearch16	returns	the	smallest	i	such	that	a[i]	>=	x.

			362	 //	If	there	is	no	such	i,	bsearch16	returns	len(a).

			363	 func	bsearch16(a	[]uint16,	x	uint16)	int	{

			364	 	 i,	j	:=	0,	len(a)

			365	 	 for	i	<	j	{

			366	 	 	 h	:=	i	+	(j-i)/2

			367	 	 	 if	a[h]	<	x	{

			368	 	 	 	 i	=	h	+	1

			369	 	 	 }	else	{

			370	 	 	 	 j	=	h

			371	 	 	 }

			372	 	 }

			373	 	 return	i

			374	 }

			375	

			376	 //	bsearch32	returns	the	smallest	i	such	that	a[i]	>=	x.

			377	 //	If	there	is	no	such	i,	bsearch32	returns	len(a).

			378	 func	bsearch32(a	[]uint32,	x	uint32)	int	{

			379	 	 i,	j	:=	0,	len(a)

			380	 	 for	i	<	j	{

			381	 	 	 h	:=	i	+	(j-i)/2

			382	 	 	 if	a[h]	<	x	{

			383	 	 	 	 i	=	h	+	1

			384	 	 	 }	else	{

			385	 	 	 	 j	=	h

			386	 	 	 }

			387	 	 }

			388	 	 return	i

			389	 }

			390	

			391	 //	TODO:	IsPrint	is	a	local	implementation	of	unicode.IsPrint,	verified	by	the	tests

			392	 //	to	give	the	same	answer.	It	allows	this	package	not	to	depend	on	unicode,

			393	 //	and	therefore	not	pull	in	all	the	Unicode	tables.	If	the	linker	were	better

			394	 //	at	tossing	unused	tables,	we	could	get	rid	of	this	implementation.

			395	 //	That	would	be	nice.

			396	

			397	 //	IsPrint	reports	whether	the	rune	is	defined	as	printable	by	Go,	with

			398	 //	the	same	definition	as	unicode.IsPrint:	letters,	numbers,	punctuation,

			399	 //	symbols	and	ASCII	space.

			400	 func	IsPrint(r	rune)	bool	{

			401	 	 //	Fast	check	for	Latin-1

			402	 	 if	r	<=	0xFF	{

			403	 	 	 if	0x20	<=	r	&&	r	<=	0x7E	{

			404	 	 	 	 //	All	the	ASCII	is	printable	from	space	through	DEL-1.

			405	 	 	 	 return	true

			406	 	 	 }

			407	 	 	 if	0xA1	<=	r	&&	r	<=	0xFF	{

			408	 	 	 	 //	Similarly	for	¡	through	ÿ...

			409	 	 	 	 return	r	!=	0xAD	//	...except	for	the	bizarre	soft	hyphen.

			410	 	 	 }

			411	 	 	 return	false

			412	 	 }

			413	

			414	 	 //	Same	algorithm,	either	on	uint16	or	uint32	value.

			415	 	 //	First,	find	first	i	such	that	isPrint[i]	>=	x.

			416	 	 //	This	is	the	index	of	either	the	start	or	end	of	a	pair	that	might	span	x.

			417	 	 //	The	start	is	even	(isPrint[i&^1])	and	the	end	is	odd	(isPrint[i|1]).

			418	 	 //	If	we	find	x	in	a	range,	make	sure	x	is	not	in	isNotPrint	list.

			419	

			420	 	 if	0	<=	r	&&	r	<	1<<16	{

			421	 	 	 rr,	isPrint,	isNotPrint	:=	uint16(r),	isPrint16,	isNotPrint16

			422	 	 	 i	:=	bsearch16(isPrint,	rr)

			423	 	 	 if	i	>=	len(isPrint)	||	rr	<	isPrint[i&^1]	||	isPrint[i|1]	<	rr	{

			424	 	 	 	 return	false

			425	 	 	 }

			426	 	 	 j	:=	bsearch16(isNotPrint,	rr)

			427	 	 	 return	j	>=	len(isNotPrint)	||	isNotPrint[j]	!=	rr

			428	 	 }

			429	

			430	 	 rr,	isPrint,	isNotPrint	:=	uint32(r),	isPrint32,	isNotPrint32

			431	 	 i	:=	bsearch32(isPrint,	rr)

			432	 	 if	i	>=	len(isPrint)	||	rr	<	isPrint[i&^1]	||	isPrint[i|1]	<	rr	{

			433	 	 	 return	false

			434	 	 }

			435	 	 if	r	>=	0x20000	{

			436	 	 	 return	true

			437	 	 }

			438	 	 r	-=	0x10000

			439	 	 j	:=	bsearch16(isNotPrint,	uint16(r))

			440	 	 return	j	>=	len(isNotPrint)	||	isNotPrint[j]	!=	uint16(r)

			441	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/strings/replace.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	strings

					6	

					7	 import	"io"

					8	

					9	 //	A	Replacer	replaces	a	list	of	strings	with	replacements.

				10	 type	Replacer	struct	{

				11	 	 r	replacer

				12	 }

				13	

				14	 //	replacer	is	the	interface	that	a	replacement	algorithm	needs	to	implement.

				15	 type	replacer	interface	{

				16	 	 Replace(s	string)	string

				17	 	 WriteString(w	io.Writer,	s	string)	(n	int,	err	error)

				18	 }

				19	

				20	 //	byteBitmap	represents	bytes	which	are	sought	for	replacement.

				21	 //	byteBitmap	is	256	bits	wide,	with	a	bit	set	for	each	old	byte	to	be

				22	 //	replaced.

				23	 type	byteBitmap	[256	/	32]uint32

				24	

				25	 func	(m	*byteBitmap)	set(b	byte)	{

				26	 	 m[b>>5]	|=	uint32(1	<<	(b	&	31))

				27	 }

				28	

				29	 //	NewReplacer	returns	a	new	Replacer	from	a	list	of	old,	new	string	pairs.

				30	 //	Replacements	are	performed	in	order,	without	overlapping	matches.

				31	 func	NewReplacer(oldnew	...string)	*Replacer	{

				32	 	 if	len(oldnew)%2	==	1	{

				33	 	 	 panic("strings.NewReplacer:	odd	argument	count")

				34	 	 }

				35	

				36	 	 //	Possible	implementations.

				37	 	 var	(

				38	 	 	 bb		byteReplacer

				39	 	 	 bs		byteStringReplacer

				40	 	 	 gen	genericReplacer

				41)

				42	

				43	 	 allOldBytes,	allNewBytes	:=	true,	true

				44	 	 for	len(oldnew)	>	0	{

				45	 	 	 old,	new	:=	oldnew[0],	oldnew[1]

				46	 	 	 oldnew	=	oldnew[2:]

				47	 	 	 if	len(old)	!=	1	{

				48	 	 	 	 allOldBytes	=	false

				49	 	 	 }

				50	 	 	 if	len(new)	!=	1	{

				51	 	 	 	 allNewBytes	=	false

				52	 	 	 }

				53	

				54	 	 	 //	generic

				55	 	 	 gen.p	=	append(gen.p,	pair{old,	new})

				56	

				57	 	 	 //	byte	->	string

				58	 	 	 if	allOldBytes	{

				59	 	 	 	 bs.old.set(old[0])

				60	 	 	 	 bs.new[old[0]]	=	[]byte(new)

				61	 	 	 }

				62	

				63	 	 	 //	byte	->	byte

				64	 	 	 if	allOldBytes	&&	allNewBytes	{

				65	 	 	 	 bb.old.set(old[0])

				66	 	 	 	 bb.new[old[0]]	=	new[0]

				67	 	 	 }

				68	 	 }

				69	

				70	 	 if	allOldBytes	&&	allNewBytes	{

				71	 	 	 return	&Replacer{r:	&bb}

				72	 	 }

				73	 	 if	allOldBytes	{

				74	 	 	 return	&Replacer{r:	&bs}

				75	 	 }

				76	 	 return	&Replacer{r:	&gen}

				77	 }

				78	

				79	 //	Replace	returns	a	copy	of	s	with	all	replacements	performed.

				80	 func	(r	*Replacer)	Replace(s	string)	string	{

				81	 	 return	r.r.Replace(s)

				82	 }

				83	

				84	 //	WriteString	writes	s	to	w	with	all	replacements	performed.

				85	 func	(r	*Replacer)	WriteString(w	io.Writer,	s	string)	(n	int,	err	error)	{

				86	 	 return	r.r.WriteString(w,	s)

				87	 }

				88	

				89	 //	genericReplacer	is	the	fully	generic	(and	least	optimized)	algorithm.

				90	 //	It's	used	as	a	fallback	when	nothing	faster	can	be	used.

				91	 type	genericReplacer	struct	{

				92	 	 p	[]pair

				93	 }

				94	

				95	 type	pair	struct{	old,	new	string	}

				96	

				97	 type	appendSliceWriter	struct	{

				98	 	 b	[]byte

				99	 }

			100	

			101	 func	(w	*appendSliceWriter)	Write(p	[]byte)	(int,	error)	{

			102	 	 w.b	=	append(w.b,	p...)

			103	 	 return	len(p),	nil

			104	 }

			105	

			106	 func	(r	*genericReplacer)	Replace(s	string)	string	{

			107	 	 //	TODO(bradfitz):	optimized	version

			108	 	 n,	_	:=	r.WriteString(discard,	s)

			109	 	 w	:=	appendSliceWriter{make([]byte,	0,	n)}

			110	 	 r.WriteString(&w,	s)

			111	 	 return	string(w.b)

			112	 }

			113	

			114	 func	(r	*genericReplacer)	WriteString(w	io.Writer,	s	string)	(n	int,	err	error)	{

			115	 	 lastEmpty	:=	false	//	the	last	replacement	was	of	the	empty	string

			116	 Input:

			117	 	 //	TODO(bradfitz):	optimized	version

			118	 	 for	i	:=	0;	i	<	len(s);	{

			119	 	 	 for	_,	p	:=	range	r.p	{

			120	 	 	 	 if	p.old	==	""	&&	lastEmpty	{

			121	 	 	 	 	 //	Don't	let	old	match	twice	in	a	row.

			122	 	 	 	 	 //	(it	doesn't	advance	the	input	and

			123	 	 	 	 	 //	would	otherwise	loop	forever)

			124	 	 	 	 	 continue

			125	 	 	 	 }

			126	 	 	 	 if	HasPrefix(s[i:],	p.old)	{

			127	 	 	 	 	 if	p.new	!=	""	{

			128	 	 	 	 	 	 wn,	err	:=	w.Write([]byte(p.new))

			129	 	 	 	 	 	 n	+=	wn

			130	 	 	 	 	 	 if	err	!=	nil	{

			131	 	 	 	 	 	 	 return	n,	err

			132	 	 	 	 	 	 }

			133	 	 	 	 	 }

			134	 	 	 	 	 i	+=	len(p.old)

			135	 	 	 	 	 lastEmpty	=	p.old	==	""

			136	 	 	 	 	 continue	Input

			137	 	 	 	 }

			138	 	 	 }

			139	 	 	 wn,	err	:=	w.Write([]byte{s[i]})

			140	 	 	 n	+=	wn

			141	 	 	 if	err	!=	nil	{

			142	 	 	 	 return	n,	err

			143	 	 	 }

			144	 	 	 i++

			145	 	 }

			146	

			147	 	 //	Final	empty	match	at	end.

			148	 	 for	_,	p	:=	range	r.p	{

			149	 	 	 if	p.old	==	""	{

			150	 	 	 	 if	p.new	!=	""	{

			151	 	 	 	 	 wn,	err	:=	w.Write([]byte(p.new))

			152	 	 	 	 	 n	+=	wn

			153	 	 	 	 	 if	err	!=	nil	{

			154	 	 	 	 	 	 return	n,	err

			155	 	 	 	 	 }

			156	 	 	 	 }

			157	 	 	 	 break

			158	 	 	 }

			159	 	 }

			160	

			161	 	 return	n,	nil

			162	 }

			163	

			164	 //	byteReplacer	is	the	implementation	that's	used	when	all	the	"old"

			165	 //	and	"new"	values	are	single	ASCII	bytes.

			166	 type	byteReplacer	struct	{

			167	 	 //	old	has	a	bit	set	for	each	old	byte	that	should	be	replaced.

			168	 	 old	byteBitmap

			169	

			170	 	 //	replacement	byte,	indexed	by	old	byte.	only	valid	if

			171	 	 //	corresponding	old	bit	is	set.

			172	 	 new	[256]byte

			173	 }

			174	

			175	 func	(r	*byteReplacer)	Replace(s	string)	string	{

			176	 	 var	buf	[]byte	//	lazily	allocated

			177	 	 for	i	:=	0;	i	<	len(s);	i++	{

			178	 	 	 b	:=	s[i]

			179	 	 	 if	r.old[b>>5]&uint32(1<<(b&31))	!=	0	{

			180	 	 	 	 if	buf	==	nil	{

			181	 	 	 	 	 buf	=	[]byte(s)

			182	 	 	 	 }

			183	 	 	 	 buf[i]	=	r.new[b]

			184	 	 	 }

			185	 	 }

			186	 	 if	buf	==	nil	{

			187	 	 	 return	s

			188	 	 }

			189	 	 return	string(buf)

			190	 }

			191	

			192	 func	(r	*byteReplacer)	WriteString(w	io.Writer,	s	string)	(n	int,	err	error)	{

			193	 	 //	TODO(bradfitz):	use	io.WriteString	with	slices	of	s,	avoiding	allocation.

			194	 	 bufsize	:=	32	<<	10

			195	 	 if	len(s)	<	bufsize	{

			196	 	 	 bufsize	=	len(s)

			197	 	 }

			198	 	 buf	:=	make([]byte,	bufsize)

			199	

			200	 	 for	len(s)	>	0	{

			201	 	 	 ncopy	:=	copy(buf,	s[:])

			202	 	 	 s	=	s[ncopy:]

			203	 	 	 for	i,	b	:=	range	buf[:ncopy]	{

			204	 	 	 	 if	r.old[b>>5]&uint32(1<<(b&31))	!=	0	{

			205	 	 	 	 	 buf[i]	=	r.new[b]

			206	 	 	 	 }

			207	 	 	 }

			208	 	 	 wn,	err	:=	w.Write(buf[:ncopy])

			209	 	 	 n	+=	wn

			210	 	 	 if	err	!=	nil	{

			211	 	 	 	 return	n,	err

			212	 	 	 }

			213	 	 }

			214	 	 return	n,	nil

			215	 }

			216	

			217	 //	byteStringReplacer	is	the	implementation	that's	used	when	all	the

			218	 //	"old"	values	are	single	ASCII	bytes	but	the	"new"	values	vary	in

			219	 //	size.

			220	 type	byteStringReplacer	struct	{

			221	 	 //	old	has	a	bit	set	for	each	old	byte	that	should	be	replaced.

			222	 	 old	byteBitmap

			223	

			224	 	 //	replacement	string,	indexed	by	old	byte.	only	valid	if

			225	 	 //	corresponding	old	bit	is	set.

			226	 	 new	[256][]byte

			227	 }

			228	

			229	 func	(r	*byteStringReplacer)	Replace(s	string)	string	{

			230	 	 newSize	:=	0

			231	 	 anyChanges	:=	false

			232	 	 for	i	:=	0;	i	<	len(s);	i++	{

			233	 	 	 b	:=	s[i]

			234	 	 	 if	r.old[b>>5]&uint32(1<<(b&31))	!=	0	{

			235	 	 	 	 anyChanges	=	true

			236	 	 	 	 newSize	+=	len(r.new[b])

			237	 	 	 }	else	{

			238	 	 	 	 newSize++

			239	 	 	 }

			240	 	 }

			241	 	 if	!anyChanges	{

			242	 	 	 return	s

			243	 	 }

			244	 	 buf	:=	make([]byte,	newSize)

			245	 	 bi	:=	buf

			246	 	 for	i	:=	0;	i	<	len(s);	i++	{

			247	 	 	 b	:=	s[i]

			248	 	 	 if	r.old[b>>5]&uint32(1<<(b&31))	!=	0	{

			249	 	 	 	 n	:=	copy(bi[:],	r.new[b])

			250	 	 	 	 bi	=	bi[n:]

			251	 	 	 }	else	{

			252	 	 	 	 bi[0]	=	b

			253	 	 	 	 bi	=	bi[1:]

			254	 	 	 }

			255	 	 }

			256	 	 return	string(buf)

			257	 }

			258	

			259	 //	WriteString	maintains	one	buffer	that's	at	most	32KB.		The	bytes	in

			260	 //	s	are	enumerated	and	the	buffer	is	filled.		If	it	reaches	its

			261	 //	capacity	or	a	byte	has	a	replacement,	the	buffer	is	flushed	to	w.

			262	 func	(r	*byteStringReplacer)	WriteString(w	io.Writer,	s	string)	(n	int,	err	error)	{

			263	 	 //	TODO(bradfitz):	use	io.WriteString	with	slices	of	s	instead.

			264	 	 bufsize	:=	32	<<	10

			265	 	 if	len(s)	<	bufsize	{

			266	 	 	 bufsize	=	len(s)

			267	 	 }

			268	 	 buf	:=	make([]byte,	bufsize)

			269	 	 bi	:=	buf[:0]

			270	

			271	 	 for	i	:=	0;	i	<	len(s);	i++	{

			272	 	 	 b	:=	s[i]

			273	 	 	 var	new	[]byte

			274	 	 	 if	r.old[b>>5]&uint32(1<<(b&31))	!=	0	{

			275	 	 	 	 new	=	r.new[b]

			276	 	 	 }	else	{

			277	 	 	 	 bi	=	append(bi,	b)

			278	 	 	 }

			279	 	 	 if	len(bi)	==	cap(bi)	||	(len(bi)	>	0	&&	len(new)	>	0)	{

			280	 	 	 	 nw,	err	:=	w.Write(bi)

			281	 	 	 	 n	+=	nw

			282	 	 	 	 if	err	!=	nil	{

			283	 	 	 	 	 return	n,	err

			284	 	 	 	 }

			285	 	 	 	 bi	=	buf[:0]

			286	 	 	 }

			287	 	 	 if	len(new)	>	0	{

			288	 	 	 	 nw,	err	:=	w.Write(new)

			289	 	 	 	 n	+=	nw

			290	 	 	 	 if	err	!=	nil	{

			291	 	 	 	 	 return	n,	err

			292	 	 	 	 }

			293	 	 	 }

			294	 	 }

			295	 	 if	len(bi)	>	0	{

			296	 	 	 nw,	err	:=	w.Write(bi)

			297	 	 	 n	+=	nw

			298	 	 	 if	err	!=	nil	{

			299	 	 	 	 return	n,	err

			300	 	 	 }

			301	 	 }

			302	 	 return	n,	nil

			303	 }

			304	

			305	 //	strings	is	too	low-level	to	import	io/ioutil

			306	 var	discard	io.Writer	=	devNull(0)

			307	

			308	 type	devNull	int

			309	

			310	 func	(devNull)	Write(p	[]byte)	(int,	error)	{

			311	 	 return	len(p),	nil

			312	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/strings/strings.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	strings	implements	simple	functions	to	manipulate	strings.

					6	 package	strings

					7	

					8	 import	(

					9	 	 "unicode"

				10	 	 "unicode/utf8"

				11)

				12	

				13	 //	explode	splits	s	into	an	array	of	UTF-8	sequences,	one	per	Unicode	character	(still	strings)	up	to	a	maximum	of	n	(n	<	0	means	no	limit).

				14	 //	Invalid	UTF-8	sequences	become	correct	encodings	of	U+FFF8.

				15	 func	explode(s	string,	n	int)	[]string	{

				16	 	 if	n	==	0	{

				17	 	 	 return	nil

				18	 	 }

				19	 	 l	:=	utf8.RuneCountInString(s)

				20	 	 if	n	<=	0	||	n	>	l	{

				21	 	 	 n	=	l

				22	 	 }

				23	 	 a	:=	make([]string,	n)

				24	 	 var	size	int

				25	 	 var	ch	rune

				26	 	 i,	cur	:=	0,	0

				27	 	 for	;	i+1	<	n;	i++	{

				28	 	 	 ch,	size	=	utf8.DecodeRuneInString(s[cur:])

				29	 	 	 a[i]	=	string(ch)

				30	 	 	 cur	+=	size

				31	 	 }

				32	 	 //	add	the	rest,	if	there	is	any

				33	 	 if	cur	<	len(s)	{

				34	 	 	 a[i]	=	s[cur:]

				35	 	 }

				36	 	 return	a

				37	 }

				38	

				39	 //	Count	counts	the	number	of	non-overlapping	instances	of	sep	in	s.

				40	 func	Count(s,	sep	string)	int	{

				41	 	 if	sep	==	""	{

				42	 	 	 return	utf8.RuneCountInString(s)	+	1

				43	 	 }

				44	 	 c	:=	sep[0]

				45	 	 l	:=	len(sep)

				46	 	 n	:=	0

				47	 	 if	l	==	1	{

				48	 	 	 //	special	case	worth	making	fast

				49	 	 	 for	i	:=	0;	i	<	len(s);	i++	{

				50	 	 	 	 if	s[i]	==	c	{

				51	 	 	 	 	 n++

				52	 	 	 	 }

				53	 	 	 }

				54	 	 	 return	n

				55	 	 }

				56	 	 for	i	:=	0;	i+l	<=	len(s);	i++	{

				57	 	 	 if	s[i]	==	c	&&	s[i:i+l]	==	sep	{

				58	 	 	 	 n++

				59	 	 	 	 i	+=	l	-	1

				60	 	 	 }

				61	 	 }

				62	 	 return	n

				63	 }

				64	

				65	 //	Contains	returns	true	if	substr	is	within	s.

				66	 func	Contains(s,	substr	string)	bool	{

				67	 	 return	Index(s,	substr)	>=	0

				68	 }

				69	

				70	 //	ContainsAny	returns	true	if	any	Unicode	code	points	in	chars	are	within	s.

				71	 func	ContainsAny(s,	chars	string)	bool	{

				72	 	 return	IndexAny(s,	chars)	>=	0

				73	 }

				74	

				75	 //	ContainsRune	returns	true	if	the	Unicode	code	point	r	is	within	s.

				76	 func	ContainsRune(s	string,	r	rune)	bool	{

				77	 	 return	IndexRune(s,	r)	>=	0

				78	 }

				79	

				80	 //	Index	returns	the	index	of	the	first	instance	of	sep	in	s,	or	-1	if	sep	is	not	present	in	s.

				81	 func	Index(s,	sep	string)	int	{

				82	 	 n	:=	len(sep)

				83	 	 if	n	==	0	{

				84	 	 	 return	0

				85	 	 }

				86	 	 c	:=	sep[0]

				87	 	 if	n	==	1	{

				88	 	 	 //	special	case	worth	making	fast

				89	 	 	 for	i	:=	0;	i	<	len(s);	i++	{

				90	 	 	 	 if	s[i]	==	c	{

				91	 	 	 	 	 return	i

				92	 	 	 	 }

				93	 	 	 }

				94	 	 	 return	-1

				95	 	 }

				96	 	 //	n	>	1

				97	 	 for	i	:=	0;	i+n	<=	len(s);	i++	{

				98	 	 	 if	s[i]	==	c	&&	s[i:i+n]	==	sep	{

				99	 	 	 	 return	i

			100	 	 	 }

			101	 	 }

			102	 	 return	-1

			103	 }

			104	

			105	 //	LastIndex	returns	the	index	of	the	last	instance	of	sep	in	s,	or	-1	if	sep	is	not	present	in	s.

			106	 func	LastIndex(s,	sep	string)	int	{

			107	 	 n	:=	len(sep)

			108	 	 if	n	==	0	{

			109	 	 	 return	len(s)

			110	 	 }

			111	 	 c	:=	sep[0]

			112	 	 if	n	==	1	{

			113	 	 	 //	special	case	worth	making	fast

			114	 	 	 for	i	:=	len(s)	-	1;	i	>=	0;	i--	{

			115	 	 	 	 if	s[i]	==	c	{

			116	 	 	 	 	 return	i

			117	 	 	 	 }

			118	 	 	 }

			119	 	 	 return	-1

			120	 	 }

			121	 	 //	n	>	1

			122	 	 for	i	:=	len(s)	-	n;	i	>=	0;	i--	{

			123	 	 	 if	s[i]	==	c	&&	s[i:i+n]	==	sep	{

			124	 	 	 	 return	i

			125	 	 	 }

			126	 	 }

			127	 	 return	-1

			128	 }

			129	

			130	 //	IndexRune	returns	the	index	of	the	first	instance	of	the	Unicode	code	point

			131	 //	r,	or	-1	if	rune	is	not	present	in	s.

			132	 func	IndexRune(s	string,	r	rune)	int	{

			133	 	 switch	{

			134	 	 case	r	<	0x80:

			135	 	 	 b	:=	byte(r)

			136	 	 	 for	i	:=	0;	i	<	len(s);	i++	{

			137	 	 	 	 if	s[i]	==	b	{

			138	 	 	 	 	 return	i

			139	 	 	 	 }

			140	 	 	 }

			141	 	 default:

			142	 	 	 for	i,	c	:=	range	s	{

			143	 	 	 	 if	c	==	r	{

			144	 	 	 	 	 return	i

			145	 	 	 	 }

			146	 	 	 }

			147	 	 }

			148	 	 return	-1

			149	 }

			150	

			151	 //	IndexAny	returns	the	index	of	the	first	instance	of	any	Unicode	code	point

			152	 //	from	chars	in	s,	or	-1	if	no	Unicode	code	point	from	chars	is	present	in	s.

			153	 func	IndexAny(s,	chars	string)	int	{

			154	 	 if	len(chars)	>	0	{

			155	 	 	 for	i,	c	:=	range	s	{

			156	 	 	 	 for	_,	m	:=	range	chars	{

			157	 	 	 	 	 if	c	==	m	{

			158	 	 	 	 	 	 return	i

			159	 	 	 	 	 }

			160	 	 	 	 }

			161	 	 	 }

			162	 	 }

			163	 	 return	-1

			164	 }

			165	

			166	 //	LastIndexAny	returns	the	index	of	the	last	instance	of	any	Unicode	code

			167	 //	point	from	chars	in	s,	or	-1	if	no	Unicode	code	point	from	chars	is

			168	 //	present	in	s.

			169	 func	LastIndexAny(s,	chars	string)	int	{

			170	 	 if	len(chars)	>	0	{

			171	 	 	 for	i	:=	len(s);	i	>	0;	{

			172	 	 	 	 rune,	size	:=	utf8.DecodeLastRuneInString(s[0:i])

			173	 	 	 	 i	-=	size

			174	 	 	 	 for	_,	m	:=	range	chars	{

			175	 	 	 	 	 if	rune	==	m	{

			176	 	 	 	 	 	 return	i

			177	 	 	 	 	 }

			178	 	 	 	 }

			179	 	 	 }

			180	 	 }

			181	 	 return	-1

			182	 }

			183	

			184	 //	Generic	split:	splits	after	each	instance	of	sep,

			185	 //	including	sepSave	bytes	of	sep	in	the	subarrays.

			186	 func	genSplit(s,	sep	string,	sepSave,	n	int)	[]string	{

			187	 	 if	n	==	0	{

			188	 	 	 return	nil

			189	 	 }

			190	 	 if	sep	==	""	{

			191	 	 	 return	explode(s,	n)

			192	 	 }

			193	 	 if	n	<	0	{

			194	 	 	 n	=	Count(s,	sep)	+	1

			195	 	 }

			196	 	 c	:=	sep[0]

			197	 	 start	:=	0

			198	 	 a	:=	make([]string,	n)

			199	 	 na	:=	0

			200	 	 for	i	:=	0;	i+len(sep)	<=	len(s)	&&	na+1	<	n;	i++	{

			201	 	 	 if	s[i]	==	c	&&	(len(sep)	==	1	||	s[i:i+len(sep)]	==	sep)	{

			202	 	 	 	 a[na]	=	s[start	:	i+sepSave]

			203	 	 	 	 na++

			204	 	 	 	 start	=	i	+	len(sep)

			205	 	 	 	 i	+=	len(sep)	-	1

			206	 	 	 }

			207	 	 }

			208	 	 a[na]	=	s[start:]

			209	 	 return	a[0	:	na+1]

			210	 }

			211	

			212	 //	SplitN	slices	s	into	substrings	separated	by	sep	and	returns	a	slice	of

			213	 //	the	substrings	between	those	separators.

			214	 //	If	sep	is	empty,	SplitN	splits	after	each	UTF-8	sequence.

			215	 //	The	count	determines	the	number	of	substrings	to	return:

			216	 //			n	>	0:	at	most	n	substrings;	the	last	substring	will	be	the	unsplit	remainder.

			217	 //			n	==	0:	the	result	is	nil	(zero	substrings)

			218	 //			n	<	0:	all	substrings

			219	 func	SplitN(s,	sep	string,	n	int)	[]string	{	return	genSplit(s,	sep,	0,	n)	}

			220	

			221	 //	SplitAfterN	slices	s	into	substrings	after	each	instance	of	sep	and

			222	 //	returns	a	slice	of	those	substrings.

			223	 //	If	sep	is	empty,	SplitAfterN	splits	after	each	UTF-8	sequence.

			224	 //	The	count	determines	the	number	of	substrings	to	return:

			225	 //			n	>	0:	at	most	n	substrings;	the	last	substring	will	be	the	unsplit	remainder.

			226	 //			n	==	0:	the	result	is	nil	(zero	substrings)

			227	 //			n	<	0:	all	substrings

			228	 func	SplitAfterN(s,	sep	string,	n	int)	[]string	{

			229	 	 return	genSplit(s,	sep,	len(sep),	n)

			230	 }

			231	

			232	 //	Split	slices	s	into	all	substrings	separated	by	sep	and	returns	a	slice	of

			233	 //	the	substrings	between	those	separators.

			234	 //	If	sep	is	empty,	Split	splits	after	each	UTF-8	sequence.

			235	 //	It	is	equivalent	to	SplitN	with	a	count	of	-1.

			236	 func	Split(s,	sep	string)	[]string	{	return	genSplit(s,	sep,	0,	-1)	}

			237	

			238	 //	SplitAfter	slices	s	into	all	substrings	after	each	instance	of	sep	and

			239	 //	returns	a	slice	of	those	substrings.

			240	 //	If	sep	is	empty,	SplitAfter	splits	after	each	UTF-8	sequence.

			241	 //	It	is	equivalent	to	SplitAfterN	with	a	count	of	-1.

			242	 func	SplitAfter(s,	sep	string)	[]string	{

			243	 	 return	genSplit(s,	sep,	len(sep),	-1)

			244	 }

			245	

			246	 //	Fields	splits	the	string	s	around	each	instance	of	one	or	more	consecutive	white	space

			247	 //	characters,	returning	an	array	of	substrings	of	s	or	an	empty	list	if	s	contains	only	white	space.

			248	 func	Fields(s	string)	[]string	{

			249	 	 return	FieldsFunc(s,	unicode.IsSpace)

			250	 }

			251	

			252	 //	FieldsFunc	splits	the	string	s	at	each	run	of	Unicode	code	points	c	satisfying	f(c)

			253	 //	and	returns	an	array	of	slices	of	s.	If	all	code	points	in	s	satisfy	f(c)	or	the

			254	 //	string	is	empty,	an	empty	slice	is	returned.

			255	 func	FieldsFunc(s	string,	f	func(rune)	bool)	[]string	{

			256	 	 //	First	count	the	fields.

			257	 	 n	:=	0

			258	 	 inField	:=	false

			259	 	 for	_,	rune	:=	range	s	{

			260	 	 	 wasInField	:=	inField

			261	 	 	 inField	=	!f(rune)

			262	 	 	 if	inField	&&	!wasInField	{

			263	 	 	 	 n++

			264	 	 	 }

			265	 	 }

			266	

			267	 	 //	Now	create	them.

			268	 	 a	:=	make([]string,	n)

			269	 	 na	:=	0

			270	 	 fieldStart	:=	-1	//	Set	to	-1	when	looking	for	start	of	field.

			271	 	 for	i,	rune	:=	range	s	{

			272	 	 	 if	f(rune)	{

			273	 	 	 	 if	fieldStart	>=	0	{

			274	 	 	 	 	 a[na]	=	s[fieldStart:i]

			275	 	 	 	 	 na++

			276	 	 	 	 	 fieldStart	=	-1

			277	 	 	 	 }

			278	 	 	 }	else	if	fieldStart	==	-1	{

			279	 	 	 	 fieldStart	=	i

			280	 	 	 }

			281	 	 }

			282	 	 if	fieldStart	>=	0	{	//	Last	field	might	end	at	EOF.

			283	 	 	 a[na]	=	s[fieldStart:]

			284	 	 }

			285	 	 return	a

			286	 }

			287	

			288	 //	Join	concatenates	the	elements	of	a	to	create	a	single	string.			The	separator	string

			289	 //	sep	is	placed	between	elements	in	the	resulting	string.

			290	 func	Join(a	[]string,	sep	string)	string	{

			291	 	 if	len(a)	==	0	{

			292	 	 	 return	""

			293	 	 }

			294	 	 if	len(a)	==	1	{

			295	 	 	 return	a[0]

			296	 	 }

			297	 	 n	:=	len(sep)	*	(len(a)	-	1)

			298	 	 for	i	:=	0;	i	<	len(a);	i++	{

			299	 	 	 n	+=	len(a[i])

			300	 	 }

			301	

			302	 	 b	:=	make([]byte,	n)

			303	 	 bp	:=	copy(b,	a[0])

			304	 	 for	_,	s	:=	range	a[1:]	{

			305	 	 	 bp	+=	copy(b[bp:],	sep)

			306	 	 	 bp	+=	copy(b[bp:],	s)

			307	 	 }

			308	 	 return	string(b)

			309	 }

			310	

			311	 //	HasPrefix	tests	whether	the	string	s	begins	with	prefix.

			312	 func	HasPrefix(s,	prefix	string)	bool	{

			313	 	 return	len(s)	>=	len(prefix)	&&	s[0:len(prefix)]	==	prefix

			314	 }

			315	

			316	 //	HasSuffix	tests	whether	the	string	s	ends	with	suffix.

			317	 func	HasSuffix(s,	suffix	string)	bool	{

			318	 	 return	len(s)	>=	len(suffix)	&&	s[len(s)-len(suffix):]	==	suffix

			319	 }

			320	

			321	 //	Map	returns	a	copy	of	the	string	s	with	all	its	characters	modified

			322	 //	according	to	the	mapping	function.	If	mapping	returns	a	negative	value,	the	character	is

			323	 //	dropped	from	the	string	with	no	replacement.

			324	 func	Map(mapping	func(rune)	rune,	s	string)	string	{

			325	 	 //	In	the	worst	case,	the	string	can	grow	when	mapped,	making

			326	 	 //	things	unpleasant.		But	it's	so	rare	we	barge	in	assuming	it's

			327	 	 //	fine.		It	could	also	shrink	but	that	falls	out	naturally.

			328	 	 maxbytes	:=	len(s)	//	length	of	b

			329	 	 nbytes	:=	0								//	number	of	bytes	encoded	in	b

			330	 	 //	The	output	buffer	b	is	initialized	on	demand,	the	first

			331	 	 //	time	a	character	differs.

			332	 	 var	b	[]byte

			333	

			334	 	 for	i,	c	:=	range	s	{

			335	 	 	 r	:=	mapping(c)

			336	 	 	 if	b	==	nil	{

			337	 	 	 	 if	r	==	c	{

			338	 	 	 	 	 continue

			339	 	 	 	 }

			340	 	 	 	 b	=	make([]byte,	maxbytes)

			341	 	 	 	 nbytes	=	copy(b,	s[:i])

			342	 	 	 }

			343	 	 	 if	r	>=	0	{

			344	 	 	 	 wid	:=	1

			345	 	 	 	 if	r	>=	utf8.RuneSelf	{

			346	 	 	 	 	 wid	=	utf8.RuneLen(r)

			347	 	 	 	 }

			348	 	 	 	 if	nbytes+wid	>	maxbytes	{

			349	 	 	 	 	 //	Grow	the	buffer.

			350	 	 	 	 	 maxbytes	=	maxbytes*2	+	utf8.UTFMax

			351	 	 	 	 	 nb	:=	make([]byte,	maxbytes)

			352	 	 	 	 	 copy(nb,	b[0:nbytes])

			353	 	 	 	 	 b	=	nb

			354	 	 	 	 }

			355	 	 	 	 nbytes	+=	utf8.EncodeRune(b[nbytes:maxbytes],	r)

			356	 	 	 }

			357	 	 }

			358	 	 if	b	==	nil	{

			359	 	 	 return	s

			360	 	 }

			361	 	 return	string(b[0:nbytes])

			362	 }

			363	

			364	 //	Repeat	returns	a	new	string	consisting	of	count	copies	of	the	string	s.

			365	 func	Repeat(s	string,	count	int)	string	{

			366	 	 b	:=	make([]byte,	len(s)*count)

			367	 	 bp	:=	0

			368	 	 for	i	:=	0;	i	<	count;	i++	{

			369	 	 	 for	j	:=	0;	j	<	len(s);	j++	{

			370	 	 	 	 b[bp]	=	s[j]

			371	 	 	 	 bp++

			372	 	 	 }

			373	 	 }

			374	 	 return	string(b)

			375	 }

			376	

			377	 //	ToUpper	returns	a	copy	of	the	string	s	with	all	Unicode	letters	mapped	to	their	upper	case.

			378	 func	ToUpper(s	string)	string	{	return	Map(unicode.ToUpper,	s)	}

			379	

			380	 //	ToLower	returns	a	copy	of	the	string	s	with	all	Unicode	letters	mapped	to	their	lower	case.

			381	 func	ToLower(s	string)	string	{	return	Map(unicode.ToLower,	s)	}

			382	

			383	 //	ToTitle	returns	a	copy	of	the	string	s	with	all	Unicode	letters	mapped	to	their	title	case.

			384	 func	ToTitle(s	string)	string	{	return	Map(unicode.ToTitle,	s)	}

			385	

			386	 //	ToUpperSpecial	returns	a	copy	of	the	string	s	with	all	Unicode	letters	mapped	to	their

			387	 //	upper	case,	giving	priority	to	the	special	casing	rules.

			388	 func	ToUpperSpecial(_case	unicode.SpecialCase,	s	string)	string	{

			389	 	 return	Map(func(r	rune)	rune	{	return	_case.ToUpper(r)	},	s)

			390	 }

			391	

			392	 //	ToLowerSpecial	returns	a	copy	of	the	string	s	with	all	Unicode	letters	mapped	to	their

			393	 //	lower	case,	giving	priority	to	the	special	casing	rules.

			394	 func	ToLowerSpecial(_case	unicode.SpecialCase,	s	string)	string	{

			395	 	 return	Map(func(r	rune)	rune	{	return	_case.ToLower(r)	},	s)

			396	 }

			397	

			398	 //	ToTitleSpecial	returns	a	copy	of	the	string	s	with	all	Unicode	letters	mapped	to	their

			399	 //	title	case,	giving	priority	to	the	special	casing	rules.

			400	 func	ToTitleSpecial(_case	unicode.SpecialCase,	s	string)	string	{

			401	 	 return	Map(func(r	rune)	rune	{	return	_case.ToTitle(r)	},	s)

			402	 }

			403	

			404	 //	isSeparator	reports	whether	the	rune	could	mark	a	word	boundary.

			405	 //	TODO:	update	when	package	unicode	captures	more	of	the	properties.

			406	 func	isSeparator(r	rune)	bool	{

			407	 	 //	ASCII	alphanumerics	and	underscore	are	not	separators

			408	 	 if	r	<=	0x7F	{

			409	 	 	 switch	{

			410	 	 	 case	'0'	<=	r	&&	r	<=	'9':

			411	 	 	 	 return	false

			412	 	 	 case	'a'	<=	r	&&	r	<=	'z':

			413	 	 	 	 return	false

			414	 	 	 case	'A'	<=	r	&&	r	<=	'Z':

			415	 	 	 	 return	false

			416	 	 	 case	r	==	'_':

			417	 	 	 	 return	false

			418	 	 	 }

			419	 	 	 return	true

			420	 	 }

			421	 	 //	Letters	and	digits	are	not	separators

			422	 	 if	unicode.IsLetter(r)	||	unicode.IsDigit(r)	{

			423	 	 	 return	false

			424	 	 }

			425	 	 //	Otherwise,	all	we	can	do	for	now	is	treat	spaces	as	separators.

			426	 	 return	unicode.IsSpace(r)

			427	 }

			428	

			429	 //	BUG(r):	The	rule	Title	uses	for	word	boundaries	does	not	handle	Unicode	punctuation	properly.

			430	

			431	 //	Title	returns	a	copy	of	the	string	s	with	all	Unicode	letters	that	begin	words

			432	 //	mapped	to	their	title	case.

			433	 func	Title(s	string)	string	{

			434	 	 //	Use	a	closure	here	to	remember	state.

			435	 	 //	Hackish	but	effective.	Depends	on	Map	scanning	in	order	and	calling

			436	 	 //	the	closure	once	per	rune.

			437	 	 prev	:=	'	'

			438	 	 return	Map(

			439	 	 	 func(r	rune)	rune	{

			440	 	 	 	 if	isSeparator(prev)	{

			441	 	 	 	 	 prev	=	r

			442	 	 	 	 	 return	unicode.ToTitle(r)

			443	 	 	 	 }

			444	 	 	 	 prev	=	r

			445	 	 	 	 return	r

			446	 	 	 },

			447	 	 	 s)

			448	 }

			449	

			450	 //	TrimLeftFunc	returns	a	slice	of	the	string	s	with	all	leading

			451	 //	Unicode	code	points	c	satisfying	f(c)	removed.

			452	 func	TrimLeftFunc(s	string,	f	func(rune)	bool)	string	{

			453	 	 i	:=	indexFunc(s,	f,	false)

			454	 	 if	i	==	-1	{

			455	 	 	 return	""

			456	 	 }

			457	 	 return	s[i:]

			458	 }

			459	

			460	 //	TrimRightFunc	returns	a	slice	of	the	string	s	with	all	trailing

			461	 //	Unicode	code	points	c	satisfying	f(c)	removed.

			462	 func	TrimRightFunc(s	string,	f	func(rune)	bool)	string	{

			463	 	 i	:=	lastIndexFunc(s,	f,	false)

			464	 	 if	i	>=	0	&&	s[i]	>=	utf8.RuneSelf	{

			465	 	 	 _,	wid	:=	utf8.DecodeRuneInString(s[i:])

			466	 	 	 i	+=	wid

			467	 	 }	else	{

			468	 	 	 i++

			469	 	 }

			470	 	 return	s[0:i]

			471	 }

			472	

			473	 //	TrimFunc	returns	a	slice	of	the	string	s	with	all	leading

			474	 //	and	trailing	Unicode	code	points	c	satisfying	f(c)	removed.

			475	 func	TrimFunc(s	string,	f	func(rune)	bool)	string	{

			476	 	 return	TrimRightFunc(TrimLeftFunc(s,	f),	f)

			477	 }

			478	

			479	 //	IndexFunc	returns	the	index	into	s	of	the	first	Unicode

			480	 //	code	point	satisfying	f(c),	or	-1	if	none	do.

			481	 func	IndexFunc(s	string,	f	func(rune)	bool)	int	{

			482	 	 return	indexFunc(s,	f,	true)

			483	 }

			484	

			485	 //	LastIndexFunc	returns	the	index	into	s	of	the	last

			486	 //	Unicode	code	point	satisfying	f(c),	or	-1	if	none	do.

			487	 func	LastIndexFunc(s	string,	f	func(rune)	bool)	int	{

			488	 	 return	lastIndexFunc(s,	f,	true)

			489	 }

			490	

			491	 //	indexFunc	is	the	same	as	IndexFunc	except	that	if

			492	 //	truth==false,	the	sense	of	the	predicate	function	is

			493	 //	inverted.

			494	 func	indexFunc(s	string,	f	func(rune)	bool,	truth	bool)	int	{

			495	 	 start	:=	0

			496	 	 for	start	<	len(s)	{

			497	 	 	 wid	:=	1

			498	 	 	 r	:=	rune(s[start])

			499	 	 	 if	r	>=	utf8.RuneSelf	{

			500	 	 	 	 r,	wid	=	utf8.DecodeRuneInString(s[start:])

			501	 	 	 }

			502	 	 	 if	f(r)	==	truth	{

			503	 	 	 	 return	start

			504	 	 	 }

			505	 	 	 start	+=	wid

			506	 	 }

			507	 	 return	-1

			508	 }

			509	

			510	 //	lastIndexFunc	is	the	same	as	LastIndexFunc	except	that	if

			511	 //	truth==false,	the	sense	of	the	predicate	function	is

			512	 //	inverted.

			513	 func	lastIndexFunc(s	string,	f	func(rune)	bool,	truth	bool)	int	{

			514	 	 for	i	:=	len(s);	i	>	0;	{

			515	 	 	 r,	size	:=	utf8.DecodeLastRuneInString(s[0:i])

			516	 	 	 i	-=	size

			517	 	 	 if	f(r)	==	truth	{

			518	 	 	 	 return	i

			519	 	 	 }

			520	 	 }

			521	 	 return	-1

			522	 }

			523	

			524	 func	makeCutsetFunc(cutset	string)	func(rune)	bool	{

			525	 	 return	func(r	rune)	bool	{	return	IndexRune(cutset,	r)	>=	0	}

			526	 }

			527	

			528	 //	Trim	returns	a	slice	of	the	string	s	with	all	leading	and

			529	 //	trailing	Unicode	code	points	contained	in	cutset	removed.

			530	 func	Trim(s	string,	cutset	string)	string	{

			531	 	 if	s	==	""	||	cutset	==	""	{

			532	 	 	 return	s

			533	 	 }

			534	 	 return	TrimFunc(s,	makeCutsetFunc(cutset))

			535	 }

			536	

			537	 //	TrimLeft	returns	a	slice	of	the	string	s	with	all	leading

			538	 //	Unicode	code	points	contained	in	cutset	removed.

			539	 func	TrimLeft(s	string,	cutset	string)	string	{

			540	 	 if	s	==	""	||	cutset	==	""	{

			541	 	 	 return	s

			542	 	 }

			543	 	 return	TrimLeftFunc(s,	makeCutsetFunc(cutset))

			544	 }

			545	

			546	 //	TrimRight	returns	a	slice	of	the	string	s,	with	all	trailing

			547	 //	Unicode	code	points	contained	in	cutset	removed.

			548	 func	TrimRight(s	string,	cutset	string)	string	{

			549	 	 if	s	==	""	||	cutset	==	""	{

			550	 	 	 return	s

			551	 	 }

			552	 	 return	TrimRightFunc(s,	makeCutsetFunc(cutset))

			553	 }

			554	

			555	 //	TrimSpace	returns	a	slice	of	the	string	s,	with	all	leading

			556	 //	and	trailing	white	space	removed,	as	defined	by	Unicode.

			557	 func	TrimSpace(s	string)	string	{

			558	 	 return	TrimFunc(s,	unicode.IsSpace)

			559	 }

			560	

			561	 //	Replace	returns	a	copy	of	the	string	s	with	the	first	n

			562	 //	non-overlapping	instances	of	old	replaced	by	new.

			563	 //	If	n	<	0,	there	is	no	limit	on	the	number	of	replacements.

			564	 func	Replace(s,	old,	new	string,	n	int)	string	{

			565	 	 if	old	==	new	||	n	==	0	{

			566	 	 	 return	s	//	avoid	allocation

			567	 	 }

			568	

			569	 	 //	Compute	number	of	replacements.

			570	 	 if	m	:=	Count(s,	old);	m	==	0	{

			571	 	 	 return	s	//	avoid	allocation

			572	 	 }	else	if	n	<	0	||	m	<	n	{

			573	 	 	 n	=	m

			574	 	 }

			575	

			576	 	 //	Apply	replacements	to	buffer.

			577	 	 t	:=	make([]byte,	len(s)+n*(len(new)-len(old)))

			578	 	 w	:=	0

			579	 	 start	:=	0

			580	 	 for	i	:=	0;	i	<	n;	i++	{

			581	 	 	 j	:=	start

			582	 	 	 if	len(old)	==	0	{

			583	 	 	 	 if	i	>	0	{

			584	 	 	 	 	 _,	wid	:=	utf8.DecodeRuneInString(s[start:])

			585	 	 	 	 	 j	+=	wid

			586	 	 	 	 }

			587	 	 	 }	else	{

			588	 	 	 	 j	+=	Index(s[start:],	old)

			589	 	 	 }

			590	 	 	 w	+=	copy(t[w:],	s[start:j])

			591	 	 	 w	+=	copy(t[w:],	new)

			592	 	 	 start	=	j	+	len(old)

			593	 	 }

			594	 	 w	+=	copy(t[w:],	s[start:])

			595	 	 return	string(t[0:w])

			596	 }

			597	

			598	 //	EqualFold	reports	whether	s	and	t,	interpreted	as	UTF-8	strings,

			599	 //	are	equal	under	Unicode	case-folding.

			600	 func	EqualFold(s,	t	string)	bool	{

			601	 	 for	s	!=	""	&&	t	!=	""	{

			602	 	 	 //	Extract	first	rune	from	each	string.

			603	 	 	 var	sr,	tr	rune

			604	 	 	 if	s[0]	<	utf8.RuneSelf	{

			605	 	 	 	 sr,	s	=	rune(s[0]),	s[1:]

			606	 	 	 }	else	{

			607	 	 	 	 r,	size	:=	utf8.DecodeRuneInString(s)

			608	 	 	 	 sr,	s	=	r,	s[size:]

			609	 	 	 }

			610	 	 	 if	t[0]	<	utf8.RuneSelf	{

			611	 	 	 	 tr,	t	=	rune(t[0]),	t[1:]

			612	 	 	 }	else	{

			613	 	 	 	 r,	size	:=	utf8.DecodeRuneInString(t)

			614	 	 	 	 tr,	t	=	r,	t[size:]

			615	 	 	 }

			616	

			617	 	 	 //	If	they	match,	keep	going;	if	not,	return	false.

			618	

			619	 	 	 //	Easy	case.

			620	 	 	 if	tr	==	sr	{

			621	 	 	 	 continue

			622	 	 	 }

			623	

			624	 	 	 //	Make	sr	<	tr	to	simplify	what	follows.

			625	 	 	 if	tr	<	sr	{

			626	 	 	 	 tr,	sr	=	sr,	tr

			627	 	 	 }

			628	 	 	 //	Fast	check	for	ASCII.

			629	 	 	 if	tr	<	utf8.RuneSelf	&&	'A'	<=	sr	&&	sr	<=	'Z'	{

			630	 	 	 	 //	ASCII,	and	sr	is	upper	case.		tr	must	be	lower	case.

			631	 	 	 	 if	tr	==	sr+'a'-'A'	{

			632	 	 	 	 	 continue

			633	 	 	 	 }

			634	 	 	 	 return	false

			635	 	 	 }

			636	

			637	 	 	 //	General	case.		SimpleFold(x)	returns	the	next	equivalent	rune	>	x

			638	 	 	 //	or	wraps	around	to	smaller	values.

			639	 	 	 r	:=	unicode.SimpleFold(sr)

			640	 	 	 for	r	!=	sr	&&	r	<	tr	{

			641	 	 	 	 r	=	unicode.SimpleFold(r)

			642	 	 	 }

			643	 	 	 if	r	==	tr	{

			644	 	 	 	 continue

			645	 	 	 }

			646	 	 	 return	false

			647	 	 }

			648	

			649	 	 //	One	string	is	empty.		Are	both?

			650	 	 return	s	==	t

			651	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/sync/cond.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	sync

					6	

					7	 //	Cond	implements	a	condition	variable,	a	rendezvous	point

					8	 //	for	goroutines	waiting	for	or	announcing	the	occurrence

					9	 //	of	an	event.

				10	 //

				11	 //	Each	Cond	has	an	associated	Locker	L	(often	a	*Mutex	or	*RWMutex),

				12	 //	which	must	be	held	when	changing	the	condition	and

				13	 //	when	calling	the	Wait	method.

				14	 type	Cond	struct	{

				15	 	 L	Locker	//	held	while	observing	or	changing	the	condition

				16	 	 m	Mutex		//	held	to	avoid	internal	races

				17	

				18	 	 //	We	must	be	careful	to	make	sure	that	when	Signal

				19	 	 //	releases	a	semaphore,	the	corresponding	acquire	is

				20	 	 //	executed	by	a	goroutine	that	was	already	waiting	at

				21	 	 //	the	time	of	the	call	to	Signal,	not	one	that	arrived	later.

				22	 	 //	To	ensure	this,	we	segment	waiting	goroutines	into

				23	 	 //	generations	punctuated	by	calls	to	Signal.		Each	call	to

				24	 	 //	Signal	begins	another	generation	if	there	are	no	goroutines

				25	 	 //	left	in	older	generations	for	it	to	wake.		Because	of	this

				26	 	 //	optimization	(only	begin	another	generation	if	there

				27	 	 //	are	no	older	goroutines	left),	we	only	need	to	keep	track

				28	 	 //	of	the	two	most	recent	generations,	which	we	call	old

				29	 	 //	and	new.

				30	 	 oldWaiters	int					//	number	of	waiters	in	old	generation...

				31	 	 oldSema				*uint32	//	...	waiting	on	this	semaphore

				32	

				33	 	 newWaiters	int					//	number	of	waiters	in	new	generation...

				34	 	 newSema				*uint32	//	...	waiting	on	this	semaphore

				35	 }

				36	

				37	 //	NewCond	returns	a	new	Cond	with	Locker	l.

				38	 func	NewCond(l	Locker)	*Cond	{

				39	 	 return	&Cond{L:	l}

				40	 }

				41	

				42	 //	Wait	atomically	unlocks	c.L	and	suspends	execution

				43	 //	of	the	calling	goroutine.		After	later	resuming	execution,

				44	 //	Wait	locks	c.L	before	returning.		Unlike	in	other	systems,

				45	 //	Wait	cannot	return	unless	awoken	by	Broadcast	or	Signal.

				46	 //

				47	 //	Because	c.L	is	not	locked	when	Wait	first	resumes,	the	caller

				48	 //	typically	cannot	assume	that	the	condition	is	true	when

				49	 //	Wait	returns.		Instead,	the	caller	should	Wait	in	a	loop:

				50	 //

				51	 //				c.L.Lock()

				52	 //				for	!condition()	{

				53	 //								c.Wait()

				54	 //				}

				55	 //				...	make	use	of	condition	...

				56	 //				c.L.Unlock()

				57	 //

				58	 func	(c	*Cond)	Wait()	{

				59	 	 c.m.Lock()

				60	 	 if	c.newSema	==	nil	{

				61	 	 	 c.newSema	=	new(uint32)

				62	 	 }

				63	 	 s	:=	c.newSema

				64	 	 c.newWaiters++

				65	 	 c.m.Unlock()

				66	 	 c.L.Unlock()

				67	 	 runtime_Semacquire(s)

				68	 	 c.L.Lock()

				69	 }

				70	

				71	 //	Signal	wakes	one	goroutine	waiting	on	c,	if	there	is	any.

				72	 //

				73	 //	It	is	allowed	but	not	required	for	the	caller	to	hold	c.L

				74	 //	during	the	call.

				75	 func	(c	*Cond)	Signal()	{

				76	 	 c.m.Lock()

				77	 	 if	c.oldWaiters	==	0	&&	c.newWaiters	>	0	{

				78	 	 	 //	Retire	old	generation;	rename	new	to	old.

				79	 	 	 c.oldWaiters	=	c.newWaiters

				80	 	 	 c.oldSema	=	c.newSema

				81	 	 	 c.newWaiters	=	0

				82	 	 	 c.newSema	=	nil

				83	 	 }

				84	 	 if	c.oldWaiters	>	0	{

				85	 	 	 c.oldWaiters--

				86	 	 	 runtime_Semrelease(c.oldSema)

				87	 	 }

				88	 	 c.m.Unlock()

				89	 }

				90	

				91	 //	Broadcast	wakes	all	goroutines	waiting	on	c.

				92	 //

				93	 //	It	is	allowed	but	not	required	for	the	caller	to	hold	c.L

				94	 //	during	the	call.

				95	 func	(c	*Cond)	Broadcast()	{

				96	 	 c.m.Lock()

				97	 	 //	Wake	both	generations.

				98	 	 if	c.oldWaiters	>	0	{

				99	 	 	 for	i	:=	0;	i	<	c.oldWaiters;	i++	{

			100	 	 	 	 runtime_Semrelease(c.oldSema)

			101	 	 	 }

			102	 	 	 c.oldWaiters	=	0

			103	 	 }

			104	 	 if	c.newWaiters	>	0	{

			105	 	 	 for	i	:=	0;	i	<	c.newWaiters;	i++	{

			106	 	 	 	 runtime_Semrelease(c.newSema)

			107	 	 	 }

			108	 	 	 c.newWaiters	=	0

			109	 	 	 c.newSema	=	nil

			110	 	 }

			111	 	 c.m.Unlock()

			112	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/sync/mutex.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	sync	provides	basic	synchronization	primitives	such	as	mutual

					6	 //	exclusion	locks.		Other	than	the	Once	and	WaitGroup	types,	most	are	intended

					7	 //	for	use	by	low-level	library	routines.		Higher-level	synchronization	is

					8	 //	better	done	via	channels	and	communication.

					9	 //

				10	 //	Values	containing	the	types	defined	in	this	package	should	not	be	copied.

				11	 package	sync

				12	

				13	 import	"sync/atomic"

				14	

				15	 //	A	Mutex	is	a	mutual	exclusion	lock.

				16	 //	Mutexes	can	be	created	as	part	of	other	structures;

				17	 //	the	zero	value	for	a	Mutex	is	an	unlocked	mutex.

				18	 type	Mutex	struct	{

				19	 	 state	int32

				20	 	 sema		uint32

				21	 }

				22	

				23	 //	A	Locker	represents	an	object	that	can	be	locked	and	unlocked.

				24	 type	Locker	interface	{

				25	 	 Lock()

				26	 	 Unlock()

				27	 }

				28	

				29	 const	(

				30	 	 mutexLocked	=	1	<<	iota	//	mutex	is	locked

				31	 	 mutexWoken

				32	 	 mutexWaiterShift	=	iota

				33)

				34	

				35	 //	Lock	locks	m.

				36	 //	If	the	lock	is	already	in	use,	the	calling	goroutine

				37	 //	blocks	until	the	mutex	is	available.

				38	 func	(m	*Mutex)	Lock()	{

				39	 	 //	Fast	path:	grab	unlocked	mutex.

				40	 	 if	atomic.CompareAndSwapInt32(&m.state,	0,	mutexLocked)	{

				41	 	 	 return

				42	 	 }

				43	

				44	 	 awoke	:=	false

				45	 	 for	{

				46	 	 	 old	:=	m.state

				47	 	 	 new	:=	old	|	mutexLocked

				48	 	 	 if	old&mutexLocked	!=	0	{

				49	 	 	 	 new	=	old	+	1<<mutexWaiterShift

				50	 	 	 }

				51	 	 	 if	awoke	{

				52	 	 	 	 //	The	goroutine	has	been	woken	from	sleep,

				53	 	 	 	 //	so	we	need	to	reset	the	flag	in	either	case.

				54	 	 	 	 new	&^=	mutexWoken

				55	 	 	 }

				56	 	 	 if	atomic.CompareAndSwapInt32(&m.state,	old,	new)	{

				57	 	 	 	 if	old&mutexLocked	==	0	{

				58	 	 	 	 	 break

				59	 	 	 	 }

				60	 	 	 	 runtime_Semacquire(&m.sema)

				61	 	 	 	 awoke	=	true

				62	 	 	 }

				63	 	 }

				64	 }

				65	

				66	 //	Unlock	unlocks	m.

				67	 //	It	is	a	run-time	error	if	m	is	not	locked	on	entry	to	Unlock.

				68	 //

				69	 //	A	locked	Mutex	is	not	associated	with	a	particular	goroutine.

				70	 //	It	is	allowed	for	one	goroutine	to	lock	a	Mutex	and	then

				71	 //	arrange	for	another	goroutine	to	unlock	it.

				72	 func	(m	*Mutex)	Unlock()	{

				73	 	 //	Fast	path:	drop	lock	bit.

				74	 	 new	:=	atomic.AddInt32(&m.state,	-mutexLocked)

				75	 	 if	(new+mutexLocked)&mutexLocked	==	0	{

				76	 	 	 panic("sync:	unlock	of	unlocked	mutex")

				77	 	 }

				78	

				79	 	 old	:=	new

				80	 	 for	{

				81	 	 	 //	If	there	are	no	waiters	or	a	goroutine	has	already

				82	 	 	 //	been	woken	or	grabbed	the	lock,	no	need	to	wake	anyone.

				83	 	 	 if	old>>mutexWaiterShift	==	0	||	old&(mutexLocked|mutexWoken)	!=	0	{

				84	 	 	 	 return

				85	 	 	 }

				86	 	 	 //	Grab	the	right	to	wake	someone.

				87	 	 	 new	=	(old	-	1<<mutexWaiterShift)	|	mutexWoken

				88	 	 	 if	atomic.CompareAndSwapInt32(&m.state,	old,	new)	{

				89	 	 	 	 runtime_Semrelease(&m.sema)

				90	 	 	 	 return

				91	 	 	 }

				92	 	 	 old	=	m.state

				93	 	 }

				94	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/sync/once.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	sync

					6	

					7	 import	(

					8	 	 "sync/atomic"

					9)

				10	

				11	 //	Once	is	an	object	that	will	perform	exactly	one	action.

				12	 type	Once	struct	{

				13	 	 m				Mutex

				14	 	 done	uint32

				15	 }

				16	

				17	 //	Do	calls	the	function	f	if	and	only	if	the	method	is	being	called	for	the

				18	 //	first	time	with	this	receiver.		In	other	words,	given

				19	 //		 var	once	Once

				20	 //	if	once.Do(f)	is	called	multiple	times,	only	the	first	call	will	invoke	f,

				21	 //	even	if	f	has	a	different	value	in	each	invocation.		A	new	instance	of

				22	 //	Once	is	required	for	each	function	to	execute.

				23	 //

				24	 //	Do	is	intended	for	initialization	that	must	be	run	exactly	once.		Since	f

				25	 //	is	niladic,	it	may	be	necessary	to	use	a	function	literal	to	capture	the

				26	 //	arguments	to	a	function	to	be	invoked	by	Do:

				27	 //		 config.once.Do(func()	{	config.init(filename)	})

				28	 //

				29	 //	Because	no	call	to	Do	returns	until	the	one	call	to	f	returns,	if	f	causes

				30	 //	Do	to	be	called,	it	will	deadlock.

				31	 //

				32	 func	(o	*Once)	Do(f	func())	{

				33	 	 if	atomic.LoadUint32(&o.done)	==	1	{

				34	 	 	 return

				35	 	 }

				36	 	 //	Slow-path.

				37	 	 o.m.Lock()

				38	 	 defer	o.m.Unlock()

				39	 	 if	o.done	==	0	{

				40	 	 	 f()

				41	 	 	 atomic.CompareAndSwapUint32(&o.done,	0,	1)

				42	 	 }

				43	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/sync/runtime.go
					1	 //	Copyright	2012	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	sync

					6	

					7	 //	defined	in	package	runtime

					8	

					9	 //	Semacquire	waits	until	*s	>	0	and	then	atomically	decrements	it.

				10	 //	It	is	intended	as	a	simple	sleep	primitive	for	use	by	the	synchronization

				11	 //	library	and	should	not	be	used	directly.

				12	 func	runtime_Semacquire(s	*uint32)

				13	

				14	 //	Semrelease	atomically	increments	*s	and	notifies	a	waiting	goroutine

				15	 //	if	one	is	blocked	in	Semacquire.

				16	 //	It	is	intended	as	a	simple	wakeup	primitive	for	use	by	the	synchronization

				17	 //	library	and	should	not	be	used	directly.

				18	 func	runtime_Semrelease(s	*uint32)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/sync/rwmutex.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	sync

					6	

					7	 import	"sync/atomic"

					8	

					9	 //	An	RWMutex	is	a	reader/writer	mutual	exclusion	lock.

				10	 //	The	lock	can	be	held	by	an	arbitrary	number	of	readers

				11	 //	or	a	single	writer.

				12	 //	RWMutexes	can	be	created	as	part	of	other

				13	 //	structures;	the	zero	value	for	a	RWMutex	is

				14	 //	an	unlocked	mutex.

				15	 type	RWMutex	struct	{

				16	 	 w											Mutex		//	held	if	there	are	pending	writers

				17	 	 writerSem			uint32	//	semaphore	for	writers	to	wait	for	completing	readers

				18	 	 readerSem			uint32	//	semaphore	for	readers	to	wait	for	completing	writers

				19	 	 readerCount	int32		//	number	of	pending	readers

				20	 	 readerWait		int32		//	number	of	departing	readers

				21	 }

				22	

				23	 const	rwmutexMaxReaders	=	1	<<	30

				24	

				25	 //	RLock	locks	rw	for	reading.

				26	 func	(rw	*RWMutex)	RLock()	{

				27	 	 if	atomic.AddInt32(&rw.readerCount,	1)	<	0	{

				28	 	 	 //	A	writer	is	pending,	wait	for	it.

				29	 	 	 runtime_Semacquire(&rw.readerSem)

				30	 	 }

				31	 }

				32	

				33	 //	RUnlock	undoes	a	single	RLock	call;

				34	 //	it	does	not	affect	other	simultaneous	readers.

				35	 //	It	is	a	run-time	error	if	rw	is	not	locked	for	reading

				36	 //	on	entry	to	RUnlock.

				37	 func	(rw	*RWMutex)	RUnlock()	{

				38	 	 if	atomic.AddInt32(&rw.readerCount,	-1)	<	0	{

				39	 	 	 //	A	writer	is	pending.

				40	 	 	 if	atomic.AddInt32(&rw.readerWait,	-1)	==	0	{

				41	 	 	 	 //	The	last	reader	unblocks	the	writer.

				42	 	 	 	 runtime_Semrelease(&rw.writerSem)

				43	 	 	 }

				44	 	 }

				45	 }

				46	

				47	 //	Lock	locks	rw	for	writing.

				48	 //	If	the	lock	is	already	locked	for	reading	or	writing,

				49	 //	Lock	blocks	until	the	lock	is	available.

				50	 //	To	ensure	that	the	lock	eventually	becomes	available,

				51	 //	a	blocked	Lock	call	excludes	new	readers	from	acquiring

				52	 //	the	lock.

				53	 func	(rw	*RWMutex)	Lock()	{

				54	 	 //	First,	resolve	competition	with	other	writers.

				55	 	 rw.w.Lock()

				56	 	 //	Announce	to	readers	there	is	a	pending	writer.

				57	 	 r	:=	atomic.AddInt32(&rw.readerCount,	-rwmutexMaxReaders)	+	rwmutexMaxReaders

				58	 	 //	Wait	for	active	readers.

				59	 	 if	r	!=	0	&&	atomic.AddInt32(&rw.readerWait,	r)	!=	0	{

				60	 	 	 runtime_Semacquire(&rw.writerSem)

				61	 	 }

				62	 }

				63	

				64	 //	Unlock	unlocks	rw	for	writing.		It	is	a	run-time	error	if	rw	is

				65	 //	not	locked	for	writing	on	entry	to	Unlock.

				66	 //

				67	 //	As	with	Mutexes,	a	locked	RWMutex	is	not	associated	with	a	particular

				68	 //	goroutine.		One	goroutine	may	RLock	(Lock)	an	RWMutex	and	then

				69	 //	arrange	for	another	goroutine	to	RUnlock	(Unlock)	it.

				70	 func	(rw	*RWMutex)	Unlock()	{

				71	 	 //	Announce	to	readers	there	is	no	active	writer.

				72	 	 r	:=	atomic.AddInt32(&rw.readerCount,	rwmutexMaxReaders)

				73	 	 //	Unblock	blocked	readers,	if	any.

				74	 	 for	i	:=	0;	i	<	int(r);	i++	{

				75	 	 	 runtime_Semrelease(&rw.readerSem)

				76	 	 }

				77	 	 //	Allow	other	writers	to	proceed.

				78	 	 rw.w.Unlock()

				79	 }

				80	

				81	 //	RLocker	returns	a	Locker	interface	that	implements

				82	 //	the	Lock	and	Unlock	methods	by	calling	rw.RLock	and	rw.RUnlock.

				83	 func	(rw	*RWMutex)	RLocker()	Locker	{

				84	 	 return	(*rlocker)(rw)

				85	 }

				86	

				87	 type	rlocker	RWMutex

				88	

				89	 func	(r	*rlocker)	Lock()			{	(*RWMutex)(r).RLock()	}

				90	 func	(r	*rlocker)	Unlock()	{	(*RWMutex)(r).RUnlock()	}

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative

http://code.google.com/policies.html#restrictions

Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/sync/waitgroup.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	sync

					6	

					7	 import	"sync/atomic"

					8	

					9	 //	A	WaitGroup	waits	for	a	collection	of	goroutines	to	finish.

				10	 //	The	main	goroutine	calls	Add	to	set	the	number	of

				11	 //	goroutines	to	wait	for.		Then	each	of	the	goroutines

				12	 //	runs	and	calls	Done	when	finished.		At	the	same	time,

				13	 //	Wait	can	be	used	to	block	until	all	goroutines	have	finished.

				14	 type	WaitGroup	struct	{

				15	 	 m							Mutex

				16	 	 counter	int32

				17	 	 waiters	int32

				18	 	 sema				*uint32

				19	 }

				20	

				21	 //	WaitGroup	creates	a	new	semaphore	each	time	the	old	semaphore

				22	 //	is	released.	This	is	to	avoid	the	following	race:

				23	 //

				24	 //	G1:	Add(1)

				25	 //	G1:	go	G2()

				26	 //	G1:	Wait()	//	Context	switch	after	Unlock()	and	before	Semacquire().

				27	 //	G2:	Done()	//	Release	semaphore:	sema	==	1,	waiters	==	0.	G1	doesn't	run	yet.

				28	 //	G3:	Wait()	//	Finds	counter	==	0,	waiters	==	0,	doesn't	block.

				29	 //	G3:	Add(1)	//	Makes	counter	==	1,	waiters	==	0.

				30	 //	G3:	go	G4()

				31	 //	G3:	Wait()	//	G1	still	hasn't	run,	G3	finds	sema	==	1,	unblocked!	Bug.

				32	

				33	 //	Add	adds	delta,	which	may	be	negative,	to	the	WaitGroup	counter.

				34	 //	If	the	counter	becomes	zero,	all	goroutines	blocked	on	Wait()	are	released.

				35	 func	(wg	*WaitGroup)	Add(delta	int)	{

				36	 	 v	:=	atomic.AddInt32(&wg.counter,	int32(delta))

				37	 	 if	v	<	0	{

				38	 	 	 panic("sync:	negative	WaitGroup	count")

				39	 	 }

				40	 	 if	v	>	0	||	atomic.LoadInt32(&wg.waiters)	==	0	{

				41	 	 	 return

				42	 	 }

				43	 	 wg.m.Lock()

				44	 	 for	i	:=	int32(0);	i	<	wg.waiters;	i++	{

				45	 	 	 runtime_Semrelease(wg.sema)

				46	 	 }

				47	 	 wg.waiters	=	0

				48	 	 wg.sema	=	nil

				49	 	 wg.m.Unlock()

				50	 }

				51	

				52	 //	Done	decrements	the	WaitGroup	counter.

				53	 func	(wg	*WaitGroup)	Done()	{

				54	 	 wg.Add(-1)

				55	 }

				56	

				57	 //	Wait	blocks	until	the	WaitGroup	counter	is	zero.

				58	 func	(wg	*WaitGroup)	Wait()	{

				59	 	 if	atomic.LoadInt32(&wg.counter)	==	0	{

				60	 	 	 return

				61	 	 }

				62	 	 wg.m.Lock()

				63	 	 atomic.AddInt32(&wg.waiters,	1)

				64	 	 //	This	code	is	racing	with	the	unlocked	path	in	Add	above.

				65	 	 //	The	code	above	modifies	counter	and	then	reads	waiters.

				66	 	 //	We	must	modify	waiters	and	then	read	counter	(the	opposite	order)

				67	 	 //	to	avoid	missing	an	Add.

				68	 	 if	atomic.LoadInt32(&wg.counter)	==	0	{

				69	 	 	 atomic.AddInt32(&wg.waiters,	-1)

				70	 	 	 wg.m.Unlock()

				71	 	 	 return

				72	 	 }

				73	 	 if	wg.sema	==	nil	{

				74	 	 	 wg.sema	=	new(uint32)

				75	 	 }

				76	 	 s	:=	wg.sema

				77	 	 wg.m.Unlock()

				78	 	 runtime_Semacquire(s)

				79	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/sync/atomic/doc.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	atomic	provides	low-level	atomic	memory	primitives

					6	 //	useful	for	implementing	synchronization	algorithms.

					7	 //

					8	 //	These	functions	require	great	care	to	be	used	correctly.

					9	 //	Except	for	special,	low-level	applications,	synchronization	is	better

				10	 //	done	with	channels	or	the	facilities	of	the	sync	package.

				11	 //	Share	memory	by	communicating;

				12	 //	don't	communicate	by	sharing	memory.

				13	 //

				14	 //	The	compare-and-swap	operation,	implemented	by	the	CompareAndSwapT

				15	 //	functions,	is	the	atomic	equivalent	of:

				16	 //

				17	 //	 if	*val	==	old	{

				18	 //	 	 *val	=	new

				19	 //	 	 return	true

				20	 //	 }

				21	 //	 return	false

				22	 //

				23	 package	atomic

				24	

				25	 import	(

				26	 	 "unsafe"

				27)

				28	

				29	 //	BUG(rsc):	On	ARM,	the	64-bit	functions	use	instructions	unavailable	before	ARM	11.

				30	 //

				31	 //	On	x86-32,	the	64-bit	functions	use	instructions	unavailable	before	the	Pentium	MMX.

				32	

				33	 //	CompareAndSwapInt32	executes	the	compare-and-swap	operation	for	an	int32	value.

				34	 func	CompareAndSwapInt32(val	*int32,	old,	new	int32)	(swapped	bool)

				35	

				36	 //	CompareAndSwapInt64	executes	the	compare-and-swap	operation	for	an	int64	value.

				37	 func	CompareAndSwapInt64(val	*int64,	old,	new	int64)	(swapped	bool)

				38	

				39	 //	CompareAndSwapUint32	executes	the	compare-and-swap	operation	for	a	uint32	value.

				40	 func	CompareAndSwapUint32(val	*uint32,	old,	new	uint32)	(swapped	bool)

				41	

				42	 //	CompareAndSwapUint64	executes	the	compare-and-swap	operation	for	a	uint64	value.

				43	 func	CompareAndSwapUint64(val	*uint64,	old,	new	uint64)	(swapped	bool)

				44	

				45	 //	CompareAndSwapUintptr	executes	the	compare-and-swap	operation	for	a	uintptr	value.

				46	 func	CompareAndSwapUintptr(val	*uintptr,	old,	new	uintptr)	(swapped	bool)

				47	

				48	 //	CompareAndSwapPointer	executes	the	compare-and-swap	operation	for	a	unsafe.Pointer	value.

				49	 func	CompareAndSwapPointer(val	*unsafe.Pointer,	old,	new	unsafe.Pointer)	(swapped	bool)

				50	

				51	 //	AddInt32	atomically	adds	delta	to	*val	and	returns	the	new	value.

				52	 func	AddInt32(val	*int32,	delta	int32)	(new	int32)

				53	

				54	 //	AddUint32	atomically	adds	delta	to	*val	and	returns	the	new	value.

				55	 func	AddUint32(val	*uint32,	delta	uint32)	(new	uint32)

				56	

				57	 //	AddInt64	atomically	adds	delta	to	*val	and	returns	the	new	value.

				58	 func	AddInt64(val	*int64,	delta	int64)	(new	int64)

				59	

				60	 //	AddUint64	atomically	adds	delta	to	*val	and	returns	the	new	value.

				61	 func	AddUint64(val	*uint64,	delta	uint64)	(new	uint64)

				62	

				63	 //	AddUintptr	atomically	adds	delta	to	*val	and	returns	the	new	value.

				64	 func	AddUintptr(val	*uintptr,	delta	uintptr)	(new	uintptr)

				65	

				66	 //	LoadInt32	atomically	loads	*addr.

				67	 func	LoadInt32(addr	*int32)	(val	int32)

				68	

				69	 //	LoadInt64	atomically	loads	*addr.

				70	 func	LoadInt64(addr	*int64)	(val	int64)

				71	

				72	 //	LoadUint32	atomically	loads	*addr.

				73	 func	LoadUint32(addr	*uint32)	(val	uint32)

				74	

				75	 //	LoadUint64	atomically	loads	*addr.

				76	 func	LoadUint64(addr	*uint64)	(val	uint64)

				77	

				78	 //	LoadUintptr	atomically	loads	*addr.

				79	 func	LoadUintptr(addr	*uintptr)	(val	uintptr)

				80	

				81	 //	LoadPointer	atomically	loads	*addr.

				82	 func	LoadPointer(addr	*unsafe.Pointer)	(val	unsafe.Pointer)

				83	

				84	 //	StoreInt32	atomically	stores	val	into	*addr.

				85	 func	StoreInt32(addr	*int32,	val	int32)

				86	

				87	 //	StoreInt64	atomically	stores	val	into	*addr.

				88	 func	StoreInt64(addr	*int64,	val	int64)

				89	

				90	 //	StoreUint32	atomically	stores	val	into	*addr.

				91	 func	StoreUint32(addr	*uint32,	val	uint32)

				92	

				93	 //	StoreUint64	atomically	stores	val	into	*addr.

				94	 func	StoreUint64(addr	*uint64,	val	uint64)

				95	

				96	 //	StoreUintptr	atomically	stores	val	into	*addr.

				97	 func	StoreUintptr(addr	*uintptr,	val	uintptr)

				98	

				99	 //	StorePointer	atomically	stores	val	into	*addr.

			100	 func	StorePointer(addr	*unsafe.Pointer,	val	unsafe.Pointer)

			101	

			102	 //	Helper	for	ARM.		Linker	will	discard	on	other	systems

			103	 func	panic64()	{

			104	 	 panic("sync/atomic:	broken	64-bit	atomic	operations	(buggy	QEMU)")

			105	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/syscall/env_unix.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 //	Unix	environment	variables.

					8	

					9	 package	syscall

				10	

				11	 import	"sync"

				12	

				13	 var	(

				14	 	 //	envOnce	guards	initialization	by	copyenv,	which	populates	env.

				15	 	 envOnce	sync.Once

				16	

				17	 	 //	envLock	guards	env	and	envs.

				18	 	 envLock	sync.RWMutex

				19	

				20	 	 //	env	maps	from	an	environment	variable	to	its	first	occurrence	in	envs.

				21	 	 env	map[string]int

				22	

				23	 	 //	envs	is	provided	by	the	runtime.	elements	are	expected	to	be

				24	 	 //	of	the	form	"key=value".

				25	 	 envs	[]string

				26)

				27	

				28	 //	setenv_c	is	provided	by	the	runtime,	but	is	a	no-op	if	cgo	isn't

				29	 //	loaded.

				30	 func	setenv_c(k,	v	string)

				31	

				32	 func	copyenv()	{

				33	 	 env	=	make(map[string]int)

				34	 	 for	i,	s	:=	range	envs	{

				35	 	 	 for	j	:=	0;	j	<	len(s);	j++	{

				36	 	 	 	 if	s[j]	==	'='	{

				37	 	 	 	 	 key	:=	s[:j]

				38	 	 	 	 	 if	_,	ok	:=	env[key];	!ok	{

				39	 	 	 	 	 	 env[key]	=	i

				40	 	 	 	 	 }

				41	 	 	 	 	 break

				42	 	 	 	 }

				43	 	 	 }

				44	 	 }

				45	 }

				46	

				47	 func	Getenv(key	string)	(value	string,	found	bool)	{

				48	 	 envOnce.Do(copyenv)

				49	 	 if	len(key)	==	0	{

				50	 	 	 return	"",	false

				51	 	 }

				52	

				53	 	 envLock.RLock()

				54	 	 defer	envLock.RUnlock()

				55	

				56	 	 i,	ok	:=	env[key]

				57	 	 if	!ok	{

				58	 	 	 return	"",	false

				59	 	 }

				60	 	 s	:=	envs[i]

				61	 	 for	i	:=	0;	i	<	len(s);	i++	{

				62	 	 	 if	s[i]	==	'='	{

				63	 	 	 	 return	s[i+1:],	true

				64	 	 	 }

				65	 	 }

				66	 	 return	"",	false

				67	 }

				68	

				69	 func	Setenv(key,	value	string)	error	{

				70	 	 envOnce.Do(copyenv)

				71	 	 if	len(key)	==	0	{

				72	 	 	 return	EINVAL

				73	 	 }

				74	

				75	 	 envLock.Lock()

				76	 	 defer	envLock.Unlock()

				77	

				78	 	 i,	ok	:=	env[key]

				79	 	 kv	:=	key	+	"="	+	value

				80	 	 if	ok	{

				81	 	 	 envs[i]	=	kv

				82	 	 }	else	{

				83	 	 	 i	=	len(envs)

				84	 	 	 envs	=	append(envs,	kv)

				85	 	 }

				86	 	 env[key]	=	i

				87	 	 setenv_c(key,	value)

				88	 	 return	nil

				89	 }

				90	

				91	 func	Clearenv()	{

				92	 	 envOnce.Do(copyenv)	//	prevent	copyenv	in	Getenv/Setenv

				93	

				94	 	 envLock.Lock()

				95	 	 defer	envLock.Unlock()

				96	

				97	 	 env	=	make(map[string]int)

				98	 	 envs	=	[]string{}

				99	 	 //	TODO(bradfitz):	pass	through	to	C

			100	 }

			101	

			102	 func	Environ()	[]string	{

			103	 	 envOnce.Do(copyenv)

			104	 	 envLock.RLock()

			105	 	 defer	envLock.RUnlock()

			106	 	 a	:=	make([]string,	len(envs))

			107	 	 copy(a,	envs)

			108	 	 return	a

			109	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/syscall/exec_linux.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	linux

					6	

					7	 package	syscall

					8	

					9	 import	(

				10	 	 "unsafe"

				11)

				12	

				13	 type	SysProcAttr	struct	{

				14	 	 Chroot					string						//	Chroot.

				15	 	 Credential	*Credential	//	Credential.

				16	 	 Ptrace					bool								//	Enable	tracing.

				17	 	 Setsid					bool								//	Create	session.

				18	 	 Setpgid				bool								//	Set	process	group	ID	to	new	pid	(SYSV	setpgrp)

				19	 	 Setctty				bool								//	Set	controlling	terminal	to	fd	0

				20	 	 Noctty					bool								//	Detach	fd	0	from	controlling	terminal

				21	 	 Pdeathsig		Signal						//	Signal	that	the	process	will	get	when	its	parent	dies	(Linux	only)

				22	 }

				23	

				24	 //	Fork,	dup	fd	onto	0..len(fd),	and	exec(argv0,	argvv,	envv)	in	child.

				25	 //	If	a	dup	or	exec	fails,	write	the	errno	error	to	pipe.

				26	 //	(Pipe	is	close-on-exec	so	if	exec	succeeds,	it	will	be	closed.)

				27	 //	In	the	child,	this	function	must	not	acquire	any	locks,	because

				28	 //	they	might	have	been	locked	at	the	time	of	the	fork.		This	means

				29	 //	no	rescheduling,	no	malloc	calls,	and	no	new	stack	segments.

				30	 //	The	calls	to	RawSyscall	are	okay	because	they	are	assembly

				31	 //	functions	that	do	not	grow	the	stack.

				32	 func	forkAndExecInChild(argv0	*byte,	argv,	envv	[]*byte,	chroot,	dir	*byte,	attr	*ProcAttr,	sys	*SysProcAttr,	pipe	int)	(pid	int,	err	Errno)	{

				33	 	 //	Declare	all	variables	at	top	in	case	any

				34	 	 //	declarations	require	heap	allocation	(e.g.,	err1).

				35	 	 var	(

				36	 	 	 r1					uintptr

				37	 	 	 err1			Errno

				38	 	 	 nextfd	int

				39	 	 	 i						int

				40)

				41	

				42	 	 //	guard	against	side	effects	of	shuffling	fds	below.

				43	 	 fd	:=	make([]int,	len(attr.Files))

				44	 	 for	i,	ufd	:=	range	attr.Files	{

				45	 	 	 fd[i]	=	int(ufd)

				46	 	 }

				47	

				48	 	 //	About	to	call	fork.

				49	 	 //	No	more	allocation	or	calls	of	non-assembly	functions.

				50	 	 r1,	_,	err1	=	RawSyscall(SYS_FORK,	0,	0,	0)

				51	 	 if	err1	!=	0	{

				52	 	 	 return	0,	err1

				53	 	 }

				54	

				55	 	 if	r1	!=	0	{

				56	 	 	 //	parent;	return	PID

				57	 	 	 return	int(r1),	0

				58	 	 }

				59	

				60	 	 //	Fork	succeeded,	now	in	child.

				61	

				62	 	 //	Parent	death	signal

				63	 	 if	sys.Pdeathsig	!=	0	{

				64	 	 	 _,	_,	err1	=	RawSyscall6(SYS_PRCTL,	PR_SET_PDEATHSIG,	uintptr(sys.Pdeathsig),	0,	0,	0,	0)

				65	 	 	 if	err1	!=	0	{

				66	 	 	 	 goto	childerror

				67	 	 	 }

				68	

				69	 	 	 //	Signal	self	if	parent	is	already	dead.	This	might	cause	a

				70	 	 	 //	duplicate	signal	in	rare	cases,	but	it	won't	matter	when

				71	 	 	 //	using	SIGKILL.

				72	 	 	 r1,	_,	_	=	RawSyscall(SYS_GETPPID,	0,	0,	0)

				73	 	 	 if	r1	==	1	{

				74	 	 	 	 pid,	_,	_	:=	RawSyscall(SYS_GETPID,	0,	0,	0)

				75	 	 	 	 _,	_,	err1	:=	RawSyscall(SYS_KILL,	pid,	uintptr(sys.Pdeathsig),	0)

				76	 	 	 	 if	err1	!=	0	{

				77	 	 	 	 	 goto	childerror

				78	 	 	 	 }

				79	 	 	 }

				80	 	 }

				81	

				82	 	 //	Enable	tracing	if	requested.

				83	 	 if	sys.Ptrace	{

				84	 	 	 _,	_,	err1	=	RawSyscall(SYS_PTRACE,	uintptr(PTRACE_TRACEME),	0,	0)

				85	 	 	 if	err1	!=	0	{

				86	 	 	 	 goto	childerror

				87	 	 	 }

				88	 	 }

				89	

				90	 	 //	Session	ID

				91	 	 if	sys.Setsid	{

				92	 	 	 _,	_,	err1	=	RawSyscall(SYS_SETSID,	0,	0,	0)

				93	 	 	 if	err1	!=	0	{

				94	 	 	 	 goto	childerror

				95	 	 	 }

				96	 	 }

				97	

				98	 	 //	Set	process	group

				99	 	 if	sys.Setpgid	{

			100	 	 	 _,	_,	err1	=	RawSyscall(SYS_SETPGID,	0,	0,	0)

			101	 	 	 if	err1	!=	0	{

			102	 	 	 	 goto	childerror

			103	 	 	 }

			104	 	 }

			105	

			106	 	 //	Chroot

			107	 	 if	chroot	!=	nil	{

			108	 	 	 _,	_,	err1	=	RawSyscall(SYS_CHROOT,	uintptr(unsafe.Pointer(chroot)),	0,	0)

			109	 	 	 if	err1	!=	0	{

			110	 	 	 	 goto	childerror

			111	 	 	 }

			112	 	 }

			113	

			114	 	 //	User	and	groups

			115	 	 if	cred	:=	sys.Credential;	cred	!=	nil	{

			116	 	 	 ngroups	:=	uintptr(len(cred.Groups))

			117	 	 	 groups	:=	uintptr(0)

			118	 	 	 if	ngroups	>	0	{

			119	 	 	 	 groups	=	uintptr(unsafe.Pointer(&cred.Groups[0]))

			120	 	 	 }

			121	 	 	 _,	_,	err1	=	RawSyscall(SYS_SETGROUPS,	ngroups,	groups,	0)

			122	 	 	 if	err1	!=	0	{

			123	 	 	 	 goto	childerror

			124	 	 	 }

			125	 	 	 _,	_,	err1	=	RawSyscall(SYS_SETGID,	uintptr(cred.Gid),	0,	0)

			126	 	 	 if	err1	!=	0	{

			127	 	 	 	 goto	childerror

			128	 	 	 }

			129	 	 	 _,	_,	err1	=	RawSyscall(SYS_SETUID,	uintptr(cred.Uid),	0,	0)

			130	 	 	 if	err1	!=	0	{

			131	 	 	 	 goto	childerror

			132	 	 	 }

			133	 	 }

			134	

			135	 	 //	Chdir

			136	 	 if	dir	!=	nil	{

			137	 	 	 _,	_,	err1	=	RawSyscall(SYS_CHDIR,	uintptr(unsafe.Pointer(dir)),	0,	0)

			138	 	 	 if	err1	!=	0	{

			139	 	 	 	 goto	childerror

			140	 	 	 }

			141	 	 }

			142	

			143	 	 //	Pass	1:	look	for	fd[i]	<	i	and	move	those	up	above	len(fd)

			144	 	 //	so	that	pass	2	won't	stomp	on	an	fd	it	needs	later.

			145	 	 nextfd	=	int(len(fd))

			146	 	 if	pipe	<	nextfd	{

			147	 	 	 _,	_,	err1	=	RawSyscall(SYS_DUP2,	uintptr(pipe),	uintptr(nextfd),	0)

			148	 	 	 if	err1	!=	0	{

			149	 	 	 	 goto	childerror

			150	 	 	 }

			151	 	 	 RawSyscall(SYS_FCNTL,	uintptr(nextfd),	F_SETFD,	FD_CLOEXEC)

			152	 	 	 pipe	=	nextfd

			153	 	 	 nextfd++

			154	 	 }

			155	 	 for	i	=	0;	i	<	len(fd);	i++	{

			156	 	 	 if	fd[i]	>=	0	&&	fd[i]	<	int(i)	{

			157	 	 	 	 _,	_,	err1	=	RawSyscall(SYS_DUP2,	uintptr(fd[i]),	uintptr(nextfd),	0)

			158	 	 	 	 if	err1	!=	0	{

			159	 	 	 	 	 goto	childerror

			160	 	 	 	 }

			161	 	 	 	 RawSyscall(SYS_FCNTL,	uintptr(nextfd),	F_SETFD,	FD_CLOEXEC)

			162	 	 	 	 fd[i]	=	nextfd

			163	 	 	 	 nextfd++

			164	 	 	 	 if	nextfd	==	pipe	{	//	don't	stomp	on	pipe

			165	 	 	 	 	 nextfd++

			166	 	 	 	 }

			167	 	 	 }

			168	 	 }

			169	

			170	 	 //	Pass	2:	dup	fd[i]	down	onto	i.

			171	 	 for	i	=	0;	i	<	len(fd);	i++	{

			172	 	 	 if	fd[i]	==	-1	{

			173	 	 	 	 RawSyscall(SYS_CLOSE,	uintptr(i),	0,	0)

			174	 	 	 	 continue

			175	 	 	 }

			176	 	 	 if	fd[i]	==	int(i)	{

			177	 	 	 	 //	dup2(i,	i)	won't	clear	close-on-exec	flag	on	Linux,

			178	 	 	 	 //	probably	not	elsewhere	either.

			179	 	 	 	 _,	_,	err1	=	RawSyscall(SYS_FCNTL,	uintptr(fd[i]),	F_SETFD,	0)

			180	 	 	 	 if	err1	!=	0	{

			181	 	 	 	 	 goto	childerror

			182	 	 	 	 }

			183	 	 	 	 continue

			184	 	 	 }

			185	 	 	 //	The	new	fd	is	created	NOT	close-on-exec,

			186	 	 	 //	which	is	exactly	what	we	want.

			187	 	 	 _,	_,	err1	=	RawSyscall(SYS_DUP2,	uintptr(fd[i]),	uintptr(i),	0)

			188	 	 	 if	err1	!=	0	{

			189	 	 	 	 goto	childerror

			190	 	 	 }

			191	 	 }

			192	

			193	 	 //	By	convention,	we	don't	close-on-exec	the	fds	we	are

			194	 	 //	started	with,	so	if	len(fd)	<	3,	close	0,	1,	2	as	needed.

			195	 	 //	Programs	that	know	they	inherit	fds	>=	3	will	need

			196	 	 //	to	set	them	close-on-exec.

			197	 	 for	i	=	len(fd);	i	<	3;	i++	{

			198	 	 	 RawSyscall(SYS_CLOSE,	uintptr(i),	0,	0)

			199	 	 }

			200	

			201	 	 //	Detach	fd	0	from	tty

			202	 	 if	sys.Noctty	{

			203	 	 	 _,	_,	err1	=	RawSyscall(SYS_IOCTL,	0,	uintptr(TIOCNOTTY),	0)

			204	 	 	 if	err1	!=	0	{

			205	 	 	 	 goto	childerror

			206	 	 	 }

			207	 	 }

			208	

			209	 	 //	Make	fd	0	the	tty

			210	 	 if	sys.Setctty	{

			211	 	 	 _,	_,	err1	=	RawSyscall(SYS_IOCTL,	0,	uintptr(TIOCSCTTY),	0)

			212	 	 	 if	err1	!=	0	{

			213	 	 	 	 goto	childerror

			214	 	 	 }

			215	 	 }

			216	

			217	 	 //	Time	to	exec.

			218	 	 _,	_,	err1	=	RawSyscall(SYS_EXECVE,

			219	 	 	 uintptr(unsafe.Pointer(argv0)),

			220	 	 	 uintptr(unsafe.Pointer(&argv[0])),

			221	 	 	 uintptr(unsafe.Pointer(&envv[0])))

			222	

			223	 childerror:

			224	 	 //	send	error	code	on	pipe

			225	 	 RawSyscall(SYS_WRITE,	uintptr(pipe),	uintptr(unsafe.Pointer(&err1)),	unsafe.Sizeof(err1))

			226	 	 for	{

			227	 	 	 RawSyscall(SYS_EXIT,	253,	0,	0)

			228	 	 }

			229	

			230	 	 //	Calling	panic	is	not	actually	safe,

			231	 	 //	but	the	for	loop	above	won't	break

			232	 	 //	and	this	shuts	up	the	compiler.

			233	 	 panic("unreached")

			234	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.

http://code.google.com/policies.html#restrictions

Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/syscall/exec_unix.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 //	Fork,	exec,	wait,	etc.

					8	

					9	 package	syscall

				10	

				11	 import	(

				12	 	 "runtime"

				13	 	 "sync"

				14	 	 "unsafe"

				15)

				16	

				17	 //	Lock	synchronizing	creation	of	new	file	descriptors	with	fork.

				18	 //

				19	 //	We	want	the	child	in	a	fork/exec	sequence	to	inherit	only	the

				20	 //	file	descriptors	we	intend.		To	do	that,	we	mark	all	file

				21	 //	descriptors	close-on-exec	and	then,	in	the	child,	explicitly

				22	 //	unmark	the	ones	we	want	the	exec'ed	program	to	keep.

				23	 //	Unix	doesn't	make	this	easy:	there	is,	in	general,	no	way	to

				24	 //	allocate	a	new	file	descriptor	close-on-exec.		Instead	you

				25	 //	have	to	allocate	the	descriptor	and	then	mark	it	close-on-exec.

				26	 //	If	a	fork	happens	between	those	two	events,	the	child's	exec

				27	 //	will	inherit	an	unwanted	file	descriptor.

				28	 //

				29	 //	This	lock	solves	that	race:	the	create	new	fd/mark	close-on-exec

				30	 //	operation	is	done	holding	ForkLock	for	reading,	and	the	fork	itself

				31	 //	is	done	holding	ForkLock	for	writing.		At	least,	that's	the	idea.

				32	 //	There	are	some	complications.

				33	 //

				34	 //	Some	system	calls	that	create	new	file	descriptors	can	block

				35	 //	for	arbitrarily	long	times:	open	on	a	hung	NFS	server	or	named

				36	 //	pipe,	accept	on	a	socket,	and	so	on.		We	can't	reasonably	grab

				37	 //	the	lock	across	those	operations.

				38	 //

				39	 //	It	is	worse	to	inherit	some	file	descriptors	than	others.

				40	 //	If	a	non-malicious	child	accidentally	inherits	an	open	ordinary	file,

				41	 //	that's	not	a	big	deal.		On	the	other	hand,	if	a	long-lived	child

				42	 //	accidentally	inherits	the	write	end	of	a	pipe,	then	the	reader

				43	 //	of	that	pipe	will	not	see	EOF	until	that	child	exits,	potentially

				44	 //	causing	the	parent	program	to	hang.		This	is	a	common	problem

				45	 //	in	threaded	C	programs	that	use	popen.

				46	 //

				47	 //	Luckily,	the	file	descriptors	that	are	most	important	not	to

				48	 //	inherit	are	not	the	ones	that	can	take	an	arbitrarily	long	time

				49	 //	to	create:	pipe	returns	instantly,	and	the	net	package	uses

				50	 //	non-blocking	I/O	to	accept	on	a	listening	socket.

				51	 //	The	rules	for	which	file	descriptor-creating	operations	use	the

				52	 //	ForkLock	are	as	follows:

				53	 //

				54	 //	1)	Pipe.				Does	not	block.		Use	the	ForkLock.

				55	 //	2)	Socket.		Does	not	block.		Use	the	ForkLock.

				56	 //	3)	Accept.		If	using	non-blocking	mode,	use	the	ForkLock.

				57	 //													Otherwise,	live	with	the	race.

				58	 //	4)	Open.				Can	block.		Use	O_CLOEXEC	if	available	(Linux).

				59	 //													Otherwise,	live	with	the	race.

				60	 //	5)	Dup.					Does	not	block.		Use	the	ForkLock.

				61	 //													On	Linux,	could	use	fcntl	F_DUPFD_CLOEXEC

				62	 //													instead	of	the	ForkLock,	but	only	for	dup(fd,	-1).

				63	

				64	 var	ForkLock	sync.RWMutex

				65	

				66	 //	Convert	array	of	string	to	array

				67	 //	of	NUL-terminated	byte	pointer.

				68	 func	StringSlicePtr(ss	[]string)	[]*byte	{

				69	 	 bb	:=	make([]*byte,	len(ss)+1)

				70	 	 for	i	:=	0;	i	<	len(ss);	i++	{

				71	 	 	 bb[i]	=	StringBytePtr(ss[i])

				72	 	 }

				73	 	 bb[len(ss)]	=	nil

				74	 	 return	bb

				75	 }

				76	

				77	 func	CloseOnExec(fd	int)	{	fcntl(fd,	F_SETFD,	FD_CLOEXEC)	}

				78	

				79	 func	SetNonblock(fd	int,	nonblocking	bool)	(err	error)	{

				80	 	 flag,	err	:=	fcntl(fd,	F_GETFL,	0)

				81	 	 if	err	!=	nil	{

				82	 	 	 return	err

				83	 	 }

				84	 	 if	nonblocking	{

				85	 	 	 flag	|=	O_NONBLOCK

				86	 	 }	else	{

				87	 	 	 flag	&=	^O_NONBLOCK

				88	 	 }

				89	 	 _,	err	=	fcntl(fd,	F_SETFL,	flag)

				90	 	 return	err

				91	 }

				92	

				93	 //	Credential	holds	user	and	group	identities	to	be	assumed

				94	 //	by	a	child	process	started	by	StartProcess.

				95	 type	Credential	struct	{

				96	 	 Uid				uint32			//	User	ID.

				97	 	 Gid				uint32			//	Group	ID.

				98	 	 Groups	[]uint32	//	Supplementary	group	IDs.

				99	 }

			100	

			101	 //	ProcAttr	holds	attributes	that	will	be	applied	to	a	new	process	started

			102	 //	by	StartProcess.

			103	 type	ProcAttr	struct	{

			104	 	 Dir			string				//	Current	working	directory.

			105	 	 Env			[]string		//	Environment.

			106	 	 Files	[]uintptr	//	File	descriptors.

			107	 	 Sys			*SysProcAttr

			108	 }

			109	

			110	 var	zeroProcAttr	ProcAttr

			111	 var	zeroSysProcAttr	SysProcAttr

			112	

			113	 func	forkExec(argv0	string,	argv	[]string,	attr	*ProcAttr)	(pid	int,	err	error)	{

			114	 	 var	p	[2]int

			115	 	 var	n	int

			116	 	 var	err1	Errno

			117	 	 var	wstatus	WaitStatus

			118	

			119	 	 if	attr	==	nil	{

			120	 	 	 attr	=	&zeroProcAttr

			121	 	 }

			122	 	 sys	:=	attr.Sys

			123	 	 if	sys	==	nil	{

			124	 	 	 sys	=	&zeroSysProcAttr

			125	 	 }

			126	

			127	 	 p[0]	=	-1

			128	 	 p[1]	=	-1

			129	

			130	 	 //	Convert	args	to	C	form.

			131	 	 argv0p	:=	StringBytePtr(argv0)

			132	 	 argvp	:=	StringSlicePtr(argv)

			133	 	 envvp	:=	StringSlicePtr(attr.Env)

			134	

			135	 	 if	runtime.GOOS	==	"freebsd"	&&	len(argv[0])	>	len(argv0)	{

			136	 	 	 argvp[0]	=	argv0p

			137	 	 }

			138	

			139	 	 var	chroot	*byte

			140	 	 if	sys.Chroot	!=	""	{

			141	 	 	 chroot	=	StringBytePtr(sys.Chroot)

			142	 	 }

			143	 	 var	dir	*byte

			144	 	 if	attr.Dir	!=	""	{

			145	 	 	 dir	=	StringBytePtr(attr.Dir)

			146	 	 }

			147	

			148	 	 //	Acquire	the	fork	lock	so	that	no	other	threads

			149	 	 //	create	new	fds	that	are	not	yet	close-on-exec

			150	 	 //	before	we	fork.

			151	 	 ForkLock.Lock()

			152	

			153	 	 //	Allocate	child	status	pipe	close	on	exec.

			154	 	 if	err	=	Pipe(p[0:]);	err	!=	nil	{

			155	 	 	 goto	error

			156	 	 }

			157	 	 if	_,	err	=	fcntl(p[0],	F_SETFD,	FD_CLOEXEC);	err	!=	nil	{

			158	 	 	 goto	error

			159	 	 }

			160	 	 if	_,	err	=	fcntl(p[1],	F_SETFD,	FD_CLOEXEC);	err	!=	nil	{

			161	 	 	 goto	error

			162	 	 }

			163	

			164	 	 //	Kick	off	child.

			165	 	 pid,	err1	=	forkAndExecInChild(argv0p,	argvp,	envvp,	chroot,	dir,	attr,	sys,	p[1])

			166	 	 if	err1	!=	0	{

			167	 	 	 err	=	Errno(err1)

			168	 	 	 goto	error

			169	 	 }

			170	 	 ForkLock.Unlock()

			171	

			172	 	 //	Read	child	error	status	from	pipe.

			173	 	 Close(p[1])

			174	 	 n,	err	=	read(p[0],	(*byte)(unsafe.Pointer(&err1)),	int(unsafe.Sizeof(err1)))

			175	 	 Close(p[0])

			176	 	 if	err	!=	nil	||	n	!=	0	{

			177	 	 	 if	n	==	int(unsafe.Sizeof(err1))	{

			178	 	 	 	 err	=	Errno(err1)

			179	 	 	 }

			180	 	 	 if	err	==	nil	{

			181	 	 	 	 err	=	EPIPE

			182	 	 	 }

			183	

			184	 	 	 //	Child	failed;	wait	for	it	to	exit,	to	make	sure

			185	 	 	 //	the	zombies	don't	accumulate.

			186	 	 	 _,	err1	:=	Wait4(pid,	&wstatus,	0,	nil)

			187	 	 	 for	err1	==	EINTR	{

			188	 	 	 	 _,	err1	=	Wait4(pid,	&wstatus,	0,	nil)

			189	 	 	 }

			190	 	 	 return	0,	err

			191	 	 }

			192	

			193	 	 //	Read	got	EOF,	so	pipe	closed	on	exec,	so	exec	succeeded.

			194	 	 return	pid,	nil

			195	

			196	 error:

			197	 	 if	p[0]	>=	0	{

			198	 	 	 Close(p[0])

			199	 	 	 Close(p[1])

			200	 	 }

			201	 	 ForkLock.Unlock()

			202	 	 return	0,	err

			203	 }

			204	

			205	 //	Combination	of	fork	and	exec,	careful	to	be	thread	safe.

			206	 func	ForkExec(argv0	string,	argv	[]string,	attr	*ProcAttr)	(pid	int,	err	error)	{

			207	 	 return	forkExec(argv0,	argv,	attr)

			208	 }

			209	

			210	 //	StartProcess	wraps	ForkExec	for	package	os.

			211	 func	StartProcess(argv0	string,	argv	[]string,	attr	*ProcAttr)	(pid	int,	handle	uintptr,	err	error)	{

			212	 	 pid,	err	=	forkExec(argv0,	argv,	attr)

			213	 	 return	pid,	0,	err

			214	 }

			215	

			216	 //	Ordinary	exec.

			217	 func	Exec(argv0	string,	argv	[]string,	envv	[]string)	(err	error)	{

			218	 	 _,	_,	err1	:=	RawSyscall(SYS_EXECVE,

			219	 	 	 uintptr(unsafe.Pointer(StringBytePtr(argv0))),

			220	 	 	 uintptr(unsafe.Pointer(&StringSlicePtr(argv)[0])),

			221	 	 	 uintptr(unsafe.Pointer(&StringSlicePtr(envv)[0])))

			222	 	 return	Errno(err1)

			223	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/syscall/lsf_linux.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Linux	socket	filter

					6	

					7	 package	syscall

					8	

					9	 import	(

				10	 	 "unsafe"

				11)

				12	

				13	 func	LsfStmt(code,	k	int)	*SockFilter	{

				14	 	 return	&SockFilter{Code:	uint16(code),	K:	uint32(k)}

				15	 }

				16	

				17	 func	LsfJump(code,	k,	jt,	jf	int)	*SockFilter	{

				18	 	 return	&SockFilter{Code:	uint16(code),	Jt:	uint8(jt),	Jf:	uint8(jf),	K:	uint32(k)}

				19	 }

				20	

				21	 func	LsfSocket(ifindex,	proto	int)	(int,	error)	{

				22	 	 var	lsall	SockaddrLinklayer

				23	 	 s,	e	:=	Socket(AF_PACKET,	SOCK_RAW,	proto)

				24	 	 if	e	!=	nil	{

				25	 	 	 return	0,	e

				26	 	 }

				27	 	 p	:=	(*[2]byte)(unsafe.Pointer(&lsall.Protocol))

				28	 	 p[0]	=	byte(proto	>>	8)

				29	 	 p[1]	=	byte(proto)

				30	 	 lsall.Ifindex	=	ifindex

				31	 	 e	=	Bind(s,	&lsall)

				32	 	 if	e	!=	nil	{

				33	 	 	 Close(s)

				34	 	 	 return	0,	e

				35	 	 }

				36	 	 return	s,	nil

				37	 }

				38	

				39	 type	iflags	struct	{

				40	 	 name		[IFNAMSIZ]byte

				41	 	 flags	uint16

				42	 }

				43	

				44	 func	SetLsfPromisc(name	string,	m	bool)	error	{

				45	 	 s,	e	:=	Socket(AF_INET,	SOCK_DGRAM,	0)

				46	 	 if	e	!=	nil	{

				47	 	 	 return	e

				48	 	 }

				49	 	 defer	Close(s)

				50	 	 var	ifl	iflags

				51	 	 copy(ifl.name[:],	[]byte(name))

				52	 	 _,	_,	ep	:=	Syscall(SYS_IOCTL,	uintptr(s),	SIOCGIFFLAGS,	uintptr(unsafe.Pointer(&ifl)))

				53	 	 if	ep	!=	0	{

				54	 	 	 return	Errno(ep)

				55	 	 }

				56	 	 if	m	{

				57	 	 	 ifl.flags	|=	uint16(IFF_PROMISC)

				58	 	 }	else	{

				59	 	 	 ifl.flags	&=	^uint16(IFF_PROMISC)

				60	 	 }

				61	 	 _,	_,	ep	=	Syscall(SYS_IOCTL,	uintptr(s),	SIOCSIFFLAGS,	uintptr(unsafe.Pointer(&ifl)))

				62	 	 if	ep	!=	0	{

				63	 	 	 return	Errno(ep)

				64	 	 }

				65	 	 return	nil

				66	 }

				67	

				68	 func	AttachLsf(fd	int,	i	[]SockFilter)	error	{

				69	 	 var	p	SockFprog

				70	 	 p.Len	=	uint16(len(i))

				71	 	 p.Filter	=	(*SockFilter)(unsafe.Pointer(&i[0]))

				72	 	 return	setsockopt(fd,	SOL_SOCKET,	SO_ATTACH_FILTER,	uintptr(unsafe.Pointer(&p)),	unsafe.Sizeof(p))

				73	 }

				74	

				75	 func	DetachLsf(fd	int)	error	{

				76	 	 var	dummy	int

				77	 	 return	setsockopt(fd,	SOL_SOCKET,	SO_DETACH_FILTER,	uintptr(unsafe.Pointer(&dummy)),	unsafe.Sizeof(dummy))

				78	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/syscall/netlink_linux.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Netlink	sockets	and	messages

					6	

					7	 package	syscall

					8	

					9	 import	(

				10	 	 "unsafe"

				11)

				12	

				13	 //	Round	the	length	of	a	netlink	message	up	to	align	it	properly.

				14	 func	nlmAlignOf(msglen	int)	int	{

				15	 	 return	(msglen	+	NLMSG_ALIGNTO	-	1)	&	^(NLMSG_ALIGNTO	-	1)

				16	 }

				17	

				18	 //	Round	the	length	of	a	netlink	route	attribute	up	to	align	it

				19	 //	properly.

				20	 func	rtaAlignOf(attrlen	int)	int	{

				21	 	 return	(attrlen	+	RTA_ALIGNTO	-	1)	&	^(RTA_ALIGNTO	-	1)

				22	 }

				23	

				24	 //	NetlinkRouteRequest	represents	the	request	message	to	receive

				25	 //	routing	and	link	states	from	the	kernel.

				26	 type	NetlinkRouteRequest	struct	{

				27	 	 Header	NlMsghdr

				28	 	 Data			RtGenmsg

				29	 }

				30	

				31	 func	(rr	*NetlinkRouteRequest)	toWireFormat()	[]byte	{

				32	 	 b	:=	make([]byte,	rr.Header.Len)

				33	 	 b[0]	=	byte(rr.Header.Len)

				34	 	 b[1]	=	byte(rr.Header.Len	>>	8)

				35	 	 b[2]	=	byte(rr.Header.Len	>>	16)

				36	 	 b[3]	=	byte(rr.Header.Len	>>	24)

				37	 	 b[4]	=	byte(rr.Header.Type)

				38	 	 b[5]	=	byte(rr.Header.Type	>>	8)

				39	 	 b[6]	=	byte(rr.Header.Flags)

				40	 	 b[7]	=	byte(rr.Header.Flags	>>	8)

				41	 	 b[8]	=	byte(rr.Header.Seq)

				42	 	 b[9]	=	byte(rr.Header.Seq	>>	8)

				43	 	 b[10]	=	byte(rr.Header.Seq	>>	16)

				44	 	 b[11]	=	byte(rr.Header.Seq	>>	24)

				45	 	 b[12]	=	byte(rr.Header.Pid)

				46	 	 b[13]	=	byte(rr.Header.Pid	>>	8)

				47	 	 b[14]	=	byte(rr.Header.Pid	>>	16)

				48	 	 b[15]	=	byte(rr.Header.Pid	>>	24)

				49	 	 b[16]	=	byte(rr.Data.Family)

				50	 	 return	b

				51	 }

				52	

				53	 func	newNetlinkRouteRequest(proto,	seq,	family	int)	[]byte	{

				54	 	 rr	:=	&NetlinkRouteRequest{}

				55	 	 rr.Header.Len	=	NLMSG_HDRLEN	+	SizeofRtGenmsg

				56	 	 rr.Header.Type	=	uint16(proto)

				57	 	 rr.Header.Flags	=	NLM_F_DUMP	|	NLM_F_REQUEST

				58	 	 rr.Header.Seq	=	uint32(seq)

				59	 	 rr.Data.Family	=	uint8(family)

				60	 	 return	rr.toWireFormat()

				61	 }

				62	

				63	 //	NetlinkRIB	returns	routing	information	base,	as	known	as	RIB,

				64	 //	which	consists	of	network	facility	information,	states	and

				65	 //	parameters.

				66	 func	NetlinkRIB(proto,	family	int)	([]byte,	error)	{

				67	 	 var	(

				68	 	 	 lsanl	SockaddrNetlink

				69	 	 	 tab			[]byte

				70)

				71	

				72	 	 s,	e	:=	Socket(AF_NETLINK,	SOCK_RAW,	0)

				73	 	 if	e	!=	nil	{

				74	 	 	 return	nil,	e

				75	 	 }

				76	 	 defer	Close(s)

				77	

				78	 	 lsanl.Family	=	AF_NETLINK

				79	 	 e	=	Bind(s,	&lsanl)

				80	 	 if	e	!=	nil	{

				81	 	 	 return	nil,	e

				82	 	 }

				83	

				84	 	 seq	:=	1

				85	 	 wb	:=	newNetlinkRouteRequest(proto,	seq,	family)

				86	 	 e	=	Sendto(s,	wb,	0,	&lsanl)

				87	 	 if	e	!=	nil	{

				88	 	 	 return	nil,	e

				89	 	 }

				90	

				91	 	 for	{

				92	 	 	 var	(

				93	 	 	 	 rb		[]byte

				94	 	 	 	 nr		int

				95	 	 	 	 lsa	Sockaddr

				96)

				97	

				98	 	 	 rb	=	make([]byte,	Getpagesize())

				99	 	 	 nr,	_,	e	=	Recvfrom(s,	rb,	0)

			100	 	 	 if	e	!=	nil	{

			101	 	 	 	 return	nil,	e

			102	 	 	 }

			103	 	 	 if	nr	<	NLMSG_HDRLEN	{

			104	 	 	 	 return	nil,	EINVAL

			105	 	 	 }

			106	 	 	 rb	=	rb[:nr]

			107	 	 	 tab	=	append(tab,	rb...)

			108	

			109	 	 	 msgs,	_	:=	ParseNetlinkMessage(rb)

			110	 	 	 for	_,	m	:=	range	msgs	{

			111	 	 	 	 if	lsa,	e	=	Getsockname(s);	e	!=	nil	{

			112	 	 	 	 	 return	nil,	e

			113	 	 	 	 }

			114	 	 	 	 switch	v	:=	lsa.(type)	{

			115	 	 	 	 case	*SockaddrNetlink:

			116	 	 	 	 	 if	m.Header.Seq	!=	uint32(seq)	||	m.Header.Pid	!=	v.Pid	{

			117	 	 	 	 	 	 return	nil,	EINVAL

			118	 	 	 	 	 }

			119	 	 	 	 default:

			120	 	 	 	 	 return	nil,	EINVAL

			121	 	 	 	 }

			122	 	 	 	 if	m.Header.Type	==	NLMSG_DONE	{

			123	 	 	 	 	 goto	done

			124	 	 	 	 }

			125	 	 	 	 if	m.Header.Type	==	NLMSG_ERROR	{

			126	 	 	 	 	 return	nil,	EINVAL

			127	 	 	 	 }

			128	 	 	 }

			129	 	 }

			130	

			131	 done:

			132	 	 return	tab,	nil

			133	 }

			134	

			135	 //	NetlinkMessage	represents	the	netlink	message.

			136	 type	NetlinkMessage	struct	{

			137	 	 Header	NlMsghdr

			138	 	 Data			[]byte

			139	 }

			140	

			141	 //	ParseNetlinkMessage	parses	buf	as	netlink	messages	and	returns

			142	 //	the	slice	containing	the	NetlinkMessage	structs.

			143	 func	ParseNetlinkMessage(buf	[]byte)	([]NetlinkMessage,	error)	{

			144	 	 var	(

			145	 	 	 h				*NlMsghdr

			146	 	 	 dbuf	[]byte

			147	 	 	 dlen	int

			148	 	 	 e				error

			149	 	 	 msgs	[]NetlinkMessage

			150)

			151	

			152	 	 for	len(buf)	>=	NLMSG_HDRLEN	{

			153	 	 	 h,	dbuf,	dlen,	e	=	netlinkMessageHeaderAndData(buf)

			154	 	 	 if	e	!=	nil	{

			155	 	 	 	 break

			156	 	 	 }

			157	 	 	 m	:=	NetlinkMessage{}

			158	 	 	 m.Header	=	*h

			159	 	 	 m.Data	=	dbuf[:h.Len-NLMSG_HDRLEN]

			160	 	 	 msgs	=	append(msgs,	m)

			161	 	 	 buf	=	buf[dlen:]

			162	 	 }

			163	

			164	 	 return	msgs,	e

			165	 }

			166	

			167	 func	netlinkMessageHeaderAndData(buf	[]byte)	(*NlMsghdr,	[]byte,	int,	error)	{

			168	 	 h	:=	(*NlMsghdr)(unsafe.Pointer(&buf[0]))

			169	 	 if	h.Len	<	NLMSG_HDRLEN	||	int(h.Len)	>	len(buf)	{

			170	 	 	 return	nil,	nil,	0,	EINVAL

			171	 	 }

			172	 	 return	h,	buf[NLMSG_HDRLEN:],	nlmAlignOf(int(h.Len)),	nil

			173	 }

			174	

			175	 //	NetlinkRouteAttr	represents	the	netlink	route	attribute.

			176	 type	NetlinkRouteAttr	struct	{

			177	 	 Attr		RtAttr

			178	 	 Value	[]byte

			179	 }

			180	

			181	 //	ParseNetlinkRouteAttr	parses	msg's	payload	as	netlink	route

			182	 //	attributes	and	returns	the	slice	containing	the	NetlinkRouteAttr

			183	 //	structs.

			184	 func	ParseNetlinkRouteAttr(msg	*NetlinkMessage)	([]NetlinkRouteAttr,	error)	{

			185	 	 var	(

			186	 	 	 buf			[]byte

			187	 	 	 a					*RtAttr

			188	 	 	 alen		int

			189	 	 	 vbuf		[]byte

			190	 	 	 e					error

			191	 	 	 attrs	[]NetlinkRouteAttr

			192)

			193	

			194	 	 switch	msg.Header.Type	{

			195	 	 case	RTM_NEWLINK,	RTM_DELLINK:

			196	 	 	 buf	=	msg.Data[SizeofIfInfomsg:]

			197	 	 case	RTM_NEWADDR,	RTM_DELADDR:

			198	 	 	 buf	=	msg.Data[SizeofIfAddrmsg:]

			199	 	 case	RTM_NEWROUTE,	RTM_DELROUTE:

			200	 	 	 buf	=	msg.Data[SizeofRtMsg:]

			201	 	 default:

			202	 	 	 return	nil,	EINVAL

			203	 	 }

			204	

			205	 	 for	len(buf)	>=	SizeofRtAttr	{

			206	 	 	 a,	vbuf,	alen,	e	=	netlinkRouteAttrAndValue(buf)

			207	 	 	 if	e	!=	nil	{

			208	 	 	 	 break

			209	 	 	 }

			210	 	 	 ra	:=	NetlinkRouteAttr{}

			211	 	 	 ra.Attr	=	*a

			212	 	 	 ra.Value	=	vbuf[:a.Len-SizeofRtAttr]

			213	 	 	 attrs	=	append(attrs,	ra)

			214	 	 	 buf	=	buf[alen:]

			215	 	 }

			216	

			217	 	 return	attrs,	nil

			218	 }

			219	

			220	 func	netlinkRouteAttrAndValue(buf	[]byte)	(*RtAttr,	[]byte,	int,	error)	{

			221	 	 h	:=	(*RtAttr)(unsafe.Pointer(&buf[0]))

			222	 	 if	h.Len	<	SizeofRtAttr	||	int(h.Len)	>	len(buf)	{

			223	 	 	 return	nil,	nil,	0,	EINVAL

			224	 	 }

			225	 	 return	h,	buf[SizeofRtAttr:],	rtaAlignOf(int(h.Len)),	nil

			226	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/syscall/sockcmsg_linux.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Socket	control	messages

					6	

					7	 package	syscall

					8	

					9	 import	(

				10	 	 "unsafe"

				11)

				12	

				13	 //	UnixCredentials	encodes	credentials	into	a	socket	control	message

				14	 //	for	sending	to	another	process.	This	can	be	used	for

				15	 //	authentication.

				16	 func	UnixCredentials(ucred	*Ucred)	[]byte	{

				17	 	 buf	:=	make([]byte,	CmsgSpace(SizeofUcred))

				18	 	 cmsg	:=	(*Cmsghdr)(unsafe.Pointer(&buf[0]))

				19	 	 cmsg.Level	=	SOL_SOCKET

				20	 	 cmsg.Type	=	SCM_CREDENTIALS

				21	 	 cmsg.SetLen(CmsgLen(SizeofUcred))

				22	 	 *((*Ucred)(cmsgData(cmsg)))	=	*ucred

				23	 	 return	buf

				24	 }

				25	

				26	 //	ParseUnixCredentials	decodes	a	socket	control	message	that	contains

				27	 //	credentials	in	a	Ucred	structure.	To	receive	such	a	message,	the

				28	 //	SO_PASSCRED	option	must	be	enabled	on	the	socket.

				29	 func	ParseUnixCredentials(msg	*SocketControlMessage)	(*Ucred,	error)	{

				30	 	 if	msg.Header.Level	!=	SOL_SOCKET	{

				31	 	 	 return	nil,	EINVAL

				32	 	 }

				33	 	 if	msg.Header.Type	!=	SCM_CREDENTIALS	{

				34	 	 	 return	nil,	EINVAL

				35	 	 }

				36	 	 ucred	:=	*(*Ucred)(unsafe.Pointer(&msg.Data[0]))

				37	 	 return	&ucred,	nil

				38	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative

http://code.google.com/policies.html#restrictions

Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/syscall/sockcmsg_unix.go
					1	 //	Copyright	2011	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 //	Socket	control	messages

					8	

					9	 package	syscall

				10	

				11	 import	(

				12	 	 "unsafe"

				13)

				14	

				15	 //	Round	the	length	of	a	raw	sockaddr	up	to	align	it	propery.

				16	 func	cmsgAlignOf(salen	int)	int	{

				17	 	 salign	:=	sizeofPtr

				18	 	 //	NOTE:	It	seems	like	64-bit	Darwin	kernel	still	requires	32-bit

				19	 	 //	aligned	access	to	BSD	subsystem.

				20	 	 if	darwinAMD64	{

				21	 	 	 salign	=	4

				22	 	 }

				23	 	 if	salen	==	0	{

				24	 	 	 return	salign

				25	 	 }

				26	 	 return	(salen	+	salign	-	1)	&	^(salign	-	1)

				27	 }

				28	

				29	 //	CmsgLen	returns	the	value	to	store	in	the	Len	field	of	the	Cmsghdr

				30	 //	structure,	taking	into	account	any	necessary	alignment.

				31	 func	CmsgLen(datalen	int)	int	{

				32	 	 return	cmsgAlignOf(SizeofCmsghdr)	+	datalen

				33	 }

				34	

				35	 //	CmsgSpace	returns	the	number	of	bytes	an	ancillary	element	with

				36	 //	payload	of	the	passed	data	length	occupies.

				37	 func	CmsgSpace(datalen	int)	int	{

				38	 	 return	cmsgAlignOf(SizeofCmsghdr)	+	cmsgAlignOf(datalen)

				39	 }

				40	

				41	 func	cmsgData(cmsg	*Cmsghdr)	unsafe.Pointer	{

				42	 	 return	unsafe.Pointer(uintptr(unsafe.Pointer(cmsg))	+	SizeofCmsghdr)

				43	 }

				44	

				45	 type	SocketControlMessage	struct	{

				46	 	 Header	Cmsghdr

				47	 	 Data			[]byte

				48	 }

				49	

				50	 func	ParseSocketControlMessage(buf	[]byte)	([]SocketControlMessage,	error)	{

				51	 	 var	(

				52	 	 	 h					*Cmsghdr

				53	 	 	 dbuf		[]byte

				54	 	 	 e					error

				55	 	 	 cmsgs	[]SocketControlMessage

				56)

				57	

				58	 	 for	len(buf)	>=	CmsgLen(0)	{

				59	 	 	 h,	dbuf,	e	=	socketControlMessageHeaderAndData(buf)

				60	 	 	 if	e	!=	nil	{

				61	 	 	 	 break

				62	 	 	 }

				63	 	 	 m	:=	SocketControlMessage{}

				64	 	 	 m.Header	=	*h

				65	 	 	 m.Data	=	dbuf[:int(h.Len)-cmsgAlignOf(SizeofCmsghdr)]

				66	 	 	 cmsgs	=	append(cmsgs,	m)

				67	 	 	 buf	=	buf[cmsgAlignOf(int(h.Len)):]

				68	 	 }

				69	

				70	 	 return	cmsgs,	e

				71	 }

				72	

				73	 func	socketControlMessageHeaderAndData(buf	[]byte)	(*Cmsghdr,	[]byte,	error)	{

				74	 	 h	:=	(*Cmsghdr)(unsafe.Pointer(&buf[0]))

				75	 	 if	h.Len	<	SizeofCmsghdr	||	int(h.Len)	>	len(buf)	{

				76	 	 	 return	nil,	nil,	EINVAL

				77	 	 }

				78	 	 return	h,	buf[cmsgAlignOf(SizeofCmsghdr):],	nil

				79	 }

				80	

				81	 //	UnixRights	encodes	a	set	of	open	file	descriptors	into	a	socket

				82	 //	control	message	for	sending	to	another	process.

				83	 func	UnixRights(fds	...int)	[]byte	{

				84	 	 datalen	:=	len(fds)	*	4

				85	 	 buf	:=	make([]byte,	CmsgSpace(datalen))

				86	 	 cmsg	:=	(*Cmsghdr)(unsafe.Pointer(&buf[0]))

				87	 	 cmsg.Level	=	SOL_SOCKET

				88	 	 cmsg.Type	=	SCM_RIGHTS

				89	 	 cmsg.SetLen(CmsgLen(datalen))

				90	

				91	 	 data	:=	uintptr(cmsgData(cmsg))

				92	 	 for	_,	fd	:=	range	fds	{

				93	 	 	 *(*int32)(unsafe.Pointer(data))	=	int32(fd)

				94	 	 	 data	+=	4

				95	 	 }

				96	

				97	 	 return	buf

				98	 }

				99	

			100	 //	ParseUnixRights	decodes	a	socket	control	message	that	contains	an

			101	 //	integer	array	of	open	file	descriptors	from	another	process.

			102	 func	ParseUnixRights(msg	*SocketControlMessage)	([]int,	error)	{

			103	 	 if	msg.Header.Level	!=	SOL_SOCKET	{

			104	 	 	 return	nil,	EINVAL

			105	 	 }

			106	 	 if	msg.Header.Type	!=	SCM_RIGHTS	{

			107	 	 	 return	nil,	EINVAL

			108	 	 }

			109	 	 fds	:=	make([]int,	len(msg.Data)>>2)

			110	 	 for	i,	j	:=	0,	0;	i	<	len(msg.Data);	i	+=	4	{

			111	 	 	 fds[j]	=	int(*(*int32)(unsafe.Pointer(&msg.Data[i])))

			112	 	 	 j++

			113	 	 }

			114	 	 return	fds,	nil

			115	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/syscall/str.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	syscall

					6	

					7	 func	itoa(val	int)	string	{	//	do	it	here	rather	than	with	fmt	to	avoid	dependency

					8	 	 if	val	<	0	{

					9	 	 	 return	"-"	+	itoa(-val)

				10	 	 }

				11	 	 var	buf	[32]byte	//	big	enough	for	int64

				12	 	 i	:=	len(buf)	-	1

				13	 	 for	val	>=	10	{

				14	 	 	 buf[i]	=	byte(val%10	+	'0')

				15	 	 	 i--

				16	 	 	 val	/=	10

				17	 	 }

				18	 	 buf[i]	=	byte(val	+	'0')

				19	 	 return	string(buf[i:])

				20	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/syscall/syscall.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	syscall	contains	an	interface	to	the	low-level	operating	system

					6	 //	primitives.		The	details	vary	depending	on	the	underlying	system.

					7	 //	Its	primary	use	is	inside	other	packages	that	provide	a	more	portable

					8	 //	interface	to	the	system,	such	as	"os",	"time"	and	"net".		Use	those

					9	 //	packages	rather	than	this	one	if	you	can.

				10	 //	For	details	of	the	functions	and	data	types	in	this	package	consult

				11	 //	the	manuals	for	the	appropriate	operating	system.

				12	 //	These	calls	return	err	==	nil	to	indicate	success;	otherwise

				13	 //	err	is	an	operating	system	error	describing	the	failure.

				14	 //	On	most	systems,	that	error	has	type	syscall.Errno.

				15	 package	syscall

				16	

				17	 //	StringByteSlice	returns	a	NUL-terminated	slice	of	bytes

				18	 //	containing	the	text	of	s.

				19	 func	StringByteSlice(s	string)	[]byte	{

				20	 	 a	:=	make([]byte,	len(s)+1)

				21	 	 copy(a,	s)

				22	 	 return	a

				23	 }

				24	

				25	 //	StringBytePtr	returns	a	pointer	to	a	NUL-terminated	array	of	bytes

				26	 //	containing	the	text	of	s.

				27	 func	StringBytePtr(s	string)	*byte	{	return	&StringByteSlice(s)[0]	}

				28	

				29	 //	Single-word	zero	for	use	when	we	need	a	valid	pointer	to	0	bytes.

				30	 //	See	mksyscall.pl.

				31	 var	_zero	uintptr

				32	

				33	 func	(ts	*Timespec)	Unix()	(sec	int64,	nsec	int64)	{

				34	 	 return	int64(ts.Sec),	int64(ts.Nsec)

				35	 }

				36	

				37	 func	(tv	*Timeval)	Unix()	(sec	int64,	nsec	int64)	{

				38	 	 return	int64(tv.Sec),	int64(tv.Usec)	*	1000

				39	 }

				40	

				41	 func	(ts	*Timespec)	Nano()	int64	{

				42	 	 return	int64(ts.Sec)*1e9	+	int64(ts.Nsec)

				43	 }

				44	

				45	 func	(tv	*Timeval)	Nano()	int64	{

				46	 	 return	int64(tv.Sec)*1e9	+	int64(tv.Usec)*1000

				47	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/syscall/syscall_linux.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Linux	system	calls.

					6	 //	This	file	is	compiled	as	ordinary	Go	code,

					7	 //	but	it	is	also	input	to	mksyscall,

					8	 //	which	parses	the	//sys	lines	and	generates	system	call	stubs.

					9	 //	Note	that	sometimes	we	use	a	lowercase	//sys	name	and

				10	 //	wrap	it	in	our	own	nicer	implementation.

				11	

				12	 package	syscall

				13	

				14	 import	"unsafe"

				15	

				16	 /*

				17	 	*	Wrapped

				18	 	*/

				19	

				20	 //sys	 open(path	string,	mode	int,	perm	uint32)	(fd	int,	err	error)

				21	 func	Open(path	string,	mode	int,	perm	uint32)	(fd	int,	err	error)	{

				22	 	 return	open(path,	mode|O_LARGEFILE,	perm)

				23	 }

				24	

				25	 //sys	 openat(dirfd	int,	path	string,	flags	int,	mode	uint32)	(fd	int,	err	error)

				26	 func	Openat(dirfd	int,	path	string,	flags	int,	mode	uint32)	(fd	int,	err	error)	{

				27	 	 return	openat(dirfd,	path,	flags|O_LARGEFILE,	mode)

				28	 }

				29	

				30	 //sysnb	pipe(p	*[2]_C_int)	(err	error)

				31	 func	Pipe(p	[]int)	(err	error)	{

				32	 	 if	len(p)	!=	2	{

				33	 	 	 return	EINVAL

				34	 	 }

				35	 	 var	pp	[2]_C_int

				36	 	 err	=	pipe(&pp)

				37	 	 p[0]	=	int(pp[0])

				38	 	 p[1]	=	int(pp[1])

				39	 	 return

				40	 }

				41	

				42	 //sys	 utimes(path	string,	times	*[2]Timeval)	(err	error)

				43	 func	Utimes(path	string,	tv	[]Timeval)	(err	error)	{

				44	 	 if	len(tv)	!=	2	{

				45	 	 	 return	EINVAL

				46	 	 }

				47	 	 return	utimes(path,	(*[2]Timeval)(unsafe.Pointer(&tv[0])))

				48	 }

				49	

				50	 //sys	 futimesat(dirfd	int,	path	*byte,	times	*[2]Timeval)	(err	error)

				51	 func	Futimesat(dirfd	int,	path	string,	tv	[]Timeval)	(err	error)	{

				52	 	 if	len(tv)	!=	2	{

				53	 	 	 return	EINVAL

				54	 	 }

				55	 	 return	futimesat(dirfd,	StringBytePtr(path),	(*[2]Timeval)(unsafe.Pointer(&tv[0])))

				56	 }

				57	

				58	 func	Futimes(fd	int,	tv	[]Timeval)	(err	error)	{

				59	 	 //	Believe	it	or	not,	this	is	the	best	we	can	do	on	Linux

				60	 	 //	(and	is	what	glibc	does).

				61	 	 return	Utimes("/proc/self/fd/"+itoa(fd),	tv)

				62	 }

				63	

				64	 const	ImplementsGetwd	=	true

				65	

				66	 //sys	 Getcwd(buf	[]byte)	(n	int,	err	error)

				67	 func	Getwd()	(wd	string,	err	error)	{

				68	 	 var	buf	[PathMax]byte

				69	 	 n,	err	:=	Getcwd(buf[0:])

				70	 	 if	err	!=	nil	{

				71	 	 	 return	"",	err

				72	 	 }

				73	 	 //	Getcwd	returns	the	number	of	bytes	written	to	buf,	including	the	NUL.

				74	 	 if	n	<	1	||	n	>	len(buf)	||	buf[n-1]	!=	0	{

				75	 	 	 return	"",	EINVAL

				76	 	 }

				77	 	 return	string(buf[0	:	n-1]),	nil

				78	 }

				79	

				80	 func	Getgroups()	(gids	[]int,	err	error)	{

				81	 	 n,	err	:=	getgroups(0,	nil)

				82	 	 if	err	!=	nil	{

				83	 	 	 return	nil,	err

				84	 	 }

				85	 	 if	n	==	0	{

				86	 	 	 return	nil,	nil

				87	 	 }

				88	

				89	 	 //	Sanity	check	group	count.		Max	is	1<<16	on	Linux.

				90	 	 if	n	<	0	||	n	>	1<<20	{

				91	 	 	 return	nil,	EINVAL

				92	 	 }

				93	

				94	 	 a	:=	make([]_Gid_t,	n)

				95	 	 n,	err	=	getgroups(n,	&a[0])

				96	 	 if	err	!=	nil	{

				97	 	 	 return	nil,	err

				98	 	 }

				99	 	 gids	=	make([]int,	n)

			100	 	 for	i,	v	:=	range	a[0:n]	{

			101	 	 	 gids[i]	=	int(v)

			102	 	 }

			103	 	 return

			104	 }

			105	

			106	 func	Setgroups(gids	[]int)	(err	error)	{

			107	 	 if	len(gids)	==	0	{

			108	 	 	 return	setgroups(0,	nil)

			109	 	 }

			110	

			111	 	 a	:=	make([]_Gid_t,	len(gids))

			112	 	 for	i,	v	:=	range	gids	{

			113	 	 	 a[i]	=	_Gid_t(v)

			114	 	 }

			115	 	 return	setgroups(len(a),	&a[0])

			116	 }

			117	

			118	 type	WaitStatus	uint32

			119	

			120	 //	Wait	status	is	7	bits	at	bottom,	either	0	(exited),

			121	 //	0x7F	(stopped),	or	a	signal	number	that	caused	an	exit.

			122	 //	The	0x80	bit	is	whether	there	was	a	core	dump.

			123	 //	An	extra	number	(exit	code,	signal	causing	a	stop)

			124	 //	is	in	the	high	bits.		At	least	that's	the	idea.

			125	 //	There	are	various	irregularities.		For	example,	the

			126	 //	"continued"	status	is	0xFFFF,	distinguishing	itself

			127	 //	from	stopped	via	the	core	dump	bit.

			128	

			129	 const	(

			130	 	 mask				=	0x7F

			131	 	 core				=	0x80

			132	 	 exited		=	0x00

			133	 	 stopped	=	0x7F

			134	 	 shift			=	8

			135)

			136	

			137	 func	(w	WaitStatus)	Exited()	bool	{	return	w&mask	==	exited	}

			138	

			139	 func	(w	WaitStatus)	Signaled()	bool	{	return	w&mask	!=	stopped	&&	w&mask	!=	exited	}

			140	

			141	 func	(w	WaitStatus)	Stopped()	bool	{	return	w&0xFF	==	stopped	}

			142	

			143	 func	(w	WaitStatus)	Continued()	bool	{	return	w	==	0xFFFF	}

			144	

			145	 func	(w	WaitStatus)	CoreDump()	bool	{	return	w.Signaled()	&&	w&core	!=	0	}

			146	

			147	 func	(w	WaitStatus)	ExitStatus()	int	{

			148	 	 if	!w.Exited()	{

			149	 	 	 return	-1

			150	 	 }

			151	 	 return	int(w>>shift)	&	0xFF

			152	 }

			153	

			154	 func	(w	WaitStatus)	Signal()	Signal	{

			155	 	 if	!w.Signaled()	{

			156	 	 	 return	-1

			157	 	 }

			158	 	 return	Signal(w	&	mask)

			159	 }

			160	

			161	 func	(w	WaitStatus)	StopSignal()	Signal	{

			162	 	 if	!w.Stopped()	{

			163	 	 	 return	-1

			164	 	 }

			165	 	 return	Signal(w>>shift)	&	0xFF

			166	 }

			167	

			168	 func	(w	WaitStatus)	TrapCause()	int	{

			169	 	 if	w.StopSignal()	!=	SIGTRAP	{

			170	 	 	 return	-1

			171	 	 }

			172	 	 return	int(w>>shift)	>>	8

			173	 }

			174	

			175	 //sys	 wait4(pid	int,	wstatus	*_C_int,	options	int,	rusage	*Rusage)	(wpid	int,	err	error)

			176	 func	Wait4(pid	int,	wstatus	*WaitStatus,	options	int,	rusage	*Rusage)	(wpid	int,	err	error)	{

			177	 	 var	status	_C_int

			178	 	 wpid,	err	=	wait4(pid,	&status,	options,	rusage)

			179	 	 if	wstatus	!=	nil	{

			180	 	 	 *wstatus	=	WaitStatus(status)

			181	 	 }

			182	 	 return

			183	 }

			184	

			185	 func	Mkfifo(path	string,	mode	uint32)	(err	error)	{

			186	 	 return	Mknod(path,	mode|S_IFIFO,	0)

			187	 }

			188	

			189	 //	For	testing:	clients	can	set	this	flag	to	force

			190	 //	creation	of	IPv6	sockets	to	return	EAFNOSUPPORT.

			191	 var	SocketDisableIPv6	bool

			192	

			193	 type	Sockaddr	interface	{

			194	 	 sockaddr()	(ptr	uintptr,	len	_Socklen,	err	error)	//	lowercase;	only	we	can	define	Sockaddrs

			195	 }

			196	

			197	 type	SockaddrInet4	struct	{

			198	 	 Port	int

			199	 	 Addr	[4]byte

			200	 	 raw		RawSockaddrInet4

			201	 }

			202	

			203	 func	(sa	*SockaddrInet4)	sockaddr()	(uintptr,	_Socklen,	error)	{

			204	 	 if	sa.Port	<	0	||	sa.Port	>	0xFFFF	{

			205	 	 	 return	0,	0,	EINVAL

			206	 	 }

			207	 	 sa.raw.Family	=	AF_INET

			208	 	 p	:=	(*[2]byte)(unsafe.Pointer(&sa.raw.Port))

			209	 	 p[0]	=	byte(sa.Port	>>	8)

			210	 	 p[1]	=	byte(sa.Port)

			211	 	 for	i	:=	0;	i	<	len(sa.Addr);	i++	{

			212	 	 	 sa.raw.Addr[i]	=	sa.Addr[i]

			213	 	 }

			214	 	 return	uintptr(unsafe.Pointer(&sa.raw)),	SizeofSockaddrInet4,	nil

			215	 }

			216	

			217	 type	SockaddrInet6	struct	{

			218	 	 Port			int

			219	 	 ZoneId	uint32

			220	 	 Addr			[16]byte

			221	 	 raw				RawSockaddrInet6

			222	 }

			223	

			224	 func	(sa	*SockaddrInet6)	sockaddr()	(uintptr,	_Socklen,	error)	{

			225	 	 if	sa.Port	<	0	||	sa.Port	>	0xFFFF	{

			226	 	 	 return	0,	0,	EINVAL

			227	 	 }

			228	 	 sa.raw.Family	=	AF_INET6

			229	 	 p	:=	(*[2]byte)(unsafe.Pointer(&sa.raw.Port))

			230	 	 p[0]	=	byte(sa.Port	>>	8)

			231	 	 p[1]	=	byte(sa.Port)

			232	 	 sa.raw.Scope_id	=	sa.ZoneId

			233	 	 for	i	:=	0;	i	<	len(sa.Addr);	i++	{

			234	 	 	 sa.raw.Addr[i]	=	sa.Addr[i]

			235	 	 }

			236	 	 return	uintptr(unsafe.Pointer(&sa.raw)),	SizeofSockaddrInet6,	nil

			237	 }

			238	

			239	 type	SockaddrUnix	struct	{

			240	 	 Name	string

			241	 	 raw		RawSockaddrUnix

			242	 }

			243	

			244	 func	(sa	*SockaddrUnix)	sockaddr()	(uintptr,	_Socklen,	error)	{

			245	 	 name	:=	sa.Name

			246	 	 n	:=	len(name)

			247	 	 if	n	>=	len(sa.raw.Path)	||	n	==	0	{

			248	 	 	 return	0,	0,	EINVAL

			249	 	 }

			250	 	 sa.raw.Family	=	AF_UNIX

			251	 	 for	i	:=	0;	i	<	n;	i++	{

			252	 	 	 sa.raw.Path[i]	=	int8(name[i])

			253	 	 }

			254	 	 //	length	is	family	(uint16),	name,	NUL.

			255	 	 sl	:=	2	+	_Socklen(n)	+	1

			256	 	 if	sa.raw.Path[0]	==	'@'	{

			257	 	 	 sa.raw.Path[0]	=	0

			258	 	 	 //	Don't	count	trailing	NUL	for	abstract	address.

			259	 	 	 sl--

			260	 	 }

			261	

			262	 	 return	uintptr(unsafe.Pointer(&sa.raw)),	sl,	nil

			263	 }

			264	

			265	 type	SockaddrLinklayer	struct	{

			266	 	 Protocol	uint16

			267	 	 Ifindex		int

			268	 	 Hatype			uint16

			269	 	 Pkttype		uint8

			270	 	 Halen				uint8

			271	 	 Addr					[8]byte

			272	 	 raw						RawSockaddrLinklayer

			273	 }

			274	

			275	 func	(sa	*SockaddrLinklayer)	sockaddr()	(uintptr,	_Socklen,	error)	{

			276	 	 if	sa.Ifindex	<	0	||	sa.Ifindex	>	0x7fffffff	{

			277	 	 	 return	0,	0,	EINVAL

			278	 	 }

			279	 	 sa.raw.Family	=	AF_PACKET

			280	 	 sa.raw.Protocol	=	sa.Protocol

			281	 	 sa.raw.Ifindex	=	int32(sa.Ifindex)

			282	 	 sa.raw.Hatype	=	sa.Hatype

			283	 	 sa.raw.Pkttype	=	sa.Pkttype

			284	 	 sa.raw.Halen	=	sa.Halen

			285	 	 for	i	:=	0;	i	<	len(sa.Addr);	i++	{

			286	 	 	 sa.raw.Addr[i]	=	sa.Addr[i]

			287	 	 }

			288	 	 return	uintptr(unsafe.Pointer(&sa.raw)),	SizeofSockaddrLinklayer,	nil

			289	 }

			290	

			291	 type	SockaddrNetlink	struct	{

			292	 	 Family	uint16

			293	 	 Pad				uint16

			294	 	 Pid				uint32

			295	 	 Groups	uint32

			296	 	 raw				RawSockaddrNetlink

			297	 }

			298	

			299	 func	(sa	*SockaddrNetlink)	sockaddr()	(uintptr,	_Socklen,	error)	{

			300	 	 sa.raw.Family	=	AF_NETLINK

			301	 	 sa.raw.Pad	=	sa.Pad

			302	 	 sa.raw.Pid	=	sa.Pid

			303	 	 sa.raw.Groups	=	sa.Groups

			304	 	 return	uintptr(unsafe.Pointer(&sa.raw)),	SizeofSockaddrNetlink,	nil

			305	 }

			306	

			307	 func	anyToSockaddr(rsa	*RawSockaddrAny)	(Sockaddr,	error)	{

			308	 	 switch	rsa.Addr.Family	{

			309	 	 case	AF_NETLINK:

			310	 	 	 pp	:=	(*RawSockaddrNetlink)(unsafe.Pointer(rsa))

			311	 	 	 sa	:=	new(SockaddrNetlink)

			312	 	 	 sa.Family	=	pp.Family

			313	 	 	 sa.Pad	=	pp.Pad

			314	 	 	 sa.Pid	=	pp.Pid

			315	 	 	 sa.Groups	=	pp.Groups

			316	 	 	 return	sa,	nil

			317	

			318	 	 case	AF_PACKET:

			319	 	 	 pp	:=	(*RawSockaddrLinklayer)(unsafe.Pointer(rsa))

			320	 	 	 sa	:=	new(SockaddrLinklayer)

			321	 	 	 sa.Protocol	=	pp.Protocol

			322	 	 	 sa.Ifindex	=	int(pp.Ifindex)

			323	 	 	 sa.Hatype	=	pp.Hatype

			324	 	 	 sa.Pkttype	=	pp.Pkttype

			325	 	 	 sa.Halen	=	pp.Halen

			326	 	 	 for	i	:=	0;	i	<	len(sa.Addr);	i++	{

			327	 	 	 	 sa.Addr[i]	=	pp.Addr[i]

			328	 	 	 }

			329	 	 	 return	sa,	nil

			330	

			331	 	 case	AF_UNIX:

			332	 	 	 pp	:=	(*RawSockaddrUnix)(unsafe.Pointer(rsa))

			333	 	 	 sa	:=	new(SockaddrUnix)

			334	 	 	 if	pp.Path[0]	==	0	{

			335	 	 	 	 //	"Abstract"	Unix	domain	socket.

			336	 	 	 	 //	Rewrite	leading	NUL	as	@	for	textual	display.

			337	 	 	 	 //	(This	is	the	standard	convention.)

			338	 	 	 	 //	Not	friendly	to	overwrite	in	place,

			339	 	 	 	 //	but	the	callers	below	don't	care.

			340	 	 	 	 pp.Path[0]	=	'@'

			341	 	 	 }

			342	

			343	 	 	 //	Assume	path	ends	at	NUL.

			344	 	 	 //	This	is	not	technically	the	Linux	semantics	for

			345	 	 	 //	abstract	Unix	domain	sockets--they	are	supposed

			346	 	 	 //	to	be	uninterpreted	fixed-size	binary	blobs--but

			347	 	 	 //	everyone	uses	this	convention.

			348	 	 	 n	:=	0

			349	 	 	 for	n	<	len(pp.Path)	&&	pp.Path[n]	!=	0	{

			350	 	 	 	 n++

			351	 	 	 }

			352	 	 	 bytes	:=	(*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]

			353	 	 	 sa.Name	=	string(bytes)

			354	 	 	 return	sa,	nil

			355	

			356	 	 case	AF_INET:

			357	 	 	 pp	:=	(*RawSockaddrInet4)(unsafe.Pointer(rsa))

			358	 	 	 sa	:=	new(SockaddrInet4)

			359	 	 	 p	:=	(*[2]byte)(unsafe.Pointer(&pp.Port))

			360	 	 	 sa.Port	=	int(p[0])<<8	+	int(p[1])

			361	 	 	 for	i	:=	0;	i	<	len(sa.Addr);	i++	{

			362	 	 	 	 sa.Addr[i]	=	pp.Addr[i]

			363	 	 	 }

			364	 	 	 return	sa,	nil

			365	

			366	 	 case	AF_INET6:

			367	 	 	 pp	:=	(*RawSockaddrInet6)(unsafe.Pointer(rsa))

			368	 	 	 sa	:=	new(SockaddrInet6)

			369	 	 	 p	:=	(*[2]byte)(unsafe.Pointer(&pp.Port))

			370	 	 	 sa.Port	=	int(p[0])<<8	+	int(p[1])

			371	 	 	 sa.ZoneId	=	pp.Scope_id

			372	 	 	 for	i	:=	0;	i	<	len(sa.Addr);	i++	{

			373	 	 	 	 sa.Addr[i]	=	pp.Addr[i]

			374	 	 	 }

			375	 	 	 return	sa,	nil

			376	 	 }

			377	 	 return	nil,	EAFNOSUPPORT

			378	 }

			379	

			380	 func	Accept(fd	int)	(nfd	int,	sa	Sockaddr,	err	error)	{

			381	 	 var	rsa	RawSockaddrAny

			382	 	 var	len	_Socklen	=	SizeofSockaddrAny

			383	 	 nfd,	err	=	accept(fd,	&rsa,	&len)

			384	 	 if	err	!=	nil	{

			385	 	 	 return

			386	 	 }

			387	 	 sa,	err	=	anyToSockaddr(&rsa)

			388	 	 if	err	!=	nil	{

			389	 	 	 Close(nfd)

			390	 	 	 nfd	=	0

			391	 	 }

			392	 	 return

			393	 }

			394	

			395	 func	Getsockname(fd	int)	(sa	Sockaddr,	err	error)	{

			396	 	 var	rsa	RawSockaddrAny

			397	 	 var	len	_Socklen	=	SizeofSockaddrAny

			398	 	 if	err	=	getsockname(fd,	&rsa,	&len);	err	!=	nil	{

			399	 	 	 return

			400	 	 }

			401	 	 return	anyToSockaddr(&rsa)

			402	 }

			403	

			404	 func	Getpeername(fd	int)	(sa	Sockaddr,	err	error)	{

			405	 	 var	rsa	RawSockaddrAny

			406	 	 var	len	_Socklen	=	SizeofSockaddrAny

			407	 	 if	err	=	getpeername(fd,	&rsa,	&len);	err	!=	nil	{

			408	 	 	 return

			409	 	 }

			410	 	 return	anyToSockaddr(&rsa)

			411	 }

			412	

			413	 func	Bind(fd	int,	sa	Sockaddr)	(err	error)	{

			414	 	 ptr,	n,	err	:=	sa.sockaddr()

			415	 	 if	err	!=	nil	{

			416	 	 	 return	err

			417	 	 }

			418	 	 return	bind(fd,	ptr,	n)

			419	 }

			420	

			421	 func	Connect(fd	int,	sa	Sockaddr)	(err	error)	{

			422	 	 ptr,	n,	err	:=	sa.sockaddr()

			423	 	 if	err	!=	nil	{

			424	 	 	 return	err

			425	 	 }

			426	 	 return	connect(fd,	ptr,	n)

			427	 }

			428	

			429	 func	Socket(domain,	typ,	proto	int)	(fd	int,	err	error)	{

			430	 	 if	domain	==	AF_INET6	&&	SocketDisableIPv6	{

			431	 	 	 return	-1,	EAFNOSUPPORT

			432	 	 }

			433	 	 fd,	err	=	socket(domain,	typ,	proto)

			434	 	 return

			435	 }

			436	

			437	 func	Socketpair(domain,	typ,	proto	int)	(fd	[2]int,	err	error)	{

			438	 	 err	=	socketpair(domain,	typ,	proto,	&fd)

			439	 	 return

			440	 }

			441	

			442	 func	GetsockoptInt(fd,	level,	opt	int)	(value	int,	err	error)	{

			443	 	 var	n	int32

			444	 	 vallen	:=	_Socklen(4)

			445	 	 err	=	getsockopt(fd,	level,	opt,	uintptr(unsafe.Pointer(&n)),	&vallen)

			446	 	 return	int(n),	err

			447	 }

			448	

			449	 func	GetsockoptInet4Addr(fd,	level,	opt	int)	(value	[4]byte,	err	error)	{

			450	 	 vallen	:=	_Socklen(4)

			451	 	 err	=	getsockopt(fd,	level,	opt,	uintptr(unsafe.Pointer(&value[0])),	&vallen)

			452	 	 return	value,	err

			453	 }

			454	

			455	 func	GetsockoptIPMreq(fd,	level,	opt	int)	(*IPMreq,	error)	{

			456	 	 var	value	IPMreq

			457	 	 vallen	:=	_Socklen(SizeofIPMreq)

			458	 	 err	:=	getsockopt(fd,	level,	opt,	uintptr(unsafe.Pointer(&value)),	&vallen)

			459	 	 return	&value,	err

			460	 }

			461	

			462	 func	GetsockoptIPMreqn(fd,	level,	opt	int)	(*IPMreqn,	error)	{

			463	 	 var	value	IPMreqn

			464	 	 vallen	:=	_Socklen(SizeofIPMreqn)

			465	 	 err	:=	getsockopt(fd,	level,	opt,	uintptr(unsafe.Pointer(&value)),	&vallen)

			466	 	 return	&value,	err

			467	 }

			468	

			469	 func	GetsockoptIPv6Mreq(fd,	level,	opt	int)	(*IPv6Mreq,	error)	{

			470	 	 var	value	IPv6Mreq

			471	 	 vallen	:=	_Socklen(SizeofIPv6Mreq)

			472	 	 err	:=	getsockopt(fd,	level,	opt,	uintptr(unsafe.Pointer(&value)),	&vallen)

			473	 	 return	&value,	err

			474	 }

			475	

			476	 func	SetsockoptInt(fd,	level,	opt	int,	value	int)	(err	error)	{

			477	 	 var	n	=	int32(value)

			478	 	 return	setsockopt(fd,	level,	opt,	uintptr(unsafe.Pointer(&n)),	4)

			479	 }

			480	

			481	 func	SetsockoptInet4Addr(fd,	level,	opt	int,	value	[4]byte)	(err	error)	{

			482	 	 return	setsockopt(fd,	level,	opt,	uintptr(unsafe.Pointer(&value[0])),	4)

			483	 }

			484	

			485	 func	SetsockoptTimeval(fd,	level,	opt	int,	tv	*Timeval)	(err	error)	{

			486	 	 return	setsockopt(fd,	level,	opt,	uintptr(unsafe.Pointer(tv)),	unsafe.Sizeof(*tv))

			487	 }

			488	

			489	 func	SetsockoptLinger(fd,	level,	opt	int,	l	*Linger)	(err	error)	{

			490	 	 return	setsockopt(fd,	level,	opt,	uintptr(unsafe.Pointer(l)),	unsafe.Sizeof(*l))

			491	 }

			492	

			493	 func	SetsockoptIPMreq(fd,	level,	opt	int,	mreq	*IPMreq)	(err	error)	{

			494	 	 return	setsockopt(fd,	level,	opt,	uintptr(unsafe.Pointer(mreq)),	unsafe.Sizeof(*mreq))

			495	 }

			496	

			497	 func	SetsockoptIPMreqn(fd,	level,	opt	int,	mreq	*IPMreqn)	(err	error)	{

			498	 	 return	setsockopt(fd,	level,	opt,	uintptr(unsafe.Pointer(mreq)),	unsafe.Sizeof(*mreq))

			499	 }

			500	

			501	 func	SetsockoptIPv6Mreq(fd,	level,	opt	int,	mreq	*IPv6Mreq)	(err	error)	{

			502	 	 return	setsockopt(fd,	level,	opt,	uintptr(unsafe.Pointer(mreq)),	unsafe.Sizeof(*mreq))

			503	 }

			504	

			505	 func	SetsockoptString(fd,	level,	opt	int,	s	string)	(err	error)	{

			506	 	 return	setsockopt(fd,	level,	opt,	uintptr(unsafe.Pointer(&[]byte(s)[0])),	uintptr(len(s)))

			507	 }

			508	

			509	 func	Recvfrom(fd	int,	p	[]byte,	flags	int)	(n	int,	from	Sockaddr,	err	error)	{

			510	 	 var	rsa	RawSockaddrAny

			511	 	 var	len	_Socklen	=	SizeofSockaddrAny

			512	 	 if	n,	err	=	recvfrom(fd,	p,	flags,	&rsa,	&len);	err	!=	nil	{

			513	 	 	 return

			514	 	 }

			515	 	 from,	err	=	anyToSockaddr(&rsa)

			516	 	 return

			517	 }

			518	

			519	 func	Sendto(fd	int,	p	[]byte,	flags	int,	to	Sockaddr)	(err	error)	{

			520	 	 ptr,	n,	err	:=	to.sockaddr()

			521	 	 if	err	!=	nil	{

			522	 	 	 return	err

			523	 	 }

			524	 	 return	sendto(fd,	p,	flags,	ptr,	n)

			525	 }

			526	

			527	 func	Recvmsg(fd	int,	p,	oob	[]byte,	flags	int)	(n,	oobn	int,	recvflags	int,	from	Sockaddr,	err	error)	{

			528	 	 var	msg	Msghdr

			529	 	 var	rsa	RawSockaddrAny

			530	 	 msg.Name	=	(*byte)(unsafe.Pointer(&rsa))

			531	 	 msg.Namelen	=	uint32(SizeofSockaddrAny)

			532	 	 var	iov	Iovec

			533	 	 if	len(p)	>	0	{

			534	 	 	 iov.Base	=	(*byte)(unsafe.Pointer(&p[0]))

			535	 	 	 iov.SetLen(len(p))

			536	 	 }

			537	 	 var	dummy	byte

			538	 	 if	len(oob)	>	0	{

			539	 	 	 //	receive	at	least	one	normal	byte

			540	 	 	 if	len(p)	==	0	{

			541	 	 	 	 iov.Base	=	&dummy

			542	 	 	 	 iov.SetLen(1)

			543	 	 	 }

			544	 	 	 msg.Control	=	(*byte)(unsafe.Pointer(&oob[0]))

			545	 	 	 msg.SetControllen(len(oob))

			546	 	 }

			547	 	 msg.Iov	=	&iov

			548	 	 msg.Iovlen	=	1

			549	 	 if	n,	err	=	recvmsg(fd,	&msg,	flags);	err	!=	nil	{

			550	 	 	 return

			551	 	 }

			552	 	 oobn	=	int(msg.Controllen)

			553	 	 recvflags	=	int(msg.Flags)

			554	 	 //	source	address	is	only	specified	if	the	socket	is	unconnected

			555	 	 if	rsa.Addr.Family	!=	AF_UNSPEC	{

			556	 	 	 from,	err	=	anyToSockaddr(&rsa)

			557	 	 }

			558	 	 return

			559	 }

			560	

			561	 func	Sendmsg(fd	int,	p,	oob	[]byte,	to	Sockaddr,	flags	int)	(err	error)	{

			562	 	 var	ptr	uintptr

			563	 	 var	salen	_Socklen

			564	 	 if	to	!=	nil	{

			565	 	 	 var	err	error

			566	 	 	 ptr,	salen,	err	=	to.sockaddr()

			567	 	 	 if	err	!=	nil	{

			568	 	 	 	 return	err

			569	 	 	 }

			570	 	 }

			571	 	 var	msg	Msghdr

			572	 	 msg.Name	=	(*byte)(unsafe.Pointer(ptr))

			573	 	 msg.Namelen	=	uint32(salen)

			574	 	 var	iov	Iovec

			575	 	 if	len(p)	>	0	{

			576	 	 	 iov.Base	=	(*byte)(unsafe.Pointer(&p[0]))

			577	 	 	 iov.SetLen(len(p))

			578	 	 }

			579	 	 var	dummy	byte

			580	 	 if	len(oob)	>	0	{

			581	 	 	 //	send	at	least	one	normal	byte

			582	 	 	 if	len(p)	==	0	{

			583	 	 	 	 iov.Base	=	&dummy

			584	 	 	 	 iov.SetLen(1)

			585	 	 	 }

			586	 	 	 msg.Control	=	(*byte)(unsafe.Pointer(&oob[0]))

			587	 	 	 msg.SetControllen(len(oob))

			588	 	 }

			589	 	 msg.Iov	=	&iov

			590	 	 msg.Iovlen	=	1

			591	 	 if	err	=	sendmsg(fd,	&msg,	flags);	err	!=	nil	{

			592	 	 	 return

			593	 	 }

			594	 	 return

			595	 }

			596	

			597	 //	BindToDevice	binds	the	socket	associated	with	fd	to	device.

			598	 func	BindToDevice(fd	int,	device	string)	(err	error)	{

			599	 	 return	SetsockoptString(fd,	SOL_SOCKET,	SO_BINDTODEVICE,	device)

			600	 }

			601	

			602	 //sys	 ptrace(request	int,	pid	int,	addr	uintptr,	data	uintptr)	(err	error)

			603	

			604	 func	ptracePeek(req	int,	pid	int,	addr	uintptr,	out	[]byte)	(count	int,	err	error)	{

			605	 	 //	The	peek	requests	are	machine-size	oriented,	so	we	wrap	it

			606	 	 //	to	retrieve	arbitrary-length	data.

			607	

			608	 	 //	The	ptrace	syscall	differs	from	glibc's	ptrace.

			609	 	 //	Peeks	returns	the	word	in	*data,	not	as	the	return	value.

			610	

			611	 	 var	buf	[sizeofPtr]byte

			612	

			613	 	 //	Leading	edge.		PEEKTEXT/PEEKDATA	don't	require	aligned

			614	 	 //	access	(PEEKUSER	warns	that	it	might),	but	if	we	don't

			615	 	 //	align	our	reads,	we	might	straddle	an	unmapped	page

			616	 	 //	boundary	and	not	get	the	bytes	leading	up	to	the	page

			617	 	 //	boundary.

			618	 	 n	:=	0

			619	 	 if	addr%sizeofPtr	!=	0	{

			620	 	 	 err	=	ptrace(req,	pid,	addr-addr%sizeofPtr,	uintptr(unsafe.Pointer(&buf[0])))

			621	 	 	 if	err	!=	nil	{

			622	 	 	 	 return	0,	err

			623	 	 	 }

			624	 	 	 n	+=	copy(out,	buf[addr%sizeofPtr:])

			625	 	 	 out	=	out[n:]

			626	 	 }

			627	

			628	 	 //	Remainder.

			629	 	 for	len(out)	>	0	{

			630	 	 	 //	We	use	an	internal	buffer	to	guarantee	alignment.

			631	 	 	 //	It's	not	documented	if	this	is	necessary,	but	we're	paranoid.

			632	 	 	 err	=	ptrace(req,	pid,	addr+uintptr(n),	uintptr(unsafe.Pointer(&buf[0])))

			633	 	 	 if	err	!=	nil	{

			634	 	 	 	 return	n,	err

			635	 	 	 }

			636	 	 	 copied	:=	copy(out,	buf[0:])

			637	 	 	 n	+=	copied

			638	 	 	 out	=	out[copied:]

			639	 	 }

			640	

			641	 	 return	n,	nil

			642	 }

			643	

			644	 func	PtracePeekText(pid	int,	addr	uintptr,	out	[]byte)	(count	int,	err	error)	{

			645	 	 return	ptracePeek(PTRACE_PEEKTEXT,	pid,	addr,	out)

			646	 }

			647	

			648	 func	PtracePeekData(pid	int,	addr	uintptr,	out	[]byte)	(count	int,	err	error)	{

			649	 	 return	ptracePeek(PTRACE_PEEKDATA,	pid,	addr,	out)

			650	 }

			651	

			652	 func	ptracePoke(pokeReq	int,	peekReq	int,	pid	int,	addr	uintptr,	data	[]byte)	(count	int,	err	error)	{

			653	 	 //	As	for	ptracePeek,	we	need	to	align	our	accesses	to	deal

			654	 	 //	with	the	possibility	of	straddling	an	invalid	page.

			655	

			656	 	 //	Leading	edge.

			657	 	 n	:=	0

			658	 	 if	addr%sizeofPtr	!=	0	{

			659	 	 	 var	buf	[sizeofPtr]byte

			660	 	 	 err	=	ptrace(peekReq,	pid,	addr-addr%sizeofPtr,	uintptr(unsafe.Pointer(&buf[0])))

			661	 	 	 if	err	!=	nil	{

			662	 	 	 	 return	0,	err

			663	 	 	 }

			664	 	 	 n	+=	copy(buf[addr%sizeofPtr:],	data)

			665	 	 	 word	:=	*((*uintptr)(unsafe.Pointer(&buf[0])))

			666	 	 	 err	=	ptrace(pokeReq,	pid,	addr-addr%sizeofPtr,	word)

			667	 	 	 if	err	!=	nil	{

			668	 	 	 	 return	0,	err

			669	 	 	 }

			670	 	 	 data	=	data[n:]

			671	 	 }

			672	

			673	 	 //	Interior.

			674	 	 for	len(data)	>	sizeofPtr	{

			675	 	 	 word	:=	*((*uintptr)(unsafe.Pointer(&data[0])))

			676	 	 	 err	=	ptrace(pokeReq,	pid,	addr+uintptr(n),	word)

			677	 	 	 if	err	!=	nil	{

			678	 	 	 	 return	n,	err

			679	 	 	 }

			680	 	 	 n	+=	sizeofPtr

			681	 	 	 data	=	data[sizeofPtr:]

			682	 	 }

			683	

			684	 	 //	Trailing	edge.

			685	 	 if	len(data)	>	0	{

			686	 	 	 var	buf	[sizeofPtr]byte

			687	 	 	 err	=	ptrace(peekReq,	pid,	addr+uintptr(n),	uintptr(unsafe.Pointer(&buf[0])))

			688	 	 	 if	err	!=	nil	{

			689	 	 	 	 return	n,	err

			690	 	 	 }

			691	 	 	 copy(buf[0:],	data)

			692	 	 	 word	:=	*((*uintptr)(unsafe.Pointer(&buf[0])))

			693	 	 	 err	=	ptrace(pokeReq,	pid,	addr+uintptr(n),	word)

			694	 	 	 if	err	!=	nil	{

			695	 	 	 	 return	n,	err

			696	 	 	 }

			697	 	 	 n	+=	len(data)

			698	 	 }

			699	

			700	 	 return	n,	nil

			701	 }

			702	

			703	 func	PtracePokeText(pid	int,	addr	uintptr,	data	[]byte)	(count	int,	err	error)	{

			704	 	 return	ptracePoke(PTRACE_POKETEXT,	PTRACE_PEEKTEXT,	pid,	addr,	data)

			705	 }

			706	

			707	 func	PtracePokeData(pid	int,	addr	uintptr,	data	[]byte)	(count	int,	err	error)	{

			708	 	 return	ptracePoke(PTRACE_POKEDATA,	PTRACE_PEEKDATA,	pid,	addr,	data)

			709	 }

			710	

			711	 func	PtraceGetRegs(pid	int,	regsout	*PtraceRegs)	(err	error)	{

			712	 	 return	ptrace(PTRACE_GETREGS,	pid,	0,	uintptr(unsafe.Pointer(regsout)))

			713	 }

			714	

			715	 func	PtraceSetRegs(pid	int,	regs	*PtraceRegs)	(err	error)	{

			716	 	 return	ptrace(PTRACE_SETREGS,	pid,	0,	uintptr(unsafe.Pointer(regs)))

			717	 }

			718	

			719	 func	PtraceSetOptions(pid	int,	options	int)	(err	error)	{

			720	 	 return	ptrace(PTRACE_SETOPTIONS,	pid,	0,	uintptr(options))

			721	 }

			722	

			723	 func	PtraceGetEventMsg(pid	int)	(msg	uint,	err	error)	{

			724	 	 var	data	_C_long

			725	 	 err	=	ptrace(PTRACE_GETEVENTMSG,	pid,	0,	uintptr(unsafe.Pointer(&data)))

			726	 	 msg	=	uint(data)

			727	 	 return

			728	 }

			729	

			730	 func	PtraceCont(pid	int,	signal	int)	(err	error)	{

			731	 	 return	ptrace(PTRACE_CONT,	pid,	0,	uintptr(signal))

			732	 }

			733	

			734	 func	PtraceSingleStep(pid	int)	(err	error)	{	return	ptrace(PTRACE_SINGLESTEP,	pid,	0,	0)	}

			735	

			736	 func	PtraceAttach(pid	int)	(err	error)	{	return	ptrace(PTRACE_ATTACH,	pid,	0,	0)	}

			737	

			738	 func	PtraceDetach(pid	int)	(err	error)	{	return	ptrace(PTRACE_DETACH,	pid,	0,	0)	}

			739	

			740	 //sys	 reboot(magic1	uint,	magic2	uint,	cmd	int,	arg	string)	(err	error)

			741	 func	Reboot(cmd	int)	(err	error)	{

			742	 	 return	reboot(LINUX_REBOOT_MAGIC1,	LINUX_REBOOT_MAGIC2,	cmd,	"")

			743	 }

			744	

			745	 func	clen(n	[]byte)	int	{

			746	 	 for	i	:=	0;	i	<	len(n);	i++	{

			747	 	 	 if	n[i]	==	0	{

			748	 	 	 	 return	i

			749	 	 	 }

			750	 	 }

			751	 	 return	len(n)

			752	 }

			753	

			754	 func	ReadDirent(fd	int,	buf	[]byte)	(n	int,	err	error)	{

			755	 	 return	Getdents(fd,	buf)

			756	 }

			757	

			758	 func	ParseDirent(buf	[]byte,	max	int,	names	[]string)	(consumed	int,	count	int,	newnames	[]string)	{

			759	 	 origlen	:=	len(buf)

			760	 	 count	=	0

			761	 	 for	max	!=	0	&&	len(buf)	>	0	{

			762	 	 	 dirent	:=	(*Dirent)(unsafe.Pointer(&buf[0]))

			763	 	 	 buf	=	buf[dirent.Reclen:]

			764	 	 	 if	dirent.Ino	==	0	{	//	File	absent	in	directory.

			765	 	 	 	 continue

			766	 	 	 }

			767	 	 	 bytes	:=	(*[10000]byte)(unsafe.Pointer(&dirent.Name[0]))

			768	 	 	 var	name	=	string(bytes[0:clen(bytes[:])])

			769	 	 	 if	name	==	"."	||	name	==	".."	{	//	Useless	names

			770	 	 	 	 continue

			771	 	 	 }

			772	 	 	 max--

			773	 	 	 count++

			774	 	 	 names	=	append(names,	name)

			775	 	 }

			776	 	 return	origlen	-	len(buf),	count,	names

			777	 }

			778	

			779	 //sys	 mount(source	string,	target	string,	fstype	string,	flags	uintptr,	data	*byte)	(err	error)

			780	 func	Mount(source	string,	target	string,	fstype	string,	flags	uintptr,	data	string)	(err	error)	{

			781	 	 //	Certain	file	systems	get	rather	angry	and	EINVAL	if	you	give

			782	 	 //	them	an	empty	string	of	data,	rather	than	NULL.

			783	 	 if	data	==	""	{

			784	 	 	 return	mount(source,	target,	fstype,	flags,	nil)

			785	 	 }

			786	 	 return	mount(source,	target,	fstype,	flags,	StringBytePtr(data))

			787	 }

			788	

			789	 //	Sendto

			790	 //	Recvfrom

			791	 //	Socketpair

			792	

			793	 /*

			794	 	*	Direct	access

			795	 	*/

			796	 //sys	 Access(path	string,	mode	uint32)	(err	error)

			797	 //sys	 Acct(path	string)	(err	error)

			798	 //sys	 Adjtimex(buf	*Timex)	(state	int,	err	error)

			799	 //sys	 Chdir(path	string)	(err	error)

			800	 //sys	 Chmod(path	string,	mode	uint32)	(err	error)

			801	 //sys	 Chroot(path	string)	(err	error)

			802	 //sys	 Close(fd	int)	(err	error)

			803	 //sys	 Creat(path	string,	mode	uint32)	(fd	int,	err	error)

			804	 //sysnb	Dup(oldfd	int)	(fd	int,	err	error)

			805	 //sysnb	Dup2(oldfd	int,	newfd	int)	(err	error)

			806	 //sysnb	EpollCreate(size	int)	(fd	int,	err	error)

			807	 //sysnb	EpollCreate1(flag	int)	(fd	int,	err	error)

			808	 //sysnb	EpollCtl(epfd	int,	op	int,	fd	int,	event	*EpollEvent)	(err	error)

			809	 //sys	 EpollWait(epfd	int,	events	[]EpollEvent,	msec	int)	(n	int,	err	error)

			810	 //sys	 Exit(code	int)	=	SYS_EXIT_GROUP

			811	 //sys	 Faccessat(dirfd	int,	path	string,	mode	uint32,	flags	int)	(err	error)

			812	 //sys	 Fallocate(fd	int,	mode	uint32,	off	int64,	len	int64)	(err	error)

			813	 //sys	 Fchdir(fd	int)	(err	error)

			814	 //sys	 Fchmod(fd	int,	mode	uint32)	(err	error)

			815	 //sys	 Fchmodat(dirfd	int,	path	string,	mode	uint32,	flags	int)	(err	error)

			816	 //sys	 Fchownat(dirfd	int,	path	string,	uid	int,	gid	int,	flags	int)	(err	error)

			817	 //sys	 fcntl(fd	int,	cmd	int,	arg	int)	(val	int,	err	error)

			818	 //sys	 Fdatasync(fd	int)	(err	error)

			819	 //sys	 Flock(fd	int,	how	int)	(err	error)

			820	 //sys	 Fsync(fd	int)	(err	error)

			821	 //sys	 Getdents(fd	int,	buf	[]byte)	(n	int,	err	error)	=	SYS_GETDENTS64

			822	 //sysnb	Getpgid(pid	int)	(pgid	int,	err	error)

			823	 //sysnb	Getpgrp()	(pid	int)

			824	 //sysnb	Getpid()	(pid	int)

			825	 //sysnb	Getppid()	(ppid	int)

			826	 //sysnb	Getrlimit(resource	int,	rlim	*Rlimit)	(err	error)

			827	 //sysnb	Getrusage(who	int,	rusage	*Rusage)	(err	error)

			828	 //sysnb	Gettid()	(tid	int)

			829	 //sys	 InotifyAddWatch(fd	int,	pathname	string,	mask	uint32)	(watchdesc	int,	err	error)

			830	 //sysnb	InotifyInit()	(fd	int,	err	error)

			831	 //sysnb	InotifyInit1(flags	int)	(fd	int,	err	error)

			832	 //sysnb	InotifyRmWatch(fd	int,	watchdesc	uint32)	(success	int,	err	error)

			833	 //sysnb	Kill(pid	int,	sig	Signal)	(err	error)

			834	 //sys	 Klogctl(typ	int,	buf	[]byte)	(n	int,	err	error)	=	SYS_SYSLOG

			835	 //sys	 Link(oldpath	string,	newpath	string)	(err	error)

			836	 //sys	 Mkdir(path	string,	mode	uint32)	(err	error)

			837	 //sys	 Mkdirat(dirfd	int,	path	string,	mode	uint32)	(err	error)

			838	 //sys	 Mknod(path	string,	mode	uint32,	dev	int)	(err	error)

			839	 //sys	 Mknodat(dirfd	int,	path	string,	mode	uint32,	dev	int)	(err	error)

			840	 //sys	 Nanosleep(time	*Timespec,	leftover	*Timespec)	(err	error)

			841	 //sys	 Pause()	(err	error)

			842	 //sys	 PivotRoot(newroot	string,	putold	string)	(err	error)	=	SYS_PIVOT_ROOT

			843	 //sys	 Read(fd	int,	p	[]byte)	(n	int,	err	error)

			844	 //sys	 Readlink(path	string,	buf	[]byte)	(n	int,	err	error)

			845	 //sys	 Rename(oldpath	string,	newpath	string)	(err	error)

			846	 //sys	 Renameat(olddirfd	int,	oldpath	string,	newdirfd	int,	newpath	string)	(err	error)

			847	 //sys	 Rmdir(path	string)	(err	error)

			848	 //sys	 Setdomainname(p	[]byte)	(err	error)

			849	 //sys	 Sethostname(p	[]byte)	(err	error)

			850	 //sysnb	Setpgid(pid	int,	pgid	int)	(err	error)

			851	 //sysnb	Setrlimit(resource	int,	rlim	*Rlimit)	(err	error)

			852	 //sysnb	Setsid()	(pid	int,	err	error)

			853	 //sysnb	Settimeofday(tv	*Timeval)	(err	error)

			854	 //sysnb	Setuid(uid	int)	(err	error)

			855	 //sys	 Symlink(oldpath	string,	newpath	string)	(err	error)

			856	 //sys	 Sync()

			857	 //sysnb	Sysinfo(info	*Sysinfo_t)	(err	error)

			858	 //sys	 Tee(rfd	int,	wfd	int,	len	int,	flags	int)	(n	int64,	err	error)

			859	 //sysnb	Tgkill(tgid	int,	tid	int,	sig	Signal)	(err	error)

			860	 //sysnb	Times(tms	*Tms)	(ticks	uintptr,	err	error)

			861	 //sysnb	Umask(mask	int)	(oldmask	int)

			862	 //sysnb	Uname(buf	*Utsname)	(err	error)

			863	 //sys	 Unlink(path	string)	(err	error)

			864	 //sys	 Unlinkat(dirfd	int,	path	string)	(err	error)

			865	 //sys	 Unmount(target	string,	flags	int)	(err	error)	=	SYS_UMOUNT2

			866	 //sys	 Unshare(flags	int)	(err	error)

			867	 //sys	 Ustat(dev	int,	ubuf	*Ustat_t)	(err	error)

			868	 //sys	 Utime(path	string,	buf	*Utimbuf)	(err	error)

			869	 //sys	 Write(fd	int,	p	[]byte)	(n	int,	err	error)

			870	 //sys	 exitThread(code	int)	(err	error)	=	SYS_EXIT

			871	 //sys	 read(fd	int,	p	*byte,	np	int)	(n	int,	err	error)

			872	 //sys	 write(fd	int,	p	*byte,	np	int)	(n	int,	err	error)

			873	

			874	 //	mmap	varies	by	architecture;	see	syscall_linux_*.go.

			875	 //sys	 munmap(addr	uintptr,	length	uintptr)	(err	error)

			876	

			877	 var	mapper	=	&mmapper{

			878	 	 active:	make(map[*byte][]byte),

			879	 	 mmap:			mmap,

			880	 	 munmap:	munmap,

			881	 }

			882	

			883	 func	Mmap(fd	int,	offset	int64,	length	int,	prot	int,	flags	int)	(data	[]byte,	err	error)	{

			884	 	 return	mapper.Mmap(fd,	offset,	length,	prot,	flags)

			885	 }

			886	

			887	 func	Munmap(b	[]byte)	(err	error)	{

			888	 	 return	mapper.Munmap(b)

			889	 }

			890	

			891	 //sys	 Madvise(b	[]byte,	advice	int)	(err	error)

			892	 //sys	 Mprotect(b	[]byte,	prot	int)	(err	error)

			893	 //sys	 Mlock(b	[]byte)	(err	error)

			894	 //sys	 Munlock(b	[]byte)	(err	error)

			895	 //sys	 Mlockall(flags	int)	(err	error)

			896	 //sys	 Munlockall()	(err	error)

			897	

			898	 /*

			899	 	*	Unimplemented

			900	 	*/

			901	 //	AddKey

			902	 //	AfsSyscall

			903	 //	Alarm

			904	 //	ArchPrctl

			905	 //	Brk

			906	 //	Capget

			907	 //	Capset

			908	 //	ClockGetres

			909	 //	ClockGettime

			910	 //	ClockNanosleep

			911	 //	ClockSettime

			912	 //	Clone

			913	 //	CreateModule

			914	 //	DeleteModule

			915	 //	EpollCtlOld

			916	 //	EpollPwait

			917	 //	EpollWaitOld

			918	 //	Eventfd

			919	 //	Execve

			920	 //	Fadvise64

			921	 //	Fgetxattr

			922	 //	Flistxattr

			923	 //	Fork

			924	 //	Fremovexattr

			925	 //	Fsetxattr

			926	 //	Futex

			927	 //	GetKernelSyms

			928	 //	GetMempolicy

			929	 //	GetRobustList

			930	 //	GetThreadArea

			931	 //	Getitimer

			932	 //	Getpmsg

			933	 //	Getpriority

			934	 //	Getxattr

			935	 //	IoCancel

			936	 //	IoDestroy

			937	 //	IoGetevents

			938	 //	IoSetup

			939	 //	IoSubmit

			940	 //	Ioctl

			941	 //	IoprioGet

			942	 //	IoprioSet

			943	 //	KexecLoad

			944	 //	Keyctl

			945	 //	Lgetxattr

			946	 //	Listxattr

			947	 //	Llistxattr

			948	 //	LookupDcookie

			949	 //	Lremovexattr

			950	 //	Lsetxattr

			951	 //	Mbind

			952	 //	MigratePages

			953	 //	Mincore

			954	 //	ModifyLdt

			955	 //	Mount

			956	 //	MovePages

			957	 //	Mprotect

			958	 //	MqGetsetattr

			959	 //	MqNotify

			960	 //	MqOpen

			961	 //	MqTimedreceive

			962	 //	MqTimedsend

			963	 //	MqUnlink

			964	 //	Mremap

			965	 //	Msgctl

			966	 //	Msgget

			967	 //	Msgrcv

			968	 //	Msgsnd

			969	 //	Msync

			970	 //	Newfstatat

			971	 //	Nfsservctl

			972	 //	Personality

			973	 //	Poll

			974	 //	Ppoll

			975	 //	Prctl

			976	 //	Pselect6

			977	 //	Ptrace

			978	 //	Putpmsg

			979	 //	QueryModule

			980	 //	Quotactl

			981	 //	Readahead

			982	 //	Readv

			983	 //	RemapFilePages

			984	 //	Removexattr

			985	 //	RequestKey

			986	 //	RestartSyscall

			987	 //	RtSigaction

			988	 //	RtSigpending

			989	 //	RtSigprocmask

			990	 //	RtSigqueueinfo

			991	 //	RtSigreturn

			992	 //	RtSigsuspend

			993	 //	RtSigtimedwait

			994	 //	SchedGetPriorityMax

			995	 //	SchedGetPriorityMin

			996	 //	SchedGetaffinity

			997	 //	SchedGetparam

			998	 //	SchedGetscheduler

			999	 //	SchedRrGetInterval

		1000	 //	SchedSetaffinity

		1001	 //	SchedSetparam

		1002	 //	SchedYield

		1003	 //	Security

		1004	 //	Semctl

		1005	 //	Semget

		1006	 //	Semop

		1007	 //	Semtimedop

		1008	 //	SetMempolicy

		1009	 //	SetRobustList

		1010	 //	SetThreadArea

		1011	 //	SetTidAddress

		1012	 //	Setpriority

		1013	 //	Setxattr

		1014	 //	Shmat

		1015	 //	Shmctl

		1016	 //	Shmdt

		1017	 //	Shmget

		1018	 //	Sigaltstack

		1019	 //	Signalfd

		1020	 //	Swapoff

		1021	 //	Swapon

		1022	 //	Sysfs

		1023	 //	TimerCreate

		1024	 //	TimerDelete

		1025	 //	TimerGetoverrun

		1026	 //	TimerGettime

		1027	 //	TimerSettime

		1028	 //	Timerfd

		1029	 //	Tkill	(obsolete)

		1030	 //	Tuxcall

		1031	 //	Umount2

		1032	 //	Uselib

		1033	 //	Utimensat

		1034	 //	Vfork

		1035	 //	Vhangup

		1036	 //	Vmsplice

		1037	 //	Vserver

		1038	 //	Waitid

		1039	 //	Writev

		1040	 //	_Sysctl

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/syscall/syscall_linux_amd64.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	syscall

					6	

					7	 //sys	 Chown(path	string,	uid	int,	gid	int)	(err	error)

					8	 //sys	 Fchown(fd	int,	uid	int,	gid	int)	(err	error)

					9	 //sys	 Fstat(fd	int,	stat	*Stat_t)	(err	error)

				10	 //sys	 Fstatfs(fd	int,	buf	*Statfs_t)	(err	error)

				11	 //sys	 Ftruncate(fd	int,	length	int64)	(err	error)

				12	 //sysnb	Getegid()	(egid	int)

				13	 //sysnb	Geteuid()	(euid	int)

				14	 //sysnb	Getgid()	(gid	int)

				15	 //sysnb	Getuid()	(uid	int)

				16	 //sys	 Ioperm(from	int,	num	int,	on	int)	(err	error)

				17	 //sys	 Iopl(level	int)	(err	error)

				18	 //sys	 Lchown(path	string,	uid	int,	gid	int)	(err	error)

				19	 //sys	 Listen(s	int,	n	int)	(err	error)

				20	 //sys	 Lstat(path	string,	stat	*Stat_t)	(err	error)

				21	 //sys	 Pread(fd	int,	p	[]byte,	offset	int64)	(n	int,	err	error)	=	SYS_PREAD64

				22	 //sys	 Pwrite(fd	int,	p	[]byte,	offset	int64)	(n	int,	err	error)	=	SYS_PWRITE64

				23	 //sys	 Seek(fd	int,	offset	int64,	whence	int)	(off	int64,	err	error)	=	SYS_LSEEK

				24	 //sys	 Select(nfd	int,	r	*FdSet,	w	*FdSet,	e	*FdSet,	timeout	*Timeval)	(n	int,	err	error)

				25	 //sys	 Sendfile(outfd	int,	infd	int,	offset	*int64,	count	int)	(written	int,	err	error)

				26	 //sys	 Setfsgid(gid	int)	(err	error)

				27	 //sys	 Setfsuid(uid	int)	(err	error)

				28	 //sysnb	Setgid(gid	int)	(err	error)

				29	 //sysnb	Setregid(rgid	int,	egid	int)	(err	error)

				30	 //sysnb	Setresgid(rgid	int,	egid	int,	sgid	int)	(err	error)

				31	 //sysnb	Setresuid(ruid	int,	euid	int,	suid	int)	(err	error)

				32	 //sysnb	Setreuid(ruid	int,	euid	int)	(err	error)

				33	 //sys	 Shutdown(fd	int,	how	int)	(err	error)

				34	 //sys	 Splice(rfd	int,	roff	*int64,	wfd	int,	woff	*int64,	len	int,	flags	int)	(n	int64,	err	error)

				35	 //sys	 Stat(path	string,	stat	*Stat_t)	(err	error)

				36	 //sys	 Statfs(path	string,	buf	*Statfs_t)	(err	error)

				37	 //sys	 SyncFileRange(fd	int,	off	int64,	n	int64,	flags	int)	(err	error)

				38	 //sys	 Truncate(path	string,	length	int64)	(err	error)

				39	 //sys	 accept(s	int,	rsa	*RawSockaddrAny,	addrlen	*_Socklen)	(fd	int,	err	error)

				40	 //sys	 bind(s	int,	addr	uintptr,	addrlen	_Socklen)	(err	error)

				41	 //sys	 connect(s	int,	addr	uintptr,	addrlen	_Socklen)	(err	error)

				42	 //sysnb	getgroups(n	int,	list	*_Gid_t)	(nn	int,	err	error)

				43	 //sysnb	setgroups(n	int,	list	*_Gid_t)	(err	error)

				44	 //sys	 getsockopt(s	int,	level	int,	name	int,	val	uintptr,	vallen	*_Socklen)	(err	error)

				45	 //sys	 setsockopt(s	int,	level	int,	name	int,	val	uintptr,	vallen	uintptr)	(err	error)

				46	 //sysnb	socket(domain	int,	typ	int,	proto	int)	(fd	int,	err	error)

				47	 //sysnb	socketpair(domain	int,	typ	int,	proto	int,	fd	*[2]int)	(err	error)

				48	 //sysnb	getpeername(fd	int,	rsa	*RawSockaddrAny,	addrlen	*_Socklen)	(err	error)

				49	 //sysnb	getsockname(fd	int,	rsa	*RawSockaddrAny,	addrlen	*_Socklen)	(err	error)

				50	 //sys	 recvfrom(fd	int,	p	[]byte,	flags	int,	from	*RawSockaddrAny,	fromlen	*_Socklen)	(n	int,	err	error)

				51	 //sys	 sendto(s	int,	buf	[]byte,	flags	int,	to	uintptr,	addrlen	_Socklen)	(err	error)

				52	 //sys	 recvmsg(s	int,	msg	*Msghdr,	flags	int)	(n	int,	err	error)

				53	 //sys	 sendmsg(s	int,	msg	*Msghdr,	flags	int)	(err	error)

				54	 //sys	 mmap(addr	uintptr,	length	uintptr,	prot	int,	flags	int,	fd	int,	offset	int64)	(xaddr	uintptr,	err	error)

				55	

				56	 func	Getpagesize()	int	{	return	4096	}

				57	

				58	 func	Gettimeofday(tv	*Timeval)	(err	error)

				59	 func	Time(t	*Time_t)	(tt	Time_t,	err	error)

				60	

				61	 func	TimespecToNsec(ts	Timespec)	int64	{	return	int64(ts.Sec)*1e9	+	int64(ts.Nsec)	}

				62	

				63	 func	NsecToTimespec(nsec	int64)	(ts	Timespec)	{

				64	 	 ts.Sec	=	nsec	/	1e9

				65	 	 ts.Nsec	=	nsec	%	1e9

				66	 	 return

				67	 }

				68	

				69	 func	TimevalToNsec(tv	Timeval)	int64	{	return	int64(tv.Sec)*1e9	+	int64(tv.Usec)*1e3	}

				70	

				71	 func	NsecToTimeval(nsec	int64)	(tv	Timeval)	{

				72	 	 nsec	+=	999	//	round	up	to	microsecond

				73	 	 tv.Sec	=	nsec	/	1e9

				74	 	 tv.Usec	=	nsec	%	1e9	/	1e3

				75	 	 return

				76	 }

				77	

				78	 func	(r	*PtraceRegs)	PC()	uint64	{	return	r.Rip	}

				79	

				80	 func	(r	*PtraceRegs)	SetPC(pc	uint64)	{	r.Rip	=	pc	}

				81	

				82	 func	(iov	*Iovec)	SetLen(length	int)	{

				83	 	 iov.Len	=	uint64(length)

				84	 }

				85	

				86	 func	(msghdr	*Msghdr)	SetControllen(length	int)	{

				87	 	 msghdr.Controllen	=	uint64(length)

				88	 }

				89	

				90	 func	(cmsg	*Cmsghdr)	SetLen(length	int)	{

				91	 	 cmsg.Len	=	uint64(length)

				92	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/syscall/syscall_unix.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 package	syscall

					8	

					9	 import	(

				10	 	 "runtime"

				11	 	 "sync"

				12	 	 "unsafe"

				13)

				14	

				15	 var	(

				16	 	 Stdin		=	0

				17	 	 Stdout	=	1

				18	 	 Stderr	=	2

				19)

				20	

				21	 const	darwinAMD64	=	runtime.GOOS	==	"darwin"	&&	runtime.GOARCH	==	"amd64"

				22	

				23	 func	Syscall(trap,	a1,	a2,	a3	uintptr)	(r1,	r2	uintptr,	err	Errno)

				24	 func	Syscall6(trap,	a1,	a2,	a3,	a4,	a5,	a6	uintptr)	(r1,	r2	uintptr,	err	Errno)

				25	 func	RawSyscall(trap,	a1,	a2,	a3	uintptr)	(r1,	r2	uintptr,	err	Errno)

				26	 func	RawSyscall6(trap,	a1,	a2,	a3,	a4,	a5,	a6	uintptr)	(r1,	r2	uintptr,	err	Errno)

				27	

				28	 //	Mmap	manager,	for	use	by	operating	system-specific	implementations.

				29	

				30	 type	mmapper	struct	{

				31	 	 sync.Mutex

				32	 	 active	map[*byte][]byte	//	active	mappings;	key	is	last	byte	in	mapping

				33	 	 mmap			func(addr,	length	uintptr,	prot,	flags,	fd	int,	offset	int64)	(uintptr,	error)

				34	 	 munmap	func(addr	uintptr,	length	uintptr)	error

				35	 }

				36	

				37	 func	(m	*mmapper)	Mmap(fd	int,	offset	int64,	length	int,	prot	int,	flags	int)	(data	[]byte,	err	error)	{

				38	 	 if	length	<=	0	{

				39	 	 	 return	nil,	EINVAL

				40	 	 }

				41	

				42	 	 //	Map	the	requested	memory.

				43	 	 addr,	errno	:=	m.mmap(0,	uintptr(length),	prot,	flags,	fd,	offset)

				44	 	 if	errno	!=	nil	{

				45	 	 	 return	nil,	errno

				46	 	 }

				47	

				48	 	 //	Slice	memory	layout

				49	 	 var	sl	=	struct	{

				50	 	 	 addr	uintptr

				51	 	 	 len		int

				52	 	 	 cap		int

				53	 	 }{addr,	length,	length}

				54	

				55	 	 //	Use	unsafe	to	turn	sl	into	a	[]byte.

				56	 	 b	:=	*(*[]byte)(unsafe.Pointer(&sl))

				57	

				58	 	 //	Register	mapping	in	m	and	return	it.

				59	 	 p	:=	&b[cap(b)-1]

				60	 	 m.Lock()

				61	 	 defer	m.Unlock()

				62	 	 m.active[p]	=	b

				63	 	 return	b,	nil

				64	 }

				65	

				66	 func	(m	*mmapper)	Munmap(data	[]byte)	(err	error)	{

				67	 	 if	len(data)	==	0	||	len(data)	!=	cap(data)	{

				68	 	 	 return	EINVAL

				69	 	 }

				70	

				71	 	 //	Find	the	base	of	the	mapping.

				72	 	 p	:=	&data[cap(data)-1]

				73	 	 m.Lock()

				74	 	 defer	m.Unlock()

				75	 	 b	:=	m.active[p]

				76	 	 if	b	==	nil	||	&b[0]	!=	&data[0]	{

				77	 	 	 return	EINVAL

				78	 	 }

				79	

				80	 	 //	Unmap	the	memory	and	update	m.

				81	 	 if	errno	:=	m.munmap(uintptr(unsafe.Pointer(&b[0])),	uintptr(len(b)));	errno	!=	nil	{

				82	 	 	 return	errno

				83	 	 }

				84	 	 delete(m.active,	p)

				85	 	 return	nil

				86	 }

				87	

				88	 //	An	Errno	is	an	unsigned	number	describing	an	error	condition.

				89	 //	It	implements	the	error	interface.		The	zero	Errno	is	by	convention

				90	 //	a	non-error,	so	code	to	convert	from	Errno	to	error	should	use:

				91	 //	 err	=	nil

				92	 //	 if	errno	!=	0	{

				93	 //	 	 err	=	errno

				94	 //	 }

				95	 type	Errno	uintptr

				96	

				97	 func	(e	Errno)	Error()	string	{

				98	 	 if	0	<=	int(e)	&&	int(e)	<	len(errors)	{

				99	 	 	 s	:=	errors[e]

			100	 	 	 if	s	!=	""	{

			101	 	 	 	 return	s

			102	 	 	 }

			103	 	 }

			104	 	 return	"errno	"	+	itoa(int(e))

			105	 }

			106	

			107	 func	(e	Errno)	Temporary()	bool	{

			108	 	 return	e	==	EINTR	||	e	==	EMFILE	||	e.Timeout()

			109	 }

			110	

			111	 func	(e	Errno)	Timeout()	bool	{

			112	 	 return	e	==	EAGAIN	||	e	==	EWOULDBLOCK	||	e	==	ETIMEDOUT

			113	 }

			114	

			115	 //	A	Signal	is	a	number	describing	a	process	signal.

			116	 //	It	implements	the	os.Signal	interface.

			117	 type	Signal	int

			118	

			119	 func	(s	Signal)	Signal()	{}

			120	

			121	 func	(s	Signal)	String()	string	{

			122	 	 if	0	<=	s	&&	int(s)	<	len(signals)	{

			123	 	 	 str	:=	signals[s]

			124	 	 	 if	str	!=	""	{

			125	 	 	 	 return	str

			126	 	 	 }

			127	 	 }

			128	 	 return	"signal	"	+	itoa(int(s))

			129	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/syscall/zerrors_linux_amd64.go
					1	 //	mkerrors.sh	-m64

					2	 //	MACHINE	GENERATED	BY	THE	COMMAND	ABOVE;	DO	NOT	EDIT

					3	

					4	 //	Created	by	cgo	-godefs	-	DO	NOT	EDIT

					5	 //	cgo	-godefs	--	-m64	_const.go

					6	

					7	 //line	_const.go:1

					8	 package	syscall

					9	

				10	 //line	_const.go:51

				11	

				12	 //line	_const.go:50

				13	 const	(

				14	 	 AF_ALG																											=	0x26

				15	 	 AF_APPLETALK																					=	0x5

				16	 	 AF_ASH																											=	0x12

				17	 	 AF_ATMPVC																								=	0x8

				18	 	 AF_ATMSVC																								=	0x14

				19	 	 AF_AX25																										=	0x3

				20	 	 AF_BLUETOOTH																					=	0x1f

				21	 	 AF_BRIDGE																								=	0x7

				22	 	 AF_CAIF																										=	0x25

				23	 	 AF_CAN																											=	0x1d

				24	 	 AF_DECnet																								=	0xc

				25	 	 AF_ECONET																								=	0x13

				26	 	 AF_FILE																										=	0x1

				27	 	 AF_IEEE802154																				=	0x24

				28	 	 AF_INET																										=	0x2

				29	 	 AF_INET6																									=	0xa

				30	 	 AF_IPX																											=	0x4

				31	 	 AF_IRDA																										=	0x17

				32	 	 AF_ISDN																										=	0x22

				33	 	 AF_IUCV																										=	0x20

				34	 	 AF_KEY																											=	0xf

				35	 	 AF_LLC																											=	0x1a

				36	 	 AF_LOCAL																									=	0x1

				37	 	 AF_MAX																											=	0x27

				38	 	 AF_NETBEUI																							=	0xd

				39	 	 AF_NETLINK																							=	0x10

				40	 	 AF_NETROM																								=	0x6

				41	 	 AF_PACKET																								=	0x11

				42	 	 AF_PHONET																								=	0x23

				43	 	 AF_PPPOX																									=	0x18

				44	 	 AF_RDS																											=	0x15

				45	 	 AF_ROSE																										=	0xb

				46	 	 AF_ROUTE																									=	0x10

				47	 	 AF_RXRPC																									=	0x21

				48	 	 AF_SECURITY																						=	0xe

				49	 	 AF_SNA																											=	0x16

				50	 	 AF_TIPC																										=	0x1e

				51	 	 AF_UNIX																										=	0x1

				52	 	 AF_UNSPEC																								=	0x0

				53	 	 AF_WANPIPE																							=	0x19

				54	 	 AF_X25																											=	0x9

				55	 	 ARPHRD_ADAPT																					=	0x108

				56	 	 ARPHRD_APPLETLK																		=	0x8

				57	 	 ARPHRD_ARCNET																				=	0x7

				58	 	 ARPHRD_ASH																							=	0x30d

				59	 	 ARPHRD_ATM																							=	0x13

				60	 	 ARPHRD_AX25																						=	0x3

				61	 	 ARPHRD_BIF																							=	0x307

				62	 	 ARPHRD_CHAOS																					=	0x5

				63	 	 ARPHRD_CISCO																					=	0x201

				64	 	 ARPHRD_CSLIP																					=	0x101

				65	 	 ARPHRD_CSLIP6																				=	0x103

				66	 	 ARPHRD_DDCMP																					=	0x205

				67	 	 ARPHRD_DLCI																						=	0xf

				68	 	 ARPHRD_ECONET																				=	0x30e

				69	 	 ARPHRD_EETHER																				=	0x2

				70	 	 ARPHRD_ETHER																					=	0x1

				71	 	 ARPHRD_EUI64																					=	0x1b

				72	 	 ARPHRD_FCAL																						=	0x311

				73	 	 ARPHRD_FCFABRIC																		=	0x313

				74	 	 ARPHRD_FCPL																						=	0x312

				75	 	 ARPHRD_FCPP																						=	0x310

				76	 	 ARPHRD_FDDI																						=	0x306

				77	 	 ARPHRD_FRAD																						=	0x302

				78	 	 ARPHRD_HDLC																						=	0x201

				79	 	 ARPHRD_HIPPI																					=	0x30c

				80	 	 ARPHRD_HWX25																					=	0x110

				81	 	 ARPHRD_IEEE1394																		=	0x18

				82	 	 ARPHRD_IEEE802																			=	0x6

				83	 	 ARPHRD_IEEE80211																	=	0x321

				84	 	 ARPHRD_IEEE80211_PRISM											=	0x322

				85	 	 ARPHRD_IEEE80211_RADIOTAP								=	0x323

				86	 	 ARPHRD_IEEE802154																=	0x324

				87	 	 ARPHRD_IEEE802154_PHY												=	0x325

				88	 	 ARPHRD_IEEE802_TR																=	0x320

				89	 	 ARPHRD_INFINIBAND																=	0x20

				90	 	 ARPHRD_IPDDP																					=	0x309

				91	 	 ARPHRD_IPGRE																					=	0x30a

				92	 	 ARPHRD_IRDA																						=	0x30f

				93	 	 ARPHRD_LAPB																						=	0x204

				94	 	 ARPHRD_LOCALTLK																		=	0x305

				95	 	 ARPHRD_LOOPBACK																		=	0x304

				96	 	 ARPHRD_METRICOM																		=	0x17

				97	 	 ARPHRD_NETROM																				=	0x0

				98	 	 ARPHRD_NONE																						=	0xfffe

				99	 	 ARPHRD_PIMREG																				=	0x30b

			100	 	 ARPHRD_PPP																							=	0x200

			101	 	 ARPHRD_PRONET																				=	0x4

			102	 	 ARPHRD_RAWHDLC																			=	0x206

			103	 	 ARPHRD_ROSE																						=	0x10e

			104	 	 ARPHRD_RSRVD																					=	0x104

			105	 	 ARPHRD_SIT																							=	0x308

			106	 	 ARPHRD_SKIP																						=	0x303

			107	 	 ARPHRD_SLIP																						=	0x100

			108	 	 ARPHRD_SLIP6																					=	0x102

			109	 	 ARPHRD_TUNNEL																				=	0x300

			110	 	 ARPHRD_TUNNEL6																			=	0x301

			111	 	 ARPHRD_VOID																						=	0xffff

			112	 	 ARPHRD_X25																							=	0x10f

			113	 	 BPF_A																												=	0x10

			114	 	 BPF_ABS																										=	0x20

			115	 	 BPF_ADD																										=	0x0

			116	 	 BPF_ALU																										=	0x4

			117	 	 BPF_AND																										=	0x50

			118	 	 BPF_B																												=	0x10

			119	 	 BPF_DIV																										=	0x30

			120	 	 BPF_H																												=	0x8

			121	 	 BPF_IMM																										=	0x0

			122	 	 BPF_IND																										=	0x40

			123	 	 BPF_JA																											=	0x0

			124	 	 BPF_JEQ																										=	0x10

			125	 	 BPF_JGE																										=	0x30

			126	 	 BPF_JGT																										=	0x20

			127	 	 BPF_JMP																										=	0x5

			128	 	 BPF_JSET																									=	0x40

			129	 	 BPF_K																												=	0x0

			130	 	 BPF_LD																											=	0x0

			131	 	 BPF_LDX																										=	0x1

			132	 	 BPF_LEN																										=	0x80

			133	 	 BPF_LSH																										=	0x60

			134	 	 BPF_MAJOR_VERSION																=	0x1

			135	 	 BPF_MAXINSNS																					=	0x1000

			136	 	 BPF_MEM																										=	0x60

			137	 	 BPF_MEMWORDS																					=	0x10

			138	 	 BPF_MINOR_VERSION																=	0x1

			139	 	 BPF_MISC																									=	0x7

			140	 	 BPF_MSH																										=	0xa0

			141	 	 BPF_MUL																										=	0x20

			142	 	 BPF_NEG																										=	0x80

			143	 	 BPF_OR																											=	0x40

			144	 	 BPF_RET																										=	0x6

			145	 	 BPF_RSH																										=	0x70

			146	 	 BPF_ST																											=	0x2

			147	 	 BPF_STX																										=	0x3

			148	 	 BPF_SUB																										=	0x10

			149	 	 BPF_TAX																										=	0x0

			150	 	 BPF_TXA																										=	0x80

			151	 	 BPF_W																												=	0x0

			152	 	 BPF_X																												=	0x8

			153	 	 DT_BLK																											=	0x6

			154	 	 DT_CHR																											=	0x2

			155	 	 DT_DIR																											=	0x4

			156	 	 DT_FIFO																										=	0x1

			157	 	 DT_LNK																											=	0xa

			158	 	 DT_REG																											=	0x8

			159	 	 DT_SOCK																										=	0xc

			160	 	 DT_UNKNOWN																							=	0x0

			161	 	 DT_WHT																											=	0xe

			162	 	 EPOLLERR																									=	0x8

			163	 	 EPOLLET																										=	-0x80000000

			164	 	 EPOLLHUP																									=	0x10

			165	 	 EPOLLIN																										=	0x1

			166	 	 EPOLLMSG																									=	0x400

			167	 	 EPOLLONESHOT																					=	0x40000000

			168	 	 EPOLLOUT																									=	0x4

			169	 	 EPOLLPRI																									=	0x2

			170	 	 EPOLLRDBAND																						=	0x80

			171	 	 EPOLLRDHUP																							=	0x2000

			172	 	 EPOLLRDNORM																						=	0x40

			173	 	 EPOLLWRBAND																						=	0x200

			174	 	 EPOLLWRNORM																						=	0x100

			175	 	 EPOLL_CLOEXEC																				=	0x80000

			176	 	 EPOLL_CTL_ADD																				=	0x1

			177	 	 EPOLL_CTL_DEL																				=	0x2

			178	 	 EPOLL_CTL_MOD																				=	0x3

			179	 	 EPOLL_NONBLOCK																			=	0x800

			180	 	 ETH_P_1588																							=	0x88f7

			181	 	 ETH_P_8021Q																						=	0x8100

			182	 	 ETH_P_802_2																						=	0x4

			183	 	 ETH_P_802_3																						=	0x1

			184	 	 ETH_P_AARP																							=	0x80f3

			185	 	 ETH_P_ALL																								=	0x3

			186	 	 ETH_P_AOE																								=	0x88a2

			187	 	 ETH_P_ARCNET																					=	0x1a

			188	 	 ETH_P_ARP																								=	0x806

			189	 	 ETH_P_ATALK																						=	0x809b

			190	 	 ETH_P_ATMFATE																				=	0x8884

			191	 	 ETH_P_ATMMPOA																				=	0x884c

			192	 	 ETH_P_AX25																							=	0x2

			193	 	 ETH_P_BPQ																								=	0x8ff

			194	 	 ETH_P_CAIF																							=	0xf7

			195	 	 ETH_P_CAN																								=	0xc

			196	 	 ETH_P_CONTROL																				=	0x16

			197	 	 ETH_P_CUST																							=	0x6006

			198	 	 ETH_P_DDCMP																						=	0x6

			199	 	 ETH_P_DEC																								=	0x6000

			200	 	 ETH_P_DIAG																							=	0x6005

			201	 	 ETH_P_DNA_DL																					=	0x6001

			202	 	 ETH_P_DNA_RC																					=	0x6002

			203	 	 ETH_P_DNA_RT																					=	0x6003

			204	 	 ETH_P_DSA																								=	0x1b

			205	 	 ETH_P_ECONET																					=	0x18

			206	 	 ETH_P_EDSA																							=	0xdada

			207	 	 ETH_P_FCOE																							=	0x8906

			208	 	 ETH_P_FIP																								=	0x8914

			209	 	 ETH_P_HDLC																							=	0x19

			210	 	 ETH_P_IEEE802154																	=	0xf6

			211	 	 ETH_P_IEEEPUP																				=	0xa00

			212	 	 ETH_P_IEEEPUPAT																		=	0xa01

			213	 	 ETH_P_IP																									=	0x800

			214	 	 ETH_P_IPV6																							=	0x86dd

			215	 	 ETH_P_IPX																								=	0x8137

			216	 	 ETH_P_IRDA																							=	0x17

			217	 	 ETH_P_LAT																								=	0x6004

			218	 	 ETH_P_LINK_CTL																			=	0x886c

			219	 	 ETH_P_LOCALTALK																		=	0x9

			220	 	 ETH_P_LOOP																							=	0x60

			221	 	 ETH_P_MOBITEX																				=	0x15

			222	 	 ETH_P_MPLS_MC																				=	0x8848

			223	 	 ETH_P_MPLS_UC																				=	0x8847

			224	 	 ETH_P_PAE																								=	0x888e

			225	 	 ETH_P_PAUSE																						=	0x8808

			226	 	 ETH_P_PHONET																					=	0xf5

			227	 	 ETH_P_PPPTALK																				=	0x10

			228	 	 ETH_P_PPP_DISC																			=	0x8863

			229	 	 ETH_P_PPP_MP																					=	0x8

			230	 	 ETH_P_PPP_SES																				=	0x8864

			231	 	 ETH_P_PUP																								=	0x200

			232	 	 ETH_P_PUPAT																						=	0x201

			233	 	 ETH_P_RARP																							=	0x8035

			234	 	 ETH_P_SCA																								=	0x6007

			235	 	 ETH_P_SLOW																							=	0x8809

			236	 	 ETH_P_SNAP																							=	0x5

			237	 	 ETH_P_TEB																								=	0x6558

			238	 	 ETH_P_TIPC																							=	0x88ca

			239	 	 ETH_P_TRAILER																				=	0x1c

			240	 	 ETH_P_TR_802_2																			=	0x11

			241	 	 ETH_P_WAN_PPP																				=	0x7

			242	 	 ETH_P_WCCP																							=	0x883e

			243	 	 ETH_P_X25																								=	0x805

			244	 	 FD_CLOEXEC																							=	0x1

			245	 	 FD_SETSIZE																							=	0x400

			246	 	 F_DUPFD																										=	0x0

			247	 	 F_DUPFD_CLOEXEC																		=	0x406

			248	 	 F_EXLCK																										=	0x4

			249	 	 F_GETFD																										=	0x1

			250	 	 F_GETFL																										=	0x3

			251	 	 F_GETLEASE																							=	0x401

			252	 	 F_GETLK																										=	0x5

			253	 	 F_GETLK64																								=	0x5

			254	 	 F_GETOWN																									=	0x9

			255	 	 F_GETOWN_EX																						=	0x10

			256	 	 F_GETPIPE_SZ																					=	0x408

			257	 	 F_GETSIG																									=	0xb

			258	 	 F_LOCK																											=	0x1

			259	 	 F_NOTIFY																									=	0x402

			260	 	 F_OK																													=	0x0

			261	 	 F_RDLCK																										=	0x0

			262	 	 F_SETFD																										=	0x2

			263	 	 F_SETFL																										=	0x4

			264	 	 F_SETLEASE																							=	0x400

			265	 	 F_SETLK																										=	0x6

			266	 	 F_SETLK64																								=	0x6

			267	 	 F_SETLKW																									=	0x7

			268	 	 F_SETLKW64																							=	0x7

			269	 	 F_SETOWN																									=	0x8

			270	 	 F_SETOWN_EX																						=	0xf

			271	 	 F_SETPIPE_SZ																					=	0x407

			272	 	 F_SETSIG																									=	0xa

			273	 	 F_SHLCK																										=	0x8

			274	 	 F_TEST																											=	0x3

			275	 	 F_TLOCK																										=	0x2

			276	 	 F_ULOCK																										=	0x0

			277	 	 F_UNLCK																										=	0x2

			278	 	 F_WRLCK																										=	0x1

			279	 	 IFA_F_DADFAILED																		=	0x8

			280	 	 IFA_F_DEPRECATED																	=	0x20

			281	 	 IFA_F_HOMEADDRESS																=	0x10

			282	 	 IFA_F_NODAD																						=	0x2

			283	 	 IFA_F_OPTIMISTIC																	=	0x4

			284	 	 IFA_F_PERMANENT																		=	0x80

			285	 	 IFA_F_SECONDARY																		=	0x1

			286	 	 IFA_F_TEMPORARY																		=	0x1

			287	 	 IFA_F_TENTATIVE																		=	0x40

			288	 	 IFA_MAX																										=	0x7

			289	 	 IFF_ALLMULTI																					=	0x200

			290	 	 IFF_AUTOMEDIA																				=	0x4000

			291	 	 IFF_BROADCAST																				=	0x2

			292	 	 IFF_DEBUG																								=	0x4

			293	 	 IFF_DYNAMIC																						=	0x8000

			294	 	 IFF_LOOPBACK																					=	0x8

			295	 	 IFF_MASTER																							=	0x400

			296	 	 IFF_MULTICAST																				=	0x1000

			297	 	 IFF_NOARP																								=	0x80

			298	 	 IFF_NOTRAILERS																			=	0x20

			299	 	 IFF_NO_PI																								=	0x1000

			300	 	 IFF_ONE_QUEUE																				=	0x2000

			301	 	 IFF_POINTOPOINT																		=	0x10

			302	 	 IFF_PORTSEL																						=	0x2000

			303	 	 IFF_PROMISC																						=	0x100

			304	 	 IFF_RUNNING																						=	0x40

			305	 	 IFF_SLAVE																								=	0x800

			306	 	 IFF_TAP																										=	0x2

			307	 	 IFF_TUN																										=	0x1

			308	 	 IFF_TUN_EXCL																					=	0x8000

			309	 	 IFF_UP																											=	0x1

			310	 	 IFF_VNET_HDR																					=	0x4000

			311	 	 IFNAMSIZ																									=	0x10

			312	 	 IN_ACCESS																								=	0x1

			313	 	 IN_ALL_EVENTS																				=	0xfff

			314	 	 IN_ATTRIB																								=	0x4

			315	 	 IN_CLASSA_HOST																			=	0xffffff

			316	 	 IN_CLASSA_MAX																				=	0x80

			317	 	 IN_CLASSA_NET																				=	0xff000000

			318	 	 IN_CLASSA_NSHIFT																	=	0x18

			319	 	 IN_CLASSB_HOST																			=	0xffff

			320	 	 IN_CLASSB_MAX																				=	0x10000

			321	 	 IN_CLASSB_NET																				=	0xffff0000

			322	 	 IN_CLASSB_NSHIFT																	=	0x10

			323	 	 IN_CLASSC_HOST																			=	0xff

			324	 	 IN_CLASSC_NET																				=	0xffffff00

			325	 	 IN_CLASSC_NSHIFT																	=	0x8

			326	 	 IN_CLOEXEC																							=	0x80000

			327	 	 IN_CLOSE																									=	0x18

			328	 	 IN_CLOSE_NOWRITE																	=	0x10

			329	 	 IN_CLOSE_WRITE																			=	0x8

			330	 	 IN_CREATE																								=	0x100

			331	 	 IN_DELETE																								=	0x200

			332	 	 IN_DELETE_SELF																			=	0x400

			333	 	 IN_DONT_FOLLOW																			=	0x2000000

			334	 	 IN_EXCL_UNLINK																			=	0x4000000

			335	 	 IN_IGNORED																							=	0x8000

			336	 	 IN_ISDIR																									=	0x40000000

			337	 	 IN_LOOPBACKNET																			=	0x7f

			338	 	 IN_MASK_ADD																						=	0x20000000

			339	 	 IN_MODIFY																								=	0x2

			340	 	 IN_MOVE																										=	0xc0

			341	 	 IN_MOVED_FROM																				=	0x40

			342	 	 IN_MOVED_TO																						=	0x80

			343	 	 IN_MOVE_SELF																					=	0x800

			344	 	 IN_NONBLOCK																						=	0x800

			345	 	 IN_ONESHOT																							=	0x80000000

			346	 	 IN_ONLYDIR																							=	0x1000000

			347	 	 IN_OPEN																										=	0x20

			348	 	 IN_Q_OVERFLOW																				=	0x4000

			349	 	 IN_UNMOUNT																							=	0x2000

			350	 	 IPPROTO_AH																							=	0x33

			351	 	 IPPROTO_COMP																					=	0x6c

			352	 	 IPPROTO_DCCP																					=	0x21

			353	 	 IPPROTO_DSTOPTS																		=	0x3c

			354	 	 IPPROTO_EGP																						=	0x8

			355	 	 IPPROTO_ENCAP																				=	0x62

			356	 	 IPPROTO_ESP																						=	0x32

			357	 	 IPPROTO_FRAGMENT																	=	0x2c

			358	 	 IPPROTO_GRE																						=	0x2f

			359	 	 IPPROTO_HOPOPTS																		=	0x0

			360	 	 IPPROTO_ICMP																					=	0x1

			361	 	 IPPROTO_ICMPV6																			=	0x3a

			362	 	 IPPROTO_IDP																						=	0x16

			363	 	 IPPROTO_IGMP																					=	0x2

			364	 	 IPPROTO_IP																							=	0x0

			365	 	 IPPROTO_IPIP																					=	0x4

			366	 	 IPPROTO_IPV6																					=	0x29

			367	 	 IPPROTO_MTP																						=	0x5c

			368	 	 IPPROTO_NONE																					=	0x3b

			369	 	 IPPROTO_PIM																						=	0x67

			370	 	 IPPROTO_PUP																						=	0xc

			371	 	 IPPROTO_RAW																						=	0xff

			372	 	 IPPROTO_ROUTING																		=	0x2b

			373	 	 IPPROTO_RSVP																					=	0x2e

			374	 	 IPPROTO_SCTP																					=	0x84

			375	 	 IPPROTO_TCP																						=	0x6

			376	 	 IPPROTO_TP																							=	0x1d

			377	 	 IPPROTO_UDP																						=	0x11

			378	 	 IPPROTO_UDPLITE																		=	0x88

			379	 	 IPV6_2292DSTOPTS																	=	0x4

			380	 	 IPV6_2292HOPLIMIT																=	0x8

			381	 	 IPV6_2292HOPOPTS																	=	0x3

			382	 	 IPV6_2292PKTINFO																	=	0x2

			383	 	 IPV6_2292PKTOPTIONS														=	0x6

			384	 	 IPV6_2292RTHDR																			=	0x5

			385	 	 IPV6_ADDRFORM																				=	0x1

			386	 	 IPV6_ADD_MEMBERSHIP														=	0x14

			387	 	 IPV6_AUTHHDR																					=	0xa

			388	 	 IPV6_CHECKSUM																				=	0x7

			389	 	 IPV6_DROP_MEMBERSHIP													=	0x15

			390	 	 IPV6_DSTOPTS																					=	0x3b

			391	 	 IPV6_HOPLIMIT																				=	0x34

			392	 	 IPV6_HOPOPTS																					=	0x36

			393	 	 IPV6_IPSEC_POLICY																=	0x22

			394	 	 IPV6_JOIN_ANYCAST																=	0x1b

			395	 	 IPV6_JOIN_GROUP																		=	0x14

			396	 	 IPV6_LEAVE_ANYCAST															=	0x1c

			397	 	 IPV6_LEAVE_GROUP																	=	0x15

			398	 	 IPV6_MTU																									=	0x18

			399	 	 IPV6_MTU_DISCOVER																=	0x17

			400	 	 IPV6_MULTICAST_HOPS														=	0x12

			401	 	 IPV6_MULTICAST_IF																=	0x11

			402	 	 IPV6_MULTICAST_LOOP														=	0x13

			403	 	 IPV6_NEXTHOP																					=	0x9

			404	 	 IPV6_PKTINFO																					=	0x32

			405	 	 IPV6_PMTUDISC_DO																	=	0x2

			406	 	 IPV6_PMTUDISC_DONT															=	0x0

			407	 	 IPV6_PMTUDISC_PROBE														=	0x3

			408	 	 IPV6_PMTUDISC_WANT															=	0x1

			409	 	 IPV6_RECVDSTOPTS																	=	0x3a

			410	 	 IPV6_RECVERR																					=	0x19

			411	 	 IPV6_RECVHOPLIMIT																=	0x33

			412	 	 IPV6_RECVHOPOPTS																	=	0x35

			413	 	 IPV6_RECVPKTINFO																	=	0x31

			414	 	 IPV6_RECVRTHDR																			=	0x38

			415	 	 IPV6_RECVTCLASS																		=	0x42

			416	 	 IPV6_ROUTER_ALERT																=	0x16

			417	 	 IPV6_RTHDR																							=	0x39

			418	 	 IPV6_RTHDRDSTOPTS																=	0x37

			419	 	 IPV6_RTHDR_LOOSE																	=	0x0

			420	 	 IPV6_RTHDR_STRICT																=	0x1

			421	 	 IPV6_RTHDR_TYPE_0																=	0x0

			422	 	 IPV6_RXDSTOPTS																			=	0x3b

			423	 	 IPV6_RXHOPOPTS																			=	0x36

			424	 	 IPV6_TCLASS																						=	0x43

			425	 	 IPV6_UNICAST_HOPS																=	0x10

			426	 	 IPV6_V6ONLY																						=	0x1a

			427	 	 IPV6_XFRM_POLICY																	=	0x23

			428	 	 IP_ADD_MEMBERSHIP																=	0x23

			429	 	 IP_ADD_SOURCE_MEMBERSHIP									=	0x27

			430	 	 IP_BLOCK_SOURCE																		=	0x26

			431	 	 IP_DEFAULT_MULTICAST_LOOP								=	0x1

			432	 	 IP_DEFAULT_MULTICAST_TTL									=	0x1

			433	 	 IP_DF																												=	0x4000

			434	 	 IP_DROP_MEMBERSHIP															=	0x24

			435	 	 IP_DROP_SOURCE_MEMBERSHIP								=	0x28

			436	 	 IP_FREEBIND																						=	0xf

			437	 	 IP_HDRINCL																							=	0x3

			438	 	 IP_IPSEC_POLICY																		=	0x10

			439	 	 IP_MAXPACKET																					=	0xffff

			440	 	 IP_MAX_MEMBERSHIPS															=	0x14

			441	 	 IP_MF																												=	0x2000

			442	 	 IP_MINTTL																								=	0x15

			443	 	 IP_MSFILTER																						=	0x29

			444	 	 IP_MSS																											=	0x240

			445	 	 IP_MTU																											=	0xe

			446	 	 IP_MTU_DISCOVER																		=	0xa

			447	 	 IP_MULTICAST_IF																		=	0x20

			448	 	 IP_MULTICAST_LOOP																=	0x22

			449	 	 IP_MULTICAST_TTL																	=	0x21

			450	 	 IP_OFFMASK																							=	0x1fff

			451	 	 IP_OPTIONS																							=	0x4

			452	 	 IP_ORIGDSTADDR																			=	0x14

			453	 	 IP_PASSSEC																							=	0x12

			454	 	 IP_PKTINFO																							=	0x8

			455	 	 IP_PKTOPTIONS																				=	0x9

			456	 	 IP_PMTUDISC																						=	0xa

			457	 	 IP_PMTUDISC_DO																			=	0x2

			458	 	 IP_PMTUDISC_DONT																	=	0x0

			459	 	 IP_PMTUDISC_PROBE																=	0x3

			460	 	 IP_PMTUDISC_WANT																	=	0x1

			461	 	 IP_RECVERR																							=	0xb

			462	 	 IP_RECVOPTS																						=	0x6

			463	 	 IP_RECVORIGDSTADDR															=	0x14

			464	 	 IP_RECVRETOPTS																			=	0x7

			465	 	 IP_RECVTOS																							=	0xd

			466	 	 IP_RECVTTL																							=	0xc

			467	 	 IP_RETOPTS																							=	0x7

			468	 	 IP_RF																												=	0x8000

			469	 	 IP_ROUTER_ALERT																		=	0x5

			470	 	 IP_TOS																											=	0x1

			471	 	 IP_TRANSPARENT																			=	0x13

			472	 	 IP_TTL																											=	0x2

			473	 	 IP_UNBLOCK_SOURCE																=	0x25

			474	 	 IP_XFRM_POLICY																			=	0x11

			475	 	 LINUX_REBOOT_CMD_CAD_OFF									=	0x0

			476	 	 LINUX_REBOOT_CMD_CAD_ON										=	0x89abcdef

			477	 	 LINUX_REBOOT_CMD_HALT												=	0xcdef0123

			478	 	 LINUX_REBOOT_CMD_KEXEC											=	0x45584543

			479	 	 LINUX_REBOOT_CMD_POWER_OFF							=	0x4321fedc

			480	 	 LINUX_REBOOT_CMD_RESTART									=	0x1234567

			481	 	 LINUX_REBOOT_CMD_RESTART2								=	0xa1b2c3d4

			482	 	 LINUX_REBOOT_CMD_SW_SUSPEND						=	0xd000fce2

			483	 	 LINUX_REBOOT_MAGIC1														=	0xfee1dead

			484	 	 LINUX_REBOOT_MAGIC2														=	0x28121969

			485	 	 LOCK_EX																										=	0x2

			486	 	 LOCK_NB																										=	0x4

			487	 	 LOCK_SH																										=	0x1

			488	 	 LOCK_UN																										=	0x8

			489	 	 MADV_DOFORK																						=	0xb

			490	 	 MADV_DONTFORK																				=	0xa

			491	 	 MADV_DONTNEED																				=	0x4

			492	 	 MADV_HUGEPAGE																				=	0xe

			493	 	 MADV_HWPOISON																				=	0x64

			494	 	 MADV_MERGEABLE																			=	0xc

			495	 	 MADV_NOHUGEPAGE																		=	0xf

			496	 	 MADV_NORMAL																						=	0x0

			497	 	 MADV_RANDOM																						=	0x1

			498	 	 MADV_REMOVE																						=	0x9

			499	 	 MADV_SEQUENTIAL																		=	0x2

			500	 	 MADV_UNMERGEABLE																	=	0xd

			501	 	 MADV_WILLNEED																				=	0x3

			502	 	 MAP_32BIT																								=	0x40

			503	 	 MAP_ANON																									=	0x20

			504	 	 MAP_ANONYMOUS																				=	0x20

			505	 	 MAP_DENYWRITE																				=	0x800

			506	 	 MAP_EXECUTABLE																			=	0x1000

			507	 	 MAP_FILE																									=	0x0

			508	 	 MAP_FIXED																								=	0x10

			509	 	 MAP_GROWSDOWN																				=	0x100

			510	 	 MAP_HUGETLB																						=	0x40000

			511	 	 MAP_LOCKED																							=	0x2000

			512	 	 MAP_NONBLOCK																					=	0x10000

			513	 	 MAP_NORESERVE																				=	0x4000

			514	 	 MAP_POPULATE																					=	0x8000

			515	 	 MAP_PRIVATE																						=	0x2

			516	 	 MAP_SHARED																							=	0x1

			517	 	 MAP_STACK																								=	0x20000

			518	 	 MAP_TYPE																									=	0xf

			519	 	 MCL_CURRENT																						=	0x1

			520	 	 MCL_FUTURE																							=	0x2

			521	 	 MNT_DETACH																							=	0x2

			522	 	 MNT_EXPIRE																							=	0x4

			523	 	 MNT_FORCE																								=	0x1

			524	 	 MSG_CMSG_CLOEXEC																	=	0x40000000

			525	 	 MSG_CONFIRM																						=	0x800

			526	 	 MSG_CTRUNC																							=	0x8

			527	 	 MSG_DONTROUTE																				=	0x4

			528	 	 MSG_DONTWAIT																					=	0x40

			529	 	 MSG_EOR																										=	0x80

			530	 	 MSG_ERRQUEUE																					=	0x2000

			531	 	 MSG_FIN																										=	0x200

			532	 	 MSG_MORE																									=	0x8000

			533	 	 MSG_NOSIGNAL																					=	0x4000

			534	 	 MSG_OOB																										=	0x1

			535	 	 MSG_PEEK																									=	0x2

			536	 	 MSG_PROXY																								=	0x10

			537	 	 MSG_RST																										=	0x1000

			538	 	 MSG_SYN																										=	0x400

			539	 	 MSG_TRUNC																								=	0x20

			540	 	 MSG_TRYHARD																						=	0x4

			541	 	 MSG_WAITALL																						=	0x100

			542	 	 MSG_WAITFORONE																			=	0x10000

			543	 	 MS_ACTIVE																								=	0x40000000

			544	 	 MS_ASYNC																									=	0x1

			545	 	 MS_BIND																										=	0x1000

			546	 	 MS_DIRSYNC																							=	0x80

			547	 	 MS_INVALIDATE																				=	0x2

			548	 	 MS_I_VERSION																					=	0x800000

			549	 	 MS_KERNMOUNT																					=	0x400000

			550	 	 MS_MANDLOCK																						=	0x40

			551	 	 MS_MGC_MSK																							=	0xffff0000

			552	 	 MS_MGC_VAL																							=	0xc0ed0000

			553	 	 MS_MOVE																										=	0x2000

			554	 	 MS_NOATIME																							=	0x400

			555	 	 MS_NODEV																									=	0x4

			556	 	 MS_NODIRATIME																				=	0x800

			557	 	 MS_NOEXEC																								=	0x8

			558	 	 MS_NOSUID																								=	0x2

			559	 	 MS_NOUSER																								=	-0x80000000

			560	 	 MS_POSIXACL																						=	0x10000

			561	 	 MS_PRIVATE																							=	0x40000

			562	 	 MS_RDONLY																								=	0x1

			563	 	 MS_REC																											=	0x4000

			564	 	 MS_RELATIME																						=	0x200000

			565	 	 MS_REMOUNT																							=	0x20

			566	 	 MS_RMT_MASK																						=	0x800051

			567	 	 MS_SHARED																								=	0x100000

			568	 	 MS_SILENT																								=	0x8000

			569	 	 MS_SLAVE																									=	0x80000

			570	 	 MS_STRICTATIME																			=	0x1000000

			571	 	 MS_SYNC																										=	0x4

			572	 	 MS_SYNCHRONOUS																			=	0x10

			573	 	 MS_UNBINDABLE																				=	0x20000

			574	 	 NAME_MAX																									=	0xff

			575	 	 NETLINK_ADD_MEMBERSHIP											=	0x1

			576	 	 NETLINK_AUDIT																				=	0x9

			577	 	 NETLINK_BROADCAST_ERROR										=	0x4

			578	 	 NETLINK_CONNECTOR																=	0xb

			579	 	 NETLINK_DNRTMSG																		=	0xe

			580	 	 NETLINK_DROP_MEMBERSHIP										=	0x2

			581	 	 NETLINK_ECRYPTFS																	=	0x13

			582	 	 NETLINK_FIB_LOOKUP															=	0xa

			583	 	 NETLINK_FIREWALL																	=	0x3

			584	 	 NETLINK_GENERIC																		=	0x10

			585	 	 NETLINK_INET_DIAG																=	0x4

			586	 	 NETLINK_IP6_FW																			=	0xd

			587	 	 NETLINK_ISCSI																				=	0x8

			588	 	 NETLINK_KOBJECT_UEVENT											=	0xf

			589	 	 NETLINK_NETFILTER																=	0xc

			590	 	 NETLINK_NFLOG																				=	0x5

			591	 	 NETLINK_NO_ENOBUFS															=	0x5

			592	 	 NETLINK_PKTINFO																		=	0x3

			593	 	 NETLINK_ROUTE																				=	0x0

			594	 	 NETLINK_SCSITRANSPORT												=	0x12

			595	 	 NETLINK_SELINUX																		=	0x7

			596	 	 NETLINK_UNUSED																			=	0x1

			597	 	 NETLINK_USERSOCK																	=	0x2

			598	 	 NETLINK_XFRM																					=	0x6

			599	 	 NLA_ALIGNTO																						=	0x4

			600	 	 NLA_F_NESTED																					=	0x8000

			601	 	 NLA_F_NET_BYTEORDER														=	0x4000

			602	 	 NLA_HDRLEN																							=	0x4

			603	 	 NLMSG_ALIGNTO																				=	0x4

			604	 	 NLMSG_DONE																							=	0x3

			605	 	 NLMSG_ERROR																						=	0x2

			606	 	 NLMSG_HDRLEN																					=	0x10

			607	 	 NLMSG_MIN_TYPE																			=	0x10

			608	 	 NLMSG_NOOP																							=	0x1

			609	 	 NLMSG_OVERRUN																				=	0x4

			610	 	 NLM_F_ACK																								=	0x4

			611	 	 NLM_F_APPEND																					=	0x800

			612	 	 NLM_F_ATOMIC																					=	0x400

			613	 	 NLM_F_CREATE																					=	0x400

			614	 	 NLM_F_DUMP																							=	0x300

			615	 	 NLM_F_ECHO																							=	0x8

			616	 	 NLM_F_EXCL																							=	0x200

			617	 	 NLM_F_MATCH																						=	0x200

			618	 	 NLM_F_MULTI																						=	0x2

			619	 	 NLM_F_REPLACE																				=	0x100

			620	 	 NLM_F_REQUEST																				=	0x1

			621	 	 NLM_F_ROOT																							=	0x100

			622	 	 O_ACCMODE																								=	0x3

			623	 	 O_APPEND																									=	0x400

			624	 	 O_ASYNC																										=	0x2000

			625	 	 O_CLOEXEC																								=	0x80000

			626	 	 O_CREAT																										=	0x40

			627	 	 O_DIRECT																									=	0x4000

			628	 	 O_DIRECTORY																						=	0x10000

			629	 	 O_DSYNC																										=	0x1000

			630	 	 O_EXCL																											=	0x80

			631	 	 O_FSYNC																										=	0x101000

			632	 	 O_LARGEFILE																						=	0x0

			633	 	 O_NDELAY																									=	0x800

			634	 	 O_NOATIME																								=	0x40000

			635	 	 O_NOCTTY																									=	0x100

			636	 	 O_NOFOLLOW																							=	0x20000

			637	 	 O_NONBLOCK																							=	0x800

			638	 	 O_RDONLY																									=	0x0

			639	 	 O_RDWR																											=	0x2

			640	 	 O_RSYNC																										=	0x101000

			641	 	 O_SYNC																											=	0x101000

			642	 	 O_TRUNC																										=	0x200

			643	 	 O_WRONLY																									=	0x1

			644	 	 PACKET_ADD_MEMBERSHIP												=	0x1

			645	 	 PACKET_BROADCAST																	=	0x1

			646	 	 PACKET_DROP_MEMBERSHIP											=	0x2

			647	 	 PACKET_FASTROUTE																	=	0x6

			648	 	 PACKET_HOST																						=	0x0

			649	 	 PACKET_LOOPBACK																		=	0x5

			650	 	 PACKET_MR_ALLMULTI															=	0x2

			651	 	 PACKET_MR_MULTICAST														=	0x0

			652	 	 PACKET_MR_PROMISC																=	0x1

			653	 	 PACKET_MULTICAST																	=	0x2

			654	 	 PACKET_OTHERHOST																	=	0x3

			655	 	 PACKET_OUTGOING																		=	0x4

			656	 	 PACKET_RECV_OUTPUT															=	0x3

			657	 	 PACKET_RX_RING																			=	0x5

			658	 	 PACKET_STATISTICS																=	0x6

			659	 	 PROT_EXEC																								=	0x4

			660	 	 PROT_GROWSDOWN																			=	0x1000000

			661	 	 PROT_GROWSUP																					=	0x2000000

			662	 	 PROT_NONE																								=	0x0

			663	 	 PROT_READ																								=	0x1

			664	 	 PROT_WRITE																							=	0x2

			665	 	 PR_CAPBSET_DROP																		=	0x18

			666	 	 PR_CAPBSET_READ																		=	0x17

			667	 	 PR_ENDIAN_BIG																				=	0x0

			668	 	 PR_ENDIAN_LITTLE																	=	0x1

			669	 	 PR_ENDIAN_PPC_LITTLE													=	0x2

			670	 	 PR_FPEMU_NOPRINT																	=	0x1

			671	 	 PR_FPEMU_SIGFPE																		=	0x2

			672	 	 PR_FP_EXC_ASYNC																		=	0x2

			673	 	 PR_FP_EXC_DISABLED															=	0x0

			674	 	 PR_FP_EXC_DIV																				=	0x10000

			675	 	 PR_FP_EXC_INV																				=	0x100000

			676	 	 PR_FP_EXC_NONRECOV															=	0x1

			677	 	 PR_FP_EXC_OVF																				=	0x20000

			678	 	 PR_FP_EXC_PRECISE																=	0x3

			679	 	 PR_FP_EXC_RES																				=	0x80000

			680	 	 PR_FP_EXC_SW_ENABLE														=	0x80

			681	 	 PR_FP_EXC_UND																				=	0x40000

			682	 	 PR_GET_DUMPABLE																		=	0x3

			683	 	 PR_GET_ENDIAN																				=	0x13

			684	 	 PR_GET_FPEMU																					=	0x9

			685	 	 PR_GET_FPEXC																					=	0xb

			686	 	 PR_GET_KEEPCAPS																		=	0x7

			687	 	 PR_GET_NAME																						=	0x10

			688	 	 PR_GET_PDEATHSIG																	=	0x2

			689	 	 PR_GET_SECCOMP																			=	0x15

			690	 	 PR_GET_SECUREBITS																=	0x1b

			691	 	 PR_GET_TIMERSLACK																=	0x1e

			692	 	 PR_GET_TIMING																				=	0xd

			693	 	 PR_GET_TSC																							=	0x19

			694	 	 PR_GET_UNALIGN																			=	0x5

			695	 	 PR_MCE_KILL																						=	0x21

			696	 	 PR_MCE_KILL_CLEAR																=	0x0

			697	 	 PR_MCE_KILL_DEFAULT														=	0x2

			698	 	 PR_MCE_KILL_EARLY																=	0x1

			699	 	 PR_MCE_KILL_GET																		=	0x22

			700	 	 PR_MCE_KILL_LATE																	=	0x0

			701	 	 PR_MCE_KILL_SET																		=	0x1

			702	 	 PR_SET_DUMPABLE																		=	0x4

			703	 	 PR_SET_ENDIAN																				=	0x14

			704	 	 PR_SET_FPEMU																					=	0xa

			705	 	 PR_SET_FPEXC																					=	0xc

			706	 	 PR_SET_KEEPCAPS																		=	0x8

			707	 	 PR_SET_NAME																						=	0xf

			708	 	 PR_SET_PDEATHSIG																	=	0x1

			709	 	 PR_SET_PTRACER																			=	0x59616d61

			710	 	 PR_SET_SECCOMP																			=	0x16

			711	 	 PR_SET_SECUREBITS																=	0x1c

			712	 	 PR_SET_TIMERSLACK																=	0x1d

			713	 	 PR_SET_TIMING																				=	0xe

			714	 	 PR_SET_TSC																							=	0x1a

			715	 	 PR_SET_UNALIGN																			=	0x6

			716	 	 PR_TASK_PERF_EVENTS_DISABLE						=	0x1f

			717	 	 PR_TASK_PERF_EVENTS_ENABLE							=	0x20

			718	 	 PR_TIMING_STATISTICAL												=	0x0

			719	 	 PR_TIMING_TIMESTAMP														=	0x1

			720	 	 PR_TSC_ENABLE																				=	0x1

			721	 	 PR_TSC_SIGSEGV																			=	0x2

			722	 	 PR_UNALIGN_NOPRINT															=	0x1

			723	 	 PR_UNALIGN_SIGBUS																=	0x2

			724	 	 PTRACE_ARCH_PRCTL																=	0x1e

			725	 	 PTRACE_ATTACH																				=	0x10

			726	 	 PTRACE_CONT																						=	0x7

			727	 	 PTRACE_DETACH																				=	0x11

			728	 	 PTRACE_EVENT_CLONE															=	0x3

			729	 	 PTRACE_EVENT_EXEC																=	0x4

			730	 	 PTRACE_EVENT_EXIT																=	0x6

			731	 	 PTRACE_EVENT_FORK																=	0x1

			732	 	 PTRACE_EVENT_VFORK															=	0x2

			733	 	 PTRACE_EVENT_VFORK_DONE										=	0x5

			734	 	 PTRACE_GETEVENTMSG															=	0x4201

			735	 	 PTRACE_GETFPREGS																	=	0xe

			736	 	 PTRACE_GETFPXREGS																=	0x12

			737	 	 PTRACE_GETREGS																			=	0xc

			738	 	 PTRACE_GETREGSET																	=	0x4204

			739	 	 PTRACE_GETSIGINFO																=	0x4202

			740	 	 PTRACE_GET_THREAD_AREA											=	0x19

			741	 	 PTRACE_KILL																						=	0x8

			742	 	 PTRACE_OLDSETOPTIONS													=	0x15

			743	 	 PTRACE_O_MASK																				=	0x7f

			744	 	 PTRACE_O_TRACECLONE														=	0x8

			745	 	 PTRACE_O_TRACEEXEC															=	0x10

			746	 	 PTRACE_O_TRACEEXIT															=	0x40

			747	 	 PTRACE_O_TRACEFORK															=	0x2

			748	 	 PTRACE_O_TRACESYSGOOD												=	0x1

			749	 	 PTRACE_O_TRACEVFORK														=	0x4

			750	 	 PTRACE_O_TRACEVFORKDONE										=	0x20

			751	 	 PTRACE_PEEKDATA																		=	0x2

			752	 	 PTRACE_PEEKTEXT																		=	0x1

			753	 	 PTRACE_PEEKUSR																			=	0x3

			754	 	 PTRACE_POKEDATA																		=	0x5

			755	 	 PTRACE_POKETEXT																		=	0x4

			756	 	 PTRACE_POKEUSR																			=	0x6

			757	 	 PTRACE_SETFPREGS																	=	0xf

			758	 	 PTRACE_SETFPXREGS																=	0x13

			759	 	 PTRACE_SETOPTIONS																=	0x4200

			760	 	 PTRACE_SETREGS																			=	0xd

			761	 	 PTRACE_SETREGSET																	=	0x4205

			762	 	 PTRACE_SETSIGINFO																=	0x4203

			763	 	 PTRACE_SET_THREAD_AREA											=	0x1a

			764	 	 PTRACE_SINGLEBLOCK															=	0x21

			765	 	 PTRACE_SINGLESTEP																=	0x9

			766	 	 PTRACE_SYSCALL																			=	0x18

			767	 	 PTRACE_SYSEMU																				=	0x1f

			768	 	 PTRACE_SYSEMU_SINGLESTEP									=	0x20

			769	 	 PTRACE_TRACEME																			=	0x0

			770	 	 RLIMIT_AS																								=	0x9

			771	 	 RLIMIT_CORE																						=	0x4

			772	 	 RLIMIT_CPU																							=	0x0

			773	 	 RLIMIT_DATA																						=	0x2

			774	 	 RLIMIT_FSIZE																					=	0x1

			775	 	 RLIMIT_NOFILE																				=	0x7

			776	 	 RLIMIT_STACK																					=	0x3

			777	 	 RLIM_INFINITY																				=	-0x1

			778	 	 RTAX_ADVMSS																						=	0x8

			779	 	 RTAX_CWND																								=	0x7

			780	 	 RTAX_FEATURES																				=	0xc

			781	 	 RTAX_FEATURE_ALLFRAG													=	0x8

			782	 	 RTAX_FEATURE_ECN																	=	0x1

			783	 	 RTAX_FEATURE_SACK																=	0x2

			784	 	 RTAX_FEATURE_TIMESTAMP											=	0x4

			785	 	 RTAX_HOPLIMIT																				=	0xa

			786	 	 RTAX_INITCWND																				=	0xb

			787	 	 RTAX_INITRWND																				=	0xe

			788	 	 RTAX_LOCK																								=	0x1

			789	 	 RTAX_MAX																									=	0xe

			790	 	 RTAX_MTU																									=	0x2

			791	 	 RTAX_REORDERING																		=	0x9

			792	 	 RTAX_RTO_MIN																					=	0xd

			793	 	 RTAX_RTT																									=	0x4

			794	 	 RTAX_RTTVAR																						=	0x5

			795	 	 RTAX_SSTHRESH																				=	0x6

			796	 	 RTAX_UNSPEC																						=	0x0

			797	 	 RTAX_WINDOW																						=	0x3

			798	 	 RTA_ALIGNTO																						=	0x4

			799	 	 RTA_MAX																										=	0x10

			800	 	 RTCF_DIRECTSRC																			=	0x4000000

			801	 	 RTCF_DOREDIRECT																		=	0x1000000

			802	 	 RTCF_LOG																									=	0x2000000

			803	 	 RTCF_MASQ																								=	0x400000

			804	 	 RTCF_NAT																									=	0x800000

			805	 	 RTCF_VALVE																							=	0x200000

			806	 	 RTF_ADDRCLASSMASK																=	0xf8000000

			807	 	 RTF_ADDRCONF																					=	0x40000

			808	 	 RTF_ALLONLINK																				=	0x20000

			809	 	 RTF_BROADCAST																				=	0x10000000

			810	 	 RTF_CACHE																								=	0x1000000

			811	 	 RTF_DEFAULT																						=	0x10000

			812	 	 RTF_DYNAMIC																						=	0x10

			813	 	 RTF_FLOW																									=	0x2000000

			814	 	 RTF_GATEWAY																						=	0x2

			815	 	 RTF_HOST																									=	0x4

			816	 	 RTF_INTERFACE																				=	0x40000000

			817	 	 RTF_IRTT																									=	0x100

			818	 	 RTF_LINKRT																							=	0x100000

			819	 	 RTF_LOCAL																								=	0x80000000

			820	 	 RTF_MODIFIED																					=	0x20

			821	 	 RTF_MSS																										=	0x40

			822	 	 RTF_MTU																										=	0x40

			823	 	 RTF_MULTICAST																				=	0x20000000

			824	 	 RTF_NAT																										=	0x8000000

			825	 	 RTF_NOFORWARD																				=	0x1000

			826	 	 RTF_NONEXTHOP																				=	0x200000

			827	 	 RTF_NOPMTUDISC																			=	0x4000

			828	 	 RTF_POLICY																							=	0x4000000

			829	 	 RTF_REINSTATE																				=	0x8

			830	 	 RTF_REJECT																							=	0x200

			831	 	 RTF_STATIC																							=	0x400

			832	 	 RTF_THROW																								=	0x2000

			833	 	 RTF_UP																											=	0x1

			834	 	 RTF_WINDOW																							=	0x80

			835	 	 RTF_XRESOLVE																					=	0x800

			836	 	 RTM_BASE																									=	0x10

			837	 	 RTM_DELACTION																				=	0x31

			838	 	 RTM_DELADDR																						=	0x15

			839	 	 RTM_DELADDRLABEL																	=	0x49

			840	 	 RTM_DELLINK																						=	0x11

			841	 	 RTM_DELNEIGH																					=	0x1d

			842	 	 RTM_DELQDISC																					=	0x25

			843	 	 RTM_DELROUTE																					=	0x19

			844	 	 RTM_DELRULE																						=	0x21

			845	 	 RTM_DELTCLASS																				=	0x29

			846	 	 RTM_DELTFILTER																			=	0x2d

			847	 	 RTM_F_CLONED																					=	0x200

			848	 	 RTM_F_EQUALIZE																			=	0x400

			849	 	 RTM_F_NOTIFY																					=	0x100

			850	 	 RTM_F_PREFIX																					=	0x800

			851	 	 RTM_GETACTION																				=	0x32

			852	 	 RTM_GETADDR																						=	0x16

			853	 	 RTM_GETADDRLABEL																	=	0x4a

			854	 	 RTM_GETANYCAST																			=	0x3e

			855	 	 RTM_GETDCB																							=	0x4e

			856	 	 RTM_GETLINK																						=	0x12

			857	 	 RTM_GETMULTICAST																	=	0x3a

			858	 	 RTM_GETNEIGH																					=	0x1e

			859	 	 RTM_GETNEIGHTBL																		=	0x42

			860	 	 RTM_GETQDISC																					=	0x26

			861	 	 RTM_GETROUTE																					=	0x1a

			862	 	 RTM_GETRULE																						=	0x22

			863	 	 RTM_GETTCLASS																				=	0x2a

			864	 	 RTM_GETTFILTER																			=	0x2e

			865	 	 RTM_MAX																										=	0x4f

			866	 	 RTM_NEWACTION																				=	0x30

			867	 	 RTM_NEWADDR																						=	0x14

			868	 	 RTM_NEWADDRLABEL																	=	0x48

			869	 	 RTM_NEWLINK																						=	0x10

			870	 	 RTM_NEWNDUSEROPT																	=	0x44

			871	 	 RTM_NEWNEIGH																					=	0x1c

			872	 	 RTM_NEWNEIGHTBL																		=	0x40

			873	 	 RTM_NEWPREFIX																				=	0x34

			874	 	 RTM_NEWQDISC																					=	0x24

			875	 	 RTM_NEWROUTE																					=	0x18

			876	 	 RTM_NEWRULE																						=	0x20

			877	 	 RTM_NEWTCLASS																				=	0x28

			878	 	 RTM_NEWTFILTER																			=	0x2c

			879	 	 RTM_NR_FAMILIES																		=	0x10

			880	 	 RTM_NR_MSGTYPES																		=	0x40

			881	 	 RTM_SETDCB																							=	0x4f

			882	 	 RTM_SETLINK																						=	0x13

			883	 	 RTM_SETNEIGHTBL																		=	0x43

			884	 	 RTNH_ALIGNTO																					=	0x4

			885	 	 RTNH_F_DEAD																						=	0x1

			886	 	 RTNH_F_ONLINK																				=	0x4

			887	 	 RTNH_F_PERVASIVE																	=	0x2

			888	 	 RTN_MAX																										=	0xb

			889	 	 RTPROT_BIRD																						=	0xc

			890	 	 RTPROT_BOOT																						=	0x3

			891	 	 RTPROT_DHCP																						=	0x10

			892	 	 RTPROT_DNROUTED																		=	0xd

			893	 	 RTPROT_GATED																					=	0x8

			894	 	 RTPROT_KERNEL																				=	0x2

			895	 	 RTPROT_MRT																							=	0xa

			896	 	 RTPROT_NTK																							=	0xf

			897	 	 RTPROT_RA																								=	0x9

			898	 	 RTPROT_REDIRECT																		=	0x1

			899	 	 RTPROT_STATIC																				=	0x4

			900	 	 RTPROT_UNSPEC																				=	0x0

			901	 	 RTPROT_XORP																						=	0xe

			902	 	 RTPROT_ZEBRA																					=	0xb

			903	 	 RT_CLASS_DEFAULT																	=	0xfd

			904	 	 RT_CLASS_LOCAL																			=	0xff

			905	 	 RT_CLASS_MAIN																				=	0xfe

			906	 	 RT_CLASS_MAX																					=	0xff

			907	 	 RT_CLASS_UNSPEC																		=	0x0

			908	 	 RUSAGE_CHILDREN																		=	-0x1

			909	 	 RUSAGE_SELF																						=	0x0

			910	 	 RUSAGE_THREAD																				=	0x1

			911	 	 SCM_CREDENTIALS																		=	0x2

			912	 	 SCM_RIGHTS																							=	0x1

			913	 	 SCM_TIMESTAMP																				=	0x1d

			914	 	 SCM_TIMESTAMPING																	=	0x25

			915	 	 SCM_TIMESTAMPNS																		=	0x23

			916	 	 SHUT_RD																										=	0x0

			917	 	 SHUT_RDWR																								=	0x2

			918	 	 SHUT_WR																										=	0x1

			919	 	 SIOCADDDLCI																						=	0x8980

			920	 	 SIOCADDMULTI																					=	0x8931

			921	 	 SIOCADDRT																								=	0x890b

			922	 	 SIOCATMARK																							=	0x8905

			923	 	 SIOCDARP																									=	0x8953

			924	 	 SIOCDELDLCI																						=	0x8981

			925	 	 SIOCDELMULTI																					=	0x8932

			926	 	 SIOCDELRT																								=	0x890c

			927	 	 SIOCDEVPRIVATE																			=	0x89f0

			928	 	 SIOCDIFADDR																						=	0x8936

			929	 	 SIOCDRARP																								=	0x8960

			930	 	 SIOCGARP																									=	0x8954

			931	 	 SIOCGIFADDR																						=	0x8915

			932	 	 SIOCGIFBR																								=	0x8940

			933	 	 SIOCGIFBRDADDR																			=	0x8919

			934	 	 SIOCGIFCONF																						=	0x8912

			935	 	 SIOCGIFCOUNT																					=	0x8938

			936	 	 SIOCGIFDSTADDR																			=	0x8917

			937	 	 SIOCGIFENCAP																					=	0x8925

			938	 	 SIOCGIFFLAGS																					=	0x8913

			939	 	 SIOCGIFHWADDR																				=	0x8927

			940	 	 SIOCGIFINDEX																					=	0x8933

			941	 	 SIOCGIFMAP																							=	0x8970

			942	 	 SIOCGIFMEM																							=	0x891f

			943	 	 SIOCGIFMETRIC																				=	0x891d

			944	 	 SIOCGIFMTU																							=	0x8921

			945	 	 SIOCGIFNAME																						=	0x8910

			946	 	 SIOCGIFNETMASK																			=	0x891b

			947	 	 SIOCGIFPFLAGS																				=	0x8935

			948	 	 SIOCGIFSLAVE																					=	0x8929

			949	 	 SIOCGIFTXQLEN																				=	0x8942

			950	 	 SIOCGPGRP																								=	0x8904

			951	 	 SIOCGRARP																								=	0x8961

			952	 	 SIOCGSTAMP																							=	0x8906

			953	 	 SIOCGSTAMPNS																					=	0x8907

			954	 	 SIOCPROTOPRIVATE																	=	0x89e0

			955	 	 SIOCRTMSG																								=	0x890d

			956	 	 SIOCSARP																									=	0x8955

			957	 	 SIOCSIFADDR																						=	0x8916

			958	 	 SIOCSIFBR																								=	0x8941

			959	 	 SIOCSIFBRDADDR																			=	0x891a

			960	 	 SIOCSIFDSTADDR																			=	0x8918

			961	 	 SIOCSIFENCAP																					=	0x8926

			962	 	 SIOCSIFFLAGS																					=	0x8914

			963	 	 SIOCSIFHWADDR																				=	0x8924

			964	 	 SIOCSIFHWBROADCAST															=	0x8937

			965	 	 SIOCSIFLINK																						=	0x8911

			966	 	 SIOCSIFMAP																							=	0x8971

			967	 	 SIOCSIFMEM																							=	0x8920

			968	 	 SIOCSIFMETRIC																				=	0x891e

			969	 	 SIOCSIFMTU																							=	0x8922

			970	 	 SIOCSIFNAME																						=	0x8923

			971	 	 SIOCSIFNETMASK																			=	0x891c

			972	 	 SIOCSIFPFLAGS																				=	0x8934

			973	 	 SIOCSIFSLAVE																					=	0x8930

			974	 	 SIOCSIFTXQLEN																				=	0x8943

			975	 	 SIOCSPGRP																								=	0x8902

			976	 	 SIOCSRARP																								=	0x8962

			977	 	 SOCK_CLOEXEC																					=	0x80000

			978	 	 SOCK_DCCP																								=	0x6

			979	 	 SOCK_DGRAM																							=	0x2

			980	 	 SOCK_NONBLOCK																				=	0x800

			981	 	 SOCK_PACKET																						=	0xa

			982	 	 SOCK_RAW																									=	0x3

			983	 	 SOCK_RDM																									=	0x4

			984	 	 SOCK_SEQPACKET																			=	0x5

			985	 	 SOCK_STREAM																						=	0x1

			986	 	 SOL_AAL																										=	0x109

			987	 	 SOL_ATM																										=	0x108

			988	 	 SOL_DECNET																							=	0x105

			989	 	 SOL_ICMPV6																							=	0x3a

			990	 	 SOL_IP																											=	0x0

			991	 	 SOL_IPV6																									=	0x29

			992	 	 SOL_IRDA																									=	0x10a

			993	 	 SOL_PACKET																							=	0x107

			994	 	 SOL_RAW																										=	0xff

			995	 	 SOL_SOCKET																							=	0x1

			996	 	 SOL_TCP																										=	0x6

			997	 	 SOL_X25																										=	0x106

			998	 	 SOMAXCONN																								=	0x80

			999	 	 SO_ACCEPTCONN																				=	0x1e

		1000	 	 SO_ATTACH_FILTER																	=	0x1a

		1001	 	 SO_BINDTODEVICE																		=	0x19

		1002	 	 SO_BROADCAST																					=	0x6

		1003	 	 SO_BSDCOMPAT																					=	0xe

		1004	 	 SO_DEBUG																									=	0x1

		1005	 	 SO_DETACH_FILTER																	=	0x1b

		1006	 	 SO_DOMAIN																								=	0x27

		1007	 	 SO_DONTROUTE																					=	0x5

		1008	 	 SO_ERROR																									=	0x4

		1009	 	 SO_KEEPALIVE																					=	0x9

		1010	 	 SO_LINGER																								=	0xd

		1011	 	 SO_MARK																										=	0x24

		1012	 	 SO_NO_CHECK																						=	0xb

		1013	 	 SO_OOBINLINE																					=	0xa

		1014	 	 SO_PASSCRED																						=	0x10

		1015	 	 SO_PASSSEC																							=	0x22

		1016	 	 SO_PEERCRED																						=	0x11

		1017	 	 SO_PEERNAME																						=	0x1c

		1018	 	 SO_PEERSEC																							=	0x1f

		1019	 	 SO_PRIORITY																						=	0xc

		1020	 	 SO_PROTOCOL																						=	0x26

		1021	 	 SO_RCVBUF																								=	0x8

		1022	 	 SO_RCVBUFFORCE																			=	0x21

		1023	 	 SO_RCVLOWAT																						=	0x12

		1024	 	 SO_RCVTIMEO																						=	0x14

		1025	 	 SO_REUSEADDR																					=	0x2

		1026	 	 SO_RXQ_OVFL																						=	0x28

		1027	 	 SO_SECURITY_AUTHENTICATION							=	0x16

		1028	 	 SO_SECURITY_ENCRYPTION_NETWORK			=	0x18

		1029	 	 SO_SECURITY_ENCRYPTION_TRANSPORT	=	0x17

		1030	 	 SO_SNDBUF																								=	0x7

		1031	 	 SO_SNDBUFFORCE																			=	0x20

		1032	 	 SO_SNDLOWAT																						=	0x13

		1033	 	 SO_SNDTIMEO																						=	0x15

		1034	 	 SO_TIMESTAMP																					=	0x1d

		1035	 	 SO_TIMESTAMPING																		=	0x25

		1036	 	 SO_TIMESTAMPNS																			=	0x23

		1037	 	 SO_TYPE																										=	0x3

		1038	 	 S_BLKSIZE																								=	0x200

		1039	 	 S_IEXEC																										=	0x40

		1040	 	 S_IFBLK																										=	0x6000

		1041	 	 S_IFCHR																										=	0x2000

		1042	 	 S_IFDIR																										=	0x4000

		1043	 	 S_IFIFO																										=	0x1000

		1044	 	 S_IFLNK																										=	0xa000

		1045	 	 S_IFMT																											=	0xf000

		1046	 	 S_IFREG																										=	0x8000

		1047	 	 S_IFSOCK																									=	0xc000

		1048	 	 S_IREAD																										=	0x100

		1049	 	 S_IRGRP																										=	0x20

		1050	 	 S_IROTH																										=	0x4

		1051	 	 S_IRUSR																										=	0x100

		1052	 	 S_IRWXG																										=	0x38

		1053	 	 S_IRWXO																										=	0x7

		1054	 	 S_IRWXU																										=	0x1c0

		1055	 	 S_ISGID																										=	0x400

		1056	 	 S_ISUID																										=	0x800

		1057	 	 S_ISVTX																										=	0x200

		1058	 	 S_IWGRP																										=	0x10

		1059	 	 S_IWOTH																										=	0x2

		1060	 	 S_IWRITE																									=	0x80

		1061	 	 S_IWUSR																										=	0x80

		1062	 	 S_IXGRP																										=	0x8

		1063	 	 S_IXOTH																										=	0x1

		1064	 	 S_IXUSR																										=	0x40

		1065	 	 TCP_CONGESTION																			=	0xd

		1066	 	 TCP_CORK																									=	0x3

		1067	 	 TCP_DEFER_ACCEPT																	=	0x9

		1068	 	 TCP_INFO																									=	0xb

		1069	 	 TCP_KEEPCNT																						=	0x6

		1070	 	 TCP_KEEPIDLE																					=	0x4

		1071	 	 TCP_KEEPINTVL																				=	0x5

		1072	 	 TCP_LINGER2																						=	0x8

		1073	 	 TCP_MAXSEG																							=	0x2

		1074	 	 TCP_MAXWIN																							=	0xffff

		1075	 	 TCP_MAX_WINSHIFT																	=	0xe

		1076	 	 TCP_MD5SIG																							=	0xe

		1077	 	 TCP_MD5SIG_MAXKEYLEN													=	0x50

		1078	 	 TCP_MSS																										=	0x200

		1079	 	 TCP_NODELAY																						=	0x1

		1080	 	 TCP_QUICKACK																					=	0xc

		1081	 	 TCP_SYNCNT																							=	0x7

		1082	 	 TCP_WINDOW_CLAMP																	=	0xa

		1083	 	 TIOCCBRK																									=	0x5428

		1084	 	 TIOCCONS																									=	0x541d

		1085	 	 TIOCEXCL																									=	0x540c

		1086	 	 TIOCGDEV																									=	0x80045432

		1087	 	 TIOCGETD																									=	0x5424

		1088	 	 TIOCGICOUNT																						=	0x545d

		1089	 	 TIOCGLCKTRMIOS																			=	0x5456

		1090	 	 TIOCGPGRP																								=	0x540f

		1091	 	 TIOCGPTN																									=	0x80045430

		1092	 	 TIOCGRS485																							=	0x542e

		1093	 	 TIOCGSERIAL																						=	0x541e

		1094	 	 TIOCGSID																									=	0x5429

		1095	 	 TIOCGSOFTCAR																					=	0x5419

		1096	 	 TIOCGWINSZ																							=	0x5413

		1097	 	 TIOCINQ																										=	0x541b

		1098	 	 TIOCLINUX																								=	0x541c

		1099	 	 TIOCMBIC																									=	0x5417

		1100	 	 TIOCMBIS																									=	0x5416

		1101	 	 TIOCMGET																									=	0x5415

		1102	 	 TIOCMIWAIT																							=	0x545c

		1103	 	 TIOCMSET																									=	0x5418

		1104	 	 TIOCM_CAR																								=	0x40

		1105	 	 TIOCM_CD																									=	0x40

		1106	 	 TIOCM_CTS																								=	0x20

		1107	 	 TIOCM_DSR																								=	0x100

		1108	 	 TIOCM_DTR																								=	0x2

		1109	 	 TIOCM_LE																									=	0x1

		1110	 	 TIOCM_RI																									=	0x80

		1111	 	 TIOCM_RNG																								=	0x80

		1112	 	 TIOCM_RTS																								=	0x4

		1113	 	 TIOCM_SR																									=	0x10

		1114	 	 TIOCM_ST																									=	0x8

		1115	 	 TIOCNOTTY																								=	0x5422

		1116	 	 TIOCNXCL																									=	0x540d

		1117	 	 TIOCOUTQ																									=	0x5411

		1118	 	 TIOCPKT																										=	0x5420

		1119	 	 TIOCPKT_DATA																					=	0x0

		1120	 	 TIOCPKT_DOSTOP																			=	0x20

		1121	 	 TIOCPKT_FLUSHREAD																=	0x1

		1122	 	 TIOCPKT_FLUSHWRITE															=	0x2

		1123	 	 TIOCPKT_IOCTL																				=	0x40

		1124	 	 TIOCPKT_NOSTOP																			=	0x10

		1125	 	 TIOCPKT_START																				=	0x8

		1126	 	 TIOCPKT_STOP																					=	0x4

		1127	 	 TIOCSBRK																									=	0x5427

		1128	 	 TIOCSCTTY																								=	0x540e

		1129	 	 TIOCSERCONFIG																				=	0x5453

		1130	 	 TIOCSERGETLSR																				=	0x5459

		1131	 	 TIOCSERGETMULTI																		=	0x545a

		1132	 	 TIOCSERGSTRUCT																			=	0x5458

		1133	 	 TIOCSERGWILD																					=	0x5454

		1134	 	 TIOCSERSETMULTI																		=	0x545b

		1135	 	 TIOCSERSWILD																					=	0x5455

		1136	 	 TIOCSER_TEMT																					=	0x1

		1137	 	 TIOCSETD																									=	0x5423

		1138	 	 TIOCSIG																										=	0x40045436

		1139	 	 TIOCSLCKTRMIOS																			=	0x5457

		1140	 	 TIOCSPGRP																								=	0x5410

		1141	 	 TIOCSPTLCK																							=	0x40045431

		1142	 	 TIOCSRS485																							=	0x542f

		1143	 	 TIOCSSERIAL																						=	0x541f

		1144	 	 TIOCSSOFTCAR																					=	0x541a

		1145	 	 TIOCSTI																										=	0x5412

		1146	 	 TIOCSWINSZ																							=	0x5414

		1147	 	 TUNATTACHFILTER																		=	0x401054d5

		1148	 	 TUNDETACHFILTER																		=	0x401054d6

		1149	 	 TUNGETFEATURES																			=	0x800454cf

		1150	 	 TUNGETIFF																								=	0x800454d2

		1151	 	 TUNGETSNDBUF																					=	0x800454d3

		1152	 	 TUNGETVNETHDRSZ																		=	0x800454d7

		1153	 	 TUNSETDEBUG																						=	0x400454c9

		1154	 	 TUNSETGROUP																						=	0x400454ce

		1155	 	 TUNSETIFF																								=	0x400454ca

		1156	 	 TUNSETLINK																							=	0x400454cd

		1157	 	 TUNSETNOCSUM																					=	0x400454c8

		1158	 	 TUNSETOFFLOAD																				=	0x400454d0

		1159	 	 TUNSETOWNER																						=	0x400454cc

		1160	 	 TUNSETPERSIST																				=	0x400454cb

		1161	 	 TUNSETSNDBUF																					=	0x400454d4

		1162	 	 TUNSETTXFILTER																			=	0x400454d1

		1163	 	 TUNSETVNETHDRSZ																		=	0x400454d8

		1164	 	 WALL																													=	0x40000000

		1165	 	 WCLONE																											=	0x80000000

		1166	 	 WCONTINUED																							=	0x8

		1167	 	 WEXITED																										=	0x4

		1168	 	 WNOHANG																										=	0x1

		1169	 	 WNOTHREAD																								=	0x20000000

		1170	 	 WNOWAIT																										=	0x1000000

		1171	 	 WORDSIZE																									=	0x40

		1172	 	 WSTOPPED																									=	0x2

		1173	 	 WUNTRACED																								=	0x2

		1174)

		1175	

		1176	 //	Errors

		1177	 const	(

		1178	 	 E2BIG											=	Errno(0x7)

		1179	 	 EACCES										=	Errno(0xd)

		1180	 	 EADDRINUSE						=	Errno(0x62)

		1181	 	 EADDRNOTAVAIL			=	Errno(0x63)

		1182	 	 EADV												=	Errno(0x44)

		1183	 	 EAFNOSUPPORT				=	Errno(0x61)

		1184	 	 EAGAIN										=	Errno(0xb)

		1185	 	 EALREADY								=	Errno(0x72)

		1186	 	 EBADE											=	Errno(0x34)

		1187	 	 EBADF											=	Errno(0x9)

		1188	 	 EBADFD										=	Errno(0x4d)

		1189	 	 EBADMSG									=	Errno(0x4a)

		1190	 	 EBADR											=	Errno(0x35)

		1191	 	 EBADRQC									=	Errno(0x38)

		1192	 	 EBADSLT									=	Errno(0x39)

		1193	 	 EBFONT										=	Errno(0x3b)

		1194	 	 EBUSY											=	Errno(0x10)

		1195	 	 ECANCELED							=	Errno(0x7d)

		1196	 	 ECHILD										=	Errno(0xa)

		1197	 	 ECHRNG										=	Errno(0x2c)

		1198	 	 ECOMM											=	Errno(0x46)

		1199	 	 ECONNABORTED				=	Errno(0x67)

		1200	 	 ECONNREFUSED				=	Errno(0x6f)

		1201	 	 ECONNRESET						=	Errno(0x68)

		1202	 	 EDEADLK									=	Errno(0x23)

		1203	 	 EDEADLOCK							=	Errno(0x23)

		1204	 	 EDESTADDRREQ				=	Errno(0x59)

		1205	 	 EDOM												=	Errno(0x21)

		1206	 	 EDOTDOT									=	Errno(0x49)

		1207	 	 EDQUOT										=	Errno(0x7a)

		1208	 	 EEXIST										=	Errno(0x11)

		1209	 	 EFAULT										=	Errno(0xe)

		1210	 	 EFBIG											=	Errno(0x1b)

		1211	 	 EHOSTDOWN							=	Errno(0x70)

		1212	 	 EHOSTUNREACH				=	Errno(0x71)

		1213	 	 EIDRM											=	Errno(0x2b)

		1214	 	 EILSEQ										=	Errno(0x54)

		1215	 	 EINPROGRESS					=	Errno(0x73)

		1216	 	 EINTR											=	Errno(0x4)

		1217	 	 EINVAL										=	Errno(0x16)

		1218	 	 EIO													=	Errno(0x5)

		1219	 	 EISCONN									=	Errno(0x6a)

		1220	 	 EISDIR										=	Errno(0x15)

		1221	 	 EISNAM										=	Errno(0x78)

		1222	 	 EKEYEXPIRED					=	Errno(0x7f)

		1223	 	 EKEYREJECTED				=	Errno(0x81)

		1224	 	 EKEYREVOKED					=	Errno(0x80)

		1225	 	 EL2HLT										=	Errno(0x33)

		1226	 	 EL2NSYNC								=	Errno(0x2d)

		1227	 	 EL3HLT										=	Errno(0x2e)

		1228	 	 EL3RST										=	Errno(0x2f)

		1229	 	 ELIBACC									=	Errno(0x4f)

		1230	 	 ELIBBAD									=	Errno(0x50)

		1231	 	 ELIBEXEC								=	Errno(0x53)

		1232	 	 ELIBMAX									=	Errno(0x52)

		1233	 	 ELIBSCN									=	Errno(0x51)

		1234	 	 ELNRNG										=	Errno(0x30)

		1235	 	 ELOOP											=	Errno(0x28)

		1236	 	 EMEDIUMTYPE					=	Errno(0x7c)

		1237	 	 EMFILE										=	Errno(0x18)

		1238	 	 EMLINK										=	Errno(0x1f)

		1239	 	 EMSGSIZE								=	Errno(0x5a)

		1240	 	 EMULTIHOP							=	Errno(0x48)

		1241	 	 ENAMETOOLONG				=	Errno(0x24)

		1242	 	 ENAVAIL									=	Errno(0x77)

		1243	 	 ENETDOWN								=	Errno(0x64)

		1244	 	 ENETRESET							=	Errno(0x66)

		1245	 	 ENETUNREACH					=	Errno(0x65)

		1246	 	 ENFILE										=	Errno(0x17)

		1247	 	 ENOANO										=	Errno(0x37)

		1248	 	 ENOBUFS									=	Errno(0x69)

		1249	 	 ENOCSI										=	Errno(0x32)

		1250	 	 ENODATA									=	Errno(0x3d)

		1251	 	 ENODEV										=	Errno(0x13)

		1252	 	 ENOENT										=	Errno(0x2)

		1253	 	 ENOEXEC									=	Errno(0x8)

		1254	 	 ENOKEY										=	Errno(0x7e)

		1255	 	 ENOLCK										=	Errno(0x25)

		1256	 	 ENOLINK									=	Errno(0x43)

		1257	 	 ENOMEDIUM							=	Errno(0x7b)

		1258	 	 ENOMEM										=	Errno(0xc)

		1259	 	 ENOMSG										=	Errno(0x2a)

		1260	 	 ENONET										=	Errno(0x40)

		1261	 	 ENOPKG										=	Errno(0x41)

		1262	 	 ENOPROTOOPT					=	Errno(0x5c)

		1263	 	 ENOSPC										=	Errno(0x1c)

		1264	 	 ENOSR											=	Errno(0x3f)

		1265	 	 ENOSTR										=	Errno(0x3c)

		1266	 	 ENOSYS										=	Errno(0x26)

		1267	 	 ENOTBLK									=	Errno(0xf)

		1268	 	 ENOTCONN								=	Errno(0x6b)

		1269	 	 ENOTDIR									=	Errno(0x14)

		1270	 	 ENOTEMPTY							=	Errno(0x27)

		1271	 	 ENOTNAM									=	Errno(0x76)

		1272	 	 ENOTRECOVERABLE	=	Errno(0x83)

		1273	 	 ENOTSOCK								=	Errno(0x58)

		1274	 	 ENOTSUP									=	Errno(0x5f)

		1275	 	 ENOTTY										=	Errno(0x19)

		1276	 	 ENOTUNIQ								=	Errno(0x4c)

		1277	 	 ENXIO											=	Errno(0x6)

		1278	 	 EOPNOTSUPP						=	Errno(0x5f)

		1279	 	 EOVERFLOW							=	Errno(0x4b)

		1280	 	 EOWNERDEAD						=	Errno(0x82)

		1281	 	 EPERM											=	Errno(0x1)

		1282	 	 EPFNOSUPPORT				=	Errno(0x60)

		1283	 	 EPIPE											=	Errno(0x20)

		1284	 	 EPROTO										=	Errno(0x47)

		1285	 	 EPROTONOSUPPORT	=	Errno(0x5d)

		1286	 	 EPROTOTYPE						=	Errno(0x5b)

		1287	 	 ERANGE										=	Errno(0x22)

		1288	 	 EREMCHG									=	Errno(0x4e)

		1289	 	 EREMOTE									=	Errno(0x42)

		1290	 	 EREMOTEIO							=	Errno(0x79)

		1291	 	 ERESTART								=	Errno(0x55)

		1292	 	 ERFKILL									=	Errno(0x84)

		1293	 	 EROFS											=	Errno(0x1e)

		1294	 	 ESHUTDOWN							=	Errno(0x6c)

		1295	 	 ESOCKTNOSUPPORT	=	Errno(0x5e)

		1296	 	 ESPIPE										=	Errno(0x1d)

		1297	 	 ESRCH											=	Errno(0x3)

		1298	 	 ESRMNT										=	Errno(0x45)

		1299	 	 ESTALE										=	Errno(0x74)

		1300	 	 ESTRPIPE								=	Errno(0x56)

		1301	 	 ETIME											=	Errno(0x3e)

		1302	 	 ETIMEDOUT							=	Errno(0x6e)

		1303	 	 ETOOMANYREFS				=	Errno(0x6d)

		1304	 	 ETXTBSY									=	Errno(0x1a)

		1305	 	 EUCLEAN									=	Errno(0x75)

		1306	 	 EUNATCH									=	Errno(0x31)

		1307	 	 EUSERS										=	Errno(0x57)

		1308	 	 EWOULDBLOCK					=	Errno(0xb)

		1309	 	 EXDEV											=	Errno(0x12)

		1310	 	 EXFULL										=	Errno(0x36)

		1311)

		1312	

		1313	 //	Signals

		1314	 const	(

		1315	 	 SIGABRT			=	Signal(0x6)

		1316	 	 SIGALRM			=	Signal(0xe)

		1317	 	 SIGBUS				=	Signal(0x7)

		1318	 	 SIGCHLD			=	Signal(0x11)

		1319	 	 SIGCLD				=	Signal(0x11)

		1320	 	 SIGCONT			=	Signal(0x12)

		1321	 	 SIGFPE				=	Signal(0x8)

		1322	 	 SIGHUP				=	Signal(0x1)

		1323	 	 SIGILL				=	Signal(0x4)

		1324	 	 SIGINT				=	Signal(0x2)

		1325	 	 SIGIO					=	Signal(0x1d)

		1326	 	 SIGIOT				=	Signal(0x6)

		1327	 	 SIGKILL			=	Signal(0x9)

		1328	 	 SIGPIPE			=	Signal(0xd)

		1329	 	 SIGPOLL			=	Signal(0x1d)

		1330	 	 SIGPROF			=	Signal(0x1b)

		1331	 	 SIGPWR				=	Signal(0x1e)

		1332	 	 SIGQUIT			=	Signal(0x3)

		1333	 	 SIGSEGV			=	Signal(0xb)

		1334	 	 SIGSTKFLT	=	Signal(0x10)

		1335	 	 SIGSTOP			=	Signal(0x13)

		1336	 	 SIGSYS				=	Signal(0x1f)

		1337	 	 SIGTERM			=	Signal(0xf)

		1338	 	 SIGTRAP			=	Signal(0x5)

		1339	 	 SIGTSTP			=	Signal(0x14)

		1340	 	 SIGTTIN			=	Signal(0x15)

		1341	 	 SIGTTOU			=	Signal(0x16)

		1342	 	 SIGUNUSED	=	Signal(0x1f)

		1343	 	 SIGURG				=	Signal(0x17)

		1344	 	 SIGUSR1			=	Signal(0xa)

		1345	 	 SIGUSR2			=	Signal(0xc)

		1346	 	 SIGVTALRM	=	Signal(0x1a)

		1347	 	 SIGWINCH		=	Signal(0x1c)

		1348	 	 SIGXCPU			=	Signal(0x18)

		1349	 	 SIGXFSZ			=	Signal(0x19)

		1350)

		1351	

		1352	 //	Error	table

		1353	 var	errors	=	[...]string{

		1354	 	 1:			"operation	not	permitted",

		1355	 	 2:			"no	such	file	or	directory",

		1356	 	 3:			"no	such	process",

		1357	 	 4:			"interrupted	system	call",

		1358	 	 5:			"input/output	error",

		1359	 	 6:			"no	such	device	or	address",

		1360	 	 7:			"argument	list	too	long",

		1361	 	 8:			"exec	format	error",

		1362	 	 9:			"bad	file	descriptor",

		1363	 	 10:		"no	child	processes",

		1364	 	 11:		"resource	temporarily	unavailable",

		1365	 	 12:		"cannot	allocate	memory",

		1366	 	 13:		"permission	denied",

		1367	 	 14:		"bad	address",

		1368	 	 15:		"block	device	required",

		1369	 	 16:		"device	or	resource	busy",

		1370	 	 17:		"file	exists",

		1371	 	 18:		"invalid	cross-device	link",

		1372	 	 19:		"no	such	device",

		1373	 	 20:		"not	a	directory",

		1374	 	 21:		"is	a	directory",

		1375	 	 22:		"invalid	argument",

		1376	 	 23:		"too	many	open	files	in	system",

		1377	 	 24:		"too	many	open	files",

		1378	 	 25:		"inappropriate	ioctl	for	device",

		1379	 	 26:		"text	file	busy",

		1380	 	 27:		"file	too	large",

		1381	 	 28:		"no	space	left	on	device",

		1382	 	 29:		"illegal	seek",

		1383	 	 30:		"read-only	file	system",

		1384	 	 31:		"too	many	links",

		1385	 	 32:		"broken	pipe",

		1386	 	 33:		"numerical	argument	out	of	domain",

		1387	 	 34:		"numerical	result	out	of	range",

		1388	 	 35:		"resource	deadlock	avoided",

		1389	 	 36:		"file	name	too	long",

		1390	 	 37:		"no	locks	available",

		1391	 	 38:		"function	not	implemented",

		1392	 	 39:		"directory	not	empty",

		1393	 	 40:		"too	many	levels	of	symbolic	links",

		1394	 	 42:		"no	message	of	desired	type",

		1395	 	 43:		"identifier	removed",

		1396	 	 44:		"channel	number	out	of	range",

		1397	 	 45:		"level	2	not	synchronized",

		1398	 	 46:		"level	3	halted",

		1399	 	 47:		"level	3	reset",

		1400	 	 48:		"link	number	out	of	range",

		1401	 	 49:		"protocol	driver	not	attached",

		1402	 	 50:		"no	CSI	structure	available",

		1403	 	 51:		"level	2	halted",

		1404	 	 52:		"invalid	exchange",

		1405	 	 53:		"invalid	request	descriptor",

		1406	 	 54:		"exchange	full",

		1407	 	 55:		"no	anode",

		1408	 	 56:		"invalid	request	code",

		1409	 	 57:		"invalid	slot",

		1410	 	 59:		"bad	font	file	format",

		1411	 	 60:		"device	not	a	stream",

		1412	 	 61:		"no	data	available",

		1413	 	 62:		"timer	expired",

		1414	 	 63:		"out	of	streams	resources",

		1415	 	 64:		"machine	is	not	on	the	network",

		1416	 	 65:		"package	not	installed",

		1417	 	 66:		"object	is	remote",

		1418	 	 67:		"link	has	been	severed",

		1419	 	 68:		"advertise	error",

		1420	 	 69:		"srmount	error",

		1421	 	 70:		"communication	error	on	send",

		1422	 	 71:		"protocol	error",

		1423	 	 72:		"multihop	attempted",

		1424	 	 73:		"RFS	specific	error",

		1425	 	 74:		"bad	message",

		1426	 	 75:		"value	too	large	for	defined	data	type",

		1427	 	 76:		"name	not	unique	on	network",

		1428	 	 77:		"file	descriptor	in	bad	state",

		1429	 	 78:		"remote	address	changed",

		1430	 	 79:		"can	not	access	a	needed	shared	library",

		1431	 	 80:		"accessing	a	corrupted	shared	library",

		1432	 	 81:		".lib	section	in	a.out	corrupted",

		1433	 	 82:		"attempting	to	link	in	too	many	shared	libraries",

		1434	 	 83:		"cannot	exec	a	shared	library	directly",

		1435	 	 84:		"invalid	or	incomplete	multibyte	or	wide	character",

		1436	 	 85:		"interrupted	system	call	should	be	restarted",

		1437	 	 86:		"streams	pipe	error",

		1438	 	 87:		"too	many	users",

		1439	 	 88:		"socket	operation	on	non-socket",

		1440	 	 89:		"destination	address	required",

		1441	 	 90:		"message	too	long",

		1442	 	 91:		"protocol	wrong	type	for	socket",

		1443	 	 92:		"protocol	not	available",

		1444	 	 93:		"protocol	not	supported",

		1445	 	 94:		"socket	type	not	supported",

		1446	 	 95:		"operation	not	supported",

		1447	 	 96:		"protocol	family	not	supported",

		1448	 	 97:		"address	family	not	supported	by	protocol",

		1449	 	 98:		"address	already	in	use",

		1450	 	 99:		"cannot	assign	requested	address",

		1451	 	 100:	"network	is	down",

		1452	 	 101:	"network	is	unreachable",

		1453	 	 102:	"network	dropped	connection	on	reset",

		1454	 	 103:	"software	caused	connection	abort",

		1455	 	 104:	"connection	reset	by	peer",

		1456	 	 105:	"no	buffer	space	available",

		1457	 	 106:	"transport	endpoint	is	already	connected",

		1458	 	 107:	"transport	endpoint	is	not	connected",

		1459	 	 108:	"cannot	send	after	transport	endpoint	shutdown",

		1460	 	 109:	"too	many	references:	cannot	splice",

		1461	 	 110:	"connection	timed	out",

		1462	 	 111:	"connection	refused",

		1463	 	 112:	"host	is	down",

		1464	 	 113:	"no	route	to	host",

		1465	 	 114:	"operation	already	in	progress",

		1466	 	 115:	"operation	now	in	progress",

		1467	 	 116:	"stale	NFS	file	handle",

		1468	 	 117:	"structure	needs	cleaning",

		1469	 	 118:	"not	a	XENIX	named	type	file",

		1470	 	 119:	"no	XENIX	semaphores	available",

		1471	 	 120:	"is	a	named	type	file",

		1472	 	 121:	"remote	I/O	error",

		1473	 	 122:	"disk	quota	exceeded",

		1474	 	 123:	"no	medium	found",

		1475	 	 124:	"wrong	medium	type",

		1476	 	 125:	"operation	canceled",

		1477	 	 126:	"required	key	not	available",

		1478	 	 127:	"key	has	expired",

		1479	 	 128:	"key	has	been	revoked",

		1480	 	 129:	"key	was	rejected	by	service",

		1481	 	 130:	"owner	died",

		1482	 	 131:	"state	not	recoverable",

		1483	 	 132:	"operation	not	possible	due	to	RF-kill",

		1484	 }

		1485	

		1486	 //	Signal	table

		1487	 var	signals	=	[...]string{

		1488	 	 1:		"hangup",

		1489	 	 2:		"interrupt",

		1490	 	 3:		"quit",

		1491	 	 4:		"illegal	instruction",

		1492	 	 5:		"trace/breakpoint	trap",

		1493	 	 6:		"aborted",

		1494	 	 7:		"bus	error",

		1495	 	 8:		"floating	point	exception",

		1496	 	 9:		"killed",

		1497	 	 10:	"user	defined	signal	1",

		1498	 	 11:	"segmentation	fault",

		1499	 	 12:	"user	defined	signal	2",

		1500	 	 13:	"broken	pipe",

		1501	 	 14:	"alarm	clock",

		1502	 	 15:	"terminated",

		1503	 	 16:	"stack	fault",

		1504	 	 17:	"child	exited",

		1505	 	 18:	"continued",

		1506	 	 19:	"stopped	(signal)",

		1507	 	 20:	"stopped",

		1508	 	 21:	"stopped	(tty	input)",

		1509	 	 22:	"stopped	(tty	output)",

		1510	 	 23:	"urgent	I/O	condition",

		1511	 	 24:	"CPU	time	limit	exceeded",

		1512	 	 25:	"file	size	limit	exceeded",

		1513	 	 26:	"virtual	timer	expired",

		1514	 	 27:	"profiling	timer	expired",

		1515	 	 28:	"window	changed",

		1516	 	 29:	"I/O	possible",

		1517	 	 30:	"power	failure",

		1518	 	 31:	"bad	system	call",

		1519	 }

Build	version	go1.0.1.

Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/syscall/zsyscall_linux_amd64.go
					1	 //	mksyscall.pl	syscall_linux.go	syscall_linux_amd64.go

					2	 //	MACHINE	GENERATED	BY	THE	COMMAND	ABOVE;	DO	NOT	EDIT

					3	

					4	 package	syscall

					5	

					6	 import	"unsafe"

					7	

					8	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

					9	

				10	 func	open(path	string,	mode	int,	perm	uint32)	(fd	int,	err	error)	{

				11	 	 r0,	_,	e1	:=	Syscall(SYS_OPEN,	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(mode),	uintptr(perm))

				12	 	 fd	=	int(r0)

				13	 	 if	e1	!=	0	{

				14	 	 	 err	=	e1

				15	 	 }

				16	 	 return

				17	 }

				18	

				19	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

				20	

				21	 func	openat(dirfd	int,	path	string,	flags	int,	mode	uint32)	(fd	int,	err	error)	{

				22	 	 r0,	_,	e1	:=	Syscall6(SYS_OPENAT,	uintptr(dirfd),	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(flags),	uintptr(mode),	0,	0)

				23	 	 fd	=	int(r0)

				24	 	 if	e1	!=	0	{

				25	 	 	 err	=	e1

				26	 	 }

				27	 	 return

				28	 }

				29	

				30	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

				31	

				32	 func	pipe(p	*[2]_C_int)	(err	error)	{

				33	 	 _,	_,	e1	:=	RawSyscall(SYS_PIPE,	uintptr(unsafe.Pointer(p)),	0,	0)

				34	 	 if	e1	!=	0	{

				35	 	 	 err	=	e1

				36	 	 }

				37	 	 return

				38	 }

				39	

				40	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

				41	

				42	 func	utimes(path	string,	times	*[2]Timeval)	(err	error)	{

				43	 	 _,	_,	e1	:=	Syscall(SYS_UTIMES,	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(unsafe.Pointer(times)),	0)

				44	 	 if	e1	!=	0	{

				45	 	 	 err	=	e1

				46	 	 }

				47	 	 return

				48	 }

				49	

				50	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

				51	

				52	 func	futimesat(dirfd	int,	path	*byte,	times	*[2]Timeval)	(err	error)	{

				53	 	 _,	_,	e1	:=	Syscall(SYS_FUTIMESAT,	uintptr(dirfd),	uintptr(unsafe.Pointer(path)),	uintptr(unsafe.Pointer(times)))

				54	 	 if	e1	!=	0	{

				55	 	 	 err	=	e1

				56	 	 }

				57	 	 return

				58	 }

				59	

				60	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

				61	

				62	 func	Getcwd(buf	[]byte)	(n	int,	err	error)	{

				63	 	 var	_p0	unsafe.Pointer

				64	 	 if	len(buf)	>	0	{

				65	 	 	 _p0	=	unsafe.Pointer(&buf[0])

				66	 	 }	else	{

				67	 	 	 _p0	=	unsafe.Pointer(&_zero)

				68	 	 }

				69	 	 r0,	_,	e1	:=	Syscall(SYS_GETCWD,	uintptr(_p0),	uintptr(len(buf)),	0)

				70	 	 n	=	int(r0)

				71	 	 if	e1	!=	0	{

				72	 	 	 err	=	e1

				73	 	 }

				74	 	 return

				75	 }

				76	

				77	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

				78	

				79	 func	wait4(pid	int,	wstatus	*_C_int,	options	int,	rusage	*Rusage)	(wpid	int,	err	error)	{

				80	 	 r0,	_,	e1	:=	Syscall6(SYS_WAIT4,	uintptr(pid),	uintptr(unsafe.Pointer(wstatus)),	uintptr(options),	uintptr(unsafe.Pointer(rusage)),	0,	0)

				81	 	 wpid	=	int(r0)

				82	 	 if	e1	!=	0	{

				83	 	 	 err	=	e1

				84	 	 }

				85	 	 return

				86	 }

				87	

				88	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

				89	

				90	 func	ptrace(request	int,	pid	int,	addr	uintptr,	data	uintptr)	(err	error)	{

				91	 	 _,	_,	e1	:=	Syscall6(SYS_PTRACE,	uintptr(request),	uintptr(pid),	uintptr(addr),	uintptr(data),	0,	0)

				92	 	 if	e1	!=	0	{

				93	 	 	 err	=	e1

				94	 	 }

				95	 	 return

				96	 }

				97	

				98	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

				99	

			100	 func	reboot(magic1	uint,	magic2	uint,	cmd	int,	arg	string)	(err	error)	{

			101	 	 _,	_,	e1	:=	Syscall6(SYS_REBOOT,	uintptr(magic1),	uintptr(magic2),	uintptr(cmd),	uintptr(unsafe.Pointer(StringBytePtr(arg))),	0,	0)

			102	 	 if	e1	!=	0	{

			103	 	 	 err	=	e1

			104	 	 }

			105	 	 return

			106	 }

			107	

			108	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			109	

			110	 func	mount(source	string,	target	string,	fstype	string,	flags	uintptr,	data	*byte)	(err	error)	{

			111	 	 _,	_,	e1	:=	Syscall6(SYS_MOUNT,	uintptr(unsafe.Pointer(StringBytePtr(source))),	uintptr(unsafe.Pointer(StringBytePtr(target))),	uintptr(unsafe.Pointer(StringBytePtr(fstype))),	uintptr(flags),	uintptr(unsafe.Pointer(data)),	0)

			112	 	 if	e1	!=	0	{

			113	 	 	 err	=	e1

			114	 	 }

			115	 	 return

			116	 }

			117	

			118	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			119	

			120	 func	Access(path	string,	mode	uint32)	(err	error)	{

			121	 	 _,	_,	e1	:=	Syscall(SYS_ACCESS,	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(mode),	0)

			122	 	 if	e1	!=	0	{

			123	 	 	 err	=	e1

			124	 	 }

			125	 	 return

			126	 }

			127	

			128	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			129	

			130	 func	Acct(path	string)	(err	error)	{

			131	 	 _,	_,	e1	:=	Syscall(SYS_ACCT,	uintptr(unsafe.Pointer(StringBytePtr(path))),	0,	0)

			132	 	 if	e1	!=	0	{

			133	 	 	 err	=	e1

			134	 	 }

			135	 	 return

			136	 }

			137	

			138	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			139	

			140	 func	Adjtimex(buf	*Timex)	(state	int,	err	error)	{

			141	 	 r0,	_,	e1	:=	Syscall(SYS_ADJTIMEX,	uintptr(unsafe.Pointer(buf)),	0,	0)

			142	 	 state	=	int(r0)

			143	 	 if	e1	!=	0	{

			144	 	 	 err	=	e1

			145	 	 }

			146	 	 return

			147	 }

			148	

			149	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			150	

			151	 func	Chdir(path	string)	(err	error)	{

			152	 	 _,	_,	e1	:=	Syscall(SYS_CHDIR,	uintptr(unsafe.Pointer(StringBytePtr(path))),	0,	0)

			153	 	 if	e1	!=	0	{

			154	 	 	 err	=	e1

			155	 	 }

			156	 	 return

			157	 }

			158	

			159	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			160	

			161	 func	Chmod(path	string,	mode	uint32)	(err	error)	{

			162	 	 _,	_,	e1	:=	Syscall(SYS_CHMOD,	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(mode),	0)

			163	 	 if	e1	!=	0	{

			164	 	 	 err	=	e1

			165	 	 }

			166	 	 return

			167	 }

			168	

			169	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			170	

			171	 func	Chroot(path	string)	(err	error)	{

			172	 	 _,	_,	e1	:=	Syscall(SYS_CHROOT,	uintptr(unsafe.Pointer(StringBytePtr(path))),	0,	0)

			173	 	 if	e1	!=	0	{

			174	 	 	 err	=	e1

			175	 	 }

			176	 	 return

			177	 }

			178	

			179	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			180	

			181	 func	Close(fd	int)	(err	error)	{

			182	 	 _,	_,	e1	:=	Syscall(SYS_CLOSE,	uintptr(fd),	0,	0)

			183	 	 if	e1	!=	0	{

			184	 	 	 err	=	e1

			185	 	 }

			186	 	 return

			187	 }

			188	

			189	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			190	

			191	 func	Creat(path	string,	mode	uint32)	(fd	int,	err	error)	{

			192	 	 r0,	_,	e1	:=	Syscall(SYS_CREAT,	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(mode),	0)

			193	 	 fd	=	int(r0)

			194	 	 if	e1	!=	0	{

			195	 	 	 err	=	e1

			196	 	 }

			197	 	 return

			198	 }

			199	

			200	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			201	

			202	 func	Dup(oldfd	int)	(fd	int,	err	error)	{

			203	 	 r0,	_,	e1	:=	RawSyscall(SYS_DUP,	uintptr(oldfd),	0,	0)

			204	 	 fd	=	int(r0)

			205	 	 if	e1	!=	0	{

			206	 	 	 err	=	e1

			207	 	 }

			208	 	 return

			209	 }

			210	

			211	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			212	

			213	 func	Dup2(oldfd	int,	newfd	int)	(err	error)	{

			214	 	 _,	_,	e1	:=	RawSyscall(SYS_DUP2,	uintptr(oldfd),	uintptr(newfd),	0)

			215	 	 if	e1	!=	0	{

			216	 	 	 err	=	e1

			217	 	 }

			218	 	 return

			219	 }

			220	

			221	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			222	

			223	 func	EpollCreate(size	int)	(fd	int,	err	error)	{

			224	 	 r0,	_,	e1	:=	RawSyscall(SYS_EPOLL_CREATE,	uintptr(size),	0,	0)

			225	 	 fd	=	int(r0)

			226	 	 if	e1	!=	0	{

			227	 	 	 err	=	e1

			228	 	 }

			229	 	 return

			230	 }

			231	

			232	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			233	

			234	 func	EpollCreate1(flag	int)	(fd	int,	err	error)	{

			235	 	 r0,	_,	e1	:=	RawSyscall(SYS_EPOLL_CREATE1,	uintptr(flag),	0,	0)

			236	 	 fd	=	int(r0)

			237	 	 if	e1	!=	0	{

			238	 	 	 err	=	e1

			239	 	 }

			240	 	 return

			241	 }

			242	

			243	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			244	

			245	 func	EpollCtl(epfd	int,	op	int,	fd	int,	event	*EpollEvent)	(err	error)	{

			246	 	 _,	_,	e1	:=	RawSyscall6(SYS_EPOLL_CTL,	uintptr(epfd),	uintptr(op),	uintptr(fd),	uintptr(unsafe.Pointer(event)),	0,	0)

			247	 	 if	e1	!=	0	{

			248	 	 	 err	=	e1

			249	 	 }

			250	 	 return

			251	 }

			252	

			253	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			254	

			255	 func	EpollWait(epfd	int,	events	[]EpollEvent,	msec	int)	(n	int,	err	error)	{

			256	 	 var	_p0	unsafe.Pointer

			257	 	 if	len(events)	>	0	{

			258	 	 	 _p0	=	unsafe.Pointer(&events[0])

			259	 	 }	else	{

			260	 	 	 _p0	=	unsafe.Pointer(&_zero)

			261	 	 }

			262	 	 r0,	_,	e1	:=	Syscall6(SYS_EPOLL_WAIT,	uintptr(epfd),	uintptr(_p0),	uintptr(len(events)),	uintptr(msec),	0,	0)

			263	 	 n	=	int(r0)

			264	 	 if	e1	!=	0	{

			265	 	 	 err	=	e1

			266	 	 }

			267	 	 return

			268	 }

			269	

			270	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			271	

			272	 func	Exit(code	int)	{

			273	 	 Syscall(SYS_EXIT_GROUP,	uintptr(code),	0,	0)

			274	 	 return

			275	 }

			276	

			277	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			278	

			279	 func	Faccessat(dirfd	int,	path	string,	mode	uint32,	flags	int)	(err	error)	{

			280	 	 _,	_,	e1	:=	Syscall6(SYS_FACCESSAT,	uintptr(dirfd),	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(mode),	uintptr(flags),	0,	0)

			281	 	 if	e1	!=	0	{

			282	 	 	 err	=	e1

			283	 	 }

			284	 	 return

			285	 }

			286	

			287	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			288	

			289	 func	Fallocate(fd	int,	mode	uint32,	off	int64,	len	int64)	(err	error)	{

			290	 	 _,	_,	e1	:=	Syscall6(SYS_FALLOCATE,	uintptr(fd),	uintptr(mode),	uintptr(off),	uintptr(len),	0,	0)

			291	 	 if	e1	!=	0	{

			292	 	 	 err	=	e1

			293	 	 }

			294	 	 return

			295	 }

			296	

			297	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			298	

			299	 func	Fchdir(fd	int)	(err	error)	{

			300	 	 _,	_,	e1	:=	Syscall(SYS_FCHDIR,	uintptr(fd),	0,	0)

			301	 	 if	e1	!=	0	{

			302	 	 	 err	=	e1

			303	 	 }

			304	 	 return

			305	 }

			306	

			307	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			308	

			309	 func	Fchmod(fd	int,	mode	uint32)	(err	error)	{

			310	 	 _,	_,	e1	:=	Syscall(SYS_FCHMOD,	uintptr(fd),	uintptr(mode),	0)

			311	 	 if	e1	!=	0	{

			312	 	 	 err	=	e1

			313	 	 }

			314	 	 return

			315	 }

			316	

			317	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			318	

			319	 func	Fchmodat(dirfd	int,	path	string,	mode	uint32,	flags	int)	(err	error)	{

			320	 	 _,	_,	e1	:=	Syscall6(SYS_FCHMODAT,	uintptr(dirfd),	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(mode),	uintptr(flags),	0,	0)

			321	 	 if	e1	!=	0	{

			322	 	 	 err	=	e1

			323	 	 }

			324	 	 return

			325	 }

			326	

			327	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			328	

			329	 func	Fchownat(dirfd	int,	path	string,	uid	int,	gid	int,	flags	int)	(err	error)	{

			330	 	 _,	_,	e1	:=	Syscall6(SYS_FCHOWNAT,	uintptr(dirfd),	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(uid),	uintptr(gid),	uintptr(flags),	0)

			331	 	 if	e1	!=	0	{

			332	 	 	 err	=	e1

			333	 	 }

			334	 	 return

			335	 }

			336	

			337	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			338	

			339	 func	fcntl(fd	int,	cmd	int,	arg	int)	(val	int,	err	error)	{

			340	 	 r0,	_,	e1	:=	Syscall(SYS_FCNTL,	uintptr(fd),	uintptr(cmd),	uintptr(arg))

			341	 	 val	=	int(r0)

			342	 	 if	e1	!=	0	{

			343	 	 	 err	=	e1

			344	 	 }

			345	 	 return

			346	 }

			347	

			348	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			349	

			350	 func	Fdatasync(fd	int)	(err	error)	{

			351	 	 _,	_,	e1	:=	Syscall(SYS_FDATASYNC,	uintptr(fd),	0,	0)

			352	 	 if	e1	!=	0	{

			353	 	 	 err	=	e1

			354	 	 }

			355	 	 return

			356	 }

			357	

			358	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			359	

			360	 func	Flock(fd	int,	how	int)	(err	error)	{

			361	 	 _,	_,	e1	:=	Syscall(SYS_FLOCK,	uintptr(fd),	uintptr(how),	0)

			362	 	 if	e1	!=	0	{

			363	 	 	 err	=	e1

			364	 	 }

			365	 	 return

			366	 }

			367	

			368	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			369	

			370	 func	Fsync(fd	int)	(err	error)	{

			371	 	 _,	_,	e1	:=	Syscall(SYS_FSYNC,	uintptr(fd),	0,	0)

			372	 	 if	e1	!=	0	{

			373	 	 	 err	=	e1

			374	 	 }

			375	 	 return

			376	 }

			377	

			378	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			379	

			380	 func	Getdents(fd	int,	buf	[]byte)	(n	int,	err	error)	{

			381	 	 var	_p0	unsafe.Pointer

			382	 	 if	len(buf)	>	0	{

			383	 	 	 _p0	=	unsafe.Pointer(&buf[0])

			384	 	 }	else	{

			385	 	 	 _p0	=	unsafe.Pointer(&_zero)

			386	 	 }

			387	 	 r0,	_,	e1	:=	Syscall(SYS_GETDENTS64,	uintptr(fd),	uintptr(_p0),	uintptr(len(buf)))

			388	 	 n	=	int(r0)

			389	 	 if	e1	!=	0	{

			390	 	 	 err	=	e1

			391	 	 }

			392	 	 return

			393	 }

			394	

			395	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			396	

			397	 func	Getpgid(pid	int)	(pgid	int,	err	error)	{

			398	 	 r0,	_,	e1	:=	RawSyscall(SYS_GETPGID,	uintptr(pid),	0,	0)

			399	 	 pgid	=	int(r0)

			400	 	 if	e1	!=	0	{

			401	 	 	 err	=	e1

			402	 	 }

			403	 	 return

			404	 }

			405	

			406	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			407	

			408	 func	Getpgrp()	(pid	int)	{

			409	 	 r0,	_,	_	:=	RawSyscall(SYS_GETPGRP,	0,	0,	0)

			410	 	 pid	=	int(r0)

			411	 	 return

			412	 }

			413	

			414	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			415	

			416	 func	Getpid()	(pid	int)	{

			417	 	 r0,	_,	_	:=	RawSyscall(SYS_GETPID,	0,	0,	0)

			418	 	 pid	=	int(r0)

			419	 	 return

			420	 }

			421	

			422	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			423	

			424	 func	Getppid()	(ppid	int)	{

			425	 	 r0,	_,	_	:=	RawSyscall(SYS_GETPPID,	0,	0,	0)

			426	 	 ppid	=	int(r0)

			427	 	 return

			428	 }

			429	

			430	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			431	

			432	 func	Getrlimit(resource	int,	rlim	*Rlimit)	(err	error)	{

			433	 	 _,	_,	e1	:=	RawSyscall(SYS_GETRLIMIT,	uintptr(resource),	uintptr(unsafe.Pointer(rlim)),	0)

			434	 	 if	e1	!=	0	{

			435	 	 	 err	=	e1

			436	 	 }

			437	 	 return

			438	 }

			439	

			440	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			441	

			442	 func	Getrusage(who	int,	rusage	*Rusage)	(err	error)	{

			443	 	 _,	_,	e1	:=	RawSyscall(SYS_GETRUSAGE,	uintptr(who),	uintptr(unsafe.Pointer(rusage)),	0)

			444	 	 if	e1	!=	0	{

			445	 	 	 err	=	e1

			446	 	 }

			447	 	 return

			448	 }

			449	

			450	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			451	

			452	 func	Gettid()	(tid	int)	{

			453	 	 r0,	_,	_	:=	RawSyscall(SYS_GETTID,	0,	0,	0)

			454	 	 tid	=	int(r0)

			455	 	 return

			456	 }

			457	

			458	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			459	

			460	 func	InotifyAddWatch(fd	int,	pathname	string,	mask	uint32)	(watchdesc	int,	err	error)	{

			461	 	 r0,	_,	e1	:=	Syscall(SYS_INOTIFY_ADD_WATCH,	uintptr(fd),	uintptr(unsafe.Pointer(StringBytePtr(pathname))),	uintptr(mask))

			462	 	 watchdesc	=	int(r0)

			463	 	 if	e1	!=	0	{

			464	 	 	 err	=	e1

			465	 	 }

			466	 	 return

			467	 }

			468	

			469	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			470	

			471	 func	InotifyInit()	(fd	int,	err	error)	{

			472	 	 r0,	_,	e1	:=	RawSyscall(SYS_INOTIFY_INIT,	0,	0,	0)

			473	 	 fd	=	int(r0)

			474	 	 if	e1	!=	0	{

			475	 	 	 err	=	e1

			476	 	 }

			477	 	 return

			478	 }

			479	

			480	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			481	

			482	 func	InotifyInit1(flags	int)	(fd	int,	err	error)	{

			483	 	 r0,	_,	e1	:=	RawSyscall(SYS_INOTIFY_INIT1,	uintptr(flags),	0,	0)

			484	 	 fd	=	int(r0)

			485	 	 if	e1	!=	0	{

			486	 	 	 err	=	e1

			487	 	 }

			488	 	 return

			489	 }

			490	

			491	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			492	

			493	 func	InotifyRmWatch(fd	int,	watchdesc	uint32)	(success	int,	err	error)	{

			494	 	 r0,	_,	e1	:=	RawSyscall(SYS_INOTIFY_RM_WATCH,	uintptr(fd),	uintptr(watchdesc),	0)

			495	 	 success	=	int(r0)

			496	 	 if	e1	!=	0	{

			497	 	 	 err	=	e1

			498	 	 }

			499	 	 return

			500	 }

			501	

			502	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			503	

			504	 func	Kill(pid	int,	sig	Signal)	(err	error)	{

			505	 	 _,	_,	e1	:=	RawSyscall(SYS_KILL,	uintptr(pid),	uintptr(sig),	0)

			506	 	 if	e1	!=	0	{

			507	 	 	 err	=	e1

			508	 	 }

			509	 	 return

			510	 }

			511	

			512	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			513	

			514	 func	Klogctl(typ	int,	buf	[]byte)	(n	int,	err	error)	{

			515	 	 var	_p0	unsafe.Pointer

			516	 	 if	len(buf)	>	0	{

			517	 	 	 _p0	=	unsafe.Pointer(&buf[0])

			518	 	 }	else	{

			519	 	 	 _p0	=	unsafe.Pointer(&_zero)

			520	 	 }

			521	 	 r0,	_,	e1	:=	Syscall(SYS_SYSLOG,	uintptr(typ),	uintptr(_p0),	uintptr(len(buf)))

			522	 	 n	=	int(r0)

			523	 	 if	e1	!=	0	{

			524	 	 	 err	=	e1

			525	 	 }

			526	 	 return

			527	 }

			528	

			529	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			530	

			531	 func	Link(oldpath	string,	newpath	string)	(err	error)	{

			532	 	 _,	_,	e1	:=	Syscall(SYS_LINK,	uintptr(unsafe.Pointer(StringBytePtr(oldpath))),	uintptr(unsafe.Pointer(StringBytePtr(newpath))),	0)

			533	 	 if	e1	!=	0	{

			534	 	 	 err	=	e1

			535	 	 }

			536	 	 return

			537	 }

			538	

			539	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			540	

			541	 func	Mkdir(path	string,	mode	uint32)	(err	error)	{

			542	 	 _,	_,	e1	:=	Syscall(SYS_MKDIR,	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(mode),	0)

			543	 	 if	e1	!=	0	{

			544	 	 	 err	=	e1

			545	 	 }

			546	 	 return

			547	 }

			548	

			549	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			550	

			551	 func	Mkdirat(dirfd	int,	path	string,	mode	uint32)	(err	error)	{

			552	 	 _,	_,	e1	:=	Syscall(SYS_MKDIRAT,	uintptr(dirfd),	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(mode))

			553	 	 if	e1	!=	0	{

			554	 	 	 err	=	e1

			555	 	 }

			556	 	 return

			557	 }

			558	

			559	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			560	

			561	 func	Mknod(path	string,	mode	uint32,	dev	int)	(err	error)	{

			562	 	 _,	_,	e1	:=	Syscall(SYS_MKNOD,	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(mode),	uintptr(dev))

			563	 	 if	e1	!=	0	{

			564	 	 	 err	=	e1

			565	 	 }

			566	 	 return

			567	 }

			568	

			569	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			570	

			571	 func	Mknodat(dirfd	int,	path	string,	mode	uint32,	dev	int)	(err	error)	{

			572	 	 _,	_,	e1	:=	Syscall6(SYS_MKNODAT,	uintptr(dirfd),	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(mode),	uintptr(dev),	0,	0)

			573	 	 if	e1	!=	0	{

			574	 	 	 err	=	e1

			575	 	 }

			576	 	 return

			577	 }

			578	

			579	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			580	

			581	 func	Nanosleep(time	*Timespec,	leftover	*Timespec)	(err	error)	{

			582	 	 _,	_,	e1	:=	Syscall(SYS_NANOSLEEP,	uintptr(unsafe.Pointer(time)),	uintptr(unsafe.Pointer(leftover)),	0)

			583	 	 if	e1	!=	0	{

			584	 	 	 err	=	e1

			585	 	 }

			586	 	 return

			587	 }

			588	

			589	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			590	

			591	 func	Pause()	(err	error)	{

			592	 	 _,	_,	e1	:=	Syscall(SYS_PAUSE,	0,	0,	0)

			593	 	 if	e1	!=	0	{

			594	 	 	 err	=	e1

			595	 	 }

			596	 	 return

			597	 }

			598	

			599	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			600	

			601	 func	PivotRoot(newroot	string,	putold	string)	(err	error)	{

			602	 	 _,	_,	e1	:=	Syscall(SYS_PIVOT_ROOT,	uintptr(unsafe.Pointer(StringBytePtr(newroot))),	uintptr(unsafe.Pointer(StringBytePtr(putold))),	0)

			603	 	 if	e1	!=	0	{

			604	 	 	 err	=	e1

			605	 	 }

			606	 	 return

			607	 }

			608	

			609	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			610	

			611	 func	Read(fd	int,	p	[]byte)	(n	int,	err	error)	{

			612	 	 var	_p0	unsafe.Pointer

			613	 	 if	len(p)	>	0	{

			614	 	 	 _p0	=	unsafe.Pointer(&p[0])

			615	 	 }	else	{

			616	 	 	 _p0	=	unsafe.Pointer(&_zero)

			617	 	 }

			618	 	 r0,	_,	e1	:=	Syscall(SYS_READ,	uintptr(fd),	uintptr(_p0),	uintptr(len(p)))

			619	 	 n	=	int(r0)

			620	 	 if	e1	!=	0	{

			621	 	 	 err	=	e1

			622	 	 }

			623	 	 return

			624	 }

			625	

			626	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			627	

			628	 func	Readlink(path	string,	buf	[]byte)	(n	int,	err	error)	{

			629	 	 var	_p0	unsafe.Pointer

			630	 	 if	len(buf)	>	0	{

			631	 	 	 _p0	=	unsafe.Pointer(&buf[0])

			632	 	 }	else	{

			633	 	 	 _p0	=	unsafe.Pointer(&_zero)

			634	 	 }

			635	 	 r0,	_,	e1	:=	Syscall(SYS_READLINK,	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(_p0),	uintptr(len(buf)))

			636	 	 n	=	int(r0)

			637	 	 if	e1	!=	0	{

			638	 	 	 err	=	e1

			639	 	 }

			640	 	 return

			641	 }

			642	

			643	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			644	

			645	 func	Rename(oldpath	string,	newpath	string)	(err	error)	{

			646	 	 _,	_,	e1	:=	Syscall(SYS_RENAME,	uintptr(unsafe.Pointer(StringBytePtr(oldpath))),	uintptr(unsafe.Pointer(StringBytePtr(newpath))),	0)

			647	 	 if	e1	!=	0	{

			648	 	 	 err	=	e1

			649	 	 }

			650	 	 return

			651	 }

			652	

			653	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			654	

			655	 func	Renameat(olddirfd	int,	oldpath	string,	newdirfd	int,	newpath	string)	(err	error)	{

			656	 	 _,	_,	e1	:=	Syscall6(SYS_RENAMEAT,	uintptr(olddirfd),	uintptr(unsafe.Pointer(StringBytePtr(oldpath))),	uintptr(newdirfd),	uintptr(unsafe.Pointer(StringBytePtr(newpath))),	0,	0)

			657	 	 if	e1	!=	0	{

			658	 	 	 err	=	e1

			659	 	 }

			660	 	 return

			661	 }

			662	

			663	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			664	

			665	 func	Rmdir(path	string)	(err	error)	{

			666	 	 _,	_,	e1	:=	Syscall(SYS_RMDIR,	uintptr(unsafe.Pointer(StringBytePtr(path))),	0,	0)

			667	 	 if	e1	!=	0	{

			668	 	 	 err	=	e1

			669	 	 }

			670	 	 return

			671	 }

			672	

			673	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			674	

			675	 func	Setdomainname(p	[]byte)	(err	error)	{

			676	 	 var	_p0	unsafe.Pointer

			677	 	 if	len(p)	>	0	{

			678	 	 	 _p0	=	unsafe.Pointer(&p[0])

			679	 	 }	else	{

			680	 	 	 _p0	=	unsafe.Pointer(&_zero)

			681	 	 }

			682	 	 _,	_,	e1	:=	Syscall(SYS_SETDOMAINNAME,	uintptr(_p0),	uintptr(len(p)),	0)

			683	 	 if	e1	!=	0	{

			684	 	 	 err	=	e1

			685	 	 }

			686	 	 return

			687	 }

			688	

			689	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			690	

			691	 func	Sethostname(p	[]byte)	(err	error)	{

			692	 	 var	_p0	unsafe.Pointer

			693	 	 if	len(p)	>	0	{

			694	 	 	 _p0	=	unsafe.Pointer(&p[0])

			695	 	 }	else	{

			696	 	 	 _p0	=	unsafe.Pointer(&_zero)

			697	 	 }

			698	 	 _,	_,	e1	:=	Syscall(SYS_SETHOSTNAME,	uintptr(_p0),	uintptr(len(p)),	0)

			699	 	 if	e1	!=	0	{

			700	 	 	 err	=	e1

			701	 	 }

			702	 	 return

			703	 }

			704	

			705	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			706	

			707	 func	Setpgid(pid	int,	pgid	int)	(err	error)	{

			708	 	 _,	_,	e1	:=	RawSyscall(SYS_SETPGID,	uintptr(pid),	uintptr(pgid),	0)

			709	 	 if	e1	!=	0	{

			710	 	 	 err	=	e1

			711	 	 }

			712	 	 return

			713	 }

			714	

			715	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			716	

			717	 func	Setrlimit(resource	int,	rlim	*Rlimit)	(err	error)	{

			718	 	 _,	_,	e1	:=	RawSyscall(SYS_SETRLIMIT,	uintptr(resource),	uintptr(unsafe.Pointer(rlim)),	0)

			719	 	 if	e1	!=	0	{

			720	 	 	 err	=	e1

			721	 	 }

			722	 	 return

			723	 }

			724	

			725	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			726	

			727	 func	Setsid()	(pid	int,	err	error)	{

			728	 	 r0,	_,	e1	:=	RawSyscall(SYS_SETSID,	0,	0,	0)

			729	 	 pid	=	int(r0)

			730	 	 if	e1	!=	0	{

			731	 	 	 err	=	e1

			732	 	 }

			733	 	 return

			734	 }

			735	

			736	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			737	

			738	 func	Settimeofday(tv	*Timeval)	(err	error)	{

			739	 	 _,	_,	e1	:=	RawSyscall(SYS_SETTIMEOFDAY,	uintptr(unsafe.Pointer(tv)),	0,	0)

			740	 	 if	e1	!=	0	{

			741	 	 	 err	=	e1

			742	 	 }

			743	 	 return

			744	 }

			745	

			746	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			747	

			748	 func	Setuid(uid	int)	(err	error)	{

			749	 	 _,	_,	e1	:=	RawSyscall(SYS_SETUID,	uintptr(uid),	0,	0)

			750	 	 if	e1	!=	0	{

			751	 	 	 err	=	e1

			752	 	 }

			753	 	 return

			754	 }

			755	

			756	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			757	

			758	 func	Symlink(oldpath	string,	newpath	string)	(err	error)	{

			759	 	 _,	_,	e1	:=	Syscall(SYS_SYMLINK,	uintptr(unsafe.Pointer(StringBytePtr(oldpath))),	uintptr(unsafe.Pointer(StringBytePtr(newpath))),	0)

			760	 	 if	e1	!=	0	{

			761	 	 	 err	=	e1

			762	 	 }

			763	 	 return

			764	 }

			765	

			766	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			767	

			768	 func	Sync()	{

			769	 	 Syscall(SYS_SYNC,	0,	0,	0)

			770	 	 return

			771	 }

			772	

			773	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			774	

			775	 func	Sysinfo(info	*Sysinfo_t)	(err	error)	{

			776	 	 _,	_,	e1	:=	RawSyscall(SYS_SYSINFO,	uintptr(unsafe.Pointer(info)),	0,	0)

			777	 	 if	e1	!=	0	{

			778	 	 	 err	=	e1

			779	 	 }

			780	 	 return

			781	 }

			782	

			783	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			784	

			785	 func	Tee(rfd	int,	wfd	int,	len	int,	flags	int)	(n	int64,	err	error)	{

			786	 	 r0,	_,	e1	:=	Syscall6(SYS_TEE,	uintptr(rfd),	uintptr(wfd),	uintptr(len),	uintptr(flags),	0,	0)

			787	 	 n	=	int64(r0)

			788	 	 if	e1	!=	0	{

			789	 	 	 err	=	e1

			790	 	 }

			791	 	 return

			792	 }

			793	

			794	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			795	

			796	 func	Tgkill(tgid	int,	tid	int,	sig	Signal)	(err	error)	{

			797	 	 _,	_,	e1	:=	RawSyscall(SYS_TGKILL,	uintptr(tgid),	uintptr(tid),	uintptr(sig))

			798	 	 if	e1	!=	0	{

			799	 	 	 err	=	e1

			800	 	 }

			801	 	 return

			802	 }

			803	

			804	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			805	

			806	 func	Times(tms	*Tms)	(ticks	uintptr,	err	error)	{

			807	 	 r0,	_,	e1	:=	RawSyscall(SYS_TIMES,	uintptr(unsafe.Pointer(tms)),	0,	0)

			808	 	 ticks	=	uintptr(r0)

			809	 	 if	e1	!=	0	{

			810	 	 	 err	=	e1

			811	 	 }

			812	 	 return

			813	 }

			814	

			815	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			816	

			817	 func	Umask(mask	int)	(oldmask	int)	{

			818	 	 r0,	_,	_	:=	RawSyscall(SYS_UMASK,	uintptr(mask),	0,	0)

			819	 	 oldmask	=	int(r0)

			820	 	 return

			821	 }

			822	

			823	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			824	

			825	 func	Uname(buf	*Utsname)	(err	error)	{

			826	 	 _,	_,	e1	:=	RawSyscall(SYS_UNAME,	uintptr(unsafe.Pointer(buf)),	0,	0)

			827	 	 if	e1	!=	0	{

			828	 	 	 err	=	e1

			829	 	 }

			830	 	 return

			831	 }

			832	

			833	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			834	

			835	 func	Unlink(path	string)	(err	error)	{

			836	 	 _,	_,	e1	:=	Syscall(SYS_UNLINK,	uintptr(unsafe.Pointer(StringBytePtr(path))),	0,	0)

			837	 	 if	e1	!=	0	{

			838	 	 	 err	=	e1

			839	 	 }

			840	 	 return

			841	 }

			842	

			843	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			844	

			845	 func	Unlinkat(dirfd	int,	path	string)	(err	error)	{

			846	 	 _,	_,	e1	:=	Syscall(SYS_UNLINKAT,	uintptr(dirfd),	uintptr(unsafe.Pointer(StringBytePtr(path))),	0)

			847	 	 if	e1	!=	0	{

			848	 	 	 err	=	e1

			849	 	 }

			850	 	 return

			851	 }

			852	

			853	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			854	

			855	 func	Unmount(target	string,	flags	int)	(err	error)	{

			856	 	 _,	_,	e1	:=	Syscall(SYS_UMOUNT2,	uintptr(unsafe.Pointer(StringBytePtr(target))),	uintptr(flags),	0)

			857	 	 if	e1	!=	0	{

			858	 	 	 err	=	e1

			859	 	 }

			860	 	 return

			861	 }

			862	

			863	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			864	

			865	 func	Unshare(flags	int)	(err	error)	{

			866	 	 _,	_,	e1	:=	Syscall(SYS_UNSHARE,	uintptr(flags),	0,	0)

			867	 	 if	e1	!=	0	{

			868	 	 	 err	=	e1

			869	 	 }

			870	 	 return

			871	 }

			872	

			873	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			874	

			875	 func	Ustat(dev	int,	ubuf	*Ustat_t)	(err	error)	{

			876	 	 _,	_,	e1	:=	Syscall(SYS_USTAT,	uintptr(dev),	uintptr(unsafe.Pointer(ubuf)),	0)

			877	 	 if	e1	!=	0	{

			878	 	 	 err	=	e1

			879	 	 }

			880	 	 return

			881	 }

			882	

			883	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			884	

			885	 func	Utime(path	string,	buf	*Utimbuf)	(err	error)	{

			886	 	 _,	_,	e1	:=	Syscall(SYS_UTIME,	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(unsafe.Pointer(buf)),	0)

			887	 	 if	e1	!=	0	{

			888	 	 	 err	=	e1

			889	 	 }

			890	 	 return

			891	 }

			892	

			893	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			894	

			895	 func	Write(fd	int,	p	[]byte)	(n	int,	err	error)	{

			896	 	 var	_p0	unsafe.Pointer

			897	 	 if	len(p)	>	0	{

			898	 	 	 _p0	=	unsafe.Pointer(&p[0])

			899	 	 }	else	{

			900	 	 	 _p0	=	unsafe.Pointer(&_zero)

			901	 	 }

			902	 	 r0,	_,	e1	:=	Syscall(SYS_WRITE,	uintptr(fd),	uintptr(_p0),	uintptr(len(p)))

			903	 	 n	=	int(r0)

			904	 	 if	e1	!=	0	{

			905	 	 	 err	=	e1

			906	 	 }

			907	 	 return

			908	 }

			909	

			910	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			911	

			912	 func	exitThread(code	int)	(err	error)	{

			913	 	 _,	_,	e1	:=	Syscall(SYS_EXIT,	uintptr(code),	0,	0)

			914	 	 if	e1	!=	0	{

			915	 	 	 err	=	e1

			916	 	 }

			917	 	 return

			918	 }

			919	

			920	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			921	

			922	 func	read(fd	int,	p	*byte,	np	int)	(n	int,	err	error)	{

			923	 	 r0,	_,	e1	:=	Syscall(SYS_READ,	uintptr(fd),	uintptr(unsafe.Pointer(p)),	uintptr(np))

			924	 	 n	=	int(r0)

			925	 	 if	e1	!=	0	{

			926	 	 	 err	=	e1

			927	 	 }

			928	 	 return

			929	 }

			930	

			931	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			932	

			933	 func	write(fd	int,	p	*byte,	np	int)	(n	int,	err	error)	{

			934	 	 r0,	_,	e1	:=	Syscall(SYS_WRITE,	uintptr(fd),	uintptr(unsafe.Pointer(p)),	uintptr(np))

			935	 	 n	=	int(r0)

			936	 	 if	e1	!=	0	{

			937	 	 	 err	=	e1

			938	 	 }

			939	 	 return

			940	 }

			941	

			942	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			943	

			944	 func	munmap(addr	uintptr,	length	uintptr)	(err	error)	{

			945	 	 _,	_,	e1	:=	Syscall(SYS_MUNMAP,	uintptr(addr),	uintptr(length),	0)

			946	 	 if	e1	!=	0	{

			947	 	 	 err	=	e1

			948	 	 }

			949	 	 return

			950	 }

			951	

			952	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			953	

			954	 func	Madvise(b	[]byte,	advice	int)	(err	error)	{

			955	 	 var	_p0	unsafe.Pointer

			956	 	 if	len(b)	>	0	{

			957	 	 	 _p0	=	unsafe.Pointer(&b[0])

			958	 	 }	else	{

			959	 	 	 _p0	=	unsafe.Pointer(&_zero)

			960	 	 }

			961	 	 _,	_,	e1	:=	Syscall(SYS_MADVISE,	uintptr(_p0),	uintptr(len(b)),	uintptr(advice))

			962	 	 if	e1	!=	0	{

			963	 	 	 err	=	e1

			964	 	 }

			965	 	 return

			966	 }

			967	

			968	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			969	

			970	 func	Mprotect(b	[]byte,	prot	int)	(err	error)	{

			971	 	 var	_p0	unsafe.Pointer

			972	 	 if	len(b)	>	0	{

			973	 	 	 _p0	=	unsafe.Pointer(&b[0])

			974	 	 }	else	{

			975	 	 	 _p0	=	unsafe.Pointer(&_zero)

			976	 	 }

			977	 	 _,	_,	e1	:=	Syscall(SYS_MPROTECT,	uintptr(_p0),	uintptr(len(b)),	uintptr(prot))

			978	 	 if	e1	!=	0	{

			979	 	 	 err	=	e1

			980	 	 }

			981	 	 return

			982	 }

			983	

			984	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

			985	

			986	 func	Mlock(b	[]byte)	(err	error)	{

			987	 	 var	_p0	unsafe.Pointer

			988	 	 if	len(b)	>	0	{

			989	 	 	 _p0	=	unsafe.Pointer(&b[0])

			990	 	 }	else	{

			991	 	 	 _p0	=	unsafe.Pointer(&_zero)

			992	 	 }

			993	 	 _,	_,	e1	:=	Syscall(SYS_MLOCK,	uintptr(_p0),	uintptr(len(b)),	0)

			994	 	 if	e1	!=	0	{

			995	 	 	 err	=	e1

			996	 	 }

			997	 	 return

			998	 }

			999	

		1000	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1001	

		1002	 func	Munlock(b	[]byte)	(err	error)	{

		1003	 	 var	_p0	unsafe.Pointer

		1004	 	 if	len(b)	>	0	{

		1005	 	 	 _p0	=	unsafe.Pointer(&b[0])

		1006	 	 }	else	{

		1007	 	 	 _p0	=	unsafe.Pointer(&_zero)

		1008	 	 }

		1009	 	 _,	_,	e1	:=	Syscall(SYS_MUNLOCK,	uintptr(_p0),	uintptr(len(b)),	0)

		1010	 	 if	e1	!=	0	{

		1011	 	 	 err	=	e1

		1012	 	 }

		1013	 	 return

		1014	 }

		1015	

		1016	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1017	

		1018	 func	Mlockall(flags	int)	(err	error)	{

		1019	 	 _,	_,	e1	:=	Syscall(SYS_MLOCKALL,	uintptr(flags),	0,	0)

		1020	 	 if	e1	!=	0	{

		1021	 	 	 err	=	e1

		1022	 	 }

		1023	 	 return

		1024	 }

		1025	

		1026	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1027	

		1028	 func	Munlockall()	(err	error)	{

		1029	 	 _,	_,	e1	:=	Syscall(SYS_MUNLOCKALL,	0,	0,	0)

		1030	 	 if	e1	!=	0	{

		1031	 	 	 err	=	e1

		1032	 	 }

		1033	 	 return

		1034	 }

		1035	

		1036	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1037	

		1038	 func	Chown(path	string,	uid	int,	gid	int)	(err	error)	{

		1039	 	 _,	_,	e1	:=	Syscall(SYS_CHOWN,	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(uid),	uintptr(gid))

		1040	 	 if	e1	!=	0	{

		1041	 	 	 err	=	e1

		1042	 	 }

		1043	 	 return

		1044	 }

		1045	

		1046	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1047	

		1048	 func	Fchown(fd	int,	uid	int,	gid	int)	(err	error)	{

		1049	 	 _,	_,	e1	:=	Syscall(SYS_FCHOWN,	uintptr(fd),	uintptr(uid),	uintptr(gid))

		1050	 	 if	e1	!=	0	{

		1051	 	 	 err	=	e1

		1052	 	 }

		1053	 	 return

		1054	 }

		1055	

		1056	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1057	

		1058	 func	Fstat(fd	int,	stat	*Stat_t)	(err	error)	{

		1059	 	 _,	_,	e1	:=	Syscall(SYS_FSTAT,	uintptr(fd),	uintptr(unsafe.Pointer(stat)),	0)

		1060	 	 if	e1	!=	0	{

		1061	 	 	 err	=	e1

		1062	 	 }

		1063	 	 return

		1064	 }

		1065	

		1066	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1067	

		1068	 func	Fstatfs(fd	int,	buf	*Statfs_t)	(err	error)	{

		1069	 	 _,	_,	e1	:=	Syscall(SYS_FSTATFS,	uintptr(fd),	uintptr(unsafe.Pointer(buf)),	0)

		1070	 	 if	e1	!=	0	{

		1071	 	 	 err	=	e1

		1072	 	 }

		1073	 	 return

		1074	 }

		1075	

		1076	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1077	

		1078	 func	Ftruncate(fd	int,	length	int64)	(err	error)	{

		1079	 	 _,	_,	e1	:=	Syscall(SYS_FTRUNCATE,	uintptr(fd),	uintptr(length),	0)

		1080	 	 if	e1	!=	0	{

		1081	 	 	 err	=	e1

		1082	 	 }

		1083	 	 return

		1084	 }

		1085	

		1086	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1087	

		1088	 func	Getegid()	(egid	int)	{

		1089	 	 r0,	_,	_	:=	RawSyscall(SYS_GETEGID,	0,	0,	0)

		1090	 	 egid	=	int(r0)

		1091	 	 return

		1092	 }

		1093	

		1094	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1095	

		1096	 func	Geteuid()	(euid	int)	{

		1097	 	 r0,	_,	_	:=	RawSyscall(SYS_GETEUID,	0,	0,	0)

		1098	 	 euid	=	int(r0)

		1099	 	 return

		1100	 }

		1101	

		1102	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1103	

		1104	 func	Getgid()	(gid	int)	{

		1105	 	 r0,	_,	_	:=	RawSyscall(SYS_GETGID,	0,	0,	0)

		1106	 	 gid	=	int(r0)

		1107	 	 return

		1108	 }

		1109	

		1110	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1111	

		1112	 func	Getuid()	(uid	int)	{

		1113	 	 r0,	_,	_	:=	RawSyscall(SYS_GETUID,	0,	0,	0)

		1114	 	 uid	=	int(r0)

		1115	 	 return

		1116	 }

		1117	

		1118	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1119	

		1120	 func	Ioperm(from	int,	num	int,	on	int)	(err	error)	{

		1121	 	 _,	_,	e1	:=	Syscall(SYS_IOPERM,	uintptr(from),	uintptr(num),	uintptr(on))

		1122	 	 if	e1	!=	0	{

		1123	 	 	 err	=	e1

		1124	 	 }

		1125	 	 return

		1126	 }

		1127	

		1128	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1129	

		1130	 func	Iopl(level	int)	(err	error)	{

		1131	 	 _,	_,	e1	:=	Syscall(SYS_IOPL,	uintptr(level),	0,	0)

		1132	 	 if	e1	!=	0	{

		1133	 	 	 err	=	e1

		1134	 	 }

		1135	 	 return

		1136	 }

		1137	

		1138	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1139	

		1140	 func	Lchown(path	string,	uid	int,	gid	int)	(err	error)	{

		1141	 	 _,	_,	e1	:=	Syscall(SYS_LCHOWN,	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(uid),	uintptr(gid))

		1142	 	 if	e1	!=	0	{

		1143	 	 	 err	=	e1

		1144	 	 }

		1145	 	 return

		1146	 }

		1147	

		1148	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1149	

		1150	 func	Listen(s	int,	n	int)	(err	error)	{

		1151	 	 _,	_,	e1	:=	Syscall(SYS_LISTEN,	uintptr(s),	uintptr(n),	0)

		1152	 	 if	e1	!=	0	{

		1153	 	 	 err	=	e1

		1154	 	 }

		1155	 	 return

		1156	 }

		1157	

		1158	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1159	

		1160	 func	Lstat(path	string,	stat	*Stat_t)	(err	error)	{

		1161	 	 _,	_,	e1	:=	Syscall(SYS_LSTAT,	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(unsafe.Pointer(stat)),	0)

		1162	 	 if	e1	!=	0	{

		1163	 	 	 err	=	e1

		1164	 	 }

		1165	 	 return

		1166	 }

		1167	

		1168	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1169	

		1170	 func	Pread(fd	int,	p	[]byte,	offset	int64)	(n	int,	err	error)	{

		1171	 	 var	_p0	unsafe.Pointer

		1172	 	 if	len(p)	>	0	{

		1173	 	 	 _p0	=	unsafe.Pointer(&p[0])

		1174	 	 }	else	{

		1175	 	 	 _p0	=	unsafe.Pointer(&_zero)

		1176	 	 }

		1177	 	 r0,	_,	e1	:=	Syscall6(SYS_PREAD64,	uintptr(fd),	uintptr(_p0),	uintptr(len(p)),	uintptr(offset),	0,	0)

		1178	 	 n	=	int(r0)

		1179	 	 if	e1	!=	0	{

		1180	 	 	 err	=	e1

		1181	 	 }

		1182	 	 return

		1183	 }

		1184	

		1185	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1186	

		1187	 func	Pwrite(fd	int,	p	[]byte,	offset	int64)	(n	int,	err	error)	{

		1188	 	 var	_p0	unsafe.Pointer

		1189	 	 if	len(p)	>	0	{

		1190	 	 	 _p0	=	unsafe.Pointer(&p[0])

		1191	 	 }	else	{

		1192	 	 	 _p0	=	unsafe.Pointer(&_zero)

		1193	 	 }

		1194	 	 r0,	_,	e1	:=	Syscall6(SYS_PWRITE64,	uintptr(fd),	uintptr(_p0),	uintptr(len(p)),	uintptr(offset),	0,	0)

		1195	 	 n	=	int(r0)

		1196	 	 if	e1	!=	0	{

		1197	 	 	 err	=	e1

		1198	 	 }

		1199	 	 return

		1200	 }

		1201	

		1202	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1203	

		1204	 func	Seek(fd	int,	offset	int64,	whence	int)	(off	int64,	err	error)	{

		1205	 	 r0,	_,	e1	:=	Syscall(SYS_LSEEK,	uintptr(fd),	uintptr(offset),	uintptr(whence))

		1206	 	 off	=	int64(r0)

		1207	 	 if	e1	!=	0	{

		1208	 	 	 err	=	e1

		1209	 	 }

		1210	 	 return

		1211	 }

		1212	

		1213	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1214	

		1215	 func	Select(nfd	int,	r	*FdSet,	w	*FdSet,	e	*FdSet,	timeout	*Timeval)	(n	int,	err	error)	{

		1216	 	 r0,	_,	e1	:=	Syscall6(SYS_SELECT,	uintptr(nfd),	uintptr(unsafe.Pointer(r)),	uintptr(unsafe.Pointer(w)),	uintptr(unsafe.Pointer(e)),	uintptr(unsafe.Pointer(timeout)),	0)

		1217	 	 n	=	int(r0)

		1218	 	 if	e1	!=	0	{

		1219	 	 	 err	=	e1

		1220	 	 }

		1221	 	 return

		1222	 }

		1223	

		1224	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1225	

		1226	 func	Sendfile(outfd	int,	infd	int,	offset	*int64,	count	int)	(written	int,	err	error)	{

		1227	 	 r0,	_,	e1	:=	Syscall6(SYS_SENDFILE,	uintptr(outfd),	uintptr(infd),	uintptr(unsafe.Pointer(offset)),	uintptr(count),	0,	0)

		1228	 	 written	=	int(r0)

		1229	 	 if	e1	!=	0	{

		1230	 	 	 err	=	e1

		1231	 	 }

		1232	 	 return

		1233	 }

		1234	

		1235	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1236	

		1237	 func	Setfsgid(gid	int)	(err	error)	{

		1238	 	 _,	_,	e1	:=	Syscall(SYS_SETFSGID,	uintptr(gid),	0,	0)

		1239	 	 if	e1	!=	0	{

		1240	 	 	 err	=	e1

		1241	 	 }

		1242	 	 return

		1243	 }

		1244	

		1245	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1246	

		1247	 func	Setfsuid(uid	int)	(err	error)	{

		1248	 	 _,	_,	e1	:=	Syscall(SYS_SETFSUID,	uintptr(uid),	0,	0)

		1249	 	 if	e1	!=	0	{

		1250	 	 	 err	=	e1

		1251	 	 }

		1252	 	 return

		1253	 }

		1254	

		1255	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1256	

		1257	 func	Setgid(gid	int)	(err	error)	{

		1258	 	 _,	_,	e1	:=	RawSyscall(SYS_SETGID,	uintptr(gid),	0,	0)

		1259	 	 if	e1	!=	0	{

		1260	 	 	 err	=	e1

		1261	 	 }

		1262	 	 return

		1263	 }

		1264	

		1265	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1266	

		1267	 func	Setregid(rgid	int,	egid	int)	(err	error)	{

		1268	 	 _,	_,	e1	:=	RawSyscall(SYS_SETREGID,	uintptr(rgid),	uintptr(egid),	0)

		1269	 	 if	e1	!=	0	{

		1270	 	 	 err	=	e1

		1271	 	 }

		1272	 	 return

		1273	 }

		1274	

		1275	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1276	

		1277	 func	Setresgid(rgid	int,	egid	int,	sgid	int)	(err	error)	{

		1278	 	 _,	_,	e1	:=	RawSyscall(SYS_SETRESGID,	uintptr(rgid),	uintptr(egid),	uintptr(sgid))

		1279	 	 if	e1	!=	0	{

		1280	 	 	 err	=	e1

		1281	 	 }

		1282	 	 return

		1283	 }

		1284	

		1285	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1286	

		1287	 func	Setresuid(ruid	int,	euid	int,	suid	int)	(err	error)	{

		1288	 	 _,	_,	e1	:=	RawSyscall(SYS_SETRESUID,	uintptr(ruid),	uintptr(euid),	uintptr(suid))

		1289	 	 if	e1	!=	0	{

		1290	 	 	 err	=	e1

		1291	 	 }

		1292	 	 return

		1293	 }

		1294	

		1295	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1296	

		1297	 func	Setreuid(ruid	int,	euid	int)	(err	error)	{

		1298	 	 _,	_,	e1	:=	RawSyscall(SYS_SETREUID,	uintptr(ruid),	uintptr(euid),	0)

		1299	 	 if	e1	!=	0	{

		1300	 	 	 err	=	e1

		1301	 	 }

		1302	 	 return

		1303	 }

		1304	

		1305	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1306	

		1307	 func	Shutdown(fd	int,	how	int)	(err	error)	{

		1308	 	 _,	_,	e1	:=	Syscall(SYS_SHUTDOWN,	uintptr(fd),	uintptr(how),	0)

		1309	 	 if	e1	!=	0	{

		1310	 	 	 err	=	e1

		1311	 	 }

		1312	 	 return

		1313	 }

		1314	

		1315	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1316	

		1317	 func	Splice(rfd	int,	roff	*int64,	wfd	int,	woff	*int64,	len	int,	flags	int)	(n	int64,	err	error)	{

		1318	 	 r0,	_,	e1	:=	Syscall6(SYS_SPLICE,	uintptr(rfd),	uintptr(unsafe.Pointer(roff)),	uintptr(wfd),	uintptr(unsafe.Pointer(woff)),	uintptr(len),	uintptr(flags))

		1319	 	 n	=	int64(r0)

		1320	 	 if	e1	!=	0	{

		1321	 	 	 err	=	e1

		1322	 	 }

		1323	 	 return

		1324	 }

		1325	

		1326	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1327	

		1328	 func	Stat(path	string,	stat	*Stat_t)	(err	error)	{

		1329	 	 _,	_,	e1	:=	Syscall(SYS_STAT,	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(unsafe.Pointer(stat)),	0)

		1330	 	 if	e1	!=	0	{

		1331	 	 	 err	=	e1

		1332	 	 }

		1333	 	 return

		1334	 }

		1335	

		1336	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1337	

		1338	 func	Statfs(path	string,	buf	*Statfs_t)	(err	error)	{

		1339	 	 _,	_,	e1	:=	Syscall(SYS_STATFS,	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(unsafe.Pointer(buf)),	0)

		1340	 	 if	e1	!=	0	{

		1341	 	 	 err	=	e1

		1342	 	 }

		1343	 	 return

		1344	 }

		1345	

		1346	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1347	

		1348	 func	SyncFileRange(fd	int,	off	int64,	n	int64,	flags	int)	(err	error)	{

		1349	 	 _,	_,	e1	:=	Syscall6(SYS_SYNC_FILE_RANGE,	uintptr(fd),	uintptr(off),	uintptr(n),	uintptr(flags),	0,	0)

		1350	 	 if	e1	!=	0	{

		1351	 	 	 err	=	e1

		1352	 	 }

		1353	 	 return

		1354	 }

		1355	

		1356	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1357	

		1358	 func	Truncate(path	string,	length	int64)	(err	error)	{

		1359	 	 _,	_,	e1	:=	Syscall(SYS_TRUNCATE,	uintptr(unsafe.Pointer(StringBytePtr(path))),	uintptr(length),	0)

		1360	 	 if	e1	!=	0	{

		1361	 	 	 err	=	e1

		1362	 	 }

		1363	 	 return

		1364	 }

		1365	

		1366	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1367	

		1368	 func	accept(s	int,	rsa	*RawSockaddrAny,	addrlen	*_Socklen)	(fd	int,	err	error)	{

		1369	 	 r0,	_,	e1	:=	Syscall(SYS_ACCEPT,	uintptr(s),	uintptr(unsafe.Pointer(rsa)),	uintptr(unsafe.Pointer(addrlen)))

		1370	 	 fd	=	int(r0)

		1371	 	 if	e1	!=	0	{

		1372	 	 	 err	=	e1

		1373	 	 }

		1374	 	 return

		1375	 }

		1376	

		1377	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1378	

		1379	 func	bind(s	int,	addr	uintptr,	addrlen	_Socklen)	(err	error)	{

		1380	 	 _,	_,	e1	:=	Syscall(SYS_BIND,	uintptr(s),	uintptr(addr),	uintptr(addrlen))

		1381	 	 if	e1	!=	0	{

		1382	 	 	 err	=	e1

		1383	 	 }

		1384	 	 return

		1385	 }

		1386	

		1387	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1388	

		1389	 func	connect(s	int,	addr	uintptr,	addrlen	_Socklen)	(err	error)	{

		1390	 	 _,	_,	e1	:=	Syscall(SYS_CONNECT,	uintptr(s),	uintptr(addr),	uintptr(addrlen))

		1391	 	 if	e1	!=	0	{

		1392	 	 	 err	=	e1

		1393	 	 }

		1394	 	 return

		1395	 }

		1396	

		1397	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1398	

		1399	 func	getgroups(n	int,	list	*_Gid_t)	(nn	int,	err	error)	{

		1400	 	 r0,	_,	e1	:=	RawSyscall(SYS_GETGROUPS,	uintptr(n),	uintptr(unsafe.Pointer(list)),	0)

		1401	 	 nn	=	int(r0)

		1402	 	 if	e1	!=	0	{

		1403	 	 	 err	=	e1

		1404	 	 }

		1405	 	 return

		1406	 }

		1407	

		1408	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1409	

		1410	 func	setgroups(n	int,	list	*_Gid_t)	(err	error)	{

		1411	 	 _,	_,	e1	:=	RawSyscall(SYS_SETGROUPS,	uintptr(n),	uintptr(unsafe.Pointer(list)),	0)

		1412	 	 if	e1	!=	0	{

		1413	 	 	 err	=	e1

		1414	 	 }

		1415	 	 return

		1416	 }

		1417	

		1418	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1419	

		1420	 func	getsockopt(s	int,	level	int,	name	int,	val	uintptr,	vallen	*_Socklen)	(err	error)	{

		1421	 	 _,	_,	e1	:=	Syscall6(SYS_GETSOCKOPT,	uintptr(s),	uintptr(level),	uintptr(name),	uintptr(val),	uintptr(unsafe.Pointer(vallen)),	0)

		1422	 	 if	e1	!=	0	{

		1423	 	 	 err	=	e1

		1424	 	 }

		1425	 	 return

		1426	 }

		1427	

		1428	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1429	

		1430	 func	setsockopt(s	int,	level	int,	name	int,	val	uintptr,	vallen	uintptr)	(err	error)	{

		1431	 	 _,	_,	e1	:=	Syscall6(SYS_SETSOCKOPT,	uintptr(s),	uintptr(level),	uintptr(name),	uintptr(val),	uintptr(vallen),	0)

		1432	 	 if	e1	!=	0	{

		1433	 	 	 err	=	e1

		1434	 	 }

		1435	 	 return

		1436	 }

		1437	

		1438	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1439	

		1440	 func	socket(domain	int,	typ	int,	proto	int)	(fd	int,	err	error)	{

		1441	 	 r0,	_,	e1	:=	RawSyscall(SYS_SOCKET,	uintptr(domain),	uintptr(typ),	uintptr(proto))

		1442	 	 fd	=	int(r0)

		1443	 	 if	e1	!=	0	{

		1444	 	 	 err	=	e1

		1445	 	 }

		1446	 	 return

		1447	 }

		1448	

		1449	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1450	

		1451	 func	socketpair(domain	int,	typ	int,	proto	int,	fd	*[2]int)	(err	error)	{

		1452	 	 _,	_,	e1	:=	RawSyscall6(SYS_SOCKETPAIR,	uintptr(domain),	uintptr(typ),	uintptr(proto),	uintptr(unsafe.Pointer(fd)),	0,	0)

		1453	 	 if	e1	!=	0	{

		1454	 	 	 err	=	e1

		1455	 	 }

		1456	 	 return

		1457	 }

		1458	

		1459	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1460	

		1461	 func	getpeername(fd	int,	rsa	*RawSockaddrAny,	addrlen	*_Socklen)	(err	error)	{

		1462	 	 _,	_,	e1	:=	RawSyscall(SYS_GETPEERNAME,	uintptr(fd),	uintptr(unsafe.Pointer(rsa)),	uintptr(unsafe.Pointer(addrlen)))

		1463	 	 if	e1	!=	0	{

		1464	 	 	 err	=	e1

		1465	 	 }

		1466	 	 return

		1467	 }

		1468	

		1469	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1470	

		1471	 func	getsockname(fd	int,	rsa	*RawSockaddrAny,	addrlen	*_Socklen)	(err	error)	{

		1472	 	 _,	_,	e1	:=	RawSyscall(SYS_GETSOCKNAME,	uintptr(fd),	uintptr(unsafe.Pointer(rsa)),	uintptr(unsafe.Pointer(addrlen)))

		1473	 	 if	e1	!=	0	{

		1474	 	 	 err	=	e1

		1475	 	 }

		1476	 	 return

		1477	 }

		1478	

		1479	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1480	

		1481	 func	recvfrom(fd	int,	p	[]byte,	flags	int,	from	*RawSockaddrAny,	fromlen	*_Socklen)	(n	int,	err	error)	{

		1482	 	 var	_p0	unsafe.Pointer

		1483	 	 if	len(p)	>	0	{

		1484	 	 	 _p0	=	unsafe.Pointer(&p[0])

		1485	 	 }	else	{

		1486	 	 	 _p0	=	unsafe.Pointer(&_zero)

		1487	 	 }

		1488	 	 r0,	_,	e1	:=	Syscall6(SYS_RECVFROM,	uintptr(fd),	uintptr(_p0),	uintptr(len(p)),	uintptr(flags),	uintptr(unsafe.Pointer(from)),	uintptr(unsafe.Pointer(fromlen)))

		1489	 	 n	=	int(r0)

		1490	 	 if	e1	!=	0	{

		1491	 	 	 err	=	e1

		1492	 	 }

		1493	 	 return

		1494	 }

		1495	

		1496	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1497	

		1498	 func	sendto(s	int,	buf	[]byte,	flags	int,	to	uintptr,	addrlen	_Socklen)	(err	error)	{

		1499	 	 var	_p0	unsafe.Pointer

		1500	 	 if	len(buf)	>	0	{

		1501	 	 	 _p0	=	unsafe.Pointer(&buf[0])

		1502	 	 }	else	{

		1503	 	 	 _p0	=	unsafe.Pointer(&_zero)

		1504	 	 }

		1505	 	 _,	_,	e1	:=	Syscall6(SYS_SENDTO,	uintptr(s),	uintptr(_p0),	uintptr(len(buf)),	uintptr(flags),	uintptr(to),	uintptr(addrlen))

		1506	 	 if	e1	!=	0	{

		1507	 	 	 err	=	e1

		1508	 	 }

		1509	 	 return

		1510	 }

		1511	

		1512	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1513	

		1514	 func	recvmsg(s	int,	msg	*Msghdr,	flags	int)	(n	int,	err	error)	{

		1515	 	 r0,	_,	e1	:=	Syscall(SYS_RECVMSG,	uintptr(s),	uintptr(unsafe.Pointer(msg)),	uintptr(flags))

		1516	 	 n	=	int(r0)

		1517	 	 if	e1	!=	0	{

		1518	 	 	 err	=	e1

		1519	 	 }

		1520	 	 return

		1521	 }

		1522	

		1523	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1524	

		1525	 func	sendmsg(s	int,	msg	*Msghdr,	flags	int)	(err	error)	{

		1526	 	 _,	_,	e1	:=	Syscall(SYS_SENDMSG,	uintptr(s),	uintptr(unsafe.Pointer(msg)),	uintptr(flags))

		1527	 	 if	e1	!=	0	{

		1528	 	 	 err	=	e1

		1529	 	 }

		1530	 	 return

		1531	 }

		1532	

		1533	 //	THIS	FILE	IS	GENERATED	BY	THE	COMMAND	AT	THE	TOP;	DO	NOT	EDIT

		1534	

		1535	 func	mmap(addr	uintptr,	length	uintptr,	prot	int,	flags	int,	fd	int,	offset	int64)	(xaddr	uintptr,	err	error)	{

		1536	 	 r0,	_,	e1	:=	Syscall6(SYS_MMAP,	uintptr(addr),	uintptr(length),	uintptr(prot),	uintptr(flags),	uintptr(fd),	uintptr(offset))

		1537	 	 xaddr	=	uintptr(r0)

		1538	 	 if	e1	!=	0	{

		1539	 	 	 err	=	e1

		1540	 	 }

		1541	 	 return

		1542	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/syscall/zsysnum_linux_amd64.go
					1	 //	mksysnum_linux.pl	/usr/include/asm/unistd_64.h

					2	 //	MACHINE	GENERATED	BY	THE	ABOVE	COMMAND;	DO	NOT	EDIT

					3	

					4	 package	syscall

					5	

					6	 const	(

					7	 	 SYS_READ																			=	0

					8	 	 SYS_WRITE																		=	1

					9	 	 SYS_OPEN																			=	2

				10	 	 SYS_CLOSE																		=	3

				11	 	 SYS_STAT																			=	4

				12	 	 SYS_FSTAT																		=	5

				13	 	 SYS_LSTAT																		=	6

				14	 	 SYS_POLL																			=	7

				15	 	 SYS_LSEEK																		=	8

				16	 	 SYS_MMAP																			=	9

				17	 	 SYS_MPROTECT															=	10

				18	 	 SYS_MUNMAP																	=	11

				19	 	 SYS_BRK																				=	12

				20	 	 SYS_RT_SIGACTION											=	13

				21	 	 SYS_RT_SIGPROCMASK									=	14

				22	 	 SYS_RT_SIGRETURN											=	15

				23	 	 SYS_IOCTL																		=	16

				24	 	 SYS_PREAD64																=	17

				25	 	 SYS_PWRITE64															=	18

				26	 	 SYS_READV																		=	19

				27	 	 SYS_WRITEV																	=	20

				28	 	 SYS_ACCESS																	=	21

				29	 	 SYS_PIPE																			=	22

				30	 	 SYS_SELECT																	=	23

				31	 	 SYS_SCHED_YIELD												=	24

				32	 	 SYS_MREMAP																	=	25

				33	 	 SYS_MSYNC																		=	26

				34	 	 SYS_MINCORE																=	27

				35	 	 SYS_MADVISE																=	28

				36	 	 SYS_SHMGET																	=	29

				37	 	 SYS_SHMAT																		=	30

				38	 	 SYS_SHMCTL																	=	31

				39	 	 SYS_DUP																				=	32

				40	 	 SYS_DUP2																			=	33

				41	 	 SYS_PAUSE																		=	34

				42	 	 SYS_NANOSLEEP														=	35

				43	 	 SYS_GETITIMER														=	36

				44	 	 SYS_ALARM																		=	37

				45	 	 SYS_SETITIMER														=	38

				46	 	 SYS_GETPID																	=	39

				47	 	 SYS_SENDFILE															=	40

				48	 	 SYS_SOCKET																	=	41

				49	 	 SYS_CONNECT																=	42

				50	 	 SYS_ACCEPT																	=	43

				51	 	 SYS_SENDTO																	=	44

				52	 	 SYS_RECVFROM															=	45

				53	 	 SYS_SENDMSG																=	46

				54	 	 SYS_RECVMSG																=	47

				55	 	 SYS_SHUTDOWN															=	48

				56	 	 SYS_BIND																			=	49

				57	 	 SYS_LISTEN																	=	50

				58	 	 SYS_GETSOCKNAME												=	51

				59	 	 SYS_GETPEERNAME												=	52

				60	 	 SYS_SOCKETPAIR													=	53

				61	 	 SYS_SETSOCKOPT													=	54

				62	 	 SYS_GETSOCKOPT													=	55

				63	 	 SYS_CLONE																		=	56

				64	 	 SYS_FORK																			=	57

				65	 	 SYS_VFORK																		=	58

				66	 	 SYS_EXECVE																	=	59

				67	 	 SYS_EXIT																			=	60

				68	 	 SYS_WAIT4																		=	61

				69	 	 SYS_KILL																			=	62

				70	 	 SYS_UNAME																		=	63

				71	 	 SYS_SEMGET																	=	64

				72	 	 SYS_SEMOP																		=	65

				73	 	 SYS_SEMCTL																	=	66

				74	 	 SYS_SHMDT																		=	67

				75	 	 SYS_MSGGET																	=	68

				76	 	 SYS_MSGSND																	=	69

				77	 	 SYS_MSGRCV																	=	70

				78	 	 SYS_MSGCTL																	=	71

				79	 	 SYS_FCNTL																		=	72

				80	 	 SYS_FLOCK																		=	73

				81	 	 SYS_FSYNC																		=	74

				82	 	 SYS_FDATASYNC														=	75

				83	 	 SYS_TRUNCATE															=	76

				84	 	 SYS_FTRUNCATE														=	77

				85	 	 SYS_GETDENTS															=	78

				86	 	 SYS_GETCWD																	=	79

				87	 	 SYS_CHDIR																		=	80

				88	 	 SYS_FCHDIR																	=	81

				89	 	 SYS_RENAME																	=	82

				90	 	 SYS_MKDIR																		=	83

				91	 	 SYS_RMDIR																		=	84

				92	 	 SYS_CREAT																		=	85

				93	 	 SYS_LINK																			=	86

				94	 	 SYS_UNLINK																	=	87

				95	 	 SYS_SYMLINK																=	88

				96	 	 SYS_READLINK															=	89

				97	 	 SYS_CHMOD																		=	90

				98	 	 SYS_FCHMOD																	=	91

				99	 	 SYS_CHOWN																		=	92

			100	 	 SYS_FCHOWN																	=	93

			101	 	 SYS_LCHOWN																	=	94

			102	 	 SYS_UMASK																		=	95

			103	 	 SYS_GETTIMEOFDAY											=	96

			104	 	 SYS_GETRLIMIT														=	97

			105	 	 SYS_GETRUSAGE														=	98

			106	 	 SYS_SYSINFO																=	99

			107	 	 SYS_TIMES																		=	100

			108	 	 SYS_PTRACE																	=	101

			109	 	 SYS_GETUID																	=	102

			110	 	 SYS_SYSLOG																	=	103

			111	 	 SYS_GETGID																	=	104

			112	 	 SYS_SETUID																	=	105

			113	 	 SYS_SETGID																	=	106

			114	 	 SYS_GETEUID																=	107

			115	 	 SYS_GETEGID																=	108

			116	 	 SYS_SETPGID																=	109

			117	 	 SYS_GETPPID																=	110

			118	 	 SYS_GETPGRP																=	111

			119	 	 SYS_SETSID																	=	112

			120	 	 SYS_SETREUID															=	113

			121	 	 SYS_SETREGID															=	114

			122	 	 SYS_GETGROUPS														=	115

			123	 	 SYS_SETGROUPS														=	116

			124	 	 SYS_SETRESUID														=	117

			125	 	 SYS_GETRESUID														=	118

			126	 	 SYS_SETRESGID														=	119

			127	 	 SYS_GETRESGID														=	120

			128	 	 SYS_GETPGID																=	121

			129	 	 SYS_SETFSUID															=	122

			130	 	 SYS_SETFSGID															=	123

			131	 	 SYS_GETSID																	=	124

			132	 	 SYS_CAPGET																	=	125

			133	 	 SYS_CAPSET																	=	126

			134	 	 SYS_RT_SIGPENDING										=	127

			135	 	 SYS_RT_SIGTIMEDWAIT								=	128

			136	 	 SYS_RT_SIGQUEUEINFO								=	129

			137	 	 SYS_RT_SIGSUSPEND										=	130

			138	 	 SYS_SIGALTSTACK												=	131

			139	 	 SYS_UTIME																		=	132

			140	 	 SYS_MKNOD																		=	133

			141	 	 SYS_USELIB																	=	134

			142	 	 SYS_PERSONALITY												=	135

			143	 	 SYS_USTAT																		=	136

			144	 	 SYS_STATFS																	=	137

			145	 	 SYS_FSTATFS																=	138

			146	 	 SYS_SYSFS																		=	139

			147	 	 SYS_GETPRIORITY												=	140

			148	 	 SYS_SETPRIORITY												=	141

			149	 	 SYS_SCHED_SETPARAM									=	142

			150	 	 SYS_SCHED_GETPARAM									=	143

			151	 	 SYS_SCHED_SETSCHEDULER					=	144

			152	 	 SYS_SCHED_GETSCHEDULER					=	145

			153	 	 SYS_SCHED_GET_PRIORITY_MAX	=	146

			154	 	 SYS_SCHED_GET_PRIORITY_MIN	=	147

			155	 	 SYS_SCHED_RR_GET_INTERVAL		=	148

			156	 	 SYS_MLOCK																		=	149

			157	 	 SYS_MUNLOCK																=	150

			158	 	 SYS_MLOCKALL															=	151

			159	 	 SYS_MUNLOCKALL													=	152

			160	 	 SYS_VHANGUP																=	153

			161	 	 SYS_MODIFY_LDT													=	154

			162	 	 SYS_PIVOT_ROOT													=	155

			163	 	 SYS__SYSCTL																=	156

			164	 	 SYS_PRCTL																		=	157

			165	 	 SYS_ARCH_PRCTL													=	158

			166	 	 SYS_ADJTIMEX															=	159

			167	 	 SYS_SETRLIMIT														=	160

			168	 	 SYS_CHROOT																	=	161

			169	 	 SYS_SYNC																			=	162

			170	 	 SYS_ACCT																			=	163

			171	 	 SYS_SETTIMEOFDAY											=	164

			172	 	 SYS_MOUNT																		=	165

			173	 	 SYS_UMOUNT2																=	166

			174	 	 SYS_SWAPON																	=	167

			175	 	 SYS_SWAPOFF																=	168

			176	 	 SYS_REBOOT																	=	169

			177	 	 SYS_SETHOSTNAME												=	170

			178	 	 SYS_SETDOMAINNAME										=	171

			179	 	 SYS_IOPL																			=	172

			180	 	 SYS_IOPERM																	=	173

			181	 	 SYS_CREATE_MODULE										=	174

			182	 	 SYS_INIT_MODULE												=	175

			183	 	 SYS_DELETE_MODULE										=	176

			184	 	 SYS_GET_KERNEL_SYMS								=	177

			185	 	 SYS_QUERY_MODULE											=	178

			186	 	 SYS_QUOTACTL															=	179

			187	 	 SYS_NFSSERVCTL													=	180

			188	 	 SYS_GETPMSG																=	181

			189	 	 SYS_PUTPMSG																=	182

			190	 	 SYS_AFS_SYSCALL												=	183

			191	 	 SYS_TUXCALL																=	184

			192	 	 SYS_SECURITY															=	185

			193	 	 SYS_GETTID																	=	186

			194	 	 SYS_READAHEAD														=	187

			195	 	 SYS_SETXATTR															=	188

			196	 	 SYS_LSETXATTR														=	189

			197	 	 SYS_FSETXATTR														=	190

			198	 	 SYS_GETXATTR															=	191

			199	 	 SYS_LGETXATTR														=	192

			200	 	 SYS_FGETXATTR														=	193

			201	 	 SYS_LISTXATTR														=	194

			202	 	 SYS_LLISTXATTR													=	195

			203	 	 SYS_FLISTXATTR													=	196

			204	 	 SYS_REMOVEXATTR												=	197

			205	 	 SYS_LREMOVEXATTR											=	198

			206	 	 SYS_FREMOVEXATTR											=	199

			207	 	 SYS_TKILL																		=	200

			208	 	 SYS_TIME																			=	201

			209	 	 SYS_FUTEX																		=	202

			210	 	 SYS_SCHED_SETAFFINITY						=	203

			211	 	 SYS_SCHED_GETAFFINITY						=	204

			212	 	 SYS_SET_THREAD_AREA								=	205

			213	 	 SYS_IO_SETUP															=	206

			214	 	 SYS_IO_DESTROY													=	207

			215	 	 SYS_IO_GETEVENTS											=	208

			216	 	 SYS_IO_SUBMIT														=	209

			217	 	 SYS_IO_CANCEL														=	210

			218	 	 SYS_GET_THREAD_AREA								=	211

			219	 	 SYS_LOOKUP_DCOOKIE									=	212

			220	 	 SYS_EPOLL_CREATE											=	213

			221	 	 SYS_EPOLL_CTL_OLD										=	214

			222	 	 SYS_EPOLL_WAIT_OLD									=	215

			223	 	 SYS_REMAP_FILE_PAGES							=	216

			224	 	 SYS_GETDENTS64													=	217

			225	 	 SYS_SET_TID_ADDRESS								=	218

			226	 	 SYS_RESTART_SYSCALL								=	219

			227	 	 SYS_SEMTIMEDOP													=	220

			228	 	 SYS_FADVISE64														=	221

			229	 	 SYS_TIMER_CREATE											=	222

			230	 	 SYS_TIMER_SETTIME										=	223

			231	 	 SYS_TIMER_GETTIME										=	224

			232	 	 SYS_TIMER_GETOVERRUN							=	225

			233	 	 SYS_TIMER_DELETE											=	226

			234	 	 SYS_CLOCK_SETTIME										=	227

			235	 	 SYS_CLOCK_GETTIME										=	228

			236	 	 SYS_CLOCK_GETRES											=	229

			237	 	 SYS_CLOCK_NANOSLEEP								=	230

			238	 	 SYS_EXIT_GROUP													=	231

			239	 	 SYS_EPOLL_WAIT													=	232

			240	 	 SYS_EPOLL_CTL														=	233

			241	 	 SYS_TGKILL																	=	234

			242	 	 SYS_UTIMES																	=	235

			243	 	 SYS_VSERVER																=	236

			244	 	 SYS_MBIND																		=	237

			245	 	 SYS_SET_MEMPOLICY										=	238

			246	 	 SYS_GET_MEMPOLICY										=	239

			247	 	 SYS_MQ_OPEN																=	240

			248	 	 SYS_MQ_UNLINK														=	241

			249	 	 SYS_MQ_TIMEDSEND											=	242

			250	 	 SYS_MQ_TIMEDRECEIVE								=	243

			251	 	 SYS_MQ_NOTIFY														=	244

			252	 	 SYS_MQ_GETSETATTR										=	245

			253	 	 SYS_KEXEC_LOAD													=	246

			254	 	 SYS_WAITID																	=	247

			255	 	 SYS_ADD_KEY																=	248

			256	 	 SYS_REQUEST_KEY												=	249

			257	 	 SYS_KEYCTL																	=	250

			258	 	 SYS_IOPRIO_SET													=	251

			259	 	 SYS_IOPRIO_GET													=	252

			260	 	 SYS_INOTIFY_INIT											=	253

			261	 	 SYS_INOTIFY_ADD_WATCH						=	254

			262	 	 SYS_INOTIFY_RM_WATCH							=	255

			263	 	 SYS_MIGRATE_PAGES										=	256

			264	 	 SYS_OPENAT																	=	257

			265	 	 SYS_MKDIRAT																=	258

			266	 	 SYS_MKNODAT																=	259

			267	 	 SYS_FCHOWNAT															=	260

			268	 	 SYS_FUTIMESAT														=	261

			269	 	 SYS_NEWFSTATAT													=	262

			270	 	 SYS_UNLINKAT															=	263

			271	 	 SYS_RENAMEAT															=	264

			272	 	 SYS_LINKAT																	=	265

			273	 	 SYS_SYMLINKAT														=	266

			274	 	 SYS_READLINKAT													=	267

			275	 	 SYS_FCHMODAT															=	268

			276	 	 SYS_FACCESSAT														=	269

			277	 	 SYS_PSELECT6															=	270

			278	 	 SYS_PPOLL																		=	271

			279	 	 SYS_UNSHARE																=	272

			280	 	 SYS_SET_ROBUST_LIST								=	273

			281	 	 SYS_GET_ROBUST_LIST								=	274

			282	 	 SYS_SPLICE																	=	275

			283	 	 SYS_TEE																				=	276

			284	 	 SYS_SYNC_FILE_RANGE								=	277

			285	 	 SYS_VMSPLICE															=	278

			286	 	 SYS_MOVE_PAGES													=	279

			287	 	 SYS_UTIMENSAT														=	280

			288	 	 SYS_EPOLL_PWAIT												=	281

			289	 	 SYS_SIGNALFD															=	282

			290	 	 SYS_TIMERFD_CREATE									=	283

			291	 	 SYS_EVENTFD																=	284

			292	 	 SYS_FALLOCATE														=	285

			293	 	 SYS_TIMERFD_SETTIME								=	286

			294	 	 SYS_TIMERFD_GETTIME								=	287

			295	 	 SYS_ACCEPT4																=	288

			296	 	 SYS_SIGNALFD4														=	289

			297	 	 SYS_EVENTFD2															=	290

			298	 	 SYS_EPOLL_CREATE1										=	291

			299	 	 SYS_DUP3																			=	292

			300	 	 SYS_PIPE2																		=	293

			301	 	 SYS_INOTIFY_INIT1										=	294

			302	 	 SYS_PREADV																	=	295

			303	 	 SYS_PWRITEV																=	296

			304	 	 SYS_RT_TGSIGQUEUEINFO						=	297

			305	 	 SYS_PERF_EVENT_OPEN								=	298

			306	 	 SYS_RECVMMSG															=	299

			307	 	 SYS_FANOTIFY_INIT										=	300

			308	 	 SYS_FANOTIFY_MARK										=	301

			309	 	 SYS_PRLIMIT64														=	302

			310)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/syscall/ztypes_linux_amd64.go
					1	 //	Created	by	cgo	-godefs	-	DO	NOT	EDIT

					2	 //	cgo	-godefs	types_linux.go

					3	

					4	 package	syscall

					5	

					6	 const	(

					7	 	 sizeofPtr						=	0x8

					8	 	 sizeofShort				=	0x2

					9	 	 sizeofInt						=	0x4

				10	 	 sizeofLong					=	0x8

				11	 	 sizeofLongLong	=	0x8

				12	 	 PathMax								=	0x1000

				13)

				14	

				15	 type	(

				16	 	 _C_short					int16

				17	 	 _C_int							int32

				18	 	 _C_long						int64

				19	 	 _C_long_long	int64

				20)

				21	

				22	 type	Timespec	struct	{

				23	 	 Sec		int64

				24	 	 Nsec	int64

				25	 }

				26	

				27	 type	Timeval	struct	{

				28	 	 Sec		int64

				29	 	 Usec	int64

				30	 }

				31	

				32	 type	Timex	struct	{

				33	 	 Modes					uint32

				34	 	 Pad_cgo_0	[4]byte

				35	 	 Offset				int64

				36	 	 Freq						int64

				37	 	 Maxerror		int64

				38	 	 Esterror		int64

				39	 	 Status				int32

				40	 	 Pad_cgo_1	[4]byte

				41	 	 Constant		int64

				42	 	 Precision	int64

				43	 	 Tolerance	int64

				44	 	 Time						Timeval

				45	 	 Tick						int64

				46	 	 Ppsfreq			int64

				47	 	 Jitter				int64

				48	 	 Shift					int32

				49	 	 Pad_cgo_2	[4]byte

				50	 	 Stabil				int64

				51	 	 Jitcnt				int64

				52	 	 Calcnt				int64

				53	 	 Errcnt				int64

				54	 	 Stbcnt				int64

				55	 	 Tai							int32

				56	 	 Pad_cgo_3	[44]byte

				57	 }

				58	

				59	 type	Time_t	int64

				60	

				61	 type	Tms	struct	{

				62	 	 Utime		int64

				63	 	 Stime		int64

				64	 	 Cutime	int64

				65	 	 Cstime	int64

				66	 }

				67	

				68	 type	Utimbuf	struct	{

				69	 	 Actime		int64

				70	 	 Modtime	int64

				71	 }

				72	

				73	 type	Rusage	struct	{

				74	 	 Utime				Timeval

				75	 	 Stime				Timeval

				76	 	 Maxrss			int64

				77	 	 Ixrss				int64

				78	 	 Idrss				int64

				79	 	 Isrss				int64

				80	 	 Minflt			int64

				81	 	 Majflt			int64

				82	 	 Nswap				int64

				83	 	 Inblock		int64

				84	 	 Oublock		int64

				85	 	 Msgsnd			int64

				86	 	 Msgrcv			int64

				87	 	 Nsignals	int64

				88	 	 Nvcsw				int64

				89	 	 Nivcsw			int64

				90	 }

				91	

				92	 type	Rlimit	struct	{

				93	 	 Cur	uint64

				94	 	 Max	uint64

				95	 }

				96	

				97	 type	_Gid_t	uint32

				98	

				99	 type	Stat_t	struct	{

			100	 	 Dev							uint64

			101	 	 Ino							uint64

			102	 	 Nlink					uint64

			103	 	 Mode						uint32

			104	 	 Uid							uint32

			105	 	 Gid							uint32

			106	 	 X__pad0			int32

			107	 	 Rdev						uint64

			108	 	 Size						int64

			109	 	 Blksize			int64

			110	 	 Blocks				int64

			111	 	 Atim						Timespec

			112	 	 Mtim						Timespec

			113	 	 Ctim						Timespec

			114	 	 X__unused	[3]int64

			115	 }

			116	

			117	 type	Statfs_t	struct	{

			118	 	 Type				int64

			119	 	 Bsize			int64

			120	 	 Blocks		uint64

			121	 	 Bfree			uint64

			122	 	 Bavail		uint64

			123	 	 Files			uint64

			124	 	 Ffree			uint64

			125	 	 Fsid				Fsid

			126	 	 Namelen	int64

			127	 	 Frsize		int64

			128	 	 Flags			int64

			129	 	 Spare			[4]int64

			130	 }

			131	

			132	 type	Dirent	struct	{

			133	 	 Ino							uint64

			134	 	 Off							int64

			135	 	 Reclen				uint16

			136	 	 Type						uint8

			137	 	 Name						[256]int8

			138	 	 Pad_cgo_0	[5]byte

			139	 }

			140	

			141	 type	Fsid	struct	{

			142	 	 X__val	[2]int32

			143	 }

			144	

			145	 type	RawSockaddrInet4	struct	{

			146	 	 Family	uint16

			147	 	 Port			uint16

			148	 	 Addr			[4]byte	/*	in_addr	*/

			149	 	 Zero			[8]uint8

			150	 }

			151	

			152	 type	RawSockaddrInet6	struct	{

			153	 	 Family			uint16

			154	 	 Port					uint16

			155	 	 Flowinfo	uint32

			156	 	 Addr					[16]byte	/*	in6_addr	*/

			157	 	 Scope_id	uint32

			158	 }

			159	

			160	 type	RawSockaddrUnix	struct	{

			161	 	 Family	uint16

			162	 	 Path			[108]int8

			163	 }

			164	

			165	 type	RawSockaddrLinklayer	struct	{

			166	 	 Family			uint16

			167	 	 Protocol	uint16

			168	 	 Ifindex		int32

			169	 	 Hatype			uint16

			170	 	 Pkttype		uint8

			171	 	 Halen				uint8

			172	 	 Addr					[8]uint8

			173	 }

			174	

			175	 type	RawSockaddrNetlink	struct	{

			176	 	 Family	uint16

			177	 	 Pad				uint16

			178	 	 Pid				uint32

			179	 	 Groups	uint32

			180	 }

			181	

			182	 type	RawSockaddr	struct	{

			183	 	 Family	uint16

			184	 	 Data			[14]int8

			185	 }

			186	

			187	 type	RawSockaddrAny	struct	{

			188	 	 Addr	RawSockaddr

			189	 	 Pad		[96]int8

			190	 }

			191	

			192	 type	_Socklen	uint32

			193	

			194	 type	Linger	struct	{

			195	 	 Onoff		int32

			196	 	 Linger	int32

			197	 }

			198	

			199	 type	Iovec	struct	{

			200	 	 Base	*byte

			201	 	 Len		uint64

			202	 }

			203	

			204	 type	IPMreq	struct	{

			205	 	 Multiaddr	[4]byte	/*	in_addr	*/

			206	 	 Interface	[4]byte	/*	in_addr	*/

			207	 }

			208	

			209	 type	IPMreqn	struct	{

			210	 	 Multiaddr	[4]byte	/*	in_addr	*/

			211	 	 Address			[4]byte	/*	in_addr	*/

			212	 	 Ifindex			int32

			213	 }

			214	

			215	 type	IPv6Mreq	struct	{

			216	 	 Multiaddr	[16]byte	/*	in6_addr	*/

			217	 	 Interface	uint32

			218	 }

			219	

			220	 type	Msghdr	struct	{

			221	 	 Name							*byte

			222	 	 Namelen				uint32

			223	 	 Pad_cgo_0		[4]byte

			224	 	 Iov								*Iovec

			225	 	 Iovlen					uint64

			226	 	 Control				*byte

			227	 	 Controllen	uint64

			228	 	 Flags						int32

			229	 	 Pad_cgo_1		[4]byte

			230	 }

			231	

			232	 type	Cmsghdr	struct	{

			233	 	 Len										uint64

			234	 	 Level								int32

			235	 	 Type									int32

			236	 	 X__cmsg_data	[0]byte

			237	 }

			238	

			239	 type	Inet4Pktinfo	struct	{

			240	 	 Ifindex		int32

			241	 	 Spec_dst	[4]byte	/*	in_addr	*/

			242	 	 Addr					[4]byte	/*	in_addr	*/

			243	 }

			244	

			245	 type	Inet6Pktinfo	struct	{

			246	 	 Addr				[16]byte	/*	in6_addr	*/

			247	 	 Ifindex	uint32

			248	 }

			249	

			250	 type	Ucred	struct	{

			251	 	 Pid	int32

			252	 	 Uid	uint32

			253	 	 Gid	uint32

			254	 }

			255	

			256	 const	(

			257	 	 SizeofSockaddrInet4					=	0x10

			258	 	 SizeofSockaddrInet6					=	0x1c

			259	 	 SizeofSockaddrAny							=	0x70

			260	 	 SizeofSockaddrUnix						=	0x6e

			261	 	 SizeofSockaddrLinklayer	=	0x14

			262	 	 SizeofSockaddrNetlink			=	0xc

			263	 	 SizeofLinger												=	0x8

			264	 	 SizeofIPMreq												=	0x8

			265	 	 SizeofIPMreqn											=	0xc

			266	 	 SizeofIPv6Mreq										=	0x14

			267	 	 SizeofMsghdr												=	0x38

			268	 	 SizeofCmsghdr											=	0x10

			269	 	 SizeofInet4Pktinfo						=	0xc

			270	 	 SizeofInet6Pktinfo						=	0x14

			271	 	 SizeofUcred													=	0xc

			272)

			273	

			274	 const	(

			275	 	 IFA_UNSPEC								=	0x0

			276	 	 IFA_ADDRESS							=	0x1

			277	 	 IFA_LOCAL									=	0x2

			278	 	 IFA_LABEL									=	0x3

			279	 	 IFA_BROADCAST					=	0x4

			280	 	 IFA_ANYCAST							=	0x5

			281	 	 IFA_CACHEINFO					=	0x6

			282	 	 IFA_MULTICAST					=	0x7

			283	 	 IFLA_UNSPEC							=	0x0

			284	 	 IFLA_ADDRESS						=	0x1

			285	 	 IFLA_BROADCAST				=	0x2

			286	 	 IFLA_IFNAME							=	0x3

			287	 	 IFLA_MTU										=	0x4

			288	 	 IFLA_LINK									=	0x5

			289	 	 IFLA_QDISC								=	0x6

			290	 	 IFLA_STATS								=	0x7

			291	 	 IFLA_COST									=	0x8

			292	 	 IFLA_PRIORITY					=	0x9

			293	 	 IFLA_MASTER							=	0xa

			294	 	 IFLA_WIRELESS					=	0xb

			295	 	 IFLA_PROTINFO					=	0xc

			296	 	 IFLA_TXQLEN							=	0xd

			297	 	 IFLA_MAP										=	0xe

			298	 	 IFLA_WEIGHT							=	0xf

			299	 	 IFLA_OPERSTATE				=	0x10

			300	 	 IFLA_LINKMODE					=	0x11

			301	 	 IFLA_LINKINFO					=	0x12

			302	 	 IFLA_NET_NS_PID			=	0x13

			303	 	 IFLA_IFALIAS						=	0x14

			304	 	 IFLA_MAX										=	0x1c

			305	 	 RT_SCOPE_UNIVERSE	=	0x0

			306	 	 RT_SCOPE_SITE					=	0xc8

			307	 	 RT_SCOPE_LINK					=	0xfd

			308	 	 RT_SCOPE_HOST					=	0xfe

			309	 	 RT_SCOPE_NOWHERE		=	0xff

			310	 	 RT_TABLE_UNSPEC			=	0x0

			311	 	 RT_TABLE_COMPAT			=	0xfc

			312	 	 RT_TABLE_DEFAULT		=	0xfd

			313	 	 RT_TABLE_MAIN					=	0xfe

			314	 	 RT_TABLE_LOCAL				=	0xff

			315	 	 RT_TABLE_MAX						=	0xffffffff

			316	 	 RTA_UNSPEC								=	0x0

			317	 	 RTA_DST											=	0x1

			318	 	 RTA_SRC											=	0x2

			319	 	 RTA_IIF											=	0x3

			320	 	 RTA_OIF											=	0x4

			321	 	 RTA_GATEWAY							=	0x5

			322	 	 RTA_PRIORITY						=	0x6

			323	 	 RTA_PREFSRC							=	0x7

			324	 	 RTA_METRICS							=	0x8

			325	 	 RTA_MULTIPATH					=	0x9

			326	 	 RTA_FLOW										=	0xb

			327	 	 RTA_CACHEINFO					=	0xc

			328	 	 RTA_TABLE									=	0xf

			329	 	 RTN_UNSPEC								=	0x0

			330	 	 RTN_UNICAST							=	0x1

			331	 	 RTN_LOCAL									=	0x2

			332	 	 RTN_BROADCAST					=	0x3

			333	 	 RTN_ANYCAST							=	0x4

			334	 	 RTN_MULTICAST					=	0x5

			335	 	 RTN_BLACKHOLE					=	0x6

			336	 	 RTN_UNREACHABLE			=	0x7

			337	 	 RTN_PROHIBIT						=	0x8

			338	 	 RTN_THROW									=	0x9

			339	 	 RTN_NAT											=	0xa

			340	 	 RTN_XRESOLVE						=	0xb

			341	 	 SizeofNlMsghdr				=	0x10

			342	 	 SizeofNlMsgerr				=	0x14

			343	 	 SizeofRtGenmsg				=	0x1

			344	 	 SizeofNlAttr						=	0x4

			345	 	 SizeofRtAttr						=	0x4

			346	 	 SizeofIfInfomsg			=	0x10

			347	 	 SizeofIfAddrmsg			=	0x8

			348	 	 SizeofRtMsg							=	0xc

			349	 	 SizeofRtNexthop			=	0x8

			350)

			351	

			352	 type	NlMsghdr	struct	{

			353	 	 Len			uint32

			354	 	 Type		uint16

			355	 	 Flags	uint16

			356	 	 Seq			uint32

			357	 	 Pid			uint32

			358	 }

			359	

			360	 type	NlMsgerr	struct	{

			361	 	 Error	int32

			362	 	 Msg			NlMsghdr

			363	 }

			364	

			365	 type	RtGenmsg	struct	{

			366	 	 Family	uint8

			367	 }

			368	

			369	 type	NlAttr	struct	{

			370	 	 Len		uint16

			371	 	 Type	uint16

			372	 }

			373	

			374	 type	RtAttr	struct	{

			375	 	 Len		uint16

			376	 	 Type	uint16

			377	 }

			378	

			379	 type	IfInfomsg	struct	{

			380	 	 Family					uint8

			381	 	 X__ifi_pad	uint8

			382	 	 Type							uint16

			383	 	 Index						int32

			384	 	 Flags						uint32

			385	 	 Change					uint32

			386	 }

			387	

			388	 type	IfAddrmsg	struct	{

			389	 	 Family				uint8

			390	 	 Prefixlen	uint8

			391	 	 Flags					uint8

			392	 	 Scope					uint8

			393	 	 Index					uint32

			394	 }

			395	

			396	 type	RtMsg	struct	{

			397	 	 Family			uint8

			398	 	 Dst_len		uint8

			399	 	 Src_len		uint8

			400	 	 Tos						uint8

			401	 	 Table				uint8

			402	 	 Protocol	uint8

			403	 	 Scope				uint8

			404	 	 Type					uint8

			405	 	 Flags				uint32

			406	 }

			407	

			408	 type	RtNexthop	struct	{

			409	 	 Len					uint16

			410	 	 Flags			uint8

			411	 	 Hops				uint8

			412	 	 Ifindex	int32

			413	 }

			414	

			415	 const	(

			416	 	 SizeofSockFilter	=	0x8

			417	 	 SizeofSockFprog		=	0x10

			418)

			419	

			420	 type	SockFilter	struct	{

			421	 	 Code	uint16

			422	 	 Jt			uint8

			423	 	 Jf			uint8

			424	 	 K				uint32

			425	 }

			426	

			427	 type	SockFprog	struct	{

			428	 	 Len							uint16

			429	 	 Pad_cgo_0	[6]byte

			430	 	 Filter				*SockFilter

			431	 }

			432	

			433	 type	InotifyEvent	struct	{

			434	 	 Wd					int32

			435	 	 Mask			uint32

			436	 	 Cookie	uint32

			437	 	 Len				uint32

			438	 	 Name			[0]byte

			439	 }

			440	

			441	 const	SizeofInotifyEvent	=	0x10

			442	

			443	 type	PtraceRegs	struct	{

			444	 	 R15						uint64

			445	 	 R14						uint64

			446	 	 R13						uint64

			447	 	 R12						uint64

			448	 	 Rbp						uint64

			449	 	 Rbx						uint64

			450	 	 R11						uint64

			451	 	 R10						uint64

			452	 	 R9							uint64

			453	 	 R8							uint64

			454	 	 Rax						uint64

			455	 	 Rcx						uint64

			456	 	 Rdx						uint64

			457	 	 Rsi						uint64

			458	 	 Rdi						uint64

			459	 	 Orig_rax	uint64

			460	 	 Rip						uint64

			461	 	 Cs							uint64

			462	 	 Eflags			uint64

			463	 	 Rsp						uint64

			464	 	 Ss							uint64

			465	 	 Fs_base		uint64

			466	 	 Gs_base		uint64

			467	 	 Ds							uint64

			468	 	 Es							uint64

			469	 	 Fs							uint64

			470	 	 Gs							uint64

			471	 }

			472	

			473	 type	FdSet	struct	{

			474	 	 Bits	[16]int64

			475	 }

			476	

			477	 type	Sysinfo_t	struct	{

			478	 	 Uptime				int64

			479	 	 Loads					[3]uint64

			480	 	 Totalram		uint64

			481	 	 Freeram			uint64

			482	 	 Sharedram	uint64

			483	 	 Bufferram	uint64

			484	 	 Totalswap	uint64

			485	 	 Freeswap		uint64

			486	 	 Procs					uint16

			487	 	 Pad							uint16

			488	 	 Pad_cgo_0	[4]byte

			489	 	 Totalhigh	uint64

			490	 	 Freehigh		uint64

			491	 	 Unit						uint32

			492	 	 X_f							[0]byte

			493	 	 Pad_cgo_1	[4]byte

			494	 }

			495	

			496	 type	Utsname	struct	{

			497	 	 Sysname				[65]int8

			498	 	 Nodename			[65]int8

			499	 	 Release				[65]int8

			500	 	 Version				[65]int8

			501	 	 Machine				[65]int8

			502	 	 Domainname	[65]int8

			503	 }

			504	

			505	 type	Ustat_t	struct	{

			506	 	 Tfree					int32

			507	 	 Pad_cgo_0	[4]byte

			508	 	 Tinode				uint64

			509	 	 Fname					[6]int8

			510	 	 Fpack					[6]int8

			511	 	 Pad_cgo_1	[4]byte

			512	 }

			513	

			514	 type	EpollEvent	struct	{

			515	 	 Events	uint32

			516	 	 Fd					int32

			517	 	 Pad				int32

			518	 }

			519	

			520	 type	Termios	struct	{

			521	 	 Iflag					uint32

			522	 	 Oflag					uint32

			523	 	 Cflag					uint32

			524	 	 Lflag					uint32

			525	 	 Line						uint8

			526	 	 Cc								[32]uint8

			527	 	 Pad_cgo_0	[3]byte

			528	 	 Ispeed				uint32

			529	 	 Ospeed				uint32

			530	 }

			531	

			532	 const	(

			533	 	 VINTR				=	0x0

			534	 	 VQUIT				=	0x1

			535	 	 VERASE			=	0x2

			536	 	 VKILL				=	0x3

			537	 	 VEOF					=	0x4

			538	 	 VTIME				=	0x5

			539	 	 VMIN					=	0x6

			540	 	 VSWTC				=	0x7

			541	 	 VSTART			=	0x8

			542	 	 VSTOP				=	0x9

			543	 	 VSUSP				=	0xa

			544	 	 VEOL					=	0xb

			545	 	 VREPRINT	=	0xc

			546	 	 VDISCARD	=	0xd

			547	 	 VWERASE		=	0xe

			548	 	 VLNEXT			=	0xf

			549	 	 VEOL2				=	0x10

			550	 	 IGNBRK			=	0x1

			551	 	 BRKINT			=	0x2

			552	 	 IGNPAR			=	0x4

			553	 	 PARMRK			=	0x8

			554	 	 INPCK				=	0x10

			555	 	 ISTRIP			=	0x20

			556	 	 INLCR				=	0x40

			557	 	 IGNCR				=	0x80

			558	 	 ICRNL				=	0x100

			559	 	 IUCLC				=	0x200

			560	 	 IXON					=	0x400

			561	 	 IXANY				=	0x800

			562	 	 IXOFF				=	0x1000

			563	 	 IMAXBEL		=	0x2000

			564	 	 IUTF8				=	0x4000

			565	 	 OPOST				=	0x1

			566	 	 OLCUC				=	0x2

			567	 	 ONLCR				=	0x4

			568	 	 OCRNL				=	0x8

			569	 	 ONOCR				=	0x10

			570	 	 ONLRET			=	0x20

			571	 	 OFILL				=	0x40

			572	 	 OFDEL				=	0x80

			573	 	 B0							=	0x0

			574	 	 B50						=	0x1

			575	 	 B75						=	0x2

			576	 	 B110					=	0x3

			577	 	 B134					=	0x4

			578	 	 B150					=	0x5

			579	 	 B200					=	0x6

			580	 	 B300					=	0x7

			581	 	 B600					=	0x8

			582	 	 B1200				=	0x9

			583	 	 B1800				=	0xa

			584	 	 B2400				=	0xb

			585	 	 B4800				=	0xc

			586	 	 B9600				=	0xd

			587	 	 B19200			=	0xe

			588	 	 B38400			=	0xf

			589	 	 CSIZE				=	0x30

			590	 	 CS5						=	0x0

			591	 	 CS6						=	0x10

			592	 	 CS7						=	0x20

			593	 	 CS8						=	0x30

			594	 	 CSTOPB			=	0x40

			595	 	 CREAD				=	0x80

			596	 	 PARENB			=	0x100

			597	 	 PARODD			=	0x200

			598	 	 HUPCL				=	0x400

			599	 	 CLOCAL			=	0x800

			600	 	 B57600			=	0x1001

			601	 	 B115200		=	0x1002

			602	 	 B230400		=	0x1003

			603	 	 B460800		=	0x1004

			604	 	 B500000		=	0x1005

			605	 	 B576000		=	0x1006

			606	 	 B921600		=	0x1007

			607	 	 B1000000	=	0x1008

			608	 	 B1152000	=	0x1009

			609	 	 B1500000	=	0x100a

			610	 	 B2000000	=	0x100b

			611	 	 B2500000	=	0x100c

			612	 	 B3000000	=	0x100d

			613	 	 B3500000	=	0x100e

			614	 	 B4000000	=	0x100f

			615	 	 ISIG					=	0x1

			616	 	 ICANON			=	0x2

			617	 	 XCASE				=	0x4

			618	 	 ECHO					=	0x8

			619	 	 ECHOE				=	0x10

			620	 	 ECHOK				=	0x20

			621	 	 ECHONL			=	0x40

			622	 	 NOFLSH			=	0x80

			623	 	 TOSTOP			=	0x100

			624	 	 ECHOCTL		=	0x200

			625	 	 ECHOPRT		=	0x400

			626	 	 ECHOKE			=	0x800

			627	 	 FLUSHO			=	0x1000

			628	 	 PENDIN			=	0x4000

			629	 	 IEXTEN			=	0x8000

			630	 	 TCGETS			=	0x5401

			631	 	 TCSETS			=	0x5402

			632)

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/testing/benchmark.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	testing

					6	

					7	 import	(

					8	 	 "flag"

					9	 	 "fmt"

				10	 	 "os"

				11	 	 "runtime"

				12	 	 "time"

				13)

				14	

				15	 var	matchBenchmarks	=	flag.String("test.bench",	"",	"regular	expression	to	select	benchmarks	to	run")

				16	 var	benchTime	=	flag.Float64("test.benchtime",	1,	"approximate	run	time	for	each	benchmark,	in	seconds")

				17	

				18	 //	An	internal	type	but	exported	because	it	is	cross-package;	part	of	the	implementation

				19	 //	of	the	"go	test"	command.

				20	 type	InternalBenchmark	struct	{

				21	 	 Name	string

				22	 	 F				func(b	*B)

				23	 }

				24	

				25	 //	B	is	a	type	passed	to	Benchmark	functions	to	manage	benchmark

				26	 //	timing	and	to	specify	the	number	of	iterations	to	run.

				27	 type	B	struct	{

				28	 	 common

				29	 	 N									int

				30	 	 benchmark	InternalBenchmark

				31	 	 bytes					int64

				32	 	 timerOn			bool

				33	 	 result				BenchmarkResult

				34	 }

				35	

				36	 //	StartTimer	starts	timing	a	test.		This	function	is	called	automatically

				37	 //	before	a	benchmark	starts,	but	it	can	also	used	to	resume	timing	after

				38	 //	a	call	to	StopTimer.

				39	 func	(b	*B)	StartTimer()	{

				40	 	 if	!b.timerOn	{

				41	 	 	 b.start	=	time.Now()

				42	 	 	 b.timerOn	=	true

				43	 	 }

				44	 }

				45	

				46	 //	StopTimer	stops	timing	a	test.		This	can	be	used	to	pause	the	timer

				47	 //	while	performing	complex	initialization	that	you	don't

				48	 //	want	to	measure.

				49	 func	(b	*B)	StopTimer()	{

				50	 	 if	b.timerOn	{

				51	 	 	 b.duration	+=	time.Now().Sub(b.start)

				52	 	 	 b.timerOn	=	false

				53	 	 }

				54	 }

				55	

				56	 //	ResetTimer	sets	the	elapsed	benchmark	time	to	zero.

				57	 //	It	does	not	affect	whether	the	timer	is	running.

				58	 func	(b	*B)	ResetTimer()	{

				59	 	 if	b.timerOn	{

				60	 	 	 b.start	=	time.Now()

				61	 	 }

				62	 	 b.duration	=	0

				63	 }

				64	

				65	 //	SetBytes	records	the	number	of	bytes	processed	in	a	single	operation.

				66	 //	If	this	is	called,	the	benchmark	will	report	ns/op	and	MB/s.

				67	 func	(b	*B)	SetBytes(n	int64)	{	b.bytes	=	n	}

				68	

				69	 func	(b	*B)	nsPerOp()	int64	{

				70	 	 if	b.N	<=	0	{

				71	 	 	 return	0

				72	 	 }

				73	 	 return	b.duration.Nanoseconds()	/	int64(b.N)

				74	 }

				75	

				76	 //	runN	runs	a	single	benchmark	for	the	specified	number	of	iterations.

				77	 func	(b	*B)	runN(n	int)	{

				78	 	 //	Try	to	get	a	comparable	environment	for	each	run

				79	 	 //	by	clearing	garbage	from	previous	runs.

				80	 	 runtime.GC()

				81	 	 b.N	=	n

				82	 	 b.ResetTimer()

				83	 	 b.StartTimer()

				84	 	 b.benchmark.F(b)

				85	 	 b.StopTimer()

				86	 }

				87	

				88	 func	min(x,	y	int)	int	{

				89	 	 if	x	>	y	{

				90	 	 	 return	y

				91	 	 }

				92	 	 return	x

				93	 }

				94	

				95	 func	max(x,	y	int)	int	{

				96	 	 if	x	<	y	{

				97	 	 	 return	y

				98	 	 }

				99	 	 return	x

			100	 }

			101	

			102	 //	roundDown10	rounds	a	number	down	to	the	nearest	power	of	10.

			103	 func	roundDown10(n	int)	int	{

			104	 	 var	tens	=	0

			105	 	 //	tens	=	floor(log_10(n))

			106	 	 for	n	>	10	{

			107	 	 	 n	=	n	/	10

			108	 	 	 tens++

			109	 	 }

			110	 	 //	result	=	10^tens

			111	 	 result	:=	1

			112	 	 for	i	:=	0;	i	<	tens;	i++	{

			113	 	 	 result	*=	10

			114	 	 }

			115	 	 return	result

			116	 }

			117	

			118	 //	roundUp	rounds	x	up	to	a	number	of	the	form	[1eX,	2eX,	5eX].

			119	 func	roundUp(n	int)	int	{

			120	 	 base	:=	roundDown10(n)

			121	 	 if	n	<	(2	*	base)	{

			122	 	 	 return	2	*	base

			123	 	 }

			124	 	 if	n	<	(5	*	base)	{

			125	 	 	 return	5	*	base

			126	 	 }

			127	 	 return	10	*	base

			128	 }

			129	

			130	 //	run	times	the	benchmark	function	in	a	separate	goroutine.

			131	 func	(b	*B)	run()	BenchmarkResult	{

			132	 	 go	b.launch()

			133	 	 <-b.signal

			134	 	 return	b.result

			135	 }

			136	

			137	 //	launch	launches	the	benchmark	function.		It	gradually	increases	the	number

			138	 //	of	benchmark	iterations	until	the	benchmark	runs	for	a	second	in	order

			139	 //	to	get	a	reasonable	measurement.		It	prints	timing	information	in	this	form

			140	 //	 	 testing.BenchmarkHello	 100000	 	 19	ns/op

			141	 //	launch	is	run	by	the	fun	function	as	a	separate	goroutine.

			142	 func	(b	*B)	launch()	{

			143	 	 //	Run	the	benchmark	for	a	single	iteration	in	case	it's	expensive.

			144	 	 n	:=	1

			145	

			146	 	 //	Signal	that	we're	done	whether	we	return	normally

			147	 	 //	or	by	FailNow's	runtime.Goexit.

			148	 	 defer	func()	{

			149	 	 	 b.signal	<-	b

			150	 	 }()

			151	

			152	 	 b.runN(n)

			153	 	 //	Run	the	benchmark	for	at	least	the	specified	amount	of	time.

			154	 	 d	:=	time.Duration(*benchTime	*	float64(time.Second))

			155	 	 for	!b.failed	&&	b.duration	<	d	&&	n	<	1e9	{

			156	 	 	 last	:=	n

			157	 	 	 //	Predict	iterations/sec.

			158	 	 	 if	b.nsPerOp()	==	0	{

			159	 	 	 	 n	=	1e9

			160	 	 	 }	else	{

			161	 	 	 	 n	=	int(d.Nanoseconds()	/	b.nsPerOp())

			162	 	 	 }

			163	 	 	 //	Run	more	iterations	than	we	think	we'll	need	for	a	second	(1.5x).

			164	 	 	 //	Don't	grow	too	fast	in	case	we	had	timing	errors	previously.

			165	 	 	 //	Be	sure	to	run	at	least	one	more	than	last	time.

			166	 	 	 n	=	max(min(n+n/2,	100*last),	last+1)

			167	 	 	 //	Round	up	to	something	easy	to	read.

			168	 	 	 n	=	roundUp(n)

			169	 	 	 b.runN(n)

			170	 	 }

			171	 	 b.result	=	BenchmarkResult{b.N,	b.duration,	b.bytes}

			172	 }

			173	

			174	 //	The	results	of	a	benchmark	run.

			175	 type	BenchmarkResult	struct	{

			176	 	 N					int											//	The	number	of	iterations.

			177	 	 T					time.Duration	//	The	total	time	taken.

			178	 	 Bytes	int64									//	Bytes	processed	in	one	iteration.

			179	 }

			180	

			181	 func	(r	BenchmarkResult)	NsPerOp()	int64	{

			182	 	 if	r.N	<=	0	{

			183	 	 	 return	0

			184	 	 }

			185	 	 return	r.T.Nanoseconds()	/	int64(r.N)

			186	 }

			187	

			188	 func	(r	BenchmarkResult)	mbPerSec()	float64	{

			189	 	 if	r.Bytes	<=	0	||	r.T	<=	0	||	r.N	<=	0	{

			190	 	 	 return	0

			191	 	 }

			192	 	 return	(float64(r.Bytes)	*	float64(r.N)	/	1e6)	/	r.T.Seconds()

			193	 }

			194	

			195	 func	(r	BenchmarkResult)	String()	string	{

			196	 	 mbs	:=	r.mbPerSec()

			197	 	 mb	:=	""

			198	 	 if	mbs	!=	0	{

			199	 	 	 mb	=	fmt.Sprintf("\t%7.2f	MB/s",	mbs)

			200	 	 }

			201	 	 nsop	:=	r.NsPerOp()

			202	 	 ns	:=	fmt.Sprintf("%10d	ns/op",	nsop)

			203	 	 if	r.N	>	0	&&	nsop	<	100	{

			204	 	 	 //	The	format	specifiers	here	make	sure	that

			205	 	 	 //	the	ones	digits	line	up	for	all	three	possible	formats.

			206	 	 	 if	nsop	<	10	{

			207	 	 	 	 ns	=	fmt.Sprintf("%13.2f	ns/op",	float64(r.T.Nanoseconds())/float64(r.N))

			208	 	 	 }	else	{

			209	 	 	 	 ns	=	fmt.Sprintf("%12.1f	ns/op",	float64(r.T.Nanoseconds())/float64(r.N))

			210	 	 	 }

			211	 	 }

			212	 	 return	fmt.Sprintf("%8d\t%s%s",	r.N,	ns,	mb)

			213	 }

			214	

			215	 //	An	internal	function	but	exported	because	it	is	cross-package;	part	of	the	implementation

			216	 //	of	the	"go	test"	command.

			217	 func	RunBenchmarks(matchString	func(pat,	str	string)	(bool,	error),	benchmarks	[]InternalBenchmark)	{

			218	 	 //	If	no	flag	was	specified,	don't	run	benchmarks.

			219	 	 if	len(*matchBenchmarks)	==	0	{

			220	 	 	 return

			221	 	 }

			222	 	 for	_,	Benchmark	:=	range	benchmarks	{

			223	 	 	 matched,	err	:=	matchString(*matchBenchmarks,	Benchmark.Name)

			224	 	 	 if	err	!=	nil	{

			225	 	 	 	 fmt.Fprintf(os.Stderr,	"testing:	invalid	regexp	for	-test.bench:	%s\n",	err)

			226	 	 	 	 os.Exit(1)

			227	 	 	 }

			228	 	 	 if	!matched	{

			229	 	 	 	 continue

			230	 	 	 }

			231	 	 	 for	_,	procs	:=	range	cpuList	{

			232	 	 	 	 runtime.GOMAXPROCS(procs)

			233	 	 	 	 b	:=	&B{

			234	 	 	 	 	 common:	common{

			235	 	 	 	 	 	 signal:	make(chan	interface{}),

			236	 	 	 	 	 },

			237	 	 	 	 	 benchmark:	Benchmark,

			238	 	 	 	 }

			239	 	 	 	 benchName	:=	Benchmark.Name

			240	 	 	 	 if	procs	!=	1	{

			241	 	 	 	 	 benchName	=	fmt.Sprintf("%s-%d",	Benchmark.Name,	procs)

			242	 	 	 	 }

			243	 	 	 	 fmt.Printf("%s\t",	benchName)

			244	 	 	 	 r	:=	b.run()

			245	 	 	 	 if	b.failed	{

			246	 	 	 	 	 //	The	output	could	be	very	long	here,	but	probably	isn't.

			247	 	 	 	 	 //	We	print	it	all,	regardless,	because	we	don't	want	to	trim	the	reason

			248	 	 	 	 	 //	the	benchmark	failed.

			249	 	 	 	 	 fmt.Printf("---	FAIL:	%s\n%s",	benchName,	b.output)

			250	 	 	 	 	 continue

			251	 	 	 	 }

			252	 	 	 	 fmt.Printf("%v\n",	r)

			253	 	 	 	 //	Unlike	with	tests,	we	ignore	the	-chatty	flag	and	always	print	output	for

			254	 	 	 	 //	benchmarks	since	the	output	generation	time	will	skew	the	results.

			255	 	 	 	 if	len(b.output)	>	0	{

			256	 	 	 	 	 b.trimOutput()

			257	 	 	 	 	 fmt.Printf("---	BENCH:	%s\n%s",	benchName,	b.output)

			258	 	 	 	 }

			259	 	 	 	 if	p	:=	runtime.GOMAXPROCS(-1);	p	!=	procs	{

			260	 	 	 	 	 fmt.Fprintf(os.Stderr,	"testing:	%s	left	GOMAXPROCS	set	to	%d\n",	benchName,	p)

			261	 	 	 	 }

			262	 	 	 }

			263	 	 }

			264	 }

			265	

			266	 //	trimOutput	shortens	the	output	from	a	benchmark,	which	can	be	very	long.

			267	 func	(b	*B)	trimOutput()	{

			268	 	 //	The	output	is	likely	to	appear	multiple	times	because	the	benchmark

			269	 	 //	is	run	multiple	times,	but	at	least	it	will	be	seen.	This	is	not	a	big	deal

			270	 	 //	because	benchmarks	rarely	print,	but	just	in	case,	we	trim	it	if	it's	too	long.

			271	 	 const	maxNewlines	=	10

			272	 	 for	nlCount,	j	:=	0,	0;	j	<	len(b.output);	j++	{

			273	 	 	 if	b.output[j]	==	'\n'	{

			274	 	 	 	 nlCount++

			275	 	 	 	 if	nlCount	>=	maxNewlines	{

			276	 	 	 	 	 b.output	=	append(b.output[:j],	"\n\t...	[output	truncated]\n"...)

			277	 	 	 	 	 break

			278	 	 	 	 }

			279	 	 	 }

			280	 	 }

			281	 }

			282	

			283	 //	Benchmark	benchmarks	a	single	function.	Useful	for	creating

			284	 //	custom	benchmarks	that	do	not	use	the	"go	test"	command.

			285	 func	Benchmark(f	func(b	*B))	BenchmarkResult	{

			286	 	 b	:=	&B{

			287	 	 	 common:	common{

			288	 	 	 	 signal:	make(chan	interface{}),

			289	 	 	 },

			290	 	 	 benchmark:	InternalBenchmark{"",	f},

			291	 	 }

			292	 	 return	b.run()

			293	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/testing/example.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	testing

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "fmt"

				10	 	 "io"

				11	 	 "os"

				12	 	 "strings"

				13	 	 "time"

				14)

				15	

				16	 type	InternalExample	struct	{

				17	 	 Name			string

				18	 	 F						func()

				19	 	 Output	string

				20	 }

				21	

				22	 func	RunExamples(matchString	func(pat,	str	string)	(bool,	error),	examples	[]InternalExample)	(ok	bool)	{

				23	 	 ok	=	true

				24	

				25	 	 var	eg	InternalExample

				26	

				27	 	 stdout,	stderr	:=	os.Stdout,	os.Stderr

				28	

				29	 	 for	_,	eg	=	range	examples	{

				30	 	 	 matched,	err	:=	matchString(*match,	eg.Name)

				31	 	 	 if	err	!=	nil	{

				32	 	 	 	 fmt.Fprintf(os.Stderr,	"testing:	invalid	regexp	for	-test.run:	%s\n",	err)

				33	 	 	 	 os.Exit(1)

				34	 	 	 }

				35	 	 	 if	!matched	{

				36	 	 	 	 continue

				37	 	 	 }

				38	 	 	 if	*chatty	{

				39	 	 	 	 fmt.Printf("===	RUN:	%s\n",	eg.Name)

				40	 	 	 }

				41	

				42	 	 	 //	capture	stdout	and	stderr

				43	 	 	 r,	w,	err	:=	os.Pipe()

				44	 	 	 if	err	!=	nil	{

				45	 	 	 	 fmt.Fprintln(os.Stderr,	err)

				46	 	 	 	 os.Exit(1)

				47	 	 	 }

				48	 	 	 os.Stdout,	os.Stderr	=	w,	w

				49	 	 	 outC	:=	make(chan	string)

				50	 	 	 go	func()	{

				51	 	 	 	 buf	:=	new(bytes.Buffer)

				52	 	 	 	 _,	err	:=	io.Copy(buf,	r)

				53	 	 	 	 if	err	!=	nil	{

				54	 	 	 	 	 fmt.Fprintf(stderr,	"testing:	copying	pipe:	%v\n",	err)

				55	 	 	 	 	 os.Exit(1)

				56	 	 	 	 }

				57	 	 	 	 outC	<-	buf.String()

				58	 	 	 }()

				59	

				60	 	 	 //	run	example

				61	 	 	 t0	:=	time.Now()

				62	 	 	 eg.F()

				63	 	 	 dt	:=	time.Now().Sub(t0)

				64	

				65	 	 	 //	close	pipe,	restore	stdout/stderr,	get	output

				66	 	 	 w.Close()

				67	 	 	 os.Stdout,	os.Stderr	=	stdout,	stderr

				68	 	 	 out	:=	<-outC

				69	

				70	 	 	 //	report	any	errors

				71	 	 	 tstr	:=	fmt.Sprintf("(%.2f	seconds)",	dt.Seconds())

				72	 	 	 if	g,	e	:=	strings.TrimSpace(out),	strings.TrimSpace(eg.Output);	g	!=	e	{

				73	 	 	 	 fmt.Printf("---	FAIL:	%s	%s\ngot:\n%s\nwant:\n%s\n",

				74	 	 	 	 	 eg.Name,	tstr,	g,	e)

				75	 	 	 	 ok	=	false

				76	 	 	 }	else	if	*chatty	{

				77	 	 	 	 fmt.Printf("---	PASS:	%s	%s\n",	eg.Name,	tstr)

				78	 	 	 }

				79	 	 }

				80	

				81	 	 return

				82	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/testing/testing.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	testing	provides	support	for	automated	testing	of	Go	packages.

					6	 //	It	is	intended	to	be	used	in	concert	with	the	``go	test''	command,	which	automates

					7	 //	execution	of	any	function	of	the	form

					8	 //					func	TestXxx(*testing.T)

					9	 //	where	Xxx	can	be	any	alphanumeric	string	(but	the	first	letter	must	not	be	in

				10	 //	[a-z])	and	serves	to	identify	the	test	routine.

				11	 //	These	TestXxx	routines	should	be	declared	within	the	package	they	are	testing.

				12	 //

				13	 //	Functions	of	the	form

				14	 //					func	BenchmarkXxx(*testing.B)

				15	 //	are	considered	benchmarks,	and	are	executed	by	the	"go	test"	command	when

				16	 //	the	-test.bench	flag	is	provided.

				17	 //

				18	 //	A	sample	benchmark	function	looks	like	this:

				19	 //					func	BenchmarkHello(b	*testing.B)	{

				20	 //									for	i	:=	0;	i	<	b.N;	i++	{

				21	 //													fmt.Sprintf("hello")

				22	 //									}

				23	 //					}

				24	 //

				25	 //	The	benchmark	package	will	vary	b.N	until	the	benchmark	function	lasts

				26	 //	long	enough	to	be	timed	reliably.		The	output

				27	 //					testing.BenchmarkHello				10000000				282	ns/op

				28	 //	means	that	the	loop	ran	10000000	times	at	a	speed	of	282	ns	per	loop.

				29	 //

				30	 //	If	a	benchmark	needs	some	expensive	setup	before	running,	the	timer

				31	 //	may	be	stopped:

				32	 //					func	BenchmarkBigLen(b	*testing.B)	{

				33	 //									b.StopTimer()

				34	 //									big	:=	NewBig()

				35	 //									b.StartTimer()

				36	 //									for	i	:=	0;	i	<	b.N;	i++	{

				37	 //													big.Len()

				38	 //									}

				39	 //					}

				40	 //

				41	 //	The	package	also	runs	and	verifies	example	code.	Example	functions	may

				42	 //	include	a	concluding	comment	that	begins	with	"Output:"	and	is	compared	with

				43	 //	the	standard	output	of	the	function	when	the	tests	are	run,	as	in	these

				44	 //	examples	of	an	example:

				45	 //

				46	 //					func	ExampleHello()	{

				47	 //													fmt.Println("hello")

				48	 //													//	Output:	hello

				49	 //					}

				50	 //

				51	 //					func	ExampleSalutations()	{

				52	 //													fmt.Println("hello,	and")

				53	 //													fmt.Println("goodbye")

				54	 //													//	Output:

				55	 //													//	hello,	and

				56	 //													//	goodbye

				57	 //					}

				58	 //

				59	 //	Example	functions	without	output	comments	are	compiled	but	not	executed.

				60	 //

				61	 //	The	naming	convention	to	declare	examples	for	a	function	F,	a	type	T	and

				62	 //	method	M	on	type	T	are:

				63	 //

				64	 //					func	ExampleF()	{	...	}

				65	 //					func	ExampleT()	{	...	}

				66	 //					func	ExampleT_M()	{	...	}

				67	 //

				68	 //	Multiple	example	functions	for	a	type/function/method	may	be	provided	by

				69	 //	appending	a	distinct	suffix	to	the	name.	The	suffix	must	start	with	a

				70	 //	lower-case	letter.

				71	 //

				72	 //					func	ExampleF_suffix()	{	...	}

				73	 //					func	ExampleT_suffix()	{	...	}

				74	 //					func	ExampleT_M_suffix()	{	...	}

				75	 //

				76	 //	The	entire	test	file	is	presented	as	the	example	when	it	contains	a	single

				77	 //	example	function,	at	least	one	other	function,	type,	variable,	or	constant

				78	 //	declaration,	and	no	test	or	benchmark	functions.

				79	 package	testing

				80	

				81	 import	(

				82	 	 "flag"

				83	 	 "fmt"

				84	 	 "os"

				85	 	 "runtime"

				86	 	 "runtime/pprof"

				87	 	 "strconv"

				88	 	 "strings"

				89	 	 "time"

				90)

				91	

				92	 var	(

				93	 	 //	The	short	flag	requests	that	tests	run	more	quickly,	but	its	functionality

				94	 	 //	is	provided	by	test	writers	themselves.		The	testing	package	is	just	its

				95	 	 //	home.		The	all.bash	installation	script	sets	it	to	make	installation	more

				96	 	 //	efficient,	but	by	default	the	flag	is	off	so	a	plain	"go	test"	will	do	a

				97	 	 //	full	test	of	the	package.

				98	 	 short	=	flag.Bool("test.short",	false,	"run	smaller	test	suite	to	save	time")

				99	

			100	 	 //	Report	as	tests	are	run;	default	is	silent	for	success.

			101	 	 chatty									=	flag.Bool("test.v",	false,	"verbose:	print	additional	output")

			102	 	 match										=	flag.String("test.run",	"",	"regular	expression	to	select	tests	and	examples	to	run")

			103	 	 memProfile					=	flag.String("test.memprofile",	"",	"write	a	memory	profile	to	the	named	file	after	execution")

			104	 	 memProfileRate	=	flag.Int("test.memprofilerate",	0,	"if	>=0,	sets	runtime.MemProfileRate")

			105	 	 cpuProfile					=	flag.String("test.cpuprofile",	"",	"write	a	cpu	profile	to	the	named	file	during	execution")

			106	 	 timeout								=	flag.Duration("test.timeout",	0,	"if	positive,	sets	an	aggregate	time	limit	for	all	tests")

			107	 	 cpuListStr					=	flag.String("test.cpu",	"",	"comma-separated	list	of	number	of	CPUs	to	use	for	each	test")

			108	 	 parallel							=	flag.Int("test.parallel",	runtime.GOMAXPROCS(0),	"maximum	test	parallelism")

			109	

			110	 	 haveExamples	bool	//	are	there	examples?

			111	

			112	 	 cpuList	[]int

			113)

			114	

			115	 //	common	holds	the	elements	common	between	T	and	B	and

			116	 //	captures	common	methods	such	as	Errorf.

			117	 type	common	struct	{

			118	 	 output			[]byte				//	Output	generated	by	test	or	benchmark.

			119	 	 failed			bool						//	Test	or	benchmark	has	failed.

			120	 	 start				time.Time	//	Time	test	or	benchmark	started

			121	 	 duration	time.Duration

			122	 	 self					interface{}						//	To	be	sent	on	signal	channel	when	done.

			123	 	 signal			chan	interface{}	//	Output	for	serial	tests.

			124	 }

			125	

			126	 //	Short	reports	whether	the	-test.short	flag	is	set.

			127	 func	Short()	bool	{

			128	 	 return	*short

			129	 }

			130	

			131	 //	decorate	inserts	the	final	newline	if	needed	and	indentation	tabs	for	formatting.

			132	 //	If	addFileLine	is	true,	it	also	prefixes	the	string	with	the	file	and	line	of	the	call	site.

			133	 func	decorate(s	string,	addFileLine	bool)	string	{

			134	 	 if	addFileLine	{

			135	 	 	 _,	file,	line,	ok	:=	runtime.Caller(3)	//	decorate	+	log	+	public	function.

			136	 	 	 if	ok	{

			137	 	 	 	 //	Truncate	file	name	at	last	file	name	separator.

			138	 	 	 	 if	index	:=	strings.LastIndex(file,	"/");	index	>=	0	{

			139	 	 	 	 	 file	=	file[index+1:]

			140	 	 	 	 }	else	if	index	=	strings.LastIndex(file,	"\\");	index	>=	0	{

			141	 	 	 	 	 file	=	file[index+1:]

			142	 	 	 	 }

			143	 	 	 }	else	{

			144	 	 	 	 file	=	"???"

			145	 	 	 	 line	=	1

			146	 	 	 }

			147	 	 	 s	=	fmt.Sprintf("%s:%d:	%s",	file,	line,	s)

			148	 	 }

			149	 	 s	=	"\t"	+	s	//	Every	line	is	indented	at	least	one	tab.

			150	 	 n	:=	len(s)

			151	 	 if	n	>	0	&&	s[n-1]	!=	'\n'	{

			152	 	 	 s	+=	"\n"

			153	 	 	 n++

			154	 	 }

			155	 	 for	i	:=	0;	i	<	n-1;	i++	{	//	-1	to	avoid	final	newline

			156	 	 	 if	s[i]	==	'\n'	{

			157	 	 	 	 //	Second	and	subsequent	lines	are	indented	an	extra	tab.

			158	 	 	 	 return	s[0:i+1]	+	"\t"	+	decorate(s[i+1:n],	false)

			159	 	 	 }

			160	 	 }

			161	 	 return	s

			162	 }

			163	

			164	 //	T	is	a	type	passed	to	Test	functions	to	manage	test	state	and	support	formatted	test	logs.

			165	 //	Logs	are	accumulated	during	execution	and	dumped	to	standard	error	when	done.

			166	 type	T	struct	{

			167	 	 common

			168	 	 name										string				//	Name	of	test.

			169	 	 startParallel	chan	bool	//	Parallel	tests	will	wait	on	this.

			170	 }

			171	

			172	 //	Fail	marks	the	function	as	having	failed	but	continues	execution.

			173	 func	(c	*common)	Fail()	{	c.failed	=	true	}

			174	

			175	 //	Failed	returns	whether	the	function	has	failed.

			176	 func	(c	*common)	Failed()	bool	{	return	c.failed	}

			177	

			178	 //	FailNow	marks	the	function	as	having	failed	and	stops	its	execution.

			179	 //	Execution	will	continue	at	the	next	test	or	benchmark.

			180	 func	(c	*common)	FailNow()	{

			181	 	 c.Fail()

			182	

			183	 	 //	Calling	runtime.Goexit	will	exit	the	goroutine,	which

			184	 	 //	will	run	the	deferred	functions	in	this	goroutine,

			185	 	 //	which	will	eventually	run	the	deferred	lines	in	tRunner,

			186	 	 //	which	will	signal	to	the	test	loop	that	this	test	is	done.

			187	 	 //

			188	 	 //	A	previous	version	of	this	code	said:

			189	 	 //

			190	 	 //	 c.duration	=	...

			191	 	 //	 c.signal	<-	c.self

			192	 	 //	 runtime.Goexit()

			193	 	 //

			194	 	 //	This	previous	version	duplicated	code	(those	lines	are	in

			195	 	 //	tRunner	no	matter	what),	but	worse	the	goroutine	teardown

			196	 	 //	implicit	in	runtime.Goexit	was	not	guaranteed	to	complete

			197	 	 //	before	the	test	exited.		If	a	test	deferred	an	important	cleanup

			198	 	 //	function	(like	removing	temporary	files),	there	was	no	guarantee

			199	 	 //	it	would	run	on	a	test	failure.		Because	we	send	on	c.signal	during

			200	 	 //	a	top-of-stack	deferred	function	now,	we	know	that	the	send

			201	 	 //	only	happens	after	any	other	stacked	defers	have	completed.

			202	 	 runtime.Goexit()

			203	 }

			204	

			205	 //	log	generates	the	output.	It's	always	at	the	same	stack	depth.

			206	 func	(c	*common)	log(s	string)	{

			207	 	 c.output	=	append(c.output,	decorate(s,	true)...)

			208	 }

			209	

			210	 //	Log	formats	its	arguments	using	default	formatting,	analogous	to	Println(),

			211	 //	and	records	the	text	in	the	error	log.

			212	 func	(c	*common)	Log(args	...interface{})	{	c.log(fmt.Sprintln(args...))	}

			213	

			214	 //	Logf	formats	its	arguments	according	to	the	format,	analogous	to	Printf(),

			215	 //	and	records	the	text	in	the	error	log.

			216	 func	(c	*common)	Logf(format	string,	args	...interface{})	{	c.log(fmt.Sprintf(format,	args...))	}

			217	

			218	 //	Error	is	equivalent	to	Log()	followed	by	Fail().

			219	 func	(c	*common)	Error(args	...interface{})	{

			220	 	 c.log(fmt.Sprintln(args...))

			221	 	 c.Fail()

			222	 }

			223	

			224	 //	Errorf	is	equivalent	to	Logf()	followed	by	Fail().

			225	 func	(c	*common)	Errorf(format	string,	args	...interface{})	{

			226	 	 c.log(fmt.Sprintf(format,	args...))

			227	 	 c.Fail()

			228	 }

			229	

			230	 //	Fatal	is	equivalent	to	Log()	followed	by	FailNow().

			231	 func	(c	*common)	Fatal(args	...interface{})	{

			232	 	 c.log(fmt.Sprintln(args...))

			233	 	 c.FailNow()

			234	 }

			235	

			236	 //	Fatalf	is	equivalent	to	Logf()	followed	by	FailNow().

			237	 func	(c	*common)	Fatalf(format	string,	args	...interface{})	{

			238	 	 c.log(fmt.Sprintf(format,	args...))

			239	 	 c.FailNow()

			240	 }

			241	

			242	 //	Parallel	signals	that	this	test	is	to	be	run	in	parallel	with	(and	only	with)	

			243	 //	other	parallel	tests	in	this	CPU	group.

			244	 func	(t	*T)	Parallel()	{

			245	 	 t.signal	<-	(*T)(nil)	//	Release	main	testing	loop

			246	 	 <-t.startParallel					//	Wait	for	serial	tests	to	finish

			247	 }

			248	

			249	 //	An	internal	type	but	exported	because	it	is	cross-package;	part	of	the	implementation

			250	 //	of	the	"go	test"	command.

			251	 type	InternalTest	struct	{

			252	 	 Name	string

			253	 	 F				func(*T)

			254	 }

			255	

			256	 func	tRunner(t	*T,	test	*InternalTest)	{

			257	 	 t.start	=	time.Now()

			258	

			259	 	 //	When	this	goroutine	is	done,	either	because	test.F(t)

			260	 	 //	returned	normally	or	because	a	test	failure	triggered	

			261	 	 //	a	call	to	runtime.Goexit,	record	the	duration	and	send

			262	 	 //	a	signal	saying	that	the	test	is	done.

			263	 	 defer	func()	{

			264	 	 	 t.duration	=	time.Now().Sub(t.start)

			265	 	 	 //	If	the	test	panicked,	print	any	test	output	before	dying.

			266	 	 	 if	err	:=	recover();	err	!=	nil	{

			267	 	 	 	 t.report()

			268	 	 	 	 panic(err)

			269	 	 	 }

			270	 	 	 t.signal	<-	t

			271	 	 }()

			272	

			273	 	 test.F(t)

			274	 }

			275	

			276	 //	An	internal	function	but	exported	because	it	is	cross-package;	part	of	the	implementation

			277	 //	of	the	"go	test"	command.

			278	 func	Main(matchString	func(pat,	str	string)	(bool,	error),	tests	[]InternalTest,	benchmarks	[]InternalBenchmark,	examples	[]InternalExample)	{

			279	 	 flag.Parse()

			280	 	 parseCpuList()

			281	

			282	 	 before()

			283	 	 startAlarm()

			284	 	 haveExamples	=	len(examples)	>	0

			285	 	 testOk	:=	RunTests(matchString,	tests)

			286	 	 exampleOk	:=	RunExamples(matchString,	examples)

			287	 	 if	!testOk	||	!exampleOk	{

			288	 	 	 fmt.Println("FAIL")

			289	 	 	 os.Exit(1)

			290	 	 }

			291	 	 fmt.Println("PASS")

			292	 	 stopAlarm()

			293	 	 RunBenchmarks(matchString,	benchmarks)

			294	 	 after()

			295	 }

			296	

			297	 func	(t	*T)	report()	{

			298	 	 tstr	:=	fmt.Sprintf("(%.2f	seconds)",	t.duration.Seconds())

			299	 	 format	:=	"---	%s:	%s	%s\n%s"

			300	 	 if	t.failed	{

			301	 	 	 fmt.Printf(format,	"FAIL",	t.name,	tstr,	t.output)

			302	 	 }	else	if	*chatty	{

			303	 	 	 fmt.Printf(format,	"PASS",	t.name,	tstr,	t.output)

			304	 	 }

			305	 }

			306	

			307	 func	RunTests(matchString	func(pat,	str	string)	(bool,	error),	tests	[]InternalTest)	(ok	bool)	{

			308	 	 ok	=	true

			309	 	 if	len(tests)	==	0	&&	!haveExamples	{

			310	 	 	 fmt.Fprintln(os.Stderr,	"testing:	warning:	no	tests	to	run")

			311	 	 	 return

			312	 	 }

			313	 	 for	_,	procs	:=	range	cpuList	{

			314	 	 	 runtime.GOMAXPROCS(procs)

			315	 	 	 //	We	build	a	new	channel	tree	for	each	run	of	the	loop.

			316	 	 	 //	collector	merges	in	one	channel	all	the	upstream	signals	from	parallel	tests.

			317	 	 	 //	If	all	tests	pump	to	the	same	channel,	a	bug	can	occur	where	a	test

			318	 	 	 //	kicks	off	a	goroutine	that	Fails,	yet	the	test	still	delivers	a	completion	signal,

			319	 	 	 //	which	skews	the	counting.

			320	 	 	 var	collector	=	make(chan	interface{})

			321	

			322	 	 	 numParallel	:=	0

			323	 	 	 startParallel	:=	make(chan	bool)

			324	

			325	 	 	 for	i	:=	0;	i	<	len(tests);	i++	{

			326	 	 	 	 matched,	err	:=	matchString(*match,	tests[i].Name)

			327	 	 	 	 if	err	!=	nil	{

			328	 	 	 	 	 fmt.Fprintf(os.Stderr,	"testing:	invalid	regexp	for	-test.run:	%s\n",	err)

			329	 	 	 	 	 os.Exit(1)

			330	 	 	 	 }

			331	 	 	 	 if	!matched	{

			332	 	 	 	 	 continue

			333	 	 	 	 }

			334	 	 	 	 testName	:=	tests[i].Name

			335	 	 	 	 if	procs	!=	1	{

			336	 	 	 	 	 testName	=	fmt.Sprintf("%s-%d",	tests[i].Name,	procs)

			337	 	 	 	 }

			338	 	 	 	 t	:=	&T{

			339	 	 	 	 	 common:	common{

			340	 	 	 	 	 	 signal:	make(chan	interface{}),

			341	 	 	 	 	 },

			342	 	 	 	 	 name:										testName,

			343	 	 	 	 	 startParallel:	startParallel,

			344	 	 	 	 }

			345	 	 	 	 t.self	=	t

			346	 	 	 	 if	*chatty	{

			347	 	 	 	 	 fmt.Printf("===	RUN	%s\n",	t.name)

			348	 	 	 	 }

			349	 	 	 	 go	tRunner(t,	&tests[i])

			350	 	 	 	 out	:=	(<-t.signal).(*T)

			351	 	 	 	 if	out	==	nil	{	//	Parallel	run.

			352	 	 	 	 	 go	func()	{

			353	 	 	 	 	 	 collector	<-	<-t.signal

			354	 	 	 	 	 }()

			355	 	 	 	 	 numParallel++

			356	 	 	 	 	 continue

			357	 	 	 	 }

			358	 	 	 	 t.report()

			359	 	 	 	 ok	=	ok	&&	!out.failed

			360	 	 	 }

			361	

			362	 	 	 running	:=	0

			363	 	 	 for	numParallel+running	>	0	{

			364	 	 	 	 if	running	<	*parallel	&&	numParallel	>	0	{

			365	 	 	 	 	 startParallel	<-	true

			366	 	 	 	 	 running++

			367	 	 	 	 	 numParallel--

			368	 	 	 	 	 continue

			369	 	 	 	 }

			370	 	 	 	 t	:=	(<-collector).(*T)

			371	 	 	 	 t.report()

			372	 	 	 	 ok	=	ok	&&	!t.failed

			373	 	 	 	 running--

			374	 	 	 }

			375	 	 }

			376	 	 return

			377	 }

			378	

			379	 //	before	runs	before	all	testing.

			380	 func	before()	{

			381	 	 if	*memProfileRate	>	0	{

			382	 	 	 runtime.MemProfileRate	=	*memProfileRate

			383	 	 }

			384	 	 if	*cpuProfile	!=	""	{

			385	 	 	 f,	err	:=	os.Create(*cpuProfile)

			386	 	 	 if	err	!=	nil	{

			387	 	 	 	 fmt.Fprintf(os.Stderr,	"testing:	%s",	err)

			388	 	 	 	 return

			389	 	 	 }

			390	 	 	 if	err	:=	pprof.StartCPUProfile(f);	err	!=	nil	{

			391	 	 	 	 fmt.Fprintf(os.Stderr,	"testing:	can't	start	cpu	profile:	%s",	err)

			392	 	 	 	 f.Close()

			393	 	 	 	 return

			394	 	 	 }

			395	 	 	 //	Could	save	f	so	after	can	call	f.Close;	not	worth	the	effort.

			396	 	 }

			397	

			398	 }

			399	

			400	 //	after	runs	after	all	testing.

			401	 func	after()	{

			402	 	 if	*cpuProfile	!=	""	{

			403	 	 	 pprof.StopCPUProfile()	//	flushes	profile	to	disk

			404	 	 }

			405	 	 if	*memProfile	!=	""	{

			406	 	 	 f,	err	:=	os.Create(*memProfile)

			407	 	 	 if	err	!=	nil	{

			408	 	 	 	 fmt.Fprintf(os.Stderr,	"testing:	%s",	err)

			409	 	 	 	 return

			410	 	 	 }

			411	 	 	 if	err	=	pprof.WriteHeapProfile(f);	err	!=	nil	{

			412	 	 	 	 fmt.Fprintf(os.Stderr,	"testing:	can't	write	%s:	%s",	*memProfile,	err)

			413	 	 	 }

			414	 	 	 f.Close()

			415	 	 }

			416	 }

			417	

			418	 var	timer	*time.Timer

			419	

			420	 //	startAlarm	starts	an	alarm	if	requested.

			421	 func	startAlarm()	{

			422	 	 if	*timeout	>	0	{

			423	 	 	 timer	=	time.AfterFunc(*timeout,	alarm)

			424	 	 }

			425	 }

			426	

			427	 //	stopAlarm	turns	off	the	alarm.

			428	 func	stopAlarm()	{

			429	 	 if	*timeout	>	0	{

			430	 	 	 timer.Stop()

			431	 	 }

			432	 }

			433	

			434	 //	alarm	is	called	if	the	timeout	expires.

			435	 func	alarm()	{

			436	 	 panic("test	timed	out")

			437	 }

			438	

			439	 func	parseCpuList()	{

			440	 	 if	len(*cpuListStr)	==	0	{

			441	 	 	 cpuList	=	append(cpuList,	runtime.GOMAXPROCS(-1))

			442	 	 }	else	{

			443	 	 	 for	_,	val	:=	range	strings.Split(*cpuListStr,	",")	{

			444	 	 	 	 cpu,	err	:=	strconv.Atoi(val)

			445	 	 	 	 if	err	!=	nil	||	cpu	<=	0	{

			446	 	 	 	 	 fmt.Fprintf(os.Stderr,	"testing:	invalid	value	%q	for	-test.cpu",	val)

			447	 	 	 	 	 os.Exit(1)

			448	 	 	 	 }

			449	 	 	 	 cpuList	=	append(cpuList,	cpu)

			450	 	 	 }

			451	 	 }

			452	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/testing/iotest/logger.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	iotest

					6	

					7	 import	(

					8	 	 "io"

					9	 	 "log"

				10)

				11	

				12	 type	writeLogger	struct	{

				13	 	 prefix	string

				14	 	 w						io.Writer

				15	 }

				16	

				17	 func	(l	*writeLogger)	Write(p	[]byte)	(n	int,	err	error)	{

				18	 	 n,	err	=	l.w.Write(p)

				19	 	 if	err	!=	nil	{

				20	 	 	 log.Printf("%s	%x:	%v",	l.prefix,	p[0:n],	err)

				21	 	 }	else	{

				22	 	 	 log.Printf("%s	%x",	l.prefix,	p[0:n])

				23	 	 }

				24	 	 return

				25	 }

				26	

				27	 //	NewWriteLogger	returns	a	writer	that	behaves	like	w	except

				28	 //	that	it	logs	(using	log.Printf)	each	write	to	standard	error,

				29	 //	printing	the	prefix	and	the	hexadecimal	data	written.

				30	 func	NewWriteLogger(prefix	string,	w	io.Writer)	io.Writer	{

				31	 	 return	&writeLogger{prefix,	w}

				32	 }

				33	

				34	 type	readLogger	struct	{

				35	 	 prefix	string

				36	 	 r						io.Reader

				37	 }

				38	

				39	 func	(l	*readLogger)	Read(p	[]byte)	(n	int,	err	error)	{

				40	 	 n,	err	=	l.r.Read(p)

				41	 	 if	err	!=	nil	{

				42	 	 	 log.Printf("%s	%x:	%v",	l.prefix,	p[0:n],	err)

				43	 	 }	else	{

				44	 	 	 log.Printf("%s	%x",	l.prefix,	p[0:n])

				45	 	 }

				46	 	 return

				47	 }

				48	

				49	 //	NewReadLogger	returns	a	reader	that	behaves	like	r	except

				50	 //	that	it	logs	(using	log.Print)	each	read	to	standard	error,

				51	 //	printing	the	prefix	and	the	hexadecimal	data	written.

				52	 func	NewReadLogger(prefix	string,	r	io.Reader)	io.Reader	{

				53	 	 return	&readLogger{prefix,	r}

				54	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/testing/iotest/reader.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	iotest	implements	Readers	and	Writers	useful	mainly	for	testing.

					6	 package	iotest

					7	

					8	 import	(

					9	 	 "errors"

				10	 	 "io"

				11)

				12	

				13	 //	OneByteReader	returns	a	Reader	that	implements

				14	 //	each	non-empty	Read	by	reading	one	byte	from	r.

				15	 func	OneByteReader(r	io.Reader)	io.Reader	{	return	&oneByteReader{r}	}

				16	

				17	 type	oneByteReader	struct	{

				18	 	 r	io.Reader

				19	 }

				20	

				21	 func	(r	*oneByteReader)	Read(p	[]byte)	(int,	error)	{

				22	 	 if	len(p)	==	0	{

				23	 	 	 return	0,	nil

				24	 	 }

				25	 	 return	r.r.Read(p[0:1])

				26	 }

				27	

				28	 //	HalfReader	returns	a	Reader	that	implements	Read

				29	 //	by	reading	half	as	many	requested	bytes	from	r.

				30	 func	HalfReader(r	io.Reader)	io.Reader	{	return	&halfReader{r}	}

				31	

				32	 type	halfReader	struct	{

				33	 	 r	io.Reader

				34	 }

				35	

				36	 func	(r	*halfReader)	Read(p	[]byte)	(int,	error)	{

				37	 	 return	r.r.Read(p[0	:	(len(p)+1)/2])

				38	 }

				39	

				40	 //	DataErrReader	returns	a	Reader	that	returns	the	final

				41	 //	error	with	the	last	data	read,	instead	of	by	itself	with

				42	 //	zero	bytes	of	data.

				43	 func	DataErrReader(r	io.Reader)	io.Reader	{	return	&dataErrReader{r,	nil,	make([]byte,	1024)}	}

				44	

				45	 type	dataErrReader	struct	{

				46	 	 r						io.Reader

				47	 	 unread	[]byte

				48	 	 data			[]byte

				49	 }

				50	

				51	 func	(r	*dataErrReader)	Read(p	[]byte)	(n	int,	err	error)	{

				52	 	 //	loop	because	first	call	needs	two	reads:

				53	 	 //	one	to	get	data	and	a	second	to	look	for	an	error.

				54	 	 for	{

				55	 	 	 if	len(r.unread)	==	0	{

				56	 	 	 	 n1,	err1	:=	r.r.Read(r.data)

				57	 	 	 	 r.unread	=	r.data[0:n1]

				58	 	 	 	 err	=	err1

				59	 	 	 }

				60	 	 	 if	n	>	0	||	err	!=	nil	{

				61	 	 	 	 break

				62	 	 	 }

				63	 	 	 n	=	copy(p,	r.unread)

				64	 	 	 r.unread	=	r.unread[n:]

				65	 	 }

				66	 	 return

				67	 }

				68	

				69	 var	ErrTimeout	=	errors.New("timeout")

				70	

				71	 //	TimeoutReader	returns	ErrTimeout	on	the	second	read

				72	 //	with	no	data.		Subsequent	calls	to	read	succeed.

				73	 func	TimeoutReader(r	io.Reader)	io.Reader	{	return	&timeoutReader{r,	0}	}

				74	

				75	 type	timeoutReader	struct	{

				76	 	 r					io.Reader

				77	 	 count	int

				78	 }

				79	

				80	 func	(r	*timeoutReader)	Read(p	[]byte)	(int,	error)	{

				81	 	 r.count++

				82	 	 if	r.count	==	2	{

				83	 	 	 return	0,	ErrTimeout

				84	 	 }

				85	 	 return	r.r.Read(p)

				86	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.

http://code.google.com/policies.html#restrictions

Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/testing/iotest/writer.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	iotest

					6	

					7	 import	"io"

					8	

					9	 //	TruncateWriter	returns	a	Writer	that	writes	to	w

				10	 //	but	stops	silently	after	n	bytes.

				11	 func	TruncateWriter(w	io.Writer,	n	int64)	io.Writer	{

				12	 	 return	&truncateWriter{w,	n}

				13	 }

				14	

				15	 type	truncateWriter	struct	{

				16	 	 w	io.Writer

				17	 	 n	int64

				18	 }

				19	

				20	 func	(t	*truncateWriter)	Write(p	[]byte)	(n	int,	err	error)	{

				21	 	 if	t.n	<=	0	{

				22	 	 	 return	len(p),	nil

				23	 	 }

				24	 	 //	real	write

				25	 	 n	=	len(p)

				26	 	 if	int64(n)	>	t.n	{

				27	 	 	 n	=	int(t.n)

				28	 	 }

				29	 	 n,	err	=	t.w.Write(p[0:n])

				30	 	 t.n	-=	int64(n)

				31	 	 if	err	==	nil	{

				32	 	 	 n	=	len(p)

				33	 	 }

				34	 	 return

				35	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/testing/quick/quick.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	quick	implements	utility	functions	to	help	with	black	box	testing.

					6	 package	quick

					7	

					8	 import	(

					9	 	 "flag"

				10	 	 "fmt"

				11	 	 "math"

				12	 	 "math/rand"

				13	 	 "reflect"

				14	 	 "strings"

				15)

				16	

				17	 var	defaultMaxCount	*int	=	flag.Int("quickchecks",	100,	"The	default	number	of	iterations	for	each	check")

				18	

				19	 //	A	Generator	can	generate	random	values	of	its	own	type.

				20	 type	Generator	interface	{

				21	 	 //	Generate	returns	a	random	instance	of	the	type	on	which	it	is	a

				22	 	 //	method	using	the	size	as	a	size	hint.

				23	 	 Generate(rand	*rand.Rand,	size	int)	reflect.Value

				24	 }

				25	

				26	 //	randFloat32	generates	a	random	float	taking	the	full	range	of	a	float32.

				27	 func	randFloat32(rand	*rand.Rand)	float32	{

				28	 	 f	:=	rand.Float64()	*	math.MaxFloat32

				29	 	 if	rand.Int()&1	==	1	{

				30	 	 	 f	=	-f

				31	 	 }

				32	 	 return	float32(f)

				33	 }

				34	

				35	 //	randFloat64	generates	a	random	float	taking	the	full	range	of	a	float64.

				36	 func	randFloat64(rand	*rand.Rand)	float64	{

				37	 	 f	:=	rand.Float64()

				38	 	 if	rand.Int()&1	==	1	{

				39	 	 	 f	=	-f

				40	 	 }

				41	 	 return	f

				42	 }

				43	

				44	 //	randInt64	returns	a	random	integer	taking	half	the	range	of	an	int64.

				45	 func	randInt64(rand	*rand.Rand)	int64	{	return	rand.Int63()	-	1<<62	}

				46	

				47	 //	complexSize	is	the	maximum	length	of	arbitrary	values	that	contain	other

				48	 //	values.

				49	 const	complexSize	=	50

				50	

				51	 //	Value	returns	an	arbitrary	value	of	the	given	type.

				52	 //	If	the	type	implements	the	Generator	interface,	that	will	be	used.

				53	 //	Note:	To	create	arbitrary	values	for	structs,	all	the	fields	must	be	exported.

				54	 func	Value(t	reflect.Type,	rand	*rand.Rand)	(value	reflect.Value,	ok	bool)	{

				55	 	 if	m,	ok	:=	reflect.Zero(t).Interface().(Generator);	ok	{

				56	 	 	 return	m.Generate(rand,	complexSize),	true

				57	 	 }

				58	

				59	 	 switch	concrete	:=	t;	concrete.Kind()	{

				60	 	 case	reflect.Bool:

				61	 	 	 return	reflect.ValueOf(rand.Int()&1	==	0),	true

				62	 	 case	reflect.Float32:

				63	 	 	 return	reflect.ValueOf(randFloat32(rand)),	true

				64	 	 case	reflect.Float64:

				65	 	 	 return	reflect.ValueOf(randFloat64(rand)),	true

				66	 	 case	reflect.Complex64:

				67	 	 	 return	reflect.ValueOf(complex(randFloat32(rand),	randFloat32(rand))),	true

				68	 	 case	reflect.Complex128:

				69	 	 	 return	reflect.ValueOf(complex(randFloat64(rand),	randFloat64(rand))),	true

				70	 	 case	reflect.Int16:

				71	 	 	 return	reflect.ValueOf(int16(randInt64(rand))),	true

				72	 	 case	reflect.Int32:

				73	 	 	 return	reflect.ValueOf(int32(randInt64(rand))),	true

				74	 	 case	reflect.Int64:

				75	 	 	 return	reflect.ValueOf(randInt64(rand)),	true

				76	 	 case	reflect.Int8:

				77	 	 	 return	reflect.ValueOf(int8(randInt64(rand))),	true

				78	 	 case	reflect.Int:

				79	 	 	 return	reflect.ValueOf(int(randInt64(rand))),	true

				80	 	 case	reflect.Uint16:

				81	 	 	 return	reflect.ValueOf(uint16(randInt64(rand))),	true

				82	 	 case	reflect.Uint32:

				83	 	 	 return	reflect.ValueOf(uint32(randInt64(rand))),	true

				84	 	 case	reflect.Uint64:

				85	 	 	 return	reflect.ValueOf(uint64(randInt64(rand))),	true

				86	 	 case	reflect.Uint8:

				87	 	 	 return	reflect.ValueOf(uint8(randInt64(rand))),	true

				88	 	 case	reflect.Uint:

				89	 	 	 return	reflect.ValueOf(uint(randInt64(rand))),	true

				90	 	 case	reflect.Uintptr:

				91	 	 	 return	reflect.ValueOf(uintptr(randInt64(rand))),	true

				92	 	 case	reflect.Map:

				93	 	 	 numElems	:=	rand.Intn(complexSize)

				94	 	 	 m	:=	reflect.MakeMap(concrete)

				95	 	 	 for	i	:=	0;	i	<	numElems;	i++	{

				96	 	 	 	 key,	ok1	:=	Value(concrete.Key(),	rand)

				97	 	 	 	 value,	ok2	:=	Value(concrete.Elem(),	rand)

				98	 	 	 	 if	!ok1	||	!ok2	{

				99	 	 	 	 	 return	reflect.Value{},	false

			100	 	 	 	 }

			101	 	 	 	 m.SetMapIndex(key,	value)

			102	 	 	 }

			103	 	 	 return	m,	true

			104	 	 case	reflect.Ptr:

			105	 	 	 v,	ok	:=	Value(concrete.Elem(),	rand)

			106	 	 	 if	!ok	{

			107	 	 	 	 return	reflect.Value{},	false

			108	 	 	 }

			109	 	 	 p	:=	reflect.New(concrete.Elem())

			110	 	 	 p.Elem().Set(v)

			111	 	 	 return	p,	true

			112	 	 case	reflect.Slice:

			113	 	 	 numElems	:=	rand.Intn(complexSize)

			114	 	 	 s	:=	reflect.MakeSlice(concrete,	numElems,	numElems)

			115	 	 	 for	i	:=	0;	i	<	numElems;	i++	{

			116	 	 	 	 v,	ok	:=	Value(concrete.Elem(),	rand)

			117	 	 	 	 if	!ok	{

			118	 	 	 	 	 return	reflect.Value{},	false

			119	 	 	 	 }

			120	 	 	 	 s.Index(i).Set(v)

			121	 	 	 }

			122	 	 	 return	s,	true

			123	 	 case	reflect.String:

			124	 	 	 numChars	:=	rand.Intn(complexSize)

			125	 	 	 codePoints	:=	make([]rune,	numChars)

			126	 	 	 for	i	:=	0;	i	<	numChars;	i++	{

			127	 	 	 	 codePoints[i]	=	rune(rand.Intn(0x10ffff))

			128	 	 	 }

			129	 	 	 return	reflect.ValueOf(string(codePoints)),	true

			130	 	 case	reflect.Struct:

			131	 	 	 s	:=	reflect.New(t).Elem()

			132	 	 	 for	i	:=	0;	i	<	s.NumField();	i++	{

			133	 	 	 	 v,	ok	:=	Value(concrete.Field(i).Type,	rand)

			134	 	 	 	 if	!ok	{

			135	 	 	 	 	 return	reflect.Value{},	false

			136	 	 	 	 }

			137	 	 	 	 s.Field(i).Set(v)

			138	 	 	 }

			139	 	 	 return	s,	true

			140	 	 default:

			141	 	 	 return	reflect.Value{},	false

			142	 	 }

			143	

			144	 	 return

			145	 }

			146	

			147	 //	A	Config	structure	contains	options	for	running	a	test.

			148	 type	Config	struct	{

			149	 	 //	MaxCount	sets	the	maximum	number	of	iterations.	If	zero,

			150	 	 //	MaxCountScale	is	used.

			151	 	 MaxCount	int

			152	 	 //	MaxCountScale	is	a	non-negative	scale	factor	applied	to	the	default

			153	 	 //	maximum.	If	zero,	the	default	is	unchanged.

			154	 	 MaxCountScale	float64

			155	 	 //	If	non-nil,	rand	is	a	source	of	random	numbers.	Otherwise	a	default

			156	 	 //	pseudo-random	source	will	be	used.

			157	 	 Rand	*rand.Rand

			158	 	 //	If	non-nil,	the	Values	function	generates	a	slice	of	arbitrary

			159	 	 //	reflect.Values	that	are	congruent	with	the	arguments	to	the	function

			160	 	 //	being	tested.	Otherwise,	the	top-level	Values	function	is	used

			161	 	 //	to	generate	them.

			162	 	 Values	func([]reflect.Value,	*rand.Rand)

			163	 }

			164	

			165	 var	defaultConfig	Config

			166	

			167	 //	getRand	returns	the	*rand.Rand	to	use	for	a	given	Config.

			168	 func	(c	*Config)	getRand()	*rand.Rand	{

			169	 	 if	c.Rand	==	nil	{

			170	 	 	 return	rand.New(rand.NewSource(0))

			171	 	 }

			172	 	 return	c.Rand

			173	 }

			174	

			175	 //	getMaxCount	returns	the	maximum	number	of	iterations	to	run	for	a	given

			176	 //	Config.

			177	 func	(c	*Config)	getMaxCount()	(maxCount	int)	{

			178	 	 maxCount	=	c.MaxCount

			179	 	 if	maxCount	==	0	{

			180	 	 	 if	c.MaxCountScale	!=	0	{

			181	 	 	 	 maxCount	=	int(c.MaxCountScale	*	float64(*defaultMaxCount))

			182	 	 	 }	else	{

			183	 	 	 	 maxCount	=	*defaultMaxCount

			184	 	 	 }

			185	 	 }

			186	

			187	 	 return

			188	 }

			189	

			190	 //	A	SetupError	is	the	result	of	an	error	in	the	way	that	check	is	being

			191	 //	used,	independent	of	the	functions	being	tested.

			192	 type	SetupError	string

			193	

			194	 func	(s	SetupError)	Error()	string	{	return	string(s)	}

			195	

			196	 //	A	CheckError	is	the	result	of	Check	finding	an	error.

			197	 type	CheckError	struct	{

			198	 	 Count	int

			199	 	 In				[]interface{}

			200	 }

			201	

			202	 func	(s	*CheckError)	Error()	string	{

			203	 	 return	fmt.Sprintf("#%d:	failed	on	input	%s",	s.Count,	toString(s.In))

			204	 }

			205	

			206	 //	A	CheckEqualError	is	the	result	CheckEqual	finding	an	error.

			207	 type	CheckEqualError	struct	{

			208	 	 CheckError

			209	 	 Out1	[]interface{}

			210	 	 Out2	[]interface{}

			211	 }

			212	

			213	 func	(s	*CheckEqualError)	Error()	string	{

			214	 	 return	fmt.Sprintf("#%d:	failed	on	input	%s.	Output	1:	%s.	Output	2:	%s",	s.Count,	toString(s.In),	toString(s.Out1),	toString(s.Out2))

			215	 }

			216	

			217	 //	Check	looks	for	an	input	to	f,	any	function	that	returns	bool,

			218	 //	such	that	f	returns	false.		It	calls	f	repeatedly,	with	arbitrary

			219	 //	values	for	each	argument.		If	f	returns	false	on	a	given	input,

			220	 //	Check	returns	that	input	as	a	*CheckError.

			221	 //	For	example:

			222	 //

			223	 //		 func	TestOddMultipleOfThree(t	*testing.T)	{

			224	 //		 	 f	:=	func(x	int)	bool	{

			225	 //		 	 	 y	:=	OddMultipleOfThree(x)

			226	 //		 	 	 return	y%2	==	1	&&	y%3	==	0

			227	 //		 	 }

			228	 //		 	 if	err	:=	quick.Check(f,	nil);	err	!=	nil	{

			229	 //		 	 	 t.Error(err)

			230	 //		 	 }

			231	 //		 }

			232	 func	Check(function	interface{},	config	*Config)	(err	error)	{

			233	 	 if	config	==	nil	{

			234	 	 	 config	=	&defaultConfig

			235	 	 }

			236	

			237	 	 f,	fType,	ok	:=	functionAndType(function)

			238	 	 if	!ok	{

			239	 	 	 err	=	SetupError("argument	is	not	a	function")

			240	 	 	 return

			241	 	 }

			242	

			243	 	 if	fType.NumOut()	!=	1	{

			244	 	 	 err	=	SetupError("function	returns	more	than	one	value.")

			245	 	 	 return

			246	 	 }

			247	 	 if	fType.Out(0).Kind()	!=	reflect.Bool	{

			248	 	 	 err	=	SetupError("function	does	not	return	a	bool")

			249	 	 	 return

			250	 	 }

			251	

			252	 	 arguments	:=	make([]reflect.Value,	fType.NumIn())

			253	 	 rand	:=	config.getRand()

			254	 	 maxCount	:=	config.getMaxCount()

			255	

			256	 	 for	i	:=	0;	i	<	maxCount;	i++	{

			257	 	 	 err	=	arbitraryValues(arguments,	fType,	config,	rand)

			258	 	 	 if	err	!=	nil	{

			259	 	 	 	 return

			260	 	 	 }

			261	

			262	 	 	 if	!f.Call(arguments)[0].Bool()	{

			263	 	 	 	 err	=	&CheckError{i	+	1,	toInterfaces(arguments)}

			264	 	 	 	 return

			265	 	 	 }

			266	 	 }

			267	

			268	 	 return

			269	 }

			270	

			271	 //	CheckEqual	looks	for	an	input	on	which	f	and	g	return	different	results.

			272	 //	It	calls	f	and	g	repeatedly	with	arbitrary	values	for	each	argument.

			273	 //	If	f	and	g	return	different	answers,	CheckEqual	returns	a	*CheckEqualError

			274	 //	describing	the	input	and	the	outputs.

			275	 func	CheckEqual(f,	g	interface{},	config	*Config)	(err	error)	{

			276	 	 if	config	==	nil	{

			277	 	 	 config	=	&defaultConfig

			278	 	 }

			279	

			280	 	 x,	xType,	ok	:=	functionAndType(f)

			281	 	 if	!ok	{

			282	 	 	 err	=	SetupError("f	is	not	a	function")

			283	 	 	 return

			284	 	 }

			285	 	 y,	yType,	ok	:=	functionAndType(g)

			286	 	 if	!ok	{

			287	 	 	 err	=	SetupError("g	is	not	a	function")

			288	 	 	 return

			289	 	 }

			290	

			291	 	 if	xType	!=	yType	{

			292	 	 	 err	=	SetupError("functions	have	different	types")

			293	 	 	 return

			294	 	 }

			295	

			296	 	 arguments	:=	make([]reflect.Value,	xType.NumIn())

			297	 	 rand	:=	config.getRand()

			298	 	 maxCount	:=	config.getMaxCount()

			299	

			300	 	 for	i	:=	0;	i	<	maxCount;	i++	{

			301	 	 	 err	=	arbitraryValues(arguments,	xType,	config,	rand)

			302	 	 	 if	err	!=	nil	{

			303	 	 	 	 return

			304	 	 	 }

			305	

			306	 	 	 xOut	:=	toInterfaces(x.Call(arguments))

			307	 	 	 yOut	:=	toInterfaces(y.Call(arguments))

			308	

			309	 	 	 if	!reflect.DeepEqual(xOut,	yOut)	{

			310	 	 	 	 err	=	&CheckEqualError{CheckError{i	+	1,	toInterfaces(arguments)},	xOut,	yOut}

			311	 	 	 	 return

			312	 	 	 }

			313	 	 }

			314	

			315	 	 return

			316	 }

			317	

			318	 //	arbitraryValues	writes	Values	to	args	such	that	args	contains	Values

			319	 //	suitable	for	calling	f.

			320	 func	arbitraryValues(args	[]reflect.Value,	f	reflect.Type,	config	*Config,	rand	*rand.Rand)	(err	error)	{

			321	 	 if	config.Values	!=	nil	{

			322	 	 	 config.Values(args,	rand)

			323	 	 	 return

			324	 	 }

			325	

			326	 	 for	j	:=	0;	j	<	len(args);	j++	{

			327	 	 	 var	ok	bool

			328	 	 	 args[j],	ok	=	Value(f.In(j),	rand)

			329	 	 	 if	!ok	{

			330	 	 	 	 err	=	SetupError(fmt.Sprintf("cannot	create	arbitrary	value	of	type	%s	for	argument	%d",	f.In(j),	j))

			331	 	 	 	 return

			332	 	 	 }

			333	 	 }

			334	

			335	 	 return

			336	 }

			337	

			338	 func	functionAndType(f	interface{})	(v	reflect.Value,	t	reflect.Type,	ok	bool)	{

			339	 	 v	=	reflect.ValueOf(f)

			340	 	 ok	=	v.Kind()	==	reflect.Func

			341	 	 if	!ok	{

			342	 	 	 return

			343	 	 }

			344	 	 t	=	v.Type()

			345	 	 return

			346	 }

			347	

			348	 func	toInterfaces(values	[]reflect.Value)	[]interface{}	{

			349	 	 ret	:=	make([]interface{},	len(values))

			350	 	 for	i,	v	:=	range	values	{

			351	 	 	 ret[i]	=	v.Interface()

			352	 	 }

			353	 	 return	ret

			354	 }

			355	

			356	 func	toString(interfaces	[]interface{})	string	{

			357	 	 s	:=	make([]string,	len(interfaces))

			358	 	 for	i,	v	:=	range	interfaces	{

			359	 	 	 s[i]	=	fmt.Sprintf("%#v",	v)

			360	 	 }

			361	 	 return	strings.Join(s,	",	")

			362	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/text/scanner/scanner.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	scanner	provides	a	scanner	and	tokenizer	for	UTF-8-encoded	text.

					6	 //	It	takes	an	io.Reader	providing	the	source,	which	then	can	be	tokenized

					7	 //	through	repeated	calls	to	the	Scan	function.		For	compatibility	with

					8	 //	existing	tools,	the	NUL	character	is	not	allowed.

					9	 //

				10	 //	By	default,	a	Scanner	skips	white	space	and	Go	comments	and	recognizes	all

				11	 //	literals	as	defined	by	the	Go	language	specification.		It	may	be

				12	 //	customized	to	recognize	only	a	subset	of	those	literals	and	to	recognize

				13	 //	different	white	space	characters.

				14	 //

				15	 //	Basic	usage	pattern:

				16	 //

				17	 //	 var	s	scanner.Scanner

				18	 //	 s.Init(src)

				19	 //	 tok	:=	s.Scan()

				20	 //	 for	tok	!=	scanner.EOF	{

				21	 //	 	 //	do	something	with	tok

				22	 //	 	 tok	=	s.Scan()

				23	 //	 }

				24	 //

				25	 package	scanner

				26	

				27	 import	(

				28	 	 "bytes"

				29	 	 "fmt"

				30	 	 "io"

				31	 	 "os"

				32	 	 "unicode"

				33	 	 "unicode/utf8"

				34)

				35	

				36	 //	TODO(gri):	Consider	changing	this	to	use	the	new	(token)	Position	package.

				37	

				38	 //	A	source	position	is	represented	by	a	Position	value.

				39	 //	A	position	is	valid	if	Line	>	0.

				40	 type	Position	struct	{

				41	 	 Filename	string	//	filename,	if	any

				42	 	 Offset			int				//	byte	offset,	starting	at	0

				43	 	 Line					int				//	line	number,	starting	at	1

				44	 	 Column			int				//	column	number,	starting	at	1	(character	count	per	line)

				45	 }

				46	

				47	 //	IsValid	returns	true	if	the	position	is	valid.

				48	 func	(pos	*Position)	IsValid()	bool	{	return	pos.Line	>	0	}

				49	

				50	 func	(pos	Position)	String()	string	{

				51	 	 s	:=	pos.Filename

				52	 	 if	pos.IsValid()	{

				53	 	 	 if	s	!=	""	{

				54	 	 	 	 s	+=	":"

				55	 	 	 }

				56	 	 	 s	+=	fmt.Sprintf("%d:%d",	pos.Line,	pos.Column)

				57	 	 }

				58	 	 if	s	==	""	{

				59	 	 	 s	=	"???"

				60	 	 }

				61	 	 return	s

				62	 }

				63	

				64	 //	Predefined	mode	bits	to	control	recognition	of	tokens.	For	instance,

				65	 //	to	configure	a	Scanner	such	that	it	only	recognizes	(Go)	identifiers,

				66	 //	integers,	and	skips	comments,	set	the	Scanner's	Mode	field	to:

				67	 //

				68	 //	 ScanIdents	|	ScanInts	|	SkipComments

				69	 //

				70	 const	(

				71	 	 ScanIdents					=	1	<<	-Ident

				72	 	 ScanInts							=	1	<<	-Int

				73	 	 ScanFloats					=	1	<<	-Float	//	includes	Ints

				74	 	 ScanChars						=	1	<<	-Char

				75	 	 ScanStrings				=	1	<<	-String

				76	 	 ScanRawStrings	=	1	<<	-RawString

				77	 	 ScanComments			=	1	<<	-Comment

				78	 	 SkipComments			=	1	<<	-skipComment	//	if	set	with	ScanComments,	comments	become	white	space

				79	 	 GoTokens							=	ScanIdents	|	ScanFloats	|	ScanChars	|	ScanStrings	|	ScanRawStrings	|	ScanComments	|	SkipComments

				80)

				81	

				82	 //	The	result	of	Scan	is	one	of	the	following	tokens	or	a	Unicode	character.

				83	 const	(

				84	 	 EOF	=	-(iota	+	1)

				85	 	 Ident

				86	 	 Int

				87	 	 Float

				88	 	 Char

				89	 	 String

				90	 	 RawString

				91	 	 Comment

				92	 	 skipComment

				93)

				94	

				95	 var	tokenString	=	map[rune]string{

				96	 	 EOF:							"EOF",

				97	 	 Ident:					"Ident",

				98	 	 Int:							"Int",

				99	 	 Float:					"Float",

			100	 	 Char:						"Char",

			101	 	 String:				"String",

			102	 	 RawString:	"RawString",

			103	 	 Comment:			"Comment",

			104	 }

			105	

			106	 //	TokenString	returns	a	printable	string	for	a	token	or	Unicode	character.

			107	 func	TokenString(tok	rune)	string	{

			108	 	 if	s,	found	:=	tokenString[tok];	found	{

			109	 	 	 return	s

			110	 	 }

			111	 	 return	fmt.Sprintf("%q",	string(tok))

			112	 }

			113	

			114	 //	GoWhitespace	is	the	default	value	for	the	Scanner's	Whitespace	field.

			115	 //	Its	value	selects	Go's	white	space	characters.

			116	 const	GoWhitespace	=	1<<'\t'	|	1<<'\n'	|	1<<'\r'	|	1<<'	'

			117	

			118	 const	bufLen	=	1024	//	at	least	utf8.UTFMax

			119	

			120	 //	A	Scanner	implements	reading	of	Unicode	characters	and	tokens	from	an	io.Reader.

			121	 type	Scanner	struct	{

			122	 	 //	Input

			123	 	 src	io.Reader

			124	

			125	 	 //	Source	buffer

			126	 	 srcBuf	[bufLen	+	1]byte	//	+1	for	sentinel	for	common	case	of	s.next()

			127	 	 srcPos	int														//	reading	position	(srcBuf	index)

			128	 	 srcEnd	int														//	source	end	(srcBuf	index)

			129	

			130	 	 //	Source	position

			131	 	 srcBufOffset	int	//	byte	offset	of	srcBuf[0]	in	source

			132	 	 line									int	//	line	count

			133	 	 column							int	//	character	count

			134	 	 lastLineLen		int	//	length	of	last	line	in	characters	(for	correct	column	reporting)

			135	 	 lastCharLen		int	//	length	of	last	character	in	bytes

			136	

			137	 	 //	Token	text	buffer

			138	 	 //	Typically,	token	text	is	stored	completely	in	srcBuf,	but	in	general

			139	 	 //	the	token	text's	head	may	be	buffered	in	tokBuf	while	the	token	text's

			140	 	 //	tail	is	stored	in	srcBuf.

			141	 	 tokBuf	bytes.Buffer	//	token	text	head	that	is	not	in	srcBuf	anymore

			142	 	 tokPos	int										//	token	text	tail	position	(srcBuf	index);	valid	if	>=	0

			143	 	 tokEnd	int										//	token	text	tail	end	(srcBuf	index)

			144	

			145	 	 //	One	character	look-ahead

			146	 	 ch	rune	//	character	before	current	srcPos

			147	

			148	 	 //	Error	is	called	for	each	error	encountered.	If	no	Error

			149	 	 //	function	is	set,	the	error	is	reported	to	os.Stderr.

			150	 	 Error	func(s	*Scanner,	msg	string)

			151	

			152	 	 //	ErrorCount	is	incremented	by	one	for	each	error	encountered.

			153	 	 ErrorCount	int

			154	

			155	 	 //	The	Mode	field	controls	which	tokens	are	recognized.	For	instance,

			156	 	 //	to	recognize	Ints,	set	the	ScanInts	bit	in	Mode.	The	field	may	be

			157	 	 //	changed	at	any	time.

			158	 	 Mode	uint

			159	

			160	 	 //	The	Whitespace	field	controls	which	characters	are	recognized

			161	 	 //	as	white	space.	To	recognize	a	character	ch	<=	'	'	as	white	space,

			162	 	 //	set	the	ch'th	bit	in	Whitespace	(the	Scanner's	behavior	is	undefined

			163	 	 //	for	values	ch	>	'	').	The	field	may	be	changed	at	any	time.

			164	 	 Whitespace	uint64

			165	

			166	 	 //	Start	position	of	most	recently	scanned	token;	set	by	Scan.

			167	 	 //	Calling	Init	or	Next	invalidates	the	position	(Line	==	0).

			168	 	 //	The	Filename	field	is	always	left	untouched	by	the	Scanner.

			169	 	 //	If	an	error	is	reported	(via	Error)	and	Position	is	invalid,

			170	 	 //	the	scanner	is	not	inside	a	token.	Call	Pos	to	obtain	an	error

			171	 	 //	position	in	that	case.

			172	 	 Position

			173	 }

			174	

			175	 //	Init	initializes	a	Scanner	with	a	new	source	and	returns	s.

			176	 //	Error	is	set	to	nil,	ErrorCount	is	set	to	0,	Mode	is	set	to	GoTokens,

			177	 //	and	Whitespace	is	set	to	GoWhitespace.

			178	 func	(s	*Scanner)	Init(src	io.Reader)	*Scanner	{

			179	 	 s.src	=	src

			180	

			181	 	 //	initialize	source	buffer

			182	 	 //	(the	first	call	to	next()	will	fill	it	by	calling	src.Read)

			183	 	 s.srcBuf[0]	=	utf8.RuneSelf	//	sentinel

			184	 	 s.srcPos	=	0

			185	 	 s.srcEnd	=	0

			186	

			187	 	 //	initialize	source	position

			188	 	 s.srcBufOffset	=	0

			189	 	 s.line	=	1

			190	 	 s.column	=	0

			191	 	 s.lastLineLen	=	0

			192	 	 s.lastCharLen	=	0

			193	

			194	 	 //	initialize	token	text	buffer

			195	 	 //	(required	for	first	call	to	next()).

			196	 	 s.tokPos	=	-1

			197	

			198	 	 //	initialize	one	character	look-ahead

			199	 	 s.ch	=	-1	//	no	char	read	yet

			200	

			201	 	 //	initialize	public	fields

			202	 	 s.Error	=	nil

			203	 	 s.ErrorCount	=	0

			204	 	 s.Mode	=	GoTokens

			205	 	 s.Whitespace	=	GoWhitespace

			206	 	 s.Line	=	0	//	invalidate	token	position

			207	

			208	 	 return	s

			209	 }

			210	

			211	 //	TODO(gri):	The	code	for	next()	and	the	internal	scanner	state	could	benefit

			212	 //												from	a	rethink.	While	next()	is	optimized	for	the	common	ASCII

			213	 //												case,	the	"corrections"	needed	for	proper	position	tracking	undo

			214	 //												some	of	the	attempts	for	fast-path	optimization.

			215	

			216	 //	next	reads	and	returns	the	next	Unicode	character.	It	is	designed	such

			217	 //	that	only	a	minimal	amount	of	work	needs	to	be	done	in	the	common	ASCII

			218	 //	case	(one	test	to	check	for	both	ASCII	and	end-of-buffer,	and	one	test

			219	 //	to	check	for	newlines).

			220	 func	(s	*Scanner)	next()	rune	{

			221	 	 ch,	width	:=	rune(s.srcBuf[s.srcPos]),	1

			222	

			223	 	 if	ch	>=	utf8.RuneSelf	{

			224	 	 	 //	uncommon	case:	not	ASCII	or	not	enough	bytes

			225	 	 	 for	s.srcPos+utf8.UTFMax	>	s.srcEnd	&&	!utf8.FullRune(s.srcBuf[s.srcPos:s.srcEnd])	{

			226	 	 	 	 //	not	enough	bytes:	read	some	more,	but	first

			227	 	 	 	 //	save	away	token	text	if	any

			228	 	 	 	 if	s.tokPos	>=	0	{

			229	 	 	 	 	 s.tokBuf.Write(s.srcBuf[s.tokPos:s.srcPos])

			230	 	 	 	 	 s.tokPos	=	0

			231	 	 	 	 	 //	s.tokEnd	is	set	by	Scan()

			232	 	 	 	 }

			233	 	 	 	 //	move	unread	bytes	to	beginning	of	buffer

			234	 	 	 	 copy(s.srcBuf[0:],	s.srcBuf[s.srcPos:s.srcEnd])

			235	 	 	 	 s.srcBufOffset	+=	s.srcPos

			236	 	 	 	 //	read	more	bytes

			237	 	 	 	 //	(an	io.Reader	must	return	io.EOF	when	it	reaches

			238	 	 	 	 //	the	end	of	what	it	is	reading	-	simply	returning

			239	 	 	 	 //	n	==	0	will	make	this	loop	retry	forever;	but	the

			240	 	 	 	 //	error	is	in	the	reader	implementation	in	that	case)

			241	 	 	 	 i	:=	s.srcEnd	-	s.srcPos

			242	 	 	 	 n,	err	:=	s.src.Read(s.srcBuf[i:bufLen])

			243	 	 	 	 s.srcPos	=	0

			244	 	 	 	 s.srcEnd	=	i	+	n

			245	 	 	 	 s.srcBuf[s.srcEnd]	=	utf8.RuneSelf	//	sentinel

			246	 	 	 	 if	err	!=	nil	{

			247	 	 	 	 	 if	s.srcEnd	==	0	{

			248	 	 	 	 	 	 if	s.lastCharLen	>	0	{

			249	 	 	 	 	 	 	 //	previous	character	was	not	EOF

			250	 	 	 	 	 	 	 s.column++

			251	 	 	 	 	 	 }

			252	 	 	 	 	 	 s.lastCharLen	=	0

			253	 	 	 	 	 	 return	EOF

			254	 	 	 	 	 }

			255	 	 	 	 	 if	err	!=	io.EOF	{

			256	 	 	 	 	 	 s.error(err.Error())

			257	 	 	 	 	 }

			258	 	 	 	 	 //	If	err	==	EOF,	we	won't	be	getting	more

			259	 	 	 	 	 //	bytes;	break	to	avoid	infinite	loop.	If

			260	 	 	 	 	 //	err	is	something	else,	we	don't	know	if

			261	 	 	 	 	 //	we	can	get	more	bytes;	thus	also	break.

			262	 	 	 	 	 break

			263	 	 	 	 }

			264	 	 	 }

			265	 	 	 //	at	least	one	byte

			266	 	 	 ch	=	rune(s.srcBuf[s.srcPos])

			267	 	 	 if	ch	>=	utf8.RuneSelf	{

			268	 	 	 	 //	uncommon	case:	not	ASCII

			269	 	 	 	 ch,	width	=	utf8.DecodeRune(s.srcBuf[s.srcPos:s.srcEnd])

			270	 	 	 	 if	ch	==	utf8.RuneError	&&	width	==	1	{

			271	 	 	 	 	 //	advance	for	correct	error	position

			272	 	 	 	 	 s.srcPos	+=	width

			273	 	 	 	 	 s.lastCharLen	=	width

			274	 	 	 	 	 s.column++

			275	 	 	 	 	 s.error("illegal	UTF-8	encoding")

			276	 	 	 	 	 return	ch

			277	 	 	 	 }

			278	 	 	 }

			279	 	 }

			280	

			281	 	 //	advance

			282	 	 s.srcPos	+=	width

			283	 	 s.lastCharLen	=	width

			284	 	 s.column++

			285	

			286	 	 //	special	situations

			287	 	 switch	ch	{

			288	 	 case	0:

			289	 	 	 //	for	compatibility	with	other	tools

			290	 	 	 s.error("illegal	character	NUL")

			291	 	 case	'\n':

			292	 	 	 s.line++

			293	 	 	 s.lastLineLen	=	s.column

			294	 	 	 s.column	=	0

			295	 	 }

			296	

			297	 	 return	ch

			298	 }

			299	

			300	 //	Next	reads	and	returns	the	next	Unicode	character.

			301	 //	It	returns	EOF	at	the	end	of	the	source.	It	reports

			302	 //	a	read	error	by	calling	s.Error,	if	not	nil;	otherwise

			303	 //	it	prints	an	error	message	to	os.Stderr.	Next	does	not

			304	 //	update	the	Scanner's	Position	field;	use	Pos()	to

			305	 //	get	the	current	position.

			306	 func	(s	*Scanner)	Next()	rune	{

			307	 	 s.tokPos	=	-1	//	don't	collect	token	text

			308	 	 s.Line	=	0				//	invalidate	token	position

			309	 	 ch	:=	s.Peek()

			310	 	 s.ch	=	s.next()

			311	 	 return	ch

			312	 }

			313	

			314	 //	Peek	returns	the	next	Unicode	character	in	the	source	without	advancing

			315	 //	the	scanner.	It	returns	EOF	if	the	scanner's	position	is	at	the	last

			316	 //	character	of	the	source.

			317	 func	(s	*Scanner)	Peek()	rune	{

			318	 	 if	s.ch	<	0	{

			319	 	 	 s.ch	=	s.next()

			320	 	 }

			321	 	 return	s.ch

			322	 }

			323	

			324	 func	(s	*Scanner)	error(msg	string)	{

			325	 	 s.ErrorCount++

			326	 	 if	s.Error	!=	nil	{

			327	 	 	 s.Error(s,	msg)

			328	 	 	 return

			329	 	 }

			330	 	 pos	:=	s.Position

			331	 	 if	!pos.IsValid()	{

			332	 	 	 pos	=	s.Pos()

			333	 	 }

			334	 	 fmt.Fprintf(os.Stderr,	"%s:	%s\n",	pos,	msg)

			335	 }

			336	

			337	 func	(s	*Scanner)	scanIdentifier()	rune	{

			338	 	 ch	:=	s.next()	//	read	character	after	first	'_'	or	letter

			339	 	 for	ch	==	'_'	||	unicode.IsLetter(ch)	||	unicode.IsDigit(ch)	{

			340	 	 	 ch	=	s.next()

			341	 	 }

			342	 	 return	ch

			343	 }

			344	

			345	 func	digitVal(ch	rune)	int	{

			346	 	 switch	{

			347	 	 case	'0'	<=	ch	&&	ch	<=	'9':

			348	 	 	 return	int(ch	-	'0')

			349	 	 case	'a'	<=	ch	&&	ch	<=	'f':

			350	 	 	 return	int(ch	-	'a'	+	10)

			351	 	 case	'A'	<=	ch	&&	ch	<=	'F':

			352	 	 	 return	int(ch	-	'A'	+	10)

			353	 	 }

			354	 	 return	16	//	larger	than	any	legal	digit	val

			355	 }

			356	

			357	 func	isDecimal(ch	rune)	bool	{	return	'0'	<=	ch	&&	ch	<=	'9'	}

			358	

			359	 func	(s	*Scanner)	scanMantissa(ch	rune)	rune	{

			360	 	 for	isDecimal(ch)	{

			361	 	 	 ch	=	s.next()

			362	 	 }

			363	 	 return	ch

			364	 }

			365	

			366	 func	(s	*Scanner)	scanFraction(ch	rune)	rune	{

			367	 	 if	ch	==	'.'	{

			368	 	 	 ch	=	s.scanMantissa(s.next())

			369	 	 }

			370	 	 return	ch

			371	 }

			372	

			373	 func	(s	*Scanner)	scanExponent(ch	rune)	rune	{

			374	 	 if	ch	==	'e'	||	ch	==	'E'	{

			375	 	 	 ch	=	s.next()

			376	 	 	 if	ch	==	'-'	||	ch	==	'+'	{

			377	 	 	 	 ch	=	s.next()

			378	 	 	 }

			379	 	 	 ch	=	s.scanMantissa(ch)

			380	 	 }

			381	 	 return	ch

			382	 }

			383	

			384	 func	(s	*Scanner)	scanNumber(ch	rune)	(rune,	rune)	{

			385	 	 //	isDecimal(ch)

			386	 	 if	ch	==	'0'	{

			387	 	 	 //	int	or	float

			388	 	 	 ch	=	s.next()

			389	 	 	 if	ch	==	'x'	||	ch	==	'X'	{

			390	 	 	 	 //	hexadecimal	int

			391	 	 	 	 ch	=	s.next()

			392	 	 	 	 for	digitVal(ch)	<	16	{

			393	 	 	 	 	 ch	=	s.next()

			394	 	 	 	 }

			395	 	 	 }	else	{

			396	 	 	 	 //	octal	int	or	float

			397	 	 	 	 seenDecimalDigit	:=	false

			398	 	 	 	 for	isDecimal(ch)	{

			399	 	 	 	 	 if	ch	>	'7'	{

			400	 	 	 	 	 	 seenDecimalDigit	=	true

			401	 	 	 	 	 }

			402	 	 	 	 	 ch	=	s.next()

			403	 	 	 	 }

			404	 	 	 	 if	s.Mode&ScanFloats	!=	0	&&	(ch	==	'.'	||	ch	==	'e'	||	ch	==	'E')	{

			405	 	 	 	 	 //	float

			406	 	 	 	 	 ch	=	s.scanFraction(ch)

			407	 	 	 	 	 ch	=	s.scanExponent(ch)

			408	 	 	 	 	 return	Float,	ch

			409	 	 	 	 }

			410	 	 	 	 //	octal	int

			411	 	 	 	 if	seenDecimalDigit	{

			412	 	 	 	 	 s.error("illegal	octal	number")

			413	 	 	 	 }

			414	 	 	 }

			415	 	 	 return	Int,	ch

			416	 	 }

			417	 	 //	decimal	int	or	float

			418	 	 ch	=	s.scanMantissa(ch)

			419	 	 if	s.Mode&ScanFloats	!=	0	&&	(ch	==	'.'	||	ch	==	'e'	||	ch	==	'E')	{

			420	 	 	 //	float

			421	 	 	 ch	=	s.scanFraction(ch)

			422	 	 	 ch	=	s.scanExponent(ch)

			423	 	 	 return	Float,	ch

			424	 	 }

			425	 	 return	Int,	ch

			426	 }

			427	

			428	 func	(s	*Scanner)	scanDigits(ch	rune,	base,	n	int)	rune	{

			429	 	 for	n	>	0	&&	digitVal(ch)	<	base	{

			430	 	 	 ch	=	s.next()

			431	 	 	 n--

			432	 	 }

			433	 	 if	n	>	0	{

			434	 	 	 s.error("illegal	char	escape")

			435	 	 }

			436	 	 return	ch

			437	 }

			438	

			439	 func	(s	*Scanner)	scanEscape(quote	rune)	rune	{

			440	 	 ch	:=	s.next()	//	read	character	after	'/'

			441	 	 switch	ch	{

			442	 	 case	'a',	'b',	'f',	'n',	'r',	't',	'v',	'\\',	quote:

			443	 	 	 //	nothing	to	do

			444	 	 	 ch	=	s.next()

			445	 	 case	'0',	'1',	'2',	'3',	'4',	'5',	'6',	'7':

			446	 	 	 ch	=	s.scanDigits(ch,	8,	3)

			447	 	 case	'x':

			448	 	 	 ch	=	s.scanDigits(s.next(),	16,	2)

			449	 	 case	'u':

			450	 	 	 ch	=	s.scanDigits(s.next(),	16,	4)

			451	 	 case	'U':

			452	 	 	 ch	=	s.scanDigits(s.next(),	16,	8)

			453	 	 default:

			454	 	 	 s.error("illegal	char	escape")

			455	 	 }

			456	 	 return	ch

			457	 }

			458	

			459	 func	(s	*Scanner)	scanString(quote	rune)	(n	int)	{

			460	 	 ch	:=	s.next()	//	read	character	after	quote

			461	 	 for	ch	!=	quote	{

			462	 	 	 if	ch	==	'\n'	||	ch	<	0	{

			463	 	 	 	 s.error("literal	not	terminated")

			464	 	 	 	 return

			465	 	 	 }

			466	 	 	 if	ch	==	'\\'	{

			467	 	 	 	 ch	=	s.scanEscape(quote)

			468	 	 	 }	else	{

			469	 	 	 	 ch	=	s.next()

			470	 	 	 }

			471	 	 	 n++

			472	 	 }

			473	 	 return

			474	 }

			475	

			476	 func	(s	*Scanner)	scanRawString()	{

			477	 	 ch	:=	s.next()	//	read	character	after	'`'

			478	 	 for	ch	!=	'`'	{

			479	 	 	 if	ch	<	0	{

			480	 	 	 	 s.error("literal	not	terminated")

			481	 	 	 	 return

			482	 	 	 }

			483	 	 	 ch	=	s.next()

			484	 	 }

			485	 }

			486	

			487	 func	(s	*Scanner)	scanChar()	{

			488	 	 if	s.scanString('\'')	!=	1	{

			489	 	 	 s.error("illegal	char	literal")

			490	 	 }

			491	 }

			492	

			493	 func	(s	*Scanner)	scanComment(ch	rune)	rune	{

			494	 	 //	ch	==	'/'	||	ch	==	'*'

			495	 	 if	ch	==	'/'	{

			496	 	 	 //	line	comment

			497	 	 	 ch	=	s.next()	//	read	character	after	"//"

			498	 	 	 for	ch	!=	'\n'	&&	ch	>=	0	{

			499	 	 	 	 ch	=	s.next()

			500	 	 	 }

			501	 	 	 return	ch

			502	 	 }

			503	

			504	 	 //	general	comment

			505	 	 ch	=	s.next()	//	read	character	after	"/*"

			506	 	 for	{

			507	 	 	 if	ch	<	0	{

			508	 	 	 	 s.error("comment	not	terminated")

			509	 	 	 	 break

			510	 	 	 }

			511	 	 	 ch0	:=	ch

			512	 	 	 ch	=	s.next()

			513	 	 	 if	ch0	==	'*'	&&	ch	==	'/'	{

			514	 	 	 	 ch	=	s.next()

			515	 	 	 	 break

			516	 	 	 }

			517	 	 }

			518	 	 return	ch

			519	 }

			520	

			521	 //	Scan	reads	the	next	token	or	Unicode	character	from	source	and	returns	it.

			522	 //	It	only	recognizes	tokens	t	for	which	the	respective	Mode	bit	(1<<-t)	is	set.

			523	 //	It	returns	EOF	at	the	end	of	the	source.	It	reports	scanner	errors	(read	and

			524	 //	token	errors)	by	calling	s.Error,	if	not	nil;	otherwise	it	prints	an	error

			525	 //	message	to	os.Stderr.

			526	 func	(s	*Scanner)	Scan()	rune	{

			527	 	 ch	:=	s.Peek()

			528	

			529	 	 //	reset	token	text	position

			530	 	 s.tokPos	=	-1

			531	 	 s.Line	=	0

			532	

			533	 redo:

			534	 	 //	skip	white	space

			535	 	 for	s.Whitespace&(1<<uint(ch))	!=	0	{

			536	 	 	 ch	=	s.next()

			537	 	 }

			538	

			539	 	 //	start	collecting	token	text

			540	 	 s.tokBuf.Reset()

			541	 	 s.tokPos	=	s.srcPos	-	s.lastCharLen

			542	

			543	 	 //	set	token	position

			544	 	 //	(this	is	a	slightly	optimized	version	of	the	code	in	Pos())

			545	 	 s.Offset	=	s.srcBufOffset	+	s.tokPos

			546	 	 if	s.column	>	0	{

			547	 	 	 //	common	case:	last	character	was	not	a	'\n'

			548	 	 	 s.Line	=	s.line

			549	 	 	 s.Column	=	s.column

			550	 	 }	else	{

			551	 	 	 //	last	character	was	a	'\n'

			552	 	 	 //	(we	cannot	be	at	the	beginning	of	the	source

			553	 	 	 //	since	we	have	called	next()	at	least	once)

			554	 	 	 s.Line	=	s.line	-	1

			555	 	 	 s.Column	=	s.lastLineLen

			556	 	 }

			557	

			558	 	 //	determine	token	value

			559	 	 tok	:=	ch

			560	 	 switch	{

			561	 	 case	unicode.IsLetter(ch)	||	ch	==	'_':

			562	 	 	 if	s.Mode&ScanIdents	!=	0	{

			563	 	 	 	 tok	=	Ident

			564	 	 	 	 ch	=	s.scanIdentifier()

			565	 	 	 }	else	{

			566	 	 	 	 ch	=	s.next()

			567	 	 	 }

			568	 	 case	isDecimal(ch):

			569	 	 	 if	s.Mode&(ScanInts|ScanFloats)	!=	0	{

			570	 	 	 	 tok,	ch	=	s.scanNumber(ch)

			571	 	 	 }	else	{

			572	 	 	 	 ch	=	s.next()

			573	 	 	 }

			574	 	 default:

			575	 	 	 switch	ch	{

			576	 	 	 case	'"':

			577	 	 	 	 if	s.Mode&ScanStrings	!=	0	{

			578	 	 	 	 	 s.scanString('"')

			579	 	 	 	 	 tok	=	String

			580	 	 	 	 }

			581	 	 	 	 ch	=	s.next()

			582	 	 	 case	'\'':

			583	 	 	 	 if	s.Mode&ScanChars	!=	0	{

			584	 	 	 	 	 s.scanChar()

			585	 	 	 	 	 tok	=	Char

			586	 	 	 	 }

			587	 	 	 	 ch	=	s.next()

			588	 	 	 case	'.':

			589	 	 	 	 ch	=	s.next()

			590	 	 	 	 if	isDecimal(ch)	&&	s.Mode&ScanFloats	!=	0	{

			591	 	 	 	 	 tok	=	Float

			592	 	 	 	 	 ch	=	s.scanMantissa(ch)

			593	 	 	 	 	 ch	=	s.scanExponent(ch)

			594	 	 	 	 }

			595	 	 	 case	'/':

			596	 	 	 	 ch	=	s.next()

			597	 	 	 	 if	(ch	==	'/'	||	ch	==	'*')	&&	s.Mode&ScanComments	!=	0	{

			598	 	 	 	 	 if	s.Mode&SkipComments	!=	0	{

			599	 	 	 	 	 	 s.tokPos	=	-1	//	don't	collect	token	text

			600	 	 	 	 	 	 ch	=	s.scanComment(ch)

			601	 	 	 	 	 	 goto	redo

			602	 	 	 	 	 }

			603	 	 	 	 	 ch	=	s.scanComment(ch)

			604	 	 	 	 	 tok	=	Comment

			605	 	 	 	 }

			606	 	 	 case	'`':

			607	 	 	 	 if	s.Mode&ScanRawStrings	!=	0	{

			608	 	 	 	 	 s.scanRawString()

			609	 	 	 	 	 tok	=	String

			610	 	 	 	 }

			611	 	 	 	 ch	=	s.next()

			612	 	 	 default:

			613	 	 	 	 ch	=	s.next()

			614	 	 	 }

			615	 	 }

			616	

			617	 	 //	end	of	token	text

			618	 	 s.tokEnd	=	s.srcPos	-	s.lastCharLen

			619	

			620	 	 s.ch	=	ch

			621	 	 return	tok

			622	 }

			623	

			624	 //	Pos	returns	the	position	of	the	character	immediately	after

			625	 //	the	character	or	token	returned	by	the	last	call	to	Next	or	Scan.

			626	 func	(s	*Scanner)	Pos()	(pos	Position)	{

			627	 	 pos.Filename	=	s.Filename

			628	 	 pos.Offset	=	s.srcBufOffset	+	s.srcPos	-	s.lastCharLen

			629	 	 switch	{

			630	 	 case	s.column	>	0:

			631	 	 	 //	common	case:	last	character	was	not	a	'\n'

			632	 	 	 pos.Line	=	s.line

			633	 	 	 pos.Column	=	s.column

			634	 	 case	s.lastLineLen	>	0:

			635	 	 	 //	last	character	was	a	'\n'

			636	 	 	 pos.Line	=	s.line	-	1

			637	 	 	 pos.Column	=	s.lastLineLen

			638	 	 default:

			639	 	 	 //	at	the	beginning	of	the	source

			640	 	 	 pos.Line	=	1

			641	 	 	 pos.Column	=	1

			642	 	 }

			643	 	 return

			644	 }

			645	

			646	 //	TokenText	returns	the	string	corresponding	to	the	most	recently	scanned	token.

			647	 //	Valid	after	calling	Scan().

			648	 func	(s	*Scanner)	TokenText()	string	{

			649	 	 if	s.tokPos	<	0	{

			650	 	 	 //	no	token	text

			651	 	 	 return	""

			652	 	 }

			653	

			654	 	 if	s.tokEnd	<	0	{

			655	 	 	 //	if	EOF	was	reached,	s.tokEnd	is	set	to	-1	(s.srcPos	==	0)

			656	 	 	 s.tokEnd	=	s.tokPos

			657	 	 }

			658	

			659	 	 if	s.tokBuf.Len()	==	0	{

			660	 	 	 //	common	case:	the	entire	token	text	is	still	in	srcBuf

			661	 	 	 return	string(s.srcBuf[s.tokPos:s.tokEnd])

			662	 	 }

			663	

			664	 	 //	part	of	the	token	text	was	saved	in	tokBuf:	save	the	rest	in

			665	 	 //	tokBuf	as	well	and	return	its	content

			666	 	 s.tokBuf.Write(s.srcBuf[s.tokPos:s.tokEnd])

			667	 	 s.tokPos	=	s.tokEnd	//	ensure	idempotency	of	TokenText()	call

			668	 	 return	s.tokBuf.String()

			669	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/text/tabwriter/tabwriter.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	tabwriter	implements	a	write	filter	(tabwriter.Writer)	that

					6	 //	translates	tabbed	columns	in	input	into	properly	aligned	text.

					7	 //

					8	 //	The	package	is	using	the	Elastic	Tabstops	algorithm	described	at

					9	 //	http://nickgravgaard.com/elastictabstops/index.html.

				10	 //

				11	 package	tabwriter

				12	

				13	 import	(

				14	 	 "bytes"

				15	 	 "io"

				16	 	 "unicode/utf8"

				17)

				18	

				19	 //	--

				20	 //	Filter	implementation

				21	

				22	 //	A	cell	represents	a	segment	of	text	terminated	by	tabs	or	line	breaks.

				23	 //	The	text	itself	is	stored	in	a	separate	buffer;	cell	only	describes	the

				24	 //	segment's	size	in	bytes,	its	width	in	runes,	and	whether	it's	an	htab

				25	 //	('\t')	terminated	cell.

				26	 //

				27	 type	cell	struct	{

				28	 	 size		int		//	cell	size	in	bytes

				29	 	 width	int		//	cell	width	in	runes

				30	 	 htab		bool	//	true	if	the	cell	is	terminated	by	an	htab	('\t')

				31	 }

				32	

				33	 //	A	Writer	is	a	filter	that	inserts	padding	around	tab-delimited

				34	 //	columns	in	its	input	to	align	them	in	the	output.

				35	 //

				36	 //	The	Writer	treats	incoming	bytes	as	UTF-8	encoded	text	consisting

				37	 //	of	cells	terminated	by	(horizontal	or	vertical)	tabs	or	line

				38	 //	breaks	(newline	or	formfeed	characters).	Cells	in	adjacent	lines

				39	 //	constitute	a	column.	The	Writer	inserts	padding	as	needed	to

				40	 //	make	all	cells	in	a	column	have	the	same	width,	effectively

				41	 //	aligning	the	columns.	It	assumes	that	all	characters	have	the

				42	 //	same	width	except	for	tabs	for	which	a	tabwidth	must	be	specified.

				43	 //	Note	that	cells	are	tab-terminated,	not	tab-separated:	trailing

				44	 //	non-tab	text	at	the	end	of	a	line	does	not	form	a	column	cell.

				45	 //

				46	 //	The	Writer	assumes	that	all	Unicode	code	points	have	the	same	width;

				47	 //	this	may	not	be	true	in	some	fonts.

				48	 //

				49	 //	If	DiscardEmptyColumns	is	set,	empty	columns	that	are	terminated

				50	 //	entirely	by	vertical	(or	"soft")	tabs	are	discarded.	Columns

				51	 //	terminated	by	horizontal	(or	"hard")	tabs	are	not	affected	by

				52	 //	this	flag.

				53	 //

				54	 //	If	a	Writer	is	configured	to	filter	HTML,	HTML	tags	and	entities

				55	 //	are	passed	through.	The	widths	of	tags	and	entities	are

				56	 //	assumed	to	be	zero	(tags)	and	one	(entities)	for	formatting	purposes.

				57	 //

				58	 //	A	segment	of	text	may	be	escaped	by	bracketing	it	with	Escape

				59	 //	characters.	The	tabwriter	passes	escaped	text	segments	through

				60	 //	unchanged.	In	particular,	it	does	not	interpret	any	tabs	or	line

				61	 //	breaks	within	the	segment.	If	the	StripEscape	flag	is	set,	the

				62	 //	Escape	characters	are	stripped	from	the	output;	otherwise	they

				63	 //	are	passed	through	as	well.	For	the	purpose	of	formatting,	the

				64	 //	width	of	the	escaped	text	is	always	computed	excluding	the	Escape

				65	 //	characters.

				66	 //

				67	 //	The	formfeed	character	('\f')	acts	like	a	newline	but	it	also

				68	 //	terminates	all	columns	in	the	current	line	(effectively	calling

				69	 //	Flush).	Cells	in	the	next	line	start	new	columns.	Unless	found

				70	 //	inside	an	HTML	tag	or	inside	an	escaped	text	segment,	formfeed

				71	 //	characters	appear	as	newlines	in	the	output.

				72	 //

				73	 //	The	Writer	must	buffer	input	internally,	because	proper	spacing

				74	 //	of	one	line	may	depend	on	the	cells	in	future	lines.	Clients	must

				75	 //	call	Flush	when	done	calling	Write.

				76	 //

				77	 type	Writer	struct	{

				78	 	 //	configuration

				79	 	 output			io.Writer

				80	 	 minwidth	int

				81	 	 tabwidth	int

				82	 	 padding		int

				83	 	 padbytes	[8]byte

				84	 	 flags				uint

				85	

				86	 	 //	current	state

				87	 	 buf					bytes.Buffer	//	collected	text	excluding	tabs	or	line	breaks

				88	 	 pos					int										//	buffer	position	up	to	which	cell.width	of	incomplete	cell	has	been	computed

				89	 	 cell				cell									//	current	incomplete	cell;	cell.width	is	up	to	buf[pos]	excluding	ignored	sections

				90	 	 endChar	byte									//	terminating	char	of	escaped	sequence	(Escape	for	escapes,	'>',	';'	for	HTML	tags/entities,	or	0)

				91	 	 lines			[][]cell					//	list	of	lines;	each	line	is	a	list	of	cells

				92	 	 widths		[]int								//	list	of	column	widths	in	runes	-	re-used	during	formatting

				93	 }

				94	

				95	 func	(b	*Writer)	addLine()	{	b.lines	=	append(b.lines,	[]cell{})	}

				96	

				97	 //	Reset	the	current	state.

				98	 func	(b	*Writer)	reset()	{

				99	 	 b.buf.Reset()

			100	 	 b.pos	=	0

			101	 	 b.cell	=	cell{}

			102	 	 b.endChar	=	0

			103	 	 b.lines	=	b.lines[0:0]

			104	 	 b.widths	=	b.widths[0:0]

			105	 	 b.addLine()

			106	 }

			107	

			108	 //	Internal	representation	(current	state):

			109	 //

			110	 //	-	all	text	written	is	appended	to	buf;	tabs	and	line	breaks	are	stripped	away

			111	 //	-	at	any	given	time	there	is	a	(possibly	empty)	incomplete	cell	at	the	end

			112	 //			(the	cell	starts	after	a	tab	or	line	break)

			113	 //	-	cell.size	is	the	number	of	bytes	belonging	to	the	cell	so	far

			114	 //	-	cell.width	is	text	width	in	runes	of	that	cell	from	the	start	of	the	cell	to

			115	 //			position	pos;	html	tags	and	entities	are	excluded	from	this	width	if	html

			116	 //			filtering	is	enabled

			117	 //	-	the	sizes	and	widths	of	processed	text	are	kept	in	the	lines	list

			118	 //			which	contains	a	list	of	cells	for	each	line

			119	 //	-	the	widths	list	is	a	temporary	list	with	current	widths	used	during

			120	 //			formatting;	it	is	kept	in	Writer	because	it's	re-used

			121	 //

			122	 //																				|<----------	size	---------->|

			123	 //																				|																												|

			124	 //																				|<-	width	->|<-	ignored	->|		|

			125	 //																				|											|													|		|

			126	 //	[---processed---tab------------<tag>...</tag>...]

			127	 //	^																		^																									^

			128	 //	|																		|																									|

			129	 //	buf																start	of	incomplete	cell		pos

			130	

			131	 //	Formatting	can	be	controlled	with	these	flags.

			132	 const	(

			133	 	 //	Ignore	html	tags	and	treat	entities	(starting	with	'&'

			134	 	 //	and	ending	in	';')	as	single	characters	(width	=	1).

			135	 	 FilterHTML	uint	=	1	<<	iota

			136	

			137	 	 //	Strip	Escape	characters	bracketing	escaped	text	segments

			138	 	 //	instead	of	passing	them	through	unchanged	with	the	text.

			139	 	 StripEscape

			140	

			141	 	 //	Force	right-alignment	of	cell	content.

			142	 	 //	Default	is	left-alignment.

			143	 	 AlignRight

			144	

			145	 	 //	Handle	empty	columns	as	if	they	were	not	present	in

			146	 	 //	the	input	in	the	first	place.

			147	 	 DiscardEmptyColumns

			148	

			149	 	 //	Always	use	tabs	for	indentation	columns	(i.e.,	padding	of

			150	 	 //	leading	empty	cells	on	the	left)	independent	of	padchar.

			151	 	 TabIndent

			152	

			153	 	 //	Print	a	vertical	bar	('|')	between	columns	(after	formatting).

			154	 	 //	Discarded	columns	appear	as	zero-width	columns	("||").

			155	 	 Debug

			156)

			157	

			158	 //	A	Writer	must	be	initialized	with	a	call	to	Init.	The	first	parameter	(output)

			159	 //	specifies	the	filter	output.	The	remaining	parameters	control	the	formatting:

			160	 //

			161	 //	 minwidth	 minimal	cell	width	including	any	padding

			162	 //	 tabwidth	 width	of	tab	characters	(equivalent	number	of	spaces)

			163	 //	 padding		 padding	added	to	a	cell	before	computing	its	width

			164	 //	 padchar		 ASCII	char	used	for	padding

			165	 //	 	 	 if	padchar	==	'\t',	the	Writer	will	assume	that	the

			166	 //	 	 	 width	of	a	'\t'	in	the	formatted	output	is	tabwidth,

			167	 //	 	 	 and	cells	are	left-aligned	independent	of	align_left

			168	 //	 	 	 (for	correct-looking	results,	tabwidth	must	correspond

			169	 //	 	 	 to	the	tab	width	in	the	viewer	displaying	the	result)

			170	 //	 flags	 	 formatting	control

			171	 //

			172	 func	(b	*Writer)	Init(output	io.Writer,	minwidth,	tabwidth,	padding	int,	padchar	byte,	flags	uint)	*Writer	{

			173	 	 if	minwidth	<	0	||	tabwidth	<	0	||	padding	<	0	{

			174	 	 	 panic("negative	minwidth,	tabwidth,	or	padding")

			175	 	 }

			176	 	 b.output	=	output

			177	 	 b.minwidth	=	minwidth

			178	 	 b.tabwidth	=	tabwidth

			179	 	 b.padding	=	padding

			180	 	 for	i	:=	range	b.padbytes	{

			181	 	 	 b.padbytes[i]	=	padchar

			182	 	 }

			183	 	 if	padchar	==	'\t'	{

			184	 	 	 //	tab	padding	enforces	left-alignment

			185	 	 	 flags	&^=	AlignRight

			186	 	 }

			187	 	 b.flags	=	flags

			188	

			189	 	 b.reset()

			190	

			191	 	 return	b

			192	 }

			193	

			194	 //	debugging	support	(keep	code	around)

			195	 func	(b	*Writer)	dump()	{

			196	 	 pos	:=	0

			197	 	 for	i,	line	:=	range	b.lines	{

			198	 	 	 print("(",	i,	")	")

			199	 	 	 for	_,	c	:=	range	line	{

			200	 	 	 	 print("[",	string(b.buf.Bytes()[pos:pos+c.size]),	"]")

			201	 	 	 	 pos	+=	c.size

			202	 	 	 }

			203	 	 	 print("\n")

			204	 	 }

			205	 	 print("\n")

			206	 }

			207	

			208	 //	local	error	wrapper	so	we	can	distinguish	errors	we	want	to	return

			209	 //	as	errors	from	genuine	panics	(which	we	don't	want	to	return	as	errors)

			210	 type	osError	struct	{

			211	 	 err	error

			212	 }

			213	

			214	 func	(b	*Writer)	write0(buf	[]byte)	{

			215	 	 n,	err	:=	b.output.Write(buf)

			216	 	 if	n	!=	len(buf)	&&	err	==	nil	{

			217	 	 	 err	=	io.ErrShortWrite

			218	 	 }

			219	 	 if	err	!=	nil	{

			220	 	 	 panic(osError{err})

			221	 	 }

			222	 }

			223	

			224	 func	(b	*Writer)	writeN(src	[]byte,	n	int)	{

			225	 	 for	n	>	len(src)	{

			226	 	 	 b.write0(src)

			227	 	 	 n	-=	len(src)

			228	 	 }

			229	 	 b.write0(src[0:n])

			230	 }

			231	

			232	 var	(

			233	 	 newline	=	[]byte{'\n'}

			234	 	 tabs				=	[]byte("\t\t\t\t\t\t\t\t")

			235)

			236	

			237	 func	(b	*Writer)	writePadding(textw,	cellw	int,	useTabs	bool)	{

			238	 	 if	b.padbytes[0]	==	'\t'	||	useTabs	{

			239	 	 	 //	padding	is	done	with	tabs

			240	 	 	 if	b.tabwidth	==	0	{

			241	 	 	 	 return	//	tabs	have	no	width	-	can't	do	any	padding

			242	 	 	 }

			243	 	 	 //	make	cellw	the	smallest	multiple	of	b.tabwidth

			244	 	 	 cellw	=	(cellw	+	b.tabwidth	-	1)	/	b.tabwidth	*	b.tabwidth

			245	 	 	 n	:=	cellw	-	textw	//	amount	of	padding

			246	 	 	 if	n	<	0	{

			247	 	 	 	 panic("internal	error")

			248	 	 	 }

			249	 	 	 b.writeN(tabs,	(n+b.tabwidth-1)/b.tabwidth)

			250	 	 	 return

			251	 	 }

			252	

			253	 	 //	padding	is	done	with	non-tab	characters

			254	 	 b.writeN(b.padbytes[0:],	cellw-textw)

			255	 }

			256	

			257	 var	vbar	=	[]byte{'|'}

			258	

			259	 func	(b	*Writer)	writeLines(pos0	int,	line0,	line1	int)	(pos	int)	{

			260	 	 pos	=	pos0

			261	 	 for	i	:=	line0;	i	<	line1;	i++	{

			262	 	 	 line	:=	b.lines[i]

			263	

			264	 	 	 //	if	TabIndent	is	set,	use	tabs	to	pad	leading	empty	cells

			265	 	 	 useTabs	:=	b.flags&TabIndent	!=	0

			266	

			267	 	 	 for	j,	c	:=	range	line	{

			268	 	 	 	 if	j	>	0	&&	b.flags&Debug	!=	0	{

			269	 	 	 	 	 //	indicate	column	break

			270	 	 	 	 	 b.write0(vbar)

			271	 	 	 	 }

			272	

			273	 	 	 	 if	c.size	==	0	{

			274	 	 	 	 	 //	empty	cell

			275	 	 	 	 	 if	j	<	len(b.widths)	{

			276	 	 	 	 	 	 b.writePadding(c.width,	b.widths[j],	useTabs)

			277	 	 	 	 	 }

			278	 	 	 	 }	else	{

			279	 	 	 	 	 //	non-empty	cell

			280	 	 	 	 	 useTabs	=	false

			281	 	 	 	 	 if	b.flags&AlignRight	==	0	{	

			282	 	 	 	 	 	 b.write0(b.buf.Bytes()[pos	:	pos+c.size])

			283	 	 	 	 	 	 pos	+=	c.size

			284	 	 	 	 	 	 if	j	<	len(b.widths)	{

			285	 	 	 	 	 	 	 b.writePadding(c.width,	b.widths[j],	false)

			286	 	 	 	 	 	 }

			287	 	 	 	 	 }	else	{	//	align	right

			288	 	 	 	 	 	 if	j	<	len(b.widths)	{

			289	 	 	 	 	 	 	 b.writePadding(c.width,	b.widths[j],	false)

			290	 	 	 	 	 	 }

			291	 	 	 	 	 	 b.write0(b.buf.Bytes()[pos	:	pos+c.size])

			292	 	 	 	 	 	 pos	+=	c.size

			293	 	 	 	 	 }

			294	 	 	 	 }

			295	 	 	 }

			296	

			297	 	 	 if	i+1	==	len(b.lines)	{

			298	 	 	 	 //	last	buffered	line	-	we	don't	have	a	newline,	so	just	write

			299	 	 	 	 //	any	outstanding	buffered	data

			300	 	 	 	 b.write0(b.buf.Bytes()[pos	:	pos+b.cell.size])

			301	 	 	 	 pos	+=	b.cell.size

			302	 	 	 }	else	{

			303	 	 	 	 //	not	the	last	line	-	write	newline

			304	 	 	 	 b.write0(newline)

			305	 	 	 }

			306	 	 }

			307	 	 return

			308	 }

			309	

			310	 //	Format	the	text	between	line0	and	line1	(excluding	line1);	pos

			311	 //	is	the	buffer	position	corresponding	to	the	beginning	of	line0.

			312	 //	Returns	the	buffer	position	corresponding	to	the	beginning	of

			313	 //	line1	and	an	error,	if	any.

			314	 //

			315	 func	(b	*Writer)	format(pos0	int,	line0,	line1	int)	(pos	int)	{

			316	 	 pos	=	pos0

			317	 	 column	:=	len(b.widths)

			318	 	 for	this	:=	line0;	this	<	line1;	this++	{

			319	 	 	 line	:=	b.lines[this]

			320	

			321	 	 	 if	column	<	len(line)-1	{

			322	 	 	 	 //	cell	exists	in	this	column	=>	this	line

			323	 	 	 	 //	has	more	cells	than	the	previous	line

			324	 	 	 	 //	(the	last	cell	per	line	is	ignored	because	cells	are

			325	 	 	 	 //	tab-terminated;	the	last	cell	per	line	describes	the

			326	 	 	 	 //	text	before	the	newline/formfeed	and	does	not	belong

			327	 	 	 	 //	to	a	column)

			328	

			329	 	 	 	 //	print	unprinted	lines	until	beginning	of	block

			330	 	 	 	 pos	=	b.writeLines(pos,	line0,	this)

			331	 	 	 	 line0	=	this

			332	

			333	 	 	 	 //	column	block	begin

			334	 	 	 	 width	:=	b.minwidth	//	minimal	column	width

			335	 	 	 	 discardable	:=	true	//	true	if	all	cells	in	this	column	are	empty	and	"soft"

			336	 	 	 	 for	;	this	<	line1;	this++	{

			337	 	 	 	 	 line	=	b.lines[this]

			338	 	 	 	 	 if	column	<	len(line)-1	{

			339	 	 	 	 	 	 //	cell	exists	in	this	column

			340	 	 	 	 	 	 c	:=	line[column]

			341	 	 	 	 	 	 //	update	width

			342	 	 	 	 	 	 if	w	:=	c.width	+	b.padding;	w	>	width	{

			343	 	 	 	 	 	 	 width	=	w

			344	 	 	 	 	 	 }

			345	 	 	 	 	 	 //	update	discardable

			346	 	 	 	 	 	 if	c.width	>	0	||	c.htab	{

			347	 	 	 	 	 	 	 discardable	=	false

			348	 	 	 	 	 	 }

			349	 	 	 	 	 }	else	{

			350	 	 	 	 	 	 break

			351	 	 	 	 	 }

			352	 	 	 	 }

			353	 	 	 	 //	column	block	end

			354	

			355	 	 	 	 //	discard	empty	columns	if	necessary

			356	 	 	 	 if	discardable	&&	b.flags&DiscardEmptyColumns	!=	0	{

			357	 	 	 	 	 width	=	0

			358	 	 	 	 }

			359	

			360	 	 	 	 //	format	and	print	all	columns	to	the	right	of	this	column

			361	 	 	 	 //	(we	know	the	widths	of	this	column	and	all	columns	to	the	left)

			362	 	 	 	 b.widths	=	append(b.widths,	width)	//	push	width

			363	 	 	 	 pos	=	b.format(pos,	line0,	this)

			364	 	 	 	 b.widths	=	b.widths[0	:	len(b.widths)-1]	

			365	 	 	 	 line0	=	this

			366	 	 	 }

			367	 	 }

			368	

			369	 	 //	print	unprinted	lines	until	end

			370	 	 return	b.writeLines(pos,	line0,	line1)

			371	 }

			372	

			373	 //	Append	text	to	current	cell.

			374	 func	(b	*Writer)	append(text	[]byte)	{

			375	 	 b.buf.Write(text)

			376	 	 b.cell.size	+=	len(text)

			377	 }

			378	

			379	 //	Update	the	cell	width.

			380	 func	(b	*Writer)	updateWidth()	{

			381	 	 b.cell.width	+=	utf8.RuneCount(b.buf.Bytes()[b.pos:b.buf.Len()])

			382	 	 b.pos	=	b.buf.Len()

			383	 }

			384	

			385	 //	To	escape	a	text	segment,	bracket	it	with	Escape	characters.

			386	 //	For	instance,	the	tab	in	this	string	"Ignore	this	tab:	\xff\t\xff"

			387	 //	does	not	terminate	a	cell	and	constitutes	a	single	character	of

			388	 //	width	one	for	formatting	purposes.

			389	 //

			390	 //	The	value	0xff	was	chosen	because	it	cannot	appear	in	a	valid	UTF-8	sequence.

			391	 //

			392	 const	Escape	=	'\xff'

			393	

			394	 //	Start	escaped	mode.

			395	 func	(b	*Writer)	startEscape(ch	byte)	{

			396	 	 switch	ch	{

			397	 	 case	Escape:

			398	 	 	 b.endChar	=	Escape

			399	 	 case	'<':

			400	 	 	 b.endChar	=	'>'

			401	 	 case	'&':

			402	 	 	 b.endChar	=	';'

			403	 	 }

			404	 }

			405	

			406	 //	Terminate	escaped	mode.	If	the	escaped	text	was	an	HTML	tag,	its	width

			407	 //	is	assumed	to	be	zero	for	formatting	purposes;	if	it	was	an	HTML	entity,

			408	 //	its	width	is	assumed	to	be	one.	In	all	other	cases,	the	width	is	the

			409	 //	unicode	width	of	the	text.

			410	 //

			411	 func	(b	*Writer)	endEscape()	{

			412	 	 switch	b.endChar	{

			413	 	 case	Escape:

			414	 	 	 b.updateWidth()

			415	 	 	 if	b.flags&StripEscape	==	0	{

			416	 	 	 	 b.cell.width	-=	2	//	don't	count	the	Escape	chars

			417	 	 	 }

			418	 	 case	'>':	//	tag	of	zero	width

			419	 	 case	';':

			420	 	 	 b.cell.width++	//	entity,	count	as	one	rune

			421	 	 }

			422	 	 b.pos	=	b.buf.Len()

			423	 	 b.endChar	=	0

			424	 }

			425	

			426	 //	Terminate	the	current	cell	by	adding	it	to	the	list	of	cells	of	the

			427	 //	current	line.	Returns	the	number	of	cells	in	that	line.

			428	 //

			429	 func	(b	*Writer)	terminateCell(htab	bool)	int	{

			430	 	 b.cell.htab	=	htab

			431	 	 line	:=	&b.lines[len(b.lines)-1]

			432	 	 *line	=	append(*line,	b.cell)

			433	 	 b.cell	=	cell{}

			434	 	 return	len(*line)

			435	 }

			436	

			437	 func	handlePanic(err	*error)	{

			438	 	 if	e	:=	recover();	e	!=	nil	{

			439	 	 	 *err	=	e.(osError).err	//	re-panics	if	it's	not	a	local	osError

			440	 	 }

			441	 }

			442	

			443	 //	Flush	should	be	called	after	the	last	call	to	Write	to	ensure

			444	 //	that	any	data	buffered	in	the	Writer	is	written	to	output.	Any

			445	 //	incomplete	escape	sequence	at	the	end	is	considered

			446	 //	complete	for	formatting	purposes.

			447	 //

			448	 func	(b	*Writer)	Flush()	(err	error)	{

			449	 	 defer	b.reset()	//	even	in	the	presence	of	errors

			450	 	 defer	handlePanic(&err)

			451	

			452	 	 //	add	current	cell	if	not	empty

			453	 	 if	b.cell.size	>	0	{

			454	 	 	 if	b.endChar	!=	0	{

			455	 	 	 	 //	inside	escape	-	terminate	it	even	if	incomplete

			456	 	 	 	 b.endEscape()

			457	 	 	 }

			458	 	 	 b.terminateCell(false)

			459	 	 }

			460	

			461	 	 //	format	contents	of	buffer

			462	 	 b.format(0,	0,	len(b.lines))

			463	

			464	 	 return

			465	 }

			466	

			467	 var	hbar	=	[]byte("---\n")

			468	

			469	 //	Write	writes	buf	to	the	writer	b.

			470	 //	The	only	errors	returned	are	ones	encountered

			471	 //	while	writing	to	the	underlying	output	stream.

			472	 //

			473	 func	(b	*Writer)	Write(buf	[]byte)	(n	int,	err	error)	{

			474	 	 defer	handlePanic(&err)

			475	

			476	 	 //	split	text	into	cells

			477	 	 n	=	0

			478	 	 for	i,	ch	:=	range	buf	{

			479	 	 	 if	b.endChar	==	0	{

			480	 	 	 	 //	outside	escape

			481	 	 	 	 switch	ch	{

			482	 	 	 	 case	'\t',	'\v',	'\n',	'\f':

			483	 	 	 	 	 //	end	of	cell

			484	 	 	 	 	 b.append(buf[n:i])

			485	 	 	 	 	 b.updateWidth()

			486	 	 	 	 	 n	=	i	+	1	//	ch	consumed

			487	 	 	 	 	 ncells	:=	b.terminateCell(ch	==	'\t')

			488	 	 	 	 	 if	ch	==	'\n'	||	ch	==	'\f'	{

			489	 	 	 	 	 	 //	terminate	line

			490	 	 	 	 	 	 b.addLine()

			491	 	 	 	 	 	 if	ch	==	'\f'	||	ncells	==	1	{

			492	 	 	 	 	 	 	 //	A	'\f'	always	forces	a	flush.	Otherwise,	if	the	previous

			493	 	 	 	 	 	 	 //	line	has	only	one	cell	which	does	not	have	an	impact	on

			494	 	 	 	 	 	 	 //	the	formatting	of	the	following	lines	(the	last	cell	per

			495	 	 	 	 	 	 	 //	line	is	ignored	by	format()),	thus	we	can	flush	the

			496	 	 	 	 	 	 	 //	Writer	contents.

			497	 	 	 	 	 	 	 if	err	=	b.Flush();	err	!=	nil	{

			498	 	 	 	 	 	 	 	 return

			499	 	 	 	 	 	 	 }

			500	 	 	 	 	 	 	 if	ch	==	'\f'	&&	b.flags&Debug	!=	0	{

			501	 	 	 	 	 	 	 	 //	indicate	section	break

			502	 	 	 	 	 	 	 	 b.write0(hbar)

			503	 	 	 	 	 	 	 }

			504	 	 	 	 	 	 }

			505	 	 	 	 	 }

			506	

			507	 	 	 	 case	Escape:

			508	 	 	 	 	 //	start	of	escaped	sequence

			509	 	 	 	 	 b.append(buf[n:i])

			510	 	 	 	 	 b.updateWidth()

			511	 	 	 	 	 n	=	i

			512	 	 	 	 	 if	b.flags&StripEscape	!=	0	{

			513	 	 	 	 	 	 n++	//	strip	Escape

			514	 	 	 	 	 }

			515	 	 	 	 	 b.startEscape(Escape)

			516	

			517	 	 	 	 case	'<',	'&':

			518	 	 	 	 	 //	possibly	an	html	tag/entity

			519	 	 	 	 	 if	b.flags&FilterHTML	!=	0	{

			520	 	 	 	 	 	 //	begin	of	tag/entity

			521	 	 	 	 	 	 b.append(buf[n:i])

			522	 	 	 	 	 	 b.updateWidth()

			523	 	 	 	 	 	 n	=	i

			524	 	 	 	 	 	 b.startEscape(ch)

			525	 	 	 	 	 }

			526	 	 	 	 }

			527	

			528	 	 	 }	else	{

			529	 	 	 	 //	inside	escape

			530	 	 	 	 if	ch	==	b.endChar	{

			531	 	 	 	 	 //	end	of	tag/entity

			532	 	 	 	 	 j	:=	i	+	1

			533	 	 	 	 	 if	ch	==	Escape	&&	b.flags&StripEscape	!=	0	{

			534	 	 	 	 	 	 j	=	i	//	strip	Escape

			535	 	 	 	 	 }

			536	 	 	 	 	 b.append(buf[n:j])

			537	 	 	 	 	 n	=	i	+	1	//	ch	consumed

			538	 	 	 	 	 b.endEscape()

			539	 	 	 	 }

			540	 	 	 }

			541	 	 }

			542	

			543	 	 //	append	leftover	text

			544	 	 b.append(buf[n:])

			545	 	 n	=	len(buf)

			546	 	 return

			547	 }

			548	

			549	 //	NewWriter	allocates	and	initializes	a	new	tabwriter.Writer.

			550	 //	The	parameters	are	the	same	as	for	the	the	Init	function.

			551	 //

			552	 func	NewWriter(output	io.Writer,	minwidth,	tabwidth,	padding	int,	padchar	byte,	flags	uint)	*Writer	{

			553	 	 return	new(Writer).Init(output,	minwidth,	tabwidth,	padding,	padchar,	flags)

			554	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/text/template/doc.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 Package	template	implements	data-driven	templates	for	generating	textual	output.

					7	

					8	 To	generate	HTML	output,	see	package	html/template,	which	has	the	same	interface

					9	 as	this	package	but	automatically	secures	HTML	output	against	certain	attacks.

				10	

				11	 Templates	are	executed	by	applying	them	to	a	data	structure.	Annotations	in	the

				12	 template	refer	to	elements	of	the	data	structure	(typically	a	field	of	a	struct

				13	 or	a	key	in	a	map)	to	control	execution	and	derive	values	to	be	displayed.

				14	 Execution	of	the	template	walks	the	structure	and	sets	the	cursor,	represented

				15	 by	a	period	'.'	and	called	"dot",	to	the	value	at	the	current	location	in	the

				16	 structure	as	execution	proceeds.

				17	

				18	 The	input	text	for	a	template	is	UTF-8-encoded	text	in	any	format.

				19	 "Actions"--data	evaluations	or	control	structures--are	delimited	by

				20	 "{{"	and	"}}";	all	text	outside	actions	is	copied	to	the	output	unchanged.

				21	 Actions	may	not	span	newlines,	although	comments	can.

				22	

				23	 Once	constructed,	a	template	may	be	executed	safely	in	parallel.

				24	

				25	 Here	is	a	trivial	example	that	prints	"17	items	are	made	of	wool".

				26	

				27	 	 type	Inventory	struct	{

				28	 	 	 Material	string

				29	 	 	 Count				uint

				30	 	 }

				31	 	 sweaters	:=	Inventory{"wool",	17}

				32	 	 tmpl,	err	:=	template.New("test").Parse("{{.Count}}	items	are	made	of	{{.Material}}")

				33	 	 if	err	!=	nil	{	panic(err)	}

				34	 	 err	=	tmpl.Execute(os.Stdout,	sweaters)

				35	 	 if	err	!=	nil	{	panic(err)	}

				36	

				37	 More	intricate	examples	appear	below.

				38	

				39	 Actions

				40	

				41	 Here	is	the	list	of	actions.	"Arguments"	and	"pipelines"	are	evaluations	of

				42	 data,	defined	in	detail	below.

				43	

				44	 */

				45	 //	 {{/*	a	comment	*/}}

				46	 //	 	 A	comment;	discarded.	May	contain	newlines.

				47	 //	 	 Comments	do	not	nest.

				48	 /*

				49	

				50	 	 {{pipeline}}

				51	 	 	 The	default	textual	representation	of	the	value	of	the	pipeline

				52	 	 	 is	copied	to	the	output.

				53	

				54	 	 {{if	pipeline}}	T1	{{end}}

				55	 	 	 If	the	value	of	the	pipeline	is	empty,	no	output	is	generated;

				56	 	 	 otherwise,	T1	is	executed.		The	empty	values	are	false,	0,	any

				57	 	 	 nil	pointer	or	interface	value,	and	any	array,	slice,	map,	or

				58	 	 	 string	of	length	zero.

				59	 	 	 Dot	is	unaffected.

				60	

				61	 	 {{if	pipeline}}	T1	{{else}}	T0	{{end}}

				62	 	 	 If	the	value	of	the	pipeline	is	empty,	T0	is	executed;

				63	 	 	 otherwise,	T1	is	executed.		Dot	is	unaffected.

				64	

				65	 	 {{range	pipeline}}	T1	{{end}}

				66	 	 	 The	value	of	the	pipeline	must	be	an	array,	slice,	or	map.	If

				67	 	 	 the	value	of	the	pipeline	has	length	zero,	nothing	is	output;

				68	 	 	 otherwise,	dot	is	set	to	the	successive	elements	of	the	array,

				69	 	 	 slice,	or	map	and	T1	is	executed.	If	the	value	is	a	map	and	the

				70	 	 	 keys	are	of	basic	type	with	a	defined	order	("comparable"),	the

				71	 	 	 elements	will	be	visited	in	sorted	key	order.

				72	

				73	 	 {{range	pipeline}}	T1	{{else}}	T0	{{end}}

				74	 	 	 The	value	of	the	pipeline	must	be	an	array,	slice,	or	map.	If

				75	 	 	 the	value	of	the	pipeline	has	length	zero,	dot	is	unaffected	and

				76	 	 	 T0	is	executed;	otherwise,	dot	is	set	to	the	successive	elements

				77	 	 	 of	the	array,	slice,	or	map	and	T1	is	executed.

				78	

				79	 	 {{template	"name"}}

				80	 	 	 The	template	with	the	specified	name	is	executed	with	nil	data.

				81	

				82	 	 {{template	"name"	pipeline}}

				83	 	 	 The	template	with	the	specified	name	is	executed	with	dot	set

				84	 	 	 to	the	value	of	the	pipeline.

				85	

				86	 	 {{with	pipeline}}	T1	{{end}}

				87	 	 	 If	the	value	of	the	pipeline	is	empty,	no	output	is	generated;

				88	 	 	 otherwise,	dot	is	set	to	the	value	of	the	pipeline	and	T1	is

				89	 	 	 executed.

				90	

				91	 	 {{with	pipeline}}	T1	{{else}}	T0	{{end}}

				92	 	 	 If	the	value	of	the	pipeline	is	empty,	dot	is	unaffected	and	T0

				93	 	 	 is	executed;	otherwise,	dot	is	set	to	the	value	of	the	pipeline

				94	 	 	 and	T1	is	executed.

				95	

				96	 Arguments

				97	

				98	 An	argument	is	a	simple	value,	denoted	by	one	of	the	following.

				99	

			100	 	 -	A	boolean,	string,	character,	integer,	floating-point,	imaginary

			101	 	 		or	complex	constant	in	Go	syntax.	These	behave	like	Go's	untyped

			102	 	 		constants,	although	raw	strings	may	not	span	newlines.

			103	 	 -	The	character	'.'	(period):

			104	 	 	 .

			105	 	 		The	result	is	the	value	of	dot.

			106	 	 -	A	variable	name,	which	is	a	(possibly	empty)	alphanumeric	string

			107	 	 		preceded	by	a	dollar	sign,	such	as

			108	 	 	 $piOver2

			109	 	 		or

			110	 	 	 $

			111	 	 		The	result	is	the	value	of	the	variable.

			112	 	 		Variables	are	described	below.

			113	 	 -	The	name	of	a	field	of	the	data,	which	must	be	a	struct,	preceded

			114	 	 		by	a	period,	such	as

			115	 	 	 .Field

			116	 	 		The	result	is	the	value	of	the	field.	Field	invocations	may	be

			117	 	 		chained:

			118	 	 				.Field1.Field2

			119	 	 		Fields	can	also	be	evaluated	on	variables,	including	chaining:

			120	 	 				$x.Field1.Field2

			121	 	 -	The	name	of	a	key	of	the	data,	which	must	be	a	map,	preceded

			122	 	 		by	a	period,	such	as

			123	 	 	 .Key

			124	 	 		The	result	is	the	map	element	value	indexed	by	the	key.

			125	 	 		Key	invocations	may	be	chained	and	combined	with	fields	to	any

			126	 	 		depth:

			127	 	 				.Field1.Key1.Field2.Key2

			128	 	 		Although	the	key	must	be	an	alphanumeric	identifier,	unlike	with

			129	 	 		field	names	they	do	not	need	to	start	with	an	upper	case	letter.

			130	 	 		Keys	can	also	be	evaluated	on	variables,	including	chaining:

			131	 	 				$x.key1.key2

			132	 	 -	The	name	of	a	niladic	method	of	the	data,	preceded	by	a	period,

			133	 	 		such	as

			134	 	 	 .Method

			135	 	 		The	result	is	the	value	of	invoking	the	method	with	dot	as	the

			136	 	 		receiver,	dot.Method().	Such	a	method	must	have	one	return	value	(of

			137	 	 		any	type)	or	two	return	values,	the	second	of	which	is	an	error.

			138	 	 		If	it	has	two	and	the	returned	error	is	non-nil,	execution	terminates

			139	 	 		and	an	error	is	returned	to	the	caller	as	the	value	of	Execute.

			140	 	 		Method	invocations	may	be	chained	and	combined	with	fields	and	keys

			141	 	 		to	any	depth:

			142	 	 				.Field1.Key1.Method1.Field2.Key2.Method2

			143	 	 		Methods	can	also	be	evaluated	on	variables,	including	chaining:

			144	 	 				$x.Method1.Field

			145	 	 -	The	name	of	a	niladic	function,	such	as

			146	 	 	 fun

			147	 	 		The	result	is	the	value	of	invoking	the	function,	fun().	The	return

			148	 	 		types	and	values	behave	as	in	methods.	Functions	and	function

			149	 	 		names	are	described	below.

			150	

			151	 Arguments	may	evaluate	to	any	type;	if	they	are	pointers	the	implementation

			152	 automatically	indirects	to	the	base	type	when	required.

			153	 If	an	evaluation	yields	a	function	value,	such	as	a	function-valued

			154	 field	of	a	struct,	the	function	is	not	invoked	automatically,	but	it

			155	 can	be	used	as	a	truth	value	for	an	if	action	and	the	like.	To	invoke

			156	 it,	use	the	call	function,	defined	below.

			157	

			158	 A	pipeline	is	a	possibly	chained	sequence	of	"commands".	A	command	is	a	simple

			159	 value	(argument)	or	a	function	or	method	call,	possibly	with	multiple	arguments:

			160	

			161	 	 Argument

			162	 	 	 The	result	is	the	value	of	evaluating	the	argument.

			163	 	 .Method	[Argument...]

			164	 	 	 The	method	can	be	alone	or	the	last	element	of	a	chain	but,

			165	 	 	 unlike	methods	in	the	middle	of	a	chain,	it	can	take	arguments.

			166	 	 	 The	result	is	the	value	of	calling	the	method	with	the

			167	 	 	 arguments:

			168	 	 	 	 dot.Method(Argument1,	etc.)

			169	 	 functionName	[Argument...]

			170	 	 	 The	result	is	the	value	of	calling	the	function	associated

			171	 	 	 with	the	name:

			172	 	 	 	 function(Argument1,	etc.)

			173	 	 	 Functions	and	function	names	are	described	below.

			174	

			175	 Pipelines

			176	

			177	 A	pipeline	may	be	"chained"	by	separating	a	sequence	of	commands	with	pipeline

			178	 characters	'|'.	In	a	chained	pipeline,	the	result	of	the	each	command	is

			179	 passed	as	the	last	argument	of	the	following	command.	The	output	of	the	final

			180	 command	in	the	pipeline	is	the	value	of	the	pipeline.

			181	

			182	 The	output	of	a	command	will	be	either	one	value	or	two	values,	the	second	of

			183	 which	has	type	error.	If	that	second	value	is	present	and	evaluates	to

			184	 non-nil,	execution	terminates	and	the	error	is	returned	to	the	caller	of

			185	 Execute.

			186	

			187	 Variables

			188	

			189	 A	pipeline	inside	an	action	may	initialize	a	variable	to	capture	the	result.

			190	 The	initialization	has	syntax

			191	

			192	 	 $variable	:=	pipeline

			193	

			194	 where	$variable	is	the	name	of	the	variable.	An	action	that	declares	a

			195	 variable	produces	no	output.

			196	

			197	 If	a	"range"	action	initializes	a	variable,	the	variable	is	set	to	the

			198	 successive	elements	of	the	iteration.		Also,	a	"range"	may	declare	two

			199	 variables,	separated	by	a	comma:

			200	

			201	 	 $index,	$element	:=	pipeline

			202	

			203	 in	which	case	$index	and	$element	are	set	to	the	successive	values	of	the

			204	 array/slice	index	or	map	key	and	element,	respectively.		Note	that	if	there	is

			205	 only	one	variable,	it	is	assigned	the	element;	this	is	opposite	to	the

			206	 convention	in	Go	range	clauses.

			207	

			208	 A	variable's	scope	extends	to	the	"end"	action	of	the	control	structure	("if",

			209	 "with",	or	"range")	in	which	it	is	declared,	or	to	the	end	of	the	template	if

			210	 there	is	no	such	control	structure.		A	template	invocation	does	not	inherit

			211	 variables	from	the	point	of	its	invocation.

			212	

			213	 When	execution	begins,	$	is	set	to	the	data	argument	passed	to	Execute,	that	is,

			214	 to	the	starting	value	of	dot.

			215	

			216	 Examples

			217	

			218	 Here	are	some	example	one-line	templates	demonstrating	pipelines	and	variables.

			219	 All	produce	the	quoted	word	"output":

			220	

			221	 	 {{"\"output\""}}

			222	 	 	 A	string	constant.

			223	 	 {{`"output"`}}

			224	 	 	 A	raw	string	constant.

			225	 	 {{printf	"%q"	"output"}}

			226	 	 	 A	function	call.

			227	 	 {{"output"	|	printf	"%q"}}

			228	 	 	 A	function	call	whose	final	argument	comes	from	the	previous

			229	 	 	 command.

			230	 	 {{"put"	|	printf	"%s%s"	"out"	|	printf	"%q"}}

			231	 	 	 A	more	elaborate	call.

			232	 	 {{"output"	|	printf	"%s"	|	printf	"%q"}}

			233	 	 	 A	longer	chain.

			234	 	 {{with	"output"}}{{printf	"%q"	.}}{{end}}

			235	 	 	 A	with	action	using	dot.

			236	 	 {{with	$x	:=	"output"	|	printf	"%q"}}{{$x}}{{end}}

			237	 	 	 A	with	action	that	creates	and	uses	a	variable.

			238	 	 {{with	$x	:=	"output"}}{{printf	"%q"	$x}}{{end}}

			239	 	 	 A	with	action	that	uses	the	variable	in	another	action.

			240	 	 {{with	$x	:=	"output"}}{{$x	|	printf	"%q"}}{{end}}

			241	 	 	 The	same,	but	pipelined.

			242	

			243	 Functions

			244	

			245	 During	execution	functions	are	found	in	two	function	maps:	first	in	the

			246	 template,	then	in	the	global	function	map.	By	default,	no	functions	are	defined

			247	 in	the	template	but	the	Funcs	method	can	be	used	to	add	them.

			248	

			249	 Predefined	global	functions	are	named	as	follows.

			250	

			251	 	 and

			252	 	 	 Returns	the	boolean	AND	of	its	arguments	by	returning	the

			253	 	 	 first	empty	argument	or	the	last	argument,	that	is,

			254	 	 	 "and	x	y"	behaves	as	"if	x	then	y	else	x".	All	the

			255	 	 	 arguments	are	evaluated.

			256	 	 call

			257	 	 	 Returns	the	result	of	calling	the	first	argument,	which

			258	 	 	 must	be	a	function,	with	the	remaining	arguments	as	parameters.

			259	 	 	 Thus	"call	.X.Y	1	2"	is,	in	Go	notation,	dot.X.Y(1,	2)	where

			260	 	 	 Y	is	a	func-valued	field,	map	entry,	or	the	like.

			261	 	 	 The	first	argument	must	be	the	result	of	an	evaluation

			262	 	 	 that	yields	a	value	of	function	type	(as	distinct	from

			263	 	 	 a	predefined	function	such	as	print).	The	function	must

			264	 	 	 return	either	one	or	two	result	values,	the	second	of	which

			265	 	 	 is	of	type	error.	If	the	arguments	don't	match	the	function

			266	 	 	 or	the	returned	error	value	is	non-nil,	execution	stops.

			267	 	 html

			268	 	 	 Returns	the	escaped	HTML	equivalent	of	the	textual

			269	 	 	 representation	of	its	arguments.

			270	 	 index

			271	 	 	 Returns	the	result	of	indexing	its	first	argument	by	the

			272	 	 	 following	arguments.	Thus	"index	x	1	2	3"	is,	in	Go	syntax,

			273	 	 	 x[1][2][3].	Each	indexed	item	must	be	a	map,	slice,	or	array.

			274	 	 js

			275	 	 	 Returns	the	escaped	JavaScript	equivalent	of	the	textual

			276	 	 	 representation	of	its	arguments.

			277	 	 len

			278	 	 	 Returns	the	integer	length	of	its	argument.

			279	 	 not

			280	 	 	 Returns	the	boolean	negation	of	its	single	argument.

			281	 	 or

			282	 	 	 Returns	the	boolean	OR	of	its	arguments	by	returning	the

			283	 	 	 first	non-empty	argument	or	the	last	argument,	that	is,

			284	 	 	 "or	x	y"	behaves	as	"if	x	then	x	else	y".	All	the

			285	 	 	 arguments	are	evaluated.

			286	 	 print

			287	 	 	 An	alias	for	fmt.Sprint

			288	 	 printf

			289	 	 	 An	alias	for	fmt.Sprintf

			290	 	 println

			291	 	 	 An	alias	for	fmt.Sprintln

			292	 	 urlquery

			293	 	 	 Returns	the	escaped	value	of	the	textual	representation	of

			294	 	 	 its	arguments	in	a	form	suitable	for	embedding	in	a	URL	query.

			295	

			296	 The	boolean	functions	take	any	zero	value	to	be	false	and	a	non-zero	value	to

			297	 be	true.

			298	

			299	 Associated	templates

			300	

			301	 Each	template	is	named	by	a	string	specified	when	it	is	created.	Also,	each

			302	 template	is	associated	with	zero	or	more	other	templates	that	it	may	invoke	by

			303	 name;	such	associations	are	transitive	and	form	a	name	space	of	templates.

			304	

			305	 A	template	may	use	a	template	invocation	to	instantiate	another	associated

			306	 template;	see	the	explanation	of	the	"template"	action	above.	The	name	must	be

			307	 that	of	a	template	associated	with	the	template	that	contains	the	invocation.

			308	

			309	 Nested	template	definitions

			310	

			311	 When	parsing	a	template,	another	template	may	be	defined	and	associated	with	the

			312	 template	being	parsed.	Template	definitions	must	appear	at	the	top	level	of	the

			313	 template,	much	like	global	variables	in	a	Go	program.

			314	

			315	 The	syntax	of	such	definitions	is	to	surround	each	template	declaration	with	a

			316	 "define"	and	"end"	action.

			317	

			318	 The	define	action	names	the	template	being	created	by	providing	a	string

			319	 constant.	Here	is	a	simple	example:

			320	

			321	 	 `{{define	"T1"}}ONE{{end}}

			322	 	 {{define	"T2"}}TWO{{end}}

			323	 	 {{define	"T3"}}{{template	"T1"}}	{{template	"T2"}}{{end}}

			324	 	 {{template	"T3"}}`

			325	

			326	 This	defines	two	templates,	T1	and	T2,	and	a	third	T3	that	invokes	the	other	two

			327	 when	it	is	executed.	Finally	it	invokes	T3.	If	executed	this	template	will

			328	 produce	the	text

			329	

			330	 	 ONE	TWO

			331	

			332	 By	construction,	a	template	may	reside	in	only	one	association.	If	it's

			333	 necessary	to	have	a	template	addressable	from	multiple	associations,	the

			334	 template	definition	must	be	parsed	multiple	times	to	create	distinct	*Template

			335	 values,	or	must	be	copied	with	the	Clone	or	AddParseTree	method.

			336	

			337	 Parse	may	be	called	multiple	times	to	assemble	the	various	associated	templates;

			338	 see	the	ParseFiles	and	ParseGlob	functions	and	methods	for	simple	ways	to	parse

			339	 related	templates	stored	in	files.

			340	

			341	 A	template	may	be	executed	directly	or	through	ExecuteTemplate,	which	executes

			342	 an	associated	template	identified	by	name.	To	invoke	our	example	above,	we

			343	 might	write,

			344	

			345	 	 err	:=	tmpl.Execute(os.Stdout,	"no	data	needed")

			346	 	 if	err	!=	nil	{

			347	 	 	 log.Fatalf("execution	failed:	%s",	err)

			348	 	 }

			349	

			350	 or	to	invoke	a	particular	template	explicitly	by	name,

			351	

			352	 	 err	:=	tmpl.ExecuteTemplate(os.Stdout,	"T2",	"no	data	needed")

			353	 	 if	err	!=	nil	{

			354	 	 	 log.Fatalf("execution	failed:	%s",	err)

			355	 	 }

			356	

			357	 */

			358	 package	template

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/text/template/exec.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	template

					6	

					7	 import	(

					8	 	 "fmt"

					9	 	 "io"

				10	 	 "reflect"

				11	 	 "runtime"

				12	 	 "sort"

				13	 	 "strings"

				14	 	 "text/template/parse"

				15)

				16	

				17	 //	state	represents	the	state	of	an	execution.	It's	not	part	of	the

				18	 //	template	so	that	multiple	executions	of	the	same	template

				19	 //	can	execute	in	parallel.

				20	 type	state	struct	{

				21	 	 tmpl	*Template

				22	 	 wr			io.Writer

				23	 	 line	int								//	line	number	for	errors

				24	 	 vars	[]variable	//	push-down	stack	of	variable	values.

				25	 }

				26	

				27	 //	variable	holds	the	dynamic	value	of	a	variable	such	as	$,	$x	etc.

				28	 type	variable	struct	{

				29	 	 name		string

				30	 	 value	reflect.Value

				31	 }

				32	

				33	 //	push	pushes	a	new	variable	on	the	stack.

				34	 func	(s	*state)	push(name	string,	value	reflect.Value)	{

				35	 	 s.vars	=	append(s.vars,	variable{name,	value})

				36	 }

				37	

				38	 //	mark	returns	the	length	of	the	variable	stack.

				39	 func	(s	*state)	mark()	int	{

				40	 	 return	len(s.vars)

				41	 }

				42	

				43	 //	pop	pops	the	variable	stack	up	to	the	mark.

				44	 func	(s	*state)	pop(mark	int)	{

				45	 	 s.vars	=	s.vars[0:mark]

				46	 }

				47	

				48	 //	setVar	overwrites	the	top-nth	variable	on	the	stack.	Used	by	range	iterations.

				49	 func	(s	*state)	setVar(n	int,	value	reflect.Value)	{

				50	 	 s.vars[len(s.vars)-n].value	=	value

				51	 }

				52	

				53	 //	varValue	returns	the	value	of	the	named	variable.

				54	 func	(s	*state)	varValue(name	string)	reflect.Value	{

				55	 	 for	i	:=	s.mark()	-	1;	i	>=	0;	i--	{

				56	 	 	 if	s.vars[i].name	==	name	{

				57	 	 	 	 return	s.vars[i].value

				58	 	 	 }

				59	 	 }

				60	 	 s.errorf("undefined	variable:	%s",	name)

				61	 	 return	zero

				62	 }

				63	

				64	 var	zero	reflect.Value

				65	

				66	 //	errorf	formats	the	error	and	terminates	processing.

				67	 func	(s	*state)	errorf(format	string,	args	...interface{})	{

				68	 	 format	=	fmt.Sprintf("template:	%s:%d:	%s",	s.tmpl.Name(),	s.line,	format)

				69	 	 panic(fmt.Errorf(format,	args...))

				70	 }

				71	

				72	 //	error	terminates	processing.

				73	 func	(s	*state)	error(err	error)	{

				74	 	 s.errorf("%s",	err)

				75	 }

				76	

				77	 //	errRecover	is	the	handler	that	turns	panics	into	returns	from	the	top

				78	 //	level	of	Parse.

				79	 func	errRecover(errp	*error)	{

				80	 	 e	:=	recover()

				81	 	 if	e	!=	nil	{

				82	 	 	 switch	err	:=	e.(type)	{

				83	 	 	 case	runtime.Error:

				84	 	 	 	 panic(e)

				85	 	 	 case	error:

				86	 	 	 	 *errp	=	err

				87	 	 	 default:

				88	 	 	 	 panic(e)

				89	 	 	 }

				90	 	 }

				91	 }

				92	

				93	 //	ExecuteTemplate	applies	the	template	associated	with	t	that	has	the	given	name

				94	 //	to	the	specified	data	object	and	writes	the	output	to	wr.

				95	 func	(t	*Template)	ExecuteTemplate(wr	io.Writer,	name	string,	data	interface{})	error	{

				96	 	 tmpl	:=	t.tmpl[name]

				97	 	 if	tmpl	==	nil	{

				98	 	 	 return	fmt.Errorf("template:	no	template	%q	associated	with	template	%q",	name,	t.name)

				99	 	 }

			100	 	 return	tmpl.Execute(wr,	data)

			101	 }

			102	

			103	 //	Execute	applies	a	parsed	template	to	the	specified	data	object,

			104	 //	and	writes	the	output	to	wr.

			105	 func	(t	*Template)	Execute(wr	io.Writer,	data	interface{})	(err	error)	{

			106	 	 defer	errRecover(&err)

			107	 	 value	:=	reflect.ValueOf(data)

			108	 	 state	:=	&state{

			109	 	 	 tmpl:	t,

			110	 	 	 wr:			wr,

			111	 	 	 line:	1,

			112	 	 	 vars:	[]variable{{"$",	value}},

			113	 	 }

			114	 	 if	t.Tree	==	nil	||	t.Root	==	nil	{

			115	 	 	 state.errorf("%q	is	an	incomplete	or	empty	template",	t.name)

			116	 	 }

			117	 	 state.walk(value,	t.Root)

			118	 	 return

			119	 }

			120	

			121	 //	Walk	functions	step	through	the	major	pieces	of	the	template	structure,

			122	 //	generating	output	as	they	go.

			123	 func	(s	*state)	walk(dot	reflect.Value,	n	parse.Node)	{

			124	 	 switch	n	:=	n.(type)	{

			125	 	 case	*parse.ActionNode:

			126	 	 	 s.line	=	n.Line

			127	 	 	 //	Do	not	pop	variables	so	they	persist	until	next	end.

			128	 	 	 //	Also,	if	the	action	declares	variables,	don't	print	the	result.

			129	 	 	 val	:=	s.evalPipeline(dot,	n.Pipe)

			130	 	 	 if	len(n.Pipe.Decl)	==	0	{

			131	 	 	 	 s.printValue(n,	val)

			132	 	 	 }

			133	 	 case	*parse.IfNode:

			134	 	 	 s.line	=	n.Line

			135	 	 	 s.walkIfOrWith(parse.NodeIf,	dot,	n.Pipe,	n.List,	n.ElseList)

			136	 	 case	*parse.ListNode:

			137	 	 	 for	_,	node	:=	range	n.Nodes	{

			138	 	 	 	 s.walk(dot,	node)

			139	 	 	 }

			140	 	 case	*parse.RangeNode:

			141	 	 	 s.line	=	n.Line

			142	 	 	 s.walkRange(dot,	n)

			143	 	 case	*parse.TemplateNode:

			144	 	 	 s.line	=	n.Line

			145	 	 	 s.walkTemplate(dot,	n)

			146	 	 case	*parse.TextNode:

			147	 	 	 if	_,	err	:=	s.wr.Write(n.Text);	err	!=	nil	{

			148	 	 	 	 s.error(err)

			149	 	 	 }

			150	 	 case	*parse.WithNode:

			151	 	 	 s.line	=	n.Line

			152	 	 	 s.walkIfOrWith(parse.NodeWith,	dot,	n.Pipe,	n.List,	n.ElseList)

			153	 	 default:

			154	 	 	 s.errorf("unknown	node:	%s",	n)

			155	 	 }

			156	 }

			157	

			158	 //	walkIfOrWith	walks	an	'if'	or	'with'	node.	The	two	control	structures

			159	 //	are	identical	in	behavior	except	that	'with'	sets	dot.

			160	 func	(s	*state)	walkIfOrWith(typ	parse.NodeType,	dot	reflect.Value,	pipe	*parse.PipeNode,	list,	elseList	*parse.ListNode)	{

			161	 	 defer	s.pop(s.mark())

			162	 	 val	:=	s.evalPipeline(dot,	pipe)

			163	 	 truth,	ok	:=	isTrue(val)

			164	 	 if	!ok	{

			165	 	 	 s.errorf("if/with	can't	use	%v",	val)

			166	 	 }

			167	 	 if	truth	{

			168	 	 	 if	typ	==	parse.NodeWith	{

			169	 	 	 	 s.walk(val,	list)

			170	 	 	 }	else	{

			171	 	 	 	 s.walk(dot,	list)

			172	 	 	 }

			173	 	 }	else	if	elseList	!=	nil	{

			174	 	 	 s.walk(dot,	elseList)

			175	 	 }

			176	 }

			177	

			178	 //	isTrue	returns	whether	the	value	is	'true',	in	the	sense	of	not	the	zero	of	its	type,

			179	 //	and	whether	the	value	has	a	meaningful	truth	value.

			180	 func	isTrue(val	reflect.Value)	(truth,	ok	bool)	{

			181	 	 if	!val.IsValid()	{

			182	 	 	 //	Something	like	var	x	interface{},	never	set.	It's	a	form	of	nil.

			183	 	 	 return	false,	true

			184	 	 }

			185	 	 switch	val.Kind()	{

			186	 	 case	reflect.Array,	reflect.Map,	reflect.Slice,	reflect.String:

			187	 	 	 truth	=	val.Len()	>	0

			188	 	 case	reflect.Bool:

			189	 	 	 truth	=	val.Bool()

			190	 	 case	reflect.Complex64,	reflect.Complex128:

			191	 	 	 truth	=	val.Complex()	!=	0

			192	 	 case	reflect.Chan,	reflect.Func,	reflect.Ptr,	reflect.Interface:

			193	 	 	 truth	=	!val.IsNil()

			194	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			195	 	 	 truth	=	val.Int()	!=	0

			196	 	 case	reflect.Float32,	reflect.Float64:

			197	 	 	 truth	=	val.Float()	!=	0

			198	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

			199	 	 	 truth	=	val.Uint()	!=	0

			200	 	 case	reflect.Struct:

			201	 	 	 truth	=	true	//	Struct	values	are	always	true.

			202	 	 default:

			203	 	 	 return

			204	 	 }

			205	 	 return	truth,	true

			206	 }

			207	

			208	 func	(s	*state)	walkRange(dot	reflect.Value,	r	*parse.RangeNode)	{

			209	 	 defer	s.pop(s.mark())

			210	 	 val,	_	:=	indirect(s.evalPipeline(dot,	r.Pipe))

			211	 	 //	mark	top	of	stack	before	any	variables	in	the	body	are	pushed.

			212	 	 mark	:=	s.mark()

			213	 	 oneIteration	:=	func(index,	elem	reflect.Value)	{

			214	 	 	 //	Set	top	var	(lexically	the	second	if	there	are	two)	to	the	element.

			215	 	 	 if	len(r.Pipe.Decl)	>	0	{

			216	 	 	 	 s.setVar(1,	elem)

			217	 	 	 }

			218	 	 	 //	Set	next	var	(lexically	the	first	if	there	are	two)	to	the	index.

			219	 	 	 if	len(r.Pipe.Decl)	>	1	{

			220	 	 	 	 s.setVar(2,	index)

			221	 	 	 }

			222	 	 	 s.walk(elem,	r.List)

			223	 	 	 s.pop(mark)

			224	 	 }

			225	 	 switch	val.Kind()	{

			226	 	 case	reflect.Array,	reflect.Slice:

			227	 	 	 if	val.Len()	==	0	{

			228	 	 	 	 break

			229	 	 	 }

			230	 	 	 for	i	:=	0;	i	<	val.Len();	i++	{

			231	 	 	 	 oneIteration(reflect.ValueOf(i),	val.Index(i))

			232	 	 	 }

			233	 	 	 return

			234	 	 case	reflect.Map:

			235	 	 	 if	val.Len()	==	0	{

			236	 	 	 	 break

			237	 	 	 }

			238	 	 	 for	_,	key	:=	range	sortKeys(val.MapKeys())	{

			239	 	 	 	 oneIteration(key,	val.MapIndex(key))

			240	 	 	 }

			241	 	 	 return

			242	 	 case	reflect.Chan:

			243	 	 	 if	val.IsNil()	{

			244	 	 	 	 break

			245	 	 	 }

			246	 	 	 i	:=	0

			247	 	 	 for	;	;	i++	{

			248	 	 	 	 elem,	ok	:=	val.Recv()

			249	 	 	 	 if	!ok	{

			250	 	 	 	 	 break

			251	 	 	 	 }

			252	 	 	 	 oneIteration(reflect.ValueOf(i),	elem)

			253	 	 	 }

			254	 	 	 if	i	==	0	{

			255	 	 	 	 break

			256	 	 	 }

			257	 	 	 return

			258	 	 case	reflect.Invalid:

			259	 	 	 break	//	An	invalid	value	is	likely	a	nil	map,	etc.	and	acts	like	an	empty	map.

			260	 	 default:

			261	 	 	 s.errorf("range	can't	iterate	over	%v",	val)

			262	 	 }

			263	 	 if	r.ElseList	!=	nil	{

			264	 	 	 s.walk(dot,	r.ElseList)

			265	 	 }

			266	 }

			267	

			268	 func	(s	*state)	walkTemplate(dot	reflect.Value,	t	*parse.TemplateNode)	{

			269	 	 tmpl	:=	s.tmpl.tmpl[t.Name]

			270	 	 if	tmpl	==	nil	{

			271	 	 	 s.errorf("template	%q	not	defined",	t.Name)

			272	 	 }

			273	 	 //	Variables	declared	by	the	pipeline	persist.

			274	 	 dot	=	s.evalPipeline(dot,	t.Pipe)

			275	 	 newState	:=	*s

			276	 	 newState.tmpl	=	tmpl

			277	 	 //	No	dynamic	scoping:	template	invocations	inherit	no	variables.

			278	 	 newState.vars	=	[]variable{{"$",	dot}}

			279	 	 newState.walk(dot,	tmpl.Root)

			280	 }

			281	

			282	 //	Eval	functions	evaluate	pipelines,	commands,	and	their	elements	and	extract

			283	 //	values	from	the	data	structure	by	examining	fields,	calling	methods,	and	so	on.

			284	 //	The	printing	of	those	values	happens	only	through	walk	functions.

			285	

			286	 //	evalPipeline	returns	the	value	acquired	by	evaluating	a	pipeline.	If	the

			287	 //	pipeline	has	a	variable	declaration,	the	variable	will	be	pushed	on	the

			288	 //	stack.	Callers	should	therefore	pop	the	stack	after	they	are	finished

			289	 //	executing	commands	depending	on	the	pipeline	value.

			290	 func	(s	*state)	evalPipeline(dot	reflect.Value,	pipe	*parse.PipeNode)	(value	reflect.Value)	{

			291	 	 if	pipe	==	nil	{

			292	 	 	 return

			293	 	 }

			294	 	 for	_,	cmd	:=	range	pipe.Cmds	{

			295	 	 	 value	=	s.evalCommand(dot,	cmd,	value)	//	previous	value	is	this	one's	final	arg.

			296	 	 	 //	If	the	object	has	type	interface{},	dig	down	one	level	to	the	thing	inside.

			297	 	 	 if	value.Kind()	==	reflect.Interface	&&	value.Type().NumMethod()	==	0	{

			298	 	 	 	 value	=	reflect.ValueOf(value.Interface())	

			299	 	 	 }

			300	 	 }

			301	 	 for	_,	variable	:=	range	pipe.Decl	{

			302	 	 	 s.push(variable.Ident[0],	value)

			303	 	 }

			304	 	 return	value

			305	 }

			306	

			307	 func	(s	*state)	notAFunction(args	[]parse.Node,	final	reflect.Value)	{

			308	 	 if	len(args)	>	1	||	final.IsValid()	{

			309	 	 	 s.errorf("can't	give	argument	to	non-function	%s",	args[0])

			310	 	 }

			311	 }

			312	

			313	 func	(s	*state)	evalCommand(dot	reflect.Value,	cmd	*parse.CommandNode,	final	reflect.Value)	reflect.Value	{

			314	 	 firstWord	:=	cmd.Args[0]

			315	 	 switch	n	:=	firstWord.(type)	{

			316	 	 case	*parse.FieldNode:

			317	 	 	 return	s.evalFieldNode(dot,	n,	cmd.Args,	final)

			318	 	 case	*parse.IdentifierNode:

			319	 	 	 //	Must	be	a	function.

			320	 	 	 return	s.evalFunction(dot,	n.Ident,	cmd.Args,	final)

			321	 	 case	*parse.VariableNode:

			322	 	 	 return	s.evalVariableNode(dot,	n,	cmd.Args,	final)

			323	 	 }

			324	 	 s.notAFunction(cmd.Args,	final)

			325	 	 switch	word	:=	firstWord.(type)	{

			326	 	 case	*parse.BoolNode:

			327	 	 	 return	reflect.ValueOf(word.True)

			328	 	 case	*parse.DotNode:

			329	 	 	 return	dot

			330	 	 case	*parse.NumberNode:

			331	 	 	 return	s.idealConstant(word)

			332	 	 case	*parse.StringNode:

			333	 	 	 return	reflect.ValueOf(word.Text)

			334	 	 }

			335	 	 s.errorf("can't	evaluate	command	%q",	firstWord)

			336	 	 panic("not	reached")

			337	 }

			338	

			339	 //	idealConstant	is	called	to	return	the	value	of	a	number	in	a	context	where

			340	 //	we	don't	know	the	type.	In	that	case,	the	syntax	of	the	number	tells	us

			341	 //	its	type,	and	we	use	Go	rules	to	resolve.		Note	there	is	no	such	thing	as

			342	 //	a	uint	ideal	constant	in	this	situation	-	the	value	must	be	of	int	type.

			343	 func	(s	*state)	idealConstant(constant	*parse.NumberNode)	reflect.Value	{

			344	 	 //	These	are	ideal	constants	but	we	don't	know	the	type

			345	 	 //	and	we	have	no	context.		(If	it	was	a	method	argument,

			346	 	 //	we'd	know	what	we	need.)	The	syntax	guides	us	to	some	extent.

			347	 	 switch	{

			348	 	 case	constant.IsComplex:

			349	 	 	 return	reflect.ValueOf(constant.Complex128)	

			350	 	 case	constant.IsFloat	&&	strings.IndexAny(constant.Text,	".eE")	>=	0:

			351	 	 	 return	reflect.ValueOf(constant.Float64)

			352	 	 case	constant.IsInt:

			353	 	 	 n	:=	int(constant.Int64)

			354	 	 	 if	int64(n)	!=	constant.Int64	{

			355	 	 	 	 s.errorf("%s	overflows	int",	constant.Text)

			356	 	 	 }

			357	 	 	 return	reflect.ValueOf(n)

			358	 	 case	constant.IsUint:

			359	 	 	 s.errorf("%s	overflows	int",	constant.Text)

			360	 	 }

			361	 	 return	zero

			362	 }

			363	

			364	 func	(s	*state)	evalFieldNode(dot	reflect.Value,	field	*parse.FieldNode,	args	[]parse.Node,	final	reflect.Value)	reflect.Value	{

			365	 	 return	s.evalFieldChain(dot,	dot,	field.Ident,	args,	final)

			366	 }

			367	

			368	 func	(s	*state)	evalVariableNode(dot	reflect.Value,	v	*parse.VariableNode,	args	[]parse.Node,	final	reflect.Value)	reflect.Value	{

			369	 	 //	$x.Field	has	$x	as	the	first	ident,	Field	as	the	second.	Eval	the	var,	then	the	fields.

			370	 	 value	:=	s.varValue(v.Ident[0])

			371	 	 if	len(v.Ident)	==	1	{

			372	 	 	 s.notAFunction(args,	final)

			373	 	 	 return	value

			374	 	 }

			375	 	 return	s.evalFieldChain(dot,	value,	v.Ident[1:],	args,	final)

			376	 }

			377	

			378	 //	evalFieldChain	evaluates	.X.Y.Z	possibly	followed	by	arguments.

			379	 //	dot	is	the	environment	in	which	to	evaluate	arguments,	while

			380	 //	receiver	is	the	value	being	walked	along	the	chain.

			381	 func	(s	*state)	evalFieldChain(dot,	receiver	reflect.Value,	ident	[]string,	args	[]parse.Node,	final	reflect.Value)	reflect.Value	{

			382	 	 n	:=	len(ident)

			383	 	 for	i	:=	0;	i	<	n-1;	i++	{

			384	 	 	 receiver	=	s.evalField(dot,	ident[i],	nil,	zero,	receiver)

			385	 	 }

			386	 	 //	Now	if	it's	a	method,	it	gets	the	arguments.

			387	 	 return	s.evalField(dot,	ident[n-1],	args,	final,	receiver)

			388	 }

			389	

			390	 func	(s	*state)	evalFunction(dot	reflect.Value,	name	string,	args	[]parse.Node,	final	reflect.Value)	reflect.Value	{

			391	 	 function,	ok	:=	findFunction(name,	s.tmpl)

			392	 	 if	!ok	{

			393	 	 	 s.errorf("%q	is	not	a	defined	function",	name)

			394	 	 }

			395	 	 return	s.evalCall(dot,	function,	name,	args,	final)

			396	 }

			397	

			398	 //	evalField	evaluates	an	expression	like	(.Field)	or	(.Field	arg1	arg2).

			399	 //	The	'final'	argument	represents	the	return	value	from	the	preceding

			400	 //	value	of	the	pipeline,	if	any.

			401	 func	(s	*state)	evalField(dot	reflect.Value,	fieldName	string,	args	[]parse.Node,	final,	receiver	reflect.Value)	reflect.Value	{

			402	 	 if	!receiver.IsValid()	{

			403	 	 	 return	zero

			404	 	 }

			405	 	 typ	:=	receiver.Type()

			406	 	 receiver,	_	=	indirect(receiver)

			407	 	 //	Unless	it's	an	interface,	need	to	get	to	a	value	of	type	*T	to	guarantee

			408	 	 //	we	see	all	methods	of	T	and	*T.

			409	 	 ptr	:=	receiver

			410	 	 if	ptr.Kind()	!=	reflect.Interface	&&	ptr.CanAddr()	{

			411	 	 	 ptr	=	ptr.Addr()

			412	 	 }

			413	 	 if	method	:=	ptr.MethodByName(fieldName);	method.IsValid()	{

			414	 	 	 return	s.evalCall(dot,	method,	fieldName,	args,	final)

			415	 	 }

			416	 	 hasArgs	:=	len(args)	>	1	||	final.IsValid()

			417	 	 //	It's	not	a	method;	is	it	a	field	of	a	struct?

			418	 	 receiver,	isNil	:=	indirect(receiver)

			419	 	 if	receiver.Kind()	==	reflect.Struct	{

			420	 	 	 tField,	ok	:=	receiver.Type().FieldByName(fieldName)

			421	 	 	 if	ok	{

			422	 	 	 	 field	:=	receiver.FieldByIndex(tField.Index)

			423	 	 	 	 if	tField.PkgPath	==	""	{	//	field	is	exported

			424	 	 	 	 	 //	If	it's	a	function,	we	must	call	it.

			425	 	 	 	 	 if	hasArgs	{

			426	 	 	 	 	 	 s.errorf("%s	has	arguments	but	cannot	be	invoked	as	function",	fieldName)

			427	 	 	 	 	 }

			428	 	 	 	 	 return	field

			429	 	 	 	 }

			430	 	 	 }

			431	 	 }

			432	 	 //	If	it's	a	map,	attempt	to	use	the	field	name	as	a	key.

			433	 	 if	receiver.Kind()	==	reflect.Map	{

			434	 	 	 nameVal	:=	reflect.ValueOf(fieldName)

			435	 	 	 if	nameVal.Type().AssignableTo(receiver.Type().Key())	{

			436	 	 	 	 if	hasArgs	{

			437	 	 	 	 	 s.errorf("%s	is	not	a	method	but	has	arguments",	fieldName)

			438	 	 	 	 }

			439	 	 	 	 return	receiver.MapIndex(nameVal)

			440	 	 	 }

			441	 	 }

			442	 	 if	isNil	{

			443	 	 	 s.errorf("nil	pointer	evaluating	%s.%s",	typ,	fieldName)

			444	 	 }

			445	 	 s.errorf("can't	evaluate	field	%s	in	type	%s",	fieldName,	typ)

			446	 	 panic("not	reached")

			447	 }

			448	

			449	 var	(

			450	 	 errorType							=	reflect.TypeOf((*error)(nil)).Elem()

			451	 	 fmtStringerType	=	reflect.TypeOf((*fmt.Stringer)(nil)).Elem()

			452)

			453	

			454	 //	evalCall	executes	a	function	or	method	call.	If	it's	a	method,	fun	already	has	the	receiver	bound,	so

			455	 //	it	looks	just	like	a	function	call.		The	arg	list,	if	non-nil,	includes	(in	the	manner	of	the	shell),	arg[0]

			456	 //	as	the	function	itself.

			457	 func	(s	*state)	evalCall(dot,	fun	reflect.Value,	name	string,	args	[]parse.Node,	final	reflect.Value)	reflect.Value	{

			458	 	 if	args	!=	nil	{

			459	 	 	 args	=	args[1:]	//	Zeroth	arg	is	function	name/node;	not	passed	to	function.

			460	 	 }

			461	 	 typ	:=	fun.Type()

			462	 	 numIn	:=	len(args)

			463	 	 if	final.IsValid()	{

			464	 	 	 numIn++

			465	 	 }

			466	 	 numFixed	:=	len(args)

			467	 	 if	typ.IsVariadic()	{

			468	 	 	 numFixed	=	typ.NumIn()	-	1	//	last	arg	is	the	variadic	one.

			469	 	 	 if	numIn	<	numFixed	{

			470	 	 	 	 s.errorf("wrong	number	of	args	for	%s:	want	at	least	%d	got	%d",	name,	typ.NumIn()-1,	len(args))

			471	 	 	 }

			472	 	 }	else	if	numIn	<	typ.NumIn()-1	||	!typ.IsVariadic()	&&	numIn	!=	typ.NumIn()	{

			473	 	 	 s.errorf("wrong	number	of	args	for	%s:	want	%d	got	%d",	name,	typ.NumIn(),	len(args))

			474	 	 }

			475	 	 if	!goodFunc(typ)	{

			476	 	 	 s.errorf("can't	handle	multiple	results	from	method/function	%q",	name)

			477	 	 }

			478	 	 //	Build	the	arg	list.

			479	 	 argv	:=	make([]reflect.Value,	numIn)

			480	 	 //	Args	must	be	evaluated.	Fixed	args	first.

			481	 	 i	:=	0

			482	 	 for	;	i	<	numFixed;	i++	{

			483	 	 	 argv[i]	=	s.evalArg(dot,	typ.In(i),	args[i])

			484	 	 }

			485	 	 //	Now	the	...	args.

			486	 	 if	typ.IsVariadic()	{

			487	 	 	 argType	:=	typ.In(typ.NumIn()	-	1).Elem()	//	Argument	is	a	slice.

			488	 	 	 for	;	i	<	len(args);	i++	{

			489	 	 	 	 argv[i]	=	s.evalArg(dot,	argType,	args[i])

			490	 	 	 }

			491	 	 }

			492	 	 //	Add	final	value	if	necessary.

			493	 	 if	final.IsValid()	{

			494	 	 	 t	:=	typ.In(typ.NumIn()	-	1)

			495	 	 	 if	typ.IsVariadic()	{

			496	 	 	 	 t	=	t.Elem()

			497	 	 	 }

			498	 	 	 argv[i]	=	s.validateType(final,	t)

			499	 	 }

			500	 	 result	:=	fun.Call(argv)

			501	 	 //	If	we	have	an	error	that	is	not	nil,	stop	execution	and	return	that	error	to	the	caller.

			502	 	 if	len(result)	==	2	&&	!result[1].IsNil()	{

			503	 	 	 s.errorf("error	calling	%s:	%s",	name,	result[1].Interface().(error))

			504	 	 }

			505	 	 return	result[0]

			506	 }

			507	

			508	 //	validateType	guarantees	that	the	value	is	valid	and	assignable	to	the	type.

			509	 func	(s	*state)	validateType(value	reflect.Value,	typ	reflect.Type)	reflect.Value	{

			510	 	 if	!value.IsValid()	{

			511	 	 	 switch	typ.Kind()	{

			512	 	 	 case	reflect.Interface,	reflect.Ptr,	reflect.Chan,	reflect.Map,	reflect.Slice,	reflect.Func:

			513	 	 	 	 //	An	untyped	nil	interface{}.	Accept	as	a	proper	nil	value.

			514	 	 	 	 //	TODO:	Can	we	delete	the	other	types	in	this	list?	Should	we?

			515	 	 	 	 value	=	reflect.Zero(typ)

			516	 	 	 default:

			517	 	 	 	 s.errorf("invalid	value;	expected	%s",	typ)

			518	 	 	 }

			519	 	 }

			520	 	 if	!value.Type().AssignableTo(typ)	{

			521	 	 	 //	Does	one	dereference	or	indirection	work?	We	could	do	more,	as	we

			522	 	 	 //	do	with	method	receivers,	but	that	gets	messy	and	method	receivers

			523	 	 	 //	are	much	more	constrained,	so	it	makes	more	sense	there	than	here.

			524	 	 	 //	Besides,	one	is	almost	always	all	you	need.

			525	 	 	 switch	{

			526	 	 	 case	value.Kind()	==	reflect.Ptr	&&	value.Type().Elem().AssignableTo(typ):

			527	 	 	 	 value	=	value.Elem()

			528	 	 	 case	reflect.PtrTo(value.Type()).AssignableTo(typ)	&&	value.CanAddr():

			529	 	 	 	 value	=	value.Addr()

			530	 	 	 default:

			531	 	 	 	 s.errorf("wrong	type	for	value;	expected	%s;	got	%s",	typ,	value.Type())

			532	 	 	 }

			533	 	 }

			534	 	 return	value

			535	 }

			536	

			537	 func	(s	*state)	evalArg(dot	reflect.Value,	typ	reflect.Type,	n	parse.Node)	reflect.Value	{

			538	 	 switch	arg	:=	n.(type)	{

			539	 	 case	*parse.DotNode:

			540	 	 	 return	s.validateType(dot,	typ)

			541	 	 case	*parse.FieldNode:

			542	 	 	 return	s.validateType(s.evalFieldNode(dot,	arg,	[]parse.Node{n},	zero),	typ)

			543	 	 case	*parse.VariableNode:

			544	 	 	 return	s.validateType(s.evalVariableNode(dot,	arg,	nil,	zero),	typ)

			545	 	 }

			546	 	 switch	typ.Kind()	{

			547	 	 case	reflect.Bool:

			548	 	 	 return	s.evalBool(typ,	n)

			549	 	 case	reflect.Complex64,	reflect.Complex128:

			550	 	 	 return	s.evalComplex(typ,	n)

			551	 	 case	reflect.Float32,	reflect.Float64:

			552	 	 	 return	s.evalFloat(typ,	n)

			553	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			554	 	 	 return	s.evalInteger(typ,	n)

			555	 	 case	reflect.Interface:

			556	 	 	 if	typ.NumMethod()	==	0	{

			557	 	 	 	 return	s.evalEmptyInterface(dot,	n)

			558	 	 	 }

			559	 	 case	reflect.String:

			560	 	 	 return	s.evalString(typ,	n)

			561	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

			562	 	 	 return	s.evalUnsignedInteger(typ,	n)

			563	 	 }

			564	 	 s.errorf("can't	handle	%s	for	arg	of	type	%s",	n,	typ)

			565	 	 panic("not	reached")

			566	 }

			567	

			568	 func	(s	*state)	evalBool(typ	reflect.Type,	n	parse.Node)	reflect.Value	{

			569	 	 if	n,	ok	:=	n.(*parse.BoolNode);	ok	{

			570	 	 	 value	:=	reflect.New(typ).Elem()

			571	 	 	 value.SetBool(n.True)

			572	 	 	 return	value

			573	 	 }

			574	 	 s.errorf("expected	bool;	found	%s",	n)

			575	 	 panic("not	reached")

			576	 }

			577	

			578	 func	(s	*state)	evalString(typ	reflect.Type,	n	parse.Node)	reflect.Value	{

			579	 	 if	n,	ok	:=	n.(*parse.StringNode);	ok	{

			580	 	 	 value	:=	reflect.New(typ).Elem()

			581	 	 	 value.SetString(n.Text)

			582	 	 	 return	value

			583	 	 }

			584	 	 s.errorf("expected	string;	found	%s",	n)

			585	 	 panic("not	reached")

			586	 }

			587	

			588	 func	(s	*state)	evalInteger(typ	reflect.Type,	n	parse.Node)	reflect.Value	{

			589	 	 if	n,	ok	:=	n.(*parse.NumberNode);	ok	&&	n.IsInt	{

			590	 	 	 value	:=	reflect.New(typ).Elem()

			591	 	 	 value.SetInt(n.Int64)

			592	 	 	 return	value

			593	 	 }

			594	 	 s.errorf("expected	integer;	found	%s",	n)

			595	 	 panic("not	reached")

			596	 }

			597	

			598	 func	(s	*state)	evalUnsignedInteger(typ	reflect.Type,	n	parse.Node)	reflect.Value	{

			599	 	 if	n,	ok	:=	n.(*parse.NumberNode);	ok	&&	n.IsUint	{

			600	 	 	 value	:=	reflect.New(typ).Elem()

			601	 	 	 value.SetUint(n.Uint64)

			602	 	 	 return	value

			603	 	 }

			604	 	 s.errorf("expected	unsigned	integer;	found	%s",	n)

			605	 	 panic("not	reached")

			606	 }

			607	

			608	 func	(s	*state)	evalFloat(typ	reflect.Type,	n	parse.Node)	reflect.Value	{

			609	 	 if	n,	ok	:=	n.(*parse.NumberNode);	ok	&&	n.IsFloat	{

			610	 	 	 value	:=	reflect.New(typ).Elem()

			611	 	 	 value.SetFloat(n.Float64)

			612	 	 	 return	value

			613	 	 }

			614	 	 s.errorf("expected	float;	found	%s",	n)

			615	 	 panic("not	reached")

			616	 }

			617	

			618	 func	(s	*state)	evalComplex(typ	reflect.Type,	n	parse.Node)	reflect.Value	{

			619	 	 if	n,	ok	:=	n.(*parse.NumberNode);	ok	&&	n.IsComplex	{

			620	 	 	 value	:=	reflect.New(typ).Elem()

			621	 	 	 value.SetComplex(n.Complex128)

			622	 	 	 return	value

			623	 	 }

			624	 	 s.errorf("expected	complex;	found	%s",	n)

			625	 	 panic("not	reached")

			626	 }

			627	

			628	 func	(s	*state)	evalEmptyInterface(dot	reflect.Value,	n	parse.Node)	reflect.Value	{

			629	 	 switch	n	:=	n.(type)	{

			630	 	 case	*parse.BoolNode:

			631	 	 	 return	reflect.ValueOf(n.True)

			632	 	 case	*parse.DotNode:

			633	 	 	 return	dot

			634	 	 case	*parse.FieldNode:

			635	 	 	 return	s.evalFieldNode(dot,	n,	nil,	zero)

			636	 	 case	*parse.IdentifierNode:

			637	 	 	 return	s.evalFunction(dot,	n.Ident,	nil,	zero)

			638	 	 case	*parse.NumberNode:

			639	 	 	 return	s.idealConstant(n)

			640	 	 case	*parse.StringNode:

			641	 	 	 return	reflect.ValueOf(n.Text)

			642	 	 case	*parse.VariableNode:

			643	 	 	 return	s.evalVariableNode(dot,	n,	nil,	zero)

			644	 	 }

			645	 	 s.errorf("can't	handle	assignment	of	%s	to	empty	interface	argument",	n)

			646	 	 panic("not	reached")

			647	 }

			648	

			649	 //	indirect	returns	the	item	at	the	end	of	indirection,	and	a	bool	to	indicate	if	it's	nil.

			650	 //	We	indirect	through	pointers	and	empty	interfaces	(only)	because

			651	 //	non-empty	interfaces	have	methods	we	might	need.

			652	 func	indirect(v	reflect.Value)	(rv	reflect.Value,	isNil	bool)	{

			653	 	 for	;	v.Kind()	==	reflect.Ptr	||	v.Kind()	==	reflect.Interface;	v	=	v.Elem()	{

			654	 	 	 if	v.IsNil()	{

			655	 	 	 	 return	v,	true

			656	 	 	 }

			657	 	 	 if	v.Kind()	==	reflect.Interface	&&	v.NumMethod()	>	0	{

			658	 	 	 	 break

			659	 	 	 }

			660	 	 }

			661	 	 return	v,	false

			662	 }

			663	

			664	 //	printValue	writes	the	textual	representation	of	the	value	to	the	output	of

			665	 //	the	template.

			666	 func	(s	*state)	printValue(n	parse.Node,	v	reflect.Value)	{

			667	 	 if	v.Kind()	==	reflect.Ptr	{

			668	 	 	 v,	_	=	indirect(v)	//	fmt.Fprint	handles	nil.

			669	 	 }

			670	 	 if	!v.IsValid()	{

			671	 	 	 fmt.Fprint(s.wr,	"<no	value>")

			672	 	 	 return

			673	 	 }

			674	

			675	 	 if	!v.Type().Implements(errorType)	&&	!v.Type().Implements(fmtStringerType)	{

			676	 	 	 if	v.CanAddr()	&&	(reflect.PtrTo(v.Type()).Implements(errorType)	||	reflect.PtrTo(v.Type()).Implements(fmtStringerType))	{

			677	 	 	 	 v	=	v.Addr()

			678	 	 	 }	else	{

			679	 	 	 	 switch	v.Kind()	{

			680	 	 	 	 case	reflect.Chan,	reflect.Func:

			681	 	 	 	 	 s.errorf("can't	print	%s	of	type	%s",	n,	v.Type())

			682	 	 	 	 }

			683	 	 	 }

			684	 	 }

			685	 	 fmt.Fprint(s.wr,	v.Interface())

			686	 }

			687	

			688	 //	Types	to	help	sort	the	keys	in	a	map	for	reproducible	output.

			689	

			690	 type	rvs	[]reflect.Value

			691	

			692	 func	(x	rvs)	Len()	int						{	return	len(x)	}

			693	 func	(x	rvs)	Swap(i,	j	int)	{	x[i],	x[j]	=	x[j],	x[i]	}

			694	

			695	 type	rvInts	struct{	rvs	}

			696	

			697	 func	(x	rvInts)	Less(i,	j	int)	bool	{	return	x.rvs[i].Int()	<	x.rvs[j].Int()	}

			698	

			699	 type	rvUints	struct{	rvs	}

			700	

			701	 func	(x	rvUints)	Less(i,	j	int)	bool	{	return	x.rvs[i].Uint()	<	x.rvs[j].Uint()	}

			702	

			703	 type	rvFloats	struct{	rvs	}

			704	

			705	 func	(x	rvFloats)	Less(i,	j	int)	bool	{	return	x.rvs[i].Float()	<	x.rvs[j].Float()	}

			706	

			707	 type	rvStrings	struct{	rvs	}

			708	

			709	 func	(x	rvStrings)	Less(i,	j	int)	bool	{	return	x.rvs[i].String()	<	x.rvs[j].String()	}

			710	

			711	 //	sortKeys	sorts	(if	it	can)	the	slice	of	reflect.Values,	which	is	a	slice	of	map	keys.

			712	 func	sortKeys(v	[]reflect.Value)	[]reflect.Value	{

			713	 	 if	len(v)	<=	1	{

			714	 	 	 return	v

			715	 	 }

			716	 	 switch	v[0].Kind()	{

			717	 	 case	reflect.Float32,	reflect.Float64:

			718	 	 	 sort.Sort(rvFloats{v})

			719	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			720	 	 	 sort.Sort(rvInts{v})

			721	 	 case	reflect.String:

			722	 	 	 sort.Sort(rvStrings{v})

			723	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

			724	 	 	 sort.Sort(rvUints{v})

			725	 	 }

			726	 	 return	v

			727	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.

http://code.google.com/policies.html#restrictions

Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/text/template/funcs.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	template

					6	

					7	 import	(

					8	 	 "bytes"

					9	 	 "fmt"

				10	 	 "io"

				11	 	 "net/url"

				12	 	 "reflect"

				13	 	 "strings"

				14	 	 "unicode"

				15	 	 "unicode/utf8"

				16)

				17	

				18	 //	FuncMap	is	the	type	of	the	map	defining	the	mapping	from	names	to	functions.

				19	 //	Each	function	must	have	either	a	single	return	value,	or	two	return	values	of

				20	 //	which	the	second	has	type	error.	In	that	case,	if	the	second	(error)

				21	 //	argument	evaluates	to	non-nil	during	execution,	execution	terminates	and

				22	 //	Execute	returns	that	error.

				23	 type	FuncMap	map[string]interface{}

				24	

				25	 var	builtins	=	FuncMap{

				26	 	 "and":						and,

				27	 	 "call":					call,

				28	 	 "html":					HTMLEscaper,

				29	 	 "index":				index,

				30	 	 "js":							JSEscaper,

				31	 	 "len":						length,

				32	 	 "not":						not,

				33	 	 "or":							or,

				34	 	 "print":				fmt.Sprint,

				35	 	 "printf":			fmt.Sprintf,

				36	 	 "println":		fmt.Sprintln,

				37	 	 "urlquery":	URLQueryEscaper,

				38	 }

				39	

				40	 var	builtinFuncs	=	createValueFuncs(builtins)

				41	

				42	 //	createValueFuncs	turns	a	FuncMap	into	a	map[string]reflect.Value

				43	 func	createValueFuncs(funcMap	FuncMap)	map[string]reflect.Value	{

				44	 	 m	:=	make(map[string]reflect.Value)

				45	 	 addValueFuncs(m,	funcMap)

				46	 	 return	m

				47	 }

				48	

				49	 //	addValueFuncs	adds	to	values	the	functions	in	funcs,	converting	them	to	reflect.Values.

				50	 func	addValueFuncs(out	map[string]reflect.Value,	in	FuncMap)	{

				51	 	 for	name,	fn	:=	range	in	{

				52	 	 	 v	:=	reflect.ValueOf(fn)

				53	 	 	 if	v.Kind()	!=	reflect.Func	{

				54	 	 	 	 panic("value	for	"	+	name	+	"	not	a	function")

				55	 	 	 }

				56	 	 	 if	!goodFunc(v.Type())	{

				57	 	 	 	 panic(fmt.Errorf("can't	handle	multiple	results	from	method/function	%q",	name))

				58	 	 	 }

				59	 	 	 out[name]	=	v

				60	 	 }

				61	 }

				62	

				63	 //	addFuncs	adds	to	values	the	functions	in	funcs.	It	does	no	checking	of	the	input	-

				64	 //	call	addValueFuncs	first.

				65	 func	addFuncs(out,	in	FuncMap)	{

				66	 	 for	name,	fn	:=	range	in	{

				67	 	 	 out[name]	=	fn

				68	 	 }

				69	 }

				70	

				71	 //	goodFunc	checks	that	the	function	or	method	has	the	right	result	signature.

				72	 func	goodFunc(typ	reflect.Type)	bool	{

				73	 	 //	We	allow	functions	with	1	result	or	2	results	where	the	second	is	an	error.

				74	 	 switch	{

				75	 	 case	typ.NumOut()	==	1:

				76	 	 	 return	true

				77	 	 case	typ.NumOut()	==	2	&&	typ.Out(1)	==	errorType:

				78	 	 	 return	true

				79	 	 }

				80	 	 return	false

				81	 }

				82	

				83	 //	findFunction	looks	for	a	function	in	the	template,	and	global	map.

				84	 func	findFunction(name	string,	tmpl	*Template)	(reflect.Value,	bool)	{

				85	 	 if	tmpl	!=	nil	&&	tmpl.common	!=	nil	{

				86	 	 	 if	fn	:=	tmpl.execFuncs[name];	fn.IsValid()	{

				87	 	 	 	 return	fn,	true

				88	 	 	 }

				89	 	 }

				90	 	 if	fn	:=	builtinFuncs[name];	fn.IsValid()	{

				91	 	 	 return	fn,	true

				92	 	 }

				93	 	 return	reflect.Value{},	false

				94	 }

				95	

				96	 //	Indexing.

				97	

				98	 //	index	returns	the	result	of	indexing	its	first	argument	by	the	following

				99	 //	arguments.		Thus	"index	x	1	2	3"	is,	in	Go	syntax,	x[1][2][3].	Each

			100	 //	indexed	item	must	be	a	map,	slice,	or	array.

			101	 func	index(item	interface{},	indices	...interface{})	(interface{},	error)	{

			102	 	 v	:=	reflect.ValueOf(item)

			103	 	 for	_,	i	:=	range	indices	{

			104	 	 	 index	:=	reflect.ValueOf(i)

			105	 	 	 var	isNil	bool

			106	 	 	 if	v,	isNil	=	indirect(v);	isNil	{

			107	 	 	 	 return	nil,	fmt.Errorf("index	of	nil	pointer")

			108	 	 	 }

			109	 	 	 switch	v.Kind()	{

			110	 	 	 case	reflect.Array,	reflect.Slice:

			111	 	 	 	 var	x	int64

			112	 	 	 	 switch	index.Kind()	{

			113	 	 	 	 case	reflect.Int,	reflect.Int8,	reflect.Int16,	reflect.Int32,	reflect.Int64:

			114	 	 	 	 	 x	=	index.Int()

			115	 	 	 	 case	reflect.Uint,	reflect.Uint8,	reflect.Uint16,	reflect.Uint32,	reflect.Uint64,	reflect.Uintptr:

			116	 	 	 	 	 x	=	int64(index.Uint())

			117	 	 	 	 default:

			118	 	 	 	 	 return	nil,	fmt.Errorf("cannot	index	slice/array	with	type	%s",	index.Type())

			119	 	 	 	 }

			120	 	 	 	 if	x	<	0	||	x	>=	int64(v.Len())	{

			121	 	 	 	 	 return	nil,	fmt.Errorf("index	out	of	range:	%d",	x)

			122	 	 	 	 }

			123	 	 	 	 v	=	v.Index(int(x))

			124	 	 	 case	reflect.Map:

			125	 	 	 	 if	!index.Type().AssignableTo(v.Type().Key())	{

			126	 	 	 	 	 return	nil,	fmt.Errorf("%s	is	not	index	type	for	%s",	index.Type(),	v.Type())

			127	 	 	 	 }

			128	 	 	 	 if	x	:=	v.MapIndex(index);	x.IsValid()	{

			129	 	 	 	 	 v	=	x

			130	 	 	 	 }	else	{

			131	 	 	 	 	 v	=	reflect.Zero(v.Type().Key())

			132	 	 	 	 }

			133	 	 	 default:

			134	 	 	 	 return	nil,	fmt.Errorf("can't	index	item	of	type	%s",	index.Type())

			135	 	 	 }

			136	 	 }

			137	 	 return	v.Interface(),	nil

			138	 }

			139	

			140	 //	Length

			141	

			142	 //	length	returns	the	length	of	the	item,	with	an	error	if	it	has	no	defined	length.

			143	 func	length(item	interface{})	(int,	error)	{

			144	 	 v,	isNil	:=	indirect(reflect.ValueOf(item))

			145	 	 if	isNil	{

			146	 	 	 return	0,	fmt.Errorf("len	of	nil	pointer")

			147	 	 }

			148	 	 switch	v.Kind()	{

			149	 	 case	reflect.Array,	reflect.Chan,	reflect.Map,	reflect.Slice,	reflect.String:

			150	 	 	 return	v.Len(),	nil

			151	 	 }

			152	 	 return	0,	fmt.Errorf("len	of	type	%s",	v.Type())

			153	 }

			154	

			155	 //	Function	invocation

			156	

			157	 //	call	returns	the	result	of	evaluating	the	the	first	argument	as	a	function.

			158	 //	The	function	must	return	1	result,	or	2	results,	the	second	of	which	is	an	error.

			159	 func	call(fn	interface{},	args	...interface{})	(interface{},	error)	{

			160	 	 v	:=	reflect.ValueOf(fn)

			161	 	 typ	:=	v.Type()

			162	 	 if	typ.Kind()	!=	reflect.Func	{

			163	 	 	 return	nil,	fmt.Errorf("non-function	of	type	%s",	typ)

			164	 	 }

			165	 	 if	!goodFunc(typ)	{

			166	 	 	 return	nil,	fmt.Errorf("function	called	with	%d	args;	should	be	1	or	2",	typ.NumOut())

			167	 	 }

			168	 	 numIn	:=	typ.NumIn()

			169	 	 var	dddType	reflect.Type

			170	 	 if	typ.IsVariadic()	{

			171	 	 	 if	len(args)	<	numIn-1	{

			172	 	 	 	 return	nil,	fmt.Errorf("wrong	number	of	args:	got	%d	want	at	least	%d",	len(args),	numIn-1)

			173	 	 	 }

			174	 	 	 dddType	=	typ.In(numIn	-	1).Elem()

			175	 	 }	else	{

			176	 	 	 if	len(args)	!=	numIn	{

			177	 	 	 	 return	nil,	fmt.Errorf("wrong	number	of	args:	got	%d	want	%d",	len(args),	numIn)

			178	 	 	 }

			179	 	 }

			180	 	 argv	:=	make([]reflect.Value,	len(args))

			181	 	 for	i,	arg	:=	range	args	{

			182	 	 	 value	:=	reflect.ValueOf(arg)

			183	 	 	 //	Compute	the	expected	type.	Clumsy	because	of	variadics.

			184	 	 	 var	argType	reflect.Type

			185	 	 	 if	!typ.IsVariadic()	||	i	<	numIn-1	{

			186	 	 	 	 argType	=	typ.In(i)

			187	 	 	 }	else	{

			188	 	 	 	 argType	=	dddType

			189	 	 	 }

			190	 	 	 if	!value.Type().AssignableTo(argType)	{

			191	 	 	 	 return	nil,	fmt.Errorf("arg	%d	has	type	%s;	should	be	%s",	i,	value.Type(),	argType)

			192	 	 	 }

			193	 	 	 argv[i]	=	reflect.ValueOf(arg)

			194	 	 }

			195	 	 result	:=	v.Call(argv)

			196	 	 if	len(result)	==	2	{

			197	 	 	 return	result[0].Interface(),	result[1].Interface().(error)

			198	 	 }

			199	 	 return	result[0].Interface(),	nil

			200	 }

			201	

			202	 //	Boolean	logic.

			203	

			204	 func	truth(a	interface{})	bool	{

			205	 	 t,	_	:=	isTrue(reflect.ValueOf(a))

			206	 	 return	t

			207	 }

			208	

			209	 //	and	computes	the	Boolean	AND	of	its	arguments,	returning

			210	 //	the	first	false	argument	it	encounters,	or	the	last	argument.

			211	 func	and(arg0	interface{},	args	...interface{})	interface{}	{

			212	 	 if	!truth(arg0)	{

			213	 	 	 return	arg0

			214	 	 }

			215	 	 for	i	:=	range	args	{

			216	 	 	 arg0	=	args[i]

			217	 	 	 if	!truth(arg0)	{

			218	 	 	 	 break

			219	 	 	 }

			220	 	 }

			221	 	 return	arg0

			222	 }

			223	

			224	 //	or	computes	the	Boolean	OR	of	its	arguments,	returning

			225	 //	the	first	true	argument	it	encounters,	or	the	last	argument.

			226	 func	or(arg0	interface{},	args	...interface{})	interface{}	{

			227	 	 if	truth(arg0)	{

			228	 	 	 return	arg0

			229	 	 }

			230	 	 for	i	:=	range	args	{

			231	 	 	 arg0	=	args[i]

			232	 	 	 if	truth(arg0)	{

			233	 	 	 	 break

			234	 	 	 }

			235	 	 }

			236	 	 return	arg0

			237	 }

			238	

			239	 //	not	returns	the	Boolean	negation	of	its	argument.

			240	 func	not(arg	interface{})	(truth	bool)	{

			241	 	 truth,	_	=	isTrue(reflect.ValueOf(arg))

			242	 	 return	!truth

			243	 }

			244	

			245	 //	HTML	escaping.

			246	

			247	 var	(

			248	 	 htmlQuot	=	[]byte(""")	//	shorter	than	"""

			249	 	 htmlApos	=	[]byte("'")	//	shorter	than	"'"	and	apos	was	not	in	HTML	until	HTML5

			250	 	 htmlAmp		=	[]byte("&")

			251	 	 htmlLt			=	[]byte("<")

			252	 	 htmlGt			=	[]byte(">")

			253)

			254	

			255	 //	HTMLEscape	writes	to	w	the	escaped	HTML	equivalent	of	the	plain	text	data	b.

			256	 func	HTMLEscape(w	io.Writer,	b	[]byte)	{

			257	 	 last	:=	0

			258	 	 for	i,	c	:=	range	b	{

			259	 	 	 var	html	[]byte

			260	 	 	 switch	c	{

			261	 	 	 case	'"':

			262	 	 	 	 html	=	htmlQuot

			263	 	 	 case	'\'':

			264	 	 	 	 html	=	htmlApos

			265	 	 	 case	'&':

			266	 	 	 	 html	=	htmlAmp

			267	 	 	 case	'<':

			268	 	 	 	 html	=	htmlLt

			269	 	 	 case	'>':

			270	 	 	 	 html	=	htmlGt

			271	 	 	 default:

			272	 	 	 	 continue

			273	 	 	 }

			274	 	 	 w.Write(b[last:i])

			275	 	 	 w.Write(html)

			276	 	 	 last	=	i	+	1

			277	 	 }

			278	 	 w.Write(b[last:])

			279	 }

			280	

			281	 //	HTMLEscapeString	returns	the	escaped	HTML	equivalent	of	the	plain	text	data	s.

			282	 func	HTMLEscapeString(s	string)	string	{

			283	 	 //	Avoid	allocation	if	we	can.

			284	 	 if	strings.IndexAny(s,	`'"&<>`)	<	0	{

			285	 	 	 return	s

			286	 	 }

			287	 	 var	b	bytes.Buffer

			288	 	 HTMLEscape(&b,	[]byte(s))

			289	 	 return	b.String()

			290	 }

			291	

			292	 //	HTMLEscaper	returns	the	escaped	HTML	equivalent	of	the	textual

			293	 //	representation	of	its	arguments.

			294	 func	HTMLEscaper(args	...interface{})	string	{

			295	 	 ok	:=	false

			296	 	 var	s	string

			297	 	 if	len(args)	==	1	{

			298	 	 	 s,	ok	=	args[0].(string)

			299	 	 }

			300	 	 if	!ok	{

			301	 	 	 s	=	fmt.Sprint(args...)

			302	 	 }

			303	 	 return	HTMLEscapeString(s)

			304	 }

			305	

			306	 //	JavaScript	escaping.

			307	

			308	 var	(

			309	 	 jsLowUni	=	[]byte(`\u00`)

			310	 	 hex						=	[]byte("0123456789ABCDEF")

			311	

			312	 	 jsBackslash	=	[]byte(`\\`)

			313	 	 jsApos						=	[]byte(`\'`)

			314	 	 jsQuot						=	[]byte(`\"`)

			315	 	 jsLt								=	[]byte(`\x3C`)

			316	 	 jsGt								=	[]byte(`\x3E`)

			317)

			318	

			319	 //	JSEscape	writes	to	w	the	escaped	JavaScript	equivalent	of	the	plain	text	data	b.

			320	 func	JSEscape(w	io.Writer,	b	[]byte)	{

			321	 	 last	:=	0

			322	 	 for	i	:=	0;	i	<	len(b);	i++	{

			323	 	 	 c	:=	b[i]

			324	

			325	 	 	 if	!jsIsSpecial(rune(c))	{

			326	 	 	 	 //	fast	path:	nothing	to	do

			327	 	 	 	 continue

			328	 	 	 }

			329	 	 	 w.Write(b[last:i])

			330	

			331	 	 	 if	c	<	utf8.RuneSelf	{

			332	 	 	 	 //	Quotes,	slashes	and	angle	brackets	get	quoted.

			333	 	 	 	 //	Control	characters	get	written	as	\u00XX.

			334	 	 	 	 switch	c	{

			335	 	 	 	 case	'\\':

			336	 	 	 	 	 w.Write(jsBackslash)

			337	 	 	 	 case	'\'':

			338	 	 	 	 	 w.Write(jsApos)

			339	 	 	 	 case	'"':

			340	 	 	 	 	 w.Write(jsQuot)

			341	 	 	 	 case	'<':

			342	 	 	 	 	 w.Write(jsLt)

			343	 	 	 	 case	'>':

			344	 	 	 	 	 w.Write(jsGt)

			345	 	 	 	 default:

			346	 	 	 	 	 w.Write(jsLowUni)

			347	 	 	 	 	 t,	b	:=	c>>4,	c&0x0f

			348	 	 	 	 	 w.Write(hex[t	:	t+1])

			349	 	 	 	 	 w.Write(hex[b	:	b+1])

			350	 	 	 	 }

			351	 	 	 }	else	{

			352	 	 	 	 //	Unicode	rune.

			353	 	 	 	 r,	size	:=	utf8.DecodeRune(b[i:])

			354	 	 	 	 if	unicode.IsPrint(r)	{

			355	 	 	 	 	 w.Write(b[i	:	i+size])

			356	 	 	 	 }	else	{

			357	 	 	 	 	 fmt.Fprintf(w,	"\\u%04X",	r)

			358	 	 	 	 }

			359	 	 	 	 i	+=	size	-	1

			360	 	 	 }

			361	 	 	 last	=	i	+	1

			362	 	 }

			363	 	 w.Write(b[last:])

			364	 }

			365	

			366	 //	JSEscapeString	returns	the	escaped	JavaScript	equivalent	of	the	plain	text	data	s.

			367	 func	JSEscapeString(s	string)	string	{

			368	 	 //	Avoid	allocation	if	we	can.

			369	 	 if	strings.IndexFunc(s,	jsIsSpecial)	<	0	{

			370	 	 	 return	s

			371	 	 }

			372	 	 var	b	bytes.Buffer

			373	 	 JSEscape(&b,	[]byte(s))

			374	 	 return	b.String()

			375	 }

			376	

			377	 func	jsIsSpecial(r	rune)	bool	{

			378	 	 switch	r	{

			379	 	 case	'\\',	'\'',	'"',	'<',	'>':

			380	 	 	 return	true

			381	 	 }

			382	 	 return	r	<	'	'	||	utf8.RuneSelf	<=	r

			383	 }

			384	

			385	 //	JSEscaper	returns	the	escaped	JavaScript	equivalent	of	the	textual

			386	 //	representation	of	its	arguments.

			387	 func	JSEscaper(args	...interface{})	string	{

			388	 	 ok	:=	false

			389	 	 var	s	string

			390	 	 if	len(args)	==	1	{

			391	 	 	 s,	ok	=	args[0].(string)

			392	 	 }

			393	 	 if	!ok	{

			394	 	 	 s	=	fmt.Sprint(args...)

			395	 	 }

			396	 	 return	JSEscapeString(s)

			397	 }

			398	

			399	 //	URLQueryEscaper	returns	the	escaped	value	of	the	textual	representation	of

			400	 //	its	arguments	in	a	form	suitable	for	embedding	in	a	URL	query.

			401	 func	URLQueryEscaper(args	...interface{})	string	{

			402	 	 s,	ok	:=	"",	false

			403	 	 if	len(args)	==	1	{

			404	 	 	 s,	ok	=	args[0].(string)

			405	 	 }

			406	 	 if	!ok	{

			407	 	 	 s	=	fmt.Sprint(args...)

			408	 	 }

			409	 	 return	url.QueryEscape(s)

			410	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/text/template/helper.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Helper	functions	to	make	constructing	templates	easier.

					6	

					7	 package	template

					8	

					9	 import	(

				10	 	 "fmt"

				11	 	 "io/ioutil"

				12	 	 "path/filepath"

				13)

				14	

				15	 //	Functions	and	methods	to	parse	templates.

				16	

				17	 //	Must	is	a	helper	that	wraps	a	call	to	a	function	returning	(*Template,	error)

				18	 //	and	panics	if	the	error	is	non-nil.	It	is	intended	for	use	in	variable

				19	 //	initializations	such	as

				20	 //	 var	t	=	template.Must(template.New("name").Parse("text"))

				21	 func	Must(t	*Template,	err	error)	*Template	{

				22	 	 if	err	!=	nil	{

				23	 	 	 panic(err)

				24	 	 }

				25	 	 return	t

				26	 }

				27	

				28	 //	ParseFiles	creates	a	new	Template	and	parses	the	template	definitions	from

				29	 //	the	named	files.	The	returned	template's	name	will	have	the	(base)	name	and

				30	 //	(parsed)	contents	of	the	first	file.	There	must	be	at	least	one	file.

				31	 //	If	an	error	occurs,	parsing	stops	and	the	returned	*Template	is	nil.

				32	 func	ParseFiles(filenames	...string)	(*Template,	error)	{

				33	 	 return	parseFiles(nil,	filenames...)

				34	 }

				35	

				36	 //	ParseFiles	parses	the	named	files	and	associates	the	resulting	templates	with

				37	 //	t.	If	an	error	occurs,	parsing	stops	and	the	returned	template	is	nil;

				38	 //	otherwise	it	is	t.	There	must	be	at	least	one	file.

				39	 func	(t	*Template)	ParseFiles(filenames	...string)	(*Template,	error)	{

				40	 	 return	parseFiles(t,	filenames...)

				41	 }

				42	

				43	 //	parseFiles	is	the	helper	for	the	method	and	function.	If	the	argument

				44	 //	template	is	nil,	it	is	created	from	the	first	file.

				45	 func	parseFiles(t	*Template,	filenames	...string)	(*Template,	error)	{

				46	 	 if	len(filenames)	==	0	{

				47	 	 	 //	Not	really	a	problem,	but	be	consistent.

				48	 	 	 return	nil,	fmt.Errorf("template:	no	files	named	in	call	to	ParseFiles")

				49	 	 }

				50	 	 for	_,	filename	:=	range	filenames	{

				51	 	 	 b,	err	:=	ioutil.ReadFile(filename)

				52	 	 	 if	err	!=	nil	{

				53	 	 	 	 return	nil,	err

				54	 	 	 }

				55	 	 	 s	:=	string(b)

				56	 	 	 name	:=	filepath.Base(filename)

				57	 	 	 //	First	template	becomes	return	value	if	not	already	defined,

				58	 	 	 //	and	we	use	that	one	for	subsequent	New	calls	to	associate

				59	 	 	 //	all	the	templates	together.	Also,	if	this	file	has	the	same	name

				60	 	 	 //	as	t,	this	file	becomes	the	contents	of	t,	so

				61	 	 	 //		t,	err	:=	New(name).Funcs(xxx).ParseFiles(name)

				62	 	 	 //	works.	Otherwise	we	create	a	new	template	associated	with	t.

				63	 	 	 var	tmpl	*Template

				64	 	 	 if	t	==	nil	{

				65	 	 	 	 t	=	New(name)

				66	 	 	 }

				67	 	 	 if	name	==	t.Name()	{

				68	 	 	 	 tmpl	=	t

				69	 	 	 }	else	{

				70	 	 	 	 tmpl	=	t.New(name)

				71	 	 	 }

				72	 	 	 _,	err	=	tmpl.Parse(s)

				73	 	 	 if	err	!=	nil	{

				74	 	 	 	 return	nil,	err

				75	 	 	 }

				76	 	 }

				77	 	 return	t,	nil

				78	 }

				79	

				80	 //	ParseGlob	creates	a	new	Template	and	parses	the	template	definitions	from	the

				81	 //	files	identified	by	the	pattern,	which	must	match	at	least	one	file.	The

				82	 //	returned	template	will	have	the	(base)	name	and	(parsed)	contents	of	the

				83	 //	first	file	matched	by	the	pattern.	ParseGlob	is	equivalent	to	calling

				84	 //	ParseFiles	with	the	list	of	files	matched	by	the	pattern.

				85	 func	ParseGlob(pattern	string)	(*Template,	error)	{

				86	 	 return	parseGlob(nil,	pattern)

				87	 }

				88	

				89	 //	ParseGlob	parses	the	template	definitions	in	the	files	identified	by	the

				90	 //	pattern	and	associates	the	resulting	templates	with	t.	The	pattern	is

				91	 //	processed	by	filepath.Glob	and	must	match	at	least	one	file.	ParseGlob	is

				92	 //	equivalent	to	calling	t.ParseFiles	with	the	list	of	files	matched	by	the

				93	 //	pattern.

				94	 func	(t	*Template)	ParseGlob(pattern	string)	(*Template,	error)	{

				95	 	 return	parseGlob(t,	pattern)

				96	 }

				97	

				98	 //	parseGlob	is	the	implementation	of	the	function	and	method	ParseGlob.

				99	 func	parseGlob(t	*Template,	pattern	string)	(*Template,	error)	{

			100	 	 filenames,	err	:=	filepath.Glob(pattern)

			101	 	 if	err	!=	nil	{

			102	 	 	 return	nil,	err

			103	 	 }

			104	 	 if	len(filenames)	==	0	{

			105	 	 	 return	nil,	fmt.Errorf("template:	pattern	matches	no	files:	%#q",	pattern)

			106	 	 }

			107	 	 return	parseFiles(t,	filenames...)

			108	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/text/template/template.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	template

					6	

					7	 import	(

					8	 	 "fmt"

					9	 	 "reflect"

				10	 	 "text/template/parse"

				11)

				12	

				13	 //	common	holds	the	information	shared	by	related	templates.

				14	 type	common	struct	{

				15	 	 tmpl	map[string]*Template

				16	 	 //	We	use	two	maps,	one	for	parsing	and	one	for	execution.

				17	 	 //	This	separation	makes	the	API	cleaner	since	it	doesn't

				18	 	 //	expose	reflection	to	the	client.

				19	 	 parseFuncs	FuncMap

				20	 	 execFuncs		map[string]reflect.Value

				21	 }

				22	

				23	 //	Template	is	the	representation	of	a	parsed	template.	The	*parse.Tree

				24	 //	field	is	exported	only	for	use	by	html/template	and	should	be	treated

				25	 //	as	unexported	by	all	other	clients.

				26	 type	Template	struct	{

				27	 	 name	string

				28	 	 *parse.Tree

				29	 	 *common

				30	 	 leftDelim		string

				31	 	 rightDelim	string

				32	 }

				33	

				34	 //	New	allocates	a	new	template	with	the	given	name.

				35	 func	New(name	string)	*Template	{

				36	 	 return	&Template{

				37	 	 	 name:	name,

				38	 	 }

				39	 }

				40	

				41	 //	Name	returns	the	name	of	the	template.

				42	 func	(t	*Template)	Name()	string	{

				43	 	 return	t.name

				44	 }

				45	

				46	 //	New	allocates	a	new	template	associated	with	the	given	one	and	with	the	same

				47	 //	delimiters.	The	association,	which	is	transitive,	allows	one	template	to

				48	 //	invoke	another	with	a	{{template}}	action.

				49	 func	(t	*Template)	New(name	string)	*Template	{

				50	 	 t.init()

				51	 	 return	&Template{

				52	 	 	 name:							name,

				53	 	 	 common:					t.common,

				54	 	 	 leftDelim:		t.leftDelim,

				55	 	 	 rightDelim:	t.rightDelim,

				56	 	 }

				57	 }

				58	

				59	 func	(t	*Template)	init()	{

				60	 	 if	t.common	==	nil	{

				61	 	 	 t.common	=	new(common)

				62	 	 	 t.tmpl	=	make(map[string]*Template)

				63	 	 	 t.parseFuncs	=	make(FuncMap)

				64	 	 	 t.execFuncs	=	make(map[string]reflect.Value)

				65	 	 }

				66	 }

				67	

				68	 //	Clone	returns	a	duplicate	of	the	template,	including	all	associated

				69	 //	templates.	The	actual	representation	is	not	copied,	but	the	name	space	of

				70	 //	associated	templates	is,	so	further	calls	to	Parse	in	the	copy	will	add

				71	 //	templates	to	the	copy	but	not	to	the	original.	Clone	can	be	used	to	prepare

				72	 //	common	templates	and	use	them	with	variant	definitions	for	other	templates

				73	 //	by	adding	the	variants	after	the	clone	is	made.

				74	 func	(t	*Template)	Clone()	(*Template,	error)	{

				75	 	 nt	:=	t.copy(nil)

				76	 	 nt.init()

				77	 	 nt.tmpl[t.name]	=	nt

				78	 	 for	k,	v	:=	range	t.tmpl	{

				79	 	 	 if	k	==	t.name	{	//	Already	installed.

				80	 	 	 	 continue

				81	 	 	 }

				82	 	 	 //	The	associated	templates	share	nt's	common	structure.

				83	 	 	 tmpl	:=	v.copy(nt.common)

				84	 	 	 nt.tmpl[k]	=	tmpl

				85	 	 }

				86	 	 for	k,	v	:=	range	t.parseFuncs	{

				87	 	 	 nt.parseFuncs[k]	=	v

				88	 	 }

				89	 	 for	k,	v	:=	range	t.execFuncs	{

				90	 	 	 nt.execFuncs[k]	=	v

				91	 	 }

				92	 	 return	nt,	nil

				93	 }

				94	

				95	 //	copy	returns	a	shallow	copy	of	t,	with	common	set	to	the	argument.

				96	 func	(t	*Template)	copy(c	*common)	*Template	{

				97	 	 nt	:=	New(t.name)

				98	 	 nt.Tree	=	t.Tree

				99	 	 nt.common	=	c

			100	 	 nt.leftDelim	=	t.leftDelim

			101	 	 nt.rightDelim	=	t.rightDelim

			102	 	 return	nt

			103	 }

			104	

			105	 //	AddParseTree	creates	a	new	template	with	the	name	and	parse	tree

			106	 //	and	associates	it	with	t.

			107	 func	(t	*Template)	AddParseTree(name	string,	tree	*parse.Tree)	(*Template,	error)	{

			108	 	 if	t.tmpl[name]	!=	nil	{

			109	 	 	 return	nil,	fmt.Errorf("template:	redefinition	of	template	%q",	name)

			110	 	 }

			111	 	 nt	:=	t.New(name)

			112	 	 nt.Tree	=	tree

			113	 	 t.tmpl[name]	=	nt

			114	 	 return	nt,	nil

			115	 }

			116	

			117	 //	Templates	returns	a	slice	of	the	templates	associated	with	t,	including	t

			118	 //	itself.

			119	 func	(t	*Template)	Templates()	[]*Template	{

			120	 	 //	Return	a	slice	so	we	don't	expose	the	map.

			121	 	 m	:=	make([]*Template,	0,	len(t.tmpl))

			122	 	 for	_,	v	:=	range	t.tmpl	{

			123	 	 	 m	=	append(m,	v)

			124	 	 }

			125	 	 return	m

			126	 }

			127	

			128	 //	Delims	sets	the	action	delimiters	to	the	specified	strings,	to	be	used	in

			129	 //	subsequent	calls	to	Parse,	ParseFiles,	or	ParseGlob.	Nested	template

			130	 //	definitions	will	inherit	the	settings.	An	empty	delimiter	stands	for	the

			131	 //	corresponding	default:	{{	or	}}.

			132	 //	The	return	value	is	the	template,	so	calls	can	be	chained.

			133	 func	(t	*Template)	Delims(left,	right	string)	*Template	{

			134	 	 t.leftDelim	=	left

			135	 	 t.rightDelim	=	right

			136	 	 return	t

			137	 }

			138	

			139	 //	Funcs	adds	the	elements	of	the	argument	map	to	the	template's	function	map.

			140	 //	It	panics	if	a	value	in	the	map	is	not	a	function	with	appropriate	return

			141	 //	type.	However,	it	is	legal	to	overwrite	elements	of	the	map.	The	return

			142	 //	value	is	the	template,	so	calls	can	be	chained.

			143	 func	(t	*Template)	Funcs(funcMap	FuncMap)	*Template	{

			144	 	 t.init()

			145	 	 addValueFuncs(t.execFuncs,	funcMap)

			146	 	 addFuncs(t.parseFuncs,	funcMap)

			147	 	 return	t

			148	 }

			149	

			150	 //	Lookup	returns	the	template	with	the	given	name	that	is	associated	with	t,

			151	 //	or	nil	if	there	is	no	such	template.

			152	 func	(t	*Template)	Lookup(name	string)	*Template	{

			153	 	 if	t.common	==	nil	{

			154	 	 	 return	nil

			155	 	 }

			156	 	 return	t.tmpl[name]

			157	 }

			158	

			159	 //	Parse	parses	a	string	into	a	template.	Nested	template	definitions	will	be

			160	 //	associated	with	the	top-level	template	t.	Parse	may	be	called	multiple	times

			161	 //	to	parse	definitions	of	templates	to	associate	with	t.	It	is	an	error	if	a

			162	 //	resulting	template	is	non-empty	(contains	content	other	than	template

			163	 //	definitions)	and	would	replace	a	non-empty	template	with	the	same	name.

			164	 //	(In	multiple	calls	to	Parse	with	the	same	receiver	template,	only	one	call

			165	 //	can	contain	text	other	than	space,	comments,	and	template	definitions.)

			166	 func	(t	*Template)	Parse(text	string)	(*Template,	error)	{

			167	 	 t.init()

			168	 	 trees,	err	:=	parse.Parse(t.name,	text,	t.leftDelim,	t.rightDelim,	t.parseFuncs,	builtins)

			169	 	 if	err	!=	nil	{

			170	 	 	 return	nil,	err

			171	 	 }

			172	 	 //	Add	the	newly	parsed	trees,	including	the	one	for	t,	into	our	common	structure.

			173	 	 for	name,	tree	:=	range	trees	{

			174	 	 	 //	If	the	name	we	parsed	is	the	name	of	this	template,	overwrite	this	template.

			175	 	 	 //	The	associate	method	checks	it's	not	a	redefinition.

			176	 	 	 tmpl	:=	t

			177	 	 	 if	name	!=	t.name	{

			178	 	 	 	 tmpl	=	t.New(name)

			179	 	 	 }

			180	 	 	 //	Even	if	t	==	tmpl,	we	need	to	install	it	in	the	common.tmpl	map.

			181	 	 	 if	replace,	err	:=	t.associate(tmpl,	tree);	err	!=	nil	{

			182	 	 	 	 return	nil,	err

			183	 	 	 }	else	if	replace	{

			184	 	 	 	 tmpl.Tree	=	tree

			185	 	 	 }

			186	 	 	 tmpl.leftDelim	=	t.leftDelim

			187	 	 	 tmpl.rightDelim	=	t.rightDelim

			188	 	 }

			189	 	 return	t,	nil

			190	 }

			191	

			192	 //	associate	installs	the	new	template	into	the	group	of	templates	associated

			193	 //	with	t.	It	is	an	error	to	reuse	a	name	except	to	overwrite	an	empty

			194	 //	template.	The	two	are	already	known	to	share	the	common	structure.

			195	 //	The	boolean	return	value	reports	wither	to	store	this	tree	as	t.Tree.

			196	 func	(t	*Template)	associate(new	*Template,	tree	*parse.Tree)	(bool,	error)	{

			197	 	 if	new.common	!=	t.common	{

			198	 	 	 panic("internal	error:	associate	not	common")

			199	 	 }

			200	 	 name	:=	new.name

			201	 	 if	old	:=	t.tmpl[name];	old	!=	nil	{

			202	 	 	 oldIsEmpty	:=	parse.IsEmptyTree(old.Root)

			203	 	 	 newIsEmpty	:=	parse.IsEmptyTree(tree.Root)

			204	 	 	 if	newIsEmpty	{

			205	 	 	 	 //	Whether	old	is	empty	or	not,	new	is	empty;	no	reason	to	replace	old.

			206	 	 	 	 return	false,	nil

			207	 	 	 }

			208	 	 	 if	!oldIsEmpty	{

			209	 	 	 	 return	false,	fmt.Errorf("template:	redefinition	of	template	%q",	name)

			210	 	 	 }

			211	 	 }

			212	 	 t.tmpl[name]	=	new

			213	 	 return	true,	nil

			214	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/text/template/parse/lex.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	parse

					6	

					7	 import	(

					8	 	 "fmt"

					9	 	 "strings"

				10	 	 "unicode"

				11	 	 "unicode/utf8"

				12)

				13	

				14	 //	item	represents	a	token	or	text	string	returned	from	the	scanner.

				15	 type	item	struct	{

				16	 	 typ	itemType

				17	 	 val	string

				18	 }

				19	

				20	 func	(i	item)	String()	string	{

				21	 	 switch	{

				22	 	 case	i.typ	==	itemEOF:

				23	 	 	 return	"EOF"

				24	 	 case	i.typ	==	itemError:

				25	 	 	 return	i.val

				26	 	 case	i.typ	>	itemKeyword:

				27	 	 	 return	fmt.Sprintf("<%s>",	i.val)

				28	 	 case	len(i.val)	>	10:

				29	 	 	 return	fmt.Sprintf("%.10q...",	i.val)

				30	 	 }

				31	 	 return	fmt.Sprintf("%q",	i.val)

				32	 }

				33	

				34	 //	itemType	identifies	the	type	of	lex	items.

				35	 type	itemType	int

				36	

				37	 const	(

				38	 	 itemError								itemType	=	iota	//	error	occurred;	value	is	text	of	error

				39	 	 itemBool																									//	boolean	constant

				40	 	 itemChar																									//	printable	ASCII	character;	grab	bag	for	comma	etc.

				41	 	 itemCharConstant																	//	character	constant

				42	 	 itemComplex																						//	complex	constant	(1+2i);	imaginary	is	just	a	number

				43	 	 itemColonEquals																		//	colon-equals	(':=')	introducing	a	declaration

				44	 	 itemEOF

				45	 	 itemField						//	alphanumeric	identifier,	starting	with	'.',	possibly	chained	('.x.y')

				46	 	 itemIdentifier	//	alphanumeric	identifier

				47	 	 itemLeftDelim		//	left	action	delimiter

				48	 	 itemNumber					//	simple	number,	including	imaginary

				49	 	 itemPipe							//	pipe	symbol

				50	 	 itemRawString		//	raw	quoted	string	(includes	quotes)

				51	 	 itemRightDelim	//	right	action	delimiter

				52	 	 itemString					//	quoted	string	(includes	quotes)

				53	 	 itemText							//	plain	text

				54	 	 itemVariable			//	variable	starting	with	'$',	such	as	'$'	or		'$1'	or	'$hello'.

				55	 	 //	Keywords	appear	after	all	the	rest.

				56	 	 itemKeyword		//	used	only	to	delimit	the	keywords

				57	 	 itemDot						//	the	cursor,	spelled	'.'.

				58	 	 itemDefine			//	define	keyword

				59	 	 itemElse					//	else	keyword

				60	 	 itemEnd						//	end	keyword

				61	 	 itemIf							//	if	keyword

				62	 	 itemRange				//	range	keyword

				63	 	 itemTemplate	//	template	keyword

				64	 	 itemWith					//	with	keyword

				65)

				66	

				67	 //	Make	the	types	prettyprint.

				68	 var	itemName	=	map[itemType]string{

				69	 	 itemError:								"error",

				70	 	 itemBool:									"bool",

				71	 	 itemChar:									"char",

				72	 	 itemCharConstant:	"charconst",

				73	 	 itemComplex:						"complex",

				74	 	 itemColonEquals:		":=",

				75	 	 itemEOF:										"EOF",

				76	 	 itemField:								"field",

				77	 	 itemIdentifier:			"identifier",

				78	 	 itemLeftDelim:				"left	delim",

				79	 	 itemNumber:							"number",

				80	 	 itemPipe:									"pipe",

				81	 	 itemRawString:				"raw	string",

				82	 	 itemRightDelim:			"right	delim",

				83	 	 itemString:							"string",

				84	 	 itemVariable:					"variable",

				85	 	 //	keywords

				86	 	 itemDot:						".",

				87	 	 itemDefine:			"define",

				88	 	 itemElse:					"else",

				89	 	 itemIf:							"if",

				90	 	 itemEnd:						"end",

				91	 	 itemRange:				"range",

				92	 	 itemTemplate:	"template",

				93	 	 itemWith:					"with",

				94	 }

				95	

				96	 func	(i	itemType)	String()	string	{

				97	 	 s	:=	itemName[i]

				98	 	 if	s	==	""	{

				99	 	 	 return	fmt.Sprintf("item%d",	int(i))

			100	 	 }

			101	 	 return	s

			102	 }

			103	

			104	 var	key	=	map[string]itemType{

			105	 	 ".":								itemDot,

			106	 	 "define":			itemDefine,

			107	 	 "else":					itemElse,

			108	 	 "end":						itemEnd,

			109	 	 "if":							itemIf,

			110	 	 "range":				itemRange,

			111	 	 "template":	itemTemplate,

			112	 	 "with":					itemWith,

			113	 }

			114	

			115	 const	eof	=	-1

			116	

			117	 //	stateFn	represents	the	state	of	the	scanner	as	a	function	that	returns	the	next	state.

			118	 type	stateFn	func(*lexer)	stateFn

			119	

			120	 //	lexer	holds	the	state	of	the	scanner.

			121	 type	lexer	struct	{

			122	 	 name							string				//	the	name	of	the	input;	used	only	for	error	reports.

			123	 	 input						string				//	the	string	being	scanned.

			124	 	 leftDelim		string				//	start	of	action.

			125	 	 rightDelim	string				//	end	of	action.

			126	 	 state						stateFn			//	the	next	lexing	function	to	enter.

			127	 	 pos								int							//	current	position	in	the	input.

			128	 	 start						int							//	start	position	of	this	item.

			129	 	 width						int							//	width	of	last	rune	read	from	input.

			130	 	 items						chan	item	//	channel	of	scanned	items.

			131	 }

			132	

			133	 //	next	returns	the	next	rune	in	the	input.

			134	 func	(l	*lexer)	next()	(r	rune)	{

			135	 	 if	l.pos	>=	len(l.input)	{

			136	 	 	 l.width	=	0

			137	 	 	 return	eof

			138	 	 }

			139	 	 r,	l.width	=	utf8.DecodeRuneInString(l.input[l.pos:])

			140	 	 l.pos	+=	l.width

			141	 	 return	r

			142	 }

			143	

			144	 //	peek	returns	but	does	not	consume	the	next	rune	in	the	input.

			145	 func	(l	*lexer)	peek()	rune	{

			146	 	 r	:=	l.next()

			147	 	 l.backup()

			148	 	 return	r

			149	 }

			150	

			151	 //	backup	steps	back	one	rune.	Can	only	be	called	once	per	call	of	next.

			152	 func	(l	*lexer)	backup()	{

			153	 	 l.pos	-=	l.width

			154	 }

			155	

			156	 //	emit	passes	an	item	back	to	the	client.

			157	 func	(l	*lexer)	emit(t	itemType)	{

			158	 	 l.items	<-	item{t,	l.input[l.start:l.pos]}

			159	 	 l.start	=	l.pos

			160	 }

			161	

			162	 //	ignore	skips	over	the	pending	input	before	this	point.

			163	 func	(l	*lexer)	ignore()	{

			164	 	 l.start	=	l.pos

			165	 }

			166	

			167	 //	accept	consumes	the	next	rune	if	it's	from	the	valid	set.

			168	 func	(l	*lexer)	accept(valid	string)	bool	{

			169	 	 if	strings.IndexRune(valid,	l.next())	>=	0	{

			170	 	 	 return	true

			171	 	 }

			172	 	 l.backup()

			173	 	 return	false

			174	 }

			175	

			176	 //	acceptRun	consumes	a	run	of	runes	from	the	valid	set.

			177	 func	(l	*lexer)	acceptRun(valid	string)	{

			178	 	 for	strings.IndexRune(valid,	l.next())	>=	0	{

			179	 	 }

			180	 	 l.backup()

			181	 }

			182	

			183	 //	lineNumber	reports	which	line	we're	on.	Doing	it	this	way

			184	 //	means	we	don't	have	to	worry	about	peek	double	counting.

			185	 func	(l	*lexer)	lineNumber()	int	{

			186	 	 return	1	+	strings.Count(l.input[:l.pos],	"\n")

			187	 }

			188	

			189	 //	error	returns	an	error	token	and	terminates	the	scan	by	passing

			190	 //	back	a	nil	pointer	that	will	be	the	next	state,	terminating	l.nextItem.

			191	 func	(l	*lexer)	errorf(format	string,	args	...interface{})	stateFn	{

			192	 	 l.items	<-	item{itemError,	fmt.Sprintf(format,	args...)}

			193	 	 return	nil

			194	 }

			195	

			196	 //	nextItem	returns	the	next	item	from	the	input.

			197	 func	(l	*lexer)	nextItem()	item	{

			198	 	 for	{

			199	 	 	 select	{

			200	 	 	 case	item	:=	<-l.items:

			201	 	 	 	 return	item

			202	 	 	 default:

			203	 	 	 	 l.state	=	l.state(l)

			204	 	 	 }

			205	 	 }

			206	 	 panic("not	reached")

			207	 }

			208	

			209	 //	lex	creates	a	new	scanner	for	the	input	string.

			210	 func	lex(name,	input,	left,	right	string)	*lexer	{

			211	 	 if	left	==	""	{

			212	 	 	 left	=	leftDelim

			213	 	 }

			214	 	 if	right	==	""	{

			215	 	 	 right	=	rightDelim

			216	 	 }

			217	 	 l	:=	&lexer{

			218	 	 	 name:							name,

			219	 	 	 input:						input,

			220	 	 	 leftDelim:		left,

			221	 	 	 rightDelim:	right,

			222	 	 	 state:						lexText,

			223	 	 	 items:						make(chan	item,	2),	//	Two	items	of	buffering	is	sufficient	for	all	state	functions

			224	 	 }

			225	 	 return	l

			226	 }

			227	

			228	 //	state	functions

			229	

			230	 const	(

			231	 	 leftDelim				=	"{{"

			232	 	 rightDelim			=	"}}"

			233	 	 leftComment		=	"/*"

			234	 	 rightComment	=	"*/"

			235)

			236	

			237	 //	lexText	scans	until	an	opening	action	delimiter,	"{{".

			238	 func	lexText(l	*lexer)	stateFn	{

			239	 	 for	{

			240	 	 	 if	strings.HasPrefix(l.input[l.pos:],	l.leftDelim)	{

			241	 	 	 	 if	l.pos	>	l.start	{

			242	 	 	 	 	 l.emit(itemText)

			243	 	 	 	 }

			244	 	 	 	 return	lexLeftDelim

			245	 	 	 }

			246	 	 	 if	l.next()	==	eof	{

			247	 	 	 	 break

			248	 	 	 }

			249	 	 }

			250	 	 //	Correctly	reached	EOF.

			251	 	 if	l.pos	>	l.start	{

			252	 	 	 l.emit(itemText)

			253	 	 }

			254	 	 l.emit(itemEOF)

			255	 	 return	nil

			256	 }

			257	

			258	 //	lexLeftDelim	scans	the	left	delimiter,	which	is	known	to	be	present.

			259	 func	lexLeftDelim(l	*lexer)	stateFn	{

			260	 	 if	strings.HasPrefix(l.input[l.pos:],	l.leftDelim+leftComment)	{

			261	 	 	 return	lexComment

			262	 	 }

			263	 	 l.pos	+=	len(l.leftDelim)

			264	 	 l.emit(itemLeftDelim)

			265	 	 return	lexInsideAction

			266	 }

			267	

			268	 //	lexComment	scans	a	comment.	The	left	comment	marker	is	known	to	be	present.

			269	 func	lexComment(l	*lexer)	stateFn	{

			270	 	 i	:=	strings.Index(l.input[l.pos:],	rightComment+l.rightDelim)

			271	 	 if	i	<	0	{

			272	 	 	 return	l.errorf("unclosed	comment")

			273	 	 }

			274	 	 l.pos	+=	i	+	len(rightComment)	+	len(l.rightDelim)

			275	 	 l.ignore()

			276	 	 return	lexText

			277	 }

			278	

			279	 //	lexRightDelim	scans	the	right	delimiter,	which	is	known	to	be	present.

			280	 func	lexRightDelim(l	*lexer)	stateFn	{

			281	 	 l.pos	+=	len(l.rightDelim)

			282	 	 l.emit(itemRightDelim)

			283	 	 return	lexText

			284	 }

			285	

			286	 //	lexInsideAction	scans	the	elements	inside	action	delimiters.

			287	 func	lexInsideAction(l	*lexer)	stateFn	{

			288	 	 //	Either	number,	quoted	string,	or	identifier.

			289	 	 //	Spaces	separate	and	are	ignored.

			290	 	 //	Pipe	symbols	separate	and	are	emitted.

			291	 	 if	strings.HasPrefix(l.input[l.pos:],	l.rightDelim)	{

			292	 	 	 return	lexRightDelim

			293	 	 }

			294	 	 switch	r	:=	l.next();	{

			295	 	 case	r	==	eof	||	r	==	'\n':

			296	 	 	 return	l.errorf("unclosed	action")

			297	 	 case	isSpace(r):

			298	 	 	 l.ignore()

			299	 	 case	r	==	':':

			300	 	 	 if	l.next()	!=	'='	{

			301	 	 	 	 return	l.errorf("expected	:=")

			302	 	 	 }

			303	 	 	 l.emit(itemColonEquals)

			304	 	 case	r	==	'|':

			305	 	 	 l.emit(itemPipe)

			306	 	 case	r	==	'"':

			307	 	 	 return	lexQuote

			308	 	 case	r	==	'`':

			309	 	 	 return	lexRawQuote

			310	 	 case	r	==	'$':

			311	 	 	 return	lexIdentifier

			312	 	 case	r	==	'\'':

			313	 	 	 return	lexChar

			314	 	 case	r	==	'.':

			315	 	 	 //	special	look-ahead	for	".field"	so	we	don't	break	l.backup().

			316	 	 	 if	l.pos	<	len(l.input)	{

			317	 	 	 	 r	:=	l.input[l.pos]

			318	 	 	 	 if	r	<	'0'	||	'9'	<	r	{

			319	 	 	 	 	 return	lexIdentifier	//	itemDot	comes	from	the	keyword	table.

			320	 	 	 	 }

			321	 	 	 }

			322	 	 	 fallthrough	//	'.'	can	start	a	number.

			323	 	 case	r	==	'+'	||	r	==	'-'	||	('0'	<=	r	&&	r	<=	'9'):

			324	 	 	 l.backup()

			325	 	 	 return	lexNumber

			326	 	 case	isAlphaNumeric(r):

			327	 	 	 l.backup()

			328	 	 	 return	lexIdentifier

			329	 	 case	r	<=	unicode.MaxASCII	&&	unicode.IsPrint(r):

			330	 	 	 l.emit(itemChar)

			331	 	 	 return	lexInsideAction

			332	 	 default:

			333	 	 	 return	l.errorf("unrecognized	character	in	action:	%#U",	r)

			334	 	 }

			335	 	 return	lexInsideAction

			336	 }

			337	

			338	 //	lexIdentifier	scans	an	alphanumeric	or	field.

			339	 func	lexIdentifier(l	*lexer)	stateFn	{

			340	 Loop:

			341	 	 for	{

			342	 	 	 switch	r	:=	l.next();	{

			343	 	 	 case	isAlphaNumeric(r):

			344	 	 	 	 //	absorb.

			345	 	 	 case	r	==	'.'	&&	(l.input[l.start]	==	'.'	||	l.input[l.start]	==	'$'):

			346	 	 	 	 //	field	chaining;	absorb	into	one	token.

			347	 	 	 default:

			348	 	 	 	 l.backup()

			349	 	 	 	 word	:=	l.input[l.start:l.pos]

			350	 	 	 	 if	!l.atTerminator()	{

			351	 	 	 	 	 return	l.errorf("unexpected	character	%+U",	r)

			352	 	 	 	 }

			353	 	 	 	 switch	{

			354	 	 	 	 case	key[word]	>	itemKeyword:

			355	 	 	 	 	 l.emit(key[word])

			356	 	 	 	 case	word[0]	==	'.':

			357	 	 	 	 	 l.emit(itemField)

			358	 	 	 	 case	word[0]	==	'$':

			359	 	 	 	 	 l.emit(itemVariable)

			360	 	 	 	 case	word	==	"true",	word	==	"false":

			361	 	 	 	 	 l.emit(itemBool)

			362	 	 	 	 default:

			363	 	 	 	 	 l.emit(itemIdentifier)

			364	 	 	 	 }

			365	 	 	 	 break	Loop

			366	 	 	 }

			367	 	 }

			368	 	 return	lexInsideAction

			369	 }

			370	

			371	 //	atTerminator	reports	whether	the	input	is	at	valid	termination	character	to

			372	 //	appear	after	an	identifier.	Mostly	to	catch	cases	like	"$x+2"	not	being

			373	 //	acceptable	without	a	space,	in	case	we	decide	one	day	to	implement

			374	 //	arithmetic.

			375	 func	(l	*lexer)	atTerminator()	bool	{

			376	 	 r	:=	l.peek()

			377	 	 if	isSpace(r)	{

			378	 	 	 return	true

			379	 	 }

			380	 	 switch	r	{

			381	 	 case	eof,	',',	'|',	':':

			382	 	 	 return	true

			383	 	 }

			384	 	 //	Does	r	start	the	delimiter?	This	can	be	ambiguous	(with	delim=="//",	$x/2	will

			385	 	 //	succeed	but	should	fail)	but	only	in	extremely	rare	cases	caused	by	willfully

			386	 	 //	bad	choice	of	delimiter.

			387	 	 if	rd,	_	:=	utf8.DecodeRuneInString(l.rightDelim);	rd	==	r	{

			388	 	 	 return	true

			389	 	 }

			390	 	 return	false

			391	 }

			392	

			393	 //	lexChar	scans	a	character	constant.	The	initial	quote	is	already

			394	 //	scanned.		Syntax	checking	is	done	by	the	parse.

			395	 func	lexChar(l	*lexer)	stateFn	{

			396	 Loop:

			397	 	 for	{

			398	 	 	 switch	l.next()	{

			399	 	 	 case	'\\':

			400	 	 	 	 if	r	:=	l.next();	r	!=	eof	&&	r	!=	'\n'	{

			401	 	 	 	 	 break

			402	 	 	 	 }

			403	 	 	 	 fallthrough

			404	 	 	 case	eof,	'\n':

			405	 	 	 	 return	l.errorf("unterminated	character	constant")

			406	 	 	 case	'\'':

			407	 	 	 	 break	Loop

			408	 	 	 }

			409	 	 }

			410	 	 l.emit(itemCharConstant)

			411	 	 return	lexInsideAction

			412	 }

			413	

			414	 //	lexNumber	scans	a	number:	decimal,	octal,	hex,	float,	or	imaginary.		This

			415	 //	isn't	a	perfect	number	scanner	-	for	instance	it	accepts	"."	and	"0x0.2"

			416	 //	and	"089"	-	but	when	it's	wrong	the	input	is	invalid	and	the	parser	(via

			417	 //	strconv)	will	notice.

			418	 func	lexNumber(l	*lexer)	stateFn	{

			419	 	 if	!l.scanNumber()	{

			420	 	 	 return	l.errorf("bad	number	syntax:	%q",	l.input[l.start:l.pos])

			421	 	 }

			422	 	 if	sign	:=	l.peek();	sign	==	'+'	||	sign	==	'-'	{

			423	 	 	 //	Complex:	1+2i.		No	spaces,	must	end	in	'i'.

			424	 	 	 if	!l.scanNumber()	||	l.input[l.pos-1]	!=	'i'	{

			425	 	 	 	 return	l.errorf("bad	number	syntax:	%q",	l.input[l.start:l.pos])

			426	 	 	 }

			427	 	 	 l.emit(itemComplex)

			428	 	 }	else	{

			429	 	 	 l.emit(itemNumber)

			430	 	 }

			431	 	 return	lexInsideAction

			432	 }

			433	

			434	 func	(l	*lexer)	scanNumber()	bool	{

			435	 	 //	Optional	leading	sign.

			436	 	 l.accept("+-")

			437	 	 //	Is	it	hex?

			438	 	 digits	:=	"0123456789"

			439	 	 if	l.accept("0")	&&	l.accept("xX")	{

			440	 	 	 digits	=	"0123456789abcdefABCDEF"

			441	 	 }

			442	 	 l.acceptRun(digits)

			443	 	 if	l.accept(".")	{

			444	 	 	 l.acceptRun(digits)

			445	 	 }

			446	 	 if	l.accept("eE")	{

			447	 	 	 l.accept("+-")

			448	 	 	 l.acceptRun("0123456789")

			449	 	 }

			450	 	 //	Is	it	imaginary?

			451	 	 l.accept("i")

			452	 	 //	Next	thing	mustn't	be	alphanumeric.

			453	 	 if	isAlphaNumeric(l.peek())	{

			454	 	 	 l.next()

			455	 	 	 return	false

			456	 	 }

			457	 	 return	true

			458	 }

			459	

			460	 //	lexQuote	scans	a	quoted	string.

			461	 func	lexQuote(l	*lexer)	stateFn	{

			462	 Loop:

			463	 	 for	{

			464	 	 	 switch	l.next()	{

			465	 	 	 case	'\\':

			466	 	 	 	 if	r	:=	l.next();	r	!=	eof	&&	r	!=	'\n'	{

			467	 	 	 	 	 break

			468	 	 	 	 }

			469	 	 	 	 fallthrough

			470	 	 	 case	eof,	'\n':

			471	 	 	 	 return	l.errorf("unterminated	quoted	string")

			472	 	 	 case	'"':

			473	 	 	 	 break	Loop

			474	 	 	 }

			475	 	 }

			476	 	 l.emit(itemString)

			477	 	 return	lexInsideAction

			478	 }

			479	

			480	 //	lexRawQuote	scans	a	raw	quoted	string.

			481	 func	lexRawQuote(l	*lexer)	stateFn	{

			482	 Loop:

			483	 	 for	{

			484	 	 	 switch	l.next()	{

			485	 	 	 case	eof,	'\n':

			486	 	 	 	 return	l.errorf("unterminated	raw	quoted	string")

			487	 	 	 case	'`':

			488	 	 	 	 break	Loop

			489	 	 	 }

			490	 	 }

			491	 	 l.emit(itemRawString)

			492	 	 return	lexInsideAction

			493	 }

			494	

			495	 //	isSpace	reports	whether	r	is	a	space	character.

			496	 func	isSpace(r	rune)	bool	{

			497	 	 switch	r	{

			498	 	 case	'	',	'\t',	'\n',	'\r':

			499	 	 	 return	true

			500	 	 }

			501	 	 return	false

			502	 }

			503	

			504	 //	isAlphaNumeric	reports	whether	r	is	an	alphabetic,	digit,	or	underscore.

			505	 func	isAlphaNumeric(r	rune)	bool	{

			506	 	 return	r	==	'_'	||	unicode.IsLetter(r)	||	unicode.IsDigit(r)

			507	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/text/template/parse/node.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Parse	nodes.

					6	

					7	 package	parse

					8	

					9	 import	(

				10	 	 "bytes"

				11	 	 "fmt"

				12	 	 "strconv"

				13	 	 "strings"

				14)

				15	

				16	 //	A	node	is	an	element	in	the	parse	tree.	The	interface	is	trivial.

				17	 type	Node	interface	{

				18	 	 Type()	NodeType

				19	 	 String()	string

				20	 	 //	Copy	does	a	deep	copy	of	the	Node	and	all	its	components.

				21	 	 //	To	avoid	type	assertions,	some	XxxNodes	also	have	specialized

				22	 	 //	CopyXxx	methods	that	return	*XxxNode.

				23	 	 Copy()	Node

				24	 }

				25	

				26	 //	NodeType	identifies	the	type	of	a	parse	tree	node.

				27	 type	NodeType	int

				28	

				29	 //	Type	returns	itself	and	provides	an	easy	default	implementation

				30	 //	for	embedding	in	a	Node.	Embedded	in	all	non-trivial	Nodes.

				31	 func	(t	NodeType)	Type()	NodeType	{

				32	 	 return	t

				33	 }

				34	

				35	 const	(

				36	 	 NodeText							NodeType	=	iota	//	Plain	text.

				37	 	 NodeAction																					//	A	simple	action	such	as	field	evaluation.

				38	 	 NodeBool																							//	A	boolean	constant.

				39	 	 NodeCommand																				//	An	element	of	a	pipeline.

				40	 	 NodeDot																								//	The	cursor,	dot.

				41	 	 nodeElse																							//	An	else	action.	Not	added	to	tree.

				42	 	 nodeEnd																								//	An	end	action.	Not	added	to	tree.

				43	 	 NodeField																						//	A	field	or	method	name.

				44	 	 NodeIdentifier																	//	An	identifier;	always	a	function	name.

				45	 	 NodeIf																									//	An	if	action.

				46	 	 NodeList																							//	A	list	of	Nodes.

				47	 	 NodeNumber																					//	A	numerical	constant.

				48	 	 NodePipe																							//	A	pipeline	of	commands.

				49	 	 NodeRange																						//	A	range	action.

				50	 	 NodeString																					//	A	string	constant.

				51	 	 NodeTemplate																			//	A	template	invocation	action.

				52	 	 NodeVariable																			//	A	$	variable.

				53	 	 NodeWith																							//	A	with	action.

				54)

				55	

				56	 //	Nodes.

				57	

				58	 //	ListNode	holds	a	sequence	of	nodes.

				59	 type	ListNode	struct	{

				60	 	 NodeType

				61	 	 Nodes	[]Node	//	The	element	nodes	in	lexical	order.

				62	 }

				63	

				64	 func	newList()	*ListNode	{

				65	 	 return	&ListNode{NodeType:	NodeList}

				66	 }

				67	

				68	 func	(l	*ListNode)	append(n	Node)	{

				69	 	 l.Nodes	=	append(l.Nodes,	n)

				70	 }

				71	

				72	 func	(l	*ListNode)	String()	string	{

				73	 	 b	:=	new(bytes.Buffer)

				74	 	 for	_,	n	:=	range	l.Nodes	{

				75	 	 	 fmt.Fprint(b,	n)

				76	 	 }

				77	 	 return	b.String()

				78	 }

				79	

				80	 func	(l	*ListNode)	CopyList()	*ListNode	{

				81	 	 if	l	==	nil	{

				82	 	 	 return	l

				83	 	 }

				84	 	 n	:=	newList()

				85	 	 for	_,	elem	:=	range	l.Nodes	{

				86	 	 	 n.append(elem.Copy())

				87	 	 }

				88	 	 return	n

				89	 }

				90	

				91	 func	(l	*ListNode)	Copy()	Node	{

				92	 	 return	l.CopyList()

				93	 }

				94	

				95	 //	TextNode	holds	plain	text.

				96	 type	TextNode	struct	{

				97	 	 NodeType

				98	 	 Text	[]byte	//	The	text;	may	span	newlines.

				99	 }

			100	

			101	 func	newText(text	string)	*TextNode	{

			102	 	 return	&TextNode{NodeType:	NodeText,	Text:	[]byte(text)}

			103	 }

			104	

			105	 func	(t	*TextNode)	String()	string	{

			106	 	 return	fmt.Sprintf("%q",	t.Text)

			107	 }

			108	

			109	 func	(t	*TextNode)	Copy()	Node	{

			110	 	 return	&TextNode{NodeType:	NodeText,	Text:	append([]byte{},	t.Text...)}

			111	 }

			112	

			113	 //	PipeNode	holds	a	pipeline	with	optional	declaration

			114	 type	PipeNode	struct	{

			115	 	 NodeType

			116	 	 Line	int													//	The	line	number	in	the	input.

			117	 	 Decl	[]*VariableNode	//	Variable	declarations	in	lexical	order.

			118	 	 Cmds	[]*CommandNode		//	The	commands	in	lexical	order.

			119	 }

			120	

			121	 func	newPipeline(line	int,	decl	[]*VariableNode)	*PipeNode	{

			122	 	 return	&PipeNode{NodeType:	NodePipe,	Line:	line,	Decl:	decl}

			123	 }

			124	

			125	 func	(p	*PipeNode)	append(command	*CommandNode)	{

			126	 	 p.Cmds	=	append(p.Cmds,	command)

			127	 }

			128	

			129	 func	(p	*PipeNode)	String()	string	{

			130	 	 s	:=	""

			131	 	 if	len(p.Decl)	>	0	{

			132	 	 	 for	i,	v	:=	range	p.Decl	{

			133	 	 	 	 if	i	>	0	{

			134	 	 	 	 	 s	+=	",	"

			135	 	 	 	 }

			136	 	 	 	 s	+=	v.String()

			137	 	 	 }

			138	 	 	 s	+=	"	:=	"

			139	 	 }

			140	 	 for	i,	c	:=	range	p.Cmds	{

			141	 	 	 if	i	>	0	{

			142	 	 	 	 s	+=	"	|	"

			143	 	 	 }

			144	 	 	 s	+=	c.String()

			145	 	 }

			146	 	 return	s

			147	 }

			148	

			149	 func	(p	*PipeNode)	CopyPipe()	*PipeNode	{

			150	 	 if	p	==	nil	{

			151	 	 	 return	p

			152	 	 }

			153	 	 var	decl	[]*VariableNode

			154	 	 for	_,	d	:=	range	p.Decl	{

			155	 	 	 decl	=	append(decl,	d.Copy().(*VariableNode))

			156	 	 }

			157	 	 n	:=	newPipeline(p.Line,	decl)

			158	 	 for	_,	c	:=	range	p.Cmds	{

			159	 	 	 n.append(c.Copy().(*CommandNode))

			160	 	 }

			161	 	 return	n

			162	 }

			163	

			164	 func	(p	*PipeNode)	Copy()	Node	{

			165	 	 return	p.CopyPipe()

			166	 }

			167	

			168	 //	ActionNode	holds	an	action	(something	bounded	by	delimiters).

			169	 //	Control	actions	have	their	own	nodes;	ActionNode	represents	simple

			170	 //	ones	such	as	field	evaluations.

			171	 type	ActionNode	struct	{

			172	 	 NodeType

			173	 	 Line	int							//	The	line	number	in	the	input.

			174	 	 Pipe	*PipeNode	//	The	pipeline	in	the	action.

			175	 }

			176	

			177	 func	newAction(line	int,	pipe	*PipeNode)	*ActionNode	{

			178	 	 return	&ActionNode{NodeType:	NodeAction,	Line:	line,	Pipe:	pipe}

			179	 }

			180	

			181	 func	(a	*ActionNode)	String()	string	{

			182	 	 return	fmt.Sprintf("{{%s}}",	a.Pipe)

			183	

			184	 }

			185	

			186	 func	(a	*ActionNode)	Copy()	Node	{

			187	 	 return	newAction(a.Line,	a.Pipe.CopyPipe())

			188	

			189	 }

			190	

			191	 //	CommandNode	holds	a	command	(a	pipeline	inside	an	evaluating	action).

			192	 type	CommandNode	struct	{

			193	 	 NodeType

			194	 	 Args	[]Node	//	Arguments	in	lexical	order:	Identifier,	field,	or	constant.

			195	 }

			196	

			197	 func	newCommand()	*CommandNode	{

			198	 	 return	&CommandNode{NodeType:	NodeCommand}

			199	 }

			200	

			201	 func	(c	*CommandNode)	append(arg	Node)	{

			202	 	 c.Args	=	append(c.Args,	arg)

			203	 }

			204	

			205	 func	(c	*CommandNode)	String()	string	{

			206	 	 s	:=	""

			207	 	 for	i,	arg	:=	range	c.Args	{

			208	 	 	 if	i	>	0	{

			209	 	 	 	 s	+=	"	"

			210	 	 	 }

			211	 	 	 s	+=	arg.String()

			212	 	 }

			213	 	 return	s

			214	 }

			215	

			216	 func	(c	*CommandNode)	Copy()	Node	{

			217	 	 if	c	==	nil	{

			218	 	 	 return	c

			219	 	 }

			220	 	 n	:=	newCommand()

			221	 	 for	_,	c	:=	range	c.Args	{

			222	 	 	 n.append(c.Copy())

			223	 	 }

			224	 	 return	n

			225	 }

			226	

			227	 //	IdentifierNode	holds	an	identifier.

			228	 type	IdentifierNode	struct	{

			229	 	 NodeType

			230	 	 Ident	string	//	The	identifier's	name.

			231	 }

			232	

			233	 //	NewIdentifier	returns	a	new	IdentifierNode	with	the	given	identifier	name.

			234	 func	NewIdentifier(ident	string)	*IdentifierNode	{

			235	 	 return	&IdentifierNode{NodeType:	NodeIdentifier,	Ident:	ident}

			236	 }

			237	

			238	 func	(i	*IdentifierNode)	String()	string	{

			239	 	 return	i.Ident

			240	 }

			241	

			242	 func	(i	*IdentifierNode)	Copy()	Node	{

			243	 	 return	NewIdentifier(i.Ident)

			244	 }

			245	

			246	 //	VariableNode	holds	a	list	of	variable	names.	The	dollar	sign	is

			247	 //	part	of	the	name.

			248	 type	VariableNode	struct	{

			249	 	 NodeType

			250	 	 Ident	[]string	//	Variable	names	in	lexical	order.

			251	 }

			252	

			253	 func	newVariable(ident	string)	*VariableNode	{

			254	 	 return	&VariableNode{NodeType:	NodeVariable,	Ident:	strings.Split(ident,	".")}

			255	 }

			256	

			257	 func	(v	*VariableNode)	String()	string	{

			258	 	 s	:=	""

			259	 	 for	i,	id	:=	range	v.Ident	{

			260	 	 	 if	i	>	0	{

			261	 	 	 	 s	+=	"."

			262	 	 	 }

			263	 	 	 s	+=	id

			264	 	 }

			265	 	 return	s

			266	 }

			267	

			268	 func	(v	*VariableNode)	Copy()	Node	{

			269	 	 return	&VariableNode{NodeType:	NodeVariable,	Ident:	append([]string{},	v.Ident...)}

			270	 }

			271	

			272	 //	DotNode	holds	the	special	identifier	'.'.	It	is	represented	by	a	nil	pointer.

			273	 type	DotNode	bool

			274	

			275	 func	newDot()	*DotNode	{

			276	 	 return	nil

			277	 }

			278	

			279	 func	(d	*DotNode)	Type()	NodeType	{

			280	 	 return	NodeDot

			281	 }

			282	

			283	 func	(d	*DotNode)	String()	string	{

			284	 	 return	"."

			285	 }

			286	

			287	 func	(d	*DotNode)	Copy()	Node	{

			288	 	 return	newDot()

			289	 }

			290	

			291	 //	FieldNode	holds	a	field	(identifier	starting	with	'.').

			292	 //	The	names	may	be	chained	('.x.y').

			293	 //	The	period	is	dropped	from	each	ident.

			294	 type	FieldNode	struct	{

			295	 	 NodeType

			296	 	 Ident	[]string	//	The	identifiers	in	lexical	order.

			297	 }

			298	

			299	 func	newField(ident	string)	*FieldNode	{

			300	 	 return	&FieldNode{NodeType:	NodeField,	Ident:	strings.Split(ident[1:],	".")}	

			301	 }

			302	

			303	 func	(f	*FieldNode)	String()	string	{

			304	 	 s	:=	""

			305	 	 for	_,	id	:=	range	f.Ident	{

			306	 	 	 s	+=	"."	+	id

			307	 	 }

			308	 	 return	s

			309	 }

			310	

			311	 func	(f	*FieldNode)	Copy()	Node	{

			312	 	 return	&FieldNode{NodeType:	NodeField,	Ident:	append([]string{},	f.Ident...)}

			313	 }

			314	

			315	 //	BoolNode	holds	a	boolean	constant.

			316	 type	BoolNode	struct	{

			317	 	 NodeType

			318	 	 True	bool	//	The	value	of	the	boolean	constant.

			319	 }

			320	

			321	 func	newBool(true	bool)	*BoolNode	{

			322	 	 return	&BoolNode{NodeType:	NodeBool,	True:	true}

			323	 }

			324	

			325	 func	(b	*BoolNode)	String()	string	{

			326	 	 if	b.True	{

			327	 	 	 return	"true"

			328	 	 }

			329	 	 return	"false"

			330	 }

			331	

			332	 func	(b	*BoolNode)	Copy()	Node	{

			333	 	 return	newBool(b.True)

			334	 }

			335	

			336	 //	NumberNode	holds	a	number:	signed	or	unsigned	integer,	float,	or	complex.

			337	 //	The	value	is	parsed	and	stored	under	all	the	types	that	can	represent	the	value.

			338	 //	This	simulates	in	a	small	amount	of	code	the	behavior	of	Go's	ideal	constants.

			339	 type	NumberNode	struct	{

			340	 	 NodeType

			341	 	 IsInt						bool							//	Number	has	an	integral	value.

			342	 	 IsUint					bool							//	Number	has	an	unsigned	integral	value.

			343	 	 IsFloat				bool							//	Number	has	a	floating-point	value.

			344	 	 IsComplex		bool							//	Number	is	complex.

			345	 	 Int64						int64						//	The	signed	integer	value.

			346	 	 Uint64					uint64					//	The	unsigned	integer	value.

			347	 	 Float64				float64				//	The	floating-point	value.

			348	 	 Complex128	complex128	//	The	complex	value.

			349	 	 Text							string					//	The	original	textual	representation	from	the	input.

			350	 }

			351	

			352	 func	newNumber(text	string,	typ	itemType)	(*NumberNode,	error)	{

			353	 	 n	:=	&NumberNode{NodeType:	NodeNumber,	Text:	text}

			354	 	 switch	typ	{

			355	 	 case	itemCharConstant:

			356	 	 	 rune,	_,	tail,	err	:=	strconv.UnquoteChar(text[1:],	text[0])

			357	 	 	 if	err	!=	nil	{

			358	 	 	 	 return	nil,	err

			359	 	 	 }

			360	 	 	 if	tail	!=	"'"	{

			361	 	 	 	 return	nil,	fmt.Errorf("malformed	character	constant:	%s",	text)

			362	 	 	 }

			363	 	 	 n.Int64	=	int64(rune)

			364	 	 	 n.IsInt	=	true

			365	 	 	 n.Uint64	=	uint64(rune)

			366	 	 	 n.IsUint	=	true

			367	 	 	 n.Float64	=	float64(rune)	//	odd	but	those	are	the	rules.

			368	 	 	 n.IsFloat	=	true

			369	 	 	 return	n,	nil

			370	 	 case	itemComplex:

			371	 	 	 //	fmt.Sscan	can	parse	the	pair,	so	let	it	do	the	work.

			372	 	 	 if	_,	err	:=	fmt.Sscan(text,	&n.Complex128);	err	!=	nil	{

			373	 	 	 	 return	nil,	err

			374	 	 	 }

			375	 	 	 n.IsComplex	=	true

			376	 	 	 n.simplifyComplex()

			377	 	 	 return	n,	nil

			378	 	 }

			379	 	 //	Imaginary	constants	can	only	be	complex	unless	they	are	zero.

			380	 	 if	len(text)	>	0	&&	text[len(text)-1]	==	'i'	{

			381	 	 	 f,	err	:=	strconv.ParseFloat(text[:len(text)-1],	64)

			382	 	 	 if	err	==	nil	{

			383	 	 	 	 n.IsComplex	=	true

			384	 	 	 	 n.Complex128	=	complex(0,	f)

			385	 	 	 	 n.simplifyComplex()

			386	 	 	 	 return	n,	nil

			387	 	 	 }

			388	 	 }

			389	 	 //	Do	integer	test	first	so	we	get	0x123	etc.

			390	 	 u,	err	:=	strconv.ParseUint(text,	0,	64)	//	will	fail	for	-0;	fixed	below.

			391	 	 if	err	==	nil	{

			392	 	 	 n.IsUint	=	true

			393	 	 	 n.Uint64	=	u

			394	 	 }

			395	 	 i,	err	:=	strconv.ParseInt(text,	0,	64)

			396	 	 if	err	==	nil	{

			397	 	 	 n.IsInt	=	true

			398	 	 	 n.Int64	=	i

			399	 	 	 if	i	==	0	{

			400	 	 	 	 n.IsUint	=	true	//	in	case	of	-0.

			401	 	 	 	 n.Uint64	=	u

			402	 	 	 }

			403	 	 }

			404	 	 //	If	an	integer	extraction	succeeded,	promote	the	float.

			405	 	 if	n.IsInt	{

			406	 	 	 n.IsFloat	=	true

			407	 	 	 n.Float64	=	float64(n.Int64)

			408	 	 }	else	if	n.IsUint	{

			409	 	 	 n.IsFloat	=	true

			410	 	 	 n.Float64	=	float64(n.Uint64)

			411	 	 }	else	{

			412	 	 	 f,	err	:=	strconv.ParseFloat(text,	64)

			413	 	 	 if	err	==	nil	{

			414	 	 	 	 n.IsFloat	=	true

			415	 	 	 	 n.Float64	=	f

			416	 	 	 	 //	If	a	floating-point	extraction	succeeded,	extract	the	int	if	needed.

			417	 	 	 	 if	!n.IsInt	&&	float64(int64(f))	==	f	{

			418	 	 	 	 	 n.IsInt	=	true

			419	 	 	 	 	 n.Int64	=	int64(f)

			420	 	 	 	 }

			421	 	 	 	 if	!n.IsUint	&&	float64(uint64(f))	==	f	{

			422	 	 	 	 	 n.IsUint	=	true

			423	 	 	 	 	 n.Uint64	=	uint64(f)

			424	 	 	 	 }

			425	 	 	 }

			426	 	 }

			427	 	 if	!n.IsInt	&&	!n.IsUint	&&	!n.IsFloat	{

			428	 	 	 return	nil,	fmt.Errorf("illegal	number	syntax:	%q",	text)

			429	 	 }

			430	 	 return	n,	nil

			431	 }

			432	

			433	 //	simplifyComplex	pulls	out	any	other	types	that	are	represented	by	the	complex	number.

			434	 //	These	all	require	that	the	imaginary	part	be	zero.

			435	 func	(n	*NumberNode)	simplifyComplex()	{

			436	 	 n.IsFloat	=	imag(n.Complex128)	==	0

			437	 	 if	n.IsFloat	{

			438	 	 	 n.Float64	=	real(n.Complex128)

			439	 	 	 n.IsInt	=	float64(int64(n.Float64))	==	n.Float64

			440	 	 	 if	n.IsInt	{

			441	 	 	 	 n.Int64	=	int64(n.Float64)

			442	 	 	 }

			443	 	 	 n.IsUint	=	float64(uint64(n.Float64))	==	n.Float64

			444	 	 	 if	n.IsUint	{

			445	 	 	 	 n.Uint64	=	uint64(n.Float64)

			446	 	 	 }

			447	 	 }

			448	 }

			449	

			450	 func	(n	*NumberNode)	String()	string	{

			451	 	 return	n.Text

			452	 }

			453	

			454	 func	(n	*NumberNode)	Copy()	Node	{

			455	 	 nn	:=	new(NumberNode)

			456	 	 *nn	=	*n	//	Easy,	fast,	correct.

			457	 	 return	nn

			458	 }

			459	

			460	 //	StringNode	holds	a	string	constant.	The	value	has	been	"unquoted".

			461	 type	StringNode	struct	{

			462	 	 NodeType

			463	 	 Quoted	string	//	The	original	text	of	the	string,	with	quotes.

			464	 	 Text			string	//	The	string,	after	quote	processing.

			465	 }

			466	

			467	 func	newString(orig,	text	string)	*StringNode	{

			468	 	 return	&StringNode{NodeType:	NodeString,	Quoted:	orig,	Text:	text}

			469	 }

			470	

			471	 func	(s	*StringNode)	String()	string	{

			472	 	 return	s.Quoted

			473	 }

			474	

			475	 func	(s	*StringNode)	Copy()	Node	{

			476	 	 return	newString(s.Quoted,	s.Text)

			477	 }

			478	

			479	 //	endNode	represents	an	{{end}}	action.	It	is	represented	by	a	nil	pointer.

			480	 //	It	does	not	appear	in	the	final	parse	tree.

			481	 type	endNode	bool

			482	

			483	 func	newEnd()	*endNode	{

			484	 	 return	nil

			485	 }

			486	

			487	 func	(e	*endNode)	Type()	NodeType	{

			488	 	 return	nodeEnd

			489	 }

			490	

			491	 func	(e	*endNode)	String()	string	{

			492	 	 return	"{{end}}"

			493	 }

			494	

			495	 func	(e	*endNode)	Copy()	Node	{

			496	 	 return	newEnd()

			497	 }

			498	

			499	 //	elseNode	represents	an	{{else}}	action.	Does	not	appear	in	the	final	tree.

			500	 type	elseNode	struct	{

			501	 	 NodeType

			502	 	 Line	int	//	The	line	number	in	the	input.

			503	 }

			504	

			505	 func	newElse(line	int)	*elseNode	{

			506	 	 return	&elseNode{NodeType:	nodeElse,	Line:	line}

			507	 }

			508	

			509	 func	(e	*elseNode)	Type()	NodeType	{

			510	 	 return	nodeElse

			511	 }

			512	

			513	 func	(e	*elseNode)	String()	string	{

			514	 	 return	"{{else}}"

			515	 }

			516	

			517	 func	(e	*elseNode)	Copy()	Node	{

			518	 	 return	newElse(e.Line)

			519	 }

			520	

			521	 //	BranchNode	is	the	common	representation	of	if,	range,	and	with.

			522	 type	BranchNode	struct	{

			523	 	 NodeType

			524	 	 Line					int							//	The	line	number	in	the	input.

			525	 	 Pipe					*PipeNode	//	The	pipeline	to	be	evaluated.

			526	 	 List					*ListNode	//	What	to	execute	if	the	value	is	non-empty.

			527	 	 ElseList	*ListNode	//	What	to	execute	if	the	value	is	empty	(nil	if	absent).

			528	 }

			529	

			530	 func	(b	*BranchNode)	String()	string	{

			531	 	 name	:=	""

			532	 	 switch	b.NodeType	{

			533	 	 case	NodeIf:

			534	 	 	 name	=	"if"

			535	 	 case	NodeRange:

			536	 	 	 name	=	"range"

			537	 	 case	NodeWith:

			538	 	 	 name	=	"with"

			539	 	 default:

			540	 	 	 panic("unknown	branch	type")

			541	 	 }

			542	 	 if	b.ElseList	!=	nil	{

			543	 	 	 return	fmt.Sprintf("{{%s	%s}}%s{{else}}%s{{end}}",	name,	b.Pipe,	b.List,	b.ElseList)

			544	 	 }

			545	 	 return	fmt.Sprintf("{{%s	%s}}%s{{end}}",	name,	b.Pipe,	b.List)

			546	 }

			547	

			548	 //	IfNode	represents	an	{{if}}	action	and	its	commands.

			549	 type	IfNode	struct	{

			550	 	 BranchNode

			551	 }

			552	

			553	 func	newIf(line	int,	pipe	*PipeNode,	list,	elseList	*ListNode)	*IfNode	{

			554	 	 return	&IfNode{BranchNode{NodeType:	NodeIf,	Line:	line,	Pipe:	pipe,	List:	list,	ElseList:	elseList}}

			555	 }

			556	

			557	 func	(i	*IfNode)	Copy()	Node	{

			558	 	 return	newIf(i.Line,	i.Pipe.CopyPipe(),	i.List.CopyList(),	i.ElseList.CopyList())

			559	 }

			560	

			561	 //	RangeNode	represents	a	{{range}}	action	and	its	commands.

			562	 type	RangeNode	struct	{

			563	 	 BranchNode

			564	 }

			565	

			566	 func	newRange(line	int,	pipe	*PipeNode,	list,	elseList	*ListNode)	*RangeNode	{

			567	 	 return	&RangeNode{BranchNode{NodeType:	NodeRange,	Line:	line,	Pipe:	pipe,	List:	list,	ElseList:	elseList}}

			568	 }

			569	

			570	 func	(r	*RangeNode)	Copy()	Node	{

			571	 	 return	newRange(r.Line,	r.Pipe.CopyPipe(),	r.List.CopyList(),	r.ElseList.CopyList())

			572	 }

			573	

			574	 //	WithNode	represents	a	{{with}}	action	and	its	commands.

			575	 type	WithNode	struct	{

			576	 	 BranchNode

			577	 }

			578	

			579	 func	newWith(line	int,	pipe	*PipeNode,	list,	elseList	*ListNode)	*WithNode	{

			580	 	 return	&WithNode{BranchNode{NodeType:	NodeWith,	Line:	line,	Pipe:	pipe,	List:	list,	ElseList:	elseList}}

			581	 }

			582	

			583	 func	(w	*WithNode)	Copy()	Node	{

			584	 	 return	newWith(w.Line,	w.Pipe.CopyPipe(),	w.List.CopyList(),	w.ElseList.CopyList())

			585	 }

			586	

			587	 //	TemplateNode	represents	a	{{template}}	action.

			588	 type	TemplateNode	struct	{

			589	 	 NodeType

			590	 	 Line	int							//	The	line	number	in	the	input.

			591	 	 Name	string				//	The	name	of	the	template	(unquoted).

			592	 	 Pipe	*PipeNode	//	The	command	to	evaluate	as	dot	for	the	template.

			593	 }

			594	

			595	 func	newTemplate(line	int,	name	string,	pipe	*PipeNode)	*TemplateNode	{

			596	 	 return	&TemplateNode{NodeType:	NodeTemplate,	Line:	line,	Name:	name,	Pipe:	pipe}

			597	 }

			598	

			599	 func	(t	*TemplateNode)	String()	string	{

			600	 	 if	t.Pipe	==	nil	{

			601	 	 	 return	fmt.Sprintf("{{template	%q}}",	t.Name)

			602	 	 }

			603	 	 return	fmt.Sprintf("{{template	%q	%s}}",	t.Name,	t.Pipe)

			604	 }

			605	

			606	 func	(t	*TemplateNode)	Copy()	Node	{

			607	 	 return	newTemplate(t.Line,	t.Name,	t.Pipe.CopyPipe())

			608	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/text/template/parse/parse.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	parse	builds	parse	trees	for	templates	as	defined	by	text/template

					6	 //	and	html/template.	Clients	should	use	those	packages	to	construct	templates

					7	 //	rather	than	this	one,	which	provides	shared	internal	data	structures	not

					8	 //	intended	for	general	use.

					9	 package	parse

				10	

				11	 import	(

				12	 	 "bytes"

				13	 	 "fmt"

				14	 	 "runtime"

				15	 	 "strconv"

				16	 	 "unicode"

				17)

				18	

				19	 //	Tree	is	the	representation	of	a	single	parsed	template.

				20	 type	Tree	struct	{

				21	 	 Name	string				//	name	of	the	template	represented	by	the	tree.

				22	 	 Root	*ListNode	//	top-level	root	of	the	tree.

				23	 	 //	Parsing	only;	cleared	after	parse.

				24	 	 funcs					[]map[string]interface{}

				25	 	 lex							*lexer

				26	 	 token					[2]item	//	two-token	lookahead	for	parser.

				27	 	 peekCount	int

				28	 	 vars						[]string	//	variables	defined	at	the	moment.

				29	 }

				30	

				31	 //	Parse	returns	a	map	from	template	name	to	parse.Tree,	created	by	parsing	the

				32	 //	templates	described	in	the	argument	string.	The	top-level	template	will	be

				33	 //	given	the	specified	name.	If	an	error	is	encountered,	parsing	stops	and	an

				34	 //	empty	map	is	returned	with	the	error.

				35	 func	Parse(name,	text,	leftDelim,	rightDelim	string,	funcs	...map[string]interface{})	(treeSet	map[string]*Tree,	err	error)	{

				36	 	 treeSet	=	make(map[string]*Tree)

				37	 	 _,	err	=	New(name).Parse(text,	leftDelim,	rightDelim,	treeSet,	funcs...)

				38	 	 return

				39	 }

				40	

				41	 //	next	returns	the	next	token.

				42	 func	(t	*Tree)	next()	item	{

				43	 	 if	t.peekCount	>	0	{

				44	 	 	 t.peekCount--

				45	 	 }	else	{

				46	 	 	 t.token[0]	=	t.lex.nextItem()

				47	 	 }

				48	 	 return	t.token[t.peekCount]

				49	 }

				50	

				51	 //	backup	backs	the	input	stream	up	one	token.

				52	 func	(t	*Tree)	backup()	{

				53	 	 t.peekCount++

				54	 }

				55	

				56	 //	backup2	backs	the	input	stream	up	two	tokens

				57	 func	(t	*Tree)	backup2(t1	item)	{

				58	 	 t.token[1]	=	t1

				59	 	 t.peekCount	=	2

				60	 }

				61	

				62	 //	peek	returns	but	does	not	consume	the	next	token.

				63	 func	(t	*Tree)	peek()	item	{

				64	 	 if	t.peekCount	>	0	{

				65	 	 	 return	t.token[t.peekCount-1]

				66	 	 }

				67	 	 t.peekCount	=	1

				68	 	 t.token[0]	=	t.lex.nextItem()

				69	 	 return	t.token[0]

				70	 }

				71	

				72	 //	Parsing.

				73	

				74	 //	New	allocates	a	new	parse	tree	with	the	given	name.

				75	 func	New(name	string,	funcs	...map[string]interface{})	*Tree	{

				76	 	 return	&Tree{

				77	 	 	 Name:		name,

				78	 	 	 funcs:	funcs,

				79	 	 }

				80	 }

				81	

				82	 //	errorf	formats	the	error	and	terminates	processing.

				83	 func	(t	*Tree)	errorf(format	string,	args	...interface{})	{

				84	 	 t.Root	=	nil

				85	 	 format	=	fmt.Sprintf("template:	%s:%d:	%s",	t.Name,	t.lex.lineNumber(),	format)

				86	 	 panic(fmt.Errorf(format,	args...))

				87	 }

				88	

				89	 //	error	terminates	processing.

				90	 func	(t	*Tree)	error(err	error)	{

				91	 	 t.errorf("%s",	err)

				92	 }

				93	

				94	 //	expect	consumes	the	next	token	and	guarantees	it	has	the	required	type.

				95	 func	(t	*Tree)	expect(expected	itemType,	context	string)	item	{

				96	 	 token	:=	t.next()

				97	 	 if	token.typ	!=	expected	{

				98	 	 	 t.errorf("expected	%s	in	%s;	got	%s",	expected,	context,	token)

				99	 	 }

			100	 	 return	token

			101	 }

			102	

			103	 //	expectEither	consumes	the	next	token	and	guarantees	it	has	one	of	the	required	types.

			104	 func	(t	*Tree)	expectOneOf(expected1,	expected2	itemType,	context	string)	item	{

			105	 	 token	:=	t.next()

			106	 	 if	token.typ	!=	expected1	&&	token.typ	!=	expected2	{

			107	 	 	 t.errorf("expected	%s	or	%s	in	%s;	got	%s",	expected1,	expected2,	context,	token)

			108	 	 }

			109	 	 return	token

			110	 }

			111	

			112	 //	unexpected	complains	about	the	token	and	terminates	processing.

			113	 func	(t	*Tree)	unexpected(token	item,	context	string)	{

			114	 	 t.errorf("unexpected	%s	in	%s",	token,	context)

			115	 }

			116	

			117	 //	recover	is	the	handler	that	turns	panics	into	returns	from	the	top	level	of	Parse.

			118	 func	(t	*Tree)	recover(errp	*error)	{

			119	 	 e	:=	recover()

			120	 	 if	e	!=	nil	{

			121	 	 	 if	_,	ok	:=	e.(runtime.Error);	ok	{

			122	 	 	 	 panic(e)

			123	 	 	 }

			124	 	 	 if	t	!=	nil	{

			125	 	 	 	 t.stopParse()

			126	 	 	 }

			127	 	 	 *errp	=	e.(error)

			128	 	 }

			129	 	 return

			130	 }

			131	

			132	 //	startParse	initializes	the	parser,	using	the	lexer.

			133	 func	(t	*Tree)	startParse(funcs	[]map[string]interface{},	lex	*lexer)	{

			134	 	 t.Root	=	nil

			135	 	 t.lex	=	lex

			136	 	 t.vars	=	[]string{"$"}

			137	 	 t.funcs	=	funcs

			138	 }

			139	

			140	 //	stopParse	terminates	parsing.

			141	 func	(t	*Tree)	stopParse()	{

			142	 	 t.lex	=	nil

			143	 	 t.vars	=	nil

			144	 	 t.funcs	=	nil

			145	 }

			146	

			147	 //	atEOF	returns	true	if,	possibly	after	spaces,	we're	at	EOF.

			148	 func	(t	*Tree)	atEOF()	bool	{

			149	 	 for	{

			150	 	 	 token	:=	t.peek()

			151	 	 	 switch	token.typ	{

			152	 	 	 case	itemEOF:

			153	 	 	 	 return	true

			154	 	 	 case	itemText:

			155	 	 	 	 for	_,	r	:=	range	token.val	{

			156	 	 	 	 	 if	!unicode.IsSpace(r)	{

			157	 	 	 	 	 	 return	false

			158	 	 	 	 	 }

			159	 	 	 	 }

			160	 	 	 	 t.next()	//	skip	spaces.

			161	 	 	 	 continue

			162	 	 	 }

			163	 	 	 break

			164	 	 }

			165	 	 return	false

			166	 }

			167	

			168	 //	Parse	parses	the	template	definition	string	to	construct	a	representation	of

			169	 //	the	template	for	execution.	If	either	action	delimiter	string	is	empty,	the

			170	 //	default	("{{"	or	"}}")	is	used.	Embedded	template	definitions	are	added	to

			171	 //	the	treeSet	map.

			172	 func	(t	*Tree)	Parse(s,	leftDelim,	rightDelim	string,	treeSet	map[string]*Tree,	funcs	...map[string]interface{})	(tree	*Tree,	err	error)	{

			173	 	 defer	t.recover(&err)

			174	 	 t.startParse(funcs,	lex(t.Name,	s,	leftDelim,	rightDelim))

			175	 	 t.parse(treeSet)

			176	 	 t.add(treeSet)

			177	 	 t.stopParse()

			178	 	 return	t,	nil

			179	 }

			180	

			181	 //	add	adds	tree	to	the	treeSet.

			182	 func	(t	*Tree)	add(treeSet	map[string]*Tree)	{

			183	 	 tree	:=	treeSet[t.Name]

			184	 	 if	tree	==	nil	||	IsEmptyTree(tree.Root)	{

			185	 	 	 treeSet[t.Name]	=	t

			186	 	 	 return

			187	 	 }

			188	 	 if	!IsEmptyTree(t.Root)	{

			189	 	 	 t.errorf("template:	multiple	definition	of	template	%q",	t.Name)

			190	 	 }

			191	 }

			192	

			193	 //	IsEmptyTree	reports	whether	this	tree	(node)	is	empty	of	everything	but	space.

			194	 func	IsEmptyTree(n	Node)	bool	{

			195	 	 switch	n	:=	n.(type)	{

			196	 	 case	nil:

			197	 	 	 return	true

			198	 	 case	*ActionNode:

			199	 	 case	*IfNode:

			200	 	 case	*ListNode:

			201	 	 	 for	_,	node	:=	range	n.Nodes	{

			202	 	 	 	 if	!IsEmptyTree(node)	{

			203	 	 	 	 	 return	false

			204	 	 	 	 }

			205	 	 	 }

			206	 	 	 return	true

			207	 	 case	*RangeNode:

			208	 	 case	*TemplateNode:

			209	 	 case	*TextNode:

			210	 	 	 return	len(bytes.TrimSpace(n.Text))	==	0

			211	 	 case	*WithNode:

			212	 	 default:

			213	 	 	 panic("unknown	node:	"	+	n.String())

			214	 	 }

			215	 	 return	false

			216	 }

			217	

			218	 //	parse	is	the	top-level	parser	for	a	template,	essentially	the	same

			219	 //	as	itemList	except	it	also	parses	{{define}}	actions.

			220	 //	It	runs	to	EOF.

			221	 func	(t	*Tree)	parse(treeSet	map[string]*Tree)	(next	Node)	{

			222	 	 t.Root	=	newList()

			223	 	 for	t.peek().typ	!=	itemEOF	{

			224	 	 	 if	t.peek().typ	==	itemLeftDelim	{

			225	 	 	 	 delim	:=	t.next()

			226	 	 	 	 if	t.next().typ	==	itemDefine	{

			227	 	 	 	 	 newT	:=	New("definition")	//	name	will	be	updated	once	we	know	it.

			228	 	 	 	 	 newT.startParse(t.funcs,	t.lex)

			229	 	 	 	 	 newT.parseDefinition(treeSet)

			230	 	 	 	 	 continue

			231	 	 	 	 }

			232	 	 	 	 t.backup2(delim)

			233	 	 	 }

			234	 	 	 n	:=	t.textOrAction()

			235	 	 	 if	n.Type()	==	nodeEnd	{

			236	 	 	 	 t.errorf("unexpected	%s",	n)

			237	 	 	 }

			238	 	 	 t.Root.append(n)

			239	 	 }

			240	 	 return	nil

			241	 }

			242	

			243	 //	parseDefinition	parses	a	{{define}}	...		{{end}}	template	definition	and

			244	 //	installs	the	definition	in	the	treeSet	map.		The	"define"	keyword	has	already

			245	 //	been	scanned.

			246	 func	(t	*Tree)	parseDefinition(treeSet	map[string]*Tree)	{

			247	 	 const	context	=	"define	clause"

			248	 	 name	:=	t.expectOneOf(itemString,	itemRawString,	context)

			249	 	 var	err	error

			250	 	 t.Name,	err	=	strconv.Unquote(name.val)

			251	 	 if	err	!=	nil	{

			252	 	 	 t.error(err)

			253	 	 }

			254	 	 t.expect(itemRightDelim,	context)

			255	 	 var	end	Node

			256	 	 t.Root,	end	=	t.itemList()

			257	 	 if	end.Type()	!=	nodeEnd	{

			258	 	 	 t.errorf("unexpected	%s	in	%s",	end,	context)

			259	 	 }

			260	 	 t.stopParse()

			261	 	 t.add(treeSet)

			262	 }

			263	

			264	 //	itemList:

			265	 //	 textOrAction*

			266	 //	Terminates	at	{{end}}	or	{{else}},	returned	separately.

			267	 func	(t	*Tree)	itemList()	(list	*ListNode,	next	Node)	{

			268	 	 list	=	newList()

			269	 	 for	t.peek().typ	!=	itemEOF	{

			270	 	 	 n	:=	t.textOrAction()

			271	 	 	 switch	n.Type()	{

			272	 	 	 case	nodeEnd,	nodeElse:

			273	 	 	 	 return	list,	n

			274	 	 	 }

			275	 	 	 list.append(n)

			276	 	 }

			277	 	 t.errorf("unexpected	EOF")

			278	 	 return

			279	 }

			280	

			281	 //	textOrAction:

			282	 //	 text	|	action

			283	 func	(t	*Tree)	textOrAction()	Node	{

			284	 	 switch	token	:=	t.next();	token.typ	{

			285	 	 case	itemText:

			286	 	 	 return	newText(token.val)

			287	 	 case	itemLeftDelim:

			288	 	 	 return	t.action()

			289	 	 default:

			290	 	 	 t.unexpected(token,	"input")

			291	 	 }

			292	 	 return	nil

			293	 }

			294	

			295	 //	Action:

			296	 //	 control

			297	 //	 command	("|"	command)*

			298	 //	Left	delim	is	past.	Now	get	actions.

			299	 //	First	word	could	be	a	keyword	such	as	range.

			300	 func	(t	*Tree)	action()	(n	Node)	{

			301	 	 switch	token	:=	t.next();	token.typ	{

			302	 	 case	itemElse:

			303	 	 	 return	t.elseControl()

			304	 	 case	itemEnd:

			305	 	 	 return	t.endControl()

			306	 	 case	itemIf:

			307	 	 	 return	t.ifControl()

			308	 	 case	itemRange:

			309	 	 	 return	t.rangeControl()

			310	 	 case	itemTemplate:

			311	 	 	 return	t.templateControl()

			312	 	 case	itemWith:

			313	 	 	 return	t.withControl()

			314	 	 }

			315	 	 t.backup()

			316	 	 //	Do	not	pop	variables;	they	persist	until	"end".

			317	 	 return	newAction(t.lex.lineNumber(),	t.pipeline("command"))

			318	 }

			319	

			320	 //	Pipeline:

			321	 //	 field	or	command

			322	 //	 pipeline	"|"	pipeline

			323	 func	(t	*Tree)	pipeline(context	string)	(pipe	*PipeNode)	{

			324	 	 var	decl	[]*VariableNode

			325	 	 //	Are	there	declarations?

			326	 	 for	{

			327	 	 	 if	v	:=	t.peek();	v.typ	==	itemVariable	{

			328	 	 	 	 t.next()

			329	 	 	 	 if	next	:=	t.peek();	next.typ	==	itemColonEquals	||	(next.typ	==	itemChar	&&	next.val	==	",")	{

			330	 	 	 	 	 t.next()

			331	 	 	 	 	 variable	:=	newVariable(v.val)

			332	 	 	 	 	 if	len(variable.Ident)	!=	1	{

			333	 	 	 	 	 	 t.errorf("illegal	variable	in	declaration:	%s",	v.val)

			334	 	 	 	 	 }

			335	 	 	 	 	 decl	=	append(decl,	variable)

			336	 	 	 	 	 t.vars	=	append(t.vars,	v.val)

			337	 	 	 	 	 if	next.typ	==	itemChar	&&	next.val	==	","	{

			338	 	 	 	 	 	 if	context	==	"range"	&&	len(decl)	<	2	{

			339	 	 	 	 	 	 	 continue

			340	 	 	 	 	 	 }

			341	 	 	 	 	 	 t.errorf("too	many	declarations	in	%s",	context)

			342	 	 	 	 	 }

			343	 	 	 	 }	else	{

			344	 	 	 	 	 t.backup2(v)

			345	 	 	 	 }

			346	 	 	 }

			347	 	 	 break

			348	 	 }

			349	 	 pipe	=	newPipeline(t.lex.lineNumber(),	decl)

			350	 	 for	{

			351	 	 	 switch	token	:=	t.next();	token.typ	{

			352	 	 	 case	itemRightDelim:

			353	 	 	 	 if	len(pipe.Cmds)	==	0	{

			354	 	 	 	 	 t.errorf("missing	value	for	%s",	context)

			355	 	 	 	 }

			356	 	 	 	 return

			357	 	 	 case	itemBool,	itemCharConstant,	itemComplex,	itemDot,	itemField,	itemIdentifier,

			358	 	 	 	 itemVariable,	itemNumber,	itemRawString,	itemString:

			359	 	 	 	 t.backup()

			360	 	 	 	 pipe.append(t.command())

			361	 	 	 default:

			362	 	 	 	 t.unexpected(token,	context)

			363	 	 	 }

			364	 	 }

			365	 	 return

			366	 }

			367	

			368	 func	(t	*Tree)	parseControl(context	string)	(lineNum	int,	pipe	*PipeNode,	list,	elseList	*ListNode)	{

			369	 	 lineNum	=	t.lex.lineNumber()

			370	 	 defer	t.popVars(len(t.vars))

			371	 	 pipe	=	t.pipeline(context)

			372	 	 var	next	Node

			373	 	 list,	next	=	t.itemList()

			374	 	 switch	next.Type()	{

			375	 	 case	nodeEnd:	//done

			376	 	 case	nodeElse:

			377	 	 	 elseList,	next	=	t.itemList()

			378	 	 	 if	next.Type()	!=	nodeEnd	{

			379	 	 	 	 t.errorf("expected	end;	found	%s",	next)

			380	 	 	 }

			381	 	 	 elseList	=	elseList

			382	 	 }

			383	 	 return	lineNum,	pipe,	list,	elseList

			384	 }

			385	

			386	 //	If:

			387	 //	 {{if	pipeline}}	itemList	{{end}}

			388	 //	 {{if	pipeline}}	itemList	{{else}}	itemList	{{end}}

			389	 //	If	keyword	is	past.

			390	 func	(t	*Tree)	ifControl()	Node	{

			391	 	 return	newIf(t.parseControl("if"))

			392	 }

			393	

			394	 //	Range:

			395	 //	 {{range	pipeline}}	itemList	{{end}}

			396	 //	 {{range	pipeline}}	itemList	{{else}}	itemList	{{end}}

			397	 //	Range	keyword	is	past.

			398	 func	(t	*Tree)	rangeControl()	Node	{

			399	 	 return	newRange(t.parseControl("range"))

			400	 }

			401	

			402	 //	With:

			403	 //	 {{with	pipeline}}	itemList	{{end}}

			404	 //	 {{with	pipeline}}	itemList	{{else}}	itemList	{{end}}

			405	 //	If	keyword	is	past.

			406	 func	(t	*Tree)	withControl()	Node	{

			407	 	 return	newWith(t.parseControl("with"))

			408	 }

			409	

			410	 //	End:

			411	 //	 {{end}}

			412	 //	End	keyword	is	past.

			413	 func	(t	*Tree)	endControl()	Node	{

			414	 	 t.expect(itemRightDelim,	"end")

			415	 	 return	newEnd()

			416	 }

			417	

			418	 //	Else:

			419	 //	 {{else}}

			420	 //	Else	keyword	is	past.

			421	 func	(t	*Tree)	elseControl()	Node	{

			422	 	 t.expect(itemRightDelim,	"else")

			423	 	 return	newElse(t.lex.lineNumber())

			424	 }

			425	

			426	 //	Template:

			427	 //	 {{template	stringValue	pipeline}}

			428	 //	Template	keyword	is	past.		The	name	must	be	something	that	can	evaluate

			429	 //	to	a	string.

			430	 func	(t	*Tree)	templateControl()	Node	{

			431	 	 var	name	string

			432	 	 switch	token	:=	t.next();	token.typ	{

			433	 	 case	itemString,	itemRawString:

			434	 	 	 s,	err	:=	strconv.Unquote(token.val)

			435	 	 	 if	err	!=	nil	{

			436	 	 	 	 t.error(err)

			437	 	 	 }

			438	 	 	 name	=	s

			439	 	 default:

			440	 	 	 t.unexpected(token,	"template	invocation")

			441	 	 }

			442	 	 var	pipe	*PipeNode

			443	 	 if	t.next().typ	!=	itemRightDelim	{

			444	 	 	 t.backup()

			445	 	 	 //	Do	not	pop	variables;	they	persist	until	"end".

			446	 	 	 pipe	=	t.pipeline("template")

			447	 	 }

			448	 	 return	newTemplate(t.lex.lineNumber(),	name,	pipe)

			449	 }

			450	

			451	 //	command:

			452	 //	space-separated	arguments	up	to	a	pipeline	character	or	right	delimiter.

			453	 //	we	consume	the	pipe	character	but	leave	the	right	delim	to	terminate	the	action.

			454	 func	(t	*Tree)	command()	*CommandNode	{

			455	 	 cmd	:=	newCommand()

			456	 Loop:

			457	 	 for	{

			458	 	 	 switch	token	:=	t.next();	token.typ	{

			459	 	 	 case	itemRightDelim:

			460	 	 	 	 t.backup()

			461	 	 	 	 break	Loop

			462	 	 	 case	itemPipe:

			463	 	 	 	 break	Loop

			464	 	 	 case	itemError:

			465	 	 	 	 t.errorf("%s",	token.val)

			466	 	 	 case	itemIdentifier:

			467	 	 	 	 if	!t.hasFunction(token.val)	{

			468	 	 	 	 	 t.errorf("function	%q	not	defined",	token.val)

			469	 	 	 	 }

			470	 	 	 	 cmd.append(NewIdentifier(token.val))

			471	 	 	 case	itemDot:

			472	 	 	 	 cmd.append(newDot())

			473	 	 	 case	itemVariable:

			474	 	 	 	 cmd.append(t.useVar(token.val))

			475	 	 	 case	itemField:

			476	 	 	 	 cmd.append(newField(token.val))

			477	 	 	 case	itemBool:

			478	 	 	 	 cmd.append(newBool(token.val	==	"true"))

			479	 	 	 case	itemCharConstant,	itemComplex,	itemNumber:

			480	 	 	 	 number,	err	:=	newNumber(token.val,	token.typ)

			481	 	 	 	 if	err	!=	nil	{

			482	 	 	 	 	 t.error(err)

			483	 	 	 	 }

			484	 	 	 	 cmd.append(number)

			485	 	 	 case	itemString,	itemRawString:

			486	 	 	 	 s,	err	:=	strconv.Unquote(token.val)

			487	 	 	 	 if	err	!=	nil	{

			488	 	 	 	 	 t.error(err)

			489	 	 	 	 }

			490	 	 	 	 cmd.append(newString(token.val,	s))

			491	 	 	 default:

			492	 	 	 	 t.unexpected(token,	"command")

			493	 	 	 }

			494	 	 }

			495	 	 if	len(cmd.Args)	==	0	{

			496	 	 	 t.errorf("empty	command")

			497	 	 }

			498	 	 return	cmd

			499	 }

			500	

			501	 //	hasFunction	reports	if	a	function	name	exists	in	the	Tree's	maps.

			502	 func	(t	*Tree)	hasFunction(name	string)	bool	{

			503	 	 for	_,	funcMap	:=	range	t.funcs	{

			504	 	 	 if	funcMap	==	nil	{

			505	 	 	 	 continue

			506	 	 	 }

			507	 	 	 if	funcMap[name]	!=	nil	{

			508	 	 	 	 return	true

			509	 	 	 }

			510	 	 }

			511	 	 return	false

			512	 }

			513	

			514	 //	popVars	trims	the	variable	list	to	the	specified	length

			515	 func	(t	*Tree)	popVars(n	int)	{

			516	 	 t.vars	=	t.vars[:n]

			517	 }

			518	

			519	 //	useVar	returns	a	node	for	a	variable	reference.	It	errors	if	the

			520	 //	variable	is	not	defined.

			521	 func	(t	*Tree)	useVar(name	string)	Node	{

			522	 	 v	:=	newVariable(name)

			523	 	 for	_,	varName	:=	range	t.vars	{

			524	 	 	 if	varName	==	v.Ident[0]	{

			525	 	 	 	 return	v

			526	 	 	 }

			527	 	 }

			528	 	 t.errorf("undefined	variable	%q",	v.Ident[0])

			529	 	 return	nil

			530	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.

http://code.google.com/policies.html#restrictions

Terms	of	Service	|	Privacy	Policy

http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/time/format.go
					1	 //	Copyright	2010	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	time

					6	

					7	 import	"errors"

					8	

					9	 //	These	are	predefined	layouts	for	use	in	Time.Format.

				10	 //	The	standard	time	used	in	the	layouts	is:

				11	 //	 Mon	Jan	2	15:04:05	MST	2006

				12	 //	which	is	Unix	time	1136243045.	Since	MST	is	GMT-0700,

				13	 //	the	standard	time	can	be	thought	of	as

				14	 //	 01/02	03:04:05PM	'06	-0700

				15	 //	To	define	your	own	format,	write	down	what	the	standard	time	would	look

				16	 //	like	formatted	your	way;	see	the	values	of	constants	like	ANSIC,

				17	 //	StampMicro	or	Kitchen	for	examples.

				18	 //

				19	 //	Within	the	format	string,	an	underscore	_	represents	a	space	that	may	be

				20	 //	replaced	by	a	digit	if	the	following	number	(a	day)	has	two	digits;	for

				21	 //	compatibility	with	fixed-width	Unix	time	formats.

				22	 //

				23	 //	A	decimal	point	followed	by	one	or	more	zeros	represents	a	fractional

				24	 //	second,	printed	to	the	given	number	of	decimal	places.		A	decimal	point

				25	 //	followed	by	one	or	more	nines	represents	a	fractional	second,	printed	to

				26	 //	the	given	number	of	decimal	places,	with	trailing	zeros	removed.

				27	 //	When	parsing	(only),	the	input	may	contain	a	fractional	second

				28	 //	field	immediately	after	the	seconds	field,	even	if	the	layout	does	not

				29	 //	signify	its	presence.	In	that	case	a	decimal	point	followed	by	a	maximal

				30	 //	series	of	digits	is	parsed	as	a	fractional	second.

				31	 //

				32	 //	Numeric	time	zone	offsets	format	as	follows:

				33	 //	 -0700		±hhmm

				34	 //	 -07:00	±hh:mm

				35	 //	Replacing	the	sign	in	the	format	with	a	Z	triggers

				36	 //	the	ISO	8601	behavior	of	printing	Z	instead	of	an

				37	 //	offset	for	the	UTC	zone.		Thus:

				38	 //	 Z0700		Z	or	±hhmm

				39	 //	 Z07:00	Z	or	±hh:mm

				40	 const	(

				41	 	 ANSIC							=	"Mon	Jan	_2	15:04:05	2006"

				42	 	 UnixDate				=	"Mon	Jan	_2	15:04:05	MST	2006"

				43	 	 RubyDate				=	"Mon	Jan	02	15:04:05	-0700	2006"

				44	 	 RFC822						=	"02	Jan	06	15:04	MST"

				45	 	 RFC822Z					=	"02	Jan	06	15:04	-0700"	//	RFC822	with	numeric	zone

				46	 	 RFC850						=	"Monday,	02-Jan-06	15:04:05	MST"

				47	 	 RFC1123					=	"Mon,	02	Jan	2006	15:04:05	MST"

				48	 	 RFC1123Z				=	"Mon,	02	Jan	2006	15:04:05	-0700"	//	RFC1123	with	numeric	zone

				49	 	 RFC3339					=	"2006-01-02T15:04:05Z07:00"

				50	 	 RFC3339Nano	=	"2006-01-02T15:04:05.999999999Z07:00"

				51	 	 Kitchen					=	"3:04PM"

				52	 	 //	Handy	time	stamps.

				53	 	 Stamp						=	"Jan	_2	15:04:05"

				54	 	 StampMilli	=	"Jan	_2	15:04:05.000"

				55	 	 StampMicro	=	"Jan	_2	15:04:05.000000"

				56	 	 StampNano		=	"Jan	_2	15:04:05.000000000"

				57)

				58	

				59	 const	(

				60	 	 stdLongMonth						=	"January"

				61	 	 stdMonth										=	"Jan"

				62	 	 stdNumMonth							=	"1"

				63	 	 stdZeroMonth						=	"01"

				64	 	 stdLongWeekDay				=	"Monday"

				65	 	 stdWeekDay								=	"Mon"

				66	 	 stdDay												=	"2"

				67	 	 stdUnderDay							=	"_2"

				68	 	 stdZeroDay								=	"02"

				69	 	 stdHour											=	"15"

				70	 	 stdHour12									=	"3"

				71	 	 stdZeroHour12					=	"03"

				72	 	 stdMinute									=	"4"

				73	 	 stdZeroMinute					=	"04"

				74	 	 stdSecond									=	"5"

				75	 	 stdZeroSecond					=	"05"

				76	 	 stdLongYear							=	"2006"

				77	 	 stdYear											=	"06"

				78	 	 stdPM													=	"PM"

				79	 	 stdpm													=	"pm"

				80	 	 stdTZ													=	"MST"

				81	 	 stdISO8601TZ						=	"Z0700"		//	prints	Z	for	UTC

				82	 	 stdISO8601ColonTZ	=	"Z07:00"	//	prints	Z	for	UTC

				83	 	 stdNumTZ										=	"-0700"		//	always	numeric

				84	 	 stdNumShortTZ					=	"-07"				//	always	numeric

				85	 	 stdNumColonTZ					=	"-07:00"	//	always	numeric

				86)

				87	

				88	 //	nextStdChunk	finds	the	first	occurrence	of	a	std	string	in

				89	 //	layout	and	returns	the	text	before,	the	std	string,	and	the	text	after.

				90	 func	nextStdChunk(layout	string)	(prefix,	std,	suffix	string)	{

				91	 	 for	i	:=	0;	i	<	len(layout);	i++	{

				92	 	 	 switch	layout[i]	{

				93	 	 	 case	'J':	//	January,	Jan

				94	 	 	 	 if	len(layout)	>=	i+7	&&	layout[i:i+7]	==	stdLongMonth	{

				95	 	 	 	 	 return	layout[0:i],	stdLongMonth,	layout[i+7:]

				96	 	 	 	 }

				97	 	 	 	 if	len(layout)	>=	i+3	&&	layout[i:i+3]	==	stdMonth	{

				98	 	 	 	 	 return	layout[0:i],	stdMonth,	layout[i+3:]

				99	 	 	 	 }

			100	

			101	 	 	 case	'M':	//	Monday,	Mon,	MST

			102	 	 	 	 if	len(layout)	>=	i+6	&&	layout[i:i+6]	==	stdLongWeekDay	{

			103	 	 	 	 	 return	layout[0:i],	stdLongWeekDay,	layout[i+6:]

			104	 	 	 	 }

			105	 	 	 	 if	len(layout)	>=	i+3	{

			106	 	 	 	 	 if	layout[i:i+3]	==	stdWeekDay	{

			107	 	 	 	 	 	 return	layout[0:i],	stdWeekDay,	layout[i+3:]

			108	 	 	 	 	 }

			109	 	 	 	 	 if	layout[i:i+3]	==	stdTZ	{

			110	 	 	 	 	 	 return	layout[0:i],	stdTZ,	layout[i+3:]

			111	 	 	 	 	 }

			112	 	 	 	 }

			113	

			114	 	 	 case	'0':	//	01,	02,	03,	04,	05,	06

			115	 	 	 	 if	len(layout)	>=	i+2	&&	'1'	<=	layout[i+1]	&&	layout[i+1]	<=	'6'	{

			116	 	 	 	 	 return	layout[0:i],	layout[i	:	i+2],	layout[i+2:]

			117	 	 	 	 }

			118	

			119	 	 	 case	'1':	//	15,	1

			120	 	 	 	 if	len(layout)	>=	i+2	&&	layout[i+1]	==	'5'	{

			121	 	 	 	 	 return	layout[0:i],	stdHour,	layout[i+2:]

			122	 	 	 	 }

			123	 	 	 	 return	layout[0:i],	stdNumMonth,	layout[i+1:]

			124	

			125	 	 	 case	'2':	//	2006,	2

			126	 	 	 	 if	len(layout)	>=	i+4	&&	layout[i:i+4]	==	stdLongYear	{

			127	 	 	 	 	 return	layout[0:i],	stdLongYear,	layout[i+4:]

			128	 	 	 	 }

			129	 	 	 	 return	layout[0:i],	stdDay,	layout[i+1:]

			130	

			131	 	 	 case	'_':	//	_2

			132	 	 	 	 if	len(layout)	>=	i+2	&&	layout[i+1]	==	'2'	{

			133	 	 	 	 	 return	layout[0:i],	stdUnderDay,	layout[i+2:]

			134	 	 	 	 }

			135	

			136	 	 	 case	'3',	'4',	'5':	//	3,	4,	5

			137	 	 	 	 return	layout[0:i],	layout[i	:	i+1],	layout[i+1:]

			138	

			139	 	 	 case	'P':	//	PM

			140	 	 	 	 if	len(layout)	>=	i+2	&&	layout[i+1]	==	'M'	{

			141	 	 	 	 	 return	layout[0:i],	layout[i	:	i+2],	layout[i+2:]

			142	 	 	 	 }

			143	

			144	 	 	 case	'p':	//	pm

			145	 	 	 	 if	len(layout)	>=	i+2	&&	layout[i+1]	==	'm'	{

			146	 	 	 	 	 return	layout[0:i],	layout[i	:	i+2],	layout[i+2:]

			147	 	 	 	 }

			148	

			149	 	 	 case	'-':	//	-0700,	-07:00,	-07

			150	 	 	 	 if	len(layout)	>=	i+5	&&	layout[i:i+5]	==	stdNumTZ	{

			151	 	 	 	 	 return	layout[0:i],	layout[i	:	i+5],	layout[i+5:]

			152	 	 	 	 }

			153	 	 	 	 if	len(layout)	>=	i+6	&&	layout[i:i+6]	==	stdNumColonTZ	{

			154	 	 	 	 	 return	layout[0:i],	layout[i	:	i+6],	layout[i+6:]

			155	 	 	 	 }

			156	 	 	 	 if	len(layout)	>=	i+3	&&	layout[i:i+3]	==	stdNumShortTZ	{

			157	 	 	 	 	 return	layout[0:i],	layout[i	:	i+3],	layout[i+3:]

			158	 	 	 	 }

			159	 	 	 case	'Z':	//	Z0700,	Z07:00

			160	 	 	 	 if	len(layout)	>=	i+5	&&	layout[i:i+5]	==	stdISO8601TZ	{

			161	 	 	 	 	 return	layout[0:i],	layout[i	:	i+5],	layout[i+5:]

			162	 	 	 	 }

			163	 	 	 	 if	len(layout)	>=	i+6	&&	layout[i:i+6]	==	stdISO8601ColonTZ	{

			164	 	 	 	 	 return	layout[0:i],	layout[i	:	i+6],	layout[i+6:]

			165	 	 	 	 }

			166	 	 	 case	'.':	//	.000	or	.999	-	repeated	digits	for	fractional	seconds.

			167	 	 	 	 if	i+1	<	len(layout)	&&	(layout[i+1]	==	'0'	||	layout[i+1]	==	'9')	{

			168	 	 	 	 	 ch	:=	layout[i+1]

			169	 	 	 	 	 j	:=	i	+	1

			170	 	 	 	 	 for	j	<	len(layout)	&&	layout[j]	==	ch	{

			171	 	 	 	 	 	 j++

			172	 	 	 	 	 }

			173	 	 	 	 	 //	String	of	digits	must	end	here	-	only	fractional	second	is	all	digits.

			174	 	 	 	 	 if	!isDigit(layout,	j)	{

			175	 	 	 	 	 	 return	layout[0:i],	layout[i:j],	layout[j:]

			176	 	 	 	 	 }

			177	 	 	 	 }

			178	 	 	 }

			179	 	 }

			180	 	 return	layout,	"",	""

			181	 }

			182	

			183	 var	longDayNames	=	[]string{

			184	 	 "Sunday",

			185	 	 "Monday",

			186	 	 "Tuesday",

			187	 	 "Wednesday",

			188	 	 "Thursday",

			189	 	 "Friday",

			190	 	 "Saturday",

			191	 }

			192	

			193	 var	shortDayNames	=	[]string{

			194	 	 "Sun",

			195	 	 "Mon",

			196	 	 "Tue",

			197	 	 "Wed",

			198	 	 "Thu",

			199	 	 "Fri",

			200	 	 "Sat",

			201	 }

			202	

			203	 var	shortMonthNames	=	[]string{

			204	 	 "---",

			205	 	 "Jan",

			206	 	 "Feb",

			207	 	 "Mar",

			208	 	 "Apr",

			209	 	 "May",

			210	 	 "Jun",

			211	 	 "Jul",

			212	 	 "Aug",

			213	 	 "Sep",

			214	 	 "Oct",

			215	 	 "Nov",

			216	 	 "Dec",

			217	 }

			218	

			219	 var	longMonthNames	=	[]string{

			220	 	 "---",

			221	 	 "January",

			222	 	 "February",

			223	 	 "March",

			224	 	 "April",

			225	 	 "May",

			226	 	 "June",

			227	 	 "July",

			228	 	 "August",

			229	 	 "September",

			230	 	 "October",

			231	 	 "November",

			232	 	 "December",

			233	 }

			234	

			235	 //	match	returns	true	if	s1	and	s2	match	ignoring	case.

			236	 //	It	is	assumed	s1	and	s2	are	the	same	length.

			237	 func	match(s1,	s2	string)	bool	{

			238	 	 for	i	:=	0;	i	<	len(s1);	i++	{

			239	 	 	 c1	:=	s1[i]

			240	 	 	 c2	:=	s2[i]

			241	 	 	 if	c1	!=	c2	{

			242	 	 	 	 //	Switch	to	lower-case;	'a'-'A'	is	known	to	be	a	single	bit.

			243	 	 	 	 c1	|=	'a'	-	'A'

			244	 	 	 	 c2	|=	'a'	-	'A'

			245	 	 	 	 if	c1	!=	c2	||	c1	<	'a'	||	c1	>	'z'	{

			246	 	 	 	 	 return	false

			247	 	 	 	 }

			248	 	 	 }

			249	 	 }

			250	 	 return	true

			251	 }

			252	

			253	 func	lookup(tab	[]string,	val	string)	(int,	string,	error)	{

			254	 	 for	i,	v	:=	range	tab	{

			255	 	 	 if	len(val)	>=	len(v)	&&	match(val[0:len(v)],	v)	{

			256	 	 	 	 return	i,	val[len(v):],	nil

			257	 	 	 }

			258	 	 }

			259	 	 return	-1,	val,	errBad

			260	 }

			261	

			262	 //	Duplicates	functionality	in	strconv,	but	avoids	dependency.

			263	 func	itoa(x	int)	string	{

			264	 	 var	buf	[32]byte

			265	 	 n	:=	len(buf)

			266	 	 if	x	==	0	{

			267	 	 	 return	"0"

			268	 	 }

			269	 	 u	:=	uint(x)

			270	 	 if	x	<	0	{

			271	 	 	 u	=	-u

			272	 	 }

			273	 	 for	u	>	0	{

			274	 	 	 n--

			275	 	 	 buf[n]	=	byte(u%10	+	'0')

			276	 	 	 u	/=	10

			277	 	 }

			278	 	 if	x	<	0	{

			279	 	 	 n--

			280	 	 	 buf[n]	=	'-'

			281	 	 }

			282	 	 return	string(buf[n:])

			283	 }

			284	

			285	 //	Never	printed,	just	needs	to	be	non-nil	for	return	by	atoi.

			286	 var	atoiError	=	errors.New("time:	invalid	number")

			287	

			288	 //	Duplicates	functionality	in	strconv,	but	avoids	dependency.

			289	 func	atoi(s	string)	(x	int,	err	error)	{

			290	 	 neg	:=	false

			291	 	 if	s	!=	""	&&	s[0]	==	'-'	{

			292	 	 	 neg	=	true

			293	 	 	 s	=	s[1:]

			294	 	 }

			295	 	 x,	rem,	err	:=	leadingInt(s)

			296	 	 if	err	!=	nil	||	rem	!=	""	{

			297	 	 	 return	0,	atoiError

			298	 	 }

			299	 	 if	neg	{

			300	 	 	 x	=	-x

			301	 	 }

			302	 	 return	x,	nil

			303	 }

			304	

			305	 func	pad(i	int,	padding	string)	string	{

			306	 	 s	:=	itoa(i)

			307	 	 if	i	<	10	{

			308	 	 	 s	=	padding	+	s

			309	 	 }

			310	 	 return	s

			311	 }

			312	

			313	 func	zeroPad(i	int)	string	{	return	pad(i,	"0")	}

			314	

			315	 //	formatNano	formats	a	fractional	second,	as	nanoseconds.

			316	 func	formatNano(nanosec,	n	int,	trim	bool)	string	{

			317	 	 //	User	might	give	us	bad	data.	Make	sure	it's	positive	and	in	range.

			318	 	 //	They'll	get	nonsense	output	but	it	will	have	the	right	format.

			319	 	 s	:=	itoa(int(uint(nanosec)	%	1e9))

			320	 	 //	Zero	pad	left	without	fmt.

			321	 	 if	len(s)	<	9	{

			322	 	 	 s	=	"000000000"[:9-len(s)]	+	s

			323	 	 }

			324	 	 if	n	>	9	{

			325	 	 	 n	=	9

			326	 	 }

			327	 	 if	trim	{

			328	 	 	 for	n	>	0	&&	s[n-1]	==	'0'	{

			329	 	 	 	 n--

			330	 	 	 }

			331	 	 	 if	n	==	0	{

			332	 	 	 	 return	""

			333	 	 	 }

			334	 	 }

			335	 	 return	"."	+	s[:n]

			336	 }

			337	

			338	 //	String	returns	the	time	formatted	using	the	format	string

			339	 //	 "2006-01-02	15:04:05.999999999	-0700	MST"

			340	 func	(t	Time)	String()	string	{

			341	 	 return	t.Format("2006-01-02	15:04:05.999999999	-0700	MST")

			342	 }

			343	

			344	 type	buffer	[]byte

			345	

			346	 func	(b	*buffer)	WriteString(s	string)	{

			347	 	 *b	=	append(*b,	s...)

			348	 }

			349	

			350	 func	(b	*buffer)	String()	string	{

			351	 	 return	string([]byte(*b))

			352	 }

			353	

			354	 //	Format	returns	a	textual	representation	of	the	time	value	formatted

			355	 //	according	to	layout.		The	layout	defines	the	format	by	showing	the

			356	 //	representation	of	the	standard	time,

			357	 //	 Mon	Jan	2	15:04:05	-0700	MST	2006

			358	 //	which	is	then	used	to	describe	the	time	to	be	formatted.	Predefined

			359	 //	layouts	ANSIC,	UnixDate,	RFC3339	and	others	describe	standard

			360	 //	representations.	For	more	information	about	the	formats	and	the

			361	 //	definition	of	the	standard	time,	see	the	documentation	for	ANSIC.

			362	 func	(t	Time)	Format(layout	string)	string	{

			363	 	 var	(

			364	 	 	 year		int	=	-1

			365	 	 	 month	Month

			366	 	 	 day			int

			367	 	 	 hour		int	=	-1

			368	 	 	 min			int

			369	 	 	 sec			int

			370	 	 	 b					buffer

			371)

			372	 	 //	Each	iteration	generates	one	std	value.

			373	 	 for	{

			374	 	 	 prefix,	std,	suffix	:=	nextStdChunk(layout)

			375	 	 	 b.WriteString(prefix)

			376	 	 	 if	std	==	""	{

			377	 	 	 	 break

			378	 	 	 }

			379	

			380	 	 	 //	Compute	year,	month,	day	if	needed.

			381	 	 	 if	year	<	0	{

			382	 	 	 	 //	Jan	01	02	2006

			383	 	 	 	 if	a,	z	:=	std[0],	std[len(std)-1];	a	==	'J'	||	a	==	'j'	||	z	==	'1'	||	z	==	'2'	||	z	==	'6'	{

			384	 	 	 	 	 year,	month,	day	=	t.Date()

			385	 	 	 	 }

			386	 	 	 }

			387	

			388	 	 	 //	Compute	hour,	minute,	second	if	needed.

			389	 	 	 if	hour	<	0	{

			390	 	 	 	 //	03	04	05	15	pm

			391	 	 	 	 if	z	:=	std[len(std)-1];	z	==	'3'	||	z	==	'4'	||	z	==	'5'	||	z	==	'm'	||	z	==	'M'	{

			392	 	 	 	 	 hour,	min,	sec	=	t.Clock()

			393	 	 	 	 }

			394	 	 	 }

			395	

			396	 	 	 var	p	string

			397	 	 	 switch	std	{

			398	 	 	 case	stdYear:

			399	 	 	 	 p	=	zeroPad(year	%	100)

			400	 	 	 case	stdLongYear:

			401	 	 	 	 //	Pad	year	to	at	least	4	digits.

			402	 	 	 	 p	=	itoa(year)

			403	 	 	 	 switch	{

			404	 	 	 	 case	year	<=	-1000:

			405	 	 	 	 	 //	ok

			406	 	 	 	 case	year	<=	-100:

			407	 	 	 	 	 p	=	p[:1]	+	"0"	+	p[1:]

			408	 	 	 	 case	year	<=	-10:

			409	 	 	 	 	 p	=	p[:1]	+	"00"	+	p[1:]

			410	 	 	 	 case	year	<	0:

			411	 	 	 	 	 p	=	p[:1]	+	"000"	+	p[1:]

			412	 	 	 	 case	year	<	10:

			413	 	 	 	 	 p	=	"000"	+	p

			414	 	 	 	 case	year	<	100:

			415	 	 	 	 	 p	=	"00"	+	p

			416	 	 	 	 case	year	<	1000:

			417	 	 	 	 	 p	=	"0"	+	p

			418	 	 	 	 }

			419	 	 	 case	stdMonth:

			420	 	 	 	 p	=	month.String()[:3]

			421	 	 	 case	stdLongMonth:

			422	 	 	 	 p	=	month.String()

			423	 	 	 case	stdNumMonth:

			424	 	 	 	 p	=	itoa(int(month))

			425	 	 	 case	stdZeroMonth:

			426	 	 	 	 p	=	zeroPad(int(month))

			427	 	 	 case	stdWeekDay:

			428	 	 	 	 p	=	t.Weekday().String()[:3]

			429	 	 	 case	stdLongWeekDay:

			430	 	 	 	 p	=	t.Weekday().String()

			431	 	 	 case	stdDay:

			432	 	 	 	 p	=	itoa(day)

			433	 	 	 case	stdUnderDay:

			434	 	 	 	 p	=	pad(day,	"	")

			435	 	 	 case	stdZeroDay:

			436	 	 	 	 p	=	zeroPad(day)

			437	 	 	 case	stdHour:

			438	 	 	 	 p	=	zeroPad(hour)

			439	 	 	 case	stdHour12:

			440	 	 	 	 //	Noon	is	12PM,	midnight	is	12AM.

			441	 	 	 	 hr	:=	hour	%	12

			442	 	 	 	 if	hr	==	0	{

			443	 	 	 	 	 hr	=	12

			444	 	 	 	 }

			445	 	 	 	 p	=	itoa(hr)

			446	 	 	 case	stdZeroHour12:

			447	 	 	 	 //	Noon	is	12PM,	midnight	is	12AM.

			448	 	 	 	 hr	:=	hour	%	12

			449	 	 	 	 if	hr	==	0	{

			450	 	 	 	 	 hr	=	12

			451	 	 	 	 }

			452	 	 	 	 p	=	zeroPad(hr)

			453	 	 	 case	stdMinute:

			454	 	 	 	 p	=	itoa(min)

			455	 	 	 case	stdZeroMinute:

			456	 	 	 	 p	=	zeroPad(min)

			457	 	 	 case	stdSecond:

			458	 	 	 	 p	=	itoa(sec)

			459	 	 	 case	stdZeroSecond:

			460	 	 	 	 p	=	zeroPad(sec)

			461	 	 	 case	stdPM:

			462	 	 	 	 if	hour	>=	12	{

			463	 	 	 	 	 p	=	"PM"

			464	 	 	 	 }	else	{

			465	 	 	 	 	 p	=	"AM"

			466	 	 	 	 }

			467	 	 	 case	stdpm:

			468	 	 	 	 if	hour	>=	12	{

			469	 	 	 	 	 p	=	"pm"

			470	 	 	 	 }	else	{

			471	 	 	 	 	 p	=	"am"

			472	 	 	 	 }

			473	 	 	 case	stdISO8601TZ,	stdISO8601ColonTZ,	stdNumTZ,	stdNumColonTZ:

			474	 	 	 	 //	Ugly	special	case.		We	cheat	and	take	the	"Z"	variants

			475	 	 	 	 //	to	mean	"the	time	zone	as	formatted	for	ISO	8601".

			476	 	 	 	 _,	offset	:=	t.Zone()

			477	 	 	 	 if	offset	==	0	&&	std[0]	==	'Z'	{

			478	 	 	 	 	 p	=	"Z"

			479	 	 	 	 	 break

			480	 	 	 	 }

			481	 	 	 	 zone	:=	offset	/	60	//	convert	to	minutes

			482	 	 	 	 if	zone	<	0	{

			483	 	 	 	 	 p	=	"-"

			484	 	 	 	 	 zone	=	-zone

			485	 	 	 	 }	else	{

			486	 	 	 	 	 p	=	"+"

			487	 	 	 	 }

			488	 	 	 	 p	+=	zeroPad(zone	/	60)

			489	 	 	 	 if	std	==	stdISO8601ColonTZ	||	std	==	stdNumColonTZ	{

			490	 	 	 	 	 p	+=	":"

			491	 	 	 	 }

			492	 	 	 	 p	+=	zeroPad(zone	%	60)

			493	 	 	 case	stdTZ:

			494	 	 	 	 name,	offset	:=	t.Zone()

			495	 	 	 	 if	name	!=	""	{

			496	 	 	 	 	 p	=	name

			497	 	 	 	 }	else	{

			498	 	 	 	 	 //	No	time	zone	known	for	this	time,	but	we	must	print	one.

			499	 	 	 	 	 //	Use	the	-0700	format.

			500	 	 	 	 	 zone	:=	offset	/	60	//	convert	to	minutes

			501	 	 	 	 	 if	zone	<	0	{

			502	 	 	 	 	 	 p	=	"-"

			503	 	 	 	 	 	 zone	=	-zone

			504	 	 	 	 	 }	else	{

			505	 	 	 	 	 	 p	=	"+"

			506	 	 	 	 	 }

			507	 	 	 	 	 p	+=	zeroPad(zone	/	60)

			508	 	 	 	 	 p	+=	zeroPad(zone	%	60)

			509	 	 	 	 }

			510	 	 	 default:

			511	 	 	 	 if	len(std)	>=	2	&&	(std[0:2]	==	".0"	||	std[0:2]	==	".9")	{

			512	 	 	 	 	 p	=	formatNano(t.Nanosecond(),	len(std)-1,	std[1]	==	'9')

			513	 	 	 	 }

			514	 	 	 }

			515	 	 	 b.WriteString(p)

			516	 	 	 layout	=	suffix

			517	 	 }

			518	 	 return	b.String()

			519	 }

			520	

			521	 var	errBad	=	errors.New("bad	value	for	field")	//	placeholder	not	passed	to	user

			522	

			523	 //	ParseError	describes	a	problem	parsing	a	time	string.

			524	 type	ParseError	struct	{

			525	 	 Layout					string

			526	 	 Value						string

			527	 	 LayoutElem	string

			528	 	 ValueElem		string

			529	 	 Message				string

			530	 }

			531	

			532	 func	quote(s	string)	string	{

			533	 	 return	"\""	+	s	+	"\""

			534	 }

			535	

			536	 //	Error	returns	the	string	representation	of	a	ParseError.

			537	 func	(e	*ParseError)	Error()	string	{

			538	 	 if	e.Message	==	""	{

			539	 	 	 return	"parsing	time	"	+

			540	 	 	 	 quote(e.Value)	+	"	as	"	+

			541	 	 	 	 quote(e.Layout)	+	":	cannot	parse	"	+

			542	 	 	 	 quote(e.ValueElem)	+	"	as	"	+

			543	 	 	 	 quote(e.LayoutElem)

			544	 	 }

			545	 	 return	"parsing	time	"	+

			546	 	 	 quote(e.Value)	+	e.Message

			547	 }

			548	

			549	 //	isDigit	returns	true	if	s[i]	is	a	decimal	digit,	false	if	not	or

			550	 //	if	s[i]	is	out	of	range.

			551	 func	isDigit(s	string,	i	int)	bool	{

			552	 	 if	len(s)	<=	i	{

			553	 	 	 return	false

			554	 	 }

			555	 	 c	:=	s[i]

			556	 	 return	'0'	<=	c	&&	c	<=	'9'

			557	 }

			558	

			559	 //	getnum	parses	s[0:1]	or	s[0:2]	(fixed	forces	the	latter)

			560	 //	as	a	decimal	integer	and	returns	the	integer	and	the

			561	 //	remainder	of	the	string.

			562	 func	getnum(s	string,	fixed	bool)	(int,	string,	error)	{

			563	 	 if	!isDigit(s,	0)	{

			564	 	 	 return	0,	s,	errBad

			565	 	 }

			566	 	 if	!isDigit(s,	1)	{

			567	 	 	 if	fixed	{

			568	 	 	 	 return	0,	s,	errBad

			569	 	 	 }

			570	 	 	 return	int(s[0]	-	'0'),	s[1:],	nil

			571	 	 }

			572	 	 return	int(s[0]-'0')*10	+	int(s[1]-'0'),	s[2:],	nil

			573	 }

			574	

			575	 func	cutspace(s	string)	string	{

			576	 	 for	len(s)	>	0	&&	s[0]	==	'	'	{

			577	 	 	 s	=	s[1:]

			578	 	 }

			579	 	 return	s

			580	 }

			581	

			582	 //	skip	removes	the	given	prefix	from	value,

			583	 //	treating	runs	of	space	characters	as	equivalent.

			584	 func	skip(value,	prefix	string)	(string,	error)	{

			585	 	 for	len(prefix)	>	0	{

			586	 	 	 if	prefix[0]	==	'	'	{

			587	 	 	 	 if	len(value)	>	0	&&	value[0]	!=	'	'	{

			588	 	 	 	 	 return	"",	errBad

			589	 	 	 	 }

			590	 	 	 	 prefix	=	cutspace(prefix)

			591	 	 	 	 value	=	cutspace(value)

			592	 	 	 	 continue

			593	 	 	 }

			594	 	 	 if	len(value)	==	0	||	value[0]	!=	prefix[0]	{

			595	 	 	 	 return	"",	errBad

			596	 	 	 }

			597	 	 	 prefix	=	prefix[1:]

			598	 	 	 value	=	value[1:]

			599	 	 }

			600	 	 return	value,	nil

			601	 }

			602	

			603	 //	Parse	parses	a	formatted	string	and	returns	the	time	value	it	represents.

			604	 //	The	layout	defines	the	format	by	showing	the	representation	of	the

			605	 //	standard	time,

			606	 //	 Mon	Jan	2	15:04:05	-0700	MST	2006

			607	 //	which	is	then	used	to	describe	the	string	to	be	parsed.	Predefined	layouts

			608	 //	ANSIC,	UnixDate,	RFC3339	and	others	describe	standard	representations.	For

			609	 //	more	information	about	the	formats	and	the	definition	of	the	standard

			610	 //	time,	see	the	documentation	for	ANSIC.

			611	 //

			612	 //	Elements	omitted	from	the	value	are	assumed	to	be	zero	or,	when

			613	 //	zero	is	impossible,	one,	so	parsing	"3:04pm"	returns	the	time

			614	 //	corresponding	to	Jan	1,	year	0,	15:04:00	UTC.

			615	 //	Years	must	be	in	the	range	0000..9999.	The	day	of	the	week	is	checked

			616	 //	for	syntax	but	it	is	otherwise	ignored.

			617	 func	Parse(layout,	value	string)	(Time,	error)	{

			618	 	 alayout,	avalue	:=	layout,	value

			619	 	 rangeErrString	:=	""	//	set	if	a	value	is	out	of	range

			620	 	 amSet	:=	false							//	do	we	need	to	subtract	12	from	the	hour	for	midnight?

			621	 	 pmSet	:=	false							//	do	we	need	to	add	12	to	the	hour?

			622	

			623	 	 //	Time	being	constructed.

			624	 	 var	(

			625	 	 	 year							int

			626	 	 	 month						int	=	1	//	January

			627	 	 	 day								int	=	1

			628	 	 	 hour							int

			629	 	 	 min								int

			630	 	 	 sec								int

			631	 	 	 nsec							int

			632	 	 	 z										*Location

			633	 	 	 zoneOffset	int	=	-1

			634	 	 	 zoneName			string

			635)

			636	

			637	 	 //	Each	iteration	processes	one	std	value.

			638	 	 for	{

			639	 	 	 var	err	error

			640	 	 	 prefix,	std,	suffix	:=	nextStdChunk(layout)

			641	 	 	 value,	err	=	skip(value,	prefix)

			642	 	 	 if	err	!=	nil	{

			643	 	 	 	 return	Time{},	&ParseError{alayout,	avalue,	prefix,	value,	""}

			644	 	 	 }

			645	 	 	 if	len(std)	==	0	{

			646	 	 	 	 if	len(value)	!=	0	{

			647	 	 	 	 	 return	Time{},	&ParseError{alayout,	avalue,	"",	value,	":	extra	text:	"	+	value}

			648	 	 	 	 }

			649	 	 	 	 break

			650	 	 	 }

			651	 	 	 layout	=	suffix

			652	 	 	 var	p	string

			653	 	 	 switch	std	{

			654	 	 	 case	stdYear:

			655	 	 	 	 if	len(value)	<	2	{

			656	 	 	 	 	 err	=	errBad

			657	 	 	 	 	 break

			658	 	 	 	 }

			659	 	 	 	 p,	value	=	value[0:2],	value[2:]

			660	 	 	 	 year,	err	=	atoi(p)

			661	 	 	 	 if	year	>=	69	{	//	Unix	time	starts	Dec	31	1969	in	some	time	zones

			662	 	 	 	 	 year	+=	1900

			663	 	 	 	 }	else	{

			664	 	 	 	 	 year	+=	2000

			665	 	 	 	 }

			666	 	 	 case	stdLongYear:

			667	 	 	 	 if	len(value)	<	4	||	!isDigit(value,	0)	{

			668	 	 	 	 	 err	=	errBad

			669	 	 	 	 	 break

			670	 	 	 	 }

			671	 	 	 	 p,	value	=	value[0:4],	value[4:]

			672	 	 	 	 year,	err	=	atoi(p)

			673	 	 	 case	stdMonth:

			674	 	 	 	 month,	value,	err	=	lookup(shortMonthNames,	value)

			675	 	 	 case	stdLongMonth:

			676	 	 	 	 month,	value,	err	=	lookup(longMonthNames,	value)

			677	 	 	 case	stdNumMonth,	stdZeroMonth:

			678	 	 	 	 month,	value,	err	=	getnum(value,	std	==	stdZeroMonth)

			679	 	 	 	 if	month	<=	0	||	12	<	month	{

			680	 	 	 	 	 rangeErrString	=	"month"

			681	 	 	 	 }

			682	 	 	 case	stdWeekDay:

			683	 	 	 	 //	Ignore	weekday	except	for	error	checking.

			684	 	 	 	 _,	value,	err	=	lookup(shortDayNames,	value)

			685	 	 	 case	stdLongWeekDay:

			686	 	 	 	 _,	value,	err	=	lookup(longDayNames,	value)

			687	 	 	 case	stdDay,	stdUnderDay,	stdZeroDay:

			688	 	 	 	 if	std	==	stdUnderDay	&&	len(value)	>	0	&&	value[0]	==	'	'	{

			689	 	 	 	 	 value	=	value[1:]

			690	 	 	 	 }

			691	 	 	 	 day,	value,	err	=	getnum(value,	std	==	stdZeroDay)

			692	 	 	 	 if	day	<	0	||	31	<	day	{

			693	 	 	 	 	 rangeErrString	=	"day"

			694	 	 	 	 }

			695	 	 	 case	stdHour:

			696	 	 	 	 hour,	value,	err	=	getnum(value,	false)

			697	 	 	 	 if	hour	<	0	||	24	<=	hour	{

			698	 	 	 	 	 rangeErrString	=	"hour"

			699	 	 	 	 }

			700	 	 	 case	stdHour12,	stdZeroHour12:

			701	 	 	 	 hour,	value,	err	=	getnum(value,	std	==	stdZeroHour12)

			702	 	 	 	 if	hour	<	0	||	12	<	hour	{

			703	 	 	 	 	 rangeErrString	=	"hour"

			704	 	 	 	 }

			705	 	 	 case	stdMinute,	stdZeroMinute:

			706	 	 	 	 min,	value,	err	=	getnum(value,	std	==	stdZeroMinute)

			707	 	 	 	 if	min	<	0	||	60	<=	min	{

			708	 	 	 	 	 rangeErrString	=	"minute"

			709	 	 	 	 }

			710	 	 	 case	stdSecond,	stdZeroSecond:

			711	 	 	 	 sec,	value,	err	=	getnum(value,	std	==	stdZeroSecond)

			712	 	 	 	 if	sec	<	0	||	60	<=	sec	{

			713	 	 	 	 	 rangeErrString	=	"second"

			714	 	 	 	 }

			715	 	 	 	 //	Special	case:	do	we	have	a	fractional	second	but	no

			716	 	 	 	 //	fractional	second	in	the	format?

			717	 	 	 	 if	len(value)	>=	2	&&	value[0]	==	'.'	&&	isDigit(value,	1)	{

			718	 	 	 	 	 _,	std,	_	:=	nextStdChunk(layout)

			719	 	 	 	 	 if	len(std)	>	0	&&	std[0]	==	'.'	&&	isDigit(std,	1)	{

			720	 	 	 	 	 	 //	Fractional	second	in	the	layout;	proceed	normally

			721	 	 	 	 	 	 break

			722	 	 	 	 	 }

			723	 	 	 	 	 //	No	fractional	second	in	the	layout	but	we	have	one	in	the	input.

			724	 	 	 	 	 n	:=	2

			725	 	 	 	 	 for	;	n	<	len(value)	&&	isDigit(value,	n);	n++	{

			726	 	 	 	 	 }

			727	 	 	 	 	 nsec,	rangeErrString,	err	=	parseNanoseconds(value,	n)

			728	 	 	 	 	 value	=	value[n:]

			729	 	 	 	 }

			730	 	 	 case	stdPM:

			731	 	 	 	 if	len(value)	<	2	{

			732	 	 	 	 	 err	=	errBad

			733	 	 	 	 	 break

			734	 	 	 	 }

			735	 	 	 	 p,	value	=	value[0:2],	value[2:]

			736	 	 	 	 switch	p	{

			737	 	 	 	 case	"PM":

			738	 	 	 	 	 pmSet	=	true

			739	 	 	 	 case	"AM":

			740	 	 	 	 	 amSet	=	true

			741	 	 	 	 default:

			742	 	 	 	 	 err	=	errBad

			743	 	 	 	 }

			744	 	 	 case	stdpm:

			745	 	 	 	 if	len(value)	<	2	{

			746	 	 	 	 	 err	=	errBad

			747	 	 	 	 	 break

			748	 	 	 	 }

			749	 	 	 	 p,	value	=	value[0:2],	value[2:]

			750	 	 	 	 switch	p	{

			751	 	 	 	 case	"pm":

			752	 	 	 	 	 pmSet	=	true

			753	 	 	 	 case	"am":

			754	 	 	 	 	 amSet	=	true

			755	 	 	 	 default:

			756	 	 	 	 	 err	=	errBad

			757	 	 	 	 }

			758	 	 	 case	stdISO8601TZ,	stdISO8601ColonTZ,	stdNumTZ,	stdNumShortTZ,	stdNumColonTZ:

			759	 	 	 	 if	std[0]	==	'Z'	&&	len(value)	>=	1	&&	value[0]	==	'Z'	{

			760	 	 	 	 	 value	=	value[1:]

			761	 	 	 	 	 z	=	UTC

			762	 	 	 	 	 break

			763	 	 	 	 }

			764	 	 	 	 var	sign,	hour,	min	string

			765	 	 	 	 if	std	==	stdISO8601ColonTZ	||	std	==	stdNumColonTZ	{

			766	 	 	 	 	 if	len(value)	<	6	{

			767	 	 	 	 	 	 err	=	errBad

			768	 	 	 	 	 	 break

			769	 	 	 	 	 }

			770	 	 	 	 	 if	value[3]	!=	':'	{

			771	 	 	 	 	 	 err	=	errBad

			772	 	 	 	 	 	 break

			773	 	 	 	 	 }

			774	 	 	 	 	 sign,	hour,	min,	value	=	value[0:1],	value[1:3],	value[4:6],	value[6:]

			775	 	 	 	 }	else	if	std	==	stdNumShortTZ	{

			776	 	 	 	 	 if	len(value)	<	3	{

			777	 	 	 	 	 	 err	=	errBad

			778	 	 	 	 	 	 break

			779	 	 	 	 	 }

			780	 	 	 	 	 sign,	hour,	min,	value	=	value[0:1],	value[1:3],	"00",	value[3:]

			781	 	 	 	 }	else	{

			782	 	 	 	 	 if	len(value)	<	5	{

			783	 	 	 	 	 	 err	=	errBad

			784	 	 	 	 	 	 break

			785	 	 	 	 	 }

			786	 	 	 	 	 sign,	hour,	min,	value	=	value[0:1],	value[1:3],	value[3:5],	value[5:]

			787	 	 	 	 }

			788	 	 	 	 var	hr,	mm	int

			789	 	 	 	 hr,	err	=	atoi(hour)

			790	 	 	 	 if	err	==	nil	{

			791	 	 	 	 	 mm,	err	=	atoi(min)

			792	 	 	 	 }

			793	 	 	 	 zoneOffset	=	(hr*60	+	mm)	*	60	//	offset	is	in	seconds

			794	 	 	 	 switch	sign[0]	{

			795	 	 	 	 case	'+':

			796	 	 	 	 case	'-':

			797	 	 	 	 	 zoneOffset	=	-zoneOffset

			798	 	 	 	 default:

			799	 	 	 	 	 err	=	errBad

			800	 	 	 	 }

			801	 	 	 case	stdTZ:

			802	 	 	 	 //	Does	it	look	like	a	time	zone?

			803	 	 	 	 if	len(value)	>=	3	&&	value[0:3]	==	"UTC"	{

			804	 	 	 	 	 z	=	UTC

			805	 	 	 	 	 value	=	value[3:]

			806	 	 	 	 	 break

			807	 	 	 	 }

			808	

			809	 	 	 	 if	len(value)	>=	3	&&	value[2]	==	'T'	{

			810	 	 	 	 	 p,	value	=	value[0:3],	value[3:]

			811	 	 	 	 }	else	if	len(value)	>=	4	&&	value[3]	==	'T'	{

			812	 	 	 	 	 p,	value	=	value[0:4],	value[4:]

			813	 	 	 	 }	else	{

			814	 	 	 	 	 err	=	errBad

			815	 	 	 	 	 break

			816	 	 	 	 }

			817	 	 	 	 for	i	:=	0;	i	<	len(p);	i++	{

			818	 	 	 	 	 if	p[i]	<	'A'	||	'Z'	<	p[i]	{

			819	 	 	 	 	 	 err	=	errBad

			820	 	 	 	 	 }

			821	 	 	 	 }

			822	 	 	 	 if	err	!=	nil	{

			823	 	 	 	 	 break

			824	 	 	 	 }

			825	 	 	 	 //	It's	a	valid	format.

			826	 	 	 	 zoneName	=	p

			827	 	 	 default:

			828	 	 	 	 if	len(value)	<	len(std)	{

			829	 	 	 	 	 err	=	errBad

			830	 	 	 	 	 break

			831	 	 	 	 }

			832	 	 	 	 if	len(std)	>=	2	&&	std[0:2]	==	".0"	{

			833	 	 	 	 	 nsec,	rangeErrString,	err	=	parseNanoseconds(value,	len(std))

			834	 	 	 	 	 value	=	value[len(std):]

			835	 	 	 	 }

			836	 	 	 }

			837	 	 	 if	rangeErrString	!=	""	{

			838	 	 	 	 return	Time{},	&ParseError{alayout,	avalue,	std,	value,	":	"	+	rangeErrString	+	"	out	of	range"}

			839	 	 	 }

			840	 	 	 if	err	!=	nil	{

			841	 	 	 	 return	Time{},	&ParseError{alayout,	avalue,	std,	value,	""}

			842	 	 	 }

			843	 	 }

			844	 	 if	pmSet	&&	hour	<	12	{

			845	 	 	 hour	+=	12

			846	 	 }	else	if	amSet	&&	hour	==	12	{

			847	 	 	 hour	=	0

			848	 	 }

			849	

			850	 	 //	TODO:	be	more	aggressive	checking	day?

			851	 	 if	z	!=	nil	{

			852	 	 	 return	Date(year,	Month(month),	day,	hour,	min,	sec,	nsec,	z),	nil

			853	 	 }

			854	

			855	 	 t	:=	Date(year,	Month(month),	day,	hour,	min,	sec,	nsec,	UTC)

			856	 	 if	zoneOffset	!=	-1	{

			857	 	 	 t.sec	-=	int64(zoneOffset)

			858	

			859	 	 	 //	Look	for	local	zone	with	the	given	offset.

			860	 	 	 //	If	that	zone	was	in	effect	at	the	given	time,	use	it.

			861	 	 	 name,	offset,	_,	_,	_	:=	Local.lookup(t.sec	+	internalToUnix)

			862	 	 	 if	offset	==	zoneOffset	&&	(zoneName	==	""	||	name	==	zoneName)	{

			863	 	 	 	 t.loc	=	Local

			864	 	 	 	 return	t,	nil

			865	 	 	 }

			866	

			867	 	 	 //	Otherwise	create	fake	zone	to	record	offset.

			868	 	 	 t.loc	=	FixedZone(zoneName,	zoneOffset)

			869	 	 	 return	t,	nil

			870	 	 }

			871	

			872	 	 if	zoneName	!=	""	{

			873	 	 	 //	Look	for	local	zone	with	the	given	offset.

			874	 	 	 //	If	that	zone	was	in	effect	at	the	given	time,	use	it.

			875	 	 	 offset,	_,	ok	:=	Local.lookupName(zoneName)

			876	 	 	 if	ok	{

			877	 	 	 	 name,	off,	_,	_,	_	:=	Local.lookup(t.sec	+	internalToUnix	-	int64(offset))

			878	 	 	 	 if	name	==	zoneName	&&	off	==	offset	{

			879	 	 	 	 	 t.sec	-=	int64(offset)

			880	 	 	 	 	 t.loc	=	Local

			881	 	 	 	 	 return	t,	nil

			882	 	 	 	 }

			883	 	 	 }

			884	

			885	 	 	 //	Otherwise,	create	fake	zone	with	unknown	offset.

			886	 	 	 t.loc	=	FixedZone(zoneName,	0)

			887	 	 	 return	t,	nil

			888	 	 }

			889	

			890	 	 //	Otherwise,	fall	back	to	UTC.

			891	 	 return	t,	nil

			892	 }

			893	

			894	 func	parseNanoseconds(value	string,	nbytes	int)	(ns	int,	rangeErrString	string,	err	error)	{

			895	 	 if	value[0]	!=	'.'	{

			896	 	 	 err	=	errBad

			897	 	 	 return

			898	 	 }

			899	 	 ns,	err	=	atoi(value[1:nbytes])

			900	 	 if	err	!=	nil	{

			901	 	 	 return

			902	 	 }

			903	 	 if	ns	<	0	||	1e9	<=	ns	{

			904	 	 	 rangeErrString	=	"fractional	second"

			905	 	 	 return

			906	 	 }

			907	 	 //	We	need	nanoseconds,	which	means	scaling	by	the	number

			908	 	 //	of	missing	digits	in	the	format,	maximum	length	10.	If	it's

			909	 	 //	longer	than	10,	we	won't	scale.

			910	 	 scaleDigits	:=	10	-	nbytes

			911	 	 for	i	:=	0;	i	<	scaleDigits;	i++	{

			912	 	 	 ns	*=	10

			913	 	 }

			914	 	 return

			915	 }

			916	

			917	 var	errLeadingInt	=	errors.New("time:	bad	[0-9]*")	//	never	printed

			918	

			919	 //	leadingInt	consumes	the	leading	[0-9]*	from	s.

			920	 func	leadingInt(s	string)	(x	int,	rem	string,	err	error)	{

			921	 	 i	:=	0

			922	 	 for	;	i	<	len(s);	i++	{

			923	 	 	 c	:=	s[i]

			924	 	 	 if	c	<	'0'	||	c	>	'9'	{

			925	 	 	 	 break

			926	 	 	 }

			927	 	 	 if	x	>=	(1<<31-10)/10	{

			928	 	 	 	 //	overflow

			929	 	 	 	 return	0,	"",	errLeadingInt

			930	 	 	 }

			931	 	 	 x	=	x*10	+	int(c)	-	'0'

			932	 	 }

			933	 	 return	x,	s[i:],	nil

			934	 }

			935	

			936	 var	unitMap	=	map[string]float64{

			937	 	 "ns":	float64(Nanosecond),

			938	 	 "us":	float64(Microsecond),

			939	 	 "µs":	float64(Microsecond),	//	U+00B5	=	micro	symbol

			940	 	 "μs":	float64(Microsecond),	//	U+03BC	=	Greek	letter	mu

			941	 	 "ms":	float64(Millisecond),

			942	 	 "s":		float64(Second),

			943	 	 "m":		float64(Minute),

			944	 	 "h":		float64(Hour),

			945	 }

			946	

			947	 //	ParseDuration	parses	a	duration	string.

			948	 //	A	duration	string	is	a	possibly	signed	sequence	of

			949	 //	decimal	numbers,	each	with	optional	fraction	and	a	unit	suffix,

			950	 //	such	as	"300ms",	"-1.5h"	or	"2h45m".

			951	 //	Valid	time	units	are	"ns",	"us"	(or	"µs"),	"ms",	"s",	"m",	"h".

			952	 func	ParseDuration(s	string)	(Duration,	error)	{

			953	 	 //	[-+]?([0-9]*(\.[0-9]*)?[a-z]+)+

			954	 	 orig	:=	s

			955	 	 f	:=	float64(0)

			956	 	 neg	:=	false

			957	

			958	 	 //	Consume	[-+]?

			959	 	 if	s	!=	""	{

			960	 	 	 c	:=	s[0]

			961	 	 	 if	c	==	'-'	||	c	==	'+'	{

			962	 	 	 	 neg	=	c	==	'-'

			963	 	 	 	 s	=	s[1:]

			964	 	 	 }

			965	 	 }

			966	 	 //	Special	case:	if	all	that	is	left	is	"0",	this	is	zero.

			967	 	 if	s	==	"0"	{

			968	 	 	 return	0,	nil

			969	 	 }

			970	 	 if	s	==	""	{

			971	 	 	 return	0,	errors.New("time:	invalid	duration	"	+	orig)

			972	 	 }

			973	 	 for	s	!=	""	{

			974	 	 	 g	:=	float64(0)	//	this	element	of	the	sequence

			975	

			976	 	 	 var	x	int

			977	 	 	 var	err	error

			978	

			979	 	 	 //	The	next	character	must	be	[0-9.]

			980	 	 	 if	!(s[0]	==	'.'	||	('0'	<=	s[0]	&&	s[0]	<=	'9'))	{

			981	 	 	 	 return	0,	errors.New("time:	invalid	duration	"	+	orig)

			982	 	 	 }

			983	 	 	 //	Consume	[0-9]*

			984	 	 	 pl	:=	len(s)

			985	 	 	 x,	s,	err	=	leadingInt(s)

			986	 	 	 if	err	!=	nil	{

			987	 	 	 	 return	0,	errors.New("time:	invalid	duration	"	+	orig)

			988	 	 	 }

			989	 	 	 g	=	float64(x)

			990	 	 	 pre	:=	pl	!=	len(s)	//	whether	we	consumed	anything	before	a	period

			991	

			992	 	 	 //	Consume	(\.[0-9]*)?

			993	 	 	 post	:=	false

			994	 	 	 if	s	!=	""	&&	s[0]	==	'.'	{

			995	 	 	 	 s	=	s[1:]

			996	 	 	 	 pl	:=	len(s)

			997	 	 	 	 x,	s,	err	=	leadingInt(s)

			998	 	 	 	 if	err	!=	nil	{

			999	 	 	 	 	 return	0,	errors.New("time:	invalid	duration	"	+	orig)

		1000	 	 	 	 }

		1001	 	 	 	 scale	:=	1

		1002	 	 	 	 for	n	:=	pl	-	len(s);	n	>	0;	n--	{

		1003	 	 	 	 	 scale	*=	10

		1004	 	 	 	 }

		1005	 	 	 	 g	+=	float64(x)	/	float64(scale)

		1006	 	 	 	 post	=	pl	!=	len(s)

		1007	 	 	 }

		1008	 	 	 if	!pre	&&	!post	{

		1009	 	 	 	 //	no	digits	(e.g.	".s"	or	"-.s")

		1010	 	 	 	 return	0,	errors.New("time:	invalid	duration	"	+	orig)

		1011	 	 	 }

		1012	

		1013	 	 	 //	Consume	unit.

		1014	 	 	 i	:=	0

		1015	 	 	 for	;	i	<	len(s);	i++	{

		1016	 	 	 	 c	:=	s[i]

		1017	 	 	 	 if	c	==	'.'	||	('0'	<=	c	&&	c	<=	'9')	{

		1018	 	 	 	 	 break

		1019	 	 	 	 }

		1020	 	 	 }

		1021	 	 	 if	i	==	0	{

		1022	 	 	 	 return	0,	errors.New("time:	missing	unit	in	duration	"	+	orig)

		1023	 	 	 }

		1024	 	 	 u	:=	s[:i]

		1025	 	 	 s	=	s[i:]

		1026	 	 	 unit,	ok	:=	unitMap[u]

		1027	 	 	 if	!ok	{

		1028	 	 	 	 return	0,	errors.New("time:	unknown	unit	"	+	u	+	"	in	duration	"	+	orig)

		1029	 	 	 }

		1030	

		1031	 	 	 f	+=	g	*	unit

		1032	 	 }

		1033	

		1034	 	 if	neg	{

		1035	 	 	 f	=	-f

		1036	 	 }

		1037	 	 return	Duration(f),	nil

		1038	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/time/sleep.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	time

					6	

					7	 //	Sleep	pauses	the	current	goroutine	for	the	duration	d.

					8	 func	Sleep(d	Duration)

					9	

				10	 func	nano()	int64	{

				11	 	 sec,	nsec	:=	now()

				12	 	 return	sec*1e9	+	int64(nsec)

				13	 }

				14	

				15	 //	Interface	to	timers	implemented	in	package	runtime.

				16	 //	Must	be	in	sync	with	../runtime/runtime.h:/^struct.Timer$

				17	 type	runtimeTimer	struct	{

				18	 	 i						int32

				19	 	 when			int64

				20	 	 period	int64

				21	 	 f						func(int64,	interface{})

				22	 	 arg				interface{}

				23	 }

				24	

				25	 func	startTimer(*runtimeTimer)

				26	 func	stopTimer(*runtimeTimer)	bool

				27	

				28	 //	The	Timer	type	represents	a	single	event.

				29	 //	When	the	Timer	expires,	the	current	time	will	be	sent	on	C,

				30	 //	unless	the	Timer	was	created	by	AfterFunc.

				31	 type	Timer	struct	{

				32	 	 C	<-chan	Time

				33	 	 r	runtimeTimer

				34	 }

				35	

				36	 //	Stop	prevents	the	Timer	from	firing.

				37	 //	It	returns	true	if	the	call	stops	the	timer,	false	if	the	timer	has	already

				38	 //	expired	or	stopped.

				39	 func	(t	*Timer)	Stop()	(ok	bool)	{

				40	 	 return	stopTimer(&t.r)

				41	 }

				42	

				43	 //	NewTimer	creates	a	new	Timer	that	will	send

				44	 //	the	current	time	on	its	channel	after	at	least	duration	d.

				45	 func	NewTimer(d	Duration)	*Timer	{

				46	 	 c	:=	make(chan	Time,	1)

				47	 	 t	:=	&Timer{

				48	 	 	 C:	c,

				49	 	 	 r:	runtimeTimer{

				50	 	 	 	 when:	nano()	+	int64(d),

				51	 	 	 	 f:				sendTime,

				52	 	 	 	 arg:		c,

				53	 	 	 },

				54	 	 }

				55	 	 startTimer(&t.r)

				56	 	 return	t

				57	 }

				58	

				59	 func	sendTime(now	int64,	c	interface{})	{

				60	 	 //	Non-blocking	send	of	time	on	c.

				61	 	 //	Used	in	NewTimer,	it	cannot	block	anyway	(buffer).

				62	 	 //	Used	in	NewTicker,	dropping	sends	on	the	floor	is

				63	 	 //	the	desired	behavior	when	the	reader	gets	behind,

				64	 	 //	because	the	sends	are	periodic.

				65	 	 select	{

				66	 	 case	c.(chan	Time)	<-	Unix(0,	now):

				67	 	 default:

				68	 	 }

				69	 }

				70	

				71	 //	After	waits	for	the	duration	to	elapse	and	then	sends	the	current	time

				72	 //	on	the	returned	channel.

				73	 //	It	is	equivalent	to	NewTimer(d).C.

				74	 func	After(d	Duration)	<-chan	Time	{

				75	 	 return	NewTimer(d).C

				76	 }

				77	

				78	 //	AfterFunc	waits	for	the	duration	to	elapse	and	then	calls	f

				79	 //	in	its	own	goroutine.	It	returns	a	Timer	that	can

				80	 //	be	used	to	cancel	the	call	using	its	Stop	method.

				81	 func	AfterFunc(d	Duration,	f	func())	*Timer	{

				82	 	 t	:=	&Timer{

				83	 	 	 r:	runtimeTimer{

				84	 	 	 	 when:	nano()	+	int64(d),

				85	 	 	 	 f:				goFunc,

				86	 	 	 	 arg:		f,

				87	 	 	 },

				88	 	 }

				89	 	 startTimer(&t.r)

				90	 	 return	t

				91	 }

				92	

				93	 func	goFunc(now	int64,	arg	interface{})	{

				94	 	 go	arg.(func())()

				95	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/time/sys_unix.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 package	time

					8	

					9	 import	(

				10	 	 "errors"

				11	 	 "syscall"

				12)

				13	

				14	 //	for	testing:	whatever	interrupts	a	sleep

				15	 func	interrupt()	{

				16	 	 syscall.Kill(syscall.Getpid(),	syscall.SIGCHLD)

				17	 }

				18	

				19	 //	readFile	reads	and	returns	the	content	of	the	named	file.

				20	 //	It	is	a	trivial	implementation	of	ioutil.ReadFile,	reimplemented

				21	 //	here	to	avoid	depending	on	io/ioutil	or	os.

				22	 func	readFile(name	string)	([]byte,	error)	{

				23	 	 f,	err	:=	syscall.Open(name,	syscall.O_RDONLY,	0)

				24	 	 if	err	!=	nil	{

				25	 	 	 return	nil,	err

				26	 	 }

				27	 	 defer	syscall.Close(f)

				28	 	 var	(

				29	 	 	 buf	[4096]byte

				30	 	 	 ret	[]byte

				31	 	 	 n			int

				32)

				33	 	 for	{

				34	 	 	 n,	err	=	syscall.Read(f,	buf[:])

				35	 	 	 if	n	>	0	{

				36	 	 	 	 ret	=	append(ret,	buf[:n]...)

				37	 	 	 }

				38	 	 	 if	n	==	0	||	err	!=	nil	{

				39	 	 	 	 break

				40	 	 	 }

				41	 	 }

				42	 	 return	ret,	err

				43	 }

				44	

				45	 func	open(name	string)	(uintptr,	error)	{

				46	 	 fd,	err	:=	syscall.Open(name,	syscall.O_RDONLY,	0)

				47	 	 if	err	!=	nil	{

				48	 	 	 return	0,	err

				49	 	 }

				50	 	 return	uintptr(fd),	nil

				51	 }

				52	

				53	 func	closefd(fd	uintptr)	{

				54	 	 syscall.Close(int(fd))

				55	 }

				56	

				57	 func	preadn(fd	uintptr,	buf	[]byte,	off	int)	error	{

				58	 	 whence	:=	0

				59	 	 if	off	<	0	{

				60	 	 	 whence	=	2

				61	 	 }

				62	 	 if	_,	err	:=	syscall.Seek(int(fd),	int64(off),	whence);	err	!=	nil	{

				63	 	 	 return	err

				64	 	 }

				65	 	 for	len(buf)	>	0	{

				66	 	 	 m,	err	:=	syscall.Read(int(fd),	buf)

				67	 	 	 if	m	<=	0	{

				68	 	 	 	 if	err	==	nil	{

				69	 	 	 	 	 return	errors.New("short	read")

				70	 	 	 	 }

				71	 	 	 	 return	err

				72	 	 	 }

				73	 	 	 buf	=	buf[m:]

				74	 	 }

				75	 	 return	nil

				76	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/time/tick.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	time

					6	

					7	 import	"errors"

					8	

					9	 //	A	Ticker	holds	a	synchronous	channel	that	delivers	`ticks'	of	a	clock

				10	 //	at	intervals.

				11	 type	Ticker	struct	{

				12	 	 C	<-chan	Time	//	The	channel	on	which	the	ticks	are	delivered.

				13	 	 r	runtimeTimer

				14	 }

				15	

				16	 //	NewTicker	returns	a	new	Ticker	containing	a	channel	that	will	send	the

				17	 //	time	with	a	period	specified	by	the	duration	argument.

				18	 //	It	adjusts	the	intervals	or	drops	ticks	to	make	up	for	slow	receivers.

				19	 //	The	duration	d	must	be	greater	than	zero;	if	not,	NewTicker	will	panic.

				20	 func	NewTicker(d	Duration)	*Ticker	{

				21	 	 if	d	<=	0	{

				22	 	 	 panic(errors.New("non-positive	interval	for	NewTicker"))

				23	 	 }

				24	 	 //	Give	the	channel	a	1-element	time	buffer.

				25	 	 //	If	the	client	falls	behind	while	reading,	we	drop	ticks

				26	 	 //	on	the	floor	until	the	client	catches	up.

				27	 	 c	:=	make(chan	Time,	1)

				28	 	 t	:=	&Ticker{

				29	 	 	 C:	c,

				30	 	 	 r:	runtimeTimer{

				31	 	 	 	 when:			nano()	+	int64(d),

				32	 	 	 	 period:	int64(d),

				33	 	 	 	 f:						sendTime,

				34	 	 	 	 arg:				c,

				35	 	 	 },

				36	 	 }

				37	 	 startTimer(&t.r)

				38	 	 return	t

				39	 }

				40	

				41	 //	Stop	turns	off	a	ticker.		After	Stop,	no	more	ticks	will	be	sent.

				42	 func	(t	*Ticker)	Stop()	{

				43	 	 stopTimer(&t.r)

				44	 }

				45	

				46	 //	Tick	is	a	convenience	wrapper	for	NewTicker	providing	access	to	the	ticking

				47	 //	channel	only.		Useful	for	clients	that	have	no	need	to	shut	down	the	ticker.

				48	 func	Tick(d	Duration)	<-chan	Time	{

				49	 	 if	d	<=	0	{

				50	 	 	 return	nil

				51	 	 }

				52	 	 return	NewTicker(d).C

				53	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/time/time.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	time	provides	functionality	for	measuring	and	displaying	time.

					6	 //

					7	 //	The	calendrical	calculations	always	assume	a	Gregorian	calendar.

					8	 package	time

					9	

				10	 import	"errors"

				11	

				12	 //	A	Time	represents	an	instant	in	time	with	nanosecond	precision.

				13	 //

				14	 //	Programs	using	times	should	typically	store	and	pass	them	as	values,

				15	 //	not	pointers.		That	is,	time	variables	and	struct	fields	should	be	of

				16	 //	type	time.Time,	not	*time.Time.		A	Time	value	can	be	used	by

				17	 //	multiple	goroutines	simultaneously.

				18	 //

				19	 //	Time	instants	can	be	compared	using	the	Before,	After,	and	Equal	methods.

				20	 //	The	Sub	method	subtracts	two	instants,	producing	a	Duration.

				21	 //	The	Add	method	adds	a	Time	and	a	Duration,	producing	a	Time.

				22	 //

				23	 //	The	zero	value	of	type	Time	is	January	1,	year	1,	00:00:00.000000000	UTC.

				24	 //	As	this	time	is	unlikely	to	come	up	in	practice,	the	IsZero	method	gives

				25	 //	a	simple	way	of	detecting	a	time	that	has	not	been	initialized	explicitly.

				26	 //

				27	 //	Each	Time	has	associated	with	it	a	Location,	consulted	when	computing	the

				28	 //	presentation	form	of	the	time,	such	as	in	the	Format,	Hour,	and	Year	methods.

				29	 //	The	methods	Local,	UTC,	and	In	return	a	Time	with	a	specific	location.

				30	 //	Changing	the	location	in	this	way	changes	only	the	presentation;	it	does	not

				31	 //	change	the	instant	in	time	being	denoted	and	therefore	does	not	affect	the

				32	 //	computations	described	in	earlier	paragraphs.

				33	 //

				34	 type	Time	struct	{

				35	 	 //	sec	gives	the	number	of	seconds	elapsed	since

				36	 	 //	January	1,	year	1	00:00:00	UTC.

				37	 	 sec	int64

				38	

				39	 	 //	nsec	specifies	a	non-negative	nanosecond

				40	 	 //	offset	within	the	second	named	by	Seconds.

				41	 	 //	It	must	be	in	the	range	[0,	999999999].

				42	 	 nsec	int32

				43	

				44	 	 //	loc	specifies	the	Location	that	should	be	used	to

				45	 	 //	determine	the	minute,	hour,	month,	day,	and	year

				46	 	 //	that	correspond	to	this	Time.

				47	 	 //	Only	the	zero	Time	has	a	nil	Location.

				48	 	 //	In	that	case	it	is	interpreted	to	mean	UTC.

				49	 	 loc	*Location

				50	 }

				51	

				52	 //	After	reports	whether	the	time	instant	t	is	after	u.

				53	 func	(t	Time)	After(u	Time)	bool	{

				54	 	 return	t.sec	>	u.sec	||	t.sec	==	u.sec	&&	t.nsec	>	u.nsec

				55	 }

				56	

				57	 //	Before	reports	whether	the	time	instant	t	is	before	u.

				58	 func	(t	Time)	Before(u	Time)	bool	{

				59	 	 return	t.sec	<	u.sec	||	t.sec	==	u.sec	&&	t.nsec	<	u.nsec

				60	 }

				61	

				62	 //	Equal	reports	whether	t	and	u	represent	the	same	time	instant.

				63	 //	Two	times	can	be	equal	even	if	they	are	in	different	locations.

				64	 //	For	example,	6:00	+0200	CEST	and	4:00	UTC	are	Equal.

				65	 //	This	comparison	is	different	from	using	t	==	u,	which	also	compares

				66	 //	the	locations.

				67	 func	(t	Time)	Equal(u	Time)	bool	{

				68	 	 return	t.sec	==	u.sec	&&	t.nsec	==	u.nsec

				69	 }

				70	

				71	 //	A	Month	specifies	a	month	of	the	year	(January	=	1,	...).

				72	 type	Month	int

				73	

				74	 const	(

				75	 	 January	Month	=	1	+	iota

				76	 	 February

				77	 	 March

				78	 	 April

				79	 	 May

				80	 	 June

				81	 	 July

				82	 	 August

				83	 	 September

				84	 	 October

				85	 	 November

				86	 	 December

				87)

				88	

				89	 var	months	=	[...]string{

				90	 	 "January",

				91	 	 "February",

				92	 	 "March",

				93	 	 "April",

				94	 	 "May",

				95	 	 "June",

				96	 	 "July",

				97	 	 "August",

				98	 	 "September",

				99	 	 "October",

			100	 	 "November",

			101	 	 "December",

			102	 }

			103	

			104	 //	String	returns	the	English	name	of	the	month	("January",	"February",	...).

			105	 func	(m	Month)	String()	string	{	return	months[m-1]	}

			106	

			107	 //	A	Weekday	specifies	a	day	of	the	week	(Sunday	=	0,	...).

			108	 type	Weekday	int

			109	

			110	 const	(

			111	 	 Sunday	Weekday	=	iota

			112	 	 Monday

			113	 	 Tuesday

			114	 	 Wednesday

			115	 	 Thursday

			116	 	 Friday

			117	 	 Saturday

			118)

			119	

			120	 var	days	=	[...]string{

			121	 	 "Sunday",

			122	 	 "Monday",

			123	 	 "Tuesday",

			124	 	 "Wednesday",

			125	 	 "Thursday",

			126	 	 "Friday",

			127	 	 "Saturday",

			128	 }

			129	

			130	 //	String	returns	the	English	name	of	the	day	("Sunday",	"Monday",	...).

			131	 func	(d	Weekday)	String()	string	{	return	days[d]	}

			132	

			133	 //	Computations	on	time.

			134	 //

			135	 //	The	zero	value	for	a	Time	is	defined	to	be

			136	 //	 January	1,	year	1,	00:00:00.000000000	UTC

			137	 //	which	(1)	looks	like	a	zero,	or	as	close	as	you	can	get	in	a	date

			138	 //	(1-1-1	00:00:00	UTC),	(2)	is	unlikely	enough	to	arise	in	practice	to

			139	 //	be	a	suitable	"not	set"	sentinel,	unlike	Jan	1	1970,	and	(3)	has	a

			140	 //	non-negative	year	even	in	time	zones	west	of	UTC,	unlike	1-1-0

			141	 //	00:00:00	UTC,	which	would	be	12-31-(-1)	19:00:00	in	New	York.

			142	 //

			143	 //	The	zero	Time	value	does	not	force	a	specific	epoch	for	the	time

			144	 //	representation.		For	example,	to	use	the	Unix	epoch	internally,	we

			145	 //	could	define	that	to	distinguish	a	zero	value	from	Jan	1	1970,	that

			146	 //	time	would	be	represented	by	sec=-1,	nsec=1e9.		However,	it	does

			147	 //	suggest	a	representation,	namely	using	1-1-1	00:00:00	UTC	as	the

			148	 //	epoch,	and	that's	what	we	do.

			149	 //

			150	 //	The	Add	and	Sub	computations	are	oblivious	to	the	choice	of	epoch.

			151	 //

			152	 //	The	presentation	computations	-	year,	month,	minute,	and	so	on	-	all

			153	 //	rely	heavily	on	division	and	modulus	by	positive	constants.		For

			154	 //	calendrical	calculations	we	want	these	divisions	to	round	down,	even

			155	 //	for	negative	values,	so	that	the	remainder	is	always	positive,	but

			156	 //	Go's	division	(like	most	hardware	division	instructions)	rounds	to

			157	 //	zero.		We	can	still	do	those	computations	and	then	adjust	the	result

			158	 //	for	a	negative	numerator,	but	it's	annoying	to	write	the	adjustment

			159	 //	over	and	over.		Instead,	we	can	change	to	a	different	epoch	so	long

			160	 //	ago	that	all	the	times	we	care	about	will	be	positive,	and	then	round

			161	 //	to	zero	and	round	down	coincide.		These	presentation	routines	already

			162	 //	have	to	add	the	zone	offset,	so	adding	the	translation	to	the

			163	 //	alternate	epoch	is	cheap.		For	example,	having	a	non-negative	time	t

			164	 //	means	that	we	can	write

			165	 //

			166	 //	 sec	=	t	%	60

			167	 //

			168	 //	instead	of

			169	 //

			170	 //	 sec	=	t	%	60

			171	 //	 if	sec	<	0	{

			172	 //	 	 sec	+=	60

			173	 //	 }

			174	 //

			175	 //	everywhere.

			176	 //

			177	 //	The	calendar	runs	on	an	exact	400	year	cycle:	a	400-year	calendar

			178	 //	printed	for	1970-2469	will	apply	as	well	to	2470-2869.		Even	the	days

			179	 //	of	the	week	match	up.		It	simplifies	the	computations	to	choose	the

			180	 //	cycle	boundaries	so	that	the	exceptional	years	are	always	delayed	as

			181	 //	long	as	possible.		That	means	choosing	a	year	equal	to	1	mod	400,	so

			182	 //	that	the	first	leap	year	is	the	4th	year,	the	first	missed	leap	year

			183	 //	is	the	100th	year,	and	the	missed	missed	leap	year	is	the	400th	year.

			184	 //	So	we'd	prefer	instead	to	print	a	calendar	for	2001-2400	and	reuse	it

			185	 //	for	2401-2800.

			186	 //

			187	 //	Finally,	it's	convenient	if	the	delta	between	the	Unix	epoch	and

			188	 //	long-ago	epoch	is	representable	by	an	int64	constant.

			189	 //

			190	 //	These	three	considerations—choose	an	epoch	as	early	as	possible,	that

			191	 //	uses	a	year	equal	to	1	mod	400,	and	that	is	no	more	than	2⁶³	seconds
			192	 //	earlier	than	1970—bring	us	to	the	year	-292277022399.		We	refer	to

			193	 //	this	year	as	the	absolute	zero	year,	and	to	times	measured	as	a	uint64

			194	 //	seconds	since	this	year	as	absolute	times.

			195	 //

			196	 //	Times	measured	as	an	int64	seconds	since	the	year	1—the	representation

			197	 //	used	for	Time's	sec	field—are	called	internal	times.

			198	 //

			199	 //	Times	measured	as	an	int64	seconds	since	the	year	1970	are	called	Unix

			200	 //	times.

			201	 //

			202	 //	It	is	tempting	to	just	use	the	year	1	as	the	absolute	epoch,	defining

			203	 //	that	the	routines	are	only	valid	for	years	>=	1.		However,	the

			204	 //	routines	would	then	be	invalid	when	displaying	the	epoch	in	time	zones

			205	 //	west	of	UTC,	since	it	is	year	0.		It	doesn't	seem	tenable	to	say	that

			206	 //	printing	the	zero	time	correctly	isn't	supported	in	half	the	time

			207	 //	zones.		By	comparison,	it's	reasonable	to	mishandle	some	times	in

			208	 //	the	year	-292277022399.

			209	 //

			210	 //	All	this	is	opaque	to	clients	of	the	API	and	can	be	changed	if	a

			211	 //	better	implementation	presents	itself.

			212	

			213	 const	(

			214	 	 //	The	unsigned	zero	year	for	internal	calculations.

			215	 	 //	Must	be	1	mod	400,	and	times	before	it	will	not	compute	correctly,

			216	 	 //	but	otherwise	can	be	changed	at	will.

			217	 	 absoluteZeroYear	=	-292277022399

			218	

			219	 	 //	The	year	of	the	zero	Time.

			220	 	 //	Assumed	by	the	unixToInternal	computation	below.

			221	 	 internalYear	=	1

			222	

			223	 	 //	The	year	of	the	zero	Unix	time.

			224	 	 unixYear	=	1970

			225	

			226	 	 //	Offsets	to	convert	between	internal	and	absolute	or	Unix	times.

			227	 	 absoluteToInternal	int64	=	(absoluteZeroYear	-	internalYear)	*	365.2425	*	secondsPerDay

			228	 	 internalToAbsolute							=	-absoluteToInternal

			229	

			230	 	 unixToInternal	int64	=	(1969*365	+	1969/4	-	1969/100	+	1969/400)	*	secondsPerDay

			231	 	 internalToUnix	int64	=	-unixToInternal

			232)

			233	

			234	 //	IsZero	reports	whether	t	represents	the	zero	time	instant,

			235	 //	January	1,	year	1,	00:00:00	UTC.

			236	 func	(t	Time)	IsZero()	bool	{

			237	 	 return	t.sec	==	0	&&	t.nsec	==	0

			238	 }

			239	

			240	 //	abs	returns	the	time	t	as	an	absolute	time,	adjusted	by	the	zone	offset.

			241	 //	It	is	called	when	computing	a	presentation	property	like	Month	or	Hour.

			242	 func	(t	Time)	abs()	uint64	{

			243	 	 l	:=	t.loc

			244	 	 if	l	==	nil	{

			245	 	 	 l	=	&utcLoc

			246	 	 }

			247	 	 //	Avoid	function	call	if	we	hit	the	local	time	cache.

			248	 	 sec	:=	t.sec	+	internalToUnix

			249	 	 if	l	!=	&utcLoc	{

			250	 	 	 if	l.cacheZone	!=	nil	&&	l.cacheStart	<=	sec	&&	sec	<	l.cacheEnd	{

			251	 	 	 	 sec	+=	int64(l.cacheZone.offset)

			252	 	 	 }	else	{

			253	 	 	 	 _,	offset,	_,	_,	_	:=	l.lookup(sec)

			254	 	 	 	 sec	+=	int64(offset)

			255	 	 	 }

			256	 	 }

			257	 	 return	uint64(sec	+	(unixToInternal	+	internalToAbsolute))

			258	 }

			259	

			260	 //	Date	returns	the	year,	month,	and	day	in	which	t	occurs.

			261	 func	(t	Time)	Date()	(year	int,	month	Month,	day	int)	{

			262	 	 year,	month,	day,	_	=	t.date(true)

			263	 	 return

			264	 }

			265	

			266	 //	Year	returns	the	year	in	which	t	occurs.

			267	 func	(t	Time)	Year()	int	{

			268	 	 year,	_,	_,	_	:=	t.date(false)

			269	 	 return	year

			270	 }

			271	

			272	 //	Month	returns	the	month	of	the	year	specified	by	t.

			273	 func	(t	Time)	Month()	Month	{

			274	 	 _,	month,	_,	_	:=	t.date(true)

			275	 	 return	month

			276	 }

			277	

			278	 //	Day	returns	the	day	of	the	month	specified	by	t.

			279	 func	(t	Time)	Day()	int	{

			280	 	 _,	_,	day,	_	:=	t.date(true)

			281	 	 return	day

			282	 }

			283	

			284	 //	Weekday	returns	the	day	of	the	week	specified	by	t.

			285	 func	(t	Time)	Weekday()	Weekday	{

			286	 	 //	January	1	of	the	absolute	year,	like	January	1	of	2001,	was	a	Monday.

			287	 	 sec	:=	(t.abs()	+	uint64(Monday)*secondsPerDay)	%	secondsPerWeek

			288	 	 return	Weekday(int(sec)	/	secondsPerDay)

			289	 }

			290	

			291	 //	ISOWeek	returns	the	ISO	8601	year	and	week	number	in	which	t	occurs.

			292	 //	Week	ranges	from	1	to	53.	Jan	01	to	Jan	03	of	year	n	might	belong	to

			293	 //	week	52	or	53	of	year	n-1,	and	Dec	29	to	Dec	31	might	belong	to	week	1

			294	 //	of	year	n+1.

			295	 func	(t	Time)	ISOWeek()	(year,	week	int)	{

			296	 	 year,	month,	day,	yday	:=	t.date(true)

			297	 	 wday	:=	int(t.Weekday()+6)	%	7	//	weekday	but	Monday	=	0.

			298	 	 const	(

			299	 	 	 Mon	int	=	iota

			300	 	 	 Tue

			301	 	 	 Wed

			302	 	 	 Thu

			303	 	 	 Fri

			304	 	 	 Sat

			305	 	 	 Sun

			306)

			307	

			308	 	 //	Calculate	week	as	number	of	Mondays	in	year	up	to

			309	 	 //	and	including	today,	plus	1	because	the	first	week	is	week	0.

			310	 	 //	Putting	the	+	1	inside	the	numerator	as	a	+	7	keeps	the

			311	 	 //	numerator	from	being	negative,	which	would	cause	it	to

			312	 	 //	round	incorrectly.

			313	 	 week	=	(yday	-	wday	+	7)	/	7

			314	

			315	 	 //	The	week	number	is	now	correct	under	the	assumption

			316	 	 //	that	the	first	Monday	of	the	year	is	in	week	1.

			317	 	 //	If	Jan	1	is	a	Tuesday,	Wednesday,	or	Thursday,	the	first	Monday

			318	 	 //	is	actually	in	week	2.

			319	 	 jan1wday	:=	(wday	-	yday	+	7*53)	%	7

			320	 	 if	Tue	<=	jan1wday	&&	jan1wday	<=	Thu	{

			321	 	 	 week++

			322	 	 }

			323	

			324	 	 //	If	the	week	number	is	still	0,	we're	in	early	January	but	in

			325	 	 //	the	last	week	of	last	year.

			326	 	 if	week	==	0	{

			327	 	 	 year--

			328	 	 	 week	=	52

			329	 	 	 //	A	year	has	53	weeks	when	Jan	1	or	Dec	31	is	a	Thursday,

			330	 	 	 //	meaning	Jan	1	of	the	next	year	is	a	Friday

			331	 	 	 //	or	it	was	a	leap	year	and	Jan	1	of	the	next	year	is	a	Saturday.

			332	 	 	 if	jan1wday	==	Fri	||	(jan1wday	==	Sat	&&	isLeap(year))	{

			333	 	 	 	 week++

			334	 	 	 }

			335	 	 }

			336	

			337	 	 //	December	29	to	31	are	in	week	1	of	next	year	if

			338	 	 //	they	are	after	the	last	Thursday	of	the	year	and

			339	 	 //	December	31	is	a	Monday,	Tuesday,	or	Wednesday.

			340	 	 if	month	==	December	&&	day	>=	29	&&	wday	<	Thu	{

			341	 	 	 if	dec31wday	:=	(wday	+	31	-	day)	%	7;	Mon	<=	dec31wday	&&	dec31wday	<=	Wed	{

			342	 	 	 	 year++

			343	 	 	 	 week	=	1

			344	 	 	 }

			345	 	 }

			346	

			347	 	 return

			348	 }

			349	

			350	 //	Clock	returns	the	hour,	minute,	and	second	within	the	day	specified	by	t.

			351	 func	(t	Time)	Clock()	(hour,	min,	sec	int)	{

			352	 	 sec	=	int(t.abs()	%	secondsPerDay)

			353	 	 hour	=	sec	/	secondsPerHour

			354	 	 sec	-=	hour	*	secondsPerHour

			355	 	 min	=	sec	/	secondsPerMinute

			356	 	 sec	-=	min	*	secondsPerMinute

			357	 	 return

			358	 }

			359	

			360	 //	Hour	returns	the	hour	within	the	day	specified	by	t,	in	the	range	[0,	23].

			361	 func	(t	Time)	Hour()	int	{

			362	 	 return	int(t.abs()%secondsPerDay)	/	secondsPerHour

			363	 }

			364	

			365	 //	Minute	returns	the	minute	offset	within	the	hour	specified	by	t,	in	the	range	[0,	59].

			366	 func	(t	Time)	Minute()	int	{

			367	 	 return	int(t.abs()%secondsPerHour)	/	secondsPerMinute

			368	 }

			369	

			370	 //	Second	returns	the	second	offset	within	the	minute	specified	by	t,	in	the	range	[0,	59].

			371	 func	(t	Time)	Second()	int	{

			372	 	 return	int(t.abs()	%	secondsPerMinute)

			373	 }

			374	

			375	 //	Nanosecond	returns	the	nanosecond	offset	within	the	second	specified	by	t,

			376	 //	in	the	range	[0,	999999999].

			377	 func	(t	Time)	Nanosecond()	int	{

			378	 	 return	int(t.nsec)

			379	 }

			380	

			381	 //	A	Duration	represents	the	elapsed	time	between	two	instants

			382	 //	as	an	int64	nanosecond	count.		The	representation	limits	the

			383	 //	largest	representable	duration	to	approximately	290	years.

			384	 type	Duration	int64

			385	

			386	 //	Common	durations.		There	is	no	definition	for	units	of	Day	or	larger

			387	 //	to	avoid	confusion	across	daylight	savings	time	zone	transitions.

			388	 //

			389	 //	To	count	the	number	of	units	in	a	Duration,	divide:

			390	 //	 second	:=	time.Second

			391	 //	 fmt.Print(int64(second/time.Millisecond))	//	prints	1000

			392	 //

			393	 //	To	convert	an	integer	number	of	units	to	a	Duration,	multiply:

			394	 //	 seconds	:=	10

			395	 //	 fmt.Print(time.Duration(seconds)*time.Second)	//	prints	10s

			396	 //

			397	 const	(

			398	 	 Nanosecond		Duration	=	1

			399	 	 Microsecond										=	1000	*	Nanosecond

			400	 	 Millisecond										=	1000	*	Microsecond

			401	 	 Second															=	1000	*	Millisecond

			402	 	 Minute															=	60	*	Second

			403	 	 Hour																	=	60	*	Minute

			404)

			405	

			406	 //	String	returns	a	string	representing	the	duration	in	the	form	"72h3m0.5s".

			407	 //	Leading	zero	units	are	omitted.		As	a	special	case,	durations	less	than	one

			408	 //	second	format	use	a	smaller	unit	(milli-,	micro-,	or	nanoseconds)	to	ensure

			409	 //	that	the	leading	digit	is	non-zero.		The	zero	duration	formats	as	0,

			410	 //	with	no	unit.

			411	 func	(d	Duration)	String()	string	{

			412	 	 //	Largest	time	is	2540400h10m10.000000000s

			413	 	 var	buf	[32]byte

			414	 	 w	:=	len(buf)

			415	

			416	 	 u	:=	uint64(d)

			417	 	 neg	:=	d	<	0

			418	 	 if	neg	{

			419	 	 	 u	=	-u

			420	 	 }

			421	

			422	 	 if	u	<	uint64(Second)	{

			423	 	 	 //	Special	case:	if	duration	is	smaller	than	a	second,

			424	 	 	 //	use	smaller	units,	like	1.2ms

			425	 	 	 var	(

			426	 	 	 	 prec	int

			427	 	 	 	 unit	byte

			428)

			429	 	 	 switch	{

			430	 	 	 case	u	==	0:

			431	 	 	 	 return	"0"

			432	 	 	 case	u	<	uint64(Microsecond):

			433	 	 	 	 //	print	nanoseconds

			434	 	 	 	 prec	=	0

			435	 	 	 	 unit	=	'n'

			436	 	 	 case	u	<	uint64(Millisecond):

			437	 	 	 	 //	print	microseconds

			438	 	 	 	 prec	=	3

			439	 	 	 	 unit	=	'u'

			440	 	 	 default:

			441	 	 	 	 //	print	milliseconds

			442	 	 	 	 prec	=	6

			443	 	 	 	 unit	=	'm'

			444	 	 	 }

			445	 	 	 w	-=	2

			446	 	 	 buf[w]	=	unit

			447	 	 	 buf[w+1]	=	's'

			448	 	 	 w,	u	=	fmtFrac(buf[:w],	u,	prec)

			449	 	 	 w	=	fmtInt(buf[:w],	u)

			450	 	 }	else	{

			451	 	 	 w--

			452	 	 	 buf[w]	=	's'

			453	

			454	 	 	 w,	u	=	fmtFrac(buf[:w],	u,	9)

			455	

			456	 	 	 //	u	is	now	integer	seconds

			457	 	 	 w	=	fmtInt(buf[:w],	u%60)

			458	 	 	 u	/=	60

			459	

			460	 	 	 //	u	is	now	integer	minutes

			461	 	 	 if	u	>	0	{

			462	 	 	 	 w--

			463	 	 	 	 buf[w]	=	'm'

			464	 	 	 	 w	=	fmtInt(buf[:w],	u%60)

			465	 	 	 	 u	/=	60

			466	

			467	 	 	 	 //	u	is	now	integer	hours

			468	 	 	 	 //	Stop	at	hours	because	days	can	be	different	lengths.

			469	 	 	 	 if	u	>	0	{

			470	 	 	 	 	 w--

			471	 	 	 	 	 buf[w]	=	'h'

			472	 	 	 	 	 w	=	fmtInt(buf[:w],	u)

			473	 	 	 	 }

			474	 	 	 }

			475	 	 }

			476	

			477	 	 if	neg	{

			478	 	 	 w--

			479	 	 	 buf[w]	=	'-'

			480	 	 }

			481	

			482	 	 return	string(buf[w:])

			483	 }

			484	

			485	 //	fmtFrac	formats	the	fraction	of	v/10**prec	(e.g.,	".12345")	into	the

			486	 //	tail	of	buf,	omitting	trailing	zeros.		it	omits	the	decimal

			487	 //	point	too	when	the	fraction	is	0.		It	returns	the	index	where	the

			488	 //	output	bytes	begin	and	the	value	v/10**prec.

			489	 func	fmtFrac(buf	[]byte,	v	uint64,	prec	int)	(nw	int,	nv	uint64)	{

			490	 	 //	Omit	trailing	zeros	up	to	and	including	decimal	point.

			491	 	 w	:=	len(buf)

			492	 	 print	:=	false

			493	 	 for	i	:=	0;	i	<	prec;	i++	{

			494	 	 	 digit	:=	v	%	10

			495	 	 	 print	=	print	||	digit	!=	0

			496	 	 	 if	print	{

			497	 	 	 	 w--

			498	 	 	 	 buf[w]	=	byte(digit)	+	'0'

			499	 	 	 }

			500	 	 	 v	/=	10

			501	 	 }

			502	 	 if	print	{

			503	 	 	 w--

			504	 	 	 buf[w]	=	'.'

			505	 	 }

			506	 	 return	w,	v

			507	 }

			508	

			509	 //	fmtInt	formats	v	into	the	tail	of	buf.

			510	 //	It	returns	the	index	where	the	output	begins.

			511	 func	fmtInt(buf	[]byte,	v	uint64)	int	{

			512	 	 w	:=	len(buf)

			513	 	 if	v	==	0	{

			514	 	 	 w--

			515	 	 	 buf[w]	=	'0'

			516	 	 }	else	{

			517	 	 	 for	v	>	0	{

			518	 	 	 	 w--

			519	 	 	 	 buf[w]	=	byte(v%10)	+	'0'

			520	 	 	 	 v	/=	10

			521	 	 	 }

			522	 	 }

			523	 	 return	w

			524	 }

			525	

			526	 //	Nanoseconds	returns	the	duration	as	an	integer	nanosecond	count.

			527	 func	(d	Duration)	Nanoseconds()	int64	{	return	int64(d)	}

			528	

			529	 //	These	methods	return	float64	because	the	dominant

			530	 //	use	case	is	for	printing	a	floating	point	number	like	1.5s,	and

			531	 //	a	truncation	to	integer	would	make	them	not	useful	in	those	cases.

			532	 //	Splitting	the	integer	and	fraction	ourselves	guarantees	that

			533	 //	converting	the	returned	float64	to	an	integer	rounds	the	same

			534	 //	way	that	a	pure	integer	conversion	would	have,	even	in	cases

			535	 //	where,	say,	float64(d.Nanoseconds())/1e9	would	have	rounded

			536	 //	differently.

			537	

			538	 //	Seconds	returns	the	duration	as	a	floating	point	number	of	seconds.

			539	 func	(d	Duration)	Seconds()	float64	{

			540	 	 sec	:=	d	/	Second

			541	 	 nsec	:=	d	%	Second

			542	 	 return	float64(sec)	+	float64(nsec)*1e-9

			543	 }

			544	

			545	 //	Minutes	returns	the	duration	as	a	floating	point	number	of	minutes.

			546	 func	(d	Duration)	Minutes()	float64	{

			547	 	 min	:=	d	/	Minute

			548	 	 nsec	:=	d	%	Minute

			549	 	 return	float64(min)	+	float64(nsec)*(1e-9/60)

			550	 }

			551	

			552	 //	Hours	returns	the	duration	as	a	floating	point	number	of	hours.

			553	 func	(d	Duration)	Hours()	float64	{

			554	 	 hour	:=	d	/	Hour

			555	 	 nsec	:=	d	%	Hour

			556	 	 return	float64(hour)	+	float64(nsec)*(1e-9/60/60)

			557	 }

			558	

			559	 //	Add	returns	the	time	t+d.

			560	 func	(t	Time)	Add(d	Duration)	Time	{

			561	 	 t.sec	+=	int64(d	/	1e9)

			562	 	 t.nsec	+=	int32(d	%	1e9)

			563	 	 if	t.nsec	>=	1e9	{

			564	 	 	 t.sec++

			565	 	 	 t.nsec	-=	1e9

			566	 	 }	else	if	t.nsec	<	0	{

			567	 	 	 t.sec--

			568	 	 	 t.nsec	+=	1e9

			569	 	 }

			570	 	 return	t

			571	 }

			572	

			573	 //	Sub	returns	the	duration	t-u.

			574	 //	To	compute	t-d	for	a	duration	d,	use	t.Add(-d).

			575	 func	(t	Time)	Sub(u	Time)	Duration	{

			576	 	 return	Duration(t.sec-u.sec)*Second	+	Duration(t.nsec-u.nsec)

			577	 }

			578	

			579	 //	Since	returns	the	time	elapsed	since	t.

			580	 //	It	is	shorthand	for	time.Now().Sub(t).

			581	 func	Since(t	Time)	Duration	{

			582	 	 return	Now().Sub(t)

			583	 }

			584	

			585	 //	AddDate	returns	the	time	corresponding	to	adding	the

			586	 //	given	number	of	years,	months,	and	days	to	t.

			587	 //	For	example,	AddDate(-1,	2,	3)	applied	to	January	1,	2011

			588	 //	returns	March	4,	2010.

			589	 //

			590	 //	AddDate	normalizes	its	result	in	the	same	way	that	Date	does,

			591	 //	so,	for	example,	adding	one	month	to	October	31	yields

			592	 //	December	1,	the	normalized	form	for	November	31.

			593	 func	(t	Time)	AddDate(years	int,	months	int,	days	int)	Time	{

			594	 	 year,	month,	day	:=	t.Date()

			595	 	 hour,	min,	sec	:=	t.Clock()

			596	 	 return	Date(year+years,	month+Month(months),	day+days,	hour,	min,	sec,	int(t.nsec),	t.loc)

			597	 }

			598	

			599	 const	(

			600	 	 secondsPerMinute	=	60

			601	 	 secondsPerHour			=	60	*	60

			602	 	 secondsPerDay				=	24	*	secondsPerHour

			603	 	 secondsPerWeek			=	7	*	secondsPerDay

			604	 	 daysPer400Years		=	365*400	+	97

			605	 	 daysPer100Years		=	365*100	+	24

			606	 	 daysPer4Years				=	365*4	+	1

			607	 	 days1970To2001			=	31*365	+	8

			608)

			609	

			610	 //	date	computes	the	year	and,	only	when	full=true,

			611	 //	the	month	and	day	in	which	t	occurs.

			612	 func	(t	Time)	date(full	bool)	(year	int,	month	Month,	day	int,	yday	int)	{

			613	 	 //	Split	into	time	and	day.

			614	 	 d	:=	t.abs()	/	secondsPerDay

			615	

			616	 	 //	Account	for	400	year	cycles.

			617	 	 n	:=	d	/	daysPer400Years

			618	 	 y	:=	400	*	n

			619	 	 d	-=	daysPer400Years	*	n

			620	

			621	 	 //	Cut	off	100-year	cycles.

			622	 	 //	The	last	cycle	has	one	extra	leap	year,	so	on	the	last	day

			623	 	 //	of	that	year,	day	/	daysPer100Years	will	be	4	instead	of	3.

			624	 	 //	Cut	it	back	down	to	3	by	subtracting	n>>2.

			625	 	 n	=	d	/	daysPer100Years

			626	 	 n	-=	n	>>	2

			627	 	 y	+=	100	*	n

			628	 	 d	-=	daysPer100Years	*	n

			629	

			630	 	 //	Cut	off	4-year	cycles.

			631	 	 //	The	last	cycle	has	a	missing	leap	year,	which	does	not

			632	 	 //	affect	the	computation.

			633	 	 n	=	d	/	daysPer4Years

			634	 	 y	+=	4	*	n

			635	 	 d	-=	daysPer4Years	*	n

			636	

			637	 	 //	Cut	off	years	within	a	4-year	cycle.

			638	 	 //	The	last	year	is	a	leap	year,	so	on	the	last	day	of	that	year,

			639	 	 //	day	/	365	will	be	4	instead	of	3.		Cut	it	back	down	to	3

			640	 	 //	by	subtracting	n>>2.

			641	 	 n	=	d	/	365

			642	 	 n	-=	n	>>	2

			643	 	 y	+=	n

			644	 	 d	-=	365	*	n

			645	

			646	 	 year	=	int(int64(y)	+	absoluteZeroYear)

			647	 	 yday	=	int(d)

			648	

			649	 	 if	!full	{

			650	 	 	 return

			651	 	 }

			652	

			653	 	 day	=	yday

			654	 	 if	isLeap(year)	{

			655	 	 	 //	Leap	year

			656	 	 	 switch	{

			657	 	 	 case	day	>	31+29-1:

			658	 	 	 	 //	After	leap	day;	pretend	it	wasn't	there.

			659	 	 	 	 day--

			660	 	 	 case	day	==	31+29-1:

			661	 	 	 	 //	Leap	day.

			662	 	 	 	 month	=	February

			663	 	 	 	 day	=	29

			664	 	 	 	 return

			665	 	 	 }

			666	 	 }

			667	

			668	 	 //	Estimate	month	on	assumption	that	every	month	has	31	days.

			669	 	 //	The	estimate	may	be	too	low	by	at	most	one	month,	so	adjust.

			670	 	 month	=	Month(day	/	31)

			671	 	 end	:=	int(daysBefore[month+1])

			672	 	 var	begin	int

			673	 	 if	day	>=	end	{

			674	 	 	 month++

			675	 	 	 begin	=	end

			676	 	 }	else	{

			677	 	 	 begin	=	int(daysBefore[month])

			678	 	 }

			679	

			680	 	 month++	//	because	January	is	1

			681	 	 day	=	day	-	begin	+	1

			682	 	 return

			683	 }

			684	

			685	 //	daysBefore[m]	counts	the	number	of	days	in	a	non-leap	year

			686	 //	before	month	m	begins.		There	is	an	entry	for	m=12,	counting

			687	 //	the	number	of	days	before	January	of	next	year	(365).

			688	 var	daysBefore	=	[...]int32{

			689	 	 0,

			690	 	 31,

			691	 	 31	+	28,

			692	 	 31	+	28	+	31,

			693	 	 31	+	28	+	31	+	30,

			694	 	 31	+	28	+	31	+	30	+	31,

			695	 	 31	+	28	+	31	+	30	+	31	+	30,

			696	 	 31	+	28	+	31	+	30	+	31	+	30	+	31,

			697	 	 31	+	28	+	31	+	30	+	31	+	30	+	31	+	31,

			698	 	 31	+	28	+	31	+	30	+	31	+	30	+	31	+	31	+	30,

			699	 	 31	+	28	+	31	+	30	+	31	+	30	+	31	+	31	+	30	+	31,

			700	 	 31	+	28	+	31	+	30	+	31	+	30	+	31	+	31	+	30	+	31	+	30,

			701	 	 31	+	28	+	31	+	30	+	31	+	30	+	31	+	31	+	30	+	31	+	30	+	31,

			702	 }

			703	

			704	 func	daysIn(m	Month,	year	int)	int	{

			705	 	 if	m	==	February	&&	isLeap(year)	{

			706	 	 	 return	29

			707	 	 }

			708	 	 return	int(daysBefore[m]	-	daysBefore[m-1])

			709	 }

			710	

			711	 //	Provided	by	package	runtime.

			712	 func	now()	(sec	int64,	nsec	int32)

			713	

			714	 //	Now	returns	the	current	local	time.

			715	 func	Now()	Time	{

			716	 	 sec,	nsec	:=	now()

			717	 	 return	Time{sec	+	unixToInternal,	nsec,	Local}

			718	 }

			719	

			720	 //	UTC	returns	t	with	the	location	set	to	UTC.

			721	 func	(t	Time)	UTC()	Time	{

			722	 	 t.loc	=	UTC

			723	 	 return	t

			724	 }

			725	

			726	 //	Local	returns	t	with	the	location	set	to	local	time.

			727	 func	(t	Time)	Local()	Time	{

			728	 	 t.loc	=	Local

			729	 	 return	t

			730	 }

			731	

			732	 //	In	returns	t	with	the	location	information	set	to	loc.

			733	 //

			734	 //	In	panics	if	loc	is	nil.

			735	 func	(t	Time)	In(loc	*Location)	Time	{

			736	 	 if	loc	==	nil	{

			737	 	 	 panic("time:	missing	Location	in	call	to	Time.In")

			738	 	 }

			739	 	 t.loc	=	loc

			740	 	 return	t

			741	 }

			742	

			743	 //	Location	returns	the	time	zone	information	associated	with	t.

			744	 func	(t	Time)	Location()	*Location	{

			745	 	 l	:=	t.loc

			746	 	 if	l	==	nil	{

			747	 	 	 l	=	UTC

			748	 	 }

			749	 	 return	l

			750	 }

			751	

			752	 //	Zone	computes	the	time	zone	in	effect	at	time	t,	returning	the	abbreviated

			753	 //	name	of	the	zone	(such	as	"CET")	and	its	offset	in	seconds	east	of	UTC.

			754	 func	(t	Time)	Zone()	(name	string,	offset	int)	{

			755	 	 name,	offset,	_,	_,	_	=	t.loc.lookup(t.sec	+	internalToUnix)

			756	 	 return

			757	 }

			758	

			759	 //	Unix	returns	t	as	a	Unix	time,	the	number	of	seconds	elapsed

			760	 //	since	January	1,	1970	UTC.

			761	 func	(t	Time)	Unix()	int64	{

			762	 	 return	t.sec	+	internalToUnix

			763	 }

			764	

			765	 //	UnixNano	returns	t	as	a	Unix	time,	the	number	of	nanoseconds	elapsed

			766	 //	since	January	1,	1970	UTC.	The	result	is	undefined	if	the	Unix	time

			767	 //	in	nanoseconds	cannot	be	represented	by	an	int64.	Note	that	this

			768	 //	means	the	result	of	calling	UnixNano	on	the	zero	Time	is	undefined.

			769	 func	(t	Time)	UnixNano()	int64	{

			770	 	 return	(t.sec+internalToUnix)*1e9	+	int64(t.nsec)

			771	 }

			772	

			773	 const	timeGobVersion	byte	=	1

			774	

			775	 //	GobEncode	implements	the	gob.GobEncoder	interface.

			776	 func	(t	Time)	GobEncode()	([]byte,	error)	{

			777	 	 var	offsetMin	int16	//	minutes	east	of	UTC.	-1	is	UTC.

			778	

			779	 	 if	t.Location()	==	&utcLoc	{

			780	 	 	 offsetMin	=	-1

			781	 	 }	else	{

			782	 	 	 _,	offset	:=	t.Zone()

			783	 	 	 if	offset%60	!=	0	{

			784	 	 	 	 return	nil,	errors.New("Time.GobEncode:	zone	offset	has	fractional	minute")

			785	 	 	 }

			786	 	 	 offset	/=	60

			787	 	 	 if	offset	<	-32768	||	offset	==	-1	||	offset	>	32767	{

			788	 	 	 	 return	nil,	errors.New("Time.GobEncode:	unexpected	zone	offset")

			789	 	 	 }

			790	 	 	 offsetMin	=	int16(offset)

			791	 	 }

			792	

			793	 	 enc	:=	[]byte{

			794	 	 	 timeGobVersion,				//	byte	0	:	version

			795	 	 	 byte(t.sec	>>	56),	//	bytes	1-8:	seconds

			796	 	 	 byte(t.sec	>>	48),

			797	 	 	 byte(t.sec	>>	40),

			798	 	 	 byte(t.sec	>>	32),

			799	 	 	 byte(t.sec	>>	24),

			800	 	 	 byte(t.sec	>>	16),

			801	 	 	 byte(t.sec	>>	8),

			802	 	 	 byte(t.sec),

			803	 	 	 byte(t.nsec	>>	24),	//	bytes	9-12:	nanoseconds

			804	 	 	 byte(t.nsec	>>	16),

			805	 	 	 byte(t.nsec	>>	8),

			806	 	 	 byte(t.nsec),

			807	 	 	 byte(offsetMin	>>	8),	//	bytes	13-14:	zone	offset	in	minutes

			808	 	 	 byte(offsetMin),

			809	 	 }

			810	

			811	 	 return	enc,	nil

			812	 }

			813	

			814	 //	GobDecode	implements	the	gob.GobDecoder	interface.

			815	 func	(t	*Time)	GobDecode(buf	[]byte)	error	{

			816	 	 if	len(buf)	==	0	{

			817	 	 	 return	errors.New("Time.GobDecode:	no	data")

			818	 	 }

			819	

			820	 	 if	buf[0]	!=	timeGobVersion	{

			821	 	 	 return	errors.New("Time.GobDecode:	unsupported	version")

			822	 	 }

			823	

			824	 	 if	len(buf)	!=	/*version*/	1+	/*sec*/	8+	/*nsec*/	4+	

			825	 	 	 return	errors.New("Time.GobDecode:	invalid	length")

			826	 	 }

			827	

			828	 	 buf	=	buf[1:]

			829	 	 t.sec	=	int64(buf[7])	|	int64(buf[6])<<8	|	int64(buf[5])<<16	|	int64(buf[4])<<24	|

			830	 	 	 int64(buf[3])<<32	|	int64(buf[2])<<40	|	int64(buf[1])<<48	|	int64(buf[0])<<56

			831	

			832	 	 buf	=	buf[8:]

			833	 	 t.nsec	=	int32(buf[3])	|	int32(buf[2])<<8	|	int32(buf[1])<<16	|	int32(buf[0])<<24

			834	

			835	 	 buf	=	buf[4:]

			836	 	 offset	:=	int(int16(buf[1])|int16(buf[0])<<8)	*	60

			837	

			838	 	 if	offset	==	-1*60	{

			839	 	 	 t.loc	=	&utcLoc

			840	 	 }	else	if	_,	localoff,	_,	_,	_	:=	Local.lookup(t.sec	+	internalToUnix);	offset	==	localoff	{

			841	 	 	 t.loc	=	Local

			842	 	 }	else	{

			843	 	 	 t.loc	=	FixedZone("",	offset)

			844	 	 }

			845	

			846	 	 return	nil

			847	 }

			848	

			849	 //	MarshalJSON	implements	the	json.Marshaler	interface.

			850	 //	Time	is	formatted	as	RFC3339.

			851	 func	(t	Time)	MarshalJSON()	([]byte,	error)	{

			852	 	 if	y	:=	t.Year();	y	<	0	||	y	>=	10000	{

			853	 	 	 return	nil,	errors.New("Time.MarshalJSON:	year	outside	of	range	[0,9999]")

			854	 	 }

			855	 	 return	[]byte(t.Format(`"`	+	RFC3339Nano	+	`"`)),	nil

			856	 }

			857	

			858	 //	UnmarshalJSON	implements	the	json.Unmarshaler	interface.

			859	 //	Time	is	expected	in	RFC3339	format.

			860	 func	(t	*Time)	UnmarshalJSON(data	[]byte)	(err	error)	{

			861	 	 //	Fractional	seconds	are	handled	implicitly	by	Parse.

			862	 	 *t,	err	=	Parse(`"`+RFC3339+`"`,	string(data))

			863	 	 return

			864	 }

			865	

			866	 //	Unix	returns	the	local	Time	corresponding	to	the	given	Unix	time,

			867	 //	sec	seconds	and	nsec	nanoseconds	since	January	1,	1970	UTC.

			868	 //	It	is	valid	to	pass	nsec	outside	the	range	[0,	999999999].

			869	 func	Unix(sec	int64,	nsec	int64)	Time	{

			870	 	 if	nsec	<	0	||	nsec	>=	1e9	{

			871	 	 	 n	:=	nsec	/	1e9

			872	 	 	 sec	+=	n

			873	 	 	 nsec	-=	n	*	1e9

			874	 	 	 if	nsec	<	0	{

			875	 	 	 	 nsec	+=	1e9

			876	 	 	 	 sec--

			877	 	 	 }

			878	 	 }

			879	 	 return	Time{sec	+	unixToInternal,	int32(nsec),	Local}

			880	 }

			881	

			882	 func	isLeap(year	int)	bool	{

			883	 	 return	year%4	==	0	&&	(year%100	!=	0	||	year%400	==	0)

			884	 }

			885	

			886	 //	norm	returns	nhi,	nlo	such	that

			887	 //	 hi	*	base	+	lo	==	nhi	*	base	+	nlo

			888	 //	 0	<=	nlo	<	base

			889	 func	norm(hi,	lo,	base	int)	(nhi,	nlo	int)	{

			890	 	 if	lo	<	0	{

			891	 	 	 n	:=	(-lo-1)/base	+	1

			892	 	 	 hi	-=	n

			893	 	 	 lo	+=	n	*	base

			894	 	 }

			895	 	 if	lo	>=	base	{

			896	 	 	 n	:=	lo	/	base

			897	 	 	 hi	+=	n

			898	 	 	 lo	-=	n	*	base

			899	 	 }

			900	 	 return	hi,	lo

			901	 }

			902	

			903	 //	Date	returns	the	Time	corresponding	to

			904	 //	 yyyy-mm-dd	hh:mm:ss	+	nsec	nanoseconds

			905	 //	in	the	appropriate	zone	for	that	time	in	the	given	location.

			906	 //

			907	 //	The	month,	day,	hour,	min,	sec,	and	nsec	values	may	be	outside

			908	 //	their	usual	ranges	and	will	be	normalized	during	the	conversion.

			909	 //	For	example,	October	32	converts	to	November	1.

			910	 //

			911	 //	A	daylight	savings	time	transition	skips	or	repeats	times.

			912	 //	For	example,	in	the	United	States,	March	13,	2011	2:15am	never	occurred,

			913	 //	while	November	6,	2011	1:15am	occurred	twice.		In	such	cases,	the

			914	 //	choice	of	time	zone,	and	therefore	the	time,	is	not	well-defined.

			915	 //	Date	returns	a	time	that	is	correct	in	one	of	the	two	zones	involved

			916	 //	in	the	transition,	but	it	does	not	guarantee	which.

			917	 //

			918	 //	Date	panics	if	loc	is	nil.

			919	 func	Date(year	int,	month	Month,	day,	hour,	min,	sec,	nsec	int,	loc	*Location)	Time	{

			920	 	 if	loc	==	nil	{

			921	 	 	 panic("time:	missing	Location	in	call	to	Date")

			922	 	 }

			923	

			924	 	 //	Normalize	month,	overflowing	into	year.

			925	 	 m	:=	int(month)	-	1

			926	 	 year,	m	=	norm(year,	m,	12)

			927	 	 month	=	Month(m)	+	1

			928	

			929	 	 //	Normalize	nsec,	sec,	min,	hour,	overflowing	into	day.

			930	 	 sec,	nsec	=	norm(sec,	nsec,	1e9)

			931	 	 min,	sec	=	norm(min,	sec,	60)

			932	 	 hour,	min	=	norm(hour,	min,	60)

			933	 	 day,	hour	=	norm(day,	hour,	24)

			934	

			935	 	 y	:=	uint64(int64(year)	-	absoluteZeroYear)

			936	

			937	 	 //	Compute	days	since	the	absolute	epoch.

			938	

			939	 	 //	Add	in	days	from	400-year	cycles.

			940	 	 n	:=	y	/	400

			941	 	 y	-=	400	*	n

			942	 	 d	:=	daysPer400Years	*	n

			943	

			944	 	 //	Add	in	100-year	cycles.

			945	 	 n	=	y	/	100

			946	 	 y	-=	100	*	n

			947	 	 d	+=	daysPer100Years	*	n

			948	

			949	 	 //	Add	in	4-year	cycles.

			950	 	 n	=	y	/	4

			951	 	 y	-=	4	*	n

			952	 	 d	+=	daysPer4Years	*	n

			953	

			954	 	 //	Add	in	non-leap	years.

			955	 	 n	=	y

			956	 	 d	+=	365	*	n

			957	

			958	 	 //	Add	in	days	before	this	month.

			959	 	 d	+=	uint64(daysBefore[month-1])

			960	 	 if	isLeap(year)	&&	month	>=	March	{

			961	 	 	 d++	//	February	29

			962	 	 }

			963	

			964	 	 //	Add	in	days	before	today.

			965	 	 d	+=	uint64(day	-	1)

			966	

			967	 	 //	Add	in	time	elapsed	today.

			968	 	 abs	:=	d	*	secondsPerDay

			969	 	 abs	+=	uint64(hour*secondsPerHour	+	min*secondsPerMinute	+	sec)

			970	

			971	 	 unix	:=	int64(abs)	+	(absoluteToInternal	+	internalToUnix)

			972	

			973	 	 //	Look	for	zone	offset	for	t,	so	we	can	adjust	to	UTC.

			974	 	 //	The	lookup	function	expects	UTC,	so	we	pass	t	in	the

			975	 	 //	hope	that	it	will	not	be	too	close	to	a	zone	transition,

			976	 	 //	and	then	adjust	if	it	is.

			977	 	 _,	offset,	_,	start,	end	:=	loc.lookup(unix)

			978	 	 if	offset	!=	0	{

			979	 	 	 switch	utc	:=	unix	-	int64(offset);	{

			980	 	 	 case	utc	<	start:

			981	 	 	 	 _,	offset,	_,	_,	_	=	loc.lookup(start	-	1)

			982	 	 	 case	utc	>=	end:

			983	 	 	 	 _,	offset,	_,	_,	_	=	loc.lookup(end)

			984	 	 	 }

			985	 	 	 unix	-=	int64(offset)

			986	 	 }

			987	

			988	 	 return	Time{unix	+	unixToInternal,	int32(nsec),	loc}

			989	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/time/zoneinfo.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	time

					6	

					7	 import	(

					8	 	 "sync"

					9	 	 "syscall"

				10)

				11	

				12	 //	A	Location	maps	time	instants	to	the	zone	in	use	at	that	time.

				13	 //	Typically,	the	Location	represents	the	collection	of	time	offsets

				14	 //	in	use	in	a	geographical	area,	such	as	CEST	and	CET	for	central	Europe.

				15	 type	Location	struct	{

				16	 	 name	string

				17	 	 zone	[]zone

				18	 	 tx			[]zoneTrans

				19	

				20	 	 //	Most	lookups	will	be	for	the	current	time.

				21	 	 //	To	avoid	the	binary	search	through	tx,	keep	a

				22	 	 //	static	one-element	cache	that	gives	the	correct

				23	 	 //	zone	for	the	time	when	the	Location	was	created.

				24	 	 //	if	cacheStart	<=	t	<=	cacheEnd,

				25	 	 //	lookup	can	return	cacheZone.

				26	 	 //	The	units	for	cacheStart	and	cacheEnd	are	seconds

				27	 	 //	since	January	1,	1970	UTC,	to	match	the	argument

				28	 	 //	to	lookup.

				29	 	 cacheStart	int64

				30	 	 cacheEnd			int64

				31	 	 cacheZone		*zone

				32	 }

				33	

				34	 //	A	zone	represents	a	single	time	zone	such	as	CEST	or	CET.

				35	 type	zone	struct	{

				36	 	 name			string	//	abbreviated	name,	"CET"

				37	 	 offset	int				//	seconds	east	of	UTC

				38	 	 isDST		bool			//	is	this	zone	Daylight	Savings	Time?

				39	 }

				40	

				41	 //	A	zoneTrans	represents	a	single	time	zone	transition.

				42	 type	zoneTrans	struct	{

				43	 	 when									int64	//	transition	time,	in	seconds	since	1970	GMT

				44	 	 index								uint8	//	the	index	of	the	zone	that	goes	into	effect	at	that	time

				45	 	 isstd,	isutc	bool		//	ignored	-	no	idea	what	these	mean

				46	 }

				47	

				48	 //	UTC	represents	Universal	Coordinated	Time	(UTC).

				49	 var	UTC	*Location	=	&utcLoc

				50	

				51	 //	utcLoc	is	separate	so	that	get	can	refer	to	&utcLoc

				52	 //	and	ensure	that	it	never	returns	a	nil	*Location,

				53	 //	even	if	a	badly	behaved	client	has	changed	UTC.

				54	 var	utcLoc	=	Location{name:	"UTC"}

				55	

				56	 //	Local	represents	the	system's	local	time	zone.

				57	 var	Local	*Location	=	&localLoc

				58	

				59	 //	localLoc	is	separate	so	that	initLocal	can	initialize

				60	 //	it	even	if	a	client	has	changed	Local.

				61	 var	localLoc	Location

				62	 var	localOnce	sync.Once

				63	

				64	 func	(l	*Location)	get()	*Location	{

				65	 	 if	l	==	nil	{

				66	 	 	 return	&utcLoc

				67	 	 }

				68	 	 if	l	==	&localLoc	{

				69	 	 	 localOnce.Do(initLocal)

				70	 	 }

				71	 	 return	l

				72	 }

				73	

				74	 //	String	returns	a	descriptive	name	for	the	time	zone	information,

				75	 //	corresponding	to	the	argument	to	LoadLocation.

				76	 func	(l	*Location)	String()	string	{

				77	 	 return	l.get().name

				78	 }

				79	

				80	 //	FixedZone	returns	a	Location	that	always	uses

				81	 //	the	given	zone	name	and	offset	(seconds	east	of	UTC).

				82	 func	FixedZone(name	string,	offset	int)	*Location	{

				83	 	 l	:=	&Location{

				84	 	 	 name:							name,

				85	 	 	 zone:							[]zone{{name,	offset,	false}},

				86	 	 	 tx:									[]zoneTrans{{-1	<<	63,	0,	false,	false}},

				87	 	 	 cacheStart:	-1	<<	63,

				88	 	 	 cacheEnd:			1<<63	-	1,

				89	 	 }

				90	 	 l.cacheZone	=	&l.zone[0]

				91	 	 return	l

				92	 }

				93	

				94	 //	lookup	returns	information	about	the	time	zone	in	use	at	an

				95	 //	instant	in	time	expressed	as	seconds	since	January	1,	1970	00:00:00	UTC.

				96	 //

				97	 //	The	returned	information	gives	the	name	of	the	zone	(such	as	"CET"),

				98	 //	the	start	and	end	times	bracketing	sec	when	that	zone	is	in	effect,

				99	 //	the	offset	in	seconds	east	of	UTC	(such	as	-5*60*60),	and	whether

			100	 //	the	daylight	savings	is	being	observed	at	that	time.

			101	 func	(l	*Location)	lookup(sec	int64)	(name	string,	offset	int,	isDST	bool,	start,	end	int64)	{

			102	 	 l	=	l.get()

			103	

			104	 	 if	len(l.tx)	==	0	{

			105	 	 	 name	=	"UTC"

			106	 	 	 offset	=	0

			107	 	 	 isDST	=	false

			108	 	 	 start	=	-1	<<	63

			109	 	 	 end	=	1<<63	-	1

			110	 	 	 return

			111	 	 }

			112	

			113	 	 if	zone	:=	l.cacheZone;	zone	!=	nil	&&	l.cacheStart	<=	sec	&&	sec	<	l.cacheEnd	{

			114	 	 	 name	=	zone.name

			115	 	 	 offset	=	zone.offset

			116	 	 	 isDST	=	zone.isDST

			117	 	 	 start	=	l.cacheStart

			118	 	 	 end	=	l.cacheEnd

			119	 	 	 return

			120	 	 }

			121	

			122	 	 //	Binary	search	for	entry	with	largest	time	<=	sec.

			123	 	 //	Not	using	sort.Search	to	avoid	dependencies.

			124	 	 tx	:=	l.tx

			125	 	 end	=	1<<63	-	1

			126	 	 for	len(tx)	>	1	{

			127	 	 	 m	:=	len(tx)	/	2

			128	 	 	 lim	:=	tx[m].when

			129	 	 	 if	sec	<	lim	{

			130	 	 	 	 end	=	lim

			131	 	 	 	 tx	=	tx[0:m]

			132	 	 	 }	else	{

			133	 	 	 	 tx	=	tx[m:]

			134	 	 	 }

			135	 	 }

			136	 	 zone	:=	&l.zone[tx[0].index]

			137	 	 name	=	zone.name

			138	 	 offset	=	zone.offset

			139	 	 isDST	=	zone.isDST

			140	 	 start	=	tx[0].when

			141	 	 //	end	=	maintained	during	the	search

			142	 	 return

			143	 }

			144	

			145	 //	lookupName	returns	information	about	the	time	zone	with

			146	 //	the	given	name	(such	as	"EST").

			147	 func	(l	*Location)	lookupName(name	string)	(offset	int,	isDST	bool,	ok	bool)	{

			148	 	 l	=	l.get()

			149	 	 for	i	:=	range	l.zone	{

			150	 	 	 zone	:=	&l.zone[i]

			151	 	 	 if	zone.name	==	name	{

			152	 	 	 	 return	zone.offset,	zone.isDST,	true

			153	 	 	 }

			154	 	 }

			155	 	 return

			156	 }

			157	

			158	 //	lookupOffset	returns	information	about	the	time	zone	with

			159	 //	the	given	offset	(such	as	-5*60*60).

			160	 func	(l	*Location)	lookupOffset(offset	int)	(name	string,	isDST	bool,	ok	bool)	{

			161	 	 l	=	l.get()

			162	 	 for	i	:=	range	l.zone	{

			163	 	 	 zone	:=	&l.zone[i]

			164	 	 	 if	zone.offset	==	offset	{

			165	 	 	 	 return	zone.name,	zone.isDST,	true

			166	 	 	 }

			167	 	 }

			168	 	 return

			169	 }

			170	

			171	 //	NOTE(rsc):	Eventually	we	will	need	to	accept	the	POSIX	TZ	environment

			172	 //	syntax	too,	but	I	don't	feel	like	implementing	it	today.

			173	

			174	 var	zoneinfo,	_	=	syscall.Getenv("ZONEINFO")

			175	

			176	 //	LoadLocation	returns	the	Location	with	the	given	name.

			177	 //

			178	 //	If	the	name	is	""	or	"UTC",	LoadLocation	returns	UTC.

			179	 //	If	the	name	is	"Local",	LoadLocation	returns	Local.

			180	 //

			181	 //	Otherwise,	the	name	is	taken	to	be	a	location	name	corresponding	to	a	file

			182	 //	in	the	IANA	Time	Zone	database,	such	as	"America/New_York".

			183	 //

			184	 //	The	time	zone	database	needed	by	LoadLocation	may	not	be

			185	 //	present	on	all	systems,	especially	non-Unix	systems.

			186	 //	LoadLocation	looks	in	the	directory	or	uncompressed	zip	file

			187	 //	named	by	the	ZONEINFO	environment	variable,	if	any,	then	looks	in

			188	 //	known	installation	locations	on	Unix	systems,

			189	 //	and	finally	looks	in	$GOROOT/lib/time/zoneinfo.zip.

			190	 func	LoadLocation(name	string)	(*Location,	error)	{

			191	 	 if	name	==	""	||	name	==	"UTC"	{

			192	 	 	 return	UTC,	nil

			193	 	 }

			194	 	 if	name	==	"Local"	{

			195	 	 	 return	Local,	nil

			196	 	 }

			197	 	 if	zoneinfo	!=	""	{

			198	 	 	 if	z,	err	:=	loadZoneFile(zoneinfo,	name);	err	==	nil	{

			199	 	 	 	 z.name	=	name

			200	 	 	 	 return	z,	nil

			201	 	 	 }

			202	 	 }

			203	 	 return	loadLocation(name)

			204	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/time/zoneinfo_read.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Parse	"zoneinfo"	time	zone	file.

					6	 //	This	is	a	fairly	standard	file	format	used	on	OS	X,	Linux,	BSD,	Sun,	and	others.

					7	 //	See	tzfile(5),	http://en.wikipedia.org/wiki/Zoneinfo,

					8	 //	and	ftp://munnari.oz.au/pub/oldtz/

					9	

				10	 package	time

				11	

				12	 import	"errors"

				13	

				14	 const	(

				15	 	 headerSize	=	4	+	16	+	4*7

				16)

				17	

				18	 //	Simple	I/O	interface	to	binary	blob	of	data.

				19	 type	data	struct	{

				20	 	 p					[]byte

				21	 	 error	bool

				22	 }

				23	

				24	 func	(d	*data)	read(n	int)	[]byte	{

				25	 	 if	len(d.p)	<	n	{

				26	 	 	 d.p	=	nil

				27	 	 	 d.error	=	true

				28	 	 	 return	nil

				29	 	 }

				30	 	 p	:=	d.p[0:n]

				31	 	 d.p	=	d.p[n:]

				32	 	 return	p

				33	 }

				34	

				35	 func	(d	*data)	big4()	(n	uint32,	ok	bool)	{

				36	 	 p	:=	d.read(4)

				37	 	 if	len(p)	<	4	{

				38	 	 	 d.error	=	true

				39	 	 	 return	0,	false

				40	 	 }

				41	 	 return	uint32(p[0])<<24	|	uint32(p[1])<<16	|	uint32(p[2])<<8	|	uint32(p[3]),	true

				42	 }

				43	

				44	 func	(d	*data)	byte()	(n	byte,	ok	bool)	{

				45	 	 p	:=	d.read(1)

				46	 	 if	len(p)	<	1	{

				47	 	 	 d.error	=	true

				48	 	 	 return	0,	false

				49	 	 }

				50	 	 return	p[0],	true

				51	 }

				52	

				53	 //	Make	a	string	by	stopping	at	the	first	NUL

				54	 func	byteString(p	[]byte)	string	{

				55	 	 for	i	:=	0;	i	<	len(p);	i++	{

				56	 	 	 if	p[i]	==	0	{

				57	 	 	 	 return	string(p[0:i])

				58	 	 	 }

				59	 	 }

				60	 	 return	string(p)

				61	 }

				62	

				63	 var	badData	=	errors.New("malformed	time	zone	information")

				64	

				65	 func	loadZoneData(bytes	[]byte)	(l	*Location,	err	error)	{

				66	 	 d	:=	data{bytes,	false}

				67	

				68	 	 //	4-byte	magic	"TZif"

				69	 	 if	magic	:=	d.read(4);	string(magic)	!=	"TZif"	{

				70	 	 	 return	nil,	badData

				71	 	 }

				72	

				73	 	 //	1-byte	version,	then	15	bytes	of	padding

				74	 	 var	p	[]byte

				75	 	 if	p	=	d.read(16);	len(p)	!=	16	||	p[0]	!=	0	&&	p[0]	!=	'2'	{

				76	 	 	 return	nil,	badData

				77	 	 }

				78	

				79	 	 //	six	big-endian	32-bit	integers:

				80	 	 //	 number	of	UTC/local	indicators

				81	 	 //	 number	of	standard/wall	indicators

				82	 	 //	 number	of	leap	seconds

				83	 	 //	 number	of	transition	times

				84	 	 //	 number	of	local	time	zones

				85	 	 //	 number	of	characters	of	time	zone	abbrev	strings

				86	 	 const	(

				87	 	 	 NUTCLocal	=	iota

				88	 	 	 NStdWall

				89	 	 	 NLeap

				90	 	 	 NTime

				91	 	 	 NZone

				92	 	 	 NChar

				93)

				94	 	 var	n	[6]int

				95	 	 for	i	:=	0;	i	<	6;	i++	{

				96	 	 	 nn,	ok	:=	d.big4()

				97	 	 	 if	!ok	{

				98	 	 	 	 return	nil,	badData

				99	 	 	 }

			100	 	 	 n[i]	=	int(nn)

			101	 	 }

			102	

			103	 	 //	Transition	times.

			104	 	 txtimes	:=	data{d.read(n[NTime]	*	4),	false}

			105	

			106	 	 //	Time	zone	indices	for	transition	times.

			107	 	 txzones	:=	d.read(n[NTime])

			108	

			109	 	 //	Zone	info	structures

			110	 	 zonedata	:=	data{d.read(n[NZone]	*	6),	false}

			111	

			112	 	 //	Time	zone	abbreviations.

			113	 	 abbrev	:=	d.read(n[NChar])

			114	

			115	 	 //	Leap-second	time	pairs

			116	 	 d.read(n[NLeap]	*	8)

			117	

			118	 	 //	Whether	tx	times	associated	with	local	time	types

			119	 	 //	are	specified	as	standard	time	or	wall	time.

			120	 	 isstd	:=	d.read(n[NStdWall])

			121	

			122	 	 //	Whether	tx	times	associated	with	local	time	types

			123	 	 //	are	specified	as	UTC	or	local	time.

			124	 	 isutc	:=	d.read(n[NUTCLocal])

			125	

			126	 	 if	d.error	{	//	ran	out	of	data

			127	 	 	 return	nil,	badData

			128	 	 }

			129	

			130	 	 //	If	version	==	2,	the	entire	file	repeats,	this	time	using

			131	 	 //	8-byte	ints	for	txtimes	and	leap	seconds.

			132	 	 //	We	won't	need	those	until	2106.

			133	

			134	 	 //	Now	we	can	build	up	a	useful	data	structure.

			135	 	 //	First	the	zone	information.

			136	 	 //	 utcoff[4]	isdst[1]	nameindex[1]

			137	 	 zone	:=	make([]zone,	n[NZone])

			138	 	 for	i	:=	range	zone	{

			139	 	 	 var	ok	bool

			140	 	 	 var	n	uint32

			141	 	 	 if	n,	ok	=	zonedata.big4();	!ok	{

			142	 	 	 	 return	nil,	badData

			143	 	 	 }

			144	 	 	 zone[i].offset	=	int(n)

			145	 	 	 var	b	byte

			146	 	 	 if	b,	ok	=	zonedata.byte();	!ok	{

			147	 	 	 	 return	nil,	badData

			148	 	 	 }

			149	 	 	 zone[i].isDST	=	b	!=	0

			150	 	 	 if	b,	ok	=	zonedata.byte();	!ok	||	int(b)	>=	len(abbrev)	{

			151	 	 	 	 return	nil,	badData

			152	 	 	 }

			153	 	 	 zone[i].name	=	byteString(abbrev[b:])

			154	 	 }

			155	

			156	 	 //	Now	the	transition	time	info.

			157	 	 tx	:=	make([]zoneTrans,	n[NTime])

			158	 	 for	i	:=	range	tx	{

			159	 	 	 var	ok	bool

			160	 	 	 var	n	uint32

			161	 	 	 if	n,	ok	=	txtimes.big4();	!ok	{

			162	 	 	 	 return	nil,	badData

			163	 	 	 }

			164	 	 	 tx[i].when	=	int64(int32(n))

			165	 	 	 if	int(txzones[i])	>=	len(zone)	{

			166	 	 	 	 return	nil,	badData

			167	 	 	 }

			168	 	 	 tx[i].index	=	txzones[i]

			169	 	 	 if	i	<	len(isstd)	{

			170	 	 	 	 tx[i].isstd	=	isstd[i]	!=	0

			171	 	 	 }

			172	 	 	 if	i	<	len(isutc)	{

			173	 	 	 	 tx[i].isutc	=	isutc[i]	!=	0

			174	 	 	 }

			175	 	 }

			176	

			177	 	 //	Commited	to	succeed.

			178	 	 l	=	&Location{zone:	zone,	tx:	tx}

			179	

			180	 	 //	Fill	in	the	cache	with	information	about	right	now,

			181	 	 //	since	that	will	be	the	most	common	lookup.

			182	 	 sec,	_	:=	now()

			183	 	 for	i	:=	range	tx	{

			184	 	 	 if	tx[i].when	<=	sec	&&	(i+1	==	len(tx)	||	sec	<	tx[i+1].when)	{

			185	 	 	 	 l.cacheStart	=	tx[i].when

			186	 	 	 	 l.cacheEnd	=	1<<63	-	1

			187	 	 	 	 if	i+1	<	len(tx)	{

			188	 	 	 	 	 l.cacheEnd	=	tx[i+1].when

			189	 	 	 	 }

			190	 	 	 	 l.cacheZone	=	&l.zone[tx[i].index]

			191	 	 	 }

			192	 	 }

			193	

			194	 	 return	l,	nil

			195	 }

			196	

			197	 func	loadZoneFile(dir,	name	string)	(l	*Location,	err	error)	{

			198	 	 if	len(dir)	>	4	&&	dir[len(dir)-4:]	==	".zip"	{

			199	 	 	 return	loadZoneZip(dir,	name)

			200	 	 }

			201	 	 if	dir	!=	""	{

			202	 	 	 name	=	dir	+	"/"	+	name

			203	 	 }

			204	 	 buf,	err	:=	readFile(name)

			205	 	 if	err	!=	nil	{

			206	 	 	 return

			207	 	 }

			208	 	 return	loadZoneData(buf)

			209	 }

			210	

			211	 //	There	are	500+	zoneinfo	files.		Rather	than	distribute	them	all

			212	 //	individually,	we	ship	them	in	an	uncompressed	zip	file.

			213	 //	Used	this	way,	the	zip	file	format	serves	as	a	commonly	readable

			214	 //	container	for	the	individual	small	files.		We	choose	zip	over	tar

			215	 //	because	zip	files	have	a	contiguous	table	of	contents,	making

			216	 //	individual	file	lookups	faster,	and	because	the	per-file	overhead

			217	 //	in	a	zip	file	is	considerably	less	than	tar's	512	bytes.

			218	

			219	 //	get4	returns	the	little-endian	32-bit	value	in	b.

			220	 func	get4(b	[]byte)	int	{

			221	 	 if	len(b)	<	4	{

			222	 	 	 return	0

			223	 	 }

			224	 	 return	int(b[0])	|	int(b[1])<<8	|	int(b[2])<<16	|	int(b[3])<<24

			225	 }

			226	

			227	 //	get2	returns	the	little-endian	16-bit	value	in	b.

			228	 func	get2(b	[]byte)	int	{

			229	 	 if	len(b)	<	2	{

			230	 	 	 return	0

			231	 	 }

			232	 	 return	int(b[0])	|	int(b[1])<<8

			233	 }

			234	

			235	 func	loadZoneZip(zipfile,	name	string)	(l	*Location,	err	error)	{

			236	 	 fd,	err	:=	open(zipfile)

			237	 	 if	err	!=	nil	{

			238	 	 	 return	nil,	errors.New("open	"	+	zipfile	+	":	"	+	err.Error())

			239	 	 }

			240	 	 defer	closefd(fd)

			241	

			242	 	 const	(

			243	 	 	 zecheader	=	0x06054b50

			244	 	 	 zcheader		=	0x02014b50

			245	 	 	 ztailsize	=	22

			246	

			247	 	 	 zheadersize	=	30

			248	 	 	 zheader					=	0x04034b50

			249)

			250	

			251	 	 buf	:=	make([]byte,	ztailsize)

			252	 	 if	err	:=	preadn(fd,	buf,	-ztailsize);	err	!=	nil	||	get4(buf)	!=	zecheader	{

			253	 	 	 return	nil,	errors.New("corrupt	zip	file	"	+	zipfile)

			254	 	 }

			255	 	 n	:=	get2(buf[10:])

			256	 	 size	:=	get4(buf[12:])

			257	 	 off	:=	get4(buf[16:])

			258	

			259	 	 buf	=	make([]byte,	size)

			260	 	 if	err	:=	preadn(fd,	buf,	off);	err	!=	nil	{

			261	 	 	 return	nil,	errors.New("corrupt	zip	file	"	+	zipfile)

			262	 	 }

			263	

			264	 	 for	i	:=	0;	i	<	n;	i++	{

			265	 	 	 //	zip	entry	layout:

			266	 	 	 //	 0	 magic[4]

			267	 	 	 //	 4	 madevers[1]

			268	 	 	 //	 5	 madeos[1]

			269	 	 	 //	 6	 extvers[1]

			270	 	 	 //	 7	 extos[1]

			271	 	 	 //	 8	 flags[2]

			272	 	 	 //	 10	 meth[2]

			273	 	 	 //	 12	 modtime[2]

			274	 	 	 //	 14	 moddate[2]

			275	 	 	 //	 16	 crc[4]

			276	 	 	 //	 20	 csize[4]

			277	 	 	 //	 24	 uncsize[4]

			278	 	 	 //	 28	 namelen[2]

			279	 	 	 //	 30	 xlen[2]

			280	 	 	 //	 32	 fclen[2]

			281	 	 	 //	 34	 disknum[2]

			282	 	 	 //	 36	 iattr[2]

			283	 	 	 //	 38	 eattr[4]

			284	 	 	 //	 42	 off[4]

			285	 	 	 //	 46	 name[namelen]

			286	 	 	 //	 46+namelen+xlen+fclen	-	next	header

			287	 	 	 //	 	

			288	 	 	 if	get4(buf)	!=	zcheader	{

			289	 	 	 	 break

			290	 	 	 }

			291	 	 	 meth	:=	get2(buf[10:])

			292	 	 	 size	:=	get4(buf[24:])

			293	 	 	 namelen	:=	get2(buf[28:])

			294	 	 	 xlen	:=	get2(buf[30:])

			295	 	 	 fclen	:=	get2(buf[32:])

			296	 	 	 off	:=	get4(buf[42:])

			297	 	 	 zname	:=	buf[46	:	46+namelen]

			298	 	 	 buf	=	buf[46+namelen+xlen+fclen:]

			299	 	 	 if	string(zname)	!=	name	{

			300	 	 	 	 continue

			301	 	 	 }

			302	 	 	 if	meth	!=	0	{

			303	 	 	 	 return	nil,	errors.New("unsupported	compression	for	"	+	name	+	"	in	"	+	zipfile)

			304	 	 	 }

			305	

			306	 	 	 //	zip	per-file	header	layout:

			307	 	 	 //	 0	 magic[4]

			308	 	 	 //	 4	 extvers[1]

			309	 	 	 //	 5	 extos[1]

			310	 	 	 //	 6	 flags[2]

			311	 	 	 //	 8	 meth[2]

			312	 	 	 //	 10	 modtime[2]

			313	 	 	 //	 12	 moddate[2]

			314	 	 	 //	 14	 crc[4]

			315	 	 	 //	 18	 csize[4]

			316	 	 	 //	 22	 uncsize[4]

			317	 	 	 //	 26	 namelen[2]

			318	 	 	 //	 28	 xlen[2]

			319	 	 	 //	 30	 name[namelen]

			320	 	 	 //	 30+namelen+xlen	-	file	data

			321	 	 	 //

			322	 	 	 buf	=	make([]byte,	zheadersize+namelen)

			323	 	 	 if	err	:=	preadn(fd,	buf,	off);	err	!=	nil	||

			324	 	 	 	 get4(buf)	!=	zheader	||

			325	 	 	 	 get2(buf[8:])	!=	meth	||

			326	 	 	 	 get2(buf[26:])	!=	namelen	||

			327	 	 	 	 string(buf[30:30+namelen])	!=	name	{

			328	 	 	 	 return	nil,	errors.New("corrupt	zip	file	"	+	zipfile)

			329	 	 	 }

			330	 	 	 xlen	=	get2(buf[28:])

			331	

			332	 	 	 buf	=	make([]byte,	size)

			333	 	 	 if	err	:=	preadn(fd,	buf,	off+30+namelen+xlen);	err	!=	nil	{

			334	 	 	 	 return	nil,	errors.New("corrupt	zip	file	"	+	zipfile)

			335	 	 	 }

			336	

			337	 	 	 return	loadZoneData(buf)

			338	 	 }

			339	

			340	 	 return	nil,	errors.New("cannot	find	"	+	name	+	"	in	zip	file	"	+	zipfile)

			341	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/time/zoneinfo_unix.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	+build	darwin	freebsd	linux	netbsd	openbsd

					6	

					7	 //	Parse	"zoneinfo"	time	zone	file.

					8	 //	This	is	a	fairly	standard	file	format	used	on	OS	X,	Linux,	BSD,	Sun,	and	others.

					9	 //	See	tzfile(5),	http://en.wikipedia.org/wiki/Zoneinfo,

				10	 //	and	ftp://munnari.oz.au/pub/oldtz/

				11	

				12	 package	time

				13	

				14	 import	(

				15	 	 "errors"

				16	 	 "runtime"

				17	 	 "syscall"

				18)

				19	

				20	 func	initTestingZone()	{

				21	 	 z,	err	:=	loadZoneFile(runtime.GOROOT()+"/lib/time/zoneinfo.zip",	"America/Los_Angeles")

				22	 	 if	err	!=	nil	{

				23	 	 	 panic("cannot	load	America/Los_Angeles	for	testing:	"	+	err.Error())

				24	 	 }

				25	 	 z.name	=	"Local"

				26	 	 localLoc	=	*z

				27	 }

				28	

				29	 //	Many	systems	use	/usr/share/zoneinfo,	Solaris	2	has

				30	 //	/usr/share/lib/zoneinfo,	IRIX	6	has	/usr/lib/locale/TZ.

				31	 var	zoneDirs	=	[]string{

				32	 	 "/usr/share/zoneinfo/",

				33	 	 "/usr/share/lib/zoneinfo/",

				34	 	 "/usr/lib/locale/TZ/",

				35	 	 runtime.GOROOT()	+	"/lib/time/zoneinfo/",

				36	 }

				37	

				38	 func	initLocal()	{

				39	 	 //	consult	$TZ	to	find	the	time	zone	to	use.

				40	 	 //	no	$TZ	means	use	the	system	default	/etc/localtime.

				41	 	 //	$TZ=""	means	use	UTC.

				42	 	 //	$TZ="foo"	means	use	/usr/share/zoneinfo/foo.

				43	

				44	 	 tz,	ok	:=	syscall.Getenv("TZ")

				45	 	 switch	{

				46	 	 case	!ok:

				47	 	 	 z,	err	:=	loadZoneFile("",	"/etc/localtime")

				48	 	 	 if	err	==	nil	{

				49	 	 	 	 localLoc	=	*z

				50	 	 	 	 localLoc.name	=	"Local"

				51	 	 	 	 return

				52	 	 	 }

				53	 	 case	tz	!=	""	&&	tz	!=	"UTC":

				54	 	 	 if	z,	err	:=	loadLocation(tz);	err	==	nil	{

				55	 	 	 	 localLoc	=	*z

				56	 	 	 	 return

				57	 	 	 }

				58	 	 }

				59	

				60	 	 //	Fall	back	to	UTC.

				61	 	 localLoc.name	=	"UTC"

				62	 }

				63	

				64	 func	loadLocation(name	string)	(*Location,	error)	{

				65	 	 for	_,	zoneDir	:=	range	zoneDirs	{

				66	 	 	 if	z,	err	:=	loadZoneFile(zoneDir,	name);	err	==	nil	{

				67	 	 	 	 z.name	=	name

				68	 	 	 	 return	z,	nil

				69	 	 	 }

				70	 	 }

				71	 	 return	nil,	errors.New("unknown	time	zone	"	+	name)

				72	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/unicode/casetables.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	TODO:	This	file	contains	the	special	casing	rules	for	Turkish	and	Azeri	only.

					6	 //	It	should	encompass	all	the	languages	with	special	casing	rules

					7	 //	and	be	generated	automatically,	but	that	requires	some	API

					8	 //	development	first.

					9	

				10	 package	unicode

				11	

				12	 var	TurkishCase	SpecialCase	=	_TurkishCase

				13	 var	_TurkishCase	=	SpecialCase{

				14	 	 CaseRange{0x0049,	0x0049,	d{0,	0x131	-	0x49,	0}},

				15	 	 CaseRange{0x0069,	0x0069,	d{0x130	-	0x69,	0,	0x130	-	0x69}},

				16	 	 CaseRange{0x0130,	0x0130,	d{0,	0x69	-	0x130,	0}},

				17	 	 CaseRange{0x0131,	0x0131,	d{0x49	-	0x131,	0,	0x49	-	0x131}},

				18	 }

				19	

				20	 var	AzeriCase	SpecialCase	=	_TurkishCase

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/unicode/digit.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	unicode

					6	

					7	 //	IsDigit	reports	whether	the	rune	is	a	decimal	digit.

					8	 func	IsDigit(r	rune)	bool	{

					9	 	 if	r	<=	MaxLatin1	{

				10	 	 	 return	'0'	<=	r	&&	r	<=	'9'

				11	 	 }

				12	 	 return	Is(Digit,	r)

				13	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/unicode/graphic.go
					1	 //	Copyright	2011	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 package	unicode

					6	

					7	 //	Bit	masks	for	each	code	point	under	U+0100,	for	fast	lookup.

					8	 const	(

					9	 	 pC		=	1	<<	iota	//	a	control	character.

				10	 	 pP														//	a	punctuation	character.

				11	 	 pN														//	a	numeral.

				12	 	 pS														//	a	symbolic	character.

				13	 	 pZ														//	a	spacing	character.

				14	 	 pLu													//	an	upper-case	letter.

				15	 	 pLl													//	a	lower-case	letter.

				16	 	 pp														//	a	printable	character	according	to	Go's	definition.

				17	 	 pg		=	pp	|	pZ			//	a	graphical	character	according	to	the	Unicode	definition.

				18)

				19	

				20	 //	GraphicRanges	defines	the	set	of	graphic	characters	according	to	Unicode.

				21	 var	GraphicRanges	=	[]*RangeTable{

				22	 	 L,	M,	N,	P,	S,	Zs,

				23	 }

				24	

				25	 //	PrintRanges	defines	the	set	of	printable	characters	according	to	Go.

				26	 //	ASCII	space,	U+0020,	is	handled	separately.

				27	 var	PrintRanges	=	[]*RangeTable{

				28	 	 L,	M,	N,	P,	S,

				29	 }

				30	

				31	 //	IsGraphic	reports	whether	the	rune	is	defined	as	a	Graphic	by	Unicode.

				32	 //	Such	characters	include	letters,	marks,	numbers,	punctuation,	symbols,	and

				33	 //	spaces,	from	categories	L,	M,	N,	P,	S,	Zs.

				34	 func	IsGraphic(r	rune)	bool	{

				35	 	 //	We	convert	to	uint32	to	avoid	the	extra	test	for	negative,

				36	 	 //	and	in	the	index	we	convert	to	uint8	to	avoid	the	range	check.

				37	 	 if	uint32(r)	<=	MaxLatin1	{

				38	 	 	 return	properties[uint8(r)]&pg	!=	0

				39	 	 }

				40	 	 return	IsOneOf(GraphicRanges,	r)

				41	 }

				42	

				43	 //	IsPrint	reports	whether	the	rune	is	defined	as	printable	by	Go.	Such

				44	 //	characters	include	letters,	marks,	numbers,	punctuation,	symbols,	and	the

				45	 //	ASCII	space	character,	from	categories	L,	M,	N,	P,	S	and	the	ASCII	space

				46	 //	character.		This	categorization	is	the	same	as	IsGraphic	except	that	the

				47	 //	only	spacing	character	is	ASCII	space,	U+0020.

				48	 func	IsPrint(r	rune)	bool	{

				49	 	 if	uint32(r)	<=	MaxLatin1	{

				50	 	 	 return	properties[uint8(r)]&pp	!=	0

				51	 	 }

				52	 	 return	IsOneOf(PrintRanges,	r)

				53	 }

				54	

				55	 //	IsOneOf	reports	whether	the	rune	is	a	member	of	one	of	the	ranges.

				56	 func	IsOneOf(set	[]*RangeTable,	r	rune)	bool	{

				57	 	 for	_,	inside	:=	range	set	{

				58	 	 	 if	Is(inside,	r)	{

				59	 	 	 	 return	true

				60	 	 	 }

				61	 	 }

				62	 	 return	false

				63	 }

				64	

				65	 //	IsControl	reports	whether	the	rune	is	a	control	character.

				66	 //	The	C	(Other)	Unicode	category	includes	more	code	points

				67	 //	such	as	surrogates;	use	Is(C,	r)	to	test	for	them.

				68	 func	IsControl(r	rune)	bool	{

				69	 	 if	uint32(r)	<=	MaxLatin1	{

				70	 	 	 return	properties[uint8(r)]&pC	!=	0

				71	 	 }

				72	 	 //	All	control	characters	are	<	Latin1Max.

				73	 	 return	false

				74	 }

				75	

				76	 //	IsLetter	reports	whether	the	rune	is	a	letter	(category	L).

				77	 func	IsLetter(r	rune)	bool	{

				78	 	 if	uint32(r)	<=	MaxLatin1	{

				79	 	 	 return	properties[uint8(r)]&(pLu|pLl)	!=	0

				80	 	 }

				81	 	 return	Is(Letter,	r)

				82	 }

				83	

				84	 //	IsMark	reports	whether	the	rune	is	a	mark	character	(category	M).

				85	 func	IsMark(r	rune)	bool	{

				86	 	 //	There	are	no	mark	characters	in	Latin-1.

				87	 	 return	Is(Mark,	r)

				88	 }

				89	

				90	 //	IsNumber	reports	whether	the	rune	is	a	number	(category	N).

				91	 func	IsNumber(r	rune)	bool	{

				92	 	 if	uint32(r)	<=	MaxLatin1	{

				93	 	 	 return	properties[uint8(r)]&pN	!=	0

				94	 	 }

				95	 	 return	Is(Number,	r)

				96	 }

				97	

				98	 //	IsPunct	reports	whether	the	rune	is	a	Unicode	punctuation	character

				99	 //	(category	P).

			100	 func	IsPunct(r	rune)	bool	{

			101	 	 if	uint32(r)	<=	MaxLatin1	{

			102	 	 	 return	properties[uint8(r)]&pP	!=	0

			103	 	 }

			104	 	 return	Is(Punct,	r)

			105	 }

			106	

			107	 //	IsSpace	reports	whether	the	rune	is	a	space	character	as	defined

			108	 //	by	Unicode's	White	Space	property;	in	the	Latin-1	space

			109	 //	this	is

			110	 //	 '\t',	'\n',	'\v',	'\f',	'\r',	'	',	U+0085	(NEL),	U+00A0	(NBSP).

			111	 //	Other	definitions	of	spacing	characters	are	set	by	category

			112	 //	Z	and	property	Pattern_White_Space.

			113	 func	IsSpace(r	rune)	bool	{

			114	 	 //	This	property	isn't	the	same	as	Z;	special-case	it.

			115	 	 if	uint32(r)	<=	MaxLatin1	{

			116	 	 	 switch	r	{

			117	 	 	 case	'\t',	'\n',	'\v',	'\f',	'\r',	'	',	0x85,	0xA0:

			118	 	 	 	 return	true

			119	 	 	 }

			120	 	 	 return	false

			121	 	 }

			122	 	 return	Is(White_Space,	r)

			123	 }

			124	

			125	 //	IsSymbol	reports	whether	the	rune	is	a	symbolic	character.

			126	 func	IsSymbol(r	rune)	bool	{

			127	 	 if	uint32(r)	<=	MaxLatin1	{

			128	 	 	 return	properties[uint8(r)]&pS	!=	0

			129	 	 }

			130	 	 return	Is(Symbol,	r)

			131	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/unicode/letter.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	unicode	provides	data	and	functions	to	test	some	properties	of

					6	 //	Unicode	code	points.

					7	 package	unicode

					8	

					9	 const	(

				10	 	 MaxRune									=	'\U0010FFFF'	//	Maximum	valid	Unicode	code	point.

				11	 	 ReplacementChar	=	'\uFFFD'					//	Represents	invalid	code	points.

				12	 	 MaxASCII								=	'\u007F'					//	maximum	ASCII	value.

				13	 	 MaxLatin1							=	'\u00FF'					//	maximum	Latin-1	value.

				14)

				15	

				16	 //	RangeTable	defines	a	set	of	Unicode	code	points	by	listing	the	ranges	of

				17	 //	code	points	within	the	set.	The	ranges	are	listed	in	two	slices

				18	 //	to	save	space:	a	slice	of	16-bit	ranges	and	a	slice	of	32-bit	ranges.

				19	 //	The	two	slices	must	be	in	sorted	order	and	non-overlapping.

				20	 //	Also,	R32	should	contain	only	values	>=	0x10000	(1<<16).

				21	 type	RangeTable	struct	{

				22	 	 R16	[]Range16

				23	 	 R32	[]Range32

				24	 }

				25	

				26	 //	Range16	represents	of	a	range	of	16-bit	Unicode	code	points.		The	range	runs	from	Lo	to	Hi

				27	 //	inclusive	and	has	the	specified	stride.

				28	 type	Range16	struct	{

				29	 	 Lo					uint16

				30	 	 Hi					uint16

				31	 	 Stride	uint16

				32	 }

				33	

				34	 //	Range32	represents	of	a	range	of	Unicode	code	points	and	is	used	when	one	or

				35	 //	more	of	the	values	will	not	fit	in	16	bits.		The	range	runs	from	Lo	to	Hi

				36	 //	inclusive	and	has	the	specified	stride.	Lo	and	Hi	must	always	be	>=	1<<16.

				37	 type	Range32	struct	{

				38	 	 Lo					uint32

				39	 	 Hi					uint32

				40	 	 Stride	uint32

				41	 }

				42	

				43	 //	CaseRange	represents	a	range	of	Unicode	code	points	for	simple	(one

				44	 //	code	point	to	one	code	point)	case	conversion.

				45	 //	The	range	runs	from	Lo	to	Hi	inclusive,	with	a	fixed	stride	of	1.		Deltas

				46	 //	are	the	number	to	add	to	the	code	point	to	reach	the	code	point	for	a

				47	 //	different	case	for	that	character.		They	may	be	negative.		If	zero,	it

				48	 //	means	the	character	is	in	the	corresponding	case.	There	is	a	special

				49	 //	case	representing	sequences	of	alternating	corresponding	Upper	and	Lower

				50	 //	pairs.		It	appears	with	a	fixed	Delta	of

				51	 //	 {UpperLower,	UpperLower,	UpperLower}

				52	 //	The	constant	UpperLower	has	an	otherwise	impossible	delta	value.

				53	 type	CaseRange	struct	{

				54	 	 Lo				uint32

				55	 	 Hi				uint32

				56	 	 Delta	d

				57	 }

				58	

				59	 //	SpecialCase	represents	language-specific	case	mappings	such	as	Turkish.

				60	 //	Methods	of	SpecialCase	customize	(by	overriding)	the	standard	mappings.

				61	 type	SpecialCase	[]CaseRange

				62	

				63	 //	BUG(r):	There	is	no	mechanism	for	full	case	folding,	that	is,	for

				64	 //	characters	that	involve	multiple	runes	in	the	input	or	output.

				65	

				66	 //	Indices	into	the	Delta	arrays	inside	CaseRanges	for	case	mapping.

				67	 const	(

				68	 	 UpperCase	=	iota

				69	 	 LowerCase

				70	 	 TitleCase

				71	 	 MaxCase

				72)

				73	

				74	 type	d	[MaxCase]rune	//	to	make	the	CaseRanges	text	shorter

				75	

				76	 //	If	the	Delta	field	of	a	CaseRange	is	UpperLower	or	LowerUpper,	it	means

				77	 //	this	CaseRange	represents	a	sequence	of	the	form	(say)

				78	 //	Upper	Lower	Upper	Lower.

				79	 const	(

				80	 	 UpperLower	=	MaxRune	+	1	//	(Cannot	be	a	valid	delta.)

				81)

				82	

				83	 //	is16	uses	binary	search	to	test	whether	rune	is	in	the	specified	slice	of	16-bit	ranges.

				84	 func	is16(ranges	[]Range16,	r	uint16)	bool	{

				85	 	 //	binary	search	over	ranges

				86	 	 lo	:=	0

				87	 	 hi	:=	len(ranges)

				88	 	 for	lo	<	hi	{

				89	 	 	 m	:=	lo	+	(hi-lo)/2

				90	 	 	 range_	:=	ranges[m]

				91	 	 	 if	range_.Lo	<=	r	&&	r	<=	range_.Hi	{

				92	 	 	 	 return	(r-range_.Lo)%range_.Stride	==	0

				93	 	 	 }

				94	 	 	 if	r	<	range_.Lo	{

				95	 	 	 	 hi	=	m

				96	 	 	 }	else	{

				97	 	 	 	 lo	=	m	+	1

				98	 	 	 }

				99	 	 }

			100	 	 return	false

			101	 }

			102	

			103	 //	is32	uses	binary	search	to	test	whether	rune	is	in	the	specified	slice	of	32-bit	ranges.

			104	 func	is32(ranges	[]Range32,	r	uint32)	bool	{

			105	 	 //	binary	search	over	ranges

			106	 	 lo	:=	0

			107	 	 hi	:=	len(ranges)

			108	 	 for	lo	<	hi	{

			109	 	 	 m	:=	lo	+	(hi-lo)/2

			110	 	 	 range_	:=	ranges[m]

			111	 	 	 if	range_.Lo	<=	r	&&	r	<=	range_.Hi	{

			112	 	 	 	 return	(r-range_.Lo)%range_.Stride	==	0

			113	 	 	 }

			114	 	 	 if	r	<	range_.Lo	{

			115	 	 	 	 hi	=	m

			116	 	 	 }	else	{

			117	 	 	 	 lo	=	m	+	1

			118	 	 	 }

			119	 	 }

			120	 	 return	false

			121	 }

			122	

			123	 //	Is	tests	whether	rune	is	in	the	specified	table	of	ranges.

			124	 func	Is(rangeTab	*RangeTable,	r	rune)	bool	{

			125	 	 //	common	case:	rune	is	ASCII	or	Latin-1.

			126	 	 if	uint32(r)	<=	MaxLatin1	{

			127	 	 	 //	Only	need	to	check	R16,	since	R32	is	always	>=	1<<16.

			128	 	 	 r16	:=	uint16(r)

			129	 	 	 for	_,	r	:=	range	rangeTab.R16	{

			130	 	 	 	 if	r16	>	r.Hi	{

			131	 	 	 	 	 continue

			132	 	 	 	 }

			133	 	 	 	 if	r16	<	r.Lo	{

			134	 	 	 	 	 return	false

			135	 	 	 	 }

			136	 	 	 	 return	(r16-r.Lo)%r.Stride	==	0

			137	 	 	 }

			138	 	 	 return	false

			139	 	 }

			140	 	 r16	:=	rangeTab.R16

			141	 	 if	len(r16)	>	0	&&	r	<=	rune(r16[len(r16)-1].Hi)	{

			142	 	 	 return	is16(r16,	uint16(r))

			143	 	 }

			144	 	 r32	:=	rangeTab.R32

			145	 	 if	len(r32)	>	0	&&	r	>=	rune(r32[0].Lo)	{

			146	 	 	 return	is32(r32,	uint32(r))

			147	 	 }

			148	 	 return	false

			149	 }

			150	

			151	 //	IsUpper	reports	whether	the	rune	is	an	upper	case	letter.

			152	 func	IsUpper(r	rune)	bool	{

			153	 	 //	See	comment	in	IsGraphic.

			154	 	 if	uint32(r)	<=	MaxLatin1	{

			155	 	 	 return	properties[uint8(r)]&pLu	!=	0

			156	 	 }

			157	 	 return	Is(Upper,	r)

			158	 }

			159	

			160	 //	IsLower	reports	whether	the	rune	is	a	lower	case	letter.

			161	 func	IsLower(r	rune)	bool	{

			162	 	 //	See	comment	in	IsGraphic.

			163	 	 if	uint32(r)	<=	MaxLatin1	{

			164	 	 	 return	properties[uint8(r)]&pLl	!=	0

			165	 	 }

			166	 	 return	Is(Lower,	r)

			167	 }

			168	

			169	 //	IsTitle	reports	whether	the	rune	is	a	title	case	letter.

			170	 func	IsTitle(r	rune)	bool	{

			171	 	 if	r	<=	MaxLatin1	{

			172	 	 	 return	false

			173	 	 }

			174	 	 return	Is(Title,	r)

			175	 }

			176	

			177	 //	to	maps	the	rune	using	the	specified	case	mapping.

			178	 func	to(_case	int,	r	rune,	caseRange	[]CaseRange)	rune	{

			179	 	 if	_case	<	0	||	MaxCase	<=	_case	{

			180	 	 	 return	ReplacementChar	//	as	reasonable	an	error	as	any

			181	 	 }

			182	 	 //	binary	search	over	ranges

			183	 	 lo	:=	0

			184	 	 hi	:=	len(caseRange)

			185	 	 for	lo	<	hi	{

			186	 	 	 m	:=	lo	+	(hi-lo)/2

			187	 	 	 cr	:=	caseRange[m]

			188	 	 	 if	rune(cr.Lo)	<=	r	&&	r	<=	rune(cr.Hi)	{

			189	 	 	 	 delta	:=	rune(cr.Delta[_case])

			190	 	 	 	 if	delta	>	MaxRune	{

			191	 	 	 	 	 //	In	an	Upper-Lower	sequence,	which	always	starts	with

			192	 	 	 	 	 //	an	UpperCase	letter,	the	real	deltas	always	look	like:

			193	 	 	 	 	 //	 {0,	1,	0}				UpperCase	(Lower	is	next)

			194	 	 	 	 	 //	 {-1,	0,	-1}		LowerCase	(Upper,	Title	are	previous)

			195	 	 	 	 	 //	The	characters	at	even	offsets	from	the	beginning	of	the

			196	 	 	 	 	 //	sequence	are	upper	case;	the	ones	at	odd	offsets	are	lower.

			197	 	 	 	 	 //	The	correct	mapping	can	be	done	by	clearing	or	setting	the	low

			198	 	 	 	 	 //	bit	in	the	sequence	offset.

			199	 	 	 	 	 //	The	constants	UpperCase	and	TitleCase	are	even	while	LowerCase

			200	 	 	 	 	 //	is	odd	so	we	take	the	low	bit	from	_case.

			201	 	 	 	 	 return	rune(cr.Lo)	+	((r-rune(cr.Lo))&^1	|	rune(_case&1))

			202	 	 	 	 }

			203	 	 	 	 return	r	+	delta

			204	 	 	 }

			205	 	 	 if	r	<	rune(cr.Lo)	{

			206	 	 	 	 hi	=	m

			207	 	 	 }	else	{

			208	 	 	 	 lo	=	m	+	1

			209	 	 	 }

			210	 	 }

			211	 	 return	r

			212	 }

			213	

			214	 //	To	maps	the	rune	to	the	specified	case:	UpperCase,	LowerCase,	or	TitleCase.

			215	 func	To(_case	int,	r	rune)	rune	{

			216	 	 return	to(_case,	r,	CaseRanges)

			217	 }

			218	

			219	 //	ToUpper	maps	the	rune	to	upper	case.

			220	 func	ToUpper(r	rune)	rune	{

			221	 	 if	r	<=	MaxASCII	{

			222	 	 	 if	'a'	<=	r	&&	r	<=	'z'	{

			223	 	 	 	 r	-=	'a'	-	'A'

			224	 	 	 }

			225	 	 	 return	r

			226	 	 }

			227	 	 return	To(UpperCase,	r)

			228	 }

			229	

			230	 //	ToLower	maps	the	rune	to	lower	case.

			231	 func	ToLower(r	rune)	rune	{

			232	 	 if	r	<=	MaxASCII	{

			233	 	 	 if	'A'	<=	r	&&	r	<=	'Z'	{

			234	 	 	 	 r	+=	'a'	-	'A'

			235	 	 	 }

			236	 	 	 return	r

			237	 	 }

			238	 	 return	To(LowerCase,	r)

			239	 }

			240	

			241	 //	ToTitle	maps	the	rune	to	title	case.

			242	 func	ToTitle(r	rune)	rune	{

			243	 	 if	r	<=	MaxASCII	{

			244	 	 	 if	'a'	<=	r	&&	r	<=	'z'	{	//	title	case	is	upper	case	for	ASCII

			245	 	 	 	 r	-=	'a'	-	'A'

			246	 	 	 }

			247	 	 	 return	r

			248	 	 }

			249	 	 return	To(TitleCase,	r)

			250	 }

			251	

			252	 //	ToUpper	maps	the	rune	to	upper	case	giving	priority	to	the	special	mapping.

			253	 func	(special	SpecialCase)	ToUpper(r	rune)	rune	{

			254	 	 r1	:=	to(UpperCase,	r,	[]CaseRange(special))

			255	 	 if	r1	==	r	{

			256	 	 	 r1	=	ToUpper(r)

			257	 	 }

			258	 	 return	r1

			259	 }

			260	

			261	 //	ToTitle	maps	the	rune	to	title	case	giving	priority	to	the	special	mapping.

			262	 func	(special	SpecialCase)	ToTitle(r	rune)	rune	{

			263	 	 r1	:=	to(TitleCase,	r,	[]CaseRange(special))

			264	 	 if	r1	==	r	{

			265	 	 	 r1	=	ToTitle(r)

			266	 	 }

			267	 	 return	r1

			268	 }

			269	

			270	 //	ToLower	maps	the	rune	to	lower	case	giving	priority	to	the	special	mapping.

			271	 func	(special	SpecialCase)	ToLower(r	rune)	rune	{

			272	 	 r1	:=	to(LowerCase,	r,	[]CaseRange(special))

			273	 	 if	r1	==	r	{

			274	 	 	 r1	=	ToLower(r)

			275	 	 }

			276	 	 return	r1

			277	 }

			278	

			279	 //	caseOrbit	is	defined	in	tables.go	as	[]foldPair.		Right	now	all	the

			280	 //	entries	fit	in	uint16,	so	use	uint16.		If	that	changes,	compilation

			281	 //	will	fail	(the	constants	in	the	composite	literal	will	not	fit	in	uint16)

			282	 //	and	the	types	here	can	change	to	uint32.

			283	 type	foldPair	struct	{

			284	 	 From	uint16

			285	 	 To			uint16

			286	 }

			287	

			288	 //	SimpleFold	iterates	over	Unicode	code	points	equivalent	under

			289	 //	the	Unicode-defined	simple	case	folding.		Among	the	code	points

			290	 //	equivalent	to	rune	(including	rune	itself),	SimpleFold	returns	the

			291	 //	smallest	rune	>=	r	if	one	exists,	or	else	the	smallest	rune	>=	0.	

			292	 //

			293	 //	For	example:

			294	 //	 SimpleFold('A')	=	'a'

			295	 //	 SimpleFold('a')	=	'A'

			296	 //

			297	 //	 SimpleFold('K')	=	'k'

			298	 //	 SimpleFold('k')	=	'\u212A'	(Kelvin	symbol,	K)
			299	 //	 SimpleFold('\u212A')	=	'K'

			300	 //

			301	 //	 SimpleFold('1')	=	'1'

			302	 //

			303	 func	SimpleFold(r	rune)	rune	{

			304	 	 //	Consult	caseOrbit	table	for	special	cases.

			305	 	 lo	:=	0

			306	 	 hi	:=	len(caseOrbit)

			307	 	 for	lo	<	hi	{

			308	 	 	 m	:=	lo	+	(hi-lo)/2

			309	 	 	 if	rune(caseOrbit[m].From)	<	r	{

			310	 	 	 	 lo	=	m	+	1

			311	 	 	 }	else	{

			312	 	 	 	 hi	=	m

			313	 	 	 }

			314	 	 }

			315	 	 if	lo	<	len(caseOrbit)	&&	rune(caseOrbit[lo].From)	==	r	{

			316	 	 	 return	rune(caseOrbit[lo].To)

			317	 	 }

			318	

			319	 	 //	No	folding	specified.		This	is	a	one-	or	two-element

			320	 	 //	equivalence	class	containing	rune	and	ToLower(rune)

			321	 	 //	and	ToUpper(rune)	if	they	are	different	from	rune.

			322	 	 if	l	:=	ToLower(r);	l	!=	r	{

			323	 	 	 return	l

			324	 	 }

			325	 	 return	ToUpper(r)

			326	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/unicode/tables.go
					1	 //	Generated	by	running

					2	 //	 maketables	--tables=all	--data=http://www.unicode.org/Public/6.0.0/ucd/UnicodeData.txt	--casefolding=http://www.unicode.org/Public/6.0.0/ucd/CaseFolding.txt

					3	 //	DO	NOT	EDIT

					4	

					5	 package	unicode

					6	

					7	 //	Version	is	the	Unicode	edition	from	which	the	tables	are	derived.

					8	 const	Version	=	"6.0.0"

					9	

				10	 //	Categories	is	the	set	of	Unicode	category	tables.

				11	 var	Categories	=	map[string]*RangeTable{

				12	 	 "C":		C,

				13	 	 "Cc":	Cc,

				14	 	 "Cf":	Cf,

				15	 	 "Co":	Co,

				16	 	 "Cs":	Cs,

				17	 	 "L":		L,

				18	 	 "Ll":	Ll,

				19	 	 "Lm":	Lm,

				20	 	 "Lo":	Lo,

				21	 	 "Lt":	Lt,

				22	 	 "Lu":	Lu,

				23	 	 "M":		M,

				24	 	 "Mc":	Mc,

				25	 	 "Me":	Me,

				26	 	 "Mn":	Mn,

				27	 	 "N":		N,

				28	 	 "Nd":	Nd,

				29	 	 "Nl":	Nl,

				30	 	 "No":	No,

				31	 	 "P":		P,

				32	 	 "Pc":	Pc,

				33	 	 "Pd":	Pd,

				34	 	 "Pe":	Pe,

				35	 	 "Pf":	Pf,

				36	 	 "Pi":	Pi,

				37	 	 "Po":	Po,

				38	 	 "Ps":	Ps,

				39	 	 "S":		S,

				40	 	 "Sc":	Sc,

				41	 	 "Sk":	Sk,

				42	 	 "Sm":	Sm,

				43	 	 "So":	So,

				44	 	 "Z":		Z,

				45	 	 "Zl":	Zl,

				46	 	 "Zp":	Zp,

				47	 	 "Zs":	Zs,

				48	 }

				49	

				50	 var	_C	=	&RangeTable{

				51	 	 R16:	[]Range16{

				52	 	 	 {0x0001,	0x001f,	1},

				53	 	 	 {0x007f,	0x009f,	1},

				54	 	 	 {0x00ad,	0x0600,	1363},

				55	 	 	 {0x0601,	0x0603,	1},

				56	 	 	 {0x06dd,	0x070f,	50},

				57	 	 	 {0x17b4,	0x17b5,	1},

				58	 	 	 {0x200b,	0x200f,	1},

				59	 	 	 {0x202a,	0x202e,	1},

				60	 	 	 {0x2060,	0x2064,	1},

				61	 	 	 {0x206a,	0x206f,	1},

				62	 	 	 {0xd800,	0xf8ff,	1},

				63	 	 	 {0xfeff,	0xfff9,	250},

				64	 	 	 {0xfffa,	0xfffb,	1},

				65	 	 },

				66	 	 R32:	[]Range32{

				67	 	 	 {0x110bd,	0x1d173,	49334},

				68	 	 	 {0x1d174,	0x1d17a,	1},

				69	 	 	 {0xe0001,	0xe0020,	31},

				70	 	 	 {0xe0021,	0xe007f,	1},

				71	 	 	 {0xf0000,	0xffffd,	1},

				72	 	 	 {0x100000,	0x10fffd,	1},

				73	 	 },

				74	 }

				75	

				76	 var	_Cc	=	&RangeTable{

				77	 	 R16:	[]Range16{

				78	 	 	 {0x0001,	0x001f,	1},

				79	 	 	 {0x007f,	0x009f,	1},

				80	 	 },

				81	 }

				82	

				83	 var	_Cf	=	&RangeTable{

				84	 	 R16:	[]Range16{

				85	 	 	 {0x00ad,	0x0600,	1363},

				86	 	 	 {0x0601,	0x0603,	1},

				87	 	 	 {0x06dd,	0x070f,	50},

				88	 	 	 {0x17b4,	0x17b5,	1},

				89	 	 	 {0x200b,	0x200f,	1},

				90	 	 	 {0x202a,	0x202e,	1},

				91	 	 	 {0x2060,	0x2064,	1},

				92	 	 	 {0x206a,	0x206f,	1},

				93	 	 	 {0xfeff,	0xfff9,	250},

				94	 	 	 {0xfffa,	0xfffb,	1},

				95	 	 },

				96	 	 R32:	[]Range32{

				97	 	 	 {0x110bd,	0x1d173,	49334},

				98	 	 	 {0x1d174,	0x1d17a,	1},

				99	 	 	 {0xe0001,	0xe0020,	31},

			100	 	 	 {0xe0021,	0xe007f,	1},

			101	 	 },

			102	 }

			103	

			104	 var	_Co	=	&RangeTable{

			105	 	 R16:	[]Range16{

			106	 	 	 {0xe000,	0xf8ff,	1},

			107	 	 },

			108	 	 R32:	[]Range32{

			109	 	 	 {0xf0000,	0xffffd,	1},

			110	 	 	 {0x100000,	0x10fffd,	1},

			111	 	 },

			112	 }

			113	

			114	 var	_Cs	=	&RangeTable{

			115	 	 R16:	[]Range16{

			116	 	 	 {0xd800,	0xdfff,	1},

			117	 	 },

			118	 }

			119	

			120	 var	_L	=	&RangeTable{

			121	 	 R16:	[]Range16{

			122	 	 	 {0x0041,	0x005a,	1},

			123	 	 	 {0x0061,	0x007a,	1},

			124	 	 	 {0x00aa,	0x00b5,	11},

			125	 	 	 {0x00ba,	0x00c0,	6},

			126	 	 	 {0x00c1,	0x00d6,	1},

			127	 	 	 {0x00d8,	0x00f6,	1},

			128	 	 	 {0x00f8,	0x02c1,	1},

			129	 	 	 {0x02c6,	0x02d1,	1},

			130	 	 	 {0x02e0,	0x02e4,	1},

			131	 	 	 {0x02ec,	0x02ee,	2},

			132	 	 	 {0x0370,	0x0374,	1},

			133	 	 	 {0x0376,	0x0377,	1},

			134	 	 	 {0x037a,	0x037d,	1},

			135	 	 	 {0x0386,	0x0388,	2},

			136	 	 	 {0x0389,	0x038a,	1},

			137	 	 	 {0x038c,	0x038e,	2},

			138	 	 	 {0x038f,	0x03a1,	1},

			139	 	 	 {0x03a3,	0x03f5,	1},

			140	 	 	 {0x03f7,	0x0481,	1},

			141	 	 	 {0x048a,	0x0527,	1},

			142	 	 	 {0x0531,	0x0556,	1},

			143	 	 	 {0x0559,	0x0561,	8},

			144	 	 	 {0x0562,	0x0587,	1},

			145	 	 	 {0x05d0,	0x05ea,	1},

			146	 	 	 {0x05f0,	0x05f2,	1},

			147	 	 	 {0x0620,	0x064a,	1},

			148	 	 	 {0x066e,	0x066f,	1},

			149	 	 	 {0x0671,	0x06d3,	1},

			150	 	 	 {0x06d5,	0x06e5,	16},

			151	 	 	 {0x06e6,	0x06ee,	8},

			152	 	 	 {0x06ef,	0x06fa,	11},

			153	 	 	 {0x06fb,	0x06fc,	1},

			154	 	 	 {0x06ff,	0x0710,	17},

			155	 	 	 {0x0712,	0x072f,	1},

			156	 	 	 {0x074d,	0x07a5,	1},

			157	 	 	 {0x07b1,	0x07ca,	25},

			158	 	 	 {0x07cb,	0x07ea,	1},

			159	 	 	 {0x07f4,	0x07f5,	1},

			160	 	 	 {0x07fa,	0x0800,	6},

			161	 	 	 {0x0801,	0x0815,	1},

			162	 	 	 {0x081a,	0x0824,	10},

			163	 	 	 {0x0828,	0x0840,	24},

			164	 	 	 {0x0841,	0x0858,	1},

			165	 	 	 {0x0904,	0x0939,	1},

			166	 	 	 {0x093d,	0x0950,	19},

			167	 	 	 {0x0958,	0x0961,	1},

			168	 	 	 {0x0971,	0x0977,	1},

			169	 	 	 {0x0979,	0x097f,	1},

			170	 	 	 {0x0985,	0x098c,	1},

			171	 	 	 {0x098f,	0x0990,	1},

			172	 	 	 {0x0993,	0x09a8,	1},

			173	 	 	 {0x09aa,	0x09b0,	1},

			174	 	 	 {0x09b2,	0x09b6,	4},

			175	 	 	 {0x09b7,	0x09b9,	1},

			176	 	 	 {0x09bd,	0x09ce,	17},

			177	 	 	 {0x09dc,	0x09dd,	1},

			178	 	 	 {0x09df,	0x09e1,	1},

			179	 	 	 {0x09f0,	0x09f1,	1},

			180	 	 	 {0x0a05,	0x0a0a,	1},

			181	 	 	 {0x0a0f,	0x0a10,	1},

			182	 	 	 {0x0a13,	0x0a28,	1},

			183	 	 	 {0x0a2a,	0x0a30,	1},

			184	 	 	 {0x0a32,	0x0a33,	1},

			185	 	 	 {0x0a35,	0x0a36,	1},

			186	 	 	 {0x0a38,	0x0a39,	1},

			187	 	 	 {0x0a59,	0x0a5c,	1},

			188	 	 	 {0x0a5e,	0x0a72,	20},

			189	 	 	 {0x0a73,	0x0a74,	1},

			190	 	 	 {0x0a85,	0x0a8d,	1},

			191	 	 	 {0x0a8f,	0x0a91,	1},

			192	 	 	 {0x0a93,	0x0aa8,	1},

			193	 	 	 {0x0aaa,	0x0ab0,	1},

			194	 	 	 {0x0ab2,	0x0ab3,	1},

			195	 	 	 {0x0ab5,	0x0ab9,	1},

			196	 	 	 {0x0abd,	0x0ad0,	19},

			197	 	 	 {0x0ae0,	0x0ae1,	1},

			198	 	 	 {0x0b05,	0x0b0c,	1},

			199	 	 	 {0x0b0f,	0x0b10,	1},

			200	 	 	 {0x0b13,	0x0b28,	1},

			201	 	 	 {0x0b2a,	0x0b30,	1},

			202	 	 	 {0x0b32,	0x0b33,	1},

			203	 	 	 {0x0b35,	0x0b39,	1},

			204	 	 	 {0x0b3d,	0x0b5c,	31},

			205	 	 	 {0x0b5d,	0x0b5f,	2},

			206	 	 	 {0x0b60,	0x0b61,	1},

			207	 	 	 {0x0b71,	0x0b83,	18},

			208	 	 	 {0x0b85,	0x0b8a,	1},

			209	 	 	 {0x0b8e,	0x0b90,	1},

			210	 	 	 {0x0b92,	0x0b95,	1},

			211	 	 	 {0x0b99,	0x0b9a,	1},

			212	 	 	 {0x0b9c,	0x0b9e,	2},

			213	 	 	 {0x0b9f,	0x0ba3,	4},

			214	 	 	 {0x0ba4,	0x0ba8,	4},

			215	 	 	 {0x0ba9,	0x0baa,	1},

			216	 	 	 {0x0bae,	0x0bb9,	1},

			217	 	 	 {0x0bd0,	0x0c05,	53},

			218	 	 	 {0x0c06,	0x0c0c,	1},

			219	 	 	 {0x0c0e,	0x0c10,	1},

			220	 	 	 {0x0c12,	0x0c28,	1},

			221	 	 	 {0x0c2a,	0x0c33,	1},

			222	 	 	 {0x0c35,	0x0c39,	1},

			223	 	 	 {0x0c3d,	0x0c58,	27},

			224	 	 	 {0x0c59,	0x0c60,	7},

			225	 	 	 {0x0c61,	0x0c85,	36},

			226	 	 	 {0x0c86,	0x0c8c,	1},

			227	 	 	 {0x0c8e,	0x0c90,	1},

			228	 	 	 {0x0c92,	0x0ca8,	1},

			229	 	 	 {0x0caa,	0x0cb3,	1},

			230	 	 	 {0x0cb5,	0x0cb9,	1},

			231	 	 	 {0x0cbd,	0x0cde,	33},

			232	 	 	 {0x0ce0,	0x0ce1,	1},

			233	 	 	 {0x0cf1,	0x0cf2,	1},

			234	 	 	 {0x0d05,	0x0d0c,	1},

			235	 	 	 {0x0d0e,	0x0d10,	1},

			236	 	 	 {0x0d12,	0x0d3a,	1},

			237	 	 	 {0x0d3d,	0x0d4e,	17},

			238	 	 	 {0x0d60,	0x0d61,	1},

			239	 	 	 {0x0d7a,	0x0d7f,	1},

			240	 	 	 {0x0d85,	0x0d96,	1},

			241	 	 	 {0x0d9a,	0x0db1,	1},

			242	 	 	 {0x0db3,	0x0dbb,	1},

			243	 	 	 {0x0dbd,	0x0dc0,	3},

			244	 	 	 {0x0dc1,	0x0dc6,	1},

			245	 	 	 {0x0e01,	0x0e30,	1},

			246	 	 	 {0x0e32,	0x0e33,	1},

			247	 	 	 {0x0e40,	0x0e46,	1},

			248	 	 	 {0x0e81,	0x0e82,	1},

			249	 	 	 {0x0e84,	0x0e87,	3},

			250	 	 	 {0x0e88,	0x0e8a,	2},

			251	 	 	 {0x0e8d,	0x0e94,	7},

			252	 	 	 {0x0e95,	0x0e97,	1},

			253	 	 	 {0x0e99,	0x0e9f,	1},

			254	 	 	 {0x0ea1,	0x0ea3,	1},

			255	 	 	 {0x0ea5,	0x0ea7,	2},

			256	 	 	 {0x0eaa,	0x0eab,	1},

			257	 	 	 {0x0ead,	0x0eb0,	1},

			258	 	 	 {0x0eb2,	0x0eb3,	1},

			259	 	 	 {0x0ebd,	0x0ec0,	3},

			260	 	 	 {0x0ec1,	0x0ec4,	1},

			261	 	 	 {0x0ec6,	0x0edc,	22},

			262	 	 	 {0x0edd,	0x0f00,	35},

			263	 	 	 {0x0f40,	0x0f47,	1},

			264	 	 	 {0x0f49,	0x0f6c,	1},

			265	 	 	 {0x0f88,	0x0f8c,	1},

			266	 	 	 {0x1000,	0x102a,	1},

			267	 	 	 {0x103f,	0x1050,	17},

			268	 	 	 {0x1051,	0x1055,	1},

			269	 	 	 {0x105a,	0x105d,	1},

			270	 	 	 {0x1061,	0x1065,	4},

			271	 	 	 {0x1066,	0x106e,	8},

			272	 	 	 {0x106f,	0x1070,	1},

			273	 	 	 {0x1075,	0x1081,	1},

			274	 	 	 {0x108e,	0x10a0,	18},

			275	 	 	 {0x10a1,	0x10c5,	1},

			276	 	 	 {0x10d0,	0x10fa,	1},

			277	 	 	 {0x10fc,	0x1100,	4},

			278	 	 	 {0x1101,	0x1248,	1},

			279	 	 	 {0x124a,	0x124d,	1},

			280	 	 	 {0x1250,	0x1256,	1},

			281	 	 	 {0x1258,	0x125a,	2},

			282	 	 	 {0x125b,	0x125d,	1},

			283	 	 	 {0x1260,	0x1288,	1},

			284	 	 	 {0x128a,	0x128d,	1},

			285	 	 	 {0x1290,	0x12b0,	1},

			286	 	 	 {0x12b2,	0x12b5,	1},

			287	 	 	 {0x12b8,	0x12be,	1},

			288	 	 	 {0x12c0,	0x12c2,	2},

			289	 	 	 {0x12c3,	0x12c5,	1},

			290	 	 	 {0x12c8,	0x12d6,	1},

			291	 	 	 {0x12d8,	0x1310,	1},

			292	 	 	 {0x1312,	0x1315,	1},

			293	 	 	 {0x1318,	0x135a,	1},

			294	 	 	 {0x1380,	0x138f,	1},

			295	 	 	 {0x13a0,	0x13f4,	1},

			296	 	 	 {0x1401,	0x166c,	1},

			297	 	 	 {0x166f,	0x167f,	1},

			298	 	 	 {0x1681,	0x169a,	1},

			299	 	 	 {0x16a0,	0x16ea,	1},

			300	 	 	 {0x1700,	0x170c,	1},

			301	 	 	 {0x170e,	0x1711,	1},

			302	 	 	 {0x1720,	0x1731,	1},

			303	 	 	 {0x1740,	0x1751,	1},

			304	 	 	 {0x1760,	0x176c,	1},

			305	 	 	 {0x176e,	0x1770,	1},

			306	 	 	 {0x1780,	0x17b3,	1},

			307	 	 	 {0x17d7,	0x17dc,	5},

			308	 	 	 {0x1820,	0x1877,	1},

			309	 	 	 {0x1880,	0x18a8,	1},

			310	 	 	 {0x18aa,	0x18b0,	6},

			311	 	 	 {0x18b1,	0x18f5,	1},

			312	 	 	 {0x1900,	0x191c,	1},

			313	 	 	 {0x1950,	0x196d,	1},

			314	 	 	 {0x1970,	0x1974,	1},

			315	 	 	 {0x1980,	0x19ab,	1},

			316	 	 	 {0x19c1,	0x19c7,	1},

			317	 	 	 {0x1a00,	0x1a16,	1},

			318	 	 	 {0x1a20,	0x1a54,	1},

			319	 	 	 {0x1aa7,	0x1b05,	94},

			320	 	 	 {0x1b06,	0x1b33,	1},

			321	 	 	 {0x1b45,	0x1b4b,	1},

			322	 	 	 {0x1b83,	0x1ba0,	1},

			323	 	 	 {0x1bae,	0x1baf,	1},

			324	 	 	 {0x1bc0,	0x1be5,	1},

			325	 	 	 {0x1c00,	0x1c23,	1},

			326	 	 	 {0x1c4d,	0x1c4f,	1},

			327	 	 	 {0x1c5a,	0x1c7d,	1},

			328	 	 	 {0x1ce9,	0x1cec,	1},

			329	 	 	 {0x1cee,	0x1cf1,	1},

			330	 	 	 {0x1d00,	0x1dbf,	1},

			331	 	 	 {0x1e00,	0x1f15,	1},

			332	 	 	 {0x1f18,	0x1f1d,	1},

			333	 	 	 {0x1f20,	0x1f45,	1},

			334	 	 	 {0x1f48,	0x1f4d,	1},

			335	 	 	 {0x1f50,	0x1f57,	1},

			336	 	 	 {0x1f59,	0x1f5f,	2},

			337	 	 	 {0x1f60,	0x1f7d,	1},

			338	 	 	 {0x1f80,	0x1fb4,	1},

			339	 	 	 {0x1fb6,	0x1fbc,	1},

			340	 	 	 {0x1fbe,	0x1fc2,	4},

			341	 	 	 {0x1fc3,	0x1fc4,	1},

			342	 	 	 {0x1fc6,	0x1fcc,	1},

			343	 	 	 {0x1fd0,	0x1fd3,	1},

			344	 	 	 {0x1fd6,	0x1fdb,	1},

			345	 	 	 {0x1fe0,	0x1fec,	1},

			346	 	 	 {0x1ff2,	0x1ff4,	1},

			347	 	 	 {0x1ff6,	0x1ffc,	1},

			348	 	 	 {0x2071,	0x207f,	14},

			349	 	 	 {0x2090,	0x209c,	1},

			350	 	 	 {0x2102,	0x2107,	5},

			351	 	 	 {0x210a,	0x2113,	1},

			352	 	 	 {0x2115,	0x2119,	4},

			353	 	 	 {0x211a,	0x211d,	1},

			354	 	 	 {0x2124,	0x212a,	2},

			355	 	 	 {0x212b,	0x212d,	1},

			356	 	 	 {0x212f,	0x2139,	1},

			357	 	 	 {0x213c,	0x213f,	1},

			358	 	 	 {0x2145,	0x2149,	1},

			359	 	 	 {0x214e,	0x2183,	53},

			360	 	 	 {0x2184,	0x2c00,	2684},

			361	 	 	 {0x2c01,	0x2c2e,	1},

			362	 	 	 {0x2c30,	0x2c5e,	1},

			363	 	 	 {0x2c60,	0x2ce4,	1},

			364	 	 	 {0x2ceb,	0x2cee,	1},

			365	 	 	 {0x2d00,	0x2d25,	1},

			366	 	 	 {0x2d30,	0x2d65,	1},

			367	 	 	 {0x2d6f,	0x2d80,	17},

			368	 	 	 {0x2d81,	0x2d96,	1},

			369	 	 	 {0x2da0,	0x2da6,	1},

			370	 	 	 {0x2da8,	0x2dae,	1},

			371	 	 	 {0x2db0,	0x2db6,	1},

			372	 	 	 {0x2db8,	0x2dbe,	1},

			373	 	 	 {0x2dc0,	0x2dc6,	1},

			374	 	 	 {0x2dc8,	0x2dce,	1},

			375	 	 	 {0x2dd0,	0x2dd6,	1},

			376	 	 	 {0x2dd8,	0x2dde,	1},

			377	 	 	 {0x2e2f,	0x3005,	470},

			378	 	 	 {0x3006,	0x3031,	43},

			379	 	 	 {0x3032,	0x3035,	1},

			380	 	 	 {0x303b,	0x303c,	1},

			381	 	 	 {0x3041,	0x3096,	1},

			382	 	 	 {0x309d,	0x309f,	1},

			383	 	 	 {0x30a1,	0x30fa,	1},

			384	 	 	 {0x30fc,	0x30ff,	1},

			385	 	 	 {0x3105,	0x312d,	1},

			386	 	 	 {0x3131,	0x318e,	1},

			387	 	 	 {0x31a0,	0x31ba,	1},

			388	 	 	 {0x31f0,	0x31ff,	1},

			389	 	 	 {0x3400,	0x4db5,	1},

			390	 	 	 {0x4e00,	0x9fcb,	1},

			391	 	 	 {0xa000,	0xa48c,	1},

			392	 	 	 {0xa4d0,	0xa4fd,	1},

			393	 	 	 {0xa500,	0xa60c,	1},

			394	 	 	 {0xa610,	0xa61f,	1},

			395	 	 	 {0xa62a,	0xa62b,	1},

			396	 	 	 {0xa640,	0xa66e,	1},

			397	 	 	 {0xa67f,	0xa697,	1},

			398	 	 	 {0xa6a0,	0xa6e5,	1},

			399	 	 	 {0xa717,	0xa71f,	1},

			400	 	 	 {0xa722,	0xa788,	1},

			401	 	 	 {0xa78b,	0xa78e,	1},

			402	 	 	 {0xa790,	0xa791,	1},

			403	 	 	 {0xa7a0,	0xa7a9,	1},

			404	 	 	 {0xa7fa,	0xa801,	1},

			405	 	 	 {0xa803,	0xa805,	1},

			406	 	 	 {0xa807,	0xa80a,	1},

			407	 	 	 {0xa80c,	0xa822,	1},

			408	 	 	 {0xa840,	0xa873,	1},

			409	 	 	 {0xa882,	0xa8b3,	1},

			410	 	 	 {0xa8f2,	0xa8f7,	1},

			411	 	 	 {0xa8fb,	0xa90a,	15},

			412	 	 	 {0xa90b,	0xa925,	1},

			413	 	 	 {0xa930,	0xa946,	1},

			414	 	 	 {0xa960,	0xa97c,	1},

			415	 	 	 {0xa984,	0xa9b2,	1},

			416	 	 	 {0xa9cf,	0xaa00,	49},

			417	 	 	 {0xaa01,	0xaa28,	1},

			418	 	 	 {0xaa40,	0xaa42,	1},

			419	 	 	 {0xaa44,	0xaa4b,	1},

			420	 	 	 {0xaa60,	0xaa76,	1},

			421	 	 	 {0xaa7a,	0xaa80,	6},

			422	 	 	 {0xaa81,	0xaaaf,	1},

			423	 	 	 {0xaab1,	0xaab5,	4},

			424	 	 	 {0xaab6,	0xaab9,	3},

			425	 	 	 {0xaaba,	0xaabd,	1},

			426	 	 	 {0xaac0,	0xaac2,	2},

			427	 	 	 {0xaadb,	0xaadd,	1},

			428	 	 	 {0xab01,	0xab06,	1},

			429	 	 	 {0xab09,	0xab0e,	1},

			430	 	 	 {0xab11,	0xab16,	1},

			431	 	 	 {0xab20,	0xab26,	1},

			432	 	 	 {0xab28,	0xab2e,	1},

			433	 	 	 {0xabc0,	0xabe2,	1},

			434	 	 	 {0xac00,	0xd7a3,	1},

			435	 	 	 {0xd7b0,	0xd7c6,	1},

			436	 	 	 {0xd7cb,	0xd7fb,	1},

			437	 	 	 {0xf900,	0xfa2d,	1},

			438	 	 	 {0xfa30,	0xfa6d,	1},

			439	 	 	 {0xfa70,	0xfad9,	1},

			440	 	 	 {0xfb00,	0xfb06,	1},

			441	 	 	 {0xfb13,	0xfb17,	1},

			442	 	 	 {0xfb1d,	0xfb1f,	2},

			443	 	 	 {0xfb20,	0xfb28,	1},

			444	 	 	 {0xfb2a,	0xfb36,	1},

			445	 	 	 {0xfb38,	0xfb3c,	1},

			446	 	 	 {0xfb3e,	0xfb40,	2},

			447	 	 	 {0xfb41,	0xfb43,	2},

			448	 	 	 {0xfb44,	0xfb46,	2},

			449	 	 	 {0xfb47,	0xfbb1,	1},

			450	 	 	 {0xfbd3,	0xfd3d,	1},

			451	 	 	 {0xfd50,	0xfd8f,	1},

			452	 	 	 {0xfd92,	0xfdc7,	1},

			453	 	 	 {0xfdf0,	0xfdfb,	1},

			454	 	 	 {0xfe70,	0xfe74,	1},

			455	 	 	 {0xfe76,	0xfefc,	1},

			456	 	 	 {0xff21,	0xff3a,	1},

			457	 	 	 {0xff41,	0xff5a,	1},

			458	 	 	 {0xff66,	0xffbe,	1},

			459	 	 	 {0xffc2,	0xffc7,	1},

			460	 	 	 {0xffca,	0xffcf,	1},

			461	 	 	 {0xffd2,	0xffd7,	1},

			462	 	 	 {0xffda,	0xffdc,	1},

			463	 	 },

			464	 	 R32:	[]Range32{

			465	 	 	 {0x10000,	0x1000b,	1},

			466	 	 	 {0x1000d,	0x10026,	1},

			467	 	 	 {0x10028,	0x1003a,	1},

			468	 	 	 {0x1003c,	0x1003d,	1},

			469	 	 	 {0x1003f,	0x1004d,	1},

			470	 	 	 {0x10050,	0x1005d,	1},

			471	 	 	 {0x10080,	0x100fa,	1},

			472	 	 	 {0x10280,	0x1029c,	1},

			473	 	 	 {0x102a0,	0x102d0,	1},

			474	 	 	 {0x10300,	0x1031e,	1},

			475	 	 	 {0x10330,	0x10340,	1},

			476	 	 	 {0x10342,	0x10349,	1},

			477	 	 	 {0x10380,	0x1039d,	1},

			478	 	 	 {0x103a0,	0x103c3,	1},

			479	 	 	 {0x103c8,	0x103cf,	1},

			480	 	 	 {0x10400,	0x1049d,	1},

			481	 	 	 {0x10800,	0x10805,	1},

			482	 	 	 {0x10808,	0x1080a,	2},

			483	 	 	 {0x1080b,	0x10835,	1},

			484	 	 	 {0x10837,	0x10838,	1},

			485	 	 	 {0x1083c,	0x1083f,	3},

			486	 	 	 {0x10840,	0x10855,	1},

			487	 	 	 {0x10900,	0x10915,	1},

			488	 	 	 {0x10920,	0x10939,	1},

			489	 	 	 {0x10a00,	0x10a10,	16},

			490	 	 	 {0x10a11,	0x10a13,	1},

			491	 	 	 {0x10a15,	0x10a17,	1},

			492	 	 	 {0x10a19,	0x10a33,	1},

			493	 	 	 {0x10a60,	0x10a7c,	1},

			494	 	 	 {0x10b00,	0x10b35,	1},

			495	 	 	 {0x10b40,	0x10b55,	1},

			496	 	 	 {0x10b60,	0x10b72,	1},

			497	 	 	 {0x10c00,	0x10c48,	1},

			498	 	 	 {0x11003,	0x11037,	1},

			499	 	 	 {0x11083,	0x110af,	1},

			500	 	 	 {0x12000,	0x1236e,	1},

			501	 	 	 {0x13000,	0x1342e,	1},

			502	 	 	 {0x16800,	0x16a38,	1},

			503	 	 	 {0x1b000,	0x1b001,	1},

			504	 	 	 {0x1d400,	0x1d454,	1},

			505	 	 	 {0x1d456,	0x1d49c,	1},

			506	 	 	 {0x1d49e,	0x1d49f,	1},

			507	 	 	 {0x1d4a2,	0x1d4a5,	3},

			508	 	 	 {0x1d4a6,	0x1d4a9,	3},

			509	 	 	 {0x1d4aa,	0x1d4ac,	1},

			510	 	 	 {0x1d4ae,	0x1d4b9,	1},

			511	 	 	 {0x1d4bb,	0x1d4bd,	2},

			512	 	 	 {0x1d4be,	0x1d4c3,	1},

			513	 	 	 {0x1d4c5,	0x1d505,	1},

			514	 	 	 {0x1d507,	0x1d50a,	1},

			515	 	 	 {0x1d50d,	0x1d514,	1},

			516	 	 	 {0x1d516,	0x1d51c,	1},

			517	 	 	 {0x1d51e,	0x1d539,	1},

			518	 	 	 {0x1d53b,	0x1d53e,	1},

			519	 	 	 {0x1d540,	0x1d544,	1},

			520	 	 	 {0x1d546,	0x1d54a,	4},

			521	 	 	 {0x1d54b,	0x1d550,	1},

			522	 	 	 {0x1d552,	0x1d6a5,	1},

			523	 	 	 {0x1d6a8,	0x1d6c0,	1},

			524	 	 	 {0x1d6c2,	0x1d6da,	1},

			525	 	 	 {0x1d6dc,	0x1d6fa,	1},

			526	 	 	 {0x1d6fc,	0x1d714,	1},

			527	 	 	 {0x1d716,	0x1d734,	1},

			528	 	 	 {0x1d736,	0x1d74e,	1},

			529	 	 	 {0x1d750,	0x1d76e,	1},

			530	 	 	 {0x1d770,	0x1d788,	1},

			531	 	 	 {0x1d78a,	0x1d7a8,	1},

			532	 	 	 {0x1d7aa,	0x1d7c2,	1},

			533	 	 	 {0x1d7c4,	0x1d7cb,	1},

			534	 	 	 {0x20000,	0x2a6d6,	1},

			535	 	 	 {0x2a700,	0x2b734,	1},

			536	 	 	 {0x2b740,	0x2b81d,	1},

			537	 	 	 {0x2f800,	0x2fa1d,	1},

			538	 	 },

			539	 }

			540	

			541	 var	_Ll	=	&RangeTable{

			542	 	 R16:	[]Range16{

			543	 	 	 {0x0061,	0x007a,	1},

			544	 	 	 {0x00aa,	0x00b5,	11},

			545	 	 	 {0x00ba,	0x00df,	37},

			546	 	 	 {0x00e0,	0x00f6,	1},

			547	 	 	 {0x00f8,	0x00ff,	1},

			548	 	 	 {0x0101,	0x0137,	2},

			549	 	 	 {0x0138,	0x0148,	2},

			550	 	 	 {0x0149,	0x0177,	2},

			551	 	 	 {0x017a,	0x017e,	2},

			552	 	 	 {0x017f,	0x0180,	1},

			553	 	 	 {0x0183,	0x0185,	2},

			554	 	 	 {0x0188,	0x018c,	4},

			555	 	 	 {0x018d,	0x0192,	5},

			556	 	 	 {0x0195,	0x0199,	4},

			557	 	 	 {0x019a,	0x019b,	1},

			558	 	 	 {0x019e,	0x01a1,	3},

			559	 	 	 {0x01a3,	0x01a5,	2},

			560	 	 	 {0x01a8,	0x01aa,	2},

			561	 	 	 {0x01ab,	0x01ad,	2},

			562	 	 	 {0x01b0,	0x01b4,	4},

			563	 	 	 {0x01b6,	0x01b9,	3},

			564	 	 	 {0x01ba,	0x01bd,	3},

			565	 	 	 {0x01be,	0x01bf,	1},

			566	 	 	 {0x01c6,	0x01cc,	3},

			567	 	 	 {0x01ce,	0x01dc,	2},

			568	 	 	 {0x01dd,	0x01ef,	2},

			569	 	 	 {0x01f0,	0x01f3,	3},

			570	 	 	 {0x01f5,	0x01f9,	4},

			571	 	 	 {0x01fb,	0x0233,	2},

			572	 	 	 {0x0234,	0x0239,	1},

			573	 	 	 {0x023c,	0x023f,	3},

			574	 	 	 {0x0240,	0x0242,	2},

			575	 	 	 {0x0247,	0x024f,	2},

			576	 	 	 {0x0250,	0x0293,	1},

			577	 	 	 {0x0295,	0x02af,	1},

			578	 	 	 {0x0371,	0x0373,	2},

			579	 	 	 {0x0377,	0x037b,	4},

			580	 	 	 {0x037c,	0x037d,	1},

			581	 	 	 {0x0390,	0x03ac,	28},

			582	 	 	 {0x03ad,	0x03ce,	1},

			583	 	 	 {0x03d0,	0x03d1,	1},

			584	 	 	 {0x03d5,	0x03d7,	1},

			585	 	 	 {0x03d9,	0x03ef,	2},

			586	 	 	 {0x03f0,	0x03f3,	1},

			587	 	 	 {0x03f5,	0x03fb,	3},

			588	 	 	 {0x03fc,	0x0430,	52},

			589	 	 	 {0x0431,	0x045f,	1},

			590	 	 	 {0x0461,	0x0481,	2},

			591	 	 	 {0x048b,	0x04bf,	2},

			592	 	 	 {0x04c2,	0x04ce,	2},

			593	 	 	 {0x04cf,	0x0527,	2},

			594	 	 	 {0x0561,	0x0587,	1},

			595	 	 	 {0x1d00,	0x1d2b,	1},

			596	 	 	 {0x1d62,	0x1d77,	1},

			597	 	 	 {0x1d79,	0x1d9a,	1},

			598	 	 	 {0x1e01,	0x1e95,	2},

			599	 	 	 {0x1e96,	0x1e9d,	1},

			600	 	 	 {0x1e9f,	0x1eff,	2},

			601	 	 	 {0x1f00,	0x1f07,	1},

			602	 	 	 {0x1f10,	0x1f15,	1},

			603	 	 	 {0x1f20,	0x1f27,	1},

			604	 	 	 {0x1f30,	0x1f37,	1},

			605	 	 	 {0x1f40,	0x1f45,	1},

			606	 	 	 {0x1f50,	0x1f57,	1},

			607	 	 	 {0x1f60,	0x1f67,	1},

			608	 	 	 {0x1f70,	0x1f7d,	1},

			609	 	 	 {0x1f80,	0x1f87,	1},

			610	 	 	 {0x1f90,	0x1f97,	1},

			611	 	 	 {0x1fa0,	0x1fa7,	1},

			612	 	 	 {0x1fb0,	0x1fb4,	1},

			613	 	 	 {0x1fb6,	0x1fb7,	1},

			614	 	 	 {0x1fbe,	0x1fc2,	4},

			615	 	 	 {0x1fc3,	0x1fc4,	1},

			616	 	 	 {0x1fc6,	0x1fc7,	1},

			617	 	 	 {0x1fd0,	0x1fd3,	1},

			618	 	 	 {0x1fd6,	0x1fd7,	1},

			619	 	 	 {0x1fe0,	0x1fe7,	1},

			620	 	 	 {0x1ff2,	0x1ff4,	1},

			621	 	 	 {0x1ff6,	0x1ff7,	1},

			622	 	 	 {0x210a,	0x210e,	4},

			623	 	 	 {0x210f,	0x2113,	4},

			624	 	 	 {0x212f,	0x2139,	5},

			625	 	 	 {0x213c,	0x213d,	1},

			626	 	 	 {0x2146,	0x2149,	1},

			627	 	 	 {0x214e,	0x2184,	54},

			628	 	 	 {0x2c30,	0x2c5e,	1},

			629	 	 	 {0x2c61,	0x2c65,	4},

			630	 	 	 {0x2c66,	0x2c6c,	2},

			631	 	 	 {0x2c71,	0x2c73,	2},

			632	 	 	 {0x2c74,	0x2c76,	2},

			633	 	 	 {0x2c77,	0x2c7c,	1},

			634	 	 	 {0x2c81,	0x2ce3,	2},

			635	 	 	 {0x2ce4,	0x2cec,	8},

			636	 	 	 {0x2cee,	0x2d00,	18},

			637	 	 	 {0x2d01,	0x2d25,	1},

			638	 	 	 {0xa641,	0xa66d,	2},

			639	 	 	 {0xa681,	0xa697,	2},

			640	 	 	 {0xa723,	0xa72f,	2},

			641	 	 	 {0xa730,	0xa731,	1},

			642	 	 	 {0xa733,	0xa771,	2},

			643	 	 	 {0xa772,	0xa778,	1},

			644	 	 	 {0xa77a,	0xa77c,	2},

			645	 	 	 {0xa77f,	0xa787,	2},

			646	 	 	 {0xa78c,	0xa78e,	2},

			647	 	 	 {0xa791,	0xa7a1,	16},

			648	 	 	 {0xa7a3,	0xa7a9,	2},

			649	 	 	 {0xa7fa,	0xfb00,	21254},

			650	 	 	 {0xfb01,	0xfb06,	1},

			651	 	 	 {0xfb13,	0xfb17,	1},

			652	 	 	 {0xff41,	0xff5a,	1},

			653	 	 },

			654	 	 R32:	[]Range32{

			655	 	 	 {0x10428,	0x1044f,	1},

			656	 	 	 {0x1d41a,	0x1d433,	1},

			657	 	 	 {0x1d44e,	0x1d454,	1},

			658	 	 	 {0x1d456,	0x1d467,	1},

			659	 	 	 {0x1d482,	0x1d49b,	1},

			660	 	 	 {0x1d4b6,	0x1d4b9,	1},

			661	 	 	 {0x1d4bb,	0x1d4bd,	2},

			662	 	 	 {0x1d4be,	0x1d4c3,	1},

			663	 	 	 {0x1d4c5,	0x1d4cf,	1},

			664	 	 	 {0x1d4ea,	0x1d503,	1},

			665	 	 	 {0x1d51e,	0x1d537,	1},

			666	 	 	 {0x1d552,	0x1d56b,	1},

			667	 	 	 {0x1d586,	0x1d59f,	1},

			668	 	 	 {0x1d5ba,	0x1d5d3,	1},

			669	 	 	 {0x1d5ee,	0x1d607,	1},

			670	 	 	 {0x1d622,	0x1d63b,	1},

			671	 	 	 {0x1d656,	0x1d66f,	1},

			672	 	 	 {0x1d68a,	0x1d6a5,	1},

			673	 	 	 {0x1d6c2,	0x1d6da,	1},

			674	 	 	 {0x1d6dc,	0x1d6e1,	1},

			675	 	 	 {0x1d6fc,	0x1d714,	1},

			676	 	 	 {0x1d716,	0x1d71b,	1},

			677	 	 	 {0x1d736,	0x1d74e,	1},

			678	 	 	 {0x1d750,	0x1d755,	1},

			679	 	 	 {0x1d770,	0x1d788,	1},

			680	 	 	 {0x1d78a,	0x1d78f,	1},

			681	 	 	 {0x1d7aa,	0x1d7c2,	1},

			682	 	 	 {0x1d7c4,	0x1d7c9,	1},

			683	 	 	 {0x1d7cb,	0x1d7cb,	1},

			684	 	 },

			685	 }

			686	

			687	 var	_Lm	=	&RangeTable{

			688	 	 R16:	[]Range16{

			689	 	 	 {0x02b0,	0x02c1,	1},

			690	 	 	 {0x02c6,	0x02d1,	1},

			691	 	 	 {0x02e0,	0x02e4,	1},

			692	 	 	 {0x02ec,	0x02ee,	2},

			693	 	 	 {0x0374,	0x037a,	6},

			694	 	 	 {0x0559,	0x0640,	231},

			695	 	 	 {0x06e5,	0x06e6,	1},

			696	 	 	 {0x07f4,	0x07f5,	1},

			697	 	 	 {0x07fa,	0x081a,	32},

			698	 	 	 {0x0824,	0x0828,	4},

			699	 	 	 {0x0971,	0x0e46,	1237},

			700	 	 	 {0x0ec6,	0x10fc,	566},

			701	 	 	 {0x17d7,	0x1843,	108},

			702	 	 	 {0x1aa7,	0x1c78,	465},

			703	 	 	 {0x1c79,	0x1c7d,	1},

			704	 	 	 {0x1d2c,	0x1d61,	1},

			705	 	 	 {0x1d78,	0x1d9b,	35},

			706	 	 	 {0x1d9c,	0x1dbf,	1},

			707	 	 	 {0x2071,	0x207f,	14},

			708	 	 	 {0x2090,	0x209c,	1},

			709	 	 	 {0x2c7d,	0x2d6f,	242},

			710	 	 	 {0x2e2f,	0x3005,	470},

			711	 	 	 {0x3031,	0x3035,	1},

			712	 	 	 {0x303b,	0x309d,	98},

			713	 	 	 {0x309e,	0x30fc,	94},

			714	 	 	 {0x30fd,	0x30fe,	1},

			715	 	 	 {0xa015,	0xa4f8,	1251},

			716	 	 	 {0xa4f9,	0xa4fd,	1},

			717	 	 	 {0xa60c,	0xa67f,	115},

			718	 	 	 {0xa717,	0xa71f,	1},

			719	 	 	 {0xa770,	0xa788,	24},

			720	 	 	 {0xa9cf,	0xaa70,	161},

			721	 	 	 {0xaadd,	0xff70,	21651},

			722	 	 	 {0xff9e,	0xff9f,	1},

			723	 	 },

			724	 }

			725	

			726	 var	_Lo	=	&RangeTable{

			727	 	 R16:	[]Range16{

			728	 	 	 {0x01bb,	0x01c0,	5},

			729	 	 	 {0x01c1,	0x01c3,	1},

			730	 	 	 {0x0294,	0x05d0,	828},

			731	 	 	 {0x05d1,	0x05ea,	1},

			732	 	 	 {0x05f0,	0x05f2,	1},

			733	 	 	 {0x0620,	0x063f,	1},

			734	 	 	 {0x0641,	0x064a,	1},

			735	 	 	 {0x066e,	0x066f,	1},

			736	 	 	 {0x0671,	0x06d3,	1},

			737	 	 	 {0x06d5,	0x06ee,	25},

			738	 	 	 {0x06ef,	0x06fa,	11},

			739	 	 	 {0x06fb,	0x06fc,	1},

			740	 	 	 {0x06ff,	0x0710,	17},

			741	 	 	 {0x0712,	0x072f,	1},

			742	 	 	 {0x074d,	0x07a5,	1},

			743	 	 	 {0x07b1,	0x07ca,	25},

			744	 	 	 {0x07cb,	0x07ea,	1},

			745	 	 	 {0x0800,	0x0815,	1},

			746	 	 	 {0x0840,	0x0858,	1},

			747	 	 	 {0x0904,	0x0939,	1},

			748	 	 	 {0x093d,	0x0950,	19},

			749	 	 	 {0x0958,	0x0961,	1},

			750	 	 	 {0x0972,	0x0977,	1},

			751	 	 	 {0x0979,	0x097f,	1},

			752	 	 	 {0x0985,	0x098c,	1},

			753	 	 	 {0x098f,	0x0990,	1},

			754	 	 	 {0x0993,	0x09a8,	1},

			755	 	 	 {0x09aa,	0x09b0,	1},

			756	 	 	 {0x09b2,	0x09b6,	4},

			757	 	 	 {0x09b7,	0x09b9,	1},

			758	 	 	 {0x09bd,	0x09ce,	17},

			759	 	 	 {0x09dc,	0x09dd,	1},

			760	 	 	 {0x09df,	0x09e1,	1},

			761	 	 	 {0x09f0,	0x09f1,	1},

			762	 	 	 {0x0a05,	0x0a0a,	1},

			763	 	 	 {0x0a0f,	0x0a10,	1},

			764	 	 	 {0x0a13,	0x0a28,	1},

			765	 	 	 {0x0a2a,	0x0a30,	1},

			766	 	 	 {0x0a32,	0x0a33,	1},

			767	 	 	 {0x0a35,	0x0a36,	1},

			768	 	 	 {0x0a38,	0x0a39,	1},

			769	 	 	 {0x0a59,	0x0a5c,	1},

			770	 	 	 {0x0a5e,	0x0a72,	20},

			771	 	 	 {0x0a73,	0x0a74,	1},

			772	 	 	 {0x0a85,	0x0a8d,	1},

			773	 	 	 {0x0a8f,	0x0a91,	1},

			774	 	 	 {0x0a93,	0x0aa8,	1},

			775	 	 	 {0x0aaa,	0x0ab0,	1},

			776	 	 	 {0x0ab2,	0x0ab3,	1},

			777	 	 	 {0x0ab5,	0x0ab9,	1},

			778	 	 	 {0x0abd,	0x0ad0,	19},

			779	 	 	 {0x0ae0,	0x0ae1,	1},

			780	 	 	 {0x0b05,	0x0b0c,	1},

			781	 	 	 {0x0b0f,	0x0b10,	1},

			782	 	 	 {0x0b13,	0x0b28,	1},

			783	 	 	 {0x0b2a,	0x0b30,	1},

			784	 	 	 {0x0b32,	0x0b33,	1},

			785	 	 	 {0x0b35,	0x0b39,	1},

			786	 	 	 {0x0b3d,	0x0b5c,	31},

			787	 	 	 {0x0b5d,	0x0b5f,	2},

			788	 	 	 {0x0b60,	0x0b61,	1},

			789	 	 	 {0x0b71,	0x0b83,	18},

			790	 	 	 {0x0b85,	0x0b8a,	1},

			791	 	 	 {0x0b8e,	0x0b90,	1},

			792	 	 	 {0x0b92,	0x0b95,	1},

			793	 	 	 {0x0b99,	0x0b9a,	1},

			794	 	 	 {0x0b9c,	0x0b9e,	2},

			795	 	 	 {0x0b9f,	0x0ba3,	4},

			796	 	 	 {0x0ba4,	0x0ba8,	4},

			797	 	 	 {0x0ba9,	0x0baa,	1},

			798	 	 	 {0x0bae,	0x0bb9,	1},

			799	 	 	 {0x0bd0,	0x0c05,	53},

			800	 	 	 {0x0c06,	0x0c0c,	1},

			801	 	 	 {0x0c0e,	0x0c10,	1},

			802	 	 	 {0x0c12,	0x0c28,	1},

			803	 	 	 {0x0c2a,	0x0c33,	1},

			804	 	 	 {0x0c35,	0x0c39,	1},

			805	 	 	 {0x0c3d,	0x0c58,	27},

			806	 	 	 {0x0c59,	0x0c60,	7},

			807	 	 	 {0x0c61,	0x0c85,	36},

			808	 	 	 {0x0c86,	0x0c8c,	1},

			809	 	 	 {0x0c8e,	0x0c90,	1},

			810	 	 	 {0x0c92,	0x0ca8,	1},

			811	 	 	 {0x0caa,	0x0cb3,	1},

			812	 	 	 {0x0cb5,	0x0cb9,	1},

			813	 	 	 {0x0cbd,	0x0cde,	33},

			814	 	 	 {0x0ce0,	0x0ce1,	1},

			815	 	 	 {0x0cf1,	0x0cf2,	1},

			816	 	 	 {0x0d05,	0x0d0c,	1},

			817	 	 	 {0x0d0e,	0x0d10,	1},

			818	 	 	 {0x0d12,	0x0d3a,	1},

			819	 	 	 {0x0d3d,	0x0d4e,	17},

			820	 	 	 {0x0d60,	0x0d61,	1},

			821	 	 	 {0x0d7a,	0x0d7f,	1},

			822	 	 	 {0x0d85,	0x0d96,	1},

			823	 	 	 {0x0d9a,	0x0db1,	1},

			824	 	 	 {0x0db3,	0x0dbb,	1},

			825	 	 	 {0x0dbd,	0x0dc0,	3},

			826	 	 	 {0x0dc1,	0x0dc6,	1},

			827	 	 	 {0x0e01,	0x0e30,	1},

			828	 	 	 {0x0e32,	0x0e33,	1},

			829	 	 	 {0x0e40,	0x0e45,	1},

			830	 	 	 {0x0e81,	0x0e82,	1},

			831	 	 	 {0x0e84,	0x0e87,	3},

			832	 	 	 {0x0e88,	0x0e8a,	2},

			833	 	 	 {0x0e8d,	0x0e94,	7},

			834	 	 	 {0x0e95,	0x0e97,	1},

			835	 	 	 {0x0e99,	0x0e9f,	1},

			836	 	 	 {0x0ea1,	0x0ea3,	1},

			837	 	 	 {0x0ea5,	0x0ea7,	2},

			838	 	 	 {0x0eaa,	0x0eab,	1},

			839	 	 	 {0x0ead,	0x0eb0,	1},

			840	 	 	 {0x0eb2,	0x0eb3,	1},

			841	 	 	 {0x0ebd,	0x0ec0,	3},

			842	 	 	 {0x0ec1,	0x0ec4,	1},

			843	 	 	 {0x0edc,	0x0edd,	1},

			844	 	 	 {0x0f00,	0x0f40,	64},

			845	 	 	 {0x0f41,	0x0f47,	1},

			846	 	 	 {0x0f49,	0x0f6c,	1},

			847	 	 	 {0x0f88,	0x0f8c,	1},

			848	 	 	 {0x1000,	0x102a,	1},

			849	 	 	 {0x103f,	0x1050,	17},

			850	 	 	 {0x1051,	0x1055,	1},

			851	 	 	 {0x105a,	0x105d,	1},

			852	 	 	 {0x1061,	0x1065,	4},

			853	 	 	 {0x1066,	0x106e,	8},

			854	 	 	 {0x106f,	0x1070,	1},

			855	 	 	 {0x1075,	0x1081,	1},

			856	 	 	 {0x108e,	0x10d0,	66},

			857	 	 	 {0x10d1,	0x10fa,	1},

			858	 	 	 {0x1100,	0x1248,	1},

			859	 	 	 {0x124a,	0x124d,	1},

			860	 	 	 {0x1250,	0x1256,	1},

			861	 	 	 {0x1258,	0x125a,	2},

			862	 	 	 {0x125b,	0x125d,	1},

			863	 	 	 {0x1260,	0x1288,	1},

			864	 	 	 {0x128a,	0x128d,	1},

			865	 	 	 {0x1290,	0x12b0,	1},

			866	 	 	 {0x12b2,	0x12b5,	1},

			867	 	 	 {0x12b8,	0x12be,	1},

			868	 	 	 {0x12c0,	0x12c2,	2},

			869	 	 	 {0x12c3,	0x12c5,	1},

			870	 	 	 {0x12c8,	0x12d6,	1},

			871	 	 	 {0x12d8,	0x1310,	1},

			872	 	 	 {0x1312,	0x1315,	1},

			873	 	 	 {0x1318,	0x135a,	1},

			874	 	 	 {0x1380,	0x138f,	1},

			875	 	 	 {0x13a0,	0x13f4,	1},

			876	 	 	 {0x1401,	0x166c,	1},

			877	 	 	 {0x166f,	0x167f,	1},

			878	 	 	 {0x1681,	0x169a,	1},

			879	 	 	 {0x16a0,	0x16ea,	1},

			880	 	 	 {0x1700,	0x170c,	1},

			881	 	 	 {0x170e,	0x1711,	1},

			882	 	 	 {0x1720,	0x1731,	1},

			883	 	 	 {0x1740,	0x1751,	1},

			884	 	 	 {0x1760,	0x176c,	1},

			885	 	 	 {0x176e,	0x1770,	1},

			886	 	 	 {0x1780,	0x17b3,	1},

			887	 	 	 {0x17dc,	0x1820,	68},

			888	 	 	 {0x1821,	0x1842,	1},

			889	 	 	 {0x1844,	0x1877,	1},

			890	 	 	 {0x1880,	0x18a8,	1},

			891	 	 	 {0x18aa,	0x18b0,	6},

			892	 	 	 {0x18b1,	0x18f5,	1},

			893	 	 	 {0x1900,	0x191c,	1},

			894	 	 	 {0x1950,	0x196d,	1},

			895	 	 	 {0x1970,	0x1974,	1},

			896	 	 	 {0x1980,	0x19ab,	1},

			897	 	 	 {0x19c1,	0x19c7,	1},

			898	 	 	 {0x1a00,	0x1a16,	1},

			899	 	 	 {0x1a20,	0x1a54,	1},

			900	 	 	 {0x1b05,	0x1b33,	1},

			901	 	 	 {0x1b45,	0x1b4b,	1},

			902	 	 	 {0x1b83,	0x1ba0,	1},

			903	 	 	 {0x1bae,	0x1baf,	1},

			904	 	 	 {0x1bc0,	0x1be5,	1},

			905	 	 	 {0x1c00,	0x1c23,	1},

			906	 	 	 {0x1c4d,	0x1c4f,	1},

			907	 	 	 {0x1c5a,	0x1c77,	1},

			908	 	 	 {0x1ce9,	0x1cec,	1},

			909	 	 	 {0x1cee,	0x1cf1,	1},

			910	 	 	 {0x2135,	0x2138,	1},

			911	 	 	 {0x2d30,	0x2d65,	1},

			912	 	 	 {0x2d80,	0x2d96,	1},

			913	 	 	 {0x2da0,	0x2da6,	1},

			914	 	 	 {0x2da8,	0x2dae,	1},

			915	 	 	 {0x2db0,	0x2db6,	1},

			916	 	 	 {0x2db8,	0x2dbe,	1},

			917	 	 	 {0x2dc0,	0x2dc6,	1},

			918	 	 	 {0x2dc8,	0x2dce,	1},

			919	 	 	 {0x2dd0,	0x2dd6,	1},

			920	 	 	 {0x2dd8,	0x2dde,	1},

			921	 	 	 {0x3006,	0x303c,	54},

			922	 	 	 {0x3041,	0x3096,	1},

			923	 	 	 {0x309f,	0x30a1,	2},

			924	 	 	 {0x30a2,	0x30fa,	1},

			925	 	 	 {0x30ff,	0x3105,	6},

			926	 	 	 {0x3106,	0x312d,	1},

			927	 	 	 {0x3131,	0x318e,	1},

			928	 	 	 {0x31a0,	0x31ba,	1},

			929	 	 	 {0x31f0,	0x31ff,	1},

			930	 	 	 {0x3400,	0x4db5,	1},

			931	 	 	 {0x4e00,	0x9fcb,	1},

			932	 	 	 {0xa000,	0xa014,	1},

			933	 	 	 {0xa016,	0xa48c,	1},

			934	 	 	 {0xa4d0,	0xa4f7,	1},

			935	 	 	 {0xa500,	0xa60b,	1},

			936	 	 	 {0xa610,	0xa61f,	1},

			937	 	 	 {0xa62a,	0xa62b,	1},

			938	 	 	 {0xa66e,	0xa6a0,	50},

			939	 	 	 {0xa6a1,	0xa6e5,	1},

			940	 	 	 {0xa7fb,	0xa801,	1},

			941	 	 	 {0xa803,	0xa805,	1},

			942	 	 	 {0xa807,	0xa80a,	1},

			943	 	 	 {0xa80c,	0xa822,	1},

			944	 	 	 {0xa840,	0xa873,	1},

			945	 	 	 {0xa882,	0xa8b3,	1},

			946	 	 	 {0xa8f2,	0xa8f7,	1},

			947	 	 	 {0xa8fb,	0xa90a,	15},

			948	 	 	 {0xa90b,	0xa925,	1},

			949	 	 	 {0xa930,	0xa946,	1},

			950	 	 	 {0xa960,	0xa97c,	1},

			951	 	 	 {0xa984,	0xa9b2,	1},

			952	 	 	 {0xaa00,	0xaa28,	1},

			953	 	 	 {0xaa40,	0xaa42,	1},

			954	 	 	 {0xaa44,	0xaa4b,	1},

			955	 	 	 {0xaa60,	0xaa6f,	1},

			956	 	 	 {0xaa71,	0xaa76,	1},

			957	 	 	 {0xaa7a,	0xaa80,	6},

			958	 	 	 {0xaa81,	0xaaaf,	1},

			959	 	 	 {0xaab1,	0xaab5,	4},

			960	 	 	 {0xaab6,	0xaab9,	3},

			961	 	 	 {0xaaba,	0xaabd,	1},

			962	 	 	 {0xaac0,	0xaac2,	2},

			963	 	 	 {0xaadb,	0xaadc,	1},

			964	 	 	 {0xab01,	0xab06,	1},

			965	 	 	 {0xab09,	0xab0e,	1},

			966	 	 	 {0xab11,	0xab16,	1},

			967	 	 	 {0xab20,	0xab26,	1},

			968	 	 	 {0xab28,	0xab2e,	1},

			969	 	 	 {0xabc0,	0xabe2,	1},

			970	 	 	 {0xac00,	0xd7a3,	1},

			971	 	 	 {0xd7b0,	0xd7c6,	1},

			972	 	 	 {0xd7cb,	0xd7fb,	1},

			973	 	 	 {0xf900,	0xfa2d,	1},

			974	 	 	 {0xfa30,	0xfa6d,	1},

			975	 	 	 {0xfa70,	0xfad9,	1},

			976	 	 	 {0xfb1d,	0xfb1f,	2},

			977	 	 	 {0xfb20,	0xfb28,	1},

			978	 	 	 {0xfb2a,	0xfb36,	1},

			979	 	 	 {0xfb38,	0xfb3c,	1},

			980	 	 	 {0xfb3e,	0xfb40,	2},

			981	 	 	 {0xfb41,	0xfb43,	2},

			982	 	 	 {0xfb44,	0xfb46,	2},

			983	 	 	 {0xfb47,	0xfbb1,	1},

			984	 	 	 {0xfbd3,	0xfd3d,	1},

			985	 	 	 {0xfd50,	0xfd8f,	1},

			986	 	 	 {0xfd92,	0xfdc7,	1},

			987	 	 	 {0xfdf0,	0xfdfb,	1},

			988	 	 	 {0xfe70,	0xfe74,	1},

			989	 	 	 {0xfe76,	0xfefc,	1},

			990	 	 	 {0xff66,	0xff6f,	1},

			991	 	 	 {0xff71,	0xff9d,	1},

			992	 	 	 {0xffa0,	0xffbe,	1},

			993	 	 	 {0xffc2,	0xffc7,	1},

			994	 	 	 {0xffca,	0xffcf,	1},

			995	 	 	 {0xffd2,	0xffd7,	1},

			996	 	 	 {0xffda,	0xffdc,	1},

			997	 	 },

			998	 	 R32:	[]Range32{

			999	 	 	 {0x10000,	0x1000b,	1},

		1000	 	 	 {0x1000d,	0x10026,	1},

		1001	 	 	 {0x10028,	0x1003a,	1},

		1002	 	 	 {0x1003c,	0x1003d,	1},

		1003	 	 	 {0x1003f,	0x1004d,	1},

		1004	 	 	 {0x10050,	0x1005d,	1},

		1005	 	 	 {0x10080,	0x100fa,	1},

		1006	 	 	 {0x10280,	0x1029c,	1},

		1007	 	 	 {0x102a0,	0x102d0,	1},

		1008	 	 	 {0x10300,	0x1031e,	1},

		1009	 	 	 {0x10330,	0x10340,	1},

		1010	 	 	 {0x10342,	0x10349,	1},

		1011	 	 	 {0x10380,	0x1039d,	1},

		1012	 	 	 {0x103a0,	0x103c3,	1},

		1013	 	 	 {0x103c8,	0x103cf,	1},

		1014	 	 	 {0x10450,	0x1049d,	1},

		1015	 	 	 {0x10800,	0x10805,	1},

		1016	 	 	 {0x10808,	0x1080a,	2},

		1017	 	 	 {0x1080b,	0x10835,	1},

		1018	 	 	 {0x10837,	0x10838,	1},

		1019	 	 	 {0x1083c,	0x1083f,	3},

		1020	 	 	 {0x10840,	0x10855,	1},

		1021	 	 	 {0x10900,	0x10915,	1},

		1022	 	 	 {0x10920,	0x10939,	1},

		1023	 	 	 {0x10a00,	0x10a10,	16},

		1024	 	 	 {0x10a11,	0x10a13,	1},

		1025	 	 	 {0x10a15,	0x10a17,	1},

		1026	 	 	 {0x10a19,	0x10a33,	1},

		1027	 	 	 {0x10a60,	0x10a7c,	1},

		1028	 	 	 {0x10b00,	0x10b35,	1},

		1029	 	 	 {0x10b40,	0x10b55,	1},

		1030	 	 	 {0x10b60,	0x10b72,	1},

		1031	 	 	 {0x10c00,	0x10c48,	1},

		1032	 	 	 {0x11003,	0x11037,	1},

		1033	 	 	 {0x11083,	0x110af,	1},

		1034	 	 	 {0x12000,	0x1236e,	1},

		1035	 	 	 {0x13000,	0x1342e,	1},

		1036	 	 	 {0x16800,	0x16a38,	1},

		1037	 	 	 {0x1b000,	0x1b001,	1},

		1038	 	 	 {0x20000,	0x2a6d6,	1},

		1039	 	 	 {0x2a700,	0x2b734,	1},

		1040	 	 	 {0x2b740,	0x2b81d,	1},

		1041	 	 	 {0x2f800,	0x2fa1d,	1},

		1042	 	 },

		1043	 }

		1044	

		1045	 var	_Lt	=	&RangeTable{

		1046	 	 R16:	[]Range16{

		1047	 	 	 {0x01c5,	0x01cb,	3},

		1048	 	 	 {0x01f2,	0x1f88,	7574},

		1049	 	 	 {0x1f89,	0x1f8f,	1},

		1050	 	 	 {0x1f98,	0x1f9f,	1},

		1051	 	 	 {0x1fa8,	0x1faf,	1},

		1052	 	 	 {0x1fbc,	0x1fcc,	16},

		1053	 	 	 {0x1ffc,	0x1ffc,	1},

		1054	 	 },

		1055	 }

		1056	

		1057	 var	_Lu	=	&RangeTable{

		1058	 	 R16:	[]Range16{

		1059	 	 	 {0x0041,	0x005a,	1},

		1060	 	 	 {0x00c0,	0x00d6,	1},

		1061	 	 	 {0x00d8,	0x00de,	1},

		1062	 	 	 {0x0100,	0x0136,	2},

		1063	 	 	 {0x0139,	0x0147,	2},

		1064	 	 	 {0x014a,	0x0178,	2},

		1065	 	 	 {0x0179,	0x017d,	2},

		1066	 	 	 {0x0181,	0x0182,	1},

		1067	 	 	 {0x0184,	0x0186,	2},

		1068	 	 	 {0x0187,	0x0189,	2},

		1069	 	 	 {0x018a,	0x018b,	1},

		1070	 	 	 {0x018e,	0x0191,	1},

		1071	 	 	 {0x0193,	0x0194,	1},

		1072	 	 	 {0x0196,	0x0198,	1},

		1073	 	 	 {0x019c,	0x019d,	1},

		1074	 	 	 {0x019f,	0x01a0,	1},

		1075	 	 	 {0x01a2,	0x01a6,	2},

		1076	 	 	 {0x01a7,	0x01a9,	2},

		1077	 	 	 {0x01ac,	0x01ae,	2},

		1078	 	 	 {0x01af,	0x01b1,	2},

		1079	 	 	 {0x01b2,	0x01b3,	1},

		1080	 	 	 {0x01b5,	0x01b7,	2},

		1081	 	 	 {0x01b8,	0x01bc,	4},

		1082	 	 	 {0x01c4,	0x01cd,	3},

		1083	 	 	 {0x01cf,	0x01db,	2},

		1084	 	 	 {0x01de,	0x01ee,	2},

		1085	 	 	 {0x01f1,	0x01f4,	3},

		1086	 	 	 {0x01f6,	0x01f8,	1},

		1087	 	 	 {0x01fa,	0x0232,	2},

		1088	 	 	 {0x023a,	0x023b,	1},

		1089	 	 	 {0x023d,	0x023e,	1},

		1090	 	 	 {0x0241,	0x0243,	2},

		1091	 	 	 {0x0244,	0x0246,	1},

		1092	 	 	 {0x0248,	0x024e,	2},

		1093	 	 	 {0x0370,	0x0372,	2},

		1094	 	 	 {0x0376,	0x0386,	16},

		1095	 	 	 {0x0388,	0x038a,	1},

		1096	 	 	 {0x038c,	0x038e,	2},

		1097	 	 	 {0x038f,	0x0391,	2},

		1098	 	 	 {0x0392,	0x03a1,	1},

		1099	 	 	 {0x03a3,	0x03ab,	1},

		1100	 	 	 {0x03cf,	0x03d2,	3},

		1101	 	 	 {0x03d3,	0x03d4,	1},

		1102	 	 	 {0x03d8,	0x03ee,	2},

		1103	 	 	 {0x03f4,	0x03f7,	3},

		1104	 	 	 {0x03f9,	0x03fa,	1},

		1105	 	 	 {0x03fd,	0x042f,	1},

		1106	 	 	 {0x0460,	0x0480,	2},

		1107	 	 	 {0x048a,	0x04c0,	2},

		1108	 	 	 {0x04c1,	0x04cd,	2},

		1109	 	 	 {0x04d0,	0x0526,	2},

		1110	 	 	 {0x0531,	0x0556,	1},

		1111	 	 	 {0x10a0,	0x10c5,	1},

		1112	 	 	 {0x1e00,	0x1e94,	2},

		1113	 	 	 {0x1e9e,	0x1efe,	2},

		1114	 	 	 {0x1f08,	0x1f0f,	1},

		1115	 	 	 {0x1f18,	0x1f1d,	1},

		1116	 	 	 {0x1f28,	0x1f2f,	1},

		1117	 	 	 {0x1f38,	0x1f3f,	1},

		1118	 	 	 {0x1f48,	0x1f4d,	1},

		1119	 	 	 {0x1f59,	0x1f5f,	2},

		1120	 	 	 {0x1f68,	0x1f6f,	1},

		1121	 	 	 {0x1fb8,	0x1fbb,	1},

		1122	 	 	 {0x1fc8,	0x1fcb,	1},

		1123	 	 	 {0x1fd8,	0x1fdb,	1},

		1124	 	 	 {0x1fe8,	0x1fec,	1},

		1125	 	 	 {0x1ff8,	0x1ffb,	1},

		1126	 	 	 {0x2102,	0x2107,	5},

		1127	 	 	 {0x210b,	0x210d,	1},

		1128	 	 	 {0x2110,	0x2112,	1},

		1129	 	 	 {0x2115,	0x2119,	4},

		1130	 	 	 {0x211a,	0x211d,	1},

		1131	 	 	 {0x2124,	0x212a,	2},

		1132	 	 	 {0x212b,	0x212d,	1},

		1133	 	 	 {0x2130,	0x2133,	1},

		1134	 	 	 {0x213e,	0x213f,	1},

		1135	 	 	 {0x2145,	0x2183,	62},

		1136	 	 	 {0x2c00,	0x2c2e,	1},

		1137	 	 	 {0x2c60,	0x2c62,	2},

		1138	 	 	 {0x2c63,	0x2c64,	1},

		1139	 	 	 {0x2c67,	0x2c6d,	2},

		1140	 	 	 {0x2c6e,	0x2c70,	1},

		1141	 	 	 {0x2c72,	0x2c75,	3},

		1142	 	 	 {0x2c7e,	0x2c80,	1},

		1143	 	 	 {0x2c82,	0x2ce2,	2},

		1144	 	 	 {0x2ceb,	0x2ced,	2},

		1145	 	 	 {0xa640,	0xa66c,	2},

		1146	 	 	 {0xa680,	0xa696,	2},

		1147	 	 	 {0xa722,	0xa72e,	2},

		1148	 	 	 {0xa732,	0xa76e,	2},

		1149	 	 	 {0xa779,	0xa77d,	2},

		1150	 	 	 {0xa77e,	0xa786,	2},

		1151	 	 	 {0xa78b,	0xa78d,	2},

		1152	 	 	 {0xa790,	0xa7a0,	16},

		1153	 	 	 {0xa7a2,	0xa7a8,	2},

		1154	 	 	 {0xff21,	0xff3a,	1},

		1155	 	 },

		1156	 	 R32:	[]Range32{

		1157	 	 	 {0x10400,	0x10427,	1},

		1158	 	 	 {0x1d400,	0x1d419,	1},

		1159	 	 	 {0x1d434,	0x1d44d,	1},

		1160	 	 	 {0x1d468,	0x1d481,	1},

		1161	 	 	 {0x1d49c,	0x1d49e,	2},

		1162	 	 	 {0x1d49f,	0x1d4a5,	3},

		1163	 	 	 {0x1d4a6,	0x1d4a9,	3},

		1164	 	 	 {0x1d4aa,	0x1d4ac,	1},

		1165	 	 	 {0x1d4ae,	0x1d4b5,	1},

		1166	 	 	 {0x1d4d0,	0x1d4e9,	1},

		1167	 	 	 {0x1d504,	0x1d505,	1},

		1168	 	 	 {0x1d507,	0x1d50a,	1},

		1169	 	 	 {0x1d50d,	0x1d514,	1},

		1170	 	 	 {0x1d516,	0x1d51c,	1},

		1171	 	 	 {0x1d538,	0x1d539,	1},

		1172	 	 	 {0x1d53b,	0x1d53e,	1},

		1173	 	 	 {0x1d540,	0x1d544,	1},

		1174	 	 	 {0x1d546,	0x1d54a,	4},

		1175	 	 	 {0x1d54b,	0x1d550,	1},

		1176	 	 	 {0x1d56c,	0x1d585,	1},

		1177	 	 	 {0x1d5a0,	0x1d5b9,	1},

		1178	 	 	 {0x1d5d4,	0x1d5ed,	1},

		1179	 	 	 {0x1d608,	0x1d621,	1},

		1180	 	 	 {0x1d63c,	0x1d655,	1},

		1181	 	 	 {0x1d670,	0x1d689,	1},

		1182	 	 	 {0x1d6a8,	0x1d6c0,	1},

		1183	 	 	 {0x1d6e2,	0x1d6fa,	1},

		1184	 	 	 {0x1d71c,	0x1d734,	1},

		1185	 	 	 {0x1d756,	0x1d76e,	1},

		1186	 	 	 {0x1d790,	0x1d7a8,	1},

		1187	 	 	 {0x1d7ca,	0x1d7ca,	1},

		1188	 	 },

		1189	 }

		1190	

		1191	 var	_M	=	&RangeTable{

		1192	 	 R16:	[]Range16{

		1193	 	 	 {0x0300,	0x036f,	1},

		1194	 	 	 {0x0483,	0x0489,	1},

		1195	 	 	 {0x0591,	0x05bd,	1},

		1196	 	 	 {0x05bf,	0x05c1,	2},

		1197	 	 	 {0x05c2,	0x05c4,	2},

		1198	 	 	 {0x05c5,	0x05c7,	2},

		1199	 	 	 {0x0610,	0x061a,	1},

		1200	 	 	 {0x064b,	0x065f,	1},

		1201	 	 	 {0x0670,	0x06d6,	102},

		1202	 	 	 {0x06d7,	0x06dc,	1},

		1203	 	 	 {0x06df,	0x06e4,	1},

		1204	 	 	 {0x06e7,	0x06e8,	1},

		1205	 	 	 {0x06ea,	0x06ed,	1},

		1206	 	 	 {0x0711,	0x0730,	31},

		1207	 	 	 {0x0731,	0x074a,	1},

		1208	 	 	 {0x07a6,	0x07b0,	1},

		1209	 	 	 {0x07eb,	0x07f3,	1},

		1210	 	 	 {0x0816,	0x0819,	1},

		1211	 	 	 {0x081b,	0x0823,	1},

		1212	 	 	 {0x0825,	0x0827,	1},

		1213	 	 	 {0x0829,	0x082d,	1},

		1214	 	 	 {0x0859,	0x085b,	1},

		1215	 	 	 {0x0900,	0x0903,	1},

		1216	 	 	 {0x093a,	0x093c,	1},

		1217	 	 	 {0x093e,	0x094f,	1},

		1218	 	 	 {0x0951,	0x0957,	1},

		1219	 	 	 {0x0962,	0x0963,	1},

		1220	 	 	 {0x0981,	0x0983,	1},

		1221	 	 	 {0x09bc,	0x09be,	2},

		1222	 	 	 {0x09bf,	0x09c4,	1},

		1223	 	 	 {0x09c7,	0x09c8,	1},

		1224	 	 	 {0x09cb,	0x09cd,	1},

		1225	 	 	 {0x09d7,	0x09e2,	11},

		1226	 	 	 {0x09e3,	0x0a01,	30},

		1227	 	 	 {0x0a02,	0x0a03,	1},

		1228	 	 	 {0x0a3c,	0x0a3e,	2},

		1229	 	 	 {0x0a3f,	0x0a42,	1},

		1230	 	 	 {0x0a47,	0x0a48,	1},

		1231	 	 	 {0x0a4b,	0x0a4d,	1},

		1232	 	 	 {0x0a51,	0x0a70,	31},

		1233	 	 	 {0x0a71,	0x0a75,	4},

		1234	 	 	 {0x0a81,	0x0a83,	1},

		1235	 	 	 {0x0abc,	0x0abe,	2},

		1236	 	 	 {0x0abf,	0x0ac5,	1},

		1237	 	 	 {0x0ac7,	0x0ac9,	1},

		1238	 	 	 {0x0acb,	0x0acd,	1},

		1239	 	 	 {0x0ae2,	0x0ae3,	1},

		1240	 	 	 {0x0b01,	0x0b03,	1},

		1241	 	 	 {0x0b3c,	0x0b3e,	2},

		1242	 	 	 {0x0b3f,	0x0b44,	1},

		1243	 	 	 {0x0b47,	0x0b48,	1},

		1244	 	 	 {0x0b4b,	0x0b4d,	1},

		1245	 	 	 {0x0b56,	0x0b57,	1},

		1246	 	 	 {0x0b62,	0x0b63,	1},

		1247	 	 	 {0x0b82,	0x0bbe,	60},

		1248	 	 	 {0x0bbf,	0x0bc2,	1},

		1249	 	 	 {0x0bc6,	0x0bc8,	1},

		1250	 	 	 {0x0bca,	0x0bcd,	1},

		1251	 	 	 {0x0bd7,	0x0c01,	42},

		1252	 	 	 {0x0c02,	0x0c03,	1},

		1253	 	 	 {0x0c3e,	0x0c44,	1},

		1254	 	 	 {0x0c46,	0x0c48,	1},

		1255	 	 	 {0x0c4a,	0x0c4d,	1},

		1256	 	 	 {0x0c55,	0x0c56,	1},

		1257	 	 	 {0x0c62,	0x0c63,	1},

		1258	 	 	 {0x0c82,	0x0c83,	1},

		1259	 	 	 {0x0cbc,	0x0cbe,	2},

		1260	 	 	 {0x0cbf,	0x0cc4,	1},

		1261	 	 	 {0x0cc6,	0x0cc8,	1},

		1262	 	 	 {0x0cca,	0x0ccd,	1},

		1263	 	 	 {0x0cd5,	0x0cd6,	1},

		1264	 	 	 {0x0ce2,	0x0ce3,	1},

		1265	 	 	 {0x0d02,	0x0d03,	1},

		1266	 	 	 {0x0d3e,	0x0d44,	1},

		1267	 	 	 {0x0d46,	0x0d48,	1},

		1268	 	 	 {0x0d4a,	0x0d4d,	1},

		1269	 	 	 {0x0d57,	0x0d62,	11},

		1270	 	 	 {0x0d63,	0x0d82,	31},

		1271	 	 	 {0x0d83,	0x0dca,	71},

		1272	 	 	 {0x0dcf,	0x0dd4,	1},

		1273	 	 	 {0x0dd6,	0x0dd8,	2},

		1274	 	 	 {0x0dd9,	0x0ddf,	1},

		1275	 	 	 {0x0df2,	0x0df3,	1},

		1276	 	 	 {0x0e31,	0x0e34,	3},

		1277	 	 	 {0x0e35,	0x0e3a,	1},

		1278	 	 	 {0x0e47,	0x0e4e,	1},

		1279	 	 	 {0x0eb1,	0x0eb4,	3},

		1280	 	 	 {0x0eb5,	0x0eb9,	1},

		1281	 	 	 {0x0ebb,	0x0ebc,	1},

		1282	 	 	 {0x0ec8,	0x0ecd,	1},

		1283	 	 	 {0x0f18,	0x0f19,	1},

		1284	 	 	 {0x0f35,	0x0f39,	2},

		1285	 	 	 {0x0f3e,	0x0f3f,	1},

		1286	 	 	 {0x0f71,	0x0f84,	1},

		1287	 	 	 {0x0f86,	0x0f87,	1},

		1288	 	 	 {0x0f8d,	0x0f97,	1},

		1289	 	 	 {0x0f99,	0x0fbc,	1},

		1290	 	 	 {0x0fc6,	0x102b,	101},

		1291	 	 	 {0x102c,	0x103e,	1},

		1292	 	 	 {0x1056,	0x1059,	1},

		1293	 	 	 {0x105e,	0x1060,	1},

		1294	 	 	 {0x1062,	0x1064,	1},

		1295	 	 	 {0x1067,	0x106d,	1},

		1296	 	 	 {0x1071,	0x1074,	1},

		1297	 	 	 {0x1082,	0x108d,	1},

		1298	 	 	 {0x108f,	0x109a,	11},

		1299	 	 	 {0x109b,	0x109d,	1},

		1300	 	 	 {0x135d,	0x135f,	1},

		1301	 	 	 {0x1712,	0x1714,	1},

		1302	 	 	 {0x1732,	0x1734,	1},

		1303	 	 	 {0x1752,	0x1753,	1},

		1304	 	 	 {0x1772,	0x1773,	1},

		1305	 	 	 {0x17b6,	0x17d3,	1},

		1306	 	 	 {0x17dd,	0x180b,	46},

		1307	 	 	 {0x180c,	0x180d,	1},

		1308	 	 	 {0x18a9,	0x1920,	119},

		1309	 	 	 {0x1921,	0x192b,	1},

		1310	 	 	 {0x1930,	0x193b,	1},

		1311	 	 	 {0x19b0,	0x19c0,	1},

		1312	 	 	 {0x19c8,	0x19c9,	1},

		1313	 	 	 {0x1a17,	0x1a1b,	1},

		1314	 	 	 {0x1a55,	0x1a5e,	1},

		1315	 	 	 {0x1a60,	0x1a7c,	1},

		1316	 	 	 {0x1a7f,	0x1b00,	129},

		1317	 	 	 {0x1b01,	0x1b04,	1},

		1318	 	 	 {0x1b34,	0x1b44,	1},

		1319	 	 	 {0x1b6b,	0x1b73,	1},

		1320	 	 	 {0x1b80,	0x1b82,	1},

		1321	 	 	 {0x1ba1,	0x1baa,	1},

		1322	 	 	 {0x1be6,	0x1bf3,	1},

		1323	 	 	 {0x1c24,	0x1c37,	1},

		1324	 	 	 {0x1cd0,	0x1cd2,	1},

		1325	 	 	 {0x1cd4,	0x1ce8,	1},

		1326	 	 	 {0x1ced,	0x1cf2,	5},

		1327	 	 	 {0x1dc0,	0x1de6,	1},

		1328	 	 	 {0x1dfc,	0x1dff,	1},

		1329	 	 	 {0x20d0,	0x20f0,	1},

		1330	 	 	 {0x2cef,	0x2cf1,	1},

		1331	 	 	 {0x2d7f,	0x2de0,	97},

		1332	 	 	 {0x2de1,	0x2dff,	1},

		1333	 	 	 {0x302a,	0x302f,	1},

		1334	 	 	 {0x3099,	0x309a,	1},

		1335	 	 	 {0xa66f,	0xa672,	1},

		1336	 	 	 {0xa67c,	0xa67d,	1},

		1337	 	 	 {0xa6f0,	0xa6f1,	1},

		1338	 	 	 {0xa802,	0xa806,	4},

		1339	 	 	 {0xa80b,	0xa823,	24},

		1340	 	 	 {0xa824,	0xa827,	1},

		1341	 	 	 {0xa880,	0xa881,	1},

		1342	 	 	 {0xa8b4,	0xa8c4,	1},

		1343	 	 	 {0xa8e0,	0xa8f1,	1},

		1344	 	 	 {0xa926,	0xa92d,	1},

		1345	 	 	 {0xa947,	0xa953,	1},

		1346	 	 	 {0xa980,	0xa983,	1},

		1347	 	 	 {0xa9b3,	0xa9c0,	1},

		1348	 	 	 {0xaa29,	0xaa36,	1},

		1349	 	 	 {0xaa43,	0xaa4c,	9},

		1350	 	 	 {0xaa4d,	0xaa7b,	46},

		1351	 	 	 {0xaab0,	0xaab2,	2},

		1352	 	 	 {0xaab3,	0xaab4,	1},

		1353	 	 	 {0xaab7,	0xaab8,	1},

		1354	 	 	 {0xaabe,	0xaabf,	1},

		1355	 	 	 {0xaac1,	0xabe3,	290},

		1356	 	 	 {0xabe4,	0xabea,	1},

		1357	 	 	 {0xabec,	0xabed,	1},

		1358	 	 	 {0xfb1e,	0xfe00,	738},

		1359	 	 	 {0xfe01,	0xfe0f,	1},

		1360	 	 	 {0xfe20,	0xfe26,	1},

		1361	 	 },

		1362	 	 R32:	[]Range32{

		1363	 	 	 {0x101fd,	0x10a01,	2052},

		1364	 	 	 {0x10a02,	0x10a03,	1},

		1365	 	 	 {0x10a05,	0x10a06,	1},

		1366	 	 	 {0x10a0c,	0x10a0f,	1},

		1367	 	 	 {0x10a38,	0x10a3a,	1},

		1368	 	 	 {0x10a3f,	0x11000,	1473},

		1369	 	 	 {0x11001,	0x11002,	1},

		1370	 	 	 {0x11038,	0x11046,	1},

		1371	 	 	 {0x11080,	0x11082,	1},

		1372	 	 	 {0x110b0,	0x110ba,	1},

		1373	 	 	 {0x1d165,	0x1d169,	1},

		1374	 	 	 {0x1d16d,	0x1d172,	1},

		1375	 	 	 {0x1d17b,	0x1d182,	1},

		1376	 	 	 {0x1d185,	0x1d18b,	1},

		1377	 	 	 {0x1d1aa,	0x1d1ad,	1},

		1378	 	 	 {0x1d242,	0x1d244,	1},

		1379	 	 	 {0xe0100,	0xe01ef,	1},

		1380	 	 },

		1381	 }

		1382	

		1383	 var	_Mc	=	&RangeTable{

		1384	 	 R16:	[]Range16{

		1385	 	 	 {0x0903,	0x093b,	56},

		1386	 	 	 {0x093e,	0x0940,	1},

		1387	 	 	 {0x0949,	0x094c,	1},

		1388	 	 	 {0x094e,	0x094f,	1},

		1389	 	 	 {0x0982,	0x0983,	1},

		1390	 	 	 {0x09be,	0x09c0,	1},

		1391	 	 	 {0x09c7,	0x09c8,	1},

		1392	 	 	 {0x09cb,	0x09cc,	1},

		1393	 	 	 {0x09d7,	0x0a03,	44},

		1394	 	 	 {0x0a3e,	0x0a40,	1},

		1395	 	 	 {0x0a83,	0x0abe,	59},

		1396	 	 	 {0x0abf,	0x0ac0,	1},

		1397	 	 	 {0x0ac9,	0x0acb,	2},

		1398	 	 	 {0x0acc,	0x0b02,	54},

		1399	 	 	 {0x0b03,	0x0b3e,	59},

		1400	 	 	 {0x0b40,	0x0b47,	7},

		1401	 	 	 {0x0b48,	0x0b4b,	3},

		1402	 	 	 {0x0b4c,	0x0b57,	11},

		1403	 	 	 {0x0bbe,	0x0bbf,	1},

		1404	 	 	 {0x0bc1,	0x0bc2,	1},

		1405	 	 	 {0x0bc6,	0x0bc8,	1},

		1406	 	 	 {0x0bca,	0x0bcc,	1},

		1407	 	 	 {0x0bd7,	0x0c01,	42},

		1408	 	 	 {0x0c02,	0x0c03,	1},

		1409	 	 	 {0x0c41,	0x0c44,	1},

		1410	 	 	 {0x0c82,	0x0c83,	1},

		1411	 	 	 {0x0cbe,	0x0cc0,	2},

		1412	 	 	 {0x0cc1,	0x0cc4,	1},

		1413	 	 	 {0x0cc7,	0x0cc8,	1},

		1414	 	 	 {0x0cca,	0x0ccb,	1},

		1415	 	 	 {0x0cd5,	0x0cd6,	1},

		1416	 	 	 {0x0d02,	0x0d03,	1},

		1417	 	 	 {0x0d3e,	0x0d40,	1},

		1418	 	 	 {0x0d46,	0x0d48,	1},

		1419	 	 	 {0x0d4a,	0x0d4c,	1},

		1420	 	 	 {0x0d57,	0x0d82,	43},

		1421	 	 	 {0x0d83,	0x0dcf,	76},

		1422	 	 	 {0x0dd0,	0x0dd1,	1},

		1423	 	 	 {0x0dd8,	0x0ddf,	1},

		1424	 	 	 {0x0df2,	0x0df3,	1},

		1425	 	 	 {0x0f3e,	0x0f3f,	1},

		1426	 	 	 {0x0f7f,	0x102b,	172},

		1427	 	 	 {0x102c,	0x1031,	5},

		1428	 	 	 {0x1038,	0x103b,	3},

		1429	 	 	 {0x103c,	0x1056,	26},

		1430	 	 	 {0x1057,	0x1062,	11},

		1431	 	 	 {0x1063,	0x1064,	1},

		1432	 	 	 {0x1067,	0x106d,	1},

		1433	 	 	 {0x1083,	0x1084,	1},

		1434	 	 	 {0x1087,	0x108c,	1},

		1435	 	 	 {0x108f,	0x109a,	11},

		1436	 	 	 {0x109b,	0x109c,	1},

		1437	 	 	 {0x17b6,	0x17be,	8},

		1438	 	 	 {0x17bf,	0x17c5,	1},

		1439	 	 	 {0x17c7,	0x17c8,	1},

		1440	 	 	 {0x1923,	0x1926,	1},

		1441	 	 	 {0x1929,	0x192b,	1},

		1442	 	 	 {0x1930,	0x1931,	1},

		1443	 	 	 {0x1933,	0x1938,	1},

		1444	 	 	 {0x19b0,	0x19c0,	1},

		1445	 	 	 {0x19c8,	0x19c9,	1},

		1446	 	 	 {0x1a19,	0x1a1b,	1},

		1447	 	 	 {0x1a55,	0x1a57,	2},

		1448	 	 	 {0x1a61,	0x1a63,	2},

		1449	 	 	 {0x1a64,	0x1a6d,	9},

		1450	 	 	 {0x1a6e,	0x1a72,	1},

		1451	 	 	 {0x1b04,	0x1b35,	49},

		1452	 	 	 {0x1b3b,	0x1b3d,	2},

		1453	 	 	 {0x1b3e,	0x1b41,	1},

		1454	 	 	 {0x1b43,	0x1b44,	1},

		1455	 	 	 {0x1b82,	0x1ba1,	31},

		1456	 	 	 {0x1ba6,	0x1ba7,	1},

		1457	 	 	 {0x1baa,	0x1be7,	61},

		1458	 	 	 {0x1bea,	0x1bec,	1},

		1459	 	 	 {0x1bee,	0x1bf2,	4},

		1460	 	 	 {0x1bf3,	0x1c24,	49},

		1461	 	 	 {0x1c25,	0x1c2b,	1},

		1462	 	 	 {0x1c34,	0x1c35,	1},

		1463	 	 	 {0x1ce1,	0x1cf2,	17},

		1464	 	 	 {0xa823,	0xa824,	1},

		1465	 	 	 {0xa827,	0xa880,	89},

		1466	 	 	 {0xa881,	0xa8b4,	51},

		1467	 	 	 {0xa8b5,	0xa8c3,	1},

		1468	 	 	 {0xa952,	0xa953,	1},

		1469	 	 	 {0xa983,	0xa9b4,	49},

		1470	 	 	 {0xa9b5,	0xa9ba,	5},

		1471	 	 	 {0xa9bb,	0xa9bd,	2},

		1472	 	 	 {0xa9be,	0xa9c0,	1},

		1473	 	 	 {0xaa2f,	0xaa30,	1},

		1474	 	 	 {0xaa33,	0xaa34,	1},

		1475	 	 	 {0xaa4d,	0xaa7b,	46},

		1476	 	 	 {0xabe3,	0xabe4,	1},

		1477	 	 	 {0xabe6,	0xabe7,	1},

		1478	 	 	 {0xabe9,	0xabea,	1},

		1479	 	 	 {0xabec,	0xabec,	1},

		1480	 	 },

		1481	 	 R32:	[]Range32{

		1482	 	 	 {0x11000,	0x11000,	1},

		1483	 	 	 {0x11002,	0x11082,	128},

		1484	 	 	 {0x110b0,	0x110b2,	1},

		1485	 	 	 {0x110b7,	0x110b8,	1},

		1486	 	 	 {0x1d165,	0x1d166,	1},

		1487	 	 	 {0x1d16d,	0x1d172,	1},

		1488	 	 },

		1489	 }

		1490	

		1491	 var	_Me	=	&RangeTable{

		1492	 	 R16:	[]Range16{

		1493	 	 	 {0x0488,	0x0489,	1},

		1494	 	 	 {0x20dd,	0x20e0,	1},

		1495	 	 	 {0x20e2,	0x20e4,	1},

		1496	 	 	 {0xa670,	0xa672,	1},

		1497	 	 },

		1498	 }

		1499	

		1500	 var	_Mn	=	&RangeTable{

		1501	 	 R16:	[]Range16{

		1502	 	 	 {0x0300,	0x036f,	1},

		1503	 	 	 {0x0483,	0x0487,	1},

		1504	 	 	 {0x0591,	0x05bd,	1},

		1505	 	 	 {0x05bf,	0x05c1,	2},

		1506	 	 	 {0x05c2,	0x05c4,	2},

		1507	 	 	 {0x05c5,	0x05c7,	2},

		1508	 	 	 {0x0610,	0x061a,	1},

		1509	 	 	 {0x064b,	0x065f,	1},

		1510	 	 	 {0x0670,	0x06d6,	102},

		1511	 	 	 {0x06d7,	0x06dc,	1},

		1512	 	 	 {0x06df,	0x06e4,	1},

		1513	 	 	 {0x06e7,	0x06e8,	1},

		1514	 	 	 {0x06ea,	0x06ed,	1},

		1515	 	 	 {0x0711,	0x0730,	31},

		1516	 	 	 {0x0731,	0x074a,	1},

		1517	 	 	 {0x07a6,	0x07b0,	1},

		1518	 	 	 {0x07eb,	0x07f3,	1},

		1519	 	 	 {0x0816,	0x0819,	1},

		1520	 	 	 {0x081b,	0x0823,	1},

		1521	 	 	 {0x0825,	0x0827,	1},

		1522	 	 	 {0x0829,	0x082d,	1},

		1523	 	 	 {0x0859,	0x085b,	1},

		1524	 	 	 {0x0900,	0x0902,	1},

		1525	 	 	 {0x093a,	0x093c,	2},

		1526	 	 	 {0x0941,	0x0948,	1},

		1527	 	 	 {0x094d,	0x0951,	4},

		1528	 	 	 {0x0952,	0x0957,	1},

		1529	 	 	 {0x0962,	0x0963,	1},

		1530	 	 	 {0x0981,	0x09bc,	59},

		1531	 	 	 {0x09c1,	0x09c4,	1},

		1532	 	 	 {0x09cd,	0x09e2,	21},

		1533	 	 	 {0x09e3,	0x0a01,	30},

		1534	 	 	 {0x0a02,	0x0a3c,	58},

		1535	 	 	 {0x0a41,	0x0a42,	1},

		1536	 	 	 {0x0a47,	0x0a48,	1},

		1537	 	 	 {0x0a4b,	0x0a4d,	1},

		1538	 	 	 {0x0a51,	0x0a70,	31},

		1539	 	 	 {0x0a71,	0x0a75,	4},

		1540	 	 	 {0x0a81,	0x0a82,	1},

		1541	 	 	 {0x0abc,	0x0ac1,	5},

		1542	 	 	 {0x0ac2,	0x0ac5,	1},

		1543	 	 	 {0x0ac7,	0x0ac8,	1},

		1544	 	 	 {0x0acd,	0x0ae2,	21},

		1545	 	 	 {0x0ae3,	0x0b01,	30},

		1546	 	 	 {0x0b3c,	0x0b3f,	3},

		1547	 	 	 {0x0b41,	0x0b44,	1},

		1548	 	 	 {0x0b4d,	0x0b56,	9},

		1549	 	 	 {0x0b62,	0x0b63,	1},

		1550	 	 	 {0x0b82,	0x0bc0,	62},

		1551	 	 	 {0x0bcd,	0x0c3e,	113},

		1552	 	 	 {0x0c3f,	0x0c40,	1},

		1553	 	 	 {0x0c46,	0x0c48,	1},

		1554	 	 	 {0x0c4a,	0x0c4d,	1},

		1555	 	 	 {0x0c55,	0x0c56,	1},

		1556	 	 	 {0x0c62,	0x0c63,	1},

		1557	 	 	 {0x0cbc,	0x0cbf,	3},

		1558	 	 	 {0x0cc6,	0x0ccc,	6},

		1559	 	 	 {0x0ccd,	0x0ce2,	21},

		1560	 	 	 {0x0ce3,	0x0d41,	94},

		1561	 	 	 {0x0d42,	0x0d44,	1},

		1562	 	 	 {0x0d4d,	0x0d62,	21},

		1563	 	 	 {0x0d63,	0x0dca,	103},

		1564	 	 	 {0x0dd2,	0x0dd4,	1},

		1565	 	 	 {0x0dd6,	0x0e31,	91},

		1566	 	 	 {0x0e34,	0x0e3a,	1},

		1567	 	 	 {0x0e47,	0x0e4e,	1},

		1568	 	 	 {0x0eb1,	0x0eb4,	3},

		1569	 	 	 {0x0eb5,	0x0eb9,	1},

		1570	 	 	 {0x0ebb,	0x0ebc,	1},

		1571	 	 	 {0x0ec8,	0x0ecd,	1},

		1572	 	 	 {0x0f18,	0x0f19,	1},

		1573	 	 	 {0x0f35,	0x0f39,	2},

		1574	 	 	 {0x0f71,	0x0f7e,	1},

		1575	 	 	 {0x0f80,	0x0f84,	1},

		1576	 	 	 {0x0f86,	0x0f87,	1},

		1577	 	 	 {0x0f8d,	0x0f97,	1},

		1578	 	 	 {0x0f99,	0x0fbc,	1},

		1579	 	 	 {0x0fc6,	0x102d,	103},

		1580	 	 	 {0x102e,	0x1030,	1},

		1581	 	 	 {0x1032,	0x1037,	1},

		1582	 	 	 {0x1039,	0x103a,	1},

		1583	 	 	 {0x103d,	0x103e,	1},

		1584	 	 	 {0x1058,	0x1059,	1},

		1585	 	 	 {0x105e,	0x1060,	1},

		1586	 	 	 {0x1071,	0x1074,	1},

		1587	 	 	 {0x1082,	0x1085,	3},

		1588	 	 	 {0x1086,	0x108d,	7},

		1589	 	 	 {0x109d,	0x135d,	704},

		1590	 	 	 {0x135e,	0x135f,	1},

		1591	 	 	 {0x1712,	0x1714,	1},

		1592	 	 	 {0x1732,	0x1734,	1},

		1593	 	 	 {0x1752,	0x1753,	1},

		1594	 	 	 {0x1772,	0x1773,	1},

		1595	 	 	 {0x17b7,	0x17bd,	1},

		1596	 	 	 {0x17c6,	0x17c9,	3},

		1597	 	 	 {0x17ca,	0x17d3,	1},

		1598	 	 	 {0x17dd,	0x180b,	46},

		1599	 	 	 {0x180c,	0x180d,	1},

		1600	 	 	 {0x18a9,	0x1920,	119},

		1601	 	 	 {0x1921,	0x1922,	1},

		1602	 	 	 {0x1927,	0x1928,	1},

		1603	 	 	 {0x1932,	0x1939,	7},

		1604	 	 	 {0x193a,	0x193b,	1},

		1605	 	 	 {0x1a17,	0x1a18,	1},

		1606	 	 	 {0x1a56,	0x1a58,	2},

		1607	 	 	 {0x1a59,	0x1a5e,	1},

		1608	 	 	 {0x1a60,	0x1a62,	2},

		1609	 	 	 {0x1a65,	0x1a6c,	1},

		1610	 	 	 {0x1a73,	0x1a7c,	1},

		1611	 	 	 {0x1a7f,	0x1b00,	129},

		1612	 	 	 {0x1b01,	0x1b03,	1},

		1613	 	 	 {0x1b34,	0x1b36,	2},

		1614	 	 	 {0x1b37,	0x1b3a,	1},

		1615	 	 	 {0x1b3c,	0x1b42,	6},

		1616	 	 	 {0x1b6b,	0x1b73,	1},

		1617	 	 	 {0x1b80,	0x1b81,	1},

		1618	 	 	 {0x1ba2,	0x1ba5,	1},

		1619	 	 	 {0x1ba8,	0x1ba9,	1},

		1620	 	 	 {0x1be6,	0x1be8,	2},

		1621	 	 	 {0x1be9,	0x1bed,	4},

		1622	 	 	 {0x1bef,	0x1bf1,	1},

		1623	 	 	 {0x1c2c,	0x1c33,	1},

		1624	 	 	 {0x1c36,	0x1c37,	1},

		1625	 	 	 {0x1cd0,	0x1cd2,	1},

		1626	 	 	 {0x1cd4,	0x1ce0,	1},

		1627	 	 	 {0x1ce2,	0x1ce8,	1},

		1628	 	 	 {0x1ced,	0x1dc0,	211},

		1629	 	 	 {0x1dc1,	0x1de6,	1},

		1630	 	 	 {0x1dfc,	0x1dff,	1},

		1631	 	 	 {0x20d0,	0x20dc,	1},

		1632	 	 	 {0x20e1,	0x20e5,	4},

		1633	 	 	 {0x20e6,	0x20f0,	1},

		1634	 	 	 {0x2cef,	0x2cf1,	1},

		1635	 	 	 {0x2d7f,	0x2de0,	97},

		1636	 	 	 {0x2de1,	0x2dff,	1},

		1637	 	 	 {0x302a,	0x302f,	1},

		1638	 	 	 {0x3099,	0x309a,	1},

		1639	 	 	 {0xa66f,	0xa67c,	13},

		1640	 	 	 {0xa67d,	0xa6f0,	115},

		1641	 	 	 {0xa6f1,	0xa802,	273},

		1642	 	 	 {0xa806,	0xa80b,	5},

		1643	 	 	 {0xa825,	0xa826,	1},

		1644	 	 	 {0xa8c4,	0xa8e0,	28},

		1645	 	 	 {0xa8e1,	0xa8f1,	1},

		1646	 	 	 {0xa926,	0xa92d,	1},

		1647	 	 	 {0xa947,	0xa951,	1},

		1648	 	 	 {0xa980,	0xa982,	1},

		1649	 	 	 {0xa9b3,	0xa9b6,	3},

		1650	 	 	 {0xa9b7,	0xa9b9,	1},

		1651	 	 	 {0xa9bc,	0xaa29,	109},

		1652	 	 	 {0xaa2a,	0xaa2e,	1},

		1653	 	 	 {0xaa31,	0xaa32,	1},

		1654	 	 	 {0xaa35,	0xaa36,	1},

		1655	 	 	 {0xaa43,	0xaa4c,	9},

		1656	 	 	 {0xaab0,	0xaab2,	2},

		1657	 	 	 {0xaab3,	0xaab4,	1},

		1658	 	 	 {0xaab7,	0xaab8,	1},

		1659	 	 	 {0xaabe,	0xaabf,	1},

		1660	 	 	 {0xaac1,	0xabe5,	292},

		1661	 	 	 {0xabe8,	0xabed,	5},

		1662	 	 	 {0xfb1e,	0xfe00,	738},

		1663	 	 	 {0xfe01,	0xfe0f,	1},

		1664	 	 	 {0xfe20,	0xfe26,	1},

		1665	 	 },

		1666	 	 R32:	[]Range32{

		1667	 	 	 {0x101fd,	0x10a01,	2052},

		1668	 	 	 {0x10a02,	0x10a03,	1},

		1669	 	 	 {0x10a05,	0x10a06,	1},

		1670	 	 	 {0x10a0c,	0x10a0f,	1},

		1671	 	 	 {0x10a38,	0x10a3a,	1},

		1672	 	 	 {0x10a3f,	0x11001,	1474},

		1673	 	 	 {0x11038,	0x11046,	1},

		1674	 	 	 {0x11080,	0x11081,	1},

		1675	 	 	 {0x110b3,	0x110b6,	1},

		1676	 	 	 {0x110b9,	0x110ba,	1},

		1677	 	 	 {0x1d167,	0x1d169,	1},

		1678	 	 	 {0x1d17b,	0x1d182,	1},

		1679	 	 	 {0x1d185,	0x1d18b,	1},

		1680	 	 	 {0x1d1aa,	0x1d1ad,	1},

		1681	 	 	 {0x1d242,	0x1d244,	1},

		1682	 	 	 {0xe0100,	0xe01ef,	1},

		1683	 	 },

		1684	 }

		1685	

		1686	 var	_N	=	&RangeTable{

		1687	 	 R16:	[]Range16{

		1688	 	 	 {0x0030,	0x0039,	1},

		1689	 	 	 {0x00b2,	0x00b3,	1},

		1690	 	 	 {0x00b9,	0x00bc,	3},

		1691	 	 	 {0x00bd,	0x00be,	1},

		1692	 	 	 {0x0660,	0x0669,	1},

		1693	 	 	 {0x06f0,	0x06f9,	1},

		1694	 	 	 {0x07c0,	0x07c9,	1},

		1695	 	 	 {0x0966,	0x096f,	1},

		1696	 	 	 {0x09e6,	0x09ef,	1},

		1697	 	 	 {0x09f4,	0x09f9,	1},

		1698	 	 	 {0x0a66,	0x0a6f,	1},

		1699	 	 	 {0x0ae6,	0x0aef,	1},

		1700	 	 	 {0x0b66,	0x0b6f,	1},

		1701	 	 	 {0x0b72,	0x0b77,	1},

		1702	 	 	 {0x0be6,	0x0bf2,	1},

		1703	 	 	 {0x0c66,	0x0c6f,	1},

		1704	 	 	 {0x0c78,	0x0c7e,	1},

		1705	 	 	 {0x0ce6,	0x0cef,	1},

		1706	 	 	 {0x0d66,	0x0d75,	1},

		1707	 	 	 {0x0e50,	0x0e59,	1},

		1708	 	 	 {0x0ed0,	0x0ed9,	1},

		1709	 	 	 {0x0f20,	0x0f33,	1},

		1710	 	 	 {0x1040,	0x1049,	1},

		1711	 	 	 {0x1090,	0x1099,	1},

		1712	 	 	 {0x1369,	0x137c,	1},

		1713	 	 	 {0x16ee,	0x16f0,	1},

		1714	 	 	 {0x17e0,	0x17e9,	1},

		1715	 	 	 {0x17f0,	0x17f9,	1},

		1716	 	 	 {0x1810,	0x1819,	1},

		1717	 	 	 {0x1946,	0x194f,	1},

		1718	 	 	 {0x19d0,	0x19da,	1},

		1719	 	 	 {0x1a80,	0x1a89,	1},

		1720	 	 	 {0x1a90,	0x1a99,	1},

		1721	 	 	 {0x1b50,	0x1b59,	1},

		1722	 	 	 {0x1bb0,	0x1bb9,	1},

		1723	 	 	 {0x1c40,	0x1c49,	1},

		1724	 	 	 {0x1c50,	0x1c59,	1},

		1725	 	 	 {0x2070,	0x2074,	4},

		1726	 	 	 {0x2075,	0x2079,	1},

		1727	 	 	 {0x2080,	0x2089,	1},

		1728	 	 	 {0x2150,	0x2182,	1},

		1729	 	 	 {0x2185,	0x2189,	1},

		1730	 	 	 {0x2460,	0x249b,	1},

		1731	 	 	 {0x24ea,	0x24ff,	1},

		1732	 	 	 {0x2776,	0x2793,	1},

		1733	 	 	 {0x2cfd,	0x3007,	778},

		1734	 	 	 {0x3021,	0x3029,	1},

		1735	 	 	 {0x3038,	0x303a,	1},

		1736	 	 	 {0x3192,	0x3195,	1},

		1737	 	 	 {0x3220,	0x3229,	1},

		1738	 	 	 {0x3251,	0x325f,	1},

		1739	 	 	 {0x3280,	0x3289,	1},

		1740	 	 	 {0x32b1,	0x32bf,	1},

		1741	 	 	 {0xa620,	0xa629,	1},

		1742	 	 	 {0xa6e6,	0xa6ef,	1},

		1743	 	 	 {0xa830,	0xa835,	1},

		1744	 	 	 {0xa8d0,	0xa8d9,	1},

		1745	 	 	 {0xa900,	0xa909,	1},

		1746	 	 	 {0xa9d0,	0xa9d9,	1},

		1747	 	 	 {0xaa50,	0xaa59,	1},

		1748	 	 	 {0xabf0,	0xabf9,	1},

		1749	 	 	 {0xff10,	0xff19,	1},

		1750	 	 },

		1751	 	 R32:	[]Range32{

		1752	 	 	 {0x10107,	0x10133,	1},

		1753	 	 	 {0x10140,	0x10178,	1},

		1754	 	 	 {0x1018a,	0x10320,	406},

		1755	 	 	 {0x10321,	0x10323,	1},

		1756	 	 	 {0x10341,	0x1034a,	9},

		1757	 	 	 {0x103d1,	0x103d5,	1},

		1758	 	 	 {0x104a0,	0x104a9,	1},

		1759	 	 	 {0x10858,	0x1085f,	1},

		1760	 	 	 {0x10916,	0x1091b,	1},

		1761	 	 	 {0x10a40,	0x10a47,	1},

		1762	 	 	 {0x10a7d,	0x10a7e,	1},

		1763	 	 	 {0x10b58,	0x10b5f,	1},

		1764	 	 	 {0x10b78,	0x10b7f,	1},

		1765	 	 	 {0x10e60,	0x10e7e,	1},

		1766	 	 	 {0x11052,	0x1106f,	1},

		1767	 	 	 {0x12400,	0x12462,	1},

		1768	 	 	 {0x1d360,	0x1d371,	1},

		1769	 	 	 {0x1d7ce,	0x1d7ff,	1},

		1770	 	 	 {0x1f100,	0x1f10a,	1},

		1771	 	 },

		1772	 }

		1773	

		1774	 var	_Nd	=	&RangeTable{

		1775	 	 R16:	[]Range16{

		1776	 	 	 {0x0030,	0x0039,	1},

		1777	 	 	 {0x0660,	0x0669,	1},

		1778	 	 	 {0x06f0,	0x06f9,	1},

		1779	 	 	 {0x07c0,	0x07c9,	1},

		1780	 	 	 {0x0966,	0x096f,	1},

		1781	 	 	 {0x09e6,	0x09ef,	1},

		1782	 	 	 {0x0a66,	0x0a6f,	1},

		1783	 	 	 {0x0ae6,	0x0aef,	1},

		1784	 	 	 {0x0b66,	0x0b6f,	1},

		1785	 	 	 {0x0be6,	0x0bef,	1},

		1786	 	 	 {0x0c66,	0x0c6f,	1},

		1787	 	 	 {0x0ce6,	0x0cef,	1},

		1788	 	 	 {0x0d66,	0x0d6f,	1},

		1789	 	 	 {0x0e50,	0x0e59,	1},

		1790	 	 	 {0x0ed0,	0x0ed9,	1},

		1791	 	 	 {0x0f20,	0x0f29,	1},

		1792	 	 	 {0x1040,	0x1049,	1},

		1793	 	 	 {0x1090,	0x1099,	1},

		1794	 	 	 {0x17e0,	0x17e9,	1},

		1795	 	 	 {0x1810,	0x1819,	1},

		1796	 	 	 {0x1946,	0x194f,	1},

		1797	 	 	 {0x19d0,	0x19d9,	1},

		1798	 	 	 {0x1a80,	0x1a89,	1},

		1799	 	 	 {0x1a90,	0x1a99,	1},

		1800	 	 	 {0x1b50,	0x1b59,	1},

		1801	 	 	 {0x1bb0,	0x1bb9,	1},

		1802	 	 	 {0x1c40,	0x1c49,	1},

		1803	 	 	 {0x1c50,	0x1c59,	1},

		1804	 	 	 {0xa620,	0xa629,	1},

		1805	 	 	 {0xa8d0,	0xa8d9,	1},

		1806	 	 	 {0xa900,	0xa909,	1},

		1807	 	 	 {0xa9d0,	0xa9d9,	1},

		1808	 	 	 {0xaa50,	0xaa59,	1},

		1809	 	 	 {0xabf0,	0xabf9,	1},

		1810	 	 	 {0xff10,	0xff19,	1},

		1811	 	 },

		1812	 	 R32:	[]Range32{

		1813	 	 	 {0x104a0,	0x104a9,	1},

		1814	 	 	 {0x11066,	0x1106f,	1},

		1815	 	 	 {0x1d7ce,	0x1d7ff,	1},

		1816	 	 },

		1817	 }

		1818	

		1819	 var	_Nl	=	&RangeTable{

		1820	 	 R16:	[]Range16{

		1821	 	 	 {0x16ee,	0x16f0,	1},

		1822	 	 	 {0x2160,	0x2182,	1},

		1823	 	 	 {0x2185,	0x2188,	1},

		1824	 	 	 {0x3007,	0x3021,	26},

		1825	 	 	 {0x3022,	0x3029,	1},

		1826	 	 	 {0x3038,	0x303a,	1},

		1827	 	 	 {0xa6e6,	0xa6ef,	1},

		1828	 	 },

		1829	 	 R32:	[]Range32{

		1830	 	 	 {0x10140,	0x10174,	1},

		1831	 	 	 {0x10341,	0x1034a,	9},

		1832	 	 	 {0x103d1,	0x103d5,	1},

		1833	 	 	 {0x12400,	0x12462,	1},

		1834	 	 },

		1835	 }

		1836	

		1837	 var	_No	=	&RangeTable{

		1838	 	 R16:	[]Range16{

		1839	 	 	 {0x00b2,	0x00b3,	1},

		1840	 	 	 {0x00b9,	0x00bc,	3},

		1841	 	 	 {0x00bd,	0x00be,	1},

		1842	 	 	 {0x09f4,	0x09f9,	1},

		1843	 	 	 {0x0b72,	0x0b77,	1},

		1844	 	 	 {0x0bf0,	0x0bf2,	1},

		1845	 	 	 {0x0c78,	0x0c7e,	1},

		1846	 	 	 {0x0d70,	0x0d75,	1},

		1847	 	 	 {0x0f2a,	0x0f33,	1},

		1848	 	 	 {0x1369,	0x137c,	1},

		1849	 	 	 {0x17f0,	0x17f9,	1},

		1850	 	 	 {0x19da,	0x2070,	1686},

		1851	 	 	 {0x2074,	0x2079,	1},

		1852	 	 	 {0x2080,	0x2089,	1},

		1853	 	 	 {0x2150,	0x215f,	1},

		1854	 	 	 {0x2189,	0x2460,	727},

		1855	 	 	 {0x2461,	0x249b,	1},

		1856	 	 	 {0x24ea,	0x24ff,	1},

		1857	 	 	 {0x2776,	0x2793,	1},

		1858	 	 	 {0x2cfd,	0x3192,	1173},

		1859	 	 	 {0x3193,	0x3195,	1},

		1860	 	 	 {0x3220,	0x3229,	1},

		1861	 	 	 {0x3251,	0x325f,	1},

		1862	 	 	 {0x3280,	0x3289,	1},

		1863	 	 	 {0x32b1,	0x32bf,	1},

		1864	 	 	 {0xa830,	0xa835,	1},

		1865	 	 },

		1866	 	 R32:	[]Range32{

		1867	 	 	 {0x10107,	0x10133,	1},

		1868	 	 	 {0x10175,	0x10178,	1},

		1869	 	 	 {0x1018a,	0x10320,	406},

		1870	 	 	 {0x10321,	0x10323,	1},

		1871	 	 	 {0x10858,	0x1085f,	1},

		1872	 	 	 {0x10916,	0x1091b,	1},

		1873	 	 	 {0x10a40,	0x10a47,	1},

		1874	 	 	 {0x10a7d,	0x10a7e,	1},

		1875	 	 	 {0x10b58,	0x10b5f,	1},

		1876	 	 	 {0x10b78,	0x10b7f,	1},

		1877	 	 	 {0x10e60,	0x10e7e,	1},

		1878	 	 	 {0x11052,	0x11065,	1},

		1879	 	 	 {0x1d360,	0x1d371,	1},

		1880	 	 	 {0x1f100,	0x1f10a,	1},

		1881	 	 },

		1882	 }

		1883	

		1884	 var	_P	=	&RangeTable{

		1885	 	 R16:	[]Range16{

		1886	 	 	 {0x0021,	0x0023,	1},

		1887	 	 	 {0x0025,	0x002a,	1},

		1888	 	 	 {0x002c,	0x002f,	1},

		1889	 	 	 {0x003a,	0x003b,	1},

		1890	 	 	 {0x003f,	0x0040,	1},

		1891	 	 	 {0x005b,	0x005d,	1},

		1892	 	 	 {0x005f,	0x007b,	28},

		1893	 	 	 {0x007d,	0x00a1,	36},

		1894	 	 	 {0x00ab,	0x00b7,	12},

		1895	 	 	 {0x00bb,	0x00bf,	4},

		1896	 	 	 {0x037e,	0x0387,	9},

		1897	 	 	 {0x055a,	0x055f,	1},

		1898	 	 	 {0x0589,	0x058a,	1},

		1899	 	 	 {0x05be,	0x05c0,	2},

		1900	 	 	 {0x05c3,	0x05c6,	3},

		1901	 	 	 {0x05f3,	0x05f4,	1},

		1902	 	 	 {0x0609,	0x060a,	1},

		1903	 	 	 {0x060c,	0x060d,	1},

		1904	 	 	 {0x061b,	0x061e,	3},

		1905	 	 	 {0x061f,	0x066a,	75},

		1906	 	 	 {0x066b,	0x066d,	1},

		1907	 	 	 {0x06d4,	0x0700,	44},

		1908	 	 	 {0x0701,	0x070d,	1},

		1909	 	 	 {0x07f7,	0x07f9,	1},

		1910	 	 	 {0x0830,	0x083e,	1},

		1911	 	 	 {0x085e,	0x0964,	262},

		1912	 	 	 {0x0965,	0x0970,	11},

		1913	 	 	 {0x0df4,	0x0e4f,	91},

		1914	 	 	 {0x0e5a,	0x0e5b,	1},

		1915	 	 	 {0x0f04,	0x0f12,	1},

		1916	 	 	 {0x0f3a,	0x0f3d,	1},

		1917	 	 	 {0x0f85,	0x0fd0,	75},

		1918	 	 	 {0x0fd1,	0x0fd4,	1},

		1919	 	 	 {0x0fd9,	0x0fda,	1},

		1920	 	 	 {0x104a,	0x104f,	1},

		1921	 	 	 {0x10fb,	0x1361,	614},

		1922	 	 	 {0x1362,	0x1368,	1},

		1923	 	 	 {0x1400,	0x166d,	621},

		1924	 	 	 {0x166e,	0x169b,	45},

		1925	 	 	 {0x169c,	0x16eb,	79},

		1926	 	 	 {0x16ec,	0x16ed,	1},

		1927	 	 	 {0x1735,	0x1736,	1},

		1928	 	 	 {0x17d4,	0x17d6,	1},

		1929	 	 	 {0x17d8,	0x17da,	1},

		1930	 	 	 {0x1800,	0x180a,	1},

		1931	 	 	 {0x1944,	0x1945,	1},

		1932	 	 	 {0x1a1e,	0x1a1f,	1},

		1933	 	 	 {0x1aa0,	0x1aa6,	1},

		1934	 	 	 {0x1aa8,	0x1aad,	1},

		1935	 	 	 {0x1b5a,	0x1b60,	1},

		1936	 	 	 {0x1bfc,	0x1bff,	1},

		1937	 	 	 {0x1c3b,	0x1c3f,	1},

		1938	 	 	 {0x1c7e,	0x1c7f,	1},

		1939	 	 	 {0x1cd3,	0x2010,	829},

		1940	 	 	 {0x2011,	0x2027,	1},

		1941	 	 	 {0x2030,	0x2043,	1},

		1942	 	 	 {0x2045,	0x2051,	1},

		1943	 	 	 {0x2053,	0x205e,	1},

		1944	 	 	 {0x207d,	0x207e,	1},

		1945	 	 	 {0x208d,	0x208e,	1},

		1946	 	 	 {0x2329,	0x232a,	1},

		1947	 	 	 {0x2768,	0x2775,	1},

		1948	 	 	 {0x27c5,	0x27c6,	1},

		1949	 	 	 {0x27e6,	0x27ef,	1},

		1950	 	 	 {0x2983,	0x2998,	1},

		1951	 	 	 {0x29d8,	0x29db,	1},

		1952	 	 	 {0x29fc,	0x29fd,	1},

		1953	 	 	 {0x2cf9,	0x2cfc,	1},

		1954	 	 	 {0x2cfe,	0x2cff,	1},

		1955	 	 	 {0x2d70,	0x2e00,	144},

		1956	 	 	 {0x2e01,	0x2e2e,	1},

		1957	 	 	 {0x2e30,	0x2e31,	1},

		1958	 	 	 {0x3001,	0x3003,	1},

		1959	 	 	 {0x3008,	0x3011,	1},

		1960	 	 	 {0x3014,	0x301f,	1},

		1961	 	 	 {0x3030,	0x303d,	13},

		1962	 	 	 {0x30a0,	0x30fb,	91},

		1963	 	 	 {0xa4fe,	0xa4ff,	1},

		1964	 	 	 {0xa60d,	0xa60f,	1},

		1965	 	 	 {0xa673,	0xa67e,	11},

		1966	 	 	 {0xa6f2,	0xa6f7,	1},

		1967	 	 	 {0xa874,	0xa877,	1},

		1968	 	 	 {0xa8ce,	0xa8cf,	1},

		1969	 	 	 {0xa8f8,	0xa8fa,	1},

		1970	 	 	 {0xa92e,	0xa92f,	1},

		1971	 	 	 {0xa95f,	0xa9c1,	98},

		1972	 	 	 {0xa9c2,	0xa9cd,	1},

		1973	 	 	 {0xa9de,	0xa9df,	1},

		1974	 	 	 {0xaa5c,	0xaa5f,	1},

		1975	 	 	 {0xaade,	0xaadf,	1},

		1976	 	 	 {0xabeb,	0xfd3e,	20819},

		1977	 	 	 {0xfd3f,	0xfe10,	209},

		1978	 	 	 {0xfe11,	0xfe19,	1},

		1979	 	 	 {0xfe30,	0xfe52,	1},

		1980	 	 	 {0xfe54,	0xfe61,	1},

		1981	 	 	 {0xfe63,	0xfe68,	5},

		1982	 	 	 {0xfe6a,	0xfe6b,	1},

		1983	 	 	 {0xff01,	0xff03,	1},

		1984	 	 	 {0xff05,	0xff0a,	1},

		1985	 	 	 {0xff0c,	0xff0f,	1},

		1986	 	 	 {0xff1a,	0xff1b,	1},

		1987	 	 	 {0xff1f,	0xff20,	1},

		1988	 	 	 {0xff3b,	0xff3d,	1},

		1989	 	 	 {0xff3f,	0xff5b,	28},

		1990	 	 	 {0xff5d,	0xff5f,	2},

		1991	 	 	 {0xff60,	0xff65,	1},

		1992	 	 },

		1993	 	 R32:	[]Range32{

		1994	 	 	 {0x10100,	0x10101,	1},

		1995	 	 	 {0x1039f,	0x103d0,	49},

		1996	 	 	 {0x10857,	0x1091f,	200},

		1997	 	 	 {0x1093f,	0x10a50,	273},

		1998	 	 	 {0x10a51,	0x10a58,	1},

		1999	 	 	 {0x10a7f,	0x10b39,	186},

		2000	 	 	 {0x10b3a,	0x10b3f,	1},

		2001	 	 	 {0x11047,	0x1104d,	1},

		2002	 	 	 {0x110bb,	0x110bc,	1},

		2003	 	 	 {0x110be,	0x110c1,	1},

		2004	 	 	 {0x12470,	0x12473,	1},

		2005	 	 },

		2006	 }

		2007	

		2008	 var	_Pc	=	&RangeTable{

		2009	 	 R16:	[]Range16{

		2010	 	 	 {0x005f,	0x203f,	8160},

		2011	 	 	 {0x2040,	0x2054,	20},

		2012	 	 	 {0xfe33,	0xfe34,	1},

		2013	 	 	 {0xfe4d,	0xfe4f,	1},

		2014	 	 	 {0xff3f,	0xff3f,	1},

		2015	 	 },

		2016	 }

		2017	

		2018	 var	_Pd	=	&RangeTable{

		2019	 	 R16:	[]Range16{

		2020	 	 	 {0x002d,	0x058a,	1373},

		2021	 	 	 {0x05be,	0x1400,	3650},

		2022	 	 	 {0x1806,	0x2010,	2058},

		2023	 	 	 {0x2011,	0x2015,	1},

		2024	 	 	 {0x2e17,	0x2e1a,	3},

		2025	 	 	 {0x301c,	0x3030,	20},

		2026	 	 	 {0x30a0,	0xfe31,	52625},

		2027	 	 	 {0xfe32,	0xfe58,	38},

		2028	 	 	 {0xfe63,	0xff0d,	170},

		2029	 	 },

		2030	 }

		2031	

		2032	 var	_Pe	=	&RangeTable{

		2033	 	 R16:	[]Range16{

		2034	 	 	 {0x0029,	0x005d,	52},

		2035	 	 	 {0x007d,	0x0f3b,	3774},

		2036	 	 	 {0x0f3d,	0x169c,	1887},

		2037	 	 	 {0x2046,	0x207e,	56},

		2038	 	 	 {0x208e,	0x232a,	668},

		2039	 	 	 {0x2769,	0x2775,	2},

		2040	 	 	 {0x27c6,	0x27e7,	33},

		2041	 	 	 {0x27e9,	0x27ef,	2},

		2042	 	 	 {0x2984,	0x2998,	2},

		2043	 	 	 {0x29d9,	0x29db,	2},

		2044	 	 	 {0x29fd,	0x2e23,	1062},

		2045	 	 	 {0x2e25,	0x2e29,	2},

		2046	 	 	 {0x3009,	0x3011,	2},

		2047	 	 	 {0x3015,	0x301b,	2},

		2048	 	 	 {0x301e,	0x301f,	1},

		2049	 	 	 {0xfd3f,	0xfe18,	217},

		2050	 	 	 {0xfe36,	0xfe44,	2},

		2051	 	 	 {0xfe48,	0xfe5a,	18},

		2052	 	 	 {0xfe5c,	0xfe5e,	2},

		2053	 	 	 {0xff09,	0xff3d,	52},

		2054	 	 	 {0xff5d,	0xff63,	3},

		2055	 	 },

		2056	 }

		2057	

		2058	 var	_Pf	=	&RangeTable{

		2059	 	 R16:	[]Range16{

		2060	 	 	 {0x00bb,	0x2019,	8030},

		2061	 	 	 {0x201d,	0x203a,	29},

		2062	 	 	 {0x2e03,	0x2e05,	2},

		2063	 	 	 {0x2e0a,	0x2e0d,	3},

		2064	 	 	 {0x2e1d,	0x2e21,	4},

		2065	 	 },

		2066	 }

		2067	

		2068	 var	_Pi	=	&RangeTable{

		2069	 	 R16:	[]Range16{

		2070	 	 	 {0x00ab,	0x2018,	8045},

		2071	 	 	 {0x201b,	0x201c,	1},

		2072	 	 	 {0x201f,	0x2039,	26},

		2073	 	 	 {0x2e02,	0x2e04,	2},

		2074	 	 	 {0x2e09,	0x2e0c,	3},

		2075	 	 	 {0x2e1c,	0x2e20,	4},

		2076	 	 },

		2077	 }

		2078	

		2079	 var	_Po	=	&RangeTable{

		2080	 	 R16:	[]Range16{

		2081	 	 	 {0x0021,	0x0023,	1},

		2082	 	 	 {0x0025,	0x0027,	1},

		2083	 	 	 {0x002a,	0x002e,	2},

		2084	 	 	 {0x002f,	0x003a,	11},

		2085	 	 	 {0x003b,	0x003f,	4},

		2086	 	 	 {0x0040,	0x005c,	28},

		2087	 	 	 {0x00a1,	0x00b7,	22},

		2088	 	 	 {0x00bf,	0x037e,	703},

		2089	 	 	 {0x0387,	0x055a,	467},

		2090	 	 	 {0x055b,	0x055f,	1},

		2091	 	 	 {0x0589,	0x05c0,	55},

		2092	 	 	 {0x05c3,	0x05c6,	3},

		2093	 	 	 {0x05f3,	0x05f4,	1},

		2094	 	 	 {0x0609,	0x060a,	1},

		2095	 	 	 {0x060c,	0x060d,	1},

		2096	 	 	 {0x061b,	0x061e,	3},

		2097	 	 	 {0x061f,	0x066a,	75},

		2098	 	 	 {0x066b,	0x066d,	1},

		2099	 	 	 {0x06d4,	0x0700,	44},

		2100	 	 	 {0x0701,	0x070d,	1},

		2101	 	 	 {0x07f7,	0x07f9,	1},

		2102	 	 	 {0x0830,	0x083e,	1},

		2103	 	 	 {0x085e,	0x0964,	262},

		2104	 	 	 {0x0965,	0x0970,	11},

		2105	 	 	 {0x0df4,	0x0e4f,	91},

		2106	 	 	 {0x0e5a,	0x0e5b,	1},

		2107	 	 	 {0x0f04,	0x0f12,	1},

		2108	 	 	 {0x0f85,	0x0fd0,	75},

		2109	 	 	 {0x0fd1,	0x0fd4,	1},

		2110	 	 	 {0x0fd9,	0x0fda,	1},

		2111	 	 	 {0x104a,	0x104f,	1},

		2112	 	 	 {0x10fb,	0x1361,	614},

		2113	 	 	 {0x1362,	0x1368,	1},

		2114	 	 	 {0x166d,	0x166e,	1},

		2115	 	 	 {0x16eb,	0x16ed,	1},

		2116	 	 	 {0x1735,	0x1736,	1},

		2117	 	 	 {0x17d4,	0x17d6,	1},

		2118	 	 	 {0x17d8,	0x17da,	1},

		2119	 	 	 {0x1800,	0x1805,	1},

		2120	 	 	 {0x1807,	0x180a,	1},

		2121	 	 	 {0x1944,	0x1945,	1},

		2122	 	 	 {0x1a1e,	0x1a1f,	1},

		2123	 	 	 {0x1aa0,	0x1aa6,	1},

		2124	 	 	 {0x1aa8,	0x1aad,	1},

		2125	 	 	 {0x1b5a,	0x1b60,	1},

		2126	 	 	 {0x1bfc,	0x1bff,	1},

		2127	 	 	 {0x1c3b,	0x1c3f,	1},

		2128	 	 	 {0x1c7e,	0x1c7f,	1},

		2129	 	 	 {0x1cd3,	0x2016,	835},

		2130	 	 	 {0x2017,	0x2020,	9},

		2131	 	 	 {0x2021,	0x2027,	1},

		2132	 	 	 {0x2030,	0x2038,	1},

		2133	 	 	 {0x203b,	0x203e,	1},

		2134	 	 	 {0x2041,	0x2043,	1},

		2135	 	 	 {0x2047,	0x2051,	1},

		2136	 	 	 {0x2053,	0x2055,	2},

		2137	 	 	 {0x2056,	0x205e,	1},

		2138	 	 	 {0x2cf9,	0x2cfc,	1},

		2139	 	 	 {0x2cfe,	0x2cff,	1},

		2140	 	 	 {0x2d70,	0x2e00,	144},

		2141	 	 	 {0x2e01,	0x2e06,	5},

		2142	 	 	 {0x2e07,	0x2e08,	1},

		2143	 	 	 {0x2e0b,	0x2e0e,	3},

		2144	 	 	 {0x2e0f,	0x2e16,	1},

		2145	 	 	 {0x2e18,	0x2e19,	1},

		2146	 	 	 {0x2e1b,	0x2e1e,	3},

		2147	 	 	 {0x2e1f,	0x2e2a,	11},

		2148	 	 	 {0x2e2b,	0x2e2e,	1},

		2149	 	 	 {0x2e30,	0x2e31,	1},

		2150	 	 	 {0x3001,	0x3003,	1},

		2151	 	 	 {0x303d,	0x30fb,	190},

		2152	 	 	 {0xa4fe,	0xa4ff,	1},

		2153	 	 	 {0xa60d,	0xa60f,	1},

		2154	 	 	 {0xa673,	0xa67e,	11},

		2155	 	 	 {0xa6f2,	0xa6f7,	1},

		2156	 	 	 {0xa874,	0xa877,	1},

		2157	 	 	 {0xa8ce,	0xa8cf,	1},

		2158	 	 	 {0xa8f8,	0xa8fa,	1},

		2159	 	 	 {0xa92e,	0xa92f,	1},

		2160	 	 	 {0xa95f,	0xa9c1,	98},

		2161	 	 	 {0xa9c2,	0xa9cd,	1},

		2162	 	 	 {0xa9de,	0xa9df,	1},

		2163	 	 	 {0xaa5c,	0xaa5f,	1},

		2164	 	 	 {0xaade,	0xaadf,	1},

		2165	 	 	 {0xabeb,	0xfe10,	21029},

		2166	 	 	 {0xfe11,	0xfe16,	1},

		2167	 	 	 {0xfe19,	0xfe30,	23},

		2168	 	 	 {0xfe45,	0xfe46,	1},

		2169	 	 	 {0xfe49,	0xfe4c,	1},

		2170	 	 	 {0xfe50,	0xfe52,	1},

		2171	 	 	 {0xfe54,	0xfe57,	1},

		2172	 	 	 {0xfe5f,	0xfe61,	1},

		2173	 	 	 {0xfe68,	0xfe6a,	2},

		2174	 	 	 {0xfe6b,	0xff01,	150},

		2175	 	 	 {0xff02,	0xff03,	1},

		2176	 	 	 {0xff05,	0xff07,	1},

		2177	 	 	 {0xff0a,	0xff0e,	2},

		2178	 	 	 {0xff0f,	0xff1a,	11},

		2179	 	 	 {0xff1b,	0xff1f,	4},

		2180	 	 	 {0xff20,	0xff3c,	28},

		2181	 	 	 {0xff61,	0xff64,	3},

		2182	 	 	 {0xff65,	0xff65,	1},

		2183	 	 },

		2184	 	 R32:	[]Range32{

		2185	 	 	 {0x10100,	0x10100,	1},

		2186	 	 	 {0x10101,	0x1039f,	670},

		2187	 	 	 {0x103d0,	0x10857,	1159},

		2188	 	 	 {0x1091f,	0x1093f,	32},

		2189	 	 	 {0x10a50,	0x10a58,	1},

		2190	 	 	 {0x10a7f,	0x10b39,	186},

		2191	 	 	 {0x10b3a,	0x10b3f,	1},

		2192	 	 	 {0x11047,	0x1104d,	1},

		2193	 	 	 {0x110bb,	0x110bc,	1},

		2194	 	 	 {0x110be,	0x110c1,	1},

		2195	 	 	 {0x12470,	0x12473,	1},

		2196	 	 },

		2197	 }

		2198	

		2199	 var	_Ps	=	&RangeTable{

		2200	 	 R16:	[]Range16{

		2201	 	 	 {0x0028,	0x005b,	51},

		2202	 	 	 {0x007b,	0x0f3a,	3775},

		2203	 	 	 {0x0f3c,	0x169b,	1887},

		2204	 	 	 {0x201a,	0x201e,	4},

		2205	 	 	 {0x2045,	0x207d,	56},

		2206	 	 	 {0x208d,	0x2329,	668},

		2207	 	 	 {0x2768,	0x2774,	2},

		2208	 	 	 {0x27c5,	0x27e6,	33},

		2209	 	 	 {0x27e8,	0x27ee,	2},

		2210	 	 	 {0x2983,	0x2997,	2},

		2211	 	 	 {0x29d8,	0x29da,	2},

		2212	 	 	 {0x29fc,	0x2e22,	1062},

		2213	 	 	 {0x2e24,	0x2e28,	2},

		2214	 	 	 {0x3008,	0x3010,	2},

		2215	 	 	 {0x3014,	0x301a,	2},

		2216	 	 	 {0x301d,	0xfd3e,	52513},

		2217	 	 	 {0xfe17,	0xfe35,	30},

		2218	 	 	 {0xfe37,	0xfe43,	2},

		2219	 	 	 {0xfe47,	0xfe59,	18},

		2220	 	 	 {0xfe5b,	0xfe5d,	2},

		2221	 	 	 {0xff08,	0xff3b,	51},

		2222	 	 	 {0xff5b,	0xff5f,	4},

		2223	 	 	 {0xff62,	0xff62,	1},

		2224	 	 },

		2225	 }

		2226	

		2227	 var	_S	=	&RangeTable{

		2228	 	 R16:	[]Range16{

		2229	 	 	 {0x0024,	0x002b,	7},

		2230	 	 	 {0x003c,	0x003e,	1},

		2231	 	 	 {0x005e,	0x0060,	2},

		2232	 	 	 {0x007c,	0x007e,	2},

		2233	 	 	 {0x00a2,	0x00a9,	1},

		2234	 	 	 {0x00ac,	0x00ae,	2},

		2235	 	 	 {0x00af,	0x00b1,	1},

		2236	 	 	 {0x00b4,	0x00b8,	2},

		2237	 	 	 {0x00d7,	0x00f7,	32},

		2238	 	 	 {0x02c2,	0x02c5,	1},

		2239	 	 	 {0x02d2,	0x02df,	1},

		2240	 	 	 {0x02e5,	0x02eb,	1},

		2241	 	 	 {0x02ed,	0x02ef,	2},

		2242	 	 	 {0x02f0,	0x02ff,	1},

		2243	 	 	 {0x0375,	0x0384,	15},

		2244	 	 	 {0x0385,	0x03f6,	113},

		2245	 	 	 {0x0482,	0x0606,	388},

		2246	 	 	 {0x0607,	0x0608,	1},

		2247	 	 	 {0x060b,	0x060e,	3},

		2248	 	 	 {0x060f,	0x06de,	207},

		2249	 	 	 {0x06e9,	0x06fd,	20},

		2250	 	 	 {0x06fe,	0x07f6,	248},

		2251	 	 	 {0x09f2,	0x09f3,	1},

		2252	 	 	 {0x09fa,	0x09fb,	1},

		2253	 	 	 {0x0af1,	0x0b70,	127},

		2254	 	 	 {0x0bf3,	0x0bfa,	1},

		2255	 	 	 {0x0c7f,	0x0d79,	250},

		2256	 	 	 {0x0e3f,	0x0f01,	194},

		2257	 	 	 {0x0f02,	0x0f03,	1},

		2258	 	 	 {0x0f13,	0x0f17,	1},

		2259	 	 	 {0x0f1a,	0x0f1f,	1},

		2260	 	 	 {0x0f34,	0x0f38,	2},

		2261	 	 	 {0x0fbe,	0x0fc5,	1},

		2262	 	 	 {0x0fc7,	0x0fcc,	1},

		2263	 	 	 {0x0fce,	0x0fcf,	1},

		2264	 	 	 {0x0fd5,	0x0fd8,	1},

		2265	 	 	 {0x109e,	0x109f,	1},

		2266	 	 	 {0x1360,	0x1390,	48},

		2267	 	 	 {0x1391,	0x1399,	1},

		2268	 	 	 {0x17db,	0x1940,	357},

		2269	 	 	 {0x19de,	0x19ff,	1},

		2270	 	 	 {0x1b61,	0x1b6a,	1},

		2271	 	 	 {0x1b74,	0x1b7c,	1},

		2272	 	 	 {0x1fbd,	0x1fbf,	2},

		2273	 	 	 {0x1fc0,	0x1fc1,	1},

		2274	 	 	 {0x1fcd,	0x1fcf,	1},

		2275	 	 	 {0x1fdd,	0x1fdf,	1},

		2276	 	 	 {0x1fed,	0x1fef,	1},

		2277	 	 	 {0x1ffd,	0x1ffe,	1},

		2278	 	 	 {0x2044,	0x2052,	14},

		2279	 	 	 {0x207a,	0x207c,	1},

		2280	 	 	 {0x208a,	0x208c,	1},

		2281	 	 	 {0x20a0,	0x20b9,	1},

		2282	 	 	 {0x2100,	0x2101,	1},

		2283	 	 	 {0x2103,	0x2106,	1},

		2284	 	 	 {0x2108,	0x2109,	1},

		2285	 	 	 {0x2114,	0x2116,	2},

		2286	 	 	 {0x2117,	0x2118,	1},

		2287	 	 	 {0x211e,	0x2123,	1},

		2288	 	 	 {0x2125,	0x2129,	2},

		2289	 	 	 {0x212e,	0x213a,	12},

		2290	 	 	 {0x213b,	0x2140,	5},

		2291	 	 	 {0x2141,	0x2144,	1},

		2292	 	 	 {0x214a,	0x214d,	1},

		2293	 	 	 {0x214f,	0x2190,	65},

		2294	 	 	 {0x2191,	0x2328,	1},

		2295	 	 	 {0x232b,	0x23f3,	1},

		2296	 	 	 {0x2400,	0x2426,	1},

		2297	 	 	 {0x2440,	0x244a,	1},

		2298	 	 	 {0x249c,	0x24e9,	1},

		2299	 	 	 {0x2500,	0x26ff,	1},

		2300	 	 	 {0x2701,	0x2767,	1},

		2301	 	 	 {0x2794,	0x27c4,	1},

		2302	 	 	 {0x27c7,	0x27ca,	1},

		2303	 	 	 {0x27cc,	0x27ce,	2},

		2304	 	 	 {0x27cf,	0x27e5,	1},

		2305	 	 	 {0x27f0,	0x2982,	1},

		2306	 	 	 {0x2999,	0x29d7,	1},

		2307	 	 	 {0x29dc,	0x29fb,	1},

		2308	 	 	 {0x29fe,	0x2b4c,	1},

		2309	 	 	 {0x2b50,	0x2b59,	1},

		2310	 	 	 {0x2ce5,	0x2cea,	1},

		2311	 	 	 {0x2e80,	0x2e99,	1},

		2312	 	 	 {0x2e9b,	0x2ef3,	1},

		2313	 	 	 {0x2f00,	0x2fd5,	1},

		2314	 	 	 {0x2ff0,	0x2ffb,	1},

		2315	 	 	 {0x3004,	0x3012,	14},

		2316	 	 	 {0x3013,	0x3020,	13},

		2317	 	 	 {0x3036,	0x3037,	1},

		2318	 	 	 {0x303e,	0x303f,	1},

		2319	 	 	 {0x309b,	0x309c,	1},

		2320	 	 	 {0x3190,	0x3191,	1},

		2321	 	 	 {0x3196,	0x319f,	1},

		2322	 	 	 {0x31c0,	0x31e3,	1},

		2323	 	 	 {0x3200,	0x321e,	1},

		2324	 	 	 {0x322a,	0x3250,	1},

		2325	 	 	 {0x3260,	0x327f,	1},

		2326	 	 	 {0x328a,	0x32b0,	1},

		2327	 	 	 {0x32c0,	0x32fe,	1},

		2328	 	 	 {0x3300,	0x33ff,	1},

		2329	 	 	 {0x4dc0,	0x4dff,	1},

		2330	 	 	 {0xa490,	0xa4c6,	1},

		2331	 	 	 {0xa700,	0xa716,	1},

		2332	 	 	 {0xa720,	0xa721,	1},

		2333	 	 	 {0xa789,	0xa78a,	1},

		2334	 	 	 {0xa828,	0xa82b,	1},

		2335	 	 	 {0xa836,	0xa839,	1},

		2336	 	 	 {0xaa77,	0xaa79,	1},

		2337	 	 	 {0xfb29,	0xfbb2,	137},

		2338	 	 	 {0xfbb3,	0xfbc1,	1},

		2339	 	 	 {0xfdfc,	0xfdfd,	1},

		2340	 	 	 {0xfe62,	0xfe64,	2},

		2341	 	 	 {0xfe65,	0xfe66,	1},

		2342	 	 	 {0xfe69,	0xff04,	155},

		2343	 	 	 {0xff0b,	0xff1c,	17},

		2344	 	 	 {0xff1d,	0xff1e,	1},

		2345	 	 	 {0xff3e,	0xff40,	2},

		2346	 	 	 {0xff5c,	0xff5e,	2},

		2347	 	 	 {0xffe0,	0xffe6,	1},

		2348	 	 	 {0xffe8,	0xffee,	1},

		2349	 	 	 {0xfffc,	0xfffd,	1},

		2350	 	 },

		2351	 	 R32:	[]Range32{

		2352	 	 	 {0x10102,	0x10137,	53},

		2353	 	 	 {0x10138,	0x1013f,	1},

		2354	 	 	 {0x10179,	0x10189,	1},

		2355	 	 	 {0x10190,	0x1019b,	1},

		2356	 	 	 {0x101d0,	0x101fc,	1},

		2357	 	 	 {0x1d000,	0x1d0f5,	1},

		2358	 	 	 {0x1d100,	0x1d126,	1},

		2359	 	 	 {0x1d129,	0x1d164,	1},

		2360	 	 	 {0x1d16a,	0x1d16c,	1},

		2361	 	 	 {0x1d183,	0x1d184,	1},

		2362	 	 	 {0x1d18c,	0x1d1a9,	1},

		2363	 	 	 {0x1d1ae,	0x1d1dd,	1},

		2364	 	 	 {0x1d200,	0x1d241,	1},

		2365	 	 	 {0x1d245,	0x1d300,	187},

		2366	 	 	 {0x1d301,	0x1d356,	1},

		2367	 	 	 {0x1d6c1,	0x1d6db,	26},

		2368	 	 	 {0x1d6fb,	0x1d715,	26},

		2369	 	 	 {0x1d735,	0x1d74f,	26},

		2370	 	 	 {0x1d76f,	0x1d789,	26},

		2371	 	 	 {0x1d7a9,	0x1d7c3,	26},

		2372	 	 	 {0x1f000,	0x1f02b,	1},

		2373	 	 	 {0x1f030,	0x1f093,	1},

		2374	 	 	 {0x1f0a0,	0x1f0ae,	1},

		2375	 	 	 {0x1f0b1,	0x1f0be,	1},

		2376	 	 	 {0x1f0c1,	0x1f0cf,	1},

		2377	 	 	 {0x1f0d1,	0x1f0df,	1},

		2378	 	 	 {0x1f110,	0x1f12e,	1},

		2379	 	 	 {0x1f130,	0x1f169,	1},

		2380	 	 	 {0x1f170,	0x1f19a,	1},

		2381	 	 	 {0x1f1e6,	0x1f202,	1},

		2382	 	 	 {0x1f210,	0x1f23a,	1},

		2383	 	 	 {0x1f240,	0x1f248,	1},

		2384	 	 	 {0x1f250,	0x1f251,	1},

		2385	 	 	 {0x1f300,	0x1f320,	1},

		2386	 	 	 {0x1f330,	0x1f335,	1},

		2387	 	 	 {0x1f337,	0x1f37c,	1},

		2388	 	 	 {0x1f380,	0x1f393,	1},

		2389	 	 	 {0x1f3a0,	0x1f3c4,	1},

		2390	 	 	 {0x1f3c6,	0x1f3ca,	1},

		2391	 	 	 {0x1f3e0,	0x1f3f0,	1},

		2392	 	 	 {0x1f400,	0x1f43e,	1},

		2393	 	 	 {0x1f440,	0x1f442,	2},

		2394	 	 	 {0x1f443,	0x1f4f7,	1},

		2395	 	 	 {0x1f4f9,	0x1f4fc,	1},

		2396	 	 	 {0x1f500,	0x1f53d,	1},

		2397	 	 	 {0x1f550,	0x1f567,	1},

		2398	 	 	 {0x1f5fb,	0x1f5ff,	1},

		2399	 	 	 {0x1f601,	0x1f610,	1},

		2400	 	 	 {0x1f612,	0x1f614,	1},

		2401	 	 	 {0x1f616,	0x1f61c,	2},

		2402	 	 	 {0x1f61d,	0x1f61e,	1},

		2403	 	 	 {0x1f620,	0x1f625,	1},

		2404	 	 	 {0x1f628,	0x1f62b,	1},

		2405	 	 	 {0x1f62d,	0x1f630,	3},

		2406	 	 	 {0x1f631,	0x1f633,	1},

		2407	 	 	 {0x1f635,	0x1f640,	1},

		2408	 	 	 {0x1f645,	0x1f64f,	1},

		2409	 	 	 {0x1f680,	0x1f6c5,	1},

		2410	 	 	 {0x1f700,	0x1f773,	1},

		2411	 	 },

		2412	 }

		2413	

		2414	 var	_Sc	=	&RangeTable{

		2415	 	 R16:	[]Range16{

		2416	 	 	 {0x0024,	0x00a2,	126},

		2417	 	 	 {0x00a3,	0x00a5,	1},

		2418	 	 	 {0x060b,	0x09f2,	999},

		2419	 	 	 {0x09f3,	0x09fb,	8},

		2420	 	 	 {0x0af1,	0x0bf9,	264},

		2421	 	 	 {0x0e3f,	0x17db,	2460},

		2422	 	 	 {0x20a0,	0x20b9,	1},

		2423	 	 	 {0xa838,	0xfdfc,	21956},

		2424	 	 	 {0xfe69,	0xff04,	155},

		2425	 	 	 {0xffe0,	0xffe1,	1},

		2426	 	 	 {0xffe5,	0xffe6,	1},

		2427	 	 },

		2428	 }

		2429	

		2430	 var	_Sk	=	&RangeTable{

		2431	 	 R16:	[]Range16{

		2432	 	 	 {0x005e,	0x0060,	2},

		2433	 	 	 {0x00a8,	0x00af,	7},

		2434	 	 	 {0x00b4,	0x00b8,	4},

		2435	 	 	 {0x02c2,	0x02c5,	1},

		2436	 	 	 {0x02d2,	0x02df,	1},

		2437	 	 	 {0x02e5,	0x02eb,	1},

		2438	 	 	 {0x02ed,	0x02ef,	2},

		2439	 	 	 {0x02f0,	0x02ff,	1},

		2440	 	 	 {0x0375,	0x0384,	15},

		2441	 	 	 {0x0385,	0x1fbd,	7224},

		2442	 	 	 {0x1fbf,	0x1fc1,	1},

		2443	 	 	 {0x1fcd,	0x1fcf,	1},

		2444	 	 	 {0x1fdd,	0x1fdf,	1},

		2445	 	 	 {0x1fed,	0x1fef,	1},

		2446	 	 	 {0x1ffd,	0x1ffe,	1},

		2447	 	 	 {0x309b,	0x309c,	1},

		2448	 	 	 {0xa700,	0xa716,	1},

		2449	 	 	 {0xa720,	0xa721,	1},

		2450	 	 	 {0xa789,	0xa78a,	1},

		2451	 	 	 {0xfbb2,	0xfbc1,	1},

		2452	 	 	 {0xff3e,	0xff40,	2},

		2453	 	 	 {0xffe3,	0xffe3,	1},

		2454	 	 },

		2455	 }

		2456	

		2457	 var	_Sm	=	&RangeTable{

		2458	 	 R16:	[]Range16{

		2459	 	 	 {0x002b,	0x003c,	17},

		2460	 	 	 {0x003d,	0x003e,	1},

		2461	 	 	 {0x007c,	0x007e,	2},

		2462	 	 	 {0x00ac,	0x00b1,	5},

		2463	 	 	 {0x00d7,	0x00f7,	32},

		2464	 	 	 {0x03f6,	0x0606,	528},

		2465	 	 	 {0x0607,	0x0608,	1},

		2466	 	 	 {0x2044,	0x2052,	14},

		2467	 	 	 {0x207a,	0x207c,	1},

		2468	 	 	 {0x208a,	0x208c,	1},

		2469	 	 	 {0x2118,	0x2140,	40},

		2470	 	 	 {0x2141,	0x2144,	1},

		2471	 	 	 {0x214b,	0x2190,	69},

		2472	 	 	 {0x2191,	0x2194,	1},

		2473	 	 	 {0x219a,	0x219b,	1},

		2474	 	 	 {0x21a0,	0x21a6,	3},

		2475	 	 	 {0x21ae,	0x21ce,	32},

		2476	 	 	 {0x21cf,	0x21d2,	3},

		2477	 	 	 {0x21d4,	0x21f4,	32},

		2478	 	 	 {0x21f5,	0x22ff,	1},

		2479	 	 	 {0x2308,	0x230b,	1},

		2480	 	 	 {0x2320,	0x2321,	1},

		2481	 	 	 {0x237c,	0x239b,	31},

		2482	 	 	 {0x239c,	0x23b3,	1},

		2483	 	 	 {0x23dc,	0x23e1,	1},

		2484	 	 	 {0x25b7,	0x25c1,	10},

		2485	 	 	 {0x25f8,	0x25ff,	1},

		2486	 	 	 {0x266f,	0x27c0,	337},

		2487	 	 	 {0x27c1,	0x27c4,	1},

		2488	 	 	 {0x27c7,	0x27ca,	1},

		2489	 	 	 {0x27cc,	0x27ce,	2},

		2490	 	 	 {0x27cf,	0x27e5,	1},

		2491	 	 	 {0x27f0,	0x27ff,	1},

		2492	 	 	 {0x2900,	0x2982,	1},

		2493	 	 	 {0x2999,	0x29d7,	1},

		2494	 	 	 {0x29dc,	0x29fb,	1},

		2495	 	 	 {0x29fe,	0x2aff,	1},

		2496	 	 	 {0x2b30,	0x2b44,	1},

		2497	 	 	 {0x2b47,	0x2b4c,	1},

		2498	 	 	 {0xfb29,	0xfe62,	825},

		2499	 	 	 {0xfe64,	0xfe66,	1},

		2500	 	 	 {0xff0b,	0xff1c,	17},

		2501	 	 	 {0xff1d,	0xff1e,	1},

		2502	 	 	 {0xff5c,	0xff5e,	2},

		2503	 	 	 {0xffe2,	0xffe9,	7},

		2504	 	 	 {0xffea,	0xffec,	1},

		2505	 	 },

		2506	 	 R32:	[]Range32{

		2507	 	 	 {0x1d6c1,	0x1d6db,	26},

		2508	 	 	 {0x1d6fb,	0x1d715,	26},

		2509	 	 	 {0x1d735,	0x1d74f,	26},

		2510	 	 	 {0x1d76f,	0x1d789,	26},

		2511	 	 	 {0x1d7a9,	0x1d7c3,	26},

		2512	 	 },

		2513	 }

		2514	

		2515	 var	_So	=	&RangeTable{

		2516	 	 R16:	[]Range16{

		2517	 	 	 {0x00a6,	0x00a7,	1},

		2518	 	 	 {0x00a9,	0x00ae,	5},

		2519	 	 	 {0x00b0,	0x00b6,	6},

		2520	 	 	 {0x0482,	0x060e,	396},

		2521	 	 	 {0x060f,	0x06de,	207},

		2522	 	 	 {0x06e9,	0x06fd,	20},

		2523	 	 	 {0x06fe,	0x07f6,	248},

		2524	 	 	 {0x09fa,	0x0b70,	374},

		2525	 	 	 {0x0bf3,	0x0bf8,	1},

		2526	 	 	 {0x0bfa,	0x0c7f,	133},

		2527	 	 	 {0x0d79,	0x0f01,	392},

		2528	 	 	 {0x0f02,	0x0f03,	1},

		2529	 	 	 {0x0f13,	0x0f17,	1},

		2530	 	 	 {0x0f1a,	0x0f1f,	1},

		2531	 	 	 {0x0f34,	0x0f38,	2},

		2532	 	 	 {0x0fbe,	0x0fc5,	1},

		2533	 	 	 {0x0fc7,	0x0fcc,	1},

		2534	 	 	 {0x0fce,	0x0fcf,	1},

		2535	 	 	 {0x0fd5,	0x0fd8,	1},

		2536	 	 	 {0x109e,	0x109f,	1},

		2537	 	 	 {0x1360,	0x1390,	48},

		2538	 	 	 {0x1391,	0x1399,	1},

		2539	 	 	 {0x1940,	0x19de,	158},

		2540	 	 	 {0x19df,	0x19ff,	1},

		2541	 	 	 {0x1b61,	0x1b6a,	1},

		2542	 	 	 {0x1b74,	0x1b7c,	1},

		2543	 	 	 {0x2100,	0x2101,	1},

		2544	 	 	 {0x2103,	0x2106,	1},

		2545	 	 	 {0x2108,	0x2109,	1},

		2546	 	 	 {0x2114,	0x2116,	2},

		2547	 	 	 {0x2117,	0x211e,	7},

		2548	 	 	 {0x211f,	0x2123,	1},

		2549	 	 	 {0x2125,	0x2129,	2},

		2550	 	 	 {0x212e,	0x213a,	12},

		2551	 	 	 {0x213b,	0x214a,	15},

		2552	 	 	 {0x214c,	0x214d,	1},

		2553	 	 	 {0x214f,	0x2195,	70},

		2554	 	 	 {0x2196,	0x2199,	1},

		2555	 	 	 {0x219c,	0x219f,	1},

		2556	 	 	 {0x21a1,	0x21a2,	1},

		2557	 	 	 {0x21a4,	0x21a5,	1},

		2558	 	 	 {0x21a7,	0x21ad,	1},

		2559	 	 	 {0x21af,	0x21cd,	1},

		2560	 	 	 {0x21d0,	0x21d1,	1},

		2561	 	 	 {0x21d3,	0x21d5,	2},

		2562	 	 	 {0x21d6,	0x21f3,	1},

		2563	 	 	 {0x2300,	0x2307,	1},

		2564	 	 	 {0x230c,	0x231f,	1},

		2565	 	 	 {0x2322,	0x2328,	1},

		2566	 	 	 {0x232b,	0x237b,	1},

		2567	 	 	 {0x237d,	0x239a,	1},

		2568	 	 	 {0x23b4,	0x23db,	1},

		2569	 	 	 {0x23e2,	0x23f3,	1},

		2570	 	 	 {0x2400,	0x2426,	1},

		2571	 	 	 {0x2440,	0x244a,	1},

		2572	 	 	 {0x249c,	0x24e9,	1},

		2573	 	 	 {0x2500,	0x25b6,	1},

		2574	 	 	 {0x25b8,	0x25c0,	1},

		2575	 	 	 {0x25c2,	0x25f7,	1},

		2576	 	 	 {0x2600,	0x266e,	1},

		2577	 	 	 {0x2670,	0x26ff,	1},

		2578	 	 	 {0x2701,	0x2767,	1},

		2579	 	 	 {0x2794,	0x27bf,	1},

		2580	 	 	 {0x2800,	0x28ff,	1},

		2581	 	 	 {0x2b00,	0x2b2f,	1},

		2582	 	 	 {0x2b45,	0x2b46,	1},

		2583	 	 	 {0x2b50,	0x2b59,	1},

		2584	 	 	 {0x2ce5,	0x2cea,	1},

		2585	 	 	 {0x2e80,	0x2e99,	1},

		2586	 	 	 {0x2e9b,	0x2ef3,	1},

		2587	 	 	 {0x2f00,	0x2fd5,	1},

		2588	 	 	 {0x2ff0,	0x2ffb,	1},

		2589	 	 	 {0x3004,	0x3012,	14},

		2590	 	 	 {0x3013,	0x3020,	13},

		2591	 	 	 {0x3036,	0x3037,	1},

		2592	 	 	 {0x303e,	0x303f,	1},

		2593	 	 	 {0x3190,	0x3191,	1},

		2594	 	 	 {0x3196,	0x319f,	1},

		2595	 	 	 {0x31c0,	0x31e3,	1},

		2596	 	 	 {0x3200,	0x321e,	1},

		2597	 	 	 {0x322a,	0x3250,	1},

		2598	 	 	 {0x3260,	0x327f,	1},

		2599	 	 	 {0x328a,	0x32b0,	1},

		2600	 	 	 {0x32c0,	0x32fe,	1},

		2601	 	 	 {0x3300,	0x33ff,	1},

		2602	 	 	 {0x4dc0,	0x4dff,	1},

		2603	 	 	 {0xa490,	0xa4c6,	1},

		2604	 	 	 {0xa828,	0xa82b,	1},

		2605	 	 	 {0xa836,	0xa837,	1},

		2606	 	 	 {0xa839,	0xaa77,	574},

		2607	 	 	 {0xaa78,	0xaa79,	1},

		2608	 	 	 {0xfdfd,	0xffe4,	487},

		2609	 	 	 {0xffe8,	0xffed,	5},

		2610	 	 	 {0xffee,	0xfffc,	14},

		2611	 	 	 {0xfffd,	0xfffd,	1},

		2612	 	 },

		2613	 	 R32:	[]Range32{

		2614	 	 	 {0x10102,	0x10102,	1},

		2615	 	 	 {0x10137,	0x1013f,	1},

		2616	 	 	 {0x10179,	0x10189,	1},

		2617	 	 	 {0x10190,	0x1019b,	1},

		2618	 	 	 {0x101d0,	0x101fc,	1},

		2619	 	 	 {0x1d000,	0x1d0f5,	1},

		2620	 	 	 {0x1d100,	0x1d126,	1},

		2621	 	 	 {0x1d129,	0x1d164,	1},

		2622	 	 	 {0x1d16a,	0x1d16c,	1},

		2623	 	 	 {0x1d183,	0x1d184,	1},

		2624	 	 	 {0x1d18c,	0x1d1a9,	1},

		2625	 	 	 {0x1d1ae,	0x1d1dd,	1},

		2626	 	 	 {0x1d200,	0x1d241,	1},

		2627	 	 	 {0x1d245,	0x1d300,	187},

		2628	 	 	 {0x1d301,	0x1d356,	1},

		2629	 	 	 {0x1f000,	0x1f02b,	1},

		2630	 	 	 {0x1f030,	0x1f093,	1},

		2631	 	 	 {0x1f0a0,	0x1f0ae,	1},

		2632	 	 	 {0x1f0b1,	0x1f0be,	1},

		2633	 	 	 {0x1f0c1,	0x1f0cf,	1},

		2634	 	 	 {0x1f0d1,	0x1f0df,	1},

		2635	 	 	 {0x1f110,	0x1f12e,	1},

		2636	 	 	 {0x1f130,	0x1f169,	1},

		2637	 	 	 {0x1f170,	0x1f19a,	1},

		2638	 	 	 {0x1f1e6,	0x1f202,	1},

		2639	 	 	 {0x1f210,	0x1f23a,	1},

		2640	 	 	 {0x1f240,	0x1f248,	1},

		2641	 	 	 {0x1f250,	0x1f251,	1},

		2642	 	 	 {0x1f300,	0x1f320,	1},

		2643	 	 	 {0x1f330,	0x1f335,	1},

		2644	 	 	 {0x1f337,	0x1f37c,	1},

		2645	 	 	 {0x1f380,	0x1f393,	1},

		2646	 	 	 {0x1f3a0,	0x1f3c4,	1},

		2647	 	 	 {0x1f3c6,	0x1f3ca,	1},

		2648	 	 	 {0x1f3e0,	0x1f3f0,	1},

		2649	 	 	 {0x1f400,	0x1f43e,	1},

		2650	 	 	 {0x1f440,	0x1f442,	2},

		2651	 	 	 {0x1f443,	0x1f4f7,	1},

		2652	 	 	 {0x1f4f9,	0x1f4fc,	1},

		2653	 	 	 {0x1f500,	0x1f53d,	1},

		2654	 	 	 {0x1f550,	0x1f567,	1},

		2655	 	 	 {0x1f5fb,	0x1f5ff,	1},

		2656	 	 	 {0x1f601,	0x1f610,	1},

		2657	 	 	 {0x1f612,	0x1f614,	1},

		2658	 	 	 {0x1f616,	0x1f61c,	2},

		2659	 	 	 {0x1f61d,	0x1f61e,	1},

		2660	 	 	 {0x1f620,	0x1f625,	1},

		2661	 	 	 {0x1f628,	0x1f62b,	1},

		2662	 	 	 {0x1f62d,	0x1f630,	3},

		2663	 	 	 {0x1f631,	0x1f633,	1},

		2664	 	 	 {0x1f635,	0x1f640,	1},

		2665	 	 	 {0x1f645,	0x1f64f,	1},

		2666	 	 	 {0x1f680,	0x1f6c5,	1},

		2667	 	 	 {0x1f700,	0x1f773,	1},

		2668	 	 },

		2669	 }

		2670	

		2671	 var	_Z	=	&RangeTable{

		2672	 	 R16:	[]Range16{

		2673	 	 	 {0x0020,	0x00a0,	128},

		2674	 	 	 {0x1680,	0x180e,	398},

		2675	 	 	 {0x2000,	0x200a,	1},

		2676	 	 	 {0x2028,	0x2029,	1},

		2677	 	 	 {0x202f,	0x205f,	48},

		2678	 	 	 {0x3000,	0x3000,	1},

		2679	 	 },

		2680	 }

		2681	

		2682	 var	_Zl	=	&RangeTable{

		2683	 	 R16:	[]Range16{

		2684	 	 	 {0x2028,	0x2028,	1},

		2685	 	 },

		2686	 }

		2687	

		2688	 var	_Zp	=	&RangeTable{

		2689	 	 R16:	[]Range16{

		2690	 	 	 {0x2029,	0x2029,	1},

		2691	 	 },

		2692	 }

		2693	

		2694	 var	_Zs	=	&RangeTable{

		2695	 	 R16:	[]Range16{

		2696	 	 	 {0x0020,	0x00a0,	128},

		2697	 	 	 {0x1680,	0x180e,	398},

		2698	 	 	 {0x2000,	0x200a,	1},

		2699	 	 	 {0x202f,	0x205f,	48},

		2700	 	 	 {0x3000,	0x3000,	1},

		2701	 	 },

		2702	 }

		2703	

		2704	 //	The	following	variables	are	of	type	*RangeTable:

		2705	 var	(

		2706	 	 Cc					=	_Cc	//	Cc	is	the	set	of	Unicode	characters	in	category	Cc.

		2707	 	 Cf					=	_Cf	//	Cf	is	the	set	of	Unicode	characters	in	category	Cf.

		2708	 	 Co					=	_Co	//	Co	is	the	set	of	Unicode	characters	in	category	Co.

		2709	 	 Cs					=	_Cs	//	Cs	is	the	set	of	Unicode	characters	in	category	Cs.

		2710	 	 Digit		=	_Nd	//	Digit	is	the	set	of	Unicode	characters	with	the	"decimal	digit"	property.

		2711	 	 Nd					=	_Nd	//	Nd	is	the	set	of	Unicode	characters	in	category	Nd.

		2712	 	 Letter	=	_L		//	Letter/L	is	the	set	of	Unicode	letters,	category	L.

		2713	 	 L						=	_L

		2714	 	 Lm					=	_Lm	//	Lm	is	the	set	of	Unicode	characters	in	category	Lm.

		2715	 	 Lo					=	_Lo	//	Lo	is	the	set	of	Unicode	characters	in	category	Lo.

		2716	 	 Lower		=	_Ll	//	Lower	is	the	set	of	Unicode	lower	case	letters.

		2717	 	 Ll					=	_Ll	//	Ll	is	the	set	of	Unicode	characters	in	category	Ll.

		2718	 	 Mark			=	_M		//	Mark/M	is	the	set	of	Unicode	mark	characters,	category		M.

		2719	 	 M						=	_M

		2720	 	 Mc					=	_Mc	//	Mc	is	the	set	of	Unicode	characters	in	category	Mc.

		2721	 	 Me					=	_Me	//	Me	is	the	set	of	Unicode	characters	in	category	Me.

		2722	 	 Mn					=	_Mn	//	Mn	is	the	set	of	Unicode	characters	in	category	Mn.

		2723	 	 Nl					=	_Nl	//	Nl	is	the	set	of	Unicode	characters	in	category	Nl.

		2724	 	 No					=	_No	//	No	is	the	set	of	Unicode	characters	in	category	No.

		2725	 	 Number	=	_N		//	Number/N	is	the	set	of	Unicode	number	characters,	category	N.

		2726	 	 N						=	_N

		2727	 	 Other		=	_C	//	Other/C	is	the	set	of	Unicode	control	and	special	characters,	category	C.

		2728	 	 C						=	_C

		2729	 	 Pc					=	_Pc	//	Pc	is	the	set	of	Unicode	characters	in	category	Pc.

		2730	 	 Pd					=	_Pd	//	Pd	is	the	set	of	Unicode	characters	in	category	Pd.

		2731	 	 Pe					=	_Pe	//	Pe	is	the	set	of	Unicode	characters	in	category	Pe.

		2732	 	 Pf					=	_Pf	//	Pf	is	the	set	of	Unicode	characters	in	category	Pf.

		2733	 	 Pi					=	_Pi	//	Pi	is	the	set	of	Unicode	characters	in	category	Pi.

		2734	 	 Po					=	_Po	//	Po	is	the	set	of	Unicode	characters	in	category	Po.

		2735	 	 Ps					=	_Ps	//	Ps	is	the	set	of	Unicode	characters	in	category	Ps.

		2736	 	 Punct		=	_P		//	Punct/P	is	the	set	of	Unicode	punctuation	characters,	category	P.

		2737	 	 P						=	_P

		2738	 	 Sc					=	_Sc	//	Sc	is	the	set	of	Unicode	characters	in	category	Sc.

		2739	 	 Sk					=	_Sk	//	Sk	is	the	set	of	Unicode	characters	in	category	Sk.

		2740	 	 Sm					=	_Sm	//	Sm	is	the	set	of	Unicode	characters	in	category	Sm.

		2741	 	 So					=	_So	//	So	is	the	set	of	Unicode	characters	in	category	So.

		2742	 	 Space		=	_Z		//	Space/Z	is	the	set	of	Unicode	space	characters,	category	Z.

		2743	 	 Z						=	_Z

		2744	 	 Symbol	=	_S	//	Symbol/S	is	the	set	of	Unicode	symbol	characters,	category	S.

		2745	 	 S						=	_S

		2746	 	 Title		=	_Lt	//	Title	is	the	set	of	Unicode	title	case	letters.

		2747	 	 Lt					=	_Lt	//	Lt	is	the	set	of	Unicode	characters	in	category	Lt.

		2748	 	 Upper		=	_Lu	//	Upper	is	the	set	of	Unicode	upper	case	letters.

		2749	 	 Lu					=	_Lu	//	Lu	is	the	set	of	Unicode	characters	in	category	Lu.

		2750	 	 Zl					=	_Zl	//	Zl	is	the	set	of	Unicode	characters	in	category	Zl.

		2751	 	 Zp					=	_Zp	//	Zp	is	the	set	of	Unicode	characters	in	category	Zp.

		2752	 	 Zs					=	_Zs	//	Zs	is	the	set	of	Unicode	characters	in	category	Zs.

		2753)

		2754	

		2755	 //	Generated	by	running

		2756	 //	 maketables	--scripts=all	--url=http://www.unicode.org/Public/6.0.0/ucd/

		2757	 //	DO	NOT	EDIT

		2758	

		2759	 //	Scripts	is	the	set	of	Unicode	script	tables.

		2760	 var	Scripts	=	map[string]*RangeTable{

		2761	 	 "Arabic":																	Arabic,

		2762	 	 "Armenian":															Armenian,

		2763	 	 "Avestan":																Avestan,

		2764	 	 "Balinese":															Balinese,

		2765	 	 "Bamum":																		Bamum,

		2766	 	 "Batak":																		Batak,

		2767	 	 "Bengali":																Bengali,

		2768	 	 "Bopomofo":															Bopomofo,

		2769	 	 "Brahmi":																	Brahmi,

		2770	 	 "Braille":																Braille,

		2771	 	 "Buginese":															Buginese,

		2772	 	 "Buhid":																		Buhid,

		2773	 	 "Canadian_Aboriginal":				Canadian_Aboriginal,

		2774	 	 "Carian":																	Carian,

		2775	 	 "Cham":																			Cham,

		2776	 	 "Cherokee":															Cherokee,

		2777	 	 "Common":																	Common,

		2778	 	 "Coptic":																	Coptic,

		2779	 	 "Cuneiform":														Cuneiform,

		2780	 	 "Cypriot":																Cypriot,

		2781	 	 "Cyrillic":															Cyrillic,

		2782	 	 "Deseret":																Deseret,

		2783	 	 "Devanagari":													Devanagari,

		2784	 	 "Egyptian_Hieroglyphs":			Egyptian_Hieroglyphs,

		2785	 	 "Ethiopic":															Ethiopic,

		2786	 	 "Georgian":															Georgian,

		2787	 	 "Glagolitic":													Glagolitic,

		2788	 	 "Gothic":																	Gothic,

		2789	 	 "Greek":																		Greek,

		2790	 	 "Gujarati":															Gujarati,

		2791	 	 "Gurmukhi":															Gurmukhi,

		2792	 	 "Han":																				Han,

		2793	 	 "Hangul":																	Hangul,

		2794	 	 "Hanunoo":																Hanunoo,

		2795	 	 "Hebrew":																	Hebrew,

		2796	 	 "Hiragana":															Hiragana,

		2797	 	 "Imperial_Aramaic":							Imperial_Aramaic,

		2798	 	 "Inherited":														Inherited,

		2799	 	 "Inscriptional_Pahlavi":		Inscriptional_Pahlavi,

		2800	 	 "Inscriptional_Parthian":	Inscriptional_Parthian,

		2801	 	 "Javanese":															Javanese,

		2802	 	 "Kaithi":																	Kaithi,

		2803	 	 "Kannada":																Kannada,

		2804	 	 "Katakana":															Katakana,

		2805	 	 "Kayah_Li":															Kayah_Li,

		2806	 	 "Kharoshthi":													Kharoshthi,

		2807	 	 "Khmer":																		Khmer,

		2808	 	 "Lao":																				Lao,

		2809	 	 "Latin":																		Latin,

		2810	 	 "Lepcha":																	Lepcha,

		2811	 	 "Limbu":																		Limbu,

		2812	 	 "Linear_B":															Linear_B,

		2813	 	 "Lisu":																			Lisu,

		2814	 	 "Lycian":																	Lycian,

		2815	 	 "Lydian":																	Lydian,

		2816	 	 "Malayalam":														Malayalam,

		2817	 	 "Mandaic":																Mandaic,

		2818	 	 "Meetei_Mayek":											Meetei_Mayek,

		2819	 	 "Mongolian":														Mongolian,

		2820	 	 "Myanmar":																Myanmar,

		2821	 	 "New_Tai_Lue":												New_Tai_Lue,

		2822	 	 "Nko":																				Nko,

		2823	 	 "Ogham":																		Ogham,

		2824	 	 "Ol_Chiki":															Ol_Chiki,

		2825	 	 "Old_Italic":													Old_Italic,

		2826	 	 "Old_Persian":												Old_Persian,

		2827	 	 "Old_South_Arabian":						Old_South_Arabian,

		2828	 	 "Old_Turkic":													Old_Turkic,

		2829	 	 "Oriya":																		Oriya,

		2830	 	 "Osmanya":																Osmanya,

		2831	 	 "Phags_Pa":															Phags_Pa,

		2832	 	 "Phoenician":													Phoenician,

		2833	 	 "Rejang":																	Rejang,

		2834	 	 "Runic":																		Runic,

		2835	 	 "Samaritan":														Samaritan,

		2836	 	 "Saurashtra":													Saurashtra,

		2837	 	 "Shavian":																Shavian,

		2838	 	 "Sinhala":																Sinhala,

		2839	 	 "Sundanese":														Sundanese,

		2840	 	 "Syloti_Nagri":											Syloti_Nagri,

		2841	 	 "Syriac":																	Syriac,

		2842	 	 "Tagalog":																Tagalog,

		2843	 	 "Tagbanwa":															Tagbanwa,

		2844	 	 "Tai_Le":																	Tai_Le,

		2845	 	 "Tai_Tham":															Tai_Tham,

		2846	 	 "Tai_Viet":															Tai_Viet,

		2847	 	 "Tamil":																		Tamil,

		2848	 	 "Telugu":																	Telugu,

		2849	 	 "Thaana":																	Thaana,

		2850	 	 "Thai":																			Thai,

		2851	 	 "Tibetan":																Tibetan,

		2852	 	 "Tifinagh":															Tifinagh,

		2853	 	 "Ugaritic":															Ugaritic,

		2854	 	 "Vai":																				Vai,

		2855	 	 "Yi":																					Yi,

		2856	 }

		2857	

		2858	 var	_Arabic	=	&RangeTable{

		2859	 	 R16:	[]Range16{

		2860	 	 	 {0x0600,	0x0603,	1},

		2861	 	 	 {0x0606,	0x060b,	1},

		2862	 	 	 {0x060d,	0x061a,	1},

		2863	 	 	 {0x061e,	0x061e,	1},

		2864	 	 	 {0x0620,	0x063f,	1},

		2865	 	 	 {0x0641,	0x064a,	1},

		2866	 	 	 {0x0656,	0x065e,	1},

		2867	 	 	 {0x066a,	0x066f,	1},

		2868	 	 	 {0x0671,	0x06dc,	1},

		2869	 	 	 {0x06de,	0x06ff,	1},

		2870	 	 	 {0x0750,	0x077f,	1},

		2871	 	 	 {0xfb50,	0xfbc1,	1},

		2872	 	 	 {0xfbd3,	0xfd3d,	1},

		2873	 	 	 {0xfd50,	0xfd8f,	1},

		2874	 	 	 {0xfd92,	0xfdc7,	1},

		2875	 	 	 {0xfdf0,	0xfdfc,	1},

		2876	 	 	 {0xfe70,	0xfe74,	1},

		2877	 	 	 {0xfe76,	0xfefc,	1},

		2878	 	 },

		2879	 	 R32:	[]Range32{

		2880	 	 	 {0x10e60,	0x10e7e,	1},

		2881	 	 },

		2882	 }

		2883	

		2884	 var	_Armenian	=	&RangeTable{

		2885	 	 R16:	[]Range16{

		2886	 	 	 {0x0531,	0x0556,	1},

		2887	 	 	 {0x0559,	0x055f,	1},

		2888	 	 	 {0x0561,	0x0587,	1},

		2889	 	 	 {0x058a,	0x058a,	1},

		2890	 	 	 {0xfb13,	0xfb17,	1},

		2891	 	 },

		2892	 }

		2893	

		2894	 var	_Avestan	=	&RangeTable{

		2895	 	 R16:	[]Range16{},

		2896	 	 R32:	[]Range32{

		2897	 	 	 {0x10b00,	0x10b35,	1},

		2898	 	 	 {0x10b39,	0x10b3f,	1},

		2899	 	 },

		2900	 }

		2901	

		2902	 var	_Balinese	=	&RangeTable{

		2903	 	 R16:	[]Range16{

		2904	 	 	 {0x1b00,	0x1b4b,	1},

		2905	 	 	 {0x1b50,	0x1b7c,	1},

		2906	 	 },

		2907	 }

		2908	

		2909	 var	_Bamum	=	&RangeTable{

		2910	 	 R16:	[]Range16{

		2911	 	 	 {0xa6a0,	0xa6f7,	1},

		2912	 	 },

		2913	 	 R32:	[]Range32{

		2914	 	 	 {0x16800,	0x16a38,	1},

		2915	 	 },

		2916	 }

		2917	

		2918	 var	_Batak	=	&RangeTable{

		2919	 	 R16:	[]Range16{

		2920	 	 	 {0x1bc0,	0x1bf3,	1},

		2921	 	 	 {0x1bfc,	0x1bff,	1},

		2922	 	 },

		2923	 }

		2924	

		2925	 var	_Bengali	=	&RangeTable{

		2926	 	 R16:	[]Range16{

		2927	 	 	 {0x0981,	0x0983,	1},

		2928	 	 	 {0x0985,	0x098c,	1},

		2929	 	 	 {0x098f,	0x0990,	1},

		2930	 	 	 {0x0993,	0x09a8,	1},

		2931	 	 	 {0x09aa,	0x09b0,	1},

		2932	 	 	 {0x09b2,	0x09b2,	1},

		2933	 	 	 {0x09b6,	0x09b9,	1},

		2934	 	 	 {0x09bc,	0x09c4,	1},

		2935	 	 	 {0x09c7,	0x09c8,	1},

		2936	 	 	 {0x09cb,	0x09ce,	1},

		2937	 	 	 {0x09d7,	0x09d7,	1},

		2938	 	 	 {0x09dc,	0x09dd,	1},

		2939	 	 	 {0x09df,	0x09e3,	1},

		2940	 	 	 {0x09e6,	0x09fb,	1},

		2941	 	 },

		2942	 }

		2943	

		2944	 var	_Bopomofo	=	&RangeTable{

		2945	 	 R16:	[]Range16{

		2946	 	 	 {0x02ea,	0x02eb,	1},

		2947	 	 	 {0x3105,	0x312d,	1},

		2948	 	 	 {0x31a0,	0x31ba,	1},

		2949	 	 },

		2950	 }

		2951	

		2952	 var	_Brahmi	=	&RangeTable{

		2953	 	 R16:	[]Range16{},

		2954	 	 R32:	[]Range32{

		2955	 	 	 {0x11000,	0x1104d,	1},

		2956	 	 	 {0x11052,	0x1106f,	1},

		2957	 	 },

		2958	 }

		2959	

		2960	 var	_Braille	=	&RangeTable{

		2961	 	 R16:	[]Range16{

		2962	 	 	 {0x2800,	0x28ff,	1},

		2963	 	 },

		2964	 }

		2965	

		2966	 var	_Buginese	=	&RangeTable{

		2967	 	 R16:	[]Range16{

		2968	 	 	 {0x1a00,	0x1a1b,	1},

		2969	 	 	 {0x1a1e,	0x1a1f,	1},

		2970	 	 },

		2971	 }

		2972	

		2973	 var	_Buhid	=	&RangeTable{

		2974	 	 R16:	[]Range16{

		2975	 	 	 {0x1740,	0x1753,	1},

		2976	 	 },

		2977	 }

		2978	

		2979	 var	_Canadian_Aboriginal	=	&RangeTable{

		2980	 	 R16:	[]Range16{

		2981	 	 	 {0x1400,	0x167f,	1},

		2982	 	 	 {0x18b0,	0x18f5,	1},

		2983	 	 },

		2984	 }

		2985	

		2986	 var	_Carian	=	&RangeTable{

		2987	 	 R16:	[]Range16{},

		2988	 	 R32:	[]Range32{

		2989	 	 	 {0x102a0,	0x102d0,	1},

		2990	 	 },

		2991	 }

		2992	

		2993	 var	_Cham	=	&RangeTable{

		2994	 	 R16:	[]Range16{

		2995	 	 	 {0xaa00,	0xaa36,	1},

		2996	 	 	 {0xaa40,	0xaa4d,	1},

		2997	 	 	 {0xaa50,	0xaa59,	1},

		2998	 	 	 {0xaa5c,	0xaa5f,	1},

		2999	 	 },

		3000	 }

		3001	

		3002	 var	_Cherokee	=	&RangeTable{

		3003	 	 R16:	[]Range16{

		3004	 	 	 {0x13a0,	0x13f4,	1},

		3005	 	 },

		3006	 }

		3007	

		3008	 var	_Common	=	&RangeTable{

		3009	 	 R16:	[]Range16{

		3010	 	 	 {0x0000,	0x0040,	1},

		3011	 	 	 {0x005b,	0x0060,	1},

		3012	 	 	 {0x007b,	0x00a9,	1},

		3013	 	 	 {0x00ab,	0x00b9,	1},

		3014	 	 	 {0x00bb,	0x00bf,	1},

		3015	 	 	 {0x00d7,	0x00d7,	1},

		3016	 	 	 {0x00f7,	0x00f7,	1},

		3017	 	 	 {0x02b9,	0x02df,	1},

		3018	 	 	 {0x02e5,	0x02e9,	1},

		3019	 	 	 {0x02ec,	0x02ff,	1},

		3020	 	 	 {0x0374,	0x0374,	1},

		3021	 	 	 {0x037e,	0x037e,	1},

		3022	 	 	 {0x0385,	0x0385,	1},

		3023	 	 	 {0x0387,	0x0387,	1},

		3024	 	 	 {0x0589,	0x0589,	1},

		3025	 	 	 {0x060c,	0x060c,	1},

		3026	 	 	 {0x061b,	0x061b,	1},

		3027	 	 	 {0x061f,	0x061f,	1},

		3028	 	 	 {0x0640,	0x0640,	1},

		3029	 	 	 {0x0660,	0x0669,	1},

		3030	 	 	 {0x06dd,	0x06dd,	1},

		3031	 	 	 {0x0964,	0x0965,	1},

		3032	 	 	 {0x0970,	0x0970,	1},

		3033	 	 	 {0x0e3f,	0x0e3f,	1},

		3034	 	 	 {0x0fd5,	0x0fd8,	1},

		3035	 	 	 {0x10fb,	0x10fb,	1},

		3036	 	 	 {0x16eb,	0x16ed,	1},

		3037	 	 	 {0x1735,	0x1736,	1},

		3038	 	 	 {0x1802,	0x1803,	1},

		3039	 	 	 {0x1805,	0x1805,	1},

		3040	 	 	 {0x1cd3,	0x1cd3,	1},

		3041	 	 	 {0x1ce1,	0x1ce1,	1},

		3042	 	 	 {0x1ce9,	0x1cec,	1},

		3043	 	 	 {0x1cee,	0x1cf2,	1},

		3044	 	 	 {0x2000,	0x200b,	1},

		3045	 	 	 {0x200e,	0x2064,	1},

		3046	 	 	 {0x206a,	0x2070,	1},

		3047	 	 	 {0x2074,	0x207e,	1},

		3048	 	 	 {0x2080,	0x208e,	1},

		3049	 	 	 {0x20a0,	0x20b9,	1},

		3050	 	 	 {0x2100,	0x2125,	1},

		3051	 	 	 {0x2127,	0x2129,	1},

		3052	 	 	 {0x212c,	0x2131,	1},

		3053	 	 	 {0x2133,	0x214d,	1},

		3054	 	 	 {0x214f,	0x215f,	1},

		3055	 	 	 {0x2189,	0x2189,	1},

		3056	 	 	 {0x2190,	0x23f3,	1},

		3057	 	 	 {0x2400,	0x2426,	1},

		3058	 	 	 {0x2440,	0x244a,	1},

		3059	 	 	 {0x2460,	0x26ff,	1},

		3060	 	 	 {0x2701,	0x27ca,	1},

		3061	 	 	 {0x27cc,	0x27cc,	1},

		3062	 	 	 {0x27ce,	0x27ff,	1},

		3063	 	 	 {0x2900,	0x2b4c,	1},

		3064	 	 	 {0x2b50,	0x2b59,	1},

		3065	 	 	 {0x2e00,	0x2e31,	1},

		3066	 	 	 {0x2ff0,	0x2ffb,	1},

		3067	 	 	 {0x3000,	0x3004,	1},

		3068	 	 	 {0x3006,	0x3006,	1},

		3069	 	 	 {0x3008,	0x3020,	1},

		3070	 	 	 {0x3030,	0x3037,	1},

		3071	 	 	 {0x303c,	0x303f,	1},

		3072	 	 	 {0x309b,	0x309c,	1},

		3073	 	 	 {0x30a0,	0x30a0,	1},

		3074	 	 	 {0x30fb,	0x30fc,	1},

		3075	 	 	 {0x3190,	0x319f,	1},

		3076	 	 	 {0x31c0,	0x31e3,	1},

		3077	 	 	 {0x3220,	0x325f,	1},

		3078	 	 	 {0x327f,	0x32cf,	1},

		3079	 	 	 {0x3358,	0x33ff,	1},

		3080	 	 	 {0x4dc0,	0x4dff,	1},

		3081	 	 	 {0xa700,	0xa721,	1},

		3082	 	 	 {0xa788,	0xa78a,	1},

		3083	 	 	 {0xa830,	0xa839,	1},

		3084	 	 	 {0xfd3e,	0xfd3f,	1},

		3085	 	 	 {0xfdfd,	0xfdfd,	1},

		3086	 	 	 {0xfe10,	0xfe19,	1},

		3087	 	 	 {0xfe30,	0xfe52,	1},

		3088	 	 	 {0xfe54,	0xfe66,	1},

		3089	 	 	 {0xfe68,	0xfe6b,	1},

		3090	 	 	 {0xfeff,	0xfeff,	1},

		3091	 	 	 {0xff01,	0xff20,	1},

		3092	 	 	 {0xff3b,	0xff40,	1},

		3093	 	 	 {0xff5b,	0xff65,	1},

		3094	 	 	 {0xff70,	0xff70,	1},

		3095	 	 	 {0xff9e,	0xff9f,	1},

		3096	 	 	 {0xffe0,	0xffe6,	1},

		3097	 	 	 {0xffe8,	0xffee,	1},

		3098	 	 	 {0xfff9,	0xfffd,	1},

		3099	 	 },

		3100	 	 R32:	[]Range32{

		3101	 	 	 {0x10100,	0x10102,	1},

		3102	 	 	 {0x10107,	0x10133,	1},

		3103	 	 	 {0x10137,	0x1013f,	1},

		3104	 	 	 {0x10190,	0x1019b,	1},

		3105	 	 	 {0x101d0,	0x101fc,	1},

		3106	 	 	 {0x1d000,	0x1d0f5,	1},

		3107	 	 	 {0x1d100,	0x1d126,	1},

		3108	 	 	 {0x1d129,	0x1d166,	1},

		3109	 	 	 {0x1d16a,	0x1d17a,	1},

		3110	 	 	 {0x1d183,	0x1d184,	1},

		3111	 	 	 {0x1d18c,	0x1d1a9,	1},

		3112	 	 	 {0x1d1ae,	0x1d1dd,	1},

		3113	 	 	 {0x1d300,	0x1d356,	1},

		3114	 	 	 {0x1d360,	0x1d371,	1},

		3115	 	 	 {0x1d400,	0x1d454,	1},

		3116	 	 	 {0x1d456,	0x1d49c,	1},

		3117	 	 	 {0x1d49e,	0x1d49f,	1},

		3118	 	 	 {0x1d4a2,	0x1d4a2,	1},

		3119	 	 	 {0x1d4a5,	0x1d4a6,	1},

		3120	 	 	 {0x1d4a9,	0x1d4ac,	1},

		3121	 	 	 {0x1d4ae,	0x1d4b9,	1},

		3122	 	 	 {0x1d4bb,	0x1d4bb,	1},

		3123	 	 	 {0x1d4bd,	0x1d4c3,	1},

		3124	 	 	 {0x1d4c5,	0x1d505,	1},

		3125	 	 	 {0x1d507,	0x1d50a,	1},

		3126	 	 	 {0x1d50d,	0x1d514,	1},

		3127	 	 	 {0x1d516,	0x1d51c,	1},

		3128	 	 	 {0x1d51e,	0x1d539,	1},

		3129	 	 	 {0x1d53b,	0x1d53e,	1},

		3130	 	 	 {0x1d540,	0x1d544,	1},

		3131	 	 	 {0x1d546,	0x1d546,	1},

		3132	 	 	 {0x1d54a,	0x1d550,	1},

		3133	 	 	 {0x1d552,	0x1d6a5,	1},

		3134	 	 	 {0x1d6a8,	0x1d7cb,	1},

		3135	 	 	 {0x1d7ce,	0x1d7ff,	1},

		3136	 	 	 {0x1f000,	0x1f02b,	1},

		3137	 	 	 {0x1f030,	0x1f093,	1},

		3138	 	 	 {0x1f0a0,	0x1f0ae,	1},

		3139	 	 	 {0x1f0b1,	0x1f0be,	1},

		3140	 	 	 {0x1f0c1,	0x1f0cf,	1},

		3141	 	 	 {0x1f0d1,	0x1f0df,	1},

		3142	 	 	 {0x1f100,	0x1f10a,	1},

		3143	 	 	 {0x1f110,	0x1f12e,	1},

		3144	 	 	 {0x1f130,	0x1f169,	1},

		3145	 	 	 {0x1f170,	0x1f19a,	1},

		3146	 	 	 {0x1f1e6,	0x1f1ff,	1},

		3147	 	 	 {0x1f201,	0x1f202,	1},

		3148	 	 	 {0x1f210,	0x1f23a,	1},

		3149	 	 	 {0x1f240,	0x1f248,	1},

		3150	 	 	 {0x1f250,	0x1f251,	1},

		3151	 	 	 {0x1f300,	0x1f320,	1},

		3152	 	 	 {0x1f330,	0x1f335,	1},

		3153	 	 	 {0x1f337,	0x1f37c,	1},

		3154	 	 	 {0x1f380,	0x1f393,	1},

		3155	 	 	 {0x1f3a0,	0x1f3c4,	1},

		3156	 	 	 {0x1f3c6,	0x1f3ca,	1},

		3157	 	 	 {0x1f3e0,	0x1f3f0,	1},

		3158	 	 	 {0x1f400,	0x1f43e,	1},

		3159	 	 	 {0x1f440,	0x1f440,	1},

		3160	 	 	 {0x1f442,	0x1f4f7,	1},

		3161	 	 	 {0x1f4f9,	0x1f4fc,	1},

		3162	 	 	 {0x1f500,	0x1f53d,	1},

		3163	 	 	 {0x1f550,	0x1f567,	1},

		3164	 	 	 {0x1f5fb,	0x1f5ff,	1},

		3165	 	 	 {0x1f601,	0x1f610,	1},

		3166	 	 	 {0x1f612,	0x1f614,	1},

		3167	 	 	 {0x1f616,	0x1f616,	1},

		3168	 	 	 {0x1f618,	0x1f618,	1},

		3169	 	 	 {0x1f61a,	0x1f61a,	1},

		3170	 	 	 {0x1f61c,	0x1f61e,	1},

		3171	 	 	 {0x1f620,	0x1f625,	1},

		3172	 	 	 {0x1f628,	0x1f62b,	1},

		3173	 	 	 {0x1f62d,	0x1f62d,	1},

		3174	 	 	 {0x1f630,	0x1f633,	1},

		3175	 	 	 {0x1f635,	0x1f640,	1},

		3176	 	 	 {0x1f645,	0x1f64f,	1},

		3177	 	 	 {0x1f680,	0x1f6c5,	1},

		3178	 	 	 {0x1f700,	0x1f773,	1},

		3179	 	 	 {0xe0001,	0xe0001,	1},

		3180	 	 	 {0xe0020,	0xe007f,	1},

		3181	 	 },

		3182	 }

		3183	

		3184	 var	_Coptic	=	&RangeTable{

		3185	 	 R16:	[]Range16{

		3186	 	 	 {0x03e2,	0x03ef,	1},

		3187	 	 	 {0x2c80,	0x2cf1,	1},

		3188	 	 	 {0x2cf9,	0x2cff,	1},

		3189	 	 },

		3190	 }

		3191	

		3192	 var	_Cuneiform	=	&RangeTable{

		3193	 	 R16:	[]Range16{},

		3194	 	 R32:	[]Range32{

		3195	 	 	 {0x12000,	0x1236e,	1},

		3196	 	 	 {0x12400,	0x12462,	1},

		3197	 	 	 {0x12470,	0x12473,	1},

		3198	 	 },

		3199	 }

		3200	

		3201	 var	_Cypriot	=	&RangeTable{

		3202	 	 R16:	[]Range16{},

		3203	 	 R32:	[]Range32{

		3204	 	 	 {0x10800,	0x10805,	1},

		3205	 	 	 {0x10808,	0x10808,	1},

		3206	 	 	 {0x1080a,	0x10835,	1},

		3207	 	 	 {0x10837,	0x10838,	1},

		3208	 	 	 {0x1083c,	0x1083c,	1},

		3209	 	 	 {0x1083f,	0x1083f,	1},

		3210	 	 },

		3211	 }

		3212	

		3213	 var	_Cyrillic	=	&RangeTable{

		3214	 	 R16:	[]Range16{

		3215	 	 	 {0x0400,	0x0484,	1},

		3216	 	 	 {0x0487,	0x0527,	1},

		3217	 	 	 {0x1d2b,	0x1d2b,	1},

		3218	 	 	 {0x1d78,	0x1d78,	1},

		3219	 	 	 {0x2de0,	0x2dff,	1},

		3220	 	 	 {0xa640,	0xa673,	1},

		3221	 	 	 {0xa67c,	0xa697,	1},

		3222	 	 },

		3223	 }

		3224	

		3225	 var	_Deseret	=	&RangeTable{

		3226	 	 R16:	[]Range16{},

		3227	 	 R32:	[]Range32{

		3228	 	 	 {0x10400,	0x1044f,	1},

		3229	 	 },

		3230	 }

		3231	

		3232	 var	_Devanagari	=	&RangeTable{

		3233	 	 R16:	[]Range16{

		3234	 	 	 {0x0900,	0x0950,	1},

		3235	 	 	 {0x0953,	0x0963,	1},

		3236	 	 	 {0x0966,	0x096f,	1},

		3237	 	 	 {0x0971,	0x0977,	1},

		3238	 	 	 {0x0979,	0x097f,	1},

		3239	 	 	 {0xa8e0,	0xa8fb,	1},

		3240	 	 },

		3241	 }

		3242	

		3243	 var	_Egyptian_Hieroglyphs	=	&RangeTable{

		3244	 	 R16:	[]Range16{},

		3245	 	 R32:	[]Range32{

		3246	 	 	 {0x13000,	0x1342e,	1},

		3247	 	 },

		3248	 }

		3249	

		3250	 var	_Ethiopic	=	&RangeTable{

		3251	 	 R16:	[]Range16{

		3252	 	 	 {0x1200,	0x1248,	1},

		3253	 	 	 {0x124a,	0x124d,	1},

		3254	 	 	 {0x1250,	0x1256,	1},

		3255	 	 	 {0x1258,	0x1258,	1},

		3256	 	 	 {0x125a,	0x125d,	1},

		3257	 	 	 {0x1260,	0x1288,	1},

		3258	 	 	 {0x128a,	0x128d,	1},

		3259	 	 	 {0x1290,	0x12b0,	1},

		3260	 	 	 {0x12b2,	0x12b5,	1},

		3261	 	 	 {0x12b8,	0x12be,	1},

		3262	 	 	 {0x12c0,	0x12c0,	1},

		3263	 	 	 {0x12c2,	0x12c5,	1},

		3264	 	 	 {0x12c8,	0x12d6,	1},

		3265	 	 	 {0x12d8,	0x1310,	1},

		3266	 	 	 {0x1312,	0x1315,	1},

		3267	 	 	 {0x1318,	0x135a,	1},

		3268	 	 	 {0x135d,	0x137c,	1},

		3269	 	 	 {0x1380,	0x1399,	1},

		3270	 	 	 {0x2d80,	0x2d96,	1},

		3271	 	 	 {0x2da0,	0x2da6,	1},

		3272	 	 	 {0x2da8,	0x2dae,	1},

		3273	 	 	 {0x2db0,	0x2db6,	1},

		3274	 	 	 {0x2db8,	0x2dbe,	1},

		3275	 	 	 {0x2dc0,	0x2dc6,	1},

		3276	 	 	 {0x2dc8,	0x2dce,	1},

		3277	 	 	 {0x2dd0,	0x2dd6,	1},

		3278	 	 	 {0x2dd8,	0x2dde,	1},

		3279	 	 	 {0xab01,	0xab06,	1},

		3280	 	 	 {0xab09,	0xab0e,	1},

		3281	 	 	 {0xab11,	0xab16,	1},

		3282	 	 	 {0xab20,	0xab26,	1},

		3283	 	 	 {0xab28,	0xab2e,	1},

		3284	 	 },

		3285	 }

		3286	

		3287	 var	_Georgian	=	&RangeTable{

		3288	 	 R16:	[]Range16{

		3289	 	 	 {0x10a0,	0x10c5,	1},

		3290	 	 	 {0x10d0,	0x10fa,	1},

		3291	 	 	 {0x10fc,	0x10fc,	1},

		3292	 	 	 {0x2d00,	0x2d25,	1},

		3293	 	 },

		3294	 }

		3295	

		3296	 var	_Glagolitic	=	&RangeTable{

		3297	 	 R16:	[]Range16{

		3298	 	 	 {0x2c00,	0x2c2e,	1},

		3299	 	 	 {0x2c30,	0x2c5e,	1},

		3300	 	 },

		3301	 }

		3302	

		3303	 var	_Gothic	=	&RangeTable{

		3304	 	 R16:	[]Range16{},

		3305	 	 R32:	[]Range32{

		3306	 	 	 {0x10330,	0x1034a,	1},

		3307	 	 },

		3308	 }

		3309	

		3310	 var	_Greek	=	&RangeTable{

		3311	 	 R16:	[]Range16{

		3312	 	 	 {0x0370,	0x0373,	1},

		3313	 	 	 {0x0375,	0x0377,	1},

		3314	 	 	 {0x037a,	0x037d,	1},

		3315	 	 	 {0x0384,	0x0384,	1},

		3316	 	 	 {0x0386,	0x0386,	1},

		3317	 	 	 {0x0388,	0x038a,	1},

		3318	 	 	 {0x038c,	0x038c,	1},

		3319	 	 	 {0x038e,	0x03a1,	1},

		3320	 	 	 {0x03a3,	0x03e1,	1},

		3321	 	 	 {0x03f0,	0x03ff,	1},

		3322	 	 	 {0x1d26,	0x1d2a,	1},

		3323	 	 	 {0x1d5d,	0x1d61,	1},

		3324	 	 	 {0x1d66,	0x1d6a,	1},

		3325	 	 	 {0x1dbf,	0x1dbf,	1},

		3326	 	 	 {0x1f00,	0x1f15,	1},

		3327	 	 	 {0x1f18,	0x1f1d,	1},

		3328	 	 	 {0x1f20,	0x1f45,	1},

		3329	 	 	 {0x1f48,	0x1f4d,	1},

		3330	 	 	 {0x1f50,	0x1f57,	1},

		3331	 	 	 {0x1f59,	0x1f59,	1},

		3332	 	 	 {0x1f5b,	0x1f5b,	1},

		3333	 	 	 {0x1f5d,	0x1f5d,	1},

		3334	 	 	 {0x1f5f,	0x1f7d,	1},

		3335	 	 	 {0x1f80,	0x1fb4,	1},

		3336	 	 	 {0x1fb6,	0x1fc4,	1},

		3337	 	 	 {0x1fc6,	0x1fd3,	1},

		3338	 	 	 {0x1fd6,	0x1fdb,	1},

		3339	 	 	 {0x1fdd,	0x1fef,	1},

		3340	 	 	 {0x1ff2,	0x1ff4,	1},

		3341	 	 	 {0x1ff6,	0x1ffe,	1},

		3342	 	 	 {0x2126,	0x2126,	1},

		3343	 	 },

		3344	 	 R32:	[]Range32{

		3345	 	 	 {0x10140,	0x1018a,	1},

		3346	 	 	 {0x1d200,	0x1d245,	1},

		3347	 	 },

		3348	 }

		3349	

		3350	 var	_Gujarati	=	&RangeTable{

		3351	 	 R16:	[]Range16{

		3352	 	 	 {0x0a81,	0x0a83,	1},

		3353	 	 	 {0x0a85,	0x0a8d,	1},

		3354	 	 	 {0x0a8f,	0x0a91,	1},

		3355	 	 	 {0x0a93,	0x0aa8,	1},

		3356	 	 	 {0x0aaa,	0x0ab0,	1},

		3357	 	 	 {0x0ab2,	0x0ab3,	1},

		3358	 	 	 {0x0ab5,	0x0ab9,	1},

		3359	 	 	 {0x0abc,	0x0ac5,	1},

		3360	 	 	 {0x0ac7,	0x0ac9,	1},

		3361	 	 	 {0x0acb,	0x0acd,	1},

		3362	 	 	 {0x0ad0,	0x0ad0,	1},

		3363	 	 	 {0x0ae0,	0x0ae3,	1},

		3364	 	 	 {0x0ae6,	0x0aef,	1},

		3365	 	 	 {0x0af1,	0x0af1,	1},

		3366	 	 },

		3367	 }

		3368	

		3369	 var	_Gurmukhi	=	&RangeTable{

		3370	 	 R16:	[]Range16{

		3371	 	 	 {0x0a01,	0x0a03,	1},

		3372	 	 	 {0x0a05,	0x0a0a,	1},

		3373	 	 	 {0x0a0f,	0x0a10,	1},

		3374	 	 	 {0x0a13,	0x0a28,	1},

		3375	 	 	 {0x0a2a,	0x0a30,	1},

		3376	 	 	 {0x0a32,	0x0a33,	1},

		3377	 	 	 {0x0a35,	0x0a36,	1},

		3378	 	 	 {0x0a38,	0x0a39,	1},

		3379	 	 	 {0x0a3c,	0x0a3c,	1},

		3380	 	 	 {0x0a3e,	0x0a42,	1},

		3381	 	 	 {0x0a47,	0x0a48,	1},

		3382	 	 	 {0x0a4b,	0x0a4d,	1},

		3383	 	 	 {0x0a51,	0x0a51,	1},

		3384	 	 	 {0x0a59,	0x0a5c,	1},

		3385	 	 	 {0x0a5e,	0x0a5e,	1},

		3386	 	 	 {0x0a66,	0x0a75,	1},

		3387	 	 },

		3388	 }

		3389	

		3390	 var	_Han	=	&RangeTable{

		3391	 	 R16:	[]Range16{

		3392	 	 	 {0x2e80,	0x2e99,	1},

		3393	 	 	 {0x2e9b,	0x2ef3,	1},

		3394	 	 	 {0x2f00,	0x2fd5,	1},

		3395	 	 	 {0x3005,	0x3005,	1},

		3396	 	 	 {0x3007,	0x3007,	1},

		3397	 	 	 {0x3021,	0x3029,	1},

		3398	 	 	 {0x3038,	0x303b,	1},

		3399	 	 	 {0x3400,	0x4db5,	1},

		3400	 	 	 {0x4e00,	0x9fcb,	1},

		3401	 	 	 {0xf900,	0xfa2d,	1},

		3402	 	 	 {0xfa30,	0xfa6d,	1},

		3403	 	 	 {0xfa70,	0xfad9,	1},

		3404	 	 },

		3405	 	 R32:	[]Range32{

		3406	 	 	 {0x20000,	0x2a6d6,	1},

		3407	 	 	 {0x2a700,	0x2b734,	1},

		3408	 	 	 {0x2b740,	0x2b81d,	1},

		3409	 	 	 {0x2f800,	0x2fa1d,	1},

		3410	 	 },

		3411	 }

		3412	

		3413	 var	_Hangul	=	&RangeTable{

		3414	 	 R16:	[]Range16{

		3415	 	 	 {0x1100,	0x11ff,	1},

		3416	 	 	 {0x302e,	0x302f,	1},

		3417	 	 	 {0x3131,	0x318e,	1},

		3418	 	 	 {0x3200,	0x321e,	1},

		3419	 	 	 {0x3260,	0x327e,	1},

		3420	 	 	 {0xa960,	0xa97c,	1},

		3421	 	 	 {0xac00,	0xd7a3,	1},

		3422	 	 	 {0xd7b0,	0xd7c6,	1},

		3423	 	 	 {0xd7cb,	0xd7fb,	1},

		3424	 	 	 {0xffa0,	0xffbe,	1},

		3425	 	 	 {0xffc2,	0xffc7,	1},

		3426	 	 	 {0xffca,	0xffcf,	1},

		3427	 	 	 {0xffd2,	0xffd7,	1},

		3428	 	 	 {0xffda,	0xffdc,	1},

		3429	 	 },

		3430	 }

		3431	

		3432	 var	_Hanunoo	=	&RangeTable{

		3433	 	 R16:	[]Range16{

		3434	 	 	 {0x1720,	0x1734,	1},

		3435	 	 },

		3436	 }

		3437	

		3438	 var	_Hebrew	=	&RangeTable{

		3439	 	 R16:	[]Range16{

		3440	 	 	 {0x0591,	0x05c7,	1},

		3441	 	 	 {0x05d0,	0x05ea,	1},

		3442	 	 	 {0x05f0,	0x05f4,	1},

		3443	 	 	 {0xfb1d,	0xfb36,	1},

		3444	 	 	 {0xfb38,	0xfb3c,	1},

		3445	 	 	 {0xfb3e,	0xfb3e,	1},

		3446	 	 	 {0xfb40,	0xfb41,	1},

		3447	 	 	 {0xfb43,	0xfb44,	1},

		3448	 	 	 {0xfb46,	0xfb4f,	1},

		3449	 	 },

		3450	 }

		3451	

		3452	 var	_Hiragana	=	&RangeTable{

		3453	 	 R16:	[]Range16{

		3454	 	 	 {0x3041,	0x3096,	1},

		3455	 	 	 {0x309d,	0x309f,	1},

		3456	 	 },

		3457	 	 R32:	[]Range32{

		3458	 	 	 {0x1b001,	0x1b001,	1},

		3459	 	 	 {0x1f200,	0x1f200,	1},

		3460	 	 },

		3461	 }

		3462	

		3463	 var	_Imperial_Aramaic	=	&RangeTable{

		3464	 	 R16:	[]Range16{},

		3465	 	 R32:	[]Range32{

		3466	 	 	 {0x10840,	0x10855,	1},

		3467	 	 	 {0x10857,	0x1085f,	1},

		3468	 	 },

		3469	 }

		3470	

		3471	 var	_Inherited	=	&RangeTable{

		3472	 	 R16:	[]Range16{

		3473	 	 	 {0x0300,	0x036f,	1},

		3474	 	 	 {0x0485,	0x0486,	1},

		3475	 	 	 {0x064b,	0x0655,	1},

		3476	 	 	 {0x065f,	0x065f,	1},

		3477	 	 	 {0x0670,	0x0670,	1},

		3478	 	 	 {0x0951,	0x0952,	1},

		3479	 	 	 {0x1cd0,	0x1cd2,	1},

		3480	 	 	 {0x1cd4,	0x1ce0,	1},

		3481	 	 	 {0x1ce2,	0x1ce8,	1},

		3482	 	 	 {0x1ced,	0x1ced,	1},

		3483	 	 	 {0x1dc0,	0x1de6,	1},

		3484	 	 	 {0x1dfc,	0x1dff,	1},

		3485	 	 	 {0x200c,	0x200d,	1},

		3486	 	 	 {0x20d0,	0x20f0,	1},

		3487	 	 	 {0x302a,	0x302d,	1},

		3488	 	 	 {0x3099,	0x309a,	1},

		3489	 	 	 {0xfe00,	0xfe0f,	1},

		3490	 	 	 {0xfe20,	0xfe26,	1},

		3491	 	 },

		3492	 	 R32:	[]Range32{

		3493	 	 	 {0x101fd,	0x101fd,	1},

		3494	 	 	 {0x1d167,	0x1d169,	1},

		3495	 	 	 {0x1d17b,	0x1d182,	1},

		3496	 	 	 {0x1d185,	0x1d18b,	1},

		3497	 	 	 {0x1d1aa,	0x1d1ad,	1},

		3498	 	 	 {0xe0100,	0xe01ef,	1},

		3499	 	 },

		3500	 }

		3501	

		3502	 var	_Inscriptional_Pahlavi	=	&RangeTable{

		3503	 	 R16:	[]Range16{},

		3504	 	 R32:	[]Range32{

		3505	 	 	 {0x10b60,	0x10b72,	1},

		3506	 	 	 {0x10b78,	0x10b7f,	1},

		3507	 	 },

		3508	 }

		3509	

		3510	 var	_Inscriptional_Parthian	=	&RangeTable{

		3511	 	 R16:	[]Range16{},

		3512	 	 R32:	[]Range32{

		3513	 	 	 {0x10b40,	0x10b55,	1},

		3514	 	 	 {0x10b58,	0x10b5f,	1},

		3515	 	 },

		3516	 }

		3517	

		3518	 var	_Javanese	=	&RangeTable{

		3519	 	 R16:	[]Range16{

		3520	 	 	 {0xa980,	0xa9cd,	1},

		3521	 	 	 {0xa9cf,	0xa9d9,	1},

		3522	 	 	 {0xa9de,	0xa9df,	1},

		3523	 	 },

		3524	 }

		3525	

		3526	 var	_Kaithi	=	&RangeTable{

		3527	 	 R16:	[]Range16{},

		3528	 	 R32:	[]Range32{

		3529	 	 	 {0x11080,	0x110c1,	1},

		3530	 	 },

		3531	 }

		3532	

		3533	 var	_Kannada	=	&RangeTable{

		3534	 	 R16:	[]Range16{

		3535	 	 	 {0x0c82,	0x0c83,	1},

		3536	 	 	 {0x0c85,	0x0c8c,	1},

		3537	 	 	 {0x0c8e,	0x0c90,	1},

		3538	 	 	 {0x0c92,	0x0ca8,	1},

		3539	 	 	 {0x0caa,	0x0cb3,	1},

		3540	 	 	 {0x0cb5,	0x0cb9,	1},

		3541	 	 	 {0x0cbc,	0x0cc4,	1},

		3542	 	 	 {0x0cc6,	0x0cc8,	1},

		3543	 	 	 {0x0cca,	0x0ccd,	1},

		3544	 	 	 {0x0cd5,	0x0cd6,	1},

		3545	 	 	 {0x0cde,	0x0cde,	1},

		3546	 	 	 {0x0ce0,	0x0ce3,	1},

		3547	 	 	 {0x0ce6,	0x0cef,	1},

		3548	 	 	 {0x0cf1,	0x0cf2,	1},

		3549	 	 },

		3550	 }

		3551	

		3552	 var	_Katakana	=	&RangeTable{

		3553	 	 R16:	[]Range16{

		3554	 	 	 {0x30a1,	0x30fa,	1},

		3555	 	 	 {0x30fd,	0x30ff,	1},

		3556	 	 	 {0x31f0,	0x31ff,	1},

		3557	 	 	 {0x32d0,	0x32fe,	1},

		3558	 	 	 {0x3300,	0x3357,	1},

		3559	 	 	 {0xff66,	0xff6f,	1},

		3560	 	 	 {0xff71,	0xff9d,	1},

		3561	 	 },

		3562	 	 R32:	[]Range32{

		3563	 	 	 {0x1b000,	0x1b000,	1},

		3564	 	 },

		3565	 }

		3566	

		3567	 var	_Kayah_Li	=	&RangeTable{

		3568	 	 R16:	[]Range16{

		3569	 	 	 {0xa900,	0xa92f,	1},

		3570	 	 },

		3571	 }

		3572	

		3573	 var	_Kharoshthi	=	&RangeTable{

		3574	 	 R16:	[]Range16{},

		3575	 	 R32:	[]Range32{

		3576	 	 	 {0x10a00,	0x10a03,	1},

		3577	 	 	 {0x10a05,	0x10a06,	1},

		3578	 	 	 {0x10a0c,	0x10a13,	1},

		3579	 	 	 {0x10a15,	0x10a17,	1},

		3580	 	 	 {0x10a19,	0x10a33,	1},

		3581	 	 	 {0x10a38,	0x10a3a,	1},

		3582	 	 	 {0x10a3f,	0x10a47,	1},

		3583	 	 	 {0x10a50,	0x10a58,	1},

		3584	 	 },

		3585	 }

		3586	

		3587	 var	_Khmer	=	&RangeTable{

		3588	 	 R16:	[]Range16{

		3589	 	 	 {0x1780,	0x17dd,	1},

		3590	 	 	 {0x17e0,	0x17e9,	1},

		3591	 	 	 {0x17f0,	0x17f9,	1},

		3592	 	 	 {0x19e0,	0x19ff,	1},

		3593	 	 },

		3594	 }

		3595	

		3596	 var	_Lao	=	&RangeTable{

		3597	 	 R16:	[]Range16{

		3598	 	 	 {0x0e81,	0x0e82,	1},

		3599	 	 	 {0x0e84,	0x0e84,	1},

		3600	 	 	 {0x0e87,	0x0e88,	1},

		3601	 	 	 {0x0e8a,	0x0e8a,	1},

		3602	 	 	 {0x0e8d,	0x0e8d,	1},

		3603	 	 	 {0x0e94,	0x0e97,	1},

		3604	 	 	 {0x0e99,	0x0e9f,	1},

		3605	 	 	 {0x0ea1,	0x0ea3,	1},

		3606	 	 	 {0x0ea5,	0x0ea5,	1},

		3607	 	 	 {0x0ea7,	0x0ea7,	1},

		3608	 	 	 {0x0eaa,	0x0eab,	1},

		3609	 	 	 {0x0ead,	0x0eb9,	1},

		3610	 	 	 {0x0ebb,	0x0ebd,	1},

		3611	 	 	 {0x0ec0,	0x0ec4,	1},

		3612	 	 	 {0x0ec6,	0x0ec6,	1},

		3613	 	 	 {0x0ec8,	0x0ecd,	1},

		3614	 	 	 {0x0ed0,	0x0ed9,	1},

		3615	 	 	 {0x0edc,	0x0edd,	1},

		3616	 	 },

		3617	 }

		3618	

		3619	 var	_Latin	=	&RangeTable{

		3620	 	 R16:	[]Range16{

		3621	 	 	 {0x0041,	0x005a,	1},

		3622	 	 	 {0x0061,	0x007a,	1},

		3623	 	 	 {0x00aa,	0x00aa,	1},

		3624	 	 	 {0x00ba,	0x00ba,	1},

		3625	 	 	 {0x00c0,	0x00d6,	1},

		3626	 	 	 {0x00d8,	0x00f6,	1},

		3627	 	 	 {0x00f8,	0x02b8,	1},

		3628	 	 	 {0x02e0,	0x02e4,	1},

		3629	 	 	 {0x1d00,	0x1d25,	1},

		3630	 	 	 {0x1d2c,	0x1d5c,	1},

		3631	 	 	 {0x1d62,	0x1d65,	1},

		3632	 	 	 {0x1d6b,	0x1d77,	1},

		3633	 	 	 {0x1d79,	0x1dbe,	1},

		3634	 	 	 {0x1e00,	0x1eff,	1},

		3635	 	 	 {0x2071,	0x2071,	1},

		3636	 	 	 {0x207f,	0x207f,	1},

		3637	 	 	 {0x2090,	0x209c,	1},

		3638	 	 	 {0x212a,	0x212b,	1},

		3639	 	 	 {0x2132,	0x2132,	1},

		3640	 	 	 {0x214e,	0x214e,	1},

		3641	 	 	 {0x2160,	0x2188,	1},

		3642	 	 	 {0x2c60,	0x2c7f,	1},

		3643	 	 	 {0xa722,	0xa787,	1},

		3644	 	 	 {0xa78b,	0xa78e,	1},

		3645	 	 	 {0xa790,	0xa791,	1},

		3646	 	 	 {0xa7a0,	0xa7a9,	1},

		3647	 	 	 {0xa7fa,	0xa7ff,	1},

		3648	 	 	 {0xfb00,	0xfb06,	1},

		3649	 	 	 {0xff21,	0xff3a,	1},

		3650	 	 	 {0xff41,	0xff5a,	1},

		3651	 	 },

		3652	 }

		3653	

		3654	 var	_Lepcha	=	&RangeTable{

		3655	 	 R16:	[]Range16{

		3656	 	 	 {0x1c00,	0x1c37,	1},

		3657	 	 	 {0x1c3b,	0x1c49,	1},

		3658	 	 	 {0x1c4d,	0x1c4f,	1},

		3659	 	 },

		3660	 }

		3661	

		3662	 var	_Limbu	=	&RangeTable{

		3663	 	 R16:	[]Range16{

		3664	 	 	 {0x1900,	0x191c,	1},

		3665	 	 	 {0x1920,	0x192b,	1},

		3666	 	 	 {0x1930,	0x193b,	1},

		3667	 	 	 {0x1940,	0x1940,	1},

		3668	 	 	 {0x1944,	0x194f,	1},

		3669	 	 },

		3670	 }

		3671	

		3672	 var	_Linear_B	=	&RangeTable{

		3673	 	 R16:	[]Range16{},

		3674	 	 R32:	[]Range32{

		3675	 	 	 {0x10000,	0x1000b,	1},

		3676	 	 	 {0x1000d,	0x10026,	1},

		3677	 	 	 {0x10028,	0x1003a,	1},

		3678	 	 	 {0x1003c,	0x1003d,	1},

		3679	 	 	 {0x1003f,	0x1004d,	1},

		3680	 	 	 {0x10050,	0x1005d,	1},

		3681	 	 	 {0x10080,	0x100fa,	1},

		3682	 	 },

		3683	 }

		3684	

		3685	 var	_Lisu	=	&RangeTable{

		3686	 	 R16:	[]Range16{

		3687	 	 	 {0xa4d0,	0xa4ff,	1},

		3688	 	 },

		3689	 }

		3690	

		3691	 var	_Lycian	=	&RangeTable{

		3692	 	 R16:	[]Range16{},

		3693	 	 R32:	[]Range32{

		3694	 	 	 {0x10280,	0x1029c,	1},

		3695	 	 },

		3696	 }

		3697	

		3698	 var	_Lydian	=	&RangeTable{

		3699	 	 R16:	[]Range16{},

		3700	 	 R32:	[]Range32{

		3701	 	 	 {0x10920,	0x10939,	1},

		3702	 	 	 {0x1093f,	0x1093f,	1},

		3703	 	 },

		3704	 }

		3705	

		3706	 var	_Malayalam	=	&RangeTable{

		3707	 	 R16:	[]Range16{

		3708	 	 	 {0x0d02,	0x0d03,	1},

		3709	 	 	 {0x0d05,	0x0d0c,	1},

		3710	 	 	 {0x0d0e,	0x0d10,	1},

		3711	 	 	 {0x0d12,	0x0d3a,	1},

		3712	 	 	 {0x0d3d,	0x0d44,	1},

		3713	 	 	 {0x0d46,	0x0d48,	1},

		3714	 	 	 {0x0d4a,	0x0d4e,	1},

		3715	 	 	 {0x0d57,	0x0d57,	1},

		3716	 	 	 {0x0d60,	0x0d63,	1},

		3717	 	 	 {0x0d66,	0x0d75,	1},

		3718	 	 	 {0x0d79,	0x0d7f,	1},

		3719	 	 },

		3720	 }

		3721	

		3722	 var	_Mandaic	=	&RangeTable{

		3723	 	 R16:	[]Range16{

		3724	 	 	 {0x0840,	0x085b,	1},

		3725	 	 	 {0x085e,	0x085e,	1},

		3726	 	 },

		3727	 }

		3728	

		3729	 var	_Meetei_Mayek	=	&RangeTable{

		3730	 	 R16:	[]Range16{

		3731	 	 	 {0xabc0,	0xabed,	1},

		3732	 	 	 {0xabf0,	0xabf9,	1},

		3733	 	 },

		3734	 }

		3735	

		3736	 var	_Mongolian	=	&RangeTable{

		3737	 	 R16:	[]Range16{

		3738	 	 	 {0x1800,	0x1801,	1},

		3739	 	 	 {0x1804,	0x1804,	1},

		3740	 	 	 {0x1806,	0x180e,	1},

		3741	 	 	 {0x1810,	0x1819,	1},

		3742	 	 	 {0x1820,	0x1877,	1},

		3743	 	 	 {0x1880,	0x18aa,	1},

		3744	 	 },

		3745	 }

		3746	

		3747	 var	_Myanmar	=	&RangeTable{

		3748	 	 R16:	[]Range16{

		3749	 	 	 {0x1000,	0x109f,	1},

		3750	 	 	 {0xaa60,	0xaa7b,	1},

		3751	 	 },

		3752	 }

		3753	

		3754	 var	_New_Tai_Lue	=	&RangeTable{

		3755	 	 R16:	[]Range16{

		3756	 	 	 {0x1980,	0x19ab,	1},

		3757	 	 	 {0x19b0,	0x19c9,	1},

		3758	 	 	 {0x19d0,	0x19da,	1},

		3759	 	 	 {0x19de,	0x19df,	1},

		3760	 	 },

		3761	 }

		3762	

		3763	 var	_Nko	=	&RangeTable{

		3764	 	 R16:	[]Range16{

		3765	 	 	 {0x07c0,	0x07fa,	1},

		3766	 	 },

		3767	 }

		3768	

		3769	 var	_Ogham	=	&RangeTable{

		3770	 	 R16:	[]Range16{

		3771	 	 	 {0x1680,	0x169c,	1},

		3772	 	 },

		3773	 }

		3774	

		3775	 var	_Ol_Chiki	=	&RangeTable{

		3776	 	 R16:	[]Range16{

		3777	 	 	 {0x1c50,	0x1c7f,	1},

		3778	 	 },

		3779	 }

		3780	

		3781	 var	_Old_Italic	=	&RangeTable{

		3782	 	 R16:	[]Range16{},

		3783	 	 R32:	[]Range32{

		3784	 	 	 {0x10300,	0x1031e,	1},

		3785	 	 	 {0x10320,	0x10323,	1},

		3786	 	 },

		3787	 }

		3788	

		3789	 var	_Old_Persian	=	&RangeTable{

		3790	 	 R16:	[]Range16{},

		3791	 	 R32:	[]Range32{

		3792	 	 	 {0x103a0,	0x103c3,	1},

		3793	 	 	 {0x103c8,	0x103d5,	1},

		3794	 	 },

		3795	 }

		3796	

		3797	 var	_Old_South_Arabian	=	&RangeTable{

		3798	 	 R16:	[]Range16{},

		3799	 	 R32:	[]Range32{

		3800	 	 	 {0x10a60,	0x10a7f,	1},

		3801	 	 },

		3802	 }

		3803	

		3804	 var	_Old_Turkic	=	&RangeTable{

		3805	 	 R16:	[]Range16{},

		3806	 	 R32:	[]Range32{

		3807	 	 	 {0x10c00,	0x10c48,	1},

		3808	 	 },

		3809	 }

		3810	

		3811	 var	_Oriya	=	&RangeTable{

		3812	 	 R16:	[]Range16{

		3813	 	 	 {0x0b01,	0x0b03,	1},

		3814	 	 	 {0x0b05,	0x0b0c,	1},

		3815	 	 	 {0x0b0f,	0x0b10,	1},

		3816	 	 	 {0x0b13,	0x0b28,	1},

		3817	 	 	 {0x0b2a,	0x0b30,	1},

		3818	 	 	 {0x0b32,	0x0b33,	1},

		3819	 	 	 {0x0b35,	0x0b39,	1},

		3820	 	 	 {0x0b3c,	0x0b44,	1},

		3821	 	 	 {0x0b47,	0x0b48,	1},

		3822	 	 	 {0x0b4b,	0x0b4d,	1},

		3823	 	 	 {0x0b56,	0x0b57,	1},

		3824	 	 	 {0x0b5c,	0x0b5d,	1},

		3825	 	 	 {0x0b5f,	0x0b63,	1},

		3826	 	 	 {0x0b66,	0x0b77,	1},

		3827	 	 },

		3828	 }

		3829	

		3830	 var	_Osmanya	=	&RangeTable{

		3831	 	 R16:	[]Range16{},

		3832	 	 R32:	[]Range32{

		3833	 	 	 {0x10480,	0x1049d,	1},

		3834	 	 	 {0x104a0,	0x104a9,	1},

		3835	 	 },

		3836	 }

		3837	

		3838	 var	_Phags_Pa	=	&RangeTable{

		3839	 	 R16:	[]Range16{

		3840	 	 	 {0xa840,	0xa877,	1},

		3841	 	 },

		3842	 }

		3843	

		3844	 var	_Phoenician	=	&RangeTable{

		3845	 	 R16:	[]Range16{},

		3846	 	 R32:	[]Range32{

		3847	 	 	 {0x10900,	0x1091b,	1},

		3848	 	 	 {0x1091f,	0x1091f,	1},

		3849	 	 },

		3850	 }

		3851	

		3852	 var	_Rejang	=	&RangeTable{

		3853	 	 R16:	[]Range16{

		3854	 	 	 {0xa930,	0xa953,	1},

		3855	 	 	 {0xa95f,	0xa95f,	1},

		3856	 	 },

		3857	 }

		3858	

		3859	 var	_Runic	=	&RangeTable{

		3860	 	 R16:	[]Range16{

		3861	 	 	 {0x16a0,	0x16ea,	1},

		3862	 	 	 {0x16ee,	0x16f0,	1},

		3863	 	 },

		3864	 }

		3865	

		3866	 var	_Samaritan	=	&RangeTable{

		3867	 	 R16:	[]Range16{

		3868	 	 	 {0x0800,	0x082d,	1},

		3869	 	 	 {0x0830,	0x083e,	1},

		3870	 	 },

		3871	 }

		3872	

		3873	 var	_Saurashtra	=	&RangeTable{

		3874	 	 R16:	[]Range16{

		3875	 	 	 {0xa880,	0xa8c4,	1},

		3876	 	 	 {0xa8ce,	0xa8d9,	1},

		3877	 	 },

		3878	 }

		3879	

		3880	 var	_Shavian	=	&RangeTable{

		3881	 	 R16:	[]Range16{},

		3882	 	 R32:	[]Range32{

		3883	 	 	 {0x10450,	0x1047f,	1},

		3884	 	 },

		3885	 }

		3886	

		3887	 var	_Sinhala	=	&RangeTable{

		3888	 	 R16:	[]Range16{

		3889	 	 	 {0x0d82,	0x0d83,	1},

		3890	 	 	 {0x0d85,	0x0d96,	1},

		3891	 	 	 {0x0d9a,	0x0db1,	1},

		3892	 	 	 {0x0db3,	0x0dbb,	1},

		3893	 	 	 {0x0dbd,	0x0dbd,	1},

		3894	 	 	 {0x0dc0,	0x0dc6,	1},

		3895	 	 	 {0x0dca,	0x0dca,	1},

		3896	 	 	 {0x0dcf,	0x0dd4,	1},

		3897	 	 	 {0x0dd6,	0x0dd6,	1},

		3898	 	 	 {0x0dd8,	0x0ddf,	1},

		3899	 	 	 {0x0df2,	0x0df4,	1},

		3900	 	 },

		3901	 }

		3902	

		3903	 var	_Sundanese	=	&RangeTable{

		3904	 	 R16:	[]Range16{

		3905	 	 	 {0x1b80,	0x1baa,	1},

		3906	 	 	 {0x1bae,	0x1bb9,	1},

		3907	 	 },

		3908	 }

		3909	

		3910	 var	_Syloti_Nagri	=	&RangeTable{

		3911	 	 R16:	[]Range16{

		3912	 	 	 {0xa800,	0xa82b,	1},

		3913	 	 },

		3914	 }

		3915	

		3916	 var	_Syriac	=	&RangeTable{

		3917	 	 R16:	[]Range16{

		3918	 	 	 {0x0700,	0x070d,	1},

		3919	 	 	 {0x070f,	0x074a,	1},

		3920	 	 	 {0x074d,	0x074f,	1},

		3921	 	 },

		3922	 }

		3923	

		3924	 var	_Tagalog	=	&RangeTable{

		3925	 	 R16:	[]Range16{

		3926	 	 	 {0x1700,	0x170c,	1},

		3927	 	 	 {0x170e,	0x1714,	1},

		3928	 	 },

		3929	 }

		3930	

		3931	 var	_Tagbanwa	=	&RangeTable{

		3932	 	 R16:	[]Range16{

		3933	 	 	 {0x1760,	0x176c,	1},

		3934	 	 	 {0x176e,	0x1770,	1},

		3935	 	 	 {0x1772,	0x1773,	1},

		3936	 	 },

		3937	 }

		3938	

		3939	 var	_Tai_Le	=	&RangeTable{

		3940	 	 R16:	[]Range16{

		3941	 	 	 {0x1950,	0x196d,	1},

		3942	 	 	 {0x1970,	0x1974,	1},

		3943	 	 },

		3944	 }

		3945	

		3946	 var	_Tai_Tham	=	&RangeTable{

		3947	 	 R16:	[]Range16{

		3948	 	 	 {0x1a20,	0x1a5e,	1},

		3949	 	 	 {0x1a60,	0x1a7c,	1},

		3950	 	 	 {0x1a7f,	0x1a89,	1},

		3951	 	 	 {0x1a90,	0x1a99,	1},

		3952	 	 	 {0x1aa0,	0x1aad,	1},

		3953	 	 },

		3954	 }

		3955	

		3956	 var	_Tai_Viet	=	&RangeTable{

		3957	 	 R16:	[]Range16{

		3958	 	 	 {0xaa80,	0xaac2,	1},

		3959	 	 	 {0xaadb,	0xaadf,	1},

		3960	 	 },

		3961	 }

		3962	

		3963	 var	_Tamil	=	&RangeTable{

		3964	 	 R16:	[]Range16{

		3965	 	 	 {0x0b82,	0x0b83,	1},

		3966	 	 	 {0x0b85,	0x0b8a,	1},

		3967	 	 	 {0x0b8e,	0x0b90,	1},

		3968	 	 	 {0x0b92,	0x0b95,	1},

		3969	 	 	 {0x0b99,	0x0b9a,	1},

		3970	 	 	 {0x0b9c,	0x0b9c,	1},

		3971	 	 	 {0x0b9e,	0x0b9f,	1},

		3972	 	 	 {0x0ba3,	0x0ba4,	1},

		3973	 	 	 {0x0ba8,	0x0baa,	1},

		3974	 	 	 {0x0bae,	0x0bb9,	1},

		3975	 	 	 {0x0bbe,	0x0bc2,	1},

		3976	 	 	 {0x0bc6,	0x0bc8,	1},

		3977	 	 	 {0x0bca,	0x0bcd,	1},

		3978	 	 	 {0x0bd0,	0x0bd0,	1},

		3979	 	 	 {0x0bd7,	0x0bd7,	1},

		3980	 	 	 {0x0be6,	0x0bfa,	1},

		3981	 	 },

		3982	 }

		3983	

		3984	 var	_Telugu	=	&RangeTable{

		3985	 	 R16:	[]Range16{

		3986	 	 	 {0x0c01,	0x0c03,	1},

		3987	 	 	 {0x0c05,	0x0c0c,	1},

		3988	 	 	 {0x0c0e,	0x0c10,	1},

		3989	 	 	 {0x0c12,	0x0c28,	1},

		3990	 	 	 {0x0c2a,	0x0c33,	1},

		3991	 	 	 {0x0c35,	0x0c39,	1},

		3992	 	 	 {0x0c3d,	0x0c44,	1},

		3993	 	 	 {0x0c46,	0x0c48,	1},

		3994	 	 	 {0x0c4a,	0x0c4d,	1},

		3995	 	 	 {0x0c55,	0x0c56,	1},

		3996	 	 	 {0x0c58,	0x0c59,	1},

		3997	 	 	 {0x0c60,	0x0c63,	1},

		3998	 	 	 {0x0c66,	0x0c6f,	1},

		3999	 	 	 {0x0c78,	0x0c7f,	1},

		4000	 	 },

		4001	 }

		4002	

		4003	 var	_Thaana	=	&RangeTable{

		4004	 	 R16:	[]Range16{

		4005	 	 	 {0x0780,	0x07b1,	1},

		4006	 	 },

		4007	 }

		4008	

		4009	 var	_Thai	=	&RangeTable{

		4010	 	 R16:	[]Range16{

		4011	 	 	 {0x0e01,	0x0e3a,	1},

		4012	 	 	 {0x0e40,	0x0e5b,	1},

		4013	 	 },

		4014	 }

		4015	

		4016	 var	_Tibetan	=	&RangeTable{

		4017	 	 R16:	[]Range16{

		4018	 	 	 {0x0f00,	0x0f47,	1},

		4019	 	 	 {0x0f49,	0x0f6c,	1},

		4020	 	 	 {0x0f71,	0x0f97,	1},

		4021	 	 	 {0x0f99,	0x0fbc,	1},

		4022	 	 	 {0x0fbe,	0x0fcc,	1},

		4023	 	 	 {0x0fce,	0x0fd4,	1},

		4024	 	 	 {0x0fd9,	0x0fda,	1},

		4025	 	 },

		4026	 }

		4027	

		4028	 var	_Tifinagh	=	&RangeTable{

		4029	 	 R16:	[]Range16{

		4030	 	 	 {0x2d30,	0x2d65,	1},

		4031	 	 	 {0x2d6f,	0x2d70,	1},

		4032	 	 	 {0x2d7f,	0x2d7f,	1},

		4033	 	 },

		4034	 }

		4035	

		4036	 var	_Ugaritic	=	&RangeTable{

		4037	 	 R16:	[]Range16{},

		4038	 	 R32:	[]Range32{

		4039	 	 	 {0x10380,	0x1039d,	1},

		4040	 	 	 {0x1039f,	0x1039f,	1},

		4041	 	 },

		4042	 }

		4043	

		4044	 var	_Vai	=	&RangeTable{

		4045	 	 R16:	[]Range16{

		4046	 	 	 {0xa500,	0xa62b,	1},

		4047	 	 },

		4048	 }

		4049	

		4050	 var	_Yi	=	&RangeTable{

		4051	 	 R16:	[]Range16{

		4052	 	 	 {0xa000,	0xa48c,	1},

		4053	 	 	 {0xa490,	0xa4c6,	1},

		4054	 	 },

		4055	 }

		4056	

		4057	 //	The	following	variables	are	of	type	*RangeTable:

		4058	 var	(

		4059	 	 Arabic																	=	_Arabic																	//	Arabic	is	the	set	of	Unicode	characters	in	script	Arabic.

		4060	 	 Armenian															=	_Armenian															//	Armenian	is	the	set	of	Unicode	characters	in	script	Armenian.

		4061	 	 Avestan																=	_Avestan																//	Avestan	is	the	set	of	Unicode	characters	in	script	Avestan.

		4062	 	 Balinese															=	_Balinese															//	Balinese	is	the	set	of	Unicode	characters	in	script	Balinese.

		4063	 	 Bamum																		=	_Bamum																		//	Bamum	is	the	set	of	Unicode	characters	in	script	Bamum.

		4064	 	 Batak																		=	_Batak																		//	Batak	is	the	set	of	Unicode	characters	in	script	Batak.

		4065	 	 Bengali																=	_Bengali																//	Bengali	is	the	set	of	Unicode	characters	in	script	Bengali.

		4066	 	 Bopomofo															=	_Bopomofo															//	Bopomofo	is	the	set	of	Unicode	characters	in	script	Bopomofo.

		4067	 	 Brahmi																	=	_Brahmi																	//	Brahmi	is	the	set	of	Unicode	characters	in	script	Brahmi.

		4068	 	 Braille																=	_Braille																//	Braille	is	the	set	of	Unicode	characters	in	script	Braille.

		4069	 	 Buginese															=	_Buginese															//	Buginese	is	the	set	of	Unicode	characters	in	script	Buginese.

		4070	 	 Buhid																		=	_Buhid																		//	Buhid	is	the	set	of	Unicode	characters	in	script	Buhid.

		4071	 	 Canadian_Aboriginal				=	_Canadian_Aboriginal				//	Canadian_Aboriginal	is	the	set	of	Unicode	characters	in	script	Canadian_Aboriginal.

		4072	 	 Carian																	=	_Carian																	//	Carian	is	the	set	of	Unicode	characters	in	script	Carian.

		4073	 	 Cham																			=	_Cham																			//	Cham	is	the	set	of	Unicode	characters	in	script	Cham.

		4074	 	 Cherokee															=	_Cherokee															//	Cherokee	is	the	set	of	Unicode	characters	in	script	Cherokee.

		4075	 	 Common																	=	_Common																	//	Common	is	the	set	of	Unicode	characters	in	script	Common.

		4076	 	 Coptic																	=	_Coptic																	//	Coptic	is	the	set	of	Unicode	characters	in	script	Coptic.

		4077	 	 Cuneiform														=	_Cuneiform														//	Cuneiform	is	the	set	of	Unicode	characters	in	script	Cuneiform.

		4078	 	 Cypriot																=	_Cypriot																//	Cypriot	is	the	set	of	Unicode	characters	in	script	Cypriot.

		4079	 	 Cyrillic															=	_Cyrillic															//	Cyrillic	is	the	set	of	Unicode	characters	in	script	Cyrillic.

		4080	 	 Deseret																=	_Deseret																//	Deseret	is	the	set	of	Unicode	characters	in	script	Deseret.

		4081	 	 Devanagari													=	_Devanagari													//	Devanagari	is	the	set	of	Unicode	characters	in	script	Devanagari.

		4082	 	 Egyptian_Hieroglyphs			=	_Egyptian_Hieroglyphs			//	Egyptian_Hieroglyphs	is	the	set	of	Unicode	characters	in	script	Egyptian_Hieroglyphs.

		4083	 	 Ethiopic															=	_Ethiopic															//	Ethiopic	is	the	set	of	Unicode	characters	in	script	Ethiopic.

		4084	 	 Georgian															=	_Georgian															//	Georgian	is	the	set	of	Unicode	characters	in	script	Georgian.

		4085	 	 Glagolitic													=	_Glagolitic													//	Glagolitic	is	the	set	of	Unicode	characters	in	script	Glagolitic.

		4086	 	 Gothic																	=	_Gothic																	//	Gothic	is	the	set	of	Unicode	characters	in	script	Gothic.

		4087	 	 Greek																		=	_Greek																		//	Greek	is	the	set	of	Unicode	characters	in	script	Greek.

		4088	 	 Gujarati															=	_Gujarati															//	Gujarati	is	the	set	of	Unicode	characters	in	script	Gujarati.

		4089	 	 Gurmukhi															=	_Gurmukhi															//	Gurmukhi	is	the	set	of	Unicode	characters	in	script	Gurmukhi.

		4090	 	 Han																				=	_Han																				//	Han	is	the	set	of	Unicode	characters	in	script	Han.

		4091	 	 Hangul																	=	_Hangul																	//	Hangul	is	the	set	of	Unicode	characters	in	script	Hangul.

		4092	 	 Hanunoo																=	_Hanunoo																//	Hanunoo	is	the	set	of	Unicode	characters	in	script	Hanunoo.

		4093	 	 Hebrew																	=	_Hebrew																	//	Hebrew	is	the	set	of	Unicode	characters	in	script	Hebrew.

		4094	 	 Hiragana															=	_Hiragana															//	Hiragana	is	the	set	of	Unicode	characters	in	script	Hiragana.

		4095	 	 Imperial_Aramaic							=	_Imperial_Aramaic							//	Imperial_Aramaic	is	the	set	of	Unicode	characters	in	script	Imperial_Aramaic.

		4096	 	 Inherited														=	_Inherited														//	Inherited	is	the	set	of	Unicode	characters	in	script	Inherited.

		4097	 	 Inscriptional_Pahlavi		=	_Inscriptional_Pahlavi		//	Inscriptional_Pahlavi	is	the	set	of	Unicode	characters	in	script	Inscriptional_Pahlavi.

		4098	 	 Inscriptional_Parthian	=	_Inscriptional_Parthian	//	Inscriptional_Parthian	is	the	set	of	Unicode	characters	in	script	Inscriptional_Parthian.

		4099	 	 Javanese															=	_Javanese															//	Javanese	is	the	set	of	Unicode	characters	in	script	Javanese.

		4100	 	 Kaithi																	=	_Kaithi																	//	Kaithi	is	the	set	of	Unicode	characters	in	script	Kaithi.

		4101	 	 Kannada																=	_Kannada																//	Kannada	is	the	set	of	Unicode	characters	in	script	Kannada.

		4102	 	 Katakana															=	_Katakana															//	Katakana	is	the	set	of	Unicode	characters	in	script	Katakana.

		4103	 	 Kayah_Li															=	_Kayah_Li															//	Kayah_Li	is	the	set	of	Unicode	characters	in	script	Kayah_Li.

		4104	 	 Kharoshthi													=	_Kharoshthi													//	Kharoshthi	is	the	set	of	Unicode	characters	in	script	Kharoshthi.

		4105	 	 Khmer																		=	_Khmer																		//	Khmer	is	the	set	of	Unicode	characters	in	script	Khmer.

		4106	 	 Lao																				=	_Lao																				//	Lao	is	the	set	of	Unicode	characters	in	script	Lao.

		4107	 	 Latin																		=	_Latin																		//	Latin	is	the	set	of	Unicode	characters	in	script	Latin.

		4108	 	 Lepcha																	=	_Lepcha																	//	Lepcha	is	the	set	of	Unicode	characters	in	script	Lepcha.

		4109	 	 Limbu																		=	_Limbu																		//	Limbu	is	the	set	of	Unicode	characters	in	script	Limbu.

		4110	 	 Linear_B															=	_Linear_B															//	Linear_B	is	the	set	of	Unicode	characters	in	script	Linear_B.

		4111	 	 Lisu																			=	_Lisu																			//	Lisu	is	the	set	of	Unicode	characters	in	script	Lisu.

		4112	 	 Lycian																	=	_Lycian																	//	Lycian	is	the	set	of	Unicode	characters	in	script	Lycian.

		4113	 	 Lydian																	=	_Lydian																	//	Lydian	is	the	set	of	Unicode	characters	in	script	Lydian.

		4114	 	 Malayalam														=	_Malayalam														//	Malayalam	is	the	set	of	Unicode	characters	in	script	Malayalam.

		4115	 	 Mandaic																=	_Mandaic																//	Mandaic	is	the	set	of	Unicode	characters	in	script	Mandaic.

		4116	 	 Meetei_Mayek											=	_Meetei_Mayek											//	Meetei_Mayek	is	the	set	of	Unicode	characters	in	script	Meetei_Mayek.

		4117	 	 Mongolian														=	_Mongolian														//	Mongolian	is	the	set	of	Unicode	characters	in	script	Mongolian.

		4118	 	 Myanmar																=	_Myanmar																//	Myanmar	is	the	set	of	Unicode	characters	in	script	Myanmar.

		4119	 	 New_Tai_Lue												=	_New_Tai_Lue												//	New_Tai_Lue	is	the	set	of	Unicode	characters	in	script	New_Tai_Lue.

		4120	 	 Nko																				=	_Nko																				//	Nko	is	the	set	of	Unicode	characters	in	script	Nko.

		4121	 	 Ogham																		=	_Ogham																		//	Ogham	is	the	set	of	Unicode	characters	in	script	Ogham.

		4122	 	 Ol_Chiki															=	_Ol_Chiki															//	Ol_Chiki	is	the	set	of	Unicode	characters	in	script	Ol_Chiki.

		4123	 	 Old_Italic													=	_Old_Italic													//	Old_Italic	is	the	set	of	Unicode	characters	in	script	Old_Italic.

		4124	 	 Old_Persian												=	_Old_Persian												//	Old_Persian	is	the	set	of	Unicode	characters	in	script	Old_Persian.

		4125	 	 Old_South_Arabian						=	_Old_South_Arabian						//	Old_South_Arabian	is	the	set	of	Unicode	characters	in	script	Old_South_Arabian.

		4126	 	 Old_Turkic													=	_Old_Turkic													//	Old_Turkic	is	the	set	of	Unicode	characters	in	script	Old_Turkic.

		4127	 	 Oriya																		=	_Oriya																		//	Oriya	is	the	set	of	Unicode	characters	in	script	Oriya.

		4128	 	 Osmanya																=	_Osmanya																//	Osmanya	is	the	set	of	Unicode	characters	in	script	Osmanya.

		4129	 	 Phags_Pa															=	_Phags_Pa															//	Phags_Pa	is	the	set	of	Unicode	characters	in	script	Phags_Pa.

		4130	 	 Phoenician													=	_Phoenician													//	Phoenician	is	the	set	of	Unicode	characters	in	script	Phoenician.

		4131	 	 Rejang																	=	_Rejang																	//	Rejang	is	the	set	of	Unicode	characters	in	script	Rejang.

		4132	 	 Runic																		=	_Runic																		//	Runic	is	the	set	of	Unicode	characters	in	script	Runic.

		4133	 	 Samaritan														=	_Samaritan														//	Samaritan	is	the	set	of	Unicode	characters	in	script	Samaritan.

		4134	 	 Saurashtra													=	_Saurashtra													//	Saurashtra	is	the	set	of	Unicode	characters	in	script	Saurashtra.

		4135	 	 Shavian																=	_Shavian																//	Shavian	is	the	set	of	Unicode	characters	in	script	Shavian.

		4136	 	 Sinhala																=	_Sinhala																//	Sinhala	is	the	set	of	Unicode	characters	in	script	Sinhala.

		4137	 	 Sundanese														=	_Sundanese														//	Sundanese	is	the	set	of	Unicode	characters	in	script	Sundanese.

		4138	 	 Syloti_Nagri											=	_Syloti_Nagri											//	Syloti_Nagri	is	the	set	of	Unicode	characters	in	script	Syloti_Nagri.

		4139	 	 Syriac																	=	_Syriac																	//	Syriac	is	the	set	of	Unicode	characters	in	script	Syriac.

		4140	 	 Tagalog																=	_Tagalog																//	Tagalog	is	the	set	of	Unicode	characters	in	script	Tagalog.

		4141	 	 Tagbanwa															=	_Tagbanwa															//	Tagbanwa	is	the	set	of	Unicode	characters	in	script	Tagbanwa.

		4142	 	 Tai_Le																	=	_Tai_Le																	//	Tai_Le	is	the	set	of	Unicode	characters	in	script	Tai_Le.

		4143	 	 Tai_Tham															=	_Tai_Tham															//	Tai_Tham	is	the	set	of	Unicode	characters	in	script	Tai_Tham.

		4144	 	 Tai_Viet															=	_Tai_Viet															//	Tai_Viet	is	the	set	of	Unicode	characters	in	script	Tai_Viet.

		4145	 	 Tamil																		=	_Tamil																		//	Tamil	is	the	set	of	Unicode	characters	in	script	Tamil.

		4146	 	 Telugu																	=	_Telugu																	//	Telugu	is	the	set	of	Unicode	characters	in	script	Telugu.

		4147	 	 Thaana																	=	_Thaana																	//	Thaana	is	the	set	of	Unicode	characters	in	script	Thaana.

		4148	 	 Thai																			=	_Thai																			//	Thai	is	the	set	of	Unicode	characters	in	script	Thai.

		4149	 	 Tibetan																=	_Tibetan																//	Tibetan	is	the	set	of	Unicode	characters	in	script	Tibetan.

		4150	 	 Tifinagh															=	_Tifinagh															//	Tifinagh	is	the	set	of	Unicode	characters	in	script	Tifinagh.

		4151	 	 Ugaritic															=	_Ugaritic															//	Ugaritic	is	the	set	of	Unicode	characters	in	script	Ugaritic.

		4152	 	 Vai																				=	_Vai																				//	Vai	is	the	set	of	Unicode	characters	in	script	Vai.

		4153	 	 Yi																					=	_Yi																					//	Yi	is	the	set	of	Unicode	characters	in	script	Yi.

		4154)

		4155	

		4156	 //	Generated	by	running

		4157	 //	 maketables	--props=all	--url=http://www.unicode.org/Public/6.0.0/ucd/

		4158	 //	DO	NOT	EDIT

		4159	

		4160	 //	Properties	is	the	set	of	Unicode	property	tables.

		4161	 var	Properties	=	map[string]*RangeTable{

		4162	 	 "ASCII_Hex_Digit":																				ASCII_Hex_Digit,

		4163	 	 "Bidi_Control":																							Bidi_Control,

		4164	 	 "Dash":																															Dash,

		4165	 	 "Deprecated":																									Deprecated,

		4166	 	 "Diacritic":																										Diacritic,

		4167	 	 "Extender":																											Extender,

		4168	 	 "Hex_Digit":																										Hex_Digit,

		4169	 	 "Hyphen":																													Hyphen,

		4170	 	 "IDS_Binary_Operator":																IDS_Binary_Operator,

		4171	 	 "IDS_Trinary_Operator":															IDS_Trinary_Operator,

		4172	 	 "Ideographic":																								Ideographic,

		4173	 	 "Join_Control":																							Join_Control,

		4174	 	 "Logical_Order_Exception":												Logical_Order_Exception,

		4175	 	 "Noncharacter_Code_Point":												Noncharacter_Code_Point,

		4176	 	 "Other_Alphabetic":																			Other_Alphabetic,

		4177	 	 "Other_Default_Ignorable_Code_Point":	Other_Default_Ignorable_Code_Point,

		4178	 	 "Other_Grapheme_Extend":														Other_Grapheme_Extend,

		4179	 	 "Other_ID_Continue":																		Other_ID_Continue,

		4180	 	 "Other_ID_Start":																					Other_ID_Start,

		4181	 	 "Other_Lowercase":																				Other_Lowercase,

		4182	 	 "Other_Math":																									Other_Math,

		4183	 	 "Other_Uppercase":																				Other_Uppercase,

		4184	 	 "Pattern_Syntax":																					Pattern_Syntax,

		4185	 	 "Pattern_White_Space":																Pattern_White_Space,

		4186	 	 "Quotation_Mark":																					Quotation_Mark,

		4187	 	 "Radical":																												Radical,

		4188	 	 "STerm":																														STerm,

		4189	 	 "Soft_Dotted":																								Soft_Dotted,

		4190	 	 "Terminal_Punctuation":															Terminal_Punctuation,

		4191	 	 "Unified_Ideograph":																		Unified_Ideograph,

		4192	 	 "Variation_Selector":																	Variation_Selector,

		4193	 	 "White_Space":																								White_Space,

		4194	 }

		4195	

		4196	 var	_ASCII_Hex_Digit	=	&RangeTable{

		4197	 	 R16:	[]Range16{

		4198	 	 	 {0x0030,	0x0039,	1},

		4199	 	 	 {0x0041,	0x0046,	1},

		4200	 	 	 {0x0061,	0x0066,	1},

		4201	 	 },

		4202	 }

		4203	

		4204	 var	_Bidi_Control	=	&RangeTable{

		4205	 	 R16:	[]Range16{

		4206	 	 	 {0x200e,	0x200f,	1},

		4207	 	 	 {0x202a,	0x202e,	1},

		4208	 	 },

		4209	 }

		4210	

		4211	 var	_Dash	=	&RangeTable{

		4212	 	 R16:	[]Range16{

		4213	 	 	 {0x002d,	0x002d,	1},

		4214	 	 	 {0x058a,	0x058a,	1},

		4215	 	 	 {0x05be,	0x05be,	1},

		4216	 	 	 {0x1400,	0x1400,	1},

		4217	 	 	 {0x1806,	0x1806,	1},

		4218	 	 	 {0x2010,	0x2015,	1},

		4219	 	 	 {0x2053,	0x2053,	1},

		4220	 	 	 {0x207b,	0x207b,	1},

		4221	 	 	 {0x208b,	0x208b,	1},

		4222	 	 	 {0x2212,	0x2212,	1},

		4223	 	 	 {0x2e17,	0x2e17,	1},

		4224	 	 	 {0x2e1a,	0x2e1a,	1},

		4225	 	 	 {0x301c,	0x301c,	1},

		4226	 	 	 {0x3030,	0x3030,	1},

		4227	 	 	 {0x30a0,	0x30a0,	1},

		4228	 	 	 {0xfe31,	0xfe32,	1},

		4229	 	 	 {0xfe58,	0xfe58,	1},

		4230	 	 	 {0xfe63,	0xfe63,	1},

		4231	 	 	 {0xff0d,	0xff0d,	1},

		4232	 	 },

		4233	 }

		4234	

		4235	 var	_Deprecated	=	&RangeTable{

		4236	 	 R16:	[]Range16{

		4237	 	 	 {0x0149,	0x0149,	1},

		4238	 	 	 {0x0673,	0x0673,	1},

		4239	 	 	 {0x0f77,	0x0f77,	1},

		4240	 	 	 {0x0f79,	0x0f79,	1},

		4241	 	 	 {0x17a3,	0x17a4,	1},

		4242	 	 	 {0x206a,	0x206f,	1},

		4243	 	 	 {0x2329,	0x232a,	1},

		4244	 	 },

		4245	 	 R32:	[]Range32{

		4246	 	 	 {0xe0001,	0xe0001,	1},

		4247	 	 	 {0xe0020,	0xe007f,	1},

		4248	 	 },

		4249	 }

		4250	

		4251	 var	_Diacritic	=	&RangeTable{

		4252	 	 R16:	[]Range16{

		4253	 	 	 {0x005e,	0x005e,	1},

		4254	 	 	 {0x0060,	0x0060,	1},

		4255	 	 	 {0x00a8,	0x00a8,	1},

		4256	 	 	 {0x00af,	0x00af,	1},

		4257	 	 	 {0x00b4,	0x00b4,	1},

		4258	 	 	 {0x00b7,	0x00b8,	1},

		4259	 	 	 {0x02b0,	0x034e,	1},

		4260	 	 	 {0x0350,	0x0357,	1},

		4261	 	 	 {0x035d,	0x0362,	1},

		4262	 	 	 {0x0374,	0x0375,	1},

		4263	 	 	 {0x037a,	0x037a,	1},

		4264	 	 	 {0x0384,	0x0385,	1},

		4265	 	 	 {0x0483,	0x0487,	1},

		4266	 	 	 {0x0559,	0x0559,	1},

		4267	 	 	 {0x0591,	0x05a1,	1},

		4268	 	 	 {0x05a3,	0x05bd,	1},

		4269	 	 	 {0x05bf,	0x05bf,	1},

		4270	 	 	 {0x05c1,	0x05c2,	1},

		4271	 	 	 {0x05c4,	0x05c4,	1},

		4272	 	 	 {0x064b,	0x0652,	1},

		4273	 	 	 {0x0657,	0x0658,	1},

		4274	 	 	 {0x06df,	0x06e0,	1},

		4275	 	 	 {0x06e5,	0x06e6,	1},

		4276	 	 	 {0x06ea,	0x06ec,	1},

		4277	 	 	 {0x0730,	0x074a,	1},

		4278	 	 	 {0x07a6,	0x07b0,	1},

		4279	 	 	 {0x07eb,	0x07f5,	1},

		4280	 	 	 {0x0818,	0x0819,	1},

		4281	 	 	 {0x093c,	0x093c,	1},

		4282	 	 	 {0x094d,	0x094d,	1},

		4283	 	 	 {0x0951,	0x0954,	1},

		4284	 	 	 {0x0971,	0x0971,	1},

		4285	 	 	 {0x09bc,	0x09bc,	1},

		4286	 	 	 {0x09cd,	0x09cd,	1},

		4287	 	 	 {0x0a3c,	0x0a3c,	1},

		4288	 	 	 {0x0a4d,	0x0a4d,	1},

		4289	 	 	 {0x0abc,	0x0abc,	1},

		4290	 	 	 {0x0acd,	0x0acd,	1},

		4291	 	 	 {0x0b3c,	0x0b3c,	1},

		4292	 	 	 {0x0b4d,	0x0b4d,	1},

		4293	 	 	 {0x0bcd,	0x0bcd,	1},

		4294	 	 	 {0x0c4d,	0x0c4d,	1},

		4295	 	 	 {0x0cbc,	0x0cbc,	1},

		4296	 	 	 {0x0ccd,	0x0ccd,	1},

		4297	 	 	 {0x0d4d,	0x0d4d,	1},

		4298	 	 	 {0x0dca,	0x0dca,	1},

		4299	 	 	 {0x0e47,	0x0e4c,	1},

		4300	 	 	 {0x0e4e,	0x0e4e,	1},

		4301	 	 	 {0x0ec8,	0x0ecc,	1},

		4302	 	 	 {0x0f18,	0x0f19,	1},

		4303	 	 	 {0x0f35,	0x0f35,	1},

		4304	 	 	 {0x0f37,	0x0f37,	1},

		4305	 	 	 {0x0f39,	0x0f39,	1},

		4306	 	 	 {0x0f3e,	0x0f3f,	1},

		4307	 	 	 {0x0f82,	0x0f84,	1},

		4308	 	 	 {0x0f86,	0x0f87,	1},

		4309	 	 	 {0x0fc6,	0x0fc6,	1},

		4310	 	 	 {0x1037,	0x1037,	1},

		4311	 	 	 {0x1039,	0x103a,	1},

		4312	 	 	 {0x1087,	0x108d,	1},

		4313	 	 	 {0x108f,	0x108f,	1},

		4314	 	 	 {0x109a,	0x109b,	1},

		4315	 	 	 {0x17c9,	0x17d3,	1},

		4316	 	 	 {0x17dd,	0x17dd,	1},

		4317	 	 	 {0x1939,	0x193b,	1},

		4318	 	 	 {0x1a75,	0x1a7c,	1},

		4319	 	 	 {0x1a7f,	0x1a7f,	1},

		4320	 	 	 {0x1b34,	0x1b34,	1},

		4321	 	 	 {0x1b44,	0x1b44,	1},

		4322	 	 	 {0x1b6b,	0x1b73,	1},

		4323	 	 	 {0x1baa,	0x1baa,	1},

		4324	 	 	 {0x1c36,	0x1c37,	1},

		4325	 	 	 {0x1c78,	0x1c7d,	1},

		4326	 	 	 {0x1cd0,	0x1ce8,	1},

		4327	 	 	 {0x1ced,	0x1ced,	1},

		4328	 	 	 {0x1d2c,	0x1d6a,	1},

		4329	 	 	 {0x1dc4,	0x1dcf,	1},

		4330	 	 	 {0x1dfd,	0x1dff,	1},

		4331	 	 	 {0x1fbd,	0x1fbd,	1},

		4332	 	 	 {0x1fbf,	0x1fc1,	1},

		4333	 	 	 {0x1fcd,	0x1fcf,	1},

		4334	 	 	 {0x1fdd,	0x1fdf,	1},

		4335	 	 	 {0x1fed,	0x1fef,	1},

		4336	 	 	 {0x1ffd,	0x1ffe,	1},

		4337	 	 	 {0x2cef,	0x2cf1,	1},

		4338	 	 	 {0x2e2f,	0x2e2f,	1},

		4339	 	 	 {0x302a,	0x302f,	1},

		4340	 	 	 {0x3099,	0x309c,	1},

		4341	 	 	 {0x30fc,	0x30fc,	1},

		4342	 	 	 {0xa66f,	0xa66f,	1},

		4343	 	 	 {0xa67c,	0xa67d,	1},

		4344	 	 	 {0xa67f,	0xa67f,	1},

		4345	 	 	 {0xa6f0,	0xa6f1,	1},

		4346	 	 	 {0xa717,	0xa721,	1},

		4347	 	 	 {0xa788,	0xa788,	1},

		4348	 	 	 {0xa8c4,	0xa8c4,	1},

		4349	 	 	 {0xa8e0,	0xa8f1,	1},

		4350	 	 	 {0xa92b,	0xa92e,	1},

		4351	 	 	 {0xa953,	0xa953,	1},

		4352	 	 	 {0xa9b3,	0xa9b3,	1},

		4353	 	 	 {0xa9c0,	0xa9c0,	1},

		4354	 	 	 {0xaa7b,	0xaa7b,	1},

		4355	 	 	 {0xaabf,	0xaac2,	1},

		4356	 	 	 {0xabec,	0xabed,	1},

		4357	 	 	 {0xfb1e,	0xfb1e,	1},

		4358	 	 	 {0xfe20,	0xfe26,	1},

		4359	 	 	 {0xff3e,	0xff3e,	1},

		4360	 	 	 {0xff40,	0xff40,	1},

		4361	 	 	 {0xff70,	0xff70,	1},

		4362	 	 	 {0xff9e,	0xff9f,	1},

		4363	 	 	 {0xffe3,	0xffe3,	1},

		4364	 	 },

		4365	 	 R32:	[]Range32{

		4366	 	 	 {0x110b9,	0x110ba,	1},

		4367	 	 	 {0x1d167,	0x1d169,	1},

		4368	 	 	 {0x1d16d,	0x1d172,	1},

		4369	 	 	 {0x1d17b,	0x1d182,	1},

		4370	 	 	 {0x1d185,	0x1d18b,	1},

		4371	 	 	 {0x1d1aa,	0x1d1ad,	1},

		4372	 	 },

		4373	 }

		4374	

		4375	 var	_Extender	=	&RangeTable{

		4376	 	 R16:	[]Range16{

		4377	 	 	 {0x00b7,	0x00b7,	1},

		4378	 	 	 {0x02d0,	0x02d1,	1},

		4379	 	 	 {0x0640,	0x0640,	1},

		4380	 	 	 {0x07fa,	0x07fa,	1},

		4381	 	 	 {0x0e46,	0x0e46,	1},

		4382	 	 	 {0x0ec6,	0x0ec6,	1},

		4383	 	 	 {0x1843,	0x1843,	1},

		4384	 	 	 {0x1aa7,	0x1aa7,	1},

		4385	 	 	 {0x1c36,	0x1c36,	1},

		4386	 	 	 {0x1c7b,	0x1c7b,	1},

		4387	 	 	 {0x3005,	0x3005,	1},

		4388	 	 	 {0x3031,	0x3035,	1},

		4389	 	 	 {0x309d,	0x309e,	1},

		4390	 	 	 {0x30fc,	0x30fe,	1},

		4391	 	 	 {0xa015,	0xa015,	1},

		4392	 	 	 {0xa60c,	0xa60c,	1},

		4393	 	 	 {0xa9cf,	0xa9cf,	1},

		4394	 	 	 {0xaa70,	0xaa70,	1},

		4395	 	 	 {0xaadd,	0xaadd,	1},

		4396	 	 	 {0xff70,	0xff70,	1},

		4397	 	 },

		4398	 }

		4399	

		4400	 var	_Hex_Digit	=	&RangeTable{

		4401	 	 R16:	[]Range16{

		4402	 	 	 {0x0030,	0x0039,	1},

		4403	 	 	 {0x0041,	0x0046,	1},

		4404	 	 	 {0x0061,	0x0066,	1},

		4405	 	 	 {0xff10,	0xff19,	1},

		4406	 	 	 {0xff21,	0xff26,	1},

		4407	 	 	 {0xff41,	0xff46,	1},

		4408	 	 },

		4409	 }

		4410	

		4411	 var	_Hyphen	=	&RangeTable{

		4412	 	 R16:	[]Range16{

		4413	 	 	 {0x002d,	0x002d,	1},

		4414	 	 	 {0x00ad,	0x00ad,	1},

		4415	 	 	 {0x058a,	0x058a,	1},

		4416	 	 	 {0x1806,	0x1806,	1},

		4417	 	 	 {0x2010,	0x2011,	1},

		4418	 	 	 {0x2e17,	0x2e17,	1},

		4419	 	 	 {0x30fb,	0x30fb,	1},

		4420	 	 	 {0xfe63,	0xfe63,	1},

		4421	 	 	 {0xff0d,	0xff0d,	1},

		4422	 	 	 {0xff65,	0xff65,	1},

		4423	 	 },

		4424	 }

		4425	

		4426	 var	_IDS_Binary_Operator	=	&RangeTable{

		4427	 	 R16:	[]Range16{

		4428	 	 	 {0x2ff0,	0x2ff1,	1},

		4429	 	 	 {0x2ff4,	0x2ffb,	1},

		4430	 	 },

		4431	 }

		4432	

		4433	 var	_IDS_Trinary_Operator	=	&RangeTable{

		4434	 	 R16:	[]Range16{

		4435	 	 	 {0x2ff2,	0x2ff3,	1},

		4436	 	 },

		4437	 }

		4438	

		4439	 var	_Ideographic	=	&RangeTable{

		4440	 	 R16:	[]Range16{

		4441	 	 	 {0x3006,	0x3007,	1},

		4442	 	 	 {0x3021,	0x3029,	1},

		4443	 	 	 {0x3038,	0x303a,	1},

		4444	 	 	 {0x3400,	0x4db5,	1},

		4445	 	 	 {0x4e00,	0x9fcb,	1},

		4446	 	 	 {0xf900,	0xfa2d,	1},

		4447	 	 	 {0xfa30,	0xfa6d,	1},

		4448	 	 	 {0xfa70,	0xfad9,	1},

		4449	 	 },

		4450	 	 R32:	[]Range32{

		4451	 	 	 {0x20000,	0x2a6d6,	1},

		4452	 	 	 {0x2a700,	0x2b734,	1},

		4453	 	 	 {0x2b740,	0x2b81d,	1},

		4454	 	 	 {0x2f800,	0x2fa1d,	1},

		4455	 	 },

		4456	 }

		4457	

		4458	 var	_Join_Control	=	&RangeTable{

		4459	 	 R16:	[]Range16{

		4460	 	 	 {0x200c,	0x200d,	1},

		4461	 	 },

		4462	 }

		4463	

		4464	 var	_Logical_Order_Exception	=	&RangeTable{

		4465	 	 R16:	[]Range16{

		4466	 	 	 {0x0e40,	0x0e44,	1},

		4467	 	 	 {0x0ec0,	0x0ec4,	1},

		4468	 	 	 {0xaab5,	0xaab6,	1},

		4469	 	 	 {0xaab9,	0xaab9,	1},

		4470	 	 	 {0xaabb,	0xaabc,	1},

		4471	 	 },

		4472	 }

		4473	

		4474	 var	_Noncharacter_Code_Point	=	&RangeTable{

		4475	 	 R16:	[]Range16{

		4476	 	 	 {0xfdd0,	0xfdef,	1},

		4477	 	 	 {0xfffe,	0xffff,	1},

		4478	 	 },

		4479	 	 R32:	[]Range32{

		4480	 	 	 {0x1fffe,	0x1ffff,	1},

		4481	 	 	 {0x2fffe,	0x2ffff,	1},

		4482	 	 	 {0x3fffe,	0x3ffff,	1},

		4483	 	 	 {0x4fffe,	0x4ffff,	1},

		4484	 	 	 {0x5fffe,	0x5ffff,	1},

		4485	 	 	 {0x6fffe,	0x6ffff,	1},

		4486	 	 	 {0x7fffe,	0x7ffff,	1},

		4487	 	 	 {0x8fffe,	0x8ffff,	1},

		4488	 	 	 {0x9fffe,	0x9ffff,	1},

		4489	 	 	 {0xafffe,	0xaffff,	1},

		4490	 	 	 {0xbfffe,	0xbffff,	1},

		4491	 	 	 {0xcfffe,	0xcffff,	1},

		4492	 	 	 {0xdfffe,	0xdffff,	1},

		4493	 	 	 {0xefffe,	0xeffff,	1},

		4494	 	 	 {0xffffe,	0xfffff,	1},

		4495	 	 	 {0x10fffe,	0x10ffff,	1},

		4496	 	 },

		4497	 }

		4498	

		4499	 var	_Other_Alphabetic	=	&RangeTable{

		4500	 	 R16:	[]Range16{

		4501	 	 	 {0x0345,	0x0345,	1},

		4502	 	 	 {0x05b0,	0x05bd,	1},

		4503	 	 	 {0x05bf,	0x05bf,	1},

		4504	 	 	 {0x05c1,	0x05c2,	1},

		4505	 	 	 {0x05c4,	0x05c5,	1},

		4506	 	 	 {0x05c7,	0x05c7,	1},

		4507	 	 	 {0x0610,	0x061a,	1},

		4508	 	 	 {0x064b,	0x0657,	1},

		4509	 	 	 {0x0659,	0x065f,	1},

		4510	 	 	 {0x0670,	0x0670,	1},

		4511	 	 	 {0x06d6,	0x06dc,	1},

		4512	 	 	 {0x06e1,	0x06e4,	1},

		4513	 	 	 {0x06e7,	0x06e8,	1},

		4514	 	 	 {0x06ed,	0x06ed,	1},

		4515	 	 	 {0x0711,	0x0711,	1},

		4516	 	 	 {0x0730,	0x073f,	1},

		4517	 	 	 {0x07a6,	0x07b0,	1},

		4518	 	 	 {0x0816,	0x0817,	1},

		4519	 	 	 {0x081b,	0x0823,	1},

		4520	 	 	 {0x0825,	0x0827,	1},

		4521	 	 	 {0x0829,	0x082c,	1},

		4522	 	 	 {0x0900,	0x0903,	1},

		4523	 	 	 {0x093a,	0x093b,	1},

		4524	 	 	 {0x093e,	0x094c,	1},

		4525	 	 	 {0x094e,	0x094f,	1},

		4526	 	 	 {0x0955,	0x0957,	1},

		4527	 	 	 {0x0962,	0x0963,	1},

		4528	 	 	 {0x0981,	0x0983,	1},

		4529	 	 	 {0x09be,	0x09c4,	1},

		4530	 	 	 {0x09c7,	0x09c8,	1},

		4531	 	 	 {0x09cb,	0x09cc,	1},

		4532	 	 	 {0x09d7,	0x09d7,	1},

		4533	 	 	 {0x09e2,	0x09e3,	1},

		4534	 	 	 {0x0a01,	0x0a03,	1},

		4535	 	 	 {0x0a3e,	0x0a42,	1},

		4536	 	 	 {0x0a47,	0x0a48,	1},

		4537	 	 	 {0x0a4b,	0x0a4c,	1},

		4538	 	 	 {0x0a51,	0x0a51,	1},

		4539	 	 	 {0x0a70,	0x0a71,	1},

		4540	 	 	 {0x0a75,	0x0a75,	1},

		4541	 	 	 {0x0a81,	0x0a83,	1},

		4542	 	 	 {0x0abe,	0x0ac5,	1},

		4543	 	 	 {0x0ac7,	0x0ac9,	1},

		4544	 	 	 {0x0acb,	0x0acc,	1},

		4545	 	 	 {0x0ae2,	0x0ae3,	1},

		4546	 	 	 {0x0b01,	0x0b03,	1},

		4547	 	 	 {0x0b3e,	0x0b44,	1},

		4548	 	 	 {0x0b47,	0x0b48,	1},

		4549	 	 	 {0x0b4b,	0x0b4c,	1},

		4550	 	 	 {0x0b56,	0x0b57,	1},

		4551	 	 	 {0x0b62,	0x0b63,	1},

		4552	 	 	 {0x0b82,	0x0b82,	1},

		4553	 	 	 {0x0bbe,	0x0bc2,	1},

		4554	 	 	 {0x0bc6,	0x0bc8,	1},

		4555	 	 	 {0x0bca,	0x0bcc,	1},

		4556	 	 	 {0x0bd7,	0x0bd7,	1},

		4557	 	 	 {0x0c01,	0x0c03,	1},

		4558	 	 	 {0x0c3e,	0x0c44,	1},

		4559	 	 	 {0x0c46,	0x0c48,	1},

		4560	 	 	 {0x0c4a,	0x0c4c,	1},

		4561	 	 	 {0x0c55,	0x0c56,	1},

		4562	 	 	 {0x0c62,	0x0c63,	1},

		4563	 	 	 {0x0c82,	0x0c83,	1},

		4564	 	 	 {0x0cbe,	0x0cc4,	1},

		4565	 	 	 {0x0cc6,	0x0cc8,	1},

		4566	 	 	 {0x0cca,	0x0ccc,	1},

		4567	 	 	 {0x0cd5,	0x0cd6,	1},

		4568	 	 	 {0x0ce2,	0x0ce3,	1},

		4569	 	 	 {0x0d02,	0x0d03,	1},

		4570	 	 	 {0x0d3e,	0x0d44,	1},

		4571	 	 	 {0x0d46,	0x0d48,	1},

		4572	 	 	 {0x0d4a,	0x0d4c,	1},

		4573	 	 	 {0x0d57,	0x0d57,	1},

		4574	 	 	 {0x0d62,	0x0d63,	1},

		4575	 	 	 {0x0d82,	0x0d83,	1},

		4576	 	 	 {0x0dcf,	0x0dd4,	1},

		4577	 	 	 {0x0dd6,	0x0dd6,	1},

		4578	 	 	 {0x0dd8,	0x0ddf,	1},

		4579	 	 	 {0x0df2,	0x0df3,	1},

		4580	 	 	 {0x0e31,	0x0e31,	1},

		4581	 	 	 {0x0e34,	0x0e3a,	1},

		4582	 	 	 {0x0e4d,	0x0e4d,	1},

		4583	 	 	 {0x0eb1,	0x0eb1,	1},

		4584	 	 	 {0x0eb4,	0x0eb9,	1},

		4585	 	 	 {0x0ebb,	0x0ebc,	1},

		4586	 	 	 {0x0ecd,	0x0ecd,	1},

		4587	 	 	 {0x0f71,	0x0f81,	1},

		4588	 	 	 {0x0f8d,	0x0f97,	1},

		4589	 	 	 {0x0f99,	0x0fbc,	1},

		4590	 	 	 {0x102b,	0x1036,	1},

		4591	 	 	 {0x1038,	0x1038,	1},

		4592	 	 	 {0x103b,	0x103e,	1},

		4593	 	 	 {0x1056,	0x1059,	1},

		4594	 	 	 {0x105e,	0x1060,	1},

		4595	 	 	 {0x1062,	0x1062,	1},

		4596	 	 	 {0x1067,	0x1068,	1},

		4597	 	 	 {0x1071,	0x1074,	1},

		4598	 	 	 {0x1082,	0x1086,	1},

		4599	 	 	 {0x109c,	0x109d,	1},

		4600	 	 	 {0x135f,	0x135f,	1},

		4601	 	 	 {0x1712,	0x1713,	1},

		4602	 	 	 {0x1732,	0x1733,	1},

		4603	 	 	 {0x1752,	0x1753,	1},

		4604	 	 	 {0x1772,	0x1773,	1},

		4605	 	 	 {0x17b6,	0x17c8,	1},

		4606	 	 	 {0x18a9,	0x18a9,	1},

		4607	 	 	 {0x1920,	0x192b,	1},

		4608	 	 	 {0x1930,	0x1938,	1},

		4609	 	 	 {0x19b0,	0x19c0,	1},

		4610	 	 	 {0x19c8,	0x19c9,	1},

		4611	 	 	 {0x1a17,	0x1a1b,	1},

		4612	 	 	 {0x1a55,	0x1a5e,	1},

		4613	 	 	 {0x1a61,	0x1a74,	1},

		4614	 	 	 {0x1b00,	0x1b04,	1},

		4615	 	 	 {0x1b35,	0x1b43,	1},

		4616	 	 	 {0x1b80,	0x1b82,	1},

		4617	 	 	 {0x1ba1,	0x1ba9,	1},

		4618	 	 	 {0x1be7,	0x1bf1,	1},

		4619	 	 	 {0x1c24,	0x1c35,	1},

		4620	 	 	 {0x1cf2,	0x1cf2,	1},

		4621	 	 	 {0x24b6,	0x24e9,	1},

		4622	 	 	 {0x2de0,	0x2dff,	1},

		4623	 	 	 {0xa823,	0xa827,	1},

		4624	 	 	 {0xa880,	0xa881,	1},

		4625	 	 	 {0xa8b4,	0xa8c3,	1},

		4626	 	 	 {0xa926,	0xa92a,	1},

		4627	 	 	 {0xa947,	0xa952,	1},

		4628	 	 	 {0xa980,	0xa983,	1},

		4629	 	 	 {0xa9b4,	0xa9bf,	1},

		4630	 	 	 {0xaa29,	0xaa36,	1},

		4631	 	 	 {0xaa43,	0xaa43,	1},

		4632	 	 	 {0xaa4c,	0xaa4d,	1},

		4633	 	 	 {0xaab0,	0xaab0,	1},

		4634	 	 	 {0xaab2,	0xaab4,	1},

		4635	 	 	 {0xaab7,	0xaab8,	1},

		4636	 	 	 {0xaabe,	0xaabe,	1},

		4637	 	 	 {0xabe3,	0xabea,	1},

		4638	 	 	 {0xfb1e,	0xfb1e,	1},

		4639	 	 },

		4640	 	 R32:	[]Range32{

		4641	 	 	 {0x10a01,	0x10a03,	1},

		4642	 	 	 {0x10a05,	0x10a06,	1},

		4643	 	 	 {0x10a0c,	0x10a0f,	1},

		4644	 	 	 {0x11000,	0x11002,	1},

		4645	 	 	 {0x11038,	0x11045,	1},

		4646	 	 	 {0x11082,	0x11082,	1},

		4647	 	 	 {0x110b0,	0x110b8,	1},

		4648	 	 },

		4649	 }

		4650	

		4651	 var	_Other_Default_Ignorable_Code_Point	=	&RangeTable{

		4652	 	 R16:	[]Range16{

		4653	 	 	 {0x034f,	0x034f,	1},

		4654	 	 	 {0x115f,	0x1160,	1},

		4655	 	 	 {0x2065,	0x2069,	1},

		4656	 	 	 {0x3164,	0x3164,	1},

		4657	 	 	 {0xffa0,	0xffa0,	1},

		4658	 	 	 {0xfff0,	0xfff8,	1},

		4659	 	 },

		4660	 	 R32:	[]Range32{

		4661	 	 	 {0xe0000,	0xe0000,	1},

		4662	 	 	 {0xe0002,	0xe001f,	1},

		4663	 	 	 {0xe0080,	0xe00ff,	1},

		4664	 	 	 {0xe01f0,	0xe0fff,	1},

		4665	 	 },

		4666	 }

		4667	

		4668	 var	_Other_Grapheme_Extend	=	&RangeTable{

		4669	 	 R16:	[]Range16{

		4670	 	 	 {0x09be,	0x09be,	1},

		4671	 	 	 {0x09d7,	0x09d7,	1},

		4672	 	 	 {0x0b3e,	0x0b3e,	1},

		4673	 	 	 {0x0b57,	0x0b57,	1},

		4674	 	 	 {0x0bbe,	0x0bbe,	1},

		4675	 	 	 {0x0bd7,	0x0bd7,	1},

		4676	 	 	 {0x0cc2,	0x0cc2,	1},

		4677	 	 	 {0x0cd5,	0x0cd6,	1},

		4678	 	 	 {0x0d3e,	0x0d3e,	1},

		4679	 	 	 {0x0d57,	0x0d57,	1},

		4680	 	 	 {0x0dcf,	0x0dcf,	1},

		4681	 	 	 {0x0ddf,	0x0ddf,	1},

		4682	 	 	 {0x200c,	0x200d,	1},

		4683	 	 	 {0xff9e,	0xff9f,	1},

		4684	 	 },

		4685	 	 R32:	[]Range32{

		4686	 	 	 {0x1d165,	0x1d165,	1},

		4687	 	 	 {0x1d16e,	0x1d172,	1},

		4688	 	 },

		4689	 }

		4690	

		4691	 var	_Other_ID_Continue	=	&RangeTable{

		4692	 	 R16:	[]Range16{

		4693	 	 	 {0x00b7,	0x00b7,	1},

		4694	 	 	 {0x0387,	0x0387,	1},

		4695	 	 	 {0x1369,	0x1371,	1},

		4696	 	 	 {0x19da,	0x19da,	1},

		4697	 	 },

		4698	 }

		4699	

		4700	 var	_Other_ID_Start	=	&RangeTable{

		4701	 	 R16:	[]Range16{

		4702	 	 	 {0x2118,	0x2118,	1},

		4703	 	 	 {0x212e,	0x212e,	1},

		4704	 	 	 {0x309b,	0x309c,	1},

		4705	 	 },

		4706	 }

		4707	

		4708	 var	_Other_Lowercase	=	&RangeTable{

		4709	 	 R16:	[]Range16{

		4710	 	 	 {0x02b0,	0x02b8,	1},

		4711	 	 	 {0x02c0,	0x02c1,	1},

		4712	 	 	 {0x02e0,	0x02e4,	1},

		4713	 	 	 {0x0345,	0x0345,	1},

		4714	 	 	 {0x037a,	0x037a,	1},

		4715	 	 	 {0x1d2c,	0x1d61,	1},

		4716	 	 	 {0x1d78,	0x1d78,	1},

		4717	 	 	 {0x1d9b,	0x1dbf,	1},

		4718	 	 	 {0x2090,	0x2094,	1},

		4719	 	 	 {0x2170,	0x217f,	1},

		4720	 	 	 {0x24d0,	0x24e9,	1},

		4721	 	 	 {0x2c7d,	0x2c7d,	1},

		4722	 	 	 {0xa770,	0xa770,	1},

		4723	 	 },

		4724	 }

		4725	

		4726	 var	_Other_Math	=	&RangeTable{

		4727	 	 R16:	[]Range16{

		4728	 	 	 {0x005e,	0x005e,	1},

		4729	 	 	 {0x03d0,	0x03d2,	1},

		4730	 	 	 {0x03d5,	0x03d5,	1},

		4731	 	 	 {0x03f0,	0x03f1,	1},

		4732	 	 	 {0x03f4,	0x03f5,	1},

		4733	 	 	 {0x2016,	0x2016,	1},

		4734	 	 	 {0x2032,	0x2034,	1},

		4735	 	 	 {0x2040,	0x2040,	1},

		4736	 	 	 {0x2061,	0x2064,	1},

		4737	 	 	 {0x207d,	0x207e,	1},

		4738	 	 	 {0x208d,	0x208e,	1},

		4739	 	 	 {0x20d0,	0x20dc,	1},

		4740	 	 	 {0x20e1,	0x20e1,	1},

		4741	 	 	 {0x20e5,	0x20e6,	1},

		4742	 	 	 {0x20eb,	0x20ef,	1},

		4743	 	 	 {0x2102,	0x2102,	1},

		4744	 	 	 {0x2107,	0x2107,	1},

		4745	 	 	 {0x210a,	0x2113,	1},

		4746	 	 	 {0x2115,	0x2115,	1},

		4747	 	 	 {0x2119,	0x211d,	1},

		4748	 	 	 {0x2124,	0x2124,	1},

		4749	 	 	 {0x2128,	0x2129,	1},

		4750	 	 	 {0x212c,	0x212d,	1},

		4751	 	 	 {0x212f,	0x2131,	1},

		4752	 	 	 {0x2133,	0x2138,	1},

		4753	 	 	 {0x213c,	0x213f,	1},

		4754	 	 	 {0x2145,	0x2149,	1},

		4755	 	 	 {0x2195,	0x2199,	1},

		4756	 	 	 {0x219c,	0x219f,	1},

		4757	 	 	 {0x21a1,	0x21a2,	1},

		4758	 	 	 {0x21a4,	0x21a5,	1},

		4759	 	 	 {0x21a7,	0x21a7,	1},

		4760	 	 	 {0x21a9,	0x21ad,	1},

		4761	 	 	 {0x21b0,	0x21b1,	1},

		4762	 	 	 {0x21b6,	0x21b7,	1},

		4763	 	 	 {0x21bc,	0x21cd,	1},

		4764	 	 	 {0x21d0,	0x21d1,	1},

		4765	 	 	 {0x21d3,	0x21d3,	1},

		4766	 	 	 {0x21d5,	0x21db,	1},

		4767	 	 	 {0x21dd,	0x21dd,	1},

		4768	 	 	 {0x21e4,	0x21e5,	1},

		4769	 	 	 {0x23b4,	0x23b5,	1},

		4770	 	 	 {0x23b7,	0x23b7,	1},

		4771	 	 	 {0x23d0,	0x23d0,	1},

		4772	 	 	 {0x23e2,	0x23e2,	1},

		4773	 	 	 {0x25a0,	0x25a1,	1},

		4774	 	 	 {0x25ae,	0x25b6,	1},

		4775	 	 	 {0x25bc,	0x25c0,	1},

		4776	 	 	 {0x25c6,	0x25c7,	1},

		4777	 	 	 {0x25ca,	0x25cb,	1},

		4778	 	 	 {0x25cf,	0x25d3,	1},

		4779	 	 	 {0x25e2,	0x25e2,	1},

		4780	 	 	 {0x25e4,	0x25e4,	1},

		4781	 	 	 {0x25e7,	0x25ec,	1},

		4782	 	 	 {0x2605,	0x2606,	1},

		4783	 	 	 {0x2640,	0x2640,	1},

		4784	 	 	 {0x2642,	0x2642,	1},

		4785	 	 	 {0x2660,	0x2663,	1},

		4786	 	 	 {0x266d,	0x266e,	1},

		4787	 	 	 {0x27c5,	0x27c6,	1},

		4788	 	 	 {0x27e6,	0x27ef,	1},

		4789	 	 	 {0x2983,	0x2998,	1},

		4790	 	 	 {0x29d8,	0x29db,	1},

		4791	 	 	 {0x29fc,	0x29fd,	1},

		4792	 	 	 {0xfe61,	0xfe61,	1},

		4793	 	 	 {0xfe63,	0xfe63,	1},

		4794	 	 	 {0xfe68,	0xfe68,	1},

		4795	 	 	 {0xff3c,	0xff3c,	1},

		4796	 	 	 {0xff3e,	0xff3e,	1},

		4797	 	 },

		4798	 	 R32:	[]Range32{

		4799	 	 	 {0x1d400,	0x1d454,	1},

		4800	 	 	 {0x1d456,	0x1d49c,	1},

		4801	 	 	 {0x1d49e,	0x1d49f,	1},

		4802	 	 	 {0x1d4a2,	0x1d4a2,	1},

		4803	 	 	 {0x1d4a5,	0x1d4a6,	1},

		4804	 	 	 {0x1d4a9,	0x1d4ac,	1},

		4805	 	 	 {0x1d4ae,	0x1d4b9,	1},

		4806	 	 	 {0x1d4bb,	0x1d4bb,	1},

		4807	 	 	 {0x1d4bd,	0x1d4c3,	1},

		4808	 	 	 {0x1d4c5,	0x1d505,	1},

		4809	 	 	 {0x1d507,	0x1d50a,	1},

		4810	 	 	 {0x1d50d,	0x1d514,	1},

		4811	 	 	 {0x1d516,	0x1d51c,	1},

		4812	 	 	 {0x1d51e,	0x1d539,	1},

		4813	 	 	 {0x1d53b,	0x1d53e,	1},

		4814	 	 	 {0x1d540,	0x1d544,	1},

		4815	 	 	 {0x1d546,	0x1d546,	1},

		4816	 	 	 {0x1d54a,	0x1d550,	1},

		4817	 	 	 {0x1d552,	0x1d6a5,	1},

		4818	 	 	 {0x1d6a8,	0x1d6c0,	1},

		4819	 	 	 {0x1d6c2,	0x1d6da,	1},

		4820	 	 	 {0x1d6dc,	0x1d6fa,	1},

		4821	 	 	 {0x1d6fc,	0x1d714,	1},

		4822	 	 	 {0x1d716,	0x1d734,	1},

		4823	 	 	 {0x1d736,	0x1d74e,	1},

		4824	 	 	 {0x1d750,	0x1d76e,	1},

		4825	 	 	 {0x1d770,	0x1d788,	1},

		4826	 	 	 {0x1d78a,	0x1d7a8,	1},

		4827	 	 	 {0x1d7aa,	0x1d7c2,	1},

		4828	 	 	 {0x1d7c4,	0x1d7cb,	1},

		4829	 	 	 {0x1d7ce,	0x1d7ff,	1},

		4830	 	 },

		4831	 }

		4832	

		4833	 var	_Other_Uppercase	=	&RangeTable{

		4834	 	 R16:	[]Range16{

		4835	 	 	 {0x2160,	0x216f,	1},

		4836	 	 	 {0x24b6,	0x24cf,	1},

		4837	 	 },

		4838	 }

		4839	

		4840	 var	_Pattern_Syntax	=	&RangeTable{

		4841	 	 R16:	[]Range16{

		4842	 	 	 {0x0021,	0x002f,	1},

		4843	 	 	 {0x003a,	0x0040,	1},

		4844	 	 	 {0x005b,	0x005e,	1},

		4845	 	 	 {0x0060,	0x0060,	1},

		4846	 	 	 {0x007b,	0x007e,	1},

		4847	 	 	 {0x00a1,	0x00a7,	1},

		4848	 	 	 {0x00a9,	0x00a9,	1},

		4849	 	 	 {0x00ab,	0x00ac,	1},

		4850	 	 	 {0x00ae,	0x00ae,	1},

		4851	 	 	 {0x00b0,	0x00b1,	1},

		4852	 	 	 {0x00b6,	0x00b6,	1},

		4853	 	 	 {0x00bb,	0x00bb,	1},

		4854	 	 	 {0x00bf,	0x00bf,	1},

		4855	 	 	 {0x00d7,	0x00d7,	1},

		4856	 	 	 {0x00f7,	0x00f7,	1},

		4857	 	 	 {0x2010,	0x2027,	1},

		4858	 	 	 {0x2030,	0x203e,	1},

		4859	 	 	 {0x2041,	0x2053,	1},

		4860	 	 	 {0x2055,	0x205e,	1},

		4861	 	 	 {0x2190,	0x245f,	1},

		4862	 	 	 {0x2500,	0x2775,	1},

		4863	 	 	 {0x2794,	0x2bff,	1},

		4864	 	 	 {0x2e00,	0x2e7f,	1},

		4865	 	 	 {0x3001,	0x3003,	1},

		4866	 	 	 {0x3008,	0x3020,	1},

		4867	 	 	 {0x3030,	0x3030,	1},

		4868	 	 	 {0xfd3e,	0xfd3f,	1},

		4869	 	 	 {0xfe45,	0xfe46,	1},

		4870	 	 },

		4871	 }

		4872	

		4873	 var	_Pattern_White_Space	=	&RangeTable{

		4874	 	 R16:	[]Range16{

		4875	 	 	 {0x0009,	0x000d,	1},

		4876	 	 	 {0x0020,	0x0020,	1},

		4877	 	 	 {0x0085,	0x0085,	1},

		4878	 	 	 {0x200e,	0x200f,	1},

		4879	 	 	 {0x2028,	0x2029,	1},

		4880	 	 },

		4881	 }

		4882	

		4883	 var	_Quotation_Mark	=	&RangeTable{

		4884	 	 R16:	[]Range16{

		4885	 	 	 {0x0022,	0x0022,	1},

		4886	 	 	 {0x0027,	0x0027,	1},

		4887	 	 	 {0x00ab,	0x00ab,	1},

		4888	 	 	 {0x00bb,	0x00bb,	1},

		4889	 	 	 {0x2018,	0x201f,	1},

		4890	 	 	 {0x2039,	0x203a,	1},

		4891	 	 	 {0x300c,	0x300f,	1},

		4892	 	 	 {0x301d,	0x301f,	1},

		4893	 	 	 {0xfe41,	0xfe44,	1},

		4894	 	 	 {0xff02,	0xff02,	1},

		4895	 	 	 {0xff07,	0xff07,	1},

		4896	 	 	 {0xff62,	0xff63,	1},

		4897	 	 },

		4898	 }

		4899	

		4900	 var	_Radical	=	&RangeTable{

		4901	 	 R16:	[]Range16{

		4902	 	 	 {0x2e80,	0x2e99,	1},

		4903	 	 	 {0x2e9b,	0x2ef3,	1},

		4904	 	 	 {0x2f00,	0x2fd5,	1},

		4905	 	 },

		4906	 }

		4907	

		4908	 var	_STerm	=	&RangeTable{

		4909	 	 R16:	[]Range16{

		4910	 	 	 {0x0021,	0x0021,	1},

		4911	 	 	 {0x002e,	0x002e,	1},

		4912	 	 	 {0x003f,	0x003f,	1},

		4913	 	 	 {0x055c,	0x055c,	1},

		4914	 	 	 {0x055e,	0x055e,	1},

		4915	 	 	 {0x0589,	0x0589,	1},

		4916	 	 	 {0x061f,	0x061f,	1},

		4917	 	 	 {0x06d4,	0x06d4,	1},

		4918	 	 	 {0x0700,	0x0702,	1},

		4919	 	 	 {0x07f9,	0x07f9,	1},

		4920	 	 	 {0x0964,	0x0965,	1},

		4921	 	 	 {0x104a,	0x104b,	1},

		4922	 	 	 {0x1362,	0x1362,	1},

		4923	 	 	 {0x1367,	0x1368,	1},

		4924	 	 	 {0x166e,	0x166e,	1},

		4925	 	 	 {0x1735,	0x1736,	1},

		4926	 	 	 {0x1803,	0x1803,	1},

		4927	 	 	 {0x1809,	0x1809,	1},

		4928	 	 	 {0x1944,	0x1945,	1},

		4929	 	 	 {0x1aa8,	0x1aab,	1},

		4930	 	 	 {0x1b5a,	0x1b5b,	1},

		4931	 	 	 {0x1b5e,	0x1b5f,	1},

		4932	 	 	 {0x1c3b,	0x1c3c,	1},

		4933	 	 	 {0x1c7e,	0x1c7f,	1},

		4934	 	 	 {0x203c,	0x203d,	1},

		4935	 	 	 {0x2047,	0x2049,	1},

		4936	 	 	 {0x2e2e,	0x2e2e,	1},

		4937	 	 	 {0x3002,	0x3002,	1},

		4938	 	 	 {0xa4ff,	0xa4ff,	1},

		4939	 	 	 {0xa60e,	0xa60f,	1},

		4940	 	 	 {0xa6f3,	0xa6f3,	1},

		4941	 	 	 {0xa6f7,	0xa6f7,	1},

		4942	 	 	 {0xa876,	0xa877,	1},

		4943	 	 	 {0xa8ce,	0xa8cf,	1},

		4944	 	 	 {0xa92f,	0xa92f,	1},

		4945	 	 	 {0xa9c8,	0xa9c9,	1},

		4946	 	 	 {0xaa5d,	0xaa5f,	1},

		4947	 	 	 {0xabeb,	0xabeb,	1},

		4948	 	 	 {0xfe52,	0xfe52,	1},

		4949	 	 	 {0xfe56,	0xfe57,	1},

		4950	 	 	 {0xff01,	0xff01,	1},

		4951	 	 	 {0xff0e,	0xff0e,	1},

		4952	 	 	 {0xff1f,	0xff1f,	1},

		4953	 	 	 {0xff61,	0xff61,	1},

		4954	 	 },

		4955	 	 R32:	[]Range32{

		4956	 	 	 {0x10a56,	0x10a57,	1},

		4957	 	 	 {0x11047,	0x11048,	1},

		4958	 	 	 {0x110be,	0x110c1,	1},

		4959	 	 },

		4960	 }

		4961	

		4962	 var	_Soft_Dotted	=	&RangeTable{

		4963	 	 R16:	[]Range16{

		4964	 	 	 {0x0069,	0x006a,	1},

		4965	 	 	 {0x012f,	0x012f,	1},

		4966	 	 	 {0x0249,	0x0249,	1},

		4967	 	 	 {0x0268,	0x0268,	1},

		4968	 	 	 {0x029d,	0x029d,	1},

		4969	 	 	 {0x02b2,	0x02b2,	1},

		4970	 	 	 {0x03f3,	0x03f3,	1},

		4971	 	 	 {0x0456,	0x0456,	1},

		4972	 	 	 {0x0458,	0x0458,	1},

		4973	 	 	 {0x1d62,	0x1d62,	1},

		4974	 	 	 {0x1d96,	0x1d96,	1},

		4975	 	 	 {0x1da4,	0x1da4,	1},

		4976	 	 	 {0x1da8,	0x1da8,	1},

		4977	 	 	 {0x1e2d,	0x1e2d,	1},

		4978	 	 	 {0x1ecb,	0x1ecb,	1},

		4979	 	 	 {0x2071,	0x2071,	1},

		4980	 	 	 {0x2148,	0x2149,	1},

		4981	 	 	 {0x2c7c,	0x2c7c,	1},

		4982	 	 },

		4983	 	 R32:	[]Range32{

		4984	 	 	 {0x1d422,	0x1d423,	1},

		4985	 	 	 {0x1d456,	0x1d457,	1},

		4986	 	 	 {0x1d48a,	0x1d48b,	1},

		4987	 	 	 {0x1d4be,	0x1d4bf,	1},

		4988	 	 	 {0x1d4f2,	0x1d4f3,	1},

		4989	 	 	 {0x1d526,	0x1d527,	1},

		4990	 	 	 {0x1d55a,	0x1d55b,	1},

		4991	 	 	 {0x1d58e,	0x1d58f,	1},

		4992	 	 	 {0x1d5c2,	0x1d5c3,	1},

		4993	 	 	 {0x1d5f6,	0x1d5f7,	1},

		4994	 	 	 {0x1d62a,	0x1d62b,	1},

		4995	 	 	 {0x1d65e,	0x1d65f,	1},

		4996	 	 	 {0x1d692,	0x1d693,	1},

		4997	 	 },

		4998	 }

		4999	

		5000	 var	_Terminal_Punctuation	=	&RangeTable{

		5001	 	 R16:	[]Range16{

		5002	 	 	 {0x0021,	0x0021,	1},

		5003	 	 	 {0x002c,	0x002c,	1},

		5004	 	 	 {0x002e,	0x002e,	1},

		5005	 	 	 {0x003a,	0x003b,	1},

		5006	 	 	 {0x003f,	0x003f,	1},

		5007	 	 	 {0x037e,	0x037e,	1},

		5008	 	 	 {0x0387,	0x0387,	1},

		5009	 	 	 {0x0589,	0x0589,	1},

		5010	 	 	 {0x05c3,	0x05c3,	1},

		5011	 	 	 {0x060c,	0x060c,	1},

		5012	 	 	 {0x061b,	0x061b,	1},

		5013	 	 	 {0x061f,	0x061f,	1},

		5014	 	 	 {0x06d4,	0x06d4,	1},

		5015	 	 	 {0x0700,	0x070a,	1},

		5016	 	 	 {0x070c,	0x070c,	1},

		5017	 	 	 {0x07f8,	0x07f9,	1},

		5018	 	 	 {0x0830,	0x083e,	1},

		5019	 	 	 {0x085e,	0x085e,	1},

		5020	 	 	 {0x0964,	0x0965,	1},

		5021	 	 	 {0x0e5a,	0x0e5b,	1},

		5022	 	 	 {0x0f08,	0x0f08,	1},

		5023	 	 	 {0x0f0d,	0x0f12,	1},

		5024	 	 	 {0x104a,	0x104b,	1},

		5025	 	 	 {0x1361,	0x1368,	1},

		5026	 	 	 {0x166d,	0x166e,	1},

		5027	 	 	 {0x16eb,	0x16ed,	1},

		5028	 	 	 {0x17d4,	0x17d6,	1},

		5029	 	 	 {0x17da,	0x17da,	1},

		5030	 	 	 {0x1802,	0x1805,	1},

		5031	 	 	 {0x1808,	0x1809,	1},

		5032	 	 	 {0x1944,	0x1945,	1},

		5033	 	 	 {0x1aa8,	0x1aab,	1},

		5034	 	 	 {0x1b5a,	0x1b5b,	1},

		5035	 	 	 {0x1b5d,	0x1b5f,	1},

		5036	 	 	 {0x1c3b,	0x1c3f,	1},

		5037	 	 	 {0x1c7e,	0x1c7f,	1},

		5038	 	 	 {0x203c,	0x203d,	1},

		5039	 	 	 {0x2047,	0x2049,	1},

		5040	 	 	 {0x2e2e,	0x2e2e,	1},

		5041	 	 	 {0x3001,	0x3002,	1},

		5042	 	 	 {0xa4fe,	0xa4ff,	1},

		5043	 	 	 {0xa60d,	0xa60f,	1},

		5044	 	 	 {0xa6f3,	0xa6f7,	1},

		5045	 	 	 {0xa876,	0xa877,	1},

		5046	 	 	 {0xa8ce,	0xa8cf,	1},

		5047	 	 	 {0xa92f,	0xa92f,	1},

		5048	 	 	 {0xa9c7,	0xa9c9,	1},

		5049	 	 	 {0xaa5d,	0xaa5f,	1},

		5050	 	 	 {0xaadf,	0xaadf,	1},

		5051	 	 	 {0xabeb,	0xabeb,	1},

		5052	 	 	 {0xfe50,	0xfe52,	1},

		5053	 	 	 {0xfe54,	0xfe57,	1},

		5054	 	 	 {0xff01,	0xff01,	1},

		5055	 	 	 {0xff0c,	0xff0c,	1},

		5056	 	 	 {0xff0e,	0xff0e,	1},

		5057	 	 	 {0xff1a,	0xff1b,	1},

		5058	 	 	 {0xff1f,	0xff1f,	1},

		5059	 	 	 {0xff61,	0xff61,	1},

		5060	 	 	 {0xff64,	0xff64,	1},

		5061	 	 },

		5062	 	 R32:	[]Range32{

		5063	 	 	 {0x1039f,	0x1039f,	1},

		5064	 	 	 {0x103d0,	0x103d0,	1},

		5065	 	 	 {0x10857,	0x10857,	1},

		5066	 	 	 {0x1091f,	0x1091f,	1},

		5067	 	 	 {0x10b3a,	0x10b3f,	1},

		5068	 	 	 {0x11047,	0x1104d,	1},

		5069	 	 	 {0x110be,	0x110c1,	1},

		5070	 	 	 {0x12470,	0x12473,	1},

		5071	 	 },

		5072	 }

		5073	

		5074	 var	_Unified_Ideograph	=	&RangeTable{

		5075	 	 R16:	[]Range16{

		5076	 	 	 {0x3400,	0x4db5,	1},

		5077	 	 	 {0x4e00,	0x9fcb,	1},

		5078	 	 	 {0xfa0e,	0xfa0f,	1},

		5079	 	 	 {0xfa11,	0xfa11,	1},

		5080	 	 	 {0xfa13,	0xfa14,	1},

		5081	 	 	 {0xfa1f,	0xfa1f,	1},

		5082	 	 	 {0xfa21,	0xfa21,	1},

		5083	 	 	 {0xfa23,	0xfa24,	1},

		5084	 	 	 {0xfa27,	0xfa29,	1},

		5085	 	 },

		5086	 	 R32:	[]Range32{

		5087	 	 	 {0x20000,	0x2a6d6,	1},

		5088	 	 	 {0x2a700,	0x2b734,	1},

		5089	 	 	 {0x2b740,	0x2b81d,	1},

		5090	 	 },

		5091	 }

		5092	

		5093	 var	_Variation_Selector	=	&RangeTable{

		5094	 	 R16:	[]Range16{

		5095	 	 	 {0x180b,	0x180d,	1},

		5096	 	 	 {0xfe00,	0xfe0f,	1},

		5097	 	 },

		5098	 	 R32:	[]Range32{

		5099	 	 	 {0xe0100,	0xe01ef,	1},

		5100	 	 },

		5101	 }

		5102	

		5103	 var	_White_Space	=	&RangeTable{

		5104	 	 R16:	[]Range16{

		5105	 	 	 {0x0009,	0x000d,	1},

		5106	 	 	 {0x0020,	0x0020,	1},

		5107	 	 	 {0x0085,	0x0085,	1},

		5108	 	 	 {0x00a0,	0x00a0,	1},

		5109	 	 	 {0x1680,	0x1680,	1},

		5110	 	 	 {0x180e,	0x180e,	1},

		5111	 	 	 {0x2000,	0x200a,	1},

		5112	 	 	 {0x2028,	0x2029,	1},

		5113	 	 	 {0x202f,	0x202f,	1},

		5114	 	 	 {0x205f,	0x205f,	1},

		5115	 	 	 {0x3000,	0x3000,	1},

		5116	 	 },

		5117	 }

		5118	

		5119	 //	The	following	variables	are	of	type	*RangeTable:

		5120	 var	(

		5121	 	 ASCII_Hex_Digit																				=	_ASCII_Hex_Digit																				

		5122	 	 Bidi_Control																							=	_Bidi_Control																							

		5123	 	 Dash																															=	_Dash																															

		5124	 	 Deprecated																									=	_Deprecated																									

		5125	 	 Diacritic																										=	_Diacritic																										

		5126	 	 Extender																											=	_Extender																											

		5127	 	 Hex_Digit																										=	_Hex_Digit																										

		5128	 	 Hyphen																													=	_Hyphen																													

		5129	 	 IDS_Binary_Operator																=	_IDS_Binary_Operator																

		5130	 	 IDS_Trinary_Operator															=	_IDS_Trinary_Operator															

		5131	 	 Ideographic																								=	_Ideographic																								

		5132	 	 Join_Control																							=	_Join_Control																							

		5133	 	 Logical_Order_Exception												=	_Logical_Order_Exception												

		5134	 	 Noncharacter_Code_Point												=	_Noncharacter_Code_Point												

		5135	 	 Other_Alphabetic																			=	_Other_Alphabetic																			

		5136	 	 Other_Default_Ignorable_Code_Point	=	_Other_Default_Ignorable_Code_Point	

		5137	 	 Other_Grapheme_Extend														=	_Other_Grapheme_Extend														

		5138	 	 Other_ID_Continue																		=	_Other_ID_Continue																		

		5139	 	 Other_ID_Start																					=	_Other_ID_Start																					

		5140	 	 Other_Lowercase																				=	_Other_Lowercase																				

		5141	 	 Other_Math																									=	_Other_Math																									

		5142	 	 Other_Uppercase																				=	_Other_Uppercase																				

		5143	 	 Pattern_Syntax																					=	_Pattern_Syntax																					

		5144	 	 Pattern_White_Space																=	_Pattern_White_Space																

		5145	 	 Quotation_Mark																					=	_Quotation_Mark																					

		5146	 	 Radical																												=	_Radical																												

		5147	 	 STerm																														=	_STerm																														

		5148	 	 Soft_Dotted																								=	_Soft_Dotted																								

		5149	 	 Terminal_Punctuation															=	_Terminal_Punctuation															

		5150	 	 Unified_Ideograph																		=	_Unified_Ideograph																		

		5151	 	 Variation_Selector																	=	_Variation_Selector																	

		5152	 	 White_Space																								=	_White_Space																								

		5153)

		5154	

		5155	 //	Generated	by	running

		5156	 //	 maketables	--data=http://www.unicode.org/Public/6.0.0/ucd/UnicodeData.txt	--casefolding=http://www.unicode.org/Public/6.0.0/ucd/CaseFolding.txt

		5157	 //	DO	NOT	EDIT

		5158	

		5159	 //	CaseRanges	is	the	table	describing	case	mappings	for	all	letters	with

		5160	 //	non-self	mappings.

		5161	 var	CaseRanges	=	_CaseRanges

		5162	 var	_CaseRanges	=	[]CaseRange{

		5163	 	 {0x0041,	0x005A,	d{0,	32,	0}},

		5164	 	 {0x0061,	0x007A,	d{-32,	0,	-32}},

		5165	 	 {0x00B5,	0x00B5,	d{743,	0,	743}},

		5166	 	 {0x00C0,	0x00D6,	d{0,	32,	0}},

		5167	 	 {0x00D8,	0x00DE,	d{0,	32,	0}},

		5168	 	 {0x00E0,	0x00F6,	d{-32,	0,	-32}},

		5169	 	 {0x00F8,	0x00FE,	d{-32,	0,	-32}},

		5170	 	 {0x00FF,	0x00FF,	d{121,	0,	121}},

		5171	 	 {0x0100,	0x012F,	d{UpperLower,	UpperLower,	UpperLower}},

		5172	 	 {0x0130,	0x0130,	d{0,	-199,	0}},

		5173	 	 {0x0131,	0x0131,	d{-232,	0,	-232}},

		5174	 	 {0x0132,	0x0137,	d{UpperLower,	UpperLower,	UpperLower}},

		5175	 	 {0x0139,	0x0148,	d{UpperLower,	UpperLower,	UpperLower}},

		5176	 	 {0x014A,	0x0177,	d{UpperLower,	UpperLower,	UpperLower}},

		5177	 	 {0x0178,	0x0178,	d{0,	-121,	0}},

		5178	 	 {0x0179,	0x017E,	d{UpperLower,	UpperLower,	UpperLower}},

		5179	 	 {0x017F,	0x017F,	d{-300,	0,	-300}},

		5180	 	 {0x0180,	0x0180,	d{195,	0,	195}},

		5181	 	 {0x0181,	0x0181,	d{0,	210,	0}},

		5182	 	 {0x0182,	0x0185,	d{UpperLower,	UpperLower,	UpperLower}},

		5183	 	 {0x0186,	0x0186,	d{0,	206,	0}},

		5184	 	 {0x0187,	0x0188,	d{UpperLower,	UpperLower,	UpperLower}},

		5185	 	 {0x0189,	0x018A,	d{0,	205,	0}},

		5186	 	 {0x018B,	0x018C,	d{UpperLower,	UpperLower,	UpperLower}},

		5187	 	 {0x018E,	0x018E,	d{0,	79,	0}},

		5188	 	 {0x018F,	0x018F,	d{0,	202,	0}},

		5189	 	 {0x0190,	0x0190,	d{0,	203,	0}},

		5190	 	 {0x0191,	0x0192,	d{UpperLower,	UpperLower,	UpperLower}},

		5191	 	 {0x0193,	0x0193,	d{0,	205,	0}},

		5192	 	 {0x0194,	0x0194,	d{0,	207,	0}},

		5193	 	 {0x0195,	0x0195,	d{97,	0,	97}},

		5194	 	 {0x0196,	0x0196,	d{0,	211,	0}},

		5195	 	 {0x0197,	0x0197,	d{0,	209,	0}},

		5196	 	 {0x0198,	0x0199,	d{UpperLower,	UpperLower,	UpperLower}},

		5197	 	 {0x019A,	0x019A,	d{163,	0,	163}},

		5198	 	 {0x019C,	0x019C,	d{0,	211,	0}},

		5199	 	 {0x019D,	0x019D,	d{0,	213,	0}},

		5200	 	 {0x019E,	0x019E,	d{130,	0,	130}},

		5201	 	 {0x019F,	0x019F,	d{0,	214,	0}},

		5202	 	 {0x01A0,	0x01A5,	d{UpperLower,	UpperLower,	UpperLower}},

		5203	 	 {0x01A6,	0x01A6,	d{0,	218,	0}},

		5204	 	 {0x01A7,	0x01A8,	d{UpperLower,	UpperLower,	UpperLower}},

		5205	 	 {0x01A9,	0x01A9,	d{0,	218,	0}},

		5206	 	 {0x01AC,	0x01AD,	d{UpperLower,	UpperLower,	UpperLower}},

		5207	 	 {0x01AE,	0x01AE,	d{0,	218,	0}},

		5208	 	 {0x01AF,	0x01B0,	d{UpperLower,	UpperLower,	UpperLower}},

		5209	 	 {0x01B1,	0x01B2,	d{0,	217,	0}},

		5210	 	 {0x01B3,	0x01B6,	d{UpperLower,	UpperLower,	UpperLower}},

		5211	 	 {0x01B7,	0x01B7,	d{0,	219,	0}},

		5212	 	 {0x01B8,	0x01B9,	d{UpperLower,	UpperLower,	UpperLower}},

		5213	 	 {0x01BC,	0x01BD,	d{UpperLower,	UpperLower,	UpperLower}},

		5214	 	 {0x01BF,	0x01BF,	d{56,	0,	56}},

		5215	 	 {0x01C4,	0x01C4,	d{0,	2,	1}},

		5216	 	 {0x01C5,	0x01C5,	d{-1,	1,	0}},

		5217	 	 {0x01C6,	0x01C6,	d{-2,	0,	-1}},

		5218	 	 {0x01C7,	0x01C7,	d{0,	2,	1}},

		5219	 	 {0x01C8,	0x01C8,	d{-1,	1,	0}},

		5220	 	 {0x01C9,	0x01C9,	d{-2,	0,	-1}},

		5221	 	 {0x01CA,	0x01CA,	d{0,	2,	1}},

		5222	 	 {0x01CB,	0x01CB,	d{-1,	1,	0}},

		5223	 	 {0x01CC,	0x01CC,	d{-2,	0,	-1}},

		5224	 	 {0x01CD,	0x01DC,	d{UpperLower,	UpperLower,	UpperLower}},

		5225	 	 {0x01DD,	0x01DD,	d{-79,	0,	-79}},

		5226	 	 {0x01DE,	0x01EF,	d{UpperLower,	UpperLower,	UpperLower}},

		5227	 	 {0x01F1,	0x01F1,	d{0,	2,	1}},

		5228	 	 {0x01F2,	0x01F2,	d{-1,	1,	0}},

		5229	 	 {0x01F3,	0x01F3,	d{-2,	0,	-1}},

		5230	 	 {0x01F4,	0x01F5,	d{UpperLower,	UpperLower,	UpperLower}},

		5231	 	 {0x01F6,	0x01F6,	d{0,	-97,	0}},

		5232	 	 {0x01F7,	0x01F7,	d{0,	-56,	0}},

		5233	 	 {0x01F8,	0x021F,	d{UpperLower,	UpperLower,	UpperLower}},

		5234	 	 {0x0220,	0x0220,	d{0,	-130,	0}},

		5235	 	 {0x0222,	0x0233,	d{UpperLower,	UpperLower,	UpperLower}},

		5236	 	 {0x023A,	0x023A,	d{0,	10795,	0}},

		5237	 	 {0x023B,	0x023C,	d{UpperLower,	UpperLower,	UpperLower}},

		5238	 	 {0x023D,	0x023D,	d{0,	-163,	0}},

		5239	 	 {0x023E,	0x023E,	d{0,	10792,	0}},

		5240	 	 {0x023F,	0x0240,	d{10815,	0,	10815}},

		5241	 	 {0x0241,	0x0242,	d{UpperLower,	UpperLower,	UpperLower}},

		5242	 	 {0x0243,	0x0243,	d{0,	-195,	0}},

		5243	 	 {0x0244,	0x0244,	d{0,	69,	0}},

		5244	 	 {0x0245,	0x0245,	d{0,	71,	0}},

		5245	 	 {0x0246,	0x024F,	d{UpperLower,	UpperLower,	UpperLower}},

		5246	 	 {0x0250,	0x0250,	d{10783,	0,	10783}},

		5247	 	 {0x0251,	0x0251,	d{10780,	0,	10780}},

		5248	 	 {0x0252,	0x0252,	d{10782,	0,	10782}},

		5249	 	 {0x0253,	0x0253,	d{-210,	0,	-210}},

		5250	 	 {0x0254,	0x0254,	d{-206,	0,	-206}},

		5251	 	 {0x0256,	0x0257,	d{-205,	0,	-205}},

		5252	 	 {0x0259,	0x0259,	d{-202,	0,	-202}},

		5253	 	 {0x025B,	0x025B,	d{-203,	0,	-203}},

		5254	 	 {0x0260,	0x0260,	d{-205,	0,	-205}},

		5255	 	 {0x0263,	0x0263,	d{-207,	0,	-207}},

		5256	 	 {0x0265,	0x0265,	d{42280,	0,	42280}},

		5257	 	 {0x0268,	0x0268,	d{-209,	0,	-209}},

		5258	 	 {0x0269,	0x0269,	d{-211,	0,	-211}},

		5259	 	 {0x026B,	0x026B,	d{10743,	0,	10743}},

		5260	 	 {0x026F,	0x026F,	d{-211,	0,	-211}},

		5261	 	 {0x0271,	0x0271,	d{10749,	0,	10749}},

		5262	 	 {0x0272,	0x0272,	d{-213,	0,	-213}},

		5263	 	 {0x0275,	0x0275,	d{-214,	0,	-214}},

		5264	 	 {0x027D,	0x027D,	d{10727,	0,	10727}},

		5265	 	 {0x0280,	0x0280,	d{-218,	0,	-218}},

		5266	 	 {0x0283,	0x0283,	d{-218,	0,	-218}},

		5267	 	 {0x0288,	0x0288,	d{-218,	0,	-218}},

		5268	 	 {0x0289,	0x0289,	d{-69,	0,	-69}},

		5269	 	 {0x028A,	0x028B,	d{-217,	0,	-217}},

		5270	 	 {0x028C,	0x028C,	d{-71,	0,	-71}},

		5271	 	 {0x0292,	0x0292,	d{-219,	0,	-219}},

		5272	 	 {0x0345,	0x0345,	d{84,	0,	84}},

		5273	 	 {0x0370,	0x0373,	d{UpperLower,	UpperLower,	UpperLower}},

		5274	 	 {0x0376,	0x0377,	d{UpperLower,	UpperLower,	UpperLower}},

		5275	 	 {0x037B,	0x037D,	d{130,	0,	130}},

		5276	 	 {0x0386,	0x0386,	d{0,	38,	0}},

		5277	 	 {0x0388,	0x038A,	d{0,	37,	0}},

		5278	 	 {0x038C,	0x038C,	d{0,	64,	0}},

		5279	 	 {0x038E,	0x038F,	d{0,	63,	0}},

		5280	 	 {0x0391,	0x03A1,	d{0,	32,	0}},

		5281	 	 {0x03A3,	0x03AB,	d{0,	32,	0}},

		5282	 	 {0x03AC,	0x03AC,	d{-38,	0,	-38}},

		5283	 	 {0x03AD,	0x03AF,	d{-37,	0,	-37}},

		5284	 	 {0x03B1,	0x03C1,	d{-32,	0,	-32}},

		5285	 	 {0x03C2,	0x03C2,	d{-31,	0,	-31}},

		5286	 	 {0x03C3,	0x03CB,	d{-32,	0,	-32}},

		5287	 	 {0x03CC,	0x03CC,	d{-64,	0,	-64}},

		5288	 	 {0x03CD,	0x03CE,	d{-63,	0,	-63}},

		5289	 	 {0x03CF,	0x03CF,	d{0,	8,	0}},

		5290	 	 {0x03D0,	0x03D0,	d{-62,	0,	-62}},

		5291	 	 {0x03D1,	0x03D1,	d{-57,	0,	-57}},

		5292	 	 {0x03D5,	0x03D5,	d{-47,	0,	-47}},

		5293	 	 {0x03D6,	0x03D6,	d{-54,	0,	-54}},

		5294	 	 {0x03D7,	0x03D7,	d{-8,	0,	-8}},

		5295	 	 {0x03D8,	0x03EF,	d{UpperLower,	UpperLower,	UpperLower}},

		5296	 	 {0x03F0,	0x03F0,	d{-86,	0,	-86}},

		5297	 	 {0x03F1,	0x03F1,	d{-80,	0,	-80}},

		5298	 	 {0x03F2,	0x03F2,	d{7,	0,	7}},

		5299	 	 {0x03F4,	0x03F4,	d{0,	-60,	0}},

		5300	 	 {0x03F5,	0x03F5,	d{-96,	0,	-96}},

		5301	 	 {0x03F7,	0x03F8,	d{UpperLower,	UpperLower,	UpperLower}},

		5302	 	 {0x03F9,	0x03F9,	d{0,	-7,	0}},

		5303	 	 {0x03FA,	0x03FB,	d{UpperLower,	UpperLower,	UpperLower}},

		5304	 	 {0x03FD,	0x03FF,	d{0,	-130,	0}},

		5305	 	 {0x0400,	0x040F,	d{0,	80,	0}},

		5306	 	 {0x0410,	0x042F,	d{0,	32,	0}},

		5307	 	 {0x0430,	0x044F,	d{-32,	0,	-32}},

		5308	 	 {0x0450,	0x045F,	d{-80,	0,	-80}},

		5309	 	 {0x0460,	0x0481,	d{UpperLower,	UpperLower,	UpperLower}},

		5310	 	 {0x048A,	0x04BF,	d{UpperLower,	UpperLower,	UpperLower}},

		5311	 	 {0x04C0,	0x04C0,	d{0,	15,	0}},

		5312	 	 {0x04C1,	0x04CE,	d{UpperLower,	UpperLower,	UpperLower}},

		5313	 	 {0x04CF,	0x04CF,	d{-15,	0,	-15}},

		5314	 	 {0x04D0,	0x0527,	d{UpperLower,	UpperLower,	UpperLower}},

		5315	 	 {0x0531,	0x0556,	d{0,	48,	0}},

		5316	 	 {0x0561,	0x0586,	d{-48,	0,	-48}},

		5317	 	 {0x10A0,	0x10C5,	d{0,	7264,	0}},

		5318	 	 {0x1D79,	0x1D79,	d{35332,	0,	35332}},

		5319	 	 {0x1D7D,	0x1D7D,	d{3814,	0,	3814}},

		5320	 	 {0x1E00,	0x1E95,	d{UpperLower,	UpperLower,	UpperLower}},

		5321	 	 {0x1E9B,	0x1E9B,	d{-59,	0,	-59}},

		5322	 	 {0x1E9E,	0x1E9E,	d{0,	-7615,	0}},

		5323	 	 {0x1EA0,	0x1EFF,	d{UpperLower,	UpperLower,	UpperLower}},

		5324	 	 {0x1F00,	0x1F07,	d{8,	0,	8}},

		5325	 	 {0x1F08,	0x1F0F,	d{0,	-8,	0}},

		5326	 	 {0x1F10,	0x1F15,	d{8,	0,	8}},

		5327	 	 {0x1F18,	0x1F1D,	d{0,	-8,	0}},

		5328	 	 {0x1F20,	0x1F27,	d{8,	0,	8}},

		5329	 	 {0x1F28,	0x1F2F,	d{0,	-8,	0}},

		5330	 	 {0x1F30,	0x1F37,	d{8,	0,	8}},

		5331	 	 {0x1F38,	0x1F3F,	d{0,	-8,	0}},

		5332	 	 {0x1F40,	0x1F45,	d{8,	0,	8}},

		5333	 	 {0x1F48,	0x1F4D,	d{0,	-8,	0}},

		5334	 	 {0x1F51,	0x1F51,	d{8,	0,	8}},

		5335	 	 {0x1F53,	0x1F53,	d{8,	0,	8}},

		5336	 	 {0x1F55,	0x1F55,	d{8,	0,	8}},

		5337	 	 {0x1F57,	0x1F57,	d{8,	0,	8}},

		5338	 	 {0x1F59,	0x1F59,	d{0,	-8,	0}},

		5339	 	 {0x1F5B,	0x1F5B,	d{0,	-8,	0}},

		5340	 	 {0x1F5D,	0x1F5D,	d{0,	-8,	0}},

		5341	 	 {0x1F5F,	0x1F5F,	d{0,	-8,	0}},

		5342	 	 {0x1F60,	0x1F67,	d{8,	0,	8}},

		5343	 	 {0x1F68,	0x1F6F,	d{0,	-8,	0}},

		5344	 	 {0x1F70,	0x1F71,	d{74,	0,	74}},

		5345	 	 {0x1F72,	0x1F75,	d{86,	0,	86}},

		5346	 	 {0x1F76,	0x1F77,	d{100,	0,	100}},

		5347	 	 {0x1F78,	0x1F79,	d{128,	0,	128}},

		5348	 	 {0x1F7A,	0x1F7B,	d{112,	0,	112}},

		5349	 	 {0x1F7C,	0x1F7D,	d{126,	0,	126}},

		5350	 	 {0x1F80,	0x1F87,	d{8,	0,	8}},

		5351	 	 {0x1F88,	0x1F8F,	d{0,	-8,	0}},

		5352	 	 {0x1F90,	0x1F97,	d{8,	0,	8}},

		5353	 	 {0x1F98,	0x1F9F,	d{0,	-8,	0}},

		5354	 	 {0x1FA0,	0x1FA7,	d{8,	0,	8}},

		5355	 	 {0x1FA8,	0x1FAF,	d{0,	-8,	0}},

		5356	 	 {0x1FB0,	0x1FB1,	d{8,	0,	8}},

		5357	 	 {0x1FB3,	0x1FB3,	d{9,	0,	9}},

		5358	 	 {0x1FB8,	0x1FB9,	d{0,	-8,	0}},

		5359	 	 {0x1FBA,	0x1FBB,	d{0,	-74,	0}},

		5360	 	 {0x1FBC,	0x1FBC,	d{0,	-9,	0}},

		5361	 	 {0x1FBE,	0x1FBE,	d{-7205,	0,	-7205}},

		5362	 	 {0x1FC3,	0x1FC3,	d{9,	0,	9}},

		5363	 	 {0x1FC8,	0x1FCB,	d{0,	-86,	0}},

		5364	 	 {0x1FCC,	0x1FCC,	d{0,	-9,	0}},

		5365	 	 {0x1FD0,	0x1FD1,	d{8,	0,	8}},

		5366	 	 {0x1FD8,	0x1FD9,	d{0,	-8,	0}},

		5367	 	 {0x1FDA,	0x1FDB,	d{0,	-100,	0}},

		5368	 	 {0x1FE0,	0x1FE1,	d{8,	0,	8}},

		5369	 	 {0x1FE5,	0x1FE5,	d{7,	0,	7}},

		5370	 	 {0x1FE8,	0x1FE9,	d{0,	-8,	0}},

		5371	 	 {0x1FEA,	0x1FEB,	d{0,	-112,	0}},

		5372	 	 {0x1FEC,	0x1FEC,	d{0,	-7,	0}},

		5373	 	 {0x1FF3,	0x1FF3,	d{9,	0,	9}},

		5374	 	 {0x1FF8,	0x1FF9,	d{0,	-128,	0}},

		5375	 	 {0x1FFA,	0x1FFB,	d{0,	-126,	0}},

		5376	 	 {0x1FFC,	0x1FFC,	d{0,	-9,	0}},

		5377	 	 {0x2126,	0x2126,	d{0,	-7517,	0}},

		5378	 	 {0x212A,	0x212A,	d{0,	-8383,	0}},

		5379	 	 {0x212B,	0x212B,	d{0,	-8262,	0}},

		5380	 	 {0x2132,	0x2132,	d{0,	28,	0}},

		5381	 	 {0x214E,	0x214E,	d{-28,	0,	-28}},

		5382	 	 {0x2160,	0x216F,	d{0,	16,	0}},

		5383	 	 {0x2170,	0x217F,	d{-16,	0,	-16}},

		5384	 	 {0x2183,	0x2184,	d{UpperLower,	UpperLower,	UpperLower}},

		5385	 	 {0x24B6,	0x24CF,	d{0,	26,	0}},

		5386	 	 {0x24D0,	0x24E9,	d{-26,	0,	-26}},

		5387	 	 {0x2C00,	0x2C2E,	d{0,	48,	0}},

		5388	 	 {0x2C30,	0x2C5E,	d{-48,	0,	-48}},

		5389	 	 {0x2C60,	0x2C61,	d{UpperLower,	UpperLower,	UpperLower}},

		5390	 	 {0x2C62,	0x2C62,	d{0,	-10743,	0}},

		5391	 	 {0x2C63,	0x2C63,	d{0,	-3814,	0}},

		5392	 	 {0x2C64,	0x2C64,	d{0,	-10727,	0}},

		5393	 	 {0x2C65,	0x2C65,	d{-10795,	0,	-10795}},

		5394	 	 {0x2C66,	0x2C66,	d{-10792,	0,	-10792}},

		5395	 	 {0x2C67,	0x2C6C,	d{UpperLower,	UpperLower,	UpperLower}},

		5396	 	 {0x2C6D,	0x2C6D,	d{0,	-10780,	0}},

		5397	 	 {0x2C6E,	0x2C6E,	d{0,	-10749,	0}},

		5398	 	 {0x2C6F,	0x2C6F,	d{0,	-10783,	0}},

		5399	 	 {0x2C70,	0x2C70,	d{0,	-10782,	0}},

		5400	 	 {0x2C72,	0x2C73,	d{UpperLower,	UpperLower,	UpperLower}},

		5401	 	 {0x2C75,	0x2C76,	d{UpperLower,	UpperLower,	UpperLower}},

		5402	 	 {0x2C7E,	0x2C7F,	d{0,	-10815,	0}},

		5403	 	 {0x2C80,	0x2CE3,	d{UpperLower,	UpperLower,	UpperLower}},

		5404	 	 {0x2CEB,	0x2CEE,	d{UpperLower,	UpperLower,	UpperLower}},

		5405	 	 {0x2D00,	0x2D25,	d{-7264,	0,	-7264}},

		5406	 	 {0xA640,	0xA66D,	d{UpperLower,	UpperLower,	UpperLower}},

		5407	 	 {0xA680,	0xA697,	d{UpperLower,	UpperLower,	UpperLower}},

		5408	 	 {0xA722,	0xA72F,	d{UpperLower,	UpperLower,	UpperLower}},

		5409	 	 {0xA732,	0xA76F,	d{UpperLower,	UpperLower,	UpperLower}},

		5410	 	 {0xA779,	0xA77C,	d{UpperLower,	UpperLower,	UpperLower}},

		5411	 	 {0xA77D,	0xA77D,	d{0,	-35332,	0}},

		5412	 	 {0xA77E,	0xA787,	d{UpperLower,	UpperLower,	UpperLower}},

		5413	 	 {0xA78B,	0xA78C,	d{UpperLower,	UpperLower,	UpperLower}},

		5414	 	 {0xA78D,	0xA78D,	d{0,	-42280,	0}},

		5415	 	 {0xA790,	0xA791,	d{UpperLower,	UpperLower,	UpperLower}},

		5416	 	 {0xA7A0,	0xA7A9,	d{UpperLower,	UpperLower,	UpperLower}},

		5417	 	 {0xFF21,	0xFF3A,	d{0,	32,	0}},

		5418	 	 {0xFF41,	0xFF5A,	d{-32,	0,	-32}},

		5419	 	 {0x10400,	0x10427,	d{0,	40,	0}},

		5420	 	 {0x10428,	0x1044F,	d{-40,	0,	-40}},

		5421	 }

		5422	 var	properties	=	[MaxLatin1	+	1]uint8{

		5423	 	 0x00:	pC,							//	'\x00'

		5424	 	 0x01:	pC,							//	'\x01'

		5425	 	 0x02:	pC,							//	'\x02'

		5426	 	 0x03:	pC,							//	'\x03'

		5427	 	 0x04:	pC,							//	'\x04'

		5428	 	 0x05:	pC,							//	'\x05'

		5429	 	 0x06:	pC,							//	'\x06'

		5430	 	 0x07:	pC,							//	'\a'

		5431	 	 0x08:	pC,							//	'\b'

		5432	 	 0x09:	pC,							//	'\t'

		5433	 	 0x0A:	pC,							//	'\n'

		5434	 	 0x0B:	pC,							//	'\v'

		5435	 	 0x0C:	pC,							//	'\f'

		5436	 	 0x0D:	pC,							//	'\r'

		5437	 	 0x0E:	pC,							//	'\x0e'

		5438	 	 0x0F:	pC,							//	'\x0f'

		5439	 	 0x10:	pC,							//	'\x10'

		5440	 	 0x11:	pC,							//	'\x11'

		5441	 	 0x12:	pC,							//	'\x12'

		5442	 	 0x13:	pC,							//	'\x13'

		5443	 	 0x14:	pC,							//	'\x14'

		5444	 	 0x15:	pC,							//	'\x15'

		5445	 	 0x16:	pC,							//	'\x16'

		5446	 	 0x17:	pC,							//	'\x17'

		5447	 	 0x18:	pC,							//	'\x18'

		5448	 	 0x19:	pC,							//	'\x19'

		5449	 	 0x1A:	pC,							//	'\x1a'

		5450	 	 0x1B:	pC,							//	'\x1b'

		5451	 	 0x1C:	pC,							//	'\x1c'

		5452	 	 0x1D:	pC,							//	'\x1d'

		5453	 	 0x1E:	pC,							//	'\x1e'

		5454	 	 0x1F:	pC,							//	'\x1f'

		5455	 	 0x20:	pZ	|	pp,		//	'	'

		5456	 	 0x21:	pP	|	pp,		//	'!'

		5457	 	 0x22:	pP	|	pp,		//	'"'

		5458	 	 0x23:	pP	|	pp,		//	'#'

		5459	 	 0x24:	pS	|	pp,		//	'$'

		5460	 	 0x25:	pP	|	pp,		//	'%'

		5461	 	 0x26:	pP	|	pp,		//	'&'

		5462	 	 0x27:	pP	|	pp,		//	'\''

		5463	 	 0x28:	pP	|	pp,		//	'('

		5464	 	 0x29:	pP	|	pp,		//	')'

		5465	 	 0x2A:	pP	|	pp,		//	'*'

		5466	 	 0x2B:	pS	|	pp,		//	'+'

		5467	 	 0x2C:	pP	|	pp,		//	','

		5468	 	 0x2D:	pP	|	pp,		//	'-'

		5469	 	 0x2E:	pP	|	pp,		//	'.'

		5470	 	 0x2F:	pP	|	pp,		//	'/'

		5471	 	 0x30:	pN	|	pp,		//	'0'

		5472	 	 0x31:	pN	|	pp,		//	'1'

		5473	 	 0x32:	pN	|	pp,		//	'2'

		5474	 	 0x33:	pN	|	pp,		//	'3'

		5475	 	 0x34:	pN	|	pp,		//	'4'

		5476	 	 0x35:	pN	|	pp,		//	'5'

		5477	 	 0x36:	pN	|	pp,		//	'6'

		5478	 	 0x37:	pN	|	pp,		//	'7'

		5479	 	 0x38:	pN	|	pp,		//	'8'

		5480	 	 0x39:	pN	|	pp,		//	'9'

		5481	 	 0x3A:	pP	|	pp,		//	':'

		5482	 	 0x3B:	pP	|	pp,		//	';'

		5483	 	 0x3C:	pS	|	pp,		//	'<'

		5484	 	 0x3D:	pS	|	pp,		//	'='

		5485	 	 0x3E:	pS	|	pp,		//	'>'

		5486	 	 0x3F:	pP	|	pp,		//	'?'

		5487	 	 0x40:	pP	|	pp,		//	'@'

		5488	 	 0x41:	pLu	|	pp,	//	'A'

		5489	 	 0x42:	pLu	|	pp,	//	'B'

		5490	 	 0x43:	pLu	|	pp,	//	'C'

		5491	 	 0x44:	pLu	|	pp,	//	'D'

		5492	 	 0x45:	pLu	|	pp,	//	'E'

		5493	 	 0x46:	pLu	|	pp,	//	'F'

		5494	 	 0x47:	pLu	|	pp,	//	'G'

		5495	 	 0x48:	pLu	|	pp,	//	'H'

		5496	 	 0x49:	pLu	|	pp,	//	'I'

		5497	 	 0x4A:	pLu	|	pp,	//	'J'

		5498	 	 0x4B:	pLu	|	pp,	//	'K'

		5499	 	 0x4C:	pLu	|	pp,	//	'L'

		5500	 	 0x4D:	pLu	|	pp,	//	'M'

		5501	 	 0x4E:	pLu	|	pp,	//	'N'

		5502	 	 0x4F:	pLu	|	pp,	//	'O'

		5503	 	 0x50:	pLu	|	pp,	//	'P'

		5504	 	 0x51:	pLu	|	pp,	//	'Q'

		5505	 	 0x52:	pLu	|	pp,	//	'R'

		5506	 	 0x53:	pLu	|	pp,	//	'S'

		5507	 	 0x54:	pLu	|	pp,	//	'T'

		5508	 	 0x55:	pLu	|	pp,	//	'U'

		5509	 	 0x56:	pLu	|	pp,	//	'V'

		5510	 	 0x57:	pLu	|	pp,	//	'W'

		5511	 	 0x58:	pLu	|	pp,	//	'X'

		5512	 	 0x59:	pLu	|	pp,	//	'Y'

		5513	 	 0x5A:	pLu	|	pp,	//	'Z'

		5514	 	 0x5B:	pP	|	pp,		//	'['

		5515	 	 0x5C:	pP	|	pp,		//	'\\'

		5516	 	 0x5D:	pP	|	pp,		//	']'

		5517	 	 0x5E:	pS	|	pp,		//	'^'

		5518	 	 0x5F:	pP	|	pp,		//	'_'

		5519	 	 0x60:	pS	|	pp,		//	'`'

		5520	 	 0x61:	pLl	|	pp,	//	'a'

		5521	 	 0x62:	pLl	|	pp,	//	'b'

		5522	 	 0x63:	pLl	|	pp,	//	'c'

		5523	 	 0x64:	pLl	|	pp,	//	'd'

		5524	 	 0x65:	pLl	|	pp,	//	'e'

		5525	 	 0x66:	pLl	|	pp,	//	'f'

		5526	 	 0x67:	pLl	|	pp,	//	'g'

		5527	 	 0x68:	pLl	|	pp,	//	'h'

		5528	 	 0x69:	pLl	|	pp,	//	'i'

		5529	 	 0x6A:	pLl	|	pp,	//	'j'

		5530	 	 0x6B:	pLl	|	pp,	//	'k'

		5531	 	 0x6C:	pLl	|	pp,	//	'l'

		5532	 	 0x6D:	pLl	|	pp,	//	'm'

		5533	 	 0x6E:	pLl	|	pp,	//	'n'

		5534	 	 0x6F:	pLl	|	pp,	//	'o'

		5535	 	 0x70:	pLl	|	pp,	//	'p'

		5536	 	 0x71:	pLl	|	pp,	//	'q'

		5537	 	 0x72:	pLl	|	pp,	//	'r'

		5538	 	 0x73:	pLl	|	pp,	//	's'

		5539	 	 0x74:	pLl	|	pp,	//	't'

		5540	 	 0x75:	pLl	|	pp,	//	'u'

		5541	 	 0x76:	pLl	|	pp,	//	'v'

		5542	 	 0x77:	pLl	|	pp,	//	'w'

		5543	 	 0x78:	pLl	|	pp,	//	'x'

		5544	 	 0x79:	pLl	|	pp,	//	'y'

		5545	 	 0x7A:	pLl	|	pp,	//	'z'

		5546	 	 0x7B:	pP	|	pp,		//	'{'

		5547	 	 0x7C:	pS	|	pp,		//	'|'

		5548	 	 0x7D:	pP	|	pp,		//	'}'

		5549	 	 0x7E:	pS	|	pp,		//	'~'

		5550	 	 0x7F:	pC,							//	'\u007f'

		5551	 	 0x80:	pC,							//	'\u0080'

		5552	 	 0x81:	pC,							//	'\u0081'

		5553	 	 0x82:	pC,							//	'\u0082'

		5554	 	 0x83:	pC,							//	'\u0083'

		5555	 	 0x84:	pC,							//	'\u0084'

		5556	 	 0x85:	pC,							//	'\u0085'

		5557	 	 0x86:	pC,							//	'\u0086'

		5558	 	 0x87:	pC,							//	'\u0087'

		5559	 	 0x88:	pC,							//	'\u0088'

		5560	 	 0x89:	pC,							//	'\u0089'

		5561	 	 0x8A:	pC,							//	'\u008a'

		5562	 	 0x8B:	pC,							//	'\u008b'

		5563	 	 0x8C:	pC,							//	'\u008c'

		5564	 	 0x8D:	pC,							//	'\u008d'

		5565	 	 0x8E:	pC,							//	'\u008e'

		5566	 	 0x8F:	pC,							//	'\u008f'

		5567	 	 0x90:	pC,							//	'\u0090'

		5568	 	 0x91:	pC,							//	'\u0091'

		5569	 	 0x92:	pC,							//	'\u0092'

		5570	 	 0x93:	pC,							//	'\u0093'

		5571	 	 0x94:	pC,							//	'\u0094'

		5572	 	 0x95:	pC,							//	'\u0095'

		5573	 	 0x96:	pC,							//	'\u0096'

		5574	 	 0x97:	pC,							//	'\u0097'

		5575	 	 0x98:	pC,							//	'\u0098'

		5576	 	 0x99:	pC,							//	'\u0099'

		5577	 	 0x9A:	pC,							//	'\u009a'

		5578	 	 0x9B:	pC,							//	'\u009b'

		5579	 	 0x9C:	pC,							//	'\u009c'

		5580	 	 0x9D:	pC,							//	'\u009d'

		5581	 	 0x9E:	pC,							//	'\u009e'

		5582	 	 0x9F:	pC,							//	'\u009f'

		5583	 	 0xA0:	pZ,							//	'\u00a0'

		5584	 	 0xA1:	pP	|	pp,		//	'¡'

		5585	 	 0xA2:	pS	|	pp,		//	'¢'

		5586	 	 0xA3:	pS	|	pp,		//	'£'

		5587	 	 0xA4:	pS	|	pp,		//	'¤'

		5588	 	 0xA5:	pS	|	pp,		//	'¥'

		5589	 	 0xA6:	pS	|	pp,		//	'¦'

		5590	 	 0xA7:	pS	|	pp,		//	'§'

		5591	 	 0xA8:	pS	|	pp,		//	'¨'

		5592	 	 0xA9:	pS	|	pp,		//	'©'

		5593	 	 0xAA:	pLl	|	pp,	//	'ª'

		5594	 	 0xAB:	pP	|	pp,		//	'«'

		5595	 	 0xAC:	pS	|	pp,		//	'¬'

		5596	 	 0xAD:	0,								//	'\u00ad'

		5597	 	 0xAE:	pS	|	pp,		//	'®'

		5598	 	 0xAF:	pS	|	pp,		//	'¯'

		5599	 	 0xB0:	pS	|	pp,		//	'°'

		5600	 	 0xB1:	pS	|	pp,		//	'±'

		5601	 	 0xB2:	pN	|	pp,		//	'²'

		5602	 	 0xB3:	pN	|	pp,		//	'³'

		5603	 	 0xB4:	pS	|	pp,		//	'´'

		5604	 	 0xB5:	pLl	|	pp,	//	'µ'

		5605	 	 0xB6:	pS	|	pp,		//	'¶'

		5606	 	 0xB7:	pP	|	pp,		//	'·'

		5607	 	 0xB8:	pS	|	pp,		//	'¸'

		5608	 	 0xB9:	pN	|	pp,		//	'¹'

		5609	 	 0xBA:	pLl	|	pp,	//	'º'

		5610	 	 0xBB:	pP	|	pp,		//	'»'

		5611	 	 0xBC:	pN	|	pp,		//	'¼'

		5612	 	 0xBD:	pN	|	pp,		//	'½'

		5613	 	 0xBE:	pN	|	pp,		//	'¾'

		5614	 	 0xBF:	pP	|	pp,		//	'¿'

		5615	 	 0xC0:	pLu	|	pp,	//	'À'

		5616	 	 0xC1:	pLu	|	pp,	//	'Á'

		5617	 	 0xC2:	pLu	|	pp,	//	'Â'

		5618	 	 0xC3:	pLu	|	pp,	//	'Ã'

		5619	 	 0xC4:	pLu	|	pp,	//	'Ä'

		5620	 	 0xC5:	pLu	|	pp,	//	'Å'

		5621	 	 0xC6:	pLu	|	pp,	//	'Æ'

		5622	 	 0xC7:	pLu	|	pp,	//	'Ç'

		5623	 	 0xC8:	pLu	|	pp,	//	'È'

		5624	 	 0xC9:	pLu	|	pp,	//	'É'

		5625	 	 0xCA:	pLu	|	pp,	//	'Ê'

		5626	 	 0xCB:	pLu	|	pp,	//	'Ë'

		5627	 	 0xCC:	pLu	|	pp,	//	'Ì'

		5628	 	 0xCD:	pLu	|	pp,	//	'Í'

		5629	 	 0xCE:	pLu	|	pp,	//	'Î'

		5630	 	 0xCF:	pLu	|	pp,	//	'Ï'

		5631	 	 0xD0:	pLu	|	pp,	//	'Ð'

		5632	 	 0xD1:	pLu	|	pp,	//	'Ñ'

		5633	 	 0xD2:	pLu	|	pp,	//	'Ò'

		5634	 	 0xD3:	pLu	|	pp,	//	'Ó'

		5635	 	 0xD4:	pLu	|	pp,	//	'Ô'

		5636	 	 0xD5:	pLu	|	pp,	//	'Õ'

		5637	 	 0xD6:	pLu	|	pp,	//	'Ö'

		5638	 	 0xD7:	pS	|	pp,		//	'×'

		5639	 	 0xD8:	pLu	|	pp,	//	'Ø'

		5640	 	 0xD9:	pLu	|	pp,	//	'Ù'

		5641	 	 0xDA:	pLu	|	pp,	//	'Ú'

		5642	 	 0xDB:	pLu	|	pp,	//	'Û'

		5643	 	 0xDC:	pLu	|	pp,	//	'Ü'

		5644	 	 0xDD:	pLu	|	pp,	//	'Ý'

		5645	 	 0xDE:	pLu	|	pp,	//	'Þ'

		5646	 	 0xDF:	pLl	|	pp,	//	'ß'

		5647	 	 0xE0:	pLl	|	pp,	//	'à'

		5648	 	 0xE1:	pLl	|	pp,	//	'á'

		5649	 	 0xE2:	pLl	|	pp,	//	'â'

		5650	 	 0xE3:	pLl	|	pp,	//	'ã'

		5651	 	 0xE4:	pLl	|	pp,	//	'ä'

		5652	 	 0xE5:	pLl	|	pp,	//	'å'

		5653	 	 0xE6:	pLl	|	pp,	//	'æ'

		5654	 	 0xE7:	pLl	|	pp,	//	'ç'

		5655	 	 0xE8:	pLl	|	pp,	//	'è'

		5656	 	 0xE9:	pLl	|	pp,	//	'é'

		5657	 	 0xEA:	pLl	|	pp,	//	'ê'

		5658	 	 0xEB:	pLl	|	pp,	//	'ë'

		5659	 	 0xEC:	pLl	|	pp,	//	'ì'

		5660	 	 0xED:	pLl	|	pp,	//	'í'

		5661	 	 0xEE:	pLl	|	pp,	//	'î'

		5662	 	 0xEF:	pLl	|	pp,	//	'ï'

		5663	 	 0xF0:	pLl	|	pp,	//	'ð'

		5664	 	 0xF1:	pLl	|	pp,	//	'ñ'

		5665	 	 0xF2:	pLl	|	pp,	//	'ò'

		5666	 	 0xF3:	pLl	|	pp,	//	'ó'

		5667	 	 0xF4:	pLl	|	pp,	//	'ô'

		5668	 	 0xF5:	pLl	|	pp,	//	'õ'

		5669	 	 0xF6:	pLl	|	pp,	//	'ö'

		5670	 	 0xF7:	pS	|	pp,		//	'÷'

		5671	 	 0xF8:	pLl	|	pp,	//	'ø'

		5672	 	 0xF9:	pLl	|	pp,	//	'ù'

		5673	 	 0xFA:	pLl	|	pp,	//	'ú'

		5674	 	 0xFB:	pLl	|	pp,	//	'û'

		5675	 	 0xFC:	pLl	|	pp,	//	'ü'

		5676	 	 0xFD:	pLl	|	pp,	//	'ý'

		5677	 	 0xFE:	pLl	|	pp,	//	'þ'

		5678	 	 0xFF:	pLl	|	pp,	//	'ÿ'

		5679	 }

		5680	

		5681	 var	caseOrbit	=	[]foldPair{

		5682	 	 {0x004B,	0x006B},

		5683	 	 {0x0053,	0x0073},

		5684	 	 {0x006B,	0x212A},

		5685	 	 {0x0073,	0x017F},

		5686	 	 {0x00B5,	0x039C},

		5687	 	 {0x00C5,	0x00E5},

		5688	 	 {0x00DF,	0x1E9E},

		5689	 	 {0x00E5,	0x212B},

		5690	 	 {0x0130,	0x0130},

		5691	 	 {0x0131,	0x0131},

		5692	 	 {0x017F,	0x0053},

		5693	 	 {0x01C4,	0x01C5},

		5694	 	 {0x01C5,	0x01C6},

		5695	 	 {0x01C6,	0x01C4},

		5696	 	 {0x01C7,	0x01C8},

		5697	 	 {0x01C8,	0x01C9},

		5698	 	 {0x01C9,	0x01C7},

		5699	 	 {0x01CA,	0x01CB},

		5700	 	 {0x01CB,	0x01CC},

		5701	 	 {0x01CC,	0x01CA},

		5702	 	 {0x01F1,	0x01F2},

		5703	 	 {0x01F2,	0x01F3},

		5704	 	 {0x01F3,	0x01F1},

		5705	 	 {0x0345,	0x0399},

		5706	 	 {0x0392,	0x03B2},

		5707	 	 {0x0395,	0x03B5},

		5708	 	 {0x0398,	0x03B8},

		5709	 	 {0x0399,	0x03B9},

		5710	 	 {0x039A,	0x03BA},

		5711	 	 {0x039C,	0x03BC},

		5712	 	 {0x03A0,	0x03C0},

		5713	 	 {0x03A1,	0x03C1},

		5714	 	 {0x03A3,	0x03C2},

		5715	 	 {0x03A6,	0x03C6},

		5716	 	 {0x03A9,	0x03C9},

		5717	 	 {0x03B2,	0x03D0},

		5718	 	 {0x03B5,	0x03F5},

		5719	 	 {0x03B8,	0x03D1},

		5720	 	 {0x03B9,	0x1FBE},

		5721	 	 {0x03BA,	0x03F0},

		5722	 	 {0x03BC,	0x00B5},

		5723	 	 {0x03C0,	0x03D6},

		5724	 	 {0x03C1,	0x03F1},

		5725	 	 {0x03C2,	0x03C3},

		5726	 	 {0x03C3,	0x03A3},

		5727	 	 {0x03C6,	0x03D5},

		5728	 	 {0x03C9,	0x2126},

		5729	 	 {0x03D0,	0x0392},

		5730	 	 {0x03D1,	0x03F4},

		5731	 	 {0x03D5,	0x03A6},

		5732	 	 {0x03D6,	0x03A0},

		5733	 	 {0x03F0,	0x039A},

		5734	 	 {0x03F1,	0x03A1},

		5735	 	 {0x03F4,	0x0398},

		5736	 	 {0x03F5,	0x0395},

		5737	 	 {0x1E60,	0x1E61},

		5738	 	 {0x1E61,	0x1E9B},

		5739	 	 {0x1E9B,	0x1E60},

		5740	 	 {0x1E9E,	0x00DF},

		5741	 	 {0x1FBE,	0x0345},

		5742	 	 {0x2126,	0x03A9},

		5743	 	 {0x212A,	0x004B},

		5744	 	 {0x212B,	0x00C5},

		5745	 }

		5746	

		5747	 //	FoldCategory	maps	a	category	name	to	a	table	of

		5748	 //	code	points	outside	the	category	that	are	equivalent	under

		5749	 //	simple	case	folding	to	code	points	inside	the	category.

		5750	 //	If	there	is	no	entry	for	a	category	name,	there	are	no	such	points.

		5751	 var	FoldCategory	=	map[string]*RangeTable{

		5752	 	 "Common":				foldCommon,

		5753	 	 "Greek":					foldGreek,

		5754	 	 "Inherited":	foldInherited,

		5755	 	 "L":									foldL,

		5756	 	 "Ll":								foldLl,

		5757	 	 "Lt":								foldLt,

		5758	 	 "Lu":								foldLu,

		5759	 	 "M":									foldM,

		5760	 	 "Mn":								foldMn,

		5761	 }

		5762	

		5763	 var	foldCommon	=	&RangeTable{

		5764	 	 R16:	[]Range16{

		5765	 	 	 {0x039c,	0x03bc,	32},

		5766	 	 },

		5767	 }

		5768	

		5769	 var	foldGreek	=	&RangeTable{

		5770	 	 R16:	[]Range16{

		5771	 	 	 {0x00b5,	0x0345,	656},

		5772	 	 },

		5773	 }

		5774	

		5775	 var	foldInherited	=	&RangeTable{

		5776	 	 R16:	[]Range16{

		5777	 	 	 {0x0399,	0x03b9,	32},

		5778	 	 	 {0x1fbe,	0x1fbe,	1},

		5779	 	 },

		5780	 }

		5781	

		5782	 var	foldL	=	&RangeTable{

		5783	 	 R16:	[]Range16{

		5784	 	 	 {0x0345,	0x0345,	1},

		5785	 	 },

		5786	 }

		5787	

		5788	 var	foldLl	=	&RangeTable{

		5789	 	 R16:	[]Range16{

		5790	 	 	 {0x0041,	0x005a,	1},

		5791	 	 	 {0x00c0,	0x00d6,	1},

		5792	 	 	 {0x00d8,	0x00de,	1},

		5793	 	 	 {0x0100,	0x012e,	2},

		5794	 	 	 {0x0132,	0x0136,	2},

		5795	 	 	 {0x0139,	0x0147,	2},

		5796	 	 	 {0x014a,	0x0178,	2},

		5797	 	 	 {0x0179,	0x017d,	2},

		5798	 	 	 {0x0181,	0x0182,	1},

		5799	 	 	 {0x0184,	0x0186,	2},

		5800	 	 	 {0x0187,	0x0189,	2},

		5801	 	 	 {0x018a,	0x018b,	1},

		5802	 	 	 {0x018e,	0x0191,	1},

		5803	 	 	 {0x0193,	0x0194,	1},

		5804	 	 	 {0x0196,	0x0198,	1},

		5805	 	 	 {0x019c,	0x019d,	1},

		5806	 	 	 {0x019f,	0x01a0,	1},

		5807	 	 	 {0x01a2,	0x01a6,	2},

		5808	 	 	 {0x01a7,	0x01a9,	2},

		5809	 	 	 {0x01ac,	0x01ae,	2},

		5810	 	 	 {0x01af,	0x01b1,	2},

		5811	 	 	 {0x01b2,	0x01b3,	1},

		5812	 	 	 {0x01b5,	0x01b7,	2},

		5813	 	 	 {0x01b8,	0x01bc,	4},

		5814	 	 	 {0x01c4,	0x01c5,	1},

		5815	 	 	 {0x01c7,	0x01c8,	1},

		5816	 	 	 {0x01ca,	0x01cb,	1},

		5817	 	 	 {0x01cd,	0x01db,	2},

		5818	 	 	 {0x01de,	0x01ee,	2},

		5819	 	 	 {0x01f1,	0x01f2,	1},

		5820	 	 	 {0x01f4,	0x01f6,	2},

		5821	 	 	 {0x01f7,	0x01f8,	1},

		5822	 	 	 {0x01fa,	0x0232,	2},

		5823	 	 	 {0x023a,	0x023b,	1},

		5824	 	 	 {0x023d,	0x023e,	1},

		5825	 	 	 {0x0241,	0x0243,	2},

		5826	 	 	 {0x0244,	0x0246,	1},

		5827	 	 	 {0x0248,	0x024e,	2},

		5828	 	 	 {0x0345,	0x0370,	43},

		5829	 	 	 {0x0372,	0x0376,	4},

		5830	 	 	 {0x0386,	0x0388,	2},

		5831	 	 	 {0x0389,	0x038a,	1},

		5832	 	 	 {0x038c,	0x038e,	2},

		5833	 	 	 {0x038f,	0x0391,	2},

		5834	 	 	 {0x0392,	0x03a1,	1},

		5835	 	 	 {0x03a3,	0x03ab,	1},

		5836	 	 	 {0x03cf,	0x03d8,	9},

		5837	 	 	 {0x03da,	0x03ee,	2},

		5838	 	 	 {0x03f4,	0x03f7,	3},

		5839	 	 	 {0x03f9,	0x03fa,	1},

		5840	 	 	 {0x03fd,	0x042f,	1},

		5841	 	 	 {0x0460,	0x0480,	2},

		5842	 	 	 {0x048a,	0x04c0,	2},

		5843	 	 	 {0x04c1,	0x04cd,	2},

		5844	 	 	 {0x04d0,	0x0526,	2},

		5845	 	 	 {0x0531,	0x0556,	1},

		5846	 	 	 {0x10a0,	0x10c5,	1},

		5847	 	 	 {0x1e00,	0x1e94,	2},

		5848	 	 	 {0x1e9e,	0x1efe,	2},

		5849	 	 	 {0x1f08,	0x1f0f,	1},

		5850	 	 	 {0x1f18,	0x1f1d,	1},

		5851	 	 	 {0x1f28,	0x1f2f,	1},

		5852	 	 	 {0x1f38,	0x1f3f,	1},

		5853	 	 	 {0x1f48,	0x1f4d,	1},

		5854	 	 	 {0x1f59,	0x1f5f,	2},

		5855	 	 	 {0x1f68,	0x1f6f,	1},

		5856	 	 	 {0x1f88,	0x1f8f,	1},

		5857	 	 	 {0x1f98,	0x1f9f,	1},

		5858	 	 	 {0x1fa8,	0x1faf,	1},

		5859	 	 	 {0x1fb8,	0x1fbc,	1},

		5860	 	 	 {0x1fc8,	0x1fcc,	1},

		5861	 	 	 {0x1fd8,	0x1fdb,	1},

		5862	 	 	 {0x1fe8,	0x1fec,	1},

		5863	 	 	 {0x1ff8,	0x1ffc,	1},

		5864	 	 	 {0x2126,	0x212a,	4},

		5865	 	 	 {0x212b,	0x2132,	7},

		5866	 	 	 {0x2183,	0x2c00,	2685},

		5867	 	 	 {0x2c01,	0x2c2e,	1},

		5868	 	 	 {0x2c60,	0x2c62,	2},

		5869	 	 	 {0x2c63,	0x2c64,	1},

		5870	 	 	 {0x2c67,	0x2c6d,	2},

		5871	 	 	 {0x2c6e,	0x2c70,	1},

		5872	 	 	 {0x2c72,	0x2c75,	3},

		5873	 	 	 {0x2c7e,	0x2c80,	1},

		5874	 	 	 {0x2c82,	0x2ce2,	2},

		5875	 	 	 {0x2ceb,	0x2ced,	2},

		5876	 	 	 {0xa640,	0xa66c,	2},

		5877	 	 	 {0xa680,	0xa696,	2},

		5878	 	 	 {0xa722,	0xa72e,	2},

		5879	 	 	 {0xa732,	0xa76e,	2},

		5880	 	 	 {0xa779,	0xa77d,	2},

		5881	 	 	 {0xa77e,	0xa786,	2},

		5882	 	 	 {0xa78b,	0xa78d,	2},

		5883	 	 	 {0xa790,	0xa7a0,	16},

		5884	 	 	 {0xa7a2,	0xa7a8,	2},

		5885	 	 	 {0xff21,	0xff3a,	1},

		5886	 	 },

		5887	 	 R32:	[]Range32{

		5888	 	 	 {0x10400,	0x10427,	1},

		5889	 	 },

		5890	 }

		5891	

		5892	 var	foldLt	=	&RangeTable{

		5893	 	 R16:	[]Range16{

		5894	 	 	 {0x01c4,	0x01c6,	2},

		5895	 	 	 {0x01c7,	0x01c9,	2},

		5896	 	 	 {0x01ca,	0x01cc,	2},

		5897	 	 	 {0x01f1,	0x01f3,	2},

		5898	 	 	 {0x1f80,	0x1f87,	1},

		5899	 	 	 {0x1f90,	0x1f97,	1},

		5900	 	 	 {0x1fa0,	0x1fa7,	1},

		5901	 	 	 {0x1fb3,	0x1fc3,	16},

		5902	 	 	 {0x1ff3,	0x1ff3,	1},

		5903	 	 },

		5904	 }

		5905	

		5906	 var	foldLu	=	&RangeTable{

		5907	 	 R16:	[]Range16{

		5908	 	 	 {0x0061,	0x007a,	1},

		5909	 	 	 {0x00b5,	0x00df,	42},

		5910	 	 	 {0x00e0,	0x00f6,	1},

		5911	 	 	 {0x00f8,	0x00ff,	1},

		5912	 	 	 {0x0101,	0x012f,	2},

		5913	 	 	 {0x0133,	0x0137,	2},

		5914	 	 	 {0x013a,	0x0148,	2},

		5915	 	 	 {0x014b,	0x0177,	2},

		5916	 	 	 {0x017a,	0x017e,	2},

		5917	 	 	 {0x017f,	0x0180,	1},

		5918	 	 	 {0x0183,	0x0185,	2},

		5919	 	 	 {0x0188,	0x018c,	4},

		5920	 	 	 {0x0192,	0x0195,	3},

		5921	 	 	 {0x0199,	0x019a,	1},

		5922	 	 	 {0x019e,	0x01a1,	3},

		5923	 	 	 {0x01a3,	0x01a5,	2},

		5924	 	 	 {0x01a8,	0x01ad,	5},

		5925	 	 	 {0x01b0,	0x01b4,	4},

		5926	 	 	 {0x01b6,	0x01b9,	3},

		5927	 	 	 {0x01bd,	0x01bf,	2},

		5928	 	 	 {0x01c5,	0x01c6,	1},

		5929	 	 	 {0x01c8,	0x01c9,	1},

		5930	 	 	 {0x01cb,	0x01cc,	1},

		5931	 	 	 {0x01ce,	0x01dc,	2},

		5932	 	 	 {0x01dd,	0x01ef,	2},

		5933	 	 	 {0x01f2,	0x01f3,	1},

		5934	 	 	 {0x01f5,	0x01f9,	4},

		5935	 	 	 {0x01fb,	0x021f,	2},

		5936	 	 	 {0x0223,	0x0233,	2},

		5937	 	 	 {0x023c,	0x023f,	3},

		5938	 	 	 {0x0240,	0x0242,	2},

		5939	 	 	 {0x0247,	0x024f,	2},

		5940	 	 	 {0x0250,	0x0254,	1},

		5941	 	 	 {0x0256,	0x0257,	1},

		5942	 	 	 {0x0259,	0x025b,	2},

		5943	 	 	 {0x0260,	0x0263,	3},

		5944	 	 	 {0x0265,	0x0268,	3},

		5945	 	 	 {0x0269,	0x026b,	2},

		5946	 	 	 {0x026f,	0x0271,	2},

		5947	 	 	 {0x0272,	0x0275,	3},

		5948	 	 	 {0x027d,	0x0283,	3},

		5949	 	 	 {0x0288,	0x028c,	1},

		5950	 	 	 {0x0292,	0x0345,	179},

		5951	 	 	 {0x0371,	0x0373,	2},

		5952	 	 	 {0x0377,	0x037b,	4},

		5953	 	 	 {0x037c,	0x037d,	1},

		5954	 	 	 {0x03ac,	0x03af,	1},

		5955	 	 	 {0x03b1,	0x03ce,	1},

		5956	 	 	 {0x03d0,	0x03d1,	1},

		5957	 	 	 {0x03d5,	0x03d7,	1},

		5958	 	 	 {0x03d9,	0x03ef,	2},

		5959	 	 	 {0x03f0,	0x03f2,	1},

		5960	 	 	 {0x03f5,	0x03fb,	3},

		5961	 	 	 {0x0430,	0x045f,	1},

		5962	 	 	 {0x0461,	0x0481,	2},

		5963	 	 	 {0x048b,	0x04bf,	2},

		5964	 	 	 {0x04c2,	0x04ce,	2},

		5965	 	 	 {0x04cf,	0x0527,	2},

		5966	 	 	 {0x0561,	0x0586,	1},

		5967	 	 	 {0x1d79,	0x1d7d,	4},

		5968	 	 	 {0x1e01,	0x1e95,	2},

		5969	 	 	 {0x1e9b,	0x1ea1,	6},

		5970	 	 	 {0x1ea3,	0x1eff,	2},

		5971	 	 	 {0x1f00,	0x1f07,	1},

		5972	 	 	 {0x1f10,	0x1f15,	1},

		5973	 	 	 {0x1f20,	0x1f27,	1},

		5974	 	 	 {0x1f30,	0x1f37,	1},

		5975	 	 	 {0x1f40,	0x1f45,	1},

		5976	 	 	 {0x1f51,	0x1f57,	2},

		5977	 	 	 {0x1f60,	0x1f67,	1},

		5978	 	 	 {0x1f70,	0x1f7d,	1},

		5979	 	 	 {0x1fb0,	0x1fb1,	1},

		5980	 	 	 {0x1fbe,	0x1fd0,	18},

		5981	 	 	 {0x1fd1,	0x1fe0,	15},

		5982	 	 	 {0x1fe1,	0x1fe5,	4},

		5983	 	 	 {0x214e,	0x2184,	54},

		5984	 	 	 {0x2c30,	0x2c5e,	1},

		5985	 	 	 {0x2c61,	0x2c65,	4},

		5986	 	 	 {0x2c66,	0x2c6c,	2},

		5987	 	 	 {0x2c73,	0x2c76,	3},

		5988	 	 	 {0x2c81,	0x2ce3,	2},

		5989	 	 	 {0x2cec,	0x2cee,	2},

		5990	 	 	 {0x2d00,	0x2d25,	1},

		5991	 	 	 {0xa641,	0xa66d,	2},

		5992	 	 	 {0xa681,	0xa697,	2},

		5993	 	 	 {0xa723,	0xa72f,	2},

		5994	 	 	 {0xa733,	0xa76f,	2},

		5995	 	 	 {0xa77a,	0xa77c,	2},

		5996	 	 	 {0xa77f,	0xa787,	2},

		5997	 	 	 {0xa78c,	0xa791,	5},

		5998	 	 	 {0xa7a1,	0xa7a9,	2},

		5999	 	 	 {0xff41,	0xff5a,	1},

		6000	 	 },

		6001	 	 R32:	[]Range32{

		6002	 	 	 {0x10428,	0x1044f,	1},

		6003	 	 },

		6004	 }

		6005	

		6006	 var	foldM	=	&RangeTable{

		6007	 	 R16:	[]Range16{

		6008	 	 	 {0x0399,	0x03b9,	32},

		6009	 	 	 {0x1fbe,	0x1fbe,	1},

		6010	 	 },

		6011	 }

		6012	

		6013	 var	foldMn	=	&RangeTable{

		6014	 	 R16:	[]Range16{

		6015	 	 	 {0x0399,	0x03b9,	32},

		6016	 	 	 {0x1fbe,	0x1fbe,	1},

		6017	 	 },

		6018	 }

		6019	

		6020	 //	FoldScript	maps	a	script	name	to	a	table	of

		6021	 //	code	points	outside	the	script	that	are	equivalent	under

		6022	 //	simple	case	folding	to	code	points	inside	the	script.

		6023	 //	If	there	is	no	entry	for	a	script	name,	there	are	no	such	points.

		6024	 var	FoldScript	=	map[string]*RangeTable{}

		6025	

		6026	 //	Range	entries:	3391	16-bit,	659	32-bit,	4050	total.

		6027	 //	Range	bytes:	20346	16-bit,	7908	32-bit,	28254	total.

		6028	

		6029	 //	Fold	orbit	bytes:	63	pairs,	252	bytes

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/unicode/utf16/utf16.go
					1	 //	Copyright	2010	The	Go	Authors.		All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	utf16	implements	encoding	and	decoding	of	UTF-16	sequences.

					6	 package	utf16

					7	

					8	 //	The	conditions	replacementChar==unicode.ReplacementChar	and

					9	 //	maxRune==unicode.MaxRune	are	verified	in	the	tests.

				10	 //	Defining	them	locally	avoids	this	package	depending	on	package	unicode.

				11	

				12	 const	(

				13	 	 replacementChar	=	'\uFFFD'					//	Unicode	replacement	character

				14	 	 maxRune									=	'\U0010FFFF'	//	Maximum	valid	Unicode	code	point.

				15)

				16	

				17	 const	(

				18	 	 //	0xd800-0xdc00	encodes	the	high	10	bits	of	a	pair.

				19	 	 //	0xdc00-0xe000	encodes	the	low	10	bits	of	a	pair.

				20	 	 //	the	value	is	those	20	bits	plus	0x10000.

				21	 	 surr1	=	0xd800

				22	 	 surr2	=	0xdc00

				23	 	 surr3	=	0xe000

				24	

				25	 	 surrSelf	=	0x10000

				26)

				27	

				28	 //	IsSurrogate	returns	true	if	the	specified	Unicode	code	point

				29	 //	can	appear	in	a	surrogate	pair.

				30	 func	IsSurrogate(r	rune)	bool	{

				31	 	 return	surr1	<=	r	&&	r	<	surr3

				32	 }

				33	

				34	 //	DecodeRune	returns	the	UTF-16	decoding	of	a	surrogate	pair.

				35	 //	If	the	pair	is	not	a	valid	UTF-16	surrogate	pair,	DecodeRune	returns

				36	 //	the	Unicode	replacement	code	point	U+FFFD.

				37	 func	DecodeRune(r1,	r2	rune)	rune	{

				38	 	 if	surr1	<=	r1	&&	r1	<	surr2	&&	surr2	<=	r2	&&	r2	<	surr3	{

				39	 	 	 return	(rune(r1)-surr1)<<10	|	(rune(r2)	-	surr2)	+	0x10000

				40	 	 }

				41	 	 return	replacementChar

				42	 }

				43	

				44	 //	EncodeRune	returns	the	UTF-16	surrogate	pair	r1,	r2	for	the	given	rune.

				45	 //	If	the	rune	is	not	a	valid	Unicode	code	point	or	does	not	need	encoding,

				46	 //	EncodeRune	returns	U+FFFD,	U+FFFD.

				47	 func	EncodeRune(r	rune)	(r1,	r2	rune)	{

				48	 	 if	r	<	surrSelf	||	r	>	maxRune	||	IsSurrogate(r)	{

				49	 	 	 return	replacementChar,	replacementChar

				50	 	 }

				51	 	 r	-=	surrSelf

				52	 	 return	surr1	+	(r>>10)&0x3ff,	surr2	+	r&0x3ff

				53	 }

				54	

				55	 //	Encode	returns	the	UTF-16	encoding	of	the	Unicode	code	point	sequence	s.

				56	 func	Encode(s	[]rune)	[]uint16	{

				57	 	 n	:=	len(s)

				58	 	 for	_,	v	:=	range	s	{

				59	 	 	 if	v	>=	surrSelf	{

				60	 	 	 	 n++

				61	 	 	 }

				62	 	 }

				63	

				64	 	 a	:=	make([]uint16,	n)

				65	 	 n	=	0

				66	 	 for	_,	v	:=	range	s	{

				67	 	 	 switch	{

				68	 	 	 case	v	<	0,	surr1	<=	v	&&	v	<	surr3,	v	>	maxRune:

				69	 	 	 	 v	=	replacementChar

				70	 	 	 	 fallthrough

				71	 	 	 case	v	<	surrSelf:

				72	 	 	 	 a[n]	=	uint16(v)

				73	 	 	 	 n++

				74	 	 	 default:

				75	 	 	 	 r1,	r2	:=	EncodeRune(v)

				76	 	 	 	 a[n]	=	uint16(r1)

				77	 	 	 	 a[n+1]	=	uint16(r2)

				78	 	 	 	 n	+=	2

				79	 	 	 }

				80	 	 }

				81	 	 return	a[0:n]

				82	 }

				83	

				84	 //	Decode	returns	the	Unicode	code	point	sequence	represented

				85	 //	by	the	UTF-16	encoding	s.

				86	 func	Decode(s	[]uint16)	[]rune	{

				87	 	 a	:=	make([]rune,	len(s))

				88	 	 n	:=	0

				89	 	 for	i	:=	0;	i	<	len(s);	i++	{

				90	 	 	 switch	r	:=	s[i];	{

				91	 	 	 case	surr1	<=	r	&&	r	<	surr2	&&	i+1	<	len(s)	&&

				92	 	 	 	 surr2	<=	s[i+1]	&&	s[i+1]	<	surr3:

				93	 	 	 	 //	valid	surrogate	sequence

				94	 	 	 	 a[n]	=	DecodeRune(rune(r),	rune(s[i+1]))

				95	 	 	 	 i++

				96	 	 	 	 n++

				97	 	 	 case	surr1	<=	r	&&	r	<	surr3:

				98	 	 	 	 //	invalid	surrogate	sequence

				99	 	 	 	 a[n]	=	replacementChar

			100	 	 	 	 n++

			101	 	 	 default:

			102	 	 	 	 //	normal	rune

			103	 	 	 	 a[n]	=	rune(r)

			104	 	 	 	 n++

			105	 	 	 }

			106	 	 }

			107	 	 return	a[0:n]

			108	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file
src/pkg/unicode/utf8/utf8.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 //	Package	utf8	implements	functions	and	constants	to	support	text	encoded	in

					6	 //	UTF-8.	It	includes	functions	to	translate	between	runes	and	UTF-8	byte	sequences.

					7	 package	utf8

					8	

					9	 //	The	conditions	RuneError==unicode.ReplacementChar	and

				10	 //	MaxRune==unicode.MaxRune	are	verified	in	the	tests.

				11	 //	Defining	them	locally	avoids	this	package	depending	on	package	unicode.

				12	

				13	 //	Numbers	fundamental	to	the	encoding.

				14	 const	(

				15	 	 RuneError	=	'\uFFFD'					//	the	"error"	Rune	or	"Unicode	replacement	character"

				16	 	 RuneSelf		=	0x80									//	characters	below	Runeself	are	represented	as	themselves	in	a	single	byte.

				17	 	 MaxRune			=	'\U0010FFFF'	//	Maximum	valid	Unicode	code	point.

				18	 	 UTFMax				=	4												//	maximum	number	of	bytes	of	a	UTF-8	encoded	Unicode	character.

				19)

				20	

				21	 const	(

				22	 	 t1	=	0x00	//	0000	0000

				23	 	 tx	=	0x80	//	1000	0000

				24	 	 t2	=	0xC0	//	1100	0000

				25	 	 t3	=	0xE0	//	1110	0000

				26	 	 t4	=	0xF0	//	1111	0000

				27	 	 t5	=	0xF8	//	1111	1000

				28	

				29	 	 maskx	=	0x3F	//	0011	1111

				30	 	 mask2	=	0x1F	//	0001	1111

				31	 	 mask3	=	0x0F	//	0000	1111

				32	 	 mask4	=	0x07	//	0000	0111

				33	

				34	 	 rune1Max	=	1<<7	-	1

				35	 	 rune2Max	=	1<<11	-	1

				36	 	 rune3Max	=	1<<16	-	1

				37	 	 rune4Max	=	1<<21	-	1

				38)

				39	

				40	 func	decodeRuneInternal(p	[]byte)	(r	rune,	size	int,	short	bool)	{

				41	 	 n	:=	len(p)

				42	 	 if	n	<	1	{

				43	 	 	 return	RuneError,	0,	true

				44	 	 }

				45	 	 c0	:=	p[0]

				46	

				47	 	 //	1-byte,	7-bit	sequence?

				48	 	 if	c0	<	tx	{

				49	 	 	 return	rune(c0),	1,	false

				50	 	 }

				51	

				52	 	 //	unexpected	continuation	byte?

				53	 	 if	c0	<	t2	{

				54	 	 	 return	RuneError,	1,	false

				55	 	 }

				56	

				57	 	 //	need	first	continuation	byte

				58	 	 if	n	<	2	{

				59	 	 	 return	RuneError,	1,	true

				60	 	 }

				61	 	 c1	:=	p[1]

				62	 	 if	c1	<	tx	||	t2	<=	c1	{

				63	 	 	 return	RuneError,	1,	false

				64	 	 }

				65	

				66	 	 //	2-byte,	11-bit	sequence?

				67	 	 if	c0	<	t3	{

				68	 	 	 r	=	rune(c0&mask2)<<6	|	rune(c1&maskx)

				69	 	 	 if	r	<=	rune1Max	{

				70	 	 	 	 return	RuneError,	1,	false

				71	 	 	 }

				72	 	 	 return	r,	2,	false

				73	 	 }

				74	

				75	 	 //	need	second	continuation	byte

				76	 	 if	n	<	3	{

				77	 	 	 return	RuneError,	1,	true

				78	 	 }

				79	 	 c2	:=	p[2]

				80	 	 if	c2	<	tx	||	t2	<=	c2	{

				81	 	 	 return	RuneError,	1,	false

				82	 	 }

				83	

				84	 	 //	3-byte,	16-bit	sequence?

				85	 	 if	c0	<	t4	{

				86	 	 	 r	=	rune(c0&mask3)<<12	|	rune(c1&maskx)<<6	|	rune(c2&maskx)

				87	 	 	 if	r	<=	rune2Max	{

				88	 	 	 	 return	RuneError,	1,	false

				89	 	 	 }

				90	 	 	 return	r,	3,	false

				91	 	 }

				92	

				93	 	 //	need	third	continuation	byte

				94	 	 if	n	<	4	{

				95	 	 	 return	RuneError,	1,	true

				96	 	 }

				97	 	 c3	:=	p[3]

				98	 	 if	c3	<	tx	||	t2	<=	c3	{

				99	 	 	 return	RuneError,	1,	false

			100	 	 }

			101	

			102	 	 //	4-byte,	21-bit	sequence?

			103	 	 if	c0	<	t5	{

			104	 	 	 r	=	rune(c0&mask4)<<18	|	rune(c1&maskx)<<12	|	rune(c2&maskx)<<6	|	rune(c3&maskx)

			105	 	 	 if	r	<=	rune3Max	{

			106	 	 	 	 return	RuneError,	1,	false

			107	 	 	 }

			108	 	 	 return	r,	4,	false

			109	 	 }

			110	

			111	 	 //	error

			112	 	 return	RuneError,	1,	false

			113	 }

			114	

			115	 func	decodeRuneInStringInternal(s	string)	(r	rune,	size	int,	short	bool)	{

			116	 	 n	:=	len(s)

			117	 	 if	n	<	1	{

			118	 	 	 return	RuneError,	0,	true

			119	 	 }

			120	 	 c0	:=	s[0]

			121	

			122	 	 //	1-byte,	7-bit	sequence?

			123	 	 if	c0	<	tx	{

			124	 	 	 return	rune(c0),	1,	false

			125	 	 }

			126	

			127	 	 //	unexpected	continuation	byte?

			128	 	 if	c0	<	t2	{

			129	 	 	 return	RuneError,	1,	false

			130	 	 }

			131	

			132	 	 //	need	first	continuation	byte

			133	 	 if	n	<	2	{

			134	 	 	 return	RuneError,	1,	true

			135	 	 }

			136	 	 c1	:=	s[1]

			137	 	 if	c1	<	tx	||	t2	<=	c1	{

			138	 	 	 return	RuneError,	1,	false

			139	 	 }

			140	

			141	 	 //	2-byte,	11-bit	sequence?

			142	 	 if	c0	<	t3	{

			143	 	 	 r	=	rune(c0&mask2)<<6	|	rune(c1&maskx)

			144	 	 	 if	r	<=	rune1Max	{

			145	 	 	 	 return	RuneError,	1,	false

			146	 	 	 }

			147	 	 	 return	r,	2,	false

			148	 	 }

			149	

			150	 	 //	need	second	continuation	byte

			151	 	 if	n	<	3	{

			152	 	 	 return	RuneError,	1,	true

			153	 	 }

			154	 	 c2	:=	s[2]

			155	 	 if	c2	<	tx	||	t2	<=	c2	{

			156	 	 	 return	RuneError,	1,	false

			157	 	 }

			158	

			159	 	 //	3-byte,	16-bit	sequence?

			160	 	 if	c0	<	t4	{

			161	 	 	 r	=	rune(c0&mask3)<<12	|	rune(c1&maskx)<<6	|	rune(c2&maskx)

			162	 	 	 if	r	<=	rune2Max	{

			163	 	 	 	 return	RuneError,	1,	false

			164	 	 	 }

			165	 	 	 return	r,	3,	false

			166	 	 }

			167	

			168	 	 //	need	third	continuation	byte

			169	 	 if	n	<	4	{

			170	 	 	 return	RuneError,	1,	true

			171	 	 }

			172	 	 c3	:=	s[3]

			173	 	 if	c3	<	tx	||	t2	<=	c3	{

			174	 	 	 return	RuneError,	1,	false

			175	 	 }

			176	

			177	 	 //	4-byte,	21-bit	sequence?

			178	 	 if	c0	<	t5	{

			179	 	 	 r	=	rune(c0&mask4)<<18	|	rune(c1&maskx)<<12	|	rune(c2&maskx)<<6	|	rune(c3&maskx)

			180	 	 	 if	r	<=	rune3Max	{

			181	 	 	 	 return	RuneError,	1,	false

			182	 	 	 }

			183	 	 	 return	r,	4,	false

			184	 	 }

			185	

			186	 	 //	error

			187	 	 return	RuneError,	1,	false

			188	 }

			189	

			190	 //	FullRune	reports	whether	the	bytes	in	p	begin	with	a	full	UTF-8	encoding	of	a	rune.

			191	 //	An	invalid	encoding	is	considered	a	full	Rune	since	it	will	convert	as	a	width-1	error	rune.

			192	 func	FullRune(p	[]byte)	bool	{

			193	 	 _,	_,	short	:=	decodeRuneInternal(p)

			194	 	 return	!short

			195	 }

			196	

			197	 //	FullRuneInString	is	like	FullRune	but	its	input	is	a	string.

			198	 func	FullRuneInString(s	string)	bool	{

			199	 	 _,	_,	short	:=	decodeRuneInStringInternal(s)

			200	 	 return	!short

			201	 }

			202	

			203	 //	DecodeRune	unpacks	the	first	UTF-8	encoding	in	p	and	returns	the	rune	and	its	width	in	bytes.

			204	 //	If	the	encoding	is	invalid,	it	returns	(RuneError,	1),	an	impossible	result	for	correct	UTF-8.

			205	 func	DecodeRune(p	[]byte)	(r	rune,	size	int)	{

			206	 	 r,	size,	_	=	decodeRuneInternal(p)

			207	 	 return

			208	 }

			209	

			210	 //	DecodeRuneInString	is	like	DecodeRune	but	its	input	is	a	string.

			211	 //	If	the	encoding	is	invalid,	it	returns	(RuneError,	1),	an	impossible	result	for	correct	UTF-8.

			212	 func	DecodeRuneInString(s	string)	(r	rune,	size	int)	{

			213	 	 r,	size,	_	=	decodeRuneInStringInternal(s)

			214	 	 return

			215	 }

			216	

			217	 //	DecodeLastRune	unpacks	the	last	UTF-8	encoding	in	p	and	returns	the	rune	and	its	width	in	bytes.

			218	 //	If	the	encoding	is	invalid,	it	returns	(RuneError,	1),	an	impossible	result	for	correct	UTF-8.

			219	 func	DecodeLastRune(p	[]byte)	(r	rune,	size	int)	{

			220	 	 end	:=	len(p)

			221	 	 if	end	==	0	{

			222	 	 	 return	RuneError,	0

			223	 	 }

			224	 	 start	:=	end	-	1

			225	 	 r	=	rune(p[start])

			226	 	 if	r	<	RuneSelf	{

			227	 	 	 return	r,	1

			228	 	 }

			229	 	 //	guard	against	O(n^2)	behavior	when	traversing

			230	 	 //	backwards	through	strings	with	long	sequences	of

			231	 	 //	invalid	UTF-8.

			232	 	 lim	:=	end	-	UTFMax

			233	 	 if	lim	<	0	{

			234	 	 	 lim	=	0

			235	 	 }

			236	 	 for	start--;	start	>=	lim;	start--	{

			237	 	 	 if	RuneStart(p[start])	{

			238	 	 	 	 break

			239	 	 	 }

			240	 	 }

			241	 	 if	start	<	0	{

			242	 	 	 start	=	0

			243	 	 }

			244	 	 r,	size	=	DecodeRune(p[start:end])

			245	 	 if	start+size	!=	end	{

			246	 	 	 return	RuneError,	1

			247	 	 }

			248	 	 return	r,	size

			249	 }

			250	

			251	 //	DecodeLastRuneInString	is	like	DecodeLastRune	but	its	input	is	a	string.

			252	 //	If	the	encoding	is	invalid,	it	returns	(RuneError,	1),	an	impossible	result	for	correct	UTF-8.

			253	 func	DecodeLastRuneInString(s	string)	(r	rune,	size	int)	{

			254	 	 end	:=	len(s)

			255	 	 if	end	==	0	{

			256	 	 	 return	RuneError,	0

			257	 	 }

			258	 	 start	:=	end	-	1

			259	 	 r	=	rune(s[start])

			260	 	 if	r	<	RuneSelf	{

			261	 	 	 return	r,	1

			262	 	 }

			263	 	 //	guard	against	O(n^2)	behavior	when	traversing

			264	 	 //	backwards	through	strings	with	long	sequences	of

			265	 	 //	invalid	UTF-8.

			266	 	 lim	:=	end	-	UTFMax

			267	 	 if	lim	<	0	{

			268	 	 	 lim	=	0

			269	 	 }

			270	 	 for	start--;	start	>=	lim;	start--	{

			271	 	 	 if	RuneStart(s[start])	{

			272	 	 	 	 break

			273	 	 	 }

			274	 	 }

			275	 	 if	start	<	0	{

			276	 	 	 start	=	0

			277	 	 }

			278	 	 r,	size	=	DecodeRuneInString(s[start:end])

			279	 	 if	start+size	!=	end	{

			280	 	 	 return	RuneError,	1

			281	 	 }

			282	 	 return	r,	size

			283	 }

			284	

			285	 //	RuneLen	returns	the	number	of	bytes	required	to	encode	the	rune.

			286	 func	RuneLen(r	rune)	int	{

			287	 	 switch	{

			288	 	 case	r	<=	rune1Max:

			289	 	 	 return	1

			290	 	 case	r	<=	rune2Max:

			291	 	 	 return	2

			292	 	 case	r	<=	rune3Max:

			293	 	 	 return	3

			294	 	 case	r	<=	rune4Max:

			295	 	 	 return	4

			296	 	 }

			297	 	 return	-1

			298	 }

			299	

			300	 //	EncodeRune	writes	into	p	(which	must	be	large	enough)	the	UTF-8	encoding	of	the	rune.

			301	 //	It	returns	the	number	of	bytes	written.

			302	 func	EncodeRune(p	[]byte,	r	rune)	int	{

			303	 	 //	Negative	values	are	erroneous.		Making	it	unsigned	addresses	the	problem.

			304	 	 if	uint32(r)	<=	rune1Max	{

			305	 	 	 p[0]	=	byte(r)

			306	 	 	 return	1

			307	 	 }

			308	

			309	 	 if	uint32(r)	<=	rune2Max	{

			310	 	 	 p[0]	=	t2	|	byte(r>>6)

			311	 	 	 p[1]	=	tx	|	byte(r)&maskx

			312	 	 	 return	2

			313	 	 }

			314	

			315	 	 if	uint32(r)	>	MaxRune	{

			316	 	 	 r	=	RuneError

			317	 	 }

			318	

			319	 	 if	uint32(r)	<=	rune3Max	{

			320	 	 	 p[0]	=	t3	|	byte(r>>12)

			321	 	 	 p[1]	=	tx	|	byte(r>>6)&maskx

			322	 	 	 p[2]	=	tx	|	byte(r)&maskx

			323	 	 	 return	3

			324	 	 }

			325	

			326	 	 p[0]	=	t4	|	byte(r>>18)

			327	 	 p[1]	=	tx	|	byte(r>>12)&maskx

			328	 	 p[2]	=	tx	|	byte(r>>6)&maskx

			329	 	 p[3]	=	tx	|	byte(r)&maskx

			330	 	 return	4

			331	 }

			332	

			333	 //	RuneCount	returns	the	number	of	runes	in	p.		Erroneous	and	short

			334	 //	encodings	are	treated	as	single	runes	of	width	1	byte.

			335	 func	RuneCount(p	[]byte)	int	{

			336	 	 i	:=	0

			337	 	 var	n	int

			338	 	 for	n	=	0;	i	<	len(p);	n++	{

			339	 	 	 if	p[i]	<	RuneSelf	{

			340	 	 	 	 i++

			341	 	 	 }	else	{

			342	 	 	 	 _,	size	:=	DecodeRune(p[i:])

			343	 	 	 	 i	+=	size

			344	 	 	 }

			345	 	 }

			346	 	 return	n

			347	 }

			348	

			349	 //	RuneCountInString	is	like	RuneCount	but	its	input	is	a	string.

			350	 func	RuneCountInString(s	string)	(n	int)	{

			351	 	 for	_	=	range	s	{

			352	 	 	 n++

			353	 	 }

			354	 	 return

			355	 }

			356	

			357	 //	RuneStart	reports	whether	the	byte	could	be	the	first	byte	of

			358	 //	an	encoded	rune.		Second	and	subsequent	bytes	always	have	the	top

			359	 //	two	bits	set	to	10.

			360	 func	RuneStart(b	byte)	bool	{	return	b&0xC0	!=	0x80	}

			361	

			362	 //	Valid	reports	whether	p	consists	entirely	of	valid	UTF-8-encoded	runes.

			363	 func	Valid(p	[]byte)	bool	{

			364	 	 i	:=	0

			365	 	 for	i	<	len(p)	{

			366	 	 	 if	p[i]	<	RuneSelf	{

			367	 	 	 	 i++

			368	 	 	 }	else	{

			369	 	 	 	 _,	size	:=	DecodeRune(p[i:])

			370	 	 	 	 if	size	==	1	{

			371	 	 	 	 	 //	All	valid	runes	of	size	of	1	(those

			372	 	 	 	 	 //	below	RuneSelf)	were	handled	above.

			373	 	 	 	 	 //	This	must	be	a	RuneError.

			374	 	 	 	 	 return	false

			375	 	 	 	 }

			376	 	 	 	 i	+=	size

			377	 	 	 }

			378	 	 }

			379	 	 return	true

			380	 }

			381	

			382	 //	ValidString	reports	whether	s	consists	entirely	of	valid	UTF-8-encoded	runes.

			383	 func	ValidString(s	string)	bool	{

			384	 	 for	i,	r	:=	range	s	{

			385	 	 	 if	r	==	RuneError	{

			386	 	 	 	 //	The	RuneError	value	can	be	an	error

			387	 	 	 	 //	sentinel	value	(if	it's	size	1)	or	the	same

			388	 	 	 	 //	value	encoded	properly.	Decode	it	to	see	if

			389	 	 	 	 //	it's	the	1	byte	sentinel	value.

			390	 	 	 	 _,	size	:=	DecodeRuneInString(s[i:])

			391	 	 	 	 if	size	==	1	{

			392	 	 	 	 	 return	false

			393	 	 	 	 }

			394	 	 	 }

			395	 	 }

			396	 	 return	true

			397	 }

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

Source	file	src/pkg/unsafe/unsafe.go
					1	 //	Copyright	2009	The	Go	Authors.	All	rights	reserved.

					2	 //	Use	of	this	source	code	is	governed	by	a	BSD-style

					3	 //	license	that	can	be	found	in	the	LICENSE	file.

					4	

					5	 /*

					6	 	 Package	unsafe	contains	operations	that	step	around	the	type	safety	of	Go	programs.

					7	 */

					8	 package	unsafe

					9	

				10	 //	ArbitraryType	is	here	for	the	purposes	of	documentation	only	and	is	not	actually

				11	 //	part	of	the	unsafe	package.		It	represents	the	type	of	an	arbitrary	Go	expression.

				12	 type	ArbitraryType	int

				13	

				14	 //	Pointer	represents	a	pointer	to	an	arbitrary	type.		There	are	three	special	operations

				15	 //	available	for	type	Pointer	that	are	not	available	for	other	types.

				16	 //	 1)	A	pointer	value	of	any	type	can	be	converted	to	a	Pointer.

				17	 //	 2)	A	Pointer	can	be	converted	to	a	pointer	value	of	any	type.

				18	 //	 3)	A	uintptr	can	be	converted	to	a	Pointer.

				19	 //	 4)	A	Pointer	can	be	converted	to	a	uintptr.

				20	 //	Pointer	therefore	allows	a	program	to	defeat	the	type	system	and	read	and	write

				21	 //	arbitrary	memory.	It	should	be	used	with	extreme	care.

				22	 type	Pointer	*ArbitraryType

				23	

				24	 //	Sizeof	returns	the	size	in	bytes	occupied	by	the	value	v.		The	size	is	that	of	the

				25	 //	"top	level"	of	the	value	only.		For	instance,	if	v	is	a	slice,	it	returns	the	size	of

				26	 //	the	slice	descriptor,	not	the	size	of	the	memory	referenced	by	the	slice.

				27	 func	Sizeof(v	ArbitraryType)	uintptr

				28	

				29	 //	Offsetof	returns	the	offset	within	the	struct	of	the	field	represented	by	v,

				30	 //	which	must	be	of	the	form	structValue.field.		In	other	words,	it	returns	the

				31	 //	number	of	bytes	between	the	start	of	the	struct	and	the	start	of	the	field.

				32	 func	Offsetof(v	ArbitraryType)	uintptr

				33	

				34	 //	Alignof	returns	the	alignment	of	the	value	v.		It	is	the	maximum	value	m	such

				35	 //	that	the	address	of	a	variable	with	the	type	of	v	will	always	always	be	zero	mod	m.

				36	 //	If	v	is	of	the	form	structValue.field,	it	returns	the	alignment	of	field	f	within	struct	object	obj.

				37	 func	Alignof(v	ArbitraryType)	uintptr

Build	version	go1.0.1.
Except	as	noted,	the	content	of	this	page	is	licensed	under	the	Creative
Commons	Attribution	3.0	License,	and	code	is	licensed	under	a	BSD	license.
Terms	of	Service	|	Privacy	Policy

http://code.google.com/policies.html#restrictions
http://www.google.com/intl/en/privacy/privacy-policy.html

