.=m=m 3V4

Powered By GameSpy Help File

Thank you for choosing GameSpy's online middleware
for use in your online game. GameSpy's software
development kits (SDKSs), combined with GameSpy's
reliable backend services, will help provide your players
with a rewarding online experience.

This help file provides you with detailed documentation
on every SDK in the Powered By GameSpy product line.
In addition to the reference documentation in this file you
will also find answered to common questions in the

GameSpy Support Knowledge Base.

If you are unable to find the answer to your question in
the documentation or knowledge base you may contact
developer support by e-mailing
devsupport@gamespy.com. Please note, you must be a
licensed developer (have a development or publisher's
deployment license) with GameSpy to be eligible for
developer support.

The latest version of this help file is available from our
secure developer site as a part of the Common Code
download.

http://www.gamespy.net/secure/kb/
mailto:devsupport@gamespy.com
http://www.gamespy.net/secure/download/

Available Services Check

Overview

The GameSpy SDKs provide a way to check if a game's backend
services are available. Any application that uses these services must first
check if they are available before using the actual SDKs. The check does
not need to be made before using SDKs which do not communicate with
the GameSpy backend (currently Chat, GHTTP, GT2, and Voice). If you
attempt to use an SDK that does communicate with the backend before
checking that the backend is currently available, the SDK will fail to
initialize.

The file available.h, included in the goacommon.zip, has the necessary
function prototypes for making the availability check. available.c is the
source file, and should generally be compiled directly into your project
(along with the rest of the GameSpy code being used). To start the
availability check simply call GSIStartAvailableCheck(), passing it your
gamename. This will initiate a request with the backend to see if your
game's backend services are available. After initiating the request,
GSlAvailableCheckThink() should be called to let the code process
incoming replies and send retries. It should be continued to be called as
long as it returns GSIACWSsaiting. It is not very time-sensitive, so it does
not need to be called more frequently than every 100ms (although it can
be). If the check needs to be aborted for any reason, for example due to
the player leaving the online area of the game,
GSlICancelAvailableCheck() should be called to do any needed cleanup.

As soon as GSlAvailableCheckThink() returns any value other than
GSIACWaiting, the check has completed. No extra cleanup is needed.
The return value indicates the result of the check. If it is GSIACAvailable
then the game's backend services are available, and the game can
continue to use the GameSpy SDKs normally. If the return value is
GSIACUnavailable or GSIACTemporarilyUnavailable, then the game's
backend services are not available, and the game should not use any
GameSpy SDKs that rely on backend services. If the user attempts to
use online aspects of the game that are not available, the game should
show appopriate messaging to the user. If the return value was

GSIACUnavailable, then the game should inform the user that the
game's online component is no longer supported. If the return value was
GSIACTemporarilyUnavailable, then the game should inform the user
that the game's online component is currently unavailable and they
should try again later.

GSIACAvailable will also be returned from GSlAvailableCheckThink() if
no response is received from the request initiated by
GSlStartAvailableCheck(). In other words, if it cannot be determined if the
backend is available, the safe assumption that it is available is made. The
case of a failed initialization or connection for each of the individual SDKs
should always be handled.

GSlAvailableCheckThink Return Values:

e GSIACWaiting Continue to call GSIAvailableCheckThink.
Processing has not yet completed.

e GSIACAuvailable
This game's backend services are available. Continue normal
operations.

e GSIACUnavailable
This game's backend services are not available. Game play will not
be possible for an extended length of time or indefinitely. This should
only occur when a service has been discontinued because the
developer or publisher has chosen to not renew the service.

PC games will continue to be supported in GameSpy’s Arcade.

e GSIACTemporarilyUnavailable
This game's backend services are temporarily unavailable.
Reserved for scheduled downtime. Services should be restored
momentarily.

Game Ul

The SDK does not make any assumptions or requirements as to what
messages should be displayed to the users. Developers are free to
implement whatever appropriate messages they wish. What the message
should say will be dependent on several factors including the return value
and if the developer or publisher has opted to not take the co-branding
discounts.

We recommend that developers implement generalized messages, for
example:

If GSIAvailableCheckThink returns with as Unavailable a suitable
messages might be:

e "Online support for Tony Hawk: Underground is no longer available.”
e "Midwaysports.net is no longer available for Blitz 2010."

If GSIAvailableCheckThink returns with as TemporarilyUnavailable a
suitable message might be:

e "Online play for Hidden and Dangerous is temporarily unavailable do
to maintenance."

e "Midwaysposrts.net is temporarily unavailable. Please try again
soon."

Testing

Two special gamenames are reserved for testing client-side availability
check code. Calling GSIStartAvailableCheck() with a gamename of
"unavailable" will cause the availability check to return
GSIACUnavailable. Using a gamename of "tempunavail” will cause the
availability check to return GSIACTemporarilyUnavailable.

Requirements

Performing the check is a TRC requirement as of November 10th, 2003.
All titles will be tested to be sure they are implementing the check
correctly.

Overview

As consumer product companies continue to aggressively pursue
opportunities to market and promote their products to the 18-34 year old
males, a demographic that has abandoned television and other traditional
advertising outlets in favor of playing computer and video games, game
publishers are well-positioned to take advantage of this opportunity
through product placement and advertising integration into games.

The Marketing SDK provides the tools and services necessary to make
this possible by allowing the game publisher to dynamically serve product
placements and advertisements into games, modify and change them as
desired, and track and measure the usage and performance of those
advertisements.

The traditional scenario of hard-coding the advertising assets into a game
forced the publisher to have signed agreements in place, artwork created
and integrated into the game, and all the requisite approvals in place
before the game reaches beta. Using the Marketing SDK, publishers can
provision product placements and advertisements when they and their
partners are ready for them.

(back to top)

Project Setup

Files to include

The Marketing SDK leverages the gHTTP and gSOAP libraries to provide
a mature and robust network transport layer. In addition, the GameSpy
common code is used to provide standardized data typing across
supported platforms. These libraries must be included in the project.

Common Code
The source files found in the root SDK directory must be included
in the project. The common code contains platform specific type
definitions and shared utility functions.

gHTTP
The GameSpy HTTP SDK is used when downloading files to disk
or when streaming data into memory. All files within the /ghttp
folder should be included. (Samples and subdirectories should be
omitted.)

gSOAP
This commercial SOAP library is used when querying for the active
ad units and when reporting usage statistics. More information
about gSOAP may be found on the gSOAP website at
http://www.cs.fsu.edu/~engelen/soap.html

The gSOAP files may be found in the “/gsoap” directory.

Marketing SDK Files
All of the files within the “/Ad” directory must be included in the
project. Files within the “/Ad/AdSoap” directory must also be
included.

(back to top)

Integrating the SDK
Compile-time options

A variety of settings are defined at the top of Ad.h to control memory and
bandwidth usage. These optional settings are fully detailed in the
reference section of this document.

PS2 developers must define WITH_LEAN and WITH_LEANER. This
reduces the size of the gSOAP library and removes code that may not be
compatible with all network stacks.

(back to top)

Initialize the SDK

The Marketing SDK must be initialized before it may be used. It is
recommend that the SDK be initialized in the following manner:

AdInterfacePtr anInterface
AdResult aResult
AdInitParams anInitParams;

NULL;
AdResult NO_EF

memset (&anInitParams, 0, sizeof(AdInitParams
anInitParams.mGameId = GAME_ID;

aResult = adInitialize(&anInitParams, &anInt
if (aResult != AdResult_NO_ERROR)
printf("adInitialize failed (%d)\r\r

The AdInitParams structure contains runtime settings that may be used
to control SDK behavior.

typedef struct

{

gsi_i32 mGameId;
const char* mQueryHostOverrideURL; // Override t

// For offline usage stats
gsi_bool mOfflineOnly; // (e.g. sinc
const char* mOfflineFilePath; // relative t

// For ad download caching
const char* mCachePath; // cache dire

} AdInitParams;

(back to top)

Register each ad position

At the beginning of the game (or at the start of each level) the SDK must
be told which ad positions are in use. In addition to the position name,
information about a default advertisement must be supplied. The default
advertisement will be used if network conditions prevent an ad download
or if an ad file is corrupted.

AdResult AD_CALL adRegisterPosition(const AdInterfac
cons
AdUr
cons
cons

Although a default ad is generally unbranded, the SDK will continue to
collect usage statistics that will be visible through the publisher’s portal.
Therefore, it is important that the default ad have a valid AdUnitID.

(back to top)

Query the active ad for each position

The logic for selecting advertisments and matching user information for
targetted delivery is contained within the AdServer. The SDK must simply
pass up the user information along with a list of ad positions and the ad
server will return a list of advertisments to fill those positions.

Currently, the SDK supports targetting based on birthdate only. The
user’s profileid is used to count unique downloads.

AdResult AD_CALL adQueryForActiveUnits(
AdInterfacePtr thelnterface,
gsi_u32 theProfilel
gsi_u32 theBirthDat
AdQueryForActiveUnit
gsi_time theTimeoutV

This is an asynchronous query, so a callback and timeout parameter are
provided.

(back to top)

Download new creatives

The SDK can begin downloading new creatives as soon as the query for
active ads has completed.

AdResult AD_CALL adDownloadNewCreatives(
AdInterfacePtr thelnterface,
gsi_i32 theThrottle,
AdDownloadNewCreativesProgressCallback thePr
AdDownloadNewCreativesCompletedCallback theCc
gsi_time theTimeoutMs);

Win32 and Mac developers may take advantage of ad caching when
using ad rotations. Caching is performed automatically by the SDK.
When the adDownloadNewCreatives function is called, the SDK will
check if the required ad exists within the local cache. If the file is found,
the cached file will be used in place of a new download. CRC checks are
performed to ensure ad integrity.

When developing on the PS2, the SDK will not store files to the memory
card. Instead, the developer must process data received in
theProgressCallback and copy it to the desired memory location.

When setting up advertisements in the publisher portal there are some
cases where you may want to provide a URL for content, but do not want
the SDK to auto-download it. | recommend prefixing the URL with a token
to identify the type of content. The presence of this token will invalidate
the URL causing the SDK to ignore it.

For example, if the movie url is “http://localhost/movie.swf” you might use
“stream:http://localhost/movie.swf’. The game client can then detect the
presence of the “stream” token and begin streaming the movie. Note that
a crc value is not required when using this method since no download is
being performed by the SDK.

(back to top)

Notify the SDK when ads are used

An ad download is usually binary data and may contain multiple game
resources. The SDK has no knowledge of the internal file contents, so it's
left up to the developer to inform the SDK when an ad is on screen or is
being interacted with.

There are two pre-defined categories for ad usage. The interpretation of
the category names is somewhat arbitrary, but here are some helpful
guidelines for when each category should be used.

UC_VIEWS
Usually defined as “time on screen”. Viewing a billboard, floating
blimp or other passive impressions would fall into this category.
e.g. The branded item exists for asthetic purposesly only, is not
used in gameplay.

UC_INTERACTIONS
Drinking a branded soda or constructing a branded storefront
would fall into this category. Please note that viewing a branded
soda would fall into the UC_VIEWS category. Developers are free
to use whichever category they prefer, but since this affects usage
reporting we recommend that a clear separation is chosen.

AdResult AD_CALL adBeginTrackUsageTime(AdInterfacePt
const char* thePositionName,
AdUsageCategory theCat);

AdResult AD_CALL adEndTrackUsageTime (AdInterfacePt

C

/

AdResult AD_CALL adIncrementUsageCount(AdInterfacePt

C

/

As an example, imagine that you have a branded blimp that will fly
through the users field of view. When the blimp appears on screen you
should call adBeginTrackUsageTime. When the blimp explodes (or
peacefully floats off-screen) you should call adEndTrackUsageTime.

You must call adEndTrackUsageTime once for each call to
adBeginTrackUsageTime. This allows for simple tracking when multiple
blimps are on screen. If you call adBeginTrackUsageTime five times, but
call adEndTrackUsageTime only four times, the ad will still be considered
“in use”.

Calling adBeginTrackUsageTime multiple times will not inflate the viewing
time. If three blimps on are screen for five seconds, you are credited for
five seconds of viewing time. (not 15)

(back to top)

Report usage statistics

We recommend that the adSendUnitUsageData function be called at
least once every five minutes throughout the game session, and once
again when the game session ends. This is a flexible guideline and may
vary depending on game type.

(back to top)

Ad Metrics

Developers who are familiar with web based metrics may recall the terms
“impression” and “click-through”. These are somewhat restricted usage
metrics which are fit to current web server technology.

GameSpy client side ad reporting is much more robust and will increase
the value of your ad inventory.

Views (UC_VIEWS)
This is usually interpreted as when an ad is on-screen.

Web developers may notice a similarity with ad “impressions”,

however impression count is a limited report metric. GameSpy
supports time based measurements which are unavailable in a
web environment.

For example, when playing a flash movie in-game, the

GameSpy Marketing SDK is able to report not only the number of
times the movie was streamed, but also how many seconds the
movie was viewed. This is not as simple as multiplying the number
of downloads by the length of the movie. When given the option,
your games gamers may close the advertisement before it has
finished playing, or they may watch an interesting movie 3 or 4
times!

Interactions (UC_INTERACTIONS)
The interactions category is left for general developer use. Actions
such as picking up a health pack or firing a gun are suitable for
interactions.

(back to top)

Reference
Compile Time Options
These are defined at the top of ad.h.

GSI_AD_STATIC_MEM
When defined, this will cause the SDK to prefer static memory over
dynamic memory. Array sizes must be defined at compile time and
array growth will not be permitted.

GSI_AD _DEFAULT_FILE_NAME (“_gsiad.dat”)
File name used to store offline stats.

GSI_AD_MAX_TRANSFER_COUNT (1)
Specifies the number of simultaneous downloads the SDK will
perform. The default is set to single downloads. Increasing this
may result in faster download speeds, but will require additional
memory for the ghttp sdk.

GSI_AD _MAX_FILENAME_LENGTH (255)
Buffer size for filenames. Reduce this only if you are extremely
strapped for memory.

GSI_AD_POSITION_COUNT (5)
Maximum number of positions in any one level/map. This is the
number of positions the SDK will keep in memory.

GSI_AD_MAX_POSITION_NAME_LENGTH (32)
Position names are string identifiers for ad positions.

GSI_AD_UNIT_ARRAY_INITIAL_CAPACITY (10)
Starting capacity for the unit array. You will usually need 2 x
number of positions.

GSI_AD_UNIT_ARRAY_MAX_CAPACITY (15)
The maximum size that the unit array will grow to.

GSI_AD_UNIT_ARRAY_GROWBY (0)
Array growth size. The array will grow as needed until the max
capacity is reached. The default of zero prevents memory growth
and is required when using GSI_AD_STATIC_MEM.

GSI_AD_MAX_EXTRA_DATA_LENGTH (64)
Maximum buffer size of developer data. This data is associated
with the ad using the publisher portal. Increase this if you require
additional data.

GSI_AD _MAX_URL_LENGTH (255)
Maximum size of download URLs specified using the ad portal.
Increase this if you require support for longer URLSs.

(back to top)

Multithreading

The gSOAP library is a blocking TCP socket library, this requires that we
run it in a dedicated thread.

The GameSpy common code will automatically create and destroy
threads for gSOAP as needed. One thread is required for each
outstanding gSOAP call. The stack size required by this thread will vary
by platform. 8k is usually large enough as long as WITH_LEAN and
WITH_LEANER are defined.

Because the gSOAP library is only used when retrieving a list of ads or
when reporting usage statistics, the library will not affect performance
during gameplay.

(back to top)

FAQ

While using the SNSystems stack for the PS2 | receive network
errors from the update query. What might be happening?

PS2 developers using SNSystems must specify the number of threads
that have network access when they call sockAPlinit. This number must
include an extra thread for the gsoap library.

How often should usage data be reported?

We recommend that adSendUnitUsageData be called at startup,
shutdown and periodically throughout the game (~5 minutes.) If the
player’s network connection drops, usage data may be saved to an
offline file. Sending usage data at program startup ensures that the offline
data will be reported.

How can | create advertisements and set locations for my title?

Administrative functions may be found on the Ad Portal web site. For
access to this site, please contact devsupport@gamespy.com. Once you
have been granted access, please check the “Guide” section of the web
site for helpful tips and directions.

Why do the cache files have a “bin” extension?

Advertisement creatives may contain any type of binary data, including
zip files and self extracting executables. We save creatives as “bin” files
to protect users against harmful file types, and use a check sum to verify
the cache file integrity once it has been fully downloaded.

I can’t use the cache files because my title requires the file
extension. What do you recommend?

We recommend renaming or copying the cache file into a new folder. If
the cache file is remove the SDK may download it again at a future time.
To prevent this, the default ad for the position may be updated with the
new file name.

How can | seeltest an advertisement in game before making it
active?

Since advertisements are position based, we recommend using special
position names for test builds of the game. In the future we may consider
supporting ads that would be delivered only to “test” clients. Please
contact devsupport@gamespy.com if you are interested in this or other
feature requests.

(back to top)

gSOAP License Notice

Part of the software embedded in this product is gSOAP software.

Portions created by gSOAP are Copyright (C) 2001-2004 Robert A. van
Engelen, Genivia inc. All Rights Reserved.

THE SOFTWARE IN THIS PRODUCT WAS IN PART PROVIDED BY
GENIVIAINC AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

(back to top)

Advertising SDK Functions

adBeginTrackUsageTime

Begins time-based usage tracking for the
specified unit.

adCancelDownloads

Cancel any Creative downloads that are
in progress.

adCancelQueryForActiveUnits
Cancels a pending query.

adDownloadNewCreatives

Begins downloading new creatives as
necessary.

adEndTrackUsageTime
Ends time-based usage tracking for the

specified unit.

adGetUnitinfoByID

Retrieves the AdUnitinfo the specified
unit.

adGetUnitinfoByPosition

Retrieves the AdUnitInfo for the unit in the
specified position.

adlncrementUsageCount

Increment ad usage (without tracking time
in use)

adlnitialize
Create an SDK instance.

adQueryForActiveUnits

Queries the list of active ad units from the
ad server

adRegisterPosition

Registers the string name and default ad
of a new position.

adReset
Return the SDK back to its initialization
point.
adSendUnitUsageData
Uploads usage data to the Ad Server.
adShutdown
Destroys the SDK interface object and
frees any allocated memory.
adThink

Allows the SDK to continue processing.

adBeginTrackUsageTime

Begins time-based usage tracking for the specified unit.

AdResult adBeginTrackUsageTime(
AdinterfacePtr thelnterface,
const char * thePositionName,
AdUsageCategory theCat);

Routine Required Header Distribution
adBeginTrackUsageTime <ad.h> SDKZIP

Return Value

This function returns AdResult. NO_ERROR upon success. Otherwise a
valid AdResult error condition is returned. (see remarks)

Parameters
thelnterface
[in] SDK interface previously initialized using adlnitialize

thePositionName
[in] String name of the position, registered with adRegisterPosition

theCat
[in] UC_VIEWS or UC_INTERACTIONS

Remarks

This function will mark the specified position as "in use" until
adEndTrackUsageTime is called. Two separate metrics are provided,
UC_VIEWS and UC_INTERACTIONS. These may be used to track
arbitrarily different types of usage on the same object.

For example, a branded gun that is visible may be tracked using
UC_VIEWS. A branded gun that is fired may be tracked using
UC _INTERACTIONS.

Please note that a single Ad may appear in multiple positions. Multiple
calls to adBeginTrackUsageTime will be ignored. In other words, the
same image appearing in two different locations will result in one time
measurement.

This function may return:

AdResult NO_ERROR

AdResult INVALID_PARAMETERS
AdResult POSITION_NOT_FOUND
AdResult UNIT_NOT_FOUND.

Section Reference: Gamespy Advertising SDK

See Also: adEndTrackUsageTime, adincrementUsageCount

adCancelDownloads

Cancel any Creative downloads that are in progress.

AdResult adCancelDownloads(
AdinterfacePtr thelnterface);

Routine
adCancelDownloads

Required Header
<ad.h>

Distribution
SDKZIP

Return Value

This function returns AdResult. NO_ERROR upon success. Otherwise a
valid AdResult error condition is returned. (see remarks)

Parameters

thelnterface
[in] SDK interface previously initialized using adlnitialize

Remarks

Multiple downloads may be in progress or pending. This call will cancel
all of them. A progress callback will be triggered for each download that is
canceled.

This function may return:
AdResult NO_ERROR.

Section Reference: Gamespy Advertising SDK

See Also: adDownloadNewCreatives

adCancelQueryForActiveUnits

Cancels a pending query.

AdResult adCancelQueryForActiveUnits(
AdinterfacePtr thelnterface);

Routine Required Header Distribution
adCancelQueryForActiveUnits <ad.h> SDKZIP

Return Value

This function returns AdResult. NO_ERROR upon success. Otherwise a
valid AdResult error condition is returned. (see remarks)

Parameters

thelnterface
[in] SDK interface previously initialized using adlnitialize

Remarks

Cancels a previous call to adQueryForActiveUnits. A callback will be
triggered with the status AdResult. CANCELLED.

This function may return:
AdResult NO _ERROR
AdResult INVALID_PARAMETERS.

Section Reference: Gamespy Advertising SDK

See Also: adQueryForActiveUnits

adDownloadNewCreatives

Begins downloading new creatives as necessary.

AdResult adDownloadNewCreatives(
AdinterfacePtr thelnterface,
gsi_i32 theThrottle,
AdDownloadNewCreativesProgressCallback
theProgressCallback,
AdDownloadNewCreativesCompletedCallback
theCompletedCallback,
gsi_time theTimeoutMs);

Routine Required Header Distribution
adDownloadNewCreatives <ad.h> SDKZIP

Return Value

This function returns AdResult. NO_ERROR upon success. Otherwise a
valid AdResult error condition is returned. (see remarks)

Parameters

thelnterface
[in] SDK interface previously initialized using adlnitialize

theThrottle
[in] Bandwidth throttle in bytes

theProgressCallback
[in] Function to be called periodically with progress info

theCompletedCallback
[in] Function to be called when ALL downloads have completed

theTimeoutMs
[in] Timeout for connecting to each server (not total download time)

Remarks

adDownloadNewCreatives will download missing creative files for the
registered positions. The supplied progress callback will be periodically
triggered with updated status information.

In most cases, the SDK will save the creative into the ad file cache. On
platforms without disk access the data will be streamed into memory.
Developers on these platforms should copy the data buffer into a
permanent location.

See adQueryForActiveUnits for how the SDK determines which creatives
to download.

Section Reference: Gamespy Advertising SDK

See Also: adQueryForActiveUnits, adCancelDownloads

adEndTrackUsageTime

Ends time-based usage tracking for the specified unit.

AdResult adEndTrackUsageTime(
AdinterfacePtr thelnterface,
const char * thePositionName,
AdUsageCategory theCat);

Routine
adEndTrackUsageTime

Required Header
<ad.h>

Distribution
SDKZIP

Return Value

This function returns AdResult. NO_ERROR upon success. Otherwise a
valid AdResult error condition is returned. (see remarks)

Parameters
thelnterface
[in] SDK interface previously initialized using adlnitialize

thePositionName
[in] String name of the position registered using adRegisterPosition

theCat
[in] UC_VIEWS or UC_INTERACTIONS

Remarks
See adBeginTrackUsageTime for details on usage tracking.

Section Reference: Gamespy Advertising SDK

See Also: adBeginTrackUsageTime, adlncrementUsageCount

adGetUnitinfoByID

Retrieves the AdUnitIinfo the specified unit.

AdResult adGetUnitinfoByID(
AdInterfacePtr thelnterface,
AdUnitID theUnitID,
AdUnitInfo ** thelnfoOut);

Routine Required Header
adGetUnitinfoByID <ad.h>

Distribution
SDKZIP

Return Value

This function returns AdResult. NO_ERROR upon success. Otherwise a
valid AdResult error condition is returned. (see remarks)

Parameters
thelnterface
[in] SDK interface previously initialized using adlnitialize

theUnitID
[in] A valid Unit ID

thelnfoOut
[out] A pointer to the unit's info. Valid until the next call to adThink.

Remarks

In most cases adGetUnitinfoByPosition should be used. This will be the
default unit information if either adQueryForActiveUnits or
adDownloadNewCreatives has not completed.

Section Reference: Gamespy Advertising SDK

See Also: adGetUnitinfoByPosition, adQueryForActiveUnits,
adDownloadNewCreatives

adGetUnitinfoByPosition

Retrieves the AdUnitInfo for the unit in the specified position.

AdResult adGetUnitinfoByPosition(
AdInterfacePtr thelnterface,
const char * thePositionName,
AdUnitInfo ** thelnfoOut);

Routine Required Header Distribution
adGetUnitInfoByPosition <ad.h> SDKZIP

Return Value

This function returns AdResult. NO_ERROR upon success. Otherwise a
valid AdResult error condition is returned. (see remarks)

Parameters
thelnterface
[in] SDK interface previously initialized using adlnitialize

thePositionName
[in] String identifier of the position registered with AdRegisterPosition

thelnfoOut
[out] A pointer to the unit's info. Valid until the next call to adThink.

Remarks

This will be the default unit information if either adQueryForActiveUnits or
adDownloadNewCreatives has not completed.

Section Reference: Gamespy Advertising SDK

See Also: adRegisterPosition, adQueryForActiveUnits,
adDownloadNewCreatives, adGetUnitinfoBylD

adincrementUsageCount

Increment ad usage (without tracking time in use).

AdResult adincrementUsageCount(
AdinterfacePtr thelnterface,
const char * thePositionName,
AdUsageCategory theCat);

Routine Required Header Distribution
adlncrementUsageCount <ad.h> SDKZIP

Return Value

This function returns AdResult. NO_ERROR upon success. Otherwise a
valid AdResult error condition is returned. (see remarks)

Parameters
thelnterface
[in] SDK interface previously initialized using adlnitialize

thePositionName
[in] String name of the position registered with adRegisterPosition

theCat
[in] UC_VIEWS or UC_INTERACTIONS

Remarks

This function increments the usage count for the specified ad. Use this
function when tracking non time-based interactions such as drinking a
soda. See adBeginTrackUsageTime for a complete description of usage
tracking.

Section Reference: Gamespy Advertising SDK

See Also: adBeginTrackUsageTime, adEndTrackUsageTime

adinitialize
Create an SDK instance.

AdResult adinitialize(
const AdInitParams* thelnitParams,
AdinterfacePtr * theinterfaceOut);

Routine Required Header Distribution
adlInitialize <ad.h> SDKZIP

Return Value

This function returns AdResult. NO_ERROR upon success. Otherwise a
valid AdResult error condition is returned. (see remarks)

Parameters
thelnitParams
[in] Structure with SDK runtime settings

thelnterfaceOut
[out] AdInterfacePtr to be initialized

Remarks

This function will initialize an AdinterfacePtr which may then be passed to
the Ad SDK interface functions.

The AdInitParams parameter is a structure of SDK runtime options.
Please see the developer guide documentation for a description of each

field.

Example

AdInterfacePtr anInterface
AdResult aResult

NULL;
AdResult_NO_ERROR;

// Set run-time parameters

AdInitParams anInitParams;

memset(&anInitParams;, 0, sizeof(AdInitParams));

anInitParams.mGameId = GAME_ID;
anInitParams.mOfflineFilePath = "ad";

printf("Initializing the Ad SDK\r\n");
aResult = adInitialize(&anInitParams;, &anInterface;
if (aResult != AdResult_NO_ERROR)

{
printf("adInitialize failed (%d)\r\n", aResu

return 0,

}

Section Reference: Gamespy Advertising SDK

See Also: adRegisterPosition, adThink, adShutdown

adQueryForActiveUnits
Queries the list of active ad units from the ad server.

AdResult adQueryForActiveUnits(
AdinterfacePtr thelnterface,
gsi_u32 theProfileld,
gsi_u32 theSex,
gsi_u32 theBirthDay,
gsi_u32 theBirthMonth,
gsi_u32 theBirthYeatr,
char* theCountryCode,
AdQueryForActiveUnitsCallback theCallback,
gsi_time theTimeoutMs);

Routine Required Header Distribution
adQueryForActiveUnits <ad.h> SDKZIP

Return Value

This function returns AdResult. NO_ERROR upon success. Otherwise a
valid AdResult error condition is returned. (see remarks)

Parameters

thelnterface

[in] SDK interface previously initialized using adlnitialize
theProfileld

[in] Profileid of the local user. Usually obtained via the GP SDK.
theSex

[in] Usually obtained via the GP SDK.
theBirthDay

[in] Usually obtained via the GP SDK.
theBirthMonth

[in] Usually obtained via the GP SDK.
theBirthYear

[in] Usually obtained via the GP SDK.
theCountryCode

[in] Two letter country code. Usually obtained via the GP SDK.
theCallback

[in] Callback to be triggered when the operation completes.

the TimeoutMs
[in] Timeout in milliseconds

Remarks

This function will retrieve information about one advertisement for each
registered position. Advertisements will not be downloaded until
adDownloadNewCreatives is called.

Supplied user data will be used for targetted advertising.

Section Reference: Gamespy Advertising SDK

See Also: adGetUnitinfoByPosition, adDownloadNewCreatives

adRegisterPosition

Registers the string name and default ad of a new position.

AdResult adRegisterPosition(
AdInterfacePtr thelnterface,
const char* thePositionName,
AdUnitID theDefaultAdld,
const char* theDefaultAdLocalResourceName,
const char* theDefaultAdExtraData);

Routine Required Header Distribution
adRegisterPosition <ad.h> SDKZIP

Return Value

This function returns AdResult. NO_ERROR upon success. Otherwise a
valid AdResult error condition is returned. (see remarks)

Parameters

thelnterface
[in] SDK interface previously initialized using adlnitialize

thePositionName
[in] String name of the position registered through the web interface.

theDefaultAdId
[in] AdID for tracking usage statistics.

theDefaultAdLocalResourceName
[in] Filename for the advertisement

theDefaultAdExtraData
[in] Developer defined data to be used client side only.

Remarks

The string name of the position must match the name created using the
Ad Portal web interface. The default ad information will be returned by
the SDK if no other advertisement is available. Default advertisements
should use a registered AdID for reporting. This will allow the SDK to
report "missed” usage opportunities.

Section Reference: Gamespy Advertising SDK

See Also: adGetUnitinfoByPasition, adGetUnitinfoByID

adSendUnitUsageData

Uploads usage data to the Ad Server.

AdResult adSendUnitUsageData(
AdinterfacePtr thelnterface,

AdSendUnitUsageDataCallback theCallback,

gsi_time theTimeoutMs);

Routine
adSendUnitUsageData

Required Header
<ad.h>

Distribution
SDKZIP

Return Value

This function returns AdResult. NO_ERROR upon success. Otherwise a
valid AdResult error condition is returned (see remarks).

Parameters
thelnterface
[in] SDK interface previously initialized using adlnitialize

theCallback
[in] Function to be triggered when the operation completes

theTimeoutMs
[in] Timeout for the operation, in milliseconds

Remarks

Win32 Specific: If the upload fails for any reason, the usage data will be
stored in an offline file and sent the next time adSendUnitUsageData is

called.

Section Reference: Gamespy Advertising SDK

See Also: adBeginTrackUsageTime, adEndTrackUsageTime,
adlncrementUsageCount

adShutdown

Destroys the SDK interface object and frees any allocated memory.

AdResult adShutdown(
AdInterfacePtr theinterface);

Routine Required Header Distribution
adShutdown <ad.h> SDKZIP

Return Value

This function returns AdResult. NO_ERROR upon success. Otherwise a
valid AdResult error condition is returned. (see remarks)

Parameters

thelnterface
[in] SDK interface previously initialized using adlnitialize

Remarks

Calling this function will release the AdinterfacePtr and free all internally
allocated memory. The AdinterfacePtr can no longer be used by the
SDK.

AdResult INVALID_PARAMETERS will be returned in thelnterface is
invalid.

Section Reference: Gamespy Advertising SDK

See Also: Adlnitialize

adThink

Allows the SDK to continue processing.

AdResult adThink(
AdinterfacePtr thelnterface);

Routine Required Header
adThink <ad.h>

Distribution
SDKZIP

Return Value

This function returns AdResult. NO_ERROR upon success. Otherwise a
valid AdResult error condition is returned. (see remarks)

Parameters

thelnterface
[in] SDK interface previously initialized using adlnitialize

Remarks

This function should be called as frequently as possible to allow the SDK
to continue processing. SDK callbacks will be dispatched during this
function call.

AdResult INVALID_PARAMETERS will be returned if thelnterface is
invalid.

Section Reference: Gamespy Advertising SDK

ATLAS Competition SDK

Overview

Most developers would like to add competition to the multiplayer portion
of their game, but they don't always have the time or resources to create
such a complex system. The GameSpy Competition SDK is an easy-to-
use solution that enables developers to insert competition functionality

into their games, while maintaining a high level of flexibility and security.

You might be thinking, what is competition? By definition, competition
involves striving to achieve dominance or attaining a set goal. In games,
this generally refers to the inclusion of developer-defined metrics used to
measure a player's performance and compare these stats against others.
This could be in the form of a Leader Board which tracks the top players
with a given category, such as who has the top all-time win/loss ratio. It
can also be in the form of individual accomplishments that tell a player
how well they have done in a given area, such as weapon accuracy or
percentage of the game completed (for single player games). The
Competition SDK allows developers to pick and choose what they deem
necessary as statistics by which players can compare themselves to their
peers.

The Competition SDK provides an easy web interface in order to
customize the statistics and data reported to our backend. Since
everything is setup using this simple Administrative site, there is no
scripting or custom code required in order to process this data; this is all
accomplished via the web interface. The Competition API allows you to
send game results to our central servers, which will then go through all
received reports and normalize these to create a final report. The
normalization process handles any discrepancies that might arise (and
applying penalties where necessary) in order to establish an official final
report it considers to be the most accurate representation of what took
place. Statistics are then stored in our generalized remote storage
system called Sake; the game must utilize the GameSpy Sake SDK in
order to retrieve player stats.

Features

e Easy-to-use web interface (Admin Site) to create keys/rules for a
game.

e Custom Game-specific data or keys submitted in addition to the
game results.

e Custom rules that are used to process raw statistical data
¢ Final stats are stored in Sake storage system

Admin Site (ATLAS web interface)

The Administrative site (http://tools.gamespy.net/atlas/) will allow for
creation of keys, processing rules, and stats. If you do not have access to
the site, you can gain access by e-mailing devsupport@gamespy.com.
The site contains numerous examples designed to help guide you along
in creating the necessary elements for adding stats in your game. If you
have problems with the site, or any questions that are not directly
addressed, please e-mail us at devsupport@gamespy.com

On the Home page of the Admin Site you will see links to create
Ruleset(s) to integrate into your C/C++ codebase. These files contain
defines for the KEYS, STATS, and ATLAS_RULE_SET VERSION which
can be used when building reports or retrieving stats. To see an example
of this the ScRaceSample includes the auto-generated header
atlas_Competition_Race_Sample_App_v1.h, which is referenced in the
sample code as well.

Custom Keys

Developers can create user-defined keys to submit custom data along
with the generic game results (such as win, loss, etc.). Each key that the
game reports is paired with a value that represents some relevant
information from the game that is either global, player, or team specific.

Custom Processing Rules and Generating Stats

Developers will utilize the ATLAS Admin site in order to create these
keys/rules/stats for their game. Custom processing rules are used to
process stats via a set of input/output specifications and a selected

http://tools.gamespy.net/atlas/
mailto:devsupport@gamespy.com
mailto:devsupport@gamespy.com

operation (addition, subtraction, etc.). The inputs can be either previous
stats, or keys that were sent along with game results. The output is
generally stored as the stats. There will also be common rules that
developers can use for their stats calculation.

An example: You might want to keep track of the number of times a
particular map is played. To do this you would have a single rule, key,
and stat for each map. Then the input key for the game would be
something like "boatMap/1" indicating that | just played the "boatMap"
map. The rule would be an "incremental” rule operation taking the
"boatMap" key and "numBoatMapPlayed" stat as inputs and returning
"numBoatMapPlayed" as an output stat. This rule would then increment
the "numBoatMapPlayed" stat as long as the "boatMap" key exists with a
value of 1.

Security

The biggest threat to competition in online gaming lies in cheating;
individuals who want to hack the system in order to gain an unfair
advantage. As it currently stands, many players are reluctant to play in
online competitions because of this. In order to prevent foul play and help
retain the ideal of fair-play in online gaming, the Competition SDK
provides a built-in solution to ensure the accuracy and the validity of its
results.

Authentication/Validation of Players

The first piece of the puzzle is the use of the GameSpy Authentication
service, which validates players. It allows the Competition backend to
verify a player is really who he claims to be. Each player involved in a
game must obtain a certificate that will be sent along with the results to
the Competition service. The certificate will act as a signature of that
player, ensuring that the results being submitted are not from an
unknown source.

Authoritative v. Collaborative Reports

Next, the SDK allows games to send authoritative reports or

collaborative reports. An authoritative report is the equivalent of an
official referee-type report of what occurred during gameplay, therefore
there must be at least one authoritative report per session that contains
the results for all players and teams. A collaborative report contains
unofficial data in order to collaborate with the other data being submitted.
Unlike an authoritative report, these reports are not as restricted and may
contain more information that may be specific to each player. For more
information about how to best organize these reports sent, see
Appendices llI-1ll below for use-case scenarios regarding typical game
types and the reports submitted.

Report Encryption

Currently, the SDK has SSL encryption for encrypting its report
submissions. While we feel this is sufficient as a starting basis (in
addition to the other securities used in the SDK), report encryption is still
a work in progress and other options are being explored to provide
further enhanced security.

Tips for Host Migration

For Host migration, the only difference will be that the newly chosen host
will change their intention mid-game (if it is not already authoritative, see
use-case scenarios below) to submit an authoritative report, as they are
now considered the new referee (or the official view) of the game. Also,
the Competition system works from "more is better" perspective when it
comes to reports, so all players in the game should make sure to send a
report in order to provide the most accurate statistics results. Note that
for peer-peer games that allow Host migration & Late Entry, this is very
specific scenario covered below in Appendix V.

Normalization of Reports

The Competition normalizes reports in order to analyze the game results
and provide the best possible explanation for what took place. The
normalizer will:

e handle irregularities, such as disconnects or host migration

e handle discrepancies between reported results

Getting Started

Here is a quick rundown of how the process works. Data is submitted as
a report to the backend in terms of key/value pairs where the Keys have
been predefined on the Admin Site and referenced via the Key ID. The
backend processes this data based on the Rules you have defined and
places this output into a Stat. These Stats are then generated as records
within the Sake database, corresponding to the appropriate table for the
Rule Type (ie. GameStats_vX, PlayerStats_vX, TeamStats_vX, or
StaticStats_vX) - see Appendix | for more information about retrieving
stats.

The Rule Type is very specific to the type of Stats being stored:

GameStats - Game-specific data, not related to any specific player or to
any specific team. Because of this, you will equivalently have 1 record in
this table, corresponding to the overall game. The type of Stats stored
here could be something like the number of times a given map has been
played, or the aggregate total of bullets fired in the game (from all
players).

PlayerStats — Player-specific data. 1 record per player. This contains any
stats related directly to that player, such as number of overall Kills,
average kills, average wins, losses, total wins, losses, number of bullets
fired, etc.

TeamStats - Team-specific data. 1 record per team.

StaticStats - global static data used in processing other Stats. 1 record in
this table for all Static stats.

Let's say you want to create a PLAYER_HIGH_SCORE. Here's how:

¢ First you would need to create the Key which would indicate the
data submitted in a report to the system. In this case, the key would
be the player’s score. Let’s call this key KEY_SCORE.

¢ In your implementation of the SDK, the report would submit data for
each player’s score during the match. The key ID here must match

the ID for the KEY_SCORE key in order to indicate the value
submitted corresponds to this key. You can generate a Ruleset
Header File from the main page of the Admin site (at the bottom)
which contains defines for these Key IDs you can reference in your
game. For example, if KEY_SCORE had ID #1, then the define
would be #define KEY_SCORE 1 so that your code would reference
the KEY_SCORE when adding data to the report.

Next, a Stat needs to be created which is used to hold the Statistic
generated from the processing rule. Let’s call this
STAT_HIGH_SCORE.

This STAT_HIGH_SCORE is generated via a rule that we need to
create. So we can make a RULE_HIGH_SCORE, which is a Player-
type rule that takes KEY_SCORE and STAT_HIGH_SCORE as
input, applies the Maximum operation to the inputs, and outputs to
STAT_HIGH_SCORE. The Player type rule indicates that this is a
per-player based Statistic.

Once you a report has been submitted and processed, a record will
be generated in the PlayerStats vX (where X indicates the ruleset
version number) table in Sake containing your Stat. See Appendix |
below to see how you can retrieve this data via the Sake SDK.

Dependencies

The Competition SDK is dependent upon the following GameSpy SDKs
- in order to use the Competition SDK you must also include these
packages. The latest versions of these files are available from
http://www.gamespy.net/secure/download/.

Common Code
The Competition SDK uses the GameSpy Common Code
package. Once you have both this package and the Competition
package, both need to be to be extracted into a single directory
where all GameSpy SDKs can be stored and easily referenced. An
example directory structure might look like the following:

\Gamespy
\common
\sc
\webservices

GameSpy HTTP SDK
The Competition SDK uses this SDK to send requests and receive
responses. It is important to have this SDK along with the common
code.

GameSpy Authentication Service
Authentication services are used to obtain login certificates for the
Competition SDK. These files are included with the Competition
SDK download and located in the webservices folder.

GameSpy Sake SDK
Games must use the Sake SDK to retrieve the stats the
Competition system stores in the Sake backend.

http://www.gamespy.net/secure/download/

SDK Implementation

Before using Competition, a game must have first performed the
standard GameSpy Availability Check. This ensures that the GameSpy
backend is available, and that the current game has access to the
backend. If the game has not performed the availability check prior to
initializing the SDK, the call to scInitialize will return
SCResult_NO_AVAILABILITY_CHECK.

This section explains the necessary steps in order to implement the
basics of the Competition SDK. The following is a brief summary of the
steps for implementation:

e The SDK and all dependent components are initialized, so they are
ready for use

e Player's login. Game authenticates each player via the auth service
and retrieves a login certificate used by the SDK to prove a player's
authenticity.

e Host creates a game session and distributes

o All players set their report intentions, which describes the type of
report (authoritative or collaborative) being submitted.

e Gameplay begins, stats are recorded.
e When the game session is complete, all players create a report with

the stats recorded. This report contains (i) global, (ii) player, and (iii)
team data, submitted in that order.

e The reports are submitted to the Competition Backend, to be
processed according to the rules setup using the Admin site.

1. Initialization

Before doing anything with the Competition SDK itself, you must start the
GameSpy core using gsCoreInitialize. The core allows the
Competition SDK to initiate and complete its tasks. The authentication
service included with the SDK will also require the core to be initialized
before use.

void gsCorelInitialize();

Once the core has started, initialize the Competition SDK using
scInitialize. The function will return a SCResult for error checking.
The actual object that the game needs to keep track of is the
SCInterfacePtr. Most functions (except those with Report in the
name) will require the SCInterfacePtr for their corresponding
operations or retrieval of data.

SCResult scInitialize

(
int theGameld, //GA
SCInterfacePtr * theInterfaceOut //pc

);
2. Login and Authentication

Before creating a session or submitting reports, players will need to login
and authenticate themselves via the auth service included in the SDKs.
To login under a GameSpy Presence (GameSpy ID) account the game
should call wsLoginProfile. If the game has not performed the
standard GameSpy Availability Check prior to this login attempt, it will fail
with a result of WSLogin_NoAvailabilityCheck.

gsi_u32 wsLoginProfile

(

int partnerCode,

int namespaceld,

const char * profileNick, //profile ni
const char * email, //email addr
const char * password, //password &
const char * cdkeyhash, //cdkey hast
WSLoginCallback callback, //the callbe
void * userData //optional L

),

partnerCode
The partnerid assigned to you by GameSpy (note: not all games

use a separate partnerspace). For most games, this will use the
generic GameSpy partnerspace,
WSLogin_PARTNERCODE_GAMESPY.

namespacelId
The namespaceid assigned to you by GameSpy (note: not all
games use a separate namespace). If your game does not use
unigue nicks, you can use
WSLogin_NAMESPACE_SHARED_NONUNIQUE. For games using
the GameSpy shared default unique nick namespace, use
WSLogin_NAMESPACE_SHARED_UNIQUE.

Within the login callback, the WSLoginResponse object will contain the
login certificate and private data which will be passed to subsequent
Competition SDK calls. These values should be stored for later use:

e GSLoginCertificate mCertificate
e GSLoginPrivateData mPrivateData

3. Creating a session

Once the Host has completed his login, he can create a session using
the login certificate and private data mentioned above. A session is
generally created for each unique game instance (i.e. a match with a
clear winner/loser or end criteria), but is not limited to this:

SCResult scCreateSession

(
SCInterfacePtr theInterface,
const GSLoginCertificate * theCertificate,
const GSLoginPrivateData * thePrivateData,
SCCreateSessionCallback theCallback,
gsi_time theTimeoutMs,
void * theUserData

),

This function will send request to the Competition backend to create a
session. If the result of this call is anything other than

SCResult_NO_ERROR, this indicates an error has occured. Once a
session has been created, the host can retrieve the session ID by calling
scGetSessionlId:

const char * scGetSessionId(const SCInterfacePtr the

The host will then need to distribute this session ID to the clients. Each
client will then set his session ID with the SDK using scSetSessionId
before setting his report intention. The session ID has a constant length
of SC_SESSION_GUID_SIZE.

SCResult SC_CALL scSetSessionlId
(
const SCInterfacePtr theInterface,
const gsi_u8 theSessionId[SC_SESS

),

Note that once a session is created, the backend begins a countdown. If
a report for a designated session has not been received within 10 hours
from creation, the session times out and is no longer valid. Once the first
report has been received, this timeout period decreases to 2 minutes and
reports will timeout if not received before this limit expires. Note that a
session will never need to be explicitly cancelled as it will eventually
timeout if no reports for it have been received.

4. Setting the Report Intention

At this point, the host and clients need to set their report intentions.
These intentions should be set by all players submitting a report, prior to
starting gameplay.

As a general rule of thumb, the current host will always submit an
authoritative report and the clients will submit collaborative reports -
this is done by flagging the isAuthoritative parameter when setting
intention. However, depending on the game type (i.e. RTS versus FPS)
being played, players may set different intentions for themselves. In
addition, if Host Migration is involved, these intentions may change mid-
game. For more specifics on this, please see Appendices lI-lll. Also,

players can set multiple intentions in order to send multiple reports - a
scenario for why this might be used is described in the use-case
examples below:

SCResult scSetReportIntention
(

const SCInterfacePtr theInterface,
const gsi_u8 theConnectionIL
gsi_bool isAuthoritative

const GSLoginCertificate * theCertificate,
const GSLoginPrivateData * thePrivateData,
SCSetReportIntentionCallback theCallback,
gsi_time theTimeoutMs,
void * theUserData

),

After setting his intention, each player should retrieve his connection ID
(unless returning to a match and using their previous one) which will be
used upon submitting a report. This is done by calling
scGetConnectionId. The one caveat here is that the host, or any
player submitting an authoritative snapshot, will be reporting data for all
players and thus needs to store the connection IDs for all players in
addition to their own. Players should therefore exchange connection IDs
with one another before beginning play.

const char * scGetConnectionId(const SCInterfacePtr

Once all intentions have been set, gameplay can begin and the game
should begin recording stats for that game session.

5. Creating the Report

Once the game session is complete, everyone who participated in the
game should submit a report. To do this, each player will first need to
create a report object by calling scCreateReport. This report should be
created at the end of a game session to ensure the most accurate values
for the player/team count. Note that theHeaderVersion parameter
corresponds to the ATLAS_RULE_SET_VERSION located in the auto-

generated from the Admin site. This header file can be retrieved after
keys for the game have been created on the Admin site (click "Download
Ruleset Header File" on the home page for your game).

SCResult scCreateReport
(

const SCInterfacePtr theInterface,
gsi_u32 theHeaderVersion,
gsi_u32 thePlayerCount,
gsi_u32 theTeamCount,
const SCReportPtr * theReportoOut

),

The game should keep track of theReportOut report object for adding
stats in key/value pairs to the report. This is done in three stages, for
each type of data: global, player, and team data. This should be done in
the order shown below so that errors do not occur; (a) Global, (b)
Player, and finally (c) Team data:

a. Global Data

Before submitting each type of data, the game must first inform the
competition SDK of the data it is about to report. This is done by calling
the appropriate scReportBegin* function before submitting this type of
data to the report. For global data this function is:

SCResult scReportBeginGlobalData(SCReportPtr theRepc

After this call is made, the game will submit its data by calling either
scReportAddIntValue or scReportAddStringVvalue.

SCResult scReportAddIntValue

(
SCReportPtr theReportData, //pointer tc
gsi_ul6é theKeylId, //the key ve
gsi_i32 theVvalue //the value

),

SCResult scReportAddStringValue

(
SCReportPtr theReportData,

gsi_ul6é theKeylId,
const gsi_char * theValue

),

b. Player Data

Next the game will submit player data. First the game should notify the
Competition SDK it plans to report player data by calling
ScReportBeginPlayerData:

SCResult scReportBeginPlayerData(SCReportPtr theRepc

The game will indicate each new player to be reported by calling
SscReportBeginNewPlayer:

SCResult scReportBeginNewPlayer (SCReportPtr theRepor

The game will then call scReportSetPlayerData to set the initial data
for this new player to be reported. The connection ID (retrieved via
scGetConnectionId) is passed to the thePlayerConnectionId
parameter in order to designate the player whose stats are being
reported. The theResult parameter is an enumerated value that
describes the final game result for the given player.

Note: theAuthData is currently unused in this version of the SDK.

SCResult scReportSetPlayerData
(

SCReportPtr theReport,
gsi_u32 thePlayerInc
const gsi_u8 thePlayerCor

gsi_u32 thePlayerTee

SCGameResult theResult,

gsi_u32 theProfilelc
const GSLoginCertificate * theCertifice
const gsi_u8 theAuthData|

),

After this call is made, the game should report player-specific key/value
data by calling either scReportAddIntValue or
scReportAddStringValue as it applies. Once the game has finished
reporting data for a specific player, if it has more player data to report, it
should begin this process again starting with
scReportBeginNewPlayer and repeating the above steps, until data
for all players has been submitted.

c. Team Data

Lastly, the game should notify the SDK that is about to report team data:
SCResult scReportBeginTeamData(SCReportPtr theReport

Just as with player data, the game will then call the team equivalent
scReportBeginNewTeam followed by scReportSetTeamData to tell
the SDK which team data is about to be reported. The theResult
parameter is an enumerated value that describes the final game result for
the given team.

SCResult scReportBeginNewTeam(SCReportPtr theReportL

SCResult scReportSetTeamData

(
SCReportPtr theReport,
gsi_u32 theTeamIndex,
SCGameResult theResult

),

Once the report is complete and ready for submittal, the game should call
scReportEnd to indicate its completion.

SCResult scReportEnd
(

SCReportPtr theReport,
gsi_bool isAuth, //9si_true f
SCGameStatus theStatus //enum descr

),

For SCGameStatus reporting, the game should do the following. As long
as the game finished properly, and no one disconnected during the
course of play, then all players in the match should submit
SCGameStatus. COMPLETE reports. If any members disconnected
during play, but the game was finished completely, then all players in the
match should submit SCGameStatus_PARTIAL reports indicating that
disconnects occured. For any players who do not complete the match, a
SCGameStatus BROKEN report should be submitted. Thus if the game
did not completely finish, all players will submit broken reports. The only
case that will trigger an invalid report is if reports for the same game
describe status as both SCGameStatus COMPLETE and
SCGameStatus_PARTIAL. Since COMPLETE indicates that all players
finished the game w/o a disconnect and PARTIAL indicates that
disconnects occured, at no time should a game report both complete and
partial - this will be seen as an exploit and invalidate the report.

For a better example of the report submission process, see the
Competition SDK sample application and Appendices II-Ill for game type
specific usage scenarios.

6. Submitting the Report

Once a report has been completed with a call to scReportEnd, the
game should then submit the report to the Competition backend by
calling:

SCResult scSubmitReport
(

const SCInterfacePtr theInterface

const SCReportPtr theReport,

gsi_bool isAuthoritat
const GSLoginCertificate * theCertifice
const GSLoginPrivateData * thePrivateDe
SCSubmitReportCallback theCallback,
gsi_time theTimeoutMs
void * theUserData

),

For sending an authoritative support the game should pass gsi_true to
the isAuthoritative parameter. This should match the intention that
the player set (refer to scSetReportIntention). If the result of this
call is anything other than SCResult_NO_ERROR, this indicates an error
has occured.

Once the report has been submitted, the backend will send back the
result of the submission via the SCSubmitReportCallback. This
callback will indicate to the game if any errors during the submission. An
invalid certificate or invalid private data will cause the operation to fail. An
incomplete or empty report will also cause this operation to fail.

7. Thinking

All interface functions that have callbacks will require the game to call
scThink. In addition the value returned by this function should also be
checked in case any problems occur:

SCResult scThink(SCInterfacePtr thelInterface);

Remember to call this function in the main loop. All SDK calls should be
made from within the same thread. See the following Knowledge Base
entry for more information: Are your SDKSs thread-safe?.

The authentication service requires a call to the Gamespy Core think
function since it uses a different service for authentication:

volid gsCoreThink(gsi_time theMs);

http://www.poweredbygamespy.com/secure/kb/questions.php?questionid=13

8. Shutting Down

Shutting down the Competition SDK is done using the following, it will
take care of cleaning up resources used by the SDK:

SCResult scShutdown(SCInterfacePtr thelInterface);

In addition, the game should clean up the Gamespy core by using the
function:

void gsCoreShutdown();

Appendix I: Retrieving Stats

The Competition SDK only reports gamedata to the backend, it does not
retrieve it. When stats are created via the reported results they are stored
into the Sake database. The GameSpy Sake SDK is used to retrieve
Stats. Please refer to the Sake documentation for more in-depth
information about implementing the Sake SDK.

To begin, developers can access the Sake Admin website at
http://tools.gamespy.net/SakeAdmin/. After selecting your game, you will
be brought to a page to see your game's tables where the stats have
been stored. Tables in Sake are automatically generated via the ATLAS
Administration site when you create keys for your game. These tables
are GameStats_vX, PlayerStats_vX, TeamStats_vX, and
StaticStats_vX which you can see under the Sake Admin page for your
game. The vX refers to the version number used in both the Admin site
as well as when integrating ATLAS (for example, version 1 for a game
will have tables defined as GameStats_vl1, etc.).

Clicking on "Fields" for any of these tables will show a list of fields which
indicate a given Stat. Note that the Stats that are generated from the
Rules setup on the ATLAS Admin site will automatically be recorded into
these generated Tables, based on the Rule type set when creating the
rule. In other words, Game STATS which are generated are stored in the
GameStats table, as Player STATS are stored in the PlayerStats table,
and so on. You can then retrieve this data via Sake by querying these
tables with the field names that correspond to the STATS created on the
ATLAS Admin site. The first time you submit a session and the rules
process this data into stats, you should see these fields created.

You will use these Tablelds and FieldNames in Sake calls to retrieve
stats in your game. The easiest method to do so is to use the Sake call
sakeSearchForRecords. You can search in a given table, across
various fields using an SQL-like filter string along with sorting criteria.

For example, let's say you want to order and show the "top 100-200
entries in descending order of player high scores that are > 50000". You
have created a stat called "PLAYER_HIGH_SCORE" which contains a

http://tools.gamespy.net/SakeAdmin/

player's current high score. In addition, you have defined a player-type
rule in order to calculate this PLAYER_HIGH_SCORE stat; this is all
done with ATLAS ruleset version 1. Therefore, after this stat is calculated
it will generate a record in the "PlayerStats_v1" table for your game. You
would then search for records where the
SAKESearchForRecordsInput has the following values:

mTableID = "PlayerStats_vi1"

mFieldNames = "PLAYER_HIGH_SCORE", "ownerid"
mNumFields = 2

mFilter = "PLAYER_HIGH_SCORE > 50000"

mSort = "PLAYER_HIGH_SCORE desc"

mOoffset = "100"

mMaxRecords = "100"

This would retrieve the result you seek. Each record returned would be
that of a player's high score, the player of which is identified based upon
the ownerid (owner's profileid) of the given record.

*Please also refer to Appendix IV in the SAKE Overview for more
details about specific Leaderboard queries and optimizations (e.g.
getting a player's rank, etc.).*

Appendix lI: Use Case - Real-Time Strategy (RTS) Game

The following describes the recommended approach for report
submissions with RTS-style games. This is specifically referring to peer-
peer games that do not have late entry and may or may not allow Host
Migration. The primary difference between this game type and those of
dedicated server games is that no single player is really the authoritative
view of the game. Since the game is by definition peer-peer, all players
essentially act as an official voice of what transpired.

This being the case, we recommend that ALL players submit
authoritative reports. This takes care of two common problems. First
off, it eliminates the possibility of a 1v1 match where no authoritative
report is sent if the host disconnects. By having all players submit
authoritative reports, we can ensure that if a host disconnects in a heads
-up match, the opponent will report this disconnect as well as this player's
data. Secondly, it takes care of any Host Migration issues automatically.
By having each player submit an authoritative report, there is no need for
players to change their intentions mid-game.

Appendix lll: Use Case - First Person Shooter (FPS) Game

Unlike an RTS-style game, the FPS game type we are describing here is
that of a dedicated server game allowing late entry. The difference here is
that the server itself acts as a dedicated host or official view of gameplay.
Since these games allow late entry, it's common to have players
joining/leaving/disconnecting during the course of gameplay. Thus, we
need to have a single official view of the overall game that can monitor all
of the activity. This does not necessarily mean that the host will submit
ALL data for every player in the game, as this could grow immensely
large over a long game. It simply means the host will need to be the final
say for players that disconnect, or the host will corroborate a player's
collaborative report with his own.

Therefore the host will submit an authoritative report and all clients
will ONLY submit collaborative reports. This means there will only be
a single authoritative report per-session (map change, round, etc.),
submitted from the host. This authoritative report should only initially
contain the host's player data (for non-dedicated hosts) and the game
results. In addition to this, the host should ALSO submit collaborative
reports for all late-entry players. Doing so will corroborate a player's
reported statistics. The only caveat here is that if this player unexpectedly
disconnects before the game is complete, we want to ensure their data is
reported. To account for this, should a player disconnect
unexpectedly, the host will submit that player's data as part of his
authoritative report INSTEAD of sending a collaborative report for
that player. Doing so will ensure this player's data is recorded even
when this player is disconnected from the game. Player's that disconnect
normally (in other words, they forced a disconnect by quitting out of the
game) should report their collaborative snapshots themselves. This is a
recommended approach for any intentional disconnect as illustrated in
the Competition Sample Application.

Appendix IV: Troubleshooting / FAQ

The GameSpy Knowledge Base is kept up-to-date with important
troubleshooting tips and information about the Competition SDK:
http://www.poweredbygamespy.com/secure/kb/categories.php?
categoryid=10.

http://www.poweredbygamespy.com/secure/kb/categories.php?categoryid=10

Competition SDK Functions

scCreateMatchlessSession

This is a variation of scCreateSession that
creates a "matchless" session; "matchless"
means incoming data will be scrutinized less,
and applied to stats immediately instead of
when the match is over.

scCreateReport

Creates a new report for the game session

scCreateSession

Requests the Competition service to create a
session ID and keep track of the session that
is about to start.

scDestroyReport

Used to clean up and free the report object
after it has been submitted.

scGetConnectionld

Used to obtain a Connection ID when setting
player data in the report.

scGetSessionld

Used to obtain the session ID for the current
game session.

sclnitialize

Initializes the competition SDK.

scReportAddByteValue

Adds a byte value to the report for a specific
key.

scReportAddFloatValue

Adds a float value to the report for a specific
key.

scReportAddintValue

Adds an integer value to the report for a
specific key.

scReportAddShortValue

Adds a short value to the report for a specific
key.

scReportAddStringValue

Adds a string value to the report for a specific
key.

scReportBeginGlobalData

Tells the competition SDK to start writing
global data to the report.

scReportBeginNewPlayer

Add a new player to the report

scReportBeginNewTeam

Adds a new team to the report.

scReportBeginPlayerData

Tells the competition SDK to start writing
player data to the report.

scReportBeginTeamData

Tells the competition SDK to start writing
player data to the report.

scReportEnd

Denotes the end of a report for the report
specified.

scReportSetAsMatchless

Called after creating the report to set it as a
matchless report - this is needed if the report
is being submitted to a "matchless" game
session.

scReportSetPlayerData
Sets initial player data in the report specified

scReportSetTeambData

Sets the initial team data in the report
specified.

scSetReportintention

Called to tell the backend the type of report
that the player or host will send.

scSetSessionld

Used to set the session ID for the current
game session.

scShutdown

Shuts down the Competition SDK

scSubmitReport

Initiates the submission of a report

scThink
Called to complete pending operations for

functions with callbacks.

scCreateMatchlessSession

This is a variation of scCreateSession that creates a "matchless" session;
"matchless"” means incoming data will be scrutinized less, and applied to
stats immediately instead of when the match is over.

SCResult scCreateMatchlessSession(
SCinterfacePtr thelnterface,
const GSLoginCertificate * theCertificate,
const GSLoginPrivateData * thePrivateData,
SCCreateSessionCallback theCallback,
gsi_time theTimeoutMs,
void * theUserData);

Routine Required Header Distribution
scCreateMatchlessSession <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters

thelnterface

[in] A valid SC Inteface Object
theCertificate

[in] Certificate obtained from the auth service.
thePrivateData

[in] Private Data obtained from the auth service.
theCallback

[in] The callback called when create session completes.
the TimeoutMs

[in] Timeout in case the create session operation takes too long
theUserData

[in] User data for use in callbacks. Note that it is a constant pointer in
the callback

Remarks

Reports sent for matchless sessions should be marked as such using
"scReportSetAsMatchless".

Section Reference: Gamespy Competition SDK

See Also: scReportSetAsMatchless, SCCreateSessionCallback,
sclnitialize

scCreateReport

Creates a new report for the game session.

SCResult scCreateReport(
const SCinterfacePtr thelnterface,
gsi_u32 theHeaderVersion,
gsi_u32 thePlayerCount,
gsi_u32 theTeamCount,
const SCReportPtr * theReportOut);

Routine Required Header
scCreateReport <sc.h>

Distribution
SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters

thelnterface
[in] A valid SC Inteface Object

theHeaderVersion
[in] Header version of the report

thePlayerCount
[in] Player count for allocating enough resources and verification
purposes

theTeamCount
[in] Team count for allocating enough resources and verification
purposes

theReportOut
[ref] The pointer to created SC Report Object

Remarks

There should have been a call to CreateSession and SetReportintention
before calling this function. This function should be called after a game
session has ended. The player count and team count are more accurate
at that point for dedicated server games. This function should also be
called before calling any scReport* function. The header version can be
obtained from the adminstration site where the the keys are created. See
the overview on obtaining access or send a request
devsupport@gamespy.com.

Section Reference: Gamespy Competition SDK

See Also: scReportBeginGlobalData, scReportBeginPlayerData,
scReportBeginTeamData, scReportBeginNewPlayer,
scReportSetPlayerData, scReportBeginNewTeam,
scReportSetTeamData, scReportAddintValue, scReportAddStringValue

scCreateSession

Requests the Competition service to create a session ID and keep track
of the session that is about to start.

SCResult scCreateSession(
SCinterfacePtr thelnterface,
const GSLoginCertificate * theCertificate,
const GSLoginPrivateData * thePrivateData,
SCCreateSessionCallback theCallback,
gsi_time theTimeoutMs,
void * theUserData);

Routine Required Header Distribution
scCreateSession <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters

thelnterface

[in] A valid SC Inteface Object
theCertificate

[in] Certificate obtained from the auth service.
thePrivateData

[in] Private Data obtained from the auth service.
theCallback

[in] The callback called when create session completes.
the TimeoutMs

[in] Timeout in case the create session operation takes too long
theUserData

[in] User data for use in callbacks. Note that it is a constant pointer in
the callback

Remarks

The certificate and private data may be NULL if the local client is an
unauthenticated dedicated server. The function should be called by the
host after initializing the SDK, and obtaining a certificate and private data
from the authentication service. The competition service creates and
sends a session ID to the host. The callback passed in will get called
even if the request failed.

Section Reference: Gamespy Competition SDK

See Also: SCCreateSessionCallback, sclnitialize

scDestroyReport

Used to clean up and free the report object after it has been submitted.

SCResult scDestroyReport(
SCReportPtr theReport);

Routine Required Header Distribution
scDestroyReport <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters

theReport
[in] The pointer to a created SC Report Object.

Remarks

This should be called regardless of whether or not the report was
submitted successfully. It should only be used if the report object contains
a valid pointer from a successful call to scCreateReport.

Section Reference: Gamespy Competition SDK

See Also: scCreateReport

scGetConnectionld

Used to obtain a Connection ID when setting player data in the report.

const char * scGetConnectionld(
const SCinterfacePtr thelnterface);

Routine Required Header Distribution
scGetConnectionld <sc.h> SDKZIP

Return Value

Parameters

thelnterface
[in] A valid SC Inteface Object

Remarks

The connection id identifies a single player in a game session. It may be
possible to have different connection ids during the same session since
players can come and leave sessions.

Section Reference: Gamespy Competition SDK

scGetSessionld

Used to obtain the session ID for the current game session.

const char * scGetSessionld(
const SCinterfacePtr thelnterface);

Routine Required Header Distribution
scGetSessionld <sc.h> SDKZIP

Return Value

Parameters

thelnterface
[in] A valid SC Inteface Object

Remarks

The session ID indentifies a single game session happening between
players. After the host creates a session, this function can be called to
obtain the session ID. The host can then send the session ID to all other
players participating in the game session.

Section Reference: Gamespy Competition SDK

See Also: scSetSessionld, scCreateSession

sclnitialize

Initializes the competition SDK.

SCResult scinitialize(
int theGameld,
SCinterfacePtr * thelnterfaceOut);

Routine Required Header Distribution
sclinitialize <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters
theGameld
[in] The Game ID issued to identify a game.

thelnterfaceOut
[out] The pointer to the SC Interface Object instance

Remarks

The function must be called in order to get a valid SC Interface object.
Most other interface functions depend on this interface function when
being called. Note that if the standard GameSpy Availability Check was
not performed prior to this call, the SDK will return

SCResult. NO_AVAILABILITY_CHECK.

Section Reference: Gamespy Competition SDK

scReportAddByteValue

Adds a byte value to the report for a specific key.

SCResult scReportAddByteValue(
SCReportPtr theReportData,
gsi_ul6 theKeyld,
gsi_i8 theValue);

Routine Required Header
scReportAddByteValue <sc.h>

Distribution
SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters
theReportData
[in] A valid SC Report object

theKeyld
[in] Key Identifier for reporting data

theValue
[in] 8 bit Byte value representation of the data

Remarks

The host or player can call this function to add either global, player-, or
team-specific data. A report needs to be created before calling this
function. For global keys, this function can only be called after starting
global data. For player or teams, a new player or team needs to be
added.

Section Reference: Gamespy Competition SDK

See Also: scCreateReport, scReportBeginGlobalData,
scReportBeginPlayerData, scReportBeginTeamData,
scReportBeginNewPlayer, scReportSetPlayerData,
scReportBeginNewTeam, scReportSetTeamData

scReportAddFloatValue

Adds a float value to the report for a specific key.

SCResult scReportAddFloatValue(
SCReportPtr theReportData,
gsi_ul6 theKeyld,
float theValue);

Routine Required Header
scReportAddFloatValue <sc.h>

Distribution
SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters
theReportData
[in] A valid SC Report object

theKeyld
[in] Key Identifier for reporting data

theValue
[in] 32 bit Float value representation of the data

Remarks

The host or player can call this function to add either global, player-, or
team-specific data. A report needs to be created before calling this
function. For global keys, this function can only be called after starting
global data. For player or teams, a new player or team needs to be
added.

Section Reference: Gamespy Competition SDK

See Also: scCreateReport, scReportBeginGlobalData,
scReportBeginPlayerData, scReportBeginTeamData,
scReportBeginNewPlayer, scReportSetPlayerData,
scReportBeginNewTeam, scReportSetTeamData

scReportAddintValue
Adds an integer value to the report for a specific key.

SCResult scReportAddintValue(
SCReportPtr theReportData,
gsi_ul6 theKeyld,
gsi_i32 theValue);

Routine Required Header Distribution
scReportAddintValue <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters
theReportData
[in] A valid SC Report object

theKeyld
[in] Key Identifier for reporting data

theValue
[in] 32 bit Integer value representation of the data

Remarks

The host or player can call this function to add either global, player-, or
team-specific data. A report needs to be created before calling this
function. For global keys, this function can only be called after starting
global data. For player or teams, a new player or team needs to be
added.

Section Reference: Gamespy Competition SDK

See Also: scCreateReport, scReportBeginGlobalData,
scReportBeginPlayerData, scReportBeginTeamData,
scReportBeginNewPlayer, scReportSetPlayerData,
scReportBeginNewTeam, scReportSetTeamData

scReportAddShortValue

Adds a short value to the report for a specific key.

SCResult scReportAddShortValue(
SCReportPtr theReportData,
gsi_ul6 theKeyld,
gsi_il16 theValue);

Routine Required Header Distribution
scReportAddShortValue <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters
theReportData
[in] A valid SC Report object

theKeyld
[in] Key Identifier for reporting data

theValue
[in] 16 bit Short value representation of the data

Remarks

The host or player can call this function to add either global, player-, or
team-specific data. A report needs to be created before calling this
function. For global keys, this function can only be called after starting
global data. For player or teams, a new player or team needs to be
added.

Section Reference: Gamespy Competition SDK

See Also: scCreateReport, scReportBeginGlobalData,
scReportBeginPlayerData, scReportBeginTeamData,
scReportBeginNewPlayer, scReportSetPlayerData,
scReportBeginNewTeam, scReportSetTeamData

scReportAddStringValue
Adds a string value to the report for a specific key.

SCResult scReportAddStringValue(
SCReportPtr theReportData,
gsi_ul6 theKeyld,
const gsi_char * theValue);

Routine Required Header Distribution
scReportAddStringValue <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters
theReportData
[in] A valid SC Report object

theKeyld
[in] The string key's indentifer

theValue
[in] The string value

Remarks

The host or player can call this function to add either global, player-, or
team-specific data. A report needs to be created before calling this
function. For global keys, this function can only be called after starting
global data. For player or teams, a new player or team needs to be
added.

Section Reference: Gamespy Competition SDK

See Also: scCreateReport, scReportBeginGlobalData,
scReportBeginPlayerData, scReportBeginTeamData,
scReportBeginNewPlayer, scReportSetPlayerData,
scReportBeginNewTeam, scReportSetTeamData

scReportBeginGlobalData
Tells the competition SDK to start writing global data to the report.

SCResult scReportBeginGlobalData(
SCReportPtr theReportData);

Routine Required Header Distribution
scReportBeginGlobalData <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters

theReportData
[ref] A valid SC Report Object

Remarks

After creating a report, this function should be called prior to writing
global game data. Global data comes before player and team data. Note
that keys and values can be recorded via the key/value utility functions.

Section Reference: Gamespy Competition SDK

See Also: scCreateReport, scReportAddintValue,
scReportAddStringValue

scReportBeginNewPlayer

Add a new player to the report.

SCResult scReportBeginNewPlayer(
SCReportPtr theReportData);

Routine Required Header
scReportBeginNewPlayer <sc.h>

Distribution
SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters

theReportData
[in] A valid SC Report Object

Remarks

This funciton is used to before adding new player data in the report. It
tells the SDK that a new player needs to be added to the report.

Section Reference: Gamespy Competition SDK

See Also: scCreateReport, scReportBeginPlayerData,
scReportSetPlayerData, scReportAddintValue, scReportAddStringValue

scReportBeginNewTeam

Adds a new team to the report.

SCResult scReportBeginNewTeam(
SCReportPtr theReportData);

Routine Required Header
scReportBeginNewTeam <sc.h>

Distribution
SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters

theReportData
[in] A valid SC Report Object

Remarks

After the beginning of any team data is set, this function can be called to
start a new team. After this function has been called, the game can start
adding team data to the report.

Section Reference: Gamespy Competition SDK

See Also: scCreateReport, scReportBeginTeamData,
scReportSetPlayerData, scReportAddintValue, scReportAddStringValue

scReportBeginPlayerData
Tells the competition SDK to start writing player data to the report.

SCResult scReportBeginPlayerData(
SCReportPtr theReportData);

Routine Required Header Distribution
scReportBeginPlayerData <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters

theReportData
[in] A valid SC Report Object

Remarks

Use this function to mark the starting of player data. Player data should
come after global data, and before team data. The game can start adding
each player and its specific data after this is called.

Section Reference: Gamespy Competition SDK

See Also: scCreateReport, scReportBeginNewPlayer,
scReportSetPlayerData, scReportAddintValue, scReportAddStringValue

scReportBeginTeamData

Tells the competition SDK to start writing player data to the report.

SCResult scReportBeginTeamData(
SCReportPtr theReportData);

Routine Required Header Distribution
scReportBeginTeamData <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters

theReportData
[in] A valid SC Report Object

Remarks

Use this function to mark the starting of team data. Team data should
come after global data, and player data. The game can start adding each
team and its specific data after this is called.

Section Reference: Gamespy Competition SDK

See Also: scCreateReport, scReportBeginNewTeam,
scReportSetTeamData, scReportAddintValue, scReportAddStringValue

scReportEnd
Denotes the end of a report for the report specified.

SCResult scReportEnd(
SCReportPtr theReport,
gsi_bool isAuth,
SCGameStatus theStatus);

Routine Required Header Distribution
scReporteEnd <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters
theReport
[in] A valid SC Report Object

iIsAuth
[in] Authoritative report

theStatus
[in] Final Status of the reported game

Remarks

Used to set the end of a report. The report must have been properly
created and have some data. Any report being submitted requires that
function be called before the submission. Incomplete reports will be
discarded.

Section Reference: Gamespy Competition SDK

See Also: scCreateReport, scSubmitReport, SCGameStatus

scReportSetAsMatchless

Called after creating the report to set it as a matchless report - this is
needed if the report is being submitted to a "matchless” game session.

SCResult scReportSetAsMatchless(
SCReportPtr theReport);

Routine Required Header Distribution
scReportSetAsMatchless <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters

theReport
[ref] A valid SC Report Object

Remarks
This should not be used for a non-matchless session report.

Section Reference: Gamespy Competition SDK

See Also: scCreateMatchlessSession, scCreateReport

scReportSetPlayerData
Sets initial player data in the report specified.

SCResult scReportSetPlayerData(
SCReportPtr theReport,
gsi_u32 thePlayerindex,
const gsi_u8
thePlayerConnectionld[SC_CONNECTIONID_LENGTH],
gsi_u32 thePlayerTeamindex,
SCGameResult theResult,
gsi_u32 theProfileld,
const GSLoginCertificate * theCertificate,
const gsi_u8 theAuthData[16]);

Routine Required Header Distribution
scReportSetPlayerData <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters
theReport
[ref] A valid SC Report Object

thePlayerindex
[in] Index of the player (O - Number of players)

thePlayerConnectionld
[in] Connection ID that the player received from the competition

backend
thePlayerTeamIndex

[in] Team index of the player, if that player is on a team.
theResult

[in] Standard SC Game result
theProfileld

[in] Profile ID of the player
theCertificate

[in] Certificate obtained from the auth service.
theAuthData

[in] Authentication data

Remarks

A report must have been created prior to using this function. Each player
must have a valid login certificate from the authentication service also.
This function should be called after a new player is added to the report.
Any key/value pairs that need to be added should be done after calling
this function.

Section Reference: Gamespy Competition SDK

See Also: scCreateReport, scReportBeginPlayerData,
scReportBeginNewPlayer, scReportAddintValue,
scReportAddStringValue

scReportSetTeamData

Sets the initial team data in the report specified.

SCResult scReportSetTeamData(
SCReportPtr theReport,
gsi_u32 theTeamindex,
SCGameResult theResult);

Routine Required Header
scReportSetTeamData <sc.h>

Distribution
SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters
theReport
[in] A valid SC Report Object

theTeamIndex
[in] The index of the team being reported

theResult
[in] The team's result (e.g. win, loss, draw)

Remarks

A report must have been created prior to using this function. This function
should be called after a new team is added to the report. Any key/value
pairs that need to be added should be done after calling this function.

Section Reference: Gamespy Competition SDK

See Also: scCreateReport, scReportBeginTeamData,
scReportBeginNewTeam, scReportAddintValue, scReportAddStringValue

scSetReportintention

Called to tell the backend the type of report that the player or host will
send.

SCResult scSetReportintention(
const SCinterfacePtr thelnterface,
const gsi_u8 theConnectionld[SC_CONNECTION_GUID_SIZE],
gsi_bool isAuthoritative,
const GSLoginCertificate * theCertificate,
const GSLoginPrivateData * thePrivateData,
SCSetReportintentionCallback theCallback,
gsi_time theTimeoutMs,
const void * theUserData);

Routine Required Header Distribution
scSetReportintention <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters

thelnterface
[ref] Avalid SC Interface Object.

theConnectionld
[in] The player's former Connectionld if he was previously in the
same match. Set to NULL if unused.

isAuthoritative
[in] flag set if the snapshot being reported will be an authoratative.

theCertificate
[ref] Certificate obtained from the authentiocation web service.

thePrivateData
[ref] Private data obtained from the authentiocation web service.

theCallback
[ref] The callback called when set report intention completes.

the TimeoutMs
[in] The amount of time to spend on the operation before a timeout
OCCurs.

theUserData
[ref] Application data that may be used in the callback.

Remarks

The should be called by both the host and client before sending a report.
The host should have created a session before calling this. It allows the
server to know ahead of time what type of report will be sent. Reports
submitted without an intention will be discarded.

Section Reference: Gamespy Competition SDK

See Also: scCreateSession, SCSetReportintentionCallback,
scSubmitReport

scSetSessionid

Used to set the session ID for the current game session.

SCResult scSetSessionld(
const SCinterfacePtr thelnterface,
const gsi_u8 theSessionld[SC_SESSION_GUID_SIZE]);

Routine Required Header Distribution
scSetSessionld <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters

thelnterface
[in] A valid SC Inteface Object

theSessionld
[in] The session ID - this has a constant length of
SC_SESSION_GUID_SIZE

Remarks

The session ID indentifies a single game session happening between
players. Players should use the scGetSessionld function in order to
obtain the session ID. This should not be called if a session has not yet
been created.

Section Reference: Gamespy Competition SDK

See Also: scGetSessionld, scCreateSession

scShutdown

Shuts down the Competition SDK.

SCResult scShutdown(
SCinterfacePtr thelnterface);

Routine Required Header
scShutdown <sc.h>

Distribution
SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters

thelnterface
[in] A valid SC Inteface Object

Remarks

In order to clean up all resources used by the SDK, this interface function
must be called. Do not call this function if you plan to continue reporting
stats.

Section Reference: Gamespy Competition SDK

See Also: scinitialize

scSubmitReport

Initiates the submission of a report.

SCResult scSubmitReport(
const SCinterfacePtr thelnterface,
const SCReportPtr theReport,
gsi_bool isAuthoritative,
const GSLoginCertificate * theCertificate,
const GSLoginPrivateData * thePrivateData,
SCSubmitReportCallback theCallback,
gsi_time theTimeoutMs,
void * theUserData);

Routine Required Header Distribution
scSubmitReport <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters

thelnterface

[in] A valid SC Interface Object.
theReport

[in] A valid SC Report object
isAuthoritative

[in] Flag to tell if the snapshot is authoritative
theCertificate

[in] Certificate Obtained from the auth service.
thePrivateData

[in] Private Data Obtained from the auth service.
theCallback

[in] Callback to be called when submit report completes.
the TimeoutMs

[in] The amount of time before a timeout occurs
theUserData

[in] Application data that may be used in the callback

Remarks

Once the report has been completed with a call to scReportEnd, the
player or host can call this function to submit a report. The certificate and
private data are both required to submit a report. Incomplete reports will
be discarded. The callback passed in will tell the game the result of the
operation.

Section Reference: Gamespy Competition SDK

See Also: scinitialize, scCreateSession, scSetReportintention,
scReportEnd, SCSubmitReportCallback

scThink

Called to complete pending operations for functions with callbacks.

SCResult scThink(
SCinterfacePtr thelnterface);

Routine Required Header Distribution
scThink <sc.h> SDKZIP

Return Value

Enum value used to indicate the specific result of the request. This will
return SCResult. NO_ERROR if the request completed successfully.

Parameters

thelnterface
[in] A valid SC Inteface Object

Remarks

This function should be called with a valid interface object. It will take
care of pending requests that have been made by the interface functions.

Section Reference: Gamespy Competition SDK

See Also: scinitialize, scCreateSession, scSetReportintention,
scSubmitReport

Competition SDK Callbacks

SCCreateSessionCallback

Called when scCreateSession has
completed.

SCSetReportintentionCallback
Called when scReportintention has
completed.

SCSubmitReportCallback

Called when scSubmitReport completes.

SCCreateSessionCallback

Called when scCreateSession has completed.

typedef void (*SCCreateSessionCallback)(
const SCinterfacePtr thelnterface,
GHTTPResult theHttpResult,

SCResult theResult,

const void * theUserData);

Routine
SCCreateSessionCallback

Required Header
<sc.h>

Distribution
SDKZIP

Parameters

thelnterface
[in] the pointer to the SC Interface object. The game usually has
copy of this also.

theHttpResult
[in] Http result from creating a session

theResult
[in] SC Result telling the application what happened when creating a
session

theUserData
[in] constant pointer to user data

Remarks

Called when a game session is created. The results will determine if the
session was sucessfully created. If there were any errors, theResult will
be set to the specific error code. Otherwise theResult will be set to
SCResult NO _ERROR. Please see SCResult for error codes.

Section Reference: Gamespy Competition SDK

See Also: scCreateSession, SCResult

SCSetReportintentionCallback

Called when scReportintention has completed.

typedef void (*SCSetReportintentionCallback)(
const SCinterfacePtr thelnterface,
GHTTPResult theHttpResult,
SCResult theResult,
const void * theUserData);

Routine Required Header Distribution
SCSetReportintentionCallback <sc.h> SDKZIP

Parameters

thelnterface
[ref] the pointer to the SC Interface object. The game usually has
copy of this also.

theHttpResult
[in] Http result from creating a session

theResult
[in] SC Result telling the application what happened when creating a
session

theUserData
[ref] constant pointer to user data

Remarks

Called when a host or client reporting its intention is complete. The
results will determine if the session was sucessfully created. If there were
any errors, theResult will be set to the specific error code. Otherwise
theResult will be set to SCResult NO _ERROR. Please see SCResult for
error codes.

Section Reference: Gamespy Competition SDK

See Also: scSetReportintention, SCResult

SCSubmitReportCallback

Called when scSubmitReport completes.

typedef void (*SCSubmitReportCallback)(
const SCinterfacePtr thelnterface,
GHTTPResult theHttpResult,
SCResult theResult,
const void * theUserData);

Routine Required Header
SCSubmitReportCallback <sc.h>

Distribution
SDKZIP

Parameters

thelnterface
[in] the pointer to the SC Interface object. The game usually has
copy of this also.

theHttpResult
[in] Http result from creating a session

theResult
[in] SC Result telling the application what happened when creating a
session

theUserData
[in] constant pointer to user data

Remarks

After the SDK submits the report, the backend will send back results that
will be available in this callback. If there were any errors, theResult will be
set to the specific error code. Otherwise theResult will be set to
SCResult NO _ERROR. Please see SCResult for error codes.

Section Reference: Gamespy Competition SDK

See Also: scSubmitReport, SCResult

Competition SDK Enumerations

SCGameResult
Used when submitting a report for a game session to
reflect the player's result.

SCGamesStatus
The Game Status Indicates how the session ended and
is declared when ending a report.

SCResult
used for checking errors and failures

SCGameResult

Used when submitting a report for a game session to reflect the player's
result.

typedef enum

{
SCGameResult_ WIN,
SCGameResult LOSS,
SCGameResult DRAW,
SCGameResult DISCONNECT,
SCGameResult DESYNC,
SCGameResult NONE,
SCGameResultMax

} SCGameResult;

Constants

SCGameResultMax
Total number of game result codes.

Remarks
Can be used for both player and a team.

Section Reference: Gamespy Competition SDK

SCGameStatus

The Game Status Indicates how the session ended and is declared when
ending a report.

typedef enum

{
SCGameStatus COMPLETE,
SCGameStatus PARTIAL,
SCGameStatus BROKEN,
SCGameStatusMax

} SCGamesStatus;

Constants

SCGameStatus_ COMPLETE
The game session came to the expected end without interruption
(disconnects, desyncs). This status indicates that game results are
available for all players.

SCGameStatus_PARTIAL
Although the game session came to the expected end, one or more
players unexpectedly quit or were disconnected. Game results
should explicitly report which players were disconnected to be used
during normalization for possible penalty metrics.

SCGameStatus_ BROKEN
The game session did not reach the expected end point and is
incomplete. This should be reported when there has been an event
detected that makes the end result indeterminate.

SCGameStatusMax
Total number of game status codes.

Remarks

For SCGameStatus reporting, the game should do the following. As long
as the game finished properly, and no one disconnected during the
course of play, then all players in the match should submit
SCGameStatus COMPLETE reports. If any members disconnected
during play, but the game was finished completely, then all players in the
match should submit SCGameStatus_PARTIAL reports indicating that
disconnects occured. For any players who do not complete the match, a
SCGameStatus_ BROKEN report should be submitted. Thus if the game
did not completely finish, all players will submit broken reports. The only
case that will trigger an invalid report is if reports for the same game
describe status as both SCGameStatus COMPLETE and
SCGameStatus_PARTIAL. Since COMPLETE indicates that all players
finished the game w/o a disconnect and PARTIAL indicates that
disconnects occured, at no time should a game report both complete and
partial - this will be seen as an exploit and invalidate the report.

Section Reference: Gamespy Competition SDK

SCResult

used for checking errors and failures.

typedef enum

{
SCResult NO_ERROR=0,
SCResult NO_AVAILABILITY CHECK,
SCResult INVALID PARAMETERS,
SCResult NOT _INITIALIZED,
SCResult CORE_NOT INITIALIZED,
SCResult OUT_OF MEMORY,
SCResult CALLBACK PENDING,
SCResult HTTP_ERROR,
SCResult UNKNOWN_RESPONSE,
SCResult RESPONSE_INVALID,
SCResult REPORT _INCOMPLETE,
SCResult REPORT INVALID,
SCResult SUBMISSION_FAILED,
SCResult UNKNOWN_ERROR,
SCResultMax

} SCResult;

Constants

SCResult NO ERROR
No error has occurred.

SCResult_ NO_AVAILABILITY_CHECK
The standard GameSpy Availability Check was not performed prior
to initialization.

SCResult_INVALID_PARAMETERS
Parameters passed to interface function were invalid.

SCResult NOT INITIALIZED
The SDK was not initialized.

SCResult CORE_NOT_INITIALIZED
The core was initialized by the application.

SCResult_ OUT_OF_MEMORY
The SDK could not allocate memory for its resources.

SCResult_CALLBACK_PENDING
Result tell the application, that the operation is still pending.

SCResult HTTP_ERROR
Error occurs if the backend fails to respond with correct HTTP.

SCResult UNKNOWN_RESPONSE
Error occurs if the SDK cannot understand the result.

SCResult RESPONSE_INVALID
Error occurs if the SDK cannot read the response from the backend.

SCResult REPORT_INCOMPLETE
The report was incomplete.

SCResult REPORT_INVALID
Part or all of report is invalid.

SCResult_SUBMISSION_FAILED
Submission of report failed.

SCResult UNKNOWN_ERROR
Error unknown to sdk.

SCResultMax

Total number of result codes that can be returned.

Remarks

Results of a call to an interface function or operation. It can be used to
see if the initial call to a function completed without error. The callback
that is passed to interface functions will also have a value that is of this
type. The application can check this value for failures.

Section Reference: Gamespy Competition SDK

CD Key SDK

Overview

The GameSpy CDKey SDK is a simple toolkit designed to allow
developers to add secure, server-based CD Key validation to their
games. Server-based CD Key validation has proven to be the only widely
successful method of combating piracy available today.

In server-based CD Key validation, a client sends its CD Key to the game
server / host when it wants to join a multiplayer game. The server checks
with a validation server on the backend to make sure that the CD Key is
valid. If it isn't, the server refuses the connection. The validation server
also ensures that no two players can use the same key at the same time.
Of course the key is always encoded so that neither the server operator
nor someone "sniffing” the connection can steal the CD Key.

Several other common anti-piracy methods are:

Client-based CD Keys / Serial numbers
Can easily be "cracked" and removed

CD Check / CD anti-copy measures
As long as the data on the disc can be read, it can be copied and
the CD Check can be cracked

Overburn / 80 minute CDs
Recordable 80 minute CDs are now widely available, and CD
emulators can often get around this protection as well

Server-based CD Key validation works because it is controlled
completely by the server/host - a client cannot "crack” any part of their
local code to give the correct response to the server without a valid CD
Key. While server-based CD Key validation is not "perfect”, any flaws that
exist are in the implementation, not the concept.

Please note that server-based CD Key validation is only appropriate for a
certain class of games. While the CD Keys can also be checked on the
client side to help protect the single player game, they cannot add any

greater amount of protection to the single player (non-Internet) portion of
the game than a normal CD key check would. The only thing that server-
based CD Key validation can do 100% effectively is prevent clients
without valid keys from playing on public Internet servers. However, for
games that are primarily multi-player, or have a large multi-player
component, this can be a large deterrent to piracy (both large scale
"bootlegs" and small-scale "sharing").

We also feel it is important to point out that there are many "production”
problems that can occur with CD Keys of any sort, and can potentially
impact both the effectiveness of the protection and the number of support
issues that come up.

Some common problem with CD Keys include:

e Labeling errors during duplication / packaging leading to incorrect or
missing CD Keys
e Users mistyping the CD Key

e Users "losing" their CD Key (especially if they need to reinstall it on
a new machine)

e Users "sharing" their CD Key without being aware of the
consequences (i.e. they won't be able to play online any more)

Less common problems include:

e An internal "leak” of the valid CD Key list which ends up on the
Internet

e Users buying the software, getting the CD Key, and then returning it

Once these problems are overcome or accepted, server-based CD Key
validation offers some unique features not present in any other anti-
piracy scheme. These features include:

e The option to delay enforcement of the protection until the game has
generated "critical mass”

e The ability to actually track usage of pirated vs. legal copies of the
game

e Hourly and daily numbers for tracking play of the game online

¢ Unique potential for data mining

All of the data that is tracked is done completely anonymously so that the
privacy of your users is protected.

There are actually three layers of protection provided by server-based
CD Key validation, each layer targeted at stopping a particular type of
piracy:

¢ You must have a valid CD Key to play online

¢ No two people can play online at the same time with the same CD
Key

e Any valid CD Key can be disabled if it is distributed / abused

This CD Key SDK consists of two very simple portable C APIs - one for
the client that encodes the CD Key for sending to the server and another
for the server that sends the CD Key to the validation server and
authenticates the clients. We believe all of the code to be disclosure safe
- in other words, even if the entire source for the system were published,
it would be impossible to circumvent it. This is one of the reasons we feel
confident in distributing full-source to developers - we welcome your
attempts to "break" the system, even from within. We still obfuscate some
of the communications to help guard against the "annoyance” factor of
thousands of hackers trying to break into our key server through a plain-
text interface, but even without this, the system would be totally secure.

Additions to your current code will be fairly minimal, and there is plenty of
flexibility for you to implement the SDK in a way best suited to your
game.

Fully working examples of both the server and client code are included
for testing / reference. This document provides a step by step set of
instructions for implementing the CD Key SDK.

How It Works
Terms

The following terms are used throughout this document.

Server

The machine that is "hosting" the game and to which the clients
connect

Host
Same as a server

Client
A single player / machine that connects to a server / host

User
Same as a client

Validation Server

The server run by GameSpy which validates CD Keys and tracks
online users

Process

1. Alist of valid CD Keys is generated by the developer and put on the
CD cases during packing. The keys must be self-validating, i.e.
there is a function that can determine whether the key is
mathematically valid. An example of a CD Key generation/validation
pair is included in the SDK. The actual CD Keys used should be less
than a 0.0001% subset of the possible keys (to assure that
"guessing” a valid key is nearly impossible)

2. On install/run of the client, the user inputs the CD Key. The client
validates that the CD Key is (mathematically) correct to check typos
/ made up keys and allows the user to play the game.

3. On connection to a server, a handshake occurs to exchange the key

a. The server sends a "challenge" string of random data to the
client - note that this challenge string can contain a maximum
of 32 characters.

b. The client computes a set of hashes based on the challenge,
its CD key, and a random value and passes them back to the
server

c. The server sends the challenge and hashes to the validation
server

d. The validation server checks its CD Key database to determine
whether the hashes are valid. If they are not, it returns an error
to the server.

e. The validation server then checks to see if another user with
that CD Key is online. If one is, then it first queries the old
server, to make sure that user is still connected (in case the
server crashed), and if they are, it returns an error to the new
server.

f. When the client logs off or the server shuts down a message is
sent to the validation server to take the CD key offline.

Miscellaneous

All game server to validation server messaging is done via UDP, and in
case of a dropped packet or missing data, a "positive" result is always
assumed (so no user with a valid key will EVER be locked out). Because
the protocol uses UDP, there is always a chance that the validation or
reply packet might get dropped, allowing a user with an invalid CD Key to
play, but the chances of this occurring is quite small (probably 1-2% or
less for most servers).

It is technically possible for a cracker to modify the server code to prevent
it from checking CD Keys (i.e. allow any user to connect / play on that
server). This does not tend to be an issue in most cases, since the vast
majority of server operators / game hosts will want to prevent pirates from
playing on their servers. However, we have specifically designed the
code to be difficult to find and disable on the server. For additional
protection, you can choose to allow the CDKey SDK integrate with the
Query and Reporting 2 SDK. If a cracker attempts to prevent the server
from validating CDKeys, they will end up preventing the server from
being listed on the public server list. Of course the most important fact is
that there is nothing that can be done on the game client-side to remove
or weaken the CDKey protection.

Internet-based validation obviously does not apply to games played on a
local LAN (not connected to the net), and in general, the code does not
need any changes to reflect this (since no reply will be returned from the
validation server, all clients will be considered valid). However, the
current server API does do a local check of CD Keys, so that no two
players with the same key can connect to the same server (even on a
local LAN). You may wish to change this functionality to allow 2 or more
players to "share" a CD Key on a local LAN (e.g. for "clone" installs).

Testing

When you are ready to begin testing your implementation of the SDK,
you can start by using game ID "0" and the test keys listed below.

Once you've generated your own list of unique keys for your game, you
can use the web administration interface described below to add them.
The list of keys can be changed or added to later if needed.

Test Keys

2dd4-893a-ce85-6411
4bdb-27e9-ecf8-c042
6585-2eeb-c544-9dd2
42ea-082e-74e5-15b6
7bca-b5e2-47e4-42d1
47a0-84e7-bf51-16T4
899e-040f-fc85-72eb
1156-ba66-a3f2-47b3
22f2-dce2-ce67-c8aa
9131-3dd3-ceb6-c292
5022-bcea-5312-4348
468b-bb7e-f5f8-3936

Web Administration Interface

The CDKey SDK is supported by a full-featured web interface for
administering individual keys, batches of keys, and obtaining usage and
abuse reports. Multiple users from the publisher and developer can be
set up with accounts for secure access to the site.

Account Setup

Each user that requires access to the system will need to have an
account set up with specific permissions. To set up an account, contact
devsupport@gamespy.com.

You will need to specify the e-mail address of the user who needs
access, and the set of permissions they will be granted.

The following individual permissions are available:

View key reports
Allows the user to view any of the pages in the reports section
(detailed below)

Add new keys
Allows the user to add individual keys or batches of keys for the
game. Note that you will be billed for any keys added in
accordance with your licensing agreement.

Enable / Disable keys
Allows the user to enable or disable single keys or batches of keys

View key list
Allows the user to download a plain-text listing of all keys for in a
batch. This should only be used for testing and key list verification.

Requests to disable accounts should also be sent to
devsupport@gamespy.com.

Authentication is done via the GameSpyID system. All users should sign
up for a GameSpyID at www.gamespyid.com prior to contacting the
developer relations staff for account setup.

mailto:devsupport@gamespy.com
mailto:devsupport@gamespy.com
http://www.gamespyid.com/

Once the account has been set up, the developer relations team will
contact the user with the appropriate URL for accessing the admin
system.

Main Menu

After logging in to the CDKey Admin site, a menu of options will be
available, based on the permissions granted to the active account. Each
option is described in detail below.

View Key List

Selecting this option will allow you to select a batch of keys and
download them in a plaintext file, one key per line. This can be used to
verify the list of keys for a batch against other sources. Users must have
the "View key list" permission to access this page.

Enable / Disable Keys

This page allows an admin to enable or disable single keys or batches of
keys. On the top portion of the page is a list of key batches. Uncheck a
batch to disable the entire batch, or check it to enable. This can be used
to disable beta keys or press keys after they should no longer be used
(assuming those keys have been added as a separate batch).

The page also includes a text entry box where you can paste a list of
individual keys, one per line, to be disabled or enabled. Typically this is
used to disable keys from returned copies of games or when a known set
of keys needs to be disabled. The enable/disable keys permission is
required to use this page.

Add New Keys

Keys are added to the CDKey system in batches. Each batch has 1 or
more keys in it (typically thousands) and can have a name and comment
associated with it. For example, if you generate a separate list of keys for
each region your game will ship in, you can upload them and name them
individually. This allows you better control if the keys for one region or

pressing of your game are destroyed, and allows you to view some
reports broken up by the batch a key was in.

On the Add New Keys page you should specify a batch name and
comment, then select the keys to add. You can either upload an ASCII
list of keys from your hard drive (one key per line), or if you are adding
only a small number of keys, you can paste them into the provided text
box.

Keys can also be generated by providing a set of generation parameters.

A user must have the Add new keys permission to add a new batch of
keys.

Reports

The CDKey system includes a number of reports that will help keep you
informed about what is happening with your game online, research key
usage, and detect abused keys so they can be disabled.

Users must have the View key reports permission to view these reports.
Batch Information

The batch information report provides a summary of information about
the individual batches of keys that have been uploaded for you game.
Each batch has the following information provided for it:

Batch name
The name of the batch, provided when it was uploaded

Add date
The date the batch was first added to the system

Admin account
GameSpyID number of the admin who added the batch. You can
click this link to see the user details.

Comment
Comment that was provided when the batch was created (if any)

Disabled
Flag that shows whether the batch has been disabled

Total keys
Total number of keys for this batch

Total used keys
Number of distinct keys from the batch that have been used online
at least once

Total active keys
Number of distinct keys from the batch that have been used in the
last 30 days

A totals line is provide that sums the numbers from all batches.
Overall Usage

The overall usage report gives usage information for all batches of keys
between a range of dates. To generate the report, you select the start
date, end date, and data interval you are interested in.

Reports can be generated by hour, day, week, or month.
Each interval on the date range specified will contain the following data:

e Total number of authentication attempts on that date (valid or
invalid)

e Number of authentications that were denied due to an invalid
CDKey

e Number of authentications that failed due to the CDKey already
being online

e Number of keys that were authenticated for the first time on that
date (i.e. "new users")

e Number of authentication attempts for disabled CDKeys (may

include multiple for the same disabled key if multiple attempts were
made)

Key Information

The key information report allows you to specific a specific CDKey to get
information about it and its usage history. This report is also linked from
other reports to give additional information about a specific key. If the
user has Enable/Disable key rights, a button is available on this page to
disable the key (or re-enable it).

The following information is available about each key:

Enabled
Flag that indicates whether they key has been disabled

Origin Batch
Name of the CDKey batch that includes this key

Plain Key
The plain-text value of the key

Key Hash Value
The hashed version of the key (which is what is sent from client to
server)

Total Uses
The total number of successful authentications with this key

Total Conflicts
Total number of times someone attempted to use the key while it
was already in use

Recent Conflicts
Number of times the key was in conflict during a recent period of
time (currently 7 days).

Recent Use History
This list has the last 20 dates/times and client IP addresses that
used the key. It can help determine whether a key is being shared
by multiple users.

Abuse History
This list shows the last 100 instances of abuse for the key,
including a reason for the abuse (e.g. the key was already online),
and the client/server IPs that were involved in the conflict.

Disabled Keys

The disabled key report is used to view the list of recently disabled
CDKeys. The date and user that disabled the key are available, and a
link is provided to the key to view key information and re-enable the key if
desired.

Abuse Information

The Abuse Information report allows you to view the top keys in conflict
(e.g. someone attempted to use the key multiple times online at the same
time) on a specific range of dates. For example, you can set it for the
past week to see just the keys that were abused in the past week. The
keys are sorted from most abused to least, and a link is provided to the
key information page for the key, where the abuse can be investigated
and the key can be disabled.

File Manifest

The following files should be included with this package. If any of the files
are missing, please contact devsupport@gamespy.com.

File Description
gcdkeyc.c Client API code
gcdkeyc.h Client API Header file
md>5c.c MD5 Hash code
md>5.h MD5 Hash Header

gcdkeyclienttest.c Sample client application, talks to the sample
server application

gcdkeyclient.dsp DevStudio project for the Client API / sample

gcdkeys.c Server API code

gcdkeys.h Server API Header file

nonport.c System-dependant code (sockets, etc)
nonport.h Header for system-dependant code

gcdskeyservertest.c Sample server application, accepts connections
from sample client

gcdkeyserver.dsp DevStudio project for Server APl / sample
gcdkeygen.c Sample key generation / validation code
gcdkeygen.dsp DevStudio project for key gen sample
gcdkey.dsw DevStudio workspace with client, server, and

keygen projects

gcdkeyserver_qr2.dsp DevStudio project for Server APl / QR2
Integration sample

gcdkeyservertest_qr2.Sample server application, plus integration with
QR2 SDK

mailto:devsupport@gamespy.com

Implementation
Step 0: (Server) Initialize the CD Key API, Think, and Shutdown

Somewhere in your server startup code, call gcd_init with the game ID
you have been given to initialize the API sockets and structures. The
SDK supports using multiple game IDs simultaneously. You may need to
do this if, for example, you need to authenticate multiple CDKeys per-use
(e.g. one for the main game, one for a mission pack), or your game
server supports multiple products and needs to authenticate each
product separately.

In your main game / message loop, call gcd_think to allow the API to
process any pending authorization requests / messages. This function
should be called at least once every 10-100ms and is guaranteed not to
block (although it may make a callback if an authorization response has
come in). If your game uses the Query and Reporting 2 SDK, you can
place this call in the same area as the call to qr2_think.

In your server shutdown code call gcd_shutdown to release the socket
and send disconnect messages to the validation server for any clients still
on the server.

Step 1: (Server) Send a challenge string to the client

During the client connection process you need to send the client a
random challenge string. This challenge will be used as part of the
response hash. You will need to pass this challenge along with the user's
response to the gcd_authenticate_user function, so be sure to hold
onto it. The challenge string can by any combination of letters / digits. 6-8
characters should be adequate, and the string has a maximum limit of 32
characters.

Step 2: (Client) Respond to the challenge

When the client receives the challenge string it should calculate a
response using the gcd_compute_response function in the Client API.

Pass the client's CD key and the challenge string into the function and it

will return the response string, a 72 character ASCII string. Send this
response back to the server.

Step 3: (Server) Begin the authentication process

Once you have received the client's response, you can call
gcd_authenticate_user to send an authentication request.

void gcd_authenticate_user(int gameid, int localid,
unsigned int userip, char *challenge, char *response,
AuthCallBackFn authfn, RefreshAuthCallBackFn
refreshfn, void *instance);

gameid
the game ID issued for your game

localid

a unique int used to identify each client on the server. No two
clients should have the same localid.

userip
is the client's IP address, preferably in network byte order

challenge
the challenge string that was sent to the client

response
the response that the client received

authfn
a callback that is called when the user is either authorized or
rejected. This function will be called within two seconds of
gcd_authenticate user, even if the validation server hasn't
responded yet.

instance
any user-defined data you want to pass into the callback function
(e.g. an object or structure pointer, or NULL). The example server
uses this to pass in the array of client structures.

This function will return immediately, and you will have to wait until the
callback is triggered to determine whether the client is valid or not. During

this period (usually 100ms or less, but up to 2 sec max) you can hold the
client in a limbo-state, or allow them to enter the game (and disconnect
them if a negative response comes back).

Remember that you need to be calling gcd_think during this time, or
the callback will never be triggered. You should be calling gcd_think
even when not waiting for a callback, since it also handles processing on
"online" queries from the validation server.

Step 4: (Server) Create the Callback

You will need to create a callback function that is called once the
validation server responds with the client's authorization status (or a 2
second timeout occurs).

The prototype for this function is:

void AuthCallBackFn(int gameid, int localid, int
authenticated, char *errmsg, void *instance);

gameid
the game ID you requested authentication for

localid
the id that you passed into gcd_authenticate_user, and indicates
which user this callback is referring to (since multiple
authentication requests can be sent before the first is returned).

authenticated
a 1/0 value that indicates whether the user was authenticated or
not.

If the user was not authenticated, errmsg contains a descriptive
string of the reason (either CD Key not valid, or CD Key in use).
Errmsg is never NULL, so if there is no message it will be an empty
string.

instance
the user-defined data that you requested be passed to the callback

If the client was authenticated you should allow them to continue / enter

the game. If not, you should send an error message to the client and
disconnect / disable them. You do not need to call
gcd_disconnect_user (but you can) as they have already been
removed from the APIs internal structures.

Step 5: (Server) Create the reauth Callback

The server should have the reauth callback function defined for
reauthentications:

The prototype for this function is:

vold RefreshAuthCallBackFn(int gameid, int localid,
int hint, char *challenge, void *instance);

gameid
the the game id used to initialize the SDK with

localid
the index of the player

hint
a session id for a client used for reauthentication - this is the skey
passed into gcd_process_reauth

challenge
a challenge string used for reautentication

instance
the user-defined data that you requested be passed to the callback

This function will be called when the validation server requires proof that
a player is still online using the cd key being checked. The server needs
to send the challenge to the player via its own socket. The player must
call gcd_compute_response in order to create a new response. The
host/server in turn uses this response to call gcd_process_reauth so
that it can prove the client's existence. Otherwise the validation server
will consider that client offline.

Step 6: (Server) Call Disconnect when a user leaves

When a user disconnects / logs off the server you should call
gcd_disconnect_user immediately so that the validation server can
be notified that the user is now offline and the CD Key is marked as
available again. If you fail to call gcd_disconnect_user, the user may,
in some cases, have trouble connecting to another server (since the
validation server AND your game server both think the user is still

playing).

Don't be concerned about no notification being sent in the case of server
crashes / sudden shutdowns - a user will only be denied access if your
server is still responding and thinks the user is online. Any time a
"conflict” occurs (a user connects with a CD Key that appears to be in
use) the original server is contacted to double check that the user is still
connected. If the original server doesn't respond, or responds with a
negative, the new user is allowed to connect. Please note that this
"double check" is handled entirely by the API code, so if you don't notify
the API of a user disconnecting, the API will assume the user is still
online.

Query and Reporting 2 SDK Integration

As mentioned in the "How it Works" section, you have the option of
integrating the CDKey SDK with the Query and Reporting 2 SDK for
additional security on the game server. This integration causes the
CDKey SDK to use the networking code in the Query and Reporting 2
SDK for all incoming and outgoing data.

This provides two additional benefits to security:

e Any attempt to disable the CDKey validation code inside the server
binary will likely result in the disabling of the Query and Reporting
code - thus causing the server to not be listed on the master server
list.

e When the CDKey network code is integrated with the Query and
Reporting code, our backend can send special queries to the game
server to verify that it is authenticating CDKeys correctly. If these
checks fail, the server can be banned from the master server list
automatically.

Both of these features help prevent people from running public, "cracked"
servers that allow all clients to play on them without a valid CD Key. It is
still possible for someone to run a "private" cracked server by blocking all
network traffic to GameSpy's backend. However, that is really no different
than if they were running a LAN server with no Internet access - CDKey
validation would be disabled in that case anyway. Preventing cracked
servers from being listed on the master server will make it nearly
impossible for casual players to find any.

Enabling the Query & Reporting 2 integration is simple, and you should
generally enable it unless you have a specific reason not to.

To enable the integration:

1. Define the pre-compiler directive "QR2CDKEY_INTEGRATION" when
compiling the CD Key SDK. You can add this to the gcdkeys.h file,
or as a compiler option.

2. Callgcd_init_qr2 instead of gcd_init when initializing the CD

Key SDK. You will need to initialize the Query and Reporting 2 SDK
prior to calling gcd_init_qr2.

Finally, if you are using the Query and Reporting NAT proxy support to
share a socket between your game and the Query and Reporting 2 SDK,
you will need to pass all CDKey network traffic to the
gr2_parse_query function in addtion to the normal QR2 traffic. You
can identify CD Key network traffic by the first byte, which is always 0x3B

n,n
4

CD Key Client SDK Functions

gcd_compute_response

Calculates a response to a challenge string.

gcd_compute_response

Calculates a response to a challenge string.

void gcd_compute_response(
char * cdkey,
char * challenge,
char response[73],
CDResponseMethod method);

Routine Required Header
gcd_compute_response <gcdkeys.h>

Distribution
SDKZIP

Parameters

cdkey
[in] The client's CD key.

challenge
[in] The challenge string. Should be no more than 32 characters.

response
[out] Receives the computed response string.

method
[in] Enum listing the response method - set to either
CDResponseMethod_NEWAUTH or
CDResponseMethod REAUTH.

Remarks

When the client receives the challenge string it should calculate a
response using the gcd_compute_response function in the Client API.
Pass the client's CD key and the challenge string into the function and it
will return the response string, a 72 character ASCII string. Send this
response back to the server.

Section Reference: Gamespy CDKey SDK

CD Key Server SDK Functions

gcd_authenticate user
Sends an authentication request.

gcd_disconnect_all

Calls gcd_disconnect_user for each user still
online.

gcd_disconnect_user
Notify the validation server that a user has

disconnected.

gcd_getkeyhash
Returns the key hash for the given user.

gcd_init
Initializes the Server API and creates the sockets
and structures.

gcd_init_qr2

Initializes the Server API and integrates the
networking of the CDKey SDK with the Query &
Reporting 2 SDK.

gcd_process_reauth

Used to respond to a reauthentication request
made by the validation server proving the client is
still on.

gcd_shutdown

Release the socket and send disconnect
messages to the validation server for any clients
still on the server.

gcd_think
Processes any pending data from the validation

server and calls the callback to indicate whether a
client was authorized or not.

gcd_authenticate_user

Sends an authentication request.

void gcd_authenticate_user(
int gameid,
int /ocalid,
unsigned int userip,
char * challenge,
char * response,
AuthCallBackFn authfn,
RefreshAuthCallBackFn refreshfn,
void * instance);

Routine Required Header Distribution
gcd_authenticate user <gcdkeys.h> SDKZIP

Parameters

gameid
[in] The game ID issued for your game.

localid
[in] A unique int used to identify each client on the server. No two
clients should have the same localid.

userip
[in] The client's IP address, preferably in network byte order.

challenge
[in] The challenge string that was sent to the client. Should be no
more than 32 characters.

response
[in] The response that the client received.

authfn
[in] A callback that is called when the user is either authorized or
rejected.

refreshfn
[in] A callback called when the server needs to re-authorize a client
on the local host

instance
[in] Optional free-format user data for use by the callback.

Section Reference: Gamespy CDKey SDK

gcd_disconnect_all

Calls gcd_disconnect_user for each user still online.

void gcd_disconnect_all(

int gameid);
Routine Required Header Distribution
gcd_disconnect_all <gcdkeys.h> SDKZIP

Parameters

gameid
[in] The game ID issued for your game.

Section Reference: Gamespy CDKey SDK

gcd_disconnect_user

Notify the validation server that a user has disconnected.

void gcd_disconnect_user(

int gameid,

int /ocalid);
Routine Required Header Distribution
gcd_disconnect_user <gcdkeys.h> SDKZIP

Parameters

gameid
[in] The game ID issued for your game.

localid
[in] The unique int used to identify the user.

Section Reference: Gamespy CDKey SDK

gcd_getkeyhash
Returns the key hash for the given user.

char * gcd_getkeyhash(

int gameid,

int /ocalid);
Routine Required Header Distribution
gcd_getkeyhash <gcdkeys.h> SDKZIP

Return Value

Returns the key hash string, or an empty string if that user is not
connected.

Parameters
gameid
[in] The game ID issued for your game.

localid
[in] The unique int used to identify the user.

Remarks

The hash returned will always be the same for a given user. This makes it
useful for banning or tracking of users (used with the Tracking/Stats

SDK).

Section Reference: Gamespy CDKey SDK

gcd_init
Initializes the Server API and creates the sockets and structures.

int ged_init(
int gameid);

Routine Required Header Distribution
gcd_init <gcdkeys.h> SDKZIP

Return Value

Returns O if successful; non-zero if error.

Parameters

gameid
[in] The Game ID issued for your game.

Section Reference: Gamespy CDKey SDK

See Also: gcd_init_gr2

gcd_init_qr2

Initializes the Server API and integrates the networking of the CDKey
SDK with the Query & Reporting 2 SDK.

int gcd_init_qr2(
qr2_t grec,
int gameid);

Routine Required Header Distribution
gcd_init_qgr2 <gcdkeys.h> SDKZIP

Return Value

Returns O if successful; non-zero if error.

Parameters
qrec
[in] The intialized QR2 SDK object.

gameid
[in] The game ID issued for your game.

Remarks

You must initialize the Query & Reporting 2 SDK with gr2_init or
gr2_init_socket prior to calling this. If you are using multiple instances of
the QR2 SDK, you can pass the specific instance information in via the
"grec" argument. Otherwise you can simply pass in NULL.

Section Reference: Gamespy CDKey SDK

See Also: gcd_init

gcd_process_reauth

Used to respond to a reauthentication request made by the validation
server proving the client is still on.

void gcd_process_reauth(
int gameid,
int /ocalid,
int skey,
const char * response);

Routine Required Header Distribution
gcd_process_reauth <gcdkeys.h> SDKZIP

Parameters
gameid
[in] The game ID used to initialize the SDK with

localid
[in] An index of the client

skey
[in] The client's session key that came from the validation server

response
[in] The client's response to the challenge

Remarks

When the Reauthentication callback (passed to gcd_ authenticate user)
is called, the host/server must send the required information to verify that
the client is still online, using the CD Key being checked. This should be
called after the client has computed a response to the challenge coming
from the callback.

Section Reference: Gamespy CDKey SDK

gcd_shutdown

Release the socket and send disconnect messages to the validation
server for any clients still on the server.

void gcd_shutdown();

Routine Required Header Distribution
gcd_shutdown <gcdkeys.h> SDKZIP

Section Reference: Gamespy CDKey SDK

gcd_think

Processes any pending data from the validation server and calls the
callback to indicate whether a client was authorized or not.

void gcd_think();

Routine Required Header Distribution
gcd_think <gcdkeys.h> SDKZIP

Remarks

This function should be called at least once every 10-100ms and is
guaranteed not to block (although it may make a callback if an
authorization response has come in). If your game uses the Query and
Reporting SDK, you can place this call in the same area as the call to
gr_process_queries.

Section Reference: Gamespy CDKey SDK

CD Key Server SDK Callbacks

AuthCallBackFn

Called when the user is either authorized or
rejected.

RefreshAuthCallBackFn
Used to reauthenicate a client for the purpose of

proving a client is still online.

AuthCallBackFn

Called when the user is either authorized or rejected.

typedef void (*AuthCallBackFn)(
int gameid,
int /ocalid,
int authenticated,
char * errmsg,
void * instance);

Routine Required Header Distribution
AuthCallBackFn <gcdkeys.h> SDKZIP

Parameters

gameid
[in] The game ID for which authentication is requested.

localid
[in] The id that was passed into gcd_authenticate_user.

authenticated
[in] Indicates whether the user was authenticated: 1 if authenticated;

0 if not.

errmsg
[in] Error message if user was not authenticated.

instance
[in] The same instance as was passed into the
gcd_authenticate user.

Remarks

This function will be called within two seconds of gcd_authenticate user,
even if the validation server hasn't responded yet.

If the user was not authenticated, the errmsg parameter contains a
descriptive string of the reason (either CD Key not valid, or CD Key in
use).

Section Reference: Gamespy CDKey SDK

RefreshAuthCallBackFn

Used to reauthenicate a client for the purpose of proving a client is still
online.

typedef void (*RefreshAuthCallBackFn)(
int gameid,
int /ocalid,
int hint,
char * challenge,
void * instance);

Routine Required Header Distribution
RefreshAuthCallBackFn <gcdkeys.h> SDKZIP

Parameters

gameid
[in] the game ID used to initialize the SDK with

localid
[in] the index of the player

hint
[in] a session id for a client used for reauthentication - this is the skey
passed into gcd_process_reauth

challenge
[in] a challenge string used for reautentication

instance
[in] user data passed in gcd_authenticate_user

Remarks

The reauthentication callback will be called any time the validation server
wishes to determine if a client is still online. When called, the client index,
challenge, and session key will be available. These values must be used
to reauthenticate the user. Remember that this process is similar to the
primary authentication process, where the only difference is that the
validation server provides the challenge and session key (note: the "hint"
parameter in this callback is the session key that should be passed as
the "skey" value into gcd_process_reauth).

Section Reference: Gamespy CDKey SDK

CD Key SDK Enumerations

CDResponseMethod

Values are passed to the gcd_compute_response
function done client side.

CDResponseMethod

Values are passed to the gcd_compute_response function done client
side.

typedef enum

{
CDResponseMethod_NEWAUTH,

CDResponseMethod_REAUTH
} CDResponseMethod;

Constants

CDResponseMethod_NEWAUTH
Used for primary authentications.

CDResponseMethod_REAUTH
Used for re-authentications.

Section Reference: Gamespy CDKey SDK

Chat SDK

Overview

The GameSpy Chat SDK is a portable ANSI-C API used to write chat
clients. The current implementation works with IRC servers, however it
could be re-implemented to work on another chat network without having
to change any user code. The Chat SDK provides an easy way to allow
your game's players to chat online. There are no libraries or DLLs to deal
with; just add the source files to your project and you're ready to go.

The Chat SDK only deals with data. You will be responsible for creating
all the GUI elements that are required for chatting within your game.

Chat Nicknames have a few restrictions based on IRC standards and
server requirements. The character limit for chat nicks is 20 characters.
The following are the character restrictions:

e The first character cannot be any of the following: +, @, #, :
e Numeric characters are only allowed after the first character.

e All characters in the ASCII character range 34-126 are valid except
for character 92.

File Manifest

The following files should be included with this package. If any of the files
are missing, please contact devsupport@gamespy.com.

File Description

chat.h GameSpy Chat header (all user functions are
prototyped here)

chatMain.c Entry point for all user Chat functions
chatMain.h Common header for internal code
chatSocket.c Implementation of a network-level connection to
a chat server

chatSocket.h Header for chat socket functions
chatHandlers.c Code for handling IRC messages
chatHandlers.h Header for callback handling functions
chatCallbacks.c Code for queueing and calling callbacks
chatCallbacks.h Header for callback handling function
chatChannel.c Code for dealing with chat channels and the
users in the channels

chatChannel.h Header for accessing and manipulating the
channel and user data

nonport.c Platform-specific code

nonport.h Platform-specific header

hashtable.c Hastable implementation

hashtable.h Hashtable headers

darray.c Dynamic-Array implementation

darray.h Dynamic-Array headers

mailto:devsupport@gamespy.com

Implementation
Connecting

The first thing to do with Chat is to connect to a server. This is done with
either chatConnect, chatConnectSpecial, or
chatConnectSecure. Most application will use chatConnect
chatConnectSpecial is used to fill in the user field after the local
machine's IP address is known, and chatConnectSecure is used to
encrypt the connection.

CHAT chatConnect(const char * serverAddress, int port,
const char * nick, const char * user, const char *
name, chatGlobalCallbacks * callbacks,
chatNickErrorCallback nickErrorCallback,
chatConnectCallback connectCallback, void * param,
CHATBool blocking)

CHAT chatConnectSpecial(const char * serverAddress,
int port, const char * nick, const char * name,
chatGlobalCallbacks * callbacks, chatNickErrorCallback
nickErrorCallback, chatFillInUserCallback
fillInUserCallback, chatConnectCallback
connectCallback, void * param, CHATBool blocking)

CHAT chatConnectSecure(const char * serverAddress, int
port, const char * nick, const char * name, const char
* gamename, const char * secretKey,
chatGlobalCallbacks * callbacks, chatNickErrorCallback
nickErrorCallback, chatFillInUserCallback
fillInUserCallback, chatConnectCallback
connectCallback, void * param, CHATBool blocking)

serverAddress
the IP address and port of the chat server to which to connect

port
the port of the chat server to which to connect

nick
the connecting user's nickname

user
the user's username. This is only used with chatConnect.

name
the user's real name or any other optional info

gamename, secret key
used with chatConnectSecure, which is used to encrypt all
traffic with the chat server.

The gamename and secretKey are application-specific - if you are
unsure what your gamename and secretKey are, contact
devsupport@gamespy.com.

callbacks
a pointer to a structure which contains a list of global callbacks to
be associated with this connection. The structure also contains a
"param” member which is of type pointer to void (void *). This
param is passed in as the last argument to all global callbacks.

chatConnect returns a CHAT object. This represents the connection to
the chat server. If the return value is NULL, then there was an error
establishing the connection.

Connecting should look something like this:

int CMyGame: :0OnConnect(...)

{
m_chat = chatConnect("irc.mygame.com", 6667,
if(m_chat == NULL)
Error();
}

Disconnecting

When the chat connection is ready to be disconnected, just call the
chatDisconnect function:

mailto:devsupport@gamespy.com

void chatDisconnect(CHAT chat)

This will terminate the connection to the chat server. The chat object
cannot be used again. To establish a new connection, chatConnect
must be called again. chatDisconnect should always be called to
cleanup a connection - the only exception is when chatConnect returns
NULL.

Processing

A chat connection must be periodically processed. This is done by calling
chatThink:

void chatThink(CHAT chat)

When a connection is processed, it sends any queued outgoing data,
reads incoming data, and calls any callbacks generated by the incoming
data. This function can be called in an applications main or idle loop. It
should be called at least once a second, but it is not necessary to call it
more than several times a second (although calling it more often will do
no harm).

Entering A Channel

To join a channel, call chatEnterChannel. This function will enter an
existing channel if it exists or create a new channel and enter it if it does
not exist.

void chatEnterChannel(CHAT chat, const char * channe

chat
the same CHAT object returned by the call to chatConnect

channel
the channel that we are trying to enter

password
the password required to enter the channel. If no password is

required, this can either be NULL or an empty string.

blocking
determines if this function should block until the enter attemp has
been completed or if it should be returned immediately. In either
case, "callback" will be called when the attemp is completed.

Leaving A Channel

To leave a channel, just call chatLeaveChannel:
void chatLeaveChannel(CHAT chat, const char * channe

This will take you out of the given channel.

UNICODE Support

The GameSpy SDKs support an optional UNICODE interface for
widestring applications. To use this interface, first define the symbol
"GSI_UNICODE". Then, use widestrings wherever ANSI strings were
previously called for. When in doubt, please refer to the header files for
specific function declarations.

Although the GameSpy SDK interfaces support UNICODE parameters,
some items may be stripped of their extra UNICODE information. These
items include: nickname, email address, and URL strings. You may pass
in widestring values, but they will first be converted to their ANSI
counterparts before transmission.

Chat SDK Functions

chatAddChannelBan

Ban a nickname from the specified
channel. Local client must have
moderator privileges.

chatAuthenticateCDKey

Allows pre-chat cd key authentication via
the chat server.

chatBanUser

Ban a user from the chat room. The user
may not rejoin.

chatChangeNick

Change the chat nickname associated
with the local client. This does not affect
the account name.

chatConnect

The chatConnect function initializes the
Chat SDK and initiates a connection to
the chat server.

chatConnectLogin

Initializes the Chat SDK and initiates a
connection to the chat server. The
chatConnectLogin function provides the
ability to login to chat using a registered
unique nickname.

chatConnectPreAuth

Initializes the Chat SDK and initiates a
connection to the chat server. The
chatConnectPreAuth function provides the
ability to specify authtoken and
partnerchallenge. (Not for common use).

chatConnectSecure

Initializes the Chat SDK and initiates a
connection to the chat server. The
chatConnectSecure function encrypts the
connection.

chatConnectSpecial

Initializes the Chat SDK and initiates a
connection to the chat server. The
chatConnectSpecial function provides
ability to fill in the user field after the local
machine’s IP address is known.

chatDisconnect

Disconnect from the chat server. Performs
necessary cleanup of the Chat SDK

chatEnterChannel

Joins a chat channel.

chatEnumChannelBans

Retrieves a list of clients banned from a
channel.

chatEnumChannels

Enumerates the chat channels on the
server.

chatEnumJoinedChannels

Enumerates the chat channels on the
server which the local client has joined.

chatEnumUsers

Retrieves the list of users in the specified
channel.

chatFixNick

Repairs an illegal chat nickname.

chatGetBasicUserlnfo

Retrieves basic information on the
specified user.

chatGetBasicUserInfoNoWait

Retrieves basic information on the
specified user. Information is returned
through function parameters.

chatGetChannelBasicUserlnfo

Retrieves basic user info for every
member of the specified channel.

chatGetChannelKeys

Retrieves a list of key/value pairs for a
channel or user.

chatGetChannelMode

Retrieves the "mode" of a channel.

chatGetChannelNumUsers

Returns the number of users in the
already joined channel. This is a cached
value, and not a server query.

chatGetChannelPassword

Queries the server for the specified
channel’s password.

chatGetChannelTopic

Queries the server for the specified
channel’s topic. Also known as the room
description.

chatGetGlobalKeys

Retrieves a list of global keys for a single
user, or all users.

chatGetNick

Gets the chat nickname of the local client.
This may not be the same as the profile

nickname.

chatGetProfilelD

Gets the profile id of the local client.

chatGetUserID

Gets the user id of the local client.

chatGetUserlInfo

Gets information on the specified user.

chatGetUserMode

Get the mode of a user in a specified
channel.

chatGetUserModeNoWait

Get the mode of a user in a specified
channel, returning it through a function
parameter.

chatinChannel

Determine whether the local client is a
member of the specified channel.

chatlnviteUser

Invite a user to join a channel.

chatKickUser

Forcefully remove a user from a specified

channel.

chatLeaveChannel

Leave a chat channel.

chatRegisterUnigueNick

Registers a unique nick to the local client

and cdkey.

chatRemoveChannelBan

Removes a banned player from a

channel's ban list. This will once again
allow the user to join the channel.

chatRetryWithNick

Use in response to a nickErrorCallback.
This function allows the local client to retry
the connection attempt with a different
chat nickname.

chatSendChannelMessage

Send a message to all members of the
specified channel.

chatSendRaw
Send a raw command to the chat server.
This does not automatically send to a
player.

chatSendUserMessage

Send a private message to a user.

chatSetChannelGroup

Assign a user-defined grouping to a
channel. The group is a string identifier
which is linked to the channel.

chatSetChannelKeys

Set key/values on a channel or the local
user.

chatSetChannelLimit

Set the maximum number of users
allowed in a channel.

chatSetChannelMode

Set a channel’s mode.

chatSetChannelPassword

Sets or clears a password on the
specified channel.

chatSetChannelTopic

Set the topic (description) of a chat
channel.

chatSetGlobalKeys

Set key/values on the local client.

chatSetQuietMode

Sets the chat sdk to quiet mode or
disables quiet mode.

chatSetUserMode
Set the IRC mode of the specified user.
This mode is applied in the specified
channel.

chatThink

Allow the Chat SDK to continue
processing.

chatTranslateNick

Removes the namespace extension from
a nickname. Use this when working with
unique nicknames in a public chat room.

chatAddChannelBan

Ban a nickname from the specified channel. Local client must have
moderator privileges.

void chatAddChannelBan(
CHAT chat,
const gsi_char * channel,
const gsi_char * ban);

Routine Required Header Distribution
chatAddChannelBan <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the

chatConnect methods.

channel
[in] Name of chat channel from which user is being banned.

ban
[in] Chat nickname of user being banned.

Unicode Mappings

GSI _UNICODE Not GSI_UNICODE
Defined Defined

chatAddChannelBan chatAddChannelBanA chatAddChannelBanW

Routine

chatAddChannelBanW and chatAddChannelBanA are UNICODE and
ANSI mapped versions of chatAddChannelBan. The arguments of
chatAddChannelBanA are ANSI strings; those of
chatAddChannelBanW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatAuthenticateCDKey

Allows pre-chat cd key authentication via the chat server.

void chatAuthenticateCDKey/(
CHAT chat,
const gsi_char * cdkey,
chatAuthenticateCDKeyCallback callback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatAuthenticateCDKey <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

cdkey
[in] CD key to validate; should be a valid CD key for the set game

title.

callback
[in] Optional user-supplied function to be called when the operation
has completed.

param
[in] Optional pointer to user data; will be passed unmodified to the
callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Remarks

The chatAuthenticateCDKey function may be used to authenticate a
user’s cdkey before they enter the chat room. This should not be a
substitute for a cdkey during gameplay. Arcade does not support this call,
so users in Arcade will be able to enter chat without this validation. This
method most usefull for developers who opt-out of the Arcade
compatability requirements or have a separate chat area for in-game
clients.

Unicode Mappings

GSI_UNICODE Not
Defined

chatAuthenticateCDKey chatAuthenticateCDKeyA chatAuthenticateCDKe

Routine GSI| _UNICODE Define

chatAuthenticateCDKeyW and chatAuthenticateCDKeyA are
UNICODE and ANSI mapped versions of chatAuthenticateCDKey. The
arguments of chatAuthenticateCDKeyA are ANSI strings; those of
chatAuthenticateCDKeyW are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: ChatConnect

chatBanUser

Ban a user from the chat room. The user may not rejoin.

void chatBanUser(
CHAT chat,
const gsi_char * channel,
const gsi_char * user);

Routine Required Header Distribution
chatBanUser <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of chat channel from which user is being banned.

user
[in] Chat nickname of user being banned.

Remarks

The caller of this function must have operator privileges for the channel in
which the ban is to be performed.

Unicode Mappings

. GSI _UNICODE Not GSI UNICODE
Routine Defined Defined
chatBanUser chatBanUserA chatBanUserW

chatBanUserW and chatBanUserA are UNICODE and ANSI mapped
versions of chatBanUser. The arguments of chatBanUserA are ANSI
strings; those of chatBanUserW are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: ChatConnect

chatChangeNick

Change the chat nickname associated with the local client. This does not
affect the account name.

void chatChangeNick(
CHAT chat,
const gsi_char * newNick,
chatChangeNickCallback callback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatChangeNick <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

newNick
[in] Nickname to assign to the local user.

callback
[in] Optional user-supplied function to be called when the operation

has completed.

param
[in] Optional pointer to user data; will be passed unmodified to the

callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Remarks

The chatChangeNick function may be used to change a user’s
nickname as it appears in chat. This has no affect on GameSpy profile
names such as those used for presence detection and buddy lists. Only
one instance of a nickname may be in use at a time.

Unicode Mappings

. GSI_UNICODE Not GSI_UNICODE
Routine Defined Defined
chatChangeNick chatChangeNickA chatChangeNickW

chatChangeNickW and chatChangeNickA are UNICODE and ANSI
mapped versions of chatChangeNick. The arguments of
chatChangeNickA are ANSI strings; those of chatChangeNickW are
wide-character strings.

Section Reference: Gamespy Chat SDK

chatConnect

The chatConnect function initializes the Chat SDK and initiates a
connection to the chat server.

CHAT chatConnect(
const gsi_char * serverAddress,
int port,
const gsi_char * nick,
const gsi_char * user,
const gsi_char * name,
chatGlobalCallbacks * callbacks,
chatNickErrorCallback nickErrorCallback,
chatConnectCallback connectCallback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatConnect <chat.h> SDKZIP

Return Value

This function returns the initialized Chat SDK interface. A return value of
NULL indicates an error.

Parameters

serverAddress
[in] Address of the chat server being connect to; usually
"peerchat.gamespy.com”.

port
[in] Port of the chat server; usually 6667.

nick
[in] Nickname in use while chatting. Not associated with a user
account in any way.

user
[in] User’s username

name
[in] User’s real name, or any other optional info.

callbacks
[in] Structure for specifying global handlers.

nickErrorCallback
[in] Optional user-supplied function to be called if nickname is invalid
or in use.

connectCallback
[in] Optional user-supplied function to be called when the operation
has completed.

param
[in] Optional pointer to user data; will be passed unmodified to the
callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Remarks

The server address and port for the connect functions can be left empty.
In other words, serverAddress can be NULL, and the port can be
specified to be 0. The SDK will automatically take care of using the
default address and port.

Unicode Mappings

Routine OS-UNICODE Not GSI_UNICODE Defined
Defined
chatConnect chatConnectA chatConnectW

chatConnectW and chatConnectA are UNICODE and ANSI mapped
versions of chatConnect. The arguments of chatConnectA are ANSI
strings; those of chatConnectW are wide-character strings.

Example

int CMyGame::0nConnect(..)

{
m_chat = chatConnect(“irc.mygame.com”, 6667, “nick”, “user”, “en
if (m_chat == NULL)
Error();
3

Section Reference: Gamespy Chat SDK

See Also: chatConnectlLogin, chatConnectPreAuth, chatConnectSecure,
chatConnectSpecial

chatConnectLogin

Initializes the Chat SDK and initiates a connection to the chat server. The
chatConnectLogin function provides the ability to login to chat using a
registered unique nickname.

CHAT chatConnectLogin(
const gsi_char * serverAddress,
int port,
int namespacelD,
const gsi_char * email,
const gsi_char * profilenick,
const gsi_char * uniquenick,
const gsi_char * password,
const gsi_char * name,
const gsi_char * gamename,
const gsi_char * secretKey,
chatGlobalCallbacks * callbacks,
chatNickErrorCallback nickErrorCallback,
chatFillinUserCallback filllnUserCallback,
chatConnectCallback connectCallback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatConnectLogin <chat.h> SDKZIP

Return Value

This function returns the initialized Chat SDK interface. A return value of
NULL indicates an error.

Parameters

serverAddress
[in] Address of the chat server being connect to; usually
"peerchat.gamespy.com”.

port
[in] Port of the chat server; usually 6667.

namespacelD
[in] ID of the unique name namespace in which the users nickname
IS registered.

email
[in] E-mail address of the local client's GameSpy profile.

profilenick
[in] Nickname used when creating profile. May be different from the
registered unique nick.

uniquenick
[in] Unique nickname registered to the profile with which user is

logging in.
password
[in] Password of the GameSpy profile.

name
[in] User’s real name, or any other optional info.

gamename
[in] Assigned gamename from which the local client is logging in.

secretKey
[in] Assigned secret key for the specified gamename.

callbacks
[in] Structure for specifying global handlers.

nickErrorCallback
[in] Optional user-supplied function to be called if nickname is invalid
or in use.

fillinUserCallback
[in] Optional user-supplied function to be called when the SDK

requires the user name.

connectCallback
[in] Optional user-supplied function to be called when the operation
has completed.

param
[in] Optional pointer to user data; will be passed unmodified to the
callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Remarks

The server address and port for the connect functions can be left empty.
In other words, serverAddress can be NULL, and the port can be
specified to be 0. The SDK will automatically take care of using the
default address and port.

Unicode Mappings

i GSI_UNICODE Not GSI_UNICODE
Routine Defined Defined
chatConnectLogin chatConnectLoginA chatConnectLoginW

chatConnectLoginW and chatConnectLoginA are UNICODE and
ANSI mapped versions of chatConnectLogin. The arguments of
chatConnectLoginA are ANSI strings; those of chatConnectLoginW
are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: chatConnect, chatConnectPreAuth, chatConnectSecure,
chatConnectSpecial

chatConnectPreAuth

Initializes the Chat SDK and initiates a connection to the chat server. The
chatConnectPreAuth function provides the ability to specify authtoken
and partnerchallenge. (Not for common use).

CHAT chatConnectPreAuth(
const gsi_char * serverAddress,
int port,
const gsi_char * authtoken,
const gsi_char * partnerchallenge,
const gsi_char * name,
const gsi_char * gamename,
const gsi_char * secretKey,
chatGlobalCallbacks * callbacks,
chatNickErrorCallback nickErrorCallback,
chatFillinUserCallback filllnUserCallback,
chatConnectCallback connectCallback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatConnectPreAuth <chat.h> SDKZIP

Return Value

This function returns the initialized Chat SDK interface. A return value of
NULL indicates an error.

Parameters

serverAddress
[in] Address of the chat server to connect to; usually
"peerchat.gamespy.com”.

port
[in] Port of the chat server; usually 6667.
authtoken
[in] Authentication token for this login.
partnerchallenge
[in] Partner challenge for this login.
name
[in] The user’s real name, or any other optional info.
gamename
[in] GameName of the title this client is connecting from.
secretKey
[in] Assigned secret key for the specified gamename.
callbacks
[in] Structure for specifying global handlers.
nickErrorCallback
[in] Optional user-supplied function to be called if nickname is invalid
or in use.
fillinUserCallback
[in] Optional user-supplied function to be called when the SDK
requires the user name.
connectCallback
[in] Optional user-supplied function to be called when the operation
has completed.
param

[in] Optional pointer to user data; will be passed unmodified to the
callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;

otherwise, return immediately.

Remarks

The server address and port for the connect functions can be left empty.
In other words, serverAddress can be NULL, and the port can be
specified to be 0. The SDK will automatically take care of using the
default address and port.

Unicode Mappings

GSI _UNICODE Not GSI _UNICODE
Defined Defined

chatConnectPreAuth chatConnectPreAuthA chatConnectPreAuthW

Routine

chatConnectPreAuthW and chatConnectPreAuthA are UNICODE and
ANSI mapped versions of chatConnectPreAuth. The arguments of
chatConnectPreAuthA are ANSI strings; those of
chatConnectPreAuthW are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: chatConnect, chatConnectLogin, chatConnectSecure,
chatConnectSpecial

chatConnectSecure

Initializes the Chat SDK and initiates a connection to the chat server. The
chatConnectSecure function encrypts the connection.

CHAT chatConnectSecure(
const gsi_char * serverAddress,
int port,
const gsi_char * nick,
const gsi_char * name,
const gsi_char * gamename,
const gsi_char * secretKey,
chatGlobalCallbacks * callbacks,
chatNickErrorCallback nickErrorCallback,
chatFillinUserCallback filllnUserCallback,
chatConnectCallback connectCallback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatConnectSecure <chat.h> SDKZIP

Return Value

Returns the initialized Chat SDK interface. A return value of NULL
indicates an error.

Parameters

serverAddress
[in] Address of the chat server to connect to; usually
"peerchat.gamespy.com”.

port
[in] Port of the chat server; usually 6667.

nick
[in] Nickname in use while chatting. Not associated with a user
account in any way.

name
[in] User’s real name, or any other optional info.

gamename
[in] GameName of the title this client is connecting from.

secretKey
[in] Assigned secret key for the specified gamename.

callbacks
[in] Structure for specifying global handlers.

nickErrorCallback
[in] Optional user-supplied function to be called if nickname is invalid
or in use.

fillinUserCallback
[in] Optional user-supplied function to be called when the SDK
requires the user name.

connectCallback
[in] Optional user-supplied function to be called when the operation
has completed.

param
[in] Optional pointer to user data; will be passed unmodified to the
callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Remarks

The server address and port for the connect functions can be left empty.
In other words, serverAddress can be NULL, and the port can be
specified to be 0. The SDK will automatically take care of using the
default address and port.

Unicode Mappings

GSI_UNICODE Not GSI _UNICODE
Defined Defined

chatConnectSecure chatConnectSecureA chatConnectSecureW

Routine

chatConnectSecureW and chatConnectSecureA are UNICODE and
ANSI mapped versions of chatConnectSecure. The arguments of
chatConnectSecureA are ANSI strings; those of chatConnectSecureW
are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: chatConnect, chatConnectLogin, chatConnectPreAuth,
chatConnectSpecial

chatConnectSpecial

Initializes the Chat SDK and initiates a connection to the chat server. The
chatConnectSpecial function provides ability to fill in the user field after
the local machine’s IP address is known.

CHAT chatConnectSpecial(
const gsi_char * serverAddress,
int port,
const gsi_char * nick,
const gsi_char * name,
chatGlobalCallbacks * callbacks,
chatNickErrorCallback nickErrorCallback,
chatFillinUserCallback filllnUserCallback,
chatConnectCallback connectCallback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatConnectSpecial <chat.h> SDKZIP

Return Value

This function returns the initialized Chat SDK interface. A return value of
NULL indicates an error.

Parameters

serverAddress
[in] Address of the chat server to connect to; usually
"peerchat.gamespy.com”.

port
[in] Port of the chat server; usually 6667.

nick
[in] Nickname in use while chatting. Not associated with a user
account in any way.

name
[in] User’s real name, or any other optional info.

callbacks
[in] Structure for specifying global handlers.

nickErrorCallback
[in] Callback that is triggered if nick is invalid or in use.

fillinUserCallback
[in] Optional user-supplied function to be called when the SDK
requires the user name.

connectCallback
[in] Optional user-supplied function to be called when the connection
attempt has completed.

param
[in] Optional pointer to user data; will be passed unmodified to the
callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Remarks

The server address and port for the connect functions can be left empty.
In other words, serverAddress can be NULL, and the port can be
specified to be 0. The SDK will automatically take care of using the
default address and port.

Unicode Mappings

GSI_UNICODE Not GSI _UNICODE
Defined Defined

chatConnectSpecial chatConnectSpecialA chatConnectSpecialW

Routine

chatConnectSpecialW and chatConnectSpecialA are UNICODE and
ANSI mapped versions of chatConnectSpecial. The arguments of
chatConnectSpecialA are ANSI strings; those of
chatConnectSpecialW are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: chatConnect, chatConnectLogin, chatConnectPreAuth,
chatConnectSecure

chatDisconnect

Disconnect from the chat server. Performs necessary cleanup of the Chat
SDK.

void chatDisconnect(
CHAT chat);

Routine Required Header Distribution
chatDisconnect <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

Remarks

The chatDisconnect function disconnects the SDK from the chat server
and performs necessary cleanup on the CHAT object. The CHAT object
Is invalid after this call has completed. To continue using the chat SDK
you must reinitialize using one of the chat connect methods.

Section Reference: Gamespy Chat SDK

See Also: ChatConnect

chatEnterChannel

Joins a chat channel.

void chatEnterChannel(
CHAT chat,
const gsi_char * channel,
const gsi_char * password,
chatChannelCallbacks * callbacks,
chatEnterChannelCallback callback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatEnterChannel <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel being joined.

password
[in] Password of the channel. Ignored if no password has been set.

callbacks
[in] Structure for specifying global handlers; for channel-specific
traffic such as user messages.

callback
[in] Optional user-supplied function to be called when the operation
has completed.

param
[in] Optional pointer to user data; will be passed unmodified to the
callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Remarks

The chatEnterChannel function is used to add the local client to a chat
channel. If the channel is password protected the valid password must
be supplied. Ifitis not, the callback will be triggered with an invalid
password result.

Unicode Mappings

) GSI_UNICODE Not GSI _UNICODE
Routine Defined Defined
chatEnterChannel chatEnterChannelA chatEnterChannelW

chatEnterChannelW and chatEnterChannelA are UNICODE and ANSI
mapped versions of chatEnterChannel. The arguments of
chatEnterChannelA are ANSI strings; those of chatEnterChannelW are
wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: ChatConnect, ChatDisconnect

chatEnumChannelBans

Retrieves a list of clients banned from a channel.

void chatEnumChannelBans(
CHAT chat,
const gsi_char * channel,
chatEnumChannelBansCallback callback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatEnumChannelBans <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel whose ban list is being retrieved.

callback
[in] Optional user-supplied function to be called when the operation
has completed; will be passed the list of banned clients.

param
[in] Optional pointer to user data; will be passed unmodified to the

callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Remarks

The local client must have operator privileges to execute this command.

Unicode Mappings

GSI_UNICODE Not
Defined

chatEnumChannelBans chatEnumChannelBansA chatEnumChannelBans

Routine GSI _UNICODE Define

chatEnumChannelBansW and chatEnumChannelBansA are
UNICODE and ANSI mapped versions of chatEnumChannelBans. The
arguments of chatEnumChannelBansA are ANSI strings; those of
chatEnumChannelBansW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatEnumChannels

Enumerates the chat channels on the server.

void chatEnumChannels(
CHAT chat,
const gsi_char * filter,
chatEnumChannelsCallbackEach callbackEach,
chatEnumChannelsCallbackAll callbackAll,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatEnumChannels <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

filter
[in] String comparision used to filter the channel results. Example
"#gsp!mygame!”. Use the "*" for the wildcard.

callbackEach
[in] Optional user-supplied function to be called once for each
channel in the list.

callbackAll
[in] Optional user-supplied function to be called once for the full
channel list.

param
[in] Optional pointer to user data; will be passed unmodified to the
callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Remarks

The chatEnumChannels function enumerates the chat channels which
match the currect search criteria. Typical information returned on each
channel includes the topic and number of users. The filter can contain
wildcards used to get all channels when passing in a partial name and

wildcard.

Unicode Mappings

GSI_UNICODE Not GSI _UNICODE
Defined Defined

chatEnumChannels chatEnumChannelsA chatEnumChannelsW

Routine

chatEnumChannelsW and chatEnumChannelsA are UNICODE and
ANSI mapped versions of chatEnumChannels. The arguments of
chatEnumChannelsA are ANSI strings; those of chatEnumChannelsW
are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: ChatConnect, ChatDisconnect

chatEnumJoinedChannels

Enumerates the chat channels on the server which the local client has
joined. .

void chatEnumJoinedChannels(
CHAT chat,
chatEnumJoinedChannelsCallback callback,
void * param);

Routine Required Header Distribution
chatEnumJoinedChannels <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the

chatConnect methods.

callback
[in] Optional user-supplied function to be called once for each

channel in the list.

param
[in] Optional pointer to user data; will be passed unmodified to the

callback function.

Remarks

For each channel, a channel index value is returned that may be used to
retrieve further information about the channel.

Section Reference: Gamespy Chat SDK

See Also: ChatConnect, ChatDisconnect, ChatEnumChannels

chatEnumUsers

Retrieves the list of users in the specified channel.

void chatEnumUsers(
CHAT chat,
const gsi_char * channel,
chatEnumUsersCallback callback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatEnumUsers <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel whose user list is being retrieved.

callback
[in] Optional user-supplied function to be called when the operation
has completed; will be passed the user list.

param
[in] Optional pointer to user data; will be passed unmodified to the

callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Unicode Mappings

. GSI _UNICODE Not GSI UNICODE
Routine Defined Defined
chatEnumUsers chatEnumUsersA chatEnumUserswW

chatEnumUsersW and chatEnumUsersA are UNICODE and ANSI
mapped versions of chatEnumUsers. The arguments of
chatEnumUsersA are ANSI strings; those of chatEnumUsersW are
wide-character strings.

Section Reference: Gamespy Chat SDK

chatFixNick

Repairs an illegal chat nickname.

void chatFixNick(
gsi_char * newNick,
const gsi_char * oldNick);

Routine Required Header
chatFixNick <chat.h>

Distribution
SDKZIP

Parameters

newNick
[out] Receives corrected nickname; may be identical to original
nickname if no issues are detected.

oldNick
[in] Nickname to be corrected or verified.

Remarks

The chatFixNick function replaces illegal characters in the nickname
with the underscore ("_") character. This function will also replace

leading numbers and illegal whitespace combinations.

Unicode Mappings

Routine GSI| _UNICODE Not Defined GSI_UNICODE Defined
chatFixNick chatFixNickA chatFixNickwW

chatFixNickW and chatFixNickA are UNICODE and ANSI mapped
versions of chatFixNick. The arguments of chatFixNickA are ANSI
strings; those of chatFixNickW are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: ChatConnect, ChatDisconnect

chatGetBasicUserIinfo

Retrieves basic information on the specified user.

void chatGetBasicUserInfo(
CHAT chat,
const gsi_char * user,
chatGetBasicUserInfoCallback callback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatGetBasicUserInfo <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

user
[in] User's assigned GameName.

callback
[in] Optional user-supplied function to be called when the operation
has completed; will be passed the user's info.

param
[in] Optional pointer to user data; will be passed unmodified to the

callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Remarks

The chatGetBasicUserInfo function is used to retrieve basic information
on a user. This information consists of the chat nickname, user profile
name, and IP address.

Unicode Mappings

GSI_UNICODE Not GSI _UNICODE
Defined Defined

chatGetBasicUserInfo chatGetBasicUserInfoA chatGetBasicUserInfowW

Routine

chatGetBasicUserinfoW and chatGetBasicUserInfoA are UNICODE
and ANSI mapped versions of chatGetBasicUserInfo. The arguments of
chatGetBasicUserInfoA are ANSI strings; those of
chatGetBasicUserInfoW are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: chatGetBasicUserInfoNoWait

chatGetBasicUseriInfoNoWait

Retrieves basic information on the specified user. Information is returned
through function parameters.

CHATBool chatGetBasicUserInfoNoWait(
CHAT chat,
const gsi_char * nick,
const gsi_char ** user,
const gsi_char ** address);

Routine Required Header Distribution
chatGetBasicUserInfoNoWait <chat.h> SDKZIP

Return Value

Returns CHAT True if info is available, CHATFalse otherwise.

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

nick
[out] Receives the user's nickname

user
[out] Receives the user's username

address
[out] Receives the user's IP address.

Remarks

chatGetBasicUserInfoNoWait is used to retrieve basic information on a
user. This information consists of the chat nickname, user profile name
and IP address.

Section Reference: Gamespy Chat SDK

See Also: chatGetBasicUserInfo

chatGetChannelBasicUserInfo

Retrieves basic user info for every member of the specified channel.

void chatGetChannelBasicUserInfo(
CHAT chat,
const gsi_char * channel,
chatGetChannelBasicUserInfoCallback callback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatGetChannelBasicUserIinfo <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel from which user information is being

retrieved

callback
[in] Optional user-supplied function to be called when the operation
has completed.

param
[in] Optional pointer to user data; will be passed unmodified to the
callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Remarks

The chatGetChannelBasicUserInfo function retreives basic information
for each of the users in the specified channel. The information returned
consists of the nickname, profilename and IP address.

Unicode Mappings

Routine GSI _UNICODE Not Defined GSI UNI(
chatGetChannelBasicUserInfo chatGetChannelBasicUserInfoA chatGetC

chatGetChannelBasicUserinfow and
chatGetChannelBasicUserinfoA are UNICODE and ANSI mapped
versions of chatGetChannelBasicUserinfo. The arguments of
chatGetChannelBasicUserIlnfoA are ANSI strings; those of
chatGetChannelBasicUserinfoW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatGetChannelKeys

Retrieves a list of key/value pairs for a channel or user.

void chatGetChannelKeys(
CHAT chat,
const gsi_char * channel,
const gsi_char * user,
int num,
const gsi_char ** keys,
chatGetChannelKeysCallback callback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatGetChannelKeys <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel from which key/value pairs are being
retrieved

user
[in] Name of the user whose key/value pairs are being retrieved, or
"*" to indicate the channel itself.

num
[in] Number of keys in the keys array.

keys
[in] Array of keys for which values will be returned.

callback
[in] Optional user-supplied function to be called when the operation
has completed.

param
[in] Optional pointer to user data; will be passed unmodified to the
callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Remarks

The chatGetChannelKeys function retrieves a list of key/value pairs for
the specified channel or user. If the user parameter is set to a user
nickname, key/value pairs will be returned only for the specified user. If
the user parameter is set to "*", values on the channel itself will be

returned.

Unicode Mappings

GSI _UNICODE Not GSI _UNICODE
Defined Defined

chatGetChannelKeys chatGetChannelKeysA chatGetChannelKeysW

Routine

chatGetChannelKeysW and chatGetChannelKeysA are UNICODE
and ANSI mapped versions of chatGetChannelKeys. The arguments of
chatGetChannelKeysA are ANSI strings; those of
chatGetChannelKeysW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatGetChannelMode

Retrieves the "mode" of a channel.

void chatGetChannelMode(
CHAT chat,
const gsi_char * channel,
chatGetChannelModeCallback callback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatGetChannelMode <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel whose mode is being retrieved.

callback
[in] User-supplied function to receive mode information.

param
[in] Optional pointer to user data; will be passed unmodified to the

callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Unicode Mappings

GSI_UNICODE Not GSI _UNICODE
Defined Defined

chatGetChannelMode chatGetChannelModeA chatGetChannelModeW

Routine

chatGetChannelModeW and chatGetChannelModeA are UNICODE
and ANSI mapped versions of chatGetChannelMode. The arguments of
chatGetChannelModeA are ANSI strings; those of
chatGetChannelModeW are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: CHATChannelMode, chatGetChannelModeCallback

chatGetChannelNumUsers

Returns the number of users in the already joined channel. Thisis a
cached value, and not a server query.

int chatGetChannelNumUsers(
CHAT chat,
const gsi_char * channel);

Routine Required Header Distribution
chatGetChannelNumuUsers <chat.h> SDKZIP

Return Value

Returns the number of users in the channel. If the local client has not
joined the channel, -1 will be returned.

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel whose user count is being retrieved.

Section Reference: Gamespy Chat SDK

chatGetChannelPassword

Queries the server for the specified channel’'s password.

void chatGetChannelPassword(
CHAT chat,
const gsi_char * channel,
chatGetChannelPasswordCallback callback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatGetChannelPassword <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel whose password is being retrieved.

callback
[in] Optional user-supplied function to be called when the operation
has completed.

param
[in] Optional pointer to user data; will be passed unmodified to the
callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Section Reference: Gamespy Chat SDK

See Also: chatSetChannelPassword

chatGetChannelTopic

Queries the server for the specified channel’s topic. Also known as the
room description.

void chatGetChannelTopic(
CHAT chat,
const gsi_char * channel,
chatGetChannelTopicCallback callback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatGetChannelTopic <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel whose topic is being retrieved.

callback
[in] Optional user-supplied function to be called when the operation

has completed.

param
[in] Optional pointer to user data; will be passed unmodified to the

callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Unicode Mappings

GSI UNICODE Not GSI _UNICODE
Defined Defined

chatGetChannelTopic chatGetChannelTopicA chatGetChannelTopicW

Routine

chatGetChannelTopicW and chatGetChannelTopicA are UNICODE
and ANSI mapped versions of chatGetChannelTopic. The arguments of
chatGetChannelTopicA are ANSI strings; those of
chatGetChannelTopicW are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: chatSetChannelTopic

chatGetGlobalKeys

Retrieves a list of global keys for a single user, or all users.

void chatGetGlobalKeys(
CHAT chat,
const gsi_char * target,
int num,
const gsi_char ** keys,
chatGetGlobalKeysCallback callback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatGetGlobalKeys <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

target
[in] Target name, or NULL to specify all users.

num
[in] Number of keys to retrieve for each target.

keys
[in] Array of key names to request values for.

callback
[in] Optional user-supplied function to be called when the operation
has completed.

param
[in] Optional pointer to user data; will be passed unmodified to the
callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Remarks

T.

Unicode Mappings

GSI_UNICODE Not GSI _UNICODE
Defined Defined

chatGetGlobalKeys chatGetGlobalKeysA chatGetGlobalKeysW

Routine

chatGetGlobalKeysW and chatGetGlobalKeysA are UNICODE and
ANSI mapped versions of chatGetGlobalKeys. The arguments of
chatGetGlobalKeysA are ANSI strings; those of chatGetGlobalKeysW
are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: chatSetGlobalKeys

chatGetNick

Gets the chat nickname of the local client. This may not be the same as
the profile nickname.

gsi_char * chatGetNick(
CHAT chat);

Routine Required Header Distribution
chatGetNick <chat.h> SDKZIP

Return Value

The nickname of the local client.

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

Unicode Mappings

Routine GSI| _UNICODE Not Defined GSI_UNICODE Defined
chatGetNick chatGetNickA chatGetNickW

chatGetNickW and chatGetNickA are UNICODE and ANSI mapped
versions of chatGetNick. The arguments of chatGetNickA are ANSI
strings; those of chatGetNickW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatGetProfilelD

Gets the profile id of the local client.

int chatGetProfilelD(

CHAT chat);
Routine Required Header Distribution
chatGetProfilelD <chat.h> SDKZIP

Return Value

Returns the profile id of the local client.

Parameters

chat
[in] Chat SDK object, previously initialized using chatConnectLogin
or chatConnectPreAuth.

Remarks

The chat SDK must have been initialized using chatConnectLogin or
chatConnectPreAuth.

Section Reference: Gamespy Chat SDK

See Also: chatConnectLogin, chatConnectPreAuth

chatGetUserID

Gets the user id of the local client.

int chatGetUserID(

CHAT chat);
Routine Required Header Distribution
chatGetUserID <chat.h> SDKZIP

Return Value

Returns the user id of the local client.

Parameters

chat
[in] Chat SDK object, previously initialized using chatConnectLogin
or chatConnectPreAuth.

Remarks

The chat SDK must have been initialized using chatConnectLogin or
chatConnectPreAuth.

Section Reference: Gamespy Chat SDK

chatGetUserInfo

Gets information on the specified user.

void chatGetUserInfo(
CHAT chat,
const gsi_char * user,
chatGetUserInfoCallback callback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatGetUserInfo <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

user
[in] User's chat nickname.

callback
[in] Optional user-supplied function to be called when the operation

has completed.

param
[in] Optional pointer to user data; will be passed unmodified to the

callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Remarks

The user nformation includes the user's profile nickname, username, real
name and address. The callback also contains the channels that this
user is a member of.

Unicode Mappings

. GSI _UNICODE Not GSI UNICODE
Routine Defined Defined
chatGetUserInfo chatGetUserInfoA chatGetUserInfow

chatGetUserinfoW and chatGetUserIinfoA are UNICODE and ANSI
mapped versions of chatGetUserInfo. The arguments of
chatGetUserInfoA are ANSI strings; those of chatGetUserlnfoW are
wide-character strings.

Section Reference: Gamespy Chat SDK

chatGetUserMode

Get the mode of a user in a specified channel.

void chatGetUserMode(
CHAT chat,
const gsi_char * channel,
const gsi_char * user,
chatGetUserModeCallback callback,
void * param,
CHATBool blocking);

Routine Required Header Distribution
chatGetUserMode <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel being inspected.

user
[in] User's chat nickname on that channel.

callback
[in] Optional user-supplied function to be called when the operation
has completed; will be passed user's mode.

param
[in] Optional pointer to user data; will be passed unmodified to the

callback function.

blocking
[in] If CHATTrue, return only after the operation has completed;
otherwise, return immediately.

Remarks

The chatGetUserMode function may be used to check a user's "mode"
in a specified chat channel. A mode may specify a channel operator.

Unicode Mappings

) GSI_UNICODE Not GSI _UNICODE
Routine Defined Defined
chatGetUserMode chatGetUserModeA chatGetUserModeW

chatGetUserModeW and chatGetUserModeA are UNICODE and ANSI
mapped versions of chatGetUserMode. The arguments of
chatGetUserModeA are ANSI strings; those of chatGetUserModeW are
wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: chatGetUserModeNoWait

chatGetUserModeNoWait

Get the mode of a user in a specified channel, returning it through a
function parameter.

CHATBool chatGetUserModeNoWait(
CHAT chat,
const gsi_char * channel,
const gsi_char * user,
int * mode);

Routine Required Header Distribution
chatGetUserModeNoWait <chat.h> SDKZIP

Return Value

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel being inspected.

user
[in] User's chat nickname on that channel.

mode
[out] Receives the mode of target user.

Remarks

The chatGetUserModeNoWait function may be used to check a user's
"mode" in a specified chat channel. A mode may specify a channel
operator.

Section Reference: Gamespy Chat SDK

See Also: chatGetUserMode

chatinChannel

Determine whether the local client is a member of the specified channel.

CHATBool chatinChannel(
CHAT chat,
const gsi_char * channel);

Routine Required Header Distribution
chatinChannel <chat.h> SDKZIP

Return Value

This function will return CHAT True if the local client is a member of the
specified channel, CHATFalse otherwise.

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel being inspected.

Remarks

The chatinChannel function checks the local list of channels to
determine whether the local client is a member. No communication with

the server is attempted during this call.

Unicode Mappings

) GSI _UNICODE Not GSI _UNICODE
Routine Defined Defined
chatinChannel chatinChannelA chatinChannelW

chatinChannelW and chatinChannelA are UNICODE and ANSI
mapped versions of chatinChannel. The arguments of chatinChannelA
are ANSI strings; those of chatinChannelW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatinviteUser

Invite a user to join a channel.

void chatlnviteUser(
CHAT chat,
const gsi_char * channel,
const gsi_char * user);

Routine Required Header
chatlnviteUser <chat.h>

Distribution
SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel to which the user is being invited.

user
[in] User's chat nickname.

Remarks

The chatlnviteUser function may be used to invite a user to a particular
chat room.

Unicode Mappings

. GSI _UNICODE Not GSI UNICODE
Routine Defined Defined
chatinviteUser chatlnviteUserA chatinviteUserwW

chatinviteUserW and chatinviteUserA are UNICODE and ANSI
mapped versions of chatlnviteUser. The arguments of chatinviteUserA
are ANSI strings; those of chatlnviteUserW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatKickUser

Forcefully remove a user from a specified channel. .

void chatKickUser(
CHAT chat,
const gsi_char * channel,
const gsi_char * user,
const gsi_char * reason);

Routine Required Header Distribution
chatKickUser <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel from which the user is being removed.

user
[in] User's chat nickname.

reason
[in] Optional text string that will be sent along with the kick message.
This message will appear in the user kick callback.

Remarks

The local client must have operator privileges to execute this command.

Unicode Mappings

. GSI _UNICODE Not GSI UNICODE
Routine Defined Defined
chatKickUser chatKickUserA chatKickUserw

chatKickUserW and chatKickUserA are UNICODE and ANSI mapped
versions of chatKickUser. The arguments of chatKickUserA are ANSI
strings; those of chatKickUserW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatLeaveChannel

Leave a chat channel.

void chatLeaveChannel(
CHAT chat,
const gsi_char * channel,
const gsi_char * reason);

Routine Required Header
chatLeaveChannel <chat.h>

Distribution
SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the

chatConnect methods.

channel
[in] Name of the chat channel being left.

reason
[in] Optional reason for leaving. This may be displayed to the

remaining users.

Remarks

The chatLeaveChannel function is used to remove the local client from a
chat channel.

Unicode Mappings

) GSI_UNICODE Not GSI _UNICODE
Routine Defined Defined
chatLeaveChannel chatLeaveChannelA chatLeaveChannelW

chatLeaveChannelW and chatLeaveChannelA are UNICODE and
ANSI mapped versions of chatLeaveChannel. The arguments of
chatLeaveChannelA are ANSI strings; those of chatLeaveChannelW
are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: ChatConnect, ChatDisconnect

chatRegisterUniqueNick
Registers a unique nick to the local client and cdkey.

void chatRegisterUniqueNick(
CHAT chat,
int namespacelD,
const gsi_char * uniquenick,
const gsi_char * cdkey);

Routine Required Header Distribution
chatRegisterUniqueNick <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

namespacelD
[in] ID of the namespace community. Assigned by GameSpy.

uniquenick
[in] Nickname being registered.

cdkey
[in] User's CD key; this uniquely identifies the account.

Remarks

The chatRegisterUniqueNick function should be used in response to a
chatNickErrorCallback. This function requests that a specified unique
nick be associated with the local client and cdkey. If an error occurs,
another chatNickErrorCallback will be trigged. Take care that this does
not result in an infinite loop.

Unicode Mappings

GSI_UNICODE Not
Defined

chatRegisterUniqueNick chatRegisterUniqueNickA chatRegisterUniqueNi

Routine GSI _UNICODE Defin

chatRegisterUniqueNickW and chatRegisterUniqueNickA are
UNICODE and ANSI mapped versions of chatRegisterUniqueNick. The
arguments of chatRegisterUniqueNickA are ANSI strings; those of
chatRegisterUniqueNickW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatRemoveChannelBan

Removes a banned player from a channel's ban list. This will once again
allow the user to join the channel.

void chatRemoveChannelBan(
CHAT chat,
const gsi_char * channel,
const gsi_char * ban);

Routine Required Header Distribution
chatRemoveChannelBan <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the

chatConnect methods.

channel
[in] Name of the chat channel whose ban list is being modified..

ban
[in] Nickname to remove from the ban list.

Unicode Mappings

GSI_UNICODE Not
Defined

chatRemoveChannelBan chatRemoveChannelBanA chatRemoveChanne

Routine GSI| _UNICODE Defi

chatRemoveChannelBanW and chatRemoveChannelBanA are
UNICODE and ANSI mapped versions of chatRemoveChannelBan. The
arguments of chatRemoveChannelBanA are ANSI strings; those of
chatRemoveChannelBanW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatRetryWithNick

Use in response to a nickErrorCallback. This function allows the local
client to retry the connection attempt with a different chat nickname.

void chatRetryWithNick(
CHAT chat,
const gsi_char * nick);

Routine Required Header Distribution
chatRetryWithNick <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

nick
[in] Alternate chat nickname

Remarks

The chatRetryWithNick function should be used in response to a
nickErrorCallback. Most often, this occurs when a requested nickname is
already in use. chatRetryWithNick should be called with an alternate
nickname such as "oldnick{1}" to continue the login process. If another
nickError occurs, the nickErrorCallback will be triggered again.

Unicode Mappings

GSI_UNICODE Not GSI _UNICODE
Defined Defined

chatRetryWithNick chatRetryWithNickA chatRetryWithNickW

Routine

chatRetryWithNickW and chatRetryWithNickA are UNICODE and
ANSI mapped versions of chatRetryWithNick. The arguments of
chatRetryWithNickA are ANSI strings; those of chatRetryWithNickW
are wide-character strings.

Section Reference: Gamespy Chat SDK

chatSendChannelMessage

Send a message to all members of the specified channel.

void chatSendChannelMessage(
CHAT chat,
const gsi_char * channel,
const gsi_char * message,

int type);

Routine Required Header Distribution
chatSendChannelMessage <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the

chatConnect methods.

channel
[in] Name of the chat channel to which the message is being sent.

message
[in] Message.

type
[in] One of the predefined chat types. Used to send chat, hidden

messages, notices, and other types.

Remarks

The chatSendChannelMessage function is used to send a message to
all users of a specified channel. The type of message that may be sent
can be chat, UTM, notices or actions.

Unicode Mappings

GSI_UNICODE Not
Defined

chatSendChannelMessage chatSendChannelMessageA chatSendChann

Routine GSI _UNICODE

chatSendChannelMessageW and chatSendChannelMessageA are
UNICODE and ANSI mapped versions of chatSendChannelMessage.
The arguments of chatSendChannelMessageA are ANSI strings; those
of chatSendChannelMessageW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatSendRaw

Send a raw command to the chat server. This does not automatically
send to a player.

void chatSendRaw(
CHAT chat,
const gsi_char * command);

Routine Required Header Distribution
chatSendRaw <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

command
[in] Raw command to send to the chat server.

Remarks

The chatSendRaw function may be used to send a raw command to the
server. Special care should be taken when using this command, as
undesired behavior may result from malformed command sequences. |If
in doubt, please contact developer support on the use of this command.

Unicode Mappings

. GSI _UNICODE Not GSI UNICODE
Routine Defined Defined
chatSendRaw chatSendRawA chatSendRaww

chatSendRawW and chatSendRawA are UNICODE and ANSI mapped
versions of chatSendRaw. The arguments of chatSendRawA are ANSI
strings; those of chatSendRawW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatSendUserMessage

Send a private message to a user.

void chatSendUserMessage(
CHAT chat,
const gsi_char * user,
const gsi_char * message,

int type);
Routine Required Header Distribution
chatSendUserMessage <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

user
[in] Nickname of the user to whom the private message is being

sent.

message
[in] Message; generally chat text, but may also be a raw data

message.

type
[in] One of the ChatType predefined types; can signify a chat
message or a raw data message.

Remarks

The chatSendUserMessage function to send a private message to a
specified user. The recipient does not need to be in the same room as

the sender.

Unicode Mappings

GSI_UNICODE Not
Defined

chatSendUserMessage chatSendUserMessageA chatSendUserMessage

Routine GSI| _UNICODE Define(

chatSendUserMessageW and chatSendUserMessageA are UNICODE
and ANSI mapped versions of chatSendUserMessage. The arguments
of chatSendUserMessageA are ANSI strings; those of
chatSendUserMessageW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatSetChannelGroup

Assign a user-defined grouping to a channel. The group is a string
identifier which is linked to the channel.

void chatSetChannelGroup(
CHAT chat,
const gsi_char * channel,
const gsi_char * group);

Routine Required Header Distribution
chatSetChannelGroup <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the

chatConnect methods.

channel
[in] Name of the chat channel to which a group is being assigned.

group
[in] Group string to assign to channel.

Remarks

The chatSetChannelGroup function may be used to attach a user-
defined string to a channel. This string exists locally and is not sent
across the network. This string may be used as a local grouping for
channels.

Unicode Mappings

GSI_UNICODE Not
Defined

chatSetChannelGroup chatSetChannelGroupA chatSetChannelGroupW

Routine GSI _UNICODE Defined

chatSetChannelGroupW and chatSetChannelGroupA are UNICODE
and ANSI mapped versions of chatSetChannelGroup. The arguments of
chatSetChannelGroupA are ANSI strings; those of
chatSetChannelGroupW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatSetChannelKeys

Set key/values on a channel or the local user.

void chatSetChannelKeys(
CHAT chat,
const gsi_char * channel,
const gsi_char * user,
int num,
const gsi_char ** keys,
const gsi_char ** values);

Routine Required Header Distribution
chatSetChannelKeys <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel whose keys are being set.

user
[in] User to assign keys to. May be NULL. Only channel operators
may set keys on other players.

num
[in] Number of key/value pairs being set.

keys
[in] Array of keys being set.

values
[in] Array of values being set, in the same order as their keys.

Remarks

The chatSetChannelKeys function may be used to set channel keys on
a member or on the channel itself. Only channel operators may set keys
on other players.

Unicode Mappings

GSI _UNICODE Not GSI _UNICODE
Defined Defined

chatSetChannelKeys chatSetChannelKeysA chatSetChannelKeysW

Routine

chatSetChannelKeysW and chatSetChannelKeysA are UNICODE and
ANSI mapped versions of chatSetChannelKeys. The arguments of
chatSetChannelKeysA are ANSI strings; those of
chatSetChannelKeysW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatSetChannelLimit

Set the maximum number of users allowed in a channel.

void chatSetChannelLimit(

CHAT chat,

const gsi_char * channel,

int limit);
Routine Required Header Distribution
chatSetChannelLimit <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the

chatConnect methods.

channel

[in] Name of the chat channel whose limit is being set.
limit

[in] Maximum number of users on channel.

Remarks

The chatSetChannelLimit function may be used to set the maximum
number of users on a chat room.

Unicode Mappings

GSI _UNICODE Not GSI _UNICODE
Defined Defined

chatSetChannelLimit chatSetChannelLimitA chatSetChannelLimitwW

Routine

chatSetChannelLimitW and chatSetChannelLimitA are UNICODE and
ANSI mapped versions of chatSetChannelLimit. The arguments of
chatSetChannelLimitA are ANSI strings; those of
chatSetChannelLimitW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatSetChannelMode

Set a channel’s mode.

void chatSetChannelMode(
CHAT chat,
const gsi_char * channel,
CHATChannelMode * mode);

Routine Required Header
chatSetChannelMode <chat.h>

Distribution
SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the

chatConnect methods.

channel
[in] Name of the chat channel whose mode is being set.

mode
[in] Properties to set on the target channel.

Remarks

The mode includes standard IRC properties such as "InviteOnly, Private
and Moderated".

Unicode Mappings

GSI _UNICODE Not GSI _UNICODE
Defined Defined

chatSetChannelMode chatSetChannelModeA chatSetChannelModeW

Routine

chatSetChannelModeW and chatSetChannelModeA are UNICODE
and ANSI mapped versions of chatSetChannelMode. The arguments of
chatSetChannelModeA are ANSI strings; those of
chatSetChannelModeW are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: CHATChannelMode, chatGetChannelMode

chatSetChannelPassword

Sets or clears a password on the specified channel.

void chatSetChannelPassword(
CHAT chat,
const gsi_char * channel,
CHATBool enable,
const gsi_char * password);

Routine Required Header
chatSetChannelPassword <chat.h>

Distribution
SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the

chatConnect methods.

channel
[in] Name of the chat channel whose password is being set.

enable
[in] If CHATTrue, enable the password; otherwise, disable.

password
[in] Password string which users must supply to join the channel.

Remarks

Set the value to NULL or " to clear the value.

Unicode Mappings

GSI_UNICODE Not
Defined

chatSetChannelPassword chatSetChannelPasswordA chatSetChannelPa

Routine GSI _UNICODE D¢

chatSetChannelPasswordW and chatSetChannelPasswordA are
UNICODE and ANSI mapped versions of chatSetChannelPassword.
The arguments of chatSetChannelPasswordA are ANSI strings; those
of chatSetChannelPasswordW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatSetChannelTopic
Set the topic (description) of a chat channel.

void chatSetChannelTopic(
CHAT chat,
const gsi_char * channel,
const gsi_char * topic);

Routine Required Header
chatSetChannelTopic <chat.h>

Distribution
SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the chat channel whose topic is being set.

topic
[in] Description of new topic.

Remarks

The chatSetChannelTopic function is used to set the topic (description)
of a chat channel. Some channels, such as the title and group rooms,

will not allow users to set the topic.

Unicode Mappings

GSI _UNICODE Not GSI _UNICODE
Defined Defined

chatSetChannelTopic chatSetChannelTopicA chatSetChannelTopicW

Routine

chatSetChannelTopicW and chatSetChannelTopicA are UNICODE
and ANSI mapped versions of chatSetChannelTopic. The arguments of
chatSetChannelTopicA are ANSI strings; those of
chatSetChannelTopicW are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: chatGetChannelTopic

chatSetGlobalKeys

Set key/values on the local client. .

void chatSetGlobalKeys(
CHAT chat,
int num,
const gsi_char ** keys,
const gsi_char ** values);

Routine Required Header
chatSetGlobalKeys <chat.h>

Distribution
SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the

chatConnect methods.

num
[in] Number of key/value pairs being set.

keys
[in] Array of keys being set.

values
[in] Array of values being set, in the same order as their keys.

Remarks

Set the value to NULL or " to clear the value.

Unicode Mappings

GSI_UNICODE Not GSI _UNICODE
Defined Defined

chatSetGlobalKeys chatSetGlobalKeysA chatSetGlobalKeysW

Routine

chatSetGlobalKeysW and chatSetGlobalKeysA are UNICODE and
ANSI mapped versions of chatSetGlobalKeys. The arguments of
chatSetGlobalKeysA are ANSI strings; those of chatSetGlobalKeysW
are wide-character strings.

Section Reference: Gamespy Chat SDK

chatSetQuietMode

Sets the chat sdk to quiet mode or disables quiet mode.

void chatSetQuietMode(
CHAT chat,
CHATBool quiet);

Routine Required Header Distribution
chatSetQuietMode <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

quiet
[in] If CHATTrue, enable quiet mode; otherwise, disable.

Remarks

The chatSetQuietMode function is used to toggle quiet mode. When in
quiet mode the chat SDK will not receive chat or other messages. This
allows the user to remain logged into chat without disrupting gameplay

with extraneous traffic.

Section Reference: Gamespy Chat SDK

chatSetUserMode

Set the IRC mode of the specified user. This mode is applied in the
specified channel.

void chatSetUserMode(
CHAT chat,
const gsi_char * channel,
const gsi_char * user,
int mode);

Routine Required Header Distribution
chatSetUserMode <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

channel
[in] Name of the user's chat channel.

user
[in] User's chat nickname on that channel.

mode
[in] User mode flags. See Remarks.

Remarks

The chatSetUserMode function may be used to set a user's mode in a
particular channel. Modes are used to track which users have operator
and speaking privileges.

The following user mode flags are defined:

CHAT_NORMAL -- Normal (no speaking privileges; no operator
privileges)

CHAT_VOICE -- User has speaking privileges.

CHAT_OP -- User has operator privileges.

User mode flags may be OR'ed together. CHAT_NORMAL is superseded
by any other user mode flag.

Unicode Mappings

) GSI_UNICODE Not GSI _UNICODE
Routine Defined Defined
chatSetUserMode chatSetUserModeA chatSetUserModeW

chatSetUserModeW and chatSetUserModeA are UNICODE and ANSI
mapped versions of chatSetUserMode. The arguments of
chatSetUserModeA are ANSI strings; those of chatSetUserModeW are
wide-character strings.

Section Reference: Gamespy Chat SDK

chatThink

Allow the Chat SDK to continue processing.

void chatThink(
CHAT chat);

Routine Required Header Distribution
chatThink <chat.h> SDKZIP

Parameters

chat
[in] Chat SDK object, previously initialized using one of the
chatConnect methods.

Remarks

All network communications, callbacks and other events will happen only
during this call. The frequency with which this method is called will affect
general performance on the SDK.

Section Reference: Gamespy Chat SDK

See Also: ChatConnect, ChatDisconnect

chatTranslateNick

Removes the namespace extension from a nickname. Use this when
working with unique nicknames in a public chat room.

const gsi_char * chatTranslateNick(
gsi_char * nick,
const gsi_char * extension);

Routine Required Header Distribution
chatTranslateNick <chat.h> SDKZIP

Return Value

Returns the nickname, stripped of the namespace identifier.

Parameters

nick
[in] Current nickname.
extension

[in] Game extension; will be removed from the nickname. Assigned
by GameSpy.

Remarks

Nicknames that are registered in a game’s namespace will include an
indentifying extension, such as "-gspy". This extension should not be
displayed to the user, but should be stripped before display.

Unicode Mappings

) GSI_UNICODE Not GSI _UNICODE
Routine Defined Defined
chatTranslateNick chatTranslateNickA chatTranslateNickW

chatTranslateNickW and chatTranslateNickA are UNICODE and ANSI
mapped versions of chatTranslateNick. The arguments of
chatTranslateNickA are ANSI strings; those of chatTranslateNickW are
wide-character strings.

Section Reference: Gamespy Chat SDK

Chat SDK Callbacks

chatAuthenticateCDKeyCallback

Called when
chatAuthenticateCDKey and
attempt to authenticate the CD-
Key is finished.

chatBroadcastKeyChanged

Called when a player changes a
broadcast key in a channel the
local player is in

chatChangeNickCallback

Callback for chatChangeNick
when a player changes his/her
nick.

chatChannelMessage

Used in conjunction with
chatEnterChannel; called when a
message is received in the
channel.

chatChannelModeChanged

Used in conjunction with
chatEnterChannel; called when
the mode of a user in the channel
changes.

chatConnectCallback

Called when a chatConnect*
attempt is made

chatDisconnected

Called when a disconnection
OCCurs.

chatEnterChannelCallback

Called when an attempt to enter
the channel has completed

chatEnumChannelBansCallback

Called after an attempt to
enumerate channel bans.

chatEnumChannelsCallbackAll

Called when an attempt to
enumerate all the channels is
complete

chatEnumChannelsCallbackEach

Called after an attempt to
enumerate each channel.

chatEnumJoinedChannelsCallback

Called after an attempt to
enumerate joined channels.

chatEnumUsersCallback

Called after an attempt to
enumerate the users in a channel

chatFilllnUserCallback

Used in conjuction with the
chatConnectSpecial and
chatConnectSecure functions;
called to fill in the user field after
the actual network connection to
the chat server has been made.

chatGetBasicUserInfoCallback

Called after an attempt to get
basic information on a user

chatGetChannelBasicUserlnfoCallback

Called when an attempt to get
everyone's basic user info is
made.

chatGetChannelKeysCallback

Called after an attempt to get the
channel keys or user(s) keys

chatGetChannelModeCallback

Called after an attempt to get the
channel mode.

chatGetChannelPasswordCallback

Called after an attempt to get the
channel's password.

chatGetChannelTopicCallback

Called after an attempt to get the
channel's topic.

chatGetGlobalKeysCallback

Called after an attempt to get the
global keys for the user(s).

chatGetUserInfoCallback

Called after an attempt to get
user information.

chatGetUserModeCallback

Called after an attempt to get the
user's mode

chatlnvited
Used in conjunction with the
chatConnect functions; called
when the local user gets invited
to a channel.

chatKicked

Used in conjunction with
chatEnterChannel; called when
the local user gets kicked from
the channel.

chatNewUserList

Used in conjunction with
chatEnterChannel; Called when
the chat server sends an entire
new user list for a channel we're
in.

chatNickErrorCallback

Used in conjuction with the
chatConnect functions; called if
there was an error with the
provided nickname.

chatPrivateMessage

Used in conjunction with the
chatConnect functions; called
when a message is received from
another user.

chatRaw

Used in conjunction with the
chatConnect functions; all raw
incoming network traffic gets
passed to this function.

chatTopicChanged

Used in conjunction with
chatEnterChannel; called when
the channel topic changes.

chatUserChangedNick

Used in conjunction with
chatEnterChannel; called when a
user in the channel changes their
nickname.

chatUserJoined

Used in conjunction with

chatEnterChannel; called when a
user joins the channel.

chatUserListUpdated

Used in conjunction with
chatEnterChannel; called when
the channel’'s user list changes.

chatUserModeChanged

Used in conjunction with
chatEnterChannel; called when
the mode of a user in the channel
changes.

chatUserParted

Used in conjunction with
chatEnterChannel; called when a
user parts the channel.

chatAuthenticateCDKeyCallback

Called when chatAuthenticateCDKey and attempt to authenticate the CD-
Key is finished.

typedef void (*chatAuthenticateCDKeyCallback)(
CHAT chat,
int result,
const gsi_char * message,
void * param);

Routine Required Header Distribution
chatAuthenticateCDKeyCallback <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

result
[in] Indicates the result of the attempt.

message
[in] The text message representing the result.

param
[in] Pointer to user data. Passed through unmodified from the

initiating function.

Remarks

The chatAuthenticateCDKeyCallback function gets called when an
attempt to authenticate a CD key is finished. If the result has a value of 1,
the CD key was authenticated. Otherwise, the CD key was not
authenticated.

Unicode Mappings

Routine GSI_UNICODE Not Defined GSI_
chatAuthenticateCDKeyCallback chatAuthenticateCDKeyCallbackA chat/

chatAuthenticateCDKeyCallbackW and
chatAuthenticateCDKeyCallbackA are UNICODE and ANSI mapped
versions of chatAuthenticateCDKeyCallback. The arguments of
chatAuthenticateCDKeyCallbackA are ANSI strings; those of
chatAuthenticateCDKeyCallbackW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatBroadcastKeyChanged

Called when a player changes a broadcast key in a channel the local
player is in.

typedef void (*chatBroadcastKeyChanged)(
CHAT chat,
const gsi_char * channel,
const gsi_char * user,
const gsi_char * key,
const gsi_char * value,
void * param);

Routine Required Header Distribution
chatBroadcastKeyChanged <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

channel
[in] The channel the local player is in.

user
[in] The nickname of the user who changed the key

key
[in] The broadcast key that was changed

value
[in] The broadcast key value

param
[in] Pointer to user data. The same param that was passed to
chatEnterChannel through the callbacks structure.

Remarks

The chatBroadcastKeyChanged function is called when another player
changes a broadcast key in the channel the local player is in.

Unicode Mappings

Routine GSI_UNICODE Not Defined GSI_UNICODE
chatBroadcastKeyChanged chatBroadcastKeyChangedA chatBroadcastk

chatBroadcastKeyChangedW and chatBroadcastKeyChangedA are
UNICODE and ANSI mapped versions of chatBroadcastKeyChanged.
The arguments of chatBroadcastKeyChangedA are ANSI strings; those
of chatBroadcastKeyChangedW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatChangeNickCallback

Callback for chatChangeNick when a player changes his/her nick.

typedef void (*chatChangeNickCallback)(
CHAT chat,
CHATBool success,
const gsi_char * oldNick,
const gsi_char * newNick,
void * param);

Routine Required Header Distribution
chatChangeNickCallback <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

oldNick
[in] The old nickname.

newNick
[in] The new nickname.

param
[in] User data; the same param pointer that was passed to

chatChangeNick.

Remarks

The chatChangedNickCallback is called when any player in the specified
room changes his/her nick. The new nick is assigned to the player if the
change was validated by the server. Otherwise, there will be no
difference between the old nick or the new nick. The change is
determined by "success" which is either CHATTrue or CHATFalse.

Unicode Mappings

GSI_UNICODE Not
Defined

chatChangeNickCallback chatChangeNickCallbackA chatChangeNickCal

Routine GSI| _UNICODE Def

chatChangeNickCallbackW and chatChangeNickCallbackA are
UNICODE and ANSI mapped versions of chatChangeNickCallback.
The arguments of chatChangeNickCallbackA are ANSI strings; those of
chatChangeNickCallbackW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatChannelMessage

Used in conjunction with chatEnterChannel; called when a message is
received in the channel.

typedef void (*chatChannelMessage)(
CHAT chat,
const gsi_char * channel,
const gsi_char * user,
const gsi_char * message,
int type,
void * param);

Routine Required Header Distribution
chatChannelMessage <chat.h> SDKZIP

Parameters
chat
[in] The initialized chat interface object.

channel
[in] The channel the local player is in.

user
[in] The nickname of the user who sent the message.

message
[in] The text of the message.

type
[in] The type of the message: one of the pre-defined chat types.

param
[in] Pointer to user data. The same param that was passed to
chatEnterChannel through the callbacks structure.

Section Reference: Gamespy Chat SDK

See Also: chatEnterChannel, chatSendChannelMessage

chatChannelModeChanged

Used in conjunction with chatEnterChannel; called when the mode of a
user in the channel changes.

typedef void (*chatChannelModeChanged)(
CHAT chat,
const gsi_char * channel,
CHATChannelMode * mode,
void * param);

Routine Required Header Distribution
chatChannelModeChanged <chat.h> SDKZIP

Parameters
chat
[in] The initialized chat interface object.

channel
[in] The channel the local player is in.

mode
[in] Properties of the new mode set on the channel.

param
[in] Pointer to user data. The same param that was passed to
chatEnterChannel through the callbacks structure.

Section Reference: Gamespy Chat SDK

See Also: chatEnterChannel, chatSetChannelMode

chatConnectCallback

Called when a chatConnect* attempt is made.

typedef void (*chatConnectCallback)(
CHAT chat,
CHATBool success,
int failureReason,
void * param);

Routine Required Header
chatConnectCallback <chat.h>

Distribution
SDKZIP

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

failureReason
[in] The string giving reason for failure

param
[in] Pointer to user data. Passed through unmodified from the

initiating function.

Remarks

The chatConnectCallback is called after an attempt of a call to one of
the connect functions that the Chat SDK provides.

Section Reference: Gamespy Chat SDK

chatDisconnected

Called when a disconnection occurs.

typedef void (*chatDisconnected)(
CHAT chat,
const gsi_char * reason,
void * param);

Routine Required Header
chatDisconnected <chat.h>

Distribution
SDKZIP

Parameters

chat
[in] The initialized chat interface object.

reason
[in] The text string which states the reason for disconnect

param
[in] Pointer to user data. The same param that was passed to

chatConnect through the callback structure.

Remarks

The chatDisconnected callback function is called after a disconnection
occurs. The connection can be ended at any time by called
chatDisconnect(). If the connection gets disconnected for any other
reason (such as an intermediate router going down), the
chatDisconnected() callback will be called.

Unicode Mappings

) GSI_UNICODE Not GSI _UNICODE
Routine Defined Defined
chatDisconnected chatDisconnectedA chatDisconnectedW

chatDisconnectedW and chatDisconnectedA are UNICODE and ANSI
mapped versions of chatDisconnected. The arguments of
chatDisconnectedA are ANSI strings; those of chatDisconnectedW
are wide-character strings.

Section Reference: Gamespy Chat SDK

chatEnterChannelCallback

Called when an attempt to enter the channel has completed.

typedef void (*chatEnterChannelCallback)(
CHAT chat,
CHATBool success,
CHATENterResult result,
const gsi_char * channel,
void * param);

Routine Required Header Distribution
chatEnterChannelCallback <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

result
[in] Indicates the result of the attempt

channel
[in] The name of channel entered

param
[in] Pointer to user data. Passed through unmodified from the
initiating function.

Remarks

The chatEnterChannelCallback funtion is called when the attempt to
enter the channel by the local player is completed. The entrance of the
channel can be successful or a failure, and is indicated by the "result”" of
the attempt. The "result" can be of the following value:
CHATEnNterSuccess -- The channel was successfully entered.
CHATBadChannelName -- The channel name was invalid.
CHATChannellsFull -- The channel is at its user limit.
CHATInviteOnlyChannel -- The channel is invite only.
CHATBannedFromChannel -- The local user is banned from this channel.
CHATBadChannelPassword -- The channel has a password, and a bad
password (or none) was given.

CHATTooManyChannels -- The server won't allow this user in any more
channels.

CHATEnNterTimedOut -- The attempt to enter timed out.
CHATBadChannelMask -- The channel mask was bad (rarely used).

Unicode Mappings

GSI_UNICODE Not
Defined

chatEnterChannelCallback chatEnterChannelCallbackA chatEnterChanne

Routine GSI UNICODETI

chatEnterChannelCallbackW and chatEnterChannelCallbackA are
UNICODE and ANSI mapped versions of chatEnterChannelCallback.
The arguments of chatEnterChannelCallbackA are ANSI strings; those
of chatEnterChannelCallbackW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatEnumChannelBansCallback

Called after an attempt to enumerate channel bans.

typedef void (*chatEnumChannelBansCallback)(
CHAT chat,
CHATBool success,
const gsi_char * channel,
int numBans,
const gsi_char ** bans,
void * param);

Routine Required Header Distribution
chatEnumChannelBansCallback <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

channel
[in] The channel that the enumeration was attempted

numBans
[in] The number of bans in the list

bans
[in] The List of bans

param
[in] Pointer to user data. Passed through unmodified from the

initiating function.

Remarks

The chatEnumChannelBansCallback function is called when an
attempt to enumerate channel bans has completed. The available results
are whether the attempt was successful, the list of the bans, number of
bans, the channel that the attempt was made on.

Unicode Mappings

Routine GSI _UNICODE Not Defined GSI |
chatEnumChannelBansCallback chatEnumChannelBansCallbackA chatE

chatEnumChannelBansCallbackW and
chatEnumChannelBansCallbackA are UNICODE and ANSI mapped
versions of chatEnumChannelBansCallback. The arguments of
chatEnumChannelBansCallbackA are ANSI strings; those of
chatEnumChannelBansCallbackW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatEnumChannelsCallbackAll

Called when an attempt to enumerate all the channels is complete.

typedef void (*chatEnumChannelsCallbackAll)(
CHAT chat,
CHATBool success,
int numChannels,
const gsi_char ** channels,
const gsi_char ** topics,
int * numuUsers,
void * param);

Routine Required Header Distribution
chatEnumChannelsCallbackAll <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

numChannels
[in] The number of channels in the list

channels
[in] The List of channels

topics
[in] The List of topics associated with the list of channels

numUsers
[in] The number of users for each channel

param
[in] Pointer to user data. Passed through unmodified from the
initiating function.

Remarks

The chatEnumChannelsCallbackAll function is called when an
enumeration attempt of all channels has completed. The function will
contain all the data necessary to update the list of channels including
names of channels, number of people in each channel, and channel
topics. It is also called after each is enumerated
(chatEnumChannelsCallbackEach).

Unicode Mappings

Routine GSI _UNICODE Not Defined GSI _UNI
chatEnumChannelsCallbackAll chatEnumChannelsCallbackAllA chatEnut

chatEnumChannelsCallbackAllW and
chatEnumChannelsCallbackAllA are UNICODE and ANSI mapped
versions of chatEnumChannelsCallbackAll. The arguments of
chatEnumChannelsCallbackAllA are ANSI strings; those of
chatEnumChannelsCallbackAllW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatEnumChannelsCallbackEach
Called after an attempt to enumerate each channel.

typedef void (*chatEnumChannelsCallbackEach)(
CHAT chat,
CHATBool success,
int index,
const gsi_char * channel,
const gsi_char * topic,
int numUsers,
void * param);

Routine Required Header Distribution

chatEnumChannelsCallbackEach <chat.h>

SDKZIP

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

index
[in] The index of this channel

channel
[in] The name of the channel

topic
[in] A string containing the topic of the channel

numuUsers
[in] The number of users in this channel

param
[in] Pointer to user data. Passed through unmodified from the
initiating function.

Remarks

The chatEnumChannelsCallbackEach function is called when an
attempt to enumerate each channel on the server is complete. The
successful attempt will have a channel with an index, the name of the
channel, the topic for that channel, the number of users.

Unicode Mappings

Routine GSI _UNICODE Not Defined GSI
chatEnumChannelsCallbackEach chatEnumChannelsCallbackEachA cha

chatEnumChannelsCallbackEachW and
chatEnumChannelsCallbackEachA are UNICODE and ANSI mapped
versions of chatEnumChannelsCallbackEach. The arguments of
chatEnumChannelsCallbackEachA are ANSI strings; those of
chatEnumChannelsCallbackEachW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatEnumJoinedChannelsCallback

Called after an attempt to enumerate joined channels.

typedef void (*chatEnumJoinedChannelsCallback)(
CHAT chat,
int index,
const gsi_char * channel,
void * param);

Routine Required Header Distribution
chatEnumJoinedChannelsCallback <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

index
[in] An index of the joined channels for this channel

channel
[in] The name of the channel

param
[in] Pointer to user data. Passed through unmodified from the

initiating function.

Remarks

The chatEnumJoinedChannelsCallback function is calle when an
attempt to enumerate--the channels the local player has joined--is
complete. The function will contain the channel name, an index to the
channel which refers to the position in the list of joined channels.

Unicode Mappings

Routine GSI _UNICODE Not Defined (
chatEnumJoinedChannelsCallback chatEnumJoinedChannelsCallbackA «

chatEnumJoinedChannelsCallbackW and
chatEnumJoinedChannelsCallbackA are UNICODE and ANSI mapped
versions of chatEnumJoinedChannelsCallback. The arguments of
chatEnumJoinedChannelsCallbackA are ANSI strings; those of
chatEnumJoinedChannelsCallbackW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatEnumUsersCallback

Called after an attempt to enumerate the users in a channel.

typedef void (*chatEnumUsersCallback)(
CHAT chat,
CHATBool success,
const gsi_char * channel,
int numUsers,
const gsi_char ** users,
int * modes,
void * param);

Routine Required Header Distribution
chatEnumUsersCallback <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

channel
[in] The name of the channel

numUsers
[in] The number of users in the channel

users
[in] The list of users names in the channel

modes
[in] The list of modes for the channel

param
[in] Pointer to user data. Passed through unmodified from the
initiating function.

Remarks

The chatEnumUsersCallback is called when an attempt to enumerate
all of the users in a given channel is made. The function will have the
information of the users in the channel if success is CHATTrue.

Unicode Mappings

GSI_UNICODE Not
Defined

chatEnumUsersCallback chatEnumUsersCallbackA chatEnumUsersCallb

Routine GSI| _UNICODE Defir

chatEnumUsersCallbackW and chatEnumUsersCallbackA are
UNICODE and ANSI mapped versions of chatEnumUsersCallback. The
arguments of chatEnumUsersCallbackA are ANSI strings; those of
chatEnumUsersCallbackW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatFillinUserCallback

Used in conjuction with the chatConnectSpecial and chatConnectSecure
functions; called to fill in the user field after the actual network connection
to the chat server has been made.

typedef void (*chatFillinUserCallback)(
CHAT chat,
unsigned int /P,
gsi_char user[128],
void * param);

Routine Required Header Distribution
chatFilllnUserCallback <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

IP
[in] The IP address in string form: "Xxx.XxXX.XxXx.Xxx" to encode

user
[in] The user name to encode

param
[in] Pointer to user data. The same param that was passed to

chatConnectSecure or chatConnectSpecial.

Remarks

This is used by the Peer SDK to encode the local machine’s IP address
(as known to the chat server) in the user field.

Unicode Mappings

GSI_UNICODE Not
Defined

chatFillilnUserCallback chatFillinUserCallbackA chatFillinUserCallbackW

Routine GSI _UNICODE Defined

chatFillinUserCallbackW and chatFillinUserCallbackA are UNICODE
and ANSI mapped versions of chatFilllnUserCallback. The arguments
of chatFilllnUserCallbackA are ANSI strings; those of
chatFilllnUserCallbackW are wide-character strings.

Section Reference: Gamespy Chat SDK

See Also: chatConnectSecure, chatConnectSpecial

chatGetBasicUserIinfoCallback

Called after an attempt to get basic information on a user.

typedef void (*chatGetBasicUserInfoCallback)(
CHAT chat,
CHATBool success,
const gsi_char * nick,
const gsi_char * user,
const gsi_char * address,
void * param);

Routine Required Header Distribution
chatGetBasicUserInfoCallback <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

nick
[in] The user's chat nickname

user
[in] The nickname of the target user

address
[in] The IP address of the user

param
[in] Pointer to user data. Passed through unmodified from the
initiating function.

Remarks

The chatGetBasicUserinfoCallback function is called when an attempt
to get basic information on a user is completed. If successful, the
information will contain the user's chat nickname, the IP address of that
user.

Unicode Mappings

Routine GSI _UNICODE Not Defined GSI _UNI
chatGetBasicUserInfoCallback chatGetBasicUserInfoCallbackA chatGetB

chatGetBasicUserInfoCallbackW and
chatGetBasicUserinfoCallbackA are UNICODE and ANSI mapped
versions of chatGetBasicUserInfoCallback. The arguments of
chatGetBasicUserInfoCallbackA are ANSI strings; those of
chatGetBasicUserInfoCallbackW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatGetChannelBasicUserIinfoCallback

Called when an attempt to get everyone's basic user info is made.

typedef void (*chatGetChannelBasicUserInfoCallback)(
CHAT chat,
CHATBool success,
const gsi_char * channel,
const gsi_char * nick,
const gsi_char * user,
const gsi_char * address,
void * param);

Required
Header

chatGetChannelBasicUserInfoCallback <chat.h> SDKZIP

Routine Distribution

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

channel
[in] The name of the channel
nick
[in] The local player's chat nickname

user
[in] The nickname of the target user

address
[in] The IP address of the target user

param
[in] Pointer to user data. Passed through unmodified from the
initiating function.

Remarks

The chatGetChannelBasicUserInfoCallback function is called with a
user's basic info for everyone in a channel. Called with a NULL
nick/user/address at the end.

Unicode Mappings

Routine GSI _UNICODE Not Defined
chatGetChannelBasicUserInfoCallback chatGetChannelBasicUserInfoCal

chatGetChannelBasicUserIinfoCallbackW and
chatGetChannelBasicUserIinfoCallbackA are UNICODE and ANSI
mapped versions of chatGetChannelBasicUserIinfoCallback. The
arguments of chatGetChannelBasicUserinfoCallbackA are ANSI
strings; those of chatGetChannelBasicUserInfoCallbackW are wide-
character strings.

Section Reference: Gamespy Chat SDK

chatGetChannelKeysCallback

Called after an attempt to get the channel keys or user(s) keys.

typedef void (*chatGetChannelKeysCallback)(
CHAT chat,
CHATBool success,
const gsi_char * channel,
const gsi_char * user,
int num,
const gsi_char ** keys,
const gsi_char ** values,
void * param);

Routine Required Header Distribution
chatGetChannelKeysCallback <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

channel
[in] The name of the channel

user
[in] The nickname of the target user

num
[in] The number of key/value pairs in the array

keys
[in] The array of key names whose values will be retrieved

values
[in] The array of values associated with the array of keys

param
[in] Pointer to user data. Passed through unmodified from the
initiating function.

Remarks

The chatGetChannelKeysCallback function is called when an attempt

to either get either the channel or user(s) keys is completed. If the call to
chatGetChannelKeys was made on a set of users, then this function will
get called for all users and have a NULL for "user" when done. If the call
was for the channel keys, then the "user" will be NULL.

Unicode Mappings

Routine GSI_UNICODE Not Defined GSI_UNIC
chatGetChannelKeysCallback chatGetChannelKeysCallbackA chatGetCh

chatGetChannelKeysCallbackW and chatGetChannelKeysCallbackA
are UNICODE and ANSI mapped versions of
chatGetChannelKeysCallback. The arguments of
chatGetChannelKeysCallbackA are ANSI strings; those of
chatGetChannelKeysCallbackW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatGetChannelModeCallback

Called after an attempt to get the channel mode.

typedef void (*chatGetChannelModeCallback)(
CHAT chat,
CHATBool success,
const gsi_char * channel,
CHATChannelMode * mode,
void * param);

Routine Required Header Distribution
chatGetChannelModeCallback <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

channel
[in] The name of channel

mode
[in] One of the predefined modes

param
[in] Pointer to user data. Passed through unmodified from the

initiating function.

Remarks

The chatGetChannelModeCallback function is called when an attempt
to get the channel mode is complete. If successful, the function will have

the channel name and its mode.

Unicode Mappings

Routine GSI _UNICODE Not Defined GSI _UNI
chatGetChannelModeCallback chatGetChannelModeCallbackA chatGetC

chatGetChannelModeCallbackW and
chatGetChannelModeCallbackA are UNICODE and ANSI mapped
versions of chatGetChannelModeCallback. The arguments of
chatGetChannelModeCallbackA are ANSI strings; those of
chatGetChannelModeCallbackW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatGetChannelPasswordCallback

Called after an attempt to get the channel's password.

typedef void (*chatGetChannelPasswordCallback)(
CHAT chat,
CHATBool success,
const gsi_char * channel,
CHATBool enabled,
const gsi_char * password,
void * param);

Routine Required Header
chatGetChannelPasswordCallback <chat.h>

Distribution
SDKZIP

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

channel
[in] The name of channel

enabled
[in] CHATTrue if enabled, CHATFalse if otherwise

password
[in] The channel password

param
[in] Pointer to user data. Passed through unmodified from the

initiating function.

Remarks

The chatGetChannelPasswordCallback function is called when an
attempt to obtain the channel's password is complete. If successful, the
password for that channel will be available.

Unicode Mappings

Routine GSI| _UNICODE Not Defined (
chatGetChannelPasswordCallback chatGetChannelPasswordCallbackA ¢

chatGetChannelPasswordCallbackW and
chatGetChannelPasswordCallbackA are UNICODE and ANSI mapped
versions of chatGetChannelPasswordCallback. The arguments of
chatGetChannelPasswordCallbackA are ANSI strings; those of
chatGetChannelPasswordCallbackW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatGetChannelTopicCallback

Called after an attempt to get the channel's topic.

typedef void (*chatGetChannelTopicCallback)(
CHAT chat,
CHATBool success,
const gsi_char * channel,
const gsi_char * topic,
void * param);

Routine Required Header Distribution
chatGetChannelTopicCallback <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

channel
[in] The name of channel

topic
[in] A string containing the topic

param
[in] Pointer to user data. Passed through unmodified from the

initiating function.

Remarks

The chatGetChannelTopicCallback function is called when an attempt
to obtain the channel's topic is complete. If successful, the text message
containing the topic for that channel will be available.

Unicode Mappings

Routine GSI_UNICODE Not Defined GSI_UNIC
chatGetChannelTopicCallback chatGetChannelTopicCallbackA chatGetCt

chatGetChannelTopicCallbackW and
chatGetChannelTopicCallbackA are UNICODE and ANSI mapped
versions of chatGetChannelTopicCallback. The arguments of
chatGetChannelTopicCallbackA are ANSI strings; those of
chatGetChannelTopicCallbackW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatGetGlobalKeysCallback

Called after an attempt to get the global keys for the user(s).

typedef void (*chatGetGlobalKeysCallback)(
CHAT chat,
CHATBool success,
const gsi_char * user,
int num,
const gsi_char ** keys,
const gsi_char ** values,
void * param);

Routine Required Header Distribution
chatGetGlobalKeysCallback <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

user
[in] The nickname of the target user or the name of the channel

num
[in] The number of key/value pairs in the array

keys
[in] The array of key names whose values will be retrieved

values
[in] The array of values associated with the key array

param
[in] Pointer to user data. Passed through unmodified from the
initiating function.

Remarks

The chatGetGlobalKeysCallback function is called when an attempt to
obtain the global keys of a user or all users is complete. If successful, the
keys for those user(s) will be available.

Unicode Mappings

Routine GSI_UNICODE Not Defined GSI_UNICOD|
chatGetGlobalKeysCallback chatGetGlobalKeysCallbackA chatGetGlobal

chatGetGlobalKeysCallbackW and chatGetGlobalKeysCallbackA are
UNICODE and ANSI mapped versions of chatGetGlobalKeysCallback.
The arguments of chatGetGlobalKeysCallbackA are ANSI strings;
those of chatGetGlobalKeysCallbackW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatGetUserIlnfoCallback

Called after an attempt to get user information.

typedef void (*chatGetUserInfoCallback)(
CHAT chat,
CHATBool success,
const gsi_char * nick,
const gsi_char * user,
const gsi_char * name,
const gsi_char * address,
int numChannels,
const gsi_char ** channels,
void * param);

Routine Required Header Distribution
chatGetUserInfoCallback <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

nick
[in] The local player's chat nickname

user
[in] The nickname of the target user

name
[in] The name of the user to get info from

address
[in] The IP address of the user

numChannels
[in] The number of channels the user is in

channels
[in] The actual list of channels the user is in

param
[in] Pointer to user data. Passed through unmodified from the
initiating function.

Remarks

The chatGetUserInfoCallback function is called when an attempt to get
the user information about another player is completed. If successful, the
user's nickname, IP address, the channels s/he is on will be available.

Unicode Mappings

GSI_UNICODE Not
Defined

chatGetUserInfoCallback chatGetUserInfoCallbackA chatGetUserInfoCall

Routine GSI| _UNICODE Defi

chatGetUserinfoCallbackW and chatGetUserinfoCallbackA are
UNICODE and ANSI mapped versions of chatGetUserIinfoCallback.
The arguments of chatGetUserInfoCallbackA are ANSI strings; those of
chatGetUserInfoCallbackW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatGetUserModeCallback

Called after an attempt to get the user's mode.

typedef void (*chatGetUserModeCallback)(
CHAT chat,
CHATBool success,
const gsi_char * channel,
const gsi_char * user,
int mode,
void * param);

Routine Required Header Distribution
chatGetUserModeCallback <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

success
[in] CHATTrue if success, CHATFalse if failure.

channel
[in] The name of channel

user
[in] The nickname of the target user

mode
[in] One of the predefined modes

param
[in] Pointer to user data. Passed through unmodified from the

initiating function.

Remarks

The chatGetUserModeCallback function is called when an attempt to
get the user mode is completed. If successful, the user's nickname and
mode will be available.

Unicode Mappings

GSI_UNICODE Not
Defined

chatGetUserModeCallback chatGetUserModeCallbackA chatGetUserMoc

Routine GSI _UNICODE |

chatGetUserModeCallbackW and chatGetUserModeCallbackA are
UNICODE and ANSI mapped versions of chatGetUserModeCallback.
The arguments of chatGetUserModeCallbackA are ANSI strings; those
of chatGetUserModeCallbackW are wide-character strings.

Section Reference: Gamespy Chat SDK

chatinvited

Used in conjunction with the chatConnect functions; called when the local
user gets invited to a channel.

typedef void (*chatinvited)(
CHAT chat,
const gsi_char * channel,
const gsi_char * user,
void * param);

Routine Required Header Distribution
chatlnvited <chat.h> SDKZIP

Parameters
chat
[in] The initialized chat interface object.

channel
[in] The channel to which this user was invited.

user
[in] The user who offered the invite.

param
[in] Pointer to user data. The same param that was passed to
chatConnect through the callback structure.

Section Reference: Gamespy Chat SDK

See Also: chatConnect, chatlnviteUser

chatKicked

Used in conjunction with chatEnterChannel; called when the local user
gets kicked from the channel.

typedef void (*chatKicked)(
CHAT chat,
const gsi_char * channel,
const gsi_char * user,
const gsi_char * reason,
void * param);

Routine Required Header Distribution
chatKicked <chat.h> SDKZIP

Parameters
chat
[in] The initialized chat interface object.

channel
[in] The channel the local player is in.

user
[in] The nickname of the user being kicked from the channel.

reason
[in] The same reason string sent into chatKickUser.

param
[in] Pointer to user data. The same param that was passed to
chatEnterChannel through the callbacks structure.

Section Reference: Gamespy Chat SDK

See Also: chatEnterChannel, chatKickUser

chatNewUserList

Used in conjunction with chatEnterChannel; Called when the chat server
sends an entire new user list for a channel we're in.

typedef void (*chatNewUserList)(
CHAT chat,
const gsi_char * channel,
int num,
const gsi_char ** users,
int * modes,
void * param);

Routine Required Header Distribution
chatNewUserList <chat.h> SDKZIP

Parameters
chat
[in] The initialized chat interface object.

channel
[in] The channel the local player is in.

num
[in] The number of users in the list.

users
[in] List of users.

modes
[in] List of user modes.

param
[in] Pointer to user data. The same param that was passed to
chatEnterChannel through the callbacks structure.

Section Reference: Gamespy Chat SDK

chatNickErrorCallback

Used in conjuction with the chatConnect functions; called if there was an
error with the provided nickname.

typedef void (*chatNickErrorCallback)(
CHAT chat,
int type,
const gsi_char * nick,
int numSuggestedNicks,
const gsi_char ** suggestedNicks,
void * param);

Routine Required Header Distribution
chatNickErrorCallback <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

type
[in] The type of error: indicates whether the nick was invalid or if it

was in use.
nick
[in] The problematic nickname.

numSuggestedNicks
[in] The number of suggested nicknames.

suggestedNicks
[in] A list of suggested alternative nicknames.

param
[in] Pointer to user data. The same param that was passed to
chatConnect.

Remarks

Suggested nicks are only provided if type is

CHAT _INVALID _UNIQUENICK.

Use chatRetryWithNick to continue the connect attempt with a new
nickname; otherwise, call chatDisconnect to stop the connection.

Section Reference: Gamespy Chat SDK

See Also: chatConnect, chatRetryWithNick, chatRegisterUniqueNick,
chatDisconnect

chatPrivateMessage

Used in conjunction with the chatConnect functions; called when a
message is received from another user.

typedef void (*chatPrivateMessage)(
CHAT chat,
const gsi_char * user,
const gsi_char * message,
int type,
void * param);

Routine Required Header Distribution
chatPrivateMessage <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

user
[in] The user who sent the message.

message
[in] The text of the message.

type
[in] The type of message.

param
[in] Pointer to user data. The same param that was passed to

chatConnect through the callback structure.

Remarks
If user is NULL, this is a message from the server.

Section Reference: Gamespy Chat SDK

See Also: chatConnect

chatRaw

Used in conjunction with the chatConnect functions; all raw incoming
network traffic gets passed to this function.

typedef void (*chatRaw)(
CHAT chat,
const gsi_char * raw,
void * param);

Routine Required Header Distribution
chatRaw <chat.h> SDKZIP

Parameters
chat
[in] The initialized chat interface object.

raw
[in] The raw data.

param
[in] Pointer to user data. The same param that was passed to
chatConnect through the callbacks structure.

Section Reference: Gamespy Chat SDK

See Also: chatConnect, chatSendRaw

chatTopicChanged

Used in conjunction with chatEnterChannel; called when the channel
topic changes.

typedef void (*chatTopicChanged)(
CHAT chat,
const gsi_char * channel,
const gsi_char * topic,
void * param);

Routine Required Header Distribution
chatTopicChanged <chat.h> SDKZIP

Parameters

chat
[in] The initialized chat interface object.

channel
[in] The channel the local player is in.

topic
[in] The new topic (description) of the channel.

param
[in] Pointer to user data. The same param that was passed to
chatEnterChannel through the callbacks structure.

Section Reference: Gamespy Chat SDK

See Also: chatEnterChannel, chatSetChannelTopic

chatUserChangedNick

Used in conjunction with chatEnterChannel; called when a user in the
channel changes their nickname.

typedef void (*chatUserChangedNick)(
CHAT chat,
const gsi_char * channel,
const gsi_char * oldNick,
const gsi_char * newNick,
void * param);

Routine Required Header Distribution
chatUserChangedNick <chat.h> SDKZIP

Parameters
chat
[in] The initialized chat interface object.

channel
[in] The channel the local player is in.

oldNick
[in] The old nickname of the user.

newNick
[in] The new nickname.

param
[in] Pointer to user data. The same param that was passed to
chatEnterChannel through the callbacks structure.

Section Reference: Gamespy Chat SDK

See Also: chatEnterChannel, chatChangeNick

chatUserJoined

Used in conjunction with chatEnterChannel; called when a user joins the
channel.

typedef void (*chatUserJoined)(
CHAT chat,
const gsi_char * channel,
const gsi_char * user,
int mode,
void * param);

Routine Required Header Distribution
chatUserJoined <chat.h> SDKZIP

Parameters
chat
[in] The initialized chat interface object.

channel
[in] The channel the local player is in.

user
[in] The nickname of the joining user.

mode
[in] The joining user's mode.

param
[in] Pointer to user data. The same param that was passed to
chatEnterChannel through the callbacks structure.

Section Reference: Gamespy Chat SDK

See Also: chatEnterChannel

chatUserListUpdated

Used in conjunction with chatEnterChannel; called when the channel’s
user list changes.

typedef void (*chatUserListUpdated)(
CHAT chat,
const gsi_char * channel,
void * param);

Routine Required Header Distribution
chatUserListUpdated <chat.h> SDKZIP

Parameters
chat
[in] The initialized chat interface object.

channel
[in] The channel the local player is in.

param
[in] Pointer to user data. The same param that was passed to
chatEnterChannel through the callbacks structure.

Section Reference: Gamespy Chat SDK

See Also: chatEnterChannel

chatUserModeChanged

Used in conjunction with chatEnterChannel; called when the mode of a
user in the channel changes.

typedef void (*chatUserModeChanged)(
CHAT chat,
const gsi_char * channel,
const gsi_char * user,
int mode,
void * param);

Routine Required Header Distribution
chatUserModeChanged <chat.h> SDKZIP

Parameters
chat
[in] The initialized chat interface object.

channel
[in] The channel the local player is in.

user
[in] The nickname of the user whose mode changed.

mode
[in] The new mode of the user.

param
[in] Pointer to user data. The same param that was passed to
chatEnterChannel through the callbacks structure.

Section Reference: Gamespy Chat SDK

See Also: chatEnterChannel, chatSetUserMode

chatUserParted

Used in conjunction with chatEnterChannel; called when a user parts the
channel.

typedef void (*chatUserParted)(
CHAT chat,
const gsi_char * channel,
const gsi_char * user,
int why,
const gsi_char * reason,
const gsi_char * kicker,
void * param);

Routine Required Header Distribution
chatUserParted <chat.h> SDKZIP

Parameters
chat
[in] The initialized chat interface object.

channel
[in] The channel the local player is in.

user
[in] The nickname of the parting user.

why
[in] Code indicating reason user parted.

reason
[in] Explanation string.
kicker
[in] If reason is "kicked", identifies the kicker.

param
[in] Pointer to user data. The same param that was passed to
chatEnterChannel through the callbacks structure.

Section Reference: Gamespy Chat SDK

See Also: chatEnterChannel, chatKickUser

Chat SDK Structures

chatChannelCallbacks

A channel's callbacks.

CHATChannelMode

The mode settings of a chat channel.

chatGlobalCallbacks

A connection's global callbacks.

chatChannelCallbacks

A channel's callbacks.

typedef struct

{
chatChannelMessage channelMessage;
chatKicked kicked,
chatUserJoined userJoined;
chatUserParted userParted,
chatUserChangedNick userChangedNick;
chatTopicChanged topicChanged,;
chatChannelModeChanged channelModeChanged,;
chatUserModeChanged userModeChanged,
chatUserListUpdated userListUpdated,
chatNewUserList newUserList;
chatBroadcastKeyChanged broadcastKeyChanged,
void * param;

} chatChannelCallbacks;

Members

channelMessage
Called when a message is received in a channel.

kicked
Called when the local user is kicked from a channel.

userJoined
Called when a user joins a channel we're in.

userParted
Called when a user parts a channel we're in.

userChangedNick
Called when a user in a channel we're in changes nicks.

topicChanged
Called when the topic changes in a channel we're in.

channelModeChanged
Called when the mode changes in a channel we're in.

userModeChanged
Called when a user's mode changes in a channel we're in.

userListUpdated
Called when the user list changes (due to a join or a part) in a
channel we're in.

newUserList
Called when the chat server sends an entire new user list for a
channel we're in.

broadcastKeyChanged
Called when a user changes a broadcast key in a channel we're in.

param
A pointer to data that will be passed into each of the callbacks when
triggered.

Section Reference: Gamespy Chat SDK

CHATChannelMode

The mode settings of a chat channel.

typedef struct

{
CHATBool InviteOnly;
CHATBool Private;
CHATBool Secret;
CHATBool Moderated;
CHATBool NoExternalMessages;
CHATBool OnlyOpsChangeTopic;
int Limit;

} CHATChannelMode;

Members
InviteOnly
Channel is invite-only.

Private
Channel is private.

Secret
Channel is secret.

Moderated
Channel is moderated,.

NoExternalMessages
External messages to channel are not allowed.

OnlyOpsChangeTopic
Topic is limited; only chanops may change it.

Limit
The maximum number of of users allowed.

Section Reference: Gamespy Chat SDK

See Also: chatGetChannelMode, chatSetChannelMode

chatGlobalCallbacks

A connection's global callbacks.

typedef struct

{
chatRaw raw;
chatDisconnected disconnected,;
chatPrivateMessage privateMessage;
chatlnvited invited;
void * param;

} chatGlobalCallbacks;

Members
raw
Gets raw incoming network traffic.

disconnected
Called when the user has been disconnected.

privateMessage
Called when a private message from another user is received.

invited
Called when invited into a channel.

param
A pointer to data that will be passed into each of the callbacks when

triggered.

Section Reference: Gamespy Chat SDK

Chat SDK Enumerations

CHATBool

Standard Boolean.

CHATEnNterResult

The result of a channel enter attempt, passed into the
chatEnterChannelCallback.

CHATBool

Standard Boolean.

typedef enum

{
CHATFalse,
CHATTrue

} CHATBooI;

Constants

CHATFalse
False.

CHATTrue
True.

Section Reference: Gamespy Chat SDK

CHATEnterResult

The result of a channel enter attempt, passed into the
chatEnterChannelCallback.

typedef enum

{
CHATEnterSuccess,
CHATBadChannelName,
CHATChannellsFull,
CHATInviteOnlyChannel,

CHATBannedFromChannel,
CHATBadChannelPassword,
CHATTooManyChannels,
CHATEnterTimedOut,
CHATBadChannelMask

} CHATEnterResult;

Constants

CHATEnNterSuccess
The channel was successfully entered.

CHATBadChannelName
The channel name was invalid.

CHATChannellsFull
The channel is at its user limit.

CHATInviteOnlyChannel
The channel is invite only.

CHATBannedFromChannel
The local user is banned from this channel.

CHATBadChannelPassword
The channel has a password, and a bad password (or none) was
given.

CHATTooManyChannels
The server won't allow this user in any more channels.

CHATEnterTimedOut
The attempt to enter timed out.

Section Reference: Gamespy Chat SDK

See Also: chatEnterChannelCallback

HTTP SDK

Overview

The GameSpy HTTP SDK (GHTTP) is a library for downloading files or
other data from HTTP servers. Simply make a request, and the library will
connect to the server and download the requested file using the HTTP
1.1 protocol. GHTTP also supports uploading (posting) files or other data
to HTTP servers. The SDK is written in standard ANSI C and has been
tested on Win32, Unix, Mac, and consoles. The library has been
designed to be easy to use, fast, and memory efficient (particularly useful
on console systems with tight memory requirements). Just include all of
the source files in your project, and you can start easily downloading data
from web servers.

The SDK also includes two samples. ghttpc is a simple ANSI C sample
that makes some requests, then waits for them to complete. ghttpmfc is a
Windows MFC sample that provides a GUI for experimenting with the
SDK.

The rest of this document presents a simple, step-by-step set of
instructions for using GHTTP. See the main ghttp.h header file for more
detailed information on each function.

File Manifest

The following files should be included with this package. If any of the files
are missing, please contact devsupport@gamespy.com.

File

ghttp.h
prototyped here)

ghttpMain.c, h
ghttpBuffer.c,h
ghttpCallbacks.c,h
ghttpCommon.c,h
ghttpConnection.c,h

ghttpPost.c,h
(uploads)

ghttpProcess.c,h
and state)

nonport.c,h
/ghttpc/
/ghttpomfc/

Description
GameSpy HTTP header (all user functions are

The main entry point for all GHTTP functions
Code for buffering of incoming and outgoing data
Code for calling callbacks

Common utility code

This code manages all current connections
Code for managing and procesing posts

Code for processing requests (based on type

Platform-specific code
ANSI-C sample
Windows MFC sample

mailto:devsupport@gamespy.com

Implementation

Step 1: Startup

To initialize the GHTTP SDK, call ghttpStartup. This can be called
multiple times. There must, however, be a matching ghttpCleanup for
each call. Note: it will be called automatically if a request function is
called first.

Step 2: Make A Request

Once the library has been started up, its ready to start making requests.
This is done by passing a URL to a GHTTP function, which then contacts
the appropriate HTTP server, makes a request, then possibly downloads
a file (or other resource).

There are five types of request, each of which has a basic function and
an extended function: get, save, stream, head, and post.

get
The "get" type of function simply downloads the file into memaory.
This memory can be provided by the application, or it can be
allocated by the library.

save
The "save" type of function saves the file directly to disk. The
filename to save it as is passed into the request function.

Stream
The "stream” type of function doesn't store the file at all. It calls an
application-provided callback whenever part of the file is received
from the server, and the application can then do what it wants with
the data.

head
The "head" type of function is used when an application wants the
headers that would normally be returned as part of a "get" request,
but without actually getting the file.

post
The "post" type of function is used solely to post data, ignoring any

possible body returned by the server (response status and headers
can still be checked). The get, save, and stream types can also
optionally post data.

get

GHTTPRequest ghttpGet
(
const char * URL,
GHTTPBool blocking,
ghttpCompletedCallback completedCallback,
void * param
)
GHTTPRequest ghttpGetEx
(
const char * URL,
const char * headers,
char * buffer,
int bufferSize,
GHTTPPost post,
GHTTPBool throttle,
GHTTPBool blocking,
ghttpProgressCallback progressCallback,
ghttpCompletedCallback completedCallback,
void * param

),

URL
This is the URL for the file (i.e.,
"http://host.domain[:port])/path/filename”).

headers
If not NULL, this is a string containing extra headers to send with

the request.

buffer
The buffer to download to. If NULL, one will be allocated by the
library.

bufferSize
If buffer is not NULL, the size of the buffer. If buffer is NULL, this
should be 0.

post
If not NULL, post this object along with the request.

throttle
If GHTTPTrue, throttle this request's download speed.

blocking
If GHTTPTrue, the request function won't return until the request
has finished.

progressCallback
If not NULL, gets called whenever the download progresses.

completedCallback
If not NULL, gets called when the download is completed
(successfully or not).

param
This is optional user-data that will be passed into the callbacks.

Save

GHTTPRequest ghttpSave

(
const char * URL,
const char * filename,
GHTTPBool blocking,
ghttpCompletedCallback completedCallback,
void * param

)

GHTTPRequest ghttpSaveEx

(
const char * URL,
const char * filename,
const char * headers,
GHTTPPost post,
GHTTPBool throttle,

GHTTPBool blocking,

ghttpProgressCallback progressCallback,
ghttpCompletedCallback completedCallback,
void * param

),

URL
This is the URL for the file (i.e.,
"http://host.domain[:port]/path/filename").
filename
The filename to save the file as. Cannot be NULL.

headers
If not NULL, this is a string containing extra headers to send with
the request.

post
If not NULL, post this object along with the request.

throttle
If GHTTPTrue, throttle this request's download speed.

blocking
If GHTTPTrue, the request function won't return until the request
has finished.

progressCallback
If not NULL, gets called whenever the download progresses.

completedCallback
If not NULL, gets called when the download is completed
(successfully or not).

param
This is optional user-data that will be passed into the callbacks.

Stream

GHTTPRequest ghttpStream
(

const char * URL,
GHTTPBool blocking,
ghttpProgressCallback progressCallback,
ghttpCompletedCallback completedCallback,
void * param

)

GHTTPRequest ghttpStreamEx

(

const char * URL,

const char * headers,

GHTTPPost post,

GHTTPBool throttle,

GHTTPBool blocking,

ghttpProgressCallback progressCallback,
ghttpCompletedCallback completedCallback,
void * param

),

URL
This is the URL for the file (i.e.,
"http://host.domain[:port])/path/filename”).

headers
If not NULL, this is a string containing extra headers to send with
the request.

post
If not NULL, post this object along with the request.

throttle
If GHTTPTrue, throttle this request's download speed.

blocking
If GHTTPTrue, the request function won't return until the request
has finished.

progressCallback
If not NULL, gets called whenever the download progresses.

completedCallback
If not NULL, gets called when the download is completed

(successfully or not).

param
This is optional user-data that will be passed into the callbacks.

head

GHTTPRequest ghttpHead
(

const char * URL,
GHTTPBool blocking,
ghttpCompletedCallback completedCallback,
void * param

)

GHTTPRequest ghttpHeadEx

(

const char * URL,

const char * headers,

GHTTPBool throttle,

GHTTPBool blocking,

ghttpProgressCallback progressCallback,
ghttpCompletedCallback completedCallback,
void * param

),

URL
This is the URL for the file (i.e.,
"http://host.domain[:port])/path/filename”).

headers
If not NULL, this is a string containing extra headers to send with
the request.

throttle
If GHTTPTrue, throttle this request's download speed.

blocking
If GHTTPTrue, the request function won't return until the request
has finished.

progressCallback
If not NULL, gets called whenever the download progresses.

completedCallback
If not NULL, gets called when the download is completed
(successfully or not).

param
This is optional user-data that will be passed into the callbacks.

post

GHTTPRequest ghttpPost

(
const char * URL,
GHTTPPost post,
GHTTPBool blocking,
ghttpCompletedCallback completedCallback,
void * param

)

GHTTPRequest ghttpPostEx

(
const char * URL,
const char * headers,
GHTTPPost post,
GHTTPBool throttle,
GHTTPBool blocking,
ghttpProgressCallback progressCallback,
ghttpCompletedCallback completedCallback,
void * param

),

URL
This is the URL for the file (i.e.,
"http://host.domain[:port])/path/filename”).

headers
If not NULL, this is a string containing extra headers to send with

the request.

post
The object to post with the request. Cannot be NULL.

throttle
If GHTTPTrue, throttle this request's download speed.

blocking
If GHTTPTrue, the request function won't return until the request
has finished.

progressCallback
If not NULL, gets called whenever the download progresses.

completedCallback
If not NULL, gets called when the download is completed
(successfully or not).

param
This is optional user-data that will be passed into the callbacks.

Step 2: Wait For Callbacks

Any application that uses GHTTP in non-blocking mode (sets the
blocking paramater to GHTTPFalse) needs to call ghttpThink to let the
library do any necessary processing. This call will process any current
requests and call any callbacks if necessary. It will typically be called in
the application's main loop. While it can be called as little as a few times
a second, it should be called closer to 10-20 times a second. If
downloading larger files, it may be desirable to call it even more often, to
ensure that incoming buffers are emptied to make room for more
incoming data.

Threads note: Making GHTTP requests concurrently from multiple
threads is currently only supported under Win32. When using GHTTP
from multiple threads, instead of calling ghttpThink, use
ghttpRequestThink for each individual request. This allows that
request's callback to be called from within the same thread in which it
was started.

There are two callback types used by GHTTP: the "progress” callback,
and the "completed" callback. The progress callback, if provided, gets

called when the state of the request changes and when file data is
received from the server.

typedef enum

{
GHTTPSocketInit,
GHTTPHostLookup,
GHTTPLookupPending,
GHTTPConnecting,
GHTTPSendingRequest,
GHTTPPosting,
GHTTPWaiting,
GHTTPReceivingStatus,
GHTTPReceivingHeaders,
GHTTPReceivingFile

} GHTTPState;

typedef void (* ghttpProgressCallback)

(
GHTTPRequest request,

GHTTPState state,
const char * buffer,
int bufferLen,
int bytesReceived,
int totalSize,

void * param

),

request
This is the same request identifier returned by the request function.

state
The current state of the request.

buffer

For get requests, the file so far. For save and stream, the most
recent data received.

Header data is not passed into this callback. This will only be the
actual file.

If state '= GHTTPReceivingFile, this will be NULL.

bufferlLen
The length of the data in buffer (buffer is also NUL-terminated).

If buffer is NULL, this will be 0.

bytesRecieved
If GHTTPTrue, the request function won't return until the request
has finished.

totalSize
If not NULL, gets called whenever the download progresses.

param
This is optional user-data that will be passed into the callbacks.

Note: the state usually moves forward by one state at a time (i.e.,
GHTTPSocketInit -> GHTTPHostLookup). However, it will move from
GHTTPRecelivingHeaders back to GHTTPSocketInit if the request
has been redirected, it will skip GHTTPPosting if not posting data, and it
will move from GHTTPReceivingHeaders back to
GHTTPRecelivingStatus if it gets a 100-Continue status (this typically
only happens while posting).

The completed callback gets called when the request is completed:

typedef enum

{
GHTTPSuccess,
GHTTPOutOfMemory,
GHTTPBufferOverflow,
GHTTPParseURLFailed,
GHTTPHostLookupFailed,
GHTTPSocketFailed,
GHTTPConnectFailed,
GHTTPBadResponse,
GHTTPRequestRejected,
GHTTPUnauthorized,
GHTTPForbidden,

GHTTPFileNotFound,
GHTTPServerError,
GHTTPFileWriteFailed,
GHTTPFileReadFailed

) GHTTPResult;

typedef GHTTPBool (* ghttpCompletedCallback)

(
GHTTPRequest request,

GHTTPResult result,
char * buffer,

int bufferLen,

void * param

),

request
This is the same request identifier returned by the request function.

result
The result of the request.

buffer
If a get request, this is the entire file in memory. Otherwise, NULL.

bufferLen
The length of the file (even if not a get request).

param
This is optional user-data that will be passed into the callbacks.

The return value can be ignored if this is not a get request. For a get
request, return GHTTPTrue to have the buffer's memory freed. If
GHTTPFalse is returned, it is the responsibility of the application to free
the memory.

Step 4: Cleanup

When the application is done using GHTTP, call ghttpCleanup to free
any resources it is using. This call can also be used if GHTTP will not be
used for a while, and the application wishes to free up resources. If it is

called while requests are pending, they will be cancelled, and the
completed callback will not be called.

Posting

GHTTPPost objects are used to post (upload) data along with a request.
They can be used to upload simple string data, and they can be used to
upload files. This allows for a range of uses, from posting to web forums
to uploading custom skins. GHTTPPost objects can be passed to
ghttpGetEx, ghttpSaveEx, and ghttpStreamEx to upload data and
then receive a response from the server, or they can be passed to
ghttpPost and ghttpPostEX to just upload data without getting a
response.

ghttpNewPost is used to create a new GHTTPPost object. To add data
to it, use ghttpPostAddString, ghttpPostAddFileFromDisk, and
ghttpPostAddFileFromMemory. Once an object is setup, it can be
used in a request. An application must not modify a GHTTPPost object
that is in the process of being used in a request. By default, the object will
be automatically freed after being used. However, the same object can
be used in multiple requests by calling ghttpPostSetAutoFree and
setting the autoFree paramater to GHTTPFalse. When done using the
object, free it with ghttpFreePost (or set autoFree back to
GHTTPTrue before using it for the last time). ghttpPostSetCallback
can be used to setup a callback to be called whenever data is uploaded,
which allows an application to monitor the progress of the upload in terms
of both bytes and objects uploaded.

If only strings are being uploaded as part of a request, then it will be done
using the "application/x-www-form/urlencoded" content type. If files are
also being uploaded (either from disk or memory), then the post will use
the "multipart/form-data” content type.

Miscellaneous

If throttling is enabled for a request, the download speed will be limited.
To customize the throttle speed, use ghttpThrottleSettings. To
change a requests throttle setting after it has been started, use
ghttpSetThrottle".

There is a known bug with Windows CE that causes it to return the wrong
address when looking up certain DNS names (specifically, those with
CNAME records). An example of a host name that CE will not handle
correctly is "www.cnn.com".

GHTTP can handle HTTP redirection. If the server sends a response with
a 3xx status code, and the new location is given, GHTTP will then
attempt to open the new URL. The current state of the request will go
from GHTTPRecelivingHeaders to GHTTPSocketInit.

A current request can be cancelled by passing its GHTTPRequest
identifier (returned from the request function) to ghttpCancelRequest.
The completed callback will not be called for this request.

The current state of a request can be obtained at any time with
ghttpGetState.

If the state of a request has passed GHTTPReceivingStatus, then
ghttpGetResponseStatus can be used to get both the status code
and status string returned by the HTTP server.

If the request has passed the GHTTPReceivingHeaders state, then
ghttpGetHeaders can be called to get the headers returned by the
server.

ghttpGetURL can be called to get the URL being retrieved by the
request. If the request has been redirected, the URL returned will be the
new URL, not the one passed into the request function.

All requests can be forwarded to a web proxy by passing a proxy's
address to ghttpSetProxy.

UNICODE Support

The GameSpy SDKs support an optional UNICODE interface for
widestring applications. To use this interface, first define the symbol
"GSI_UNICODE". Then, use widestrings wherever ANSI strings were
previously called for. When in doubt, please refer to the header files for
specific function declarations.

Although the GameSpy SDK interfaces support UNICODE parameters,
some items may be stripped of their extra UNICODE information. These
items include: nickname, email address, and URL strings. You may pass
in widestring values, but they will first be converted to their ANSI
counterparts before transmission.

HTTP SDK Functions

ghttpCancelRequest

Cancel a HTTP request in progress.

ghttpCleanup

Destruct the HTTP sdk. Free internally
allocated memory.

ghttpFreePost
Free a post object.

ghttpGet
Make a HTTP GET request and save the
response to memory.

ghttpGetEx
Make a HTTP GET request and save the
response to memory.

ghttpGetHeaders

Get the response headers from an HTTP
request.

ghttpGetResponseStatus

Get the response's status string and
status code.

ghttpGetState
Obtain the current state of a request.
ghttpGetURL
Used to obtain the URL associated with a
request.
ghttpHead

Make a HTTP HEAD request, which will
only retrieve the response headers and
not the normal response body.

ghttpHeadEXx

Make a HTTP HEAD request, which will
only retrieve the response headers and
not the normal response body.

ghttpNewPost
Creates a new post object, which is used
to represent data to send a web server as
part of a request.

ghttpPost

Do a HTTP POST, which can be used to
upload data to a web server.

ghttpPostAddFileFromDisk

Adds a disk file to the post object.

ghttpPostAddFileFromMemory

Adds a file, in memory, to the post object.

ghttpPostAddString

Adds a string to the post object.

ghttpPostEx

Do a HTTP POST, which can be used to
upload data to a web server.

ghttpPostSetAutoFree

Sets a post object's auto-free flag.

ghttpPostSetCallback

Sets the callback for a post object.

ghttpRequestThink

Process just one particular request.

ghttpSave

Make a HTTP GET request and save the
response to disk.

ghttpSaveEx

Make a HTTP GET request and save the
response to disk.

ghttpSetMaxRecvTime
Used to throttle based on time, not on
bandwidth.
ghttpSetProxy
Sets a proxy server address.
ghttpSetRequestProxy
Sets a proxy server for a specific request.
ghttpSetThrottle

Used to start/stop throttling an existing
connection.

ghttpStartup

Initialize the HTTP SDK.

ghttpStream

Make a HTTP GET request and stream in
the response without saving it in memory.

ghttpStreamEx

Make a HTTP GET request and stream in

the response without saving it in memory.
ghttpThink

Processes all current http requests.
ghttpThrottleSettings

Used to adjust the throttle settings.

ghttpCancelRequest

Cancel a HTTP request in progress.

void ghttpCancelRequest(

GHTTPRequest request);
Routine Required Header Distribution
ghttpCancelRequest <ghttp.h> SDKZIP

Parameters

request
[in] A valid GHTTPRequest object.

Remarks
The GHTTPRequest should not be referenced once this function returns.

Section Reference: Gamespy HTTP SDK

ghttpCleanup
Destruct the HTTP sdk. Free internally allocated memory.

void ghttpCleanup();

Routine Required Header Distribution
ghttpCleanup <ghttp.h> SDKZIP

Remarks
One call to ghttpCleanup should be made for each call to ghttpStartup.

Section Reference: Gamespy HTTP SDK

See Also: ghttpStartup

ghttpFreePost

Free a post object.

void ghttpFreePost(

GHTTPPost post);
Routine Required Header Distribution
ghttpFreePost <ghttp.h> SDKZIP

Parameters

post
[in] Post object created with ghttpNewPost.

Remarks

By default, post objects created with ghttpNewPost will be automatically
freed after being used in a request. However ghttpPostSetAutoFree can
be used to turn off the post object's auto-free property. This can be useful
if a single post object will be used in multiple requests. You should then
use this function to manually free the post object after the last request it
has been used in completes.

Section Reference: Gamespy HTTP SDK

See Also: ghttpNewPost, ghttpPostSetAutoFree

ghttpGet

Make a HTTP GET request and save the response to memory.

GHTTPRequest ghttpGet(
const gsi_char * URL,
GHTTPBool blocking,
ghttpCompletedCallback completedCallback,
void * param);

Routine Required Header Distribution
ghttpGet <ghttp.h> SDKZIP

Return Value

If less than 0, the request failed and this is a GHTTPRequestError value.
Otherwise it identifies the request.

Parameters
URL
[in] URL

blocking
[in] If true, this call doesn't return until the file has been received.

completedCallback
[in] Called when the file has been received.

param
[in] Optional free-format user data for use by the callback

Remarks

This function is used to download the contents of a web page to memory.
The application can provide the memory by supplying a buffer to this
function, or the SDK can be allocate the memory internally.

Use ghttpGetEx for extra optionional parameters.

Unicode Mappings

Routine GSI_UNICODE Not Defined GSI_UNICODE Defined
ghttpGet ghttpGetA ghttpGetwW

ghttpGetW and ghttpGetA are UNICODE and ANSI mapped versions of
ghttpGet. The arguments of ghttpGetA are ANSI strings; those of
ghttpGetW are wide-character strings.

Section Reference: Gamespy HTTP SDK

See Also: ghttpGetEXx, ghttpSave, ghttpStream, ghttpHead, ghttpPost

ghttpGetEx

Make a HTTP GET request and save the response to memory.

GHTTPRequest ghttpGetEx(
const gsi_char * URL,
const gsi_char * headers,
char * buffer,
int bufferSize,
GHTTPPost post,
GHTTPBool throttle,
GHTTPBool blocking,
ghttpProgressCallback progressCallback,
ghttpCompletedCallback completedCallback,
void * param);

Routine Required Header Distribution
ghttpGetEx <ghttp.h> SDKZIP

Return Value

If less than 0, the request failed and this is a GHTTPRequestError value.
Otherwise it identifies the request.

Parameters

URL
[in] URL
headers
[in] Optional headers to pass with the request. Can be NULL or .

buffer
[in] Optional user-supplied buffer. Set to NULL to have one allocated.
Must be (size+1) to allow null terminating character.

bufferSize
[in] The size of the user-supplied buffer in bytes. 0O if buffer is NULL.

post
[in] Optional data to be posted. Can be NULL.

throttle
[in] If true, throttle this connection's download speed.

blocking
[in] If true, this call doesn't return until the file has been received.

progressCallback
[in] Called periodically with progress updates. Can be NULL.

completedCallback
[in] Called when the file has been received. Can be NULL.

param
[in] Optional free-format user data for use by the callback

Remarks

This function is used to download the contents of a web page to memory.
The application can provide the memory by supplying a buffer to this
function, or the SDK can be allocate the memory internally.

Use ghttpGet for a simpler version of this function.

Section Reference: Gamespy HTTP SDK

See Also: ghttpGet, ghttpSaveEXx, ghttpStreamEX, ghttpHeadEX,
ghttpPostEXx

ghttpGetHeaders

Get the response headers from an HTTP request.

const char * ghttpGetHeaders(

GHTTPRequest request);
Routine Required Header Distribution
ghttpGetHeaders <ghttp.h> SDKZIP

Return Value

The headers returned in the response.

Parameters

request
[in] A valid request object

Remarks
Only valid if the request's state is GHTTPReceivingHeaders.

Section Reference: Gamespy HTTP SDK

See Also: ghttpGetState

ghttpGetResponseStatus
Get the response's status string and status code.

const char * ghttpGetResponseStatus(
GHTTPRequest request,
int * statusCode);

Routine Required Header
ghttpGetResponseStatus <ghttp.h>

Distribution
SDKZIP

Return Value

The response's status string.

Parameters
request
[in] A valid request object

statusCode
[out] Status code.

Remarks

Can only be used if the state has passed GHTTPReceivingStatus.
The status string is a user-readable representation of the result of the
request.

The status code is a 3 digit number which can be used to get more
details on the result of the request. There are 5 possible values for the
first digit:

1xx: Informational

2XX: Success

3xx: Redirection

4xx: Client Error

S5xx: Server Error

See RFC2616 (HTTP 1.1) and any follow-up RFCs for more information
on specific codes.

Section Reference: Gamespy HTTP SDK

See Also: ghttpGetState

ghttpGetState

Obtain the current state of a request.

GHTTPState ghttpGetState(

GHTTPRequest request);
Routine Required Header Distribution
ghttpGetState <ghttp.h> SDKZIP

Return Value

The state of an HTTP request.

Parameters

request
[in] A valid request object

Section Reference: Gamespy HTTP SDK

ghttpGetURL

Used to obtain the URL associated with a request.

const char * ghttpGetURL(
GHTTPRequest request);

Routine Required Header Distribution
ghttpGetURL <ghttp.h> SDKZIP

Return Value

The URL associated with the request.

Parameters

request
[in] A valid request object

Remarks

If the request has been redirected, this function will return the new URL,
not the original URL.

Section Reference: Gamespy HTTP SDK

ghttpHead

Make a HTTP HEAD request, which will only retrieve the response
headers and not the normal response body.

GHTTPRequest ghttpHead(
const gsi_char * URL,
GHTTPBool blocking,
ghttpCompletedCallback completedCallback,
void * param);

Routine Required Header Distribution
ghttpHead <ghttp.h> SDKZIP

Return Value

If less than 0, the request failed and this is a GHTTPRequestError value.
Otherwise it identifies the request.

Parameters
URL
[in] URL

blocking
[in] If true, this call doesn't return until finished

completedCallback
[in] Called when the request has finished.

param
[in] Optional free-format user data for use by the callback

Remarks

This function is similar to ghttpGet, except it only gets the response
headers. This is done by making an HEAD request instead of a GET
request, which instructs the HTTP server to leave the body out of the
response.

Use ghttpHeadEXx for extra optional parameters.

Section Reference: Gamespy HTTP SDK

See Also: ghttpGet, ghttpSave, ghttpStream, ghttpHeadEXx, ghttpPost

ghttpHeadEXx

Make a HTTP HEAD request, which will only retrieve the response
headers and not the normal response body.

GHTTPRequest ghttpHeadEXx(
const gsi_char * URL,
const gsi_char * headers,
GHTTPBool throttle,
GHTTPBool blocking,
ghttpProgressCallback progressCallback,
ghttpCompletedCallback completedCallback,
void * param);

Routine Required Header Distribution
ghttpHeadEXx <ghttp.h> SDKZIP

Return Value

If less than 0, the request failed and this is a GHTTPRequestError value.
Otherwise it identifies the request.

Parameters
URL
[in] URL

headers
[in] Optional headers to pass with the request. Can be NULL or ™"

throttle
[in] If true, throttle this connection's download speed.

blocking
[in] If true, this call doesn't return until finished

progressCallback
[in] Called whenever new data is received. Can be NULL.

completedCallback
[in] Called when the request has finished. Can be NULL.

param
[in] Optional free-format user data for use by the callback

Remarks

This function is similar to ghttpGetEx, except it onlyl gets the response
headers. This is done by making an HEAD request instead of a GET
request, which instructs the HTTP server to leave the body out of the
response.

Use ghttpHead for a simpler version of this function.

Section Reference: Gamespy HTTP SDK

See Also: ghttpGetEXx, ghttpSaveEx, ghttpStreamEX, ghttpHead,
ghttpPostEXx

ghttpNewPost

Creates a new post object, which is used to represent data to send a web
server as part of a request.

GHTTPPost ghttpNewPost();

Routine Required Header Distribution
ghttpNewPost <ghttp.h> SDKZIP

Return Value

The newly created post object, or NULL if it cannot be created.

Remarks

After getting the post object, use the ghttpPostAdd*() functions to add
data to the object, and ghttpPostSetCallback() to add a callback to
monitor the progress of the data upload.

By default post objects automatically free themselves after posting. To
use the same post with more than one request, set auto-free to false,
then use ghttpFreePost to free it after every request its being used in is
completed.

Section Reference: Gamespy HTTP SDK

See Also: ghttpPostAddString, ghttpPostAddFileFromDisk,
ghttpPostAddFileFromMemory, ghttpPostSetAutoFree, ghttpFreePost,
ghttpPostSetCallback

ghttpPost

Do a HTTP POST, which can be used to upload data to a web server.

GHTTPRequest ghttpPost(
const gsi_char * URL,
GHTTPPost post,
GHTTPBool blocking,
ghttpCompletedCallback completedCallback,
void * param);

Routine Required Header Distribution
ghttpPost <ghttp.h> SDKZIP

Return Value

If less than 0, the request failed and this is a GHTTPRequestError value.
Otherwise it identifies the request.

Parameters
URL
[in] URL

post
[in] The data to be posted.

blocking
[in] If true, this call doesn't return until finished

completedCallback
[in] Called when the file has finished streaming. Can be NULL.

param
[in] Optional free-format user data for use by the callback

Remarks

This function is used to post data to a web page, ignoring any possible
response body sent by the server (response status and response
headers can still be checked). If you want to post data and receive a
response, use ghttpGetEx, ghttpSaveEx, or ghttpStreamEx.

Use ghttpPostEXx for extra optional parameters.

Section Reference: Gamespy HTTP SDK

See Also: ghttpGet, ghttpGetEx, ghttpSave, ghttpSaveEx, ghttpStream,
ghttpStreamEXx, ghttpHead, ghttpPostEx

ghttpPostAddFileFromDisk

Adds a disk file to the post object.

GHTTPBool ghttpPostAddFileFromDisk(
GHTTPPost post,
const gsi_char * name,
const gsi_char * filename,
const gsi_char * reportFilename,
const gsi_char * contentType);

Routine Required Header
ghttpPostAddFileFromDisk <ghttp.h>

Distribution
SDKZIP

Return Value

GHTTPTrue if the file was added successfully.

Parameters
post
[in] Post object

name
[in] The name to attach to this file.

filename
[in] The name (and possibly path) to the file to upload.

reportFilename
[in] The filename given to the web server.

contentType
[in] The MIME type for this file.

Remarks

The reportFilename is what is reported to the server as the filename. If
NULL or empty, the filename will be used (including any possible path).
The contentType is the MIME type to report for this file. If NULL,
"application/octet-stream" is used.

The file isn't read from until the data is actually sent to the server.

When uploading files the content type of the overall request (as opposed
to the content this of this file) will be "multipart/form-data”.

Unicode Mappings

GSI_UNICODE Not
Defined

ghttpPostAddFileFromDisk ghttpPostAddFileFromDiskA ghttpPostAddFile

Routine GSI UNICODE I

ghttpPostAddFileFromDiskW and ghttpPostAddFileFromDiskA are
UNICODE and ANSI mapped versions of ghttpPostAddFileFromDisk.
The arguments of ghttpPostAddFileFromDiskA are ANSI strings; those
of ghttpPostAddFileFromDiskW are wide-character strings.

Section Reference: Gamespy HTTP SDK

See Also: ghttpNewPost, ghttpPost, ghttpPostAddString,
ghttpPostAddFileFromMemory

ghttpPostAddFileFromMemory
Adds a file, in memory, to the post object.

GHTTPBool ghttpPostAddFileFromMemory/(
GHTTPPost post,
const gsi_char * name,
const char * buffer,
int bufferLen,
const gsi_char * reportFilename,
const gsi_char * contentType);

Routine Required Header Distribution
ghttpPostAddFileFromMemory <ghttp.h> SDKZIP

Return Value

GHTTPTrue if the file was added successfully.

Parameters

post
[in] Post object

name
[in] The name to attach to this file.

buffer
[in] The data to send.

bufferLen
[in] The number of bytes of data to send.

reportFilename
[in] The filename given to the web server.

contentType
[in] The MIME type for this file.

Remarks

The reportFilename is what is reported to the server as the filename. It
cannot be NULL or empty.

The contentType is the MIME type to report for this file. If NULL,
"application/octet-stream" is used.

The data is not copied off in this call. The data pointer is read from as the
data is actually sent to the server. The pointer must remain valid during
requests.

When uploading files the content type of the overall request (as opposed
to the content this of this file) will be "multipart/form-data”.

Unicode Mappings

Routine GSI_UNICODE Not Defined GSI_UNI
ghttpPostAddFileFromMemory ghttpPostAddFileFromMemoryA ghttpPost

ghttpPostAddFileFromMemoryW and
ghttpPostAddFileFromMemoryA are UNICODE and ANSI mapped
versions of ghttpPostAddFileFromMemory. The arguments of
ghttpPostAddFileFromMemoryA are ANSI strings; those of
ghttpPostAddFileFromMemoryW are wide-character strings.

Section Reference: Gamespy HTTP SDK

See Also: ghttpNewPost, ghttpPost, ghttpPostAddFileFromDisk,
ghttpPostAddString

ghttpPostAddString

Adds a string to the post object.

GHTTPBool ghttpPostAddString(
GHTTPPost post,
const gsi_char * name,
const gsi_char * string);

Routine Required Header
ghttpPostAddString <ghttp.h>

Distribution
SDKZIP

Return Value

GHTTPTrue if the string was added successfully.

Parameters

post
[in] Post object

name
[in] The name to attach to this string.

string
[in] The string to send.

Remarks

If a post object only contains string, the content type for the upload will be
the "application/x-www-form/urlencoded". If any files are added, the
content type for the upload will become "multipart/form-data”.

Unicode Mappings

GSI_UNICODE Not GSI _UNICODE
Defined Defined

ghttpPostAddString ghttpPostAddStringA ghttpPostAddStringW

Routine

ghttpPostAddStringW and ghttpPostAddStringA are UNICODE and
ANSI mapped versions of ghttpPostAddString. The arguments of
ghttpPostAddStringA are ANSI strings; those of
ghttpPostAddStringW are wide-character strings.

Section Reference: Gamespy HTTP SDK

See Also: ghttpNewPost, ghttpPost, ghttpPostAddFileFromDisk,
ghttpPostAddFileFromMemory

ghttpPostEXx

Do a HTTP POST, which can be used to upload data to a web server.

GHTTPRequest ghttpPostEx(
const gsi_char * URL,
const gsi_char * headers,
GHTTPPost post,
GHTTPBool throttle,
GHTTPBool blocking,
ghttpProgressCallback progressCallback,
ghttpCompletedCallback completedCallback,
void * param);

Routine Required Header Distribution
ghttpPostEx <ghttp.h> SDKZIP

Return Value

If less than 0, the request failed and this is a GHTTPRequestError value.
Otherwise it identifies the request.

Parameters
URL
[in] URL

headers
[in] Optional headers to pass with the request. Can be NULL or .

post
[in] The data to be posted.

throttle
[in] If true, throttle this connection's download speed.

blocking
[in] If true, this call doesn't return until finished.

progressCallback
[in] Called whenever new data is received. Can be NULL.

completedCallback
[in] Called when the file has finished streaming. Can be NULL.

param
[in] Optional free-format user data for use by the callback

Remarks

This function is used to post data to a web page, ignoring any possible
response body sent by the server (response status and response
headers can still be checked). If you want to post data and receive a
response, use ghttpGetEx, ghttpSaveEx, or ghttpStreamEx.

Use ghttpPost for a simpler version of this function.

Section Reference: Gamespy HTTP SDK

See Also: ghttpGetEx, ghttpSaveEx, ghttpStreamEx, ghttpHeadEX,
ghttpPost

ghttpPostSetAutoFree

Sets a post object's auto-free flag.

void ghttpPostSetAutoFree(
GHTTPPost post,
GHTTPBool autoFree);

Routine Required Header
ghttpPostSetAutoFree <ghttp.h>

Distribution
SDKZIP

Parameters
post
[in] Post object

autoFree
[in] True if object should be auto-freed

Remarks

By default post objects automatically free themselves after posting. To
use the same post with more than one request, set auto-free to false,
then use ghttpFreePost to free it after every request it's being used in is
completed.

Section Reference: Gamespy HTTP SDK

See Also: ghttpNewPost, ghttpFreePost, ghttpPost

ghttpPostSetCallback

Sets the callback for a post object.

void ghttpPostSetCallback(
GHTTPPost post,
ghttpPostCallback callback,
void * param);

Routine Required Header
ghttpPostSetCallback <ghttp.h>

Distribution
SDKZIP

Parameters

post
[in] The post object to set the callback on.

callback
[in] The callback to call when using this post object.

param
[in] User data passed to the callback.

Section Reference: Gamespy HTTP SDK

See Also: ghttpNewPost

ghttpRequestThink
Process just one particular request.

GHTTPBool ghttpRequestThink(

GHTTPRequest request);
Routine Required Header Distribution
ghttpRequestThink <ghttp.h> SDKZIP

Return Value

GHTTPFalse if the request cannot be found.

Parameters

request
[in] A valid request object to process.

Remarks

This allows an HTTP request to be processed in a separate thread (only
supported under Win32).

Section Reference: Gamespy HTTP SDK

See Also: ghttpThink

ghttpSave
Make a HTTP GET request and save the response to disk.

GHTTPRequest ghttpSave(
const gsi_char * URL,
const gsi_char * filename,
GHTTPBool blocking,
ghttpCompletedCallback completedCallback,
void * param);

Routine Required Header Distribution
ghttpSave <ghttp.h> SDKZIP

Return Value

If less than 0, the request failed and this is a GHTTPRequestError value.
Otherwise it identifies the request.

Parameters
URL
[in] URL

filename
[in] The path and name to store the file as locally.

blocking
[in] If true, this call doesn't return until the file has been received.

completedCallback
[in] Called when the file has been received. Can be NULL.

param
[in] Optional free-format user data for use by the callback

Remarks

This function is used to download the contents of a web page directly to
disk. The application supplies the path and filename at which to save the

response.
Use ghttpSaveEx for extra optional parameters.

Section Reference: Gamespy HTTP SDK

See Also: ghttpGet, ghttpSaveEx, ghttpStream, ghttpHead, ghttpPost

ghttpSaveEx
Make a HTTP GET request and save the response to disk.

GHTTPRequest ghttpSaveEx(
const gsi_char * URL,
const gsi_char * filename,
const gsi_char * headers,
GHTTPPost post,
GHTTPBool throttle,
GHTTPBool blocking,
ghttpProgressCallback progressCallback,
ghttpCompletedCallback completedCallback,
void * param);

Routine Required Header Distribution
ghttpSaveEx <ghttp.h> SDKZIP

Return Value

If less than 0, the request failed and this is a GHTTPRequestError value.
Otherwise it identifies the request.

Parameters
URL
[in] URL

filename
[in] The path and name to store the file as locally.

headers
[in] Optional headers to pass with the request. Can be NULL or ™"

post
[in] Optional data t