

Powered	By	GameSpy	Help	File
Thank	you	for	choosing	GameSpy's	online	middleware
for	use	in	your	online	game.	GameSpy's	software
development	kits	(SDKs),	combined	with	GameSpy's
reliable	backend	services,	will	help	provide	your	players
with	a	rewarding	online	experience.

This	help	file	provides	you	with	detailed	documentation
on	every	SDK	in	the	Powered	By	GameSpy	product	line.
In	addition	to	the	reference	documentation	in	this	file	you
will	also	find	answered	to	common	questions	in	the
GameSpy	Support	Knowledge	Base.

If	you	are	unable	to	find	the	answer	to	your	question	in
the	documentation	or	knowledge	base	you	may	contact
developer	support	by	e-mailing
devsupport@gamespy.com.	Please	note,	you	must	be	a
licensed	developer	(have	a	development	or	publisher's
deployment	license)	with	GameSpy	to	be	eligible	for
developer	support.

The	latest	version	of	this	help	file	is	available	from	our
secure	developer	site	as	a	part	of	the	Common	Code
download.

http://www.gamespy.net/secure/kb/
mailto:devsupport@gamespy.com
http://www.gamespy.net/secure/download/

Available	Services	Check
Overview

The	GameSpy	SDKs	provide	a	way	to	check	if	a	game's	backend
services	are	available.	Any	application	that	uses	these	services	must	first
check	if	they	are	available	before	using	the	actual	SDKs.	The	check	does
not	need	to	be	made	before	using	SDKs	which	do	not	communicate	with
the	GameSpy	backend	(currently	Chat,	GHTTP,	GT2,	and	Voice).	If	you
attempt	to	use	an	SDK	that	does	communicate	with	the	backend	before
checking	that	the	backend	is	currently	available,	the	SDK	will	fail	to
initialize.

The	file	available.h,	included	in	the	goacommon.zip,	has	the	necessary
function	prototypes	for	making	the	availability	check.	available.c	is	the
source	file,	and	should	generally	be	compiled	directly	into	your	project
(along	with	the	rest	of	the	GameSpy	code	being	used).	To	start	the
availability	check	simply	call	GSIStartAvailableCheck(),	passing	it	your
gamename.	This	will	initiate	a	request	with	the	backend	to	see	if	your
game's	backend	services	are	available.	After	initiating	the	request,
GSIAvailableCheckThink()	should	be	called	to	let	the	code	process
incoming	replies	and	send	retries.	It	should	be	continued	to	be	called	as
long	as	it	returns	GSIACWsaiting.	It	is	not	very	time-sensitive,	so	it	does
not	need	to	be	called	more	frequently	than	every	100ms	(although	it	can
be).	If	the	check	needs	to	be	aborted	for	any	reason,	for	example	due	to
the	player	leaving	the	online	area	of	the	game,
GSICancelAvailableCheck()	should	be	called	to	do	any	needed	cleanup.

As	soon	as	GSIAvailableCheckThink()	returns	any	value	other	than
GSIACWaiting,	the	check	has	completed.	No	extra	cleanup	is	needed.
The	return	value	indicates	the	result	of	the	check.	If	it	is	GSIACAvailable
then	the	game's	backend	services	are	available,	and	the	game	can
continue	to	use	the	GameSpy	SDKs	normally.	If	the	return	value	is
GSIACUnavailable	or	GSIACTemporarilyUnavailable,	then	the	game's
backend	services	are	not	available,	and	the	game	should	not	use	any
GameSpy	SDKs	that	rely	on	backend	services.	If	the	user	attempts	to
use	online	aspects	of	the	game	that	are	not	available,	the	game	should
show	appopriate	messaging	to	the	user.	If	the	return	value	was

GSIACUnavailable,	then	the	game	should	inform	the	user	that	the
game's	online	component	is	no	longer	supported.	If	the	return	value	was
GSIACTemporarilyUnavailable,	then	the	game	should	inform	the	user
that	the	game's	online	component	is	currently	unavailable	and	they
should	try	again	later.

GSIACAvailable	will	also	be	returned	from	GSIAvailableCheckThink()	if
no	response	is	received	from	the	request	initiated	by
GSIStartAvailableCheck().	In	other	words,	if	it	cannot	be	determined	if	the
backend	is	available,	the	safe	assumption	that	it	is	available	is	made.	The
case	of	a	failed	initialization	or	connection	for	each	of	the	individual	SDKs
should	always	be	handled.

GSIAvailableCheckThink	Return	Values:

GSIACWaiting	Continue	to	call	GSIAvailableCheckThink.
Processing	has	not	yet	completed.

GSIACAvailable
This	game's	backend	services	are	available.	Continue	normal
operations.

GSIACUnavailable
This	game's	backend	services	are	not	available.	Game	play	will	not
be	possible	for	an	extended	length	of	time	or	indefinitely.	This	should
only	occur	when	a	service	has	been	discontinued	because	the
developer	or	publisher	has	chosen	to	not	renew	the	service.

PC	games	will	continue	to	be	supported	in	GameSpy’s	Arcade.

GSIACTemporarilyUnavailable
This	game's	backend	services	are	temporarily	unavailable.
Reserved	for	scheduled	downtime.	Services	should	be	restored
momentarily.

Game	UI

The	SDK	does	not	make	any	assumptions	or	requirements	as	to	what
messages	should	be	displayed	to	the	users.	Developers	are	free	to
implement	whatever	appropriate	messages	they	wish.	What	the	message
should	say	will	be	dependent	on	several	factors	including	the	return	value
and	if	the	developer	or	publisher	has	opted	to	not	take	the	co-branding
discounts.

We	recommend	that	developers	implement	generalized	messages,	for
example:

If	GSIAvailableCheckThink	returns	with	as	Unavailable	a	suitable
messages	might	be:

"Online	support	for	Tony	Hawk:	Underground	is	no	longer	available."
"Midwaysports.net	is	no	longer	available	for	Blitz	2010."

If	GSIAvailableCheckThink	returns	with	as	TemporarilyUnavailable	a
suitable	message	might	be:

"Online	play	for	Hidden	and	Dangerous	is	temporarily	unavailable	do
to	maintenance."
"Midwaysposrts.net	is	temporarily	unavailable.	Please	try	again
soon."

Testing

Two	special	gamenames	are	reserved	for	testing	client-side	availability
check	code.	Calling	GSIStartAvailableCheck()	with	a	gamename	of
"unavailable"	will	cause	the	availability	check	to	return
GSIACUnavailable.	Using	a	gamename	of	"tempunavail"	will	cause	the
availability	check	to	return	GSIACTemporarilyUnavailable.

Requirements

Performing	the	check	is	a	TRC	requirement	as	of	November	10th,	2003.
All	titles	will	be	tested	to	be	sure	they	are	implementing	the	check
correctly.

Overview
As	consumer	product	companies	continue	to	aggressively	pursue
opportunities	to	market	and	promote	their	products	to	the	18-34	year	old
males,	a	demographic	that	has	abandoned	television	and	other	traditional
advertising	outlets	in	favor	of	playing	computer	and	video	games,	game
publishers	are	well-positioned	to	take	advantage	of	this	opportunity
through	product	placement	and	advertising	integration	into	games.

The	Marketing	SDK	provides	the	tools	and	services	necessary	to	make
this	possible	by	allowing	the	game	publisher	to	dynamically	serve	product
placements	and	advertisements	into	games,	modify	and	change	them	as
desired,	and	track	and	measure	the	usage	and	performance	of	those
advertisements.

The	traditional	scenario	of	hard-coding	the	advertising	assets	into	a	game
forced	the	publisher	to	have	signed	agreements	in	place,	artwork	created
and	integrated	into	the	game,	and	all	the	requisite	approvals	in	place
before	the	game	reaches	beta.	Using	the	Marketing	SDK,	publishers	can
provision	product	placements	and	advertisements	when	they	and	their
partners	are	ready	for	them.

(back	to	top)

Project	Setup
Files	to	include

The	Marketing	SDK	leverages	the	gHTTP	and	gSOAP	libraries	to	provide
a	mature	and	robust	network	transport	layer.	In	addition,	the	GameSpy
common	code	is	used	to	provide	standardized	data	typing	across
supported	platforms.	These	libraries	must	be	included	in	the	project.

Common	Code
The	source	files	found	in	the	root	SDK	directory	must	be	included
in	the	project.	The	common	code	contains	platform	specific	type
definitions	and	shared	utility	functions.

gHTTP
The	GameSpy	HTTP	SDK	is	used	when	downloading	files	to	disk
or	when	streaming	data	into	memory.	All	files	within	the	/ghttp
folder	should	be	included.	(Samples	and	subdirectories	should	be
omitted.)

gSOAP
This	commercial	SOAP	library	is	used	when	querying	for	the	active
ad	units	and	when	reporting	usage	statistics.	More	information
about	gSOAP	may	be	found	on	the	gSOAP	website	at
http://www.cs.fsu.edu/~engelen/soap.html

The	gSOAP	files	may	be	found	in	the	“/gsoap”	directory.

Marketing	SDK	Files
All	of	the	files	within	the	“/Ad”	directory	must	be	included	in	the
project.	Files	within	the	“/Ad/AdSoap”	directory	must	also	be
included.

(back	to	top)

Integrating	the	SDK
Compile-time	options

A	variety	of	settings	are	defined	at	the	top	of	Ad.h	to	control	memory	and
bandwidth	usage.	These	optional	settings	are	fully	detailed	in	the
reference	section	of	this	document.

PS2	developers	must	define	WITH_LEAN	and	WITH_LEANER.	This
reduces	the	size	of	the	gSOAP	library	and	removes	code	that	may	not	be
compatible	with	all	network	stacks.

(back	to	top)

Initialize	the	SDK

The	Marketing	SDK	must	be	initialized	before	it	may	be	used.	It	is
recommend	that	the	SDK	be	initialized	in	the	following	manner:

	 AdInterfacePtr	anInterface		=	NULL;

	 AdResult							aResult						=	AdResult_NO_ERROR;

	 AdInitParams			anInitParams;

	 memset(&anInitParams,	0,	sizeof(AdInitParams));

	 anInitParams.mGameId	=	GAME_ID;

	 aResult	=	adInitialize(&anInitParams,	&anInterface);

	 if	(aResult	!=	AdResult_NO_ERROR)

	 	 printf("adInitialize	failed	(%d)\r\n",	aResult);

The	AdInitParams	structure	contains	runtime	settings	that	may	be	used
to	control	SDK	behavior.

typedef	struct

{

		gsi_i32					mGameId;

		const	char*	mQueryHostOverrideURL;			//	Override	this	for	testing

		//	For	offline	usage	stats

		gsi_bool				mOfflineOnly;												//	(e.g.	single	player)

		const	char*	mOfflineFilePath;								//	relative	to	working	directory

		//	For	ad	download	caching

		const	char*	mCachePath;														//	cache	directory

}	AdInitParams;

(back	to	top)

Register	each	ad	position

At	the	beginning	of	the	game	(or	at	the	start	of	each	level)	the	SDK	must
be	told	which	ad	positions	are	in	use.	In	addition	to	the	position	name,
information	about	a	default	advertisement	must	be	supplied.	The	default
advertisement	will	be	used	if	network	conditions	prevent	an	ad	download
or	if	an	ad	file	is	corrupted.

AdResult	AD_CALL	adRegisterPosition(const	AdInterfacePtr	theInterface,	

	 	 	 	 	 	 const	char*	thePositionName,

	 	 	 	 	 	 AdUnitID				theDefaultAdId,								

	 	 	 	 	 	 const	char*	theDefaultAdResource,

	 	 	 	 	 	 const	char*	theDefaultAdExtraData);

Although	a	default	ad	is	generally	unbranded,	the	SDK	will	continue	to
collect	usage	statistics	that	will	be	visible	through	the	publisher’s	portal.
Therefore,	it	is	important	that	the	default	ad	have	a	valid	AdUnitID.

(back	to	top)

Query	the	active	ad	for	each	position

The	logic	for	selecting	advertisments	and	matching	user	information	for
targetted	delivery	is	contained	within	the	AdServer.	The	SDK	must	simply
pass	up	the	user	information	along	with	a	list	of	ad	positions	and	the	ad
server	will	return	a	list	of	advertisments	to	fill	those	positions.

Currently,	the	SDK	supports	targetting	based	on	birthdate	only.	The
user’s	profileid	is	used	to	count	unique	downloads.

AdResult	AD_CALL	adQueryForActiveUnits(

																								AdInterfacePtr	theInterface,

	 	 	 	 gsi_u32		theProfileId,

	 	 	 	 gsi_u32		theBirthDate,

	 	 	 	 AdQueryForActiveUnitsCallback	theCallback,

	 	 	 	 gsi_time	theTimeoutMs);

This	is	an	asynchronous	query,	so	a	callback	and	timeout	parameter	are
provided.

(back	to	top)

Download	new	creatives

The	SDK	can	begin	downloading	new	creatives	as	soon	as	the	query	for
active	ads	has	completed.

AdResult	AD_CALL	adDownloadNewCreatives(

							AdInterfacePtr	theInterface,

	 gsi_i32								theThrottle,

							AdDownloadNewCreativesProgressCallback		theProgressCallback,

							AdDownloadNewCreativesCompletedCallback	theCompletedCallback,

							gsi_time							theTimeoutMs);

Win32	and	Mac	developers	may	take	advantage	of	ad	caching	when
using	ad	rotations.	Caching	is	performed	automatically	by	the	SDK.
When	the	adDownloadNewCreatives	function	is	called,	the	SDK	will
check	if	the	required	ad	exists	within	the	local	cache.	If	the	file	is	found,
the	cached	file	will	be	used	in	place	of	a	new	download.	CRC	checks	are
performed	to	ensure	ad	integrity.

When	developing	on	the	PS2,	the	SDK	will	not	store	files	to	the	memory
card.	Instead,	the	developer	must	process	data	received	in
theProgressCallback	and	copy	it	to	the	desired	memory	location.

When	setting	up	advertisements	in	the	publisher	portal	there	are	some
cases	where	you	may	want	to	provide	a	URL	for	content,	but	do	not	want
the	SDK	to	auto-download	it.	I	recommend	prefixing	the	URL	with	a	token
to	identify	the	type	of	content.	The	presence	of	this	token	will	invalidate
the	URL	causing	the	SDK	to	ignore	it.

For	example,	if	the	movie	url	is	“http://localhost/movie.swf”	you	might	use
“stream:http://localhost/movie.swf”.	The	game	client	can	then	detect	the
presence	of	the	“stream”	token	and	begin	streaming	the	movie.	Note	that
a	crc	value	is	not	required	when	using	this	method	since	no	download	is
being	performed	by	the	SDK.

(back	to	top)

Notify	the	SDK	when	ads	are	used

An	ad	download	is	usually	binary	data	and	may	contain	multiple	game
resources.	The	SDK	has	no	knowledge	of	the	internal	file	contents,	so	it’s
left	up	to	the	developer	to	inform	the	SDK	when	an	ad	is	on	screen	or	is
being	interacted	with.

There	are	two	pre-defined	categories	for	ad	usage.	The	interpretation	of
the	category	names	is	somewhat	arbitrary,	but	here	are	some	helpful
guidelines	for	when	each	category	should	be	used.

UC_VIEWS
Usually	defined	as	“time	on	screen”.	Viewing	a	billboard,	floating
blimp	or	other	passive	impressions	would	fall	into	this	category.
e.g.	The	branded	item	exists	for	asthetic	purposesly	only,	is	not
used	in	gameplay.

UC_INTERACTIONS
Drinking	a	branded	soda	or	constructing	a	branded	storefront
would	fall	into	this	category.	Please	note	that	viewing	a	branded
soda	would	fall	into	the	UC_VIEWS	category.	Developers	are	free
to	use	whichever	category	they	prefer,	but	since	this	affects	usage
reporting	we	recommend	that	a	clear	separation	is	chosen.

AdResult	AD_CALL	adBeginTrackUsageTime(AdInterfacePtr	theInterface,	

			const	char*				thePositionName,

										AdUsageCategory	theCat);		

AdResult	AD_CALL	adEndTrackUsageTime		(AdInterfacePtr	theInterface,	

	 	 	 	 	 	 			const	char*				thePositionName,

	 	 	 	 	 	 			AdUsageCategory	theCat);

AdResult	AD_CALL	adIncrementUsageCount(AdInterfacePtr	theInterface,	

	 	 	 	 	 	 			const	char*				thePositionName,

	 	 	 	 	 	 			AdUsageCategory	theCat);

As	an	example,	imagine	that	you	have	a	branded	blimp	that	will	fly
through	the	users	field	of	view.	When	the	blimp	appears	on	screen	you
should	call	adBeginTrackUsageTime.	When	the	blimp	explodes	(or
peacefully	floats	off-screen)	you	should	call	adEndTrackUsageTime.

You	must	call	adEndTrackUsageTime	once	for	each	call	to
adBeginTrackUsageTime.	This	allows	for	simple	tracking	when	multiple
blimps	are	on	screen.	If	you	call	adBeginTrackUsageTime	five	times,	but
call	adEndTrackUsageTime	only	four	times,	the	ad	will	still	be	considered
“in	use”.

Calling	adBeginTrackUsageTime	multiple	times	will	not	inflate	the	viewing
time.	If	three	blimps	on	are	screen	for	five	seconds,	you	are	credited	for
five	seconds	of	viewing	time.	(not	15)

(back	to	top)

Report	usage	statistics

We	recommend	that	the	adSendUnitUsageData	function	be	called	at
least	once	every	five	minutes	throughout	the	game	session,	and	once
again	when	the	game	session	ends.	This	is	a	flexible	guideline	and	may
vary	depending	on	game	type.

(back	to	top)

Ad	Metrics

Developers	who	are	familiar	with	web	based	metrics	may	recall	the	terms
“impression”	and	“click-through”.	These	are	somewhat	restricted	usage
metrics	which	are	fit	to	current	web	server	technology.

GameSpy	client	side	ad	reporting	is	much	more	robust	and	will	increase
the	value	of	your	ad	inventory.

Views	(UC_VIEWS)
This	is	usually	interpreted	as	when	an	ad	is	on-screen.

Web	developers	may	notice	a	similarity	with	ad	“impressions”,
however	impression	count	is	a	limited	report	metric.	GameSpy
supports	time	based	measurements	which	are	unavailable	in	a
web	environment.

For	example,	when	playing	a	flash	movie	in-game,	the
GameSpy	Marketing	SDK	is	able	to	report	not	only	the	number	of
times	the	movie	was	streamed,	but	also	how	many	seconds	the
movie	was	viewed.	This	is	not	as	simple	as	multiplying	the	number
of	downloads	by	the	length	of	the	movie.	When	given	the	option,
your	games	gamers	may	close	the	advertisement	before	it	has
finished	playing,	or	they	may	watch	an	interesting	movie	3	or	4
times!

Interactions	(UC_INTERACTIONS)
The	interactions	category	is	left	for	general	developer	use.	Actions
such	as	picking	up	a	health	pack	or	firing	a	gun	are	suitable	for
interactions.

(back	to	top)

Reference
Compile	Time	Options

These	are	defined	at	the	top	of	ad.h.

GSI_AD_STATIC_MEM
When	defined,	this	will	cause	the	SDK	to	prefer	static	memory	over
dynamic	memory.	Array	sizes	must	be	defined	at	compile	time	and
array	growth	will	not	be	permitted.

GSI_AD_DEFAULT_FILE_NAME	(“_gsiad.dat”)
File	name	used	to	store	offline	stats.

GSI_AD_MAX_TRANSFER_COUNT	(1)
Specifies	the	number	of	simultaneous	downloads	the	SDK	will
perform.	The	default	is	set	to	single	downloads.	Increasing	this
may	result	in	faster	download	speeds,	but	will	require	additional
memory	for	the	ghttp	sdk.

GSI_AD_MAX_FILENAME_LENGTH	(255)
Buffer	size	for	filenames.	Reduce	this	only	if	you	are	extremely
strapped	for	memory.

GSI_AD_POSITION_COUNT	(5)
Maximum	number	of	positions	in	any	one	level/map.	This	is	the
number	of	positions	the	SDK	will	keep	in	memory.

GSI_AD_MAX_POSITION_NAME_LENGTH	(32)
Position	names	are	string	identifiers	for	ad	positions.

GSI_AD_UNIT_ARRAY_INITIAL_CAPACITY	(10)
Starting	capacity	for	the	unit	array.	You	will	usually	need	2	x
number	of	positions.

GSI_AD_UNIT_ARRAY_MAX_CAPACITY	(15)
The	maximum	size	that	the	unit	array	will	grow	to.

GSI_AD_UNIT_ARRAY_GROWBY	(0)
Array	growth	size.	The	array	will	grow	as	needed	until	the	max
capacity	is	reached.	The	default	of	zero	prevents	memory	growth
and	is	required	when	using	GSI_AD_STATIC_MEM.

GSI_AD_MAX_EXTRA_DATA_LENGTH	(64)
Maximum	buffer	size	of	developer	data.	This	data	is	associated
with	the	ad	using	the	publisher	portal.	Increase	this	if	you	require
additional	data.

GSI_AD_MAX_URL_LENGTH	(255)
Maximum	size	of	download	URLs	specified	using	the	ad	portal.
Increase	this	if	you	require	support	for	longer	URLs.

(back	to	top)

Multithreading

The	gSOAP	library	is	a	blocking	TCP	socket	library,	this	requires	that	we
run	it	in	a	dedicated	thread.

The	GameSpy	common	code	will	automatically	create	and	destroy
threads	for	gSOAP	as	needed.	One	thread	is	required	for	each
outstanding	gSOAP	call.	The	stack	size	required	by	this	thread	will	vary
by	platform.	8k	is	usually	large	enough	as	long	as	WITH_LEAN	and
WITH_LEANER	are	defined.

Because	the	gSOAP	library	is	only	used	when	retrieving	a	list	of	ads	or
when	reporting	usage	statistics,	the	library	will	not	affect	performance
during	gameplay.

(back	to	top)

FAQ
While	using	the	SNSystems	stack	for	the	PS2	I	receive	network
errors	from	the	update	query.	What	might	be	happening?

PS2	developers	using	SNSystems	must	specify	the	number	of	threads
that	have	network	access	when	they	call	sockAPIinit.	This	number	must
include	an	extra	thread	for	the	gsoap	library.

How	often	should	usage	data	be	reported?

We	recommend	that	adSendUnitUsageData	be	called	at	startup,
shutdown	and	periodically	throughout	the	game	(~5	minutes.)	If	the
player’s	network	connection	drops,	usage	data	may	be	saved	to	an
offline	file.	Sending	usage	data	at	program	startup	ensures	that	the	offline
data	will	be	reported.

How	can	I	create	advertisements	and	set	locations	for	my	title?

Administrative	functions	may	be	found	on	the	Ad	Portal	web	site.	For
access	to	this	site,	please	contact	devsupport@gamespy.com.	Once	you
have	been	granted	access,	please	check	the	“Guide”	section	of	the	web
site	for	helpful	tips	and	directions.

Why	do	the	cache	files	have	a	“bin”	extension?

Advertisement	creatives	may	contain	any	type	of	binary	data,	including
zip	files	and	self	extracting	executables.	We	save	creatives	as	“bin”	files
to	protect	users	against	harmful	file	types,	and	use	a	check	sum	to	verify
the	cache	file	integrity	once	it	has	been	fully	downloaded.

I	can’t	use	the	cache	files	because	my	title	requires	the	file
extension.	What	do	you	recommend?

We	recommend	renaming	or	copying	the	cache	file	into	a	new	folder.	If
the	cache	file	is	remove	the	SDK	may	download	it	again	at	a	future	time.
To	prevent	this,	the	default	ad	for	the	position	may	be	updated	with	the
new	file	name.

How	can	I	see/test	an	advertisement	in	game	before	making	it
active?

Since	advertisements	are	position	based,	we	recommend	using	special
position	names	for	test	builds	of	the	game.	In	the	future	we	may	consider
supporting	ads	that	would	be	delivered	only	to	“test”	clients.	Please
contact	devsupport@gamespy.com	if	you	are	interested	in	this	or	other
feature	requests.

(back	to	top)

gSOAP	License	Notice
Part	of	the	software	embedded	in	this	product	is	gSOAP	software.

Portions	created	by	gSOAP	are	Copyright	(C)	2001-2004	Robert	A.	van
Engelen,	Genivia	inc.	All	Rights	Reserved.

THE	SOFTWARE	IN	THIS	PRODUCT	WAS	IN	PART	PROVIDED	BY
GENIVIA	INC	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,
INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE
ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE	AUTHOR	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,
OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED
TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS
OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)
HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER
IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING
NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE
USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY
OF	SUCH	DAMAGE.

(back	to	top)

Advertising	SDK	Functions
adBeginTrackUsageTime

Begins	time-based	usage	tracking	for	the
specified	unit.

adCancelDownloads
Cancel	any	Creative	downloads	that	are
in	progress.

adCancelQueryForActiveUnits
Cancels	a	pending	query.

adDownloadNewCreatives
Begins	downloading	new	creatives	as
necessary.

adEndTrackUsageTime
Ends	time-based	usage	tracking	for	the
specified	unit.

adGetUnitInfoByID
Retrieves	the	AdUnitInfo	the	specified
unit.

adGetUnitInfoByPosition
Retrieves	the	AdUnitInfo	for	the	unit	in	the
specified	position.

adIncrementUsageCount
Increment	ad	usage	(without	tracking	time
in	use)

adInitialize
Create	an	SDK	instance.

adQueryForActiveUnits
Queries	the	list	of	active	ad	units	from	the
ad	server

adRegisterPosition
Registers	the	string	name	and	default	ad
of	a	new	position.

adReset
Return	the	SDK	back	to	its	initialization
point.

adSendUnitUsageData
Uploads	usage	data	to	the	Ad	Server.

adShutdown
Destroys	the	SDK	interface	object	and
frees	any	allocated	memory.

adThink
Allows	the	SDK	to	continue	processing.

adBeginTrackUsageTime
Begins	time-based	usage	tracking	for	the	specified	unit.

AdResult	adBeginTrackUsageTime(
AdInterfacePtr	theInterface,
const	char	*	thePositionName,
AdUsageCategory	theCat);

Routine Required	Header Distribution
adBeginTrackUsageTime <ad.h> SDKZIP

Return	Value

This	function	returns	AdResult_NO_ERROR	upon	success.	Otherwise	a
valid	AdResult	error	condition	is	returned.	(see	remarks)

Parameters

theInterface
[in]	SDK	interface	previously	initialized	using	adInitialize

thePositionName
[in]	String	name	of	the	position,	registered	with	adRegisterPosition

theCat
[in]	UC_VIEWS	or	UC_INTERACTIONS

Remarks

This	function	will	mark	the	specified	position	as	"in	use"	until
adEndTrackUsageTime	is	called.	Two	separate	metrics	are	provided,
UC_VIEWS	and	UC_INTERACTIONS.	These	may	be	used	to	track
arbitrarily	different	types	of	usage	on	the	same	object.	

For	example,	a	branded	gun	that	is	visible	may	be	tracked	using
UC_VIEWS.	A	branded	gun	that	is	fired	may	be	tracked	using
UC_INTERACTIONS.	

Please	note	that	a	single	Ad	may	appear	in	multiple	positions.	Multiple
calls	to	adBeginTrackUsageTime	will	be	ignored.	In	other	words,	the
same	image	appearing	in	two	different	locations	will	result	in	one	time
measurement.

This	function	may	return:
AdResult_NO_ERROR
AdResult_INVALID_PARAMETERS
AdResult_POSITION_NOT_FOUND
AdResult_UNIT_NOT_FOUND.

Section	Reference:	Gamespy	Advertising	SDK

See	Also:	adEndTrackUsageTime,	adIncrementUsageCount

adCancelDownloads
Cancel	any	Creative	downloads	that	are	in	progress.

AdResult	adCancelDownloads(
AdInterfacePtr	theInterface);

Routine Required	Header Distribution
adCancelDownloads <ad.h> SDKZIP

Return	Value

This	function	returns	AdResult_NO_ERROR	upon	success.	Otherwise	a
valid	AdResult	error	condition	is	returned.	(see	remarks)

Parameters

theInterface
[in]	SDK	interface	previously	initialized	using	adInitialize

Remarks

Multiple	downloads	may	be	in	progress	or	pending.	This	call	will	cancel
all	of	them.	A	progress	callback	will	be	triggered	for	each	download	that	is
canceled.

This	function	may	return:
AdResult_NO_ERROR.

Section	Reference:	Gamespy	Advertising	SDK

See	Also:	adDownloadNewCreatives

adCancelQueryForActiveUnits
Cancels	a	pending	query.

AdResult	adCancelQueryForActiveUnits(
AdInterfacePtr	theInterface);

Routine Required	Header Distribution
adCancelQueryForActiveUnits <ad.h> SDKZIP

Return	Value

This	function	returns	AdResult_NO_ERROR	upon	success.	Otherwise	a
valid	AdResult	error	condition	is	returned.	(see	remarks)

Parameters

theInterface
[in]	SDK	interface	previously	initialized	using	adInitialize

Remarks

Cancels	a	previous	call	to	adQueryForActiveUnits.	A	callback	will	be
triggered	with	the	status	AdResult_CANCELLED.

This	function	may	return:
AdResult_NO_ERROR
AdResult_INVALID_PARAMETERS.

Section	Reference:	Gamespy	Advertising	SDK

See	Also:	adQueryForActiveUnits

adDownloadNewCreatives
Begins	downloading	new	creatives	as	necessary.

AdResult	adDownloadNewCreatives(
AdInterfacePtr	theInterface,
gsi_i32	theThrottle,
AdDownloadNewCreativesProgressCallback
theProgressCallback,
AdDownloadNewCreativesCompletedCallback
theCompletedCallback,
gsi_time	theTimeoutMs);

Routine Required	Header Distribution
adDownloadNewCreatives <ad.h> SDKZIP

Return	Value

This	function	returns	AdResult_NO_ERROR	upon	success.	Otherwise	a
valid	AdResult	error	condition	is	returned.	(see	remarks)

Parameters

theInterface
[in]	SDK	interface	previously	initialized	using	adInitialize

theThrottle
[in]	Bandwidth	throttle	in	bytes

theProgressCallback
[in]	Function	to	be	called	periodically	with	progress	info

theCompletedCallback
[in]	Function	to	be	called	when	ALL	downloads	have	completed

theTimeoutMs
[in]	Timeout	for	connecting	to	each	server	(not	total	download	time)

Remarks

adDownloadNewCreatives	will	download	missing	creative	files	for	the
registered	positions.	The	supplied	progress	callback	will	be	periodically
triggered	with	updated	status	information.	

In	most	cases,	the	SDK	will	save	the	creative	into	the	ad	file	cache.	On
platforms	without	disk	access	the	data	will	be	streamed	into	memory.
Developers	on	these	platforms	should	copy	the	data	buffer	into	a
permanent	location.

See	adQueryForActiveUnits	for	how	the	SDK	determines	which	creatives
to	download.

Section	Reference:	Gamespy	Advertising	SDK

See	Also:	adQueryForActiveUnits,	adCancelDownloads

adEndTrackUsageTime
Ends	time-based	usage	tracking	for	the	specified	unit.

AdResult	adEndTrackUsageTime(
AdInterfacePtr	theInterface,
const	char	*	thePositionName,
AdUsageCategory	theCat);

Routine Required	Header Distribution
adEndTrackUsageTime <ad.h> SDKZIP

Return	Value

This	function	returns	AdResult_NO_ERROR	upon	success.	Otherwise	a
valid	AdResult	error	condition	is	returned.	(see	remarks)

Parameters

theInterface
[in]	SDK	interface	previously	initialized	using	adInitialize

thePositionName
[in]	String	name	of	the	position	registered	using	adRegisterPosition

theCat
[in]	UC_VIEWS	or	UC_INTERACTIONS

Remarks

See	adBeginTrackUsageTime	for	details	on	usage	tracking.

Section	Reference:	Gamespy	Advertising	SDK

See	Also:	adBeginTrackUsageTime,	adIncrementUsageCount

adGetUnitInfoByID
Retrieves	the	AdUnitInfo	the	specified	unit.

AdResult	adGetUnitInfoByID(
AdInterfacePtr	theInterface,
AdUnitID	theUnitID,
AdUnitInfo	**	theInfoOut);

Routine Required	Header Distribution
adGetUnitInfoByID <ad.h> SDKZIP

Return	Value

This	function	returns	AdResult_NO_ERROR	upon	success.	Otherwise	a
valid	AdResult	error	condition	is	returned.	(see	remarks)

Parameters

theInterface
[in]	SDK	interface	previously	initialized	using	adInitialize

theUnitID
[in]	A	valid	Unit	ID

theInfoOut
[out]	A	pointer	to	the	unit's	info.	Valid	until	the	next	call	to	adThink.

Remarks

In	most	cases	adGetUnitInfoByPosition	should	be	used.	This	will	be	the
default	unit	information	if	either	adQueryForActiveUnits	or
adDownloadNewCreatives	has	not	completed.

Section	Reference:	Gamespy	Advertising	SDK

See	Also:	adGetUnitInfoByPosition,	adQueryForActiveUnits,
adDownloadNewCreatives

adGetUnitInfoByPosition
Retrieves	the	AdUnitInfo	for	the	unit	in	the	specified	position.

AdResult	adGetUnitInfoByPosition(
AdInterfacePtr	theInterface,
const	char	*	thePositionName,
AdUnitInfo	**	theInfoOut);

Routine Required	Header Distribution
adGetUnitInfoByPosition <ad.h> SDKZIP

Return	Value

This	function	returns	AdResult_NO_ERROR	upon	success.	Otherwise	a
valid	AdResult	error	condition	is	returned.	(see	remarks)

Parameters

theInterface
[in]	SDK	interface	previously	initialized	using	adInitialize

thePositionName
[in]	String	identifier	of	the	position	registered	with	AdRegisterPosition

theInfoOut
[out]	A	pointer	to	the	unit's	info.	Valid	until	the	next	call	to	adThink.

Remarks

This	will	be	the	default	unit	information	if	either	adQueryForActiveUnits	or
adDownloadNewCreatives	has	not	completed.

Section	Reference:	Gamespy	Advertising	SDK

See	Also:	adRegisterPosition,	adQueryForActiveUnits,
adDownloadNewCreatives,	adGetUnitInfoByID

adIncrementUsageCount
Increment	ad	usage	(without	tracking	time	in	use).

AdResult	adIncrementUsageCount(
AdInterfacePtr	theInterface,
const	char	*	thePositionName,
AdUsageCategory	theCat);

Routine Required	Header Distribution
adIncrementUsageCount <ad.h> SDKZIP

Return	Value

This	function	returns	AdResult_NO_ERROR	upon	success.	Otherwise	a
valid	AdResult	error	condition	is	returned.	(see	remarks)

Parameters

theInterface
[in]	SDK	interface	previously	initialized	using	adInitialize

thePositionName
[in]	String	name	of	the	position	registered	with	adRegisterPosition

theCat
[in]	UC_VIEWS	or	UC_INTERACTIONS

Remarks

This	function	increments	the	usage	count	for	the	specified	ad.	Use	this
function	when	tracking	non	time-based	interactions	such	as	drinking	a
soda.	See	adBeginTrackUsageTime	for	a	complete	description	of	usage
tracking.

Section	Reference:	Gamespy	Advertising	SDK

See	Also:	adBeginTrackUsageTime,	adEndTrackUsageTime

adInitialize
Create	an	SDK	instance.

AdResult	adInitialize(
const	AdInitParams*	theInitParams,
AdInterfacePtr	*	theInterfaceOut);

Routine Required	Header Distribution
adInitialize <ad.h> SDKZIP

Return	Value

This	function	returns	AdResult_NO_ERROR	upon	success.	Otherwise	a
valid	AdResult	error	condition	is	returned.	(see	remarks)

Parameters

theInitParams
[in]	Structure	with	SDK	runtime	settings

theInterfaceOut
[out]	AdInterfacePtr	to	be	initialized

Remarks

This	function	will	initialize	an	AdInterfacePtr	which	may	then	be	passed	to
the	Ad	SDK	interface	functions.

The	AdInitParams	parameter	is	a	structure	of	SDK	runtime	options.
Please	see	the	developer	guide	documentation	for	a	description	of	each
field.

Example
	 AdInterfacePtr	anInterface		=	NULL;

	 AdResult							aResult						=	AdResult_NO_ERROR;

	 	 //	Set	run-time	parameters

	 	 AdInitParams	anInitParams;

	 	 memset(&anInitParams;,	0,	sizeof(AdInitParams));

	 	 anInitParams.mGameId	=	GAME_ID;

anInitParams.mOfflineFilePath	=	"ad";

	 	

	 	 printf("Initializing	the	Ad	SDK\r\n");

	 	 aResult	=	adInitialize(&anInitParams;,	&anInterface;);

	 	 if	(aResult	!=	AdResult_NO_ERROR)

	 	 {

	 	 	 printf("adInitialize	failed	(%d)\r\n",	aResult);

	 	 	 return	0;

	 	 }

Section	Reference:	Gamespy	Advertising	SDK

See	Also:	adRegisterPosition,	adThink,	adShutdown

adQueryForActiveUnits
Queries	the	list	of	active	ad	units	from	the	ad	server.

AdResult	adQueryForActiveUnits(
AdInterfacePtr	theInterface,
gsi_u32	theProfileId,
gsi_u32	theSex,
gsi_u32	theBirthDay,
gsi_u32	theBirthMonth,
gsi_u32	theBirthYear,
char*	theCountryCode,
AdQueryForActiveUnitsCallback	theCallback,
gsi_time	theTimeoutMs);

Routine Required	Header Distribution
adQueryForActiveUnits <ad.h> SDKZIP

Return	Value

This	function	returns	AdResult_NO_ERROR	upon	success.	Otherwise	a
valid	AdResult	error	condition	is	returned.	(see	remarks)

Parameters

theInterface
[in]	SDK	interface	previously	initialized	using	adInitialize

theProfileId
[in]	Profileid	of	the	local	user.	Usually	obtained	via	the	GP	SDK.

theSex
[in]	Usually	obtained	via	the	GP	SDK.

theBirthDay
[in]	Usually	obtained	via	the	GP	SDK.

theBirthMonth
[in]	Usually	obtained	via	the	GP	SDK.

theBirthYear
[in]	Usually	obtained	via	the	GP	SDK.

theCountryCode
[in]	Two	letter	country	code.	Usually	obtained	via	the	GP	SDK.

theCallback
[in]	Callback	to	be	triggered	when	the	operation	completes.

theTimeoutMs
[in]	Timeout	in	milliseconds

Remarks

This	function	will	retrieve	information	about	one	advertisement	for	each
registered	position.	Advertisements	will	not	be	downloaded	until
adDownloadNewCreatives	is	called.

Supplied	user	data	will	be	used	for	targetted	advertising.

Section	Reference:	Gamespy	Advertising	SDK

See	Also:	adGetUnitInfoByPosition,	adDownloadNewCreatives

adRegisterPosition
Registers	the	string	name	and	default	ad	of	a	new	position.

AdResult	adRegisterPosition(
AdInterfacePtr	theInterface,
const	char*	thePositionName,
AdUnitID	theDefaultAdId,
const	char*	theDefaultAdLocalResourceName,
const	char*	theDefaultAdExtraData);

Routine Required	Header Distribution
adRegisterPosition <ad.h> SDKZIP

Return	Value

This	function	returns	AdResult_NO_ERROR	upon	success.	Otherwise	a
valid	AdResult	error	condition	is	returned.	(see	remarks)

Parameters

theInterface
[in]	SDK	interface	previously	initialized	using	adInitialize

thePositionName
[in]	String	name	of	the	position	registered	through	the	web	interface.

theDefaultAdId
[in]	AdID	for	tracking	usage	statistics.

theDefaultAdLocalResourceName
[in]	Filename	for	the	advertisement

theDefaultAdExtraData
[in]	Developer	defined	data	to	be	used	client	side	only.

Remarks

The	string	name	of	the	position	must	match	the	name	created	using	the
Ad	Portal	web	interface.	The	default	ad	information	will	be	returned	by
the	SDK	if	no	other	advertisement	is	available.	Default	advertisements
should	use	a	registered	AdID	for	reporting.	This	will	allow	the	SDK	to
report	"missed"	usage	opportunities.

Section	Reference:	Gamespy	Advertising	SDK

See	Also:	adGetUnitInfoByPosition,	adGetUnitInfoByID

adSendUnitUsageData
Uploads	usage	data	to	the	Ad	Server.

AdResult	adSendUnitUsageData(
AdInterfacePtr	theInterface,
AdSendUnitUsageDataCallback	theCallback,
gsi_time	theTimeoutMs);

Routine Required	Header Distribution
adSendUnitUsageData <ad.h> SDKZIP

Return	Value

This	function	returns	AdResult_NO_ERROR	upon	success.	Otherwise	a
valid	AdResult	error	condition	is	returned	(see	remarks).

Parameters

theInterface
[in]	SDK	interface	previously	initialized	using	adInitialize

theCallback
[in]	Function	to	be	triggered	when	the	operation	completes

theTimeoutMs
[in]	Timeout	for	the	operation,	in	milliseconds

Remarks

Win32	Specific:	If	the	upload	fails	for	any	reason,	the	usage	data	will	be
stored	in	an	offline	file	and	sent	the	next	time	adSendUnitUsageData	is
called.

Section	Reference:	Gamespy	Advertising	SDK

See	Also:	adBeginTrackUsageTime,	adEndTrackUsageTime,
adIncrementUsageCount

adShutdown
Destroys	the	SDK	interface	object	and	frees	any	allocated	memory.

AdResult	adShutdown(
AdInterfacePtr	theInterface);

Routine Required	Header Distribution
adShutdown <ad.h> SDKZIP

Return	Value

This	function	returns	AdResult_NO_ERROR	upon	success.	Otherwise	a
valid	AdResult	error	condition	is	returned.	(see	remarks)

Parameters

theInterface
[in]	SDK	interface	previously	initialized	using	adInitialize

Remarks

Calling	this	function	will	release	the	AdInterfacePtr	and	free	all	internally
allocated	memory.	The	AdInterfacePtr	can	no	longer	be	used	by	the
SDK.

AdResult_INVALID_PARAMETERS	will	be	returned	in	theInterface	is
invalid.

Section	Reference:	Gamespy	Advertising	SDK

See	Also:	AdInitialize

adThink
Allows	the	SDK	to	continue	processing.

AdResult	adThink(
AdInterfacePtr	theInterface);

Routine Required	Header Distribution
adThink <ad.h> SDKZIP

Return	Value

This	function	returns	AdResult_NO_ERROR	upon	success.	Otherwise	a
valid	AdResult	error	condition	is	returned.	(see	remarks)

Parameters

theInterface
[in]	SDK	interface	previously	initialized	using	adInitialize

Remarks

This	function	should	be	called	as	frequently	as	possible	to	allow	the	SDK
to	continue	processing.	SDK	callbacks	will	be	dispatched	during	this
function	call.

AdResult_INVALID_PARAMETERS	will	be	returned	if	theInterface	is
invalid.

Section	Reference:	Gamespy	Advertising	SDK

ATLAS	Competition	SDK
Overview

Most	developers	would	like	to	add	competition	to	the	multiplayer	portion
of	their	game,	but	they	don't	always	have	the	time	or	resources	to	create
such	a	complex	system.	The	GameSpy	Competition	SDK	is	an	easy-to-
use	solution	that	enables	developers	to	insert	competition	functionality
into	their	games,	while	maintaining	a	high	level	of	flexibility	and	security.

You	might	be	thinking,	what	is	competition?	By	definition,	competition
involves	striving	to	achieve	dominance	or	attaining	a	set	goal.	In	games,
this	generally	refers	to	the	inclusion	of	developer-defined	metrics	used	to
measure	a	player's	performance	and	compare	these	stats	against	others.
This	could	be	in	the	form	of	a	Leader	Board	which	tracks	the	top	players
with	a	given	category,	such	as	who	has	the	top	all-time	win/loss	ratio.	It
can	also	be	in	the	form	of	individual	accomplishments	that	tell	a	player
how	well	they	have	done	in	a	given	area,	such	as	weapon	accuracy	or
percentage	of	the	game	completed	(for	single	player	games).	The
Competition	SDK	allows	developers	to	pick	and	choose	what	they	deem
necessary	as	statistics	by	which	players	can	compare	themselves	to	their
peers.

The	Competition	SDK	provides	an	easy	web	interface	in	order	to
customize	the	statistics	and	data	reported	to	our	backend.	Since
everything	is	setup	using	this	simple	Administrative	site,	there	is	no
scripting	or	custom	code	required	in	order	to	process	this	data;	this	is	all
accomplished	via	the	web	interface.	The	Competition	API	allows	you	to
send	game	results	to	our	central	servers,	which	will	then	go	through	all
received	reports	and	normalize	these	to	create	a	final	report.	The
normalization	process	handles	any	discrepancies	that	might	arise	(and
applying	penalties	where	necessary)	in	order	to	establish	an	official	final
report	it	considers	to	be	the	most	accurate	representation	of	what	took
place.	Statistics	are	then	stored	in	our	generalized	remote	storage
system	called	Sake;	the	game	must	utilize	the	GameSpy	Sake	SDK	in
order	to	retrieve	player	stats.

Features

Easy-to-use	web	interface	(Admin	Site)	to	create	keys/rules	for	a
game.
Custom	Game-specific	data	or	keys	submitted	in	addition	to	the
game	results.
Custom	rules	that	are	used	to	process	raw	statistical	data
Final	stats	are	stored	in	Sake	storage	system

Admin	Site	(ATLAS	web	interface)

The	Administrative	site	(http://tools.gamespy.net/atlas/)	will	allow	for
creation	of	keys,	processing	rules,	and	stats.	If	you	do	not	have	access	to
the	site,	you	can	gain	access	by	e-mailing	devsupport@gamespy.com.
The	site	contains	numerous	examples	designed	to	help	guide	you	along
in	creating	the	necessary	elements	for	adding	stats	in	your	game.	If	you
have	problems	with	the	site,	or	any	questions	that	are	not	directly
addressed,	please	e-mail	us	at	devsupport@gamespy.com

On	the	Home	page	of	the	Admin	Site	you	will	see	links	to	create
Ruleset(s)	to	integrate	into	your	C/C++	codebase.	These	files	contain
defines	for	the	KEYS,	STATS,	and	ATLAS_RULE_SET_VERSION	which
can	be	used	when	building	reports	or	retrieving	stats.	To	see	an	example
of	this	the	ScRaceSample	includes	the	auto-generated	header
atlas_Competition_Race_Sample_App_v1.h,	which	is	referenced	in	the
sample	code	as	well.

Custom	Keys

Developers	can	create	user-defined	keys	to	submit	custom	data	along
with	the	generic	game	results	(such	as	win,	loss,	etc.).	Each	key	that	the
game	reports	is	paired	with	a	value	that	represents	some	relevant
information	from	the	game	that	is	either	global,	player,	or	team	specific.

Custom	Processing	Rules	and	Generating	Stats

Developers	will	utilize	the	ATLAS	Admin	site	in	order	to	create	these
keys/rules/stats	for	their	game.	Custom	processing	rules	are	used	to
process	stats	via	a	set	of	input/output	specifications	and	a	selected

http://tools.gamespy.net/atlas/
mailto:devsupport@gamespy.com
mailto:devsupport@gamespy.com

operation	(addition,	subtraction,	etc.).	The	inputs	can	be	either	previous
stats,	or	keys	that	were	sent	along	with	game	results.	The	output	is
generally	stored	as	the	stats.	There	will	also	be	common	rules	that
developers	can	use	for	their	stats	calculation.

An	example:	You	might	want	to	keep	track	of	the	number	of	times	a
particular	map	is	played.	To	do	this	you	would	have	a	single	rule,	key,
and	stat	for	each	map.	Then	the	input	key	for	the	game	would	be
something	like	"boatMap/1"	indicating	that	I	just	played	the	"boatMap"
map.	The	rule	would	be	an	"incremental"	rule	operation	taking	the
"boatMap"	key	and	"numBoatMapPlayed"	stat	as	inputs	and	returning
"numBoatMapPlayed"	as	an	output	stat.	This	rule	would	then	increment
the	"numBoatMapPlayed"	stat	as	long	as	the	"boatMap"	key	exists	with	a
value	of	1.

Security

The	biggest	threat	to	competition	in	online	gaming	lies	in	cheating;
individuals	who	want	to	hack	the	system	in	order	to	gain	an	unfair
advantage.	As	it	currently	stands,	many	players	are	reluctant	to	play	in
online	competitions	because	of	this.	In	order	to	prevent	foul	play	and	help
retain	the	ideal	of	fair-play	in	online	gaming,	the	Competition	SDK
provides	a	built-in	solution	to	ensure	the	accuracy	and	the	validity	of	its
results.

Authentication/Validation	of	Players

The	first	piece	of	the	puzzle	is	the	use	of	the	GameSpy	Authentication
service,	which	validates	players.	It	allows	the	Competition	backend	to
verify	a	player	is	really	who	he	claims	to	be.	Each	player	involved	in	a
game	must	obtain	a	certificate	that	will	be	sent	along	with	the	results	to
the	Competition	service.	The	certificate	will	act	as	a	signature	of	that
player,	ensuring	that	the	results	being	submitted	are	not	from	an
unknown	source.

Authoritative	v.	Collaborative	Reports

Next,	the	SDK	allows	games	to	send	authoritative	reports	or

collaborative	reports.	An	authoritative	report	is	the	equivalent	of	an
official	referee-type	report	of	what	occurred	during	gameplay,	therefore
there	must	be	at	least	one	authoritative	report	per	session	that	contains
the	results	for	all	players	and	teams.	A	collaborative	report	contains
unofficial	data	in	order	to	collaborate	with	the	other	data	being	submitted.
Unlike	an	authoritative	report,	these	reports	are	not	as	restricted	and	may
contain	more	information	that	may	be	specific	to	each	player.	For	more
information	about	how	to	best	organize	these	reports	sent,	see
Appendices	II-III	below	for	use-case	scenarios	regarding	typical	game
types	and	the	reports	submitted.

Report	Encryption

Currently,	the	SDK	has	SSL	encryption	for	encrypting	its	report
submissions.	While	we	feel	this	is	sufficient	as	a	starting	basis	(in
addition	to	the	other	securities	used	in	the	SDK),	report	encryption	is	still
a	work	in	progress	and	other	options	are	being	explored	to	provide
further	enhanced	security.

Tips	for	Host	Migration

For	Host	migration,	the	only	difference	will	be	that	the	newly	chosen	host
will	change	their	intention	mid-game	(if	it	is	not	already	authoritative,	see
use-case	scenarios	below)	to	submit	an	authoritative	report,	as	they	are
now	considered	the	new	referee	(or	the	official	view)	of	the	game.	Also,
the	Competition	system	works	from	"more	is	better"	perspective	when	it
comes	to	reports,	so	all	players	in	the	game	should	make	sure	to	send	a
report	in	order	to	provide	the	most	accurate	statistics	results.	Note	that
for	peer-peer	games	that	allow	Host	migration	&	Late	Entry,	this	is	very
specific	scenario	covered	below	in	Appendix	V.

Normalization	of	Reports

The	Competition	normalizes	reports	in	order	to	analyze	the	game	results
and	provide	the	best	possible	explanation	for	what	took	place.	The
normalizer	will:

handle	irregularities,	such	as	disconnects	or	host	migration

handle	discrepancies	between	reported	results

Getting	Started

Here	is	a	quick	rundown	of	how	the	process	works.	Data	is	submitted	as
a	report	to	the	backend	in	terms	of	key/value	pairs	where	the	Keys	have
been	predefined	on	the	Admin	Site	and	referenced	via	the	Key	ID.	The
backend	processes	this	data	based	on	the	Rules	you	have	defined	and
places	this	output	into	a	Stat.	These	Stats	are	then	generated	as	records
within	the	Sake	database,	corresponding	to	the	appropriate	table	for	the
Rule	Type	(ie.	GameStats_vX,	PlayerStats_vX,	TeamStats_vX,	or
StaticStats_vX)	-	see	Appendix	I	for	more	information	about	retrieving
stats.

The	Rule	Type	is	very	specific	to	the	type	of	Stats	being	stored:

GameStats	-	Game-specific	data,	not	related	to	any	specific	player	or	to
any	specific	team.	Because	of	this,	you	will	equivalently	have	1	record	in
this	table,	corresponding	to	the	overall	game.	The	type	of	Stats	stored
here	could	be	something	like	the	number	of	times	a	given	map	has	been
played,	or	the	aggregate	total	of	bullets	fired	in	the	game	(from	all
players).

PlayerStats	–	Player-specific	data.	1	record	per	player.	This	contains	any
stats	related	directly	to	that	player,	such	as	number	of	overall	kills,
average	kills,	average	wins,	losses,	total	wins,	losses,	number	of	bullets
fired,	etc.

TeamStats	-	Team-specific	data.	1	record	per	team.

StaticStats	-	global	static	data	used	in	processing	other	Stats.	1	record	in
this	table	for	all	Static	stats.

Let's	say	you	want	to	create	a	PLAYER_HIGH_SCORE.	Here's	how:

First	you	would	need	to	create	the	Key	which	would	indicate	the
data	submitted	in	a	report	to	the	system.	In	this	case,	the	key	would
be	the	player’s	score.	Let’s	call	this	key	KEY_SCORE.
In	your	implementation	of	the	SDK,	the	report	would	submit	data	for
each	player’s	score	during	the	match.	The	key	ID	here	must	match

the	ID	for	the	KEY_SCORE	key	in	order	to	indicate	the	value
submitted	corresponds	to	this	key.	You	can	generate	a	Ruleset
Header	File	from	the	main	page	of	the	Admin	site	(at	the	bottom)
which	contains	defines	for	these	Key	IDs	you	can	reference	in	your
game.	For	example,	if	KEY_SCORE	had	ID	#1,	then	the	define
would	be	#define	KEY_SCORE	1	so	that	your	code	would	reference
the	KEY_SCORE	when	adding	data	to	the	report.
Next,	a	Stat	needs	to	be	created	which	is	used	to	hold	the	Statistic
generated	from	the	processing	rule.	Let’s	call	this
STAT_HIGH_SCORE.
This	STAT_HIGH_SCORE	is	generated	via	a	rule	that	we	need	to
create.	So	we	can	make	a	RULE_HIGH_SCORE,	which	is	a	Player-
type	rule	that	takes	KEY_SCORE	and	STAT_HIGH_SCORE	as
input,	applies	the	Maximum	operation	to	the	inputs,	and	outputs	to
STAT_HIGH_SCORE.	The	Player	type	rule	indicates	that	this	is	a
per-player	based	Statistic.
Once	you	a	report	has	been	submitted	and	processed,	a	record	will
be	generated	in	the	PlayerStats_vX	(where	X	indicates	the	ruleset
version	number)	table	in	Sake	containing	your	Stat.	See	Appendix	I
below	to	see	how	you	can	retrieve	this	data	via	the	Sake	SDK.

Dependencies

The	Competition	SDK	is	dependent	upon	the	following	GameSpy	SDKs
-	in	order	to	use	the	Competition	SDK	you	must	also	include	these
packages.	The	latest	versions	of	these	files	are	available	from
http://www.gamespy.net/secure/download/.

Common	Code
The	Competition	SDK	uses	the	GameSpy	Common	Code
package.	Once	you	have	both	this	package	and	the	Competition
package,	both	need	to	be	to	be	extracted	into	a	single	directory
where	all	GameSpy	SDKs	can	be	stored	and	easily	referenced.	An
example	directory	structure	might	look	like	the	following:

	 \Gamespy

	 	 \common

	 	 \sc	 	 	

	 	 \webservices

	 	 	

GameSpy	HTTP	SDK
The	Competition	SDK	uses	this	SDK	to	send	requests	and	receive
responses.	It	is	important	to	have	this	SDK	along	with	the	common
code.

GameSpy	Authentication	Service
Authentication	services	are	used	to	obtain	login	certificates	for	the
Competition	SDK.	These	files	are	included	with	the	Competition
SDK	download	and	located	in	the	webservices	folder.

GameSpy	Sake	SDK
Games	must	use	the	Sake	SDK	to	retrieve	the	stats	the
Competition	system	stores	in	the	Sake	backend.

http://www.gamespy.net/secure/download/

SDK	Implementation

Before	using	Competition,	a	game	must	have	first	performed	the
standard	GameSpy	Availability	Check.	This	ensures	that	the	GameSpy
backend	is	available,	and	that	the	current	game	has	access	to	the
backend.	If	the	game	has	not	performed	the	availability	check	prior	to
initializing	the	SDK,	the	call	to	scInitialize	will	return
SCResult_NO_AVAILABILITY_CHECK.

This	section	explains	the	necessary	steps	in	order	to	implement	the
basics	of	the	Competition	SDK.	The	following	is	a	brief	summary	of	the
steps	for	implementation:

The	SDK	and	all	dependent	components	are	initialized,	so	they	are
ready	for	use
Player's	login.	Game	authenticates	each	player	via	the	auth	service
and	retrieves	a	login	certificate	used	by	the	SDK	to	prove	a	player's
authenticity.
Host	creates	a	game	session	and	distributes
All	players	set	their	report	intentions,	which	describes	the	type	of
report	(authoritative	or	collaborative)	being	submitted.
Gameplay	begins,	stats	are	recorded.
When	the	game	session	is	complete,	all	players	create	a	report	with
the	stats	recorded.	This	report	contains	(i)	global,	(ii)	player,	and	(iii)
team	data,	submitted	in	that	order.
The	reports	are	submitted	to	the	Competition	Backend,	to	be
processed	according	to	the	rules	setup	using	the	Admin	site.

1.	Initialization

Before	doing	anything	with	the	Competition	SDK	itself,	you	must	start	the
GameSpy	core	using	gsCoreInitialize.	The	core	allows	the
Competition	SDK	to	initiate	and	complete	its	tasks.	The	authentication
service	included	with	the	SDK	will	also	require	the	core	to	be	initialized
before	use.

void	gsCoreInitialize();

Once	the	core	has	started,	initialize	the	Competition	SDK	using
scInitialize.	The	function	will	return	a	SCResult	for	error	checking.
The	actual	object	that	the	game	needs	to	keep	track	of	is	the
SCInterfacePtr.	Most	functions	(except	those	with	Report	in	the
name)	will	require	the	SCInterfacePtr	for	their	corresponding
operations	or	retrieval	of	data.

SCResult	scInitialize

(

	 int	 	 	theGameId,		 	 //GAMEID	assigned	to	you	by	GameSpy

	 SCInterfacePtr	*	theInterfaceOut		 //pointer	to	the	Competition	object	used	in	subsequent	SDK	calls

);	

2.	Login	and	Authentication

Before	creating	a	session	or	submitting	reports,	players	will	need	to	login
and	authenticate	themselves	via	the	auth	service	included	in	the	SDKs.
To	login	under	a	GameSpy	Presence	(GameSpy	ID)	account	the	game
should	call	wsLoginProfile.	If	the	game	has	not	performed	the
standard	GameSpy	Availability	Check	prior	to	this	login	attempt,	it	will	fail
with	a	result	of	WSLogin_NoAvailabilityCheck.

gsi_u32	wsLoginProfile

(

	 int		 	 partnerCode,	

	 int		 	 namespaceId,	

	 const	char	*		 profileNick,		 //profile	nickname	associated	with	the	player's	GameSpy	Presence	account

	 const	char	*		 email,			 //email	address	associated	with	the	player's	GameSpy	Presence	account

	 const	char	*		 password,		 //password	associated	with	the	player's	GameSpy	Presence	account

	 const	char	*		 cdkeyhash,		 //cdkey	hash	associated	with	the	player's	GameSpy	Presence	account	(optional)

	 WSLoginCallback	callback,		 //the	callback	returned	when	the	login	process	is	complete.

	 void	*			 userData	 //optional	user-defined	data	passed	to	the	callback.

);

partnerCode

The	partnerid	assigned	to	you	by	GameSpy	(note:	not	all	games

use	a	separate	partnerspace).	For	most	games,	this	will	use	the
generic	GameSpy	partnerspace,
WSLogin_PARTNERCODE_GAMESPY.

namespaceId

The	namespaceid	assigned	to	you	by	GameSpy	(note:	not	all
games	use	a	separate	namespace).	If	your	game	does	not	use
unique	nicks,	you	can	use
WSLogin_NAMESPACE_SHARED_NONUNIQUE.	For	games	using
the	GameSpy	shared	default	unique	nick	namespace,	use
WSLogin_NAMESPACE_SHARED_UNIQUE.

Within	the	login	callback,	the	WSLoginResponse	object	will	contain	the
login	certificate	and	private	data	which	will	be	passed	to	subsequent
Competition	SDK	calls.	These	values	should	be	stored	for	later	use:

GSLoginCertificate	mCertificate

GSLoginPrivateData	mPrivateData

3.	Creating	a	session

Once	the	Host	has	completed	his	login,	he	can	create	a	session	using
the	login	certificate	and	private	data	mentioned	above.	A	session	is
generally	created	for	each	unique	game	instance	(i.e.	a	match	with	a
clear	winner/loser	or	end	criteria),	but	is	not	limited	to	this:

SCResult	scCreateSession

(

	 SCInterfacePtr			 			theInterface,	 //pointer	to	the	initialized	Competition	object

	 const	GSLoginCertificate	*	theCertificate,	

	 const	GSLoginPrivateData	*	thePrivateData,

	 SCCreateSessionCallback				theCallback,		 //Callback	which	returns	once	the	request	is	complete

	 gsi_time																			theTimeoutMs,	 //Optional	timeout	parameter	to	cancel	the	request	if	the	timeout	is	met

	 void	*																					theUserData	

);

This	function	will	send	request	to	the	Competition	backend	to	create	a
session.	If	the	result	of	this	call	is	anything	other	than

SCResult_NO_ERROR,	this	indicates	an	error	has	occured.	Once	a
session	has	been	created,	the	host	can	retrieve	the	session	ID	by	calling
scGetSessionId:

const	char	*	scGetSessionId(const	SCInterfacePtr	theInterface);

The	host	will	then	need	to	distribute	this	session	ID	to	the	clients.	Each
client	will	then	set	his	session	ID	with	the	SDK	using	scSetSessionId
before	setting	his	report	intention.	The	session	ID	has	a	constant	length
of	SC_SESSION_GUID_SIZE.

SCResult	SC_CALL	scSetSessionId

(

	 const	SCInterfacePtr		 theInterface,	

	 const	gsi_u8		 	 theSessionId[SC_SESSION_GUID_SIZE]

);

Note	that	once	a	session	is	created,	the	backend	begins	a	countdown.	If
a	report	for	a	designated	session	has	not	been	received	within	10	hours
from	creation,	the	session	times	out	and	is	no	longer	valid.	Once	the	first
report	has	been	received,	this	timeout	period	decreases	to	2	minutes	and
reports	will	timeout	if	not	received	before	this	limit	expires.	Note	that	a
session	will	never	need	to	be	explicitly	cancelled	as	it	will	eventually
timeout	if	no	reports	for	it	have	been	received.

4.	Setting	the	Report	Intention

At	this	point,	the	host	and	clients	need	to	set	their	report	intentions.
These	intentions	should	be	set	by	all	players	submitting	a	report,	prior	to
starting	gameplay.

As	a	general	rule	of	thumb,	the	current	host	will	always	submit	an
authoritative	report	and	the	clients	will	submit	collaborative	reports	-
this	is	done	by	flagging	the	isAuthoritative	parameter	when	setting
intention.	However,	depending	on	the	game	type	(i.e.	RTS	versus	FPS)
being	played,	players	may	set	different	intentions	for	themselves.	In
addition,	if	Host	Migration	is	involved,	these	intentions	may	change	mid-
game.	For	more	specifics	on	this,	please	see	Appendices	II-III.	Also,

players	can	set	multiple	intentions	in	order	to	send	multiple	reports	-	a
scenario	for	why	this	might	be	used	is	described	in	the	use-case
examples	below:

SCResult	scSetReportIntention

(

	 const	SCInterfacePtr									theInterface,

								const	gsi_u8																	theConnectionID[SC_CONNECTION_GUID_SIZE],	 //NULL	if	unused

	 gsi_bool																					isAuthoritative,	 	 //gsi_true	for	authoritative	snapshots,	gsi_false	for	collaborative

	 const	GSLoginCertificate	*			theCertificate,	 	 //login	certificate	obtained	during	authentication

	 const	GSLoginPrivateData	*			thePrivateData,	 	 //private	data	obtained	during	authentication

	 SCSetReportIntentionCallback	theCallback,

	 gsi_time																					theTimeoutMs,	 	

	 void	*																							theUserData	 	

);

After	setting	his	intention,	each	player	should	retrieve	his	connection	ID
(unless	returning	to	a	match	and	using	their	previous	one)	which	will	be
used	upon	submitting	a	report.	This	is	done	by	calling
scGetConnectionId.	The	one	caveat	here	is	that	the	host,	or	any
player	submitting	an	authoritative	snapshot,	will	be	reporting	data	for	all
players	and	thus	needs	to	store	the	connection	IDs	for	all	players	in
addition	to	their	own.	Players	should	therefore	exchange	connection	IDs
with	one	another	before	beginning	play.

const	char	*	scGetConnectionId(const	SCInterfacePtr	theInterface);

Once	all	intentions	have	been	set,	gameplay	can	begin	and	the	game
should	begin	recording	stats	for	that	game	session.

5.	Creating	the	Report

Once	the	game	session	is	complete,	everyone	who	participated	in	the
game	should	submit	a	report.	To	do	this,	each	player	will	first	need	to
create	a	report	object	by	calling	scCreateReport.	This	report	should	be
created	at	the	end	of	a	game	session	to	ensure	the	most	accurate	values
for	the	player/team	count.	Note	that	theHeaderVersion	parameter
corresponds	to	the	ATLAS_RULE_SET_VERSION	located	in	the	auto-

generated	from	the	Admin	site.	This	header	file	can	be	retrieved	after
keys	for	the	game	have	been	created	on	the	Admin	site	(click	"Download
Ruleset	Header	File"	on	the	home	page	for	your	game).

SCResult	scCreateReport

(

	 const	SCInterfacePtr		 theInterface,	

	 gsi_u32		 	 theHeaderVersion,		 //version	number	obtained	via	Admin	site	where	keys	are	created

	 gsi_u32		 	 thePlayerCount,		 //the	number	of	players	who	participated	in	the	match

	 gsi_u32		 	 theTeamCount,		 	 //the	number	of	teams	in	the	match

	 const	SCReportPtr	*		 theReportOut		 	 //pointer	to	the	report	object	used	for	subsequent	calls

);

The	game	should	keep	track	of	theReportOut	report	object	for	adding
stats	in	key/value	pairs	to	the	report.	This	is	done	in	three	stages,	for
each	type	of	data:	global,	player,	and	team	data.	This	should	be	done	in
the	order	shown	below	so	that	errors	do	not	occur;	(a)	Global,	(b)
Player,	and	finally	(c)	Team	data:

a.	Global	Data

Before	submitting	each	type	of	data,	the	game	must	first	inform	the
competition	SDK	of	the	data	it	is	about	to	report.	This	is	done	by	calling
the	appropriate	scReportBegin*	function	before	submitting	this	type	of
data	to	the	report.	For	global	data	this	function	is:

SCResult	scReportBeginGlobalData(SCReportPtr	theReportData);

After	this	call	is	made,	the	game	will	submit	its	data	by	calling	either
scReportAddIntValue	or	scReportAddStringValue.

SCResult	scReportAddIntValue

(

	 SCReportPtr	theReportData,		 //pointer	to	the	report	object

	 gsi_u16	theKeyId,		 	 //the	key	value	being	reported

	 gsi_i32	theValue	 	 //the	value	for	the	reported	key

);

	

SCResult	scReportAddStringValue

(

	 SCReportPtr	theReportData,	

	 gsi_u16	theKeyId,	

	 const	gsi_char	*	theValue

);

b.	Player	Data

Next	the	game	will	submit	player	data.	First	the	game	should	notify	the
Competition	SDK	it	plans	to	report	player	data	by	calling
scReportBeginPlayerData:

SCResult	scReportBeginPlayerData(SCReportPtr	theReportData);

The	game	will	indicate	each	new	player	to	be	reported	by	calling
scReportBeginNewPlayer:

SCResult	scReportBeginNewPlayer(SCReportPtr	theReportData);

The	game	will	then	call	scReportSetPlayerData	to	set	the	initial	data
for	this	new	player	to	be	reported.	The	connection	ID	(retrieved	via
scGetConnectionId)	is	passed	to	the	thePlayerConnectionId
parameter	in	order	to	designate	the	player	whose	stats	are	being
reported.	The	theResult	parameter	is	an	enumerated	value	that
describes	the	final	game	result	for	the	given	player.	

Note:	theAuthData	is	currently	unused	in	this	version	of	the	SDK.	

SCResult	scReportSetPlayerData

(

	 SCReportPtr		 	 	 theReport,	

	 gsi_u32		 	 	 thePlayerIndex,

	 const	gsi_u8		 	 	 thePlayerConnectionId[SC_CONNECTIONID_LENGTH],

	 gsi_u32		 	 	 thePlayerTeamIndex,	

	 SCGameResult		 	 	 theResult,	

	 gsi_u32		 	 	 theProfileId,	

	 const	GSLoginCertificate	*		 theCertificate,	

	 const	gsi_u8		 	 	 theAuthData[16]	

);

After	this	call	is	made,	the	game	should	report	player-specific	key/value
data	by	calling	either	scReportAddIntValue	or
scReportAddStringValue	as	it	applies.	Once	the	game	has	finished
reporting	data	for	a	specific	player,	if	it	has	more	player	data	to	report,	it
should	begin	this	process	again	starting	with
scReportBeginNewPlayer	and	repeating	the	above	steps,	until	data
for	all	players	has	been	submitted.

c.	Team	Data

Lastly,	the	game	should	notify	the	SDK	that	is	about	to	report	team	data:

SCResult	scReportBeginTeamData(SCReportPtr	theReportData);

Just	as	with	player	data,	the	game	will	then	call	the	team	equivalent
scReportBeginNewTeam	followed	by	scReportSetTeamData	to	tell
the	SDK	which	team	data	is	about	to	be	reported.	The	theResult
parameter	is	an	enumerated	value	that	describes	the	final	game	result	for
the	given	team.

SCResult	scReportBeginNewTeam(SCReportPtr	theReportData);

				

SCResult	scReportSetTeamData

(

	 SCReportPtr		 theReport,	

	 gsi_u32		 theTeamIndex,	

	 SCGameResult		 theResult	

);

Once	the	report	is	complete	and	ready	for	submittal,	the	game	should	call
scReportEnd	to	indicate	its	completion.

SCResult	scReportEnd

(

	 SCReportPtr		 theReport,	

	 gsi_bool		 isAuth,		 //gsi_true	for	authoritative	snapshots,	gsi_false	for	collaborative

	 SCGameStatus		 theStatus		 //enum	describing	the	completion	status	of	the	game

);

For	SCGameStatus	reporting,	the	game	should	do	the	following.	As	long
as	the	game	finished	properly,	and	no	one	disconnected	during	the
course	of	play,	then	all	players	in	the	match	should	submit
SCGameStatus_COMPLETE	reports.	If	any	members	disconnected
during	play,	but	the	game	was	finished	completely,	then	all	players	in	the
match	should	submit	SCGameStatus_PARTIAL	reports	indicating	that
disconnects	occured.	For	any	players	who	do	not	complete	the	match,	a
SCGameStatus_BROKEN	report	should	be	submitted.	Thus	if	the	game
did	not	completely	finish,	all	players	will	submit	broken	reports.	The	only
case	that	will	trigger	an	invalid	report	is	if	reports	for	the	same	game
describe	status	as	both	SCGameStatus_COMPLETE	and
SCGameStatus_PARTIAL.	Since	COMPLETE	indicates	that	all	players
finished	the	game	w/o	a	disconnect	and	PARTIAL	indicates	that
disconnects	occured,	at	no	time	should	a	game	report	both	complete	and
partial	-	this	will	be	seen	as	an	exploit	and	invalidate	the	report.

For	a	better	example	of	the	report	submission	process,	see	the
Competition	SDK	sample	application	and	Appendices	II-III	for	game	type
specific	usage	scenarios.

6.	Submitting	the	Report

Once	a	report	has	been	completed	with	a	call	to	scReportEnd,	the
game	should	then	submit	the	report	to	the	Competition	backend	by
calling:

SCResult	scSubmitReport

(

	 const	SCInterfacePtr		 	 theInterface,	

	 const	SCReportPtr		 	 theReport,	

	 gsi_bool		 	 	 isAuthoritative,	

	 const	GSLoginCertificate	*		 theCertificate,	

	 const	GSLoginPrivateData	*		 thePrivateData,	

	 SCSubmitReportCallback			 theCallback,	

	 gsi_time		 	 	 theTimeoutMs,	

	 void	*			 	 	 theUserData	

);

For	sending	an	authoritative	support	the	game	should	pass	gsi_true	to
the	isAuthoritative	parameter.	This	should	match	the	intention	that
the	player	set	(refer	to	scSetReportIntention).	If	the	result	of	this
call	is	anything	other	than	SCResult_NO_ERROR,	this	indicates	an	error
has	occured.

Once	the	report	has	been	submitted,	the	backend	will	send	back	the
result	of	the	submission	via	the	SCSubmitReportCallback.	This
callback	will	indicate	to	the	game	if	any	errors	during	the	submission.	An
invalid	certificate	or	invalid	private	data	will	cause	the	operation	to	fail.	An
incomplete	or	empty	report	will	also	cause	this	operation	to	fail.

7.	Thinking

All	interface	functions	that	have	callbacks	will	require	the	game	to	call
scThink.	In	addition	the	value	returned	by	this	function	should	also	be
checked	in	case	any	problems	occur:

SCResult	scThink(SCInterfacePtr	theInterface);

Remember	to	call	this	function	in	the	main	loop.	All	SDK	calls	should	be
made	from	within	the	same	thread.	See	the	following	Knowledge	Base
entry	for	more	information:	Are	your	SDKs	thread-safe?.

The	authentication	service	requires	a	call	to	the	Gamespy	Core	think
function	since	it	uses	a	different	service	for	authentication:

void	gsCoreThink(gsi_time	theMs);

http://www.poweredbygamespy.com/secure/kb/questions.php?questionid=13

8.	Shutting	Down

Shutting	down	the	Competition	SDK	is	done	using	the	following,	it	will
take	care	of	cleaning	up	resources	used	by	the	SDK:

SCResult	scShutdown(SCInterfacePtr	theInterface);

In	addition,	the	game	should	clean	up	the	Gamespy	core	by	using	the
function:

void	gsCoreShutdown();

Appendix	I:	Retrieving	Stats

The	Competition	SDK	only	reports	gamedata	to	the	backend,	it	does	not
retrieve	it.	When	stats	are	created	via	the	reported	results	they	are	stored
into	the	Sake	database.	The	GameSpy	Sake	SDK	is	used	to	retrieve
Stats.	Please	refer	to	the	Sake	documentation	for	more	in-depth
information	about	implementing	the	Sake	SDK.

To	begin,	developers	can	access	the	Sake	Admin	website	at
http://tools.gamespy.net/SakeAdmin/.	After	selecting	your	game,	you	will
be	brought	to	a	page	to	see	your	game's	tables	where	the	stats	have
been	stored.	Tables	in	Sake	are	automatically	generated	via	the	ATLAS
Administration	site	when	you	create	keys	for	your	game.	These	tables
are	GameStats_vX,	PlayerStats_vX,	TeamStats_vX,	and
StaticStats_vX	which	you	can	see	under	the	Sake	Admin	page	for	your
game.	The	vX	refers	to	the	version	number	used	in	both	the	Admin	site
as	well	as	when	integrating	ATLAS	(for	example,	version	1	for	a	game
will	have	tables	defined	as	GameStats_v1,	etc.).

Clicking	on	"Fields"	for	any	of	these	tables	will	show	a	list	of	fields	which
indicate	a	given	Stat.	Note	that	the	Stats	that	are	generated	from	the
Rules	setup	on	the	ATLAS	Admin	site	will	automatically	be	recorded	into
these	generated	Tables,	based	on	the	Rule	type	set	when	creating	the
rule.	In	other	words,	Game	STATS	which	are	generated	are	stored	in	the
GameStats	table,	as	Player	STATS	are	stored	in	the	PlayerStats	table,
and	so	on.	You	can	then	retrieve	this	data	via	Sake	by	querying	these
tables	with	the	field	names	that	correspond	to	the	STATS	created	on	the
ATLAS	Admin	site.	The	first	time	you	submit	a	session	and	the	rules
process	this	data	into	stats,	you	should	see	these	fields	created.

You	will	use	these	TableIds	and	FieldNames	in	Sake	calls	to	retrieve
stats	in	your	game.	The	easiest	method	to	do	so	is	to	use	the	Sake	call
sakeSearchForRecords.	You	can	search	in	a	given	table,	across
various	fields	using	an	SQL-like	filter	string	along	with	sorting	criteria.

For	example,	let's	say	you	want	to	order	and	show	the	"top	100-200
entries	in	descending	order	of	player	high	scores	that	are	>	50000".	You
have	created	a	stat	called	"PLAYER_HIGH_SCORE"	which	contains	a

http://tools.gamespy.net/SakeAdmin/

player's	current	high	score.	In	addition,	you	have	defined	a	player-type
rule	in	order	to	calculate	this	PLAYER_HIGH_SCORE	stat;	this	is	all
done	with	ATLAS	ruleset	version	1.	Therefore,	after	this	stat	is	calculated
it	will	generate	a	record	in	the	"PlayerStats_v1"	table	for	your	game.	You
would	then	search	for	records	where	the
SAKESearchForRecordsInput	has	the	following	values:

	 mTableID	=	"PlayerStats_v1"

	 mFieldNames	=	"PLAYER_HIGH_SCORE",	"ownerid"

	 mNumFields	=	2

	 mFilter	=	"PLAYER_HIGH_SCORE	>	50000"

	 mSort	=	"PLAYER_HIGH_SCORE	desc"

	 mOffset	=	"100"

	 mMaxRecords	=	"100"

				

This	would	retrieve	the	result	you	seek.	Each	record	returned	would	be
that	of	a	player's	high	score,	the	player	of	which	is	identified	based	upon
the	ownerid	(owner's	profileid)	of	the	given	record.	

*Please	also	refer	to	Appendix	IV	in	the	SAKE	Overview	for	more
details	about	specific	Leaderboard	queries	and	optimizations	(e.g.
getting	a	player's	rank,	etc.).*

Appendix	II:	Use	Case	-	Real-Time	Strategy	(RTS)	Game

The	following	describes	the	recommended	approach	for	report
submissions	with	RTS-style	games.	This	is	specifically	referring	to	peer-
peer	games	that	do	not	have	late	entry	and	may	or	may	not	allow	Host
Migration.	The	primary	difference	between	this	game	type	and	those	of
dedicated	server	games	is	that	no	single	player	is	really	the	authoritative
view	of	the	game.	Since	the	game	is	by	definition	peer-peer,	all	players
essentially	act	as	an	official	voice	of	what	transpired.

This	being	the	case,	we	recommend	that	ALL	players	submit
authoritative	reports.	This	takes	care	of	two	common	problems.	First
off,	it	eliminates	the	possibility	of	a	1v1	match	where	no	authoritative
report	is	sent	if	the	host	disconnects.	By	having	all	players	submit
authoritative	reports,	we	can	ensure	that	if	a	host	disconnects	in	a	heads
-up	match,	the	opponent	will	report	this	disconnect	as	well	as	this	player's
data.	Secondly,	it	takes	care	of	any	Host	Migration	issues	automatically.
By	having	each	player	submit	an	authoritative	report,	there	is	no	need	for
players	to	change	their	intentions	mid-game.

Appendix	III:	Use	Case	-	First	Person	Shooter	(FPS)	Game

Unlike	an	RTS-style	game,	the	FPS	game	type	we	are	describing	here	is
that	of	a	dedicated	server	game	allowing	late	entry.	The	difference	here	is
that	the	server	itself	acts	as	a	dedicated	host	or	official	view	of	gameplay.
Since	these	games	allow	late	entry,	it's	common	to	have	players
joining/leaving/disconnecting	during	the	course	of	gameplay.	Thus,	we
need	to	have	a	single	official	view	of	the	overall	game	that	can	monitor	all
of	the	activity.	This	does	not	necessarily	mean	that	the	host	will	submit
ALL	data	for	every	player	in	the	game,	as	this	could	grow	immensely
large	over	a	long	game.	It	simply	means	the	host	will	need	to	be	the	final
say	for	players	that	disconnect,	or	the	host	will	corroborate	a	player's
collaborative	report	with	his	own.

Therefore	the	host	will	submit	an	authoritative	report	and	all	clients
will	ONLY	submit	collaborative	reports.	This	means	there	will	only	be
a	single	authoritative	report	per-session	(map	change,	round,	etc.),
submitted	from	the	host.	This	authoritative	report	should	only	initially
contain	the	host's	player	data	(for	non-dedicated	hosts)	and	the	game
results.	In	addition	to	this,	the	host	should	ALSO	submit	collaborative
reports	for	all	late-entry	players.	Doing	so	will	corroborate	a	player's
reported	statistics.	The	only	caveat	here	is	that	if	this	player	unexpectedly
disconnects	before	the	game	is	complete,	we	want	to	ensure	their	data	is
reported.	To	account	for	this,	should	a	player	disconnect
unexpectedly,	the	host	will	submit	that	player's	data	as	part	of	his
authoritative	report	INSTEAD	of	sending	a	collaborative	report	for
that	player.	Doing	so	will	ensure	this	player's	data	is	recorded	even
when	this	player	is	disconnected	from	the	game.	Player's	that	disconnect
normally	(in	other	words,	they	forced	a	disconnect	by	quitting	out	of	the
game)	should	report	their	collaborative	snapshots	themselves.	This	is	a
recommended	approach	for	any	intentional	disconnect	as	illustrated	in
the	Competition	Sample	Application.

Appendix	IV:	Troubleshooting	/	FAQ

The	GameSpy	Knowledge	Base	is	kept	up-to-date	with	important
troubleshooting	tips	and	information	about	the	Competition	SDK:
http://www.poweredbygamespy.com/secure/kb/categories.php?
categoryid=10.

http://www.poweredbygamespy.com/secure/kb/categories.php?categoryid=10

Competition	SDK	Functions
scCreateMatchlessSession

This	is	a	variation	of	scCreateSession	that
creates	a	"matchless"	session;	"matchless"
means	incoming	data	will	be	scrutinized	less,
and	applied	to	stats	immediately	instead	of
when	the	match	is	over.

scCreateReport
Creates	a	new	report	for	the	game	session

scCreateSession
Requests	the	Competition	service	to	create	a
session	ID	and	keep	track	of	the	session	that
is	about	to	start.

scDestroyReport
Used	to	clean	up	and	free	the	report	object
after	it	has	been	submitted.

scGetConnectionId
Used	to	obtain	a	Connection	ID	when	setting
player	data	in	the	report.

scGetSessionId
Used	to	obtain	the	session	ID	for	the	current
game	session.

scInitialize
Initializes	the	competition	SDK.

scReportAddByteValue
Adds	a	byte	value	to	the	report	for	a	specific
key.

scReportAddFloatValue
Adds	a	float	value	to	the	report	for	a	specific
key.

scReportAddIntValue
Adds	an	integer	value	to	the	report	for	a
specific	key.

scReportAddShortValue
Adds	a	short	value	to	the	report	for	a	specific
key.

scReportAddStringValue
Adds	a	string	value	to	the	report	for	a	specific
key.

scReportBeginGlobalData
Tells	the	competition	SDK	to	start	writing
global	data	to	the	report.

scReportBeginNewPlayer
Add	a	new	player	to	the	report

scReportBeginNewTeam
Adds	a	new	team	to	the	report.

scReportBeginPlayerData
Tells	the	competition	SDK	to	start	writing
player	data	to	the	report.

scReportBeginTeamData
Tells	the	competition	SDK	to	start	writing
player	data	to	the	report.

scReportEnd
Denotes	the	end	of	a	report	for	the	report
specified.

scReportSetAsMatchless
Called	after	creating	the	report	to	set	it	as	a
matchless	report	-	this	is	needed	if	the	report
is	being	submitted	to	a	"matchless"	game
session.

scReportSetPlayerData
Sets	initial	player	data	in	the	report	specified

scReportSetTeamData
Sets	the	initial	team	data	in	the	report
specified.

scSetReportIntention
Called	to	tell	the	backend	the	type	of	report
that	the	player	or	host	will	send.

scSetSessionId
Used	to	set	the	session	ID	for	the	current
game	session.

scShutdown
Shuts	down	the	Competition	SDK

scSubmitReport
Initiates	the	submission	of	a	report

scThink
Called	to	complete	pending	operations	for
functions	with	callbacks.

scCreateMatchlessSession
This	is	a	variation	of	scCreateSession	that	creates	a	"matchless"	session;
"matchless"	means	incoming	data	will	be	scrutinized	less,	and	applied	to
stats	immediately	instead	of	when	the	match	is	over.

SCResult	scCreateMatchlessSession(
SCInterfacePtr	theInterface,
const	GSLoginCertificate	*	theCertificate,
const	GSLoginPrivateData	*	thePrivateData,
SCCreateSessionCallback	theCallback,
gsi_time	theTimeoutMs,
void	*	theUserData);

Routine Required	Header Distribution
scCreateMatchlessSession <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theInterface
[in]	A	valid	SC	Inteface	Object

theCertificate
[in]	Certificate	obtained	from	the	auth	service.

thePrivateData
[in]	Private	Data	obtained	from	the	auth	service.

theCallback
[in]	The	callback	called	when	create	session	completes.

theTimeoutMs
[in]	Timeout	in	case	the	create	session	operation	takes	too	long

theUserData
[in]	User	data	for	use	in	callbacks.	Note	that	it	is	a	constant	pointer	in
the	callback

Remarks

Reports	sent	for	matchless	sessions	should	be	marked	as	such	using
"scReportSetAsMatchless".

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scReportSetAsMatchless,	SCCreateSessionCallback,
scInitialize

scCreateReport
Creates	a	new	report	for	the	game	session.

SCResult	scCreateReport(
const	SCInterfacePtr	theInterface,
gsi_u32	theHeaderVersion,
gsi_u32	thePlayerCount,
gsi_u32	theTeamCount,
const	SCReportPtr	*	theReportOut);

Routine Required	Header Distribution
scCreateReport <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theInterface
[in]	A	valid	SC	Inteface	Object

theHeaderVersion
[in]	Header	version	of	the	report

thePlayerCount
[in]	Player	count	for	allocating	enough	resources	and	verification
purposes

theTeamCount
[in]	Team	count	for	allocating	enough	resources	and	verification
purposes

theReportOut
[ref]	The	pointer	to	created	SC	Report	Object

Remarks

There	should	have	been	a	call	to	CreateSession	and	SetReportIntention
before	calling	this	function.	This	function	should	be	called	after	a	game
session	has	ended.	The	player	count	and	team	count	are	more	accurate
at	that	point	for	dedicated	server	games.	This	function	should	also	be
called	before	calling	any	scReport*	function.	The	header	version	can	be
obtained	from	the	adminstration	site	where	the	the	keys	are	created.	See
the	overview	on	obtaining	access	or	send	a	request
devsupport@gamespy.com.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scReportBeginGlobalData,	scReportBeginPlayerData,
scReportBeginTeamData,	scReportBeginNewPlayer,
scReportSetPlayerData,	scReportBeginNewTeam,
scReportSetTeamData,	scReportAddIntValue,	scReportAddStringValue

scCreateSession
Requests	the	Competition	service	to	create	a	session	ID	and	keep	track
of	the	session	that	is	about	to	start.

SCResult	scCreateSession(
SCInterfacePtr	theInterface,
const	GSLoginCertificate	*	theCertificate,
const	GSLoginPrivateData	*	thePrivateData,
SCCreateSessionCallback	theCallback,
gsi_time	theTimeoutMs,
void	*	theUserData);

Routine Required	Header Distribution
scCreateSession <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theInterface
[in]	A	valid	SC	Inteface	Object

theCertificate
[in]	Certificate	obtained	from	the	auth	service.

thePrivateData
[in]	Private	Data	obtained	from	the	auth	service.

theCallback
[in]	The	callback	called	when	create	session	completes.

theTimeoutMs
[in]	Timeout	in	case	the	create	session	operation	takes	too	long

theUserData
[in]	User	data	for	use	in	callbacks.	Note	that	it	is	a	constant	pointer	in
the	callback

Remarks

The	certificate	and	private	data	may	be	NULL	if	the	local	client	is	an
unauthenticated	dedicated	server.	The	function	should	be	called	by	the
host	after	initializing	the	SDK,	and	obtaining	a	certificate	and	private	data
from	the	authentication	service.	The	competition	service	creates	and
sends	a	session	ID	to	the	host.	The	callback	passed	in	will	get	called
even	if	the	request	failed.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	SCCreateSessionCallback,	scInitialize

scDestroyReport
Used	to	clean	up	and	free	the	report	object	after	it	has	been	submitted.

SCResult	scDestroyReport(
SCReportPtr	theReport);

Routine Required	Header Distribution
scDestroyReport <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theReport
[in]	The	pointer	to	a	created	SC	Report	Object.

Remarks

This	should	be	called	regardless	of	whether	or	not	the	report	was
submitted	successfully.	It	should	only	be	used	if	the	report	object	contains
a	valid	pointer	from	a	successful	call	to	scCreateReport.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateReport

scGetConnectionId
Used	to	obtain	a	Connection	ID	when	setting	player	data	in	the	report.

const	char	*	scGetConnectionId(
const	SCInterfacePtr	theInterface);

Routine Required	Header Distribution
scGetConnectionId <sc.h> SDKZIP

Return	Value

Parameters

theInterface
[in]	A	valid	SC	Inteface	Object

Remarks

The	connection	id	identifies	a	single	player	in	a	game	session.	It	may	be
possible	to	have	different	connection	ids	during	the	same	session	since
players	can	come	and	leave	sessions.

Section	Reference:	Gamespy	Competition	SDK

scGetSessionId
Used	to	obtain	the	session	ID	for	the	current	game	session.

const	char	*	scGetSessionId(
const	SCInterfacePtr	theInterface);

Routine Required	Header Distribution
scGetSessionId <sc.h> SDKZIP

Return	Value

Parameters

theInterface
[in]	A	valid	SC	Inteface	Object

Remarks

The	session	ID	indentifies	a	single	game	session	happening	between
players.	After	the	host	creates	a	session,	this	function	can	be	called	to
obtain	the	session	ID.	The	host	can	then	send	the	session	ID	to	all	other
players	participating	in	the	game	session.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scSetSessionId,	scCreateSession

scInitialize
Initializes	the	competition	SDK.

SCResult	scInitialize(
int	theGameId,
SCInterfacePtr	*	theInterfaceOut);

Routine Required	Header Distribution
scInitialize <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theGameId
[in]	The	Game	ID	issued	to	identify	a	game.

theInterfaceOut
[out]	The	pointer	to	the	SC	Interface	Object	instance

Remarks

The	function	must	be	called	in	order	to	get	a	valid	SC	Interface	object.
Most	other	interface	functions	depend	on	this	interface	function	when
being	called.	Note	that	if	the	standard	GameSpy	Availability	Check	was
not	performed	prior	to	this	call,	the	SDK	will	return
SCResult_NO_AVAILABILITY_CHECK.

Section	Reference:	Gamespy	Competition	SDK

scReportAddByteValue
Adds	a	byte	value	to	the	report	for	a	specific	key.

SCResult	scReportAddByteValue(
SCReportPtr	theReportData,
gsi_u16	theKeyId,
gsi_i8	theValue);

Routine Required	Header Distribution
scReportAddByteValue <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theReportData
[in]	A	valid	SC	Report	object

theKeyId
[in]	Key	Identifier	for	reporting	data

theValue
[in]	8	bit	Byte	value	representation	of	the	data

Remarks

The	host	or	player	can	call	this	function	to	add	either	global,	player-,	or
team-specific	data.	A	report	needs	to	be	created	before	calling	this
function.	For	global	keys,	this	function	can	only	be	called	after	starting
global	data.	For	player	or	teams,	a	new	player	or	team	needs	to	be
added.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateReport,	scReportBeginGlobalData,
scReportBeginPlayerData,	scReportBeginTeamData,
scReportBeginNewPlayer,	scReportSetPlayerData,
scReportBeginNewTeam,	scReportSetTeamData

scReportAddFloatValue
Adds	a	float	value	to	the	report	for	a	specific	key.

SCResult	scReportAddFloatValue(
SCReportPtr	theReportData,
gsi_u16	theKeyId,
float	theValue);

Routine Required	Header Distribution
scReportAddFloatValue <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theReportData
[in]	A	valid	SC	Report	object

theKeyId
[in]	Key	Identifier	for	reporting	data

theValue
[in]	32	bit	Float	value	representation	of	the	data

Remarks

The	host	or	player	can	call	this	function	to	add	either	global,	player-,	or
team-specific	data.	A	report	needs	to	be	created	before	calling	this
function.	For	global	keys,	this	function	can	only	be	called	after	starting
global	data.	For	player	or	teams,	a	new	player	or	team	needs	to	be
added.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateReport,	scReportBeginGlobalData,
scReportBeginPlayerData,	scReportBeginTeamData,
scReportBeginNewPlayer,	scReportSetPlayerData,
scReportBeginNewTeam,	scReportSetTeamData

scReportAddIntValue
Adds	an	integer	value	to	the	report	for	a	specific	key.

SCResult	scReportAddIntValue(
SCReportPtr	theReportData,
gsi_u16	theKeyId,
gsi_i32	theValue);

Routine Required	Header Distribution
scReportAddIntValue <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theReportData
[in]	A	valid	SC	Report	object

theKeyId
[in]	Key	Identifier	for	reporting	data

theValue
[in]	32	bit	Integer	value	representation	of	the	data

Remarks

The	host	or	player	can	call	this	function	to	add	either	global,	player-,	or
team-specific	data.	A	report	needs	to	be	created	before	calling	this
function.	For	global	keys,	this	function	can	only	be	called	after	starting
global	data.	For	player	or	teams,	a	new	player	or	team	needs	to	be
added.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateReport,	scReportBeginGlobalData,
scReportBeginPlayerData,	scReportBeginTeamData,
scReportBeginNewPlayer,	scReportSetPlayerData,
scReportBeginNewTeam,	scReportSetTeamData

scReportAddShortValue
Adds	a	short	value	to	the	report	for	a	specific	key.

SCResult	scReportAddShortValue(
SCReportPtr	theReportData,
gsi_u16	theKeyId,
gsi_i16	theValue);

Routine Required	Header Distribution
scReportAddShortValue <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theReportData
[in]	A	valid	SC	Report	object

theKeyId
[in]	Key	Identifier	for	reporting	data

theValue
[in]	16	bit	Short	value	representation	of	the	data

Remarks

The	host	or	player	can	call	this	function	to	add	either	global,	player-,	or
team-specific	data.	A	report	needs	to	be	created	before	calling	this
function.	For	global	keys,	this	function	can	only	be	called	after	starting
global	data.	For	player	or	teams,	a	new	player	or	team	needs	to	be
added.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateReport,	scReportBeginGlobalData,
scReportBeginPlayerData,	scReportBeginTeamData,
scReportBeginNewPlayer,	scReportSetPlayerData,
scReportBeginNewTeam,	scReportSetTeamData

scReportAddStringValue
Adds	a	string	value	to	the	report	for	a	specific	key.

SCResult	scReportAddStringValue(
SCReportPtr	theReportData,
gsi_u16	theKeyId,
const	gsi_char	*	theValue);

Routine Required	Header Distribution
scReportAddStringValue <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theReportData
[in]	A	valid	SC	Report	object

theKeyId
[in]	The	string	key's	indentifer

theValue
[in]	The	string	value

Remarks

The	host	or	player	can	call	this	function	to	add	either	global,	player-,	or
team-specific	data.	A	report	needs	to	be	created	before	calling	this
function.	For	global	keys,	this	function	can	only	be	called	after	starting
global	data.	For	player	or	teams,	a	new	player	or	team	needs	to	be
added.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateReport,	scReportBeginGlobalData,
scReportBeginPlayerData,	scReportBeginTeamData,
scReportBeginNewPlayer,	scReportSetPlayerData,
scReportBeginNewTeam,	scReportSetTeamData

scReportBeginGlobalData
Tells	the	competition	SDK	to	start	writing	global	data	to	the	report.

SCResult	scReportBeginGlobalData(
SCReportPtr	theReportData);

Routine Required	Header Distribution
scReportBeginGlobalData <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theReportData
[ref]	A	valid	SC	Report	Object

Remarks

After	creating	a	report,	this	function	should	be	called	prior	to	writing
global	game	data.	Global	data	comes	before	player	and	team	data.	Note
that	keys	and	values	can	be	recorded	via	the	key/value	utility	functions.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateReport,	scReportAddIntValue,
scReportAddStringValue

scReportBeginNewPlayer
Add	a	new	player	to	the	report.

SCResult	scReportBeginNewPlayer(
SCReportPtr	theReportData);

Routine Required	Header Distribution
scReportBeginNewPlayer <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theReportData
[in]	A	valid	SC	Report	Object

Remarks

This	funciton	is	used	to	before	adding	new	player	data	in	the	report.	It
tells	the	SDK	that	a	new	player	needs	to	be	added	to	the	report.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateReport,	scReportBeginPlayerData,
scReportSetPlayerData,	scReportAddIntValue,	scReportAddStringValue

scReportBeginNewTeam
Adds	a	new	team	to	the	report.

SCResult	scReportBeginNewTeam(
SCReportPtr	theReportData);

Routine Required	Header Distribution
scReportBeginNewTeam <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theReportData
[in]	A	valid	SC	Report	Object

Remarks

After	the	beginning	of	any	team	data	is	set,	this	function	can	be	called	to
start	a	new	team.	After	this	function	has	been	called,	the	game	can	start
adding	team	data	to	the	report.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateReport,	scReportBeginTeamData,
scReportSetPlayerData,	scReportAddIntValue,	scReportAddStringValue

scReportBeginPlayerData
Tells	the	competition	SDK	to	start	writing	player	data	to	the	report.

SCResult	scReportBeginPlayerData(
SCReportPtr	theReportData);

Routine Required	Header Distribution
scReportBeginPlayerData <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theReportData
[in]	A	valid	SC	Report	Object

Remarks

Use	this	function	to	mark	the	starting	of	player	data.	Player	data	should
come	after	global	data,	and	before	team	data.	The	game	can	start	adding
each	player	and	its	specific	data	after	this	is	called.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateReport,	scReportBeginNewPlayer,
scReportSetPlayerData,	scReportAddIntValue,	scReportAddStringValue

scReportBeginTeamData
Tells	the	competition	SDK	to	start	writing	player	data	to	the	report.

SCResult	scReportBeginTeamData(
SCReportPtr	theReportData);

Routine Required	Header Distribution
scReportBeginTeamData <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theReportData
[in]	A	valid	SC	Report	Object

Remarks

Use	this	function	to	mark	the	starting	of	team	data.	Team	data	should
come	after	global	data,	and	player	data.	The	game	can	start	adding	each
team	and	its	specific	data	after	this	is	called.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateReport,	scReportBeginNewTeam,
scReportSetTeamData,	scReportAddIntValue,	scReportAddStringValue

scReportEnd
Denotes	the	end	of	a	report	for	the	report	specified.

SCResult	scReportEnd(
SCReportPtr	theReport,
gsi_bool	isAuth,
SCGameStatus	theStatus);

Routine Required	Header Distribution
scReportEnd <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theReport
[in]	A	valid	SC	Report	Object

isAuth
[in]	Authoritative	report

theStatus
[in]	Final	Status	of	the	reported	game

Remarks

Used	to	set	the	end	of	a	report.	The	report	must	have	been	properly
created	and	have	some	data.	Any	report	being	submitted	requires	that
function	be	called	before	the	submission.	Incomplete	reports	will	be
discarded.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateReport,	scSubmitReport,	SCGameStatus

scReportSetAsMatchless
Called	after	creating	the	report	to	set	it	as	a	matchless	report	-	this	is
needed	if	the	report	is	being	submitted	to	a	"matchless"	game	session.

SCResult	scReportSetAsMatchless(
SCReportPtr	theReport);

Routine Required	Header Distribution
scReportSetAsMatchless <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theReport
[ref]	A	valid	SC	Report	Object

Remarks

This	should	not	be	used	for	a	non-matchless	session	report.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateMatchlessSession,	scCreateReport

scReportSetPlayerData
Sets	initial	player	data	in	the	report	specified.

SCResult	scReportSetPlayerData(
SCReportPtr	theReport,
gsi_u32	thePlayerIndex,
const	gsi_u8
thePlayerConnectionId[SC_CONNECTIONID_LENGTH],
gsi_u32	thePlayerTeamIndex,
SCGameResult	theResult,
gsi_u32	theProfileId,
const	GSLoginCertificate	*	theCertificate,
const	gsi_u8	theAuthData[16]);

Routine Required	Header Distribution
scReportSetPlayerData <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theReport
[ref]	A	valid	SC	Report	Object

thePlayerIndex
[in]	Index	of	the	player	(0	-	Number	of	players)

thePlayerConnectionId
[in]	Connection	ID	that	the	player	received	from	the	competition
backend

thePlayerTeamIndex
[in]	Team	index	of	the	player,	if	that	player	is	on	a	team.

theResult
[in]	Standard	SC	Game	result

theProfileId
[in]	Profile	ID	of	the	player

theCertificate
[in]	Certificate	obtained	from	the	auth	service.

theAuthData
[in]	Authentication	data

Remarks

A	report	must	have	been	created	prior	to	using	this	function.	Each	player
must	have	a	valid	login	certificate	from	the	authentication	service	also.
This	function	should	be	called	after	a	new	player	is	added	to	the	report.
Any	key/value	pairs	that	need	to	be	added	should	be	done	after	calling
this	function.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateReport,	scReportBeginPlayerData,
scReportBeginNewPlayer,	scReportAddIntValue,
scReportAddStringValue

scReportSetTeamData
Sets	the	initial	team	data	in	the	report	specified.

SCResult	scReportSetTeamData(
SCReportPtr	theReport,
gsi_u32	theTeamIndex,
SCGameResult	theResult);

Routine Required	Header Distribution
scReportSetTeamData <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theReport
[in]	A	valid	SC	Report	Object

theTeamIndex
[in]	The	index	of	the	team	being	reported

theResult
[in]	The	team's	result	(e.g.	win,	loss,	draw)

Remarks

A	report	must	have	been	created	prior	to	using	this	function.	This	function
should	be	called	after	a	new	team	is	added	to	the	report.	Any	key/value
pairs	that	need	to	be	added	should	be	done	after	calling	this	function.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateReport,	scReportBeginTeamData,
scReportBeginNewTeam,	scReportAddIntValue,	scReportAddStringValue

scSetReportIntention
Called	to	tell	the	backend	the	type	of	report	that	the	player	or	host	will
send.

SCResult	scSetReportIntention(
const	SCInterfacePtr	theInterface,
const	gsi_u8	theConnectionId[SC_CONNECTION_GUID_SIZE],
gsi_bool	isAuthoritative,
const	GSLoginCertificate	*	theCertificate,
const	GSLoginPrivateData	*	thePrivateData,
SCSetReportIntentionCallback	theCallback,
gsi_time	theTimeoutMs,
const	void	*	theUserData);

Routine Required	Header Distribution
scSetReportIntention <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theInterface
[ref]	A	valid	SC	Interface	Object.

theConnectionId
[in]	The	player's	former	ConnectionId	if	he	was	previously	in	the
same	match.	Set	to	NULL	if	unused.

isAuthoritative
[in]	flag	set	if	the	snapshot	being	reported	will	be	an	authoratative.

theCertificate
[ref]	Certificate	obtained	from	the	authentiocation	web	service.

thePrivateData
[ref]	Private	data	obtained	from	the	authentiocation	web	service.

theCallback
[ref]	The	callback	called	when	set	report	intention	completes.

theTimeoutMs
[in]	The	amount	of	time	to	spend	on	the	operation	before	a	timeout
occurs.

theUserData
[ref]	Application	data	that	may	be	used	in	the	callback.

Remarks

The	should	be	called	by	both	the	host	and	client	before	sending	a	report.
The	host	should	have	created	a	session	before	calling	this.	It	allows	the
server	to	know	ahead	of	time	what	type	of	report	will	be	sent.	Reports
submitted	without	an	intention	will	be	discarded.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateSession,	SCSetReportIntentionCallback,
scSubmitReport

scSetSessionId
Used	to	set	the	session	ID	for	the	current	game	session.

SCResult	scSetSessionId(
const	SCInterfacePtr	theInterface,
const	gsi_u8	theSessionId[SC_SESSION_GUID_SIZE]);

Routine Required	Header Distribution
scSetSessionId <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theInterface
[in]	A	valid	SC	Inteface	Object

theSessionId
[in]	The	session	ID	-	this	has	a	constant	length	of
SC_SESSION_GUID_SIZE

Remarks

The	session	ID	indentifies	a	single	game	session	happening	between
players.	Players	should	use	the	scGetSessionId	function	in	order	to
obtain	the	session	ID.	This	should	not	be	called	if	a	session	has	not	yet
been	created.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scGetSessionId,	scCreateSession

scShutdown
Shuts	down	the	Competition	SDK.

SCResult	scShutdown(
SCInterfacePtr	theInterface);

Routine Required	Header Distribution
scShutdown <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theInterface
[in]	A	valid	SC	Inteface	Object

Remarks

In	order	to	clean	up	all	resources	used	by	the	SDK,	this	interface	function
must	be	called.	Do	not	call	this	function	if	you	plan	to	continue	reporting
stats.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scInitialize

scSubmitReport
Initiates	the	submission	of	a	report.

SCResult	scSubmitReport(
const	SCInterfacePtr	theInterface,
const	SCReportPtr	theReport,
gsi_bool	isAuthoritative,
const	GSLoginCertificate	*	theCertificate,
const	GSLoginPrivateData	*	thePrivateData,
SCSubmitReportCallback	theCallback,
gsi_time	theTimeoutMs,
void	*	theUserData);

Routine Required	Header Distribution
scSubmitReport <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theInterface
[in]	A	valid	SC	Interface	Object.

theReport
[in]	A	valid	SC	Report	object

isAuthoritative
[in]	Flag	to	tell	if	the	snapshot	is	authoritative

theCertificate
[in]	Certificate	Obtained	from	the	auth	service.

thePrivateData
[in]	Private	Data	Obtained	from	the	auth	service.

theCallback
[in]	Callback	to	be	called	when	submit	report	completes.

theTimeoutMs
[in]	The	amount	of	time	before	a	timeout	occurs

theUserData
[in]	Application	data	that	may	be	used	in	the	callback

Remarks

Once	the	report	has	been	completed	with	a	call	to	scReportEnd,	the
player	or	host	can	call	this	function	to	submit	a	report.	The	certificate	and
private	data	are	both	required	to	submit	a	report.	Incomplete	reports	will
be	discarded.	The	callback	passed	in	will	tell	the	game	the	result	of	the
operation.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scInitialize,	scCreateSession,	scSetReportIntention,
scReportEnd,	SCSubmitReportCallback

scThink
Called	to	complete	pending	operations	for	functions	with	callbacks.

SCResult	scThink(
SCInterfacePtr	theInterface);

Routine Required	Header Distribution
scThink <sc.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.	This	will
return	SCResult_NO_ERROR	if	the	request	completed	successfully.

Parameters

theInterface
[in]	A	valid	SC	Inteface	Object

Remarks

This	function	should	be	called	with	a	valid	interface	object.	It	will	take
care	of	pending	requests	that	have	been	made	by	the	interface	functions.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scInitialize,	scCreateSession,	scSetReportIntention,
scSubmitReport

Competition	SDK	Callbacks
SCCreateSessionCallback

Called	when	scCreateSession	has
completed.

SCSetReportIntentionCallback
Called	when	scReportIntention	has
completed.

SCSubmitReportCallback
Called	when	scSubmitReport	completes.

SCCreateSessionCallback
Called	when	scCreateSession	has	completed.

typedef	void	(*SCCreateSessionCallback)(
const	SCInterfacePtr	theInterface,
GHTTPResult	theHttpResult,
SCResult	theResult,
const	void	*	theUserData);

Routine Required	Header Distribution
SCCreateSessionCallback <sc.h> SDKZIP

Parameters

theInterface
[in]	the	pointer	to	the	SC	Interface	object.	The	game	usually	has
copy	of	this	also.

theHttpResult
[in]	Http	result	from	creating	a	session

theResult
[in]	SC	Result	telling	the	application	what	happened	when	creating	a
session

theUserData
[in]	constant	pointer	to	user	data

Remarks

Called	when	a	game	session	is	created.	The	results	will	determine	if	the
session	was	sucessfully	created.	If	there	were	any	errors,	theResult	will
be	set	to	the	specific	error	code.	Otherwise	theResult	will	be	set	to
SCResult_NO_ERROR.	Please	see	SCResult	for	error	codes.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scCreateSession,	SCResult

SCSetReportIntentionCallback
Called	when	scReportIntention	has	completed.

typedef	void	(*SCSetReportIntentionCallback)(
const	SCInterfacePtr	theInterface,
GHTTPResult	theHttpResult,
SCResult	theResult,
const	void	*	theUserData);

Routine Required	Header Distribution
SCSetReportIntentionCallback <sc.h> SDKZIP

Parameters

theInterface
[ref]	the	pointer	to	the	SC	Interface	object.	The	game	usually	has
copy	of	this	also.

theHttpResult
[in]	Http	result	from	creating	a	session

theResult
[in]	SC	Result	telling	the	application	what	happened	when	creating	a
session

theUserData
[ref]	constant	pointer	to	user	data

Remarks

Called	when	a	host	or	client	reporting	its	intention	is	complete.	The
results	will	determine	if	the	session	was	sucessfully	created.	If	there	were
any	errors,	theResult	will	be	set	to	the	specific	error	code.	Otherwise
theResult	will	be	set	to	SCResult_NO_ERROR.	Please	see	SCResult	for
error	codes.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scSetReportIntention,	SCResult

SCSubmitReportCallback
Called	when	scSubmitReport	completes.

typedef	void	(*SCSubmitReportCallback)(
const	SCInterfacePtr	theInterface,
GHTTPResult	theHttpResult,
SCResult	theResult,
const	void	*	theUserData);

Routine Required	Header Distribution
SCSubmitReportCallback <sc.h> SDKZIP

Parameters

theInterface
[in]	the	pointer	to	the	SC	Interface	object.	The	game	usually	has
copy	of	this	also.

theHttpResult
[in]	Http	result	from	creating	a	session

theResult
[in]	SC	Result	telling	the	application	what	happened	when	creating	a
session

theUserData
[in]	constant	pointer	to	user	data

Remarks

After	the	SDK	submits	the	report,	the	backend	will	send	back	results	that
will	be	available	in	this	callback.	If	there	were	any	errors,	theResult	will	be
set	to	the	specific	error	code.	Otherwise	theResult	will	be	set	to
SCResult_NO_ERROR.	Please	see	SCResult	for	error	codes.

Section	Reference:	Gamespy	Competition	SDK

See	Also:	scSubmitReport,	SCResult

Competition	SDK	Enumerations
SCGameResult

Used	when	submitting	a	report	for	a	game	session	to
reflect	the	player's	result.

SCGameStatus
The	Game	Status	Indicates	how	the	session	ended	and
is	declared	when	ending	a	report.

SCResult
used	for	checking	errors	and	failures

SCGameResult
Used	when	submitting	a	report	for	a	game	session	to	reflect	the	player's
result.

typedef	enum	
{

SCGameResult_WIN,				
SCGameResult_LOSS,				
SCGameResult_DRAW,				
SCGameResult_DISCONNECT,				
SCGameResult_DESYNC,				
SCGameResult_NONE,				
SCGameResultMax				

}	SCGameResult;

Constants

SCGameResultMax
Total	number	of	game	result	codes.

Remarks

Can	be	used	for	both	player	and	a	team.

Section	Reference:	Gamespy	Competition	SDK

SCGameStatus
The	Game	Status	Indicates	how	the	session	ended	and	is	declared	when
ending	a	report.

typedef	enum	
{

SCGameStatus_COMPLETE,				
SCGameStatus_PARTIAL,				
SCGameStatus_BROKEN,				
SCGameStatusMax				

}	SCGameStatus;

Constants

SCGameStatus_COMPLETE
The	game	session	came	to	the	expected	end	without	interruption
(disconnects,	desyncs).	This	status	indicates	that	game	results	are
available	for	all	players.

SCGameStatus_PARTIAL
Although	the	game	session	came	to	the	expected	end,	one	or	more
players	unexpectedly	quit	or	were	disconnected.	Game	results
should	explicitly	report	which	players	were	disconnected	to	be	used
during	normalization	for	possible	penalty	metrics.

SCGameStatus_BROKEN
The	game	session	did	not	reach	the	expected	end	point	and	is
incomplete.	This	should	be	reported	when	there	has	been	an	event
detected	that	makes	the	end	result	indeterminate.

SCGameStatusMax
Total	number	of	game	status	codes.

Remarks

For	SCGameStatus	reporting,	the	game	should	do	the	following.	As	long
as	the	game	finished	properly,	and	no	one	disconnected	during	the
course	of	play,	then	all	players	in	the	match	should	submit
SCGameStatus_COMPLETE	reports.	If	any	members	disconnected
during	play,	but	the	game	was	finished	completely,	then	all	players	in	the
match	should	submit	SCGameStatus_PARTIAL	reports	indicating	that
disconnects	occured.	For	any	players	who	do	not	complete	the	match,	a
SCGameStatus_BROKEN	report	should	be	submitted.	Thus	if	the	game
did	not	completely	finish,	all	players	will	submit	broken	reports.	The	only
case	that	will	trigger	an	invalid	report	is	if	reports	for	the	same	game
describe	status	as	both	SCGameStatus_COMPLETE	and
SCGameStatus_PARTIAL.	Since	COMPLETE	indicates	that	all	players
finished	the	game	w/o	a	disconnect	and	PARTIAL	indicates	that
disconnects	occured,	at	no	time	should	a	game	report	both	complete	and
partial	-	this	will	be	seen	as	an	exploit	and	invalidate	the	report.

Section	Reference:	Gamespy	Competition	SDK

SCResult
used	for	checking	errors	and	failures.

typedef	enum	
{

SCResult_NO_ERROR=	0,				
SCResult_NO_AVAILABILITY_CHECK,				
SCResult_INVALID_PARAMETERS,				
SCResult_NOT_INITIALIZED,				
SCResult_CORE_NOT_INITIALIZED,				
SCResult_OUT_OF_MEMORY,				
SCResult_CALLBACK_PENDING,				
SCResult_HTTP_ERROR,				
SCResult_UNKNOWN_RESPONSE,				
SCResult_RESPONSE_INVALID,				
SCResult_REPORT_INCOMPLETE,				
SCResult_REPORT_INVALID,				
SCResult_SUBMISSION_FAILED,				
SCResult_UNKNOWN_ERROR,				
SCResultMax				

}	SCResult;

Constants

SCResult_NO_ERROR
No	error	has	occurred.

SCResult_NO_AVAILABILITY_CHECK
The	standard	GameSpy	Availability	Check	was	not	performed	prior
to	initialization.

SCResult_INVALID_PARAMETERS
Parameters	passed	to	interface	function	were	invalid.

SCResult_NOT_INITIALIZED
The	SDK	was	not	initialized.

SCResult_CORE_NOT_INITIALIZED
The	core	was	initialized	by	the	application.

SCResult_OUT_OF_MEMORY
The	SDK	could	not	allocate	memory	for	its	resources.

SCResult_CALLBACK_PENDING
Result	tell	the	application,	that	the	operation	is	still	pending.

SCResult_HTTP_ERROR
Error	occurs	if	the	backend	fails	to	respond	with	correct	HTTP.

SCResult_UNKNOWN_RESPONSE
Error	occurs	if	the	SDK	cannot	understand	the	result.

SCResult_RESPONSE_INVALID
Error	occurs	if	the	SDK	cannot	read	the	response	from	the	backend.

SCResult_REPORT_INCOMPLETE
The	report	was	incomplete.

SCResult_REPORT_INVALID
Part	or	all	of	report	is	invalid.

SCResult_SUBMISSION_FAILED
Submission	of	report	failed.

SCResult_UNKNOWN_ERROR
Error	unknown	to	sdk.

SCResultMax

Total	number	of	result	codes	that	can	be	returned.

Remarks

Results	of	a	call	to	an	interface	function	or	operation.	It	can	be	used	to
see	if	the	initial	call	to	a	function	completed	without	error.	The	callback
that	is	passed	to	interface	functions	will	also	have	a	value	that	is	of	this
type.	The	application	can	check	this	value	for	failures.

Section	Reference:	Gamespy	Competition	SDK

CD	Key	SDK
Overview

The	GameSpy	CDKey	SDK	is	a	simple	toolkit	designed	to	allow
developers	to	add	secure,	server-based	CD	Key	validation	to	their
games.	Server-based	CD	Key	validation	has	proven	to	be	the	only	widely
successful	method	of	combating	piracy	available	today.

In	server-based	CD	Key	validation,	a	client	sends	its	CD	Key	to	the	game
server	/	host	when	it	wants	to	join	a	multiplayer	game.	The	server	checks
with	a	validation	server	on	the	backend	to	make	sure	that	the	CD	Key	is
valid.	If	it	isn't,	the	server	refuses	the	connection.	The	validation	server
also	ensures	that	no	two	players	can	use	the	same	key	at	the	same	time.
Of	course	the	key	is	always	encoded	so	that	neither	the	server	operator
nor	someone	"sniffing"	the	connection	can	steal	the	CD	Key.

Several	other	common	anti-piracy	methods	are:

Client-based	CD	Keys	/	Serial	numbers
Can	easily	be	"cracked"	and	removed

CD	Check	/	CD	anti-copy	measures
As	long	as	the	data	on	the	disc	can	be	read,	it	can	be	copied	and
the	CD	Check	can	be	cracked

Overburn	/	80	minute	CDs
Recordable	80	minute	CDs	are	now	widely	available,	and	CD
emulators	can	often	get	around	this	protection	as	well

Server-based	CD	Key	validation	works	because	it	is	controlled
completely	by	the	server/host	-	a	client	cannot	"crack"	any	part	of	their
local	code	to	give	the	correct	response	to	the	server	without	a	valid	CD
Key.	While	server-based	CD	Key	validation	is	not	"perfect",	any	flaws	that
exist	are	in	the	implementation,	not	the	concept.

Please	note	that	server-based	CD	Key	validation	is	only	appropriate	for	a
certain	class	of	games.	While	the	CD	Keys	can	also	be	checked	on	the
client	side	to	help	protect	the	single	player	game,	they	cannot	add	any

greater	amount	of	protection	to	the	single	player	(non-Internet)	portion	of
the	game	than	a	normal	CD	key	check	would.	The	only	thing	that	server-
based	CD	Key	validation	can	do	100%	effectively	is	prevent	clients
without	valid	keys	from	playing	on	public	Internet	servers.	However,	for
games	that	are	primarily	multi-player,	or	have	a	large	multi-player
component,	this	can	be	a	large	deterrent	to	piracy	(both	large	scale
"bootlegs"	and	small-scale	"sharing").

We	also	feel	it	is	important	to	point	out	that	there	are	many	"production"
problems	that	can	occur	with	CD	Keys	of	any	sort,	and	can	potentially
impact	both	the	effectiveness	of	the	protection	and	the	number	of	support
issues	that	come	up.

Some	common	problem	with	CD	Keys	include:

Labeling	errors	during	duplication	/	packaging	leading	to	incorrect	or
missing	CD	Keys
Users	mistyping	the	CD	Key
Users	"losing"	their	CD	Key	(especially	if	they	need	to	reinstall	it	on
a	new	machine)
Users	"sharing"	their	CD	Key	without	being	aware	of	the
consequences	(i.e.	they	won't	be	able	to	play	online	any	more)

Less	common	problems	include:

An	internal	"leak"	of	the	valid	CD	Key	list	which	ends	up	on	the
Internet
Users	buying	the	software,	getting	the	CD	Key,	and	then	returning	it

Once	these	problems	are	overcome	or	accepted,	server-based	CD	Key
validation	offers	some	unique	features	not	present	in	any	other	anti-
piracy	scheme.	These	features	include:

The	option	to	delay	enforcement	of	the	protection	until	the	game	has
generated	"critical	mass"
The	ability	to	actually	track	usage	of	pirated	vs.	legal	copies	of	the
game
Hourly	and	daily	numbers	for	tracking	play	of	the	game	online

Unique	potential	for	data	mining

All	of	the	data	that	is	tracked	is	done	completely	anonymously	so	that	the
privacy	of	your	users	is	protected.

There	are	actually	three	layers	of	protection	provided	by	server-based
CD	Key	validation,	each	layer	targeted	at	stopping	a	particular	type	of
piracy:

You	must	have	a	valid	CD	Key	to	play	online
No	two	people	can	play	online	at	the	same	time	with	the	same	CD
Key
Any	valid	CD	Key	can	be	disabled	if	it	is	distributed	/	abused

This	CD	Key	SDK	consists	of	two	very	simple	portable	C	APIs	-	one	for
the	client	that	encodes	the	CD	Key	for	sending	to	the	server	and	another
for	the	server	that	sends	the	CD	Key	to	the	validation	server	and
authenticates	the	clients.	We	believe	all	of	the	code	to	be	disclosure	safe
-	in	other	words,	even	if	the	entire	source	for	the	system	were	published,
it	would	be	impossible	to	circumvent	it.	This	is	one	of	the	reasons	we	feel
confident	in	distributing	full-source	to	developers	-	we	welcome	your
attempts	to	"break"	the	system,	even	from	within.	We	still	obfuscate	some
of	the	communications	to	help	guard	against	the	"annoyance"	factor	of
thousands	of	hackers	trying	to	break	into	our	key	server	through	a	plain-
text	interface,	but	even	without	this,	the	system	would	be	totally	secure.

Additions	to	your	current	code	will	be	fairly	minimal,	and	there	is	plenty	of
flexibility	for	you	to	implement	the	SDK	in	a	way	best	suited	to	your
game.

Fully	working	examples	of	both	the	server	and	client	code	are	included
for	testing	/	reference.	This	document	provides	a	step	by	step	set	of
instructions	for	implementing	the	CD	Key	SDK.

How	It	Works

Terms

The	following	terms	are	used	throughout	this	document.

Server
The	machine	that	is	"hosting"	the	game	and	to	which	the	clients
connect

Host
Same	as	a	server

Client
A	single	player	/	machine	that	connects	to	a	server	/	host

User
Same	as	a	client

Validation	Server
The	server	run	by	GameSpy	which	validates	CD	Keys	and	tracks
online	users

Process

1.	 A	list	of	valid	CD	Keys	is	generated	by	the	developer	and	put	on	the
CD	cases	during	packing.	The	keys	must	be	self-validating,	i.e.
there	is	a	function	that	can	determine	whether	the	key	is
mathematically	valid.	An	example	of	a	CD	Key	generation/validation
pair	is	included	in	the	SDK.	The	actual	CD	Keys	used	should	be	less
than	a	0.0001%	subset	of	the	possible	keys	(to	assure	that
"guessing"	a	valid	key	is	nearly	impossible)

2.	 On	install/run	of	the	client,	the	user	inputs	the	CD	Key.	The	client
validates	that	the	CD	Key	is	(mathematically)	correct	to	check	typos
/	made	up	keys	and	allows	the	user	to	play	the	game.

3.	 On	connection	to	a	server,	a	handshake	occurs	to	exchange	the	key
a.	 The	server	sends	a	"challenge"	string	of	random	data	to	the

client	-	note	that	this	challenge	string	can	contain	a	maximum
of	32	characters.

b.	 The	client	computes	a	set	of	hashes	based	on	the	challenge,
its	CD	key,	and	a	random	value	and	passes	them	back	to	the
server

c.	 The	server	sends	the	challenge	and	hashes	to	the	validation
server

d.	 The	validation	server	checks	its	CD	Key	database	to	determine
whether	the	hashes	are	valid.	If	they	are	not,	it	returns	an	error
to	the	server.

e.	 The	validation	server	then	checks	to	see	if	another	user	with
that	CD	Key	is	online.	If	one	is,	then	it	first	queries	the	old
server,	to	make	sure	that	user	is	still	connected	(in	case	the
server	crashed),	and	if	they	are,	it	returns	an	error	to	the	new
server.

f.	 When	the	client	logs	off	or	the	server	shuts	down	a	message	is
sent	to	the	validation	server	to	take	the	CD	key	offline.

Miscellaneous

All	game	server	to	validation	server	messaging	is	done	via	UDP,	and	in
case	of	a	dropped	packet	or	missing	data,	a	"positive"	result	is	always
assumed	(so	no	user	with	a	valid	key	will	EVER	be	locked	out).	Because
the	protocol	uses	UDP,	there	is	always	a	chance	that	the	validation	or
reply	packet	might	get	dropped,	allowing	a	user	with	an	invalid	CD	Key	to
play,	but	the	chances	of	this	occurring	is	quite	small	(probably	1-2%	or
less	for	most	servers).

It	is	technically	possible	for	a	cracker	to	modify	the	server	code	to	prevent
it	from	checking	CD	Keys	(i.e.	allow	any	user	to	connect	/	play	on	that
server).	This	does	not	tend	to	be	an	issue	in	most	cases,	since	the	vast
majority	of	server	operators	/	game	hosts	will	want	to	prevent	pirates	from
playing	on	their	servers.	However,	we	have	specifically	designed	the
code	to	be	difficult	to	find	and	disable	on	the	server.	For	additional
protection,	you	can	choose	to	allow	the	CDKey	SDK	integrate	with	the
Query	and	Reporting	2	SDK.	If	a	cracker	attempts	to	prevent	the	server
from	validating	CDKeys,	they	will	end	up	preventing	the	server	from
being	listed	on	the	public	server	list.	Of	course	the	most	important	fact	is
that	there	is	nothing	that	can	be	done	on	the	game	client-side	to	remove
or	weaken	the	CDKey	protection.

Internet-based	validation	obviously	does	not	apply	to	games	played	on	a
local	LAN	(not	connected	to	the	net),	and	in	general,	the	code	does	not
need	any	changes	to	reflect	this	(since	no	reply	will	be	returned	from	the
validation	server,	all	clients	will	be	considered	valid).	However,	the
current	server	API	does	do	a	local	check	of	CD	Keys,	so	that	no	two
players	with	the	same	key	can	connect	to	the	same	server	(even	on	a
local	LAN).	You	may	wish	to	change	this	functionality	to	allow	2	or	more
players	to	"share"	a	CD	Key	on	a	local	LAN	(e.g.	for	"clone"	installs).

Testing

When	you	are	ready	to	begin	testing	your	implementation	of	the	SDK,
you	can	start	by	using	game	ID	"0"	and	the	test	keys	listed	below.

Once	you've	generated	your	own	list	of	unique	keys	for	your	game,	you
can	use	the	web	administration	interface	described	below	to	add	them.
The	list	of	keys	can	be	changed	or	added	to	later	if	needed.

Test	Keys

2dd4-893a-ce85-6411

4bdb-27e9-ecf8-c042

6585-2eeb-c544-9dd2

42ea-082e-74e5-15b6

7bca-b5e2-47e4-42d1

47a0-84e7-bf51-16f4

899e-040f-fc85-72eb

1156-ba66-a3f2-47b3

22f2-dce2-ce67-c8aa

9131-3dd3-ceb6-c292

5022-bcea-5312-4348

468b-bb7e-f5f8-3936

Web	Administration	Interface

The	CDKey	SDK	is	supported	by	a	full-featured	web	interface	for
administering	individual	keys,	batches	of	keys,	and	obtaining	usage	and
abuse	reports.	Multiple	users	from	the	publisher	and	developer	can	be
set	up	with	accounts	for	secure	access	to	the	site.

Account	Setup

Each	user	that	requires	access	to	the	system	will	need	to	have	an
account	set	up	with	specific	permissions.	To	set	up	an	account,	contact
devsupport@gamespy.com.

You	will	need	to	specify	the	e-mail	address	of	the	user	who	needs
access,	and	the	set	of	permissions	they	will	be	granted.

The	following	individual	permissions	are	available:

View	key	reports
Allows	the	user	to	view	any	of	the	pages	in	the	reports	section
(detailed	below)

Add	new	keys
Allows	the	user	to	add	individual	keys	or	batches	of	keys	for	the
game.	Note	that	you	will	be	billed	for	any	keys	added	in
accordance	with	your	licensing	agreement.

Enable	/	Disable	keys
Allows	the	user	to	enable	or	disable	single	keys	or	batches	of	keys

View	key	list
Allows	the	user	to	download	a	plain-text	listing	of	all	keys	for	in	a
batch.	This	should	only	be	used	for	testing	and	key	list	verification.

Requests	to	disable	accounts	should	also	be	sent	to
devsupport@gamespy.com.

Authentication	is	done	via	the	GameSpyID	system.	All	users	should	sign
up	for	a	GameSpyID	at	www.gamespyid.com	prior	to	contacting	the
developer	relations	staff	for	account	setup.

mailto:devsupport@gamespy.com
mailto:devsupport@gamespy.com
http://www.gamespyid.com/

Once	the	account	has	been	set	up,	the	developer	relations	team	will
contact	the	user	with	the	appropriate	URL	for	accessing	the	admin
system.

Main	Menu

After	logging	in	to	the	CDKey	Admin	site,	a	menu	of	options	will	be
available,	based	on	the	permissions	granted	to	the	active	account.	Each
option	is	described	in	detail	below.

View	Key	List

Selecting	this	option	will	allow	you	to	select	a	batch	of	keys	and
download	them	in	a	plaintext	file,	one	key	per	line.	This	can	be	used	to
verify	the	list	of	keys	for	a	batch	against	other	sources.	Users	must	have
the	"View	key	list"	permission	to	access	this	page.

Enable	/	Disable	Keys

This	page	allows	an	admin	to	enable	or	disable	single	keys	or	batches	of
keys.	On	the	top	portion	of	the	page	is	a	list	of	key	batches.	Uncheck	a
batch	to	disable	the	entire	batch,	or	check	it	to	enable.	This	can	be	used
to	disable	beta	keys	or	press	keys	after	they	should	no	longer	be	used
(assuming	those	keys	have	been	added	as	a	separate	batch).

The	page	also	includes	a	text	entry	box	where	you	can	paste	a	list	of
individual	keys,	one	per	line,	to	be	disabled	or	enabled.	Typically	this	is
used	to	disable	keys	from	returned	copies	of	games	or	when	a	known	set
of	keys	needs	to	be	disabled.	The	enable/disable	keys	permission	is
required	to	use	this	page.

Add	New	Keys

Keys	are	added	to	the	CDKey	system	in	batches.	Each	batch	has	1	or
more	keys	in	it	(typically	thousands)	and	can	have	a	name	and	comment
associated	with	it.	For	example,	if	you	generate	a	separate	list	of	keys	for
each	region	your	game	will	ship	in,	you	can	upload	them	and	name	them
individually.	This	allows	you	better	control	if	the	keys	for	one	region	or

pressing	of	your	game	are	destroyed,	and	allows	you	to	view	some
reports	broken	up	by	the	batch	a	key	was	in.

On	the	Add	New	Keys	page	you	should	specify	a	batch	name	and
comment,	then	select	the	keys	to	add.	You	can	either	upload	an	ASCII
list	of	keys	from	your	hard	drive	(one	key	per	line),	or	if	you	are	adding
only	a	small	number	of	keys,	you	can	paste	them	into	the	provided	text
box.

Keys	can	also	be	generated	by	providing	a	set	of	generation	parameters.

A	user	must	have	the	Add	new	keys	permission	to	add	a	new	batch	of
keys.

Reports

The	CDKey	system	includes	a	number	of	reports	that	will	help	keep	you
informed	about	what	is	happening	with	your	game	online,	research	key
usage,	and	detect	abused	keys	so	they	can	be	disabled.

Users	must	have	the	View	key	reports	permission	to	view	these	reports.

Batch	Information

The	batch	information	report	provides	a	summary	of	information	about
the	individual	batches	of	keys	that	have	been	uploaded	for	you	game.
Each	batch	has	the	following	information	provided	for	it:

Batch	name
The	name	of	the	batch,	provided	when	it	was	uploaded

Add	date
The	date	the	batch	was	first	added	to	the	system

Admin	account
GameSpyID	number	of	the	admin	who	added	the	batch.	You	can
click	this	link	to	see	the	user	details.

Comment
Comment	that	was	provided	when	the	batch	was	created	(if	any)

Disabled
Flag	that	shows	whether	the	batch	has	been	disabled

Total	keys
Total	number	of	keys	for	this	batch

Total	used	keys
Number	of	distinct	keys	from	the	batch	that	have	been	used	online
at	least	once

Total	active	keys
Number	of	distinct	keys	from	the	batch	that	have	been	used	in	the
last	30	days

A	totals	line	is	provide	that	sums	the	numbers	from	all	batches.

Overall	Usage

The	overall	usage	report	gives	usage	information	for	all	batches	of	keys
between	a	range	of	dates.	To	generate	the	report,	you	select	the	start
date,	end	date,	and	data	interval	you	are	interested	in.

Reports	can	be	generated	by	hour,	day,	week,	or	month.

Each	interval	on	the	date	range	specified	will	contain	the	following	data:

Total	number	of	authentication	attempts	on	that	date	(valid	or
invalid)
Number	of	authentications	that	were	denied	due	to	an	invalid
CDKey
Number	of	authentications	that	failed	due	to	the	CDKey	already
being	online
Number	of	keys	that	were	authenticated	for	the	first	time	on	that
date	(i.e.	"new	users")
Number	of	authentication	attempts	for	disabled	CDKeys	(may
include	multiple	for	the	same	disabled	key	if	multiple	attempts	were
made)

Key	Information

The	key	information	report	allows	you	to	specific	a	specific	CDKey	to	get
information	about	it	and	its	usage	history.	This	report	is	also	linked	from
other	reports	to	give	additional	information	about	a	specific	key.	If	the
user	has	Enable/Disable	key	rights,	a	button	is	available	on	this	page	to
disable	the	key	(or	re-enable	it).

The	following	information	is	available	about	each	key:

Enabled
Flag	that	indicates	whether	they	key	has	been	disabled

Origin	Batch
Name	of	the	CDKey	batch	that	includes	this	key

Plain	Key
The	plain-text	value	of	the	key

Key	Hash	Value
The	hashed	version	of	the	key	(which	is	what	is	sent	from	client	to
server)

Total	Uses
The	total	number	of	successful	authentications	with	this	key

Total	Conflicts
Total	number	of	times	someone	attempted	to	use	the	key	while	it
was	already	in	use

Recent	Conflicts
Number	of	times	the	key	was	in	conflict	during	a	recent	period	of
time	(currently	7	days).

Recent	Use	History
This	list	has	the	last	20	dates/times	and	client	IP	addresses	that
used	the	key.	It	can	help	determine	whether	a	key	is	being	shared
by	multiple	users.

Abuse	History
This	list	shows	the	last	100	instances	of	abuse	for	the	key,
including	a	reason	for	the	abuse	(e.g.	the	key	was	already	online),
and	the	client/server	IPs	that	were	involved	in	the	conflict.

Disabled	Keys

The	disabled	key	report	is	used	to	view	the	list	of	recently	disabled
CDKeys.	The	date	and	user	that	disabled	the	key	are	available,	and	a
link	is	provided	to	the	key	to	view	key	information	and	re-enable	the	key	if
desired.

Abuse	Information

The	Abuse	Information	report	allows	you	to	view	the	top	keys	in	conflict
(e.g.	someone	attempted	to	use	the	key	multiple	times	online	at	the	same
time)	on	a	specific	range	of	dates.	For	example,	you	can	set	it	for	the
past	week	to	see	just	the	keys	that	were	abused	in	the	past	week.	The
keys	are	sorted	from	most	abused	to	least,	and	a	link	is	provided	to	the
key	information	page	for	the	key,	where	the	abuse	can	be	investigated
and	the	key	can	be	disabled.

File
gcdkeyc.c

gcdkeyc.h

md5c.c

md5.h

gcdkeyclienttest.c

gcdkeyclient.dsp

gcdkeys.c

gcdkeys.h

nonport.c

nonport.h

gcdskeyservertest.c

gcdkeyserver.dsp

gcdkeygen.c

gcdkeygen.dsp

gcdkey.dsw

gcdkeyserver_qr2.dsp

gcdkeyservertest_qr2.c

File	Manifest

The	following	files	should	be	included	with	this	package.	If	any	of	the	files
are	missing,	please	contact	devsupport@gamespy.com.

Description
Client	API	code

Client	API	Header	file

MD5	Hash	code

MD5	Hash	Header

Sample	client	application,	talks	to	the	sample
server	application

DevStudio	project	for	the	Client	API	/	sample

Server	API	code

Server	API	Header	file

System-dependant	code	(sockets,	etc)

Header	for	system-dependant	code

Sample	server	application,	accepts	connections
from	sample	client

DevStudio	project	for	Server	API	/	sample

Sample	key	generation	/	validation	code

DevStudio	project	for	key	gen	sample

DevStudio	workspace	with	client,	server,	and
keygen	projects

DevStudio	project	for	Server	API	/	QR2
Integration	sample

Sample	server	application,	plus	integration	with
QR2	SDK

mailto:devsupport@gamespy.com

Implementation

Step	0:	(Server)	Initialize	the	CD	Key	API,	Think,	and	Shutdown

Somewhere	in	your	server	startup	code,	call	gcd_init	with	the	game	ID
you	have	been	given	to	initialize	the	API	sockets	and	structures.	The
SDK	supports	using	multiple	game	IDs	simultaneously.	You	may	need	to
do	this	if,	for	example,	you	need	to	authenticate	multiple	CDKeys	per-use
(e.g.	one	for	the	main	game,	one	for	a	mission	pack),	or	your	game
server	supports	multiple	products	and	needs	to	authenticate	each
product	separately.

In	your	main	game	/	message	loop,	call	gcd_think	to	allow	the	API	to
process	any	pending	authorization	requests	/	messages.	This	function
should	be	called	at	least	once	every	10-100ms	and	is	guaranteed	not	to
block	(although	it	may	make	a	callback	if	an	authorization	response	has
come	in).	If	your	game	uses	the	Query	and	Reporting	2	SDK,	you	can
place	this	call	in	the	same	area	as	the	call	to	qr2_think.

In	your	server	shutdown	code	call	gcd_shutdown	to	release	the	socket
and	send	disconnect	messages	to	the	validation	server	for	any	clients	still
on	the	server.

Step	1:	(Server)	Send	a	challenge	string	to	the	client

During	the	client	connection	process	you	need	to	send	the	client	a
random	challenge	string.	This	challenge	will	be	used	as	part	of	the
response	hash.	You	will	need	to	pass	this	challenge	along	with	the	user's
response	to	the	gcd_authenticate_user	function,	so	be	sure	to	hold
onto	it.	The	challenge	string	can	by	any	combination	of	letters	/	digits.	6-8
characters	should	be	adequate,	and	the	string	has	a	maximum	limit	of	32
characters.

Step	2:	(Client)	Respond	to	the	challenge

When	the	client	receives	the	challenge	string	it	should	calculate	a
response	using	the	gcd_compute_response	function	in	the	Client	API.

Pass	the	client's	CD	key	and	the	challenge	string	into	the	function	and	it

will	return	the	response	string,	a	72	character	ASCII	string.	Send	this
response	back	to	the	server.

Step	3:	(Server)	Begin	the	authentication	process

Once	you	have	received	the	client's	response,	you	can	call
gcd_authenticate_user	to	send	an	authentication	request.

void	gcd_authenticate_user(int	gameid,	int	localid,

unsigned	int	userip,	char	*challenge,	char	*response,

AuthCallBackFn	authfn,	RefreshAuthCallBackFn

refreshfn,	void	*instance);

gameid

the	game	ID	issued	for	your	game
localid

a	unique	int	used	to	identify	each	client	on	the	server.	No	two
clients	should	have	the	same	localid.

userip

is	the	client's	IP	address,	preferably	in	network	byte	order
challenge

the	challenge	string	that	was	sent	to	the	client
response

the	response	that	the	client	received
authfn

a	callback	that	is	called	when	the	user	is	either	authorized	or
rejected.	This	function	will	be	called	within	two	seconds	of
gcd_authenticate_user,	even	if	the	validation	server	hasn't
responded	yet.

instance

any	user-defined	data	you	want	to	pass	into	the	callback	function
(e.g.	an	object	or	structure	pointer,	or	NULL).	The	example	server
uses	this	to	pass	in	the	array	of	client	structures.

This	function	will	return	immediately,	and	you	will	have	to	wait	until	the
callback	is	triggered	to	determine	whether	the	client	is	valid	or	not.	During

this	period	(usually	100ms	or	less,	but	up	to	2	sec	max)	you	can	hold	the
client	in	a	limbo-state,	or	allow	them	to	enter	the	game	(and	disconnect
them	if	a	negative	response	comes	back).

Remember	that	you	need	to	be	calling	gcd_think	during	this	time,	or
the	callback	will	never	be	triggered.	You	should	be	calling	gcd_think
even	when	not	waiting	for	a	callback,	since	it	also	handles	processing	on
"online"	queries	from	the	validation	server.

Step	4:	(Server)	Create	the	Callback

You	will	need	to	create	a	callback	function	that	is	called	once	the
validation	server	responds	with	the	client's	authorization	status	(or	a	2
second	timeout	occurs).

The	prototype	for	this	function	is:

void	AuthCallBackFn(int	gameid,	int	localid,	int

authenticated,	char	*errmsg,	void	*instance);

gameid

the	game	ID	you	requested	authentication	for
localid

the	id	that	you	passed	into	gcd_authenticate_user,	and	indicates
which	user	this	callback	is	referring	to	(since	multiple
authentication	requests	can	be	sent	before	the	first	is	returned).

authenticated

a	1/0	value	that	indicates	whether	the	user	was	authenticated	or
not.

If	the	user	was	not	authenticated,	errmsg	contains	a	descriptive
string	of	the	reason	(either	CD	Key	not	valid,	or	CD	Key	in	use).
Errmsg	is	never	NULL,	so	if	there	is	no	message	it	will	be	an	empty
string.

instance

the	user-defined	data	that	you	requested	be	passed	to	the	callback

If	the	client	was	authenticated	you	should	allow	them	to	continue	/	enter

the	game.	If	not,	you	should	send	an	error	message	to	the	client	and
disconnect	/	disable	them.	You	do	not	need	to	call
gcd_disconnect_user	(but	you	can)	as	they	have	already	been
removed	from	the	APIs	internal	structures.

Step	5:	(Server)	Create	the	reauth	Callback

The	server	should	have	the	reauth	callback	function	defined	for
reauthentications:

The	prototype	for	this	function	is:

void	RefreshAuthCallBackFn(int	gameid,	int	localid,

int	hint,	char	*challenge,	void	*instance);

gameid

the	the	game	id	used	to	initialize	the	SDK	with
localid

the	index	of	the	player
hint

a	session	id	for	a	client	used	for	reauthentication	-	this	is	the	skey
passed	into	gcd_process_reauth

challenge

a	challenge	string	used	for	reautentication
instance

the	user-defined	data	that	you	requested	be	passed	to	the	callback

This	function	will	be	called	when	the	validation	server	requires	proof	that
a	player	is	still	online	using	the	cd	key	being	checked.	The	server	needs
to	send	the	challenge	to	the	player	via	its	own	socket.	The	player	must
call	gcd_compute_response	in	order	to	create	a	new	response.	The
host/server	in	turn	uses	this	response	to	call	gcd_process_reauth	so
that	it	can	prove	the	client's	existence.	Otherwise	the	validation	server
will	consider	that	client	offline.

Step	6:	(Server)	Call	Disconnect	when	a	user	leaves

When	a	user	disconnects	/	logs	off	the	server	you	should	call
gcd_disconnect_user	immediately	so	that	the	validation	server	can
be	notified	that	the	user	is	now	offline	and	the	CD	Key	is	marked	as
available	again.	If	you	fail	to	call	gcd_disconnect_user,	the	user	may,
in	some	cases,	have	trouble	connecting	to	another	server	(since	the
validation	server	AND	your	game	server	both	think	the	user	is	still
playing).

Don't	be	concerned	about	no	notification	being	sent	in	the	case	of	server
crashes	/	sudden	shutdowns	-	a	user	will	only	be	denied	access	if	your
server	is	still	responding	and	thinks	the	user	is	online.	Any	time	a
"conflict"	occurs	(a	user	connects	with	a	CD	Key	that	appears	to	be	in
use)	the	original	server	is	contacted	to	double	check	that	the	user	is	still
connected.	If	the	original	server	doesn't	respond,	or	responds	with	a
negative,	the	new	user	is	allowed	to	connect.	Please	note	that	this
"double	check"	is	handled	entirely	by	the	API	code,	so	if	you	don't	notify
the	API	of	a	user	disconnecting,	the	API	will	assume	the	user	is	still
online.

Query	and	Reporting	2	SDK	Integration

As	mentioned	in	the	"How	it	Works"	section,	you	have	the	option	of
integrating	the	CDKey	SDK	with	the	Query	and	Reporting	2	SDK	for
additional	security	on	the	game	server.	This	integration	causes	the
CDKey	SDK	to	use	the	networking	code	in	the	Query	and	Reporting	2
SDK	for	all	incoming	and	outgoing	data.

This	provides	two	additional	benefits	to	security:

Any	attempt	to	disable	the	CDKey	validation	code	inside	the	server
binary	will	likely	result	in	the	disabling	of	the	Query	and	Reporting
code	-	thus	causing	the	server	to	not	be	listed	on	the	master	server
list.
When	the	CDKey	network	code	is	integrated	with	the	Query	and
Reporting	code,	our	backend	can	send	special	queries	to	the	game
server	to	verify	that	it	is	authenticating	CDKeys	correctly.	If	these
checks	fail,	the	server	can	be	banned	from	the	master	server	list
automatically.

Both	of	these	features	help	prevent	people	from	running	public,	"cracked"
servers	that	allow	all	clients	to	play	on	them	without	a	valid	CD	Key.	It	is
still	possible	for	someone	to	run	a	"private"	cracked	server	by	blocking	all
network	traffic	to	GameSpy's	backend.	However,	that	is	really	no	different
than	if	they	were	running	a	LAN	server	with	no	Internet	access	-	CDKey
validation	would	be	disabled	in	that	case	anyway.	Preventing	cracked
servers	from	being	listed	on	the	master	server	will	make	it	nearly
impossible	for	casual	players	to	find	any.

Enabling	the	Query	&	Reporting	2	integration	is	simple,	and	you	should
generally	enable	it	unless	you	have	a	specific	reason	not	to.

To	enable	the	integration:

1.	 Define	the	pre-compiler	directive	"QR2CDKEY_INTEGRATION"	when
compiling	the	CD	Key	SDK.	You	can	add	this	to	the	gcdkeys.h	file,
or	as	a	compiler	option.

2.	 Call	gcd_init_qr2	instead	of	gcd_init	when	initializing	the	CD

Key	SDK.	You	will	need	to	initialize	the	Query	and	Reporting	2	SDK
prior	to	calling	gcd_init_qr2.

Finally,	if	you	are	using	the	Query	and	Reporting	NAT	proxy	support	to
share	a	socket	between	your	game	and	the	Query	and	Reporting	2	SDK,
you	will	need	to	pass	all	CDKey	network	traffic	to	the
qr2_parse_query	function	in	addtion	to	the	normal	QR2	traffic.	You
can	identify	CD	Key	network	traffic	by	the	first	byte,	which	is	always	0x3B
(";").

CD	Key	Client	SDK	Functions
gcd_compute_response

Calculates	a	response	to	a	challenge	string.

gcd_compute_response
Calculates	a	response	to	a	challenge	string.

void	gcd_compute_response(
char	*	cdkey,
char	*	challenge,
char	response[73],
CDResponseMethod	method);

Routine Required	Header Distribution
gcd_compute_response <gcdkeys.h> SDKZIP

Parameters

cdkey
[in]	The	client's	CD	key.

challenge
[in]	The	challenge	string.	Should	be	no	more	than	32	characters.

response
[out]	Receives	the	computed	response	string.

method
[in]	Enum	listing	the	response	method	-	set	to	either
CDResponseMethod_NEWAUTH	or
CDResponseMethod_REAUTH.

Remarks

When	the	client	receives	the	challenge	string	it	should	calculate	a
response	using	the	gcd_compute_response	function	in	the	Client	API.
Pass	the	client's	CD	key	and	the	challenge	string	into	the	function	and	it
will	return	the	response	string,	a	72	character	ASCII	string.	Send	this
response	back	to	the	server.

Section	Reference:	Gamespy	CDKey	SDK

CD	Key	Server	SDK	Functions
gcd_authenticate_user

Sends	an	authentication	request.

gcd_disconnect_all
Calls	gcd_disconnect_user	for	each	user	still
online.

gcd_disconnect_user
Notify	the	validation	server	that	a	user	has
disconnected.

gcd_getkeyhash
Returns	the	key	hash	for	the	given	user.

gcd_init
Initializes	the	Server	API	and	creates	the	sockets
and	structures.

gcd_init_qr2
Initializes	the	Server	API	and	integrates	the
networking	of	the	CDKey	SDK	with	the	Query	&
Reporting	2	SDK.

gcd_process_reauth
Used	to	respond	to	a	reauthentication	request
made	by	the	validation	server	proving	the	client	is
still	on.

gcd_shutdown
Release	the	socket	and	send	disconnect
messages	to	the	validation	server	for	any	clients
still	on	the	server.

gcd_think
Processes	any	pending	data	from	the	validation
server	and	calls	the	callback	to	indicate	whether	a
client	was	authorized	or	not.

gcd_authenticate_user
Sends	an	authentication	request.

void	gcd_authenticate_user(
int	gameid,
int	localid,
unsigned	int	userip,
char	*	challenge,
char	*	response,
AuthCallBackFn	authfn,
RefreshAuthCallBackFn	refreshfn,
void	*	instance);

Routine Required	Header Distribution
gcd_authenticate_user <gcdkeys.h> SDKZIP

Parameters

gameid
[in]	The	game	ID	issued	for	your	game.

localid
[in]	A	unique	int	used	to	identify	each	client	on	the	server.	No	two
clients	should	have	the	same	localid.

userip
[in]	The	client's	IP	address,	preferably	in	network	byte	order.

challenge
[in]	The	challenge	string	that	was	sent	to	the	client.	Should	be	no
more	than	32	characters.

response
[in]	The	response	that	the	client	received.

authfn
[in]	A	callback	that	is	called	when	the	user	is	either	authorized	or
rejected.

refreshfn
[in]	A	callback	called	when	the	server	needs	to	re-authorize	a	client
on	the	local	host

instance
[in]	Optional	free-format	user	data	for	use	by	the	callback.

Section	Reference:	Gamespy	CDKey	SDK

gcd_disconnect_all
Calls	gcd_disconnect_user	for	each	user	still	online.

void	gcd_disconnect_all(
int	gameid);

Routine Required	Header Distribution
gcd_disconnect_all <gcdkeys.h> SDKZIP

Parameters

gameid
[in]	The	game	ID	issued	for	your	game.

Section	Reference:	Gamespy	CDKey	SDK

gcd_disconnect_user
Notify	the	validation	server	that	a	user	has	disconnected.

void	gcd_disconnect_user(
int	gameid,
int	localid);

Routine Required	Header Distribution
gcd_disconnect_user <gcdkeys.h> SDKZIP

Parameters

gameid
[in]	The	game	ID	issued	for	your	game.

localid
[in]	The	unique	int	used	to	identify	the	user.

Section	Reference:	Gamespy	CDKey	SDK

gcd_getkeyhash
Returns	the	key	hash	for	the	given	user.

char	*	gcd_getkeyhash(
int	gameid,
int	localid);

Routine Required	Header Distribution
gcd_getkeyhash <gcdkeys.h> SDKZIP

Return	Value

Returns	the	key	hash	string,	or	an	empty	string	if	that	user	is	not
connected.

Parameters

gameid
[in]	The	game	ID	issued	for	your	game.

localid
[in]	The	unique	int	used	to	identify	the	user.

Remarks

The	hash	returned	will	always	be	the	same	for	a	given	user.	This	makes	it
useful	for	banning	or	tracking	of	users	(used	with	the	Tracking/Stats
SDK).

Section	Reference:	Gamespy	CDKey	SDK

gcd_init
Initializes	the	Server	API	and	creates	the	sockets	and	structures.

int	gcd_init(
int	gameid);

Routine Required	Header Distribution
gcd_init <gcdkeys.h> SDKZIP

Return	Value

Returns	0	if	successful;	non-zero	if	error.

Parameters

gameid
[in]	The	Game	ID	issued	for	your	game.

Section	Reference:	Gamespy	CDKey	SDK

See	Also:	gcd_init_qr2

gcd_init_qr2
Initializes	the	Server	API	and	integrates	the	networking	of	the	CDKey
SDK	with	the	Query	&	Reporting	2	SDK.

int	gcd_init_qr2(
qr2_t	qrec,
int	gameid);

Routine Required	Header Distribution
gcd_init_qr2 <gcdkeys.h> SDKZIP

Return	Value

Returns	0	if	successful;	non-zero	if	error.

Parameters

qrec
[in]	The	intialized	QR2	SDK	object.

gameid
[in]	The	game	ID	issued	for	your	game.

Remarks

You	must	initialize	the	Query	&	Reporting	2	SDK	with	qr2_init	or
qr2_init_socket	prior	to	calling	this.	If	you	are	using	multiple	instances	of
the	QR2	SDK,	you	can	pass	the	specific	instance	information	in	via	the
"qrec"	argument.	Otherwise	you	can	simply	pass	in	NULL.

Section	Reference:	Gamespy	CDKey	SDK

See	Also:	gcd_init

gcd_process_reauth
Used	to	respond	to	a	reauthentication	request	made	by	the	validation
server	proving	the	client	is	still	on.

void	gcd_process_reauth(
int	gameid,
int	localid,
int	skey,
const	char	*	response);

Routine Required	Header Distribution
gcd_process_reauth <gcdkeys.h> SDKZIP

Parameters

gameid
[in]	The	game	ID	used	to	initialize	the	SDK	with

localid
[in]	An	index	of	the	client

skey
[in]	The	client's	session	key	that	came	from	the	validation	server

response
[in]	The	client's	response	to	the	challenge

Remarks

When	the	Reauthentication	callback	(passed	to	gcd_	authenticate	user)
is	called,	the	host/server	must	send	the	required	information	to	verify	that
the	client	is	still	online,	using	the	CD	Key	being	checked.	This	should	be
called	after	the	client	has	computed	a	response	to	the	challenge	coming
from	the	callback.

Section	Reference:	Gamespy	CDKey	SDK

gcd_shutdown
Release	the	socket	and	send	disconnect	messages	to	the	validation
server	for	any	clients	still	on	the	server.

void	gcd_shutdown();

Routine Required	Header Distribution
gcd_shutdown <gcdkeys.h> SDKZIP

Section	Reference:	Gamespy	CDKey	SDK

gcd_think
Processes	any	pending	data	from	the	validation	server	and	calls	the
callback	to	indicate	whether	a	client	was	authorized	or	not.

void	gcd_think();

Routine Required	Header Distribution
gcd_think <gcdkeys.h> SDKZIP

Remarks

This	function	should	be	called	at	least	once	every	10-100ms	and	is
guaranteed	not	to	block	(although	it	may	make	a	callback	if	an
authorization	response	has	come	in).	If	your	game	uses	the	Query	and
Reporting	SDK,	you	can	place	this	call	in	the	same	area	as	the	call	to
qr_process_queries.

Section	Reference:	Gamespy	CDKey	SDK

CD	Key	Server	SDK	Callbacks
AuthCallBackFn

Called	when	the	user	is	either	authorized	or
rejected.

RefreshAuthCallBackFn
Used	to	reauthenicate	a	client	for	the	purpose	of
proving	a	client	is	still	online.

AuthCallBackFn
Called	when	the	user	is	either	authorized	or	rejected.

typedef	void	(*AuthCallBackFn)(
int	gameid,
int	localid,
int	authenticated,
char	*	errmsg,
void	*	instance);

Routine Required	Header Distribution
AuthCallBackFn <gcdkeys.h> SDKZIP

Parameters

gameid
[in]	The	game	ID	for	which	authentication	is	requested.

localid
[in]	The	id	that	was	passed	into	gcd_authenticate_user.

authenticated
[in]	Indicates	whether	the	user	was	authenticated:	1	if	authenticated;
0	if	not.

errmsg
[in]	Error	message	if	user	was	not	authenticated.

instance
[in]	The	same	instance	as	was	passed	into	the
gcd_authenticate_user.

Remarks

This	function	will	be	called	within	two	seconds	of	gcd_authenticate_user,
even	if	the	validation	server	hasn't	responded	yet.

If	the	user	was	not	authenticated,	the	errmsg	parameter	contains	a
descriptive	string	of	the	reason	(either	CD	Key	not	valid,	or	CD	Key	in
use).

Section	Reference:	Gamespy	CDKey	SDK

RefreshAuthCallBackFn
Used	to	reauthenicate	a	client	for	the	purpose	of	proving	a	client	is	still
online.

typedef	void	(*RefreshAuthCallBackFn)(
int	gameid,
int	localid,
int	hint,
char	*	challenge,
void	*	instance);

Routine Required	Header Distribution
RefreshAuthCallBackFn <gcdkeys.h> SDKZIP

Parameters

gameid
[in]	the	game	ID	used	to	initialize	the	SDK	with

localid
[in]	the	index	of	the	player

hint
[in]	a	session	id	for	a	client	used	for	reauthentication	-	this	is	the	skey
passed	into	gcd_process_reauth

challenge
[in]	a	challenge	string	used	for	reautentication

instance
[in]	user	data	passed	in	gcd_authenticate_user

Remarks

The	reauthentication	callback	will	be	called	any	time	the	validation	server
wishes	to	determine	if	a	client	is	still	online.	When	called,	the	client	index,
challenge,	and	session	key	will	be	available.	These	values	must	be	used
to	reauthenticate	the	user.	Remember	that	this	process	is	similar	to	the
primary	authentication	process,	where	the	only	difference	is	that	the
validation	server	provides	the	challenge	and	session	key	(note:	the	"hint"
parameter	in	this	callback	is	the	session	key	that	should	be	passed	as
the	"skey"	value	into	gcd_process_reauth).

Section	Reference:	Gamespy	CDKey	SDK

CD	Key	SDK	Enumerations
CDResponseMethod

Values	are	passed	to	the	gcd_compute_response
function	done	client	side.

CDResponseMethod
Values	are	passed	to	the	gcd_compute_response	function	done	client
side.

typedef	enum	
{

CDResponseMethod_NEWAUTH,				
CDResponseMethod_REAUTH				

}	CDResponseMethod;

Constants

CDResponseMethod_NEWAUTH
Used	for	primary	authentications.

CDResponseMethod_REAUTH
Used	for	re-authentications.

Section	Reference:	Gamespy	CDKey	SDK

Chat	SDK
Overview

The	GameSpy	Chat	SDK	is	a	portable	ANSI-C	API	used	to	write	chat
clients.	The	current	implementation	works	with	IRC	servers,	however	it
could	be	re-implemented	to	work	on	another	chat	network	without	having
to	change	any	user	code.	The	Chat	SDK	provides	an	easy	way	to	allow
your	game's	players	to	chat	online.	There	are	no	libraries	or	DLLs	to	deal
with;	just	add	the	source	files	to	your	project	and	you're	ready	to	go.

The	Chat	SDK	only	deals	with	data.	You	will	be	responsible	for	creating
all	the	GUI	elements	that	are	required	for	chatting	within	your	game.

Chat	Nicknames	have	a	few	restrictions	based	on	IRC	standards	and
server	requirements.	The	character	limit	for	chat	nicks	is	20	characters.
The	following	are	the	character	restrictions:

The	first	character	cannot	be	any	of	the	following:	+,	@,	#,	:
Numeric	characters	are	only	allowed	after	the	first	character.
All	characters	in	the	ASCII	character	range	34-126	are	valid	except
for	character	92.

File
chat.h

chatMain.c

chatMain.h

chatSocket.c

chatSocket.h

chatHandlers.c

chatHandlers.h

chatCallbacks.c

chatCallbacks.h

chatChannel.c

chatChannel.h

nonport.c

nonport.h

hashtable.c

hashtable.h

darray.c

darray.h

File	Manifest

The	following	files	should	be	included	with	this	package.	If	any	of	the	files
are	missing,	please	contact	devsupport@gamespy.com.

Description
GameSpy	Chat	header	(all	user	functions	are

prototyped	here)

Entry	point	for	all	user	Chat	functions

Common	header	for	internal	code

Implementation	of	a	network-level	connection	to
a	chat	server

Header	for	chat	socket	functions

Code	for	handling	IRC	messages

Header	for	callback	handling	functions

Code	for	queueing	and	calling	callbacks

Header	for	callback	handling	function

Code	for	dealing	with	chat	channels	and	the
users	in	the	channels

Header	for	accessing	and	manipulating	the
channel	and	user	data

Platform-specific	code

Platform-specific	header

Hastable	implementation

Hashtable	headers

Dynamic-Array	implementation

Dynamic-Array	headers

mailto:devsupport@gamespy.com

Implementation

Connecting

The	first	thing	to	do	with	Chat	is	to	connect	to	a	server.	This	is	done	with
either	chatConnect,	chatConnectSpecial,	or
chatConnectSecure.	Most	application	will	use	chatConnect.
chatConnectSpecial	is	used	to	fill	in	the	user	field	after	the	local
machine's	IP	address	is	known,	and	chatConnectSecure	is	used	to
encrypt	the	connection.

CHAT	chatConnect(const	char	*	serverAddress,	int	port,

const	char	*	nick,	const	char	*	user,	const	char	*

name,	chatGlobalCallbacks	*	callbacks,

chatNickErrorCallback	nickErrorCallback,

chatConnectCallback	connectCallback,	void	*	param,

CHATBool	blocking)

CHAT	chatConnectSpecial(const	char	*	serverAddress,

int	port,	const	char	*	nick,	const	char	*	name,

chatGlobalCallbacks	*	callbacks,	chatNickErrorCallback

nickErrorCallback,	chatFillInUserCallback

fillInUserCallback,	chatConnectCallback

connectCallback,	void	*	param,	CHATBool	blocking)

CHAT	chatConnectSecure(const	char	*	serverAddress,	int

port,	const	char	*	nick,	const	char	*	name,	const	char

*	gamename,	const	char	*	secretKey,

chatGlobalCallbacks	*	callbacks,	chatNickErrorCallback

nickErrorCallback,	chatFillInUserCallback

fillInUserCallback,	chatConnectCallback

connectCallback,	void	*	param,	CHATBool	blocking)

serverAddress

the	IP	address	and	port	of	the	chat	server	to	which	to	connect
port

the	port	of	the	chat	server	to	which	to	connect

nick

the	connecting	user's	nickname
user

the	user's	username.	This	is	only	used	with	chatConnect.

name

the	user's	real	name	or	any	other	optional	info
gamename,	secret	key

used	with	chatConnectSecure,	which	is	used	to	encrypt	all
traffic	with	the	chat	server.

The	gamename	and	secretKey	are	application-specific	-	if	you	are
unsure	what	your	gamename	and	secretKey	are,	contact
devsupport@gamespy.com.

callbacks

a	pointer	to	a	structure	which	contains	a	list	of	global	callbacks	to
be	associated	with	this	connection.	The	structure	also	contains	a
"param"	member	which	is	of	type	pointer	to	void	(void	*).	This
param	is	passed	in	as	the	last	argument	to	all	global	callbacks.

chatConnect	returns	a	CHAT	object.	This	represents	the	connection	to
the	chat	server.	If	the	return	value	is	NULL,	then	there	was	an	error
establishing	the	connection.

Connecting	should	look	something	like	this:

int	CMyGame::OnConnect(...)

{

	 m_chat	=	chatConnect("irc.mygame.com",	6667,	"nick",	"user",	"email@email.com",	&callbacks,	callback,	this,	CHATFalse);

	 if(m_chat	==	NULL)

	 	 	 Error();

}

Disconnecting

When	the	chat	connection	is	ready	to	be	disconnected,	just	call	the
chatDisconnect	function:

mailto:devsupport@gamespy.com

void	chatDisconnect(CHAT	chat)

This	will	terminate	the	connection	to	the	chat	server.	The	chat	object
cannot	be	used	again.	To	establish	a	new	connection,	chatConnect
must	be	called	again.	chatDisconnect	should	always	be	called	to
cleanup	a	connection	-	the	only	exception	is	when	chatConnect	returns
NULL.

Processing

A	chat	connection	must	be	periodically	processed.	This	is	done	by	calling
chatThink:

void	chatThink(CHAT	chat)

When	a	connection	is	processed,	it	sends	any	queued	outgoing	data,
reads	incoming	data,	and	calls	any	callbacks	generated	by	the	incoming
data.	This	function	can	be	called	in	an	applications	main	or	idle	loop.	It
should	be	called	at	least	once	a	second,	but	it	is	not	necessary	to	call	it
more	than	several	times	a	second	(although	calling	it	more	often	will	do
no	harm).

Entering	A	Channel

To	join	a	channel,	call	chatEnterChannel.	This	function	will	enter	an
existing	channel	if	it	exists	or	create	a	new	channel	and	enter	it	if	it	does
not	exist.

void	chatEnterChannel(CHAT	chat,	const	char	*	channel,	const	char	*	password,	chatChannelCallbacks	*	callbacks,	chatEnterChannelCallback	callback,	void	*	param,	CHATBool	blocking)

chat

the	same	CHAT	object	returned	by	the	call	to	chatConnect

channel

the	channel	that	we	are	trying	to	enter
password

the	password	required	to	enter	the	channel.	If	no	password	is

required,	this	can	either	be	NULL	or	an	empty	string.

blocking

determines	if	this	function	should	block	until	the	enter	attemp	has
been	completed	or	if	it	should	be	returned	immediately.	In	either
case,	"callback"	will	be	called	when	the	attemp	is	completed.

Leaving	A	Channel

To	leave	a	channel,	just	call	chatLeaveChannel:

void	chatLeaveChannel(CHAT	chat,	const	char	*	channel)

This	will	take	you	out	of	the	given	channel.

UNICODE	Support

The	GameSpy	SDKs	support	an	optional	UNICODE	interface	for
widestring	applications.	To	use	this	interface,	first	define	the	symbol
"GSI_UNICODE".	Then,	use	widestrings	wherever	ANSI	strings	were
previously	called	for.	When	in	doubt,	please	refer	to	the	header	files	for
specific	function	declarations.

Although	the	GameSpy	SDK	interfaces	support	UNICODE	parameters,
some	items	may	be	stripped	of	their	extra	UNICODE	information.	These
items	include:	nickname,	email	address,	and	URL	strings.	You	may	pass
in	widestring	values,	but	they	will	first	be	converted	to	their	ANSI
counterparts	before	transmission.

Chat	SDK	Functions
chatAddChannelBan

Ban	a	nickname	from	the	specified
channel.		Local	client	must	have
moderator	privileges.

chatAuthenticateCDKey
Allows	pre-chat	cd	key	authentication	via
the	chat	server.

chatBanUser
Ban	a	user	from	the	chat	room.		The	user
may	not	rejoin.

chatChangeNick
Change	the	chat	nickname	associated
with	the	local	client.	This	does	not	affect
the	account	name.

chatConnect
The	chatConnect	function	initializes	the
Chat	SDK	and	initiates	a	connection	to
the	chat	server.

chatConnectLogin
Initializes	the	Chat	SDK	and	initiates	a
connection	to	the	chat	server.	The
chatConnectLogin	function	provides	the
ability	to	login	to	chat	using	a	registered
unique	nickname.

chatConnectPreAuth
Initializes	the	Chat	SDK	and	initiates	a
connection	to	the	chat	server.	The
chatConnectPreAuth	function	provides	the
ability	to	specify	authtoken	and
partnerchallenge.	(Not	for	common	use).

chatConnectSecure
Initializes	the	Chat	SDK	and	initiates	a
connection	to	the	chat	server.	The
chatConnectSecure	function	encrypts	the
connection.

chatConnectSpecial
Initializes	the	Chat	SDK	and	initiates	a
connection	to	the	chat	server.	The
chatConnectSpecial	function	provides
ability	to	fill	in	the	user	field	after	the	local
machine’s	IP	address	is	known.

chatDisconnect
Disconnect	from	the	chat	server.	Performs
necessary	cleanup	of	the	Chat	SDK

chatEnterChannel
Joins	a	chat	channel.

chatEnumChannelBans
Retrieves	a	list	of	clients	banned	from	a
channel.

chatEnumChannels
Enumerates	the	chat	channels	on	the
server.

chatEnumJoinedChannels
Enumerates	the	chat	channels	on	the
server	which	the	local	client	has	joined.	

chatEnumUsers
Retrieves	the	list	of	users	in	the	specified
channel.

chatFixNick
Repairs	an	illegal	chat	nickname.

chatGetBasicUserInfo

Retrieves	basic	information	on	the
specified	user.

chatGetBasicUserInfoNoWait
Retrieves	basic	information	on	the
specified	user.	Information	is	returned
through	function	parameters.

chatGetChannelBasicUserInfo
Retrieves	basic	user	info	for	every
member	of	the	specified	channel.

chatGetChannelKeys
Retrieves	a	list	of	key/value	pairs	for	a
channel	or	user.

chatGetChannelMode
Retrieves	the	"mode"	of	a	channel.

chatGetChannelNumUsers
Returns	the	number	of	users	in	the
already	joined	channel.		This	is	a	cached
value,	and	not	a	server	query.

chatGetChannelPassword
Queries	the	server	for	the	specified
channel’s	password.

chatGetChannelTopic
Queries	the	server	for	the	specified
channel’s	topic.		Also	known	as	the	room
description.

chatGetGlobalKeys
Retrieves	a	list	of	global	keys	for	a	single
user,	or	all	users.

chatGetNick
Gets	the	chat	nickname	of	the	local	client.
This	may	not	be	the	same	as	the	profile

nickname.

chatGetProfileID
Gets	the	profile	id	of	the	local	client.

chatGetUserID
Gets	the	user	id	of	the	local	client.

chatGetUserInfo
Gets	information	on	the	specified	user.

chatGetUserMode
Get	the	mode	of	a	user	in	a	specified
channel.

chatGetUserModeNoWait
Get	the	mode	of	a	user	in	a	specified
channel,	returning	it	through	a	function
parameter.

chatInChannel
Determine	whether	the	local	client	is	a
member	of	the	specified	channel.

chatInviteUser
Invite	a	user	to	join	a	channel.

chatKickUser
Forcefully	remove	a	user	from	a	specified
channel.	

chatLeaveChannel
Leave	a	chat	channel.

chatRegisterUniqueNick
Registers	a	unique	nick	to	the	local	client
and	cdkey.

chatRemoveChannelBan
Removes	a	banned	player	from	a

channel's	ban	list.		This	will	once	again
allow	the	user	to	join	the	channel.

chatRetryWithNick
Use	in	response	to	a	nickErrorCallback.	
This	function	allows	the	local	client	to	retry
the	connection	attempt	with	a	different
chat	nickname.

chatSendChannelMessage
Send	a	message	to	all	members	of	the
specified	channel.

chatSendRaw
Send	a	raw	command	to	the	chat	server.	
This	does	not	automatically	send	to	a
player.

chatSendUserMessage
Send	a	private	message	to	a	user.

chatSetChannelGroup
Assign	a	user-defined	grouping	to	a
channel.		The	group	is	a	string	identifier
which	is	linked	to	the	channel.

chatSetChannelKeys
Set	key/values	on	a	channel	or	the	local
user.

chatSetChannelLimit
Set	the	maximum	number	of	users
allowed	in	a	channel.

chatSetChannelMode
Set	a	channel’s	mode.

chatSetChannelPassword
Sets	or	clears	a	password	on	the
specified	channel.

chatSetChannelTopic
Set	the	topic	(description)	of	a	chat
channel.

chatSetGlobalKeys
Set	key/values	on	the	local	client.	

chatSetQuietMode
Sets	the	chat	sdk	to	quiet	mode	or
disables	quiet	mode.

chatSetUserMode
Set	the	IRC	mode	of	the	specified	user.	
This	mode	is	applied	in	the	specified
channel.

chatThink
Allow	the	Chat	SDK	to	continue
processing.

chatTranslateNick
Removes	the	namespace	extension	from
a	nickname.		Use	this	when	working	with
unique	nicknames	in	a	public	chat	room.

chatAddChannelBan
Ban	a	nickname	from	the	specified	channel.		Local	client	must	have
moderator	privileges.

void	chatAddChannelBan(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	ban);

Routine Required	Header Distribution
chatAddChannelBan <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	chat	channel	from	which	user	is	being	banned.

ban
[in]	Chat	nickname	of	user	being	banned.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatAddChannelBan chatAddChannelBanA chatAddChannelBanW

chatAddChannelBanW	and	chatAddChannelBanA	are	UNICODE	and
ANSI	mapped	versions	of	chatAddChannelBan.	The	arguments	of
chatAddChannelBanA	are	ANSI	strings;	those	of
chatAddChannelBanW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatAuthenticateCDKey
Allows	pre-chat	cd	key	authentication	via	the	chat	server.

void	chatAuthenticateCDKey(
CHAT	chat,
const	gsi_char	*	cdkey,
chatAuthenticateCDKeyCallback	callback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatAuthenticateCDKey <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

cdkey
[in]	CD	key	to	validate;	should	be	a	valid	CD	key	for	the	set	game
title.

callback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Remarks

The	chatAuthenticateCDKey	function	may	be	used	to	authenticate	a
user’s	cdkey	before	they	enter	the	chat	room.	This	should	not	be	a
substitute	for	a	cdkey	during	gameplay.	Arcade	does	not	support	this	call,
so	users	in	Arcade	will	be	able	to	enter	chat	without	this	validation.	This
method	most	usefull	for	developers	who	opt-out	of	the	Arcade
compatability	requirements	or	have	a	separate	chat	area	for	in-game
clients.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

chatAuthenticateCDKey chatAuthenticateCDKeyA chatAuthenticateCDKeyW

chatAuthenticateCDKeyW	and	chatAuthenticateCDKeyA	are
UNICODE	and	ANSI	mapped	versions	of	chatAuthenticateCDKey.	The
arguments	of	chatAuthenticateCDKeyA	are	ANSI	strings;	those	of
chatAuthenticateCDKeyW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	ChatConnect

chatBanUser
Ban	a	user	from	the	chat	room.		The	user	may	not	rejoin.

void	chatBanUser(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	user);

Routine Required	Header Distribution
chatBanUser <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	chat	channel	from	which	user	is	being	banned.

user
[in]	Chat	nickname	of	user	being	banned.

Remarks

The	caller	of	this	function	must	have	operator	privileges	for	the	channel	in
which	the	ban	is	to	be	performed.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatBanUser chatBanUserA chatBanUserW

chatBanUserW	and	chatBanUserA	are	UNICODE	and	ANSI	mapped
versions	of	chatBanUser.	The	arguments	of	chatBanUserA	are	ANSI
strings;	those	of	chatBanUserW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	ChatConnect

chatChangeNick
Change	the	chat	nickname	associated	with	the	local	client.	This	does	not
affect	the	account	name.

void	chatChangeNick(
CHAT	chat,
const	gsi_char	*	newNick,
chatChangeNickCallback	callback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatChangeNick <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

newNick
[in]	Nickname	to	assign	to	the	local	user.

callback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Remarks

The	chatChangeNick	function	may	be	used	to	change	a	user’s
nickname	as	it	appears	in	chat.	This	has	no	affect	on	GameSpy	profile
names	such	as	those	used	for	presence	detection	and	buddy	lists.	Only
one	instance	of	a	nickname	may	be	in	use	at	a	time.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatChangeNick chatChangeNickA chatChangeNickW

chatChangeNickW	and	chatChangeNickA	are	UNICODE	and	ANSI
mapped	versions	of	chatChangeNick.	The	arguments	of
chatChangeNickA	are	ANSI	strings;	those	of	chatChangeNickW	are
wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatConnect
The	chatConnect	function	initializes	the	Chat	SDK	and	initiates	a
connection	to	the	chat	server.

CHAT	chatConnect(
const	gsi_char	*	serverAddress,
int	port,
const	gsi_char	*	nick,
const	gsi_char	*	user,
const	gsi_char	*	name,
chatGlobalCallbacks	*	callbacks,
chatNickErrorCallback	nickErrorCallback,
chatConnectCallback	connectCallback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatConnect <chat.h> SDKZIP

Return	Value

This	function	returns	the	initialized	Chat	SDK	interface.	A	return	value	of
NULL	indicates	an	error.

Parameters

serverAddress
[in]	Address	of	the	chat	server	being	connect	to;	usually
"peerchat.gamespy.com".

port
[in]	Port	of	the	chat	server;	usually	6667.

nick
[in]	Nickname	in	use	while	chatting.	Not	associated	with	a	user
account	in	any	way.

user
[in]	User’s	username

name
[in]	User’s	real	name,	or	any	other	optional	info.

callbacks
[in]	Structure	for	specifying	global	handlers.

nickErrorCallback
[in]	Optional	user-supplied	function	to	be	called	if	nickname	is	invalid
or	in	use.

connectCallback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Remarks

The	server	address	and	port	for	the	connect	functions	can	be	left	empty.
In	other	words,	serverAddress	can	be	NULL,	and	the	port	can	be
specified	to	be	0.	The	SDK	will	automatically	take	care	of	using	the
default	address	and	port.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

chatConnect chatConnectA chatConnectW

chatConnectW	and	chatConnectA	are	UNICODE	and	ANSI	mapped
versions	of	chatConnect.	The	arguments	of	chatConnectA	are	ANSI
strings;	those	of	chatConnectW	are	wide-character	strings.

Example
int	CMyGame::OnConnect(…)

{

				m_chat	=	chatConnect(“irc.mygame.com”,	6667,	“nick”,	“user”,	“email@email.com”,	&callbacks;,	callback,	this,	CHATFalse);

				if	(m_chat	==	NULL)

												Error();

}

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatConnectLogin,	chatConnectPreAuth,	chatConnectSecure,
chatConnectSpecial

chatConnectLogin
Initializes	the	Chat	SDK	and	initiates	a	connection	to	the	chat	server.	The
chatConnectLogin	function	provides	the	ability	to	login	to	chat	using	a
registered	unique	nickname.

CHAT	chatConnectLogin(
const	gsi_char	*	serverAddress,
int	port,
int	namespaceID,
const	gsi_char	*	email,
const	gsi_char	*	profilenick,
const	gsi_char	*	uniquenick,
const	gsi_char	*	password,
const	gsi_char	*	name,
const	gsi_char	*	gamename,
const	gsi_char	*	secretKey,
chatGlobalCallbacks	*	callbacks,
chatNickErrorCallback	nickErrorCallback,
chatFillInUserCallback	fillInUserCallback,
chatConnectCallback	connectCallback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatConnectLogin <chat.h> SDKZIP

Return	Value

This	function	returns	the	initialized	Chat	SDK	interface.	A	return	value	of
NULL	indicates	an	error.

Parameters

serverAddress
[in]	Address	of	the	chat	server	being	connect	to;	usually
"peerchat.gamespy.com".

port
[in]	Port	of	the	chat	server;	usually	6667.

namespaceID
[in]	ID	of	the	unique	name	namespace	in	which	the	users	nickname
is	registered.

email
[in]	E-mail	address	of	the	local	client's	GameSpy	profile.

profilenick
[in]	Nickname	used	when	creating	profile.		May	be	different	from	the
registered	unique	nick.

uniquenick
[in]	Unique	nickname	registered	to	the	profile	with	which	user	is
logging	in.

password
[in]	Password	of	the	GameSpy	profile.

name
[in]	User’s	real	name,	or	any	other	optional	info.

gamename
[in]	Assigned	gamename	from	which	the	local	client	is	logging	in.

secretKey
[in]	Assigned	secret	key	for	the	specified	gamename.

callbacks
[in]	Structure	for	specifying	global	handlers.

nickErrorCallback
[in]	Optional	user-supplied	function	to	be	called	if	nickname	is	invalid
or	in	use.

fillInUserCallback
[in]	Optional	user-supplied	function	to	be	called	when	the	SDK

requires	the	user	name.

connectCallback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Remarks

The	server	address	and	port	for	the	connect	functions	can	be	left	empty.
In	other	words,	serverAddress	can	be	NULL,	and	the	port	can	be
specified	to	be	0.	The	SDK	will	automatically	take	care	of	using	the
default	address	and	port.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatConnectLogin chatConnectLoginA chatConnectLoginW

chatConnectLoginW	and	chatConnectLoginA	are	UNICODE	and
ANSI	mapped	versions	of	chatConnectLogin.	The	arguments	of
chatConnectLoginA	are	ANSI	strings;	those	of	chatConnectLoginW
are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatConnect,	chatConnectPreAuth,	chatConnectSecure,
chatConnectSpecial

chatConnectPreAuth
Initializes	the	Chat	SDK	and	initiates	a	connection	to	the	chat	server.	The
chatConnectPreAuth	function	provides	the	ability	to	specify	authtoken
and	partnerchallenge.	(Not	for	common	use).

CHAT	chatConnectPreAuth(
const	gsi_char	*	serverAddress,
int	port,
const	gsi_char	*	authtoken,
const	gsi_char	*	partnerchallenge,
const	gsi_char	*	name,
const	gsi_char	*	gamename,
const	gsi_char	*	secretKey,
chatGlobalCallbacks	*	callbacks,
chatNickErrorCallback	nickErrorCallback,
chatFillInUserCallback	fillInUserCallback,
chatConnectCallback	connectCallback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatConnectPreAuth <chat.h> SDKZIP

Return	Value

This	function	returns	the	initialized	Chat	SDK	interface.	A	return	value	of
NULL	indicates	an	error.

Parameters

serverAddress
[in]	Address	of	the	chat	server	to	connect	to;	usually
"peerchat.gamespy.com".

port
[in]	Port	of	the	chat	server;	usually	6667.

authtoken
[in]	Authentication	token	for	this	login.

partnerchallenge
[in]	Partner	challenge	for	this	login.

name
[in]	The	user’s	real	name,	or	any	other	optional	info.

gamename
[in]	GameName	of	the	title	this	client	is	connecting	from.

secretKey
[in]	Assigned	secret	key	for	the	specified	gamename.

callbacks
[in]	Structure	for	specifying	global	handlers.

nickErrorCallback
[in]	Optional	user-supplied	function	to	be	called	if	nickname	is	invalid
or	in	use.

fillInUserCallback
[in]	Optional	user-supplied	function	to	be	called	when	the	SDK
requires	the	user	name.

connectCallback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;

otherwise,	return	immediately.

Remarks

The	server	address	and	port	for	the	connect	functions	can	be	left	empty.
In	other	words,	serverAddress	can	be	NULL,	and	the	port	can	be
specified	to	be	0.	The	SDK	will	automatically	take	care	of	using	the
default	address	and	port.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatConnectPreAuth chatConnectPreAuthA chatConnectPreAuthW

chatConnectPreAuthW	and	chatConnectPreAuthA	are	UNICODE	and
ANSI	mapped	versions	of	chatConnectPreAuth.	The	arguments	of
chatConnectPreAuthA	are	ANSI	strings;	those	of
chatConnectPreAuthW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatConnect,	chatConnectLogin,	chatConnectSecure,
chatConnectSpecial

chatConnectSecure
Initializes	the	Chat	SDK	and	initiates	a	connection	to	the	chat	server.	The
chatConnectSecure	function	encrypts	the	connection.

CHAT	chatConnectSecure(
const	gsi_char	*	serverAddress,
int	port,
const	gsi_char	*	nick,
const	gsi_char	*	name,
const	gsi_char	*	gamename,
const	gsi_char	*	secretKey,
chatGlobalCallbacks	*	callbacks,
chatNickErrorCallback	nickErrorCallback,
chatFillInUserCallback	fillInUserCallback,
chatConnectCallback	connectCallback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatConnectSecure <chat.h> SDKZIP

Return	Value

Returns	the	initialized	Chat	SDK	interface.	A	return	value	of	NULL
indicates	an	error.

Parameters

serverAddress
[in]	Address	of	the	chat	server	to	connect	to;	usually
"peerchat.gamespy.com".

port
[in]	Port	of	the	chat	server;	usually	6667.

nick
[in]	Nickname	in	use	while	chatting.	Not	associated	with	a	user
account	in	any	way.

name
[in]	User’s	real	name,	or	any	other	optional	info.

gamename
[in]	GameName	of	the	title	this	client	is	connecting	from.

secretKey
[in]	Assigned	secret	key	for	the	specified	gamename.

callbacks
[in]	Structure	for	specifying	global	handlers.

nickErrorCallback
[in]	Optional	user-supplied	function	to	be	called	if	nickname	is	invalid
or	in	use.

fillInUserCallback
[in]	Optional	user-supplied	function	to	be	called	when	the	SDK
requires	the	user	name.

connectCallback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Remarks

The	server	address	and	port	for	the	connect	functions	can	be	left	empty.
In	other	words,	serverAddress	can	be	NULL,	and	the	port	can	be
specified	to	be	0.	The	SDK	will	automatically	take	care	of	using	the
default	address	and	port.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatConnectSecure chatConnectSecureA chatConnectSecureW

chatConnectSecureW	and	chatConnectSecureA	are	UNICODE	and
ANSI	mapped	versions	of	chatConnectSecure.	The	arguments	of
chatConnectSecureA	are	ANSI	strings;	those	of	chatConnectSecureW
are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatConnect,	chatConnectLogin,	chatConnectPreAuth,
chatConnectSpecial

chatConnectSpecial
Initializes	the	Chat	SDK	and	initiates	a	connection	to	the	chat	server.	The
chatConnectSpecial	function	provides	ability	to	fill	in	the	user	field	after
the	local	machine’s	IP	address	is	known.

CHAT	chatConnectSpecial(
const	gsi_char	*	serverAddress,
int	port,
const	gsi_char	*	nick,
const	gsi_char	*	name,
chatGlobalCallbacks	*	callbacks,
chatNickErrorCallback	nickErrorCallback,
chatFillInUserCallback	fillInUserCallback,
chatConnectCallback	connectCallback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatConnectSpecial <chat.h> SDKZIP

Return	Value

This	function	returns	the	initialized	Chat	SDK	interface.	A	return	value	of
NULL	indicates	an	error.

Parameters

serverAddress
[in]	Address	of	the	chat	server	to	connect	to;	usually
"peerchat.gamespy.com".

port
[in]	Port	of	the	chat	server;	usually	6667.

nick
[in]	Nickname	in	use	while	chatting.	Not	associated	with	a	user
account	in	any	way.

name
[in]	User’s	real	name,	or	any	other	optional	info.

callbacks
[in]	Structure	for	specifying	global	handlers.

nickErrorCallback
[in]	Callback	that	is	triggered	if	nick	is	invalid	or	in	use.

fillInUserCallback
[in]	Optional	user-supplied	function	to	be	called	when	the	SDK
requires	the	user	name.

connectCallback
[in]	Optional	user-supplied	function	to	be	called	when	the	connection
attempt	has	completed.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Remarks

The	server	address	and	port	for	the	connect	functions	can	be	left	empty.
In	other	words,	serverAddress	can	be	NULL,	and	the	port	can	be
specified	to	be	0.	The	SDK	will	automatically	take	care	of	using	the
default	address	and	port.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatConnectSpecial chatConnectSpecialA chatConnectSpecialW

chatConnectSpecialW	and	chatConnectSpecialA	are	UNICODE	and
ANSI	mapped	versions	of	chatConnectSpecial.	The	arguments	of
chatConnectSpecialA	are	ANSI	strings;	those	of
chatConnectSpecialW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatConnect,	chatConnectLogin,	chatConnectPreAuth,
chatConnectSecure

chatDisconnect
Disconnect	from	the	chat	server.	Performs	necessary	cleanup	of	the	Chat
SDK.

void	chatDisconnect(
CHAT	chat);

Routine Required	Header Distribution
chatDisconnect <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

Remarks

The	chatDisconnect	function	disconnects	the	SDK	from	the	chat	server
and	performs	necessary	cleanup	on	the	CHAT	object.		The	CHAT	object
is	invalid	after	this	call	has	completed.	To	continue	using	the	chat	SDK
you	must	reinitialize	using	one	of	the	chat	connect	methods.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	ChatConnect

chatEnterChannel
Joins	a	chat	channel.

void	chatEnterChannel(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	password,
chatChannelCallbacks	*	callbacks,
chatEnterChannelCallback	callback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatEnterChannel <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	being	joined.

password
[in]	Password	of	the	channel.		Ignored	if	no	password	has	been	set.

callbacks
[in]	Structure	for	specifying	global	handlers;	for	channel-specific
traffic	such	as	user	messages.

callback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Remarks

The	chatEnterChannel	function	is	used	to	add	the	local	client	to	a	chat
channel.		If	the	channel	is	password	protected	the	valid	password	must
be	supplied.		If	it	is	not,	the	callback	will	be	triggered	with	an	invalid
password	result.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatEnterChannel chatEnterChannelA chatEnterChannelW

chatEnterChannelW	and	chatEnterChannelA	are	UNICODE	and	ANSI
mapped	versions	of	chatEnterChannel.	The	arguments	of
chatEnterChannelA	are	ANSI	strings;	those	of	chatEnterChannelW	are
wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	ChatConnect,	ChatDisconnect

chatEnumChannelBans
Retrieves	a	list	of	clients	banned	from	a	channel.

void	chatEnumChannelBans(
CHAT	chat,
const	gsi_char	*	channel,
chatEnumChannelBansCallback	callback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatEnumChannelBans <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	whose	ban	list	is	being	retrieved.

callback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed;	will	be	passed	the	list	of	banned	clients.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Remarks

The	local	client	must	have	operator	privileges	to	execute	this	command.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

chatEnumChannelBans chatEnumChannelBansA chatEnumChannelBansW

chatEnumChannelBansW	and	chatEnumChannelBansA	are
UNICODE	and	ANSI	mapped	versions	of	chatEnumChannelBans.	The
arguments	of	chatEnumChannelBansA	are	ANSI	strings;	those	of
chatEnumChannelBansW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatEnumChannels
Enumerates	the	chat	channels	on	the	server.

void	chatEnumChannels(
CHAT	chat,
const	gsi_char	*	filter,
chatEnumChannelsCallbackEach	callbackEach,
chatEnumChannelsCallbackAll	callbackAll,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatEnumChannels <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

filter
[in]	String	comparision	used	to	filter	the	channel	results.		Example
"#gsp!mygame!".	Use	the	"*"	for	the	wildcard.

callbackEach
[in]	Optional	user-supplied	function	to	be	called	once	for	each
channel	in	the	list.

callbackAll
[in]	Optional	user-supplied	function	to	be	called	once	for	the	full
channel	list.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Remarks

The	chatEnumChannels	function	enumerates	the	chat	channels	which
match	the	currect	search	criteria.	Typical	information	returned	on	each
channel	includes	the	topic	and	number	of	users.	The	filter	can	contain
wildcards	used	to	get	all	channels	when	passing	in	a	partial	name	and
wildcard.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatEnumChannels chatEnumChannelsA chatEnumChannelsW

chatEnumChannelsW	and	chatEnumChannelsA	are	UNICODE	and
ANSI	mapped	versions	of	chatEnumChannels.	The	arguments	of
chatEnumChannelsA	are	ANSI	strings;	those	of	chatEnumChannelsW
are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	ChatConnect,	ChatDisconnect

chatEnumJoinedChannels
Enumerates	the	chat	channels	on	the	server	which	the	local	client	has
joined.	.

void	chatEnumJoinedChannels(
CHAT	chat,
chatEnumJoinedChannelsCallback	callback,
void	*	param);

Routine Required	Header Distribution
chatEnumJoinedChannels <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

callback
[in]	Optional	user-supplied	function	to	be	called	once	for	each
channel	in	the	list.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

Remarks

For	each	channel,	a	channel	index	value	is	returned	that	may	be	used	to
retrieve	further	information	about	the	channel.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	ChatConnect,	ChatDisconnect,	ChatEnumChannels

chatEnumUsers
Retrieves	the	list	of	users	in	the	specified	channel.

void	chatEnumUsers(
CHAT	chat,
const	gsi_char	*	channel,
chatEnumUsersCallback	callback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatEnumUsers <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	whose	user	list	is	being	retrieved.

callback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed;	will	be	passed	the	user	list.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatEnumUsers chatEnumUsersA chatEnumUsersW

chatEnumUsersW	and	chatEnumUsersA	are	UNICODE	and	ANSI
mapped	versions	of	chatEnumUsers.	The	arguments	of
chatEnumUsersA	are	ANSI	strings;	those	of	chatEnumUsersW	are
wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatFixNick
Repairs	an	illegal	chat	nickname.

void	chatFixNick(
gsi_char	*	newNick,
const	gsi_char	*	oldNick);

Routine Required	Header Distribution
chatFixNick <chat.h> SDKZIP

Parameters

newNick
[out]	Receives	corrected	nickname;	may	be	identical	to	original
nickname	if	no	issues	are	detected.

oldNick
[in]	Nickname	to	be	corrected	or	verified.

Remarks

The	chatFixNick	function	replaces	illegal	characters	in	the	nickname
with	the	underscore	("_")	character.		This	function	will	also	replace
leading	numbers	and	illegal	whitespace	combinations.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
chatFixNick chatFixNickA chatFixNickW

chatFixNickW	and	chatFixNickA	are	UNICODE	and	ANSI	mapped
versions	of	chatFixNick.	The	arguments	of	chatFixNickA	are	ANSI
strings;	those	of	chatFixNickW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	ChatConnect,	ChatDisconnect

chatGetBasicUserInfo
Retrieves	basic	information	on	the	specified	user.

void	chatGetBasicUserInfo(
CHAT	chat,
const	gsi_char	*	user,
chatGetBasicUserInfoCallback	callback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatGetBasicUserInfo <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

user
[in]	User's	assigned	GameName.

callback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed;	will	be	passed	the	user's	info.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Remarks

The	chatGetBasicUserInfo	function	is	used	to	retrieve	basic	information
on	a	user.	This	information	consists	of	the	chat	nickname,	user	profile
name,	and	IP	address.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatGetBasicUserInfo chatGetBasicUserInfoA chatGetBasicUserInfoW

chatGetBasicUserInfoW	and	chatGetBasicUserInfoA	are	UNICODE
and	ANSI	mapped	versions	of	chatGetBasicUserInfo.	The	arguments	of
chatGetBasicUserInfoA	are	ANSI	strings;	those	of
chatGetBasicUserInfoW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatGetBasicUserInfoNoWait

chatGetBasicUserInfoNoWait
Retrieves	basic	information	on	the	specified	user.	Information	is	returned
through	function	parameters.

CHATBool	chatGetBasicUserInfoNoWait(
CHAT	chat,
const	gsi_char	*	nick,
const	gsi_char	**	user,
const	gsi_char	**	address);

Routine Required	Header Distribution
chatGetBasicUserInfoNoWait <chat.h> SDKZIP

Return	Value

Returns	CHATTrue	if	info	is	available,	CHATFalse	otherwise.

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

nick
[out]	Receives	the	user's	nickname

user
[out]	Receives	the	user's	username

address
[out]	Receives	the	user's	IP	address.

Remarks

chatGetBasicUserInfoNoWait	is	used	to	retrieve	basic	information	on	a
user.	This	information	consists	of	the	chat	nickname,	user	profile	name
and	IP	address.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatGetBasicUserInfo

chatGetChannelBasicUserInfo
Retrieves	basic	user	info	for	every	member	of	the	specified	channel.

void	chatGetChannelBasicUserInfo(
CHAT	chat,
const	gsi_char	*	channel,
chatGetChannelBasicUserInfoCallback	callback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatGetChannelBasicUserInfo <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	from	which	user	information	is	being
retrieved

callback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Remarks

The	chatGetChannelBasicUserInfo	function	retreives	basic	information
for	each	of	the	users	in	the	specified	channel.		The	information	returned
consists	of	the	nickname,	profilename	and	IP	address.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
chatGetChannelBasicUserInfo chatGetChannelBasicUserInfoA chatGetChannelBasicUserInfoW

chatGetChannelBasicUserInfoW	and
chatGetChannelBasicUserInfoA	are	UNICODE	and	ANSI	mapped
versions	of	chatGetChannelBasicUserInfo.	The	arguments	of
chatGetChannelBasicUserInfoA	are	ANSI	strings;	those	of
chatGetChannelBasicUserInfoW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatGetChannelKeys
Retrieves	a	list	of	key/value	pairs	for	a	channel	or	user.

void	chatGetChannelKeys(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	user,
int	num,
const	gsi_char	**	keys,
chatGetChannelKeysCallback	callback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatGetChannelKeys <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	from	which	key/value	pairs	are	being
retrieved

user
[in]	Name	of	the	user	whose	key/value	pairs	are	being	retrieved,	or
"*"	to	indicate	the	channel	itself.

num
[in]	Number	of	keys	in	the	keys	array.

keys
[in]	Array	of	keys	for	which	values	will	be	returned.

callback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Remarks

The	chatGetChannelKeys	function	retrieves	a	list	of	key/value	pairs	for
the	specified	channel	or	user.	If	the	user	parameter	is	set	to	a	user
nickname,	key/value	pairs	will	be	returned	only	for	the	specified	user.	If
the	user	parameter	is	set	to	"*",	values	on	the	channel	itself	will	be
returned.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatGetChannelKeys chatGetChannelKeysA chatGetChannelKeysW

chatGetChannelKeysW	and	chatGetChannelKeysA	are	UNICODE
and	ANSI	mapped	versions	of	chatGetChannelKeys.	The	arguments	of
chatGetChannelKeysA	are	ANSI	strings;	those	of
chatGetChannelKeysW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatGetChannelMode
Retrieves	the	"mode"	of	a	channel.

void	chatGetChannelMode(
CHAT	chat,
const	gsi_char	*	channel,
chatGetChannelModeCallback	callback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatGetChannelMode <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	whose	mode	is	being	retrieved.

callback
[in]	User-supplied	function	to	receive	mode	information.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatGetChannelMode chatGetChannelModeA chatGetChannelModeW

chatGetChannelModeW	and	chatGetChannelModeA	are	UNICODE
and	ANSI	mapped	versions	of	chatGetChannelMode.	The	arguments	of
chatGetChannelModeA	are	ANSI	strings;	those	of
chatGetChannelModeW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	CHATChannelMode,	chatGetChannelModeCallback

chatGetChannelNumUsers
Returns	the	number	of	users	in	the	already	joined	channel.		This	is	a
cached	value,	and	not	a	server	query.

int	chatGetChannelNumUsers(
CHAT	chat,
const	gsi_char	*	channel);

Routine Required	Header Distribution
chatGetChannelNumUsers <chat.h> SDKZIP

Return	Value

Returns	the	number	of	users	in	the	channel.		If	the	local	client	has	not
joined	the	channel,	-1	will	be	returned.

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	whose	user	count	is	being	retrieved.

Section	Reference:	Gamespy	Chat	SDK

chatGetChannelPassword
Queries	the	server	for	the	specified	channel’s	password.

void	chatGetChannelPassword(
CHAT	chat,
const	gsi_char	*	channel,
chatGetChannelPasswordCallback	callback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatGetChannelPassword <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	whose	password	is	being	retrieved.

callback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatSetChannelPassword

chatGetChannelTopic
Queries	the	server	for	the	specified	channel’s	topic.		Also	known	as	the
room	description.

void	chatGetChannelTopic(
CHAT	chat,
const	gsi_char	*	channel,
chatGetChannelTopicCallback	callback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatGetChannelTopic <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	whose	topic	is	being	retrieved.

callback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatGetChannelTopic chatGetChannelTopicA chatGetChannelTopicW

chatGetChannelTopicW	and	chatGetChannelTopicA	are	UNICODE
and	ANSI	mapped	versions	of	chatGetChannelTopic.	The	arguments	of
chatGetChannelTopicA	are	ANSI	strings;	those	of
chatGetChannelTopicW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatSetChannelTopic

chatGetGlobalKeys
Retrieves	a	list	of	global	keys	for	a	single	user,	or	all	users.

void	chatGetGlobalKeys(
CHAT	chat,
const	gsi_char	*	target,
int	num,
const	gsi_char	**	keys,
chatGetGlobalKeysCallback	callback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatGetGlobalKeys <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

target
[in]	Target	name,	or	NULL	to	specify	all	users.

num
[in]	Number	of	keys	to	retrieve	for	each	target.

keys
[in]	Array	of	key	names	to	request	values	for.

callback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Remarks

T.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatGetGlobalKeys chatGetGlobalKeysA chatGetGlobalKeysW

chatGetGlobalKeysW	and	chatGetGlobalKeysA	are	UNICODE	and
ANSI	mapped	versions	of	chatGetGlobalKeys.	The	arguments	of
chatGetGlobalKeysA	are	ANSI	strings;	those	of	chatGetGlobalKeysW
are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatSetGlobalKeys

chatGetNick
Gets	the	chat	nickname	of	the	local	client.	This	may	not	be	the	same	as
the	profile	nickname.

gsi_char	*	chatGetNick(
CHAT	chat);

Routine Required	Header Distribution
chatGetNick <chat.h> SDKZIP

Return	Value

The	nickname	of	the	local	client.

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
chatGetNick chatGetNickA chatGetNickW

chatGetNickW	and	chatGetNickA	are	UNICODE	and	ANSI	mapped
versions	of	chatGetNick.	The	arguments	of	chatGetNickA	are	ANSI
strings;	those	of	chatGetNickW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatGetProfileID
Gets	the	profile	id	of	the	local	client.

int	chatGetProfileID(
CHAT	chat);

Routine Required	Header Distribution
chatGetProfileID <chat.h> SDKZIP

Return	Value

Returns	the	profile	id	of	the	local	client.

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	chatConnectLogin
or	chatConnectPreAuth.

Remarks

The	chat	SDK	must	have	been	initialized	using	chatConnectLogin	or
chatConnectPreAuth.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatConnectLogin,	chatConnectPreAuth

chatGetUserID
Gets	the	user	id	of	the	local	client.

int	chatGetUserID(
CHAT	chat);

Routine Required	Header Distribution
chatGetUserID <chat.h> SDKZIP

Return	Value

Returns	the	user	id	of	the	local	client.

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	chatConnectLogin
or	chatConnectPreAuth.

Remarks

The	chat	SDK	must	have	been	initialized	using	chatConnectLogin	or
chatConnectPreAuth.

Section	Reference:	Gamespy	Chat	SDK

chatGetUserInfo
Gets	information	on	the	specified	user.

void	chatGetUserInfo(
CHAT	chat,
const	gsi_char	*	user,
chatGetUserInfoCallback	callback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatGetUserInfo <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

user
[in]	User's	chat	nickname.

callback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Remarks

The	user	nformation	includes	the	user's	profile	nickname,	username,	real
name	and	address.		The	callback	also	contains	the	channels	that	this
user	is	a	member	of.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatGetUserInfo chatGetUserInfoA chatGetUserInfoW

chatGetUserInfoW	and	chatGetUserInfoA	are	UNICODE	and	ANSI
mapped	versions	of	chatGetUserInfo.	The	arguments	of
chatGetUserInfoA	are	ANSI	strings;	those	of	chatGetUserInfoW	are
wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatGetUserMode
Get	the	mode	of	a	user	in	a	specified	channel.

void	chatGetUserMode(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	user,
chatGetUserModeCallback	callback,
void	*	param,
CHATBool	blocking);

Routine Required	Header Distribution
chatGetUserMode <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	being	inspected.

user
[in]	User's	chat	nickname	on	that	channel.

callback
[in]	Optional	user-supplied	function	to	be	called	when	the	operation
has	completed;	will	be	passed	user's	mode.

param
[in]	Optional	pointer	to	user	data;	will	be	passed	unmodified	to	the
callback	function.

blocking
[in]	If	CHATTrue,	return	only	after	the	operation	has	completed;
otherwise,	return	immediately.

Remarks

The	chatGetUserMode	function	may	be	used	to	check	a	user's	"mode"
in	a	specified	chat	channel.		A	mode	may	specify	a	channel	operator.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatGetUserMode chatGetUserModeA chatGetUserModeW

chatGetUserModeW	and	chatGetUserModeA	are	UNICODE	and	ANSI
mapped	versions	of	chatGetUserMode.	The	arguments	of
chatGetUserModeA	are	ANSI	strings;	those	of	chatGetUserModeW	are
wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatGetUserModeNoWait

chatGetUserModeNoWait
Get	the	mode	of	a	user	in	a	specified	channel,	returning	it	through	a
function	parameter.

CHATBool	chatGetUserModeNoWait(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	user,
int	*	mode);

Routine Required	Header Distribution
chatGetUserModeNoWait <chat.h> SDKZIP

Return	Value

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	being	inspected.

user
[in]	User's	chat	nickname	on	that	channel.

mode
[out]	Receives	the	mode	of	target	user.

Remarks

The	chatGetUserModeNoWait	function	may	be	used	to	check	a	user's
"mode"	in	a	specified	chat	channel.		A	mode	may	specify	a	channel
operator.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatGetUserMode

chatInChannel
Determine	whether	the	local	client	is	a	member	of	the	specified	channel.

CHATBool	chatInChannel(
CHAT	chat,
const	gsi_char	*	channel);

Routine Required	Header Distribution
chatInChannel <chat.h> SDKZIP

Return	Value

This	function	will	return	CHATTrue	if	the	local	client	is	a	member	of	the
specified	channel,	CHATFalse	otherwise.

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	being	inspected.

Remarks

The	chatInChannel	function	checks	the	local	list	of	channels	to
determine	whether	the	local	client	is	a	member.	No	communication	with
the	server	is	attempted	during	this	call.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatInChannel chatInChannelA chatInChannelW

chatInChannelW	and	chatInChannelA	are	UNICODE	and	ANSI
mapped	versions	of	chatInChannel.	The	arguments	of	chatInChannelA
are	ANSI	strings;	those	of	chatInChannelW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatInviteUser
Invite	a	user	to	join	a	channel.

void	chatInviteUser(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	user);

Routine Required	Header Distribution
chatInviteUser <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	to	which	the	user	is	being	invited.

user
[in]	User's	chat	nickname.

Remarks

The	chatInviteUser	function	may	be	used	to	invite	a	user	to	a	particular
chat	room.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatInviteUser chatInviteUserA chatInviteUserW

chatInviteUserW	and	chatInviteUserA	are	UNICODE	and	ANSI
mapped	versions	of	chatInviteUser.	The	arguments	of	chatInviteUserA
are	ANSI	strings;	those	of	chatInviteUserW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatKickUser
Forcefully	remove	a	user	from	a	specified	channel.	.

void	chatKickUser(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	user,
const	gsi_char	*	reason);

Routine Required	Header Distribution
chatKickUser <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	from	which	the	user	is	being	removed.

user
[in]	User's	chat	nickname.

reason
[in]	Optional	text	string	that	will	be	sent	along	with	the	kick	message.	
This	message	will	appear	in	the	user	kick	callback.

Remarks

The	local	client	must	have	operator	privileges	to	execute	this	command.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatKickUser chatKickUserA chatKickUserW

chatKickUserW	and	chatKickUserA	are	UNICODE	and	ANSI	mapped
versions	of	chatKickUser.	The	arguments	of	chatKickUserA	are	ANSI
strings;	those	of	chatKickUserW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatLeaveChannel
Leave	a	chat	channel.

void	chatLeaveChannel(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	reason);

Routine Required	Header Distribution
chatLeaveChannel <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	being	left.

reason
[in]	Optional	reason	for	leaving.		This	may	be	displayed	to	the
remaining	users.

Remarks

The	chatLeaveChannel	function	is	used	to	remove	the	local	client	from	a
chat	channel.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatLeaveChannel chatLeaveChannelA chatLeaveChannelW

chatLeaveChannelW	and	chatLeaveChannelA	are	UNICODE	and
ANSI	mapped	versions	of	chatLeaveChannel.	The	arguments	of
chatLeaveChannelA	are	ANSI	strings;	those	of	chatLeaveChannelW
are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	ChatConnect,	ChatDisconnect

chatRegisterUniqueNick
Registers	a	unique	nick	to	the	local	client	and	cdkey.

void	chatRegisterUniqueNick(
CHAT	chat,
int	namespaceID,
const	gsi_char	*	uniquenick,
const	gsi_char	*	cdkey);

Routine Required	Header Distribution
chatRegisterUniqueNick <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

namespaceID
[in]	ID	of	the	namespace	community.	Assigned	by	GameSpy.

uniquenick
[in]	Nickname	being	registered.

cdkey
[in]	User's	CD	key;	this	uniquely	identifies	the	account.

Remarks

The	chatRegisterUniqueNick	function	should	be	used	in	response	to	a
chatNickErrorCallback.	This	function	requests	that	a	specified	unique
nick	be	associated	with	the	local	client	and	cdkey.		If	an	error	occurs,
another	chatNickErrorCallback	will	be	trigged.		Take	care	that	this	does
not	result	in	an	infinite	loop.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

chatRegisterUniqueNick chatRegisterUniqueNickA chatRegisterUniqueNickW

chatRegisterUniqueNickW	and	chatRegisterUniqueNickA	are
UNICODE	and	ANSI	mapped	versions	of	chatRegisterUniqueNick.	The
arguments	of	chatRegisterUniqueNickA	are	ANSI	strings;	those	of
chatRegisterUniqueNickW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatRemoveChannelBan
Removes	a	banned	player	from	a	channel's	ban	list.		This	will	once	again
allow	the	user	to	join	the	channel.

void	chatRemoveChannelBan(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	ban);

Routine Required	Header Distribution
chatRemoveChannelBan <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	whose	ban	list	is	being	modified..

ban
[in]	Nickname	to	remove	from	the	ban	list.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

chatRemoveChannelBan chatRemoveChannelBanA chatRemoveChannelBanW

chatRemoveChannelBanW	and	chatRemoveChannelBanA	are
UNICODE	and	ANSI	mapped	versions	of	chatRemoveChannelBan.	The
arguments	of	chatRemoveChannelBanA	are	ANSI	strings;	those	of
chatRemoveChannelBanW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatRetryWithNick
Use	in	response	to	a	nickErrorCallback.		This	function	allows	the	local
client	to	retry	the	connection	attempt	with	a	different	chat	nickname.

void	chatRetryWithNick(
CHAT	chat,
const	gsi_char	*	nick);

Routine Required	Header Distribution
chatRetryWithNick <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

nick
[in]	Alternate	chat	nickname

Remarks

The	chatRetryWithNick	function	should	be	used	in	response	to	a
nickErrorCallback.	Most	often,	this	occurs	when	a	requested	nickname	is
already	in	use.		chatRetryWithNick	should	be	called	with	an	alternate
nickname	such	as	"oldnick{1}"	to	continue	the	login	process.		If	another
nickError	occurs,	the	nickErrorCallback	will	be	triggered	again.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatRetryWithNick chatRetryWithNickA chatRetryWithNickW

chatRetryWithNickW	and	chatRetryWithNickA	are	UNICODE	and
ANSI	mapped	versions	of	chatRetryWithNick.	The	arguments	of
chatRetryWithNickA	are	ANSI	strings;	those	of	chatRetryWithNickW
are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatSendChannelMessage
Send	a	message	to	all	members	of	the	specified	channel.

void	chatSendChannelMessage(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	message,
int	type);

Routine Required	Header Distribution
chatSendChannelMessage <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	to	which	the	message	is	being	sent.

message
[in]	Message.

type
[in]	One	of	the	predefined	chat	types.	Used	to	send	chat,	hidden
messages,	notices,	and	other	types.

Remarks

The	chatSendChannelMessage	function	is	used	to	send	a	message	to
all	users	of	a	specified	channel.	The	type	of	message	that	may	be	sent
can	be	chat,	UTM,	notices	or	actions.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

chatSendChannelMessage chatSendChannelMessageA chatSendChannelMessageW

chatSendChannelMessageW	and	chatSendChannelMessageA	are
UNICODE	and	ANSI	mapped	versions	of	chatSendChannelMessage.
The	arguments	of	chatSendChannelMessageA	are	ANSI	strings;	those
of	chatSendChannelMessageW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatSendRaw
Send	a	raw	command	to	the	chat	server.		This	does	not	automatically
send	to	a	player.

void	chatSendRaw(
CHAT	chat,
const	gsi_char	*	command);

Routine Required	Header Distribution
chatSendRaw <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

command
[in]	Raw	command	to	send	to	the	chat	server.

Remarks

The	chatSendRaw	function	may	be	used	to	send	a	raw	command	to	the
server.		Special	care	should	be	taken	when	using	this	command,	as
undesired	behavior	may	result	from	malformed	command	sequences.		If
in	doubt,	please	contact	developer	support	on	the	use	of	this	command.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatSendRaw chatSendRawA chatSendRawW

chatSendRawW	and	chatSendRawA	are	UNICODE	and	ANSI	mapped
versions	of	chatSendRaw.	The	arguments	of	chatSendRawA	are	ANSI
strings;	those	of	chatSendRawW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatSendUserMessage
Send	a	private	message	to	a	user.

void	chatSendUserMessage(
CHAT	chat,
const	gsi_char	*	user,
const	gsi_char	*	message,
int	type);

Routine Required	Header Distribution
chatSendUserMessage <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

user
[in]	Nickname	of	the	user	to	whom	the	private	message	is	being
sent.

message
[in]	Message;	generally	chat	text,	but	may	also	be	a	raw	data
message.

type
[in]	One	of	the	ChatType	predefined	types;	can	signify	a	chat
message	or	a	raw	data	message.

Remarks

The	chatSendUserMessage	function	to	send	a	private	message	to	a
specified	user.		The	recipient	does	not	need	to	be	in	the	same	room	as
the	sender.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

chatSendUserMessage chatSendUserMessageA chatSendUserMessageW

chatSendUserMessageW	and	chatSendUserMessageA	are	UNICODE
and	ANSI	mapped	versions	of	chatSendUserMessage.	The	arguments
of	chatSendUserMessageA	are	ANSI	strings;	those	of
chatSendUserMessageW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatSetChannelGroup
Assign	a	user-defined	grouping	to	a	channel.		The	group	is	a	string
identifier	which	is	linked	to	the	channel.

void	chatSetChannelGroup(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	group);

Routine Required	Header Distribution
chatSetChannelGroup <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	to	which	a	group	is	being	assigned.

group
[in]	Group	string	to	assign	to	channel.

Remarks

The	chatSetChannelGroup	function	may	be	used	to	attach	a	user-
defined	string	to	a	channel.		This	string	exists	locally	and	is	not	sent
across	the	network.		This	string	may	be	used	as	a	local	grouping	for
channels.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

chatSetChannelGroup chatSetChannelGroupA chatSetChannelGroupW

chatSetChannelGroupW	and	chatSetChannelGroupA	are	UNICODE
and	ANSI	mapped	versions	of	chatSetChannelGroup.	The	arguments	of
chatSetChannelGroupA	are	ANSI	strings;	those	of
chatSetChannelGroupW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatSetChannelKeys
Set	key/values	on	a	channel	or	the	local	user.

void	chatSetChannelKeys(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	user,
int	num,
const	gsi_char	**	keys,
const	gsi_char	**	values);

Routine Required	Header Distribution
chatSetChannelKeys <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	whose	keys	are	being	set.

user
[in]	User	to	assign	keys	to.		May	be	NULL.		Only	channel	operators
may	set	keys	on	other	players.

num
[in]	Number	of	key/value	pairs	being	set.

keys
[in]	Array	of	keys	being	set.

values
[in]	Array	of	values	being	set,	in	the	same	order	as	their	keys.

Remarks

The	chatSetChannelKeys	function	may	be	used	to	set	channel	keys	on
a	member	or	on	the	channel	itself.		Only	channel	operators	may	set	keys
on	other	players.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatSetChannelKeys chatSetChannelKeysA chatSetChannelKeysW

chatSetChannelKeysW	and	chatSetChannelKeysA	are	UNICODE	and
ANSI	mapped	versions	of	chatSetChannelKeys.	The	arguments	of
chatSetChannelKeysA	are	ANSI	strings;	those	of
chatSetChannelKeysW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatSetChannelLimit
Set	the	maximum	number	of	users	allowed	in	a	channel.

void	chatSetChannelLimit(
CHAT	chat,
const	gsi_char	*	channel,
int	limit);

Routine Required	Header Distribution
chatSetChannelLimit <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	whose	limit	is	being	set.

limit
[in]	Maximum	number	of	users	on	channel.

Remarks

The	chatSetChannelLimit	function	may	be	used	to	set	the	maximum
number	of	users	on	a	chat	room.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatSetChannelLimit chatSetChannelLimitA chatSetChannelLimitW

chatSetChannelLimitW	and	chatSetChannelLimitA	are	UNICODE	and
ANSI	mapped	versions	of	chatSetChannelLimit.	The	arguments	of
chatSetChannelLimitA	are	ANSI	strings;	those	of
chatSetChannelLimitW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatSetChannelMode
Set	a	channel’s	mode.

void	chatSetChannelMode(
CHAT	chat,
const	gsi_char	*	channel,
CHATChannelMode	*	mode);

Routine Required	Header Distribution
chatSetChannelMode <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	whose	mode	is	being	set.

mode
[in]	Properties	to	set	on	the	target	channel.

Remarks

The	mode	includes	standard	IRC	properties	such	as	"InviteOnly,	Private
and	Moderated".

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatSetChannelMode chatSetChannelModeA chatSetChannelModeW

chatSetChannelModeW	and	chatSetChannelModeA	are	UNICODE
and	ANSI	mapped	versions	of	chatSetChannelMode.	The	arguments	of
chatSetChannelModeA	are	ANSI	strings;	those	of
chatSetChannelModeW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	CHATChannelMode,	chatGetChannelMode

chatSetChannelPassword
Sets	or	clears	a	password	on	the	specified	channel.

void	chatSetChannelPassword(
CHAT	chat,
const	gsi_char	*	channel,
CHATBool	enable,
const	gsi_char	*	password);

Routine Required	Header Distribution
chatSetChannelPassword <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	whose	password	is	being	set.

enable
[in]	If	CHATTrue,	enable	the	password;	otherwise,	disable.

password
[in]	Password	string	which	users	must	supply	to	join	the	channel.

Remarks

Set	the	value	to	NULL	or	""	to	clear	the	value.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

chatSetChannelPassword chatSetChannelPasswordA chatSetChannelPasswordW

chatSetChannelPasswordW	and	chatSetChannelPasswordA	are
UNICODE	and	ANSI	mapped	versions	of	chatSetChannelPassword.
The	arguments	of	chatSetChannelPasswordA	are	ANSI	strings;	those
of	chatSetChannelPasswordW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatSetChannelTopic
Set	the	topic	(description)	of	a	chat	channel.

void	chatSetChannelTopic(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	topic);

Routine Required	Header Distribution
chatSetChannelTopic <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	chat	channel	whose	topic	is	being	set.

topic
[in]	Description	of	new	topic.

Remarks

The	chatSetChannelTopic	function	is	used	to	set	the	topic	(description)
of	a	chat	channel.		Some	channels,	such	as	the	title	and	group	rooms,
will	not	allow	users	to	set	the	topic.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatSetChannelTopic chatSetChannelTopicA chatSetChannelTopicW

chatSetChannelTopicW	and	chatSetChannelTopicA	are	UNICODE
and	ANSI	mapped	versions	of	chatSetChannelTopic.	The	arguments	of
chatSetChannelTopicA	are	ANSI	strings;	those	of
chatSetChannelTopicW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatGetChannelTopic

chatSetGlobalKeys
Set	key/values	on	the	local	client.	.

void	chatSetGlobalKeys(
CHAT	chat,
int	num,
const	gsi_char	**	keys,
const	gsi_char	**	values);

Routine Required	Header Distribution
chatSetGlobalKeys <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

num
[in]	Number	of	key/value	pairs	being	set.

keys
[in]	Array	of	keys	being	set.

values
[in]	Array	of	values	being	set,	in	the	same	order	as	their	keys.

Remarks

Set	the	value	to	NULL	or	""	to	clear	the	value.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatSetGlobalKeys chatSetGlobalKeysA chatSetGlobalKeysW

chatSetGlobalKeysW	and	chatSetGlobalKeysA	are	UNICODE	and
ANSI	mapped	versions	of	chatSetGlobalKeys.	The	arguments	of
chatSetGlobalKeysA	are	ANSI	strings;	those	of	chatSetGlobalKeysW
are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatSetQuietMode
Sets	the	chat	sdk	to	quiet	mode	or	disables	quiet	mode.

void	chatSetQuietMode(
CHAT	chat,
CHATBool	quiet);

Routine Required	Header Distribution
chatSetQuietMode <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

quiet
[in]	If	CHATTrue,	enable	quiet	mode;	otherwise,	disable.

Remarks

The	chatSetQuietMode	function	is	used	to	toggle	quiet	mode.	When	in
quiet	mode	the	chat	SDK	will	not	receive	chat	or	other	messages.	This
allows	the	user	to	remain	logged	into	chat	without	disrupting	gameplay
with	extraneous	traffic.

Section	Reference:	Gamespy	Chat	SDK

chatSetUserMode
Set	the	IRC	mode	of	the	specified	user.		This	mode	is	applied	in	the
specified	channel.

void	chatSetUserMode(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	user,
int	mode);

Routine Required	Header Distribution
chatSetUserMode <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

channel
[in]	Name	of	the	user's	chat	channel.

user
[in]	User's	chat	nickname	on	that	channel.

mode
[in]	User	mode	flags.		See	Remarks.

Remarks

The	chatSetUserMode	function	may	be	used	to	set	a	user's	mode	in	a
particular	channel.	Modes	are	used	to	track	which	users	have	operator
and	speaking	privileges.

The	following	user	mode	flags	are	defined:
CHAT_NORMAL	--	Normal	(no	speaking	privileges;	no	operator
privileges)
CHAT_VOICE	--	User	has	speaking	privileges.
CHAT_OP	--	User	has	operator	privileges.

User	mode	flags	may	be	OR'ed	together.	CHAT_NORMAL	is	superseded
by	any	other	user	mode	flag.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatSetUserMode chatSetUserModeA chatSetUserModeW

chatSetUserModeW	and	chatSetUserModeA	are	UNICODE	and	ANSI
mapped	versions	of	chatSetUserMode.	The	arguments	of
chatSetUserModeA	are	ANSI	strings;	those	of	chatSetUserModeW	are
wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatThink
Allow	the	Chat	SDK	to	continue	processing.

void	chatThink(
CHAT	chat);

Routine Required	Header Distribution
chatThink <chat.h> SDKZIP

Parameters

chat
[in]	Chat	SDK	object,	previously	initialized	using	one	of	the
chatConnect	methods.

Remarks

All	network	communications,	callbacks	and	other	events	will	happen	only
during	this	call.	The	frequency	with	which	this	method	is	called	will	affect
general	performance	on	the	SDK.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	ChatConnect,	ChatDisconnect

chatTranslateNick
Removes	the	namespace	extension	from	a	nickname.		Use	this	when
working	with	unique	nicknames	in	a	public	chat	room.

const	gsi_char	*	chatTranslateNick(
gsi_char	*	nick,
const	gsi_char	*	extension);

Routine Required	Header Distribution
chatTranslateNick <chat.h> SDKZIP

Return	Value

Returns	the	nickname,	stripped	of	the	namespace	identifier.

Parameters

nick
[in]	Current	nickname.

extension
[in]	Game	extension;	will	be	removed	from	the	nickname.	Assigned
by	GameSpy.

Remarks

Nicknames	that	are	registered	in	a	game’s	namespace	will	include	an
indentifying	extension,	such	as	"-gspy".		This	extension	should	not	be
displayed	to	the	user,	but	should	be	stripped	before	display.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatTranslateNick chatTranslateNickA chatTranslateNickW

chatTranslateNickW	and	chatTranslateNickA	are	UNICODE	and	ANSI
mapped	versions	of	chatTranslateNick.	The	arguments	of
chatTranslateNickA	are	ANSI	strings;	those	of	chatTranslateNickW	are
wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

Chat	SDK	Callbacks
chatAuthenticateCDKeyCallback

Called	when
chatAuthenticateCDKey	and
attempt	to	authenticate	the	CD-
Key	is	finished.

chatBroadcastKeyChanged
Called	when	a	player	changes	a
broadcast	key	in	a	channel	the
local	player	is	in

chatChangeNickCallback
Callback	for	chatChangeNick
when	a	player	changes	his/her
nick.

chatChannelMessage
Used	in	conjunction	with
chatEnterChannel;	called	when	a
message	is	received	in	the
channel.

chatChannelModeChanged
Used	in	conjunction	with
chatEnterChannel;	called	when
the	mode	of	a	user	in	the	channel
changes.

chatConnectCallback
Called	when	a	chatConnect*
attempt	is	made

chatDisconnected
Called	when	a	disconnection
occurs.

chatEnterChannelCallback Called	when	an	attempt	to	enter
the	channel	has	completed

chatEnumChannelBansCallback
Called	after	an	attempt	to
enumerate	channel	bans.

chatEnumChannelsCallbackAll
Called	when	an	attempt	to
enumerate	all	the	channels	is
complete

chatEnumChannelsCallbackEach
Called	after	an	attempt	to
enumerate	each	channel.

chatEnumJoinedChannelsCallback
Called	after	an	attempt	to
enumerate	joined	channels.

chatEnumUsersCallback
Called	after	an	attempt	to
enumerate	the	users	in	a	channel

chatFillInUserCallback
Used	in	conjuction	with	the
chatConnectSpecial	and
chatConnectSecure	functions;
called	to	fill	in	the	user	field	after
the	actual	network	connection	to
the	chat	server	has	been	made.

chatGetBasicUserInfoCallback
Called	after	an	attempt	to	get
basic	information	on	a	user

chatGetChannelBasicUserInfoCallback
Called	when	an	attempt	to	get
everyone's	basic	user	info	is
made.

chatGetChannelKeysCallback
Called	after	an	attempt	to	get	the
channel	keys	or	user(s)	keys

chatGetChannelModeCallback
Called	after	an	attempt	to	get	the
channel	mode.

chatGetChannelPasswordCallback
Called	after	an	attempt	to	get	the
channel's	password.

chatGetChannelTopicCallback
Called	after	an	attempt	to	get	the
channel's	topic.

chatGetGlobalKeysCallback
Called	after	an	attempt	to	get	the
global	keys	for	the	user(s).

chatGetUserInfoCallback
Called	after	an	attempt	to	get
user	information.

chatGetUserModeCallback
Called	after	an	attempt	to	get	the
user's	mode

chatInvited
Used	in	conjunction	with	the
chatConnect	functions;	called
when	the	local	user	gets	invited
to	a	channel.

chatKicked
Used	in	conjunction	with
chatEnterChannel;	called	when
the	local	user	gets	kicked	from
the	channel.

chatNewUserList
Used	in	conjunction	with
chatEnterChannel;	Called	when
the	chat	server	sends	an	entire
new	user	list	for	a	channel	we're
in.

chatNickErrorCallback
Used	in	conjuction	with	the
chatConnect	functions;	called	if
there	was	an	error	with	the
provided	nickname.

chatPrivateMessage
Used	in	conjunction	with	the
chatConnect	functions;	called
when	a	message	is	received	from
another	user.

chatRaw
Used	in	conjunction	with	the
chatConnect	functions;	all	raw
incoming	network	traffic	gets
passed	to	this	function.

chatTopicChanged
Used	in	conjunction	with
chatEnterChannel;	called	when
the	channel	topic	changes.

chatUserChangedNick
Used	in	conjunction	with
chatEnterChannel;	called	when	a
user	in	the	channel	changes	their
nickname.

chatUserJoined
Used	in	conjunction	with

chatEnterChannel;	called	when	a
user	joins	the	channel.

chatUserListUpdated
Used	in	conjunction	with
chatEnterChannel;	called	when
the	channel’s	user	list	changes.

chatUserModeChanged
Used	in	conjunction	with
chatEnterChannel;	called	when
the	mode	of	a	user	in	the	channel
changes.

chatUserParted
Used	in	conjunction	with
chatEnterChannel;	called	when	a
user	parts	the	channel.

chatAuthenticateCDKeyCallback
Called	when	chatAuthenticateCDKey	and	attempt	to	authenticate	the	CD-
Key	is	finished.

typedef	void	(*chatAuthenticateCDKeyCallback)(
CHAT	chat,
int	result,
const	gsi_char	*	message,
void	*	param);

Routine Required	Header Distribution
chatAuthenticateCDKeyCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

result
[in]	Indicates	the	result	of	the	attempt.

message
[in]	The	text	message	representing	the	result.

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatAuthenticateCDKeyCallback	function	gets	called	when	an
attempt	to	authenticate	a	CD	key	is	finished.	If	the	result	has	a	value	of	1,
the	CD	key	was	authenticated.	Otherwise,	the	CD	key	was	not
authenticated.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
chatAuthenticateCDKeyCallback chatAuthenticateCDKeyCallbackA chatAuthenticateCDKeyCallbackW

chatAuthenticateCDKeyCallbackW	and
chatAuthenticateCDKeyCallbackA	are	UNICODE	and	ANSI	mapped
versions	of	chatAuthenticateCDKeyCallback.	The	arguments	of
chatAuthenticateCDKeyCallbackA	are	ANSI	strings;	those	of
chatAuthenticateCDKeyCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatBroadcastKeyChanged
Called	when	a	player	changes	a	broadcast	key	in	a	channel	the	local
player	is	in.

typedef	void	(*chatBroadcastKeyChanged)(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	user,
const	gsi_char	*	key,
const	gsi_char	*	value,
void	*	param);

Routine Required	Header Distribution
chatBroadcastKeyChanged <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

channel
[in]	The	channel	the	local	player	is	in.

user
[in]	The	nickname	of	the	user	who	changed	the	key

key
[in]	The	broadcast	key	that	was	changed

value
[in]	The	broadcast	key	value

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatEnterChannel	through	the	callbacks	structure.

Remarks

The	chatBroadcastKeyChanged	function	is	called	when	another	player
changes	a	broadcast	key	in	the	channel	the	local	player	is	in.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
chatBroadcastKeyChanged chatBroadcastKeyChangedA chatBroadcastKeyChangedW

chatBroadcastKeyChangedW	and	chatBroadcastKeyChangedA	are
UNICODE	and	ANSI	mapped	versions	of	chatBroadcastKeyChanged.
The	arguments	of	chatBroadcastKeyChangedA	are	ANSI	strings;	those
of	chatBroadcastKeyChangedW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatChangeNickCallback
Callback	for	chatChangeNick	when	a	player	changes	his/her	nick.

typedef	void	(*chatChangeNickCallback)(
CHAT	chat,
CHATBool	success,
const	gsi_char	*	oldNick,
const	gsi_char	*	newNick,
void	*	param);

Routine Required	Header Distribution
chatChangeNickCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

oldNick
[in]	The	old	nickname.

newNick
[in]	The	new	nickname.

param
[in]	User	data;	the	same	param	pointer	that	was	passed	to
chatChangeNick.

Remarks

The	chatChangedNickCallback	is	called	when	any	player	in	the	specified
room	changes	his/her	nick.	The	new	nick	is	assigned	to	the	player	if	the
change	was	validated	by	the	server.	Otherwise,	there	will	be	no
difference	between	the	old	nick	or	the	new	nick.	The	change	is
determined	by	"success"	which	is	either	CHATTrue	or	CHATFalse.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

chatChangeNickCallback chatChangeNickCallbackA chatChangeNickCallbackW

chatChangeNickCallbackW	and	chatChangeNickCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	chatChangeNickCallback.
The	arguments	of	chatChangeNickCallbackA	are	ANSI	strings;	those	of
chatChangeNickCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatChannelMessage
Used	in	conjunction	with	chatEnterChannel;	called	when	a	message	is
received	in	the	channel.

typedef	void	(*chatChannelMessage)(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	user,
const	gsi_char	*	message,
int	type,
void	*	param);

Routine Required	Header Distribution
chatChannelMessage <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

channel
[in]	The	channel	the	local	player	is	in.

user
[in]	The	nickname	of	the	user	who	sent	the	message.

message
[in]	The	text	of	the	message.

type
[in]	The	type	of	the	message:	one	of	the	pre-defined	chat	types.

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatEnterChannel	through	the	callbacks	structure.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatEnterChannel,	chatSendChannelMessage

chatChannelModeChanged
Used	in	conjunction	with	chatEnterChannel;	called	when	the	mode	of	a
user	in	the	channel	changes.

typedef	void	(*chatChannelModeChanged)(
CHAT	chat,
const	gsi_char	*	channel,
CHATChannelMode	*	mode,
void	*	param);

Routine Required	Header Distribution
chatChannelModeChanged <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

channel
[in]	The	channel	the	local	player	is	in.

mode
[in]	Properties	of	the	new	mode	set	on	the	channel.

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatEnterChannel	through	the	callbacks	structure.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatEnterChannel,	chatSetChannelMode

chatConnectCallback
Called	when	a	chatConnect*	attempt	is	made.

typedef	void	(*chatConnectCallback)(
CHAT	chat,
CHATBool	success,
int	failureReason,
void	*	param);

Routine Required	Header Distribution
chatConnectCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

failureReason
[in]	The	string	giving	reason	for	failure

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatConnectCallback	is	called	after	an	attempt	of	a	call	to	one	of
the	connect	functions	that	the	Chat	SDK	provides.

Section	Reference:	Gamespy	Chat	SDK

chatDisconnected
Called	when	a	disconnection	occurs.

typedef	void	(*chatDisconnected)(
CHAT	chat,
const	gsi_char	*	reason,
void	*	param);

Routine Required	Header Distribution
chatDisconnected <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

reason
[in]	The	text	string	which	states	the	reason	for	disconnect

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatConnect	through	the	callback	structure.

Remarks

The	chatDisconnected	callback	function	is	called	after	a	disconnection
occurs.	The	connection	can	be	ended	at	any	time	by	called
chatDisconnect().	If	the	connection	gets	disconnected	for	any	other
reason	(such	as	an	intermediate	router	going	down),	the
chatDisconnected()	callback	will	be	called.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

chatDisconnected chatDisconnectedA chatDisconnectedW

chatDisconnectedW	and	chatDisconnectedA	are	UNICODE	and	ANSI
mapped	versions	of	chatDisconnected.	The	arguments	of
chatDisconnectedA	are	ANSI	strings;	those	of	chatDisconnectedW
are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatEnterChannelCallback
Called	when	an	attempt	to	enter	the	channel	has	completed.

typedef	void	(*chatEnterChannelCallback)(
CHAT	chat,
CHATBool	success,
CHATEnterResult	result,
const	gsi_char	*	channel,
void	*	param);

Routine Required	Header Distribution
chatEnterChannelCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

result
[in]	Indicates	the	result	of	the	attempt

channel
[in]	The	name	of	channel	entered

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatEnterChannelCallback	funtion	is	called	when	the	attempt	to
enter	the	channel	by	the	local	player	is	completed.	The	entrance	of	the
channel	can	be	successful	or	a	failure,	and	is	indicated	by	the	"result"	of
the	attempt.	The	"result"	can	be	of	the	following	value:
CHATEnterSuccess	--	The	channel	was	successfully	entered.
CHATBadChannelName	--	The	channel	name	was	invalid.
CHATChannelIsFull	--	The	channel	is	at	its	user	limit.
CHATInviteOnlyChannel	--	The	channel	is	invite	only.
CHATBannedFromChannel	--	The	local	user	is	banned	from	this	channel.
CHATBadChannelPassword	--	The	channel	has	a	password,	and	a	bad
password	(or	none)	was	given.
CHATTooManyChannels	--	The	server	won't	allow	this	user	in	any	more
channels.
CHATEnterTimedOut	--	The	attempt	to	enter	timed	out.
CHATBadChannelMask	--	The	channel	mask	was	bad	(rarely	used).

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

chatEnterChannelCallback chatEnterChannelCallbackA chatEnterChannelCallbackW

chatEnterChannelCallbackW	and	chatEnterChannelCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	chatEnterChannelCallback.
The	arguments	of	chatEnterChannelCallbackA	are	ANSI	strings;	those
of	chatEnterChannelCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatEnumChannelBansCallback
Called	after	an	attempt	to	enumerate	channel	bans.

typedef	void	(*chatEnumChannelBansCallback)(
CHAT	chat,
CHATBool	success,
const	gsi_char	*	channel,
int	numBans,
const	gsi_char	**	bans,
void	*	param);

Routine Required	Header Distribution
chatEnumChannelBansCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

channel
[in]	The	channel	that	the	enumeration	was	attempted

numBans
[in]	The	number	of	bans	in	the	list

bans
[in]	The	List	of	bans

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatEnumChannelBansCallback	function	is	called	when	an
attempt	to	enumerate	channel	bans	has	completed.	The	available	results
are	whether	the	attempt	was	successful,	the	list	of	the	bans,	number	of
bans,	the	channel	that	the	attempt	was	made	on.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
chatEnumChannelBansCallback chatEnumChannelBansCallbackA chatEnumChannelBansCallbackW

chatEnumChannelBansCallbackW	and
chatEnumChannelBansCallbackA	are	UNICODE	and	ANSI	mapped
versions	of	chatEnumChannelBansCallback.	The	arguments	of
chatEnumChannelBansCallbackA	are	ANSI	strings;	those	of
chatEnumChannelBansCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatEnumChannelsCallbackAll
Called	when	an	attempt	to	enumerate	all	the	channels	is	complete.

typedef	void	(*chatEnumChannelsCallbackAll)(
CHAT	chat,
CHATBool	success,
int	numChannels,
const	gsi_char	**	channels,
const	gsi_char	**	topics,
int	*	numUsers,
void	*	param);

Routine Required	Header Distribution
chatEnumChannelsCallbackAll <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

numChannels
[in]	The	number	of	channels	in	the	list

channels
[in]	The	List	of	channels

topics
[in]	The	List	of	topics	associated	with	the	list	of	channels

numUsers
[in]	The	number	of	users	for	each	channel

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatEnumChannelsCallbackAll	function	is	called	when	an
enumeration	attempt	of	all	channels	has	completed.	The	function	will
contain	all	the	data	necessary	to	update	the	list	of	channels	including
names	of	channels,	number	of	people	in	each	channel,	and	channel
topics.	It	is	also	called	after	each	is	enumerated
(chatEnumChannelsCallbackEach).

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
chatEnumChannelsCallbackAll chatEnumChannelsCallbackAllA chatEnumChannelsCallbackAllW

chatEnumChannelsCallbackAllW	and
chatEnumChannelsCallbackAllA	are	UNICODE	and	ANSI	mapped
versions	of	chatEnumChannelsCallbackAll.	The	arguments	of
chatEnumChannelsCallbackAllA	are	ANSI	strings;	those	of
chatEnumChannelsCallbackAllW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatEnumChannelsCallbackEach
Called	after	an	attempt	to	enumerate	each	channel.

typedef	void	(*chatEnumChannelsCallbackEach)(
CHAT	chat,
CHATBool	success,
int	index,
const	gsi_char	*	channel,
const	gsi_char	*	topic,
int	numUsers,
void	*	param);

Routine Required	Header Distribution
chatEnumChannelsCallbackEach <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

index
[in]	The	index	of	this	channel

channel
[in]	The	name	of	the	channel

topic
[in]	A	string	containing	the	topic	of	the	channel

numUsers
[in]	The	number	of	users	in	this	channel

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatEnumChannelsCallbackEach	function	is	called	when	an
attempt	to	enumerate	each	channel	on	the	server	is	complete.	The
successful	attempt	will	have	a	channel	with	an	index,	the	name	of	the
channel,	the	topic	for	that	channel,	the	number	of	users.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
chatEnumChannelsCallbackEach chatEnumChannelsCallbackEachA chatEnumChannelsCallbackEachW

chatEnumChannelsCallbackEachW	and
chatEnumChannelsCallbackEachA	are	UNICODE	and	ANSI	mapped
versions	of	chatEnumChannelsCallbackEach.	The	arguments	of
chatEnumChannelsCallbackEachA	are	ANSI	strings;	those	of
chatEnumChannelsCallbackEachW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatEnumJoinedChannelsCallback
Called	after	an	attempt	to	enumerate	joined	channels.

typedef	void	(*chatEnumJoinedChannelsCallback)(
CHAT	chat,
int	index,
const	gsi_char	*	channel,
void	*	param);

Routine Required	Header Distribution
chatEnumJoinedChannelsCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

index
[in]	An	index	of	the	joined	channels	for	this	channel

channel
[in]	The	name	of	the	channel

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatEnumJoinedChannelsCallback	function	is	calle	when	an
attempt	to	enumerate--the	channels	the	local	player	has	joined--is
complete.	The	function	will	contain	the	channel	name,	an	index	to	the
channel	which	refers	to	the	position	in	the	list	of	joined	channels.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
chatEnumJoinedChannelsCallback chatEnumJoinedChannelsCallbackA chatEnumJoinedChannelsCallbackW

chatEnumJoinedChannelsCallbackW	and
chatEnumJoinedChannelsCallbackA	are	UNICODE	and	ANSI	mapped
versions	of	chatEnumJoinedChannelsCallback.	The	arguments	of
chatEnumJoinedChannelsCallbackA	are	ANSI	strings;	those	of
chatEnumJoinedChannelsCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatEnumUsersCallback
Called	after	an	attempt	to	enumerate	the	users	in	a	channel.

typedef	void	(*chatEnumUsersCallback)(
CHAT	chat,
CHATBool	success,
const	gsi_char	*	channel,
int	numUsers,
const	gsi_char	**	users,
int	*	modes,
void	*	param);

Routine Required	Header Distribution
chatEnumUsersCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

channel
[in]	The	name	of	the	channel

numUsers
[in]	The	number	of	users	in	the	channel

users
[in]	The	list	of	users	names	in	the	channel

modes
[in]	The	list	of	modes	for	the	channel

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatEnumUsersCallback	is	called	when	an	attempt	to	enumerate
all	of	the	users	in	a	given	channel	is	made.	The	function	will	have	the
information	of	the	users	in	the	channel	if	success	is	CHATTrue.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

chatEnumUsersCallback chatEnumUsersCallbackA chatEnumUsersCallbackW

chatEnumUsersCallbackW	and	chatEnumUsersCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	chatEnumUsersCallback.	The
arguments	of	chatEnumUsersCallbackA	are	ANSI	strings;	those	of
chatEnumUsersCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatFillInUserCallback
Used	in	conjuction	with	the	chatConnectSpecial	and	chatConnectSecure
functions;	called	to	fill	in	the	user	field	after	the	actual	network	connection
to	the	chat	server	has	been	made.

typedef	void	(*chatFillInUserCallback)(
CHAT	chat,
unsigned	int	IP,
gsi_char	user[128],
void	*	param);

Routine Required	Header Distribution
chatFillInUserCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

IP
[in]	The	IP	address	in	string	form:	"xxx.xxx.xxx.xxx"	to	encode

user
[in]	The	user	name	to	encode

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatConnectSecure	or	chatConnectSpecial.

Remarks

This	is	used	by	the	Peer	SDK	to	encode	the	local	machine’s	IP	address
(as	known	to	the	chat	server)	in	the	user	field.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

chatFillInUserCallback chatFillInUserCallbackA chatFillInUserCallbackW

chatFillInUserCallbackW	and	chatFillInUserCallbackA	are	UNICODE
and	ANSI	mapped	versions	of	chatFillInUserCallback.	The	arguments
of	chatFillInUserCallbackA	are	ANSI	strings;	those	of
chatFillInUserCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatConnectSecure,	chatConnectSpecial

chatGetBasicUserInfoCallback
Called	after	an	attempt	to	get	basic	information	on	a	user.

typedef	void	(*chatGetBasicUserInfoCallback)(
CHAT	chat,
CHATBool	success,
const	gsi_char	*	nick,
const	gsi_char	*	user,
const	gsi_char	*	address,
void	*	param);

Routine Required	Header Distribution
chatGetBasicUserInfoCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

nick
[in]	The	user's	chat	nickname

user
[in]	The	nickname	of	the	target	user

address
[in]	The	IP	address	of	the	user

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatGetBasicUserInfoCallback	function	is	called	when	an	attempt
to	get	basic	information	on	a	user	is	completed.	If	successful,	the
information	will	contain	the	user's	chat	nickname,	the	IP	address	of	that
user.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
chatGetBasicUserInfoCallback chatGetBasicUserInfoCallbackA chatGetBasicUserInfoCallbackW

chatGetBasicUserInfoCallbackW	and
chatGetBasicUserInfoCallbackA	are	UNICODE	and	ANSI	mapped
versions	of	chatGetBasicUserInfoCallback.	The	arguments	of
chatGetBasicUserInfoCallbackA	are	ANSI	strings;	those	of
chatGetBasicUserInfoCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatGetChannelBasicUserInfoCallback
Called	when	an	attempt	to	get	everyone's	basic	user	info	is	made.

typedef	void	(*chatGetChannelBasicUserInfoCallback)(
CHAT	chat,
CHATBool	success,
const	gsi_char	*	channel,
const	gsi_char	*	nick,
const	gsi_char	*	user,
const	gsi_char	*	address,
void	*	param);

Routine Required
Header Distribution

chatGetChannelBasicUserInfoCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

channel
[in]	The	name	of	the	channel

nick
[in]	The	local	player's	chat	nickname

user
[in]	The	nickname	of	the	target	user

address
[in]	The	IP	address	of	the	target	user

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatGetChannelBasicUserInfoCallback	function	is	called	with	a
user's	basic	info	for	everyone	in	a	channel.	Called	with	a	NULL
nick/user/address	at	the	end.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined
chatGetChannelBasicUserInfoCallback chatGetChannelBasicUserInfoCallbackA

chatGetChannelBasicUserInfoCallbackW	and
chatGetChannelBasicUserInfoCallbackA	are	UNICODE	and	ANSI
mapped	versions	of	chatGetChannelBasicUserInfoCallback.	The
arguments	of	chatGetChannelBasicUserInfoCallbackA	are	ANSI
strings;	those	of	chatGetChannelBasicUserInfoCallbackW	are	wide-
character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatGetChannelKeysCallback
Called	after	an	attempt	to	get	the	channel	keys	or	user(s)	keys.

typedef	void	(*chatGetChannelKeysCallback)(
CHAT	chat,
CHATBool	success,
const	gsi_char	*	channel,
const	gsi_char	*	user,
int	num,
const	gsi_char	**	keys,
const	gsi_char	**	values,
void	*	param);

Routine Required	Header Distribution
chatGetChannelKeysCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

channel
[in]	The	name	of	the	channel

user
[in]	The	nickname	of	the	target	user

num
[in]	The	number	of	key/value	pairs	in	the	array

keys
[in]	The	array	of	key	names	whose	values	will	be	retrieved

values
[in]	The	array	of	values	associated	with	the	array	of	keys

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatGetChannelKeysCallback	function	is	called	when	an	attempt
to	either	get	either	the	channel	or	user(s)	keys	is	completed.	If	the	call	to
chatGetChannelKeys	was	made	on	a	set	of	users,	then	this	function	will
get	called	for	all	users	and	have	a	NULL	for	"user"	when	done.	If	the	call
was	for	the	channel	keys,	then	the	"user"	will	be	NULL.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
chatGetChannelKeysCallback chatGetChannelKeysCallbackA chatGetChannelKeysCallbackW

chatGetChannelKeysCallbackW	and	chatGetChannelKeysCallbackA
are	UNICODE	and	ANSI	mapped	versions	of
chatGetChannelKeysCallback.	The	arguments	of
chatGetChannelKeysCallbackA	are	ANSI	strings;	those	of
chatGetChannelKeysCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatGetChannelModeCallback
Called	after	an	attempt	to	get	the	channel	mode.

typedef	void	(*chatGetChannelModeCallback)(
CHAT	chat,
CHATBool	success,
const	gsi_char	*	channel,
CHATChannelMode	*	mode,
void	*	param);

Routine Required	Header Distribution
chatGetChannelModeCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

channel
[in]	The	name	of	channel

mode
[in]	One	of	the	predefined	modes

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatGetChannelModeCallback	function	is	called	when	an	attempt
to	get	the	channel	mode	is	complete.	If	successful,	the	function	will	have
the	channel	name	and	its	mode.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
chatGetChannelModeCallback chatGetChannelModeCallbackA chatGetChannelModeCallbackW

chatGetChannelModeCallbackW	and
chatGetChannelModeCallbackA	are	UNICODE	and	ANSI	mapped
versions	of	chatGetChannelModeCallback.	The	arguments	of
chatGetChannelModeCallbackA	are	ANSI	strings;	those	of
chatGetChannelModeCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatGetChannelPasswordCallback
Called	after	an	attempt	to	get	the	channel's	password.

typedef	void	(*chatGetChannelPasswordCallback)(
CHAT	chat,
CHATBool	success,
const	gsi_char	*	channel,
CHATBool	enabled,
const	gsi_char	*	password,
void	*	param);

Routine Required	Header Distribution
chatGetChannelPasswordCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

channel
[in]	The	name	of	channel

enabled
[in]	CHATTrue	if	enabled,	CHATFalse	if	otherwise

password
[in]	The	channel	password

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatGetChannelPasswordCallback	function	is	called	when	an
attempt	to	obtain	the	channel's	password	is	complete.	If	successful,	the
password	for	that	channel	will	be	available.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
chatGetChannelPasswordCallback chatGetChannelPasswordCallbackA chatGetChannelPasswordCallbackW

chatGetChannelPasswordCallbackW	and
chatGetChannelPasswordCallbackA	are	UNICODE	and	ANSI	mapped
versions	of	chatGetChannelPasswordCallback.	The	arguments	of
chatGetChannelPasswordCallbackA	are	ANSI	strings;	those	of
chatGetChannelPasswordCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatGetChannelTopicCallback
Called	after	an	attempt	to	get	the	channel's	topic.

typedef	void	(*chatGetChannelTopicCallback)(
CHAT	chat,
CHATBool	success,
const	gsi_char	*	channel,
const	gsi_char	*	topic,
void	*	param);

Routine Required	Header Distribution
chatGetChannelTopicCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

channel
[in]	The	name	of	channel

topic
[in]	A	string	containing	the	topic

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatGetChannelTopicCallback	function	is	called	when	an	attempt
to	obtain	the	channel's	topic	is	complete.	If	successful,	the	text	message
containing	the	topic	for	that	channel	will	be	available.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
chatGetChannelTopicCallback chatGetChannelTopicCallbackA chatGetChannelTopicCallbackW

chatGetChannelTopicCallbackW	and
chatGetChannelTopicCallbackA	are	UNICODE	and	ANSI	mapped
versions	of	chatGetChannelTopicCallback.	The	arguments	of
chatGetChannelTopicCallbackA	are	ANSI	strings;	those	of
chatGetChannelTopicCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatGetGlobalKeysCallback
Called	after	an	attempt	to	get	the	global	keys	for	the	user(s).

typedef	void	(*chatGetGlobalKeysCallback)(
CHAT	chat,
CHATBool	success,
const	gsi_char	*	user,
int	num,
const	gsi_char	**	keys,
const	gsi_char	**	values,
void	*	param);

Routine Required	Header Distribution
chatGetGlobalKeysCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

user
[in]	The	nickname	of	the	target	user	or	the	name	of	the	channel

num
[in]	The	number	of	key/value	pairs	in	the	array

keys
[in]	The	array	of	key	names	whose	values	will	be	retrieved

values
[in]	The	array	of	values	associated	with	the	key	array

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatGetGlobalKeysCallback	function	is	called	when	an	attempt	to
obtain	the	global	keys	of	a	user	or	all	users	is	complete.	If	successful,	the
keys	for	those	user(s)	will	be	available.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
chatGetGlobalKeysCallback chatGetGlobalKeysCallbackA chatGetGlobalKeysCallbackW

chatGetGlobalKeysCallbackW	and	chatGetGlobalKeysCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	chatGetGlobalKeysCallback.
The	arguments	of	chatGetGlobalKeysCallbackA	are	ANSI	strings;
those	of	chatGetGlobalKeysCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatGetUserInfoCallback
Called	after	an	attempt	to	get	user	information.

typedef	void	(*chatGetUserInfoCallback)(
CHAT	chat,
CHATBool	success,
const	gsi_char	*	nick,
const	gsi_char	*	user,
const	gsi_char	*	name,
const	gsi_char	*	address,
int	numChannels,
const	gsi_char	**	channels,
void	*	param);

Routine Required	Header Distribution
chatGetUserInfoCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

nick
[in]	The	local	player's	chat	nickname

user
[in]	The	nickname	of	the	target	user

name
[in]	The	name	of	the	user	to	get	info	from

address
[in]	The	IP	address	of	the	user

numChannels
[in]	The	number	of	channels	the	user	is	in

channels
[in]	The	actual	list	of	channels	the	user	is	in

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatGetUserInfoCallback	function	is	called	when	an	attempt	to	get
the	user	information	about	another	player	is	completed.	If	successful,	the
user's	nickname,	IP	address,	the	channels	s/he	is	on	will	be	available.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

chatGetUserInfoCallback chatGetUserInfoCallbackA chatGetUserInfoCallbackW

chatGetUserInfoCallbackW	and	chatGetUserInfoCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	chatGetUserInfoCallback.
The	arguments	of	chatGetUserInfoCallbackA	are	ANSI	strings;	those	of
chatGetUserInfoCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatGetUserModeCallback
Called	after	an	attempt	to	get	the	user's	mode.

typedef	void	(*chatGetUserModeCallback)(
CHAT	chat,
CHATBool	success,
const	gsi_char	*	channel,
const	gsi_char	*	user,
int	mode,
void	*	param);

Routine Required	Header Distribution
chatGetUserModeCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

success
[in]	CHATTrue	if	success,	CHATFalse	if	failure.

channel
[in]	The	name	of	channel

user
[in]	The	nickname	of	the	target	user

mode
[in]	One	of	the	predefined	modes

param
[in]	Pointer	to	user	data.	Passed	through	unmodified	from	the
initiating	function.

Remarks

The	chatGetUserModeCallback	function	is	called	when	an	attempt	to
get	the	user	mode	is	completed.	If	successful,	the	user's	nickname	and
mode	will	be	available.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

chatGetUserModeCallback chatGetUserModeCallbackA chatGetUserModeCallbackW

chatGetUserModeCallbackW	and	chatGetUserModeCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	chatGetUserModeCallback.
The	arguments	of	chatGetUserModeCallbackA	are	ANSI	strings;	those
of	chatGetUserModeCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Chat	SDK

chatInvited
Used	in	conjunction	with	the	chatConnect	functions;	called	when	the	local
user	gets	invited	to	a	channel.

typedef	void	(*chatInvited)(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	user,
void	*	param);

Routine Required	Header Distribution
chatInvited <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

channel
[in]	The	channel	to	which	this	user	was	invited.

user
[in]	The	user	who	offered	the	invite.

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatConnect	through	the	callback	structure.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatConnect,	chatInviteUser

chatKicked
Used	in	conjunction	with	chatEnterChannel;	called	when	the	local	user
gets	kicked	from	the	channel.

typedef	void	(*chatKicked)(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	user,
const	gsi_char	*	reason,
void	*	param);

Routine Required	Header Distribution
chatKicked <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

channel
[in]	The	channel	the	local	player	is	in.

user
[in]	The	nickname	of	the	user	being	kicked	from	the	channel.

reason
[in]	The	same	reason	string	sent	into	chatKickUser.

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatEnterChannel	through	the	callbacks	structure.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatEnterChannel,	chatKickUser

chatNewUserList
Used	in	conjunction	with	chatEnterChannel;	Called	when	the	chat	server
sends	an	entire	new	user	list	for	a	channel	we're	in.

typedef	void	(*chatNewUserList)(
CHAT	chat,
const	gsi_char	*	channel,
int	num,
const	gsi_char	**	users,
int	*	modes,
void	*	param);

Routine Required	Header Distribution
chatNewUserList <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

channel
[in]	The	channel	the	local	player	is	in.

num
[in]	The	number	of	users	in	the	list.

users
[in]	List	of	users.

modes
[in]	List	of	user	modes.

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatEnterChannel	through	the	callbacks	structure.

Section	Reference:	Gamespy	Chat	SDK

chatNickErrorCallback
Used	in	conjuction	with	the	chatConnect	functions;	called	if	there	was	an
error	with	the	provided	nickname.

typedef	void	(*chatNickErrorCallback)(
CHAT	chat,
int	type,
const	gsi_char	*	nick,
int	numSuggestedNicks,
const	gsi_char	**	suggestedNicks,
void	*	param);

Routine Required	Header Distribution
chatNickErrorCallback <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

type
[in]	The	type	of	error:	indicates	whether	the	nick	was	invalid	or	if	it
was	in	use.

nick
[in]	The	problematic	nickname.

numSuggestedNicks
[in]	The	number	of	suggested	nicknames.

suggestedNicks
[in]	A	list	of	suggested	alternative	nicknames.

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatConnect.

Remarks

Suggested	nicks	are	only	provided	if	type	is
CHAT_INVALID_UNIQUENICK.
Use	chatRetryWithNick	to	continue	the	connect	attempt	with	a	new
nickname;	otherwise,	call	chatDisconnect	to	stop	the	connection.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatConnect,	chatRetryWithNick,	chatRegisterUniqueNick,
chatDisconnect

chatPrivateMessage
Used	in	conjunction	with	the	chatConnect	functions;	called	when	a
message	is	received	from	another	user.

typedef	void	(*chatPrivateMessage)(
CHAT	chat,
const	gsi_char	*	user,
const	gsi_char	*	message,
int	type,
void	*	param);

Routine Required	Header Distribution
chatPrivateMessage <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

user
[in]	The	user	who	sent	the	message.

message
[in]	The	text	of	the	message.

type
[in]	The	type	of	message.

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatConnect	through	the	callback	structure.

Remarks

If	user	is	NULL,	this	is	a	message	from	the	server.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatConnect

chatRaw
Used	in	conjunction	with	the	chatConnect	functions;	all	raw	incoming
network	traffic	gets	passed	to	this	function.

typedef	void	(*chatRaw)(
CHAT	chat,
const	gsi_char	*	raw,
void	*	param);

Routine Required	Header Distribution
chatRaw <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

raw
[in]	The	raw	data.

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatConnect	through	the	callbacks	structure.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatConnect,	chatSendRaw

chatTopicChanged
Used	in	conjunction	with	chatEnterChannel;	called	when	the	channel
topic	changes.

typedef	void	(*chatTopicChanged)(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	topic,
void	*	param);

Routine Required	Header Distribution
chatTopicChanged <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

channel
[in]	The	channel	the	local	player	is	in.

topic
[in]	The	new	topic	(description)	of	the	channel.

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatEnterChannel	through	the	callbacks	structure.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatEnterChannel,	chatSetChannelTopic

chatUserChangedNick
Used	in	conjunction	with	chatEnterChannel;	called	when	a	user	in	the
channel	changes	their	nickname.

typedef	void	(*chatUserChangedNick)(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	oldNick,
const	gsi_char	*	newNick,
void	*	param);

Routine Required	Header Distribution
chatUserChangedNick <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

channel
[in]	The	channel	the	local	player	is	in.

oldNick
[in]	The	old	nickname	of	the	user.

newNick
[in]	The	new	nickname.

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatEnterChannel	through	the	callbacks	structure.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatEnterChannel,	chatChangeNick

chatUserJoined
Used	in	conjunction	with	chatEnterChannel;	called	when	a	user	joins	the
channel.

typedef	void	(*chatUserJoined)(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	user,
int	mode,
void	*	param);

Routine Required	Header Distribution
chatUserJoined <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

channel
[in]	The	channel	the	local	player	is	in.

user
[in]	The	nickname	of	the	joining	user.

mode
[in]	The	joining	user's	mode.

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatEnterChannel	through	the	callbacks	structure.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatEnterChannel

chatUserListUpdated
Used	in	conjunction	with	chatEnterChannel;	called	when	the	channel’s
user	list	changes.

typedef	void	(*chatUserListUpdated)(
CHAT	chat,
const	gsi_char	*	channel,
void	*	param);

Routine Required	Header Distribution
chatUserListUpdated <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

channel
[in]	The	channel	the	local	player	is	in.

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatEnterChannel	through	the	callbacks	structure.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatEnterChannel

chatUserModeChanged
Used	in	conjunction	with	chatEnterChannel;	called	when	the	mode	of	a
user	in	the	channel	changes.

typedef	void	(*chatUserModeChanged)(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	user,
int	mode,
void	*	param);

Routine Required	Header Distribution
chatUserModeChanged <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

channel
[in]	The	channel	the	local	player	is	in.

user
[in]	The	nickname	of	the	user	whose	mode	changed.

mode
[in]	The	new	mode	of	the	user.

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatEnterChannel	through	the	callbacks	structure.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatEnterChannel,	chatSetUserMode

chatUserParted
Used	in	conjunction	with	chatEnterChannel;	called	when	a	user	parts	the
channel.

typedef	void	(*chatUserParted)(
CHAT	chat,
const	gsi_char	*	channel,
const	gsi_char	*	user,
int	why,
const	gsi_char	*	reason,
const	gsi_char	*	kicker,
void	*	param);

Routine Required	Header Distribution
chatUserParted <chat.h> SDKZIP

Parameters

chat
[in]	The	initialized	chat	interface	object.

channel
[in]	The	channel	the	local	player	is	in.

user
[in]	The	nickname	of	the	parting	user.

why
[in]	Code	indicating	reason	user	parted.

reason
[in]	Explanation	string.

kicker
[in]	If	reason	is	"kicked",	identifies	the	kicker.

param
[in]	Pointer	to	user	data.	The	same	param	that	was	passed	to
chatEnterChannel	through	the	callbacks	structure.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatEnterChannel,	chatKickUser

Chat	SDK	Structures
chatChannelCallbacks

A	channel's	callbacks.

CHATChannelMode
The	mode	settings	of	a	chat	channel.

chatGlobalCallbacks
A	connection's	global	callbacks.

chatChannelCallbacks
A	channel's	callbacks.

typedef	struct	
{

chatChannelMessage	channelMessage;
chatKicked	kicked;
chatUserJoined	userJoined;
chatUserParted	userParted;
chatUserChangedNick	userChangedNick;
chatTopicChanged	topicChanged;
chatChannelModeChanged	channelModeChanged;
chatUserModeChanged	userModeChanged;
chatUserListUpdated	userListUpdated;
chatNewUserList	newUserList;
chatBroadcastKeyChanged	broadcastKeyChanged;
void	*	param;

}	chatChannelCallbacks;

Members

channelMessage
Called	when	a	message	is	received	in	a	channel.

kicked
Called	when	the	local	user	is	kicked	from	a	channel.

userJoined
Called	when	a	user	joins	a	channel	we're	in.

userParted
Called	when	a	user	parts	a	channel	we're	in.

userChangedNick
Called	when	a	user	in	a	channel	we're	in	changes	nicks.

topicChanged
Called	when	the	topic	changes	in	a	channel	we're	in.

channelModeChanged
Called	when	the	mode	changes	in	a	channel	we're	in.

userModeChanged
Called	when	a	user's	mode	changes	in	a	channel	we're	in.

userListUpdated
Called	when	the	user	list	changes	(due	to	a	join	or	a	part)	in	a
channel	we're	in.

newUserList
Called	when	the	chat	server	sends	an	entire	new	user	list	for	a
channel	we're	in.

broadcastKeyChanged
Called	when	a	user	changes	a	broadcast	key	in	a	channel	we're	in.

param
A	pointer	to	data	that	will	be	passed	into	each	of	the	callbacks	when
triggered.

Section	Reference:	Gamespy	Chat	SDK

CHATChannelMode
The	mode	settings	of	a	chat	channel.

typedef	struct	
{

CHATBool	InviteOnly;
CHATBool	Private;
CHATBool	Secret;
CHATBool	Moderated;
CHATBool	NoExternalMessages;
CHATBool	OnlyOpsChangeTopic;
int	Limit;

}	CHATChannelMode;

Members

InviteOnly
Channel	is	invite-only.

Private
Channel	is	private.

Secret
Channel	is	secret.

Moderated
Channel	is	moderated,.

NoExternalMessages
External	messages	to	channel	are	not	allowed.

OnlyOpsChangeTopic
Topic	is	limited;	only	chanops	may	change	it.

Limit
The	maximum	number	of	of	users	allowed.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatGetChannelMode,	chatSetChannelMode

chatGlobalCallbacks
A	connection's	global	callbacks.

typedef	struct	
{

chatRaw	raw;
chatDisconnected	disconnected;
chatPrivateMessage	privateMessage;
chatInvited	invited;
void	*	param;

}	chatGlobalCallbacks;

Members

raw
Gets	raw	incoming	network	traffic.

disconnected
Called	when	the	user	has	been	disconnected.

privateMessage
Called	when	a	private	message	from	another	user	is	received.

invited
Called	when	invited	into	a	channel.

param
A	pointer	to	data	that	will	be	passed	into	each	of	the	callbacks	when
triggered.

Section	Reference:	Gamespy	Chat	SDK

Chat	SDK	Enumerations
CHATBool

Standard	Boolean.

CHATEnterResult
The	result	of	a	channel	enter	attempt,	passed	into	the
chatEnterChannelCallback.

CHATBool
Standard	Boolean.

typedef	enum	
{

CHATFalse,				
CHATTrue				

}	CHATBool;

Constants

CHATFalse
False.

CHATTrue
True.

Section	Reference:	Gamespy	Chat	SDK

CHATEnterResult
The	result	of	a	channel	enter	attempt,	passed	into	the
chatEnterChannelCallback.

typedef	enum	
{

CHATEnterSuccess,				
CHATBadChannelName,				
CHATChannelIsFull,				
CHATInviteOnlyChannel,				
CHATBannedFromChannel,				
CHATBadChannelPassword,				
CHATTooManyChannels,				
CHATEnterTimedOut,				
CHATBadChannelMask				

}	CHATEnterResult;

Constants

CHATEnterSuccess
The	channel	was	successfully	entered.

CHATBadChannelName
The	channel	name	was	invalid.

CHATChannelIsFull
The	channel	is	at	its	user	limit.

CHATInviteOnlyChannel
The	channel	is	invite	only.

CHATBannedFromChannel
The	local	user	is	banned	from	this	channel.

CHATBadChannelPassword
The	channel	has	a	password,	and	a	bad	password	(or	none)	was
given.

CHATTooManyChannels
The	server	won't	allow	this	user	in	any	more	channels.

CHATEnterTimedOut
The	attempt	to	enter	timed	out.

Section	Reference:	Gamespy	Chat	SDK

See	Also:	chatEnterChannelCallback

HTTP	SDK
Overview

The	GameSpy	HTTP	SDK	(GHTTP)	is	a	library	for	downloading	files	or
other	data	from	HTTP	servers.	Simply	make	a	request,	and	the	library	will
connect	to	the	server	and	download	the	requested	file	using	the	HTTP
1.1	protocol.	GHTTP	also	supports	uploading	(posting)	files	or	other	data
to	HTTP	servers.	The	SDK	is	written	in	standard	ANSI	C	and	has	been
tested	on	Win32,	Unix,	Mac,	and	consoles.	The	library	has	been
designed	to	be	easy	to	use,	fast,	and	memory	efficient	(particularly	useful
on	console	systems	with	tight	memory	requirements).	Just	include	all	of
the	source	files	in	your	project,	and	you	can	start	easily	downloading	data
from	web	servers.

The	SDK	also	includes	two	samples.	ghttpc	is	a	simple	ANSI	C	sample
that	makes	some	requests,	then	waits	for	them	to	complete.	ghttpmfc	is	a
Windows	MFC	sample	that	provides	a	GUI	for	experimenting	with	the
SDK.

The	rest	of	this	document	presents	a	simple,	step-by-step	set	of
instructions	for	using	GHTTP.	See	the	main	ghttp.h	header	file	for	more
detailed	information	on	each	function.

File
ghttp.h

ghttpMain.c,	h

ghttpBuffer.c,h

ghttpCallbacks.c,h

ghttpCommon.c,h

ghttpConnection.c,h

ghttpPost.c,h

ghttpProcess.c,h

nonport.c,h

/ghttpc/

/ghttpmfc/

File	Manifest

The	following	files	should	be	included	with	this	package.	If	any	of	the	files
are	missing,	please	contact	devsupport@gamespy.com.

Description
GameSpy	HTTP	header	(all	user	functions	are

prototyped	here)

The	main	entry	point	for	all	GHTTP	functions

Code	for	buffering	of	incoming	and	outgoing	data

Code	for	calling	callbacks

Common	utility	code

This	code	manages	all	current	connections

Code	for	managing	and	procesing	posts
(uploads)

Code	for	processing	requests	(based	on	type
and	state)

Platform-specific	code

ANSI-C	sample

Windows	MFC	sample

mailto:devsupport@gamespy.com

Implementation

Step	1:	Startup

To	initialize	the	GHTTP	SDK,	call	ghttpStartup.	This	can	be	called
multiple	times.	There	must,	however,	be	a	matching	ghttpCleanup	for
each	call.	Note:	it	will	be	called	automatically	if	a	request	function	is
called	first.

Step	2:	Make	A	Request

Once	the	library	has	been	started	up,	its	ready	to	start	making	requests.
This	is	done	by	passing	a	URL	to	a	GHTTP	function,	which	then	contacts
the	appropriate	HTTP	server,	makes	a	request,	then	possibly	downloads
a	file	(or	other	resource).

There	are	five	types	of	request,	each	of	which	has	a	basic	function	and
an	extended	function:	get,	save,	stream,	head,	and	post.

get
The	"get"	type	of	function	simply	downloads	the	file	into	memory.
This	memory	can	be	provided	by	the	application,	or	it	can	be
allocated	by	the	library.

save
The	"save"	type	of	function	saves	the	file	directly	to	disk.	The
filename	to	save	it	as	is	passed	into	the	request	function.

stream
The	"stream"	type	of	function	doesn't	store	the	file	at	all.	It	calls	an
application-provided	callback	whenever	part	of	the	file	is	received
from	the	server,	and	the	application	can	then	do	what	it	wants	with
the	data.

head
The	"head"	type	of	function	is	used	when	an	application	wants	the
headers	that	would	normally	be	returned	as	part	of	a	"get"	request,
but	without	actually	getting	the	file.

post
The	"post"	type	of	function	is	used	solely	to	post	data,	ignoring	any

possible	body	returned	by	the	server	(response	status	and	headers
can	still	be	checked).	The	get,	save,	and	stream	types	can	also
optionally	post	data.

get

GHTTPRequest	ghttpGet

(

	 const	char	*	URL,

	 GHTTPBool	blocking,

	 ghttpCompletedCallback	completedCallback,

	 void	*	param

);

GHTTPRequest	ghttpGetEx

(

	 const	char	*	URL,

	 const	char	*	headers,

	 char	*	buffer,

	 int	bufferSize,

	 GHTTPPost	post,

	 GHTTPBool	throttle,

	 GHTTPBool	blocking,

	 ghttpProgressCallback	progressCallback,

	 ghttpCompletedCallback	completedCallback,

	 void	*	param

);

URL

This	is	the	URL	for	the	file	(i.e.,
"http://host.domain[:port]/path/filename").

headers

If	not	NULL,	this	is	a	string	containing	extra	headers	to	send	with
the	request.

buffer

The	buffer	to	download	to.	If	NULL,	one	will	be	allocated	by	the
library.

bufferSize

If	buffer	is	not	NULL,	the	size	of	the	buffer.	If	buffer	is	NULL,	this
should	be	0.

post

If	not	NULL,	post	this	object	along	with	the	request.

throttle

If	GHTTPTrue,	throttle	this	request's	download	speed.

blocking

If	GHTTPTrue,	the	request	function	won't	return	until	the	request
has	finished.

progressCallback

If	not	NULL,	gets	called	whenever	the	download	progresses.

completedCallback

If	not	NULL,	gets	called	when	the	download	is	completed
(successfully	or	not).

param

This	is	optional	user-data	that	will	be	passed	into	the	callbacks.

save

GHTTPRequest	ghttpSave

(

	 const	char	*	URL,

	 const	char	*	filename,

	 GHTTPBool	blocking,

	 ghttpCompletedCallback	completedCallback,

	 void	*	param

);	

GHTTPRequest	ghttpSaveEx

(

	 const	char	*	URL,	

	 const	char	*	filename,	

	 const	char	*	headers,

	 GHTTPPost	post,

	 GHTTPBool	throttle,

	 GHTTPBool	blocking,	

	 ghttpProgressCallback	progressCallback,

	 ghttpCompletedCallback	completedCallback,

	 void	*	param

);	

URL

This	is	the	URL	for	the	file	(i.e.,
"http://host.domain[:port]/path/filename").

filename

The	filename	to	save	the	file	as.	Cannot	be	NULL.

headers

If	not	NULL,	this	is	a	string	containing	extra	headers	to	send	with
the	request.

post

If	not	NULL,	post	this	object	along	with	the	request.

throttle

If	GHTTPTrue,	throttle	this	request's	download	speed.

blocking

If	GHTTPTrue,	the	request	function	won't	return	until	the	request
has	finished.

progressCallback

If	not	NULL,	gets	called	whenever	the	download	progresses.

completedCallback

If	not	NULL,	gets	called	when	the	download	is	completed
(successfully	or	not).

param

This	is	optional	user-data	that	will	be	passed	into	the	callbacks.

stream

GHTTPRequest	ghttpStream

(

	 const	char	*	URL,	

	 GHTTPBool	blocking,	

	 ghttpProgressCallback	progressCallback,

	 ghttpCompletedCallback	completedCallback,

	 void	*	param

);

GHTTPRequest	ghttpStreamEx

(

	 const	char	*	URL,	

	 const	char	*	headers,

	 GHTTPPost	post,

	 GHTTPBool	throttle,

	 GHTTPBool	blocking,	

	 ghttpProgressCallback	progressCallback,

	 ghttpCompletedCallback	completedCallback,

	 void	*	param

);	

URL

This	is	the	URL	for	the	file	(i.e.,
"http://host.domain[:port]/path/filename").

headers

If	not	NULL,	this	is	a	string	containing	extra	headers	to	send	with
the	request.

post

If	not	NULL,	post	this	object	along	with	the	request.

throttle

If	GHTTPTrue,	throttle	this	request's	download	speed.

blocking

If	GHTTPTrue,	the	request	function	won't	return	until	the	request
has	finished.

progressCallback

If	not	NULL,	gets	called	whenever	the	download	progresses.

completedCallback

If	not	NULL,	gets	called	when	the	download	is	completed

(successfully	or	not).
param

This	is	optional	user-data	that	will	be	passed	into	the	callbacks.

head

GHTTPRequest	ghttpHead

(

	 const	char	*	URL,	

	 GHTTPBool	blocking,	

	 ghttpCompletedCallback	completedCallback,

	 void	*	param

);

GHTTPRequest	ghttpHeadEx

(

	 const	char	*	URL,	

	 const	char	*	headers,

	 GHTTPBool	throttle,

	 GHTTPBool	blocking,	

	 ghttpProgressCallback	progressCallback,

	 ghttpCompletedCallback	completedCallback,

	 void	*	param

);	

URL

This	is	the	URL	for	the	file	(i.e.,
"http://host.domain[:port]/path/filename").

headers

If	not	NULL,	this	is	a	string	containing	extra	headers	to	send	with
the	request.

throttle

If	GHTTPTrue,	throttle	this	request's	download	speed.

blocking

If	GHTTPTrue,	the	request	function	won't	return	until	the	request
has	finished.

progressCallback

If	not	NULL,	gets	called	whenever	the	download	progresses.

completedCallback

If	not	NULL,	gets	called	when	the	download	is	completed
(successfully	or	not).

param

This	is	optional	user-data	that	will	be	passed	into	the	callbacks.

post

GHTTPRequest	ghttpPost

(

	 const	char	*	URL,	

	 GHTTPPost	post,

	 GHTTPBool	blocking,	

	 ghttpCompletedCallback	completedCallback,

	 void	*	param

);

GHTTPRequest	ghttpPostEx

(

	 const	char	*	URL,	

	 const	char	*	headers,

	 GHTTPPost	post,

	 GHTTPBool	throttle,

	 GHTTPBool	blocking,	

	 ghttpProgressCallback	progressCallback,

	 ghttpCompletedCallback	completedCallback,

	 void	*	param

);	

URL

This	is	the	URL	for	the	file	(i.e.,
"http://host.domain[:port]/path/filename").

headers

If	not	NULL,	this	is	a	string	containing	extra	headers	to	send	with
the	request.

post

The	object	to	post	with	the	request.	Cannot	be	NULL.

throttle

If	GHTTPTrue,	throttle	this	request's	download	speed.

blocking

If	GHTTPTrue,	the	request	function	won't	return	until	the	request
has	finished.

progressCallback

If	not	NULL,	gets	called	whenever	the	download	progresses.

completedCallback

If	not	NULL,	gets	called	when	the	download	is	completed
(successfully	or	not).

param

This	is	optional	user-data	that	will	be	passed	into	the	callbacks.

Step	2:	Wait	For	Callbacks

Any	application	that	uses	GHTTP	in	non-blocking	mode	(sets	the
blocking	paramater	to	GHTTPFalse)	needs	to	call	ghttpThink	to	let	the
library	do	any	necessary	processing.	This	call	will	process	any	current
requests	and	call	any	callbacks	if	necessary.	It	will	typically	be	called	in
the	application's	main	loop.	While	it	can	be	called	as	little	as	a	few	times
a	second,	it	should	be	called	closer	to	10-20	times	a	second.	If
downloading	larger	files,	it	may	be	desirable	to	call	it	even	more	often,	to
ensure	that	incoming	buffers	are	emptied	to	make	room	for	more
incoming	data.

Threads	note:	Making	GHTTP	requests	concurrently	from	multiple
threads	is	currently	only	supported	under	Win32.	When	using	GHTTP
from	multiple	threads,	instead	of	calling	ghttpThink,	use
ghttpRequestThink	for	each	individual	request.	This	allows	that
request's	callback	to	be	called	from	within	the	same	thread	in	which	it
was	started.

There	are	two	callback	types	used	by	GHTTP:	the	"progress"	callback,
and	the	"completed"	callback.	The	progress	callback,	if	provided,	gets

called	when	the	state	of	the	request	changes	and	when	file	data	is
received	from	the	server.

typedef	enum

{

	 GHTTPSocketInit,

	 GHTTPHostLookup,

	 GHTTPLookupPending,

	 GHTTPConnecting,

	 GHTTPSendingRequest,

	 GHTTPPosting,

	 GHTTPWaiting,

	 GHTTPReceivingStatus,

	 GHTTPReceivingHeaders,

	 GHTTPReceivingFile

}	GHTTPState;

typedef	void	(*	ghttpProgressCallback)

(

	 GHTTPRequest	request,

	 GHTTPState	state,

	 const	char	*	buffer,

	 int	bufferLen,

	 int	bytesReceived,

	 int	totalSize,

void	*	param

);

request

This	is	the	same	request	identifier	returned	by	the	request	function.
state

The	current	state	of	the	request.
buffer

For	get	requests,	the	file	so	far.	For	save	and	stream,	the	most
recent	data	received.

Header	data	is	not	passed	into	this	callback.	This	will	only	be	the
actual	file.

If	state	!=	GHTTPReceivingFile,	this	will	be	NULL.

bufferLen

The	length	of	the	data	in	buffer	(buffer	is	also	NUL-terminated).

If	buffer	is	NULL,	this	will	be	0.

bytesRecieved

If	GHTTPTrue,	the	request	function	won't	return	until	the	request
has	finished.

totalSize

If	not	NULL,	gets	called	whenever	the	download	progresses.

param

This	is	optional	user-data	that	will	be	passed	into	the	callbacks.

Note:	the	state	usually	moves	forward	by	one	state	at	a	time	(i.e.,
GHTTPSocketInit	->	GHTTPHostLookup).	However,	it	will	move	from
GHTTPReceivingHeaders	back	to	GHTTPSocketInit	if	the	request
has	been	redirected,	it	will	skip	GHTTPPosting	if	not	posting	data,	and	it
will	move	from	GHTTPReceivingHeaders	back	to
GHTTPReceivingStatus	if	it	gets	a	100-Continue	status	(this	typically
only	happens	while	posting).

The	completed	callback	gets	called	when	the	request	is	completed:

typedef	enum

{

	 GHTTPSuccess,

	 GHTTPOutOfMemory,

	 GHTTPBufferOverflow,

	 GHTTPParseURLFailed,

	 GHTTPHostLookupFailed,

	 GHTTPSocketFailed,

	 GHTTPConnectFailed,

	 GHTTPBadResponse,

	 GHTTPRequestRejected,

	 GHTTPUnauthorized,

	 GHTTPForbidden,

	 GHTTPFileNotFound,

	 GHTTPServerError,

	 GHTTPFileWriteFailed,

	 GHTTPFileReadFailed

)	GHTTPResult;

typedef	GHTTPBool	(*	ghttpCompletedCallback)

(

	 GHTTPRequest	request,

	 GHTTPResult	result,

	 char	*	buffer,

	 int	bufferLen,

	 void	*	param

);

request

This	is	the	same	request	identifier	returned	by	the	request	function.
result

The	result	of	the	request.
buffer

If	a	get	request,	this	is	the	entire	file	in	memory.	Otherwise,	NULL.

bufferLen

The	length	of	the	file	(even	if	not	a	get	request).
param

This	is	optional	user-data	that	will	be	passed	into	the	callbacks.

The	return	value	can	be	ignored	if	this	is	not	a	get	request.	For	a	get
request,	return	GHTTPTrue	to	have	the	buffer's	memory	freed.	If
GHTTPFalse	is	returned,	it	is	the	responsibility	of	the	application	to	free
the	memory.

Step	4:	Cleanup

When	the	application	is	done	using	GHTTP,	call	ghttpCleanup	to	free
any	resources	it	is	using.	This	call	can	also	be	used	if	GHTTP	will	not	be
used	for	a	while,	and	the	application	wishes	to	free	up	resources.	If	it	is

called	while	requests	are	pending,	they	will	be	cancelled,	and	the
completed	callback	will	not	be	called.

Posting

GHTTPPost	objects	are	used	to	post	(upload)	data	along	with	a	request.
They	can	be	used	to	upload	simple	string	data,	and	they	can	be	used	to
upload	files.	This	allows	for	a	range	of	uses,	from	posting	to	web	forums
to	uploading	custom	skins.	GHTTPPost	objects	can	be	passed	to
ghttpGetEx,	ghttpSaveEx,	and	ghttpStreamEx	to	upload	data	and
then	receive	a	response	from	the	server,	or	they	can	be	passed	to
ghttpPost	and	ghttpPostEx	to	just	upload	data	without	getting	a
response.

ghttpNewPost	is	used	to	create	a	new	GHTTPPost	object.	To	add	data
to	it,	use	ghttpPostAddString,	ghttpPostAddFileFromDisk,	and
ghttpPostAddFileFromMemory.	Once	an	object	is	setup,	it	can	be
used	in	a	request.	An	application	must	not	modify	a	GHTTPPost	object
that	is	in	the	process	of	being	used	in	a	request.	By	default,	the	object	will
be	automatically	freed	after	being	used.	However,	the	same	object	can
be	used	in	multiple	requests	by	calling	ghttpPostSetAutoFree	and
setting	the	autoFree	paramater	to	GHTTPFalse.	When	done	using	the
object,	free	it	with	ghttpFreePost	(or	set	autoFree	back	to
GHTTPTrue	before	using	it	for	the	last	time).	ghttpPostSetCallback
can	be	used	to	setup	a	callback	to	be	called	whenever	data	is	uploaded,
which	allows	an	application	to	monitor	the	progress	of	the	upload	in	terms
of	both	bytes	and	objects	uploaded.

If	only	strings	are	being	uploaded	as	part	of	a	request,	then	it	will	be	done
using	the	"application/x-www-form/urlencoded"	content	type.	If	files	are
also	being	uploaded	(either	from	disk	or	memory),	then	the	post	will	use
the	"multipart/form-data"	content	type.

Miscellaneous

If	throttling	is	enabled	for	a	request,	the	download	speed	will	be	limited.
To	customize	the	throttle	speed,	use	ghttpThrottleSettings.	To
change	a	requests	throttle	setting	after	it	has	been	started,	use
ghttpSetThrottle".

There	is	a	known	bug	with	Windows	CE	that	causes	it	to	return	the	wrong
address	when	looking	up	certain	DNS	names	(specifically,	those	with
CNAME	records).	An	example	of	a	host	name	that	CE	will	not	handle
correctly	is	"www.cnn.com".

GHTTP	can	handle	HTTP	redirection.	If	the	server	sends	a	response	with
a	3xx	status	code,	and	the	new	location	is	given,	GHTTP	will	then
attempt	to	open	the	new	URL.	The	current	state	of	the	request	will	go
from	GHTTPReceivingHeaders	to	GHTTPSocketInit.

A	current	request	can	be	cancelled	by	passing	its	GHTTPRequest
identifier	(returned	from	the	request	function)	to	ghttpCancelRequest.
The	completed	callback	will	not	be	called	for	this	request.

The	current	state	of	a	request	can	be	obtained	at	any	time	with
ghttpGetState.

If	the	state	of	a	request	has	passed	GHTTPReceivingStatus,	then
ghttpGetResponseStatus	can	be	used	to	get	both	the	status	code
and	status	string	returned	by	the	HTTP	server.

If	the	request	has	passed	the	GHTTPReceivingHeaders	state,	then
ghttpGetHeaders	can	be	called	to	get	the	headers	returned	by	the
server.

ghttpGetURL	can	be	called	to	get	the	URL	being	retrieved	by	the
request.	If	the	request	has	been	redirected,	the	URL	returned	will	be	the
new	URL,	not	the	one	passed	into	the	request	function.

All	requests	can	be	forwarded	to	a	web	proxy	by	passing	a	proxy's
address	to	ghttpSetProxy.

UNICODE	Support

The	GameSpy	SDKs	support	an	optional	UNICODE	interface	for
widestring	applications.	To	use	this	interface,	first	define	the	symbol
"GSI_UNICODE".	Then,	use	widestrings	wherever	ANSI	strings	were
previously	called	for.	When	in	doubt,	please	refer	to	the	header	files	for
specific	function	declarations.

Although	the	GameSpy	SDK	interfaces	support	UNICODE	parameters,
some	items	may	be	stripped	of	their	extra	UNICODE	information.	These
items	include:	nickname,	email	address,	and	URL	strings.	You	may	pass
in	widestring	values,	but	they	will	first	be	converted	to	their	ANSI
counterparts	before	transmission.

HTTP	SDK	Functions
ghttpCancelRequest

Cancel	a	HTTP	request	in	progress.

ghttpCleanup
Destruct	the	HTTP	sdk.		Free	internally
allocated	memory.

ghttpFreePost
Free	a	post	object.

ghttpGet
Make	a	HTTP	GET	request	and	save	the
response	to	memory.

ghttpGetEx
Make	a	HTTP	GET	request	and	save	the
response	to	memory.

ghttpGetHeaders
Get	the	response	headers	from	an	HTTP
request.

ghttpGetResponseStatus
Get	the	response's	status	string	and
status	code.

ghttpGetState
Obtain	the	current	state	of	a	request.

ghttpGetURL
Used	to	obtain	the	URL	associated	with	a
request.

ghttpHead
Make	a	HTTP	HEAD	request,	which	will
only	retrieve	the	response	headers	and
not	the	normal	response	body.

ghttpHeadEx
Make	a	HTTP	HEAD	request,	which	will
only	retrieve	the	response	headers	and
not	the	normal	response	body.

ghttpNewPost
Creates	a	new	post	object,	which	is	used
to	represent	data	to	send	a	web	server	as
part	of	a	request.

ghttpPost
Do	a	HTTP	POST,	which	can	be	used	to
upload	data	to	a	web	server.

ghttpPostAddFileFromDisk
Adds	a	disk	file	to	the	post	object.

ghttpPostAddFileFromMemory
Adds	a	file,	in	memory,	to	the	post	object.

ghttpPostAddString
Adds	a	string	to	the	post	object.

ghttpPostEx
Do	a	HTTP	POST,	which	can	be	used	to
upload	data	to	a	web	server.

ghttpPostSetAutoFree
Sets	a	post	object's	auto-free	flag.

ghttpPostSetCallback
Sets	the	callback	for	a	post	object.

ghttpRequestThink
Process	just	one	particular	request.

ghttpSave
Make	a	HTTP	GET	request	and	save	the
response	to	disk.

ghttpSaveEx
Make	a	HTTP	GET	request	and	save	the
response	to	disk.

ghttpSetMaxRecvTime
Used	to	throttle	based	on	time,	not	on
bandwidth.

ghttpSetProxy
Sets	a	proxy	server	address.

ghttpSetRequestProxy
Sets	a	proxy	server	for	a	specific	request.

ghttpSetThrottle
Used	to	start/stop	throttling	an	existing
connection.

ghttpStartup
Initialize	the	HTTP	SDK.

ghttpStream
Make	a	HTTP	GET	request	and	stream	in
the	response	without	saving	it	in	memory.

ghttpStreamEx
Make	a	HTTP	GET	request	and	stream	in
the	response	without	saving	it	in	memory.

ghttpThink
Processes	all	current	http	requests.

ghttpThrottleSettings
Used	to	adjust	the	throttle	settings.

ghttpCancelRequest
Cancel	a	HTTP	request	in	progress.

void	ghttpCancelRequest(
GHTTPRequest	request);

Routine Required	Header Distribution
ghttpCancelRequest <ghttp.h> SDKZIP

Parameters

request
[in]	A	valid	GHTTPRequest	object.

Remarks

The	GHTTPRequest	should	not	be	referenced	once	this	function	returns.

Section	Reference:	Gamespy	HTTP	SDK

ghttpCleanup
Destruct	the	HTTP	sdk.		Free	internally	allocated	memory.

void	ghttpCleanup();

Routine Required	Header Distribution
ghttpCleanup <ghttp.h> SDKZIP

Remarks

One	call	to	ghttpCleanup	should	be	made	for	each	call	to	ghttpStartup.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpStartup

ghttpFreePost
Free	a	post	object.

void	ghttpFreePost(
GHTTPPost	post);

Routine Required	Header Distribution
ghttpFreePost <ghttp.h> SDKZIP

Parameters

post
[in]	Post	object	created	with	ghttpNewPost.

Remarks

By	default,	post	objects	created	with	ghttpNewPost	will	be	automatically
freed	after	being	used	in	a	request.	However	ghttpPostSetAutoFree	can
be	used	to	turn	off	the	post	object's	auto-free	property.	This	can	be	useful
if	a	single	post	object	will	be	used	in	multiple	requests.	You	should	then
use	this	function	to	manually	free	the	post	object	after	the	last	request	it
has	been	used	in	completes.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpNewPost,	ghttpPostSetAutoFree

ghttpGet
Make	a	HTTP	GET	request	and	save	the	response	to	memory.

GHTTPRequest	ghttpGet(
const	gsi_char	*	URL,
GHTTPBool	blocking,
ghttpCompletedCallback	completedCallback,
void	*	param);

Routine Required	Header Distribution
ghttpGet <ghttp.h> SDKZIP

Return	Value

If	less	than	0,	the	request	failed	and	this	is	a	GHTTPRequestError	value.
Otherwise	it	identifies	the	request.

Parameters

URL
[in]	URL

blocking
[in]	If	true,	this	call	doesn't	return	until	the	file	has	been	received.

completedCallback
[in]	Called	when	the	file	has	been	received.

param
[in]	Optional	free-format	user	data	for	use	by	the	callback

Remarks

This	function	is	used	to	download	the	contents	of	a	web	page	to	memory.
The	application	can	provide	the	memory	by	supplying	a	buffer	to	this
function,	or	the	SDK	can	be	allocate	the	memory	internally.
Use	ghttpGetEx	for	extra	optionional	parameters.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
ghttpGet ghttpGetA ghttpGetW

ghttpGetW	and	ghttpGetA	are	UNICODE	and	ANSI	mapped	versions	of
ghttpGet.	The	arguments	of	ghttpGetA	are	ANSI	strings;	those	of
ghttpGetW	are	wide-character	strings.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpGetEx,	ghttpSave,	ghttpStream,	ghttpHead,	ghttpPost

ghttpGetEx
Make	a	HTTP	GET	request	and	save	the	response	to	memory.

GHTTPRequest	ghttpGetEx(
const	gsi_char	*	URL,
const	gsi_char	*	headers,
char	*	buffer,
int	bufferSize,
GHTTPPost	post,
GHTTPBool	throttle,
GHTTPBool	blocking,
ghttpProgressCallback	progressCallback,
ghttpCompletedCallback	completedCallback,
void	*	param);

Routine Required	Header Distribution
ghttpGetEx <ghttp.h> SDKZIP

Return	Value

If	less	than	0,	the	request	failed	and	this	is	a	GHTTPRequestError	value.
Otherwise	it	identifies	the	request.

Parameters

URL
[in]	URL

headers
[in]	Optional	headers	to	pass	with	the	request.	Can	be	NULL	or	"".

buffer
[in]	Optional	user-supplied	buffer.	Set	to	NULL	to	have	one	allocated.
Must	be	(size+1)	to	allow	null	terminating	character.

bufferSize
[in]	The	size	of	the	user-supplied	buffer	in	bytes.	0	if	buffer	is	NULL.

post
[in]	Optional	data	to	be	posted.	Can	be	NULL.

throttle
[in]	If	true,	throttle	this	connection's	download	speed.

blocking
[in]	If	true,	this	call	doesn't	return	until	the	file	has	been	received.

progressCallback
[in]	Called	periodically	with	progress	updates.	Can	be	NULL.

completedCallback
[in]	Called	when	the	file	has	been	received.	Can	be	NULL.

param
[in]	Optional	free-format	user	data	for	use	by	the	callback

Remarks

This	function	is	used	to	download	the	contents	of	a	web	page	to	memory.
The	application	can	provide	the	memory	by	supplying	a	buffer	to	this
function,	or	the	SDK	can	be	allocate	the	memory	internally.
Use	ghttpGet	for	a	simpler	version	of	this	function.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpGet,	ghttpSaveEx,	ghttpStreamEx,	ghttpHeadEx,
ghttpPostEx

ghttpGetHeaders
Get	the	response	headers	from	an	HTTP	request.

const	char	*	ghttpGetHeaders(
GHTTPRequest	request);

Routine Required	Header Distribution
ghttpGetHeaders <ghttp.h> SDKZIP

Return	Value

The	headers	returned	in	the	response.

Parameters

request
[in]	A	valid	request	object

Remarks

Only	valid	if	the	request's	state	is	GHTTPReceivingHeaders.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpGetState

ghttpGetResponseStatus
Get	the	response's	status	string	and	status	code.

const	char	*	ghttpGetResponseStatus(
GHTTPRequest	request,
int	*	statusCode);

Routine Required	Header Distribution
ghttpGetResponseStatus <ghttp.h> SDKZIP

Return	Value

The	response's	status	string.

Parameters

request
[in]	A	valid	request	object

statusCode
[out]	Status	code.

Remarks

Can	only	be	used	if	the	state	has	passed	GHTTPReceivingStatus.
The	status	string	is	a	user-readable	representation	of	the	result	of	the
request.
The	status	code	is	a	3	digit	number	which	can	be	used	to	get	more
details	on	the	result	of	the	request.	There	are	5	possible	values	for	the
first	digit:
1xx:	Informational
2xx:	Success
3xx:	Redirection
4xx:	Client	Error
5xx:	Server	Error
See	RFC2616	(HTTP	1.1)	and	any	follow-up	RFCs	for	more	information
on	specific	codes.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpGetState

ghttpGetState
Obtain	the	current	state	of	a	request.

GHTTPState	ghttpGetState(
GHTTPRequest	request);

Routine Required	Header Distribution
ghttpGetState <ghttp.h> SDKZIP

Return	Value

The	state	of	an	HTTP	request.

Parameters

request
[in]	A	valid	request	object

Section	Reference:	Gamespy	HTTP	SDK

ghttpGetURL
Used	to	obtain	the	URL	associated	with	a	request.

const	char	*	ghttpGetURL(
GHTTPRequest	request);

Routine Required	Header Distribution
ghttpGetURL <ghttp.h> SDKZIP

Return	Value

The	URL	associated	with	the	request.

Parameters

request
[in]	A	valid	request	object

Remarks

If	the	request	has	been	redirected,	this	function	will	return	the	new	URL,
not	the	original	URL.

Section	Reference:	Gamespy	HTTP	SDK

ghttpHead
Make	a	HTTP	HEAD	request,	which	will	only	retrieve	the	response
headers	and	not	the	normal	response	body.

GHTTPRequest	ghttpHead(
const	gsi_char	*	URL,
GHTTPBool	blocking,
ghttpCompletedCallback	completedCallback,
void	*	param);

Routine Required	Header Distribution
ghttpHead <ghttp.h> SDKZIP

Return	Value

If	less	than	0,	the	request	failed	and	this	is	a	GHTTPRequestError	value.
Otherwise	it	identifies	the	request.

Parameters

URL
[in]	URL

blocking
[in]	If	true,	this	call	doesn't	return	until	finished

completedCallback
[in]	Called	when	the	request	has	finished.

param
[in]	Optional	free-format	user	data	for	use	by	the	callback

Remarks

This	function	is	similar	to	ghttpGet,	except	it	only	gets	the	response
headers.	This	is	done	by	making	an	HEAD	request	instead	of	a	GET
request,	which	instructs	the	HTTP	server	to	leave	the	body	out	of	the
response.
Use	ghttpHeadEx	for	extra	optional	parameters.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpGet,	ghttpSave,	ghttpStream,	ghttpHeadEx,	ghttpPost

ghttpHeadEx
Make	a	HTTP	HEAD	request,	which	will	only	retrieve	the	response
headers	and	not	the	normal	response	body.

GHTTPRequest	ghttpHeadEx(
const	gsi_char	*	URL,
const	gsi_char	*	headers,
GHTTPBool	throttle,
GHTTPBool	blocking,
ghttpProgressCallback	progressCallback,
ghttpCompletedCallback	completedCallback,
void	*	param);

Routine Required	Header Distribution
ghttpHeadEx <ghttp.h> SDKZIP

Return	Value

If	less	than	0,	the	request	failed	and	this	is	a	GHTTPRequestError	value.
Otherwise	it	identifies	the	request.

Parameters

URL
[in]	URL

headers
[in]	Optional	headers	to	pass	with	the	request.	Can	be	NULL	or	"".

throttle
[in]	If	true,	throttle	this	connection's	download	speed.

blocking
[in]	If	true,	this	call	doesn't	return	until	finished

progressCallback
[in]	Called	whenever	new	data	is	received.	Can	be	NULL.

completedCallback
[in]	Called	when	the	request	has	finished.	Can	be	NULL.

param
[in]	Optional	free-format	user	data	for	use	by	the	callback

Remarks

This	function	is	similar	to	ghttpGetEx,	except	it	onlyl	gets	the	response
headers.	This	is	done	by	making	an	HEAD	request	instead	of	a	GET
request,	which	instructs	the	HTTP	server	to	leave	the	body	out	of	the
response.
Use	ghttpHead	for	a	simpler	version	of	this	function.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpGetEx,	ghttpSaveEx,	ghttpStreamEx,	ghttpHead,
ghttpPostEx

ghttpNewPost
Creates	a	new	post	object,	which	is	used	to	represent	data	to	send	a	web
server	as	part	of	a	request.

GHTTPPost	ghttpNewPost();

Routine Required	Header Distribution
ghttpNewPost <ghttp.h> SDKZIP

Return	Value

The	newly	created	post	object,	or	NULL	if	it	cannot	be	created.

Remarks

After	getting	the	post	object,	use	the	ghttpPostAdd*()	functions	to	add
data	to	the	object,	and	ghttpPostSetCallback()	to	add	a	callback	to
monitor	the	progress	of	the	data	upload.
By	default	post	objects	automatically	free	themselves	after	posting.	To
use	the	same	post	with	more	than	one	request,	set	auto-free	to	false,
then	use	ghttpFreePost	to	free	it	after	every	request	its	being	used	in	is
completed.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpPostAddString,	ghttpPostAddFileFromDisk,
ghttpPostAddFileFromMemory,	ghttpPostSetAutoFree,	ghttpFreePost,
ghttpPostSetCallback

ghttpPost
Do	a	HTTP	POST,	which	can	be	used	to	upload	data	to	a	web	server.

GHTTPRequest	ghttpPost(
const	gsi_char	*	URL,
GHTTPPost	post,
GHTTPBool	blocking,
ghttpCompletedCallback	completedCallback,
void	*	param);

Routine Required	Header Distribution
ghttpPost <ghttp.h> SDKZIP

Return	Value

If	less	than	0,	the	request	failed	and	this	is	a	GHTTPRequestError	value.
Otherwise	it	identifies	the	request.

Parameters

URL
[in]	URL

post
[in]	The	data	to	be	posted.

blocking
[in]	If	true,	this	call	doesn't	return	until	finished

completedCallback
[in]	Called	when	the	file	has	finished	streaming.	Can	be	NULL.

param
[in]	Optional	free-format	user	data	for	use	by	the	callback

Remarks

This	function	is	used	to	post	data	to	a	web	page,	ignoring	any	possible
response	body	sent	by	the	server	(response	status	and	response
headers	can	still	be	checked).	If	you	want	to	post	data	and	receive	a
response,	use	ghttpGetEx,	ghttpSaveEx,	or	ghttpStreamEx.
Use	ghttpPostEx	for	extra	optional	parameters.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpGet,	ghttpGetEx,	ghttpSave,	ghttpSaveEx,	ghttpStream,
ghttpStreamEx,	ghttpHead,	ghttpPostEx

ghttpPostAddFileFromDisk
Adds	a	disk	file	to	the	post	object.

GHTTPBool	ghttpPostAddFileFromDisk(
GHTTPPost	post,
const	gsi_char	*	name,
const	gsi_char	*	filename,
const	gsi_char	*	reportFilename,
const	gsi_char	*	contentType);

Routine Required	Header Distribution
ghttpPostAddFileFromDisk <ghttp.h> SDKZIP

Return	Value

GHTTPTrue	if	the	file	was	added	successfully.

Parameters

post
[in]	Post	object

name
[in]	The	name	to	attach	to	this	file.

filename
[in]	The	name	(and	possibly	path)	to	the	file	to	upload.

reportFilename
[in]	The	filename	given	to	the	web	server.

contentType
[in]	The	MIME	type	for	this	file.

Remarks

The	reportFilename	is	what	is	reported	to	the	server	as	the	filename.	If
NULL	or	empty,	the	filename	will	be	used	(including	any	possible	path).
The	contentType	is	the	MIME	type	to	report	for	this	file.	If	NULL,
"application/octet-stream"	is	used.
The	file	isn't	read	from	until	the	data	is	actually	sent	to	the	server.
When	uploading	files	the	content	type	of	the	overall	request	(as	opposed
to	the	content	this	of	this	file)	will	be	"multipart/form-data".

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

ghttpPostAddFileFromDisk ghttpPostAddFileFromDiskA ghttpPostAddFileFromDiskW

ghttpPostAddFileFromDiskW	and	ghttpPostAddFileFromDiskA	are
UNICODE	and	ANSI	mapped	versions	of	ghttpPostAddFileFromDisk.
The	arguments	of	ghttpPostAddFileFromDiskA	are	ANSI	strings;	those
of	ghttpPostAddFileFromDiskW	are	wide-character	strings.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpNewPost,	ghttpPost,	ghttpPostAddString,
ghttpPostAddFileFromMemory

ghttpPostAddFileFromMemory
Adds	a	file,	in	memory,	to	the	post	object.

GHTTPBool	ghttpPostAddFileFromMemory(
GHTTPPost	post,
const	gsi_char	*	name,
const	char	*	buffer,
int	bufferLen,
const	gsi_char	*	reportFilename,
const	gsi_char	*	contentType);

Routine Required	Header Distribution
ghttpPostAddFileFromMemory <ghttp.h> SDKZIP

Return	Value

GHTTPTrue	if	the	file	was	added	successfully.

Parameters

post
[in]	Post	object

name
[in]	The	name	to	attach	to	this	file.

buffer
[in]	The	data	to	send.

bufferLen
[in]	The	number	of	bytes	of	data	to	send.

reportFilename
[in]	The	filename	given	to	the	web	server.

contentType
[in]	The	MIME	type	for	this	file.

Remarks

The	reportFilename	is	what	is	reported	to	the	server	as	the	filename.	It
cannot	be	NULL	or	empty.
The	contentType	is	the	MIME	type	to	report	for	this	file.	If	NULL,
"application/octet-stream"	is	used.
The	data	is	not	copied	off	in	this	call.	The	data	pointer	is	read	from	as	the
data	is	actually	sent	to	the	server.	The	pointer	must	remain	valid	during
requests.
When	uploading	files	the	content	type	of	the	overall	request	(as	opposed
to	the	content	this	of	this	file)	will	be	"multipart/form-data".

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
ghttpPostAddFileFromMemory ghttpPostAddFileFromMemoryA ghttpPostAddFileFromMemoryW

ghttpPostAddFileFromMemoryW	and
ghttpPostAddFileFromMemoryA	are	UNICODE	and	ANSI	mapped
versions	of	ghttpPostAddFileFromMemory.	The	arguments	of
ghttpPostAddFileFromMemoryA	are	ANSI	strings;	those	of
ghttpPostAddFileFromMemoryW	are	wide-character	strings.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpNewPost,	ghttpPost,	ghttpPostAddFileFromDisk,
ghttpPostAddString

ghttpPostAddString
Adds	a	string	to	the	post	object.

GHTTPBool	ghttpPostAddString(
GHTTPPost	post,
const	gsi_char	*	name,
const	gsi_char	*	string);

Routine Required	Header Distribution
ghttpPostAddString <ghttp.h> SDKZIP

Return	Value

GHTTPTrue	if	the	string	was	added	successfully.

Parameters

post
[in]	Post	object

name
[in]	The	name	to	attach	to	this	string.

string
[in]	The	string	to	send.

Remarks

If	a	post	object	only	contains	string,	the	content	type	for	the	upload	will	be
the	"application/x-www-form/urlencoded".	If	any	files	are	added,	the
content	type	for	the	upload	will	become	"multipart/form-data".

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

ghttpPostAddString ghttpPostAddStringA ghttpPostAddStringW

ghttpPostAddStringW	and	ghttpPostAddStringA	are	UNICODE	and
ANSI	mapped	versions	of	ghttpPostAddString.	The	arguments	of
ghttpPostAddStringA	are	ANSI	strings;	those	of
ghttpPostAddStringW	are	wide-character	strings.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpNewPost,	ghttpPost,	ghttpPostAddFileFromDisk,
ghttpPostAddFileFromMemory

ghttpPostEx
Do	a	HTTP	POST,	which	can	be	used	to	upload	data	to	a	web	server.

GHTTPRequest	ghttpPostEx(
const	gsi_char	*	URL,
const	gsi_char	*	headers,
GHTTPPost	post,
GHTTPBool	throttle,
GHTTPBool	blocking,
ghttpProgressCallback	progressCallback,
ghttpCompletedCallback	completedCallback,
void	*	param);

Routine Required	Header Distribution
ghttpPostEx <ghttp.h> SDKZIP

Return	Value

If	less	than	0,	the	request	failed	and	this	is	a	GHTTPRequestError	value.
Otherwise	it	identifies	the	request.

Parameters

URL
[in]	URL

headers
[in]	Optional	headers	to	pass	with	the	request.	Can	be	NULL	or	"".

post
[in]	The	data	to	be	posted.

throttle
[in]	If	true,	throttle	this	connection's	download	speed.

blocking
[in]	If	true,	this	call	doesn't	return	until	finished.

progressCallback
[in]	Called	whenever	new	data	is	received.	Can	be	NULL.

completedCallback
[in]	Called	when	the	file	has	finished	streaming.	Can	be	NULL.

param
[in]	Optional	free-format	user	data	for	use	by	the	callback

Remarks

This	function	is	used	to	post	data	to	a	web	page,	ignoring	any	possible
response	body	sent	by	the	server	(response	status	and	response
headers	can	still	be	checked).	If	you	want	to	post	data	and	receive	a
response,	use	ghttpGetEx,	ghttpSaveEx,	or	ghttpStreamEx.
Use	ghttpPost	for	a	simpler	version	of	this	function.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpGetEx,	ghttpSaveEx,	ghttpStreamEx,	ghttpHeadEx,
ghttpPost

ghttpPostSetAutoFree
Sets	a	post	object's	auto-free	flag.

void	ghttpPostSetAutoFree(
GHTTPPost	post,
GHTTPBool	autoFree);

Routine Required	Header Distribution
ghttpPostSetAutoFree <ghttp.h> SDKZIP

Parameters

post
[in]	Post	object

autoFree
[in]	True	if	object	should	be	auto-freed

Remarks

By	default	post	objects	automatically	free	themselves	after	posting.	To
use	the	same	post	with	more	than	one	request,	set	auto-free	to	false,
then	use	ghttpFreePost	to	free	it	after	every	request	it's	being	used	in	is
completed.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpNewPost,	ghttpFreePost,	ghttpPost

ghttpPostSetCallback
Sets	the	callback	for	a	post	object.

void	ghttpPostSetCallback(
GHTTPPost	post,
ghttpPostCallback	callback,
void	*	param);

Routine Required	Header Distribution
ghttpPostSetCallback <ghttp.h> SDKZIP

Parameters

post
[in]	The	post	object	to	set	the	callback	on.

callback
[in]	The	callback	to	call	when	using	this	post	object.

param
[in]	User	data	passed	to	the	callback.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpNewPost

ghttpRequestThink
Process	just	one	particular	request.

GHTTPBool	ghttpRequestThink(
GHTTPRequest	request);

Routine Required	Header Distribution
ghttpRequestThink <ghttp.h> SDKZIP

Return	Value

GHTTPFalse	if	the	request	cannot	be	found.

Parameters

request
[in]	A	valid	request	object	to	process.

Remarks

This	allows	an	HTTP	request	to	be	processed	in	a	separate	thread	(only
supported	under	Win32).

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpThink

ghttpSave
Make	a	HTTP	GET	request	and	save	the	response	to	disk.

GHTTPRequest	ghttpSave(
const	gsi_char	*	URL,
const	gsi_char	*	filename,
GHTTPBool	blocking,
ghttpCompletedCallback	completedCallback,
void	*	param);

Routine Required	Header Distribution
ghttpSave <ghttp.h> SDKZIP

Return	Value

If	less	than	0,	the	request	failed	and	this	is	a	GHTTPRequestError	value.
Otherwise	it	identifies	the	request.

Parameters

URL
[in]	URL

filename
[in]	The	path	and	name	to	store	the	file	as	locally.

blocking
[in]	If	true,	this	call	doesn't	return	until	the	file	has	been	received.

completedCallback
[in]	Called	when	the	file	has	been	received.	Can	be	NULL.

param
[in]	Optional	free-format	user	data	for	use	by	the	callback

Remarks

This	function	is	used	to	download	the	contents	of	a	web	page	directly	to
disk.	The	application	supplies	the	path	and	filename	at	which	to	save	the
response.
Use	ghttpSaveEx	for	extra	optional	parameters.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpGet,	ghttpSaveEx,	ghttpStream,	ghttpHead,	ghttpPost

ghttpSaveEx
Make	a	HTTP	GET	request	and	save	the	response	to	disk.

GHTTPRequest	ghttpSaveEx(
const	gsi_char	*	URL,
const	gsi_char	*	filename,
const	gsi_char	*	headers,
GHTTPPost	post,
GHTTPBool	throttle,
GHTTPBool	blocking,
ghttpProgressCallback	progressCallback,
ghttpCompletedCallback	completedCallback,
void	*	param);

Routine Required	Header Distribution
ghttpSaveEx <ghttp.h> SDKZIP

Return	Value

If	less	than	0,	the	request	failed	and	this	is	a	GHTTPRequestError	value.
Otherwise	it	identifies	the	request.

Parameters

URL
[in]	URL

filename
[in]	The	path	and	name	to	store	the	file	as	locally.

headers
[in]	Optional	headers	to	pass	with	the	request.	Can	be	NULL	or	"".

post
[in]	Optional	data	to	be	posted.	Can	be	NULL.

throttle
[in]	If	true,	throttle	this	connection's	download	speed.

blocking
[in]	If	true,	this	call	doesn't	return	until	the	file	has	been	received.

progressCallback
[in]	Called	periodically	with	progress	updates.	Can	be	NULL.

completedCallback
[in]	Called	when	the	file	has	been	received.	Can	be	NULL.

param
[in]	Optional	free-format	user	data	for	use	by	the	callback

Remarks

This	function	is	used	to	download	the	contents	of	a	web	page	directly	to
disk.	The	application	supplies	the	path	and	filename	at	which	to	save	the
response.
Use	ghttpSave	for	a	simpler	version	of	this	function.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpGetEx,	ghttpSave,	ghttpStreamEx,	ghttpHeadEx,
ghttpPostEx

ghttpSetMaxRecvTime
Used	to	throttle	based	on	time,	not	on	bandwidth.

void	ghttpSetMaxRecvTime(
GHTTPRequest	request,
gsi_time	maxRecvTime);

Routine Required	Header Distribution
ghttpSetMaxRecvTime <ghttp.h> SDKZIP

Parameters

request
[in]	A	valid	request	object

maxRecvTime
[in]	Maximum	receive	time

Remarks

Prevents	recv-loop	blocking	on	ultrafast	connections	without	directly
limiting	transfer	rate.

Section	Reference:	Gamespy	HTTP	SDK

ghttpSetProxy
Sets	a	proxy	server	address.

GHTTPBool	ghttpSetProxy(
const	char	*	server);

Routine Required	Header Distribution
ghttpSetProxy <ghttp.h> SDKZIP

Return	Value

GHTTPFalse	if	the	server	format	is	invalid.

Parameters

server
[in]	The	address	of	the	proxy	server.

Remarks

The	address	must	be	of	the	form	"<server>[:port]".	If	port	is	omitted,	80
will	be	used.
If	server	is	NULL	or	"",	no	proxy	server	will	be	used.	This	should	not	be
called	while	there	are	any	current	requests.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpSetRequestProxy

ghttpSetRequestProxy
Sets	a	proxy	server	for	a	specific	request.

GHTTPBool	ghttpSetRequestProxy(
GHTTPRequest	request,
const	char	*	server);

Routine Required	Header Distribution
ghttpSetRequestProxy <ghttp.h> SDKZIP

Return	Value

GHTTPFalse	if	the	server	format	is	invalid	or	the	request	is	invalid.

Parameters

request
[in]	A	valid	request	object

server
[in]	The	address	of	the	proxy	server.

Remarks

The	address	must	be	of	the	form	"<server>[:port]".	If	port	is	omitted,	80
will	be	used.
If	server	is	NULL	or	"",	no	proxy	server	will	be	used.	This	should	not	be
called	while	there	are	any	current	requests.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpSetRequestProxy

ghttpSetThrottle
Used	to	start/stop	throttling	an	existing	connection.

void	ghttpSetThrottle(
GHTTPRequest	request,
GHTTPBool	throttle);

Routine Required	Header Distribution
ghttpSetThrottle <ghttp.h> SDKZIP

Parameters

request
[in]	A	valid	request	object

throttle
[in]	True	or	false	to	enable	or	disable	throtting.

Remarks

This	may	not	be	as	efficient	as	starting	a	request	with	the	desired	setting.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpThrottleSettings

ghttpStartup
Initialize	the	HTTP	SDK.

void	ghttpStartup();

Routine Required	Header Distribution
ghttpStartup <ghttp.h> SDKZIP

Remarks

Startup/Cleanup	is	reference	counted,	so	always	call	ghttpStartup()	and
ghttpCleanup()	in	pairs.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpCleanup

ghttpStream
Make	a	HTTP	GET	request	and	stream	in	the	response	without	saving	it
in	memory.

GHTTPRequest	ghttpStream(
const	gsi_char	*	URL,
GHTTPBool	blocking,
ghttpProgressCallback	progressCallback,
ghttpCompletedCallback	completedCallback,
void	*	param);

Routine Required	Header Distribution
ghttpStream <ghttp.h> SDKZIP

Return	Value

If	less	than	0,	the	request	failed	and	this	is	a	GHTTPRequestError	value.
Otherwise	it	identifies	the	request.

Parameters

URL
[in]	URL

blocking
[in]	If	true,	this	call	doesn't	return	until	the	file	has	finished	streaming.

progressCallback
[in]	Called	whenever	new	data	is	received.	Can	be	NULL.

completedCallback
[in]	Called	when	the	file	has	finished	streaming.	Can	be	NULL.

param
[in]	Optional	free-format	user	data	for	use	by	the	callback

Remarks

This	function	is	used	to	stream	in	the	contents	of	a	web	page.	The
response	body	is	not	stored	in	memory	or	to	disk.	It	is	only	passed	to	the
progressCallback	as	it	is	received,	and	the	application	can	do	what	it
wants	with	the	data.
Use	ghttpStreamEx	for	extra	optional	parameters.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpGet,	ghttpSave,	ghttpStreamEx,	ghttpHead,	ghttpPost

ghttpStreamEx
Make	a	HTTP	GET	request	and	stream	in	the	response	without	saving	it
in	memory.

GHTTPRequest	ghttpStreamEx(
const	gsi_char	*	URL,
const	gsi_char	*	headers,
GHTTPPost	post,
GHTTPBool	throttle,
GHTTPBool	blocking,
ghttpProgressCallback	progressCallback,
ghttpCompletedCallback	completedCallback,
void	*	param);

Routine Required	Header Distribution
ghttpStreamEx <ghttp.h> SDKZIP

Return	Value

If	less	than	0,	the	request	failed	and	this	is	a	GHTTPRequestError	value.
Otherwise	it	identifies	the	request.

Parameters

URL
[in]	URL

headers
[in]	Optional	headers	to	pass	with	the	request.	Can	be	NULL	or	"".

post
[in]	Optional	data	to	be	posted.	Can	be	NULL.

throttle
[in]	If	true,	throttle	this	connection's	download	speed.

blocking
[in]	If	true,	this	call	doesn't	return	until	the	file	has	finished	streaming.

progressCallback
[in]	Called	whenever	new	data	is	received.	Can	be	NULL.

completedCallback
[in]	Called	when	the	file	has	finished	streaming.	Can	be	NULL.

param
[in]	Optional	free-format	user	data	for	use	by	the	callback

Remarks

This	function	is	used	to	stream	in	the	contents	of	a	web	page.	The
response	body	is	not	stored	in	memory	or	to	disk.	It	is	only	passed	to	the
progressCallback	as	it	is	received,	and	the	application	can	do	what	it
wants	with	the	data.
Use	ghttpStream	for	a	simpler	version	of	this	function.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpGetEx,	ghttpSaveEx,	ghttpStream,	ghttpHeadEx,
ghttpPostEx

ghttpThink
Processes	all	current	http	requests.

void	ghttpThink();

Routine Required	Header Distribution
ghttpThink <ghttp.h> SDKZIP

Remarks

Any	application	that	uses	GHTTP	in	non-blocking	mode	(sets	the
blocking	paramater	to	GHTTPFalse)	needs	to	call	ghttpThink	to	let	the
library	do	any	necessary	processing.	This	call	will	process	any	current
requests	and	call	any	callbacks	if	necessary.	It	will	typically	be	called	in
the	application’s	main	loop.	While	it	can	be	called	as	little	as	a	few	times
a	second,	it	should	be	called	closer	to	10-20	times	a	second.	If
downloading	larger	files,	it	may	be	desirable	to	call	it	even	more	often,	to
ensure	that	incoming	buffers	are	emptied	to	make	room	for	more
incoming	data.

Threads	note:	Making	GHTTP	requests	concurrently	from	multiple
threads	is	currently	only	supported	under	Win32.	When	using	GHTTP
from	multiple	threads,	instead	of	calling	ghttpThink,	use
ghttpRequestThink	for	each	individual	request.	This	allows	that	request’s
callback	to	be	called	from	within	the	same	thread	in	which	it	was	started.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpRequestThink

ghttpThrottleSettings
Used	to	adjust	the	throttle	settings.

void	ghttpThrottleSettings(
int	bufferSize,
gsi_time	timeDelay);

Routine Required	Header Distribution
ghttpThrottleSettings <ghttp.h> SDKZIP

Parameters

bufferSize
[in]	The	number	of	bytes	to	get	each	receive.

timeDelay
[in]	How	often	to	receive	data,	in	milliseconds.

Remarks

The	throttle	settings	affect	any	request	initiated	with	throttling,	or	for
which	throttling	is	alter	enabled	with	ghttpSetThrottle.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpSetThrottle

HTTP	SDK	Callbacks
ghttpCompletedCallback

Called	when	the	entire	file	has	been	received.

ghttpPostCallback
Called	during	requests	to	let	the	app	know	how
much	of	the	post	data	has	been	uploaded.

ghttpProgressCallback
Called	with	updates	on	the	current	state	of	the
request.

ghttpCompletedCallback
Called	when	the	entire	file	has	been	received.

typedef	GHTTPBool	(*ghttpCompletedCallback)(
GHTTPRequest	request,
GHTTPResult	result,
char	*	buffer,
GHTTPByteCount	bufferLen,
void	*	param);

Routine Required	Header Distribution
ghttpCompletedCallback <ghttp.h> SDKZIP

Return	Value

If	ghttpGetFile[Ex]	was	used,	return	true	to	have	the	buffer	freed,	false	if
the	app	will	free	the	buffer.

Parameters

request
[in]	A	valid	request	object

result
[in]	The	result	(success	or	an	error).

buffer
[in]	The	file's	bytes	(only	valid	if	ghttpGetFile[Ex]	was	used).

bufferLen
[in]	The	file's	length.

param
[in]	Optional	free-format	user	data	for	use	by	the	callback

Remarks

If	ghttpStreamFileEx	or	ghttpSaveFile[Ex]	was	used,	buffer	is	NULL,
bufferLen	is	the	number	of	bytes	in	the	file,	and	the	return	value	is
ignored.
If	ghttpGetFile[Ex]	was	used,	return	true	to	have	the	buffer	freed,	false	if
the	app	will	free	the	buffer.	If	true,	the	buffer	cannot	be	accessed	once
the	callback	returns.	If	false,	the	app	can	use	the	buffer	even	after	this
call	returns,	but	must	free	it	at	some	later	point.	There	will	always	be	a
file,	even	if	there	was	an	error,	although	for	errors	it	may	be	an	empty	file.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpGet,	ghttpGetEx,	ghttpSave,	ghttpSaveEx,	ghttpStream,
ghttpStreamEx,	ghttpHead,	ghttpHeadEx,	ghttpPost,	ghttpPostEx

ghttpPostCallback
Called	during	requests	to	let	the	app	know	how	much	of	the	post	data
has	been	uploaded.

typedef	void	(*ghttpPostCallback)(
GHTTPRequest	request,
int	bytesPosted,
int	totalBytes,
int	objectsPosted,
int	totalObjects,
void	*	param);

Routine Required	Header Distribution
ghttpPostCallback <ghttp.h> SDKZIP

Parameters

request
[in]	A	valid	request	object

bytesPosted
[in]	The	number	of	bytes	of	data	posted	so	far.

totalBytes
[in]	The	total	number	of	bytes	being	posted.

objectsPosted
[in]	The	total	number	of	data	objects	uploaded	so	far.

totalObjects
[in]	The	total	number	of	data	objects	to	upload.

param
[in]	Optional	free-format	user	data	for	use	by	the	callback

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpNewPost,	ghttpPostSetCallback

ghttpProgressCallback
Called	with	updates	on	the	current	state	of	the	request.

typedef	void	(*ghttpProgressCallback)(
GHTTPRequest	request,
GHTTPState	state,
const	char	*	buffer,
GHTTPByteCount	bufferLen,
GHTTPByteCount	bytesReceived,
GHTTPByteCount	totalSize,
void	*	param);

Routine Required	Header Distribution
ghttpProgressCallback <ghttp.h> SDKZIP

Parameters

request
[in]	A	valid	request	object.

state
[in]	The	current	state	of	the	request.

buffer
[in]	The	file's	bytes	so	far,	NULL	if	state	<	GHTTPReceivingFile.

bufferLen
[in]	The	number	of	bytes	in	the	buffer,	0	if	state	<
GHTTPReceivingFile.

bytesReceived
[in]	The	total	number	of	bytes	received,	0	if	state	<
GHTTPReceivingFile.

totalSize
[in]	The	total	size	of	the	file,	-1	if	unknown.

param
[in]	Optional	free-format	user	data	for	use	by	the	callback.

Remarks

The	buffer	should	not	be	accessed	once	this	callback	returns.
If	ghttpGetFile[Ex]	was	used,	buffer	contains	all	of	the	data	that	has	been
received	so	far,	and	bufferSize	is	the	total	number	of	bytes	received.
If	ghttpSaveFile[Ex]	was	used,	buffer	only	contains	the	most	recent	data
that	has	been	received.	This	same	data	is	saved	to	the	file.	The	buffer
will	not	be	valid	after	this	callback	returns.
If	ghttpStreamFileEx	was	used,	buffer	only	contains	the	most	recent	data
that	has	been	received.	This	data	will	be	lost	once	the	callback	returns,
and	should	be	copied	if	it	needs	to	be	saved.	bufferSize	is	the	number	of
bytes	in	the	current	block	of	data.

Section	Reference:	Gamespy	HTTP	SDK

See	Also:	ghttpGetEx,	ghttpSaveEx,	ghttpStream,	ghttpStreamEx,
ghttpHeadEx,	ghttpPostEx

HTTP	SDK	Enumerations
GHTTPBool

Standard	Boolean.

GHTTPRequestError
Possible	Error	values	returned	from	GHTTP
functions.

GHTTPResult
The	result	of	an	HTTP	request.

GHTTPState
The	current	state	of	an	HTTP	request.

GHTTPBool
Standard	Boolean.

typedef	enum	
{

GHTTPFalse,				
GHTTPTrue				

}	GHTTPBool;

Constants

GHTTPFalse
False.

GHTTPTrue
True.

Section	Reference:	Gamespy	HTTP	SDK

GHTTPRequestError
Possible	Error	values	returned	from	GHTTP	functions.

typedef	enum	
{

GHTTPErrorStart,				
GHTTPFailedToOpenFile,				
GHTTPInvalidPost,				
GHTTPInsufficientMemory,				
GHTTPInvalidFileName,				
GHTTPInvalidBufferSize,				
GHTTPInvalidURL,				
GHTTPUnspecifiedError				

}	GHTTPRequestError;

Constants

GHTTPFailedToOpenFile
Failed	to	open	file.

GHTTPInvalidPost
Invalid	post.

GHTTPInsufficientMemory
Insufficient	memory.

GHTTPInvalidFileName
Invalid	filename.

GHTTPInvalidBufferSize
Invalid	buffer	size.

GHTTPInvalidURL
Invalid	URL.

GHTTPUnspecifiedError
Unspecified	error.

Section	Reference:	Gamespy	HTTP	SDK

GHTTPResult
The	result	of	an	HTTP	request.

typedef	enum	
{

GHTTPSuccess,				
GHTTPOutOfMemory,				
GHTTPBufferOverflow,				
GHTTPParseURLFailed,				
GHTTPHostLookupFailed,				
GHTTPSocketFailed,				
GHTTPConnectFailed,				
GHTTPBadResponse,				
GHTTPRequestRejected,				
GHTTPUnauthorized,				
GHTTPForbidden,				
GHTTPFileNotFound,				
GHTTPServerError,				
GHTTPFileWriteFailed,				
GHTTPFileReadFailed,				
GHTTPFileIncomplete,				
GHTTPFileToBig				

}	GHTTPResult;

Constants

GHTTPSuccess
Successfully	retrieved	file.

GHTTPOutOfMemory
A	memory	allocation	failed.

GHTTPBufferOverflow
The	user-supplied	buffer	was	too	small	to	hold	the	file.

GHTTPParseURLFailed
There	was	an	error	parsing	the	URL.

GHTTPHostLookupFailed
Failed	looking	up	the	hostname.

GHTTPSocketFailed
Failed	to	create/initialize/read/write	a	socket.

GHTTPConnectFailed
Failed	connecting	to	the	HTTP	server.

GHTTPBadResponse
Error	understanding	a	response	from	the	server.

GHTTPRequestRejected
The	request	has	been	rejected	by	the	server.

GHTTPUnauthorized
Not	authorized	to	get	the	file.

GHTTPForbidden
The	server	has	refused	to	send	the	file.

GHTTPFileNotFound
Failed	to	find	the	file	on	the	server.

GHTTPServerError
The	server	has	encountered	an	internal	error.

GHTTPFileWriteFailed
An	error	occured	writing	to	the	local	file	(for	ghttpSaveFile[Ex]).

GHTTPFileReadFailed
There	was	an	error	reading	from	a	local	file	(for	posting	files	from

disk).

GHTTPFileIncomplete
Download	started	but	was	interrupted.	Only	reported	if	file	size	is
known.

GHTTPFileToBig
The	file	is	too	big	to	be	downloaded	(size	exceeds	range	of	interal
data	types).

Section	Reference:	Gamespy	HTTP	SDK

GHTTPState
The	current	state	of	an	HTTP	request.

typedef	enum	
{

GHTTPSocketInit,				
GHTTPHostLookup,				
GHTTPLookupPending,				
GHTTPConnecting,				
GHTTPSendingRequest,				
GHTTPPosting,				
GHTTPWaiting,				
GHTTPReceivingStatus,				
GHTTPReceivingHeaders,				
GHTTPReceivingFile				

}	GHTTPState;

Constants

GHTTPSocketInit
Startup	socket.

GHTTPHostLookup
Begin	resolving	hostname	to	IP.

GHTTPLookupPending
Waiting	for	hostname	to	resolve	(non-blocking).

GHTTPConnecting
Waiting	for	socket	connect	to	complete.

GHTTPSendingRequest
Sending	the	request.

GHTTPPosting
Posting	data	(skipped	if	not	posting).

GHTTPWaiting
Waiting	for	a	response.

GHTTPReceivingStatus
Receiving	the	response	status.

GHTTPReceivingHeaders
Receiving	the	headers.

GHTTPReceivingFile
Receiving	the	file.

Section	Reference:	Gamespy	HTTP	SDK

NAT	Negotiation	SDK
Overview

The	GameSpy	NAT	Negotiation	SDK	interacts	with	GameSpy's	NAT
Negotiation	server	to	allow	hosting	of	multiplayer	games	by	users	behind
NAT	and	firewall	devices.	Typically,	a	user	behind	a	NAT	or	firewall
device	cannot	host	multiplayer	games	because	the	device	will	block
incoming	connections	from	outside	users.	GameSpy's	NAT	Negotiation
technology	allows	two	users,	one	or	both	of	whom	are	behind	a	NAT
device,	to	open	a	clear	UDP	channel	directly	between	the	users.

For	background	information	on	the	networking	challenges	posed	by	NAT
and	Firewall	devices,	see	the	appendix	of	the	Query	&	Reporting	2
documentation	entitled	"NAT	and	Firewall	Support".	This	document
assumes	you	are	familiar	with	the	terminology	and	issues	discussed	in
that	document.

GameSpy's	NAT	Negotiation	technology	uses	a	method	known	as	"Port
Guessing"	to	attempt	to	discern	future	port	mapping	information	for	two
users	based	on	their	connections	to	the	NAT	Negotiation	server.	Once
this	mapping	information	is	determined,	the	server	exchanges	the
information	with	the	users,	and	they	connect	to	each	other	directly	(note:
the	term	"connect"	in	this	document	is	understood	to	mean	the
establishment	a	clear,	two-way	channel	between	the	users,	since	UDP	is
in	reality	a	connection-less	protocol).

Note	that	the	NAT	Negotiation	SDK	does	not	make	any	distinction
between	the	"client"	who	is	connecting	to	a	"server"	(or	"host"),	however
this	document	will	use	those	terms	for	clarity,	and	because	the	other
SDKs	involved	do	make	that	distinction.

The	NAT	Negotiation	SDK	itself	is	very	simple	-	two	users	who	want	to	be
connected	to	each	other	have	a	shared	"cookie"	value	that	the	NAT
Negotiation	server	uses	to	match	the	users	up.

The	NAT	Negotiation	SDK	has	no	limit	to	the	number	of	users	that	can	be
connected	together,	but	each	channel	between	two	users	must	be

independently	established.

In	order	for	a	client	to	connect	to	a	server	behind	a	NAT,	both	the	client
and	the	server	must	know	a	shared	cookie	value.	Because	the	server	is
behind	a	NAT,	the	client	cannot	communicate	this	value	to	the	server
directly	(if	it	could,	there	would	be	no	need	for	the	NAT	negotiation	step!).
To	communicate	indirectly	to	the	server,	the	client	uses	the	Peer	or
ServerBrowsing	SDK	(depending	on	which	of	the	two	SDKs	the	game
has	implemented)	to	send	a	connection	request	to	the	GameSpy	Master
Server.	The	GameSpy	Master	Server	then	sends	this	connection	request
directly	to	the	game	server.

Because	the	game	server	is	sending	heartbeats	to	the	Master	Server	(via
the	Peer	or	Query	&	Reporting	2	SDK),	the	Master	Server	has	an	open
channel	to	communicate	back	to	the	game	server.	It	uses	this	channel	to
pass	the	connection	cookie	back	to	the	server.	The	server	and	client	are
now	both	aware	of	the	cookie,	and	can	use	the	NAT	Negotiation	SDK	to
establish	a	connection	directly	between	them.

Supported	Network	Models

The	NAT	Negotiation	SDK	supports	the	establishment	of	UDP
connections	between	two	users,	with	one	or	both	behind	a	NAT.	For
games	using	a	dedicated	server	model,	a	number	of	clients	will	generally
connect	and	disconnect	from	the	server	over	time.	For	a	Peer-to-Peer
model,	the	game	may	have	a	centralized	host	that	everyone	connects	to,
or	may	require	a	distinct	connection	between	each	set	of	Peers.	Any	of
these	models	will	function	using	the	NAT	Negotiation	SDK.	The	only
limitations	imposed	are	that	TCP	networking	is	not	supported,	and	that
the	game	must	have	direct	access	to	the	underlying	UDP	"SOCKET"	-
thus	abstracted	networking	layers	such	as	DirectPlay	that	hide	the
underlying	sockets	may	not	be	compatible.

Some	games	use	a	single	UDP	socket	for	all	communications	to	all
clients	that	are	connected	to	a	server.	Other	games	use	a	distinct	socket
for	each	2-party	connection.	Both	models	are	compatible	with	the	NAT
Negotiation	SDK.	For	games	that	use	a	single	socket	for	all	clients,	this
socket	is	allocated	by	the	game,	and	the	game	reads	messages	off	of	it
and	passes	them	into	the	NAT	Negotiation	SDK	as	needed	for
processing.	For	games	that	require	a	single	UDP	socket	for	each
connection,	the	NAT	Negotiation	SDK	allocates	this	socket	as	part	of	the
negotiation	process	and	passes	it	back	to	the	game	when	negotiation	is
complete.

Note	that	if	you	are	sharing	a	socket	with	the	Query	&	Reporting	(or	Peer
SDK)	for	server	queries,	this	same	socket	can	be	shared	for	all	client
communications	and	NAT	Negotiation	as	well.	You	will	simply	need	to
look	at	the	packets	as	they	come	in	and	determine	whether	to	pass	them
to	the	Q&R	SDK	or	to	the	NAT	Negotiation	SDK	(or	process	them	as
game	networking	packets).

File
natneg.c

natneg.h

nninternal.h

\simpletest\

File	Manifest

The	following	files	should	be	included	with	this	package.	If	any	of	the	files
are	missing,	please	contact	devsupport@gamespy.com.

Description
NAT	Negotiation	SDK	source

NAT	Negotiation	MAIN	HEADER	-	include	this	in
your	source

Internal	structures	and	defines

Simple	connection	sample

In	addition,	to	build	the	SDK	and	samples,	you	will	need	to	separately
download	the	GameSpy	"common	code"	package,	which	includes	the
shared	SDK	code	used	by	this	SDK	and	others.

When	extracting	this	package,	make	sure	you	preserve	the	directory	tree
in	order	to	ensure	that	the	code	builds	correctly.

mailto:devsupport@gamespy.com

Implementation

Step	1:	Server-side	changes

For	the	server	to	be	able	to	host	behind	a	NAT,	several	changes	are
needed	to	the	basic	implementation	of	the	Query	&	Reporting	2	or	Peer
SDK	(follow	the	instructions	for	the	SDK	you	are	using).

These	SDKs	report	the	availability	of	your	server	to	our	Master	Server.
Normally,	our	Master	Server	does	not	allow	games	to	be	hosted	from
behind	a	NAT,	as	this	would	prevent	outside	clients	from	being	able	to
connect	to	them.	However,	because	you	are	using	the	NAT	Negotiation
SDK,	your	game	client	will	be	able	to	connect	to	servers	behind	a	NAT
and	our	Master	Server	needs	to	be	aware	of	this.	To	indicate	this	support
to	our	Master	Server	simple	pass:	"1"	to	the	"natnegotiate"	parameter
of	qr2_init()	[Q&R	2	SDK]	or	"PEERTrue"	to	the	"natNegotiate"
parameter	of	peerSetTitle()	[Peer	SDK].

Note	that	you	can	set	that	parameter	to	true	whether	or	not	the	current
user	hosting	a	game	is	behind	a	NAT.	The	backend	will	determine
whether	the	user	is	behind	a	NAT	automatically	and	inform	clients
whether	they	can	connect	directly	or	need	to	attempt	NAT	Negotiation.
You	simply	need	to	set	the	parameter	to	indicate	that	you	support	NAT
Negotiation	as	an	option.

If	a	client	wishes	to	connect	to	the	server	via	NAT	Negotiation,	it	will	send
a	cookie	value	to	the	master	server,	which	will	forward	it	directly	to	your
server.	The	Peer	or	QR2	SDK	will	indicate	this	request	via	a	callback,	as
described	below.

Query	&	Reporting	2	SDK

You	need	to	create	a	callback	function	that	will	be	called	when	a	NAT
Negotiate	request	comes	in.	The	prototype	for	this	callback	is	as	follows:

typedef	void	(*qr2_natnegcallback_t)(int	cookie,	void	*userdata);

The	cookie	value	is	the	value	passed	from	the	connecting	client,	which
will	be	used	with	the	NAT	Negotiate	SDK.

Once	you	have	created	your	callback,	you	need	to	register	it	with:

void	qr2_register_natneg_callback(qr2_t	qrec,	qr2_natnegcallback_t	nncallback);

You	should	generally	call	this	immediately	after	qr2_init().

Peer	SDK

You	need	to	create	a	callback	function	that	will	be	called	when	a	NAT
Negotiate	request	comes	in.	The	prototype	for	this	callback	is	as	follows:

typedef	void	(*	peerQRNatNegotiateCallback)(PEER	peer,	int	cookie,	void	*	param);

The	cookie	value	is	the	value	passed	from	the	connecting	client,	which
will	be	used	with	the	NAT	Negotiate	SDK.

Pass	this	function	in	as	part	of	the	PEERCallbacks	structure	in
peerInitialize.

Step	2:	Client-side	changes

On	your	client,	which	is	doing	matchmaking	via	either	the
ServerBrowsing	or	Peer	SDK,	you	need	to	take	special	steps	when
connecting	to	a	server	behind	a	NAT	versus	a	directly	accessible	server.

When	a	client	selects	the	server	they	wish	to	connect	to,	the	first	step	is
to	determine	whether	the	server	is	behind	a	NAT,	and	if	so,	whether	it	is
behind	the	same	NAT	as	the	client.	This	is	important	because	most	NATs
will	not	allow	inside	clients	to	connect	to	inside	servers	via	the	"public"	IP
address	on	the	NAT	-	the	client	must	connect	to	the	server	directly	via	the
private	IP	address.

To	check	this,	call:

SBBool	SBServerHasPrivateAddress(SBServer	server);

...	to	determine	whether	the	server	has	a	private	Address.	If	it	does,	you
should	compare	the	public	address	of	the	server	with	the	public	address
of	your	current	client	to	determine	if	they	match.

You	can	determine	the	server's	public	address	with:

unsigned	int	SBServerGetPublicInetAddress(SBServer	server);

...	you	will	compare	this	value	to	the	value	returned	from:

unsigned	int	ServerBrowserGetMyPublicIPAddr(ServerBrowser	sb);		[ServerBrowsing	SDK]

...	or	...

unsigned	int	peerGetPublicIP();	[Peer	SDK]

If	the	public	address	of	the	server	and	your	client	match,	then	you	know
both	are	behind	the	same	NAT,	and	you	should	connect	via	the	"Internal"
address	of	the	server.	You	can	now	proceed	to	connect	directly	to	the
server	via	the	Private	address	(obtained	with
SBServerGetPrivateAddress	or
SBServerGetPrivateInetAddress,	depending	on	the	preferred
format	for	your	game).

If	the	server	is	not	behind	the	same	NAT	as	your	client,	you	need	to
determine	whether	to	connect	to	the	server	directly,	or	initiate	NAT
Negotiation.	Direct	connections	can	be	used	if	the	server	is	either	not
behind	a	NAT,	or	is	behind	a	promiscuous	NAT	and	your	game	uses
shared	sockets.

To	determine	whether	a	direct	connection	can	be	made,	use	the	function:

SBBool	SBServerDirectConnect(SBServer	server);

If	the	server	supports	direct	connection,	you	can	proceed	to	connect	to
the	server	directly	using	the	Public	address	(obtain	via
SBServerGetPublicAddress	or
SBServerGetPublicInetAddress).

If	the	server	does	not	support	direct	connection,	you	will	need	to	proceed
with	NAT	Negotiation.

On	the	client,	you	need	to	generate	a	random	"cookie"	value	to	send	to
the	server.	This	cookie	is	used	by	the	NAT	Negotiation	server	to	match
up	requests	for	connection.	Simply	generate	a	random	32-bit	integer	and
call:	ServerBrowserSendNatNegotiateCookieToServer()
[ServerBrowsing	SDK]	or	peerSendNatNegotiateCookie()	[Peer
SDK].	Pass	in	the	public	IP	address	and	public	query	port	for	the	server
(obtain	via	SBServerGetPublicAddress	+
SBServerGetPublicQueryPort).	This	will	send	the	cookie	value	to
the	server	and	trigger	the	NAT	Negotiation	callback	as	described	in	Step
1.

Once	you	have	sent	the	cookie,	you	should	proceed	with	NAT
Negotiation	as	described	below.

Step	3:	Initiate	NAT	Negotiation

On	the	client,	immediately	after	sending	the	cookie	value	to	the	server,
you	should	begin	the	NAT	Negotiation	process.	To	do	this,	simply	call	one
of	the	BeginNegotiation	functions	below:

NegotiateError	NNBeginNegotiation(int	cookie,	int	clientindex,	NegotiateProgressFunc	progresscallback,	NegotiateCompletedFunc	completedcallback,	void	*userdata);

NegotiateError	NNBeginNegotiationWithSocket(SOCKET	gamesocket,	int	cookie,	int	clientindex,	NegotiateProgressFunc	progresscallback,	NegotiateCompletedFunc	completedcallback,	void	*userdata);

Which	version	you	use	depends	on	how	your	game	networking	is	set	up.
If	you	want	to	use	the	same	socket	for	all	client	connections,	and	manage
incoming	data	on	the	socket	yourself,	use	the
“NNBeginNegotiationWithSocket”	function	and	pass	in	the	socket	you
want	to	use.	If	you	want	the	NAT	Negotiation	SDK	to	allocate	a	new
socket	for	each	connection,	use	the	“NNBeginNegotiation”	function.	The

“cookie”	parameter	is	the	cookie	value	you	generated	and	sent	to	the
server.	The	“clientindex”	parameter	is	simply	0	for	the	client,	and	“1”	for
the	server	(or	reversed	–	it	doesn’t	matter	as	long	as	one	of	them	is	0,
and	the	other	is	1).	The	progress	function	will	be	called	to	update	you	on
the	negotiation	progress	and	the	completed	callback	will	be	called	when
the	negotiation	is	complete.	The	userdata	will	be	passed	into	your
callback	functions.	See	below	for	a	description	of	the	individual	callbacks.

On	your	server,	the	process	is	much	the	same.	When	your	NAT
Negotiation	callback	is	called,	you	want	to	begin	negotiation	using	the
cookie	value	provided.	Simply	call	the	appropriate	NNBeginNegotiation
function	as	described	above.

Step	4:	NAT	Negotiation	Callbacks

The	NAT	Negotiation	SDK	requires	two	callbacks	-	a	progress	callback
that	gets	called	as	negotiation	is	proceeding,	and	a	completed	callback
when	negotiation	is	complete.

The	progress	function	prototype	is:

typedef	void	(*NegotiateProgressFunc)(NegotiateState	state,	void	*userdata);

The	two	times	you	will	get	a	progress	notification	is	when	the	NAT
Negotiation	server	acknowledges	your	connection	request
(ns_initack),	and	when	the	guessed	port	data	has	been	received	from
the	NAT	Negotiation	server	and	direct	negotiation	with	the	other	client	is
in	progress	(ns_connectping).

The	completed	function	prototype	is:

typedef	void	(*NegotiateCompletedFunc)(NegotiateResult	result,	SOCKET	gamesocket,	struct	sockaddr_in	*remoteaddr,	void	*userdata);

result	will	indicate	the	result	of	the	negotiation	attempt.	Possible	values
are:

nr_success

Successful	negotiation,	an	open	channel	has	now	been

established.
nr_deadbeatpartner

Partner	did	not	register	with	the	NAT	Negotiation	Server.
nr_inittimeout

Unable	to	communicate	with	NAT	Negotiation	Server
nr_unknownerror

NAT	Negotiation	server	indicated	an	unknown	error	condition

gamesocket	is	the	socket	you	should	use	to	continue	communications
with	the	client.	If	you	used	NNBeginNegotiationWithSocket	then
this	will	be	the	socket	you	passed	in	originally.	Otherwise	it	will	be	a	new
socket	allocated	by	the	NAT	Negotiation	SDK.

remoteaddr	is	the	remote	address	and	port	you	should	use	to
communicate	with	the	new	client.	Make	sure	you	copy	this	structure	off
before	the	callback	returns.

userdata	is	for	your	own	use.

Once	your	completed	function	is	called,	you	can	begin	sending	data	to
the	other	client	immediately	using	the	socket	and	address	provided.

Step	5:	Thinking	and	Processing	Incoming	Data

After	you've	begun	negotiation,	you	need	to	call	the	NNThink()	function
on	regular	intervals	(recommended:	100	ms)	to	process	the	connection.
You	may	call	NNThink()	when	no	negotiations	are	in	progress	as	well	-
it	will	simply	return	immediately.

If	you	are	using	a	shared	game	socket	for	all	communications
(NNBeginNegotiationWithSocket)	then	in	addition	to	calling
NNThink()	you	will	need	to	look	for	NAT	Negotiation	packets	arriving	on
that	socket	and	pass	them	into	the	SDK.	The	SDK	considers	your	game
the	"owner"	of	that	socket	and	will	not	try	to	read	any	data	from	it	directly.
Simply	pass	the	data,	length,	and	received	address	obtained	from
"recvfrom"	to:

void	NNProcessData(char	*data,	int	len,	struct	sockaddr_in	*fromaddr);

To	identify	NAT	Negotiation	packets,	you	can	use	the	6	magic	bytes	that
are	used	at	the	beginning	of	every	packet.	These	are	defined	in	natneg.h
starting	with	NN_MAGIC_0.

Note	that	even	after	negotiation	is	complete	and	the	completed	callback
is	called,	you	need	to	continue	looking	for	incoming	NAT	Negotiation
packets	on	that	socket	for	at	least	5	seconds	and	continue	to	pass	them
to	NNProcessData.	Due	to	the	unreliable	nature	of	UDP,	some	packets
may	get	sent	even	after	one	side	of	the	connection	has	determined	that	a
connection	is	established	(due	to	dropped	packets,	etc).	You	should	also
call	NNThink()	during	this	time	period	as	well.

If	you	want	to	cancel	a	Negotiation	in	progress,	you	can	do	so	at	any	time
by	passing	the	cookie	value	to	NNCancel().

Step	6:	Initiate	Standard	Game	Networking

Both	clients	will	receive	the	completed	callback	at	about	the	same	time.
At	this	point	you	can	commence	normal	network	interaction	between	the
clients	using	the	sockets	and	addresses	provided.

Step	7:	Cleanup	the	Nat	Negotiation	SDK

Once	you	have	finished	negotiating,	the	internal	SDK	memory	must	be
freed	using	NNFreeNegotiatorList.	Calling	this	will	NOT	close	the
game	sockets,	you	are	free	to	continue	game	communications.

Appendix:	Test	Results

We	have	tested	the	NAT	Negotiation	SDK	with	a	variety	of	hardware	and
software	NAT	devices,	as	outlined	below.	We	will	continue	testing	with
new	devices	in	the	future	to	make	sure	we	have	the	widest	possible
support,	although	the	devices	we	have	currently	tested	with	represent
most	if	not	all	of	the	NAT	management	schemes	we	are	aware	of,	so
most	other	devices	are	likely	to	be	compatible.

Device HW/SW
Port
Mapping
Scheme

Success Comments

Dlink	DI-
604
Residential
Gateway

HW 1:tuple YES 	

LinkSys
Cable	/	DSL
Router
BEFSR41
v.1.34

HW 1:1	exact* YES* Has	a	bug	in	this
version	that	reuses	the
same	mapping	for
multiple	clients	if
behind	the	same	NAT
using	the	same	port.

LinkSys
Cable	/	DSL
Router
BEFSR41
v.1.47

HW 1:1	exact	/
1:1	port

YES 	

SMC
Barricade
7004VBR

HW New	Every
Packet*

YES* Has	a	bug	that	causes
it	to	allocate	a	new	port
for	every	packet.
Connection	can	be
established,	but
incoming	ports	for
every	packet	will	be
different.

USR
Broadband

HW 1:1	exact	/
1:tuple

YES* Second	client	using
same	port	behind	NAT

Router
8000A

will	get	a	random	port
allocation	and	may	not
be	able	to	connect.

Belkin
Wireless
Router
F5D6230

HW 1:1	exact	/
1:tuple

YES* Identical	behavior	to
USR

Netgear
Prosafe
Firewall
FR114

HW 1:1	per-ip YES 	

Windows
2000	ICS

SW 1:1	port
(sometimes
exact)

YES* Uses	unusual	port
allocation	scheme.	May
result	in	bad	port	guess
during	rapid
connections.

Sygate
Home
Network	4.2

SW 1:1	port YES 	

Coyote
Linux	/	IP
Chains

SW 1:tuple YES 	

Floppy	FW
(Linux	/
IPTables)

SW 1:1	exact YES 	

NAT	Negotiation	SDK	Functions
NNBeginNegotiation

Starts	the	negotiation	process.

NNBeginNegotiationWithSocket
Starts	the	negotiation	process	using	the
socket	provided,	which	will	be	shared
with	the	game.

NNCancel
Cancels	a	NAT	Negotiation	request	in
progress

NNFreeNegotiateList
De-allocates	the	memory	used	by	for	the
negotiate	list	when	you	are	done	with
NAT	Negotiation.

NNProcessData
Processes	data	received	from	a	shared
socket.

NNStartNatDetection
Starts	the	NAT	detection	process.

NNThink
Processes	any	negotiation	or	NAT
detection	requests	that	are	in	progress.

NNBeginNegotiation
Starts	the	negotiation	process.

NegotiateError	NNBeginNegotiation(
int	cookie,
int	clientindex,
NegotiateProgressFunc	progresscallback,
NegotiateCompletedFunc	completedcallback,
void	*	userdata);

Routine Required	Header Distribution
NNBeginNegotiation <natneg.h> SDKZIP

Return	Value

ne_noerror	if	successful;	otherwise	one	of	the	ne_	error	values.	See
Remarks	for	detail.

Parameters

cookie
[in]	Shared	cookie	value	that	both	players	will	use	so	that	the	NAT
Negotiation	Server	can	match	them	up.

clientindex
[in]	One	client	must	use	clientindex	0,	the	other	must	use	clientindex
1.

progresscallback
[in]	Callback	function	that	will	be	called	as	the	state	changes.

completedcallback
[in]	Callback	function	that	will	be	called	when	negotiation	is
complete.

userdata
[in]	Pointer	for	your	own	use	that	will	be	passed	into	the	callback
functions.

Remarks

Possible	errors	that	can	be	returned	when	starting	a	negotiation
ne_noerror:	No	error
ne_allocerrortrong>:	Memory	allocation	failed
>	ne_socketerror:	Socket	allocation	failed
ne_dnserror:	DNS	lookup	failed.

Section	Reference:	Gamespy	NAT	Negotiation	SDK

See	Also:	NNBeginNegotiationWithSocket

NNBeginNegotiationWithSocket
Starts	the	negotiation	process	using	the	socket	provided,	which	will	be
shared	with	the	game.

NegotiateError	NNBeginNegotiationWithSocket(
SOCKET	gamesocket,
int	cookie,
int	clientindex,
NegotiateProgressFunc	progresscallback,
NegotiateCompletedFunc	completedcallback,
void	*	userdata);

Routine Required	Header Distribution
NNBeginNegotiationWithSocket <natneg.h> SDKZIP

Return	Value

Possible	errors	that	can	be	returned	when	starting	a	negotiation
ne_noerror:	No	error
ne_allocerror:	Memory	allocation	failed
ne_socketerror:	Socket	allocation	failed
ne_dnserror:	DNS	lookup	failed

Parameters

gamesocket
[in]	The	socket	to	be	used	to	start	the	negotiation

cookie
[in]	Shared	cookie	value	that	both	players	will	use	so	that	the	NAT
Negotiation	Server	can	match	them	up.

clientindex
[in]	One	client	must	use	clientindex	0,	the	other	must	use	clientindex
1.

progresscallback
[in]	Callback	function	that	will	be	called	as	the	state	changes.

completedcallback
[in]	Callback	function	that	will	be	called	when	negotiation	is
complete.

userdata
[in]	Pointer	for	your	own	use	that	will	be	passed	into	the	callback
functions.

Remarks

Incoming	traffic	is	not	processed	automatically	-	you	will	need	to	read	the
data	off	the	socket	and	pass	NN	packets	to	NNProcessData.

Section	Reference:	Gamespy	NAT	Negotiation	SDK

See	Also:	NNBeginNegotiation

NNCancel
Cancels	a	NAT	Negotiation	request	in	progress.

void	NNCancel(
int	cookie);

Routine Required	Header Distribution
NNCancel <natneg.h> SDKZIP

Parameters

cookie
[in]	The	cookie	associated	with	this	negotiation

Section	Reference:	Gamespy	NAT	Negotiation	SDK

NNFreeNegotiateList
De-allocates	the	memory	used	by	for	the	negotiate	list	when	you	are
done	with	NAT	Negotiation.

void	NNFreeNegotiateList();

Routine Required	Header Distribution
NNFreeNegotiateList <natneg.h> SDKZIP

Remarks

Once	you	have	finished	negotiating,	the	internal	SDK	memory	must	be
freed	using	NNFreeNegotiatorList.	
If	any	negotiations	are	outstanding	this	will	cancel	them.	Calling	this	will
NOT	close	the	game	sockets,	you	are	free	to	continue	game
communications.

Section	Reference:	Gamespy	NAT	Negotiation	SDK

NNProcessData
Processes	data	received	from	a	shared	socket.

void	NNProcessData(
char	*	data,
int	len,
struct	sockaddr_in	*	fromaddr);

Routine Required	Header Distribution
NNProcessData <natneg.h> SDKZIP

Parameters

data
[in]	The	data	packets	read	from	the	gamesocket.

len
[in]	Length	of	the	data.

fromaddr
[in]	The	address	from	which	the	data	packets	came.

Remarks

When	sharing	a	socket	with	the	NAT	Negotiation	SDK,	you	must	read
incoming	data	and	pass	NN	packets	to	NNProcessData.

Section	Reference:	Gamespy	NAT	Negotiation	SDK

See	Also:	NNBeginNegotiationWithSocket

NNStartNatDetection
Starts	the	NAT	detection	process.

NegotiateError	NNStartNatDetection(
NatDetectionResultsFunc	resultscallback);

Routine Required	Header Distribution
NNStartNatDetection <natneg.h> SDKZIP

Return	Value

ne_noerror	if	successful;	otherwise	one	of	the	ne_	error	values.	See
Remarks	for	detail.

Parameters

resultscallback
[in]	Callback	function	that	will	be	called	when	NAT	detection	is
complete.

Remarks

Possible	errors	that	can	be	returned	when	starting	a	negotiation
ne_noerror:	No	error
ne_socketerror:	Socket	allocation	failed
ne_dnserror:	DNS	lookup	failed.

Section	Reference:	Gamespy	NAT	Negotiation	SDK

See	Also:	NatDetectionResultsFunc,	NAT

NNThink
Processes	any	negotiation	or	NAT	detection	requests	that	are	in
progress.

void	NNThink();

Routine Required	Header Distribution
NNThink <natneg.h> SDKZIP

Remarks

After	you’ve	begun	a	negotiation	and/or	NAT	detection,	you	need	to	call
the	NNThink	function	on	regular	intervals	(recommended:	100ms)	to
process	the	connection.	You	may	call	NNThink	when	no	negotiations	are
in	progress	as	well	-	it	will	simply	return	immediately.

Section	Reference:	Gamespy	NAT	Negotiation	SDK

NAT	Negotiation	SDK	Callbacks
NatDetectionResultsFunc

The	callback	that	gets	executed	from
NNStartNatDetection	when	the	detection	is
complete.

NegotiateCompletedFunc
The	callback	that	gets	executed	from
NNBeginNegotiation	when	negotiation	is
complete.

NegotiateProgressFunc
The	callback	that	gets	executed	from
NNBeginNegotiation	as	negotiation	is
proceeding.

NatDetectionResultsFunc
The	callback	that	gets	executed	from	NNStartNatDetection	when	the
detection	is	complete.

typedef	void	(*NatDetectionResultsFunc)(
gsi_bool	success,
NAT	nat);

Routine Required	Header Distribution
NatDetectionResultsFunc <natneg.h> SDKZIP

Parameters

success
[in]	if	gsi_true	the	NAT	detection	was	successful

nat
[in]	When	detection	is	successful,	this	contains	the	NAT	device's
properties.

Remarks

Once	your	detection	callback	function	is	called,	check	the	success
parameter.	If	it	is	gsi_false,	then	the	detection	could	not	be	completed
and	should	be	retried.	If	it	is	gsi_true,	then	the	nat	parameter	will	contain
the	properties	of	the	detected	NAT	device.

Section	Reference:	Gamespy	NAT	Negotiation	SDK

See	Also:	NNStartNatDetection,	NAT

NegotiateCompletedFunc
The	callback	that	gets	executed	from	NNBeginNegotiation	when
negotiation	is	complete.

typedef	void	(*NegotiateCompletedFunc)(
NegotiateResult	result,
SOCKET	gamesocket,
struct	sockaddr_in	*	remoteaddr,
void	*	userdata);

Routine Required	Header Distribution
NegotiateCompletedFunc <natneg.h> SDKZIP

Parameters

result
[in]	Indicates	the	result	of	the	negotiation	attempt.

gamesocket
[in]	The	socket	you	should	use	to	continue	communications	with	the
client.

remoteaddr
[in]	The	remote	address	and	port	you	should	use	to	communicate
with	the	new	client.

userdata
[in]	Data	for	your	own	use.

Remarks

Once	your	completed	function	is	called,	you	can	begin	sending	data	to
the	other	client	immediately	using	the	socket	and	address	provided.

Possible	values	for	the	value	of	the	result	parameter	are:
nr_success	
Successful	negotiation,	an	open	channel	has	now	been	established.	
nr_deadbeatpartner	
Partner	did	not	register	with	the	NAT	Negotiation	Server.	
nr_inittimeout	
Unable	to	communicate	with	NAT	Negotiation	Server	
nr_pingtimeout	
Unable	to	communicate	directly	with	partner	
nr_unknownerror	
NAT	Negotiation	server	indicated	an	unknown	error	condition

If	you	used	NNBeginNegotiationWithSocket	then	the	socket	parameter
will	be	the	socket	you	passed	in	originally.	Otherwise	it	will	be	a	new
socket	allocated	by	the	NAT	Negotiation	SDK.

Make	sure	you	copy	the	remoteaddr	structure	before	the	callback	returns.

Section	Reference:	Gamespy	NAT	Negotiation	SDK

See	Also:	NNBeginNegotiation

NegotiateProgressFunc
The	callback	that	gets	executed	from	NNBeginNegotiation	as	negotiation
is	proceeding.

typedef	void	(*NegotiateProgressFunc)(
NegotiateState	state,
void	*	userdata);

Routine Required	Header Distribution
NegotiateProgressFunc <natneg.h> SDKZIP

Parameters

state
[in]	The	state	of	the	negotiation	at	the	time	of	notification.

userdata
[in]	Data	for	your	own	use.

Remarks

The	two	times	you	will	get	a	progress	notification	is	when	the	NAT
Negotiation	server	acknowledges	your	connection	request	(ns_initack),
and	when	the	guessed	port	data	has	been	received	from	the	NAT
Negotiation	server	and	direct	negotiation	with	the	other	client	is	in
progress	(ns_connectping).

Section	Reference:	Gamespy	NAT	Negotiation	SDK

See	Also:	NNBeginNegotiation

NAT	Negotiation	SDK	Structures
AddressMapping

Internal	and	external	address	pairing	for	an	observed
network	address	translation.

NAT
The	result	of	a	NAT	detection.	Upon	successful
completion	of	a	detection,	this	will	contain	as	many
properties	of	the	NAT	as	could	be	determined.

AddressMapping
Internal	and	external	address	pairing	for	an	observed	network	address
translation.

typedef	struct	
{

unsigned	int	privateIp;
unsigned	short	privatePort;
unsigned	int	publicIp;
unsigned	short	publicPort;

}	AddressMapping;

Members

privateIp
Internal	IP	address.

privatePort
Internal	port	number.

publicIp
External	IP	address.

publicPort
External	port	number.

Section	Reference:	Gamespy	NAT	Negotiation	SDK

See	Also:	NAT

NAT
The	result	of	a	NAT	detection.	Upon	successful	completion	of	a	detection,
this	will	contain	as	many	properties	of	the	NAT	as	could	be	determined.

typedef	struct	
{

char	brand[32];
char	model[32];
char	firmware[64];
gsi_bool	ipRestricted;
gsi_bool	portRestricted;
NatPromiscuity	promiscuity;
NatType	natType;
NatMappingScheme	mappingScheme;
AddressMapping	mappings[4];
gsi_bool	qr2Compatible;

}	NAT;

Members

brand
NAT	device	brand/vendor	(not	currently	used).

model
NAT	device	model	name/number	(not	currently	used).

firmware
NAT	device	brand/vendor	(not	currently	used).

ipRestricted
gsi_true	if	the	NAT	drops	packets	from	unsolicited	IP	addresses.

portRestricted
gsi_true	if	the	NAT	drops	packets	from	unsolicted	ports.

promiscuity
The	type	of	promiscuity	the	NAT	allows.

natType
The	type	of	NAT	as	defined	by	RFC2663.

mappingScheme
The	type	of	port	mapping/allocation	scheme	used	by	the	NAT.

mappings
Port	mappings	observed	during	the	detection	process.

qr2Compatible
gsi_true	if	the	NAT	is	compatible	with	QR2.

Section	Reference:	Gamespy	NAT	Negotiation	SDK

See	Also:	NNStartNatDetection,	NatDetectionResultsFunc,	NatType,
NatMappingScheme,	NatPromiscuity,	AddressMapping

NAT	Negotiation	SDK	Enumerations
NatMappingScheme

Common	NAT	port	allocation	schemes.

NatPromiscuity
The	level	of	promiscuity	(allowed	traffic)	for	a	NAT
device.

NatType
NAT	types	based	on	RFC2663.

NegotiateError
Possible	error	values	that	can	be	returned	when
starting	a	negotiation.

NegotiateResult
Possible	results	of	the	negotiation.

NegotiateState
Possible	states	for	the	SDK.	The	two	you	will	be
notified	for	are	ns_initack	and	ns_connectping.

NatMappingScheme
Common	NAT	port	allocation	schemes.

typedef	enum	
{

unrecognized,				
private_as_public,				
consistent_port,				
incremental,				
mixed				

}	NatMappingScheme;

Constants

unrecognized
The	mapping	scheme	is	not	recognized.	This	could	also	mean	it	is	a
random	scheme.

private_as_public
The	public	port	is	the	same	as	the	private	port.

consistent_port
The	same	public	port	is	being	used	for	all	requests	from	the	same
private	port.

incremental
Each	new	mapped	port	is	an	increment	over	the	previous	one.

mixed
A	mixed	mapping	scheme	is	being	used.

Section	Reference:	Gamespy	NAT	Negotiation	SDK

See	Also:	NAT

NatPromiscuity
The	level	of	promiscuity	(allowed	traffic)	for	a	NAT	device.

typedef	enum	
{

promiscuous,				
not_promiscuous,				
port_promiscuous,				
ip_promiscuous,				
promiscuity_not_applicable				

}	NatPromiscuity;

Constants

promiscuous
All	unsolicited	traffic	allowed.

not_promiscuous
No	unsolicted	traffic	allowed.

port_promiscuous
Traffic	from	the	same	IP	on	a	different	port	allowed.

ip_promiscuous
Traffic	from	a	different	IP	allowed.

promiscuity_not_applicable
Does	not	apply	to	the	type	of	NAT	device.

Section	Reference:	Gamespy	NAT	Negotiation	SDK

See	Also:	NAT

NatType
NAT	types	based	on	RFC2663.

typedef	enum	
{

no_nat,				
firewall_only,				
full_cone,				
restricted_cone,				
port_restricted_cone,				
symmetric,				
unknown				

}	NatType;

Constants

no_nat
No	network	address	translation.

firewall_only
No	network	address	translation,	but	firewall	may	be	present.

full_cone
Full	Cone	type	network	address	translation.

restricted_cone
Restricted	Cone	type	network	address	translation.

port_restricted_cone
Port	Restricted	Cone	type	network	address	translation.

symmetric
Symmetric	type	network	address	translation.

unknown
Unrecognized	type	of	network	address	translation.

Section	Reference:	Gamespy	NAT	Negotiation	SDK

See	Also:	NAT

NegotiateError
Possible	error	values	that	can	be	returned	when	starting	a	negotiation.

typedef	enum	
{

ne_noerror,				
ne_allocerror,				
ne_socketerror,				
ne_dnserror				

}	NegotiateError;

Constants

ne_noerror
No	error.

ne_allocerror
Memory	allocation	failed.

ne_socketerror
Socket	allocation	failed.

ne_dnserror
DNS	lookup	failed.

Section	Reference:	Gamespy	NAT	Negotiation	SDK

See	Also:	NNBeginNegotiation

NegotiateResult
Possible	results	of	the	negotiation.

typedef	enum	
{

nr_success,				
nr_deadbeatpartner,				
nr_inittimeout,				
nr_pingtimeout,				
nr_unknownerror,				
nr_noresult				

}	NegotiateResult;

Constants

nr_success
Successful	negotiation,	other	parameters	can	be	used	to	continue
communications	with	the	client.

nr_deadbeatpartner
Partner	did	not	register	with	the	NAT	Negotiation	Server.

nr_inittimeout
Unable	to	communicate	with	NAT	Negotiation	Server.

nr_pingtimeout
Unable	to	communicate	with	partner.

nr_unknownerror
NAT	Negotiation	server	indicated	an	unknown	error	condition.

nr_noresult
Initial	negotiation	status	before	a	result	is	determined.

Section	Reference:	Gamespy	NAT	Negotiation	SDK

See	Also:	NegotiateCompletedFunc

NegotiateState
Possible	states	for	the	SDK.	The	two	you	will	be	notified	for	are
ns_initack	and	ns_connectping.

typedef	enum	
{

ns_initsent,				
ns_initack,				
ns_connectping,				
ns_finished,				
ns_canceled,				
ns_reportsent,				
ns_reportack				

}	NegotiateState;

Constants

ns_initsent
Initial	connection	request	has	been	sent	to	the	server	(internal).

ns_initack
NAT	Negotiation	server	has	acknowledged	your	connection	request.

ns_connectping
Direct	negotiation	with	the	other	client	has	started.

ns_finished
The	negotiation	process	has	completed	(internal).

ns_canceled
The	negotiation	process	has	been	canceled	(internal).

ns_reportsent
Negotiation	result	report	has	been	sent	to	the	server	(internal).

ns_reportack
NAT	Negotiation	server	has	acknowledged	your	result	report
(internal).

Section	Reference:	Gamespy	NAT	Negotiation	SDK

See	Also:	NegotiateProgressFunc

Patching	and	Usage	Analysis	SDK
Overview

GameSpy's	Patching	SDK	simplifies	the	process	of	determining	when	a
patch	is	required	for	a	game	and	delivering	in	to	the	user.

Unlike	other	patching	systems	that	have	complex	scripting	and	file
matching	requirements,	our	SDK	is	requires	no	changes	to	the	way
developers	and	publishers	create	patches,	and	instead	focuses	on	patch
identification	and	delivery.	Developers	can	use	existing	patch	creation
tools	to	create	and	install	their	patch,	and	use	the	Patching	SDK	to
manage	delivery	to	users.

The	SDK	is	supported	by	an	easy-to-use	web	interface	that	developers
can	use	to	configure	updates.	Different	updates	can	be	delivered	for
different	versions	or	distributions	of	the	game.	For	example,	you	can
have	a	small	patch	for	version	1.1	to	1.2,	and	a	larger	patch	to	1.2	for
users	that	still	have	version	1.0.	You	can	also	have	different	patches
based	on	distribution,	so	different	languages	or	platforms	can	have	their
own	set	of	patches.	You	can	even	set	the	current	version	on	a	per-
distribution	basis,	since	many	games	release	a	patch	in	one	region
before	localized	versions.	You	can	also	use	distribution	patching	to	allow
internal	or	external	beta	testers	to	update	to	a	new	version	before	it's
publicly	available.

The	SDK	is	also	fully-compatible	with	manually	downloading	and
installing	patches	-	so	you	can	make	the	patch	files	available	on	your	web
site	or	on	a	magazine	cover	CD,	in	addition	to	being	available	in-game.

The	Patching	SDK	and	the	backend	that	supports	it	have	been	used	for
over	four	years	by	GameSpy	for	updating	our	own	software	and	has	been
found	to	be	an	extremely	stable	and	reliable	method	of	delivering	updates
to	millions	of	our	own	users.

Benefits

Auto-patching	of	games	has	many	potential	benefits.	Making	sure
patches	are	easy	to	find	and	install	helps	reduce	customer	service	issues
-	when	bugs	are	found	and	corrected,	they	fixes	are	easily	distributed	to
all	players,	instead	of	relying	on	customer	service	operators	directing
users	to	web	sites.

The	ability	to	patch	the	game	with	upgrades	or	new	content	can	help
extend	the	life	of	a	game	online,	and	delivering	this	new	content	to	all
players	assures	the	critical	mass	necessary	for	it	to	succeed.

We	feel	strongly	that	lack	of	auto-patching	for	multiplayer	games	can	be
a	serious	detriment	to	online	play.	To	demonstrate	this,	we	present	below
graphs	from	our	master	server	of	online	play	for	two	popular	multiplayer
games	over	a	range	of	dates.	During	the	date	ranges	charted	on	the
graph,	both	games	had	a	major	patch	released.

Quake	3,	which	does	not	have	an	auto-patching	system	(although	it	does
have	a	patch	notification	system	in-game),	was	averaging	around	4200
simultaneous	players	before	their	patch	on	5/4.	After	the	patch,	usage
dropped	sharply	and	it	was	more	than	a	month	before	online	play

returned	to	previous	levels.	There	are	undoubtedly	large	numbers	of
players	that	were	never	able	to	locate	or	install	the	patch,	and	thus	never
returned	to	play	the	game	online.

In	contrast,	Half-Life,	which	has	a	combination	internal/external	auto-
patching	system,	was	averaging	19000	simultaneous	players	before	their
patch	release	on	6/8.	After	the	release	there	is	a	short	dip,	but	usage
quickly	returned	to	normal	as	players	are	automatically	patched	to	the
latest	version.

INSERT	IMAGE	HERE,	y0!

How	It	Works

User	Perspective

First,	here	is	an	example	of	what	a	user	might	see	in	a	game	using	the
Patching	SDK.

1.	 Player	launches	the	game
2.	 After	launching	the	game,	the	player	is	notified	that	a	new	version	is

available
3.	 The	player	is	given	the	option	to	download	and	install	the	patch
4.	 After	the	download	is	complete,	the	game	exits	and	the	patch

installer	begins	the	patch	installation	process
5.	 Once	the	patch	install	is	complete	the	game	is	re-launched	and	the

user	continues

Developer	Perspective

To	understand	how	the	system	works	"under	the	covers"	it	is	important	to
first	understand	what	we	classify	as	a	unique	version.

A	version	is	identified	by	the	combination	of	3	identifiers:

productID
Each	game	is	issued	a	unique	productid	by	GameSpy	for	their
game.	Games	on	multiple	platforms	may	be	issued	multiple
productIDs.

distributionID
Different	distributions	can	be	patched	with	different	patches.	If	you
only	have	one	distribution,	simply	use	0	for	the	distribution	ID.
Otherwise	send	us	a	list	of	the	distributions	you	want	patched
separately	and	we'll	send	you	distribution	IDs	for	them.

versionUniqueID
This	is	a	string	that	uniquely	identifies	a	particular	versions.	This
string	can	be	anything	you	want,	as	long	as	it	is	different	for	each
version	you	want	to	differentiate	between.	For	example,	it	can	be
"1"	then	"2"	then	"3"	or	"1.0"	then	"1.01"	then	"1.1"	or	even

"version1"	"next	version"	"third	version".	This	string	is	not	shown	to
users	anywhere,	any	may	be	up	to	30	characters	long.

When	the	game	is	running	and	wants	to	check	if	a	patch	is	available	it
first	determines	its	identifiers.	These	identifiers	are	usually	compiled	in
(for	example,	as	defines),	but	can	also	be	read	from	an	external	resource
if	its	more	convenient.

The	game	then	calls	ptCheckForPatch()	with	the	identifiers,	and	a
callback	that	will	get	called	when	the	check	is	complete.	This	call	can
either	be	blocking	or	non-blocking.	If	done	non-blocking,	the	function
ghttpThink()	must	be	called	on	a	regular	basis	until	the	check	is
complete	to	poll	for	results.

The	Patching	SDK	then	contacts	the	GameSpy	Patching	Backend	to
determine	whether	an	update	is	required	for	the	user,	and	if	so	what
patch	they	need	to	get.

To	determine	whether	an	update	is	required,	the	Patching	Backend
consults	the	Current	Version	List	for	the	given	productID.	The	Current
Version	List	can	have	a	different	current	version	for	each	distribution,	and
is	editable	using	the	web	interface	as	described	below.

Once	the	Patching	Backend	determines	the	current	version	for	the	given
productID	and	distributionID,	it	compares	it	to	the	versionUniqueID
passed	from	the	game	to	see	if	they	match.	If	they	do,	the	user	has	the
current	version	and	the	backend	notifies	the	SDK.

If	the	current	version	does	not	match,	then	the	Patching	Backend	needs
to	determine	what	patch	(if	any)	to	send	the	user.	Before	checking	the	list
of	patches,	it	checks	the	Known	Version	List	for	the	versionUniqueID
passed	from	the	game.	If	that	uniqueID	does	not	exist	in	the	list	of	known
versions,	it	adds	it.	If	it	does	exist,	it	checks	whether	the	"Internal
Version"	flag	is	set.	If	the	"Internal	Version"	flag	is	set	on	this	version
reported	from	the	game,	then	no	patching	is	done	(typically	this	is	used
for	betas	or	other	test	versions,	that	are	not	technically	the	current
version,	but	should	not	be	patched	to	the	current	version	either).	This
Known	Version	List	can	be	edited	to	give	versions	descriptive	names
(that	will	be	displayed	to	users	when	asked	to	patch)	or	mark	versions	as

Internal	using	the	web	interface	described	below.

Next	the	Patching	Backend	checks	the	Patch	Information	List	to	locate
a	patch	that	will	get	this	version	to	the	latest	version.	The	Patch
Information	List	(which	is	editable	using	the	web	interfaces	described
below)	contains	a	list	of	all	the	patches	available	for	a	game.	A	patch	is
defined	as	the	combination	of	a	start	version,	end	version,	and
distribution.	You	can	mark	the	start	version	as	"any"	in	which	case	it	is
assumed	that	if	a	more	specific	patch	is	not	found,	the	"any"	patch	will	be
able	to	patch	any	version	to	the	given	end	version.	Distribution	can	also
be	selected	as	a	specific	distribution,	or	"any"	if	the	patch	can	be	used	for
any	distribution.

The	Patching	Backend	tries	to	locate	the	most-specific	patch	possible	by
trying	to	match	the	start	version,	end	version	(being	the	current	version
we're	trying	to	patch	to)	and	distribution	as	reported	from	the	game.	If	an
exact	match	is	not	found,	it	tries	the	more	general	cases	(any	start
version,	any	distribution)	to	see	if	it	can	find	a	patch	that	will	get	the	game
to	the	current	version.	If	it	does	not	find	a	patch,	it	returns	to	the	game	as
if	the	user	has	the	current	version.	If	it	does	find	a	patch,	it	returns	the
name	of	the	new	version,	as	well	as	the	information	needed	to	download
the	patch	to	the	Patching	SDK.

At	the	end	of	this	process,	the	Patching	SDK	calls	the	game	callback	and
indicates	whether	a	patch	is	available,	and	if	so,	where	to	download	it
from.	This	whole	process	typically	takes	less	than	1	second.

One	you've	determined	whether	a	patch	is	available,	you	can	allow	the
user	to	choose	to	download	and	install	it.	The	Patch	Information	Table
can	contain	two	different	things	that	allow	you	to	determine	where	to
download	a	patch	from.	The	first	is	just	an	HTTP	URL	to	the	patch
executable.	You	can	use	the	HTTP	SDK	or	the	external	FPUpdate	utility
(described	below)	to	download	and	execute	the	patch.	The	other	item	the
Patch	Information	Table	can	contain	is	a	FilePlanet	FileID	number.	This
number	can	be	used	with	FilePlanet	and	a	web	browser,	allowing	a	user
to	download	the	file	themselves.

Creating	Patches

The	Patching	SDK	does	not	provide	any	direct	functionality	for	creating
patches.	We've	found	that	developers	and	publishers	typically	already
have	their	own	systems	for	creating	patches,	or	have	already	licensed	a
3rd	party	patching	tool.

Two	products	that	we've	seen	successfully	used	are	RTPatch	and	Wise
InstallMaster,	but	there	are	many	others	on	the	market.

Generally	it's	best	if	you	consider	your	patching	software	and	strategy
before	releasing	your	product.	Some	CD	Copy-protection	schemes	can
make	patching	difficult,	and	some	products	work	better	with	some	games
than	others,	so	we	suggest	testing	any	patching	product	with	you	game
before	it	goes	gold.

If	you	use	the	FPUpdate	(described	below)	to	download	and	install	the
patch,	the	patch	must	be	in	a	self-contained,	self-installing	EXE	form.
Most	patching	products	are	capable	of	creating	patches	in	this	form.	If
you	manage	the	download	/	installation	of	the	patch	yourself,	you	can
download	the	patch	in	whatever	format	you	want.

One	question	that	is	often	raised	about	our	patching	system	is	the	ability
to	handle	multi-part	patches.	That	is,	the	ability	to	have	one	patch	that
goes	from	1.0	to	1.5,	another	patch	that	goes	from	1.5	to	1.7,	a	patch	that
goes	from	1.7	to	2.0,	and	have	the	Patching	SDK	download	all	three	files
and	run	them	in-order	for	version	1.0	clients.	We	decided	not	to	directly
support	multi-part	patching	for	a	variety	of	reasons	(mainly	having	to	do
with	ambiguities	in	determining	patching	paths)	and	instead	suggest	that
developers	create	and	test	full	patches	for	each	version	they	want	to
patch	(e.g.	1.0	to	2.0,	1.5	to	2.0,	and	1.7	to	2.0)	or,	create	a	small	patch
for	the	most	recent	version	to	the	new	version	(e.g.	1.7	to	2.0),	and	then
a	larger	patch	that	can	patch	any	previous	version	to	the	new	version
(e.g.	1.x	to	2.0).	In	our	experience	these	two	methods	lead	to	better
results	compared	to	trying	to	install	multiple	generational	patches.	Even
safer	is	creating	a	single	patch	that	can	be	applied	to	any	existing	version
to	bring	it	to	the	new	version	(e.g.	x.x	to	2.0)	but	this	often	leads	to	larger
patches.

http://www.pocketsoft.com/
http://www.wisesolutions.com/

For	developers	that	still	require	mutli-part	patches,	we	do	have	a	solution
available	that	works	with	the	current	Patching	SDK.	Contact	developer
support	for	more	information.

mailto:devsupport@gamespy.com

File
ptMain.c

pt.h

pt.dsp

pt.dsw

pttestc.c

pttestc.dsp

File	Manifest

The	following	files	should	be	included	with	this	package.	If	any	of	the	files
are	missing,	please	contact	devsupport@gamespy.com.

Description
Patching	/	Usage	Analysis	SDK	code

Patching	/	Usage	Analysis	SDK	header	file

Example	and	test	code	for	the	Patching	and
Usage	Analysis	SDK

Devstudio	Workspace	for	API	/	sample	code

Example	code

Example	code	project

The	HTTP	SDK	and	GameSpy	Common	Code	are	also	required	for	the
Patching	and	Usage	Analysis	SDK.

mailto:devsupport@gamespy.com

Implementation

The	following	is	a	quick	rundown	of	the	various	functions	in	the	Patching
SDK.	The	pt.h	file	contains	additional	documentation	for	each	function.

ptCheckForPatch

This	function	is	used	to	check	if	a	patch	is	available	for	a	certain	version
of	a	product.	The	three	things	that	are	used	to	uniquely	identify	a	version
of	a	product	are	passed	in:	product	ID,	version	unique	ID,	and	distribution
ID.	The	SDK	will	then	check	for	a	new	patch	and	call	the	callback.	If	the
blocking	parameter	is	PTTrue,	then	this	function	won't	return	until	it
finishes	checking	for	a	patch,	or	there	is	an	error.	If	there	is	any	sort	of
error	initiating	the	check,	then	this	function	will	return	PTFalse,	and	the
callback	will	not	be	called.	For	more	info	on	the	callback,	see	the
description	of	ptPatchCallback	below.

PTBool	ptCheckForPatch

(

	 int	productID,

	 const	char	*	versionUniqueID,

	 int	distributionID,

	 ptPatchCallback	callback,

	 PTBool	blocking,

	 void	*	param

);

productid

The	product	ID	of	the	application	for	which	to	check.
versionUniqueID

The	string	that	uniquely	identifies	this	version.	Max	30	characters.
distributionID

The	distribution	ID	for	this	distribution	of	the	application.	Can	be	0.
callback

This	gets	called	with	information	about	a	possible	patch.
blocking

If	PTTrue,	the	function	won't	return	until	the	callback	has	been
called.

param

This	is	optional	user-data	that	will	be	passed	into	the	callback.

ptPatchCallback

This	callback	gets	called	as	a	result	of	the	ptCheckForPatch	function
being	called.	See	above	for	more	info.

typedef	void	(*	ptPatchCallback)

(

	 PTBool	available,

	 PTBool	mandatory,

	 const	char	*	versionName,

	 int	fileID,

	 const	char	*	downloadURL,

	 void	*	param

);

available

PTTrue	if	a	newer	version	is	available.	PTFalse,	ignore	the	other
parameters.

mandatory

If	PTTrue,	this	patch	has	been	marked	as	mandatory.

versionName

A	user-readable	display	name	for	the	new	version.
fileID

A	FilePlanet	file	ID	for	the	patch.	Can	be	0.

Used	to	form	a	FilePlanet	URL	so	the	user	can	download	the	file.
param

This	is	optional	user-data	that	was	passed	to	ptCheckForPatch.

Using	The	Web	Admin	Interface

The	web	administration	interface	is	located	at
http://motd.gamespy.com/admin/patching/login.html	.	It	is	used	for
administering	the	backend	of	the	Patching	SDK.	The	login	system	uses
GameSpy	ID	for	authentication.	If	you	have	not	already	done	so,	create	a
GameSpy	ID	account	and	send	the	e-mail	address	you	used	to
devsupport@gamespy.com.	You	account	will	be	given	access	to	the
admin	page	for	your	product,	and	you	will	be	sent	the	productid	number
to	use.

Login	Screen

At	the	login	screen,	enter	the	login	name,	password,	and	productid	you
have	been	issued	for	your	product.

Once	your	login	has	been	verified,	you	will	be	sent	to	a	page	where	you
can	access	the	various	lists	needed	to	administer	the	system.

Known	Version	List

The	Known	Version	List	contains	a	list	of	all	of	the	versions	that	have
been	reported	for	your	product.	You	can	select	a	version	and	push	the
Edit	button	to	edit	it.

The	two	fields	you	can	edit	for	each	version	are	the	name	and	the
internal	flag.	The	Version	Name	is	used	throughout	the	web	interface	to
identify	the	version,	and	is	sent	to	the	Patching	SDK	by	the	Patching
Backend	when	a	client	is	notified	of	a	new	version.	It	should	generally	be
a	user-displayable	string.

The	internal	flag	is	used	to	mark	a	version	that	should	not	be	auto-
updated	(even	if	it	doesn't	match	the	current	version).	Typically	this	is
used	to	flag	internal	or	pre-release	versions	so	that	users	testing	them
don't	get	update	notifications	to	the	current	public	version.

Versions	are	added	to	the	Known	Version	List	the	first	time	a
versionUniqueID	is	checked	via	the	Patching	SDK.	The	version	list	for
your	product	will	initially	be	empty	-	the	first	time	you	run	a	check	with	the

http://motd.gamespy.com/admin/patching/login.html
http://www.gamespyid.com/

Patching	SDK,	whatever	versionUniqueID	you	use	will	create	a	new	entry
in	the	Known	Version	List,	which	you	can	then	edit	via	the	web	interface.
Because	entries	are	added	automatically,	you	never	need	to	worry	about
a	mismatch	between	what	is	being	reported	via	the	Patching	SDK	and
the	versions	listed	on	the	web	page.

Current	Version	List

The	Current	Version	List	is	where	you	set	which	version	is	the	most
current	for	your	product.	If	you	are	only	using	a	single	distribution,	you
should	only	have	a	single	entry	(with	a	distribution	of	"Normal"	or	"Any"	-
both	will	work).	If	you	have	multiple	distributions	that	all	have	the	same
current	version,	you	can	simply	set	the	distribution	to	"Any".	If	you	need
separate	current	versions	for	different	distributions,	you	can	add	multiple
entries.

Existing	entries	can	be	updated	or	deleted.	You	can	simply	update	your
entry	when	a	new	upgrade	is	available	for	a	particular	distribution.

Patch	Information	List

The	Patch	Information	List	contains	the	list	of	patches	that	are	available
for	your	product.	You	can	add	a	new	patch	by	specifying	a	start	version,
end	version,	and	distribution.	If	the	patch	can	be	applied	to	any	version	to
bring	it	to	the	end	version,	just	select	"Any"	under	start	version.	If	the
patch	can	be	applied	to	any	distribution	(or	you	only	have	1	distribution)
select	"Any"	for	the	distribution	-	otherwise	select	the	distribution	the
patch	is	appropriate	for.	You	must	add	at	least	one	of	the	two	download
location	methods:	Either	a	full	URL	or	a	FilePlanet	FileID.	You	can	enter
data	for	both	if	you	have	both	a	FilePlanet	Mirror	and	a	separate	web
server	mirror.

Existing	patches	can	be	updated	with	new	locations	or	deleted.	Generally
you	do	not	need	to	delete	old	patches,	even	if	they	aren't	going	to	be
used	any	more	(because	the	version	they	patch	to	is	no	longer	the
current	version),	however	you	can	delete	patches	if	desired.

Patching	and	Usage	Analysis	SDK	Functions
ptCheckForPatch

Determine	whether	a	patch	is	available
for	the	current	version	and	particular
distribution	of	a	product.

ptCheckForPatchAndTrackUsage
Does	the	same	thing	as	both
ptCheckForPatch	and	ptTrackUsage,
in	one	call.

ptTrackUsage
Track	usage	of	a	product,	based	on
version	and	distribution.

ptCheckForPatch
Determine	whether	a	patch	is	available	for	the	current	version	and
particular	distribution	of	a	product.

PTBool	ptCheckForPatch(
int	productID,
const	gsi_char	*	versionUniqueID,
int	distributionID,
ptPatchCallback	callback,
PTBool	blocking,
void	*	instance);

Routine Required	Header Distribution
ptCheckForPatch <pt.h> SDKZIP

Return	Value

PTTrue	is	return	if	a	query	was	sent.		PTFalse	means	the	operation	was
aborted.

Parameters

productID
[in]	Numeric	ID	assigned	by	GameSpy.		This	is	NOT	the	game	ID.

versionUniqueID
[in]	Developer	specified	string	to	indentify	the	current	version.	
Typically	"1.0"	form.

distributionID
[in]	Optional	indentifier	for	distribution.		This	is	usually	0.

callback
[in]	Function	to	be	called	when	the	operation	completes.

blocking
[in]	When	set	to	PTTrue,	this	function	will	not	return	until	the
operation	has	completed.

instance
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	ptCheckForPatch	function	sends	a	query	to	determine	if	a	patch	is
available	for	the	current	game	version	and	distribution.	If	this	function
does	not	return	PTFalse,	then	the	callback	will	be	called	with	information
on	a	possible	patch	to	a	newer	version.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

ptCheckForPatch ptCheckForPatchA ptCheckForPatchW

ptCheckForPatchW	and	ptCheckForPatchA	are	UNICODE	and	ANSI
mapped	versions	of	ptCheckForPatch.	The	arguments	of
ptCheckForPatchA	are	ANSI	strings;	those	of	ptCheckForPatchW	are
wide-character	strings.

Section	Reference:	Gamespy	Patching	and	Usage	Analysis	SDK

ptCheckForPatchAndTrackUsage
Does	the	same	thing	as	both	ptCheckForPatch	and	ptTrackUsage,	in	one
call.

PTBool	ptCheckForPatchAndTrackUsage(
int	userID,
int	productID,
const	gsi_char	*	versionUniqueID,
int	distributionID,
ptPatchCallback	callback,
PTBool	blocking,
void	*	param);

Routine Required	Header Distribution
ptCheckForPatchAndTrackUsage <pt.h> SDKZIP

Return	Value

Parameters

userID
[in]	Numeric	ID	assigned	by	GameSpy.	This	is	NOT	the	game	ID.

productID
[in]	Developer	specified	string	to	indentify	the	current	version.
Typically	"1.0"	form.

versionUniqueID
[in]	Developer	specified	string	to	indentify	the	current	version.	
Typically	"1.0"	form.

distributionID
[in]	Optional	indentifier	for	distribution.		This	is	usually	0.

callback
[in]	Function	to	be	called	when	the	operation	completes.

blocking
[in]	When	set	to	PTTrue,	this	function	will	not	return	until	the
operation	has	completed.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
ptCheckForPatchAndTrackUsage ptCheckForPatchAndTrackUsageA ptCheckForPatchAndTrackUsageW

ptCheckForPatchAndTrackUsageW	and
ptCheckForPatchAndTrackUsageA	are	UNICODE	and	ANSI	mapped
versions	of	ptCheckForPatchAndTrackUsage.	The	arguments	of
ptCheckForPatchAndTrackUsageA	are	ANSI	strings;	those	of
ptCheckForPatchAndTrackUsageW	are	wide-character	strings.

Section	Reference:	Gamespy	Patching	and	Usage	Analysis	SDK

See	Also:	ptCheckForPatch,	ptTrackUsage

ptTrackUsage
Track	usage	of	a	product,	based	on	version	and	distribution.

PTBool	ptTrackUsage(
int	userID,
int	productID,
const	gsi_char	*	versionUniqueID,
int	distributionID,
PTBool	blocking);

Routine Required	Header Distribution
ptTrackUsage <pt.h> SDKZIP

Return	Value

If	PTFalse	is	returned,	there	was	an	error	tracking	usage.

Parameters

userID
[in]	The	GP	userID	of	the	user	who	is	using	the	product.	Can	be	0.

productID
[in]	The	ID	of	this	product.

versionUniqueID
[in]	A	string	uniquely	identifying	this	version.

distributionID
[in]	The	distribution	ID	for	this	version.	Can	be	0.

blocking
[in]	When	set	to	PTTrue,	this	function	will	not	return	until	the
operation	has	completed

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

ptTrackUsage ptTrackUsageA ptTrackUsageW

ptTrackUsageW	and	ptTrackUsageA	are	UNICODE	and	ANSI	mapped
versions	of	ptTrackUsage.	The	arguments	of	ptTrackUsageA	are	ANSI
strings;	those	of	ptTrackUsageW	are	wide-character	strings.

Section	Reference:	Gamespy	Patching	and	Usage	Analysis	SDK

Patching	and	Usage	Analysis	SDK	Callbacks
ptPatchCallback

This	callback	gets	called	when	a	patch	is	being	checked
for	with	either	ptCheckForPatch	or
ptCheckForPatchAndTrackUsage.

ptPatchCallback
This	callback	gets	called	when	a	patch	is	being	checked	for	with	either
ptCheckForPatch	or	ptCheckForPatchAndTrackUsage.

typedef	void	(*ptPatchCallback)(
PTBool	available,
PTBool	mandatory,
const	gsi_char	*	versionName,
int	fileID,
const	gsi_char	*	downloadURL,
void	*	param);

Routine Required	Header Distribution
ptPatchCallback <pt.h> SDKZIP

Parameters

available
[in]	PTTrue	if	a	newer	version	is	available.	If	PTFalse,	ignore	the
other	parameters.

mandatory
[in]	If	PTTrue,	this	patch	has	been	marked	as	mandatory.

versionName
[in]	A	user-readable	display	name	for	the	new	version.

fileID
[in]	A	FilePlanet	file	ID	for	the	patch.	Can	be	0.	Used	to	form	a
FilePlanet	URL

downloadURL
[in]	If	not	an	empty	string,	contains	a	URL	to	download	the	patch
from.

param
[in]	This	is	optional	user-data	that	was	passed	to	ptCheckForPatch.

Remarks

If	a	patch	is	available,	and	the	fileID	is	not	0,	then	ptLookupFilePlanetInfo
can	be	used	to	find	download	sites.

Section	Reference:	Gamespy	Patching	and	Usage	Analysis	SDK

Peer	SDK
Overview

The	GameSpy	Peer	SDK	is	designed	to	provide	an	in-game,	lobby
interface	for	starting	peer-to-peer	games.	The	Peer	SDK	does	this	using
several	other	GameSpy	SDKs,	including	Chat	(for	chatting),	Query	and
Reporting	2	(for	server	reporting),	and	ServerBrowsing	(for	server	lists
and	server	querying),	but	for	the	most	part	these	interfaces	are	hidden
from	you,	and	you	only	need	to	work	with	the	Peer	SDK	calls.

The	Peer	SDK	only	deals	with	data.	You	will	be	responsible	for	creating
all	the	GUI	elements	that	are	required	for	the	lobby	system.	Typically,	this
includes	a	scrolling	list	control	(for	the	games	list	and	chat	participants
list)	a	scrolling	text	window	(for	the	chat	window),	buttons,	and	a	text
entry	line	(for	the	chat	line).	You	may	wish	to	create	other	controls	to	take
advantage	of	the	more	advanced	features	of	the	SDK	including	player
cross-pings	and	player	status	indicators.

Peer	is	designed	for	games	that	want	to	provide	an	in-game	lobby
system	for	setting	up	multiplayer	games.	Following	is	a	description	of
how	a	game	might	typically	use	Peer.	When	the	player	first	connects,
they	are	placed	in	the	main	chat	room	for	the	game,	called	the	"title
room".	Once	in	the	title	room,	you	can	request	a	list	of	the	current	games
being	played.	A	list	of	games	that	are	joinable	will	be	returned,	and	it	will
by	dynamically	updated	to	add/remove/update	games	as	changes	occur
in	the	list.	Players	can	choose	to	either	join	one	of	the	existing	games,	or
create	their	own.	When	a	player	creates	their	own	game	and	is	waiting
for	others	to	join	they	are	placed	in	a	separate	chat	room	called	the
"staging	room".	As	other	players	join	the	staging	room,	ping
measurements	are	exchanged,	which	can	be	used	to	determine	the
quality	of	the	connections	between	the	players	(important	for	peer	to	peer
games).	Players	can	indicate	their	readiness	and	the	host	can	choose	to
launch	the	game	when	ready.	Once	the	host	sends	out	the	launch
message,	everyone	in	the	staging	room	can	then	start	playing	the	actual
game.

Due	to	its	flexibility,	there	are	various	ways	to	use	Peer.	For	example,	if	a

game	is	joinable	after	it	has	been	launched,	the	list	of	current	games	can
include	both	games	that	are	already	running	and	those	still	in	staging.
The	user	could	then	have	the	option	of	joining	a	game	in	progress	or
joining	a	staging	room.

Another	option	is	to	use	group	rooms	to	split	the	list	of	games	into
categories	(by	gametype,	skill,	region,	etc.).	In	this	case,	when	entering
the	title	room,	the	user	would	get	a	list	of	group	rooms	instead	of	a	list	of
games.	They	would	see	descriptions	of	the	groups	along	with	the	number
of	players	in	each	group.	When	the	user	selects	a	group,	they	would	join
that	group's	"group	room".	In	here	they	can	chat	with	others	in	the	group
room,	and	they	would	see	a	list	of	the	games	and/or	staging	rooms	that
are	a	part	of	this	group.	They	could	choose	to	either	join	one	of	the
games,	create	their	own	room,	or	switch	to	another	group.

A	variation	on	this	method	would	be	to	never	join	the	title	room	-	instead,
the	player	would	initially	see	just	a	list	of	group	rooms	they	could	join.
This	could	help	avoid	people	getting	"stuck"	chatting	in	the	title	room,
without	even	seeing	a	list	of	games	to	play	in.	If	Peer	is	just	being	used	to
report	a	game	or	get	a	list	of	servers,	the	application	does	not	even	need
to	connect	to	the	chat	server.	After	initializing	and	setting	a	title,	just	call
peerStartReporting()	to	start	reporting	a	server	to	the	backend	or
peerStartListingGames()	to	start	retrieving	a	server	list.

File
peer.h

peerMain.c

peerMain.h

peerCallbacks.c,h

peerSB.c,h

peerGlobalCallbacks.c,h

peerKeys.c,h

peerMangle.c,h

peerOperations.c,h

peerPing.c,h

peerPlayers.c,h

peerRooms.c,h

peerHost.c,h

peerQR.c,h

peerAutoMatch.c,h

../nonport.c,h

../hastable.c,h

../md5c.c,md5.h

../darray.c,h

../qr2/

../serverbrowsing/

File	Manifest

The	following	files	should	be	included	with	this	package.	If	any	of	the	files
are	missing,	please	contact	devsupport@gamespy.com.

Description
GameSpy	Peer	header	(all	user	functions	are

prototypes	here)

Entry	point	for	all	user	Peer	functions

Common	header	for	internal	code

Code	for	queueing/calling	callbacks

Code	for	dealing	with	the	Server	Browsing	SDK

Code	for	chat	and	QR2	callbacks

Code	for	handling	global	and	room	keys

Converts	to	and	from	room	names

Code	for	running/maintaining	operations

Code	for	calculating	player	pings

Keeps	track	of	players

Keeps	track	of	rooms

Hosting	rooms

Reproting	as	a	server	and	responding	to	queries

AutoMatch	functionality

Platform-specific	code

Hastable

MD5	generation

Dynamic-Array

Server	reporting

Server	listing

mailto:devsupport@gamespy.com

../pinger/

../chat/

/PeerLobby/

/PeerTest/

/PeerC/

UDP-pings

Chat	SDK

A	sample	application	which	uses	the	Peer	SDK
with	a	wizard-like	interface

A	test	application	used	for	testing	specific	Peer
functionality

A	peer	app	written	for	the	command-line	in	ANSI
C

Implementation

Initializing

Before	doing	anything	else,	Peer	must	be	initialized	with	a	call	to
peerIntialize:

PEER	peerInitialize

(

	 PEERCallbacks	*	callbacks

);

disconnected

The	chat	connection	has	been	disconnected	by	the	server.	You	can
attempt	to	reconnect	with	peerConnect,	or	shutdown	with
peerShutdown.

roomMessage

A	chat	message	has	arrived	in	one	of	the	rooms	the	user	is	in.
roomUTM

An	under-the-table	message	has	arrived	in	a	room	the	user	is	in.
roomNameChanged

The	name	of	a	room	the	user	is	in	has	changed.
roomModeChanged

The	mode	changed	in	a	room	the	user	is	in.
playerMessage

A	private	chat	message	from	another	player	has	been	received.
playerUTM

An	under-the-table	message	has	arrived	from	another	player.
readyChanged

If	the	user	is	in	a	staging	room,	this	will	get	called	when	one	of	the
players	changes	his	ready	status	(by	default,	all	players	are	not
ready).

gameStarted

If	the	user	is	in	a	staging	room,	this	gets	called	when	the	host

launches	the	game.	The	host's	IP	is	available	as	part	of	the
callback,	as	well	as	a	text	string	specified	by	the	host.

playerJoined

A	player	has	joined	one	of	the	rooms	the	local	player	has	joined.
playerLeft

A	player	has	left	one	of	the	rooms	the	local	player	has	joined.
kicked

The	local	player	has	been	kicked	from	a	room.
newPlayerList

The	entire	playerlist	has	been	updated,	and	should	be	checked
with	peerEnumPlayers	if	listing	players.

playerChangedNick

When	joining	a	room,	this	gets	called	for	each	player	in	the	room
when	his	IP	and	profile	ID	becomes	available.

playerFlagsChanged

A	players's	room	flags	have	changed.
ping

A	new	average	ping	time	has	been	calculated	for	a	player	in	a
room	being	pinged.	Which	rooms	get	pinged	is	determined	when
the	title	is	set	with	peerSetTitle.

crossPing

A	new	average	cross-ping	time	between	two	players	is	available.
Which	rooms	get	cross-pings	is	determined	when	the	title	is	set
with	peerSetTitle.

globalKeyChanged

A	global	watch	key	has	changed	or	is	newly	available.
roomKeyChanged

A	room	watch	key	has	changed	or	is	newly	available,	or	a
broadcast	key	has	changed.

qrServerKey

When	reporting	this	is	used	to	report	values	for	server	keys.
qrPlayerKey

When	reporting	this	is	used	to	report	values	for	player	keys.

qrTeamKey

When	reporting	this	is	used	to	report	values	for	team	keys.
qrKeyList

When	reporting	this	is	used	to	list	the	keys	that	will	be	reported.
qrCount

When	reporting	this	is	used	to	get	the	number	of	players	and	the
number	of	teams.

qrAddError

This	is	used	to	notify	the	application	of	a	server	reporting	error.
qrNatNegotiateCallback

This	is	used	to	pass	nat-negotiate	cookies	to	the	server.

Peer	is	initialized	until	peerShutdown	is	called:

void	peerShutdown

(

	 PEER	peer

);

Thinking

Once	peer	has	been	initialized,	peerThink	must	be	called	frequently	to
allow	Peer	to	do	any	necessary	processing,	including	calling	callbacks
and	processing	pings.	It	should	be	called	at	least	every	10	ms,	in	order	to
get	accurate	ping	times.	This	is	typically	called	in	the	program's	main
loop.

void	peerThink

(

	 PEER	peer

);

Title

Setting	a	title	tells	peer	which	game	it	should	be	dealing	with,	and	should
be	done	after	peer	has	been	initialized	but	before	it	is	connected.	After

the	title	is	set,	peer	can	connect	to	the	chat	server,	the	title	room	can	be
joined,	staging	rooms	can	be	created,	and	games	and	staging	rooms	can
be	joined.	The	title	can	later	be	changed	without	disconnecting.	For
information	on	getting	your	secret	key,	contact	developer	support

PEERBool	peerSetTitle

(

	 PEER	peer,	

	 const	char	*	title,	

	 const	char	*	qrSecretKey,

	 const	char	*	sbName,

	 const	char	*	sbSecretKey,	

	 int	sbGameVersion,	

	 int	sbMaxUpdates,

	 PEERBool	natNegotiate,

	 PEERBool	pingRooms[NumRooms],

	 PEERBool	crossPingRooms[NumRooms]

);

peer

This	is	the	peer	object	returned	by	peerInitialize.

title

The	title	for	the	game.	This	controls	what	serverlist	hosted	games
show	up	in	and	what	games	to	show	in	a	serverlist.

qrSecretKey

This	is	the	secret	key	used	by	the	QR2	SDK	(which	is	used	by	the
Peer	SDK).

sbName,	sbSecretKey

This	is	the	server-browsing	name	and	secret	key	used	by	the	Peer
SDK	(which	uses	the	ServerBrowsing	SDK).

Used	to	form	a	FilePlanet	URL	so	the	user	can	download	the	file.
sbGameVersion

This	is	a	number	that	uniquely	identifies	this	version	of	the	game.
sbMaxUpdates

This	is	the	maximum	number	of	servers	to	update	at	a	time.	This

mailto:developersupport@gamespy.com

should	be	10-15	for	modem	users	and	20-30	for	high-bandwidth
users.

natNegotiate

This	should	be	set	to	PEERTrue	if	the	game	supports	GameSpy's
nat-negotation	technology	(or	a	3rd	party	solution).

pingRooms

Each	element	in	this	array	should	be	set	to	PEERTrue	to	do	pings
in	that	room,	or	PEERFalse	not	to	do	pings	in	that	room.	For
example:

pingRooms[TitleRoom]	=	PEERTrue;

pingRooms[GroupRoom]	=	PEERFalse;

pingRooms[StagingRoom]	=	PEERTrue;	

crossPingRooms

Each	element	in	this	array	should	be	set	to	PEERTrue	to	do	cross-
pings	in	that	room,	or	PEERFalse	not	to	do	cross-pings	in	that
room.	For	example:

crossPingRooms[TitleRoom]	=	PEERFalse;

crossPingRooms[GroupRoom]	=	PEERFalse;

crossPingRooms[StagingRoom]	=	PEERTrue;

peerClearTitle

peerClearTitle	can	be	used	to	reset	to	no	title.	This	can	be	useful
during	a	game	for	freeing	up	resources	and	bandwith,	while	not
disconnecting	totally	from	chat.	However,	if	the	game	was	launched	from
a	staging	room,	there	will	be	no	way	to	return	to	the	staging	room	after
the	game	if	peerClearTitle	is	called.

void	peerClearTitle

(

	 PEER	peer

);

Connecting

Once	Peer	is	initialized	and	a	title	is	set,	we	can	connect	to	the	chat
server.	This	is	normally	done	with	peerConnect.	However	if	the
program	needs	to	authenticate	the	user's	login	information	with	the	chat
server,	peerConnectLogin	or	peerConnectPreAuth	should	be	used.
See	the	Logging	In	section	for	further	details.

void	peerConnect

(

	 PEER	peer,

	 const	char	*	nick,

	 int	profileID,

	 peerNickErrorCallback	nickErrorCallback,

	 peerConnectCallback	connectCallback,

	 void	*	param,

	 PEERBool	blocking

);

peer

This	is	the	peer	object	returned	by	peerInitialize.

nick

This	is	the	nick	with	which	to	connect	to	the	chat	server.	See	below
for	chat	nickname	restrictions.

profileID

This	is	the	local	user's	GP	(GameSpy	Presence	and	Messaging)
profile	ID.	If	the	user	doesn't	have	a	GP	account,	or	the	profileID	is
not	used	by	the	program,	this	can	be	set	to	0	and	ignored.	You	can
get	another	player's	profileID	with	peerGetPlayerProfileID	or
peerGetPlayerInfoNoWait.

nickErrorCallback

If	there	was	some	sort	of	error	with	the	nickname	during	the
connection	process,	this	callback	is	called.	After	a	program

receives	this	notice,	it	can	either	try	to	continue	the	connect	with	a
new	nickname	by	calling	peerRetryWithNick	with	the	new	nick,
or	it	can	stop	the	connection	attempt	by	calling
peerRetryWithNick	with	a	NULL	nick.

If	the	connection	attempt	is	stopped,	then	the	connectCallback
will	be	called	with	a	failure.	If	there	is	another	nick	error,
nickErrorCallback	will	be	called	again.	PeerRetryWithNick
does	not	need	to	be	called	immediately	-	the	program	can	prompt
the	user	to	try	with	a	new	nickname,	then	call
peerRetryWithNick	after	the	user	selects	a	new	one.

connectCallback

This	gets	called	when	the	connection	attempt	completes.
param

User-data	passed	to	both	callbacks.
blocking

If	PEERTrue,	then	the	call	won't	return	until	the	attempt	has
completed.

If	successful,	Peer	will	stay	connected	to	chat	until	either
peerDisconnect	or	peerShutdown	is	called:

void	peerDisconnect

(

	 PEER	peer

);

Peer	uses	the	Chat	SDK	for	all	of	its	chat	functionality.	The	CHAT	object
that	Peer	uses	can	also	be	used	directly	by	the	program	to,	for	example,
join	a	separate	chat	channel.

CHAT	peerGetChat

(

	 PEER	peer

);

Rooms

There	are	three	types	of	rooms	used	by	Peer:	title	rooms,	group	rooms,
and	staging	rooms.	The	application	uses	these	rooms	to	setup	the	path
that	the	user	takes	between	initially	connecting	and	actually	getting	into	a
game.	Each	room	type	is	optional,	allowing	for	a	variety	of	possible
setups.	Here	is	the	first	of	two	typical	paths:

1.	 The	user	connects	and	is	put	into	a	title	room,	where	he	can	chat
with	other	users	who	are	looking	for	a	game	to	join.	At	this	point	the
user	can	get	a	list	of	all	joinable	games,	or	create	his	own	game.

2.	 The	user	joins/creates	a	game.	If	the	game	is	joined	and	is	already
running,	the	user	is	launched	directly	into	the	game.	Otherwise,	the
user	is	put	into	that	game's	staging	room,	where	he	can	talk	with
other	users	getting	ready	to	play	the	game.

3.	 When	the	user	is	prepared	to	play,	he	hits	his	"ready"	button.	After
the	host	sees	that	everyone	is	ready,	he	hits	his	launch	button,	and
everyone	in	the	staging	room	gets	launched	directly	into	the	game.

Another	common	path	is	similar	to	the	above	choice,	but	with	the	addition
of	group	rooms	between	the	title	room	and	staging	rooms	(Note:	to	use
group	rooms,	you	must	contact	developer	support	to	set	them	up):

1.	 The	user	connects	and	is	put	into	a	title	room,	where	he	can	chat
with	other	users	who	are	looking	for	a	game	to	join.	At	this	point	the
user	can	see	a	list	of	group	rooms,	possibly	sorted	by	skill	level,
location,	or	gametype.

2.	 The	user	picks	a	group	and	joins	it.	Now	he	can	talk	with	other	users
that	have	chosen	that	group.	The	user	can	also	get	a	list	of	all
joinable	games	within	the	group,	or	create	his	own	game	within	the
group.

3.	 The	user	joins/creates	a	game.	If	the	game	is	joined	and	is	already
running,	the	user	is	launched	directly	into	the	game.	Otherwise,	the
user	is	put	into	that	game's	staging	room,	where	he	can	talk	with
other	users	getting	ready	to	play	the	game.

4.	 When	the	user	is	prepared	to	play,	he	hits	his	"ready"	button.	After
the	host	sees	that	everyone	is	ready,	he	hits	his	launch	button,	and
everyone	in	the	staging	room	gets	launched	directly	into	the	game.

mailto:devsupport@gamespy.com

Again,	each	room	type	is	optional,	so	it	is	very	easy	to	come	up	with	a
path	that	fits	the	needs	of	a	particular	game.	For	example,	either	of	the
above	paths	could	be	modified	to	skip	the	title	room.	Just	don't	join	the
title	room	and	start	off	by	showing	a	list	of	joinable	games	(or	group
rooms).

Title	Rooms

There	is	one	title	room	for	each	game.	This	is	the	main	lobby	where
people	can	meet	and	chat	while	they	look	for	a	game	to	join.	To	join	the
title	room,	use	peerJoinTitleRoom:

void	peerJoinTitleRoom

(

	 PEER	peer,	

	 const	char	password[PEER_PASSWORD_LEN],

	 peerJoinRoomCallback	callback,

	 void	*	param,

	 PEERBool	blocking

);

peer

This	is	the	peer	object	returned	by	peerIntialize.

password

An	optional	password	for	the	room,	usually	NULL.

callback

Gets	called	when	the	join	completes	or	fails.
param

User-data	passed	to	the	callback.
blocking

If	PEERTrue,	then	the	call	won't	return	until	the	attempt	has
completed.

To	leave	the	title	room,	use	peerLeaveRoom	with	the	roomType	set	to
TitleRoom.

Group	Rooms

For	certain	applications	it	may	be	desirable	to	split	up	games	(either	in
staging	or	already	playing)	into	various	groups.	This	can	be	done	for
several	reasons,	including	categorizing	servers	by	region	("Europe",
"Asia",	"North	America",	etc.),	or	to	group	players	by	skill	level	("Newbie",
"Intermediate",	"Expert").	Peer	allows	this	to	be	done	by	providing	group
rooms.	When	a	user	enters	a	group	room,	they	will	be	able	to	chat	with
other	players	in	that	room,	get	a	list	of	games	in	that	group,	and	start	a
game	in	that	group.	To	get	a	list	of	group	rooms,	use
peerListGroupRooms.	The	peerListGroupRoomsCallback	will	be	called
once	for	each	group	room,	then	once	again	with	a	groupID	of	0	to	signal
that	there	are	no	more	groups.	If	you	want	to	use	group	rooms	in	a	game,
contact	devsupport@gamespy.com	to	get	them	set	up.

void	peerListGroupRooms

(

	 PEER	peer,

	 const	char	*	fields,

	 PeerListingGroupRoomsCallback	callback,

	 void	*	param,

	 PEERBool	blocking

);

peer

This	is	the	peer	object	returned	by	peerIntialize.

fields

This	is	an	optional	backslash-delimited	list	of	extra	kye/values	to
get	for	each	group	room.

callback

Gets	called	once	for	each	group	room,	and	once	more	to	signal	the
end	of	the	list.

param

User-data	passed	to	the	callback.
blocking

If	PEERTrue,	then	the	call	won't	return	until	the	attempt	has

completed.

typedef	void	(*	peerListGroupRoomsCallback)

(

	 PEER	peer,

	 PEERBool	success,

	 int	groupID,

	 SBServer	server

	 const	char	*	name,	

	 int	numWaiting,	

	 int	maxWaiting,	

	 int	numGames,	

	 int	numPlaying,

	 void	*	param

);

peer

This	is	the	peer	object	returned	by	peerIntialize.

success

This	will	be	PEERFalse	if	there	is	an	error	listing	groups.	If	there	is
an	error,	there	will	be	no	more	calls	to	the	callback.

groupID

This	is	unique	identifier	for	the	group,	and	it	is	used	when	joining	a
group	room.	If	there	is	no	error,	and	this	is	0,	it	is	signaling	that
there	are	no	more	groups	to	be	listed.	If	it	is	0,	then	name	will	be
NULL,	and	numWaiting,	maxWaiting,	numGames,	and
numPlaying	will	all	be	0.

server

This	server	object	may	contain	extra	key/value	information	for	this
group.

name

The	name	of	the	group.
numWaiting

The	number	of	players	in	the	group	room.
maxWaiting

The	maximum	number	of	players	allowed	in	the	group	room.
numGames

The	number	of	games	currently	in	this	group,	either	in	staging	or
already	running.

numPlaying

The	total	number	of	players	in	all	of	this	group's	games.
param

User-data	passed	to	peerListGroupRooms.

To	join	a	group	room,	use	peerJoinGroupRoom.	Once	the	room	has
been	joined,	the	listing	of	games	will	be	filtered	so	that	only	games	that
are	in	the	same	group	are	listed.	If	a	game	listing	is	in	progress	when	a
group	room	is	joined	(or	left),	the	listing	will	be	cleared	and	started	over
(the	callback	will	be	called	with	msg==PEER_CLEAR).

void	peerJoinGroupRoom	(PEER	peer,	int	groupID,
peerJoinRoomCallback	callback,	void	*	param,	PEERBool	blocking);

peer

This	is	the	peer	object	returned	by	peerInitialize

groupID

The	ID	of	the	group	to	join	(as	passed	to	the
peerListGroupRoomsCallback).

callback

Gets	called	when	the	join	completes	or	fails.
param

User-data	passed	to	the	callback.
blocking

If	PEERTrue	then	the	call	won't	return	until	the	attempt	has
completed.

To	leave	a	group	room,	use	peerLeaveRoom	with	the	roomType	set	to
GroupRoom.

Staging	Rooms

Staging	rooms	are	chat	rooms	where	players	can	join	up	and	chat	before
launching	into	a	game.	To	create	a	staging	room,	use
peerCreateStagingRoom.	Once	a	staging	room	has	been	created,	the
six	QR	callbacks	that	were	specified	as	part	of	peerIntialize	will	be
called	periodically	to	get	information	on	the	server.	This	will	last	until	the
host	leaves	the	staging	room	(or,	if	the	host	has	started	a	game	and	then
left	the	staging	room,	until	the	game	stops).

If	the	user	is	in	a	group	room	when	the	staging	room	is	created,	the
staging	room	will	be	reported	as	part	of	that	group.	This	association	will
stick	even	if	the	player	then	leaves	the	group	room.

void	peerCreateStagingRoom

(

	 PEER	peer,

	 const	char	*	name,

	 int	maxPlayers,

	 const	char	password[PEER_PASSWORD_LEN],

	 peerJoinRoomCallback	callback,

	 void	*	param,

	 PEERBool	blocking

);

peer

This	is	the	peer	object	returned	by	peerInitialize

name

The	name	to	give	the	room.
maxPlayers

The	maximum	number	of	players	to	allow	in	the	staging	room.
password

An	optional	password	for	the	staging	room.
callback

Gets	called	when	the	create	completes	or	fails.
param

User-data	passed	to	the	callback.

blocking

If	PEERTrue	then	the	call	won't	return	until	the	attempt	has
completed.

peerStartListingGames	is	a	way	for	the	program	to	get	a	dynamic
list	of	all	games	for	the	current	title.	The	callback	is	repeatedly	called	to
let	the	program	know	what	to	do	to	make	its	game	list	current.	This
continues	until	peerStopGames	is	called.	If	the	user	is	in	a	group	room,
only	the	games	for	that	group	will	be	listed.	If	the	user	is	not	in	a	group
room,	games	that	are	not	part	of	any	group	room	will	be	listed.

After	peerStartListingGames()	completes	its	initial	list	of	all	available
game	servers,	it	goes	into	automatic	update	mode,	where	game	updates
are	propagated	as	they	are	reported	by	the	games	themselves	to	the
master.	The	list	of	keys	you	receive	during	this	update	phase	is
determined	by	a	specific	list	of	push	keys	that	have	been	defined	for	your
title.	Push	keys	come	directly	from	the	master	server	and	avoid	any
NAT/firewall	problems	the	host	may	be	having.

The	set	of	push	keys	differs	from	the	initial	list	requested	via	the	fields
array,	as	you	may	care	less	about	certain	keys	during	updates	(the
hostname	of	a	game	is	not	likely	to	change	e.g.).	By	default,	the	BASIC
keys	that	are	pushed	from	the	master	are:	hostname,	mapname,
gametype,	numplayers,	maxplayers,	country,	gamemode,	password
and	gamever.	You	can	contact	developer	support	and	request	a	modified
list	for	your	title.	(Please	make	sure	to	include	in	your	e-mail	the	ascii
names	of	the	keys	to	be	added,	ie.	"mapname",	"gametype",	etc.)

The	maximum	number	of	push	keys	that	can	be	sent	out	(including	the
default	keys)	is	50.	The	string	listing	all	the	keys	(including	the	delimiting
backslashes)	can	be	up	to	256	characters.	The	total	list	of	name	value
pairs	returned	(including	backslashes)	can	be	up	to	1024	characters.

void	peerStartListingGames

(

	 PEER	peer,

	 const	unsigned	char	*	fields,

	 int	numFields,

mailto:devsupport@gamespy.com

	 const	char	*	filter,

	 peerListingGamesCallback	callback,

	 void	*	param

);

peer

This	is	the	peer	object	returned	by	peerInitialize

fields

An	array	of	registered	QR2	keys	to	request	from	servers.
NumFields

The	number	of	keys	in	the	array.
filter

This	is	a	SQL-style	filter	that	is	applied	to	the	initial	listing	of
servers.

callback

Gets	called	each	time	there	is	a	change	in	the	game	list.
param

User-data	passed	to	the	callback.

typedef	void	(*	peerListingGamesCallback)

(

	 PEER	peer,

	 PEERBool	success,

	 const	char	*	name,

	 SBServer	server,

	 PEERBool	staging,

	 int	msg,

	 int	progress,

	 void	*	param

);

peer

This	is	the	peer	object	returned	by	peerInitialize

success

This	will	be	PEERFalse	if	there	is	an	error	listing	games.	The

listing	stops	as	soon	as	that	happens.
name

The	name	of	the	game.
server

The	ServerBrowsing	SBerver	object	for	this	game.	This	can	be
used	to	get	various	information	about	the	game,	including	ping,
number	of	players,	player	names	and	pings,	etc.	See	the
ServerBrowsing	SDK	documentation	and	the	bottom	of
serverbrowsing\sb_serverbrowsing.h	for	further	information.	It	is
also	used	as	a	way	of	uniquely	identifying	a	game.	The	server
object	for	a	game	is	the	same	object	from	the	time	it	gets	added
with	PEER_ADD,	through	any	PEER_UPDATE's,	until	its	removed
with	PEER_REMOVE.

The	server	object	should	be	stored	for	each	game	listed	as	a	way
of	identifying	it	when	a	PEER_UPDATE	or	PEER_REMOVE	is	sent	for
it.	This	parameter	is	NULL	if	the	msg	is	PEER_CLEAR	or
PEER_COMPLETE.

staging

If	this	is	PEERTrue,	then	this	game	has	not	been	launched	yet,
and	is	still	in	the	staging	room.	That	means	that	this	game	can	be
joined	with	peerJoinStagingRoom.	If	this	is	PEERFalse,	this
game	is	already	running.	In	this	case,	the	application	can	just	join
the	game	whenever	it	wants	by	getting	any	necessary	info	from	the
server	object	(such	as	address	with	ServerGetAddress).

progress

When	first	starting	to	list	games,	an	intial	list	of	current	games	is
received,	then	updated	as	new	game	are	started	and	old	games
are	updated	or	removed.	While	the	initial	listing	is	happening,	this
lets	the	program	know	what	percentage	of	the	initial	list	has	been
added	so	far.	It	will	start	at	0	with	the	PEER_CLEAR	message,	then
rise	up	to	100	with	the	PEER_COMPLETE	message.	When	it
reaches	100,	it	will	stay	there	until	the	listing	is	stopped.

param

User-data	passed	to	peerStartListingGames.

Possible	msg	types	are:

PEER_CLEAR

Clear	the	list.	This	has	the	same	effect	as	if	a	PEER_REMOVE	were
sent	for	every	game	listed.	One	of	these	is	sent	initially	when	listing
starts,	and	it	is	also	sent	if	a	group	room	is	joined	or	left	while
games	are	being	listed.	The	server	object	is	NULL	for	this	type.

PEER_ADD

This	is	a	new	game.	Add	it	to	the	list.
PEER_UPDATE

This	game	is	already	on	the	list,	and	its	been	updated.	To	match
this	game	up	to	the	one	in	your	internal	list,	use	the	server	object.	If
the	program	is	only	listing	server	names	this	can	be	ignored.

PEER_REMOVE

Remove	this	game	from	the	list.	Use	the	server	object	to	match	up
the	game	to	the	one	in	your	internal	list.	The	server	object	is	valid
during	this	call,	but	will	become	invalid	immediately	after	the	call,
and	so	should	NOT	be	used	after	returning	from	the	callback.

PEER_COMPLETE

The	listing	of	current	servers	is	complete.	The	application	will	now
get	dynamic	updates	as	servers	get	started,	get	updated,	or	get
shutdown.	The	server	object	is	NULL	for	this	type.

To	join	a	staging	room,	use	peerJoinStagingRoom.	NOTE:	These
should	only	be	used	for	games	listed	with	staging	set	to	PEERTrue.	If
this	is	set	to	PEERFalse,	the	game	is	already	running,	and	the	staging
room	cannot	be	joined.

void	peerJoinStagingRoom

(

	 PEER	peer,

	 GServer	server,

	 const	char	password[PEER_PASSWORD_LEN],

	 peerJoinRoomCallback	callback,

	 void	*	param,

	 PEERBool	blocking

);	

peer

This	is	the	peer	object	returned	by	peerInitialize

server

The	server	object	received	when	listing	games.
password

The	password	for	this	room.	Ignored	if	the	room	has	no	password.
callback

Gets	called	each	time	there	is	a	change	in	the	game	list.
param

User-data	passed	to	the	callback.
blocking

If	PEERTrue	then	the	call	won't	return	until	the	attempt	has
completed.

To	leave	a	staging	room,	use	peerLeaveRoom	with	the	roomType	set	to
StagingRoom.

Messaging

To	send	a	message	to	a	room	the	user	is	in,	use	peerMessageRoom:

void	peerMessageRoom

(

	 PEER	peer,

	 RoomType	roomType,

	 const	char	*	message,

	 MessageType	messageType

);

peer

This	is	the	peer	object	returned	by	peerInitialize

roomType

The	room	to	send	the	message	to:	TitleRoom,	GroupRoom,	or

StagingRoom.
message

The	message	to	send.
messageType

The	type	of	message	to	send:	NormalMessage,	ActionMessage,
NoticeMessage.

Players

Listing

To	enumerate	through	all	of	the	players	in	a	room,	use
peerEnumPlayers.	This	is	done	using	a	local	list	maintained	by	Peer,
and	so	it	will	do	the	enumerating	before	returning.

void	peerEnumPlayers

(

	 PEER	peer,

	 RoomType	roomType,

	 peerEnumPlayersCallback	callback,

	 void	*	param

);

peer

This	is	the	peer	object	returned	by	peerInitialize

roomType

The	room	for	which	to	list	the	players.
callback

Gets	called	once	for	each	player	in	the	room,	and	then	once	at	the
end	of	the	listing	(or	once	if	there's	an	error).

param

User-data	passed	to	the	callback.

This	callback	gets	called	for	each	player	in	the	room:

typedef	void	(*	peerEnumPlayersCallback)

(

	 PEER	peer,

	 PEERBool	success,

	 RoomType	roomType,

	 int	index,

	 const	char	*	nick,

	 PEERBool	host,

	 void	*	param

);

peer

This	is	the	peer	object	returned	by	peerInitialize

success

If	this	is	PEERFalse,	there	has	been	an	error.

roomType

The	room	for	which	to	list	the	players.
index

The	index	of	the	player,	from	0	to	the	one	less	than	the	total
number	of	players	(N	-	1).	Or,	if	this	is	-1,	that	means	the
enumerating	has	completed.

nick

The	nick	of	this	player.
host

PEERTrue	if	tis	player	is	the	host	of	the	room	(this	is	equivalent	to
having	operator	privileges	in	a	chat	channel).

param

User-data	passed	to	the	peerEnumPlayers.

Messaging

To	send	a	private	message	to	another	player,	use
peerMessagePlayer.

void	peerMessagePlayer

(

PEER	peer,

const	char	*	nick,

const	char	*	message,

MessageType	messageType

);

peer

This	is	the	peer	object	returned	by	peerInitialize

nick

The	nick	of	the	player	to	send	them	message	to.	See	Nickname
restrictions	for	valid	chat	nicks.

message

The	message	to	send.
messageType

The	type	of	message	to	send:	NormalMessage,	ActionMessage,
NoticeMessage.

Flags

Every	player	has	a	set	of	flags	associated	with	them	in	each	room	they
are	in.	Flags	are	reported	in	the	peerFlagsChangedCallback,	and
can	also	be	checked	at	any	time	with	peerGetPlayerFlags:

PEERBool	peerGetPlayerFlags

(

	 PEER	peer,

	 const	char	*	nick,

	 RoomType	roomType,

	 int	*	flags

);

peer

This	is	the	peer	object	returned	by	peerInitialize

nick

The	nick	of	the	player	to	get	flags	for.	See	Nickname	restrictions	for
valid	chat	nicks.

roomType

The	room	to	get	the	flags	for.
flags

The	address	at	which	to	store	the	flags.

The	flags	can	be	any	combination	of	the	following	bit	defines:

PEER_FLAG_STAGING

in	a	staging	room
PEER_FLAG_READY

ready	in	a	staging	room
PEER_FLAG_PLAYING

playing	a	game
PEER_FLAG_AWAY

set	as	away
PEER_FLAG_HOST

host	of	the	room
PEER_FLAG_OP

has	operator	priviliges	in	the	room
PEER_FLAG_VOICE

has	voice	(+v)	in	the	room

Launching

Once	a	staging	room	has	been	created,	and	usually	after	more	players
have	joined	the	room,	the	host	can	launch	the	game	itself.	When	the	host
chooses	to	launch	the	game	with	peerStartGame,	every	player	in	the
staging	room	will	get	the	peerGameStartedCallback.	The	game
should	be	launched	immediately	after	the	call	for	the	host,	and	as	soon
as	the	callback	is	called	for	other	players.	All	players	must	call
peerStopGame	when	either	the	game	ends	or	they	leave.

Ready

Each	player	in	a	staging	room	has	a	ready	state,	which	is	on	or	off.	It	is
initially	off	when	a	staging	room	is	joined.	To	get	a	player's	ready	state
use	peerGetReady.	Whenever	a	player's	ready	state	changes,	the
peerReadyChangedCallback	will	be	called.	peerAreAllReady	is	a
utility	function	that	checks	if	all	the	players	in	the	staging	room	are	ready.
It	can	be	used	by	the	program	to	determine	if	the	host	can	launch	the
game	or	not.To	set	your	ready	state,	use	peerSetReady.

Starting

When	the	host	is	ready	to	start	the	game,	the	program	should	call
peerStartGame.	It	will	cause	everyone	in	the	staging	room	(except	for
the	host)	to	have	their	peerGameStartedCallback	called.	The	host
can	leave	the	staging	room	once	the	game	has	started.	However,	the
host	won't	be	able	to	get	back	into	the	staging	room,	a	new	one	would
need	to	be	created.

To	maintain	compatibility	with	GameSpy	Arcade,	the	message	string
should	be	of	the	form	"<dotted-IP>[:<port>]".	Dotted-IP	is	the	IP	of	the
server	in	string	form.	This	is	optionally	followed	by	the	port	the	game	is
being	hosted	on.	If	the	port	is	not	used,	the	default	port	for	the	game	will
be	assumed.	To	get	the	local	IP,	call	peerGetLocalIP(),	which	returns
the	IP	(in	network	byte	order).

void	peerStartGame

(

	 PEER	peer,

	 const	char	*	message,

	 int	reportingOptions

);

peer

This	is	the	peer	object	returned	by	peerInitialize

message

This	is	a	text	string	that	all	the	other	players	will	get	as	part	of	the

peerGameStartedCallback.	See	the	above	paragraph	for	an
explanation	of	the	message.

ReportingOptions

This	determines	if	Peer	should	continue	reporting	the	game,	or	if	it
should	stop	and	let	the	program	take	over.	For	games	that	use
Peer	internally,	it	is	recommended	that	they	set	the
PEER_KEEP_REPORTING	flag	and	let	Peer	handle	server
reporting.	For	games	that	are	launched	externally,	from	GameSpy
Arcade,	for	example,	it	will	be	necessary	to	stop	reporting	with
PEER_STOP_REPORTING	and	let	the	external	process	take	over
the	reporting.	If	Peer	continues	to	report,	PEER_REPORT_INFO
and	PEER_REPORT_PLAYERS	can	be	used	to	control	what
information	Peer	reports.

Stopping

After	the	host	has	started	a	game,	it	has	to	let	Peer	know	when	the	game
has	stopped.	This	is	done	with	a	call	to	peerStopGame.	This	lets	Peer
either	stop	reporting	the	game	(if	the	host	has	left	the	staging	room),	or	to
return	to	reporting	it	as	a	staging	room.

This	call	should	also	be	used	by	clients	after	a	game	they	were	playing	in
has	finished.	This	allows	peer	to	correctly	report	if	this	player	is	in	game
or	not.

void	peerStopGame

(

	 PEER	peer

);

Logging	In

In	the	Connecting	section	above,	peerConnect	is	shown	as	the	function
to	use	when	connecting	to	the	chat	server.	However	there	are	a	couple	of
other	functions	that	can	be	used	to	not	only	connect	to	the	chat	server,
but	to	also	login	using	account	information.	These	two	functions	are

peerConnectLogin	and	peerConnectPreAuth.

In	total,	there	are	five	different	options	for	connecting:

1.	 Anonymous	Login	(peerConnect)

This	is	the	function	to	use	if	you	want	to	connect	to	Peer	without
logging	in	or	authenticating	any	user	information.	You	will	be	able	to
use	Peer	normally,	however	you	won't	have	uniquenicks,	and	there
will	be	no	way	to	verify	that	a	given	user	is	really	who	they	say	they
are.	The	player's	chat	nick	will	be	the	nick	passed	to	peerConnect.
See	Nickname	restrictions	for	valid	chat	nicks.

2.	 GameSpyID	Login	with	no	uniquenick	(peerConnectLogin	with	a
namespaceID	of	0)

This	is	the	method	to	use	if	you	want	to	login	to	the	GameSpyID
system,	but	don't	want	to	use	uniquenicks.	You'll	use
peerConnectLogin	with	the	email,	profilenick,	and	password	for
the	account	you	are	attempting	to	login	under,	and	you'll	set	the
namespaceID	to	0.	This	is	the	"null"	namespace,	and	is	used	to	tell
Peer	that	it	should	not	set	a	namespace.	The	player's	chat	nick	will
be	the	profilenick	passed	to	peerConnectLogin.	If	the
profilenick	is	an	invalid	chat	nick,	or	is	already	in	use	on	the
server,	the	nickErrorCallback	will	be	called.	Note	that	the	chat
nickname	rules	apply.	See	Nickname	restrictions	for	valid	chat	nicks.

3.	 GameSpyID	Login	with	a	uniquenick	in	the	default	namespace
(peerConnectLogin	with	a	namespaceID	of	1)

This	method	is	similar	to	the	above	method,	however	the
namespaceID	is	set	to	1,	indicating	the	default	GameSpy
namespace.	This	is	the	same	namespace	that	is	used	by	GameSpy
Arcade.	The	login	information	you	pass	to	peerConnectLogin	will
be	the	profile's	email,	nick,	and	password.	You	do	not	need	to	pass
the	uniquenick	for	this	method.	The	provided	information	will

uniquely	identify	a	GameSpyID	profile	account.	When	logging	in	with
this	method,	the	chat	nickname	will	be	the	profile's	uniquenick	with
"-gs"	appended.	"-gs"	is	the	namespace	extension	for	the	default
GameSpy	namespace.	For	example,	if	a	user	has	the	uniquenick
Joe,	his	chat	nick	will	be	"Joe-gs".	peerTranslateNick	can	be
used	to	strip	extensions	off	of	nicks.

If	the	profile	does	not	have	a	uniquenick	associated	with	it	in	the
GameSpy	namespace,	then	the	nickErrorCallback	will	be
called	with	a	type	of	PEER_NO_UNIQUENICK.	If	there	is	a
uniquenick,	but	it	has	expired,	then	the	nickErrorCallback	will
be	called	with	a	type	of	PEER_UNIQUENICK_EXPIRED.	In	either	of
these	two	cases,	the	application	should	use
peerRegisterUniqueNick	to	register	a	uniquenick	for	the	profile.
If	there	is	a	problem	registering	the	uniquenick,	such	as	it	being
invalid	or	already	in	use,	then	the	nickErrorCallback	will	be
called	again	with	a	type	of	PEER_INVALID_UNIQUENICK,	and	the
suggestedNicks	field	will	be	filled	in	with	suggestions.	In	this	case
peerRegisterUniqueNick	should	be	called	again,	and	continue
to	be	called	until	a	valid	nick	is	registered.	When	this	happens,	the
connectCallback	will	be	called	indicating	a	successful	login.

peerConnectLogin	should	not	be	used	with	just	a	uniquenick	and
password	when	in	the	default	namespace,	or	in	any	other
namespace	where	uniquenicks	can	expire.	This	is	because	if	a
user's	uniquenick	has	expired,	and	another	user	has	since
registered	that	uniquenick,	then	the	user	will	no	longer	be	able	to
login	with	just	that	uniquenick	and	password.	Unique	nicks	have
similar	restrictions	as	chat	nicks.	See	Nickname	restrictions	for	valid
unique	nicks.

4.	 GameSpyID	Login	with	a	uniquenick	in	a	custom	namespace
(peerConnectLogin	with	the	custom	namespaceID)

You	should	only	be	using	this	method	if	you	have	been	assigned	a
custom	namespace.	You	can	contact	devsupport@gamespy.com	for
information	about	getting	a	custom	namespace.

mailto:devsupport@gamespy.com

If	the	namespace	has	expiring	uniquenicks,	then	this	method	is
almost	identical	to	the	above	method,	with	the	exception	of	using	a
custom	namespaceID	instead	of	1	for	the	default	namespace.

If	the	namespace	does	not	have	expiring	uniquenicks,	then	the	main
difference	is	that	peerConnectLogin	can	be	used	with	just	a
uniquenick	and	password	instead	of	the	email,	nick,	and	password
used	in	the	above	method.

Another	difference	between	this	method	and	the	above	method	is
the	namespace	extension.	The	default	GameSpy	namespace	has
an	extension	of	"-gs",	while	other	namespaces	have	their	own
unique	extensions.	When	you	are	assigned	a	custom	namespace,
you	will	be	given	the	custom	extension	for	use	in	your	namespace.
The	chat	nick	for	a	player	in	this	namespace	will	be	his	uniquenick
with	the	namespace	extension	appended.	For	example,	if	a	user	has
the	uniquenick	Joe	in	the	GameSpy	test	namespace,	his	chat	nick
will	be	"Joe-gmt".	peerTranslateNick	can	be	used	to	strip
extensions	off	of	nicks.	See	Nickname	restrictions	for	valid	unique
nicks.

5.	 Remote	Authentication	(peerConnectPreAuth)

The	remote	authentication	login	method	is	used	to	login	using
information	from	a	partner	authentication	system.	You	login	using	a
token	and	a	challenge,	which	are	supplied	by	the	partner
authentication	system.	Contact	devsupport@gamespy.com	for
further	information	on	using	this	login	method.

mailto:devsupport@gamespy.com

Nickname	Restrictions

There	are	three	different	nicknames	used	in	the	Peer.	A	profile	nick
passed	to	peerConnectLogin	is	only	restricied	to	all	characters	except	the
"\"	character	and	a	limite	of	30	characters.	The	chat	and	unique	nicks
have	more	restrictiions.	The	character	limit	for	both	nicks	is	20.	Chat	and
Unique	nicks	have	the	following	restrictions:

The	first	character	cannot	be	one	of	the	following	characters:	+,	@,
#,	:
Numeric	characters	are	only	allowed	after	the	first	character.
All	characters	in	the	ASCII	character	range	34-126	are	valid	except
for	the	backslash	character	(character	92,	"\").

UNICODE	Support

The	GameSpy	SDKs	support	an	optional	UNICODE	interface	for
widestring	applications.	To	use	this	interface,	first	define	the	symbol
"GSI_UNICODE".	Then,	use	widestrings	wherever	ANSI	strings	were
previously	called	for.	When	in	doubt,	please	refer	to	the	header	files	for
specific	function	declarations.

Although	the	GameSpy	SDK	interfaces	support	UNICODE	parameters,
some	items	may	be	stripped	of	their	extra	UNICODE	information.	These
items	include:	nickname,	email	address,	and	URL	strings.	You	may	pass
in	widestring	values,	but	they	will	first	be	converted	to	their	ANSI
counterparts	before	transmission.

Peer	AutoMatch
Overview

The	ability	to	automatically	match	players	together,	or	AutoMatch,	was
added	to	the	Peer	SDK	with	version	2.01.	The	system	is	designed	to	be
very	flexible,	allowing	the	application	to	use	arbitrary	values	to	rate
possible	matches,	which	helps	to	ensure	that	the	best	possible	match	is
made.

To	start,	the	application	needs	to	get	the	local	player's	preferences,	then
start	an	AutoMatch	attempt.	The	application	is	then	responsible	for	rating
potential	matches	and	handling	queries	as	to	the	local	player's
preferences.	The	local	player	will	be	placed	in	a	staging	room	while
waiting	for	a	match	and	will	be	able	to	chat	with	the	other	players	while
waiting	for	a	full	match	to	be	set	up.	The	application	does	not	need	to
present	a	chat	interface	or	allow	the	user	to	chat.	Once	all	the	players	in
a	match	are	in	a	room	together,	the	application	uses	the
peerStartGame()	function	to	start	the	actual	game.

The	two	most	important	aspects	of	implementing	AutoMatch	are
determing	what	choices	the	user	will	have	and	how	potential	matches	will
be	rated.	The	choices/preferences	available	to	the	user	will	determine
when	values	need	to	be	reported	in	the	peerQR*Callback()	functions,
how	to	setup	the	filter	passed	to
peerStartAutoMatch[WithSocket],	and	what	values	are	available
when	rating	potential	matches.	The	method	for	rating	potential	matches
will	determine	how	Peer	decides	which	match	is	the	best	and	will	dictate
what	values	need	to	be	reported	in	the	peerQR*Callback()	functions.

Implementation

Starting	An	Automatch

There	are	only	a	few	functions	directly	involved	in	starting	and	running	an
AutoMatch.	The	basics	of	getting	connected	to	the	chat	backend	are	the
same	as	with	regular	Peer	matchmaking.	This	involves	calling
peerInitialize(),	peerSetTitle(),	and	peerConnect(),	and
using	peerThink()	to	allow	Peer	to	do	any	needed	processing.	See	the
"GameSpy	Peer	SDK"	document	for	further	information,	specifically	the
sections	Initializing,	Thinking,	Title,	and	Connecting.	Once	connected	to
the	backend,	Peer	is	ready	to	do	AutoMatching.

To	start	the	AutoMatch	attempt,	call	either	peerStartAutoMatch()	or
peerStartAutoMatchWithSocket().	The	WithSocket	version	of	the
function	allows	the	application	to	provide	a	UDP	socket	that	Peer	will	be
used	for	reporting.	Both	functions	take	a	maxPlayers	parameter,	which
specifices	the	maximum	number	of	people	that	should	be	in	the	final
match.	For	example,	if	the	local	player	wants	to	player	a	3v3	match,
maxPlayers	should	be	6.	The	match	can	be	started	before	the
maxPlayers	is	reached,	for	example	if	an	exact	number	of	players	is	not
needed,	but	an	upper	limit	must	still	be	specified.

The	filter	is	a	SQL-type	filter,	just	like	the	filter	used	in
peerStartListingGames().	It	is	used	to	rule	out	matches	that	are	not
acceptable.	Potential	matches	that	do	not	pass	the	filter	will	not	be
passed	to	the	rating	callback.	The	statusCallback	is	called	whenever
the	status	of	the	match	changes,	until	either	peerStopAutoMatch()	is
called,	or	the	statusCallback	is	called	with	a	status	of	PEERFailed
or	PEERComplete.	The	rateCallback	is	used	to	rate	possible
matches.

Once	an	AutoMatch	attempt	has	been	started,	Peer	handles	everything,
calling	the	rateCallback	and	the	peerQR*Callback()	functions
whenever	they	are	needed.	The	application	is	then	responsible	for
assigning	ratings	to	servers	in	the	rateCallback,	responding	to
queries	through	the	peerQR*Callback()	functions,	updating	the	UI
based	on	the	statusCallback	or	peerGetAutoMatchStatus(),

having	the	host	start	the	game	when	reaching	the	PEERReady	status,
and	having	non-host	players	watch	for	the
peerGameStartedCallback	and/or	the	PEERComplete	status.
The	application	should	also	allow	the	user	to	cancel	the	AutoMatch
attempt	with	peerStopAutoMatch().

Rating	A	Potential	Match

During	an	AutoMatch	attempt	Peer	may	ask	the	application,	through	the
peerAutoMatchRateCallback()	passed	to
peerStartAutoMatch[WithSocket](),	to	rate	a	potential	match.
The	application	is	responsible	for	assigning	an	integer	rating	value	to	the
match,	which	is	returned	from	the	callback.

Peer	uses	the	rating	to	determine	if	the	match	is	acceptable	and,	if	it	is
acceptable,	how	good	of	a	match	it	is.	If	a	value	of	0	or	less	is	returned
from	the	callback,	Peer	will	not	attempt	to	join	up	to	that	match.	If	a	value
is	1	or	greater	than	Peer	may	attempt	to	join	the	match.	The	higher	the
value	returned,	the	better	the	match.	If	there	are	multiple	acceptable
matches,	Peer	will	attempt	to	join	them	in	order	starting	with	the	highest
rated	match,	then	the	second	highest	rated	match,	etc.

The	rating	callback	must	take	into	account	all	of	the	local	player's
preferences	compared	to	the	settings/preferences	for	all	of	the	players
currently	in	the	match,	and	come	up	with	a	single	number	representing
how	good	the	potential	match	is.	Typically	the	callback	will	first	check	any
"hard	criteria",	which	are	any	settings	that	must	match.	For	example	if	the
player	has	selected	that	he	only	wants	to	play	in	a	2v2	match,	the	first
line	of	the	callback	may	check	that	the	match	is	a	2v2	match:

if(SBServerGetIntValue(match,	"maxplayers",	0)	!=	4)

	 return	0;

A	good	method	for	comparing	a	list	of	"soft	criteria"	(such	as	preferences)
is	to	assign	each	value	a	maximum	weight,	calculate	the	actual	weight	for
each	value	by	comparing	the	local	value	to	the	value	reported	by	the
server,	then	total	all	the	weights	and	return	that	value	as	the	rating.	If	a
value	is	to	be	compared	against	the	values	of	each	player	already	in	the

match,	then	the	existing	players'	values	can	be	averaged,	then	compared
against.

A	game	could,	for	example,	assign	maximum	weights	of	100	to	ratings
differences	and	50	to	map	preferences.	In	the	callback	the	application
averages	the	players'	ratings	and	compares	them	to	the	local	player's
rating,	determining	that,	because	there	is	a	fairly	large	difference,	the
ratings	differences	actual	weight	is	25.	The	application	then	compares
the	local	player's	map	preferences	to	each	player's	preferences,	assigns
a	weight	to	each	player	based	on	how	close	the	preferences	match,	then
averages	all	of	those	individual	weights	to	determine	the	overall	actual
weight	for	map	preferences.

Because	they	preferences	are	fairly	close,	the	actual	weight	for	map
preferences	is	40.	Adding	together	the	actual	weights	for	ratings
differences	and	map	preferences	gives	a	total	of	65,	which	the
application	then	returns	from	the	callback	as	the	rating	for	the	match.

Automatic	Hosting

During	an	AutoMatch	attempt,	if	the	local	player	ends	up	as	host	of	a
staging	room	(see	above	for	how	a	user	may	end	up	in	the
PEERWaiting	status),	then	the	peerQR*Callback()	functions	that
were	registered	with	peerInitialize()	will	be	called	whenever	the
local	player	is	queried	for	his	preferences.	The	application	uses	these
callbacks	to	report	the	local	player's	preferences/settings	for	the
AutoMatch.	Any	information	that	other	players	may	need	to	decide	if	the
local	player	is	a	suitable	match	should	be	reported.

It	is	entirely	up	the	application	to	decide	what	information	is	needed	and
what	information	to	report.	Typically	this	would	be	information	such	as	the
local	player's	rank	or	rating,	map	preference,	gametype	preference,
and/or	the	number	of	players	to	play	with	(maxplayers).

Because	players	use	the	reported	information	to	decide	if	they	want	to
join	the	local	player's	match,	the	local	player	must	report	both	his	own
information	and	the	information	for	any	other	players	already	in	his
staging	room.	This	is	because	players	that	are	looking	for	a	match	need
to	know	if	the	match	as	a	whole	is	suitable,	and	they	may	need	to	decide

that	based	on	all	the	players	already	in	the	room.	For	example,	if	one	of
the	available	settings	is	a	yes/no	preference	for	each	of	the	available
maps,	then	a	user	looking	for	a	match	will	want	to	compare	his
preferences	against	the	preferences	of	all	the	players	already	in	the
match.

The	host	of	the	room	can	report	each	player's	preferences	as	a	player
key.	Those	looking	for	a	match	can	then	determine	a	score	for	map
preferences	by	comparing	his	preferences	to	each	of	the	other	player's
preferences.	For	more	information	on	how	to	report	this	information,	see
the	"GameSpy	Peer	SDK	Reference"	document,	the	"GameSpy	Query
and	Reporting	2	SDK"	document,	and	the	Peer	samples.

Peer	SDK	Functions
peerAlwaysGetPlayerInfo

Tell	the	peer	SDK	to	always	retrieve
IP	and	profile	information	for	room
members.

peerAreAllReady
Used	to	check	if	all	players	in	the
staging	room	are	ready.

peerAuthenticateCDKey
Allows	pre-chat	cd	key
authentication	via	the	chat	server.

peerChangeNick
Change	the	chat	nickname
associated	with	the	local	client.	This
does	not	affect	the	account	name.

peerClearTitle
Resets	the	peer	SDK.		peerSetTitle
must	be	called	before	new
operations	are	made.

peerConnect
Connect	to	the	chat	server.

peerConnectLogin
Connects	a	peer	object	to	the
backend	chat	server	and	then	logs	in
using	an	account	from	the	GameSpy
Presence	system.	A	title	must	be	set
with	peerSetTitle()	before	this
function	is	called.

peerConnectPreAuth
Connects	a	peer	object	to	the
backend	chat	server	and	then	logs	in

using	authentication	information	from
a	parter	authentication	system.

peerCreateStagingRoom
Creates	a	new	staging	room	with	the
local	player	as	the	host.

peerCreateStagingRoomWithSocket
Creates	a	new	staging	room	with	the
local	player	as	the	host.

peerDisconnect
Disconnect	from	the	chat	server.	
peerShutdown	must	still	be	called.

peerEnumPlayers
Enumerates	through	the	players	in	a
room.

peerFixNick
Repairs	an	illegal	chat	nickname.
Removes	illegal	characters	from	a
nickname	as	well	as	invalid
character	combinations.

peerGetAutoMatchStatus
Used	when	automatching	to	retrieve
the	current	status.

peerGetChat
Returns	the	chat	sdk	object.

peerGetGlobalWatchKey
Returns	the	cached	value	of	a
players	watch	key.

peerGetGroupID
Returns	the	current	group	ID	set
from	peerJoinGroupRoom	or
peerSetGroupID.

peerGetHostServer
Returns	the	SBServer	object
associated	with	the	staging	room
host.

peerGetNick
Returns	the	chat	nickname	of	the
local	client.

peerGetPlayerFlags
Returns	the	cached	flag	values	for
the	current	player.		This	is	from	the
key	"b_flags".

peerGetPlayerGlobalKeys
Query	the	server	for	a	player’s	global
key	values.

peerGetPlayerInfo
Retrieve	a	local	player's	IP	and
profile	ID.

peerGetPlayerInfoNoWait
Retrieve	a	players	IP	and	profile	ID.	
Uses	a	cached	copy.

peerGetPlayerPing
Returns	the	cached	ping	between
the	local	player	and	the	specified
remote	player.

peerGetPlayersCrossPing
Calculates	the	cross-ping	between	2
players.

peerGetPrivateIP
Returns	the	local	private	IP	address.

peerGetProfileID

Returns	the	profile	ID	of	the	local
client.		Only	valid	with
peerConnectLogin	or
peerConnectPreAuth.

peerGetPublicIP
Returns	the	local	public	IP	address.

peerGetReady
Get	the	ready	state	of	the	specified
player.

peerGetRoomChannel
Returns	the	chat	channel	associated
with	the	room	type.

peerGetRoomGlobalKeys
Retrieves	global	keys	for	all	players
in	the	specified	room.	(Local	client
must	be	a	room	member.)

peerGetRoomKeys
Retrieves	room	key	values	for	the
room	or	a	single	player.

peerGetRoomName
Returns	the	channel’s	title.		The	local
client	must	be	a	member	of	the
room.

peerGetTitle
Gets	the	currently	set	title

peerGetUserID
Returns	the	local	userID.		Only	valid
with	peerConnectLogin	or
peerConnectPreAuth.

peerInitialize
Initialize	the	peer	SDK.

peerInRoom
Determines	if	the	local	client	is	in	a
room	of	the	specified	type.

peerIsAutoMatching
Returns	PEERTrue	if	an	AutoMatch
is	in	progress.

peerIsConnected
Returns	PEERTrue	if	connected	to
the	chat	server.

peerIsPlayerHost
Returns	PEERTrue	if	specified
player	is	a	room	host	or	operator.

peerIsPlaying
Returns	PEERTrue	if	the	local	client
is	playing.

peerJoinGroupRoom
Join	the	specified	group	room.

peerJoinStagingRoom
Joins	a	specified	game	staging
room.	Allows	players	to	get	together
and	chat	while	setting	up	a	game.
Players	can	also	see	other	players’
pings	and	crosspings.

peerJoinStagingRoomByChannel
Join	a	staging	room	using	the
channel	name.

peerJoinTitleRoom
Join	the	title	room	for	the	local
client’s	game	application.

peerKickPlayer

Kick	a	player	from	a	room.

peerLeaveRoom
Remove	the	local	client	from	a	room.

peerListGroupRooms
List	all	the	group	rooms	for	the
currently	set	title.

peerMessagePlayer
Send	a	message	to	the	specified
player.

peerMessageRoom
Send	a	message	to	the	specified
room

peerParseQuery
Pass	a	manually	received	server
query	to	the	peer	SDK.		Use	with
peerStartReportingWithSocket	or
peerCreateStagingRoomWithSocket.

peerPingPlayer
Send	a	ping	request	to	a	remote
player.

peerRegisterUniqueNick
Register	a	unique	nick.		Call	in
response	to	peerNickErrorCallback.

peerRetryWithNick
Use	in	response	to	a
nickErrorCallback.	This	function
allows	the	local	client	to	retry	the
connection	attempt	with	a	different
chat	nickname.

peerSendNatNegotiateCookie
Send	a	nat	negotiation	cookie	to	a

server.

peerSetAwayMode
Set	the	away	mode,	as	it	appears	in
chat.

peerSetGlobalKeys
Set	global	keys	on	the	local	player.

peerSetGlobalWatchKeys
Set	the	global	watch	keys	for	the
specified	room	type.

peerSetGroupID
Manually	set	the	group	ID.		Use	with
caution	as	this	is	normally	set
automatically.

peerSetPassword
Set	the	password	on	the	chat	room.	
Local	client	must	be	the	host.

peerSetQuietMode
Sets	the	peer	sdk	to	quiet	mode	or
disables	quiet	mode.	See	remarks.

peerSetReady
Set	the	local	clients	ready	state.

peerSetRoomKeys
Set	room	keys	for	a	player	or	the
room	itself.

peerSetRoomName
Set	the	name	of	a	room.		Local	client
must	be	the	host.

peerSetStagingRoomMaxPlayers
Update	the	maximum	number	of
players	for	a	staging	room.		Local

client	must	be	the	host.

peerSetTitle
Set	the	game	information	to	be	used
by	the	peer	sdk.

peerSetTitleRoomChannel
Set	the	channel	to	be	used	as	the
TitleRoom.	(Rarely	used,	SDK	sets
title	room	automatically.)

peerShutdown
Destructs	the	peer	SDK.

peerStartAutoMatch
Start	an	automatch	attempt.

peerStartAutoMatchWithSocket
Start	an	automatch	attempt	using	an
external	managed	socket.

peerStartGame
Called	by	the	host	to	begin	the
game.

peerStartListingGames
Begin	listing	the	currently	running
games	and	staging	rooms.

peerStartPlaying
Flag	the	local	player	as	"playing".	
Use	this	to	manual	set	the	player’s
flag	in	the	event	a	non	peer	sdk
game	is	started.

peerStartReporting
Begins	server	reporting,	does	not
create	a	staging	room.

peerStartReportingWithSocket

Begin	server	reporting	using	an
externally	managed	socket.

peerStateChanged
Notify	the	backend	of	a	server	state
change,	such	as	the	server
becoming	full.

peerStayInRoom
Allows	SDK	to	remain	in	the	title
room	after	peerClearTitle.	(Rarely
used.)

peerStopAutoMatch
Stop	an	automatch	attempt	in
progress.

peerStopGame
Called	by	the	host	when	the	game
has	ended.

peerStopListingGames
Stops	a	server	list	update	in
progress.		Also	stops	listening	for
game	state	changed	messages.

peerThink
Allow	the	Peer	SDK	to	continue
processing.	Callbacks	will	be
triggered	during	this	call.

peerTranslateNick
Removes	the	namespace	extension
from	a	nickname.	Use	this	when
working	with	unique	nicknames	in	a
public	chat	room.

peerUpdateGame
Send	an	update	query	to	the
specified	server.

peerUpdateGameByMaster
This	function	updates	a	server	via
the	master	server.	Passing	in	true	for
fullUpdate	will	obtain	the	full	keys	for
that	server,	otherwise	it	will	only
obtain	the	basic	keys.

peerUTMPlayer
Send	a	UTM	message	to	the
specified	client.

peerUTMRoom
Send	a	UTM	message	to	each	client
in	the	room.

peerAlwaysGetPlayerInfo
Tell	the	peer	SDK	to	always	retrieve	IP	and	profile	information	for	room
members.

void	peerAlwaysGetPlayerInfo(
PEER	peer,
PEERBool	always);

Routine Required	Header Distribution
peerAlwaysGetPlayerInfo <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

always
[in]	Set	to	PEERTrue	to	have	the	SDK	automatically	retrieve	player
IP	and	profile	information.

Remarks

The	peerAlwaysGetPlayerInfo	function	may	be	used	to	tell	the	sdk	the
automatically	retrieve	player	IP	and	profile	information	when	joining	a
room.

Section	Reference:	Gamespy	Peer	SDK

peerAreAllReady
Used	to	check	if	all	players	in	the	staging	room	are	ready.

PEERBool	peerAreAllReady(
PEER	peer);

Routine Required	Header Distribution
peerAreAllReady <peer.h> SDKZIP

Return	Value

Returns	PEERTrue	if	all	players	are	ready.		Otherwise	returns
PEERFalse.

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerAreAllReady	function	may	be	used	to	determine	if	all	players
are	ready.		This	is	generally	used	before	peerStartGame.

Section	Reference:	Gamespy	Peer	SDK

peerAuthenticateCDKey
Allows	pre-chat	cd	key	authentication	via	the	chat	server.

void	peerAuthenticateCDKey(
PEER	peer,
const	gsi_char	*	cdkey,
peerAuthenticateCDKeyCallback	callback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerAuthenticateCDKey <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

cdkey
[in]	The	cdkey	to	validate.	Presumably	a	valid	cdkey	for	the	set	game
title.

callback
[in]	Callback	function	will	be	called	when	the	operation	has
completed.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerAuthenticateCDKey	function	may	be	used	to	authenticate	a
user’s	cdkey	before	they	enter	the	chat	room.	This	should	not	be	a
substitute	for	a	cdkey	during	gameplay.	Arcade	does	not	support	this	call,
so	users	in	Arcade	will	be	able	to	enter	chat	without	this	validation.	This
method	is	most	useful	for	developers	who	opt-out	of	the	Arcade
compatability	requirements	or	have	a	separate	chat	area	for	in-game
clients.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerAuthenticateCDKey peerAuthenticateCDKeyA peerAuthenticateCDKeyW

peerAuthenticateCDKeyW	and	peerAuthenticateCDKeyA	are
UNICODE	and	ANSI	mapped	versions	of	peerAuthenticateCDKey.	The
arguments	of	peerAuthenticateCDKeyA	are	ANSI	strings;	those	of
peerAuthenticateCDKeyW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerChangeNick
Change	the	chat	nickname	associated	with	the	local	client.	This	does	not
affect	the	account	name.

void	peerChangeNick(
PEER	peer,
const	gsi_char	*	newNick,
peerChangeNickCallback	callback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerChangeNick <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

newNick
[in]	The	nickname	to	assign	to	the	local	user.

callback
[in]	Callback	function	will	be	called	when	the	operation	completes.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerChangeNick	function	may	be	used	to	change	a	user’s
nickname	as	it	appears	in	chat.	This	has	no	affect	on	GameSpy	profile
names	such	as	those	used	for	presence	detection	and	buddy	lists.	Only
one	instance	of	a	nickname	may	be	in	use	at	a	time.	The	attempt	may	fail
if	the	nick	is	invalid	or	in	use.	This	will	fail	if	Peer	is	not	connected.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerChangeNick peerChangeNickA peerChangeNickW

peerChangeNickW	and	peerChangeNickA	are	UNICODE	and	ANSI
mapped	versions	of	peerChangeNick.	The	arguments	of
peerChangeNickA	are	ANSI	strings;	those	of	peerChangeNickW	are
wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerClearTitle
Resets	the	peer	SDK.		peerSetTitle	must	be	called	before	new	operations
are	made.

void	peerClearTitle(
PEER	peer);

Routine Required	Header Distribution
peerClearTitle <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerClearTitle	function	resets	the	peer	sdk	to	initialized	state.	Until
a	title	is	set	again	with	peerSetTitle,	the	Peer	SDK	will	be	unable	to	join
rooms,	list	games,	etc.

Section	Reference:	Gamespy	Peer	SDK

peerConnect
Connect	to	the	chat	server.

void	peerConnect(
PEER	peer,
const	gsi_char	*	nick,
int	profileID,
peerNickErrorCallback	nickErrorCallback,
peerConnectCallback	connectCallback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerConnect <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

nick
[in]	Chat	nickname.

profileID
[in]	Profile	ID	of	the	local	client,	or	0.

nickErrorCallback
[in]	Callback	function	is	called	if	the	nickname	is	invalid	or	is	already
being	used.

connectCallback
[in]	Callback	function	is	called	when	the	connect	operation	is
completed.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerConnect	function	opens	a	connection	to	the	chat	server.	The
connection	can	be	ended	at	any	time	by	called	peerDisconnect()
(peerShutdown()	will	also	close	the	connection).	If	the	connection	gets
disconnected	for	any	other	reason	(such	as	an	intermediate	router	going
down),	the	peerDisconnectedCallback()	callback	will	be	called.	This
function	will	fail	if	the	Peer	object	is	already	connected.
Once	connected	to	the	backend	chat	server,	Peer	is	fully	enabled,	and
the	user	can	join	rooms,	create	rooms,	list	games,	message	other
players,	etc.	Typically	at	this	point	the	user	would	be	joined	up	to	the
game’s	title	room	with	peerJoinTitleRoom().

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerConnect peerConnectA peerConnectW

peerConnectW	and	peerConnectA	are	UNICODE	and	ANSI	mapped
versions	of	peerConnect.	The	arguments	of	peerConnectA	are	ANSI
strings;	those	of	peerConnectW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerConnectLogin
Connects	a	peer	object	to	the	backend	chat	server	and	then	logs	in	using
an	account	from	the	GameSpy	Presence	system.	A	title	must	be	set	with
peerSetTitle()	before	this	function	is	called.

void	peerConnectLogin(
PEER	peer,
int	namespaceID,
const	gsi_char	*	email,
const	gsi_char	*	profilenick,
const	gsi_char	*	uniquenick,
const	gsi_char	*	password,
peerNickErrorCallback	nickErrorCallback,
peerConnectCallback	connectCallback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerConnectLogin <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

namespaceID
[in]	Namespace	identifier,	assigned	by	GameSpy.

email
[in]	Email	address	of	the	profile	to	login	with.

profilenick
[in]	Nickname	of	the	profile	to	login	with.

uniquenick
[in]	Registered	uniquenick	of	the	profile	to	login	with.

password
[in]	Password	of	the	profile	to	login	with.

nickErrorCallback
[in]	Callback	function	to	be	called	if	a	nickname	error	occurs.

connectCallback
[in]	Callback	function	to	be	called	when	the	operation	completes

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerConnectLogin	function	attempts	to	connect	a	peer	object	to	the
backend	chat	server	and	then	login	using	an	account	from	the	GameSpy
Presence	system..	The	connection	can	be	ended	at	any	time	by	called
peerDisconnect()	(peerShutdown()	will	also	close	the	connection).	If	the
connection	gets	disconnected	for	any	other	reason	(such	as	an
intermediate	router	going	down),	the	peerDisconnectedCallback()
callback	will	be	called.	This	function	will	fail	if	the	Peer	object	is	already
connected.
Once	connected	to	the	backend	chat	server,	Peer	is	fully	enabled,	and
the	user	can	join	rooms,	create	rooms,	list	games,	message	other
players,	etc.	Typically	at	this	point	the	user	would	be	joined	up	to	the
game’s	title	room	with	peerJoinTitleRoom().
There	are	two	ways	of	specifying	the	account	information.	One	way	is	to
specify	a	uniquenick	and	password	combination.	In	this	case,	email	and
profilenick	should	be	NULL,	and	namespaceID	should	be	greater	than	0.
The	other	way	is	to	specify	an	email,	profilenick,	and	password.	In	this
case,	uniquenick	should	be	NULL,	and	namespaceID	should	be	0	for	no
namespace	or	1	for	the	default	GameSpy	namespace	(used	by
GameSpy	Arcade).	If	you	are	using	a	custom	namespace,	specify	its
namespace	ID.	You	can	contact	GameSpy	Developer	Support	for	further
help	in	using	a	custom	namespace.
The	uniquenick	and	password	combination	should	only	be	used	in
custom	namespaces	where	uniquenicks	do	not	expire.	This	is	because	if
a	uniquenick	expires,	then	another	user	that	registers	that	uniquenick,	the
original	user	will	no	longer	be	able	to	login	with	only	his	(old)	uniquenick
and	password.

Section	Reference:	Gamespy	Peer	SDK

peerConnectPreAuth
Connects	a	peer	object	to	the	backend	chat	server	and	then	logs	in	using
authentication	information	from	a	parter	authentication	system.

void	peerConnectPreAuth(
PEER	peer,
const	gsi_char	*	authtoken,
const	gsi_char	*	partnerchallenge,
peerNickErrorCallback	nickErrorCallback,
peerConnectCallback	connectCallback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerConnectPreAuth <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

authtoken
[in]	Authtoken	for	this	login.

partnerchallenge
[in]	Partner	challenge	for	this	login.

nickErrorCallback
[in]	Callback	function	to	be	called	if	a	nick	error	occurs.

connectCallback
[in]	Callback	function	to	be	called	when	the	operation	completes.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerConnectPreAuth	attempts	to	connect	a	peer	object	to	the
backend	chat	server	and	then	login	using	an	account	from	a	partner
authentication	system.	The	connection	can	be	ended	at	any	time	by
called	peerDisconnect()	(peerShutdown()	will	also	close	the	connection).
If	the	connection	gets	disconnected	for	any	other	reason	(such	as	an
intermediate	router	going	down),	the	peerDisconnectedCallback()
callback	will	be	called.	This	function	will	fail	if	the	Peer	object	is	already
connected.
Once	connected	to	the	backend	chat	server,	Peer	is	fully	enabled,	and
the	user	can	join	rooms,	create	rooms,	list	games,	message	other
players,	etc.	Typically	at	this	point	the	user	would	be	joined	up	to	the
game’s	title	room	with	peerJoinTitleRoom().	A	title	must	be	set	with
peerSetTitle()	before	this	function	is	called.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerConnectPreAuth peerConnectPreAuthA peerConnectPreAuthW

peerConnectPreAuthW	and	peerConnectPreAuthA	are	UNICODE	and
ANSI	mapped	versions	of	peerConnectPreAuth.	The	arguments	of
peerConnectPreAuthA	are	ANSI	strings;	those	of
peerConnectPreAuthW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

See	Also:	peerConnect,	peerConnectLogin

peerCreateStagingRoom
Creates	a	new	staging	room	with	the	local	player	as	the	host.

void	peerCreateStagingRoom(
PEER	peer,
const	gsi_char	*	name,
int	maxPlayers,
const	gsi_char	password[PEER_PASSWORD_LEN],
peerJoinRoomCallback	callback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerCreateStagingRoom <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

name
[in]	Staging	room	name.

maxPlayers
[in]	Maximum	number	of	players	allowed	in	the	room.

password
[in]	Optional	room	password.

callback
[in]	Callback	function	to	be	called	when	the	operation	completes.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue,	this	call	will	not	return	until	the	operation
has	completed.

Remarks

The	peerCreateStagingRoom	function	creates	a	new	staging	room	with
the	local	client	as	the	host.		Staging	room	names	are	not	unique	and
multiple	staging	rooms	may	have	the	same	name.	If	the	password
parameter	is	not	NULL	or	"",	this	will	create	a	passworded	room.	The
same	case-sensitive	password	needs	to	be	passed	into
peerJoinStagingRoom[ByIP]()	for	other	player's	to	join	the	room.	Spaces
in	passwords	are	not	allowed.	Any	password	with	spaces	should	be
stripped	of	those	spaces	before	calling	this	function,	or	a	warning	to	the
user	will	suffice.	No	more	than	maxPlayers	players	will	be	allowed	in	the
room,	unless	maxPlayers	is	set	to	0,	in	which	case	no	limit	is	set	and	the
maxplayers	key	is	not	reported.	If	the	user	is	in	a	group	room	when	this
function	is	called,	then	the	room	will	be	reported	as	being	a	part	of	that
group	(even	if	the	local	user	then	leaves	and	joins	another	group).
If	successful,	the	peerQR*Callback()	callbacks	will	start	getting	called.
These	are	used	to	provide	information	about	the	room	to	other	players.
For	more	information	on	what	to	report	in	the	callbacks,	see	their
descriptions.	This	function	is	only	valid	if	a	title	is	set.	If	the	user	is
already	in	a	staging	room,	this	function	will	fail.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerCreateStagingRoom peerCreateStagingRoomA peerCreateStagingRoomW

peerCreateStagingRoomW	and	peerCreateStagingRoomA	are
UNICODE	and	ANSI	mapped	versions	of	peerCreateStagingRoom.	The
arguments	of	peerCreateStagingRoomA	are	ANSI	strings;	those	of
peerCreateStagingRoomW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

See	Also:	peerJoinStagingRoom

peerCreateStagingRoomWithSocket
Creates	a	new	staging	room	with	the	local	player	as	the	host.

void	peerCreateStagingRoomWithSocket(
PEER	peer,
const	gsi_char	*	name,
int	maxPlayers,
const	gsi_char	password[PEER_PASSWORD_LEN],
SOCKET	socket,
unsigned	short	port,
peerJoinRoomCallback	callback,
void	*	param,
PEERBool	blocking);

Routine Required
Header Distribution

peerCreateStagingRoomWithSocket <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

name
[in]	The	name	of	the	staging	room.

maxPlayers
[in]	Optional	max	number	of	players	allowed	in	the	room.	May	be	0.

password
[in]	Optional	room	password.

socket
[in]	The	socket	that	is	being	shared.	Parameter	used	when	calling
peerCreateStagingRoomWithSocket.

port
[in]	The	local	port	the	socket	is	bound	to.	Parameter	used	when
calling	peerCreateStagingRoomWithSocket.

callback
[in]	Callback	function	called	when	the	operation	completes.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue,	this	call	will	not	return	until	the	operation
has	completed.

Remarks

The	peerCreateStagingRoomWithSocket	creates	a	new	staging	room,
with	the	local	player	hosting.	If	the	password	parameter	is	not	NULL	or	"",
this	will	create	a	passworded	room.	The	same	case-sensitive	password
needs	to	be	passed	into	peerJoinStagingRoom[ByIP]()	for	other	player's
to	join	the	room.	Spaces	in	passwords	are	not	allowed.	Any	password
with	spaces	should	be	stripped	of	those	spaces	before	calling	this
function,	or	a	warning	to	the	user	will	suffice.	No	more	than	maxPlayers
players	will	be	allowed	in	the	room,	unless	maxPlayers	is	set	to	0,	in
which	case	no	limit	is	set	and	the	maxplayers	key	is	not	reported.	If	the
user	is	in	a	group	room	when	this	function	is	called,	then	the	room	will	be
reported	as	being	a	part	of	that	group	(even	if	the	local	user	then	leaves
and	joins	another	group).
If	successful,	the	peerQR*Callback()	callbacks	will	start	getting	called.
These	are	used	to	provide	information	about	the	room	to	other	players.
For	more	information	on	what	to	report	in	the	callbacks,	see	their
descriptions.	
If	peerCreateStagingRoomWithSocket	is	used,	the	socket	provided
must	be	an	already	created	UDP	socket.	It	will	be	used	for	sending	out
query	replies,	and	any	queries	the	application	reads	off	of	the	socket
must	be	passed	to	Peer	using	peerParseQuery().	This	can	be	useful
when	running	a	game	host	behind	a	NAT/firewall/proxy--for	a	full
explanation	of	how	this	helps,	see	the	"NAT	and	Firewall	Support"
appendix	in	the	"GameSpy	Query	and	Reporting	2	SDK"	documentation.
This	function	is	only	valid	if	a	title	is	set.	If	the	user	is	already	in	a	staging
room,	this	function	will	fail.

Section	Reference:	Gamespy	Peer	SDK

peerDisconnect
Disconnect	from	the	chat	server.		peerShutdown	must	still	be	called.

void	peerDisconnect(
PEER	peer);

Routine Required	Header Distribution
peerDisconnect <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerDisconnect	function	disconnects	the	local	client	from	the	chat
server.		peerShutdown	must	still	be	called	to	free	internal	sdk	memory.

Section	Reference:	Gamespy	Peer	SDK

peerEnumPlayers
Enumerates	through	the	players	in	a	room.

void	peerEnumPlayers(
PEER	peer,
RoomType	roomType,
peerEnumPlayersCallback	callback,
void	*	param);

Routine Required	Header Distribution
peerEnumPlayers <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

callback
[in]	Callback	function	to	be	called	when	the	operation	completes.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerEnumPlayers	function	may	be	used	to	iterate	through	the	list	of
players	in	the	specified	room	type.		The	callback	will	be	called	for	each
player	in	the	room,	and	then	once	again	when	done	with	"index"	set	to	-1
and	"nick"	set	to	NULL.	The	enumeration	is	done	using	a	local	list	of
players,	and	the	callbacks	will	be	called	from	within	the	function	call.	This
only	works	if	there	is	a	title	set,	and	the	user	is	in	the	room.

Section	Reference:	Gamespy	Peer	SDK

peerFixNick
Repairs	an	illegal	chat	nickname.	Removes	illegal	characters	from	a
nickname	as	well	as	invalid	character	combinations.

void	peerFixNick(
gsi_char	*	newNick,
const	gsi_char	*	oldNick);

Routine Required	Header Distribution
peerFixNick <peer.h> SDKZIP

Parameters

newNick
[out]	Corrected	nickname.	May	be	the	same	as	oldNick	if	no	issues
are	detected.

oldNick
[in]	The	nickname	to	be	corrected	or	verified.

Remarks

The	peerFixNick	function	replaces	illegal	characters	in	the	nickname
with	the	underscore	("_")	character.	This	function	will	also	replace	leading
numbers	and	illegal	whitespace	combinations.	Because	of	the	possibility
of	an	underscore	being	added	to	the	beginning,	newNick	should	be	able
to	hold	at	least	one	character	more	than	oldNick.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerFixNick peerFixNickA peerFixNickW

peerFixNickW	and	peerFixNickA	are	UNICODE	and	ANSI	mapped
versions	of	peerFixNick.	The	arguments	of	peerFixNickA	are	ANSI
strings;	those	of	peerFixNickW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerGetAutoMatchStatus
Used	when	automatching	to	retrieve	the	current	status.

PEERAutoMatchStatus	peerGetAutoMatchStatus(
PEER	peer);

Routine Required	Header Distribution
peerGetAutoMatchStatus <peer.h> SDKZIP

Return	Value

The	current	auto	match	status.	See	remarks.

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerGetAutoMatchStatus	function	returns	the	current	automatch
status.		The	return	value	is	one	of	the	PEERAutoMatchStatus
enumerated	types.

Section	Reference:	Gamespy	Peer	SDK

peerGetChat
Returns	the	chat	sdk	object.

CHAT	peerGetChat(
PEER	peer);

Routine Required	Header Distribution
peerGetChat <peer.h> SDKZIP

Return	Value

The	chat	sdk	object	being	used	by	the	peer	sdk.

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerGetChat	function	returns	the	chat	sdk	object	being	used	by	the
peer	sdk.		The	peer	sdk	wraps	the	chat	sdk.	An	application	can	use	this
function	to	get	a	reference	to	the	chat	object,	which	allows	it	to	directly
access	some	of	the	Chat	SDK’s	lower	level	functionality.	For	example,
this	could	be	used	to	join	a	separate	chat	channel,	outside	of	the	scope
of	Peer.	This	function	will	fail	if	Peer	is	not	yet	connected	to	the	chat
server.	The	chat	object	will	become	invalid	as	soon	as	the	peer	object	is
disconnected.

Section	Reference:	Gamespy	Peer	SDK

peerGetGlobalWatchKey
Returns	the	cached	value	of	a	players	watch	key.

const	gsi_char	*	peerGetGlobalWatchKey(
PEER	peer,
const	gsi_char	*	nick,
const	gsi_char	*	key);

Routine Required	Header Distribution
peerGetGlobalWatchKey <peer.h> SDKZIP

Return	Value

The	watch	key’s	value,	or	NULL	if	the	watch	key	is	unknown.		(Empty
string	""	is	a	legal	value).

Parameters

peer
[in]	Initialized	peer	object.

nick
[in]	The	nickname	of	the	player.

key
[in]	The	name	of	the	key.

Remarks

The	peerGetGlobalWatchKey	function	may	be	used	to	retrieve	the
cached	value	of	a	global	watch	key.		If	the	key	value	is	not	known	or	has
not	been	received	this	function	will	return	NULL.		Please	note	that	an
empty	string	""	is	valid	key	value.	If	the	key	is	just	empty	(or	was	never
set),	an	empty	string	will	be	returned.
The	key	being	requested	must	have	previously	been	set	as	a	global
watch	key,	with	peerSetGlobalWatchKey(),	for	a	room	that	the	player	and
the	local	player	have	in	common.	This	will	fail	if	no	title	is	set.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerGetGlobalWatchKey peerGetGlobalWatchKeyA peerGetGlobalWatchKeyW

peerGetGlobalWatchKeyW	and	peerGetGlobalWatchKeyA	are
UNICODE	and	ANSI	mapped	versions	of	peerGetGlobalWatchKey.	The
arguments	of	peerGetGlobalWatchKeyA	are	ANSI	strings;	those	of
peerGetGlobalWatchKeyW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerGetGroupID
Returns	the	current	group	ID	set	from	peerJoinGroupRoom	or
peerSetGroupID.

int	peerGetGroupID(
PEER	peer);

Routine Required	Header Distribution
peerGetGroupID <peer.h> SDKZIP

Return	Value

The	current	group	ID,	otherwise	a	zero	is	returned.

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerGetGroupID	function	returns	the	current	group	id.		This	id	may
be	set	automatically	when	joining	a	room	with	peerJoinGroupRoom	or
manually	using	peerSetGroupID.	The	peer	object	in	this	function	needs	to
be	initialized	and	connected	otherwise	a	zero	is	returned.

Section	Reference:	Gamespy	Peer	SDK

peerGetHostServer
Returns	the	SBServer	object	associated	with	the	staging	room	host.

SBServer	peerGetHostServer(
PEER	peer);

Routine Required	Header Distribution
peerGetHostServer <peer.h> SDKZIP

Return	Value

Returns	the	SBServer	object	associated	with	the	staging	room	host.	
NULL	if	the	local	client	is	not	a	member	of	a	staging	room.

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerGetHostServer	function	returns	the	SBServer	object	associated
with	the	local	host.		Information	on	the	host	may	be	retrieved	using	the
SBServer	data	accessors.

Section	Reference:	Gamespy	Peer	SDK

peerGetNick
Returns	the	chat	nickname	of	the	local	client.

const	gsi_char	*	peerGetNick(
PEER	peer);

Routine Required	Header Distribution
peerGetNick <peer.h> SDKZIP

Return	Value

The	chat	nickname	of	the	local	user.	NULL	if	not	connected.

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerGetNick	function	returns	the	chat	nickname	of	the	local	client.
The	peer	object	must	be	initialized	and	connected	to	a	chat	server.
Otherwise	a	NULL	is	returned	if	not	connected.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerGetNick peerGetNickA peerGetNickW

peerGetNickW	and	peerGetNickA	are	UNICODE	and	ANSI	mapped
versions	of	peerGetNick.	The	arguments	of	peerGetNickA	are	ANSI
strings;	those	of	peerGetNickW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerGetPlayerFlags
Returns	the	cached	flag	values	for	the	current	player.		This	is	from	the
key	"b_flags".

PEERBool	peerGetPlayerFlags(
PEER	peer,
const	gsi_char	*	nick,
RoomType	roomType,
int	*	flags);

Routine Required	Header Distribution
peerGetPlayerFlags <peer.h> SDKZIP

Return	Value

This	function	returns	PEERTrue	for	success.		PEERFalse	otherwise.

Parameters

peer
[in]	Initialized	peer	object.

nick
[in]	The	players	chat	nickname.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

flags
[out]	The	player	flags.

Remarks

The	peerGetPlayerFlags	function	will	return	the	cached	flag	values	for
the	specified	player.			A	server	query	is	not	sent	at	this	time.		This
function	will	return	PEERFalse	if	the	player	is	not	in	the	specified	room.
The	flags	are	a	per-room	setting.	That	is,	if	the	local	player	is	in	multiple
rooms	with	another	player,	that	other	player	may	have	different	flags	in
each	of	the	rooms.	

Flags	might	not	be	available	for	a	player	that	just	joined,	or	if	the	local
player	just	joined	the	room.	Also,	flags	might	not	be	available	for	players
that	aren’t	using	the	Peer	SDK.	However,	this	function	will	not	return	false
in	that	case.	Instead,	it	will	just	set	the	flags	to	empty.
The	flags	each	represent	one	bit	in	the	"flags"	integer.	The	flags	are:
PEER_FLAG_STAGING:	the	player	is	in	a	staging	room.
PEER_FLAG_READY:	the	player	is	readied	up	for	a	game.
PEER_FLAG_PLAYING:	the	player	is	playing	a	game.
PEER_FLAG_AWAY:	the	player	is	away.
PEER_FLAG_HOST:	the	player	is	the	host	of	the	room.
PEER_FLAG_OP:	the	player	is	an	op	(+o)	in	this	room.
PEER_FLAG_VOICE:	the	player	has	voice	(+v)	in	this	room.
This	function	will	fail	if	no	title	is	set.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerGetPlayerFlags peerGetPlayerFlagsA peerGetPlayerFlagsW

peerGetPlayerFlagsW	and	peerGetPlayerFlagsA	are	UNICODE	and
ANSI	mapped	versions	of	peerGetPlayerFlags.	The	arguments	of
peerGetPlayerFlagsA	are	ANSI	strings;	those	of	peerGetPlayerFlagsW
are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerGetPlayerGlobalKeys
Query	the	server	for	a	player’s	global	key	values.

void	peerGetPlayerGlobalKeys(
PEER	peer,
const	gsi_char	*	nick,
int	num,
const	gsi_char	**	keys,
peerGetGlobalKeysCallback	callback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerGetPlayerGlobalKeys <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

nick
[in]	The	chat	nickname	of	the	target	player.

num
[in]	The	number	of	keys	in	the	array.

keys
[in]	Array	of	key	names	to	request	values	for.

callback
[in]	Callback	function	to	be	called	when	the	operation	completes.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerGetPlayerGlobalKeys	function	may	be	used	to	retrieve	global
key	values	for	the	specified	player.	The	callback	will	have	these	keys
available	if	the	function	is	successful.	The	key	list	will	be	the	array	of
strings	that	are	used	to	obtain	the	global	key	values.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerGetPlayerGlobalKeys peerGetPlayerGlobalKeysA peerGetPlayerGlobalKeysW

peerGetPlayerGlobalKeysW	and	peerGetPlayerGlobalKeysA	are
UNICODE	and	ANSI	mapped	versions	of	peerGetPlayerGlobalKeys.
The	arguments	of	peerGetPlayerGlobalKeysA	are	ANSI	strings;	those
of	peerGetPlayerGlobalKeysW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerGetPlayerInfo
Retrieve	a	local	player's	IP	and	profile	ID.

void	peerGetPlayerInfo(
PEER	peer,
const	gsi_char	*	nick,
peerGetPlayerInfoCallback	callback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerGetPlayerInfo <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

nick
[in]	Chat	nickname	of	the	target	player.

callback
[in]	Callback	function	to	be	called	when	the	operation	completes.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerGetPlayerInfo	function	queries	the	chat	server	for	the	local
player's	IP	and	profile	ID.	The	information	will	be	available	once	the
function	is	successful	and	the	callback	gets	called.	The	callback	will	have
both	the	profileID	and	IP	address	of	the	local	player.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerGetPlayerInfo peerGetPlayerInfoA peerGetPlayerInfoW

peerGetPlayerInfoW	and	peerGetPlayerInfoA	are	UNICODE	and	ANSI
mapped	versions	of	peerGetPlayerInfo.	The	arguments	of
peerGetPlayerInfoA	are	ANSI	strings;	those	of	peerGetPlayerInfoW
are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

See	Also:	peerGetPlayerInfoCallback

peerGetPlayerInfoNoWait
Retrieve	a	players	IP	and	profile	ID.		Uses	a	cached	copy.

PEERBool	peerGetPlayerInfoNoWait(
PEER	peer,
const	gsi_char	*	nick,
unsigned	int	*	IP,
int	*	profileID);

Routine Required	Header Distribution
peerGetPlayerInfoNoWait <peer.h> SDKZIP

Return	Value

Returns	PEERTrue	if	a	cached	copy	was	available.		PEERFalse
otherwise.

Parameters

peer
[in]	Initialized	peer	object.

nick
[in]	Chat	nickname	of	the	target	player.

IP
[out]	IP	address	of	the	target	player.

profileID
[out]	Profile	ID	of	the	target	player.

Remarks

The	peerGetPlayerInfoNoWait	function	returns	the	cached	copy	of	the
players	IP	and	profile	ID.	Use	in	conjuction	with
peerAlwaysGetPlayerInfo.	Returns	PEERFalse	if	the	info	is	not	available.
Reasons	why	the	info	would	not	be	immediately	available	include	the
local	player	not	being	in	any	common	room	with	the	player,	the	player	is
not	using	the	Peer	SDK,	or	we	have	just	joined	a	room	and	we	don’t	yet
have	everyone’s	info.
Even	if	this	succeeds,	the	profile	ID	can	be	0	if	its	not	available.	This
function	will	fail	if	not	connected.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerGetPlayerInfoNoWait peerGetPlayerInfoNoWaitA peerGetPlayerInfoNoWaitW

peerGetPlayerInfoNoWaitW	and	peerGetPlayerInfoNoWaitA	are
UNICODE	and	ANSI	mapped	versions	of	peerGetPlayerInfoNoWait.
The	arguments	of	peerGetPlayerInfoNoWaitA	are	ANSI	strings;	those	of
peerGetPlayerInfoNoWaitW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerGetPlayerPing
Returns	the	cached	ping	between	the	local	player	and	the	specified
remote	player.

PEERBool	peerGetPlayerPing(
PEER	peer,
const	gsi_char	*	nick,
int	*	ping);

Routine Required	Header Distribution
peerGetPlayerPing <peer.h> SDKZIP

Return	Value

This	function	return	PEERTrue	if	a	cached	ping	time	was	available.	
PEERFalse	otherwise.

Parameters

peer
[in]	Initialized	peer	object.

nick
[in]	Nick	of	the	target	player.

ping
[out]	This	will	be	set	to	the	cached	ping	time.

Remarks

The	peerGetPlayerPing	function	is	used	to	retrieve	the	cached	ping
value	for	the	specified	remote	player.	Returns	PEERFalse	if	we	don't
have	or	can't	get	a	ping	for	this	player.	This	function	only	works	if	a	title	is
set.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerGetPlayerPing peerGetPlayerPingA peerGetPlayerPingW

peerGetPlayerPingW	and	peerGetPlayerPingA	are	UNICODE	and
ANSI	mapped	versions	of	peerGetPlayerPing.	The	arguments	of
peerGetPlayerPingA	are	ANSI	strings;	those	of	peerGetPlayerPingW
are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerGetPlayersCrossPing
Calculates	the	cross-ping	between	2	players.

PEERBool	peerGetPlayersCrossPing(
PEER	peer,
const	gsi_char	*	nick1,
const	gsi_char	*	nick2,
int	*	crossPing);

Routine Required	Header Distribution
peerGetPlayersCrossPing <peer.h> SDKZIP

Return	Value

This	function	returns	PEERTrue	if	a	cached	cross	ping	is	available.	
PEERFalse	otherwise.

Parameters

peer
[in]	Initialized	peer	object.

nick1
[in]	Chat	nickname	of	player	1.

nick2
[in]	Chat	nickname	of	player	2.

crossPing
[out]	This	is	set	to	the	cross-ping,	if	available.

Remarks

The	peerGetPlayersCrossPing	function	is	used	to	calculate	the	cross
ping	between	two	players.	Returns	PEERFalse	if	we	don't	have	or	can't
get	the	player's	cross-ping.	The	ordering	of	the	nicks	does	not	matter
(i.e.,	peer	stores	the	pings	between	sets	of	players,	not	each	player’s
ping	to	each	other	player).	This	function	only	works	if	a	title	is	set,	and	the
peer	object	is	connected	to	the	chat	server.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerGetPlayersCrossPing peerGetPlayersCrossPingA peerGetPlayersCrossPingW

peerGetPlayersCrossPingW	and	peerGetPlayersCrossPingA	are
UNICODE	and	ANSI	mapped	versions	of	peerGetPlayersCrossPing.
The	arguments	of	peerGetPlayersCrossPingA	are	ANSI	strings;	those
of	peerGetPlayersCrossPingW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerGetPrivateIP
Returns	the	local	private	IP	address.

unsigned	int	peerGetPrivateIP(
PEER	peer);

Routine Required	Header Distribution
peerGetPrivateIP <peer.h> SDKZIP

Return	Value

Returns	the	local	private	IP	address.

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerGetPrivateIP	function	returns	the	local	private	IP	address.	If
called	while	not	connected,	or	if	there	is	no	private	address,	will	return	0.
A	private	address	is	any	local	IP	in	a	private	IP	range.	The	IP	masks	for
these	ranges	(as	specified	in	RFC	1918)	are	10.*,	172.16-31.*,	and
192.168.*.

Section	Reference:	Gamespy	Peer	SDK

peerGetProfileID
Returns	the	profile	ID	of	the	local	client.		Only	valid	with
peerConnectLogin	or	peerConnectPreAuth.

int	peerGetProfileID(
PEER	peer);

Routine Required	Header Distribution
peerGetProfileID <peer.h> SDKZIP

Return	Value

The	profile	ID	of	the	local	client.

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerGetProfileID	function	returns	the	profile	ID	of	the	local	client.
This	uniquely	identifies	a	profile	(nick/email/password	or
uniquenick/password).	See	the	Presence	SDK	documentation	for	more
details.

Section	Reference:	Gamespy	Peer	SDK

peerGetPublicIP
Returns	the	local	public	IP	address.

unsigned	int	peerGetPublicIP(
PEER	peer);

Routine Required	Header Distribution
peerGetPublicIP <peer.h> SDKZIP

Return	Value

Returns	the	local	public	IP	address.

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerGetPublicIP	function	returns	the	local	public	IP	address.	If
called	while	not	connected,	will	return	0.	The	IP	this	returns	is	the
externally	visible	IP	(e.g.	for	NATs).

Section	Reference:	Gamespy	Peer	SDK

See	Also:	peerGetPrivateIP

peerGetReady
Get	the	ready	state	of	the	specified	player.

PEERBool	peerGetReady(
PEER	peer,
const	gsi_char	*	nick,
PEERBool	*	ready);

Routine Required	Header Distribution
peerGetReady <peer.h> SDKZIP

Return	Value

This	function	returns	PEERTrue	if	the	ready	state	is	available.	
PEERFalse	otherwise.

Parameters

peer
[in]	Initialized	peer	object.

nick
[in]	Nickname	of	the	target	player.

ready
[out]	Set	to	PEERTrue	if	the	player	is	ready,	PEERFalse	if	the	player
is	not.

Remarks

The	peerGetReady	function	may	be	used	to	determine	the	ready	status
of	each	player	in	a	staging	room.		This	is	often	useful	for	display	an	icon
or	informational	message	to	the	host.	This	is	only	valid	when	in	a	staging
room.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerGetReady peerGetReadyA peerGetReadyW

peerGetReadyW	and	peerGetReadyA	are	UNICODE	and	ANSI	mapped
versions	of	peerGetReady.	The	arguments	of	peerGetReadyA	are	ANSI
strings;	those	of	peerGetReadyW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerGetRoomChannel
Returns	the	chat	channel	associated	with	the	room	type.

const	gsi_char	*	peerGetRoomChannel(
PEER	peer,
RoomType	roomType);

Routine Required	Header Distribution
peerGetRoomChannel <peer.h> SDKZIP

Return	Value

This	function	returns	the	chat	channel	name	for	the	specified	room	type.	
NULL	if	the	local	client	is	not	a	member	of	the	specified	room	type.

Parameters

peer
[in]	Initialized	peer	object.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

Remarks

The	peerGetRoomChannel	gets	the	chat	channel	associated	with	the
room.	It	returns	NULL	if	not	in	the	room.

Section	Reference:	Gamespy	Peer	SDK

peerGetRoomGlobalKeys
Retrieves	global	keys	for	all	players	in	the	specified	room.	(Local	client
must	be	a	room	member.).

void	peerGetRoomGlobalKeys(
PEER	peer,
RoomType	roomType,
int	num,
const	gsi_char	**	keys,
peerGetGlobalKeysCallback	callback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerGetRoomGlobalKeys <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

num
[in]	Number	of	keys	in	the	array	parameter	-	keys.

keys
[in]	Array	of	key	names	to	retrieve	values	for.

callback
[in]	Callback	function	to	be	called	when	the	operation	completes.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerGetRoomGlobalKeys	function	retreives	the	global	keys	for	all
players	in	a	room	we're	in.	The	callback	will	be	called	once	for	each
player	in	the	room,	then	once	more	with	"nick"	set	to	NULL.	This	will	fail	if
no	title	is	set,	and	the	peer	object	is	not	connected.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerGetRoomGlobalKeys peerGetRoomGlobalKeysA peerGetRoomGlobalKeysW

peerGetRoomGlobalKeysW	and	peerGetRoomGlobalKeysA	are
UNICODE	and	ANSI	mapped	versions	of	peerGetRoomGlobalKeys.
The	arguments	of	peerGetRoomGlobalKeysA	are	ANSI	strings;	those
of	peerGetRoomGlobalKeysW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

See	Also:	peerGetPlayerGlobalKeys

peerGetRoomKeys
Retrieves	room	key	values	for	the	room	or	a	single	player.

void	peerGetRoomKeys(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	nick,
int	num,
const	gsi_char	**	keys,
peerGetRoomKeysCallback	callback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerGetRoomKeys <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

nick
[in]	Nickname	of	the	player	to	retrieve	values	on.		"*"	to	retrieve
values	for	the	entire	room.

num
[in]	Number	of	valid	key	names	in	the	array	parameter	-	keys.

keys
[in]	Array	of	key	names	to	retrieve	values	for.

callback
[in]	Callback	function	to	be	called	when	the	operation	completes.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue,	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerGetRoomKeys	function	retreives	the	keys	for	either	a	room,	a
player	in	a	room,	or	all	the	players	in	a	room.	If	getting	keys	for	a	room,	or
for	a	single	player,	the	callback	will	be	called	once.	If	getting	keys	for
every	player	in	a	room,	then	it	will	be	called	once	for	each	player,	then
one	more	time	with	nick	set	to	NULL.	This	will	fail	if	no	title	is	set,	and	the
peer	object	is	not	connected.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerGetRoomKeys peerGetRoomKeysA peerGetRoomKeysW

peerGetRoomKeysW	and	peerGetRoomKeysA	are	UNICODE	and
ANSI	mapped	versions	of	peerGetRoomKeys.	The	arguments	of
peerGetRoomKeysA	are	ANSI	strings;	those	of	peerGetRoomKeysW
are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerGetRoomName
Returns	the	channel’s	title.		The	local	client	must	be	a	member	of	the
room.

const	gsi_char	*	peerGetRoomName(
PEER	peer,
RoomType	roomType);

Routine Required	Header Distribution
peerGetRoomName <peer.h> SDKZIP

Return	Value

Returns	the	channel’s	title.		NULL	if	the	local	client	is	not	a	member	of	the
specified	room	type.

Parameters

peer
[in]	Initialized	peer	object.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

Remarks

The	peerGetRoomName	function	retreives	the	name	of	the	room	the
local	player	is	in.	It	return	NULL	if	not	in	the	room.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerGetRoomName peerGetRoomNameA peerGetRoomNameW

peerGetRoomNameW	and	peerGetRoomNameA	are	UNICODE	and
ANSI	mapped	versions	of	peerGetRoomName.	The	arguments	of
peerGetRoomNameA	are	ANSI	strings;	those	of	peerGetRoomNameW
are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerGetTitle
Gets	the	currently	set	title.

const	gsi_char	*	peerGetTitle(
PEER	peer);

Routine Required	Header Distribution
peerGetTitle <peer.h> SDKZIP

Return	Value

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerGetTitle	function	retreives	the	currently	set	title.	It	returns	NULL
if	there	is	no	title	set.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerGetTitle peerGetTitleA peerGetTitleW

peerGetTitleW	and	peerGetTitleA	are	UNICODE	and	ANSI	mapped
versions	of	peerGetTitle.	The	arguments	of	peerGetTitleA	are	ANSI
strings;	those	of	peerGetTitleW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerGetUserID
Returns	the	local	userID.		Only	valid	with	peerConnectLogin	or
peerConnectPreAuth.

int	peerGetUserID(
PEER	peer);

Routine Required	Header Distribution
peerGetUserID <peer.h> SDKZIP

Return	Value

Returns	the	local	userID.

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerGetUserID	function	retreives	the	local	user’s	userID.	This
uniquely	identifies	a	user	account	(email	and	password	combination).
See	the	Presence	SDK	documentation	for	more	details.

Section	Reference:	Gamespy	Peer	SDK

peerInitialize
Initialize	the	peer	SDK.

PEER	peerInitialize(
PEERCallbacks	*	callbacks);

Routine Required	Header Distribution
peerInitialize <peer.h> SDKZIP

Return	Value

Initialized	peer	sdk.

Parameters

callbacks
[in]	PEERCallbacks	structure	filled	with	appropriate	callbacks.

Remarks

The	peerInitialize	function	creates	a	peer	object.	This	object	is	valid	until
it	is	passed	to	peerShutdown().	After	initialization,	the	next	two	steps	will
usually	be	to	set	the	title	with	peerSetTitle()	then	connect	with
peerConnect().	It	is	valid	to	have	multiple	Peer	objects	allocated	at	any
given	time,	however	this	is	usually	not	needed.

Section	Reference:	Gamespy	Peer	SDK

peerInRoom
Determines	if	the	local	client	is	in	a	room	of	the	specified	type.

PEERBool	peerInRoom(
PEER	peer,
RoomType	roomType);

Routine Required	Header Distribution
peerInRoom <peer.h> SDKZIP

Return	Value

This	function	returns	PEERTrue	if	the	local	client	is	in	the	room,
PEERFalse	otherwise.

Parameters

peer
[in]	Initialized	peer	object.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

Remarks

The	peerInRoom	function	checks	whether	or	not	the	local	player	is	in	the
specified	room	type.	It	returns	PEERTrue	if	the	localy	player	is	in	the
room	specified.

Section	Reference:	Gamespy	Peer	SDK

peerIsAutoMatching
Returns	PEERTrue	if	an	AutoMatch	is	in	progress.

PEERBool	peerIsAutoMatching(
PEER	peer);

Routine Required	Header Distribution
peerIsAutoMatching <peer.h> SDKZIP

Return	Value

Returns	PEERTrue	if	an	AutoMatch	is	in	progress,	PEERFalse	otherwise.

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerIsAutoMatching	function	is	used	to	determine	if	an	AutoMatch
is	in	progress.	Returns	PEERTrue	if	an	AutoMatch	is	in	progress,
PEERFalse	if	otherwise.

Section	Reference:	Gamespy	Peer	SDK

peerIsConnected
Returns	PEERTrue	if	connected	to	the	chat	server.

PEERBool	peerIsConnected(
PEER	peer);

Routine Required	Header Distribution
peerIsConnected <peer.h> SDKZIP

Return	Value

Returns	PEERTrue	if	connected	to	the	chat	server,	PEERFalse
otherwise.

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerIsConnected	function	tests	to	check	whether	the	peer	object
has	connected	to	the	chat	server.	It	returns	PEERFalse	if	the	peer	object
has	not	connected.

Section	Reference:	Gamespy	Peer	SDK

peerIsPlayerHost
Returns	PEERTrue	if	specified	player	is	a	room	host	or	operator.

PEERBool	peerIsPlayerHost(
PEER	peer,
const	gsi_char	*	nick,
RoomType	roomType);

Routine Required	Header Distribution
peerIsPlayerHost <peer.h> SDKZIP

Return	Value

This	function	returns	PEERTrue	if	the	specified	player	is	a	room	host	or
operator.		PEERFalse	otherwise.

Parameters

peer
[in]	Initialized	peer	object.

nick
[in]	Nickname	of	the	target	player.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

Remarks

The	peerIsPlayerHost	function	checks	whether	the	player	that	the	nick
refers	to	is	the	host	or	operator	of	the	room.	It	returns	PEERFalse	if	that
player	isn't	a	host	or	operator.	This	simply	is	a	shortcut	to	obtaining	the
player's	flags,	e.g.	the	flags	PEER_FLAG_HOST	and	PEER_FLAG_OP.
This	function	will	fail	if	no	title	is	set	and	the	peer	object	is	not	connected.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerIsPlayerHost peerIsPlayerHostA peerIsPlayerHostW

peerIsPlayerHostW	and	peerIsPlayerHostA	are	UNICODE	and	ANSI
mapped	versions	of	peerIsPlayerHost.	The	arguments	of
peerIsPlayerHostA	are	ANSI	strings;	those	of	peerIsPlayerHostW	are
wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerIsPlaying
Returns	PEERTrue	if	the	local	client	is	playing.

PEERBool	peerIsPlaying(
PEER	peer);

Routine Required	Header Distribution
peerIsPlaying <peer.h> SDKZIP

Return	Value

This	function	returns	PEERTrue	if	the	local	client	is	playing.		PEERFalse
otherwise.

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerIsPlaying	checks	to	see	if	the	local	player	is	playing.	This	will
be	true	if	the	player	successfully	launched	a	game	with	peerStartGame(),
was	in	a	staging	room	and	got	the	peerGameStartedCallback(),	or	was
marked	as	playing	with	peerStartPlaying().	This	function	can	only	be
called	if	a	title	is	set	and	the	peer	object	is	connected.

Section	Reference:	Gamespy	Peer	SDK

peerJoinGroupRoom
Join	the	specified	group	room.

void	peerJoinGroupRoom(
PEER	peer,
int	groupID,
peerJoinRoomCallback	callback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerJoinGroupRoom <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

groupID
[in]	ID	number	of	the	group.		See	remarks.

callback
[in]	Callback	function	to	be	called	when	the	operation	completes.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerJoinGroupRoom	function	may	be	used	to	join	the	GroupRoom
which	matches	the	specified	groupID.		Group	IDs	may	be	obtained
through	the	peerListGroupRooms	call.	The	peer	object	must	be
connected	to	the	chat	server	and	have	a	title	set	before	joining	any
rooms.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerJoinGroupRoom peerJoinGroupRoomA peerJoinGroupRoomW

peerJoinGroupRoomW	and	peerJoinGroupRoomA	are	UNICODE	and
ANSI	mapped	versions	of	peerJoinGroupRoom.	The	arguments	of
peerJoinGroupRoomA	are	ANSI	strings;	those	of
peerJoinGroupRoomW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerJoinStagingRoom
Joins	a	specified	game	staging	room.	Allows	players	to	get	together	and
chat	while	setting	up	a	game.	Players	can	also	see	other	players’	pings
and	crosspings.

void	peerJoinStagingRoom(
PEER	peer,
SBServer	server,
const	gsi_char	password[PEER_PASSWORD_LEN],
peerJoinRoomCallback	callback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerJoinStagingRoom <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

server
[in]	SBServer	object.

password
[in]	Optional	password	for	the	staging	room.

callback
[in]	Callback	function	to	be	called	when	the	operation	completes.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerJoinStagingRoom	connects	a	player	to	a	staging	room.
"server"	is	one	of	the	server	objects	passed	to
peerListingGamesCallback().	"password"	will	be	checked	to	match	the
password	passed	to	peerCreateStaginRoom.	Spaces	in	passwords	are
not	allowed.	Any	password	with	spaces	should	be	stripped	of	those
spaces	before	calling	this	function,	or	a	warning	to	the	user	will	suffice.
This	call	will	only	work	if	the	server	was	listed	with	"staging"	set	to	true.
Otherwise	the	game	has	already	been	launched	and	should	be	joined
directly.	As	long	as	the	server	object	was	obtained	from	a
peerStartListGames()	call	that	was	made	after	the	most	recent	call	to
peerSetTitle(),	then	the	listing	can	be	safely	stopped	(with
peerStopListingGames())	before	making	this	call.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerJoinStagingRoom peerJoinStagingRoomA peerJoinStagingRoomW

peerJoinStagingRoomW	and	peerJoinStagingRoomA	are	UNICODE
and	ANSI	mapped	versions	of	peerJoinStagingRoom.	The	arguments
of	peerJoinStagingRoomA	are	ANSI	strings;	those	of
peerJoinStagingRoomW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

See	Also:	peerJoinRoomCallback

peerJoinStagingRoomByChannel
Join	a	staging	room	using	the	channel	name.

void	peerJoinStagingRoomByChannel(
PEER	peer,
const	gsi_char	*	channel,
const	gsi_char	password[PEER_PASSWORD_LEN],
peerJoinRoomCallback	callback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerJoinStagingRoomByChannel <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

channel
[in]	Chat	channel	name.

password
[in]	Optional	password	of	the	room.

callback
[in]	Callback	function	to	be	called	when	the	operation	completes.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerJoinStagingRoomByChannel	connects	the	local	player	to	a
staging	room	by	using	it's	channel	name.	A	"password"	will	be	checked	to
match	the	password	passed	to	peerCreateStaginRoom.	Spaces	in
passwords	are	not	allowed.	Any	password	with	spaces	should	be
stripped	of	those	spaces	before	calling	this	function,	or	a	warning	to	the
user	will	suffice.This	call	will	only	work	if	the	server	was	listed	with
"staging"	set	to	true.	Otherwise	the	game	has	already	been	launched	and
should	be	joined	directly.	The	function	will	fail	if	the	channel	does	not
have	"staging"	set	to	true.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerJoinStagingRoomByChannel peerJoinStagingRoomByChannelA peerJoinStagingRoomByChannelW

peerJoinStagingRoomByChannelW	and
peerJoinStagingRoomByChannelA	are	UNICODE	and	ANSI	mapped
versions	of	peerJoinStagingRoomByChannel.	The	arguments	of
peerJoinStagingRoomByChannelA	are	ANSI	strings;	those	of
peerJoinStagingRoomByChannelW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerJoinTitleRoom
Join	the	title	room	for	the	local	client’s	game	application.

void	peerJoinTitleRoom(
PEER	peer,
const	gsi_char	password[PEER_PASSWORD_LEN],
peerJoinRoomCallback	callback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerJoinTitleRoom <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

password
[in]	Optional	password	of	the	title	room.		Usually	NULL.

callback
[in]	Callback	function	to	be	called	when	the	operation	completes.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerJoinTitleRoom	function	Joins	the	title	room	of	the	currently
selected	game	title.	This	is	typically	called	right	after	connecting,	and	it	is
only	valid	if	a	title	is	set.	If	the	user	is	already	in	a	title	room,	this	function
will	fail.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerJoinTitleRoom peerJoinTitleRoomA peerJoinTitleRoomW

peerJoinTitleRoomW	and	peerJoinTitleRoomA	are	UNICODE	and
ANSI	mapped	versions	of	peerJoinTitleRoom.	The	arguments	of
peerJoinTitleRoomA	are	ANSI	strings;	those	of	peerJoinTitleRoomW
are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerKickPlayer
Kick	a	player	from	a	room.

void	peerKickPlayer(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	nick,
const	gsi_char	*	reason);

Routine Required	Header Distribution
peerKickPlayer <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

nick
[in]	Nickname	of	the	client	to	kick.

reason
[in]	Optional	explanation	string	to	be	sent	to	the	target	client.

Remarks

The	peerKickPlayer	function	will	kick	a	specifed	player	from	the	room.
Only	players	that	have	operator	or	host	ability	will	be	able	to	kick	players.
A	player	can	be	kicked	by	the	operator	with	or	without	reason.	An	player
that	does	not	exist	cannot	be	kicked.	If	the	player	does	not	exist	in	this
room,	then	no	one	will	be	kicked.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerKickPlayer peerKickPlayerA peerKickPlayerW

peerKickPlayerW	and	peerKickPlayerA	are	UNICODE	and	ANSI
mapped	versions	of	peerKickPlayer.	The	arguments	of
peerKickPlayerA	are	ANSI	strings;	those	of	peerKickPlayerW	are	wide-
character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerLeaveRoom
Remove	the	local	client	from	a	room.

void	peerLeaveRoom(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	reason);

Routine Required	Header Distribution
peerLeaveRoom <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

reason
[in]	Optional	text	reason	broadcast	to	the	room.

Remarks

The	peerLeaveRoom	function	will	take	the	local	player	out	of	the	current
room.	Any	room	can	be	left	without	affecting	any	other	room.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerLeaveRoom peerLeaveRoomA peerLeaveRoomW

peerLeaveRoomW	and	peerLeaveRoomA	are	UNICODE	and	ANSI
mapped	versions	of	peerLeaveRoom.	The	arguments	of
peerLeaveRoomA	are	ANSI	strings;	those	of	peerLeaveRoomW	are
wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerListGroupRooms
List	all	the	group	rooms	for	the	currently	set	title.

void	peerListGroupRooms(
PEER	peer,
const	gsi_char	*	fields,
peerListGroupRoomsCallback	callback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerListGroupRooms <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

fields
[in]	Backslash	delimited	list	of	fields.

callback
[in]	Callback	function	to	be	called	when	the	operation	completes.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerListGroupRooms	functions	lists	all	the	groups	rooms	for	the
currently	set	title.	The	callback	will	be	called	once	for	each	title,	then	it	will
be	called	once	again	with	a	"groupID"	of	0.	The	groupIDs	can	be	used
with	peerJoinGroupRoom()	to	join	a	group.	This	function	will	fail	if	no	title
is	set.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerListGroupRooms peerListGroupRoomsA peerListGroupRoomsW

peerListGroupRoomsW	and	peerListGroupRoomsA	are	UNICODE
and	ANSI	mapped	versions	of	peerListGroupRooms.	The	arguments	of
peerListGroupRoomsA	are	ANSI	strings;	those	of
peerListGroupRoomsW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerMessagePlayer
Send	a	message	to	the	specified	player.

void	peerMessagePlayer(
PEER	peer,
const	gsi_char	*	nick,
const	gsi_char	*	message,
MessageType	messageType);

Routine Required	Header Distribution
peerMessagePlayer <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

nick
[in]	Nickname	of	the	player	who	should	receive	the	message.

message
[in]	The	message	to	send.

messageType
[in]	The	type	of	message	to	send,	most	commonly	NormalMessage
or	ActionMessage.

Remarks

The	peerMessagePlayer	function	sends	a	message	to	another	player.
As	long	as	the	nick	is	valid	and	matches	up	with	a	player,	that	player	will
get	the	message	in	a	peerPlayerMessageCallback().
This	function	only	works	while	connected	to	the	chat	server.	The	player
messaged	does	not	have	to	be	using	the	Peer	SDK.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerMessagePlayer peerMessagePlayerA peerMessagePlayerW

peerMessagePlayerW	and	peerMessagePlayerA	are	UNICODE	and
ANSI	mapped	versions	of	peerMessagePlayer.	The	arguments	of
peerMessagePlayerA	are	ANSI	strings;	those	of	peerMessagePlayerW
are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerMessageRoom
Send	a	message	to	the	specified	room.

void	peerMessageRoom(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	message,
MessageType	messageType);

Routine Required	Header Distribution
peerMessageRoom <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

message
[in]	The	message	to	send.

messageType
[in]	The	type	of	message	to	send,	most	commonly	NormalMessage
or	ActionMessage.

Remarks

The	peerMessageRoom	function	sends	a	message	to	a	room.	All	the
players	in	the	room,	including	the	local	player,	will	receive	a
peerRoomMessageCallback()	with	the	message.	This	function	only	works
if	the	local	user	is	in	the	room	he	is	trying	to	message.	The	peer	object
must	be	connected	and	a	title	must	be	set	for	this	function	to	successfully
work.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerMessageRoom peerMessageRoomA peerMessageRoomW

peerMessageRoomW	and	peerMessageRoomA	are	UNICODE	and
ANSI	mapped	versions	of	peerMessageRoom.	The	arguments	of
peerMessageRoomA	are	ANSI	strings;	those	of	peerMessageRoomW
are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerParseQuery
Pass	a	manually	received	server	query	to	the	peer	SDK.		Use	with
peerStartReportingWithSocket	or	peerCreateStagingRoomWithSocket.

void	peerParseQuery(
PEER	peer,
gsi_char	*	query,
int	len,
struct	sockaddr	*	sender);

Routine Required	Header Distribution
peerParseQuery <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

query
[in]	String	of	query	data	received	on	the	socket.

len
[in]	String	length	of	query,	not	including	the	NULL.

sender
[in]	The	address	this	query	was	received	from.

Remarks

The	peerParseQuery	can	be	used	to	translate	peer	packets	into	data.	If
hosting	a	room	or	a	game	using	shared	sockets,	then	this	function	needs
to	be	used	to	pass	any	data	received	on	that	socket	to	Peer.	When	data
is	received	on	the	socket,	the	application	must	determine	if	the	data	is	a
query	meant	to	be	passed	to	Peer,	or	if	it	is	data	for	the	game	itself.	This
can	be	done	by	checking	the	first	two	bytes	in	a	packet	for	QR_MAGIC_1
and	QR_MAGIC_2.
Again,	this	function	only	needs	to	be	called	if	reporting	over	a	shared
socket,	which	is	initiated	by	either	peerCreateStagingRoomWithSocket()
or	peerStartReportingWithSocket().

Section	Reference:	Gamespy	Peer	SDK

peerPingPlayer
Send	a	ping	request	to	a	remote	player.

PEERBool	peerPingPlayer(
PEER	peer,
const	gsi_char	*	nick);

Routine Required	Header Distribution
peerPingPlayer <peer.h> SDKZIP

Return	Value

Returns	PEERTrue	if	a	ping	attempt	is	made,	PEERFalse	otherwise.

Parameters

peer
[in]	Initialized	peer	object.

nick
[in]	Nickname	of	the	remote	player	to	ping.

Remarks

The	peerPingPlayer	function	sends	a	UDP	ping	to	the	specified	player.	
Peer	already	automatically	pings	all	players	that	are	in	ping	rooms	(which
are	set	in	peerSetTitle).	This	function	does	a	one-time	ping	of	a	remote
player	in	a	non-ping	room.	However	pings	must	be	enabled	in	at	least
one	room	for	this	to	work,	otherwise	Peer	will	not	open	the	UDP	ping
socket.	Also,	peerAlwaysGetPlayerInfo()	must	be	enabled	so	that	Peer
has	IPs	for	players	that	are	only	in	non-ping	rooms.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerPingPlayer peerPingPlayerA peerPingPlayerW

peerPingPlayerW	and	peerPingPlayerA	are	UNICODE	and	ANSI
mapped	versions	of	peerPingPlayer.	The	arguments	of
peerPingPlayerA	are	ANSI	strings;	those	of	peerPingPlayerW	are
wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerRegisterUniqueNick
Register	a	unique	nick.		Call	in	response	to	peerNickErrorCallback.

void	peerRegisterUniqueNick(
PEER	peer,
int	namespaceID,
const	gsi_char	*	uniquenick,
const	gsi_char	*	cdkey);

Routine Required	Header Distribution
peerRegisterUniqueNick <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

namespaceID
[in]	Assigned	namespace	ID	for	this	title.

uniquenick
[in]	Unique	nickname	to	register	with	cdkey.

cdkey
[in]	User’s	cdkey.		Uniquenick	will	be	attached	to	this	key.

Remarks

The	peerRegisterUniqueNick	takes	and	registers	a	unique	nick
supplied.	If	the	nickErrorCallback	was	called	with	a	type	of
PEER_UNIQUENICK_EXPIRED	or	PEER_NO_UNIQUENICK,	then	this
function	can	be	called	to	associate	a	uniquenick	with	the	profile	which	is
being	used	to	login	(passed	to	peerConnectLogin).	If	uniquenick	is	NULL
or	an	empty	string,	then	the	connect	attempt	will	be	aborted.	This	function
should	only	be	called	in	response	to	a	peerNickErrorCallback().	The
backend	makes	certain	checks	on	a	uniquenick	before	it	is	allowed	to	be
registered.	For	details	on	what	is	checked,	see	the	"Unique	Nick	Checks"
section	at	the	bottom	of	GameSpy	Presence	SDK	overview
documentation.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerRegisterUniqueNick peerRegisterUniqueNickA peerRegisterUniqueNickW

peerRegisterUniqueNickW	and	peerRegisterUniqueNickA	are
UNICODE	and	ANSI	mapped	versions	of	peerRegisterUniqueNick.	The
arguments	of	peerRegisterUniqueNickA	are	ANSI	strings;	those	of
peerRegisterUniqueNickW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerRetryWithNick
Use	in	response	to	a	nickErrorCallback.	This	function	allows	the	local
client	to	retry	the	connection	attempt	with	a	different	chat	nickname.

void	peerRetryWithNick(
PEER	peer,
const	gsi_char	*	nick);

Routine Required	Header Distribution
peerRetryWithNick <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

nick
[in]	Set	to	zero	unless	directed	otherwise	by	GameSpy.

Remarks

The	peerRetryWithNick	function	should	be	used	in	response	to	a
nickErrorCallback.	Most	often,	this	occurs	when	a	requested	nickname	is
already	in	use.	peerRetryWithNick	should	be	called	with	an	alternate
nickname	such	as	"oldnick{1}"	to	continue	the	login	process.	If	another
nickError	occurs,	the	nickErrorCallback	will	be	triggered	again.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerRetryWithNick peerRetryWithNickA peerRetryWithNickW

peerRetryWithNickW	and	peerRetryWithNickA	are	UNICODE	and
ANSI	mapped	versions	of	peerRetryWithNick.	The	arguments	of
peerRetryWithNickA	are	ANSI	strings;	those	of	peerRetryWithNickW
are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerSendNatNegotiateCookie
Send	a	nat	negotiation	cookie	to	a	server.

void	peerSendNatNegotiateCookie(
PEER	peer,
unsigned	int	ip,
unsigned	short	port,
int	cookie);

Routine Required	Header Distribution
peerSendNatNegotiateCookie <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

ip
[in]	IP	address	of	the	remote	server.

port
[in]	Port	of	the	remote	server.

cookie
[in]	Cookie	to	send.	Usually	an	integer	value	randomly	generated	by
the	sender.

Remarks

The	peerSendNatNegotiationCookie	will	send	a	nat-negotiate	cookie	to
the	master	server.	See	the	nat-negotiate	documentation	for	more
information.

Section	Reference:	Gamespy	Peer	SDK

peerSetAwayMode
Set	the	away	mode,	as	it	appears	in	chat.

void	peerSetAwayMode(
PEER	peer,
const	gsi_char	*	reason);

Routine Required	Header Distribution
peerSetAwayMode <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

reason
[in]	Reason	for	being	away.		Set	to	NULL	or	""	if	not	away.

Remarks

The	peerSetAwayMode	sets	the	away	mode	of	the	local	player.	If	an
empty	string	or	NULL,	away	mode	is	off.	If	a	valid	string,	away	mode	is
on.	Once	on,	away	mode	will	stay	active	until	it	is	turned	off,	or	the
connection	is	disconnected.	To	check	if	a	player	is	away,	check	his	flags
(with	peerGetPlayerFlags()),	and	check	for	PEER_FLAG_AWAY.	To	get
the	reason,	check	for	that	player’s	special	"away"	global	key	(with
peerGetPlayerGlobalKeys()).	This	function	has	no	effect	if	peer	object	is
not	connected.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerSetAwayMode peerSetAwayModeA peerSetAwayModeW

peerSetAwayModeW	and	peerSetAwayModeA	are	UNICODE	and
ANSI	mapped	versions	of	peerSetAwayMode.	The	arguments	of
peerSetAwayModeA	are	ANSI	strings;	those	of	peerSetAwayModeW
are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerSetGlobalKeys
Set	global	keys	on	the	local	player.

void	peerSetGlobalKeys(
PEER	peer,
int	num,
const	gsi_char	**	keys,
const	gsi_char	**	values);

Routine Required	Header Distribution
peerSetGlobalKeys <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

num
[in]	Number	of	keys	in	the	keys	array.

keys
[in]	Array	of	keys	to	set	values	for.

values
[in]	Array	of	values	to	set.

Remarks

The	peerSetGlobalKeys	function	sets	global	keys	on	the	local	player.	At
least	one	key	must	be	set.	This	will	fail	if	the	peer	object	is	not	connected.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerSetGlobalKeys peerSetGlobalKeysA peerSetGlobalKeysW

peerSetGlobalKeysW	and	peerSetGlobalKeysA	are	UNICODE	and
ANSI	mapped	versions	of	peerSetGlobalKeys.	The	arguments	of
peerSetGlobalKeysA	are	ANSI	strings;	those	of	peerSetGlobalKeysW
are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerSetGlobalWatchKeys
Set	the	global	watch	keys	for	the	specified	room	type.

void	peerSetGlobalWatchKeys(
PEER	peer,
RoomType	roomType,
int	num,
const	gsi_char	**	keys,
PEERBool	addKeys);

Routine Required	Header Distribution
peerSetGlobalWatchKeys <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

num
[in]	Number	of	keys	in	the	array.

keys
[in]	Array	of	keys	to	watch	for.

addKeys
[in]	When	set	to	PEERTrue	this	keys	will	be	added	to	the	existing
watch	key	list.

Remarks

The	peerSetGlobalWatchKeys	sets	the	global	watch	keys	for	a	room
type.	If	addKeys	is	set	to	PEERTrue,	the	keys	will	be	added	to	the	current
global	watch	keys	for	this	room.	If	addKeys	is	PEERFalse,	these	will
replace	any	existing	global	watch	keys	for	this	room.	When	entering	a
room	of	the	given	type,	peer	will	get	and	cache	these	keys	for	all	players
in	the	room.	To	check	the	value	of	a	key	at	any	time,	use
peerGetGlobalWatchKey().	This	will	fail	if	no	title	is	set	and	if	peer	is	not
connected.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerSetGlobalWatchKeys peerSetGlobalWatchKeysA peerSetGlobalWatchKeysW

peerSetGlobalWatchKeysW	and	peerSetGlobalWatchKeysA	are
UNICODE	and	ANSI	mapped	versions	of	peerSetGlobalWatchKeys.
The	arguments	of	peerSetGlobalWatchKeysA	are	ANSI	strings;	those
of	peerSetGlobalWatchKeysW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerSetGroupID
Manually	set	the	group	ID.		Use	with	caution	as	this	is	normally	set
automatically.

void	peerSetGroupID(
PEER	peer,
int	groupID);

Routine Required	Header Distribution
peerSetGroupID <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

groupID
[in]	Integer	ID	to	set.		"0"	for	no	group.

Remarks

The	peerSetGroupID	sets	the	group	ID	of	a	group	room	manually.	This
is	not	safe	for	automatically	assigned	group	IDs.

Section	Reference:	Gamespy	Peer	SDK

peerSetPassword
Set	the	password	on	the	chat	room.		Local	client	must	be	the	host.

void	peerSetPassword(
PEER	peer,
RoomType	roomType,
const	gsi_char	password[PEER_PASSWORD_LEN]);

Routine Required	Header Distribution
peerSetPassword <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

password
[in]	Password	to	set	on	this	room.

Remarks

The	peerSetPassword	sets	a	password	in	a	room	a	local	player	hosting.
The	only	RoomType	currently	supported	is	StagingRoom.	This	will	only
work	if	the	player	is	hosting	the	room.	If	password	is	NULL	or	"",	the
password	will	be	cleared.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerSetPassword peerSetPasswordA peerSetPasswordW

peerSetPasswordW	and	peerSetPasswordA	are	UNICODE	and	ANSI
mapped	versions	of	peerSetPassword.	The	arguments	of
peerSetPasswordA	are	ANSI	strings;	those	of	peerSetPasswordW	are
wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerSetQuietMode
Sets	the	peer	sdk	to	quiet	mode	or	disables	quiet	mode.	See	remarks.

void	peerSetQuietMode(
PEER	peer,
PEERBool	quiet);

Routine Required	Header Distribution
peerSetQuietMode <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

quiet
[in]	Set	to	PEERTrue	to	enable	quiet	mode.	PEERFalse	to	disable.

Remarks

The	peerSetQuietMode	function	is	used	to	toggle	quiet	mode.	When	in
quiet	mode	the	peer	SDK	will	not	receive	chat	or	other	messages.	This
allows	the	user	to	remain	logged	into	chat	without	disrupting	gameplay
with	extraneous	traffic.	If	quiet	mode	is	enabled,	the	chat	server	will	not
send	this	user	channel	messages	or	channel	join/parts.	This	will	last	until
quiet	mode	is	disabled.	At	that	time	the	peerNewPlayerListCallback()	will
be	called	for	each	room	the	local	user	is	in	with	the	current	list	of	players.
This	function	has	no	effect	if	the	title	is	not	set	and	the	peer	object	is	not
connected.

Section	Reference:	Gamespy	Peer	SDK

peerSetReady
Set	the	local	clients	ready	state.

void	peerSetReady(
PEER	peer,
PEERBool	ready);

Routine Required	Header Distribution
peerSetReady <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

ready
[in]	Set	to	PEERTrue	to	enable	ready	status.

Remarks

The	peerSetReady	function	allows	the	local	client	to	signal	his/her	ready
status	for	a	staging	room.		A	staging	room	host	should	not	launch	the
game	until	all	clients	are	ready.

Section	Reference:	Gamespy	Peer	SDK

peerSetRoomKeys
Set	room	keys	for	a	player	or	the	room	itself.

void	peerSetRoomKeys(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	nick,
int	num,
const	gsi_char	**	keys,
const	gsi_char	**	values);

Routine Required	Header Distribution
peerSetRoomKeys <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

nick
[in]	Nickname	of	the	target	player.

num
[in]	Number	of	keys	to	set.

keys
[in]	Array	of	keys	to	set	values	for.

values
[in]	Array	of	values	to	set.

Remarks

The	peerSetRoomKeys	function	is	used	to	set	a	player’s	room	keys	or
to	set	a	room’s	keys.	Only	hosts	can	set	keys	on	the	room,	and	only
hosts	can	set	keys	on	other	players.	This	will	fail	if	no	title	is	set	and	the
peer	is	not	connected.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerSetRoomKeys peerSetRoomKeysA peerSetRoomKeysW

peerSetRoomKeysW	and	peerSetRoomKeysA	are	UNICODE	and
ANSI	mapped	versions	of	peerSetRoomKeys.	The	arguments	of
peerSetRoomKeysA	are	ANSI	strings;	those	of	peerSetRoomKeysW
are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerSetRoomName
Set	the	name	of	a	room.		Local	client	must	be	the	host.

void	peerSetRoomName(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	name);

Routine Required	Header Distribution
peerSetRoomName <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

name
[in]	The	new	name.

Remarks

The	peerSetRoomName	function	sets	the	name	of	a	room	you're
hosting.	The	only	RoomType	currently	supported	is	StagingRoom.	This
will	only	work	if	the	player	is	hosting	the	room.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerSetRoomName peerSetRoomNameA peerSetRoomNameW

peerSetRoomNameW	and	peerSetRoomNameA	are	UNICODE	and
ANSI	mapped	versions	of	peerSetRoomName.	The	arguments	of
peerSetRoomNameA	are	ANSI	strings;	those	of	peerSetRoomNameW
are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerSetStagingRoomMaxPlayers
Update	the	maximum	number	of	players	for	a	staging	room.		Local	client
must	be	the	host.

void	peerSetStagingRoomMaxPlayers(
PEER	peer,
int	maxPlayers);

Routine Required	Header Distribution
peerSetStagingRoomMaxPlayers <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

maxPlayers
[in]	Maximum	number	of	players.

Remarks

The	peerSetStagingRoomMaxPlayers	function	updates	the	maximum
number	of	players	that	a	staging	room	can	have.	This	can	only	be	set	by
the	host	of	the	staging	room.

Section	Reference:	Gamespy	Peer	SDK

peerSetTitle
Set	the	game	information	to	be	used	by	the	peer	sdk.

PEERBool	peerSetTitle(
PEER	peer,
const	gsi_char	*	title,
const	gsi_char	*	qrSecretKey,
const	gsi_char	*	sbName,
const	gsi_char	*	sbSecretKey,
int	sbGameVersion,
int	sbMaxUpdates,
PEERBool	natNegotiate,
PEERBool	pingRooms[NumRooms],
PEERBool	crossPingRooms[NumRooms]);

Routine Required	Header Distribution
peerSetTitle <peer.h> SDKZIP

Return	Value

This	function	returns	PEERFalse	if	an	error	occurs,	otherwise	PEERTrue.

Parameters

peer
[in]	Initialized	peer	object.

title
[in]	Your	gamename,	assigned	by	GameSpy.

qrSecretKey
[in]	Secret	key	for	title,	assigned	by	GameSpy.

sbName
[in]	Servers	returned	will	be	for	this	GameName.		(Usually	the	same
as	title.)

sbSecretKey
[in]	Secret	key	for	sbName.

sbGameVersion
[in]	Game	version	for	the	local	client.

sbMaxUpdates
[in]	The	maximum	number	of	server	queries	the	SDK	will	send	out	at
one	time.

natNegotiate
[in]	Set	to	PEERTrue	if	nat	negotiation	is	supported.

pingRooms
[in]	Array	of	PEERBool,	use	to	indicate	which	room	types	to
automatically	ping.

crossPingRooms
[in]	Array	of	PEERBool,	use	to	indicate	which	room	types	to
automatically	cross	ping.

Remarks

The	peerSetTitle	function	sets	title	information	for	the	peer	sdk	such	as
that	used	in	server	browing	and	reporting.	This	should	be	called	after
peerInitialize	and	before	any	of	the	connection	functions:	peerConnect,
peerConnectLogin,	peerConnectPreAuth.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerSetTitle peerSetTitleA peerSetTitleW

peerSetTitleW	and	peerSetTitleA	are	UNICODE	and	ANSI	mapped
versions	of	peerSetTitle.	The	arguments	of	peerSetTitleA	are	ANSI
strings;	those	of	peerSetTitleW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerSetTitleRoomChannel
Set	the	channel	to	be	used	as	the	TitleRoom.	(Rarely	used,	SDK	sets	title
room	automatically.).

void	peerSetTitleRoomChannel(
PEER	peer,
const	gsi_char	*	channel);

Routine Required	Header Distribution
peerSetTitleRoomChannel <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

channel
[in]	Name	of	the	channel	to	use	as	the	title	room.

Remarks

The	peerSetTitleRoomChannel	function	associates	a	channel	to	be
used	as	the	TitleRoom.	This	function	is	normally	not	needed.	It	must	be
called	while	a	title	is	set,	and	will	only	last	until	a	new	title	is	set.	If	called
with	a	NULL	or	empty	channel,	then	peer	will	determine	the	channel	(the
default	behavior).	If	this	is	called	while	in	a	title	room,	it	won’t	take	effect
until	the	title	room	is	left.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerSetTitleRoomChannel peerSetTitleRoomChannelA peerSetTitleRoomChannelW

peerSetTitleRoomChannelW	and	peerSetTitleRoomChannelA	are
UNICODE	and	ANSI	mapped	versions	of	peerSetTitleRoomChannel.
The	arguments	of	peerSetTitleRoomChannelA	are	ANSI	strings;	those
of	peerSetTitleRoomChannelW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerShutdown
Destructs	the	peer	SDK.

void	peerShutdown(
PEER	peer);

Routine Required	Header Distribution
peerShutdown <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerShutdown	function	is	used	to	destruct	the	peer	sdk.		This	frees
all	internally	allocated	memory.		The	peer	sdk	object	should	not	be	used
after	this	call.	To	use	the	SDK	again,	call	peerInitialize().	This	call	will	also
disconnect	any	outstanding	connections.

Section	Reference:	Gamespy	Peer	SDK

peerStartAutoMatch
Start	an	automatch	attempt.

void	peerStartAutoMatch(
PEER	peer,
int	maxPlayers,
const	gsi_char	*	filter,
peerAutoMatchStatusCallback	statusCallback,
peerAutoMatchRateCallback	rateCallback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerStartAutoMatch <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

maxPlayers
[in]	Total	number	of	players	to	match.	(Includes	local	player).

filter
[in]	Hard	filter	for	returned	server	list.

statusCallback
[in]	Callback	function	to	be	called	when	the	status	changes.

rateCallback
[in]	Callback	function	to	be	called	when	a	potential	match	should	be
rated.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerStartAutoMatch	function	begins	the	AutoMatch	process.	The
function	takes	a	maxPlayers	parameter,	which	specifices	the	maximum
number	of	people	that	should	be	in	the	final	match.	For	example,	if	the
local	player	wants	to	player	a	3v3	match,	maxPlayers	should	be	6.	The
match	can	be	started	before	the	maxPlayers	is	reached,	for	example	if	an
exact	number	of	players	is	not	needed,	but	an	upper	limit	must	still	be
specified.
The	filter	is	a	SQL-type	filter,	just	like	the	filter	used	in
peerStartListingGames().	It	is	used	to	rule	out	matches	that	are	not
acceptable.	Potential	matches	that	do	not	pass	the	filter	will	not	be
passed	to	the	rating	callback.	The	statusCallback	is	called	whenever	the
status	of	the	match	changes,	until	either	peerStopAutoMatch()	is	called,
or	the	statusCallback	is	called	with	a	status	of	PEERFailed	or
PEERComplete.	The	rateCallback	is	used	to	rate	possible	matches.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerStartAutoMatch peerStartAutoMatchA peerStartAutoMatchW

peerStartAutoMatchW	and	peerStartAutoMatchA	are	UNICODE	and
ANSI	mapped	versions	of	peerStartAutoMatch.	The	arguments	of
peerStartAutoMatchA	are	ANSI	strings;	those	of
peerStartAutoMatchW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerStartAutoMatchWithSocket
Start	an	automatch	attempt	using	an	external	managed	socket.

void	peerStartAutoMatchWithSocket(
PEER	peer,
int	maxPlayers,
const	gsi_char	*	filter,
SOCKET	socket,
unsigned	short	port,
peerAutoMatchStatusCallback	statusCallback,
peerAutoMatchRateCallback	rateCallback,
void	*	param,
PEERBool	blocking);

Routine Required	Header Distribution
peerStartAutoMatchWithSocket <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

maxPlayers
[in]	Total	number	of	players	to	match.	(Includes	local	player).

filter
[in]	Hard	filter	for	returned	server	list.

socket
[in]	Socket	to	be	used	for	reporting.

port
[in]	Local	port	to	which	the	socket	is	bound.

statusCallback
[in]	Callback	function	to	be	called	when	the	status	changes.

rateCallback
[in]	Callback	function	to	be	called	when	a	potential	match	should	be
rated.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

blocking
[in]	When	set	to	PEERTrue	this	function	will	not	return	until	the
operation	has	completed.

Remarks

The	peerStartAutoMatch	function	begins	the	AutoMatch	process	using
the	specified	socket	being	shared.	The	function	takes	a	maxPlayers
parameter,	which	specifices	the	maximum	number	of	people	that	should
be	in	the	final	match.	For	example,	if	the	local	player	wants	to	player	a
3v3	match,	maxPlayers	should	be	6.	The	match	can	be	started	before	the
maxPlayers	is	reached,	for	example	if	an	exact	number	of	players	is	not
needed,	but	an	upper	limit	must	still	be	specified.
The	filter	is	a	SQL-type	filter,	just	like	the	filter	used	in
peerStartListingGames().	It	is	used	to	rule	out	matches	that	are	not
acceptable.	Potential	matches	that	do	not	pass	the	filter	will	not	be
passed	to	the	rating	callback.	The	statusCallback	is	called	whenever	the
status	of	the	match	changes,	until	either	peerStopAutoMatch()	is	called,
or	the	statusCallback	is	called	with	a	status	of	PEERFailed	or
PEERComplete.	The	rateCallback	is	used	to	rate	possible	matches.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerStartAutoMatchWithSocket peerStartAutoMatchWithSocketA peerStartAutoMatchWithSocketW

peerStartAutoMatchWithSocketW	and
peerStartAutoMatchWithSocketA	are	UNICODE	and	ANSI	mapped
versions	of	peerStartAutoMatchWithSocket.	The	arguments	of
peerStartAutoMatchWithSocketA	are	ANSI	strings;	those	of
peerStartAutoMatchWithSocketW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerStartGame
Called	by	the	host	to	begin	the	game.

void	peerStartGame(
PEER	peer,
const	gsi_char	*	message,
int	reportingOptions);

Routine Required	Header Distribution
peerStartGame <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

message
[in]	Optional	message	to	send	to	each	client.

reportingOptions
[in]	Bitfield	flags	used	to	set	reporting	options.		(example:
PEER_KEEP_REPORTING)

Remarks

The	peerStartGame	function	is	called	only	by	a	staging	room	host	to
start	the	game.	All	the	other	people	in	the	staging	room	will	have	their
peerGameStartedCallback()	called.	The	message	gets	passed	to
everyone	in	the	callback,	and	can	be	used	to	pass	information	such	as	a
special	port	or	password.
Peer	does	not	enforce	readiness	--	this	function	can	be	called	at	any
time,	no	matter	who	is	ready	or	not.	If	the	application	wishes	to	only
launch	the	game	once	everyone	is	ready,	then	it	is	up	to	the	application
to	enforce	that.
If	PEER_STOP_REPORTING	is	set	in	reportingOptions,	Peer	will	stop
server	reporting,	and	the	program	is	responsible	from	then	on	for
reporting	the	server	to	the	backend.	If	PEER_KEEP_REPORTING	is	set
instead,	Peer	will	continue	doing	server	reporting,	and	calling	the
program-supplied	callbacks.	Peer	will	normally	not	report	all	the	same
information	while	playing.	While	playing,	the	application	will	be
responsible	for	reporting	the	gamemode	(if	not	openplaying),	the
hostname,	the	numplayers,	the	maxplayers,	and	any	password	in	the
callbacks,	unless	the	PEER_REPORT_INFO	flag	is	set	in
reportingOptions.	The	application	will	also	need	to	report	the	players	and
pings	in	the	callbacks,	unless	the	PEER_REPORT_PLAYERS	flag	is	set
in	reportingOptions.	For	more	details,	see	the	peerQR*Callback()	in	the
callback	section	below.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerStartGame peerStartGameA peerStartGameW

peerStartGameW	and	peerStartGameA	are	UNICODE	and	ANSI
mapped	versions	of	peerStartGame.	The	arguments	of
peerStartGameA	are	ANSI	strings;	those	of	peerStartGameW	are	wide-
character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerStartListingGames
Begin	listing	the	currently	running	games	and	staging	rooms.

void	peerStartListingGames(
PEER	peer,
const	unsigned	char	*	fields,
int	numFields,
const	gsi_char	*	filter,
peerListingGamesCallback	callback,
void	*	param);

Routine Required	Header Distribution
peerStartListingGames <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

fields
[in]	Array	of	registered	QR2	keys	to	request	from	the	servers.

numFields
[in]	Number	of	keys	in	the	fields	array.

filter
[in]	SQL-link	rule	filter.

callback
[in]	Callback	function	to	be	called	when	each	server	updates.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerStartListingGames	function	starts	listing	the	currently	running
games	and	staging	rooms.	This	is	used	to	maintain	a	list	that	can
presented	to	the	user,	so	they	can	pick	a	game	(or	staging	room)	to	join.
Games	and	staging	rooms	are	filtered	based	on	what	group	the	local
user	is	in.	If	the	local	user	isn't	in	a	group,	then	only	games	and	staging
rooms	that	aren't	part	of	any	group	are	listed.	Peer	first	gets	an	initial	list
of	existing	servers,	then	it	receives	continuous	updates	about	new
servers,	deleted	servers,	and	updated	servers.	The	callback	will	keep
being	called	repeatedly	with	new	information	until	the	listing	is	stopped
with	peerStopListingGames(),	or	the	title	is	cleared	or	changed	with
peerClearTitle()	or	peerSetTitle().
The	filter	can	be	a	SQL-style	Boolean	statement,	such	as:
"gametype=’ctf’"	or
"numplayers	>	1	and	numplayers	<	8".
The	fitler	can	be	arbitrarily	complex	and	supports	all	standard	SQL
groupings	and	Boolean	operations.	The	following	fields	are	available	for
filtering:	hostport,	gamever,	location,	hostname,	mapname,	gametype,
gamemode,	numplayers,	maxplayers,	groupid.	
This	function	will	fail	if	there	is	no	title	set.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerStartListingGames peerStartListingGamesA peerStartListingGamesW

peerStartListingGamesW	and	peerStartListingGamesA	are	UNICODE
and	ANSI	mapped	versions	of	peerStartListingGames.	The	arguments
of	peerStartListingGamesA	are	ANSI	strings;	those	of
peerStartListingGamesW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerStartPlaying
Flag	the	local	player	as	"playing".		Use	this	to	manual	set	the	player’s	flag
in	the	event	a	non	peer	sdk	game	is	started.

void	peerStartPlaying(
PEER	peer);

Routine Required	Header Distribution
peerStartPlaying <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerStartPlaying	function	is	used	to	manual	set	the	local	clients
"playing"	flag.		This	notifies	other	clients	that	the	local	client	has	entered
a	game.		This	is	only	necessary	when	the	peer	sdk	is	unable	to
automatically	detect	the	state	change,		as	it	does	with	the
"peerStartGame"	call.

Section	Reference:	Gamespy	Peer	SDK

peerStartReporting
Begins	server	reporting,	does	not	create	a	staging	room.

PEERBool	peerStartReporting(
PEER	peer);

Routine Required	Header Distribution
peerStartReporting <peer.h> SDKZIP

Return	Value

None.

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerStartReporting	function	starts	server	reporting,	without	ever
creating	a	staging	room.	This	would	be	used	if	the	application	needs	to
start	reporting	itself	as	a	server	without	any	staging	room	attached.	Call
peerStopGame()	when	done	to	stop	reporting.

Section	Reference:	Gamespy	Peer	SDK

peerStartReportingWithSocket
Begin	server	reporting	using	an	externally	managed	socket.

PEERBool	peerStartReportingWithSocket(
PEER	peer,
SOCKET	socket,
unsigned	short	port);

Routine Required	Header Distribution
peerStartReportingWithSocket <peer.h> SDKZIP

Return	Value

Returns	PEERTrue	if	reporting	was	successfully	started.

Parameters

peer
[in]	Initialized	peer	object.

socket
[in]	SOCKET	to	be	used	for	reporting.

port
[in]	Local	port	that	the	socket	is	bound	to.

Remarks

The	peerStartReporting	function	starts	server	reporting,	without	ever
creating	a	staging	room.	This	would	be	used	if	the	application	needs	to
start	reporting	itself	as	a	server	without	any	staging	room	attached.	Call
peerStopGame()	when	done	to	stop	reporting.
If	peerStartReportingWithSocket	is	used,	the	socket	provided	must	be
an	already	created	UDP	socket.	It	will	be	used	for	sending	out	query
replies,	and	any	queries	the	application	reads	off	of	the	socket	must	be
passed	to	Peer	using	peerParseQuery().	This	can	be	useful	when
running	a	game	host	behind	a	NAT	proxy	--	for	a	full	explanation	of	how
this	helps,	see	the	"NAT	and	Firewall	Support"	appendix	in	the
"GameSpy	Query	and	Reporting	2	SDK"	documentation.
A	title	must	be	set	for	this	function	to	succeed,	but	Peer	does	not	need	to
be	connected.	Also,	this	function	cannot	be	called	while	already	in	a
staging	room.

Section	Reference:	Gamespy	Peer	SDK

peerStateChanged
Notify	the	backend	of	a	server	state	change,	such	as	the	server
becoming	full.

void	peerStateChanged(
PEER	peer);

Routine Required	Header Distribution
peerStateChanged <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerStateChanged	function	is	called	to	force	peer	to	query	the
game	again.	Use	this	when	you	want	to	make	sure	that	the	latest	info	on
the	game	is	available,	such	as	when	the	level	or	gametype	changes.
This	should	only	be	called	while	a	game	is	being	reported	(either	from
hosting	a	staging	room	or	game	that	peer	is	reporting,	or	if
peerStartReporting[WithSocket]()	was	called).

Section	Reference:	Gamespy	Peer	SDK

peerStayInRoom
Allows	SDK	to	remain	in	the	title	room	after	peerClearTitle.	(Rarely
used.).

void	peerStayInRoom(
PEER	peer,
RoomType	roomType);

Routine Required	Header Distribution
peerStayInRoom <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

roomType
[in]	Only	TitleRoom	is	currently	supported.

Remarks

Calling	this	function	signals	Peer	to	stay	in	a	room	even	if	the	title	is
cleared	or	changed	(with	peerClearTitle()	or	peerSetTitle()).	This	will	only
be	in	effect	until	the	next	call	to	peerSetTitle().	Only	TitleRoom	is	currently
supported.	The	function	has	no	effect	if	no	title	is	set.

Section	Reference:	Gamespy	Peer	SDK

peerStopAutoMatch
Stop	an	automatch	attempt	in	progress.

void	peerStopAutoMatch(
PEER	peer);

Routine Required	Header Distribution
peerStopAutoMatch <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerStopAutoMatch	function	may	be	used	to	cancel	an	automatch
attempt	in	progress.	This	is	generally	used	so	that	a	user	may	cancel	the
AutoMatch	process	if	a	suitable	match	has	not	been	found.	A	user	may
encounter	this	by	having	a	very	narrow	search	criteria.

Section	Reference:	Gamespy	Peer	SDK

peerStopGame
Called	by	the	host	when	the	game	has	ended.

void	peerStopGame(
PEER	peer);

Routine Required	Header Distribution
peerStopGame <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerStopGame	function	is	called	by	the	host	to	stop	a	game.	This
also	makes	sure	the	player	is	no	longer	marked	as	playing.	Also,	this
does	any	necessary	cleanup	if	the	local	player	was	the	host.
This	should	be	called	whenever	coming	back	from	a	game.

Section	Reference:	Gamespy	Peer	SDK

peerStopListingGames
Stops	a	server	list	update	in	progress.		Also	stops	listening	for	game
state	changed	messages.

void	peerStopListingGames(
PEER	peer);

Routine Required	Header Distribution
peerStopListingGames <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerStopListingGames	function	will	stop	a	server	list	update	in
progress.		It	will	also	cause	the	SDK	to	stop	listening	for	game	state
changes.		The	current	server	list	is	NOT	cleared	and	remains	accessible.
Each	game	in	this	server	list	still	is	considered	a	valid	game.	The	only
time	the	games	are	invalidated	or	updated	is	if	there	is	a	call	to
peerStartListingGames	or	the	title	is	cleared.

Section	Reference:	Gamespy	Peer	SDK

peerThink
Allow	the	Peer	SDK	to	continue	processing.	Callbacks	will	be	triggered
during	this	call.

void	peerThink(
PEER	peer);

Routine Required	Header Distribution
peerThink <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

Remarks

The	peerThink	function	allows	the	Peer	SDK	to	continue	processing.	All
network	communications,	callbacks	and	other	events	will	happen	only
during	this	call.	The	frequency	with	which	this	method	is	called	will	affect
general	performance	on	the	SDK.

Section	Reference:	Gamespy	Peer	SDK

peerTranslateNick
Removes	the	namespace	extension	from	a	nickname.	Use	this	when
working	with	unique	nicknames	in	a	public	chat	room.

const	gsi_char	*	peerTranslateNick(
gsi_char	*	nick,
const	gsi_char	*	extension);

Routine Required	Header Distribution
peerTranslateNick <peer.h> SDKZIP

Return	Value

Returns	the	nickname,	stripped	of	the	namespace	identifier.

Parameters

nick
[in]	The	current	nickname.

extension
[in]	The	game	extension,	assigned	by	GameSpy.	This	will	be
removed	from	the	nickname.

Remarks

The	peerTranslateNick	function	is	used	to	remove	a	namespace
extension	from	a	nickname.	Nicknames	that	are	registered	in	a	game’s
namespace	will	include	an	indentifying	extension,	such	as	"-gspy".	This
extension	should	not	be	displayed	to	the	user,	but	should	be	stripped
before	display.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerTranslateNick peerTranslateNickA peerTranslateNickW

peerTranslateNickW	and	peerTranslateNickA	are	UNICODE	and	ANSI
mapped	versions	of	peerTranslateNick.	The	arguments	of
peerTranslateNickA	are	ANSI	strings;	those	of	peerTranslateNickW
are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerUpdateGame
Send	an	update	query	to	the	specified	server.

void	peerUpdateGame(
PEER	peer,
SBServer	server,
PEERBool	fullUpdate);

Routine Required	Header Distribution
peerUpdateGame <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

server
[in]	Server	to	update.

fullUpdate
[in]	Set	to	PEERTrue	to	retrieve	values	for	all	keys.

Remarks

The	peerUpdateGame	function	is	used	to	send	a	query	to	the	specified
server.	This	query	will	retrieve	key	values	and	is	used	when	viewing	the
server	list.	This	function	will	obtain	the	full	keys	for	the	specified	server.

Section	Reference:	Gamespy	Peer	SDK

peerUpdateGameByMaster
This	function	updates	a	server	via	the	master	server.	Passing	in	true	for
fullUpdate	will	obtain	the	full	keys	for	that	server,	otherwise	it	will	only
obtain	the	basic	keys.

void	peerUpdateGameByMaster(
PEER	peer,
SBServer	server,
fullUpdate	PEERBool);

Routine Required	Header Distribution
peerUpdateGameByMaster <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

server
[in]	Server	to	update

PEERBool
[in]	PEERTrue	for	all	server	keys,	PEERFalse	for	basic	keys

Remarks

This	function	requires	the	SDK	to	have	a	title	set.	The	function	is	usually
called	when	the	initial	server	list	is	complete.	Should	only	be	called	when
updating	a	single	server	at	a	time.

Section	Reference:	Gamespy	Peer	SDK

See	Also:	peerUpdateGame

peerUTMPlayer
Send	a	UTM	message	to	the	specified	client.

void	peerUTMPlayer(
PEER	peer,
const	gsi_char	*	nick,
const	gsi_char	*	command,
const	gsi_char	*	parameters,
PEERBool	authenticate);

Routine Required	Header Distribution
peerUTMPlayer <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

nick
[in]	Chat	Nickname	of	the	target	player.

command
[in]	The	raw	command	to	send.

parameters
[in]	Parameters	to	send	along	with	the	command.

authenticate
[in]	Set	to	PEERTrue	to	have	server	authenticate	this	UTM.	Normally
set	this	to	PEERFalse.

Remarks

The	peerUTMRoom	function	may	be	used	to	send	a	UTM	message	to
another	player	of	the	specified	room.
As	long	as	the	nick	is	valid	and	matches	up	with	a	player,	that	player	will
get	the	message	in	a	peerPlayerUTMCallback().	UTM’s	are	used	to	pass
around	arbitrary	information	between	players.	The	command	is	a	short
string	identifying	this	UTM	(e.g.,	RQI,	NFO,	GML).
This	function	only	works	while	connected.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerUTMPlayer peerUTMPlayerA peerUTMPlayerW

peerUTMPlayerW	and	peerUTMPlayerA	are	UNICODE	and	ANSI
mapped	versions	of	peerUTMPlayer.	The	arguments	of
peerUTMPlayerA	are	ANSI	strings;	those	of	peerUTMPlayerW	are
wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

See	Also:	peerUTMRoom

peerUTMRoom
Send	a	UTM	message	to	each	client	in	the	room.

void	peerUTMRoom(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	command,
const	gsi_char	*	parameters,
PEERBool	authenticate);

Routine Required	Header Distribution
peerUTMRoom <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

command
[in]	The	raw	command	to	send.

parameters
[in]	Parameters	to	send	along	with	the	command.

authenticate
[in]	Set	to	PEERTrue	to	have	server	authenticate	this	UTM.	
Normally	set	this	to	PEERFalse.

Remarks

The	peerUTMPlayer	function	may	be	used	to	send	a	UTM	message	to
the	specified	client.	All	the	players	in	the	room,	including	the	local	player,
will	receive	a	peerRoomUTMCallback	with	the	UTM.	UTM’s	are	used	to
pass	around	arbitrary	information	between	players.	The	command	is	a
short	string	identifying	this	UTM	(e.g.,	RQI,	NFO,	GML).	This	function
only	works	if	the	local	user	is	in	the	room	he	is	trying	to	message.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerUTMRoom peerUTMRoomA peerUTMRoomW

peerUTMRoomW	and	peerUTMRoomA	are	UNICODE	and	ANSI
mapped	versions	of	peerUTMRoom.	The	arguments	of
peerUTMRoomA	are	ANSI	strings;	those	of	peerUTMRoomW	are	wide-
character	strings.

Section	Reference:	Gamespy	Peer	SDK

See	Also:	peerUTMPlayer

Peer	SDK	Callbacks
peerAuthenticateCDKeyCallback

Called	when	peerAuthenticateCDKey
and	attempt	to	authenticate	the	CD-
Key	is	finished.

peerAutoMatchRateCallback
Called	when	rating	the	server	for
determining	the	best	match

peerAutoMatchStatusCallback
Called	when	the	Automatch	state	has
changed

peerChangeNickCallback
Callback	called	after	peerChangeNick
attempt	is	finished.

peerConnectCallback
Callback	for	peerConnect

peerCrossPingCallback
Callback	for	updated	cross-ping
between	two	players	in	the	staging
room.

peerDisconnectedCallback
Called	when	a	local	player	has	been
disconnected	from	the	chat	server	for
any	reason

peerEnumPlayersCallback
Called	for	peerEnumPlayers	for	each
player

peerGameStartedCallback
Called	when	the	host	of	a	staging
room	launches	the	game.

peerGetGlobalKeysCallback
Callback	for
peerGetPlayerGlobalKeys()	and
peerGetRoomGlobalKeys().

peerGetPlayerInfoCallback
Called	after	an	attempt	to
peerGetPlayerInfo	is	successful

peerGetRoomKeysCallback
Callback	for	peerGetRoomKeys.

peerGlobalKeyChangedCallback
Called	when	a	new	value	becomes
available	for	a	global	watch	key.

peerJoinRoomCallback
Callback	for	the	following	functions:
peerJoinTitleRoom,
peerJoinGroupRoom,
peerJoinStagingRoom,
peerJoinStagingRoomByIP,
peerCreateStagingRoom[WithSocket].

peerKickedCallback
Callback	when	a	local	player	was
kicked	from	a	room.

peerListGroupRoomsCallback
Callback	for	peerListGroupRooms

peerListingGamesCallback
Callback	for	peerStartListingGames

peerNewPlayerListCallback
Callback	when	the	entire	player	list	for
the	specified	room	has	been	updated

peerNickErrorCallback

Callback	for	peerConnect.

peerPingCallback
Callback	when	an	updated	ping	for	a
player	was	just	received.

peerPlayerChangedNickCallback
Callback	when	a	player	in	one	of	the
rooms	changes	his/her	nick.

peerPlayerFlagsChangedCallback
Callback	when	a	player's	flags	have
changed	in	the	room

peerPlayerInfoCallback
Callback	when	the	IP	and	ProfileID	for
this	player	has	just	been	received.

peerPlayerJoinedCallback
Callback	when	a	player	joins	a	room

peerPlayerLeftCallback
Callback	when	a	player	leaves	a
room.

peerPlayerMessageCallback
Callback	called	when	a	private
message	is	received	from	another
player

peerPlayerUTMCallback
Called	when	a	private	UTM	is
received	from	another	player.

peerQRAddErrorCallback
Callback	when	reporting	a	game,	this
callback	is	called	if	there	was	an	error
with	server	reporting.

peerQRCountCallback

Callback	when	reporting	a	game,	this
callback	is	used	to	get	a	count	of	the
number	of	players	or	teams.

peerQRKeyListCallback
Called	when	reporting	a	game,	this
callback	is	used	to	get	a	list	of	keys
the	application	will	report.

peerQRNatNegotiateCallback
Called	when	a	nat-negotiate	cookie	is
received.

peerQRPlayerKeyCallback
Called	when	getting	values	for	any
player	keys	the	game	is	reporting.

peerQRPublicAddressCallback
Called	when	hosting	a	server	with	the
server's	public	reporting	address.

peerQRServerKeyCallback
Called	when	a	server	key	is	requested
during	a	hosted	game.

peerQRTeamKeyCallback
Callback	is	used	to	get	values	for	any
team	keys	the	game	is	reporting.

peerReadyChangedCallback
Called	when	a	player's	ready	state
changes.	All	players	default	to	not
ready.

peerRoomKeyChangedCallback
Called	when	a	new	value	becomes
available	for	a	room	watch	key,	or
when	a	broadcast	key	changes.

peerRoomMessageCallback

Called	when	a	message	is	sent	to	a
room	the	local	player	is	in.

peerRoomModeChangedCallback
Called	when	a	room's	mode	changes.

peerRoomNameChangedCallback
Called	when	a	room	name	changes

peerRoomUTMCallback
Called	when	a	UTM	is	sent	to	a	room
the	local	player	is	in.

peerAuthenticateCDKeyCallback
Called	when	peerAuthenticateCDKey	and	attempt	to	authenticate	the
CD-Key	is	finished.

typedef	void	(*peerAuthenticateCDKeyCallback)(
PEER	peer,
int	result,
const	gsi_char	*	message,
void	*	param);

Routine Required	Header Distribution
peerAuthenticateCDKeyCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

result
[in]	Indicates	the	result	of	the	attempt

message
[in]	A	text	message	representing	the	result

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerAuthenticateCDKeyCallback	function	gets	called	when	an
attempt	to	authenticate	a	CD	key	is	finished.	If	the	result	has	a	value	of	1,
the	CD	key	was	authenticated.	Otherwise,	the	CD	key	was	not
authenticated.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerAuthenticateCDKeyCallback peerAuthenticateCDKeyCallbackA peerAuthenticateCDKeyCallbackW

peerAuthenticateCDKeyCallbackW	and
peerAuthenticateCDKeyCallbackA	are	UNICODE	and	ANSI	mapped
versions	of	peerAuthenticateCDKeyCallback.	The	arguments	of
peerAuthenticateCDKeyCallbackA	are	ANSI	strings;	those	of
peerAuthenticateCDKeyCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerAutoMatchRateCallback
Called	when	rating	the	server	for	determining	the	best	match.

typedef	int	(*peerAutoMatchRateCallback)(
PEER	peer,
SBServer	match,
void	*	param);

Routine Required	Header Distribution
peerAutoMatchRateCallback <peer.h> SDKZIP

Return	Value

Parameters

peer
[in]	Initialized	peer	object

match
[in]	A	possible	match	for	a	Server

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerAutoMatchRateCallback	function	is	called	one	or	more	times
for	each	game	found.	This	allows	the	application	to	assign	a	rating	to
each	game,	and	is	used	to	determine	the	best	fit	for	the	user.	The	rating
value	should	be	calculated	based	on	correlation	between	user	preferred
settings	and	actual	game	settings.

Section	Reference:	Gamespy	Peer	SDK

peerAutoMatchStatusCallback
Called	when	the	Automatch	state	has	changed.

typedef	void	(*peerAutoMatchStatusCallback)(
PEER	peer,
PEERAutoMatchStatus	status,
void	*	param);

Routine Required	Header Distribution
peerAutoMatchStatusCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

status
[in]	The	current	status

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerAutoMatchStatusCallback	function	is	called	when	the
AutoMatch	state	changes.	For	example,	when	a	game	is	joined	or	the
user	begins	hosting	a	game.	Refer	to	the	status	descriptions	below	for
more	information.

Section	Reference:	Gamespy	Peer	SDK

peerChangeNickCallback
Callback	called	after	peerChangeNick	attempt	is	finished.

typedef	void	(*peerChangeNickCallback)(
PEER	peer,
PEERBool	success,
const	gsi_char	*	oldNick,
const	gsi_char	*	newNick,
void	*	param);

Routine Required	Header Distribution
peerChangeNickCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

success
[in]	PEERTrue	if	successful,	PEERFalse	if	failure

oldNick
[in]	The	nickname	to	be	corrected	or	verified

newNick
[in]	Corrected	nickname.	May	be	the	same	as	oldNick	if	no	issues
are	detected

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

If	success	is	true,	the	attempt	succeeded,	and	"newNick"	is	the	local
user’s	new	nickname.	If	success	if	false,	the	attempt	failed,	and	the	local
user’s	nick	is	still	"oldNick".

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerChangeNickCallback peerChangeNickCallbackA peerChangeNickCallbackW

peerChangeNickCallbackW	and	peerChangeNickCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerChangeNickCallback.
The	arguments	of	peerChangeNickCallbackA	are	ANSI	strings;	those	of
peerChangeNickCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerConnectCallback
Callback	for	peerConnect.

typedef	void	(*peerConnectCallback)(
PEER	peer,
PEERBool	success,
int	failureReason,
void	*	param);

Routine Required	Header Distribution
peerConnectCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

success
[in]	PEERTrue	if	connection	was	successful,	PEERFalse	if
connection	failed

failureReason
[in]	int	value	giving	reason	for	failure

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerConnectCallback	funtion	will	notify	the	application	of	a
successful	connection	or	a	failure.	Based	the	"success"	parameter	the
"failureReason"	will	tell	the	application	why	a	connection	failed.	The
values	for	the	"failureReason"	are:
PEER_DISCONNECTED
Unable	to	connect	to	the	server,	or	disconnected	during	the	attempt.
PEER_NICK_ERROR
There	was	a	nick	error	that	was	not	handled.
PEER_LOGIN_FAILED
The	login	info	passed	to	peerConnectLogin	was	invalid.

Section	Reference:	Gamespy	Peer	SDK

peerCrossPingCallback
Callback	for	updated	cross-ping	between	two	players	in	the	staging	room.

typedef	void	(*peerCrossPingCallback)(
PEER	peer,
const	gsi_char	*	nick1,
const	gsi_char	*	nick2,
int	crossPing,
void	*	param);

Routine Required	Header Distribution
peerCrossPingCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

nick1
[in]	The	first	player's	nick

nick2
[in]	The	second	player's	nick

crossPing
[in]	The	cross	ping	between	the	two	players

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	is	the	most	recent	ping	from	the	first	player	(nick1)	to	the	second
player	(nick2),	as	reported	by	the	first	player.	This	ordering	information	is
not	retained	(i.e.,	peer	stores	the	pings	between	sets	of	players,	not	each
player’s	ping	to	each	other	player).	To	get	the	average	ping	between	two
players,	use	peerGetPlayersCrossPing().

Section	Reference:	Gamespy	Peer	SDK

peerDisconnectedCallback
Called	when	a	local	player	has	been	disconnected	from	the	chat	server
for	any	reason.

typedef	void	(*peerDisconnectedCallback)(
PEER	peer,
const	gsi_char	*	reason,
void	*	param);

Routine Required	Header Distribution
peerDisconnectedCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

reason
[in]	The	string	containing	the	reason	for	disconnection

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerDisconnectedCallback	is	called	when	the	connection	to	the
server	gets	disconnected,	either	from	a	call	to	peerDisconnect(),	a	lost
connection,	or	getting	killed	by	the	server.	To	connect	again,	just	use
peerConnect().	After	reconnecting,	any	rooms	the	user	was	in	will	need
to	be	rejoined.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerDisconnectedCallback peerDisconnectedCallbackA peerDisconnectedCallbackW

peerDisconnectedCallbackW	and	peerDisconnectedCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerDisconnectedCallback.
The	arguments	of	peerDisconnectedCallbackA	are	ANSI	strings;	those
of	peerDisconnectedCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerEnumPlayersCallback
Called	for	peerEnumPlayers	for	each	player.

typedef	void	(*peerEnumPlayersCallback)(
PEER	peer,
PEERBool	success,
RoomType	roomType,
int	index,
const	gsi_char	*	nick,
int	flags,
void	*	param);

Routine Required	Header Distribution
peerEnumPlayersCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

success
[in]	PEERTrue	if	successful,	or	PEERFalse	if	failure

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom

index
[in]	The	index	of	the	current	player	being	enumerated

nick
[in]	The	Chat	nickname	of	that	player

flags
[in]	The	Flags	of	that	player

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

Called	for	each	player	in	a	room	being	enumerated,	and	once	when
finished,	with	"index"	set	to	-1	and	"nick"	set	to	NULL.	The	index	is	not	an
identifier	of	any	sort,	its	just	a	way	to	count	the	number	of	players	that
have	been	enumerated.	It	is	not	persistant	in	any	way.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerEnumPlayersCallback peerEnumPlayersCallbackA peerEnumPlayersCallbackW

peerEnumPlayersCallbackW	and	peerEnumPlayersCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerEnumPlayersCallback.
The	arguments	of	peerEnumPlayersCallbackA	are	ANSI	strings;	those
of	peerEnumPlayersCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerGameStartedCallback
Called	when	the	host	of	a	staging	room	launches	the	game.

typedef	void	(*peerGameStartedCallback)(
PEER	peer,
SBServer	server,
const	gsi_char	*	message,
void	*	param);

Routine Required	Header Distribution
peerGameStartedCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

server
[in]	A	valid	SBServer	object

message
[in]	The	message	sent	by	the	host

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	is	a	notice	to	the	other	players	in	the	room	that	the	game	is	starting.
The	host	does	not	receive	this	callback.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerGameStartedCallback peerGameStartedCallbackA peerGameStartedCallbackW

peerGameStartedCallbackW	and	peerGameStartedCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerGameStartedCallback.
The	arguments	of	peerGameStartedCallbackA	are	ANSI	strings;	those
of	peerGameStartedCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

See	Also:	peerStartGame

peerGetGlobalKeysCallback
Callback	for	peerGetPlayerGlobalKeys()	and	peerGetRoomGlobalKeys().

typedef	void	(*peerGetGlobalKeysCallback)(
PEER	peer,
PEERBool	success,
const	gsi_char	*	nick,
int	num,
const	gsi_char	**	keys,
const	gsi_char	**	values,
void	*	param);

Routine Required	Header Distribution
peerGetGlobalKeysCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

success
[in]	PEERTrue	if	successful,	PEERFalse	if	failure

nick
[in]	The	player's	nickname

num
[in]	Number	of	key/value	pairs	in	the	array

keys
[in]	Array	of	key	names	whose	values	were	retrieved

values
[in]	Array	of	values	retreived

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

Called	with	a	player's	global	keys	in	response	to	either
peerGetPlayerGlobalKeys()	or	peerGetRoomGlobalKeys().

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerGetGlobalKeysCallback peerGetGlobalKeysCallbackA peerGetGlobalKeysCallbackW

peerGetGlobalKeysCallbackW	and	peerGetGlobalKeysCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerGetGlobalKeysCallback.
The	arguments	of	peerGetGlobalKeysCallbackA	are	ANSI	strings;
those	of	peerGetGlobalKeysCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

See	Also:	peerGetPlayerGlobalKeys,	peerGetRoomGlobalKeys

peerGetPlayerInfoCallback
Called	after	an	attempt	to	peerGetPlayerInfo	is	successful.

typedef	void	(*peerGetPlayerInfoCallback)(
PEER	peer,
PEERBool	success,
const	gsi_char	*	nick,
unsigned	int	IP,
int	profileID,
void	*	param);

Routine Required	Header Distribution
peerGetPlayerInfoCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

success
[in]	PEERTrue	if	successful,	PEERFalse	if	failure

nick
[in]	The	player's	nickname	that	information	is	being	requested	for

IP
[in]	IP	address	in	string	form:	"xxx.xxx.xxx.xxx"

profileID
[in]	The	player's	profile	ID

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerGetPlayerInfoCallback	function	will	have	the	information
requested	by	peerGetPlayerInfo.	Any	succes	will	be	determined	by	the
"success"	parameter.	If	the	player	did	not	exist,	if	the	nick	is	invalid,	or
peer	is	not	connected,	the	function	will	have	a	failure	denoted	by
"success".

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerGetPlayerInfoCallback peerGetPlayerInfoCallbackA peerGetPlayerInfoCallbackW

peerGetPlayerInfoCallbackW	and	peerGetPlayerInfoCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerGetPlayerInfoCallback.
The	arguments	of	peerGetPlayerInfoCallbackA	are	ANSI	strings;	those
of	peerGetPlayerInfoCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerGetRoomKeysCallback
Callback	for	peerGetRoomKeys.

typedef	void	(*peerGetRoomKeysCallback)(
PEER	peer,
PEERBool	success,
RoomType	roomType,
const	gsi_char	*	nick,
int	num,
gsi_char	**	keys,
gsi_char	**	values,
void	*	param);

Routine Required	Header Distribution
peerGetRoomKeysCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

success
[in]	PEERTrue	if	successful,	PEERFalse	if	failure

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom

nick
[in]	The	player's	nickname

num
[in]	The	Number	of	key/value	pairs	in	the	array

keys
[in]	Array	of	key	names	whose	values	will	be	retrieved

values
[in]	Array	of	values	to	set

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerGetRoomKeysCallback	function	is	called	when	peer	wants	to
obtain	the	room	keys	for	a	specified	room.	If	nick	is	NULL,	these	are	keys
for	the	room.	Otherwise,	they	are	keys	for	a	player	in	the	room.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerGetRoomKeysCallback peerGetRoomKeysCallbackA peerGetRoomKeysCallbackW

peerGetRoomKeysCallbackW	and	peerGetRoomKeysCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerGetRoomKeysCallback.
The	arguments	of	peerGetRoomKeysCallbackA	are	ANSI	strings;	those
of	peerGetRoomKeysCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

See	Also:	peerGetRoomKeys

peerGlobalKeyChangedCallback
Called	when	a	new	value	becomes	available	for	a	global	watch	key.

typedef	void	(*peerGlobalKeyChangedCallback)(
PEER	peer,
const	gsi_char	*	nick,
const	gsi_char	*	key,
const	gsi_char	*	value,
void	*	param);

Routine Required	Header Distribution
peerGlobalKeyChangedCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

nick
[in]	The	player's	nickname

key
[in]	The	name	of	this	key

value
[in]	The	value	of	this	key

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerGlobalKeyChangedCallback	is	called	for	watch	keys	when	a
room	is	joined,	for	watch	keys	when	another	player	joins,	and	for	any
newly	set	watch	keys.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerGlobalKeyChangedCallback peerGlobalKeyChangedCallbackA peerGlobalKeyChangedCallbackW

peerGlobalKeyChangedCallbackW	and
peerGlobalKeyChangedCallbackA	are	UNICODE	and	ANSI	mapped
versions	of	peerGlobalKeyChangedCallback.	The	arguments	of
peerGlobalKeyChangedCallbackA	are	ANSI	strings;	those	of
peerGlobalKeyChangedCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerJoinRoomCallback
Callback	for	the	following	functions:	peerJoinTitleRoom,
peerJoinGroupRoom,	peerJoinStagingRoom,	peerJoinStagingRoomByIP,
peerCreateStagingRoom[WithSocket].

typedef	void	(*peerJoinRoomCallback)(
PEER	peer,
PEERBool	success,
PEERJoinResult	result,
RoomType	roomType,
void	*	param);

Routine Required	Header Distribution
peerJoinRoomCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

success
[in]	PEERTrue	if	successful,	PEERFalse	if	failure

result
[in]	Indicates	the	result	of	the	attempt

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerJoinRoomCallback	is	called	when	an	attempt	to	join	or	create
a	room	has	finished.	If	successful,	the	local	player	is	now	in	that	room,
and	will	be	until	he	either	leaves	(with	peerLeaveRoom()),	is	kicked,	or
the	connection	is	disconnected.	If	success	if	PEERFalse,	use	result	to
check	the	reason	for	the	failure.	If	result	is	PEERBadPassword	the	user
can	be	prompted	to	enter	a	password,	and	then	the	join	can	be	attempted
again.

Section	Reference:	Gamespy	Peer	SDK

peerKickedCallback
Callback	when	a	local	player	was	kicked	from	a	room.

typedef	void	(*peerKickedCallback)(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	nick,
const	gsi_char	*	reason,
void	*	param);

Routine Required	Header Distribution
peerKickedCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

nick
[in]	the	player's	nickname

reason
[in]	An	optional	explanation	string	that	gives	a	reason	for	being
kicked

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerKickedCallback	is	used	to	notify	the	local	player	that	s/he	was
kicked.	As	the	player	has	already	been	removed	from	the	room,	there	is
no	need	to	call	peerLeaveRoom().

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerKickedCallback peerKickedCallbackA peerKickedCallbackW

peerKickedCallbackW	and	peerKickedCallbackA	are	UNICODE	and
ANSI	mapped	versions	of	peerKickedCallback.	The	arguments	of
peerKickedCallbackA	are	ANSI	strings;	those	of
peerKickedCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerListGroupRoomsCallback
Callback	for	peerListGroupRooms.

typedef	void	(*peerListGroupRoomsCallback)(
PEER	peer,
PEERBool	success,
int	groupID,
SBServer	server,
const	gsi_char	*	name,
int	numWaiting,
int	maxWaiting,
int	numGames,
int	numPlaying,
void	*	param);

Routine Required	Header Distribution
peerListGroupRoomsCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

success
[in]	PEERTrue	if	successful,	PEERFalse	if	failure

groupID
[in]	The	group	ID	of	the	current	group	room

server
[in]	A	valid	SBServer	object	associated	with	this	group	room

name
[in]	The	name	of	the	group	room

numWaiting
[in]	The	number	number	of	players	in	the	room

maxWaiting
[in]	The	maximum	number	of	players	allowed	in	the	room

numGames
[in]	The	number	of	games	in	the	room

numPlaying
[in]	The	number	of	players	already	in	a	game	for	the	room

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerListGroupRoomsCallback	function	gets	called	once	for	each
group	room	when	listing	group	rooms.	After	this	has	been	called	for	each
group	room,	it	will	be	called	one	more	time	with	"groupID"	set	to	0.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerListGroupRoomsCallback peerListGroupRoomsCallbackA peerListGroupRoomsCallbackW

peerListGroupRoomsCallbackW	and
peerListGroupRoomsCallbackA	are	UNICODE	and	ANSI	mapped
versions	of	peerListGroupRoomsCallback.	The	arguments	of
peerListGroupRoomsCallbackA	are	ANSI	strings;	those	of
peerListGroupRoomsCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerListingGamesCallback
Callback	for	peerStartListingGames.

typedef	void	(*peerListingGamesCallback)(
PEER	peer,
PEERBool	success,
const	gsi_char	*	name,
SBServer	server,
PEERBool	staging,
int	msg,
int	progress,
void	*	param);

Routine Required	Header Distribution
peerListingGamesCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

success
[in]	PEERTrue	if	successful,	PEERFalse	if	failure

name
[in]	The	name	of	the	game

server
[in]	The	valid	SBServer	object	a	game	is	associated	with

staging
[in]	PEERTrue	if	staging,

msg
[in]	A	message	code

progress
[in]	A	progress	of	the	initial	listing

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerListingGamesCallback	function	is	called	with	info	on	games
being	listed.	It	is	used	to	maintain	a	list	of	running	games	and	staging
rooms.	The	server	object	is	a	unique	way	of	identifying	each	game.	It	can
also	be	used	with	the	calls	in	the	"SBServer	Object	Functions"	section	of
sb_serverbrowsing.h	to	find	out	more	info	about	the	server.
If	"staging"	is	true,	the	game	hasn't	started	yet,	it's	still	in	the	staging
room.	Use	peerJoinStagingRoom()	to	join	the	staging	room.	Or,	if	staging
is	false,	use	the	server	object	to	get	the	game's	IP	and	port	to	join	with.
The	"password"	key	will	be	set	to	1	for	games	that	are	passworded.	This
can	be	checked	with	ServerGetIntValue(server,	"password",	0).
The	type	of	message	this	is.
PEER_CLEAR:
Clear	the	list.	This	has	the	same	effect	as	if	this	was	called	with
PEER_REMOVE	for	every	server	listed.
PEER_ADD:
This	is	a	new	server.	Add	it	to	the	list.
PEER_UPDATE:
This	server	is	already	on	the	list,	and	its	been	updated.
PEER_REMOVE:
Remove	this	server	from	the	list.	The	server	object	for	this	server	should
not	be	used	again	after	this	callback	returns.
PEER_COMPLETE:
The	initial	listing	of	servers	has	completed,	and	dynamic	changes	will
now	be	received.

When	first	starting	to	list	games,	an	intial	list	of	current	games	is
received,	then	updated	as	new	game	are	started	and	old	games	are
updated	or	removed.	While	the	initial	listing	is	happening,	this	lets	the
program	know	what	percentage	of	the	initial	list	has	been	added	so	far.	It
will	start	at	0	with	the	PEER_CLEAR	message,	then	rise	up	to	100	with
the	PEER_COMPLETE	message.	When	it	reaches	100,	it	will	stay	there
until	the	listing	is	stopped.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerListingGamesCallback peerListingGamesCallbackA peerListingGamesCallbackW

peerListingGamesCallbackW	and	peerListingGamesCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerListingGamesCallback.
The	arguments	of	peerListingGamesCallbackA	are	ANSI	strings;	those
of	peerListingGamesCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerNewPlayerListCallback
Callback	when	the	entire	player	list	for	the	specified	room	has	been
updated.

typedef	void	(*peerNewPlayerListCallback)(
PEER	peer,
RoomType	roomType,
void	*	param);

Routine Required	Header Distribution
peerNewPlayerListCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerNewPlayerListCallback	gets	generated	after	turning	off	quiet
mode.	It	serves	as	notice	that	the	player	list	for	this	room	has	been
updated.	To	get	the	new	list,	use	peerEnumPlayers().

Section	Reference:	Gamespy	Peer	SDK

peerNickErrorCallback
Callback	for	peerConnect.

typedef	void	(*peerNickErrorCallback)(
PEER	peer,
int	type,
const	gsi_char	*	nick,
int	numSuggestedNicks,
const	gsi_char	**	suggestedNicks,
void	*	param);

Routine Required	Header Distribution
peerNickErrorCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

type
[in]	One	of	the	predefined	error	types

nick
[in]	The	player's	nickname	passed	to	peerConnect	or
peerRegisterUniqueNick

numSuggestedNicks
[in]	The	number	of	suggested	nicknames

suggestedNicks
[in]	A	List	of	suggested	nicknames

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

If	this	function	is	called	with	type	equal	to	PEER_IN_USE	or
PEER_INVALID,	there	was	an	error	with	the	nick	that	was	passed	to
peerConnect()	or	peerRetryWithNick().	The	connection	attempt	is	put	on
hold	until	peerRetryWithNick()	is	called.	It	does	not	need	to	be	called
immediately,	but	should	be	called	within	a	reasonable	amount	of	time,	or
the	connection	attempt	may	time	out.	If	the	nick	passed	to
peerRetryWithNick	fails,	this	callback	will	be	called	again	(and	as	many
times	as	needed)	until	the	server	accepts	a	nick.	To	stop	attempting
reconnects,	call	peerRetryWithNick()	with	a	NULL	or	empty	nickname.
That	will	cause	the	connectCallback	passed	to	peerConnect()	to	be
called	with	success	set	to	false.
If	this	function	is	called	with	type	equal	to
PEER_UNIQUENICK_EXPIRED	or	PEER_NO_UNIQUENICK,	then
there	was	a	problem	with	the	uniquenick	associated	with	the	profile
passed	to	peerConnectLogin.	The	connection	attempt	is	put	on	hold	until
peerRegisterUniqueNick()	is	called.	It	does	not	need	to	be	called
immediately	-	the	connection	will	stay	alive	until	it	is	called.	If	the
uniquenick	passed	to	peerRegisterUniqueNick	is	invalid	or	already	being
used,	then	this	callback	will	be	called	again	with	a	type	of
PEER_INVALID_UNIQUENICK,	and	with	suggestedNicks	member	filled
with	an	array	of	suggested	uniquenicks	(based	on	the	uniquenick	passed
to	peerRegisterUniqueNick).	In	that	case,	peerRegisterUniqueNick
should	be	called	again	with	a	new	uniquenick.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerNickErrorCallback peerNickErrorCallbackA peerNickErrorCallbackW

peerNickErrorCallbackW	and	peerNickErrorCallbackA	are	UNICODE
and	ANSI	mapped	versions	of	peerNickErrorCallback.	The	arguments
of	peerNickErrorCallbackA	are	ANSI	strings;	those	of
peerNickErrorCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerPingCallback
Callback	when	an	updated	ping	for	a	player	was	just	received.

typedef	void	(*peerPingCallback)(
PEER	peer,
const	gsi_char	*	nick,
int	ping,
void	*	param);

Routine Required	Header Distribution
peerPingCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

nick
[in]	The	player's	nickname

ping
[in]	The	Ping	value

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerPingCallback	will	have	the	latest	ping	for	a	playaer.	This	is	the
value	of	the	most	recent	ping	of	this	player.	To	get	the	average	ping	for
this	player,	use	peerGetPlayerPing.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

peerPingCallback peerPingCallbackA peerPingCallbackW

peerPingCallbackW	and	peerPingCallbackA	are	UNICODE	and	ANSI
mapped	versions	of	peerPingCallback.	The	arguments	of
peerPingCallbackA	are	ANSI	strings;	those	of	peerPingCallbackW	are
wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerPlayerChangedNickCallback
Callback	when	a	player	in	one	of	the	rooms	changes	his/her	nick.

typedef	void	(*peerPlayerChangedNickCallback)(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	oldNick,
const	gsi_char	*	newNick,
void	*	param);

Routine Required	Header Distribution
peerPlayerChangedNickCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

oldNick
[in]	The	nickname	to	be	corrected	or	verified

newNick
[in]	Corrected	nickname.	May	be	the	same	as	oldNick	if	no	issues
are	detected

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerPlayerChangedNickCallback	is	called	for	any	changes	a
player	makes	to	his/her	nick	in	a	specified	room.	If	in	multiple	rooms	with
the	same	player,	this	callback	will	be	called	for	each	common	room	when
that	player	changes	his	nick.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerPlayerChangedNickCallback peerPlayerChangedNickCallbackA peerPlayerChangedNickCallbackW

peerPlayerChangedNickCallbackW	and
peerPlayerChangedNickCallbackA	are	UNICODE	and	ANSI	mapped
versions	of	peerPlayerChangedNickCallback.	The	arguments	of
peerPlayerChangedNickCallbackA	are	ANSI	strings;	those	of
peerPlayerChangedNickCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerPlayerFlagsChangedCallback
Callback	when	a	player's	flags	have	changed	in	the	room.

typedef	void	(*peerPlayerFlagsChangedCallback)(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	nick,
int	oldFlags,
int	newFlags,
void	*	param);

Routine Required	Header Distribution
peerPlayerFlagsChangedCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

nick
[in]	The	player's	nickname

oldFlags
[in]	Old	flags	value

newFlags
[in]	New	flags	value

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerPlayerFlagsChangedCallback	is	called	when	a	player's	flags
change	in	the	specified	room.	The	flags	each	represent	one	bit	in	the
"flags"	integer.	The	new	flags	can	also	trigger	a	change	in	the	chat,
where	a	player	can	become	an	operator,	leave	a	room,	enter	a	room,
stage	in	a	room.

The	flags	are:
PEER_FLAG_STAGING:	the	player	is	in	a	staging	room.
PEER_FLAG_READY:	the	player	is	readied	up	for	a	game.
PEER_FLAG_PLAYING:	the	player	is	playing	a	game.
PEER_FLAG_AWAY:	the	player	is	away.
PEER_FLAG_HOST:	the	player	is	the	host	of	the	room.
PEER_FLAG_OP:	the	player	is	an	op	(+o)	in	this	room.
PEER_FLAG_VOICE:	the	player	has	voice	(+v)	in	this	room.
This	function	will	fail	if	no	title	is	set.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerPlayerFlagsChangedCallback peerPlayerFlagsChangedCallbackA peerPlayerFlagsChangedCallbackW

peerPlayerFlagsChangedCallbackW	and
peerPlayerFlagsChangedCallbackA	are	UNICODE	and	ANSI	mapped
versions	of	peerPlayerFlagsChangedCallback.	The	arguments	of
peerPlayerFlagsChangedCallbackA	are	ANSI	strings;	those	of
peerPlayerFlagsChangedCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerPlayerInfoCallback
Callback	when	the	IP	and	ProfileID	for	this	player	has	just	been	received.

typedef	void	(*peerPlayerInfoCallback)(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	nick,
unsigned	int	IP,
int	profileID,
void	*	param);

Routine Required	Header Distribution
peerPlayerInfoCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

nick
[in]	The	player's	chat	nickname

IP
[in]	The	player's	IP	address	in	string	form:	"xxx.xxx.xxx.xxx"

profileID
[in]	The	player's	Profile	ID

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

After	joining	a	room,	the	peerPlayerInfoCallback	function	will	be	called
for	each	player	in	the	room	who	is	using	Peer	with	his	IP	and	profile	ID.
Then	it	will	be	called	one	more	time	with	nick	set	to	NULL.	This	info	is
immediately	available	for	anyone	who	joines	the	room	after	the	local
player.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerPlayerInfoCallback peerPlayerInfoCallbackA peerPlayerInfoCallbackW

peerPlayerInfoCallbackW	and	peerPlayerInfoCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerPlayerInfoCallback.	The
arguments	of	peerPlayerInfoCallbackA	are	ANSI	strings;	those	of
peerPlayerInfoCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerPlayerJoinedCallback
Callback	when	a	player	joins	a	room.

typedef	void	(*peerPlayerJoinedCallback)(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	nick,
void	*	param);

Routine Required	Header Distribution
peerPlayerJoinedCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

nick
[in]	The	player's	chat	nickname

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerPlayerJoinedCallback	function	gets	called	when	a	player	joins
the	specified	room.	This	function	can	be	used	as	a	place	for	report	player
joins.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerPlayerJoinedCallback peerPlayerJoinedCallbackA peerPlayerJoinedCallbackW

peerPlayerJoinedCallbackW	and	peerPlayerJoinedCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerPlayerJoinedCallback.
The	arguments	of	peerPlayerJoinedCallbackA	are	ANSI	strings;	those
of	peerPlayerJoinedCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerPlayerLeftCallback
Callback	when	a	player	leaves	a	room.

typedef	void	(*peerPlayerLeftCallback)(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	nick,
const	gsi_char	*	reason,
void	*	param);

Routine Required	Header Distribution
peerPlayerLeftCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

nick
[in]	The	player's	chat	nickname

reason
[in]	An	optional	explanation	string

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerPlayerLeftCallback	function	is	called	when	a	player	decides	to
leave	the	specified	room.	There	is	an	optional	"reason"	that	could	be
given.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerPlayerLeftCallback peerPlayerLeftCallbackA peerPlayerLeftCallbackW

peerPlayerLeftCallbackW	and	peerPlayerLeftCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerPlayerLeftCallback.	The
arguments	of	peerPlayerLeftCallbackA	are	ANSI	strings;	those	of
peerPlayerLeftCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerPlayerMessageCallback
Callback	called	when	a	private	message	is	received	from	another	player.

typedef	void	(*peerPlayerMessageCallback)(
PEER	peer,
const	gsi_char	*	nick,
const	gsi_char	*	message,
MessageType	messageType,
void	*	param);

Routine Required	Header Distribution
peerPlayerMessageCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

nick
[in]	The	player's	chat	nickname

message
[in]	The	message	sent	by	the	player.

messageType
[in]	The	type	of	message	sent.	Most	commonly	NormalMessage	or
ActionMessage.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerPlayerMessageCallback	function	is	called	when	a	remote
player	sends	the	local	player	a	message.	The	message	can	be	of	two
types,	namely	NormalMessage	or	ActionMessage.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerPlayerMessageCallback peerPlayerMessageCallbackA peerPlayerMessageCallbackW

peerPlayerMessageCallbackW	and	peerPlayerMessageCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerPlayerMessageCallback.
The	arguments	of	peerPlayerMessageCallbackA	are	ANSI	strings;
those	of	peerPlayerMessageCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerPlayerUTMCallback
Called	when	a	private	UTM	is	received	from	another	player.

typedef	void	(*peerPlayerUTMCallback)(
PEER	peer,
const	gsi_char	*	nick,
const	gsi_char	*	command,
const	gsi_char	*	parameters,
PEERBool	authenticated,
void	*	param);

Routine Required	Header Distribution
peerPlayerUTMCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object.

nick
[in]	The	player's	chat	nickname.

command
[in]	The	raw	UTM	command	sent	for	this	message.

parameters
[in]	The	parameters	sent	along	with	the	command.

authenticated
[in]	True	if	authenticated	the	server.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerPlayerUTMCallback	function	is	called	after	receiving	a	UTM
from	a	remote	player.	The	command	is	a	short	string	identifying	this	UTM
(e.g.,	RQI,	NFO,	GML).	Ignore	any	unrecognized	UTM,	as	internal	Peer
UTMs	go	through	this	callback,	as	do	application	UTMs.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerPlayerUTMCallback peerPlayerUTMCallbackA peerPlayerUTMCallbackW

peerPlayerUTMCallbackW	and	peerPlayerUTMCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerPlayerUTMCallback.	The
arguments	of	peerPlayerUTMCallbackA	are	ANSI	strings;	those	of
peerPlayerUTMCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerQRAddErrorCallback
Callback	when	reporting	a	game,	this	callback	is	called	if	there	was	an
error	with	server	reporting.

typedef	void	(*peerQRAddErrorCallback)(
PEER	peer,
qr2_error_t	error,
gsi_char	*	errorString,
void	*	param);

Routine Required	Header Distribution
peerQRAddErrorCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

error
[in]	A	Qr2	error	code	when	reporting	fails

errorString
[in]	The	error	in	string	form

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerQRAddErrorCallback	function	is	called	when	an	error	is
flagged	while	reporting	to	the	server.	This	callback	is	called	while
reporting	if	there	is	an	error	reporting	the	server.	To	see	the	possible	error
codes,	look	for	the	qr2_error_t	enumeration	in	qr2.h.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerQRAddErrorCallback peerQRAddErrorCallbackA peerQRAddErrorCallbackW

peerQRAddErrorCallbackW	and	peerQRAddErrorCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerQRAddErrorCallback.
The	arguments	of	peerQRAddErrorCallbackA	are	ANSI	strings;	those
of	peerQRAddErrorCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerQRCountCallback
Callback	when	reporting	a	game,	this	callback	is	used	to	get	a	count	of
the	number	of	players	or	teams.

typedef	int	(*peerQRCountCallback)(
PEER	peer,
qr2_key_type	type,
void	*	param);

Routine Required	Header Distribution
peerQRCountCallback <peer.h> SDKZIP

Return	Value

Parameters

peer
[in]	Initialized	peer	object

type
[in]	A	type	of	Qr2	keys.	Can	be	either	key_server,	key_player,
key_team.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerQRCountCallback	function	is	called	while	hosting	a	game	to
get	the	number	of	players	or	teams.	For	example	usage	see	the	PeerTest
sample.	For	a	detailed	explanation	of	how	server	reporting	works,	see	the
Query	&	Reporting	2	SDK	documentation.
If	in	staging,	and	either	not	playing	or	peerStartGame	was	called	with
PEER_REPORT_PLAYERS	set	in	the	reporting	options,	then	Peer	will
report	the	number	of	players,	and	this	callback	will	not	be	called	for	a
player	count.	Otherwise	the	application	must	report	the	number	of	players
in	this	callback,	and	it	must	always	report	the	number	of	teams	(or	0	if	not
using	teams).

Section	Reference:	Gamespy	Peer	SDK

peerQRKeyListCallback
Called	when	reporting	a	game,	this	callback	is	used	to	get	a	list	of	keys
the	application	will	report.

typedef	void	(*peerQRKeyListCallback)(
PEER	peer,
qr2_key_type	type,
qr2_keybuffer_t	keyBuffer,
void	*	param);

Routine Required	Header Distribution
peerQRKeyListCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

type
[in]	A	type	of	Qr2	keys.	Can	be	either	key_server,	key_player,
key_team.

keyBuffer
[in]	The	buffer	to	append	the	key	to

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerQRKeyListCallback	function	is	called	while	hosting	a	game	to
list	keys	the	application	will	report.	For	example	usage	see	the	PeerTest
sample.	For	a	detailed	explanation	of	how	server	reporting	works,	see	the
Query	&	Reporting	2	SDK	documentation.
Peer	already	registers	certain	keys,	and	these	do	not	need	to	be
registered	by	the	application.	Peer	registers	the	following	server	keys:
HOSTNAME_KEY,	NUMPLAYERS_KEY,	MAXPLAYERS_KEY,
GAMEMODE_KEY,	PASSWORD_KEY	(if	a	password	is	set),	and
GROUPID_KEY	(if	in	a	group	room).	Peer	also	registers	the	player	keys
PLAYER__KEY	and	PING__KEY.	Any	other	keys	used	by	the	application
must	be	registered	in	this	callback.

Section	Reference:	Gamespy	Peer	SDK

peerQRNatNegotiateCallback
Called	when	a	nat-negotiate	cookie	is	received.

typedef	void	(*peerQRNatNegotiateCallback)(
PEER	peer,
int	cookie,
void	*	param);

Routine Required	Header Distribution
peerQRNatNegotiateCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

cookie
[in]	Cookie	received.	Usually	an	integer	value	randomly	generated	by
the	sender.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerQRNatNegotiationCallback	function	is	called	when	a	nat-
negotiate	cooke	is	received.	See	the	nat-negotiate	documentation	for
more	information.

Section	Reference:	Gamespy	Peer	SDK

peerQRPlayerKeyCallback
Called	when	getting	values	for	any	player	keys	the	game	is	reporting.

typedef	void	(*peerQRPlayerKeyCallback)(
PEER	peer,
int	key,
int	index,
qr2_buffer_t	buffer,
void	*	param);

Routine Required	Header Distribution
peerQRPlayerKeyCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

key
[in]	The	key	for	reporting	information

index
[in]	The	array	index	of	the	player	to	report

buffer
[in]	The	buffer	for	data

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerQRPlayerKeyCallback	function	is	called	while	hosting	a	game
to	report	values	for	player	keys.	For	example	usage	see	the	PeerTest
sample.	For	a	detailed	explanation	of	how	server	reporting	works,	see	the
Query	&	Reporting	2	SDK	documentation.
If	in	staging,	and	either	not	playing	or	peerStartGame	was	called	with
PEER_REPORT_PLAYERS	set	in	the	reporting	options,	then	Peer	will
report	the	PLAYER__KEY	and	PING__KEY	keys,	and	the	callback	will
not	be	called	for	these	key.	The	application	is	responsible	for	reporting
any	other	player	keys	and	is	also	responsible	for	these	keys	when	Peer
does	not	report	them.	Any	other	keys	the	application	reports	must	be
registered	with	the	peerQRKeyListCallback()	(see	below).	The	number	of
players	is	set	with	the	peerQRCountCallback()	see	below).

Section	Reference:	Gamespy	Peer	SDK

peerQRPublicAddressCallback
Called	when	hosting	a	server	with	the	server's	public	reporting	address.

typedef	void	(*peerQRPublicAddressCallback)(
PEER	peer,
unsigned	int	ip,
unsigned	short	port,
void	*	param);

Routine Required	Header Distribution
peerQRPublicAddressCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

ip
[in]	The	IP	address	of	the	host	in	string	form:	"xxx.xxx.xxx.xxx"

port
[in]	The	Port	number	of	the	host

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerQRPublicAddressCallback	function	is	called	when	a	host	has
been	requested	to	send	its	public	IP	and	public	port	to	the	requester.

Section	Reference:	Gamespy	Peer	SDK

peerQRServerKeyCallback
Called	when	a	server	key	is	requested	during	a	hosted	game.

typedef	void	(*peerQRServerKeyCallback)(
PEER	peer,
int	key,
qr2_buffer_t	buffer,
void	*	param);

Routine Required	Header Distribution
peerQRServerKeyCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

key
[in]	The	value	associated	with	this	key	will	be	returned

buffer
[in]	The	Qr2	buffer	for	holding	the	data

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerQRServerKeyCallback	function	is	called	while	hosting	a	game
to	report	values	for	server	keys.	For	example	usage	see	the	PeerTest
sample.	For	a	detailed	explanation	of	how	server	reporting	works,	see	the
Query	&	Reporting	2	SDK	documentation.
If	in	staging,	and	either	not	playing	or	peerStartGame	was	called	with
PEER_REPORT_INFO	set	in	the	reporting	options,	then	Peer	will	report
the	following	keys:	HOSTNAME_KEY,	NUMPLAYERS_KEY,
MAXPLAYERS_KEY,	GAMEMODE_KEY	(only	if	not	playing),	and
PASSWORD_KEY,	and	the	callback	will	not	be	called	for	these	key.	Peer
will	also	always	report	the	GROUPID_KEY	if	in	a	group	room.	The
application	is	responsible	for	reporting	any	other	server	keys	and	is	also
responsible	for	these	keys	when	Peer	does	not	report	them.	Any	other
keys	the	application	reports	must	be	registered	with	the
peerQRKeyListCallback()	(see	below).

Section	Reference:	Gamespy	Peer	SDK

peerQRTeamKeyCallback
Callback	is	used	to	get	values	for	any	team	keys	the	game	is	reporting.

typedef	void	(*peerQRTeamKeyCallback)(
PEER	peer,
int	key,
int	index,
qr2_buffer_t	buffer,
void	*	param);

Routine Required	Header Distribution
peerQRTeamKeyCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

key
[in]	The	key	that	will	be	returned

index
[in]	The	array	index	of	the	team	requested

buffer
[in]	The	Qr2	buffer	for	data

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerQRTeamKeyCallback	is	called	while	hosting	a	game	to	report
values	for	team	keys.	For	example	usage	see	the	PeerTest	sample.	For	a
detailed	explanation	of	how	server	reporting	works,	see	the	Query	&
Reporting	2	SDK	documentation.
Peer	does	not	report	any	team	keys.	The	application	is	responsible	for
reporting	any	team	keys.	Any	keys	the	application	reports	must	be
registered	with	the	peerQRKeyListCallback()	(see	below).	The	number	of
teams	is	set	with	the	peerQRCountCallback()	see	below).

Section	Reference:	Gamespy	Peer	SDK

peerReadyChangedCallback
Called	when	a	player's	ready	state	changes.	All	players	default	to	not
ready.

typedef	void	(*peerReadyChangedCallback)(
PEER	peer,
const	gsi_char	*	nick,
PEERBool	ready,
void	*	param);

Routine Required	Header Distribution
peerReadyChangedCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

nick
[in]	The	player's	chat	nickname

ready
[in]	PEERTrue	if	ready,	PEERFalse	if	not

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerReadyChangedCallback	is	called	whenever	a	player	changes
his/her	ready	status.	This	can	only	be	done	in	a	StagingRoom	room	type.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerReadyChangedCallback peerReadyChangedCallbackA peerReadyChangedCallbackW

peerReadyChangedCallbackW	and	peerReadyChangedCallbackA
are	UNICODE	and	ANSI	mapped	versions	of
peerReadyChangedCallback.	The	arguments	of
peerReadyChangedCallbackA	are	ANSI	strings;	those	of
peerReadyChangedCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerRoomKeyChangedCallback
Called	when	a	new	value	becomes	available	for	a	room	watch	key,	or
when	a	broadcast	key	changes.

typedef	void	(*peerRoomKeyChangedCallback)(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	nick,
const	gsi_char	*	key,
const	gsi_char	*	value,
void	*	param);

Routine Required	Header Distribution
peerRoomKeyChangedCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

nick
[in]	The	player's	chat	nickname	whose	keys	changed

key
[in]	The	key	that	has	changed

value
[in]	The	value	that	is	associated	with	this	key	that	has	changed

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerRoomKeyChangedCallback	is	called	for	watch	keys	when	a
room	is	joined,	for	watch	keys	when	another	player	joins,	for	any	newly
set	watch	keys,	and	when	a	broadcast	watch	key	is	changed.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerRoomKeyChangedCallback peerRoomKeyChangedCallbackA peerRoomKeyChangedCallbackW

peerRoomKeyChangedCallbackW	and
peerRoomKeyChangedCallbackA	are	UNICODE	and	ANSI	mapped
versions	of	peerRoomKeyChangedCallback.	The	arguments	of
peerRoomKeyChangedCallbackA	are	ANSI	strings;	those	of
peerRoomKeyChangedCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerRoomMessageCallback
Called	when	a	message	is	sent	to	a	room	the	local	player	is	in.

typedef	void	(*peerRoomMessageCallback)(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	nick,
const	gsi_char	*	message,
MessageType	messageType,
void	*	param);

Routine Required	Header Distribution
peerRoomMessageCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

nick
[in]	The	chat	nickname	of	the	player	who	sent	the	message

message
[in]	The	message	that	was	sent	from	the	player

messageType
[in]	The	type	of	message	to	send,	most	commonly	NormalMessage
or	ActionMessage

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerRoomMessageCallback	function	gets	called	when	a	player
sends	a	message.	This	message	is	sent	to	everyone	in	the	specified
room.	The	message	will	be	a	plain	text	message.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
peerRoomMessageCallback peerRoomMessageCallbackA peerRoomMessageCallbackW

peerRoomMessageCallbackW	and	peerRoomMessageCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerRoomMessageCallback.
The	arguments	of	peerRoomMessageCallbackA	are	ANSI	strings;
those	of	peerRoomMessageCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

peerRoomModeChangedCallback
Called	when	a	room's	mode	changes.

typedef	void	(*peerRoomModeChangedCallback)(
PEER	peer,
RoomType	roomType,
CHATChannelMode	*	mode,
void	*	param);

Routine Required	Header Distribution
peerRoomModeChangedCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

mode
[in]	The	current	mode	for	this	room

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerRoomModeChangedCallback	is	called	as	a	host	of	the
specified	room	changes	a	mode	for	the	room.	See	chat.h	in	the	Chat
SDK	for	more	information	on	channel	modes.

Section	Reference:	Gamespy	Peer	SDK

peerRoomNameChangedCallback
Called	when	a	room	name	changes.

typedef	void	(*peerRoomNameChangedCallback)(
PEER	peer,
RoomType	roomType,
void	*	param);

Routine Required	Header Distribution
peerRoomNameChangedCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerRoomNameChangedCallback	is	called	when	the	name	of	the
specified	room	changes.	This	callback	just	serves	as	a	notice.	To	get	the
actual	name	use	peerGetRoomName().

Section	Reference:	Gamespy	Peer	SDK

peerRoomUTMCallback
Called	when	a	UTM	is	sent	to	a	room	the	local	player	is	in.

typedef	void	(*peerRoomUTMCallback)(
PEER	peer,
RoomType	roomType,
const	gsi_char	*	nick,
const	gsi_char	*	command,
const	gsi_char	*	parameters,
PEERBool	authenticated,
void	*	param);

Routine Required	Header Distribution
peerRoomUTMCallback <peer.h> SDKZIP

Parameters

peer
[in]	Initialized	peer	object

roomType
[in]	Can	be	either	TitleRoom,	GroupRoom	or	StagingRoom.

nick
[in]	The	chat	nickname	of	the	player	who	sent	the	UTM

command
[in]	The	raw	UTM	command	sent

parameters
[in]	The	parameters	sent	along	with	the	UTM	command

authenticated
[in]	PEERTrue	if	authenticated,	PEERFalse	if	otherwise

param
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	peerRoomUTMCallback	is	called	when	a	player	in	the	specified
room	sends	a	UTM	message.	The	command	is	a	short	string	identifying
this	UTM	(e.g.,	RQI,	NFO,	GML).	Ignore	any	unrecognized	UTM,	as
internal	Peer	UTMs	go	through	this	callback,	as	do	application	UTMs.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

peerRoomUTMCallback peerRoomUTMCallbackA peerRoomUTMCallbackW

peerRoomUTMCallbackW	and	peerRoomUTMCallbackA	are
UNICODE	and	ANSI	mapped	versions	of	peerRoomUTMCallback.	The
arguments	of	peerRoomUTMCallbackA	are	ANSI	strings;	those	of
peerRoomUTMCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Peer	SDK

Peer	SDK	Structures
PEERCallbacks

Structure	that	gets	passed	into	peerInitialize()

PEERCallbacks
Structure	that	gets	passed	into	peerInitialize().

typedef	struct	
{

peerDisconnectedCallback	disconnected;
peerRoomMessageCallback	roomMessage;
peerRoomUTMCallback	roomUTM;
peerRoomNameChangedCallback	roomNameChanged;
peerRoomModeChangedCallback	roomModeChanged;
peerPlayerMessageCallback	playerMessage;
peerPlayerUTMCallback	playerUTM;
peerReadyChangedCallback	readyChanged;
peerGameStartedCallback	gameStarted;
peerPlayerJoinedCallback	playerJoined;
peerPlayerLeftCallback	playerLeft;
peerKickedCallback	kicked;
peerNewPlayerListCallback	newPlayerList;
peerPlayerChangedNickCallback	playerChangedNick;
peerPlayerInfoCallback	playerInfo;
peerPlayerFlagsChangedCallback	playerFlagsChanged;
peerPingCallback	ping;
peerCrossPingCallback	crossPing;
peerGlobalKeyChangedCallback	globalKeyChanged;
peerRoomKeyChangedCallback	roomKeyChanged;
peerQRServerKeyCallback	qrServerKey;
peerQRPlayerKeyCallback	qrPlayerKey;
peerQRTeamKeyCallback	qrTeamKey;
peerQRKeyListCallback	qrKeyList;
peerQRCountCallback	qrCount;
peerQRAddErrorCallback	qrAddError;
peerQRNatNegotiateCallback	qrNatNegotiateCallback;
peerQRPublicAddressCallback	qrPublicAddressCallback;
void	*	param;

}	PEERCallbacks;

Members

disconnected
Called	when	the	chat	connection	has	been	disconnected	by	the
server.

roomMessage
Called	when	a	chat	message	has	arrived	in	one	of	the	rooms	the
developer	is	in.

roomUTM
Called	when	an	under-the-table	message	has	arrived	in	a	room	the
developer	is	in.

roomNameChanged
Called	when	the	name	of	a	room	the	developer	is	in	has	changed.

roomModeChanged
Called	when	the	mode	changed	in	a	room	the	developer	is	in.

playerMessage
Called	when	a	private	chat	message	from	another	player	has	been
received.

playerUTM
Called	when	an	under-the-table	message	has	arrived	from	another
player.

readyChanged
Called	when	another	player	in	the	same	staging	room	as	the	user,
has	changed	his	ready	status.

gameStarted
Called	when	the	host	in	the	staging	room	launches	the	game.

playerJoined
Called	when	a	player	has	joined	one	of	the	rooms	the	local	player
has	joined.

playerLeft
Called	when	a	player	has	left	one	of	the	rooms	the	local	player	has
joined.

kicked

Called	when	the	local	player	has	been	kicked	from	a	room.

newPlayerList
Called	when	the	entire	playerlist	has	been	updated.

playerChangedNick
Called	when	player	in	one	of	the	rooms	changed	his	nick.

playerInfo
Called	for	all	players	(who	are	using	peer)	in	a	room	shortly	after
joining.

playerFlagsChanged
for	all	players	(who	are	using	peer)	in	a	room
Called	when	a	player's	flags	have	changed.

crossPing
An	updated	ping	for	a	player,	who	may	be	in	any	room(s).

qrServerKey
Called	for	watch	keys	when	a	room	is	joined,	for	watch	keys	when
another	player	joins,	and	for	any	newly	set	watch	keys.

qrPlayerKey
Called	to	report	QR	player	keys.

qrTeamKey
Called	to	report	QR	team	keys.

qrKeyList
Called	to	get	a	list	of	keys	to	be	reported.

qrCount
Called	to	get	a	count	of	the	number	of	players	or	teams.

qrAddError
Called	when	there	is	an	error	reporting	the	server.

qrNatNegotiateCallback
Called	when	hosting	a	server	and	a	nat-negotiate	cookie	is	received.

qrPublicAddressCallback
Called	when	hosting	a	server	with	the	server's	public	reporting
address.

param
A	pointer	to	data	that	will	be	passed	into	each	of	the	callbacks	when

triggered.

Section	Reference:	Gamespy	Peer	SDK

See	Also:	peerInitialize

Peer	SDK	Enumerations
MessageType

Types	of	messages.

PEERAutoMatchStatus
Possible	status	values	passed	to	the
peerAutoMatchStatusCallback.	If	PEERFailed,
the	match	failed.	Otherwise,	this	is	the	current
status	of	the	automatch	attempt

PEERBool
Standard	Boolean.

PEERJoinResult
Possible	results	when	attempting	to	join	a	room.
Passed	into	peerJoinRoomCallback().

RoomType
Types	of	rooms.

MessageType
Types	of	messages.

typedef	enum	
{

NormalMessage,				
ActionMessage,				
NoticeMessage				

}	MessageType;

Constants

NormalMessage
A	normal	chat	message.

ActionMessage
An	action	message.

NoticeMessage
A	notification	message.

Section	Reference:	Gamespy	Peer	SDK

See	Also:	peerMessagePlayer,	peerMessageRoom,
peerPlayerMessageCallback,	peerRoomMessageCallback

PEERAutoMatchStatus
Possible	status	values	passed	to	the	peerAutoMatchStatusCallback.	If
PEERFailed,	the	match	failed.	Otherwise,	this	is	the	current	status	of	the
automatch	attempt.

typedef	enum	
{

PEERFailed,				
PEERSearching,				
PEERWaiting,				
PEERStaging,				
PEERReady,				
PEERComplete				

}	PEERAutoMatchStatus;

Constants

PEERFailed
The	automatch	attempt	failed.

PEERSearching
Searching	for	a	match	(active).

PEERWaiting
Waiting	for	a	match	(passive).

PEERStaging
In	a	staging	room	with	at	least	one	other	player,	possibly	waiting	for
more.

PEERReady
All	players	are	in	the	staging	room,	the	game	is	ready	to	be
launched.

PEERComplete
The	game	is	launching,	the	automatch	attempt	is	now	complete.	The
player	is	still	in	the	staging	room.

Section	Reference:	Gamespy	Peer	SDK

PEERBool
Standard	Boolean.

typedef	enum	
{

PEERFalse,				
PEERTrue				

}	PEERBool;

Constants

PEERFalse
False.

PEERTrue
True.

Section	Reference:	Gamespy	Peer	SDK

PEERJoinResult
Possible	results	when	attempting	to	join	a	room.	Passed	into
peerJoinRoomCallback().

typedef	enum	
{

PEERJoinSuccess,				
PEERFullRoom,				
PEERInviteOnlyRoom,				
PEERBannedFromRoom,				
PEERBadPassword,				

PEERAlreadyInRoom,				
PEERNoTitleSet,				
PEERNoConnection,				
PEERJoinFailed,				

}	PEERJoinResult;

Constants

PEERJoinSuccess
The	room	was	joined.

PEERFullRoom
The	room	is	full.

PEERInviteOnlyRoom
The	room	is	invite	only.

PEERBannedFromRoom
The	local	user	is	banned	from	the	room.

PEERBadPassword
An	incorrect	password	(or	none)	was	given	for	a	passworded	room.

PEERAlreadyInRoom
The	local	user	is	already	in	or	entering	a	room	of	the	same	type.

PEERNoTitleSet
Can't	join	a	room	if	no	title	is	set.

PEERNoConnection
Can't	join	a	room	if	there's	no	chat	connection.

PEERJoinFailed
Generic	failure.

Section	Reference:	Gamespy	Peer	SDK

RoomType
Types	of	rooms.

typedef	enum	
{

TitleRoom,				
GroupRoom,				
StagingRoom,				
NumRooms				

}	RoomType;

Constants

TitleRoom
The	main	room	for	a	game.

GroupRoom
A	room	which	is,	in	general,	for	a	particular	type	of	gameplay	(team,
DM,	etc.).

StagingRoom
A	room	where	players	meet	before	starting	a	game.

NumRooms
Number	of	room	types.

Section	Reference:	Gamespy	Peer	SDK

Presence	SDK
Overview

The	GameSpy	Presence	and	Messaging	SDK	(GP)	is	an	ANSI-C	library
that	can	be	used	by	a	game	to	add	both	account	creation/authorization
and	"buddy	list"	functionality.	If	an	application	supports	GP,	its	users	can
send	messages	back	and	forth	with	other	users	within	that	game,	and
with	users	in	any	other	applications	that	use	GP,	such	as	GameSpy
Arcade	and	other	games.	Through	the	use	of	a	location	string,	users	can
see	exactly	what	their	online	buddies	are	up	to	(in	a	game,	in	an	Arcade
staging	room,	reading	news	in	Arcade,	etc.).	The	location	string	also
allows	game	specific	information	such	as	a	server	address	-	so	if	a	user
sees	a	buddy	is	online	and	playing	the	same	game,	he	can	just	hop	right
onto	the	same	server.	In	addition,	GP	allows	users	to	get	info	on	other
users,	including	real	name,	e-mail	address,	ICQ	UIN	(user	identification
number),	homepage,	and	zipcode.	For	privacy	reasons,	users	can
choose	to	hide	some	of	this	information	from	other	users.

GP	is	purely	data-based.	The	game	is	responsible	for	all	graphical	(or
other)	elements	that	allow	a	user	to	interact	with	it.	There	are	no	libraries
or	DLLs	to	deal	with	when	using	GP;	just	add	the	source	files	directly	to
your	project	and	you're	ready	to	go.

Two	sample	programs	have	been	included:

"gptest"	is	a	Win32	MFC	app	that	encapsulates	all	of	GP's
functionality	in	a	single	dialog	box.	This	is	not	meant	as	a	sample	for
how	to	do	a	UI	for	GP,	but	merely	to	show	all	of	GP's	capabilities	in
a	single	window.	It's	also	useful	for	checking	how	a	particular	feature
works.
"gptestc"	is	a	straight	ANSI-C	sample	that	connects	a	user,	sends
some	messages	to	another	user,	then	waits	to	receive	some
messages.

This	document	shows	how	to	do	some	basic	tasks	with	GP,	such	as
connecting,	creating	a	new	account,	and	sending	buddy	messages.	For
more	detailed	information	on	GP,	please	see	the	GP	reference

documentation.

File
gp.h

gp.c

gpi.c

gpi.h

gpiBuddy.c,h

gpiBuffer.c,h

gpiCallback.c,h

gpiConnect.c,h

gpiInfo.c,h

gpiOperation.c,h

gpiPeer.c,h

gpiProfile.c,h

gpiSearch.c,h

gpiUtility.c,h

nonport.c,h

md5c.c,md5.h

File	Manifest

The	following	files	should	be	included	with	this	package.	If	any	of	the	files
are	missing,	please	contact	devsupport@gamespy.com.

Description
GP	header	(all	user	functins	are	prototyped	here)

Entry	point	for	all	GP	functions

Code	for	intitialization/cleanup,	processing	and
enabling/disabling

Common	header	for	internal	code

Code	for	buddy	messages

Code	for	socket	buffering

Code	for	adding/processing	callbacks

Code	for	connecting	and	disconnecting

Code	for	getting	and	setting	info

Code	for	adding/removing/processing	operations

Code	for	direct	peer-to-peer	messaging

Code	for	maintaining	a	list	of	profiles

Code	for	dealing	with	search	manager

Miscellaneaous	utility	code

Platform-specific	code

MD5	code	used	for	hashing

mailto:devsupport@gamespy.com

Implementation

Accounts

When	a	user	creates	a	new	GP	account,	it	is	registered	with	an	e-mail
address,	a	nickname,	and	a	password.	The	e-mail	address	must	be
unique	among	all	users,	because	it	identifies	the	particular	"user".	The
nickname	identifies	the	user's	"profile".	When	an	account	is	first	created,
it	only	has	one	profile.	However,	multiple	profiles	can	be	added.	Each
profile	has	a	new	nickname,	but	it	is	still	associated	with	the	same	user,
so	the	e-mail/password	do	not	change.	Multiple	profiles	belonging	to	a
single	user	cannot	have	the	same	nickname,	however	profiles	that
belong	to	different	users	can	have	the	same	nickname.

When	a	user	logs	in,	they	login	with	a	particular	profile	belonging	to	their
user	account.	The	e-mail	address	uniquely	identifies	the	user,	the
password	verifies	the	user,	and	the	nickname	uniquely	identifies	which	of
the	user's	profiles	to	use.	A	user	cannot	be	logged	in	more	than	once
simultaneously,	even	with	different	profiles.	If	a	user	attempts	to	login	a
user	that	is	already	logged	in,	the	previous	connection	will	be
disconnected.	This	allows	a	user	to	login	even	if	they	forgot	to	log	off	on
another	computer.

Each	profile	can	also	have	one	or	more	uniquenicks	associated	with	it.	A
"uniquenick"	is	a	special	nickname	that	is	unique	in	a	given	"namespace".
There	is	a	default	GameSpy	namespace	which	is	used	by	GameSpy
Arcade,	but	developers	can	also	get	their	own	namespaces.	A	profile	can
have	one	uniquenick	in	each	namespace.	Because	a	uniquenick	can
uniquely	identify	a	profile	in	a	given	namespace,	a	uniquenick	and
password	combination	can	be	used	to	login.	However	this	is	not
recommended	unless	using	a	custom	namespace	with	non-expiring
uniquenicks.

Otherwise	once	a	uniquenick	expires,	the	user	will	no	longer	have	a	way
of	identifying	that	profile	and	will	not	be	able	to	login.

The	above	chart	shows	the	relationship	between	a	user,	its	profiles,	and
any	potential	uniquenicks.	In	the	top	row	is	a	user,	which	is	identified	by
an	email	and	password	combination.	Each	user	then	has	one	or	more
profiles.	A	profile	is	identified	by	a	nickname	and	the	user	to	which	it
belongs.	Each	profile	also	has	an	associated	profileid	which	can	be	used
to	identify	it.	Each	profile	can	then	have	zero	or	more	uniquenicks.	Each
uniquenick	is	identified	by	the	profile	to	which	it	belongs	and	the
namespace	in	which	it	exists.	Because	it	is	unique	in	its	namespace,	a
uniquenick	and	namespace	combination	can	be	used	to	identify	a	profile
(and	in	turn	a	user).

Types

There	are	a	few	basic	types	used	by	GP:

GPConnection

This	is	an	object	that	represents	an	instance	of	GP.	A	pointer	to	a
GP	object	is	passed	as	the	first	argument	to	every	GP	function.	For
example:

GPConnection	gp;

gpInitialize(&gp,	productID,	namespaceID,	GP_PARTNERID_GAMESPY);

GPProfile

This	is	an	object	that	represents	a	particular	GP	profile	(either	local
or	remote).	A	GPProfile	object	is	passed	to	functions	like
gpSendBuddyMessage	and	gpGetInfo,	and	it	is	returned	in

callbacks	such	as	the	GP_RECV_BUDDY_STATUS	callback.	A
GPProfile	object	is	equivalent	to	a	profile	ID.	They	are	both	int
types,	and	can	be	used	interchangeably.

GPCallback

This	is	a	function	type.	Functions	of	this	type	are	passed	as
parameters	to	gpSetCallback	to	set	global	(unsolicited)
callbacks	and	to	any	functions	that	call	a	callback	when	completed
(such	as	gpConnect).	The	first	parameter	is	a	pointer	to	this
connection's	GPConnection	object,	the	second	parameter	is	a
pointer	to	a	structure	with	callback-specific	information,	and	the	last
parameter	is	a	pointer	to	a	user-supplied	arg	(which	is	passed	as	a
parameter	to	the	function	to	which	the	callback	was	passed).	See
gp.h	for	a	list	of	all	the	arg	structures.

typedef	void	(*	GPCallback)(GPConnection	*	connection,	void	*	arg,	void	*	param);

GPResult

This	is	an	enumeration	of	possible	results	from	GP	functions.	A
GPResult	is	returned	from	all	GP	functions	(except	for
gpDestroy	and	gpDisconnect,	which	have	no	return	value).	It
is	also	passed	as	the	first	result	in	most	callback	arg	structures.	In
args,	it	signals	if	there	has	been	an	error	and,	if	so,	what	type	of
error.
GP_NO_ERROR

There	has	been	no	error.
GP_MEMORY_ERROR

A	call	to	allocate	memory	failed.
GP_PARAMETER_ERROR

A	parameter	passed	to	a	function	was	invalid.
GP_NETWORK_ERROR

There	was	an	error	reported	by	the	underlying	network	layer.
GP_SERVER_ERROR

One	of	the	backend	servers	returned	an	error.

GPEnum

GPEnum	is	an	enumeration	of	various	constants	that	are	used	as
function	parameters	or	are	returned	in	callbacks.

Initializing

The	first	step	in	using	GP	is	to	initialize	it	with	gpInitialize:

GPResult	gpInitialize

(

	 GPConnection	*	connection,	

	 int	productID,

	 int	namespaceID,

	 int	partnerID

);

You	need	to	pass	it	a	pointer	to	a	GPConnection	object	that	you	have
declared	or	allocated.	Typically,	you	will	just	declare	a	global
GPConnection	object	and	use	that	for	all	of	your	GP	function	calls.	The
productID	is	a	unique	ID	that	identifies	your	product.	If	you	do	not	have
a	product	ID,	contact	devsupport@gamespy.com.

The	namespaceID	identified	which	namespace	to	login	under.	A
namespaceID	of	0	indicates	that	no	namespace	should	be	used.	A
namespaceID	of	1	represents	the	default	GameSpy	namespace	(the
same	namespace	used	by	GameSpy	Arcade).	A	namespaceID	greater
than	1	indicates	a	custom	namespace.	If	uniquenicks	will	not	be	used,
namespaceID	should	be	0.	Otherwise	it	should	be	1,	unless	a	custom
namespace	has	been	assigned.

The	partnerID	will	typically	be	set	to	the	value	defined	by
GP_PARTNERID_GAMESPY.

If	this	call	succeeds	(returns	GP_NO_ERROR),	then	GP	is	initialized	and
ready	to	be	used.	This	instance	of	GP	will	be	valid	until	gpDestroy	is
called	with	the	same	object.

After	GP	has	been	initialized,	the	next	thing	to	do	is	set	the	global
callbacks	using	gpSetCallback:

mailto:devsupport@gamespy.com

GPResult	gpSetCallback

(

	 GPConnection	*	connection,

	 GPEnum	func,

	 GPCallback	callback,

	 void	*	param

);

func	is	the	type	of	callback,	callback	is	the	function	to	call	for	the
callback,	and	param	is	a	user-defined	parameter	that	is	passed	to	the
callback.	The	possible	values	for	func	are:

GP_ERROR

This	callback	is	called	whenever	a	GP_NETWORK_ERROR	or	a
GP_SERVER_ERROR	occur.	The	arg	passed	to	it	is	a	GPErrorArg.
The	errorCode	member	of	the	arg	can	be	checked	for	the
specific	cause	of	the	error.	If	the	"fatal"	member	of	the	arg	is
GP_FATAL,	then	an	unrecoverable	error	has	occurred,	and	the
connection	has	already	been	disconnected,	as	if	gpDisconnect
were	called.	At	this	point,	GP	can	be	destroyed	with	gpDestory,
or	a	new	connection	can	be	attempted	with	gpConnect	(see
below).	If	the	"fatal"	member	of	the	arg	is	GP_NON_FATAL,	then	the
user	is	still	connected.	At	this	point	the	application	will	likely	show
the	user	an	error	message	(the	"errorString"	member	of	the
errorArg	can	be	used),	and,	optionally,	ask	the	user	to	retry.	The
specific	course	of	action	can	depend	on	the	errorCode.

GP_RECV_BUDDY_REQUEST

This	callback	is	called	when	another	profile	has	made	a	request	to
add	you	to	their	buddy	list.

GP_RECV_BUDDY_STATUS

This	callback	is	called	when	there	is	updated	status	information	for
a	buddy.

GP_RECV_BUDDY_MESSAGE

This	callback	is	called	when	someone	has	sent	you	a	buddy
message.

GP_RECV_BUDDY_UTM

This	callback	is	called	when	someone	has	sent	you	a	UTM
message.

GP_RECV_GAME_INVITE

This	callback	is	called	when	someone	invites	you	to	play	a
particular	game.

GP_TRANSFER_CALLBACK

This	callback	is	called	for	status	updates	on	a	file	transfer.
GP_RECV_BUDDY_AUTH

This	callback	is	called	when	someone	authorizes	your	buddy
request.

GP_RECV_BUDDY_REVOKE

This	callback	is	called	when	another	profile	revokes	themselves	as
your	buddy.

See	the	reference	documentation	for	further	details	on	each	specific
callback.

While	GP	is	initialized,	it	must	do	some	occasional	processing	to	handle
things	like	incoming	buddy	messages.	gpProcess	must	be	called	by	the
application	to	allow	for	this	processing.	While	it	can	be	called	as	often	as
you	like,	it	does	not	need	to	be	called	more	than	every	second	or	so.

GPResult	gpProcess

(

	 GPConnection	*	connection

);	

Connecting	&	Disconnecting

There	are	several	functions	that	can	be	used	to	connect	(login)	to	the
Presence	backend.	gpConnect	is	used	to	login	using	a	nick,	email,	and
password.	gpConnectUniqueNick	allows	you	to	connect	using	a
uniquenick	and	password	combination.	gpConnectPreAuthenticated
is	used	to	connect	using	information	from	a	partner	authentication
system.

GPResult	gpConnect

(

	 GPConnection	*	connection,

	 const	char	nick[GP_NICK_LEN],

	 const	char	email[GP_EMAIL_LEN],

	 const	char	password[GP_PASSWORD_LEN],

	 GPEnum	firewall,

	 GPEnum	blocking,

	 GPCallback	callback,

	 void	*	param

);

GPResult	gpConnectUniqueNick

(

	 GPConnection	*	connection,

	 const	char	uniquenick[GP_UNIQUENICK_LEN],

	 const	char	password[GP_PASSWORD_LEN],

	 GPEnum	firewall,

	 GPEnum	blocking,

	 GPCallback	callback,

	 void	*	param

);

nick,	uniquenick,	email,	password

identify	the	user	account	and	the	particular	profile	for	that	user.
nick,	uniquenick	and	e-mail	are	not	case-sensitive,	however
password	is.

firewall

can	be	GP_FIREWALL	or	GP_NO_FIREWALL.	If
GP_NO_FIREWALL,	then	direct	connections	to	other	users	will	be
attempted	when	sending	buddy	messages.	If	this	is
GP_FIREWALL,	then	all	buddy	messages	will	be	sent	and	received
through	the	server.

callback

will	be	called	when	the	connection	attempt	is	finished	(successfully
or	not).

Nicknames

There	are	several	possible	ways	to	use	these	functions,	depending	on
how	the	application	plans	on	functioning.

GameSpyID	Login	with	no	uniquenick
Pass	a	0	namespaceID	to	gpInitialize,	which	tells	GP	not	to
use	namespaces.

When	creating	an	account,	use	either	gpNewUser	or
gpConnectNewUser,	and	set	the	uniquenick	and	cdkey
parameters	to	NULL.

Call	gpConnect	to	initiate	the	connection	to	the	backend	server.

GameSpyID	Login	with	a	uniquenick	in	the	default	namespace
Pass	a	namespaceID	of	1	to	gpInitialize,	which	identifies	the
default	GameSpy	namespace.	This	is	the	namespace	that	is	used
by	GameSpy	Arcade.

When	creating	an	account,	you'll	want	to	call	either	gpNewUser	or
gpConnectNewUser	and	specify	a	uniquenick	parameter.	You	can
use	this	same	value	for	the	nick	parameter	as	well.

To	login	to	an	account	that	has	already	been	created,	use	the
regular	gpConnect	function.	Once	the	account	has	logged	in,	you
can	check	the	uniquenick	member	in	the
GPConnectResponseArg	to	see	if	there	is	a	uniquenick
associated	with	the	profile.	If	the	uniquenick	is	@unregistered	or
@expired	then	there	is	no	uniquenick	registered	with	this
profile.	In	that	case,	use	gpRegisterUniqueNick	to	assign	a
uniquenick	to	the	profile.	gpSuggestUniqueNicks	can	be
used	to	get	a	list	of	uniquenicks	to	present	to	the	user.

Make	sure	you	do	not	use	gpConnectUniqueNick	for	this
method.	The	reason	is	that	the	default	namespace	expires
uniquenicks	after	a	certain	period	of	inactivity,	and	you'll	want	to
make	sure	the	user	can	still	login	even	if	their	uniquenick
expired	and	was	then	taken	by	another	user.

GameSpyID	Login	with	a	uniquenick	in	a	custom	namespace
Pass	the	namespace	custom	namespaceID	to	gpInitialize.	Contact

devsupport@gamespy.com	for	information	on	obtaining	a	custom
namespace.

If	the	namespace	has	expiring	uniquenicks,	then	this	method	is
identical	to	the	above	method,	with	the	above	exception	of	passing
the	custom	namespaceID	to	gpIntialize.

If	the	namespace	does	not	expire	its	uniquenicks,	then	the	main
difference	between	this	and	the	above	method	is	that	you	can	use
gpConnectUniqueNick	to	login.	Because	the	uniquenick	doesn't
expire,	a	user	only	needs	to	remember	his	uniquenick	and
password	to	login.	However	it	is	still	recommended	that	a	valid
email	address	be	used	when	creating	an	account,	as	this	will	allow
the	user	to	retrieve	a	forgotten	password.

Remote	Authentication
The	remote	authentication	login	method	is	used	to	login	using
information	from	a	partner	authentication	system.	You	login	using	a
token	and	a	challenge,	which	are	supplied	by	the	partner
authentication	system.	Contact	devsupport@gamespy.com	for
further	information	on	using	this	login	method.

When	ready	to	log	off	the	connection,	use	gpDisconnect.

Creating	&	Deleting	Profiles

To	add	a	new	profile	to	an	existing	account,	use	gpNewProfile:

GPResult	gpNewProfile(

	 GPConnection	*	connection,

	 const	char	nick[GP_NICK_LEN],

	 GPEnum	replace,

	 GPEnum	blocking,

	 GPCallback	callback,

	 void	*	param

);

nick

the	nickname	for	the	new	profile.

replace

determines	what	should	happen	if	the	account	already	has	a	profile
with	the	same	nickname	as	the	new	one.	Normally,	this	should	be
set	to	GP_DONT_REPLACE.

If	there	is	an	existing	nickname,	an	error	will	be	generated,	with	the
errorCode	set	to	GP_NEWPROFILE_BAD_OLD_NICK	(the	last
errorCode	generated	can	be	checked	with	gpGetErrorCode).
At	this	point,	the	user	can	be	asked	if	he	would	like	to	replace	the
old	profile.	If	he	selects	yes,	then	call	gpNewProfile	again,	this
time	using	GP_REPLACE.

The	user	must	already	be	logged	on	with	the	account	he	wants	to	add	the
profile	to	when	this	function	is	called.	To	login	under	the	new	profile,	the
current	profile	must	first	be	disconnected	with	gpDisconnect,	then
gpConnect	called	for	the	new	one.

If	the	user	would	like	to	remove	an	unwanted	profile,	gpDeleteProfile
can	be	used.	It	deletes	the	currently	logged-in	profile,	so	the	user	must
connect	with	that	profile	before	deleting	it.	As	soon	as
gpDeleteProfile	is	called,	the	connection	will	be	disconnected.	GP
will	still	be	initialized,	but	the	user	must	then	login	with	a	new	profile	to
connect,	or	gpDestroy	can	be	called	to	terminate	GP.	There	is	no	way
to	delete	an	entire	user	account	-	if	there	is	only	one	profile	in	an	account,
it	cannot	be	deleted.

Searching

If	the	user	wants	to	find	a	friend	to	add	as	a	buddy,	or	just	wants	to	find
information	on	a	certain	person,	they	can	search	for	the	profile	based	on
certain	information.	This	is	done	using	gpProfileSearch:

GPResult	gpProfileSearch(

	 GPConnection	*	connection,

	 const	char	nick[GP_NICK_LEN],

	 const	char	email[GP_EMAIL_LEN],

	 const	char	firstname[GP_FIRSTNAME_LEN],

	 const	char	lastname[GP_LASTNAME_LEN],

	 int	icquin,

	 GPEnum	blocking,

	 GPCallback	callback,

	 void	*	param

);

Using	the	parameters	above,	the	search	can	be	based	on	nick,	email,
first	name,	last	name,	ICQ	UIN,	or	any	combination	of	the	parameters.
Pass	in	NULL,	or	an	empty	string,	for	any	of	the	string	parameters	to
ignore	that	parameter	while	searching.	To	ignore	the	ICQ	UIN,	pass	in	0
for	icquin.

Getting	&	Setting	Info

To	get	information	on	a	particular	profile,	use	gpGetInfo:

GPResult	gpGetInfo(

	 GPConnection	*	connection,

	 GPProfile	profile,	

	 GPEnum	checkCache,

	 GPEnum	blocking,

	 GPCallback	callback,

	 void	*	param

);

profile

the	profile	to	get	info	on
checkCache

a	flag	that	determines	if	the	local	cache	should	be	checked	for
existing	info	on	the	profile.	If	it	is	GP_CHECK_CACHE,	and	the	local
cache	has	info	on	the	profile,	then	that	info	will	be	used.	If	there	is
no	locally	cached	info	on	the	user,	or	if	GP_DONT_CHECK_CACHE	is
used,	then	the	info	on	the	user	will	be	retrieved	from	the	backend
server.

The	info	(either	gotten	locally	or	retrieved	from	the	server)	is	passed	to
the	callback	in	a	gpGetInfoResponseArg:

typedef	struct

{

		GPResult	result;

		GPProfile	profile;

		char	nick[GP_NICK_LEN];	

		char	email[GP_EMAIL_LEN];	

		char	firstname[GP_FIRSTNAME_LEN];	

		char	lastname[GP_LASTNAME_LEN];	

		char	homepage[GP_HOMEPAGE_LEN];	

		int	icquin;

		char	zipcode[GP_ZIPCODE_LEN];	

		char	countrycode[GP_COUNTRYCODE_LEN];	

		int	birthday;

		int	birthmonth;

		int	birthyear;

		GPEnum	sex;

		GPEnum	publicmask;

}	GPGetInfoResponseArg;

The	gpSetInfo	group	of	functions	are	used	to	set	information	about	the
profile	that	is	currently	logged	in.	See	the	reference	documentation	for
more	info	on	all	of	the	info	that	can	be	set.	The	user	should	be	prompted
to	enter	this	information	when	a	new	account	or	new	profile	is	created,
and	should	have	the	option	of	changing	the	information	at	any	later	time.

Status

Every	profile	has	a	status,	a	status	string,	and	a	location	string.	This
allows	remote	profiles	to	see	if	users	on	their	buddy	list	are	offline	or
online	and,	if	online,	what	they	are	doing.	There	are	currently	six	possible
values	for	the	status:

GP_OFFLINE

This	profile	is	not	connected	to	GP.
GP_ONLINE

This	profile	is	online.	This	is	the	default	status.
GP_PLAYING

This	profile	is	playing	a	game.
GP_STAGING

This	profile	is	in	a	staging	room.
GP_CHATTING

This	profile	is	chatting.
GP_AWAY

This	profile	is	currently	away	from	his	computer	(or	the	application).

Use	gpSetStatus	to	set	your	status:

GPResult	gpSetStatus(

	 GPConnection	*	connection,

	 GPEnum	status,

	 const	char	statusString[GP_STATUS_STRING_LEN],

	 const	char	locationString[GP_LOCATION_STRING_LEN]

);

status

is	one	of	the	above	values.

If	GP_OFFLINE	is	set,	it	will	cause	the	user	to	appear	to	be	offline
on	buddy	lists,	but	the	GP	connection	will	not	actually	be
disconnected.

statusString

a	user-readable	description	of	the	status.	For	example,	if	status	is
GP_ONLINE,	this	will	typically	be	"Online".

locationString

a	URL	that	describes	the	user's	location.	This	can	be	used	to,	for
example,	join	the	staging	room	or	server	that	a	buddy	is	in.

When	a	user	connects	to	GP,	the	initial	status	is	GP_ONLINE,	the	initial
status	string	is	"Online",	and	the	initial	location	string	is	an	empty	string.
These	do	not	change	until	gpSetStatus	is	called.	The	status	will	be
reset	again	to	the	defaults	the	next	time	the	user	connects	to	GP.

When	a	user	logs	in,	he	is	sent	a	status	update	for	each	of	his	buddies.

This	is	done	through	the	GP_RECV_BUDDY_STATUS	global	callback,
which	is	set	with	gpSetCallback.	For	example:

gpSetCallback(&gp,	GP_RECV_BUDDY_STATUS,	RecvBuddyStatusCallback,	NULL);

Then,	whenever	a	buddy's	status	changes,	the	callback	is	called	again
with	the	new	information.

Buddies

In	order	to	present	the	user	with	a	buddy	list,	the	application	must	do	so
by	listening	for	buddy	status	messages	(see	above).	After	logging	into	to
GP,	the	full	list	of	buddies	will	be	available,	though	the	status	of	each	will
not	be	known	until	the	SDK	receives	a	status	update.	Subsequent
unsolicited	messages	after	the	login	will	update	these	buddy	statuses
asynchronously	and	trigger	the	GP_RECV_BUDDY_STATUS	callback	for
each.

If	the	user	wants	to	add	a	new	buddy	to	their	buddy	list,
gpSendBuddyRequest	should	be	used.

GPResult	gpSendBuddyRequest(

	 GPConnection	*	connection,

	 GPProfile	profile,

	 const	char	reason[GP_REASON_LEN]

);

This	causes	a	message	to	be	sent	to	the	profile	the	user	wants	to	add.
This	remote	profile	will	receive	a	GP_RECV_BUDDY_REQUEST	callback
(again,	registered	with	gpSetCallback	as	shown	above).	If	the	remote
profile	wants	to	authorize	the	request,	it	should	call
gpAuthBuddyRequest,	passing	in	the	GPProfile	for	the	profile	who
made	the	request.	The	requesting	profile	will	then	receive	a	message
letting	him	know	that	the	request	was	authorized.	And,	if	he's	online,	he
will	also	receive	a	status	update	for	the	buddy.	If	the	remote	profile	wants
to	deny	the	request,	it	should	call	gpDenyBuddyRequest.

Adding	buddies	is	not	reciprocal	-	in	other	words,	adding	a	buddy	to	your

buddy	list	does	not	put	you	on	that	buddy's	buddy	list.	Your	new	buddy
still	must	make	a	request	to	add	you	to	his	buddy	list,	and	you	must
authorize	that	in	order	for	him	to	get	you	on	his	list.

To	remove	a	buddy	from	your	buddy	list,	use	gpDeleteBuddy:

GPResult	gpDeleteBuddy(

	 GPConnection	*	connection,

	 GPProfile	profile

);

This	will	permanently	delete	the	buddy	from	the	buddy	list.	To	get	the
buddy	back	on	the	list,	a	new	request	must	be	sent	with
gpSendBuddyRequest.	Also,	if	the	buddy	being	removed	has	you	on
his	buddy	list,	that	will	not	be	affected.

To	send	a	message	to	a	buddy,	use	gpSendBuddyMessage:

GPResult	gpSendBuddyMessage(

	 GPConnection	*	connection,

	 GPProfile	profile,

	 const	char	*	message

);

This	will	send	the	given	message	to	the	profile,	as	long	as	it	is	actually	an
authorized	buddy.	If	it	is	not,	the	call	will	fail	(errorCode	will	be
GP_BM_NOT_BUDDY).	If	GP_FIREWALL	is	set	for	either	the	local
connection	or	the	remote	buddy,	if	the	remote	buddy	is	offline,	or	if	a
direct	connection	between	buddies	cannot	be	established	for	any	other
reason,	the	message	will	have	to	go	through	a	backend	server.	If	this
happens,	the	message	will	be	truncated.	For	this	reason,	buddy
messages	should	not	exceed	about	4K	bytes.

Blocked	List

Similarly	to	a	buddy	list,	GP	also	has	the	notion	of	a	Blocked	List.	This	list
contains	profiles	with	whom	you	want	to	block	all	GP	communication
to/from	this	player,	including	all	form	of	messages,	buddy	requests,	game

invites,	etc.	Esentially,	it	is	as	if	this	player	is	invisible	to	you.	Note	that
the	backend	automatically	handles	blocking	the	traffic	for	members	of	the
block	list,	so	the	game	does	not	need	to	do	anything	extra	to	support	this
once	a	player	has	been	added	to	the	blocked	list	for	a	profile.

The	Blocked	List	is	retrieved	in	full	upon	a	successful	login.	If	you	do	plan
on	using	this	functionality	in	your	game,	it's	recommended	to	have	some
sort	of	UI	view	that	players	can	see	the	members	of	their	block	list	in
order	to	allow	them	to	remove	from	it.	Peer	chat	channel	traffic	still	needs
to	be	manually	blocked	via	this	list	as	it	is	not	currently	handled	by	the
backend.	To	enumerate	through	the	Blocked	List,	you	can	use
gpGetNumBlocked	in	conjunction	with	gpGetBlockedProfile.
Examples	of	this	are	illustrated	in	the	sample/test	GP	applications.

To	add	to	the	Blocked	List,	use	gpAddToBlockedList:

GPResult	gpAddToBlockedList(

	 GPConnection	*	connection,

	 GPProfile	profile

);

To	remove	from	the	Blocked	List,	use	gpRemoveFromBlockedList:

GPResult	gpRemoveFromBlockedList(

	 GPConnection	*	connection,

	 GPProfile	profile

);

Game	Invitations

When	considering	game	invitations,	it	is	important	to	remember	that
invites	are	not	technically	restricted	to	players	on	the	local	buddy	list.	Any
player	may	receive	an	invitation	from	any	other	player.	Many	developers
will	choose	to	implement	their	own	design	restrictions,	such	as	limiting
invites	to	clan	or	buddy	list	players,	but	this	is	not	required.

Game	invitations	may	be	sent	to	a	player	using	gpInvitePlayer:

GPResult	gpInvitePlayer

(

	 GPConnection	*	connection,	

	 GPProfile	profile,	

	 int	productID,	

	 const	gsi_char	location[GP_LOCATION_STRING_LEN]	

);	

The	remote	profile	will	receive	a	GP_RECV_GAME_INVITE	callback	for
this	invite	request.	The	location	parameter	is	an	optional	text	string	that
usually	contains	the	server	IP	and	other	connecting	information.	This
parameter	may	be	NULL.	The	max	length	for	the	location	info	is	255
characters.	When	compiling	in	Unicode	mode,	the	location	will	be
converted	to	ASCII.

An	alternate	design	involves	players	inviting	other	players	from	a	game
lobby.	In	this	case,	the	profileid	of	the	remote	player	should	be	obtained
from	the	Peer	SDK	peerGetPlayerInfo.

Appendix	I:	Nickname	Checks

There	are	various	checks	that	are	made	on	uniquenicks	before	they	can
be	registered.

Length
Uniquenicks	must	have	at	least	3	characters	and	no	more	than	20.

Validity
Alphanumeric	characters	(A…Z,	a…z,	0…9).	The	first	character
may	not	be	a	digit.

"#$%&()*+-./:;<=>?@[]^_{|}~	are	allowed	characters.

In	ASCII	codes	the	range	is	34	to	126,	excluding	44	(comma)	and
92	(backslash)	and	39	(apostrophe).

The	4	characters	@+#:	cannot	be	the	first	character	in	a	nick.

Stripping
The	uniqueness	of	a	uniquenick	is	determined	based	on	it's
"stripped"	version.	This	is	the	uniquenick	with	all	non-alphanumeric
characters	removed.	For	example,	"Joe",	"%Joe%",	and	"Joe*"	all
have	the	same	stripped	version,	"Joe".

This	is	a	per-namespace	option,	and	it	is	on	in	the	default
namespace.

Reserved	Words
There	is	a	per-namespace	list	of	reserved	words.	If	the	stripped
version	of	a	uniquenick	matches	a	reserved	word,	then	it	cannot	be
registered.	For	example,	"server"	is	a	reserved	word	in	the	default
namespace,	so	the	uniquenicks	"server",	"%server%",	and
"server*"	would	not	be	allowed.

Filtering
Uniquenicks	are	filtered	on	a	per-namespace	basis.	Each
namespace	can	have	a	list	of	patterns	which	all	uniquenicks	are
checked	against	before	they	are	allowed	to	be	registered.	This	is
primarily	used	to	prevent	nicks	with	"bad	words"	in	them.

Appendix	II:	PS3	Integration	with	NP

Remote	Authentication	-	How	to	login	with	the	PS3

GameSpy	honors	the	Playstation	Network	(NP)	single	sign-on	principle,
by	supporting	NP	handles	via	remote	authentication.	You	would	use	the
details	for	the	current	NP	user	you're	logged	in	under	and	GameSpy's
backend	will	provide	you	with	the	profile	ID	and	connection	handle	to	a
'shadow	account',	which	acts	just	like	any	other	GameSpy	ID	account	for
the	rest	of	our	API	calls.	Remote	authentication	is	as	easy	as	following
these	steps:

Request	and	obtain	your	NP	ticket	from	Sony	using	your	unique	NP
ID.	This	is	done	by	using	the	PS3	NP	Manager	lib	and	calling
sceNpManagerRequestTicket	followed	by
sceNpManagerGetTicket.
Use	the	GameSpy	AuthService	(webservices	folder)	to	convert	the
NP	ticket	into	a	remote	auth	token.	This	is	accomplished	by	calling
wsLoginPs3Cert.	This	requires	you	to	specify	a
partnercode/namespaceID	which	is	specific	to	the	PS3.	They	are:

(Live)	PS3	PartnerCode	(or	partnerid):	19
(Live)	PS3	NamespaceID:	28

Note	that	the	namespaceID/partnercode	listed	above	applies	to	Live
PS3	accounts	registered	in	the	'NP'	environment.	If	you	are	using
Development	accounts	('sp-int'	environment)	you	will	want	to	use
the	development	namespaceID/partnercode	otherwise	the	login	will
fail.	For	sp-int	accounts,	the	namespaceID/partnercode	pair	to	use
instead	is:

(Dev)	PS3	PartnerCode:	33
(Dev)	PS3	NamespaceID:	40
Once	you	have	the	authtoken/partnerchallenge	from	the	callback
that	returns	from	the	above	call,	these	values	are	used	with	our
remote	authentication	systems	to	log	the	player	into	the	GameSpy
backend	like	you	would	normally	with	GameSpy	ID.	For	example,	to

login	to	GP	you	would	call	gpConnectPreAuthenticated
passing	in	the	retrieved	authtoken/partnerchallenge	from	the
AuthService	callback	(initializing	GP	with	the	PS3	namespaceid	and
partnercode	given	above).
If	integrating	with	our	ATLAS	SDK,	you	would	use	the	AuthService
function	wsLoginRemoteAuth	(using	the	same	namespaceID	and
partnerCode	as	the	login	Ps3Cert	call)	to	log	the	player	into	the
backend	and	retrieve	the	necessary	Certificate/PrivateData	for
ATLAS.

The	shadow	accounts	created	for	these	users	are	in	their	own	unique
namespace	for	the	NP	system	and	their	uniquenick	==	NP	ID,	so	you	will
be	able	to	use	your	PS3	account	name	as	your	uniquenick.

Note	that	the	PS3	AuthService	requires	a	cipher	file	in	order	to
authenticate	NP	tickets	for	your	title.	This	cipher	is	tied	to	your	service	ID
used	in	NP	and	is	submitted	to	us	by	Sony.	You	can	start	a	support	ticket
with	Sony	to	get	this	process	started	if	you're	experiencing	authentication
problems.

GP-NP	Buddy	+	Block	List	Synchronization

By	default	on	the	PlayStation	3	platform,	GP	integrates	with	the	NP
system	in	order	to	seemlessly	sync	a	PS3	user's	NP	Buddy	list	&	Block
list	into	their	respective	GP	account.	This	sync	effectively	checks	to	see	if
any	of	your	NP	Buddies	or	Blocks	have	created	GP	'shadow	accounts'
(e.g.	have	played	a	GameSpy-enabled	PS3	title)	and	if	so,	will	add	them
to	your	GP	account	in	order	to	show	up	in-game.

This	PS3	Buddy	&	Block	sync	takes	place	immediately	after	login.	The
SDK	will	first	try	to	initialize	NP	Basic	and	NP	Lookup	-	if	either	have
already	been	initialized	this	is	perfectly	fine,	the	SDK	will	leave	them
intact	and	not	destroy	them	upon	calling	gpDestroy	assuming	the	game
will	take	care	of	this.	After	initializing	NP,	the	SDK	waits	a	short	period	of
time	(GPI_NP_SYNC_DELAY)	in	order	to	allow	NP	Basic	to	acquire	the
buddy	and	block	lists.	After	this	delay,	the	actual	sync	takes	place;	note
that	since	the	SDK	needs	to	verify	if	the	NP	players	have	valid	GP
accounts,	gpProcess	should	be	called	routinely	after	the	login	in	order
to	allow	processing	to	take	place	(the	sync	is	asynchronous).

To	monitor	the	sync	progress	you	can	view	the	debugging	commentary
by	defining	GSI_COMMON_DEBUG	and	set	the	debug	level	appropriately
(verbose	tells	you	everything).

Keep	in	mind	that	the	namespaceid	and	partnerid	used	by	GP	should
correspond	to	the	NP	environment	being	utilized	on	the	PS3,	otherwise
the	sync	will	not	work	as	intended.	You	can	reference	the	above	Remote
Authentication	section	for	more	information	about	which	identifiers	to	use
for	the	respective	NP	environment.

In	addition	to	the	initial	sync,	GP	also	supports	NP	by	mirroring	requests
to	add	players	to	their	GP	Blocked	List.	When	you	add	to	your	blocked
list	on	the	PS3	using	gpAddToBlockedList,	the	SDK	will	attempt	to
mirror	this	addition	to	the	NP	Block	list	as	well.	The	SDK	will	perform	an
NP	lookup	to	see	if	the	player	exists	in	the	NP	environment,	and	if	so,
then	will	try	to	add	them	to	the	NP	block	list.	Please	note	that	this	process
is	also	entirely	asynchronous	and	dependent	upon	routinely	calling
gpProcess	to	allow	the	SDK	to	continue	it's	processing.

Presence	and	Messaging	SDK	Functions
gpAcceptTransfer

This	function	is	used	to	accept	a	file
transfer	request.

gpAddToBlockedList
Adds	a	remote	profile	to	the	local	player's
blocked	list.

gpAuthBuddyRequest
This	function	authorizes	a	buddy	request.
It	is	called	in	response	to	the
gpRecvBuddyRequest	callback	getting
called.

gpCheckUser
Validates	a	user's	info,	without	logging	into
the	account.

gpConnect
This	function	is	used	to	establish	a
connection	to	the	server.	It	establishes	a
connection	with	an	existing	profile,	which
is	identified	based	on	the	nick	and	email
and	is	validated	by	the	password.

gpConnectNewUser
This	function	is	used	to	create	a	new	user
account	and	profile	and	to	then	establish	a
connection	using	the	profile.

gpConnectPreAuthenticated
This	function	is	used	to	establish	a
connection	to	the	server.	It	establishes	a
connection	using	an	authtoken	and	a
partnerchallenge,	both	obtained	from	a
partner	authentication	system.

gpConnectUniqueNick
This	function	is	used	to	establish	a
connection	to	the	server.	It	establishes	a
connection	with	an	existing	profile,	which
is	identified	based	on	the	uniquenick	and
is	validated	by	the	password.

gpDeleteBuddy
This	function	deletes	a	buddy	from	the
local	profile’s	buddy	list.

gpDeleteProfile
This	function	deletes	the	local	profile.	Note
that	this	is	a	blocking	call.

gpDenyBuddyRequest
This	function	denies	a	buddy	request.	It	is
called	in	response	to	the
gpRecvBuddyRequest	callback	getting
called.

gpDestroy
This	function	is	used	to	destroy	a
connection	object.

gpDisable
This	function	disables	a	certain	state.

gpDisconnect
This	function	terminates	the	local
connection.	This	should	always	be	called
when	the	connection	is	no	longer	needed.

gpEnable
This	function	enables	a	certain	state.

gpFreeTransfer
This	function	is	used	to	free	a	file	transfer.

gpGetBlockedProfile

This	function	gets	the	profileid	for	a
particular	player	on	the	blocked	list.

gpGetBuddyIndex
This	function	checks	a	remote	profile	to
see	if	it	is	a	buddy.	If	it	is	a	buddy,	the
buddy’s	index	is	returned.	If	it	is	not	a
buddy,	the	index	will	be	set	to	-1

gpGetBuddyStatus
This	function	gets	the	status	for	a
particular	buddy	on	the	buddy	list.

gpGetCurrentFile
This	function	is	used	to	get	the	current	file
being	transferred.

gpGetErrorCode
This	function	gets	the	current	error	code
for	a	connection.

gpGetErrorString
This	function	gets	the	current	error	string
for	a	connection.

gpGetFileModificationTime
This	function	is	used	to	get	a	file’s
timestamp.

gpGetFileName
This	function	is	used	to	get	the	name	of	a
file.

gpGetFilePath
This	function	is	used	to	get	the	local	path
to	a	file.

gpGetFileProgress
This	function	is	used	to	get	the	progress	of
a	file	being	transferred.

gpGetFileSize
This	function	is	used	to	get	the	size	of	a
file	being	transferred.

gpGetInfo
This	function	gets	info	on	a	particular
profile.

gpGetLoginTicket
Retrieves	a	connection	"token"	that	may
be	used	by	HTTP	requests	to	uniquely
identify	the	player.

gpGetNumBlocked
Gets	the	total	number	of	blocked	players	in
the	local	profile's	blocked	list.

gpGetNumBuddies
This	function	gets	the	number	of	buddies
on	the	local	profile’s	buddy	list.

gpGetNumFiles
This	function	is	used	to	get	the	number	of
files	(including	directories)	being
transferred.

gpGetNumTransfers
Returns	the	number	of	pending	file
transfers.

gpGetReverseBuddies
Get	profiles	that	have	you	on	their	buddy
list.

gpGetTransfer
Returns	the	GPTransfer	object	at	the
specified	index.

gpGetTransferData

This	function	is	used	to	retrieve	arbitrary
user-data	stored	with	a	transfer.

gpGetTransferProfile
This	function	is	used	to	get	the	remote
profile	for	a	transfer.

gpGetTransferProgress
This	function	is	used	to	get	the	total
progress	of	the	transfer,	in	bytes.

gpGetTransferSide
This	function	is	used	to	get	which	side	of
the	transfer	the	local	profile	is	on	(sending
or	receiving).

gpGetTransferSize
This	function	is	used	to	get	the	total	size	of
the	transfer,	in	bytes.

gpGetTransferThrottle
This	function	can	be	used	to	get	a
transfer’s	throttle	setting.	NOTE:	Throttling
is	not	currently	implemented.	Throttle
information	is	transmitted	between	the
local	profile	and	remote	profile,	but	no
throttling	actually	occurs.

gpGetUserNicks
This	function	gets	the	nicknames	for	a
given	e-mail/password	(which	identifies	a
user).

gpIDFromProfile
A	GPProfile	is	now	the	same	as	a	profileid.

gpInitialize
This	function	is	used	to	initialize	a
connection	object.

gpInvitePlayer
This	function	invites	a	player	to	play	a
certain	game.

gpIsBlocked
Returns	gsi_true	if	the	given	ProfileID	is
blocked,	gsi_false	if	not	blocked.

gpIsBuddy
Returns	1	if	the	given	ProfileID	is	a	buddy,
0	if	not	a	buddy

gpIsConnected
Determine	whether	the	GPConnection
object	has	established	a	connection	with
the	server.

gpIsValidEmail
This	function	checks	if	there	is	an	account
with	the	given	e-mail	address.

gpNewProfile
This	function	creates	a	new	profile	for	the
local	user.

gpNewUser
This	function	creates	a	new	user	account
and	a	profile	in	that	account.	Unlike
gpConnectNewUser,	gpNewUser	does	not
login	with	the	new	account.	The	local	user
does	not	need	to	be	connected	to	use	this
function.

gpProcess
This	function	does	any	necessary
processing	that	needs	to	be	done	on
connection.

gpProfileFromID
Translates	a	profile	id	into	a	GPProfile.

gpProfileSearch
This	function	searches	for	profiles	based
on	certain	criteria.

gpProfilesReport
Debug	function	to	dump	information	on
known	profiles	to	the	console.

gpRegisterCdKey
This	function	attempts	to	register	a	cdkey
and	associate	it	with	the	local	profile.

gpRegisterUniqueNick
This	function	attempts	to	register	a
uniquenick	and	associate	it	with	the	local
profile.

gpRejectTransfer
This	function	is	used	to	reject	a	file	transfer
request.

gpRemoveFromBlockedList
Removes	a	remote	profile	from	the	local
player's	blocked	list.

gpRevokeBuddyAuthorization
Remove	the	local	client	from	a	remote
users	buddy	list.

gpSendBuddyMessage
This	function	sends	a	message	to	a	buddy.

gpSendBuddyRequest
This	function	sends	a	request	to	a	remote
profile	to	ask	for	permission	to	add	the
remote	profile	to	the	local	profile’s	buddy
list.

gpSendBuddyUTM Sends	a	UTM	(under-the-table)	message
to	a	buddy.

gpSendFiles
This	function	attempts	to	send	one	or	more
files	(and/or	sub-directory	names)	to
another	profile.

gpSetCallback
This	function	is	used	to	set	callbacks.	The
callbacks	that	get	set	with	this	function	are
called	as	a	result	of	data	received	from	the
server,	such	as	messages	or	status
updates.

gpSetInfoCacheFilename
Sets	the	file	name	for	the	internal	profile
cache.

gpSetInfod
These	functions	are	used	to	set	local	info.

gpSetInfoi
These	functions	are	used	to	set	local	info.

gpSetInfoMask
gpSetInfos

These	functions	are	used	to	set	local	info.

gpSetStatus
This	function	sets	the	local	profile’s	status.

gpSetTransferData
This	function	is	used	to	store	arbitrary
user-data	with	a	transfer.

gpSetTransferDirectory
This	function	can	be	used	to	set	the
directory	that	files	are	received	into.

gpSetTransferThrottle
This	function	can	be	used	to	set	a	throttle
on	a	transfer.	NOTE:	Throttling	is	not
currently	implemented.	Throttle	information
is	transmitted	between	the	local	profile	and
remote	profile,	but	no	throttling	actually
occurs.

gpSkipFile
This	function	is	used	to	skip	transferring	a
certain	file.

gpSuggestUniqueNick
This	function	gets	suggested	uniquenicks
from	the	backend.

gpUserIDFromProfile
This	function	gets	a	profile’s	user	ID.

gpAcceptTransfer
This	function	is	used	to	accept	a	file	transfer	request.

GPResult	gpAcceptTransfer(
GPConnection	*	connection,
GPTransfer	transfer,
const	gsi_char	*	message);

Routine Required	Header Distribution
gpAcceptTransfer <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	The	connection	on	which	to	accept	the	transfer.

transfer
[in]	The	transfer	passed	along	with	the
GP_TRANSFER_SEND_REQUEST.

message
[in]	An	optional	message	to	send	along	with	the	accept.

Remarks

This	function	is	used	to	accept	an	incoming	files	request.	This	will	initiate
the	transfer	from	the	remote	profile	to	the	local	profile.	When	done	with
the	transfer,	the	transfer	should	be	freed	with	a	call	to	gpFreeTransfer.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

gpAcceptTransfer gpAcceptTransferA gpAcceptTransferW

gpAcceptTransferW	and	gpAcceptTransferA	are	UNICODE	and	ANSI
mapped	versions	of	gpAcceptTransfer.	The	arguments	of
gpAcceptTransferA	are	ANSI	strings;	those	of	gpAcceptTransferW	are
wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpRejectTransfer,	gpSendFiles

gpAddToBlockedList
Adds	a	remote	profile	to	the	local	player's	blocked	list.

GPResult	gpAddToBlockedList(
GPConnection	*	connection,
GPProfile	profile);

Routine Required	Header Distribution
gpAddToBlockedList <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

profile
[in]	The	profileid	of	the	player	to	be	blocked.

Remarks

A	blocked	player	is	essentially	invisible	to	player	who	has	him/her
blocked.	The	local	player	will	not	receive	any	communication	from	the
blocked	player,	nor	will	the	local	player	be	able	to	contact	the	blocked
player	in	any	way.

This	function	will	only	work	when	GP	is	connected.	This	function	will	not
return	any	callback	upon	success,	but	the	GP_ERROR	callback	will	be
called	should	an	error	occur	during	the	add	attempt.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpRemoveFromBlockedList,	gpGetNumBlocked,
gpGetBlockedProfile,	gpIsBlocked

gpAuthBuddyRequest
This	function	authorizes	a	buddy	request.	It	is	called	in	response	to	the
gpRecvBuddyRequest	callback	getting	called.

GPResult	gpAuthBuddyRequest(
GPConnection	*	connection,
GPProfile	profile);

Routine Required	Header Distribution
gpAuthBuddyRequest <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	The	connection	on	which	to	authorize	the	request.

profile
[in]	The	remote	profile	whose	buddy	request	is	being	authorized.

Remarks

This	function	is	used	to	authorize	a	buddy	request	received	with	the
gpRecvBuddyRequest	callback.	It	is	used	only	to	authorize.	This	function
does	not	need	to	be	called	immediately	after	a	request	has	been
received,	however	the	request	will	be	lost	as	soon	as	the	local	profile	is
disconnected.
This	function	causes	a	status	message	to	be	sent	to	the	remote	profile.

Section	Reference:	Gamespy	Presence	SDK

gpCheckUser
Validates	a	user's	info,	without	logging	into	the	account.

GPResult	gpCheckUser(
GPConnection	*	connection,
const	gsi_char	nick[GP_NICK_LEN],
const	gsi_char	email[GP_EMAIL_LEN],
const	gsi_char	password[GP_PASSWORD_LEN],
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpCheckUser <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	interface	object	initialized	with	gpInitialize.	(Does	not	have
to	be	connected.)

nick
[in]	The	profile	nickname.

email
[in]	The	profile	email	address.

password
[in]	The	profile	password.

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	A	user	supplied	callback	with	an	arg	type	of
GPConnectResponseArg.

param
[in]	Pointer	to	user	defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	is	rarely	used	but	may	be	usefull	in	certain	situations.	The
main	advantage	is	that	a	user's	info	may	be	verified	without	disrupting
other	external	connections.	(gpConnect	will	usurp	any	previous
connections).

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

gpCheckUser gpCheckUserA gpCheckUserW

gpCheckUserW	and	gpCheckUserA	are	UNICODE	and	ANSI	mapped
versions	of	gpCheckUser.	The	arguments	of	gpCheckUserA	are	ANSI
strings;	those	of	gpCheckUserW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPCheckResponseArg

gpConnect
This	function	is	used	to	establish	a	connection	to	the	server.	It
establishes	a	connection	with	an	existing	profile,	which	is	identified	based
on	the	nick	and	email	and	is	validated	by	the	password.

GPResult	gpConnect(
GPConnection	*	connection,
const	gsi_char	nick[GP_NICK_LEN],
const	gsi_char	email[GP_EMAIL_LEN],
const	gsi_char	password[GP_PASSWORD_LEN],
GPEnum	firewall,
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpConnect <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	interface	object	initialized	with	gpInitialize.

nick
[in]	The	profile	nickname.

email
[in]	The	profile	email	address.

password
[in]	The	profile	password.

firewall
[in]	GP_FIREWALL	or	GP_NO_FIREWALL.	This	option	may	limit	the
users	ability	to	transfer	files.

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	A	user-supplied	callback	with	an	arg	type	of
GPConnectResponseArg

param
[in]	Pointer	to	user-defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	establishes	a	connection	with	the	server.	If	the	local
machine	is	behind	a	firewall,	the	firewall	parameter	should	be	set	to
GP_FIREWALL	so	that	buddy	messages	can	be	sent	through	the	server.
gpDisconnect	should	be	called	when	this	connection	is	ready	to	be
disconnected..
When	the	connection	is	complete,	the	callback	will	be	called.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
gpConnect gpConnectA gpConnectW

gpConnectW	and	gpConnectA	are	UNICODE	and	ANSI	mapped
versions	of	gpConnect.	The	arguments	of	gpConnectA	are	ANSI
strings;	those	of	gpConnectW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPConnectResponseArg

gpConnectNewUser
This	function	is	used	to	create	a	new	user	account	and	profile	and	to	then
establish	a	connection	using	the	profile.

GPResult	gpConnectNewUser(
GPConnection	*	connection,
const	gsi_char	nick[GP_NICK_LEN],
const	gsi_char	uniquenick[GP_UNIQUENICK_LEN],
const	gsi_char	email[GP_EMAIL_LEN],
const	gsi_char	password[GP_PASSWORD_LEN],
const	gsi_char	cdkey[GP_CDKEY_LEN],
GPEnum	firewall,
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpConnectNewUser <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	interface	object	initialized	with	gpInitialize.

nick
[in]	The	desired	nickname	for	the	initial	profile.	The	nickname	can	be
up	to	GP_NICK_LEN	characters	long,	including	the	NULL.

uniquenick
[in]	The	desired	unique	nickname	for	the	profile.

email
[in]	The	desired	e-mail	address	for	the	user.	Can	be	up	to
GP_EMAIL_LEN	characters	long,	including	the	NUL	terminator.

password
[in]	The	desired	password	for	the	profile.	The	password	can	be	up	to
GP_PASSWORD_LEN	characters	long,	including	the	NUL.

cdkey
[in]	An	optional	cdkey	to	associate	with	the	unique	nick.	Normally	left
blank.

firewall
[in]	GP_FIREWALL	or	GO_NO_FIREWALL.	This	option	may	limit	the
users	ability	to	send	files.

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	A	user	supplied	callback	with	an	arg	type	of
GPConnectResponseArg

param
[in]	Pointer	to	user	defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	is	identical	to	gpConnect	(see	above),	except	that	it	first
creates	a	new	user	and	profile,	and	then	connects	the	profile.	If	this
function	is	used	to	try	to	connect	a	profile	that	already	exists,	the
operation	will	fail.	If	the	e-mail	and	password	identify	an	existing	user,	but
the	nick	does	not	match	any	of	that	user’s	profiles,	a	new	profile	will	be
created	and	logged	in.
If	using	uniquenicks,	then	you	will	normally	want	to	use	the	same	string
for	both	the	nick	and	uniquenick	parameters.	If	namespaceID	is	0	then
the	uniquenick	and	cdkey	parameters	should	be	NULL.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

gpConnectNewUser gpConnectNewUserA gpConnectNewUserW

gpConnectNewUserW	and	gpConnectNewUserA	are	UNICODE	and
ANSI	mapped	versions	of	gpConnectNewUser.	The	arguments	of
gpConnectNewUserA	are	ANSI	strings;	those	of
gpConnectNewUserW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPConnectResponseArg

gpConnectPreAuthenticated
This	function	is	used	to	establish	a	connection	to	the	server.	It
establishes	a	connection	using	an	authtoken	and	a	partnerchallenge,
both	obtained	from	a	partner	authentication	system.

GPResult	gpConnectPreAuthenticated(
GPConnection	*	connection,
const	gsi_char	authtoken[GP_AUTHTOKEN_LEN],
const	gsi_char
partnerchallenge[GP_PARTNERCHALLENGE_LEN],
GPEnum	firewall,
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpConnectPreAuthenticated <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	interface	object	initialized	with	gpInitialize.

authtoken
[in]	An	authentication	token	generated	by	a	partner	database.

partnerchallenge
[in]	The	challenge	received	from	the	partner	database.

firewall
[in]	GP_FIREWALL	or	GO_NO_FIREWALL.	This	option	may	limit	the
users	ability	to	send	files.

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	A	user-supplied	callback	with	an	arg	type	of
GPConnectResponseArg

param
[in]	Pointer	to	user-defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	establishes	a	connection	with	the	server.	If	the	local
machine	is	behind	a	firewall,	the	firewall	parameter	should	be	set	to
GP_FIREWALL	so	that	buddy	messages	can	be	sent	through	the	server.
gpDisconnect	should	be	called	when	this	connection	is	ready	to	be
disconnected..
When	the	connection	is	complete,	the	callback	will	be	called.
This	function	should	only	be	used	if	the	namespaceID	parameter	passed
to	gpInitialize	was	greater	than	0.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
gpConnectPreAuthenticated gpConnectPreAuthenticatedA gpConnectPreAuthenticatedW

gpConnectPreAuthenticatedW	and	gpConnectPreAuthenticatedA
are	UNICODE	and	ANSI	mapped	versions	of
gpConnectPreAuthenticated.	The	arguments	of
gpConnectPreAuthenticatedA	are	ANSI	strings;	those	of
gpConnectPreAuthenticatedW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPConnectResponseArg

gpConnectUniqueNick
This	function	is	used	to	establish	a	connection	to	the	server.	It
establishes	a	connection	with	an	existing	profile,	which	is	identified	based
on	the	uniquenick	and	is	validated	by	the	password.

GPResult	gpConnectUniqueNick(
GPConnection	*	connection,
const	gsi_char	uniquenick[GP_UNIQUENICK_LEN],
const	gsi_char	password[GP_PASSWORD_LEN],
GPEnum	firewall,
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpConnectUniqueNick <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	interface	object	initialized	with	gpInitialize.

uniquenick
[in]	The	uniquenick.

password
[in]	The	profile	password.

firewall
[in]	GP_FIREWALL	or	GO_NO_FIREWALL.	This	option	may	limit	the
users	ability	to	send	files.

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	A	user-supplied	callback	with	an	arg	type	of
GPConnectResponseArg

param
[in]	Pointer	to	user-defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	establishes	a	connection	with	the	server.	If	the	local
machine	is	behind	a	firewall,	the	firewall	parameter	should	be	set	to
GP_FIREWALL	so	that	buddy	messages	can	be	sent	through	the	server.
gpDisconnect	should	be	called	when	this	connection	is	ready	to	be
disconnected..
When	the	connection	is	complete,	the	callback	will	be	called.
This	function	should	only	be	used	in	a	custom	namespace	that	does	not
expire	uniquenicks.	This	is	because	if	a	uniquenick	expires	and	is	then
taken	by	another	user,	the	original	user	will	no	longer	be	able	to	login
using	that	uniquenick.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

gpConnectUniqueNick gpConnectUniqueNickA gpConnectUniqueNickW

gpConnectUniqueNickW	and	gpConnectUniqueNickA	are	UNICODE
and	ANSI	mapped	versions	of	gpConnectUniqueNick.	The	arguments
of	gpConnectUniqueNickA	are	ANSI	strings;	those	of
gpConnectUniqueNickW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPConnectResponseArg

gpDeleteBuddy
This	function	deletes	a	buddy	from	the	local	profile’s	buddy	list.

GPResult	gpDeleteBuddy(
GPConnection	*	connection,
GPProfile	profile);

Routine Required	Header Distribution
gpDeleteBuddy <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface	with	an	established	connection.

profile
[in]	The	profile	ID	of	the	buddy	to	delete.

Remarks

This	function	deletes	the	buddy	indicated	by	profile	from	the	local	profile’s
buddy	list.

Section	Reference:	Gamespy	Presence	SDK

gpDeleteProfile
This	function	deletes	the	local	profile.	Note	that	this	is	a	blocking	call.

GPResult	gpDeleteProfile(
GPConnection	*	connection,
GPCallback	callback,
void	*	arg);

Routine Required	Header Distribution
gpDeleteProfile <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface	with	an	established	connection.

callback
[in]	The	callback	used	to	confirm	the	deleted	profile

arg
[in]	User	data

Remarks

This	function	deletes	the	local	profile.	Because	the	connection	is	between
the	local	profile	and	the	server,	this	automatically	ends	this	connection
(gpDisconnect	does	not	need	to	be	called).	There	is	no	way	to	delete	any
profile	other	than	the	current	connected	profile.	The	operation	will	fail	if
the	connected	profile	is	the	user’s	only	profile.	A	successful	delete	will
result	in	the	callback	getting	called.	The	callback	will	have	the	data	about
the	delete	profile	and	whether	it	was	successful	or	not.

Section	Reference:	Gamespy	Presence	SDK

gpDenyBuddyRequest
This	function	denies	a	buddy	request.	It	is	called	in	response	to	the
gpRecvBuddyRequest	callback	getting	called.

GPResult	gpDenyBuddyRequest(
GPConnection	*	connection,
GPProfile	profile);

Routine Required	Header Distribution
gpDenyBuddyRequest <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface	with	an	established	connection.

profile
[in]	The	profile	ID	of	the	player	who	sent	the	AddBuddyRequest;	i.e.,
the	player	you	are	denying

Remarks

This	function	is	used	to	deny	a	buddy	request	received	with	the
gpRecvBuddyRequest	callback.	This	function	does	not	need	to	be	called
immediately	after	a	request	has	been	received.	Nothing	is	sent	to	the
remote	profile	letting	them	know	the	request	was	denied.

Section	Reference:	Gamespy	Presence	SDK

gpDestroy
This	function	is	used	to	destroy	a	connection	object.

void	gpDestroy(
GPConnection	*	connection);

Routine Required	Header Distribution
gpDestroy <gp.h> SDKZIP

Parameters

connection
[in]	A	GP	connection	interface.

Remarks

This	function	destroys	a	connection	object.	This	should	be	called	when	a
GPConnection	object	is	no	longer	needed.	The	object	cannot	be	used
after	it	has	been	destroyed.

Section	Reference:	Gamespy	Presence	SDK

gpDisable
This	function	disables	a	certain	state.

GPResult	gpDisable(
GPConnection	*	connection,
GPEnum	state);

Routine Required	Header Distribution
gpDisable <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

state
[in]	The	"state"	to	disable.

Remarks

This	function	is	used	to	disable	("turn	off")	states	on	the	connection.	The
states	that	can	currently	be	disabled	are	info	caching	and	simulation.	To
enable	a	state	use	gpEnable.

Section	Reference:	Gamespy	Presence	SDK

gpDisconnect
This	function	terminates	the	local	connection.	This	should	always	be
called	when	the	connection	is	no	longer	needed.

void	gpDisconnect(
GPConnection	*	connection);

Routine Required	Header Distribution
gpDisconnect <gp.h> SDKZIP

Parameters

connection
[in]	A	GP	connection	interface.

Remarks

This	function	should	be	called	to	disconnect	a	connection	when	it	is	no
longer	needed.	After	this	call,	connection	can	be	reused	for	a	new
connection.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpDestroy

gpEnable
This	function	enables	a	certain	state.

GPResult	gpEnable(
GPConnection	*	connection,
GPEnum	state);

Routine Required	Header Distribution
gpEnable <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

state
[in]	The	"state"	to	enable.

Remarks

This	function	is	used	to	enable	("turn	on")	states	on	the	connection.	The
states	that	can	currently	be	enabled	are	info	caching	and	simulation.	To
disable	a	state	use	gpDisable.

Section	Reference:	Gamespy	Presence	SDK

gpFreeTransfer
This	function	is	used	to	free	a	file	transfer.

GPResult	gpFreeTransfer(
GPConnection	*	connection,
GPTransfer	transfer);

Routine Required	Header Distribution
gpFreeTransfer <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

Remarks

This	function	is	used	to	free	a	transfer	object.	If	the	transfer	has
completed,	then	this	will	simple	free	the	object’s	resources.	If	the	transfer
has	not	yet	completed,	this	will	also	cancel	the	transfer,	causing	the
remote	profile	to	get	a	GP_TRANSFER_CANCELLED	callback.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpSendFiles,	gpAcceptTransfer,	gpRejectTransfer

gpGetBlockedProfile
This	function	gets	the	profileid	for	a	particular	player	on	the	blocked	list.

GPResult	gpGetBlockedProfile(
GPConnection	*	connection,
int	index,
GPProfile	*	profile);

Routine Required	Header Distribution
gpGetBlockedProfile <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

index
[in]	The	array	index	of	the	blocked	player.

profile
[out]	The	profileid	of	the	blocked	player.

Remarks

The	blocked	list	is	fully	obtained	after	the	login	process	is	complete.
Index	is	a	number	greater	than	or	equal	to	0	and	less	than	the	total
number	of	blocked	players	-	generally	called	in	conjunction	with
gpGetNumBlocked	to	enumerate	through	the	list.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpGetNumBlocked,	gpIsBlocked

gpGetBuddyIndex
This	function	checks	a	remote	profile	to	see	if	it	is	a	buddy.	If	it	is	a	buddy,
the	buddy’s	index	is	returned.	If	it	is	not	a	buddy,	the	index	will	be	set	to
-1.

GPResult	gpGetBuddyIndex(
GPConnection	*	connection,
GPProfile	profile,
int	*	index);

Routine Required	Header Distribution
gpGetBuddyIndex <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

profile
[in]	The	profile	ID	of	the	buddy.

index
[out]	The	internal	array	index	of	the	buddy.

Remarks

This	function	is	used	to	check	if	a	remote	profile	is	a	buddy	and	to	get	its
buddy	index	if	it	is	a	buddy.	This	buddy	index	can	then	be	used	in	a	call
to	gpGetBuddyStatus.
The	buddy	index	may	become	invalid	after	a	buddy	is	added	to	or	deleted
from	the	buddy	list.	If	the	profile	is	not	a	buddy,	GP_NO_ERROR	will	be
returned	(as	long	as	no	other	errors	happen),	and	index	will	be	set	to	-1.

Section	Reference:	Gamespy	Presence	SDK

gpGetBuddyStatus
This	function	gets	the	status	for	a	particular	buddy	on	the	buddy	list.

GPResult	gpGetBuddyStatus(
GPConnection	*	connection,
int	index,
GPBuddyStatus	*	status);

Routine Required	Header Distribution
gpGetBuddyStatus <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

index
[in]	The	array	index	of	the	buddy.

status
[out]	The	status	of	this	buddy.

Remarks

This	function	is	used	to	get	the	status	of	a	particular	buddy.	index	is	a
number	greater	than	or	equal	to	0	and	less	than	the	total	number	of
buddies.
This	function	will	typically	be	called	in	response	to	the
gpRecvBuddyStatus	callback	being	called.

Section	Reference:	Gamespy	Presence	SDK

gpGetCurrentFile
This	function	is	used	to	get	the	current	file	being	transferred.

GPResult	gpGetCurrentFile(
GPConnection	*	connection,
GPTransfer	transfer,
int	*	index);

Routine Required	Header Distribution
gpGetCurrentFile <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	GP	transfer	object

index
[out]	Returns	the	index	of	the	current	transferring	file.

Remarks

This	function	is	used	to	get	the	index	of	the	current	file	being	transferred.
This	will	be	0	until	the	first	file	is	finished,	then	1	until	the	second	file
finishes,	etc.	When	the	transfer	is	complete,	it	will	be	set	to	the	number	of
files	in	the	transfer.

Section	Reference:	Gamespy	Presence	SDK

gpGetErrorCode
This	function	gets	the	current	error	code	for	a	connection.

GPResult	gpGetErrorCode(
GPConnection	*	connection,
GPErrorCode	*	errorCode);

Routine Required	Header Distribution
gpGetErrorCode <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

errorCode
[out]	The	current	error	code.

Remarks

This	function	gets	the	current	error	code	for	connection.	It	can	be	used	to
determine	the	specific	cause	of	the	most	recent	error.	See	the	GP
header,	gp.h,	for	all	of	the	possible	error	codes.

Section	Reference:	Gamespy	Presence	SDK

gpGetErrorString
This	function	gets	the	current	error	string	for	a	connection.

GPResult	gpGetErrorString(
GPConnection	*	connection,
gsi_char	errorString[GP_ERROR_STRING_LEN]);

Routine Required	Header Distribution
gpGetErrorString <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

errorString
[in]	A	text	description	of	the	current	error.

Remarks

This	function	gets	the	current	error	string	for	connection.	The	error	string
is	a	text	description	of	the	most	recent	error	that	occurred	on	this
connection.	If	no	errors	have	occurred	on	this	connection,	the	error	string
will	be	empty	("").

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

gpGetErrorString gpGetErrorStringA gpGetErrorStringW

gpGetErrorStringW	and	gpGetErrorStringA	are	UNICODE	and	ANSI
mapped	versions	of	gpGetErrorString.	The	arguments	of
gpGetErrorStringA	are	ANSI	strings;	those	of	gpGetErrorStringW	are
wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

gpGetFileModificationTime
This	function	is	used	to	get	a	file’s	timestamp.

GPResult	gpGetFileModificationTime(
GPConnection	*	connection,
GPTransfer	transfer,
int	index,
unsigned	long	*	modTime);

Routine Required	Header Distribution
gpGetFileModificationTime <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

index
[in]	Index	of	the	file	within	the	GPTransfer	object.

modTime
[out]	The	modification	time.

Remarks

This	function	is	used	to	get	the	timestamp	for	a	file	being	transferred.
This	is	typically	used	by	the	receiver	to	set	the	file’s	timestamp	correctly
after	a	file	has	been	received.

Section	Reference:	Gamespy	Presence	SDK

gpGetFileName
This	function	is	used	to	get	the	name	of	a	file.

GPResult	gpGetFileName(
GPConnection	*	connection,
GPTransfer	transfer,
int	index,
gsi_char	**	name);

Routine Required	Header Distribution
gpGetFileName <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

index
[in]	The	index	of	the	file	within	the	GPTransfer	object.

name
[out]	The	name	of	the	file.

Remarks

This	function	is	used	to	get	the	name	of	a	file	in	the	transfer.	The	receiver
should	use	this	name	to	determine	where	to	put	the	file	after	it	is
received.	It	may	be	a	simple	name	("file.ext"),	or	it	may	contain	a
directory	path	("files/file.ext").	Any	slashes	in	the	name	will	be	UNIX-style
slashes	("files/file.ext")	as	opposed	to	Windows	style	slashes
("files\file.ext").

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

gpGetFileName gpGetFileNameA gpGetFileNameW

gpGetFileNameW	and	gpGetFileNameA	are	UNICODE	and	ANSI
mapped	versions	of	gpGetFileName.	The	arguments	of
gpGetFileNameA	are	ANSI	strings;	those	of	gpGetFileNameW	are
wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

gpGetFilePath
This	function	is	used	to	get	the	local	path	to	a	file.

GPResult	gpGetFilePath(
GPConnection	*	connection,
GPTransfer	transfer,
int	index,
gsi_char	**	path);

Routine Required	Header Distribution
gpGetFilePath <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

index
[in]	The	index	of	the	file	within	the	GPTransfer	object.

path
[in]	The	path	of	the	file.

Remarks

This	function	is	used	to	get	the	local	path	to	a	file.	For	the	sender,	this	will
be	the	same	path	specified	in	the	gpSendFilesCallback.	For	the	receiver,
this	will	be	NULL	for	directories	and	for	files	that	haven’t	started
transferring	yet.	For	files	that	have	are	either	transferring	or	have	finished
transferring,	this	is	the	local	path	where	the	file	is	being	stored.	It	is	the
application’s	responsibility	to	move	the	file	to	an	appropriate	location
(likely	using	the	file’s	name)	after	the	file	has	finished	transferring.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

gpGetFilePath gpGetFilePathA gpGetFilePathW

gpGetFilePathW	and	gpGetFilePathA	are	UNICODE	and	ANSI	mapped
versions	of	gpGetFilePath.	The	arguments	of	gpGetFilePathA	are	ANSI
strings;	those	of	gpGetFilePathW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

gpGetFileProgress
This	function	is	used	to	get	the	progress	of	a	file	being	transferred.

GPResult	gpGetFileProgress(
GPConnection	*	connection,
GPTransfer	transfer,
int	index,
int	*	progress);

Routine Required	Header Distribution
gpGetFileProgress <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

index
[in]	The	index	of	the	file	within	the	GPTransfer	object.

progress
[in]	The	transfer	progress.

Remarks

This	function	is	used	to	get	the	progress	of	a	file	being	transferred,	or	in
other	words,	the	number	of	bytes	of	the	file	either	sent	or	received	so	far.
If	the	file	hasn’t	started	transferring	yet,	the	progress	will	be	0.	The
progress	will	be	continually	updated	while	the	file	is	being	transferred.	If
the	file	finishes	transferring	successfully,	the	progress	should	be	the
same	as	the	file’s	size.

Section	Reference:	Gamespy	Presence	SDK

gpGetFileSize
This	function	is	used	to	get	the	size	of	a	file	being	transferred.

GPResult	gpGetFileSize(
GPConnection	*	connection,
GPTransfer	transfer,
int	index,
int	*	size);

Routine Required	Header Distribution
gpGetFileSize <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

index
[in]	The	index	of	the	file	within	the	GPTransfer	object.

size
[in]	The	size	of	the	file.

Remarks

This	function	is	used	to	get	the	size	of	a	file	being	transferred.	The	size	of
each	file	is	checked	when	the	transfer	is	initialized,	and	this	is	the	size
that	will	be	reported	before	the	file	is	actually	transferred.	The	size	of	the
file	is	checked	again	when	the	file	actually	begins	transferring,	and	this	is
the	size	that	will	be	reported	from	that	moment	on	(the	two	sizes	will	only
be	different	if	the	file	has	changed	during	that	time).

Section	Reference:	Gamespy	Presence	SDK

gpGetInfo
This	function	gets	info	on	a	particular	profile.

GPResult	gpGetInfo(
GPConnection	*	connection,
GPProfile	profile,
GPEnum	checkCache,
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpGetInfo <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

profile
[in]	The	profile	ID	of	the	user	to	get	info	on.

checkCache
[in]	When	set	to	GP_CHECK_CACHE	the	SDK	will	use	the	currently
known	info.

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	A	user-supplied	callback	with	an	argument	type	of
GPGetInfoResponseArg

param
[in]	Pointer	to	user-defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	gets	profile	info	for	the	profile	object	profile.	When	the	info
has	been	retrieved,	the	callback	will	be	called..	If	info-caching	is	enabled,
the	info	may	be	available	locally,	in	which	case	it	will	be	returned
immediately	if	checkCache	is	GP_CHECK_CACHE.	Otherwise,	the
server	will	be	contacted	for	the	info.	If	the	server	needs	to	be	contacted,
then	the	function	will	return	immediately	in	non-blocking	mode.
If	info-caching	is	enabled,	any	info	retrieved	from	the	server	will	be
cached.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPGetInfoResponseArg

gpGetLoginTicket
Retrieves	a	connection	"token"	that	may	be	used	by	HTTP	requests	to
uniquely	identify	the	player.

GPResult	gpGetLoginTicket(
GPConnection	*	connection,
char	loginTicket[GP_LOGIN_TICKET_LEN]);

Routine Required	Header Distribution
gpGetLoginTicket <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

loginTicket
[out]	The	login	ticket.

Remarks

Retrieves	a	connection	"token"	that	may	be	used	by	HTTP	requests	to
uniquely	identify	the	player.

Section	Reference:	Gamespy	Presence	SDK

gpGetNumBlocked
Gets	the	total	number	of	blocked	players	in	the	local	profile's	blocked	list.

GPResult	gpGetNumBlocked(
GPConnection	*	connection,
int	*	numBlocked);

Routine Required	Header Distribution
gpGetNumBlocked <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

numBlocked
[out]	The	total	number	of	blocked	players	in	the	local	profile's
blocked	list.

Remarks

This	function	will	return	0	when	GP	is	not	connected.	The	blocked	list	is
fully	obtained	after	the	login	process	is	complete.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpGetBlockedProfile,	gpIsBlocked

gpGetNumBuddies
This	function	gets	the	number	of	buddies	on	the	local	profile’s	buddy	list.

GPResult	gpGetNumBuddies(
GPConnection	*	connection,
int	*	numBuddies);

Routine Required	Header Distribution
gpGetNumBuddies <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

numBuddies
[out]	The	number	of	buddies.

Remarks

This	function	gets	the	number	of	buddies	on	the	local	profile’s	buddy	list.
It	may	take	some	time	to	receive	the	total	number	of	buddies	from	the
server,	so	this	function	may	report	a	number	smaller	than	the	actual	total
while	the	complete	buddy	list	is	being	received.	To	see	the	status	of	each
buddy,	call	gpGetBuddyStatus.
The	number	of	buddies	is	only	valid	until	a	buddy	is	added	to	or	deleted
from	the	buddy	list.

Section	Reference:	Gamespy	Presence	SDK

gpGetNumFiles
This	function	is	used	to	get	the	number	of	files	(including	directories)
being	transferred.

GPResult	gpGetNumFiles(
GPConnection	*	connection,
GPTransfer	transfer,
int	*	num);

Routine Required	Header Distribution
gpGetNumFiles <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	GPTransfer	object.

num
[out]	The	number	of	files	within	the	GPTransfer	object.

Remarks

This	function	is	used	to	get	the	number	of	files	being	transferred.	This
total	includes	any	directory	names	that	are	being	sent.

Section	Reference:	Gamespy	Presence	SDK

gpGetNumTransfers
Returns	the	number	of	pending	file	transfers.

GPResult	gpGetNumTransfers(
GPConnection	*	connection,
int	*	num);

Routine Required	Header Distribution
gpGetNumTransfers <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

num
[out]	The	number	of	pending	transfers.

Remarks

Returns	the	number	of	pending	file	transfers.

Section	Reference:	Gamespy	Presence	SDK

gpGetReverseBuddies
Get	profiles	that	have	you	on	their	buddy	list.

GPResult	gpGetReverseBuddies(
GPConnection	*	connection,
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpGetReverseBuddies <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	A	GP	callback	that	will	be	passed	a
GPGetReverseBuddiesResponseArg.

param
[in]	Pointer	to	user-defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

Get	profiles	that	have	you	on	their	buddy	list.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPGetReverseBuddiesResponseArg

gpGetTransfer
Returns	the	GPTransfer	object	at	the	specified	index.

GPResult	gpGetTransfer(
GPConnection	*	connection,
int	index,
GPTransfer	*	transfer);

Routine Required	Header Distribution
gpGetTransfer <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

index
[in]	Index	of	the	GPTransfer	object.

transfer
[out]	A	pointer	to	a	GPTransfer	object.

Remarks

Returns	the	GPTransfer	object	at	the	specified	index.

Section	Reference:	Gamespy	Presence	SDK

gpGetTransferData
This	function	is	used	to	retrieve	arbitrary	user-data	stored	with	a	transfer.

void	*	gpGetTransferData(
GPConnection	*	connection,
GPTransfer	transfer);

Routine Required	Header Distribution
gpGetTransferData <gp.h> SDKZIP

Return	Value

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

Remarks

This	function	allows	an	application	to	retrieve	arbitrary	user-data	stored
with	a	transfer.

Section	Reference:	Gamespy	Presence	SDK

gpGetTransferProfile
This	function	is	used	to	get	the	remote	profile	for	a	transfer.

GPResult	gpGetTransferProfile(
GPConnection	*	connection,
GPTransfer	transfer,
GPProfile	*	profile);

Routine Required	Header Distribution
gpGetTransferProfile <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

profile
[out]	The	remote	profile	is	stored	here.

Remarks

This	function	is	used	to	get	the	remote	profile	for	a	transfer.

Section	Reference:	Gamespy	Presence	SDK

gpGetTransferProgress
This	function	is	used	to	get	the	total	progress	of	the	transfer,	in	bytes.

GPResult	gpGetTransferProgress(
GPConnection	*	connection,
GPTransfer	transfer,
int	*	progress);

Routine Required	Header Distribution
gpGetTransferProgress <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

progress
[out]	The	progress	of	the	transfer,	in	bytes,	is	stored	here.

Remarks

This	function	is	used	to	determine	the	total	progress	of	a	file	transfer.	This
is	the	total	number	of	bytes	of	file	data	that	have	been	transferred	so	far.

Section	Reference:	Gamespy	Presence	SDK

gpGetTransferSide
This	function	is	used	to	get	which	side	of	the	transfer	the	local	profile	is
on	(sending	or	receiving).

GPResult	gpGetTransferSide(
GPConnection	*	connection,
GPTransfer	transfer,
GPEnum	*	side);

Routine Required	Header Distribution
gpGetTransferSide <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

side
[out]	The	side	is	stored	here.	This	will	be	either
GP_TRANSFER_SENDER	or	GP_TRANSFER_RECEIVER

Remarks

This	function	is	used	to	determine	if	the	local	profile	is	the	sender	or
receiver	for	this	transfer.	This	is	often	useful	inside	of	the
gpTransferCallback	when	dealing	with	a	message	that	both	the	sender
and	receiver	may	get,	such	as	GP_FILE_END.

Section	Reference:	Gamespy	Presence	SDK

gpGetTransferSize
This	function	is	used	to	get	the	total	size	of	the	transfer,	in	bytes.

GPResult	gpGetTransferSize(
GPConnection	*	connection,
GPTransfer	transfer,
int	*	size);

Routine Required	Header Distribution
gpGetTransferSize <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

size
[out]	The	size	of	the	transfer,	in	bytes,	will	be	stored	here.

Remarks

This	function	is	used	to	determine	the	total	size	of	a	file	transfer.	This	is
the	sum	of	the	sizes	of	all	the	files	being	transferred.	When	a	file	is
transferred,	its	size	may	be	different	than	the	size	originally	reported	for
the	file.	This	can	cause	the	total	size	of	the	transfer	to	change	during	the
course	of	the	transfer.

Section	Reference:	Gamespy	Presence	SDK

gpGetTransferThrottle
This	function	can	be	used	to	get	a	transfer’s	throttle	setting.
NOTE:	Throttling	is	not	currently	implemented.	Throttle	information	is
transmitted	between	the	local	profile	and	remote	profile,	but	no	throttling
actually	occurs.

GPResult	gpGetTransferThrottle(
GPConnection	*	connection,
GPTransfer	transfer,
int	*	throttle);

Routine Required	Header Distribution
gpGetTransferThrottle <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

throttle
[out]	The	throttle	setting	is	stored	here.

Remarks

NOTE:	Throttling	is	not	currently	implemented.
This	function	is	used	to	get	the	throttle	setting	for	a	transfer.	If	throttle	is
positive,	it	is	the	throttle	setting	in	bytes-per-second.	If	zero,	the	transfer
is	paused.	If	–1,	then	there	is	no	throttling.

Section	Reference:	Gamespy	Presence	SDK

gpGetUserNicks
This	function	gets	the	nicknames	for	a	given	e-mail/password	(which
identifies	a	user).

GPResult	gpGetUserNicks(
GPConnection	*	connection,
const	gsi_char	email[GP_EMAIL_LEN],
const	gsi_char	password[GP_PASSWORD_LEN],
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpGetUserNicks <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.	(Does	not	have	to	be	connected)

email
[in]	The	account	e-mail	address.

password
[in]	The	account	password.

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	A	user-supplied	callback	with	an	arg	type	of
GPGetUserNicksResponseArg

param
[in]	Pointer	to	user-defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	contacts	the	Search	Manager	and	gets	a	list	of	this	user's
nicks	(profiles).

If	you	are	unsure	if	the	email	address	provided	to	this	function	is	a	valid
email	address,	call	gpIsValidEmail	first.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

gpGetUserNicks gpGetUserNicksA gpGetUserNicksW

gpGetUserNicksW	and	gpGetUserNicksA	are	UNICODE	and	ANSI
mapped	versions	of	gpGetUserNicks.	The	arguments	of
gpGetUserNicksA	are	ANSI	strings;	those	of	gpGetUserNicksW	are
wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPGetUserNicksResponseArg,	gpIsValidEmail

gpIDFromProfile
A	GPProfile	is	now	the	same	as	a	profileid.

GPResult	gpIDFromProfile(
GPConnection	*	connection,
GPProfile	profile,
int	*	id);

Routine Required	Header Distribution
gpIDFromProfile <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

profile
[in]	The	GPProfile

id
[out]	The	profile	ID	of	the	GPProfile.

Remarks

A	GPProfile	is	now	the	same	as	a	profileid.

Section	Reference:	Gamespy	Presence	SDK

gpInitialize
This	function	is	used	to	initialize	a	connection	object.

GPResult	gpInitialize(
GPConnection	*	connection,
int	productID,
int	namespaceID,
int	partnerID);

Routine Required	Header Distribution
gpInitialize <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

productID
[in]	The	application's	product	ID.	Contact	devsupport@gamespy.com
to	obtain	one.

namespaceID
[in]	The	application's	namespace	ID.	0	for	no	namespace,	1	for	the
default	namespace,	other	numbers	for	custom	namespaces.

partnerID
[in]	The	application's	partner	ID.	Typically	this	will	be	set	to	the	value
defined	by	GP_PARTNERID_GAMESPY.

Remarks

This	function	initialize	a	connection	object.	As	long	as	there	are	no	errors,
this	object	should	stay	valid	until	gpDestroy	is	called.	After	the	object	is
initialized	by	this	function,	callbacks	can	be	set	for	the	connection,	as	well
as	any	other	states,	such	as	info-caching.
namespaceID	is	normally	0	for	no	namespace	or	1	for	the	default
GameSpy	namespace	(used	by	GameSpy	Arcade).	If	your	game	is	using
a	custom	namespace	you	can	contact	devsupport@gamespy.com	to	find
out	what	namespace	ID	to	use.
partnerID	is	normally	the	value	defined	by	GP_PARTNERID_GAMESPY.

Section	Reference:	Gamespy	Presence	SDK

gpInvitePlayer
This	function	invites	a	player	to	play	a	certain	game.

GPResult	gpInvitePlayer(
GPConnection	*	connection,
GPProfile	profile,
int	productID,
const	gsi_char	location[GP_LOCATION_STRING_LEN]);

Routine Required	Header Distribution
gpInvitePlayer <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

profile
[in]	The	profile	ID	of	the	player	to	invite.

productID
[in]	The	product	ID	of	the	game	to	invite	the	player	to.

location
[in]	A	message	to	send	along	with	the	invite.	See	remarks.

Remarks

This	function	is	used	to	invite	another	profile	to	join	the	local	profile	in	a
game’s	title	room.	The	remote	profile	will	receive	a
GP_RECV_GAME_INVITE	callback.

gpInvitePlayer	may	now	take	an	optional	text	message	to	be	sent	along
with	the	invite.	This	usually	contains	the	server	IP	and	other	connecting
information.	This	parameter	may	be	NULL.	The	max	length	for	the
location	info	is	255	characters.	When	compiling	in	Unicode	mode,	the
location	will	be	converted	to	ASCII.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

gpInvitePlayer gpInvitePlayerA gpInvitePlayerW

gpInvitePlayerW	and	gpInvitePlayerA	are	UNICODE	and	ANSI
mapped	versions	of	gpInvitePlayer.	The	arguments	of	gpInvitePlayerA
are	ANSI	strings;	those	of	gpInvitePlayerW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

gpIsBlocked
Returns	gsi_true	if	the	given	ProfileID	is	blocked,	gsi_false	if	not	blocked.

gsi_bool	gpIsBlocked(
GPConnection	*	connection,
GPProfile	profile);

Routine Required	Header Distribution
gpIsBlocked <gp.h> SDKZIP

Return	Value

Returns	gsi_true	if	the	given	ProfileID	is	blocked,	gsi_false	if	not	blocked.

Parameters

connection
[in]	A	GP	connection	interface.

profile
[in]	The	profile	ID	of	the	player	to	check.

Section	Reference:	Gamespy	Presence	SDK

gpIsBuddy
Returns	1	if	the	given	ProfileID	is	a	buddy,	0	if	not	a	buddy.

int	gpIsBuddy(
GPConnection	*	connection,
GPProfile	profile);

Routine Required	Header Distribution
gpIsBuddy <gp.h> SDKZIP

Return	Value

Returns	1	if	the	given	ProfileID	is	a	buddy,	0	if	not	a	buddy

Parameters

connection
[in]	A	GP	connection	interface.

profile
[in]	The	profile	ID	of	the	player	to	check.

Remarks

Returns	1	if	the	given	ProfileID	is	a	buddy,	0	if	not	a	buddy.

Section	Reference:	Gamespy	Presence	SDK

gpIsConnected
Determine	whether	the	GPConnection	object	has	established	a
connection	with	the	server.

GPResult	gpIsConnected(
GPConnection	*	connection,
GPEnum	*	connected);

Routine Required	Header Distribution
gpIsConnected <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

connected
[out]	The	connected	state.	GP_CONNECTED	or
GP_NOT_CONNECTED.	(See	remarks.)

Remarks

If	the	connection	parameter	has	not	been	initialized	with	gpInitialize,	the
connected	parameter	will	be	invalid	and	the	return	value	will	be
GP_PARAMETER_ERROR.

Section	Reference:	Gamespy	Presence	SDK

gpIsValidEmail
This	function	checks	if	there	is	an	account	with	the	given	e-mail	address.

GPResult	gpIsValidEmail(
GPConnection	*	connection,
const	gsi_char	email[GP_EMAIL_LEN],
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpIsValidEmail <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

email
[in]	The	e-mail	address	to	list	accounts	for.

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	A	user	supplied	callback	with	an	arg	of	the	type
GPIsValidEmailResponseArg

param
[in]	Pointer	to	user	defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	contacts	the	Search	Manager	and	checks	to	see	if	there	is	a
user	with	the	given	e-mail	address.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

gpIsValidEmail gpIsValidEmailA gpIsValidEmailW

gpIsValidEmailW	and	gpIsValidEmailA	are	UNICODE	and	ANSI
mapped	versions	of	gpIsValidEmail.	The	arguments	of	gpIsValidEmailA
are	ANSI	strings;	those	of	gpIsValidEmailW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPIsValidEmailResponseArg

gpNewProfile
This	function	creates	a	new	profile	for	the	local	user.

GPResult	gpNewProfile(
GPConnection	*	connection,
const	gsi_char	nick[GP_NICK_LEN],
GPEnum	replace,
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpNewProfile <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

nick
[in]	The	new	profile	nickname.

replace
[in]	Replacement	option.	(See	remarks.)

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	A	user-supplied	callback	with	an	arg	type	of
GPNewProfileResponseArg.

param
[in]	Pointer	to	user	defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	creates	a	new	profile	for	the	local	user.	This	function	does
not	make	the	new	profile	the	current	profile.	To	switch	to	the	newly
created	profile,	the	user	must	disconnect	and	then	connect	with	the	new
nickname.
If	the	nick	for	the	new	profile	is	the	same	as	the	nick	for	an	existing
profile,	an	error	will	be	generated,	unless	replace	is	GP_REPLACE.	An
application	should	use	GP_DONT_REPLACE	by	default.	If	an	error	with
the	error	code	of	GP_NEWPROFILE_BAD_NICK	is	received,	this	means
that	a	profile	with	the	provided	nickname	already	exists.	The	application
should	at	this	point	ask	the	user	if	he	wants	to	replace	the	old	profile.	If
the	user	does	want	to	replace	the	old	profile,	gpNewProfile	should	be
called	again	with	replace	set	to	GP_REPLACE.
When	the	new	profile	is	created,	the	callback	will	be	called.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

gpNewProfile gpNewProfileA gpNewProfileW

gpNewProfileW	and	gpNewProfileA	are	UNICODE	and	ANSI	mapped
versions	of	gpNewProfile.	The	arguments	of	gpNewProfileA	are	ANSI
strings;	those	of	gpNewProfileW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPNewProfileResponseArg

gpNewUser
This	function	creates	a	new	user	account	and	a	profile	in	that	account.
Unlike	gpConnectNewUser,	gpNewUser	does	not	login	with	the	new
account.	The	local	user	does	not	need	to	be	connected	to	use	this
function.

GPResult	gpNewUser(
GPConnection	*	connection,
const	gsi_char	nick[GP_NICK_LEN],
const	gsi_char	uniquenick[GP_UNIQUENICK_LEN],
const	gsi_char	email[GP_EMAIL_LEN],
const	gsi_char	password[GP_PASSWORD_LEN],
const	gsi_char	cdkey[GP_CDKEY_LEN],
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpNewUser <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	The	connection	on	which	to	create	the	new	user.

nick
[in]	The	desired	nickname	for	the	initial	profile	of	the	new	account.

uniquenick
[in]	The	desired	uniquenick	for	the	initial	profile	of	the	new	account.

email
[in]	The	desired	e-mail	for	the	initial	profile	of	the	new	account.

password
[in]	The	desired	password	for	the	initial	profile	of	the	new	account.

cdkey
[in]	An	optional	CDKey	to	associate	with	the	uniquenick.

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	User	supplied	callback	function	with	an	arg	type	of
GPNewUserResponseArg.

param
[in]	Pointer	to	user	defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	creates	a	new	user	and	profile.	The	nick,	email,	and
password	are	required	parameters,	uniquenick	and	cdkey	are	optional.
This	function	is	similar	to	gpConnectNewUser,	however	it	does	not
connect	the	new	user.	You	do	not	need	to	be	connected	to	use	this
function.
When	the	new	user	is	created,	the	callback	will	be	called.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
gpNewUser gpNewUserA gpNewUserW

gpNewUserW	and	gpNewUserA	are	UNICODE	and	ANSI	mapped
versions	of	gpNewUser.	The	arguments	of	gpNewUserA	are	ANSI
strings;	those	of	gpNewUserW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPNewUserResponseArg

gpProcess
This	function	does	any	necessary	processing	that	needs	to	be	done	on
connection.

GPResult	gpProcess(
GPConnection	*	connection);

Routine Required	Header Distribution
gpProcess <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

Remarks

This	function	does	any	necessary	processing	that	needs	to	be	done	on
connection.	This	includes	checking	for	buddy	messages,	checking	for
buddy	status	changes,	and	completing	any	non-blocking	operations.	This
functions	should	be	called	frequently,	typically	in	the	application’s	main
loop.	If	an	operation	is	finished	during	a	call	to	this	function,	any
necessary	callbacks	will	be	called.

Section	Reference:	Gamespy	Presence	SDK

gpProfileFromID
Translates	a	profile	id	into	a	GPProfile.

GPResult	gpProfileFromID(
GPConnection	*	connection,
GPProfile	*	profile,
int	id);

Routine Required	Header Distribution
gpProfileFromID <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

profile
[out]	The	GPProfile	for	the	given	profile	ID.

id
[in]	The	profile	ID.

Remarks

This	function	is	no	longer	needed.	GPProfiles	are	now	the	same	as
profile	id's.

Section	Reference:	Gamespy	Presence	SDK

gpProfileSearch
This	function	searches	for	profiles	based	on	certain	criteria.

GPResult	gpProfileSearch(
GPConnection	*	connection,
const	gsi_char	nick[GP_NICK_LEN],
const	gsi_char	uniquenick[GP_UNIQUENICK_LEN],
const	gsi_char	email[GP_EMAIL_LEN],
const	gsi_char	firstname[GP_FIRSTNAME_LEN],
const	gsi_char	lastname[GP_LASTNAME_LEN],
int	icquin,
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpProfileSearch <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

nick
[in]	If	not	NULL	or	"",	search	for	profiles	with	this	nick.

uniquenick
[in]	If	not	NULL	or	"",	search	for	profiles	with	this	uniquenick.

email
[in]	If	not	NULL	or	"",	search	for	profiles	with	this	email.

firstname
[in]	If	not	NULL	or	"",	search	for	profiles	with	this	firstname.

lastname
[in]	If	not	NULL	or	"",	search	for	profiles	with	this	lastname.

icquin
[in]	If	not	0,	search	for	profiles	with	this	icquin.

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	A	user	supplied	callback	with	an	arg	type	of
GPProfileSearchResponseArg.

param
[in]	Pointer	to	user	defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	contacts	the	Search	Manager	and	attempts	to	find	all
profiles	that	match	the	search	criteria.	A	profile	matches	the	provided
search	criteria	only	if	it’s	corresponding	values	are	the	same	as	those
provided.	Currently,	there	is	no	substring	matching,	and	the	criteria	is
case-sensitive.
When	the	search	is	complete,	the	callback	will	be	called.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

gpProfileSearch gpProfileSearchA gpProfileSearchW

gpProfileSearchW	and	gpProfileSearchA	are	UNICODE	and	ANSI
mapped	versions	of	gpProfileSearch.	The	arguments	of
gpProfileSearchA	are	ANSI	strings;	those	of	gpProfileSearchW	are
wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPProfileSearchResponseArg

gpProfilesReport
Debug	function	to	dump	information	on	known	profiles	to	the	console.

void	gpProfilesReport(
GPConnection	*	connection,
void	(*)(const	char	*	output)	report);

Routine Required	Header Distribution
gpProfilesReport <gp.h> SDKZIP

Parameters

connection
[in]	A	GP	connection	interface.

report
[in]	A	user-supplied	function	to	be	triggered	with	each	line	of	info.
See	remarks.

Remarks

This	is	a	debug-only	function	that	will	dump	the	contents	of	the	internal
profile	map	to	the	user-supplied	function.

The	user-supplied	function	is	most	commonly	printf.

Section	Reference:	Gamespy	Presence	SDK

gpRegisterCdKey
This	function	attempts	to	register	a	cdkey	and	associate	it	with	the	local
profile.

GPResult	gpRegisterCdKey(
GPConnection	*	connection,
const	gsi_char	cdkey[GP_CDKEY_LEN],
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpRegisterCdKey <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

cdkey
[in]	A	CDKey	to	associate	with	the	local	profile..

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	A	user	supplied	callback	with	an	arg	type	of
GPRegisterCdKeyResponseArg.

param
[in]	Pointer	to	user-defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	will	only	work	if	GP	is	connected.	Note	that	only	one	CDKey
can	be	associated	with	a	single	profile.	Once	a	CDKey	has	been
associated,	it	cannot	be	associated	with	any	other	profiles.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

gpRegisterCdKey gpRegisterCdKeyA gpRegisterCdKeyW

gpRegisterCdKeyW	and	gpRegisterCdKeyA	are	UNICODE	and	ANSI
mapped	versions	of	gpRegisterCdKey.	The	arguments	of
gpRegisterCdKeyA	are	ANSI	strings;	those	of	gpRegisterCdKeyW	are
wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPRegisterCdKeyResponseArg

gpRegisterUniqueNick
This	function	attempts	to	register	a	uniquenick	and	associate	it	with	the
local	profile.

GPResult	gpRegisterUniqueNick(
GPConnection	*	connection,
const	gsi_char	uniquenick[GP_UNIQUENICK_LEN],
const	gsi_char	cdkey[GP_CDKEY_LEN],
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpRegisterUniqueNick <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

uniquenick
[in]	The	desired	uniquenick	It	can	be	up	to	GP_UNIQUENICK_LEN
characters	long,	including	the	NUL.

cdkey
[in]	An	optional	CDKey	to	associate	with	the	uniquenick.	If	not	using
CDKeys	this	should	be	NULL.

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	A	user	supplied	callback	with	an	arg	type	of
GPRegisterUniqueNickResponseArg.

param
[in]	Pointer	to	user-defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	attempts	to	register	a	uniquenick	and	associate	it	with	the
local	profile.	It	should	only	be	used	if	the	namespaceID	passed	to
gpInitialize	was	greater	than	0.	The	backend	makes	certain	checks	on	a
uniquenick	before	it	is	allowed	to	be	registered.	For	details	on	what	is
checked,	see	the	"Uniquenick	Checks"	section	at	the	bottom	of
"GameSpy	Presence	SDK.doc".

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

gpRegisterUniqueNick gpRegisterUniqueNickA gpRegisterUniqueNickW

gpRegisterUniqueNickW	and	gpRegisterUniqueNickA	are	UNICODE
and	ANSI	mapped	versions	of	gpRegisterUniqueNick.	The	arguments
of	gpRegisterUniqueNickA	are	ANSI	strings;	those	of
gpRegisterUniqueNickW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPRegisterUniqueNickResponseArg

gpRejectTransfer
This	function	is	used	to	reject	a	file	transfer	request.

GPResult	gpRejectTransfer(
GPConnection	*	connection,
GPTransfer	transfer,
const	gsi_char	*	message);

Routine Required	Header Distribution
gpRejectTransfer <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

message
[in]	An	optional	message	to	send	along	with	the	rejection.

Remarks

This	function	is	used	to	reject	an	incoming	files	request.	This	will	also	free
the	transfer,	so	it	should	not	be	referenced	again	once	rejected.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

gpRejectTransfer gpRejectTransferA gpRejectTransferW

gpRejectTransferW	and	gpRejectTransferA	are	UNICODE	and	ANSI
mapped	versions	of	gpRejectTransfer.	The	arguments	of
gpRejectTransferA	are	ANSI	strings;	those	of	gpRejectTransferW	are
wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpSendFiles,	gpAcceptTransfer

gpRemoveFromBlockedList
Removes	a	remote	profile	from	the	local	player's	blocked	list.

GPResult	gpRemoveFromBlockedList(
GPConnection	*	connection,
GPProfile	profile);

Routine Required	Header Distribution
gpRemoveFromBlockedList <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

profile
[in]	The	profileid	of	the	player	to	be	removed	from	the	blocked	list.

Remarks

A	blocked	player	is	essentially	invisible	to	player	who	has	him/her
blocked.	The	local	player	will	not	receive	any	communication	from	the
blocked	player,	nor	will	the	local	player	be	able	to	contact	the	blocked
player	in	any	way.

This	function	will	only	work	when	GP	is	connected.	This	function	will	not
return	any	callback	upon	success,	but	the	GP_ERROR	callback	will	be
called	should	an	error	occur	during	the	removal	attempt.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpAddToBlockedList,	gpGetNumBlocked,
gpGetBlockedProfile,	gpIsBlocked

gpRevokeBuddyAuthorization
Remove	the	local	client	from	a	remote	users	buddy	list.

GPResult	gpRevokeBuddyAuthorization(
GPConnection	*	connection,
GPProfile	profile);

Routine Required	Header Distribution
gpRevokeBuddyAuthorization <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

profile
[in]	The	profile	ID	of	the	remote	player.

Remarks

Use	this	function	when	the	local	client	no	longer	wants	the	remote	player
to	be	able	to	send	buddy	messages	or	view	status	info.

Section	Reference:	Gamespy	Presence	SDK

gpSendBuddyMessage
This	function	sends	a	message	to	a	buddy.

GPResult	gpSendBuddyMessage(
GPConnection	*	connection,
GPProfile	profile,
const	gsi_char	*	message);

Routine Required	Header Distribution
gpSendBuddyMessage <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

profile
[in]	The	profile	object	for	the	buddy	to	whom	the	message	is	going.

message
[in]	A	user-readable	text	string	containing	the	message	to	send	to	the
buddy.

Remarks

If	the	buddy	is	not	behind	a	firewall,	and	a	direct	connection	is	possible,
the	message	can	be	any	size.	However,	if	the	message	needs	to	be	sent
through	the	server	(i.e.,	the	buddy	is	behind	a	firewall),	then	the	message
needs	to	be	sent	through	the	server.	In	this	case,	there	is	a	limit	of	1024
characters.	Any	message	longer	than	1024	characters,	that	needs	to	be
sent	through	the	server,	will	be	truncated	without	warning	or	notice.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

gpSendBuddyMessage gpSendBuddyMessageA gpSendBuddyMessageW

gpSendBuddyMessageW	and	gpSendBuddyMessageA	are	UNICODE
and	ANSI	mapped	versions	of	gpSendBuddyMessage.	The	arguments
of	gpSendBuddyMessageA	are	ANSI	strings;	those	of
gpSendBuddyMessageW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

gpSendBuddyRequest
This	function	sends	a	request	to	a	remote	profile	to	ask	for	permission	to
add	the	remote	profile	to	the	local	profile’s	buddy	list.

GPResult	gpSendBuddyRequest(
GPConnection	*	connection,
GPProfile	profile,
const	gsi_char	reason[GP_REASON_LEN]);

Routine Required	Header Distribution
gpSendBuddyRequest <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

profile
[in]	The	remote	profile	to	which	the	buddy	request	is	being	made.

reason
[in]	A	text	string	that	(optionally)	explains	why	the	user	is	making	the
buddy	request.

Remarks

This	function	sends	a	request	to	the	given	remote	profile,	asking	if	the
local	profile	can	make	the	remote	profile	a	buddy.	There	is	no	immediate
response	to	this	message.	If	the	remote	profile	authorizes	the	request,	a
buddy	message	and	a	status	message	will	be	received	from	the	new
buddy.	However,	this	can	take	any	amount	of	time.
This	message	causes	the	gpRecvBuddyRequest	callback	to	be	called	for
the	remote	profile.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

gpSendBuddyRequest gpSendBuddyRequestA gpSendBuddyRequestW

gpSendBuddyRequestW	and	gpSendBuddyRequestA	are	UNICODE
and	ANSI	mapped	versions	of	gpSendBuddyRequest.	The	arguments
of	gpSendBuddyRequestA	are	ANSI	strings;	those	of
gpSendBuddyRequestW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

gpSendBuddyUTM
Sends	a	UTM	(under-the-table)	message	to	a	buddy.

GPResult	gpSendBuddyUTM(
GPConnection	*	connection,
GPProfile	profile,
const	gsi_char	*	message,
int	sendOption);

Routine Required	Header Distribution
gpSendBuddyUTM <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

profile
[in]	The	profile	object	for	the	buddy	to	whom	the	message	is	going.

message
[in]	A	user-readable	text	string	containing	the	message	to	send	to	the
buddy.

sendOption
[in]	UTM	sending	options	-	defined	in	GPEnum.	Pass	in	0	for	no
options.

Remarks

If	the	buddy	is	not	behind	a	firewall,	and	a	direct	connection	is	possible,
the	message	can	be	any	size.	However,	if	the	message	needs	to	be	sent
through	the	server	(i.e.,	the	buddy	is	behind	a	firewall),	then	the	message
needs	to	be	sent	through	the	server.	In	this	case,	there	is	a	limit	of	1024
characters.	Any	message	longer	than	1024	characters,	that	needs	to	be
sent	through	the	server,	will	be	truncated	without	warning	or	notice.

If	GP_DONT_ROUTE	is	listed	as	a	sendOption,	the	SDK	will	only
attempt	to	send	this	message	directly	to	the	player	and	not	route	it
through	the	server.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

gpSendBuddyUTM gpSendBuddyUTMA gpSendBuddyUTMW

gpSendBuddyUTMW	and	gpSendBuddyUTMA	are	UNICODE	and
ANSI	mapped	versions	of	gpSendBuddyUTM.	The	arguments	of
gpSendBuddyUTMA	are	ANSI	strings;	those	of	gpSendBuddyUTMW
are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

gpSendFiles
This	function	attempts	to	send	one	or	more	files	(and/or	sub-directory
names)	to	another	profile.

GPResult	gpSendFiles(
GPConnection	*	connection,
GPTransfer	*	transfer,
GPProfile	profile,
const	gsi_char	*	message,
gpSendFilesCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpSendFiles <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[out]	A	pointer	to	a	GPTransfer	object.

profile
[in]	The	profile	to	send	to.	Must	be	a	buddy,	or	we	must	be	his	buddy.

message
[in]	An	optional	message	to	send	alone	with	the	request.

callback
[in]	This	callback	will	get	called	repeatedly	to	get	the	list	of	files	to
send.	See	below.

param
[in]	Pointer	to	user-defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	attempts	to	send	files	to	a	remote	profile.	The	profile	must
be	either	on	the	local	profile’s	buddy	list,	or	the	local	profile	must	be	on
the	remote	profile’s	buddy	list.	To	send	the	files,	a	direct	connection	must
be	established	between	the	two	profiles.	If	both	are	behind	firewalls,	or	a
direct	connection	cannot	be	established	for	any	other	reason,	the	transfer
will	fail.
A	successful	call	to	this	function	will	create	a	transfer	object	(which	is
identified	by	transfer).	This	object	will	not	be	freed	until	either	the
connection	is	destroyed	with	gpDestroy(),	or	the	object	is	explicitly	freed
with	gpFreeTransfer().	The	object	is	not	automatically	freed	when	the
transfer	completes.	Information	about	this	transfer	will	be	passed	back	to
the	application	through	the	GP_TRANSFER_CALLBACK	callback.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

gpSendFiles gpSendFilesA gpSendFilesW

gpSendFilesW	and	gpSendFilesA	are	UNICODE	and	ANSI	mapped
versions	of	gpSendFiles.	The	arguments	of	gpSendFilesA	are	ANSI
strings;	those	of	gpSendFilesW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

gpSetCallback
This	function	is	used	to	set	callbacks.	The	callbacks	that	get	set	with	this
function	are	called	as	a	result	of	data	received	from	the	server,	such	as
messages	or	status	updates.

GPResult	gpSetCallback(
GPConnection	*	connection,
GPEnum	func,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpSetCallback <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

func
[in]	An	enum	that	indicates	which	callback	is	being	set.

callback
[in]	The	user-supplied	function	that	will	be	called.

param
[in]	Pointer	to	user-defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	sets	what	callback	to	call	when	data	is	received	from	the
server,	such	as	messages	or	status	updates,	or	an	error	is	generated.	If
no	callback	is	set	for	a	certain	situation,	then	no	alert	will	be	given	when
that	situation	occurs.	For	example,	if	no	GP_RECV_BUDDY_REQUEST
callback	is	set,	then	there	will	be	no	way	of	detecting	when	a	remote
profile	wants	to	add	the	local	profile	as	a	buddy.
These	callbacks	can	be	generated	during	any	function	that	checks	for
data	received	from	the	server,	typically	gpProcess	or	a	blocking	operation
function.

The	following	can	be	used	as	parameters	for	callback	type:
GP_ERROR,	
GP_RECV_BUDDY_REQUEST,	
GP_RECV_BUDDY_STATUS,	
GP_RECV_BUDDY_MESSAGE,	
GP_RECV_GAME_INVITE,	
GP_TRANSFER_CALLBACK,
GP_RECV_BUDDY_AUTH,
GP_RECV_BUDDY_REVOKE.

Section	Reference:	Gamespy	Presence	SDK

gpSetInfoCacheFilename
Sets	the	file	name	for	the	internal	profile	cache.

void	gpSetInfoCacheFilename(
const	gsi_char	*	filename);

Routine Required	Header Distribution
gpSetInfoCacheFilename <gp.h> SDKZIP

Parameters

filename
[in]	The	filename	to	use	for	the	profile	cache.

Remarks

This	function	should	be	called	before	gpInitialize.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

gpSetInfoCacheFilename gpSetInfoCacheFilenameA gpSetInfoCacheFilenameW

gpSetInfoCacheFilenameW	and	gpSetInfoCacheFilenameA	are
UNICODE	and	ANSI	mapped	versions	of	gpSetInfoCacheFilename.
The	arguments	of	gpSetInfoCacheFilenameA	are	ANSI	strings;	those	of
gpSetInfoCacheFilenameW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

gpSetInfod
These	functions	are	used	to	set	local	info.

GPResult	gpSetInfod(
GPConnection	*	connection,
GPEnum	info,
int	day,
int	month,
int	year);

Routine Required	Header Distribution
gpSetInfod <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

info
[in]	An	enum	indicating	what	info	to	update.

day
[in]	The	day.

month
[in]	The	month.

year
[in]	The	year.

Remarks

These	functions	are	used	to	set	local	info.	The	info	does	not	actually	get
updated	(sent	to	the	server)	until	the	next	call	to	gpProcess.
If	a	string	is	longer	than	the	allowable	length	for	that	info,	it	will	be
truncated	without	warning.

Section	Reference:	Gamespy	Presence	SDK

gpSetInfoi
These	functions	are	used	to	set	local	info.

GPResult	gpSetInfoi(
GPConnection	*	connection,
GPEnum	info,
int	value);

Routine Required	Header Distribution
gpSetInfoi <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

info
[in]	An	enum	indicating	what	info	to	update.

value
[in]	The	integer	value.

Remarks

These	functions	are	used	to	set	local	info.	The	info	does	not	actually	get
updated	(sent	to	the	server)	until	the	next	call	to	gpProcess.
If	a	string	is	longer	than	the	allowable	length	for	that	info,	it	will	be
truncated	without	warning.

Section	Reference:	Gamespy	Presence	SDK

gpSetInfoMask
GPResult	gpSetInfoMask(

GPConnection	*	connection,
GPEnum	mask);

Routine Required	Header Distribution
gpSetInfoMask <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

mask
[in]	The	info	type.	See	remarks.

Remarks

The	possible	mask	values	are:

GP_MASK_NONE	
GP_MASK_HOMEPAGE	
GP_MASK_ZIPCODE	
GP_MASK_COUNTRYCODE
GP_MASK_BIRTHDAY	
GP_MASK_SEX	
GP_MASK_EMAIL	
GP_MASK_ALL.

Section	Reference:	Gamespy	Presence	SDK

gpSetInfos
These	functions	are	used	to	set	local	info.

GPResult	gpSetInfos(
GPConnection	*	connection,
GPEnum	info,
const	gsi_char	*	value);

Routine Required	Header Distribution
gpSetInfos <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

info
[in]	An	enum	indicating	what	info	to	update.

value
[in]	The	string	value.

Remarks

These	functions	are	used	to	set	local	info.	The	info	does	not	actually	get
updated	(sent	to	the	server)	until	the	next	call	to	gpProcess.
If	a	string	is	longer	than	the	allowable	length	for	that	info,	it	will	be
truncated	without	warning.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
gpSetInfos gpSetInfosA gpSetInfosW

gpSetInfosW	and	gpSetInfosA	are	UNICODE	and	ANSI	mapped
versions	of	gpSetInfos.	The	arguments	of	gpSetInfosA	are	ANSI
strings;	those	of	gpSetInfosW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

gpSetStatus
This	function	sets	the	local	profile’s	status.

GPResult	gpSetStatus(
GPConnection	*	connection,
GPEnum	status,
const	gsi_char	statusString[GP_STATUS_STRING_LEN],
const	gsi_char	locationString[GP_LOCATION_STRING_LEN]);

Routine Required	Header Distribution
gpSetStatus <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

status
[in]	An	enum	indicating	the	status	to	set.

statusString
[in]	A	text	string	with	a	user-readable	explanation	of	the	status.

locationString
[in]	A	URL	indicating	the	local	profile's	location,	in	the	form
"gamename://IP.address:port/extra/info".

Remarks

This	function	sets	the	local	profile’s	status.	The	status	consists	of	an
enum	specifying	a	mode	(online,	offline,	playing,	etc.),	a	text	explanation
of	the	status,	and	a	URL	specifying	a	location	and	protocol	(e.g.,
"quake://12.34.56.78:9999").

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
gpSetStatus gpSetStatusA gpSetStatusW

gpSetStatusW	and	gpSetStatusA	are	UNICODE	and	ANSI	mapped
versions	of	gpSetStatus.	The	arguments	of	gpSetStatusA	are	ANSI
strings;	those	of	gpSetStatusW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

gpSetTransferData
This	function	is	used	to	store	arbitrary	user-data	with	a	transfer.

GPResult	gpSetTransferData(
GPConnection	*	connection,
GPTransfer	transfer,
void	*	userData);

Routine Required	Header Distribution
gpSetTransferData <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

userData
[in]	Arbitrary	user	data	to	associate	with	the	transfer.

Remarks

This	function	allows	an	application	to	associate	arbitrary	user-data	with	a
transfer.

Section	Reference:	Gamespy	Presence	SDK

gpSetTransferDirectory
This	function	can	be	used	to	set	the	directory	that	files	are	received	into.

GPResult	gpSetTransferDirectory(
GPConnection	*	connection,
GPTransfer	transfer,
const	gsi_char	*	directory);

Routine Required	Header Distribution
gpSetTransferDirectory <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

directory
[in]	The	directory	to	store	received	files	in.	This	must	be	the	path	to	a
directory,	and	it	must	end	in	a	slash	or	backslash.

Remarks

This	allows	the	application	to	set	which	directory	received	files	are	stored
in.	They	will	all	be	stored	in	this	directory,	with	names	randomly
generated	by	GP.	It	is	then	up	to	the	application	to	place	the	files	in	the
appropriate	directories	with	the	appropriate	names.
If	no	directory	is	set,	a	directory	will	be	picked.	On	win32,	the
GetTempPath	function	is	used	to	pick	a	directory.	If	the	application	wants
to	set	a	directory	explicitly,	it	must	call	this	function	before	accepting	the
transfer.	The	function	will	fail	if	it	is	called	after	the	transfer	has	started.
This	function	only	sets	the	directory	for	the	specified	transfer,	and	for	no
others.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

gpSetTransferDirectory gpSetTransferDirectoryA gpSetTransferDirectoryW

gpSetTransferDirectoryW	and	gpSetTransferDirectoryA	are
UNICODE	and	ANSI	mapped	versions	of	gpSetTransferDirectory.	The
arguments	of	gpSetTransferDirectoryA	are	ANSI	strings;	those	of
gpSetTransferDirectoryW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

gpSetTransferThrottle
This	function	can	be	used	to	set	a	throttle	on	a	transfer.
NOTE:	Throttling	is	not	currently	implemented.	Throttle	information	is
transmitted	between	the	local	profile	and	remote	profile,	but	no	throttling
actually	occurs.

GPResult	gpSetTransferThrottle(
GPConnection	*	connection,
GPTransfer	transfer,
int	throttle);

Routine Required	Header Distribution
gpSetTransferThrottle <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

throttle
[in]	The	throttle	setting.

Remarks

NOTE:	Throttling	is	not	currently	implemented.
This	function	can	be	used	to	either	pause	a	transfer	or	limit	a	transfer	to	a
maximum	rate.	It	can	be	called	by	either	the	sender	or	the	receiver.	After
a	call	to	this	function,	both	the	local	profile	and	remote	profile	will	receive
a	gpTransferCallback	of	type	GP_TRANSFER_THROTTLE.

Section	Reference:	Gamespy	Presence	SDK

gpSkipFile
This	function	is	used	to	skip	transferring	a	certain	file.

GPResult	gpSkipFile(
GPConnection	*	connection,
GPTransfer	transfer,
int	index);

Routine Required	Header Distribution
gpSkipFile <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

transfer
[in]	A	pointer	to	a	GPTransfer	object.

index
[in]	Index	of	the	file	within	the	GPTransfer	object.

Remarks

This	function	is	used	to	skip	a	file	in	the	transfer.	It	can	be	called	either
before	a	file	is	transferred,	or	while	a	file	is	being	transferred.	If	it	is	called
before	the	file	starts	transferring,	then	the	a	GP_FILE_SKIP	callback	will
be	received	when	the	file	becomes	the	current	file.	If	it	is	called	while	a
file	is	being	transferred,	then	the	GP_FILE_SKIP	will	be	called	as	soon
as	possible,	and	the	file	will	stop	transferring.

Section	Reference:	Gamespy	Presence	SDK

gpSuggestUniqueNick
This	function	gets	suggested	uniquenicks	from	the	backend.

GPResult	gpSuggestUniqueNick(
GPConnection	*	connection,
const	gsi_char	desirednick[GP_UNIQUENICK_LEN],
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpSuggestUniqueNick <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

desirednick
[in]	The	desired	uniquenick	It	can	be	up	to	GP_UNIQUENICK_LEN
characters	long,	including	the	NUL.

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	A	user	supplied	callback	with	an	arg	type	of
GPSuggestUniqueNickResponseArg.

param
[in]	Pointer	to	user	defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	fuction	gets	a	set	of	suggested	nicks	based	on	the	desirednick.	A
request	is	sent	to	the	backend	for	suggestions	based	on	the	provided
desirednick.	After	getting	a	response,	the	callback	is	called	with	a	list	of
uniquenicks	based	on	the	desirednick.	These	suggested	uniquenicks	can
then	be	used	in	a	call	to	gpNewUser,	gpRegisterUniqueNick,	or
gpSetInfos.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

gpSuggestUniqueNick gpSuggestUniqueNickA gpSuggestUniqueNickW

gpSuggestUniqueNickW	and	gpSuggestUniqueNickA	are	UNICODE
and	ANSI	mapped	versions	of	gpSuggestUniqueNick.	The	arguments
of	gpSuggestUniqueNickA	are	ANSI	strings;	those	of
gpSuggestUniqueNickW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPSuggestUniqueNickResponseArg

gpUserIDFromProfile
This	function	gets	a	profile’s	user	ID.

GPResult	gpUserIDFromProfile(
GPConnection	*	connection,
GPProfile	profile,
int	*	userid);

Routine Required	Header Distribution
gpUserIDFromProfile <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

profile
[in]	The	profile	ID.

userid
[out]	The	user	ID	associated	with	the	specified	profile	ID.

Remarks

Every	profile	is	associated	with	a	user	account,	and	each	user	account
has	a	user	id	associated	with	it.	This	functions	gets	the	user	id	for	a	given
profile’s	user	account.

Section	Reference:	Gamespy	Presence	SDK

Presence	and	Messaging	SDK	Callbacks
GPCallback

A	generic	callback	definition	used	to	specify	the
callback	supplied	to	GP	SDK	functions.

gpSendFilesCallback
This	is	a	callback	used	by	gpSendFiles()	to	get	the
list	of	files	to	send.

GPCallback
A	generic	callback	definition	used	to	specify	the	callback	supplied	to	GP
SDK	functions.

typedef	void	(*GPCallback)(
GPConnection	*	connection,
void	*	arg,
void	*	param);

Routine Required	Header Distribution
GPCallback <gp.h> SDKZIP

Parameters

connection
[in]	The	connection	associated	with	the	task.

arg
[in]	Pointer	to	a	response	structure	whose	content	depends	on	the
task	in	progress.

param
[in]	User-data	that	was	passed	into	the	original	function.

Remarks

The	arg	parameter	content	varies	depending	on	the	task.	For	example,	a
callback	that	is	specified	when	calling	gpGetInfo()	should	cast	its
incoming	arg	pointer	to	type	GPGetInfoResponseArg.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpGetInfo,	GPGetInfoResponseArg

gpSendFilesCallback
This	is	a	callback	used	by	gpSendFiles()	to	get	the	list	of	files	to	send.

typedef	void	(*gpSendFilesCallback)(
GPConnection	*	connection,
int	index,
const	gsi_char	**	path,
const	gsi_char	**	name,
void	*	param);

Routine Required	Header Distribution
gpSendFilesCallback <gp.h> SDKZIP

Parameters

connection
[in]	The	connection	the	files	are	to	be	sent	on.

index
[in]	This	starts	at	0	and	is	incremented	by	1	each	time	the	callback
gets	called.

path
[in]	Point	this	to	the	path	to	the	file	to	send,	or	NULL	for	a	directory.

name
[in]	Point	this	to	the	name	to	send	the	file	under,	or	NULL	to	use	the
file's	local	name.

param
[in]	User-data	that	was	passed	into	gpSendFiles.

Remarks

This	function	will	be	called	repeatedly	until	neither	path	or	name	are	set
(or	both	set	to	NULL).	The	callback	can	be	used	to	specify	either	a	file	or
a	directory.	To	specify	a	file,	set	path	to	point	to	a	string	containing	the
path	to	the	file.	If	the	name	is	also	set,	then	it	contains	the	name	to	send
the	file	under.	The	name	can	either	be	a	simple	filename	("file.ext"),	or	it
can	contain	a	path	("files/file.ext").	If	a	path	is	specified,	and	name	is	not
set	(or	set	to	NULL),	then	the	filename	part	of	the	path	will	be	used.	For
example,	if	path	points	to	"c:\files\file.ext"	and	name	is	not	set,	then	the
name	will	be	"file.ext".
To	specify	a	directory,	don't	set	the	path	(or	set	it	to	NULL),	then	set	a
name.	The	name	will	be	treated	as	a	directory	to	create.	For	example,	if
path	is	not	set,	and	name	is	"files",	this	instructs	the	receiver	to	create	a
directory	named	"files".
The	name	for	a	file	or	folder	cannot	contain	any	directory	level	references
(e.g.,	"../file.exe"),	cannot	start	with	a	slash	or	backslash,	cannot	contain
any	empty	directory	names	in	the	path,	and	cannot	contain	any	invalid
characters	(:	*	?	"	<	>	|	\n).

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

gpSendFilesCallback gpSendFilesCallbackA gpSendFilesCallbackW

gpSendFilesCallbackW	and	gpSendFilesCallbackA	are	UNICODE
and	ANSI	mapped	versions	of	gpSendFilesCallback.	The	arguments	of
gpSendFilesCallbackA	are	ANSI	strings;	those	of
gpSendFilesCallbackW	are	wide-character	strings.

Section	Reference:	Gamespy	Presence	SDK

Presence	and	Messaging	SDK	Structures
GPBuddyStatus

Buddy	status.

GPCheckResponseArg
The	arg	parameter	passed	to	a
callback	generated	by	a	call	to
gpCheckUser	is	of	this	type.

GPConnectResponseArg
The	arg	parameter	passed	through
to	a	GPCallback	call	after	attempting
to	connect	is	of	this	type.

GPDeleteProfileResponseArg
This	arg	data	type	contains	the	data
for	a	delete	profile	operation.	It	is
generated	by	a	call	to	the	callback
passed	to	gpDeleteProfile.

GPErrorArg
Contains	information	about	an	error
which	has	occurred.

GPFindPlayerMatch
An	element	of
GPFindPlayersResponseArg,	which
is	the	arg	parameter	passed	to	a
callback	generated	by	a	call	to
gpFindPlayers	.

GPFindPlayersResponseArg
The	arg	parameter	passed	to	a
callback	generated	by	a	call	to
gpFindPlayers	is	of	this	type.

GPGetInfoResponseArg
The	arg	parameter	passed	to	a

callback	generated	by	a	call	to
gpGetInfo	is	of	this	type.	The
structure	provides	information	about
the	specified	profile.

GPGetReverseBuddiesResponseArg
The	arg	parameter	passed	to	a
callback	generated	by	a	call	to
gpGetReverseBuddies	is	of	this	type.

GPGetUserNicksResponseArg
The	arg	parameter	passed	to	a
callback	generated	by	a	call	to
gpGetUserNicks	is	of	this	type.

GPIsValidEmailResponseArg
The	arg	parameter	passed	to	a
callback	generated	by	a	call	to
gpIsValidEmail	is	of	this	type.

GPNewProfileResponseArg
The	arg	parameter	passed	to	a
callback	generated	by	a	call	to
gpNewProfile	is	of	this	type.

GPNewUserResponseArg
The	arg	parameter	passed	to	a
callback	generated	by	a	call	to
gpNewUser	is	of	this	type.

GPProfileSearchMatch
Information	about	a	profile	which	is
returned	by	a	requested	search.	Is
often	collected	in	a	list,	such	as
those	found	in
GPGetReverseBuddiesResponseArg
or	GPProfileSearchResponseArg,

GPProfileSearchResponseArg
The	arg	parameter	passed	to	a

callback	generated	by	a	call	to
gpProfileSearch	is	of	this	type.
Contains	information	about	the
profiles	that	matched	the	search
criteria.

GPRecvBuddyAuthArg
Information	sent	to	the
GP_RECV_BUDDY_AUTH	callback.

GPRecvBuddyMessageArg
Information	sent	to	the
GP_RECV_BUDDY_MESSAGE
callback.

GPRecvBuddyRequestArg
Information	sent	to	the
GP_RECV_BUDDY_REQUEST
callback.

GPRecvBuddyRevokeArg
Information	sent	to	the
GP_RECV_BUDDY_REVOKE
callback.

GPRecvBuddyStatusArg
Information	sent	to	the
GP_RECV_BUDDY_STATUS
callback.

GPRecvGameInviteArg
Information	sent	to	the
GP_RECV_GAME_INVITE	callback

GPRegisterCdKeyResponseArg
The	arg	parameter	passed	to	a
callback	generated	by	a	call	to
gpRegisterCdKey	is	of	this	type

GPRegisterUniqueNickResponseArg

The	arg	parameter	passed	to	a
callback	generated	by	a	call	to
gpRegisterUniqueNick	is	of	this	type

GPSuggestUniqueNickResponseArg
The	arg	parameter	passed	to	a
callback	generated	by	a	call	to
gpSuggestUniqueNick	is	of	this	type.

GPTransferCallbackArg
The	arg	parameter	passed	to	a
Transfer	Callback	.

GPBuddyStatus
Buddy	status.

typedef	struct	
{

GPProfile	profile;
GPEnum	status;
gsi_char	statusString[GP_STATUS_STRING_LEN];
gsi_char	locationString[GP_LOCATION_STRING_LEN];
unsigned	int	ip;
int	port;

}	GPBuddyStatus;

Members

profile
The	profile	of	the	buddy.

status
A	value	of	GPEnum	which	represents	the	"Status"	of	the	buddy.

statusString
The	buddy	"Status"	in	user-readable	form.

locationString
URL	indicating	the	location	of	the	buddy.	It	is	of	the	form
“gamename://IP.address:port/extra/info”.

ip
The	buddy’s	IP	address	in	network	byte	order	(big-endian).	This	is
used	for	buddy-to-buddy	messaging.

port
The	buddy’s	TCP	listening	port.	If	this	is	0,	the	buddy	is	behind	a
firewall.	This	is	used	for	buddy-to-buddy	messaging.

Remarks

Possible	values	for	the	"status"	field	are:
GP_ONLINE
GP_OFFLINE
GP_PLAYING
GP_STAGING
GP_CHATTING
See	the	Status	section	of	GPEnum	for	details.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPEnum,	gpGetBuddyStatus

GPCheckResponseArg
The	arg	parameter	passed	to	a	callback	generated	by	a	call	to
gpCheckUser	is	of	this	type.

typedef	struct	
{

GPResult	result;
GPProfile	profile;

}	GPCheckResponseArg;

Members

result
Result	of	the	check;	GP_NO_ERROR	if	successful.

profile
Profile	for	the	user	being	checked.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPCallback,	gpCheckUser,	GPResult

GPConnectResponseArg
The	arg	parameter	passed	through	to	a	GPCallback	call	after	attempting
to	connect	is	of	this	type.

typedef	struct	
{

GPResult	result;
GPProfile	profile;
gsi_char	uniquenick[GP_UNIQUENICK_LEN];

}	GPConnectResponseArg;

Members

result
Result	of	the	connection;	GP_NO_ERROR	if	successful.

profile
Profile	for	the	user	being	connected.

uniquenick
Uniquenick	for	the	newly	connected	user.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpConnect,	GPCallback,	GPResult

GPDeleteProfileResponseArg
This	arg	data	type	contains	the	data	for	a	delete	profile	operation.	It	is
generated	by	a	call	to	the	callback	passed	to	gpDeleteProfile.

typedef	struct	
{

GPResult	result;
GPProfile	profile;

}	GPDeleteProfileResponseArg;

Members

result
Result	of	the	operation.

profile
the	profile	that	was	deleted.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpDeleteProfile

GPErrorArg
Contains	information	about	an	error	which	has	occurred.

typedef	struct	
{

GPResult	result;
GPErrorCode	errorCode;
gsi_char	*	errorString;
GPEnum	fatal;

}	GPErrorArg;

Members

result
The	result	of	a	call	to	a	GP	function.	GP_NO_ERROR	if	successful.

errorCode
The	specific	cause	of	the	error.

errorString
Readable	text	string	representation	of	the	errorCode.

fatal
Either	GP_FATAL	or	GP_NON_FATAL	to	indicate	whether	error	is
fatal.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPErrorCode,	GPCallback

GPGetInfoResponseArg
The	arg	parameter	passed	to	a	callback	generated	by	a	call	to	gpGetInfo
is	of	this	type.	The	structure	provides	information	about	the	specified
profile.

typedef	struct	
{

GPResult	result;
GPProfile	profile;
gsi_char	nick[GP_NICK_LEN];
gsi_char	uniquenick[GP_UNIQUENICK_LEN];
gsi_char	email[GP_EMAIL_LEN];
gsi_char	firstname[GP_FIRSTNAME_LEN];
gsi_char	lastname[GP_LASTNAME_LEN];
gsi_char	homepage[GP_HOMEPAGE_LEN];
int	icquin;
gsi_char	zipcode[GP_ZIPCODE_LEN];
gsi_char	countrycode[GP_COUNTRYCODE_LEN];
float	longitude;
float	latitude;
gsi_char	place[GP_PLACE_LEN];
int	birthday;
int	birthmonth;
int	birthyear;
GPEnum	sex;
GPEnum	publicmask;
gsi_char	aimname[GP_AIMNAME_LEN];
int	pic;
int	occupationid;
int	industryid;
int	incomeid;
int	marriedid;
int	childcount;
int	interests1;
int	ownership1;
int	conntypeid;

}	GPGetInfoResponseArg;

Members

result
The	result	of	the	inquiry;	GP_NO_ERROR	if	successful.

profile
The	profile	for	which	the	info	was	requested.

nick
The	nick	for	this	profile	info.

uniquenick
The	uniquenick	for	this	profile	info.

email
The	email	for	this	profile	info.

firstname
The	firstname	for	this	profile	info.

lastname
The	lastname	for	this	profile	info.

homepage
The	homepage	for	this	profile	info.

icquin
The	ICQ	UIN(User	Identification	Number)	for	this	profile	info.

zipcode
The	zipcode	for	this	profile	info.

countrycode
The	countrycode	for	this	profile	info.

longitude
Negative	is	west,	positive	is	east.	(0,	0)	means	unknown.

latitude
Negative	is	south,	positive	is	north.	(0,	0)	means	unknown.

place
E.g.,	"USA|California|Irvine",	"South	Korea|Seoul",	"Turkey".

birthday
The	day	part	of	this	profile’s	birthday	(1-31).

birthmonth
The	month	part	of	this	profile’s	birthday	(1-12).

birthyear
The	year	part	of	this	profile’s	birthday.

sex
An	enum	indicating	the	sex	for	this	profile	info.	The	possible	values
are:
GP_MALE	--	The	sex	for	this	profile	info	is	male.
GP_FEMALE	--	The	sex	for	this	profile	info	is	female.
GP_PAT	--	The	sex	for	this	profile	info	is	unknown.

publicmask
publicmask
A	bitwise-or	of	enums	indicating	which	parts	of	this	profile’s	info	are
public.	If	the	value	of	publicmask	is	GP_MASK_NONE	then	no	info	is
masked.	If	it	is	GP_MASK_ALL	then	all	of	the	mask-able	info	is
masked.	If	any	of	the	following	bits	are	set,	then	the	corresponding
info	is	masked.	If	the	bit	is	not	set,	the	info	is	public:	
GP_MASK_HOMEPAGE
				This	profile’s	homepage	info.
GP_MASK_ZIPCODE
				This	profile’s	zipcode	info.
GP_MASK_COUNTRYCODE
				This	profile’s	countrycode	info.
GP_MASK_BIRTHDAY
				This	profile’s	birthday	info.
GP_MASK_SEX
				This	profile’s	sex	info.
If	info	is	masked,	then	its	value	in	the	structure	should	not	be	used.
For	example,	if	the	GP_MASK_BIRTHDAY	bit	is	set,	the	birthday,
birthmonth,	and	birthyear	fields	should	not	be	accessed.

aimname
The	AOL	IM	screen	name	for	this	profile	info.

occupationid
The	occupation	id	for	this	profile	info.

industryid
The	industry	id	for	this	profile	info.

incomeid
The	income	for	this	profile	info.

marriedid
The	marital	status	for	this	profile	info.

childcount
The	child	count	for	this	profile	info.

interests1
The	interests	for	this	profile	info.

conntypeid
The	connection	type	for	this	profile	info.

Remarks

If	result	is	not	GP_NO_ERROR,	then	the	operation	did	not	complete
successfully,	and	the	rest	of	this	structure	is	invalid	and	should	not	be
accessed.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPCallback,	gpGetInfo

GPGetReverseBuddiesResponseArg
The	arg	parameter	passed	to	a	callback	generated	by	a	call	to
gpGetReverseBuddies	is	of	this	type.

typedef	struct	
{

GPResult	result;
int	numProfiles;
GPProfileSearchMatch	*	profiles;

}	GPGetReverseBuddiesResponseArg;

Members

result
Result	of	the	inquiry;	GP_NO_ERROR	if	successful.

numProfiles
The	number	of	profiles	that	have	you	on	their	buddy	list.

profiles
The	list	of	profiles	found.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpGetReverseBuddies

GPGetUserNicksResponseArg
The	arg	parameter	passed	to	a	callback	generated	by	a	call	to
gpGetUserNicks	is	of	this	type.

typedef	struct	
{

GPResult	result;
gsi_char	email[GP_EMAIL_LEN];
int	numNicks;
gsi_char	**	nicks;
gsi_char	**	uniquenicks;

}	GPGetUserNicksResponseArg;

Members

result
The	result	of	the	inquiry;	GP_NO_ERROR	if	successful.

email
The	eMail	address	being	inquired	about.

numNicks
The	number	of	profiles	found	to	match	the	given	eMail/password.	If
0,	then	the	email	and	password	did	not	match.	If	you	are	unsure	if
the	email	address	passed	to	gpGetUserNicks	is	valid,	call
gpIsValidEmail	first.	Then	a	value	of	0	numNicks	will	always	mean
that	the	email	address	was	valid	but	the	password	was	incorrect.

nicks
The	list	of	profile	Nicknames,	numNicks	in	length.

uniquenicks
The	list	of	profile	Uniquenicks,	numNicks	in	length.

Section	Reference:	Gamespy	Presence	SDK

GPIsValidEmailResponseArg
The	arg	parameter	passed	to	a	callback	generated	by	a	call	to
gpIsValidEmail	is	of	this	type.

typedef	struct	
{

GPResult	result;
gsi_char	email[GP_EMAIL_LEN];
GPEnum	isValid;

}	GPIsValidEmailResponseArg;

Members

result
The	result	of	the	inquiry;	GP_NO_ERROR	if	successful.

email
The	eMail	address	being	inquired	about.

isValid
GPTrue	if	a	user	exists	with	the	given	eMail	address;	GPFalse
otherwise.

Section	Reference:	Gamespy	Presence	SDK

GPNewProfileResponseArg
The	arg	parameter	passed	to	a	callback	generated	by	a	call	to
gpNewProfile	is	of	this	type.

typedef	struct	
{

GPResult	result;
GPProfile	profile;

}	GPNewProfileResponseArg;

Members

result
The	result	of	the	inquiry;	GP_NO_ERROR	if	successful.

profile
The	newly	created	profile,	if	successful.

Section	Reference:	Gamespy	Presence	SDK

GPNewUserResponseArg
The	arg	parameter	passed	to	a	callback	generated	by	a	call	to
gpNewUser	is	of	this	type.

typedef	struct	
{

GPResult	result;
GPProfile	profile;

}	GPNewUserResponseArg;

Members

result
The	result	of	the	creation	attempt;	GP_NO_ERROR	if	successful.

profile
The	profile	created	for	the	new	user,	if	successful.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpNewUser

GPProfileSearchMatch
Information	about	a	profile	which	is	returned	by	a	requested	search.	Is
often	collected	in	a	list,	such	as	those	found	in
GPGetReverseBuddiesResponseArg	or	GPProfileSearchResponseArg,.

typedef	struct	
{

GPProfile	profile;
gsi_char	nick[GP_NICK_LEN];
gsi_char	uniquenick[GP_UNIQUENICK_LEN];
gsi_char	firstname[GP_FIRSTNAME_LEN];
gsi_char	lastname[GP_LASTNAME_LEN];
gsi_char	email[GP_EMAIL_LEN];

}	GPProfileSearchMatch;

Members

profile
Object	representing	this	matching	profile.

nick
The	profile's	nickname.

uniquenick
The	profile's	uniquenick.

firstname
The	first	name	for	the	profile.

lastname
The	last	name	for	the	profile.

email
The	eMail	address	for	the	profile.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPGetReverseBuddiesResponseArg,
GPProfileSearchResponseArg

GPProfileSearchResponseArg
The	arg	parameter	passed	to	a	callback	generated	by	a	call	to
gpProfileSearch	is	of	this	type.	Contains	information	about	the	profiles
that	matched	the	search	criteria.

typedef	struct	
{

GPResult	result;
int	numMatches;
GPEnum	more;
GPProfileSearchMatch	*	matches;

}	GPProfileSearchResponseArg;

Members

result
The	result	of	the	inquiry;	GP_NO_ERROR	if	successful.

numMatches
The	number	of	profiles	in	the	matches	list.

more
[In/Out]	GP_MORE	if	there	are	more	matches	to	come;	GP_DONE	if
this	is	the	last	(or	only)	batch	of	matches.

matches
A	list	of	information	for	the	matching	profiles.

Remarks

The	callback	for	gpProfileSearch	will	only	receive	a	limited	number	of
results	in	each	batch.	If	there	are	more	results	than	those	passed	to	the
callback,	the	more	member	of	the	structure	will	be	set	to	GP_MORE.	If
there	are	no	more	results,	more	will	be	set	to	GP_DONE.	
The	callback	routine	can	leave	more	set	to	GP_MORE,	which	will	tell	the
SDK	to	deliver	the	next	batch	of	results,	or	it	change	more	to	GP_DONE,
which	will	tell	the	SDK	to	stop	delivering	information.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpProfileSearch,	GPProfileSearchMatch

GPRecvBuddyMessageArg
Information	sent	to	the	GP_RECV_BUDDY_MESSAGE	callback.

typedef	struct	
{

;
GPProfile	profile;
unsigned	int	date;

}	GPRecvBuddyMessageArg;

Members

profile
Profile	for	the	Buddy	who	sent	the	message.

date
Timestamp	of	the	message.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpSetCallback,	GPEnum

GPRecvBuddyRequestArg
Information	sent	to	the	GP_RECV_BUDDY_REQUEST	callback.

typedef	struct	
{

GPProfile	profile;
unsigned	int	date;
gsi_char	reason[GP_REASON_LEN];

}	GPRecvBuddyRequestArg;

Members

profile
Profile	of	the	buddy	who	has	made	the	request.

date
The	timestamp	of	the	request.

reason
The	reason	for	the	request.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpSendBuddyRequest,	gpSetCallback,	GPEnum

GPRecvBuddyRevokeArg
Information	sent	to	the	GP_RECV_BUDDY_REVOKE	callback.

typedef	struct	
{

GPProfile	profile;
unsigned	int	date;

}	GPRecvBuddyRevokeArg;

Members

profile
Profile	ID	of	the	buddy.

date
Date	when	the	action	occurred.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpSetCallback,	gpRevokeBuddyAuthorization

GPRecvBuddyStatusArg
Information	sent	to	the	GP_RECV_BUDDY_STATUS	callback.

typedef	struct	
{

GPProfile	profile;
unsigned	int	date;
int	index;

}	GPRecvBuddyStatusArg;

Members

profile
This	object	represents	the	buddy	whose	status	has	changed.

date
The	timestamp	of	the	change.

index
This	buddy’s	index	in	the	buddy	list.	This	index	can	be	used	in	a	call
to	gpGetBuddyStatus	to	get	more	information	on	the	buddy’s	new
status.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpSetStatus,	gpSetCallback,	GPEnum

GPRecvGameInviteArg
Information	sent	to	the	GP_RECV_GAME_INVITE	callback.

typedef	struct	
{

GPProfile	profile;
int	productID;
gsi_char	location[GP_LOCATION_STRING_LEN];

}	GPRecvGameInviteArg;

Members

profile
Profile	of	the	buddy	who	the	message	is	from.

productID
The	product	ID	of	the	game	to	which	the	remote	profile	is	inviting	the
local	profile.

location
The	location	string	for	the	invite.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpSetCallback,	GPCallback,	GPEnum

GPRegisterCdKeyResponseArg
The	arg	parameter	passed	to	a	callback	generated	by	a	call	to
gpRegisterCdKey	is	of	this	type.

typedef	struct	
{

GPResult	result;
}	GPRegisterCdKeyResponseArg;

Members

result
The	result	of	the	register	uniquenick	operation;	GP_NO_ERROR	if
successful.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpRegisterCdKey,	GPResult

GPRegisterUniqueNickResponseArg
The	arg	parameter	passed	to	a	callback	generated	by	a	call	to
gpRegisterUniqueNick	is	of	this	type.

typedef	struct	
{

GPResult	result;
}	GPRegisterUniqueNickResponseArg;

Members

result
The	result	of	the	register	uniquenick	operation;	GP_NO_ERROR	if
successful.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpRegisterUniqueNick,	GPResult

GPSuggestUniqueNickResponseArg
The	arg	parameter	passed	to	a	callback	generated	by	a	call	to
gpSuggestUniqueNick	is	of	this	type.

typedef	struct	
{

GPResult	result;
int	numSuggestedNicks;
gsi_char	**	suggestedNicks;

}	GPSuggestUniqueNickResponseArg;

Members

result
The	result	of	the	suggest	uniquenick	operation;	GP_NO_ERROR	if
successful.

numSuggestedNicks
The	number	of	suggested	uniquenicks	contained	in	this	struct.

suggestedNicks
An	array	of	suggested	uniquenicks.	The	number	of	elements	in	the
array	is	specified	by	numSuggestedNicks.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpSuggestUniqueNick,	GPResult

GPTransferCallbackArg
The	arg	parameter	passed	to	a	Transfer	Callback	.

typedef	struct	
{

GPTransfer	transfer;
GPEnum	type;
int	index;
int	num;
gsi_char	*	message;

}	GPTransferCallbackArg;

Members

transfer
The	transfer	object	this	callback	is	for.

type
The	type	of	information	being	passed	to	the	application.	See	the
"Transfer	callback	type"	section	of	GPEnum.

index
If	this	callback	is	related	to	a	specific	file	being	transferred,	this	is
that	file’s	index.

num
An	integer	used	in	conjunction	with	certain	"type"	values	to	pass
supplementary	information	to	the	program.

message
If	the	type	is	GP_TRANSFER_SEND_REQUEST,
GP_TRANSFER_ACCEPTED,	or	GP_TRANSFER_REJECTED,
then	this	may	point	to	a	user-readable	text	message	sent	with	the
request	or	reply.	The	message	will	be	invalid	once	this	callback
returns.

Remarks

The	possible	values	for	type	are:
GP_TRANSFER_SEND_REQUEST
A	remote	profile	wants	to	send	files	to	the	local	profile.	The	transfer	object
for	this	callback	is	a	new	transfer	object.	The	application	must	call	either
gpAcceptTransfer	or	gpRejectTransfer	in	response	to	this	message.	If
gpAcceptTransfer	is	called	the	transfer	will	start,	and	the	object	will	exist
until	gpFreeTransfer	is	called	on	it.	If	gpRejectTransfer	is	called,	the
object	will	be	freed	and	should	not	be	referenced	again.
Only	the	receiver	gets	this	callback.
num	is	set	to	the	number	of	files	in	the	transfer.
message	is	set	to	the	message	passed	to	gpSendFiles.
GP_TRANSFER_ACCEPTED
A	transfer	request	has	been	accepted.	The	files	will	now	be	sent.
Only	the	sender	gets	this	callback.
message	is	set	to	the	message	passed	to	gpAcceptTransfer.
GP_TRANSFER_REJECTED
A	transfer	request	has	been	rejected.	Call	gpFreeTransfer	to	free	the
transfer	object.
Only	the	sender	gets	this	callback.
message	is	set	to	the	message	passed	to	gpAcceptTransfer.
GP_TRANSFER_NOT_ACCEPTING
The	remote	profile	is	not	accepting	file	transfers.	Call	gpFreeTransfer	to
free	the	transfer	object.
Only	the	sender	gets	this	callback.
GP_TRANSFER_NO_CONNECTION
A	direct	connection	with	the	remote	profile	could	not	be	established,	and
the	transfer	has	been	terminated.	Call	gpFreeTransfer	to	free	the	transfer
object.
Only	the	sender	gets	this	callback.
GP_TRANSFER_DONE
The	file	transfer	has	finished	successfully.	Call	gpFreeTransfer	to	free	the
transfer	object.
Both	the	sender	and	receiver	get	this	callback.
GP_TRANSFER_CANCELLED
The	file	transfer	has	been	cancelled	before	completing.	Call
gpFreeTransfer	to	free	the	transfer	object.

Both	the	sender	and	receiver	get	this	callback.
GP_TRANSFER_LOST_CONNECTION
The	direct	connection	with	the	remote	profile	has	been	lost,	and	the
transfer	has	been	terminated.	Call	gpFreeTransfer	to	free	the	transfer
object.
Both	the	sender	and	receiver	get	this	callback.
GP_TRANSFER_ERROR
There	was	an	error	during	the	transfer	process,	and	the	transfer	has
been	terminated.	Call	gpFreeTransfer	to	free	the	transfer	object.
Both	the	sender	and	receiver	get	this	callback.
GP_TRANSFER_THROTTLE
NOTE:	Throttling	is	not	currently	implemented.
Either	the	local	profile	or	the	remote	profile	has	set	the	throttle.
Both	the	sender	and	receiver	get	this	callback.
If	positive,	num	is	the	throttle	setting	in	bytes-per-second	(Bps).	A	throttle
of	zero	means	a	paused	connection,	and	a	throttle	of	–1	means	there	is
no	throttling.
GP_FILE_BEGIN
A	file	is	about	to	be	transferred.
Both	the	sender	and	receiver	get	this	callback.
GP_FILE_PROGRESS
File	data	has	been	either	sent	or	received.
Both	the	sender	and	receiver	get	this	callback.
num	is	set	to	the	number	of	bytes	of	this	file	that	have	been	transferred
so	far.
GP_FILE_END
A	file	has	finished	transferring	successfully.	Always	called	after	a
GP_FILE_BEGIN	(with	zero	or	more	GP_FILE_PROGRESS	calls	in
between).
Both	the	sender	and	receiver	get	this	callback.
GP_FILE_DIRECTORY
The	current	"file"	being	transferred	is	a	directory	name.	This	is	the	only
callback	called	for	directories	(i.e.,	no	GP_FILE_BEGIN	or
GP_FILE_END).
Both	the	sender	and	receiver	get	this	callback.
GP_FILE_SKIP
The	current	file	is	being	skipped.	This	may	arrive	instead	of	a
GP_FILE_BEGIN,	or	while	a	file	is	being	transferred	(after
GP_FILE_BEGIN,	but	before	GP_FILE_END).

Both	the	sender	and	receiver	get	this	callback.
GP_FILE_FAILED
The	current	file	being	transferred	has	failed.	This	may	arrive	instead	of	a
GP_FILE_BEGIN,	or	while	a	file	is	being	transferred	(after
GP_FILE_BEGIN,	but	before	GP_FILE_END).
Both	the	sender	and	receiver	get	this	callback.
num	indicates	the	cause	of	the	error.	The	possible	values	are:
GP_FILE_READ_ERROR
The	sender	had	an	error	reading	the	file.
GP_FILE_WRITE_ERROR
The	receiver	had	an	error	writing	the	file.
GP_FILE_DATA_ERROR
The	MD5	check	of	the	data	being	transferred	failed.	Because	the	MD5
check	happens	after	the	files	has	finished	transferring,	only	the	receiver
will	get	this	callback.	The	sender	will	simply	get	a	GP_FILE_END
callback.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpSetCallback

Presence	and	Messaging	SDK	Enumerations
GPEnum

Presence	and	Messaging	SDK's	general	enum	list	that
holds	context	specific	values	for	a	variety	of	purposes.

GPErrorCode
Error	codes	which	occur	in	GP	processing.

GPResult
Possible	Results	which	can	be	returned	from	GP	functions.
Check	individual	function	definitions	to	see	possible
results.

GPEnum
Presence	and	Messaging	SDK's	general	enum	list	that	holds	context
specific	values	for	a	variety	of	purposes.

typedef	enum	
{

//	Callbacks
GP_ERROR	=	0,				
GP_RECV_BUDDY_REQUEST,				
GP_RECV_BUDDY_STATUS,				
GP_RECV_BUDDY_MESSAGE,				
GP_RECV_GAME_INVITE,				
GP_TRANSFER_CALLBACK,				
GP_RECV_BUDDY_AUTH,				

//	Global	States
GP_INFO_CACHING=	0x0100,				
GP_SIMULATION,				
GP_INFO_CACHING_BUDDY_ONLY,				

//	Blocking
GP_BLOCKING=	1,				
GP_NON_BLOCKING=	0,				

//	Firewall
GP_FIREWALL=	1,				
GP_NO_FIREWALL=	0,				

//	Check	Cache
GP_CHECK_CACHE=	1,				
GP_DONT_CHECK_CACHE=	0,				

//	Is	Valid	Email.
GP_VALID=	1,				
GP_INVALID=	0,				

//	Fatal	Error

GP_FATAL=	1,				
GP_NON_FATAL=	0,				

//	Sex
GP_MALE=	0x0500,				
GP_FEMALE,				
GP_PAT,				

//	Profile	Search
GP_MORE=	0x0600,				
GP_DONE,				

//	Set	Info
GP_NICK=	0x0700,				
GP_UNIQUENICK,				
GP_EMAIL,				
GP_PASSWORD,				
GP_FIRSTNAME,				
GP_LASTNAME,				
GP_ICQUIN,				
GP_HOMEPAGE,				
GP_ZIPCODE,				
GP_COUNTRYCODE,				
GP_BIRTHDAY,				
GP_SEX,				
GP_CPUBRANDID,				
GP_CPUSPEED,				
GP_MEMORY,				
GP_VIDEOCARD1STRING,				
GP_VIDEOCARD1RAM,				
GP_VIDEOCARD2STRING,				
GP_VIDEOCARD2RAM,				
GP_CONNECTIONID,				
GP_CONNECTIONSPEED,				
GP_HASNETWORK,				
GP_OSSTRING,				
GP_AIMNAME,				
GP_PIC,				
GP_OCCUPATIONID,				

GP_INDUSTRYID,				
GP_INCOMEID,				
GP_MARRIEDID,				
GP_CHILDCOUNT,				
GP_INTERESTS1,				

//	New	Profile
GP_REPLACE=	1,				
GP_DONT_REPLACE=	0,				

//	Is	Connected
GP_CONNECTED=	1,				
GP_NOT_CONNECTED=	0,				

//	Public	mask
GP_MASK_NONE=	0x00000000,				
GP_MASK_HOMEPAGE=	0x00000001,				
GP_MASK_ZIPCODE=	0x00000002,				
GP_MASK_COUNTRYCODE=	0x00000004,				
GP_MASK_BIRTHDAY=	0x00000008,				
GP_MASK_SEX=	0x00000010,				
GP_MASK_EMAIL=	0x00000020,				
GP_MASK_ALL=	0xFFFFFFFF,				

//	Status
GP_OFFLINE=	0,				
GP_ONLINE=	1,				
GP_PLAYING=	2,				
GP_STAGING=	3,				
GP_CHATTING=	4,				
GP_AWAY=	5,				

//	CPU	Brand	ID
GP_INTEL=	1,				
GP_AMD,				
GP_CYRIX,				
GP_MOTOROLA,				
GP_ALPHA,				

//	Connection	ID
GP_MODEM=	1,				
GP_ISDN,				
GP_CABLEMODEM,				
GP_DSL,				
GP_SATELLITE,				
GP_ETHERNET,				
GP_WIRELESS,				

//	Transfer	callback	type	(the	transfer	is	ended	when	these	types
are	received)
GP_TRANSFER_SEND_REQUEST,				
GP_TRANSFER_ACCEPTED,				
GP_TRANSFER_REJECTED,				
GP_TRANSFER_NOT_ACCEPTING,				
GP_TRANSFER_NO_CONNECTION,				
GP_TRANSFER_DONE,				
GP_TRANSFER_CANCELLED,				
GP_TRANSFER_LOST_CONNECTION,				
GP_TRANSFER_ERROR,				
GP_TRANSFER_THROTTLE,				
GP_FILE_BEGIN,				
GP_FILE_PROGRESS,				
GP_FILE_END,				
GP_FILE_DIRECTORY,				
GP_FILE_SKIP,				
GP_FILE_FAILED,				

//	GP_FILE_FAILED	error
GP_FILE_READ_ERROR=	0x900,				
GP_FILE_WRITE_ERROR,				
GP_FILE_DATA_ERROR,				

//	Transfer	Side
GP_TRANSFER_SENDER=	0xA00,				
GP_TRANSFER_RECEIVER,				

//	UTM	send	options
GP_DONT_ROUTE=	0xB00,				

//	Quiet	mode	flags
GP_SILENCE_NONE=	0x00000000,				
GP_SILENCE_MESSAGES=	0x00000001,				
GP_SILENCE_UTMS=	0x00000002,				
GP_SILENCE_LIST=	0x00000004,				
GP_SILENCE_ALL=	0xFFFFFFFF				

}	GPEnum;

Constants

GP_RECV_BUDDY_AUTH
Required	to	receive	new	style	buddy	authorizations.

GP_PAT
I'm	afraid	to	ask.

GP_OFFLINE
User	is	offline	(disconnected	from	the	server).

GP_ONLINE
User	is	online	(connected	to	the	server).

GP_PLAYING
User	is	playing	a	game.

GP_STAGING
User	in	a	staging	area	for	a	game.

GP_CHATTING
User	is	chatting.

GP_DONT_ROUTE
Only	sends	the	message	directly	to	the	player.

GP_SILENCE_MESSAGES
Messages	will	be	silenced.

GP_SILENCE_UTMS
UTMs	will	be	silenced.

GP_SILENCE_LIST
Buddy	List	requests,	authorizations	and	revokes	will	be	silenced.

GP_SILENCE_ALL
All	GP	traffic	will	be	silenced.

Section	Reference:	Gamespy	Presence	SDK

GPErrorCode
Error	codes	which	occur	in	GP	processing.

typedef	enum	
{

//	General
GP_GENERAL	=	0x0000,				
GP_PARSE,				
GP_NOT_LOGGED_IN,				
GP_BAD_SESSKEY,				
GP_DATABASE,				
GP_NETWORK,				
GP_FORCED_DISCONNECT,				
GP_CONNECTION_CLOSED,				
//	Login
GP_LOGIN	=	0x0100,				
GP_LOGIN_TIMEOUT,				
GP_LOGIN_BAD_NICK,				
GP_LOGIN_BAD_EMAIL,				
GP_LOGIN_BAD_PASSWORD,				
GP_LOGIN_BAD_PROFILE,				
GP_LOGIN_PROFILE_DELETED,				
GP_LOGIN_CONNECTION_FAILED,				
GP_LOGIN_SERVER_AUTH_FAILED,				
GP_LOGIN_BAD_UNIQUENICK,				
GP_LOGIN_BAD_PREAUTH,				

//	Newuser
GP_NEWUSER=	0x0200,				
GP_NEWUSER_BAD_NICK,				
GP_NEWUSER_BAD_PASSWORD,				
GP_NEWUSER_UNIQUENICK_INVALID,				
GP_NEWUSER_UNIQUENICK_INUSE,				

//	Update	UI
GP_UPDATEUI=	0x0300,				
GP_UPDATEUI_BAD_EMAIL,				

//	New	Profile
GP_NEWPROFILE=	0x0400,				
GP_NEWPROFILE_BAD_NICK,				
GP_NEWPROFILE_BAD_OLD_NICK,				

//	Update	Profile
GP_UPDATEPRO=	0x0500,				
GP_UPDATEPRO_BAD_NICK,				

//	Add	Buddy
GP_ADDBUDDY=	0x0600,				
GP_ADDBUDDY_BAD_FROM,				
GP_ADDBUDDY_BAD_NEW,				
GP_ADDBUDDY_ALREADY_BUDDY,				

//	Auth	Add
GP_AUTHADD=	0x0700,				
GP_AUTHADD_BAD_FROM,				
GP_AUTHADD_BAD_SIG,				

//	Status
GP_STATUS	=	0x0800,				

//	Buddy	Message
GP_BM=	0x0900,				
GP_BM_NOT_BUDDY,				

//	Get	Profile
GP_GETPROFILE=	0x0A00,				
GP_GETPROFILE_BAD_PROFILE,				

//	Delete	Buddy
GP_DELBUDDY=	0x0B00,				
GP_DELBUDDY_NOT_BUDDY,				

//	Delete	Profile
GP_DELPROFILE=	0x0C00,				
GP_DELPROFILE_LAST_PROFILE,				

//	Search
GP_SEARCH=	0x0D00,				
GP_SEARCH_CONNECTION_FAILED,				
GP_SEARCH_TIMED_OUT,				

//	Check
GP_CHECK=	0x0E00,				
GP_CHECK_BAD_EMAIL,				
GP_CHECK_BAD_NICK,				
GP_CHECK_BAD_PASSWORD,				

>/	Revoke
GP_REVOKE=	0x0F00,				
GP_REVOKE_NOT_BUDDY,				

//	Register	unique	nick
GP_REGISTERUNIQUENICK=	0x1000,				
GP_REGISTERUNIQUENICK_TAKEN,				
GP_REGISTERUNIQUENICK_RESERVED,				
GP_REGISTERUNIQUENICK_BAD_NAMESPACE,				

//	Register	cdkey
GP_REGISTERCDKEY=	0x1100,				
GP_REGISTERCDKEY_BAD_KEY,				
GP_REGISTERCDKEY_ALREADY_SET,				
GP_REGISTERCDKEY_ALREADY_TAKEN,				

//	AddBlock
GP_ADDBLOCK=	0x1200,				
GP_ADDBLOCK_ALREADY_BLOCKED,				

//RemoveBlock
GP_REMOVEBLOCK=	0x1300,				
GP_REMOVEBLOCK_NOT_BLOCKED				

}	GPErrorCode;

Constants

GP_GENERAL
There	was	an	unknown	error.

GP_PARSE
Unexpected	data	was	received	from	the	server.

GP_NOT_LOGGED_IN
The	request	cannot	be	processed	because	user	has	not	logged	in.

GP_BAD_SESSKEY
The	request	cannot	be	processed	because	of	an	invalid	session	key.

GP_DATABASE
There	was	a	database	error.

GP_NETWORK
There	was	an	error	connecting	a	socket.

GP_FORCED_DISCONNECT
This	profile	has	been	disconnected	by	another	login.

GP_CONNECTION_CLOSED
The	server	has	closed	the	connection.

GP_LOGIN
There	was	an	error	logging	in.

GP_LOGIN_TIMEOUT
The	login	attempt	timed	out.

GP_LOGIN_BAD_NICK
The	nickname	provided	is	incorrect.

GP_LOGIN_BAD_EMAIL
The	e-mail	address	provided	is	incorrect.

GP_LOGIN_BAD_PASSWORD
The	password	provided	is	incorrect.

GP_LOGIN_BAD_PROFILE
The	profile	provided	is	incorrect.

GP_LOGIN_PROFILE_DELETED
The	profile	has	been	deleted.

GP_LOGIN_CONNECTION_FAILED
The	server	has	refused	the	connection.

GP_LOGIN_SERVER_AUTH_FAILED
Could	not	authenticate	server.

GP_LOGIN_BAD_UNIQUENICK
The	uniquenick	provided	is	incorrect.

GP_LOGIN_BAD_PREAUTH
There	was	an	error	validating	the	pre-authentication.

GP_NEWUSER
There	was	an	error	creating	a	new	user.

GP_NEWUSER_BAD_NICK
A	profile	with	that	nick	already	exists.

GP_NEWUSER_BAD_PASSWORD
The	password	does	not	match	the	email	address.

GP_NEWUSER_UNIQUENICK_INVALID
The	uniquenick	is	invalid.

GP_NEWUSER_UNIQUENICK_INUSE
The	uniquenick	is	already	in	use.

GP_UPDATEUI
There	was	an	error	updating	the	user	information.

GP_UPDATEUI_BAD_EMAIL
A	user	with	the	email	address	provided	already	exists.

GP_NEWPROFILE
There	was	an	error	creating	a	new	profile.

GP_NEWPROFILE_BAD_NICK
The	nickname	to	be	replaced	does	not	exist.

GP_NEWPROFILE_BAD_OLD_NICK
A	profile	with	the	nickname	provided	already	exists.

GP_UPDATEPRO
There	was	an	error	updating	the	profile	information.

GP_UPDATEPRO_BAD_NICK
A	user	with	the	nickname	provided	already	exists.

GP_ADDBUDDY
There	was	an	error	adding	a	buddy.

GP_ADDBUDDY_BAD_FROM
The	profile	requesting	to	add	a	buddy	is	invalid.

GP_ADDBUDDY_BAD_NEW
The	profile	requested	is	invalid.

GP_ADDBUDDY_ALREADY_BUDDY
The	profile	requested	is	already	a	buddy.

GP_AUTHADD
There	was	an	error	authorizing	an	add	buddy	request.

GP_AUTHADD_BAD_FROM
The	profile	being	authorized	is	invalid.

GP_AUTHADD_BAD_SIG
The	signature	for	the	authorization	is	invalid.

GP_STATUS
There	was	an	error	with	the	status	string.

GP_BM
There	was	an	error	sending	a	buddy	message.

GP_BM_NOT_BUDDY
The	profile	the	message	was	to	be	sent	to	is	not	a	buddy.

GP_GETPROFILE
There	was	an	error	getting	profile	info.

GP_GETPROFILE_BAD_PROFILE
The	profile	info	was	requested	on	is	invalid.

GP_DELBUDDY
There	was	an	error	deleting	the	buddy.

GP_DELBUDDY_NOT_BUDDY
The	buddy	to	be	deleted	is	not	a	buddy.

GP_DELPROFILE
There	was	an	error	deleting	the	profile.

GP_DELPROFILE_LAST_PROFILE
The	last	profile	cannot	be	deleted.

GP_SEARCH
There	was	an	error	searching	for	a	profile.

GP_SEARCH_CONNECTION_FAILED
The	search	attempt	failed	to	connect	to	the	server.

GP_SEARCH_TIMED_OUT
The	search	timed	out.

GP_CHECK
There	was	an	error	checking	the	user	account.

GP_CHECK_BAD_EMAIL
No	account	exists	with	the	provided	e-mail	address.

GP_CHECK_BAD_NICK
No	such	profile	exists	for	the	provided	e-mail	address.

GP_CHECK_BAD_PASSWORD
The	password	is	incorrect.

GP_REVOKE
There	was	an	error	revoking	the	buddy.

GP_REVOKE_NOT_BUDDY
You	are	not	a	buddy	of	the	profile.

GP_REGISTERUNIQUENICK
There	was	an	error	registering	the	uniquenick.

GP_REGISTERUNIQUENICK_TAKEN
The	uniquenick	is	already	taken.

GP_REGISTERUNIQUENICK_RESERVED
The	uniquenick	is	reserved.

GP_REGISTERUNIQUENICK_BAD_NAMESPACE
Tried	to	register	a	nick	with	no	namespace	set.

GP_REGISTERCDKEY
There	was	an	error	registering	the	cdkey.

GP_REGISTERCDKEY_BAD_KEY
The	cdkey	is	invalid.

GP_REGISTERCDKEY_ALREADY_SET
The	profile	has	already	been	registered	with	a	different	cdkey.

GP_REGISTERCDKEY_ALREADY_TAKEN
The	cdkey	has	already	been	registered	to	another	profile.

GP_ADDBLOCK
There	was	an	error	adding	the	player	to	the	blocked	list.

GP_ADDBLOCK_ALREADY_BLOCKED
The	profile	specified	is	already	blocked.

GP_REMOVEBLOCK
There	was	an	error	removing	the	player	from	the	blocked	list.

GP_REMOVEBLOCK_NOT_BLOCKED
The	profile	specified	was	not	a	member	of	the	blocked	list.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpGetErrorCode,	GPErrorArg

GPResult
Possible	Results	which	can	be	returned	from	GP	functions.	Check
individual	function	definitions	to	see	possible	results.

typedef	enum	
{

GP_NO_ERROR,				
GP_MEMORY_ERROR,				
GP_PARAMETER_ERROR,				
GP_NETWORK_ERROR,				
GP_SERVER_ERROR				

}	GPResult;

Constants

GP_NO_ERROR
Success.

GP_MEMORY_ERROR
Error	occurred	as	result	of	insufficient	memory.

GP_PARAMETER_ERROR
A	provided	parameter	is	either	null	or	has	an	invalid	value.

GP_NETWORK_ERROR
An	error	occurred	while	reading	or	writing	across	the	network.

GP_SERVER_ERROR
Problem	encountered	trying	to	connect	to	the	server.

Section	Reference:	Gamespy	Presence	SDK

Query	and	Reporting	SDK
Overview

The	GameSpy	Server	Browsing	and	Matchmaking	systems	are	based	on
a	central	master	server	that	collects	information	about	all	of	the	available
game	servers	on	the	Internet	and	delivers	that	information	to	clients	-
either	in-game	clients	based	on	GameSpy's	Server	Browsing	and
Matchmaking	Toolkits,	or	out-of-game	clients	such	as	GameSpy	Arcade.

The	GameSpy	Query	&	Reporting	2	SDK	is	used	to	allow	your	game
server	to	report	itself	to	the	GameSpy	master	server	backend	and
provide	information	to	game	clients	who	query	it.

The	system	works	as	follows:

When	a	game	server	starts	up,	it	initializes	the	Query	and	Reporting
2	SDK.	The	SDK	begins	sending	heartbeats	to	the	GameSpy
Master	Server.	These	heartbeats	contain	information	about	the
game	server	and	how	to	connect	to	it.
The	Master	Server	sends	several	queries	to	the	game	server	to
verify	that	it	exists,	and	test	for	various	types	of	firewall	and	NAT
devices	that	might	be	in	front	of	the	server.
Once	the	game	server	has	been	verified,	it	is	added	to	the	list	of
available	servers	for	the	game.
In-game	and	out-of-game	clients	then	query	the	master	server	for
the	list	of	available	servers.
The	clients	send	a	small	query	to	each	available	server	to	determine
latency	as	well	as	server	information.
The	Query	and	Reporting	2	SDK	processes	these	incoming	queries
from	clients	and	converts	them	to	callbacks	into	your	game	code	to
retrieve	the	requested	information.	This	information	is	returned	as
key\value	pairs	to	the	client.
The	client	selects	a	game	server	to	play	on	and	initiates	the
connection	process.	This	connection	may	be	done	directly	through
the	game	code,	or	through	a	3rd	party	handshaking	server	if	the
game	server	is	behind	a	NAT/Firewall	and	supports	our	NAT

negotiation	technology.	See	the	appendix	of	this	document	for	more
details	on	NAT/Firewall	support.

Implementation	of	the	Query	and	Reporting	2	SDK	is	simple,	and	you	can
generally	have	your	game	reporting	to	our	backend	in	a	matter	of
minutes.

Before	you	begin	implementing	the	SDK,	it	is	important	that	you	confirm
that	this	is	the	correct	SDK	for	your	game,	as	other	options	exist.	Select
the	option	below	that	best	describes	your	game,	or	contact
devsupport@gamespy.com	if	you	are	unsure	before	proceeding.

Dedicated	server	game	using	the	Server	Browsing	Toolkit	for	in-game
server	lists,	or	only	using	GameSpy	Arcade

If	your	game	follows	the	"dedicated	server"	model,	where	an
individual	(who	is	typically	not	playing	in	the	game	on	the	same
machine)	starts	a	server	which	is	available	for	other	users	to
connect	to	and	play	on,	and	that	server	is	always	running,	then	you
should	use	the	Query	and	Reporting	2	SDK	to	report	that	server	to
our	Master	Server	backend.

Peer-to-Peer	game	using	the	Matchmaking	Toolkit	(Peer	SDK)	for	in-
game	lobby-based	matchmaking

Games	using	the	Peer	SDK	for	lobby-based	matchmaking	do	not
need	to	implement	the	Query	and	Reporting	2	SDK	directly.	The
Peer	SDK	"wraps"	the	functionality	of	the	QR2	SDK	and	you	can
use	the	API	functions	provided	by	Peer	for	all	game	listing
functionality.

Peer-to-Peer	game	using	only	GameSpy	Arcade	for	matchmaking
If	your	Peer-to-Peer	game	does	not	have	any	in-game
matchmaking	solution,	then	you	may	not	need	to	implement	the
Query	and	Reporting	2	SDK	at	all.	Implementation	is	only	required
if	your	game	supports	"late-entry"	-	that	is,	allows	players	to	join	a
game	in	progress,	even	after	the	initial	group	of	players	has	started
playing.	In	this	case,	you	should	report	the	game	using	the	Query
and	Reporting	2	SDK	running	on	the	game	host	to	ensure	that	out-
of-game	clients	can	still	see	the	game	and	join	it.

The	rest	of	this	document	presents	a	simple,	step-by-step	set	of

mailto:devsupport@gamespy.com

instructions	for	implementing	the	Query	and	Reporting	2	SDK	in	your
game.

File
qr2.c

qr2.h

gr2regkeys.c

gr2regkeys.h

gr2sample.c

qr2csample.dsp

File	Manifest

The	following	files	should	be	included	with	this	package.	If	any	of	the	files
are	missing,	please	contact	devsupport@gamespy.com.

Description
Query	and	Reporting	2	SDK	source

Query	&	Reporting	2	main	header	-	include	this
in	your	source

Global	array	of	pre-defined	key	names

Defines	for	pre-defined	keys

Sample	"game"	in	C	that	uses	the	SDK

MSVC	project	file	to	build	the	C	sample	game

In	addition,	to	build	the	SDK	and	samples,	you	will	need	to	separately
download	the	GameSpy	"common	code"	package,	which	includes	the
shared	SDK	code	used	by	this	SDK	and	others.

When	extracting	this	package,	make	sure	you	preserve	the	directory	tree
in	order	to	assure	that	the	code	builds	correctly.

mailto:devsupport@gamespy.com

Implementation

Step	1:	Determine	The	Data	To	Report

Before	you	begin	writing	code,	you	should	determine	what	data	you	want
to	report	about	your	game	server	to	clients	when	they	query	it.	There	are
three	types	of	data	you	can	report:

Server	Data
This	is	general	information	about	the	game	in	progress,	for
example	-	the	map	that	is	being	played,	the	type	of	game,	and	any
specific	game	settings	that	would	be	of	interest	to	players	before
they	joined.

Player	Data
This	is	information	about	a	specific	player	that	is	in	the	current
game,	for	example	-	the	player's	name,	their	current	score,	what
team	they	are	on,	and	the	latency	to	the	game	server.

Team	Data
This	is	information	about	a	specific	team	in	the	current	game,	for
example	-	the	name	of	the	team	and	the	team	score.	If	your	game
does	not	support	team	play	you	do	not	need	to	report	any	team
information.

Data	is	reported	in	a	"key	/	value"	format.	That	is,	each	piece	of	data	that
you	want	to	report	has	a	specific	key	name	associated	with	it,	and	when
that	key	is	requested	you	need	to	return	the	appropriate	value.	Key
names	are	short	strings	that	generally	describe	what	the	key	is.	To
indicate	the	difference	between	types	of	keys,	player	keys	always	end	in
an	"_"	character	(such	as	"score_")	and	team	keys	always	end	in	a	"_t"
(such	as	score_t).	Server	keys	can	end	in	anything	other	than	an	_	or
_t.

GameSpy	has	a	standard	list	of	keys	that	you	can	choose	to	report	for
your	game.	You	do	not	have	to	report	all	these	keys	-	in	fact,	depending
on	your	game	type,	many	of	the	keys	many	not	be	applicable	at	all.	If	you
have	additional	data	you	want	to	report	that	is	not	covered	by	the
standard	list	of	keys,	you	can	register	"custom"	keys	for	your	game	and

report	any	data	you	want.

The	list	of	standard	keys,	and	descriptions	of	the	data	they	commonly
represent,	is	below:

hostname

a	descriptive	host-defined	string	(can	include	spaces)	that	identifies
the	server	(e.g.	"Joe's	Game!")

gamever

a	version	specifier	(e.g.	1.23)
hostport

the	port	that	the	game	networking	is	running	on	and	that	the	client
should	connect	to.	If	the	game	shares	a	port	with	the	Query	and
Reporting	2	SDK,	you	do	not	need	to	specify	this.

mapname

the	map	name	(either	filename	or	descriptive	name)
gametype

string	which	specifies	the	type	of	game,	or	the	mod	being	played.
gamevariant

if	the	particular	game	type	has	multiple	variants,	you	can	report	it
using	this	key.

numplayers

numeric	string,	number	of	players	on	the	server
numteams

numeric	string,	number	of	teams	on	the	server
maxplayers

numeric	string,	max	number	of	players	for	this	server
gamemode

string	which	specifies	what	is	going	on	in	the	game	at	that	time.

Modes	include:
openwaiting

game	has	not	yet	started	and	players	can	join
closedwaiting

game	has	not	yet	started	and	players	cannot	join

closedplaying

game	is	in	progress,	no	joining	allowed
openplaying

game	is	in	progress,	players	may	still	join
openstaging	/	closedstaging

Use	to	report	that	the	game	is	in	staging	mode	(should
generally	not	be	used	directly	-	the	Peer	SDK	handles	this
automatically).

exiting

server	is	shutting	down

teamplay

number	which	defines	the	type	of	teamplay	in	use,	or	0	for	no
teamplay.	Values	>	0	are	up	to	the	developer

fraglimit

number	of	total	kills	or	points	before	a	level	change	or	game	restart
teamfraglimit

number	of	total	kills	or	points	for	a	team	before	a	level	change	or
game	restart

timelimit

amount	of	total	time	before	a	level	change	or	game	restart	occurs
(generally	in	minutes)

timeelapsed

amount	of	time	(in	seconds)	since	the	current	level	or	game	started
roundtime

amount	of	time	before	a	round	ends	(for	round	based	games)
roundelapsed

amount	of	time	(in	seconds)	that	the	current	round	has	been	in
progress

password

0	or	not	present	if	no	password	is	required	to	join,	1	if	password	is
required.	Implementation	of	actual	password	protection	is	up	to	the
game	developer's	network	code.

groupid

(optional)	If	the	server	being	hosted	is	part	of	a	"group	room"	then	it
needs	to	report	which	groupid	it	is	part	of	(as	passed	in	on	launch)

player_

a	player	name	(may	include	spaces)
score_

numeric	string	that	contains	the	score	(kills/points)	for	a	single
player

skill_

a	skill	rating,	if	applicable,	for	a	single	player
ping_

the	ping	for	a	player	(as	measured	between	the	player	and	the
server)

team_

the	team	a	player	is	on,	either	numeric	or	string
deaths_

number	of	deaths	a	player	has	had
pid_

The	profileID	number	for	a	player	(if	logged	in	with	the	P&M	SDK)
team_t

the	name	for	a	team
score_t

the	score	for	a	team

Keys	are	identified	by	a	numeric	KeyID	in	addition	to	their	registered
names.	The	Query	and	Reporting	2	SDK	always	refers	to	keys	by	their
KeyID.	The	KeyIDs	for	the	standard	keys	can	be	found	as	defines	in	the
qr2regkeys.h	file.

When	you	register	custom	keys	for	your	game,	you	will	need	to	select
your	own	KeyID	values	for	them.	The	values	0-49	are	reserved,	and	50-
253	are	available	for	custom	keys.	When	you	have	decided	what	custom
keys	(if	any)	you	need,	you	should	assign	KeyID	values	to	them	from
that	range	(generally	with	defines	so	that	you	can	refer	to	them	easily	in
your	code).	The	actual	values	do	not	matter,	but	you'll	need	to	make	sure

you	always	refer	to	the	same	key	by	the	same	KeyID.

When	you've	decided	on	the	custom	keys	you	want	to	report,	you'll	need
to	register	them	with	the	qr2_register_key()	function.	Call	this
function	for	each	custom	key	you	want	to	register	before	initializing	the
SDK.

void	qr2_register_key(int	keyid,	const	char	*key);

Simply	pass	in	the	keyID	you've	chosen	and	the	key	name	for	your
custom	key.	Remember	that	player	keys	need	to	end	in	"_"	and	team
keys	need	to	end	in	"_t".

Step	2:	Create	The	Callback	Function

You	need	to	create	a	C	callback	function	for	each	of	the	3	key	types	in
order	to	return	the	values	for	those	keys	when	queried	by	a	client.	The
SDK	will	call	these	functions	when	a	user	queries	the	server	to	get	the
latest	information.

The	prototype	for	the	server	key	callback	(from	qr2.h)	is:

typedef	void	(*qr2_serverkeycallback_t)(int	keyid,	qr2_buffer_t	outbuf,	void	*userdata);

A	Sample	function	would	be:

void	server_key_callback(int	keyid,	qr2_buffer_t	outbuf,	void	*userdata)

{

//add	value	to	the	buffer	here

}

KeyID	is	the	id	number	of	the	key	being	requested.	You	will	need	to	look
up	the	value	for	that	particular	game	using	your	game's	internal
structures,	and	then	add	the	value	to	the	output	buffer.

To	add	the	value,	simply	call	the	qr2_buffer_add()	or
qr2_buffer_add_int()	function:

void	qr2_buffer_add(qr2_buffer_t	outbuf,	const	char	*value);

void	qr2_buffer_add_int(qr2_buffer_t	outbuf,	int	value);

Userdata	is	a	pointer	that	you	can	set	to	whatever	you	want	in	the
qr2_init()	function	(described	below).	Generally	this	is	used	to	store
an	object	pointer	or	a	structure	pointer	to	your	game	data.

You	will	also	need	callbacks	for	the	player	and	team	keys.	The	prototype
for	these	callbacks	is:

typedef	void	(*qr2_playerteamkeycallback_t)(int	keyid,	int	index,	qr2_buffer_t	outbuf,	void	*userdata);	

The	extra	index	parameter	specifies	the	team	or	player	index	being
requested	(0-based).

In	addition	to	the	key/value	callbacks,	there	are	three	additional	callback
functions	you	will	need	to	create.

The	first	is	the	player/team	count	callback,	which	the	SDK	uses	to
determine	the	current	number	of	players	or	teams	(so	that	it	can
enumerate	through	each	player	or	team	by	index	to	retrieve	a	specific
key).

The	prototype	for	this	callback	function	is:

typedef	int		(*qr2_countcallback_t)(qr2_key_type	keytype,	void	*userdata);								

The	keytype	parameter	will	tell	you	whether	the	player	or	team	count	is
being	requested.	Simply	return	the	current	count	from	the	function.	If	you
do	not	support	teams,	just	return	0	for	the	team	count.

The	next	callback	you	need	to	provide	is	the	key	list	callback.	The	SDK
uses	this	callback	to	determine	the	complete	list	of	keys	you	support	-
both	standard	and	custom	keys.

The	prototype	for	this	callback	function	is:

typedef	void	(*qr2_keylistcallback_t)(qr2_key_type	keytype,	qr2_keybuffer_t	keybuffer,	void	*userdata);		

The	keytype	parameter	indicates	what	type	of	keys	are	being	requested
-	server,	player,	or	team.	You	should	only	add	keys	of	the	specified	type
to	the	key	buffer.	Use	the	qr2_keybuffer_add()	function	to	add	each
supported	key	to	the	keybuffer	in	turn.

void	qr2_keybuffer_add(qr2_keybuffer_t	keybuffer,	int	keyid);

The	final	callback	you	will	want	to	provide	is	the	"add	error"	callback,
which	is	called	when	the	Master	Server	indicates	to	the	game	server	that
there	has	been	an	error	adding	it	to	the	list.	Typically	this	will	only	occur	if
the	game	server	is	behind	some	type	of	firewall	or	proxy	that	is	blocking
external	traffic,	and	the	game	does	not	support	NAT	negotiation
technology.

This	callback	can	also	be	called	if	no	traffic	is	received	from	the	master
server	for	approximately	40	seconds	after	starting	reporting.	This
indicates	that	the	master	server	is	either	inaccessible	due	to	network
difficulties,	is	down	for	maintenance,	or	is	being	blocked	by	an	aggressive
firewall.

The	prototype	for	this	function	is	below.	See	the	qr2.h	header	file	for
descriptions	of	each	parameter.

typedef	void	(*qr2_adderrorcallback_t)(qr2_error_t	error,	char	*errmsg,	void	*userdata);		

Step	3:	Initialize	the	SDK

Once	you	have	created	the	callback	functions,	you	need	to	initialize	the
SDK	to	create	the	socket	needed	for	queries	and	heartbeats.	This	only
needs	to	be	done	once,	and	should	be	done	before	the	actual	game
starts.

Simply	call	the	qr2_init()	function	to	create	the	required	sockets.

The	prototype	for	qr2_init	is:

qr2_error_t	qr2_init(qr2_t	*qrec,	const	char	*ip,	

int	baseport,	const	char	*gamename,	

const	char	*secret_key,

																		int	ispublic,	int	natnegotiate,

																		qr2_serverkeycallback_t	server_key_callback,

																		qr2_playerteamkeycallback_t	player_key_callback,

																		qr2_playerteamkeycallback_t	team_key_callback,

																		qr2_keylistcallback_t	key_list_callback,

																		qr2_countcallback_t	playerteam_count_callback,

																		qr2_adderrorcallback_t	adderror_callback,

																		void	*userdata);

The	Query	and	Reporting	2	SDK	can	be	instantiated	multiple	times	if	you
are	running	more	than	one	server	in	a	single	process.	If	you	are	going	to
use	it	this	way,	you'll	need	to	pass	in	a	pointer	to	a	qr_t	variable	for	the
first	parameter.	The	returned	value	should	then	be	passed	into	other
functions	that	have	a	qrec	parameter	so	that	the	correct	instance	is
used.

If	you	are	running	a	single	game	server	instance	per	process	(as	most
games	will),	then	you	can	simply	pass	NULL	for	the	qrec	parmeter	in
all	of	the	functions.

IP

An	optional	dotted	IP	address	for	use	on	multi-homed	machines.	If
you	specify	IP	as	NULL,	all	IP	addresses	on	the	machine	will	be
bound.	If	your	game	networking	supports	binding	to	user-specified
IPs,	you	should	make	sure	the	same	IP	is	bound	by	the	Query	and
Reporting	2	SDK.

baseport

The	UDP	port	that	the	SDK	will	attempt	to	bind	to	accept	queries
on.	If	baseport	is	unavailable,	up	to	100	ports	above	baseport	will
be	scanned	to	find	an	open	port.

In	the	highly	unlikely	event	that	none	of	those	ports	are	available,
e_qrbinderror	will	be	returned.	You	can	also	pass	in	0	for	baseport,
to	have	a	port	chosen	automatically	by	the	operating	system.
However,	this	will	make	it	harder	to	test	the	server	and	scan	for	it

on	a	LAN,	since	you	never	know	which	query	port	it	is	using,	and	is
generally	not	recommended.

gamename

The	unique	gamename	that	you	were	issued	with	your	secret	key.
secret_key

The	key	you	were	issued	with	the	gamename.	We	recommend	that
you	do	not	just	pass	in	a	static	string	to	the	function,	as	this	will
show	up	in	the	executable's	string	table.	Instead,	you	should	set
each	character	in	the	string	individually,	as	shown	in	the	sample
programs.	On	consoles	this	is	not	a	concern.

ispublic

Determines	whether	the	server	is	reported	to	the	GameSpy	Master
Server.	If	Ispublic	is	0,	the	server	will	not	be	reported.	However,	it
will	still	respond	to	queries	that	come	from	clients	broadcasting	on
the	same	LAN,	and	thus	is	essentially	a	"LAN-only"	server.	You
should	generally	let	server	operators	choose	whether	a	server	is
public	or	private.

natnegotiate

a	flag	that	indicates	whether	your	game	supports	NAT	negotiation
technology	for	hosting	behind	a	NAT	or	firewall.	See	the	appendix
on	NAT	support	for	further	information	on	this	parameter.

userdata

An	implementation	specific	pointer	that	is	passed	each	time	a
callback	function	is	called.	Use	this	to	pass	data	structures	or
object	pointers	to	the	callback	functions.

The	six	qr2_*	callback	parameters	are	the	callback	functions	you
created	in	the	previous	step.

If	qr2_init()	is	successful,	it	will	return	e_qrnoerror	(0),	otherwise
it	will	return	one	of	the	error	codes	described	in	qr2.h.

Step	4:	Process	Queries	in	Your	Main	Loop

Somewhere	in	your	main	program	(or	message)	loop,	you	need	to	call
the	qr2_think()	function	so	that	the	SDK	can	process	any	pending

server	queries.

This	function	should	be	called	once	every	10-100ms.	Server	queries	are
used	by	clients	to	gauge	latency,	so	slow	query	replies	will	make	the
servers	look	more	lagged	than	they	are.

Step	5:	Send	statechange	Heartbeats	Where	Needed

Whenever	the	gamemode	of	your	game	changes	(going	from	waiting	to
playing,	open	to	closed,	playing	to	exiting,	etc)	you	should	call
qr2_send_statechanged()	to	send	a	statechanged	heartbeat	to	the
master.	What	this	does	is	trigger	the	master	server	to	immediately	update
the	status	of	the	server,	instead	of	waiting	up	to	60	seconds	for	the	next
standard	heartbeat	to	go	out.	You	should	be	very	careful	to	not	send
statechanged	heartbeats	in	a	tight	loop,	as	this	has	caused	flooding
problems	in	the	past	when	developers	put	this	function	in	the	same	place
as	qr2_think.

Step	6:	Cleanup	The	SDK	When	Done

When	your	server	is	shutting	down,	you	should	call	the
qr2_shutdown()	function	to	close	the	query	socket	and	do	any	misc.
clean	up.	A	final	heartbeat	is	also	sent	to	the	master	server	automatically,
indicating	that	the	game	server	is	being	shut	down	and	should	be	de-
listed.

Step	7:	Testing

Once	you	have	the	SDK	implemented,	you	are	ready	to	test	it.	For	initial
testing,	it	is	best	to	make	sure	you	are	running	on	a	machine	connected
directly	to	the	Internet,	with	a	real,	routable	IP	address	and	no	firewall	or
proxy.	Although	NATs	and	Firewalls	are	supported	(as	described	in	the
Appendix),	it	can	be	difficult	to	tell	whether	a	server	listing	failure	is	due	to
a	NAT/Firewall	or	an	implementation	problem,	so	testing	without	the
NAT/Firewall	to	begin	with	is	highly	recommended.

Once	you've	started	your	server	and	it	has	initialized	the	Query	and
Reporting	2	SDK,	you	can	check	the	Development	Master	Server	Web
Page	to	confirm	that	the	server	has	been	listed	on	our	master	server.

http://net.gamespy.com/masterserver/

The	page	defaults	to	the	"gmtest"	gamename.	If	you	are	testing	under	a
different	gamename/key	that	you	were	issued,	make	sure	to	input	the
correct	gamename	on	the	page.	The	page	will	return	a	list	of	all	servers
currently	listed	for	that	gamename.

If	your	server	does	not	appear	on	the	page,	here	are	some	things	to
check:

Does	the	qr2csample	application	work	on	the	machine	you	are
running	your	game	server	on	(try	both	the	gmtest	gamename/key
and	your	own)?	If	the	qr2csample	does	not	show	up	on	the	web
page	when	running,	you	can	be	fairly	sure	the	problem	is	not	in	your
implementation	-	but	somehow	network	related.	Confirm	that	you	do
not	have	a	firewall	or	NAT	device	that	might	be	blocking	incoming
queries	from	the	master	server.
If	the	qr2csample	works,	but	your	game	does	not	(on	the	same
machine),	then	double-check	your	implementation	-	make	sure	you
are	calling	qr2_init,	and	that	it	is	not	returning	an	error	codes.
Make	sure	you	are	calling	qr2_think	at	regular	intervals	of	10-
100ms.	You	can	try	setting	a	breakpoint	in	your	callbacks	to	see	if
any	are	getting	called.
You	can	use	the	querytest	program	described	below	to	query	your
server	and	see	if	any	results	are	returned.	If	results	are	not	returned,
the	problem	is	almost	definitely	in	your	implementation.	If	results	are
returned,	then	the	problem	is	either	network	or	backend	related.

Once	you've	got	your	server	listing	on	our	master	server	(or	if	you	are
trying	to	diagnose	problems	with	listing),	you	can	use	the	querytest
program	included	with	this	SDK	to	send	a	query	directly	to	your	server
and	have	all	the	keys/values	the	server	sends	back	printed	out.	Use	this
program	to	confirm	that	the	server	is	reporting	all	the	keys	and	values
you	are	trying	to	report.

To	run	querytest,	simply	specify	the	IP	of	the	machine	the	server	is
running	on,	and	the	query	port	the	game	is	using	(as	passed	to
qr2_init).

For	example:

C:\Querytest.exe	1.2.3.4	27900

If	it	reports	that	the	query	timed	out,	then	your	game	may	not	be
implementing	the	QR2	SDK	correctly.

If	the	data	scrolls	by	too	fast,	you	may	either	want	to	pipe	the	results	to
"more"	or	to	a	file	-	for	example:

C:\Querytest.exe	1.2.3.4	27900	|	more

C:\Querytest.exe	1.2.3.4	27900	>	out.txt

Appendix:	Migration	from	a	Previous	Version	of	Query	and
Reporting	SDK

The	Query	and	Reporting	2	SDK,	and	the	new	backend	that	supports	it,
offers	a	number	of	significant	advantages	over	the	previous	Query	and
Reporting	SDK:

Game	servers	can	be	queried	for	specific	keys,	instead	of	entire
groups	of	keys	so	that	just	the	data	needed	by	clients	is	returned.
The	new	wire	protocol	uses	less	bandwidth	by	not	sending	key
names	when	a	specific	list	of	keys	is	requested,	and	not	repeating
key	names	for	each	player	or	team.
The	updated	API	removes	the	need	to	check	buffer	sizes	when
building	query	responses,	all	of	that	is	handled	by	the	SDK
automatically	now.
Response	values	no	longer	need	to	be	escaped	to	remove	"\"
characters,	as	that	is	no	longer	used	as	a	protocol	delimiter.	The
only	invalid	character	for	response	strings	is	NUL	(0).	This	will	allow
easier	use	of	alternate	character	encodings	such	as	UTF8.
Adds	support	for	our	new	NAT	Negotiation	technology

If	your	game	has	already	implemented	the	Query	and	Reporting	SDK,
you	are	not	required	to	switch	to	the	QR2	SDK	unless	you	want	to	take
advantage	of	the	benefits	it	provides,	or	use	the	advanced	features	of	the
new	Server	Browsing	SDK,	which	require	QR2.

To	convert	your	game	to	use	Query	and	Reporting	2,	follow	these	steps:

1.	 Implement	the	new	QR2	callbacks,	as	described	in	step	1	of	the
above	implementation	guide.	You	can	remove	the	4	query	callbacks
used	in	the	original	SDK.

2.	 Replace	your	call	to	qr_init	with	a	call	to	qr2_init,	filling	in	the
appropriate	additional	parameters.

3.	 Replace	your	calls	to	qr_process_queries	or
qr_process_queries_no_heartbeat	with	a	call	to
qr2_think.	Note	that	there	are	no	longer	two	processing	functions.
Whether	or	not	heartbeats	is	sent	is	determined	by	the	ispublic

parameter	of	qr2_init.
4.	 If	you	share	sockets	with	the	QR2	SDK,	you	will	need	to	replace

your	call	to	qr_parse_query	with	a	call	to	qr2_parse_query.
For	the	QR2	SDK,	the	queries	will	no	longer	start	with	the	"\"
character.	You	can	identify	queries	by	the	magic	bytes	given	in	the
qr2.h	file.	You	also	no	longer	need	to	NUL-terminate	the	query	data
before	passing	it	to	qr2_parse_query.

5.	 Replace	calls	to	qr_send_statechanged	and	qr_shutdown	with
the	equivalent	qr2	calls.

6.	 Calls	to	qr_send_exiting	are	no	longer	needed,	as	an	"exiting"
heartbeat	is	sent	as	part	of	qr2_shutdown.

Once	you've	converted	all	your	code	and	gotten	it	to	compile,	follow	the
testing	guidelines	in	step	7	above	to	confirm	your	new	implementation.

UNICODE	Support

The	GameSpy	SDKs	support	an	optional	UNICODE	interface	for
widestring	applications.	To	use	this	interface,	first	define	the	symbol
GSI_UNICODE.	Then,	use	widestrings	wherever	ANSI	strings	were
previously	called	for.	When	in	doubt,	please	refer	to	the	header	files	for
specific	function	declarations.

Although	the	GameSpy	SDK	interfaces	support	UNICODE	parameters,
some	items	may	be	stripped	of	their	extra	UNICODE	information.	These
items	include:	nickname,	email	address,	and	URL	strings.	You	may	pass
in	widestring	values,	but	they	will	first	be	converted	to	their	ANSI
counterparts	before	transmission.

*Note:	When	using	UNICODE,	make	sure	to	call
qr2_internal_key_list_free	after	qr2_shutdown	in	order	to	free
the	internal	key	list	created	for	UNICODE	support.	Not	doing	this	will	lead
to	memory	leaks.

Appendix:	NAT	and	Firewall	Support

One	of	the	largest	challenges	in	game	networking	today	is	the	variety	of
network	topologies	in	use	by	players	in	homes	and	offices	around	the
world.	Technologies	created	to	help	users	set	up	home	networks	and
allow	corporations	to	protect	their	internal	networks	have	not	been
designed	with	gaming	applications	in	mind,	especially	Peer	to	Peer
applications,	where	a	user	may	act	as	a	host	for	other	players.	As	more
users	get	broadband	connections,	and	the	number	of	multi-PC
households	increases,	this	will	only	become	a	larger	problem.

Soon	we	will	see	another	reason	emerge	for	people	to	purchase	these
devices	-	broadband	consoles.	Since	most	console	users	with	broadband
will	also	have	a	PC	at	home,	we	can	expect	a	large	percentage	of	online
console	users	to	be	using	a	NAT	device.	Because	of	the	frustration	this
can	cause	users,	GameSpy	has	taken	an	aggressive	stance	in	making
sure	that	users	can	host	multiplayer	games	no	matter	what	their	network
topology.	Before	discussing	GameSpy's	specific	solutions	in	this	area,
some	background	on	the	technologies	and	terminology	is	required.

Connection	Types

There	are	three	primary	ways	a	user	may	be	connected	to	the	Internet.

Direct	Connection

A	user	is	said	to	have	a	"direct"	connection	if	their	machine	is	assigned	a
single,	globally	routable	IP	address	for	the	duration	that	they	are	online,
that	address	is	not	shared	with	any	other	users,	and	no	network
hardware	between	the	user	and	the	Internet	is	filtering	or	dropping	any
traffic.	Direct	Connection	does	not	necessarily	mean	broadband	-	in	fact,
most	dial-up	users	are	considered	Direct	Connections	as	they	have	a
true,	routable	IP	address	assigned	to	them	whenever	they	dial	up	(even
AOL	users).

NAT	Proxy	Connection

NAT	(short	for	Network-Address-Translating)	proxies	are	becoming	a

more	common	way	for	users	(and	companies)	to	share	a	single	IP
address	with	multiple	computers.

NAT	proxies	come	in	either	software	form	(e.g.	SyGate,	Windows	ICS,
WinRoute)	or	hardware	(e.g.	LinkSys	Broadband	router,	and	others).

Computers	"behind"	the	NAT	have	private	IP	addresses	-	e.g.
192.168.0.1	-	that	are	not	accessible	on	the	public	Internet.	The	NAT
device	itself	has	1	(or	more)	public,	routable	IP	addresses.	When	a
computer	behind	the	NAT	sends	outgoing	data	or	makes	an	outgoing
connection,	the	NAT	"edits"	the	packet	to	change	the	origin	address	to
the	NAT	IP	address,	instead	of	the	private	IP	address.	It	then	chooses	a
local	port	on	the	NAT	and	uses	that	as	the	"public"	port	for	the	packet,
instead	of	the	port	on	the	private	machine.	The	NAT	keeps	a	table	that
maps	the	"public"	port	on	the	NAT	to	the	private	IP	and	port	that	the
packet	originated	from.	When	the	destination	machine	replies,	it	goes	to
the	NAT	IP	address	and	the	"public"	port.	The	NAT	machine	then
forwards	the	packet	to	the	private	machine	that	matches	the	mapping,
again	rewriting	the	packet	headers	in	the	process	so	that	the	private
machine	has	no	idea	anything	is	in	the	middle.

Firewalled	Connection

A	Firewall	is	a	network	device	that	sits	on	the	network	between	the
Internet	and	the	user	and	looks	at	all	traffic	going	back	and	forth	to
determine	which	traffic	to	allow.	Firewalls	are	most	often	used	in
corporate	environments,	but	many	users	have	deployed	home-based
"software"	firewalls.	Firewalls	can	be	configured	hundreds	of	different
ways	depending	on	the	desired	behavior,	however	the	most	common
configurations	will	not	allow	any	"unsolicited"	traffic	to	machines	behind
the	firewall.	Only	after	the	machine	behind	the	firewall	has	contacted	an
outside	machine	is	any	traffic	from	that	outside	machine	allowed	past	the
firewall.

Some	firewalls	are	much	more	strict	-	only	allowing	outgoing	TCP	traffic
on	pre-defined	ports	(such	as	web	browsing)	-	any	firewall	configured	this
strictly	will	likely	be	incompatible	with	any	game.	Many	firewalls	operate
in	an	"invisible"	fashion	-	the	users	behind	the	firewalls	have	publicly
routable	addresses	and	have	no	way	to	determine	that	a	firewall	is

blocking	traffic.	Firewalls	may	also	be	combined	with	NAT	devices	to
provide	both	sets	of	functionality.

A	special	note	about	software	firewalls	(such	as	Zone	Alarm	or	Black
Ice):	Our	experience	has	shown	that	this	type	of	software	can	be	very
unreliable	when	used	in	combination	with	games	and	the	type	of
networking	that	games	employ.	This	is	due	to	both	limitations	of	the
software	and	unexpected	interaction	with	games	(such	as	popping	up	an
invisible	dialog	during	a	full-screen	game,	causing	an	apparent	lock-up).
We	highly	recommend	that	users	disable	or	at	least	turn	down	the
security	settings	on	these	software	firewalls	when	playing	games	to	avoid
problems.

NATs	and	Firewalls	can	be	further	broken	down	into	two	categories:
Promiscuous	and	Non-promiscuous.

With	a	promiscuous	NAT	or	Firewall,	when	a	user	sends	a	packet	from
their	IP	and	port	to	a	remote	machine,	a	mapping	is	created	on	the
network	device	that	allows	any	outside	machine	to	send	data	back	to	that
user	via	the	mapped	port	-	so	once	the	mapping	has	occurred,	and	the
mapped	port	is	determined	by	an	outside	machine,	all	other	clients	can
learn	about	it	from	the	outside	machine	and	connect	directly	to	the
protected	machine.

A	non-promiscuous	device	is	more	restrictive	-	it	will	only	allow	incoming
data	from	the	specific	IP	and	port	that	the	outgoing	data	was	sent	to.
Data	from	any	other	machines	will	be	dropped.

Most	(but	not	all)	NAT	devices	are	promiscuous,	and	most	firewalls	are
configured	to	be	non-promiscuous.

Hosting	Methods

Over	the	years,	a	variety	of	methods	have	been	developed	to	allow
machines	behind	a	NAT	or	firewall	to	host	services	(such	as	a	game
server).

Port	Mapping

The	most	basic	method	is	to	configure	the	NAT	or	firewall	device	to	pass
unsolicited	incoming	traffic	to	a	protected	machine	automatically.	This	is
typically	known	as	setting	up	a	"port	mapping".

For	example,	if	a	game	accepts	Q&R	queries	on	port	27000,	and	hosts
player	connections	in	port	28000,	a	user	could	configure	their	NAT	device
to	pass	all	traffic	directed	to	those	ports	on	the	NAT	back	to	the	private
address	of	their	machine.

This	method	has	a	number	of	drawbacks:

the	user	must	be	technical	enough	to	understand	how	to	set	up	a
port	mapping	on	their	device
the	user	must	have	admin	access	to	their	device	(typically	not
available	in	a	corporate	environment)
the	developer	must	carefully	document	all	ports	used	by	the	game
that	the	user	must	map
only	one	machine	behind	the	device	can	be	set	up	for	a	specific
mapping	(except	in	the	case	of	firewalls,	where	you	can	often	open
a	port	range	for	all	protected	machines).

The	primary	advantage	of	this	method	is	that	it	works	without	any
changes	to	the	game	networking	and	can	work	with	all	types	of
networking	-	TCP	and	UDP	based.

DMZ	Host

Some	NAT	devices	have	an	option	known	as	"DMZ	Host,"	whereby	a
specific	machine	behind	the	NAT	can	be	designated	to	receive	all
unsolicited	incoming	traffic.	This	removes	the	need	to	set	up	individual
port	mappings	for	each	game.	However,	only	one	machine	can	be	the
DMZ	Host	at	a	time,	so	only	a	single	machine	can	host	any	services.	In
addition,	setting	a	machine	as	DMZ	Host	eliminates	many	of	the	security
features	that	a	NAT	provides,	since	it	allows	outside	users	to	connect	to
the	machine	on	any	port.

Shared	Socket

This	method,	which	has	been	supported	by	GameSpy	for	the	past	year,
allows	players	behind	a	promiscuous	NAT	to	host	games	without	any
modification	to	their	device	or	network	connection.	When	a	user	hosts	a
game,	a	heartbeat	is	sent	to	the	GameSpy	master	server.	The	master
server	automatically	determines	the	"mapped"	port	that	the	NAT
allocated,	and	informs	other	clients	about	the	public	address	and	the
mapped	port.

Since	the	NAT	is	promiscuous,	outside	clients	are	able	to	connect	directly
to	that	address	and	port.	The	method	is	called	"shared	socket"	because	it
requires	all	game	networking	to	operate	on	a	single	UDP	socket	that	is
shared	with	the	GameSpy	Query	&	Reporting	SDK,	since	only	a	single
mapping	is	created.	The	disadvantages	of	this	method	are	that	it	does
not	support	all	devices	(and	it's	currently	impossible	to	tell	which	devices
it	supports	until	a	user	tries	and	it	does	not	work),	and	that	it	requires	the
game	networking	use	a	single	UDP	socket	-	which	many	do,	but	not	all.

NAT	Negotiation

Also	known	as	"port	guessing",	this	is	the	new	method	supported	by	the
Query	and	Reporting	2	SDK,	as	well	as	the	additional	NAT	Negotiation
SDK	and	the	3rd	generation	GameSpy	Master	Server.	It	requires	using	a
3rd	party	server	(the	NAT	Negotiation	Server,	run	by	GameSpy)	to
coordinate	the	connection	between	two	clients.	Both	clients	connect	to
the	negotiation	server,	and	it	determines	what	port	their	NAT	devices	has
mapped,	and	what	the	next	likely	port	to	be	mapped	will	be.	The	clients
use	this	information	to	"guess"	a	port	to	connect	to	on	the	remote
address,	and	begin	sending	packets	to	each	other.	After	a	few	seconds,	if
the	guessing	is	successful,	a	UDP	connection	will	be	open	directly
between	the	clients,	and	the	NAT	Negotiation	server	will	not	need	to	pass
any	data	between	them.

This	method	allows	clients	even	behind	non-promiscuous	device	to
connect	with	each	other,	as	long	as	the	device	has	a	predicable	port
allocation	pattern	(which	currently	most	devices	do).	The	method	also
allows	developers	to	use	a	separate	UDP	port	for	each	client	if	desired,
although	using	a	single	UDP	port	(and	even	a	shared	socket)	is	still
supported.	TCP	is	not	supported,	because	the	protocol	is	not	compatible
with	the	type	of	simultaneous	connection	being	attempted	here.	There	is

no	known	way	to	splice	a	TCP	connection	between	NAT	clients
modifications	to	the	operating	system.

Your	Options

All	of	the	above	methods	are	compatible	with	the	GameSpy	SDKs,	and
you	are	free	to	choose	any	of	them.	Below	is	a	description	of	how	you
would	implement	each	option,	and	what	it	will	mean	in	terms	of	network
device	support.

Implementing	NAT	Negotiation

Supporting	the	NAT	Negotiation	option	will	allow	you	game	to	work	as	a
host	behind	the	widest	range	of	NAT	devices	and	firewalls.	To	enable
this,	you	will	need	to	incorporate	the	separate	GameSpy	NAT	Negotiation
SDK	-	see	that	SDK's	documentation	for	details.	In	the	Query	and
Reporting	2	SDK,	you	simply	need	to	set	the	natnegotiate	flag	in
qr2_init	to	1,	to	indicate	to	our	backend	that	you	support	this	method.

Our	backend	will	determine	if	the	host	is	behind	a	NAT	or	firewall	that	is
blocking	traffic,	and	inform	clients	when	they	need	to	use	the	NAT
Negotiation	Server	to	coordinate	a	connection	to	the	host.	Your	game
must	use	UDP-only	networking	to	support	NAT	Negotiation,	although	you
may	use	multiple	UDP	sockets	if	needed.	The	GameSpy	Transport	2
SDK	is	fully	compatible	with	NAT	Negotiation.

Implementing	Shared	Socket

The	Shared	Socket	option	allows	your	game	to	host	behind	any
promiscuous	NAT	or	firewall	device.	If	a	user	attempts	to	host	behind	a
non-promiscuous	device,	the	GameSpy	Master	Server	will	detect	this	and
send	an	error	message	(via	the	QR2	error	callback)	to	indicate	a	hosting
failure.	Details	on	implementing	the	shared	socket	method	are	in	the
separate	"Shared	Socket	Implementation"	appendix.	To	support	Shared
Socket,	your	game	must	use	a	single	UDP	socket	for	all	client
networking.	The	GameSpy	Transport	2	SDK	is	fully	compatible	with	the
Shared	Socket	method.

Implementing	NAT	Negotiation	+	Shared	Socket

You	can	also	choose	to	implement	NAT	Negotiation	and	Shared	Sockets,
by	using	the	NAT	Negotiation	SDK	and	the	instructions	for	using	shared
sockets	in	the	"Shared	Socket	Implementation"	appendix.	While	this	will
not	necessarily	allow	any	extra	players	to	host	that	could	not	otherwise
(since	the	NAT	Negotiation	SDK	works	with	both	promiscuous	and	non-
promiscuous	NATs),	it	does	remove	the	requirement	of	using	the	NAT
Negotiation	server	for	clients	that	are	behind	a	promiscuous	NAT	-	likely	a
large	percentage	of	NAT	users.	This	means	faster	connections	to	clients
for	these	servers,	less	connection	overhead,	and	reduced	bandwidth
from	the	master	server.

If	your	game	already	uses	a	single	UDP	socket	for	all	networking	or	uses
the	GameSpy	Transport	2	SDK,	we	highly	recommend	using	both	Shared
Socket	and	NAT	Negotiation	for	the	broadest	and	most	complete	NAT
and	Firewall	support.

No	Special	Implementation

If	your	networking	is	not	UDP	based,	or	you	are	not	able	to	implement
either	NAT	Negotiation	or	Shared	Socket,	you	can	choose	to	do	no
special	implementation.	For	clients	to	host	you	game	behind	a	NAT	or
firewall,	they	will	need	to	set	up	port	mapping	or	DMZ	Host	options.	If
they	are	unable	to	do	this,	they	will	only	be	able	to	play	as	clients,
connecting	to	servers	that	are	hosted	on	direct	connections.	You	should
make	sure	you	thoroughly	document	this	in	your	manual	to	avoid	any
confusion.

Appendix:	Shared	Socket	Implementation

The	shared	socket	method	works	by	using	an	external	3rd	party	server	to
determine	the	"public"	port	that	the	NAT	has	mapped	private	IP	and	port
to.	In	the	case	of	the	Query	and	Reporting	2	SDK,	we	just	use	the
GameSpy	master	server.	Clients	get	the	list	of	servers	from	the	master
server,	including	the	IP	address	and	port.	Because	the	IP	address	and
port	are	from	the	NAT,	and	are	mapped	to	the	private	IP	and	port,	clients
can	connect	and	be	passed	through	to	the	private	host.

Note	that	for	this	to	work,	the	private	IP	and	port	used	to	send	heartbeats
to	the	master	server	must	be	the	same	as	the	IP	and	port	for	the	game
networking.	Otherwise	outside	clients	would	be	able	to	query	the	game
for	information,	but	not	be	able	to	connect	to	the	game	port	because	the
NAT	would	not	have	a	mapping	for	it.	This	means	the	QR2	SDK	and	the
game	must	share	a	single	UDP	port	for	ALL	game	networking.	TCP	will
not	work	as	a	host	behind	a	NAT,	and	using	multiple	ports	is	not	allowed
because	of	the	mapping	problem.

Some	games	are	already	designed	to	be	networked	in	this	manner	-	the
Quake	and	Unreal	Engine	games	are	two	examples.	They	use	a	single
UDP	port	on	the	server	for	all	incoming	connections	and	game	data,	and
do	not	spawn	a	UDP	socket	for	each	client.	If	you	do	not	have	any	game
networking,	you	should	consider	the	GameSpy	Transport	2	SDK,	which
fully	supports	the	shared	socket	method.

Once	you	have	your	game	networking	set	up	in	this	manner,	integration
with	the	Query	and	Reporting	SDK	is	simple.

Instead	of	calling	qr2_init,	call	qr2_init_socket	and	pass	in	your
UDP	game	socket.	The	Query	and	Reporting	2	SDK	will	then	use	this
socket	to	send	heartbeats	and	reply	to	incoming	queries.

However,	the	SDK	still	considers	the	game	as	the	"owner"	of	the	socket,
so	it	will	not	try	to	read	any	data	off	it.	Your	game	will	read	UDP
datagrams	off	it	as	normal,	and	will	need	to	determine	if	the	packet
received	is	a	game	packet,	or	a	packet	designed	for	the	Query	and
Reporting	2	SDK.	This	will	probably	be	easy	to	determine	based	on	the

structure	of	your	game	networking	packets,	but	the	easiest	way	to	identify
an	incoming	query	is	to	check	the	two	characters	-	valid	queries	will
always	start	with	the	magic	numbers	defined	in	qr2.h.	Once	you've	read
the	data	off	the	socket	and	identified	it	as	an	incoming	query,	you'll	need
to	call	the	qr2_parse_query	function	to	parse	the	query	and	reply	to	it.
Simply	pass	the	data	and	length	to	the	function.

Note	that	you	should	NOT	report	a	hostport	key\value	in	the	Info
Callback,	since	the	hostport	will	be	the	same	as	the	query	port,	and	will
be	determined	by	the	NAT.

You	should	continue	to	call	qr2_think	at	regular	intervals	as
documented	above,	since	this	function	is	used	for	sending	out	heartbeats
and	other	maintenance.	Also	note	that	you	can	use	the
qr2_init_socket	method	for	all	clients	-	whether	or	not	they	are
behind	a	NAT	-	for	clients	not	behind	a	NAT	it	will	work	fine.

Query	and	Reporting	2	SDK	Functions
qr2_buffer_add

Add	a	string	or	integer	to	the	qr2
buffer.		This	is	used	when
responding	to	a	qr2	query
callback.

qr2_buffer_add_int
Add	a	string	or	integer	to	the	qr2
buffer.		This	is	used	when
responding	to	a	qr2	query
callback.

qr2_init
Initialize	the	Query	and	Reporting
2	SDK.

qr2_init_socket
Initialize	the	Query	and	Reporting
2	SDK.		Allows	control	over	the
qr2	socket	object.

qr2_internal_key_list_free
Frees	the	internal	key	list	that	is
constructed	when	in
GSI_UNICODE	mode.

qr2_keybuffer_add
Add	a	key	identifier	to	the
qr2_keybuffer_t.		This	is	used
when	enumerating	the	supported
list	of	keys.

qr2_parse_query
When	using	the	shared	socket
method	with	qr2_init_socket,	use
this	function	to	pass	qr2

messages	to	the	qr2	sdk.

qr2_register_clientconnected_callback
Sets	the	function	that	will	be
triggered	when	a	client	has
connected.

qr2_register_clientmessage_callback
Sets	the	function	that	will	be
triggered	when	a	client	message
is	received.

qr2_register_key
Register	a	key	with	the	qr2	sdk.	
This	tells	the	sdk	that	the
application	will	report	values	for
this	key.

qr2_register_natneg_callback
Sets	the	function	that	will	be
triggered	when	a	nat	negotiation
request	is	received.

qr2_register_publicaddress_callback
Sets	the	function	that	will	be
triggered	when	the	local	clients
public	address	is	received.

qr2_send_statechanged
Notify	the	GameSpy	master
server	of	a	change	in	gamestate.

qr2_shutdown
Frees	memory	allocated	by	the
qr2	sdk.		This	includes	freeing
user	registered	keys.

qr2_think
Allow	the	qr2	sdk	to	continue
processing.		Server	queries	can

only	be	processed	during	this	call.

qr2_buffer_add
Add	a	string	or	integer	to	the	qr2	buffer.		This	is	used	when	responding	to
a	qr2	query	callback.

void	qr2_buffer_add(
qr2_buffer_t	outbuf,
const	gsi_char	*	value);

Routine Required	Header Distribution
qr2_buffer_add <qr2.h> SDKZIP

Parameters

outbuf
[in]	Buffer	to	add	the	value	to.	This	is	obtained	from	the	qr2callback.

value
[in]	String	or	integer	value	to	append	to	the	buffer.

Remarks

The	qr2_buffer_add	function	appends	a	string	to	the	buffer.	The
qr2_buffer_add_int	function	appends	an	integer	to	the	bufer.		These
buffers	are	used	to	construct	responses	to	user	queries	and	typically
contain	information	pertaining	to	the	game	status.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

qr2_buffer_add qr2_buffer_addA qr2_buffer_addW

qr2_buffer_addW	and	qr2_buffer_addA	are	UNICODE	and	ANSI
mapped	versions	of	qr2_buffer_add.	The	arguments	of
qr2_buffer_addA	are	ANSI	strings;	those	of	qr2_buffer_addW	are
wide-character	strings.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

See	Also:	qr2_buffer_add_int

qr2_buffer_add_int
Add	a	string	or	integer	to	the	qr2	buffer.		This	is	used	when	responding	to
a	qr2	query	callback.

void	qr2_buffer_add_int(
qr2_buffer_t	outbuf,
int	value);

Routine Required	Header Distribution
qr2_buffer_add_int <qr2.h> SDKZIP

Parameters

outbuf
[in]	Buffer	to	add	the	value	to.	This	is	obtained	from	the	qr2callback.

value
[in]	String	or	integer	value	to	append	to	the	buffer.

Remarks

The	qr2_buffer_add	function	appends	a	string	to	the	buffer.	The
qr2_buffer_add_int	function	appends	an	integer	to	the	bufer.		These
buffers	are	used	to	construct	responses	to	user	queries	and	typically
contain	information	pertaining	to	the	game	status.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

qr2_buffer_add_int qr2_buffer_add_intA qr2_buffer_add_intW

qr2_buffer_add_intW	and	qr2_buffer_add_intA	are	UNICODE	and
ANSI	mapped	versions	of	qr2_buffer_add_int.	The	arguments	of
qr2_buffer_add_intA	are	ANSI	strings;	those	of	qr2_buffer_add_intW
are	wide-character	strings.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

See	Also:	qr2_buffer_add

qr2_init
Initialize	the	Query	and	Reporting	2	SDK.

qr2_error_t	qr2_init(
qr2_t	*	qrec,
const	gsi_char	*	ip,
int	baseport,
const	gsi_char	*	gamename,
const	gsi_char	*	secret_key,
int	ispublic,
int	natnegotiate,
qr2_serverkeycallback_t	server_key_callback,
qr2_playerteamkeycallback_t	player_key_callback,
qr2_playerteamkeycallback_t	team_key_callback,
qr2_keylistcallback_t	key_list_callback,
qr2_countcallback_t	playerteam_count_callback,
qr2_adderrorcallback_t	adderror_callback,
void	*	userdata);

Routine Required	Header Distribution
qr2_init <qr2.h> SDKZIP

Return	Value

This	function	returns	e_qrnoerrorfor	a	sucessful	result.		Otherwise	a	valid
qr2_error_t	is	returned.

Parameters

qrec
[out]	The	intialized	QR2	SDK	object.

ip
[in]	Optional	IP	address	to	bind	to;	useful	for	multi-homed	machines.	
Usually	pass	NULL.

baseport
[in]	Port	to	accept	queries	on.		See	remarks.

gamename
[in]	The	gamename,	assigned	by	GameSpy.

secret_key
[in]	The	secret	key	for	the	specified	gamename,	also	assigned	by
GameSpy.

ispublic
[in]	Set	to	1	for	an	Internet	listed	server,	0	for	a	LAN	only	server.

natnegotiate
[in]	Set	to	1	to	allow	NAT-negotiated	connections.

server_key_callback
[in]	Callback	that	is	triggered	when	server	keys	are	requested.

player_key_callback
[in]	Callback	that	is	triggered	when	player	keys	are	requested.

team_key_callback
[in]	Callback	that	is	triggered	when	team	keys	are	requested.

key_list_callback
[in]	Callback	that	is	triggered	when	the	key	list	is	requested.

playerteam_count_callback
[in]	Callback	that	is	triggered	when	the	number	of	teams	is
requested.

adderror_callback
[in]	Callback	that	is	triggerred	when	there	has	been	an	error	adding	it
to	the	list.

userdata
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	functions.

Remarks

The	qr2_init	function	initializes	the	qr2	SDK.	The	baseport	parameter
specifies	which	local	port	should	be	used	to	accept	queries	on.		If	this
port	is	in	use,	the	next	port	value	will	be	tried.		The	qr2	sdk	will	try	up	to
NUM_PORTS_TO_TRYports.		(Currently	set	at	100.).

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
qr2_init qr2_initA qr2_initW

qr2_initW	and	qr2_initA	are	UNICODE	and	ANSI	mapped	versions	of
qr2_init.	The	arguments	of	qr2_initA	are	ANSI	strings;	those	of
qr2_initW	are	wide-character	strings.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

qr2_init_socket
Initialize	the	Query	and	Reporting	2	SDK.		Allows	control	over	the	qr2
socket	object.

qr2_error_t	qr2_init_socket(
qr2_t	*	qrec,
SOCKET	s,
int	boundport,
const	gsi_char	*	gamename,
const	gsi_char	*	secret_key,
int	ispublic,
int	natnegotiate,
qr2_serverkeycallback_t	server_key_callback,
qr2_playerteamkeycallback_t	player_key_callback,
qr2_playerteamkeycallback_t	team_key_callback,
qr2_keylistcallback_t	key_list_callback,
qr2_countcallback_t	playerteam_count_callback,
qr2_adderrorcallback_t	adderror_callback,
void	*	userdata);

Routine Required	Header Distribution
qr2_init_socket <qr2.h> SDKZIP

Return	Value

This	function	returns	e_qrnoerrorfor	a	sucessful	result.		Otherwise	a	valid
qr2_error_t	is	returned.

Parameters

qrec
[out]	The	intialized	QR2	SDK	object.

s
[in]	Socket	to	be	used	for	query	traffic.	This	socket	must	have
already	been	initialized.

boundport
[in]	The	port	that	the	socket	was	bound	to.		Chosen	by	the	developer.

gamename
[in]	The	gamename,	assigned	by	GameSpy.

secret_key
[in]	The	secret	key	for	the	specified	gamename,	also	assigned	by
GameSpy.

ispublic
[in]	Set	to	1	for	an	internet	listed	server,	0	for	a	LAN	only	server.

natnegotiate
[in]	Set	to	1	to	allow	natnegotiated	connections.

server_key_callback
[in]	Callback	that	is	triggered	when	server	keys	are	requested.

player_key_callback
[in]	Callback	that	is	triggered	when	player	keys	are	requested.

team_key_callback
[in]	Callback	that	is	triggered	when	team	keys	are	requested.

key_list_callback
[in]	Callback	that	is	triggered	when	the	key	list	is	requested.

playerteam_count_callback
[in]	Callback	that	is	triggered	when	the	number	of	teams	is
requested.

adderror_callback
[in]	Calllback	that	is	triggerred	when	there	has	been	an	error	adding
it	to	the	list.

userdata
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	functions.

Remarks

The	qr2_init_socket	function	initializes	the	qr2	SDK.	Instead	of	creating
it’s	own	internal	socket,	the	qr2	sdk	will	use	the	passed	in	socket	for	all
traffic.		The	developer	is	responsible	for	receiving	on	this	socket	and
passing	received	qr2	messages	to	qr2_parse_query.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

qr2_init_socket qr2_init_socketA qr2_init_socketW

qr2_init_socketW	and	qr2_init_socketA	are	UNICODE	and	ANSI
mapped	versions	of	qr2_init_socket.	The	arguments	of
qr2_init_socketA	are	ANSI	strings;	those	of	qr2_init_socketW	are
wide-character	strings.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

qr2_internal_key_list_free
Frees	the	internal	key	list	that	is	constructed	when	in	GSI_UNICODE
mode.

void	qr2_internal_key_list_free();

Routine Required	Header Distribution
qr2_internal_key_list_free <qr2.h> SDKZIP

Remarks

Developers	should	call	this	manually	after	calling	qr2_shutdown	while	in
GSI_UNICODE	mode.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

qr2_keybuffer_add
Add	a	key	identifier	to	the	qr2_keybuffer_t.		This	is	used	when
enumerating	the	supported	list	of	keys.

void	qr2_keybuffer_add(
qr2_keybuffer_t	keybuffer,
int	keyid);

Routine Required	Header Distribution
qr2_keybuffer_add <qr2.h> SDKZIP

Parameters

keybuffer
[in]	Buffer	to	append	the	key	ID	to.

keyid
[in]	The	ID	of	the	supported	key.		Add	one	ID	for	each	key	supported.

Remarks

The	qr2_keybuffer_add	function	is	used	to	when	enumerating	the	locally
supported	list	of	keys.		Add	the	appropriate	id	number	for	each	key
suppoerted.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

qr2_parse_query
When	using	the	shared	socket	method	with	qr2_init_socket,	use	this
function	to	pass	qr2	messages	to	the	qr2	sdk.

void	qr2_parse_query(
qr2_t	qrec,
gsi_char	*	query,
int	len,
struct	sockaddr	*	sender);

Routine Required	Header Distribution
qr2_parse_query <qr2.h> SDKZIP

Parameters

qrec
[in]	Initialize	QR2	SDK	initialized	with	qr2_init_socket.

query
[in]	The	QR2	packet	received	on	the	socket.	See	remarks.

len
[in]	The	length	of	the	QR2	packet.

sender
[in]	The	sender	of	the	packet.

Remarks

The	qr2_parse_query	function	should	be	used	in	the	shared	socket
implementation	on	qr2.		In	this	implementation,	the	developer	is
responsible	for	creating	and	receiving	on	the	socket,	and	forwarding	qr2
messages	to	the	sdk.	The	qr2	messages	may	be	identified	by	the	packet
header.		QR1	packets	begin	with	a	single	backslash	‘\’	character,		QR2
packets	begin	with	the	QR_MAGIC_1	character	followed	by	the
QR_MAGIC_2	character.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

qr2_parse_query qr2_parse_queryA qr2_parse_queryW

qr2_parse_queryW	and	qr2_parse_queryA	are	UNICODE	and	ANSI
mapped	versions	of	qr2_parse_query.	The	arguments	of
qr2_parse_queryA	are	ANSI	strings;	those	of	qr2_parse_queryW	are
wide-character	strings.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

qr2_register_clientconnected_callback
Sets	the	function	that	will	be	triggered	when	a	client	has	connected.

void	qr2_register_clientconnected_callback(
qr2_t	qrec,
qr2_clientconnectedcallback_t	cccallback);

Routine Required
Header Distribution

qr2_register_clientconnected_callback <qr2.h> SDKZIP

Parameters

qrec
[in]	QR2	SDK	initialized	with	qr2_init.

cccallback
[in]	Function	to	be	called	when	a	client	has	connected.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

See	Also:	qr2_init,	qr2_clientconnectedcallback_t

qr2_register_clientmessage_callback
Sets	the	function	that	will	be	triggered	when	a	client	message	is	received.

void	qr2_register_clientmessage_callback(
qr2_t	qrec,
qr2_clientmessagecallback_t	cmcallback);

Routine Required
Header Distribution

qr2_register_clientmessage_callback <qr2.h> SDKZIP

Parameters

qrec
[in]	QR2	SDK	initialized	with	qr2_init.

cmcallback
[in]	Function	to	be	called	when	a	client	message	is	received.

Remarks

The	qr2_register_clientmessage_callback	function	is	used	to	set	a
function	that	will	be	triggered	when	a	client	message	is	received.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

See	Also:	qr2_init,	qr2_clientmessagecallback_t

qr2_register_key
Register	a	key	with	the	qr2	sdk.		This	tells	the	sdk	that	the	application	will
report	values	for	this	key.

void	qr2_register_key(
int	keyid,
const	gsi_char	*	key);

Routine Required	Header Distribution
qr2_register_key <qr2.h> SDKZIP

Parameters

keyid
[in]	Id	of	the	key.		See	remarks.

key
[in]	Name	of	the	key.

Remarks

The	qr2_register_key	function	tell	the	qr2	sdk	that	it	should	report
values	for	the	specified	key.	Key	IDs	0	through	NUM_RESERVED_KEYS
are	reserved	for	common	key	names.		Keys	upward	to
MAX_REGISTERED_KEYS	are	available	for	custom	use.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

qr2_register_key qr2_register_keyA qr2_register_keyW

qr2_register_keyW	and	qr2_register_keyA	are	UNICODE	and	ANSI
mapped	versions	of	qr2_register_key.	The	arguments	of
qr2_register_keyA	are	ANSI	strings;	those	of	qr2_register_keyW	are
wide-character	strings.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

qr2_register_natneg_callback
Sets	the	function	that	will	be	triggered	when	a	nat	negotiation	request	is
received.

void	qr2_register_natneg_callback(
qr2_t	qrec,
qr2_natnegcallback_t	nncallback);

Routine Required	Header Distribution
qr2_register_natneg_callback <qr2.h> SDKZIP

Parameters

qrec
[in]	QR2	SDK	initialized	with	qr2_init.

nncallback
[in]	Function	to	be	called	when	a	nat	negotiation	request	is	received.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

qr2_register_publicaddress_callback
Sets	the	function	that	will	be	triggered	when	the	local	clients	public
address	is	received.

void	qr2_register_publicaddress_callback(
qr2_t	qrec,
qr2_publicaddresscallback_t	pacallback);

Routine Required
Header Distribution

qr2_register_publicaddress_callback <qr2.h> SDKZIP

Parameters

qrec
[in]	QR2	SDK	initialized	with	qr2_init.

pacallback
[in]	Function	to	be	called	when	the	local	clients	public	address	is
received.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

qr2_send_statechanged
Notify	the	GameSpy	master	server	of	a	change	in	gamestate.

void	qr2_send_statechanged(
qr2_t	qrec);

Routine Required	Header Distribution
qr2_send_statechanged <qr2.h> SDKZIP

Parameters

qrec
[in]	Initialized	QR2	SDK	object.

Remarks

The	qr2_send_statechanged	function	notifies	the	GameSpy	backend	of
a	change	in	game	state.		This	call	is	typically	reserved	for	major	changes
such	as	mapname	or	gametype.		Only	one	statechange	message	may	be
sent	per	10	second	interval.		If	a	statechange	is	requested	within	this
timeframe,	it	will	be	automatically	delayed	once	the	10	second	interval
has	elapsed.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

qr2_shutdown
Frees	memory	allocated	by	the	qr2	sdk.		This	includes	freeing	user
registered	keys.

void	qr2_shutdown(
qr2_t	qrec);

Routine Required	Header Distribution
qr2_shutdown <qr2.h> SDKZIP

Parameters

qrec
[in]	QR2	SDK	initialized	with	qr2_init.

Remarks

The	qr2_shutdown	function	may	be	used	to	free	memory	allocated	by
the	qr2	sdk.		The	qr2	sdk	should	not	be	used	after	this	call.		This	call	will
cease	server	reporting	and	remove	the	server	from	the	backend	list.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

qr2_think
Allow	the	qr2	sdk	to	continue	processing.		Server	queries	can	only	be
processed	during	this	call.

void	qr2_think(
qr2_t	qrec);

Routine Required	Header Distribution
qr2_think <qr2.h> SDKZIP

Parameters

qrec
[in]	The	intialized	QR2	SDK.

Remarks

The	qr2_think	function	allows	the	qr2	sdk	to	continue	processing.	This
processing	includes	responding	to	user	queries	and	triggering	local
callbacks.	If	q2_think	is	not	called	often,	server	responses	may	be
delayed	thereby	increasing	perceived	latency.	We	recommend	that
qr2_think	be	called	as	frequently	as	possible.	(10-15ms	is	not	unusual.).

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

Query	and	Reporting	2	SDK	Callbacks
qr2_adderrorcallback_t

he	callbacks	provided	to	qr2_init;	called	in
response	to	a	message	from	the	master
server	indicating	a	problem	listing	the
server.

qr2_clientconnectedcallback_t
This	callback	is	set	via
qr2_register_clientconnected_callback;
called	when	a	client	has	connected	to	the
server.

qr2_clientmessagecallback_t
This	callback	is	set	via
qr2_register_clientmessage_callback;
called	when	a	client	message	is	received.

qr2_countcallback_t
One	of	the	callbacks	provided	to	qr2_init;
called	when	the	SDK	needs	to	get	a	count
of	player	or	teams	on	the	server.

qr2_keylistcallback_t
One	of	the	callbacks	provided	to	qr2_init;
called	when	the	SDK	needs	to	determine
all	of	the	keys	you	game	has	values	for.

qr2_natnegcallback_t
This	callback	is	set	via
qr2_register_natneg_callback;	called
when	a	nat	negotiation	request	is
received.

qr2_playerteamkeycallback_t
One	of	the	callbacks	provided	to	qr2_init;
called	when	a	client	requests	information

about	a	player	key	or	a	team	key.

qr2_publicaddresscallback_t
This	callback	is	set	via
qr2_register_publicaddress_callback;
called	when	the	local	client's	public
address	is	received.

qr2_serverkeycallback_t
One	of	the	callbacks	provided	to	qr2_init,
called	when	a	client	requests	information
about	a	specific	server	key.

qr2_adderrorcallback_t
he	callbacks	provided	to	qr2_init;	called	in	response	to	a	message	from
the	master	server	indicating	a	problem	listing	the	server.

typedef	void	(*qr2_adderrorcallback_t)(
qr2_error_t	error,
gsi_char	*	errmsg,
void	*	userdata);

Routine Required	Header Distribution
qr2_adderrorcallback_t <qr2.h> SDKZIP

Parameters

error
[in]	The	code	that	can	be	used	to	determine	the	specific	listing	error.

errmsg
[in]	A	human-readable	error	string	returned	from	the	master	server.

userdata
[in]	The	userdata	that	was	passed	into	qr2_init.

Remarks

The	most	common	error	that	will	be	reported	is	if	the	master	is	unable	to
list	the	server	due	to	a	firewall	or	proxy
that	would	block	incoming	game	packets.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

See	Also:	qr2_init

qr2_clientconnectedcallback_t
This	callback	is	set	via	qr2_register_clientconnected_callback;	called
when	a	client	has	connected	to	the	server.

typedef	void	(*qr2_clientconnectedcallback_t)(
SOCKET	gameSocket,
struct	sockaddr_in	*	remoteaddr,
void	*	userdata);

Routine Required	Header Distribution
qr2_clientconnectedcallback_t <qr2.h> SDKZIP

Parameters

gameSocket
[in]	The	socket	on	which	the	client	connected

remoteaddr
[in]	The	client's	address	and	port.

userdata
[in]	The	userdata	that	was	passed	into	qr2_init.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

See	Also:	qr2_init,	qr2_register_clientconnected_callback

qr2_clientmessagecallback_t
This	callback	is	set	via	qr2_register_clientmessage_callback;	called	when
a	client	message	is	received.

typedef	void	(*qr2_clientmessagecallback_t)(
gsi_char	*	data,
int	len,
void	*	userdata);

Routine Required	Header Distribution
qr2_clientmessagecallback_t <qr2.h> SDKZIP

Parameters

data
[in]	The	buffer	containing	the	message

len
[in]	The	length	of	the	data	buffer

userdata
[in]	The	userdata	that	was	passed	into	qr2_init.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

See	Also:	qr2_init,	qr2_register_clientmessage_callback

qr2_countcallback_t
One	of	the	callbacks	provided	to	qr2_init;	called	when	the	SDK	needs	to
get	a	count	of	player	or	teams	on	the	server.

typedef	int	(*qr2_countcallback_t)(
qr2_key_type	keytype,
void	*	userdata);

Routine Required	Header Distribution
qr2_countcallback_t <qr2.h> SDKZIP

Return	Value

The	callback	should	return	the	count	for	either	the	player	or	team,	as
indicated.

Parameters

keytype
[in]	Indicates	whether	the	player	or	team	count	is	being	requested
(key_player	or	key_team)

userdata
[in]	The	same	userdata	that	was	passed	into	qr2_init.

Remarks

If	your	game	does	not	support	teams,	return	0	for	the	count	of	teams.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

See	Also:	qr2_init

qr2_keylistcallback_t
One	of	the	callbacks	provided	to	qr2_init;	called	when	the	SDK	needs	to
determine	all	of	the	keys	you	game	has	values	for.

typedef	void	(*qr2_keylistcallback_t)(
qr2_key_type	keytype,
qr2_keybuffer_t	keybuffer,
void	*	userdata);

Routine Required	Header Distribution
qr2_keylistcallback_t <qr2.h> SDKZIP

Parameters

keytype
[in]	The	type	of	keys	being	requested	(server,	player,	team).	You
should	only	add	keys	of	this	type	to	the	keybuffer.

keybuffer
[in]	The	structure	that	holds	the	list	of	keys.	Use	qr2_keybuffer_add
to	add	a	key	to	the	buffer.

userdata
[in]	The	same	userdata	that	was	passed	into	qr2_init.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

See	Also:	qr2_init,	qr2_keybuffer_add

qr2_natnegcallback_t
This	callback	is	set	via	qr2_register_natneg_callback;	called	when	a	nat
negotiation	request	is	received.

typedef	void	(*qr2_natnegcallback_t)(
int	cookie,
void	*	userdata);

Routine Required	Header Distribution
qr2_natnegcallback_t <qr2.h> SDKZIP

Parameters

cookie
[in]	The	cookie	associated	with	the	NAT	Negotiation	request.

userdata
[in]	The	userdata	that	was	passed	into	qr2_init.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

See	Also:	qr2_init,	qr2_register_natneg_callback

qr2_playerteamkeycallback_t
One	of	the	callbacks	provided	to	qr2_init;	called	when	a	client	requests
information	about	a	player	key	or	a	team	key.

typedef	void	(*qr2_playerteamkeycallback_t)(
int	keyid,
int	index,
qr2_buffer_t	outbuf,
void	*	userdata);

Routine Required	Header Distribution
qr2_playerteamkeycallback_t <qr2.h> SDKZIP

Parameters

keyid
[in]	The	key	being	requested.

index
[in]	The	zero-based	index	of	the	player	or	team	being	requested.

outbuf
[in]	The	destination	buffer	for	the	value	information.	Use
qr2_buffer_add	to	report	the	value.

userdata
[in]	The	same	userdata	that	was	passed	into	qr2_init.	You	can	use
this	for	an	object	or	structure	pointer	if	needed.

Remarks

As	a	player	key	callback,	this	is	called	when	a	client	requests	information
about	a	specific	key	for	a	specific	player.
As	a	team	key	callback,	this	is	called	when	a	client	requests	the	value	for
a	team	key.

If	you	don't	have	a	value	for	the	provided	keyid,	you	should	add	an	empty
("")	string	to	the	buffer.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

See	Also:	qr2_init,	qr2_buffer_add

qr2_publicaddresscallback_t
This	callback	is	set	via	qr2_register_publicaddress_callback;	called	when
the	local	client's	public	address	is	received.

typedef	void	(*qr2_publicaddresscallback_t)(
unsigned	int	ip,
unsigned	short	port,
void	*	userdata);

Routine Required	Header Distribution
qr2_publicaddresscallback_t <qr2.h> SDKZIP

Parameters

ip
[in]	IP	address	in	string	form:	xxx.xxx.xxx.xxx

port
[in]	Port	number

userdata
[in]	The	userdata	that	was	passed	into	qr2_init.

Remarks

The	address	is	that	of	the	externalmost	NAT	or	firewall	device,	and	is
determined	by	the	GameSpy	master	server	during	the	qr2_init	process.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

See	Also:	qr2_init,	qr2_register_publicaddress_callback

qr2_serverkeycallback_t
One	of	the	callbacks	provided	to	qr2_init,	called	when	a	client	requests
information	about	a	specific	server	key.

typedef	void	(*qr2_serverkeycallback_t)(
int	keyid,
int	index,
qr2_buffer_t	outbuf,
void	*	userdata);

Routine Required	Header Distribution
qr2_serverkeycallback_t <qr2.h> SDKZIP

Parameters

keyid
[in]	The	key	being	requested.

index
[in]	The	0-based	index	of	the	player	or	team	being	requested.

outbuf
[in]	The	destination	buffer	for	the	value	information.	Use
qr2_buffer_add	to	report	the	value.

userdata
[in]	The	same	userdata	that	was	passed	into	qr2_init.

Remarks

If	you	don't	have	a	value	for	the	provided	keyid,	you	should	add	an	empty
("")	string	to	the	buffer.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

See	Also:	qr2_init,	qr2_buffer_add

Query	and	Reporting	2	SDK	Enumerations
qr2_error_t

Constants	returned	from	qr2_init	and	the	error	callback	to
signal	an	error	condition.

qr2_key_type
Keytype	indicates	the	type	of	keys	being	referenced	--
server,	player,	or	team.

qr2_error_t
Constants	returned	from	qr2_init	and	the	error	callback	to	signal	an	error
condition.

typedef	enum	
{

e_qrnoerror,				
e_qrwsockerror,				
e_qrbinderror,				
e_qrdnserror,				
e_qrconnerror,				
e_qrnochallengeerror				

}	qr2_error_t;

Constants

e_qrnoerror
No	error	occurred.

e_qrwsockerror
A	standard	socket	call	failed,	e.g.	exhausted	resources.

e_qrbinderror
The	SDK	was	unable	to	find	an	available	port	to	bind	on.

e_qrdnserror
A	DNS	lookup	(for	the	master	server)	failed.

e_qrconnerror
The	server	is	behind	a	NAT	and	does	not	support	negotiation.

e_qrnochallengeerror
No	challenge	was	received	from	the	master	-	either	the	master	is
down,	or	a	firewall	is	blocking	UDP.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

qr2_key_type
Keytype	indicates	the	type	of	keys	being	referenced	--	server,	player,	or
team.

typedef	enum	
{

key_server,				
key_player,				
key_team				

}	qr2_key_type;

Constants

key_server
General	information	about	the	game	in	progress.

key_player
Information	about	a	specific	player.

key_team
Information	about	a	specific	team.

Section	Reference:	Gamespy	Query	and	Reporting	2	SDK

SAKE	Persistent	Storage	SDK
Overview

Sake	(pronounced	sah-keh,	like	the	Japanese	rice	wine)	is	a
GameSpy.net	service	which	provides	for	flexible	storage	of	arbitrary	data
on	the	GameSpy	backend.	This	data	can	be	global	or	player-specific,	and
it	can	be	accessed	or	updated	by	game	clients	using	the	Sake	SDK.
Player-specific	data	can	be	private	to	a	specific	user,	or	it	can	be	publicly
accessible	by	all	players.	A	database	schema,	created	by	the	developer
through	a	webpage	interface,	is	used	to	organize	the	data.	A	range	of
data	types	can	be	stored	in	the	database,	including	integers,	floats,
strings,	dates	and	times,	and	files.	Sake	is	simple	to	use,	however	it	is	a
powerful	system	that	can	be	used	to	provide	game's	with	a	whole	new
range	of	functionality.

A	developer	using	Sake	will	deal	with	two	separate	components:	the
Sake	Administration	website	and	the	Sake	SDK.	The	Sake	Administration
site	is	used	to	setup	the	database	schema	which	will	store	the	game's
data.	The	Sake	SDK	is	used	by	the	game	to	access	the	database.

File
sake.h

sakeMain.c

sakeMain.h

sakeRequest.c

sakeRequest.h

sakeRequestInternal.h

sakeRequestMisc.c

sakeRequestModify.c

sakeRequestRead.h

../common/gsSoap.c

../common/gsSoap.h

../common/gsXML.c

../common/gsXML.h

../ghttp/

/saketest/

File	Manifest

The	following	files	should	be	included	with	this	package.	If	any	of	the	files
are	missing,	please	contact	devsupport@gamespy.com.

Description
GameSpy	Sake	header	(all	user	functions	are

prototyped	here)

Entry	point	for	all	user	Sake	functions

Common	header	for	internal	code

Code	handles	and	processes	the	Sake	requests

Header	for	Sake	request-handling	functions

Another	header	for	Sake	request-handling
functions

Code	to	do	internal	processing	of	misc	Sake
requests

Code	to	do	internal	processing	of	Sake	requests
that	modify	data

Code	to	do	internal	processing	of	Sake	requests
that	read	data

GameSpy	Soap	code	for	XML	streams

Header	for	GameSpy	Soap	code

Code	that	does	XML	reading/writing

Header	for	GameSpy	XML	code

HTTP	SDK

A	Sake	test	app	written	for	the	command-line	in
ANSI	C

mailto:devsupport@gamespy.com

Database

The	core	of	Sake	is	the	database	schema	used	to	store	a	game's	data	on
the	backend.	A	developer	sets	up	the	schema	for	a	particular	game
through	the	Sake	Administration	website.	The	game	can	then	access	the
database	defined	by	this	schema,	using	the	Sake	SDK.

The	database	for	each	game	consists	of	a	set	of	developer-created
tables.	Each	entry	in	a	table	is	referred	to	as	a	record.	Each	table	has	a
set	of	fields,	each	of	which	describes	a	piece	of	data	that	will	be	stored	in
each	of	that	table's	records.	In	SQL	terminology,	a	field	is	like	a	column
and	a	record	is	like	a	row.

Example	"high_scores"	Database	Table
recordid ownerid level score

1 7623458 10 514
2 7821536 8 456
3 6998135 23 2678
4 7245991 36 4513
5 7400268 22 2449
6 6701102 10 498

Tables

In	Sake,	each	table	is	uniquely	identified	within	each	game	by	a	short
string,	called	the	tableid.	For	example,	the	tableid	for	the	above	sample
table	could	be	"high_scores".	Every	table	contains	some	number	of
records,	along	with	a	set	of	fields	which	defines	what	values	are	stored	in
each	record.	A	table	is	typically	only	accessible	by	a	single	game;
however	there	is	a	mechanism	on	the	backend	which	allows	for	a	table	to
be	shared	across	two	or	more	games.	This	could	be	used	to	store	per-
player	information	that	is	shared	by	all	of	the	games	in	a	series	or
franchise.	Developers	create	and	manage	tables	using	the	Sake
Administration	website,	and	then	they	can	access	the	data	stored	in
those	tables	using	the	Sake	SDK.	In	addition	to	the	tableid,	there	are	a
few	other	important	table	properties	which	can	be	setup	using	the	Sake

Administration	website.

Owner	Type
The	owner	type	is	used	to	designate	if	each	individual	table
records	is	owned	by	a	profile	(which	would	identify	a	particular
player),	or	if	all	of	the	records	in	a	table	are	owned	by	the	backend.
If	the	owner	type	is	set	to	profile,	then	each	record	contains	a
value	which	identifies	the	profile	that	owns	that	record.	The	owner
would	be	the	profile	for	which	the	record	was	originally	created.
The	profile	owner	type	is	used	for	tables	which	store	per-player
information.	If	the	owner	type	is	set	to	backend,	then	the	backend
owns	all	of	the	records	in	the	table.	This	would	typically	be	used	to
store	general	global	information	which	the	developer	may	wish	to
periodically	update.	The	owner	type	is	a	basic	table	property	which
must	be	set	when	a	table	is	created	-	it	cannot	be	changed	after
table	creation

Permissions
Table	permissions	control	the	ability	to	create,	read,	update,	or
delete	records.	There	are	four	permissions,	public	create,	public
read,	owner	update,	and	owner	delete,	each	of	which	can	be	set	to
true	or	false:

public	create	-	if	set	to	true,	allows	anyone	to	create	records	in
the	table.	This	will	typically	be	set	to	true	for	tables	with	an	owner
type	of	profile,	so	that	clients	can	create	new	records,	and	it	will
typically	be	set	to	false	for	tables	with	an	owner	type	of	backend.
public	read	-	if	set	to	true,	then	anyone	can	read	any	record	in	the
table.	If	the	permission	is	set	to	false,	then	records	can	only	be
read	by	their	owners.	So	this	permission	can	be	used	to	control	if
player-specific	data	stored	in	a	table	should	be	public	or	private.
owner	update	-	used	to	control	whether	or	not	a	record	can	be
updated	by	its'	owner	after	it	has	been	created.	If	the	permission	is
set	to	true,	then	an	owner	can	update	the	record	any	number	of
times.	This	may	be	used	for	a	table	where	player	preferences	are
stored.	If	the	permission	is	set	to	false,	then	an	owner	can	only
create	records,	not	update	them.	This	may	be	used	for	a	table	in
which	records	are	used	to	record	one-off	events.
owner	delete	-	if	set	to	true,	then	players	can	delete	records	which

they	have	created	in	the	table.	If,	for	example,	records	in	the	table
correspond	to	items	which	the	player	has	collected,	then	a	record
could	be	deleted	if	the	player	sells	or	loses	an	item.	If	the
permission	is	set	to	false,	then	records	cannot	be	deleted.	This
could	be	used	in	a	table	where	each	record	stores	a	player's	high
scores,	which	would	never	be	erased.

Rateable
The	rateable	option	controls	whether	or	not	records	in	a	table	can
be	rated	by	users.	For	example,	a	racing	game	may	all	users	to
upload	replay	videos	of	their	best	races.	Each	video	is	stored	in	a
record	in	a	table.	If	that	table's	public	read	permission	is	set	to	true
(giving	other	users	access	to	those	videos),	and	if	the	table's
rateable	option	is	set	to	true,	then	users	can	submit	ratings	for
videos	which	they	like	or	dislike.	Other	users	can	then	see	a
video's	average	rating	and	the	number	of	times	it	has	been	rated.
The	rating	can	also	be	used	by	the	game	to	sort	or	filter	a	list	of
videos.

If	a	table	has	rateable	set	to	true,	then	two	fields	are	automatically
added	to	that	table.	The	num_ratings	field	stores	the	number	of
times	that	users	have	given	that	record	a	rating,	and	the
average_rating	field	stores	the	average	of	all	the	ratings	given	to
that	record.	See	below	for	more	information	on	fields.	The
maximum	range	for	ratings	is	0	through	255	(games	can	internally
restrict	that	to	a	smaller	range).	Ratings	are	given	as	integers,
however	the	average	ratings	is	returned	as	a	floating	point	number.

In	addition,	players	can	use	the	field	name	my_rating	to	obtain
their	personal	rating	on	a	given	record.	This	can	also	be	used
when	searching	for	records.	So	for	example,	if	you	wanted	to	only
view	records	you	have	rated	as	>	100	then	you	would	include
"my_rating	>	100"	in	the	filter	string.	For	records	that	the	player	has
not	yet	rated,	my_rating	is	set	to	-1	by	default.

Limit	Per	Owner
The	limit	per	owner	option	is	used	when	users	should	be
prevented	from	having	more	than	a	certain	number	of	records	in	a
table	at	any	one	time.	If	the	option	is	set	to	0,	then	users	can	have
however	many	records	they	want.	However	if	the	option	is	set	to
some	number	greater	than	0,	then	that	number	sets	the	maximum

number	of	records	that	any	user	can	have	in	the	table.	For
example,	if	a	table	is	used	to	store	player	preferences,	then	the
limit	per	owner	for	that	table	may	be	set	to	1,	since	users	would
only	ever	have	one	set	of	preferences.	Another	example	would	be
a	table	in	which	each	record	represents	a	special	item	that	a
player's	character	owns,	and	the	game	wants	to	limit	each	player	to
only	5	special	items.	Then	the	limit	per	owner	for	that	table	would
be	set	to	5,	which	will	prevent	the	user	from	storing	more	than	5
records	in	that	table.	If	the	user	has	5	records	in	the	table,	then	one
of	the	five	records	will	need	to	be	deleted	before	adding	a	new
record.

Fields

A	field	represents	a	piece	of	data	which	is	stored	in	each	record	in	a
table.	In	the	above	example	of	a	high	scores	table,	there	are	four	fields:
recordid,	ownerid,	level,	and	score.	Each	record	stored	in	the	table	has	a
value	for	each	of	these	fields.	All	tables	have	one	or	more	fields	that	are
automatically	created	and	managed	by	Sake.	In	the	example,	these	are
the	recordid	and	ownerid	fields.	The	developer	can	also	add	his	own
fields	to	any	table.	In	the	example,	these	are	the	level	and	score	fields.

Developers	add	and	manage	fields	using	the	Sake	Administration
website.	A	field	consists	of	several	pieces	of	information.	First,	each	field
has	a	name,	such	as	"level",	"score",	or	anything	else.	A	field	name	must
be	unique	within	the	table	to	which	it	belongs.	A	field	also	has	a	type,
which	defines	what	sort	of	data	is	stored	in	that	field.	Depending	on	the
type,	a	field	might	also	have	a	maximum	length,	and	it	might	have	a
default	value.	The	table	below	lists	all	of	the	possible	field	types,	along
with	some	information	about	them.

Sake	Field	Types

Type	Name Range Has
Default?

Has
Max

Length?
Comments

Byte 0	to	255 Yes No 1	byte
unsigned	int

Short -32,768	to Yes No 2	byte

-32,767 unsigned	int

Int
-2,147,483,648

to
2,147,483,647

Yes No 4	byte
unsigned	int

Float -1.79E308	to
1.79E308

Yes No 8	byte	floating
point	num

AsciiString
up	to	1000
chars

Yes Yes String	of
single-byte

chars

UnicodeString up	to	1000
chars

Yes Yes String	of	multi-
byte	chars

Boolean true	or	false Yes No

DateAndTime 1970	through
2038

Yes No Accurate	to	1
second

BinaryData up	to	2000
bytes

No Yes Arbitrary
binary	data

FileID

n/a No No References	an
uploaded	file	-
treated	as	an
int	by	the	Sake

SDK

Every	table	has	a	recordid	field	which	is	automatically	included	when
that	table	is	created.	The	field	is	an	Int,	and	it	is	used	to	uniquely	identify
each	record	that	is	stored	in	the	table.	When	a	record	is	added	to	the
table	a	value	is	automatically	assigned	to	its	recordid	field	by	the
backend.	The	recordid	can	then	always	be	used	to	identify	that	record
within	the	table.

If	a	table	is	created	with	its	owner	type	property	set	to	profile,	then	an
ownerid	field	is	automatically	added	to	the	table.	The	field	is	an	Int,	and	it
stores	the	profile	which	created	the	record.	The	value	is	filled	in
automatically	by	the	backend	when	a	record	is	created,	and	it	never
changes	as	long	as	that	record	exists.	It	is	used	by	the	backend	to
manage	access	to	the	record,	and	it	can	also	be	used	by	the	game,
through	the	Sake	SDK,	to	figure	out	who	created	a	record.

If	a	table	has	its	rateable	property	set	to	true,	then	two	additional	fields
are	automatically	added	by	the	backend:	num_ratings	and
average_rating.	The	num_ratings	field	is	an	Int,	and	it	stores	the	number
of	times	that	a	particular	record	has	been	given	a	rating	by	users.	The
average_rating	field	is	a	Float,	and	it	stores	the	average	of	all	the	ratings
that	have	been	given	to	a	record.

For	a	description	of	other	special	(non	developer-defined)	fields,	see
Appendix	II	below.

Records

While	fields	are	used	to	define	what	sort	of	data	will	be	stored	in	a	table,
the	actual	data	is	stored	in	entries	known	as	records.	Each	record	in	a
table	contains	a	value	for	each	field	in	that	table.	The	value	stored	in	the
recordid	field	uniquely	identifies	a	record	within	the	table.	Records	are
accessed	using	the	Sake	SDK.	They	can	be	created,	updated,	deleted,
or	read,	depending	on	the	permission	properties	for	each	table.	More
information	can	be	found	in	the	API	section	below.

Administration

A	developer	uses	the	Sake	Administration	website	to	configure	a	game's
database	schema.	This	is	done	by	creating	tables	and	then	adding	fields
to	those	tables.	Properties	can	also	be	configured	for	tables	and	fields.
This	schema	is	then	used	by	the	game	through	the	Sake	SDK.	The
website	is	located	at:	http://tools.gamespy.net/SakeAdmin/.

Starting

When	you	first	visit	the	Sake	Administration	website,	you	will	be	asked	to
log	in.	Sake	uses	the	GameSpyID	system,	which	is	the	same	login
system	used	by	the	Presence	&	Messaging	SDK	(GP),	GameSpy.com,
GameSpy	Arcade,	FilePlanet.com,	etc.	Before	using	the	Sake
Administration	website,	you	must	be	granted	permission	on	the	backend.
To	request	permission	for	your	GameSpyID	account,	send	an	email	to
devsupport@gamespy.com.

If	you	have	permission	to	access	your	game's	Sake	Administration
website,	and	you	have	logged	in,	then	you	will	be	able	to	start	editing
your	game's	database	schema.	You	can	do	this	by	selecting	your	game
from	the	main	Game	Selection	page.	This	will	lead	you	to	the	Game
Tables	page	for	your	game.	This	page	lists	all	of	the	tables	for	your	game,
and	it	also	allows	you	to	add	new	tables	or	edit	existing	tables.

Tables

The	Game	Tables	page	shows	any	tables	that	have	been	created	for	the
selected	game,	along	with	each	table's	properties.	The	Table	ID	column
shows	the	short	string	that	uniquely	identifies	each	table	within	the
game's	database.	The	Description	column	contains	a	developer	supplied
comment.	This	is	only	used	on	the	Administration	website	and	allows	the
developer	to	document	the	purpose	of	the	table.	The	Owner	Type	column
indicates	if	the	table	has	an	owner	type	of	profile	or	backend.	The	Public
Permissions	and	Owner	Permissions	columns	show	the	settings	for	the
public	create,	public	read,	owner	update,	and	owner	delete	permissions.
See	the	Database	section	above	for	more	information	about	permissions.
The	Rateable	column	shows	whether	or	not	users	can	rate	records

http://tools.gamespy.net/SakeAdmin/
mailto:devsupport@gamespy.com

contained	in	the	table.	The	Limit	Per	Owner	column	shows	the	maximum
number	of	records	that	any	user	can	have	in	the	table	at	any	one	time.	If
the	value	is	0,	then	there	is	no	limit.

There	are	several	buttons	to	the	left	of	each	table.	The	Edit	button	can	be
used	to	edit	that	table's	properties.	All	of	the	properties	can	be	edited,
aside	from	the	owner	type,	which	needs	to	be	set	when	a	table	is
created.	When	done	editing,	click	Update	to	save	the	edit,	or	Cancel	to
cancel	the	edit.	The	Fields	button	brings	you	to	a	separate	page	which
allows	you	to	edit	the	list	of	fields	for	that	table	(see	below	for	more
information).	The	Reset	button	is	used	to	delete	all	of	the	records	from
that	table.	The	Delete	button	is	used	to	remove	a	table	from	the	list	of
table's	associated	with	a	game.	Note	that	this	won't	actually	delete	the
table	and	its	records,	but	the	table	will	no	longer	show	up	in	the	list,	and	it
will	no	longer	be	accessible	through	the	Sake	SDK.

The	Add	a	New	Table	box	at	the	bottom	of	the	page	can	be	used	to
create	a	new	table.	The	tableid	and	the	owner	type	must	be	specified.	All
other	properties	can	be	set	after	the	table	has	been	created.	The	tableid
can	also	be	changed	after	the	table	is	created,	however	the	owner	type
cannot	be	changed.	After	entering	the	tableid	and	owner	type,	click	the
Create	Table	button	to	add	the	table	to	the	list	of	table's	for	the	current
game.

Fields

To	view	and	edit	the	list	of	fields	for	a	particular	table,	click	the	Fields
button	to	the	left	of	that	table	on	the	Game	Tables	page.	This	will	open	up
the	Game	Table	Fields	page	for	the	selected	table.	You	will	see	a	list
containing	each	of	the	fields	in	the	table.	In	addition	to	any	developer
created	fields,	there	will	be	one	or	more	fields	that	were	automatically
created	by	Sake.	Every	table	has	a	recordid	field,	which	uniquely
identifies	each	record	within	the	table.	If	a	table	has	an	owner	type	of
profile,	then	there	will	also	be	an	ownerid	field	which	contains	the	profile
ID	of	the	user	that	created	that	record.	If	a	table	has	its	rateable	property
set	to	true,	then	there	will	two	additional	fields,	num_ratings	and
average_rating,	which	are	described	above.

The	Name	column	shows	the	field's	name,	which	is	unique	within	the

table.	The	Description	column	contains	a	developer	supplied	comment.
This	is	only	used	on	the	Administration	website	and	allows	the	developer
to	document	the	purpose	of	the	field.	The	Type	column	shows	the	type	of
data	that	is	stored	in	the	field.	The	database	section	above	has	a	list	of	all
the	types.	The	Max	Length	column	shows	the	maximum	number	of
characters	for	AsciiString	and	UnicodeString	fields	and	the	maximum
number	of	bytes	for	BinaryData	fields.	The	Default	column	shows	the
default	value,	if	the	type	for	that	field	supports	a	default	value.

There	are	two	buttons	to	the	left	of	most	fields	in	the	list.	The	Edit	button
is	used	to	edit	that	field's	properties.	The	field's	name	and	description	can
always	be	edited.	The	max	length	and	default	value	can	also	be	edited,	if
the	field's	type	uses	those	properties.	A	field's	type	cannot	be	edited	after
it	is	created.	The	Delete	button	is	used	to	delete	that	field	from	the	table.
The	recordid	and	ownerid	fields	cannot	be	edited	or	deleted.	The
num_ratings	and	average_rating	fields	also	cannot	be	edited	or	deleted
on	the	Game	Table	Fields	page;	however	the	fields	can	be	removed	by
setting	the	table's	rateable	property	to	false.

The	Add	a	New	Field	box	at	the	bottom	of	the	Game	Table	Fields	page	is
used	to	add	new	fields	to	the	current	table.	First	enter	a	name	for	the	new
field,	and	then	select	a	type	from	the	dropdown	box.	Enter	a	max	length
and/or	a	default	value	depending	on	which	type	you	selected.	See	the	list
of	types	above	to	see	if	either	is	needed.	The	name,	max	length,	and
default	value	can	be	changed	after	the	field	has	been	created,	but	the
type	can	only	be	set	during	creation.	When	ready,	click	the	Add	field
button	to	create	the	field	and	add	it	to	the	list.	Once	a	field	has	been
created,	you	can	enter	a	description	for	it	in	the	list.

SDK	Implementation

Requirements

As	with	all	GameSpy	SDKs,	Sake	uses	the	GameSpy	Common	code.	It
also	relies	on	the	GameSpy	HTTP	SDK,	which	it	uses	to	send	requests
to	the	Sake	backend.	The	GameSpy	Presence	and	Message	SDK	(GP)
is	also	needed	to	provide	authentication	information	for	players.

Before	using	Sake,	a	game	must	have	first	performed	the	standard
GameSpy	Availability	Check.	This	ensures	that	the	GameSpy	backend	is
available,	and	that	the	current	game	has	access	to	the	backend.	See	the
Sake	test	app	for	sample	code.

Sake	uses	the	GameSpy	Core	object,	which	is	part	of	the	Common	code,
to	manage	tasks.	The	game	must	initialize	the	Core	before	using	Sake.
This	is	done	by	calling	gsCoreInitialize.	In	order	to	allow	Sake	to
process	its	requests,	the	core	object	must	be	periodically	processed	by
calling	gsCoreThink.	When	the	game	has	finished	using	Sake	it	should
shutdown	the	care	with	gsCoreShutdown.	See	the	Sake	test	app	for
sample	code	for	calling	these	functions.

void	gsCoreInitialize();

void	gsCoreThink(gsi_time	theMs);

void	gsCoreShutdown();

Sake	needs	the	GP	SDK	to	provide	authentication	information	for
players.	This	means	that	for	a	game	to	use	Sake,	it	must	also	use	GP.
The	player	must	successfully	login	with	GP	before	using	Sake,	so	that
Sake	can	have	access	to	GP's	authentication	information.

Field	Types

The	Sake	SDK	uses	a	few	basic	types	to	store	data	regarding	fields.	To
represent	a	field	itself,	SAKEField	is	used.

typedef	struct

{

	 char									*mName;

	 SAKEFieldType	mType;

	 SAKEValue					mValue;

}	SAKEField;

A	SAKEField	object	stores	the	field's	name,	the	type	of	data	stored	in
the	field,	and	the	value	stored	in	the	field.	SAKEFieldType	is	used	to
indicate	the	type	of	data	stored	in	a	field.

typedef	enum

{

	 SAKEFieldType_BYTE,	 	

	 SAKEFieldType_SHORT,	 	

	 SAKEFieldType_INT,	 	

	 SAKEFieldType_FLOAT,	 	

	 SAKEFieldType_ASCII_STRING,	

	 SAKEFieldType_UNICODE_STRING,	

	 SAKEFieldType_BOOLEAN,	 	

	 SAKEFieldType_DATE_AND_TIME,	

	 SAKEFieldType_BINARY_DATA,	

	 SAKEFieldType_NUM_FIELD_TYPES

}	SAKEFieldType;

It	is	important	to	note	that	all	of	the	field	types	that	can	be	created
through	the	Administration	site	are	represented	here,	with	the	exception
of	a	FileID.	That	is	because	FileIDs	must	be	handled	specially	on	the
backend,	but	from	the	perspective	of	the	SDK	they	can	be	treated	as
Ints.	So	when	reading	a	FileID	field	the	backend	will	indicate	it	is	a
SAKEFieldType_INT,	and	when	updating	a	FileID	field	it	should	be
updated	as	an	SAKEFieldType_INT.

The	value	for	a	field	is	stored	in	a	SAKEValue	union.

typedef	union

{

	 gsi_u8										mByte;

	 gsi_i16									mShort;

	 gsi_i32									mInt;

	 float											mFloat;

	 char											*mAsciiString;

	 unsigned	short	*mUnicodeString;

	 gsi_bool								mBoolean;

	 time_t										mDateAndTime;

	 SAKEBinaryData		mBinaryData;

}	SAKEValue;

The	mType	member	of	the	SAKEField	object	to	which	this	SAKEValue
belongs	is	used	to	indicate	which	of	the	union	members	contains	the
actual	value	for	this	field.	There	is	a	union	member	corresponding	to
each	of	the	types	in	the	SAKEFieldType	enum.	mByte,	mShort,	mInt,
and	mFloat	simply	store	integer	or	floating	point	values.
mAsciiString	and	mUnicodeString	contain	pointers	to	strings	which
are	NUL	terminated	for	ASCII	or	double-NUL	terminated	for	Unicode.	To
set	the	value	of	mBoolean,	use	gsi_true	and	gsi_false.	However	to
check	the	value	of	mBoolean,	the	macros	gsi_is_true	and	gsi_is_false
should	be	used.	mDateAndTime	contains	a	date	and	time	value	stored	in
the	same	format	as	that	returned	by	the	standard	time()	function.
mBinaryData	contains	arbitrary	binary	data	stored	in	a
SAKEBinaryData	struct.

typedef	struct

{

	 gsi_u8	*mValue;

	 int					mLength;

}	SAKEBinaryData;

mValue	points	to	the	data	itself,	and	mLength	contains	the	number	of
bytes	of	data.	mValue	may	be	NULL	if	mLength	is	0.

When	a	SAKEField	is	supplied	to	the	SDK	as	part	of	an	input	object
(described	below	under	requests),	then	the	game	is	responsible	for
providing	the	memory	to	which	any	pointers	point.	The	field	name	and

any	string	or	binary	data	pointers	must	point	to	memory	which	the	game
is	managing.	If	a	SAKEField	object	is	passed	to	the	SDK	as	an	output
object	(described	below	under	requests),	then	all	the	pointers	will	point	to
memory	which	the	SDK	is	managing.	This	memory	should	not	be	freed,
and	any	data	which	the	game	wants	to	access	at	a	later	point	must	be
copied.

Startup	and	Cleanup

Before	using	Sake,	the	GameSpy	Availability	Check	must	have	been
performed	and	indicated	that	the	game's	backend	is	available,	and	the
Core	object	must	have	been	initialized,	as	described	above.	After	these
steps	are	completed,	and	the	game	is	ready	to	start	using	Sake,	it	can
call	sakeStartup.

SAKEStartupResult	SAKE_CALL	sakeStartup(SAKE	*sakePtr);

The	function	returns	a	SAKEStartupResult,	which	is	an	enumeration
of	possible	results.	If	the	result	is	SAKEStartupResult_SUCESS,	then
the	startup	has	succeeded.	Any	other	value	indicates	a	failure,	and	the
game	should	not	continue	calling	other	Sake	functions.

The	game	supplies	a	pointer	to	a	SAKE	variable	when	calling
sakeStartup.	If	the	startup	is	successful,	then	the	variable	will	store	a
reference	to	the	internal	state	of	the	Sake	SDK.	This	SAKE	reference	is
then	used	with	most	other	calls	to	Sake	functions.	The	reference	is	valid
until	the	game	shutdowns	the	Sake	SDK	with	sakeShutdown.

void	SAKE_CALL	sakeShutdown(SAKE	sake);

This	shuts	down	the	SDK	and	frees	any	memory	that	was	allocated	for
the	Sake	object.	After	this	function	returns,	the	reference	to	the	Sake
object	is	no	longer	valid	and	should	not	be	used.

After	Sake	has	been	shutdown,	the	game	should	shutdown	the	GameSpy
Core	object	by	calling	gsCoreShutdown.	Sample	code	for	this	is
available	in	the	Sake	test	app.

Authentication

After	Sake	has	been	initialized,	the	game	needs	to	provide	authentication
information	which	will	identify	the	player	and	game.	This	allows	the
backend	to	ensure	that	the	game	can	only	access	or	modify	information
which	the	current	player	has	permission	to	access	or	modify.	There	are
two	functions	involved	in	authentication,	and	the	game	must	call	both	of
them	before	continuing	with	any	other	Sake	usage.	To	set	the	game's
authentication	information,	call	sakeSetGame.

void	SAKE_CALL	sakeSetGame

(

	 SAKE	sake,	

	 const	char	*gameName,	

	 int	gameId

);

The	first	parameter	is	the	reference	to	the	Sake	object	obtained	when
calling	sakeStartup.	The	other	two	parameters	are	the	gamename	and
gameid	for	the	current	game.	These	are	provided	on	a	per-game	basis	by
GameSpy.	If	your	game	needs	a	gamename	and	gameid,	or	if	you	do	not
know	the	gamename	or	gameid	for	your	game,	contact
devsupport@gamespy.com.

The	function	provides	no	indication	of	whether	or	not	the	gamename	and
gameid	are	correct.	It	only	stores	them	with	in	the	Sake	object,	and	they
are	then	passed	along	with	any	requests	sent	to	the	Sake	backend.	The
backend	will	then	check	them	and	use	the	information	to	figure	out	which
game's	database	is	being	used.

void	SAKE_CALL	sakeSetProfile

(

	 SAKE	sake,	

	 int	profileId,	

	 const	char	*loginTicket

);

sakeSetProfile	is	used	to	provide	authentication	information	for	the

mailto:devsupport@gamespy.com

current	player.	The	profile	ID	and	login	ticket	are	both	obtained	from	the
GameSpy	Presence	and	Messaging	SDK	(GP).	The	profile	ID	uniquely
identifies	the	current	player	to	the	backend,	and	the	login	ticket	allows	the
backend	to	verify	that	the	player	is	correctly	identifying	himself.	Before
calling	sakeSetProfile,	the	player	should	have	successfully	logged	in
using	the	GP	SDK,	which	allows	the	GameSpy	backend	to	authenticate
the	player.

The	profile	ID	to	pass	to	sakeSetProfile	can	be	obtained	in	the
callback	that	is	called	as	a	result	of	logging	into	GP.	A
GPConnectResponseArg	struct	is	passed	to	the	callback,	and	the	struct
has	a	member	variable	"profile"	that	stores	the	player's	profile	ID.	While
the	player	is	logged	on,	the	game	should	call	the	GP	function
gpGetLoginTicket.	This	provides	the	login	ticket	which	is	then	passed
to	sakeSetProfile.

As	with	sakeSetGame,	sakeSetProfile	provides	no	indication	of
whether	or	not	the	information	provided	is	correct.	It	stores	the	profile	ID
and	login	ticket	in	the	Sake	object,	and	they	are	then	passed	along	with
any	requests	sent	to	the	Sake	backend.	The	backend	checks	them	and
uses	them	to	authenticate	the	player	and,	for	certain	requests,	identify
which	player's	data	is	being	access	or	updated.

Requests

To	communicate	with	the	Sake	backend,	the	game	sends	requests
through	the	Sake	SDK.	This	is	the	primary	functionality	of	the	SDK.	Once
sakeStartup	has	been	called,	and	the	game	has	provided
authentication	information	(see	above),	it	can	start	sending	requests.
Requests	allow	the	game	to	create	records,	update	records,	delete
records,	read	records,	and	rate	records,	as	well	as	check	the	record	limit
for	a	particular	table	(the	limit	per	owner	option	set	with	the
Administration	website).

All	of	the	request	functions	have	a	similar	format.	As	an	example,	this	is
the	function	for	a	CreateRecord	request.

SAKERequest	SAKE_CALL	sakeCreateRecord

(

	 SAKE	sake,	

	 SAKECreateRecordInput	*input,	

	 SAKERequestCallback	callback,	

	 void	*userData

);

All	request	functions	take	a	reference	to	the	sake	object	as	the	first
parameter,	a	pointer	to	an	input	object	as	the	second	parameter,	a
reference	to	a	callback	as	the	third	parameter,	and	a	pointer	to	user	data
as	the	last	parameter.

The	type	of	the	input	object	parameter	is	different	for	each	request	type	-
in	this	case	the	type	is	SAKECreateRecordInput.	The	input	object
contains	the	data	that	will	be	passed	to	the	backend	as	part	of	the
request.	For	a	CreateRecord	request,	the	input	object	contains	the
tableid	of	the	table	in	which	to	create	the	record	and	the	initial	field	values
to	store	in	the	new	record.	An	input	object	must	be	valid	for	the	entire
duration	of	a	request,	which	it	means	it	cannot	be	freed	immediately	after
the	request	is	initiated.	It	can	only	be	freed	if	the	request	fails	or	after	the
request	completes.

Request	functions	return	a	SAKERequest	variable,	which	stores	a
reference	to	an	internal	object	that	tracks	the	request.	If	a	request
function	returns	a	NULL	value,	then	the	request	has	failed	to	initialize.	If
that	happens,	sakeGetStartRequestResult	can	be	called	to	get	the
reason	for	the	failure.

SAKEStartRequestResult	SAKE_CALL	sakeGetStartRequestResult(SAKE	sake);

It	returns	an	enum	value	of	type	SAKEStartRequestResult,	which	will
indicate	the	specific	reason.	It	will	always	return	the	result	for	the	most
recent	request	that	was	attempted,	so	it	must	be	called	immediately	after
a	failure	to	get	the	reason	for	that	failure.

All	request	functions	take	a	reference	to	a	SAKERequestCallback	as	the
third	parameter.

typedef	void	(*SAKERequestCallback)

(

	 SAKE	sake,	

	 SAKERequest	request,	

	 SAKERequestResult	result,	

	 void	*inputData,	

	 void	*outputData,	

	 void	*userData

);

If	a	request	is	started	successfully,	then	callback	will	be	called	when	the
request	completes.	The	first	two	parameters	are	references	to	the	objects
storing	the	Sake	state	and	the	request	state.	The	third	parameter	is	an
enum	value	that	indicates	success	or	failure	of	the	request.
SAKERequestResult_SUCCESS	means	success,	any	other	value
means	failure.	The	fourth	parameter	is	a	pointer	to	the	input	object	which
was	passed	as	the	second	parameter	to	the	request.	The	fifth	parameter
is	a	pointer	to	an	output	object	for	this	request,	which	will	contain	any
data	which	the	backend	sent	in	response	to	the	request.	The	specific
types	for	these	parameters	depend	on	the	type	of	request.	For	example,
if	the	request	was	a	CreateRecord	request,	then	the	types	will	be
SAKECreateRecordInput	and	SAKECreateRecordOutput,	and	the
output	object	will	store	the	recordid	of	the	newly	created	record.	Not	all
request	types	has	output	objects.	If	a	request	type	does	not	have	an
output	object,	then	outputData	will	be	always	be	NULL	when	the	callback
is	called.	The	final	parameter	is	the	same	user	data	pointer	that	was
passed	to	the	request	function.

The	callback	is	where	the	game	can	see	the	result	and	any	response	to
its	request.	If	an	input	object	was	allocated	dynamically,	then	the	game
can	free	that	object	from	within	the	callback.	However	it	is	important	to
know	that	for	certain	request	types,	the	output	object	may	contain
pointers	to	data	stored	in	the	input	object.	Therefore	the	input	object
should	only	be	freed	at	the	end	of	the	function,	after	handling	the	output
object.	Also,	the	output	object's	data	is	only	valid	during	the	duration	of
the	callback	-	it	cannot	be	reference	after	the	callback	completes.	So	any
data	that	needs	to	be	accessed	later	must	be	copied	before	the	callback
returns.

The	SDK	can	make	the	following	requests,	each	of	which	follows	the

format	shown	in	the	sakeCreateRecord	request	above.	The	only
difference	is	the	name	of	the	request,	and	the	Input	struct	used	for	each.:

//modifying	Records

SAKERequest	sakeCreateRecord(...,	SAKECreateRecordInput	*input,	...);

SAKERequest	sakeUpdateRecord(...,	SAKEUpdateRecordInput	*input,	...);

SAKERequest	sakeDeleteRecord(...,	SAKEDeleteRecordInput	*input,	...);

//retrieving	Records

SAKERequest	sakeSearchForRecords(...,	SAKESearchForRecordsInput	*input,	...);

SAKERequest	sakeGetMyRecords(...,	SAKEGetMyRecordsInput	*input,	...);

SAKERequest	sakeGetRandomRecord(...,	SAKEGetRandomRecordInput	*input,	...);

SAKERequest	sakeGetSpecificRecords(...,	SAKEGetSpecificRecordsInput	*input,	...);

//miscellaneous

SAKERequest	sakeRateRecord(...,	SAKERateRecordInput	*input,	...);

SAKERequest	sakeGetRecordLimit(...,	SAKEGetRecordLimitInput	*input,	...);

SAKERequest	sakeGetRecordCount(...,	SAKEGetRecordCountInput	*input,	...);

Thinking

As	described	above	in	the	Requirements	section,	the	Sake	SDK	uses	the
GameSpy	Core	object	to	manage	requests,	so	in	order	for	requests	to	be
processed	the	game	must	periodically	call	gsCoreThink.

void	gsCoreThink(gsi_time	theMS);

gsCoreThink	tells	the	Core	object	to	process	any	pending	tasks.	It
takes	one	parameter,	which	tells	it	how	long	it	can	take	to	think.	You	will
usually	want	to	pass	in	0	as	the	parameter,	which	will	tell	it	to	let	each
task	do	one	round	of	processing.

Generally	gsCoreThink	will	be	called	once	each	time	a	game	runs
through	its	main	loop,	or	at	a	minimum	every	50	milliseconds.	It	only
needs	to	be	called	while	Sake	is	in	use,	however	calling	it	more	often	will
not	do	any	harm.	It	will	just	return	without	doing	any	processing	if	Sake	is
not	in	use.	For	sample	code	see	the	Sake	test	app.

File	References

Sake	supports	storing	files;	however	the	files	are	not	stored	directly	in	the
database.	To	store	a	file,	the	game	must	first	upload	it	to	the	Sake	File
Server.	If	the	file	is	uploaded	successfully,	the	File	Server	will	give	the
game	a	fileid	which	is	used	to	uniquely	identify	that	file,	and	which	can
then	be	stored	directly	in	the	Sake	database	as	reference	to	that	file.

The	Sake	backend	keeps	track	of	how	many	references	to	each	file	are
stored	in	the	database.	If	over	a	period	of	approximately	24	hours	there
are	no	references	to	a	file,	it	will	be	deleted	from	the	File	server.	This
ensures	that	if	a	fileid	is	obtained	from	the	database,	it	will	still	be	valid
for	a	period	of	time	and	available	for	download	even	if	the	last	reference
to	that	file	was	removed.

There	is	no	way	to	overwrite	an	existing	file.	To	change	a	file	that	is
referenced	from	the	database,	first	upload	a	new	file,	and	then	change
the	fileid	in	the	database	to	reference	the	new	file.	If	there	are	no	other
references	to	the	old	file,	it	will	eventually	be	deleted.

File	Uploading

sakeGetFileUploadURL	is	used	to	get	a	URL	which	can	be	used	to
upload	files.

gsi_bool	SAKE_CALL	sakeGetFileUploadURL

(

	 SAKE	sake,	

	 gsi_char	url[SAKE_MAX_URL_LENGTH]

);

The	URL	will	identify	both	the	game	and	the	player	that	is	uploading	the
file.	After	obtaining	the	URL,	the	file	can	be	uploaded.	We	recommend
using	the	GameSpy	HTTP	SDK,	however	other	HTTP	SDKs	can	be
used.	The	file	must	be	uploaded	as	an	HTTP	POST.	See	the	Sake	test
app	for	a	simple	example	of	posting	a	file.

After	completing	the	post,	check	the	headers	returned	from	the	server	for
the	result.

gsi_bool	SAKE_CALL	sakeGetFileResultFromHeaders

(

	 const	char	*headers,	

	 SAKEFileResult	*result

);

You	can	use	sakeGetFileResultFromHeaders	to	do	this
automatically,	or	you	can	check	the	headers	manually	for	the	"Sake-File-
Result"	header.	The	value	stored	in	the	header	is	an	integer,	the	possible
values	of	which	are	enumerated	in	SAKEFileResult.
SAKEFileResult_SUCCESS	means	that	the	file	was	uploaded
successfully,	while	any	other	value	indicates	that	there	was	an	error
uploading	the	file.	Note	that	sakeGetFileResultFromHeaders
returns	gsi_true	if	it	was	able	to	find	the	"Sake-File-Result"	header,
and	gsi_false	if	it	was	not	able	to	find	the	header.	So	the	return	value
does	not	in	itself	indicate	that	the	file	was	uploaded	successfully.

If	the	file	was	uploaded	successfully,	then	the	fileid	that	references	the
file	can	be	obtained	using	sakeGetFileIdFromHeaders.

gsi_bool	SAKE_CALL	sakeGetFileIdFromHeaders

(

	 const	char	*headers,	

	 int	*fileId

);

To	get	the	fileid	from	the	headers	manually,	look	for	the	"Sake-File-Id"
header.	The	fileid	can	now	be	stored	in	a	fileid	field	in	the	database.	If	a
file	is	uploaded,	but	the	fileid	is	not	stored	in	the	database,	then	the	file
will	be	automatically	deleted	by	the	backend	after	approximately	24
hours.

File	Downloading

A	file	can	be	downloaded	once	the	fileid	for	that	file	has	been	obtained
from	the	Sake	database.	sakeGetFileDownloadURL	is	used	to	get	a
download	URL	for	a	particular	fileid.

gsi_bool	SAKE_CALL	sakeGetFileDownloadURL

(

	 SAKE	sake,	

	 int	fileId,	

	 gsi_char	url[SAKE_MAX_URL_LENGTH]

);

After	getting	the	URL,	the	file	can	be	download	using	the	GameSpy
HTTP	SDK,	or	any	other	HTTP	SDK.	After	downloading,	the	headers
returned	by	the	server	should	be	checked	for	the	result,	to	make	sure	the
download	was	successful.

gsi_bool	SAKE_CALL	sakeGetFileResultFromHeaders

(

	 const	char	*headers,	

	 SAKEFileResult	*result

);

You	can	use	sakeGetFileResultFromHeaders	to	do	this
automatically,	or	you	can	check	the	headers	manually	for	the	"Sake-File-
Result"	header.	The	value	stored	in	the	header	is	an	integer,	the	possible
values	of	which	are	enumerated	in	SAKEFileResult.
SAKEFileResult_SUCCESS	means	that	the	file	was	downloaded
successfully,	while	any	other	value	indicates	that	there	was	an	error.	Note
that	sakeGetFileResultFromHeaders	returns	gsi_true	if	it	was
able	to	find	the	"Sake-File-Result"	header,	and	gsi_false	if	it	was	not
able	to	find	the	header.	So	the	return	value	does	not	in	itself	indicate	that
the	file	was	downloaded	successfully.

Release	Process

Games	that	use	Sake	are	developed	using	a	Sake	development
backend.	This	prevents	development	work	from	interfering	with	any	live
games.	When	a	developer	has	finished	implementing	the	Sake	usage	in
a	game	and	is	ready	to	start	testing	the	game	with	the	Sake	release
environment,	he	should	contact	GameSpy	support	at
devsupport@gamespy.com.

The	developer	will	need	to	supply	some	information	on	how	the	game	is
using	Sake,	such	as	what	information	is	being	stored	in	the	game's
database	and	how	that	being	accessed	and	updated.	This	will	allow
GameSpy	to	ensure	that	the	game	can	be	moved	to	the	release
environment	without	any	negative	impact	to	that	game	or	to	other	games.
After	reviewing	this	information,	GameSpy	will	move	the	game's
database	schema	to	the	release	backend.	The	developer	will	also	need
to	inform	GameSpy	if	any	data	should	be	moved	from	the	development
backend	to	the	release	backend.	The	developer	will	then	conduct	final
testing	against	the	release	backend,	and	GameSpy	will	monitor	the
backend	to	ensure	performance.

mailto:devsupport@gamespy.com

Appendix	I:	Default	values	when	creating	records	with
unspecified	fields

Sake	does	not	have	the	concept	of	NULL	data	in	a	record,	therefore,	if
records	are	created	with	unspecified	fields,	the	"default"	value	(listed	and
set	in	the	Sake	Admin	site)	will	be	used	for	these	fields	upon	creating	the
record.

The	only	caveat	here	is	for	DateAndTime	fields.	If	a	DateAndTime	field	is
listed	as	a	defined	field	when	creating	a	record,	but	the	reported	value	for
this	field	is	NULL,	the	date	will	be	set	to	Jan.	01,	1970	by	default.	If	the
field	is	undefined,	the	default	value,	getutcdate(),	is	used.

Appendix	II:	Special	Fields	used	in	Sake

In	addition	to	the	fields	which	the	developer	defines,	you	can	also	request
values	for	special	intrinsic	fields	depending	on	the	data	being	retrieved.
Below	is	a	list	of	extra	fields	or	search	tags	that	can	be	requested	in
Sake:

FileId	metadata
FileIds	have	metadata	fields	that	can	be	used	to	obtain	extra
information	about	the	file.	These	are	formed	by	following	the	name
of	a	fileid	field	with	a	dot	and	then	a	string	which	controls	the
metadata	to	be	returned.	For	example,	to	get	the	size	of	a	file
stored	in	a	field	named	"video",	you	would	use	the	field	name
"video.size".	Note	that	you	can	request	file	metadata	without
requesting	the	fileid	itself.

.size	-	returns	the	size	of	the	file	in	bytes	as	an	Int.

.name	-	returns	the	name	of	the	file	as	an	AsciiString,	as	specified
when	it	was	uploaded.
.create_time	-	returns	a	DateAndTime	value	corresponding	to
when	the	file	was	uploaded.
.downloads	-	returns	as	an	Int	the	number	of	times	that	the	file
has	been	downloaded.
.profileid	-	returns	as	an	Int	the	profileid	of	the	player	that
uploaded	the	file.

Rateable	Tables
For	Rateable	tables,	two	fields	are	automatically	added	to	that
table	-	these	two	fields	are	special	in	that	they	cannot	be	updated
manually	by	a	sakeUpdateRecord	request	(they	are	updated	only
by	the	SDK	when	rating	a	record):

num_ratings	-	stores	the	number	of	times	that	users	have	given
that	record	a	rating.
average_rating	-	stores	the	average	of	all	the	ratings	given	to	that
record.

The	maximum	range	for	ratings	is	0	through	255	(games	can

internally	restrict	that	to	a	smaller	range).	Ratings	are	given	as
integers,	however	the	average	ratings	is	returned	as	a	floating
point	number.	In	addition,	players	can	use	the	special	field	tag
my_rating	to	obtain	their	personal	rating	on	a	given	record.	This
can	also	be	used	when	searching	for	records.	So	for	example,	if
you	wanted	to	only	view	records	you	have	rated	as	>	100	then	you
would	include	"my_rating	>	100"	in	the	filter	string.	For	records	that
the	player	has	not	yet	rated,	my_rating	is	set	to	-1	by	default.

Lastly,	there	are	two	special	search	tags	@rated	and	@unrated
which	can	be	used	as	SQL	filter	strings	when	searching	for	records
to	limit	the	search	to	rated	records	(using	@rated)	or	unrated
records	(using	@unrated).

Getting	the	Row	number	(or	Rank	for	Leaderboard	Queries)

row	-	The	row	number	(based	on	given	sort	criteria).	Only	usable
in	a	sakeSearchForRecords	request.

To	get	a	player's	Rank,	it	is	as	simple	as	adding	the	special	row
field	name	to	the	list	of	fields	to	retrieve.	This	gets	the	row	number
based	on	the	sort	criteria	specified.

Appendix	III:	Reserved	Field	names

There	are	some	reserved	Field	Names	in	Sake	that	should	not	be	used,
otherwise	they	can	cause	unforseen	problems.	these	names	are:	file,
fileid,	size,	name,	create_time,	downloads,	profileid,	ownerid,	recordid,
num_ratings,	average_rating,	my_rating.

Appendix	IV:	Using	Sake	for	ATLAS	Leaderboard	Queries

SAKE	has	optimized	methods	for	performing	basic	leaderboard	queries
of	ATLAS	Statistics.	The	following	describes	their	usage.

1.	How	to	get	a	player's	rank	(e.g.	so	you	can	display	"I'm	ranked
X...")	

To	get	the	player's	Rank	based	on	the	sort	order	provided,	you	will	add
"row"	as	a	special	fieldName	that	returns	the	player's	current	row	(or	in	a
leaderboard	sense,	their	Rank)	to	a	sakeSearchForRecords	query.
Note	that	this	row	number	is	relative	to	the	mFilter	provided,	so	this	way
you	can	create	specific	leaderboards	(say	for	example,	top	10	players	in
each	gametype).	This	method	works	both	for	getting	a	single	player's
rank,	or	for	getting	multiple	players'	ranks.

2.	How	to	get	a	total	record	count	(e.g.	so	you	can	display	"...	out	of
X	total	players")	

You	can	use	the	sakeGetRecordCount	function	which	can	give	you	the
record	count	for	an	entire	table	(no	filter)	or	for	a	filtered	subset	of	the
table	(e.g.	how	many	people	with	stats	recorded	for	a	specific	gametype,
etc.)	

Example	Usage	(gets	the	total	number	of	players	who	have	accumulated
stats):

	 static	SAKEGetRecordCountInput	input;

	 static	SAKERequest	request;

	 SAKEStartRequestResult	startRequestResult;

	 input.mTableId	=	"PlayerStats_v1";

	 input.mFilter	=	"";

	 request	=	sakeGetRecordCount(sake,	&input;,	GetRecordCountCallback,	NULL);

3.	How	to	get	a	top	10	leaderboard	(or	a	subset	of	this,	such	as	top
10-20)	

you	can	use	a	sakeSearchForRecords	query	if	you	want	to	achieve	a
top	10	leaderboard	for	example,	and	page	through	it.	You	will	use	the
parameters:	mFilter,	mSort,	mOffset,	mMaxRecords.	The	offset	works	to
page	through	the	leaderboard.	

Example	Usage	-	Top	1-10	in	CTF	Gametype:

								static	SAKEGetRecordCountInput	input;

								static	SAKERequest	request;

								SAKEStartRequestResult	startRequestResult;

								static	char	*fieldNames[]	=	{	"row",	"ownerid",	"CTF_HighScore"	};

								input.mTableId	=	"PlayerStats_v1";

	 input.mFieldNames	=	fieldNames;

	 input.mNumFields	=	(sizeof(fieldNames)	/	sizeof(fieldNames[0]));	

	 							

	 input.mFilter	=	"GameType	=	'CTF'";	//	e.g.	filter	to	a	CTF	leaderboard	only	

	 input.mSort	=	"CTF_HighScore	desc";	//	e.g.	sorts	based	on	a	highscore	stat

	 input.mOffset	=	0;

	 input.mMaxRecords	=	10;

	 request	=	sakeSearchForRecords(sake,	&input;,	SearchForRecordsCallback,	NULL);

Example	Usage	-	Top	11-20	in	CTF	Gametype:

								//	same	as	above,	just	change	the	offset

	 input.mOffset	=	10;

4.	How	to	get	my	record	and	those	surrounding	me	

Again	you	would	use	a	sakeSearchForRecords	query.	The
parameters	this	time	will	include:	mTargetRecordFilter,
mSurroundingRecordsCount.	The	mTargetRecordFilter	should	provide	a
filter	string	that	will	return	only	a	single	record,	and	the
mSurroundingRecordsCount	is	how	many	records	above	&	below	that
target	record	to	get	as	well.	

Example	Usage	-	My	CTF	Record	&	the	surrounding	5	CTF	players
above	and	below	(11	records	total	possible):

								static	SAKEGetRecordCountInput	input;

								static	SAKERequest	request;

								SAKEStartRequestResult	startRequestResult;

								static	char	*fieldNames[]	=	{	"row",	"ownerid",	"CTF_HighScore"	};

								input.mTableId	=	"PlayerStats_v1";

	 input.mFieldNames	=	fieldNames;

	 input.mNumFields	=	(sizeof(fieldNames)	/	sizeof(fieldNames[0]));	

	

	 input.mFilter	=	"GameType	=	'CTF'";	

	 input.mSort	=	"CTF_HighScore	desc";

	 input.mOffset	=	0;	 	 	 //	offset	unused	here

	 input.mMaxRecords	=	11;	

	 input.mTargetRecordFilter	=	"ownerid	=	81395321";

								input.mSurroundingRecordsCount	=	5;

	

	 request	=	sakeSearchForRecords(sake,	&input;,	SearchForRecordsCallback,	NULL);

5.	How	to	get	records	for	a	subset	of	specific	profiles	(e.g.	get
stats/ranks	for	all	my	friends)	

A	sakeSearchForRecords	query	with	parameters	now	including:
mOwnerIds,	mNumOwnerIds.	The	mOwnerIds	gives	an	array	of	profileids
for	the	subset	of	records	to	retrieve,	and	the	mNumOwnerIds	indicates
the	number	of	ids	in	the	array.	

Example	Usage	-	My	CTF	Record	&	My	buddies'	CTF	records:

								static	SAKEGetRecordCountInput	input;

								static	SAKERequest	request;

								SAKEStartRequestResult	startRequestResult;

								static	char	*fieldNames[]	=	{	"row",	"ownerid",	"CTF_HighScore"	};

								static	int	ownerIds[5]	=	{	64880031,	81395342,	81395321,	64880044,	64880040	};

								input.mTableId	=	"PlayerStats_v1";

	 input.mFieldNames	=	fieldNames;

	 input.mNumFields	=	(sizeof(fieldNames)	/	sizeof(fieldNames[0]));	

	

	 input.mFilter	=	"GameType	=	'CTF'";	

	 input.mSort	=	"CTF_HighScore	desc";

	 input.mOffset	=	0;	 	 	 //	offset	unused	here

	 input.mMaxRecords	=	5;	

								input.mOwnerIds	=	ownerIds;

								input.mNumOwnerIds	=	5;

	 request	=	sakeSearchForRecords(sake,	&input;,	SearchForRecordsCallback,	NULL);

Sake	SDK	Functions
sakeCreateRecord

Creates	a	new	Record	in	a	backend
table.

sakeDeleteRecord
Deletes	the	specified	record.

sakeGetFieldByName
This	utility	function	retrieves	the
specified	field	from	the	record,	via	the
name	that	identifies	it.

sakeGetFileDownloadURL
Used	to	get	a	download	URL	for	a
particular	fileid.

sakeGetFileIdFromHeaders
If	the	file	was	uploaded	successfully,
this	function	obtains	the	fileid	that
references	the	file.

sakeGetFileResultFromHeaders
Checks	the	headers	from	the	uploaded
file	to	see	the	result.

sakeGetFileUploadURL
Retrieves	the	URL	which	can	be	used	to
upload	files.

sakeGetMyRecords
Gets	all	of	the	records	owned	by	the
local	player	from	a	table.

sakeGetRandomRecord
Retrieves	a	random	record	from	the
provided	search	criteria.

sakeGetRecordCount Gets	a	count	for	the	number	of	records
in	a	table	based	on	the	given	filter
criteria.

sakeGetRecordLimit
Checks	the	maximum	number	of
records	that	a	profile	can	own	for	a
particular	table.

sakeGetSpecificRecords
Gets	a	list	of	specific	records	from	a
table.

sakeGetStartRequestResult
Called	to	retrieve	the	result	of	a	request
-	normally	used	to	determine	the	reason
for	a	failed	request.

sakeRateRecord
Rates	a	specified	record.

sakeSearchForRecords
Searches	a	table	for	records	that	match
certain	specified	criteria.

sakeSetGame
Authenticates	the	game	to	use	Sake.

sakeSetProfile
Provides	Sake	authentication
information	for	the	current	player.

sakeShutdown
Shuts	down	the	SDK	and	frees	any
memory	that	was	allocated	for	the	Sake
object.

sakeStartup
Initializes	the	Sake	SDK	for	use.

sakeUpdateRecord Updates	the	values	stored	in	an	existing
record.

sakeCreateRecord
Creates	a	new	Record	in	a	backend	table.

SAKERequest	sakeCreateRecord(
SAKE	sake,
SAKECreateRecordInput	*	input,
SAKERequestCallback	callback,
void	*	userdata);

Routine Required	Header Distribution
sakeCreateRecord <sake.h> SDKZIP

Return	Value

Reference	to	internal	object	that	tracks	the	request.	If	this	is	NULL,	then
the	request	has	failed	to	initialize.	You	can	call
sakeGetStartRequestResult	to	obtain	the	reason	for	the	failure.

Parameters

sake
[in]	The	sake	object.

input
[in]	Stores	the	data	for	the	record	you	wish	to	create.

callback
[in]	The	request	callback	function.

userdata
[in]	pointer	to	user	specified	data	sent	to	the	request	callback.

Remarks

If	the	request	completed	successfully,	then	the	output	object	contains	the
recordid	of	the	newly	created	record.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKECreateRecordInput,	SAKECreateRecordOutput,
SAKERequestCallback

sakeDeleteRecord
Deletes	the	specified	record.

SAKERequest	sakeDeleteRecord(
SAKE	sake,
SAKEDeleteRecordInput	*	input,
SAKERequestCallback	callback,
void	*	userdata);

Routine Required	Header Distribution
sakeDeleteRecord <sake.h> SDKZIP

Return	Value

Reference	to	internal	object	that	tracks	the	request.	If	this	is	NULL,	then
the	request	has	failed	to	initialize.	You	can	call
sakeGetStartRequestResult	to	obtain	the	reason	for	the	failure.

Parameters

sake
[in]	The	sake	object.

input
[in]	Stores	the	information	for	the	record	you	wish	to	delete.

callback
[in]	The	request	callback	function.

userdata
[in]	pointer	to	user	specified	data	sent	to	the	request	callback.

Remarks

DeleteRecord	does	not	have	an	output	object,	because	the	backend
does	not	send	any	response	other	than	the	success	or	failure	indicated
by	the	result	parameter	passed	to	the	callback.	When	the	callback	is
called,	the	outputData	parameter	will	always	be	set	to	NULL.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKEDeleteRecordInput,	SAKERequestCallback

sakeGetFieldByName
This	utility	function	retrieves	the	specified	field	from	the	record,	via	the
name	that	identifies	it.

SAKEField	*	sakeGetFieldByName(
const	char	*	name,
SAKEField	*	fields,
int	numFields);

Routine Required	Header Distribution
sakeGetFieldByName <sake.h> SDKZIP

Return	Value

Pointer	to	a	SAKEField	which	represents	the	field	that	was	identified	by
the	given	name.

Parameters

name
[in]	The	name	of	the	field	to	retrieve.

fields
[in]	An	array	of	fields,	representing	a	record.

numFields
[in]	The	number	of	fields	in	the	array.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKEField

sakeGetFileDownloadURL
Used	to	get	a	download	URL	for	a	particular	fileid.

gsi_bool	sakeGetFileDownloadURL(
SAKE	sake,
int	fileId,
gsi_char	url);

Routine Required	Header Distribution
sakeGetFileDownloadURL <sake.h> SDKZIP

Return	Value

gsi_true	if	download	url	was	retrieved	successfully,	gsi_false	otherwise.

Parameters

sake
[in]	The	Sake	object.

fileId
[in]	The	fileid	returned	by	the	headers	of	the	uploaded	file.	Call
sakeGetFileIdFromHeaders	to	obtain.

url
[out]	The	download	url	for	the	specified	file.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeGetFileIdFromHeaders

sakeGetFileIdFromHeaders
If	the	file	was	uploaded	successfully,	this	function	obtains	the	fileid	that
references	the	file.

gsi_bool	sakeGetFileIdFromHeaders(
const	char	*	headers,
int	*	fileId);

Routine Required	Header Distribution
sakeGetFileIdFromHeaders <sake.h> SDKZIP

Return	Value

gsi_true	if	able	to	parse	the	fileid	successfully,	gsi_false	otherwise.

Parameters

headers
[in]	The	headers	to	parse	for	the	fileid.	Can	obtain	these	by	calling
ghttpGetHeaders.

fileId
[ref]	reference	to	the	uploaded	fileid.

Remarks

To	get	the	fileid	from	the	headers	manually,	look	for	the	“Sake-File-Id”
header.	Once	obtained,	the	fileid	can	now	be	stored	in	a	fileid	field	in	the
database.

*Note	that	If	a	file	is	uploaded,	but	the	fileid	is	not	stored	in	the	database,
then	the	file	will	be	automatically	deleted	by	the	backend	after
approximately	24	hours.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	HTTP\ghttpGetHeaders

sakeGetFileResultFromHeaders
Checks	the	headers	from	the	uploaded	file	to	see	the	result.

gsi_bool	sakeGetFileResultFromHeaders(
const	char	*	headers,
SAKEFileResult	*	result);

Routine Required	Header Distribution
sakeGetFileResultFromHeaders <sake.h> SDKZIP

Return	Value

gsi_true	if	it	was	able	to	parse	the	result	successfully,	gsi_false	otherwise

Parameters

headers
[in]	The	headers	to	parse	for	the	fileid.	Can	obtain	these	by	calling
ghttpGetHeaders.

result
[ref]	Reference	to	the	result	as	obtained	in	the	headers.

Remarks

You	can	also	check	the	headers	manually	for	the	“Sake-File-Result”
header.	The	value	stored	in	the	header	is	an	integer,	the	possible	values
of	which	are	enumerated	in	SAKEFileResult.	SAKEFileResult_SUCCESS
means	that	the	file	was	uploaded	successfully,	while	any	other	value
indicates	that	there	was	an	error	uploading	the	file.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKEFileResult

sakeGetFileUploadURL
Retrieves	the	URL	which	can	be	used	to	upload	files.

gsi_bool	sakeGetFileUploadURL(
SAKE	sake,
gsi_char	url);

Routine Required	Header Distribution
sakeGetFileUploadURL <sake.h> SDKZIP

Return	Value

gsi_true	if	the	upload	URL	was	obtained,	gsi_false	otherwise

Parameters

sake
[in]	The	SAKE	object.

url
[out]	The	URL	where	the	file	can	be	uploaded.

Section	Reference:	Gamespy	Sake	SDK

sakeGetMyRecords
Gets	all	of	the	records	owned	by	the	local	player	from	a	table.

SAKERequest	sakeGetMyRecords(
SAKE	sake,
SAKEGetMyRecordsInput	*	input,
SAKERequestCallback	callback,
void	*	userData);

Routine Required	Header Distribution
sakeGetMyRecords <sake.h> SDKZIP

Return	Value

Reference	to	internal	object	that	tracks	the	request.	If	this	is	NULL,	then
the	request	has	failed	to	initialize.	You	can	call
sakeGetStartRequestResult	to	obtain	the	reason	for	the	failure.

Parameters

sake
[in]	The	Sake	object.

input
[in]	Stores	info	about	the	records	you	wish	to	retrieve.

callback
[in]	The	request	callback	function.

userData
[in]	pointer	to	user	specified	data	sent	to	the	request	callback.

Remarks

If	the	request	completed	successfully,	then	the	output	object	contains	all
of	the	records	which	the	local	player	owns	in	the	table.	See	definitions	of
the	Input	&	Output	structs	for	more	information	about	how	to	limit	what	is
retrieved	in	the	request	and	certain	metadeta	fields	that	can	be	retrieved.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKEGetMyRecordsInput,	SAKEGetMyRecordsOutput,
SAKERequestCallback

sakeGetRandomRecord
Retrieves	a	random	record	from	the	provided	search	criteria.

SAKERequest	sakeGetRandomRecord(
SAKE	sake,
SAKEGetRandomRecordInput	*	input,
SAKERequestCallback	callback,
void	*	userData);

Routine Required	Header Distribution
sakeGetRandomRecord <sake.h> SDKZIP

Return	Value

Reference	to	internal	object	that	tracks	the	request.	If	this	is	NULL,	then
the	request	has	failed	to	initialize.	You	can	call
sakeGetStartRequestResult	to	obtain	the	reason	for	the	failure.

Parameters

sake
[in]	The	sake	object.

input
[in]	Stores	the	info	for	the	random	record	search.

callback
[in]	The	request	callback	function.

userData
[in]	pointer	to	user	specified	data	sent	to	the	request	callback.

Remarks

The	output	will	always	be	a	single	record	(unless	no	records	pass	the
filter,	in	which	case	the	output	will	contain	NULL	data	for	the	returned
record).	Note	that	this	function	works	best	in	a	table	in	which	records	are
not	deleted	or	are	deleted	in	order	of	oldest	first	(in	other	words,	tables
where	recordids	are	contiguous).

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKEGetRandomRecordInput,
SAKEGetRandomRecordOutput,	SAKERequestCallback

sakeGetRecordCount
Gets	a	count	for	the	number	of	records	in	a	table	based	on	the	given	filter
criteria.

SAKERequest	sakeGetRecordCount(
SAKE	sake,
SAKEGetRecordCountInput	*	input,
SAKERequestCallback	callback,
void	*	userData);

Routine Required	Header Distribution
sakeGetRecordCount <sake.h> SDKZIP

Return	Value

Reference	to	internal	object	that	tracks	the	request.	If	this	is	NULL,	then
the	request	has	failed	to	initialize.	You	can	call
sakeGetStartRequestResult	to	obtain	the	reason	for	the	failure.

Parameters

sake
[in]	The	sake	object.

input
[in]	Stores	info	on	the	table	whose	count	you	wish	to	check.

callback
[in]	The	request	callback	function.

userData
[in]	pointer	to	user	specified	data	sent	to	the	request	callback.

Remarks

If	the	request	completed	successfully,	then	the	Output	object	contains
info	about	the	count	for	the	specified	table.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKEGetRecordCountInput,	SAKEGetRecordCountOutput,
SAKERequestCallback

sakeGetRecordLimit
Checks	the	maximum	number	of	records	that	a	profile	can	own	for	a
particular	table.

SAKERequest	sakeGetRecordLimit(
SAKE	sake,
SAKEGetRecordLimitInput	*	input,
SAKERequestCallback	callback,
void	*	userData);

Routine Required	Header Distribution
sakeGetRecordLimit <sake.h> SDKZIP

Return	Value

Reference	to	internal	object	that	tracks	the	request.	If	this	is	NULL,	then
the	request	has	failed	to	initialize.	You	can	call
sakeGetStartRequestResult	to	obtain	the	reason	for	the	failure.

Parameters

sake
[in]	The	sake	object.

input
[in]	Stores	info	on	the	table	whose	record	limit	you	wish	to	check.

callback
[in]	The	request	callback	function.

userData
[in]	pointer	to	user	specified	data	sent	to	the	request	callback.

Remarks

If	the	request	completed	successfully,	then	the	Output	object	contains
info	about	the	record	limit	for	the	specified	table.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKEGetRecordLimitInput,	SAKEGetRecordLimitOutput,
SAKERequestCallback

sakeGetSpecificRecords
Gets	a	list	of	specific	records	from	a	table.

SAKERequest	sakeGetSpecificRecords(
SAKE	sake,
SAKEGetSpecificRecordsInput	*	input,
SAKERequestCallback	callback,
void	*	userData);

Routine Required	Header Distribution
sakeGetSpecificRecords <sake.h> SDKZIP

Return	Value

Reference	to	internal	object	that	tracks	the	request.	If	this	is	NULL,	then
the	request	has	failed	to	initialize.	You	can	call
sakeGetStartRequestResult	to	obtain	the	reason	for	the	failure.

Parameters

sake
[in]	The	sake	object.

input
[in]	Stores	the	info	about	the	specific	records	you	wish	to	retrieve.

callback
[in]	The	request	callback	function.

userData
[in]	pointer	to	user	specified	data	sent	to	the	request	callback.

Remarks

If	the	request	completed	successfully,	then	the	output	object	contains	all
of	the	records	which	were	specified	in	the	request.	See	definitions	of	the
Input	&	Output	structs	for	more	information	about	how	to	limit	what	is
retrieved	in	the	request	and	certain	metadeta	fields	that	can	be	retrieved.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKEGetSpecificRecordsInput,
SAKEGetSpecificRecordsOutput,	SAKERequestCallback

sakeGetStartRequestResult
Called	to	retrieve	the	result	of	a	request	-	normally	used	to	determine	the
reason	for	a	failed	request.

SAKEStartRequestResult	sakeGetStartRequestResult(
SAKE	sake);

Routine Required	Header Distribution
sakeGetStartRequestResult <sake.h> SDKZIP

Return	Value

Enum	value	used	to	indicate	the	specific	result	of	the	request.

Parameters

sake
[in]	The	sake	object

Remarks

This	function	will	always	return	the	most	recent	request	that	was
attempted,	so	it	must	be	called	immediately	after	a	failure	to	get	the
reason	for	that	failure.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKEStartRequestResult

sakeRateRecord
Rates	a	specified	record.

SAKERequest	sakeRateRecord(
SAKE	sake,
SAKERateRecordInput	*	input,
SAKERequestCallback	callback,
void	*	userdata);

Routine Required	Header Distribution
sakeRateRecord <sake.h> SDKZIP

Return	Value

Reference	to	internal	object	that	tracks	the	request.	If	this	is	NULL,	then
the	request	has	failed	to	initialize.	You	can	call
sakeGetStartRequestResult	to	obtain	the	reason	for	the	failure.

Parameters

sake
[in]	The	sake	object.

input
[in]	Stores	the	information	for	the	record	you	wish	to	rate.

callback
[in]	The	request	callback	function.

userdata
[in]	pointer	to	user	specified	data	sent	to	the	request	callback.

Remarks

The	range	of	ratings	which	Sake	supports	is	0	to	255.	However	a	game
can	restrict	itself	to	a	subset	of	that	range	if	it	wishes.	For	example,	a
game	may	want	to	use	a	rating	of	1	to	5	(a	star	rating),	or	it	may	want	to
use	a	range	of	0	to	100.	Sake	allows	users	to	rate	records	which	they
own,	however	no	profile	can	rate	a	single	record	more	than	once.	

Sake	stores	on	the	backend	each	individual	rating	that	has	been	given,
which	allows	it	to	compute	accurate	averages	and	prevent	repeat	ratings.
The	field	name	"my_rating"	can	be	used	to	obtain	the	current	profile's
rating	for	a	given	record	or	when	searching	for	records.	By	default,
my_rating	=	-1	for	records	that	have	not	yet	been	rated.	When	browsing
for	records,	use	the	special	search	tags	@rated	or	@unrated	in	the	filter
string	to	limit	the	searches	to	either	rated	or	unrated	records.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKERateRecordInput,	SAKERequestCallback

sakeSearchForRecords
Searches	a	table	for	records	that	match	certain	specified	criteria.

SAKERequest	sakeSearchForRecords(
SAKE	sake,
SAKESearchForRecordsInput	*	input,
SAKERequestCallback	callback,
void	*	userData);

Routine Required	Header Distribution
sakeSearchForRecords <sake.h> SDKZIP

Return	Value

Reference	to	internal	object	that	tracks	the	request.	If	this	is	NULL,	then
the	request	has	failed	to	initialize.	You	can	call
sakeGetStartRequestResult	to	obtain	the	reason	for	the	failure.

Parameters

sake
[in]	The	sake	object.

input
[in]	Stores	the	info	about	the	records	you	wish	to	search	for.

callback
[in]	The	request	callback	function.

userData
[in]	pointer	to	user	specified	data	sent	to	the	request	callback.

Remarks

If	the	request	completed	successfully,	then	the	output	object	contains
contains	records	founds	by	the	search.	See	definitions	of	the	Input	&
Output	structs	for	more	information	about	how	to	limit	what	is	retrieved	in
the	request	and	certain	metadeta	fields	that	can	be	retrieved.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKESearchForRecordsInput,
SAKESearchForRecordsOutput,	SAKERequestCallback

sakeSetGame
Authenticates	the	game	to	use	Sake.

void	sakeSetGame(
SAKE	sake,
const	char	*	gameName,
int	gameId,
const	char	*	secretKey);

Routine Required	Header Distribution
sakeSetGame <sake.h> SDKZIP

Parameters

sake
[in]	The	Sake	object.

gameName
[in]	Your	title's	gamename,	assigned	by	GameSpy.

gameId
[in]	Your	title's	gameid,	assigned	by	GameSpy.

secretKey
[in]	Your	title's	secret	key	,	assigned	by	GameSpy.

Remarks

The	function	provides	no	indication	of	whether	or	not	the	gamename	and
gameid	are	correct.	The	backend	will	simply	check	them	and	use	the
information	to	figure	out	which	game’s	database	is	being	used.

The	game	should	also	call	sakeSetProfile	to	authenticate	the	current
player	before	continuing	with	any	other	Sake	usage.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeSetProfile

sakeSetProfile
Provides	Sake	authentication	information	for	the	current	player.

void	sakeSetProfile(
SAKE	sake,
int	profileId,
const	char	*	loginTicket);

Routine Required	Header Distribution
sakeSetProfile <sake.h> SDKZIP

Parameters

sake
[in]	The	sake	object.

profileId
[in]	Current	player's	profile	ID.

loginTicket
[in]	Current	player's	login	ticket,	which	allows	the	backend	to	verify
the	player	is	correctly	identifying	himself.

Remarks

The	profile	ID	and	login	ticket	are	both	obtained	from	the	GameSpy
Presence	and	Messaging	SDK	(GP).

The	profile	ID	can	be	obtained	in	the	callback	that	is	called	as	a	result	of
logging	into	GP.	A	GPConnectResponseArg	struct	is	passed	to	the
callback,	and	the	struct	has	a	member	variable	“profile”	that	stores	the
player’s	profile	ID.	While	the	player	is	logged	on,	the	game	should	call	the
GP	function	gpGetLoginTicket.

As	with	sakeSetGame,	sakeSetProfile	provides	no	indication	of	whether
or	not	the	information	provided	is	correct.	The	backend	checks	these
values	and	uses	them	to	authenticate	the	player	and,	for	certain
requests,	identify	which	player’s	data	is	being	access	or	updated.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	Presence\GPConnectResponseArg,
Presence\gpGetLoginTicket

sakeShutdown
Shuts	down	the	SDK	and	frees	any	memory	that	was	allocated	for	the
Sake	object.

void	sakeShutdown(
SAKE	sake);

Routine Required	Header Distribution
sakeShutdown <sake.h> SDKZIP

Parameters

sake
[in]	The	sake	object.

Remarks

After	this	function	returns,	the	reference	to	the	Sake	object	is	no	longer
valid	and	should	not	be	used.	The	game	should	also	shutdown	the
GameSpy	Core	object	by	calling	gsCoreShutdown.	Sample	code	for	this
is	available	in	the	Sake	test	app.

Section	Reference:	Gamespy	Sake	SDK

sakeStartup
Initializes	the	Sake	SDK	for	use.

SAKEStartupResult	sakeStartup(
SAKE	*	sakePtr);

Routine Required	Header Distribution
sakeStartup <sake.h> SDKZIP

Return	Value

An	enumeration	of	possible	results.	If	the	result	is
SAKEStartupResult_SUCESS,	then	the	startup	has	succeeded.	Any
other	value	indicates	a	failure,	and	the	game	should	not	continue	calling
other	Sake	functions.

Parameters

sakePtr
[in]	Pointer	to	a	Sake	object,	which	is	initialized	by	startup.	This	will
be	used	in	nearly	all	subsequent	Sake	calls.

Remarks

Before	using	Sake,	the	GameSpy	Availability	Check	must	have	been
performed	and	indicated	that	the	game’s	backend	is	available,	and	the
Core	object	must	have	been	initialized	by	calling	gsCoreInitialize.	Sample
code	for	this	is	available	in	the	Sake	test	app.

The	SAKE	object	initialized	by	this	startup	call	is	valid	until	the	game
shutdowns	the	Sake	SDK	with	sakeShutdown.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKEStartupResult

sakeUpdateRecord
Updates	the	values	stored	in	an	existing	record.

SAKERequest	sakeUpdateRecord(
SAKE	sake,
SAKEUpdateRecordInput	*	input,
SAKERequestCallback	callback,
void	*	userdata);

Routine Required	Header Distribution
sakeUpdateRecord <sake.h> SDKZIP

Return	Value

Reference	to	internal	object	that	tracks	the	request.	If	this	is	NULL,	then
the	request	has	failed	to	initialize.	You	can	call
sakeGetStartRequestResult	to	obtain	the	reason	for	the	failure.

Parameters

sake
[in]	The	sake	object.

input
[in]	Stores	the	updated	data	for	the	record.

callback
[in]	The	request	callback	function.

userdata
[in]	pointer	to	user	specified	data	sent	to	the	request	callback.

Remarks

UpdateRecord	does	not	have	an	output	object,	because	the	backend
does	not	send	any	response	other	than	the	success	or	failure	indicated
by	the	result	parameter	passed	to	the	callback.	When	the	callback	is
called,	the	outputData	parameter	will	always	be	set	to	NULL.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKEUpdateRecordInput,	SAKERequestCallback

Sake	SDK	Callbacks
SAKERequestCallback

Callback	called	when	a	request	completes.

SAKERequestCallback
Callback	called	when	a	request	completes.

typedef	void	(*SAKERequestCallback)(
SAKE	sake,
SAKERequest	request,
SAKERequestResult	result,
void	*	inputData,
void	*	outputData,
void	*	userData);

Routine Required	Header Distribution
SAKERequestCallback <sake.h> SDKZIP

Parameters

sake
[out]	The	sake	object.

request
[out]	State	of	the	sake	request.

result
[out]	The	result	of	the	request;	SAKERequestResult_SUCCESS
means	success,	any	other	value	indicates	failure.

inputData
[ref]	Pointer	to	the	input	object	which	was	passed	into	the	request.

outputData
[ref]	Pointer	to	an	output	object	for	this	request,	which	should	be	cast
to	the	appropriate	type	based	on	the	request	made.

userData
[ref]	Pointer	to	the	userData	passed	into	the	request	function.

Remarks

Not	all	request	types	have	output	objects.	If	a	request	type	does	not	have
an	output	object,	then	outputData	will	be	always	be	NULL	when	the
callback	is	called.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKERequestResult

Sake	SDK	Structures
SAKEBinaryData

Data	struct	used	to	store	arbitrary
binary	data	in	a	Sake	field.

SAKECreateRecordInput
Input	object	passed	to
sakeCreateRecord.

SAKECreateRecordOutput
Returned	output	object	that	specifies
the	recordid	for	the	newly	created
record.

SAKEDeleteRecordInput
Input	object	passed	to
sakeDeleteRecord.

SAKEField
object	used	to	represent	the	field	of	a
record.

SAKEGetMyRecordsInput
Input	object	passed	to
sakeGetMyRecords.

SAKEGetMyRecordsOutput
Returned	output	object	that	specifies	all
of	the	records	which	the	local	player
owns	in	the	table.

SAKEGetRandomRecordInput
Input	object	passed	to
sakeGetRandomRecord.

SAKEGetRandomRecordOutput
Returned	output	object	that	contains	a
random	record.

SAKEGetRecordCountInput
Input	object	passed	to
sakeGetRecordCount

SAKEGetRecordCountOutput
Returned	record	count	based	on	the
specified	table	and	search	filter	used.

SAKEGetRecordLimitInput
Input	object	passed	to
sakeGetRecordLimit.

SAKEGetRecordLimitOutput
Returned	output	object	that	specifies
the	maximum	number	of	records	that	a
profile	can	own	in	the	table.

SAKEGetSpecificRecordsInput
Input	object	passed	to
sakeGetSpecificRecords.

SAKEGetSpecificRecordsOutput
Returned	output	object	that	contains	all
of	the	records	which	were	specified	in
the	request.

SAKERateRecordInput
Input	object	passed	to
sakeRateRecord.

SAKERateRecordOutput
Returned	output	object	that	lists	the
new	number	of	ratings	and	the	new
average	rating	for	the	specified	record.

SAKESearchForRecordsInput
Input	object	passed	to
sakeSearchForRecords.

SAKESearchForRecordsOutput Returned	output	object	that	contains
the	records	founds	by	the	search.

SAKEUpdateRecordInput
Input	object	passed	to
sakeUpdateRecord.

SAKEBinaryData
Data	struct	used	to	store	arbitrary	binary	data	in	a	Sake	field.

typedef	struct	
{

gsi_u8	*	mValue;
int	mLength;

}	SAKEBinaryData;

Members

mValue
pointer	to	the	data.

mLength
the	number	of	bytes	of	data.

Remarks

mValue	may	be	NULL	if	mLength	is	0.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKEFieldType

SAKECreateRecordInput
Input	object	passed	to	sakeCreateRecord.

typedef	struct	
{

char	*	mTableId;
SAKEField	*	mFields;
int	mNumFields;

}	SAKECreateRecordInput;

Members

mTableId
Points	to	the	tableid	of	the	table	in	which	the	record	will	be	created.

mFields
Points	to	an	array	of	fields	which	has	the	initial	values	for	the	new
record’s	fields.

mNumFields
Stores	the	number	of	fields	in	the	mFields	array.

Remarks

Any	fields	which	are	not	initialized	will	be	set	to	their	default	value.	If
mNumFields	is	0,	indicating	that	no	initial	values	will	be	set,	then	mFields
can	be	NULL.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeCreateRecord

SAKECreateRecordOutput
Returned	output	object	that	specifies	the	recordid	for	the	newly	created
record.

typedef	struct	
{

int	mRecordId;
}	SAKECreateRecordOutput;

Members

mRecordId
The	recordid	for	the	newly	created	record.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeCreateRecord,	SAKERequestCallback

SAKEDeleteRecordInput
Input	object	passed	to	sakeDeleteRecord.

typedef	struct	
{

char	*	mTableId;
int	mRecordId;

}	SAKEDeleteRecordInput;

Members

mTableId
Points	to	the	tableid	of	the	table	in	which	the	record	to	be	deleted
exists.

mRecordId
Identifies	the	record	to	be	deleted.

Remarks

DeleteRecord	does	not	have	an	output	object,	because	the	backend
does	not	send	any	response	other	than	the	success	or	failure	indicated
by	the	result	parameter	passed	to	the	callback.	When	the	callback	is
called,	the	outputData	parameter	will	always	be	set	to	NULL.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeDeleteRecord

SAKEField
object	used	to	represent	the	field	of	a	record.

typedef	struct	
{

char	*	mName;
SAKEFieldType	mType;
SAKEValue	mValue;

}	SAKEField;

Members

mName
the	name	used	to	identify	the	field.

mType
The	type	of	data	stored	in	the	field.

mValue
The	value	that	will	be	stored	in	the	field.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKEFieldType,	SAKEBinaryData

SAKEGetMyRecordsInput
Input	object	passed	to	sakeGetMyRecords.

typedef	struct	
{

char	*	mTableId;
chat	**	mFieldNames;
int	mNumFields;

}	SAKEGetMyRecordsInput;

Members

mTableId
Points	to	the	tableid	of	the	table	from	which	to	return	records.

mFieldNames
points	to	an	array	of	strings,	each	of	which	contains	the	name	of	a
field	for	which	to	return	values.

mNumFields
stores	the	number	of	strings	in	the	mFieldNames	array.	This	list
controls	the	values	which	will	be	returned	as	part	of	the	response.
The	array	can	contain	just	one	field	name,	the	names	of	all	the	fields
in	the	table,	or	any	subset	of	the	field	names.

Remarks

In	addition	to	the	fields	which	the	developer	defines,	you	can	also	request
values	for	the	“recordid”	field,	“ownerid”	field	(if	the	table	has	an	owner
type	of	profile),	and	“num_ratings”	and	“average_rating”	fields	(if	the	table
has	its	ratings	option	set	to	true).

See	Appendix	II	in	the	Overview	for	more	information	on	special	fields
used	in	Sake.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeGetMyRecords

SAKEGetMyRecordsOutput
Returned	output	object	that	specifies	all	of	the	records	which	the	local
player	owns	in	the	table.

typedef	struct	
{

int	mNumRecords;
SAKEField	**	mRecords;

}	SAKEGetMyRecordsOutput;

Members

mNumRecords
The	number	of	records	found.

mRecords
Points	an	array	of	records,	each	of	which	is	represented	as	an	array
of	fields.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeGetMyRecords,	SAKERequestCallback,	SAKEField

SAKEGetRandomRecordInput
Input	object	passed	to	sakeGetRandomRecord.

typedef	struct	
{

char	*	mTableId;
char	**	mFieldNames;
int	mNumFields;
char	*	mFilter;

}	SAKEGetRandomRecordInput;

Members

mTableId
Points	to	the	tableid	of	the	table	to	be	searched.

mFieldNames
Points	to	an	array	of	strings,	each	of	which	contains	the	name	of	a
field	for	which	to	return	values.	This	list	controls	the	values	which	will
be	returned	as	part	of	the	response.	The	array	can	contain	just	one
field	name,	the	names	of	all	the	fields	in	the	table,	or	any	subset	of
the	field	names.

mNumFields
Stores	the	number	of	strings	in	the	mFieldNames	array.

mFilter
SQL-like	filter	string	which	is	used	to	filter	which	records	are	to	be
looked	at	when	choosing	a	random	record.	Note	that	if	the	search
criteria	is	too	specific	and	no	records	are	found,	then	the	output	will
return	no	random	record.	Note	that	a	field	can	be	used	in	the	filter
string	even	if	it	is	not	listed	in	the	mFieldNames	array,	and	that	file
metadata	fields	can	be	used	in	a	filter	string.

Remarks

In	addition	to	the	fields	which	the	developer	defines,	you	can	also	request
values	for	the	“recordid”	field,	“ownerid”	field	(if	the	table	has	an	owner
type	of	profile),	and	“num_ratings”	and	“average_rating”	fields	(if	the	table
has	its	ratings	option	set	to	true).

See	Appendix	II	in	the	Overview	for	more	information	on	special	fields
used	in	Sake.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeGetRandomRecord

SAKEGetRandomRecordOutput
Returned	output	object	that	contains	a	random	record.

typedef	struct	
{

SAKEField	*	mRecord;
}	SAKEGetRandomRecordOutput;

Members

mRecord
An	array	of	fields	representing	the	random	record.

Remarks

If	no	record	was	found	due	to	constrained	search	criteria,	the	returned
record	will	be	set	to	NULL.

Section	Reference:	Gamespy	Sake	SDK

SAKEGetRecordCountInput
Input	object	passed	to	sakeGetRecordCount.

typedef	struct	
{

char	*	mTableId;
char	*	mFilter;
gsi_bool	mCacheFlag;

}	SAKEGetRecordCountInput;

Members

mTableId
Points	to	the	tableid	of	the	table	to	be	searched.

mFilter
SQL-like	filter	string	which	is	used	to	filter	which	records	are	to	be
looked	at	when	getting	the	record	count.

mCacheFlag
Enables	caching	if	set	to	gsi_true.	Defaults	to	no	caching	if	none	is
specified.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeGetRecordCount

SAKEGetRecordCountOutput
Returned	record	count	based	on	the	specified	table	and	search	filter
used.

typedef	struct	
{

int	mCount;
}	SAKEGetRecordCountOutput;

Members

mCount
Contains	the	value	of	the	record	count.	If	no	records	exist	or	the
search	criteria	was	too	specific	so	that	no	records	were	found,	this
value	will	be	0.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeGetRecordCount,	SAKERequestCallback

SAKEGetRecordLimitInput
Input	object	passed	to	sakeGetRecordLimit.

typedef	struct	
{

char	*	mTableId;
}	SAKEGetRecordLimitInput;

Members

mTableId
Points	to	the	tableid	of	the	table	for	which	to	check	the	limit.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeGetRecordLimit

SAKEGetRecordLimitOutput
Returned	output	object	that	specifies	the	maximum	number	of	records
that	a	profile	can	own	in	the	table.

typedef	struct	
{

int	mLimitPerOwner;
int	mNumOwned;

}	SAKEGetRecordLimitOutput;

Members

mLimitPerOwner
Contains	the	maximum	number	of	records	that	a	profile	can	own	in
the	table;	corresponds	to	the	limit	per	owner	option	that	can	be	set
using	the	Sake	Administration	website.

mNumOwned
Contains	the	number	of	records	that	the	local	profile	currently	owns
in	the	table.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeGetRecordLimit,	SAKERequestCallback

SAKEGetSpecificRecordsInput
Input	object	passed	to	sakeGetSpecificRecords.

typedef	struct	
{

char	*	mTableId;
int	*	mRecordIds;
int	mNumRecordIds;
char	**	mFieldNames;
int	mNumFields;

}	SAKEGetSpecificRecordsInput;

Members

mTableId
Points	to	the	tableid	of	the	table	from	which	to	get	the	records.

mRecordIds
An	array	of	recordids,	each	one	identifying	a	record	which	is	to	be
returned.

mNumRecordIds
The	number	of	recordids	in	the	mRecordIds	array.

mFieldNames
Points	to	an	array	of	strings,	each	of	which	contains	the	name	of	a
field	for	which	to	return	values.

mNumFields
stores	the	number	of	strings	in	the	mFieldNames	array.	This	list
controls	the	values	which	will	be	returned	as	part	of	the	response.
The	array	can	contain	just	one	field	name,	the	names	of	all	the	fields
in	the	table,	or	any	subset	of	the	field	names.

Remarks

In	addition	to	the	fields	which	the	developer	defines,	you	can	also	request
values	for	the	“recordid”	field,	“ownerid”	field	(if	the	table	has	an	owner
type	of	profile),	and	“num_ratings”	and	“average_rating”	fields	(if	the	table
has	its	ratings	option	set	to	true).

See	Appendix	II	in	the	Overview	for	more	information	on	special	fields
used	in	Sake.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeGetSpecificRecords

SAKEGetSpecificRecordsOutput
Returned	output	object	that	contains	all	of	the	records	which	were
specified	in	the	request.

typedef	struct	
{

int	mNumRecords;
SAKEField	**	mRecords;

}	SAKEGetSpecificRecordsOutput;

Members

mNumRecords
The	number	of	records	found.

mRecords
Points	an	array	of	records,	each	of	which	is	represented	as	an	array
of	fields.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeGetSpecificRecords,	SAKERequestCallback,	SAKEField

SAKERateRecordInput
Input	object	passed	to	sakeRateRecord.

typedef	struct	
{

char	*	mTableId;
int	mRecordId;
gsi_u8	mRating;

}	SAKERateRecordInput;

Members

mTableId
Points	to	the	tableid	of	the	table	in	which	the	record	to	be	rated
exists.

mRecordId
The	recordid	of	the	record	to	rate.

mRating
The	rating	the	user	wants	to	give	the	record.

Remarks

The	range	of	ratings	which	Sake	supports	is	0	to	255.	However	a	game
can	restrict	itself	to	a	subset	of	that	range	if	it	wishes.	For	example,	a
game	may	want	to	use	a	rating	of	1	to	5	(a	star	rating),	or	it	may	want	to
use	a	range	of	0	to	100.	Sake	allows	users	to	rate	records	which	they
own,	however	no	profile	can	rate	a	single	record	more	than	once.	The
special	field	"my_rating"	keeps	track	of	what	the	current	profile's	rating	is
for	a	given	record;	if	the	record	has	not	yet	been	rated,	my_rating	=	-1	by
default.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeRateRecord

SAKERateRecordOutput
Returned	output	object	that	lists	the	new	number	of	ratings	and	the	new
average	rating	for	the	specified	record.

typedef	struct	
{

int	mNumRatings;
float	mAverageRating;

}	SAKERateRecordOutput;

Members

mNumRatings
The	number	of	ratings	associated	with	this	record.

mAverageRating
The	average	rating	of	this	record.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeRateRecord,	SAKERequestCallback

SAKESearchForRecordsInput
Input	object	passed	to	sakeSearchForRecords.

typedef	struct	
{

char	*	mTableId;
char	**	mFieldNames;
int	mNumFields;
char	*	mFilter;
char	*	mSort;
int	mOffset;
int	mMaxRecords;
char	*	mTargetRecordFilter;
int	mSurroundingRecordsCount;
int	*	mOwnerIds;
int	mNumOwnerIds;
gsi_bool	mCacheFlag;

}	SAKESearchForRecordsInput;

Members

mTableId
Points	to	the	tableid	of	the	table	to	be	searched.

mFieldNames
Points	to	an	array	of	strings,	each	of	which	contains	the	name	of	a
field	for	which	to	return	values.	This	list	controls	the	values	which	will
be	returned	as	part	of	the	response.	The	array	can	contain	just	one
field	name,	the	names	of	all	the	fields	in	the	table,	or	any	subset	of
the	field	names.

mNumFields
Stores	the	number	of	strings	in	the	mFieldNames	array.

mFilter
SQL-like	filter	string	which	is	used	to	search	for	records	based	on	the
values	in	their	fields.	For	example,	to	find	everyone	who	has	a	score
of	more	than	50	use	“score	>	50”,	or	to	find	everyone	who	has	a
name	that	starts	with	an	A	use	“name	like	‘A%’”.	Note	that	a	field	can
be	used	in	the	filter	string	even	if	it	is	not	listed	in	the	mFieldNames
array,	and	that	file	metadata	fields	can	be	used	in	a	filter	string.

mSort
SQL-like	sort	string	which	is	used	to	sort	the	records	which	are	found
by	the	search.	To	sort	the	results	on	a	particular	field,	just	pass	in	the
name	of	that	field,	and	the	results	will	be	sorted	from	lowest	to
highest	based	on	that	field.	To	make	the	sort	descending	instead	of
ascending	add	“	desc”	after	the	name	of	the	field.	Note	that	a	field
can	be	used	in	the	sort	string	even	if	it	is	not	listed	in	the
mFieldNames	array,	and	that	file	metadata	fields	can	be	used	in	a
sort.

mOffset
If	not	set	to	0,	then	the	backend	will	return	records	starting	from	the
given	offset	into	the	result	set.

mMaxRecords
Used	to	specify	the	maximum	number	of	records	to	return	for	a
particular	search.

mTargetRecordFilter

Used	to	specify	a	single	record	to	return	-	when	done	in	conjunction
with	mSurroundingRecordsCount,	this	will	return	the	"target"	record
plus	the	surrounding	records	above	and	below	this	target	record.
Can	also	be	used	to	specify	a	"set"	of	target	records	to	return,	but
when	used	in	this	context	the	surrounding	records	count	does	not
apply.

mSurroundingRecordsCount
Used	in	conjunction	with	mTargetRecordFilter	-	specifies	the	number
of	records	to	return	above	and	below	the	target	record.	(e.g.	if	=	5,
you	will	receive	a	maximum	of	11	possible	records,	the	target	record
+	5	above	and	5	below).

mOwnerIds
Specifies	an	array	of	ownerIds	(profileid	of	record	owner)	to	return
from	the	search.

mNumOwnerIds
Specifies	the	number	of	ids	contained	in	the	mOwnerIds	array.

mCacheFlag
Enables	caching	if	set	to	gsi_true.	Defaults	to	no	caching	if	none	is
specified.

Remarks

In	addition	to	the	fields	which	the	developer	defines,	you	can	also	request
values	for	the	“recordid”	field,	“ownerid”	field	(if	the	table	has	an	owner
type	of	profile),	and	“num_ratings”	and	“average_rating”	fields	(if	the	table
has	its	ratings	option	set	to	true).

See	Appendix	II	in	the	Overview	for	more	information	on	special	fields
used	in	Sake.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeSearchForRecords

SAKESearchForRecordsOutput
Returned	output	object	that	contains	the	records	founds	by	the	search.

typedef	struct	
{

int	mNumRecords;
SAKEField	**	mRecords;

}	SAKESearchForRecordsOutput;

Members

mNumRecords
The	number	of	records	found.

mRecords
Points	an	array	of	records,	each	of	which	is	represented	as	an	array
of	fields.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeSearchForRecords,	SAKERequestCallback,	SAKEField

SAKEUpdateRecordInput
Input	object	passed	to	sakeUpdateRecord.

typedef	struct	
{

char	*	mTableId;
int	mRecordId;
SAKEField	*	mFields;
int	mNumFields;

}	SAKEUpdateRecordInput;

Members

mTableId
Points	to	the	tableid	of	the	table	in	which	the	record	to	be	updated
exists.

mRecordId
Identifies	the	record	to	be	updated.

mFields
Points	to	an	array	of	fields	which	has	the	new	values	for	the	record’s
fields.

mNumFields
Stores	the	number	of	fields	in	the	mFields	array.

Remarks

Unlike	with	a	CreateRecord	request,	mNumFields	cannot	be	0;	at	least
one	field	must	be	updated.

UpdateRecord	does	not	have	an	output	object,	because	the	backend
does	not	send	any	response	other	than	the	success	or	failure	indicated
by	the	result	parameter	passed	to	the	callback.	When	the	callback	is
called,	the	outputData	parameter	will	always	be	set	to	NULL.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeUpdateRecord

Sake	SDK	Enumerations
SAKEFieldType

Indicates	the	type	of	data	stored	in	a	field.

SAKEFileResult
Used	to	determine	the	status	of	a	file	uploaded
to	Sake.

SAKERequestResult
The	result	of	Sake	calls	used	to	modify	or	read
from	records	(returned	to	the
SAKERequestCallback).

SAKEStartRequestResult
The	status	result	of	the	most	recent	request.

SAKEStartupResult
value	returned	from	the	call	to	sakeStartup.

SAKEFieldType
Indicates	the	type	of	data	stored	in	a	field.

typedef	enum	
{

SAKEFieldType_BYTE,				
SAKEFieldType_SHORT,				
SAKEFieldType_INT,				
SAKEFieldType_FLOAT,				
SAKEFieldType_ASCII_STRING,				
SAKEFieldType_UNICODE_STRING,				
SAKEFieldType_BOOLEAN,				
SAKEFieldType_DATE_AND_TIME,				
SAKEFieldType_BINARY_DATA,				
SAKEFieldType_NUM_FIELD_TYPES				

}	SAKEFieldType;

Remarks

The	value	for	a	field	is	stored	in	a	SAKEValue	union.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKEField,	SAKEBinaryData

SAKEFileResult
Used	to	determine	the	status	of	a	file	uploaded	to	Sake.

typedef	enum	
{

SAKEFileResult_SUCCESS,				
SAKEFileResult_BAD_HTTP_METHOD,				
SAKEFileResult_BAD_FILE_COUNT,				
SAKEFileResult_MISSING_PARAMETER,				
SAKEFileResult_FILE_NOT_FOUND,				
SAKEFileResult_FILE_TOO_LARGE,				
SAKEFileResult_SERVER_ERROR,				
SAKEFileResult_UNKNOWN_ERROR				

}	SAKEFileResult;

Constants

SAKEFileResult_SUCCESS
Upload	succeeded.

SAKEFileResult_BAD_HTTP_METHOD
Incorrect	ghttp	call	used	to	upload	file.

SAKEFileResult_BAD_FILE_COUNT
Number	of	files	uploaded	is	incorrect.

SAKEFileResult_MISSING_PARAMETER
Missing	parameter	in	the	ghttp	upload	call.

SAKEFileResult_FILE_NOT_FOUND
No	file	was	found.

SAKEFileResult_FILE_TOO_LARGE
File	uploaded	larger	than	the	specified	size.

SAKEFileResult_SERVER_ERROR
Unknown	error	occurred	on	the	server	when	processing	this	request.

SAKEFileResult_UNKNOWN_ERROR
Error	is	unknown	-	used	if	none	of	the	above.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeGetFileResultFromHeaders

SAKERequestResult
The	result	of	Sake	calls	used	to	modify	or	read	from	records	(returned	to
the	SAKERequestCallback).

typedef	enum	
{

SAKERequestResult_SUCCESS,				
SAKERequestResult_SECRET_KEY_INVALID,				
SAKERequestResult_SERVICE_DISABLED,				
SAKERequestResult_CONNECTION_TIMEOUT,				
SAKERequestResult_CONNECTION_ERROR,				
SAKERequestResult_MALFORMED_RESPONSE,				
SAKERequestResult_OUT_OF_MEMORY,				
SAKERequestResult_DATABASE_UNAVAILABLE,				
SAKERequestResult_LOGIN_TICKET_INVALID,				
SAKERequestResult_LOGIN_TICKET_EXPIRED,				
SAKERequestResult_TABLE_NOT_FOUND,				
SAKERequestResult_RECORD_NOT_FOUND,				
SAKERequestResult_FIELD_NOT_FOUND,				
SAKERequestResult_FIELD_TYPE_INVALID,				
SAKERequestResult_NO_PERMISSION,				
SAKERequestResult_RECORD_LIMIT_REACHED,				
SAKERequestResult_ALREADY_RATED,				
SAKERequestResult_NOT_RATEABLE,				
SAKERequestResult_NOT_OWNED,				
SAKERequestResult_FILTER_INVALID,				
SAKERequestResult_SORT_INVALID,				
SAKERequestResult_UNKNOWN_ERROR				

}	SAKERequestResult;

Section	Reference:	Gamespy	Sake	SDK

See	Also:	SAKERequestCallback

SAKEStartRequestResult
The	status	result	of	the	most	recent	request.

typedef	enum	
{

SAKEStartRequestResult_SUCCESS,				
SAKEStartRequestResult_NOT_AUTHENTICATED,				
SAKEStartRequestResult_OUT_OF_MEMORY,				
SAKEStartRequestResult_BAD_INPUT,				
SAKEStartRequestResult_BAD_TABLEID,				
SAKEStartRequestResult_BAD_FIELDS,				
SAKEStartRequestResult_BAD_NUM_FIELDS,				
SAKEStartRequestResult_BAD_FIELD_NAME,				
SAKEStartRequestResult_BAD_FIELD_TYPE,				
SAKEStartRequestResult_BAD_FIELD_VALUE,				
SAKEStartRequestResult_BAD_OFFSET,				
SAKEStartRequestResult_BAD_MAX,				
SAKEStartRequestResult_BAD_RECORDIDS,				
SAKEStartRequestResult_BAD_NUM_RECORDIDS,				
SAKEStartRequestResult_UNKNOWN_ERROR				

}	SAKEStartRequestResult;

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeGetStartRequestResult

SAKEStartupResult
value	returned	from	the	call	to	sakeStartup.

typedef	enum	
{

SAKEStartupResult_SUCCESS,				
SAKEStartupResult_NOT_AVAILABLE,				
SAKEStartupResult_CORE_SHUTDOWN,				
SAKEStartupResult_OUT_OF_MEMORY				

}	SAKEStartupResult;

Constants

SAKEStartupResult_SUCCESS
Startup	succeeded.

SAKEStartupResult_NOT_AVAILABLE
The	Sake	backend	is	unavailable.

SAKEStartupResult_CORE_SHUTDOWN
Error	in	the	gsCore.

SAKEStartupResult_OUT_OF_MEMORY
Not	enough	memory	to	initialize	Sake.

Section	Reference:	Gamespy	Sake	SDK

See	Also:	sakeStartup

Server	Browsing	SDK
Overview

The	GameSpy	Server	Browsing	SDK	is	a	portable	LAN	and	Internet
server	browser	engine.	It	allows	developers	to	quickly	and	easily	add	a
list-based	matchmaking	interface	to	the	game,	with	powerful	features
such	as	server-side	filtering,	sorting,	country-filtering,	and	ping	(latency)
measurement.

The	concept	of	Server	Browsing	was	popularized	by	our	original
GameSpy3D	product,	and	is	used	as	a	matchmaking	paradigm	by
GameSpy	Arcade	and	many	other	online	services	today.	The	system
functions	as	follows:

1.	 A	game	server	(or	person	hosting	a	game)	starts,	and	reports	its
presence	to	our	Master	Server.	This	server	reporting	is	done	using
the	Query	&	Reporting	SDK.

2.	 Our	Master	Server	aggregates	a	list	of	all	available	game	servers,
as	well	as	all	of	the	data	known	about	the	servers.

3.	 Game	Clients	query	the	Master	Server	for	a	list	of	available	game
servers.	This	query	can	contain	a	filter	to	narrow	down	the	list	of
servers	returned.

4.	 Once	the	list	is	obtained,	the	Game	Client	queries	each	server	to
obtain	the	latest	information	about	the	game	(the	name	of	the	game,
map	being	played,	number	of	players,	or	any	other	relevant
information).	It	also	measures	latency	to	the	server	at	this	time,
since	latency	can	be	an	important	factor	in	the	quality	of	the	game
play	experience.

5.	 This	collection	of	servers	is	then	displayed	to	the	user,	and	they	are
able	to	browse	the	list	and	select	a	server	to	play	on,	at	which	point
they	connect	directly	to	the	server.

The	Server	Browsing	SDK	manages	the	entire	client-side	portion	of	this
process	-	server	list	retrieval,	server	querying,	etc.	The	SDK	is	a	data
engine	only.	You	will	be	responsible	for	creating	all	the	GUI	elements	that
are	required	for	a	server	browser	in	your	game.	These	typically	include

buttons,	long	multi-column	lists,	scrollbars,	and	edit	controls.

Server	Browsing	is	typically	used	for	matchmaking	of	"dedicated	server"
games.	Dedicated	server	games	are	those	in	which	a	stand-alone	server
is	run,	and	outside	clients	connect	to	the	server.	The	server	continues
running	even	when	no	players	are	connected	to	it,	and	typically	does	not
have	a	local	client	itself.	For	games	that	require	a	group	of	people	to	all
join	together	at	once,	and	that	do	not	have	persistent	servers	running	(i.e.
they	use	Peer	to	Peer	networking,	or	require	one	of	the	players	to	"host"
the	game)	the	GameSpy	Matchmaking	Toolkit	-	which	includes	the	Peer
SDK	-	may	be	a	better	choice.

The	Peer	SDK	extends	the	features	of	Server	Browsing	to	include	a
dynamic	list	of	available	games,	integrated	chat	lobbies	and	staging
rooms,	and	more.	The	Peer	SDK	can	be	used	for	dedicated-server
games	as	well,	but	using	the	Server	Browsing	SDK	is	quicker	and	easier
to	implement	if	you	are	simply	looking	to	provide	a	list-based
matchmaking	experience.

Two	examples	are	included	for	your	review.

sbctest	is	a	simple	C	based	server	list	program	that	demonstrates	how	to
easily	receive	and	display	a	server	list.

sbmfcsample	is	a	C++	/	MFC	based	server	list	with	a	full	GUI.	Your	in-
game	server	browser	will	most	likely	looking	something	like	this	(with	the
MFC	code	replaced	by	your	custom	GUI	code).

This	document	provides	a	simple,	pseudo-code	based	set	of	instructions
for	implementing	an	in-game	server	browser	using	the	Server	Browser.
Your	code	will	vary	based	on	your	specific	GUI	interfaces.

See	the	reference	documentation	for	detailed	descriptions	of	each
function.

File
sb_serverbrowsing.h

sb_serverbrowsing.c

sb_serverlist.c

sb_queryengine.c

sb_server.c

sb_internal.h

sb_crypt.c,h

../qr2/qr2regkeys.c,h

File	Manifest

The	following	files	should	be	included	with	this	package.	If	any	of	the	files
are	missing,	please	contact	devsupport@gamespy.com.

Description
Main	header	file	for	the	Server	Browsing	SDK	-

includes	all	public	functions

Code	for	primary	server	browsing	functionality

Server	list	/	master	server	communication	code

Server	query	engine	code

Functions	for	manipulating	individual	server
objects

Header	files	for	private	functions

Encryption	code	used	for	master	server
communication

Defines	for	pre-defined	key	names

In	addition,	to	build	the	SDK	and	samples,	you	will	need	to	separately
download	the	GameSpy	"common	code"	package,	which	includes	the
shared	SDK	code	used	by	this	SDK	and	others.

When	extracting	this	package,	make	sure	you	preserve	the	directory	tree
in	order	to	assure	that	the	code	builds	correctly.

mailto:devsupport@gamespy.com

Implementation

Step	0:	Implement	the	Query	and	Reporting	2	SDK

If	you	haven't	already	done	so,	you	need	to	implement	the	Query	and
Reporting	2	SDK	in	your	game.	The	Query	and	Reporting	2	SDK	allows
your	game	server	to	report	to	our	master	server	and	be	listed	for	clients
to	query.	Although	you	can	test	the	Server	Browsing	SDK	by	querying
other	games,	typically	you'll	want	to	do	most	of	your	testing	with	your	own
game.

Once	you	have	implemented	and	tested	the	Query	and	Reporting	2	SDK,
you	can	continue	with	the	server	list	implementation.

Step	1:	Create	A	Server	Browser

Your	first	step	should	be	to	create	a	server	browser	object	(not	a	true
C++	object,	just	in	the	sense	of	an	abstract	type).

You	can	create	the	server	browser	when	your	game	first	starts,	or	right
before	you	update	the	list.	You	can	update	a	single	server	browser	as
many	times	as	you	want,	so	you	probably	won't	need	to	create	it	more
than	once	(although	you	can).

To	create	a	server	browser,	call:

ServerBrowser	ServerBrowserNew(const	gsi_char	*queryForGamename,	

	 const	gsi_char	*queryFromGamename,	const	gsi_char	*queryFromKey,	

	 int	queryFromVersion,	int	maxConcUpdates,	int	queryVersion,	

	 SBBool	lanBrowse,	ServerBrowserCallback	callback,	void	*instance);

queryForGamename

The	name	of	the	game	you	want	to	browse	for.	gamenames	are
issued	by	our	developer	relations	team.	If	you	do	not	have	one
already,	contact	devsupport@gamespy.com	to	request	a
gamename	for	your	game.	For	testing	purposes,	you	may	wish	to
query	for	a	gamename	other	than	your	game	-	for	example,	to	test
how	well	your	list	works	with	several	thousand	servers	listed.

mailto:devsupport@gamespy.com

Contact	devsupport@gamespy.com	for	a	list	of	alternative
gamenames	you	can	use	for	testing.

queryFromGamename

Your	gamename	that	you	were	issued	with	your	secret	key.	If	you
don't	have	a	gamename	or	secret	key,	please	contact
devsupport@gamespy.com.	This	will	typically	be	the	same	as
queryForGamename,	unless	you	are	querying	for	a	different	game
list	during	testing.

queryFromKey

The	secret	key	you	were	issued	that	corresponds	to	your
queryFromGamename

queryFromVersion

A	version	identifier	for	your	game	-	this	is	optional	and	should	be
set	to	0	unless	you	are	told	otherwise	by	developer	support

maxConcUpdates

The	maximum	number	of	concurrent	updates	(queries)	that	will	be
made.	10	is	appropriate	for	modem	users,	broadband	users	can
generally	accommodate	20-30.	You	can	either	present	this	as	an
option	to	your	users,	or	leave	it	at	10	for	everyone.	Higher	numbers
lead	to	faster	refreshes	of	the	server	list,	but	if	the	refresh	speed
exceeds	the	user's	capacity,	ping	times	will	be	measured
inaccurately	and	some	servers	will	time	out	and	not	show	up	on	the
list.

queryVersion

Determines	the	protocol	used	for	server	queries.	If	your	game
implements	the	Query	and	Reporting	2	SDK	(as	most	new	games
will),	simply	pass	QVERSION_QR2.	If	you	are	updating	a	legacy
game	to	support	the	Server	Browsing	SDK,	but	the	game	still	uses
the	original	Query	and	Reporting	SDK,	then	you	should	pass
QVERSION_GOA.

lanBrowse

The	switch	to	turn	on	only	LAN	browsing	-	use	SBTrue	if	you	want
only	LAN	browsing.

callback

The	server	browser	callback	function	described	in	Step	3.	For	now

mailto:devsupport@gamespy.com
mailto:devsupport@gamespy.com

you	can	just	create	a	stub	function	with	a	prototype	like:

void	SBCallback(ServerBrowser	sb,	SBCallbackReason	reason,	SBServer	server,	

void	*instance)	

{	}	//	todo

instance

Any	game-specific	data	you	want	passed	to	the	callback	function.
For	example,	you	can	pass	a	structure	pointer	or	object	pointer	for
use	within	the	CallBack.	If	you	can	access	any	needed	data	within
the	CallBack	already,	then	you	can	just	pass	NULL	for	instance.

This	step	should	look	something	like:

int	CMyGame::OnMultiplayerButtonClicked(...)

{

m_ServerBrowser	=	ServerBrowserNew("mygame",	"mygame",	"123456",	0,	10,	QVERSION_QR2,	SBFalse,	SBCallBack,	this);

}

Step	2:	Update	The	Server	Browser

When	you	are	ready	to	populate	the	Server	Browser	with	data,	you	need
to	call	one	of	the	update	functions.	There	are	two	update	functions
available:

ServerBrowserUpdate

Obtains	a	list	of	servers	from	the	master	server,	and	then	queries
the	individual	servers	for	information.

ServerListLANUpdate

Scans	the	local	LAN	for	games	and	updates	the	list	with	them.

Note	that	if	you've	already	updated	the	server	list	once,	you	need	to	call
ServerBrowserClear	to	clear	the	list	of	servers	(otherwise	you	will
end	up	with	duplicates).	You	can	call	ServerBrowserClear	even	if	the
list	hasn't	been	updated	yet	(it	won't	break	anything).

When	calling	either	of	the	update	functions,	you	need	to	decide	whether
you	want	to	do	updates	Synchronously	or	Asynchronously.

With	a	Synchronous	update,	the	Update	function	does	not	return	until	the
entire	list	is	finished	updating.	Your	callback	function	will	still	be	called
during	the	update	(so	you	can	add	servers	to	your	list	or	repaint	the
window)	but	there	is	no	guarantee	as	to	how	often	the	callback	will	be
called.	If	you	choose	to	use	Synchronous	updates,	it	is	important	that	you
display	status	messages	to	the	user	as	the	list	state	changes,	otherwise
they	may	think	the	game	has	locked	up.

With	Asynchronous	updates,	the	Update	function	returns	immediately,
but	you	are	responsible	for	calling	the	ServerBrowserThink	function
every	10-100	ms	while	the	list	is	being	updated.	If	you	do	not	call	the
function,	the	update	will	not	occur.	If	you	do	not	call	it	often	enough,	the
ping	times	for	servers	will	be	inaccurate.

The	sbctest	sample	uses	Synchronous	updates,	while	the	Sample1
sample	uses	Asynchronous	updates	(and	a	Windows	timer	to	trigger	the
ServerBrowserThink	function).

You	may	find	it	easier	to	implement	the	browser	with	Synchronous
updates	at	first,	then	switch	to	Asynchronous	updates	once	it	has	been
fully	tested.

The	following	additional	parameters	are	used	with	the
ServerBrowserUpdate	function:

disconnectOnComplete

Determines	whether	the	Server	Browser	disconnects	from	the
master	server	after	obtaining	the	server	list,	or	stays	connected.
The	only	reason	to	stay	connected	is	if	you	expect	to	be	querying
the	master	server	for	full	details	on	individual	servers	(using
ServerBrowserAuxUpdateServer)	in	a	game	that	supports
NAT	Negotiation	(and	thus	may	have	servers	hosted	behind
firewalls).	In	most	cases	you	should	pass	SBTrue	here.	Even	if
you	need	to	contact	the	master	server	to	obtain	information	with
ServerBrowserAuxUpdateServer,	that	function	will
automatically	reconnect	as-needed.

basicFields

An	array	of	information	keys	that	you	want	to	retrieve	from	each
server	in	the	list.

unsigned	char	basicFields[]	=	{HOSTNAME_KEY,	GAMETYPE_KEY,		MAPNAME_KEY,	NUMPLAYERS_KEY,	MAXPLAYERS_KEY};

int	numFields	=	sizeof(basicFields)	/	sizeof(basicFields[0]);

This	means	that	the	hostname,	gametype,	mapname,	numplayers,
and	maxplayers	keys	will	be	retrieved	for	each	server	in	your	list.
The	key	indexes	are	the	same	as	those	used	in	the	QR2	SDK.	If
you've	defined	custom	key	indexes	for	custom	keys	in	your	game,
you	can	include	those	as	well.	Note	that	you	MUST	register	all
custom	keys	with	qr2_register_key	before	using	their	indexes
in	this	function.	Once	you	have	the	basic	keys	for	servers,	you	can
go	back	and	query	for	the	"full"	list	of	keys	your	game	reports	-
including	player	and	team	keys.	Details	on	re-querying	servers	for
additional	information	is	contained	in	Step	5.

Note	that	when	using	the	LAN	Update	function,	you	do	not	need	to
specify	a	list	of	keys	-	LAN	updates	automatically	retrieve	all	keys
and	values	from	the	server.

numBasicFields

The	number	of	basic	fields	passed	in	your	array.
serverFilter

A	filter	that	will	be	applied	on	the	master	server,	prior	to	sending
the	list	of	servers	to	the	client.	When	applied	correctly,	filtering	can
dramatically	increase	the	speed	of	server	list	updates	by	reducing
the	number	of	servers	to	query,	and	can	make	it	easier	for	players
to	find	the	types	of	game	they	are	looking	for.

All	of	your	server	keys	are	available	for	filtering,	as	well	as	two
special	keys	that	are	added	by	the	master	server:
country

the	two-letter	ISO	country	code	where	a	server	is	located	-
as-determined	by	the	IP	address	of	the	server

region

a	numeric	bitmask	that	identifies	the	region	a	server	is

located	in	(based	on	the	country).	See	the	region	list
appendix	at	the	end	of	this	document	for	all	available
regions.

Note	that	filtering	by	"ping"	is	not	possible,	since	ping	is	determined	by
the	client	-	not	the	master	server.

Filter	strings	are	written	using	SQL-like	syntax.	Most	standard	SQL
operators	are	available.	Wildcard	string	comparisions	can	be	made	using
the	"like"	operator,	with	%	as	the	wildcard	character.

Here	are	some	examples	of	useful	filter	strings:

gametype	=	'ctf'	Only	returns	games	whose	gametype	key	matches
'ctf'
numplayers	>	0	and	numplayers	!=	maxplayers
Only	returns	servers	who	have	players	on	them,	but	are	not	full
password	=	0
Only	returns	servers	that	are	not	passworded	(assuming	you	use	a
"password"	key	to	indicate	password	protected	servers)
hostname	like	'%[gsf]%'
Only	returns	servers	that	have	the	string	'[gsf]'	somewhere	in	their
name.	Could	be	used,	for	example,	to	allow	a	player	to	find	just	the
servers	their	clan	runs.
(country	=	'DE'	or	country	=	'FR')	and	maxplayers	>=	8
Only	returns	servers	located	in	Germany	or	France	that	support	8	or
more	players.

Pass	NULL	or	an	empty	string	if	no	filtering	is	required.

For	LAN	Updates	you	will	also	need	to	specify	the	ports	to	check	for
servers	on.	The	Server	Browsing	SDK	will	scan	a	range	of	ports	by
sending	a	query	packet	to	the	broadcast	address	for	each	one.
startSearchport	is	usually	your	standard	query	port	(e.g.	the	UDP
port	number	you	pass	to	qr2_init	in	the	Query	and	Reporting	SDK).

endSearchPort	is	the	highest	port	to	scan.	When	multiple	servers	are
run	on	the	same	machine,	the	QR2	SDK	allocates	incrementally	higher

ports	from	the	starting	port	for	each	server.	In	general,	it	is	not
recommended	to	use	an	end	port	more	than	100	higher	than	the	start
port.	A	packet	must	be	sent	out	to	all	ports	between	start	and	end,	and
higher	numbers	can	lead	to	broadcast	storms.

This	step	should	look	like:

int	CMyGame::OnRefreshInternetButtonClicked(...)

{

	 ServerBrowserUpdate(m_ServerBrowser,	SBFalse,	SBTrue,	basicFields,numBasicFields,	NULL);

	 ...

}

int	CMyGame::OnRefreshLANButtonClicked(...)

{

	 ServerBrowserLANUpdate(m_ServerBrowser,SBFalse,START_PORT,START_PORT+100);

	 ...

}

Step	3:	Create	The	List	Callback

As	the	Server	Browser	updates	the	server	list,	it	calls	back	to	the	function
you	passed	in	ServerBrowserNew	to	give	status	and	progress	updates.

The	sb	parameter	is	the	ServerBrowser	object	the	callback	is	referring
to.

The	reason	parameter	is	one	of	the	following	values:

sbc_serveradded

A	server	was	added	to	the	list.	Note	that	you	may	just	have	an	IP
and	port	at	this	point	-	all	servers	are	added	before	they	are
queried.	You	can	choose	to	add	the	server	to	your	UI	at	this	point,
or	wait	until	you	get	a	serverupdated	callback	for	the	server	and
have	more	information	to	display	about	it.

sbc_serverupdated

The	information	for	a	server	has	been	updated.	Either	basic	or	full
information	is	now	available	about	this	server.

sbc_serverupdatefailed

An	attempt	to	retrieve	information	about	this	server,	either	directly
or	from	the	master	server,	failed.	The	server	is	down	or
unreachable.

sbc_serverdeleted

A	server	was	removed	from	the	list.	This	only	occurs	when	using
push	updates,	which	are	not	generally	used	in	the	Server	Browsing
SDK	(only	the	Peer	SDK).

sbc_updatecomplete

All	queued	updates	have	been	completed	and	the	query	engine	is
now	idle.

sbc_queryerror

The	master	returned	an	error	string	for	the	provided	query.
Typically	due	to	a	filter	string	syntax	error.	You	can	obtain	the	text
of	the	error	message	from	ServerBrowserListQueryError

The	server	parameter	indicates	the	server	that	is	being	referred	to,	if
the	message	is	server-specific.

instance	is	the	instance	pointer	you	passed	in	when	initializing	the
Server	Browser	object.

This	step	should	look	something	like:

void	SBCallback(ServerBrowser	sb,	SBCallbackReason	reason,	SBServer	server,	void	*instance)

{

	 CMyGame	*g	=	(CMyGame	*)instance;

	 switch	(reason)

	 {

	 case	sbc_serveradded	:

	 						g->ServerView->AddServerToList(server);

	 						break;

	 case	sbc_serverupdated	:	

	 						g->ServerView->UpdateServerInList(server);

	 break;

	 case	sbc_updatecomplete:

	 						g->ServerView->SetStatus("Update	Complete");

	 						break;

	 case	sbc_queryerror:

	 g->ServerView->SetStatus("Query	Error	Occurred:",	

	 ServerBrowserListQueryError(sb));

	 						break;

	 }

}

Step	4:	Extracting	and	Displaying	Server	Information

Somewhere	along	the	line	(either	in	your	Callback	or	a	helper	function)
you	will	need	to	actually	get	the	data	out	of	the	SBServer	object	to
display	it	on	your	list.

The	Server	Browsing	SDK	provides	10	functions	to	help	you	get	the	data
you	need	from	the	SBServer	object:

const	char	*SBServerGetStringValue(SBServer	server,	char	*keyname,	char	*def);

int	SBServerGetIntValue(SBServer	server,	char	*key,	int	idefault);

double	SBServerGetFloatValue(SBServer	server,	char	*key,	double	fdefault);

SBBool	SBServerGetBoolValue(SBServer	server,	char	*key,	SBBool	bdefault);

The	first	four	functions	are	used	to	access	the	values	for	server	key
information.	Simply	use	the	key	name	you	registered	to	access	the	value
for	that	key	on	a	server.	Note	that	only	the	basic	keys	you	requested	in
ServerBrowserUpdate	are	available	after	the	initial	update.	See	the
next	step	for	information	on	getting	the	rest	of	the	keys\values	from	the
server.

const	char	*SBServerGetPlayerStringValue(SBServer	server,	int	playernum,	char	*key,	char	*sdefault);

int	SBServerGetPlayerIntValue(SBServer	server,	int	playernum,	char	*key,	int	idefault);

double	SBServerGetPlayerFloatValue(SBServer	server,	int	playernum,	char	*key,	double	fdefault);

The	second	set	of	functions	returns	a	specific	player	key.	You	can	get	the
same	result	by	asking	for	a	server	key	in	the	form	keyname_N	where	N	is
the	player	number	you	are	interested	in.	The	SBServerGetPlayer
functions	just	provide	a	shortcut	to	this.	To	get	the	ping	for	player	0,	you
would	ask	for	SBServerGetPlayerIntValue(server,	0,

"ping",	0).

const	char	*SBServerGetTeamStringValue(SBServer	server,	int	teamnum,	char	*key,	char	*sdefault);

int	SBServerGetTeamIntValue(SBServer	server,	int	teamnum,	char	*key,	int	idefault);

double	SBServerGetTeamFloatValue(SBServer	server,	int	teamnum,	char	*key,	double	fdefault);

The	final	set	of	functions	is	similar	to	the	player	key	lookups,	except	for
team	keys.	Team	keys	are	reported	in	the	form	keyname_tN	where	N	is
the	team	index.	To	get	the	score	for	team	0	(score_t0,	you	would	ask
for:	SBServerGetTeamIntValue(server,	0,	"score",	0).

The	sdefault,	idefault	and	fdefault	parameters	will	be	used	if	the
server	doesn't	include	the	specific	key	you	requested.

Team	and	player	keys	are	only	available	for	servers	with	a	full	set	of
keys.	You	can	determine	whether	a	particular	server	in	your	list	has	basic
or	full	keys	with	the	SBServerHasBasicKeys	/
SBServerHasFullKeys	functions.

This	step	should	look	something	like:

//insert	a	server	onto	the	list

CServerView::Insert(GServer	server)

{

	 AddItem(SBServerGetStringValue(server,	"hostname","(NONE)"),

	 SBServerGetPing(server),

	 SBServerGetIntValue(server,"numplayers",0),	

	 SBServerGetIntValue(server,"maxplayers",0),

	 SBServerGetStringValue(server,"mapname","(NO	MAP)")	

	 SBServerGetStringValue(server,"gametype",""));

}

Step	5:	Obtaining	Additional	Server	Information

After	your	initial	server	browser	update,	the	servers	will	only	have	the
"basic"	keys	available	for	them.	Most	in-game	server	browsers	are	built
so	that	when	you	click	on	a	server,	you	can	get	additional	information
about	it	-	such	as	the	full	rules	for	the	game,	the	list	players	currently	in

the	game,	and	the	team	information.	To	obtain	this	additional	information
when	someone	selects	a	server,	you	will	need	to	perform	what	is	known
as	an	"Auxiliary"	update	of	the	server.	To	accomplish	this,	call:

SBError	ServerBrowserAuxUpdateServer(ServerBrowser	sb,	SBServer	server,	SBBool	async,	SBBool	fullUpdate);

server

The	server	you	want	to	get	updated	information	for.
async

Determines	whether	the	function	returns	immediately,	or	waits	for
the	update	to	complete.	Note	that	if	you	perform	the	AuxUpdate
asynchronously,	you	must	call	the	ServerBrowserThink
function	to	perform	processing.

fullUpdate

Determines	whether	basic	or	full	keys	are	retrieved	from	the	server.
Generally	you	will	want	to	pass	SBTrue	to	retrieve	all	the	available
keys\values	from	the	server.

You	should	check	to	see	if	the	server	already	has	full	keys	available	with
SBServerHasFullKeys	to	avoid	updating	the	server	if	not	needed.
Multiple	aux	updates	can	be	queued	at	a	time	if	you	want	to	get	full	keys
for	a	range	of	servers.

If	the	server	being	updated	is	behind	a	NAT,	and	does	not	support	direct-
UDP	queries	(only	for	games	that	use	the	NAT	Negotiation	SDK),	then
the	full	server	information	is	obtained	from	the	master	server,	instead	of
the	game	server	directly.	This	requires	a	connection	to	the	master	server.
If	you	set	the	disconnectOnComplete	option	when	updating,	a
connection	will	be	re-established	to	the	master	to	obtain	the	information.

You	can	also	use	the	ServerBrowserAuxUpdateIP	function	to	"add"	a
server	to	the	list	that	was	not	already	present.	Instead	of	providing	an
SBServer	object,	you	will	provide	the	IP	and	query	port	of	the	server.
You	can	use	this	to	allow	players	to	manually	add	servers	to	the	list,	or	to
store	a	list	of	favorites	locally	and	add	them	to	the	list	directly.

Step	6:	Sorting	and	Other	Features

You	will	probably	want	to	give	players	the	ability	to	sort	the	server	list	on
a	specific	column	(for	example,	the	server	name	to	find	a	specific	server,
by	ping	to	find	the	best	server,	or	by	players	to	find	the	most	crowded).	If
your	list	control	supports	sorting,	you	can	do	it	that	way,	or,	you	can
resort	the	actual	ServerBrowser	object	and	repopulate	your	display	with
the	sorted	data.	Unlike	the	previous	CEngine	SDK,	list	storage	is
decoupled	from	updating,	so	you	can	use	the	sorting	functions	to	resort
the	list	while	it	is	being	updated	(although	resorting	after	every	server
update	arrives	may	lead	to	poor	performance	on	large	lists).

To	resort	the	internal	list,	use	the	ServerBrowserSort	function:

void	ServerBrowserSort(ServerBrowser	sb,	SBBool	ascending,	char	*sortkey,SBCompareMode	comparemode);	

You	should	pass	in	whether	you	want	the	list	to	be	sorted	in	ascending	or
descending	order,	what	key	it	should	be	sorted	on	(e.g.	"ping"	or
"hostname"	or	"numplayers")	and	the	value	type	for	that	key	(e.g.
sbcm_int	for	integer	comparison,	sbcm_stricase	for	case-insensitive
string	comparison).

To	sort	the	list	ascending	by	ping	you	would	call:

ServerBrowserSort(sb,	SBTrue,	"ping",	sbcm_int);

Once	you	have	resorted	the	list,	you	will	need	to	clear	your	display	and
repopulate	it	with	the	sorted	list.	This	is	typically	done	with	a	FOR	loop
from	0	to	ServerBrowserCount(...)-1	in	which	you	call
ServerBrowserGetServer	to	get	each	server	in	the	list.

In	order	to	display	the	progress	of	the	server	list	update,	you	can	use	the
ServerBrowserPendingQueryCount	to	determine	the	number	of
servers	waiting	to	be	queried.	By	comparing	this	to	the	number	of	servers
on	the	list,	you	can	determine	a	completion	percentage.

The	ServerBrowserHalt	function	can	be	used	to	stop	an	update	in
progress,	if	the	user	wants	to	abort	the	update.

The	ServerBrowserState	can	be	used	to	determine	the	current	state

of	the	Server	Browser.	Descriptions	of	the	possible	state	values	can	be
find	in	the	main	header	file.

Step	7:	Free	the	Server	Browser	When	Done

When	you	are	completely	done	with	the	server	browser,	call	the
ServerBrowserFree	function	to	free	the	memory	allocated	by	the	list.
The	Server	Browser	object	is	invalid	after	this	call,	so	do	not	use	it	again
without	calling	ServerBrowserNew.

UNICODE	Support

The	GameSpy	SDKs	support	an	optional	UNICODE	interface	for
widestring	applications.	To	use	this	interface,	first	define	the	symbol
GSI_UNICODE.	Then,	use	widestrings	wherever	ANSI	strings	were
previously	called	for.	When	in	doubt,	please	refer	to	the	header	files	for
specific	function	declarations.

Although	the	GameSpy	SDK	interfaces	support	UNICODE	parameters,
some	items	may	be	stripped	of	their	extra	UNICODE	information.	These
items	include:	nickname,	email	address,	and	URL	strings.	You	may	pass
in	widestring	values,	but	they	will	first	be	converted	to	their	ANSI
counterparts	before	transmission.

Appendix:	Changes	From	The	CEngine	SDK

The	Server	Browsing	SDK	replaces	the	CEngine	SDK,	and	provides	a
number	of	changes	an	enhancements.	Migration	from	the	CEngine	SDK
is	fairly	straight-forward	and	can	provide	a	number	of	benefits.

The	changes	and	improvements	in	the	SDK	are	listed	below	to	help	you
with	migration:

Defaults	to	a	multi-step	update	process,	where	only	basic	keys	are
obtained	from	servers	initially,	and	full	keys	are	obtained	on-request.
This	results	in	a	significant	bandwidth	reduction	for	both	clients	and
servers	(on	the	order	of	5-10X)	and	leads	to	faster	refreshes	with
less	overhead.
Supports	the	new	QR2	querying	protocol,	which	allows	for	querying
of	individual	keys	and	optimized	encoding	of	key	data	(key	names
are	no	longer	sent	if	not	required).
Allows	server	information	to	be	obtained	from	the	master	server	for
games	hosted	behind	a	NAT/Firewall.
Supports	the	new	NAT	Negotiation	SDK	for	hosting	and	connecting-
to	games	behind	a	NAT	or	Firewall
Allows	for	filtering	by	any	server	key,	instead	of	the	fixed	list	of	keys
available	for	filtering	in	the	CEngine	SDK
Allows	for	filtering	of	servers	by	country	and	region,	without	requiring
server	administrators	to	report	that	information.
Allows	for	sorting	of	the	server	list	while	updates	are	still	in	progress.
Faster	socket	code	that	uses	a	single	UDP	socket	for	all	queries,
instead	of	requiring	1	socket	for	each	simultaneous	query.
Server	lists	from	the	master	server	use	a	new	format	that	is
compressed	even	more	than	before.

Appendix:	Region	Codes	and	Usage

The	updated	Master	Server	backend	that	supports	the	Server	Browsing
SDK	has	the	ability	to	identify	the	country	a	server	is	located	in	based	on
its	IP	address,	and	based	on	that	country,	sort	it	into	a	specific	region.
Master	regions	are	make	up	of	smaller	regions.	You	can	use	filtering	to
restrict	the	list	of	servers	returned	to	a	specific	country	or	region,	thus
giving	players	a	list	that	better	represents	their	play-able	servers.

Regions	are	identified	by	a	region	ID	number,	however	a	particular	server
can	be	listed	in	multiple	regions	since	regions	are	"nested".	Because	of
this,	the	region	number	for	a	server	is	actually	the	sum	of	all	the	regions
the	server	is	in.	To	filter	on	a	specific	region,	you	should	use	the	bitwise-
AND	operator	to	identify	servers	that	are	listed	in	that	region.

For	example,	to	identify	servers	in	North	America,	you	would	use	the
filter:	(region	&	2)	=	2	,	since	2	is	the	region	code	for	North	America.
Normal	bitwise	math	can	be	used	to	check	for	multiple	regions.	For
example,	to	check	for	North	America	or	Caribbean,	you	can	add	them
together:	(region	&	6)	!=	0

regionid				regionname					

-----------	----------------

1											Americas

2											North	America

4											Caribbean

8											Central	America

16										South	America

32										Africa

64										Central	Africa

128									East	Africa

256									Northern	Africa

512									Southern	Africa

1024								West	Africa

2048								Asia

4096								East	Asia

8192								Pacific

16384							South	Asia

32768							South-East	Asia

65536							Europe

131072						Baltic	States

262144						Commonwealth	of	Independent	States

524288						Eastern	Europe

1048576					Middle	East

2097152					South-East	Europe

4194304					Western	Europe

ccode	country																								regionname																																																																																																																																																																																																																																																						

-----	------------------------------	------------

BI				Burundi																								Central	Africa

CM				Cameroon																							Central	Africa

CF				Central	African	Republic							Central	Africa

TD				Chad																											Central	Africa

CG				Congo																										Central	Africa

GQ				Equatorial	Guinea														Central	Africa

RW				Rwanda																									Central	Africa

DJ				Djibouti																							East	Africa

ER				Eritrea																								East	Africa

ET				Ethiopia																							East	Africa

KE				Kenya																										East	Africa

SC				Seychelles																					East	Africa

SO				Somalia																								East	Africa

SH				St.	Helena																					East	Africa

SD				Sudan																										East	Africa

TZ				Tanzania																							East	Africa

UG				Uganda																									East	Africa

DZ				Algeria																								Northern	Africa

EG				Egypt																										Northern	Africa

LY				Libya																										Northern	Africa

MA				Morocco																								Northern	Africa

TN				Tunisia																								Northern	Africa

AO				Angola																									Southern	Africa

BW				Botswana																							Southern	Africa

BV				Bouvet	Island																		Southern	Africa

KM				Comoros																								Southern	Africa

HM				Heard	and	McDonald	Islands					Southern	Africa

LS				Lesotho																								Southern	Africa

MG				Madagascar																					Southern	Africa

MW				Malawi																									Southern	Africa

MU				Mauritius																						Southern	Africa

YT				Mayotte																								Southern	Africa

MZ				Mozambique																					Southern	Africa

NA				Namibia																								Southern	Africa

RE				Reunion																								Southern	Africa

ZA				South	Africa																			Southern	Africa

SZ				Swaziland																						Southern	Africa

ZM				Zambia																									Southern	Africa

ZW				Zimbabwe																							Southern	Africa

BJ				Benin																										West	Africa

BF				Burkina	Faso																			West	Africa

CV				Cape	Verde																					West	Africa

CI				Cote	D`ivoire																		West	Africa

GA				Gabon																										West	Africa

GM				Gambia																									West	Africa

GH				Ghana																										West	Africa

GN				Guinea																									West	Africa

GW				Guinea-Bissau																		West	Africa

LR				Liberia																								West	Africa

ML				Mali																											West	Africa

MR				Mauritania																					West	Africa

NE				Niger																										West	Africa

NG				Nigeria																								West	Africa

ST				Sao	Tome	and	Principe										West	Africa

SN				Senegal																								West	Africa

SL				Sierra	Leone																			West	Africa

TG				Togo																											West	Africa

AI				Anguilla																							Caribbean

AG				Antigua	and	Barbuda												Caribbean

AW				Aruba																										Caribbean

BS				Bahamas																								Caribbean

BB				Barbados																							Caribbean

BM				Bermuda																								Caribbean

KY				Cayman	Islands																	Caribbean

CU				Cuba																											Caribbean

DM				Dominica																							Caribbean

DO				Dominican	Republic													Caribbean

GD				Grenada																								Caribbean

GP				Guadeloupe																					Caribbean

HT				Haiti																										Caribbean

JM				Jamaica																								Caribbean

MQ				Martinique																					Caribbean

MS				Montserrat																					Caribbean

AN				Netherlands	Antilles											Caribbean

PR				Puerto	Rico																				Caribbean

VC				Saint	Vincent	and	The	Grenadin	Caribbean

KN				St	Kitts-Nevis																	Caribbean

LC				St	Lucia																							Caribbean

TT				Trinidad	&	Tobago														Caribbean

TC				Turks	&	Caicos	Islands									Caribbean

VG				Virgin	Islands	(British)							Caribbean

VI				Virgin	Islands	(US)												Caribbean

BZ				Belize																									Central	America

CR				Costa	Rica																					Central	America

SV				El	Salvador																				Central	America

GT				Guatemala																						Central	America

HN				Honduras																							Central	America

MX				Mexico																									Central	America

NI				Nicaragua																						Central	America

PA				Panama																									Central	America

CA				Canada																									North	America

GL				Greenland																						North	America

PM				St.	Pierre	and	Miquelon								North	America

US				United	States																		North	America

UM				US	Minor	Outlying	Islands						North	America

AR				Argentina																						South	America

BO				Bolivia																								South	America

BR				Brazil																									South	America

CL				Chile																										South	America

CO				Colombia																							South	America

EC				Ecuador																								South	America

FK				Falkland	Islands	(Malvinas)				South	America

GF				French	Guiana																		South	America

GY				Guyana																									South	America

PY				Paraguay																							South	America

PE				Peru																											South	America

GS				S.	Georgia	and	S.	Sandwich	Isl	South	America

SR				Suriname																							South	America

UY				Uruguay																								South	America

VE				Venezuela																						South	America

CN				China																										East	Asia

HK				Hong	Kong																						East	Asia

JP				Japan																										East	Asia

MO				Macao																										East	Asia

MN				Mongolia																							East	Asia

KP				North	Korea																				East	Asia

KR				South	Korea																				East	Asia

TW				Taiwan																									East	Asia

AS				American	Samoa																	Pacific

AU				Australia																						Pacific

CK				Cook	Islands																			Pacific

FJ				Fiji																											Pacific

PF				French	Polynesia															Pacific

GU				Guam																											Pacific

KI				Kiribati																							Pacific

MH				Marshall	Islands															Pacific

FM				Micronesia																					Pacific

NR				Nauru																										Pacific

NC				New	Caledonia																		Pacific

NZ				New	Zealand																				Pacific

NU				Niue																											Pacific

NF				Norfolk	Island																	Pacific

MP				Northern	Mariana	Islands							Pacific

PG				Papua	New	Guinea															Pacific

PN				Pitcairn	Islands															Pacific

EH				Samoa																										Pacific

SB				Solomon	Islands																Pacific

TO				Tonga																										Pacific

TK				Tonga																										Pacific

TV				Tuvalu																									Pacific

VU				Vanuatu																								Pacific

WF				Wallis	and	Futuna	Islands						Pacific

AF				Afghanistan																				South	Asia

BD				Bangladesh																					South	Asia

BT				Bhutan																									South	Asia

IO				British	Indian	Ocean	Territory	South	Asia

IN				India																										South	Asia

MV				Maldives																							South	Asia

NP				Nepal																										South	Asia

PK				Pakistan																							South	Asia

LK				Sri	Lanka																						South	Asia

BN				Brunei	Darussalam														South-East	Asia

KH				Cambodia																							South-East	Asia

CX				Christmas	Island															South-East	Asia

CC				Cocos	(Keeling	Islands)								South-East	Asia

TP				East	Timor																					South-East	Asia

ID				Indonesia																						South-East	Asia

LA				Laos																											South-East	Asia

MY				Malaysia																							South-East	Asia

MM				Myanmar																								South-East	Asia

PW				Palau																										South-East	Asia

PH				Philippines																				South-East	Asia

SG				Singapore																						South-East	Asia

TH				Thailand																							South-East	Asia

VN				Vietnam																								South-East	Asia

EE				Estonia																								Baltic	States

LV				Latvia																									Baltic	States

LT				Lithuania																						Baltic	States

AM				Armenia																								CIS

AZ				Azerbaijan																					CIS

BY				Belarus																								CIS

GE				Georgia																								CIS

KZ				Kazakstan																						CIS

KG				Kyrgyzstan																					CIS

MD				Moldova																								CIS

RU				Russian	Federation													CIS

TJ				Tajikistan																					CIS

TM				Turkmenistan																			CIS

UA				Ukraine																								CIS

UZ				Uzbekistan																					CIS

CZ				Czech	Republic																	Eastern	Europe

HU				Hungary																								Eastern	Europe

PL				Poland																									Eastern	Europe

RO				Romania																								Eastern	Europe

SK				Slovak	Republic																Eastern	Europe

BH				Bahrain																								Middle	East

IR				Iran																											Middle	East

IQ				Iraq																											Middle	East

IL				Israel/Occupied	Territories				Middle	East

JO				Jordan																									Middle	East

KW				Kuwait																									Middle	East

LB				Lebanon																								Middle	East

OM				Oman																											Middle	East

QA				Qatar																										Middle	East

SA				Saudi	Arabia																			Middle	East

SY				Syria																										Middle	East

AE				United	Arab	Emirates											Middle	East

YE				Yemen																										Middle	East

AL				Albania																								South-East	Europe

BA				Bosnia-Herzegovina													South-East	Europe

BG				Bulgaria																							South-East	Europe

HR				Croatia																								South-East	Europe

CY				Cyprus																									South-East	Europe

GR				Greece																									South-East	Europe

MK				Macedonia																						South-East	Europe

MT				Malta																										South-East	Europe

SI				Slovenia																							South-East	Europe

TR				Turkey																									South-East	Europe

YU				Yugoslavia																					South-East	Europe

AD				Andorra																								Western	Europe

AT				Austria																								Western	Europe

BE				Belgium																								Western	Europe

DK				Denmark																								Western	Europe

FO				Faroe	Islands																		Western	Europe

FI				Finland																								Western	Europe

FR				France																									Western	Europe

DE				Germany																								Western	Europe

GI				Gibraltar																						Western	Europe

IS				Iceland																								Western	Europe

IE				Ireland																								Western	Europe

IT				Italy																										Western	Europe

LI				Liechtenstein																		Western	Europe

LU				Luxembourg																					Western	Europe

MC				Monaco																									Western	Europe

NL				Netherlands																				Western	Europe

NO				Norway																									Western	Europe

PT				Portugal																							Western	Europe

SM				San	Marino																					Western	Europe

ES				Spain																										Western	Europe

SJ				Svalbard	and	Jan	Mayen	Islands	Western	Europe

SE				Sweden																									Western	Europe

CH				Switzerland																				Western	Europe

UK				United	Kingdom																	Western	Europe

VA				Vatican																								Western	Europe

Server	Browsing	SDK	Functions
SBServerDirectConnect

Indicates	whether	the
server	supports	direct
UDP	connections.

SBServerEnumKeys
Enumerates	the
keys/values	for	a	given
server	by	calling
KeyEnumFn	with	each
key/value.		The	user-
defined	instance	data
will	be	passed	to	the
KeyFn	callback.

SBServerGetBoolValue
Returns	the	value
associated	with	the
specified	key.	This
value	is	returned	as
the	appropriate	type:
SBBool,	float,	int	or
string.

SBServerGetConnectionInfo
Checks	if	Nat
Negotiation	is	required,
based	off	whether	it	is
a	LAN	game,	a	public
IP	is	present	and
several	other	factors.
Fills	a	supplied	pointer
with	an	IP	string	to	use
for	Nat	Negotiation,	or
a	direct	connection	if
possible.

SBServerGetFloatValue
Returns	the	value
associated	with	the
specified	key.	This
value	is	returned	as
the	appropriate	type:
SBBool,	float,	int	or
string.

SBServerGetIntValue
Returns	the	value
associated	with	the
specified	key.	This
value	is	returned	as
the	appropriate	type:
SBBool,	float,	int	or
string.

SBServerGetPing
Returns	the	stored
ping	time	for	the
specified	server.

SBServerGetPlayerFloatValue
Returns	the	value
associated	with	the
specified	player's	key.
This	value	is	returned
as	the	appropriate
type.	Float,	int	or
string.

SBServerGetPlayerIntValue
Returns	the	value
associated	with	the
specified	player's	key.
This	value	is	returned
as	the	appropriate

type.	Float,	int	or
string.

SBServerGetPlayerStringValue
Returns	the	value
associated	with	the
specified	player's	key.
This	value	is	returned
as	the	appropriate
type.	Float,	int	or
string.

SBServerGetPrivateAddress
Returns	the	internal
address	of	the
SBServer,	if	any.	For
users	behind	a	NAT	or
firewall,	this	is	the	local
DHCP	or	assigned	IP
address	of	the
machine.

SBServerGetPrivateInetAddress
Returns	the	internal
address	of	the
SBServer,	if	any.	For
users	behind	a	NAT	or
firewall,	this	is	the	local
DHCP	or	assigned	IP
address	of	the
machine.

SBServerGetPrivateQueryPort
Returns	the	private
query	port	of	the
specified	server.	This
is	the	internal	port	on
which	the	server
communicates	to	the

GameSpy	backend.

SBServerGetPublicAddress
Returns	the	external
address	of	the
SBServer,	if	any.		For
users	behind	a	NAT	or
firewall,	this	is	the
address	of	the
outermost	NAT	or
firewall	layer.

SBServerGetPublicInetAddress
Returns	the	external
address	of	the
SBServer,	if	any.		For
users	behind	a	NAT	or
firewall,	this	is	the
address	of	the
outermost	NAT	or
firewall	layer.

SBServerGetPublicQueryPort
Returns	the	public
query	port	of	the
specified	server.	This
is	the	external	port	on
which	the	GameSpy
backend
communicates	with	the
server.

SBServerGetStringValue
Returns	the	value
associated	with	the
specified	key.	This
value	is	returned	as
the	appropriate	type.
SBBool,	float,	int	or

string.

SBServerGetTeamFloatValue
Returns	the	value
associated	with	the
specified	teams’	key.
This	value	is	returned
as	the	appropriate
type;	Float,	int	or
string.

SBServerGetTeamIntValue
Returns	the	value
associated	with	the
specified	teams’	key.
This	value	is	returned
as	the	appropriate
type;	Float,	int	or
string.

SBServerGetTeamStringValue
Returns	the	value
associated	with	the
specified	teams’	key.
This	value	is	returned
as	the	appropriate
type;	Float,	int	or
string.

SBServerHasBasicKeys
Determine	if	basic
information	is	available
for	the	specified
server.

SBServerHasFullKeys
Determine	if	full
information	is	available
for	the	specified

server.

SBServerHasPrivateAddress
Tests	to	see	fi	a	private
address	is	available	for
the	server.

SBServerHasValidPing
Determines	if	a	server
has	a	valid	ping	value
(otherwise	the	ping	will
be	0).

ServerBrowserAuxUpdateIP
Queries	key/values
from	a	single	server.

ServerBrowserAuxUpdateServer
Query	key/values	from
a	single	server	that
has	already	been
added	to	the	internal
list.

ServerBrowserClear
Clear	the	current
server	list.

ServerBrowserConnectToServer
Connects	to	a	game
server.

ServerBrowserCount
Retrieves	the	current
list	of	games	from	the
GameSpy	master
server.

ServerBrowserDisconnect
Disconnect	from	the

GameSpy	master
server.

ServerBrowserErrorDesc
Returns	a	human
readable	string	for	the
specified	SBError.

ServerBrowserFree
Frees	memory
allocated	by	the
ServerBrowser	SDK.
Terminates	any
pending	queries.

ServerBrowserGetMyPublicIP
Returns	the	local
client's	external
(firewall)	address.

ServerBrowserGetMyPublicIPAddr
Returns	the	local
client's	external
(firewall)	address.

ServerBrowserGetServer
Returns	the	SBServer
object	at	the	specified
index.

ServerBrowserGetServerByIP
Returns	the	SBServer
with	the	specified	IP

ServerBrowserHalt
Stop	an	update	in
progress.	

ServerBrowserLANSetLocalAddr

Sets	the	network
adapter	to	use	for	LAN
broadcasts	(optional)

ServerBrowserLANUpdate
Retrieves	the	current
list	of	games
broadcasting	on	the
local	network.

ServerBrowserLimitUpdate
Retrieves	the	current
limited	list	of	games
from	the	GameSpy
master	server.		Useful
for	low-memory
systems.

ServerBrowserListQueryError
Returns	the	ServerList
error	string,	if	any.

ServerBrowserNew
Initialize	the
ServerBrowser	SDK.

ServerBrowserPendingQueryCount
Retrieves	the	number
of	servers	with
outstanding	queries.
Use	this	to	check
progress	while
asynchronously
updating	the	server
list.

ServerBrowserRemoveIP
Removes	a	server
from	the	local	list.

ServerBrowserRemoveServer
Removes	a	server
from	the	local	list.

ServerBrowserSendMessageToServer
Sends	a	game	specific
message	to	the
specified	IP/port.	This
message	is	routed
through	the	master
server.

ServerBrowserSendNatNegotiateCookieToServer
Sends	a	nat
negotiation	cookie	to
the	server.		The	cookie
is	sent	via	the	master
server.

ServerBrowserSort
Sort	the	current	list	of
servers.

ServerBrowserState
Gets	current	state	of
the	Server	Browser
object.

ServerBrowserThink
Allows
ServerBrowsingSDK	to
continue	internal
processing	including
processing	query
replies.

ServerBrowserUpdate
Retrieves	the	current
list	of	games	from	the

GameSpy	master
server.

SBServerDirectConnect
Indicates	whether	the	server	supports	direct	UDP	connections.

SBBool	SBServerDirectConnect(
SBServer	server);

Routine Required	Header Distribution
SBServerDirectConnect <sb_serverbrowsing.h> SDKZIP

Return	Value

Returns	SBTrue	if	a	direct	connection	is	possible,	otherwise	SBFalse.

Parameters

server
[in]	A	valid	SBServer	object.

Remarks

A	return	of	SBFalse	usually	means	that	NatNegotiation	is	required.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerEnumKeys
Enumerates	the	keys/values	for	a	given	server	by	calling	KeyEnumFn
with	each	key/value.		The	user-defined	instance	data	will	be	passed	to
the	KeyFn	callback.

void	SBServerEnumKeys(
SBServer	server,
SBServerKeyEnumFn	KeyFn,
void	*	instance);

Routine Required	Header Distribution
SBServerEnumKeys <sb_serverbrowsing.h> SDKZIP

Parameters

server
[in]	A	valid	SBServer	object.

KeyFn
[in]	A	callback	that	is	called	once	for	each	key.

instance
[in]	A	user-defined	data	value	that	will	be	passed	into	each	call	to
KeyFn.

Remarks

The	SBServerEnumKeys	function	is	used	to	list	the	available	keys	for	a
particular	SBServer	object.		This	is	often	useful	when	the	number	of	keys
or	custom	keys	is	unknown	or	variable.		Most	often,	the	number	of	keys	is
predefined	and	constant,	making	this	function	call	unnecessary.		No
query	is	sent	when	enumerating	keys,	instead	the	keys	are	stored	from
the	previous	server	update.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetBoolValue
Returns	the	value	associated	with	the	specified	key.	This	value	is
returned	as	the	appropriate	type:	SBBool,	float,	int	or	string.

SBBool	SBServerGetBoolValue(
SBServer	server,
const	gsi_char	*	key,
SBBool	bdefault);

Routine Required	Header Distribution
SBServerGetBoolValue <sb_serverbrowsing.h> SDKZIP

Return	Value

If	the	key	is	invalid	or	missing,	the	specified	default	is	returned.	For	an
existing	key,	the	value	is	converted	from	string	form	to	the	appropriate
data	type.	These	functions	do	not	perform	any	type	checking.

Parameters

server
[in]	A	valid	SBServer	object.

key
[in]	The	value	associated	with	this	key	will	be	returned.

bdefault
[in]	The	value	to	return	if	the	key	is	not	found.

Remarks

These	functions	are	usefull	for	converting	custom	keys	to	a	native	data
type.	No	type	checking	is	performed,	the	string	value	is	simply	cast	to	the
appropriate	data	type.	If	a	key	is	not	found,the	supplied	default	is
returned.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

SBServerGetBoolValue SBServerGetBoolValueA SBServerGetBoolValueW

SBServerGetBoolValueW	and	SBServerGetBoolValueA	are	UNICODE
and	ANSI	mapped	versions	of	SBServerGetBoolValue.	The	arguments
of	SBServerGetBoolValueA	are	ANSI	strings;	those	of
SBServerGetBoolValueW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetConnectionInfo
Checks	if	Nat	Negotiation	is	required,	based	off	whether	it	is	a	LAN
game,	a	public	IP	is	present	and	several	other	factors.	Fills	a	supplied
pointer	with	an	IP	string	to	use	for	Nat	Negotiation,	or	a	direct	connection
if	possible.

SBBool	SBServerGetConnectionInfo(
ServerBrowser	gSB,
SBServer	server,
gsi_u16	portToConnectTo,
char	*	ipstring_out);

Routine Required	Header Distribution
SBServerGetConnectionInfo <sb_serverbrowsing.h> SDKZIP

Return	Value

Returns	SBTrue	if	Nat	Negotiation	is	required,	SBFalse	if	not.

Parameters

gSB
[in]	ServerBrowser	object	returned	from	ServerBrowserNew.

server
[in]	A	valid	SBServer	object.

portToConnectTo
[in]	The	game	port	to	connect	to.

ipstring_out
[out]	An	IP	String	you	can	use	for	a	direct	connection,	or	to	attempt
Nat	Negotiation	with.

Remarks

The	connection	test	will	result	in	one	of	three	scenarios,	based	upon	the
return	value	of	the	function.

Returns	SBFalse:
1)	LAN	game	-	connect	using	the	IP	string.
2)	Internet	game	with	a	direct	connection	available	-	connect	using	the	IP
string.

Returns	SBTrue:
3)	Nat	traversal	required,	perform	Nat	Negotiation	with	the	IP	string
before	connecting.

Section	Reference:	Gamespy	Server	Browsing	SDK

SBServerGetFloatValue
Returns	the	value	associated	with	the	specified	key.	This	value	is
returned	as	the	appropriate	type:	SBBool,	float,	int	or	string.

double	SBServerGetFloatValue(
SBServer	server,
const	gsi_char	*	key,
double	fdefault);

Routine Required	Header Distribution
SBServerGetFloatValue <sb_serverbrowsing.h> SDKZIP

Return	Value

If	the	key	is	invalid	or	missing,	the	specified	default	is	returned.	For	an
existing	key,	the	value	is	converted	from	string	form	to	the	appropriate
data	type.	These	functions	do	not	perform	any	type	checking.

Parameters

server
[in]	A	valid	SBServer	object.

key
[in]	The	value	associated	with	this	key	will	be	returned.

fdefault
[in]	The	value	to	return	if	the	key	is	not	found.

Remarks

These	functions	are	usefull	for	converting	custom	keys	to	a	native	data
type.	No	type	checking	is	performed,	the	string	value	is	simply	cast	to	the
appropriate	data	type.	If	a	key	is	not	found,the	supplied	default	is
returned.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

SBServerGetFloatValue SBServerGetFloatValueA SBServerGetFloatValueW

SBServerGetFloatValueW	and	SBServerGetFloatValueA	are
UNICODE	and	ANSI	mapped	versions	of	SBServerGetFloatValue.	The
arguments	of	SBServerGetFloatValueA	are	ANSI	strings;	those	of
SBServerGetFloatValueW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetIntValue
Returns	the	value	associated	with	the	specified	key.	This	value	is
returned	as	the	appropriate	type:	SBBool,	float,	int	or	string.

int	SBServerGetIntValue(
SBServer	server,
const	gsi_char	*	key,
int	idefault);

Routine Required	Header Distribution
SBServerGetIntValue <sb_serverbrowsing.h> SDKZIP

Return	Value

If	the	key	is	invalid	or	missing,	the	specified	default	is	returned.	For	an
existing	key,	the	value	is	converted	from	string	form	to	the	appropriate
data	type.	These	functions	do	not	perform	any	type	checking.

Parameters

server
[in]	A	valid	SBServer	object.

key
[in]	The	value	associated	with	this	key	will	be	returned.

idefault
[in]	The	value	to	return	if	the	key	is	not	found.

Remarks

These	functions	are	usefull	for	converting	custom	keys	to	a	native	data
type.	No	type	checking	is	performed,	the	string	value	is	simply	cast	to	the
appropriate	data	type.	If	a	key	is	not	found,the	supplied	default	is
returned.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

SBServerGetIntValue SBServerGetIntValueA SBServerGetIntValueW

SBServerGetIntValueW	and	SBServerGetIntValueA	are	UNICODE	and
ANSI	mapped	versions	of	SBServerGetIntValue.	The	arguments	of
SBServerGetIntValueA	are	ANSI	strings;	those	of
SBServerGetIntValueW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetPing
Returns	the	stored	ping	time	for	the	specified	server.

int	SBServerGetPing(
SBServer	server);

Routine Required	Header Distribution
SBServerGetPing <sb_serverbrowsing.h> SDKZIP

Return	Value

The	stored	server	response	time.

Parameters

server
[in]	A	valid	SBServer	object.

Remarks

The	SBServerGetPing	function	will	return	the	stored	response	time	of
the	server.		This	response	time	is	caculated	from	the	last	server	update.	
Servers	behind	a	firewall	will	return	a	ping	time	of	0.		This	is	because	no
actual	query	was	sent.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetPlayerFloatValue
Returns	the	value	associated	with	the	specified	player's	key.	This	value	is
returned	as	the	appropriate	type.	Float,	int	or	string.

double	SBServerGetPlayerFloatValue(
SBServer	server,
int	playernum,
const	gsi_char	*	key,
double	fdefault);

Routine Required	Header Distribution
SBServerGetPlayerFloatValue <sb_serverbrowsing.h> SDKZIP

Return	Value

If	the	player	or	key	is	invalid	or	missing,	the	specified	default	is	returned.
For	an	existing	key,	the	value	is	converted	from	string	form	to	the
appropriate	data	type.	These	functions	do	not	perform	any	type	checking.

Parameters

server
[in]	A	valid	SBServer	object.

playernum
[in]	The	zero	based	index	for	the	desired	player.

key
[in]	The	value	associated	with	this	key	will	be	returned.

fdefault
[in]	The	value	to	return	if	the	key	is	not	found.

Remarks

These	functions	are	usefull	for	converting	custom	player	keys	to	a	native
data	type.	No	type	checking	is	performed,	the	string	value	is	simply	cast
to	the	appropriate	data	type.	If	a	key	is	not	found,the	supplied	default	is
returned.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
SBServerGetPlayerFloatValue SBServerGetPlayerFloatValueA SBServerGetPlayerFloatValueW

SBServerGetPlayerFloatValueW	and	SBServerGetPlayerFloatValueA
are	UNICODE	and	ANSI	mapped	versions	of
SBServerGetPlayerFloatValue.	The	arguments	of
SBServerGetPlayerFloatValueA	are	ANSI	strings;	those	of
SBServerGetPlayerFloatValueW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetPlayerIntValue
Returns	the	value	associated	with	the	specified	player's	key.	This	value	is
returned	as	the	appropriate	type.	Float,	int	or	string.

int	SBServerGetPlayerIntValue(
SBServer	server,
int	playernum,
const	gsi_char	*	key,
int	idefault);

Routine Required	Header Distribution
SBServerGetPlayerIntValue <sb_serverbrowsing.h> SDKZIP

Return	Value

If	the	player	or	key	is	invalid	or	missing,	the	specified	default	is	returned.
For	an	existing	key,	the	value	is	converted	from	string	form	to	the
appropriate	data	type.	These	functions	do	not	perform	any	type	checking.

Parameters

server
[in]	A	valid	SBServer	object.

playernum
[in]	The	zero	based	index	for	the	desired	player.

key
[in]	The	value	associated	with	this	key	will	be	returned.

idefault
[in]	The	value	to	return	if	the	key	is	not	found.

Remarks

These	functions	are	usefull	for	converting	custom	player	keys	to	a	native
data	type.	No	type	checking	is	performed,	the	string	value	is	simply	cast
to	the	appropriate	data	type.	If	a	key	is	not	found,the	supplied	default	is
returned.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
SBServerGetPlayerIntValue SBServerGetPlayerIntValueA SBServerGetPlayerIntValueW

SBServerGetPlayerIntValueW	and	SBServerGetPlayerIntValueA	are
UNICODE	and	ANSI	mapped	versions	of	SBServerGetPlayerIntValue.
The	arguments	of	SBServerGetPlayerIntValueA	are	ANSI	strings;	those
of	SBServerGetPlayerIntValueW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetPlayerStringValue
Returns	the	value	associated	with	the	specified	player's	key.	This	value	is
returned	as	the	appropriate	type.	Float,	int	or	string.

const	gsi_char	*	SBServerGetPlayerStringValue(
SBServer	server,
int	playernum,
const	gsi_char	*	key,
const	gsi_char	*	sdefault);

Routine Required	Header Distribution
SBServerGetPlayerStringValue <sb_serverbrowsing.h> SDKZIP

Return	Value

If	the	player	or	key	is	invalid	or	missing,	the	specified	default	is	returned.
For	an	existing	key,	the	value	is	converted	from	string	form	to	the
appropriate	data	type.	These	functions	do	not	perform	any	type	checking.

Parameters

server
[in]	A	valid	SBServer	object.

playernum
[in]	The	zero	based	index	for	the	desired	player.

key
[in]	The	value	associated	with	this	key	will	be	returned.

sdefault
[in]	The	value	to	return	if	the	key	is	not	found.

Remarks

These	functions	are	usefull	for	converting	custom	player	keys	to	a	native
data	type.	No	type	checking	is	performed,	the	string	value	is	simply	cast
to	the	appropriate	data	type.	If	a	key	is	not	found,the	supplied	default	is
returned.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
SBServerGetPlayerStringValue SBServerGetPlayerStringValueA SBServerGetPlayerStringValueW

SBServerGetPlayerStringValueW	and
SBServerGetPlayerStringValueA	are	UNICODE	and	ANSI	mapped
versions	of	SBServerGetPlayerStringValue.	The	arguments	of
SBServerGetPlayerStringValueA	are	ANSI	strings;	those	of
SBServerGetPlayerStringValueW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetPrivateAddress
Returns	the	internal	address	of	the	SBServer,	if	any.	For	users	behind	a
NAT	or	firewall,	this	is	the	local	DHCP	or	assigned	IP	address	of	the
machine.

char	*	SBServerGetPrivateAddress(
SBServer	server);

Routine Required	Header Distribution
SBServerGetPrivateAddress <sb_serverbrowsing.h> SDKZIP

Return	Value

The	private	address	of	the	SBServer,	in	string	or	integer	form.

Parameters

server
[in]	A	valid	SBServer	object.

Remarks

When	a	client	machine	is	behind	a	NAT	or	Firewall	device,
communication	must	go	through	the	public	address.	The	private	address
may	be	used	by	clients	behind	the	same	NAT	or	Firewall,	and	may	be
used	to	specifically	identity	two	clients	with	the	same	public	address.
Often	the	private	address	is	of	the	form	“192.168.##.###”	and	is	not
usable	for	communication	outside	the	local	network.

The	SBServer	object	may	be	obtained	during	the	SBCallback	from
ServerBrowserUpdate,	or	by	calling	ServerBrowserGetServer.	An
SBServer	object	will	only	exist	for	servers	in	the	list.	IP	addresses
removed	from	the	server	list	will	not	have	an	SBServer	object	associated.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetPrivateInetAddress
Returns	the	internal	address	of	the	SBServer,	if	any.	For	users	behind	a
NAT	or	firewall,	this	is	the	local	DHCP	or	assigned	IP	address	of	the
machine.

unsigned	int	SBServerGetPrivateInetAddress(
SBServer	server);

Routine Required	Header Distribution
SBServerGetPrivateInetAddress <sb_serverbrowsing.h> SDKZIP

Return	Value

The	private	address	of	the	SBServer,	in	string	or	integer	form.

Parameters

server
[in]	A	valid	SBServer	object.

Remarks

When	a	client	machine	is	behind	a	NAT	or	Firewall	device,
communication	must	go	through	the	public	address.	The	private	address
may	be	used	by	clients	behind	the	same	NAT	or	Firewall,	and	may	be
used	to	specifically	identity	two	clients	with	the	same	public	address.
Often	the	private	address	is	of	the	form	"192.168.##.###"	and	is	not
usable	for	communication	outside	the	local	network.

The	SBServer	object	may	be	obtained	during	the	SBCallback	from
ServerBrowserUpdate,	or	by	calling	ServerBrowserGetServer.	An
SBServer	object	will	only	exist	for	servers	in	the	list.	IP	addresses
removed	from	the	server	list	will	not	have	an	SBServer	object	associated.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetPrivateQueryPort
Returns	the	private	query	port	of	the	specified	server.	This	is	the	internal
port	on	which	the	server	communicates	to	the	GameSpy	backend.

unsigned	short	SBServerGetPrivateQueryPort(
SBServer	server);

Routine Required	Header Distribution
SBServerGetPrivateQueryPort <sb_serverbrowsing.h> SDKZIP

Return	Value

The	private	query	port.

Parameters

server
[in]	A	valid	SBServer	object.

Remarks

The	SBServerGetPrivateQueryPort	function	will	return	the	private	query
port	of	the	server.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetPublicAddress
Returns	the	external	address	of	the	SBServer,	if	any.		For	users	behind	a
NAT	or	firewall,	this	is	the	address	of	the	outermost	NAT	or	firewall	layer.

char	*	SBServerGetPublicAddress(
SBServer	server);

Routine Required	Header Distribution
SBServerGetPublicAddress <sb_serverbrowsing.h> SDKZIP

Return	Value

The	public	address	of	the	SBServer,	in	string	or	integer	form.

Parameters

server
[in]	A	valid	SBServer	object.

Remarks

When	a	client	machine	is	behind	a	NAT	or	Firewall	device,
communication	must	go	through	the	public	address.	The	public	address
of	the	SBServer	is	the	address	of	the	outermost	Firewall	or	NAT	device.	

The	SBServer	object	may	be	obtained	during	the	SBCallback	from
ServerBrowserUpdate,	or	by	calling	ServerBrowserGetServer.	An
SBServer	object	will	only	exist	for	servers	in	the	list.	IP	addresses
removed	from	the	server	list	will	not	have	an	SBServer	object	associated.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetPublicInetAddress
Returns	the	external	address	of	the	SBServer,	if	any.		For	users	behind	a
NAT	or	firewall,	this	is	the	address	of	the	outermost	NAT	or	firewall	layer.

unsigned	int	SBServerGetPublicInetAddress(
SBServer	server);

Routine Required	Header Distribution
SBServerGetPublicInetAddress <sb_serverbrowsing.h> SDKZIP

Return	Value

The	public	address	of	the	SBServer,	in	string	or	integer	form.

Parameters

server
[in]	A	valid	SBServer	object.

Remarks

When	a	client	machine	is	behind	a	NAT	or	Firewall	device,
communication	must	go	through	the	public	address.	The	public	address
of	the	SBServer	is	the	address	of	the	outermost	Firewall	or	NAT	device.	

The	SBServer	object	may	be	obtained	during	the	SBCallback	from
ServerBrowserUpdate,	or	by	calling	ServerBrowserGetServer.	An
SBServer	object	will	only	exist	for	servers	in	the	list.	IP	addresses
removed	from	the	server	list	will	not	have	an	SBServer	object	associated.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetPublicQueryPort
Returns	the	public	query	port	of	the	specified	server.	This	is	the	external
port	on	which	the	GameSpy	backend	communicates	with	the	server.

unsigned	short	SBServerGetPublicQueryPort(
SBServer	server);

Routine Required	Header Distribution
SBServerGetPublicQueryPort <sb_serverbrowsing.h> SDKZIP

Return	Value

The	public	query	port.

Parameters

server
[in]	A	valid	SBServer	object.

Remarks

The	SBServerGetPublicQueryPort	function	will	return	the	public	query
port	of	the	server.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetStringValue
Returns	the	value	associated	with	the	specified	key.	This	value	is
returned	as	the	appropriate	type.	SBBool,	float,	int	or	string.

const	gsi_char	*	SBServerGetStringValue(
SBServer	server,
const	gsi_char	*	keyname,
const	gsi_char	*	def);

Routine Required	Header Distribution
SBServerGetStringValue <sb_serverbrowsing.h> SDKZIP

Return	Value

If	the	key	is	invalid	or	missing,	the	specified	default	is	returned.	For	an
existing	key,	the	value	is	converted	from	string	form	to	the	appropriate
data	type.	These	functions	do	not	perform	any	type	checking.

Parameters

server
[in]	A	valid	SBServer	object.

keyname
[in]	The	value	associated	with	this	key	will	be	returned.

def
[in]	The	value	to	return	if	the	key	is	not	found.

Remarks

These	functions	are	usefull	for	converting	custom	keys	to	a	native	data
type.	No	type	checking	is	performed,	the	string	value	is	simply	cast	to	the
appropriate	data	type.	If	a	key	is	not	found,the	supplied	default	is
returned.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

SBServerGetStringValue SBServerGetStringValueA SBServerGetStringValueW

SBServerGetStringValueW	and	SBServerGetStringValueA	are
UNICODE	and	ANSI	mapped	versions	of	SBServerGetStringValue.	The
arguments	of	SBServerGetStringValueA	are	ANSI	strings;	those	of
SBServerGetStringValueW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetTeamFloatValue
Returns	the	value	associated	with	the	specified	teams’	key.	This	value	is
returned	as	the	appropriate	type;	Float,	int	or	string.

double	SBServerGetTeamFloatValue(
SBServer	server,
int	teamnum,
const	gsi_char	*	key,
double	fdefault);

Routine Required	Header Distribution
SBServerGetTeamFloatValue <sb_serverbrowsing.h> SDKZIP

Return	Value

If	the	key	is	invalid	or	missing,	the	specified	default	is	returned.	For	an
existing	key,	the	value	is	converted	from	string	form	to	the	appropriate
data	type.	These	functions	do	not	perform	any	type	checking.

Parameters

server
[in]	A	valid	SBServer	object.

teamnum
[in]	The	integer	index	of	the	team.

key
[in]	The	value	associated	with	this	key	will	be	returned.

fdefault
[in]	The	value	to	return	if	the	key	is	not	found.

Remarks

These	functions	are	usefull	for	converting	custom	keys	to	a	native	data
type.	No	type	checking	is	performed,	the	string	value	is	simply	cast	to	the
appropriate	data	type.	If	a	key	is	not	found,the	supplied	default	is
returned.

The	SBServer	object	may	be	obtained	during	the	SBCallback	from
ServerBrowserUpdate,	or	by	calling	ServerBrowserGetServer.	An
SBServer	object	will	only	exist	for	servers	in	the	list.	IP	addresses
removed	from	the	server	list	will	not	have	an	SBServer	object	associated.

Team	indexes	are	determined	on	a	per-game	basis.	The	only
requirement	is	that	they	match	the	server’s	reporting	indexes.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
SBServerGetTeamFloatValue SBServerGetTeamFloatValueA SBServerGetTeamFloatValueW

SBServerGetTeamFloatValueW	and	SBServerGetTeamFloatValueA
are	UNICODE	and	ANSI	mapped	versions	of
SBServerGetTeamFloatValue.	The	arguments	of
SBServerGetTeamFloatValueA	are	ANSI	strings;	those	of
SBServerGetTeamFloatValueW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetTeamIntValue
Returns	the	value	associated	with	the	specified	teams’	key.	This	value	is
returned	as	the	appropriate	type;	Float,	int	or	string.

int	SBServerGetTeamIntValue(
SBServer	server,
int	teamnum,
const	gsi_char	*	key,
int	idefault);

Routine Required	Header Distribution
SBServerGetTeamIntValue <sb_serverbrowsing.h> SDKZIP

Return	Value

If	the	key	is	invalid	or	missing,	the	specified	default	is	returned.	For	an
existing	key,	the	value	is	converted	from	string	form	to	the	appropriate
data	type.	These	functions	do	not	perform	any	type	checking.

Parameters

server
[in]	A	valid	SBServer	object.

teamnum
[in]	The	integer	index	of	the	team.

key
[in]	The	value	associated	with	this	key	will	be	returned.

idefault
[in]	The	value	to	return	if	the	key	is	not	found.

Remarks

These	functions	are	usefull	for	converting	custom	keys	to	a	native	data
type.	No	type	checking	is	performed,	the	string	value	is	simply	cast	to	the
appropriate	data	type.	If	a	key	is	not	found,the	supplied	default	is
returned.

The	SBServer	object	may	be	obtained	during	the	SBCallback	from
ServerBrowserUpdate,	or	by	calling	ServerBrowserGetServer.	An
SBServer	object	will	only	exist	for	servers	in	the	list.	IP	addresses
removed	from	the	server	list	will	not	have	an	SBServer	object	associated.

Team	indexes	are	determined	on	a	per-game	basis.	The	only
requirement	is	that	they	match	the	server’s	reporting	indexes.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

SBServerGetTeamIntValue SBServerGetTeamIntValueA SBServerGetTeamIntValueW

SBServerGetTeamIntValueW	and	SBServerGetTeamIntValueA	are
UNICODE	and	ANSI	mapped	versions	of	SBServerGetTeamIntValue.
The	arguments	of	SBServerGetTeamIntValueA	are	ANSI	strings;	those
of	SBServerGetTeamIntValueW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerGetTeamStringValue
Returns	the	value	associated	with	the	specified	teams’	key.	This	value	is
returned	as	the	appropriate	type;	Float,	int	or	string.

const	gsi_char	*	SBServerGetTeamStringValue(
SBServer	server,
int	teamnum,
const	gsi_char	*	key,
const	gsi_char	*	sdefault);

Routine Required	Header Distribution
SBServerGetTeamStringValue <sb_serverbrowsing.h> SDKZIP

Return	Value

If	the	key	is	invalid	or	missing,	the	specified	default	is	returned.	For	an
existing	key,	the	value	is	converted	from	string	form	to	the	appropriate
data	type.	These	functions	do	not	perform	any	type	checking.

Parameters

server
[in]	A	valid	SBServer	object.

teamnum
[in]	The	integer	index	of	the	team.

key
[in]	The	value	associated	with	this	key	will	be	returned.

sdefault
[in]	The	value	to	return	if	the	key	is	not	found.

Remarks

These	functions	are	usefull	for	converting	custom	keys	to	a	native	data
type.	No	type	checking	is	performed,	the	string	value	is	simply	cast	to	the
appropriate	data	type.	If	a	key	is	not	found,the	supplied	default	is
returned.

The	SBServer	object	may	be	obtained	during	the	SBCallback	from
ServerBrowserUpdate,	or	by	calling	ServerBrowserGetServer.	An
SBServer	object	will	only	exist	for	servers	in	the	list.	IP	addresses
removed	from	the	server	list	will	not	have	an	SBServer	object	associated.

Team	indexes	are	determined	on	a	per-game	basis.	The	only
requirement	is	that	they	match	the	server’s	reporting	indexes.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
SBServerGetTeamStringValue SBServerGetTeamStringValueA SBServerGetTeamStringValueW

SBServerGetTeamStringValueW	and	SBServerGetTeamStringValueA
are	UNICODE	and	ANSI	mapped	versions	of
SBServerGetTeamStringValue.	The	arguments	of
SBServerGetTeamStringValueA	are	ANSI	strings;	those	of
SBServerGetTeamStringValueW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerHasBasicKeys
Determine	if	basic	information	is	available	for	the	specified	server.

SBBool	SBServerHasBasicKeys(
SBServer	server);

Routine Required	Header Distribution
SBServerHasBasicKeys <sb_serverbrowsing.h> SDKZIP

Return	Value

SBTrue	if	available;	otherwise	SBFalse.

Parameters

server
[in]	A	valid	SBServer	object.

Remarks

The	SBServerHasBasicKeys	function	is	used	to	determine	if	basic
server	information	is	available	for	the	server.		Information	may	not	be
available	if	a	server	query	is	still	pending.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerHasFullKeys
Determine	if	full	information	is	available	for	the	specified	server.

SBBool	SBServerHasFullKeys(
SBServer	server);

Routine Required	Header Distribution
SBServerHasFullKeys <sb_serverbrowsing.h> SDKZIP

Return	Value

SBTrue	if	available;	otherwise	SBFalse.

Parameters

server
[in]	A	valid	SBServer	object.

Remarks

The	SBServerHasFullKeys	function	is	used	to	determine	if	full	server
information	is	available	for	the	server.	Information	may	not	be	available	if
a	server	query	is	still	pending.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerHasPrivateAddress
Tests	to	see	fi	a	private	address	is	available	for	the	server.

SBBool	SBServerHasPrivateAddress(
SBServer	server);

Routine Required	Header Distribution
SBServerHasPrivateAddress <sb_serverbrowsing.h> SDKZIP

Return	Value

Returns	SBTrue	if	the	server	has	a	private	address;	otherwise	SBFalse.

Parameters

server
[in]	A	valid	SBServer	object.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

SBServerHasValidPing
Determines	if	a	server	has	a	valid	ping	value	(otherwise	the	ping	will	be
0).

SBBool	SBServerHasValidPing(
SBServer	server);

Routine Required	Header Distribution
SBServerHasValidPing <sb_serverbrowsing.h> SDKZIP

Return	Value

SBTrue	if	the	server	has	a	valid	ping	value,	otherwise	SBFalse.

Parameters

server
[in]	A	valid	SBServer	object.

Section	Reference:	Gamespy	Server	Browsing	SDK

ServerBrowserAuxUpdateIP
Queries	key/values	from	a	single	server.

SBError	ServerBrowserAuxUpdateIP(
ServerBrowser	sb,
const	gsi_char	*	ip,
unsigned	short	port,
SBBool	viaMaster,
SBBool	async,
SBBool	fullUpdate);

Routine Required	Header Distribution
ServerBrowserAuxUpdateIP <sb_serverbrowsing.h> SDKZIP

Return	Value

This	function	returns	sbe_noerror	for	success.	On	an	error	condition,	this
function	will	return	an	SBError	code.	If	the	async	option	is	SBTrue,	the
status	condition	will	be	reported	to	the	SBCallback.

Parameters

sb
[in]	ServerBrowser	object	returned	from	ServerBrowserNew.

ip
[in]	Address	string	of	the	game	server.

port
[in]	Query	port	of	the	game	server,	in	network	byte	order.

viaMaster
[in]	Set	to	SBTrue	to	retrieve	cached	values	from	the	master	server.

async
[in]	Set	to	SBTrue	to	run	in	non-blocking	mode.

fullUpdate
[in]	Set	to	SBTrue	to	retreive	the	full	set	of	key/values	from	the
server.

Remarks

The	ServerBrowserAuxUpdateIP	function	is	used	to	retrieve	information
about	a	specific	server.	Information	returned	is	in	the	form	of	key/value
pairs	and	may	be	accessed	through	the	standard	SBServer	object
accessors.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
ServerBrowserAuxUpdateIP ServerBrowserAuxUpdateIPA ServerBrowserAuxUpdateIPW

ServerBrowserAuxUpdateIPW	and	ServerBrowserAuxUpdateIPA	are
UNICODE	and	ANSI	mapped	versions	of	ServerBrowserAuxUpdateIP.
The	arguments	of	ServerBrowserAuxUpdateIPA	are	ANSI	strings;
those	of	ServerBrowserAuxUpdateIPW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserUpdate,	ServerBrowserLANUpdate,
ServerBrowserAuxUpdateServer

ServerBrowserAuxUpdateServer
Query	key/values	from	a	single	server	that	has	already	been	added	to	the
internal	list.

SBError	ServerBrowserAuxUpdateServer(
ServerBrowser	sb,
SBServer	server,
SBBool	async,
SBBool	fullUpdate);

Routine Required	Header Distribution
ServerBrowserAuxUpdateServer <sb_serverbrowsing.h> SDKZIP

Return	Value

This	function	returns	sbe_noerror	for	success.	On	an	error	condition,	this
function	will	return	an	SBError	code.	If	the	async	option	is	SBTrue,	the
status	condition	will	be	reported	to	the	SBCallback.

Parameters

sb
[in]	ServerBrowser	object	returned	from	ServerBrowserNew.

server
[in]	SBServer	object	for	the	server	to	update.	(usually	obtained	from
SBCallback)

async
[in]	Set	to	SBTrue	to	run	in	non-blocking	mode.

fullUpdate
[in]	Set	to	SBTrue	to	retreive	the	full	set	of	key/values	from	the
server.

Remarks

The	ServerBrowserAuxUpdateServer	function	is	used	to	retrieve
information	about	a	specific	server.	Information	returned	is	in	the	form	of
key/value	pairs	and	may	be	accessed	through	the	standard	SBServer
object	accessors.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
ServerBrowserAuxUpdateServer ServerBrowserAuxUpdateServerA ServerBrowserAuxUpdateServerW

ServerBrowserAuxUpdateServerW	and
ServerBrowserAuxUpdateServerA	are	UNICODE	and	ANSI	mapped
versions	of	ServerBrowserAuxUpdateServer.	The	arguments	of
ServerBrowserAuxUpdateServerA	are	ANSI	strings;	those	of
ServerBrowserAuxUpdateServerW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserUpdate,	ServerBrowserLANUpdate,
ServerBrowserAuxUpdateIP

ServerBrowserClear
Clear	the	current	server	list.

void	ServerBrowserClear(
ServerBrowser	sb);

Routine Required	Header Distribution
ServerBrowserClear <sb_serverbrowsing.h> SDKZIP

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

Remarks

The	ServerBrowserClear	function	empties	the	current	list	of	servers	in
preparation	for	a	ServerBrowserUpdate	or	other	list	populating	call.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

ServerBrowserClear ServerBrowserClearA ServerBrowserClearW

ServerBrowserClearW	and	ServerBrowserClearA	are	UNICODE	and
ANSI	mapped	versions	of	ServerBrowserClear.	The	arguments	of
ServerBrowserClearA	are	ANSI	strings;	those	of
ServerBrowserClearW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserFree

ServerBrowserConnectToServer
Connects	to	a	game	server.

SBError	ServerBrowserConnectToServer(
ServerBrowser	sb,
SBServer	server,
SBConnectToServerCallback	callback);

Routine Required	Header Distribution
ServerBrowserConnectToServer <sb_serverbrowsing.h> SDKZIP

Return	Value

This	function	returns	sbe_noerror	for	success.	On	an	error	condition,	this
function	will	return	an	SBError	code.	If	there	is	an	error,	the	callback	will
not	be	called.

Parameters

sb
[in]	ServerBrowser	object	returned	from	ServerBrowserNew.

server
[in]	SBServer	object	for	the	server	to	connect	to.

callback
[in]	The	callback	to	call	when	the	attempt	completes.

Remarks

Connects	to	a	game	server,	internally	using	Nat	Negotiation	if	necessary.
The	callback	will	be	called	when	the	connection	attempt	completes.	If	the
attempt	is	successful,	the	server	will	have	its
qr2_clientconnectedcallback_t	called.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	QR2\qr2_clientconnectedcallback_t,
SBConnectToServerCallback

ServerBrowserCount
Retrieves	the	current	list	of	games	from	the	GameSpy	master	server.

int	ServerBrowserCount(
ServerBrowser	sb);

Routine Required	Header Distribution
ServerBrowserCount <sb_serverbrowsing.h> SDKZIP

Return	Value

Returns	the	number	of	servers	in	the	current	list.	The	index	is	zero	based
when	referencing.

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

Remarks

The	ServerBrowserCount	function	returns	the	number	of	servers	in	the
current	list.	This	may	be	a	combination	of	servers	returned	by
ServerBrowserUpdateand	servers	added	manually	by
ServerBrowserAuxUpdateIP.	Please	note	that	index	functions	such	as
ServerBrowserGetServeruse	a	zero	based	index.	The	actual	valid
indexes	are	0	to	ServerBrowserCount()-1.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserGetServer

ServerBrowserDisconnect
Disconnect	from	the	GameSpy	master	server.

void	ServerBrowserDisconnect(
ServerBrowser	sb);

Routine Required	Header Distribution
ServerBrowserDisconnect <sb_serverbrowsing.h> SDKZIP

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

Remarks

The	ServerBrowserDisconnect	function	disconnects	a	maintained
connection	to	the	GameSpy	master	server.	This	is	only	necessary	when
explicitly	maintaining	a	connection	to	the	backend.	This	should	only	be
done	after	careful	consideration.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate

ServerBrowserErrorDesc
Returns	a	human	readable	string	for	the	specified	SBError.

const	gsi_char	*	ServerBrowserErrorDesc(
ServerBrowser	sb,
SBError	error);

Routine Required	Header Distribution
ServerBrowserErrorDesc <sb_serverbrowsing.h> SDKZIP

Return	Value

For	a	valid	SBError,	this	function	will	return	a	human	readable
description.		Otherwise	this	function	returns	an	empty	string.

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

error
[in]	A	valid	SBError	code.

Remarks

The	ServerBrowserErrorDesc	function	is	usefull	for	displaying	error
information	to	a	user	that	might	not	understand	SBError	codes.		These
descriptions	are	in	english.		For	localization	purposes,	you	will	need	to
provide	your	own	translation	functions.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

ServerBrowserErrorDesc ServerBrowserErrorDescA ServerBrowserErrorDescW

ServerBrowserErrorDescW	and	ServerBrowserErrorDescA	are
UNICODE	and	ANSI	mapped	versions	of	ServerBrowserErrorDesc.
The	arguments	of	ServerBrowserErrorDescA	are	ANSI	strings;	those	of
ServerBrowserErrorDescW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserListQueryError

ServerBrowserFree
Frees	memory	allocated	by	the	ServerBrowser	SDK.	Terminates	any
pending	queries.

void	ServerBrowserFree(
ServerBrowser	sb);

Routine Required	Header Distribution
ServerBrowserFree <sb_serverbrowsing.h> SDKZIP

Parameters

sb
[in]	A	ServerBrowser	interface	previously	allocated	with
ServerBrowserNew.

Remarks

The	ServerBrowserFree	function	frees	any	allocated	memory
associated	with	the	SDK	as	well	as	terminates	any	pending	queries.	This
function	must	be	called	once	for	every	call	to	ServerBrowserNew	to
ensure	proper	cleanup	of	the	ServerBrowsing	SDK.

Example
/*	SERVERBROWSERFREE.C:	This	program	uses	ServerBrowserNew	*	to	initialize	the	ServerBrowsing	SDK	*/	

#include	<sb_serverbrowsing.h>

void	main(void)

{

				ServerBrowser	aServerBrowser	=	ServerBrowserNew("gmtest",	"gmtest",	"HA6zkS",	0,	10,	QVERSION_QR2,	SBFalse,	SBCallback,	NULL);

				ServerBrowserFree(aServerBrowser);

}

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew

ServerBrowserGetMyPublicIP
Returns	the	local	client's	external	(firewall)	address.

char	*	ServerBrowserGetMyPublicIP(
ServerBrowser	sb);

Routine Required	Header Distribution
ServerBrowserGetMyPublicIP <sb_serverbrowsing.h> SDKZIP

Return	Value

The	local	clients	external	(firewall)	address.	This	may	be	returned	as	a
string	or	integer	address.

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew

Remarks

The	ServerBrowserGetMyPublicIP	and
ServerBrowserGetMyPublicIPAddr	functions	return	the	external
address	of	the	local	client,	as	report	by	the	GameSpy	Master	Server.
Because	of	this,	the	return	value	is	only	valid	after	a	successful	call	to
ServerBrowserUpdate.	The	reason	for	this	is	that	a	client	cannot
determine	their	external	address	without	first	sending	an	outgoing	packet.
It	is	up	to	the	receiver	of	that	packet	to	report	the	public	address	back	to
the	local	client.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate

ServerBrowserGetMyPublicIPAddr
Returns	the	local	client's	external	(firewall)	address.

unsigned	int	ServerBrowserGetMyPublicIPAddr(
ServerBrowser	sb);

Routine Required	Header Distribution
ServerBrowserGetMyPublicIPAddr <sb_serverbrowsing.h> SDKZIP

Return	Value

The	local	clients	external	(firewall)	address.	This	may	be	returned	as	a
string	or	integer	address.

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew

Remarks

The	ServerBrowserGetMyPublicIP	and
ServerBrowserGetMyPublicIPAddr	functions	return	the	external
address	of	the	local	client,	as	report	by	the	GameSpy	Master	Server.
Because	of	this,	the	return	value	is	only	valid	after	a	successful	call	to
ServerBrowserUpdate.	The	reason	for	this	is	that	a	client	cannot
determine	their	external	address	without	first	sending	an	outgoing	packet.
It	is	up	to	the	receiver	of	that	packet	to	report	the	public	address	back	to
the	local	client.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate

ServerBrowserGetServer
Returns	the	SBServer	object	at	the	specified	index.

SBServer	ServerBrowserGetServer(
ServerBrowser	sb,
int	index);

Routine Required	Header Distribution
ServerBrowserGetServer <sb_serverbrowsing.h> SDKZIP

Return	Value

Returns	the	SBServer	at	the	specified	array	index.		If	index	is	greater
than	the	bounds	of	the	array,	NULL	is	returned.

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

index
[in]	The	array	index.

Remarks

Use	ServerBrowserCount	to	retrieve	the	current	number	of	servers	in	the
array.		This	index	is	zero	based,	so	a	list	containing	5	servers	will	have
the	valid	indexes	0	through	4.	This	list	is	usually	populated	using	one	of
the	list	retrieval	methods	such	as	ServerBrowserUpdate.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate

ServerBrowserGetServerByIP
Returns	the	SBServer	with	the	specified	IP.

SBServer	ServerBrowserGetServerByIP(
ServerBrowser	sb,
const	gsi_char	*	ip,
unsigned	short	port);

Routine Required	Header Distribution
ServerBrowserGetServerByIP <sb_serverbrowsing.h> SDKZIP

Return	Value

Returns	the	Server	if	found,	otherwise	NULL;

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

ip
[in]	The	dotted	IP	address	of	the	server	e.g.	"1.2.3.4"

port
[in]	The	query	port	of	the	server,	in	network	byte	order.

Section	Reference:	Gamespy	Server	Browsing	SDK

ServerBrowserHalt
Stop	an	update	in	progress.	.

void	ServerBrowserHalt(
ServerBrowser	sb);

Routine Required	Header Distribution
ServerBrowserHalt <sb_serverbrowsing.h> SDKZIP

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

Remarks

The	ServerBrowserHalt	function	will	stop	an	update	in	progress.		This	is
often	tied	to	a	"cancel"	button	presented	to	the	user	on	the	server	list
screen.	Clears	any	servers	queued	to	be	queried,	and	disconneects	from
the	master	server.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate

ServerBrowserLANSetLocalAddr
Sets	the	network	adapter	to	use	for	LAN	broadcasts	(optional).

void	ServerBrowserLANSetLocalAddr(
ServerBrowser	sb,
const	char	*	theAddr);

Routine Required	Header Distribution
ServerBrowserLANSetLocalAddr <sb_serverbrowsing.h> SDKZIP

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

theAddr
[in]	The	address	to	use.

Section	Reference:	Gamespy	Server	Browsing	SDK

ServerBrowserLANUpdate
Retrieves	the	current	list	of	games	broadcasting	on	the	local	network.

SBError	ServerBrowserLANUpdate(
ServerBrowser	sb,
SBBool	async,
unsigned	short	startSearchPort,
unsigned	short	endSearchPort);

Routine Required	Header Distribution
ServerBrowserLANUpdate <sb_serverbrowsing.h> SDKZIP

Return	Value

If	an	error	occurs,	a	valid	SBError	error	code	is	returned.	Otherwise,
sbe_noerror	is	returned.

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

async
[in]	When	set	to	SBTrue	this	function	will	run	in	non-blocking	mode.

startSearchPort
[in]	The	lowest	port	the	SDK	will	listen	to	broadcasts	from,	in	network
byte	order.

endSearchPort
[in]	The	highest	port	the	SDK	will	listen	to	broadcasts	from,	in
network	byte	order.

Remarks

The	ServerBrowserLANUpdate	function	listens	for	broadcast	packets
on	the	local	network.		Servers	that	are	broadcasting	within	the	specified
port	range	will	be	detected.		As	each	server	broadcast	is	received,	one
corresponding	call	to	the	SBCallbackfunction	will	be	made	with	the	status
sbc_serveradded.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

ServerBrowserLANUpdate ServerBrowserLANUpdateA ServerBrowserLANUpdateW

ServerBrowserLANUpdateW	and	ServerBrowserLANUpdateA	are
UNICODE	and	ANSI	mapped	versions	of	ServerBrowserLANUpdate.
The	arguments	of	ServerBrowserLANUpdateA	are	ANSI	strings;	those
of	ServerBrowserLANUpdateW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate

ServerBrowserLimitUpdate
Retrieves	the	current	limited	list	of	games	from	the	GameSpy	master
server.		Useful	for	low-memory	systems.

SBError	ServerBrowserLimitUpdate(
ServerBrowser	sb,
SBBool	async,
SBBool	disconnectOnComplete,
const	unsigned	char	*	basicFields,
int	numBasicFields,
const	gsi_char	*	serverFilter,
int	maxServers);

Routine Required	Header Distribution
ServerBrowserLimitUpdate <sb_serverbrowsing.h> SDKZIP

Return	Value

If	an	error	occurs,	a	valid	SBError	error	code	is	returned.	Otherwise,
sbe_noerror	is	returned.

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

async
[in]	When	set	to	SBTrue	this	function	will	run	in	non-blocking	mode.

disconnectOnComplete
[in]	When	set	to	SBTrue	this	function	will	terminate	the	connection
with	the	GameSpy	master	after	the	download	is	complete.

basicFields
[in]	A	byte	array	of	basic	field	identifiers	to	retreive	for	each	server.
See	remarks.

numBasicFields
[in]	The	number	of	valid	fields	in	the	basicFields	array.

serverFilter
[in]	SQL	like	string	used	to	remove	unwanted	servers	from	the
downloaded	list.

maxServers
[in]	Maximum	number	of	servers	to	be	returned

Remarks

The	ServerBrowserLimitUpdate	function	retrieves	a	limited	set	of	the
servers	registered	with	the	GameSpy	master	server.	This	is	most	useful
for	low	memory	systems	such	as	the	PS2	which	may	not	be	capable	of
loading	an	entire	server	list.
Identical	to	ServerBrowserUpdate,	except	that	the	number	of	servers
returned	can	be	limited.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined GSI_UNICODE	Defined

ServerBrowserLimitUpdate ServerBrowserLimitUpdateA ServerBrowserLimitUpdateW

ServerBrowserLimitUpdateW	and	ServerBrowserLimitUpdateA	are
UNICODE	and	ANSI	mapped	versions	of	ServerBrowserLimitUpdate.
The	arguments	of	ServerBrowserLimitUpdateA	are	ANSI	strings;	those
of	ServerBrowserLimitUpdateW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate

ServerBrowserListQueryError
Returns	the	ServerList	error	string,	if	any.

const	gsi_char	*	ServerBrowserListQueryError(
ServerBrowser	sb);

Routine Required	Header Distribution
ServerBrowserListQueryError <sb_serverbrowsing.h> SDKZIP

Return	Value

If	a	list	error	has	occured,	a	string	description	of	the	error	is	returned.
Otherwise,	an	empty	string	""	is	returned.

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

Remarks

The	ServerBrowserListQueryError	function	returns	the	last	string	error
reported	by	the	server.		For	localization	purposes,	you	may	safely
assume	that	this	string	will	not	change,	and	test	for	it	as	you	would	a
numeric	error	code.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined GSI_UNICODE	Defined
ServerBrowserListQueryError ServerBrowserListQueryErrorA ServerBrowserListQueryErrorW

ServerBrowserListQueryErrorW	and	ServerBrowserListQueryErrorA
are	UNICODE	and	ANSI	mapped	versions	of
ServerBrowserListQueryError.	The	arguments	of
ServerBrowserListQueryErrorA	are	ANSI	strings;	those	of
ServerBrowserListQueryErrorW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew

ServerBrowserNew
Initialize	the	ServerBrowser	SDK.

ServerBrowser	ServerBrowserNew(
const	gsi_char	*	queryForGamename,
const	gsi_char	*	queryFromGamename,
const	gsi_char	*	queryFromKey,
int	queryFromVersion,
int	maxConcUpdates,
int	queryVersion,
SBBool	lanBrowse,
ServerBrowserCallback	callback,
void	*	instance);

Routine Required	Header Distribution
ServerBrowserNew <sb_serverbrowsing.h> SDKZIP

Return	Value

This	function	returns	the	initialized	ServerBrowser	interface.	No	return
value	is	reserved	to	indicate	an	error.

Parameters

queryForGamename
[in]	Servers	returned	will	be	for	this	Gamename.

queryFromGamename
[in]	Your	assigned	GameName.

queryFromKey
[in]	Secret	key	that	corresponds	to	the	queryFromGamename.

queryFromVersion
[in]	Set	to	zero	unless	directed	otherwise	by	GameSpy.

maxConcUpdates
[in]	The	maximum	number	of	queries	the	ServerBrowsing	SDK	will
send	out	at	one	time.

queryVersion
[in]	The	QueryReporting	protocol	used	by	the	server.	Should	be
QVERSION_GOA	or	QVERSION_QR2.	See	remarks.

lanBrowse
[in]	The	switch	to	turn	on	only	LAN	browsing

callback
[in]	Function	to	be	called	when	the	operation	completes.

instance
[in]	Pointer	to	user	data.	This	is	optional	and	will	be	passed
unmodified	to	the	callback	function.

Remarks

The	ServerBrowserNew	function	initializes	the	ServerBrowsing	SDK.
Developers	should	then	use	ServerBrowserUpdate	or
ServerBrowserLANUpdate	to	begin	retrieving	the	list	of	registered	game
servers.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

ServerBrowserNew ServerBrowserNewA ServerBrowserNewW

ServerBrowserNewW	and	ServerBrowserNewA	are	UNICODE	and
ANSI	mapped	versions	of	ServerBrowserNew.	The	arguments	of
ServerBrowserNewA	are	ANSI	strings;	those	of	ServerBrowserNewW
are	wide-character	strings.

Example
(In	this	particular	file,	we	should	refer	them	to	the	ServerBrowser	sample	as	it	is	very	simple	already.)/*	SERVERBROWSERNEW.C:	This	program	uses	ServerBrowserNew	*	to	initialize	the	ServerBrowsing	SDK	*/	#include	<sb_serverbrowsing.h>	void	main(void){	ServerBrowser	aServerBrowser	=	SBServerBrowserNew("gmtest",	"HA6zkS",	0,	10,	QVERSION_QR2,	SBCallback,	NULL);	}

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserFree,	ServerBrowserUpdate,
ServerBrowserLANUpdate

ServerBrowserPendingQueryCount
Retrieves	the	number	of	servers	with	outstanding	queries.	Use	this	to
check	progress	while	asynchronously	updating	the	server	list.

int	ServerBrowserPendingQueryCount(
ServerBrowser	sb);

Routine Required	Header Distribution
ServerBrowserPendingQueryCount <sb_serverbrowsing.h> SDKZIP

Return	Value

Returns	the	number	of	servers	that	have	not	yet	been	queried.

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

Remarks

The	ServerBrowserPendingQueryCount	function	is	most	usefull	when
updating	a	large	list	of	servers.		Use	this	function	to	display	progress
information	to	the	user.		For	example	"1048/2063	servers	updated",	or	as
a	progress	bar	graphic.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate

ServerBrowserRemoveIP
Removes	a	server	from	the	local	list.

void	ServerBrowserRemoveIP(
ServerBrowser	sb,
const	gsi_char	*	ip,
unsigned	short	port);

Routine Required	Header Distribution
ServerBrowserRemoveIP <sb_serverbrowsing.h> SDKZIP

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

ip
[in]	The	address	of	the	server	to	remove.

port
[in]	The	port	of	the	server	to	remove,	in	network	byte	order.

Remarks

The	ServerBrowserRemoveIP	function	removes	a	single	SBServer	from
the	local	list.	This	does	not	affect	the	backend	or	remote	users.	Please
refer	to	the	QR2	SDK	for	removing	a	registered	server	from	the	backend
list.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserRemoveServer

ServerBrowserRemoveServer
Removes	a	server	from	the	local	list.

void	ServerBrowserRemoveServer(
ServerBrowser	sb,
SBServer	server);

Routine Required	Header Distribution
ServerBrowserRemoveServer <sb_serverbrowsing.h> SDKZIP

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

server
[in]	The	server	to	remove.

Remarks

The	ServerBrowserRemoveServer	function	removes	a	single	SBServer
from	the	local	list.	This	does	not	affect	the	backend	or	remote	users.
Please	refer	to	the	QR2	SDK	for	removing	a	registered	server	from	the
backend	list.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserRemoveIP

ServerBrowserSendMessageToServer
Sends	a	game	specific	message	to	the	specified	IP/port.	This	message	is
routed	through	the	master	server.

SBError	ServerBrowserSendMessageToServer(
ServerBrowser	sb,
const	gsi_char	*	ip,
unsigned	short	port,
const	char	*	data,
int	len);

Routine Required	Header Distribution
ServerBrowserSendMessageToServer <sb_serverbrowsing.h> SDKZIP

Return	Value

If	an	error	occurs,	a	valid	SBError	error	code	is	returned.	Otherwise,
sbe_noerror	is	returned.

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

ip
[in]	Address	of	the	server	in	string	form.	"xxx.xxx.xxx.xxx"

port
[in]	The	query	port	of	the	server	to	send	the	message	to,	in	network
byte	order.

data
[in]	The	raw	data	buffer.

len
[in]	The	length	of	the	data	buffer.

Remarks

The	ServerBrowserSendMessageToServer	function	can	be	used	to
relay	a	raw	data	buffer	to	a	server	behind	a	firewall.	The	raw	buffer	is
sent	through	the	backend	since	direct	communication	with	the	server	is
not	always	possible.	The	buffer	is	sent	in	raw	form	to	the	server’s	query
port	and	does	not	contain	any	header	information.	This	message	is	most
usefull	in	a	shared	socket	QR2	implementation.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined
ServerBrowserSendMessageToServer ServerBrowserSendMessageToServerA

ServerBrowserSendMessageToServerW	and
ServerBrowserSendMessageToServerA	are	UNICODE	and	ANSI
mapped	versions	of	ServerBrowserSendMessageToServer.	The
arguments	of	ServerBrowserSendMessageToServerA	are	ANSI
strings;	those	of	ServerBrowserSendMessageToServerW	are	wide-
character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserUpdate,
ServerBrowserSendNatNegotiateCookieToServer

ServerBrowserSendNatNegotiateCookieToServer
Sends	a	nat	negotiation	cookie	to	the	server.		The	cookie	is	sent	via	the
master	server.

SBError	ServerBrowserSendNatNegotiateCookieToServer(
ServerBrowser	sb,
const	gsi_char	*	ip,
unsigned	short	port,
int	cookie);

Routine Required	Header
ServerBrowserSendNatNegotiateCookieToServer <sb_serverbrowsing.h>

Return	Value

If	an	error	occurs,	a	valid	SBError	error	code	is	returned.	Otherwise,
sbe_noerror	is	returned.

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

ip
[in]	Address	of	the	server	in	string	form.		"xxx.xxx.xxx.xxx"

port
[in]	The	query	port	of	the	server	to	relay	the	NatNeg	cookie	to,	in
network	byte	order.

cookie
[in]	An	integer	cookie	value.	See	remarks.

Remarks

The	ServerBrowserSendNatNegotiateCookieToServer	function	can	be
used	to	relay	a	NatNegotiation	cookie	value	to	a	server	behind	a
firewall.			This	cookie	is	sent	through	the	backend	since	direct
communication	with	the	server	is	not	always	possible.		This	cookie	may
then	be	used	to	initiate	a	nat	negotiation	attempt.		Please	refer	to	the
NatNegotiation	SDK	documentation	for	more	info.

Unicode	Mappings

Routine GSI_UNICODE	Not	Defined
ServerBrowserSendNatNegotiateCookieToServer ServerBrowserSendNatNegotiateCookieToServerA

ServerBrowserSendNatNegotiateCookieToServerW	and
ServerBrowserSendNatNegotiateCookieToServerA	are	UNICODE
and	ANSI	mapped	versions	of
ServerBrowserSendNatNegotiateCookieToServer.	The	arguments	of
ServerBrowserSendNatNegotiateCookieToServerA	are	ANSI	strings;
those	of	ServerBrowserSendNatNegotiateCookieToServerW	are	wide-
character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserLANUpdate

ServerBrowserSort
Sort	the	current	list	of	servers.

void	ServerBrowserSort(
ServerBrowser	sb,
SBBool	ascending,
gsi_char	*	sortkey,
SBCompareMode	comparemode);

Routine Required	Header Distribution
ServerBrowserSort <sb_serverbrowsing.h> SDKZIP

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

ascending
[in]	When	set	to	SBTrue	this	function	will	sort	in	ascending	order.	(a-
b-c	order,	not	c-b-a)

sortkey
[in]	The	"key"	of	the	key/value	pair	to	sort	by.

comparemode
[in]	Specifies	the	data	type	of	the	sortkey.	See	remarks.

Remarks

The	ServerBrowserSort	function	will	returned	an	ordered	list	of	servers,
sorted	by	the	specified	sortkey.	Sorting	may	be	in	ascending	or
descending	order	and	various	data-types	are	supported.
SBCompareMode	may	be	one	of	the	following	values:

sbcm_int:	Uses	integer	comparison.	"1,2,3,12,15,20"

sbcm_float:	Similar	to	above	but	considers	decimal	values.
"1.1,1.2,2.1,3.0"

sbcm_strcase:	Uses	case	sensitive	string	comparison.	Uses	strcmp.	

sbcm_stricase:	Case	in-sensitive	string	comparision.	Uses	_stricmp	or
equivilent.

Please	note	that	calling	this	function	repeatedly	for	a	large	server	list	may
impact	performance.	This	is	due	to	the	standard	qsort	algorithm	being
ineffecient	when	sorting	an	already	ordered	list.	This	is	rarely	a	cause	for
concern,	but	certain	optimizations	may	be	made	if	performance	is
noticeably	impacted.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

ServerBrowserSort ServerBrowserSortA ServerBrowserSortW

ServerBrowserSortW	and	ServerBrowserSortA	are	UNICODE	and
ANSI	mapped	versions	of	ServerBrowserSort.	The	arguments	of
ServerBrowserSortA	are	ANSI	strings;	those	of	ServerBrowserSortW
are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserUpdate,	ServerBrowserThink

ServerBrowserState
Gets	current	state	of	the	Server	Browser	object.

SBState	ServerBrowserState(
ServerBrowser	sb);

Routine Required	Header Distribution
ServerBrowserState <sb_serverbrowsing.h> SDKZIP

Return	Value

Returns	the	current	state.

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

Remarks

Descriptions	of	the	possible	state	values	can	be	find	in	the	main	header
file.

Section	Reference:	Gamespy	Server	Browsing	SDK

ServerBrowserThink
Allows	ServerBrowsingSDK	to	continue	internal	processing	including
processing	query	replies.

SBError	ServerBrowserThink(
ServerBrowser	sb);

Routine Required	Header Distribution
ServerBrowserThink <sb_serverbrowsing.h> SDKZIP

Return	Value

If	an	error	occurs,	a	valid	SBError	error	code	is	returned.	Otherwise,
sbe_noerror	is	returned.

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

Remarks

The	ServerBrowserThink	function	is	required	for	the	SDK	to	process
incoming	data.		Because	of	the	single	threaded	design	of	the	GameSpy
SDKs,	all	data	is	processed	during	this	call,	and	processing	is	paused
when	this	call	is	complete.			When	updating	server	lists,	this	function
should	be	called	as	frequently	as	possible	to	reduce	the	latency
associated	with	server	response	times.		If	this	function	is	not	called	often
enough,	server	pings	may	be	inflated	due	to	processing	delays.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew

ServerBrowserUpdate
Retrieves	the	current	list	of	games	from	the	GameSpy	master	server.

SBError	ServerBrowserUpdate(
ServerBrowser	sb,
SBBool	async,
SBBool	disconnectOnComplete,
const	unsigned	char	*	basicFields,
int	numBasicFields,
const	gsi_char	*	serverFilter);

Routine Required	Header Distribution
ServerBrowserUpdate <sb_serverbrowsing.h> SDKZIP

Return	Value

If	an	error	occurs,	a	valid	SBError	error	code	is	returned.		Otherwise,
sbe_noerror	is	returned.

Parameters

sb
[in]	ServerBrowser	object	intialized	with	ServerBrowserNew.

async
[in]	When	set	to	SBTrue	this	function	will	run	in	non-blocking	mode.

disconnectOnComplete
[in]	When	set	to	SBTrue	this	function	will	terminate	the	connection
with	the	GameSpy	master	after	the	download	is	complete.

basicFields
[in]	A	byte	array	of	basic	field	identifiers	to	retreive	for	each	server.	
See	remarks.

numBasicFields
[in]	The	number	of	valid	fields	in	the	basicFields	array.

serverFilter
[in]	SQL	like	string	used	to	remove	unwanted	servers	from	the
downloaded	list.

Remarks

The	ServerBrowserUpdate	function	retrieves	the	current	list	of	servers
registered	with	the	GameSpy	master	server.	As	each	server	entry	is
received,	one	corresponding	call	to	the	SBCallback	function	will	be	made
with	the	status	sbc_serveradded.

Unicode	Mappings

Routine GSI_UNICODE	Not
Defined

GSI_UNICODE
Defined

ServerBrowserUpdate ServerBrowserUpdateA ServerBrowserUpdateW

ServerBrowserUpdateW	and	ServerBrowserUpdateA	are	UNICODE
and	ANSI	mapped	versions	of	ServerBrowserUpdate.	The	arguments	of
ServerBrowserUpdateA	are	ANSI	strings;	those	of
ServerBrowserUpdateW	are	wide-character	strings.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew,	ServerBrowserLANUpdate

Server	Browsing	SDK	Callbacks
SBConnectToServerCallback

The	callback	provided	to
ServerBrowserConnectToServer.	Gets
called	when	the	state	of	the	connect
attempt	changes.

SBServerKeyEnumFn
Callback	function	used	for	enumerating	the
keys/values	for	a	server

ServerBrowserCallback
The	callback	provided	to
ServerBrowserNew.	Gets	called	as	the
Server	Browser	updates	the	server	list.

SBConnectToServerCallback
The	callback	provided	to	ServerBrowserConnectToServer.	Gets	called
when	the	state	of	the	connect	attempt	changes.

typedef	void	(*SBConnectToServerCallback)(
ServerBrowser	sb,
SBConnectToServerState	state,
SOCKET	gameSocket,
struct	sockaddr_in	*	remoteaddr,
void	*	instance);

Routine Required	Header Distribution
SBConnectToServerCallback <sb_serverbrowsing.h> SDKZIP

Parameters

sb
[in]	The	ServerBrowser	object	the	callback	is	referring	to.

state
[in]	The	state	of	the	connect	attempt.

gameSocket
[in]	A	UDP	socket,	ready	for	use	to	communicate	with	the	server.

remoteaddr
[in]	The	address	of	the	server.

instance
[in]	User	provided	data.

Remarks

"instance"	is	any	game-specific	data	you	want	passed	to	the	callback
function.	For	example,	you	can	pass	a	structure	pointer	or	object	pointer
for	use	within	the	CallBack.	If	you	can	access	any	needed	data	within	the
CallBack	already,	then	you	can	just	pass	NULL	for	"instance".

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserConnectToServer

SBServerKeyEnumFn
Callback	function	used	for	enumerating	the	keys/values	for	a	server.

typedef	void	(*SBServerKeyEnumFn)(
gsi_char	*	key,
gsi_char	*	value,
void	*	instance);

Routine Required	Header Distribution
SBServerKeyEnumFn <sb_serverbrowsing.h> SDKZIP

Parameters

key
[in]	The	enumerated	key.

value
[in]	The	enumerated	value.

instance
[in]	User	provided	data.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	SBServerEnumKeys

ServerBrowserCallback
The	callback	provided	to	ServerBrowserNew.	Gets	called	as	the	Server
Browser	updates	the	server	list.

typedef	void	(*ServerBrowserCallback)(
ServerBrowser	sb,
SBCallbackReason	reason,
SBServer	server,
void	*	instance);

Routine Required	Header Distribution
ServerBrowserCallback <sb_serverbrowsing.h> SDKZIP

Parameters

sb
[in]	The	ServerBrowser	object	the	callback	is	referring	to.

reason
[in]	The	reason	for	being	called.	See	SDK	Doc	for	more	info.

server
[in]	The	server	that	is	being	referred	to.

instance
[in]	User	provided	data.

Remarks

"instance"	is	any	game-specific	data	you	want	passed	to	the	callback
function.	For	example,	you	can	pass	a	structure	pointer	or	object	pointer
for	use	within	the	CallBack.	If	you	can	access	any	needed	data	within	the
CallBack	already,	then	you	can	just	pass	NULL	for	"instance".

Example

Your	callback	function	should	look	something	like:

void	SBCallback(ServerBrowser	sb,	SBCallbackReason	reason,	SBServer	server,	void	*instance)

{

CMyGame	*g	=	(CMyGame	*)instance;

switch	(reason)

{

case	sbc_serveradded	:

	 g->ServerView->AddServerToList(server);

	 break;

case	sbc_serverupdated	:	

	 g->ServerView->UpdateServerInList(server);

break;

case	sbc_updatecomplete:

	 g->ServerView->SetStatus("Update	Complete");

	 break;

case	sbc_queryerror:

g->ServerView->SetStatus("Query	Error	Occurred:",	

ServerBrowserListQueryError(sb));

	 break;

}

}

Example	use	of	the	Callback:

int	CMyGame::OnMultiplayerButtonClicked(…)

{

				m_ServerBrowser	=	ServerBrowserNew(“mygame”,	”mygame”,	”123456”,	0,	10,

																																																																QVERSION_QR2,	SBCallBack,	this);

}

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserNew

Server	Browsing	SDK	Enumerations
SBBool

Standard	Boolean.

SBCallbackReason
Callbacks	that	can	occur	during	server
browsing	operations.

SBCompareMode
Comparision	types	for	the	ServerBrowserSort
function.

SBConnectToServerState
States	passed	to	the
SBConnectToServerCallback.

SBError
Error	codes	that	can	be	returned	from	Server
Browsing	functions.

SBState
States	the	ServerBrowser	object	can	be	in.

SBBool
Standard	Boolean.

typedef	enum	
{

SBFalse,				
SBTrue				

}	SBBool;

Constants

SBFalse
False.

SBTrue
True.

Section	Reference:	Gamespy	Server	Browsing	SDK

SBCallbackReason
Callbacks	that	can	occur	during	server	browsing	operations.

typedef	enum	
{

sbc_serveradded,				
sbc_serverupdated,				
sbc_serverupdatefailed,				
sbc_serverdeleted,				
sbc_updatecomplete,				
sbc_queryerror,				
sbc_serverchallengereceived				

}	SBCallbackReason;

Constants

sbc_serveradded
A	server	was	added	to	the	list,	may	just	have	an	IP	&	port	at	this
point.

sbc_serverupdated
Server	information	has	been	updated	-	either	basic	or	full	information
is	now	available	about	this	server.

sbc_serverupdatefailed
An	attempt	to	retrieve	information	about	this	server,	either	directly	or
from	the	master,	failed.

sbc_serverdeleted
A	server	was	removed	from	the	list.

sbc_updatecomplete
The	server	query	engine	is	now	idle.

sbc_queryerror
The	master	returned	an	error	string	for	the	provided	query.

sbc_serverchallengereceived
Prequery	ip	verification	challenge	was	received.	(Informational,	no
action	required.).

Section	Reference:	Gamespy	Server	Browsing	SDK

SBCompareMode
Comparision	types	for	the	ServerBrowserSort	function.

typedef	enum	
{

sbcm_int,				
sbcm_float,				
sbcm_strcase,				
sbcm_stricase				

}	SBCompareMode;

Constants

sbcm_int
Assume	the	values	are	int,	and	do	an	integer	compare.

sbcm_float
Assume	the	values	are	float,	and	do	a	float	compare.

sbcm_strcase
Assume	the	values	are	strings,	and	do	a	case-sensitive	compare.

sbcm_stricase
Assume	the	values	are	strings,	and	do	a	case-insensitive	compare.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserSort

SBConnectToServerState
States	passed	to	the	SBConnectToServerCallback.

typedef	enum	
{

sbcs_succeeded,				
sbcs_failed				

}	SBConnectToServerState;

Constants

sbcs_succeeded
Connected	to	server	successfully.

sbcs_failed
Failed	to	connect	to	server.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserState

SBError
Error	codes	that	can	be	returned	from	Server	Browsing	functions.

typedef	enum	
{

sbe_noerror,				
sbe_socketerror,				
sbe_dnserror,				
sbe_connecterror,				
sbe_dataerror,				
sbe_allocerror,				
sbe_paramerror				

}	SBError;

Constants

sbe_noerror
No	error	has	occurred.

sbe_socketerror
A	socket	function	has	returned	an	unexpected	error.

sbe_dnserror
DNS	lookup	of	master	address	failed.

sbe_connecterror
Connection	to	master	server	failed.

sbe_dataerror
Invalid	data	was	returned	from	master	server.

sbe_allocerror
Memory	allocation	failed.

sbe_paramerror
An	invalid	parameter	was	passed	to	a	function.

Section	Reference:	Gamespy	Server	Browsing	SDK

SBState
States	the	ServerBrowser	object	can	be	in.

typedef	enum	
{

sb_disconnected,				
sb_listxfer,				
sb_querying,				
sb_connected				

}	SBState;

Constants

sb_disconnected
Idle	and	not	connected	to	the	master	server.

sb_listxfer
Downloading	list	of	servers	from	the	master	server.

sb_querying
Querying	servers.

sb_connected
Idle	but	still	connected	to	the	master	server.

Section	Reference:	Gamespy	Server	Browsing	SDK

See	Also:	ServerBrowserState

Transport	2	SDK
Overview

The	GameSpy	Transport	SDK	2	(GT2)	is	a	library	that	allows	two
applications	to	communicate	over	the	Internet,	making	use	of	UDP	for
both	reliable	and	unreliable	messaging.	It	can	be	used	to	write	any	sort	of
networked	application,	including	both	peer-to-peer	and	dedicated	server
games.	Someone	with	little	or	no	networking	experience	can	easily	learn
GT2,	without	having	to	learn	all	the	complexities	of	Sockets/Winsock,	and
without	having	to	deal	with	all	the	overhead	involved	in	DirectPlay.

GT2	is	basic	enough	to	be	easily	and	quickly	added	to	an	application,
while	also	being	powerful	and	flexible	enough	to	fit	within	virtually	any
networking	architecture.	And,	because	GT2	is	at	a	lower	level	than
something	like	DirectPlay,	it	is	extremely	efficient	in	its	use	of	memory,
bandwidth,	and	processor	time.	So,	GT2	delivers	optimal	performance,	in
a	simple	API,	while	avoiding	the	hidden	traps	involved	in	low	level
libraries	such	as	Sockets/Winsock	and	cutting	out	the	overhead	and	loss
of	flexibility	that	comes	with	a	higher	level	library	such	as	DirectPlay.

The	SDK	is	written	in	standard	ANSI	C	and	has	been	tested	on	Win32,
Unix,	Mac,	and	consoles.	The	library	has	been	designed	to	be	easy	to
use,	fast,	and	memory	efficient	(particularly	useful	on	console	systems
with	tight	memory	requirements).	Just	include	all	of	the	source	files	in
your	project,	and	you	can	start	easily	communicating	over	the	Internet.

The	SDK	also	includes	five	samples.	gt2testc	is	a	simple	ANSI	C	sample
that	is	good	for	testing	without	a	graphical	interface	(e.g.,	on	a	console),
gt2test	is	a	Windows	MFC	sample	that	is	good	for	testing	all	the	various
features	of	GT2,	gt2proxy	is	a	GT2	proxy,	gt2hostmig	shows	host
migration	using	GT2	and,	optionally,	the	Query	&	Reporting	SDK,	and
gt2action	is	a	sample	game	that	uses	GT2	for	it's	networking.

The	rest	of	this	document	presents	a	simple	set	of	instructions	for	using
GT2.	See	the	reference	documentation	for	more	detailed	information	on
each	function.

File
gt2.h

gt2Main.c,h

gt2Auth.c,h

gt2Buffer.c,h

gt2Callback.c,h

gt2Connection.c,h

gt2Encode.c,h

gt2Filter.c,h

gt2Message.c,h

gt2Socket.c,h

gt2Utility.c,h

nonport.c,h

darray.c,h

hastable.c,h

/gt2testc/

/gt2test/

/gt2proxy/

/gt2hostmig/

/gt2nat/

File	Manifest

The	following	files	should	be	included	with	this	package.	If	any	of	the	files
are	missing,	please	contact	devsupport@gamespy.com.

Description
GT2	header	(all	user	functions	are	prototyped

here)

The	main	entry	point	for	most	GT2	functionality

This	code	deals	with	authentication	during
connection	negotiation

Code	that	deals	with	reading/writing	from	buffers

Code	for	calling	callbacks

This	code	manages	GTConnection	objects

Sub-library	for	encoding/decoding	messages	in	a
binary	format

This	code	manages	filtering

Code	for	sending	and	receiving	messages

This	code	manages	GTSocket	objects

Code	for	various	utility	functions	such	as	the
address	functions

Platform-specific	code

Code	for	managing	dynamic	arrays

Code	for	managing	hashtables

ANSI-C	sample

Windows	MFC	sample

GT2	Proxy	Sample

GT2	Host-migration	sample

GT2	Socket	Sharing	sample.	The	GT2Socket's
underlying	socket	is	also	used	to	do	server	reporting	through	the

mailto:devsupport@gamespy.com

/gt2action/
GameSpy	Query	and	Reporting	SDK

A	real-time	multiplayer	game	that	uses	GT.

GT2Action	requires	GLUT,	a	ccross-platform	utility	library	that	provides
windowing	for	OpenGL	applications.	The	officla	GLUT	site	is
http://www.opengl.org/developers/documentation/glut.html.	GLUT	for
Windows	is	available	at	http://www.xmission.com/~nate/glut.html.

http://www.opengl.org/developers/documentation/glut.html
http://www.xmission.com/~nate/glut.html

Implementation

Sockets	and	Connections

There	are	just	two	object	types	used	by	GT2:	GT2Socket	and
GT2Connection.	A	GT2Socket	object	("socket")	represents	a	UDP
socket	on	the	local	machine,	and	a	GT2Connection	object
("connection")	represents	a	connection,	or	link,	between	two
GT2Socket's	(in	other	words,	two	applications).	For	most	applications,
only	one	socket	needs	to	be	created.	All	incoming	connections	can	be
accepted	on	the	socket,	and	all	outgoing	connections	can	be	made	using
the	socket.

Thinking

In	order	for	GT2	to	do	necessary	processing	on	sockets	and	connections,
the	program	must	allow	it	to	frequently	"think".	This	is	done	by	calling
gt2Think,	which	will	process	the	socket	that	is	passed	to	it,	along	with
all	of	that	socket's	connections.	Within	gt2Think,	GT2	will	check	for
new	incoming	connections	on	sockets	that	are	listening	for	connections,
do	any	negotiationing	needed	for	pending	connections,	check	for
incoming	data	on	connections,	check	for	closed	connections,	and	send
any	data	buffered	for	a	connection.

Internet	Addresses

When	creating	a	socket	you	can	optionally	specify	the	IP/hostname
and/or	port	to	use	on	the	local	machine.	You	also	must	specify	the	IP	and
port	of	the	remote	system	being	connected	to	when	initiating	a
connection.	These	addresses	are	specified	as	strings	of	the	form	"[IP	|
hostname][:port]".	In	other	words,	if	there	is	a	colon	in	the	string,	the	part
before	the	colon	is	the	IP/hostname,	and	the	part	after	the	colon	is	the
port.	If	there	is	no	colon,	then	the	whole	string	is	the	IP/hostname.	When
specifying	a	local	address,	both	the	IP/hostname	and	port	are	optional.	If
the	IP	is	not	present,	then	no	local	IP	will	be	bound	to.	If	the	port	is	not
present,	then	the	system	will	pick	an	available	port	to	bind	to.	The	utility
functions	gt2AddressToString	and	gt2StringToAddress	are
provided	to	allow	for	conversion	from	a	string	to	an	IP	and	port,	and	vice

versa.

Byte	Order

Because	the	order	of	the	bytes	inside	a	multi-byte	variable	(such	as	an	int
or	a	short)	can	vary	from	system	to	system,	there	is	the	concept	of	a
"network	byte	order"	and	a	"host	byte	order".	The	host	byte	order	is	the
byte	ordering	scheme	use	on	the	local	machine,	and	network	byte	order
is	the	byte	ordering	scheme	that	is	the	standard	for	networking	and,
specifically,	the	Internet.	In	several	GT2	functions	and	callbacks,	an	IP
address	and	port	number	are	passed	around.	Whenever	GT2	deals	with
an	IP	address,	it	passes	it	or	expects	it	in	NETWORK	byte	order,	and
whenever	GT2	deals	with	a	port,	it	passes	it	or	expects	it	in	HOST	byte
order.

The	reason	network	byte	ordering	is	used	for	IP	addresses	is	that	this	is
the	standard	used	by	the	sockets/Winsock	functions,	and	this	ensures
that	the	first	byte	pointed	to	is	the	first	number	in	the	dotted	IP,	the
second	byte	is	the	second	number,	and	so	on.	The	reason	host	byte
ordering	is	used	for	port	numbers	is	that	this	enables	the	application	to
pass	port	numbers	directly	between	it's	interface	and	GT2,	or	hardcode	in
a	port	number	(for	example	with	a	define),	without	having	to	do	any	byte
order	conversions.

Byte	ordering	must	also	be	taken	into	consideration	when	sending	multi-
byte	variables	in	GT2	messages.	The	safest	way	to	send	an	int	or	a	short
is	to	use	the	GT2	byte	ordering	functions	to	convert	the	numbers	to
network	byte	order	when	sending	them,	then	converting	them	back	to
host	byte	order	when	they	are	received.	This	allows	one	code	path	to
handle	sending	data	between	machines	that	use	either	the	same	or
different	byte	ordering	schemes.

AdHoc	Support

AdHoc	is	supported	in	order	to	allow	developers	to	write	to	a	common
layer	for	both	adhoc	and	infrastructure	modes	on	a	hand	held	console.
Adhoc	support	is	provided	through	an	adhoc	specific	gt2CreateSocket
function,	gt2CreateAdHocSocket.	AdHoc	sockets	use	MAC
addresses	instead	of	IP	addresses	to	determining	end	points.	Two

functions	gt2IpToMac	and	gt2MacToIP	are	used	to	convert	back	and
forth	between	MAC	addresses	and	IPs.	GT2	stores	internally	a	table	to
convert	fully	back	to	48	bit	mac	from	a	32	bit	IP.	Always	call	gt2MacToIP
when	dealing	with	a	new	MAC	address,	as	this	the	address	into	the	table.
Aside	from	that,	gt2	is	used	entirely	the	same	as	in	infrastructure	(regular
IP)	mode.	

Sockets

A	socket	is	an	endpoint	on	the	local	machine	that	allows	an	application	to
communicate	with	other	applications	(through	their	own	sockets)	that	are
typically	on	remote	machines,	although	they	can	also	be	on	the	local
machine	(the	other	application	will	often	be	referred	to	as	the	"remote
machine",	even	though	technically	it	may	be	the	same	machine).	A	single
socket	allows	an	application	to	both	accept	connections	from	remote
machines	and	make	connections	to	remote	machines.	For	most
applications,	only	one	socket	needs	to	be	created.	All	incoming
connections	can	be	accepted	on	the	socket,	and	all	outgoing	connections
can	be	made	using	the	socket.

A	socket	is	created	with	the	gt2CreateSocket	function.	If	the	function
returns	GT2Success	then	the	socket	was	successfully	created	and
bound	to	the	local	address	(if	one	was	provided).	The	socket	that	the
"socket"	parameter	points	to	is	valid	until	it	is	closed	with
gt2CloseSocket,	or	an	error	is	reported	to	the
gt2SocketErrorCallback	callback	parameter.	It	is	now	ready	to	be
used	for	making	outgoing	connections,	and	can	be	readied	for	allowing
incoming	connections	by	calling	gt2Listen	(see	below).	If	the	return
result	is	anything	other	than	GT2Success,	GT2	was	unable	to	create	the
socket.

GT2Result	gt2CreateSocket

(

	 GT2Socket	*	socket,

	 const	char	*	localAddress,

	 int	outgoingBufferSize,

	 int	incomingBufferSize,

	 gt2SocketErrorCallback	callback

);

socket

This	is	a	pointer	to	a	GT2Socket	variable	where	the	socket	will	be
stored.

localAddress

This	is	the	address	to	bind	to	locally.	Typically	of	the	form	":<port>",
e.g.,	":7777".	Can	be	NULL	or	"".

outgoingBufferSize

This	is	the	byte	size	of	the	buffer	for	reliable	outgoing	messages.

This	is	a	per-connection	buffer.	Can	be	0	to	use	the	internal	default.
incomingBufferSize

This	is	the	byte	size	of	the	buffer	for	out-of-order	reliable	incoming
messages.

This	is	a	per-connection	buffer.	Can	be	0	to	use	the	internal	default.
callback

This	callback	is	called	if	there	is	a	fatal	error	with	the	socket.

gt2SocketErrorCallback

This	callback	is	used	to	notify	the	application	of	a	closed	socket	or	fatal
socket	error	condition.	Once	this	callback	returns,	the	socket	and	all	of	its
connections	are	invalid	and	can	no	longer	be	used.

typedef	void	(*	gt2SocketErrorCallback)

(

	 GT2Socket	socket

);

socket

The	socket	that	had	the	error

gt2CloseSocket

This	function	is	used	to	close	a	socket	and	any	of	its	connections.	Neither
the	socket	nor	any	of	its	connections	can	be	used	once	this	call	returns.
The	socket's	will	all	be	hard-closed	(see	gt2CloseConnectionHard).

void	gt2CloseSocket

(

	 GT2Socket	socket

);

socket

The	socket	to	be	closed.

gt2Think

Does	any	thinking	for	this	socket	and	its	connections.	Callbacks	are
typically	called	from	within	this	function	(although	they	can	also	be	called
from	other	places).	It	is	possible	that	during	this	think	the	socket	or	any	of
its	connections	may	be	closed,	so	care	must	be	taken	if	calling	other	GT2
functions	immediately	after	thinking.	The	more	frequently	this	function	is
called,	the	faster	GT2	will	be	able	to	respond	(and	reply	to)	messages.
The	general	rule	is	to	call	it	at	frequently	as	you	can,	although	calling	it
faster	than	every	10-20	milliseconds	is	probably	unnecessary.	If	you	are
using	gt2Ping	to	measure	ping	times,	then	the	accuracy	of	the	latency
measurement	will	increase	with	the	frequency	at	which	this	function	is
called.

void	gt2Think

(

	 GT2Socket	socket

);

socket

The	socket	to	let	think.

gt2Listen

If	you	want	to	be	able	to	accept	incoming	connections	from	over	the
Internet,	you	must	first	create	a	socket,	then	start	listening	on	it	with
gt2Listen.	A	gt2ConnectAttemptCallback	is	provided	to	handle
possible	incoming	connection	attempts.	As	soon	as	this	function	is	called,
the	socket	can	start	accepting	incoming	connections.	If	an	attempt	is
made	to	connect	to	this	socket	after	gt2Listen	is	called	on	it,	the
callback	will	be	called.	If	this	function	is	called	with	a	NULL	callback	the
socket	stops	listening	for	incoming	connection	attempts.

void	gt2Listen

(

	 GT2Socket	socket,

	 gt2ConnectionAttemptCallback	callback

);

socket

The	socket	to	start	listening	on.
callback

This	callback	is	called	when	an	incoming	connection	is	attempted.

Can	be	NULL	to	refuse	incoming	connection	attempts	(the	default).

gt2ConnectAttemptCallback

This	notifies	the	socket	that	a	remote	system	is	attempting	a	connection.
The	IP	and	port	of	the	remote	system	is	provided,	along	with	an	optional
initial	message,	and	a	latency	estimate.	These	can	be	used	to
validate/authenticate	the	connecting	system.	This	connection	must	either
be	accepted	with	gt2Accept,	or	rejected	with	gt2Reject.	These	can
be	called	from	within	this	callback,	however	they	do	not	need	to	be.	They
can	be	called	at	any	time	after	this	callback	is	received.	This	is	very
useful	for	systems	that	need	to	check	with	another	machine	to
authenticate	the	user	(such	as	for	a	CDKey	system).	The	latency	is	only
an	estimate,	however	it	can	be	used	for	things	such	as	only	allowing	low-
ping	or	high-ping	users	onto	a	server.

typedef	void	(*	gt2ConnectAttemptCallback)

(

	 GT2Socket	socket,

	 GT2Connection	connection,

	 unsigned	int	ip,

	 unsigned	short	port,

	 int	latency,

	 GT2Byte	*	message,

	 int	len

);	

socket

This	is	the	socket	to	which	someone	is	attempting	to	connect.
connection

This	is	the	connection	object	for	the	incoming	connection.
ip

The	IP	from	which	the	connect	attempt	is	coming.
port

The	port	from	which	the	connect	attempt	is	coming.
latency

An	estimate	of	the	round-trip	time	between	the	two	machines	(in
milliseconds).

message

Optional	initial	data	sent	with	the	connect	attempt.	May	be	NULL.
len

Length	of	the	initial	data.	May	be	0.

gt2Accept

Accepts	an	incoming	connection	attempt.	Once	this	has	been	called,	the
GT2Connection	can	be	used	normally.	The	connected	callback	member
of	the	callbacks	will	be	ignored,	as	it	is	only	used	when	initiating	a
connection.	If	this	returns	GT2False,	that	means	the	connection	was
closed	between	when	the	gt2ConnectAttemptCallback	was	called,
and	the	connection	was	accepted.	This	would	be	caused	by	a	remote
close,	or	a	time-out	if	it	took	too	long	to	accept	the	connection.	In	this

case,	the	connection	is	closed	and	cannot	be	used.

GT2Bool	gt2Accept

(

	 GT2Connection	connection,

	 GT2ConnectionCallbacks	*	callbacks

);

connection

The	connection	being	accepted
callbacks

The	set	of	callbacks	associated	with	the	connection

See	the	Connecting	section	below	for	more	information	on
GT2ConnectionCallbacks.

gt2Reject

Use	this	call	to	reject	an	incoming	connection.	An	optional	rejection
message	can	be	sent.	The	connection	is	closed	after	this	call	and	cannot
be	used.

void	gt2Reject

(

	 GT2Connection	connection,

	 const	GT2Byte	*	message,

	 int	len

);

connection

The	connection	being	rejected.
message

Rejection	message.	May	be	NULL.	Note	that	a	7	byte	header
needs	to	be	accounted	for.

len

Length	of	the	rejection	message.	May	be	0.

A	len	of	-1	is	equivalent	to	(strlen(message)	+	1)

Connecting

The	gt2Connect	function	is	used	to	initiate	a	connection	attempt	to	a
remote	socket	on	the	Internet.	After	the	remote	socket	is	contacted,	both
it	and	the	local	connector	will	authenticate	the	other	during	a	negotation
phase.	Once	the	remote	socket	accepts	the	connection	attempt,	the
connection	will	be	established.	The	connection	lasts	until	the	closed
callback	gets	called,	which	can	happen	because	one	side	closed	the
connection	with	gt2CloseConnection	(or
gt2CloseConnectionHard),	there	was	some	sort	of	error	on	the
connection,	or	the	socket	either	connection	uses	is	closed.

This	call	returns	GT2Success	if	there	are	no	problems	starting	the
connection	attempt,	otherwise	the	return	values	signals	the	reason	for	the
failure.	If	this	call	is	blocking	(blocking	set	to	GT2True),	then	the	return
value	signals	the	result	of	the	entire	connection	attempt:	GT2Success
means	the	attempt	succeeded,	any	other	value	means	it	failed.	If	the
result	is	GT2Sucess,	then	the	GT2Connection	variable	pointed	to	by
the	connection	parameter	will	be	set	to	this	connection's
GT2Connection	object.

If	this	call	is	blocking,	and	it	fails,	the	GT2ConnectionCallbacks's
connected	callback	may	or	may	not	be	called.	If	there	is	some	sort	of
initial	failure	(such	as	an	error	resolving	the	remote	address,	or	allocating
memory	for	the	connection),	the	callback	will	not	be	called.	If	it	fails	after
starting	the	negotiation	process,	then	the	callback	will	be	called.

GT2Result	gt2Connect

(

	 GT2Socket	socket,

	 GT2Connection	*	connection,

	 const	char	*	remoteAddress,

	 const	GT2Byte	*	message,

	 int	len,

	 int	timeout,

	 GT2ConnectionCallbacks	*	callbacks,

	 GT2Bool	blocking

);

socket

The	socket	to	use	to	make	the	connection	attempt.
connection

Pointer	to	the	variable	that	the	connection	object	will	be	stored	in.
remoteAddress

The	address	to	connect	to.	Must	contain	an	IP/hostname	and	port.

Typically	something	like	"myserver.someplace.com:12345"
message

Initial	message.	May	be	NULL.	Note	that	a	7	byte	header	needs	to
be	accounted	for.

len

Length	of	the	initial	message.	May	be	0.

A	len	of	-1	is	equivalent	to	(strlen(message)	+	1)

timeout

Time	in	milliseconds	to	wait	before	aborting	the	attempt.

If	0,	keep	trying	until	connected.
callbacks

The	set	of	callbacks	associated	with	the	connection.
blocking

If	GPTrue,	don't	return	until	the	attempt	has	finished	(success	or
failure).

typedef	struct

{

	 gt2ConnectedCallback	connected;

	 gt2ReceivedCallback	received;

	 gt2ClosedCallback	closed;

	 gt2PingCallback	ping;

}	GT2ConnectionCallbacks;

gt2ConnectedCallback

This	callback	is	called	when	a	connection	attempt	with	gt2Connect
finishes.	If	result	is	GT2Success,	then	this	connection	attempt
succeeded.	The	connection	object	can	now	be	used	for	sending/receiving
messages.	Any	other	result	indicates	connection	failure,	and	the
connection	object	cannot	be	used	again	after	this	callback	returns.	If	the
result	is	GT2Rejected,	then	message	contains	an	optional	rejection
message	sent	by	the	listener.	If	result	is	not	GT2Rejected,	then
message	will	be	NULL	and	len	will	be	0.

typedef	void	(*	gt2ConnectedCallback)

(

	 GT2Connection	connection,

	 GT2ConnectResult	result,

	 GT2Byte	*	message,

	 int	len

);

connection

The	connection	that	just	finished	connecting.
result

The	result	of	the	connect	attempt.	See	gt2.h	for	all	possible	values.

Anything	aside	from	GT2Success	indicates	failure.

message

If	result	is	GT2Rejected,	this	is	the	rejection	message.	May	be
NULL.

len

If	result	is	GT2Rejected,	the	length	of	the	messasge.	May	be	0.

gt2ReceivedCallback

This	callback	is	called	when	a	message	is	sent	from	the	remote	system
with	a	gt2Send.	If	the	message	is	sent	reliably,	then	it	will	always	be
received	with	this	callback.	If	it	is	not	sent	reliably,	then	the	message

might	not	arrive,	or	might	arrive	out	of	order.

typedef	void	(*	gt2ReceivedCallback)

(

	 GT2Connection	connection,

	 GT2Byte	*	message,

	 int	len,	

	 GT2Bool	reliable

);

connection

The	connection	that	received	the	message.
message

The	message	that	was	sent.	May	be	NULL.
len

The	length	of	the	message.	May	be	0
reliable

Whether	or	not	the	message	was	sent	reliably.

gt2ClosedCallback

This	callback	is	called	when	the	connection	has	been	closed,	which	can
be	caused	by	either	side	calling	gt2CloseConnection	(or
gt2CloseConnectionHard),	either	side	closing	the	socket,	or	some
sort	of	error.	The	connection	cannot	be	used	again	once	this	callback
returns.

typedef	void	(*	gt2ClosedCallback)

(

	 GT2Connection	connection,

	 GT2CloseReason	reason

);

connection

The	connection	that	was	closed.

reason

The	reason	that	the	connection	closed.	See	gt2.h	for	all	possible
values.

gt2PingCallback

This	callback	is	called	when	a	response	to	a	ping	sent	on	this	connection
is	received.	It	gives	a	measure	of	the	time	it	takes	for	a	datagram	to	make
a	round-trip	from	one	connection	to	the	other.	The	latency	reported	in	this
callback	will	typically	be	larger	than	that	reported	by	using	ICMP	pings
between	the	two	machines	(the	"ping"	program	uses	ICMP	pings),
because	ICMP	pings	happen	at	a	lower	level	in	the	operating	system.
However,	the	ping	reported	in	this	callback	will	much	more	accurately
reflect	the	latency	of	the	application,	as	the	application's	messages	must
go	through	the	same	path	as	these	pings,	as	opposed	to	ICMP.

Because	pings	are	unreliable,	a	ping	sent	with	gt2Ping	is	not
guaranteed	to	make	it	through	the	entire	round-trip.	So	not	every	call	to
gt2Ping	will	result	in	this	callback	being	called.	In	addition,	unreliable
messages	may	be	repeated	(although	this	is	a	very	rare	occurrence),
which	means	this	callback	could	be	called	multiple	times	for	a	single	call
to	gt2Ping.

typedef	void	(*	gt2PingCallback)

(

	 GT2Connection	connection,

	 int	latency

);

connection

The	connection	that	the	ping	was	sent	and	received	on.
latency

The	round-trip	time	for	the	ping,	in	milliseconds.

Sending

Once	a	connection	has	been	established,	messages	can	be	sent	back

and	forth	on	it.	To	send	a	message,	use	the	gt2Send	function.	If
message	is	NULL	or	len	is	0,	then	an	empty	message	will	be	sent.
When	an	empty	message	is	received,	message	will	be	NULL	and	len
will	be	0.	If	the	message	is	sent	reliably,	it	is	guaranteed	to	arrive,	arrive
only	once,	and	arrive	in	order	(relative	to	other	reliable	messages).	If	the
message	is	sent	unreliably,	then	it	is	not	guaranteed	to	arrive,	and	if	it
does	arrive,	it	is	not	guaranteed	to	arrive	in	order,	or	only	once.

void	gt2Send

(

	 GT2Connection	connection,

	 const	GT2Byte	*	message,

	 int	len,

	 GT2Bool	reliable

);

connection

The	connection	on	which	to	send	the	message.
message

The	message	to	send.	May	be	NULL.	Note	that	a	7	byte	header
needs	to	be	accounted	for	if	messages	are	reliable.

len

The	length	of	the	message.	May	be	0
reliable

Whether	or	not	the	message	was	sent	reliably.

Closing	Connections

There	are	two	different	ways	a	connection	can	be	closed:	they	can	be
closed	normally,	or	they	can	be	"hard"	closed.	When	a	connection	is
closed	normally,	the	connection's	state	is	set	to	closing	(i.e.,
gt2GetConnectionState	will	return	GT2Closing),	and	a	message	is
sent	to	the	remote	side	telling	it	that	the	connection	is	closing.	When
confirmation	is	received	that	the	remote	side	has	received	the	message,
the	message	is	marked	as	closed	(gt2GetConnectionState	will
return	GT2Closed),	the	connection's	closed	callback	is	called,	then	the

connection	is	freed.	Because	this	normal	method	of	closing	requires	the
closer	to	wait	for	confirmation	from	the	remote	side,	the	connection	is	not
immediately	fully	closed	or	freed.	If	the	connection	is	"hard"	closed,	then
an	(unreliable)	message	is	sent	to	the	remote	side	of	the	connection
informing	them	that	the	connection	is	closed,	the	closed	callback	is
called,	then	the	connection	is	freed.	Because	it	does	not	need	to	wait	for
confirmation,	the	connection	can	be	freed	sooner.	However,	if	the
message	informing	the	remote	side	of	the	closure	is	lost,	it	may	take	the
remote	side	some	time	to	figure	out	that	the	connection	was	closed.

The	remote	side	will	typically	find	out	either	after	trying	to	send	a
message	that	gets	rejected	locally	(because	the	recipient	has	closed),	or
when	the	remote	side's	GT2	attempts	to	send	a	keep-alive	message,
which	will	also	get	rejected	locally.	The	method	to	be	used	depends	on
the	specifics	of	your	application,	but,	in	general,	a	normal	close	should	be
used	when	possible,	as	it	will	close	the	connection	more	gracefully,
ensuring	that	both	sides	of	the	connection	know	that	the	connection	is
closed.

There	are	four	functions	that	can	be	used	for	closing	connections.	Two	of
them	do	a	normal	close,	and	the	other	two	do	a	hard	close.	Two	of	them
close	a	single	connection,	and	the	other	two	close	all	of	a	socket's
connections.	The	two	functions	that	do	hard	closes	will	call	the	closed
callback(s)	from	within	the	function,	while	the	two	that	do	normal	closes
will	call	the	callback(s)	at	some	later	time.

void	gt2CloseConnection(GT2Connection	connection);

void	gt2CloseConnectionHard(GT2Connection	connection);	

void	gt2CloseAllConnections(GT2Socket	socket);	

void	gt2CloseAllConnectionsHard(GT2Socket	socket);

connection

The	connection	to	close.
socket

Close	all	of	this	socket's	connections.

Filtering

GT2	allows	an	application	to	add	one	or	more	"filters"	to	any	connection.
These	filters	can	either	just	monitor	messages	being	sent	and	received,
or	they	can	actually	modify	the	data	before	it	gets	sent	or	received.	Any
number	of	filters	can	be	set	on	any	connection,	and	the	order	of	the
filtering	will	be	in	the	order	they	were	added	(oldest	to	newest).	A	filter	is
added	by	passing	a	callback	to	a	function	that	adds	the	callback	as	either
a	send	(gt2AddSendFilter)	or	receive	(gt2AddReceiveFilter)
filter.	Then	that	callback	will	be	called	when	a	message	is	either	sent	or
received	(depending	on	what	type	of	filter	it	is).

After	a	callback	has	been	called,	that	filter	it	is	responsible	for	letting	GT2
know	when	its	done	with	the	message.	This	is	done	by	calling	either
gt2FilteredSend	for	an	outgoing	message	or
gt2FilteredReceive	for	an	incoming	message.	The	filter	has	several
options.	If	the	filter	does	not	call	the	appropriate	function,	then	the
message	will	be	dropped	(even	if	it	was	sent/received	as	reliable).	The
filter	can	call	the	appropriate	function	from	within	the	callback	with	the
same	data	that	was	passed	into	the	callback.	This	will	cause	the
message	to	continue	without	any	modifications.	Or,	the	filter	can	call	the
appropriate	function	with	modified	data,	either	from	within	the	callback	or
at	a	later	time.

gt2SendFilterCallback/gt2ReceiveFilterCallback

These	are	the	filter	callbacks,	and	are	passed	to
gt2AddSendFilter/gt2AddReceiveFilter	to	be	added	as	filters.
The	callbacks	will	be	called	in	the	order	they	were	added.
gt2FilteredSend	or	gt2FilteredReceive	is	typically	called	in
response	to	one	of	these	callbacks,	either	from	within	the	callback,	or	at	a
later	time.	Note	that	if	called	after	the	callback	has	returned,	the	message
pointer	passed	into	the	callback	may	no	longer	be	valid.	So	if	the
message	will	be	needed	after	the	callback	has	returned,	the	data	must	be
copied	off.

typedef	void	(*	gt2SendFilterCallback)

(

	 GT2Connection	connection,

	 int	filterID,

	 const	GT2Byte	*	message,

	 int	len,

	 GT2Bool	reliable

);

typedef	void	(*	gt2ReceiveFilterCallback)

(

	 GT2Connection	connection,

	 int	filterID,

	 GT2Byte	*	message,

	 int	len,

	 GT2Bool	reliable

);

connection

The	connection	on	which	the	message	is	being	sent	or	was
received.

filterID

The	filterID	for	this	callback.

Must	be	passed	to	gt2FilteredSend/gt2FilteredReceive.

Message

The	message	that	was	sent/received.	May	be	NULL.

Note	that	for	send,	this	is	conts.	but	not	receive.
len

The	length	of	the	message.	May	be	0.
reliable

Whether	or	not	the	message	was	sent	or	is	being	sent	reliably.

gt2AddSendFilter/gt2AddReceiveFilter

These	function	are	used	to	add	a	filter	callback	to	the	connection's	filter
list.	The	callback	will	get	called	with	a	message	is	either	being	sent	or
has	been	received.	Callbacks	will	be	called	in	the	order	they	were	added
to	the	connection's	filter	list.	These	functions	return	GT2False	if	they
were	unable	to	add	the	filter	to	the	list	for	any	reason.

GT2Bool	gt2AddSendFilter

(

	 GT2Connection	connection,

	 gt2SendFilterCallback	callback

);

GT2Bool	gt2AddReceiveFilter

(

	 GT2Connection	connection,

	 gt2ReceiveFilterCallback	callback

);

connection

The	connection	on	which	the	filter	is	being	added.
callback

The	callback	to	add	to	the	filter	list.

gt2RemoveSendFilter/gt2RemoveReceiveFilter

These	functions	are	used	to	remove	a	filter	callback	from	a	connection's
filter	list.	Filters	should	NOT	be	removed	while	a	message	is	being
filtered.	If	any	are,	filters	could	be	skipped,	or	messages	could	be
dropped.	If	the	callback	is	NULL,	all	of	the	send	or	receive	filters	will	be
removed.

void	gt2RemoveSendFilter

(

	 GT2Connection	connection,

	 gt2SendFilterCallback	callback

);

void	gt2RemoveReceiveFilter

(

	 GT2Connection	connection,

	 gt2ReceiveFilterCallback	callback

);

connection

The	connection	on	which	the	filter	is	being	removed.
callback

The	callback	to	remove	from	the	filter	list.

gt2FilteredSend/gt2FilteredReceive

These	functions	are	used	to	pass	on	a	message	after	a	filter	callback	has
been	called.	This	will	cause	the	message	to	either	be	passed	to	the	next
filter	or,	if	this	was	the	last	filter,	to	be	sent	or	received.	If	this	is	called
from	the	filter	callback,	the	message	passed	in	can	be	the	same
message	that	was	passed	into	the	callback.

void	gt2FilteredSend

(

	 GT2Connection	connection,

	 int	filterID,

	 const	GT2Byte	*	message,

	 int	len,

	 GT2Bool	reliable

);

void	gt2FilteredReceive

(

	 GT2Connection	connection,

	 int	filterID,

	 GT2Byte	*	message,

	 int	len,

	 GT2Bool	reliable

);

connection

The	connection	on	which	the	message	is	being	filtered.
filterID

This	must	be	the	same	ID	passed	to	the	filter	callback.
Message

The	message	being	sent/received.	May	be	NULL.	Note	that	a	7
byte	header	needs	to	be	accounted	for	when	sending	a	reliable

message.

Note	that	for	send,	this	is	conts.	but	not	receive.
len

The	length	of	the	message.	May	be	0.
reliable

For	sending,	this	determines	if	the	message	should	be	sent
reliably.

For	receiving,	this	determines	if	the	message	was	received	reliably.

This	value	does	not	need	to	be	the	same	value	passed	to	the	filter.

Encode/Decode

GT2	comes	with	an	encode/decode	sub-library	that	allows	messages	to
be	encoded	with	a	format	string	into	an	array	of	bytes.	For	example,	if	a
message	consists	of	an	int,	a	short,	and	a	float,	one	function	call	can
encode	them	into	a	12	byte	buffer	(2	bytes	for	the	message	type,	4	for
the	int,	2	for	the	short,	and	4	for	the	float).	This	array	of	bytes	can	then	be
sent	as	a	regular	GT2	message.	On	the	other	end	of	the	connection,	the
message	type	can	then	be	checked	with	gtEncodedMessageType.	Once
the	correct	type	is	determined,	one	function	call	can	decode	the	12	byte
buffer	into	the	original	int,	short,	and	float.

Format	String

The	format	string	used	by	the	encoding	function	is	simply	a	list	of
characters	that	signal	what	variable	types	are	being	encoded.	For	the	full
list	of	types,	see	gt2Encode.h.	A	sample	format	string	for	encoding	an	int,
a	short,	a	float,	then	a	string	would	look	like	"iofs".	GT2	supports
encoding	most	of	the	standard	C	data	types,	regular	C	strings,	wide
strings,	a	"raw"	array	of	bytes,	and	bits.	If	bits	are	adjacent	in	a	format
string,	then	they	will	be	packed	together.

gtEncodedMessageType

This	function	is	used	to	determine	the	type	of	an	encoded	message
stored	in	a	buffer	(such	as	a	buffer	passed	to	a

gt2ReceivedCallback.

GTMessageType	gtEncodedMessageType

(

	 char	*	inBuffer

);

inBuffer

The	buffer/message	from	which	to	get	the	type.

gtEncode[NoType[V]

These	functions	are	used	to	encode	the	message.	They	take	a	format
string,	a	buffer	to	encode	into,	a	buffer	size,	and	then	all	of	the
parameters	to	be	encoded.	For	gtEncode	and	gtEncodeNoType,	the
parameters	are	passed	on	the	end	of	the	function,	and	for	gtEncodeV
and	gtEncodeNoTypeV,	the	parameters	are	passed	in	as	an	args	list.
gtEncode	and	gtEncodeV	take	a	message	type	to	encode	at	the	start
of	the	buffer,	while	gtEncodeNoType	and	gtEncodeNoTypeV	do	not
encode	a	type.	This	can	be	used	for	messages	that	have	an	unknown
number	of	arguments.	The	first	part	of	the	message	is	encoded	with	a
type,	and	it	also	contains	information	that	lets	the	other	end	of	the
connection	know	what	the	rest	of	the	message	will	look	like.	Then	the
rest	of	the	message	is	encoded	without	a	type.	These	functions	return	the
number	of	bytes	written	to	the	buffer,	or	-1	if	there	is	not	enough	space	in
the	buffer	to	encode	the	entire	message.

int	gtEncode

(

	 GTMessageType	msgType,

	 const	char	*	fmtString,

	 char	*	outBuffer,

	 int	outLength,

	 ...

);

int	gtEncodeV

(

	 GTMessageType	msgType,

	 const	char	*	fmtString,

	 char	*	outBuffer,

	 int	outLength,

	 va_list	*	args

);	

int	gtEncodeNoType

(

	 const	char	*	fmtString,

	 char	*	outBuffer,

	 int	outLength,

	 ...

);

int	gtEncodeNoTypeV

(

	 const	char	*	fmtString,

	 char	*	outBuffer,

	 int	outLength,

	 va_list	*	args

);

msgType

The	type	to	encode	in	the	message.
fmtString

The	format	string	that	determines	how	the	message	is	encoded.
outBuffer

The	buffer	to	encode	into.
outLength

The	length	of	the	outBuffer.
../args

The	arguments	that	are	encoded	into	the	buffer	according	to	the
format	string.

gtDecode[NoType][V]

These	functions	are	used	to	decode	an	encoded	message.	They	take	a

format	string,	a	buffer	to	decode	from,	a	buffer	size,	and	then	a	set	of
parameters	to	decode	into	(as	with	the	scanf	functions).	For	gtDecode
and	gtDecodeNoType,	the	parameters	are	passed	on	the	end	of	the
function,	and	for	gtDecodeV	and	gtDecodeNoTypeV,	the	parameters
are	passed	in	as	an	args	list.	gtDecode	and	gtDecodeV	will	skip	over	a
2	bytes	message	type	at	the	start	of	the	buffer,	while	gtDecodeNoType
and	gtDecodeNoTypeV	do	not	skip	anything.	This	can	be	used	for
messages	that	have	an	unknown	number	of	arguments.	First	the
message	type	is	checked	with	gtEncodedMessageType,	and	the	first
part	of	the	message	decoded	with	gtDecode	or	gtDecodeV.	This	part	of
the	message	can	then	be	used	to	determine	the	format	of	the	rest	of	the
message,	which	can	then	be	decoded	with	one	or	more	calls	to
gtDecodeNoType	or	gtDecodeNoTypeV.	These	functions	return	the
number	of	bytes	read	from	the	buffer,	or	-1	if	there	was	a	problem	with
the	buffer.

int	gtDecode

(

	 const	char	*	fmtString,

	 char	*	inBuffer,

	 int	inLength,

	 ...

);

int	gtDecodeV

(

	 const	char	*	fmtString,

	 char	*	inBuffer,

	 int	inLength,

	 va_list	*	args

);	

int	gtDecodeNoType

(

	 const	char	*	fmtString,

	 char	*	inBuffer,

	 int	inLength,

	 ...

);

int	gtDecodeNoTypeV

(

	 const	char	*	fmtString,

	 char	*	inBuffer,

	 int	inLength,

	 va_list	*	args

);

fmtString

The	format	string	that	determines	how	the	message	is	decoded.
inBuffer

The	buffer	to	decode	from.
inLength

The	length	of	the	decode	buffer.
../args

The	decoded	message	parameters	are	stored	in	these	arguments.

Socket	Sharing

GT2	allows	for	a	GT2Socket	object	to	share	its	underlying	socket,	which
allows	it	to	be	used	for	multiple	purposes,	such	as	using	the	socket	for
both	GT2	and	the	GameSpy	Query	and	Reporting	SDK.	The
documentation	below	covers	how	the	socket	can	be	shared,	see	the
Query	and	Reporting	SDK	documentation	for	the	specifics	on	how	to
have	it	use	the	socket.

To	get	a	GT2Socket	object's	underlying	socket,	use
gt2GetSocketSOCKET.	This	socket	will	be	valid	until	either
gt2CloseSocket	is	called	with	the	GT2Socket,	or	the	GT2Socket's
gt2SocketErrorCallback	gets	called.	For	systems	where	SOCKET	is
not	natively	defined,	it	is	defined	in	nonport.h	(part	of	the	GameSpy
Common	code),	which	is	included	by	gt2.h.

SOCKET	gt2GetSocketSOCKET

(

	 GT2Socket	socket

);

socket

The	GT2Socket	for	which	to	get	the	underlying	socket.

gt2SetUnrecognizedMessageCallback

This	is	used	to	set	a	callback	to	be	called	everytime	a	socket	receives	a
message	that	it	cannot	match	up	to	an	existing	connection.	If	a
GT2Socket	object's	underlying	socket	is	being	shared,	this	allows	an
application	to	check	for	data	that	was	not	meant	for	GT2.	See	the
documentation	below	for	the	callback	for	how	to	handle	the	data.	If	the
callback	parameter	is	NULL,	then	any	previously	set	callback	will	be
removed.

void	gt2SetUnrecognizedMessageCallback

(

	 GT2Socket	socket,

	 gt2UnrecognizedMessageCallback	callback

);	

socket

This	is	the	socket	to	which	someone	is	attempting	to	connect.
callback

The	callback	to	be	called	for	unrecognized	messages.	May	be
NULL.

gtUnrecognizedMessageCallback

This	callback	is	called	whenever	a	message	is	received	that	cannot	be
matched	to	an	existing	connection.	The	application	must	determine	if	the
message	was	meant	for	it	or	not.	If	the	application	decides	to	handle	the
message,	it	should	return	GT2True	from	this	function.	This	will	tell	the
GT2Socket	to	ignore	the	message.	If	the	application	does	not	handle	the
message,	it	should	return	GT2False.	If	it	returns	GT2False,	GT2	will
send	a	message	back	to	the	machine	that	sent	the	original	message,
indicating	that	there	is	no	existing	connection	for	the	message.

typedef	GT2Bool	(*	gt2UnrecognizedMessageCallback)

(

	 GT2Socket	socket,

	 unsigned	int	ip,

	 unsigned	short	port,

	 GT2Byte	*	message,

	 int	len

);	

socket

This	is	the	GT2Socket	on	which	the	message	was	received.

ip

The	IP	the	message	came	from	(in	network	byte	order).
port

The	port	the	remote	machine	(in	host	byte	order).
message

The	message	contents.	May	be	NULL.
len

The	length	of	the	message.	May	be	0.

Transport	SDK	Functions
gt2Accept

Accepts	an	incoming	connection
attempt.

gt2AddReceiveFilter
Adds	a	filter	to	the	connection's
incoming	data	filter	list.

gt2AddressToString
Converts	an	IP	and	a	port	into	a
text	string.

gt2AddSendFilter
Adds	a	filter	to	the	connection's
outgoing	data	filter	list.

gt2CloseAllConnections
Closes	all	of	a	socket's
connections.

gt2CloseAllConnectionsHard
Does	a	hard	close	on	all	of	a
socket's	connections.

gt2CloseConnection
Starts	closing	a	connection.

gt2CloseConnectionHard
Closes	a	connection	immediately.

gt2CloseSocket
Closes	a	socket.

gt2Connect
Initiates	a	connection	between	a
local	socket	and	a	remote	socket.

gt2CreateAdHocSocket Creates	a	new	socket,	which	can
be	used	for	making	outgoing
connections	or	accepting
incoming	connections.	See
gt2CreateSocket	for	details.

gt2CreateSocket
Creates	a	new	socket,	which	can
be	used	for	making	outgoing
connections	or	accepting
incoming	connections.

gt2FilteredReceive
Called	in	response	to	a
gt2ReceiveFilterCallback	being
called.	It	can	be	called	from	within
the	callback,	or	at	any	later	time.

gt2FilteredSend
Called	in	response	to	a
gt2SendFilterCallback	being
called.	It	can	be	called	from	within
the	callback,	or	at	any	later	time.

gt2GetConnectionData
Returns	the	user	data	pointer
stored	with	this	connection.

gt2GetConnectionSocket
Returns	the	socket	which	this
connection	exists	on.

gt2GetConnectionState
Gets	the	connection's	state.

gt2GetIncomingBufferFreeSpace
Gets	the	amount	of	available
space	in	the	connection's
incoming	buffer.

gt2GetIncomingBufferSize
Gets	the	total	size	of	the
connection's	incoming	buffer.

gt2GetLastSentMessageID
Gets	the	message	id	for	the	last
reliably	sent	message.	Unreliable
messages	do	not	have	an	id.

gt2GetLocalIP
Gets	a	socket's	local	IP.

gt2GetLocalPort
Get's	a	socket's	local	port.

gt2GetOutgoingBufferFreeSpace
Gets	the	amount	of	available
space	in	the	connection's
outgoing	buffer.

gt2GetOutgoingBufferSize
Gets	the	total	size	of	the
connection's	outgoing	buffer.

gt2GetRemoteIP
Gets	the	connection's	remote	IP.

gt2GetRemotePort
Get's	the	connection's	remote
port.

gt2GetSocketData
Returns	the	user	data	pointer
stored	with	this	socket.

gt2GetSocketSOCKET
This	function	returns	the	actual
underlying	socket	for	a
GT2Socket.

gt2HostToNetworkInt
Convert	an	int	from	host	to
network	byte	order.

gt2HostToNetworkShort
Convert	a	short	from	host	to
network	byte	order.

gt2IPToAliases
Get	the	aliases	associated	with	an
IP	address.

gt2IPToHostInfo
Looks	up	DNS	host	information
based	on	an	IP.

gt2IPToHostname
Get	the	hostname	associated	with
an	IP	address.

gt2IPToIPs
Get	the	IPs	associated	with	an	IP
address.

gt2Listen
Start	(or	stop)	listening	for
incoming	connections	on	a
socket.

gt2NetworkToHostInt
Convert	an	int	from	network	to
host	byte	order.

gt2NetworkToHostShort
Convert	a	short	from	network	to
host	byte	order.

gt2Ping
Sends	a	ping	on	a	connection	in

an	attempt	to	determine	latency.

gt2Reject
Rejects	a	connection	attempt.

gt2RemoveReceiveFilter
Removes	a	filter	from	the
connection's	incoming	data	filter
list.

gt2RemoveSendFilter
Removes	a	filter	from	the
connection's	ougoing	data	filter
list.

gt2Send
Sends	data	over	a	connection,
reliably	or	unreliably.

gt2SetConnectionData
Stores	a	user	data	pointer	with
this	connection.

gt2SetReceiveDump
Sets	a	callback	to	which	all
incoming	UDP	packets	are
passed.	This	is	at	a	lower	level
than	the	filters,	can	only	be	used
for	monitoring,	and	is	designed	for
debugging	purposes.

gt2SetSendDump
Sets	a	callback	to	which	all
outgoing	UDP	packets	are
passed.	This	is	at	a	lower	level
than	the	filters,	can	only	be	used
for	monitoring,	and	is	designed	for
debugging	purposes.

gt2SetSocketData Stores	a	user	data	pointer	with
this	socket.

gt2SetUnrecognizedMessageCallback
Used	to	handle	unrecognized
messages,	usually	used	for
sharing	a	socket	with	another
SDK.

gt2StringToAddress
Converts	a	string	address,	which
is	either	a	hostname
("www.gamespy.net")	or	a	dotted
IP	("1.2.3.4")	into	an	IP	and	a	port.

gt2StringToAliases
Get	the	aliases	associated	with	a
hostname	or	dotted	IP.

gt2StringToHostInfo
Looks	up	DNS	host	information
based	on	a	hostname	or	dotted	IP.

gt2StringToHostname
Get	the	hostname	associated	with
a	hostname	or	dotted	IP.

gt2StringToIPs
Get	the	IPs	associated	with	a
hostname	or	dotted	IP.

gt2Think
Does	any	thinking	for	this	socket
and	its	connections.

gt2WasMessageIDConfirmed
Checks	if	confirmation	has	been
received	that	the	remote	end
received	a	particular	reliable

message.

gti2IpToMac
Converts	a	32	bit	IP	address	to	a
48	bit	Mac	address

gti2MacToIp
Change	mac	ethernet	to	IP
address.

gt2Accept
Accepts	an	incoming	connection	attempt.

GT2Bool	gt2Accept(
GT2Connection	connection,
GT2ConnectionCallbacks	*	callbacks);

Routine Required	Header Distribution
gt2Accept <gt2.h> SDKZIP

Return	Value

GT2False	means	the	connection	was	closed	between	when	the
gt2ConnectAttemptCallback	was	called	and	this	function	was	called.	The
connection	cannot	be	used.

Parameters

connection
[in]	The	handle	to	the	connection.

callbacks
[in]	The	set	of	callbacks	associated	with	the	connection.

Remarks

After	a	socket's	gt2ConnectAttemptCallback	has	been	called,	this
function	can	be	used	to	accept	the	incoming	connection	attempt.	It	can
be	called	from	either	within	the	callback	or	some	later	time.	As	soon	as	it
is	called	the	connection	is	active,	and	messages	can	be	sent	and
received.	The	remote	side	of	the	connection	will	have	it's	connected
callback	called	with	the	result	set	to	GT2Success.	The	callbacks	that	are
passed	in	to	this	function	are	the	same	callbacks	that	get	passed	to
gt2Connect,	with	the	exception	that	the	connected	callback	can	be
ignored,	as	the	connection	is	already	established.	If	this	function	returns
GT2True,	then	the	connection	has	been	successfully	accepted.	If	it
returns	GT2False,	then	the	remote	side	has	already	closed	the
connection	attempt.	In	that	case,	the	connection	is	considered	closed,
and	it	cannot	be	referenced	again.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2Listen,	gt2ConnectAttemptCallback,	gt2Reject

gt2AddReceiveFilter
Adds	a	filter	to	the	connection's	incoming	data	filter	list.

GT2Bool	gt2AddReceiveFilter(
GT2Connection	connection,
gt2ReceiveFilterCallback	callback);

Routine Required	Header Distribution
gt2AddReceiveFilter <gt2.h> SDKZIP

Return	Value

Returns	GT2False	if	there	was	an	error	adding	the	filter	(due	to	no	free
memory).

Parameters

connection
[in]	The	handle	to	the	connection.

callback
[in]	The	filtering	callback.

Remarks

The	callback	will	get	called	when	a	message	is	being	received.	Callbacks
will	be	called	in	the	order	they	were	added	to	the	connection's	filter	list.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2ReceiveFilterCallback,	gt2RemoveReceiveFilter,
gt2FilteredReceive

gt2AddressToString
Converts	an	IP	and	a	port	into	a	text	string.

const	char	*	gt2AddressToString(
unsigned	int	ip,
unsigned	short	port,
char	string[22]);

Routine Required	Header Distribution
gt2AddressToString <gt2.h> SDKZIP

Return	Value

The	string	is	returned.	If	the	string	paramater	is	NULL,	then	an	internal
static	string	will	be	used.	There	are	two	internal	strings	that	are	alternated
between.

Parameters

ip
[in]	IP	in	network	byte	order.	Can	be	0.

port
[in]	Port	in	host	byte	order.	Can	be	0.

string
[out]	String	will	be	placed	in	here.	Can	be	NULL.

Remarks

The	IP	must	be	in	network	byte	order,	and	the	port	in	host	byte	order.	The
string	must	be	able	to	hold	at	least	22	characters	(including	the	NUL).
"123.123.123.123:12345"
If	both	the	IP	and	port	are	non-zero,	the	string	will	be	of	the	form
"1.2.3.4:5"	("<IP>:<port>").
If	the	port	is	zero,	and	the	IP	is	non-zero,	the	string	will	be	of	the	form
"1.2.3.4"	("<IP>").
If	the	IP	is	zero,	and	the	port	is	non-zero,	the	string	will	be	of	the	form	":5"
(":<port>").
If	both	the	IP	and	port	are	zero,	the	string	will	be	an	empty	string	("").

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2StringToAddress

gt2AddSendFilter
Adds	a	filter	to	the	connection's	outgoing	data	filter	list.

GT2Bool	gt2AddSendFilter(
GT2Connection	connection,
gt2SendFilterCallback	callback);

Routine Required	Header Distribution
gt2AddSendFilter <gt2.h> SDKZIP

Return	Value

Returns	GT2False	if	there	was	an	error	adding	the	filter	(due	to	no	free
memory).

Parameters

connection
[in]	The	handle	to	the	connection.

callback
[in]	The	filtering	callback.

Remarks

The	callback	will	get	called	when	a	message	is	being	sent.	Callbacks	will
be	called	in	the	order	they	were	added	to	the	connection's	filter	list.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2SendFilterCallback,	gt2RemoveSendFilter,	gt2FilteredSend

gt2CloseAllConnections
Closes	all	of	a	socket's	connections.

void	gt2CloseAllConnections(
GT2Socket	socket);

Routine Required	Header Distribution
gt2CloseAllConnections <gt2.h> SDKZIP

Parameters

socket
[in]	The	handle	to	the	socket.

Remarks

Same	effect	as	calling	gt2CloseConnection	on	all	of	the	socket's
connections.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2CloseConnection,	gt2CloseConnectionHard,
gt2CloseAllConnectionsHard

gt2CloseAllConnectionsHard
Does	a	hard	close	on	all	of	a	socket's	connections.

void	gt2CloseAllConnectionsHard(
GT2Socket	socket);

Routine Required	Header Distribution
gt2CloseAllConnectionsHard <gt2.h> SDKZIP

Parameters

socket
[in]	The	handle	to	the	socket.

Remarks

Has	the	same	effect	as	calling	gt2CloseConnectionHard	on	all	of	the
socket's	connection.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2CloseConnection,	gt2CloseConnectionHard,
gt2CloseAllConnections

gt2CloseConnection
Starts	closing	a	connection.

void	gt2CloseConnection(
GT2Connection	connection);

Routine Required	Header Distribution
gt2CloseConnection <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

Remarks

This	function	attempts	to	synchronize	the	close	with	the	remote	side	of
the	connection.	This	means	that	the	connection	does	not	close
immediately,	and	messages	may	be	received	while	attempting	the	close.
When	the	close	is	completed,	the	connection's	closed	callback	will	be
called.	Use	gt2CloseConnectionHard	to	immediately	close	a
connection.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2CloseConnectionHard,	gt2CloseAllConnections,
gt2CloseAllConnectionsHard

gt2CloseConnectionHard
Closes	a	connection	immediately.

void	gt2CloseConnectionHard(
GT2Connection	connection);

Routine Required	Header Distribution
gt2CloseConnectionHard <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

Remarks

This	function	closes	a	connection	without	waiting	for	confirmation	from
the	remote	side	of	the	connection.	Messages	in	transit	may	be	lost.	The
connection's	closed	callback	will	be	called	from	within	this	function.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2CloseConnection,	gt2CloseAllConnections,
gt2CloseAllConnectionsHard

gt2CloseSocket
Closes	a	socket.

void	gt2CloseSocket(
GT2Socket	socket);

Routine Required	Header Distribution
gt2CloseSocket <gt2.h> SDKZIP

Parameters

socket
[in]	The	handle	to	the	socket.

Remarks

All	existing	connections	will	be	hard	closed,	as	if
gt2CloseAllConnectionsHard	was	called	for	this	socket.	All	connections
send	a	close	message	to	the	remote	side,	and	any	closed	callbacks	will
be	called	from	within	this	function.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2CreateSocket

gt2Connect
Initiates	a	connection	between	a	local	socket	and	a	remote	socket.

GT2Result	gt2Connect(
GT2Socket	socket,
GT2Connection	*	connection,
const	char	*	remoteAddress,
const	GT2Byte	*	message,
int	len,
int	timeout,
GT2ConnectionCallbacks	*	callbacks,
GT2Bool	blocking);

Routine Required	Header Distribution
gt2Connect <gt2.h> SDKZIP

Return	Value

If	blocking	is	true,	GT2Success	means	the	connect	attempt	succeeded,
and	anything	else	means	it	failed.
If	blocking	is	false,	GT2Success	means	the	connection	is	being
attempted,	and	anything	else	means	there	was	an	error	and	the	attempt
has	been	abored.

Parameters

socket
[in]	The	handle	to	the	socket.

connection
[out]	A	pointer	to	where	the	connection	handle	will	be	stored.

remoteAddress
[in]	The	address	to	connect	to.

message
[in]	An	optional	initial	message	(may	be	NULL).

len
[in]	Length	of	the	initial	message	(may	be	0,	or	-1	for	strlen)

timeout
[in]	Timeout	in	milliseconds	(may	be	0	for	infinite	retries)

callbacks
[in]	GT2Connection	related	callbacks.

blocking
[in]	If	GT2True,	don't	return	until	the	attempt	has	completed
(successfully	or	unsuccessfuly).

Remarks

The	gt2Connect	function	is	used	to	initiate	a	connection	attempt	to	a
remote	socket	on	the	Internet.	After	the	remote	socket	is	contacted,	both
it	and	the	local	connector	will	authenticate	the	other	during	a	negotation
phase.	Once	the	remote	socket	accepts	the	connection	attempt,	the
connection	will	be	established.	The	connection	lasts	until	the	closed
callback	gets	called,	which	can	happen	because	one	side	closed	the
connection	with	gt2CloseConnection	(or	gt2CloseConnectionHard),	there
was	some	sort	of	error	on	the	connection,	or	the	socket	either	connection
uses	is	closed.
This	call	returns	GT2Success	if	there	are	no	problems	starting	the
connection	attempt,	otherwise	the	return	values	signals	the	reason	for	the
failure.	If	this	call	is	blocking	(blocking	set	to	GT2True),	then	the	return
value	signals	the	result	of	the	entire	connection	attempt:	GT2Success
means	the	attempt	succeeded,	any	other	value	means	it	failed.	If	the
result	is	GT2Sucess,	then	the	gt2Connection	variable	pointed	to	by	the
connection	parameter	will	be	set	to	this	connection’s	gt2Connection
object.	If	this	call	is	blocking,	and	it	fails,	the	gt2ConnectionCallbacks’s
connected	callback	may	or	may	not	be	called.	If	there	is	some	sort	of
initial	failure	(such	as	an	error	resolving	the	remote	address,	or	allocating
memory	for	the	connection),	the	callback	will	not	be	called.	If	it	fails	after
starting	the	negotiation	process,	then	the	callback	will	be	called.	Note	that
the	7	byte	header	must	be	accounted	for	in	the	message	since	the
connection	message	is	sent	reliably.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2ConnectedCallback,	gt2ClosedCallback,
gt2CloseConnection,	gt2AddressToString

gt2CreateSocket
Creates	a	new	socket,	which	can	be	used	for	making	outgoing
connections	or	accepting	incoming	connections.

GT2Result	gt2CreateSocket(
GT2Socket	*	socket,
const	char	*	localAddress,
int	outgoingBufferSize,
int	incomingBufferSize,
gt2SocketErrorCallback	callback);

Routine Required	Header Distribution
gt2CreateSocket <gt2.h> SDKZIP

Return	Value

If	the	function	returns	GT2Success	then	the	socket	was	successfully
created.	Otherwise,	GT2	was	unable	to	create	the	socket.

Parameters

socket
[out]	Pointer	to	the	socket	handle.

localAddress
[in]	The	address	to	bind	to	locally.	Typically	of	the	form	":<port>",
e.g.,	":7777".	Can	be	NULL	or	"".

outgoingBufferSize
[in]	The	byte	size	of	the	per-connection	buffer	for	reliable	outgoing
messages.	Can	be	0	to	use	the	internal	default.

incomingBufferSize
[in]	The	byte	size	of	the	per-connection	buffer	for	out-of-order	reliable
incoming	messages.	Can	be	0	to	use	the	internal	default.

callback
[in]	The	callback	to	be	called	if	there	is	a	fatal	error	with	the	socket.

Remarks

A	socket	is	an	endpoint	on	the	local	machine	that	allows	an	application	to
communicate	with	other	applications	(through	their	own	sockets)	that	are
typically	on	remote	machines,	although	they	can	also	be	on	the	local
machine	(the	other	application	will	often	be	referred	to	as	the	"remote
machine",	even	though	technically	it	may	be	the	same	machine).	A	single
socket	allows	an	application	to	both	accept	connections	from	remote
machines	and	make	connections	to	remote	machines.	For	most
applications,	only	one	socket	needs	to	be	created.	All	incoming
connections	can	be	accepted	on	the	socket,	and	all	outgoing	connections
can	be	made	using	the	socket.	A	socket	is	created	with	the
gt2CreateSocket	function.	If	the	function	returns	GT2Success	then	the
socket	was	successfully	created	and	bound	to	the	local	address	(if	one
was	provided).	The	socket	that	the	"socket"	parameter	points	to	is	valid
until	it	is	closed	with	gt2CloseSocket,	or	an	error	is	reported	to	the
gt2SocketErrorCallback	callback	parameter.	It	is	now	ready	to	be	used
for	making	outgoing	connections,	and	can	be	readied	for	allowing
incoming	connections	by	calling	gt2Listen.	If	the	return	result	is	anything
other	than	GT2Success,	GT2	was	unable	to	create	the	socket.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2SocketErrorCallback,	gt2CloseSocket,	gt2Listen,
gt2Connect

gt2FilteredReceive
Called	in	response	to	a	gt2ReceiveFilterCallback	being	called.	It	can	be
called	from	within	the	callback,	or	at	any	later	time.

void	gt2FilteredReceive(
GT2Connection	connection,
int	filterID,
GT2Byte	*	message,
int	len,
GT2Bool	reliable);

Routine Required	Header Distribution
gt2FilteredReceive <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

filterID
[in]	The	ID	passed	to	the	gt2ReceiveFilterCallback.

message
[in]	The	message	that	was	received.	May	be	NULL.

len
[in]	The	length	of	the	message	in	bytes.	May	be	0.

reliable
[in]	True	if	this	is	a	reliable	message.

Remarks

Used	to	pass	on	a	message	after	a	filter	callback	has	been	called.	This
will	cause	the	message	to	either	be	passed	to	the	next	filter	or,	if	this	was
the	last	filter,	to	be	received.	If	this	is	called	from	the	filter	callback,	the
message	passed	in	can	be	the	same	message	that	was	passed	into	the
callback.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2ReceiveFilterCallback,	gt2AddReceiveFilter,
gt2RemoveReceiveFilter

gt2FilteredSend
Called	in	response	to	a	gt2SendFilterCallback	being	called.	It	can	be
called	from	within	the	callback,	or	at	any	later	time.

void	gt2FilteredSend(
GT2Connection	connection,
int	filterID,
GT2Byte	*	message,
int	len,
GT2Bool	reliable);

Routine Required	Header Distribution
gt2FilteredSend <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

filterID
[in]	The	ID	passed	to	the	gt2SendFilterCallback.

message
[in]	The	message	that	was	sent.	May	be	NULL.

len
[in]	The	length	of	the	message	in	bytes.	May	be	0.

reliable
[in]	True	if	this	is	a	reliable	message.

Remarks

Used	to	pass	on	a	message	after	a	filter	callback	has	been	called.	This
will	cause	the	message	to	either	be	passed	to	the	next	filter	or,	if	this	was
the	last	filter,	to	be	sent.	If	this	is	called	from	the	filter	callback,	the
message	passed	in	can	be	the	same	message	that	was	passed	into	the
callback.	Note	that	the	7	byte	header	must	be	accounted	for	in	the
message	if	the	function	sends	the	message	reliably.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2SendFilterCallback,	gt2AddSendFilter,
gt2RemoveSendFilter

gt2GetConnectionData
Returns	the	user	data	pointer	stored	with	this	connection.

void	*	gt2GetConnectionData(
GT2Connection	connection);

Routine Required	Header Distribution
gt2GetConnectionData <gt2.h> SDKZIP

Return	Value

A	pointer	to	this	connection's	user	data.

Parameters

connection
[in]	The	handle	to	the	connection.

Remarks

Each	connection	has	a	user	data	pointer	associated	with	it	that	can	be
used	by	the	application	for	any	purpose.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2SetSocketData,	gt2GetSocketData,	gt2SetConnectionData

gt2GetConnectionSocket
Returns	the	socket	which	this	connection	exists	on.

GT2Socket	gt2GetConnectionSocket(
GT2Connection	connection);

Routine Required	Header Distribution
gt2GetConnectionSocket <gt2.h> SDKZIP

Return	Value

The	socket	on	which	the	connection	was	created	or	accepted.

Parameters

connection
[in]	The	handle	to	the	connection.

Remarks

All	connections	are	created	through	either	gt2Connect	or
gt2ConnectAttemptCallback.	This	function	will	return	the	socket
associated	with	the	connection.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2Connect,	gt2ConnectAttemptCallback

gt2GetConnectionState
Gets	the	connection's	state.

GT2ConnectionState	gt2GetConnectionState(
GT2Connection	connection);

Routine Required	Header Distribution
gt2GetConnectionState <gt2.h> SDKZIP

Return	Value

GT2Connecting,	GT2Connected,	GT2Closing,	or	GT2Closed

Parameters

connection
[in]	The	handle	to	the	connection.

Remarks

A	connection	is	either	connecting,	connected,	closing,	or	closed.
GT2Connecting	-	the	connection	is	still	being	negotiated
GT2Connected	-	the	connection	is	active	(has	successfully	connected,
and	not	yet	closing)
GT2Closing	-	the	connection	is	in	the	process	of	closing	(sent	a	close
message	and	waiting	for	confirmation)
GT2Closed	-	the	connection	has	already	been	closed	and	will	soon	be
freed.

Section	Reference:	Gamespy	Transport	SDK

gt2GetIncomingBufferFreeSpace
Gets	the	amount	of	available	space	in	the	connection's	incoming	buffer.

int	gt2GetIncomingBufferFreeSpace(
GT2Connection	connection);

Routine Required	Header Distribution
gt2GetIncomingBufferFreeSpace <gt2.h> SDKZIP

Return	Value

The	size	in	bytes	of	the	free	space	in	the	connection's	incoming	buffer.

Parameters

connection
[in]	The	handle	to	the	connection.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2CreateSocket,	gt2GetIncomingBufferSize,
gt2GetOutgoingBufferSize,	gt2GetOutgoingBufferFreeSpace

gt2GetIncomingBufferSize
Gets	the	total	size	of	the	connection's	incoming	buffer.

int	gt2GetIncomingBufferSize(
GT2Connection	connection);

Routine Required	Header Distribution
gt2GetIncomingBufferSize <gt2.h> SDKZIP

Return	Value

The	size	in	bytes	of	the	connection's	incoming	buffer.

Parameters

connection
[in]	The	handle	to	the	connection.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2CreateSocket,	gt2GetIncomingBufferFreeSpace,
gt2GetOutgoingBufferSize,	gt2GetOutgoingBufferFreeSpace

gt2GetLocalIP
Gets	a	socket's	local	IP.

unsigned	int	gt2GetLocalIP(
GT2Socket	socket);

Routine Required	Header Distribution
gt2GetLocalIP <gt2.h> SDKZIP

Return	Value

The	local	IP	in	network	byte	order.

Parameters

socket
[in]	The	handle	to	the	socket.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2GetRemoteIP,	gt2GetRemotePort,	gt2GetLocalPort

gt2GetLocalPort
Get's	a	socket's	local	port.

unsigned	short	gt2GetLocalPort(
GT2Socket	socket);

Routine Required	Header Distribution
gt2GetLocalPort <gt2.h> SDKZIP

Return	Value

The	local	port	in	host	byte	order.

Parameters

socket
[in]	The	handle	to	the	socket.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2GetRemoteIP,	gt2GetRemotePort,	gt2GetLocalIP

gt2GetOutgoingBufferFreeSpace
Gets	the	amount	of	available	space	in	the	connection's	outgoing	buffer.

int	gt2GetOutgoingBufferFreeSpace(
GT2Connection	connection);

Routine Required	Header Distribution
gt2GetOutgoingBufferFreeSpace <gt2.h> SDKZIP

Return	Value

The	size	in	bytes	of	the	free	space	in	the	connection's	ougoing	buffer.

Parameters

connection
[in]	The	handle	to	the	connection.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2CreateSocket,	gt2GetIncomingBufferSize,
gt2GetIncomingBufferFreeSpace,	gt2GetOutgoingBufferSize

gt2GetOutgoingBufferSize
Gets	the	total	size	of	the	connection's	outgoing	buffer.

int	gt2GetOutgoingBufferSize(
GT2Connection	connection);

Routine Required	Header Distribution
gt2GetOutgoingBufferSize <gt2.h> SDKZIP

Return	Value

The	size	in	bytes	of	the	connection's	outgoing	buffer.

Parameters

connection
[in]	The	handle	to	the	connection.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2CreateSocket,	gt2GetIncomingBufferSize,
gt2GetIncomingBufferFreeSpace,	gt2GetOutgoingBufferFreeSpace

gt2GetRemoteIP
Gets	the	connection's	remote	IP.

unsigned	int	gt2GetRemoteIP(
GT2Connection	connection);

Routine Required	Header Distribution
gt2GetRemoteIP <gt2.h> SDKZIP

Return	Value

The	remote	IP	in	network	byte	order.

Parameters

connection
[in]	The	handle	to	the	connection.

Remarks

Gets	the	IP	of	the	computer	on	the	remote	side	of	the	connection.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2GetRemotePort,	gt2GetLocalIP,	gt2GetLocalPort

gt2GetRemotePort
Get's	the	connection's	remote	port.

unsigned	short	gt2GetRemotePort(
GT2Connection	connection);

Routine Required	Header Distribution
gt2GetRemotePort <gt2.h> SDKZIP

Return	Value

The	remote	port	in	host	byte	order.

Parameters

connection
[in]	The	handle	to	the	connection.

Remarks

Gets	the	port	of	the	computer	on	the	remote	side	of	the	connection.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2GetRemoteIP,	gt2GetLocalIP,	gt2GetLocalPort

gt2GetSocketData
Returns	the	user	data	pointer	stored	with	this	socket.

void	*	gt2GetSocketData(
GT2Socket	socket);

Routine Required	Header Distribution
gt2GetSocketData <gt2.h> SDKZIP

Return	Value

A	pointer	to	this	socket's	user	data.

Parameters

socket
[in]	The	handle	to	the	socket.

Remarks

Each	socket	has	a	user	data	pointer	associated	with	it	that	can	be	used
by	the	application	for	any	purpose.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2SetSocketData,	gt2SetConnectionData,
gt2GetConnectionData

gt2GetSocketSOCKET
This	function	returns	the	actual	underlying	socket	for	a	GT2Socket.

SOCKET	gt2GetSocketSOCKET(
GT2Socket	socket);

Routine Required	Header Distribution
gt2GetSocketSOCKET <gt2.h> SDKZIP

Return	Value

The	underlying	socket	associated	with	the	GT2Socket.

Parameters

socket
[in]	The	handle	to	the	socket.

Remarks

This	can	be	used	for	socket	sharing	purposes,	along	with	the
gt2UnrecognizedMessageCallback.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2SetUnrecognizedMessageCallback

gt2HostToNetworkInt
Convert	an	int	from	host	to	network	byte	order.

unsigned	int	gt2HostToNetworkInt(
unsigned	int	i);

Routine Required	Header Distribution
gt2HostToNetworkInt <gt2.h> SDKZIP

Return	Value

The	int	in	network	byte	order.

Parameters

i
[in]	Int	to	convert.

Remarks

This	is	a	utility	function	to	help	deal	with	byte	order	differences	for	multi-
platform	applications.	Convert	from	host	to	network	byte	order	before
sending	over	the	network,	then	convert	back	to	host	byte	order	when
receiving.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2NetworkToHostInt,	gt2NetworkToHostShort,
gt2HostToNetworkShort

gt2HostToNetworkShort
Convert	a	short	from	host	to	network	byte	order.

unsigned	short	gt2HostToNetworkShort(
unsigned	short	s);

Routine Required	Header Distribution
gt2HostToNetworkShort <gt2.h> SDKZIP

Return	Value

The	short	in	network	byte	order.

Parameters

s
[in]	Short	to	convert.

Remarks

This	is	a	utility	function	to	help	deal	with	byte	order	differences	for	multi-
platform	applications.	Convert	from	host	to	network	byte	order	before
sending	over	the	network,	then	convert	back	to	host	byte	order	when
receiving.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2NetworkToHostInt,	gt2HostToNetworkInt,
gt2NetworkToHostShort

gt2IPToAliases
Get	the	aliases	associated	with	an	IP	address.

char	**	gt2IPToAliases(
unsigned	int	ip);

Routine Required	Header Distribution
gt2IPToAliases <gt2.h> SDKZIP

Return	Value

Aliases	associated	with	the	IP	address.

Parameters

ip
[in]	IP	to	lookup,	in	network	byte	order.

Remarks

This	is	a	utility	function	which	provides	a	subset	of	the	functionality	of
gt2IPToHostInfo.	See	the	gt2IPToHostInfo	documentation	for	important
details.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2IPToHostInfo

gt2IPToHostInfo
Looks	up	DNS	host	information	based	on	an	IP.

const	char	*	gt2IPToHostInfo(
unsigned	int	ip,
char	***	aliases,
unsigned	int	***	ips);

Routine Required	Header Distribution
gt2IPToHostInfo <gt2.h> SDKZIP

Return	Value

The	hostname	associated	with	the	IP,	or	NULL	if	no	information	was
available	for	the	host.

Parameters

ip
[in]	IP	to	look	up,	in	network	byte	order.

aliases
[out]	On	success,	the	variable	passed	in	will	point	to	a	NULL-
terminated	list	of	alternate	names	for	the	host.	Can	be	NULL.

ips
[out]	On	success,	the	variable	passed	in	will	point	to	a	NULL-
terminated	list	of	alternate	IPs	for	the	host.	Can	be	NULL.

Remarks

If	the	function	can	successfully	lookup	the	host's	info,	the	host's	main
hostname	will	be	returned.	If	it	cannot	find	the	host's	info,	it	returns	NULL.
For	the	aliases	parameter,	pass	in	a	pointer	to	a	variable	of	type	(char	**).
If	this	parameter	is	not	NULL,	and	the	function	succeeds,	the	variable	will
point	to	a	NULL-terminated	list	of	alternate	names	for	the	host.
For	the	ips	parameter,	pass	in	a	pointer	to	a	variable	of	type	(int	**).	If	this
parameter	is	not	NULL,	and	the	function	succeeds,	the	variable	will	point
to	a	NULL-terminated	list	of	altername	IPs	for	the	host.	Each	element	in
the	list	is	actually	a	pointer	to	an	unsigned	int,	which	is	an	IP	address	in
network	byte	order.
The	return	value,	aliases,	and	IPs	all	point	to	an	internal	data	structure,
and	none	of	these	values	should	be	modified	directly.	Also,	the	data	is
only	valid	until	another	call	needs	to	use	the	same	data	structure	(virtually
ever	internet	address	function	will	use	this	data	structure).	If	the	data	will
be	needed	in	the	future,	it	should	be	copied	off.
This	function	may	need	to	contact	a	DNS	server,	which	can	cause	the
function	to	block	for	an	indefinite	period	of	time.	Usually	it	is	<	2	seconds,
but	on	certain	systems,	and	under	certain	circumstances,	it	can	take	30
seconds	or	longer.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2StringToHostInfo,	gt2IPToHostname,	gt2IPToAliases,
gt2IPToIPs

gt2IPToHostname
Get	the	hostname	associated	with	an	IP	address.

const	char	*	gt2IPToHostname(
unsigned	int	ip);

Routine Required	Header Distribution
gt2IPToHostname <gt2.h> SDKZIP

Return	Value

Hostname	associated	with	the	IP	address.

Parameters

ip
[in]	IP	to	lookup,	in	network	byte	order.

Remarks

This	is	a	utility	function	which	provides	a	subset	of	the	functionality	of
gt2IPToHostInfo.	See	the	gt2IPToHostInfo	documentation	for	important
details.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2IPToHostInfo

gt2IPToIPs
Get	the	IPs	associated	with	an	IP	address.

unsigned	int	**	gt2IPToIPs(
unsigned	int	ip);

Routine Required	Header Distribution
gt2IPToIPs <gt2.h> SDKZIP

Return	Value

IPs	associated	with	the	IP	address.

Parameters

ip
[in]	IP	to	lookup,	in	network	byte	order.

Remarks

This	is	a	utility	function	which	provides	a	subset	of	the	functionality	of
gt2IPToHostInfo.	See	the	gt2IPToHostInfo	documentation	for	important
details.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2IPToHostInfo

gt2Listen
Start	(or	stop)	listening	for	incoming	connections	on	a	socket.

void	gt2Listen(
GT2Socket	socket,
gt2ConnectAttemptCallback	callback);

Routine Required	Header Distribution
gt2Listen <gt2.h> SDKZIP

Parameters

socket
[in]	The	handle	to	the	socket.

callback
[in]	Function	to	be	called	when	the	operation	completes

Remarks

Once	a	socket	starts	listening,	any	connections	attempts	will	cause	the
callback	to	be	called.
If	the	socket	is	already	listening,	this	callback	will	replace	the	existing
callback	being	used.
If	the	callback	is	NULL,	this	will	cause	the	connection	to	stop	listening.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2CreateSocket,	gt2ConnectAttemptCallback

gt2NetworkToHostInt
Convert	an	int	from	network	to	host	byte	order.

unsigned	int	gt2NetworkToHostInt(
unsigned	int	i);

Routine Required	Header Distribution
gt2NetworkToHostInt <gt2.h> SDKZIP

Return	Value

The	int	in	host	byte	order.

Parameters

i
[in]	Int	to	convert.

Remarks

This	is	a	utility	function	to	help	deal	with	byte	order	differences	for	multi-
platform	applications.	Convert	from	host	to	network	byte	order	before
sending	over	the	network,	then	convert	back	to	host	byte	order	when
receiving.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2HostToNetworkInt,	gt2NetworkToHostShort,
gt2HostToNetworkShort

gt2NetworkToHostShort
Convert	a	short	from	network	to	host	byte	order.

unsigned	short	gt2NetworkToHostShort(
unsigned	short	s);

Routine Required	Header Distribution
gt2NetworkToHostShort <gt2.h> SDKZIP

Return	Value

The	short	in	host	byte	order.

Parameters

s
[in]	Short	to	convert.

Remarks

This	is	a	utility	function	to	help	deal	with	byte	order	differences	for	multi-
platform	applications.	Convert	from	host	to	network	byte	order	before
sending	over	the	network,	then	convert	back	to	host	byte	order	when
receiving.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2NetworkToHostInt,	gt2HostToNetworkInt,
gt2HostToNetworkShort

gt2Ping
Sends	a	ping	on	a	connection	in	an	attempt	to	determine	latency.

void	gt2Ping(
GT2Connection	connection);

Routine Required	Header Distribution
gt2Ping <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

Remarks

The	ping	callback	will,	which	is	set	as	part	of	the
GT2ConnectionCallbacks	in	either	gt2Connect	or	gt2Accept,	will	be
called	if	and	when	a	ping	finishes	making	a	round-trip	between	the	local
end	of	the	connection	and	the	remote	end.	The	ping	is	unreliable,	and
either	it	or	the	pong	sent	in	reply	could	be	dropped,	resulting	in	the
callback	never	being	called.	Or	it	could	even	arrive	multiple	times,
resulting	in	multiple	calls	to	the	callback	(this	case	is	very	rare).

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2PingCallback

gt2Reject
Rejects	a	connection	attempt.

void	gt2Reject(
GT2Connection	connection,
const	GT2Byte	*	message,
int	len);

Routine Required	Header Distribution
gt2Reject <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

message
[in]	Rejection	message.	May	be	NULL.

len
[in]	Length	of	the	rejection	message.	May	be	0.	A	len	of	–1	is
equivalent	to	(strlen(message)	+	1).

Remarks

After	a	socket's	gt2ConnectAttemptCallback	has	been	called,	this
function	can	be	used	to	reject	the	incoming	connection	attempt.	It	can	be
called	from	either	within	the	callback	or	some	later	time.	Once	the
function	is	called	the	connection	is	considered	closed	and	cannot	be
referenced	again.	The	remote	side	attempting	the	connection	will	have	its
connected	callback	called	with	the	result	set	to	gt2Rejected.	If	the
message	is	not	NULL	and	the	len	is	not	0,	the	message	will	be	sent	with
the	rejection,	and	passed	into	the	remote	side's	connected	callback.	Note
that	the	7	byte	header	must	be	accounted	for	in	the	message	since	this
function	will	send	the	rejection	message	reliably.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2Listen,	gt2ConnectAttemptCallback,	gt2Accept

gt2RemoveReceiveFilter
Removes	a	filter	from	the	connection's	incoming	data	filter	list.

void	gt2RemoveReceiveFilter(
GT2Connection	connection,
gt2ReceiveFilterCallback	callback);

Routine Required	Header Distribution
gt2RemoveReceiveFilter <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

callback
[in]	The	filtering	callback	to	remove.	NULL	removes	all	filters.

Remarks

Filters	should	not	be	removed	while	a	message	is	being	filtered.	If	the
callback	is	NULL,	all	of	the	filters	will	be	removed.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2ReceiveFilterCallback,	gt2AddReceiveFilter,
gt2FilteredReceive

gt2RemoveSendFilter
Removes	a	filter	from	the	connection's	ougoing	data	filter	list.

void	gt2RemoveSendFilter(
GT2Connection	connection,
gt2SendFilterCallback	callback);

Routine Required	Header Distribution
gt2RemoveSendFilter <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

callback
[in]	The	filtering	callback	to	remove.	NULL	removes	all	filters.

Remarks

Filters	should	not	be	removed	while	a	message	is	being	filtered.	If	the
callback	is	NULL,	all	of	the	filters	will	be	removed.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2SendFilterCallback,	gt2AddSendFilter,	gt2FilteredSend

gt2Send
Sends	data	over	a	connection,	reliably	or	unreliably.

void	gt2Send(
GT2Connection	connection,
const	GT2Byte	*	message,
int	len,
GT2Bool	reliable);

Routine Required	Header Distribution
gt2Send <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

message
[in]	The	message	to	send.	Can	be	NULL.

len
[in]	The	length	of	the	message.	Can	be	0.	A	len	of	-1	is	equivalent	to
(strlen(message)	+	1).

reliable
[in]	if	GT2True,	send	the	message	reliably,	otherwise	send	it
unreliably.

Remarks

Once	a	connection	has	been	established,	messages	can	be	sent	back
and	forth	on	it.	To	send	a	message,	use	the	gt2Send	function.	If
message	is	NULL	or	len	is	0,	then	an	empty	message	will	be	sent.	When
an	empty	message	is	received,	message	will	be	NULL	and	len	will	be	0.
If	the	message	is	sent	reliably,	it	is	guaranteed	to	arrive,	arrive	only	once,
and	arrive	in	order	(relative	to	other	reliable	messages).	If	the	message	is
sent	unreliably,	then	it	is	not	guaranteed	to	arrive,	and	if	it	does	arrive,	it
is	not	guaranteed	to	arrive	in	order,	or	only	once.	Note	that	the	7	byte
header	must	be	accounted	for	in	the	message	if	the	function	sends	the
message	reliably.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2ReceivedCallback

gt2SetConnectionData
Stores	a	user	data	pointer	with	this	connection.

void	gt2SetConnectionData(
GT2Connection	connection,
void	*	data);

Routine Required	Header Distribution
gt2SetConnectionData <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

data
[in]	A	pointer	to	this	connection's	user	data.

Remarks

Each	connection	has	a	user	data	pointer	associated	with	it	that	can	be
used	by	the	application	for	any	purpose.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2SetSocketData,	gt2GetSocketData,	gt2GetConnectionData

gt2SetReceiveDump
Sets	a	callback	to	which	all	incoming	UDP	packets	are	passed.	This	is	at
a	lower	level	than	the	filters,	can	only	be	used	for	monitoring,	and	is
designed	for	debugging	purposes.

void	gt2SetReceiveDump(
GT2Socket	socket,
gt2DumpCallback	callback);

Routine Required	Header Distribution
gt2SetReceiveDump <gt2.h> SDKZIP

Parameters

socket
[in]	The	handle	to	the	socket.

callback
[in]	The	dump	callback	to	set.

Remarks

Sets	a	callback	to	be	called	whenever	a	UDP	datagram	or	a	connection
reset	is	received.	Pass	in	a	callback	of	NULL	to	remove	the	callback.	The
dump	sit	at	a	lower	level	than	the	filters,	and	allow	an	app	to	keep	an	eye
on	exactly	what	datagrams	are	being	received,	allowing	for	close
monitoring.	The	dump	cannot	be	used	to	modify	data,	only	monitor	it.	The
dump	is	useful	for	debugging	purposes,	and	to	keep	track	of	data	receive
rates	(e.g.,	the	Quake	3	engine's	netgraph).	Note	that	these	are	the
actual	UDP	datagrams	being	received	-	datagrams	may	be	dropped,
repeated,	or	out-of-order.	Control	datagrams	(those	used	internally	by	the
protocol)	will	be	passed	to	the	dump	callback,	and	certain	application
messages	will	have	a	header	at	the	beginning.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2DumpCallback,	gt2SetSendDump

gt2SetSendDump
Sets	a	callback	to	which	all	outgoing	UDP	packets	are	passed.	This	is	at
a	lower	level	than	the	filters,	can	only	be	used	for	monitoring,	and	is
designed	for	debugging	purposes.

void	gt2SetSendDump(
GT2Socket	socket,
gt2DumpCallback	callback);

Routine Required	Header Distribution
gt2SetSendDump <gt2.h> SDKZIP

Parameters

socket
[in]	The	handle	to	the	socket.

callback
[in]	The	dump	callback	to	set.

Remarks

Sets	a	callback	to	be	called	whenever	a	UDP	datagram	is	sent.	Pass	in	a
callback	of	NULL	to	remove	the	callback.	The	dump	sit	at	a	lower	level
than	the	filters,	and	allow	an	app	to	keep	an	eye	on	exactly	what
datagrams	are	being	sent,	allowing	for	close	monitoring.	The	dump
cannot	be	used	to	modify	data,	only	monitor	it.	The	dump	is	useful	for
debugging	purposes,	and	to	keep	track	of	data	send	rates	(e.g.,	the
Quake	3	engine's	netgraph).	Note	that	these	are	the	actual	UDP
datagrams	being	sent	-	datagrams	may	be	dropped,	repeated,	or	out-of-
order.	Control	datagrams	(those	used	internally	by	the	protocol)	will	be
passed	to	the	dump	callback,	and	certain	application	messages	will	have
a	header	at	the	beginning.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2DumpCallback,	gt2SetReceiveDump

gt2SetSocketData
Stores	a	user	data	pointer	with	this	socket.

void	gt2SetSocketData(
GT2Socket	socket,
void	*	data);

Routine Required	Header Distribution
gt2SetSocketData <gt2.h> SDKZIP

Parameters

socket
[in]	The	handle	to	the	socket.

data
[in]	A	pointer	to	this	socket's	user	data.

Remarks

Each	socket	has	a	user	data	pointer	associated	with	it	that	can	be	used
by	the	application	for	any	purpose.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2GetSocketData,	gt2SetConnectionData,
gt2GetConnectionData

gt2SetUnrecognizedMessageCallback
Used	to	handle	unrecognized	messages,	usually	used	for	sharing	a
socket	with	another	SDK.

void	gt2SetUnrecognizedMessageCallback(
GT2Socket	socket,
gt2UnrecognizedMessageCallback	callback);

Routine Required
Header Distribution

gt2SetUnrecognizedMessageCallback <gt2.h> SDKZIP

Parameters

socket
[in]	The	handle	to	the	socket.

callback
[in]	Function	to	be	called	when	an	unrecognized	message	is
received.

Remarks

This	is	used	to	set	a	callback	to	be	called	everytime	a	socket	receives	a
message	that	it	cannot	match	up	to	an	existing	connection.	If	a
GT2Socket	object’s	underlying	socket	is	being	shared,	this	allows	an
application	to	check	for	data	that	was	not	meant	for	GT2.	If	the	callback
parameter	is	NULL,	then	any	previously	set	callback	will	be	removed.
This	is	typically	used	when	you	are	sharing	a	GT2Socket	with	another
SDK,	such	as	QR2	or	NAT	Negotiation.	Setting	an	unrecognized	callback
allows	you	to	pass	messages	meant	for	another	SDK	to	the	appropriate
place.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2UnrecognizedMessageCallback,	gt2GetSocketSOCKET

gt2StringToAddress
Converts	a	string	address,	which	is	either	a	hostname
("www.gamespy.net")	or	a	dotted	IP	("1.2.3.4")	into	an	IP	and	a	port.

GT2Bool	gt2StringToAddress(
const	char	*	string,
unsigned	int	*	ip,
unsigned	short	*	port);

Routine Required	Header Distribution
gt2StringToAddress <gt2.h> SDKZIP

Return	Value

Returns	GT2False	if	there	was	an	error	parsing	the	string,	or	if	a	supplied
hostname	can't	be	resolved.

Parameters

string
[in]	String	to	convert.

ip
[out]	IP	in	network	byte	order.	Can	be	NULL.

port
[out]	Port	in	host	byte	order.	Can	be	NULL.

Remarks

The	IP	is	stored	in	network	byte	order,	and	the	port	is	stored	in	host	byte
order.	Returns	false	if	there	was	an	error	parsing	the	string,	or	if	a
supplied	hostname	can't	be	resolved.
Possible	string	forms:
NULL	=>	all	IPs,	any	port	(localAddress	only).
""	=>	all	IPs,	any	port	(localAddress	only).
"1.2.3.4"	=>	1.2.3.4	IP,	any	port	(localAddress	only).
"host.com"	=>	host.com's	IP,	any	port	(localAddress	only).
":2786"	=>	all	IPs,	2786	port	(localAddress	only).
"1.2.3.4:0"	=>	1.2.3.4	IP,	any	port	(localAddress	only).
"host.com:0"	=>	host.com's	IP,	any	port	(localAddress	only).
"0.0.0.0:2786"	=>	all	IPs,	2786	port	(localAddress	only).
"1.2.3.4:2786"	=>	1.2.3.4	IP,	2786	port	(localAddress	or	remoteAddress).
"host.com:2786"	=>	host.com's	IP,	2786	port	(localAddress	or
remoteAddress).
If	this	function	needs	to	resolve	a	hostname	("host.com")	it	may	need	to
contact	a	DNS	server,	which	can	cause	the	function	to	block	for	an
indefinite	period	of	time.	Usually	it	is	less	than	2	seconds,	but	on	certain
systems,	and	under	certain	circumstances,	it	can	take	30	seconds	or
longer.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2Connect,	gt2CreateSocket,	gt2StringToHostInfo

gt2StringToAliases
Get	the	aliases	associated	with	a	hostname	or	dotted	IP.

char	**	gt2StringToAliases(
const	char	*	string);

Routine Required	Header Distribution
gt2StringToAliases <gt2.h> SDKZIP

Return	Value

Aliases	associated	with	a	hostname	or	dotted	IP.

Parameters

string
[in]	Hostname	or	IP	to	lookup.

Remarks

This	is	a	utility	function	which	provides	a	subset	of	the	functionality	of
gt2StringToHostInfo.	See	the	gt2StringToHostInfo	documentation	for
important	details.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2StringToHostInfo

gt2StringToHostInfo
Looks	up	DNS	host	information	based	on	a	hostname	or	dotted	IP.

const	char	*	gt2StringToHostInfo(
const	char	*	string,
char	***	aliases,
unsigned	int	***	ips);

Routine Required	Header Distribution
gt2StringToHostInfo <gt2.h> SDKZIP

Return	Value

The	hostname	associated	with	the	string,	or	NULL	if	no	information	was
available	for	the	host.

Parameters

string
[in]	Hostname	("www.gamespy.net")	or	dotted	IP	("1.2.3.4")	to
lookup.

aliases
[in]	On	success,	the	variable	passed	in	will	point	to	a	NULL-
terminated	list	of	alternate	names	for	the	host.	Can	be	NULL.

ips
[in]	On	success,	the	variable	passed	in	will	point	to	a	NULL-
terminated	list	of	alternate	IPs	for	the	host.	Can	be	NULL.

Remarks

If	the	function	can	successfully	lookup	the	host's	info,	the	host's	main
hostname	will	be	returned.	If	it	cannot	find	the	host's	info,	it	returns	NULL.
For	the	aliases	parameter,	pass	in	a	pointer	to	a	variable	of	type	(char	**).
If	this	parameter	is	not	NULL,	and	the	function	succeeds,	the	variable	will
point	to	a	NULL-terminated	list	of	alternate	names	for	the	host.
For	the	ips	parameter,	pass	in	a	pointer	to	a	variable	of	type	(int	**).	If	this
parameter	is	not	NULL,	and	the	function	succeeds,	the	variable	will	point
to	a	NULL-terminated	list	of	altername	IPs	for	the	host.	Each	element	in
the	list	is	actually	a	pointer	to	an	unsigned	int,	which	is	an	IP	address	in
network	byte	order.
The	return	value,	aliases,	and	IPs	all	point	to	an	internal	data	structure,
and	none	of	these	values	should	be	modified	directly.	Also,	the	data	is
only	valid	until	another	call	needs	to	use	the	same	data	structure	(virtually
ever	internet	address	function	will	use	this	data	structure).	If	the	data	will
be	needed	in	the	future,	it	should	be	copied	off.
This	function	may	need	to	contact	a	DNS	server,	which	can	cause	the
function	to	block	for	an	indefinite	period	of	time.	Usually	it	is	<	2	seconds,
but	on	certain	systems,	and	under	certain	circumstances,	it	can	take	30
seconds	or	longer.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2IPToHostInfo,	gt2StringToHostname,	gt2StringToAliases,
gt2StringToIPs

gt2StringToHostname
Get	the	hostname	associated	with	a	hostname	or	dotted	IP.

const	char	*	gt2StringToHostname(
const	char	*	string);

Routine Required	Header Distribution
gt2StringToHostname <gt2.h> SDKZIP

Return	Value

Hostname	associated	with	a	hostname	or	dotted	IP.

Parameters

string
[in]	Hostname	or	IP	to	lookup.

Remarks

This	is	a	utility	function	which	provides	a	subset	of	the	functionality	of
gt2StringToHostInfo.	See	the	gt2StringToHostInfo	documentation	for
important	details.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2StringToHostInfo

gt2StringToIPs
Get	the	IPs	associated	with	a	hostname	or	dotted	IP.

unsigned	int	**	gt2StringToIPs(
const	char	*	string);

Routine Required	Header Distribution
gt2StringToIPs <gt2.h> SDKZIP

Return	Value

IPs	associated	with	a	hostname	or	dotted	IP.

Parameters

string
[in]	Hostname	or	IP	to	lookup.

Remarks

This	is	a	utility	function	which	provides	a	subset	of	the	functionality	of
gt2StringToHostInfo.	See	the	gt2StringToHostInfo	documentation	for
important	details.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2StringToHostInfo

gt2Think
Does	any	thinking	for	this	socket	and	its	connections.

void	gt2Think(
GT2Socket	socket);

Routine Required	Header Distribution
gt2Think <gt2.h> SDKZIP

Parameters

socket
[in]	The	handle	to	the	socket.

Remarks

Callbacks	are	typically	called	from	within	this	function	(although	they	can
also	be	called	from	other	places).	It	is	possible	that	during	this	think	the
socket	or	any	of	its	connections	may	be	closed,	so	care	must	be	taken	if
calling	other	GT2	functions	immediately	after	thinking.	The	more
frequently	this	function	is	called,	the	faster	GT2	will	be	able	to	respond
(and	reply	to)	messages.	The	general	rule	is	to	call	it	at	frequently	as	you
can,	although	calling	it	faster	than	every	10-20	milliseconds	is	probably
unnecessary.	If	you	are	using	gt2Ping	to	measure	ping	times,	then	the
accuracy	of	the	latency	measurement	will	increase	with	the	frequency	at
which	this	function	is	called.

Section	Reference:	Gamespy	Transport	SDK

Transport	SDK	Callbacks
gt2ClosedCallback

This	callback	is	called	when	the
connection	has	been	closed.

gt2ConnectAttemptCallback
This	notifies	the	socket	that	a	remote
system	is	attempting	a	connection.

gt2ConnectedCallback
This	callback	is	called	when	a
connection	attempt	with	gt2Connect
finishes.

gt2DumpCallback
Called	whenever	data	is	sent	or
received	over	a	socket.

gt2PingCallback
This	callback	is	called	when	a
response	to	a	ping	sent	on	this
connection	is	received.

gt2ReceivedCallback
This	callback	is	called	when	a
message	is	sent	from	the	remote
system	with	a	gt2Send.

gt2ReceiveFilterCallback
Callback	for	filtering	incoming	data.

gt2SendFilterCallback
Callback	for	filtering	outgoing	data.

gt2SocketErrorCallback
This	callback	is	used	to	notify	the
application	of	a	closed	socket	or	fatal
socket	error	condition.

gt2UnrecognizedMessageCallback
This	callback	gets	called	when	the
sock	receives	a	message	that	it
cannot	match	to	an	existing
connection.

gt2ClosedCallback
This	callback	is	called	when	the	connection	has	been	closed.

typedef	void	(*gt2ClosedCallback)(
GT2Connection	connection,
GT2CloseReason	reason);

Routine Required	Header Distribution
gt2ClosedCallback <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

reason
[in]	The	reason	the	connection	closed.

Remarks

A	connection	close	can	be	caused	by	either	side	calling
gt2CloseConnection	(or	gt2CloseConnectionHard),	either	side	closing	the
socket,	or	some	sort	of	error.	The	connection	cannot	be	used	again	once
this	callback	returns.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2CloseConnection,	gt2CloseConnectionHard,	gt2Connect,
gt2Accept

gt2ConnectAttemptCallback
This	notifies	the	socket	that	a	remote	system	is	attempting	a	connection.

typedef	void	(*gt2ConnectAttemptCallback)(
GT2Socket	socket,
GT2Connection	connection,
unsigned	int	ip,
unsigned	short	port,
int	latency,
GT2Byte	*	message,
int	len);

Routine Required	Header Distribution
gt2ConnectAttemptCallback <gt2.h> SDKZIP

Parameters

socket
[in]	The	handle	to	the	socket.

connection
[in]	The	handle	to	the	connection.

ip
[in]	The	IP	(network	byte	order)	from	which	the	connect	attempt	is
coming.

port
[in]	The	port	(host	byte	order)	from	which	the	connect	attempt	is
coming

latency
[in]	estimate	of	the	round-trip	time	between	the	two	machines	(in
milliseconds).

message
[in]	Optional	initial	data	sent	with	the	connect	attempt.	May	be	NULL.

len
[in]	Length	of	the	initial	data.	May	be	0.

Remarks

The	IP	and	port	of	the	remote	system	is	provided,	along	with	an	optional
initial	message,	and	a	latency	estimate.	These	can	be	used	to
validate/authenticate	the	connecting	system.	This	connection	must	either
be	accepted	with	gt2Accept,	or	rejected	with	gt2Reject.	These	can	be
called	from	within	this	callback,	however	they	do	not	need	to	be.	They
can	be	called	at	any	time	after	this	callback	is	received.	This	is	very
useful	for	systems	that	need	to	check	with	another	machine	to
authenticate	the	user	(such	as	for	a	CDKey	system).	The	latency	is	only
an	estimate,	however	it	can	be	used	for	things	such	as	only	allowing	low-
ping	or	high-ping	users	onto	a	server.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2Listen,	gt2Connect,	gt2Accept,	gt2Reject

gt2ConnectedCallback
This	callback	is	called	when	a	connection	attempt	with	gt2Connect
finishes.

typedef	void	(*gt2ConnectedCallback)(
GT2Connection	connection,
GT2Result	result,
GT2Byte	*	message,
int	len);

Routine Required	Header Distribution
gt2ConnectedCallback <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

result
[in]	The	result	of	the	connection	attempt.	Anything	aside	from
GT2Success	indicates	failure.

message
[in]	If	result	is	GT2Rejected,	this	is	the	rejection	message.	May	be
NULL.

len
[in]	If	result	is	GT2Rejected,	the	length	of	message.	May	be	0.

Remarks

If	result	is	GT2Success,	then	this	connection	attempt	succeeded.	The
connection	object	can	now	be	used	for	sending/receiving	messages.	Any
other	result	indicates	connection	failure,	and	the	connection	object
cannot	be	used	again	after	this	callback	returns.	If	the	result	is
GT2Rejected,	then	message	contains	an	optional	rejection	message	sent
by	the	listener.	If	result	is	not	GT2Rejected,	then	message	will	be	NULL
and	len	will	be	0.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2Connect

gt2DumpCallback
Called	whenever	data	is	sent	or	received	over	a	socket.

typedef	void	(*gt2DumpCallback)(
GT2Socket	socket,
GT2Connection	connection,
unsigned	long	ip,
unsigned	short	port,
GT2Bool	reset,
const	GT2Byte	*	message,
int	len);

Routine Required	Header Distribution
gt2DumpCallback <gt2.h> SDKZIP

Parameters

socket
[in]	The	handle	to	the	socket.

connection
[in]	The	handle	to	the	connection	associated	with	this	message,	or
NULL	if	there	is	no	connection	for	this	message.

ip
[in]	The	remote	IP	address,	in	network	byte	order.

port
[in]	The	remote	host,	in	host	byte	order.

reset
[in]	If	true,	the	connection	has	been	reset	(only	used	by	the	receive
callback).

message
[in]	The	message	(should	not	be	modified).

len
[in]	The	length	of	the	message.

Remarks

Trying	to	send	a	message	from	within	the	send	dump	callback,	or	letting
the	socket	think	from	within	the	receive	dump	callback	can	cause	serious
problems,	and	should	not	be	done.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2SetSendDump,	gt2SetReceiveDump

gt2PingCallback
This	callback	is	called	when	a	response	to	a	ping	sent	on	this	connection
is	received.

typedef	void	(*gt2PingCallback)(
GT2Connection	connection,
int	latency);

Routine Required	Header Distribution
gt2PingCallback <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

latency
[in]	The	round	trip	time	of	the	ping,	in	milliseconds.

Remarks

This	callback	gives	a	measure	of	the	time	it	takes	for	a	datagram	to	make
a	round-trip	from	one	connection	to	the	other.	The	latency	reported	in	this
callback	will	typically	be	larger	than	that	reported	by	using	ICMP	pings
between	the	two	machines	(the	"ping"	program	uses	ICMP	pings),
because	ICMP	pings	happen	at	a	lower	level	in	the	operating	system.
However,	the	ping	reported	in	this	callback	will	much	more	accurately
reflect	the	latency	of	the	application,	as	the	application’s	messages	must
go	through	the	same	path	as	these	pings,	as	opposed	to	ICMP.
Because	pings	are	unreliable,	a	ping	sent	with	gt2Ping	is	not	guaranteed
to	make	it	through	the	entire	round-trip.	So	not	every	call	to	gt2Ping	will
result	in	this	callback	being	called.	In	addition,	unreliable	messages	may
be	repeated	(although	this	is	a	very	rare	occurrence),	which	means	this
callback	could	be	called	multiple	times	for	a	single	call	to	gt2Ping.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2Ping

gt2ReceivedCallback
This	callback	is	called	when	a	message	is	sent	from	the	remote	system
with	a	gt2Send.

typedef	void	(*gt2ReceivedCallback)(
GT2Connection	connection,
GT2Byte	*	message,
int	len,
GT2Bool	reliable);

Routine Required	Header Distribution
gt2ReceivedCallback <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

message
[in]	The	message	that	was	sent.	May	be	NULL.

len
[in]	The	length	of	the	message.	May	be	0.

reliable
[in]	GT2True	if	the	message	was	sent	reliably.

Remarks

If	an	message	is	sent	from	the	remote	end	of	the	connection	reliably,	then
it	will	always	be	received	with	this	callback.	If	it	is	not	sent	reliably,	then
the	message	might	not	be	received,	it	might	be	received	out	of	order,	or	it
might	be	received	more	than	once	(very	rare).

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2Send

gt2ReceiveFilterCallback
Callback	for	filtering	incoming	data.

typedef	void	(*gt2ReceiveFilterCallback)(
GT2Connection	connection,
int	filterID,
GT2Byte	*	message,
int	len,
GT2Bool	reliable);

Routine Required	Header Distribution
gt2ReceiveFilterCallback <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

filterID
[in]	Pass	this	ID	to	gtFilteredReceive.

message
[in]	The	message	that	was	received.	Will	be	NULL	if	an	empty
message.

len
[in]	The	length	of	the	message	in	bytes.	Will	be	0	if	an	empty
message.

reliable
[in]	True	if	this	is	a	reliable	message.

Remarks

Call	gt2FilteredRecieve	with	the	filtered	data,	either	from	within	the
callback	or	later.
The	message	may	point	to	a	memory	location	supplied	to
gt2FilteredReceive	by	a	previous	filter,	so	if	this	filter's	call	to
gt2FilteredReceive	is	delayed,	it	is	the	filter's	responsibility	to	make	sure
the	data	is	still	around	when	and	if	it	is	needed.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2AddReceiveFilter,	gt2RemoveReceiveFilter,
gt2FilteredReceive

gt2SendFilterCallback
Callback	for	filtering	outgoing	data.

typedef	void	(*gt2SendFilterCallback)(
GT2Connection	connection,
int	filterID,
const	GT2Byte	*	message,
int	len,
GT2Bool	reliable);

Routine Required	Header Distribution
gt2SendFilterCallback <gt2.h> SDKZIP

Parameters

connection
[in]	The	handle	to	the	connection.

filterID
[in]	Pass	this	ID	to	gt2FilteredSend.

message
[in]	The	message	being	sent.	Will	be	NULL	if	an	empty	message.

len
[in]	The	length	of	the	message	being	sent,	in	bytes.	Will	be	0	if	an
empty	message.

reliable
[in]	If	the	message	is	being	sent	reliably.

Remarks

Call	gt2FilteredSend	with	the	filtered	data,	either	from	within	the	callback
or	later.
The	message	points	to	the	same	memory	location	as	the	message
passed	to	gt2Send	(or	gt2FilteredSend),	so	if	the	call	to	gt2FilteredSend
is	delayed,	it	is	the	filter's	responsibility	to	make	sure	the	data	is	still
around	when	and	if	it	is	needed.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2AddSendFilter,	gt2RemoveSendFilter,	gt2FilteredSend

gt2SocketErrorCallback
This	callback	is	used	to	notify	the	application	of	a	closed	socket	or	fatal
socket	error	condition.

typedef	void	(*gt2SocketErrorCallback)(
GT2Socket	socket);

Routine Required	Header Distribution
gt2SocketErrorCallback <gt2.h> SDKZIP

Parameters

socket
[in]	The	handle	to	the	socket.

Remarks

Once	this	callback	returns,	the	socket	and	all	of	its	connections	are
invalid	and	can	no	longer	be	used.	All	connections	that	use	this	socket
are	terminated,	and	their	gt2CloseCallback	callbacks	will	be	called	before
this	callback	is	called	(with	the	reason	set	to	GT2SocketError).

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2CreateSocket

gt2UnrecognizedMessageCallback
This	callback	gets	called	when	the	sock	receives	a	message	that	it
cannot	match	to	an	existing	connection.

typedef	GT2Bool	(*gt2UnrecognizedMessageCallback)(
GT2Socket	socket,
unsigned	int	ip,
unsigned	short	port,
GT2Byte	*	message,
int	len);

Routine Required	Header Distribution
gt2UnrecognizedMessageCallback <gt2.h> SDKZIP

Return	Value

GT2True	if	the	callback	recognizes	the	message	and	handles	it.
GT2False	if	GT2	should	handle	the	message.

Parameters

socket
[in]	The	handle	to	the	socket.

ip
[in]	The	IP	address	of	the	remote	machine	the	message	came	from
(in	network	byte	order).

port
[in]	The	port	on	the	remote	machine	(in	host	byte	order).

message
[in]	The	message	(may	be	NULL	for	an	empty	message).

len
[in]	The	length	of	the	message	(may	be	0).

Remarks

If	the	callback	recognizes	the	message	and	handles	it,	it	should	return
GT2True,	which	will	tell	the	socket	to	ignore	the	message.	If	the	callback
does	not	recognize	the	message,	it	should	return	GT2False,	which	tells
the	socket	to	let	the	other	side	know	there	is	no	connection.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2SetUnrecognizedMessageCallback,	gt2GetSocketSOCKET

Transport	SDK	Structures
GT2ConnectionCallbacks

Callbacks	set	for	each	connection.

GT2ConnectionCallbacks
Callbacks	set	for	each	connection.

typedef	struct	
{

gt2ConnectedCallback	connected;
gt2ReceivedCallback	received;
gt2ClosedCallback	closed;
gt2PingCallback	ping;

}	GT2ConnectionCallbacks;

Members

connected
Called	when	gt2Connect	is	complete.

received
Called	when	a	message	is	received.

closed
Called	when	the	connection	is	closed	(remotely	or	locally).

ping
Called	when	a	ping	reply	is	received.

Section	Reference:	Gamespy	Transport	SDK

Transport	SDK	Enumerations
GT2CloseReason

Reason	the	connection	was	closed.

GT2ConnectionState
Possible	states	for	any	GT2Connection.

GT2Result
Result	of	a	GT2	operation.	Check	individual
function	definitions	to	see	possible	results.

GT2CloseReason
Reason	the	connection	was	closed.

typedef	enum	
{

GT2LocalClose,				
GT2RemoteClose,				
GT2CommunicationError,				
GT2SocketError,				
GT2NotEnoughMemory				

}	GT2CloseReason;

Constants

GT2LocalClose
The	connection	was	closed	with	gt2CloseConnection.

GT2RemoteClose
The	connection	was	closed	remotely.

GT2CommunicationError
An	invalid	message	was	received	(it	was	either	unexpected	or
wrongly	formatted).

GT2SocketError
An	error	with	the	socket	forced	the	connection	to	close.

GT2NotEnoughMemory
There	wasn't	enough	memory	to	store	an	incoming	or	outgoing
message.

Section	Reference:	Gamespy	Transport	SDK

GT2ConnectionState
Possible	states	for	any	GT2Connection.

typedef	enum	
{

GT2Connecting,				
GT2Connected,				
GT2Closing,				
GT2Closed				

}	GT2ConnectionState;

Constants

GT2Connecting
Negotiating	the	connection.

GT2Connected
Connection	is	active.

GT2Closing
Connection	is	being	closed.

GT2Closed
Connection	has	been	closed	and	can	no	longer	be	used.

Section	Reference:	Gamespy	Transport	SDK

GT2Result
Result	of	a	GT2	operation.	Check	individual	function	definitions	to	see
possible	results.

typedef	enum	
{

GT2Success,				
GT2OutOfMemory,				
GT2Rejected,				
GT2NetworkError,				
GT2AddressError,				
GT2DuplicateAddress,				
GT2TimedOut,				
GT2NegotiationError				

}	GT2Result;

Constants

GT2Success
Success.

GT2OutOfMemory
Ran	out	of	memory.

GT2Rejected
Attempt	rejected.

GT2NetworkError
Networking	error	(could	be	local	or	remote).

GT2AddressError
Invalid	or	unreachable	address.

GT2DuplicateAddress
A	connection	was	attempted	to	an	address	that	already	has	a
connection	on	the	socket.

GT2TimedOut
Timeout	reached.

GT2NegotiationError
Error	negotiating	with	the	remote	side.

Section	Reference:	Gamespy	Transport	SDK

Voice	2	SDK
Overview

The	GameSpy	Voice	SDK	2	(GV)	is	a	library	that	facilitates	in-game	voice
communication	between	players.	Someone	with	little	or	no	voice
experience	can	easily	use	GV	without	having	to	learn	about	the	details	of
voice	capture,	playback,	or	encoding.

GV	is	simple	enough	to	be	easily	and	quickly	added	to	an	application,
while	also	being	powerful	and	flexible	enough	to	fit	within	virtually	any
networking	architecture.	GV	is	also	extremely	efficient	in	its	use	of
memory,	bandwidth,	and	processor	time.

GV	delivers	optimal	performance,	in	a	simple	API,	making	it	as	easy	as
possible	to	add	to	any	application.

Much	of	the	power	of	GV	comes	from	the	fact	that	it	does	not	impose	any
networking	constraints	on	the	application.	It	captures	audio,	encodes	it,
then	passes	it	to	the	application.	The	application	is	responsible	for	routing
the	encoded	audio	to	its	final	destination(s),	most	likely	over	its	existing
game	networking.	At	the	destination,	the	application	gives	the	encoded
audio	back	to	GV,	which	then	decodes	it,	mixes	it	into	an	audio	stream,
and	plays	it.

GV	is	written	in	standard	ANSI	C	and	can	be	used	for	Win32	or	PS2
applications.	Dedicated	servers	can	be	run	on	any	platform.	Just	include
all	of	the	source	files	in	your	project,	and	you	can	start	talking	over	the
Internet.

GV	relies	on	system-specific	hardware	libraries	to	interface	with	audio
devices,	and	it	uses	freely	available	codec	(compression	and
decompression)	libraries	to	handle	the	actual	voice	compression.	See	the
Requirements	section	of	this	document	for	futher	information	on	these
libraries.

The	SDK	package	also	includes	a	test	app	and	a	sample	app.	The	test
app	shows	a	basic	C	implementation	of	the	SDK.	It	will	help	in

understand	the	SDK's	core	functionality	and	it	will	also	provide	you	with	a
baseline	implementation	for	testing	the	SDK	on	your	target	system.	The
sample	app	is	written	using	Win32	and	MFC.	It	shows	a	sample	graphical
implementation	of	the	SDK.	See	the	Samples	section	of	this	document
for	further	information	on	the	sample	and	test	apps.

The	rest	of	this	document	presents	a	simple	set	of	instructions	for	using
GV.	See	the	reference	documentation	for	further	details.

File
gv.h

gvCodec.c,h

gvCustomerDevice.c,h

gvDevice.c,h

gvDirectSound.c,h

gvFrame.c,h

gvLogitechPS2Codecs.c,h

gvMain.c,h

gvPS2Audio.c,h

gvPS2Eyetoy.c,h

gvPS2Headset.c,h

gvPS2Spu2.c,h

gvSource.c,h

gvSpeex.c,h

gvUtil.c,h

nonport.c,h

darray.c,h

/Voice2Test/

File	Manifest

The	following	files	should	be	included	with	this	package.	If	any	of	the	files
are	missing,	please	contact	devsupport@gamespy.com.

Description
GV	header	(all	user	functions	are	prototyped

here)

Encryption	and	decryption	of	audio	frames

Custom	capture/playback	device	interface

Device	interface

DirectSound	interface	(only	used	with	Win32)

Common	code	for	handling	audio	frames

Interface	to	Logitech's	PS2	voice	codec	library
(only	used	with	PS2)

The	main	entry	point	for	most	GV	functionality

Interfaces	with	hardware-specific	PS2	libraries
(only	used	with	PS2)

Eyetoy	interface	(only	used	with	PS2)

USB	audio	device
(headset/microphone/speakers)	interface	(only	used	with	PS2)

SPU2	(system/TV	audio)	interface	(only	used
with	PS2)

Common	code	for	handling	audio	sources

Interface	to	the	Speex	codec	library	(only	used
with	Win32)

Miscellaneous	common	code

Platform-specific	code

Code	for	managing	dynamic	arrays

ANSI-C	sample

mailto:devsupport@gamespy.com

/Voice2BuddyMFC/ Windows	MFC	sample

Requirements

GV	relies	on	a	few	other	libraries	provided	by	both	GameSpy	and	3rd-
parties.	The	3rd	party	libraries	are	all	freely	available.	See	below	for
futher	information,	depending	on	your	platform.

Note	that	you	can	use	custom	hardware	devices	and/or	custom	codecs
instead	of	those	provided	by	default.	If	doing	so,	you	will	not	need	the
corresponding	3rd-party	libraries.

Common	Code

GV	uses	the	GameSpy	Common	Code	package,	the	latest	version	of
which	is	available	from	http://www.gamespy.net.	The	Voice	2	zip	and	the
Common	Code	zip	should	both	be	extracted	into	the	same	directory.	This
will	result	in	the	GV	files	being	in	a	Voice2	subdirectory,	and	the	common
code	will	be	in	the	directory's	root.

Win32

GV	supports	the	Win32	platform	by	using	the	DirectSound	library	(part	of
DirectX)	for	interfacting	with	voice	capture	and	playback	devices	and	the
Speex	library	for	compression	and	decompression	of	audio.

DirectX

The	latest	version	of	DirectX	can	be	downloaded	from
http://msdn.microsoft.com/downloads/.	The	site	also	has	information	on
redistributing	DirectX	with	your	application.	GV	was	developed	with
DirectX	9.0.	Though	it	should	work	with	previous	versions	it	is	highly
recommended	that	you	use	the	latest	version	of	DirectX.	Once	DirectX
has	been	installed,	ensure	that	its	include	folder	is	in	your	include	path
and	its	lib	folder	is	in	your	link	path.	You	will	also	need	to	setup	any
application	that	uses	GV	to	link	with	dsound.lib	and	dxguid.lib.

Speex

Speex	is	a	freely	available,	open	source	audio	codec	(http://speex.org/).

http://msdn.microsoft.com/downloads/
http://speex.org/

Speex	licensing	information	is	available	from
http://www.xiph.org/licenses/bsd/speex/.

Please	review	the	licensing	information	carefully	before	using	the
Speex	library.

GV	currently	uses	version	1.0.5	of	Speex,	which	can	be	downloaded	from
http://downloads.us.xiph.org/releases/speex/speex-1.0.5.tar.gz.	In	order
for	the	sample	and	test	applications	to	function,	you	will	need	to	extract
the	tar	into	the	Voice2	directory.	This	will	create	a	speex-1.0.5
subdirectory	in	the	Voice2	directory.	The	SDK	itself	does	not	rely	on
Speex	being	in	that	directory,	so	you	can	put	it	anywhere	you	would	like
for	your	own	application.	However,	wherever	you	put	it,	its	include	folder
must	be	in	your	include	path.	You	will	also	need	to	add	all	of	the	source
files	in	the	libspeex	directory	to	your	project,	with	the	exception	of	any
test*.c	files.

When	compiling	the	Speex	libraries	at	the	default	MSVC++	warning	level,
there	are	a	number	of	warnings	due	to	missing	explicit	casts.	It	is	fairly
easy	to	disable	these	warnings	using	the	following	line:

#pragma	warning	(disable	:	4244	4305	4100	4127)

To	disable	the	warnings,	put	the	line	in	all	of	the	files	which	generate	the
warnings,	or	in	a	header	which	can	then	be	easily	included	in	any	files
which	generate	the	warnings.

PS2

GV	supports	PS2	devices	through	three	libraries	provided	by	Logitech
specifically	for	the	PS2.	lgAud	is	used	to	interface	with	USB	audio
devices,	lgVid	is	used	to	interface	with	the	microphone	on	EyeToy
devices,	and	lgCodec	is	used	to	compress	captured	audio.	lgAud	and
lgCodec	are	available	at	https://www.ps2-pro.com/projects/lgaud/,	and
lgVid	is	available	at	https://www.ps2-pro.com/projects/liblgvid/.	SPU2
output	(direct	system	output,	generally	through	the	TV)	is	also	supported
,	allowing	users	without	headsets	or	USB	speakers	to	hear	other	users.

PS2	applications	are	required	to	load	certain	IRX	modules	to	use	the

http://www.xiph.org/licenses/bsd/speex/
http://downloads.us.xiph.org/releases/speex/speex-1.0.5.tar.gz
https://www.ps2-pro.com/projects/lgaud/
https://www.ps2-pro.com/projects/liblgvid/

various	hardware	devices.	These	are	lgaud.irx	and	usbd.irx	for	lgAud,
lgvid.irx	for	lgVid,	and	libsd.irx	and	sdrdrv.irx	for	SPU2.	Sample	loading
code	is	available	in	load_voice_modules()	in	ps2common.c.	Applications
must	also	link	with	liblgaud.a	for	lgAud,	liblgvid.a	for	lgVid,	and	libscf.a
and	libsdr.a	for	SPU2.	To	exclude	support	for	particular	hardware	device
types,	see	the	Advanced	section	of	this	document.

lgAud

GV	was	developed	with	version	1.10.001	of	lgAud.	A	license	agreement
for	lgAud,	liblgaud_license_agreement.pdf,	is	in	the	tar.

Please	read	the	licensing	agreement	carefully	before	using	the
library.

See	the	ReadMe.1st	in	the	tar	for	information	on	installing	lgAud.	The
lgAud	documentation	provides	details	on	lgaud.irx	loading	parameters.

lgVid

GV	was	developed	with	version	1.07.008	of	lgVid.	The	license	agreement
for	lgVid	can	be	found	at	the	end	of	lgvid.pdf,	which	can	be	found	in	the
tar's	doc	directory.	GV	now	supports	version	2.01.003.	If	you	wish	to
support	the	older	library,	please	use	the	following	preprocessor	directive
in	your	project:	GVI_LGVID_OLD_DRIVER

Please	read	the	licensing	agreement	carefully	before	using	the
library.

See	the	README.1st	in	the	tar	for	information	on	installing	lgVid.	The
lgVid	documentation	provides	details	on	lgvid.irx	loading	parameters.

lgCodec

GV	was	developed	with	version	1.00.002	of	lgCodec.	See	the	README
in	the	tar	for	information	on	installing	lgCodec.	The	bottom	of	the
README	also	contains	a	"TERMS	OF	USE"	section	which	you	should
read	carefully	before	using	the	library.	Any	program	that	uses	GV	will

need	to	link	with	liblgcodec.lib.

Note	that	because	the	PS2	uses	a	different	codec	library	than	the	Win32
version	of	GV,	users	on	the	two	different	platforms	cannot	talk	with	each
other.	However	they	can	be	made	compatible	by	using	a	custom	codec.

PS3

Currently	the	SDK	supports	any	PS3	compatible	USB/Bluetooth	Headset.
Future	versions	will	have	support	for	other	devices	like	the	Eye	Toy.
Speex	is	currently	the	only	codec	supported	on	the	PS3.	Refer	to	the
instructions	in	the	Win32	section	for	obtaining	speex.

Linux,	Mac,	etc.

Only	Win32	and	PS2	hardware	devices	are	included	in	GV	at	present.
However,	because	applications	provide	their	own	routing	between	users,
dedicated	servers	do	not	need	to	use	the	GV	SDK,	which	allows	them	to
be	run	on	any	platform,	such	as	Linux.

Also,	because	GV	supports	custom	devices	and	codecs,	clients	can	be
written	for	other	platforms	as	well,	as	long	as	the	application	provides	the
interface	to	the	hardware	and	the	codec.

Sample

The	sample	app	included	with	this	SDK,	Voice2BuddyMFC,	uses	a	few	of
the	other	GameSpy	SDKs.	These	are	GameSpy	Transport	2	(GT2),	NAT
Negotiation,	and	GameSpy	Presence	(GP),	which	are	all	included	under
the	same	license	as	GV.	If	you	do	not	have	these	SDKs,	you	can
download	them	from	http://gamespy.net/secure/download/.	Extract	them
into	the	same	root	as	the	common	code,	just	as	you	did	with	the	GV
code.

http://gamespy.net/secure/download/

Samples

The	GV	package	includes	a	test	app	and	a	sample	app.	The	test	app,
Voice2Test,	is	a	very	simple	implementation	of	the	SDK,	while	the	sample
app,	Voice2BuddyMFC,	is	designed	to	show	a	graphical	implementation
of	the	SDK.

Voice2Test

The	test	app	is	written	in	ANSI	C,	and	it	can	be	used	as	a	simple	test	to
make	sure	GV	works	on	your	system.	It	takes	as	its	only	argument	a
dotted	IP	address,	to	which	it	will	send	all	captured	voice	packets.	It	also
opens	a	socket	on	a	fixed	port	and	will	play	any	voice	packets	it	receives
on	the	socket.	The	app	will	run	until	either	Q	is	pressed	on	the	PC,	or	the
X	is	pressed	on	the	PS2.	To	stop	capture	use	V	or	the	circle	button,	and
to	start	capture	again	use	C	or	the	square	button.

There	are	a	set	of	defines	at	the	top	of	the	source	file,	Voice2Test.c,
which	can	be	used	to	change	various	aspects	of	the	test	app.
LOCAL_ECHO	can	be	set	to	1	to	turn	local	on	(you	will	hear	your	own
voice).	RAW_CODEC	can	be	set	to	1	to	switch	on	the	use	of	a	custom
codec	which	does	not	actually	do	any	compression	(but	can	be	easily
modified	to	test	a	codec).	SHOW_TALKERS	can	be	set	to	1	to	have	the
app	print	out	the	list	of	talkers	once	a	second.	SHOW_VOLUME	can	be	set
to	1	to	have	the	app	print	out	the	volume	of	all	captured	audio	packets.
CAPTURE_THRESHOLD	sets	the	capture	threshold.	A	value	of	0.0	means
there	will	be	no	threshold,	anda	value	greater	than	0.0	and	less	than	or
equal	to	1.0	will	set	the	threshold	to	that	value.

Voice2BuddyMFC

The	sample	app	is	written	with	MFC	and	is	designed	to	show	a	graphical
implementation	of	GV.	This	sample	app	may	be	used	to	establish	voice
communication	with	a	single	member	of	your	buddy	list.	(Your	game,	of
course,	is	not	limited	to	voice	communication	with	a	single	player.)

Voice2BuddyMFC	makes	use	of	three	other	GameSpy	SDKs.

Presence	SDK
Used	to	retrieve	buddy	list.

Nat	Negotiation	SDK
Used	to	connect	to	buddies.

Transport	2	SDK
Used	to	manage	connections	to	buddies	and	voice	data
transmission.

Note:	These	SDKs	are	not	required	to	use	GV.	They	are	used	in	the
sample	application	to	simplify	the	matchmaking	process.	In	a	typical
game	a	networking	channel	has	already	been	established	between
players	(or	from	host	to	player).	Voice	data	may	be	sent	using	the
network	channel	used	for	game	data.

The	Voice2Buddy	sample	has	three	major	stages.	These	stages	are
Setup,	Login	and	VoiceSession.

Setup

The	Setup	stage	consists	of	a	dialog	in	which	the	user	may	select	input
and	output	devices	as	well	as	set	the	voice	activation	level.	It	is
recommend	that	you	expose	a	similar	dialog	in	your	application,	as	the
user	may	have	multiple	input	and	output	devices	from	which	to	select
(e.g.	a	USB	headset	for	voice	communication	and	speakers	connected	to
the	sound	card	for	game	audio).	DirectX	9	has	a	standard	dialog	which
may	be	displayed.

Login

The	Login	dialog	contains	the	standard	fields	used	to	log	into	the
GameSpy	ID	system.	(Email,	nickname	and	password.)	After	logging	in,
the	user	will	be	presented	with	a	list	of	buddies	that	they	may	invite	to	a
voice	session.	The	buddy	may	then	accept	the	invitation	which	will	result
in	the	creation	of	the	VoiceSession.

VoiceSession

The	third	stage,	VoiceSession,	is	not	a	stage	within	the	SDK.	GV	does
not	require	the	creation	of	a	"channel"	or	"server".	The	receiving
application	simply	decides,	"Do	I	want	to	play	Voice	data	from	this
person?".

In	the	sample,	all	voice	data	is	immediately	presented	to	the	SDK	for
playback.	If	you	wish	to	mute	a	user,	simply	discard	the	voice	data
instead	of	passing	it	into	GV.

Terms	and	Concepts

This	section	will	explain	some	of	the	concepts	and	terminology	used	by
GV.	Reading	this	section	will	greatly	assist	in	your	ability	to	understand
the	rest	of	this	document.

Audio

Samples	and	Rates

One	of	the	primary	functions	of	GV	is	to	capture	and	playback	audio.
Digital	audio	consists	of	a	set	of	samples	captured	at	a	uniform	rate.	The
samples	form	a	waveform	-	in	other	words,	each	sample	is	the	value	of
the	waveform	at	a	particular	instance	in	time.	The	number	of	bits	used	to
store	the	value	of	each	sample	determines	the	bit	rate,	and	the	number	of
samples	stored	in	one	second	determines	the	sample	rate.	GV	uses	a
sample	rate	of	8000	samples	per	second	and	a	bit	rate	of	16	bits	per
sample,	which	are	de	facto	standards	for	Internet	voice	applications.
These	rates	are	defined	at	the	top	of	gv.h.	Also,	GV	has	a	GVSample
type	which	represents	a	single	sample	as	a	signed	short.

Frames

GV	typically	deals	with	audio	in	units	called	frames.	A	frame	of	audio	will
always	represent	the	same	number	of	samples,	and	so	it	will	always
represent	the	same	amount	of	time.	Typically	frames	represent	160
samples,	which	is	20ms	at	the	standard	sample	rate	(160	samples	/	8000
samples	per	second	=	0.02	seconds	=	20ms).	The	exact	number	of
samples	per	frame	depends	on	the	codec,	but	almost	all	codecs	use	160
samples	per	frame.

A	frame	can	either	be	raw	or	encoded.	A	raw	frame	is	an	array	of
GVSamples	which	will	be,	at	the	standard	frame	size	and	bit	rate,	320
bytes.	The	size,	however,	can	vary	with	codecs	that	use	other	frame
sizes.	Raw	frames	are	used	with	custom	devices,	custom	codecs,	and
filters,	as	they	need	to	deal	with	the	raw,	uncompressed	audio.	An
encoded	frame	is	a	raw	frame	that	has	been	compressed	by	the	codec.	It

is	stored	in	an	array	of	bytes,	using	the	GVByte	type	(an	unsigned	char).
The	size	of	a	compressed	frame	depends	on	the	codec	and	can	vary
from	less	than	10	bytes	to	300	or	more	bytes,	although	it	will	typically	be
in	the	range	of	about	15	to	35	bytes.	Encoded	frames	are	used	with
custom	codecs,	audio	capture,	and	audio	playback.	GV	provides
functionality	for	obtaining	the	current	codec's	samples	per	frame	(number
of	samples	in	a	raw	frame)	and	encoded	frame	size	(number	of	bytes	in
an	encoded	frame).

Packets

A	packet	represents	a	set	of	one	or	more	encoded	frames	stored	in	a
contiguous	block	of	memory	(an	array	of	GVBytes).	Therefore	the	length
of	a	packet	will	always	be	a	multiple	of	the	size	of	an	encoded	frame.
When	GV	passes	the	application	audio	that	it	has	captured	and
compressed,	it	does	so	in	the	form	of	a	packet.	This	packet	is	ready	to	be
sent	over	the	Internet	(along	with	some	other	meta-data	described
below).	When	it	is	received	by	another	player,	it	can	be	passed	directly	to
the	SDK	(along	with	the	meta-data)	to	be	played.

Frame	Stamps

A	frame	stamp	stores	a	value	that	GV	uses	to	synchronize	packets	for
playback.	When	a	packet	is	captured,	GV	will	pass	a	frame	stamp	to	the
application	along	with	the	packet.	The	frame	stamp	marks	the	time	at
which	the	first	frame	in	the	packet	was	captured.	If	the	packet	is	sent	over
the	Internet,	the	frame	stamp	should	be	sent	along	with	it.	On	playback,
the	frame	stamp	must	be	passed	back	to	GV	along	with	the	packet.	A
frame	stamp	is	represented	by	the	GVFrameStamp	type,	which	is	2
bytes.

Sources

Sources	are	used	by	GV	to	uniquely	identify	users,	which	enables	it	to
synchronize	multiple	incoming	streams	of	audio.	Whenever	a	packet	is
passed	from	the	application	to	GV	to	be	played,	a	source	must	be	passed
along	with	the	packet.	This	allows	GV	to	identify	who	spoke	that
particular	packet.	A	source	is	represented	by	the	GVSource	type.	By

default	this	is	an	int,	however	the	GV_CUSTOM_SOURCE_TYPE	define	can
be	used	to	have	a	GVSource	represent	any	arbitrary	type,	such	as	a
sockaddr_in	(Internet	IP	and	port).	The	source	can	be	a	player's	index,
connection	ID,	Internet	address,	or	any	data	that	uniquely	identifies	a
talker.	The	source	may	need	to	be	sent	along	with	the	packet.

One	example	of	this	would	be	a	client-server	application	in	which	all	of
the	packets	pass	through	a	server	before	being	sent	to	their	final
destination.	For	a	peer-to-peer	game,	however,	in	which	packets	are
received	directly	from	the	player	who	generated	them,	the	connection	on
which	the	packets	were	received	could	be	used	to	identify	the	source.

Local	Echo

Local	echo	is	what	happens	when	you	locally	playback	any	captured
packets.	It	results	in	the	user	being	able	to	hear	himself	talking,	although
there	is	a	slight	delay	due	to	the	fact	that	the	audio	is	being	processed	by
both	GV	and	the	application.	Local	echo	is	very	simple	with	GV	-	just
pass	captured	packets	directly	to	a	playback	device.

Devices

A	device	is	a	particular	piece	of	hardware	on	the	system	that	can	be	used
by	GV	to	capture	and/or	playback	audio.	On	some	platforms,	such	as
Win32,	a	device	will	only	do	one	thing	-	capture	or	playback.	Even	though
a	sound	card	may	be	one	physical	piece	of	hardware,	it	is	represented
through	GV	as	two	separate	devices,	one	which	handles	capture	and	one
which	handles	playback.	This	is	a	consequence	of	how	DirectSound
works.	On	other	platforms,	such	as	the	PS2,	a	single	device	may	do	both
capture	and	playback,	although	it	is	still	possible	that	it	can	only	do	one
or	the	other.	For	example	headsets	will	support	both	capture	and
playback,	while	EyeToy	cameras	can	only	be	used	for	capture.

GV	supports	mixing	and	matching	of	devices.	For	example,	a	USB
headset	could	be	used	for	voice	capture,	a	sound	card	outputting	to
speakers	could	be	used	for	general	game	audio,	and	the	headset	could
be	used	for	voice	communication	from	other	players.	There	is	nothing
preventing	one	or	more	devices	from	being	used	for	capture	and	a
different	set	of	one	or	more	devices	from	being	for	playback.	These

devices	can	be	a	mix	of	devices	supported	internally	and	custom	devices.

Device	IDs

A	device	is	uniquely	identified	by	a	GVDeviceID.	This	type	is
represented	by	a	GUID	on	Win32	and	by	an	int	on	the	PS2.	GV	can
provide	you	with	a	list	of	devices	available	on	a	particular	system,	and
each	device	will	have	its	own	GVDeviceID.	When	you	initialize	a	device
through	GV,	you	use	the	GVDeviceID	to	tell	GV	which	device	you	are
attempting	to	initialize.

Devices

When	the	application	initializes	a	device	through	GV,	it	obtains	a
reference	to	the	device	as	a	GVDevice	value.	The	application	will	need	to
use	the	GVDevice	handle	whenever	it	does	anything	related	to	the
device.	GV	will	manage	the	device	until	the	application	frees	it	(through
GV).	After	it	has	been	freed	the	GVDevice	handle	will	no	longer	be	valid
and	can	be	set	to	NULL,	which	will	never	represent	a	valid	GVDevice.

Device	Types

Any	particular	device	is	capable	of	capture,	playback,	or	both.	When	an
operation	needs	to	specify	that	it	applies	to	only	capture,	only	playback,
or	both	capture	and	playback,	it	uses	the	GVDeviceType	type	to	specify.
The	typical	values	are	GV_CAPTURE,	GV_PLAYBACK,	and
GV_CAPTURE_AND_PLAYBACK.	GV_CAPTURE	and	GV_PLAYBACK	are
bitfields,	so	GV_CAPTURE_AND_PLAYBACK	is	equal	to
(GV_CAPTURE|GV_PLAYBACK).	If	a	particular	GVDeviceType	value	is	0,
that	means	that	it	does	not	apply	to	capture	or	playback.	When	the
available	devices	are	listed,	there	is	a	GVDeviceType	for	each	field	that
specifies	if	it	is	the	system	default	for	capture,	playback,	both,	or	neither.
If	it	is	neither,	then	its	value	is	0.

Custom	Devices

GV	supports	the	use	of	custom	devices.	This	allows	you	to	write	your

own	audio	device	interface.	You	can	use	this	to,	for	example,	pass	the
playback	audio	through	your	own	internal	audio	system	instead	of	directly
to	the	sound	card.	See	the	Advanced	section	of	this	document	for	futher
information.

Codecs

GV	uses	codecs	to	compress	and	decompress	audio.

Codecs

There	is	a	set	of	default	codecs	available	on	each	system,	represented
by	the	GVCodec	type.	These	range	from	codecs	that	preserve	audio
quality	at	the	expense	of	greater	bandwidth	usage	to	lower	audio	quality
codecs	that	use	less	bandwidth.	GV	does	not	support	the	use	of	multiple
codecs	-	after	GV	is	initialized,	but	before	any	devices	are	initialized,	the
application	must	set	the	codec	to	be	used.	The	codec	can	then	not	be
changed	once	devices	have	been	initialized.

GV	can	only	handle	packets	that	were	compressed	using	the	codec	it	has
been	set	to	use.	It	is	the	applications	responsibility	to	ensure	that	GV	is
not	given	packets	that	were	compressed	using	another	method.

Custom	Codecs

GV	supports	the	use	of	a	custom	codec,	which	allows	developers	to	use
any	desired	codec	with	GV.	See	the	Advanced	section	of	this	document
for	futher	information.

Implementation

This	section	will	explain	all	of	the	basic	operations	that	you	can	perform
using	GV.	After	reading	this	section	you	should	be	able	to	write	an
application	that	can	capture	and	playback	voice	audio.

Initialization	and	Cleanup

Before	doing	anything	else	with	GV,	you	must	call	gvStartup.	On
Win32	the	prototype	is:

GVBool	gvStartup(HWND	hWnd);

On	other	platforms	the	prototype	is:

GVBool	gvStartup(void);

The	function	does	any	necessary	internal	initialization.	It	will	return
GVFalse	in	case	of	an	error	initializing.	The	HWND	passed	to	the	Win32
version	is	the	handle	for	the	application's	main	window.	This	can	be
NULL	if	the	application	does	not	have	a	main	window.

To	cleanup	the	SDK,	use	gvCleanup:

void	gvCleanup(void);

The	function	will	do	any	necessary	internal	cleanup.	GV	cannot	be	used
again	until	gvStartup	is	called.

Setting	A	Codec

The	first	thing	to	do	after	initializing	the	SDK	is	to	set	the	codec	you
would	like	to	use.	The	codec	cannot	be	changed	while	any	devices	are
initialized,	so	the	codec	an	application	will	typically	just	set	the	codec
once,	when	it	starts	using	voice.	For	information	on	using	a	custom
codec,	see	the	Advanced	section	of	this	document.

GVBool	gvSetCodec(GVCodec	codec);

The	codec	must	be	one	of	the	following	values:

GVCodecSuperHighQuality

GVCodecHighQuality

GVCodecAverage

GVCodecLowBandwidth

GVCodecSuperLowBandwidth

The	codecs	are	arranged	in	order	of	descending	quality	and	bandwidth.
In	other	words,	the	codecs	higher	up	on	the	list	are	of	higher	audio	quality
and	use	more	bandwidth,	while	the	codecs	lower	on	the	list	are	of	lower
audio	quality	and	use	less	bandwidth.

The	GVCodecAverage	codec	produces	good	quality	audio	with	a
reasonable	bandwidth	cost.	It	is	generally	the	best	codec	to	use,	and	you
should	only	use	another	codec	if	you	are	restricted	to	lower	bandwidth	or
need	high	quality	audio.

The	particular	stats	for	a	codec	can	be	obtained	using
gvGetCodecInfo.

void	gvGetCodecInfo(int	*	samplesPerFrame,	int	*	encodedFrameSize,	int	*	bitsPerSecond);

This	function	returns	the	samples	per	frame,	encoded	frame	size	(in
bytes),	and	bits	per	second	for	the	currently	selected	codec.	Note	that	the
bits	per	second	doesn't	take	into	account	any	overhead,	such	as	the
need	to	transmit	a	frame	stamp	value	with	each	packet.	It	is	based	only
on	the	encoded	frame	size	and	the	number	of	frames	per	second.

It	is	important	that	all	users	have	the	same	codec	set.	If	users	attempt	to
communicate	using	different	codecs,	the	result	will	most	likely	be
unpredictable	audio.

Listing	Devices

The	application	uses	gvListDevices	to	get	a	list	of	the	devices
available	on	the	system.

int	gvListDevices(GVDeviceInfo	devices[],	int	maxDevices,	GVDeviceType	types);

Pass	in	an	array	of	GVDeviceInfos,	which	will	be	filled	in	by	the
function,	the	number	of	elements	in	the	array,	and	the	types	of	devices
that	you	want	to	be	listed.	You	can	request	capture	devices	with
GV_CAPTURE,	playback	devices	with	GV_PLAYBACK,	or	capture	and
playback	devices	with	GV_CAPTURE_AND_PLAYBACK.	For
GV_CAPTURE_AND_PLAYBACK,	it	can	list	capture	devices,	playback
devices,	and	devices	that	support	both	capture	and	playback.	The
function	will	return	the	number	of	devices	that	it	put	in	the	list,	which	may
be	less	than	the	value	that	was	passed	in	for	maxDevices.	If	0	is
returned,	then	either	there	was	an	error	listing	devices	or	no	devices
were	found.	For	each	device	that	is	listed,	a	GVDeviceInfo	will	be	filled
in	with	details	on	the	device.

typedef	struct

{

	 GVDeviceID	m_id;

	 char	m_name[GV_DEVICE_NAME_LEN];

	 GVDeviceType	m_deviceType;

	 GVDeviceType	m_defaultDevice;				//	not	supported	on	PS2

	 GVHardwareType	m_hardwareType;

}	GVDeviceInfo;

The	m_id	is	used	if	you	initialize	this	device	with	gvNewDevice.	The
m_name	contains	a	user-readable	name	for	the	device.	The
m_deviceType	indicates	if	this	device	is	for	capture,	playback,	or	both
capture	and	playback.	The	m_defaultDevice	indicates	if	this	device	is
the	default	capture	device,	default	playback	device,	both,	or	neither.	If
neither,	the	value	will	be	0	(this	will	always	be	the	case	on	the	PS2,	as	it
does	not	have	a	default	device	indicator).	The	m_hardwareType	is	used
to	give	the	application	more	information	about	the	device's	actual
hardware.	Under	Win32	this	will	always	be	GVHardwareDirectSound
(no	further	information	is	available).	With	the	PS2	this	will	be

GVHardwarePS2Spu2	for	the	SPU2	device,	GVHardwarePS2Headset
for	USB	headsets,	GVHardwarePS2Microphones	for	USB
microphones,	GVHardwarePS2Speakers	for	USB	speakers,	or
GVHardwarePS2Eyetoy	for	Eyetoy	devices.	The	SPU2	device	will
always	be	the	first	device	listed	on	the	PS2.

Note	that	on	the	PS2,	there	is	a	small	delay	between	when	the	IRX
modules	are	loaded	and	when	USB	devices	are	actually	detected.	This	is
why	Voice2Test	pauses	for	one	second	right	before	calling
gvListDevices.	However	in	a	real	application	this	pause	won't	be
necessary,	as	long	as	the	IRX	modules	are	loaded	well	before	the	user
would	get	to	a	voice	configuration	screen.

Creating	and	Freeing	Devices

To	initialize	a	device,	you	use	gvNewDevice.

GVDevice	gvNewDevice(GVDeviceID	deviceID,	GVDeviceType	type);

You	pass	the	function	the	GVDeviceID	for	the	device	that	you	want	to
initialize.	Also	pass	in	a	type,	which	will	tell	GV	if	you	want	to	initialize	the
device	for	capture,	playback,	or	both.	A	device	that	supports	both	capture
and	playback	may	be	initialized	for	just	one	or	the	other	(or	both).	If	the
device	was	successfully	initialized,	a	handle	to	the	device	will	be
returned.	If	there	was	an	error	setting	up	the	device,	NULL	will	be
returned.

With	Win32,	there	are	two	globally	defined	default	devices	which	you	can
use.	The	GVDeviceIDs	for	these	are	GVDefaultCaptureDeviceID
and	GVDefaultPlaybackDeviceID.	So,	instead	of	calling
gvListDevices,	you	can	simply	use	the	defaults.	However	this	is	only
recommended	during	development	-	for	release	your	application	should
allow	the	user	to	choose	which	device	to	use.	Also	note	that	the	default
device	IDs	will	not	match	the	GVDeviceIDs	of	the	default	devices	listed
by	gvListDevices,	although	they	will	represent	the	same	physical
hardware.

With	the	PS2,	the	SPU2	device	is	globally	defined	as

GVPS2Spu2DeviceID.	This	allows	you	to	use	the	SPU2	device	for
output	without	having	to	list	devices.	Again,	this	is	only	recommend	for
use	during	development.	For	release	the	application	should	list	devices
and	either	allow	the	user	to	choose	a	device,	or	use	the	SPU2	if	no	other
playback	devices	are	found.	Unlike	the	Win32	default	devices,
GVPS2Spu2DeviceID	will	match	the	GVDeviceID	of	the	SPU2	device
(always	the	first	in	the	list).

When	you	are	done	using	the	device,	use	gvFreeDevice	so	that	GV
can	clean	it	up.

void	gvFreeDevice(GVDevice	device);

Once	a	device	has	been	freed	it	can	no	longer	be	used.	After	calling	this
function	you	should	set	the	variable	in	which	you	stored	the	device
handle	to	NULL.

Starting	and	Stopping	Devices

Once	a	device	has	been	initialized,	it	is	ready	to	start	capturing	or	playing
audio.	After	a	capture	device	is	started,	it	will	begin	capturing	audio	and
passing	it	back	to	the	application.	After	a	playback	device	is	started,	it	will
play	any	audio	that	the	application	passes	it.	To	start	a	device,	use
gvStartDevice.

GVBool	gvStartDevice(GVDevice	device,	GVDeviceType	type);

The	device	parameter	is	the	handle	of	the	device	to	start.	The	type
parameter	specifies	if	the	device	should	start	capturing	(GV_CAPTURE),
playing	(GV_PLAYBACK),	or	capturing	and	playing
(GV_CAPTURE_AND_PLAYBACK).	For	devices	that	support	both	capture
and	playback,	each	can	be	started	independently.	The	function	will	return
GVTrue	if	the	device	was	started	successfully,	and	it	will	return	GVFalse
if	there	was	an	error.

When	you	want	a	device	to	stop	capturing	or	playing,	use
gvStopDevice.

void	gvStopDevice(GVDevice	device,	GVDeviceType	type);

When	a	capture	device	is	stopped,	it	will	stop	passing	captured	audio	to
the	application.	When	a	playback	device	is	stopped,	it	will	stop	playing
audio.	For	devices	that	support	both	capture	and	playback,	each	can	be
stopped	independently.

Use	gvIsDeviceStarted	to	check	if	a	device	has	been	started	or	not.

GVBool	gvIsDeviceStarted(GVDevice	device,	GVDeviceType	type);

Capturing	Packets

Once	a	capture	device	has	been	started,	it	will	immediately	start	filling	an
internal	buffer	(which	may	or	may	not	be	on	the	actual	sound	hardware)
with	audio	data.	The	application	calls	gvCapturePacket	to	take
captured	audio	out	of	the	buffer.

	

GVBool	gvCapturePacket(GVDevice	device,	GVByte	*	packet,	int	*	len,	GVFrameStamp	*	frameStamp,	GVScalar	*	volume);

The	first	parameter	is	a	handle	to	the	capture	device.	The	packet
parameter	points	to	a	block	of	memory	that	must	be	large	enough	to	hold
at	least	one	encoded	frame	(gvGetCodecInfo	can	be	used	to	get	the
size	of	an	encoded	frame).	The	function	will	fill	this	memory	with	as	many
encoded	frames	as	it	can.	The	len	parameter	must	point	to	an	int	which
is	set	to	the	maximum	number	of	bytes	that	can	be	written	to	the	block	of
memory	pointed	to	be	the	packet	parameter.	After	the	function	returns,	if
it	was	successful,	len	will	point	to	the	number	of	bytes	that	were	written
to	the	block	of	memory.	Also,	the	frameStamp	parameter	will	point	to	the
frame	stamp	for	the	captured	packet	and	the	volume	parameter	will	point
to	the	peak	volume	for	the	audio	in	the	frame.	The	volume	ranges	from
0.0	to	1.0,	and	it	can	be	used	to	power	a	per-player	graphic	voice	activity
meter.	If	the	function	succeeds	in	getting	a	packet	and	encoding	it	into
the	provided	memory	block,	it	will	return	GVTrue.	If	it	returns	GVFalse,
then	there	was	either	no	audio	data	available	to	capture	or	some	sort	of
error	capturing	the	audio.

Once	a	packet	has	been	captured,	it	is	ready	to	be	sent	to	other	players.
It	is	the	application's	responsibility	to	route	the	packet	to	its	final
destinations.	It	should	also	route	the	packet's	frame	stamp	along	with	the
packet.	The	application	can	choose	to	not	send	the	packet	anywhere,	in
effect	muting	the	player.	It	can	pass	it	back	to	the	SDK	to	be	played
locally.	It	can	send	the	packet	directly	to	one	or	more	other	players	for
them	to	play.	It	can	send	the	packet	to	a	server	which	would	then	decide,
possibly	based	on	information	such	as	players'	positions	or	teams,	who
the	packet	should	be	sent	to.

You	can	check	how	many	bytes	are	available	for	capture	before	calling
gvCapturePacket,	using	gvGetAvailableCaptureBytes.

int	gvGetAvailableCaptureBytes(GVDevice	device);

Simply	provide	the	handle	to	a	capture	device	and	it	will	return	the
number	of	bytes	that	are	currently	available	for	capture.	To	determine	the
number	of	encoded	frames	that	this	is,	divide	the	return	value	by	the
number	of	bytes	in	an	encoded	frame	(which	you	can	get	with
gvGetCodecInfo).	Note	that	even	if	there	are	bytes	available,
gvCapturePacket	may	return	GVFalse.	This	could	happen	if	a	capture
threshold	has	been	set,	and	the	voice	audio	does	not	cross	the	threshold.
In	that	case	GV	would	skip	over	that	captured	audio,	and	its	bytes	would
no	longer	count	as	available	bytes.

Playing	Packets

When	the	application	receives	a	packet	that	it	wants	to	play,	it	should
pass	it	to	gvPlayPacket.

void	gvPlayPacket(GVDevice	device,	const	GVByte	*	packet,	int	len,	GVSource	source,	GVFrameStamp	frameStamp);

The	first	parameter	tells	GV	which	device	to	use	for	playing	the	packet.
The	second	parameter	is	pointer	to	the	packet.	And	the	next	three
parameters	provide	GV	with	the	packet's	length,	the	source	that	originally
spoke	the	audio,	and	the	packet's	frame	stamp.	GV	will	schedule	the
packet	to	be	played	soon.	A	short	delay	is	added	which	enables	the
packets	to	be	synchronized	before	they	are	played,	allowing	for	variations

in	Internet	transit	time	and	application	timing.	The	packet	is	synchronized
based	on	its	source,	so	you	must	ensure	that	each	unique	talker	has	his
own	unique	source,	and	all	packets	are	played	using	the	correct	source.
Note	that	the	same	packet	can	be	played	on	multiple	playback	devices.

gvPlayPacket	only	schedules	a	packet	to	be	played	in	the	future.	The
application	must	also	call	gvThink	on	a	regular	basis	to	ensure	that	the
packets	are	actually	played.

void	gvThink(void);

gvThink	will	check,	for	each	device,	how	much	space	has	become
available	for	writing	in	the	playback	buffer	(which	may	or	may	not	be	on
the	actual	sound	hardware).	It	will	then	check	to	see	if	the	device	has	any
sources	that	have	audio	which	should	be	played	during	the	time	period
that	the	newly	available	space	represents.	If	so,	the	audio	will	be	mixed
into	the	playback	buffer,	and	the	audio	will	then	be	played	when	the
playback	position	reaches	that	point	in	the	buffer.	If	the	playback	device
is	stopped	before	that	happens,	then	the	audio	will	not	be	played,	even	if
the	device	is	then	restarted.

gvThink	should	generally	be	called	once	for	each	run	through	the
application's	main	loop,	or	approximately	every	10-30ms.	If	it	is	not	called
often	enough,	the	playback	position	will	reach	a	point	in	the	playback
buffer	that	GV	has	not	yet	had	a	chance	to	mix	to,	resulting	in	an	audible
skipping	effect.

Local	Echo

To	get	local	echo	with	GV,	simply	pass	captured	packets	to	a	playback
device.	You'll	need	to	ensure	that	you	pass	gvPlayPacket	a	GVSource
that	will	not	conflict	with	any	of	the	remote	talkers'	sources.	There	will	be
a	slight	delay	due	to	the	fact	that	the	audio	is	being	processed	by	both
GV	and	the	application.	Local	echo	will	generally	not	be	desired	for
regular	use,	but	is	very	useful	when	a	user	is	selecting	and	configuring
devices.

Talking	Sources

To	determine	if	a	particular	source	is	currently	talking,	call
gvIsSourceTalking.

GVBool	gvIsSourceTalking(GVDevice	device,	GVSource	source);

It	will	return	GVTrue	if	the	source	is	talking	on	the	specified	device.	To
get	a	list	of	all	of	the	sources	that	are	currently	talking	on	a	particular
device,	use	gvListTalkingSources.

int	gvListTalkingSources(GVDevice	device,	GVSource	sources[],	int	maxSources);

The	maxSources	parameter	should	be	the	number	of	sources	that	can
be	stored	in	the	sources	array.	The	function	will	return	the	number	of
sources	that	were	talking	on	the	device,	and	it	will	store	their	GVSources
in	the	sources	array.	0	will	be	returned	if	there	are	no	sources	talking.

GV	has	a	hardcoded	limit	that	does	not	allow	more	than	8	sources	to	talk
simultaneously.	This	allows	it	to	preallocate	memory	that	it	needs	to	store
for	a	source	while	it	is	talking.	A	user	will	typically	not	understand	more
than	2	or	3	users	talking	simultaneously,	so	the	limit	should	be	high
enough.	If	the	application	attempts	to	play	audio	from	more	than	8
sources	at	a	time,	audio	for	the	9th	source	will	be	automatically	dropped.

Muting	Sources

All	you	need	to	do	to	mute	a	source	in	GV	is	ignore	packets	that	originate
with	that	source.	Optionally	you	can	send	a	message	to	the	source	telling
him	to	stop	sending	you	packets,	which	will	cut	down	on	network
bandwidth.	But	the	only	requirement	for	muting	is	that	the	packets	are	not
played.

Threshold

After	a	capture	device	has	been	started,	it	will	continually	generate
packets	and	pass	them	to	the	application	through	gvCapturePacket.	If
a	capture	threshold	is	set	on	a	capture	device,	then	a	packet	will	only	be
passed	to	the	application	if	its	peak	volume	is	at	least	as	high	as	the
capture	threshold.	Use	gvSetCaptureThreshold	to	set	the	threshold.

void	gvSetCaptureThreshold(GVDevice	device,	GVScalar	threshold);

The	range	for	threshold	is	0.0	to	1.0.	A	value	of	approximately	0.10	to
0.15	will	generally	work	well,	although	ideally	the	user	should	have	a	way
to	configure	the	threshold.	GV	will	continue	passing	packets	to	the
application	for	about	half	a	second	after	the	peak	volume	drops	below	the
threshold.	This	helps	to	catch	speech	in	which	the	level	trails	off	or	has	a
small	dip.	The	default	threshold	is	0.0,	which	means	that	all	audio	will
be	considered	over	the	threshold	and	will	be	captured.	To	remove	a
threshold	that	has	been	set,	simply	call	this	function	again	with	a
threshold	of	0.0.

Use	gvGetCaptureThreshold	to	get	the	current	value	of	threshold.

GVScalar	gvGetCaptureThreshold(GVDevice	device);

Volume

Use	gvSetDeviceVolume	to	apply	a	volume	control	to	a	capture	or
playback	device.

void	gvSetDeviceVolume(GVDevice	device,	GVDeviceType	type,	GVScalar	volume);

The	volume	range	is	0.0	to	1.0.	The	type	parameter	controls	if	this	gets
set	as	a	capture	volume	(GV_CAPTURE),	a	playback	volume
(GV_PLAYBACK),	or	for	both	capture	and	playback
(GV_CAPTURE_AND_PLAYBACK).	To	get	the	volume	use
gvGetDeviceVolume.

GVScalar	gvGetDeviceVolume(GVDevice	device,	GVDeviceType	type);

It	will	return	the	volume	in	a	range	from	0.0	to	1.0.	For	a	device	that
supports	both	capture	and	playback,	this	function	can	only	be	used	to	get
either	the	capture	volume	or	the	playback	volume,	not	both.

Advanced	Implementation

This	section	describes	some	of	the	more	advanced	functionality	of	GV.

Detecting	Devices	Being	Unplugged

A	gvUnpluggedCallback	allows	an	application	to	know	if	a	device	is
unplugged	or	otherwise	stops	working.

typedef	void	(*	gvUnpluggedCallback)(GVDevice	device);

The	callback	function	is	passed	the	handle	to	the	device	that	was
unplugged.	The	device	will	be	freed	by	GV	immediately	after	this	function
returns.

Use	gvSetUnpluggedCallback	to	set	the	unplugged	callback	for	a
particular	device.

	

void	gvSetUnpluggedCallback(GVDevice	device,	gvUnpluggedCallback	unpluggedCallback);

Custom	Device

A	custom	device	allows	an	application	to	supply	its	own	audio	hardware
interface.	To	create	a	custom	device,	use	gvNewCustomDevice.

	

GVDevice	gvNewCustomDevice(GVDeviceType	type);

Specify	if	the	custom	device	will	handle	capture	(GV_CAPTURE),	playback
(GV_PLAYBACK),	or	both	capture	and	playback
(GV_CAPTURE_AND_PLAYBACK).	The	function	will	return	a	GVDevice	if
it	is	successful,	or	NULL	if	it	cannot	create	the	device.	When	an
application	has	finished	using	a	custom	device,	it	should	call
gvFreeDevice	to	free	its	resources.

All	custom	devices	must	interface	with	GV	using	the	defined	sample	rate
(GV_SAMPLES_PER_SECOND)	and	bit	rate	(GV_BITS_PER_SAMPLE).
The	default	sample	rate	is	8000Hz,	and	the	default	bits	per	sample	is	16.

Custom	devices	will	process	frames	of	audio	as	quickly	as	you	want.	In
other	words,	the	application	controls	a	custom	device's	clock	rate.
Because	of	this,	you	have	to	be	sure	that	you	request	or	provide	samples
at	the	correct	sample	rate.	In	other	words,	you	should	be	going	through
approximately	8000	samples	per	second.	Timing	variations	in	the	short
run	are	not	a	problem	(for	example,	if	the	system's	clock	is	only	accurate
to	within	30ms),	but	over	time	the	sample	rate	must	average	out	to
approximately	the	correct	rate	(in	a	minute	you	should	have	requested
approximately	60	*	8000	=	480000	samples).	GV	compensates	for	drift
between	clocks	(known	as	clock	skew),	however	with	a	custom	device
the	application	is	still	responsible	for	synching	with	the	system	clock.

If	you	are	not	using	GV's	default	audio	device	support,	you	can	define
GV_NO_DEFAULT_HARDWARE.	This	will	remove	all	internal	references	to
audio	hardware.	That	way,	you	don't	need	to	setup	DirectX	or	lgAud	if
you	won't	be	using	it.	If	GV_NO_DEFAULT_HARDWARE	is	defined,	then
gvListDevices	and	gvNewDevice	will	have	no	purpose,	so	they	will
not	be	included	and	cannot	be	called.

Custom	Playback

With	a	custom	playback	device,	you	are	taking	over	the	function	of	a
hardware	sound	device.	GV	delivers	a	mixed	audio	stream,	which	you
can	do	whatever	you	want	with,	such	as	playing	through	a	sound	device,
saving	to	disk,	or	displaying	visually.

You	provide	a	custom	playback	with	packets	the	same	way	you	would
any	other	playback	device,	by	using	gvPlayPacket.	You	can	also	use
all	of	the	other	standard	playback	device	functions,	such	as
gvIsSourceTalking,	and	gvSetDeviceVolume.	However	you	do
need	not	call	gvThink	with	custom	devices.	Instead	you	use
gvGetCustomPlaybackAudio.

	

GVBool	gvGetCustomPlaybackAudio(GVDevice	device,	GVSample	*	audio,	int	numSamples);

The	numSamples	parameter	specifies	how	many	samples	can	be	written
to	the	memory	pointed	to	by	audio.	numSamples	must	be	a	multiple	of
the	samples	per	frame	for	the	current	codec	(which	you	can	check	using
gvGetCodecInfo).	This	is	because	GV	mixes	audio	a	frame	at	a	time.
The	function	will	return	GVTrue	if	it	was	able	to	fill	the	memory	with
audio.

Custom	Capture

A	custom	capture	device	allows	you	to	provide	your	own	sound	source	in
GV.	It	does	this	by	replacing	gvCapturePacket	with	a	function	that
both	provides	GV	with	captured	audio	and	then	gets	a	packet	containing
that	audio.	This	function	is	gvSetCustomCaptureAudio.

	

GVBool	gvSetCustomCaptureAudio(GVDevice	device,	const	GVSample	*	audio,	int	numSamples,	GVByte	*	packet,	int	*	packetLen,	GVFrameStamp	*	frameStamp,	GVScalar	*	volume);

The	audio	parameter	points	to	the	incoming	audio	stream,	and
numSamples	is	the	number	of	samples	to	capture.	numSamples	must
be	a	multiple	of	the	samples	per	frame	for	the	current	codec	(which	you
can	check	using	gvGetCodecInfo).	The	audio	will	be	encoded	into	a
packet,	which	will	be	stored	at	the	memory	pointed	to	by	the	packet
parameter.	packetLen	must	be	large	enough	to	hold	all	of	the	encoded
frames	supplied	by	the	audio	parameter.	If	the	function	successfully
encodes	the	audio	into	the	packet,	it	returns	GVTrue.	It	will	return
GVFalse	if	a	threshold	is	set	and	the	audio's	peak	volume	did	not	cross
the	threshold.	If	the	function	succeeds,	packetLen	will	store	the	number
of	bytes	encoded	into	packet,	frameStamp	will	point	to	the	frame	stamp
for	the	packet,	and	volume	will	point	to	the	peak	volume	for	the	packet.

Note	that	although	the	audio	parameter	is	a	const,	if	a	capture	volume	or
a	capture	filter	is	set	on	this	device,	then	the	memory	will	be	modified.
This	is	done	to	minimize	the	amount	of	memory	and	copying	needed.

Custom	capture	devices	can	be	used	the	same	way	as	other	capture

devices.	For	example,	you	can	use	a	capture	threshold	or	set	a	volume.
However	there	are	two	functions	that	are	not	support	by	custom	capture
devices:	gvGetAvailableCaptureBytes	and	gvCapturePacket.
That	is	because	you	are	now	providing	the	capture	interface.

Custom	Codec

An	application	can	use	a	codec	other	than	the	ones	provided	with	GV,	by
using	a	custom	codec.	To	start	using	a	custom	codec,	first	fill	in	a
GVCustomCodecInfo	structure.

typedef	struct

{

int	m_samplesPerFrame;

int	m_encodedFrameSize;

GVBool	(*	m_newDecoderCallback)(GVDecoderData	*	data);

void	(*	m_freeDecoderCallback)(GVDecoderData	data);

void	(*	m_encodeCallback)(GVByte	*	out,	const	GVSample	*	in);

//	decode	must	_add_	to,	not	set	the	output

void	(*	m_decodeCallback)(GVSample	*	out,	const	GVByte	*	in,	GVDecoderData	data);

}	GVCustomCodecInfo;

m_samplesPerFrame	is	the	number	of	samples	that	this	codec	expects
in	a	raw	(unencoded)	frame	of	audio.	This	can	be	whatever	value	is	used
by	the	codec,	however	it	is	typically	about	160	samples.
m_encodedFrameSize	is	the	number	of	bytes	in	an	encoded	frame	of
audio	produced	by	this	codec.	The	ratio	of	the	samples	per	frame	and
encoded	frame	size	is	directly	related	to	the	codec's	output	stream	bit
rate.

m_newDecoderCallback	is	used	to	allocate	a	new	decoder	instance
for	each	incoming	source.	Some	codecs	do	not	require	this,	and	they
should	set	the	m_newDecoderCallback	member	to	NULL.	For	codecs
that	do	require	per-source	data,	they	should	allocate	a	new	decoder	data
state	and	set	the	data	parameter	to	point	to	it,	then	return	TRUE.	If	they
cannot	allocate	a	new	decoder	data,	then	they	should	return	GVFalse.

The	m_freeDecoderCallback	is	used	to	free	decoder	data	allocated
through	m_newDecoderCallback.	If	a	codec	set
m_newDecoderCallback	to	NULL,	it	should	set
m_freeDecoderCallback	to	NULL	as	well.	Otherwise	it	should	provide
a	function	that	frees	the	decoder	data.

m_encodeCallback	is	used	to	encode	data.	The	in	parameter	points
to	the	input	data,	with	is	a	single	raw	frame	of	samples.	The	number	of
samples	passed	to	this	function	will	always	be	m_samplesPerFrame.
The	out	parameter	points	to	the	memory	into	which	the	callback	should
encode	the	input	data.	The	memory	will	always	be	large	enough	to	hold
one	frame	of	compressed	audio,	which	will	always	be
m_encodedFrameSize	bytes	long.

m_decodeCallback	is	used	to	decode	data.	The	in	parameter	will
point	to	an	encoded	frame	of	audio,	which	will	be
m_encodedFrameSize	bytes	long.	The	out	parameter	which	will	be
large	enough	to	hold	m_samplesPerFrame	samples	of	audio.	The
decoder	data	is	provided	for	codecs	that	need	it.	The	important	thing	to
know	with	the	decode	callback	is	that	it	should	not	decode	directly	into
the	out	buffer,	but	it	should	add	to	it.	This	allows	GV	to	decode	and	mix
at	the	same	time,	without	having	to	decode	into	a	temporary	buffer	which
would	then	be	mixed	into	the	output	stream.

Once	you	have	filled	in	a	GVCustomCodecInfo	structure,	use
gvSetCustomCodec	to	set	it	as	the	codec.	It	will	replace	any	codec	that
has	been	set	with	gvSetCodec.

void	gvSetCustomCodec(GVCustomCodecInfo	*	info);	

If	you	are	not	using	GV's	default	codec	support,	you	can	define
GV_NO_DEFAULT_CODEC.	This	will	remove	all	internal	references	to	the
default	codec.	That	way,	you	don't	need	to	setup	Speex	or	lgCodec	if	you
won't	be	using	it.	If	GV_NO_DEFAULT_CODEC	is	defined,	then
gvSetCodec	will	have	no	purpose,	so	it	will	not	be	included	and	cannot
be	called.

Filter

Filtering	allows	you	to	process,	or	just	monitor,	audio	that	has	ben
captured	or	is	being	played.	A	filter	callback,	prototyped	as	the
gvFilterCallback	type,	is	passed	the	device	the	filtering	is	happening
on,	the	audio	to	filter,	and	the	audio's	frame	stamp.	The	audio	will	always
be	a	single	raw	frame	of	audio.	Use	gvGetCodecInfo	to	get	the	number
of	samples	in	a	raw	frame.

typedef	void	(*	gvFilterCallback)(GVDevice	device,	GVSample	*	audio,	GVFrameStamp	frameStamp);

The	callback	can	modify	the	audio	in	any	way	that	it	wants.	However
once	the	function	returns	it	can	no	longer	access	the	audio.	For	capture
devices,	audio	will	only	be	passed	to	the	filter	if	it	crosses	the	threshold	(if
one	is	set).	For	playback	devices,	audio	is	filtered	after	all	of	the	sources
have	been	mixed.

To	set	a	filter	on	a	device,	use	gvSetFilter.

void	gvSetFilter(GVDevice	device,	GVDeviceType	type,	gvFilterCallback	callback);

You	can	use	the	function	to	set	a	filter	on	any	device,	and	to	set	it	for
capture	or	playback.	A	device	can	have	only	one	capture	filter	at	a	time
and	only	one	playback	filter	at	a	time.	To	clear	a	filter,	call	this	function
with	the	callback	set	to	NULL.

Device	Wizard

With	Win32	only,	a	device	setup	wizard	is	available	if	the	user	has
DirectX	8	or	greater.	It	can	be	instantiated	for	a	pair	of	devices	using
gvRunSetupWizard.

GVBool	gvRunSetupWizard(GVDeviceID	captureDeviceID,	GVDeviceID	playbackDeviceID);

The	function	takes	a	capture	device	ID	and	a	playback	device	ID.	This
function	cannot	be	called	successfully	if	these	devices	have	been
initialized	with	gvNewDevice	-	gvRunSetupWizard	must	be	called	first.
The	wizard	will	take	over	control	of	the	program	while	it	executes.	It	has
the	user	speak	into	the	capture	device,	and	monitors	the	audio	to

automatically	set	system	level	capture	and	playback	volumes.	It	will
return	GVTrue	if	the	user	successfully	completes	the	wizard,	GVFalse
otherwise.	If	the	wizard	is	successful,	DirectX	will	store	the	results	in	the
registry.	Once	it	does	this,	gvAreDevicesSetup	can	be	used	to
determine	if	the	registry	has	information	on	the	two	specified	devices.	If
so,	it	returns	GVTrue,	and	the	wizard	does	not	need	to	be	run	again.	If	it
returns	GVFalse,	then	the	wizard	has	not	been	run	for	the	pair	of
devices.

GVBool	gvAreDevicesSetup(GVDeviceID	captureDevice,	GVDeviceID	playbackDevice);

Playback	Delays

There	are	two	delays	that	occur	between	when	the	application	gives	GV
audio	to	play	and	the	audio	is	actually	heard.	The	first	delay	is	a
synchronization	delay	added	automatically	by	GV.	The	second	is	a	result
of	missing	the	audio	into	the	hardware	before	it	needs	to	play	it,	which
ensures	that	the	hardware	always	has	audio	ready	to	play,	resulting	in	go
audible	gaps.

Synchronization	Delay

The	synchronization	delay	is	controlled	by	the
GVI_SYNCHRONIZATION_DELAY	define	at	the	top	of	gvSource.c.	This
controls	how	many	milliseconds	GV	will	wait	before	mixing	the	audio	into
the	playback	buffer.	This	allows	for	variations	in	Internet	transit	timing	and
in	application	timing.	For	example,	if	one	packet	takes	100	ms	to	arrive
and	the	next	takes	150	ms,	the	delay	will	ensure	that	the	packets	can	still
be	played	back	as	one	smooth	stream.

The	greater	the	value	of	the	delay,	the	longer	the	lag	will	be	between
when	something	is	spoken	and	when	it	is	heard.	If	the	lag	gets	to	be	too
large,	it	can	be	very	noticeable	to	users.	However	a	greater	delay	also
allows	for	more	variation	in	timing,	resulting	in	a	smoother	experience	on
systems	with	a	large	amount	of	timing	variation.

Playback	Buffer	Size

The	playback	buffer	size	controls	approximately	how	far	in	advance	the
audio	will	be	mixed	into	the	playback	buffer.	This	is	because,	as	the
playback	position	moves	through	the	playback	buffer,	the	space
immediately	behind	the	playback	position	becomes	available	for	writing
audio	data	that	will	be	played	when	the	position	loops	all	the	way	back
again.	GV	writes	into	the	memory	behind	the	playback	position	as	soon
as	it	becomes	available.	This	ensures	that	there	will	be	no	skipping
effect,	which	results	from	the	playback	position	getting	to	a	point	that	has
not	yet	had	new	audio	written	to	it.	The	user	will	hear	the	audio	that	was
written	to	the	buffer	for	the	last	loop,	resulting	in	an	audible	glitch.

The	buffer	size	is	specified	by	the
GVI_PLAYBACK_BUFFER_MILLISECONDS	define,	which	is	in
gvDevice.h.	If	a	custom	playback	device	is	being	used,	then	the
application	is	doing	any	audio	buffering,	so	the	define	has	no	effect.

The	most	important	thing	that	affects	buffer	size	is	the	amount	of	time
between	calls	to	gvThink,	which	is	when	audio	gets	mixed	into	the
playback	buffer.	The	larger	the	buffer	size,	the	longer	the	delay	between
when	something	is	said	and	when	it	is	heard.	However	a	larger	size
allows	for	longer	delay	between	calls	to	gvThink.	With	a	smaller	buffer
size	gvThink	must	be	called	more	often,	to	ensure	that	the	playback
position	does	not	loop	all	the	way	around	without	GV	having	a	chance	to
write	new	audio	data	to	it.	In	general,	the	buffer	size	should	be	at	least
twice	as	long	as	the	maximum	time	between	calls	to	gvThink.

Global	Focus

On	Win32	only,	the	default	is	for	the	playback	device	to	have	global
focus.	This	means	that	even	if	the	user	switches	to	a	different	application,
audio	played	through	GV	will	still	be	heard.	However	if	you	define
GV_NO_GLOBAL_FOCUS,	then	playback	won't	be	heard	if	the
application's	window	loses	focus.

Excluding	PS2	Hardware	Types

You	can	exclude	support	for	particular	hardware	device	types	on	the	PS2
by	compiling	the	SDK	with	one	or	more	defines	set.	Use
GV_NO_PS2_SPU2	to	exclude	SPU2	support,	GV_NO_PS2_HEADSET	to

exclude	lgAud	supprt	(USB	audio	devices	-
headset/microphone/speakers),	and/or	define	GV_NO_PS2_EYETOY	to
exclude	lgVid	support	(Eyetoy).

Performance	Data

Bandwidth	and	CPU	Usage	for	Codecs

OS Codec
Bandwidth	
(bits-per-
second)

CPU	Usage
(encoding
%)*

CPU	Usage
(decoding
%)*

Win32 Super	Low
Bandwidth

3600 2.4 0.2

Low	Bandwidth 5600 1.4 0.2
Average 8000 1.8 0.2
High	Bandwidth 14800 2.1 0.2
Super	High
Bandwidth

24400 3.0 0.2

	
Any No	Compression 128000 0.0 0.0
	
PS2 Super	Low

Bandwidth
2489 4.5 18.8

Low	Bandwidth 8000 X** X**
Average 13200 2.8 1.5
High	Bandwidth 24000 4.1 3.8
Super	High
Bandwidth

64000 0.1 0.1

	
PS3 Super	Low

Bandwidth
3600 3.6 0.4

Low	Bandwidth 5600 2.7 0.4
Average 8000 3.5 0.4
High	Bandwidth 14800 4.5 0.4
Super	High
Bandwidth

24400 6.0 0.4

*CPU	Usage	for	Win32	was	tested	on	a	Pentium	4	2.8Ghz	PC	with	1GB

of	ram	and	WinXP	SP1.

**This	codec	is	currently	not	working	correctly	on	the	PS2.

PS2	Memory	Usage

Note	that	this	memory	usage	information	only	applies	to	the	PS2.

The	SDK	uses	about	40-50KB	of	memory	on	the	EE,	and	about	25-50KB
of	IOP	memory.	The	exact	amount	of	memory	depends	on	which	codec	is
used,	which	hardware	types	are	supported	(by	default,	all	are	supported),
and	which	devices	are	used	at	runtime.	All	memory	allocations	take	place
in	calls	to	gvStartup,	gvSetCodec,	and	gvNewDevice.	The	SDK
does	not	allocate	additional	memory	while	it	is	thinking,	capturing,	or
playing	packets.	All	allocated	memory	is	freed	in	calls	to	gvFreeDevice
and	gvShutdown.

gvStartup

Under	1KB	of	EE	memory	is	allocated	at	startup.	This	is	used	by	lgAud
and	lgVid.

gvSetCodec

When	a	codec	is	set,	both	lgCodec	and	GV	allocate	EE	memory.	The
exact	amount	depends	on	the	codec.	The	Super	Low	Bandwidth	codec
uses	about	20KB,	the	Average	codec	uses	about	15KB,	the	High	Quality
codec	uses	about	16KB,	and	the	Super	High	Quality	codec	uses	about
35KB.

gvNewDevice

When	a	new	device	is	instantiated	with	a	call	to	gvNewDevice,	both	GV
and	lgAud	or	lgVid,	if	they	are	used,	allocate	EE	memory.	Memory	is	also
allocated	on	the	IOP,	where	the	actual	interaction	with	the	device	takes
place.	In	addition	SPU2	support	uses	about	25KB	of	static	memory	on
the	EE.	The	exact	amount	of	allocated	memory	depends	on	the	hardware
type.	A	SPU2	device	uses	less	than	1KB	of	EE	memory	and	about	26KB

of	IOP	memory.	A	USB	audio	device	(headset/microphone/speakers)
uses	about	1KB	of	EE	memory.	It	will	also	use	about	4KB	of	IOP	memory
if	it	is	used	for	playback,	about	24KB	of	IOP	memory	if	it	is	used	for
capture,	and	about	28KB	of	IOP	memory	if	it	is	used	for	both	capture	and
playback.

If	you	will	not	be	supporting	one	or	more	types	of	PS2	hardware	devices,
you	can	save	the	memory	that	it	would	use	by	excluding	it	from	the	SDK.
See	the	Advanced	section	for	more	information.

PS3	Memory	Usage

The	Voice	SDK	was	tested	on	the	PS3	PPU	using	a	USB	Headset.

The	PS3	memory	consumption	when	using	no	compression	showed	to
be	around	70KB.	Using	the	Speex	codec	with	settings	Super	High	quality,
High	quality,	Average,	Low	bandwith,	Super	Low	bandwith	used	about
16KB,	12KB,	8KB,	7KB,	6KB	respectively.

Appendix	A:	Voice	SDK	with	Speex	Codec	on	PS3	SPUs
(***BETA***)

Background/Overview

This	appendix	assumes	that	all	readers	have	experience	with	cell
programming,	and	the	SPURS	library.	Another	assumption	is	that	the
development	environment.	The	Voice	SDK	already	has	support	for
encoding	and	decoding	using	the	Speex	codec	on	the	PPU	processor
(considered	the	main	processor).	It	now	supports	encoding	and	decoding
operations	using	Speex	on	the	SPU	processors.	The	SPURS	library	was
the	best	choice,	and	we	selected	the	SPURS	taskset	model.	The	SPURS
taskset	model	involves	coarse-grain	processing	on	SPUs,	which	fits	with
Speex.	The	purpose	of	using	SPUs	via	SPURS	tasksets	to	perform
encoding/decoding	is	to	reclaim	PPU	processing	time,	allowing
developers	to	use	it	for	other	purposes	such	as	game	logic,	graphics
code,	etc.	To	get	the	most	benefit	from	this	Voice	SDK	feature,
developers	should	have	the	Voice	SDK	calls	that	require	the	PPU	in	a
separate	PPU	thread--The	reason	for	this	is	because	the	Voice	SDK
synchronously	performs	encoding	and	decoding.	Thus,	putting	the
Voice	SDK	in	a	separate	PPU	thread	will	allow	the	game	operations
mentioned	previously	to	execute	without	having	to	wait	for
encoding/decoding	to	complete	on	the	Voice	SDK	thread.	We	also
recommend	developers	put	all	Gamespy	calls	in	a	separate	thread,	which
can	be	the	same	thread	as	the	Voice	SDK	thread.	Another	important
thing	about	DMA	bandwidth,	to	take	is	that	the	SDK	is	not	anywhere	near
the	maximum	DMA	transfer	speed.	This	is	because	of	the	low	memory
requirements	displayed	next.

Memory	Consumption:	Maximum	Bytes	consumed

Codec	Quality 8	Khz	Audio 16	Khz	Audio
SuperHighQuality 123448 133848
HighQuality 118648 124248
Average 114648 118648
LowBandwith 113848 116248

SuperLowBandwith 113048 115448

Memory	consumption	was	measured	using	the	Voice2Test	application	for
the	PS3	(Voice2\Voice2Test\gvps3prodgspeexspu).	The	application	was
setup	to	use	local	echo	to	ensure	both	encoding	and	decoding	occurred.
The	Voice	SDK	uses	varying	amounts	of	memory	because	it	has	to
allocate	buffers	to	keep	track	of	the	encoder/decoder	state	and	to
perform	DMA	transfers	easily.	Most	of	the	memory	consumed	in	these
cases	were	allocations	for	the	encoder/decoder	state.	Since	most	games
will	only	allow	one	person	to	talk	at	a	time,	memory	usage	should	be
close	to	these	figures.

PPU	Impact	for	one	frame	(20	ms)

Codec	Quality						 8	KHz(Encode)
8	KHz
(Decode)

16	KHz
(Encode)

16	KHz
(Decode)

SuperHighQuality 0.37% 0.34% 0.47% 0.45%
HighQuality 0.36% 0.34% 0.40% 0.42%
Average 0.36% 0.34% 0.37% 0.37%
LowBandwith 0.31% 0.31% 0.35% 0.35%
SuperLowBandwith 0.35% 0.31% 0.36% 0.35%

SPU	Impact	for	one	frame	(20	ms)

Codec	Quality						 8	KHz(Encode)
8	KHz
(Decode)

16	KHz
(Encode)

16	KHz
(Decode)

SuperHighQuality 10.5% 0.75% 23.86% 1.52%
HighQuality 7.57% 0.84% 18.00% 1.53%
Average 7.1% 0.82% 12.09% 1.4%
LowBandwith 5.78% 0.89% 6.86% 1.36%
SuperLowBandwith 6.02% 0.89% 11.46% 1.34%

The	percentages	listed	above	show	the	average	portion	of	each	frame
spent	on	each	processor.	Sony's	PA	Suite	and	Voice2Test	for	the	PS3
were	used	to	calculate	these	percentages.	According	to	the	PPU/SPU
impact	charts,	the	Voice	SDK	does	not	utilize	the	PPU	as	much	as	the

SPU.	The	PPU	times	reflect	the	amount	of	time	spent	in	the
encode/decode	call	that	occurs	internally	in	the	Voice	SDK	which	does
not	have	processor	intensive	code.	The	rest	of	the	time	was	spent	on:	the
SPU	performing	the	encode/decode	operations,	and	the	PPU	mostly
idling.	Again,	it	is	recommended	that	the	Voice	SDK	is	used	in	a	PPU
thread	separate	from	the	main	thread	because	the	PPU	has	to	block	until
the	SPU	completes	encode/decode	operations	and	idles	most	of	the
time.

DMA	Bandwidth	(measured	in	bytes)

DMA	Data	to	and
from	SPU	(one	trip)

8	KHz
(Encode)

8	KHz
(Decode)

16	KHz
(Encode)

16	KHz
(Decode)

Encoded	Buffer 128 128 128 128
State	Buffer 64672 41024 64672 41024
Decoded	Buffer 160 160 320 320
Task	Descriptor 46 46 46 46
Task	Output 20 20 20 20
--
Bytes	per	second
used	(50	frames/s	*	2
transfers)

6502600 4137800 6518600 4153800

The	DMA	bandwidth	metrics	above	account	for	all	DMA	transfers	that
occur	during	encode/decode	operations.	These	metrics	are	based	on	a
single	frame,	and	are	considered	a	one	way	trip.	The	state	buffers	remain
the	same	for	both	encoding	and	decoding	even	when	using	different
sampling	rates.	However,	the	buffer	to	perform	DMA	transfer	of	decoded
audio	vary	depending	on	the	sample	rate.	The	bytes	per	second	shows
the	bandwidth	that	is	used	for	a	full	second	of	audio.	It	consists	of	50
frames	multiplied	by	two	transfers.	These	transfers	account	for	a	round
trip.	The	DMA	transfer	performance	according	to	Sony's	documentation	is
13.2	GB/s	for	reads,	and	22.8	GB/s	for	writes.	

The	numbers	in	the	chart	above	are	nowhere	near	the	performance	of
DMA	transfers	that	Sony	mentions	in	their	documentation.	Therefore,
there	should	be	plenty	of	room	for	other	SPURS	tasks	to	occur	in	addition

to	this.

Implementation

Speex	Task	and	Speex	Task	Manager

The	Speex	Task	performs	encode	and	decode	operations	using	the
speex	codec,	while	the	Speex	Task	Manager	facilitates	communication
between	the	Voice	SDK	and	the	Speex	Task.	Both	of	these	projects	are
required.	They	are	availabel	by	downloading	the	GameSpy	Common
Code.	The	Speex	Task	Manager	and	the	Speex	Task	are	located	in	the
following	folders:

Gamespy\common\ps3\SpeexSpursTaskManager

Gamespy\common\ps3\SpeexSpursTaskManager\SpeexSpursTask

The	Voice	SDK	depends	on	these	two	projects	and	a	new	speex
interface:	gvSpeexSpu.c.	These	projects	should	be	added	to	your
Visual	Studio	solution.	After	adding	the	two	projects	to	your	solution,	set
the	project	dependencies	to	include	these	two	projects	for	the	project	that
has	the	Voice	SDK.	Refer	to	the	Voice2Test	sample	that	is	setup	for
Speex	SPU	usage:	Voice2\Voice2Test\gvps3prodgspeexspu.

As	previously	mentioned,	extract	the	Speex	codec	into	the	Voice	SDK
folder	in	order	to	avoid	seeing	errors	and	warnings	about	missing	Speex
codec	files.	The	rest	of	Voice	SDK	implementation	can	be	found	above.

Passing	in	an	Existing	Spurs	Instance

In	Voice2Test.c,	there	is	an	example	of	an	existing	SPURS	instance
being	passed	to	a	helper	function.	The	Speex	Spurs	Task	Manager
includes	the	function.	The	game	should	have	an	initialized	spurs
instance,	and	pass	it	to	the	function
spursConfiguration_initWithSpurs.	Make	sure	to	to	include	the
file	"spursConfiguration.h"	prior	to	calling	it.	The	function	also	takes	in
the	number	of	SPUs	to	use	for	the	Speex	task,	and	the	priorities	of	the

task	per	SPU.	This	can	be	useful	for	developers	that	want	to	control	the
amount	SPUs	to	dedicate	to	a	given	SPURS	task.	Here	is	an	exerpt	of
the	Voice2Test.c	that	shows	usage	of	the	function
spursConfiguration_initWithSpurs:

#if	defined(USER_CREATED_SPURS_INSTANCE)

#include	"spursConfiguration.h"

#include	<sys/spu_initialize.h>

int	iReturn,	iNumSpus,	ppuThreadPriority,	spuThreadPriority;

bool	exitIfNoWork;

CellSpurs*	myCellSpurs;

uint8_t	auiLocalPriorities[8]={1,1,1,1,1,1,1,1};

#endif

...

static	GVBool	Initialize(const	char	*	remoteIP)

{

...

				iNumSpus	=	1;

	 spuThreadPriority	=	200;

	 ppuThreadPriority	=	1000;

	 exitIfNoWork	=	false;

	 myCellSpurs	=	(CellSpurs*)	gsimemalign(128,	sizeof(CellSpurs));

	 //	initializing	spus	themselves	before	using	spurs

	 sys_spu_initialize(iNumSpus,0);

	 iReturn=cellSpursInitialize(myCellSpurs,	iNumSpus,spuThreadPriority,ppuThreadPriority,exitIfNoWork);

	 if	(iReturn!=CELL_OK)

	 {

	 	 printf("Error	initializing	spurs\n");

	 	 return	GVFalse;

	 }

	 spursConfiguration_initWithSpurs(myCellSpurs,	iNumSpus,auiLocalPriorities);

...

}

Emmbedding	the	Speex	Task	with	your	project

To	Embed	the	Speex	Task,	There	is	an	easy	way	to	acomplish	this.
Simpley	make	the	SpeexSpursTask	project	a	dependency	of	the	project
containing	the	Voice	SDK.	Developers	that	like	to	go	further	can	refer	to
the	Post-Build	configuration	options	in	the	SpeexSpursTask	project.
There	is	also	a	section	in	the	SPURS	tutorial	for	developers	that	wish	to
go	further	in	customizing	the	embedding.	Please	refer	to	the	SPURS
Tutorial	3.5:	Building	the	Program	in	Sony's	Documentation.

Voice	SDK	Functions
gvAreDevicesSetup

Determines	if	the	registry	has	information
on	the	specified	device	pair.

gvCapturePacket
Takes	captured	audio	data	out	of	the
internal	capture	buffer,	storing	it	in	the
provided	packet	memory	block.

gvCleanup
Performs	any	necessary	internal	cleanup.
GV	cannot	be	used	again	until	gvStartup	is
called.

gvFreeDevice
Frees	a	device	so	that	GV	can	clean	it	up

gvGetAvailableCaptureBytes
Discovers	how	many	bytes	are	currently
available	for	capture	on	the	given	device.

gvGetCaptureMode
Gets	the	capture	mode	for	the	device.

gvGetCaptureThreshold
Gets	the	current	value	of	the	capture
threshold	for	the	device

gvGetCodecInfo
Obtains	the	particular	stats	for	the	codec.

gvGetCustomPlaybackAudio
Retrieves	any	audio	data	that	is	ready	to	be
played	through	a	custom	playback	device.

gvGetDeviceVolume
Gets	the	volume	from	a	capture	or	playback

device.

gvGetGlobalMute
Gets	the	current	status	of	global	mute.

gvGetPushToTalk
Tells	you	if	PushToTalk	is	currently	turned
on	or	off.

gvIsDeviceStarted
Checks	to	see	if	a	whether	or	not	a	device
has	been	started	as	the	given	device	type.

gvIsSourceTalking
Determines	if	a	particular	source	is
currently	talking	on	the	specified	device.

gvListDevices
Gets	a	list	of	devices	available	on	the
system

gvListTalkingSources
Gets	a	list	of	all	of	the	sources	that	are
currently	talking	on	a	particular	device.

gvNewCustomDevice
Creates	a	custom	device,	which	allows	an
application	to	supply	its	own	audio
hardware	interface.

gvNewDevice
Initializes	a	device

gvPlayPacket
Plays	a	packet	retrieved	from	the	capture
buffer.

gvRunSetupWizard
Interacts	with	the	user	to	set	up	the	capture
and	playback	devices.

gvSetCaptureMode
Sets	the	capture	mode	for	the	device.

gvSetCaptureThreshold
Sets	the	threshold	volume	on	a	device.	A
packet	will	only	be	passed	to	the
application	if	its	peak	volume	is	at	least	as
high	as	the	capture	threshold.

gvSetCodec
Sets	the	codec	to	be	used	by	the	SDK.

gvSetCustomCaptureAudio
For	a	custom	capture	device,	encodes
captured	audio	from	a	stream	into	a	packet,
storing	it	at	provided	memory.

gvSetCustomCodec
Tells	GV	to	use	an	application-provided
codec	instead	of	a	built-in	codec.

gvSetDeviceVolume
Sets	a	device's	volume.

gvSetFilter
Sets	a	device's	filter	callback.

gvSetGlobalMute
Sets	the	global	mute	value	-	defaults	to
false.

gvSetPushToTalk
Used	to	turn	on	or	off	capturing	for	a
device.	Must	be	in
GVCaptureModePushToTalk	mode.

gvSetUnpluggedCallback
Sets	a	callback	to	be	called	when	the	SDK
detects	that	the	device	was	unplugged	or	is

no	longer	functioning.

gvStartDevice
Starts	a	device	capturing	and/or	playing
audio.

gvStartup
Initializes	the	SDK.

gvStopDevice
Stops	a	device	that	is	capturing	and/or
playing	audio.

gvThink
Allows	playback	devices	to	play	audio
scheduled	for	playback.

gvAreDevicesSetup
Determines	if	the	registry	has	information	on	the	specified	device	pair.

GVBool	gvAreDevicesSetup(
GVDeviceID	captureDeviceID,
GVDeviceID	playbackDeviceID);

Routine Required	Header Distribution
gvAreDevicesSetup <gv.h> SDKZIP

Return	Value

Returns	GVTrue	if	gvRunSetupWizard	has	been	run	on	the	pair;
otherwise,	GVFalse.

Parameters

captureDeviceID
[in]	Reference	to	the	device	used	to	capture	audio

playbackDeviceID
[in]	Reference	to	the	device	used	to	playback	audio

Remarks

If	gvAreDevicesSetup	returns	GVTrue,	and	the	gvRunSetupWizard
does	not	need	to	be	run	again.	If	it	returns	GVFalse,	then	the
gvRunSetupWizard	has	not	been	run	for	the	pair	of	devices.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvNewDevice,	gvRunSetupWizard

gvCapturePacket
Takes	captured	audio	data	out	of	the	internal	capture	buffer,	storing	it	in
the	provided	packet	memory	block.

GVBool	gvCapturePacket(
GVDevice	device,
GVByte	*	packet,
int	*	len,
GVFrameStamp	*	frameStamp,
GVScalar	*	volume);

Routine Required	Header Distribution
gvCapturePacket <gv.h> SDKZIP

Return	Value

GVTrue	if	successful	in	getting	a	packet	and	encoding	it	into	the	provided
memory	block;	GVFalse	if	either	no	audio	data	was	available	to	capture
or	an	error	occurred	while	capturing	the	audio.

Parameters

device
[in]	A	handle	to	the	capture	device

packet
[in]	A	block	of	memory	to	receive	the	data

len
[ref]	The	maximum	/	number	of	bytes	moved	into	the	memory	block
specified	by	packet	parameter.

frameStamp
[out]	The	frame	stamp	for	the	captured	packet

volume
[out]	The	peak	volume	for	the	audio	in	the	frame

Remarks

The	packet	parameter	must	be	large	enough	to	hold	at	least	one
encoded	frame	(gvGetCodecInfo	can	be	used	to	get	the	size	of	an
encoded	frame).	The	function	will	fill	this	memory	with	as	many	encoded
frames	as	it	can.	
The	len	parameter	must	point	to	an	int	which	is	set	to	the	maximum
number	of	bytes	that	can	be	written	to	the	block	of	memory	pointed	to	be
the	packet	parameter.	After	the	function	returns,	if	it	was	successful,	len
will	point	to	the	number	of	bytes	that	were	written	to	the	block	of	memory.
The	frameStamp	parameter	will	receive	the	frame	stamp	for	the	captured
packet,	and	the	volume	parameter,	the	peak	volume	for	the	audio	in	the
frame.	The	volume	ranges	from	0.0	to	1.0,	and	it	can	be	used	to	power	a
per-player	graphic	voice	activity	meter.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvGetAvailableCaptureBytes,	gvGetCodecInfo

gvCleanup
Performs	any	necessary	internal	cleanup.	GV	cannot	be	used	again	until
gvStartup	is	called.

void	gvCleanup();

Routine Required	Header Distribution
gvCleanup <gv.h> SDKZIP

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvStartup

gvFreeDevice
Frees	a	device	so	that	GV	can	clean	it	up.

void	gvFreeDevice(
GVDevice	device);

Routine Required	Header Distribution
gvFreeDevice <gv.h> SDKZIP

Parameters

device
[in]	The	handle	to	the	deviced	to	be	freed.

Remarks

Once	a	device	has	been	freed	it	can	no	longer	be	used.	After	calling	this
function	you	should	set	the	variable	in	which	you	stored	the	device
handle	to	NULL.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvNewDevice,	gvStartDevice,	gvStopDevice

gvGetAvailableCaptureBytes
Discovers	how	many	bytes	are	currently	available	for	capture	on	the
given	device.

int	gvGetAvailableCaptureBytes(
GVDevice	device);

Routine Required	Header Distribution
gvGetAvailableCaptureBytes <gv.h> SDKZIP

Return	Value

Returns	the	number	of	bytes	available.

Parameters

device
[in]	The	handle	to	the	device.

Remarks

To	determine	the	number	of	encoded	frames,	divide	the	return	value	by
the	number	of	bytes	in	an	encoded	frame	(which	you	can	get	with
gvGetCodecInfo).	
Note	that	even	if	there	are	bytes	available,	gvCapturePacket	may	return
GVFalse.	This	could	happen	if	a	capture	threshold	has	been	set,	and	the
voice	audio	does	not	cross	the	threshold.	In	that	case	GV	would	skip	over
that	captured	audio,	and	its	bytes	would	no	longer	count	as	available
bytes.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvCapturePacket,	gvGetCodecInfo

gvGetCaptureMode
Gets	the	capture	mode	for	the	device.

GVCaptureMode	gvGetCaptureMode(
GVDevice	device);

Routine Required	Header Distribution
gvGetCaptureMode <gv.h> SDKZIP

Return	Value

The	current	capture	mode	for	this	device.

Parameters

device
[in]	The	handle	to	the	capture	device.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvSetCaptureMode,	GVCaptureMode

gvGetCaptureThreshold
Gets	the	current	value	of	the	capture	threshold	for	the	device.

GVScalar	gvGetCaptureThreshold(
GVDevice	device);

Routine Required	Header Distribution
gvGetCaptureThreshold <gv.h> SDKZIP

Return	Value

Returns	the	current	threshold	value.

Parameters

device
[in]	The	handle	to	the	capture	device.

Remarks

Retrieves	the	value	that	was	assigned	by	gvSetCaptureThreshold.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvSetCaptureThreshold

gvGetCodecInfo
Obtains	the	particular	stats	for	the	codec.

void	gvGetCodecInfo(
int	*	samplesPerFrame,
int	*	encodedFrameSize,
int	*	bitsPerSecond);

Routine Required	Header Distribution
gvGetCodecInfo <gv.h> SDKZIP

Parameters

samplesPerFrame
[out]	The	samples	per	frame.

encodedFrameSize
[out]	The	encoded	frame	size	in	bytes

bitsPerSecond
[out]	The	bits	per	second.

Remarks

Note	that	the	bits	per	second	doesn’t	take	into	account	any	overhead,
such	as	the	need	to	transmit	a	frame	stamp	value	with	each	packet.	It	is
based	only	on	the	encoded	frame	size	and	the	number	of	frames	per
second.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvSetCodec

gvGetCustomPlaybackAudio
Retrieves	any	audio	data	that	is	ready	to	be	played	through	a	custom
playback	device.

GVBool	gvGetCustomPlaybackAudio(
GVDevice	device,
GVSample	*	audio,
int	numSamples);

Routine Required	Header Distribution
gvGetCustomPlaybackAudio <gv.h> SDKZIP

Return	Value

GVTrue	if	the	audio	buffer	was	filled,	GVFalse	otherwise.

Parameters

device
[in]	The	custom	playback	device	from	which	to	retrieve	audio.

audio
[out]	Buffer	to	fill	with	audio	samples	to	be	played	by	the	custom
device.

numSamples
[in]	Size	of	the	audio	buffer	in	samples.	Must	be	a	multiple	of	the
current	samplesPerFrame.

Remarks

numSamples	must	be	a	multiple	of	the	samples	per	frame	for	the	current
codec	(which	you	can	check	using	gvGetCodecInfo).	This	is	because	GV
mixes	audio	a	frame	at	a	time.
This	function	should	be	called	at	the	same	rate	at	which	the	custom
playback	device	is	actually	playing	audio.	In	other	words,	the	physicial
device	should	be	pulling	data	with	this	function	when	it	needs	it	-	the	data
is	not	being	pushed	to	the	physical	device.	This	is	because	the	SDK
compensates	for	differences	in	audio	clock	rates,	and	calling	it	at	the
correct	rate	will	ensure	a	consistent	rate	of	playback.
The	GV_SAMPLES_PER_SECOND	and	GV_BITE_PER_SAMPLE
defines	can	be	used	to	determine	the	sample	rate	and	bitrate	of	the
audio.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvNewCustomDevice

gvGetDeviceVolume
Gets	the	volume	from	a	capture	or	playback	device.

GVScalar	gvGetDeviceVolume(
GVDevice	device,
GVDeviceType	type);

Routine Required	Header Distribution
gvGetDeviceVolume <gv.h> SDKZIP

Return	Value

Returns	the	specified	volume	for	the	device.

Parameters

device
[in]	The	handle	to	the	device.

type
[in]	Specifies	either	the	playback	volume	or	the	capture	volume

Remarks

The	volume	range	is	0.0	to	1.0.	

The	type	parameter	controls	if	this	gets	set	as	a	capture	volume
(GV_CAPTURE),	a	playback	volume	(GV_PLAYBACK).	For	a	device	that
supports	both	capture	and	playback,	this	function	can	only	be	used	to	get
either	the	capture	volume	or	the	playback	volume,	not	both.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvSetDeviceVolume

gvGetGlobalMute
Gets	the	current	status	of	global	mute.

GVBool	gvGetGlobalMute();

Routine Required	Header Distribution
gvGetGlobalMute <gv.h> SDKZIP

Return	Value

GVTrue	if	global	mute	turned	on,	GVFalse	if	off.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvSetGlobalMute

gvGetPushToTalk
Tells	you	if	PushToTalk	is	currently	turned	on	or	off.

GVBool	gvGetPushToTalk(
GVDevice	device);

Routine Required	Header Distribution
gvGetPushToTalk <gv.h> SDKZIP

Return	Value

GVTrue	if	turned	on,	GVFalse	if	turned	off.

Parameters

device
[in]	The	handle	to	the	capture	device.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvSetPushToTalk,	gvSetCaptureMode

gvIsDeviceStarted
Checks	to	see	if	a	whether	or	not	a	device	has	been	started	as	the	given
device	type.

GVBool	gvIsDeviceStarted(
GVDevice	device,
GVDeviceType	type);

Routine Required	Header Distribution
gvIsDeviceStarted <gv.h> SDKZIP

Return	Value

Returns	GVTrue	if	the	device	has	been	started,	GVFalse	if	not.

Parameters

device
[in]	The	handle	to	the	device.

type
[in]	Specifies	capture	or	playback	device.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvStartDevice,	gvStopDevice

gvIsSourceTalking
Determines	if	a	particular	source	is	currently	talking	on	the	specified
device.

GVBool	gvIsSourceTalking(
GVDevice	device,
GVSource	source);

Routine Required	Header Distribution
gvIsSourceTalking <gv.h> SDKZIP

Return	Value

Returns	GVTrue	if	the	source	is	talking	on	the	specified	device;
otherwise,	GVFalse.

Parameters

device
[in]	The	handle	to	the	device.

source
[in]	The	source	identifier.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvListTalkingSources

gvListDevices
Gets	a	list	of	devices	available	on	the	system.

int	gvListDevices(
GVDeviceInfo	devices[],
int	maxDevices,
GVDeviceType	types);

Routine Required	Header Distribution
gvListDevices <gv.h> SDKZIP

Return	Value

Returns	the	number	of	devices	that	it	put	into	the	list.	Return	value	of	0
may	indicate	an	error	or	that	no	devices	were	found.

Parameters

devices
[out]	The	list	of	device	details	to	be	filled	in	by	the	function.

maxDevices
[in]	The	number	of	elements	in	the	devices	array.

types
[in]	The	types	of	devices	to	survey.

Remarks

You	can	request	capture	devices	with	GV_CAPTURE,	playback	devices
with	GV_PLAYBACK,	or	capture	and	playback	devices	with
GV_CAPTURE_AND_PLAYBACK.	For
GV_CAPTURE_AND_PLAYBACK,	it	can	list	capture	devices,	playback
devices,	and	devices	that	support	both	capture	and	playback.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	GVDeviceInfo

gvListTalkingSources
Gets	a	list	of	all	of	the	sources	that	are	currently	talking	on	a	particular
device.

int	gvListTalkingSources(
GVDevice	device,
GVSource	sources[],
int	maxSources);

Routine Required	Header Distribution
gvListTalkingSources <gv.h> SDKZIP

Return	Value

Returns	the	number	of	sources	that	are	talking	on	the	device.

Parameters

device
[in]	The	handle	of	the	device.

sources
[out]	An	array	to	receive	the	sources,	filled	in	by	the	function.

maxSources
[in]	The	number	of	elements	in	the	sources	array.

Remarks

The	function	will	return	the	number	of	sources	that	were	talking	on	the
device,	and	it	will	store	their	GVSources	in	the	sources	array.	0	will	be
returned	if	there	are	no	sources	talking.

GV	has	a	hardcoded	limit	that	does	not	allow	more	than	8	sources	to	talk
simultaneously.	This	allows	it	to	preallocate	memory	that	it	needs	to	store
for	a	source	while	it	is	talking.	A	user	will	typically	not	understand	more
than	2	or	3	users	talking	simultaneously,	so	the	limit	should	be	high
enough.	If	the	application	attempts	to	play	audio	from	more	than	8
sources	at	a	time,	audio	for	the	9th	source	will	be	automatically	dropped.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvIsSourceTalking

gvNewCustomDevice
Creates	a	custom	device,	which	allows	an	application	to	supply	its	own
audio	hardware	interface.

GVDevice	gvNewCustomDevice(
GVDeviceType	type);

Routine Required	Header Distribution
gvNewCustomDevice <gv.h> SDKZIP

Return	Value

Returns	a	handle	to	the	new	custom	device	if	successful;	NULL	if	it
cannot	create	the	device.

Parameters

type
[in]	Specifies	whether	device	handles	capture	or	playback	or	both

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvGetCustomPlaybackAudio

gvNewDevice
Initializes	a	device.

GVDevice	gvNewDevice(
GVDeviceID	deviceID,
GVDeviceType	type);

Routine Required	Header Distribution
gvNewDevice <gv.h> SDKZIP

Return	Value

If	the	device	was	successfully	initialized,	a	handle	to	the	device	will	be
returned.	If	there	was	an	error	setting	up	the	device,	NULL	will	be
returned.

Parameters

deviceID
[in]	The	ID	for	the	device	to	be	initialized

type
[in]	Specifies	whether	device	handles	capture	or	playback	or	both

Remarks

A	device	that	supports	both	capture	and	playback	may	be	initialized	for
just	one	or	the	other	or	both.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvFreeDevice,	gvNewCustomDevice

gvPlayPacket
Plays	a	packet	retrieved	from	the	capture	buffer.

void	gvPlayPacket(
GVDevice	device,
const	GVByte	*	packet,
int	len,
GVSource	source,
GVFrameStamp	frameStamp,
GVBool	mute);

Routine Required	Header Distribution
gvPlayPacket <gv.h> SDKZIP

Parameters

device
[in]	The	handle	to	the	playback	device.

packet
[in]	The	packet	with	audio	data.

len
[in]	The	packet's	length.

source
[in]	The	source	that	originated	the	audio.

frameStamp
[in]	The	packet's	frame	stamp.

mute
[in]	Mutes	the	packet	-	allows	having	a	player	muted,	but	keeping
track	of	the	fact	that	the	source	is	really	speaking

Remarks

GV	will	schedule	the	packet	to	be	played	soon.	A	short	delay	is	added
which	enables	the	packets	to	be	synchronized	before	they	are	played,
allowing	for	variations	in	Internet	transit	time	and	application	timing.	The
packet	is	synchronized	based	on	its	source,	so	you	must	ensure	that
each	unique	talker	has	his	own	unique	source,	and	all	packets	are	played
using	the	correct	source.	Note	that	the	same	packet	can	be	played	on
multiple	playback	devices.

The	application	must	also	call	gvThink	on	a	regular	basis	to	ensure	that
the	packets	are	actually	played.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvCapturePacket,	gvThink

gvRunSetupWizard
Interacts	with	the	user	to	set	up	the	capture	and	playback	devices.

GVBool	gvRunSetupWizard(
GVDeviceID	captureDeviceID,
GVDeviceID	playbackDeviceID);

Routine Required	Header Distribution
gvRunSetupWizard <gv.h> SDKZIP

Return	Value

Returns	GVTrue	if	the	user	successfully	completes	the	wizard,	GVFalse
otherwise.

Parameters

captureDeviceID
[in]	Id	of	the	capture	device	to	set	up

playbackDeviceID
[in]	Id	of	the	playback	device	to	set	up

Remarks

For	use	with	Win32	only,	if	the	user	has	DirectX	8	or	greater.
The	wizard	will	take	over	control	of	the	program	while	it	executes.	It	has
the	user	speak	into	the	capture	device,	and	monitors	the	audio	to
automatically	set	system	level	capture	and	playback	volumes.
gvRunSetupWizard	stores	setup	information	in	the	registry.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvAreDevicesSetup

gvSetCaptureMode
Sets	the	capture	mode	for	the	device.

void	gvSetCaptureMode(
GVDevice	device,
GVCaptureMode	captureMode);

Routine Required	Header Distribution
gvSetCaptureMode <gv.h> SDKZIP

Parameters

device
[in]	The	handle	to	the	capture	device.

captureMode
[in]	The	new	capture	mode.

Remarks

The	default	mode	for	the	SDK	is	GVCaptureModeThreshold.	In
GVCaptureModeThreshold	,	a	capture	device	is	on	and	captures	speech
based	on	the	current	threshold	value.	When	you	change	to
GVCaptureModePushToTalk,	the	SDK	will	save	the	current	Threshold
value,	set	the	threshold	value	to	0,	and	stop	the	capture	device.	This
mode	also	allows	use	of	the	following	functions:	gvSetPushToTalk(),
gvGetPushToTalk().	When	you	switch	the	captureMode	to
GVCaptureModeThreshold,	the	saved	Threshold	value	will	be	restored
and	the	capture	device	will	be	started.	If	the	device	is	not	a	capture
device,	gvSetCaptureMode()	will	assert.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvGetCaptureMode,	GVCaptureMode

gvSetCaptureThreshold
Sets	the	threshold	volume	on	a	device.	A	packet	will	only	be	passed	to
the	application	if	its	peak	volume	is	at	least	as	high	as	the	capture
threshold.

void	gvSetCaptureThreshold(
GVDevice	device,
GVScalar	threshold);

Routine Required	Header Distribution
gvSetCaptureThreshold <gv.h> SDKZIP

Parameters

device
[in]	The	handle	to	the	device.

threshold
[in]	The	threshold	volume

Remarks

The	range	for	threshold	is	0.0	to	1.0.	A	value	of	approximately	0.10	to
0.15	will	generally	work	well,	although	ideally	the	user	should	have	a	way
to	configure	the	threshold.	GV	will	continue	passing	packets	to	the
application	for	about	half	a	second	after	the	peak	volume	drops	below	the
threshold.	This	helps	to	catch	speech	in	which	the	level	trails	off	or	has	a
small	dip.	The	default	threshold	is	0.0,	which	means	that	all	audio	will	be
considered	over	the	threshold	and	will	be	captured.	To	remove	a
threshold	that	has	been	set,	simply	call	this	function	again	with	a
threshold	of	0.0.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvGetCaptureThreshold

gvSetCodec
Sets	the	codec	to	be	used	by	the	SDK.

GVBool	gvSetCodec(
GVCodec	codec);

Routine Required	Header Distribution
gvSetCodec <gv.h> SDKZIP

Return	Value

Returns	GVTrue	if	successful;	otherwise,	GVFalse.

Parameters

codec
[in]	The	codec	identifier.

Remarks

The	first	thing	to	do	after	initializing	the	SDK	is	to	set	the	codec	you
would	like	to	use.	The	codec	cannot	be	changed	while	any	devices	are
initialized,	so	an	application	will	typically	just	set	the	codec	once,	when	it
starts	using	voice.

The	codec	must	be	one	of	the	following	values:
GVCodecSuperHighQuality
GVCodecHighQuality
GVCodecAverage
GVCodecLowBandwidth
GVCodecSuperLowBandwidth.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvGetCodecInfo,	gvSetCustomCodec

gvSetCustomCaptureAudio
For	a	custom	capture	device,	encodes	captured	audio	from	a	stream	into
a	packet,	storing	it	at	provided	memory.

GVBool	gvSetCustomCaptureAudio(
GVDevice	device,
const	GVSample	*	audio,
int	numSamples,
GVByte	*	packet,
int	*	packetLen,
GVFrameStamp	*	frameStamp,
GVScalar	*	volume);

Routine Required	Header Distribution
gvSetCustomCaptureAudio <gv.h> SDKZIP

Return	Value

Returns	GVTrue	if	the	function	successfully	encodes	the	audio	into	the
packet,	otherwise	GVFalse.	GVFalse	will	be	returned	if	a	threshold	is	set
and	the	audio’s	peak	volume	did	not	cross	the	threshold.

Parameters

device
[in]	The	handle	to	the	custome	capture	device.

audio
[in]	The	incoming	audio	stream.

numSamples
[in]	The	number	of	samples	to	capture.

packet
[out]	The	memory	location	where	the	packet	will	be	stored.

packetLen
[ref]	The	number	of	bytes	available	in	the	packet,

frameStamp
[out]	Receives	the	frame	stamp	for	the	packet.

volume
[out]	Receives	the	peak	volume	for	the	packet.

Remarks

The	numSamples	parameter	must	be	a	multiple	of	the	codec's
samplesPerFrame;	this	ensures	that	no	data	needs	to	be	buffered	by	the
SDK.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvGetCodecInfo

gvSetCustomCodec
Tells	GV	to	use	an	application-provided	codec	instead	of	a	built-in	codec.

void	gvSetCustomCodec(
GVCustomCodecInfo	*	info);

Routine Required	Header Distribution
gvSetCustomCodec <gv.h> SDKZIP

Parameters

info
[in]	The	application	fills	in	this	structure	with	the	information	that	the
SDK	needs	to	use	the	custom	codec.

Remarks

The	first	thing	to	do	after	initializing	the	SDK	is	to	set	the	codec	you
would	like	to	use.	The	codec	cannot	be	changed	while	any	devices	are
initialized,	so	an	application	will	typically	just	set	the	codec	once,	when	it
starts	using	voice.
Before	calling	this	function,	the	application	must	fill	in	the
GVCustomCodecInfo	structure	with	information	about	the	codec	to	be
used.

m_samplesPerFrame	is	the	number	of	samples	that	this	codec	expects	in
a	raw	(unencoded)	frame	of	audio.	This	can	be	whatever	value	is	used	by
the	codec,	however	it	is	typically	about	160	samples.

m_encodedFrameSize	is	the	number	of	bytes	in	an	encoded	frame	of
audio	produced	by	this	codec.	The	ratio	of	the	samples	per	frame	and
encoded	frame	size	is	directly	related	to	the	codec’s	output	stream	bit
rate.

m_newDecoderCallback	is	used	to	allocate	a	new	decoder	instance	for
each	incoming	source.	Some	codecs	do	not	require	this,	and	they	should
set	the	m_newDecoderCallback	member	to	NULL.	For	codecs	that	do
require	per-source	data,	they	should	allocate	a	new	decoder	data	state
and	set	the	data	parameter	to	point	to	it,	then	return	TRUE.	If	they	cannot
allocate	a	new	decoder	data,	then	they	should	return	GVFalse.

The	m_freeDecoderCallback	is	used	to	free	decoder	data	allocated
through	m_newDecoderCallback.	If	a	codec	set	m_newDecoderCallback
to	NULL,	it	should	set	m_freeDecoderCallback	to	NULL	as	well.
Otherwise	it	should	provide	a	function	that	frees	the	decoder	data.

m_encodeCallback	is	used	to	encode	data.	The	in	parameter	points	to
the	input	data,	with	is	a	single	raw	frame	of	samples.	The	number	of
samples	passed	to	this	function	will	always	be	m_samplesPerFrame.	The
out	parameter	points	to	the	memory	into	which	the	callback	should
decode	the	input	data.	The	memory	will	always	be	large	enough	to	hold
one	frame	of	compressed	audio,	which	will	always	be
m_encodedFrameSize	bytes	long.	

m_decodeCallback	is	used	to	decode	data.	The	in	parameter	will	point	to
an	encoded	frame	of	audio,	which	will	be	m_encodedFrameSize	bytes
long.	The	out	parameter	which	will	be	large	enough	to	hold
m_samplesPerFrame	samples	of	audio.	The	decoder	data	is	provided	for
codecs	that	need	it.	The	important	thing	to	know	with	the	decode	callback
is	that	it	should	not	decode	directly	into	the	out	buffer,	but	it	should	add	to
it.	This	allows	GV	to	decode	and	mix	at	the	same	time,	without	having	to
decode	into	a	temporary	buffer	which	would	then	be	mixed	into	the	output
stream.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvSetCodec

gvSetDeviceVolume
Sets	a	device's	volume.

void	gvSetDeviceVolume(
GVDevice	device,
GVDeviceType	type,
GVScalar	volume);

Routine Required	Header Distribution
gvSetDeviceVolume <gv.h> SDKZIP

Parameters

device
[in]	The	handle	to	the	device.

type
[in]	Specifies	setting	the	capture	volume,	playback	volume,	or	both.

volume
[in]	The	volume,	ranging	from	0.0	to	1.0.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvGetDeviceVolume

gvSetFilter
Sets	a	device's	filter	callback.

void	gvSetFilter(
GVDevice	device,
GVDeviceType	type,
gvFilterCallback	callback);

Routine Required	Header Distribution
gvSetFilter <gv.h> SDKZIP

Parameters

device
[in]	The	handle	to	the	device.

type
[in]	Set	the	filter	on	capture,	playback,	or	both.

callback
[in]	The	filter	callback	to	use.

Remarks

Filtering	allows	you	to	process,	or	just	monitor,	audio	that	has	ben
captured	or	is	being	played.	A	filter	callback,	prototyped	as	the
gvFilterCallback	type,	is	passed	the	device	the	filtering	is	happening	on,
the	audio	to	filter,	and	the	audio’s	frame	stamp.	The	audio	will	always	be
a	single	raw	frame	of	audio.	Use	gvGetCodecInfo	to	get	the	number	of
samples	in	a	raw	frame.

The	callback	can	modify	the	audio	in	any	way	that	it	wants.	However
once	the	function	returns	it	can	no	longer	access	the	audio.	For	capture
devices,	audio	will	only	be	passed	to	the	filter	if	it	crosses	the	threshold	(if
one	is	set).	For	playback	devices,	audio	is	filtered	after	all	of	the	sources
have	been	mixed.

You	can	use	gvSetFilter	to	set	a	filter	on	any	device,	and	to	set	it	for
capture	or	playback.	A	device	can	have	only	one	capture	filter	at	a	time
and	only	one	playback	filter	at	a	time.	To	clear	a	filter,	call	this	function
with	the	callback	set	to	NULL.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvFilterCallback

gvSetGlobalMute
Sets	the	global	mute	value	-	defaults	to	false.

void	gvSetGlobalMute(
GVBool	mute);

Routine Required	Header Distribution
gvSetGlobalMute <gv.h> SDKZIP

Parameters

mute
[in]	Set	to	GVTrue	to	globally	mute	all	play	packets.

Remarks

When	gvSetGlobalMute	mute	is	true,	all	data	passed	to	gvPlayPacket
will	not	played	on	the	playback	device.	You	will	still	be	able	to	check	the
gvIsSourceTalking	to	know	that	you	are	sending	you	voice	packets	to
play.	When	gvSetGlobalMute	is	false,	all	gvPlayPacket	data	will	be
played,	if	the	gvPlayPacket	mute	is	false.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvGetGlobalMute,	gvPlayPacket

gvSetPushToTalk
Used	to	turn	on	or	off	capturing	for	a	device.	Must	be	in
GVCaptureModePushToTalk	mode.

void	gvSetPushToTalk(
GVDevice	device,
GVBool	talkOn);

Routine Required	Header Distribution
gvSetPushToTalk <gv.h> SDKZIP

Parameters

device
[in]	The	handle	to	the	capture	device.

talkOn
[in]	GVTrue	to	start	capture	device	and	capture	speech,	GVFalse	to
turn	off	capture	device.

Remarks

When	called	with	talkOn	true,	the	device	will	start	the	capture	device	and
capture	all	speech.	When	set	to	false,	the	capture	device	is	turned	off.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvGetPushToTalk,	gvSetCaptureMode

gvSetUnpluggedCallback
Sets	a	callback	to	be	called	when	the	SDK	detects	that	the	device	was
unplugged	or	is	no	longer	functioning.

void	gvSetUnpluggedCallback(
GVDevice	device,
gvUnpluggedCallback	unpluggedCallback);

Routine Required	Header Distribution
gvSetUnpluggedCallback <gv.h> SDKZIP

Parameters

device
[in]	The	handle	to	the	device.

unpluggedCallback
[in]	The	callback	to	set.	Can	be	NULL.

Remarks

A	gvUnpluggedCallback	allows	an	application	to	know	if	a	device	is
unplugged	or	otherwise	stops	working.	The	callback	will	be	called	when
the	SDK	detects	that	the	device	has	been	unplugged.	The	device	will	be
freed	by	the	SDK	immediately	after	the	callback	returns	and	cannot	be
used	again	by	the	application.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvUnpluggedCallback

gvStartDevice
Starts	a	device	capturing	and/or	playing	audio.

GVBool	gvStartDevice(
GVDevice	device,
GVDeviceType	type);

Routine Required	Header Distribution
gvStartDevice <gv.h> SDKZIP

Return	Value

GVTrue	if	the	device	was	started	succesfully.

Parameters

device
[in]	The	handle	to	the	device.

type
[in]	Specifies	capture,	playback,	or	both.

Remarks

Once	a	device	has	been	initialized,	it	is	ready	to	start	capturing	or	playing
audio.	After	a	capture	device	is	started,	it	will	begin	capturing	audio	and
passing	it	back	to	the	application.	After	a	playback	device	is	started,	it	will
play	any	audio	that	the	application	passes	it.	To	start	a	device,	use
gvStartDevice.

The	device	parameter	is	the	handle	of	the	device	to	start.	The	type
parameter	specifies	if	the	device	should	start	capturing	(GV_CAPTURE),
playing	(GV_PLAYBACK),	or	capturing	and	playing
(GV_CAPTURE_AND_PLAYBACK).	For	devices	that	support	both
capture	and	playback,	each	can	be	started	independently.	The	function
will	return	GVTrue	if	the	device	was	started	successfully,	and	it	will	return
GVFalse	if	there	was	an	error.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvStopDevice,	gvIsDeviceStarted

gvStartup
Initializes	the	SDK.

GVBool	gvStartup(
HWND	hWnd);

Routine Required	Header Distribution
gvStartup <gv.h> SDKZIP

Return	Value

Returns	GVTrue	if	the	SDK	was	able	to	startup	successfully.

Parameters

hWnd
[in]	Handle	to	the	application's	main	window.	[Win32	only]

Remarks

Before	doing	anything	else	with	GV,	you	must	call	gvStartup.	The
function	does	any	necessary	internal	initialization.	It	will	return	GVFalse
in	case	of	an	error	initializing.	The	HWND	passed	to	the	Win32	version	is
the	handle	for	the	application’s	main	window.	This	can	be	NULL	if	the
application	does	not	have	a	main	window.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvCleanup

gvStopDevice
Stops	a	device	that	is	capturing	and/or	playing	audio.

void	gvStopDevice(
GVDevice	device,
GVDeviceType	type);

Routine Required	Header Distribution
gvStopDevice <gv.h> SDKZIP

Parameters

device
[in]	The	handle	to	the	device.

type
[in]	Specifies	capture,	playback,	or	both.

Remarks

When	you	want	a	device	to	stop	capturing	or	playing,	use	gvStopDevice.
When	a	capture	device	is	stopped,	it	will	stop	passing	captured	audio	to
the	application.	When	a	playback	device	is	stopped,	it	will	stop	playing
audio.	For	devices	that	support	both	capture	and	playback,	each	can	be
stopped	independently.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvStartDevice,	gvIsDeviceStarted

gvThink
Allows	playback	devices	to	play	audio	scheduled	for	playback.

void	gvThink();

Routine Required	Header Distribution
gvThink <gv.h> SDKZIP

Remarks

gvPlayPacket	only	schedules	a	packet	to	be	played	in	the	future.	The
application	must	also	call	gvThink	on	a	regular	basis	to	ensure	that	the
packets	are	actually	played.

gvThink	will	check,	for	each	device,	how	much	space	has	become
available	for	writing	in	the	playback	buffer	(which	may	or	may	not	be	on
the	actual	sound	hardware).	It	will	then	check	to	see	if	the	device	has	any
sources	that	have	audio	which	should	be	played	during	the	time	period
that	the	newly	available	space	represents.	If	so,	the	audio	will	be	mixed
into	the	playback	buffer,	and	the	audio	will	then	be	played	when	the
playback	position	reaches	that	point	in	the	buffer.	If	the	playback	device
is	stopped	before	that	happens,	then	the	audio	will	not	be	played,	even	if
the	device	is	then	restarted.

gvThink	should	generally	be	called	once	for	each	run	through	the
application’s	main	loop,	or	approximately	every	10-30ms.	If	it	is	not	called
often	enough,	the	playback	position	will	reach	a	point	in	the	playback
buffer	that	GV	has	not	yet	had	a	chance	to	mix	to,	resulting	in	an	audible
skipping	effect.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvPlayPacket

Voice	SDK	Callbacks
gvFilterCallback

Used	to	filter	audio	that	has	either	been	captured
or	is	about	to	be	played.	Can	also	be	used	to
monitor	audio.

gvUnpluggedCallback
Called	when	a	device	has	been	unplugged.

gvFilterCallback
Used	to	filter	audio	that	has	either	been	captured	or	is	about	to	be
played.	Can	also	be	used	to	monitor	audio.

typedef	void	(*gvFilterCallback)(
GVDevice	device,
GVSample	*	audio,
GVFrameStamp	frameStamp);

Routine Required	Header Distribution
gvFilterCallback <gv.h> SDKZIP

Parameters

device
[in]	The	handle	to	the	device.

audio
[ref]	A	frame	of	audio	to	be	filtered.

frameStamp
[in]	The	framestamp	for	the	frame	of	audio.

Remarks

Filtering	allows	you	to	process,	or	just	monitor,	audio	that	has	ben
captured	or	is	being	played.	The	audio	will	always	be	a	single	raw	frame
of	audio.	Use	gvGetCodecInfo	to	get	the	number	of	samples	in	a	raw
frame.
The	callback	can	modify	the	audio	in	any	way	that	it	wants.	However
once	the	function	returns	it	can	no	longer	access	the	audio.	For	capture
devices,	audio	will	only	be	passed	to	the	filter	if	it	crosses	the	threshold	(if
one	is	set).	For	playback	devices,	audio	is	filtered	after	all	of	the	sources
have	been	mixed.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvSetFilter

gvUnpluggedCallback
Called	when	a	device	has	been	unplugged.

typedef	void	(*gvUnpluggedCallback)(
GVDevice	device);

Routine Required	Header Distribution
gvUnpluggedCallback <gv.h> SDKZIP

Parameters

device
[in]	The	handle	to	the	device.

Remarks

A	gvUnpluggedCallback	allows	an	application	to	know	if	a	device	is
unplugged	or	otherwise	stops	working.	The	callback	will	be	called	when
the	SDK	detects	that	the	device	has	been	unplugged.	The	device	will	be
freed	by	the	SDK	immediately	after	the	callback	returns	and	cannot	be
used	again	by	the	application.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvSetUnpluggedCallback

Voice	SDK	Structures
GVCustomCodecInfo

Information	to	define	a	custom	codec.

GVDeviceInfo
Information	for	an	audio	device

GVCustomCodecInfo
Information	to	define	a	custom	codec.

typedef	struct	
{

int	m_samplesPerFrame;
int	m_encodedFrameSize;
GVBool	(*)(GVDecoderData	*	data)	m_newDecoderCallback;
void	(*)(GVDecoderData	data)	m_freeDecoderCallback;
void	(*)(GVByte	*	out,	const	GVSample	*	in)	m_encodeCallback;
void	(*)(GVSample	*	out,	const	GVByte	*	in,	GVDecoderData
data)	m_decodeCallback;

}	GVCustomCodecInfo;

Members

m_samplesPerFrame
Number	of	samples	in	an	unencoded	frame.

m_encodedFrameSize
Number	of	bytes	in	an	encoded	frame.

m_newDecoderCallback
Used	to	allocate	a	new	decoder	instance	for	each	incoming	source.

m_freeDecoderCallback
Used	to	free	decoder	data	allocated	through
m_newDecoderCallback.

m_encodeCallback
Used	to	encode	data.

m_decodeCallback
Called	to	decode	data.	Decode	must	add	to,	not	set	the	output.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvSetCustomCodec

GVDeviceInfo
Information	for	an	audio	device.

typedef	struct	
{

GVDeviceID	m_id;
char	m_name[GV_DEVICE_NAME_LEN];
GVDeviceType	m_deviceType;
GVDeviceType	m_defaultDevice;
GVHardwareType	m_hardwareType;

}	GVDeviceInfo;

Members

m_id
Used	if	you	initialize	this	device	with	gvNewDevice.

m_name
A	user-readable	name	for	the	device.

m_deviceType
Indicates	if	this	device	is	for	capture,	playback,	or	both	capture	and
playback.

m_defaultDevice
Indicates	if	this	device	is	the	default	capture	device,	default	playback
device,	both,	or	neither.	If	neither,	the	value	will	be	0	(this	will	always
be	the	case	on	the	PS2).

m_hardwareType
More	information	about	the	device's	actual	hardware.	Will	differ
based	on	platform.	See	GVHardwareType	for	settings.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvListDevices,	GVHardwareType

Voice	SDK	Enumerations
GVCaptureMode

enums	used	with	gvSetCaptureMode()	and
gvGetCaptureMode().

GVCodec
Identifies	each	of	the	default	codecs	available.

GVHardwareType
Hardware	type	of	a	device.

GVCaptureMode
enums	used	with	gvSetCaptureMode()	and	gvGetCaptureMode().

typedef	enum	
{

GVCaptureModeThreshold,				
GVCaptureModePushToTalk				

}	GVCaptureMode;

Constants

GVCaptureModeThreshold
mode	captures	speech	based	on	the	current	threshold	value.

GVCaptureModePushToTalk
mode	captures	speech	when	gvSetPushToTalk	is	turned	on.

Remarks

The	default	mode	for	the	SDK	is	GVCaptureModeThreshold.	In
GVCaptureModeThreshold	,	a	capture	device	is	on	and	captures	speech
based	on	the	current	threshold	value.	When	you	change	to
GVCaptureModePushToTalk,	the	SDK	will	save	the	current	Threshold
value,	set	the	threshold	value	to	0,	and	stop	the	capture	device.	This
mode	also	allows	use	of	the	following	functions:	gvSetPushToTalk(),
gvGetPushToTalk().	When	you	switch	the	captureMode	to
GVCaptureModeThreshold,	the	saved	Threshold	value	will	be	restored
and	the	capture	device	will	be	started.	If	the	device	is	not	a	capture
device,	gvSetCaptureMode()	will	assert.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvSetCaptureMode,	gvGetCaptureMode

GVCodec
Identifies	each	of	the	default	codecs	available.

typedef	enum	
{

GVCodecSuperHighQuality,				
GVCodecHighQuality,				
GVCodecAverage,				
GVCodecLowBandwidth,				
GVCodecSuperLowBandwidth				

}	GVCodec;

Remarks

The	codecs	are	arranged	in	order	of	descending	quality	and	bandwidth.
In	other	words,	the	codecs	higher	up	on	the	list	are	of	higher	audio	quality
and	use	more	bandwidth,	while	the	codecs	lower	on	the	list	are	of	lower
audio	quality	and	use	less	bandwidth.

The	GVCodecAverage	codec	produces	good	quality	audio	with	a
reasonable	bandwidth	cost.	It	is	generally	the	best	codec	to	use,	and	you
should	only	use	another	codec	if	you	are	restricted	to	lower	bandwidth	or
need	high	quality	audio.

The	particular	stats	for	a	codec	can	be	obtained	using	gvGetCodecInfo.

Section	Reference:	Gamespy	Voice	SDK

See	Also:	gvGetCodecInfo

GVHardwareType
Hardware	type	of	a	device.

typedef	enum	
{

GVHardwareDirectSound,				
GVHardwarePS2Spu2,				
GVHardwarePS2Headset,				
GVHardwarePS2Eyetoy,				
GVHardwareCustom				

}	GVHardwareType;

Constants

GVHardwareDirectSound
The	hardware	type	for	Win32	devices.

GVHardwarePS2Spu2
SPU2	on	the	PS2.

GVHardwarePS2Headset
USB	headsets	on	the	PS2.

GVHardwarePS2Eyetoy
Eyetoy	device	on	the	PS2.

GVHardwareCustom
Custom	hardware	type.

Section	Reference:	Gamespy	Voice	SDK

Persistent	Storage	SDK
Overview

The	GameSpy	Persistent	Storage	SDK	allows	a	developer	to	associate
any	data	they	want	with	a	player	profile	and	have	it	stored	on	a	secure
central	server.	Both	binary	and	ASCII	data	can	be	used,	and	there	is	no
fixed	size	limit	to	the	amount	of	data	that	can	be	stored.	The	Persistent
Storage	SDK	is	designed	to	allow	many	possible	uses	including:	secure
storage	of	character	data,	player	settings	/	configuration,	ranking	/	ladder
information,	and	personal	player	information	(home	page	/	clan,	etc).

Backend	processes	can	also	access	the	data	to	dynamically	update	a
player's	ranking,	ladder,	or	tournament	information.	No	fixed	data
structures	are	imposed,	and	developers	are	allowed	to	use	the	storage
space	in	any	reasonable	manner.	Access	to	the	data	is	securely
controlled	through	either	personal	logins	(Presence	and	Messaging	SDK)
or	unique	CD	Keys	(CD	Key	SDK).

The	Presence	and	Messaging	SDK	allows	each	account	to	have	multiple
profiles,	and	each	CD	Key	can	have	multiple	profiles	associated	with	it
via	nicknames.	Each	profile	can	have	multiple	"data	records"	associated
with	it	(for	example,	to	store	multiple	character	records	separately),	and
each	record	can	have	4	different	types	of	data	associated	with	it:

Private	Read/Write	Data
Private	Read-Only	Data
Public	Read/Write	Data
Public	Read-Only	Data

Private	data	can	only	be	accessed	by	the	authenticated	user	whose
profile	it	is	associated	with.	This	is	typically	used	to	store	player
configuration/settings,	private	character	data,	and	favorites.	Public	data
can	be	accessed	by	any	other	player,	and	is	typically	used	for	things	like
ranking	and	personal	information	(home	page,	clan	affiliation,	etc).
Read/Write	data	can	be	updated	at-will	by	the	client	that	owns	the	profile.
Read-Only	data	can	only	be	updated	by	a	process	running	on	our

backend,	for	example,	in	conjunction	with	the	Stats	and	Tracking	SDK	to
update	ladder	and	ranking	information.

The	Persistent	Storage	SDK	is	built	on	top	of	the	Stats	and	Tracking
SDK,	and	uses	much	of	the	same	code	and	terminology.	However,	you
can	choose	to	implement	Persistent	Storage	without	Stats	and	Tracking
(or	vice-versa).

Data	Storage

Data	storage	records	are	keyed	off	of	the	combination	of	profileid	and
index.	In	each	record	there	are	four	separate	bins	with	separate	access
control.	For	CD	Key	authentication,	the	profileid	is	unique	based	on	the
CD	Key	and	nickname.	A	function	is	included	to	lookup	the	profileid
based	on	the	CD	Key	Hash	and	the	nick.	When	you	request	to	get	or	set
data,	you	pass	in	the	profileid,	index,	and	bin	type.

Although	you	can	have	multiple	indexes	of	data	per	profile,	we
recommend	that	you	try	to	store	all	your	data	in	index	0.	It's	better	to
have	more	keys\values	(or	a	single,	large	binary	structure)	in	a	single
record	than	having	a	bunch	of	small	key\value	sets	or	binary	structures
under	different	indexes	in	the	database.	If	you	do	choose	to	use	multiple
indexes,	you	are	not	constrained	to	using	consecutive	numbers	(if	you
don't	need	to).	You	can	use	any	integer	as	the	index	value.

You	have	two	choices	for	the	format	in	which	to	save	data.	You	can	save
it	in	our	standard	key\value	delimited	ASCII	format,	or	a	custom	format	of
your	choosing	(binary	or	ASCII).

The	advantages	and	disadvantages	are	as	follows:

ASCII	key\value	format:

Easy	to	parse	/	extend	without	worrying	about	versioning	of	the	data
Special	functions	included	in	the	SDK	to	retrieve	and	update
subsets	of	keys,	meaning	you	don't	have	to	get	the	entire	data	bin	to
update	only	a	single	key.
Can	often	be	larger	(data-size-wise)	then	a	fixed	binary	format

Binary	/	Custom	format:

Most	efficient	use	of	space
Can	dump	existing	game	structures	or	save-game	formats	easily
(without	converting	them	to	key\value	pairs)
Need	to	worry	about	byte-order	and	platform	/	version	issues

If	you	use	the	key\value	format,	all	data	should	be	in	the	form	of
key\value	pairs.	A	data	set	consists	of	key\value	pairs,	beginning	with	the
'\'	character,	and	ending	with	the	last	value.	For	example:

"	\key1\value1\mykeyname\mykeyvalue\keyhere\valuehere	"

Binary	or	custom	formats	don't	have	a	fixed	spec	-	they	are	treated	as
raw	blocks	of	data.	You	simply	request	the	whole	block	and	get	a	pointer
with	a	length,	and	set	the	whole	block	by	passing	in	a	pointer	with	the
length.

Authentication

The	Persistent	Storage	SDK	does	authentication	in	a	unique	two-part
fashion	that	allows	for	the	highest	level	of	flexibility	in	the	SDK
implementation.

For	most	games,	it	will	be	appropriate	to	use	the	Persistent	Storage	SDK
on	each	client	-	for	example,	to	allow	a	client	to	update	their	own
information,	or	query	for	other	players'	information.	In	this	case,	the
authentication	process	is	straight-forward:

1.	 Connect	to	the	Persistent	Storage	Server	using
InitStatsConnection()

2.	 Call	GetChallenge()	to	get	the	challenge	string	to	use	for
authentication

3.	 Call	GenerateAuth()	with	the	challenge	string	and	plain-text
password	or	CD	Key	to	generate	the	validation	token

4.	 Call	PreAuthenticatePlayerCD	or
PreAuthenticatePlayerPM	to	authenticate	the	player,	allowing
them	to	query	for	their	private	data,	and	update	their	read-write	data.

For	other	games,	it	may	be	better	to	have	all	communications	with	the
Persistent	Storage	Server	done	by	the	multiplayer	game	host	(server).	In
this	scenario,	the	server	will	need	to	authenticate	each	client	(so	that	it
can	read	their	private	data,	and	update	their	read-write	data),	but	this
needs	to	be	done	in	a	manner	whereby	the	server	never	sees	the
plaintext	passwords	or	CD	Keys	of	their	clients.	To	do	this,	the	server
needs	to	implement	the	two-part	authentication:

1.	 On	server	startup,	connect	to	the	Persistent	Storage	Server	using
InitStatsConnection()

2.	 When	a	client	connects,	call	GetChallenge()	and	send	that
challenge	string	to	the	client

3.	 On	the	client	side,	take	the	challenge	string	received	from	the	game
server,	and	use	the	GenerateAuth()	function	with	the	plain-text
password	or	CD	Key.	GenerateAuth()	will	return	a	validation
token	which	is	NOT	reversible	to	determine	the	password	or	CD	Key

4.	 Send	the	validation	token,	along	with	the	login	information	(profileid
or	CD	Key	Hash)	to	the	game	server

5.	 On	the	game	server,	call	PreAuthenticatePlayerCD()	or
PreAuthenticatePlayerPM()	to	authenticate	the	player

6.	 Repeat	the	authentication	process	for	each	client	as	they	connect	to
make	sure	they	are	all	authenticated

If	you	are	implementing	the	Stats	&	Tracking	SDK	as	well,	you'll	note	that
the	second	process	describes	exactly	what	must	be	done	to	get
authentication	data	for	clients	to	include	in	the	stats	snapshot.	The
validation	token	used	with	PreAuthenticatePlayer	is	the	same	value
that	should	be	included	in	the	"auth_N"	key	for	that	player.	See	the	Stats
&	Tracking	SDK	for	more	details.

Note	that	you	do	NOT	need	to	authenticate	a	client	to	just	read	public
values.	You	can	easily	implement	"guest"	players	in	this	fashion,	who	do
not	need	to	provide	login	or	CD	Key	information	-	they	can	still	see	data
for	other	users,	they	simply	cannot	save	data	for	themselves.	Just	call
InitStatsConnection()	and	use	the	GetPersistData()	and
GetPersistDataValues()	functions	directly.

File
gstats.c,h

statstest.c

gstats.dsw

gpersist.h

\persisttest\

md5c.c,	md5.h

gbucket.c,h

nonport.c,h

darray.c,h

hashtable.c,h

File	Manifest

The	following	files	should	be	included	with	this	package.	If	any	of	the	files
are	missing,	please	contact	devsupport@gamespy.com.

Description
Stats	and	Tracking	header	file	and	code

Example	and	test	code	for	the	Stats	/	Tracking
SDK

Devstudio	project	for	SDK	/	sample	code

Persistent	Storage	SDK	header

Example	and	test	code	for	Persistent	Storage
SDK

MD5	hash	code	and	header

Bucket	helper	code	and	header

Platform-specific	code

Code	for	managing	dynamic	arrays

Hash	table	code	and	header

mailto:devsupport@gamespy.com

Implementation

The	following	is	a	quick	rundown	of	the	basic	steps	needed	to	support	the
SDK.	The	gpersist.h	file	contains	much	more	extensive	documentation
for	each	function.	The	persisttest.c	sample	contains	sample	usage	of	all
of	these	functions.

Step	1:	Initialize	the	Stats	/	Persistent	Storage	Server	Connection

Before	calling	any	of	the	actual	Persistent	Storage	functions,	you'll	need
to	connect	to	the	Persistent	Storage	server.

First,	set	the	global	gcd_gamename	and	gcd_secret_key	variables	to
your	gamename	and	secret	key.	If	these	values	aren't	set	correctly,	you
will	be	unable	to	connect	to	the	persistent	storage	server.

Once	these	values	are	set,	call

int	InitStatsConnection(int	gameport)

...with	the	game	port	that	the	host	is	running	on.	If	your	game	doesn't	use
multiple	ports	(or	doesn't	support	more	than	one	host	per	machine)	then
you	can	just	use	0.

This	call	is	blocking	and	make	take	1-2	seconds	to	complete	the
authentication	process.	This	is	the	only	blocking	call	in	the	SDK;	all	other
calls	will	return	immediately.	When	you	are	done	with	the	Persistent
Storage	functions	you	can	call

void	CloseStatsConnection(void);

Step	2:	Authenticate	Player

Before	you	can	request	private	records,	or	set	any	read/write	records,
you	need	to	authenticate	the	player.	If	you	are	just	reading	public	records
you	do	not	need	to	authenticate.	This	is	done	using	the	two-step	process
described	in	the	Authentication	section	of	this	document.	The	calls	you

will	need	to	use	are:

char	*GetChallenge(statsgame_t	game);

char	*GenerateAuth(char	*challenge,	char	*password,	char	response[33]);

void	PreAuthenticatePlayerPM(int	localid,	int	profileid,		char	*challengeresponse,	PersAuthCallbackFn	callback,	void	*instance);

void	PreAuthenticatePlayerCD(int	localid,	char	*nick,	char	*keyhash,		char	*challengeresponse,	PersAuthCallbackFn	callback,	void	*instance);

void	PreAuthenticatePlayerPartner(int	localid,	const	char*	authtoken,	const	char	*challengeresponse,	PersAuthCallbackFn	callback,	void	*instance);

You	first	call	GetChallenge	to	get	the	challenge	value	used	for
authentication.	If	you	aren't	using	the	Stats	and	Tracking	SDK,	just	pass
in	NULL	for	game.	This	challenge	value	is	then	passed	along	with	the
password	(either	a	profile	password	or	an	unhashed	CD	Key	or	the
partner	challenge)	to	the	GenerateAuth	function	to	create	a	validation
token	(response).	This	validation	token	is	then	used	with	either
PreAuthenticatePlayerPM	or	PreAuthenticatePlayerCD	or
PreAuthenticatePlayerPartner	to	begin	the	authentication
process.

The	callback	specified	as	"callback"	in	those	functions	will	be	called	when
the	authentication	is	complete	(either	successful	or	not).

Step	3:	Get	/	Set	Data

Getting	/	Setting	of	data	is	done	through	four	functions.

void	GetPersistData(int	localid,	int	profileid,	persisttype_t	type,	int	index,	PersDataCallbackFn	callback,	void	*instance);

void	SetPersistData(int	localid,	int	profileid,	persisttype_t	type,	int	index,	char	*data,	int	len,	PersDataSaveCallbackFn	callback,	void	*instance);

void	GetPersistDataValues(int	localid,	int	profileid,	persisttype_t	type,	int	index,	char	*keys,	PersDataCallbackFn	callback,	void	*instance);

void	SetPersistDataValues(int	localid,	int	profileid,	persisttype_t	type,int	index,	char	*keyvalues,	PersDataSaveCallbackFn	callback,void	*instance);

GetPersistData	/	SetPersistData	work	with	the	entire	record	as	a
binary	blob.	When	you	call	Get,	you	receive	the	entire	data	block,	and
when	you	call	Set,	the	entire	data	block	is	replaced	with	your	new	data.

GetPersistDataValues	and	SetPersistDataValues	are	designed
to	work	with	data	stored	in	ASCII	key\value	format.	You	can	pass	a	set	of
keys	to	GetPersistDataValues	to	only	get	a	subset	of	the	data	stored
in	the	record,	and	when	you	pass	key\value	pairs	to

SetPersistDataValues	only	those	values	are	updated	-	any	other
existing	keys	in	the	record	are	maintained.

Step	4:	Think

You	need	to	call	the	PersistThink	function	any	time	an	asynchronous
operation	is	in	that	you	call	this	in	your	main	loop	at	all	times	while	you
are	connected	to	the	stats	server,	so	that	if	the	stats	server	disconnects	it
can	be	detected	immediately.

Persistent	Storage	SDK	Functions
CloseStatsConnection

Closes	the	connection	to	the	stats	server.
You	should	do	this	when	done	with	the
connection.

GenerateAuth
Create	a	validation	token	(response)	for
use	when	beginning	the	authentication
process.

GetChallenge
Get	the	challenge	value	used	for
authentication.

GetPersistData
Gets	the	entire	block	of	persistent	data	for
a	user.

GetPersistDataModified
Gets	the	entire	block	of	persistent	data	for
a	user,	if	it	has	been	modified	since	the
time	provided.

GetPersistDataValues
Retrieves	a	subset	of	the	data	that	is
stored	in	key\value	delimited	pairs.

GetPersistDataValuesModified
Retrieves	a	subset	of	the	data	that	is
stored	in	key\value	delimited	pairs,	but
only	if	it	has	been	modified	since	the	time
provided.

GetProfileIDFromCD
Given	a	nickname	and	CD	Key	hash,	this
will	lookup	the	profileid	for	the	user.

InitStatsConnection Connects	to	the	Persistent	Storage
server.

IsStatsConnected
Reports	whether	or	not	you	are	currently
connected	to	the	stats	server.

PersistThink
Allows	Persistent	Storage	SDK	to
continue	internal	processing	including
processing	query	replies.	Also	tests
connection	to	the	stats	server.

PreAuthenticatePlayerCD
Authenticates	a	player	on	the	Stats
server.

PreAuthenticatePlayerPM
Authenticates	a	player	on	the	Stats
server.

SetPersistData
Sets	the	entire	block	of	persistent	data	for
a	user.

SetPersistDataValues
If	you	are	saving	data	in	key\value
delimited	format,	you	can	use	this
function	to	only	set	SOME	of	the
key\value	pairs.	Only	the	key	value	pairs
you	include	in	they	keyvalues	parameter
will	be	updated,	the	other	pairs	will	stay
the	same.

CloseStatsConnection
Closes	the	connection	to	the	stats	server.	You	should	do	this	when	done
with	the	connection.

void	CloseStatsConnection();

Routine Required	Header Distribution
CloseStatsConnection <gpersist.h> SDKZIP

Section	Reference:	Gamespy	Persistent	Storage	SDK

See	Also:	InitStatsConnection

GenerateAuth
Create	a	validation	token	(response)	for	use	when	beginning	the
authentication	process.

char	*	GenerateAuth(
char	*	challenge,
gsi_char	*	password,
char	response[33]);

Routine Required	Header Distribution
GenerateAuth <gpersist.h> SDKZIP

Return	Value

A	pointer	to	the	output	authentication	string.

Parameters

challenge
[in]	The	string	generated	by	GetChallenge()

password
[in]	The	CD	Key	(un-hashed)	or	profile	password	or	partner
challenge

response
[out]	The	output	authentication	string.

Remarks

Used	to	generate	on	the	"challengeresponse"	parameter	for	the
PreAuthenticatePlayer
functions.

Section	Reference:	Gamespy	Persistent	Storage	SDK

See	Also:	GetChallenge,	PreAuthenticatePlayerCD,
PreAuthenticatePlayerPM

GetChallenge
Get	the	challenge	value	used	for	authentication.

char	*	GetChallenge(
statsgame_t	game);

Routine Required	Header Distribution
GetChallenge <gpersist.h> SDKZIP

Return	Value

Returns	a	string	to	pass	to	GenerateAuth	to	create	the	authentication
hash.

Parameters

game
[in]	Your	current	game,	or	NULL	if	not	using	Stats	and	Tracking	SDK

Section	Reference:	Gamespy	Persistent	Storage	SDK

See	Also:	GenerateAuth

GetPersistData
Gets	the	entire	block	of	persistent	data	for	a	user.

void	GetPersistData(
int	localid,
int	profileid,
persisttype_t	type,
int	index,
PersDataCallbackFn	callback,
void	*	instance);

Routine Required	Header Distribution
GetPersistData <gpersist.h> SDKZIP

Parameters

localid
[in]	Your	game-specific	reference	number	for	this	player

profileid
[in]	The	profileid	of	the	player	whose	data	you	are	getting.

type
[in]	The	type	of	persistent	data	you	are	getting.

index
[in]	Each	profile	can	have	multiple	persistent	data	records	associated
with	them.	Usually	0	is	used.

callback
[in]	Will	be	called	with	the	data.

instance
[in]	Pointer	that	will	be	passed	to	the	callback	function	(for	your	use.)

Section	Reference:	Gamespy	Persistent	Storage	SDK

GetPersistDataModified
Gets	the	entire	block	of	persistent	data	for	a	user,	if	it	has	been	modified
since	the	time	provided.

void	GetPersistDataModified(
int	localid,
int	profileid,
persisttype_t	type,
int	index,
time_t	modifiedsince,
PersDataCallbackFn	callback,
void	*	instance);

Routine Required	Header Distribution
GetPersistDataModified <gpersist.h> SDKZIP

Parameters

localid
[in]	Your	game-specific	reference	number	for	this	player

profileid
[in]	The	profileid	of	the	player	whose	data	you	are	getting.

type
[in]	The	type	of	persistent	data	you	are	getting.

index
[in]	Each	profile	can	have	multiple	persistent	data	records	associated
with	them.	Usually	0	is	used.

modifiedsince
[in]	A	time	value	to	limit	the	request	for	data.

callback
[in]	Will	be	called	with	the	data.

instance
[in]	Pointer	that	will	be	passed	to	the	callback	function	(for	your	use.)

Remarks

Modification	time	is	tracked	for	the	given	profileid/index,	not	on	a	per
persisttype	basis.
Data	will	only	be	returned	if	it	has	been	modified	since	the	time	provided.
If	no	data	has	been	modified	since	that	time,	the	callback	will	be	called
with	a	success	value	that	indicates	it	is	unmodified.

Section	Reference:	Gamespy	Persistent	Storage	SDK

GetPersistDataValues
Retrieves	a	subset	of	the	data	that	is	stored	in	key\value	delimited	pairs.

void	GetPersistDataValues(
int	localid,
int	profileid,
persisttype_t	type,
int	index,
gsi_char	*	keys,
PersDataCallbackFn	callback,
void	*	instance);

Routine Required	Header Distribution
GetPersistDataValues <gpersist.h> SDKZIP

Parameters

localid
[in]	Your	game-specific	reference	number	for	this	player

profileid
[in]	The	profileid	of	the	player	whose	data	you	are	getting.

type
[in]	The	type	of	persistent	data	you	are	getting.

index
[in]	Each	profile	can	have	multiple	persistent	data	records	associated
with	them.	Usually	0	is	used.

keys
[in]	The	key/value	pairs	to	be	updated.

callback
[in]	Will	be	called	with	the	data.

instance
[in]	Pointer	that	will	be	passed	to	the	callback	function	(for	your	use.)

Remarks

The	data	will	be	returned	as	a	null-terminated	string,	If	no	data	is
available,	len	will	be	0	in	the	callback.

To	retrieve	the	entire	data	set,	use	GetPersistData.

Section	Reference:	Gamespy	Persistent	Storage	SDK

GetPersistDataValuesModified
Retrieves	a	subset	of	the	data	that	is	stored	in	key\value	delimited	pairs,
but	only	if	it	has	been	modified	since	the	time	provided.

void	GetPersistDataValuesModified(
int	localid,
int	profileid,
persisttype_t	type,
int	index,
time_t	modifiedsince,
gsi_char	*	keys,
PersDataCallbackFn	callback,
void	*	instance);

Routine Required	Header Distribution
GetPersistDataValuesModified <gpersist.h> SDKZIP

Parameters

localid
[in]	Your	game-specific	reference	number	for	this	player

profileid
[in]	The	profileid	of	the	player	whose	data	you	are	getting.

type
[in]	The	type	of	persistent	data	you	are	getting.

index
[in]	Each	profile	can	have	multiple	persistent	data	records	associated
with	them.	Usually	0	is	used.

modifiedsince
[in]	A	time	value	to	limit	the	request	for	data.

keys
[in]	The	key/value	pairs	to	be	updated.

callback
[in]	Will	be	called	with	the	data.

instance
[in]	Pointer	that	will	be	passed	to	the	callback	function	(for	your	use.)

Remarks

Modification	time	is	tracked	for	the	given	profileid/index,	not	on	a	per
persisttype	basis
Data	will	only	be	returned	if	it	has	been	modified	since	the	time	provided.
If	no	data	has	been	modified	since	that	time,	the	callback	will	be	called
with	a	success	value	that	indicates	it	is	unmodified.

The	data	will	be	returned	as	a	null-terminated	string,	If	no	data	is
available,	len	will	be	0	in	the	callback.

To	retrieve	the	entire	data	set,	use	GetPersistData.

Section	Reference:	Gamespy	Persistent	Storage	SDK

GetProfileIDFromCD
Given	a	nickname	and	CD	Key	hash,	this	will	lookup	the	profileid	for	the
user.

void	GetProfileIDFromCD(
int	localid,
gsi_char	*	nick,
char	*	keyhash,
ProfileCallbackFn	callback,
void	*	instance);

Routine Required	Header Distribution
GetProfileIDFromCD <gpersist.h> SDKZIP

Parameters

localid
[in]	Your	game-specific	reference	number	for	this	player

nick
[in]	The	nickname	of	the	user	whose	profileid	you	are	looking	up

keyhash
[in]	The	CD	Key	Hash	of	the	user	whose	profileid	you	are	looking	up

callback
[in]	Callback	to	be	called	when	the	lookup	is	completed.

instance
[in]	Pointer	that	will	be	passed	to	the	callback	function	(for	your	use.)

Remarks

If	the	user	has	never	authenticated	(and	has	no	persistent	data
associated	with	them),
the	callback	will	indicate	a	failure.	No	persistent	data	can	be	retreived	for
the	user,
since	they	don't	have	any	stored.	Persistent	data	can	be	stored,	but	only
after	authenticating
with	PreAuthenticatePlayerCD.

Section	Reference:	Gamespy	Persistent	Storage	SDK

InitStatsConnection
Connects	to	the	Persistent	Storage	server.

int	InitStatsConnection(
int	gameport);

Routine Required	Header Distribution
InitStatsConnection <gpersist.h> SDKZIP

Return	Value

Returns	GE_NOERROR	if	connection	succeeded,	else	one	of	the	GE_
error	codes.	See	Remarks.

Parameters

gameport
[in]	The	game	port	that	the	host	is	running	on.

Remarks

If	your	game	doesn’t	use	multiple	ports	(or	doesn’t	support	more	than	one
host	per	machine)	then	you	can	just	use	0	for	the	gameport	parameter.

If	the	connection	fails,	all	Persistent	Storage	functions	will	fail.
Possible	return	errors	include:
GE_NODNS:	Unable	to	resolve	stats	server	DNS
GE_NOSOCKET:	Unable	to	create	data	socket
GE_NOCONNECT:	Unable	to	connect	to	stats	server
GE_DATAERROR:	Unable	to	receive	challenge	from	stats	server,	or	bad
challenge
GE_NOERROR:	Connected	to	stats	server	and	ready	to	send	data.

Section	Reference:	Gamespy	Persistent	Storage	SDK

See	Also:	CloseStatsConnection

IsStatsConnected
Reports	whether	or	not	you	are	currently	connected	to	the	stats	server.

int	IsStatsConnected();

Routine Required	Header Distribution
IsStatsConnected <gpersist.h> SDKZIP

Return	Value

1	if	connected,	0	otherwise

Remarks

Even	if	your	initial	connection	was	successful,	you	may	lose	connection
later	and	want	to	try	to	reconnnect.	If	a	callback	returns	unsuccessfully,
check	this	function	to	see	if	it	was	because	of	a	disconnection.

Section	Reference:	Gamespy	Persistent	Storage	SDK

PersistThink
Allows	Persistent	Storage	SDK	to	continue	internal	processing	including
processing	query	replies.	Also	tests	connection	to	the	stats	server.

int	PersistThink();

Routine Required	Header Distribution
PersistThink <gpersist.h> SDKZIP

Return	Value

0	if	the	connection	to	the	stats	server	is	lost,	1	otherwise.

Remarks

You	need	to	call	the	PersistThink	function	any	time	an	asynchronous
operation	is	in	progress.	It	will
check	for	the	incoming	replies	and	call	the	callbacks	associated	with
them	as	needed.	It's	recommended	that	you	call	this	in	your	main	loop	at
all	times	while	you	are	connected	to	the	stats	server,	so	that	if	the	stats
server	disconnects	it	can	be	detected	immediately.

Section	Reference:	Gamespy	Persistent	Storage	SDK

PreAuthenticatePlayerCD
Authenticates	a	player	on	the	Stats	server.

void	PreAuthenticatePlayerCD(
int	localid,
gsi_char	*	nick,
char	*	keyhash,
char	*	challengeresponse,
PersAuthCallbackFn	callback,
void	*	instance);

Routine Required	Header Distribution
PreAuthenticatePlayerCD <gpersist.h> SDKZIP

Parameters

localid
[in]	Your	game-specific	reference	number	for	this	player

nick
[in]	Nickname	of	the	player	to	authenticate.

keyhash
[in]	Hash	of	the	player's	CD	Key.

challengeresponse
[in]	Result	of	the	GenerateAuth()	call

callback
[in]	Will	be	called	when	the	authentication	is	complete	(either
successful	or	not).

instance
[in]	Pointer	that	will	be	passed	to	the	callback	function	(for	your	use)

Section	Reference:	Gamespy	Persistent	Storage	SDK

PreAuthenticatePlayerPM
Authenticates	a	player	on	the	Stats	server.

void	PreAuthenticatePlayerPM(
int	localid,
int	profileid,
char	*	challengeresponse,
PersAuthCallbackFn	callback,
void	*	instance);

Routine Required	Header Distribution
PreAuthenticatePlayerPM <gpersist.h> SDKZIP

Parameters

localid
[in]	Your	game-specific	reference	number	for	this	player

profileid
[in]	The	profileid	of	the	player	being	authenticated.

challengeresponse
[in]	Result	of	the	GenerateAuth()	call

callback
[in]	Will	be	called	when	the	authentication	is	complete	(either
successful	or	not).

instance
[in]	Pointer	that	will	be	passed	to	the	callback	function	(for	your	use)

Section	Reference:	Gamespy	Persistent	Storage	SDK

See	Also:	PreAuthenticatePlayerCD

SetPersistData
Sets	the	entire	block	of	persistent	data	for	a	user.

void	SetPersistData(
int	localid,
int	profileid,
persisttype_t	type,
int	index,
char	*	data,
int	len,
PersDataSaveCallbackFn	callback,
void	*	instance);

Routine Required	Header Distribution
SetPersistData <gpersist.h> SDKZIP

Parameters

localid
[in]	Your	game-specific	reference	number	for	this	player

profileid
[in]	The	profileid	of	the	player	whose	data	you	are	setting.

type
[in]	The	type	of	persistent	data	you	are	setting.	Only	rw	data	is
setable.

index
[in]	Each	profile	can	have	multiple	persistent	data	records	associated
with	them.	Usually	0	is	used.

data
[in]	The	persistent	data	to	be	saved.

len
[in]	The	length	of	the	data.

callback
[in]	Will	be	called	when	the	data	save	is	complete.

instance
[in]	Pointer	that	will	be	passed	to	the	callback	function	(for	your	use.)

Remarks

The	profileid	for	whom	the	data	is	being	set	MUST	have	been
authenticated	already.

If	you	are	setting	key\value	delimited	data,	make	sure	the	"len"	parameter
includes	length	of	the	null	terminator.

Section	Reference:	Gamespy	Persistent	Storage	SDK

See	Also:	GetPersistData,	SetPersistDataValues

SetPersistDataValues
If	you	are	saving	data	in	key\value	delimited	format,	you	can	use	this
function
to	only	set	SOME	of	the	key\value	pairs.	Only	the	key	value	pairs	you
include	in
they	keyvalues	parameter	will	be	updated,	the	other	pairs	will	stay	the
same.

void	SetPersistDataValues(
int	localid,
int	profileid,
persisttype_t	type,
int	index,
gsi_char	*	keyvalues,
PersDataSaveCallbackFn	callback,
void	*	instance);

Routine Required	Header Distribution
SetPersistDataValues <gpersist.h> SDKZIP

Parameters

localid
[in]	Your	game-specific	reference	number	for	this	player

profileid
[in]	The	profileid	of	the	player	whose	data	you	are	setting.

type
[in]	The	type	of	persistent	data	you	are	setting.	Only	rw	data	is
setable.

index
[in]	Each	profile	can	have	multiple	persistent	data	records	associated
with	them.	Usually	0	is	used.

keyvalues
[in]	The	key/value	pairs	to	be	updated.

callback
[in]	Will	be	called	when	the	data	save	is	complete.

instance
[in]	Pointer	that	will	be	passed	to	the	callback	function	(for	your	use.)

Remarks

The	profileid	for	whom	the	data	is	being	set	MUST	have	been
authenticated	already.

Section	Reference:	Gamespy	Persistent	Storage	SDK

See	Also:	GetPersistDataValues,	SetPersistData

Persistent	Storage	SDK	Callbacks
PersAuthCallbackFn

Used	in	conjunction	with	the
PreAuthenticatePlayer	functions;	called	when
the	authentication	is	complete.

PersDataCallbackFn
Used	in	conjunction	with	the	GetPersistData
functions;	called	when	the	data	retrieval	is
complete.

PersDataSaveCallbackFn
Used	in	conjunction	with	the	SetPersistData*
functions;	called	when	the	data	save	is
complete.

ProfileCallbackFn
Used	in	conjunction	with	the
GetProfileIDFromCD	function;	called	when	the
ProfileID	retrieval	has	completed.

PersAuthCallbackFn
Used	in	conjunction	with	the	PreAuthenticatePlayer	functions;	called
when	the	authentication	is	complete.

typedef	void	(*PersAuthCallbackFn)(
int	localid,
int	profileid,
int	authenticated,
gsi_char	*	errmsg,
void	*	instance);

Routine Required	Header Distribution
PersAuthCallbackFn <gpersist.h> SDKZIP

Parameters

localid
[in]	The	localid	associated	with	the	authentication.

profileid
[in]	The	profileid	for	the	player	which	is	being	Authenticated.

authenticated
[in]	True	if	authenticated.

errmsg
[in]	Error	message	if	applicable.

instance
[in]	The	same	instance	as	passed	into	the	PreAuthenticate	function.

Section	Reference:	Gamespy	Persistent	Storage	SDK

PersDataCallbackFn
Used	in	conjunction	with	the	GetPersistData	functions;	called	when	the
data	retrieval	is	complete.

typedef	void	(*PersDataCallbackFn)(
int	localid,
int	profileid,
persisttype_t	type,
int	index,
int	success,
time_t	modified,
char	*	data,
int	len,
void	*	instance);

Routine Required	Header Distribution
PersDataCallbackFn <gpersist.h> SDKZIP

Parameters

localid
[in]	The	localid	associated	with	the	data	retrieval.

profileid
[in]	The	profileid	associated	with	the	data	retrieval.

type
[in]	The	type	of	persistent	data	that	was	retrieved.

index
[in]	The	persistent	data	index,	as	passed	to	GetPersistData.

success
[in]	True	if	successful.

modified
[in]	Modification	time.

data
[in]	The	data	requested.

len
[in]	The	length	of	the	data	buffer

instance
[in]	The	same	instance	pointer	that	was	passed	to	GetPersistData.

Section	Reference:	Gamespy	Persistent	Storage	SDK

See	Also:	GetPersistData,	SetPersistData

PersDataSaveCallbackFn
Used	in	conjunction	with	the	SetPersistData*	functions;	called	when	the
data	save	is	complete.

typedef	void	(*PersDataSaveCallbackFn)(
int	localid,
int	profileid,
persisttype_t	type,
int	index,
int	success,
time_t	modified,
void	*	instance);

Routine Required	Header Distribution
PersDataSaveCallbackFn <gpersist.h> SDKZIP

Parameters

localid
[in]	The	localid	associated	with	the	save	request.

profileid
[in]	The	profileid	associated	with	the	save	request.

type
[in]	The	type	of	persistent	data	being	saved.

index
[in]	The	persistent	data	index,	as	passed	to	SetPersistData.

success
[in]	True	if	success

modified
[in]	Modification	time

instance
[in]	The	same	instance	pointer	that	was	passed	to	SetPersistData.

Section	Reference:	Gamespy	Persistent	Storage	SDK

ProfileCallbackFn
Used	in	conjunction	with	the	GetProfileIDFromCD	function;	called	when
the	ProfileID	retrieval	has	completed.

typedef	void	(*ProfileCallbackFn)(
int	localid,
int	profileid,
int	success,
void	*	instance);

Routine Required	Header Distribution
ProfileCallbackFn <gpersist.h> SDKZIP

Parameters

localid
[in]	The	localid	associated	with	the	ProfileID

profileid
[in]	The	requested	profileid.

success
[in]	True	if	successful.

instance
[in]	The	same	instance	pointer	that	was	passed	to
GetProfileIDFromCD.

Section	Reference:	Gamespy	Persistent	Storage	SDK

Persistent	Storage	SDK	Enumerations
persisttype_t

Type	of	persistent	data	stored	for	each	player

persisttype_t
Type	of	persistent	data	stored	for	each	player.

typedef	enum	
{

pd_private_ro,				
pd_private_rw,				
pd_public_ro,				
pd_public_rw				

}	persisttype_t;

Constants

pd_private_ro
Readable	only	by	the	authenticated	client	it	belongs	to,	can	only	by
set	on	the	server.

pd_private_rw
Readable	only	by	the	authenticated	client	it	belongs	to,	set	by	the
authenticated	client	it	belongs	to.

pd_public_ro
Readable	by	any	client,	can	only	be	set	on	the	server.

pd_public_rw
Readable	by	any	client,	set	by	the	authenicated	client	is	belongs	to.

Section	Reference:	Gamespy	Persistent	Storage	SDK

Stats	and	Tracking	SDK
Overview

The	GameSpy	Stats	and	Tracking	SDK	provides	a	simple,	secure	way	to
report	the	results	and	statistics	of	games	to	a	central	server.	These
results	can	then	be	used	to	help	facilitate	online	rankings,	ladders,	and
tournaments.	Tracking	is	done	in	a	very	abstract	manner	than	can	be
applied	to	any	type	of	multiplayer	game	(we	provide	many	examples	to
demonstrate	this,	you	simply	need	to	find	the	one	that	best	matches	your
game)	and	the	results	can	be	displayed	and	interpreted	in	a	game-
specific	format.

When	used	in	combination	with	GameSpy	Arcade,	the	CDKey	SDK,	or
the	Presence	and	Messaging	SDK,	the	Tracking	SDK	can	uniquely	and
securely	identify	players	and	verify	their	identities	for	ranking	and	ladder
purposes.	Any	of	the	above	products	provide	the	unique	identification
information	needed	for	tracking	of	individual	players.

Game	data	is	sent	to	the	tracking	server	in	the	form	of	"snapshots."
These	snapshots	include	information	about	what	has	happened	in	the
game,	the	settings	in	use,	and	the	players	involved.	For	example,	a
simple	deathmatch	game	might	include	information	like:

The	map	being	played
The	players	that	are	playing	(including	their	unique	identifying
information)
The	score,	ping,	number	of	deaths,	and	other	information	for	each
player
The	server	settings	(such	as	timelimit,	game	type,	etc)

This	data	provides	a	summary	of	the	game	that	can	then	be	used	to
update	rankings,	players	statistics,	and	ladders	/	tournaments.

Almost	any	type	of	data	or	statistic	can	be	sent	using	these	snapshots;
the	examples	in	Appendix	A	demonstrate	just	a	few	of	the	possibilities.
We	are	more	than	happy	to	help	you	decide	what	items	are	important	to

track	for	your	game.

You	can	compose	these	snapshots	manually	(the	format	is	described
below)	or	use	the	bucket	system,	which	is	included	in	the	SDK.	With	the
bucket	system,	each	value	in	the	snapshot	is	assigned	a	bucket.	Buckets
can	contain	integer,	real,	or	string	values.	For	example,	each	player	in	the
game	might	have	a	score	bucket	that	contains	the	player's	score,	and
each	team	in	the	game	might	have	a	color	bucket	that	gives	that	team's
color.	These	buckets	support	standard	operations	like	addition,
subtraction,	averaging,	concatation,	and	more	that	make	them	easy	to
add	to	your	game.	Buckets	use	fast	hash-table	based	lookups	and	will
not	affect	the	performance	of	your	game	at	all.

Security	has	been	given	the	utmost	consideration	in	the	design	of	the
stats	and	tracking	system,	and	this	documentation	includes	a	full
rundown	of	the	security	guarantees	that	can	be	made	(and	those	that
can't).	We	fully	disclose	any	potential	holes	or	possible	areas	of
exploitation	for	you	to	be	aware	of.	Our	realistic	view	of	security	means
that	you	will	never	misled	into	thinking	the	system	is	more	secure	than	it
really	is,	and	you	will	never	lose	face	because	you	assumed	something
was	secure	that	wasn't.

We	fully	support	disk	based	logging	in	case	of	a	loss	of	network
connectivity	or	server	downtime,	however,	we	don't	recommend	this	for
all	games	because	of	the	security	implications	it	carries.

How	It	Works	(Low-Level	Description)

The	following	terms	are	used	throughout	this	document.

Server
The	machine	that	is	"hosting"	the	game	and	to	which	the	clients
connect

Host
Same	as	a	server

Client
A	single	player	/	machine	that	connects	to	a	server	/	host

User
Same	as	a	client

Process:

1.	 On	startup,	the	host	connects	to	our	tracking	server,	is
authenticated,	and	is	assigned	a	unique	connection	ID.	If	disk
logging	is	enabled	(see	below)	and	there	are	logged	games,	they
are	sent	to	the	tracking	server.

2.	 When	the	actual	game	starts,	the	host	sends	a	new	game
notification	to	the	tracking	server	and	creates	internal	structures	for
managing	the	game	information.

3.	 During	the	game	the	host	collects	information	into	buckets	(or
developer's	own	data	structures)	and	sends	out	snapshots	at	regular
intervals	(in	case	the	host	is	reset	before	the	game	finishes)

4.	 (If	player	authentication	is	used)	As	players	connect,	the	host	sends
out	a	challenge	to	the	client,	which	formats	a	response	based	on	its
password	or	CD	Key.	This	response	is	sent	back	to	the	host	and
stored	as	part	of	the	snapshot.

5.	 When	the	game	is	complete,	a	final	snapshot	is	sent	to	the	tracking
server.

6.	 A	new	game	can	be	started	immediately	over	the	same	connection
(multiple	simultaneous	games	over	the	same	tracking	server
connection	are	supported	as	well).

7.	 The	tracking	server	post-processes	the	data	to	extract	some
standard	information	and	verify	the	authentication	of	the	players.
Disk	logged	or	unusual	games	are	marked	for	inspection.

The	connection	to	the	tracking	server	is	TCP,	and	all	transactions	(aside
from	the	initial	connection)	are	non-blocking.

In	the	event	that	the	tracking	server	is	unavailable,	game	snapshots	will
be	logged	to	disk	if	disk	logging	is	enabled	or	ignored	if	disk	logging	is
disabled.	Either	way	your	game	doesn't	have	to	worry	about	it,	although	it
can	determine	whether	the	connection	is	working	at	any	time.

There	is	no	actual	limit	to	the	size	of	snapshots,	although	we	recommend
you	choose	what	data	you	send	wisely	to	conserve	space.	Most	games
will	probably	use	snapshots	of	1KB-8KB	(even	with	32-64	players).

You	can	send	as	many	snapshots	as	you	want,	but	it	is	recommended
that	you	not	send	them	more	than	once	every	2-3	minutes.	Each
snapshot	replaces	the	previous	one,	so	sending	them	more	often	simply
means	that	in	the	event	of	a	host	crash,	more	recent	data	will	be
preserved.	Many	games	could	probably	get	by	with	a	single,	final
snapshot,	or	a	midway	+	final	snapshot.

Security	Analysis

No	Internet	game	tracking	system	is	perfectly	secure.	While	we	believe
our	security	is	better	than	many	similar	systems,	we	won't	pretend	to	be
perfect.	If	anyone	tells	you	their	system	is	100%	secure	they	are	either
ignorant	or	lying	outright.

There	are	three	levels	of	security	for	the	system:

Host	run	by	trusted	person	(e.g.	an	official	server	or	server	being	run
by	a	trusted	service)
Host	run	by	an	untrusted	person	with	disk	logging	disabled	(insecure
host)
Host	run	by	an	untrusted	person	with	disk	logging	enabled	(insecure
host)

If	the	host	is	run	by	a	trusted	authority,	the	entire	system	is	extremely
secure.	Clients	cannot	authenticate	as	anyone	besides	themselves
without	a	valid	password.	All	snapshot	information	is	communicated	over
the	safe	link	between	the	trusted	host	and	the	tracking	server.	Disk
logging	is	safe	as	well	since	no	3rd	parties	can	access	the	trusted	host's
logs.	Overall,	hosts	run	by	a	trusted	authority	are	the	ONLY	way	to
guarantee	100%	accurate	reporting	and	the	ONLY	way	we	recommended
running	servers	for	large	tournaments	and	ladders	(especially	where
prizes	are	involved).	Note	that	even	with	a	trusted	server	you	can	never
verify	the	actual	identity	of	the	client	without	physically	seeing	them.	All
you	can	say	is	that	the	client	playing	knows	the	password	of	the
authenticated	client.

Allowing	untrusted	persons	to	run	a	host	adds	a	huge	amount	of	security
risk	to	the	system	(since	the	snapshots	are	generated	by	the	insecure
host),	and	while	the	vast	majority	of	insecure	hosts	will	report	accurately,
in	the	end	there	is	no	way	to	say	that	any	information	received	from	an
insecure	host	is	accurate,	or	that	the	host	is	returning	information	at	all.
The	most	simple	hack	for	an	insecure	host	is	to	not	report	any	stats	at	all.
This	in	itself	may	cause	problems	(e.g.	two	players	playing	a	ladder
match,	and	the	host	ends	up	losing	and	does	not	report).

The	host	authenticates	with	the	tracking	server	at	initial	connection	using
a	secret	key	challenge/response	mechanism.	All	communication	between
host	and	tracking	server	is	encrypted	with	a	multi-byte	XOR	encryption
algorithm	based	on	hidden	internal	keys.	Disk	based	logging	is	encrypted
with	a	similar	system,	and	an	additional	checksum	algorithm	is	used	to
ensure	the	data	has	not	been	tampered	with.

Breaking	these	encryption	routines	and	checksums	is	possible	(since	all
of	the	code	and	keys	reside	on	the	host),	however	it	would	not	be	trivial.
Most	hackers	would	likely	attack	from	another	angle	(as	described	below)
to	circumvent	the	checksum	and	encryption	algorithms.	However,	we	will
from	now	on	assume	that	a	hacker	has	broken	both	the	encryption	and
checksum	routines,	can	read	encrypted	data	as	plain	text,	and	can	re-
encrypt	changed	data	with	the	correct	checksums.	With	enough
incentive,	a	hacker	will	extract	the	encryption	and	checksum	routines,	so
assuming	anything	else	would	be	foolish.

Under	these	assumptions	it	is	clear	to	see	why	disk	logging	is	very	risky	-
a	hacker	can	log	a	real	game	to	disk,	then	edit	this	log	to	reflect	different
results,	and	have	the	game	send	the	edited	log	to	the	tracking	server.
This	can	all	be	done	without	changing	one	byte	of	code	in	the	host
executable	(although	the	hacker	would	have	to	understand	the	code	quite
well	to	figure	out	the	encryption	and	checksum	routines).

Instead	of	taking	the	time	to	decrypt	the	data,	most	hackers	will	likely	try
to	find	and	change	the	data	before	it	is	encrypted	and	checksumed.	The
process	of	finding	the	unencrypted	data	is	easier	than	determining	the
encryption/checksum	algorithms,	however	changing	the	data	in	memory
before	it	is	encrypted	is	very	tedious	and	time	consuming,	and	changing
the	data	significantly	requires	large	byte-code	modifications	to	the	host
executable	(something	that	is	at	least	as	difficult	as	breaking	the
encryption/checksum	routines).

There	are	several	precautions	that	have	been	taken	to	make	finding	and
changing	the	data	even	more	difficult,	since	most	amateur	hackers	will
give	up	after	a	few	hours	if	they	are	unable	to	find	a	starting	point	to
begin	their	hack.	For	example,	we	obfuscate	all	(important)	strings	used
in	the	SDK	to	make	it	harder	to	find	the	SDK	code	in	the	rest	of	your
executable.	Our	challenges	are	based	on	the	connection	and	session	id's

to	help	spot	strange	values.	We	use	different	keys	for	encrypting	different
things.

Doing	a	checksum	on	your	executable	and	sending	it	as	part	of	the
snapshot	can	help	insure	that	the	host	has	not	been	tampered	with.
Individually	these	protections	can	be	worked	around	by	a	good	hacker,
however	taken	together,	there	is	a	chance	that	a	hacker	will	miss	one	of
the	protections	and	be	caught	as	a	result.	Our	tracking	server	marks	all
unusual	snapshots	for	later	analysis.

One	important	feature	of	our	system	is	that	even	with	an	insecure	host,
the	host	can	never	steal	another	user's	"identity"	and	pose	as	them,	or
report	invalid	stats	for	them	on	another	server.	Player	authentication	is
based	on	a	challenge/response	system.	A	challenge	(which	originates
from	the	tracking	server)	is	sent	to	the	client	and	a	response	is	generated
based	on	a	hash	of	the	challenge	and	the	client's	password.	This	hash
eventually	makes	its	way	back	to	the	tracking	server	where	it	can	be
verified	with	the	challenge	and	password	that	the	tracking	server	knows.
The	challenge	and	response	in	itself	are	not	sufficient	to	determining	the
client's	password,	and	the	same	response	cannot	be	used	for	more	than
one	connection	(since	the	challenge	constantly	changes).	This	means
that	packet	sniffing	the	client	to	server	connection	will	not	gain	any	useful
information.

If	disk	based	logging	is	enabled,	the	challenge	will	be	generated	by	the
host.	Because	the	tracking	server	is	not	involved,	it	cannot	guarantee	that
this	challenge	will	always	be	different,	and	thus	a	host	could	(after	a	valid
client	connects	once)	reuse	the	same	challenge/response	in	a	different
disk	log.	This	is	again	assuming	that	the	insecure	host	has	figured	out	the
disk	logging	encryption	/	checksum	algorithms	and	can	change	data	at
will.

So	How	Secure	Is	It?

After	all	of	that	you	may	be	concerned	about	how	secure	the	system
really	is.	From	our	perspective,	the	system	has	excellent	security	in	a
trusted	environment	to	use	for	large	tournaments	and	ladders.	You	can
feel	confident	that	the	client	is	either	the	registered	player	or	has	the
password	of	the	registered	player,	which	is	the	best	assurance	you	can

get	without	physically	seeing	the	person	play.

In	an	unsecure	environment	we	believe	the	system	to	still	be	very	secure
if	it	is	only	used	for	"fun."	By	"fun"	we	mean	that	the	statistics,	rankings,
and	tracking	data	is	not	of	significant	value.	Value	can	be	more	than	just
monetary	however,	so	it	is	important	to	understand	how	players	will
regard	the	system	and	its	uses.	The	important	thing	to	remember	is	that
even	if	a	hacker	were	to	break	the	system,	the	"value"	(both	gained	by
the	hacker	and	potentially	lost	by	the	developer)	should	be	minimal	and
players	should	understand	that	"breaking"	the	system	will	not	gain	them
anything	in	the	long	run.	While	this	will	not	assure	that	someone	will	not
break	(or	attempt	to	break)	the	system,	it	will	guarantee	that	the
repercussions	of	the	break	will	not	override	the	value	of	the	system.

Authentication

The	stats	and	tracking	backend	can	use	three	different	methods	to
authenticate	players.	Depending	on	your	game,	you	can	choose	which	of
these	methods	is	best.

Player	Name
By	default,	if	no	other	authentication	information	is	provided,
players	will	be	tracked	by	their	name,	as	reported	to	the	stats
system.	Obviously	this	is	the	lowest	level	of	security,	as	any	player
can	play	as	another	player	by	changing	their	nick	name.	In	some
situations	this	level	of	security	may	be	sufficient	(e.g.	when	there
are	no	rankings	or	ladders	involved,	just	game	results).

Presence	and	Messaging	Profile	ID	(pid)
The	tracking	system	supports	tracking	by	an	ID	and	password	for
the	GameSpy	Presence	and	Messaging	system.	This	system
(available	as	a	separate	SDK)	allows	players	to	maintain	different
profiles	with	passwords	that	they	can	log	in	with.	Even	if	you	aren't
using	the	full	presence	and	messaging	SDK,	you	can	still	use	the
account	creation	/	maintenance	components	to	create	unique
accounts	for	player	tracking	and	ranking.

CD	Key
If	your	game	comes	with	unique	CD	Keys	you	can	do	tracking	via
the	keys.	They	CD	Keys	themselves	are	not	sent	on	the	wire,	so
you	don't	have	to	worry	about	people	setting	up	servers	to	steal	the
keys.	Unique	identification	is	based	on	the	combination	of	the	CD
Key	and	the	Nickname,	so	a	single	CD	Key	user	can	have	multiple
"profiles"	by	using	different	nicks.

To	use	profile	ID	based	authentication,	you	need	to	ask	the	user	for	their
profile	ID	and	password	on	the	client	(note:	This	info	can	be	passed	in	on
the	command	line	for	games	supported	by	GameSpy	Arcade).	The	profile
ID	should	be	sent	to	the	host	during	connection	and	included	as	the	"pid"
key	for	that	player.	The	password	is	sent	to	the	GenerateAuth	function
along	with	the	challenge	from	the	host	to	generate	an	authentication
token,	which	should	be	sent	back	to	the	host	and	included	as	the	"auth"
key	for	that	player.	In	the	actual	snapshot	this	info	will	look	like	(for	a

single	player):

\pid_3\4364342\auth_3\3eaf547cf31de5946aefc3148765d3ac

Using	CD	Key	authentication	is	similar,	except	that	instead	of	a	profile	ID
you	will	send	the	CD	Key	hash,	which	can	be	obtained	using
gcd_getkeyhash	(on	the	host)	in	the	CD	Key	SDK.	The	auth	value	is
based	on	the	un-hashed	CD	Key	and	the	challenge	value	and	should	be
generated	on	the	client	using	the	GenerateAuth	function,	as	above.	In	the
snapshot	this	will	look	like:

\cdkey_3\1a353adf3263adfe3298adce37dfac73\auth_3\3eaf547cf31de5946aefc3148765d3ac

Note	that,	by	default,	all	authentication	is	done	post-game.	The
snapshots	are	recorded	on	the	tracking	server	and	analyzed	after	the
game	is	marked	as	complete.	If	a	player's	authentication	is	incorrect	it	will
be	flagged	as	an	error	there,	and	will	show	up	in	the	game	display	for	that
game.	If	you	require	pre-game	authentication	(e.g.	a	player	must	be
authenticated	before	they	enter	the	game)	we	can	provide	that	as	a
separate	service.

Snapshots

All	of	the	stats	and	tracking	is	done	in	the	form	of	"snapshots".	Each
snapshot	gives	full	information	about	anything	you	want	to	track	related
to	the	server,	players,	or	teams.	Snapshots	are	formatted	similar	to
Developer	Spec	query	replies,	namely,	as	key\value	backslash	delimited
pairs.	You	can	track	virtually	any	type	of	information	about	the	game
using	snapshots,	as	the	examples	in	Appendix	A	demonstrate.	If	you
have	a	something	that	you'd	like	to	track	with	snapshots	but	aren't	sure
how,	please	contact	us.

There	are	three	types	of	keys	used	in	snapshots:

Server	Keys	(\keyname\)
Player	Keys	(\keyname_N\)	where	N	is	the	player	number,	starting
at	0
Team	Keys	(\keyname_tN)	where	N	is	the	team	number,	starting	at
0

Most	games	that	allow	players	to	join	and	leave	during	the	game	reuse
existing	"slots"	and	player	numbers	(e.g.	if	you	have	players	0	1	2,	and
players	1	leaves,	the	next	person	to	join	will	be	player	1	again).

In	order	to	report	accurate	stats	for	ALL	players,	each	player	needs	to
have	a	unique	ID.	The	Stats	SDK	Bucket	system	handles	all	of	this	for
you.	If	you	create	snapshots	manually,	you	will	need	to	make	sure	that
each	player	has	a	unique	number.

Snapshots	describe	a	"game."	What	defines	a	game,	or	the	boundary
between	two	games,	is	game	specific.	For	example,	a	"game"	may
consists	of	a	single	level/map.	When	the	level	starts,	a	new	"game"	is
started	with	a	fresh	snapshot.	When	the	level	ends	a	final	snapshot	is
sent.

You	can	send	multiple	snapshots	during	the	course	of	the	game.	Each
snapshot	will	replace	the	previous	one.	If	the	game	is	still	in	progress	(i.e.
more	snapshots	are	possible)	send	the	snapshots	with	the	type	of
SNAP_UPDATE.	Once	the	game	is	completed,	send	a	final	snapshot

with	a	type	of	SNAP_FINAL.	This	will	signal	the	backend	that	the	game	is
complete	and	ready	to	be	processed.

The	following	is	a	list	of	"standard"	keys	that	you	may	want	to	use	in	your
snapshots.	You	are	free	to	add	your	own	keys	for	game-specific
information.

Standard	Keys

gamever

followed	by	a	version	specifier	(x.yy	format	preferred)
location

followed	by	a	5	digit	numeric	string	(for	a	US	Zip	code)	or	a	2	letter
country	code	(for	Non-US).

hostname

followed	by	a	descriptive	host-defined	string	(can	include	spaces)
that	identifies	the	server	(e.g.	"Joe's	Game!")

mapname

followed	by	the	map	name	(either	filename	or	descriptive	name)
gametype

string	which	specifies	the	type	of	game,	or	the	mod	being	played.
maxplayers

numeric	string,	max	number	of	players	for	this	server
fraglimit

number	of	total	kills	or	points	before	a	level	change
timelimit

amount	of	total	time	before	a	level	change	occurs
player_N

followed	by	a	string	which	specifies	a	player	name	(may	include
spaces)

score_N

numeric	string	that	contains	the	score	(kills/points)	for	player	N
scoreY_N

numeric	string	that	contains	the	score	(kills/points)	for	player	N
against	player	Y

skill_N

a	skill	rating,	if	applicable,	for	player	N
ping_N

the	ping	for	player	N
team_N

the	team	player	N	is	on,	either	numeric	or	string
deaths_N

number	of	deaths	a	player	has	had
pid_N

profileid	for	the	player
cdkey_N

hashed	CD	key	of	the	player
auth_N

authentication	reply	to	the	given	challenge	(based	on	password	or
cdkey)

ctime_N

the	"connect	time"	for	this	player	(in	any	format,	secs	recommened)
dtime_N

the	"disconnect	time"	for	this	player	(in	any	format,	-1	or	empty	for
still	connected)

ping_N

ping	for	this	player
team_tN

the	name	for	team	N
score_tN

the	score	for	team	N
ctime_tN

connect/formation	time	for	team	N
dtime_tN

disconnect/disbanding	time	for	team	N
serverck

a	checksum	for	the	server	executable

gamemode

current	mode	of	the	game,	e.g.	openplaying,	exiting,	etc.
state

a	string	that	gives	a	text	description	of	the	current	state

File
gstats.c

gstats.h

gbucket.c,h

nonport.c,h

darray.c,h

md5c.c,h

\statstest\

gstats.dsw

File	Manifest

The	following	files	should	be	included	with	this	package.	If	any	of	the	files
are	missing,	please	contact	devsupport@gamespy.com.

Description
API	code

API	header	file

Bucket	helper	code	and	header

System	dependent	code	and	header

Dynamic	array	code	and	header

MD5	hash	code	and	header

Example	and	test	code	for	the	Stats	and
Tracking	SDK

Devstudio	project	for	API	and	sample	code

In	addition,	to	build	the	SDK	and	samples,	you	will	need	to	separately
download	the	GameSpy	"common	code"	package,	which	includes	the
shared	SDK	code	used	by	this	SDK	and	others.

When	extracting	this	package,	make	sure	you	preserve	the	directory	tree
in	order	to	assure	that	the	code	builds	correctly.

mailto:devsupport@gamespy.com

Implementation

The	following	is	a	quick	rundown	of	the	basic	steps	needed	to	support	the
SDK.	The	reference	documentation	much	more	extensive	documentation
for	each	function.

Step	1:	Initialize	the	Tracking	Server	Connection

Before	the	actual	gameplay	begins	you	will	probably	want	to	connect	to
the	tracking	server.	You	are	required	to	be	connected	to	the	tracking
server	to	call	NewGame	or	SendGameSnapshot	(unless	disk	based
logging	is	enabled).

First,	set	the	global	gcd_gamename	and	gcd_secret_key	variables	to
your	gamename	and	secret	key.	If	these	values	aren't	set	correctly,	you
will	be	unable	to	connect	to	the	tracking	server.

Once	these	values	are	set,	call

int	InitStatsConnection(int	gameport)

...with	the	game	port	that	the	host	is	running	on.	If	your	game	doesn't	use
multiple	ports	(or	doesn't	support	more	than	one	host	per	machine)	then
you	can	just	use	0.

This	call	is	blocking	and	make	take	1-2	seconds	to	complete	the
authentication	process.	This	is	the	only	blocking	call	in	the	SDK;	all	other
calls	will	return	immediately.

Step	2:	Create	A	New	Game

When	the	game	begins	you	will	want	to	call

statsgame_t	NewGame(int	usebuckets)

If	you	are	going	to	be	using	bucket	based	logging	pass	1	for
usebuckets,	otherwise	pass	0.

If	you	are	going	to	be	running	more	than	one	game	at	a	time	on	the	host,
you	will	need	to	store	the	returned	value	to	pass	into	the	rest	of	the	SDK
functions,	otherwise	you	can	ignore	it	and	just	pass	NULL	(they	will	use
the	last	game	created).

Step	3:	Fill	In	Server	Information	Buckets	(If	Using	Buckets)

Once	you've	started	the	game	you'll	probably	want	to	fill	in	some	of	the
basic	server	information	buckets	like	hostname,	mapname,	gamever,	etc.
You	should	use	the	BucketStringOp,	BucketIntOp,	and
BucketFloatOp	functions	to	do	this.	These	"op"	functions	provide	the
basis	for	all	bucket	operations.	These	functions	are	actually	implemented
as	macros,	but	this	should	not	matter	for	your	implementation.

The	prototypes	are	similar,	the	only	difference	being	the	type	of	the	value
parameter	(String,	Int,	or	Float).

Bucket(type)Op(game,	name,	operation,	value,	bucketlevel,	index)

game

The	game	to	send	containing	the	bucket	you	want	to	operate	on.	If
set	to	NULL,	the	last	game	created	with	NewGame	will	be	used.

name

The	name	of	the	bucket	to	update.
operation

bo_set,	bo_add,	bo_sub,	bo_mult,	bo_div,	bo_concat,	or	bo_avg
value

Argument	for	the	operation	(bucket	OP=	value,	e.g.	bucket	+=
value,	bucket	*=	value)

bucketlevel

bl_server,	bl_team,	or	bl_player.	Determines	whether	you	are
referring	to	a	server,	player,	or	team	bucket

index

For	player	or	team	buckets,	the	game	index	of	the	player	or	team
(as	passed	to	NewPlayer	or	NewTeam).	This	will	be	translated	to
the	actual	index	internally.	Not	used	for	server	buckets	(bl_server).

This	will	probably	look	something	like:

BucketStringOp(game,	"hostname",bo_set,hostname->string,bl_server,0);

BucketStringOp(game,	"gamever",bo_set,GAMEVERSION,bl_server,0);

BucketStringOp(game,	"mapname",bo_set,level.mapname,bl_server,0);

BucketIntOp(game,"arena",bo_set,	arena,	bl_server,	0);

BucketIntOp(game,"rounds",bo_set,	settings.rounds,	bl_server,	0);

BucketIntOp(game,"round",bo_set,	1,	bl_server,	0);

BucketIntOp(game,"armor",bo_set,	settings.armor,	bl_server,	0);

BucketIntOp(game,"health",bo_set,	settings.health,	bl_server,	0);

Step	4:	Create/Remove	Players	and	Teams	(If	Using	Buckets)

As	players	enter	the	game	and	teams	are	created	(if	your	game	has
teams)	you	need	to	call	the	NewPlayer	and	NewTeam	functions.	Calling
NewPlayer	or	NewTeam	creates	a	bucket	for	that	player/team's
information	and	allocates	that	player/team	a	unique	number.	It	also
creates	the	ctime	bucket	for	connect	time	and	sets	the	value.

The	prototypes	for	these	functions	are:

void	NewPlayer(statsgame_t	game,int	pnum,	char	*name);

void	NewTeam(statsgame_t	game,int	tnum,	char	*name);

game

The	game	to	add	the	player	to.	If	NULL,	the	last	game	created	with
NewGame	will	be	used.

pnum

Your	internal	reference	for	this	player,	use	this	value	in	any	calls	to
the	Bucket___Op	functions.

name

The	name	for	this	player.	If	you	don't	have	one	yet,	set	it	to	empty
("")	then	call

BucketStringOp(game,"player",bo_set,realplayername,	bl_player,	pnum)	

when	you	get	a	real	playername.

If	players/teams	can	leave	during	the	game	you	should	call	the
RemovePlayer	and	RemoveTeam	functions	so	that	the	disconnect	times
can	by	set	correctly.

Step	5:	Authenticate	Clients

If	you	support	authentication	via	one	of	the	methods	described	above,
you	will	need	to	authenticate	clients	as	they	connect.	To	authenticate	a
client,	send	them	a	challenge	(as	obtained	by	calling	GetChallenge)
and	have	the	client	calculate	a	response	(using	GenerateAuth)	based
on	that	client's	"password".

Note	that	in	the	case	of	CD	Key	authentication,	the	"password"	is	the	un-
encoded	(plain	text)	CD	Key.	Send	this	response	back	to	the	server	along
with	the	identifier	(cd	key	hash	or	profile	id)	for	the	player.	Also	note	that
in	the	case	of	the	CD	Key	SDK,	the	server	already	has	the	cd	key	hash
for	the	player	(it	can	be	obtained	by	calling	gcd_getkeyhash	in	the	CD
Key	SDK).The	server	then	sets	these	values	in	the	appropriate	buckets
(or	stores	in	the	client	structures	if	not	using	buckets).

This	will	look	something	like:

1.	 Server	(send	the	challenge	to	the	client)

challenge	=	GetChallenge(game);

2.	 Client	(send	the	response	and	profile	id	to	the	server)

GenerateAuth(challenge,	my_password,	response);

3.	 Server

BucketIntOp(game,	"pid",bo_set,	pid_number,bl_player,	client.index);

BucketStringOp(game,	"auth",bo_set,response,bl_player,	client.index);

Step	6:	Update	Buckets	As	Game	Progresses	(If	Using	Buckets)

As	the	game	plays	out	you	will	want	to	update	the	appropriate	buckets	as
changes	occur.	For	example,	when	a	player	scores	a	point,	you	will	want
to	update	the	score	bucket	for	that	player.	Basically	every	place	in	your
code	where	you	change	data	that	you	want	reported,	you	should	make	a
bucket	call.

If	you	want	to	refer	to	other	players	or	teams	in	your	key	names,	you
need	to	use	GetPlayerIndex	and	GetTeamIndex	to	get	the	translated
(unique)	index	values	for	that	player/team.	For	example,	to	record
"Doom-square"	style	stats	of	"player	A	killed	player	B	10	times",	you	need
to	use	the	a	player	key	in	the	form	of	scoreY_N.	Y	is	the	translated	index
of	player	B	(obtained	by	GetPlayerIndex).	N	is	the	translated	index	of
player	A	(which	is	set	automatically	for	player	buckets).

Here	are	some	examples	of	typical	modifications	to	game	code	needed
to	add	buckets:

Your	code:

players[i].score	+=	1;

players[j].deaths	+=	1;

Addition:

BucketIntOp(game,	"score",bo_add,	1,bl_player,	i);

BucketIntOp(game,	"deaths",bo_add,	1,bl_player,	j);

sprintf(keyname,	"score%d",GetPlayerIndex(j));

BucketIntOp(game,	keyname,bo_add,	1,bl_player,	i);

(note:	the	above	code	adds	a	kill	by	player	i	against	player	j)

Your	code:

mygame.globals.timelimit	=	newvalue;

Addition:

BucketIntOp(game,"timelimit",bo_set,	newvalue,	bl_server,	0);

Step	7:	Send	Snapshots

During	the	game	you	can	send	snapshots	so	that	if	the	server	crashes,	at
least	some	information	about	the	game	will	be	preserved.	Games	which
are	never	"complete"	(as	signaled	by	a	final	snapshot)	are	flagged	as
such	in	the	tracking	backend,	and	how	they	are	handled	for	rankings	and
ladders	is	implementation	dependant.	How	many	of	these	"update"
snapshots	you	send	is	up	to	you,	although	sending	more	than	3	per
game	is	probably	overkill.	For	example,	if	your	game	typically	runs	30
minutes,	then	sending	a	snapshot	every	10	minutes	would	probably	be
fine.	Once	the	game	is	complete,	send	a	final	snapshot.

The	prototype	for	SendGameSnapShot	is:

int	SendGameSnapShot(statsgame_t	game,	const	char	*snapshot,	int	final);

game

The	game	to	send	a	snapshot	for.	If	set	to	NULL,	the	last	game
created	with	NewGame	will	be	used.

snapshot

The	snapshot	to	send.	If	you	are	using	buckets,	this	will	not	be
used,	so	you	can	pass	in	NULL.

final

If	this	is	SNAP_UPDATE,	the	game	is	marked	as	in	progress,	if	it	is
SNAP_FINAL,	the	game	is	marked	as	complete.

If	you	are	using	buckets,	you	don't	need	to	worry	about	building	the
snapshot	-	it	is	built	automatically	based	on	the	current	contents	of	the
buckets.	If	you	are	building	snapshots	yourself,	you'll	need	to	make	sure
that	all	keys	and	values	are	stripped	of	"\"	characters,	that	players/teams
are	uniquely	identified,	and	that	their	numbering	is	contiguous,	starting
from	zero.

Step	8:	Calling	the	Think	function

During	the	game,	if	you	are	connected	to	the	stats	server	for	periods
longer	than	5	minutes,	you'll	need	to	call	the	function	StatsThink.
StatsThink	should	be	called	periodically	to	remove	keep	alives	from
the	socket	buffer.	This	function	should	be	called	at	least	once	every	5
minutes.

Step	9:	Send	A	Final	Snapshot	And	Free	The	Game

Once	the	game	is	complete,	send	a	final	snapshot	(set	final	to
SNAP_FINAL	in	SendGameSnapShot)	then	call	FreeGame	to	free	the
game	and	buckets	(if	you	are	using	buckets).

Note	that	this	does	NOT	close	the	connection	to	the	tracking	server.	You
can	create	a	new	game	immediately	(using	NewGame)	or	at	a	later	time
without	re-opening	the	tracking	server	connection.	The	tracking	server
connection	is	only	closed	when	you	call	CloseStatsConnection,
which	should	be	done	when	shutting	down,	or	when	no	more	games	are
going	to	be	sent.

Appendix:	Sample	Snapshots

The	following	are	examples	of	what	we	think	snapshots	for	some
common	multiplayer	games	might	look	like	(including	the	type	of	data
interesting	to	record,	and	how	it	would	be	recorded).	You	are	free	to	add
your	own	game-specific	data	as	needed	to	the	snapshot.

The	other	purpose	of	creating	these	examples	was	to	prove	that	the
snapshot	system	can	record	ANY	type	of	interesting	game	data	(in	lieu	of
a	time-based	logging	format).

You	can	view	these	samples	using	the	"validator"	application	including	in
the	SDK	(just	cut/paste).	In	addition	to	the	standard	keys	from	the	list
above,	each	game	has	some	game-specific	keys	with	their	descriptions.

18	Player	Rocket	Arena	2	Pickup	(Team)	Match

Key	Descriptions:

arena

the	arena	number	this	match	is	taking	place	in
armor

initial	armor	value
armorprotect

armor	protection	setting
compmode

whether	competition	mode	is	on
damagescoring

whether	damage	scoring	is	on
fallingdamage

whether	falling	damage	is	on
health

initial	health	value
healthprotect

health	protection	setting

round

the	current	round	number	for	the	match
rounds

the	max	number	of	rounds
railkills_N

number	of	kills	with	the	rail	by	this	player
rocketkills_N

number	of	kills	with	the	RL	by	this	player
grenadekills_N

number	of	kills	with	the	grenade	launcher	by	this	player
otherkills_N

number	of	kills	with	other	weapons	by	this	player
suicides_N

number	of	self-kills	by	this	player

Completed:

\round\8\suicides_0\0\rocketkills_11\3\score_14\33\suicides_1\0\rocketkills_12\1\otherkills_10\1\score_15\2\suicides_2\0\score_16\4\suicides_3\0\dtime_1\291\rocketkills_14\2\score_17\0\fallingdamage\0\player_0\Tyruss\auth_3\4525e27af21f90c27d0c725e836d26bd\suicides_4\0\ping_0\192\player_1\Wrath[X-D]\suicides_5\0\dtime_3\514\rocketkills_16\1\ping_1\174\player_2\Psychotron\suicides_6\0\ping_10\83\rocketkills_0\7\score_t0\2\ping_2\186\player_3\[McP]crt\suicides_7\0\ping_11\172\deaths_0\6\ping_3\70\player_4\Snakester\score_t1\4\suicides_8\0\ping_12\455\armor\100\deaths_1\3\ping_4\42\player_5\Hieronymus\suicides_9\0\suicides_10\0\rocketkills_3\4\ping_13\115\deaths_2\6\ping_5\87\player_6\Armaggedon\suicides_11\0\rocketkills_4\6\ping_14\178\score_0\38\deaths_3\5\ping_6\212\player_7\Dr.Veigle[JURY]\suicides_12\0\rocketkills_5\8\ping_15\80\dtime_9\528\compmode\0\score_1\28\deaths_4\5\ping_7\97\player_8\Thunder_Chicken\rocketkills_6\2\suicides_13\0\ping_16\57\score_2\29\deaths_5\5\ping_8\115\player_9\JewfiSh\player_10\Elder_Midget\suicides_14\0\rocketkills_7\2\ping_17\214\score_3\43\deaths_6\5\ping_9\215\player_11\basTard	[JURY]\suicides_15\0\railkills_0\1\hostname\Nostromo	House	Of	Whack\gamever\v2.25\score_4\30\deaths_7\6\team_10\1\player_12\Groover[MCK]\railkills_1\2\suicides_16\0\score_5\29\deaths_8\4\team_11\0\player_13\fishbat\railkills_2\1\suicides_17\0\ctime_0\0\score_6\27\deaths_9\6\deaths_10\5\team_12\1\player_14\Wrath[X-D]\ctime_1\0\score_7\31\ctime_10\0\deaths_11\5\team_13\0\player_15\Xerious\railkills_4\1\rounds\9\ctime_2\0\score_8\14\ctime_11\36\deaths_12\2\railkills_5\3\team_14\0\player_16\Dbl_Trbl\damagescoring\1\ctime_3\0\score_9\9\grenadekills_0\2\ctime_12\126\deaths_13\1\team_15\0\player_17\Homey\ctime_4\0\grenadekills_1\1\ctime_13\308\deaths_14\2\team_16\1\team_0\0\ctime_5\0\ctime_14\382\deaths_15\2\team_17\0\arena\7\healthprotect\1\team_1\0\ctime_6\0\grenadekills_3\1\ctime_15\451\deaths_16\0\team_2\0\ctime_7\0\grenadekills_4\1\ctime_16\662\deaths_17\0\team_3\0\ctime_8\0\ctime_17\715\armorprotect\1\team_t0\#7	Pickup	Red\team_4\0\ctime_9\0\grenadekills_6\1\hostport\27910\team_t1\#7	Pickup	Blue\team_5\1\otherkills_3\1\grenadekills_7\2\team_6\1\score_10\15\grenadekills_8\1\ctime_t0\0\team_7\1\score_11\12\health\100\ctime_t1\0\team_8\1\score_12\15\dtime_13\392\mapname\ra2map1\pid_3\100007\team_9\1\rocketkills_10\6\score_13\0\grenadekills_12\6

1v1	Quake	3	Competition	Match

Key	Descriptions:

gameck

a	checksum	for	the	game	dll
rocketK_N

number	of	kills	with	the	RL	by	this	player
railK_N

number	of	kills	with	the	Railgun	by	this	player
shotgunK_N

number	of	kills	with	the	Railgun	by	this	player
selfK_N

number	of	suicides

armorPU_N

total	ammount	of	armor	picked	up	by	this	person
rocketsPU_N

total	number	of	rockets	picked	up
slugsPU_N

total	number	of	slugs	picked	up
rockethitp_N

hit	percentage	for	rocket	shots
railhitp_N

hit	percentage	for	rail	shots

In	Progress:

\hostname\My_1v1_Server\mapname\q3map23\timelimit\20\fraglimit\60\gametype\competition\serverck\34234223\gameck\354322333\gamemode\closedplaying\state\Playing,	5	minutes	left\player_0\ken\score_0\50\deaths_0\20\rocketK_0\33\railK_0\15\shotgunK_0\4\selfK_0\2\ctime_0\0\dtime_0\1\ping_0\53\armorPU_0\3530\rocketsPU_0\235\slugsPU_0\300\rockethitp_0\0.75\railhitp_0\0.10\pid_0\23432\auth_0\cc7a0058cde6e6973df985bc0a5caf67\player_1\bob\score_1\18\deaths_1\50\rocketK_1\10\railK_1\8\shotgunK_1\0\selfK_1\0\ctime_1\0\dtime_1\1\ping_1\154\armorPU_1\1330\rocketsPU_1\35\slugsPU_1\50\rockethitp_1\0.25\railhitp_1\0.05\pid_1\3353232\auth_1\923db4c9d457626560652a50b8a3b4f2

Completed:

\hostname\My_1v1_Server\mapname\q3map23\timelimit\20\fraglimit\60\gametype\competition\serverck\34234223\gameck\354322333\player_0\ken\score_0\60\deaths_0\22\rocketK_0\43\railK_0\17\shotgunK_0\4\selfK_0\4\ctime_0\0\dtime_0\-1\ping_0\56\armorPU_0\4330\rocketsPU_0\335\slugsPU_0\320\rockethitp_0\0.79\railhitp_0\0.15\pid_0\23432\auth_0\cc7a0058cde6e6973df985bc0a5caf67\player_1\bob\score_1\20\deaths_1\62\rocketK_1\10\railK_1\10\shotgunK_1\0\selfK_1\0\ctime_1\0\dtime_1\-1\ping_1\165\armorPU_1\1430\rocketsPU_1\65\slugsPU_1\70\rockethitp_1\0.25\railhitp_1\0.09\pid_1\3353232\auth_1\923db4c9d457626560652a50b8a3b4f2\gamemode\debriefing\state\Match	completed,	Ken	Wins

Quake	3	FFA	Server

Key	Descriptions:

gameck

a	checksum	for	the	game	dll
rocketK_N

number	of	kills	with	the	RL	by	this	player
railK_N

number	of	kills	with	the	Railgun	by	this	player
shotgunK_N

number	of	kills	with	the	Railgun	by	this	player
selfK_N

number	of	suicides

armorPU_N

total	ammount	of	armor	picked	up	by	this	person
rocketsPU_N

total	number	of	rockets	picked	up
slugsPU_N

total	number	of	slugs	picked	up
rockethitp_N

hit	percentage	for	rocket	shots
railhitp_N

hit	percentage	for	rail	shots

Completed

\hostname\Random_Deathmatch_Server\mapname\q3map20\timelimit\20\fraglimit\15\gametype\deathmatch\serverck\34234223\gameck\2343242\gamemode\debriefing\state\Timelimit	hit\player_0\jimmy\score_0\7\deaths_0\2\rocketK_0\5\railK_0\0\shotgunK_0\2\selfK_0\0\ctime_0\0\dtime_0\0:13:54\ping_0\254\rockethitp_0\0.77\railhitp_0\0.0\pid_0\2332\auth_0\cc7a0058cde6e6973df985bc0a5caf67\score0_0\0\score1_0\2\score2_0\2\score3_0\1\score4_0\1\score5_0\1\score6_0\0\score7_0\0\player_1\l33t0n3\score_1\6\deaths_1\6\rocketK_1\6\railK_1\3\shotgunK_1\2\selfK_1\2\ctime_1\0:05:33\dtime_1\0:00:15:32\ping_1\463\rockethitp_1\0.67\railhitp_1\0.2\pid_1\0\auth_1\\score0_1\1\score1_1\0\score2_1\1\score3_1\0\score4_1\2\score5_1\1\score6_1\1\score7_1\1\player_2\gr0v3r\score_2\6\deaths_2\4\rocketK_2\8\railK_2\0\shotgunK_2\0\selfK_2\2\ctime_2\0\dtime_2\0:07:20\ping_2\222\rockethitp_2\0.72\railhitp_2\0.0\pid_2\45508\auth_2\efa7eaccde6e6973df985bc0a5caf674\score0_2\0\score1_2\1\score2_2\0\score3_2\1\score4_2\1\score5_2\2\score6_2\2\score7_2\0\player_3\walla\score_3\12\deaths_3\14\rocketK_3\4\railK_3\0\shotgunK_3\10\selfK_3\2\ctime_3\0\dtime_3\-1\ping_3\352\rockethitp_3\0.24\railhitp_3\0.0\pid_3\44653\auth_3\6fd3ea58cde6e6973df985bc0a5c12ad\score0_3\2\score1_3\0\score2_3\3\score3_3\0\score4_3\2\score5_3\2\score6_3\3\score7_3\2\player_4\crt\score_4\14\deaths_4\6\rocketK_4\10\railK_4\4\shotgunK_4\2\selfK_4\2\ctime_4\0:03:23\dtime_4\0:08:20\ping_4\53\rockethitp_4\0.87\railhitp_4\0.45\pid_4\233332\auth_4\32af0058cde6e6973df985bc0a5c32af\score0_4\2\score1_4\5\score2_4\2\score3_4\1\score4_4\0\score5_4\3\score6_4\1\score7_4\0\player_5\mrpants\score_5\7\deaths_5\4\rocketK_5\4\railK_5\3\shotgunK_5\0\selfK_5\0\ctime_5\0\dtime_5\0:08:25\ping_5\322\rockethitp_5\0.47\railhitp_5\0.20\pid_5\0\auth_5\\score0_5\1\score1_5\1\score2_5\1\score3_5\2\score4_5\0\score5_5\0\score6_5\1\score7_5\1\player_6\basty\score_6\4\deaths_6\0\rocketK_6\3\railK_6\1\shotgunK_6\1\selfK_6\1\ctime_6\0\dtime_6\0:3:24\ping_6\34\rockethitp_6\0.43\railhitp_6\0.10\pid_6\32332\auth_6\aa3a0058cde6e6973df985bc0a5caf3af\score0_6\0\score1_6\1\score2_6\0\score3_6\1\score4_6\1\score5_6\0\score6_6\0\score7_6\1\player_7\badasshank\score_7\7\deaths_7\2\rocketK_7\2\railK_7\5\shotgunK_7\0\selfK_7\0\ctime_7\0:17:32\dtime_7\-1\ping_7\234\rockethitp_7\0.23\railhitp_7\0.40\pid_7\0\auth_7\\score0_7\0\score1_7\2\score2_7\0\score3_7\2\score4_7\1\score5_7\1\score6_7\1\score7_7\0

4v4	Team	Quake	3	Competition

Key	Descriptions:

gameck

a	checksum	for	the	game	dll
rocketK_N

number	of	kills	with	the	RL	by	this	player
railK_N

number	of	kills	with	the	Railgun	by	this	player
shotgunK_N

number	of	kills	with	the	Railgun	by	this	player
selfK_N

number	of	suicides
armorPU_N

total	ammount	of	armor	picked	up	by	this	person
rocketsPU_N

total	number	of	rockets	picked	up

slugsPU_N

total	number	of	slugs	picked	up
rockethitp_N

hit	percentage	for	rocket	shots
railhitp_N

hit	percentage	for	rail	shots
tkills_N

Number	of	teammates	a	player	has	killed
quads_tN

Number	of	Quad	powerups	team	N	has	gotten
avglifespan_tN

Average	lifespan	for	a	player	in	team	N

In	progress:

\hostname\TeamPlay_Competition_Server\mapname\q3map22\timelimit\20\fraglimit\200\gametype\competition\serverck\34234223\gameck\562156\gamemode\closedplaying\state\Playing,	5:30	minutes	left\player_0\crt\score_0\35\deaths_0\12\rocketK_0\30\railK_0\3\shotgunK_0\2\selfK_0\0\ctime_0\0\dtime_0\-1\ping_0\150\rockethitp_0\0.75\railhitp_0\0.72\pid_0\2332\auth_0\cc7a0058cde6e6973df985bc0a5caf67\team_0\0\tkills_0\0\player_1\Kaaos\score_1\17\deaths_1\14\rocketK_1\0\railK_1\17\shotgunK_1\2\selfK_1\0\ctime_1\0\dtime_1\-1\ping_1\170\rockethitp_1\0.45\railhitp_1\0.70\pid_1\23544\auth_1\efa7eaccde6e6973df985bc0a5caf674\team_1\0\tkills_1\2\player_2\Cr0m\score_2\20\deaths_2\22\rocketK_2\10\railK_2\10\shotgunK_2\0\selfK_2\0\ctime_2\0\dtime_2\-1\ping_2\163\rockethitp_2\0.23\railhitp_2\0.85\pid_2\56874\auth_2\6fd3ea58cde6e6973df985bc0a5c12ad\team_2\0\tkills_2\0\player_3\Scunion\score_3\25\deaths_3\8\rocketK_3\10\railK_3\15\shotgunK_3\0\selfK_3\0\ctime_3\0\dtime_3\-1\ping_3\171\rockethitp_3\0.70\railhitp_3\0.75\pid_3\568745\auth_3\aa3a0058cde6e6973df985bc0a5caf3af\team_3\0\tkills_3\0\player_4\k1ll3rman\score_4\7\deaths_4\33\rocketK_4\6\railK_4\1\shotgunK_4\0\selfK_4\0\ctime_4\0\dtime_4\-1\ping_4\210\rockethitp_4\0.10\railhitp_4\0.05\pid_4\564578\auth_4\32af0058cde6e6973df985bc0a5c32af\team_4\1\tkills_4\0\player_5\h4x0r\score_5\23\deaths_5\19\rocketK_5\25\railK_5\0\shotgunK_5\0\selfK_5\2\ctime_5\0\dtime_5\-1\ping_5\121\rockethitp_5\0.50\railhitp_5\0\pid_5\564578\auth_5\43540058cde6e6973df985bc0a535332\team_5\1\tkills_5\0\player_6\gr33nmachin3\score_6\17\deaths_6\24\rocketK_6\25\railK_6\0\shotgunK_6\2\selfK_6\0\ctime_6\0\dtime_6\-1\ping_6\213\rockethitp_6\0.45\railhitp_6\0\pid_6\12788\auth_6\af3a0058cde6e6973df985bc0a5c7543\team_6\1\tkills_6\10\player_7\h4lfl1f3\score_7\2\deaths_7\23\rocketK_7\0\railK_7\0\shotgunK_7\4\selfK_7\0\ctime_7\0\dtime_7\-1\ping_7\154\rockethitp_7\0.60\railhitp_7\0\pid_7\8979841\auth_7\54530058cde6e6973df985bc0a5c2342\team_7\1\tkills_7\2\team_t0\[McP]\quads_t0\7\score_t0\97\avglifespan_t0\1:20\team_t1\Kr0z\quads_t1\2\score_t1\49\avglifespan_t1\0:35

Completed:

\hostname\TeamPlay_Competition_Server\mapname\q3map22\timelimit\20\fraglimit\200\gametype\competition\serverck\34234223\gameck\562156\gamemode\debriefing\state\Match	Complete,	Fraglimit	hit\player_0\crt\score_0\75\deaths_0\35\rocketK_0\45\railK_0\28\shotgunK_0\2\selfK_0\0\ctime_0\0\dtime_0\-1\ping_0\152\rockethitp_0\0.80\railhitp_0\0.60\pid_0\2332\auth_0\cc7a0058cde6e6973df985bc0a5caf67\team_0\0\tkills_0\0\player_1\Kaaos\score_1\47\deaths_1\29\rocketK_1\23\railK_1\20\shotgunK_1\2\selfK_1\0\ctime_1\0\dtime_1\-1\ping_1\172\rockethitp_1\0.65\railhitp_1\0.45\pid_1\23544\auth_1\efa7eaccde6e6973df985bc0a5caf674\team_1\0\tkills_1\2\player_2\Cr0m\score_2\40\deaths_2\35\rocketK_2\25\railK_2\23\shotgunK_2\0\selfK_2\0\ctime_2\0\dtime_2\-1\ping_2\160\rockethitp_2\0.45\railhitp_2\0.65\pid_2\56874\auth_2\6fd3ea58cde6e6973df985bc0a5c12ad\team_2\0\tkills_2\0\player_3\Scunion\score_3\38\deaths_3\16\rocketK_3\43\railK_3\23\shotgunK_3\0\selfK_3\0\ctime_3\0\dtime_3\-1\ping_3\175\rockethitp_3\0.80\railhitp_3\0.85\pid_3\568745\auth_3\aa3a0058cde6e6973df985bc0a5caf3af\team_3\0\tkills_3\0\player_4\k1ll3rman\score_4\13\deaths_4\65\rocketK_4\10\railK_4\3\shotgunK_4\0\selfK_4\0\ctime_4\0\dtime_4\-1\ping_4\208\rockethitp_4\0.15\railhitp_4\0.10\pid_4\564578\auth_4\32af0058cde6e6973df985bc0a5c32af\team_4\1\tkills_4\0\player_5\h4x0r\score_5\27\deaths_5\23\rocketK_5\26\railK_5\3\shotgunK_5\0\selfK_5\2\ctime_5\0\dtime_5\-1\ping_5\124\rockethitp_5\0.30\railhitp_5\0.01\pid_5\564578\auth_5\43540058cde6e6973df985bc0a535332\team_5\1\tkills_5\0\player_6\gr33nmachin3\score_6\19\deaths_6\35\rocketK_6\25\railK_6\33\shotgunK_6\2\selfK_6\0\ctime_6\0\dtime_6\-1\ping_6\220\rockethitp_6\0.40\railhitp_6\0.20\pid_6\12788\auth_6\af3a0058cde6e6973df985bc0a5c7543\team_6\1\tkills_6\10\player_7\h4lfl1f3\score_7\12\deaths_7\36\rocketK_7\0\railK_7\10\shotgunK_7\4\selfK_7\0\ctime_7\0\dtime_7\-1\ping_7\160\rockethitp_7\0.40\railhitp_7\0.0\pid_7\8979841\auth_7\54530058cde6e6973df985bc0a5c2342\team_7\1\tkills_7\4\team_t0\[McP]\quads_t0\14\score_t0\200\avglifespan_t0\1:35\team_t1\Kr0z\quads_t1\2\score_t1\71\avglifespan_t1\0:20

1v1	Starcraft	Match

Key	Descriptions:

elapsedtime

total	time	this	match	has	taken
startpos

relative	starting	position	on	the	map
gasmined

total	gas	resources	mined
mineralsmined

total	mineral	resources	mined

tspent

total	resources	spent
unitsP

total	units	produced
unitsK

number	of	enemy	units	killed
unitsL

number	of	own	units	lost
structuresP

total	number	of	structures	erected
structuresK

number	of	enemy	structures	razed
structuresL

number	of	own	structures	lost
race

which	race	the	player	played

Completed:

\hostname\crt_vs_walla\mapname\Lost	Temple\gametype\One	on	One\serverck\234234\gamemode\Debriefing

\state\Game	Complete,	crt	wins\elapsedtime\36:49\player_0\crt\score_0\45284

\startpos_0\Center	Right\gasmined_0\10410\mineralsmined_0\34874\Tspent_0\40975

\unitsP_0\453\unitsK_0\140\unitsL_0\254\structuresP_0\45\structuresK_0\19

\structuresL_0\1\race_0\Zerg\pid_0\23432\auth_0\cc7a0058cde6e6973df985bc0a5caf67\player_1\walla\score_1\33396\startpos_1\Bottom	Center\gasmined_1\8570\mineralsmined_1\24826

\Tspent_1\32438\unitsP_1\183\unitsK_1\254\unitsL_1\142\structuresP_1\57\structuresK_1\1\structuresL_1\19\race_1\Protoss\pid_1\3353232\auth_1\923db4c9d457626560652a50b8a3b4f2

1v1v1v1	Starcraft	Match

Key	Descriptions:

elapsedtime

total	time	this	match	has	taken
startpos

relative	starting	position	on	the	map

gasmined

total	gas	resources	mined
mineralsmined

total	mineral	resources	mined
tspent

total	resources	spent
unitsP

total	units	produced
unitsK

number	of	enemy	units	killed
unitsL

number	of	own	units	lost
structuresP

total	number	of	structures	erected
structuresK

number	of	enemy	structures	razed
structuresL

number	of	own	structures	lost
race

which	race	the	player	played

In	progress:

\hostname\4	Player	Game!\mapname\Hellhole\gametype\Melee\serverck\234234\gamemode\closedplaying\state\Playing\elapsedtime\13:33\player_0\crt\score_0\15468\startpos_0\Center	Right\gasmined_0\5468\mineralsmined_0\10548\Tspent_0\15048\unitsP_0\124\unitsK_0\32\unitsL_0\22\structuresP_0\11\structuresK_0\1\structuresL_0\0\race_0\Zerg\pid_0\23432\auth_0\cc7a0058cde6e6973df985bc0a5caf67\player_1\walla\score_1\15484\startpos_1\Bottom	Center\gasmined_1\2154\mineralsmined_1\8456\Tspent_1\8987\unitsP_1\68\unitsK_1\24\unitsL_1\34\structuresP_1\8\structuresK_1\0\structuresL_1\1\race_1\Protoss\pid_1\3353232\auth_1\923db4c9d457626560652a50b8a3b4f2\player_2\jimmy\score_2\12081\startpos_2\Top	Left\gasmined_2\5486\mineralsmined_2\9754\Tspent_2\13548\unitsP_2\112\unitsK_2\16\unitsL_2\3\structuresP_2\9\structuresK_2\1\structuresL_2\0\race_2\Terran\pid_2\45645\auth_2\923db4c9d457626560652a50b8a3b4f2\player_3\pants\score_3\8456\startpos_3\Top	Right\gasmined_3\5124\mineralsmined_3\7854\Tspent_3\10548\unitsP_3\70\unitsK_3\3\unitsL_3\16\structuresP_3\12\structuresK_3\0\structuresL_3\1\race_3\Zerg\pid_3\0\auth_3\

Completed:

\hostname\4	Player	Game!\mapname\Hellhole\gametype\Melee\serverck\234234\gamemode\debriefing\state\Game	Complete,	crt	wins\elapsedtime\45:20\player_0\crt\score_0\35478\startpos_0\Center	Right\gasmined_0\15848\mineralsmined_0\30548\Tspent_0\40812\unitsP_0\264\unitsK_0\354\unitsL_0\120\structuresP_0\23\structuresK_0\29\structuresL_0\5\race_0\Zerg\pid_0\23432\auth_0\cc7a0058cde6e6973df985bc0a5caf67\dtime_0\-1\player_1\walla\score_1\24564\startpos_1\Bottom	Center\gasmined_1\6804\mineralsmined_1\15486\Tspent_1\20488\unitsP_1\152\unitsK_1\64\unitsL_1\152\structuresP_1\14\structuresK_1\7\structuresL_1\12\race_1\Protoss\pid_1\3353232\auth_1\923db4c9d457626560652a50b8a3b4f2\dtime_1\-1\player_2\jimmy\score_2\16450\startpos_2\Top	Left\gasmined_2\10184\mineralsmined_2\15481\Tspent_2\25484\unitsP_2\160\unitsK_2\48\unitsL_2\145\structuresP_2\13\structuresK_2\6\structuresL_2\13\race_2\Terran\pid_2\45645\auth_2\923db4c9d457626560652a50b8a3b4f2\dtime_2\-1\player_3\pants\score_3\12054\startpos_3\Top	Right\gasmined_3\7840\mineralsmined_3\12648\Tspent_3\18456\unitsP_3\132\unitsK_3\15\unitsL_3\132\structuresP_3\16\structuresK_3\0\structuresL_3\14\race_3\Zerg\pid_3\0\auth_3\\dtime_3\23:30

2v2	Starcraft	Match

Key	Descriptions:

elapsedtime

total	time	this	match	has	taken
startpos

relative	starting	position	on	the	map
gasmined

total	gas	resources	mined
mineralsmined

total	mineral	resources	mined
tspent

total	resources	spent
unitsP

total	units	produced
unitsK

number	of	enemy	units	killed
unitsL

number	of	own	units	lost
structuresP

total	number	of	structures	erected
structuresK

number	of	enemy	structures	razed
structuresL

number	of	own	structures	lost
race

which	race	the	player	played

Completed:

\hostname\2v2	Teams\mapname\Hellhole\gametype\Team	Melee\serverck\234234\gamemode\debriefing\state\Game	Complete:	Yellow	wins\elapsedtime\30:12\player_0\crt\score_0\35478\startpos_0\Center	Right\gasmined_0\15848\mineralsmined_0\30548\Tspent_0\40812\unitsP_0\264\unitsK_0\354\unitsL_0\120\structuresP_0\23\structuresK_0\29\structuresL_0\5\race_0\Zerg\pid_0\23432\auth_0\cc7a0058cde6e6973df985bc0a5caf67\team_0\0\player_1\walla\score_1\24564\startpos_1\Bottom	Center\gasmined_1\6804\mineralsmined_1\15486\Tspent_1\20488\unitsP_1\152\unitsK_1\64

\unitsL_1\152\structuresP_1\14\structuresK_1\7\structuresL_1\12\race_1\Zerg\pid_1\3353232\auth_1\923db4c9d457626560652a50b8a3b4f2\team_1\0\player_2\jimmy\score_2\16450\startpos_2\Top	Left\gasmined_2\10184\mineralsmined_2\15481\Tspent_2\25484\unitsP_2\160\unitsK_2\48

\unitsL_2\145\structuresP_2\13\structuresK_2\6\structuresL_2\13\race_2\Terran\pid_2\45645\auth_2\324324c9d457626560652a50b8a3b4f2\team_2\1\player_3\pants\score_3\12054\startpos_3\Top	Right\gasmined_3\7840\mineralsmined_3\12648\Tspent_3\18456\unitsP_3\132\unitsK_3\15

\unitsL_3\132\structuresP_3\16\structuresK_3\0\structuresL_3\14\race_3\Protoss\pid_3\4548\auth_3\3533db4c9d457626560652a50b8a3b4f2\team_3\1\team_t0\Yellow\score_t0\60042\team_t1\Green\score_t1\28504

2	Human	vs.	1	Computer	Starcraft	Match

Key	Descriptions:

elapsedtime

total	time	this	match	has	taken
startpos

relative	starting	position	on	the	map
gasmined

total	gas	resources	mined
mineralsmined

total	mineral	resources	mined
tspent

total	resources	spent
unitsP

total	units	produced
unitsK

number	of	enemy	units	killed
unitsL

number	of	own	units	lost
structuresP

total	number	of	structures	erected
structuresK

number	of	enemy	structures	razed
structuresL

number	of	own	structures	lost
race

which	race	the	player	played
aiplayer_N

whether	of	not	the	player	is	controlled	by	the	computer

Completed:

\hostname\2	vs	Computer\mapname\Sherwood	Forest\gametype\Team	Melee\serverck\234234\gamemode\debriefing\state\Game	Complete:	Humans	win\elapsedtime\12:32\player_0\crt\score_0\35478\startpos_0\Center	Right\gasmined_0\15848\mineralsmined_0\30548\Tspent_0\40812\unitsP_0\264\unitsK_0\354\unitsL_0\120\structuresP_0\23\structuresK_0\29\structuresL_0\5\race_0\Zerg\pid_0\23432\auth_0\cc7a0058cde6e6973df985bc0a5caf67\team_0\0\aiplayer_0\0\player_1\walla\score_1\24564\startpos_1\Bottom	Center\gasmined_1\6804\mineralsmined_1\15486\Tspent_1\20488\unitsP_1\152\unitsK_1\64\unitsL_1\152\structuresP_1\14\structuresK_1\7\structuresL_1\12\race_1\Zerg\pid_1\3353232\auth_1\923db4c9d457626560652a50b8a3b4f2\team_1\0\aiplayer_1\0\player_2\Hal	(AI)\score_2\16450\startpos_2\Top	Left\gasmined_2\10184\mineralsmined_2\15481\Tspent_2\25484\unitsP_2\160\unitsK_2\48\unitsL_2\145\structuresP_2\13\structuresK_2\6\structuresL_2\13\race_2\Terran\pid_2\0\auth_2\\team_2\1\aiplayer_2\1\team_t0\Yellow\score_t0\60042\team_t1\Green\score_t1\16450

4v4	Rainbow	6	Team	DM

Key	Description:

sex_N

sex	(M	or	F)
totaltime_N

total	number	of	seconds	for	the	match
specialty_N

specialty	(Assault,	Recon,	Sniper,	etc.)
roundsfired_N

total	rounds	fired
hitpercent_N

total	hit	%
tkills_N

number	of	team	player's	killed

Completed:

\hostname\Jim's	Server\mapname\Killing	Field\gametype\Double	Bluff\totaltime\300\difficulty\Veteran\player_0\John\ping_0\28\team_0\0\kills_0\5\deaths_0\7\sex_0\M\specialty_0\Assault\roundsfired_0\54\hitpercent_0\85\tkills_0\1\pid_0\46829\auth_0\cc7a0058cde6e6973df985bc0a5caf67\player_1\George\ping_1\46\team_1\0\kills_1\8\deaths_1\2\sex_1\M\specialty_1\Assault\roundsfired_1\66\hitpercent_1\67\tkills_1\3\pid_1\64372\auth_1\923db4c9d457626560652a50b8a3b4f2\player_2\Paul\ping_2\38\team_2\0\kills_2\2\deaths_2\9\sex_2\F\specialty_2\Sniper\roundsfired_2\78\hitpercent_2\30\tkills_2\0\pid_2\55497\auth_2\cc7a0058cde6e6973df985bc0a5caf67\player_3\Ringo\ping_3\12\team_3\0\kills_3\5\deaths_3\6\sex_3\M\specialty_3\Assault\roundsfired_3\29\hitpercent_3\98\tkills_3\2\pid_3\66634\auth_3\923db4c9d457626560652a50b8a3b4f2\player_4\crt\ping_4\152\team_4\1\kills_4\6\deaths_4\4\sex_4\F\specialty_4\Assault\roundsfired_4\55\hitpercent_4\55\tkills_4\3\pid_4\44844\auth_4\cc7a0058cde6e6973df985bc0a5caf67\player_5\Walla\ping_5\22\team_5\1\kills_5\9\deaths_5\8\sex_5\M\specialty_5\Sniper\roundsfired_5\47\hitpercent_5\67\tkills_5\4\pid_5\57987\auth_5\923db4c9d457626560652a50b8a3b4f2\player_6\Mr.	Pants\ping_6\58\team_6\1\kills_6\3\deaths_6\3\sex_6\M\specialty_6\Assault\roundsfired_6\26\hitpercent_6\59\tkills_6\2\pid_6\48489\auth_6\cc7a0058cde6e6973df985bc0a5caf67\player_7\KAAOS\ping_7\99\team_7\1\kills_7\6\deaths_7\7\sex_7\M\specialty_7\Recon\roundsfired_7\38\hitpercent_7\42\tkills_7\0\pid_7\68413\auth_7\923db4c9d457626560652a50b8a3b4f2\team_t0\Red\score_t0\20\team_t1\Blue\score_t1\24

4	vs.	Computer	Rainbow	6	Coop

Key	Description:

sex_N

sex	(M	or	F)
totaltime_N

total	number	of	seconds	for	the	match
specialty_N

specialty	(Assault,	Recon,	Sniper,	etc.)
roundsfired_N

total	rounds	fired
hitpercent_N

total	hit	%
tkills_N

number	of	team	player's	killed
difficuly

mission's	difficulty	level	(Rookie,	Veteran,	Elite)
human_N

1	for	a	human,	0	for	an	AI	player

Completed:

\hostname\Jim's	Server\mapname\M78	Rescue	Gilligan\gametype\cooperative\totaltime\289\kills\17\deaths\3\roundsfired\97\hitpercent\64\tkills\0\player_0\Smoothie\ping_0\10\team_0\0\kills_0\10\deaths_0\2\roundsfired_0\56\hitpercent_0\70\tkills_0\0\human_0\1\pid_0\55544\auth_0\cc7a0058cde6e6973df985bc0a5caf67\player_1\AI\ping_1\10\team_1\0\kills_1\0\deaths_1\0\roundsfired_1\3\hitpercent_1\0\tkills_1\0\human_1\0\pid_1\0\auth_1\\player_2\Slurpie\ping_2\28\team_2\1\kills_2\5\deaths_2\1\roundsfired_2\26\hitpercent_2\64\tkills_2\1\human_2\1\pid_2\66854\auth_2\923db4c9d457626560652a50b8a3b4f2\player_3\AI\ping_3\10\team_3\1\kills_3\2\deaths_3\2\roundsfired_3\12\hitpercent_3\50\tkills_3\0\human_3\0\pid_3\0\auth_3\\team_t0\Red\kills_t0\10\deaths_t0\2\roundsfired_t0\59\team_t1\Blue\kills_t1\7\deaths_t1\3\roundsfired_t1\38

1v1	FIFA	Soccer

Key	Descriptions:

time

total	match	time	in	seconds
precipitation

rain,	snow,	sleet,	etc.
surface

grass,	turf,	etc.
human_N

1	for	a	human,	0	for	an	AI	player
goals_N

number	of	goals	scored	by	this	player
assists_N

number	of	assists	by	this	player
steals_N

number	of	steals	by	this	player
shots_N

number	of	shots	on	goal	by	this	player
fouls_tN

number	of	times	this	team	fouled
yellowcards_tN

number	of	yellowcards	received	by	this	team
redcards_tN

number	of	redcards	received	by	this	team

Completed:

\hostname\John's	Cup\mapname\Brazil\gametype\Standard\totaltime\5400\precipitation\Light	Rain\surface\Grass\player_0\Boy	George\human_0\1\ping_0\10\team_0\0\goals_0\2\assists_0\1\shots_0\7\steals_0\8\pid_0\58894\auth_0\cc7a0058cde6e6973df985bc0a5caf67\player_1\AI\human_1\0\ping_1\10\team_1\0\goals_1\0\assists_1\1\shots_1\2\steals_1\3\pid_1\0\auth_1\\player_2\George	Michael\human_2\1\ping_2\48\team_2\1\goals_2\1\assists_2\2\shots_2\4\steals_2\11\pid_2\64485\auth_2\923db4c9d457626560652a50b8a3b4f2\player_3\AI\human_3\0\ping_3\10\team_3\1\goals_3\1\assists_3\0\shots_3\2\steals_3\1\pid_3\0\auth_3\\team_t0\Italy\score_t0\3\fouls_t0\3\yellowcards_t0\1\redcards_t0\0\team_t1\England\score_t1\2\fouls_t1\6\yellowcards_t1\1\redcards_t1\1

2v2	NBA	Live	(with	3	computer	players	on	each	team)

Key	Descriptions:

time

length	of	game	in	seconds
points

number	of	points	scored
shotpercent_N

player's	shot	percentage
threes_N

number	of	3-pointers
rebounds_N

number	of	rebounds
blocks_N

number	of	blocks
steals_N

number	of	steals
fouls_N

number	of	fouls
shotpercent_tN

team's	shot	percentage
threes_tN

number	of	3-pointers
rebounds_tN

number	of	rebounds
blocks_tN

number	of	blocks
steals_tN

number	of	steals
fouls_tN

number	of	fouls
possessionTime_tN

total	time	of	possession	for	the	team

Completed:

\hostname\Play	Basketball	Here!\mapname\New	Jersey\gametype\5v5\time\2880\player_0\Billy\human_0\1\points_0\38\shotpercent_0\48\threes_0\4\rebounds_0\7\blocks_0\2\steals_0\3\fouls_0\3\pid_0\19875\auth_0\923db4c9d457626560652a50b8a3b4f2\player_1\Bob\human_1\1\points_1\45\shotpercent_1\58\threes_1\5\rebounds_1\4\blocks_1\1\steals_1\5\fouls_1\4\pid_1\44978\auth_1\cc7a0058cde6e6973df985bc0a5caf67\player_2\AI\human_2\0\points_2\9\shotpercent_2\21\threes_2\3\rebounds_2\3\blocks_2\0\steals_2\4\fouls_2\2\pid_2\0\auth_2\\player_3\Joey\human_3\1\points_3\29\shotpercent_3\31\threes_3\1\rebounds_3\1\blocks_3\0\steals_3\3\fouls_3\4\pid_3\11189\auth_3\923db4c9d457626560652a50b8a3b4f2\player_4\John\human_4\1\points_4\52\shotpercent_4\66\threes_4\6\rebounds_4\8\blocks_4\4\steals_4\7\fouls_4\3\pid_4\71824\auth_4\cc7a0058cde6e6973df985bc0a5caf67\player_5\AI\human_5\0\points_5\8\shotpercent_5\58\threes_5\0\rebounds_5\3\blocks_5\0\steals_5\5\fouls_5\3\pid_5\0\auth_5\\team_t0\Nets\score_t0\92\shotpercent_t0\50\threes_t0\12\rebounds_t0\14\blocks_t0\3\steals_t0\12\fouls_t0\9\possessionTime_t0\1757\team_t1\Lakers\score_t1\89\shotpercent_t1\54\threes_t1\7\rebounds_t1\12\blocks_t1\4\steals_t1\15\fouls_t1\10\possessionTime_t1\1123

1	player	PGA	Tour	99

Key	Descriptions:

nholes

number	of	holes	on	the	course
par

par	for	the	course
holeXX_N

score	for	player	N	on	hole	XX
score_N

current	score	for	player	N	(vs.	par)

In	progress:

\hostname\Single_Player_Game_(Bob)\nholes\9\mapname\Augusta	National,	Back	9\gametype\normal\gamemode\playing\state\Hole	12\par\36\player_0\Bob\score_0\-1\hole10_0\4\hole11_0\3	

Completed:

\hostname\Single_Player_Game_(Bob)\nholes\9\mapname\Augusta	National,	Back	9\gametype\normal\gamemode\debriefing\state\Completed\par\36\player_0\Bob\score_0\4\hole10_0\4\hole11_0\3\hole12_0\5\hole13_0\7\hole14_0\4\hole15_0\5\hole16_0\6\hole17_0\2\hole18_0\4

1v1	Checkers

Key	Descriptions:

moves

total	number	of	moves	made	in	the	game
winner

player	number	of	the	winner
time_N

total	number	of	seconds	player	took	to	make	his	moves
pieceslost_N

number	of	pieces	this	player	lost
kings_N

number	of	times	this	player	"kinged"	a	piece

Completed:

\hostname\I	play	checkers	real	good.\gametype\Standard\moves\27\winner\0\player_0\Obi-wan\time_0\240\pieceslost_0\8\kings_0\2\player_1\Darth	Vader\time_1\257\pieceslost_1\12\kings_1\0

3	Player	You	Don't	Know	Jack

Key	Descriptions:

correct_N

number	of	correct	answers
wrong_N

number	of	wrong	answers

Completed:

\gametype\Toilet	Humor\player_0\Snap\score_0\800\correct_0\4\wrong_0\2\player_1\Crackle\score_1\12000\correct_1\5\wrong_1\1\player_2\Pop\score_2\3500\correct_2\3\wrong_2\1

Stats	and	Tracking	SDK	Functions
BucketFloatOp

Performs	an	operation	on	a	bucket	for	a	game.

BucketIntOp
Performs	an	operation	on	a	bucket	for	a	game.

BucketStringOp
Performs	an	operation	on	a	bucket	for	a	game.

CloseStatsConnection
Closes	the	connection	to	the	stats	server.	You
should	do	this	when	done	with	the	connection.

FreeGame
Frees	a	game	and	its	associated	structures
(including	buckets).

GenerateAuth
Used	on	the	CLIENT	SIDE	to	generate	an
authentication	reply	(auth_N)	for	a	given
challenge	and	password	(CD	Key	or	Profile
password)

GetChallenge
Get	the	challenge	value	that	should	be	sent	to
clients	for	authentication	(using	GenerateAuth).

GetPlayerIndex
Gets	the	gstats	reference	number	for	a	player.

GetTeamIndex
Gets	the	gstats	reference	number	for	a	team.

InitStatsAsync
Initializes	the	Tracking	Server	Connection	Without
Blocking.

InitStatsConnection Initializes	the	Tracking	Server	Connection.

InitStatsThink
Continues	InitStatsAsync	connection	attempt.

IsStatsConnected
Returns	whether	or	not	you	are	currently
connected	to	the	stats	server.

NewGame
Creates	a	new	game	for	logging	and	registers	it
with	the	stats	server.

NewPlayer
Adds	a	"player"	to	the	game	and	assigns	them	an
internal	player	number.	Sets	their	connect	time	to
the	number	of	seconds	since	theh	NewGame
function	was	called.

NewTeam
Adds	a	"team"	to	the	game	and	assigns	it	an
internal	team	number.	Sets	its	connect	time	to	the
number	of	seconds	since	the	NewGame	function
was	called.

RemovePlayer
Removes	a	"player"	from	the	game	and	sets	their
disconnect	time	to	the	number	of	seconds	since
NewGame	was	called.

RemoveTeam
Removes	a	"team"	from	the	game	and	sets	its
disconnect	time	to	the	number	of	seconds	since
NewGame	was	called.

SendGameSnapShot
Sends	a	snapshot	of	information	about	the	current
game.

StatsThink

Called	to	keep	connection	open

BucketFloatOp
Performs	an	operation	on	a	bucket	for	a	game.

double	BucketFloatOp(
statsgame_t	game,
char	*	name,
bucketop_t	operation,
double	value,
bucketlevel_t	bucketlevel,
int	index);

Routine Required	Header Distribution
BucketFloatOp <gstats.h> SDKZIP

Return	Value

Returns	the	resultant	bucket	value.

Parameters

game
[in]	The	game	to	send	containing	the	bucket	you	want	to	operate	on.
If	NULL,	uses	most	recently	created	game.

name
[in]	The	name	of	the	bucket	to	update.

operation
[in]	Indicates	the	operation	to	perform	on	the	bucket.

value
[in]	Argument	for	the	operation.

bucketlevel
[in]	Determines	whether	you	are	referring	to	a	server,	player,	or	team
bucket.

index
[in]	For	player	or	team	buckets,	the	internal	reference,	as	passed	to
NewPlayer	or	NewTeam.

Remarks

if	the	bucket	doesn't	exist	already,	the	call	will	set	the	bucket	to	whatever
"value"	is.	You	can	create	each	bucket	explicitly	by	using	the	bo_set
operation	with	whatever	initial	value	you	want	the	bucket	to	have.

Each	bucket	type	(int,	float,	or	string)	has	its	own	operation	function,
always	call	the	same	one	for	each	bucket	(i.e.	don't	create	a	bucket	with
BucketIntOp	then	try	to	add	a	float	with	BucketFloatOp).

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

See	Also:	BucketIntOp,	BucketStringOp

BucketIntOp
Performs	an	operation	on	a	bucket	for	a	game.

int	BucketIntOp(
statsgame_t	game,
char	*	name,
bucketop_t	operation,
int	value,
bucketlevel_t	bucketlevel,
int	index);

Routine Required	Header Distribution
BucketIntOp <gstats.h> SDKZIP

Return	Value

Returns	the	resultant	bucket	value.

Parameters

game
[in]	The	game	to	send	containing	the	bucket	you	want	to	operate	on.
If	NULL,	uses	most	recently	created	game.

name
[in]	The	name	of	the	bucket	to	update.

operation
[in]	Indicates	the	operation	to	perform	on	the	bucket.

value
[in]	Argument	for	the	operation.

bucketlevel
[in]	Determines	whether	you	are	referring	to	a	server,	player,	or	team
bucket.

index
[in]	For	player	or	team	buckets,	the	internal	reference,	as	passed	to
NewPlayer	or	NewTeam.

Remarks

Performs	an	operation	on	a	bucket	for	a	game;	if	the	bucket	doesn't	exist
already,	the	call	will	set	the	bucket	to	whatever	"value"	is.	You	can	create
each	bucket	explicitly	by	using	the	bo_set	operation	with	whatever	initial
value	you	want	the	bucket	to	have.

Each	bucket	type	(int,	float,	or	string)	has	its	own	operation	function,
always	call	the	same	one	for	each	bucket	(i.e.	don't	create	a	bucket	with
BucketIntOp	then	try	to	add	a	float	with	BucketFloatOp).

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

See	Also:	BucketFloatOp,	BucketStringOp

BucketStringOp
Performs	an	operation	on	a	bucket	for	a	game.

void	BucketStringOp(
statsgame_t	game,
char	*	name,
bucketop_t	operation,
string	value,
bucketlevel_t	bucketlevel,
int	index);

Routine Required	Header Distribution
BucketStringOp <gstats.h> SDKZIP

Parameters

game
[in]	The	game	to	send	containing	the	bucket	you	want	to	operate	on.
If	NULL,	uses	most	recently	created	game.

name
[in]	The	name	of	the	bucket	to	update.

operation
[in]	Indicates	the	operation	to	perform	on	the	bucket.

value
[in]	Argument	for	the	operation.

bucketlevel
[in]	Determines	whether	you	are	referring	to	a	server,	player,	or	team
bucket.

index
[in]	For	player	or	team	buckets,	the	internal	reference,	as	passed	to
NewPlayer	or	NewTeam.

Remarks

Performs	an	operation	on	a	bucket	for	a	game;	if	the	bucket	doesn't	exist
already,	the	call	will	set	the	bucket	to	whatever	"value"	is.	You	can	create
each	bucket	explicitly	by	using	the	bo_set	operation	with	whatever	initial
value	you	want	the	bucket	to	have.

Each	bucket	type	(int,	float,	or	string)	has	its	own	operation	function,
always	call	the	same	one	for	each	bucket	(i.e.	don't	create	a	bucket	with
BucketIntOp	then	try	to	add	a	float	with	BucketFloatOp).

Example
To	set	the	name	of	a	player	whose	name	was	not	known	when	NewPlayer()	was	called:

				BucketStringOp(game,	"player",	bo_set,	realplayername,	bl_player,	pnum)

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

See	Also:	BucketFloatOp,	BucketIntOp

CloseStatsConnection
Closes	the	connection	to	the	stats	server.	You	should	do	this	when	done
with	the	connection.

void	CloseStatsConnection();

Routine Required	Header Distribution
CloseStatsConnection <gstats.h> SDKZIP

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

FreeGame
Frees	a	game	and	its	associated	structures	(including	buckets).

void	FreeGame(
statsgame_t	game);

Routine Required	Header Distribution
FreeGame <gstats.h> SDKZIP

Parameters

game
[in]	The	game	you	want	to	free.	If	NULL,	uses	most	recently	created
game.

Remarks

You	should	send	a	final	snapshot	for	the	game	(using
SendGameSnapShot	with	SNAP_FINAL)	before	freeing	the	game.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

See	Also:	SendGameSnapShot

GenerateAuth
Used	on	the	CLIENT	SIDE	to	generate	an	authentication	reply	(auth_N)
for	a	given	challenge	and	password	(CD	Key	or	Profile	password).

char	*	GenerateAuth(
char	*	challenge,
gsi_char	*	password,
char	response[33]);

Routine Required	Header Distribution
GenerateAuth <gstats.h> SDKZIP

Return	Value

A	pointer	to	the	response	parameter.

Parameters

challenge
[in]	The	challenge	string	sent	by	the	server.	On	the	server	this	should
be	generated	with	GetChallenge.

password
[in]	The	CD	Key	(un-hashed)	or	profile	password.

response
[out]	The	output	authentication	string.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

See	Also:	GetChallenge

GetChallenge
Get	the	challenge	value	that	should	be	sent	to	clients	for	authentication
(using	GenerateAuth).

char	*	GetChallenge(
statsgame_t	game);

Routine Required	Header Distribution
GetChallenge <gstats.h> SDKZIP

Return	Value

Returns	a	string	to	pass	to	GenerateAuth	to	create	the	authentication
hash.

Parameters

game
[in]	The	game	to	return	the	challenge	string	for.	If	NULL,	uses	most
recently	created	game.

Remarks

You	do	not	have	to	free	the	string	when	done.	This	string	will	be	constant
for	the	entire	length	of	the	game	and	is	generated	during	the	call	to
NewGame.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

GetPlayerIndex
Gets	the	gstats	reference	number	for	a	player.

int	GetPlayerIndex(
statsgame_t	game,
int	pnum);

Routine Required	Header Distribution
GetPlayerIndex <gstats.h> SDKZIP

Return	Value

Returns	the	requested	index.

Parameters

game
[in]	The	game	for	which	to	retrieve	the	translated	value.	If	NULL,
uses	most	recently	created	game.

pnum
[in]	Your	internal	player	number,	as	sent	to	NewPlayer.

Remarks

As	players	join	and	leave,	their	assigned	indexes	change.	Normally	this
doesn't	matter	to	you,	but	if	you	want	to	do	a	key	name	or	key	value	that
references	a	player	or	team	number,	such	as	setting	a	player's	team
number,	you	need	to	use	the	translated	values.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

See	Also:	NewTeam,	NewPlayer

GetTeamIndex
Gets	the	gstats	reference	number	for	a	team.

int	GetTeamIndex(
statsgame_t	game,
int	tnum);

Routine Required	Header Distribution
GetTeamIndex <gstats.h> SDKZIP

Return	Value

Returns	the	requested	index.

Parameters

game
[in]	The	game	for	which	to	retrieve	the	translated	value.	If	NULL,
uses	most	recently	created	game.

tnum
[in]	Your	internal	team	number,	as	sent	to	NewTeam.

Remarks

As	teams	are	added	and	removed,	their	assigned	indexes	may	not	be
trackable.	Normally	this	doesn't	matter	to	you,	but	if	you	want	to	do	a	key
name	or	key	value	that	references	a	player	or	team	number,	such	as
setting	a	player's	team	number,	you	need	to	use	the	translated	values.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

InitStatsAsync
Initializes	the	Tracking	Server	Connection	Without	Blocking.

int	InitStatsAsync(
int	gameport,
gsi_time	timeout);

Routine Required	Header Distribution
InitStatsAsync <gstats.h> SDKZIP

Return	Value

GE_NOERROR	if	successful;	otherwise	one	of	the	GE_	error	codes.	See
Remarks.

Parameters

gameport
[in]	The	game	port	that	the	host	is	running	on.

timeout
[in]	Optional	timeout	for	the	connection	attempt.	(See	Remarks)

Remarks

InitStatsThink	will	need	to	be	called	while	the	connection	attempt	is	in
progress.	

Be	sure	to	set	the	global	"gcd_gamename"	and	"gcd_secret_key"
variables	to	your	gamename	and	secret	key	before	making	this	call	or
you	will	be	unable	to	connect	to	the	tracking	server.

If	your	game	doesn’t	use	multiple	ports	(or	doesn’t	support	more	than	one
host	per	machine)	then	you	can	just	use	0	for	the	gameport.

A	optional	timeout	value	may	be	supplied	to	control	how	long	the	SDK	will
attempt	to	connect.	The	connection	attempt	will	abort	after	the	elapsed
time.	The	connection	attempt	may	be	aborted	at	any	time	by	calling
CloseStatsConnection.

Error	return	values	include:
GE_NODNS:	Unable	to	resolve	stats	server	DNS
GE_NOSOCKET:	Unable	to	create	data	socket
GE_NOCONNECT:	Unable	to	connect	to	stats	server
GE_DATAERROR:	Unable	to	receive	challenge	from	stats	server,	or	bad
challenge
GE_NOERROR:	Connected	to	stats	server	and	ready	to	send	data
GE_CONNECTING:	Connect	did	not	immediately	complete.	Call
InitStatsThink	to	continue.
GE_TIMEOUT:	Connect	did	not	complete	before	timeout	value	was
reached.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

See	Also:	InitStatsConnection,	InitStatsThink

InitStatsConnection
Initializes	the	Tracking	Server	Connection.

int	InitStatsConnection(
int	gameport);

Routine Required	Header Distribution
InitStatsConnection <gstats.h> SDKZIP

Return	Value

GE_NOERROR	if	successful;	otherwise	one	of	the	GE_	error	codes.	See
Remarks.

Parameters

gameport
[in]	The	game	port	that	the	host	is	running	on.

Remarks

Be	sure	to	set	the	global	"gcd_gamename"	and	"gcd_secret_key"
variables	to	your	gamename	and	secret	key	before	making	this	call	or
you	will	be	unable	to	connect	to	the	tracking	server.

If	your	game	doesn’t	use	multiple	ports	(or	doesn’t	support	more	than	one
host	per	machine)	then	you	can	just	use	0	for	the	gameport.

Error	return	values	include:
GE_NODNS:	Unable	to	resolve	stats	server	DNS
GE_NOSOCKET:	Unable	to	create	data	socket
GE_NOCONNECT:	Unable	to	connect	to	stats	server
GE_DATAERROR:	Unable	to	receive	challenge	from	stats	server,	or	bad
challenge
GE_NOERROR:	Connected	to	stats	server	and	ready	to	send	data.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

See	Also:	InitStatsAsync,	CloseStatsConnection

InitStatsThink
Continues	InitStatsAsync	connection	attempt.

int	InitStatsThink();

Routine Required	Header Distribution
InitStatsThink <gstats.h> SDKZIP

Return	Value

GE_NOERROR	if	successful;	otherwise	one	of	the	GE_	error	codes.	See
Remarks.

Remarks

This	function	should	continue	to	be	called	as	long	as	GE_CONNECTING
is	returned.

Error	return	values	include:
GE_NODNS:	Unable	to	resolve	stats	server	DNS
GE_NOSOCKET:	Unable	to	create	data	socket
GE_NOCONNECT:	Unable	to	connect	to	stats	server
GE_DATAERROR:	Unable	to	receive	challenge	from	stats	server,	or	bad
challenge
GE_NOERROR:	Connected	to	stats	server	and	ready	to	send	data
GE_CONNECTING:	Connect	did	not	immediately	complete.	Call
InitStatsThink	to	continue.
GE_TIMEOUT:	Connect	did	not	complete	before	timeout	value	was
reached.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

See	Also:	InitStatsAsync,	CloseStatsConnection

IsStatsConnected
Returns	whether	or	not	you	are	currently	connected	to	the	stats	server.

int	IsStatsConnected();

Routine Required	Header Distribution
IsStatsConnected <gstats.h> SDKZIP

Return	Value

Returns	1	if	connected,	0	otherwise.

Remarks

Even	if	your	initial	connection	was	successful,	you	may	lose	connection
later	and	want	to	try	to	reconnnect.
If	a	callback	returns	unsuccessfully,	check	this	function	to	see	if	it	was
because	of	a	disconnection.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

NewGame
Creates	a	new	game	for	logging	and	registers	it	with	the	stats	server.

statsgame_t	NewGame(
int	usebuckets);

Routine Required	Header Distribution
NewGame <gstats.h> SDKZIP

Return	Value

Returns	a	pointer	to	the	new	game.

Parameters

usebuckets
[in]	If	using	bucket	based	logging,	pass	1,	otherwise	0.

Remarks

If	you	are	going	to	be	running	more	than	one	game	at	a	time	on	the	host,
you	will	need	to	store	the	returned	value	to	pass	into	the	rest	of	the	SDK
functions,	otherwise	you	can	ignore	it	and	just	pass	NULL	(they	will	use
the	last	game	created).

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

NewPlayer
Adds	a	"player"	to	the	game	and	assigns	them	an	internal	player	number.
Sets	their	connect	time	to	the	number	of	seconds	since	theh	NewGame
function	was	called.

void	NewPlayer(
statsgame_t	game,
int	pnum,
gsi_char	*	name);

Routine Required	Header Distribution
NewPlayer <gstats.h> SDKZIP

Parameters

game
[in]	The	game	to	add	the	player	to.	If	NULL,	uses	most	recently
created	game

pnum
[in]	Your	internal	reference	for	this	player.

name
[in]	The	name	for	this	player.

Remarks

If	you	don't	have	the	player's	name	yet,	set	it	to	empty	("")	and	use	of	the
BucketStringOp	function	to	set	it	later.
Use	parameter	pnum's	internal	reference	value	in	any	calls	to	the
"Bucket__Op"	functions.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

NewTeam
Adds	a	"team"	to	the	game	and	assigns	it	an	internal	team	number.	Sets
its	connect	time	to	the	number	of	seconds	since	the	NewGame	function
was	called.

void	NewTeam(
statsgame_t	game,
int	tnum,
gsi_char	*	name);

Routine Required	Header Distribution
NewTeam <gstats.h> SDKZIP

Parameters

game
[in]	The	game	to	add	the	team	to.	If	NULL,	uses	most	recently
created	game

tnum
[in]	Your	internal	reference	for	this	team.

name
[in]	The	name	for	this	team.

Remarks

If	you	don't	have	the	team's	name	yet,	set	it	to	empty	("")	and	use	of	the
BucketStringOp	function	to	set	it	later.
Use	parameter	tnum's	internal	reference	value	in	any	calls	to	the
"Bucket__Op"	functions.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

RemovePlayer
Removes	a	"player"	from	the	game	and	sets	their	disconnect	time	to	the
number	of	seconds	since	NewGame	was	called.

void	RemovePlayer(
statsgame_t	game,
int	pnum);

Routine Required	Header Distribution
RemovePlayer <gstats.h> SDKZIP

Parameters

game
[in]	The	game	to	add	the	player	to.	If	NULL,	uses	most	recently
created	game.

pnum
[in]	Your	internal	reference	for	this	player.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

RemoveTeam
Removes	a	"team"	from	the	game	and	sets	its	disconnect	time	to	the
number	of	seconds	since	NewGame	was	called.

void	RemoveTeam(
statsgame_t	game,
int	tnum);

Routine Required	Header Distribution
RemoveTeam <gstats.h> SDKZIP

Parameters

game
[in]	The	game	to	add	the	team	to.	If	NULL,	uses	most	recently
created	game.

tnum
[in]	Your	internal	reference	for	this	team.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

SendGameSnapShot
Sends	a	snapshot	of	information	about	the	current	game.

int	SendGameSnapShot(
statsgame_t	game,
const	gsi_char	*	snapshot,
int	final);

Routine Required	Header Distribution
SendGameSnapShot <gstats.h> SDKZIP

Return	Value

Returns	GE_NOERROR	if	successful;	otherwise,	one	of	the	other	GE_
error	values.	See	Remarks.

Parameters

game
[in]	The	game	to	send	a	snapshot	for.	If	NULL,	uses	most	recently
created	game.

snapshot
[in]	The	snapshot	to	send.	If	you	are	using	buckets,	you	can	pass	in
NULL.

final
[in]	SNAP_UPDATE	if	the	game	is	in	progress;	SNAP_FINAL	if	this
is	the	final	snapshot.

Remarks

If	bucket	based	logging	is	enabled	the	snapshot	will	be	generated	from
the	buckets;	otherwise,	you	should	provide	it	in	"snapshot".	

Return	values	include:
GE_NOERROR:	The	update	was	sent,	or	disk	logging	is	enabled	and	the
game	was	logged.
GE_DATAERROR:	If	game	is	NULL	and	the	last	game	created	by
NewGame	failed	
GE_NOCONNECT:	If	the	connection	is	lost	and	disk	logging	is	disabled.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

Stats	and	Tracking	SDK	Enumerations
bucketlevel_t

The	types	of	buckets	(server	info,	team	info,	or	player	info)

bucketop_t
All	of	the	operations	that	can	performed	on	a	bucket

bucketlevel_t
The	types	of	buckets	(server	info,	team	info,	or	player	info).

typedef	enum	
{

bl_server,				
bl_team,				
bl_player				

}	bucketlevel_t;

Constants

bl_server
Bucket	contains	server	info.

bl_team
Bucket	contains	team	info.

bl_player
Bucket	contains	player	info.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

See	Also:	BucketFloatOp,	BucketIntOp,	BucketStringOp

bucketop_t
All	of	the	operations	that	can	performed	on	a	bucket.

typedef	enum	
{

bo_set,				
bo_add,				
bo_sub,				
bo_mult,				
bo_div,				
bo_concat,				
bo_avg				

}	bucketop_t;

Constants

bo_set
Sets	the	bucket	to	given	value.

bo_add
Adds	a	value	to	the	bucket.

bo_sub
Subtracts	a	value	from	the	bucket.

bo_mult
Multiplies	the	bucket	by	a	value.

bo_div
Divides	the	bucket	by	a	value.

bo_concat
Concatenates	a	value	to	the	bucket.

bo_avg
Averages-in	a	value	to	the	bucket.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

See	Also:	BucketFloatOp,	BucketIntOp,	BucketStringOp

adReset
Return	the	SDK	back	to	its	initialization	point.

AdResult	adReset(
AdInterfacePtr	*	theInterface);

Routine Required	Header Distribution
adReset <ad.h> SDKZIP

Return	Value

This	function	returns	AdResult_NO_ERROR	upon	success.	Otherwise	a
valid	AdResult	error	condition	is	returned.	(see	remarks)

Parameters

theInterface
[in]	AdInterfacePtr	to	be	reset

Remarks

This	function	will	return	the	SDK	back	to	its	starting	point.	The	internal
position	and	ad	info	lists	will	be	cleared.	All	usage	data	will	be	cleared.

AdResult_INVALID_PARAMETERS	will	be	returned	if	theInterface	is
invalid.

Example
	 AdInterfacePtr	anInterface		=	NULL;

	 AdResult							aResult						=	AdResult_NO_ERROR;

	 	 //	Set	run-time	parameters

	 	 AdInitParams	anInitParams;

	 	 memset(&anInitParams;,	0,	sizeof(AdInitParams));

	 	 anInitParams.mGameId	=	GAME_ID;

anInitParams.mOfflineFilePath	=	"ad";

	 	

	 	 printf("Initializing	the	Ad	SDK\r\n");

	 	 aResult	=	adInitialize(&anInitParams;,	&anInterface;);

	 	 if	(aResult	!=	AdResult_NO_ERROR)

	 	 {

	 	 	 printf("adInitialize	failed	(%d)\r\n",	aResult);

	 	 	 return	0;

	 	 }

Section	Reference:	Gamespy	Advertising	SDK

See	Also:	adInitialize

GPFindPlayerMatch
An	element	of	GPFindPlayersResponseArg,	which	is	the	arg	parameter
passed	to	a	callback	generated	by	a	call	to	gpFindPlayers	.

typedef	struct	
{

GPProfile	profile;
gsi_char	nick[GP_NICK_LEN];
GPEnum	status;
gsi_char	statusString[GP_STATUS_STRING_LEN];

}	GPFindPlayerMatch;

Members

profile
The	profile	object	for	this	match.

nick
The	nick	for	this	match.

status
Status	of	the	match.

statusString
Readable	text	string	representation	of	the	status.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPFindPlayersResponseArg,	gpFindPlayers

GPFindPlayersResponseArg
The	arg	parameter	passed	to	a	callback	generated	by	a	call	to
gpFindPlayers	is	of	this	type.

typedef	struct	
{

GPResult	result;
int	productID;
int	numMatches;
GPFindPlayerMatch	*	matches;

}	GPFindPlayersResponseArg;

Members

result
The	result	of	the	find	players	operation;	GP_NO_ERROR	if
successful.

productID
This	is	the	same	product	ID	that	was	passed	as	a	parameter	to
gpFindPlayers.

numMatches
The	number	of	matches	found	(stored	in	the	matches	field).

matches
The	search	matches.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPFindPlayerMatch,	gpFindPlayers

GPRecvBuddyAuthArg
Information	sent	to	the	GP_RECV_BUDDY_AUTH	callback.

typedef	struct	
{

GPProfile	profile;
unsigned	int	date;

}	GPRecvBuddyAuthArg;

Members

profile
The	profile	who	authorized	the	request.

date
The	date	when	the	auth	was	accepted.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	gpSetCallback,	GPEnum,	gpAuthBuddyRequest

gt2CreateAdHocSocket
Creates	a	new	socket,	which	can	be	used	for	making	outgoing
connections	or	accepting	incoming	connections.	See	gt2CreateSocket	for
details.

	gt2CreateAdHocSocket();

Routine Required	Header Distribution
gt2CreateAdHocSocket <gt2.h> SDKZIP

Remarks

AdHoc	Sockets	use	MAC	address	instead	of	IP	address.	See.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2CreateSocket

gt2GetLastSentMessageID
Gets	the	message	id	for	the	last	reliably	sent	message.	Unreliable
messages	do	not	have	an	id.

GT2MessageID	gt2GetLastSentMessageID(
GT2Connection	connection);

Routine Required	Header Distribution
gt2GetLastSentMessageID <gt2.h> SDKZIP

Return	Value

The	message	ID	of	the	last	reliably	sent	message.

Parameters

connection
[in]	The	handle	to	the	connection.

Remarks

This	should	be	called	immediately	after	gt2Send.	Waiting	until	after	a	call
to	gt2Think	can	result	in	an	invalid	message	id	being	returned.	Note	that
the	use	of	filters	that	can	either	drop	or	delay	messages	can	complicate
the	process,	because	in	those	cases	a	call	to	gt2Send	does	not
guarantee	that	a	message	will	actually	be	sent.	In	those	cases,
gt2GetLastSentMessageID	should	be	called	after	gt2FilteredSend,
because	the	actual	message	will	be	sent	from	within	that	function.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2WasMessageIDConfirmed

gt2WasMessageIDConfirmed
Checks	if	confirmation	has	been	received	that	the	remote	end	received	a
particular	reliable	message.

GT2Bool	gt2WasMessageIDConfirmed(
GT2Connection	connection,
GT2MessageID	messageID);

Routine Required	Header Distribution
gt2WasMessageIDConfirmed <gt2.h> SDKZIP

Return	Value

GT2True	if	confirmation	was	received	locally	that	the	reliable	message
represented	by	messageID	was	received	by	the	remote	end	of	the
connection,	GT2False	if	confirmation	was	not	yet	received.

Parameters

connection
[in]	The	handle	to	the	connection.

messageID
[in]	The	ID	of	the	message	to	check	for	confirmation.

Remarks

This	should	only	be	called	on	message	ids	that	were	returned	by
gt2GetLastSendMessageID,	and	should	be	used	relatively	soon	after	the
message	was	sent,	due	to	message	ids	wrapping	around	after	a	period	of
time.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gt2GetLastSentMessageID

gti2IpToMac
Converts	a	32	bit	IP	address	to	a	48	bit	Mac	address.

	gti2IpToMac();

Routine Required	Header Distribution
gti2IpToMac <gt2.h> SDKZIP

Remarks

Internally	every	time	gti2IpToMac	is	called,	the	full	48	bit	mac	address	is
stored	in	a	look	up	table.	This	mac	address	can	be	later	retrieved	using
gti2MacToIp.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gti2MacToIp

gti2MacToIp
Change	mac	ethernet	to	IP	address.

	gti2MacToIp();

Routine Required	Header Distribution
gti2MacToIp <gt2.h> SDKZIP

Remarks

Internally	every	time	gti2IpToMac	is	called,	the	full	48	bit	mac	address	is
stored	in	a	look	up	table.	This	function	will	find	the	corresponding	entry	to
the	given	ip	and	return	the	full	48	bit	mac	address.

Section	Reference:	Gamespy	Transport	SDK

See	Also:	gti2IpToMac

StatsThink
Called	to	keep	connection	open.

int	StatsThink();

Routine Required	Header Distribution
StatsThink <gstats.h> SDKZIP

Return	Value

returns	1	for	success,	or	0	for	any	errors	that	occurred.

Remarks

This	function	is	used	to	consume	keep-alives	that	the	server	sends	to
maintain	the	connection.	It	does	not	have	to	be	called	very	often.	Calling
this	function	about	once	every	10	seconds	should	be	sufficient.

Section	Reference:	Gamespy	Stats	and	Tracking	SDK

gpFindPlayers
This	function	finds	players	who	are	invitable	to	the	given	game.

GPResult	gpFindPlayers(
GPConnection	*	connection,
int	productID,
GPEnum	blocking,
GPCallback	callback,
void	*	param);

Routine Required	Header Distribution
gpFindPlayers <gp.h> SDKZIP

Return	Value

This	function	returns	GP_NO_ERROR	upon	success.	Otherwise	a	valid
GPResult	is	returned.

Parameters

connection
[in]	A	GP	connection	interface.

productID
[in]	The	product	ID	you	wish	to	invite	players	to.

blocking
[in]	GP_BLOCKING	or	GP_NON_BLOCKING

callback
[in]	A	user-supplied	callback	with	an	arg	type	of
GPFindPlayersResponseArg.

param
[in]	Pointer	to	user-defined	data.	This	value	will	be	passed
unmodified	to	the	callback	function.

Remarks

This	function	contacts	the	Search	Manager	and	attempts	to	find	all
profiles	that	match	the	search	criteria.	A	profile	matches	the	provided
search	criteria	only	if	it’s	corresponding	values	are	the	same	as	those
provided.	Currently,	there	is	no	substring	matching,	and	the	criteria	is
case-sensitive.
When	the	search	is	complete,	the	callback	will	be	called.

Section	Reference:	Gamespy	Presence	SDK

See	Also:	GPFindPlayersResponseArg

	GameSpy SDK Help
	Available Services Check
	Ad
	Ad Functions
	adBeginTrackUsageTime
	adCancelDownloads
	adCancelQueryForActiveUnits
	adDownloadNewCreatives
	adEndTrackUsageTime
	adGetUnitInfoByID
	adGetUnitInfoByPosition
	adIncrementUsageCount
	adInitialize
	adQueryForActiveUnits
	adRegisterPosition
	adSendUnitUsageData
	adShutdown
	adThink

	ATLAS Competition
	ATLAS Competition Functions
	scCreateMatchlessSession
	scCreateReport
	scCreateSession
	scDestroyReport
	scGetConnectionId
	scGetSessionId
	scInitialize
	scReportAddByteValue
	scReportAddFloatValue
	scReportAddIntValue
	scReportAddShortValue
	scReportAddStringValue
	scReportBeginGlobalData
	scReportBeginNewPlayer
	scReportBeginNewTeam
	scReportBeginPlayerData
	scReportBeginTeamData
	scReportEnd
	scReportSetAsMatchless
	scReportSetPlayerData
	scReportSetTeamData
	scSetReportIntention
	scSetSessionId
	scShutdown
	scSubmitReport
	scThink

	ATLAS Competition Callbacks
	SCCreateSessionCallback
	SCSetReportIntentionCallback
	SCSubmitReportCallback

	ATLAS Competition Enumerated Types
	SCGameResult
	SCGameStatus
	SCResult

	CD Key
	CD Key Client Functions
	gcd_compute_response

	CD Key Server Functions
	gcd_authenticate_user
	gcd_disconnect_all
	gcd_disconnect_user
	gcd_getkeyhash
	gcd_init
	gcd_init_qr2
	gcd_process_reauth
	gcd_shutdown
	gcd_think

	CD Key Server Callbacks
	AuthCallBackFn
	RefreshAuthCallbackFn

	CD Key Enums
	CDResponseMethod

	Chat
	Chat Functions
	chatAddChannelBan
	chatAuthenticateCDKey
	chatBanUser
	chatChangeNick
	chatConnect
	chatConnectLogin
	chatConnectPreAuth
	chatConnectSecure
	chatConnectSpecial
	chatDisconnect
	chatEnterChannel
	chatEnumChannelBans
	chatEnumChannels
	chatEnumJoinedChannels
	chatEnumUsers
	chatFixNick
	chatGetBasicUserInfo
	chatGetBasicUserInfoNoWait
	chatGetChannelBasicUserInfo
	chatGetChannelKeys
	chatGetChannelMode
	chatGetChannelNumUsers
	chatGetChannelPassword
	chatGetChannelTopic
	chatGetGlobalKeys
	chatGetNick
	chatGetProfileID
	chatGetUserID
	chatGetUserInfo
	chatGetUserMode
	chatGetUserModeNoWait
	chatInChannel
	chatInviteUser
	chatKickUser
	chatLeaveChannel
	chatRegisterUniqueNick
	chatRemoveChannelBan
	chatRetryWithNick
	chatSendChannelMessage
	chatSendRaw
	chatSendUserMessage
	chatSetChannelGroup
	chatSetChannelKeys
	chatSetChannelLimit
	chatSetChannelMode
	chatSetChannelPassword
	chatSetChannelTopic
	chatSetGlobalKeys
	chatSetQuietMode
	chatSetUserMode
	chatThink
	chatTranslateNick

	Chat Callbacks
	chatAuthenticateCDKeyCallback
	chatBroadcastKeyChanged
	chatChangeNickCallback
	chatChannelMessage
	chatChannelModeChanged
	chatConnectCallback
	chatDisconnected
	chatEnterChannelCallback
	chatEnumChannelBansCallback
	chatEnumChannelsCallbackAll
	chatEnumChannelsCallbackEach
	chatEnumJoinedChannelsCallback
	chatEnumUsersCallback
	chatFillInUserCallback
	chatGetBasicUserInfoCallback
	chatGetChannelBasicUserInfoCallback
	chatGetChannelKeysCallback
	chatGetChannelModeCallback
	chatGetChannelPasswordCallback
	chatGetChannelTopicCallback
	chatGetGlobalKeysCallback
	chatGetUserInfoCallback
	chatGetUserModeCallback
	chatInvited
	chatKicked
	chatNewUserList
	chatNickErrorCallback
	chatPrivateMessage
	chatRaw
	chatTopicChanged
	chatUserChangedNick
	chatUserJoined
	chatUserListUpdated
	chatUserModeChanged
	chatUserParted

	Chat Structures
	chatChannelCallbacks
	CHATChannelMode
	chatGlobalCallbacks

	Chat Enumerated Types
	CHATBool
	CHATEnterResult

	HTTP
	HTTP Functions
	ghttpCancelRequest
	ghttpCleanup
	ghttpFreePost
	ghttpGet
	ghttpGetEx
	ghttpGetHeaders
	ghttpGetResponseStatus
	ghttpGetState
	ghttpGetURL
	ghttpHead
	ghttpHeadEx
	ghttpNewPost
	ghttpPost
	ghttpPostAddFileFromDisk
	ghttpPostAddFileFromMemory
	ghttpPostAddString
	ghttpPostEx
	ghttpPostSetAutoFree
	ghttpPostSetCallback
	ghttpRequestThink
	ghttpSave
	ghttpSaveEx
	ghttpSetMaxRecvTime
	ghttpSetProxy
	ghttpSetRequestProxy
	ghttpSetThrottle
	ghttpStartup
	ghttpStream
	ghttpStreamEx
	ghttpThink
	ghttpThrottleSettings

	HTTP Callbacks
	ghttpCompletedCallback
	ghttpPostCallback
	ghttpProgressCallback

	HTTP Enumerated Types
	GHTTPBool
	GHTTPRequestError
	GHTTPResult
	GHTTPState

	NAT Negotiation
	NAT Negotiation Functions
	NNBeginNegotiation
	NNBeginNegotiationWithSocket
	NNCancel
	NNFreeNegotiateList
	NNProcessData
	NNStartNatDetection
	NNThink

	NAT Negotiation Callbacks
	NatDetectionResultsFunc
	NegotiateCompletedFunc
	NegotiateProgressFunc

	NAT Negotiation Structures
	AddressMapping
	NAT

	NAT Negotiation Enumerated Types
	NatMappingScheme
	NatPromiscuity
	NatType
	NegotiateError
	NegotiateResult
	NegotiateState

	Patching and Usage Analysis
	Patching and Usage Analysis Functions
	ptCheckForPatch
	ptCheckForPatchAndTrackUsage
	ptTrackUsage

	Patching and Usage Analysis Callbacks
	ptPatchCallback

	Peer
	Peer AutoMatch
	Peer Functions
	peerAlwaysGetPlayerInfo
	peerAreAllReady
	peerAuthenticateCDKey
	peerChangeNick
	peerClearTitle
	peerConnect
	peerConnectLogin
	peerConnectPreAuth
	peerCreateStagingRoom
	peerCreateStagingRoomWithSocket
	peerDisconnect
	peerEnumPlayers
	peerFixNick
	peerGetAutoMatchStatus
	peerGetChat
	peerGetGlobalWatchKey
	peerGetGroupID
	peerGetHostServer
	peerGetNick
	peerGetPlayerFlags
	peerGetPlayerGlobalKeys
	peerGetPlayerInfo
	peerGetPlayerInfoNoWait
	peerGetPlayerPing
	peerGetPlayersCrossPing
	peerGetPrivateIP
	peerGetProfileID
	peerGetPublicIP
	peerGetReady
	peerGetRoomChannel
	peerGetRoomGlobalKeys
	peerGetRoomKeys
	peerGetRoomName
	peerGetTitle
	peerGetUserID
	peerInitialize
	peerInRoom
	peerIsAutoMatching
	peerIsConnected
	peerIsPlayerHost
	peerIsPlaying
	peerJoinGroupRoom
	peerJoinStagingRoom
	peerJoinStagingRoomByChannel
	peerJoinTitleRoom
	peerKickPlayer
	peerLeaveRoom
	peerListGroupRooms
	peerMessagePlayer
	peerMessageRoom
	peerParseQuery
	peerPingPlayer
	peerRegisterUniqueNick
	peerRetryWithNick
	peerSendNatNegotiateCookie
	peerSetAwayMode
	peerSetGlobalKeys
	peerSetGlobalWatchKeys
	peerSetGroupID
	peerSetPassword
	peerSetQuietMode
	peerSetReady
	peerSetRoomKeys
	peerSetRoomName
	peerSetStagingRoomMaxPlayers
	peerSetTitle
	peerSetTitleRoomChannel
	peerShutdown
	peerStartAutoMatch
	peerStartAutoMatchWithSocket
	peerStartGame
	peerStartListingGames
	peerStartPlaying
	peerStartReporting
	peerStartReportingWithSocket
	peerStateChanged
	peerStayInRoom
	peerStopAutoMatch
	peerStopGame
	peerStopListingGames
	peerThink
	peerTranslateNick
	peerUpdateGame
	peerUpdateGameByMaster
	peerUTMPlayer
	peerUTMRoom

	Peer Callbacks
	peerAuthenticateCDKeyCallback
	peerAutoMatchRateCallback
	peerAutoMatchStatusCallback
	peerChangeNickCallback
	peerConnectCallback
	peerCrossPingCallback
	peerDisconnectedCallback
	peerEnumPlayersCallback
	peerGameStartedCallback
	peerGetGlobalKeysCallback
	peerGetPlayerInfoCallback
	peerGetRoomKeysCallback
	peerGlobalKeyChangedCallback
	peerJoinRoomCallback
	peerKickedCallback
	peerListGroupRoomsCallback
	peerListingGamesCallback
	peerNewPlayerListCallback
	peerNickErrorCallback
	peerPingCallback
	peerPlayerChangedNickCallback
	peerPlayerFlagsChangedCallback
	peerPlayerInfoCallback
	peerPlayerJoinedCallback
	peerPlayerLeftCallback
	peerPlayerMessageCallback
	peerPlayerUTMCallback
	peerQRAddErrorCallback
	peerQRCountCallback
	peerQRKeyListCallback
	peerQRNatNegotiateCallback
	peerQRPlayerKeyCallback
	peerQRPublicAddressCallback
	peerQRServerKeyCallback
	peerQRTeamKeyCallback
	peerReadyChangedCallback
	peerRoomKeyChangedCallback
	peerRoomMessageCallback
	peerRoomModeChangedCallback
	peerRoomNameChangedCallback
	peerRoomUTMCallback

	Peer Structures
	PEERCallbacks

	Peer Enumerated Types
	MessageType
	PEERAutoMatchStatus
	PEERBool
	PEERJoinResult
	RoomType

	Presence and Messaging
	Presence and Messaging Functions
	gpAcceptTransfer
	gpAddToBlockedList
	gpAuthBuddyRequest
	gpCheckUser
	gpConnect
	gpConnectNewUser
	gpConnectPreAuthenticated
	gpConnectUniqueNick
	gpDeleteBuddy
	gpDeleteProfile
	gpDenyBuddyRequest
	gpDestroy
	gpDisable
	gpDisconnect
	gpEnable
	gpFreeTransfer
	gpGetBlockedProfile
	gpGetBuddyIndex
	gpGetBuddyStatus
	gpGetCurrentFile
	gpGetErrorCode
	gpGetErrorString
	gpGetFileModificationTime
	gpGetFileName
	gpGetFilePath
	gpGetFileProgress
	gpGetFileSize
	gpGetInfo
	gpGetLoginTicket
	gpGetNumBlocked
	gpGetNumBuddies
	gpGetNumFiles
	gpGetNumTransfers
	gpGetReverseBuddies
	gpGetTransfer
	gpGetTransferData
	gpGetTransferProfile
	gpGetTransferProgress
	gpGetTransferSide
	gpGetTransferSize
	gpGetTransferThrottle
	gpGetUserNicks
	gpIDFromProfile
	gpInitialize
	gpInvitePlayer
	gpIsBlocked
	gpIsBuddy
	gpIsConnected
	gpIsValidEmail
	gpNewProfile
	gpNewUser
	gpProcess
	gpProfileFromID
	gpProfileSearch
	gpProfilesReport
	gpRegisterCdKey
	gpRegisterUniqueNick
	gpRejectTransfer
	gpRemoveFromBlockedList
	gpRevokeBuddyAuthorization
	gpSendBuddyMessage
	gpSendBuddyRequest
	gpSendBuddyUTM
	gpSendFiles
	gpSetCallback
	gpSetInfoCacheFilename
	gpSetInfod
	gpSetInfoi
	gpSetInfoMask
	gpSetInfos
	gpSetStatus
	gpSetTransferData
	gpSetTransferDirectory
	gpSetTransferThrottle
	gpSkipFile
	gpSuggestUniqueNick
	gpUserIDFromProfile

	Presence and Messaging Callbacks
	GPCallback
	gpSendFilesCallback

	Presence and Messaging Structures
	GPBuddyStatus
	GPCheckResponseArg
	GPConnectResponseArg
	GPDeleteProfileResponseArg
	GPErrorArg
	GPGetInfoResponseArg
	GPGetReverseBuddiesResponseArg
	GPGetUserNicksResponseArg
	GPIsValidEmailResponseArg
	GPNewProfileResponseArg
	GPNewUserResponseArg
	GPProfileSearchMatch
	GPProfileSearchResponseArg
	GPRecvBuddyMessageArg
	GPRecvBuddyRequestArg
	GPRecvBuddyRevokeArg
	GPRecvBuddyStatusArg
	GPRecvGameInviteArg
	GPRegisterCdKeyResponseArg
	GPRegisterUniqueNickResponseArg
	GPSuggestUniqueNickResponseArg
	GPTransferCallbackArg

	Presence and Messaging Enumerated Types
	GPEnum
	GPErrorCode
	GPResult

	Query and Reporting 2
	Query and Reporting 2 Functions
	qr2_buffer_add
	qr2_buffer_add_int
	qr2_init
	qr2_init_socket
	qr2_internal_key_list_free
	qr2_keybuffer_add
	qr2_parse_query
	qr2_register_clientconnected_callback
	qr2_register_clientmessage_callback
	qr2_register_key
	qr2_register_natneg_callback
	qr2_register_publicaddress_callback
	qr2_send_statechanged
	qr2_shutdown
	qr2_think

	Query and Reporting 2 Callbacks
	qr2_adderrorcallback_t
	qr2_clientconnectedcallback_t
	qr2_clientmessagecallback_t
	qr2_countcallback_t
	qr2_keylistcallback_t
	qr2_natnegcallback_t
	qr2_playerteamkeycallback_t
	qr2_publicaddresscallback_t
	qr2_serverkeycallback_t

	Query and Reporting 2 Enumerated Types
	qr2_error_t
	qr2_key_type

	SAKE Persistent Storage
	Sake Functions
	sakeCreateRecord
	sakeDeleteRecord
	sakeGetFieldByName
	sakeGetFileDownloadURL
	sakeGetFileIdFromHeaders
	sakeGetFileResultFromHeaders
	sakeGetFileUploadURL
	sakeGetMyRecords
	sakeGetRandomRecord
	sakeGetRecordCount
	sakeGetRecordLimit
	sakeGetSpecificRecords
	sakeGetStartRequestResult
	sakeRateRecord
	sakeSearchForRecords
	sakeSetGame
	sakeSetProfile
	sakeShutdown
	sakeStartup
	sakeUpdateRecord

	Sake Callbacks
	SAKERequestCallback

	Sake Structures
	SAKEBinaryData
	SAKECreateRecordInput
	SAKECreateRecordOutput
	SAKEDeleteRecordInput
	SAKEField
	SAKEGetMyRecordsInput
	SAKEGetMyRecordsOutput
	SAKEGetRandomRecordInput
	SAKEGetRandomRecordOutput
	SAKEGetRecordCountInput
	SAKEGetRecordCountOutput
	SAKEGetRecordLimitInput
	SAKEGetRecordLimitOutput
	SAKEGetSpecificRecordsInput
	SAKEGetSpecificRecordsOutput
	SAKERateRecordInput
	SAKERateRecordOutput
	SAKESearchForRecordsInput
	SAKESearchForRecordsOutput
	SAKEUpdateRecordInput

	Sake Enumerated Types
	SAKEFieldType
	SAKEFileResult
	SAKERequestResult
	SAKEStartRequestResult
	SAKEStartupResult

	Server Browsing
	Server Browsing Functions
	SBServerDirectConnect
	SBServerEnumKeys
	SBServerGetBoolValue
	SBServerGetConnectionInfo
	SBServerGetFloatValue
	SBServerGetIntValue
	SBServerGetPing
	SBServerGetPlayerFloatValue
	SBServerGetPlayerIntValue
	SBServerGetPlayerStringValue
	SBServerGetPrivateAddress
	SBServerGetPrivateInetAddress
	SBServerGetPrivateQueryPort
	SBServerGetPublicAddress
	SBServerGetPublicInetAddress
	SBServerGetPublicQueryPort
	SBServerGetStringValue
	SBServerGetTeamFloatValue
	SBServerGetTeamIntValue
	SBServerGetTeamStringValue
	SBServerHasBasicKeys
	SBServerHasFullKeys
	SBServerHasPrivateAddress
	SBServerHasValidPing
	ServerBrowserAuxUpdateIP
	ServerBrowserAuxUpdateServer
	ServerBrowserClear
	ServerBrowserConnectToServer
	ServerBrowserCount
	ServerBrowserDisconnect
	ServerBrowserErrorDesc
	ServerBrowserFree
	ServerBrowserGetMyPublicIP
	ServerBrowserGetMyPublicIPAddr
	ServerBrowserGetServer
	ServerBrowserGetServerByIP
	ServerBrowserHalt
	ServerBrowserLANSetLocalAddr
	ServerBrowserLANUpdate
	ServerBrowserLimitUpdate
	ServerBrowserListQueryError
	ServerBrowserNew
	ServerBrowserPendingQueryCount
	ServerBrowserRemoveIP
	ServerBrowserRemoveServer
	ServerBrowserSendMessageToServer
	ServerBrowserSendNatNegotiateCookieToServer
	ServerBrowserSort
	ServerBrowserState
	ServerBrowserThink
	ServerBrowserUpdate

	Server Browsing Callbacks
	SBConnectToServerCallback
	SBServerKeyEnumFn
	ServerBrowserCallback

	Server Browsing Enumerated Types
	SBBool
	SBCallbackReason
	SBCompareMode
	SBConnectToServerState
	SBError
	SBState

	Transport
	Transport Functions
	gt2Accept
	gt2AddReceiveFilter
	gt2AddressToString
	gt2AddSendFilter
	gt2CloseAllConnections
	gt2CloseAllConnectionsHard
	gt2CloseConnection
	gt2CloseConnectionHard
	gt2CloseSocket
	gt2Connect
	gt2CreateSocket
	gt2FilteredReceive
	gt2FilteredSend
	gt2GetConnectionData
	gt2GetConnectionSocket
	gt2GetConnectionState
	gt2GetIncomingBufferFreeSpace
	gt2GetIncomingBufferSize
	gt2GetLocalIP
	gt2GetLocalPort
	gt2GetOutgoingBufferFreeSpace
	gt2GetOutgoingBufferSize
	gt2GetRemoteIP
	gt2GetRemotePort
	gt2GetSocketData
	gt2GetSocketSOCKET
	gt2HostToNetworkInt
	gt2HostToNetworkShort
	gt2IPToAliases
	gt2IPToHostInfo
	gt2IPToHostname
	gt2IPToIPs
	gt2Listen
	gt2NetworkToHostInt
	gt2NetworkToHostShort
	gt2Ping
	gt2Reject
	gt2RemoveReceiveFilter
	gt2RemoveSendFilter
	gt2Send
	gt2SetConnectionData
	gt2SetReceiveDump
	gt2SetSendDump
	gt2SetSocketData
	gt2SetUnrecognizedMessageCallback
	gt2StringToAddress
	gt2StringToAliases
	gt2StringToHostInfo
	gt2StringToHostname
	gt2StringToIPs
	gt2Think

	Transport Callbacks
	gt2ClosedCallback
	gt2ConnectAttemptCallback
	gt2ConnectedCallback
	gt2DumpCallback
	gt2PingCallback
	gt2ReceivedCallback
	gt2ReceiveFilterCallback
	gt2SendFilterCallback
	gt2SocketErrorCallback
	gt2UnrecognizedMessageCallback

	Transport Structures
	GT2ConnectionCallbacks

	Transport Enumerated Types
	GT2CloseReason
	GT2ConnectionState
	GT2Result

	Voice
	Voice Functions
	gvAreDevicesSetup
	gvCapturePacket
	gvCleanup
	gvFreeDevice
	gvGetAvailableCaptureBytes
	gvGetCaptureMode
	gvGetCaptureThreshold
	gvGetCodecInfo
	gvGetCustomPlaybackAudio
	gvGetDeviceVolume
	gvGetGlobalMute
	gvGetPushToTalk
	gvIsDeviceStarted
	gvIsSourceTalking
	gvListDevices
	gvListTalkingSources
	gvNewCustomDevice
	gvNewDevice
	gvPlayPacket
	gvRunSetupWizard
	gvSetCaptureMode
	gvSetCaptureThreshold
	gvSetCodec
	gvSetCustomCaptureAudio
	gvSetCustomCodec
	gvSetDeviceVolume
	gvSetFilter
	gvSetGlobalMute
	gvSetPushToTalk
	gvSetUnpluggedCallback
	gvStartDevice
	gvStartup
	gvStopDevice
	gvThink

	Voice Callbacks
	gvFilterCallback
	gvUnpluggedCallback

	Voice Structures
	GVCustomCodecInfo
	GVDeviceInfo

	Voice Enumerated Types
	GVCaptureMode
	GVCodec
	GVHardwareType

	Persistent Storage (Legacy)
	Persistent Storage Functions
	CloseStatsConnection
	GenerateAuth
	GetChallenge
	GetPersistData
	GetPersistDataModified
	GetPersistDataValues
	GetPersistDataValuesModified
	GetProfileIDFromCD
	InitStatsConnection
	IsStatsConnected
	PersistThink
	PreAuthenticatePlayerCD
	PreAuthenticatePlayerPM
	SetPersistData
	SetPersistDataValues

	Persistent Storage Callbacks
	PersAuthCallbackFn
	PersDataCallbackFn
	PersDataSaveCallbackFn
	ProfileCallbackFn

	Persistent Storage Enumerated Types
	persisttype_t

	Stats and Tracking (Legacy)
	Stats and Tracking Functions
	BucketFloatOp
	BucketIntOp
	BucketStringOp
	CloseStatsConnection
	FreeGame
	GenerateAuth
	GetChallenge
	GetPlayerIndex
	GetTeamIndex
	InitStatsAsync
	InitStatsConnection
	InitStatsThink
	IsStatsConnected
	NewGame
	NewPlayer
	NewTeam
	RemovePlayer
	RemoveTeam
	SendGameSnapShot

	Stats and Tracking Enumerated Types
	bucketlevel_t
	bucketop_t

