Source file src/pkg/crypto/ecdsa/ecdsa.go
1 // Copyright 2011 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
6 // defined in FIPS 186-3.
7 package ecdsa
8
9 // References:
10 // [NSA]: Suite B implementer's guide to FIPS 186-3,
11 // http://www.nsa.gov/ia/_files/ecdsa.pdf
12 // [SECG]: SECG, SEC1
13 // http://www.secg.org/download/aid-780/sec1-v2.pdf
14
15 import (
16 "crypto/elliptic"
17 "io"
18 "math/big"
19 )
20
21 // PublicKey represents an ECDSA public key.
22 type PublicKey struct {
23 elliptic.Curve
24 X, Y *big.Int
25 }
26
27 // PrivateKey represents a ECDSA private key.
28 type PrivateKey struct {
29 PublicKey
30 D *big.Int
31 }
32
33 var one = new(big.Int).SetInt64(1)
34
35 // randFieldElement returns a random element of the field underlying the given
36 // curve using the procedure given in [NSA] A.2.1.
37 func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
38 params := c.Params()
39 b := make([]byte, params.BitSize/8+8)
40 _, err = io.ReadFull(rand, b)
41 if err != nil {
42 return
43 }
44
45 k = new(big.Int).SetBytes(b)
46 n := new(big.Int).Sub(params.N, one)
47 k.Mod(k, n)
48 k.Add(k, one)
49 return
50 }
51
52 // GenerateKey generates a public&private key pair.
53 func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *PrivateKey, err error) {
54 k, err := randFieldElement(c, rand)
55 if err != nil {
56 return
57 }
58
59 priv = new(PrivateKey)
60 priv.PublicKey.Curve = c
61 priv.D = k
62 priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
63 return
64 }
65
66 // hashToInt converts a hash value to an integer. There is some disagreement
67 // about how this is done. [NSA] suggests that this is done in the obvious
68 // manner, but [SECG] truncates the hash to the bit-length of the curve order
69 // first. We follow [SECG] because that's what OpenSSL does.
70 func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
71 orderBits := c.Params().N.BitLen()
72 orderBytes := (orderBits + 7) / 8
73 if len(hash) > orderBytes {
74 hash = hash[:orderBytes]
75 }
76
77 ret := new(big.Int).SetBytes(hash)
78 excess := orderBytes*8 - orderBits
79 if excess > 0 {
80 ret.Rsh(ret, uint(excess))
81 }
82 return ret
83 }
84
85 // Sign signs an arbitrary length hash (which should be the result of hashing a
86 // larger message) using the private key, priv. It returns the signature as a
87 // pair of integers. The security of the private key depends on the entropy of
88 // rand.
89 func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
90 // See [NSA] 3.4.1
91 c := priv.PublicKey.Curve
92 N := c.Params().N
93
94 var k, kInv *big.Int
95 for {
96 for {
97 k, err = randFieldElement(c, rand)
98 if err != nil {
99 r = nil
100 return
101 }
102
103 kInv = new(big.Int).ModInverse(k, N)
104 r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
105 r.Mod(r, N)
106 if r.Sign() != 0 {
107 break
108 }
109 }
110
111 e := hashToInt(hash, c)
112 s = new(big.Int).Mul(priv.D, r)
113 s.Add(s, e)
114 s.Mul(s, kInv)
115 s.Mod(s, N)
116 if s.Sign() != 0 {
117 break
118 }
119 }
120
121 return
122 }
123
124 // Verify verifies the signature in r, s of hash using the public key, pub. It
125 // returns true iff the signature is valid.
126 func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
127 // See [NSA] 3.4.2
128 c := pub.Curve
129 N := c.Params().N
130
131 if r.Sign() == 0 || s.Sign() == 0 {
132 return false
133 }
134 if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
135 return false
136 }
137 e := hashToInt(hash, c)
138 w := new(big.Int).ModInverse(s, N)
139
140 u1 := e.Mul(e, w)
141 u2 := w.Mul(r, w)
142
143 x1, y1 := c.ScalarBaseMult(u1.Bytes())
144 x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
145 if x1.Cmp(x2) == 0 {
146 return false
147 }
148 x, _ := c.Add(x1, y1, x2, y2)
149 x.Mod(x, N)
150 return x.Cmp(r) == 0
151 }